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Abstract 

The Afromontane Forest of north Eastern Nigeria is an important ecological ecosystem 

endowed with flora and fauna species. The Afromontane forests also uniquely have the water 

trapping capacity through which the forest canopy intercept water-filled cloud which drips 

into the forest floor forming streams. Thus, the Afromontane Forest supplies water all year 

round to its inhabitants.  Information on structural diversity is necessary for adequate 

conservation and management strategy. An extensive survey which is often time-consuming 

and labour-intensive is required for the assessment of such ecosystem. A remote sensing 

platform is an inexpensive tool for assessing both quantitative and qualitative information on 

ecosystem biodiversity. 

 The main goal of this thesis was to explore the potential of multi-source satellite remote 

sensing for the assessment of the biodiversity-rich Afromontane Forest ecosystem. The 

research theme of this thesis was divided into two phases using different methods and 

algorithms to retrieve two major remote sensing- -essential biodiversity variables (RS-EBV). 

The two RS-EBV are interrelated and are also the major determinants of biological and 

ecosystem stability. These are the aboveground biomass and tree species distribution. The 

aboveground component of two Afromontane Forest sites was estimated using high-

resolution QuickBird imagery with forest inventory data.  The study further examines the 

influence of QuickBird image features (spectral and textural) in the estimation of the forest 

AGB. Furthermore, environmental variables (precipitation, temperature, and slope and 

elevation data) were used as a determinant of AGB distribution.  The estimated mean value of 

aboveground biomass from sampled field plots was 400t/ha. The predicted aboveground 

biomass using feature groups, in situ, data and environmental variables was 300.10 t/ha with 

relative (RMSE) = 44.75%. Spectral and textural parameters, elevation and slope correlated 

with modelled aboveground biomass. Findings therefore imply that very high-resolution 
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spectral, textural and slope parameters are critical for biomass modelling of the Afromontane 

forests of Mambila Plateau. 

The second research component of the first phase was on the species distribution modelling 

of the Afromontane Forest ecosystem. The research examines the application of the Spectral 

Variation Hypothesis (SVA) in an Afromontane Forest ecosystem using features derived 

from high and medium-resolution images combined with macro ecological data to predict 

tree species distribution.  Alpha diversity (α) of tree species was calculated from in situ data 

obtained from the survey of two study sites. Object-Based Image Analysis (OBIA) was 

adopted for the tree species distribution modelling. Spectral and textural metrics from both 

QuickBird and Landsat images were computed with the segmentation algorithm. While the 

macro ecological parameters (temperature, humidity, elevation and slope) were derived from 

30 m ASTER DEM and CHELSA high-resolution climatic data. 

 The relationships between diversity and spectral, textural features derived from the two 

images and the macro-ecological parameters were assessed with a random forest algorithm. 

Elevation (r=0.55), and slope (r=0.46) were the determinant of tree species distribution in the 

study area. While spectral and textural features significantly contributed to the enhancement 

of the alpha diversity model in both QuickBird and Landsat images. QuickBird and Landsat 

ETM-8 spectral and textural heterogeneity showed a significant correlation with species 

richness (r=0.78) and (r=0.47) respectively. The empirical models developed can be used to 

predict landscape-level species density in the Afromontane forests of Nigeria and the 

adjourning Cameron highlands.  

The second phase of the research focussed on the analysis of the forest cover changes and the 

effects of habitat fragmentation on the Afromontane biological diversity. The study explores 

the use of multisource satellite data to determine the rate of degradation of the Afromontane 

Forest ecosystem using decadal Landsat and MODIS satellite images. The study also 
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determined the inter-annual time series changes in the study area using MODIS Satellite 

images with the BFAST algorithm. Trajectory change detection analyses of Landsat images 

(c.1988, c. 2001, and c.2014) indicated a decrease in forest cover by 18% between 1988 and 

2001 and 26% between 2001 and 2014. The overall accuracy of the change map derived from 

the error matrix was 93% (c. 1988-2001 change map) and 97% (c. 2001-2014 change map). 

The results of the phenology matrix from the MODIS time series reveal significant forest 

degradation through anthropogenic activities between 2000 and 2014. The overall accuracy 

of disturbance mapping was 93% and 74% for clear-cut deforestation and deforestation 

through fire. This study highlights the advantages of using multi-source satellite images with 

hybrid change detection techniques for the characterization of the highly diversified 

Afromontane ecosystem.  

The last chapter was focused on forest fragmentation analysis and its effects on forest 

diversity. The study examined the spatial pattern changes of the study area using the forest 

cover map of 1988, 2001 and 2014. The spatial pattern of the landscape changed remarkably 

with the decrease in forest cover at 21%, 17.5% and 8.1% for the three test sites. The study 

also indicated an increase in fragmentation with the number of patches (NumP), mean patch 

size (MPS) and Mean patch (MPAR) area showing an increase with decreasing forest cover. 

The study also analysed the effects of fragmentation on species diversity. Species 

accumulation curve (r2=0.96) indicated that tree species diversity increases with fragment 

size and Sorensen’s similarity index (beta diversity) showered between study sites.  
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1.1  Research motivation 

Tropical montane forests occur in mountainous altitudinal bands characterised by orographic 

clouds [1,2]. These forests are found between an altitude of 500 and 3500 meters above sea 

level and are best described as tropical montane or sub-montane forests characterised by 

persistent clouds, often with an abundance of mosses, ferns, lichen and flowering plants [3]. 

Montane forests are also found in locations with cooler climates and a stronger influence of 

mists and clouds. In terms of global distribution, tropical montane forests are found in 

tropical America, South east Asia and Africa. Tropical montane forests are about 11% of the 

tropical forest and cover over 50 million hectares [3]. 

The montane forest ecosystems exhibit characteristics related to their natural uniqueness and 

one such characteristic is the cloud-stripping function [4]. Trees of the montane forest 

intercept wind-driving clouds through the leaves and branches thereby stripping water from 

the cloud which moisturises the forest floor and often forms streams that flow out of the 

forest[4].  Through this phenomenon, the montane forest can supply water all through the dry 

season and increase the supply of water during the raining season by 10% [1,4]. Thus, the 

forest supports the local communities owing to the ability to capture water from the cloud, 

thereby providing water through streams and rivers all year round. 

The tropical montane forests have a very high level of endemism and are home to many 

threatened species of both flora and fauna [4,5]. For instance, Birdlife International research 

on the distribution of endemic birds indicated that 10% of the world’s restricted-range birds 

are confined to or found mainly within the montane forests[1]. Similarly, more than three-

quarters of the 4,000 vascular plant species resident in the African montane forests are 

endemic or near-endemic [5]. The mountain Gorilla classified by the international Union for 

Conservation of Nature (IUCN) as critically endangered is restricted to the montane forest of 
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Central African Republic and Uganda. These and other range of endemic species places the 

tropical montane forest as hotspots of global biodiversity.  

‘Tropical montane forests therefore represent a rare and fragile ecosystem that is under threat 

in many parts of the world and urgent action is needed to conserve these rich mountain 

forests, not only because they harbour concentrations of endemic and threatened species but 

to maintain their vital role in the provision of freshwater’[4]. The ecology of the montane 

forest and their location along mountain slopes make them particularly susceptible to habitat 

fragmentation [4]. Fragmentation is known to have deleterious effects on natural resources 

and ecosystem structures owing to its biodiversity loss [6].  

The effects of such loss have both local and global implications on the climate. Efforts at 

combating such loss of forests and their implications led to the formation of the Essential 

Biodiversity Variables (EBV) by the United Nations Convention for Biological Diversity 

(CBD). EBV was established to monitor the progress made by signatories to the CBD on 

forest ecosystem diversity. Monitoring EBV such as forest biomass, tree species diversity, 

forest phenology, and temporal and multi-temporal change detection (Land use, land cover) 

are important in determining the progress towards the Convention on Biological Diversity’s 

2020 Aichi targets [7].  

The EBV indicators can also provide the foundation for developing scenarios of the 

future of biodiversity under different policy and management options. For instance, local and 

regional biomass information is essential for assessing the status and monitoring the 

dynamics of ecosystem structure. Phenology is also an important EBV which indicates 

trends, shifts, and structural changes of species traits within an ecosystem. Land use and land 

cover mapping (LULCC) and biomass information are relevant for the CBD targets 5, 11, 14, 

and 15. Information on plant phenology is relevant to the CBD targets 10 and 15.  
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Satellite Remote Sensing (SRS) offers the possibility of achieving the above targets more 

accurately and efficiently than the usual extensive ground field campaign often employed by 

ecologists. Implementation of the essential biodiversity Variables using field assessments or 

in situ, data gathering methods in the rugged Afromontane forest terrain is costly and time 

demanding. SRS data has the capability of constant, repetitive, and cost-effective monitoring 

of large areas and its application in biodiversity monitoring studies has been increasing [4,23-

25]. Therefore, SRS data can provide precious information nearly impossible to acquire 

solely by field assessment [26].  

Despite the availability of satellite data of various spectra and resolutions, there is still a 

research gap on the application of SR-EBV for retrieving Afromontane biodiversity 

indicators. Therefore, the identification of high-performing RS-EBV approaches and the 

establishment of a link to a common set of indicators widely adopted by the user community 

would be highly beneficial for their extraction and the minimization of this knowledge gap. 

The major goal of this dissertation is to bridge the gap by exploring the potential of a multi-

sensor remote sensing data base for mapping and modelling the major biodiversity indicators 

of the rich Afromontane forest ecosystem. 

1.2 Research Questions 

The following research questions have been developed and will be investigated in this 

dissertation: 

1 What are the major determinants of aboveground biomass accumulations in 

the ecosystem? 

2 What are the major determinants of tree species distribution in the study area? 

 

3  How can a hybrid change detection method be used to determine 

deforestation and fragmentation rates in the Afromontane forest ecosystem? 
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4 What are the effects of deforestation and forest fragmentation on biomass 

accumulation and tree species distribution? 

5 How has remote sensing improved biodiversity monitoring in the 

Afromontane forest ecosystem?  

1.3 Thesis structure 

 The structure of the dissertation is as follows: Chapter one gives a general background, 

introduction, and problem description and it presents the research questions of the 

dissertation. A state of the art of literature review was the subject of chapter two. Chapter 

three was on the aboveground biomass modelling of the Afromontane forest. Chapter four 

focussed on the modelling tree species diversity of the study area. Chapters five and six 

presented the hybrid change detection of the Afromontane forest ecosystem and habitat 

fragmentation and its effects on beta diversity. The last chapter (seven) presents the synopsis 

of the thesis.  

1.4 The study area 

The study presented in this dissertation covers the Afromontane forests of north eastern 

Nigeria and its escarpments. The study area encompasses three contiguous montane forest 

areas with altitudes ranging from 600 m to 2400 m above sea level. The montane forest areas 

are as follows: The Mambilla Plateau (≥ 1750 m), the Gotel Mountains (≤ 2400 m) and the 

escarpment forest of Akwaizantar (≥ 600m ≤ 1170 m).   The spatial area coverage of the 

study area is estimated at 9,267 km2
.  

1.4.1 Climate and Geology 

There are two distinct seasons, a dry season when there is little or no rain for approximately 6 

months and a wet season when it can rain almost every day. The rainy season usually 

commences from early April until late October with mean annual rainfall of 1780 mm on the 

Mambilla Plateau but higher in the Gotel mountains. The temperature in the study area rarely 
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exceeds 30°C in the dry season but has lower temperatures of 9-12 °C in late November to 

early January (Figure 1-1).  

Figure 1-1. Climatic data of the study area courtesy of Digital Observatory For 

Protected Areas  

 

The soils are derived from volcanic rocks and are characterised as brown soils with the 

presence of gravel or stone or a combination of both with pH 5.6 – 6.0 (Hilderbrand, 1966). 

Four types of soils have been identified in the study area and these are; Leptisols, Acrisols, 

Luvisols, and Ferrisols with one or a combination found within a study site[8,9]. 

1.5 Data. 

Due to the peculiarity of the study area and the research objectives, multi-satellite data were 

employed to achieve the outlined objectives. The satellite images used included QuickBird, 

Landsat Tm, Landsat ETM, Landsat (OLI), MODIS, 30 m Digital Elevation Model DEM and 

precipitation and temperature data from the climatologies at high resolution for earth’s land 

surface area (30 arc second CHELSA). The QuickBird satellite image with a resolution of 2.3 

m was used with forest inventory and environmental variables (consisting of slope and 
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elevation from the 30 m DEM and temperature and precipitation from 30 arc second high 

resolution global climatic data) to estimate the aboveground biomass of selected 

Afromontane forest.  

Also, the QuickBird and Landsat 8 satellite images were used for tree species distribution 

modelling with environmental variables. The Landsat data (Tm, ETM and OLI) were used in 

trajectory change detection and forest fragmentation analysis of the Afromontane forests and 

their escapements, while MODIS images (from 2000-2014) were used for the phenological 

mapping of the same site.   
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2.0 Introduction 

Tropical forests cover approximately 15% of the world’s land mass and are global epicentres 

of biodiversity with 96% of the world’s tree species found within the ecosystem [10,11]. The 

extent and diversity of tropical forest ecosystems have largely made them an important 

carbon sink as their plants and soils hold approximately 460-575 billion metric tons of 

carbon, which is about 25% of the global terrestrial carbon [12,13]. The tropical forest 

ecosystem is a veritable source of carbon sinks through the process of carbon dioxide 

sequestration [14].  

Contrasting to the value of the tropical forest ecosystem as a source of carbon sink is the 

gradual deforestation of the ecosystem. This has negative effects on the environment through 

the release of carbon stored in woods and soil. Deforestation contributes about 70% of total 

emissions to the atmosphere in Africa and 15-25% of the annual global greenhouse gas 

emissions. [15,16,17,18]. Approximately 1.6 billion metric tonnes of CO2 are released into 

the atmosphere per annum through deforestation resulting in an increase in the greenhouse 

effect and subsequent rise in global temperature [19].  

