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Summary

In scientific literature, chemical information is typically published in text and images in-
tended to be read by humans. As natural language and images are unstructured data
formats, machines cannot directly interpret the information included in them. The avail-
ability of open repositories for machine-readable data is relatively rare in chemistry. In-
stead, the scientific literature is often the only way chemical knowledge is published. Re-
cent advancements in deep learning have yielded impressive results, but these data-driven
technologies depend on the open availability of data. As long as digital research data man-
agement systems and open data repositories are not yet widely adopted in the chemical
research community, the sole approach to handle the absence of structured chemical data
is to extract it from the literature. The manual extraction of chemical information from
the literature is an error-prone and time-consuming process. Moreover, it is an expensive
procedure because it requires highly skilled workers with expertise in the field to decide
what information is relevant to extract. Consequently, methods for the automated extrac-
tion of chemical information from the scientific literature are desirable to make chemical
knowledge accessible in a simple and cost-effective way.

This thesis deals with the development of deep learning applications for the automated
extraction of chemical information from the scientific literature. Here, the main objective
is to extract molecular structures from images. Extracting molecular structures from the
scientific literature requires multiple steps. First, chemical structures must be detected
and segmented in a given document from whole pages. Then, the segmented chemical
structure depictions must be translated into machine-readable representations of the de-
picted molecules, which is referred to as Optical Chemical Structure Recognition (OCSR).

Until today, DECIMER Segmentation, which has been developed during the work on
this thesis, is the only deep-learning-based open-source application for the segmentation
of chemical structures from the scientific literature. It relies on the Mask Region-based
Convolutional Neural Network (Mask R-CNN) architecture. The model has been trained
based on 9992 manually annotated regions that contain chemical structure depictions
on 1820 pages from publications from the Journal of Natural Products. The Mask R-
CNN model returns one mask per instance of a chemical structure depiction. A mask
is a matrix that describes the region that contains the chemical structure depiction in
the original image. The masks are then refined and completed using a mask expansion
algorithm. DECIMER Segmentation can process complete Portable Document Format
(PDF) documents. All pages are converted to images, the Mask R-CNN model generates
the original masks, and the mask expansion algorithm then generates the refined, complete
masks. Finally, the chemical structure depictions are segmented based on the final masks,
resulting in separate images containing only chemical structure depictions.

The OCSR application DECIMER Image Transformer has been further developed as a part
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of the work presented herein. The current version uses an encoder-decoder architecture
based on EfficientNetV2-M and a transformer to translate chemical structure depictions
into the SMILES representation of the depicted molecules. The model has been trained
on more than 450 million pairs of chemical structure depictions and the corresponding
SMILES representations of the depicted structures. It can interpret a wide variety of
depiction styles and even some hand-drawn structures. It can interpret various functional
group and superatom labels as well as common R-group placeholder variables in depic-
tions of Markush structures. In the comparative performance analysis presented herein,
DECIMER Image Transformer yields very competitive results. Altogether, it represents a
reliable solution to the problem of translating chemical structure depictions into machine-
readable representations.

DECIMER Image Transformer is an entirely data-driven deep-learning-based OCSR ap-
plication which relies on a supervised learning process. As it learns to process images
during training, the diversification of the training data is an essential factor for the tool’s
capability to generalise well on all kinds of chemical structure depictions. Besides cover-
ing a broad range of chemical space, it is essential to represent various ways of depicting
chemical structures in the data so that the resulting model can learn to interpret them
independently of the specific depiction style. Only then the trained model can process
the variety of chemical structure depictions found in the scientific literature. A com-
prehensive artificial OCSR training data generation and diversification strategy has been
implemented in the form of the application RanDepict. It ensures diverse chemical struc-
ture depictions by pseudo-randomly scrambling all available depiction functionalities of
the cheminformatics toolkits Chemistry Development Kit (CDK), RDKit, Indigo and the
Python-based Informatics Kit for Analysing Chemical Units (PIKAChU). RanDepict can
also guarantee the diverse coverage of the depiction feature space in a set of chemical
structure depictions by using the MaxMin algorithm to pick diverse sets of depiction fea-
tures internally represented as binary vectors. This way, RanDepict can generate diverse
datasets of chemical structure depictions that can be used for training deep-learning-based
OCSR models, which are robust and can generalise effectively.

The automated interpretation of hand-drawn chemical structures is a challenging task due
to the variety of personal drawing styles and the lack of normalisation. Although training
data for the DECIMER Image Transformer did not include any hand-drawn structures,
during the development, it became apparent that the application could interpret some
of these structure depictions. A benchmark dataset was needed to systematically eval-
uate the tool’s ability to interpret structure depictions of this kind. Consequently, the
DECIMER hand-drawn molecule image dataset was created. The dataset is a set of 5088
manually drawn chemical structure depictions published along with machine-readable rep-
resentations of the depicted molecules. The images were manually drawn by 24 volunteers
from the University of Applied Sciences in Recklinghausen, Germany.
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DECIMER Segmentation and DECIMER Image Transformer were integrated into the
DECIMER.ai web application. DECIMER.ai offers a user interface that enables users
without programming knowledge to extract chemical information from the scientific liter-
ature. After uploading a PDF document, DECIMER Segmentation is used to detect and
segment all chemical structure depictions. After the subsequent processing of the images
with the DECIMER Image Transformer, the segments and their corresponding SMILES
representations are displayed, and the structure is loaded into an embedded chemical struc-
ture editor. Here, they can be modified before downloading the segmented images and
machine-readable representations of the depicted molecules. Alternatively, chemical struc-
ture depictions can be uploaded directly. In that case, the DECIMER Image Classifier, a
binary classifier capable of distinguishing between chemical structure depictions and other
images, produces a warning if the images are not chemical structure depictions. Then,
the images are processed by the DECIMER Image Transformer and the structures are
presented as described above. Until today, the DECIMER.ai web application is the only
open-source application that combines the segmentation and interpretation of chemical
structure depictions from the literature in a comprehensive user interface.

As the work presented herein aims to make chemical information publicly available in open
databases, recent advances in molecular informatics enabled by combining data-driven
deep-learning methods and openly available chemical data have been reviewed. AI-driven
progress depends on the availability of data for training. In the areas where data was
available in the past, data-driven technologies have yielded impressive results. Examples
are the progress in synthesis planning using transformer models, new approaches to solve
the protein folding problem or advancements in natural product-based drug discovery. The
applications developed during the work on this thesis aim at making chemical information
publicly accessible to enable similar progress in other areas of chemistry in the future.

The source code of applications developed during the work on this thesis is openly available
under permissive licenses. All datasets have been published following the FAIR data
standards, which means that they are findable, accessible, interoperable and reusable, and
are publicly accessible. This way, researchers or other organisations can use and adapt the
software and the datasets freely according to their needs. As the software’s source code is
publicly available, it has the potential to profit from contributions and suggestions from
the user community. In future, the DECIMER.ai application can be extended to include
the capability to process textual information. Additionally, the chemical literature mining
software presented herein can be integrated into the submission pipelines of open databases
where a human curator only needs to validate the automatically extracted information.
The work presented herein is a contribution to the open availability of chemical data and
has the potential to develop further in the future.
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Zusammenfassung

In der wissenschaftlichen Literatur werden chemische Informationen in der Regel in Form
von Texten und Bildern veröffentlicht, die darauf ausgelegt sind, von Menschen gelesen zu
werden. Da natürliche Sprache und Bilder unstrukturierte Datenformate sind, können Ma-
schinen die darin enthaltenen Informationen nicht direkt interpretieren. Die Verfügbarkeit
offener Repositories für maschinenlesbare Daten ist in der Chemie relativ selten. Stattdes-
sen stellt die wissenschaftliche Literatur oft die einzige Möglichkeit dar, chemisches Wissen
zu veröffentlichen. Die jüngsten Fortschritte im Bereich des Deep Learning haben zu be-
eindruckenden Ergebnissen geführt, aber diese datengetriebenen Technologien hängen von
der offenen Verfügbarkeit von Daten ab. Solange digitale Systeme zur Verwaltung von For-
schungsdaten und offene Datenrepositorien in der chemischen Forschung noch nicht weit
verbreitet sind, besteht der einzige Ansatz zur Bewältigung des Mangels an strukturierten
chemischen Daten darin, sie aus der Literatur zu extrahieren. Die manuelle Extraktion
von chemischen Informationen aus der Literatur ist ein fehleranfälliger und zeitaufwändi-
ger Prozess. Es ist zudem ein kostspieliges Verfahren, da es hochqualifizierte Mitarbeiter
mit Fachkenntnissen auf diesem Gebiet erfordert, um zu entscheiden, welche Informatio-
nen für die Extraktion relevant sind. Daher sind Methoden zur automatischen Extraktion
von chemischen Informationen aus der wissenschaftlichen Literatur wünschenswert, um
chemisches Wissen auf eine einfache und kostengünstige Weise zugänglich zu machen.

Diese Arbeit beschäftigt sich mit der Entwicklung von Deep-Learning-Anwendungen für
die automatisierte Extraktion von chemischen Informationen aus der wissenschaftlichen
Literatur. Das Hauptziel ist dabei die Extraktion molekularer Strukturen aus Bildern.
Die Extraktion von Molekülstrukturen aus der wissenschaftlichen Literatur ist ein mehr-
schrittiger Prozess. Zunächst müssen die chemischen Strukturen in einem gegebenen Doku-
ment erkannt und segmentiert werden. Anschließend müssen die segmentierten chemischen
Strukturabbildungen in maschinenlesbare Darstellungen der abgebildeten Moleküle über-
setzt werden, was als Optical Chemical Structure Recognition (OCSR) bezeichnet wird.

Bis heute ist DECIMER Segmentation, das während der Arbeit an dieser Dissertation ent-
wickelt wurde, die einzige Deep-Learning-basierte Open-Source-Anwendung für die Seg-
mentierung chemischer Strukturen aus der wissenschaftlichen Literatur. Es basiert auf
der Mask Region-based Convolutional Neural Network (Mask R-CNN) Architektur. Das
Modell wurde auf mithilfe von 9992 manuell annotierten Regionen trainiert, die Darstellun-
gen chemischer Strukturen auf 1820 Seiten aus Veröffentlichungen des Journal of Natural
Products enthalten. Das Mask R-CNN-Modell liefert eine Maske pro Instanz einer chemi-
schen Strukturabbildung. Eine Maske ist eine Matrix, die die Region, die die chemischen
Strukturabbildung im Originalbild einnimmt, beschreibt. Die Masken werden dann mit
einem Maskenexpansionsalgorithmus verfeinert und vervollständigt. DECIMER Segmen-
tation kann komplette Dokumente im Portable Document (PDF) Format verarbeiten. Alle
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Seiten werden in Bilder umgewandelt, das Mask R-CNN-Modell erzeugt die ursprüngli-
chen Masken, und der Maskenerweiterungsalgorithmus erzeugt dann die verfeinerten, voll-
ständigen Masken. Schließlich werden die Darstellungen der chemischen Struktur auf der
Grundlage der endgültigen Masken segmentiert, so dass separate Bilder entstehen, die nur
die Darstellungen der chemischen Strukturen enthalten.

Die OCSR-Anwendung DECIMER Image Transformer wurde im Rahmen der hier vorge-
stellten Arbeit weiterentwickelt. Die aktuelle Version verwendet eine Encoder-Decoder-
Architektur, die auf EfficientNetV2-M und einem Transformer basiert, um chemische
Strukturabbildungen in die SMILES-Darstellung der abgebildeten Moleküle zu übersetzen.
Das Modell wurde mit mehr als 450 Millionen Paaren von chemischen Strukturabbildungen
und den entsprechenden SMILES-Repräsentationen der dargestellten Strukturen trainiert.
Es kann eine breite Palette von Darstellungsstilen und sogar einige handgezeichnete Struk-
turen interpretieren. Es kann verschiedene Label für funktionelle Gruppen und strukturelle
Elemente sowie gängige R-Gruppen-Platzhaltervariablen in Darstellungen von Markush-
Strukturen interpretieren. In der hier vorgestellten vergleichenden Leistungsauswertung
hat DECIMER Image Transformer sehr konkurrenzfähige Ergebnisse erzielt. Insgesamt
stellt es eine zuverlässige Lösung für das Problem der Übersetzung von chemischen Struk-
turabbildungen in maschinenlesbare Darstellungen dar.

DECIMER Image Transformer ist eine vollständig datengetriebene Deep-Learning-basierte
OCSR-Anwendung, die auf einem überwachten Lernprozess beruht. Da das Modell wäh-
rend des Trainings lernt, Bilder zu verarbeiten, ist die Diversifizierung der Trainings-
daten ein wesentlicher Faktor für die Fähigkeit des Tools, auf alle Arten von chemi-
schen Strukturabbildungen anwendbar zu sein. Neben der Abdeckung eines breiten Spek-
trums des chemischen Raums ist es von entscheidender Bedeutung, verschiedene Arten
der Darstellung chemischer Strukturen in den Daten zu repräsentieren, damit das re-
sultierende Modell lernen kann, sie unabhängig vom spezifischen Darstellungsstil zu in-
terpretieren. Nur dann kann das trainierte Modell die Vielfalt der Darstellungen che-
mischer Strukturen, wie sie in der wissenschaftlichen Literatur zu finden ist, verarbei-
ten. Mit der Anwendung RanDepict wurde eine umfassende Strategie zur künstlichen
OCSR-Trainingsdatengenerierung und -diversifizierung implementiert. Sie erzeugt vielfäl-
tige Darstellungen chemischer Strukturen, indem sie alle Funktionalitäten zur Darstel-
lung chemischer Strukturen der Chemoinformatik-Toolkits Chemistry Development Kit
(CDK), RDKit, Indigo und des Python-based Informatics Kit for Analysing Chemical
Units (PIKAChU) pseudo-zufällig kombiniert. RanDepict kann auch die diverse Abde-
ckung des Merkmalsraums in einem Satz von chemischen Strukturabbildungen garantie-
ren, indem es den MaxMin-Algorithmus verwendet, um verschiedene Sätze von Darstel-
lungsmerkmalen auszuwählen, die intern als binäre Vektoren dargestellt werden. Auf diese
Weise kann RanDepict verschiedene Datensätze mit Darstellungen chemischer Strukturen
generieren, die für das Training von Deep-Learning-basierten OCSR-Modellen verwendet
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werden können, die robust sind und effektiv generalisieren können.

Die automatisierte Interpretation handgezeichneter chemischer Strukturen ist aufgrund
der Vielfalt der persönlichen Zeichenstile und der fehlenden Normierung eine anspruchsvol-
le Aufgabe. Obwohl die Trainingsdaten für den DECIMER Image Transformer keine hand-
gezeichneten Strukturen enthielten, wurde während der Entwicklung deutlich, dass die
Anwendung einige handgezeichnete chemische Strukturabbildungen interpretieren kann.
Es wurde ein Benchmark-Datensatz benötigt, um die Fähigkeit des Tools zur Interpre-
tation dieser Art von Strukturabbildungen systematisch zu bewerten. Daher wurde der
DECIMER-Datensatz für handgezeichnete Moleküldarstellungen erstellt. Der Datensatz
besteht aus 5088 manuell gezeichneten chemischen Strukturabbildungen, die zusammen
mit maschinenlesbaren Darstellungen der abgebildeten Moleküle veröffentlicht wurden.
Die Bilder wurden von 24 Freiwilligen der Westfälischen Hochschule in Recklinghausen,
Deutschland, gezeichnet.

DECIMER Segmentation und DECIMER Image Transformer wurden in die Webanwen-
dung DECIMER.ai integriert. DECIMER.ai bietet eine Benutzeroberfläche, die es Be-
nutzern ohne Programmierkenntnisse ermöglicht, chemische Informationen aus der wis-
senschaftlichen Literatur zu extrahieren. Nach dem Hochladen eines PDF-Dokuments
wird DECIMER Segmentation verwendet, um alle chemischen Strukturabbildungen zu
erkennen und zu segmentieren. Nach der anschließenden Verarbeitung der Bilder mit dem
DECIMER Image Transformer werden die Segmente und ihre entsprechenden SMILES-
Darstellungen angezeigt, und die Struktur wird in einen eingebetteten Editor für chemische
Strukturen geladen. Hier können sie bearbeitet werden, bevor die segmentierten Bilder und
maschinenlesbaren Darstellungen der dargestellten Moleküle heruntergeladen werden. Al-
ternativ können chemische Strukturabbildungen auch direkt hochgeladen werden. In die-
sem Fall wird der DECIMER Image Classifier, ein binärer Klassifikator, der in der Lage
ist, zwischen chemischen Strukturabbildungen und anderen Bildern zu unterscheiden, eine
Warnung aus, wenn es sich bei den Bildern nicht um chemische Strukturabbildungen han-
delt. Anschließend werden die Bilder mit dem DECIMER Image Transformer verarbeitet,
und die Strukturen werden wie oben beschrieben dargestellt. Bis heute ist die Weban-
wendung DECIMER.ai die einzige Open-Source-Anwendung, die die Segmentierung und
Interpretation von chemischen Strukturabbildungen aus der Literatur in einer umfassen-
den Benutzeroberfläche vereint.

Da die hier vorgestellte Arbeit darauf abzielt, chemische Informationen öffentlich zugäng-
lich zu machen, wurden die jüngsten Fortschritte in der Molekularinformatik, die durch
die Kombination von datengetriebenen Deep-Learning-Methoden und offen verfügbaren
chemischen Daten ermöglicht wurden, in einem Review-Artikel zusammengefasst. Der da-
tengegetriebene Fortschritt hängt von der Verfügbarkeit von Daten für das Training ab.
In den Bereichen, in denen in der Vergangenheit Daten verfügbar waren, haben datenge-
steuerte Technologien beeindruckende Ergebnisse erzielt. Beispiele sind die Fortschritte bei
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der Planung von Synthesen mit Hilfe von Transformer-Modellen, neue Ansätze zur Lösung
des Proteinfaltungsproblems oder Fortschritte bei der Entdeckung von Arzneimitteln auf
der Grundlage von Naturstoffen. Die im Rahmen dieser Arbeit entwickelten Anwendungen
zielen darauf ab, chemische Informationen öffentlich zugänglich zu machen, um in Zukunft
ähnliche Fortschritte in anderen Bereichen der Chemie zu ermöglichen.

Der Quellcode der Anwendungen, die während der Arbeit an dieser Dissertation entwickelt
wurden, ist unter freizügigen Lizenzen frei verfügbar. Alle Datensätze wurden gemäß den
FAIR-Datenstandards veröffentlicht, was bedeutet, dass sie auffindbar, zugänglich, inter-
operabel und wiederverwendbar (aus dem Englischen: findable, accessible, interoperable,
reusable, FAIR) sind und öffentlich zugänglich sind. Auf diese Weise können Forscher
oder andere Organisationen die Software und die Datensätze frei nach ihren Bedürfnis-
sen nutzen und anpassen. Da der Quellcode der Software öffentlich zugänglich ist, hat sie
das Potenzial, von Beiträgen und Vorschlägen der Nutzergemeinschaft zu profitieren. In
Zukunft kann die Anwendung DECIMER.ai um die Fähigkeit erweitert werden, textuel-
le Informationen zu verarbeiten. Darüber hinaus kann die hier vorgestellte Software zur
Extraktion von Wissen aus der chemischen Literatur in die Einreichungspipelines offener
Datenbanken integriert werden, wo ein menschlicher Kurator lediglich die Informationen
validieren muss. Die hier vorgestellte Arbeit ist ein Beitrag zur offenen Verfügbarkeit von
chemischen Daten und hat das Potenzial, sich in Zukunft weiterzuentwickeln.
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1 Introduction

In the scientific literature, chemical information is commonly published in human-readable
data formats like text and images [1]. As this information cannot be directly interpreted
by machines, it is inaccessible for automated processing. An example of information about
the chemical compound caffeine [2] in text and image formats as they are commonly found
in the scientific literature is given in Figure 1.

Figure 1: Exemplary information about a chemical compound [2] presented as it is com-
monly published in the scientific literature

The work presented within this thesis deals with the extraction of chemical information
from the scientific literature using deep learning methods. The focus of this thesis is the
extraction of molecular structures from images in the literature.

Extracting chemical structures from images in the chemical literature and translating
them into machine-readable representations requires multiple steps. The first step is to
recognise and segment the structures. Therefore, the first aim of this thesis is to develop a
deep learning-based segmentation tool for chemical structure depictions (Publication A).
Then, the images need to be processed using an Optical Chemical Structure Recognition
(OCSR) application that translates images of chemical structures into machine-readable
representations [3]. Accordingly, the second aim of this thesis is the further development
of the open-source OCSR application DECIMER (Deep lEarning for Chemical IMagE
Recognition) Image Transformer [4, 5] to enable the reliable automated interpretation
of chemical structure depictions (Publication E). This thesis also aims to combine the
segmentation and OCSR tools in a user interface application that enables the automated
extraction of chemical structures from the literature for users without a programming
background (Publication E).

The software developed during the work presented herein is based on deep neural network
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architectures and learns to process information based on the data they are trained on.
Diverse training data is necessary to develop a deep learning-based OCSR application
that works reliably on the various types of chemical structure depictions in the literature.
Therefore, the third aim of this thesis is to develop and implement a diversification strategy
for generating chemical structure depictions (Publication B).

All applications herein aim to make previously unavailable chemical information available
in structured data formats. To show how this positively affects the research based on data-
driven applications, the progress that has been enabled by combining the open availability
of chemical data and artificial intelligence in the field of molecular informatics is reviewed
(Publication D).

Hand-drawn chemical structure depictions are difficult to interpret for machines due to the
various individual drawing styles. In order to enable a systematic performance evaluation
of different OCSR methods on hand-drawn chemical structure depictions, this thesis aims
at creating a dataset of hand-drawn structure depictions (Publication C).

All applications and datasets developed during the work described herein have already
been made public. The source code of the applications is openly available under permissive
licenses. The datasets have been published following the FAIR data standards, meaning
they are findable, accessible, interoperable and reusable [6].

1.1 Representations of chemical structures

The extraction of chemical information from the literature includes the translation of
unstructured representations of chemical structures into machine-readable representations.
In cheminformatics, chemical structures are commonly represented as chemical graphs. A
graph is an abstract mathematical construct of elements and their connections [7]. The
elements are referred to as vertices or nodes, and the connections as edges. In the context
of a molecular structure, the atoms are represented by nodes and the bonds are represented
by edges [8].

Several commonly used chemical table file formats encode chemical graphs in a tabular
format. The core component of these file formats is a connection table which consists of
different blocks that contain information about the atoms and bonds in a given molecule
[9]. This way, chemical table files contain structured representations of chemical structures.

There is a variety of textual representations of chemical structures that encode the chem-
ical graph. The International Union of Pure and Applied Chemistry (IUPAC) has de-
veloped a system for naming organic [10] and inorganic [11] chemical compounds. Images
with depictions of chemical structures, IUPAC names and trivial names are representa-
tions designed to enable communication between chemists, but they are not meant to be
machine-readable. In the case of IUPAC names and structure depictions, they contain the
structural information in a complicated, encoded way, making the automated interpreta-
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tion difficult. In the case of trivial names, the structural information is not contained in
the name at all. For example, the name lysobacteramide A is used to refer to a natural
product that has been extracted from cultures of the bacterium Lysobacter enzymogenes
C3 [12].

The Simplified Molecular Input Line Entry System (SMILES) is a textual representation
that encodes molecular graphs in a machine- and human-readable manner [13]. The In-
ternational Chemical Identifier (InChI) [14] has been designed as another identifier that
can be interpreted by humans and machines that encodes the structural information. The
InChIKey is a hashed 27-character version of the InChI [15]. It is meant to be used for
indexing chemical databases with unique identifiers, and the molecular graph cannot be
restored from an InChIKey [16].

When processing text in an automated manner, tokenisation, the process of splitting
the input text into meaningful units (tokens), is a fundamental step [17]. For example,
meaningful tokens could be words or syllables when processing text is written in English.
When dealing with textual molecular representations, referring to structural units like
bonds and atoms as tokens make sense when dealing with textual molecular representa-
tions. The sensible tokenisation of SMILES and InChI strings can be difficult, leading to
the prediction of invalid structures or wrong syntax when using deep learning models with
tokenised textual chemical structure representations as input or output [18]. Consequently,
DeepSMILES [19] and SELF-referencIng Embedded Strings (SELFIES) [20] have been de-
veloped as molecular string representations that can be split into meaningful tokens so
that they only yield valid structures when being used with deep learning models. A study
that compared the performance of deep learning models on different tasks when trained
with SMILES, DeepSMILES or SELFIES found that the proportion of predicted invalid
structures is significantly reduced when using DeepSMILES and it vanishes completely
when using SELFIES. Nevertheless, the models trained using SMILES yielded the highest
proportion of accurate predictions in this case study [21].

Chemical structures are also commonly depicted as 2-dimensional bitmap images. Al-
though they follow a clear system that communicates the molecular structure to a human
reader, a machine cannot easily interpret the grid of pixel values representing the depicted
structure. The molecules are often depicted as Markush structures containing R-group
variables like ’R1’ or ’X’ linked to structural elements defined in separate labels or tables.
This way, one depiction can encode multiple molecular structures [22].

The representations of chemical structures in the chemical literature are intended for hu-
man interpretation. Structures are mostly referred to by their trivial names or sometimes
IUPAC names in the text and are depicted in images. An example of this is given in
Figure 2. Here, the breakdown of the prodrug Molnupiravir [23] is presented. The chem-
ical structures are presented as 2D depictions, trivial names (eg. Molnupiravir) or other
identifiers (eg. EIDD-1931). EIDD is an abbreviation for the Emory Institute for Drug
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Development. Hence, the molecular graph cannot be derived from the names without
retrieving further information.

Figure 2: Breakdown of the prodrug molnupiravir as an example of the representation of
chemical structures in the literature (image has been taken from [23]).

