
Dynamics of Quantum Information in Many-Body

Systems with Nonlocal Interactions

Dissertation

zur Erlangung des akademischen Grades

doctor rerum naturalium

(Dr. rer. nat)

vorgelegt dem Rat der

Physikalisch-Astronomischen Fakultät

der

Friedrich-Schiller-Universität Jena

von

M. Sc. Darvin Wanisch

geboren am 24.01.1994 in Hagen



Gutachter:

1. Prof. Dr. Stephan Fritzsche

2. Dr. Pieter W. Claeys

3. Prof. Dr. Stefan Kehrein

Tag der Disputation: 26.09.2023



iii

Abstract

The dynamics of quantum information lies at the heart of future tech-

nologies that aim to utilize the laws of quantum mechanics for practical

purposes. Beyond that, it provides a unifying language that shines new

light on longstanding problems home to historically separate fields of

theoretical physics. Considering how quantum information propagates

and spreads over the degrees of freedom of a quantum many-body sys-

tem far from equilibrium has proven particularly helpful for various

subjects, ranging from the emergence of statistical mechanics in isolated

quantum systems to the black hole information paradox. Crucial for

these developments are impressive experimental advances that nowadays

allow us to explore the nonequilibrium physics of paradigmatic, simple,

and (almost) isolated quantum many-body systems in the laboratory.

In this thesis, we investigate the dynamics of quantum information in

one-dimensional systems of interacting qubits, i.e., spin-chains, where

we particularly consider systems that embody nonlocal interactions.

The latter are ubiquitous in many experimental platforms for quantum

simulation. Our results reveal an interesting connection between two

complementary probes of quantum information dynamics, i.e., entan-

glement growth and operator spreading. This connection allows us to

characterize different dynamical classes and underlines that nonlocal

interactions induce rich behavior, such as slow thermalization accom-

panied by superballistic information propagation. In particular, we

show that the famous slowdown of entanglement growth in systems with

powerlaw interactions implies a slowdown of operator dynamics. The

latter clearly distinguishes a system with powerlaw interactions from

a system possessing fast scrambling, a characteristic property of black

holes and holographic duals to theories of quantum gravity.
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Zusammenfassung

Die Dynamik von Quanteninformation ist Herzstück künftiger Technolo-

gien, welche Gesetze der Quantenmechanik für praktische Zwecke nutzen

wollen. Zudem bietet sie eine einigende Sprache, die neues Licht auf alte

Probleme wirft, die in historisch getrennten Bereichen der Physik liegen.

Die Überlegung, wie sich Quanteninformation über die Freiheitsgrade

eines Quantenvielteilchensystems fernab des Gleichgewichts ausbreitet,

hat sich als hilfreich für etliche Themen erwiesen, die von der Emergenz

statistischer Mechanik in isolierten Quantensystemen bis zum Informa-

tionsparadoxon in Schwarzen Löchern reichen. Entscheidend für diese

Entwicklungen sind beeindruckende experimentelle Fortschritte, die es

uns heute ermöglichen, die Nichtgleichgewichtsphysik paradigmatischer,

einfacher und (nahezu) isolierter Quantenvielteilchensysteme im Labor

zu erforschen. In dieser Arbeit untersuchen wir Quanteninformations-

dynamik in eindimensionalen Systemen aus wechselwirkenden Qubits,

d.h. Spin-Ketten, wobei wir insbesondere nichtlokale Wechselwirkun-

gen betrachten. Letztere sind in vielen experimentellen Plattformen

für Quantensimulationen allgegenwärtig. Unsere Ergebnisse offenbaren

eine interessante Verbindung zwei komplementärer Maße der Quanten-

informationsdynamik, nämlich dem Verschränkungswachstum und der

Operatorausbreitung. Diese Verbindung erlaubt es uns, dynamische

Klassen zu charakterisieren und zeigt, dass nichtlokale Wechselwirkungen

ein diverses Verhalten hervorrufen, wie z.B. langsame Thermalisierung,

begleitet von superballistischer Informationsausbreitung. Insbesondere

zeigen wir, dass das bekannte langsame Verschränkungswachstums in

Systemen mit Potenzgesetz-Wechselwirkungen langsame Operatordy-

namik impliziert. Letzteres unterscheidet ein System mit Potenzgesetz-

Wechselwirkungen eindeutig von jenem, das schnelles Scrambling zeigt,

eine charakteristische Eigenschaft von Schwarzen Löchern und holo-

graphischen Dualen zu Theorien der Quantengravitation.
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Chapter 1.

Dynamics of Quantum Information

“Information is physical.”

— Rolf Landauer

Despite the immediate success of quantum mechanics after its invention almost a

century ago, the physical relevance of one of its characteristic traits, quantum entangle-

ment, was more or less unclear at that time, and the sheer existence of entanglement

triggered debates about the completeness of quantum mechanics as a theory itself [1].

Decades later, the development of quantum information theory established entanglement

as a fundamental resource for quantum information processing tasks, essential for future

quantum technologies [2,3]. Nowadays, physicists are well aware that entanglement plays

a crucial role in classifying complex quantum systems, for example, the detection of quan-

tum phase transitions [4], or topological states of matter [5]. The amount of entanglement

in a given quantum state is, in some sense, a measure of its complexity, as it relates to

the difficulty of simulating the quantum state on a classical computer [6]. Recently, the

dynamics of isolated quantum many-body systems enjoyed particular attention [7]. In

this regard, concepts and techniques originating from quantum information theory, such

as measures of entanglement and other types of correlations, have greatly enhanced our

understanding of nonequilibrium quantum matter and shined new light on longstanding

questions of theoretical physics.

Key drivers for the growing interest in nonequilibrium quantum many-body physics

are impressive technological advances over the last two decades regarding the control and

manipulation of single atoms and ions. These advances brought us the first pioneering

platforms for analog quantum simulation and potential candidates for universal quantum

1



2 Dynamics of Quantum Information

computing. Already four decades ago, Richard Feynman proposed the idea of a quantum

simulator [8]. He argued that the most efficient way to simulate a complex quantum

system is to use a physical quantum system and manipulate it such that its Hamiltonian

is sufficiently close to the Hamiltonian of the system one aims to simulate. Of course,

this requires immense control over the system that serves as a simulation platform, which

was unthought-of at the time of Feynman’s proposal. Today, however, several platforms

for quantum simulation exist, for instance, systems of trapped ions [9, 10], cold atoms in

optical lattices [11,12], or systems of Rydberg atoms [13,14]. These platforms allow us to

explore the nonequilibrium physics of paradigmatic quantum lattice models of widespread

importance. For example, models of interacting Fermions [15,16] and Bosons [17] like

the Hubbard model, or models of interacting spins (qubits) [18, 19] such as the Ising

model. The resulting quantum many-body systems are in good approximation isolated

from their environment, at least up to a certain timescale, which enables the simulation

of coherent dynamics. Noteworthy, these platforms are currently at a stage where they

compete with the scope of classical computers or even overcome it. Thus, considering the

current developments on the experimental side, one may expect that it is just a matter of

time until quantum simulators are able to explore complex quantum many-body systems

beyond the scope of (future) classical computers.

Inspired by the technical possibilities of the above-mentioned experimental platforms,

a popular protocol to study the nonequilibrium physics of quantum many-body systems

is a quantum quench. In such a protocol, the system is prepared in an uncorrelated initial

state |Ψ0〉. Generally, such a state is not an eigenstate of the respective many-body

Hamiltonian H. Hence, the system will evolve in time according to

|Ψ (t)〉 = e−iHt|Ψ0〉 , (1.1)

where we assume a time-independent Hamiltonian H here, which is not a necessary con-

dition, though. Under unitary evolution, interactions between the system’s constituents

result in the build-up of entanglement. In this regard, the growth of entanglement

following the quantum quench protocol depicted in Eq. (1.1) has become an integral

diagnostic tool of nonequilibrium quantum matter. In particular, it is crucial for under-

standing whether quantum many-body systems initialized far from equilibrium eventually

equilibrate. Although not many conditions are necessary for the general equilibration of

local observables [20], whether their late-time expectation values are determined by a few

macroscopic quantities consistent with statistical mechanics is a question that caught

much more attention recently [21]. This phenomenon goes under the name of quantum
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thermalization. Accordingly, considering the quench protocol (1.1), local observables

thermalize under unitary evolution. That is, the late-time expectation value of a local

observable O is determined by an effective thermal ensemble

lim
T → ∞

1

T

∫ T

0
〈Ψ (t)|O|Ψ (t)〉 dt = Tr {ρβ O} , (1.2)

where ρβ is a suitable thermal ensemble with effective invserse temperature β. The latter

is determined by the energy expectation value of the initial state, i.e.,

E = 〈Ψ0|H|Ψ0〉 !
= Tr {ρβ H} . (1.3)

Equation (1.2) implies microscopic thermalization, therefore, expectation values of local

observables solely depend on the energy of the initial state at late times. Typically, the

expectation value is reasonably close to the expected thermal value after some relaxation

time tR, i.e.,

〈Ψ (t)|O|Ψ (t)〉 ≃ Tr {ρβ O} , for t > tR , (1.4)

where tR may depend on the considered Hamiltonian, the initial state, and the respective

observable.

Microscopic thermalization is a consequence of entanglement and, thus, a quantum

phenomenon. Hence, due to extensive entanglement between a local region and its

environment, the latter acts as an effective thermal bath. The eigenstate thermalization

hypothesis (ETH) [22, 23] offers an explanation of this phenomenon by arguing that

individual many-body eigenstates are locally indistinguishable from thermal ensembles.

However, the generality of quantum thermalization is still an open field of research, as

there are certain classes of systems that seem to escape thermalization [24, 25]. The

latter further provides an interesting perspective on how quantum information evolves

under unitary evolution in quantum many-body systems. If we follow Eq. (1.4), it

becomes evident that two (orthogonal) initial states |Ψ0〉, and |Φ0〉 with the same

energy expectation value are effectively indistinguishable by local measurements after

the relaxation time. However, due to unitary evolution, the two states remain orthogonal

at all times, i.e., 〈Φ (t) |Ψ (t)〉 = 〈Φ0|Ψ0〉 = 0. In principle, one could distinguish them

by a global measurement, however, they are locally indistinguishable since only the

average energy determines local expectation values at late times. Thus, from a local

perspective, any detail of the initial state seems to be lost. This apparent loss of initial
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state information under unitary evolution is nowadays believed to originate from quantum

information scrambling. That is, under unitary evolution, quantum information spreads

over nonlocal degrees of freedom and thereby becomes inaccessible to local measurements.

Due to its inherent connection to thermalization, quantum information scrambling

enjoyed increasing attention over the last years as a promising diagnostic of nonequilibrium

quantum matter [26,27]. Furthermore, quantifying how quantum information propagates

and spreads over the system’s degrees of freedom is fundamentally important for future

quantum technologies. Such a perspective on the dynamics of complex quantum many-

body systems has additionally proven useful in the domain of high-energy physics and

quantum gravity. In particular, quantum entanglement might be a crucial ingredient for

the unification of quantum mechanics and general relativity, for example, through the

correspondence between anti-de-Sitter space and conformal field theories (AdS/CFT) [28].

Moreover, quantum information scrambling was linked to the black hole information

paradox. Correspondingly, information that falls into a black hole is not lost but scrambled

such that it is almost impossible to reconstruct. However, assuming one collects all the

Hawking radiation that is emitted by the black hole, it may be possible to reconstruct

the information that fell in [29]. Black holes were also conjectured to possess a particular

form of information scrambling, known as fast scrambling [30]. The latter is defined

via the process of operator spreading, a rather novel view on the dynamics of quantum

many-body systems, which considers the growth of initially local operators in size and

complexity [26, 31]. This growth is usually diagnosed by out-of-time-order correlation

functions (OTOCs). The latter allow us to probe the propagation of quantum information

in thermalizing systems, contrary to traditional correlation functions. Moreover, they are

connected to the emergence of fundamental speed limits in quantum lattice models [32].

Together, these complementary probes, namely, entanglement growth and operator

spreading, offer a comprehensive language for the description of quantum many-body

dynamics, i.e., the dynamics of quantum information [27].

How the constituents of the system interact with each other is one of the defining

elements of its dynamics. Within the scope of condensed matter physics, one typically

considers systems that embody local interactions. It is well established that these systems

are generally associated with ballistic operator spreading [26,32–34] accompanied by a

linear growth of entanglement [35–38]. However, several platforms for analog quantum

simulations naturally embody nonlocal interactions, for example, interactions that decay

like a powerlaw with distance, such as Coulomb [9, 10], dipolar [39–41], or van der Waals

interactions [13,14]. The presence of powerlaw interactions can fundamentally change
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nonequilibrium physics. For example, it can induce superballistic operator spreading [42],

which is exploited by improved protocols for quantum information processing tasks [43–46].

Furthermore, it is of current debate whether fast scrambling can be observed in systems

with powerlaw interactions [47], which would enable the observation of (believed) features

of quantum gravity in current laboratories. At the same time, powerlaw interactions can

induce anomalous thermalization behavior [10,48,49], and a counterintuitive slow growth

of entanglement [50–52].

In this thesis, we build upon these results and establish a more refined picture of

quantum information dynamics, particularly in systems with powerlaw interactions. In

Chap. 2, we cover the theoretical foundation, that is, we discuss important diagnostics

such as entanglement growth and operator spreading, and present the current status of

the field. Following this foundation, in Chap. 3, we exemplify the dynamics of quantum

information on a paradigmatic model, i.e., the mixed-field Ising model. In particular,

we reproduce known results from the literature and complement them to develop a

thorough picture of quantum information dynamics in many-body systems with local

interactions. Building up on this, in Chap. 4, we study how powerlaw interactions alter

this picture. Crucially, we resolve the apparent discrepancy of slow entanglement growth

and superballistic operator spreading by connecting these two processes, which grants us a

unifying picture of quantum information dynamics in systems with powerlaw interactions.

We further review this established connection in Chap. 5, where we consider a recent,

experimental accessible proposal for a fast scrambler. Finally, in Chap. 6, we conclude

our results, pose open questions, and talk about future directions.
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Chapter 2.

Entanglement and Scrambling

“I would not call entanglement one but rather the characteristic trait

of quantum mechanics, the one that enforces its entire departure from

classical lines of thought.”

— Erwin Schrödinger

This chapter provides an overview of the necessary concepts we use throughout this

thesis to explore the dynamics of quantum information in quantum many-body systems.

We consider systems that are defined on a spatial lattice Q, which has N lattice sites.

Each lattice site i is associated with a local Hilbert space Hi. The (normalized) state of

the system is an element of the composite Hilbert space, |Ψ〉 ∈ H, where H =
⊗

i∈Q Hi.

Time-evolution is generated by a Hamiltonian H that is independent of time, if not

mentioned otherwise. Hence, the time-evolution operator is the matrix exponential

of the Hamiltonian, U (t) = e−iHt, and we set ~ = 1. We will focus particularly on

one-dimensional (1D), cubic lattices, where each lattice site is associated with a spin-1/2

degree of freedom, a qubit, with local Hilbert space Hi = C
2. The eigenstates of any Pauli

operator span a complete orthonormal basis of C2. For example, the computational basis

is given by {|0〉, |1〉}, where Z|0〉 = −|0〉, Z|1〉 = |1〉, and Z is the Pauli Z operator. The

interactions among the qubits are of two-body nature, hence, the Hamiltonian consists

of terms that act nontrivially on one, or two lattice sites, i.e.,

H =
∑

i<j∈Q

Hij .

7



8 Entanglement and Scrambling

The operator space associated with Hi is spanned by the Pauli operators, i.e., Oi =

span {1,X ,Y ,Z}, where 1 is the idenity. Hence, an operator O acting on the composite

Hilbert space H is an element of the composite operator space, O ∈ O, where O =
⊗

i∈Q Oi.

Throughout, we utilize different matrix norms for particular derivations and expressions.

Given an operator O with singular values1 λi, its operator norm is determined by the

largest singular value, i.e.,

||O|| = max {λi} . (2.1)

Furthermore, the Frobenius norm is given by

||O||F =
√

Tr {O†O} =
√

∑

i

λ2
i . (2.2)

The chapter is organized as follows. We cover the concept of entanglement in Sec. 2.1,

where we discuss, in particular, its characteristic traits through the lens of quantum

information. In Sec. 2.2 we address the propagation of quantum information, i.e., we dis-

cuss the emergence of effective limits on information propagation in quantum many-body

systems. Finally, in Sec. 2.3, we introduce the concept of quantum information scrambling

and discuss its connection to entanglement growth and information propagation.

2.1. Entanglement

Without a doubt, entanglement is one of the most puzzling aspects of quantum mechanics

that led to intense debates among its founders. In the famous EPR paradox [1], Einstein,

Podolsky, and Rosen argued that the existence of entangled particles is inconsistent with

locality, a fundamental assumption of theoretical physics. In particular, they pointed

out that the measurement of one particle would have an instantaneous effect on the

measurement results of the second particle, independent of the distance between them.

They inferred that quantum mechanics might be incomplete and proposed a theory of

local hidden variables to restore locality. At that time, however, the physical relevance

of entanglement was rather unclear and there was no known experimental procedure

to test their proposal. Almost three decades later, John Stewart Bell proposed a set

of inequalities [53] that any theory of local hidden variables must obey. In 1981, Alain

1The singular values λi of an operator O are given by the square roots of the eigenvalues of the
hermitian operator O†O =

∑

i λ
2

i |i〉〈i|, where {|i〉} spans a complete orthonormal basis of H.
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Aspect and his collaborators conducted experiments that demonstrated a significant

violation of Bell’s inequalities [54, 55], thereby putting the existence of local hidden

variables in doubt. This first experimental evidence in favor of a nonlocal physical reality

marked the beginning of a new era that brought forth an unseen level of control and

understanding of the quantum realm. Due to these pioneering experiments, Alain Aspect

was one of the Nobel laureates in Physics 2022, together with Anton Zeilinger and John

Clauser.

In this section, we introduce the formal definition of entanglement in a mathematical

sense, and discuss a simple thought experiment that underlines why entanglement is so

special, and differs from any other correlation present in a physical system. Moreover,

we discuss the information-theoretic interpretation of entanglement, introduce diagnostic

probes of entanglement and other correlations that we use throughout this thesis.

2.1.1. Nonseparability and Nonlocality

Formally, entanglement is defined via the separability of a quantum state. Let us

consider a bipartition of the Hilbert space H = HA ⊗ HB. A quantum state |Ψ〉 ∈ H is

separable with respect to this bipartition if and only if one can write it as a product state,

|Ψ〉 = |ψA〉⊗|ψB〉, where |ψA〉 ∈ HA and |ψB〉 ∈ HB. A quantum state is entangled if it is

nonseparable, i.e., |Ψ〉 6= |ψA〉 ⊗ |ψB〉. In this work, we will predominantly choose spatial

degrees of freedom to partition the Hilbert space H. Correspondingly, nonseparabilty of

the system’s state implies entanglement between a set of neighboring lattice sites, i.e., a

region A and its environment B, which is the rest of the system.

Let us try to understand this formal definition by a simple thought experiment.

Consider two parties, Alice and Bob, that share a system of two qubits in the state

|Ψ〉 =
1√
2

(|00〉 + |11〉) , (2.3)

where each of them has one qubit in their possession. Equation (2.3) is a nonseparable

state. As one of the four Bell pairs2, it is considered as a maximally entangled state of

two qubits. Now, Alice and Bob measure their qubit and record the result. To obtain a

proper statistics of their measurement outcomes, they repeat the measurement process

many times with a new copy of the state. From Alice’s (or Bob’s) perspective, each

measurement outcome occurs with equal probability for any given measurement basis.

2Due to historical reasons, these states are also called EPR pairs.
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Thus, if Alice measures in the computational basis, she is going to find her qubit in the

state |0〉 or |1〉 with a probability of 1/2 respectively. The same holds for any other basis

choice. Given Alice’s (or Bob’s) measurement outcomes, a single qubit therefore appears

to be in any possible state with equal probability. However, if the two compare their

records later on, they will notice something very odd. Every time they chose the same

measurement basis, they obtained the same outcome, every single time. Apparently,

there is a strong correlation between the respective measurement outcomes of Alice

and Bob, which roots in the entanglement between the two qubits. What makes it so

special is that after performing a measurement, Alice can predict Bob’s measurement

outcome with certainty if he chooses the same measurement basis. Therefore, Alice’s basis

choice affects the measurement statistics of Bob and vice versa. Crucially, this effect is

instantaneous3, independent of the distance between Alice and Bob, and thereby nonlocal.

The nonlocal character of entanglement, famously known as spooky action at a distance,

is a unique trait of quantum mechanics with no classical analog. The importance of

understanding entanglement became at first evident in quantum information processing.

In particular, novel protocols such as quantum teleportation [57, 58], or quantum key

distribution [59,60], utilize the entanglement of Bell pairs.

An important remark to the above example is that the state |Ψ〉 in Eq. (2.3) is a pure

state. Hence, the system is completely isolated from its environment and in a definite

state without any uncertainty. Therefore, Alice and Bob could in principle perform a

two-qubit measurement and verify that the system is indeed in the state |Ψ〉. This is not

true for a single qubit though. If Alice tries to reconstruct the state of her qubit with

her records only, she would conclude that it is in the maximally mixed state concerning

her local Hilbert space, i.e., ρA = 1
2

(|0〉〈0| + |1〉〈1|). A mixed state generally describes a

lack of information about the system, for instance, due to an imperfect preparation of

the quantum state. In the above example, the lack of information about Alice’s qubit

stems from the entanglement with Bob’s qubit. Apparently, there is information about

Alice’s qubit that she can not access just by local measurements on her qubit. This

information is stored nonlocally and only accessible by a joint measurement on both

qubits. Quantifying this lack of information corresponds to quantifying the amount

of entanglement. In the following subsection, we discuss one of the most important

quantifiers of entanglement in pure quantum states.

3Entanglement does not allow for communication faster than the speed of light since a classical
communication channel is required to send information via a Bell pair [56].
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2.1.2. The Entropy of Entanglement

In order to quantify entanglement in a pure quantum state, let us first establish that for

any state |Ψ〉 and a bipartition {A,B}, there exists a decomposition such that

|Ψ〉 =
d
∑

i=1

√
pi |ψA,i〉|ψB,i〉 , (2.4)

where the states {|ψA,i〉}, {|ψB,i〉} form an orthonormal basis of HA, HB respectively, and

d = min {dimHA, dimHB}. Without loss of generality, let us assume dimHA ≤ dimHB

from now on. Equation (2.4) is known as the Schmidt decomposition [3] with Schmidt

coefficients pi, where pi ≥ 0, and
∑d

i=1 pi = 1. The state |Ψ〉 is entangled regarding the

bipartition {A,B} if and only if there is more than one nonzero Schmidt coefficient, and

it is separable otherwise.

As discussed above, entanglement between a region A and its environment B manifests

in a lack of information about A. This becomes more evident if we consider the reduced

state4 of A, i.e., ρA, which is obtained by the partial trace operation with respect to B.

Accordingly, one finds

ρA = TrB {|Ψ〉〈Ψ|}

=
d
∑

i,j=1

√
pipj |ψA,i〉〈ψA,j| Tr {|ψB,i〉〈ψB,j|}

=
d
∑

i=1

pi |ψA,i〉〈ψA,i| . (2.5)

If, for example, pk = 1, and pi = 0, ∀ i 6= k, it follows that ρA = |ψA,k〉〈ψA,k|. Hence, if

there is only one nonzero Schmidt coefficient, the reduced state of A is a projector onto

the pure state |ψA,k〉. All information about the state of A is thereby contained in A and,

in principle, accessible by measurements on A. In contrast, if there is more than one

nonzero Schmidt coefficient, the reduced state (2.5) is a mixed state, which diagnoses a

lack of information. The more mixed the reduced state ρA is, i.e., the closer the Schmidt

coefficients pi are to a uniform distribution, the higher the amount of entanglement.

