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Abstract

Francesco Zappa

Remnants of compact binary mergers and next-generation
numerical relativity codes

Numerical relativity (NR) simulations are crucial for studying the coalescence of com-
pact binaries. Based on NR data, we produce a model for the mass and spin of the
remnant black hole (BH) for the coalescence of black hole-neutron star systems, dis-
cussing its crucial role in gravitational wave (GW) modeling and in the parameter
estimation of the two signals GW200105 and GW200115. In the context of binary
neutron star merger simulations, we perform the first systematic study comparing re-
sults obtained with various neutrino treatments, the presence of turbulent viscosity
and different grid resolutions. We find that the time of BH formation after merger
is heavily affected by grid resolution and turbulent viscosity. An early BH formation
limits matter ejection from the accretion disc, as the BH swallows a significant portion
of it. Our results indicate that more reliable kilonova light curves are obtained only if
the various ejecta components are present. Moreover, robust r-process nucleosynthe-
sis yields require inclusion of both neutrino emission and reabsorption in simulations.
Advanced neutrino schemes and turbulent viscosity in simulations resolved beyond
current standards appear necessary for reliable astrophysical predictions. To carry
out computationally demanding simulations of growing complexity, next-generation
NR codes that can efficiently leverage the latest pre-exascale many-core and hetero-
geneous infrastructures are required. To this end we develop GR-Athena++, a new
dynamical spacetime solver built on top of Athena++, that shows high-order con-
vergence properties and excellent parallel scalability up to O(105) cores in full 3D
binary black hole (BBH) merger simulations. Finally we present GR-AthenaK, the first
performance-portable spacetime solver, obtained by refactoring GR-Athena++ with the
Kokkos programming model. We demonstrate the correctness and convergence prop-
erties of GR-AthenaK with BBH runs on GPUs. GR-AthenaK shows a speedup ∼50 on
one GPU compared to GR-Athena++ on a single CPU core.
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Zusammenfassung

Francesco Zappa

Überreste von Verschmelzungen kompakter Doppelsterne
und numerische Relativitätscodes der nächsten Generation

Simulationen der numerischen Relativitätstheorie sind für die Untersuchung der Koa-
leszenz von kompakten Doppelsternen von entscheidender Bedeutung. Auf der Grund-
lage von numerischen Relativitätssimulationsdaten erstellen wir ein Modell für die
Masse und den Spin des Schwarzes-Loch-Überrests für die Koaleszenz von Schwarzes-
Loch-Neutronenstern-Systemen und erörtern dessen entscheidende Rolle bei der Mod-
ellierung von Gravitationswellen und bei der Parameterbestimmung der beiden Signale
GW200105 und GW200115. Im Zusammenhang mit Simulationen der Verschmelzung
von Neutronenstern-Doppelsternsystemen führen wir die erste systematische Studie
durch, in der wir die Ergebnisse von Simulationen mit verschiedenen Neutrinobe-
handlungen, dem Vorhandensein von turbulenter Viskosität, und unterschiedlichen
Gitterauflösungen vergleichen. Wir stellen fest, dass der Zeitpunkt der Bildung des
schwarzen Lochs nach der Verschmelzung stark von der Gitterauflösung und der turbu-
lenten Viskosität abhängt. Eine frühe Bildung des schwarzen Lochs schränkt den Ma-
terieauswurf aus der Akkretionsscheibe ein, da das schwarze Loch einen beträchtlichen
Teil davon verschluckt. Unsere Ergebnisse zeigen, dass zuverlässigere Kilonova-Lichtkurven
nur dann erhalten werden, wenn die verschiedenen Auswurfskomponenten vorhanden
sind. Darüber hinaus erfordern robuste Ergebnisse der Nukleosynthese via des r-
Prozesses die Einbeziehung sowohl der Neutrinoemission als auch der Reabsorption in
die Simulationen. Simulationen mit fortschrittlichen Behandlungen der Neutrinos und
der turbulenten Viskosität, die über die derzeitigen Standards hinausgehen, scheinen
für zuverlässige astrophysikalische Vorhersagen notwendig zu sein. Um rechenintensive
Simulationen mit wachsender Komplexität durchführen zu können, werden numerische
Relativitätscodes der nächsten Generation benötigt, die die neuesten prä-Exascale
Computerinfrastrukturen aus vielen und heterogenen Rechenkernen effizient nutzen
können. Zu diesem Zweck entwickeln wir GR-Athena++, einen neuen dynamischen
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Raumzeitlöser, der auf Athena++ aufbaut. Er zeigt Konvergenzeigenschaften hoher
Ordnung und exzellente parallele Skalierbarkeit bis zu O(105) Kernen in vollständigen
3D-Simulationen der Verschmelzung von Schwarzes-Loch-Doppelsternen. Schließlich
präsentieren wir GR-AthenaK, den ersten leistungsfähigen portablen Raumzeitlöser,
der durch Refactoring von GR-Athena++ mit dem Kokkos-Programmiermodell ent-
standen ist. Wir demonstrieren die Korrektheit und Konvergenzeigenschaften von
GR-AthenaK mit Simulationen von Schwarzes-Loch-Doppelsternen auf Grafikkarten.
GR-AthenaK zeigt einen 50-fachen Geschwindigkeitszuwachs auf einer Grafikkarte im
Vergleich zu GR-Athena++ auf einem einzelnen Prozessorkern.
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3

Introduction

Gravitational waves (GWs) are one of the fundamental predictions of General relativity
(GR). The linearization of the Einstein field equations (EFE)

Rµν −
1

2
Rgµν =

8πG

c4
Tµν (1)

leads to the tensorial wave equations

□h̄µν = −16πG

c4
Tµν (2)

where h̄µν is a small perturbation on the flat spacetime background. Considering a
multipole expansion of the sources Tµν , the GW emission at leading order is propor-
tional to the second time derivative of the source quadrupole moment, while second
time derivatives of lower multipoles vanish due to the conservation of mass and total
momentum of the source.

Astrophysical sources expected to produce loud GWs are those that generate large
and fast-changing quadrupolar moments, such as compact binary (CB) coalescences.
A CB consists of either black holes (BHs) or neutron stars (NSs), which are objects
with a compactness parameter C := M

R
G
c2
≈ O(10−1), where M and R represent

the gravitational mass and radius of the body. The dynamics of CBs can be roughly
divided into three stages. After formation, the CB quickly circularizes [1, 2] and enters
a long inspiral phase, in which the two bodies are driven closer and closer due to the
emission of energy and angular momentum via GWs. In the merger phase the two
bodies coalesce, forming a remnant object; depending on the type of CB, this remnant
object can be either a BH or a NS. The last stage is referred to as the post-merger
phase, in which the remnant object evolves towards equilibrium. For instance, in a
binary black hole (BBH) merger, the remnant object is a BH, and in the post-merger
phase, it radiates away energy through its quasi normal modes (ringdown), until it
reaches its fundamental state [3, 4].

The first evidence of GWs was obtained in 1974 from the observation of the pulsar
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PSR J1913+16 (also known as the Hulse-Taylor binary pulsar [5]). The system consists
of two NSs, one of which is the pulsar, with masses M1 ≈ 1.44M⊙ and M2 ≈ 1.39M⊙

respectively, orbiting the common center of mass with an orbital period that is de-
creasing in time. The GR prediction of the decreasing rate computed according to GW
theory agrees within ∼ 0.1% with the experimental value measured over a 30-years
timescale observation [6].

On September 14, 2015 the first GW signal, namely GW150914, was observed
by the two interferometers of the LIGO Observatory [7]. The source of the signal
was identified as the coalescence of two BHs with component masses1 of ∼36M⊙ and
∼29M⊙, which formed a remnant BH of mass M ≈ 62M⊙ dissipating ∼3M⊙c2 of
energy in GWs [8].

During the second observing run, the first GW signal associated with a binary
neutron star (BNS) merger, namely GW170817, was detected [9] by the two LIGO
interferometers and by the advanced Virgo interferometer. The GW detection was
accompanied by the detection of the electromagnetic (EM) signal GRB170817A, a
short-gamma-ray burst (SGRB) observed independently by the Fermi-GBM [10] and
INTEGRAL telescopes [11] ∼1.73 s after the GW detection [12]. The component
masses of the BNS have been inferred as M1 = (1.36 − 1.60)M⊙ and M2 = (1.17 −
1.36)M⊙, which are consistent with the masses of known NSs [13], BNSs [14] and with
theoretical predictions [15]. The joint observation of GW170817 and its associated
EM counterparts represents the first direct evidence that BNS mergers are at the
origin of SGRB and kilonova transients [16–34]. In particular the kilonova counterpart
AT2017gfo is commonly interpreted as the UV/optical/infrared transient generated by
radioactive decays of r-process elements that form in the mass ejected from the merger
and the remnant [35–44].

In January 2020, during the third observing run, the LIGO-Virgo interferom-
eters detected two GW signals consistent with the inspiral of black hole–neutron
star (BHNS) binaries, named GW200105 and GW200115 [45, 46]. The masses of
the primary objects constituting the two systems emitting the signals GW200105
and GW200115 were estimated as M1 = 8.9+1.2

−1.5 M⊙ and M1 = 5.7+1.8
−2.1 M⊙, respec-

tively; these values are well above the maximum mass of NSs but compatible with BH
masses. On the other hand, the masses of the secondary components were estimated as
M2 = 1.9+0.3

−0.2 M⊙ and M2 = 1.5+0.7
−0.3 M⊙ respectively, thus consistent with NS masses.

1Masses are reported as measured in the source frame.



Introduction 5

The search for GW signals in the output data stream of interferometers involves
matched filtering, which consists in testing the detectors’ output against a set of wave-
form templates. For instance, the detection of signals from BBH mergers such as
GW150914, requires about 2.5 × 105 GW templates [47]. After a signal is detected,
the estimation of the source’s parameters is performed with Bayesian inference tech-
niques [48–50], which typically requires even more waveform templates covering the
parameter space in a finer way. Both signal searches and parameter estimation cru-
cially rely on accurate GW models capable of generating waveforms quickly.

The inspiral portion of GW models far from merger can be constructed analytically
using e.g. post-Newtonian theory [51, 52], while other analytical treatments based on
BH perturbation theory can be employed for the ringdown phase of BBH mergers
to a first approximation. However, the merger phase of CB mergers and the post-
merger phase for systems composed of NSs are currently inaccessible analytically. In
these regimes numerical relativity (NR) simulations, in which Eqs. (1) are cast into a
suitable form and solved numerically to evolve the spacetime metric [53–56], are crucial
for waveform modeling. NR simulations provide the most accurate waveforms for the
coalescence of CBs, but are too slow to be used alone for GW detection or parameter
estimation. Accurate and fast-to-evaluate GW models are thus obtained by combining
analytical and numerical methods. The three families of waveform models mainly used
nowadays in GW analysis are constructed in this way, and are represented by the
phenomenological approximants [57–63], NR surrogates [64–66] and models based on
the effective-one-body (EOB) approach [67–69]. To model GWs in the post-merger
phase of BNS and BHNS mergers it is necessary to resort to NR simulations [70–72].
The improvements of the operating sensitivity of existing detectors [73], together with
incoming new experimental apparatus, such as KAGRA [74], laser interferometer space
antenna (LISA) [75], Einstein Telescope [76], Cosmic Explorer [77] will enlarge the
parameter space of detectable signals, requiring at the same time even more accurate
GW models. This implies the need of NR simulations in extreme configurations, such
as mergers of high mass ratio BBH [78, 79].

GW modeling aside, NR simulations are fundamental to study the dynamics of
BHNS and BNS mergers [80–83]. An open question regards the understanding of the
fate of the remnant in BNS mergers, as well as the conditions that lead to a BH prompt
collapse [84–93]. The use of NR simulations is crucial in the quantitative analysis of
matter ejection from BNS mergers, including the determination of its composition [94,
95]. This ejection is influenced in part by the properties of the accretion disc that forms



6 Introduction

around the remnant object. For instance, the features of the ejected material regulate
the EM emission and the r-process nucleosynthesis yields from BNS mergers, which
can also be estimated with numerical methods [96–100]. Complete models of the mass
ejecta are necessary to understand the still poorly known connection with the EM
counterparts. These require detailed ab-initio simulations involving extreme gravity,
relativistic magneto-hydrodynamics (MHD), and advanced microphysics models for
the NS matter, including neutrino interactions and transport. In particular, long
post-merger simulations with advanced input physics are needed to study the matter
ejection mechanisms developing on seconds timescales [81, 101–109].

Such simulations can be computationally expensive and their feasibility is con-
strained by the availability of high-performance computing (HPC) infrastructures
[110]. Thus, accurate NR codes that remain performant as HPC resources are scaled
up and simultaneously allow for a simple extension of input physics, are crucial. Fi-
nally, the recent technological advances in terms of hetereogeneous HPC platforms,
push towards the production of portable NR codes, capable of efficiently making use
of the new architectures which include GPU accelerators.

In this Dissertation, the remnants of BHNS and BNS mergers are studied utilizing
NR simulations. Moreover, the Dissertation showcases the advancements of two new
next-generation NR codes, which are crucial for detailed simulations of CB coalescences
with enhanced computational efficiency.

Summary of content In Chapter 1, NR data are used to construct models to char-
acterize the remnant BH of BHNS mergers; applications of such models in GW model-
ing and in BHNS detection are discussed, as well as consequences on the expected EM
counterparts from synthetic population analysis of BHNS systems. Chapter 2 is de-
voted to the systematic study of different neutrino treatments, turbulent viscosity and
grid resolution effects on BNS merger simulations; the dynamics and thermodynamics
of the system are discussed, together with the matter ejection and the implications
on GW observations, EM counterparts and r-process nucleosynthesis yields. In Chap-
ter 3 the new NR code GR-Athena++ is introduced, demonstrating its convergence and
scalability properties with benchmark BBH simulations. In Chapter 4 the develop-
ments of the first performance-portable NR code GR-AthenaK are presented, as well
as the first numerical experiments showing convergence and performance properties
with spacetime runs on graphical processing units (GPUs). Lastly, a summary of the
results and future work and perspectives is reported in the Conclusion.
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Chapter 1

Model of the BH remnant of BHNS
mergers

The detections of the GW signals GW200105 and GW200115 [45] confirm that mergers
of a stellar-mass BH and a NS are sources of GWs, detectable by ground-based laser-
interferometers and possibly accompanied by EM counterparts [111–117]. Based on
these observations, the merger rate of BHNS has been estimated as ∼45 Gpc−3yr−1,
while larger rates ∼130 Gpc−3yr−1 are obtained for broader mass distributions of the
component objects [45].

NR simulations are the only means to study BHNS mergers [112–114, 118–127].
The aftermath of such events is a remnant BH surrounded by an accretion disc of NS
matter. Simulations indicate that the NS tidal disruption is a characteristic feature
of the dynamics of quasi-circular BHNS mergers. On the contrary, quasi-circular BNS
mergers with mass ratio up to ∼2 do not present significant tidal disruption, [e.g., 128,
129].

Accurate models for the mass and dimensionless spin of the remnant BH are neces-
sary to construct GW models to be used for matched filtering searches and parameter
estimation; for instance, they enter the computation of the GW quasi-normal modes
in the post-merger phase [72, 130]. An analytical formula for the BH remnant’s mass
and dimensionless spin can be found using mass and angular momentum conserva-
tion arguments [131, 132] (see also [133]). This approach builds on estimates of the
radiated energy and the binary orbital angular momentum based on the expressions
for test particles on Kerr background at the innermost stable circular orbit (ISCO),
and on the disc mass fits of [134]. Results are accurate to a few percent, which is
comparable to the energy radiated in GWs, with the largest uncertainty coming from
the disc mass estimates from simulations [e.g., 96, 135].

In this Chapter, an analytical model for the BH remnant of BHNS coalescences is
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constructed directly from NR simulations data. In §1.1 the physics of the remnant
formation is reviewed, motivating the choice of the parameters used in the model. In
§1.2 the construction of the model for the remnant BH’s mass and spin is described,
discussing its behaviour in the parameter space; additionally, the model is extended for
the case of precessing binaries. §1.3 contains applications of the model, demonstrating
its importance in astrophysical predictions and observations. Ultimately, in §1.4 a
model for the peak luminosity of the GW (2, 2) mode is presented.

Throughout this Chapter, geometric units c = G = 1 are employed and physical
quantities are expressed in units of M⊙, unless otherwise specified.

1.1 Physics of the remnant formation

For a physical understanding of the remnant’s formation it is useful to resort to the
concept of ISCO for the motion of test particles on equatorial trajectories around a
Kerr BH. For a Kerr BH of mass MBH, spin SBH and dimensionless spin parameter
aBH := SBH/M

2
BH, rISCO =MBHf(aBH), where [136]

f(aBH) := 3 + Z2 ∓
√

(3− Z1) (3 + Z1 + 2Z2) ;

Z1 := 1 +
(
1− a2BH

)1/3 [
(1 + aBH)

1/3 + (1− aBH)
1/3
]
;

Z2 :=
√

3a2BH + Z2
1 .

(1.1)

f(aBH) ∈ [1, 9] is a monotonically decreasing function of aBH, with range aBH ∈
[−1, 1]. Here, positive(negative) values of aBH correspond to BH spins that are
aligned(antialigned) to the orbital angular momentum of the test particle. Particles
that orbit the BH at a distance smaller than rISCO cannot have a stable circular motion
and plunge into the BH.

The NS in a merging BHNS system undergoes tidal disruption if it reaches a
characteristic distance rTD from the BH larger than rISCO. rTD is expected to scale
in the same way as rMS, which is the distance of the NS from the BH at which mass
shedding occurs. rMS is determined by the condition that the tidal forces exerted by the
BH on its companion overcomes the NS self-gravity at the stellar surface. Hereafter,
MBH and aBH denote the mass and dimensionless spin of the initial BH, respectively.
Defining the binary mass ratio q := MBH/MNS, indicating with RNS the NS radius
and using keplerian relations, this condition implies rTD ≲ rMS ∝ q1/3RNS, with an
approximately weak dependence on the BH spin [80]. Since RNS/MBH = (qCNS)

−1,
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where CNS :=MNS/RNS is the NS compactness, the parameter that regulates the onset
of tidal disruption is the ratio ξ = rTD/rISCO ∝ C−1

NSq
−2/3f(aBH)

−1. This argument
shows that ultimately NS’ tidal disruption depends on three physical parameters: q,
CNS, aBH. Despite rISCO being formally defined for a test particle, this conclusion is
expected to hold also for the NS, which has a finite size. Tidal disruption in this case
is determined by the binary’s tidal and spin-orbit interactions.