Molecular fingerprints are another common machine-readable encoding of molecular struc-
tures. A molecular fingerprint is a bit-vector where each position indicates the presence
or absence of a feature in the encoded molecule [24]. Substructure-key-based fingerprints
are binary vectors where each position represents a predefined structural element in the
molecule. The structural elements list differs for every type of fingerprint; hence, different
fingerprints are helpful for different applications [25]. Examples of substructure-key-based
fingerprints are the PubChem fingerprint (length: 881 bits) [26] and the Molecular Access
System (MACCS) fingerprint (length: 116 or 960 bits) [27], which is commonly used for
drug discovery and virtual screening [25]. In contrast to substructure-key-based finger-
prints, path-based or topological fingerprints are generated by determining the encoded
fragments following a path up to a given number of bonds from every atom. The frag-
ments are then hashed to allocate a position in the fingerprint. An example of a commonly
used path-based fingerprint is the Daylight fingerprint (length: 2048 bits). Circular fin-
gerprints follow a similar principle as path-based fingerprints. Still, instead of following
a linear path, the circular environment of each atom is analysed with a radius of a given
number of bonds [25]. The extended connectivity fingerprint (ECFP)[28], which is based
on the Morgan algorithm [29], is the most widely used type of circular fingerprint [25]. Like
substructure-key-based fingerprints, pharmacophoric fingerprints are based on a predefined
list of features. Still, these features are not necessarily substructures but can represent
3-dimensional information necessary to encode the activity against a given biological tar-
get [30]. There are various ways of representing molecular structures as bit-vectors, and
choosing the right one for specific applications can be difficult. To address this problem,
Sandfort et al. suggest the concatenation of multiple fingerprints. They have demon-
strated that the 71,375-dimensional bit-vector that results from the concatenation of 24
other fingerprints can be successfully used for quantitative structure-property relation-
ship (QSPR) and quantitative structure-activity relationship (QSAR) tasks [31, 32]. An
advantage of molecular fingerprints is their fixed size which facilitates processing them
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using neural networks which require inputs with fixed sizes [33]. Another application is
the determination of the similarity between molecules with metrics like the Tanimoto sim-
ilarity [34], the Dice similarity [35] and the Cosine similarity [36] based on fingerprints. For
example, the Tanimoto similarity between two bit-vectors A and B is defined as the ratio
of the intersection over the union of the two vectors [34]:

T (A,B) = |A ∩ B|
|A ∪ B|

= N1,A,B

N1,A + N1,B − N1,A,B
(1)

where N1,A,B is the number of bits equal to 1 in both vectors, N1,A is the number of bits
equal to 1 in the input vector A, and N1,B is the number of bits equal to 1 in the input
vector B. The resulting value lies in a range between 0 and 1 where 0 means that none of
the structural elements encoded in the fingerprints occurs in both molecules. In contrast,
a value of 1 means that all structural elements occur in both of them.

These metrics can, for example, be used to pick subsets from large sets of molecules that
represent the diversity of molecular structures in the original set. This can be done using
the MaxMin algorithm, which begins with initialising a subset with a single seed compound
from the larger set of molecules and removing this compound from the original set. In the
second step, the dissimilarity between each compound in the subset and the remaining
compounds in the original set is determined. The smallest dissimilarity values are retained
for each compound in the original set. In the third step, the molecule from the original
set with the largest retained dissimilarity value is moved to the subset. The second and
third steps are repeated until the subset has reached the desired size [37].

1.2 Machine Learning in chemistry

Machine learning systems can learn to solve specific tasks by inferring abstract rules and
patterns from given information. That means that these systems do not rely on hard-
coded rules to process information, but they learn to process information based on data
they are exposed to during a training process [38].

Machine learning methods can be categorised into supervised learning, unsupervised learn-
ing and reinforcement learning [39]. A supervised learning system learns to map a set of
input variables to a set of output variables to be used to process previously unseen in-
put variables in a desired way [40]. During training, the model’s parameters are modified
to minimise the resulting value of a loss function that describes the difference between
the predicted and the actual output values in the training data [41]. An example of a
supervised machine learning model is the multiple linear regression model whose parame-
ters are adapted to minimise the mean squared error loss of the predicted values [42]. In
contrast, an unsupervised learning system learns from given data without a set of target
variables [43]. For example, k-means clustering is a method that enables dividing a set of
data points into a given number of clusters by minimising the sum of the squared distances
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between the data points within a cluster and the geometric centre of the cluster. During
this procedure, the position of the cluster centres and the assignment of data points to the
clusters is modified step-wise until the sum of the squared distances converges [44]. Rein-
forcement learning means that an agent acts in a dynamic environment where it is either
penalised or rewarded for its actions. It learns to adapt its actions to maximise the reward
function [45]. An example that caught public attention is the system AlphaGo Zero, which
achieves superhuman performance in the game Go without having been exposed to any
human knowledge during training [46].

Deep learning is a specific area in the field of machine learning that uses deep neural
networks to solve specific tasks [47].In 1958, Frank Rosenblatt published the concept of
a Perceptron, an information processing system based on the idea of neural information
processing in the human brain [48]. The Perceptron, also called single-layer Perceptron, is
regarded as the simplest form of a neural network [49]. It is a binary classification system
that produces a result y by applying a threshold function with a given threshold ϕ to the
sum of the dot product of a vector of input values x and a vector of Perceptron weights w

and a constant bias b that is adapted during training [50]. The dot product x · w can be
described as the weighted sum of all input values xi with the weights wi. This is described
in Equation 2 and illustrated in Figure 3.

y =

1 if
∑N

i=1 wixi + b ≥ ϕ

0 if
∑N

i=1 wixi + b ≤ ϕ
(2)

Figure 3: Illustration of a binary classification with a single-layer Perceptron. A threshold
function is applied to the sum of a bias b and the dot product of a vector
x containing all input values and a vector w with the trained weights of the
model. Based on a threshold ϕ, the value 1 or 0 is returned.
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A Perceptron unit can be described as a neuron in a neural network architecture. Here, the
activation function applied to the dot product of the input vector x and the weight vector
w then determines the activation of this neuron. In the example above, the activation
function is a threshold function, but various activation functions can be applied [51]. For
instance, in contrast to the threshold function, which returns discrete values, a sigmoid
function fsig(x) maps the given input value to a continuous value range between 0 and
1 [52]:

fsig = 1
1 + e−x

(3)

Based on this information, the output y of a neuron with any activation function fa in a
neural network can be described as follows:

y = fa

(
N∑

i=1
wixi + b

)
(4)

Figure 4: Schematic illustration of how a neuron in a neural network produces a result by
applying an activation function fa to the sum of a bias b and the dot product of
a vector x containing all input values and a vector w with the trained weights
of the neuron (see Equation 4).

When Perceptron units are arranged in multiple layers, they form a multilayer Perceptron
(see Figure 5). In this fully connected neural network architecture, the input layer pro-
cesses an input vector x, passing each value on to every neuron in the first hidden layer.
Here, each neuron processes the given information as described in Equation 4. Each value
from the resulting output vector h is fed to each neuron in the next hidden layer. This
procedure continues until the information has been fed through the complete network,
yielding a vector y of output values [52].
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Figure 5: Schematic illustration of a multilayer Perceptron

In a feed-forward network like the multilayer Perceptron, information is passed forward
from the input layer to the output layer. In a recurrent neural network (RNN), information
is additionally passed from hidden layers to previous ones, to themselves, or to separate
context units that pass it on to hidden layers. This enables RNN to process sequential data
like time series or language [53]. An RNN is capable of mapping an input sequence x to an
output sequence y by processing them using a set of hidden layers. Every output value yt

at a given time t depends on the hidden state st which depends on the corresponding input
value xt and the previous hidden state which again depends on the previous hidden state
st−1 and the previous input xt−1. This way, every output yt indirectly depends on the
current input xt and every previous input. The weight matrices that are used to compute
the hidden states from the inputs (U), the output from the hidden state (V ), and the next
hidden state based on the previous one (W ) are the same at every time step [54]. The
information processing in an RNN is illustrated in Figure 6.
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Figure 6: Representation of the structure of a recurrent neural network (left) and the same
representation unfolded in time (right). The input sequence x is mapped to the
output sequence y. Every output yt at the time t depends on the corresponding
hidden state st, which depends on the current input xt and the previous hidden
state st−1. The weight matrices U , W and V are the same at every time step [54].

In a bidirectional RNN, the hidden states s are split into two independent components:
the forward states, which are influenced by the current input and the previous hidden
state and the backward states, which are influenced by future hidden states (Figure 7).
This way, every output value is influenced by previous and future hidden states, leading
to increased performance compared to conventional RNN [55].

Figure 7: Representation of a bidirectional recurrent neural network unfolded in time. The
input sequence x is mapped to the output sequence y. Every output yt at the
time t depends on the forward hidden state sf,t and the backward hidden state
sb,t. sf,t depends on the current input xt and the previous forward hidden state
sf,t−1 and sb,t depends on the current input xt and the next backward hidden
state sb,t+1. The weight matrices U , U ′, W , W ′, V and V ′ are the same at every
time step [54].
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Unfortunately, while the immediate context of an element in a sequence can be modelled
well using RNNs, in practice, RNN are not capable of learning long-term dependencies [56].
To address this problem, Hochreiter and Schmidhuber have introduced the concept of
Long Short-Term Memory (LSTM) networks [57]. Each cell in an LSTM network has an
input gate that decides which information is saved in the cell state and an output gate
that determines which information output is passed on based on the cell state [58]. A
forget gate was later added to the LSTM cell to improve the selection of information
passed on through the network. The forget gate decides what information is removed
from the current cell state [59]. Gated Recurrent Unit (GRU) cells have been introduced
to reduce the increased computational complexity of information processing in an LSTM
cell compared to a conventional RNN cell [60]. A GRU cell has two gates: an update gate
to decide what information is passed on and a forget gate to determine what information
is removed [58].

Typically, an RNN-based machine translation system follows an encoder-decoder archi-
tecture. The input sequence is processed using a bidirectional RNN, and the last output
is fed as a context vector to every node in a bidirectional RNN decoder which produces
the output sequence. This leads to a performance loss with an increasing input sequence
length as more information needs to be compressed in a fixed-length context vector. To
address this problem, Bahdanau et al. introduced the concept of attention. Instead of
using the output of the last encoder RNN cell, the context vector defined is the weighted
sum of the attention weights and the output values y of the encoder at every point in
time. The attention weights are parameters that are adjusted during training. This way,
the model has access to all relevant aspects of the input sequence when generating each
part of the output sequence and can focus on certain parts more than others based on the
current state [61].

In the field of chemical information extraction, recurrent neural networks have been used in
chemical named entity recognition (NER). For example, the application ChemListem uses
a bidirectional LSTM network to recognise chemical names in text sequences [62]. Another
application is the design of new drugs. Segler et al. were able to demonstrate that an
LSTM network can be used to generate SMILES representations of molecules with desired
properties and biological activities that were not included in the training data [63]. Rajan
et al. have used an encoder-decoder network with GRU cells and an attention mechanism
to translate IUPAC names to SMILES representations and vice versa with their application
SMILES to IUPAC Translator (STOUT) [64]. Winter et al. conducted similar research
when publishing an RNN-based encoder-decoder architecture for the translation of IUPAC
names to SMILES representations of chemical structures. The latent feature vector that is
produced by the encoder can be utilised as a meaningful chemical representation for QSPR
tasks and is referred to as a continuous and data-driven molecular descriptor (CDDD)[65].

In 2017, the Google Brain team introduced a novel architecture for processing sequences
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- the transformer [66]. The transformer model is an encoder-decoder based on attention.
The encoder and the decoder block consist of multiple stacked encoders or decoders. Each
encoder block consists of a self-attention layer and a feed-forward network. Each decoder
block consists of a self-attention layer, an encoder-decoder attention layer and a feed-
forward network. As there is no recurrence in the transformer architecture, a positional
encoding is added to the input embeddings at the beginning of the encoder and the decoder
stacks. Each attention and feed-forward layer in the encoder and the decoder block has
a residual connection around it which is used with a given dropout probability during
training. The model architecture is depicted in Figure 8.

Figure 8: Transformer model architecture according to Vaswani et al. [66]

The self-attention layers in the stacked encoder blocks form a mechanism that defines
the influence of all tokens in the input sentence on the encoding of a specific token. For
example, while encoding the SMILES string ’CC(O)C’ with character-based tokenisation
in the first encoder block, it would make sense to consider the opening and closing brackets
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while encoding the ’O’ as only all three tokens together represent a hydroxy group. The
attention that is computed here is referred to as scaled dot product attention. For each
element in the input of a self-attention layer, a query vector q, a key vector k and a value
vector v are generated by multiplying the input with one of three matrices (W Q, W K ,
W V ) whose values are determined during training. Then, for each element in the input,
a score for every other element in the input is computed. Therefore, the dot products of
the query vector of the element being encoded and the key vector of every other element
are computed and divided by the square root of the dimension of the key vector

√
dk.

Using the softmax function, the resulting scores are normalised to a value range between
0 and 1. To compute the scaled dot-product attention, each normalised score is multiplied
with the corresponding value vector and the values of the resulting vector are summed
up. This way, while processing one element in the input of the self-attention layer, an
attention value for itself and every other element is generated.

In the practical implementation, these operations are not executed one by one. Still, the
vectors for keys, queries and values are summarised in the matrices Q, K and V , and the
self-attention is determined as described in Equation 5 [66]:

scaled_dot_product_attention(Q,K,V ) = softmax

(
QKT

√
dk

)
V (5)

At every step, the scaled dot-product attention is computed multiple times in parallel,
which is why it is referred to as a multi-headed attention mechanism. Each attention
head can learn to attend to different relationships in the input sequence. For example, in
the SMILES representation of isopropanol above, while encoding the ’O’, one attention
head might attend to the brackets that define the branched character of the hydroxy group
(’CC(O)C’) while another one might attend to the ’C’ that represents the connected carbon
atom (’CC(O)C’). The resulting attention matrices are concatenated and multiplied with
a different matrix W O whose values are determined during training. The encoder-decoder
attention in the decoders works like the above-described multi-headed scaled dot-product
attention. The only difference is that it takes key and value matrices K and V from the
last encoder and the query matrix from the previous layer in the decoder stack. A linear
feed-forward network and a softmax layer then process the output of the last decoder. This
produces a vector of the dimension of the output vocabulary and contains values between
0 and 1, representing prediction probabilities for each possible output token. The token
with the highest predicted probability is returned. At every time step, a token is predicted
this way. The already predicted tokens are then the input for the decoder stack at the
next step. Here, it is important that the decoder can only attend to predicted outputs at
previous time steps. Therefore, future positions are masked in all attention layers in the
decoders. [66]

Since the concept of transformers has been published, they have replaced the previous
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RNN-based models in the field of natural language processing (NLP) [67]. Models based
on the concept of Bidirectional Encoder Representations from Transformers (BERT) [68]
achieve state-of-the-art results in a variety of NLP tasks [69]. Large language mod-
els (LLMs) like OpenAI’s GPT-3 (Generative Pretrained Transformer 3) [70] or Meta’s
LLaMA (Large Language Model Meta AI) [71] can be used for a variety of text generation
applications [72].

In chemical literature mining, transformers have been used to extract knowledge from
text inputs. For example, a BERT-based model is used for the chemical NER in the
literature mining application ChemDataExtractor 2.1 and can recognise organic and in-
organic chemical names [73]. The applications BatteryDataExtractor and MatSciBERT
use BERT models to extract information from different domains of material science [74,
75]. Some deep learning-based applications that translate images of chemical structures
into machine-readable representations use a transformer model as their decoder (see Sec-
tion 1.3).

In this work, a transformer model is used as a decoder in the application DECIMER Image
Transformer (see Publication E). Additionally, Publication D describes the usage of trans-
formers for the prediction of reaction outcomes [76], yields [77], retrosynthesis planning [78]
and other use-cases in the field of synthetic chemistry.

In the field of computer vision and image processing, a different class of neural networks
is commonly used - convolutional neural networks (CNN). A CNN is a partially con-
nected feed-forward network that typically consists of convolutional layers, pooling layers
and fully connected layers [79]. The first convolutional neural network architecture, the
Neocognitron, was introduced by Fukushima in 1988 [80].

In theory, images can be processed using a multilayer Perceptron, but the resulting high
number of weights leads to a computationally expensive, inefficient system. For example,
processing information from a grayscale input image with a resolution of 64 x 64 pixels to a
single hidden layer of the exact dimensions as the input image would result in (64 ∗ 64)2 =
16,777,216 weights. If every neuron is only connected to 5 x 5 pixels from the previous layer,
the amount of weights in the example above is decreased to (5 ∗ 5) ∗ 64 ∗ 64 = 102,400.
Following the assumption that image features are relevant independent of their position
in the image, these weights can be kept constant for all connections. In the example,
the number of unique weights that need to be trained is then reduced to 5 ∗ 5 = 25. A
convolutional layer is a partially connected layer that implements this type of connection.
The effect resembles a filter window or kernel that slides over the image and defines the
input of the neurons in the next layer based on fixed weights. The kernel shape, the
number of kernels, and the stride (the kernel’s step size to slide over the input image) are
important hyperparameters that define a convolutional layer [81]. For example, processing
an image with the shape 128 x 128 x 3 is processed with a convolutional layer with a kernel
shape of 4 x 4 x 3, a stride of 1 and 10 convolutional kernels would result in a feature map
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with the shape 128 x 128 x 10. In this case, padding must be added to the original image
to process pixels at the edge of the input image. Splitting the feature map along the third
axis results in 10 images with the shape of the original image, where certain features are
included differently based on the kernel weights.

The application of a convolutional layer to a grayscale image (512 x 512 pixels) with a 5 x 5
kernel and a stride of 1 is illustrated in Figure 9. In this example, the kernel weights
are defined as 1 along a diagonal line, and all other weights are defined as 0. This way,
elements with the same diagonal orientation in the original image are represented more
than others in the convolved image.

Figure 9: Illustration of a 2-dimensional convolution of an image that contains a depiction
of the structure of caffeine.

Pooling layers are downsampling layers that are typically placed after the convolutional
layers. Their filter size and stride characterise them. The filter size defines the size of
a filter that is moved over a given feature matrix. The stride is the step size that is
used while moving the filter. Then, depending on the type of pooling, only one signal is
returned for every position of the filter in the input. For example, max pooling returns
only the highest value for each filter position. The purpose of pooling is the reduction of
the complexity of information without losing essential features before passing it on to the
next layer [82]. An exemplary representation of max and average pooling is presented in
Figure 10.

Typically, CNNs are built using multiple blocks of convolutional layers followed by a
pooling layer. This way, the network can learn to recognise low-level image features
like lines or corners and combine them into representations of high-level features like
bonds, atoms or characters in a chemical structure depiction. Deep learning-based image
captioning systems combine CNN encoders with RNN or transformer decoders to generate
text based on images. Here, the feature map generated based on the image is processed
by a sequence model to generate text [83].

The OCSR application Img2Mol uses three blocks of two or three convolutional layers
followed by max pooling and a fully connected feed-forward network to generate a feature
map based on chemical structure depictions. This feature map is then translated to a
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Figure 10: Illustration of max pooling and average pooling with a kernel size and stride
of 2 applied to an exemplary matrix (above) and the convolved image from
Figure 9 (below).

SMILES string using an RNN decoder [65, 84] (see Section 1.3).

In chemistry, CNNs have been widely used in the field of chemical literature mining.
These developments are described in Section 1.3. Some other applications are the detec-
tion of ligand-binding sites in visualised 3-dimensional protein structures [85]. A token
in a sequence can be represented as a binary vector with a single high bit, a so-called
one-hot vector. The vector typically has the size of the token vocabulary, and the 1 en-
codes which token is represented by the vector [86]. One-hot-encoded SMILES strings
have been used as a binary matrix input for CNNs to determine glass transition tempera-
tures of polymers [87], the identification of functional substructures [88] and the prediction
health effects of aerosols [88]. This work uses the convolutional neural network architecture
EfficientNetV2 [89] as the encoder of the updated DECIMER Image Transformer model
presented in Publication E.

Another application of CNNs is instance segmentation. Here, every pixel of every instance
of an object in a given image is assigned a separate categorical label [90]. During the work
on this thesis, the application DECIMER Segmentation which can segment chemical struc-
ture depictions in the scientific literature, has been developed (see Publication A). DEC-
IMER Segmentation uses the Mask Region-based Convolutional Neural Network (Mask
R-CNN) architecture. The Mask R-CNN semantic segmentation workflow begins with
generating a feature map based on a given image using a CNN. Then, an additional CNN,
the region proposal network, generates the proposed region in the feature map that con-
tains information about the objects to be segmented. Based on these region proposals and
the feature map, Mask R-CNN generates a bounding box, a mask and a class label for
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each instance of a segmented object. Here, a mask is a binary matrix with the same shape
as the original image where the value 1 labels a pixel as part of the object, while 0 labels
the corresponding pixel as not part of the object [91].
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1.3 Optical chemical structure recognition

The translation of depictions of chemical structures into machine-readable representations
is commonly referred to as Optical Chemical Structure recognition (OCSR) [3, 92]. The
first OCSR software application Kékulé was published in 1992 [93]. Until the first deep
learning-based OCSR tool was published in 2019 [94], most OCSR tools approached the
task by applying a hard-coded algorithm to the given images [3]. These rule-based tools
follow a pre-defined workflow that assembles the molecular graph based on detected lines
or vectors and text elements in the binarised image.

To better illustrate this process, this paragraph describes the workflow of the first open-
source OCSR tool OSRA that was published in 2009 [95]. First, the input image is con-
verted to grayscale and then binarised. Subsequently, the region in the image that con-
tains the chemical structure is determined based on the proportion of black pixels and
the dimensions and the height-to-width ratio of the resulting region. Then, an anisotropic
smoothing algorithm is applied to reduce noise. The thickness of each line in the image
is reduced to one pixel using a thinning algorithm. The image is then vectorised. Specific
control points are interpreted as atoms based on a set of rules. The vectors that con-
nect these control points are accordingly interpreted as bonds. Text elements representing
atom or superatom labels or charges are resolved using OCR. The corresponding atoms
are labelled as aromatic if a circle is detected inside a ring structure. Similarly, if multiple
lines are arranged in parallel within a certain distance, they are interpreted as double or
triple bonds and the bond order is modified accordingly. The 75th percentile of all bonds
is interpreted as the average bond length in the molecule. When three or more elements
are detected within the average bond length and a straight line can be drawn through their
centres, they are interpreted as a dashed bond. If the thickness of a line of the average
bond length increases linearly, it is interpreted as a wedge bond. A set of rules is in place
to identify intersecting lines where the intersection does not represent an atom. Finally,
the molecular graph is assembled in a connection table based on the gathered informa-
tion. Here, known superatom labels are inserted based on the previously recognised text
labels. Every input image is processed three times in different resolutions, and the best
result is picked based on a confidence estimate generated using an empirically determined
function [95].

Apart from OSRA, two more rule-based open-source systems (Imago [96] and Molvec [97])
have been published. Additionally, there is a row of tools and methods that have been
described in publications but are only available as commercial tools, like the Chemical
Literature Data Extraction (CLiDE) project [98, 99] and ChemOCR [100] or completely
unavailable [101–103].

From 2019 on [94], several deep learning-based OCSR methods have been published. Most
generate a compressed feature map from a given input image using an encoder network
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and then generate a molecular string representation from that feature map with a decoder
network (see Figure 11 a). Some other approaches are based on the segmentation of
different structural elements in a given chemical structure depiction and the subsequent
assembly of a molecular graph based on the segmented elements (see Figure 11 b). An
overview of deep learning-based OCSR methods is presented in Table 1.

Figure 11: Schematic overview of the two approaches used by deep learning-based OCSR
applications. a) Generation of a feature map with an encoder which is then
decoded into a string representation of the depicted molecule. b) Segmentation
of structural elements in the structure depiction and subsequent assembly of
the molecular graph.

Staker et al. were the first to propose an encoder-decoder architecture where an image
with a chemical structure depiction is processed with a CNN architecture to generate a
state vector which is then processed by an LSTM network with an attention mechanism
to generate SMILES strings [94]. The method is referred to as molecular structure ex-
traction from documents using deep learning (MSE-DUDL). The model has been trained
on images from the United States Patent and Trademark Office (USPTO) and artificial
depictions that have been generated using Indigo [104]. The Publication also presents the
segmentation of chemical structure depictions based on the U-Net architecture [105]. The
source code and the trained model weights are not publicly available.
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Table 1: Overview of deep learning-based OCSR applications

Application Approach
Reconstructed
molecular
representation

Availability,
license

MSE-DUDL
Encoder-decoder
architecture

SMILES
Closed-source,
unavailable

ChemGrapher
Segmentation of
structural elements
and graph assembly

Internal graph
representation

Open-source,
no license

Image2SMILES
Encoder-decoder
architecture

SMILES
Closed-source,
unavailable

DECIMER Image
Transformer (1.0)

Encoder-decoder
architecture

SELFIES
Open-source,
MIT

Img2Mol
Encoder-decoder
architecture

SMILES
Open-source,
CC BY-NC 4.0

MICER
Encoder-decoder
architecture

SMILES

Open-source,
MIT,
model weights
unavailable

ABC-Net
Segmentation of
structural elements
and graph assembly

Internal graph
representation

Closed-source,
unavailable

ChemPix
Encoder-decoder
architecture

SMILES
Open-source,
Apache 2.0

SwinOCSR
Encoder-decoder
architecture

DeepSMILES
Open-source,
no license

MolMiner
Segmentation of
structural elements
and graph assembly

Internal graph
representation

Closed-source,
restricted access
for registered users

MolScribe
Segmentation of
structural elements
and graph assembly

Internal graph
representation

Open-source,
MIT

ChemGrapher uses a different approach by splitting the OCSR workflow into two tasks:
semantic segmentation and classification. First, the semantic segmentation step deter-
mines the position of all atoms, bonds and charges in the input image. This is done
using a Dense Prediction CNN based on dilated convolution [106]. In the second step, all
segmented elements are labelled with a specific atom, bond and charge type using three
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classification networks. This information is then used to assemble the chemical graph.
The developers of ChemGrapher use the cheminformatics library RDKit to generate the
training data, which requires images where every pixel is labelled [107]. The source code
of the application and the trained model weights are publicly available [108].

Image2SMILES uses an encoder based on the CNN architecture ResNet-50 [109] and a
transformer decoder to generate strings with a modified SMILES syntax (FG-SMILES)
based on chemical structure depictions [110]. At the time of publication, the capability
to read R-group labels was an outstanding factor. The training data generator, which is
based on the depiction functionalities of RDKit, is openly available [111]. Still, the source
code of the application itself and the trained model weights have not been published.