4The reduced state of a subsystem A ⊂ Q is an effective description of that subsystem in the sense
that it leads to the correct measurement statistics. Hence, Tr {OA ρA} = 〈Ψ|OA|Ψ〉 holds for all
hermitian operators OA that act trivially on B.
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One can quantify this amount by the entanglement entropy, which is defined as the

von Neumann entropy of the reduced state ρA

SA (|Ψ〉) = − Tr {ρA log ρA} = −
d
∑

i=1

pi log pi . (2.6)

Out of convenience, we will occasionally neglect the argument of SA (|Ψ〉) throughout

this thesis. Nevertheless, it is usually clear from the context which quantum state |Ψ〉 we

are discussing. The Schmidt decomposition (2.4) implies that ρA and ρB have the same

spectrum and, therefore, SA = SB holds for any bipartition of the Hilbert space. The

entanglement entropy (2.6) vanishes if and only if ρA is a pure state. Moreover, it takes

its maximum value if and only if ρA is the maximally mixed state regarding HA, i.e.,

ρA ∼ 1A. If not stated otherwise, we take the logarithm to base 2 throughout this thesis.

For systems of qubits, dimHA = 2|A|, where |A| is the volume of A, i.e., the number of

lattice sites that belong to A. Thus, in summary we have

0 ≤ SA ≤ |A| . (2.7)

The entanglement entropy satisfies a number of mathematical properties necessary

to be an entanglement measure in accordance with quantum information theory [2].

Furthermore, it is subadditive [61], that is

SA + SB ≥ SAB (2.8)

holds for any state ρAB (pure or mixed) with reduced states ρA and ρB. An even stronger

relation is the strong subadditivity [62]

SABC + SB ≤ SAB + SBC , (2.9)

which holds for any state ρABC with respective reduced states. The relations in Eq. (2.8)

and Eq. (2.9) have important implications on correlations in a quantum system, as we

will see later on.

The entanglement entropy (2.6) is typically difficult to access analytically, numerically

and also experimentally. A generalization of the von Neumann entropy, i.e., the Rényi

entropy, can be more practical in certain scenarios. As it will be of use later, let us
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introduce the second Rényi entanglement entropy, which is given by

S
(2)
A (|Ψ〉) = − log

(

Tr
{

ρ2
A

})

. (2.10)

The second Rényi entanglement entropy (2.10) has many similarities with the entangle-

ment entropy (2.6). For example, it vanishes if and only if the reduced state ρA is pure.

Moreover, it attains its maximal value if and only if the reduced state ρA is maximally

mixed. Thus, it is commonly used as an alternative diagnostic of entanglement in pure

quantum states.

We want to emphasize that throughout this thesis, we mainly discuss bipartite

entanglement, i.e., entanglement between two entities. Quantifying entanglement between

several entities, i.e., multipartite entanglement, is considerably more complicated and a

research topic on its own [2].

2.1.3. Quantum Mutual Information

The entanglement entropy quantifies the amount of entanglement between a region

A ⊂ Q, and its environment B = Q/A, see Fig. 2.1 (a). For many occasions, however,

it is of particular interest how two regions that do not form a bipartition of the whole

system are correlated to each other, i.e., A ∪ B ⊂ Q, where A ∩ B = ∅. For example,

two distant sites of the lattice, see Fig. 2.1 (b). With the aid of the entanglement entropy,

one can define the mutual information

IA:B = SA + SB − SAB , (2.11)

where AB = A∪B. If AB = Q, it follows immediately that the mutual information (2.11)

reduces to twice the entanglemmant entropy, IA:B = 2SA. In the general case, AB ⊂ Q,

the mutual information measures the total correlation between the two regions [63],

and thereby contains both, classical, and quantum correlations5. The subadditivity

of entropy (2.8) implies that the mutual information is strictly nonnegative, IA:B ≥ 0,

where the equality holds if and only if A and B are uncorrelated, i.e., ρAB = ρA ⊗ ρB.

Furthermore, it follows from the strong subadditivity (2.9) that mutual information does

not increase under reduction, IA:BC ≥ IA:B. This provides an intuitive interpretation of

5The mixed state ρAB = 1

2
(|0〉〈0| ⊗ |0〉〈0| + |1〉〈1| ⊗ |1〉〈1|), for example, is not entangled, but IA:B = 1

since it contains classical correlations.
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Figure 2.1.: Partitionings of the system Q and respective correlation measures. (a) The
system is divided into two parts A and B, i.e., A ∪B = Q. The entanglement
entropy (2.6) measures the amount of entanglement between the region A and its
environment B. (b) The mutual information (2.11) measures the total correlation
between two regions A and B, where A ∪B ⊂ Q.

strong subadditivity, that is, the correlation between two subsystem A and B can not

decrease if we enlarge one of the subsystems.

Correlations between (local) regions are traditionally measured by connected correla-

tion functions of the form 〈OAOB〉c = 〈OAOB〉 − 〈OA〉〈OB〉, where 〈. . .〉 = 〈Ψ| . . . |Ψ〉
is the expectation value in the state |Ψ〉. While these functions may depend on the

choice of the operators OA and OB, the mutual information (2.11) provides an observable-

independent measure of correlation. As such, it serves as an upper bound for connected

correlation fucntions [64], i.e.,

IA:B ≥ 〈OAOB〉2
c

2 ln 2 ||OA||2 ||OB||2
, (2.12)

where OA, OB are operators that act on HA, HB respectively, and ||. . .|| is the operator

norm (2.1).

To capture correlations between more than two regions, let us consider the tripartite

mutual information (TMI)

IA:B:C = IA:B + IA:C − IA:BC , (2.13)

where A,B, and C are three disjoint regions of Q. If the the latter is in a pure state

|Ψ〉, the TMI (2.13) is symmetric under permutations of A,B,C, and D, where D refers

to the complement of ABC. In addition, IA:B:C = 0, if the system’s state is separable

with respect to any partitioning of these regions, for example, |Ψ〉 = |ΨAB〉 ⊗ |ΨCD〉.
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The TMI probes how quantum information distributes among the three regions A, B,

and C. In particular, unlike the mutual information (2.11), the TMI has no definite

sign. If IA:B:C < 0, quantum information is predominantly shared globally, as the total

correlation between A and BC as a whole is larger than the total correlation between A

and B,C individually. On the other hand, if IA:B:C > 0, quantum information is rather

shared among the individual regions.

Noteworthy, nonpositivity of the TMI, IA:B:C ≤ 0, implies monogamy of mutual

information, i.e.,

IA:BC ≥ IA:B + IA:C . (2.14)

Monogamy is an important concept in quantum information theory and a characteristic

trait of entanglement [65, 66]. Accordingly, entanglement is not a shareable resource,

implying that strong entanglement between A and B limits the amount of entanglement

between A and C. This is typically formalized via inequalities of the form EA:BC ≥
EA:B + EA:C , where EA:B is some measure of entanglement between A and B. Since the

mutual information (2.11) is a measure of total correlation, it is generally not monogamous.

In a recent work [67], it was shown that quantum field theories with holographic duals obey

the monogamy condition (2.14), which motivated the authors to argue that entanglement

is the dominant correlation in these theories. Originally, the TMI (2.13) was introduced

to characterize multipartite entanglement in ground states of topologically ordered, two-

dimensional systems [68]. Recently, it was further studied in the context of nonequilibrium

quantum many-body physics [69–73], and unitary quantum channels [74, 75]. As we

shall see later, it will be helpful to characterize different regimes of quantum information

dynamics in isolated quantum many-body systems.

2.2. Quantum Information Propagation

If a quantum many-body system is prepared in a nonstationary state in accordance

with the quench protocol (1.1), correlations among its constituents will build up in the

subsequent evolution. An intuitive thought in this regard is whether one can utilize the

dynamics of a quantum system to process and transmit quantum information. Partially,

this connects to understanding how quantum information propagates under unitary

evolution. How fast can a signal propagate through a quantum many-body system? Are

there any fundamental limits on this propagation, and if so, what determines them?
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These questions are, of course, of great importance for future quantum technologies.

Beyond, studying the propagation of quantum information in many-body systems has

proven particularly helpful for understanding and classifying various dynamical regimes

of quantum matter, as we will further discuss throughout this chapter.

In this section, we elaborate on why the unitary evolution of initially local operators

sets fundamental bounds on the propagation of quantum information. In Sec. 2.2.1, we

recall important results from the literature that establish a maximal velocity at which

information can propagate in local quantum systems. How the presence of powerlaw

interactions may alter this behavior is the subject of Sec. 2.2.2.

For a simple thought experiment6, let us revisit Alice and Bob, who have partial

access to a many-body system in an initial state |Ψ0〉. Alice has access to a local region

A and perturbs the initial state by applying a local unitary operator WA
7. For example,

she flips one qubit by applying a Pauli operator. Afterward, the system evolves for a time

t. Bob controls a local region B, some distance away from Alice. He tries to figure out

how she perturbed the system by applying a local measurement. After many repetitions

of this protocol, the expectation value of Bobs observable VB is given by

〈VB〉 = 〈Ψ0|WA e
iHt VB e

−iHt WA|Ψ0〉

= 〈Ψ (t)|WA (−t) VB WA (−t) |Ψ (t)〉

= 〈Ψ (t)|VB|Ψ (t)〉 + 〈Ψ (t)| [WA (−t) ,VB] WA (−t) |Ψ (t)〉 , (2.15)

where WA (−t) = e−iHtWAe
iHt is the Heisenberg picture of WA, and |Ψ (t)〉 = e−iHt|Ψ0〉.

The last line in Eq. (2.15) provides us with a meaningful result. As long as the commu-

tator [WA (−t) ,VB] vanishes, the expectation value of Bob’s measurement is given by

〈Ψ (t)|VB|Ψ (t)〉, which is the unperturbed expectation value, and thus independent of

WA. Therefore, the commutator determines whether or not Bob can (in principle) detect

a signal of the perturbation that Alice applied.

6A similar thought experiment was presented in the recent tutorial of Xu and Swingle [76].
7For simplicity, we assume that the operator is also hermitian. This assumption is not necessary for

the main argument, though.
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We can further bound the second term in the last line of Eq. (2.15) by virtue of

|〈Ψ (t)| [WA (−t) ,VB] WA (−t) |Ψ (t)〉|

≤
√

〈Ψ (t)| [WA (−t) ,VB] [WA (−t) ,VB]† |Ψ (t)〉

≤ ||[WA (−t) ,VB]|| , (2.16)

where the Cauchy-Schwarz inequality yields the second line of Eq. (2.16), and the last line

follows from the definition of the operator norm, see also Appendix B.1. Equation (2.16)

bounds the information front of Alice’s perturbation, i.e., no signal of her perturbation

can arrive at Bob’s region as long as the operator norm of the commutator vanishes.

Noteworthy, this statement is independent of the initial state |Ψ0〉, and it thereby

establishes a general bound on the propagation of a local perturbation under unitary

evolution.

The example above underlines that the possibility of Bob detecting a signal of Alice’s

perturbation at a given time t depends on the structure of WA (−t). Hence, the dynamics

of (local) operators under unitary evolution closely relates to the process of information

propagation. Initially, the support of WA is restricted to Alice’s region. Therefore, it does

not overlap with the support of VB, which implies [WA,VB] = 0. As time evolves, the

support of WA (−t) grows, i.e., the operator acts nontrivially on an increasing number

of sites. This growth of a local operator is known as operator spreading, and will be

discussed in more detail in Sec. 2.3.3. For now, it is sufficient to acknowledge that once

the support of WA (−t) has grown such that it fails to commute with VB, Bob can, in

principle, detect a signal of Alice’s perturbation. On the other hand, as we shall later see,

it is not guaranteed that he can detect a signal if he applies only local measurements.

2.2.1. Locality and the Emergence of Causality

The discussion above underlines that the dynamics of local operators under unitary

evolution sets bounds on information propagation in a quantum many-body system. But

how fast can quantum information actually propagate? Of course, we expect that no

information can travel faster than the speed of light. However, the postulates of quantum

mechanics do not enforce relativistic causality. Therefore, it is natural to ask whether

fundamental limits on information propagation exist in systems that do not incorporate

relativistic causality by default. In fact, for local quantum lattice models, there exists an
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analogous to the speed of light. Locality, in this case, means that a single lattice site

interacts only with its immediate surrounding, i.e., with its neighboring lattice sites. In

one spatial dimension, a generic local Hamiltonian with open boundary conditions is

given by

H =
N−1
∑

i=1

Hi,i+1 , (2.17)

where Hi,i+1 acts nontrivially on site i, and i+1. For Hamiltonians such as Eq. (2.17), the

Lieb-Robinson bound [32] establishes an effective bound on the propagation of quantum

information.

To formulate the bound, let us recall the previous example of Alice and Bob. In

particular, Alice perturbs the system at site i ∈ A by applying the unitary Wi, and Bob

measures the observable Vj at site j ∈ B. According to Eq. (2.16), the propagation of

Alice’s perturbation is bounded by ||[Wi (t) ,Vj]||. The Lieb-Robinson bound further

restricts the operator norm of the commutator by

||[Wi (t) ,Vj]||
||Wi|| ||Vj||

≤ a eb (t−r/vLR) , (2.18)

where r = |i− j| is the distance between Alice and Bob, and a, b, and vLR typically depend

on details of the Hamiltonian. Equation (2.18) implies 8 that as long as t ≪ r/vLR, the

operator norm is bounded by an exponentially small number, and Bob has effectively no

chance to detect a signal of Alice’s initial perturbation. At t∼ r/vLR, the operator norm

can become sizeable, and if so, Bob might be able to detect a signal of the perturbation.

The Lieb-Robinson bound, therefore, establishes an effective lightcone that bounds the

support of Wi (t), and thereby the propagation of quantum information. Accordingly,

at time t, the support of Wi (t) can not be much larger than 2tvLR, where vLR is the

Lieb-Robinson velocity. Thus, it follows that as long as the support of Vj does not overlap

with the lightcone of Wi (t), the two operators will (in good approximation) commute, see

Fig. 2.2 (a). It is important to emphasize that the Lieb-Robinson bound does not describe

how fast information propagates but rather how fast it can propagate in principle. The

Lieb-Robinson velocity vLR, therefore, serves as an effective speed limit for information

propagation in local quantum lattice models. Crucially, however, the bound ensures that

information can not propagate superballistically. Thus, in local quantum lattice models,

8For the sake of brevity, we set ||Wi|| = ||Vj || = 1 here, which holds for any Pauli operator.
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Figure 2.2.: Pictorial illustration of Lieb-Robinson bounds. (a) In local quantum lattice
models, the propagation of quantum information is bounded by an effective
lightcone. The latter is determined by the Lieb-Robinson velocity vLR. Accord-
ingly, information about a local perturbation Wi can at best propagate with
vLR. (b) Quantum lattice models that incorporate powerlaw interactions, i.e.,
||Hij || ∼ 1/rα

ij , can induce a nonlinear lightcone. With decreasing exponent α,
and thereby a slower decay of the interaction strength with distance, the lightcone
becomes increasingly nonlinear. A nonlinear lightcone implies the possibility of
superballistic propagation of quantum information.

information propagates ballistically at best. That is, it takes information at least a time

proportional to r to propagate a distance r or, put differently, tI & r.

2.2.2. The Breakdown of Locality

The Lieb-Robinson bound (2.18) applies if the system’s dynamics is governed by local

Hamiltonian. Yet, as mentioned in the introductory part of this thesis, many experimental

platforms for analog quantum simulation naturally embody nonlocal interactions. A

Hamiltonian simulated on these platforms might, therefore, not comply with the local

structure of Eq. (2.17), as a single site effectively interacts with many sites beyond its

nearest neighbors. However, the interactions among the system’s constituents usually

incorporate a spatial structure. That is, the interaction strength between two sites i and

j typically decays with the distance rij between them. For a number of experimental

platforms, this decay is in good approximation algebraically, which results in an interaction

strength that follows a powerlaw. Hence, considering the part of the Hamiltonian that

describes the interaction between site i and j, i.e., Hij, this implies ||Hij|| ∼ 1/rα
ij, where

the decay exponent α ≥ 0 determines the spatial decay of the interaction strength. In

systems of trapped ions, for example, one typically encounters α ≤ 3 [9,10], while dipolar

molecules are characterized by α = 3 [39–41], and Rydberg atoms by α = 6 [13, 14].
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Due to their immediate experimental relevance, it is particularly important to under-

stand if and how powerlaw interactions alter the propagation of quantum information.

As the Lieb-Robinson bound does, in general, not apply, one may ask whether similar

bounds on information propagation still exist in this case. For potential applications

in quantum information processing, it is of special interest if systems with powerlaw

interactions allow for superballistic propagation of quantum information. The latter

implies an effective nonlinear lightcone that bounds the information front. That is, the

time it takes information to propagate a distance r is bounded by a nonlinear function

of r, i.e., tI & f (r), where f (r) . r. Over the last two decades, many works aimed at

generalizing the Lieb-Robinson bound for systems with powerlaw interactions [44, 77–82].

Moreover, seminal theoretical works on correlation dynamics [50, 83, 84] and related

experiments with trapped ions [85,86] indicated that systems with powerlaw interactions

allow for superballistic propagation of quantum information, given the decay exponent α

is sufficiently small.

Indeed, generalized Lieb-Robinson bounds for various regimes of the exponent α have

been derived. Although a Hamiltonian with powerlaw interactions is not local in a strict

sense, sufficiently large values of α can lead to entirely local dynamics. Accordingly, in

D-dimensional quantum lattice models, a linear lightcone bounds the information front

as long as α > 2D + 1 [44]. In addition, for α > 2D, it was shown recently that tI & rγ ,

where γ = min {1, α− 2D} [82], yielding a polynomial lightcone for 2D < α ≤ 2D + 1

and, therefore, the possibility for superballistic propagation of quantum information. For

D < α ≤ 2D, the best known result is that the lightcone is at least logarithmic [77], i.e.,

tI & log (r). In summary, we have the following generalized Lieb-Robinson bounds for

systems with powerlaw interactions

tI &























r , 2D + 1 < α ≤ ∞
rγ , 2D < α ≤ 2D + 1

log (r) , D < α ≤ 2D .

(2.19)

Thus, with decreasing exponent α, the lightcone becomes increasingly nonlinear, which is

pictorially illustrated in Fig. 2.2 (b). Let us stress once again that even in systems with

powerlaw interactions, information may propagate significantly slower than allowed by the

generalized Lieb-Robinson bounds (2.19), as the latter only establish limits on information

propagation. Nevertheless, in a fine-tuned scenario, it is possible to saturate these bounds,

as achieved by several protocols for quantum state transfer [43–46]. Hence, compared
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to their local counterparts, systems with powerlaw interactions can be advantageous in

quantum information processing tasks.

2.3. Quantum Information Scrambling

From now on, lets us consider chaotic, nonintegrable systems, i.e., systems which we

generally expect to thermalize [21]. In these systems, information does not seem to

propagate very far at all, at least from a local perspective. To make this more explicit,

we return to the previous thought experiment with Alice and Bob. Let us further specify

that Alice’s perturbation does not significantly increase the system’s energy, which

implies 〈Ψ0|H|Ψ0〉 ≈ 〈Ψ′
0|H|Ψ′

0〉, where |Ψ′
0〉 = WA|Ψ0〉. As discussed in the previous

section, the information front of Alice’s perturbation is bounded by an effective lightcone,

tI & f (r), where f (r) is a monotonically increasing function of r. The time at which

Bob may detect a signal of Alice’s perturbation will, therefore, scale with f (r) at best

and thereby grow with increasing distance r between them.

As discussed in the introductory part of this thesis, thermalization implies that

expectation values of local observables depend solely on the energy of the initial state

after the relaxation time tR. Hence, following Eq. (1.4), for any local observable VB that

Bob measures, we have

〈Ψ′ (t)|VB|Ψ′ (t)〉 ≃
Tr
{

e−βHVB

}

Tr {e−βH} , for t > tR.

Since, by assumption, |Ψ′
0〉 has the same energy as |Ψ0〉, Bob can not distinguish these

two states with local measurements once his region is thermal. Thus, after the relaxation

time, he can not reconstruct Alice’s perturbation or even detect a signal of it. If the

distance r is large enough, Bob’s region is already thermal before the arrival of the

information front, i.e., tR < tI. Thus, from a local perspective, the information about

Alice’s perturbation does not propagate very far, as it appears to get lost on the way.

However, since the evolution is unitary, the information about Alice’s perturbation

can not get lost, and it seems odd that it stops propagating through the system, so

what happens? The mechanism behind this phenomenon is nowadays called quantum

information scrambling. Typically, quantum information does not propagate in a localized

form in nonintegrable systems but rather spreads over increasingly many nonlocal degrees

of freedom and thereby becomes inaccessible to local measurements. This mechanism is
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responsible for the apparent loss of initial state information in systems that thermalize,

and it prevents Bob from detecting a signal of Alice’s perturbation.

This section aims to provide a solid understanding of quantum information scrambling.

In that respect, we introduce the main diagnostic tools that allow us to probe this

phenomenon in quantum many-body systems. Moreover, we recall important results from

the literature and underline the relevance of these probes for classifying (nonequilibrium)

quantum matter. In Sec. 2.3.1, we argue that information scrambling is fundamentally

connected to the growth of entanglement. Furthermore, we discuss the typical behavior

of entanglement growth in nonintegrable quantum many-body systems and its connection

to thermalization. Section 2.3.2 is devoted to the generalized Hayden-Preskill protocol,

which offers a simplified view on information scrambling. We return to the dynamics

of local operators in Sec. 2.3.3, where we discuss the process of operator spreading in

quantum many-body systems and its connection to information scrambling.

2.3.1. Entanglement Growth

In a quantum quench protocol (1.1), an initial product state |Ψ0〉 will usually not remain

a product state under unitary evolution but rather evolve into a complex superposition

of product states. The reduced state ρA (t) = TrB {|Ψ (t)〉〈Ψ (t)|}, which is initially pure,

becomes thus increasingly mixed as the system evolves in time. Accordingly, the region A

becomes entangled with increasingly many degrees of freedom of its environment B, which

manifests in the growth of entanglement over time. Following our arguments from Sec. 2.1,

the growth of entanglement diagnoses how information, initially confined to A, ’leaks out’.

That is, it flows into nonlocal degrees of freedom and thereby becomes inaccessible to

measurements on A. Quantum information scrambling is, therefore, deeply connected to

the growth of entanglement. The latter is quantified by the entanglement entropy (2.6),

which generally exhibits a monotonic growth at early to intermediate times, following a

saturation at late times. The particular saturation value of entanglement entropy and

its temporal dependence before saturation are powerful diagnostics of nonequilibrium

physics. Most importantly, the growth of entanglement lies at the heart of thermalization,

which is essentially a strong form of quantum information scrambling.

Although thermalization is a dynamic phenomenon, it is constructive to discuss the

structure of individual eigenstates in view of entanglement entropy. It is nowadays well

established that ground states of quantum many-body systems are typically only weakly

entangled. In particular, the ground state of a local Hamiltonian with a finite energy
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gap is expected to obey an area law [87–89], that is, the entanglement entropy (2.6) of a

region A scales with the area of that region

SA (|E0〉) ∼ |∂A| . (2.20)

In one spatial dimension, the area law (2.20) becomes particularly simple since the

entanglement entropy remains constant as the volume of A is increased. Novel numerical

techniques for 1D systems, such as matrix product states (MPS) [90], or the density-

matrix renormalization group (DMRG) [91] owe their success to the area law, as their

computational cost relates to the scaling of entanglement entropy. More precisely, these

techniques approximate a quantum state by a set of matrices whose size is determined

by the bond dimension χ. Such an approximation provides an accurate representation of

the quantum state if the maximal entanglement entropy of the latter is not larger than

log (χ).