Simulations have shown that if the BH is non-spinning, or its spin is antialigned
with the orbital angular momentum, tidal disruption occurs in BHNSs with q ≲ 3.
Generally, large, aligned BH spins aBH ≳ +0.5 favour tidal disruption because spin-
orbit interactions push rISCO to smaller values. As an example, rISCO = 1MBH for
a Kerr BH with aBH = +1, as opposed to rISCO = 6MBH for a non-spinning BH.
Disruption is also favored by low values of CNS, which are obtained for stiff Equations
of state (EOSs) and imply large NS tidal deformabilities1 [137, 138]. For a fixed MNS,
larger deformabilities imply larger RNS, while smaller q correspond to smaller MBH.

Tidal disruption leads to the formation of an accretion disc in the merger remnant.
Simulations predict remnant discs with baryon (rest) masses as large as Mdisc

b ≳ 0.1M⊙

[134, 135], thus creating the conditions to ignite a SGRB [139–141].
Kyutoku et al. [112] tentatively classifies the phenomenology of BHNS mergers into

three classes, based on the ratio ξ. For Type-I and Type-III mergers, tidal disruption
occurs far from and close to rISCO, respectively. In Type-II mergers instead, tipically
q ≳ 3, aBH ≲ 0, which implies rTD < rISCO and therefore the NS plunges onto the
BH before tidal disruption occurs. These three classes differ by their GW spectra and
Mdisc

b . For instance, Type-II mergers have a GW spectrum very similar to BBH ones
[see e.g. 142–146].

1.2 Remnant’s mass and spin model

All the models in this work are constructed from the data of NR simulations of
quasi-circular BHNS mergers reported in Kyutoku et al. [112], Kyutoku, Shibata, and
Taniguchi [118], and Kyutoku et al. [120] and performed with the SACRA code [147].
A comprehensive collection of all data used in this work can be found in the appendix
of [148]. These simulations adopt different NS matter EOSs and (anti)aligned BH spin
values. The simulations used for this work are performed with non-spinning NSs and

1See §1.2 for the definition of NS tidal deformability.
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Figure 1.1: Relative differences between the data points and the fit.
Left panel: X•, the maximum difference is of the order of 1%. Right
panel: a•, the maximum difference is below 3%. For both cases the

coefficient of determination of the fit is R2 ≈ 0.92.

therefore the NS spin is neglected in the models of this work; however, this is expected
to be a good approximation for realistic systems [149, 150].

The total gravitational mass of the binary is denoted as M := MBH +MNS, and
the mass and spin of the remnant BH as M• and S•, respectively. The re-scaled
remnant BH mass and spin are defined as X• :=M•/M and a• := S•/M2

• , respectively.
Motivated by the discussion of §1.1, the parameters chosen to map X• and a• are
the symmetric mass ratio ν := q/(1 + q)2 ∈ [0, 1/4], aBH and the dimensionless NS
quadrupolar tidal polarizability parameter Λ := 2k2/(3C

5
NS) [137]. In the latter, k2 is

the gravito-electric quadrupolar Love number, a monotonically decreasing function of
CNS [138]. Λ encodes2 the tidal interactions at leading order in the post-Newtonian
dynamics. Typically, Λ ≈ 100 − 2500 for NSs in BHNS systems, depending on MNS

and EOS. In the model, no assumptions on the EOS are made for the NS, which is
characterized solely by Λ. The parameter space spanned by the data used in this work
is Λ ∈ [100, 2500], q ∈ [2, 7] (i.e. ν ∈ [0.109, 0.222]), and aBH ∈ [−0.5, 0.75].

X•, a• of BHNS mergers are mapped as

F : (ν, aBH,Λ)→ (X•, a•) = FBBH(ν, aBH)
1 + p1(ν, aBH)Λ + p2(ν, aBH)Λ

2

(1 + [p3(ν, aBH)]2Λ)
2 . (1.2)

2For compact binaries, tidal interactions at leading order are described by Λ̃ := 16
13

(m1+12m2)m
4
1Λ1

(m1+m2)2
+

1↔ 2. In the case of BHNS systems with m1 =MNS, m2 =MBH, Λ2 = 0 and Λ̃ = 16
13

(1+12q)Λ
(1+q)5
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Table 1.1: Best fit parameters for the remnant’s mass and spin and
for the GW peak luminosity, with respective determination coefficient

R2 of the fits.

F k pk10 pk11 pk20 pk21 R2

1 −1.83 × 10−3 2.39 × 10−3 4.29 × 10−3 9.8 × 10−3

X• 2 2.34 × 10−7 −8.28 × 10−7 −1.64 × 10−6 8.08 × 10−6 0.921
3 −2.01 × 10−2 1.32 × 10−1 6.51 × 10−2 −1.43 × 10−1

1 −5.44 × 10−3 7.91 × 10−3 2.33 × 10−2 2.48 × 10−2

a• 2 −8.57 × 10−7 −2.82 × 10−6 6.61 × 10−6 4.29 × 10−5 0.92
3 −3.04 × 10−2 2.55 × 10−1 1.48 × 10−1 −4.28 × 10−1

1 3.08 × 10−2 −4.18 × 10−2 −5.17 × 10−2 3.19 × 10−1

Lpeak 2 −1.23 × 10−5 8.84 × 10−6 1.05 × 10−4 −3.88 × 10−5 0.98
3 3.30 × 10−1 −3.76 × 10−2 −9.2 × 10−1 1.44

where FBBH are the models for the mass and spin of the remnant BH for BBH mergers
developed in [151] and pk(ν, aBH) are polynomials of the form

pk(ν, aBH) = pk1(aBH) ν + pk2(aBH) ν
2 (1.3)

pkj(aBH) = pkj0 aBH + pkj1 . (1.4)

Eq. (1.2) includes by construction the BBH limit for Λ→ 0 (no tidal effects) and the
test-mass limit for ν → 0. Note that the dependence on aBH is linear. The coefficient
p3(ν, aBH) is squared in order to avoid poles in the denominator.

The values of the best-fit parameters pkjl are reported in Tab. 1.1. Relative dif-
ferences with respect to the fit are shown in Fig. 1.1. The fits have determination
coefficient R2 ≈ 0.92 and the residuals are normally distributed with mean ∼0 and
standard deviations ∼0.25 × 10−2 and ∼0.01, respectively. The maximum relative
differences are below 1% for the remnant mass fit and below 3% for the the remnant
spin, which are smaller than the differences due to the EOS [118]. The NR data do
not extend to ν ≲ 0.1 and aBH ≲ −0.5 ∨ aBH ≳ 0.75, thus the model effectively
extrapolates into those regions. The extrapolation leads in some cases to unphysical
values of X• > 1 and a• < −1. This behaviour is fixed by forcing the model to agree
with the BBH case, i.e., imposing X•/FBBH = 1 and |a•| ≤ 1. The model has been
recently updated in Gonzalez et al. [72] with 19 additional NR simulations from [152],
which correspond to mergers of non-spinning BHNS systems with q ≲ 3. Moreover,
the fitting formula for X• has been slightly modified to improve the behaviour of the
model in the region of the parameter space of large Λ and small ν, where no NR data
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Figure 1.2: Contour plots of the mass-rescaled remnant BH mass
X• := M•/M (top row) and of the dimensionless spin parameter a• :=
S•/M2

• (bottom row) as a function of the symmetric mass ratio ν and
of the NS tidal polarizability parameter Λ. Each column corresponds
to fixed values of the initial BH spin parameter aBH reported on top,
corresponding to those of the NR simulations employed. White markers

indicate the NR data used to construct the model.

are available. Details about the new fitting formulas are in Gonzalez et al. [72].
In the simulations, X• and a• are measured from the apparent horizon. The former

should also correspond to

X• = 1− EGW

M
− Mdisc

g

M
− M ejecta

g

M
, (1.5)

where EGW is the total energy radiated in GWs during the coalescence and Mdisc
g and

M ejecta
g < Mdisc

g are respectively the disc and ejecta mass contributions to the gravita-
tional energy, which cannot be directly measured in the simulations [120]. Eq. (1.5)
is key to understand the physics of the behaviour of X•. In BBH mergers finite mass-
ratio effects are repulsive, implying that the GW emission is more efficient for larger
ν and the same effect is seen in the BHNS dynamics.

The model of Eq. 1.2 is represented in Fig. 1.2, which clearly shows that the smallest
values of X• are obtained for larger values ν → 1/4. The precise behaviour of X•,
however, depends on the competition between the energy emitted in GWs and the
effect of tidal disruption, as per Eq. (1.5). The second column of Fig. 1.2 shows that
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for non-spinning BHNS binaries, the value of X• slightly increases with respect to the
BBH case as Λ > 0+ and for a given ν. Tidal disruption does not occur for small
values of Λ (e.g. Λ ≲ 500 for ν = 0.22 and aBH = 0), so this effect is solely due to the
fact that tidal interactions are attractive and reduce the GW emission with respect
to the Λ = 0 case (i.e., EGW decreases so X• grows, with Mdisc

b ≈ 0). As Λ becomes
sufficiently large (and ν → 1/4), tidal disruption occurs and only part of the remnant
mass contributes to the final BH mass. Consequently, as Λ increases beyond a certain
critical value, X• starts to decrease because part of the NS mass is accreted in the disc
instead of being swallowed by the BH. Note that the peak mass is more pronounced
for ν → 1/4 and disappears for sufficiently small ν, for which Type-II mergers occur,
i.e. the whole NS plunges into the BH. Focusing on spin effects, for a given ν, the
remnant mass decreases for increasing aBH > 0 because the ratio ξ increases. This is a
consequence of the repulsive character of the spin-orbit interaction for aligned positive
spins. Notably, the peak at small Λ is no longer present for sufficiently large values of
aBH. On the other hand, for aBH < 0, the spin-orbit interactions are attractive and
have the same sign as the tidal interactions. As a consequence, for smaller aBH, X•

increases and the peak at small Λ is more pronounced.
For non-spinning BBHs, S• is expected to decrease for increasing ν, due to the

same finite mass-ratio effect described above. Due to the M2
• normalization, however,

a• shows the opposite behaviour. In the BHNS case, the remnant BH has a larger
dimensionless mass-rescaled spin with respect to the BBH case and it increases with
Λ, for small Λ > 0. This happens because the NS is less compact and therefore
less angular momentum is dissipated via GWs. Above a peak value, however, tidal
disruption occurs and the angular momentum redistributes into the disc that forms
around the remnant BH. For |aBH| ≲ 0.5 and a given value of ν, the final a• is roughly
linear in aBH (see Eq. (1.2) and [112]).

Extension to precessing BHNS systems Although the models of this work are
developed from non-precessing BHNS data, they can be extended to the case of generic
BH spins [132, 153, 154]. For this purpose, the initial spin is mapped as follows

aBH → azBH = aBH cos β , (1.6)

where β is the angle between aBH and the initial total orbital angular momentum L
of the system. In this case the model will yield az• instead of a•. This prescription
assumes that the direction of the total angular momentum J := L+S is approximately
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Figure 1.3: Comparison of the model with the prescription of Eq. (1.6)
against NR data of binaries with spin precession of [122]. β is the angle
between the initial orbital angular momentum and the initial BH spin.
All available data correspond to fixed values of (aBH, q) = (0.75, 5) and

the errorbars are conservatively taken as 1% of the values.

preserved during the merger process, so that the direction θ of the final spin is given
by the projection cos θ = Ĵ · L̂ . This prescription is validated against simulations of
binaries with precessing spins. Fig. 1.3 shows that the model predictions for X• and
a• using Eq. (1.6) are in good agreement with the NR data of Kawaguchi et al. [122],
which are not used to determine the model.

1.3 Applications of the model

1.3.1 Population of BHNS remnants

As a first application, the model Eq. (1.5) is used to predict the distribution of BH
remnant’s masses and spins for given synthetic populations of BHNS systems merging
at redshift z ≤ 1. This study can give insights on how frequently tidal disruption
events and associated EM counterparts are expected.

The latter are constructed by convolving the binary population-synthesis from
the mobse code [155–157] with the Illustris cosmological simulation [158–160], see
[161–163]. In particular, the run CC15α5 of [163] is adopted, where the common-
envelope parameter is chosen as α = 5 and natal kicks are drawn from a Maxwellian
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distribution with a single root-mean square velocity vσ = 15 km s−1 for both electron-
capture and core-collapse supernovae. The minimum(maximum) mass of a BH(NS) is
set to 5(2) M⊙. This assumption enforces the existence of a mass gap between BHs
and NSs, which is suggested by dynamical mass measurements of compact objects in
X-ray binaries [164, 165]. BH spins are added by randomly drawing spin magnitudes
|aBH| ∈ [0, 1] from a truncated Maxwellian distribution with root mean square σ.
Here, spins are considered isotropically oriented with respect to the binary orbital
plane with ⟨aBH⟩ = 0.2 as fiducial distribution or aligned spin distributions with
σ = {0.1, 0.35, 0.5, 0.7}, corresponding to average values ⟨aBH⟩ = {0.2, 0.5, 0.75, 0.95},
respectively.

The population synthesis predicts BH component masses below 10M⊙, distributed
narrowly about MBH ≈ 5M⊙ and MBH ≈ 8M⊙ [162]. The metallicity Z of a star
is defined as the mass fraction of the composing elements heavier than helium. The
population depends very weakly on progenitors’ metallicities for Z ≤ 0.002, but for
Z ≥ 0.003 the smallest BHs are suppressed and only BH with MBH ≈ 8M⊙ are
obtained. This is a consequence of the dependence of the delay time on the progenitor’s
metallicity. The delay time is defined as the time elapsed from the formation of the
progenitor stars to the BHNS merger. Metal-rich progenitors have longer delay times
than metal-poor ones and thus they do not merge within the Hubble time, especially
for small BH masses. Additionally, NS masses MNS ≳ 1.3M⊙ are favoured.

From the distribution of MBH and aBH of the synthetic population, the distributions
of X• and a• are computed as follows. A representative set of EOSs is chosen, for
each of which the distribution of Λ on the NS population is calculated. The remnant
properties are then determined according to Eq. (1.2) with the prescription of Eq. (1.6).
The top row of Fig. 1.4 shows that the distributions of X• and a• depend weakly on the
EOS employed. The metallicity of the progenitor stars instead affects the final result,
as can be seen in the bottom row. For metallicities Z ≤ 0.002 bimodal distributions
peaked around M• ≈ 7M⊙ and M• ≈ 9M⊙ are found, independently from the EOS
employed. BHNS populations generated with large metallicities of the progenitor stars
only produce the more massive remnants. The remnant spins inferred from Eq. (1.2)
and the isotropic/aligned spin population with ⟨aBH⟩ ≈ 0.2 are distributed around
az• ≈ 0.4 with standard deviation ∼0.1. Overall, the distributions obtained track the
populations generated by the population synthesis code. The values ≳ 7 M⊙ obtained
for the final masses regardless the EOS employed point to the plunge scenario as the
most likely, and therefore from these populations it is unlikely that large ejecta masses
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Figure 1.4: Top row: X• and a• distributions for different EOSs. Bot-
tom row: X• and a• distributions for different values of the metallicity
Z of the progenitor stars. The latter plot is relative to the SLy EOS; the
fiducial isotropic spin distribution for the synthetic BHNS population

for the plots in this figure is peaked around ⟨aBH⟩ = 0.2.

and bright EM counterparts will be emitted.
Using the model of [135] it is possible to estimate the distribution of Mdisc

b associ-
ated to the remnant BH. Fig. 1.5 shows that aligned, low-spin distributions result in
≳ 99% of the remnants having Mdisc

b smaller than M b
SGRB = 0.075

Mb
NS

1.5
M⊙, indepen-

dently from the adopted EOS. Disc masses above M b
SGRB are necessary to produce

SGRBs of 1 s duration [166, 167]. Remnants with significant disc masses are found
for aligned spin distributions with ⟨aBH⟩ ≳ 0.5. In these cases, the largest discs are
found for the stiffest EOSs, corresponding to Λ ≳ 1700. Softer EOSs, corresponding
to Λ ≲ 400, give massive discs only for ≲ 20% of the binaries which have ⟨aBH⟩ ≳ 0.75.
In this context, the results obtained from aligned spin distributions can be considered
upper limits to the ones from isotropic spin distributions.

1.3.2 BH remnants of GW200105 and GW200115

The models discussed in this Chapter have been used to estimate the final mass
and spin of the remnant BH for the systems that produced the two signals named
GW200105 and GW200115 [45]. In particular, under the hypothesis of BHNS coa-
lescence for the two events, posterior samples for the binary parameters have been
generated with the two models IMRPhenomNSBH [168] and
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Figure 1.5: Remnant disc baryonic mass distribution for different
EOSs and for low (left) and high (right) aligned BH spin distributions.
The mass threshold represents the minimum mass of the disc that allows
the production of SGRBs with 1 s duration. The percentage of binaries
with disc mass larger than this threshold is provided in the legend for

each EOS employed.

SEOBNRv4_ROM_NRTidalv2_NSBH [130]. The latter crucially rely on the a• and X• fits
presented here to calculate the GW amplitude in the merger and ringdown phase.
Applying Eqs. (1.2) on the BHNS posterior samples, it was possible to compute the
distributions of a• and M• for the two events. For GW200105, the remnant mass and
spin have been estimated as M• = 10.4+2.7

−2.0 and a• = 0.43+0.04
−0.03, while for GW200115,

M• = 7.8+1.4
−1.6 and a• = 0.38+0.04

−0.02.