DECIMER Image Transformer (1.0) uses a pre-trained EfficientNetV1 B-3 [112] encoder
and a Transformer decoder for the translation of chemical structure depictions into SMILES
strings. The open-source tool has been trained on pairs of SELFIES and structure de-
pictions generated using the cheminformatics library Chemistry Development Kit (CDK)
[113] with the application of mild image augmentations. This version of DECIMER Image
Transformer yielded 89 % of perfect predictions on the in-domain test data that includes
chiral molecules and ions but is not capable of interpreting R-group variables in Markush
structures [5]. All datasets, the source code, and the DECIMER Image Transformer model
weights are publicly available [114].

Clévert et al. trained a CNN encoder to generate the previously mentioned CDDD based
on images of chemical structures [84]. In combination with the decoder from the previ-
ous work [65], the resulting system Img2Mol is capable of translating images of chemical
structures to SMILES strings. The model has been trained on images with chemical
structure depictions that have been generated using RDKit [115], Indigo [104] and the pro-
prietary application OEChem from OpenEye [116]. As the CDDD cannot encode chirality
or Markush structures [65], Img2Mol cannot translate images containing these features.
The source code and the trained model weights are openly available for non-commercial
usage [117], but the training data generation pipeline is unavailable.

The Molecular Image Captioner (MICER) is based on a CNN encoder and an LSTM
network with an attention mechanism as a decoder for the generation of SMILES strings
from structure depictions. The structure depictions used to train the model have been
generated using RDKit [115] and Indigo [104]. The source code of the implementation of
the model is openly available [118], but the trained model weights have not been published.

The Atom and Bond Center Network (ABC-Net) is a fully convolutional neural network
with skip connections. Based on a chemical structure depiction, it generates multiple
heatmaps that describe the position and type of the atoms and bonds in the image as
well as associated properties. The training data has been generated using Indigo [104]
and RDKit [115]. The molecular graph is then assembled based on the elements that are
represented in the heatmaps [119]. The source code and the model weights of ABC-Net

20



are not publicly available.

ChemPix is an OCSR model that has been specifically developed for the translation of
hand-drawn chemical structure depictions. The model architecture is based on a CNN
encoder and an LSTM decoder. It has been trained on pairs of images of chemical structure
depictions and the corresponding SMILES representations of the depicted molecules. The
developers of ChemPix have created an image augmentation pipeline for the training
data so that the structure depictions generated with RDKit [115] appear hand-drawn-
like, although they have been generated artificially. The usage of ChemPix is limited to
molecules that only contain carbon and hydrogen atoms [120]. The source code and the
trained model weights are openly available under a permissive license [121].

Xu et al. suggested an encoder-decoder architecture based on a Swin Transformer [122] and
a Transformer decoder to generate DeepSMILES based on images of chemical structures.
The resulting tool SwinOCSR has been trained on images of chemical structures generated
using the CDK and performs well on this specific type of depiction. Still, according to the
authors, it tends to fail on images of chemical structures published in the literature [123].
The source code and the trained weights of the model are publicly available [124].

MolMiner combines multiple deep learning-based segmentation models with OCR to detect
and recognise bonds and labels in a depicted molecule. These detected elements and their
relative positions are then used to reconstruct the molecular graph. Compared to most
other OCSR tools, MolMiner can process whole document pages and segment the chemical
structure depictions before translating them into a machine-readable representation [125].
The training data has been generated using RDKit [115]. The user interface application
is available under a restrictive license and cannot be used to process large data batches.
The source code and the models are not openly available.

Like SwinOCSR, MolScribe uses an encoder-decoder architecture based on a Swin Trans-
former encoder and a Transformer decoder, but it predicts atom labels and their coor-
dinates. A second feed-forward network predicts the bond between every pair of atoms.
This way, MolScribe can recover the chemical graph based on depicted molecules. The
training data is a mixture of data collected from patent data published by the USPTO
and artificially generated depictions created using Indigo [104]. The generation of the co-
ordinates based on the image enables the re-depiction of the resolved molecule in the same
way it is depicted in the original image, which facilitates the assessment and correction of
the result by a human curator [126]. The source code and the trained models are publicly
available under a permissive license [127].
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1.4 Scope of this thesis

Typically, chemical information is published in the form of unstructured, human-readable
data formats such as text and images. This thesis aims to contribute to the extraction
of chemical information from the scientific literature and the recovery of this information
in structured data formats using deep learning. The main focus is extracting information
from image formats, i.e. the segmentation and recognition of chemical structure depictions
in the literature.

Machine learning-based, artificially intelligent applications are becoming more and more
important in the field of chemistry. Data-driven applications can only be implemented if
data is available that they can learn from. To elucidate the importance of openly available
chemical data, the recent advances in molecular informatics made possible by data-driven
applications have been reviewed as a part of this thesis (see Publication D).

The tool DECIMER Segmentation has been developed to segment chemical structure
depictions from the printed literature. Currently, it is the only deep learning-based open-
source application that fulfils this purpose (see Publication A). Additionally, the OCSR
application DECIMER Image Transformer has been further developed, has reached state-
of-the-art results, and has been published along with the DECIMER Image Classifier, an
application for the classification of images that contain chemical structure depictions. All
three components have been integrated into the DECIMER.ai web application, the first
open-source platform for extracting chemical structures from the printed literature (see
Publication E).

The high performance that DECIMER Image Transformer achieves is due to the diversi-
fication of the training data implemented in the form of the chemical structure generation
tool RanDepict that has been developed as part of this thesis. RanDepict can generate
sets of chemical structure depictions with diverse depiction features and has mechanisms
implemented to ensure the diversity of the generated datasets (see Publication B).

The DECIMER hand-drawn molecule image dataset is the first openly available diverse
set of hand-drawn chemical structure depictions for evaluating the performance of OCSR
applications. The dataset comprises 5088 hand-drawn chemical structures and has been
published following the FAIR data standards.

All software applications and datasets that have been developed during the work on this
thesis are openly available under permissive licenses. As a result, other researchers or
organisations are able to use and adapt them according to their needs. The software is
designed to be used without further modifications but can be extended if necessary. All
publications in this cumulative thesis have been published as open-access articles.

22



1.4.1 Achievements of data-driven applications in chemistry

The main focus of this thesis is extracting chemical information from the scientific litera-
ture to make it available in structured, machine-readable data formats. The motivation for
making chemical information publicly accessible in structured formats is described in Pub-
lication D, where the progress driven by machine learning-based applications in the field of
molecular informatics in recent years is described. The Publication describes the success
of AlphaFold with the prediction of 3-dimensional protein structures, breakthroughs in the
development of synthesis prediction and retrosynthesis planning systems based on Trans-
former models and AI-based progress in the field of natural product-based drug discovery.
These achievements have only been possible due to the application of data-driven deep
learning methods in areas where data has been openly accessible. The progress in chemical
literature mining is reviewed as a technology that may enable more data-driven progress
in the future. Additionally, openly available toolkits, databases and repositories, and open
research management initiatives that support the FAIR data standards are presented.

1.4.2 Development of an application for the segmentation of chemical structure
depictions

A fundamental step for extracting information about chemical structures from the chemical
literature is the recognition and segmentation of chemical structure depictions on whole
pages from scanned documents or articles. Publication A describes the development and
performance evaluation of DECIMER Segmentation, a deep learning-based application
for segmenting chemical structure depictions from the scientific literature. At its core,
DECIMER Segmentation uses a Mask R-CNN segmentation model to generate binary
matrices that describe the position of the chemical structures on the processed page. A
mask expansion algorithm that traces all pixels that belong to the depictions has been
implemented to refine the generated masks. The Mask R-CNN model has been trained on
9992 manually annotated chemical structures on 1820 pages of articles from the Journal
of Natural Products but has been shown to perform well on other publisher formats as
well (see Publication A). As DECIMER Segmentation is the only openly available deep
learning-based solution to this problem, it represents a considerable contribution to the
field of chemical literature mining.

1.4.3 Improvement of the OCSR application DECIMER Image Transformer

To improve the performance of the OCSR application DECIMER Image Transformer [5],
the model architecture and the training data have been improved (see Publication B and
E). The previous model has been replaced with a fully trainable encoder-decoder model
based on an EfficientNetV2-M [89] encoder and a Transformer [66] decoder. Additionally,
the chemical structure generation application RanDepict has been developed (see Publi-
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cation B) to generate large sets of diverse chemical structure depictions to train the model
with. Previous versions had been trained on depictions rendered with the default settings
of the depiction functionalities of the CDK. RanDepict makes use of all available adjustable
depiction parameters of the cheminformatics toolkits CDK [113], RDKit [115], Indigo [104]
and the Python-based Informatics Kit for Analysing Chemical Units (PIKAChU) [128]
to generate diverse training data. Over time, more and more features have been added
to the training data to improve the results of DECIMER Image Transformer models that
are trained on it. For example, generating sets of Markush structures based on given
sets of molecules and their diverse depictions has led to DECIMER Image Transformer
being capable of interpreting depictions with different types of R group variables. The lat-
est version of DECIMER Image Transformer has been trained on more than 450 million
pairs of chemical structure depictions and the corresponding SMILES representations.
It yields very competitive results in the comparative performance analysis presented in
Publication E. It is a reliable and robust open-source application for translating chemical
structure depictions into machine-readable representations.

1.4.4 Creation of a benchmark dataset for hand-drawn chemical structure depictions

During the development of DECIMER Image Transformer, it became apparent that the
models trained on depictions generated with RanDepict are partially capable of inter-
preting hand-drawn chemical structure depictions. However, no hand-drawn structures
are included in the training data. As no diverse set of hand-drawn chemical structure im-
ages was available to evaluate the performance systematically, the DECIMER hand-drawn
molecule image dataset was created in collaboration with 24 volunteers from the West-
phalian University of Applied Sciences Recklinghausen, Germany. The dataset consists of
5088 hand-drawn chemical structures. It follows the FAIR data standards and is openly
available as a contribution to the field of hand-drawn OCSR.

1.4.5 Creation of a platform for the extraction of chemical structure information
from the literature

After developing robust solutions for the segmentation and the interpretation of chemical
structure depictions in the printed literature, the next step was their integration into a
chemical literature mining system with a graphical user interface. This has been imple-
mented by developing the DECIMER.ai web application described in Publication E. This
platform makes the previously developed applications DECIMER Segmentation and DEC-
IMER Image Transformer accessible to a larger group of end-users because operating it
does not require programming skills. Users can load a Portable Document Format (PDF)
document; all chemical structures are automatically segmented and interpreted. The re-
solved SMILES representations of the depicted molecules are shown and loaded into an
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integrated molecular structure editor. Here, they can be edited before downloading the
segmented images and the chemical table files. This enables a human curator to make
adjustments if necessary. A user can alternatively directly upload chemical structure de-
pictions to generate machine-readable representations. The DECIMER Image Classifier,
capable of distinguishing between chemical structure depictions and non-chemical images,
has been developed and integrated into DECIMER.ai to produce a warning when users
upload non-chemical images. As an open state-of-the-art platform for extracting chemical
structures from the scientific literature, DECIMER.ai contributes significantly to the field
of chemical literature mining.
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2 Publications

2.1 Publication A: DECIMER-Segmentation: Automated extraction of
chemical structure depictions from scientific literature

Rajan, K.1, Brinkhaus, H.O.2, Sorokina, M.3, Zielesny, A.4, Steinbeck, C.5

J. Cheminform. 13, 20 (2021)

DOI: 10.1186/s13321-021-00496-1

This publication has been accepted as a part of Kohulan Rajan’s cumulative dissertation
(publication equivalence value: 1.0).

Table 2: Author contributions for Publication A

Author No 1* 2* 3 4 5
Conceptual research design x x x x x
Planning of research activities x x x x
Tool development (Back-end) x x
Web tool development (Front-end) x
Data collection x x
Data analysis and interpretation x x
Manuscript writing x x x x x
Suggested publication equivalence value 1.0
*underlined author numbers refer to involved doctoral students; asterisks mark equal contributions
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SOFTWARE

DECIMER-Segmentation: Automated 
extraction of chemical structure depictions 
from scientific literature
Kohulan Rajan1†, Henning Otto Brinkhaus1†, Maria Sorokina1, Achim Zielesny2 and Christoph Steinbeck1* 

Abstract 

Chemistry looks back at many decades of publications on chemical compounds, their structures and properties, 
in scientific articles. Liberating this knowledge (semi-)automatically and making it available to the world in open-
access databases is a current challenge. Apart from mining textual information, Optical Chemical Structure Recogni-
tion (OCSR), the translation of an image of a chemical structure into a machine-readable representation, is part of 
this workflow. As the OCSR process requires an image containing a chemical structure, there is a need for a publicly 
available tool that automatically recognizes and segments chemical structure depictions from scientific publications. 
This is especially important for older documents which are only available as scanned pages. Here, we present DECI-
MER (Deep lEarning for Chemical IMagE Recognition) Segmentation, the first open-source, deep learning-based tool for 
automated recognition and segmentation of chemical structures from the scientific literature. The workflow is divided 
into two main stages. During the detection step, a deep learning model recognizes chemical structure depictions 
and creates masks which define their positions on the input page. Subsequently, potentially incomplete masks are 
expanded in a post-processing workflow. The performance of DECIMER Segmentation has been manually evaluated 
on three sets of publications from different publishers. The approach operates on bitmap images of journal pages to 
be applicable also to older articles before the introduction of vector images in PDFs. By making the source code and 
the trained model publicly available, we hope to contribute to the development of comprehensive chemical data 
extraction workflows. In order to facilitate access to DECIMER Segmentation, we also developed a web application. 
The web application, available at https ://decim er.ai, lets the user upload a pdf file and retrieve the segmented struc-
ture depictions.

Keywords: Deep learning, Image Segmentation, Optical Chemical Structure Recognition, Neural Networks, Chemical 
data extraction

© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material 
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material 
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Introduction
Chemical information is communicated as text and 
images in scientific publications [1]. These data formats 
are not intrinsically machine-readable and the manual 

extraction of chemical information from the literature is 
a time-consuming and error-prone procedure [2]. Hence, 
the increasing amount of chemical information being 
published creates a demand for automated chemical 
information extraction methods [3].

Over the course of the last three decades, there has 
been an active development in the field of Optical 
Chemical Structure Recognition (OCSR). OCSR is the 
translation of an image of a chemical structure into a 
machine-readable representation [4]. Most OCSR tools 
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are only capable of processing images with pure chemi-
cal structure depictions. Consequently, an automated 
segmentation of chemical structures from surrounding 
document information (text, tables etc.) is desirable. Pre-
vious approaches for this task are briefly described in the 
following paragraphs.

The open-source OCSR tool OSRA was published with 
a rule-based page segmentation algorithm. This mecha-
nism identifies a chemical structure depiction based on 
the dimensions of a rectangular bounding box around a 
region of interest and the ratio of black and white pixels 
within the bounding box [5].

The open-source tool ChemSchematicResolver (CSR) 
is capable of segmenting images which only contain 
labels and chemical structure depictions. The classifica-
tion of objects as labels or structure depictions is done 
using k-means clustering based on a custom feature den-
sity metric. If the publication is available as a markup 
document, these images can be extracted automatically, 
so that CSR is capable of processing whole documents 
[6]. Nevertheless, CSR is incapable of handling scanned 
pages or images which contain other objects than labels 
and structure depictions.

In 2019, Staker et  al. reported a deep-learning-based 
OCSR tool which contains a segmentation procedure [7]. 
Opposed to the previously mentioned feature density-
based approaches used by OSRA and CSR, they trained 
a convolutional neural network based on the U-Net 
architecture [8] to address the segmentation problem. 
Every image is processed multiple times at different reso-
lutions and the masks generated by the model are aver-
aged. The model was trained on a semi-synthetic dataset: 
OSRA was used to identify bounding boxes of potential 
chemical structure depictions in an unspecified amount 
of publications and patents. These areas were then cut 
out of the original documents and replaced with struc-
tures from publicly available datasets. During training, 
the images were randomly modified (with e.g. binariza-
tion, brightness adjustments) for data augmentation pur-
poses. The segmentation accuracy has not been reported 
independently and the accuracy for the whole process of 
segmentation and structure resolution on different train-
ing datasets has been reported to be between 41 and 83% 
[7]. Unfortunately, the authors have not made their code 
and the trained models openly available.

With the DECIMER [9] project, we are currently 
working on the development of an open-source plat-
form for the automated chemical structure extraction 
from printed literature. It aims at segmenting all chemi-
cal structure depictions from a given scanned document 
from the printed scientific literature and resolving their 
identity to yield a machine-readable presentation of the 
molecule. Here, we present DECIMER Segmentation, the 

first step of the DECIMER project and the first openly 
available deep learning tool for the segmentation of 
chemical structure depictions from scanned whole-page 
documents. Perspectively, the segmented chemical struc-
ture depictions will be used as input for the DECIMER 
algorithm, an OCSR method which predicts the SMILES 
string of the depicted chemical structure.

The algorithm consists of two main stages: First, dur-
ing the detection step, a deep learning-based model gen-
erates masks that define the positions of the chemical 
structures in a given image. This is followed by a mask 
expansion procedure during which potentially incom-
plete masks are expanded until they cover the depictions 
completely (Fig. 1).

We did not attempt to extract vector graphics from 
modern PDF articles since this approach would fail for 
older articles before the early 1990′s, which are mostly 
scanned pages from printed versions of the journal. 
Instead, our approach operates on bitmap images of jour-
nal pages to be widely applicable also to older articles 
before the introduction of vector images in PDFs.

The source code of the application described herein 
as well as the trained model are publically available. 
Additionally, we created a web application accessible at 
decimer.ai to ensure that the segmentation algorithm 
becomes widely usable.

Implementation
The DECIMER Segmentation backend mechanism was 
built using Python 3 with Tensorflow 2.3.0 [10]. It mainly 
consists of the recognition of chemical structure dia-
grams using a deep learning model and the subsequent 
expansion of the resulting masks. The web application 
is developed in Python 3 using the Django version 3.1.3 
framework and React.js for the front-end. The implemen-
tation details of the key elements as well as the complete 
workflow which accepts a pdf document as an input and 
returns the segmented chemical structure diagrams as an 
output are described below.

Deep learning algorithm
For the chemical structure detection, a model utilizing 
the Mask R-CNN network [11] was trained where the 
Mask R-CNN implementation published by the Matter-
port team [12] was used with some modifications to work 
on Tensorflow 2.3.0 with Keras at the backend.

The dataset used for training the model is based on 994 
articles from the Journal of Natural Products which were 
chosen arbitrarily from all available issues. We converted 
the pages of these articles into JPEG images (96 dpi) 
using the Python pdf2image package [13] and deleted all 
images that did not contain any chemical structure dia-
gram. After deleting pages which did not contain any 
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chemical structure diagrams, there were a total of 1820 
pages. The VGG image annotator tool [14] was used to 
manually annotate the chemical structure diagrams pre-
sent in each image. Each depiction of a chemical struc-
ture was annotated by defining a polygon around it. If 
there were mechanism arrows or numbers within the 
structure, these were also included. Other objects like 
reaction arrows or labels around the chemical struc-
tures were not included. This resulted in 9992 annotated 
regions in the images which each contained one struc-
ture diagram (approximately 5.5 annotated structures per 
image). This dataset was split randomly into a training 
and validation subset of 90 and 10% respectively.

The model used the hyperparameters pre-defined by 
the Matterport team, furthermore, we used a batch size 
of two images per batch, learning rate of 0.001, learning 
momentum of 0.9, 500 steps per epoch and 50 steps for 
validation. The model was trained on a compute-server 
equipped with an Nvidia 1080Ti GPU, 64  GB of RAM 
and two Intel(R) Xeon(R) Silver 4114 CPUs. The train-
ing started from the pre-trained COCO weights pro-
vided by the Matterport team. The layers that could not 
be imported from the pre-trained weights of the model 
due to different amounts of classes (network heads) 
were trained for an initial 100 epochs, then the complete 
model was fine-tuned for another 100 epochs. During 
the whole training process, the parameters remained the 
same. This took approximately 26 h in total.

When applying the resulting model to an image of an 
article page, it returns masks which indicate whether or 
not a pixel in the original image belongs to a chemical 
structure diagram. These masks are binary matrices with 
the first two dimensions of the input image which can 

contain the values True or False. This means that every 
pixel in the original image has a corresponding value in 
the mask that defines whether or not this pixel is part of a 
chemical structure depiction. The positional information 
given in the masks can then be used for the segmentation 
of the chemical structures.

Mask expansion algorithm
A common problem with the masks generated by the 
Mask R-CNN model is an unwanted partial coverage of 
chemical structures only: The model did correctly recog-
nize the chemical structure diagrams on a given page but 
did not cover them completely (Fig.  2, top row). There-
fore, a custom mask expansion algorithm was developed 
which takes an image and a mask and creates a mask 
that covers the previously partially detected objects 
completely.

The expansion workflow begins with the binariza-
tion of the input image using a high threshold as recom-
mended by the developers of CSR [6]. The binarization 
ensures that a non-white background or relicts from 
low-quality scans are filtered. Then, a binary dilation is 
applied to turn chemical structure depictions into con-
nected objects, closing, for example, the gaps between an 
element symbol and its adjacent bonds with non-white 
pixels. The kernel object used for the dilation is a square 
with a resolution-dependent size.

Then, the initial seeds for the expansion are deter-
mined. For this, the center of the mask is defined as the 
position in the middle between the highest and the low-
est x- and y- coordinates of True values of the mask. If 
the resulting center point is not covered by the mask due 
to its asymmetric shape, the center point is defined as a 

Fig. 1 Graphical summary of the DECIMER Segmentation workflow. The input is an image of a page with chemical structure depictions (a). 
Then, the chemical structure depictions are detected using the Mask-RCNN model (b). Subsequently, the masks that define the positions of the 
depictions are refined and expanded (c). Finally, the regions defined by the masks are segmented to yield individual images of chemical structure 
depictions (d)
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random point between the highest and lowest x-coordi-
nates which is covered by the mask. Based on the center 
point position, the algorithm attempts to determine four 
black pixels which are covered by the mask in four dif-
ferent directions. If at least one seed pixel is found, the 
original mask is replaced by a matrix of the same shape 
which only contains zeros and the expansion is initiated. 

If no seed pixels have been determined, objects on the 
contours of the mask are detected as seed pixels. In this 
case, the original mask is kept and only expanded based 
on the seed pixels.

The resulting list of seed pixel coordinates is used in 
the expansion procedure. The eight surrounding pixels 
of every seed pixel are examined. If one of them is black 

Fig. 2 Mask expansion workflow: During the preprocessing workflow, the original image (a) is binarized. The overlaying red patch represents an 
incomplete mask which is returned by the model. The resulting binary image (b) is then dilated to fill gaps within the structure (c). This is followed 
by the expansion procedure (d) where the mask is reconstructed by tracing the connected set of non-white pixels starting from a list of seed 
pixels until no further connected non-white pixels can be found in any direction. This ensures the segmentation of complete chemical structure 
depictions
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and not already covered by the mask, the mask is edited 
to cover it and it is added to the list of seeds. This recur-
sive procedure leads to the inclusion of a complete object 
in the mask even if the original mask had not covered 
it completely. This outlined procedure is illustrated in 
Fig. 2.

The complete tool
DECIMER-Segmentation accepts PDF documents as 
input and returns grayscale images which contain the 
segmented chemical structure diagrams. Figure  3 illus-
trates the workflow.

All pages of the given input PDF document are con-
verted to separate PNG images. All the images are stored 
in a folder with the name of the input PDF file. During 
the following procedure, the processing of each image 
can be parallelized. The structure detection model is ini-
tialized for each thread and generates the masks which 
define the positions of the chemical structure diagrams in 
the given image. Subsequently, these masks are processed 
by the expansion algorithm.

The final masks and images are then processed in a seg-
mentation procedure. First, each segment is converted 
into a grayscale image. Then the maximal width and 
height of every mask are determined. With this informa-
tion, an empty image with the dimensions of the resulting 
segment is created and the chemical structure diagram is 
placed in it. After all the segments are generated, they are 
resized into separate square images. These segments are 
displayed to the user at the end in the web application or 
saved locally.

Decimer.ai web application
The single-page web application (SPA) is freely available 
at https ://decim er.ai and allows DECIMER usage without 
any local installation. It is implemented with the Django 
framework version 3.1.3 to manage the back-end and the 
API and with the JavaScript React.js library for the front-
end. The SPA allows the user to upload a PDF file of a 
research article, performs image segmentation on it, and 
returns the extracted molecular images. The latter can be 
downloaded. The user can also click on the “I’m Feeling 
Lucky” button, to randomly select a recent article from 
the Open Access journal MDPI Molecules and run the 
segmentation on it.

Validation
Methods
In order to evaluate the performance of DECIMER Seg-
mentation, we processed 25 articles from the Journal of 
Natural Products, 25 articles from Phytochemistry and 
25 articles from Molecules. None of these journal arti-
cles were included in the training dataset. The 75 articles 

contained a total of 777 pages (365 in Molecules, 228 in 
Phytochemistry, 184 in Journal of Natural Products) and 
contained 887 segmented images (398 in Molecules 183 
in Phytochemistry, 306 in Journal of Natural Products). 
We then manually inspected all segmented images to 
determine if they contain a complete chemical structure 
diagram or additional objects such as labels or reaction 
arrows. Furthermore, we determined the number of 
additional missed structure diagrams on the pages where 
structures had been determined.

Results and discussion
Without the application of the mask expansion, 81.6% 
of the segmented images contained complete chemical 
structure depictions (80.7% in Molecules, 83.5% in Phy-
tochemistry, 81.7% in Journal of Natural Products). Here, 
a complete detection means that the structure was com-
pletely covered by the mask. It is necessary to mention 
that 9.4% (11.1% in Molecules, 5.5% in Phytochemistry, 
9.4% in Journal of Natural Products) of these segments 
contained additional surrounding objects like labels or 
reaction arrows. Mechanism arrows or atom numbering 
were not counted as additional objects here as they are 
often positioned within the structure itself.