Highly excited eigenstates, on the other hand, obey a volume law. In particular,

within the framework of ETH, the entanglement entropy is expected to coincide with the

thermodynamic entropy at the same energy [92–94], that is,

SA (|Ei〉) ≃ |A| sβ , (2.21)

where sβ = S (ρβ) /N is the thermal entropy density, determined by the thermal ensemble

ρβ with effective inverse temperature β, i.e.,

ρβ =
e−βH

Tr {e−βH} .

Similar to Eq. (1.3), the effective inverse temperature β is determined by the energy of

the eigenstate |Ei〉. Equation (2.21) should be understood to hold at leading order in the

system size. Eigenstates whose energy lies in the middle of the spectrum are associated

with infinite effective temperature. In this case, the entanglement entropy is expected

to attain a value associated with a random pure state drawn from the Haar measure,

known as the Page value [95]. For systems of qubits, this value is given by

SPage = |A| − 1

2 ln 2
22|A|−N , (2.22)

where we assume |A| ≤ N/2. Thus, in this extreme case, every region A that contains

slightly less than half of the system’s degrees of freedom is effectively maximally entangled
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with its environment, since the second term in Eq. (2.22) decays exponentially as |A|
becomes smaller.

The thermal nature of highly excited eigenstates then transfers to the nonequilibrium

setting. Accordingly, in a quantum quench protocol (1.1) with a highly excited initial state

|Ψ0〉, the entanglement entropy is expected to saturate at the respective thermodynamic

entropy at late times, i.e.,

SA (|Ψ (t → ∞)〉) ≃ |A| sβ , (2.23)

where in this case, the effective thermal ensemble is determined by the energy of the

initial state |Ψ0〉, as described by Eq. (1.3). Equation (2.23) implies that the reduced

state ρA approaches the respective thermal state. Once the former is sufficiently close

to the latter, the entanglement entropy reaches its saturation value, and any detail

about the initial state is (locally) lost. Furthermore, entanglement entropy follows a

volume law at late times, which underlines the challenge of the numerical treatment

of late-time dynamics. In particular, extensions of the above-mentioned numerical

techniques to the nonequilibrium domain, for example, the time-dependent variational

principle (TDVP) [96], or time-dependent DMRG [97], require a bond dimension that

scales exponentially with the system size to capture the volume law. Nevertheless, these

techniques are still among the most successful in simulating nonequilibrium quantum

many-body physics at early to intermediate times.

The growth of entanglement entropy under unitary evolution is best understood for

local quantum many-body systems, described by a Hamiltonian such as Eq. (2.17). These

systems are generally associated with linear growth in time accompanied by a growth

rate that follows an area law [35–38,98]. A universal form is, hence, given by

SA (|Ψ (t)〉) = |∂A| vE t , (2.24)

where |∂A| is the number of sites at the boundary of the respective region A, and vE

is the entanglement velocity, which may depend on the energy of the initial state and

further details of the Hamiltonian. The linear temporal dependence in Eq. (2.24) implies

that the time it takes for the entanglement entropy to saturate scales linearly with the

volume |A| of the considered region. Moreover, the area law growth rate originates from

the local structure of the Hamiltonian. To be more explicit, let us divide the Hamiltonian
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into three parts,

H = HA + HB + HA:B . (2.25)

In Eq. (2.25), we denote HA as the part of the Hamiltonian containing all operators that

act only nontrivially on A. Similarly, HB contains all operators that act only nontrivially

on the environment B. Consequently, HA:B contains all operators that connect A with its

environment B, that is, all operators that act nontrivially on A and B. If this latter part

vanishes, HA:B = 0, an initial product state will remain a product state under unitary

evolution with respect to the bipartition {A,B}. Accordingly, HAB is responsible for

the growth of entanglement between A and B. For a local Hamiltonian, the support of

HA:B is confined close to the boundary of A, resulting in a growth rate proportional to

|∂A|. We can, thus, understand the universal behavior (2.24) as follows. Under unitary

evolution, information about the region A flows through its boundary ∂A into nonlocal

degrees of freedom at a constant velocity vE, see Fig. 2.3 (a) for a pictorial illustration.

At this point, let us say a few words about the experimental accessibility of entangle-

ment entropy, which is not an observable as it is a nonlinear function of the reduced state

ρA and, therefore, not directly measurable. One approach to access entanglement entropy

is full quantum state tomography [99,100]. The latter involves a complete reconstruction

of the quantum state, which scales poorly with the system size and is thus limited to

systems of a few lattice sites. More efficient experimental techniques, directly tailored

to probe entanglement entropy, have also been developed recently [17,101–104]. On a

trapped-ion quantum simulator, for example, entanglement growth was ’measured’ for a

system of N = 20 qubits [104]. Moreover, the linear entanglement growth expected for

local systems (2.24) has been observed in a quantum simulation of the Bose-Hubbard

Hamiltonian [17]. As hinted earlier, these advantageous experimental schemes usually

consider the second Rényi entropy (2.10).

Although Eq. (2.24) provides an accurate description of entanglement growth for a

broad range of nonequilibrium settings, dissent from this behavior generally diagnoses

fundamentally different physics. For example, the presence of local disorder can induce

a significant slowdown of entanglement growth and may even inhibit thermalization,

given the disorder strength is sufficiently strong. This failure of thermalization due to

local disorder is known as many-body localization (MBL), a novel phase of matter that

currently enjoys broad attention [24]. At intermediate disorder strength, the system

is still expected to thermalize, however, the presence of disorder will slow down the
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dynamics. In particular, the linear entanglement growth described by Eq. (2.24) will

become sublinear at intermediate disorder strength, SA (|Ψ (t)〉) ∼ tγ , where γ < 1 [105].

For sufficiently strong disorder strength, the system enters the MBL phase, which is

characterized by a logarithmically slow entanglement growth, SA (|Ψ (t)〉) ∼ log (t) [106].

The transition to the MBL phase is thereby characterized by a fundamental change of

entanglement growth. In this phase, entanglement entropy saturates at a value expected

in the diagonal ensemble, i.e., ρD =
∑

i |ci|2 |Ei〉〈Ei|, where the coefficients ci are the

overlaps of the eigenstates |Ei〉 with the initial state, i.e., |Ψ0〉 =
∑

i ci|Ei〉. Even though

the diagonal ensemble implies that entanglement entropy follows a volume law, this

ensemble retains a memory of the initial state. We want to emphasize that despite the

extensive interest and effort put towards MBL, see Ref. [24] for a recent review, its

general existence for arbitrarily large systems is still a matter of current debate.

After discussing important results for local quantum many-body systems, let us now

elaborate on how powerlaw interactions alter the growth of entanglement. In this case,

the support of HA:B in Eq. (2.25) is generally not confined to the boundary of A, but

reaches deep into the bulk of A and the environment B. We, therefore, expect a volume

law contribution to the growth rate of entanglement entropy, i.e.9, ∂t SA (|Ψ (t)〉) ∼ |A|,
see also Fig. 2.3 (b) for an illustration. Although the support of HA:B may reach far

beyond the boundary of A, and technically extends over the whole system, the weight of

HA:B is increasingly suppressed as we move away from the boundary since the interaction

strength decays as 1/rα. For sufficiently large α, we thus expect the area law contribution

to dominate. Indeed, it was proven that the universal growth (2.24) survives in D-

dimensional systems with powerlaw interactions as long as α > D + 1 [107]. For smaller

decay exponents, though, entanglement growth can change drastically.

Intuitively, one might expect that the presence of powerlaw interactions results in

faster entanglement growth. Although this may be true at early times due to the volume-

law contribution to the growth rate, several works discovered that powerlaw interactions

generally induce a slowdown of entanglement growth [50–52,108]. That is, in particular,

a sublinear temporal dependence of entanglement entropy, SA (|Ψ (t)〉) ∼ tγ , where γ < 1.

The slowdown of entanglement growth becomes even more severe if the decay exponent

α is smaller than the spatial dimension, α < D. In this case, logarithmically slow growth

of entanglement was found, SA (|Ψ (t)〉) ∼ log (t). Contrary to MBL, though, the system

is still expected to thermalize [109]. The approach toward local thermal equilibrium,

9This notation should emphasize that there is a volume law contribution to the growth rate. However,
the area law contribution may still be relevant, and the growth rate could further depend on time.
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Figure 2.3.: Pictorial illustration of entanglement growth. (a) In local systems, the growth
rate of the entanglement entropy is proportional to the area |∂A| of the considered
region A. This can be understood by the fact that all terms of the Hamiltonian
that act nontrivially on A and its environment B are located at the boundary
of A. (b) In systems with powerlaw interactions ∼ 1/rα, also terms that act
nontrivially on the bulk of A contribute to the growth of entanglement, resulting
in a volume law contribution to the growth rate.

however, may be considerably more complicated. For instance, powerlaw interactions

can lead to prethermalization [21, 48, 49], i.e., the system first relaxes to an intermediate

prethermal state before ultimately thermalizing. Such a prethermalization plateau was

recently observed in an experiment with trapped ions [10]. Considering systems with

local disorder, powerlaw interactions can prevent a transition to the MBL phase given

the decay exponent α is sufficiently small [110–112].

In summary, power law interactions can significantly alter the dynamics of entangle-

ment and, thus, the nonequilibrium physics of a quantum many-body system. Putting

systems with disorder aside from now, what is particularly important for us, is the

counterintuitive slowdown of entanglement growth for sufficiently small decay exponents

α. Consequently, this will result in a slower approach toward local equilibrium, i.e., slower

thermalization. Interestingly, this is accompanied by the possibility of superballistic

propagation of quantum information, as discussed in Sec. 2.2. Later, in Sec. 2.3.3, we will

revisit this issue. In the next section, we consider a simple protocol that underlines the

connection between entanglement growth and information scrambling more explicitly.

2.3.2. The Generalized Hayden-Preskill Protocol

To make the rather abstract concept of information scrambling more tangible, let us discuss

a simple but sufficient protocol, i.e., the generalized Hayden-Preskill protocol [76, 98].
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Consider a system Q, which consists of N qubits, and its dynamics is governed by the

Hamiltonian H. Moreover, let us introduce an auxiliary qubit R, the reference, that is

completely isolated and undergoes no dynamics. Initially, the reference is entangled with

the first qubit of the system in form of a simple Bell pair (2.3). Hence, the composite

initial state is given by

|Ψ0〉 =
1√
2

(|0R〉|ψ0〉 + |1R〉|ψ1〉) , (2.26)

where |ψ0〉, and |ψ1〉 denote the states of the system with the first qubit in the state |0〉,
and |1〉 respectively, i.e.,

|ψ0〉 = |0〉|ψ〉 , |ψ1〉 = |1〉|ψ〉 ,

and |ψ〉 is the initial state of the remaining N − 1 qubits. The time-evolution of the

initial state (2.26) is then given by

|Ψ (t)〉 =
1√
2

(|0R〉|ψ0 (t)〉 + |1R〉|ψ1 (t)〉) , (2.27)

where |ψ0 (t)〉 = e−itH|ψ0〉, and |ψ1 (t)〉 is defined likewise. A pictorial illustration of

this protocol is displayed in Fig. 2.4. From Eq. (2.27), it follows immediately that the

reference stays maximally entangled with the system at all times, i.e., SR = 1 ∀ t. The

initial entanglement is, therefore, never lost, which is not surprising since the evolution

is unitary. However, due to information scrambling, we expect the initially localized

entanglement between the reference and the system to become increasingly complex over

time and to involve a growing number of qubits in the system. To quantify the process

of information scrambling, one may ask the following question. How many degrees of

freedom are sufficient to recover the initial entanglement with the reference at a given

time t?

We can quantify the entanglement between the reference and a given region of the

system via the mutual information (2.11). Note that IR:Q = 2 holds at all times, empha-

sizing that the reference is always maximally entangled with the system. Furthermore,

it is straightforward to show that IR:A + IR:Ā = 2 always holds, where A ∪ Ā = Q.

Thus, any region A ⊂ Q that attains almost maximal mutual information is sufficient

to recover the initial entanglement with the reference. Since the reference is initially

only entangled with the first qubit, one finds IR:A = 2 for A = {1}, diagnosing maximal

entanglement with the reference and the first qubit of the system at t = 0. Therefore,
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Figure 2.4.: A simple protocol for information scrambling. (a) An isolated reference qubit R
is initially entangled with the first site of the system Q. Afterward, the system
evolves in time, while the reference stays isolated. Under unitary evolution, the
initially localized entanglement with the reference is spread over the nonlocal
degrees of freedom of the system. Hence, an increasing number of sites is necessary
to recover the entanglement with the reference. (b) Time-evolved state at time
t1 > 0. As long as the entanglement with the reference only involves sites in
the region A, the entanglement is in principle recoverable if one has control
over A, which reflects in an almost maximal value of the mutual information
between R and A, i.e., IR:A ≃ 2. (c) Time-evolved state at time t2 > t1. Once the
entanglement with the reference involves sites that are not in A, the entanglement
is not recoverable in A anymore, i.e., IR:A < 2.

the mutual information between the reference and any other set of qubits that does

not contain the first qubit will vanish at t = 0. Under unitary evolution, we can then

track how fast the entanglement with the reference spreads over the system’s degrees

of freedom by calculating the mutual information between the reference and the first

ℓ qubits, A = {1, 2, . . . , ℓ}. As long as the mutual information is close to its maximal

value, i.e., IR:A ≃ 2, it is possible to recover the entanglement with the reference as it is

confined to the region A, see also Fig. 2.4 (b) and (c).

How large does the region A need to be at a given time such that it contains the

entanglement with the reference? Or, in other words, how long does it take until the

entanglement with the reference begins to leak out of A? Since the overall state (2.27) is

pure, one finds

IR:A = SR + SA − SRA = 1 + SA − SĀ ,
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where Ā = RA is the complement of A. If we consider a local Hamiltonian such as

Eq. (2.17), entanglement will grow linear in time, with an area law growth rate, see

Eq. (2.24). Hence, until SA saturates, SA and SĀ will grow at the same rate, yielding

IR:A = 2. Once SA begins to saturate, it follows that SA < SĀ − 1 and, therefore,

IR:A < 2. Thus, for a local Hamiltonian, one can recover the entanglement with the

reference in a region A as long as its entanglement entropy has not yet saturated. For a

more sophisticated derivation of this statement, see Ref. [98].

This is an interesting result for several reasons. First, it underlines that entanglement

growth fundamentally connects to the process of information scrambling. Second, the

linear growth of entanglement entropy results in a linear growth of the region A, necessary

to recover the entanglement with the reference. Hence, the scrambling time ts is given by

the saturation time of the entanglement entropy

ts =
|A| sβ − 1

|∂A| vE

. (2.28)

Note that the additional term in Eq. (2.28) is due to the fact that SA = 1 at t = 0, as A

includes the first site of the system. Thus, the linear scaling of the scrambling time (2.28)

with the size of A implies the ballistic propagation of the information front regarding

the entanglement with the reference. If the Hamiltonian is not local, a straightforward

generalization of these statements is not possible, as entanglement growth may not

follow the universal behavior described by Eq. (2.24). However, entanglement growth

still determines whether one can recover the entanglement with the reference. Generally,

one can recover the entanglement in a given region A as long as ∂t (SA − SĀ) ≃ 0, which

implies IR:A ≃ 2. Thus, as long as SA grows at the same rate as SĀ, the entanglement

with the reference is recoverable in A. In the case of a local Hamiltonian, this agrees

with the saturation time of SA.

What we have not discussed so far is the possibility of a localized propagation of

quantum information. In this case, Bob may not need access to the full region A, but

only to a small region close to the boundary of A, to recover the initial entanglement with

the reference. Quantum information scrambling implies that this is actually not possible.

More explicitly, let us consider that at time t1, we can recover the entanglement with the

reference in the region A, i.e., IR:A = 2. Let us further assume that the information front

of the entanglement with the reference is close to the boundary of A, but still confined

to a slightly smaller region A1 ⊂ A. Hence, we have IR:A = IR:A1
= 2, and consequently

IR:A2
= 0, where A2 is a small region at the boundary of A. Note that by construction,
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A1 ∪ A2 = A, where |A2| ≪ |A1|. A bit later, at time t2 > t1, the information front

arrives at A2. If the initial entanglement with the reference propagates in a localized

form, we expect the mutual information IR:A2
to grow significantly, once the information

front arrives, which indicates a strong correlation between the small region A2 and the

reference R. However, before arrival of the information front at A2, the entanglement

with the reference is confined to A1, implying IR:A2
= 0 and, therefore, SRA2

= SR + SA2
.

Since A2 is much smaller than A1, and the arrival of the information front is determined

by the saturation time of A1, the entanglement entropy of A2 is long saturated upon

arrival of the information front. Monotonic growth of entanglement entropy, therefore,

implies that IR:A2
= 0 at all times, given A2 is much smaller than A1. Hence, only the

region A can recover the entanglement with the reference and not a smaller region close

to the information front, which underlines the phenomenon of information scrambling.

2.3.3. Operator Spreading

The generalized Hayden-Preskill protocol provides a simplified view of how initially local

quantum information spreads over a growing number of degrees of freedom under unitary

evolution. Crucially, it connects the growth of entanglement entropy to the number of

degrees of freedom necessary to recover the initial entanglement with the reference at a

given time. However, in the ordinary quantum quench protocol (1.1), the relationship

between entanglement growth and the spread of quantum information over spatial degrees

of freedom is less clear. As discussed in Sec. 2.3.1, the growth of entanglement entropy

probes how quantum information about a given region A becomes inaccessible due to

entanglement with its environment. However, it does not probe how many degrees of

freedom from the environment are entangled with A, i.e., how many degrees of freedom

are sufficient to recover the information about A.

The dynamics of local operators offers a complementary perspective on the process

of information scrambling. As discussed in Sec. 2.2, the former determines how fast a

local perturbation can propagate through a quantum many-body system. Quantum

information scrambling then implies that this propagation is not localized, as already

discussed above. Accordingly, as the perturbation propagates through the system, control

over a growing number of degrees of freedom is necessary to reconstruct it. This process

goes under the name of operator spreading and has received increased attention from

several communities over the last few years [26].
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Let us first motivate the notion of operator spreading more appropriately. Consider

a local operator W, supported on a single site, that evolves in time according to the

Heisenberg picture

W (t) = eiHt W e−iHt . (2.29)

We can rewrite Eq. (2.29) by virtue of the Baker–Campbell–Hausdorff formula [113],

W (t) =
∞
∑

k=0

(it)k

k!
[H,W ]k , (2.30)

where [H,W ]k is the nested commutator, i.e., [H,W ]k =
[

H, [H,W ]k−1

]

, and [H,W ]0 =

W. For now, let us consider a local, 1D Hamiltonian10 such as Eq. (2.17). The first

nontrivial term in Eq. (2.30) is just the commutator between the Hamiltonian and the

local operator, that is, [H,W ]. The terms in the Hamiltonian that may not commute with

W are the ones that act on the same site as W . Accordingly, these are either single-site

terms or terms that act on the neighboring sites of W as well. Commuting once with the

Hamiltonian, therefore, can result in operators that act on three sites. Generally, the

k-th term in Eq. (2.30) can result in operators that act on 2k + 1 sites [26]. An initially

local operator, therefore, grows in size and complexity under unitary evolution, and may

eventually extend over the entire system. As a result, information about this operator is

spread over increasingly many degrees of freedom.

We can diagnose the spread of W (t) via the squared commutator with an auxiliary

local operator V located at a distant site r

Cr (t) =
1

2

〈

[W (t) ,Vr]
† [W (t) ,Vr]

〉

. (2.31)

As long as the support of W (t) does not overlap with the support of V, the squared

commutator (2.31) vanishes as the two operators still commute, see Fig. 2.5 (a). Once

W (t) has spread such that its support overlaps with that of V , the squared commutator

becomes sizeable, see Fig. 2.5 (b). By varying r, one can then track how the operator

spreads over the system’s degrees of freedom. If W , and V are unitary, for instance, two

10We make this restriction for simplicity. The notion of operator spreading applies likewise to systems
with nonlocal (few-body) interactions. In these systems, it also takes a finite time until the support
of an initially local operator can attain a certain size. For systems with powerlaw interactions,
this follows immediately from the generalized Lieb-Robinson bounds presented in Sec. 2.2.2. A
generalization of operator spreading to higher dimensions is also straightforward.
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Figure 2.5.: Pictorial illustration of operator spreading. An initially local operator W grows
in support under unitary evolution, determined by the Heisenberg picture, i.e.,
W (t) = eiHt W e−iHt. To probe the spread of W (t), we take an auxiliary local
operator V located at a distant site r. (a) As long as the support of W (t)
does not overlap with that of V, the two operators commute and the squared
commutator (2.31) vanishes. (b) Once the support of W (t) overlaps with that of
Vr, the two operators fail to commute, which is reflected by a sizeable value of
the squared commutator.

Pauli operators, Eq. (2.31) reduces to

Cr (t) = 1 − ℜe {Fr (t)} , (2.32)

where the nontrivial part in Eq. (2.32) is given by the out-of-time-order correlator (OTOC)

Fr (t) = 〈W (t) VrW (t) Vr〉 . (2.33)

From here on, we place the operator W on the first site of the system, i.e., the leftmost

site, if not mentioned otherwise. The expectation value in Eq. (2.31) is either taken

with respect to a pure state |Ψ〉, or a thermal state ρβ ∼ e−βH. Throughout this thesis,

we evaluate Eq. (2.31) in the same initial state |Ψ0〉 that we consider for the quench

protocol (1.1), probing how information about a local operator spreads in this particular

scenario. In addition, we may consider a thermal state at infinite temperature, i.e.,

ρβ ∼ 1H. Hereinafter, if we refer to Eq. (2.31), the expectation value is evaluated in either

of those two states. Evaluating the squared commutator at infinite temperature equals

an average value for all possible product states in a given basis11.

The squared commutator appeared already earlier in Eq. (2.16). Accordingly, it

bounds the time at which Bob can, in principle, detect a signal of the perturbation that

Alice applied to the initial state |Ψ0〉. Furthermore, it follows from Eq. (2.16) that the

squared commutator is bounded by the operator norm of the commutator, i.e.,

2Cr (t) ≤ ||[W (t) ,Vr]||2 . (2.34)

11Note that at infinite temperature ρβ = 2−N
1H and, therefore, 〈O〉 = 2−N Tr {O}. Moreover,

Tr {O} =
∑

i 〈Ψi|O|Ψi〉, where {|Ψi〉} is a complete orthonormal basis of H.
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For a derivation of Eq. (2.34), see Appendix B.1. The factor 2 in Eq. (2.34) arises due to

our definition of Cr (t) in Eq. (2.31). The operator norm of the commutator, ||[W (t) ,Vr]||,
is the central object of the Lieb-Robinson bound (2.18) and its generalizations (2.19).

While these bounds determine how fast information can maximally propagate, the

squared commutator provides a more practical measure of information propagation. Most

importantly, it allows us to probe information propagation in nonintegrable quantum

many-body systems. In contrast, ordinary correlation functions, such as 〈W (t) Vr〉, are

not suited for that, as they usually decay rapidly due to information scrambling [26].

The unconventional temporal structure in Eq. (2.31) renders the explicit determi-

nation of the squared commutator challenging both theoretically and experimentally.

Nevertheless, on the experimental side, first measurement schemes have been carried out

already. While one exploits randomized measurements [114,115], others actually imple-

ment forward and backward time-evolution, necessary for the Heisenberg picture [116,117].