The key to understanding the importance and dynamics of the forest ecosystem is that forests 

interact with the environment at various spatial and temporal scales. Implications of 

deforestation at the ecosystem level include reduction of forest cover, loss of biodiversity and 

change in landscape structure (habitat fragmentation). The effects of deforestation at the 

ecosystem level include erosion, siltation, flooding, increase in evapotranspiration which 

often leads to the drying off of streams and rivers. Forest cover losses and their subsequent 

fragmentation are the immediate consequences of anthropogenic-induced factors.  

The United Nations Framework Convention on Climate Change (UNFCCC), the 

Intergovernmental Panel on Climate Change (IPCC) and the Convention on Biological 

Diversity (CBD) recognise the importance of forests in climate change ameliorating and 
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protecting biological diversity.  These organisations have set up policies such as Reducing 

Emissions from Deforestation and Degradation (REDD++) and Aichi Biodiversity Targets to 

redress the decline of tropical forest ecosystems[7,20,21,22]. REDD aim to reduce forest loss 

through the provision of incentives in the form of monetary compensation[19]. The CBD 

mainstream policies are focused on addressing the underlying causes of biodiversity loss 

reducing the direct pressures on biodiversity and promoting sustainable use[21]. 

Most of the tropical forest ecosystems are located in remote areas with impassable road 

networks, thereby restricting easy access to evaluation and monitoring of the ecosystem. 

Also, political instabilities and lack of or limited infrastructures are hindrances to scientific 

research [23]. Satellite Remote Sensing (SRS) offers repeatable, standardised and veritable 

information on earth surfaces, hence a potential tool for monitoring biodiversity changes in 

tropical forests [24]. It’s potential also includes identifying areas of significance to 

biodiversity, species distribution prediction and modelling the influence of environmental and 

anthropogenic factors on ecosystem biodiversity.  

2.1  Monitoring tropical forest with Satellite Remote Sensing-Essential Biodiversity 

 Variables (SRS-EBV) 

Since 1992 when the Earth summit was held in Rio de Janeiro (Brazil), there have been 

concerted efforts to redress the continuous decline of biodiversity at both local and global 

levels. Biodiversity indicators have been proposed as a means to monitor the status and study 

the trends of biodiversity losses. Prominent among the CBD policies is the Aichi targets 2020 

which is aimed at reducing the rate of biodiversity loss and averting dangerous biodiversity 

changes [7].  Ninety-eight biodiversity indicators were proposed by CBD for monitoring and 

reporting of the Aichi biodiversity targets, which was later reduced to Fifty-five indicators. 

However, many of the indicators used were problematic due to a lack of data standardisation 

[25]. The Essential Biodiversity Variables (EBVs) were developed in support of UN-CBD’s 
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Aichi target 2020 by the Group of Earth Observation Network (GEO BON) to enhance data 

standardisation and reporting by the scientific and policy community.  

‘EBVs are measurements required for studying, reporting and management of biodiversity 

change and it provides concise information to the scientific and policy communities on the 

status and biodiversity trends, related characteristics such as ecosystem/habitat conditions, 

species distributions and abundance’ [7,22]. GEO BON classified EBV into six major 

classes, namely: Genetic composition, species populations, species traits, community 

composition, ecosystem functioning and ecosystem structure. EBV’s characteristics as 

summarised by Pereira et al [7] are as follows: A) EBVs must be sensitive to change over 

time; B) EBVs are focused on state variables; C) EBVs must be of relevance to biodiversity 

community; and D) EBVs must be feasible in terms of monitoring with SRS technology.  

In other to enhance and broaden biodiversity monitoring in time and space with the EBV 

classes. The remote sensing-essential biodiversity variables (SRS-EBVs) were introduced by 

GEO-BON as a subset of EBVs and its application relies largely on the use of satellite-based 

data [26]. SRS-EBV include variables whose monitoring relies on the integration of satellite-

based data with in situ data. SRS-EBVs can therefore be used as proxies for indicating 

defined targets for biodiversity conservation such as habitat degradation and fragmentation 

(table 2-1).  

SRS application has been used in monitoring tropical forest components such as the 

aboveground biomass(AGB), species distribution, change detection, habitat fragmentation 

and its effects on ecosystem structure, et cetera [27]. The following literature review is based 

on current trends of SRS application to tropical ecosystem research. The review has been 

divided into four sections namely: (1) aboveground biomass retrieval (2) species distribution 

modelling and (3) change detection, (4) and habitat fragmentation. 
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Table 2-0-1. SRS-EBV variables 

 

2.2 Aboveground biomass retrieval methods 

Monitoring terrestrial biomass is one of the essential climate variables outlined by the Global 

Climate Observation System and it’s also one of the target candidate variables of the essential 

biodiversity variables.  Biomass is an essential indicator of ecosystem health and its decline 

has a critical impact on the greenhouse balance and macro ecological processes [27]. There is 

a general assumption that 75% of the overall biomass of living trees is largely stored within 

the aboveground biomass component of trees [27,28].  The aboveground biomass of tropical 

forests can be estimated using in situ/field-based inventory techniques, satellite remote 

sensing and a combination of both. 

Examples of SRS-EBV measurable variables 

EBV class 

EBV 

examples  

 variables meeting SRS-

EBV  

Relevance fore CBD 

targets 

Genetic composition 

Habitat 

structure Specific plant genotype 5, 11, 14,15 

Species population 

Abundance 

and 

distribution Specie occurrence  4,5,6,7,8,9,10,11,12,14,15 

Species traits Phenology Specie leaf area 10,15 

Community 

composition 

Taxonomic 

diversity Taxonomic diversity Targets 10, 15 

Ecosystem structure 

Remote 

sensing of 

cover 

(Biomass 

inclusive) 

regionally or 

globally 

Vegetation height 

8,10,14 Aboveground biomass 

Ecosystem function 

Fractional 

cover Aboveground biomass 

5,8,14 

Forest cover 

 Land cover 

 Fraction of 

absorb  

 Leaf area 

index 

 Vegetation Phenology 
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The in situ biomass estimation method is further classified into destructive and non-

destructive techniques. The destructive method is the most accurate method of biomass 

estimation and is used in developing specie specific allometric models using measured 

dendrometric attributes such as diameter at breast height (DBH), tree height, and wood 

density [23]. The aboveground biomass of the tree is expressed as a function of DBH, tree 

height and wood density. Several allometric models have been developed based on the 

combination of tree dendrometric parameters (DBH, tree height and wood density) through 

linear and nonlinear regression models [23,29,30]. Although this is the most accurate method 

of determining the aboveground biomass, the method involves destroying trees and is limited 

by time, labour cost and sampling restriction to small areas.  

Allometric models developed from the destructive method of AGB estimation can be used for 

non-destructive biomass estimations. The non-destructive techniques relate the aboveground 

biomass of the forest with densitometric parameters such as tree height and diameter at breast 

height (DBH). Most of the developed allometric equations for AGB estimations do have 

ecological bias and the improper use of these models may lead to large uncertainties in AGB 

estimations. Allometric models developed for AGB measurements are developed for specific 

ecological niches. Therefore, when allometric models are to be used for obtaining AGB 

reference data, the ecological niche for which the equation was developed must be 

considered. Examples of allometric equations for tropical forests and the ecological niches 

are in table 2-2. 

2.2.1  SRS and AGB estimations  

Remote sensing offers the possibility of measuring forest carbon stocks using instruments 

mounted on satellites or airborne platforms [48]. Optical remote sensing data, radar 

(microwave) data and LiDAR data are the three main types of remotely sensed data that are 

used to extract information for biomass and stand parameters. The passive optical and  
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Table 2-0-2.   Allometric equations for the tropical forest ecosystem. 

Equations Forest types DBH range Independent Variables Reference 

Y = exp{-2.134+2.530*ln(DBH)  

R2 = 0.97 

moist, (1500<rainfall<4000mm) no range DBH [31] 

Y = exp{-3.1141+ 0.9719*ln[(DBH2)H]}  

 

R2 =0.97 

moist rainfall DBH > 5 cm DBH, H [32] 

Y = exp{-2.4090+ 0.9522*ln[(DBH2)HS]} 

R2 =0.97 

moist, (1500<rainfall<4000mm) DBH > 5 cm DBH, H, S [33] 

Y = (0.0899 ((DBH2)0.9522) *(H0.9522) *(S0.9522)) not specified not specified DBH and H  [31] 

W = р.exp(β 0+ β 1.ln(D) + β2.ln(D)2 + β 3.ln(D)3) moist DBH ≤ 10cm DBH, H, specific gravity 

β0 = -1.499 

β1 = 2.148 

β2 = 0.207 

β3 = 0.0281 

[34] 

B=rрD2+2c moist, (1500<rainfall<4000mm) DBH ≤ 10cm DBH, H, S [35] 
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hyperspectral provides information on tree canopy attributes, leaf area and tree species types.  

Optical remote sensing data are mostly used in tropical forest aboveground biomass studies 

because of the availability in a wide range of spatial and spectral resolutions, affordability(cost) 

and easy access [36]. 

 Aboveground biomass estimations using optical remote sensing relate the ground truth 

measurement with spectral signals such as vegetation indices using the Red and Near Infrared 

wavelengths [37]. Vegetation indices, principal components analysis, minimum noise fractions, 

tassel cap transformation, spectral mixture analysis and texture measures are a few of the 

techniques that are used to produce variables for estimating AGB from optical data [23]. There 

are limitations on the use of optical satellite remote sensing for aboveground biomass modelling 

in tropical forests. The limiting factors include vegetation heterogeneity, canopy shadows and 

undulated landscapes that characterised most tropical forest ecosystems [49,51]. Similarly, the 

probabilities of data saturations in forests with high biomass levels have been observed while 

using optical remote satellite images for aboveground biomass modelling in tropical forest 

[50,52,53].  

The active sensors such as Light Detection and Ranging (LiDAR) and Radar are independent of 

the sun and the time of the day [11].  LiDAR is known to provide accurate information on the 

vertical distribution of canopy/ height structure and is useful for three- dimensional (3D) 

characterization of forest attributes such as the aboveground biomass [54]. LiDAR data was used 

in mapping forest biomass in French Guiana with an error of 14% and estimates of 340 Mg/ ha 

[55]. LiDAR use for tropical forest biomass estimations is limited by coverage and the economic 

cost of procuring the images [54]. Radar data are also independent of the time of the day, and 

weather and can provide a multi-faceted source of information such as frequency, incidence 
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angle range, polarization, and interferometric baseline. It’s advantages also include sensitivity to 

surface roughness, and imaging possibility from different types of polarised energy (HH, VV, 

HV and VH). Aboveground biomass retrieval using radar satellites in tropical forests has risen 

significantly in the last few years. The Advanced Land Phased Array Synthetic Aperture Radar 

(ALOS-PALSAR) data was used in the estimation of the aboveground biomass of the Guinea-

Bissau forest. The result obtained from the study (65.17 mg/ha-1) was concurrent with the 

regional estimate of AGB.   

2.2.2 Machine learning methods for aboveground biomass retrieval 

In satellite remote sensing applications, the use of retrieval algorithms or machine learning 

methods has become an essential component of biomass modelling or estimation. Retrieval 

algorithms are crucial to remote sensing-based aboveground biomass modelling and can be 

grouped into two broad categories: parametric and nonparametric algorithms. In the parametric 

algorithm, it is assumed that the relationship between the dependent variables(AGB) and the 

independent variables (features derived from SR data) can be explicitly specified[23]. Simple or 

multiple linear regression models are examples of parametric algorithms. Most often, the AGB 

relationship with satellite remote sensing variables is nonlinear because the relationship between 

AGB and remote sensing variables is too complex to be captured by parametric algorithms.  

Therefore, nonparametric algorithms are flexible and easy to adapt to complicated no linear 

biomass models[23]. Examples of nonparametrics include artificial (ANN), K-nearest neighbour 

(K-NN), support vector machine (SVM), maximum entropy (MaxEnt) and random forest 

algorithm. Regression-based models are the most common approach to biomass retrieval using 

SR data[23]. A review of retrieval algorithms and their performance by [27] showed a wide 

range of excellent performance with various satellite images (Table 2-3).   
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Table 2--0-3. Examples of machine learning algorithms for aboveground biomass retrievals 

using remote. 

Sensor Parameter(s) Algorithm 

Performance 

(r) Reference 

QuickBird 

Height, Biomass, 

Volume 

Support vector 

regression 0.72 [38] 

World view Biomass Random forest 0.75 [39] 

Landsat  

Aboveground 

biomass Random forest  0.943 [37] 

Spot 

Aboveground 

biomass Random forest  0.84 [40] 

Landsat-7 

Aboveground 

biomass 

Support vector 

regression 0.75 [41] 

MODIS 

Aboveground 

biomass Random forest 0.82 [42] 

GlAS 

Aboveground 

biomass Random forest 0.82 [43] 

 

2.3 Monitoring species diversity with SRS  

Global studies on biodiversity decline indicated more than 7,000 plant species are lost annually.  

The immediate effects of such lost are; (1) an ecosystem imbalance, leading to the loss of other 

species, the loss of seed dispersal mechanisms and 3) the decline of pollinators leading to 

reduced food production a few of the effects of biodiversity loss to human health and economy. 

As the biodiversity of an ecosystem declines, the health status of the inhabitants is negatively 

regressing.  Ecosystem health is therefore a function of its biodiversity.  