When the mask expansion was added to the proce-
dure, the proportion of completely segmented structures 
increased to 99.8% (99.5% in Molecules, 100% in Phyto-
chemistry, 100% in Journal of Natural Products). Among 
the validation results there were only two segments 
which did not contain a chemical structure diagram at all. 
Unfortunately, the proportion of segments that also con-
tained additional objects rose to 11.2% (12.6% in Mole-
cules, 11.5% in Phytochemistry, 9.5% in Journal of Natural 
Products). On average, 91.3% of the chemical structures 
were detected by the model (92.8% in Molecules, 86.3% 
in Phytochemistry, 92.7% in Journal of Natural Products). 
These results which represent the final output of DECI-
MER Segmentation are illustrated in Fig. 4.

Throughout the data used for validation, 885 of the 887 
segments contained a complete chemical structure depic-
tion. Given the fact that the model was only trained on 
articles from Journal of Natural Products, it is interesting 
to note that DECIMER Segmentation performs compara-
bly well on the subsets of Molecules and Phytochemistry 
articles. This elucidates the general applicability of DECI-
MER Segmentation—it is capable of detecting chemical 
structures in the printed scientific literature in general, 
independent of specific publisher formats.

The inclusion of additional objects in approximately 
11% of the segments is, in many cases, caused by sur-
rounding labels or arrows, which were placed closely 
to the actual chemical structure diagram by the 
human creator of the graphic (see Fig.  5). It is worth 
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mentioning that the mask expansion sometimes aggra-
vates the problem. For example, in some cases, the tip 
of a reaction arrow is covered by the mask which is 

returned by the model. If the arrow is close enough to 
the structure, the mask expansion leads to its complete 
inclusion. In other cases, an initially included reaction 

Fig. 3 Visual representation of the complete architecture of the tool
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arrow may be excluded after the mask expansion if 
it is not too close to the structure. This is the advan-
tage of choosing seed pixels in the center of the mask 
which is returned by the model. In an earlier version 
of DECIMER Segmentation, every pixel of the mask in 
the model output was included in the final output and 
the seeds for the expansion were set on the contours of 
the original mask. This led to wrongly included objects 
in above 20% of the segments because all objects close 
to the structure and all objects that were wrongly 
included in the model output were included in the final 

output. Hence, the mask expansion from seeds in the 
mask center led to significantly improved results.

During the mask expansion, the application of a binary 
dilation is necessary to turn the chemical structure depic-
tions into connected objects. This can lead to nearby 
objects being connected with the structures. This could 
be addressed by using a smaller kernel for the dilation. 
The dilemma is that a smaller kernel leads to more cases 
where the structure is not one connected object which 
leads to incomplete expansion results. Hence, reducing 
the amount of wrongly included surrounding objects 

Fig. 4 Overview of the validation results of DECIMER Segmentation

Fig. 5 Exemplary illustration of the wrong inclusion of a reaction arrow in the mask output
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would necessarily lead to a reduction of the complete 
segments.

When processing pages parallelly on four threads, on 
average, the tool took about 1.89 min to process a single 
article with an average amount of 10.4 pages per article. 
The time required for processing depends on the number 
of pages and the number of chemical structures on each 
page. The numbers mentioned above correspond to an 
average processing time of 10.9 s per page.

Conclusion
The DECIMER Segmentation tool and the web imple-
mentation on decimer.ai for chemical image segmenta-
tion are a complete open-source implementation for the 
segmentation of chemical structure depictions from the 
published scientific literature.

With the help of deep learning, our method is capable 
of distinguishing between chemical structures and other 
content on a page. By applying the system to images, we 
can mine information from scanned documents which 
are not available in markup file formats. This allows us 
to extract information even from the old articles which 
are only available as scanned files. With the implemented 
mask expansion process, we are able to segment chemi-
cal structure diagrams from the publications completely 
in high quality.

Although the model was only trained on articles from 
the Journal of Natural Products, we were able to see that 
the application works well on publications from three 
different publishers. In future, the detection accuracy of 
the model can be improved further by training it on an 
increased amount of publications. In its current state, 
DECIMER Segmentation can reduce the workload for 
those who are responsible for the manual creation and 
curation of chemical databases immensely and could 
eventually contribute to the full automation of this task.
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RanDepict: Random chemical structure 
depiction generator
Henning Otto Brinkhaus1, Kohulan Rajan1, Achim Zielesny2 and Christoph Steinbeck1* 

Abstract 

The development of deep learning-based optical chemical structure recognition (OCSR) systems has led to a need 
for datasets of chemical structure depictions. The diversity of the features in the training data is an important factor 
for the generation of deep learning systems that generalise well and are not overfit to a specific type of input. In the 
case of chemical structure depictions, these features are defined by the depiction parameters such as bond length, 
line thickness, label font style and many others. Here we present RanDepict, a toolkit for the creation of diverse sets of 
chemical structure depictions. The diversity of the image features is generated by making use of all available depiction 
parameters in the depiction functionalities of the CDK, RDKit, and Indigo. Furthermore, there is the option to enhance 
and augment the image with features such as curved arrows, chemical labels around the structure, or other kinds of 
distortions. Using depiction feature fingerprints, RanDepict ensures diversely picked image features. Here, the depic-
tion and augmentation features are summarised in binary vectors and the MaxMin algorithm is used to pick diverse 
samples out of all valid options. By making all resources described herein publicly available, we hope to contribute to 
the development of deep learning-based OCSR systems.

Keywords: CDK, Chemical image depiction, Depiction generator image augmentation, Indigo, RDKit, OCSR
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Introduction
Since 2019, there has been a lot of development in the 
field of deep learning-based optical chemical structure 
recognition (OCSR) [1–7]. This indicates a paradigm shift 
as convolutional neural networks (CNN) as encoders in 
combination with recurrent neural networks (RNN) or 
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transformers as decoders replace the rule-based systems 
that have previously defined the standard in the field [8].

The rule-based systems typically apply a workflow 
of binarisation, vectorisation, the detection of specific 
structural elements like dashed lines and wedges, opti-
cal character recognition (OCR), graph compilation and 
additional post-processing steps. Every single step in 
these workflows can be fine-tuned to achieve optimal 
results. In 2021, Clevert et al. have shown that the openly 
available rule-based systems surprisingly fail on the com-
mon benchmark datasets when slight image perturba-
tions like rotation and shearing are introduced [3]. This 
lack of robustness is a clear indication that these systems 
have been overfitted to the benchmark datasets and that 
there is a need for more diverse benchmark data.

A machine-learning system learns to adapt its actions 
based on given environment information. Consequently, 
the quality of the environment information is a crucial 
factor for the system learning to solve a specific task [9]. 
Machine-learning systems are able to learn best when the 
input data they receive is similar to the data they have 
been trained on. In the case of most deep learning-based 
OCSR systems, the training data consists of images with 
depictions of chemical structures which are mapped to 
string representations of the underlying molecular graph. 
To be able to generalise well across a variety of differ-
ent depiction styles, a machine-learning model needs to 
be trained on these depiction styles as well. Addition-
ally, chemical structure depictions often contain non-
structural elements like atom numbering or mechanism 
arrows which need to be considered as common noise 
types (Fig. 1). This is particularly relevant for real-world 
chemical data extraction applications, since the only 
openly available deep learning-based segmentation tool 
for chemical structures, DECIMER Segmentation, tends 
to include these non-structural elements in its output 

segments [10]. Hence, there is a need for a tool for the 
generation of chemical structure depictions of various 
depiction styles with additional non-structural elements.

We present RanDepict, a toolkit for generating diverse 
representations of chemical structures. It addresses the 
problem of the generation of diverse training data for 
OCSR tools by pseudo-randomly setting the available 
depiction parameters when depicting a structure with 
one out of three cheminformatics toolkits (Chemistry 
Development Kit (CDK) [14], RDKit [15] and Indigo 
[16]). Various augmentations such as image perturba-
tions or non-structural elements like labels and curved 
arrows can also be added. Instead of pseudo-randomly 
picking depiction and augmentation parameters, there 
also is the option to generate the images based on depic-
tion feature fingerprints. Here, the depiction and aug-
mentation parameters are represented as bit arrays and 
RDKit’s implementation of the MaxMin algorithm [17] is 
used to pick diverse samples out of all valid fingerprints.

By making it publicly accessible, we hope to contribute 
to the development of robust deep learning-based OCSR 
systems by providing diverse training and benchmark 
datasets. RanDepict’s source code is publicly available on 
GitHub.

Implementation
RanDepict is written using Python 3 [18]. The chemical 
structure depictions are generated using the CDK, RDKit 
and Indigo. As CDK is Java-based, its classes are accessed 
in Python via JPype [19].

When a chemical structure depiction is generated, one 
of the three above-mentioned cheminformatics toolkits is 
picked randomly. Then, the depiction functions arbitrar-
ily define all available parameters. Among these param-
eters are bond length, thickness, style, kékulisation, font 
type and size of atom labels, rotation of molecules, the 

Fig. 1 Examples of structure depictions from chemical publications extracted using DECIMER Segmentation which contain non-structural 
elements like atom labels (left) [11], reaction arrows (middle) [12] and identity labels (right) [13]
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distance between lines and labels and the abbreviation of 
chemical substructures. Here, the abbreviation of chemi-
cal substructures means that, for example, a tertiary butyl 
group is abbreviated as tBu instead of drawing the full 
branched chain. Additionally, atom numbering and chi-
rality labels are included in the depiction parameters as 
they are added by the cheminformatics toolkits and not 
by separate functions.

Various non-structural features can be added to the 
structure depiction. Along with atom numbering and 
chirality labels, there are also curved mechanism arrows, 
straight reaction arrows, chemical identity labels, rest 
group labels, and reaction condition labels.

The arrow images are randomly picked from a set of 
available images, resized, rotated, and pasted in a posi-
tion where  they do (curved arrows) or do not (reaction 
arrows) overlap with the chemical structure depiction.

The labels are generated by arbitrarily combining a 
variety of available text elements. For example, a chemi-
cal identity label is generated as a number (e.g., ‘1’), a 
number-letter combination (e.g., ‘1a’), a number-number 
combination (e.g., ‘1–4’) or a number-letter-letter combi-
nation (‘1a–d’). Similarly, rest group labels are generated 
by combining rest group variables (e.g., ‘R’, ‘X’) with ran-
domly picked superatom labels. The list of superatoms 
that is used here was originally published along with the 
rule-based OCSR system OSRA [20]. Reaction condition 
labels are generated by combining the name of a chemi-
cal compound, a solvent, and a time. The font size and 
type for the labels are randomly chosen. The available 
font types include standard fonts like Arial and Times 
New Roman but also fewer common fonts that con-
tain, for example, Asian or Greek-style characters. This 
ensures that there are diverse types of non-structural 
elements around the chemical structure that a potential 
deep learning-based OCSR system can learn to ignore 
as noise. Furthermore, the image augmentation library 
imgaug is used to add additional image perturbations. 
This includes a mild rotation, shearing, salt and pepper 
noise, brightness and colour adjustments, JPEG compres-
sion and pixelation.

Every image created by RanDepict with the desired 
shape of (m, n) is slightly distorted and resized. There-
fore, it is first generated with a shape of  (mdist,  ndist) where 
 mdist and  ndist are randomly drawn from [0.9*m, 1.1*m] 
and [0.9*n, 1.1*n]. Then, it is resized to the desired shape 
(m, n) with a randomly picked resizing method. The pur-
pose of this procedure is the introduction of the artefacts 
of different resizing methods in the image data.

Whenever a (pseudo-)random decision is made, the 
seed attribute of the RandomDepictor class is used as 
a seed for the pseudo-random choice and then altered 
systematically. This ensures that the creation of datasets 

with RanDepict is reproducible under the condition that 
the tool is fed the same SMILES input and the same ini-
tial seed.

Since the entire depiction parameters constitute a high-
dimensional feature space, random sampling does  not 
necessarily guarantee even coverage. Instead of choos-
ing parameters randomly, RanDepict can use depiction 
feature fingerprints to deal with this issue. This means 
that all depiction parameters as well as the presence or 
absence of the different augmentation types are sum-
marised in bit arrays. Here, a 1 or a 0 in every position 
represents the presence or absence of a certain feature 
(exemplary illustration in Fig.  2). After computing all 
possible valid fingerprints, RDKit’s implementation of 
the MaxMin algorithm [17] is used to pick diverse sam-
ples. This way, diversity of depiction features is ensured.

The set of all possible valid fingerprints is determined 
as the combination of all valid fingerprint building blocks 
in a given order. Here, a fingerprint building block is 
a valid subset of values that are linked to certain posi-
tions in the whole fingerprint which express one depic-
tion feature. A valid fingerprint is a combination of values 
that does not lead to contradicting statements about the 
underlying chemical structure depiction.

Let an exemplary chemical structure depiction be 
defined by the two features kékulisation and bond width. 
The kékulisation is defined on position 0 of the finger-
print. The resulting building block for this feature is (0, 
1) as the first position of the fingerprint can take these 
two values to refer to whether the kékulisation is being 
applied or not. Assuming that the bond width can be 
thin, medium, or bold, these options would be described 
by positions 1–3 of the fingerprint. The building blocks 
for the feature bond width would be (1,0,0), (0,1,0) and 
(0,0,1). Other combinations for these positions would 
be invalid as, for example, the combination (1,0,1) on 
these fingerprint positions would refer to the bond width 
being thin and bold at the same time. The combination 
of the valid building blocks for all features in the given 
order defines the set of all fingerprint combinations. In 
the aforementioned example, this results in (0,1,0,0), 
(0,0,1,0), (0,0,0,1), (1,1,0,0), (1,0,1,0) and (1,0,0,1) as the 
set of valid fingerprints.

The building blocks of the fingerprints are generated 
automatically. A pseudo-random decision during the 
depiction creation just needs to be flagged as relevant 
for the fingerprint. RanDepict recognises this and auto-
matically generates a fingerprint scheme. This way, the 
code for the fingerprint generation does not need to be 
adapted in the case of modifications in the depiction cre-
ation process.

During the fingerprint generation process, every binary 
decision (kékulisation in the example above) is simply 
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allocated to one position in the bit array. When categori-
cal decisions (bond width in the example above) are allo-
cated to as many positions as there are categories where 
every position then indicates the presence or absence of a 
certain category and only one of them can have the value 
1. Numerical ranges are split into three subranges which 
are then treated like categories. For example, if the bond 
width could be described by an integer with the possible 
values [1, 2, 3, 4, 5, 6]  this would be allocated to three 
positions in the fingerprint. These positions would be 
linked to the subsets [1, 2], [3, 4] and [5, 6]. This means 
that the fingerprint does not always define an exact value 
for certain parameters but only specifies a range. When 
creating a depiction from a fingerprint, the parameter is 
randomly drawn from this subrange. This is necessary to 
reduce the number of possible fingerprints as the com-
binatorial explosion complicates computing all possible 
fingerprint combinations otherwise.

The three cheminformatics toolkits offer varying 
amounts of adjustable parameters. During the creation of a 
CDK depiction, 15 parameters are set. When using RDKit 
and Indigo, 10 and 8 parameters are adjustable. The ranges 
of possible values for these parameters differ between the 
tools. Hence, fingerprints for CDK, RDKit and Indigo 
depictions and the additional augmentations are four sepa-
rate entities. The augmentation fingerprints only describe 
the presence or absence of an augmentation feature but do 
not comprise the specific parameters which are set. The 
varying parameter numbers and ranges lead to strongly 
differing numbers of valid depiction feature fingerprints: 
2,799,360 for the CDK fingerprints, 18,432 for RDKit 

fingerprints, 864 for Indigo and 2048 for the augmenta-
tions. When generating a dataset from the fingerprints the 
user can specify the desired proportions of CDK, RDKit 
and Indigo depictions as well as the proportion of struc-
tures with added augmentations. They default to 55% 
(CDK), 30% (RDKit) and 15% (Indigo), 50% (augmented).

Results
RanDepict was designed to allow the generation of 
diverse chemical structure depictions using only a few 
lines of code. After generating a RandomDepictor object, 
the method random_depiction can be used to generate 
depictions of chemical structures. These depictions are 
generated by using randomly picked parameters in CDK, 
RDKit and Indigo without additional elements (Fig.  3). 
The object can be called as a function to generate chemi-
cal structure depictions with additional non-structural 
elements and augmentations (Fig.  4). There are various 
examples for the batch generation of structure depiction 
datasets with and without the usage of the feature finger-
print picking functionality in the documentation.

from RanDepict import RandomDepictor

smiles = “CN1C = NC2 = C1C(= O)N(C(= O)N2C)C”

with RandomDepictor() as depictor:

    # Generate chemical structure depictions

    image = depictor.random_depiction(smiles)

    # Generate augmented chemical structure depictions

    augmented_image = depictor(smiles)

Fig. 2 Exemplary illustration of depiction feature fingerprints
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On a compute server with two Intel(R) Xeon(R) Silver 
4114 CPUs and 64 GB of RAM, the runtime was evalu-
ated for the generation of 100, 200, 400, 800, 1600, 3200 
and 6400 chemical structure depictions with an image 
size of 299 × 299 (Fig.  5) using one CPU core. This was 
done with and without the addition of augmentations and 
the usage of the feature fingerprints. The linear regres-
sion results of the different runs clearly indicate that the 
runtime increases linearly with a growing amount of 
depictions.

Based on the regression analysis, the generation of one 
million chemical structure depictions without the feature 
fingerprints takes 19 h without augmentations and 31 h 
with augmentations. For the generation of large datasets 
consisting of millions of structures, it is recommended 
to split the input SMILES lists and run the generation in 
parallel on multiple nodes in a cluster or using a cloud 
service. As long as the initial seed is set differently in 

every parallel instance, different sets of parameters are 
picked.

The same extrapolation applied to the generation of 
one million structures using feature fingerprint selection 
results in 127  h without augmentations and 138  h with 
augmentations. The user could split up the input SMILES 
lists here, too, and initialise the MaxMin picking mecha-
nism with different seeds on every instance in a com-
puting cluster to ensure different sets of parameters are 
picked. Nevertheless, the creation of datasets from fin-
gerprints is significantly slower than the generation with 
random parameter sampling. Depending on the desired 
dataset size, the user can decide whether to use depic-
tion feature fingerprints. The feature fingerprint picking 
functionality is highly recommended for the generation 
of smaller test and benchmark sets as it ensures a diverse 
selection of features.

Fig. 3 Depictions of caffeine with various depiction styles generated with RanDepict with feature fingerprint picking without additional 
augmentations
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Conclusions
RanDepict: a toolkit for generating chemical structure 
depictions. It features diverse structure depiction ele-
ments, as well as non-structural elements and image 
augmentations.

If desired, the diversity of depiction features is 
ensured by representing the entirety of features in bit 
arrays (feature fingerprints) and picking diverse sets 
using the MaxMin algorithm. Even though fingerprint 
picking is a time-consuming process, we highly recom-
mend using it for the generation of smaller test sets 
where the random sampling of depiction features may 
not necessarily lead to a dataset that represents the 
entire feature space.

The complete source code of RanDepict, scripts 
for the generation of Figs.  3 and 4, the runtime deter-
mination as well as other examples for the usage and 
detailed documentation of RanDepict are openly acces-
sible on GitHub and Read the Docs. It is possible to 

Fig. 4 Depictions of caffeine with various depiction styles and additional non-structural features and noise types generated with RanDepict using 
feature fingerprint picking

Fig. 5 Runtime analysis of chemical structure depiction generation 
with RanDepict with and without augmentations and the application 
of the feature fingerprint picking functionality. The dotted lines 
represent linear regression results for each case
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DATA NOTE

DECIMER—hand-drawn molecule images 
dataset
Henning Otto Brinkhaus1, Achim Zielesny2, Christoph Steinbeck1 and Kohulan Rajan1* 

Abstract 

The translation of images of chemical structures into machine-readable representations of the depicted molecules is 
known as optical chemical structure recognition (OCSR). There has been a lot of progress over the last three decades 
in this field, but the development of systems for the recognition of complex hand-drawn structure depictions is still at 
the beginning. Currently, there is no data for the systematic evaluation of OCSR methods on hand-drawn structures 
available. Here we present DECIMER — Hand-drawn molecule images, a standardised, openly available benchmark 
dataset of 5088 hand-drawn depictions of diversely picked chemical structures. Every structure depiction in the 
dataset is mapped to a machine-readable representation of the underlying molecule. The dataset is openly available 
and published under the CC-BY 4.0 licence which applies very few limitations. We hope that it will contribute to the 
further development of the field.

Graphical Abstract
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otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. 
To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication 
waiver (http:// creat iveco mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in 
a credit line to the data.

Objective
Most chemical information is published in text and 
images in the primary scientific literature. The automated 
conversion of these unstructured, human-readable data 
formats into structured, machine-readable representa-
tions is essential to make the information available in 

publicly accessible databases. The reliable extraction of 
information from the depictions of the chemical struc-
tures is an ongoing challenge that still has not been fully 
solved yet. Chemical structure depictions are converted 
into computer-readable representations using optical 
chemical structure recognition (OCSR) systems [1].

The field of OCSR has developed significantly over the 
last 30 years. Most OCSR tools follow a hard-coded set of 
rules to assemble the underlying molecule based on the 
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elements in the vectorised image [2–11]. By 2020 several 
deep learning-based solutions are available [12–18].

In order to evaluate the performance of the available 
OCSR tools, realistic benchmark datasets are necessary. 
At present, there are four real-world datasets available 
[1, 9, 19] that contain chemical structure depictions that 
were collected and curated from publications and pat-
ents. The evaluation of the performance on realistic data 
is crucial to demonstrate whether the tools are robust 
enough to be used in an automated chemical literature 
mining process.

The resolution of hand-drawn chemical structures 
is a more challenging task than the resolution of auto-
matically generated depictions. In addition to the vary-
ing depiction features which are present anyway, the 
individual, unique way of drawing the structure adds an 
increased level of complexity. In 2021, the deep learn-
ing-based OCSR tool ChemPix [15] demonstrated its 
capability to interpret simple hand-drawn hydrocar-
bon structures with high accuracy. There also are a few 
closed-source methods and commercial systems available 
that claim to be capable of resolving hand-drawn chemi-
cal structures [20–22]. The authors of the deep-learning-
based OCSR tool img2mol demonstrated the capability of 

their tool to recognise some hand-drawn chemical struc-
tures that they had picked themselves and noted the lack 
of a standardised benchmark set [14].

With the development of more OCSR tools that focus 
on the resolution of hand-drawn chemical structure 
depictions, there is a need for a standardised dataset 
to evaluate their performance. Here we present DECI-
MER  —  Hand-drawn molecule images, a set of 5088 
hand-drawn chemical structures depictions. Every image 
is mapped to a machine-readable representation of the 
underlying molecule. The diversely picked molecules rep-
resent a wide variety of small molecules. The dataset was 
created to facilitate the ongoing development in the field 
of OCSR and is openly accessible.

Data description
The dataset consists of 5088 PNG images of unique 
hand-drawn chemical structure depictions (Fig. 1) which 
are mapped to their corresponding SMILES [23] string as 
well as an SD file. The structures have been drawn by 24 
volunteers from the Westphalian University of Applied 
Sciences, Campus Recklinghausen, Germany, who have 
graciously offered to use their free time to contribute to 
the generation of this dataset.

Fig. 1 Examples of hand-drawn chemical structure depictions from the dataset
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The molecules have been picked from all structures 
in PubChem [24] using RDKit’s implementation of the 
MaxMin algorithm [25] based on Morgan fingerprints 
[26] to ensure a diverse coverage of the chemical space. 
The only filtering rule that has been applied is a molecu-
lar weight maximum of 1500 Da. As a consequence, fea-
tures like stereochemical information, charged groups 
as well as different types of isotopes are present in the 
dataset.

There are two categories of images:

Drawn on a piece of white paper and scanned (Fig. 2)
Drawn using a mobile device or tablet and directly 
saved as an image (Fig. 3).

Curation
In total, 6000 diverse molecules were selected from 
PubChem using RDKit’s implementation of the MaxMin 
algorithm based on Morgan fingerprints. Subsequently, 
CDK Depict [27], a structure depiction generator based 
on the Chemistry Development Kit (CDK) [28], was used 
to create production-quality 2D images in batches. Each 
batch of images was then converted into PDF files and 
they were distributed among the volunteers. Using the 
chemical structure depictions generated by CDK as a 

visual template, each volunteer drew the structures on a 
piece of paper using a black or blue pen or on their tablet 
using an input device.

Each volunteer sent back the scanned images or the 
images generated using their device after completing a 
batch. The curators reviewed the drawings, manually con-
firmed the correctness of the molecules, cropped the 
scanned images and stored them in separate image files. As 
part of the curation, structures that weren’t correct due to 
human error were discarded. A total of 568 images out of 
6000 were rejected due to issues with the depicted structure. 
Another 344 structures were not returned by the volunteers. 
This resulted in the final dataset of 5088 images in total.

An identifier was assigned to each image, and the same 
identifier was used to label the SD file which was gener-
ated using the CDK. Additionally, the dataset contains a 
file containing a table of the identifiers and correspond-
ing SMILES representations.

FAIR‑ification
The following steps were taken in order to make the data-
set findable, accessible, interoperable and reusable (FAIR) 
[29]. The dataset was deposited in a publicly accessible 
data repository, in this case, Zenodo. This ensures that 
the dataset is easily findable. Furthermore, Zenodo pro-
vides a digital object identifier (DOI) that can be used 
to locate the dataset and it can also easily be integrated 
into Github as well. With Zenodo being an open, public 
repository, the dataset can be accessed from any part of 
the globe. To make it as interoperable as possible, the gen-
erated images use PNG as the final image format, which 
can be used across a variety of operating systems. Addi-
tionally, SMILES and SDF are representations of chemical 
structures which can be read by every cheminformatics 
toolkit. The dataset has been published under the CC-BY 
4.0 licence. This licence includes that every user can redis-
tribute or change the data as much as they want as long as 
they refer to the original authors when publishing results 
based on it. It is possible to use the data for non-commer-
cial or commercial purposes without further obligations.

Limitation
No restrictions or limitations apply to using and reusing 
the dataset. Everyone can use this dataset as a standard 
benchmark set for the evaluation of the performance of 
their OCSR tools. The dataset includes a wide range of 
chemical structures and represents a much larger chemi-
cal space. The structures were drawn by various indi-
viduals to ensure the diversity of drawing styles. The 
main limitation is caused by the molecular weight filter 
(< 1500Da) as it excludes certain molecules like big mac-
rocycles, proteins or artificial polymers. Additionally, 
Markush structures are not represented.