Challenges that arise in a numerical treatment of operator spreading are discussed in

Appendix A.3.

At large, probing operator spreading allows us to understand the propagation of

quantum information in nonintegrable quantum many-body systems. Beyond, it has found

applications in different areas of physics, for example, in the detection of (dynamical)

quantum phase transitions [118], or quantum many-body scars [119]. The latter are

specific highly excited eigenstates that do not obey the expected thermal structure

discussed in Sec. 2.3.1. Consequently, an initial state that has a high overlap with these

’scarred’ eigenstates may eventually fail to thermalize [25]. Our understanding of operator

spreading in nonintegrable systems has further motivated new numerical techniques [120]

that exploit effective constraints like the Lieb-Robinson bound (2.18). Moreover, operator

spreading is considered crucial for the dynamics of black holes and theories of quantum

gravity. In particular, the property of fast scrambling [30] has attracted much attention

recently, also within the realm of quantum many-body physics [47, 121–123]. We discuss

this subject extensively in Chap. 5.

Before we review the typical behavior of the squared commutator (2.31), let us

further discuss operator dynamics in general, which received increased attention in

the last years as an alternative, state-independent perspective on quantum many-body

physics [31, 33, 34, 124–128]. Generally, we can expand any operator by means of a



Entanglement and Scrambling 35

complete orthonormal operator basis, i.e.,

W (t) =
∑

S

cS (t) S , (2.35)

where the Pauli strings S are constructed from tensor products of the local operator basis,

i.e., S ∈ O =
⊗

i∈Q Oi, where Oi = span {1,X ,Y ,Z}, and we have Tr (SS ′) /2N = δSS′ .

Hence, the Pauli strings S are hermitian, and if W is hermitian too, the coefficients in

Eq. (2.35) are real.

A useful diagnostic of operator dynamics based on the expansion (2.35) is given by

the operator density [33, 124,129]

pℓ (t) =
∑

|S|=ℓ

|cS (t)|2 , (2.36)

where the sum runs over all Pauli strings S whose rightmost non-identity site is ℓ. If W
is unitary, which is true for any local Pauli operator12, we have

∑

ℓ pℓ (t) = 1 ∀ t. Thus,

Eq. (2.36) measures how much weight of the operator W (t) attributes to strings whose

support ranges from the first to the ℓ-th site, i.e., strings of size ℓ. Let us, for example,

consider a system of N = 3 sites. In this case, the string X ⊗ 1 ⊗ Z has size ℓ = 3,

1 ⊗ Y ⊗ 1 has size ℓ = 2, and Z ⊗ 1 ⊗ 1 has size ℓ = 1, for example. Initially, the operator

density is localized at the first site, i.e., p1 (0) = 1 and pℓ (0) = 0 ∀ ℓ > 1. As time evolves,

W (t) grows in size and complexity, which implies that the operator density flows toward

increasingly larger ℓ. Thus, as a consequence of the spread of W (t), its operator front,

i.e., maxℓ pℓ (t), propagates through space. The squared commutator (2.31), therefore,

probes the propagation of the operator front. For the sake of clearer expressions and

derivations, we will occasionally neglect the time dependence of the operator density

throughout this thesis.

Since it will be useful later on, let us further define the operator density on a region

A that incorporates the initial position of W , i.e.,

Pℓ≤|A| (t) =
∑

ℓ≤|A|

pℓ (t) . (2.37)

12The Pauli strings S also include the local Pauli operators. Generally, we have S = S†, and S2 = 1.
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In addition, we define the operator size as [126,129,130]

L [W (t)] =
∑

ℓ

ℓ pℓ (t) . (2.38)

Considering our discussion above, we generally expect the operator size (2.38) to grow

monotonically and saturate at late times at some value close to N .

In certain instances, random unitary dynamics provides an effective description of

quantum many-body dynamics at late times. Regarding the expansion in Eq. (2.35),

this implies a uniform distribution of the coefficients cS (excluding the identity) [131].

Therefore, the operator density pℓ is (on average) determined by the number of strings

with size ℓ, i.e., pℓ = 3 · 4ℓ−1/
(

4N − 1
)

, which grows exponentially with ℓ. Hence, under

random unitary dynamics, most of the operator density attributes to the largest strings,

i.e., strings of size N . For the operator size (2.38), random unitary dynamics results in

the (average) operator size of a random unitary drawn from the Haar measure, i.e.,

LHaar = N
(

1 +
1

4N − 1

)

− 1

3
≈ N − 1

3
. (2.39)

In the later chapters, we will show for a specific Hamiltonian that the operator dynamics

at late times is, in certain cases, well described by random unitary dynamics.

More generally, the expectation for nonintegrable quantum many-body systems is

that an initially local operator becomes as complex as possible, considering potential

symmetries of the Hamiltonian. Thus, at late times, we also expect that most of the

operator density attributes to the largest Pauli strings [31], although the detailed structure

might differ from that expected by random unitary dynamics. The typical behavior of

the squared commutator is then as follows. Before arrival of the operator front at site

r, the squared commutator vanishes as W (t) has effectively no weight on site r, see

Fig. 2.6 (a). The arrival of the operator front at site r manifests in a rapid growth of the

squared commutator, following a saturation at some finite value, see Fig. 2.6 (b). The

propagation of the operator front is then usually diagnosed by the time tθ at which the

squared commutator becomes sizeable, i.e., Cr (tθ) = θ, where θ is some fraction of the

expected saturation value. While the onset of the growth of Cr (t) probes how fast the

operator front propagates, a finite saturation value of the squared commutator indicates

that information propagation is indeed not localized. That is, Vr fails to commute with

W (t) although a long time passed since the operator front reached site r. If information

propagation is localized, the squared commutator should decay after the arrival of the
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Figure 2.6.: Typical behavior of the squared commutator (2.31) and the operator den-
sity (2.36). The spread of the Heisenberg operator W (t) can be understood
through the propagation of the operator front, i.e., maxℓ pℓ (t). (a) At a fixed
time t, the squared commutator vanishes for all sites r that have not been reached
by the operator front. (b) Temporal evolution of the squared commutator for a
fixed r, characterized by rapid growth upon arrival of the operator front and a
subsequent saturation at a finite value.

operator front at site r, and vanish at late times, diagnosing that information about W (t)

is localized at the operator front. We present further details on the relation between the

operator density and the squared commutator in Appendix B.2.

A central goal of the recent effort toward operator dynamics is the characterization of

universal behavior. For local systems, studies of random unitary circuits [33, 124,125]

established an effective hydrodynamic description of operator dynamics, characterized

by a ballistic propagation of the operator front accompanied by a defusive broadening

of the front. This hydrodynamic description is expected to hold for systems described

by nonintegrable, local Hamiltonians [34]. Thus, in accordance with the Lieb-Robinson

bound (2.18), a local operator typically spreads ballistically in time with a characteristic

velocity vB. The latter is known as the butterfly velocity, which owns its name to the

relation between operator spreading and quantum chaos [132,133]. The butterfly velocity

vB, therefore, establishes an effective lightcone that bounds the squared commutator (2.31).

In particular, Cr (t) vanishes for t ≪ r/vB, increases rapidly at t∼ r/vB, and saturates

afterwards. Note that Eq. (2.34) implies vB ≤ vLR. While the Lieb-Robinson velocity

serves as a maximum speed at which information can propagate, the butterfly velocity

may as well depend on the state Eq. (2.31) is evaluated in, and the particular choice of

the operators W , and V .

Beyond local systems, that is, for systems with powerlaw interactions, much less is

known. Using an effective stochastic model, a recent work [127] aimed to generalize the
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hydrodynamic description of operator dynamics to systems with powerlaw interactions.

Furthermore, several numerical studies investigated operator spreading in these systems

[42, 134, 135]. Overall, these works observed that the squared commutator (2.31) is

generally bounded by a nonlinear lightcone for sufficiently small decay exponents α, in

agreement with the generalized Lieb-Robinson bounds (2.19). Thus, the superballistic

spreading of quantum information seems to be a generic feature of nonintegrable quantum

many-body systems that does not require a particularly fine-tuned setup. The quantitative

shape of the lightcone as a function of the decay exponent α, however, is yet not fully

resolved and is of particular interest for certain communities, as we discuss later in more

detail.

In summary, although information propagates superballistically through space, the

loss of initially local information due to the growth of entanglement slows down, as

discussed in Sec. 2.3.1. This emphasizes that the process of information scrambling

becomes considerably more diverse in systems with powerlaw interactions. At first sight,

it appears to be that operator spreading and entanglement growth have opposite behavior

in these systems. One of the main objectives of this thesis is to resolve this apparent

discrepancy.



Chapter 3.

Dynamics of Quantum Information

in the Mixed-Field Ising Model

“Imagination is more important than knowledge. For knowledge is

limited, whereas imagination embraces the entire world, stimulating

progress, giving birth to evolution.”

— Albert Einstein

In this chapter, we want to deepen the previously introduced concepts and techniques

by applying them to a specific quantum many-body system. In particular, we want

to establish a solid understanding of quantum information dynamics in systems with

local interactions, described by Hamiltonians such as Eq. (2.17). We reproduce known

results from the literature for diagnostic probes of quantum information dynamics, such

as the entanglement entropy, and the squared commutator. Moreover, we provide further

insights into the relationship between these quantities. These results will serve as a

baseline for the following chapters, where we explore how the presence of nonlocal

interactions may alter the dynamics of quantum information.

The paradigmatic model we consider in this thesis is the mixed-field Ising (MFI)

model in one spatial dimension, which has been the focus of many recent works on

quantum information dynamics [38,73,74,98,136]. Its particular Hamiltonian reads

H = −
∑

〈i,j〉∈Q

JZiZj −
∑

i∈Q

hxXi −
∑

i∈Q

hzZi , (3.1)

39
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where the first sum indicates a summation over nearest-neighbors, N is the number of

qubits (spins), and Xi,Zi are Pauli X,Z operators acting on the lattice site i. Throughout

this thesis, we choose open boundary conditions in agreement with experimental conditions

of quantum simulation platforms, which are capable of simulating one-dimensional systems

of interacting qubits. The interaction strength among nearest neighbors is given by J ,

which we choose as our unit of energy. If both hx, and hz are finite, the Hamiltonian

from Eq. (3.1) is generally nonintegrable. If either hx, or hz is zero, the Hamiltonian

becomes integrable. In particular, one obtains the longitudinal-, or transverse-field Ising

model, which are both exactly solvable by a Jordan-Wigner transformation [137]. We

fix hx/J = −1.05, and hz/J = 0.5 throughout this thesis, if not explicitly mentioned

otherwise. For these parameters, the Hamiltonian is considered to be far away from any

integrable point [138].

An analytical treatment of nonintegrable quantum many-body systems far from

equilibrium is highly nontrivial and, in many instances, just impossible. Therefore, we

rely heavily on numerical simulations in this thesis. Even a numerical treatment of

such a system, for example, the MFI Hamiltonian from Eq. (3.1), requires immense

computational resources due to the exponential growth of the Hilbert space with the

system size and is typically limited to the order of ten lattice sites. We deploy sev-

eral complementary numerical techniques with the following abbreviations that we use

throughout. Exact diagonalization (ED), a numerically exact method to obtain the

action of the time-evolution operator on an initial state (EXPM) [139], and a matrix

product state technique based on the time-dependent variational principle (TDVP) [96].

In Appendix A, we present further details on our numerical approaches.

3.1. The Generalized Hayden-Preskill Protocol II

At first, we want to revisit the generalized Hayden-Preskill protocol from Sec. 2.3.2 and

demonstrate the ballistic spreading of quantum information, given the MFI Hamiltonian

from Eq. (3.1). Furthermore, we show that for this particular Hamiltonian, random

unitary dynamics is well suited to describe the late-time dynamics of the systems, if

the latter is initialized in a highly excited state with zero energy expectation value.

Consequently, at late times, it is practically impossible to recover the initial entanglement

with the reference in any region that includes slightly less than half of the system’s

degrees of freedom.
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As an initial state of the system, we choose a fully polarized state along the y-direction.

More precisely, |ψ0〉 = |Y+〉, where |Y+〉 =
⊗

i∈Q |y+〉, and |y+〉 is the eigenstate of the

Pauli Y operator with positive eigenvalue, Y |y+〉 = |y+〉. The state |ψ0〉 has zero energy

expectation value regarding the MFI Hamiltonian (3.1), i.e., 〈ψ0|H|ψ0〉 = 0. Thus, we

expect that, under unitary evolution, the entanglement entropy of any region saturates

at the Page value (2.22) at late times. The latter implies that the entanglement with the

reference is maximally scrambled over the system’s degrees of freedom, as we shall see in

the following. Since the reference forms a Bell-pair with the first qubit of the system, see

Eq. (2.26), the state |ψ1〉 follows by applying a spin-flip to the first site of the system

with respect to the y-basis, i.e., |ψ1〉 = −Z1|ψ0〉.

We simulate the generalized Hayden-Preskill protocol numerically using EXPM for

a system of N = 24 lattice sites. In Fig. 3.1(a), we display the temporal evolution of

the mutual information IR:A (t) between the reference R and the first ℓ qubits of the

system, i.e., A = {1, . . . , ℓ}. The parallel lines with equidistant separation for different

ℓ confirm the ballistic spreading of quantum information. Thus, the size of the region

that is sufficient to recover the initial entanglement with the reference grows linearly in

time, which results in a scrambling time ts proportional to the size of A, as described by

Eq. (2.28). Apparently, not all curves in Fig. 3.1(a) approach zero at late times, which

we want to elaborate on further in the following. If we assume that random unitary

dynamics offers a suitable approximation of the late-time dynamics, we may replace the

time-evolution operator in Eq. (2.27) with a random unitary operator drawn from the

Haar measure. In this case, the mutual information between the reference R and the

region A at late times is (on average) given by

IR:A (t → ∞) = 1 + ℓeff − ℓeff +
1

2N+2 ln 2

(

22ℓeff − 22ℓeff

)

, (3.2)

where ℓeff = min {ℓ,N + 1 − ℓ}, and ℓeff = min {ℓ+ 1, N − ℓ}. Due to simplicity, let us

in the following assume that N is even. If A contains half of the system’s degrees of

freedom, i.e., ℓ = N/2, it follows that ℓeff = ℓeff , and the mutual information attains half

of its maximal value, IR:A = 1. If A contains less than half of the system’s degrees of

freedom, ℓ < N/2, we have ℓeff − ℓeff = −1, and the mutual information is, therefore,

determined by the last term in Eq. (3.2). The latter decays exponentially with decreasing

ℓ. Hence, if A contains just slightly less than half of the system’s degrees of freedom,

the mutual information is close to zero, IR:A ≈ 0. On the other hand, if ℓ > N/2, we

have ℓeff − ℓeff = 1, and the last term, which is now negative, decays exponentially with
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increasing ℓ. Thus, if A contains slightly more than half of the system’s degrees of

freedom, the mutual information is close to its maximal value, IR:A ≈ 2.

In summary, under random unitary dynamics, access to half of the system plus

a few additional lattice sites is sufficient to reconstruct the initial entanglement with

the reference. On the other hand, any region that contains slightly less than half of

the system’s degrees of freedom has almost zero correlation with the reference and is

thereby insufficient to reconstruct the initial entanglement with the reference. The sharp

transition around ℓ∼N/2 is due to the purity of the system’s initial state. One may also

carry out the present protocol with an initial state of the system that is mixed. In this

case, the number of degrees of freedom necessary to recover the initial entanglement with

the reference becomes larger. For a maximally mixed initial state of the system, it follows

that any region containing slightly less than the total number of degrees of freedom of

the system is insufficient to recover the initial entanglement with the reference [29,76].

Thus, random unitary dynamics maximally scrambles the entanglement with the

reference over the system’s degrees of freedom. In Fig. 3.1(b), we compare the analytical

result (3.2) with the late-time dynamics of the MFI Hamiltonian (3.1). In particular,

we display the late-time value of the mutual information as a function of ℓ/N . The

numerical data nicely agrees with the analytical result for random unitary dynamics,

underlining that the latter offers an effective description of the late-time dynamics if the

system is initialized in a highly excited state.

The generalized Hayden-Preskill protocol offers a simple framework to understand

how initially local quantum information spreads over the system’s degrees of freedom

and thereby becomes inaccessible to local probes. Regarding the MFI Hamiltonian (3.1),

we utilized this protocol to demonstrate the ballistic spreading of quantum information

under unitary evolution, as it is expected for a Hamiltonian that incorporates only local

interactions. However, in the more realistic quantum quench protocol, introduced in

Eq. (1.1), there is no such thing as a reference, and understanding how initially local

quantum information spreads and scrambles over the system’s degrees of freedom becomes

more complicated. In the following section, we build up on the current results for the

MFI Hamiltonian and investigate diagnostic probes of quantum information dynamics,

such as entanglement growth and operator spreading.
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Figure 3.1.: Quantum information scrambling in the generalized Hayden-Preskill protocol.
(a) Temporal evolution of the mutual information IR:A (t) between the reference
R and the first ℓ qubits of the system, A = {1, 2, . . . , ℓ}, for various ℓ. Data is
extracted from a numerical simulation (EXPM) of the MFI Hamiltonian (3.1) for
N = 24 lattice sites. The initial state (2.26) is constructed from |ψ0〉 = |Y+〉, and
|ψ1〉 = −Z1|ψ0〉. (b) Late-time value of IR:A (t) as a function of ℓ/N . Markers
represent numerical data, the solid gray line is the analytical result from Eq. (3.2),
which assumes random unitary dynamics.

3.2. Measures of Quantum Information Dynamics

Let us first discuss entanglement growth regarding the MFI Hamiltonian described by

Eq. (3.1). Accordingly, we consider the quantum quench protocol introduced in Eq. (1.1)

for various highly excited initial states |Ψ0〉, whose energy expectation value lies in the

middle of the energy spectrum. In addition to the state |Y+〉, which we considered

already in the previous section as the initial state of the system, we consider a Néel

state in y-direction. The latter is characterized by an alternating local magnetization

of the lattice sites, that is, |YNéel〉 = |y+, y−, y+, . . .〉. Similar to |Y+〉, also |YNéel〉 as

zero energy expectation value. Thus, although these two initial states are orthogonal

and remain so under unitary evolution, they will become locally indistinguishable due

to thermalization, as discussed in the introductory part of this thesis. Furthermore, we

consider initial states where every qubit has the same orientation on the Bloch sphere,

i.e.,

|Ψθ,φ〉 =
⊗

i∈Q

(

cos

(

θ

2

)

|1〉 + eiφ sin

(

θ

2

)

|0〉
)

. (3.3)



44 Dynamics of Quantum Information in the Mixed-Field Ising Model

Note that for θ = φ = π
2
, we recover the fully polaraized state along the y-direction, i.e.,

|Ψπ

2
, π

2
〉 = |Y+〉. By slightly rotating away from |Y+〉, we obtain an initial state with

finite energy expectation value that remains in the middle of the spectrum.

In Fig. 3.2 (a), we display the temporal evolution of the half-chain entanglement

entropy (2.6) following from a quantum quench with different initial states. One can

nicely observe that all considered initial states induce a linear growth of entanglement

entropy, in agreement with the universal behavior described by Eq. (2.24). While for

initial states with zero energy expectation value, the entanglement entropy saturates

at the Page value (2.22) (dashed line), states with a finite energy expectation value

exhibit a slightly smaller saturation value, see also the inset in Fig. 3.2 (a). This smaller

saturation value is due to a lower effective temperature associated with the initial state.

Figure 3.2 (b) shows the temporal evolution of the entanglement entropy following from a

quench with initial state |Y+〉 for various regions A, where the latter is given by the first

ℓ qubits of the system, i.e., A = {1, . . . , ℓ}. The growth rate of the entanglement entropy

evidently follows an area law, in agreement with Eq. (2.24). Accordingly, since the system

is 1D, all considered regions exhibit the same growth rate until saturation. Moreover, the

data confirms that the saturation value of the entanglement entropy follows a volume

law, congruent with Eq. (2.23). It is worth noting that the other initial states show the

same features.

Hence, for the considered highly excited initial states, entanglement growth exhibits

the universal behavior described by Eq. (2.24). The latter implies that the entanglement

entropy of a local region saturates at a time proportional to the volume of that region,

which suggests that the process of information scrambling is linear. However, at first sight,

the growth of entanglement entropy does not tell us how quantum information spreads

over spatial degrees of freedom. The same holds for the mutual information (2.11), and

due to the bound (2.12), also for ordinary connected correlation functions. As discussed

in Sec. 2.3, we may probe how quantum information spreads over spatial degrees of

freedom by considering the process of operator spreading, which we do in the following

for the MFI Hamiltonian (3.1).

In Fig. 3.3 (a), we display numerical data for the squared commutator (2.31), where we

vary the respective operators W ,V , and also the initial state we evaluate the expectation

value in. In all cases, we place the operator W at the left edge of the system, i.e., at

the first site, and the operator V in the middle of the system at site r = 12. All curves

show qualitatively similar behavior, which agrees with the general picture of operator

spreading in local systems, as discussed in Sec. 2.3.3. While the rapid growth upon
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Figure 3.2.: Temporal evolution of entanglement entropy (2.6) following from a quench with
a highly excited initial state |Ψ0〉. Data is extracted from a numerical simulation
(EXPM) of the MFI Hamiltonian (3.1) for N = 24 lattice sites. (a) Half-chain
entanglement entropy for various initial states. The states |Y+〉, |YNéel〉, and

|Ψθ,φ〉 are defined in the main text, and we choose {θ, φ} =
{

7π
16 ,

π
2

}

, and

{θ′, φ′} =
{

π
2 ,

7π
16

}

. The dashed black line indicates the Page value from Eq. (2.22).

(b) Entanglement entropy of the first ℓ ≤ N/2 sites following from a quench with
initial state |Y+〉.

arrival of the operator front seems to be universal, one can spot quantitative differences

between the curves once the squared commutator approaches its saturation value. Note

that these differences originate predominantly from the different choices for W, and

V. Differences due to the choice of the initial state are less pronounced, which further

supports that states with an energy expectation value that lies in the middle of the

spectrum are characterized by generic dynamics. Figure 3.3 (b) shows the spatiotemporal

profile of the squared commutator for the initial state |Y+〉, and W ,V = Y . The clearly

visible linear lightcone of Cr (t) confirms that W (t) spreads ballistically under unitary

evolution. Note that other choices of the operators W ,V , and the initial state will lead to

a similar spatiotemporal profile of Cr (t), which follows from the similar behavior shown

in Fig. 3.3 (a). Thus, the characteristic velocity of operator spreading, i.e., the butterfly

velocity vB is (approximately) universal for the shown cases.

With the following chapters in mind, let us also discuss operator dynamics more

generally by analyzing the operator density (2.36) and the operator size (2.38), which are

both quantities of the respective operator and therefore independent of any initial state.

In Fig. 3.4 (a), we display the operator density regarding the Pauli operator W = Y,

which is initially located at the first site of the system. As time evolves, one can nicely
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observe the propagation of the operator front. Hence, W (t) grows in size and complexity

as most of the operator density attributes to Pauli strings of increasingly larger size.