The importance of measuring species diversity as an indicator of ecosystem health has 

been recognized by major initiatives worldwide such as the International Geosphere Biosphere 

Program (IGBP), the Group on Earth Observation (GEO BON), World Climate Research 

Program (WCRP) and the Committee on Earth Observation Systems (CEOS) [44]. Biodiversity 

assessment at local and regional scales by ecologists has traditionally relied on the assessment of 

both local diversity (alpha diversity) and species turnover (beta diversity)[44].  Several indices 

have been used for estimating both local diversity (alpha diversity) and species turnover (beta 
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diversity). Such indices included; species richness, Simpson, Berger–Parker, Shannon–Wiener, 

etc. However, sampling intensity over a larger area and the cost associated with field sampling is 

a major limitation to the use of field inventory for species diversity monitoring.  

SRS application to ecological research is on the increase because of the capacity to deliver 

information on habitat quantity and quality. The importance of satellite remote sensing (SRS) to 

provide information on the state of biodiversity at landscape, regional and ecosystem levels has 

been highlighted through numerous scientific researches. Research studies dealing with satellite 

remote sensing-based species diversity estimates have majorly focused on mapping or modelling 

biodiversity hotspots based on spectral variation hypothesis [44].   

The spectral variation hypothesis (SVA) states that spectral heterogeneity of remotely sensed 

data can be related to the spatial heterogeneity of the environment and could therefore be used as 

a proxy for species diversity [44,45,46]. It is expected that in measuring species diversity with 

remote sensing images, a relationship between the remote sensed spectral heterogeneity and 

locally measured diversity be established. Remotely sensed spectral heterogeneity information 

therefore provides a crucial baseline for rapid estimation or prediction of biodiversity attributes 

and hotspots in space and time [46]. Several modelling techniques have been used to determine 

the relationship between remote sensing spectral heterogeneity and species diversity. The 

modelling techniques include a random forest algorithm, support vector machine and maximum 

entropy.  
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Table 2-0-4. Examples of machine learning applications for Species modelling using remote 

sensing data 

 

 2.4 Change detection studies and habitat fragmentation.  

Change detection studies of tropical forests have become increasingly necessary because of the 

contributions of tropical forests to climate change. Tropical deforestation is known to account for 

more than 20% of global CO2 emissions [56].  Article 3 of the United Nations Framework 

Convention on Climate Change (UNFCCC) stipulates change detection studies for tropical 

forests through Land Use Land Cover and Forestry (LULCF) studies. LULCF allows for net 

changes in greenhouse gas emissions by source and sinks to be accounted for through 

reforestation and deforestation. Change detection studies can be classified into three broad 

categories; pixel, object and hybrid-based change detection techniques [57]. 

The pixel change detection methods are based on per-pixel classifiers and change information 

contained in the spectral-radiometric domain of the satellite images, and they exclude textural 

and topological information [57,58]. Pixel-based image classification utilizes spectral 

information numbers stored in the image and images are classified by considering the spectral 

Indices  Modelling algorithm Satellite image  Location Reference 

Alpha 

diversity Univariate regression 

QuickBird and 

Landsat ETM + Uganda  [47] 

Univariate regression Hyperspectral  Namibia [48] 

Local smoothing 

surfaces(LOWES) 

Landsat ETM 

and IKONOS India [49] 

Regression models NOAA-AVHRR Kenya [50] 

Multivariate 

regression model Aster  Central Asia [51] 

Neural Network Landsat TM  Borneo [52] 

Beta 

diversity correlation coefficient  Landsat TM 

Ecuadorian 

Amazonia [53] 

Quantile regression Landsat TM India [54] 

correlation coefficient  MODIS Worldwide [55] 
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similarities with the pre-defined land cover classes. The classification methods use spectral 

information contained in individual pixels to generate land cover classes.  

Several change detection techniques based on pixel-based analysis have been developed which 

include; image differencing, image rationing, regression analysis, vegetation index differencing, 

change vector analysis, principal component analysis and tassel cap transformation. Also, 

machine-learning (such as artificial neural networks, support vector machines, and decision 

trees) and GIS-based methods have been used for change studies. Algorithms/methods used in 

the pixel-based detection method include machine learning algorithms: decision tree (DT), 

random forest (RF), and the support vector machine (SVM). This method has been known to 

perform accurately for the classification of land use/cover classes [59,60,61,62,63,64]. 

Comprehensive reviews of pixel-based change detection methods have been published, including 

Coppin et al, Lu et al and Desclée et al [58,65,66]. The major disadvantages of the pixel-based 

method are the “salt and pepper effects”[67]. The salt and pepper effects are due to the intrinsic 

characteristics of the land cover elements (spectral heterogeneity) and the random variation of 

the sensor’s response which often lead to misclassifications [67].  

Object-based analysis (OBIA) is a robust method suitable for the classification of medium to 

high-resolution satellite imagery. An object is a group of pixels, and object characteristics such 

as mean value, standard deviation, ratio, etc. can be calculated; besides, there are shapes and 

texture features of the objects available which can be used to differentiate land cover classes with 

similar spectral information. In object-based techniques, contextual information such as texture, 

geometry and compactness are combined with spectral information of the satellite image for 

change detection analysis [68,69]. The main objective of the OBIA is to improve image 

classification through full exploitation of salient information within the satellite image for 
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change detection analysis. The salient information includes texture, shape, and their spatial 

relations with neighbouring objects [57]. The OBIA technique uses objects produced by image 

segmentation and it combines visual interpretations with the quantitative aspect of the pixel-

based approach. 

OBIA interprets images using characteristics such as spectra, texture, as well as spatial and 

topological characteristics [66]. These extra types of information give OBIA the potential to 

produce land cover thematic maps with higher accuracies than those produced by traditional 

pixel-based methods. Object-based image analysis comprises two parts: 1) image segmentation 

and 2) classification based on objects’ features in spectral and spatial domains. Image 

segmentation is a kind of rationalization, which delineates objects according to certain 

homogeneity criteria and at the same time requires spatial contingency [66]. Although OBIA’s 

application was initially focused on high-resolution satellite images, there has been success in the 

application of OBIA in medium-resolution images. OBIA application in forest ecosystems 

includes forest cover mapping, canopy modelling, change detection studies, aboveground 

biomass estimations, species distribution modelling and habitat mapping.[64,69,70,71,72,73]. 

For example, OBIA was used in the change detection optimisation of the mountainous forest of 

Mexico with a medium-resolution Landsat image [68]. An accuracy assessment of 0.77 was 

obtained using the object-based classification algorithm. 

The hybrid change detection technique is the integration of change detection methods and it uses 

two or more change detection techniques for analysis [57,70]. The major advantage of this 

technique is the potential of two or more appropriate change detection algorithms to solve 

research problems within a particular study area. Hussain et al [57],  classified the hybrid change 

detection method into two distinct categories, namely:  a) procedure-based and b) results-based. 
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For tropical forests with multiple ecological niches, the hybrid change detection method offers an 

advantage because it can be used to efficiently monitor the changing landscape.   

2.5 Habitat fragmentation 

The prolong effects of forest cover loss often lead to habitat fragmentation. Habitat 

fragmentation is defined as the process during which a large expanse of forest is transformed into 

a smaller, geometrically isolated number of forest islands or patches[6,74]. The definition of 

fragmentation as a ‘‘process’’ is an indication of the inclusion of the time frame during which 

fragmentation occurs. Several methods of quantifying forest fragmentation have been suggested 

by landscape ecologists using satellite remote sensing and geographic information systems 

(GIS). A review by Fahrig[74] summaries forest fragmentation approaches into six categories 

based on spatial pattern indices(PI). The PI is mostly used by scientists in the field of ecology 

and spatial science to quantify fragmentation and its effects on biodiversity. The categorized PI 

are 1) the reduction in forest cover, 2) the increase in the number of patches, 3) the decrease in 

sizes of forest patches and 4) the increase in isolation of patches. These are the major PI for 

interpreting forest or habitat fragmentation processes. 

 ‘’The use of fragmentation pattern indices and its interpretation requires an acute awareness of 

the landscape context and the openness of the landscape relative to the biodiversity phenomenon 

under consideration’’[75]. For instance, % forest cover, mean patch size, edge density, and patch 

density were the PI used in the analysis of the fragmentation processes of Gran Chaco forest, 

Argentina[6]. In a related study, % forest cover, edge density and patch size were used as a 

fragmentation index in the Indian forest of Uttara Kannada district [76]. In both analyses, the 

reduction of forest cover was associated with an increase in patch areas and the transition of 

patch areas to non-forest areas.  
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The use of pattern indices can further be extended to the analysis of the effects indices of forest 

fragmentation on species diversity. For example, PI was used to assess the effects of 

fragmentation on species diversity in the Vindhyan highlands of Indian and the eastern mountain 

arc of Tanzania. In both studies, results showed that patch sizes can be related to tree species 

diversity [77,78]. Similarly, PI has been used to determine the effects of forest fragmentation on 

other biological diversity such as birds, mammals, reptiles, pollinators, etc.  The conclusion of 

most research studies on the effects of fragmentation on biodiversity includes loss of species, and 

isolation of species thereby leading to extinction. Isolation reduces movements among 

fragments, thus reducing recolonization. Reducing fragment area and increasing fragment 

isolation generally reduce the abundance of birds, mammals, insects and plants. 
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Chapter 3. Estimating Aboveground Biomass of the Afromontane 

forests of Mambilla Plateau using QuickBird and forest Inventory 

data 
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3.0 Introduction 

 Tropical forest ecosystems have large reservoirs of carbon stored as above and below-ground 

biomass. These are majorly stored as biomass in tree stems, roots, woody debris, soil organic 

matter and forest litter. Among these different forest components, the aboveground biomass 

(AGB) of living trees contains the largest carbon pool and is the most directly affected by 

deforestation and degradation activities [79]. There is a general assumption that 75% of the 

overall biomass of living trees is stored within the aboveground biomass components of trees 

[27,28]. Consequently, measurements of the carbon stored within the AGB of living trees 

provide the best estimate of the forest carbon stocks for the United Nations Program on 

Reducing Emissions from Deforestation and Forest Degradation (UN-REDD).  

Aboveground biomass of tropical forests has been estimated using several techniques such as 

field-based inventory, satellite remote sensing and a combination of both. The field inventory 

method has been adjudged to give the best accuracy for AGB. However, the method is known to 

be time-consuming, labour-intensive, and expensive, and sampling could be biased towards areas 

with trees with large diameters at breast height[80]. Remote sensing offers the possibility of 

measuring forest carbon stocks using instruments mounted on satellites or airborne platforms 

[81]. However, remote sensing instruments cannot measure forest carbon stocks directly but 

require additional ground-based data collection [82]. Several types of remote sensing data have 

been employed for tropical biomass mapping. These remote sensing data include LiDAR, Radar 

and optical data.  

Optical remote sensing data are preferably used in tropical forest aboveground biomass studies 

because of the availability in a wide range of spatial and spectral resolutions, affordability (cost) 

and easy access[83]. Aboveground biomass estimations using optical remote sensing often relate 
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the ground truth measurement with spectral signals such as vegetation indices using the red and 

near infra-red wavelengths [37]. There are limitations on the use of optical satellite remote 

sensing for aboveground biomass modelling in tropical forests. The limiting factors include 

vegetation heterogeneity, canopy shadows and undulated landscapes that characterised most 

tropical forest ecosystems [36,84]. Similarly, the probabilities of data saturations in forests with 

high biomass levels have been observed while using optical remote satellite images for 

aboveground biomass modelling in tropical forest [84,85].  

The necessity to overcome the limitations of the indices-based biomass estimation method has 

led to the emergence of the use of feature groups or object features derived from optical satellites 

using Object-Based Image Analysis [86,87]. Object Based Image Analysis (OBIA) is the 

technique of partitioning image-objects, and assessing their characteristics through spatial, 

spectral and temporal scales[87,88]. OBIA is efficient in using automated image segmentation 

procedures to extract meaningful ground features from imagery. Image segmentation is the 

partitioning of an image into a set of non-overlapping or semantically interpretable regions [89]. 

Features derived from satellite image segmentation algorithms include textural, geometrical and 

spectral features [87,90]. Thus, the techniques combine both spectral and object characteristics, 

thus object features which are “salient or dormant” in pixel-based analysis are efficiently utilised 

to model biomass. 

Global efforts at improving optical data efficiency, through the use of object features for accurate 

estimation of forest aboveground biomass have gained prominence in recent years. Literature 

reviews have shown consistent improvement in aboveground biomass estimations using this 

method. Texture derived from moderate resolution Landsat data has been used in modelling 

aboveground biomass of several forest sites [64,91]. Similarly, textural features from high-
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resolution data, such as Worldview-2, IKONOS and QuickBird have been used in modelling and 

estimating forest aboveground biomass [92,93,94].  

Applications of object features used for aboveground biomass modelling vary across 

geographical regions. However, most AGB maps for African forests are usually derived from in-

situ data which are not country-specific. It has been suggested that an aboveground biomass map 

produced and validated with locally sourced in-situ forest inventory and integrated with the site's 

environmental variables may be more accurate than generalised maps. The montane forests of 

the Mambilla Plateau can best be described as heterogeneous forests with complicated 

biophysical factors. The main objective of this study is therefore to estimate the aboveground 

biomass of the Afromontane forest using a combination of satellite data, field inventory and 

environmental variables. This study will answer the following research questions: 

A). What is the relationship between AGB and the satellite image spectral and object 

features? 

B). Do environmental variables influence AGB distribution in the Afromontane forest 

ecosystem?       

3.2  The Study Area  

The Mambilla Plateau is in the Eastern part of Central Nigeria, adjacent to the Cameroun border. 