Fig. 2 A chemical structure depiction generated by CDK, sketched 
on a sheet of paper and scanned as an image file

Fig. 3 A chemical structure depiction generated by CDK, sketched 
on a tablet and saved as an image file
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Due to the limited number of images in this dataset, we 
do not recommend attempting to train a deep learning 
model using this dataset. We highly recommended using 
it exclusively for benchmarking instead of fitting the tools 
to the dataset.

Abbreviations
CDK: Chemistry development kit; CC: Creative commons; DOI: Digital object 
identifier; FAIR: Findable, accessible, interoperable, and reusable; OCSR: Optical 
chemical structure recognition; PDF: Portable document format; PNG: Portable 
network graphics; SDF: Structural data file; SDG: Structure diagram generator; 
SMILES: Simplified molecular-input line-entry system.
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Open data and algorithms for open science in AI-
driven molecular informatics
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Abstract
Recent years have seen a sharp increase in the development
of deep learning and artificial intelligence-based molecular
informatics. There has been a growing interest in applying deep
learning to several subfields, including the digital transformation
of synthetic chemistry, extraction of chemical information from
the scientific literature, and AI in natural product-based drug
discovery. The application of AI to molecular informatics is still
constrained by the fact that most of the data used for training
and testing deep learning models are not available as FAIR and
open data. As open science practices continue to grow in
popularity, initiatives which support FAIR and open data as well
as open-source software have emerged. It is becoming
increasingly important for researchers in the field of molecular
informatics to embrace open science and to submit data and
software in open repositories. With the advent of open-source
deep learning frameworks and cloud computing platforms, ac-
ademic researchers are now able to deploy and test their own
deep learning models with ease. With the development of new
and faster hardware for deep learning and the increasing
number of initiatives towards digital research data management
infrastructures, as well as a culture promoting open data, open
source, and open science, AI-driven molecular informatics will
continue to grow. This review examines the current state of
open data and open algorithms in molecular informatics, as well
as ways in which they could be improved in future.
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Introduction
Considerable improvements in artificial intelligence
(AI) research through the introduction of deep neural
networks promise to transform society [1e4] and the
way research is conducted [5,6]. However, in most areas
of molecular informatics, the amount of training data
available is insufficient for the use of today’s most
powerful deep neural network architectures, which
demonstrate superior performance only by training with
large amounts of data [7]. In addition, a thorough
assessment of a model’s true predictive performance in
practice is a rare exception (e.g. the Critical Assessment

of Protein Structure Prediction (CASP) [8]).

Because of this lack of accessible experimental data
[9,10], machine learning predictions in chemistry are
generally too error-prone to realize the potential of the
new methods at this time. This necessitates a change in
the way chemists publish their data and the type of data
published [11,12]. The call for open data, open source,
and open science (ODOSOS) in chemistry is not new
[13,14], but with the advent of more powerful data-
driven algorithms, it has never been more important.

Journals and funders demanding the deposition of
research data and the necessary establishment of suit-
able research data infrastructures will inevitably alle-
viate the data shortage problem in the future [15,16].
The German government, for example, has recently
decided to implement and long-term-fund a national
research data infrastructure (Nationale Forschungsda-
teninfrastruktur, NFDI) [17] with 30 consortia in all
areas of science, collaboratively developing open
research data management (RDM) e-infrastructures,
coordinated by an umbrella process and a joint direc-

torate. One of those consortia is NFDI4Chem which is
building an RDM e-infrastructure for chemistry that
follows FAIR data principles [18] to make chemical data
findable, accessible, interoperable, and reusable [19,20].
One flagship project of NFDI4Chem is nmrXiv, an open
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and FAIR repository and analysis platform for NMR
spectroscopy data [21].

In recent years, advances in artificial intelligence and
data-driven applications in molecular informatics have
provided a glimpse into the magnitude of future ac-
complishments, which have made open data a necessity
for machine learning algorithms. Here, we attempt to

present some of the major milestones of the past years
and discuss obstacles that are yet to be overcome to
enable similar AI-driven progress in (nearly) every area
of chemistry.

The importance of openly available
resources and data
One cause of the dissatisfying data shortage situation
has been the lack of a culture of data deposition and
sharing in chemistry in the past, where at least from the
early 1990s onwards, with the advent of the internet,
widespread data deposition and sharing would have
been possible. There have been notable exceptions,
such as the crystallography community, that have
developed data deposition cultures even earlier. Both
small molecules and biomacromolecule structures have

been and are being deposited in the Protein Data Bank
(PDB) [22,23] and the Cambridge Crystallographic
Database (CCD) [24]. Of particular note, the open PDB
in combination with the openly available protein
sequence information (for multiple sequence align-
ments) formed the basis for the outstanding success of
the AlphaFold protein 3D structure prediction system
[5]. Similarly, open databases such as PubChem [25],
ChEMBL [26], ChEBI [27], Drugbank [28], the
Human Metabolome Database (HMDB) [29], the
Collection of Open Natural Products (COCONUT)
[30], the Natural Products Atlas [31], the Natural

Products Magnetic Resonance Database [32], and
ZINC [33] fundamentally broaden the research oppor-
tunities [34]. The PubChem database is used by mil-
lions of users every month [35]. An example for the
usage of the referenced databases is the creation of a
classifier that determines whether a Natural Product
(NP) originates from funghi, plants, or bacteria based on
its chemical structure with data obtained from the
COCONUT database [36]. The ZINC database has
recently been used for the in silico determination of
drug candidates that inhibit the main protease of SARS-

CoV-2 [37].

Another crucial aspect is the availability of open soft-
ware libraries to handle and process chemical informa-
tion, like the Chemistry Development Kit (CDK) [38],
Indigo [39], RDKit [40], or OpenBabel [41], as well as
the recently published Python-based Informatics Kit for
Analysing Chemical Units (PIKAChU) [42]. Without
these open-source projects, the research community
would lack basic tools for programmatically reading,

modifying, and processing chemical information.
Accordingly, they are fundamental for every researcher
in the field of molecular informatics.

Molecular string representations, such as DeepSMILES
[43] and SELFIES [44], enable processing chemical
structures using models like transformers that are
designed to process sequential data. Recently, a study

investigated the performance of transformers on
different tasks using SMILES, DeepSMILES, and
SELFIES. The amount of returned invalid chemical
structures could be decreased when using Deep-
SMILES and especially SELFIES compared to
SMILES, although the overall best performance was
achieved using SMILES [45].

Without open libraries such as Tensorflow [46] and
Pytorch [47] for the implementation and training of
neural networks as well as the ubiquitous availability of

Graphical Processing Units (GPU) and Tensor Process-
ing Units (TPU) in cloud environments [48], the big
leaps in molecular AI research would not have
been possible.

An approach to the protein folding problem
- AlphaFold
The problem of protein folding is considered one of the
fundamental challenges of molecular biology because a
large number of degrees of freedom of bonds and atoms
in a protein leads to a combinatorial explosion in the
number of possible low-energy arrangements [49]. In
2020, theDeepMind team announced a widely recognised
breakthrough in the prediction of spatial protein 3D
structures from their amino acid sequence with their
deep learning-based system AlphaFold [5]. The system
participated in the 13th and 14th Critical Assessment of

Protein Structure Prediction (CASP) competition [8],
outperforming all competitors. Since then, it has been
made openly available and used to fill the open Alpha-
Fold Protein Structure Database [50] which contains more
than 200 million predicted protein 3D structures,
covering nearly every known protein on earth [51].
Within a short period of time, the structures of 98.5% of
the human proteome have been predicted using Alpha-
Fold, while the previous decades of experimental
research yielded 17% [52]. The system was trained on
structural data openly deposited in the Protein Data

Bank [22,23], which was founded and announced in
1971 [53]. The success story of AlphaFold illustrates
what is possible today when researchers are able to
access the data that scientists have produced over the
course of 50 years.

It is important to mention that challenges like the
prediction of the relative positions of protein domains
and their changes when an external stimulus is applied
remain partially unsolved. Additionally, the transition
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from disordered to ordered domain states cannot be
elucidated using AlphaFold, and it is limited to structures
with less than 2700 amino acids [54]. Nevertheless, the
high impact of its accurate protein structure predictions
is indisputable [55]. For example, the predicted struc-
tural information about nucleoporins has been combined
with cryo-electron tomography (cryo-ET) to generate a
model that precisely explains 90% of the scaffold of the

human nuclear pore complex (NPC) [56]. Another
example is the identification of tens of thousands of
unknown potential binding sites for iron-sulfur clusters
and zinc ions in more than 360,000 proteins [57].

Digital transformation of synthetic
chemistry
Similar to other fields, the foundation for successful
machine learning applications in synthetic organic
chemistry is the availability of extensive experimental
data [58]. Recently, Strieth-Kalthoff et al. demonstrated
the benefit that emerges from the usage of real experi-
mental data for machine learning-based chemical yield
predictions [12] while the prediction of reaction out-
comes and yields remains a challenge in general [59].
Nonetheless, there have been impressive developments

using attention-based deep learning methods to explore
the chemical reaction space [60]. Schwaller et al.
trained a transformer to predict chemical reaction out-
comes with state-of-the-art results [61]. The resulting
model which is referred to as molecular transformer was
then used in combination with hypergraph exploration
to automatically plan retrosynthesis routes [62]. Since
then, the molecular transformer has been extended to
predict the products of enzymatic reactions [63]. Based
on the aforementioned retrosynthesis planning system,
Probst et al. have published a biocatalysed synthesis
planning system [64].

Schwaller et al. have also shown that the attention
matrix weights of transformers that have been trained on
unlabelled chemical reaction data can be used to
determine accurate atom mappings [65]. Additionally,
they demonstrated that attention-based models are
highly suitable for the classification of chemical re-
actions [66]. Similar model architectures were success-
fully used to generate specific synthesis instructions
[67] and to determine the yield of a given chemical
reaction formula [68]. Andronov et al. successfully

demonstrated the prediction of reagents based on given
reaction SMILES strings using transformers. They were
then able to use the reagent prediction model to fill in
missing reagents in incomplete reaction data from US
patents leading to an improved state-of-the-art model
[61] for the prediction of reaction products [69].
Recently, Rohrbach et al. demonstrated the translation
of synthesis protocols in the literature into a standard-
ized chemical language, which could then be executed
by their automated synthesis system [70].

Again, the described advances are exemplary cases of the
synergy of deep learning-based models and the avail-
ability of training data. There are datasets extracted
from US patents [66,71e74], the scientific literature
[75], and high-throughput experiments (HTE) [76]
available [60]. Recently, the Open Reaction Database
(ORD) has been launched as a platform to replace un-
structured reaction data in the supporting information

of publications [77]. If it is accepted by the research
community, the ORD may become a part of the solution
to problems caused by the aforementioned lack of data
and report bias [11,12]. Providing structured data in
standardized formats may become a key step towards
the digital transformation of synthetic chemistry.

Extraction of chemical information from the
scientific literature
Besides enforcing FAIR data publication standards today
and in the near future, it is important to tackle the
damage that has already been done by publishing
chemical data almost exclusively in a human-readable
form with unstructured text and images in the past
decades. The advances in the fields of natural language
processing (NLP) [78e80] and computer vision (CV)

[81e83] have made a new generation of chemical
literature mining tools possible. These can be consid-
ered AI-driven solutions that enable further AI-driven
advances by making concealed data accessible in struc-
tured, machine-readable formats.

The field of optical chemical structure recognition
(OCSR) deals with the translation of images of chemical
structures as they are published in the scientific litera-
ture into machine-readable representations of the un-
derlying molecular graph [84,85]. In the past two years,
a variety of deep learning-based OCSR methods

[86e89] has been published, where DECIMER Image-
Transformer [90], Img2Mol [91] and SwinOCSR [92]
provide openly available source code and trained
models. For the segmentation of chemical structure
images from whole pages, the open-source tool
DECIMER Segmentation can be used [93]. With the
publication of the open-source depiction generation tool
RanDepict, efforts have been made to standardize and
diversify the training data for deep learning-based
OCSR tools [94]. The newest version of DECIMER
was trained on more than 400 Million images using the

latest Tensor Processing Units [95] available on the
Google cloud platform. Currently, DECIMER performs
with an accuracy rate of above 90% and is regarded as an
important point of reference for future work [85].
Without open databases like PubChem, where one can
download over 100 million chemical structures for free,
this would not have been possible.

Since its original release in 2016, the chemical literature
mining toolkit ChemDataExtractor [96] has been
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continuously developed [97,98]. The highly adaptable
toolkit uses user-defined models of the information to
be extracted in a pipeline with readers for different
publisher formats and a system for interdependency
resolution with a set of parsers and a sophisticated
chemical named entity recognition system [99] to
extract chemical information in a structured data format
[97]. In the past years, ChemDataExtractor has been

extensively used to automatically generate databases
about refraction indices and dielectric constants [100],
battery material properties [101], properties of semi-
conductors for building solar cells [102], magnetic
properties [103], as well as UV/Vis spectra [104].

In addition to the technical obstacles, scientific pub-
lishers hinder literature mining essentially by hiding
publications behind paywalls and limiting the number of
publications that can be downloaded and used even if a
subscription is available. Some publishers like Elsevier

offer markup versions of their publications for text
mining purposes to academic researchers [105], but
there is a long way to go to truly make all published
chemical information available. In 2018, an international
group of research funders announced the initiative Plan
S which requires scientists who benefit from their
funding to publish in open-access journals [106].
Recently, the US government announced that they will
require all publicly funded research to be openly
accessible from 2026 on [107]. With RDM e-in-
frastructures being established as the mandatory scien-

tific data publication standard, the kind of literature
mining methods described herein will become obsolete
in the future. For now, they are indispensable for arti-
ficially intelligent data-driven applications.

AI in natural product-based drug discovery
The field of drug discovery has shifted towards imple-
menting approaches based on the analysis of large
amounts of data and deep learning [108]. As a result of
the growing demand for efficient new drugs, the field
has experienced rapid growth in the last few years. NP
are attractive to drug developers due to their availability
and their potential affinity to protein drug tar-
gets [109,110].

There have been significant advances in various areas of
the field, such as the prediction of biochemical effects of

NP based on their molecular structure [111], in the field
of genome mining for the discovery of bioactive com-
pounds [112], the mining of mass spectrometry-based
metabolomics data [113], and integrative approaches
that combine metabolomics and genomics data [114].

The initial hope that large-scale data analysis in the
different omics-related research fields would boost the
drug discovery rate has not yet materialised [115], but
the methods are progressing continuously. The open

access to databases and repositories such as Metabo-
Lights [116], the HMDB [29], the Metabolomics
Workbench [117], and METASPACE [118] is crucial for
the identification of metabolites and NP [112]. In 2021,
the Paired Omics Data Platform (PODP) was launched
as a community-driven platform that provides linked
metabolome and genome data according to the FAIR
principles [119].

NP-based drug discovery has greatly benefited from
models developed for NLP [120]. For example, in 2021,
Huang et al. published MolTrans, a state-of-the-art deep
learning-based framework for the in silico prediction of
DrugeProtein Interactions (DPI) [121]. In the
following year, Wang et al. presented their structure-
aware multimodal deep DPI prediction model STAMP-
DPI, which outperforms MolTrans. The tool has been
published along a large high-quality training and
benchmarking dataset [122]. The adaptation of

sequence models like the transformer [78] for AI-based
drug design requires large amounts of well-curated,
high-quality data.

The recent development in the field of deep generative
models helps researchers generate molecules with
desired properties [123], but a model that can gener-
alise well and can generate molecules with desirable
properties requires a large amount of training data.
When dealing with artificially generated structures, it is
also necessary to consider their synthetic accessibility.

To successfully use deep learning on published NP
structures, well-curated data is essential. Published data
resources are often incomplete, inaccessible, or no
longer available [124] which makes available resources
like the Natural Products Atlas [31], LOTUS [125], and
COCONUT [30] even more important.

The development of deep learning-based models has
assisted the advancement of drug discovery overall, with
more advancements being made in the development of
models and increasing access to open data and open
databases helping this field grow. We hope that the

research community will continue to actively contribute
to openly available data sources to enable further prog-
ress in the field.

Conclusions
The developments of the past years demonstrate the
potential of data-driven machine learning applications in
the field of molecular informatics in an impressive
manner [5,65,70]. An obvious requirement to benefit
from this development is the availability of open struc-
tured experimental data [11,12]. The integration of
open data infrastructures will enable AI to be used in
nearly every field of chemistry. The application of deep
learning methodologies and the sharing of code and data
in the field of chemistry are still in their early stages and
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require more community standards to be developed.
Many of the models are still being trained from scratch
using in-house servers and GPUs, which is a time-
consuming and restrictive process. The rapid growth
of the field will be enabled by the sharing of already-
trained models and curated data with the public.
When sharing code or data, high quality and data stan-
dards must be maintained [126]. Using the public cloud

infrastructures will readily allow researchers to take
advantage of the latest developments in hardware and
software, which will lead to faster growth and a reduc-
tion in energy consumption. There are several initiatives
working continuously to implement open data, open-
source, and open science in their individual research
area [13,14,17,18,20,21,77,106,107,127,128]. Fueled by
the availability of more and more open research data, AI-
powered molecular informatics will be a key driver of the
digital transformation of chemistry in the coming years.
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Abstract
The number of publications describing chemical structures has increased steadily over the last
decades. However, the majority of published chemical information is currently not available in
machine-readable form in public databases. It remains a challenge to automate the process of
information extraction in a way that requires less manual intervention - especially the mining of
chemical structure depictions. As an open-source platform that leverages recent advancements
in deep learning, computer vision, and natural language processing, DECIMER.ai (Deep
lEarning for Chemical ImagE Recognition) strives to automatically segment, classify, and
translate chemical structure depictions from the printed literature. The segmentation and
classification tools are the only openly available packages of their kind, and the optical chemical
structure recognition (OCSR) core application yields outstanding performance on all benchmark
datasets. The source code, the trained models and the datasets developed in this work have
been published under permissive licences. An instance of the DECIMER web application is
available at https://decimer.ai.



Main

Introduction
The availability of chemical information in structured data formats and open databases benefits
not only researchers in chemistry itself but also scientific fields using chemical information such
as medicine, pharmacy, material science, molecular biology and many more 1. Although
substantial efforts exist to establish research data management infrastructures 2,3 and open
databases and repositories 4–7, most chemical information is still exclusively published in
human-readable text and image formats in the literature. The manual extraction of information
from the chemical literature is a time-consuming and error-prone process 8 that can only yield
the large amounts of data needed for deep learning applications, for example, when
considerable amounts of human resources are employed.

The translation of images containing chemical structure depictions into machine-readable
representations is referred to as Optical Chemical Structure Recognition (OCSR). In the last
three decades, there has been continuous development in OCSR tools 9,10, most of them being
proprietary algorithms 11 and rule-based tools 12–14. In general, rule-based tools work better with
clean images, whereas slight distortions may hinder their performance 15. In recent years,
deep-learning-based OCSR tools have been developed 16,17,18 in conjunction with remarkable
advancements in computer vision and natural language processing 19,20. While several
publications have claimed to have developed tools that are capable of recognizing chemical
depictions with high accuracy, most of these tools are either proprietary or entirely unavailable
16,21–23. Among the few open-source OCSR software solutions 15,24, there is no system that
combines chemical structure image segmentation, classification, and translation within a
comprehensive workflow.

DECIMER.ai, an open-source platform for the identification, segmentation and recognition of
chemical structure depictions in the scientific literature, seeks to address this shortcoming. The
system combines DECIMER Segmentation, a toolkit based on Mask R-CNN 25 for the detection
and segmentation of chemical structures in the scientific literature 26, DECIMER Image Classifier
for the identification of images containing a chemical structure, and DECIMER Image
Transformer as an OCSR engine, which converts a chemical structure depiction into a
machine-readable format. DECIMER algorithms do not inherit any hand-picked rules but instead
rely solely on the training data to predict accurate results without making any further hard-coded
assumptions.

All components are openly available on GitHub and can be used separately as Python
packages or in the user interface of our browser application. The web application is hosted at
https://decimer.ai. As all the source code has been published under a permissive licence along
with the documentation, users can easily modify and redistribute it or integrate it into their own
applications. The Python packages are all hosted on PyPI and are designed to be installable
and usable with few lines of code. The DECIMER.ai web application can easily be deployed and



scaled. As DECIMER is trained on publicly available data and is made available to the public in
the form of a ready-to-use open-source tool, we believe that the system will significantly reduce
the workload and produce high-quality data for the research community and those who are
developing and curating chemical databases.

Results
DECIMER Image Classifier and DECIMER Image Transformer have been developed and
combined with DECIMER Segmentation 26 to achieve a comprehensive workflow for the
automated extraction and interpretation of chemical structures in the scientific literature (Figure
1). The complete workflow combining all these components is available as a web application
with a user interface 27.

Figure 1: Overview of the integrated DECIMER workflow: Detection, segmentation and
interpretation of chemical structure depictions in the scientific literature.

DECIMER Image Transformer yields the highest percentage of correct predictions as well as the
highest average molecular (Tanimoto) similarities out of all tested tools in our benchmarks
(Figure 3). For chemical structure depictions, DECIMER Image Classifier is the first openly
available classification system and DECIMER Segmentation 26 is the only openly available



segmentation application. The DECIMER web application is the only open-source system that
combines these functions in a comprehensive chemical data extraction system.

DECIMER Image Transformer
The key component of DECIMER.ai is the DECIMER Image Transformer OCSR tool. Due to the
usage of diverse chemical structures with diverse depiction features in the training data and an
exhaustive image augmentation strategy, the application yields robust results and is capable of
interpreting Markush structures as well as common functional groups and superatom
abbreviations. A detailed description of the model architecture and the training data is given in
the Methods section below.

In-domain test performance
The DECIMER Image Transformer model was trained with more than 450 million depictions of
chemical structures with an image resolution of 512 x 512 pixels (see dataset pubchem_3 in
Supplementary Table 1). The images were generated using the full range of depiction options in
the cheminformatics toolkits Chemistry Development Kit (CDK) 28, RDKit 29, Indigo 30 and the
Python-based Informatics Kit for Chemical Units (PIKAChU) 31. A detailed description of the
dataset creation can be found in the Methods section below.

The trained model was tested on four different in-domain datasets containing 250,000 images
each. These test datasets were generated similarly to the training datasets but contained no
molecules from the training data. In the test datasets, molecules with or without Markush
structures or augmentations were included (Figure 2A).

For performance evaluation, two different measures were used: Predictions identical to the
correct molecule were considered to be the optimal result, of course. But predictions resembling
the correct molecule closely are also very useful for the curation of chemical data. A human
curator, for example, who is presented with the bitmap image and an already very similar
machine translation only needs to perform a small correction with a chemical structure editor as
opposed to re-drawing the whole molecule. To evaluate the similarity of molecular structures,
the Tanimoto similarity 32 or Jacard-Index 33 is used, which encodes the presence or absence of
structural features of chemical compounds in a bit vector (where PubChem fingerprints were
used in particular) and expresses the similarity between two bit vectors (or two chemical
structures, respectively) as a number between 0.0 (most dissimilar) and 1.0 (most similar).

In all test results, DECIMER Image Transformer consistently produces an average Tanimoto
similarity of greater than 0.95. Opposed to the steadily high Tanimoto similarity, there are clear
differences regarding the number of perfect predictions. The proportion of perfectly predicted
molecules decreases with an increased level of complexity and noise in the structure depictions
as well as a lower image resolution.

There are two obvious trends: 1) The addition of image augmentations leads to a lower
proportion of perfectly recognised structures. 2) The proportion of perfectly recognised



molecules is lower when processing test datasets that exclusively contain Markush structures.
These results are not surprising since the R group indices (as in ‘R1’) and other labels can be
difficult to recognize, especially when the image resolution is low or when additional noise is
introduced. Nevertheless, the constantly high Tanimoto similarities indicate that the predicted
molecules are very similar to the depicted ones, even when the predictions are not perfect.

Since PubChem fingerprints cannot describe the R-group variables in Markush structures, the
derived Tanimoto similarities only describe the similarities of the molecular structures, but
cannot be used to evaluate whether the R-group labels have been correctly interpreted.
Therefore, the BLEU score 34 was determined as a token-based string similarity metric (see
Supplementary Table 2). The obtained average BLEU-score of 0.94 across all test results with
Markush structures also indicates a high similarity between the predicted and the true string
representations.



Figure 2: A: Representation of types of images in the training and the test datasets. B:
In-domain test results: The training dataset includes depictions of Markush structures and a
variety of image augmentations (dataset pubchem_3 in Supplementary Table 1). In the test
datasets, these features were separately evaluated to assess their influence on performance.
All in-domain test results are also presented in Supplementary Table 2.

OCSR tools benchmark
To assess the performance of the DECIMER Image Transformer model in comparison with other
openly available tools (OSRA 12, MolVec 14, Imago 13, Img2Mol 15, MolScribe 35, SwinOCSR 24,
see Supplementary Table 3), a row of benchmark datasets from a variety of sources was
applied (a complete list with additional information about the benchmark datasets and individual
tool performance is provided in the Methods section and the supplementary information).
Following the remark of Clévert et al. 15, that the parameters of the rule-based systems OSRA,
MolVec and Imago are overfitted to the available benchmark datasets, mild image distortions



(i.e., rotations in the range between -5° and + 5° and mild shearing) were applied to all datasets
(see Figure 3B/3D in contrast to Figure 3A/3C for datasets without these distortions).

Figure 3: Average performance of the open OCSR tools on all benchmark datasets. The
success rates are described by the proportion of perfect predictions and the average Tanimoto
similarities, whereas the failure rates are measured as the percentage of predictions with zero
Tanimoto similarity plus invalid predictions (catastrophic) and the percentage of predictions with
a low Tanimoto similarity value less than or equal to 0.3 (severe). A: Success rates for datasets
without added distortions. B: Success rates for datasets with added distortions. C: Failure rates
for datasets without added distortions. D: Failure rates for datasets with added distortions. The
detailed performance metrics for every tool on every benchmark dataset are presented in
Supplementary Tables 3 and 4.