1.3.3 Extension of TEOBResumS for BHNS

TEOBResumS is a GW model based on the EOB formalism [67–69, 169–171] capable of
producing accurate waveforms for the coalescence of CBs including spin, higher modes
and tidal effects [146, 172–176]. In Gonzalez et al. [72], TEOBResumS is augmented
with an inspiral-merger-ringdown GW model for BHNS mergers constructed by com-
puting the deviations from the BBH GW model with NR fitting formulas. Notably,
TEOBResumS is the first GW model for BHNS coalescences including higher modes and
precession effects. Updated version of the remnant models presented in this Chapter
are used in Gonzalez et al. [72] to discriminate among different NS tidal disruption
cases and to construct the ringdown sector.
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Figure 1.6: Distribution of the GW peak luminosity as a function of
the NS Λ for all the values of aBH and for all the different values of ν

in the available dataset.

1.4 GW peak luminosity

The approach used in this work can be used to estimate the GW peak luminosity, thus
complementing the results derived for BBHs and BNS systems in [88, 177] (see [178]
for an application of those results). The GW peak luminosity is computed from the
(2, 2) mode of the GW strain,

Lpeak ≈ max
t

1

16π

(∣∣∣∣dh22(t)dt

∣∣∣∣2
)

(1.7)

where hℓm is defined through Eq. B.10.
The expression used to fit Lpeak is slightly different from Eq. (1.2) and reads:

Lpeak(ν, aBH, Λ) = LBBH
peak (ν, aBH)

(1 + p1(ν, aBH)Λ + p2(ν, aBH)Λ
2)

2

(1 + [p3(ν, aBH)]2Λ)
4 . (1.8)

where the numerator is squared in order to enforce positive values for the luminosity.
The denominator instead is raised to the 4th power in order to get a finite value for
the asymptotic limit of Λ→∞. The best fit parameters pkjl are reported in Tab. 1.1.
The model delivers results with accuracy at the 20% level, but note that, since only
the (2, 2) mode data are used, these results represent a lower limit for the GW peak
luminosity from BHNS mergers.

Fig. 1.6 shows the peak luminosity model as a function of Λ and for the values of ν
and aBH sampled by the NR dataset. The behaviour of Lpeak is analogous to the one
X• detailed in §1.2.
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Chapter 2

Impact of resolution and input
physics on BNS merger simulations

NR simulations represent a fundamental approach for the prediction of astrophysical
observables from the mergers of BNS systems and their aftermath [83, 179], allowing
one to identify the different mechanisms for mass ejection and the kinematical and
thermodynamical properties of the unbound material.

The inclusion of weak interactions mediated by neutrinos is key for the physical
understanding of such processes. Neutrinos are produced in the high-temperature
regions forming due to the collision of the two NSs and, on longer timescales, from the
hottest regions of the NS remnant and accretion torus [82, 115, 140, 180–185]; neutrino
emission is the dominant process for NS matter cooling and, together with neutrino-
matter interactions, it determines the outcome of the r-process nucleosynthesis and
the colour of the kilonova [186–188], as well as the geometry and the mass of the
dynamical ejecta [39, 189, 190]. Neutrino-matter interactions may also impact the
high-density regions of the remnant through out-of-equilibrium effects [82]; however,
while some NR works report damping of the density oscillations in the remnant NS
[191] and possible signature in the post-merger GW signal [192, 193], others employing
more sophisticated neutrino transport schemes and higher grid resolutions do not find
significant out-of-thermodynamic equilibrium effects on the post-merger dynamics or
GW emission [194]. Multi-resolution studies employing a consistent neutrino transport
scheme appear necessary to assess the impact of out-of-equilibrium effects.

MHD instabilities and turbulence can affect the matter flow after merger [195–199]
and provide crucial processes for the SGRB jet-launching mechanism [200–203]. The
possible development of global large-scale magnetic stresses can enhance mass ejecta
[42, 103, 198, 199, 204]. One of the main open issues is to adequately resolve the am-
plification of magnetic fields with realistic strengths and self-consistent turbulent flow
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[197]. Sub-grid models have been proposed as a lightweight way to include magnetic
field effects in the simulations [205–208].

This Chapter reports the first systematic study of the impact of different neutrino
transport schemes, turbulent viscosity and of the role of finite grid resolution on the
outcome of a BNS simulation and associated predictions of astrophysical observables.

The rest of this Chapter is organised as follows. In section §2.1 the NR code used
and the different input physics and the simulation setups considered in this work are
described. In section §2.2 the dynamics and thermodynamical evolution of the sys-
tem and the properties of the remnant object are discussed. Section §2.3 is devoted
to the study of the effects on the GW emission. Section §2.4 studies the dynamical
ejecta mass and its composition. In section §2.5 the r-process nucleosynthesis yields
and kilonova light curves associated to the ejecta computed in post-processing from
the simulations are compared. Section §2.6 examines the variations in neutrino lu-
minosities and average energies between the two neutrino schemes including neutrino
reabsorption.

Throughout the text masses are expressed in units of solar masses M⊙, while tem-
perature and energy are reported in MeV. The other quantities are expressed in SI or
cgs units.

2.1 Methods

Matter model, initial data and evolution methods In the simulations of this
work, the NS matter is modelled using the SLy4-SOR EOS (hereafter SLy), a finite-
temperature, composition-dependent EOS based on a Skyrme potential for the nu-
cleonic interaction [209, 210]. This EOS includes baryons (both free and bound in
nuclei), electrons, positrons and photons as the relevant degrees of freedom. The SLy
EOS predicts a maximum Tolman-Oppenheimer-Volkoff (TOV) gravitational mass of
MTOV

max ≈ 2.05 M⊙ and a radius for a 1.4 M⊙ NS of R1.4 ≈ 11.9 km. Both these values
are compatible with the observations of extremely massive millisecond pulsars [211,
212], with results obtained by the NICER collaboration [213, 214], and with LIGO-
Virgo detections [215]; see also Breschi et al. [44] for a multi-messenger analysis based
on NR data.

Irrotational initial data in quasi-circular orbit are produced with the pseudo-
spectral multi-domain code Lorene [216]. Initial data are constructed with the mini-
mum temperature slice T = 0.01 MeV of the SLy EOS and neutrino-less β-equilibrium
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inside the two component NSs is assumed at the beginning of the evolution.
The system is evolved using the 3+1 Z4c free evolution scheme described in §A.2,

coupled with the general relativistic hydrodynamics (GRHD) equations (see §A.3).
The simulations are performed with the WhiskyTHC code [217–221], which is built
on top of the Cactus framework [222, 223]. In particular, the spacetime is evolved
with the CTGamma code [224] which is part of the Einstein Toolkit [225, 226]. The
time evolution is performed with the method of lines, using 4th-order finite-differencing
spatial derivatives for the metric and the strongly-stability preserving 3rd-order Runge-
Kutta (RK) scheme [227] as the time integrator. The time step is set according to
the Courant-Friedrich-Lewy (CFL) criterion and the CFL factor is set to αCFL = 0.15.
Berger-Oliger conservative adaptive mesh refinement (AMR) [228] with sub-cycling in
time and refluxing is employed [229, 230], as provided by the Carpet module of the
Einstein Toolkit [231]. WhiskyTHC implements a number of microphysics schemes to
include neutrino effects and turbulent viscosity in the fluid in the simulations. In this
work the effects of these schemes on BNS simulations are systematically compared. The
neutrino treatments considered in this work are the leakage (LK), M0 and M1 schemes,
while the general relativistic large-Eddy-simulations (GRLES) scheme is adopted for
turbulent viscosity. All these schemes are described in some detail in App. D.

The simulation domain consists of a square cuboid
Ω = [−1512, 1512] × [−1512, 1512] × [0, 1512] km3. Reflection symmetry about the
xy-plane is used for z < 0. The grid setup consists of 7 refinement levels centred on
the two NSs or in the merger remnant, with the finest level covering entirely each
star. The simulations in this work are performed at low resolution (LR), standard
resolution (SR) and high resolution (HR), for which the minimum spacings in the
finest refinement level are δxLR ≈ 247 m, δxSR ≈ 185 m, δxHR ≈ 123 m.

Simulation sample In this work, the NS component masses of the BNS system
and the EOS are chosen in such a way that the merger results in a remnant NS close
to BH collapse; the idea is to see how much employing different neutrino treatments,
turbulent viscosity and finite grid resolution can affect the outcome of such border-line
case system. The two NS of the system have gravitational mass M1 =M2 = 1.30 M⊙,
corresponding to baryonic masses M1b = M2b = 1.42 M⊙ and symmetric mass ratio
ν := M1M2/(M1 +M2)

2 = 0.25. The initial separation is set to ∼45 km. This setup
results in a BNS system with initial total gravitational mass, Arnowitt-Deser-Misner
(ADM) mass and ADM angular momentum respectively M := M1 +M2 ≈ 2.60 M⊙,
MADM ≈ 2.57 M⊙, JADM ≈ 6.82 M⊙

2.
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This study is based on a total of 15 evolutions of the same initial data. A first set of
simulations are performed solving only spacetime and hydrodynamics equations, and
are labeled hereafter as HY. Preliminary results about these simulations are presented
in Appendix B of Breschi et al. [70]. The effect of neutrinos is included using the
three different schemes implemented in WhiskyTHC and described in App. D: three
independent sets of simulations are performed employing the LK scheme, the LK
scheme coupled with the M0 scheme, and the more advanced M1 scheme. The three
different types of simulations are labelled as LK, M0 and M1, respectively. Finally, an
additional set of simulations includes both M0 and viscosity and is referred to as VM0.
Throughout the text the expression physics scheme is used to refer to the different
realizations employed in the runs. Each of these 5 realizations is run at different
resolutions, namely LR, SR, and HR.

To ensure stable runs with the M1 scheme, the following choices are made. Firstly,
the relative tolerance parameter that is used to solve the implicit time step in the
source term (see [194]) is set to 10−10. Secondly, local thermodynamical equilibrium
depending on the equilibration timescale in a specific cell is additionally enforced. In
particular, if for a given cell the corresponding time step constains more than X e-
foldings of the equilibration time, the neutrinos average energies are forced to be at
equilibrium for the evolution of the neutrinos number densities in the selected cell.
This prevents failures of the runs and the development of spurious features in regions
of high density and low electron fraction Ye

1 in the first few ms after collision. The
parameter X has been set to 20 for LR and HR run and to 10 for the SR run.

In the following, a particular simulation is named by indicating first the scheme
used and then the resolution; for instance M0-SR is the simulation with M0 scheme
run at standard resolution. A complete list of all the simulations is reported in the first
column of Tab. 2.1. The simulations are performed for a minimum of 35 ms (LK-HR)
up to a maximum of 155 ms (LK-LR). Some runs in which a BH forms are affected at
later time by the numerical instability described in Radice et al. [194] and thus were
not continued. Simulation data are analyzed to a safe evolution time reported in the
second column of Tab. 2.1; no spurious effects are observed before this time.

1See beginning of App. D for the definition of the electron fraction Ye.
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Figure 2.1: Time evolution of the main quantities describing the dy-
namics of the system. Top row: maximum rest-mass density ρmax

expressed in units of the nuclear saturation density ρnuc ≈ 2.3 ×
1014 g cm−3. Bottom row: (minus) reduced binding energy −eb (solid
lines) and reduced angular momentum of the system jrem (dashed lines).

Time is shifted by the time of merger.

2.2 Remnant dynamics

The two NSs revolve around the common center of mass for about 6 orbits before
colliding within ∼14 ms from the beginning of the simulation. The moment of merger
is conventionally defined as the peak amplitude of the (2,2) GW mode2, and is denoted
as tmerg hereafter. The evolution before this moment is referred as the inspiral-merger
phase, while the evolution after tmerg is called post-merger phase. After merger a
remnant NS forms, which survives for at least a few tens of ms. In six of the simulations
the remnant NS collapses to a BH at t− tmerg ≳ 18.3 ms.

2.2.1 Remnant evolution

The overall remnant evolution is well described in terms of the maximum rest-mass
density, ρmax, (minus) the reduced binding energy, −eb, and the reduced angular mo-
mentum, jrem, of the system. The latter two quantities are defined as

eb :=
MADM − EGW −M

Mν
, jrem :=

JADM − JGW

M2ν
, (2.1)

2The GW amplitude is defined in Eq. (B.11).
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where EGW, JGW are the radiated energy and angular momentum calculated from the
multipolar GWs [232, 233]. The evolution of these quantities is reported in Fig. 2.1,
comparing the different schemes in each panel and resolution effects across the three
columns.

For t < tmerg the evolution is qualitatively and quantitatively very similar for all
the runs. As it can be clearly seen at negative times in Fig. 2.1, both ρmax (top row),
−eb and jrem (bottom row) curves do not display any significant differences across the
runs. This is expected, since neutrino production and viscosity effects are negligible
in the two NSs before collision. In this regime, increasing the resolution has the only
effect of accelerating the merger process, [see, e.g., 233, 234]. However, this effect is
not visible in Fig. 2.1, because all curves are shifted by tmerg.

For t > tmerg, ρmax rapidly increases as the NS cores merge reaching ≳ 6 ρnuc

within 10 ms; the damped oscillations in ρmax are caused by the bounces of the two
cores in the process. At about 10 ms post-merger, the outcome of the GW-dominated
(early) post-merger phase is a remnant NS, formed by a core that is slowly rotating
surrounded by a rapidly rotating envelope. The absolute value of the binding energy
after tmerg measures the compactness of the remnant NS and it increases in time due
to the emission of gravitational energy. The panels in the bottom row of Fig. 2.1
shows that most of EGW and JGW are radiated within t − tmerg ≈ 10 ms [88, 235].
Comparing to the top row, this period coincides with the time in which the large
oscillations of ρmax are strongly dampened and the remnant NS stabilises or collapses.
The physical explanation is that the remnant NS has a large and rapidly evolving
quadrupole moment and is therefore an efficient emitter of gravitational radiation. The
emission increases the remnant’s compactness and reduces its angular momentum, thus
driving the remnant NS towards axisymmetry and eventually stationarity. Overall,
the gravitational energy and angular momentum emission show qualitatively a similar
evolution for all the runs. In all cases about the same values of −eb ≈ 0.12 and
jrem ≈ 2.9 are reached at t − tmerg ≈ 5 ms, and only after this time some differences
start developing among the runs.

During the GW-dominated phase, turbulent viscosity has a dominant impact on
the remnant’s core dynamics with respect to the inclusion of neutrinos. In particular,
ρmax and −eb in VM0-LR and VM0-HR runs are comparably smaller with respect to
the other runs at the same resolution, especially at later times. This effect is explained
by viscosity enabling angular momentum transport from the rapidly rotating envelope
to the slowly rotating remnant core, which gains more rotational support. This causes
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Table 2.1: Main properties of the remnant disc and ejecta for all
simulations. The end time of the simulation tend and of BH collapse
tBH are measured with respect to merger. The baryonic masses of disc
and ejecta, respectively Mdisc

b and Mejecta, are expressed in solar masses.
Mdisc

b is computed at the latest available time before BH collapse occurs,
or at tend if a BH does not form. The ejecta quantities are extracted with
the Bernoulli criterion on a spherical surface at 443 km. The electron
fraction Ye and the specific entropy s are reported as mass-weighted
averages. The emission angle is calculated as the mass-weighted root
mean square (RMS) of the emission latitudes. The ejecta analysis is
performed until t − tmerg = 20.3 ms, corresponding to the earliest tend

of the entire set of simulations, i.e. to the run LK-HR.

Simulation tend [ms] tBH [ms] Mdisc
b [M⊙] Mej[M⊙] M v≥0.6c

ej [M⊙] ⟨Ye⟩ θRMS
ej [◦] vej, ∞/c ⟨s⟩ [kB/bar]

HY-LR 109 - 1.85× 10−1 1.10× 10−2 1.11× 10−5 0.05 34 0.16 16
LK-LR 140 - 1.76× 10−1 2.41× 10−3 8.60× 10−6 0.13 28 0.18 13
M0-LR 94 - 1.57× 10−1 6.70× 10−3 1.34× 10−5 0.23 34 0.16 17
VM0-LR 104 - 1.80× 10−1 6.44× 10−3 1.48× 10−5 0.23 34 0.15 17
M1-LR 35.8 - 2.42× 10−1 6.59× 10−3 2.02× 10−6 0.24 36 0.17 16
HY-SR 109 - 1.64× 10−1 8.43× 10−3 2.73× 10−5 0.049 33 0.19 17
LK-SR 114 - 8.14× 10−2 2.35× 10−3 1.23× 10−5 0.16 30 0.21 14
M0-SR 64.3 64 7.55× 10−2 5.85× 10−3 3.92× 10−5 0.22 32 0.18 16
VM0-SR 35.8 21 7.58× 10−2 4.02× 10−3 3.09× 10−5 0.23 33 0.19 18
M1-SR 41.8 - 1.51× 10−1 4.13× 10−3 1.29× 10−5 0.24 37 0.19 18
HY-HR 27.2 25.6 1.10× 10−1 7.20× 10−3 2.44× 10−5 0.044 34 0.19 18
LK-HR 20.3 19.9 6.77× 10−2 1.92× 10−3 1.47× 10−6 0.17 29 0.2 16
M0-HR 28.6 20.2 8.98× 10−2 5.11× 10−3 7.96× 10−6 0.26 34 0.16 18
VM0-HR 61.3 60.9 9.46× 10−2 6.14× 10−3 2.80× 10−5 0.24 34 0.16 18
M1-HR 28.4 18.3 8.87× 10−2 4.82× 10−3 4.43× 10−6 0.29 35 0.21 18

a decrease of the central density of the remnant star, which makes it more stable [205,
236].