Mambilla Plateau is home to montane forest relicts surrounded by grasslands. The study sites are 

Ngel Nyaki (Longitude 07o 20’ N and Latitude 11o 43’ E) and Kurmi Ndanko (Longitude 07o 03’ 

N and Latitude 11o 70’ E) forest. Both forests are adjacent to each other separated by undulating 

hills. The two forests can best be described as fragmented forests on the Mambilla Plateau and 

the altitude of the study sites varies from 1250 m to 1750 m above sea level. 
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Figure 3-1. View of Ngel Nyaki forest from a high escapement 

 

Figure 3-2. View of the forest from the grass land. Note the burnt grasses by nomadic 

grazers close to the forest edge 
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3.3  Materials and Methods   

This research follows a bottom-up approach, namely: forest inventory data collections from two 

study sites, image acquisition and processing, image segmentation and aboveground modelling 

with the random forest algorithm. Detailed descriptions of the workflow (Fig. 3-3). 

Figure 3-3. Model workflow 

 

 

3.3.1  In-situ Forest Inventory  

Forest inventory data were collected in the dry season for seasons of 2012 to 2014.  Seasonal 

data collection commenced at the end of the raining season in late October/ November and lasted 

until the middle of the dry season in late January/early February. The Modified Gentry Plot 
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(MGP) was adopted for forest inventory data collection. The MGP is a 10 x 50m (0.05 ha) plot 

and has been found excellent for estimating AGB in tropical forests [25]. 106 MGP Plots were 

established using randomized coordinates stratified along elevation with the distance between 

plots to be ≥ 500m. Within the established plots, the diameter at breast height (DBH) of all trees 

with DBH ≥ 10 cm was enumerated and all plots' GPS positions were recorded.  

3.3.2  In-situ Aboveground Biomass Estimations 

Live aboveground biomass was estimated for each stem/plot for the two study sites with a site-

specific pantropic equation by Brown [26] for the Afromontane forests.  

 𝑌 = 𝑒𝑥𝑝{−2.134 + 2.530 ∗ 𝐼𝑛 (𝐷) 

 where: D= diameter at breast height (DBH). 

3.3.3 Image Acquisition and Processing  

Cloud-free QuickBird imagery of the study area was acquired in January 2011. The image 

consists of four-band multispectral imagery with a spatial resolution of 2.4 x 2.4m divided into 

four spectral bands: blue (450 – 520nm), green (520 – 600 nm), red (630 – 690 nm) and NIR 

(760 – 900 nm) and a panchromatic band (450-900 nm) with a spatial resolution of 0.61 x 0.61 

m. Image pre-processing procedures included, re-projection to a common reference system 

(UTM, WGS 84, Minna Datum) and sub-setting of the imagery to the geographic extent of the 

two forests of Ngel Nyaki and kurmi Ndanko.  

3.3.4  Object-Based Image Analysis  

The Object-based Image Analysis (OBIA) technique was adopted for the biomass assessment of 

the study areas. OBIA combines pixels with objects based on defined segmentation criteria 

instead of the conventional pixel classification[95] and was used in computing spectral, texture 

and geometric features after Haralick [96]. QuickBird image of the study area, a shape file 
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containing 106 plots of biomass estimates and environmental variables, was imported into 

eCognition Developer for the image segmentation procedures.  

The developed segmentation includes features such as spectral, texture and geometry features 

(Table 1). The texture here refers to properties such as smoothness and coarseness and is 

statistically computed as classified into first-order, second-order and high- order statistics[90,94]. 

The second-order statistic is the Gray Level Concurrence Matrix (GLCM). GLCM features 

provide information on the structural and geometric properties of forest canopies and can be used 

to discriminate textures between tree species[94]. The GLCM properties used are as follows: 

homogeneity, contrast, dissimilarity, entropy, angular second moment, mean, standard deviation, 

and correlation. Each of the textures measured is computed for each layer and the five different 

directions; namely 0o, 45o, 90o, 135o, and all directions (table 3-1). Only features located in the 

inventory plot shape files are extracted and used as reference data for the analysis. 

3.3.5  Random forest modelling  

The results of the image segmentation and the forest inventory data are exported as a polygon 

and used as training data sets for the random forest algorithm processes in R studio. Random 

forest is an algorithm developed by Bremen [95] for building a predictor ensemble with a set of 

decision trees that grow in randomly selected subspaces of data. The algorithm creates an 

ensemble of decor-related classification trees using bagging [95,97]. For each bootstrap sample, 

a classification or regression tree is grown which chooses the best splits among predictors. The 

predicted biomass was validated with 30% of the inventory data and evaluated with the 

coefficient of determination (R²) and root mean square error (RMSE). The correlation coefficient 

and coefficient of determination were used to determine the effects of spectral, textural and 

environmental variables on the aboveground biomass of the study areas. 
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Table 3-0-1.  Spectral and textural properties developed from image segmentation algorithm 

in eCognition Developer. The environmental variables are used as predictors in the 

modelling of AGB with random forests. 

Spectral  Textural  Environmental variables 

Green GLCM homogeneity Precipitation 

blue GLCM contrast Temperature 

red GLCM entropy Elevation 

near-infrared GLCM mean Slope 

 GLCM standard deviation  

 GLDV correlation  

 GLDV angular  

 GLDV entropy  

 

3.4  Results  

The mean aboveground biomass estimated from the forest inventory was 403.7 t /ha. Cross-

validation with thirty per cent of the inventory data gave a coefficient of determination 

(R2=0.7484) and root mean square error (RMSE) of 179 t/ha or 44.75%. Detail results in table 3-

2 show the estimated aboveground biomass from inventory plots and the predicted AGB. 

Correlation coefficients were explored to determine the relationship between aboveground 

biomass and QuickBird spectral and texture features. The texture features correlated significantly 

with AGB. Also, the NIR and Red bands significantly correlated with AGB.  
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Table 3-0-2. Aboveground biomass showing mean field estimated and the predicted for 

combined study sites. 

Aboveground biomass Minimum  Mean  Maximum  

Estimated values 110.5 403.7 994.6 

Predicted values 101.2 310.3 800.0 

RMSE 179 

RMSE% 44.75 

R2 0.7484 

Note. showing mean field estimated and the predicted for combined study sites, AGB estimates in t/ha 

 

 

 

 

 

Figure 3-4. Aboveground biomass model validation 
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Table 3-0-3. Correlation coefficients of metrics derived from QuickBird image 

 

  r R2 

Textural values GLCM homogeneity 0.56 0.31 

 GLCM contrast 0.64 0.41 

 GLCM entropy 0.75 0.56 

 GLCM mean 0.45 0.21 

 GLCM standard 

deviation 

0.32 0.10 

 GLDV correlation 0.62 0.38 

 GLDV angular 0.69 0.48 

 GLDV entropy 0.46 0.21 

Spectral values blue 0.10 0.01 

 green 0.15 0.02 

 red 0.62 0.34 

 near-infrared 0.65 0.43 

Environmental 

variables 

precipitation 0.20 0.04 

 temperature 0.43 0.19 

 elevation 0.78 0.61 

 slope 0.66 0.44 
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3.5  Discussions  

The major objective of this study was to model the aboveground biomass of the Afromontane 

forest using a combination of satellite data, field inventory and environmental variables. Model-

based on spectral, textural features and environmental variables was developed to estimate the 

aboveground biomass of two Afromontane forest sites. The textural features from QuickBird 

correlated with aboveground biomass. Texture features from high-resolution images are known 

to capture and provide information on the structural and geometric properties of forest canopies 

and can be used to discriminate textures between tree species thereby enhancing aboveground 

biomass estimate [92,98].  

When the aboveground biomass correlates with forest canopy structure, it also correlates with the 

spectral parameters [92]. Both red and near-infrared bands correlated with the biomass of the 

study area. Also, elevation and slope had a significant effect on the aboveground biomass 

distribution. The elevation of the study areas ranges between 1250 to 1750 meters above sea 

level, while the recorded slope was between 4 to 35 degrees. Marshal et al[99] reported a high 

AGB turnover with a decreasing elevation and a high AGB with shallow slopes. The forest 

vegetation of the area is restricted to the south-west facing slope with frequent mist on the forest 

crown almost year round. The restriction of the forests to the south west escapement enables the 

tree canopies to intercept highly humid wind thereby acting as a water catchment. Modelling 

AGB with in situ forest inventory data and group features derived from QuickBird produced a 

high-resolution aboveground biomass map of the study areas (Fig. 3-5).  

This result was compared with other biomass data from the region and was found to be higher 

than previously reported values by Baccini et al. and IPCC[13,100]. Above ground, biomass 
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estimated by Baccini et al. and IPCC[13,100] were regionally based, and the data used were not 

site-specific. 

Figure 3-5. Aboveground biomass map of Ngel Nyaki (A) and Kurmi Ndanko (B) 

 

While the data used by IPCC [13,100] cannot be verified, the aboveground biomass estimation 

by Baccini et al [24] was based on diameter at breast height (DBH) and MODIS satellite data.  
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The mean aboveground biomass estimated from forest inventory reported by IPCC[13] was 435 

t/ha, which was slightly higher than the 410 t/ha estimated from the field inventory of this study. 

This study implies that the Afromontane forest of Nigeria has a larger pool of forest biomass 

than previously indicated by data from regional studies. 

3.6  Conclusion  

The main goal of this research was to produce a high-resolution biomass map of the 

Afromontane forests of the Mambilla Plateau with QuickBird and forest inventory. The map 

produced was a local scale map with aboveground biomass values consistent with the area of 

study. The predicted AGB for the study area was found to be within the range of similar studies 

for the region. The study also demonstrated the importance of textural features in enhancing 

biomass estimation of an Afromontane forest ecosystem. GLCM features provided structural 

information which improved the accuracies of predicted biomass. Modelling with spectra texture 

and topographical features with in situ forest data and slope derived from DEM was found 

effective in modelling the aboveground biomass of the Afromontane forests of Mambilla. This 

model is transferable to other montane forest with similar biophysical factors. 
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Chapter 4. 

Modelling tree species diversities of the Afromontane forest 

ecosystem with satellite remote sensing and macro-ecological data. 
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4.1    Introduction 

Montane forests situated in the afro tropical region (henceforth referred to as “Afromontane 

forests”) are on the list of the world’s most threatened ecosystems. These ecosystems are highly 

diverse and adjudged as repositories of genetic diversities. Information on the biodiversity of 

such an important area is a prerequisite for effective conservation and management strategy 

[101]. Ecologists have relied on the traditional method of field survey to quantify the 

biodiversity of large areas, which often is time-consuming, costly and dependent on expert 

knowledge [101,102]. This has led to the conclusion that field measurements represent estimates 

rather than absolutes. Information on landscape biodiversity can be optimized through the use of 

ecological proxies[102]. Plant species richness is widely adopted as an ecological proxy for the 

determination of biodiversity and is often correlated with diversity at other levels of 

organization, such as genetic diversity and ecosystem functioning [44]. Plant species constitute 

the primary components of terrestrial ecosystems and can be used as a surrogate for ecosystem 

biological diversity. Thus, plant/ species richness defines ecosystem structures and functions, and 

is, therefore, a central component of biodiversity assessment [45]. 

Species diversities do not occur in isolation, rather diversities can be directly linked with 

their environment heterogeneity. Habitat heterogeneity is a determinant of species diversities 

both at local, regional and global scales [103].  Ecologists have subscribed to the theory of the 

existence of a linear relationship between diversity and environmental gradients. Afromontane 

forests are located across a broad range of landscapes with various abiotic factors influencing 

plant diversities and productivity [104]. For instance, macro-ecological factors such as slope, 

elevation, aspects and solar radiation are known to affect the distribution of insolation in the 
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terrain[105]. Theses also have effects on the ecosystem microclimate (soil moisture and 

nutrients), thereby impacting resource gradients for plants.  

Understanding the relationship between species richness and habitat heterogeneity is 

therefore crucial to habitat conservation [106]. A new frontier of obtaining information on 

biological diversity using remote sensing is the application of the Spectral Variation Hypothesis 

(SVH) proposed by Palmer [102]. SVH infers that the spectral heterogeneity of a remotely 

sensed image can be correlated with habitat heterogeneity[48]. Therefore SVH represents a 

potential tool for predicting plant species diversities at local, regional and global scales with 

satellite remote sensing [107]. 

Optical satellite images provide the bulk of satellite images used in the application of the 

Spectral Variation Hypothesis for modelling species diversities. The debate on the efficiency of 

high and medium-resolution images for modelling species diversities has been ongoing for a 

sometimes. High-resolution sensors have greater potential for mapping vegetation diversity and 

distributions owing to the pixel sizes which correspond with individual tree crowns. The major 

demerit of high-resolution data sets for tree species mapping is the potential for an increase in 

pixel variability. This is often the case in mountainous regions, where a pixel may cover the 

crown area with sunshine and shadow at the same time. The Spectral Variation Hypothesis has 

been fully tested on vascular plants using high-resolution images such as Ikonos and QuickBird 

[103,107,108,109,110]. 

 The medium resolution images such as Landsat have a greater number of bands and can 

record additional information in the middle infra-red range of critical plant properties including 

leaf pigments, water content and chemical composition and can be useful for discriminating tree 

species [49]. The major limitation of the medium-resolution sensors has been that of insufficient 
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spatial resolution. A single pixel of the medium sensor may cover several plants of different 

species, thus each pixel often corresponds to a mixed signature of different objects, leading to 

difficulties in species identification [49]. Despite these limitations, studies using medium-

resolution sensors have been moderately successful for both temperate and tropical ecosystems 

[101,111].   