Moreover, we observe a broadening of the operator front, in agreement with recent

works on random unitary circuits [33, 34, 124]. The ballistic operator spreading is further

demonstrated in Fig. 3.4 (b), where we display the operator size (2.38) for the three Pauli

operators respectively. In all cases, the operator size exhibits a similar linear growth and

saturates at a value close to the system size, indicating that the support of the operator

extends over the entire system at late times. For W = Y, the operator size appears to

approach the value expected under random unitary dynamics, i.e., LHaar from Eq. (2.39),

which is indicated by the dashed line. However, for W = X ,Z, the saturation value

is slightly smaller than LHaar, which we attribute to the nonvanishing overlap between

these operators and the Hamiltonian [31].
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Figure 3.3.: Temporal evolution of the squared commutator (2.31). Data is extracted from a
numerical simulation (EXPM) of MFI Hamiltonian (3.1) for N = 22 lattice sites.
(a) Squared commutator Cr (t) for different choices of W, and V, evaluated in
various initial states. The operator W is located at the first site of the system,
and we fix r = 12. For the state |Ψθ,φ〉, we chose the same angles as in Fig. 3.2.
The specific choices of the operators W, and V for each initial state are listed
in the legend. (b) Spatio-temporal profile of the squared commutator Cr (t)
evaluated in the initial state |Y+〉, where we choose W, V = Y. Black markers
correspond to the spacetime contour determined by Cr (t) = 1/2.
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Figure 3.4.: Operator dynamics: (a) Temporal evolution of the operator density (2.36) for
W = Y, initially located at the first site of the system with N = 14 lattice sites.
(b) Temporal evolution of the operator size (2.38) for W = X ,Y,Z respectively.
The black dashed line indicates the operator size under random unitary dynamics,
i.e., LHaar from Eq. (2.39). Data is extracted from a numerical simulation (ED)
of the MFI Hamiltonian (3.1).

3.3. The Operator State

The analysis of entanglement growth and operator spreading yields us a consistent picture

of quantum information dynamics in local quantum many-body systems like the MFI

model (3.1). However, at first glance, it is not evident how these two processes are related.

As one of the objectives of this thesis is to understand the interplay between these two

processes, we establish a connection between them in the following.

To proceed, let us, for the last time, return to the laboratory of Alice and Bob.

They just got a powerful quantum simulator that Bob wants to benchmark. Although

he does not know how the simulator works in detail, it enables him to act with the

unitary U (t) = e−iHt on an arbitrary product state |Ψ0〉 =
⊗

i∈Q |ψi〉 for any time t and

Hamiltonian H he desires. To verify the functionality of the simulator, Bob evolves the

system up to a time t, flips the sign of the Hamiltonian, and evolves the system back

in time. If the simulator works properly, Bob will recover the initial state |Ψ0〉 after

this procedure, which he tries to verify with local measurements at site r, located in his

part of the laboratory. What Bob does not know is that Alice wants to sabotage his

benchmark due to some argument they had earlier. In particular, she applies a local

(hermitian) unitary W between forward and backward time evolution at the leftmost site

on her part of the laboratory. Thus, the final state of the system is given by
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|Φ (t)〉 = eiHtWe−iHt|Ψ0〉 = W (t) |Ψ0〉 . (3.4)

This scenario is reminiscent of the one from Sec. 2.2. In a similar vein, Bob can not notice

Alice’s sabotage as long as the support of W (t) does not overlap with the site r Bob

applies measurements to. Moreover, if we assume that Bob’s local measurement Vr is

chosen such that Vr|Ψ0〉 = |Ψ0〉, it follows that

〈Vr〉 = 〈Φ (t)|Vr|Φ (t)〉 = 〈Ψ0|W (t) VrW (t) Vr|Ψ0〉 = Fr (t) , (3.5)

which is the OTOC from Eq. (2.33), evaluated in the initial state |Ψ0〉. Note that Eq. (3.5)

follows only if Vr|Ψ0〉 = |Ψ0〉 holds 1.

The setup from above allows us to establish a connection between entanglement growth

and operator spreading. In particular, it is constructive to analyze the entanglement

growth that follows from the dynamics of W (t), as described by the state |Φ (t)〉 defined

in Eq. (3.4). For a region A that incorporates the initial position of Alice’s perturbation,

we expect the entanglement entropy of that region to vanish as long as the support of

W (t) is confined A. To make this more explicit, let us recall the operator expansion

from Eq. (2.35), and the definition of the operator density (2.36). Accordingly, we can

decompose W (t) such that

W (t) = Wℓ≤|A| + Wℓ>|A| , (3.6)

where

Wℓ≤|A| =
∑

|S|≤|A|

cSS , and Wℓ>|A| =
∑

|S|>|A|

cSS .

Note that the two parts Wℓ≤|A|, and Wℓ>|A| depend on time, as the coefficients cS are

time-dependent, however, out of convenience, we neglect this dependence in the following.

The decomposition in Eq. (3.6) helps us to identify which part of the operator may create

entanglement between Bob’s side of the laboratory B and its complement A, i.e., Alice’s

side of the laboratory. While Wℓ≤|A| acts only nontrivially on A, and trivially on B,

1Such an observable is, for example, given by Vr = |ψr〉〈ψr| − |ψ′
r〉〈ψ′

r|, where the set {|ψr〉, |ψ′
r〉} spans

a complete orthonormal basis of Hr.
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Wℓ>|A| acts nontrivially on A as well as on B. Moreover, the unitarity of W (t) implies

1 = 2−N Tr {W (t) W (t)}

= 2−N Tr
{

Wℓ≤|A|Wℓ≤|A|

}

+ 2−N Tr
{

Wℓ>|A|Wℓ>|A|

}

= Pℓ≤|A| + Pℓ>|A| ,

where Pℓ≤|A| is the operator density on A, i.e., the weight on all Pauli strings that act

only nontrivially on A, which are all strings of size ℓ ≤ |A|, as defined in Eq. (2.37).

Consequently, Pℓ>|A| =
∑

ℓ>|A| pℓ it the total weight of W (t) on Pauli strings that act

nontrivially on the region B, i.e., all strings of size ℓ > |A|.

If the support of W (t) does not extend beyond A at a given time t, we have Pℓ≤|A| = 1,

and W (t) = Wℓ≤|A|. The reduced state of A is then given by

ρA = TrB

{

Wℓ≤|A|Ψ0Wℓ≤|A|

}

= Wℓ≤|A|Ψ0,AWℓ≤|A| ⊗ TrB {Ψ0,B}

= Wℓ≤|A|Ψ0,AWℓ≤|A| ,

where we introduced Ψ0 = |Ψ0〉〈Ψ0|, and |Ψ0〉 = |Ψ0,A〉 ⊗ |Ψ0,B〉. Since Pℓ≤|A| = 1 by

assumption, the reduced state ρA is a pure state. Thus, as long as the support of W (t)

is confined to the region A, the perturbation W could not create entanglement between

A and B, implying SA (|Φ (t)〉) = 0. Put differently, the entanglement entropy has to

vanish as long as all information of the operator W (t) is confined to the region A, see

Fig. 3.5 (a) for a pictorial illustration. This is somewhat a trivial result, nevertheless, it

underlines that a finite entanglement entropy SA (|Φ (t)〉) diagnoses that the support of

W (t) extends beyond A. Therefore, it allows us to probe the growing support of W (t),

similar to the squared commutator. Furthermore, the entanglement entropy SA (|Φ (t)〉)
provides additional details on the structure of W (t) that will also help us in the following

chapters, where we analyze the influence of nonlocal interactions on the dynamics of

quantum information.

Once the support of W (t) extends beyond the region A, entanglement between A and

B may build up. In analogy to the previous argument, we expect a finite entanglement

entropy as not all information about W (t) is confined to A. In this case, we have
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Pℓ≤|A| < 1, and Pℓ>|A| > 0. In particular, the reduced state of A is now given by

ρA = Pℓ≤|A| Ωℓ≤|A| + Pℓ>|A| Ωℓ>|A|, (3.7)

where Ωℓ≤|A| = |Ωℓ≤|A|〉〈Ωℓ≤|A||, with the (normalized) pure state

|Ωℓ≤|A|〉 =
(

Pℓ≤|A|

)− 1

2 Wℓ≤|A||Ψ0,A〉 .

Since ρA, and Ωℓ≤|A| are both density operators, it follows that Ωℓ>|A| is a density operator

as well. Generally, it is given by

Ωℓ>|A| =
1

Pℓ>|A|

TrB

{

Wℓ>|A|Ψ0Wℓ>|A| + Wℓ>|A|Ψ0Wℓ≤|A| + Wℓ≤|A|Ψ0Wℓ>|A|

}

.

Using Eq. (3.7), and the concavity of the von Neumann entropy, we obtain

Pℓ>|A| S
(

Ωℓ>|A|

)

≤ SA (|Φ (t)〉) ≤ Pℓ>|A| S
(

Ωℓ>|A|

)

+H
(

Pℓ>|A|

)

, (3.8)

where S
(

Ωℓ>|A|

)

is the von Neumann entropy of Ωℓ>|A|, and H(x) = −x log(x) − (1 −
x) log(1 − x) is the binary entropy. If Ωℓ>|A| is a mixed state, it follows from Eq. (3.8)

that a finite operator density outside of A, Pℓ>|A| > 0, implies a finite entanglement

entropy, SA (|Φ (t)〉) > 0. Although it is not a priori clear whether Ωℓ>|A| is pure or

mixed, it will most likely be a mixed state. Hence, the entanglement entropy of A is in

direct correspondance to the operator density of W (t) outside of A, see Fig. 3.5 (b) for

an illustration.

Let us complement these analytical arguments with numerical results. In Fig. 3.5 (c),

we compare the entanglement entropy SA (|Φ (t)〉) of the left half A with the squared

commutator Cr (t), where r is chosen as either the leftmost or the rightmost site of the

right half B, see Fig. 3.5 (b) for an illustration of this setup. The system is initialized in

the previously considered state |Y+〉, and we choose W ,V = Y. We observe that the

growth of entanglement entropy agrees with the spatiotemporal profile of the squared

commutator. That is, the entropy of the left block A begins to grow, once the squared

commutator diagnoses that the support of W (t) overlaps with the right block B. Shortly

after the support has reached the rightmost site of B, entanglement entropy saturates in

line with the squared commutator. This result shows that most of the operator density

is close to the operator front, which should not be confused with localized information

propagation. Noteworthy, the growth of entanglement entropy that follows from the
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Figure 3.5.: Entanglement growth following the spread of a local operator as described by
the operator state (3.4). (a) As long as the support of W (t) is confined to the
region A, its entropy will vanish since the operator density outside of A vanishes.
(b) As soon as the support of W (t) exceeds A, we expect a finite entanglement
entropy as the operator density outside of A becomes sizeable. (c) Entanglement
entropy SA (|Φ (t)〉) (normalized by the Page value SP), where A is the left half
of the system, compared to the squared commutator (2.31), where W is initially
located at the leftmost site of the system, and Vr at the leftmost (dotted) or
rightmost (dashdot) site of the right half B. System size is N = 26. (d) Total
operator density (2.37) on the first five sites of the system Pℓ≤5, compared to
the entanglement entropy of that region. System size is N = 24. Initial state is
chosen as |Y+〉, and W,V = Y. Data is extracted from a numerical simulation
(EXPM) of the MFI Hamiltonian (3.1).

dynamics of W (t) seems to be linear, similar to the growth in the ordinary quantum

quench protocol (1.1).

In Fig. 3.5 (d), we display the entanglement entropy SA (|Φ (t)〉), where A is now

chosen as the first five sites of the system. For this region, moreover, we calculate the

total operator density (2.37). We determine the latter by computing the overlap of W (t)

with every possible Pauli string that acts nontrivially on A and trivially on B. To

compute the overlap, we approximate the trace by an expectation value in a random
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pure state drawn from the Haar measure [134, 140], see also Appendix A for further

details. The operator density outside of A then follows simply by Pℓ≤|A| = 1 − Pℓ>|A|,

which we display in Fig. 3.5 (d). One can nicely observe the validity of Eq. (3.8), that is,

the entanglement entropy begins to grow once W (t) has spread such that its operator

density outside of A begins to grow. Or put differently, entanglement begins to grow

once information about W (t) begins to leak out of the region A.

As discussed earlier in Sec. 2.3.1, considering a quantum quench protocol, we can

understand the growth of entanglement for some region A as the leakage of information

out of A, resulting in the inaccessibility of that information to measurements on A.

With respect to the operator state (3.4), the growth of entanglement can be understood

in a similar way. Accordingly, it follows from the decay of the operator density in

A, which diagnoses that not all information about the operator W (t) is accessible by

measurements on A. The observed similarities in entanglement dynamics for the operator

state (3.4) and the ordinary quench protocol (1.1), then motivate the idea that there

is a deeper connection between entanglement growth and operator spreading. In the

following chapter, we investigate the influence of powerlaw interactions on the dynamics

of quantum information, where we find further evidence for such a connection.



Chapter 4.

Dynamics of Quantum Information

and Powerlaw Interactions

“Be less curious about people and more curious about ideas.”

— Marie Curie

The previous chapter illustrates that analyzing entanglement growth and operator

spreading provides a complementary and intuitive picture of quantum information

dynamics in local quantum lattice models. The presence of nonlocal interactions, however,

may drastically change the nonequilibrium physics of a many-body system, as discussed

in Chap. 2.

In this chapter, we discuss how powerlaw interactions influence the dynamics of

quantum information. To do so, we consider the local MFI Hamiltonian from Eq. (3.1)

and incorporate interactions beyond nearest neighbors. In particular, we study the

long-range mixed-field Ising (LRMFI) Hamiltonian

Hα = −
∑

i<j∈Q

Jα
ijZiZj −

∑

i∈Q

hxXi −
∑

i∈Q

hzZi , (4.1)

with an interaction strength between the qubits that decays like a powerlaw, Jα
ij =

J/ |i− j|α, and J is again the interaction strength between nearest neighbors. Note

that one recovers the local Hamiltonian from Eq. (3.1) in the limit α → ∞. In Sec. 4.1,

we discuss the counterintuitive phenomenon that sufficiently small decay exponents α

drastically slow down the approach toward local equilibrium. The latter suggests a

slowdown of quantum information scrambling, which we further investigate in Sec. 4.2,

53
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by studying the temporal evolution of the TMI (2.13). Building upon these results, in

Sec. 4.3, we discuss explicit regimes of quantum information dynamics regarding the

LRMFI Hamiltonian (4.1). These regimes are characterized by a fundamentally different

behavior of entanglement growth and operator spreading. Crucially, our analysis suggests

that the famous slowdown of entanglement growth for sufficiently strong powerlaw

interactions also implies a slowdown of operator dynamics, which we support with

numerical data in Sec. 4.4. Finally, in Sec. 4.5, we present analytical arguments for a

connection between the growth of entanglement following a quantum quench and the

dynamics of Pauli strings under unitary evolution. Using this result, we develop a

qualitative picture of the dynamics of quantum information in systems with powerlaw

interactions.

4.1. Strong Thermalization

To properly analyze the dynamics of quantum information in the presence of powerlaw

interactions, our first objective is to explore whether they have any effect on the late-time

dynamics of the system. In particular, we want to examine whether also the LRMFI

Hamiltonian from Eq. (4.1) exhibits strong thermalization regarding a quantum quench

with initial state |Ψ0〉 = |Y+〉 [138]. Strong thermalization implies that expectation

values of local observables approach the respective thermal expectation values under

unitary evolution, without considering the time average. Let us, for example, consider

the total magnetization in x-direction

Mx =
∑

i∈Q

Xi , (4.2)

which is a sum of local observables and, therefore, we expect it to thermalize. For an

initial state with zero energy expectation value, such as |Y+〉, we expect local observables

to approach the thermal expectation value associated with the infinite temperature

ensemble. Therefore, we expect the expectation value of the total magnetization to

vanish at late times1

〈Mx (t)〉 = 〈Ψ (t)|Mx|Ψ (t)〉 ≃ 2−N Tr {Mx} = 0 .

1Pauli strings are generally traceless, excluding the identity. Hence, the expectation value of any Pauli
string in the infinite temperature ensemble vanishes.
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In Fig. 4.1 (a), we display the temporal evolution of Eq. (4.2) following a quench from |Y+〉
for various values of the decay exponent α. For all of these values, the expectation value

approaches the infinite temperature result at late times. Noteworthy, with decreasing

exponent α, and thereby a slower decay of the interaction strength with distance,

the approach toward local equilibrium continues to slow down. For α ≤ 1, the total

magnetization seems to approach its thermal expectation value exponentially slowly, note

the logarithmic time scale in Fig. 4.1. This counterintuitive slowdown of thermalization

in the presence of powerlaw interactions roots in a slowdown of entanglement growth,

which we will cover in more detail in Sec. 4.3. We note that choosing different directions

of the magnetization leads to similar conclusions.

For a more general treatment, we probe the approach toward local equilibrium by

analyzing the dynamics of local density matrices. We can quantify how close a local

density matrix is to the infinite temperature ensemble by calculating, for example, the

Frobenius norm of their difference, i.e.,

D (t) =
∣

∣

∣

∣

∣

∣ρA (t) − 2−|A|
1A

∣

∣

∣

∣

∣

∣

F
. (4.3)

Figure 4.1 (b) shows the distance measure from Eq. (4.3), where A is chosen as a set

of two neighboring qubits located in the middle of the system. In agreement with

the results for the total magnetization, one observes an increasingly slower approach

to the thermal density matrix with decreasing decay exponent α. We observe similar

behavior for different local regions A. Moreover, the observed slowdown is robust against

a change in the system size N , see the inset of Fig. 4.1 (b), suggesting that it is a general

phenomenon in the respective system. Thus, also the LRMFI Hamiltonian (4.1) exhibits

strong thermalization in the considered quench scenario. Accordingly, local density

matrices approach the infinite temperature ensemble at late times, which implies strong

thermalization of local observables. However, with decreasing decay exponent α, the

relaxation time continues to increase and the system takes longer to thermalize. This

slower approach towards local equilibrium becomes very severe for α ≤ 1. It is common

for systems with powerlaw interactions to normalize the interaction strength such that

the Hamiltonian is extensive for all values of α. The observed behavior is qualitatively

similar if one applies such a normalization, which we discuss further in Appendix A.5.
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Figure 4.1.: Strong thermalization in the LRMFI model (4.1) following a quantum quench with
initial state |Ψ0〉 = |Y+〉 for various values of α = {∞, 3, 2, 1, 0.4}. Darker colors
indicate larger values of α. Data is extracted from a simulation of N = 22 lattice
sites (EXPM). (a) Total magnetization in x-direction as defined in Eq. (4.2). (b)
Distance between two-qubit reduced density matrix and the maximally mixed
state as defined in Eq. (4.3). The inset displays the distance for α = 0.25 and
different system sizes N .

4.2. The Monogamy of Mutual Information

The continuously slower approach towards local equilibrium with decreasing decay

exponent α underlines that powerlaw interactions have a significant and somehow coun-

terintuitive effect on the nonequilibrium physics of a quantum many-body system. Here,

we complement this observation by investigating the dynamics of the TMI from Eq. (2.13)

in the respective quench protocol. As discussed in Sec. 2.1.3, the sign of the TMI pro-

vides information about the correlation structure among three regions A, B, and C.

Accordingly, if IA:B:C ≤ 0, quantum information is scrambled among the three regions

and mutual information is monogamous, suggesting that entanglement is the dominant

correlation among them. In quantum field theories with holographic duals, mutual

information is indeed monogamous, as proven in Ref. [67]. To the best of our knowledge,

a similar proof does not exist for general quantum lattice models. However, a recent

numerical work [71] considered the temporal evolution of the TMI in the generalized

Hayden-Preskill protocol from Sec. 2.3.2 for several integrable, and nonintegrable models

of interacting qubits. For local Hamiltonians, mutual information was found to be

predominantly monogamous, as only a few initial states where associated with a positive

TMI. The latter is merely a consequence of symmetry, as the considered Hamiltonians in

Ref. [71] conserve the total magnetization in a particular direction. In the following, we
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show that for initial states belonging to smallest nontrivial subspace of the magnetization

operator, the TMI (2.13) is strictly nonnegative, i.e., IA:B:C ≥ 0 holds for all disjoint

regions A,B, and C.

To proceed, let us consider a Hamiltonian H that conserves the total magnetization,

for example, in z-direction2. Accordingly, we have [H,Mz] = 0, where

Mz =
∑

i

Zi

is the total magnetization operator. Due to the conservation of Mz, one may decompose

the Hamiltonian into a direct sum, with each element acting on an invariant subspace

associated with a particular eigenvalue of Mz. An initial state |Ψ0〉, confined to one of

these subspaces, will therefore remain confined to this subspace under unitary evolution.

The smallest nontrivial subspace of Mz is the one-excitation subspace3, which has Hilbert

space dimension N . This subspace is spanned by all states with only one qubit in a

different state of the computational basis than all the other qubits. The unitary evolution

of an initial state from the one-excitation subspace can thus be written as

|Ψ (t)〉 =
∑

i

ci|i〉 ,

where |i〉 is the state with the qubit at site i in the state |1〉 and all other qubits in the

state |0〉. Note the coefficients ci depend on time, however, out of convenience, we drop

this dependence here. To evaluate the TMI, let us consider the reduced state of a region

A, which is given by

ρA =
∑

i,j∈A

cic
∗
j |iA〉〈jA| +

∑

i/∈A

|ci|2 |0A〉〈0A| , (4.4)

where |iA〉 is the reduced state of A regarding the state |i〉, i.e., |iA〉〈iA| := TrB {|i〉〈i|},

and |0A〉 :=
⊗

i∈A |0〉 is the state with all sites that belong to A in the zero state. If we

define pA :=
∑

i∈A |ci|2 and

|1A〉 := (pA)−1/2
∑

i∈A

ci |iA〉 ,

2One may, of course, choose a different direction of the magnetization here.
3This name is motivated by the Jordan-Wigner transformation [137], which maps a system of qubits to

a system of spinless fermions.
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we can diagonalize Eq. (4.4) according to

ρA = pA |1A〉 〈1A| + (1 − pA) |0A〉 〈0A| . (4.5)

Thus, the reduced state of A has at most two nonzero eigenvalues, which correspond to

the probability of finding the excitation in the region A, or in its complement B. From

Eq. (4.5), it follows that the entanglement entropy of A is given by the binary entropy

SA = H (pA) = −pA log (pA) − (1 − pA) log (1 − pA) ≤ 1 . (4.6)

Equation (4.6) implies that if A contains more then one lattice site, the entanglement

entropy is much tighter bounded than in general, see also the bound in Eq. (2.7). The

amount of entanglement that can emerge under unitary evolution is, therefore, strongly

restricted due to the small Hilbert space the dynamics is confined to. Moreover, given

two disjoint regions A and B, it follows straightforwardly that the entanglement entropy

of their union SAB is given by H (pAB), where pAB = pA + pB. The TMI (2.13) then

takes the form

IA:B:C = H (pA) +H (pB) +H (pC) +H (pABC) −H (pAB) −H (pAC) −H (pBC) .

(4.7)

According to Eq. (4.7), the TMI is a function of the variables pA, pB and pC . At the

boundaries of the parameter space, i.e., pA ∨ pB ∨ pC = 0, and pA + pB + pC = 1,

Eq. (4.7) vanishes, implying IA:B:C = 0. Furthermore, one finds a (positive) maximum of

Eq. (4.7) at pA = pB = pC = 1/4. Due to the concavity of entropy, we can then conclude

that IA:B:C ≥ 0 holds for all disjoint regions A,B, and C. Thus, in this particular

scenario, mutual information is either exactly extensive, i.e., IA:BC = IA:B + IA:C , or

nonmonogamous. Hence, entanglement can not dominate correlations, because the

symmetry of the Hamiltonian strongly constrains the amount of entanglement that

can emerge, see Eq. (4.6). Noteworthy, monogamy of mutual information requires

more than just nonseparability of the quantum state. For instance, it follows from

the above derivation that generalized W-states [141], which are representatives of one

class of multipartite entanglement, will never exhibit a negative TMI. This result also

clarifies why only a few initial states where associated with a positive value of the

TMI in Ref. [71]. However, for most initial states, mutual information appeared to be

monogamous. Although the symmetry of the Hamiltonian remains, most initial product
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states in the computational basis belong to subspaces with large enough dimension such

that entanglement can become the dominant correlation.

