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ABSTRACT 

In this work we focus on the challenges of perceiving and coordinating spatial actions 
between humans and robots in production systems. We address the fundamental questions of 
how the affective states of individuals in the production process can be visually captured 
and interpreted in order to facilitate intuitive interactions without explicit commands. 
Additionally, we investigate methods to analyze the environment and action context in a 
semantic scene to anticipate user and action intentions. Lastly, we formulate decision 
approaches to derive appropriate interaction strategies based on affective user states and 
intentions in the scene context to improve productive collaboration between humans and 
robots in production environments. By addressing these challenges, this work aims to improve 
the efficiency of productive teaming processes in production systems. 

Index Terms - Productive Teaming, Human-Robot Interaction, Contextual Perception, 
Affective Anticipation, Interaction Strategies, Semantic Mapping 

INTRODUCTION 

Collaborative robots (Cobots) are considered the new, advanced generation of robots that are 
intended to replace stationary and inflexible industrial robots. Cobots are mobile and versatile, 
suitable for various tasks, equipped with the ability to learn and to adapt to increasing and 
changing demands. These capabilities enable them to safely break the barrier between human 
and robotic workspaces to unite the abilities of humans and robots in symbiotic collaboration. 
Yet, the path towards this kind of collaboration with humans in a shared and dynamic 
workspace is still paved with technical challenges. These challenges can be categorized into 
three main areas: capturing and processing human actions, capturing and processing the 
corresponding workspace, and generating suitable interaction strategies based on information 
from both humans and the workspace. In this paper we present a conceptual approach to address 
these tasks in a flexible interaction system to increase adaptivity and efficiency in productive 
teaming processes [1]. 

METHODS 

The development of neural networks in the recent years have led to significant performance 
leaps for Convolutional Neural Networks (CNNs) in image-based detection and classification. 
However, their objectives are often limited to individual tasks, based solely on visual features 
and independent of the scene context. Methods such as person detection [2], identification [3], 
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head pose prediction [4], gaze direction estimation [5], emotion recognition [6], and eye contact 
detection are popular approaches to tackle human understanding, but each method alone is 
insufficient to infer more complex affective states (See Fig. 1). Instead, they need to be 
combined in a meaningful way to create a holistic scene understanding and to anticipate states 
like willingness to interact, need for help, or refusal. 
 

 
Figure 1: Example situation of a team interaction scenario consisting of a mobile robot and human interaction 
partner. The robot is capable to capture multiple kinds of information, but it requires further processing algorithms 
to meaningful combine the extracted information into a holistic scene understanding. 
 
We propose structuring the functional scope of a cobot, designed for deployment as a human 
assistant in a dynamic workspace, into three categories: Affective Human Anticipation, 
Semantic Mapping, and Interaction Plan Generation. Figure 2 shows an overview of this 
classification and its dependencies. In the following, we will delve into the requirements and 
approaches for each category in more details. 
 
 Affective Human Anticipation refers to the ability of a cobot to anticipate and 
understand the emotional states or intentions of humans with whom it interacts. It involves the 
robot's capacity to recognize and interpret human emotions, behaviors, and non-verbal cues to 
predict the emotional or cognitive states of individuals. This enables the cobot to engage in 
more empathetic, responsive, and effective interactions with humans in various contexts, such 
as healthcare, social robotics, or customer service. 
 
 Semantic mapping involves the process of creating a representation of the environment 
that incorporates not only spatial information but also semantic or meaningful understanding of 
the objects, structures, and concepts within the environment. It goes beyond traditional mapping 
techniques that focus solely on geometric or spatial data. Semantic mapping allows cobots to 
not only navigate and localize themselves within an environment but also understand the 
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purpose and meaning of different regions or objects. It involves techniques such as object 
recognition, scene understanding, and semantic segmentation to identify and classify objects, 
surfaces, and other relevant elements in the environment. 
 
 Interaction plan generation refers to the process of generating a structured and 
coordinated sequence of actions for the robot to effectively interact with humans within an 
environment represented by semantic maps. 
This involves leveraging the semantic understanding of the environment to guide the cobot's 
behavior and decision-making during interactions. The interaction plan takes into account both 
the goals of the robot and the intentions or requests of the human user, while considering the 
semantic information present in the environment. 
By utilizing the semantic maps, the cobot can better comprehend the spatial layout, objects, and 
context of the environment. This understanding enables the cobot to generate interaction plans 
that account for the semantic attributes of objects, their relationships, and their relevance to the 
current task or interaction. 
 
 
 

 
 
 
 
 
 

 
Figure 2: Conceptual overview of the functional structure of a cobot.  
(Icons from Flaticon.com). 
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1.1 Affective Human Anticipation 
Based on our former work [7], we propose using a simplified Partially Observable Markov 
Decision Process (POMDP) for this purpose. 
 