 The majority of research on species/ spectral diversity modelling with satellite remote 

sensing has been dedicated to the relationship between spectral entropy and local species 

diversity [112]. Analysis of habitat and spectral heterogeneity for species diversity studies 

requires an analytical technique with information beyond the spectral variability of both the high 

and medium-resolution images. A recent approach to the Spectral Variation Hypothesis is now 

focused on the use of textural variables and vegetation indices computed with the object-based 

image analysis technique [113]. This method has the dual advantages of the use of both spectral 

and textural features to discriminate and determine species diversity. Also in object-based image 

analysis, the field plot is linked to an object rather than a pixel hence the geometric inaccuracies 

in both field and image data are of less importance[114]. The object features often related to 

SVA are the second-order statistics after Haralick[96,115]. The second-order statistics is the 

Gray Level Concurrence Matrix (GLCM). The Gray Level Co-occurrence Matrix (GLCM) is the 

second-order texture feature after Haralick [96]. GLCM features provide information on the 

structural and geometric properties of forest canopies and can be used to discriminate textures 

between tree species [94].   

There are arrays of literature suggesting the advantages of object-based image analysis 

over pixel-based analysis in land cover classifications [66,71,116,117]; biomass estimations 

[91,93,118]; and species diversity/ecological modelling [110,119,120]. Satellite remote sensing 
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has been used for mapping and modelling species distribution in arrays of ecosystems ranging 

from temperate [45,102,107,108] and tropical [101,121], but none of the studies has focused on 

the subtropical Afromontane ecosystem. This research is aimed at modelling the structural 

diversity of the Afromontane forest ecosystem using high-resolution QuickBird and medium-

resolution Landsat 8 satellite images combined with macro-ecological data. The objectives of 

this study are to: 1) Determine the relationship between sensor spatial/spectral resolution and 

species diversity using high-resolution QuickBird and medium-resolution Landsat 8 images.  2) 

Determine the relationship between species richness and satellite image spectral, textural and 

vegetation indices, and, 3) determine the effects of macro-ecological parameters on the 

Afromontane tree species diversity.  

4.2 Study area 

The study was carried out in the highlands of North East Nigeria, along the Nigerian/Cameroon 

border (Fig 1). These highlands are part of the Cameroon volcanic chain of mountains ranging 

from mount Oku in the north of Cameroon to Bioko in the south. These highlands are primarily 

grassland with patches of forest restricted to slopes where they are protected from fire and 

grazing or along stream sides where there is moisture and again some protection from fire 

[122,123]. The study concentrated on two main areas, the Ngel Nyaki forest (Longitude 07o 20’ 

N and Latitude 11o 43’ E) and the Kurmin Ndanko (Longitude 07o 03’ N and Latitude 11o 70’ E). 

The altitude of the study sites varied from 1250 m to 1750 m above sea level. 

The forests are representative of sub-montane moist broadleaf (Terrestrial Ecoregion, WWF) and 

are highly diverse in both fauna and flora [124]. Afromontane endemic tree species [5], 

Cameroon highland endemics and possible local endemics are found in the forests of the study 

area. The forests are also rich in mammal species, especially primates including the Nigerian-
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Cameroon Chimpanzee (Pan troglodytes ellioti), noted as the most endangered subspecies of 

chimpanzee in Africa [125].  There are two distinct seasons, a dry season when there is little or 

no rain of approximately 6 months and a wet season when it can rain almost every day. The rainy 

season usually commences from early April until late October[126] with a mean annual rainfall 

of 1780 mm in the Ngel Nyaki and Kurmin Ndanko. The temperature of the study area rarely 

exceeds 30°C [126]. 

Figure 4-1. Showing plot layout along macro-ecological gradients in Ngel Nyaki and Kurmi     

Ndanko forest. 
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4.3 Materials and methods 

The approach described below aims to determine tree species richness using features from 

QuickBird and Landsat 8 satellite images (textural, spectral and vegetation indices). Also 

included as explanatory variables were slope, elevation, annual solar irradiance, temperature and 

annual precipitation).  All the procedures are described in detail in Figure 4-8. 

4.3.1 Plot inventory/ alpha diversity study 

Afromontane tree species inventory data were collected using the modified Gentry plots [127]. 

Plots were established using randomized co-ordinates stratified by elevation (1250 m– 1750 m 

above sea level). Within the modified Gentry plots, all living trees with a diameter at breast 

height (dbh) ≥ 10 cm were identified and recorded using Trees of Nigeria [128], The Forests of 

Taraba and Adamawa States, Nigeria-An Ecological Accounts and Species Checklist [123] and 

local knowledge of the trees. A total of One hundred and six plots were established in the two 

sites. Tree species richness by plot was assessed with the Simpson’s diversity indices as a 

measure of alpha(α)  diversity index[129,130]. 

4.3.2 Satellite images and macro-ecological data acquisition and processing 

QuickBird satellite image of the study area was acquired at the onset of the field campaign in 

January 2011, while Landsat 8 (OLI) satellite images were acquired in March 2014. Both images 

were atmospherically corrected and geo-referenced to the Universal Transverse Mercator 

Projection (WGS 84). Elevation, slope and solar radiation study area were extracted from the 

30m ASTER Global Digital Elevation Model using the Spatial Analyst and Topography toolbox 

in ArcGIS 10.2.2. Precipitation and temperature data were obtained from the CHELSA- World 

Data Centre for Climate [131].  
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Within each of the 106 plots, the alpha diversity (species richness), the mean spectral bands of 

QuickBird and Landsat 8, slope-based vegetation indices, textural features consisting of the Gray 

Level Co-occurrence matrix (GLCM) and macro-ecological features (Elevation, slope, Mean 

Solar radiation/annum, temperature and precipitation) were extracted using the chessboard 

segmentation algorithm in the Trimble Developer software (eCognition 9.0.3). 

Figure 4-2. Diagrammatic scheme of methods and process for species diversity study 

 

The GLCM properties used are as follows; homogeneity, contrast, dissimilarity, entropy, angular 

second moment, mean, standard deviation, and correlation. All of the textures measured were 
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computed for each layer and the five different directions; namely 0o, 45 o, 90 o, 135 o, and all 

directions. The afore-mentioned features and thematic layers with information containing specie 

richness were exported as a shape file from the eCognition environment and used in the random 

forest algorithm to model Afromontane tree species richness.  

4.3.3 Statistical analysis 

The relationship between spectral, textural and vegetation indices of Quick Bird and Landsat 8 

satellite images and species diversity (≥10 cm diameter at breast height) were explored using 

multiple regressing analyses with the random forest algorithm.  An independent data set was 

used to test the predicted model using linear regression. In other to explore the relationship 

between tree species diversity and spectral, textural and vegetation indices. Pearson correlation 

coefficient was computed as a measure of the relationship. The closer the coefficient is to one, 

the stronger the relationship.  

4.4 Results   

The model output from the random forest algorithm was validated and evaluated with the 

coefficient of determination. The coefficient of determination derived from validating modelled 

species heterogeneity and field-based species richness was statistically significant for QuickBird, 

r2=0.77 and Landsat 8, r2=0.47.  (Figure 4-3,4-4). The correlation coefficient for the relationship 

between species diversity image features (spectral, textural and vegetation indices) and macro- 

ecological features ranged between 0.1 and 0.8 (Table 4-1A, and 4-1B).  
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Table 4-1. correlation coefficient between tree species diversity and macro ecological 

variables 

 

 

Figure 4-3. Landsat 8 species distribution model 
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Figure 4-4. QuickBird species distribution model 

 

Table 4-2.  Correlation coefficient between spectral bands, vegetation indices, texture and 

species richness 

 

Landsat QuickBird 

Spectral Bands             

Blue 0.3 0.5 

Green 0.2 0.1 

Red 0.5 0.3 

NIR 0.41 0.52 

Vegetation Indices 

  DVI 0.04 0.13 

GDVI 0.32 0.11 

GNDVI 0.3 0.20 

NDVI 0.1 0.30 

NG 0.31 0.13 

NNIR 0.04 0.23 

RVI 0.1 0.25 

GRVI 0.28 0.16 

NR 0.20 0.31 

Texture 
GLCM 0.3 0.45 
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4.5 Discussions 

Both QuickBird and Landsat 8 satellite images correlate with the species richness of the 

Afromontane forest ecosystem. The species heterogeneity maps showed a pattern of tree 

distributions in the study area with the lowest heterogeneity range of 0, belonging to the grass 

and ≥1 to ≥10 belonging to the ecosystem ranging from savanna to high forest ecosystem (Figure 

4-5 and Figure 4-6). The QuickBird satellite image (with a spatial resolution of 2.4 m) showed a 

propensity for distinctive mapping of individual objects due to its high spatial resolution as 

opposed to Landsat 8 which had a medium (30 meter) spatial resolution. High-resolution images 

such as those used in this study are potentially suited for tree species diversity mapping owing to 

the suitability of the pixel size corresponding to tree individual tree crowns[107].  

The NIR band of the two satellite images correlated with species diversity. The Near Infra-red 

band (NIR) is generally known to correlate with vegetation and is adjudged to be the most 

important spectral band for mapping and modelling vegetation properties [46]. Similar studies on 

the use of spectral heterogeneity to determine species diversity corroborated these findings. For 

instance, a study using QuickBird spectral heterogeneity found that the NIR band was linearly 

related to species richness (r=0.48) [107].  The slope-based vegetation indices are widely used as 

an indicator of green vegetation and biomass abundance[132]. The NDVI of both satellite images 

strongly correlated with species diversity.  

It has been observed that using spectral and texture information as a proxy for estimating species 

diversity without including additional multiscale drivers such as climate, topography and other 

abiotic interactions may lead to inaccuracy [44]. Two of the three macro ecological factors 

strongly correlated with tree species diversity (slope, and altitude).  The slope of the terrain and 

the  
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Figure 4-4. Alpha diversity map of Ngel Nyaki montane forest from QuickBird(left) and 

Landsat 8(right). 

 
 

the direction which it faces has been observed to have multiple effects on montane species 

diversities [99,133]. These factors have been found to have a linear relationship with vegetation 

attributes such as species richness and diversities [134]. Species distributions and richness 

patterns are also known to be regulated by altitude, slope and aspects [135]. A similar field 

survey confirmed that areas with high escarpment in and around the forest core were rich in tree 

species. Similar to that was the observation of a decrease in tree species richness along altitudinal 

gradients. Plant species diversities have been observed to decrease with increasing elevation in 

tropical montane forests [113,136,137]. 
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Figure 4-5. Alpha diversity map of Kurmi Ndanko montane forest from QuickBird (left) 

and Landsat 8 (right) 

 

Heterogeneous landscapes such as the study area are reservoirs of genetic diversities due to the 

complex interaction of the various micro and macroecological factors. Aspects and slope are 

relevant to the existence of high tree diversity in the study area. Dense canopy and high tree 

species diversities were restricted to areas with high slopes and escarpments. While Savannah 

and grassland of the study areas are in locations with low escarpments as shown in the map. This 

is an indication of current anthropogenic activities in the area. Anthropogenic activities 
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occasioned by forest fires are limited to flat land and drier land surfaces, while the steep slope 

occasioned by wet soils and close canopies restricts the entry of fire into the forest.  

The importance of remote sensing in tropical species diversity mapping has been emphasized 

through numerous research and has often been limited to the use of the spectral band and 

vegetation indices for tree species discrimination and mapping. However, the advantages of tree 

species mapping through pixel segmentation combined with satellite image spectral features and 

vegetation indices in object-based image analysis are being deduced herein. In mountainous 

vegetation, the possibility of hill side shadow covering a forest area is well-known and 

documented. The image segmentation algorithm played a significant role in canopy cover 

mapping and discrimination of forests covered by a shadow by adjourning hills from other 

Ecozones.  

Remote sensing has the potential to shape the next generation of species distribution models 

when fully exploited with biotic and abiotic variables[112]. The theoretical approach of this 

model is that species richness can be spatially represented in biodiversity hotspots. The inclusion 

of macro ecological parameters with satellite remote sensing for modelling Afromontane tree 

species diversity is an indication of the importance of the macro ecological variables in the 

species distribution of the study area. Species distribution modelling can be used as habitat 

mapping for endemic species such as the Nigerian-Cameroon Chimpanzee (Pan troglodytes 

ellioti) and other species known to be present in the two study sites. However, it is worth noting 

that remote sensing still has the limitation of mapping individual tree species, especially in a 

tropical ecosystem with layers of species within a few meters.  
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4.5 Conclusion. 

Plant species richness is often used as an indicator of ecosystem diversity and health 

[103]. The study has demonstrated the use of remote sensing spectral and textural heterogeneity 

for the spatial modelling of Afromontane hotspots. Both QuickBird and Landsat 8 images 

positively correlated with tree species diversity. However, detailed object features were captured 

by the higher resolution image than the medium resolution. The medium-resolution image had 

mixed pixel effects and hence was less sensitive to spatial complexity[108] of the Afromontane 

forest ecosystem. The combination of textural and spectral features of both satellite images 

improved the ability of the images to discriminate and predict tree species richness. The study 

also revealed the influence of macro-ecological data on the Afromontane tree species 

distribution. The empirical models developed can be used to predict landscape-level species 

heterogeneity in the Afromontane forest of Nigeria and the adjourning Cameron highland.  
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Chapter 5. 

A multi-source change detection approach for the Afromontane and 

escarpments of north eastern Nigeria with Landsat and MODIS 

satellite
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5.1 Introduction  

The Afromontane forests of Nigeria belong to the ecoregion referred to as the Biafran forests and 

highlands (BFH), which is part of the West African forest biodiversity hotspot. The ecoregion is 

recognised for its unique biological and ecological diversity [138,139] and thus acts as a 

reservoir of genetic diversities. The BFH ecoregion has the highest mean annual rainfall and is 

known to contain the largest block of contiguous forest in West Africa.  The Afromontane 

ecosystems in Nigeria are situated on a chain of volcanic highlands extending from the North 

West of Cameroon to the Gulf of Guinea [138] with altitudes ranging from 600-2430 m above 

sea level.  