The grid resolution has a significant impact on the fate of the remnant. LR sim-
ulations present the smallest GW emission, which leads to a less compact and more
rotationally supported remnant NS core. At LR, gravitational collapse is never ob-
served within the simulated time. At higher resolution, overall binding energies are
larger and remnant angular momenta are smaller for all the runs comparing one by
one to the LR simulations. For the M0-SR case BH collapse happens at ∼64 ms
post-merger (see third column of Tab. 2.1), while BH formation is not observed for
HY-SR, LK-SR and M1-SR runs within the end of the simulations. The HR runs show
the largest binding energy magnitudes, i.e. the largest compactnesses for the remnant
NS. As a consequence, BH collapse occurs as early as t− tmerg ≈ 18.3 ms for the M1
simulation, t − tmerg ≈ 20 ms for LK and M0 runs and t − tmerg ≈ 26 ms for the HY
case. In VM0-HR the BH collapse is delayed by about 40 ms with respect to the other
HR runs, due to the effect of viscosity, as described above. The runs that employ the
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Figure 2.2: Correlation between the binding energy of the system and
the maximum rest-mass density. The latter is rescaled by the central
density of the maximum-mass TOV star predicted by the SLy EOS.

M1 transport scheme show a monotonic increase of ρmax and −eb and a monotonic
decrease of jrem with resolution.

The run VM0-SR presents an unexpected behaviour. The remnant NS collapses
quite early, around 20 ms post-merger. Comparing to VM0-LR and VM0-HR runs, the
density oscillations at 8−10 ms appear less dampened and ρmax keeps increasing until
the NS eventually collapses. This behaviour has never been observed in previous works
where viscosity was included in the same way [90, 208]. It can be speculated that this
result is related to the specific simulation setup that, for this particular BNS, is not
yet in a convergent regime at SR. Higher resolution simulations would be required to
explore the possibility of obtaining consistent results.

The analysis of the merger dynamics in terms of ρ and energetics is weakly de-
pendent on the particular setup of the simulations and thus it robustly captures the
merger dynamics. This is summarised considering the gauge invariant ρmax(−eb) curves
in Fig. 2.2. The plot shows that the two quantities are clearly correlated, which im-
plies that ρmax can be, in principle, estimated from a measurement of the total GW
radiated energy [237]. The robustness of the correlation showed in Fig. 2.2 indicates
also that the simulations analysed here are internally self consistent with each other.
The figure also highlights the fact that in all simulations in which BH collapse occurs,
this happens for values of ρmax below the central density of the maximum-mass TOV
star, in particular with ρmax ≳ 70%ρTOV

max [93]. This result indicates that gravitational
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Figure 2.3: Comparison of the first 20 ms post-merger evolution of
the remnant NS for all LR runs. Each row represents a different sim-
ulation, while each column corresponds to snapshots taken at the time
expressed on top, which refers to t − tmerg. The left and right half of
each subplot show respectively the temperature profile in linear scale
and the density profile in logarithmic scale, both on the equatorial
plane. The black contour levels represent iso-density curves. Mov-
ing away from the centre, they correspond to decreasing densities of
1015, 1014, 1013, 1012 . . . g cm−3. The thickest black line corresponding
to ρ = 1013 g cm−3 conventionally denotes the interface between the

remnant NS core and the disc.

collapse is mainly determined by the remnant core, which is slowly rotating and cold.

2.2.2 Thermodynamic evolution of the remnant

To discuss the impact of different neutrino schemes and viscosity on the thermodynam-
ics of the remnant NS core, in Figs. 2.3 and 2.4 the rest-mass density and temperature
profiles on the equatorial plane for LR and HR runs, respectively, are reported. The
remnant NS is conventionally considered as the region enclosed within the iso-density
surface ρ = 1013 g cm−3, indicated with thick black curves in the plots. Comparing the
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Figure 2.4: Same as Fig. 2.3 but for HR runs. In the frame corre-
sponding to M1-HR at t− tmerg = 20 ms the black circle represents the

apparent horizon of the BH that forms at 18.3 ms post-merger.

profiles at LR and HR, the most evident effect is that remnants corresponding to the
HR runs are more compact; this is in agreement with the binding energy analysis of
the system in §2.2.1. The snapshots t− tmerg = 0 ms (first column) show the moment
in which the two NSs touch and the cores start to fuse, causing the matter at the
collisional interface to warm up because part of the kinetic energy is converted into
thermal energy. At 5 and 10 ms post-merger (second and third column respectively)
the hot matter produced at the collisional interface forms two hotspots at peak tem-
perature T ≈ 70−80 MeV that revolve around the colder core [82, 238, 239]. At later
time t − tmerg = 15 ms, the hot matter is concentrated in an annulus with a more
uniform temperature T ≈ 60− 70 MeV.

The structure of the remnant NS after the GW-phase is almost axisymmetric. The
density profile decreases monotonically with the radial coordinates, while the temper-
ature profile does not. In particular, the central densest region of ρ ≳ 1015 g cm−3 is
characterised by T ≲ 20 MeV. In the region of densities ρ ∈ [1014, 1015] g cm−3 the
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temperature first increases up to T ≈ 60 − 70 MeV and then it decreases down to
T ≈ 20 MeV. The layer of density ρ ∈ [1013, 1014] g cm−3 is colder, with temperatures
T ≲ 20 MeV.

With the exception of the M1 runs, which are discussed below, no signficant differ-
ences are seen in the remnant density and temperature profiles comparing runs with
different physics schemes at the same resolution, as expected. The inclusion of neu-
trino emission with the LK scheme does not impact significantly the thermodynamics
of the remnant’s core, where matter is at high density. Including neutrino reabsorption
with the M0 scheme also does not affect the remnant appreciably, because the com-
ponent of trapped neutrinos is neglected and because free-streaming neutrinos mostly
interact with the lower-density material around the remnant NS. Turbulent viscosity
is also not expected to have a strong impact on the thermodynamics of the remnant
core, because the effects of the viscosity model implemented here are by construction
small at densities higher than 1013 g cm−3 [208]. In particular, no increase in the core
temperature due to kinetic energy being converted into thermal energy due to viscosity
is observed.

A comparison of the internal temperature of the remnant star between the runs
with LK and M1 at 15 ms post-merger reveals an effect due to neutrino radiation in
optically thick conditions. The hot annulus at densities ρ ∈ [1014, 1015] g cm−3 shows
lower temperatures in the M1 run compared to the LK case, with T peak

M1 ≈ 88% T peak
LK .

This difference is a physical effect due to the emergence of a neutrino trapped gas that
converts fluid thermal energy into radiation energy [82]. The left plot of Fig. 2.5 shows
the consequent difference in the matter composition of the remnant’s core in the region
ρ ∈ [1014, 1015] g cm−3, corresponding to the hot annulus of matter. While in LK runs
the remnant core retains its pristine Ye with peaks of Ye ≈ 0.058−0.059, in M1 runs Ye
can be locally 40% larger than these values. These variations are consistent for both
LR and HR resolutions and with Fig. 9 of Perego, Bernuzzi, and Radice [82]. The
analysis of [82] was performed in postprocessing from simulations where the neutrino
trapped component was not considered, and the conclusion was that the presence of
a neutrino gas would cause a ∼33% increase in Ye. Here this effect is confirmed in
simulations that do include the neutrino trapped component inside the remnant (see
also [194]).

The right plot of Fig. 2.5 shows that the thermodynamical conditions inside the
remnant are such that locally, in the high-temperature region, the neutrino fractions
follow the hierarchy Yνe < Yνx < Yν̄e [82, 115, 194]. This is confirmed for all resolutions
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Figure 2.5: Left plot: comparison of Ye inside the remnant between
LK and M1 in a 2D snapshot at t − tmerg = 15 ms on the equa-
torial plane. The black contour levels represent iso-density curves.
Moving away from the centre, they correspond to decreasing densi-
ties of 1015, 1014, 1013 g cm−3. The remnant of the runs with M1
shows an annulus of higher Ye with respect to the LK runs at densi-
ties ρ ∈ [1014, 1015] g cm−3, coinciding with the hot annuli of matter in
Figs. 2.3 and 2.4 Right plot: neutrino fraction in the remnant core of
the M1 simulations at t − tmerg = 15 ms. Each column corresponds to
the fraction of one of the three species simulated. Neutrino production
inside the remnant core is favoured for the species ν̄e and disfavored for
νe. This finding is robust with resolution. In both plots, the thickest
black line corresponding to ρ = 1013 g cm−3 conventionally denotes the

interface between the remnant NS core and the disc.

and explained as follows. The matter constituting the hot annulus is characterised by
densities ρ ≳ 1014 g cm−3 and temperatures of a few tens of MeV. This is matter
initially in cold, neutrino-less weak equilibrium coming from the collisional interface
of the fusing NS cores that both decompresses and heats up. Electrons in these condi-
tions are highly degenerate and relativistic, and their chemical potential µe is weakly
sensitive to density and temperature variations. On the other hand, neutrons and
even more protons are non-degenerate, since their Fermi temperature TF is such that
T ≳ TF and Yp ∼ 0.1Yn due to the initial neutron richness. The chemical potentials
of protons (µp) and of neutrons (µn) are negative, but the magnitude of the former
increases faster than the magnitude of the latter. Then, the chemical potential of
neutrinos at equilibrium, µνe,eq = µp − µn + µe, becomes negative and in particular
−µνe,eq ≈ 120 MeV. For thermalised neutrinos in weak equilibrium, µν̄e = −µνe and
Yν ∝ TF2(µν/T ), where F2(x) is the Fermi function of order 2, so that Yνe < Yν̄e .
Electron antineutrinos form a mildly degenerate Fermi gas, because the temperature
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Figure 2.6: Time evolution of the disc mass Mdisc
b comparing all runs.

The vertical dashed lines mark the time of BH collapse. Time is shifted
by the time of merger.

is high and the degeneracy parameter ην̄e = µν̄e/T ≈ 2.5 − 2.7. Therefore, while the
production of electron neutrinos is suppressed due to the higher neutron degeneracy,
the production of electron antineutrinos is not and a gas of ν̄e forms, with Yν̄e reaching
peaks of ∼0.04. In comparison, the maximum of Yνe is of the order of 10−3, while
max (Yνx) ≈ 0.035 − 0.039 is found depending on the resolution. This means that
locally each neutrino species constituting the effective species x can be, on average, a
factor 4 less abundant than electron antineutrinos.

2.2.3 Disc evolution

After merger, part of the matter expelled during the collision accretes around the
remnant object, forming a disc. The baryonic mass of the disc Mdisc

b is computed from
the simulations according to Eq. A.28. The disc is conventionally defined as the baryon
matter with density lower than 1013 g cm−3, as in Shibata et al. [240] and therefore
the integration domain V is restricted to the region of ρ < 1013 g cm−3 if a massive
NS is present. If a BH forms, the domain is instead restricted by excluding the points
inside the apparent horizon using the minimum lapse criterion, i.e. retaining only
points for which minα ≥ 0.3 (see the discussion in appendix of [90] for this choice.
In this definition there is no distinction between bound and unbound material, which
are both considered part of the disc. The error introduced by not subtracting the
unbound material in the computation of the disc mass is lower than NR uncertainties,
which can be estimated by comparing Mdisc

b at different resolutions. Mdisc
b for all runs,

computed for each simulation at the last available time prior BH collapse, are listed
in the fourth column of Tab. 2.1.
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Figure 2.7: 2D snapshots of the xy-plane (top plot) and of the xz-
plane (bottom plot) showing the properties of the accretion disc around
the NS remnant at t − tmerg = 20 ms. In each plot all runs at LR
(top row) and HR (bottom row) are compared. The right and left half
of each frame show the matter specific entropy s and electron frac-
tion Ye, respectively. The thickest black curve is the isodensity con-
tour ρ = 1013 g cm−3 delimiting the NS remnant core, while the other
thinner curves moving outwards are isodensity curves corresponding to
ρ = 1012, 1011, 1010, . . . g cm−3. In the M1-HR frame the black circle
represents the apparent horizon of the BH, that forms at 18.3 ms post-

merger.

In Fig. 2.6 the time evolution ofMdisc
b during the first 40 ms post-merger is reported.

The largest increase in Mdisc
b happens within ∼10 ms post-merger, as a result of the

collision and of the successive bounces of the two merging NS cores. On this timescale
Mdisc

b reaches values of the order of ∼10−1 M⊙, and then it stays constant for a few
tens of ms, if the remnant NS does not collapse. When a BH forms, the disc mass
drastically drops because a large fraction of the disc gets swallowed by the BH.

In the following, the differences arising by using different physics schemes are dis-
cussed for HR runs. In HY-HR, when neutrinos are not included, Mdisc

b is the largest,
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being almost double the LK-HR one. Even before BH formation, the LK run exhibits
the smallest Mdisc

b among all the runs, with Mdisc
b ≈ 0.06M⊙. This is explained by the

fact that neutrino leakage cools down the lower-density matter around the NS core,
causing the outer shells of the remnant NS to be less inflated and to expel less matter.
When neutrino reabsorption is present (M0-HR, M1-HR) the Mdisc

b increases, reaching
Mdisc

b ≈ 0.09M⊙ with very similar values comparing the two runs. For VM0-HR, angu-
lar momentum and matter transport enhanced by viscosity has the effect of increasing
the disc mass with respect to M0 only. Eventually Mdisc

b reaches an intermediate value
between HY-HR and M0-HR ones.

Mdisc
b depends sensitively on resolution. LR runs present the largest Mdisc

b for
all simulations. Here, the minimum mass is found for LK-LR run, with ∼0.12 M⊙,
while in M0-LR, VM0-LR and HY-LR runs Mdisc

b reaches similar masses ∼0.15, M⊙.
The largest Mdisc

b is obtained for M1-LR simulation, with almost ∼0.25M⊙. For this
resolution a stable rotating NS forms, and on timescales longer than the ones shown
in the plot Mdisc

b slowly increases with time. This is due to the fact that at later time
some matter is expelled from the outer shell of the remnant NS and becomes part of
the disc [81]. For increasing resolution the disc mass decreases comparing each run
with its lower resolution counterparts, except for HY-SR. The decrease can be as large
as 44% (M0-LR vs. M0-SR). HR runs show systematically the smallest values of Mdisc

b .
Finite resolution also affects Mdisc

b indirectly by determining different times of BH
collapse. Higher resolution simulations can predict final disc masses that are much
smaller than lower resolution ones, because when a BH forms it swallows part of the
disc. This is apparent in the run M1-HR, where the final disc mass drastically drops
with respect to the mass before BH collapse. The presence of such lighter discs can
have a large impact on the emission of gravitationally unbound material from the disc
at secular timescales [see, e.g., 96, 241]. However, as long as gravitational collapse
does not occur, the simulations show that the spread of Mdisc

b due to different physics
schemes gets smaller as the resolution increases.

Fig. 2.7 shows a comparison of the geometric properties and matter composition of
the disc among the LR and HR runs as 2D snapshots of the xy-plane (top plot) and
xz-plane (bottom plot) at t− tmerg = 20 ms. The geometry of the disc can be analysed
referring to the black iso-density contours in the figure. The high-density portion of
the disc ρ ∈ [1012, 1013] g cm−3 extends to ∼20 km in the equatorial plane and ∼10 km
in the xz-plane. The region ρ ∈ [1011, 1012] g cm−3 is more inflated when neutrinos
are present, compared to the HY case, in both xy- and xz- planes. The low-density
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ρ ≈ 1010 g cm−3 tails of the disc extends up to tens of km from the central object on
the equatorial plane.

The most evident difference among resolutions is that discs are geometrically
smaller for higher resolutions. If we consider the iso-density curve ρ = 1010 g cm−3 on
the orbital plane, it extends to ∼90 km for LK-LR and ∼65 km for LK-HR. Similar
numbers are found for M0 runs, while in VM0 runs the difference between LR and HR
is smaller, ∼10 km. The largest difference is found in M1 runs, for which the curve
extends to ≳ 100 km for LR and to ∼65 km at HR.

The composition of the disc is described in terms of the entropy and electron
fraction profiles in Fig. 2.7. The high-density matter ρ ∈ [1012, 1013] g cm−3 is charac-
terised by low electron fraction and low entropy because it is composed of fresh matter
expelled from the remnant NS core. In the HY runs the electron fraction is frozen at
Ye = 0.05 because neutrinos are not simulated. Comparing HY (left column) in the
bottom plot with the others, it can be seen that the presence of neutrinos clears the
polar regions right above the remnant NS [221, 242]. In the runs with neutrinos, in
these regions, Ye increases up to values ≳ 0.2, indicating that matter protonises. In
LK runs, for decreasing density and increasing distance from the remnant NS, the Ye
first increases as mentioned above, then decreases to ∼ 0.1 at ρ ∈ [1010, 1011] g cm−3.
At lower densities and high latitude Ye ≲ 0.25. In the region right above the remnant
Ye ≈ 0.4, at LR. At HR the remnant is close to BH collapse and this causes an increase
of temperature and consequent increase of electron fraction in the low-density matter
above the remnant. The M0 and VM0 runs show different disc composition with re-
spect to LK but similar between each others. Here, a fraction of neutrinos streaming
out of the NS remnant is absorbed by lower-density material, increasing its Ye. Ye in
the shell ρ ∈ [1010, 1011] g cm−3 is larger than in the LK case at the same density.
For increasing latitudes (and decreasing density) Ye increases, reaching values up to
Ye ≈ 0.35. In the M1 runs the electron fraction has larger values when comparing
shells of same density to M0 or VM0. In particular matter at high latitude and low
density reaches Ye ≈ 0.5, and is thus quantitatively different from M0 runs. Such
features are robust against changes of resolution.

2.3 Gravitational waves

In this section, the GWs extracted from the simulations are compared. The modes of
the gravitational wave strain hℓm are computed according to Eq. (B.10) in App. B.
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Figure 2.8: Real part of the (ℓ, m) = (2, 2) mode of the GW strain
normalised by the total mass of the system M , the symmetric mass
ratio ν and the extraction radius R. The grey curve corresponds to one
representative GW luminosity curve (namely the M0 runs). Time is

shifted by the merger time.