DECIMER Image Transformer achieves competitive results on most benchmark datasets
compared to the other open OCSR tools (Figure 3), showing no performance degradation due
to slight image distortions while confirming the lack of distortion robustness of the rule-based
systems. In addition, the rule-based systems fail to correctly recognise the structure depictions
with a low image resolution (see USPTO_big and Indigo in Supplementary Table 3). The



SwinOCSR model does not achieve any outstanding results in our benchmarks - but it needs to
be mentioned that its developers stated that their model does not perform well on real-world
data 24 which is likely due to a lack of diversity in their training data. Appropriate assessment of
failure rates is of particular importance for machine learning applications (Figure 3C/3D): in line
with Img2Mol and MolScribe, DECIMER Image Transformer exhibits extremely low rates of
severe and catastrophic failures.

Figure 4: A hand-drawn molecule representation from the DECIMER Hand-drawn image
dataset 36 (PubChem ID: 31743, left) and corresponding synthetic hand-drawn-like images
created with RanDepict 37 (middle, right).

The DECIMER Image Transformer model has never been trained on hand-written chemical
structure depictions. However, for a benchmark dataset that only consists of hand-drawn
chemical structures (DECIMER Hand-drawn image dataset outlined in the Methods section), it
recognises 27% of the structures perfectly and achieves an average Tanimoto similarity of 0.69,
whereas all alternative open tools perform worse (see Supplementary Table 3). Moreover, when
the model is fine-tuned with a training dataset of images with augmentations that make them
appear hand-drawn-like (see Figure 4 and Supplementary Table 1), the proportion of perfect
predictions grows significantly to 60% (i.e., an increase of 33%), corresponding to a remarkable
average Tanimoto similarity increase of plus 0.2 to 0.89.

DECIMER Image Classifier
DECIMER Image Classifier is a deep learning-based architecture for the identification of images
that contain a depiction of a chemical structure. It has been trained, tested and validated using a
balanced dataset of images with and without chemical structure depictions (creation and
curation of this dataset are outlined in detail in the Methods section).

In addition, DECIMER Image Classifier has been tested on four external datasets, three publicly
available datasets



1. a dataset only containing chemical structure depictions (ChEBI),
2. a dataset without any chemical structure depictions (EM_Images),
3. a public dataset of images extracted from a diverse set of publications (PubLayNet),

and a manually curated set of images extracted from articles of the Journal of Natural Products
(JNP):

4. a real-world dataset using 1000 publications (JNP_real_world).

DECIMER Image Classifier predicts a value between 0 and 1, where an optimally determined
threshold value is used for the binary decision purpose. The system achieved a 0.99 score on
the in-domain test set on every performance metric calculated (Area Under Curve, Matthews
Correlation Coefficient, accuracy, specificity, and sensitivity, see Methods section below). It
correctly classified 99% of the images with chemical structure depictions and almost 100% of
images without chemical structure depictions. On the four out-of-domain test sets, the
proportion of true classifications was 97% (ChEBI), 100% (EM_Images), 99% (PubLayNet) and
94% (JNP_real_world).

DECIMER.ai
DECIMER.ai is a web application that combines the previously described components in an
automated, comprehensive workflow for the extraction of chemical structures from the scientific
literature. When a user uploads a PDF document or a single image file, DECIMER
Segmentation is used to cut chemical structure depictions. The segmented chemical structure
depictions are then processed by DECIMER Image Classifier and DECIMER Image Transformer
to obtain machine-readable SMILES string representations of the resolved chemical structures.

Figure 5: Example image of a Markush structure (on the left) that has been loaded into the
DECIMER web application. The SMILES string representation of the molecule is generated
(upper left) and depicted in the embedded Ketcher molecular editor window (on the right).



These resolved SMILES encoded structures are then automatically loaded in the embedded
molecular editor Ketcher 38 (see Figure 5). The molecular editor enables the manual inspection
and editing of the resolved chemical structures. In addition to the segmented structure
depictions, the resolved structures can be downloaded in the common MOL file format.

Discussion
DECIMER Image Transformer as the DECIMER core component achieves highly accurate
results on the in-domain test data. The system performs better on non-augmented test images
since augmented images contain a wide range of additional non-structural elements and noise
that have to be ignored in order to correctly translate a chemical structure depiction. This effect
is diminished when images of a higher resolution are processed because a low-resolution image
may already be comparably blurry and may turn unrecognisable when additional augmentations
are applied. The DECIMER Image Transformer model produces predictions that are highly
similar to the original molecules with an average Tanimoto similarity over 0.95. The translation of
depictions of Markush structures yields similar results, although the proportion of perfectly
predicted structures is considerably lowered. This may be traced to the relevance of the small
subscript indices of the R-groups (as in ‘R1’). It could be shown that especially in images with a
lower resolution of 299 x 299 pixels, these small digits may become unrecognisable, whereas
corresponding images with a resolution of 512 x 512 pixels could be processed with a significant
increase in the number of perfectly-recognized Markush structures (see Supplementary Table 2
and Supplementary Figure 1). Moreover, the BLEU scores, which are consistently above 0.9
(see Supplementary Table 2), confirm that the Markush structure predictions are very similar to
the original SMILES strings.

In comparison with alternative open OCSR tools, DECIMER Image Transformer performs with
high accuracy. Apart from Img2Mol’s performance on its in-domain test data, MolScribe’s
performance on USPTO data (which may be part of the system’s training data 35) and the
performance of MolVec on the non-distorted JPO, CLEF and USPTO datasets, DECIMER
Image Transformer performs outstandingly well on all benchmark datasets without any
significant differences between non-distorted and distorted images. It is particularly striking that
the system’s severe and catastrophic failure rates are very low. The system also achieves a
comparative peak performance when benchmarked against the DECIMER Hand-drawn image
dataset, which is especially interesting since there has not been a single hand-drawn structure
in the training data. Thus, this model may be applied to extract chemical structures from
hand-drawn images in the future. This may become particularly relevant for translating chemical
publications from 50 years ago since a lot of the chemical structures from that time were
hand-drawn using templates. Although the predictions might not be perfect in all cases, a similar
prediction considerably reduces the amount of manual work when mining chemical structures
from printed literature. The outlined success rates of DECIMER Image Transformer demonstrate
not only robust performance, but also superior generalisation capabilities due to a training data
diversification strategy with highly diverse structure depictions generated by our OCSR training



data generation tool RanDepict 37: It ensures that the full diversity of depiction features is
properly represented that CDK 28, RDKit 29, Indigo 30 and PIKAChU 31 have to offer.

DECIMER Image Classifier is capable of achieving high-performance metrics and is capable of
working effectively on a wide range of datasets. In the ChEBI dataset, performance was slightly
reduced due to the presence of images of isolated ions that were recognized as non-chemical
images. None of the electron microscopy images from the EM_Images dataset has been
wrongly classified as a chemical structure. Considering that the images found in PubLayNet
originated from diverse sets of articles from PubMed Central, the high performance of the
DECIMER Image Classifier indicates the robustness of the model. Additionally, the classifier
achieved high performance when applied to real-world use cases.

The DECIMER.ai web application is the first comprehensive open-source user interface
application for the extraction of chemical information from the scientific literature. As discussed
above, DECIMER Image Transformer translates chemical structure depictions with a high
degree of similarity. By embedding it into the DECIMER.ai application, a human curator can
immediately assess the predictions and correct them in the molecular editor windows if
necessary. For the segmentation and classification of chemical structure depictions, DECIMER
Segmentation and DECIMER Image Classifier are the only open-source applications available.

Figure 6: DECIMER.ai being used via a smartphone at the 17th German Conference on
Cheminformatics. The deciphered structure can be searched in PubChem, the largest openly
available chemical database, right away.

Since DECIMER.ai can be accessed from a mobile phone or tablet via the web browser, these
tools are enabled to recognize chemical structures in the real world (Figure 6): By using
DECIMER.ai on a mobile device during a conference, images of chemical structures may be
captured during a presentation or poster session to identify the molecules presented. With the



DECIMER.ai search functionality, users can conduct a direct “single-click” PubChem database
search in addition to the structure recognition to access additional chemical information.

There have been closed-source projects like CLiDE 39 or the recently published MolMiner 23 that
combine a segmentation step with an OCSR step in their workflow. CLiDE is a fully commercial
tool, MolMiner permits limited access to registered users and offers unlimited access to users
who wish to obtain an enterprise licence. Since the source code of these applications is not
openly available, researchers cannot adapt them according to their needs or integrate them into
their applications. As all DECIMER components and the DECIMER.ai web application are
open-source projects, continuous further development with significant community-driven
improvements can be expected in the future. There have been major advances in the extraction
of chemical information from documents. For example, ChemDataExtractor 8,40,41 has been used
extensively for the automated generation of chemical databases 42–45. Perspectively, it would be
interesting to integrate such applications in DECIMER.ai to mine chemical information from the
text of PDF documents and link it to structural information obtained from OCSR. Although there
are many more challenges to overcome to mine all types of chemical information from the
literature using a single platform, DECIMER.ai may become a solid open basis for further
development.

Methods
The DECIMER project was developed as a deep-learning-based solution for OCSR tasks. The
goal of the DECIMER project is to develop an automated system that detects, segments, and
converts images from published literature into computer-readable formats, in this case, the
SMILES representation. It is a fully data-driven approach, in which no assumptions are made
about the underlying chemical structure. In total, the project is divided into four parts: the
segmentation algorithm, the image classifier, the OCSR model, and the web application.

DECIMER Segmentation
Our previously published application DECIMER Segmentation 26 was re-used in this work to
create a complete extraction workflow. It uses an open implementation of the Mask R-CNN
architecture 25 in combination with custom processing steps to segment chemical structure
depictions from pages in the scientific literature. Since the original publication, we have
refactored the complete codebase, added unit tests and wrapped it up in a Python package that
can be installed easily from PyPI 46, but all underlying models and algorithms remain
unchanged. The DECIMER Segmentation model was trained on manually annotated data using
TensorFlow 2.3.0, but it has been updated to work with TensorFlow 2.10.0 in accordance with
the other DECIMER components. The source code and the model are available on GitHub 47

and Zenodo 48. For further information about DECIMER Segmentation, we would like to refer to
the original publication 26.



DECIMER Image Transformer

Selection of molecules
The DECIMER Image Transformer model was trained on data based on molecules obtained
from PubChem 49. The entire molecules of PubChem were downloaded in SMILES format
directly from the PubChem FTP site 49. To reduce the imbalance of data, all molecules with a
molecular weight of more than 1500 Dalton were filtered out. All explicit hydrogen atoms were
removed and stereochemistry was retained. SMILES strings with more than 152 tokens (see
Tokenization) were filtered out due to their underrepresentation in the data (3,263 molecules). As a
result, 108,541,884 molecules were selected in total. A diverse set of 250,000 molecules was
selected to use as a test dataset from the whole dataset using the MaxMin 50 algorithm included
in chemfp 51. Another million molecules were selected randomly and used for validation during
the development, and the remainder was used as a training dataset (pubchem_1 see
Supplementary Table 1).

Additionally, a second dataset with Markush structures was generated. Due to the unavailability
of large datasets of SMILES that represent Markush structures, they were artificially generated
based on 20 million SMILES strings which were diversely picked from PubChem 49 using the
chemfp 51 implementation of the MaxMin 50 algorithm. To generate SMILES representing
Markush structures, the following steps were followed:

1) Read input SMILES using the CDK 28.
2) Add explicit hydrogen atoms and return absolute SMILES.
3) Pseudo-randomly replace 1-3 carbon-’C’ or hydrogen-’H’ with the rest group variables.

Rest group variables are defined as the characters ‘R’, ‘X’ and ‘Z’ with or without an
index number between 0 and 20.

4) Read modified SMILES using the CDK.
5) Remove explicit hydrogen atoms and return absolute SMILES.

For example, the input SMILES string ‘CCC’ is converted to the absolute SMILES string
‘C([H])([H])([H])C([H])([H])C([H])([H])[H]’. Subsequently, the pseudo-random insertion of an
R-group variable takes place and yields ‘C([H])([H])([H])C([H])([H])C([H])([R])[H]’. After
re-reading the modified SMILES string and removing the explicit hydrogen atoms, the CDK
returns ‘CC(C)[R]’. The functionality of generating random Markush structures based on given
SMILES strings has been integrated into our open-source OCSR training data generation tool
RanDepict 37 for this purpose.

By adding the newly generated SMILES with Markush structures to the SMILES strings from
pubchem_1 and applying the same filtering criteria as described above, 126,702,705 molecules
were selected. Based on this, a diverse set of 250,000 SMILES representing molecules with
Markush structures were selected for testing using the MaxMin 50 algorithm. One million
molecules were retained to use for validation during development, and the remainder was used
as training data (pubchem_2, pubchem_3 see Supplementary Table 1).



Our previous study on the performance of the molecular string representations DeepSMILES 52,
SELFIES 53 and SMILES for OCSR purposes 54 with similar model architectures indicates that
the usage of SMILES strings leads to more accurate results although the usage of SELFIES
leads to more valid chemical structures in the predictions. Thus, SMILES string representations
were used for DECIMER Image Transformer.

Tokenization
The SMILES strings in the datasets were split into meaningful tokens using the Keras 55

tokenizer with TensorFlow 2.8.0 56. The following set of rules was applied where each string is
split after,

- every heavy atom: e.g., “C”, “Si”, “Au”
- every open bracket and closed bracket: “(”, “)”, “[”, ”]”
- every bond symbol: “=”, ”#”
- every one of the following characters: “.”, “-”, ”+”, ”\”, ”/”, ”@”, ”%”, ”*”
- every single-digit number

After the splitting, a “<start>” and an “<end>” token were added at the beginning and the end of
the sequence. To match the same maximum length, each tokenized string was padded with
“<pad>” tokens. The token “<unk>” is used for unknown elements and acts as a placeholder.
R-group indices were replaced according to the procedure described in the subsection
Evaluation of different R-group representations in SMILES.

The following is a list of all tokens found in dataset pubchem_1:
<unk>, C, =, (, ), O, N, 1, 2, 3, <start>, <end>, @, [, ], 4, H, F, S, 5, Cl, /, ., 6, -, +, Br, #, \, 7, 8, 9,
P, I, Si, B, Na, K, %, Se, Sn, Y, Li, Zr, Fe, Ti, Al, Zn, Pt, Cu, Ir, Mg, Ni, Co, W, Ru, Ca, Ge, V, As,
0, Pd, Cr, Mn, Sb, Ag, Te, Hg, Mo, Hf, Rh, Au, Pb, Ba, Bi, U, Rb, In, Cs, Ga, Re, Cd, Ar, Sr, Os,
Ce, La, Gd, Tl, Nb, Nd, Ta, Eu, Pr, Sm, Yb, Sc, Be, Tb, Dy, Er, Th, Lu, Ho, *, Tm, Xe, He, Pa, Kr,
Ne, <pad>

The following is a list of all tokens found in dataset pubchem_2:
<unk>, C, =, (, ), O, N, 1, 2, [, ], 3, <start>, <end>, @, 4, H, F, S, Cl, 5, /, !, X, Z, R, ., 6, Br, +, -,
#, \\, §, $, 7, £, <, ?, ¢, ^, >, €, 8, I, P, 9, Si, B, Na, %, Se, 0, Sn, K, Y, Li, Zr, Fe, Al, Ti, Zn, Pt, Cu,
Ir, As, Ni, Mg, Ge, W, Co, Ru, Ca, V, Pd, Te, Cr, Mn, Sb, Hg, Ag, Mo, Pb, Hf, Bi, Au, Rh, Ba, U,
In, Rb, Ga, Re, Cs, Cd, Sr, Ar, Tl, Ce, Os, La, Nb, Gd, Ta, Nd, Eu, Pr, Sm, Yb, Sc, Be, Tb, Th,
Er, Dy, Lu, Ho, *, Tm, Xe, He, Kr, Pa, Ne, <pad>

Generation of chemical structure depictions
The images of chemical structures were depicted as grayscale 2D bitmap images using our
open-source toolkit RanDepict 37. In the chemical literature, various types of chemical structure
depictions are represented. This is due to the usage of numerous different software packages or
even templates for hand-drawing chemical structures throughout different types of publications.
RanDepict attempts to generate datasets in which all features that define different types of
depictions are represented in a balanced and controlled manner by pseudo-randomly



scrambling all available depiction parameters for every created image. Additionally, a variety of
image augmentations like rotation, shearing, the addition of curved arrows in a structure, and
the addition of text labels and reaction arrows around the structure can be applied 37.

The originally published version of RanDepict (1.0.5) uses the CDK 28, RDKit 29 and Indigo 30

toolkits to generate diverse sets of chemical structure depictions. For the training dataset
pubchem_1, this version of RanDepict was used to depict each molecule once without and
three times with image augmentations with different pseudo-randomly scrambled depiction
parameters for each image.

Since then, we have continued the development of RanDepict and have implemented the option
to depict Markush structures. Additionally, the generation of SMILES representations of Markush
structures based on any given SMILES string that has been described in the section Selection
of molecules was implemented. Furthermore, we contributed to PIKAChU 31, to allow the
depiction of Markush structures and implemented its functionalities in RanDepict. Finally,
RanDepict 1.0.8 was used to generate the chemical structure depictions in the training dataset
pubchem_2, which contains Markush structures where the images were depicted with a size of
299 x 299 pixels. Here once again, one depiction was created without any augmentations, and
three depictions were created with augmentations. This version of RanDepict produced some
invalid SMILES representations of Markush structures resulting in a reduction of total images.
Due to the large number of depictions (479,500,000 images) and the time and resources spent
on their production, we decided to proceed with this dataset.

To evaluate the performance of the model using images with a higher resolution, a third dataset
was created by re-depicting the molecules from the pubchem_2 dataset with an image size of
512 x 512 pixels (where originally the images on pubchem_2 dataset were depicted with an
image size of only 299 x 299 pixels). Everything else was done following the same procedure as
the production of pubchem_2. During the creation of the dataset, not all molecules were
completely depicted due to memory issues, resulting in a reduction in the number of images.
Again, we decided to use the generated training dataset since there were more than
453,900,000 million images. This dataset is referred to as pubchem_3.

RanDepict version 1.1.4 has been used to generate 127,500,000 hand-drawn-like synthetic
structure depictions with an image size of 512 x 512 pixels using the pubchem_3 dataset. The
augmentation functionalities that enable the generation of a hand-drawn-like style that has been
implemented in RanDepict for this purpose are based on ChemPIX's implementation of
hand-drawn-like hydrocarbon chemical depictions 57.

All training datasets were saved as TFRecord files to enable the training on TPU cloud
instances using Tensorflow. Due to the large number of data points used in our training datasets
(>400,000,000), the training dataset generation is a time-consuming process. Consequently, the
SMILES datasets were divided into 100 chunks of equal length and used as input for the
RanDepict toolkit which was instantiated with different seeds to produce different sets of
depiction features in each instance. To create TFRecord files directly from SMILES input, a



custom Python script was used which is available in the RanDepict repository. The 100 SMILES
list chunks per training dataset were processed on an in-house cluster using the workload
manager Slurm. In each instance, 20 threads were used on virtual machines with 36 processor
cores (2x Intel Xeon Gold 6140 18 Core 2,3 GHz) and 192 GB of RAM. Generating the datasets
with an image size of 512 x 512 pixels took almost two weeks.

Model Selection
DECIMER Image Transformer is based on an encoder-decoder architecture. A convolutional
neural network (CNN) encoder generates feature vectors from 2D images which are then
decoded by a transformer model 58 to yield a SMILES representation of the depicted molecule.
The CNN encoder architecture used for DECIMER Image Transformer is EfficientNet-V2 59.
Specifically, the EfficientNet-V2-M CNN model was chosen without any further modifications. A
transformer model was used as the decoder. The transformer used in this work has four layers
and eight parallel attention heads. The attention has a dimension size of 512 and the
feed-forward networks have a dimension size of 2048.

Training
All of the DECIMER Image Transformer models were trained on TPUs available on the Google
Cloud Platform (GCP). For training models, GCP offers a variety of TPUs. In this work, TPUs
were selected for training models primarily due to their faster training speed, scalability, and
availability on the Google Cloud Platform. To enable the training on TPU devices, all datasets
were saved as TFRecord files.

The training of models that were trained on the datasets pubchem_1 and pubchem_2 was run
using a TPU V3-32 pod slice. The TPU V3-32 pod slice consists of four devices, which equals
32 nodes in total. This results in a fourfold increase in training speed compared to the previously
used TPU V3-8 devices. The model trained using the pubchem_3 dataset was trained on a TPU
V3-256 pod slice.

All models were trained using the Adam optimizer with a custom learning rate scheduler. Sparse
categorical cross entropy was used as a loss metric. The dropout rate was set to 0.1 to avoid
overfitting. When training models using the images with the size of 512 x 512 pixels, the
per-node batch size was set to 48. Training scripts and models are written in Python 3 with
Keras and Tensorflow 2.8.0.

Computational considerations
Training a model with the training dataset pubchem_1 on the TPU V3-8 device took nearly 3
days and 10 hours on average per epoch. Training the same model using a TPU V3-32 pod
slice took an average of one day and two hours. Thus, it was decided to train all models on TPU
pod slices of V3-32 or higher to speed up the training process.

To train the models using the training dataset pubchem_3, the encoder had to be configured to
accommodate the larger image size. Three EfficientNet-V2 encoder models were used to train



and test the models trained using mages with the size of 512 x 512 pixels. These are
EfficientNet-V2-B3, EfficientNet-V2-S, and EfficientNet-V2-M.

The training of the models with EfficientNet-V2-B3 per epoch took an average of 2 days and 3
hours on a TPU pod slice V3-32. All training processes were moved to a TPU pod slice V3-256
to speed up training. Using EfficientNet-V2-B3, a model could be trained within 12 hours and 30
minutes on average per epoch after changing the training device. For the model with
EfficientNet-V2-S as the encoder, it took 15 hours and 26 minutes on average to train each
epoch, while for the model with EfficientNet-V2-M as the encoder, it required 1 day and 7 hours.

Test datasets
In order to test the model trained on pubchem_3, the previously selected set of 250,000
molecules was used. Each of these molecules was depicted twice at 512 x 512 pixels, with and
without augmentations. Moreover, to test the effectiveness of the model against images of
chemical structures depicted with Markush structures, another dataset of 250,000 molecules,
diversely selected using the MaxMin 50 algorithm and depicted using RanDepict, was used,
where the images were shown both with and without augmentation at a resolution of 512 x 512
pixels.

Evaluation of the test results
The analysis of the test results was conducted using metrics generated with the CDK. All
predicted SMILES strings for the test datasets were parsed using the CDK SMILES parser.
Those that did not get parsed were labelled as invalid SMILES, whereas those that did get
parsed were labelled as valid SMILES strings. Using the valid SMILES strings, accuracy and
similarity were calculated by comparing each predicted SMILES string with the original SMILES
string.

We initially generated InChI strings from the original and predicted molecules and compared
them one to one in order to determine the accuracy of the model. For models trained using
images with R-Group labels, obtaining InChI strings to calculate identical string matches is not
possible. In order to overcome this problem, all of the original and predicted SMILES were
parsed using the CDK SMILES parser, and an Isomeric CX SMILES was generated by
combining CDK's Absolute and CXSMILES flavours. The SMILES string generated using this
method then consists of a canonicalised SMILES with a ‘*’ symbol where the R-Group should be
present. At the end of each SMILES string, the R-Group labels that need to be inserted for the
asterisks are listed. Using this particular SMILES variant, a one-to-one string comparison was
performed, to determine the proportion of identical predictions.

Considering that the DECIMER Image Transformer model could potentially predict similar, but
not identical molecules, it is important to also examine the similarity of the predicted molecules.
Each predicted and original SMILES string pair was converted into CDK’s iAtomContainer
objects, and a Tanimoto similarity index was calculated based on PubChem fingerprints for each
pair of original and predicted structures.



After all, the metrics have been calculated for each pair in the test dataset. The proportion of
valid SMILES predictions, invalid SMILES predictions, the average accuracy, the average
Tanimoto index and the proportion of Tanimoto 1.0 occurrences were calculated for each test
dataset.

The BLEU (bilingual evaluation understudy) scores were calculated in addition to determining
the accuracy of the predictions made by the model that predicts SMILES for images with
Markush structures. This score evaluates how well a model can predict SMILES that are similar
to the original molecule's SMILES.

Evaluation of different R-group representations in SMILES
Many Markush structures have more than one R-group attached to them. Therefore, the
R-groups are commonly assigned indices, as in ‘R1

’ or ‘R2’. When creating SMILES strings with
R-group representations, this leads to the introduction of tokens with multiple meanings. For
example, the token ‘1’ in the SMILES string ‘c1ccccc1[R1]’ can represent a ring opening or
closure or an R-group index. To evaluate the influence of this potential problem, the
performance of two models was compared.

In order to assess if these different possibilities of interpretation of the same tokens have an
impact on the performance, two models were trained and tested. The first model was trained on
images with R-group depictions and SMILES strings with R-group labels without any further
modifications. The second model has trained on the same images, but the matched SMILES
strings were modified to avoid tokens with multiple meanings. Every digit that occurs right after
an R-group label is replaced by a character that does not have any function in the SMILES
syntax. The following replacement characters were used:

1 →  !, 2 → $, 3 → ^, 4 → <, 5 → >, 6 → ?, 7 → £, 8 → ¢, 9 → €, 0 → §

For example, this converts the SMILES string ‘C[R5]N1C=NC2=C1C(=O)N(C(=O)N2C)C[R12]’
into ‘C[R>]N1C=NC2=C1C(=O)N(C(=O)N2C)C[R!$]’.

The SMILES representations of Markush structures were downloaded from the SwinOCSR 24

repository and the images were generated using the CDK depiction generator with a resolution
of 299 x 299 pixels. Character-based tokenisation was applied in both cases. Both models were
trained on a set of 1 million structure depictions and tested on a set of 102,400 molecules from
the whole dataset (selected using the MaxMin 50 algorithm) which were depicted as separate
images; these molecules were not included in the training data.

For the evaluation, the original digits were re-inserted into the SMILES strings predicted by the
second model. The SMILES strings were canonicalised and the Tanimoto similarity based on
PubChem fingerprints was computed using the CDK. The performance evaluation was done
based on the average Tanimoto similarity, the proportion of Tanimoto similarity values of 1.0, the
proportion of exact string matches based on the canonical SMILES and the proportion of valid
predicted SMILES representations of molecules (Figure 7).