The LRMFI Hamiltonian from Eq. (4.1) does not obey a simple symmetry such as the

conservation of total magnetization. Moreover, regarding the quantum quench considered

in the previous section, we do not expect the subsequent dynamics to be confined to any

particular subspace of the total Hilbert space. In the following, we investigate how the

decay exponent α influences the temporal evolution of the TMI (2.13) in the previously

considered quench protocol. In particular, we want to understand whether the TMI

diagnoses any fundamental change in the dynamics, depending on the value of α. To

proceed, we consider two different partitionings for the regions A,B, and C. First, we

take A,B,C as three neighboring qubits in the middle of the system. Second, we divide

the system into four connected regions of equal size4, and choose A,B, and C as one

of these quarters respectively. While the first choice probes how quantum information

distributes on a local scale, the second captures its distribution on a global scale.

In Fig. 4.2, we display the temporal evolution of the TMI for both of these choices

and various values of the decay exponent α. Noteworthy, for the two largest values,

i.e., α = ∞, and α = 3, the TMI appears to be nonpositive for both choices, implying

monogamy of mutual information. Moreover, these two values of α are associated with

qualitatively similar behavior of the TMI, which we also observe for other values of α > 2.

Regarding the global partitioning shown in Fig. 4.2 (a), this behavior is characterized

by a vanishing value up to a finite time, following an apparent linear decay towards

the late-time saturation value. In the following section, we will discuss in more detail

why these two values of α are associated with similar dynamics. For the smaller decay

exponents α, however, the dynamics of the TMI changes fundamentally. Regarding the

global partitioning, the TMI exhibits a positive peak at early times and turns negative

afterwards, see also the inset in Fig. 4.2 (a). Furthermore, the subsequent decay of the

TMI becomes sublinear, which is most evident for α = 0.25. Considering the local

partitioning displayed in Fig. 4.2 (b), the TMI remains positive for an increasingly longer

time with decreasing exponent α. Thus, while quantum information scrambles rather

quickly among global regions, it remains localized among local regions for sufficiently

large decay exponents α. The observed behavior is robust upon varying the systems size

N , which is exemplified in Fig. 4.3 (a) for α = 0.25. Altogether, these results emphasize

that the increasingly slower approach towards local equilibrium discussed in the previous

section is accompanied by a fundamental change in the correlation structure. In particular,

4Here, we assume that N is even and divisible by four.
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Figure 4.2.: Temporal evolution of the TMI (2.13) following a quantum quench with initial
state |Ψ0〉 = |Y+〉 for various values of α = {∞, 3, 1, 0.4, 0.25}. Darker colors
indicate larger values of α, see also the legend. Data is extracted from a simulation
of N = 24 lattice sites (EXPM). (a) Global partitioning. The regions A,B, and
C are chosen as a connected quarter of the system respectively. (b) Local
partitioning. The regions A,B, and C are chosen as neighboring qubits in the
middle of the system.

for sufficiently small decay exponents α, the TMI diagnoses that entanglement is not the

dominant correlation on a local scale.

To further investigate the sign of the TMI in dependence of the decay exponent

α, we display its maximum value during the quench protocol for both partitionings in

Fig. 4.3 (b). The data clearly diagnoses a transition at α = 2. Accordingly, for both

partitionings, IA:B:C ≤ 0 holds for α > 2, while we observe positive values only for α ≤ 2.

We shall note that a similar behavior is observed for other partitionings. Moreover,

in Ref. [72], we found the same transition at α = 2 for another spin-1/2 Hamiltonian

with powerlaw interactions. Our results therefore suggest that mutual information is

monogamous in one-dimensional spin-1/2 models with powerlaw interactions for α > 2,

assuming the dynamics is not confined to a too-small subspace, as discussed above for

the one-excitation subspace. Considering this discussion, one may infer that the positive

value of the TMI for sufficiently small α diagnoses that the dynamics of the system’s

state is restricted to an effectively smaller Hilbert space at early to intermediate times,

which provides an alternative perspective on the apparent slow thermalization observed

in Sec. 4.1. The TMI from Eq. (2.13) is ultimately determined by the dynamics of

entanglement entropy. Hence, the observed transition at α = 2 diagnoses a fundamental

change in entanglement growth, which we explore in more detail in the following section.
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Figure 4.3.: (a) Temporal evolution of the TMI (2.13) for the local partitioning, α = 0.25, and
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4.3. Regimes of Quantum Information Dynamics

Building up on the previous two sections, this section aims to establish a more so-

phisticated understanding of quantum information dynamics in systems with powerlaw

interactions. We are particularly concerned with how the decay exponent α influences

diagnostics of quantum information dynamics, i.e., entanglement growth and operator

spreading, discussed in Sec. 2.3.1 and Sec. 2.3.3. Quantum many-body systems that

embody powerlaw interactions will typically undergo several dynamical regimes as the

decay exponent α is varied. Transitions between these regimes are characterized by a

fundamental change in behavior of the said diagnostics. In the following, we explore

these regimes of quantum information dynamics regarding the LRMFI model (4.1).

4.3.1. The Local Regime

For sufficiently large decay exponents α, powerlaw interactions might not alter the

dynamics of quantum information fundamentally, as already discussed in Chap. 2. In

particular, in a D-dimensional quantum lattice model of spin-1/2 degrees of freedom, the

universal growth of entanglement entropy (2.24) is expected to persist for α > D+1 [107],

while operator spreading remains bounded by a linear lightcone for α > 2D + 1 [44].

Thus, at least for α > 2D + 1, the dynamics is entirely local. This bound may not
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be tight for an individual quantum many-body system though. Here, we consider the

LRMFI Hamiltonian from Eq. (4.1) and investigate its local regime, i.e., the regime of

α associated with effective local behavior of both entanglement growth and operator

spreading. Since we rely heavily on numerical results, we can not rigorously prove where

the transition to the local regime occurs. However, our results suggest that the local

regime persists at least for α > 2, which is also the general bound for linear entanglement

growth in one spatial dimension. Accordingly, also operator spreading follows effectively

local behavior in this regime. Moreover, we find that entanglement growth and operator

spreading exhibit an interesting connection in the local regime, a first sign of a deeper

relationship between these two complementary perspectives on quantum information

dynamics. Determining the local regime for a specific Hamiltonian is also of experimental

interest since it may allow simulation of the local dynamics on experimental platforms

that naturally embody powerlaw interactions, such as trapped ions, which are typically

limited to a decay exponent 0 ≤ α ≤ 3.

In the following, we present numerical results for the entanglement velocity vα
E and the

butterfly velocity vα
B in dependence of the decay exponent α. We extract the entanglement

velocity from a linear fit to the entanglement entropy (2.6) before saturation, and we

choose the region A as the left (right) half of the system. Note that different time

intervals for the linear fit do not lead to quantitatively different results. The butterfly

velocity follows from a linear fit to the spacetime contour tθ (r), which is determined by

a constant value of the squared commutator (2.31), i.e., Cr (tθ (r)) = θ , ∀ r. Here, we

choose θ = 1/2, which is half of the expected late-time value of the squared commutator.

Thus, the spacetime contour tθ (r) determines the time at which a significant part of the

operator density (2.36) attributes to Pauli strings of size r or larger.

In Fig. 4.4, we present the results of this calculation. Regarding entanglement growth,

we consider the quantum quench protocol from the previous sections with initial state

|Ψ0〉 = |Y+〉. Moreover, we evaluate the squared commutator in the initial state |Ψ0〉,
and choose W ,V = Y . We note that the butterfly velocity barely depends on the choice

of W , and V . Figure 4.4 (a) displays the respective velocities vα
E, and vα

B for various values

of the decay exponent α within the local regime. We shall note that the calculated

velocities are well converged with the system size N . With decreasing decay exponent α,

the entanglement velocity vα
E, as well as the butterfly velocity vα

B decrease monotonically.

This is an interesting result for at least two reasons. First, although the dynamics is

effectively local, powerlaw interactions influence the dynamics of quantum information,

even in the local regime. Accordingly, they induce an overall slowdown of quantum
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information scrambling, as the respective velocities of entanglement growth and operator

spreading decrease with smaller decay exponent α. This result explains the apparent

slowdown of thermalization, at least for decay exponents within the local regime. Second,

the similar dependence of vα
E, and vα

B on the exponent α is a first signature of a deeper

connection between entanglement growth and operator spreading. Later on, in Sec. 4.5,

we present general analytical arguments for an inherent connection between the growth

of entanglement following a quantum quench and the dynamics of Pauli strings under

unitary evolution. A recent work on quantum information dynamics in local systems [98]

argued that entanglement growth is the bottleneck process of information dynamics,

which manifests in vE ≤ vB. Our results suggest that this may also hold in the local

regime, as we find vα
E < vα

B for all considered decay exponents α. The influence of

powerlaw interactions on operator dynamics is further displayed in Fig. 4.4 (b), which

displays the operator size from Eq. (2.38) for W = Y, and α = ∞, 2.1 respectively. In

agreement with the previous result, the operator size for α = 2.1 exhibits a slowdown,

compared to the local system, i.e., α = ∞. For both cases, however, a linear growth

of the operator size is evident, confirming ballistic operator spreading under unitary

evolution.

The effective local dynamics for α > 2 is further demonstrated in Fig. 4.5. Figure 4.5 (a)

displays the squared commutator (2.31) for a fixed position r and various values of α

within the local regime. With decreasing exponent α, the rapid growth of the squared

commutator becomes increasingly suppressed, resulting in a smaller butterfly velocity.

Thus, the operator front broadens with decreasing exponent α, which becomes more

evident upon rescaling time with the respective butterfly velocity vα
B, see the inset of

Fig. 4.5 (a). Figure 4.5 (b) shows the temporal evolution of the entanglement entropy

for various values of α within the local regime. The linear growth of entanglement

entropy is clearly visible for all shown values of α. Rescaling time with the respective

entanglement velocity leads to a collapse of all curves, see the inset of Fig. 4.5 (b). Hence,

the entanglement entropy exhibits a similar growth as for the local Hamiltonian from

Eq. (3.1) with a renormalized entanglement velocity vα
E, where vα

E ≤ vE.

In summary, the analysis of entanglement growth and operator spreading provides

a coherent picture. That is, in the local regime, the presence of powerlaw interactions

slows down the dynamics of quantum information. In particular, with decreasing decay

exponent α, the growth of entanglement entropy continues to slow down, manifesting in

a decreasing entanglement velocity. Moreover, we observe an increased broadening of



64 Dynamics of Quantum Information and Powerlaw Interactions

2 3 4 5 6
α

0.8

0.9

1.0

v
α E
/v

E
,
v
α B
/v

B

(a)

vα
E

vα
B

0 5 10
t [1/J ]

5

10

L
[W

(t
)]

(b)

α = ∞

α = 2.1

Figure 4.4.: Dynamics of quantum information in the local regime. (a) Entanglement velocity
vα

E and butterfly velocity vα
B in dependence of the decay exponent α, where

|Ψ0〉 = |Y+〉, and W,V = Y. Gray dashed line indicates the value for the local
Hamiltonian H∞. Data is extracted from a simulation of N = 24 lattice sites
(EXPM). (b) Operator size for α = ∞, and α = 2.1 respectively, where W = Y.
Gray dashed line indicates the operator size following from random unitary
evolution, i.e., Eq. (2.39). Data is extracted from a numerical simulation of the
LRMFI model (4.1) for N = 14 lattice sites (ED).

the operator front, which enforces a less rapid growth of the squared commutator, and a

slowdown of the operator size.

4.3.2. The Nonlocal Regime

As discussed in the previous section, determining the exact range of α associated with

effectively local dynamics, i.e., the local regime, is not possible in a rigorous sense, given

only access to numerical data. It is also not clear whether entanglement growth and

operator spreading abandon their local behavior at the same value of α. Beyond the local

regime, we generally expect sublinear entanglement growth and superballistic operator

spreading, as observed in several recent works on that matter [42, 50, 51, 69, 135]. For the

model and the quench protocol we consider here, our data suggest that entanglement

growth and operator spreading cease to follow effectively local dynamics for α ≤ 2.

However, the influence on entanglement growth is quite subtle for 1 ≤ α ≤ 2. Thus,

we primarily focus on the regime α < 1 in the following, where the impact of powerlaw

interactions on the dynamics of quantum information is most severe.
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Figure 4.5.: Entanglement growth and operator spreading for various values of the exponent
α = {∞, 3.0, 2.5, 2.1} within the local regime. Darker colors indicate larger values
of α. (a) Squared commutator Cr (t) (2.31) for r = 20, and W,V = Y , evaluated
in the initial state |Ψ0〉 = |Y+〉. The inset shows the collapse at t∼ 0 if time is
rescaled with the respective butterfly velocity vα

B. (b) Growth of the half-chain
entanglement entropy SA (|Ψ (t)〉) (2.6) following a quench from |Ψ0〉 = |Y+〉.
The inset displays the collapse of all curves if time is rescaled with the respective
entanglement velocity vα

E. Data is extracted from a numerical simulation of the
LRMFI model (4.1) for N = 24 lattice sites (EXPM).

In this regime, logarithmically slow growth of entanglement entropy was observed

in numerical studies [50,51], and recent works attribute its origin to the dominance of

collective spin squeezing [52,108]. In Fig. 4.6 (a), we display the entanglement entropy (2.6)

following a quench from the initial state |Ψ0〉 = |Y+〉 for various small values of the

decay exponent α regarding the LRMFI Hamiltonian from Eq. (4.1). After initially rapid

growth, the entanglement entropy undergoes a drastic slowdown, which becomes more

severe as the decay exponent α is decreased. Note also the comparison to the local

Hamiltonian from Eq. (3.1). The logarithmic growth is further confirmed in the inset of

Fig. 4.6 (a), which displays the entanglement entropy for a fixed value of α = 0.3, and

different system sizes N . Despite the rapid initial growth, we expect the logarithmic

slowdown to dominate at large system sizes, implying that it takes significantly longer

until a given region A becomes maximally entangled with its environment. Thus, also for

the LRMFI Hamiltonian (4.1), sufficiently strong powerlaw interactions fundamentally

change the growth of entanglement. A system with strong powerlaw interactions is,

therefore, not scrambling information as fast as a system with local interactions, at

least through the lens of entanglement growth, which is in agreement with the slow

thermalization discussed in Sec. 4.1, and the analysis of the TMI in Sec. 4.2.
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At this point, a few comments regarding the comparability of timescales may be in

order. With decreasing decay exponent α, the total interaction strength per lattice site

becomes larger. Thus, comparing the temporal evolution of a quantity for different values

of α in units of the nearest neighbor interaction strength J is not a fair comparison.

Other works on systems with powerlaw interactions compensated this by defining an

effective energy per lattice site, for example, by means of the Frobenius norm of the

Hamiltonian [50]. However, this rescaling of time does not alter our results in any

fundamental way, which is why we do not apply it here.

Contrary to entanglement growth, strong powerlaw interactions seem to have the

opposite impact on operator spreading. Based on results from the literature [42, 135], we

expect the spatiotemporal profile of the squared commutator to follow a highly nonlinear

lightcone for sufficiently small values of the decay exponent α. In particular, a polynomial

lightcone, or even a logarithmic lightcone [42]. Note, however, the derived lightcone

shapes in Ref. [42] follow from an effective stochastic model and have never been verified

in the regime α < 1 for an actual quantum many-body system neither numerically, nor

analytically. In Fig. 4.6 (b), we display numerical results for the spacetime contour of the

squared commutator (2.31) defined by Cr (tθ (r)) = θ, where θ = 1/2. In agreement with

our expectation, the lightcone becomes increasingly nonlinear with decreasing exponent

α. Note that tθ (r) will depend on the choice of θ. The functional dependence on r,

however, is typically independent of θ, if the latter is chosen as a significant fraction of

the late-time value of Cr (t). For α = 0.4, the lightcone appears almost flat, supporting

the argument of Ref. [42] for a logarithmic lightcone if α ≤ 1/2. However, a reliable

confirmation of a logarithmic lightcone based on numerical data for such small system

sizes is just not possible.

To sum up, while the spatiotemporal profile of the squared commutator suggests

that local quantum information spreads rapidly over the system’s spatial degrees of

freedom, the growth of entanglement entropy between a spatially connected region and

its environment is logarithmically slow and thereby follows an entirely different timescale.

This apparent discrepancy was acknowledged before, and it was argued in Ref. [69] that

entanglement growth and operator spreading are not necessarily related, as the former

occurs in state space, and the latter in operator space. Contrary to these arguments, we

show in the following sections that there is, in fact, such a relationship. This relationship

implies that a slowdown of entanglement growth corresponds to a particular slowdown of

operator dynamics.
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Figure 4.6.: Dynamics of quantum information deep in the nonlocal regime. (a) Temporal
evolution of the half-chain entanglement entropy SA (|Ψ (t)〉) following a quench
from the initial state |Ψ0〉 = |Y+〉 for a decay exponent α = {∞, 0.5, 0.3, 0.25}
respectively, and a system of N = 26 lattice sites. The inset depicts the
logarithmic growth of entanglement entropy for α = 0.3 and a system size
of N = 22, 24, 26 respectively. The dashed line is proportional to log (t) (b)
Spacetime contour of the squared commutator defined by Cr (tθ (r)) = θ, where
θ = 1/2 for α = {∞, 0.8, 0.6, 0.4} respectively. Squared commutator is evaluated
in the initial state |Ψ0〉, and W,V = Y. System size is N = 24. Darker colors
indicate larger values of α in all plots. Data is extracted from a numerical
simulation (EXPM) of the LRMFI model (4.1).
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4.4. The Slowdown of Operator Dynamics

In Sec. 3.3, we introduced the operator state, which we utilized to establish a connection

between the spread of a local operator and the growth of entanglement. Regarding the

MFI model (3.1), this approach indicated that most of the entanglement growth regarding

some spatial region occurs while the operator front propagates through that region. Based

on this result we inferred that most of the operator density is condensed close to the

operator front in local systems, which agrees with results for the operator density

presented in Sec. 3.2, and recent works on operator spreading in local systems [33,34,124].

Here, we consider the dynamics of the operator state regarding the LRMFI model (4.1)

deep in the nonlocal regime.

In Fig. 4.7, we display the entanglement entropy (2.6) of the operator state (3.4) for

two small values of α, i.e., we consider SA (|Φ (t)〉), where A is chosen as the left half

of the system, and |Φ (t)〉 = W (t) |Ψ0〉. In addition, we compare this growth to the

squared commutator (2.31), similar to the setup in Fig. 3.5. Although the entanglement

growth agrees with the squared commutator at early times, we observe a slowdown of

entanglement growth at intermediate times, reminiscent of the ordinary quench protocol

discussed in the previous section. While the squared commutator diagnoses that the

support of W (t) extends over the entire system after a short time, the entanglement

entropy is still growing. We expect this growth to persist for much longer as our results

suggest that also the entanglement entropy of the operator state approaches the Page

value (2.22) at late times. We believe the strong oscillations of the squared commutator

for smaller α originate from the small system size of our simulation. However, for the

system sizes we can access, only a slight decrease of these oscillations is observed, see the

inset of Fig. 4.7 (b).

Thus, while information about W (t) is still leaking out of A, its support already

extents over the entire system. This result is in stark contrast to the result for the

MFI Hamiltonian (3.1), which is depicted in Fig. 3.5 (c). Moreover, it points towards a

slowdown of operator dynamics in the presence of (strong) powerlaw interactions, similar

to the slowdown of entanglement growth following a quantum quench. In particular, it

suggests that the operator density behind the superballistically propagating operator front

decays significantly slower, compared to a a system with local interactions. However, it is

a priori not clear how much of the observed slowdown in Fig. 4.7 is due to a slowdown of

operator dynamics, and how much originates from the slowdown of entanglement growth

we observe in the ordinary quench protocol. In order to support the indication of the



Dynamics of Quantum Information and Powerlaw Interactions 69

operator state, it is therefore desirable to investigate whether there is a general slowdown

of operator dynamics, independent of any initial state. For this reason, we consider

the squared commutator (2.31) evaluated in the infinite temperature ensemble, which

provides a state-independent probe of operator spreading. Moreover, it is connected to the

operator density, see also Eq. (B.16) in Appendix B. A slower decay of the operator density

behind the operator front then implies a slower approach of the squared commutator

towards its saturation value. That is, after a rapid growth upon arrival of the operator

front, we expect an increasingly slower approach of the squared commutator towards its

late time value with decreasing decay exponent α. To compute the squared commutator

at infinite temperature, we approximate the trace by an expectation value in a random

pure state drawn from the Haar measure [134, 140]. With this approximation, the

computation is similar to that of the squared commutator evaluated in a pure state with

an additional averaging over several random states. For further details on this technique,

see Appendix A.3.

In Fig. 4.8, we display the approach of the infinite temperature squared commutator

towards its late-time value for various values of the decay exponent α. The results

complement the previous indication, as one can clearly observe an increasingly slower

saturation with decreasing exponent α, see Fig. 4.8 (a). Note that we additionally include

data for the MFI Hamiltonian (3.1) for comparison. Our observation does not seem to be

an artifact of the small system size of our simulation, since we do not observe any sign of

its disappearance as the system size is increased, see Fig. 4.8 (b). This result confirms

that the process of operator spreading is fundamentally different in systems with strong

powerlaw interactions compared to systems with local interactions. Accordingly, it is

characterized by a superballistically propagating operator front and a slow decaying

operator density behind this front. This slow decay of the operator density behind the

front seems to be diagnosed by the slowdown of entanglement growth following a quantum

quench since we observe a similar response to a change of the decay exponent α. However,

beyond these numerical observations, an analytic connection between entanglement

growth and operator spreading is still lacking. In the next section, we complement these

numerical results with further analytical arguments for such a connection.
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the LRMFI model (4.1).
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4.5. Connecting Entanglement Growth and

Operator Spreading

In the following, we establish a general connection between the dynamics of Pauli strings

and the growth of entanglement following a quantum quench. In this regard, let us

consider an initial product state |Ψ0〉 =
⊗

i∈Q |ψi〉, where every qubit is prepared in an

eigenstate of one of the Pauli operators X ,Y , or Z. We can decompose the projector on

this initial state ρ0 = |Ψ0〉〈Ψ0| by virtue of the operator expansion (2.35), i.e.,

ρ0 = 2−N
∑

S∈ρ0

cS S , (4.8)

where cS = 〈Ψ0|S|Ψ0〉 = (−1)s, and s is either 0 or 1, depending on the Pauli string S.

The number of Pauli strings that contribute to the expansion in Eq. (4.8) is given by

2N . One example of such an initial state is |Y+〉, which we considered throughout this

thesis. In this particular case5, all Pauli strings that follow from tensor products of the

identity and Y contribute to the expansion (4.8). Thus, the latter includes Pauli strings

of all possible sizes. Note that the following derivation is not restricted to initial states

like |Y+〉, where each qubit is prepared in an eigenstate of the same Pauli operator. As

long as each qubit is initially in an eigenstate of one of the Pauli operators, the following

derivation applies. Under unitary evolution, Eq. (4.8) becomes

ρ (t) = 2−N
∑

S∈ρ0

(−1)sS (t) ,

where ρ (t) = eiHtρ0 e
−iHt. Thus, the dynamics of the initial state |Ψ0〉 is determined by

a sum of Pauli strings that evolve under unitary evolution.

Thus, in contrast to previous considerations that addressed operator dynamics of local

Pauli strings, we are now confronted with operator dynamics of general Pauli strings.