A POMDP is a mathematical framework used to model probabilistic decision-making in 
situations where the underlying state is not directly observable but is instead inferred from 
partial observations. 
It can formally be described as a 7-tuple 
 

𝑃𝑃 =< 𝑆𝑆,𝐴𝐴,𝑇𝑇,𝑅𝑅,𝑍𝑍,𝑂𝑂,𝑦𝑦 >, 
 

where 𝑆𝑆 is a set of partially observable states, 𝐴𝐴 is a set of actions, T is a set of conditional 
transition probabilities with 𝑇𝑇(𝑠𝑠′ ∣ 𝑠𝑠,𝑎𝑎) for the state transition s→ s′ conditioned on the taken 
action. 𝑅𝑅: 𝑆𝑆 × 𝐴𝐴 → 𝑅𝑅 is the reward function, 𝑂𝑂 is a set of observations, Z is the observation 
function with 𝑍𝑍(𝑜𝑜 ∣ 𝑠𝑠′,𝑎𝑎) conditioned on the reached state and the taken action, and 𝑦𝑦 ∈ [0,1] is 
the discount factor. 
 
For our task, we focus on set 𝑂𝑂, which consists of the individual predicted features. These 
include body pose, head pose, gaze direction, facial expressions (emotions), and eye contact. 
These observations provide insights into the not directly observable states “Willingness to 
interact” (𝑠𝑠𝑤𝑤), “Need for help” (𝑠𝑠𝑛𝑛), and “Refusal”(𝑠𝑠𝑟𝑟) 
 

𝑆𝑆 = {𝑠𝑠𝑤𝑤, 𝑠𝑠𝑛𝑛, 𝑠𝑠𝑟𝑟 } 
 
Now, iteratively sampling new observations for each time 𝑡𝑡 we try to find the policy 𝜋𝜋∗ which 
maximizes the total expected discounted reward 

𝜋𝜋∗ = 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑎𝑎𝑚𝑚 𝐸𝐸  ��𝑦𝑦𝑡𝑡𝑅𝑅(𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡)
𝑇𝑇

𝑡𝑡=0

� 

 
To solve the equation, the Bayesian belief update function approach can be utilized. By 
incorporating multiple measurements (observations) and continuously updating the belief 
states, the robustness of state estimation can be improved. Additionally, the observations 
themselves can be augmented with an additional uncertainty factor (based on prediction 
confidence). In this way, POMDPs provide a robust, reliable and extendable methodology for 
estimating affective human states for these scenarios where training data is not available and 
only subtasks can be processed by neural networks. 
 
1.2 Semantic Mapping 
Enriching robot maps with semantic information is an important factor for integrating objects 
as entities into human-robot interaction. We propose a method based on our previous works [8, 
9], where point cloud maps can be augmented in real-time with semantic objects. The 
foundation is a CNN for 2D object detection. Two challenges arise from this approach: project 
2D detection from the image plane into 3D point cloud and data association to assign actual 
object entities in the map to individual image objects. 
 
Similar to our Affective Human Anticipation method, we pursue a probabilistic approach to 
suppress measurement errors. We aim to find the centroid of a 3D object represented by 𝑋𝑋 =
(𝑋𝑋,𝑌𝑌,𝑍𝑍)𝑇𝑇, which is projected onto the image plane at point 𝑚𝑚 =  𝑓𝑓(𝑋𝑋) using the projection 



© 2023 by the authors. – Licensee Technische Universität Ilmenau, Deutschland. 5 

function [10] 𝑓𝑓. To account for inaccuracies in both image capture and object prediction, we 
add measurement noise to this observation model: 𝑚𝑚 =  𝑓𝑓(𝑋𝑋)  +  𝜂𝜂 with 𝜂𝜂 ∼  𝑁𝑁(0,𝛴𝛴). 
 
For additional robustness, we consider multiple detections of an object, which results in the 
following probability distribution: 
 

𝑝𝑝(𝑚𝑚1:𝑡𝑡|𝑋𝑋) =
𝑒𝑒𝑚𝑚𝑝𝑝 �−1

2 (𝑓𝑓(𝑋𝑋) − 𝑚𝑚1:𝑡𝑡)𝑇𝑇Σ−1 − 1(𝑓𝑓(𝑋𝑋) − 𝑚𝑚1:𝑡𝑡)�

�(2π)2|Σ|
 

 
 
The posterior distribution of 𝑋𝑋, given the measurements 𝑚𝑚1:𝑡𝑡, can be obtained using Bayes' rule: 
 

𝑝𝑝(𝑋𝑋|𝑚𝑚1:𝑡𝑡) =
𝑝𝑝(𝑚𝑚1:𝑡𝑡|𝑋𝑋)𝑃𝑃(𝑋𝑋)

𝑝𝑝(𝑚𝑚1:𝑡𝑡)
 

 
Assuming a uniform prior distribution and independent measurements, we obtain the following 
factor representation: 
 