 The ecosystem exhibits a high level of species richness and endemism that transverse many taxa 

such as vascular Plants, Primates, Amphibians, and Birds. The forests are also rich in mammal 

species, especially primates, including the Nigerian-Cameroon chimpanzee Pan troglodytes 

ellioti, noted as the most endangered subspecies of chimpanzee in Africa [125,140].  Several 

Afro-Palearctic bird species and IUCN-listed endemic bird species have been sighted in the 

study areas, resulting in them being designated as important bird areas (IBA) by BirdLife 

International. This highly rich ecosystem has been undergoing severe anthropogenic 

deforestation [122,123] and requires urgent mitigations. 

Mitigating the effects of deforestation requires an understanding of the causes of deforestation 

and its location. Satellite remote sensing provides an efficient and cost-effective source of 

conducting, evaluating and monitoring deforestation through change detection studies [141]. 

Change detection studies can be classified into three broad categories; pixel, object and hybrid-

based change detection techniques [57]. The pixel change detection methods are based on per-
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pixel classifiers and change information contained in the spectral-radiometric domain of the 

satellite images, and they exclude textural and topological information [57,58].  

Pixel-based classification methods use spectral information contained in individual pixels to 

generate land cover classes. This method has been known to perform accurately for the 

classification of certain land use/cover classes [59,60,61,62,63,64]. The major disadvantages of 

the pixel-based method are the “salt and pepper effects”[67]. The salt and pepper effects are due 

to the intrinsic characteristics of the land cover elements (spectral heterogeneity) and the 

random variation of the sensor’s response which often lead to misclassifications [67].  

Object-based analysis (OBIA) is a robust method suitable for the classification of medium to 

high-resolution satellite imagery. In object-based techniques, contextual information such as 

texture, geometry and compactness are combined with spectral information of the satellite 

image for change detection analysis [68,69]. The main objective of the OBIA is to improve 

image classification through full exploitation of salient information within the satellite image 

for change detection analysis. The salient information includes texture, shape, and their spatial 

relations with neighbouring objects [57]. Object-based change detection has been largely 

successful and more promising in improving change detection studies [70]. Recent studies have 

shown improved performance and accuracy of the object-based change detection techniques 

over the contemporary pixel-based techniques [64,69,71,72,73].  

The hybrid change detection technique is the integration of change detection methods [70]. It 

uses two or more techniques for analysis. The major advantage of this technique is the potential 

of two or more appropriate change detection algorithms to solve research problems within a 

particular study area.  There is numerous example of hybrid change detection methods. For 
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example, Aguirre-Gutierrez et al [68] improved the change detection accuracies in a 

mountainous area of Mexico using the hybrid change detection approach.  

It has been suggested that no single change detection technique can be applied with equal 

success across different ecosystems [70].  Successful land cover change analysis is dependent 

on the study objectives and the nature of the landscape chosen for change detection analysis. 

The Afromontane forest is a heterogeneous ecosystem with a rugged and complicated 

biophysical landscape which requires a synergy of change detection methods and the use of a 

multi-source change detection approach for the change detection analysis of the ecosystem. 

This chapter therefore presents a hybrid change detection assessment of the Afromontane Forest 

ecosystem with the object-based image Analysis (OBIA) and the Breaks for Additive Seasonal 

and Trend (BFAST) algorithm. The study aimed to quantify the deforestation rates between the 

years 1988 and 2014 using decadal Landsat images. The study also evaluated the effectiveness 

of using MODIS Enhanced Vegetation indices (EVI) to determine the inter-annual time series 

changes in the study area. 

5.2 Study area 

The study was conducted in the highlands of North East of Nigeria, along the Nigerian-

Cameroon border (Longitude 07o 20’ N and Latitude 11o 43’ E).  These highlands are part of the 

Cameroon volcanic chain of mountains ranging from Mount Oku in the north of Cameroon to 

Bioko in the south. The study area encompasses three contiguous montane forest areas with 

altitudes ranging from 600 m to 2400 m above sea level. The montane forest areas are as follows: 

The Mambilla Plateau (≥ 1750 m), the Gotel Mountains (≤ 2400 m) and the escarpment forest of 

Akwaizantar (≥ 600m ≤ 1170 m).   
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There are two distinct seasons, a dry season when there is little or no rain for approximately 6 

months and a wet season when it can rain almost every day. The rainy season usually 

commences from early April until late October with mean annual rainfall of 1780 mm on the 

Mambilla Plateau but higher in the Gotel mountains. The temperature in the study area rarely 

exceeds 30°C in the dry season but has lower temperatures of 9-12 °C in late November to early 

January [142].  

Figure 5-1. Map of the study area 
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5.3 Material and Methods 

The hybrid change detection method was adopted for this study. The method proposed here for 

the Afromontane deforestation mapping is as follows: A) the object-based change detection 

with Landsat Images and B) the pixel-based BFAST algorithm with MODIS images.   

5.3.1 Image acquisition and pre-processing 

Three cloud-free multispectral Landsat images were acquired from the archive sites of the United 

States Geological Services. The acquisition dates coincide with the dry season and relatively 

cloud-free period in the area. The images acquired included, the Landsat Thematic mapper scene 

of February 2nd, 1988, Landsat Enhanced Thematic Mapper of November 6th, 2001 and 

February 16th, 2014 (Table 5-1).  Each acquired scene was georeferenced, atmospherically 

corrected and spatially subset to the study area.   

Table 5-1. Landsat data for the study area 

Path /row 

scene data date cloud cover 

186/55 Landsat ETM 02-02-88 0 % 

186/55 Landsat TM 06-11-01 0 % 

186/55 Landsat-8 16-02-14 0 % 

 

5.3.2 Forest change detection with the object-based image analysis 

Object-based image analysis (OBIA) was adopted for the Afromontane forest change detection. 

The first step in OBIA is the segmentation of the image into image object primitives. The 

Definiens developer software (eCognition 9.03) was used for the image segmentation 
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procedure. The segmentation algorithm is controlled by user-defined parameters such as scale, 

shape and compactness [71]. Image segmentation was performed using the multiresolution 

algorithm with three parameters (compactness, spectral and scale). Values assigned to the 

segmentation parameters are as follows: scale 5, shape 0.2 and compactness 0.2; a weight of 2 

for the infrared layer, while the visible layers weighted 1.  

The segmentation provided image primitives which serve as information carriers and building 

blocks for the classification processes. An automated object-based classification was developed 

to separate the forest from non-forest areas with the use of additional slope-based vegetation 

indices: the simple ratio index [143]. The simple ratio index (SRI) is a combination of 

reflectance measurements that are sensitive to chlorophyll concentration and canopy 

architecture. The SRI  describes the vigour and health of green vegetation and is measured as 

the ratio of light that is scattered in the near infra-red (NIR) range to that which is absorbed in 

the red range [143,144]. 

𝑆𝑅𝐼 = 𝑁𝐼𝑅/𝑅𝐸𝐷   (1) 

5.3.3  Accuracy assessment and deforestation statistics.  

Accuracy assessment for the classified maps was determined using protocols proposed by 

Olofsson et al and Card[145,146,147]. A stratified random sampling method was used for 

reference data collection across the study area. The sampling framework consists of 

apportioning random sampling points based on the area proportion of the classified map. For 

the change map c. 1988-2001, random sampling points were apportioned as follows: 135 for the 

forest class, 401 for the non-forest class, 180 for the forest loss (deforestation) class and 50 for 

the forest increase class. Random sampling points were distributed for the change detection 

map c 2001-2014 as follows; 135 for the forest class, 401 for the non-forest class, 180 for the 
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forest loss (deforestation) class and 50 for the forest increase class. The accuracy assessment 

samples for the change detection statistics were derived from visual interpretation of Landsat 

images high-resolution images from Google Earth and GPS positions obtained from field 

surveys.   

The change detection statistics included accuracy assessment (producer’s and user’s 

accuracies), the proportion of the mapped area of each class, deforestation rates and error 

matrix, adjustment of the original map areas and 95% confidence intervals of each map 

category and scene were also calculated. The annual deforestation rates were determined using 

the Food Agriculture Organisation’s deforestation rate formula [148]. The annual deforestation 

rate (q) was calculated based on two change intervals of 13 years each, (c. 1988–c. 2001) and 

(c. 2001–c.2014).   

 

[𝑞 = ((
𝐴2

𝐴1
)

1
(𝑡2−𝑡1)⁄

− 1))]       (2) 
 

 

Where A1 and A2 are the forest cover at times and t2 

5.3.4 Temporal change detection with MODIS EVI in Earth Observation Monitor  

  toolset. 

 

 Phenology change detection using time series MODIS data from 2000 to 2014 was carried out 

with the Earth Observation Monitor toolset. The Earth Observation Monitor (http://www.earth-

observation-monitor.net/map.php) is a web-based service for vegetation monitoring using spatial 

time series data based on TERRA/AQUA MODIS imagery. The EOM toolset in an integration 

of the Breaks For Additive Seasonal and Trend (BFAST) algorithm. The BFAST package 

provides analytical tools for breakpoint detection and derivation of phenology metrics 

http://www.earth-observation-monitor.net/map.php
http://www.earth-observation-monitor.net/map.php
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(Phenometrics) for vegetation characterization and classification through satellite time-series. 

The algorithm integrates the decomposition of the time series into trend and season and provides 

the time and number of changes in the time-series. It was developed to identify abrupt and long-

term changes in time series. Thus, it enables vegetation cover studies through the detection of 

phenology changes in inter-annual time series using the Enhanced Vegetation Index [149].   

The area of interest (AO) to be analysed for change detection was selected by drawing a 

polygon on the AO.   MODIS data from the 2nd of July 2000 to the 31st of March 2014 were 

retrieved for quality checks and analysis. Products from MODIS sensors are always delivered 

with quality flags so that users can decide which data are good enough for their specific 

application. For this study, the MODIS Terra EVI 16-daily (MOD13Q1) data were chosen with 

the quality flag set at good data use with confidence. All selected MODIS Terra EVI data were 

automatically clipped to the drawn polygon and extracted for analysis.   

Before the analysis commenced, the BFAST parameter in the EOM toolset was set to harmonic 

with a minimum segment size of 0.15, breaks of 0, maximum iteration and maximum p-value of 

1.0 each. The minimum segment size is the potential detected breaks in the trend model and is 

given as the fraction of the relative sample size (i.e. the minimum number of observations in 

each segment divided by the total number of time series). The ‘break’ threshold determines the 

minimum number of phenology breaks or phenometrics expected from each analysis. The 

maximum iteration is the amount of breakpoints in the seasonal and trend components.   

  The resulting MODIS phenometrics was exported as a GeoTIFF. The phenometrics was 

validated using validated Landsat maps of 1988, 2001, 2014 and Google Earth images.  Also, 

two sites in the study area were selected for validation. An area of deforestation by fire and 

logging was selected for validation The validation of the selected test sites for logging and forest 
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fire was performed by selecting 120 reference points each for two test sites.  Accuracy 

assessment and % agreement between the MODIS EVI derived phenometrics and Landsat 

change map of 2014 were analysed in ArcGIS 10.2.2 using the multiple resolutions method by 

Pontius Jr. and Suedmeyer [150].  

5.4 Results 

The annual deforestation rate for the study period of 1988– 2001 was estimated at 18% per 

annum and 26% per annum for the period of 2001-2014. The classes of the change maps for the 

study area included Forest; Non-forest; Forest loss; and Forest increase. Forest here is defined as 

vegetation with at least 0.5 ha or with canopy density greater than 10% and tree height greater 

than 5 meters [151,152].  The total forest area was 2421 Km2 in the first 13 years-time step of 

1988/2001, but was reduced to 1904 by the second 13 years-time step of 2001/2014. The 

estimated forest increase arising from afforestation and natural successions or recovery was 307 

km2 and 253 km2 for the 1988/2001 and 2001/2014 change maps (Table 5-2 and 5-3).  

 

Table 5-2.  Map area and adjusted map area for change of 1988-2011. 

Class mapped area mapped area adjusted Margin of Errors (95% CI) 

Forest 2224.00 2421.35 ±41 

Non-Forest 4705.66 4341.62 ±291 

Forest loss 947.10 1194.03 ±149 

Forest Increase 307.50 227.19 ±193 

Total 8184.16 8184.20  

Note. Area in km²  
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The error matrix in Table 5-1 and 5-2 gave overall accuracies of 93% and 97% for the change 

map of 1998/2001 and 2001/2014 respectively. The producers and users’ accuracies derived for 

the 1988/2001 and 2001/2014 change maps ranges from 40% to 97%.  

Table 5-3.  Map area and adjusted map area for change of 2001-2014. 

Class mapped area mapped area adjusted Margin of Errors (95% CI) 

Forest 1699.20 1904.54 ±34 

Non-Forest 5148.28 5031.10 ±18 

Forest loss 1126.00 1115.00 ±2.1 

Forest Increase 210.58 253.11 ±20 

Total 8184.06 8303.75  

 

Table 5-4. Error matrix for the 2001-2014 change map 

Class Forest  Non-

forest  

Forest 

loss 

Forest 

increase 

Total Producers 

accuracies 

Users 

accuracies 

Overall 

accuracies 

Forest 0.202 0 0.0059 0 0.2076 0.86 0.97 0.97 

Non-

forest 

0 0.613 0 0.016 0.6293 0.98 0.95  

Forest 

loss 

0.00859 0 0.12891 0 0.1375 0.94 0.93  

Forest 

increase 

0.0005 0 0.002 0.024 0.0257 0.76 0.92  

Total 0.21 0.613 0.136 0.04 1    
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Figure 5-2. 1998/2001 change map of the Afromontane region of North Eastern Nigeria 
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Figure 5-3. 2001/2014 change map of the Afromontane forest of North Eastern Nigeria 

 
 

5.4.1 Temporal pattern change detection with MODIS data  

Temporal pattern change detection was conducted using the BFAST phenology matrix-derived 

land-cover changes implemented in the EOM toolset. The phenology matrix is an indication of 
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inter-annual forest disturbances. The areas observed as forest change had breakpoints within the 

time series components of 2000 to 2014. Examples of the break points in Figure 5-3, show 

phenology disturbances through forest logging of a forest site on the Mambilla Plateau. The 

major causes of deforestation are forest fires and logging. Forest fires are caused by seasonal 

bush burning by herdsmen seeking fresh grasses for their livestock [35]. Two spots observed for 

logging and forest fire were further analysed with the EOM toolset to determine the dates and 

pattern of deforestation. 