In Fig. 2.8 the (2, 2)− mode of the GWs is compared among the runs up to
16 ms post-merger. Additionally, the GW luminosity LGW := dEGW/dt is reported
for one representative run (M0 for each resolution). Up to merger, no significant
differences among the waveforms are observed. The GW amplitude (see Eq. B.11)
peaks at RAmerg

22 /Mν ≈ 1.06 with a merger frequency of fmerg
22 ≈ 1.9 kHz. The post-

merger spectrum peak frequency is f2 ≈ 3.2 kHz. These three quantities are measured
quite robustly from the simulations studied here. At LR, the maximum variations of
Amerg

22 , fmerg
22 and f2 among all the runs are respectively ∼0.3%, ∼1.3%, ∼2.1%. At

SR the maximum variations of these quantities are below 0.7%. Lastly, for HR runs
the maximum variations of Amerg

22 , fmerg
22 and f2 among all the runs are respectively

∼0.38%, ∼1.1%, ∼2.1%. The differences due to finite resolution are instead generally
larger. Maximum differences between SR and HR of ∼1.3% for Amerg

22 , ∼4.1% for
fmerg
22 and ∼2% for f2 are found. The GW luminosity peaks shortly after merger at
Lpeak

GW ≈ 3.5× 1055 erg s−1, consistently with Zappa et al. [88]. A maximum variation
of the peak value of about ∼34% is found among the runs.
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In the post-merger waveforms, significant differences in the amplitude, frequency
and phase evolution develop among the runs. Analyzing the phase convergence among
different resolutions for fixed physics prescription, approximately first order conver-
gence is obtained. To quantitatively compare the impact of resolution and of physics
input on the waveforms, a faithfulness analysis is performed. The faithfulness between
two waveforms h1(t) and h2(t) is defined as

F := max
tc, ϕc

(h1|h2)√
(h1|h1)(h2|h2)

, (h1|h2) := 4ℜ
∫
h̃1(f)h̃

∗
2(f)

Sn(f)
df , (2.2)

where tc, ϕc are the time and phase of the waveforms at a reference time, and (h1|h2)
is the Wiener inner product; in the latter, the symbol ∼ denotes the fourier transform,
and Sn(f) is the power spectral density, which here is chosen as the one of the Einstein
Telescope. The unfaithfulness is defined as F := 1 − F . In the context of GW
parameter estimation, two waveforms are distinguishable if their faithfulness satisfies
the necessary criterion [243]

F > 1− ϵ2

2ϱ2
=⇒ ϱ ≈

√
N

2F , (2.3)

where ϱ is the matched-filtered signal-to-noise ratio (SNR) and ϵ2 = N is chosen, with
N being the number of intrinsic parameters of the system [244]. The latter condition
on ϱ represents the minimum SNR that allows to detect the differences between two
waveforms.

The runs are compared in pairs, in such a way that the two runs in a pair have either
the same resolution (e.g. HY-LR and LK-LR) or are simulated with the same physics
scheme (e.g. HY-LR and HY-SR), excluding comparisons of the kind HY-LR and LK-
SR. At LR, the maximum mismatch is found between HY-LR and M0-LR runs, with
F ≈ 0.087. At SR the mismatches are generally larger and reach a maximum value
of F ≈ 0.2 between LK-SR and M1-SR and also between M0-SR and VM0-SR runs.
At HR the mismatches are the largest, with maximum F ≈ 0.37 between the HY-HR
and M1-HR runs. Comparing runs at different resolutions, the mismatches are of the
order of few times 10−1 in almost all comparisons, except for HY-LR vs. HY-SR and
LK-LR vs. LK-SR, for which F is few times 10−2.

This analysis indicates that possible effects due to neutrinos or turbulent viscos-
ity in the remnant core can be detected in the GW signal only in the post-merger.
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However, GW models used for matched filtering that are informed on NR simula-
tions [70, 71] at LR would not be accurate enough to detect such effects. In particular,
differences due to the simulations’ finite resolution would be dominant in such GW
models. At SR and HR, mismatches between waveforms of runs performed with differ-
ent physics schemes are comparable to the ones due to finite resolution. GW templates
constructed with these data might be able to distinguish such differences in the signal
from ϱ ≳ 3, according to Eq. (2.3). Notably, this precision might be sufficient for third
generation observations, since differences in the signals due to variations in the EOS
at extreme matter densities are potentially observable at post-merger SNR ∼8 [71].

Overall, these results indicate that simulations at SR or HR are necessary in order
to distinguish possible differences due to neutrinos or turbulent viscosity in the rem-
nant. In particular, the high-resolution M1 simulations do not show any evidence for
significant out-of-equilibrium and bulk viscosity effects in the waveforms. This is in
agreement with the findings of [194] that were obtained at LR, but it is in constrast
with Refs. [192, 193]. The simulations performed for the latter works do not consider
weak interactions or use a LK scheme and are performed at a maximum resolution of
400 m, which is much lower than the LR employed in this work.

2.4 Ejecta mass

The material ejected from the system on dynamical timescales and up to ∼20 ms
post-merger consists of the full dynamical ejecta component and the early portion
of the spiral-wave wind component. The dynamical ejecta is composed of a tidal
component originating from tidally unbound NS material and a shocked component
originating from the first bounce after the collision of the two cores [96]. The tidal
component is launched mostly across the equatorial plane and is characterised by a
low Ye ≈ 0.05 − 0.15 and low entropy, s ≲ 5 kB baryon−1. The shocked component
has higher entropy than the tidal component and peak temperature of tens of MeV,
which produces large amount of electron-positron pairs with consequent increase of
Ye due to positron captures by neutrons. Neutrinos radiated from the remnant and
absorbed by neutrons in the ejecta can further increase the Ye of this ejecta component,
especially at high latitudes where neutrino emission is more efficient. The shock-
heated ejecta expand over the entire solid angle due to interaction with the tidal
ejecta, hydrodynamic shocks and weak interaction, with a preferential emission at
small angles from the equatorial plane.
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Figure 2.9: Time evolution of the ejecta mass extracted at R = 443
km comparing the Bernoulli and geodesic criteria. Mass is reported in

logarithmic scale and compared across resolution.

Other mechanisms can unbind material from the disc and they act generally on
longer timescales. Spiral-wave winds originate from non-axisymmetric density waves
from the NS remnant [98]. The remnant’s spiral arms transport angular momentum
outwards in the disc and material then gets unbound from the disc edge. On longer
timescales disc winds can develop, also powered by neutrino reabsorption [e.g. 100,
102, 183, 245, 246] but the simulations in this work are not sufficiently long to capture
this component.

In the literature there are two main ways to identify the unbound material from
simulations, namely the geodesic and the Bernoulli criterion (see, e.g., [247] for a
recent work on this topic). The geodesic criterion assumes that the ejecta follow
spacetime geodesics in a time-independent, asymptotically flat spacetime. Therefore,
a particle is considered unbound if ut < −1, where ut is the time component of the
particle’s 4-velocity. According to the Bernoulli criterion, and using the definitions of
thermodynamics quantities in §A.3, a fluid element is considered unbound if hut ≤ −1,
where h is the fluid specific enthalpy. The asymptotic velocity of the unbound particle
is calculated as v∞ ≃

√
2 (h (E∞ + 1)− 1). This criterion assumes that hut is constant

along a streamline of a steady-state flow. This assumption is correct if the metric and
the flow are both stationary. Even though this is not formally true for merger outflows,
this criterion is considered sufficient to account for the gain in kinetic energy of the
expanding matter in the outflow due to thermal and nuclear binding energy. However,
it neglects the energy lost to neutrinos during r-process nucleosynthesis, which can
affect the total ejecta mass and its velocity profile [247]. The geodesic and Bernoulli
criteria can be used to conventionally separate the dynamical ejecta from the wind
ejecta [248].
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Fig. 2.9 compares the evolution of the ejecta mass in the simulations according
to both the geodesic and Bernoulli criteria. At 20 ms post-merger the ejecta masses
calculated with the geodesic criterion are saturated, except for the M1 runs. As
expected, the ejecta mass calculated with the Bernoulli criterion is larger than the
one estimated with the geodesic criterion at comparable times. The ejecta mass in the
Bernoulli case keeps increasing at later time due to the contributions of the spiral-wave
winds. In the rest of this section only the Bernoulli ejecta are discussed.

The ejecta mass shows a steep increase up to ∼10 ms post-merger in all the runs
and then it tends to saturate at few tens of ms after merger. Within ∼20 ms post-
merger a mass of ≳ 2 × 10−3 M⊙ is typically ejected. The quantitative values for all
the runs at a fixed time are reported in Tab. 2.1. For HY runs, ≳ 8 × 10−3 M⊙ of
matter is expelled, which represents the largest matter emission among all the runs.
The ejecta mass in LK runs is systematically one order of magnitude lower than that of
all the other runs, consistently with [221]. This happens because the neutrino cooling
reduces the enthalpy of the material and as a result the emission is largely decreased.
When neutrino reabsorption is included through the M0 scheme, the effect of cooling is
counteracted by the neutrino energy deposition in the shock-heated ejecta and Mejecta

becomes larger than the LK case, reaching values ≳ 10−2 M⊙. The evolution of Mejecta

in VM0 runs follows a similar behaviour. Mejecta measured in M1 and M0 runs are
comparable, within a few tens of percent.

Focusing on the effects of finite resolution, Mejecta shows a monotonic decrease for
increasing resolution for all the runs. Since the onset of BH collapse stops the matter
ejection, smaller final ejecta masses in HR simulations are found, compared to the
other cases. The maximum variations in the ejected mass at a fixed time of 20 ms
post-merger due to resolution are found between VM0-SR and VM0-HR and amount
to ∼50%.

The most salient properties of the ejected material are summarised in the his-
tograms of Fig. 2.10. The histograms produced using the geodesic criterion do not
differ significantly from those obtained with the Bernoulli criterion and therefore only
the latter are discussed. The mass-weighted averages of the relevant quantities are
reported in Tab. 2.1. Most of the mass is emitted almost uniformly in the interval
0◦ ≤ θ ≲ 50◦ (second column of Fig. 2.10). The peak at θ ≈ 45◦ is due to an artefact
in the mass extraction and it is not physical. At larger angles, the mass emission is
slightly more suppressed in LK runs with respect to the other cases [221]. The average
emission angle for all runs is enclosed in θ ∈ [27◦, 37◦] and is systematically lower for
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Figure 2.10: Histograms of the ejecta extracted at R = 443 km.
Each row shows the fraction of ejecta mass in a bin normalised to the
total ejecta mass in logarithmic scale for different resolutions. In each
column is represented, respectively, the electron fraction, the latitudinal
distribution and the asymptotic velocity of the ejecta. In each frame
the ejecta properties among all runs are compared. The analysis is
performed until t− tmerg = 20 ms, corresponding to the earliest tend of

the set of simulations (see Tab. 2.1).

LK at all resolutions.
The asymptotic velocity distribution is peaked around values in the interval 0.15 ≤

v∞/c ≲ 0.22. The velocity distribution has fast tails reaching ∼0.8 c. These tails can
originate a radio-X-ray afterglow to the kilonova emission, peaking at years post-
merger timescales [248–251]. The mass of the fast tail of the ejecta, i.e. with asymp-
totic velocity v∞/c ≥ 0.6, is M v≥0.6c

ej ≈ 10−6 − 10−5 M⊙ (see Tab. 2.1).
From the simulations’ data it is possible to model the function Mej(v∞/c) approx-

imately with a broken power law of the kind [252]

M =M0


(

βγ
(βγ)0

)−skN
0.1 < βγ < (βγ)0(

βγ
(βγ)0

)−sFT

βγ > (βγ)0
(2.4)
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Figure 2.11: 2D snapshot of the xz-plane showing the Ye of the ma-
terial around the remnant NS at t − tmerg = 20 ms. The thickest
black curve is the isodensity contour ρ = 1013 g cm−3 delimiting the
NS remnant, while the others moving outwards correspond to densi-
ties ρ = 1012, 1011, 1010, . . . g cm−3. Each row corresponds to different
resolutions, while each column to different micro-physics prescriptions.
Profiles for HY runs are not reported because neutrinos are not simu-

lated and the electron fraction distribution is frozen at Ye = 0.05.

where β = v/c, γ is the corresponding Lorenz factor and (βγ)0 = β0 · γ(β = β0). The
values of β0 defining the “break” in the broken power vary in the range β0 ∼ 0.3−0.45.
Fitting parameters are M0 ≈ (3.2−17)×10−5 M⊙, skN ≈ 0.64−1.6 and the ejecta tail
with v∞/c ≳ β0 can have a rather steep dependence on the velocity, with sFT ≈ 4−11.

The Ye (first column of Fig. 2.10) exhibits the most complex behaviours, different
among the runs. The spatial distribution of Ye in the ejecta is depicted in Figs. 2.11
and 2.12, where 2D slices of the Ye profiles in the xy- and xz- plane, respectively, are
reported. For HY runs Ye is frozen at ∼0.05 because weak interactions are not sim-
ulated and the matter composition does not change throughout the run with respect
to the initial neutrino-less weak equilibrium condition. For LK cases the ejecta mass
composition peaks at Ye ≈ 0.13 − 0.17 (compare also to Tab. 2.1). No significant
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Figure 2.12: Same as Fig. 2.11 but for the xz-plane

fraction of ejecta has Ye > 0.35. The material at low Ye ≲ 0.15 is emitted at small lati-
tudes (left-most column of Fig. 2.12), while for increasing angles Ye increases, reaching
Ye ≲ 0.35 in the lower-density region above the remnant NS. Matter at high latitudes
is shock-heated ejecta, therefore hot, and is expanding in a region where the disc is not
present. Under these conditions, the expanding matter becomes transparent earlier
producing electron-positron pairs. Therefore, positron captures increasing Ye are more
efficient even in the absence of neutrino absorption. For both M0 and VM0 the Ye
distribution gets broader with respect to LK, with a large fraction of matter having
Ye ∈ [0.2, 0.35]. This is the effect due to neutrinos radiated by the central object
and the disc that are absorbed by neutrons in the ejecta, converting of neutrons into
protons. As in the previous case, the low-Ye material is emitted at lower latitudes and
the Ye increases for increasing latitudes. The peak at Ye ≈ 0.3 observed in the left
column of Fig. 2.10 is reached in the high-latitudes, low-density ejecta (second and
third column of Fig. 2.12). This is because neutrino fluxes are significantly larger at
high latitudes, due to the presence of the disc at low latitudes. In M1 runs the trend
is similar but even higher values of Ye are reached.
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The histograms in Fig. 2.10 show that the peak at Ye ≈ 0.3 of M0 and VM0 trans-
lates to Ye ≳ 0.425 when switching to M1. Material with such a high Ye is found
once again at large latitudes. The comparison to M0 runs indicates that accounting
for neutrino transport with a more complete neutrino scheme provides more efficient
proton production in the shock-heated ejecta component. One of the causes of this
is that the M0 scheme uses a spherical grid that assumes neutrinos are only moving
radially. On the contrary, the M1 scheme is solved in the computational grid and the
radiation is evolved according to 3D transport. Neutrinos from the disc will naturally
tend to escape along the z− direction, in which the gradient of the optical thickness
decreases more steeply and the neutrinos mean-free path increases faster, further ir-
radiating the high-latitude ejecta. While the M1 scheme naturally overestimate the
density of neutrinos along the polar axis due to non-linear closure relation used in
the scheme which causes beam crossing, such large Ye ejecta wind is confirmed also in
simulations in which the linear Eddington closure is employed [194].

Finite resolution has a clear effect on the ejecta composition, especially visible at
HR. All runs at LR and SR show a peak at Ye ≈ 0.05 that is due to the tidal component
of the ejecta, which is emitted at early times after merger and maintains the Ye of the
two initial stars. However, for HR runs this component is strongly suppressed for
all but the run with viscosity. This can be explained by two different factors. First,
the tidal ejecta are expected to be less massive at HR, because the tidal deformation
causing this emission at merger are better resolved. Second, the discs are less massive
and geometrically thinner for HR runs, compared to the others. Therefore, it is easier
for neutrinos to escape from the inner regions and interact with the ejecta, increasing
its Ye. The latter explanation is supported by the fact that in the VM0-HR run the
disc is not as thin as in the other HR runs and only for this case the low-Ye peak is not
heavily suppressed. This contributes to explain why the M1-HR run exhibits such a
large Ye in both the xy- and xz- planes. On the one hand, the disc is thinner because it
is a HR run. On the other hand, neutrino fluxes predicted by the M1 scheme increase
the Ye in the matter more efficiently with respect to the M0 scheme.

2.5 Nucleosynthesis and Kilonova light curves

Nucleosynthesis Nucleosynthesis abundances inside the ejecta extracted from the
simulations are computed with the SkyNet code [253] according to the procedure
described in Radice et al. [96]. The nucleosynthesis yields are shown in Fig. 2.13, where
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results obtained from LK, M0 and M1 runs are compared against the solar residual r-
process abundances from Arlandini et al. [254]. Abundances are normalised to the one
corresponding to the third r-process peak A ≈ 190. Once the third peak abundances
have been fixed, the abundances predicted using all neutrino schemes are roughly
compatible between each other and with the solar residual pattern for A ∈ [125, 140]

(i.e., for the second r-process peak) and A ∈ [170, 200]. For A ∈ [140, 170] and
A > 200, the yields from all the simulations significantly differ from the solar residuals.
Such discrepancies are possibly due to nuclear physics inputs, as well as to a lack of
suitable physical conditions to efficiently produce actinides [see, e.g., 255, 256]. The LK
runs heavily underestimate the abundances for A < 120. This is a direct consequence
of the fact that Ye is lower in the ejecta for these cases. In the runs with M0 and
M1 the abundances for A < 120 are closer among them and to the solar residuals,
compared to LK.

Increasing the resolution does not change the abundances in the runs with LK,
which also at high resolution significantly differ from the solar residual abundances
for A < 120. For M0 and especially for M1 runs the predictions at HR better match
the solar abundances for the entire range of nuclear masses (still with the exceptions
discussed above).

These results confirm the relevant role of neutrino emission and absorption in
shaping the nucleosynthesis yields from the early time ejecta of BNS mergers [see,
e.g., 96, 189, 257, 258]. Abundances obtained in the HR simulations employing the
M0 or M1 schemes are compatible between each other and reproduce well the observed
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solar residual pattern. However, models featuring neutrino cooling alone underestimate
the abundances of light r-process elements, since neutrino reabsorption is required to
produce the ejecta conditions suitable for the production of those elements.