Figure 7: Test performance of a model trained on SMILES strings without further modifications
(Model 1) and SMILES strings with replaced R-group indices (Model 2)

The model that was trained on the modified SMILES representation of Markush structures
outperforms the model that was trained on the original SMILES representations. It yields a
higher proportion of valid predicted SMILES strings (+3.4%), a higher proportion of Tanimoto 1.0
similarities (+2.2%) and a higher average Tanimoto similarity (+0.04), although the number of
perfect predictions is slightly worse (-0.5%) for more details see Supplementary Table 5.

The results show that the double meaning of tokens in the training data (digits as part of the ring
syntax or as an R-group index) leads to a lower performance of the model trained with it. Based
on this finding, the modified SMILES representations were used for the training of all DECIMER
Image Transformer models described in this publication.



Benchmark
We determined the performance of the DECIMER Image Transformer and other available
OCSR tools to assess their ability to be applied in a real-world use case to automate the mining
of chemical structure depictions from the printed literature. A comprehensive benchmark of the
DECIMER Image Transformer was conducted using all publicly available OCSR benchmark
datasets and DECIMER test datasets.

The first four datasets were downloaded from Rajan et al. OCSR Review GitHub Page 60. The
other ones were generated or downloaded from the noted sources.

● USPTO: A set of 5,719 images of chemical structures and the corresponding MOL files
(US Patent Office) obtained from the OSRA online presence 61

● UOB: The dataset of 5,740 images and MOL files of chemical structures developed by
the University of Birmingham, United Kingdom, and published alongside MolRec 62

● CLEF: The Conference and Labs of the Evaluation Forum test set of 992 images and
molfiles published in 2012 63

● JPO: A subset (450 images and MOL files) of a dataset based on data from the
Japanese Patent Office, obtained from the OSRA online presence 61. Note that this
dataset contains many labels (sometimes with Japanese characters) and irregular
features, such as variations in the line thickness. Additionally, some images have poor
quality and contain a lot of noise.

● RanDepict250k: A set of 250,000 chemical structure depictions generated with
RanDepict (1.0.8) using RanDepict’s depiction feature fingerprints 37 to ensure diverse
depiction parameters. None of the depicted molecules is present in the DECIMER
training data. The images here are all 299 x 299 pixels in size.

● RanDepict250k_augmented: A set of the same 250,000 images from the RanDepict250k
dataset. Additional augmentations (examples: mild rotation, shearing, insertion of labels
and reaction arrows around the structures, insertion of curved arrows in the structure)
were added to the images using RanDepict. The images here are all 299 x 299 pixels in
size.

● DECIMER hand-drawn 36: A set of 5,088 chemical structure depictions which were
manually drawn by a group of 24 volunteers. The drawn molecules have been picked
using the MaxMin 50 algorithm from all molecules in PubChem 49 so that the set
represents a big part of the chemical space.

● Indigo: 50,000 images generated by Staker et al. 16 using Indigo30 which were collected
from the supplementary information. All images have a resolution of 224 x 224 pixels.



● USPTO_big: 50,000 images from the USPTO from Staker et al. 16 which were collected
from the supplementary information. All images have a resolution of 224 x 224 pixels.

● Img2Mol test set: A set of 25,000 chemical structure depictions used by Clévert et al. for
testing 15. All images have a resolution of 224 x 224 pixels.

DECIMER Image Transformer was also benchmarked against a set of distorted datasets. These
images were generated using the original OCSR benchmark datasets, but with a slight shearing
and rotation. The Img2Mol and DECIMER hand-drawn images datasets were not perturbed
because they already contained a mixture of clean and perturbed images.

The following paragraphs describe the steps that were taken to run all the openly available
OCSR tools.

The compilation of OSRA with all of its dependencies is a complex task. To facilitate the usage,
we have modified a version of docker-osra 64, a dockerised version of OSRA to update it to the
newest version (at the time of publication: OSRA 2.1.3). The docker image of the version we
used is available DockerHub 65. To use it on our high-performance computing (HPC) cluster, the
Docker image has been run with Singularity, an open-source containerisation application.

singularity run --bind /root_path/ docker://obrink/osra:2.1.3 sh

/root_path/scripts/run_osra_batch.sh /root_path/input_image/dir

/root_path/output_sdfile_path

The command above runs the script run_osra_batch.sh in the Docker image using Singularity.
The script runs OSRA on every image in a given directory and saves the resolved structure as
an SD file in a second given directory.

Content of run_osra_batch.sh:

#!/bin/bash

for image in $1/*.png;

do echo $image && osra -f sdf -w $2/${image##*/}.sdf $image;

done;

MolVec was downloaded as a jar file containing all dependencies 66. It was used by running

java -jar /path/to/molvec-0.9.8-jar-with-dependencies.jar -dir

/path/of/input/image_dir/ -outDir /path/of/output/molfile/dir



Imago 2.0.0 was used via its command line utility with the compiled executable provided by the
developer epam 67.

imago_console -dir /path/of/input/image_dir/

Img2Mol uses an encoder-decoder architecture. The original version of Img2Mol relies on an
HTTP request of the encoded image to a server hosted by Bayer where the decoder is running.
As the web server is only meant to be used for demonstration purposes, we contributed to
Img2Mol to create a version that runs the decoder locally instead of sending HTTP requests to
server 68. This standalone version has been used to process all available benchmark datasets
by running. The content of the script img2mol_batch_run.py is given in the supporting
information (see Code Resource 1 in the supplementary information).

python img2mol_batch_run.py /input/path/ output/path png

As the original version of SwinOCSR did not include an inference script, we contributed to the
open-source project to facilitate the usage of the model with the best performance according to
the authors (focal loss model) 24. After cloning the repository 69 and preparing the environment
according to the instructions given there, it was used by running the following command in the
directory that contains the scripts related to the above-mentioned model in the repository
(SwinOCSR/model/Swin-transformer-focalloss/):

python run_ocsr_on_images.py --data-path /path/to/directory/with/images/

DECIMER Image Classifier

Generation of chemical structure depictions
Chemical structures were depicted as PNG images using the open-source toolkit RanDepict 37.
Five different chemical structure depictions were generated for each entry in the ChEMBL30 70

database (2,157,379 compounds) and the COCONUT database 71 (407,270 natural products).
Once the chemical structure depictions were generated, the number of images without chemical
structures was determined (6,814,929). In the next step, the same number of images with
chemical structures was randomly selected. Following the selection of images with chemical
structures, the dataset was randomly divided into training, validation, and test sets based on the
80:16:4 ratio. The result was a training data set containing 5,452,557 structure depictions, a
validation data set containing 1,089,899 depictions, and a test data set containing 272,473
depictions.



Generation and assembly of images without chemical structure depictions
Using the matplotlib package in Python, 404,597 images of random graphs were generated with
various options concerning plotting style, background, and text size. Additionally, we selected
datasets containing images that could be mistaken for chemical structures, that could be easily
presented in scientific papers or other diverse datasets (see Supplementary Table 6). In total,
6,410,332 images were retrieved from the public domain; a complete list of the datasets used
can be found in Supplementary Information Table 6. In the same manner as the chemical
images, the images with non-chemical data were randomly divided into training, validation, and
test sets following a 80:16:4 ratio.

Preparation and training
DECIMER Image Classifier is based on the EfficientNet-V1-B0 model and was fine-tuned using
10,905,114 images, validated on 2,179,798 images, and tested on 544,946 images. The images
were split randomly. With a batch size of 650 and five augmentations (vertical and horizontal
flips, rotations, contrasts, and zooms), the whole training and validation process took about 52
hours and 15 minutes using a Tesla V100-PCI-E-32GB GPU.

Performance evaluation
The performance of the DECIMER Image Classifier was determined by evaluating its
predictions on the test dataset. Initially, the Area Under the Curve (AUC) which measures the
probability of correctly identifying instances more frequently than at random was calculated.
Based on a value range from 0 to 1, 1 indicates an accurate classification, and 0.5 indicates
total randomness. The DECIMER model's AUC for the test set is 0.99 (Supplementary
Information Figure 2).

The AUC allows the calculation of the highest distance between the curve and the random
prediction. This is referred to as the Youden index (J) 72,73 and it reflects the model’s threshold
that achieves the best separation between the classes (chemical structure or no chemical
structure).

Having established the most appropriate classifier threshold, other performance metrics using
the confusion matrix can be computed, which include True Positive (TP), True Negative (TN),
False Positive (FP), and False Negative (FN) values:

● Sensitivity = ; known as the true positive rate; the higher the score, the higher the𝑇𝑃
𝑇𝑃 + 𝐹𝑁

proportion of TP in the set of positive predictions
● Specificity = ; known as the true negative rate; the higher score, the higher the𝑇𝑁

𝑇𝑁 + 𝐹𝑃

proportion of TN in the set of negative predictions.
● Matthews Correlation Coefficient (MCC) = . The MCC is𝑇𝑃 𝑥 𝑇𝑁 − 𝐹𝑃 𝑥 𝐹𝑁

(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)

ranked between -1 and 1, where 1 represents a perfect classification while 0 represents
a complete random sample.



● Accuracy = . This is the proportion of correct predictions for both classes.𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝐹𝑁 + 𝑇𝑁 + 𝐹𝑃

Test datasets
The DECIMER Image Classifier was tested using four different datasets:

● ChEBI (Chemical Entities of Biological Interest) 74 database: This database was filtered
to exclude structures found in ChEMBL and COCONUT databases, and five diverse
depictions of each molecule were created using RanDepict, resulting in a total of
416,925 images.

● EM_Images (from Kaggle): This dataset contains 49,684 images of electron microscopy.
● PubLayNet 75: This collection consists of 57,492 images illustrating figures from printed

literature.
● JNP_real_world: A set of 8,733 images that were automatically segmented from 1,000

publications from the Journal of Natural (JNP) products using DECIMER Segmentation.
The segments were manually inspected by a human curator.

DECIMER.ai
The DECIMER.ai web application has been developed using Laravel 8, a PHP-based web
framework that follows the model-view-controller (MVC) design pattern. It runs as a
three-container Docker application that can be deployed using docker-compose. The three
containers are responsible for running the nginx web server, communicating between the user
interface and the processes running in the background and managing the deep-learning
applications in the background.

When the app is launched, a user-defined number of socket server instances is started. Each of
these socket servers listens to a different local port and waits to receive the location of an image
to process. Multiple instances of each model type can be loaded. Working with multiple
instances of these local socket servers allows fast parallel processing at the cost of constant
memory usage for the preloaded models. This procedure was chosen to ensure a pleasant and
fast user experience without the need to reload the models at every processing step.

Once the user uploads a PDF document, it is converted to multiple image files (one per page).
The locations of these image files are then distributed over all available socket servers that run
a preloaded model instance of DECIMER Segmentation. Once the chemical structures have
been detected, the images are saved and their locations are sent back to the user interface
where they are displayed. In parallel, the locations of the segments are sent to all available
socket server instances that run preloaded instances of the models of DECIMER Image
Classifier and DECIMER Image Transformer. The classifier instances receive the image path
and return the values ‘true’ or ‘false’ based on whether the image is classified as a chemical
structure depiction or not. The DECIMER Image Transformer instances receive an image path
and return a resolved SMILES string. At this point, based on the SMILES strings, the
corresponding molecules are displayed in the embedded Ketcher molecular editor 38 windows in
the user interface and a warning is displayed if the image is not classified as a chemical



structure depiction. Then, the user can download the segmented structure depictions, the
corresponding MOL files and a file with the SMILES representations. If a single image is directly
uploaded instead of a PDF, the same procedure of segmentation and subsequent OCSR
processing is followed. If multiple images are uploaded, their locations are directly sent to the
Image Transformer instances. If the user hits the button on the user interface, the resolved
SMILES strings are sent to the STOUT 76 socket server instances, which return the
corresponding resolved IUPAC names.

An instance of the DECIMER web application is available at https://decimer.ai. The complete
source code is openly available on GitHub at https://github.com/OBrink/DECIMER.ai. The
GitHub repository contains instructions on how to set up the web app locally and how to scale
the memory requirements (as well as the parallel processing speed) by changing the number of
socket servers with preloaded model instances.

Data availability
The datasets used for DECIMER Image Transformer were directly retrieved from PubChem
https://ftp.ncbi.nlm.nih.gov/pubchem/Compound/Extras/CID-SMILES.gz

The DECIMER Image Classifier dataset: https://zenodo.org/record/6670746

The trained checkpoints available at:
- DECIMER Segmentation: https://doi.org/10.5281/zenodo.7299334
- DECIMER Classification:

https://github.com/Iagea/DECIMER-Image-Classifier/tree/main/decimer_image_classifier
/model

- DECIMER Image Transformer: https://doi.org/10.5281/zenodo.7624994

Code availability
The DECIMER Segmentation algorithm is available at:
https://github.com/Kohulan/DECIMER-Image-Segmentation
The DECIMER Image Classifier is available at:
https://github.com/Iagea/DECIMER-Image-Classifier
The DECIMER Image Transformer is available at:
https://github.com/Kohulan/DECIMER-Image_Transformer
The DECIMER.ai code is available at:
https://github.com/OBrink/DECIMER.ai



List of abbreviations
AUC - Area Under the Curve
BLEU - BilinguaL Evaluation Understudy
CDK - Chemistry Development Kit
ChEBI - Chemical Entities of Biological Interest
CLEF - Conference and labs of the evaluation forums
CLIDE - Chemical literature data extraction
CNN - Convolutional Neural Networks
COCONUT - COlleCtion of Open Natural prodUcTs
CXSMILES - ChemAxon Extended SMILES
DECIMER - Deep lEarning for Chemical ImagE Recognition
FTP - File Transfer Protocol
FN - False Negative
FP - False Positive
GCP - Google Cloud Platform
GPU - Graphical Processing Unit
InChI - International Chemical Identifier
J - Youden index
JNP - Journal of Natural Products
JPO - Japanese Patent Office
MCC - Matthews Correlation Coefficient
NP - Natural Products
OCSR - Optical Chemical Structure Recognition
OSRA - Optical Structure Recognition Application
PIKAChU - Python-based Informatics Kit for Analysing CHemical Units
PDF - Portable Document Format
PNG - Portable Network Graphics
PyPI - Python Package Index
R-CNN - Region-Based Convolutional Neural Networks
R-group - Rest group
ROC - Receiver Operating Characteristic
SELFIES - Self-referencing embedded strings
SMILES - Simplified Molecular-Input Line-Entry System
STOUT - SMILES-TO-IUPAC-name Translator
TFRecord - TensorFlow Record file
TN - True Negative
TP - True Positive
TPU - Tensor Processing Unit
UOB - University of Birmingham, United Kingdom (dataset)
USPTO - United States Patent and Trademark Office
VM - Virtual Machine
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Supplementary Information

Training and test of the DECIMER Image Transformer 299 x 299 model
For the models trained using datasets containing images with a size of 299 x 299 pixels,
EfficientNet-V2-B3 was used without any further modifications. Training the model with the
image size of 299 x 299 pixels was done using the TPU v3-32 pod slices. The per-node batch
size was set to 128 for the models trained on datasets with images of 299 x 299 pixels. Training
scripts and models are written in Python 3 with Keras and Tensorflow 2.8.0.

To test each model trained with the pubchem_1 and pubchem_2 datasets with an image size of
299 x 299 pixels, a pre-selected set of 250,000 molecules was used. Each of these molecules
was depicted twice with an image size of 299 x 299 pixels, once without augmentations and
once with augmentations. The model trained using pubchem_2 was further evaluated by a set
of 250,000 Markush structures, depicted with and without augmentations. The purpose of this
was to evaluate the model's accuracy in detecting chemical structures depicted with R-Group
representations.

Supplementary Table 1. Training datasets for DECIMER Image Transformer

Dataset ID Number of
molecules

Number of
depictions

Composition

pubchem_1 107.5 Mio 430 Mio 1 clean and 3 augmented depictions per
molecule with a size of 299 x 299 pixels

pubchem_2 127.5 Mio 479.5 Mio All molecules from pubchem_1 + 20 Mio
depictions of Markush structures with a
resolution of 299 x 299 pixels
(1 clean and 3 augmented depictions per
molecule)

pubchem_3 127.5 Mio 453.9 Mio All molecules and Markush structures from
pubchem_2 with a resolution of 512 x 512 pixels
(1 clean and 3 augmented depictions per
molecule)

hand_drawn 127.5 Mio 127.5 Mio 1 depiction with augmentations with a resolution
of 512 x 512 pixels that makes it appear like
hand-drawn per molecule.



Supplementary Table 2. Test results analysis and model performance. Columns A, B and C
contain the test results on images with a resolution of 299 x 299 pixels. Columns D and E
contain the test results on images with a resolution of 512 x 512 pixels. Finally, columns F and G
contain the BLEU scores for the test results from C and E.

A B C

Test data
299 x 299 depictions

(no Markush structures)
299 x 299 depictions

(no Markush structures)
299 x 299 depictions

(with Markush structures)

Model
trained on

pubchem_1
(no Markush structures)

pubchem_2
(with Markush structures)

pubchem_2
(with Markush structures)

Non-Augmented
Images

Augmented
Images

Non-Augmented
Images

Augmented
Images

Non-Augmented
Images

Augmented
Images

Valid
Predictions 99.79% 99.56% 96.50% 96.60% 99.80% 99.79%

Identical
Predictions 90.85% 85.62% 86.68% 80.58% 73.23% 54.07%

Tanimoto
1.0 Count 95.66% 90.68% 92.89% 88.21% 91.89% 83.07%

Average
Tanimoto 0.99 0.98 0.96 0.95 0.99 0.97

D E

Test data
512 x 512 depictions

(without Markush structures)
512 x 512 depictions

(with Markush structures)

Model
trained on pubchem_3 pubchem_3

Non-Augmented
Images Augmented Images

Non-Augmented
Images Augmented Images

Valid
Predictions 96.46% 96.54% 99.83% 99.81%

Identical
Predictions 91.24% 89.65% 81.06% 74.65%

Tanimoto
1.0 Count 94.77% 93.47% 94.42% 92.06%

Average
Tanimoto 0.96 0.96 0.99 0.99



BLEU Scores for test results with R-Group representations.

F G

Test data
299 x 299 depictions

(with Markush structures)
512 x 512 depictions

(with Markush structures)

Model
trained on pubchem_2 pubchem_3

BLEU
Scores Non-Augmented Images Augmented Images Non-Augmented Images Augmented Images

BLEU-1: 0.96 0.95 0.97 0.97

BLEU-2: 0.96 0.94 0.97 0.96

BLEU-3: 0.95 0.93 0.96 0.96

BLEU-4: 0.94 0.91 0.96 0.95

Average 0.94 0.91 0.96 0.95



Supplementary Figure 1: Representation of types of images in the training and the test
datasets. B: In-domain test results of two models trained and tested using images with a
resolution of 299 x 299 or 512 x 512 pixels, respectively. All training datasets include depictions
of Markush structures and a variety of image augmentations (datasets pubchem_2 and
pubchem_3 in Supplementary Table 1). In the test datasets, these features were separately
evaluated as described in the text to assess their influence on performance. All in-domain test
results are also presented in Supplementary Table 2.



Supplementary Table 3. Benchmark results - performance of each model/tool on each dataset.
The performance is described as the proportion of occurrences of identical predictions Pi and
the average Tanimoto similarity . Section A. Benchmark results for datasets without added𝑇
distortions. Section B. Benchmark results for datasets with added distortions, such as mild
shearing and rotation.

A. Benchmark results for datasets without added distortions.

JPO CLEF USPTO UOB USPTO Big Indigo
Img2Mol

Test
DECIMER-
Hand drawn

DECIMER -
Test non

augmented

Pi 𝑇 Pi 𝑇 Pi 𝑇 Pi 𝑇 Pi 𝑇 Pi 𝑇 Pi 𝑇 Pi 𝑇 Pi 𝑇

OSRA 56% 0.78 85% 0.88 88% 0.96 78% 0.95 0.01% 0.17 2% 0.29 2% 0.14 1% 0.17 8% 0.33

MolVec 66% 0.89 83% 0.89 88% 0.97 80% 0.96 1% 0.35 2% 0.27 2% 0.29 1% 0.23 5% 0.33

Imago 40% 0.68 59% 0.85 87% 0.96 58% 0.87 0% 0.10 0.04% 0.08 0.02% 0.11 3% 0.22 2% 0.19

Img2Mol 15% 0.70 16% 0.81 24% 0.85 68% 0.94 16% 0.78 22% 0.59 85% 0.97 5% 0.52 16% 0.78

SwinOCSR 13% 0.75 29% 0.81 27% 0.88 45% 0.97 0.23% 0.68 0.20% 0.48 4% 0.53 5% 0.64 6% 0.54

MolScribe 50% 0.93 75% 0.89 79% 0.99 87% 0.99 79% 0.95 38% 0.65 51% 0.93 8% 0.59 44% 0.85

DECIMER
299 47% 0.89 55% 0.87 41% 0.93 87% 0.99 50% 0.92 54% 0.66 28% 0.85 38% 0.78 91% 0.99

DECIMER
512 64% 0.93 72% 0.96 61% 0.97 88% 0.98 63% 0.97 60% 0.98 55% 0.93 27% 0.69 91% 0.99

DECIMER
512 Fine
Tuned - - - - - - - - - - - - - - 60% 0.89 - -

B. Benchmark results for datasets with distortions

JPO (dist) CLEF (dist) USPTO (dist) UOB (dist)
USPTO_big

(dist) Indigo (dist)
DECIMER-Te
st augmented

Pi 𝑇 Pi 𝑇 Pi 𝑇 Pi 𝑇 Pi 𝑇 Pi 𝑇 Pi 𝑇

OSRA 38% 0.70 19% 0.66 7% 0.60 61% 0.90 0.01% 0.13 0.42% 0.16 2% 0.15

MolVec 41% 0.80 21% 0.66 26% 0.71 63% 0.92 0.02% 0.14 0.48% 0.07 1% 0.12

Imago 23% 0.47 33% 0.65 51% 0.81 34% 0.64 0% 0.08 0.01% 0.20 0.15% 0.10

Img2Mol 15% 0.67 15% 0.80 21% 0.83 70% 0.94 1% 0.56 15% 0.54 1% 0.60



SwinOCSR 7% 0.71 21% 0.81 23% 0.87 6% 0.95 0% 0.38 0.01% 0.38 0.18% 0.36

MolScribe 52% 0.93 73% 0.89 75% 0.99 86% 0.99 78% 0.95 34% 0.64 9% 0.53

DECIMER
299 52% 0.91 58% 0.87 45% 0.94 86% 0.99 28% 0.83 34% 0.62 86% 0.98

DECIMER
512 62% 0.93 72% 0.96 61% 0.96 86% 0.98 57% 0.96 51% 0.97 90% 0.99

Supplementary Table 4. Catastrophic and severe failure rates of each model/tool on each
dataset. TE: Percentage of predictions with Tanimoto similarity values of zero and invalid
predictions (catastrophic failure). T<=0.3: The percentage of predictions with Tanimoto similarity
less than or equal to 0.3 (severe failure) . A: Benchmark results for datasets without added
distortions. B: Benchmark results for datasets with added distortions, such as mild shearing and
rotation.

A. Benchmark results for datasets without added distortions.

JPO CLEF USPTO UOB USPTO Big Indigo
Img2Mol

Test
DECIMER-
Hand drawn

DECIMER -
Test non

augmented

TE T<=0.3 TE T<=0.3 TE T<=0.3 TE T<=0.3 TE T<=0.3 TE T<=0.3 TE T<=0.3 TE T<=0.3 TE T<=0.3

OSRA 14% 19% 4% 4% 2% 2% 2% 2% 8% 92% 25% 42% 34% 63% 49% 80% 43% 58%

MolVec 6% 8% 3% 3% 2% 2% 2% 2% 21% 45% 23% 29% 28% 91% 57% 68% 32% 41%

Imago 23% 26% 7% 7% 3% 3% 6% 7% 19% 98% 25% 96% 36% 54% 34% 73% 35% 79%

Img2Mol 2% 7% 3% 3% 3% 3% 1% 1% 1% 2% 1% 2% 0% 0% 2% 28% 4% 4%

SwinOCSR 6% 9% 5% 6% 2% 3% 0.21%
0.33

% 3% 6% 5% 8% 8% 12% 3% 13% 11% 28%

MolScribe 1% 2% 3% 3% 0.38% 0.5% 0.02%
0.02

% 0.22%
0.29

% 1% 1% 1% 2% 5% 19% 2% 3%

DECIMER
512 3% 4% 2% 2% 1% 1% 0% 0% 0.26%

0.47
% 0.20%

0.21
% 2% 3% 5% 18% 4% 4%



B. Benchmark results for datasets with distortions

JPO (dist) CLEF (dist) USPTO (dist) UOB (dist)
USPTO_big

(dist) Indigo (dist)
DECIMER-Te
st augmented

TE T<=0.3 TE T<=0.3 TE T<=0.3 TE T<=0.3 TE T<=0.3 TE T<=0.3 TE T<=0.3

OSRA 18% 23% 19% 20% 25% 26% 4% 5% 11% 97% 25% 62% 62% 81%

MolVec 11% 12% 12% 13% 15% 16% 27% 29% 4% 77% 20% 33% 33% 41%

Imago 42% 46% 28% 29% 16% 16% 3% 3% 9% 100% 28% 105% 42% 92%

Img2Mol 3% 7% 3% 4% 3% 3% 1% 1% 1% 6% 1% 3% 4% 8%

SwinOCSR 5% 11% 5% 6% 2% 3% 0.14% 0.23% 7% 29% 7% 17% 29% 47%

MolScribe 0.44% 1% 3% 3% 0.35% 0.38% 0% 0% 0.23% 0.30% 1% 1% 19% 29%

DECIMER
512 3% 4% 2% 2% 1% 1% 0% 0% 0.39% 1% 0.16% 0.19% 3% 3%

Supplementary Table 5 : Test performance of a model trained on SMILES strings without
further modifications (Model 1) and SMILES strings with replaced R-group indices (Model 2)

Model 1

(SMILES)

Model 2

(modified SMILES)

Valid Predictions 95.70% 99.33%

Identical Predictions 77.87% 77.37%

Tanimoto 1.0 Count 86.55% 88.78%

Average Tanimoto

similarity 0.94 0.98

Supplementary Table 6. Datasets used as non-chemical structures to train, validate and test
the DECIMER Image Classifier.