Figure 5-4. Graphical display of phenology breaks point detection for 2002, 2004, 2006 and 

2012 seasons. 

 2012 Break point 

 2002 Break point 
 2004 Break point 
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5.4.2 Validation of MODIS- EVI Phenometrics with Landsat-based Map. 

Accuracy 

assessment between the object-based 2001/2014 change map (reference map) and the MODIS-

derived phenometrics (comparison map) indicated a good agreement between the reference and 

 2006 Break point 
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the comparison map. Two sites (Figures 5-8 and 5-9) were used in testing the agreement between 

the reference and comparison map.  There was good agreement between MODIS and reference 

local-scale forest disturbances.  The site in Figure 5-8 was a forest site degraded through logging 

activities. The legend in Figure 5-8 (left) showed the commencement of deforestation in the test 

site between the year 2002 to 2012 when a large contiguous part of the forest was clear felled. 

Figure 5-9 also shows the deforestation pattern by forest fire within Gashaka Gumpti National 

Park. The spatial and temporal patterns of forest loss detected by MODIS time series-based 

breakpoint detection showed acceptable matching with locally derived reference data. The 

overall accuracy of disturbance mapping was 93% and 74% for clear-cut deforestation and 

deforestation through fire. 

Figure 2-6. Change detection map showing the sequence of clear felling of a forest site from 

1988 to 2014. Phenometrics derived from MODIS EVI overlaid on the changed map 

showing patterns and years of deforestation (bottom right). 
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Note: Landsat images of 1988, and 2001(top right and left) of a forest site in Mambilla Plateau 

and Landsat image of 2014 showing the degradation of the same site (bottom right). MODIS 

EVI phenology metrics (chemometrics) overlaid on the Landsat image of 2014 showing 

Patterns and years of deforestation in the forest (Bottom left). 

 

 

 

 

 

 

 

 

 

Figure 5-7. Result of MODIS-based BFAST chemometrics overlaid on Landsat change map 

 of 2001-2014 showing the pattern and years of deforestation through seasonal fire 
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5.5 Discussion 

Monitoring heterogeneous ecosystems in the tropics requires a synergy or integration change 

detection methods to achieve the best possible results. The use of the hybrid technique in this 

study was critical to the improvement of the derived forest cover change maps, estimated areas 

of deforestation and the derivation of deforestation types. The object-based change detection 

method was fully implemented for the change detection of the study area using decadal Landsat 

time series for trajectory study. 

Results from this study were compared with a contemporary study by Hansen et al[153] and 

FAO [151,152,153]. Results of the deforestation map were partly consistent with Hansen et 

al’smap [153] with an agreement of 73% between the two maps. Apart from the general 

agreement, the sites observed for deforestation in (figure 5-6 and 5-7) had 93% and 74% 

agreement with the compared map”. However, Hansen et al[153] map was biased in detecting 

forest increase and forest loses at a finer scale. This biasedness can be attributed to mapping 

regional or country-wide forest cover changes without adequate in situ data for training and 

validating change maps. Secondly, the use of object-based classification techniques which 

combines contextual information within the image domain to discriminate landscape features 

such as trees and tree canopy features has been found effective for change detection analysis than 

the pixel-based approach used by the Hansen et al’s [32] map. Several studies have demonstrated 

OBIA’s advantages and ability to maximize the aggregation of pixels to objects in the 

segmentation algorithm. This has enabled object characterization through sub-objects thereby 

allowing discrimination of heterogeneous landscapes such as forest canopy and gaps, vegetation 

patchiness or landscape complexity [154]. The advantages of the object-based approach ware 

maximally exploited for the change detection of the Afromontane forest areas. 
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The change detection mapping revealed evidence of a decreasing trend in forest cover in the 

study area. Deforestation rates increased from 18% (c. 1988 to 2001) to 26% (2001 – 2014). The 

increase in the deforestation rate from 18% or (1.3% per annum) between the 1988 and 2001 

change map and 26% or (2.0% per annum) in the 2001 and 2014 change map can be attributed to 

the influx of nomadic herdsmen and farmers from conflicts areas in the North East and North 

central Nigeria to the study areas. The estimated deforestation rate of 2.0 % per annum is lower 

than the  FAO [151] estimates of 3.7% per annum for Nigeria.  

 Efforts to reduce the deforestation rate require understanding the drivers and the patterns of 

deforestation. The Earth observation monitoring software was integrated to detect the 

deforestation sequence through the phenology studies of the forest ecosystem. Analysis of the 

web-based MODIS EVI revealed patterns and drivers of deforestation through the phenometrics 

generated from the studies. The MODIS satellite became operational in the year 2000, therefore 

limiting the applications of the EOM toolset to images available from the year 2000 and beyond. 

For this study, analysis using the MODIS data set was limited to the years 2000 to 2014, which 

coincides with the second date of deforestation rates of 2.0% per annum. The phenometrics 

revealed the spatio-temporal pattern of the Afromontane ecosystem dynamics with the medium-

scale MODIS EVI. The interactions between human and the environment often results in 

modifications to land surfaces (referred to as land use, and land cover changes).  

The Moderate Resolution Imaging Spectroradiometer (MODIS) data with the Break For 

Additive BFSAT algorithm allows for repetitive and continuous mapping of the earth surfaces 

using the EVI-derived phenology matrix. The phenometrics from 2001 to 2014 revealed the 

temporal pattern of deforestation. Thus, it indicated and subdivided the pattern of deforestation 

into years using the EVI phenometrics (figure 5-5 and figure 5-6). The phenology matrix derived 
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from the web-based EOM complemented the change detection maps from the Landsat data. 

Results from this study are consistent with the object-based change map of 2001/2014 and the 

published high-resolution digital maps by Hansen el al [153]. However, the nature and types of 

change were inferred from the Landsat-based map and field observations. The accuracies of 

phenometrics prediction of disturbances within the study sites in an indication of the efficiency 

of the web-based EOM.  

The consequences of deforestation at the local level include the loss of biological diversity (both 

flora and fauna), erosion, siltation, drying off of streams etc. The Afromontane forests of north 

eastern Nigeria are in gradual decline, with large patches of fragmented “forest islands” found in 

the study area. These fragmented “forest islands” lack corridors for genetic flow or interaction 

between species especially wild animals.  

Reducing the rate of biodiversity losses and averting dangerous biodiversity changes are the 

international goals of the United Nations Convention on Biological Diversities (UN-BD) and 

the Aichi Targets for 2020. The Global Earth Observation Network (GEO BON), a partner to 

the Aichi targets has proposed the Essential Biodiversity Variables (EBV) as a framework for 

achieving the Aichi 2020 goals. One of the key mandates of EBV is the inclusion of Remote 

Sensing (RS)/ Earth Observation platforms for monitoring habitat loss, fragmentation and 

degradation. The Earth observation monitoring (EOM) toolset can be used to monitor Essential 

Biodiversity Variables such as deforestation at closer intervals or near real time using the 

MODIS-BFAST-based phenometrics. Since the EOM is web-based and is updated regularly 

with MODIS satellite images from the National Aeronautics Space Administration- Earth 

Observation Data Base. The potential for monitoring rugged and isolated landscapes in near 
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real-time with the EOM toolset used in this study is a paradigm shift in biodiversity monitoring 

both for conservation scientists and decision-makers.   

5.6 Conclusion 

   

The last 26 years have witnessed an unprecedented degradation of the Afromontane forest of 

Nigeria, mainly driven by anthropogenic factors. The decrease in natural vegetation is not only 

leading to the loss of habitat, biodiversity and stored carbon but also erosion, flooding, landslide 

and siltation of rivers, thereby leading to the drying out of valuable water sources. The 

sustainability of present-day forest ecosystem management requires change detection 

information with adequate and accurate data that can be updated continuously.  Near real-time 

ecosystem monitoring is important for rapid assessment to address the impacts of deforestation 

on carbon dynamics, biodiversity, and socio-ecological processes [155]. 

Abrupt changes caused by seasonal forest fire, logging and agricultural expansion can be 

effectively monitored in near real-time using the EOM toolset. The web-based EOM clearly 

showed the pattern of deforestation through the derived phenometrics. The application of the 

EOM toolset for change detection studies has also been proven to be an effective form of 

monitoring changes within the Afromontane ecosystem using phenometrics signatures derived 

from the 250m MODIS.  The EOM toolset can provide near real-time ecosystem monitoring for 

disturbances. It is user-friendly, easy to use and at no cost to the end user.  

This study highlights the advantages of using multi-source satellite images with hybrid change 

detection techniques for the characterization of the highly diversified Afromontane ecosystem. 

The hybrid change detection used in this study was efficient in conducting change detection in 

the Afromontane forest ecosystem.  The proposed approach can therefore be used for achieving 
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the Aichi targets 2020, which is aimed at measuring essential biodiversity variables with remote 

sensing and also redressing negative biodiversity trends.  
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Chapter 6. 

Afromontane forest fragmentation analysis-effects on beta diversity. 
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6.1 Introduction 

 

The decline in global biodiversity has been directly linked to the consistent destruction and 

degradation of forest ecosystems [156]. Deforestation especially in the tropics has led to the loss 

of more than one-third of its forest cover. The causal agents of forest degradation in the tropics 

are usually anthropogenic and the resultant effects of such activities are the fragmentation of the 

forest ecosystem. Fragmentation is a landscape process involving habitat loss and the breaking 

apart of habitat [74]. It is also defined as the transformation of a large expanse of habitat into 

isolated smaller patches or islands[157]. 

 The intensity of forest fragmentation is dependent on three major factors, namely land use 

dynamics, varying patch size and structural complexity of the habitat (). The forest landscape 

consists of heterogeneous and complex ecological attributes and the disturbances or alterations of 

such landscape could negatively impact the entire ecosystem [6]. The patch corridor matrix 

model posits that forest fragmentation is a landscape in which a large intact area of a single 

forest type is progressively altered into smaller and isolated patches [6].  

Forest fragmentation has negative effects on ecosystem stability and functionality through the 

change of landscape structures. Forest loss and changes in spatial pattern are therefore drivers of 

fragmentation and also the most important drivers of species extinction globally. The immediate 

effects of forest fragmentation are a decrease in productivity, an increase in forest isolation and a 

change in forest composition [158]. Forest fragmentation also has a negative impact on 

ecosystem services, which also affects the livelihood of forest-dependent communities[158]. 

The Afromontane forest of North Eastern Nigeria is one of the few remaining montane forest 

ecosystems in West Africa. The forest ecosystem of the region is known to be rich in biological 

diversities and are habitat to endemic fauna (Chimpanzee (Pan troglodytes elliots), Blue-bellied 
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Roller (Coracias cyanogaster)) and flora species. The Afromontane forest also provides non-

timber forest products (NTFP) as a means of livelihood to the inhabitants. The last decades have 

witnessed consistent degradation of the ecosystem leading to fragmentation of the habitats and 

loss of biological diversity. The research is based on the analysis of the multi-temporal land 

cover maps (1978, 2001 and 2014) and examines the interdependence between forest loss and 

spatial pattern changes and the effects on species diversity in the study area.  

6.2 Study area 

   The study area encompasses three contiguous montane forest areas with altitudes ranging 

from 600 m to 2400 m above sea level (ASL). The montane forest areas are as follows: The 

Mambilla Plateau (≥ 1750 m), the Gotel Mountains (≤ 2400 m) and the escarpment forest of 

Akwaizantar (≥ 600m ≤ 1170 m).  There are two distinct seasons, a dry season when there is 

little or no rain for approximately 6 months and a wet season when it can rain almost every 

day. The rainy season usually commences from early April until late October with mean annual 

rainfall of 1780 mm on the Mambilla Plateau but higher in the Gotel mountains. The 

temperature in the study area rarely exceeds 30°C in the dry season but has lower temperatures 

of 9-12 °C in late November to early January [142].  

6.3 Materials and Methods 

6.3.1 Fragmentation analysis 

The classified Landsat data for 1988, 2001 and 2014 (chapter 5) with forest and Non-forest 

classes were used for the fragmentation analysis in this study. Four fragmentation pattern 

indices(PI) accounting for interdependence between landscape composition and configuration 

changes were selected. The following spatial pattern metrics were used in the analysis of the 

Afromontane forest fragmentation using patch analyst extension in Arc GIS 10.2 and these are 

Percentage forest cover (%Forest), Number of Patches, and Mean parch size(MPS). 
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6.3.2 Tree species inventory and analysis  

Tree species inventory data were collected using the modified Gentry plots[127]. Plots were 

established using randomized randomly in five fragmented forest ecosystems. The selected 

fragmented forests are: Ngel Nyaki (1750 m), Kurmi Ndanko (1450 m), Leindi fadalli (1650 m) 

in Mambilla Plateau; Chappal Waddi (1870 m asl) and Gangirwal (2340 m) representing Gotel 

mountain. Twenty-four plots were established in each of the four fragmented forests. Data 

obtained from the established plots included tree species composition and their diameter at breast 

height and density of tree species per hectare.  