Kilonova light curves Synthetic kilonova light curves are computed following the
approach outlined in Wu et al. [259] and using the radiation-hydrodynamics lagrangian
KiloNova Explosion Code (KNEC) [260]. Accordingly, the dynamical ejecta extracted
from the simulations are further evolved with KNEC up to 15 days post-merger. The
corresponding light curves are presented using the AB magnitude system

mAB = −2.5 log10
( ∫

fν(hν)
−1e(ν)dν∫

3631Jy(hν)−1e(ν)dν

)
(2.5)

where here ν is the light frequency, fν is the observed flux density at frequency ν from
a distance of 40 Mpc and e(ν) are filter functions for different Gemini bands. We refer
to [259] for more details.

In Fig. 2.14 the AB magnitudes at different bands are compared to the electromag-
netic transient AT2017gfo associated to the BNS merger event GW170817 [40]. As
input for the KNEC code, the ejecta extracted at two different times are compared:
at 20 ms post-merger (dashed lines) and at the end of the simulation (solid lines).
Clearly, the different simulation lengths impact on the light curve due to the different
ejecta masses, but also due to the composition. AT2017gfo is significantly brighter
than any of the synthetic light curves reported in the plot. Nonetheless, the hierar-
chy of the colours is correct at ∼4 days, whereas the 1 day emission has a blue peak
that cannot be explained with dynamical ejecta considered here. The fact that the
data are not reproduced in this analysis is expected for many reasons. First, the BNS
simulations are not targeted to the event GW170817; in particular it has lower mass
and symmetric mass ratio, which implies smaller ejecta masses and therefore dimmer
light curves. Second, the simulations are too short and cannot capture the full evolu-
tion of the post-merger disc. Therefore, ejecta emitted at secular timescales (seconds
after merger) are missing. Crude estimates of later outflows emission can be made by
extrapolating in time [259], but this is not attempted here. Third, multidimensional
effects and viewing angle can have a strong impact on the kilonova emission [e.g.,
39, 261, 262] but are neglected here. For AT2017gfo, spherically symmetric kilonova
models are ruled out with high confidence [39, 40, 44].

In the following, the differences seen for different physics schemes employed are
reported. For HY runs the light curves corresponding to the Ks, H and J band are
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only a few magnitude larger than AT2017gfo data, especially when ejecta production at
∼109 ms post-merger is considered (solid lines in the LR and SR cases). By contrast,
dynamical ejecta alone produce significantly dimmer light curves (dashed lines), in
particular at late time after the peaks. Despite the usually long simulation lengths,
for LK runs the ejecta mass is smaller and this produces dimmer light curves compared
to HY runs, considering both the early ejecta and those at the end of the simulations.
The jumps that are seen in these curves are an artefact of the KNEC code. For
M0, VM0 and M1 light curves are brighter with respect to LK at all bands, as a
consequence of the fact that more ejecta mass, characterised by a larger Ye, is produced.
When considering only the early ejecta (dashed lines), M0, VM0 and M1 produce
very compatible light curves, due to the very similar ejecta properties, see §2.4 and
Tab. 2.1. M1 light curves are slightly dimmer due to the faster and less opaque ejecta,
which translate to a faster kilonova evolution after the peaks. Differences become
more pronounced when light curves are computed using the ejecta at the end of the
simulations, since M1 runs were evolved for shorter post-merger times and produced
systematically less ejecta mass.

Finite resolution effects do not significantly impact the light curves. The analysis
shows that the light curves are very sensitive both to the inclusion of neutrino reab-
sorption in optically thin conditions and to the cumulative time during which ejecta
are measured. During this time not only the ejecta mass, but also the ejecta compo-
sition changes due to the different emission mechanisms at different timescales. The
better accuracy provided by the M1 scheme with respect to the M0 one seems to have
a minor impact on the kilonova light curves due to the good agreement in the ejecta
properties between the two schemes, when the simulations have comparable lengths.
Future simulations will extend these results by also considering the winds from the
viscous post-merger phase and taking into account non-spherical geometries.

2.6 Neutrino luminosity

This section investigates the impact that the various physics schemes and finite res-
olution effects have on the neutrino emission in the simulations. Fig. 2.15 shows the
angle integrated neutrino luminosity for the three neutrino species that are simulated,
comparing M0 and M1 neutrino schemes for every resolution. Hereafter, only one rep-
resentative heavy flavour neutrino species is considered, denoted as νµ with properties
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Figure 2.16: Same as Fig. 2.15 but for the neutrino average energy.

calculated as averages over the four neutrino species constituting νx. Neutrino lumi-
nosities for every species present a peak immediately after merger at L ≈ 1052 − 1053

erg s−1. The hierarchy Lνµ < Lνe < Lν̄e observed in the neutrino luminosity evolution
is consistent with previous results [see, e.g., 180, 190, 263–265] and it is explained as
follows. Electron antineutrinos are the most abundant species because the positron
captures on free neutrons are favoured in the neutron rich (Ye ≈ 0.1) matter with
temperatures of tens of MeV. Electron neutrinos are produced instead mostly due to
capture of electrons on protons, which are however not favoured due to the initially
low proton abundance. Heavy flavour neutrinos are produced by matter with temper-
ature of tens of MeV emitted from the bouncing remnant. The reactions producing
heavy flavour neutrinos are electron-positron annihilation and plasmon decay which
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are highly dependent on temperature. As the remnant stabilises and cools down,
production of heavy flavour neutrinos lowers, while electron/positron captures keep
happening in the highest density region of the accretion discs producing electron neu-
trinos and antineutrinos.

Comparing M0 and M1 runs, the same luminosity hierarchy is maintained, but the
M1 scheme predicts larger neutrino brightnesses. The largest difference is observed for
heavy flavour neutrinos, where neutrinos in M1 runs are ∼50% brighter than neutrinos
in M0 runs.

When a BH forms, the emission of neutrinos decreases for each species, but it
abruptly stops for heavy flavour neutrinos, because this component is mostly emitted
from the remnant NS. As resolution increases, all the luminosities increase at early
times, within 15 ms post-merger. This is largely explained by the fact that thinner
discs are formed at this resolution, which allow neutrinos to diffuse more easily and
with shorter timescales. Larger electron antineutrino luminosities at HR, for both M0
and M1 schemes, are in agreement with the fact that larger electron fractions are found
in the ejecta distributions for HR.

Fig. 2.16 reports the neutrino average energies for the same runs. For both M0 and
M1 schemes, the energies peak at 2− 3 ms post-merger before reaching a quasi-steady
evolution at later times, and follow a hierarchy ⟨ϵνe⟩ < ⟨ϵν̄e⟩ < ⟨ϵνµ⟩. Focusing on M1
runs, neutrino average energies for heavy lepton neutrinos peak at 40 MeV and then
decrease below ∼30 MeV within few tens of ms. Electron antineutrinos and neutrinos
follow a similar behaviour also with similar timescales, reaching their maxima at ∼25
MeV and ∼20 MeV, and decreasing to ∼12 MeV and ∼10 MeV, respectively. After
BH collapse, the average energy of heavy flavour neutrinos drops. Runs with the M0
scheme systematically underestimate the energies in the first t − tmerg = 20 ms by
≈ 30% with respect to M1 runs. We also note that the average energy of the heavy
lepton neutrinos increases with time, reaching values comparable to the ones simulated
with the M1 scheme, within tens of ms post-merger.

The quantitative differences in the νe and ν̄e energies between the two sets of runs
possibly originate from different causes. M1 simulations tend to produce more massive
and inflated discs. Such discs have more extended neutrino surfaces characterised by
lower decoupling temperatures. At the same time, the M1 scheme properly models the
diffusion of neutrinos inside the remnant up to the emission at the neutrino surface and
their thermalization [194]. In M0 schemes, instead, the diffusion rate is estimated based
on local properties and thermalization effects of diffusing neutrinos are not taken into
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account. For heavy flavour neutrinos the situation is opposite: neutrinos decouple from
matter deep inside the remnant, further diffusing through quasi-isothermal scattering
inside the disc. While an M1 scheme is able to catch this effect, retaining larger
νµ mean energies, the M0 computes the luminosities and mean energies considering
neutrinos in equilibrium with matter everywhere inside the last scattering surface,
providing at the same time lower mean energies and larger luminosities. With time,
the disc becomes more compact and the diffusion atmosphere reduces in size, so that
νµ mean energies become comparable.

The average neutrino energies are not largely influenced by resolution effects. This
is expected because the neutrinospheres are mostly determined by the density profile
inside the disc [185], which are shown to be robust with resolution (see §2.2.2).

Finally, it is interesting to notice that the value of the high electron fraction peak
in the Ye distribution in the ejecta extracted from the M1 runs (and observed at
high latitudes) is close to the equilibrium electron fraction, Ye,eq. The latter can be
estimated using eq. 77 of Qian and Woosley [266]. Assuming, according to the reported
neutrino luminosities and mean energies around 10 ms post-merger, Lν̄e ≈ 3/2 Lνe ,
⟨ϵνe⟩ ≈ 12 MeV and ⟨ϵν̄e⟩ ≈ 14 MeV, we find Ye,eq ≈ 0.46. This means that in the
region above the massive NS absorption rates in the M1 runs are high enough to
approach weak equilibrium, and the differences with the M0 results are mostly due to
the rates values, rather than to differences in the relative luminosities or mean energies.
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Chapter 3

Efficient BBH simulations with the
GR-Athena++ spacetime solver

The merger of CBs is a multi-scale problem; one of the most popular approaches to
treat the issue of resolving features sensitive to differing length-scales in NR simula-
tions, inspired by the Berger-Oliger approach [228, 229], is based on the construction
of nested grids. These are made of overlapping nested boxes of increasing resolution
and decreasing physical extent, where the most resolved boxes typically contain the
components of the CB system. During the evolution, (some of) these boxes move
tracking the position of the two bodies. Subcycling in time is commonly employed
for the time integration, where finer grids take multiple iterations with local, smaller
time steps with respect to coarser grids. Successful examples of NR codes adopting
this technique are the Cactus-based [222] codes Llama [230, 267], McLachlan [268],
LEAN [269], LazEv [270], Maya [271], GRHydro [272], WhiskyTHC [220], which make use
of the Carpet thorn [231], and the non-Cactus codes BAM, [273–275], AMSS-NCKU [276]
and GRChombo [277]. The main drawback of the Berger-Oliger method is the need of
data synchronization among different boxes of the mesh grid when utilizing subcy-
cling, which can spoil parallel scaling in the modern many-cores HPC architectures
when parallel execution is performed on a large number of cores [278].

One alternative to the nested grid approach is represented by block-based AMR
strategies [278]. In this case the computational grid is partitioned into non-overlapping
blocks, that can be logically mapped into a tree structure to enforce data locality in
memory [279]. Block-based AMR strategies show high parallel efficiency and offer
a greater flexibility in refining the grid compared to the nested grid approach, as
demonstrated by the Dendro-GR code [280]. A block-based AMR strategy is at the
core of Athena++ [281–283]. The latter is a public framework for purely non- and
special- relativistic MHD, as well as GRMHD for stationary spacetimes, which adopts
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many of the mature and robust numerical algorithms of Stone et al. [284] and is written
in a modern C++ design. Parallelism in Athena++ is exploited in two ways: through
its task-based computational model, which allows an overlap between communication
and computation, and through a hybrid parallelism strategy which combines message
passing interface (MPI) and threading via OpenMP (OMP).

The work presented in this Chapter is a collaborative effort in the development
of GR-Athena++, consisting of the implementation of a spacetime solver module in
Athena++. My contributions in this work are the following: I collaborated in the
implementation of the Z4c equations in the Athena++ code; I implemented the puncture
tracker and designed and implemented the octree box-in-box AMR strategy described
in §3.2; I performed the convergence tests and cross-code comparisons with the BAM
code for the two punctures calibration problem reported in §3.3.2; I designed and
performed the scaling tests of §3.4.

3.1 Methods

The structure of Athena++ can be summarized as follows. A class named Mesh contains
the details about the domain of definition Ω for a given problem. The code is designed
such that evolutions can be performed in spatial 1D, 2D, 3D and for different coor-
dinatization types (e.g. Cartesian, spherical..), whose information are stored within
the Mesh. For definiteness, hereafter only 3D problems on Cartesian coordinates are
considered. However, an analogous discussion holds for lower spatial dimensions and
curvilinear coordinates.

The Mesh class contains the number of points for the coarsest sampling along each
dimension NM := (nx, ny, nz) as well as information about the physical boundary
conditions on ∂Ω. The domain can be decomposed in rectangular cuboids with NB :=

(nMB
x , nMB

y , nMB
z ) points each, where each element of NB must be a divisor of each

element of NM , component-wise. The elements of this partition are called MeshBlocks
in the Athena++ language1. The properties of MeshBlocks, as well as the local values
of field variables of interest, are stored in the MeshBlock class.

3.1.1 Tree structure of the Mesh

After the initial Mesh is divided into MeshBlocks, based on the choice of NM and NB,
each individual MeshBlock can be subdivided further, as explained in detail below.

1The superscript MB in the definition of the tuple NB stands for MeshBlock.
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Figure 3.1: Example of Mesh partitioned uniformly by MeshBlock
objects (left plot) and with refinement (right plot). In both plots it
is shown how MeshBlocks are indexed via Z-order and traced in red
through a Z-shaped curve linking their geometric centroids. Notice that

physical level p and logical level l are in general distinct.

All MeshBlocks have the same size in terms of number of points, but they can have
different physical extents. However, neighbor MeshBlocks are constrained to only differ
by one sub-division at most. Grids in which all MeshBlocks have the same physical
extent as in the left plot of Fig. 3.1, are called uniform grids. Grids in which not all
MeshBlocks have the same physical size, such as the one depicted in the right plot of
Fig. 3.1, are called refined grids.

The crucial ingredient for such MeshBlock-based grid structure is an efficient inter-
MeshBlock communication, which is achieved in Athena++ by means of a tree data
structure of the Mesh. For 3D evolutions, the logical releationship between MeshBlock

objects is stored within an oct-tree data structure. This is constructed by first select-
ing the minimum N such that 2N exceeds the largest number of MeshBlocks along
any dimension. The root of the tree is assigned a logical level l of 0 and the tree
terminates at level N assigning every MeshBlock to an appropriate leaf. In this pro-
cess, some leaves and nodes of the tree may remain empty. MeshBlocks are sorted
according to Z-order [285], where multi-dimensional coordinates are recast into a lin-
ear index parametrizing a Z-shaped, space filling curve. As a result, small changes in
the parameter imply spatial coordinates that are close, enforcing data locality [286].
An example of such organization for a simple uniform grid with (2, 2, 2) MeshBlocks
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in each direction is depicted in the left plot of Fig. 3.1.
Consider now a refined grid. Function data at a fixed physical level is transferred

one level finer through use of a prolongation operator P ; dually, function data may
be coarsened by one physical level through restriction R. The number of physical
refinement levels added to a domain-decomposed Ω is controlled in Athena++ by the
parameter NL. By convention NL starts at zero. Subject to satisfaction of problem-
dependent refinement criteria, there may exist physical levels at 0, · · · , NL. When
a given MeshBlock is refined (coarsened), 2d MeshBlock objects are constructed (de-
stroyed). As mentioned above, such a procedure is constrained to satisfy a 2 : 1

refinement ratio where nearest-neighbor MeshBlock objects can differ by at most one
physical level. The right plot of Fig. 3.1 shows refined grid described by an initial Mesh
sub-divided into (2, 2, 2) MeshBlock and subjected to a refinement introduced at the
corner (xmax, ymin, zmax), with NL = 3.

3.1.2 Vertex-centered discretization

Natively, Athena++ implements cell-centered (CC) and face-centered (FC) description
of variables, together with calculation of line-averages on cell edges [283]. GR-Athena++
extends support to allow for vertex-centered (VC) representation of variables. The
modifications required to achieve this are extensive to complement all the existing
functionalities of the code. The main motivations for spacetime evolution based on
VC discretization is a desire to ensure each stage of the evolution maintains consistent
(high) order while simultaneously maintaining efficiency of R and P operator choice
and implementation. Moreover, VC approaches reduce reflections at the boundaries of
the domain, which can introduce spurious features in CC-based codes. Details on the
communication among MeshBlocks for CC and FC variables in Athena++ are present
in [283]. In the following, the treatment for VC variables in GR-Athena++ is discussed.

Communication of VC variables: uniform grids In the following, NM and NB

are considered uniform, i.e. nx = ny = nz := nM and nMB
x = nMB

y = nMB
z := nMB.

In 1D, x ∈ [a, b] is said to be vertex-centered when discretized as xI = a + iδx where
δx := (b − a)/nMB and i := 0, . . . , nMB for a total of nMB + 1 physical nodes. Along
with physical nodes, also ghost nodes need to be considered for the imposition of
boundary conditions (BC). Therefore, the total number of nodes is augmented by
2Ng, i.e. Ng nodes on each end of [a, b].
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Figure 3.2: Schematic of (communicated) nodes on a two-dimensional
MeshBlock Ωi. The ghost-layer is shaded in gray with alternating shad-
ing demarcating differing neighbor MeshBlock objects. Nodes marked
with “□” are interior to Ωi and are unaffected as neighbor data are re-
ceived. Ghost-layer multiplicities for dark-green “■” are µ = 1, whereas
nodes “♦” in light-green have µ = 2. Interface nodes along edges are
marked with “•” in light-green and correspond to µ = 2 whereas corner

nodes marked with “⋆” correspond to µ = 4.

In 3D analogous definitions can be given considering Cartesian products of 1D
intervals along the three dimensions. A MeshBlock then consists of a bulk of physical
nodes and an outer shell of ghost points. The latter are used for inter-MeshBlock
communication among neighboring MeshBlocks and to impose the physical BC at the
edges of the computational domain.