𝑝𝑝(𝑋𝑋|𝑚𝑚1:𝑡𝑡) = � 𝑝𝑝(𝑚𝑚𝑡𝑡|𝑋𝑋)
𝑇𝑇

𝑡𝑡=1
, 

 
To determine the 3D position X, we search for the X that maximizes the posterior probability: 
 

𝑋𝑋∗ = 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑎𝑎𝑚𝑚(𝑚𝑚) 𝑝𝑝(𝑋𝑋|𝑚𝑚1:𝑡𝑡) 
 
Having the position and the predicted class of an object, we are left with the challenge of data 
association. This problem can be simplified to the question: “Is this observed object not mapped 
yet, or to which mapped object do I have to refer it?”. If the object is already registered in the 
map, but is assumed not to be, it will be placed twice in the map and can lead to confusion in 
later data association steps and for the object interaction itself. 
Common solution approaches are also based of probabilistic methods, but they tend to make 
the processing pipeline very computational costly, especially in environment with large 
amounts of objects. As alternative, we apply a nearest-neighbor search to find the nearest 
mapped objects with the same class and calculate their distance towards the object candidate. 
If the distance is below a threshold, it will be referred to the object in map. Otherwise, it will 
be assumed as a new object and transferred into the map. The threshold is determined 
dynamically depended on the size of the target object. 
Figure 3 shows an illustration of a colored point cloud map with added semantic objects. By 
comparing the 2D detection rectangle with the appearing point clouds cluster in the 
corresponding 3D area, one also receives a rough indication of the object’s dimensions.  
In summary, this solution provides fast results and works well with objects of different 
categories. However, if multiple objects of the same class are close together, the data 
association tends to introduce error in the referencing. 
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1.3 Interaction Plan Generation 
The interaction plan generation step relies on the condensed information from the affective 
anticipation, the semantic environment map to interpret interaction goals and to generate 
appropriate interaction strategies. As these data inputs are attached with uncertainties and 
inaccuracies in measurements, we address the reasoning probabilistically using a Bayesian 
network.  
 
Let's consider a scenario where a robot is assisting a human worker in a production 
environment. The robot's goal is to understand the user's intentions and generate appropriate 
interaction plans based on semantic mapping and affective user anticipation. The affective user 
anticipation module may detect signs of “need of help” when the user is struggling to reach a 
high shelf or observe a smile when they find the mechanical error they were looking for. The 
semantic mapping module creates a representation of objects, their locations, and their semantic 
labels in the workspace. The Bayesian network captures the probabilistic dependencies between 
the user's intentions, the objects in the environment, and the user's affective state. 

We will consider three variables: User's Intention (I), Object in the Environment (O), and Af-
fective State (A). Accordingly, the prior probabilities are 𝑃𝑃(𝐼𝐼) for the user's intention, 𝑃𝑃(𝑂𝑂) for 
the object in the environment, and 𝑃𝑃(𝐴𝐴) for user's affective state. 

Figure 3: Exemplary image visually capturing the environment as spatial point cloud with addition 
semantic information. 
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It follows the conditional probability distributions with 𝑃𝑃(𝐼𝐼|𝑂𝑂) for the user's intention given the 
object in the environment, 𝑃𝑃(𝐼𝐼|𝐴𝐴) for the user's intention given the affective state, and 𝑃𝑃(𝑂𝑂|𝐴𝐴) 
for the object in the environment given the affective state. Finally, we define the joint probabil-
ity 𝑃𝑃(𝐼𝐼,𝑂𝑂,𝐴𝐴) combining user's intention, object in the environment, and affective state. 

Using these components, the Bayesian network is defined as follows: 

𝑃𝑃(𝐼𝐼,𝑂𝑂,𝐴𝐴) = 𝑃𝑃(𝐼𝐼|𝑂𝑂) ∗ 𝑃𝑃(𝑂𝑂|𝐴𝐴) ∗ 𝑃𝑃(𝐴𝐴) ∗ 𝑃𝑃(𝐼𝐼|𝐴𝐴) ∗ 𝑃𝑃(𝑂𝑂) 

This equation represents the joint probability distribution of the variables involved in the hu-
man-robot interaction scenario, that captures the dependencies between the variables and their 
conditional probabilities. 

To make inferences and generate interaction plans, we can use the network to compute posterior 
probabilities given observed evidence using Bayes’ rule. By calculating the posterior probabil-
ities, the robot can infer the user's intentions and generate appropriate interaction plans such as 
approaching the user with caution, offering assistance, or retrieving other tools or fare for the 
worker. 

 
CONCLUSION 

 
In this work, we addressed the challenge of achieving a holistic scene understanding for cobots, 
which is crucial for flexible and efficient human-robot interactions in productive teaming 
processes. We presented a concept for dividing the overall scenario into subtasks to enable the 
use of individual solutions. For each subtask, namely affective human anticipation, semantic 
mapping, and interaction plan generation, a robust probabilistic inference solution is proposed.  
 
The concepted presented in this paper will be implemented as part of an interaction system 
prototype on a mobile robot and evaluated in a user study. 
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