In the latter case, it is useful to generalize the operator density (2.36), which we do in

the following. Similar to Eq. (2.35), we can also expand the string S (t) by means of a

complete operator basis

S (t) =
∑

S′

cS′S ′ , (4.9)

5More explicitly, for a system of N lattice sites, it follows that |Y+〉〈Y+| = 2−N
⊗N

i=1
(1i + Yi).
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where we drop the time-dependence of the coefficients cS′ for convenience. In this general

case, it is more useful to organize the strings S ′ regarding the lattice sites they act

nontrivially on. Using Eq. (4.9), we define the operator density on a set of lattice sites A

by the total weight on Pauli strings S ′ that act only nontrivially on A and trivially on

its complement B, i.e.,

P S
A =

∑

S′

A
6=0

|cS′|2 , (4.10)

where S ′
A := 2−|B| TrB {S ′} is the reduced Pauli string of S ′ regarding A, which is only

nonzero6 if S ′ acts trivially on the complement B. If we choose S as a local Pauli string

W, located at the left edge of the system, and A as a connected spatial region that

incorporates the initial position of W , we can connect the general definition of operator

density (4.10) to the operator density in Eq. (2.37), i.e., PW
A = Pℓ≤|A|.

To analyze entanglement growth, we consider the reduced state of a region A, which

is given by

ρA (t) = 2−|A|
1A + 2−|A|

∑

S∈ρ0−1

(−1)s SA (t) , (4.11)

where

SA (t) = 2−|B| TrB {S (t)} =
∑

S′

A
6=0

cS′S ′

is the reduced Pauli string of S (t) regarding A. Note the sum in Eq. (4.11) now excludes

the identity, which is invariant under unitary evolution. For initial states with zero energy

expectation value, such as |Y+〉, we expect the entanglement entropy to approach the

Page value (2.22) under unitary evolution. The latter implies that any region containing

slightly less than half of the system’s degrees of freedom is maximally entangled with

its environment, which results in a maximally mixed reduced state of that region.

Equation (4.11), therefore, establishes an interesting connection between the growth of

entanglement and the dynamics of Pauli strings under unitary evolution. Accordingly,

the reduced state ρA (t) is maximally mixed if and only if the sum in Eq. (4.11) vanishes.

This does not necessarily imply that every term in the sum vanishes though, since

contributions from different SA (t) may also cancel out. However, it is possible to connect

6This follows from the fact that Pauli strings are traceless, excluding the identity. Thus, if a string S ′

acts nontrivially on B, the partial trace over B will result in a vanishing reduced string regarding A.
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the generalized operator density (4.10) to the structure of the reduced state ρA (t). To

probe how close the reduced state is to the maximally mixed state, we calculate the

Frobenius norm of their difference, i.e.,
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We can upper bound the right hand side of Eq. (4.12) by virtue of the triangle inequality
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where we utilized that P S
A = 2−|A| Tr {SA (t) SA (t)}. Combining Eq. (4.12) and Eq. (4.13),

we obtain
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The distance between the reduced state of A and the maximally mixed state thereby

lower bounds the total operator densities P S
A . Considering local Pauli strings that have

no overlap with the Hamiltonian or any other conserved quantity, we expect universal

behavior, as discussed in Sec. 2.3.3. In particular, at late times we expect most of the

operator density attributes to strings that act nontrivially on the entire system. If A is

small compared to the system size N , this implies a vanishingly small operator density

on A at late times. Note, however, we are not restricted to local Pauli strings here, since

the expansion in Eq. (4.8) incorporates general Pauli strings. Nevertheless, we do not

see any reason why the late-time behavior of P S
A should change for general strings. In

this case, i.e., P S
A ≈ 0 ∀ S, Eq. (4.14) implies maximal entanglement between A and its

environment. The growth of entanglement following a quantum quench is, therefore, in

direct correspondence to the process of operator spreading.

Complementary, we can employ similar arguments to establish a direct connection

between the entanglement entropy (2.6) and the operator densities P S
A from Eq. (4.10).

To begin with, let us consider the second Rényi entropy from Eq. (2.10). Using the

definition of the Frobenius norm(2.2), it follows that

S
(2)
A (|Ψ (t)〉) = − log

(

||ρA (t)||2F
)

. (4.15)
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Using the reduced state from Eq. (4.11), we can bound the expression in the logarithm

of Eq. (4.15) by virtue of the Cauchy-Schwarz inequality
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Since SA (|Ψ (t)〉) ≥ S
(2)
A (|Ψ (t)〉) holds, Eq. (4.16) implies the following bound for the

entanglement entropy

SA (|Ψ (t)〉) ≥ |A| − log





1 +





∑

S∈ρ0−1

√

P S
A





2




 . (4.17)

Equation (4.17) confirms that the entanglement entropy of the region A bounds the

operator densities on that region, i.e., P S
A , which relate to the Pauli strings S (t) that

contribute to the operator expansion (4.8) of the initial state |Ψ0〉.

Let us pause for a moment and discuss this connection in more detail. Initially, the

system is in the product state |Ψ0〉, which implies a vanishing entanglement entropy,

SA (|Ψ0〉) = 0. Thus, all information about A is accessible by measurements on A, which

implies that P S
A = 1 for all strings S that act only nontrivially on A and trivially on its

complement B, and P S
A = 0 for all strings that act nontrivially on B. As time evolves,

the Pauli strings S (t) grow in size and complexity, which results in the decay of the

operator densities P S
A . Thus, information about A becomes inaccessible to measurements

on A under unitary evolution. At late times, we expect the operator densities to become

vanishingly small, P S
A ≈ 0 ∀ S, implying maximal entanglement and the inaccessibility of

all information that was initially localized in A. We can, therefore, interpret the decay of

P S
A as the leakage of information out of A, or put differently, the growth of entanglement!

This connection between entanglement growth and operator dynamics provides a

qualitative explanation for the numerical observations of the previous section. The slow

approach towards maximal entanglement in systems with strong powerlaw interactions

thereby implies a slow decay of the operator densities P S
A . For a local string, this implies
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a slow decay of the operator density behind the superballistically propagating front, in

agreement with our numerical results from Sec. 4.4.

It could be interesting to further study the dynamics of general Pauli strings S
and their connection to quench dynamics. In particular, widely different behavior

regarding the MFI model (3.1) was observed for quenches with initial states |X+〉, and

|Z+〉 [138,142]. Assuming that any string S that has no overlap with the Hamiltonian

becomes effectively Haar random at late times [31], the derivation above implies that

the effective thermal ensemble is determined by the dynamics of a few Pauli strings, i.e.,

strings that describe single-site and two-site terms. Identifying universal behavior of the

dynamics of general Pauli strings could therefore help to identify universal behavior in

quench dynamics.
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Chapter 5.

Fast Scrambling

“We have to give up the idea of realism to a far greater extent than most

physicists believe today.”

— Anton Zeilinger

Quantum lattice models with nonlocal interactions also appeared recently in connection

to the correspondence of anti-de Sitter space and conformal field theories (AdS/CFT),

where information scrambling has become a central topic [29, 30, 38, 74, 126, 136, 143, 144].

In this regard, the property of fast scrambling is of particular interest. The latter is

defined via the squared commutator Cr (t) from Eq. (2.31). Accordingly, for a system

with N degrees of freedom, fast scrambling implies that Cr (t) ∼O (1) ∀ r in a time

t∼ log (N). Fast scrambling is believed to be characteristic of black holes [30, 143]

and holographic duals to theories of quantum gravity, e.g., the Sachdev-Ye-Kitaev

(SYK) model [145,146]. The highly complex structure of the latter, however, renders an

experimental realization on current quantum simulation platforms challenging. Motivated

by this, several proposals of simpler models that exhibit fast scrambling were brought

forward lately [121–123,147]. The proposals in Refs. [121, 122] follow a similar structure,

that is, a fine tuned combination of a local spin-1/2 Hamiltonian and a nonlocal all-to-all

interaction ∼ 1/r0. As these simple proposals are accessible in today’s experimental

environments, their nonequilibrium behavior is also of interest in a broader context, for

example, with regard to quantum information processing.

In this chapter, we study one of these proposals and analyze the dynamics of quantum

information similar to the previous chapters. In particular, we consider the proposal

from Ref. [121] and present numerical results on entanglement growth and operator
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spreading in Sec. 5.1. Using these results and the previously developed connection between

entanglement growth and operator dynamics, in Sec. 5.2 we discuss key differences between

the fast scrambling model and the LRMFI model (4.1). Crucially, we demonstrate that

these two models are associated fundamentally different operator dynamics, which

motivates us to conjecture that fast scrambling is impossible in quantum lattice models

with powerlaw interactions.

5.1. A Minimal Model for Fast Scrambling

In the following, we consider a relative of the MFI model (3.1), which is believed to be a

fast scrambler. This model was recently proposed in Ref. [121] as a “minimal model for

fast scrambling”. In particular, its Hamiltonian is given by

HFS = H +
g√
N

∑

i<j∈Q

ZiZj , (5.1)

where H is the MFI Hamiltonian (3.1). As discussed in Chap. 3, the latter describes

a system with local interactions, and quantum information therefore spreads ballisti-

cally. Hence, the additional all-to-all interaction in Eq. (5.1) is crucial to allow for fast

scrambling, which essentially implies that the squared commutator is bounded by a

logarithmic lightcone. Noteworthy, the normalization of the all-to-all interaction in

Eq. (5.1) is proportional to 1/
√
N . This scaling is crucial, as a recent work [130] proved

that fast scrambling is prohibited in spin-1/2 models with a generic all-to-all interaction

proportional to 1/Nγ if γ > 1/2. For further considerations, we set g = J , where J is

the nearest-neighbor interaction strength associated with the MFI Hamiltonian (3.1).

Moreover, we adopt the values of the magnetic fields in accordance with the previous

chapters, i.e., hx/J = −1.05, and hz/J = 0.5. In the current, and the following section,

we analyze the dynamics of quantum information regarding the fast scrambling Hamilto-

nian (5.1). We are particularly concerned with whether its dynamics differs from systems

with (strong) powerlaw interactions. The latter may also feature a highly nonlinear

ligthcone that bounds the squared commutator, as discussed in Chap. 4. Whether these

systems also allow for fast scrambling, however, is yet not fully answered [47].

To begin with, let us discuss some numerical results on operator spreading regarding

the fast scrambling Hamiltonian (5.1). In Fig. 5.1 (a), we display the spatiotemporal

profile of the squared commutator (2.31). We evaluate the latter in the initial state
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|Y+〉, and choose W ,V = Y. The data confirms an almost immediate growth of

Cr (t) for all r, resulting in a highly nonlinear lightcone. Note also the spacetime

contours of constant value in Fig. 5.1 (a). Furthermore, Cr (t) is nearly independent

of r for large enough r, which agrees with our expectation for a fast scrambler. In

the spirit of our previous investigations, we additionally consider the entanglement

dynamics. Figure 5.1 (b) displays the temporal evolution of the half-chain entanglement

entropy (2.6) following from a quench with initial state |Y+〉. We observe a rapid growth

of entanglement entropy following a saturation at the Page value (2.22). Note also the

comparison to the MFI Hamiltonian (3.1), which is obtained by setting g = 0. For the

fast scrambling Hamiltonian, entanglement growth appears to be linear as well. However,

in agreement with our expectation for a system with nonlocal interactions, the growth

rate of entanglement entropy depends also on the volume of the region, which is most

evident at early times and for small regions. Most importantly, however, is the absence of

a slowdown of entanglement growth. Such a slowdown is characteristic for systems with

(strong) powerlaw interactions, as discussed in the previous chapter. The fast scrambling

Hamiltonian, therefore, induces fundamentally different entanglement dynamics compared

to the LRMFI Hamiltonian (4.1). We want to emphasize that also for another recent

proposal for a simple fast scrambler [122], no slowdown of entanglement growth was

observed. The rapid entanglement growth regarding the fast scrambling Hamiltonian

further results in a rapid approach toward local equilibrium in contrast to the LRMFI

Hamiltonain. If we recollect the connection between entanglement growth and operator

dynamics established in Sec. 4.5, we expect also different operator dynamics for these

two systems. Confirming this expectation may potentially help to answer if systems with

powerlaw interactions can exhibit fast scrambling, which we investigate further in the

following section.

5.2. Fast Scrambling and Powerlaw Interactions

The apparent superballistic spread of quantum information in systems with powerlaw

interactions motivates to ask whether these systems can exhibit fast scrambling. In

this regard, it was proven recently that for decay exponents larger than the system’s

dimension, α > D, lightcones are at best polynomial, which rules out fast scrambling in

this regime [47]. If this remains true for α ≤ D is an open question though. In Ref. [42],

the authors derived lightcone shapes based on an effective stochastic model. According

to their results, systems with powerlaw interactions allow for a logarithmic lightcone
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Figure 5.1.: Dynamics of quantum information regarding the fast scrambling Hamilto-
nian (5.1). (a) Spatiotemporal profile of the squared commutator (2.31), evaluated
in the initial state |Y+〉. System size is N = 22 and we choose W,V = Y . Crosses
show spacetime contours of constant value, Cr (tθ (r)) = θ, with θ = 0.25, 0.5, 0.75
respectively. (b) Growth of half-chain entanglement entropy (2.6) following from
a quench with initial state |Y+〉. System sizes of N = 24, 26, 28 are shown. Gray
dashed line indicates the Page value (2.22) for N = 28. Black line shows the
entanglement entropy for the local MFI Hamiltonian (3.1). Data is extracted
from a numerical simulation (EXPM) of the respective Hamiltonians.

if α ≤ D/2. So far, however, this bound was not confirmed for an actual quantum

many-body system, neither numerically nor analytically, and we will not try to do so here.

Instead, motivated by the results from the previous section, we investigate whether a

difference in entanglement dynamics infers different operator dynamics. Such a difference

in operator dynamics may potentially have influence on the shape of the lightcone.

To set the stage, let us recapitulate the apparent differences and similarities between

the fast scrambling Hamiltonian (5.1) and the LRMFI Hamiltonian (4.1). In Fig. 5.2 (a),

we depict the lightcone, i.e., the spacetime contour tθ (r) defined by a constant value

of the squared commutator, for both of these models. We calculate tθ (r) using TDVP,

which allows us to reach system sizes up to N = 32 lattice sites. The results are consistent

with the numerically exact method EXPM, see Appendix A.6 for further details. As

already discussed in Chap. 4, for the LRMFI Hamiltonian, the lightcone becomes highly

nonlinear for these small values of α. For α = 0.25 in particular, the shape of the

lightcone is very similar to that of the fast scrambler. Hence, regarding the lightcone

shape, a system with sufficiently strong powerlaw interactions does not look too different

from a fast scrambler, at least for the shown system size. However, for such small system

sizes, it is extremely difficult, if not impossible, to reliably distinguish a logarithmic



Fast Scrambling 81

2 12 22 32
r

0

2

4

t θ
(r
)
[1
/J

]

(a)

HFS

α = 0.4
α = 0.25

0 5 10
t [1/J ]

0

5

10

S
A
(|
Ψ
(t
)〉
)

(b)

HFS

α = 0.4
α = 0.25

Figure 5.2.: Comparison between the fast scrambling Hamiltonian (5.1) and the LRMFI
Hamiltonian (4.1) for α = 0.4, and α = 0.25 respectively. (a) Spacetime contour of
the squared commutator (2.31) defined by Cr (tθ (r)) = θ, where θ = 0.5. Squared
commutator is evaluated in the initial state |Y+〉, and we choose W,V = Y . Data
is extracted from a numerical simulation (TDVP) of the respective Hamiltonians
for N = 32 lattice sites. (b) Growth of half-chain entanglement entropy (2.6)
following from a quench with initial state |Y+〉. Gray dashed line indicates the
Page value (2.22). Data is extracted from a numerical simulation (EXPM) of the
respective Hamiltonians for N = 26 lattice sites.

lightcone from a polynomial lightcone. Considering entanglement growth though, these

two systems follow evidently different dynamics. Figure 5.2 (b) shows the entanglement

entropy following from a quench with initial state |Y+〉. Although we observe an initially

rapid growth of entanglement entropy in all cases, the slowdown of entanglement growth

seen for the LRMFI Hamiltonian with small decay exponents α is absent for the fast

scrambler. As discussed in the previous chapter, this slowdown of entanglement growth

is robust upon increasing the system size and a generic feature of quantum lattice models

with powerlaw interactions.

Concerning the matter of entanglement growth, we further discussed that the apparent

slowdown in systems with powerlaw interactions, such as the LRMFI Hamiltonian (4.1),

diagnoses a slowdown of operator dynamics. Considering an initially local operator, this

slowdown manifest in slow decay of the operator density behind the superballistically

propagating front. Applying the same logic here, we expect that the fast scrambling

Hamiltonian (5.1) does not exhibit such a slow decay of the operator density, and is thereby

characterized by completely different operator dynamics. To confirm our understanding,

we simulate the dynamics of a local operator W = Y , initially located at the left edge of

the system, and analyze the decay of the operator density behind the operator front using
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Figure 5.3.: Temporal evolution of the operator density on the left half of the system (5.2)
for an initial operator W = Y located at the left edge of the system. Left
panel refers to the fast scrambling Hamiltonian (5.1) and the right panel to the
LRMFI Hamiltonian (4.1) for α = 0.4. The gray dashed line is proportional
to exp (−t). Data is extracted from a numerical simulation (TDVP) of the
respective Hamiltonians for N = 24 lattice sites.

TDVP. In particular, we consider the operator density in the left half of the system (2.37),

Pℓ≤N/2 =
∑

ℓ≤N/2

pℓ , (5.2)

where pℓ is the operator density defined in Eq. (2.36). As mentioned several times, we

expect Eq. (5.2) to become exponentially small in the system size at late times. In Fig. 5.3,

we display the temporal evolution of Pℓ≤N/2, for the fast scrambling Hamiltonian, and

the LRMFI Hamiltonian with α = 0.4. For the fast scrambler, Pℓ≤N/2 approaches an

exponential decay with increasing bond dimension χ, see the diagonal line as a guide. For

the LRMFI Hamiltonian, however, we observe a drastic slowdown of this decay, which

remains upon increasing bond dimension. We observe a similar slowdown for other small

values of α, which we present in Appendix A.6. Moreover, a similar analysis as in Sec. 4.4

confirms that the observed slowdown in the saturation of the squared commutator is

absent for the fast scrambler, see Appendix A.6.

To further support the TDVP results, we compute the dynamics of W (t) using ED.

The latter grants us access to the operator density for all ℓ from which we compute

the operator size defined in Eq. (2.38). The result of this computation is presented
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in Fig. 5.4 (a), where we display data for the fast scrambling Hamiltonian, and the

LRMFI Hamiltonian with α = 0.4, and α = 0.25 respectively. Similar to earlier

considerations, the operator size approaches LHaar from Eq. (2.39) at late times for all

considered Hamiltonians. At short to intermediate times, we observe a clear analogy

between the operator size and the entanglement entropy following a quench, where the

latter is additionally shown in Fig 5.4 (b) for the same system size. In particular, the

operator size exhibits a slowdown for the LRMFI Hamiltonian, which is absent for the

fast scrambler. Considering the operator density in the left half of the system, i.e., Pℓ≤N/2

defined in Eq. (5.2), the ED results agree with the results from TDVP, which is depicted

in Appendix A.6.

These numerical results agree with the developed connection between entanglement

growth and operator dynamics presented in Sec. 4.5. That is, the rapid entanglement

growth observed for the fast scrambling Hamiltonian (5.1), diagnoses a rapid decay of the

operator density behind the superballistically propagating operator front. Thus, the fast

scrambling Hamiltonian exhibits fundamentally different operator dynamics, compared

to the LRMFI Hamiltonian (4.1). Crucially, this difference in operator dynamics is not

immediately evident from the structure of the lightcone, at least not for system sizes of

current numerical or experimental reach. However, based on our results, we conjecture

that fast scrambling is prohibited in system with powerlaw interactions, as the slowdown

of operator dynamics will ultimately influence the shape of the lightcone. In particular,

since
∑

ℓ pℓ = 1 holds, a generally slower than exponential decay of pℓ behind the operator

front will eventually slow down the latter, and thereby prohibit fast scrambling for

large enough system sizes. The found connection between entanglement growth and

operator dynamics further indicates that fast scrambling might be associated with unique

entanglement dynamics. Deeper insights into this might help to better understand and

characterize these extreme systems both experimentally and numerically.

Overall, the analysis of entanglement growth and operator spreading enables us to

uncover two distinct classes of quantum information dynamics in systems with nonlocal

interactions. The fast scrambling Hamiltonian (5.1) is associated with exponentially fast

operator spreading accompanied by a rapid growth of entanglement. Thus, initially local

information scrambles rapidly, which results in fast equilibration of local observables. The

LRMFI Hamiltonian (4.1) is also associated with a superballistic spreading of initially

local information over spatial degrees of freedom, which is diagnosed by a highly nonlinear

lightcone and a rapid growth of entanglement at early times. However, in this case, the

dynamics of quantum information is more diverse. Apparently, some information is not
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Figure 5.4.: Temporal evolution of operator size and entanglement entropy for the fast
scrambling Hamiltonian (5.1) and the LRMFI Hamiltonian (4.1) with α = 0.4,
and α = 0.25 respectively. (a) Approach of the operator size (2.38) towards its
expected late-time value LHaar defined in Eq. (2.39). (b) Approach of the half-
chain entanglement entropy towards the Page value SP defined in Eq. (2.22). Data
is extracted from a numerical simulation (ED) of the respective Hamiltonians for
N = 16 lattice sites.

scrambled as fast, which is diagnosed by a slow decay of the operator density behind the

superballistically propagating operator front and a drastic slowdown of entanglement

growth at intermediate times.



Chapter 6.

Discussions and Future Directions

“I’m smart enough to know that I’m dumb.”

— Richard Feynman

In this thesis, we explored the dynamics of quantum information in 1D quantum lattice

models that describe interacting spin-1/2 degrees of freedom (qubits). One particular

objective was to extend our understanding of quantum information dynamics regarding

systems with local interactions to systems with nonlocal interactions, ubiquitous in

many experimental platforms for quantum simulation and of high importance for future

quantum technologies.

In Chap. 3, we developed a basic understanding of systems with local interactions. In

particular, we considered the MFI model (3.1), a paradigmatic model of quantum infor-

mation dynamics with rich thermalization behavior [138]. The analysis of the generalized

Hayden-Preskill protocol in Sec. 3.1 underlines how the universal growth of entanglement

in local systems (2.24) results in a ballistic spread of quantum information. Accordingly,

the number of degrees of freedom necessary to recover the initial entanglement with the

reference grows linear in time. Considering the dynamics following a quantum quench,

the ballistic spread of quantum information is captured by the squared commutator (2.31).

Our results on operator dynamics further show that state-independent quantities such

as operator density (2.36) and operator size (2.38) agree with the effective picture of

operator dynamics developed from studies on random unitary circuits [33, 124,125]. The

analysis of the operator state (3.4) in Sec. 3.3 further suggests that the process of operator

spreading is connected to the growth of entanglement following a quantum quench, as the

latter shows similarities to the entanglement growth of the operator state. Altogether,
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these results yield the following picture of quantum information dynamics in systems

with local interactions. Under unitary evolution, information initially confined to a region

A spreads ballistically over the system’s spatial degrees of freedom. Hence, information

becomes inaccessible to measurements on A once it spreads beyond A. This leakage

of information due to information spreading manifests in the growth of entanglement

entropy, which is linear in time with a growth rate that follows an area law, a consequence

of the ballistic spreading of quantum information.

With the gathered knowledge for local interactions, we incorporated nonlocal, powerlaw

interactions in Chap. 4, resulting in the LRMFI model (4.1). The results from Sec. 4.1

confirm that the strong thermalization behavior [138] is untouched by the presence of

powerlaw interactions. However, the approach toward local equilibrium continues to slow

down with decreasing decay exponent α, which becomes most severe for α < 1.