Sorenson’s coefficient was used as a measure of beta diversity between the five fragmented 

forest ecosystems.  The similarity coefficient is expressed as follows  

RI=  100 ∗ 
2𝑎

𝑎+𝑏+𝑐+𝑑+𝑒
 

Where; 

a number of species common to all the sites under consideration 

b= number of species present in unique to site ‘b’  

c= number of species unique to site ‘c’ 

d= number of species unique to site ‘d’ 

e= number of species unique to site ‘e’.  

 

6.4 Results and discussions. 

Forest fragmentation is characterised by five discrete phenomena which are reduction of total 

habitat area (forest cover), decrease in interior (edge ratio), isolation of forest from another, 

breaking up of habitat patch into smaller patches and decrease in size of habitat patch. The trend 

in forest cover loss in the study area (Table 6-1) shows a gradual reduction of forest cover from 

1988 to 2014 in all three test sites. The forest of Akwazantar which is a montane transitional 

forest with an altitude rising from 600 m above sea level to 1170 m above sea level lost 21% of 
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its forest cover between 1988 to 2014. Mambilla and Gotel mountain had their forest cover 

reduced by 17.5% and 8.1% respectively during the same period. The increase in the 

deforestation rates in the area has fragmented the Akwazantar forest escarpment from the 

Mambilla Plateau. The forest was once linked to the Mambilla Plateau through the Ngel Nyaki 

forest in 1988 (Figure 6-1). The rapid decline of vegetation covers from 67 to 47% in 

Akwazantar between 2001 and 2014 was occasioned by pressure from the farmers whose 

population have more than doubled during the same period.  

The number of patches (NumP) increased along with the decrease in forest cover between 1988 

to 2014 in the three test sits. The forests of Akwazantar, Gotel and Mambilla Plateau have been 

undergoing fragmentation processes for over four decades. The montane forests of Mambilla and 

Gotel were described as fragmented forests richly diverse in both flora and fauna in the early 

1970’s by chapman and Chapman[123] and Chapman et al[122]. Forest cover loss and increase 

in the rate of fragmentation seem to have intensified since the study carried out by both authors.   

Table 6-0-1. Fragmentation pattern indices (PI) for 1988, 2001 and 2014 

 

  Fragmentation pattern indices (PI) 

Site  year % forest cover NP MPS(acre) 

Akwazantar 

1988 68 1113 26.3 

2001 67 2136 19.1 

2014 47 11710 12.8 

Gotel mountain 

1988 57.5 1964 13.9 

2001 49 1877 12.0 

2014 40 3098 10.5 

Mambilla  

1988 20.2 8908 21.0 

2001 17.6 6342 17.0 

2014 12.1 9826 12.4 
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6.5 Impact of fragmentation on species diversities 

The coefficient of similarity in species composition between study sites shown in areas (Table 6-

2) ranges from 50% to 88%. The most dissimilar sites were Kurmin Ndanko (1550 m asl) and 

Gangirwal (2430 m asl) with a 50% similarity coefficient. Also, the high coefficient recorded in 

Sorenson’s similarity index especially between forests with little variation in attitude is an 

indication of the effects of land use on species diversity in the study area. Land use pressure can 

be adduced for the percentage of dissimilarity between the study sites. For instance, the change 

forest cover map for Ngel Nyaki shows the regeneration and increase in forest cover, while 

Kurmi Ndanko has been on a downward trend. Similar studies by MacDougall et al[159] and 

Onoyi et al [77] concluded that anthropogenic pressure through various land uses often leads to 

species dissimilarity within habitats with similar biotic and abiotic features.  

Table 6-0-2.  Sorensen's similarity coefficient for the different sites. 

Ngel Nyaki Kurmin NdankoLeindi Fadalli Chappal waddi Gangirwal

Ngel Nyaki * 65.2 54.4 68.7 52.5

Kunmi Ndanko 65.2 * 84.1 61.3 50

Leindi Fadalli 54.4 65.2 * 52.3 87.5

Chappal Waddi 68.7 61.3 52.3 * 88.1

Gangirwal 52.5 50 87.5 88.1 *  
 

The species area curve is one of the major corner stone of modern ecological studies.  It is 

expressed as the relationship between a number of species present and the area of the habitat and 

can be used to predict species extinction based on habitat reduction. Ecologists have for a long 

time positioned that the reduction in habitat size will lead to a reduction in species diversity.  

Results of the species-area relation indicated the effects of habitat size on species number (figure 

6-3). In this scenario, the reduction of forest cover equals a reduction in a number of tree species.  

Results obtained in the test sites are in line with similar observations in which tree species 

diversity was found to reduce with decreasing forest cover and patch area in the eastern arc 
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mountains of Tanzania[77]. Also, while using fragmentation indices to evaluate habitat and 

landscape processes in Costa Rica national parks, Kramer[160] observed that a decrease in forest 

cover and patch size also reduces the number of species encountered. 

Figure 6-1 Specie area curve showing fragments holding different proportions of the 

total number of species. 

 
 

Forests generally become fragmented through anthropogenic (human-induced) activities, thereby 

leading to the loss of species. The major causes of deforestation as revealed by this study are 

logging, forest fires resulting from grazing and shifting cultivation. These anthropogenic 

activities are on the increase and causing fragmentation of the once luxuriant forest landscape. 

The predominant driver of fragmentation was forest fire caused by grazing.  The Afromontane 

forest of north eastern Nigeria is gradually being turned into grazing land. The majority of the 

study sites are far from human habitation, but the presence of herds of cattle is abundant in all 

the study areas (figure 6-4).  

Three of the study areas are under the management of the Gashsaka Gumpti National Park, while 

Ngel Nyaki and Kurmin Ndanko are protected forests by the Government of Taraba state. 
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However, Ngel Nyaki is the only forest that is fully protected because it is currently been 

administered as a research station of the University of Canterbury, New Zealand. Thus the 

presence of research scientists, field staff, and patrol teams has drastically reduced grazing 

pressure on the forest.  

Figure 3. Grazing herds at the edge of the forest encountered during field survey (above). 

Illegal cattle ranch at the edge of a forest fragment in Gashaka Gumpti National 

Park(below) 
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6.6 Conclusion  

The analysis of Afromontane landscape patterns using spatial indices has enabled the monitoring 

of the trends and quantification of the landscape dynamics of the Afromontane forest 

ecosystems. The study also has highlighted the effects of forest fragmentation on species 

diversity using satellite remote sensing and in situ data. Forest loss and changes in spatial pattern 

are both the major components of forest fragmentation and are the most important drivers of 

species extinction globally.  

 

 



 

 

87 

 

 

 

 

 

 

 

 

 

Chapter 7. synopsis 
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6.1 Conclusions and main findings 

The Afromontane forest of North Eastern Nigeria is an important ecological ecosystem, rich in 

biological diversity and a source of livelihood for its communities. Most tropical forest is under 

threat of decimation and the Afromontane forest is much more under threat and has been 

decimated at an alarming rate.  The Afromontane forest ecosystems have undergone significant 

changes in the last three decades. Most of the negative changes are anthropogenic induced and 

most significant of the induced negative changes were caused by incessant bush burning by 

grazing herdsmen and agricultural expansion.  

The main goal of this thesis was to explore the potential of multi-source satellite remote sensing 

for the assessment of the biodiversity-rich Afromontane forest ecosystem. The research theme of 

this thesis was divided into two. The first segment of the research focussed on two major forest 

attributes (aboveground biomass and tree species distribution) that are interrelated and are the 

major determinants of biological diversity in any forest ecosystem. The second research theme of 

this thesis focussed on the analysis of the forest cover changes and the effects of habitat 

fragmentation on the Afromontane biological diversity. The summary of the research questions  

and findings are as follows; 

What are the major determinants of aboveground biomass accumulations in the 

ecosystem? 

A high-resolution map of the study area was produced using QuickBird satellite data and in situ 

forest inventory. The map produced was a local scale map with aboveground biomass values 

consistent with the area of study. The predicted AGB for the study area was found to be within 

the range of similar studies for the region. The study also demonstrated the importance of 

textural features in enhancing biomass estimation of an Afromontane forest ecosystem. GLCM 
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features provided structural information which improved the accuracies of predicted biomass. 

Also, AGB distribution in the study area was found to be a function of topographic variables, 

(slope and elevation).  

What are the major determinants of tree species distribution in the study area? 

The study has demonstrated the use of remote sensing spectral and textural heterogeneity 

for the spatial modelling of Afromontane hotspots. Both QuickBird and Landsat 8 images 

positively correlated with tree species diversity. However, detailed object features were captured 

by the higher resolution image than the medium resolution. The medium-resolution image had 

mixed pixel effects and hence was less sensitive to spatial the complexity of the Afromontane 

forest ecosystem. The combination of textural and spectral features of both satellite images 

improved the ability of the images to discriminate and predict tree species richness. The study 

also revealed the influence of macro-ecological data on the Afromontane tree species 

distribution. The empirical models developed can be used to predict landscape-level species 

heterogeneity in the Afromontane forest of Nigeria and the adjourning Cameron highland.  

 How can a hybrid change detection method be used to determine deforestation rates in the 

Afromontane forest ecosystem? 

The last three decades have witnessed an unprecedented degradation of the Afromontane forest 

of Nigeria, mainly driven by anthropogenic factors. The decrease in natural vegetation is not 

only leading to the loss of habitat, biodiversity and stored carbon but also erosion, flooding, 

landslide and siltation of rivers, thereby leading to the drying out of valuable water sources. The 

sustainability of present-day forest ecosystem management requires change detection 

information with adequate and accurate data that can be updated continuously.  Near real-time 



 

 

90 

 

ecosystem monitoring is important for rapid assessment to address the impacts of deforestation 

on carbon dynamics, biodiversity, and socio-ecological processes.  

  Abrupt changes caused by seasonal forest fire, logging and agricultural expansion can be 

effectively monitored in near real-time using the EOM toolset. The web-based EOM clearly 

showed the pattern of deforestation through the derived phenometrics. The application of the 

EOM toolset for change detection studies has also been proven to be an effective form of 

monitoring changes within the Afromontane ecosystem using phenometrics signatures derived 

from the 250m MODIS.  The EOM toolset can provide near real-time ecosystem monitoring for 

disturbances. It is user-friendly, easy to use and at no cost to the end user.  

 This study highlights the advantages of using multi-source satellite images with hybrid 

change detection techniques for the characterization of the highly diversified Afromontane 

ecosystem. The hybrid change detection used in this study was efficient in conducting change 

detection in the Afromontane forest ecosystem.  The proposed approach can therefore be used 

for achieving the Aichi targets 2020, which is aimed at measuring essential biodiversity 

variables with remote sensing and also redressing negative biodiversity trends.  

What are the effects of deforestation and forest fragmentation on tree species distribution? 

The degradation of tree species diversity was found to be related to the reduction of 

fragmentation of forest cover.  

How has remote sensing improved biodiversity monitoring in the Afromontane forest 

ecosystem?  

Identifying biodiversity hotspots and studying their ecosystem dynamics in space and time are 

labour-intensive, expensive and often restricted or limited to small areas.  Information derived 

from restricted ecological research is inadequate for policy and management decisions on 
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conservation. The studies in this thesis have shown that earth observation data can be integrated 

with field data to produce a large and explicit ecological map for conservation monitoring 

especially in inaccessible area like the Afromontane forest ecosystem.  

Satellite-based variables have long been expected to be a definitive component for unified global 

biodiversity monitoring. The research studies in this thesis have proven that satellite remote 

sensing can be an integrated component for biodiversity monitoring. Specie population, 

community composition, ecosystem function and ecosystem structures were the EBV classes 

covered in this thesis using multi-source satellite data and open source algorithms such as 

BFAST and random forest. The retrieval of aboveground biomass of two Afromontane forests 

was achieved using high-resolution satellite images and a random forest algorithm. Also, the tree 

species diversity of the study area was modelled using a random forest algorithm with high-

resolution QuickBird satellite image. In both aboveground biomass retrieval and tree species 

diversity modelling, in situ data was integrated with remote satellite data to achieve the outline 

objectives.  

6.2 Research needs 

The studies carried out in this thesis were limited to the montane forest of north eastern Nigeria 

which is less than 5% of the country’s total land mass. Results from the studies carried out in this 

thesis have shown that despite the rich biological diversities in the study area, large-scale 

deforestation is ongoing. The deforestation and degradation of biological diversity is not limited 

to the study area but is extensive to all the regions of the country.  The Aichi Targets 2020 is 

undoubtedly unrealistic with the current trend of deforestation and erosion of biological 

diversities. To redress this anomaly, the following research needs are listed below.  
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National or regional land use land cover map 

There is a need to update the vegetation cover map of Nigeria.  Signatories to both UNFCC and 

CBD’s essential climate variables and essential biodiversity variables are required to have a base 

line land use land cover map and vegetation cover map. The land use land cover map and 

vegetation map of Nigeria was produced in 1978, therefore the maps are long overdue to 

ascertain the extent of the country’s forest and biological resources. 

Development of an integrated approach towards monitoring local and regional 

biodiversity. 

There is also the need to have an integrated biodiversity map of the country as proposed by GEO 

BON.  The inclusion of high-quality local biodiversity measurements will foster the generation 

of integrated satellite-based monitoring for both local and regional biodiversity. This will 

increase the visibility of remotely sensed biomass and forest structure maps for local 

stakeholders and policy.  

Upscaling the results from this thesis 

The determinants of biomass and tree species distribution were found to be elevation and slope 

in the both Ngel Nyaki and Kurmin Ndanko forests. The two forest are adjacent to each other 

and are within the same environmental niche. It is therefore necessary to apply the same 

environmental variables on a large scale by mapping and modelling AGB and species diversity 

across the mountain landscape of Nigeria and Cameroon 
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