Dataset name Number of images Modifications Reference

Places-205 2462123 None

B. Zhou, A. Lapedriza,
J. Xiao, A. Torralba,
and A. Oliva. Learning
Deep Features for
Scene Recognition



using Places
Database. Advances in
Neural Information
Processing Systems
27 (NIPS), 2014.

COCO 287360 None

Lin, Tsung-Yi et al.
(2014). Microsoft
COCO: Common
Objects in Context.
https://arxiv.org/abs/14
05.0312

Google Open labelled
Images 1909039 None

https://storage.googlea
pis.com/openimages/w
eb/index.html

MMU-OCR-21 301229 None

T. Nasir, M. K. Malik
and K. Shahzad,
"MMU-OCR-21:
Towards End-to-End
Urdu Text Recognition
Using Deep Learning,"
in IEEE Access, doi:
10.1109/ACCESS.202
1.3110787

HandWritten_Characte
r 821715 None

https://www.kaggle.co
m/datasets/vaibhao/ha
ndwritten-characters

CoronaHack -Chest
X-Ray- 5933 None

https://www.kaggle.co
m/datasets/praveengo
vi/coronahack-chest-xr
aydataset

PANDAS Augmented
Images 12083 None

https://www.kaggle.co
m/datasets/amyjang/pa
ndatilesagg?select=all
_images

Bacterial_Colony 681 None
https://www.kaggle.co
m/datasets/nilay1987/b
acterial-colony

Ceylon Epigraphy
Periods 5149 Colour inversion

https://www.kaggle.co
m/datasets/pabasar/ce
ylon-epigraphy-periods

Chinese Calligraphy
Styles by Calligraphers 105129 None https://www.kaggle.co

m/datasets/yuanhaowa



ng486/chinese-calligra
phy-styles-by-calligrap
hers

Graphs Dataset 15861 None
https://www.kaggle.co
m/datasets/sunedition/
graphs-dataset

Function_Graphs
Polynomial 10250 None

https://www.kaggle.co
m/datasets/kopfgeldjae
ger/function-graphs-pol
ynomial

sketches 20000 None
https://www.kaggle.co
m/datasets/vishnunku
mar/sketches

Person Face Sketches 16909 None
https://www.kaggle.co
m/datasets/almightyj/p
erson-face-sketches

Art Pictograms 3545 None
https://www.kaggle.co
m/datasets/olgabelitsk
aya/art-pictogram

Russian handwritten
letters 219183 Monochrome and 50%

colour conversion

https://www.kaggle.co
m/datasets/olgabelitsk
aya/handwritten-russia
n-letters
https://www.kaggle.co
m/datasets/tatianasnwr
t/russian-handwritten-l
etters

Covid-19
Misinformation Tweets
Labelled

13304
Monochrome, remap
and 50% colour
conversion

https://www.kaggle.co
m/datasets/arashnic/mi
sinfo-graph

grapheme-imgs-224x2
24 200840 Colour inversion

https://www.kaggle.co
m/datasets/roycezjq/gr
aphemeimgs224x224



Supplementary Figure 2. AUC of the DECIMER Image classifier predictions on the test set.
Dotted dark blue marks the random chance, solid light blue represents the ROC curve and the
black vertical line represents the Youden index.



Supplementary Figure 3. Examples of non-chemical structures predicted for the ChEBI
dataset.



Supplementary Figure 4. Examples of chemical structures predicted on the test dataset
PubLayNet.



Supplementary Figure 5. Examples of wrong JNP segment classifications by the
DECIMER-Image classifier. A) False positives. B) False Negative.



More detailed presentation of the DECIMER Image Classifier out-of-domain test results
Concerning the three public out-of-domain datasets, we used one that only consists of chemical
structures (ChEBI), one without any chemical structures (EM_Images) and one that mostly
contains no chemical structures (PubLayNet). The performance of the DECIMER Image
Classifier on these datasets is as follows,

● ChEBI: 97.33% of the images were correctly classified as chemical structure depictions.
● EM_Images: 100% of the images were correctly classified as images without chemical

structures.
● PubLayNet: 99.13% of the images were correctly classified as images without chemical

structure depictions.

Furthermore, the performance of the DECIMER Image Classifier was evaluated using 8,733
images segmented from 1,000 publications from the Journal of Natural Products (JNP). Based
on a manual inspection of the results, 8,187 of the 8,733 images were true positives, 178 were
true negatives, 47 were false positives, and 321 were false negatives. As a result of computing
the same performance metrics used for the test set, the results were AUC = 0.94, MCC = 0.51,
accuracy = 0.96, specificity = 0.79, and sensitivity = 0.96.

It should be noted, however, that the calculated MCC was slightly lower than that calculated on
the test set. It is primarily the characteristics used to determine whether an image depicts a
chemical structure or not. Most of the false positive classifications are 3D chemical depictions
that can not be interpreted as normal chemical structure depictions. Most of the false negative
classifications are due to the presence of arrows in the image. The wrong predictions produced
by the DECIMER Image Classifier are illustrated in Supplementary Figure 3-5.



Code Resource 1: Content of the script img2mol_batch_run.py that was used to run the
standalone version 68 of Img2Mol in our benchmark.

import sys

import os

from img2mol.inference import *

def main():

"""

This script takes three arguments:

1) path of the directory with images to process with img2mol

2) output directory

3) file ending of images in the directory given at 1

It runs img2mol on all images with the given file ending in the

input directory and saves a file with the results in the output

directory.

"""

input_dir, output_dir, file_ending = sys.argv[1:]

im_names = [img for img in os.listdir(input_dir)

if img[-len(file_ending):].lower() == file_ending.lower()]

img2mol = Img2MolInference(local_cddd=True)

output_file_path = os.path.join(output_dir, "img2mol_results.smiles")

with open(output_file_path, "w") as output_file:

for im_name in im_names:

im_path = os.path.join(input_dir, im_name)

result = img2mol(filepath=im_path)

smiles = result['smiles']

output_file.write(f"{im_name}\t{smiles}\n")

if __name__ == "__main__":

if len(sys.argv) == 4:

main()

else:

print(f"Usage: {sys.argv[0]} input_dir output_dir file_ending")



3 Discussion

The extraction of chemical information from the scientific literature comprises the segmen-
tation of chemical structure depictions and their subsequent translation into structured,
machine-readable representations. The deep-learning-based applications DECIMER Seg-
mentation (Publication A) and DECIMER Image Transformer (Publication E) represent
solutions for these problems. Additionally, RanDepict (Publication B) is the implemen-
tation of a OCSR artificial training data generation and diversification strategy that has
been successfully used during the development of DECIMER Image Transformer (Publi-
cation E). The DECIMER hand-drawn molecule image dataset (Publication C) is an open
and FAIR resource for the OCSR research community. The developed methods for the
segmentation, classification and recognition of chemical structure depictions have been
integrated into the DECIMER.ai web application (Publication E) that enables the au-
tomated extraction of molecular structures from the literature in a user interface. The
applications described herein have been developed with the aim of making chemical infor-
mation publicly available in structured data formats. The recent progress that has been
driven by the combination of artificially intelligent deep-learning methods and the open
availability of chemical data has been assessed (Publication D). The work described in
this thesis contributes to automated chemical information extraction with deep-learning
methods.

3.1 DECIMER Segmentation

Until today, DECIMER Segmentation is the only deep learning-based open-source tool for
segmenting chemical structure depictions from printed literature (see Publication A). It
is the implementation of a robust solution for this fundamental problem in the chemical
literature mining workflow.

Other tools offer segmentation functionalities but are not openly available, or their use
cases are much more limited. OSRA has a basic in-built segmentation system that de-
termines whether a region contains a chemical structure based on its proportion of black
pixels and the size and shape of the region [95]. MolMiner has a deep learning-based image
segmentation module based on Deeplab V3 [125, 129], but the source code and the model
weights are not openly available. Staker et al. propose a segmentation method based on
the fully convolutional U-Net architecture, but the model is not publicly available [94, 105].
The open-source tool ChemSchematicResolver is capable of recognising chemical structure
depictions in images where they are presented in combination with text labels exclusively.
This is done by applying k-means clustering (with k = 2) to all elements in the image
based on a feature density metric [130]. ReactionDataExtractor recognises chemical struc-
ture depictions, arrows and different types of text labels in images with chemical reaction
schemes and returns this information in a structured data format [131]. Here, the segmen-
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tation of the chemical structure depictions is based on the unsupervised machine learning
method Density-Based Spatial Clustering of Application with Noise (DBSCAN) [132]. As
for ChemSchematicResolver, the segmentation procedure is based on a clustering method
that only works in the specific context of a chemical reaction scheme. However, the model
does not encode a generally applicable concept of what a chemical structure looks like.
Opposed to the other openly available approaches listed here, the Mask R-CNN model of
DECIMER Segmentation follows a more complex approach to distinguish between chem-
ical structures and other objects on a page. As it uses CNNs, it can learn to recognise
chemical structures independent of the type of surrounding elements instead of just clus-
tering objects based on feature density metrics in more narrowly defined use cases like
ChemSchematicResolver and ReactionDataExtractor.

DECIMER Segmentation was only trained on a comparably small set of manually anno-
tated pages from the Journal of Natural Products. Consequently, the tool performs well
on document pages with a similar format to those in the training data. On the other
hand, the tool tends to fail when it processes images that only contain chemical structure
depictions that are not embedded in whole article pages. In the future, the application
should be further developed to be able to recognise chemical structure depictions equally
well in any image. One key aspect for implementing this type of capability in DEC-
IMER Segmentation is modifying the training data. To this end, an artificial training
data generation strategy could be developed as it has been done for the training data
generation for DECIMER Image Transformer (Publication E) using RanDepict (Publi-
cation B). Here, artificially generated structure depictions could be inserted in different
kinds of images. As the structures would be inserted automatically, the region where they
have been inserted would be known and could be used as an annotation for the training of
a segmentation model. This way, large amounts of training data could be generated in an
automated manner so that a model trained on that data could learn to recognise chemical
structure depictions in any environment. Another aspect of DECIMER Segmentation that
could be improved in the future is the segmentation model that is running at its core.

3.2 DECIMER Image Transformer

DECIMER Image Transformer is an deep learning-based OCSR application capable of
translating various chemical structure depictions into SMILES representations (see Publi-
cation E). Opposed to tools like ChemPix, which can only be used for hand-drawn struc-
tures that exclusively contain carbon and hydrogen atoms [120] or Img2Mol, which is
incapable of interpreting chirality or Markush structures, DECIMER Image Transformer
can be successfully applied to most types of chemical structure depictions in the literature
(see Publication E). The comprehensive training data diversification strategy developed
as a part of this thesis (see Publication B) contributed to DECIMER Image Transformer
outperforming all available tools in a comparative performance evaluation on independent
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test datasets (see Publication E).

Currently, DECIMER Image Transformer focuses on small molecules with an atomic mass
of less than 1500 Dalton (see Publication E). In the future, this could be expanded to
depictions of macromolecules as well. Another limitation is the incapability to read random
functional group, superatom and R-group labels. The training data includes a variety of
common labels, but the model can only read those labels that it has learned to recognise
during training. Inspired by what the developers of Molscribe implemented [126], the
capability to read any text label as a superatom could be achieved by adding random text
labels to the training data. Known labels could then be replaced based on a dictionary.

3.3 DECIMER.ai - An open platform for chemical literature mining

Integrating all DECIMER components in a comprehensive graphical user interface offers
users without any programming knowledge a chemical literature extraction workflow. A
document file or images with chemical structure depictions can be uploaded and processed
automatically. The visualisation of the results in a molecular editor window [133] next
to the segmented structure depictions offers the option of a straightforward assessment
and potential correction of the results by a human curator. This way, the DECIMER.ai
application (Publication E) has the potential to reduce the manual curation effort for the
generation of chemical databases enormously.

There are two other existing systems that combine the segmentation of chemical structures
and OCSR in a graphical user interface: CLiDE [98, 99] and Molminer [125]. CLiDE is a
fully commercial tool, and MolMiner is freely available with a license that enables limited
usage, but both are closed-source applications. Opposed to these systems, users can use,
deploy or modify the DECIMER.ai application according to their specific needs as it has
been published under a permissive licence.

Implementing text mining functionalities would be a sensible addition to the workflow
of DECIMER.ai. The chemical text mining toolkit ChemDataExtractor [134] has been
actively developed over the past years [135] and uses a chemical NER system based on
BERT [136] that is capable of recognising inorganic and organic chemical names equally
well [73]. Since its first release, ChemDataExtractor has been used widely for the au-
tomated generation of databases containing magnetic properties of semiconductors [137],
properties of battery materials [74, 138], UV/Vis spectra[139], refractive indices and dielec-
tric constants [140], semiconductor band gaps [141], dye-sensitised solar cell materials [142]
and thermoelectric materials [143]. There are different approaches like MatSciBERT, a
language model that has been trained on a large set of publications from the domain
of materials science [75]. Integrating such systems into DECIMER.ai would complement
the existing image-processing functionalities and lead to a chemical literature extraction
system capable of dealing with a wider variety of published chemical knowledge.

112



The implementation of OCR for recognising labels associated with chemical structure
depictions will be necessary to link the information from text and images. In the chemical
literature, compounds are commonly referred to by labels like ’1a’. These labels are the
binding element between image and text contents in the literature as they are used in the
text and the images. Sometimes, the labels also contain specifications for the R-group
variables in the depictions. The above-mentioned tool ChemSchematicResolver can be
used to link these types of labels to the associated chemical structures [130]. Still, its
usage is strictly limited to images that only contain text labels and structure depictions.

This way, the DECIMER.ai application could develop into a chemical literature mining
platform capable of extracting all types of chemical information from the scientific litera-
ture. Chemical structures could be segmented and translated into SMILES representations
using DECIMER Segmentation and DECIMER Image Transformer. The ID and R-group
labels could be detected and recognised, and linked to the chemical structures. Then,
information could be extracted from the text contents using a chemical text mining ap-
plication. As the ID labels are used in the images and the text, they can be used to link
the resolved molecular structures to the information that has been extracted from the
text, like chemical names and spectral data. Then the information could be returned in a
machine-readable, structured data format.

3.4 DECIMER Hand-Drawn Molecule Images dataset

During the development of DECIMER Image Transformer (see Publication E), it became
apparent that the application can partially recognise hand-written chemical structure de-
pictions. Clévert et al. have reported similar observations for Img2Mol [84]. The goal to
systematically assess the performance of DECIMER Image Transformer and other avail-
able tools on this type of structure depiction revealed the lack of a balanced benchmark
dataset. ChemPix was published with a dataset of 600 hand-written structure depic-
tions [120]. Still, this dataset has the substantial limitation of exclusively containing
molecules consisting of carbon and hydrogen atoms. As a balanced dataset compris-
ing 5088 manually drawn depictions of diversely picked molecules, the DECIMER Hand-
Drawn Molecule Images dataset (see Publication D) fills a previously existing gap and
represents a valuable contribution to the research in the field of OCSR.

3.5 Importance of diverse data for data-driven OCSR applications

The three main components of the DECIMER.ai system - DECIMER Segmentation, DEC-
IMER Image Transformer and DECIMER Image Classifier - are entirely data-driven ap-
plications (see Publications A and E). That means they do not rely on hard-coded rules
but learn to process information based on the training data during a supervised learn-
ing process. Large amounts of training data are necessary to exploit the full potential of
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modern deep-learning methods. While DECIMER Segmentation was trained using man-
ually annotated data, the DECIMER Image Transformer and DECIMER Image Classifier
models were trained on artificially generated datasets. For DECIMER Segmentation, a
comparably small training data set of 9992 annotated chemical structures on 1820 pages
was sufficient to yield the reported results (see Publication A). For the training of DEC-
IMER Image Transformer and DECIMER Image Classifier, the training datasets were
substantially more extensive, which would have made the usage of manually annotated
data impossible. For example, the DECIMER Image Transformer model was trained
on more than 450 million pairs of chemical structure depictions and the corresponding
SMILES strings.

A common problem in the field of machine learning is the lack of applicability of trained
machine learning systems on out-of-distribution (OOD) data [144]. This means that, for
example, a deep-learning model may perform well on the exact type of data it has been
trained on. Still, it may fail catastrophically once it is applied to data not described by
the feature distribution of the training data. This logic can be applied to deep learning-
based OCSR models as well. For example, the first published version of DECIMER
Image Transformer performed well on depictions of molecules generated using the CDK
with default depiction parameters [5]. Still, it failed on most real-world images from the
literature. Similarly, the deep learning-based OCSR application SwinOCSR performs well
on data similar to its training data [123] but fails in most real-world application scenarios
(see Publication E).

Assuming there is a finite set of features that define how a chemical structure can be
depicted, ideally, these features should all be represented in the training data of a deep
learning-based OCSR tool to reduce the risk of failing when processing OOD samples and
to achieve general applicability on real-world data. This problem is addressed by the chem-
ical structure depiction generation tool RanDepict (see Publication B). By picking diverse
sets of all available depiction parameters offered by four different cheminformatics toolkits,
it aims to generate sets of depictions that represent the diversity of chemical structure de-
pictions in the literature. A model trained on a sufficiently large diverse dataset should be
capable of producing accurate results for a large variety of chemical structure depictions.
The effectiveness of this training data diversification strategy can be demonstrated with
the competitive results achieved with the recent version of DECIMER Image Transformer
(see Publication E) that has been trained on chemical structure depictions generated us-
ing RanDepict. Especially the results on hand-written chemical structures demonstrate
that the model trained on diverse data generalised relatively well on OOD samples as the
training data did not contain a single hand-drawn chemical structure depiction. In the
future, any deep learning-based model that is trained using pairs of images and string-
based molecular structure representations can profit from the depiction generation with
RanDepict.
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Interestingly, the machine learning-based models and rule-based OCSR systems can be
overfitted to a specific input data type. Clévert et al. have discovered that the rule-based
OCSR-systems OSRA [95], Imago [96], and Molvec [97] perform well on the established
benchmark datasets, but fail when slight image perturbations like minor rotations and
shearing are introduced [84]. These results have been reproduced during the work on this
dissertation (see Publication E). These OCSR systems mostly follow a predefined set of
hard-coded rules. Still, they have a set of adjustable parameters that are likely overfitted to
perform well on the available benchmark datasets. OSRA, for example, generates multiple
molecular structures for each given image and uses an empirical confidence function to
decide which of them to present as the final result [95].

Although the source code of Image2SMILES is not publicly available, Khokhlov et al.
have published the training data generator. It pseudo-randomly picks different depiction
parameters for generating chemical structure depictions, adds non-structural elements and
other types of noise, and inserts different kinds of text labels that represent R-groups and
functional groups [110]. The Image2SMILES data generator only uses one cheminformatics
toolkit (RDKit). In contrast, RanDepict uses four (Chemistry Development Kit (CDK),
RDKit, Indigo, Python-based Informatics Kit for Analysing Chemical Units (PIKAChU))
(see Publications B and E).

3.6 Importance of benchmark standards for OCSR

Besides generating OCSR training data, RanDepict can generate diverse test datasets
representing various depiction features. This addresses the problem that the available
benchmark datasets do not necessarily cover much of the chemical and depiction feature
spaces. In many cases, the depicted molecules in the benchmark datasets are chemically
similar and depicted similarly (Figure 12). Using diverse benchmark datasets with a large
variety in the depiction feature distribution allows a lot more meaningful conclusions about
the ability of an OCSR model to perform well on real-world data.

Figure 12: Samples of chemical structure depictions from a common OCSR benchmark
dataset [101]

There is a lack of enforced benchmark standards in the field of OCSR. For example, the
OCSR tool MolMiner has been benchmarked against the rule-based applications OSRA,
Molvec and Imago on four independent test sets [125] while ignoring other deep learning-
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based methods like Img2Mol, DECIMER Image Transformer and SwinOCSR. The per-
formance of the application Image2SMILES has only been evaluated in comparison to
OSRA [110]. Besides selecting competitors, selecting favourable benchmark sets is another
common phenomenon. For example, ABC-Net only uses one external benchmark dataset
that contains mostly very clean chemical structure depictions without additional noise
while ignoring all other available datasets [119]. Defining and enforcing clear standards
in the field would be desirable to increase transparency and comparability of published
performance results.

3.7 Contributions to other open projects

Apart from the projects designed explicitly for this dissertation, contributions to other
open-source projects in the field were made to compare the performance of DECIMER
Image Transformer to other OCSR tools (see Publication E). These are listed as examples
of synergies in the open-source community. The compilation of OSRA [95] is a time-
consuming process due to a large number of third-party dependencies [3]. To facilitate the
tool’s usage for anyone, a containerised [145] version of the tool was updated and pub-
lished [146]. The initially published version of Img2Mol [84] sent a request containing the
feature vector produced by the CNN encoder to a remote server which ran the CDDD de-
coder and returned the SMILES representation. To enable the processing of large batches
of images without depending on a remote server, a locally running version of the CDDD
decoder was integrated into the Img2Mol environment [117]. Additionally, an inference
script has been added to the repository of SwinOCSR [124] as the tool was published
without a script that enables running the model on an image to return a DeepSMILES
string. These contributions are examples of synergies that can only occur due to the
openly available source code of the applications. Similarly, all projects developed during
the work described herein have the potential to profit from users’ contributions as they
are open-source projects.

3.8 The necessity of openly available chemical data

To fully profit from recent advances in the field of artificial intelligence - or, more specif-
ically, machine learning - in chemistry, implementing and enforcing public FAIR data
standards are crucial (see Publication D). In the era of data-driven applications, publish-
ing chemical information exclusively in unstructured, human-readable data formats is an
apparent inefficiency in the chemical research community. During the chemical research
process, all information that is later published in an unstructured manner exists in a
structured data format originally. For example, the results of nuclear magnetic resonance
(NMR) spectroscopy experiments are collected in machine-readable, structured formats.
Unfortunately, they are usually exclusively published in human-readable text or image for-
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mats. The need for chemical literature mining projects, as described in this dissertation, is
caused by the inadequate publication habits of the research community. This is especially
unsatisfying as there have been public calls for open data, open source, and open science
(ODOSOS) in chemistry for nearly two decades [147, 148]. Machine learning has yielded
significant contributions in areas of molecular informatics, where data has been available
in structured formats (see Publication D). Additionally, there are clear perspectives that
more areas will profit from FAIR and open data infrastructures in chemistry once they
are in place [149].

Fortunately, there are initiatives that support FAIR data standards and open data repos-
itories in chemistry. In Germany, a national research data infrastructure (Nationale
Forschungsdateninfrastruktur, NFDI) is in the process of being implemented as a long-
term project [150]. The chemistry consortium in the NFDI, NFDI4Chem, develops an
electronic research data infrastructure for chemical data and supports the FAIR data
principles [151]. For example, to avoid NMR data exclusively being published in text for-
mats, the NFDI4Chem is developing nmrXiv, an open NMR data repository and analysis
platform [152]. Another chemical research data platform is the Open Reaction Database
(ORD), an open database for chemical reaction data [153]. With electronic research data
infrastructure in place, the development of chemical literature mining applications de-
scribed herein might become obsolete in the future. With the open availability of chemical
data, the progress that has been achieved with data-driven, artificially intelligent applica-
tions in recent years (see Publication D) can be continued in other areas of chemistry.

All software packages and datasets developed as a part of this thesis are open-source
projects published under permissive licences according to the FAIR standards. Other
researchers or organisations can use and adapt them freely according to their specific
needs. Due to the source code’s open availability, users can raise issues publicly and
contribute to the applications. This way, they have the potential to develop further based
on community-driven suggestions and contributions.
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4 Conclusion and outlook

Chemical structures can be represented in a variety of ways. Unfortunately, the represen-
tations published in the literature are commonly designed to be interpreted by humans
and cannot easily be interpreted by a machine.

This work has contributed significantly to the automated extraction of chemical informa-
tion from the scientific literature. Specifically, the field of OCSR has profited from open-
source applications such as DECIMER Segmentation (see Publication A), DECIMER Im-
age Transformer, DECIMER.ai (see Publication E) and RanDepict (see Publication B) as
well as the Publication of the DECIMER Handwritten Image Dataset (see Publication C).
Additionally, recent progress in molecular informatics enabled by the synergy of openly
available data and AI-driven applications has been reviewed (see Publication D).

Segmenting chemical structures from whole pages is a fundamental step to automatically
extracting chemical information from the literature. With DECIMER Segmentation, the
first (and until today the only) deep learning-based open-source tool for the segmentation
of chemical structures, has been published.

After the segmentation of chemical structure depictions, they need to be translated into
a machine-readable representation of the underlying chemical graph. The version of the
OCSR application DECIMER Image Transformer described in this work yields very com-
petitive results in the presented comparative performance evaluation.

The success of the DECIMER Image Transformer would not have been possible without
the training data diversification strategy implemented in the form of RanDepict. Like
other encoder-decoder-based OCSR applications, DECIMER Image Transformer relies on
an entirely data-driven approach where the model learns to interpret images with chemical
structure depictions from the training data without any hard-coded rules. As the model
exclusively learns to process information based on the training data, generating datasets
containing diverse depiction features is the foundation of its excellent performance.

The integration of DECIMER Segmentation, DECIMER Image Classifier and DECIMER
Image Transformer in the comprehensive automated chemical literature mining system
DECIMER.ai enables users to automatically extract chemical structures from a chemical
document in a graphical user interface. By embedding a molecular editor window, a human
curator can assess and (if necessary) correct the results before saving them in a machine-
readable format. DECIMER.ai is the first open platform that enables the automated
extraction of chemical information from the literature.

In addition, the field of OCSR has profited from the publication of the DECIMER hand-
drawn molecule image dataset. The dataset comprises diverse hand-drawn chemical struc-
ture depictions and is a valuable resource for evaluating the performance of OCSR appli-
cations for this specific type of depiction.

The applications described herein focus on extracting information from images in the
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scientific literature. In the future, these applications must be further extended to in-
clude text contents to enable a more complete information extraction. The integration of
text-mining applications would enable to link information from the text to the extracted
molecular structures. For example, analytical data is often exclusively described in the
text. As the source code of all applications described herein is openly available, their
functionalities can be extended by the research community in the future.

The automated literature mining systems developed during the work on this thesis can be
integrated into AI-assisted submission pipelines of open databases. Chemical information
can be automatically extracted from the literature to be made available in open databases.
This way, the work presented herein represents a contribution to the open availability of
chemical information in structured data formats.
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