We dived deeper into this issue in Sec. 4.2, where we investigated the quench dynamics

of the TMI (2.13). Noteworthy, the TMI diagnoses an evident change in the correlation

structure at α = 2. In particular, our results suggest that the mutual information (2.11),

a measure for total correlation, is monogamous for α > 2, indicating that entanglement

is the dominant correlation in this regime. In Ref. [72], we found a similar behavior

of the TMI for the XY Hamiltonian with powerlaw interactions, which suggests the

transition at α = 2 might be a universal feature of spin-1/2 Hamiltonians with powerlaw

interactions. This is further supported by the fact that for α > D + 1, the entanglement

entropy continues to follow the behavior expected in local systems (2.24), as proven in

Ref. [107]. Thus, combining these results, we conjecture that the universal entanglement

growth in local systems (2.24) enforces the monogamy of mutual information. Future

works may review this conjecture and provide a definite answer.

For α ≤ 2, the dynamics of the TMI shows that the increasingly slower approach

toward local equilibrium is accompanied by an increased localization of quantum informa-

tion. Correspondingly, the decay of local correlations is significantly slower, emphasizing

slower quantum information scrambling. Our analysis of the one-excitation subspace

further suggests that the observed positivity of the TMI for sufficiently small decay expo-

nents α originates from the confinement of the dynamics to a much smaller Hilbert space

at early to intermediate times. Regarding future works, it remains an open question to

what extent quantum states characterized by a positive value of the TMI are of practical

use for quantum information processing. Due to their appearance in the quench dynamics

of experimentally accessible systems, this may be an interesting route to consider.
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The observed regimes of the TMI suggest a fundamental change in entanglement

dynamics at α = 2, hinting toward different regimes of quantum information dynamics. In

Sec. 4.3, we further investigated these respective regimes, where we focused particularly on

entanglement growth and operator spreading. The results presented in Sec. 4.3.1 support

our speculation of a local regime for α > 2, as both entanglement growth and operator

spreading seem to follow effectively local dynamics. Moreover, the characteristic velocities

of the two processes, i.e., the entanglement velocity vE and the butterfly velocity vB, show

a similar dependence on the decay exponent α. Accordingly, within the local regime,

both entanglement growth and operator spreading continue to slow down with decreasing

α. This result is the first evidence of a deeper connection between entanglement growth

and operator spreading. Moreover, it underlines that one can speed up or slow down

the dynamics of quantum information by varying the decay exponent α within the local

regime, which might be useful for future quantum technologies based on, for example,

systems of trapped ions.

In the nonlocal regime, i.e., α ≤ 2, the dynamics of quantum information becomes

radically different, which is particularly evident for α < 1. While probes of operator

spreading, such as the squared commutator (2.31), diagnose that initially local quantum

information spreads superballistically over the system’s spatial degrees of freedom, the

growth of entanglement entropy (2.6) becomes sublinear, or even logarithmic, as discussed

in Sec. 4.3.2. However, our analysis in Sec. 4.4 shows the connection between entanglement

growth and operator spreading persists, even in the nonlocal regime. Our results for

the operator state (3.4) and the saturation behavior of the squared commutator suggest

that operator spreading becomes much more diverse in the nonlocal regime. That

is, an initially local operator spreads with a superballistic operator front following a

slow decay of the operator density behind the front. The derivation in Sec. 4.5 then

connects these numerical observations to the known behavior of entanglement growth

following a quantum quench. Accordingly, the superballistically propagating operator

front manifests in fast entanglement growth at early times, with a growth rate that follows

a volume law. The slow decaying operator density behind the front is responsible for

the drastic slowdown of entanglement growth at intermediate times and the slowdown of

thermalization. Future works may further investigate the relationship between the growth

of entanglement following a quantum quench and the dynamics of Pauli strings under

unitary evolution, as discussed in Sec. 4.5. What kind of universality one can ascribe

to the latter is particularly interesting. Moreover, considering initial states with finite

effective temperature, it could be interesting to investigate the correspondence between

the reduced Pauli strings SA (t) in Eq. (4.11), and the respective thermal ensemble. These
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insights may help to improve our understanding of prethermalization in systems with

powerlaw interactions [10,48,49]. Another possible extension of these results is to study

how they connect to operator dynamics of the time-evolution operator [105,148].

At this point, we want to clarify a common misconception regarding the propagation

of quantum information and thermalization. That is, how fast quantum information

propagates directly corresponds to how fast a system thermalizes. Although this may be

true for (effectively) local systems, this is certainly not the case in systems with strong

powerlaw interactions, as our results from Chap. 4 underline. Ultimately, the timescale

of thermalization is determined by entanglement growth, and a connection between the

propagation of quantum information and thermalization in (effectively) local systems is

due to a connection between entanglement growth and operator dynamics.

In Chap.5, we further examined the established connection between entanglement

growth and operator dynamics by considering a recent proposal for a (simple) fast

scrambling model [121]. Our results show that the different behavior of entanglement

growth for the fast scrambling model (5.1) and the LRMFI model (4.1) implies also

different operator dynamics. In particular, the slow decay of the operator density behind

the operator front observed for the LRMFI model is absent for the fast scrambler, which

further confirms the connection between entanglement growth and operator dynamics

presented in Sec. 4.5. We used this apparent difference in operator dynamics to conjecture

that fast scrambling is ultimately impossible in systems with powerlaw interactions.

An explicit proof of this conjecture is challenging but highly desirable and may be

subject to future works. Furthermore, these results suggest that fast scrambling might be

associated with universal entanglement growth. Future theoretical works may explore the

relationship between entanglement growth and fast scrambling in microscopic quantum

systems, either through numerical studies of different models such as the proposals

from Refs. [122, 123], or the SYK model [145, 146], or even better, through analytical

insights starting from a logarithmic lightcone. Another interesting question is what

role holography plays in this context [122]. Holographic models, for example, the SYK

model, are expected to obey the monogamy of mutual information [67], which sets further

restrictions on entanglement growth. A refined understanding of the relationship between

entanglement growth and holography may result in explicit probes for holographic

quantum matter.

In summary, these findings motivate us to generalize the effective picture of operator

dynamics in local systems [31, 33, 34, 124, 125] to systems with nonlocal interactions.

Based on the models we studied in this thesis, this results in two new classes of operator
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Figure 6.1.: Pictorial illustration of operator dynamics regarding the respective Hamiltonians
considered in this thesis. Depicted is the temporal evolution of the operator
density of an initially local operator. (a) The local MFI Hamiltonian (3.1) is
associated with a ballistic propagation of the operator front determined by a
constant velocity vB. (b) For sufficiently small decay exponents α, the LRMFI
Hamiltonian (4.1) is associated with a superballistic propagation of the operator
front. Behind the operator front the operator density decays considerably slower,
though. (c) For the fast scrambling Hamiltonian (5.1), the operator front propa-
gates exponentially fast with a rapid decay of the operator density behind the
operator front.

dynamics, which are summarized in Fig. 6.1. Further quantitative insight into these

classes may be subject to future works.

At last, let us emphasize that, to the best of our knowledge, there is no example where

entanglement growth does not serve as a bottleneck of quantum information dynamics, i.e.,

where entanglement growth is ’faster’ than operator spreading. For example, subballistic

operator spreading combined with linear entanglement growth. Considering the results

of this thesis, we believe this is impossible. A solid understanding of the relationship

between entanglement growth and operator spreading may improve our understanding of

nonequilibrium phenomena and phases of quantum matter altogether.
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Appendix A.

Numerics

A.1. Time-Evolution

The central object for the simulation of quantum many-body dynamics is the time-

evolution operator

U (t) = e−iHt . (A.1)

Although easy to write down, access to Eq. (A.1) within a numerical treatment is difficult.

The most straightforward is ED, i.e., one determines the eigenbasis of the Hamiltonian,

{|Ei〉}, and then constructs Eq. (A.1) in accordance with

U (t) =
∑

i

e−iEit|Ei〉〈Ei| . (A.2)

However, determining the eigenbasis of large matrices is a notoriously difficult task, and

typically limited to small systems sizes N due to the exponential scaling of the Hilbert

space. Moreover, the matrix representation of Eq. (A.2) is usually a dense matrix, i.e.,

the number of nonzero elements is not small compared to the total number of elements.

Hence, even if we could construct Eq. (A.2), the required memory to store it grows

exponentially with the system size N . Due to these limitations, the largest system size

we can simulate using ED is N = 16.

On the other hand, the Hamiltonian H of a quantum many-body system is usually

represented by a sparse matrix, i.e., the number of nonzero elements is small compared to

the total number of elements. We can exploit this by storing only the nonzero elements

and their respective positions. Although this does not allow the construction of the time-

91



92 Numerics

evolution operator (A.1), one can employ numerically exact techniques that determine the

action of the time-evolution operator on an initial state |Ψ0〉. We use such a technique

(EXPM) in this thesis, where we utilize numerical routines from Ref. [139]. Within this

technique, the largest system size we can simulate is N = 28.

A.2. Entanglement Entropy and the Partial Trace

Given a quantum state |Ψ〉, the most straightforward way to compute the entanglement

entropy is the following. First, we construct the matrix ρ = |Ψ〉〈Ψ|. From there, we can

reshape ρ to a tensor and then trace over all indices that do not belong to the region A

of interest, which gives us ρA. At last, we determine the eigenvalues of ρA and compute

the entanglement entropy (2.6).

The approach described above has the same limitations as the construction of the

time-evolution operator, discussed in Sec. A.1. In particular, ρ is also a dense matrix.

However, all the necessary information is encoded in the state |Ψ〉, so constructing the

projector is not necessary. A more efficient way is to reshape the state |Ψ〉 to a matrix,

i.e., |Ψ〉 → C, where C has the shape (dimHA, dimHB). The reduced state follows then

by

ρA = C†C . (A.3)

Since the size of the matrix ρA in Eq. (A.3) is exponentially smaller than the size of ρ,

computing the eigenvalues is not an issue. Thus, if we can store the state |Ψ〉, we can

compute the entanglement entropy.

A.3. Operator Dynamics

Let us first discuss how we can access the squared commutator (2.31) numerically. Within

an ED computation, we can construct the Heisenberg operator directly, i.e.,

W (t) = eiHtWe−iHt . (A.4)

Having access to Eq. (A.4), we can compute the squared commutator straightforwardly,

with the same limitations of an ED computation discussed in Sec. A.1.
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Additionally, we can compute the squared commutator using the EXPM technique

discussed in Sec. A.1. In this case, we have to compute forward-, and backward time-

evolution for two initial states. First, we evolve the initial states, |η〉 = |Ψ0〉, and

|ξ〉 = Vr|Ψ0〉 up to time t, i.e.,

|η〉 → e−iHt|Ψ0〉 , |ξ〉 → e−iHtVr|Ψ0〉 . (A.5)

Afterward, we apply the operator W to both states in Eq. (A.5), obtaining

|η〉 → We−iHt|Ψ0〉 , |ξ〉 → We−iHtVr|Ψ0〉 . (A.6)

Finally, we evolve both states in Eq. (A.6) back in time

|η〉 → eiHtWe−iHt|Ψ0〉 , |ξ〉 → eiHtWe−iHtVr|Ψ0〉 . (A.7)

With the resulting states in Eq. (A.7), the OTOC (2.33) is given by 〈η|Vr|ξ〉 from which

the squared commutator (2.31) follows immediately. If we want to evaluate the squared

commutator at infinite temperature, we can follow the same procedure. In this case, we

replace the initial state |Ψ0〉 with a random state drawn from the Haar measure and

average over several random states [134,140]. This approach typically provides a good

approximation of the trace.

The operator density (2.36) is more difficult to access. Within an ED computation, the

operator density can be obtained as follows. Starting from the Heisenberg operator (A.4),

we perform the partial trace with respect to all sites to the right of ℓ, i.e., we compute

Wℓ (t) =
1

2N−ℓ
TrL [W (t)] =

∑

|S|≤ℓ

cS (t) S , (A.8)

where L is the complement of {1, . . . , ℓ}. Note that Wℓ (t) is not unitary anymore. It

follows then straightforwardly from Eq. (A.8) that

Tr {Wℓ (t) Wℓ (t)} =
∑

ℓ′≤ℓ

pℓ′ (t) . (A.9)

Thus, by computing Eq. (A.9) for all 1 ≤ ℓ ≤ N − 1, one can reconstruct the operator

density for all ℓ. In particular, we have

pℓ (t) = Tr {Wℓ (t) Wℓ (t)} − Tr {Wℓ−1 (t) Wℓ−1 (t)} . (A.10)
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Figure A.1.: Slowdown of operator size for small values of the decay exponent α. The
approach towards the expected late-time value LHaar is displayed for W = Y
and different system sizes N . The left panel shows data for α = 0.4 and the
right panel for α = 0.25. Data is obtained from a numerical simulation (ED) of
the LRMFI Hamiltonian (4.1).

In principle, we can also compute the operator density using the EXPM technique.

That is, we determine the coefficient cS in the expansion (2.35) for every Pauli string

that contributes to the desired operator density, i.e., we compute

cS (t) = Tr {W (t) S} (A.11)

for all S that contribute to pℓ (t). To compute Eq. (A.11), we us the same approach as

for the squared commutator evaluated at infinite temperature. That is, we compute

forward-, and backward time-evolution and approximate the trace using random states

as discussed above. Although this works well, note that the number of strings S that

contribute to pℓ is given by 3 · 4ℓ. Hence, this approach is limited to small ℓ.

A.4. Finite Size Scaling of Operator Size

We present additional data regarding the slow approach of the operator (2.38) size

towards its late-time value for small decay exponents α in Fig. A.1. Accordingly, we

display LHaar − L [W (t)] for W = Y and different system sizes N . The left panel is

associated with α = 0.4 and the right panel with α = 0.25. In both cases, the slowdown

of operator size is robust upon increasing the system size N .
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Figure A.2.: Strong thermalization in the LRMFI (4.1) following a quantum quench from
the initial state |Ψ0〉 = |Y+〉 for various values of α = {∞, 2.3, 1.5, 1.0, 0.8, 0.5}.
Darker colors indicate larger values of α. Interaction strength is rescaled by the
Kac normalization. Data is extracted from a simulation of N = 20 lattice sites
(EXPM). Left panel: Total magnetization in z-direction. Right panel: Distance
between two-qubit reduced density matrix and the maximally mixed state.

A.5. Kac Normalization

In this section, we provide additional numerical data regarding the thermalization

behavior of the LRMFI Hamiltonian (4.1) discussed in Sec. 4.1. In particular, we dress

the interaction strength with Kac normalization [149], which is typically used to guarantee

an extensive Hamiltonian for all values of the decay exponent α. Accordingly, we apply

Jα
ij → 1

κ
Jα

ij , where κ =
1

N − 1

∑

i<j

Jα
ij .

Figure A.2 displays numerical data regarding the approach toward local equilibrium

for various values of the decay exponent α. The left panel of Fig. A.2 shows the total

magnetization in z-direction. Except for very small exponents, one can nicely see that

the expectation value approaches the infinite temperature result at late times. The right

panel of Fig. A.2 shows the distance between the reduced state of two qubits in the

middle of the system and the maximally mixed state. Further analysis supports that the

observed deviation for small exponents α is due to finite size effects. Figure A.3 shows

the time average of the total magnetization in z-direction, i.e., MZ (t) = 1/t
∫ t

0 dτ MZ (τ)

for α = 0.5 and various system sizes. With increasing system size, the deviation to the

infinite temperature result systematically decreases, see also the inset of Fig. A.3.
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Figure A.3.: Strong thermalization in the LRMFI (4.1) following a quantum quench from
the initial state |Ψ0〉 = |Y+〉. Interaction strength is rescaled by the Kac
normalization. Data is extracted from a simulation (EXPM). Depicted is the
time average of total magnetization in z-direction for various system sizes
N = {12, 14, 16, 18, 20, 22}. Darker colors indicate larger values of N . Inset
shows the late-time value as a function of N .

A.6. Additional TDVP Data

In this section, we provide additional details regarding our computations using matrix

product states. All results have been obtained using a single site TDVP update [96].

For the calculation of the operator density (2.36) we used a state representation of the

operator, defined in a doubled Hilbert space [42]. We have performed convergence checks

of the quantities of interest with increasing bond dimension χ, which we present in the

following.

Let us first discuss the calculated lightcone shapes presented in Fig. 5.2. For com-

pleteness, we also present the entanglement entropy (2.6) in the respective time intervals,

which is shown in Fig. A.4. For the time intervals we considered, the entanglement

entropy is clearly converged. Only small deviations at the end of the respective time

intervals can be observed. The value of the squared commutator (2.31) at a fixed time t

is shown in Fig. A.5. Apparently, the squared commutator seems to be more sensitive as

a larger bond dimension is needed for convergence. This can be understood by the fact

that one has to simulate forward and backward time-evolution, requiring effectively a

simulation of twice the time scale.
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Figure A.4.: Half-chain entanglement entropy following a quench with initial state |Y+〉,
N = 32, and various bond dimensions χ = {256, 512, 1024} (TDVP). Time step
of the simulation is δt = 0.1 [1/J ]. Darker colors indicate larger bond dimension.
MFI Hamiltonian (3.1) (upper left), fast scrambler (5.1) (upper right), LRMFI
Hamiltonian (4.1) with α = 0.4 (lower left) and α = 0.25 (lower right).

In Fig. A.6, we display additional data regarding the operator density presented in

Fig. 5.3. As discussed in Sec. 5.2, we observe a slowdown in the decay of the operator

density also for other values of α, which is shown in Fig. A.6 (a) for α = 0.25 and α = 0.6

respectively. Also for these values, the slowdown remains upon increasing the bond

dimension. Furthermore, the observed slowdown is robust against increasing the system

size N , which is depicted in Fig. A.6 (b) for α = 0.25 and α = 0.4 respectively. Note that

the ED results qualitatively match the TDVP results.
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Figure A.5.: Squared commutator evaluated in the initial state |Y+〉 at a fixed time t for
W,V = Y , N = 32, and various bond dimensions χ = {256, 512, 1024} (TDVP).
Time step of simulation is δt = 0.1 [1/J ]. MFI Hamiltonian (3.1) (upper left),
fast scrambler (5.1) (upper right), LRMFI Hamiltonian (4.1) with α = 0.4 (lower
left), and α = 0.25 (lower right).
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Figure A.6.: Operator dynamics in the LRMFI Hamiltonian (4.1). (a) Decay of operator
density in the left half of the system for W = Y, various bond dimensions
χ = {256, 512, 1024}, and a system size of N = 24 (TDVP). The left panel
shows data for α = 0.6 and the right panel for α = 0.25. (b) Operator density
on the first eight sites for N = 16, 20, 24 respectively. The left panel is data for
α = 0.25 and the right panel for α = 0.4. Data for N = 20, 24 is calculated
using TDVP with χ = 512, and data for N = 16 is calculated using ED.
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Appendix B.

Derivations and Useful Relations

B.1. Derivation of Eq. (2.34)

Let us begin with the squared commutator (2.31) evaluated at infinite temperature, which

we can write as

Cr (t) =
1

2N
Tr
{

O† (t) O (t)
}

=
1

2N
||O (t)||2F , (B.1)

where O (t) = [W (t) ,Vr]. Out of convenience, we have now dropped the factor of 1/2,

which is present in Eq. (2.31). If we denote the singular values of O (t) with λi, it follows

that

Cr (t) =
1

2N

∑

i

λ2
i . (B.2)

Since the operator norm is given by the largest singular value max {λi}, it follows

immediately that

1

2N

∑

i

λ2
i ≤ max {λi}2 (B.3)

holds, which implies

Cr (t) ≤ ||[W (t) ,Vr]||2 . (B.4)
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If the expectation value is taken with respect to some pure state |Ψ〉, one can derive a

similar bound. Since, by construction, O† (t) O (t) is a hermitian operator, we have

O† (t) O (t) =
∑

i

λ2
i |i〉〈i| , (B.5)

where the set {|i〉} spans a complete orthonormal basis of H. We can, therefore, write

the respective state as |Ψ〉 =
∑

i ci|i〉, where
∑

i |ci|2 = 1. The squared commutator then

reads

Cr (t) = 〈Ψ|O† (t) O (t) |Ψ〉 =
∑

i

λ2
i |ci|2 ≤ max {λi}2 . (B.6)

Thus, Eq. (2.34) holds for both the infinite temperature ensemble and an arbitrary pure

state |Ψ〉.

B.2. Further Operator Relations

This section provides further details on the relationship between the operator density (2.36)

and the squared commutator (2.31). To this end, let us consider the squared commutator,

where the operator W is initially placed at the left edge of the system, and the operator

V at site r

CV
r (t) =

1

2

〈

[W (t) ,Vr]
† [W (t) ,Vr]

〉

. (B.7)

Here, we use 〈. . .〉 = 2−N Tr {. . .}, which is the expectation value in the infinite tempera-

ture ensemble. Furthermore, we assume W and V to be local Pauli operators. Let us

first consider r = N , Eq. (B.7) then reads

1

2

〈

[W (t) ,VN ]† [W (t) ,VN ]
〉

=
〈

[PNW (t)]2
〉

−
〈

[PNW (t) VN ]2
〉

, (B.8)

where we defined PNW (t) =
∑

|S|=N cSS as the projection of W (t) onto strings that act

nontrivially on site N . The first term in Eq. B.8 then reads

〈

[PNW (t)]2
〉

=
∑

|S|=|S′|=N

c∗
ScS′ 〈SS ′〉 =

∑

|S|=N

|cS |2 = pN (t) , (B.9)
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which is just the operator density for r = N . For the second term, we obtain

〈

[PNW (t) VN ]2
〉

=
∑

|S|=|S′|=N

c∗
ScS′ 〈SVNS ′VN〉 =

∑

|S|=N,SN =V

|cS |2 −
∑

|S|=N,SN 6=V

|cS |2 .

(B.10)

The convention SN = V in Eq. (B.10) should be understood such that the sum runs over

all strings S, which have the operator V at site N . The second equality in Eq. (B.10)

follows from the fact that VNSVN = ± S, where we obtain a negative sign if the string

S at site N is not V . Combining Eq. (B.9) and (B.10) we obtain

CV
N (t) = 2

∑

|S|=N,SN 6=V

|cS |2 . (B.11)

Note that Eq. (B.11) depends on the choice of V. Using Eq. (B.11), we can define an

average square commutator to get rid of this dependence, i.e.,

CN (t) =
1

4

∑

V∈P

CV
N (t) =

∑

SN 6=1

|cS |2 , (B.12)

where P = {1,X ,Y ,Z}. Hence, we can establish the following equality between the

squared commutator and the operator density

pN (t) = CN (t) . (B.13)

Equation (B.13) is a special case. In general, the average squared commutator Cr (t) is

determined by all coefficients cS that belong to strings S that act nontrivially on site r.

For r = N , this coincides with all coefficients that belong to strings of size N . In the

general case, we obtain

pr (t) = Cr (t) −
∑

|S|>r,Sr 6=1

|cS |2 . (B.14)

Thus, in general, the operator density is bounded from above by the average squared

commutator, i.e.,

pr (t) ≤ Cr (t) , r > 1 . (B.15)
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Moreover, the total operator density on all strings of size ℓ ≥ r, i.e., Pℓ≥r (t) =
∑

ℓ≥r pℓ (t)

upper bounds the average squared commutator. Accordingly, we have

pr (t) ≤ Cr (t) ≤ Pℓ≥r (t) . (B.16)

Given a single site i, another useful relation is

1

4

∑

Wi∈P

WiSWi =











0 , if Si 6= 1

S , if Si = 1

, (B.17)

where S can be any Pauli string.
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