Consider a domain decomposed into multiple MeshBlocks. Inter-MeshBlock com-
munication with respect to the CC case is complicated due to the presence of physical
shared nodes at the neighboring MeshBlock interfaces. For uniform, 3D grids, nodes
that lay on the faces of MeshBlocks are typically shared between two blocks and have
multiplicity µ = 2; nodes that lay on the edges typically have µ = 4; nodes at the
corner can have up to µ = 8. This is illustrated with the 2D example of Fig. 3.2. In
this case, physical nodes can be shared at the edges of MeshBlocks (µ = 2) and at the
corners (µ = 4). In the figure, nMB = 6, Ng = 2 and a MeshBlock Ωi that is not on
the physical boundary is considered.

Communication of ghost points is implemented as follows. Independent communi-
cation requests and buffers are posted for each neighbor, with no preferential order.
All received data from all neighbors of Ωi are summed and stored in an auxiliary ar-
ray, based on the location of the relevant neighbors. After all data points have been
received, they are averaged by dividing them by their corresponding multiplicity µ.
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Figure 3.3: Schematic of two-dimensional MeshBlock pΩA used to
populate ghost-nodes of finer MeshBlock p+1ΩB. Local view of the
Mesh depicts nearest-neighbor MeshBlock connectivity and physical lev-
els. Nodes over pΩA, and p+1ΩB together with coarse analogues are
shown. Data that are to be sent are marked by “•” in dark green; these
data are received and directly populate the ghost-nodes marked by “■”
in dark green. Once the remaining data for the coarse representation
of p+1ΩB) – marked by “□” – are filled, and any multiplicity conditions
(here suppressed) are accounted for, prolongation can be performed to
fill the values at the ghost-nodes of p+1ΩB marked by “■” in purple.
For this procedure data at nodes on the neighbor interface remain un-

changed.

Communication of VC variables: refined grids Consider now a Mesh with
refinement; as mentioned above, in this case neighboring MeshBlock objects may differ
by (at most) a single physical level (see also §3.1.1). In the following, a MeshBlock

at physical level p is denoted by pΩj. For communication purposes, when refinement
is present, a coarse representation of data (hereafter coarse data) is stored for each
MeshBlock. The latter consists of (⌊nMB/2⌋ + 1)3 samples further extended by a
coarse ghost-layer comprised of Ncg nodes. In contrast to CC and FC as implemented
in Athena++, in GR-Athena++ the implementation of VC allows for Ng and Ncg to
take odd values and be independently varied. For simplicity of discussion, hereafter
Ng = Ncg is selected.

When a Mesh involves multiple physical levels, prior to any communication of data,
VC variables are initially restricted so as to have a fundamental and coarse description
on each MeshBlock excluding the ghost-layers. For Cartesian grids in particular, this
turns out to be an exact operation (see below). For neighboring MeshBlocks at the
same physical level, data and coarse data are communicated as in the case of uniform
grids.

To describe how communication is handled when neighboring physical levels differ,
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Figure 3.4: Schematic of two-dimensional MeshBlock p+1ΩC used to
populate ghost-layer of coarser MeshBlock pΩA. Locally the Mesh has
the same structure as in Fig. 3.3. Nodes over pΩA, and p+1ΩC together
with coarse analogues are shown. Before the communication proces
starts, data of p+1ΩC at nodes marked by “•” in purple are restricted to
populate coarse data of p+1ΩC at nodes marked by “•” in dark green.
The latter are then sent and populate the nodes of pΩA marked by “■”
in dark green. During this procedure data at nodes on the neighbor
interface are (additively) updated (cf. Fig. 3.3) and multiplicity condi-

tions (here suppressed) dynamically updated in an auxiliary array.

consider a two-dimensional Mesh where nMB and Ng = 2, in a region away from the
physical boundary. Suppose pΩA is neighbored by p+1ΩB and p+1ΩC to the east and the
latter two MeshBlock objects share a common edge. Data need to be communicated
from pΩA to p+1ΩB and p+1ΩC (coarse-to-fine) and from p+1ΩB and p+1ΩC to pΩA

(fine-to-coarse).
Fig. 3.3 shows how the ghost-layer nodes of the finer p+1ΩB are populated. First,

data are communicated from pΩA to the ghost layer of the coarse data representation
of p+1ΩB. A blocking condition arises here, because all coarse ghost-layer of p+1ΩB

need to be populated before prolongation can be performed on the target MeshBlock.
Nodes that are at the interface of MeshBlocks are maintained at the value of the finer
level.

Fig. 3.4 depicts the dual operation, in which ghost-layer nodes of the coarser pΩA

from p+1ΩC are populated. Here, coarse data of p+1ΩC are communicated and popu-
late the ghost layers of pΩA, without any blocking. However, non-trivial multiplicity
conditions arise on the common neighbor interface, complicated by the fact that data
from p+1ΩB are also communicated. Furthermore, the coarse data of pΩA need to be
updated and this requires an additional restriction in the coarse data of p+1ΩC ; the
restricted data are then communicated as before.
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Restriction and Prolongation The communication process for the case of a re-
fined Mesh requires restriction R (fine-to-coarse) and prolongation P (coarse-to-fine) of
data. In GR-Athena++, for VC variables, such operations are implemented as products
of univariate Lagrange polynomial interpolation along the three spatial dimension ,
centered about a target-point of interest.

The R operation for variables sampled on VC is trivial, because the ghost-nodes
of the coarser MeshBlock coincide with a subset of the physical nodes of the finer
MeshBlock for two neighboring MeshBlocks, as shown in Fig. 3.4. Therefore, to popu-
late the ghost-layers of the coarser MeshBlock, data can be simply copied. A potential
issue here arises from the fact that a finer MeshBlock must communicate also its
coarse data point to populate the ghosts of the coarse data of the coarser neighbor.
This involves a double coarsening of data, which induces the constraint

nMB ≥ max(4, 4Ng − 2). (3.1)

Regarding the P operation, in this case function data are communicated to a
finer, uniformly sampled grid of half the spacing and consequently interspersed nodes
coincide, as depicted by Fig. 3.3. So, as in the previous case, for these nodes data
points are simply copied. Lagrange interpolation is utilized for the non-coincident
nodes. Due to the uniform structure of the source and target grids, interpolation at
non-coincident nodes may be efficiently implemented through a weighted sum where
weight factors can be precomputed [287]. The width of the interpolation stencil used
in the code is N = ⌊Ncg/2⌋+ 1.

Final remarks of this section are that local operations (in the absence of distributed,
MPI communications) are performed locally in memory and that the base CC and FC
variables of Athena++ continue to simultaneously function as described in Stone et al.
[283].

3.1.3 Spacetime evolution

GR-Athena++ implements the Z4c system Eqs. (A.13) (see also §A.2 in App. A) follow-
ing the free evolution approach, in which the dynamical constraints of Eqs. (A.17) are
not enforced, but their violation is used to assess the overall error during the evolution.
On the other hand, the algebraic constraints Eqs. (A.18) are continuously enforced at
each time-integrator substep (see §A.2.1), since in the absence of algebraic constraint
the Z4c system is only weakly hyperbolic [288].
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The numerical evolution is based on the method of lines approach. VC or CC
representation of field variables may be chosen at compile time and time evolution can
be performed with several time integrators described in Stone et al. [283]. Typically,
the fourth order in time, four stage, low-storage RK4()4[2S] method of Ketcheson [289]
is used in this work. Unlike other spacetime solvers, GR-Athena++ features a global
time step throughout the whole grid, even in presence of refined grids. In the latter
case, the time step is determined by the spatial resolution on the most refined level
and the choice of the CFL factor, which must satisfy the CFL condition during the
evolution.

Spatial field derivatives in the bulk of the domain (away from ∂Ω) are discretized
with high-order, centered, finite difference (FD) stencils whereas shift advection terms
use stencils lop-sided by one grid point [270, 273, 290, 291]. The implementation of the
operations in the right-hand-side (RHS) of the equations is based on Alfieri et al. [292]
and utilizes C++ templates to offer flexibility in problem-specific accuracy demands
without loss of performance. The R and P operators discussed in §3.1 are similarly
implemented. In the calculations involving FD and R and P operations, arithmeti-
cal operations are carried out in such a way to enforce the associativity property of
addition, reducing the accumulation of small floating-point differences. A consistent,
overall, formal order throughout the bulk of the computational domain is maintained
during calculations by compile-time specification of the ghost-layer through choice of
Ng together with Ncg. Throughout this work Ng = Ncg is chosen, though within
GR-Athena++, for a VC discretization, this is not a requirement. Finally, in order to
suppress high-frequency numerical artifacts generated at MeshBlock boundaries and
not present in the physical solution, the high-order Kreiss-Oliger dissipation [293, 294]
of uniform factor σ over all levels is implemented. In particular, given a system of time-
evolution equations for a vector of variables u, the replacement ∂t[u]← ∂t[u] + σD[u]
is made, where D[·] is proportional to a spatial derivative of order 2Ng−2. In the case
of Z4c and VC the overall order for spatial discretization in the bulk can be therefore
calculated as 2(Ng − 1).

Physical boundary conditions Artificial introduction of a boundary of the do-
main ∂Ω at finite distance complicates the analysis of numerical stability significantly
[295]. GR-Athena++ extends Athena++ by providing the Sommerfeld BC [296]. Practi-
cally, BC are implemented as follows. Within every time-integrator substep an initial
Lagrange extrapolation is performed so as to populate the ghost-layer at ∂Ω. The
order of this operation is again controlled at compile-time and typically Ng +1 points
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are used for the extrapolation. The fields {χ, γ̃ij, α, βi} on nodes of ∂Ω are populated
using Eqs. (A.13) and the gauge conditions, whereas for {K̂, Γ̃, Θ, Ãij} Sommerfeld
BC are imposed as in Hilditch et al. [296]. Here, first order spatial derivatives are ap-
proximated through second order accurate, centered FD; this has proved to be crucial
for numerical stability. Though this procedure is not optimal, as it is not constraint-
preserving, no issues are found in this work on account of this.

All the implementation details discussed so far have been tested with the “Apples
with Apples” test-bed suite [288, 297–299], a discussion of which is provided in the
appendix of Daszuta et al. [300].

Wave extraction In GR-Athena++ wave extraction is performed by means of geodesic
spheres, which are described in App. C. The Weyl scalar Ψ4 is first calculated at all
grid points of each MeshBlock according to Eq. (B.1) and then interpolated on the
vertices of a set of geodesic spheres QR at given extraction radii RQ. The multipoles
ψℓm are computed according to Eq. (B.4) by performing the integrals on the geodesic
spheres as described in App. C. Finally, the GW strain is obtained from the projected
Weyl scalar as described in App. B, according to Eqs. (B.9), (B.10), (B.11).

3.2 Mesh refinement for punctures

GR-Athena++ makes use of the puncture formalism to model BHs, as done in BAM [273].
In NR, BHs can be treated by an initial geometry induced by the Brill-Lindquist
wormhole topology of N BHs with N + 1 asymptotically flat ends [301]. The latter
are compactified and identified with coordinate singularities on R3, called punctures.
Such a procedure allows one to produce initial data for an arbitrary number of BHs
with associated masses, momenta and spins. The main application of this formalism
is BBH evolution.

3.2.1 Punctures’ initial data

The generation of initial data for BBH in GR-Athena++ follows Brügmann et al. [273].
Initial data (γij, K ij) on a spatial hypersurface Σ are constructed from the confor-
mal, transverse-traceless decomposition of the initial-value equations [302]. An initial
conformally flat background γ̃ij = δij is set in Eq. (A.11) and the maximal slicing
condition is adopted for the curvature, i.e. initially K = 0. With this choice, the
momentum constraints read ∂j

(
ψ6Ãij

)
= 0 and admit Bowen-York solutions [303]
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for an arbitrary number of BHs. The Hamiltonian constraint reduces to an elliptic
equation for ψ, with generic solution for N BHs centered at ri

ψ0 = 1 +
N∑
i=1

mi

2ri
+ u. (3.2)

ψ0 is the initial value of ψ, which is then evolved according to Eq. (A.13a). The
function u in Eq. (3.2) can be determined by solving an elliptic equation on R3 and is
C2 at the punctures and C∞ elsewhere. The parameters mi denote the so-called bare
mass of the BHs, which coincide with their gravitational mass only for Schwarzschild
BHs. The total ADM mass of each BH measured at the puncture is given by:

Mi = mi

(
1 + ui +

∑
i ̸=j

mj

2dij

)
, (3.3)

where ui is the value of u at each puncture and dij is the coordinate distance between
a given pair of punctures. Ultimately, M :=

∑N
i Mi denotes the total mass of the

system and represents the physical scale of the problem.
BBH initial data for GR-Athena++ are produced with an external C library based

on the pseudo-spectral approach of Ansorg, Brügmann, and Tichy [304] which is also
used in the TwoPunctures2 thorn of Cactus.

3.2.2 Puncture tracker

The punctures’ positions are tracked by solving an additional set of ordinary differential
equations. Eq. (A.13a), together with χ|xp = 0, imply [55]

ẋp(t) = −β|xp(t) . (3.4)

This vectorial equation is solved after every integration time step using an explicit
Euler solver. Though BAM implements the higher order Crank–Nicolson integration to
solve Eq. (3.4), comparisons of BBH evolutions performed with the two codes show a
good agreement in the trajectories of the two punctures in BBH evolutions, as can be
seen in the left panel of Fig. 3.8.

2The publicly available code was cast into a stand-alone library which may be found at the URL
https://bitbucket.org/bernuzzi/twopuncturesc/.

https://bitbucket.org/bernuzzi/twopuncturesc/
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3.2.3 Oct-tree box-in-box

Figure 3.5: 2D slice at z = 0 of a mesh grid produced with
GR-Athena++ for a BBH run. Left panel: BHs at initial position
xp,± = (±3.257, 0, 0) M . Right panel: snapshot at 50 M in which
the trajectories if the punctures are shown in red. The colormap refers
to the conformal factor χ. The black squares represent the edges of the
MeshBlocks, showing the box-in-box structure of the grid. The numbers
represent the refinement levels to which selected MeshBlocks belong. In
the right panel such numbers are coloured in blue if the corresponding
MeshBlocks are the result of refinement or in red if they result from de-
refinement with respect to the left panel. For clarity, in the figure only
a subset of the total slice covering the two punctures is shown, therefore

only the highest refinement levels are visible.

In Athena++, the AMR is carried out by evaluating a certain refinement criterion on
each MeshBlock. Depending on the result, the given MeshBlock is refined, derefined or
untouched. The AMR criterion for puncture evolution implemented in GR-Athena++

mimics the box-in-box refinement (used e.g. in BAM and Cactus), in which the grid is
partitioned with nested boxes that are more refined in the proximity of each puncture.
The positions of the punctures in the domain Ω induce a schematic structure of nested
boxes, which can be mapped into refinement levels, such that the smallest of these
boxes contain the punctures and so define the highest refinement level. The boxes
containing these correspond to one less refinement level and so on up to the 0th level,
which coincides with the initial Mesh. The refinement criterion adopted is based on
the positions of the punctures, determined by solving Eqs. (3.4) during the spacetime
evolution.
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Unless otherwise stated, hereafter Ω is selected as the Cartesian coordinatized
cube [−xM , xM ]3. It is possible to assess to which refinement level a given MeshBlock

belongs based on its distance from the punctures. The latter is calculated as dMB :=

min
i
||xi

p − xMB||∞, where xi
p is the position of the ith puncture with respect to the

center of the grid. xMB denotes the position of the target MeshBlock, which for
implementation reasons is defined as follows. Consider a rectangular cuboid concentric
to the target MeshBlock but with edges 1/4 the ones of the original MeshBlock. xMB

are the coordinates of the corner of such cuboid closest to the closest puncture. The
theoretical refinement level of the MeshBlock can be calculated as ⌊log2

(
xM

dMB

)
⌋3. If

the current level of the MeshBlock does not coincide with the theoretical one, then the
MeshBlock is either refined or de-refined.

Practically, to define a grid in GR-Athena++ one needs to specify the number of
points constituting the initial Mesh and the MeshBlocks, i.e. the tuples NM and
NB, respectively, and the maximum number of refinement levels NL. Following the
procedure described above, GR-Athena++ produces a MeshBlock-based oct-tree box-in-
box grid structure. Fig. 3.5 shows a visualization of such a grid with nM = 64, nMB = 16

and NL = 11 for a BBH run, comparing two snapshots at different times. The initial
mesh (level 0) is divided into 43 MeshBlocks. Following the procedure above, the initial
MeshBlock configuration is refined up to refinement level 10 The final grid is composed
of some of the initial MeshBlocks, farthest from the punctures and thus untouched,
and increasingly smaller blocks (in terms of physical extent) getting closer to the two
punctures. In the left panel of Fig. 3.5 are visible MeshBlocks belonging to levels
7, 8, 9, 10. In the right panel it is shown how, due to regridding happening during
the evolution, some MeshBlocks initially belonging to refinement levels 7, 8, 9 have
been subdivided, and their children belong to level 8, 9, 10, respectively. Analogously
MeshBlocks initially in refinement level 10 (left panel) are de-refined and their children
belong to refinement level 9 (right panel).

3.2.4 Grid configurations

In order to accurately and efficiently perform BBH merger simulations it is crucial to
optimize the grid configuration for a given problem. To attain accuracy at reduced
computational cost, a balance must be struck such that the strong-field dynamics are
well-resolved, their effects propagate cleanly into the wave-zone for GW extraction and

3The log2 in the formula is a direct consequence of the requirement that neighboring MeshBlock
differ at most by one refinement level
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the maximum spatial extent xM of the computational domain Ω is sufficiently large
so as to mitigate any potential spurious effects due to the imposition of approximate
physical BC. To adequately resolve the strong-field dynamics, a target resolution at
the puncture δxp can be selected with the appropriate choice of of the parameter NL

for a given xM . For the wave-zone, the resolution δxw of the refinement level that
contains the extraction sphere must be sufficiently high.

The resolution on the most refined level in the vicinity of a puncture for the grid
described in §3.2.3 can be calculated as

δxp =
2xM

nM2NL−1
. (3.5)

The latter expression may be used to compute the wave-zone resolution δxw with
NL = Nw

L := ⌈log2
(
2xM

R

)
⌉, where R is the extraction radius.

3.3 Puncture tests

In this section GR-Athena++ is validated through a set of puncture evolutions tests.
The results are compared against benchmark results from the BAM code and TEOBResumS.
Additionally, the convergence properties of the code are demonstrated.

For the calculations presented in this work, the MeshBlock size is typically chosen
as nMB = 16. According to the constraint of Eq. (3.1), this choice allows for up to
6th order accuracy for approximants to operators pertaining to quantities appearing
during spatial discretization. The gauge is set as explained in §A.2.2 of App.A.

Unless otherwise stated, throughout this section tortoise coordinates are employed,
in which the evolution time t is mapped as t → u := t − r∗, where r∗ = r +

2M log
∣∣ r
2M
− 1
∣∣ and M, r are the total mass of the system and the Schwarzschild

coordinate, respectively. In waveform plots for BBH with component masses M1, M2,
quantities are suitably rescaled by M and by the symmetric mass ratio ν := M1M2

(M1+M2)
2 .

The time of merger is defined as the time corresponding to the peak of the (2, 2)-mode
of the strain amplitude Aℓm, defined in Eq. (B.11).

3.3.1 Single Spinning Puncture

A first series of tests to verify the correctness of the spacetime evolution and of the
GW extraction consists of a single spinning BH puncture evolution; the results are
compared against the BAM code. Initial data are generated with the TwoPunctures
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Figure 3.6: ℜ(Rh20/M) for a single spinning puncture in GR-Athena++
and BAM with difference shown in black. Wave extracted at R = 50M .

library for both codes. A single spinning puncture representing a Kerr BH with mass
M = 1M and dimensionless spin parameter a = 0.5 is obtained by initializing two
BHs with a small initial separation, 10−5M , masses M1 = 1M and M2 = 10−12M ,
dimensionless spins a1 = 0.5, a2 = 0. The two BHs merge soon after the simulation
begins, producing the target Kerr BH.

A refined grid centered around the puncture is used, with a resolution at the
puncture δxp = 0.0833M and at the wave-zone δxw = 0.667M respectively, matching
the ones used in the corresponding BAM evolutions. The two GW signals are compared
by calculating the dominant (2, 0) mode of the strain, h20. The double integration
required to obtain the strain may add an arbitrary quadratic polynomial in time onto
the strain as constants of integration [305, 306]; in the results presented here, a fit
for this quadratic is obtained and then subtracted. Note that this reconstruction has
been shown to introduce errors in the waveform ringdown [307].

Fig. 3.6 shows the match between the two calculated signals for ℜ(h20). These
show consistency in the phasing of the signal, with slight discrepancies in the strain
amplitude.

To demonstrate the convergence properties of the waveforms in GR-Athena++, the
same simulation is performed at a coarse, medium and fine resolution, with finest grid
spacings respectively δxc = 0.0250M, δxm = 0.0208M, δxf = 0.0156M . The scaling
factor Qn for nth order convergence can be calculated as

Qn =
δxnc − δxnm
δxnm − δxnf

. (3.6)
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Figure 3.7: Left panel: convergence plot for GR-Athena++, compar-
ing the difference between waveforms at coarse and medium resolution
(δxc − δxm) and the difference beteeen waveforms at medium and fine
resolution (δxm−δxf ) rescaled by the appropriate factor Q4 = 1.57052.
Right panel: the difference between the Richardson extrapolated wave-
form for BAM and GR-Athena++ is consistent with the combined error
arising from the finite resolution data. In both plots, waves are ex-

tracted at R = 50M

The left panel of Fig. 3.7 shows the convergence properties for the case of 4th order
accurate FD operators. Assuming 4th order convergence, the rescaled waveform (in
orange) at early times lies below the unrescaled waveform (in blue). This means that
a larger factor Qn (corresponding to a higher order of convergence) would provide a
more comparable rescaling. After u/M ≈ −15, the rescaled curve is consistent with
the unrescaled curve, suggesting 4th order convergence, though this is not a point-wise
agreement. Similar tests performed with the BAM code in Hilditch et al. [296], with
initial data constructed in the same manner, show analogous convergence properties
for the waveform of the spinning puncture problem.

The error associated to finite resolution effects can be estimated by performing a
Richardson extrapolation for both BAM and GR-Athena++ waveform data. Assuming
4th order convergence, the Richardson-extrapolated waveforms h20,Rich., and associated
error e = |ℜ(Rh20,Rich.) − ℜ(Rh20,m)| are obtained comparing to the strain of the
medium resolution run ℜ(Rh20,m). The Richardson extrapolation is performed by
comparing data with puncture resolution δxl = 0.08333M to a higher resolution run
with δxh = 0.08000M . The left panel of Fig. 3.7 shows that the combined error arising
from the finite resolution data is consistent with the discrepancy between the BAM and
GR-Athena++ waveforms.



3.3. Puncture tests 67

−3 −2 −1 0 1 2 3

x/M

−3

−2

−1

0

1

2

3

y
/M

BAM, m+

BAM, m−
GR-Athena++, m+

GR-Athena++, m−

100 150 200 250 300 350 400

t/M

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

nM = 384

<(Rψ22)/(Mν) BAM

RAψ22/(Mν) BAM

<(Rψ22)/(Mν) GR-Athena++

RAψ22/(Mν) GR-Athena++

Figure 3.8: Left panel: comparison of the puncture’s trajectories be-
tween BAM and GR-Athena++; right panel: comparison of the multipole
ψ22 obtained from the two codes at resolution nM = 384. Extraction is
performed at R = 120 M . The maximum discrepancy between BAM and

GR-Athena++’s strain amplitudes is ≲ 1%.

3.3.2 Calibration evolution of two punctures

Next, a set of BBH evolutions are compared between GR-Athena++ and BAM, and
convergence properties of GR-Athena++ therein are assessed. For these tests, two non-
spinning BHs with initial momenta directed along the y−axis p± = (0,∓0.133, 0) M
and the same bare-mass m± = 0.483 M are initially placed on the x−axis at x± =

±3.257M . This setup results in a ∼ 2.5 orbits evolution of the two BHs before merger,
as can be seen in the right panel of Fig. 3.8. For the GR-Athena++ vs. BAM comparison
and for convergence tests, several runs at different resolutions have been performed.
The grid configurations for both codes are described in detail below.

GR-Athena++ vs. BAM comparison GR-Athena++ and BAM are compared with sets
of simulations performed at 4th order FD. Athena++ and BAM implement completely
different grid structures, thus for meaningful comparisons, grids as similar as possible
are generated. The size of the computational domain is chosen as xM = 3072M ,
whereas the resolution at the puncture for both sets of simulations is
δxp ≈ { 1.56, 1.17, 0.781, 0.586, 0.391} × 10−2M and the resolution at the wave-zone
δxw matches for the two cases.



68 Chapter 3. Efficient BBH simulations with the GR-Athena++ spacetime solver

100 150 200 250 300 350 400

t/M

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

nM = 192

<(Rψ22)/(Mν) BAM

RAψ22/(Mν) BAM

<(Rψ22)/(Mν) GR-Athena++

RAψ22/(Mν) GR-Athena++

100 150 200 250 300 350 400

t/M

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

nM = 256

<(Rψ22)/(Mν) BAM

RAψ22/(Mν) BAM

<(Rψ22)/(Mν) GR-Athena++

RAψ22/(Mν) GR-Athena++

Figure 3.9: Comparison of the Weyl scalar’s multipole ψ22 between
BAM and GR-Athena++ for two different resolutions. The discrepancy
between the amplitudes decreases with increasing resolution. Extraction

is performed at R = 120 M .

For GR-Athena++, such a configuration is obtained with the grid parameters set as
nMB = 16, NL = 11; as a consequence of Eq. (3.5), the resolution at the puncture is
controlled by nM, which for these tests assume the values nM = {96, 128, 192, 256, 384}.

For BAM similar grid structures are achieved in each corresponding simulation by
considering 6 nested outer boxes with the same value of nM chosen in GR-Athena++

case and 5 smaller boxes centered around each puncture (for a total of 10 smaller
boxes) with nM/2 points along each side; the desired values of δxp are induced by
setting maximum spacings in the outermost grids ∆x = {96, 64, 48, 32, 24}M .

Fig. 3.8 shows very good agreement among the trajectories of the two BHs evolved
with the two codes (left panel). Analogously, a very good match is also obtained
looking at the phase and amplitude of the Weyl scalar’s multipole ψ22. A maximum
discrepancy ≈ 1% is found between the two codes at the highest resolution considered.
However, Fig. 3.9 shows that such difference converges away with resolution.

Convergence tests for GR-Athena++ Convergence tests for GR-Athena++ are per-
formed on the set of runs described above and on an additional set of simulations
which employ 6th order FD; in the latter set, a grid setup similar to the 4th order FD
runs is used, but xM = 1536M . This effectively doubles the values of δxp.

The two top panels of Fig. 3.10 compare the GW strain extracted at R = 120 M

at different resolutions, for 4th (left) and 6th (right) order FD. In the bottom panels of
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Figure 3.10: Convergence plots for calibration BBH evolution. Left
and right plots correspond respectively to 4th order and 6th order FD.
In both case waves are extracted at R = 120M . In bottom panels phase
differences between resolutions are rescaled according to Eq. (3.6) by
the appropriate factor, calculated with respect to the blue line (corre-
sponding to lowest resolutions) and the actual numerical values can be

read off in the legend.

Fig. 3.10 the GW phase differences are reported, which are used for convergence tests.
Inverting Eq. (B.11) allows one to define the phase differences between two waveforms
a, b as:

|∆ϕ(a, b)| := |ϕ[h22]|a − ϕ[h22]|b| . (3.7)

In the left-bottom panel of Fig. 3.10 the red and green lines match, demonstrating that
4th order convergence is achieved for the highest two resolutions. In the right-bottom
panel of Fig. 3.10 the waveforms (and corresponding frequencies) appear very similar
to each other and this translates into smaller phase differences comparing with the
bottom panel of the left plot. Even though the red line, corresponding to the phase
difference between the two highest resolutions, is quite noisy, 6th order convergence is
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Figure 3.11: Self-convergence test for the calibration BBH evolution.
On the y-axis the phase differences at merger with respect to the highest
resolution run are reported. Diamonds correspond to 4th order series,
while dots refer to 6th order series. Purple and cyan lines represent the

theoretical convergence for both cases, respectively.

achieved for the three highest resolutions as in the previous case. For all extraction
radii considered (not shown in these plots), the phase differences are convergent, i.e.,
the differences between each pair of lines decreases with increasing resolution.

Similarly to §3.3.1, the accuracy of the convergence tests performed here is checked
by evaluating the error on the phase differences, estimated for each line as the differ-
ence between the phase given by the Richardson extrapolation formula and the phase
corresponding to the highest resolution used to calculate the Richardson extrapolated
phase [see also 308]. For each corresponding phase difference line, this error is always
≲ 50%∆ϕ.

Finally, Fig. 3.11 shows a convergence plot in which phase differences are calculated
at merger. This figure further confirms the clean 4th order convergence of GR-Athena++
for the highest resolution cases. For the 6th order case, comparing with the other,
phase differences are smaller and the convergence is faster. However, the noise in the
phase differences with respect to the highest resolution discussed above makes the
convergence assessment less clean.

3.3.3 Two punctures evolution of ten orbits

The inspiral of BBH in most physical scenarios is well described by quasi-circular
trajectories of the two BHs [1, 2]. This is consistent with the detections made so far
by LIGO and Virgo detectors [7, 8, 46, 178, 309]. Consequently it is of considerable
interest to also test the performance of GR-Athena++ in this scenario.
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Table 3.1: A distinct label ρ(·) is assigned to each run with corre-
sponding maximum number of refinement levels NL and fixed physical
extent xM of the Mesh (see §3.2.4). Resultant puncture resolutions δxp
and total number of MeshBlock objects initially partitioning a Mesh are

provided.

ρ(·) NL xM δxp × 10−2[M ] #MB
vvl 10 768 4.6875 1072
vl 11 1152 3.515625 1352
l 11 768 2.34375 1184
ml 12 1152 1.757812 1464
m 12 768 1.171875 1296
mh 13 1152 0.878906 1576
h 13 768 0.585938 1744

To this end non-spinning, equal-mass, low-eccentricity initial data based on Han-
nam et al. [310] are evolved; bare-mass parameters are m± = 0.488479M and the
punctures are initially on-axis at x± = ±6.10679M with instantaneous momenta
p± = (∓5.10846× 10−4, ±8.41746× 10−2, 0)M . This choice of parameters results in
∼10 orbits prior to merger at t ≈ 2145M . In comparison to the calibration evolu-
tions of §3.3.2, this evolution is of significantly longer duration and therefore it is of
interest to investigate how waveform accuracy is affected for a selection of Mesh param-
eters that reduce computational resource requirements. In order to provide another
comparison that is independent of BAM, here the quality of waveforms computed with
GR-Athena++ is assessed against the NR-informed, EOB model TEOBResumS [146].

Setup The convergence studies performed for the calibration BBH merger problem
provide a guide as to how to choose resolution at the puncture δxp. Here the MeshBlock
sampling is nMB = 16 and 6th order FD is used. Regarding the Mesh sampling, nM = 64

and a sequence of grid configurations is constructed in such a way that each value of
δxp is reduced by a factor of 3/2 compared to the previous, as reported in Tab. 3.1.

That the choice of parameters in Tab. 3.1 reduce overall computational resource
requirements can be understood as follows. Consider the choice of parameters made
in ρh and suppose nM and NL are varied while maintaining δxp fixed. With this,
the number of MeshBlock objects required to partition the initial Mesh changes. For
example, taking nM = 128 and NL = 12 results in an initial number of MeshBlock

objects of #MB = 8352, whereas selecting NM = 256 and NL = 11 leads to #MB =

58752 initially. Generally, it is found that #MB scales approximately cubically with
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Figure 3.12: Coordinate trajectories of both punctures (x+(t) in blue
and x−(t) in orange) for parameter choice ρh.

nM, which is related to the dimensionality of the problem.
In this section an extraction radius of R = 100M is used. The CFL condition

is 0.25 and a Kreiss-Oliger dissipation of σ = 0.5 is chosen. Constraint damping
parameters are selected as κ1 = 0.02 and κ2 = 0.

The coordinate trajectories of the punctures for a calculation utilizing grid parame-
ters ρh of Tab. 3.1 can be seen to satisfy ten orbits in Fig. 3.12. This provides an initial
verification of expected qualitative properties [310] of the BBH inspiral and merger.
The quality of the evolution is evaluated by assessing the violation of the constraints
of Eq. (A.7). In particular, the collective constraint is used here, defined from the
expressions of the constraints of §A.2.1, as

C :=
√
H2 + γijMiMj +Θ2 + 4γijZiZj . (3.8)

Values of C in the orbital plane (z = 0) at fixed times t = 500M and t = 2100M

are shown in Fig. 3.13. In all cases it is found that away from the punctures, values
of C decrease on average as the physical boundary ∂Ω is approached. In particu-
lar, for the calculation involving parameters ρh and during 500M ≤ t ≤ 2200M as
ϱ :=

√
x2 + y2 → 100M it is found that C ∼ 10−8 which continues to decrease as

ϱ → 300M to C ∼ 10−10 thereafter plateauing at C ∼ 10−11 towards the boundaries.
The general properties of C discussed here are shared between other simulations uti-
lizing parameters from Tab. 3.1. Crucially, this means that increasing refinement in
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Figure 3.13: Values of the (normalised) collective constraint
Ĉ(x, y, z) := C(x, y, 0)/max x, yC(x, y, 0) over the orbital plane z = 0
for a simulation with ρh of Tab. 3.1. Left panel: evolution time is
t = 500M and max x, y C(x, y, 0) ≃ 111.3. Right panel: evolution time
is t = 2100M and max x, y C(x, y, 0) ≃ 3.3. As can be seen in both
cases, constraint violation is greatest in the vicinity of the punctures.

the vicinity of the puncture does not contaminate the rest of the physical domain.
Qualitatively similar behaviour is found for the Hamiltonian constraint H.

Next, the GW strain is investigated for all choices of Tab. 3.1. To this end
Eq. (B.10) for h22 is solved in the frequency domain making use of the fixed frequency
integration method of Reisswig and Pollney [311]. A cut-off frequency of f0 = 1/300×
3/4 is chosen, which is physically motivated by inspecting the early time puncture
trajectories of the inspiral. The resulting h22 are displayed in Fig. 3.14.

For a grid parameter choice of ρh, merger occurs at u = 2037.5M . The maximum
deviation from this value for the parameters investigated in Fig. 3.14 is obtained for
ρml, resulting in ∆u = 10.3M . In order to directly quantify how the choice of δxp
affects the phase error in the strain waveform as merger time is approached, ∆ϕ is
computed according to Eq. (3.7) and the results are shown in Fig. 3.15.

In Fig. 3.15 (upper panel) clean 6th order convergence in ∆ϕ is not found for
all u upon rescaling with the appropriate factors determined through Eq. (3.6). An
additional issue that complicates the discussion here is that the parameters of Tab. 3.1
also vary the spatial extent of the computational domain potentially introducing a
source of systematic error. For example, at merger ∆ϕ(ρmh, ρh) ≃ 4 × 10−1 and
∆ϕ(ρm, ρh) ≃ 6 × 10−3, though δxp(ρm) > δxp(ρmh). In order to compensate for this
effect, also phase differences at fixed xM are considered. In particular, the lower panel
of Fig. 3.15 displays phase differences at merger, where ρh is taken as the reference
value for all comparisons. While displayed ∆ϕ are compatible with a 6th order trend,
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Figure 3.14: The (2, 2) multipole of the GW strain normalised to the
symmetric mass ratio ν = 1/4 and M , computed for simulations based
on parameters of Tab. 3.1. Peak amplitude for a choice of ρh occurs at
u/M = 2037.5 which indicates the end of the inspiral [312]. Dephasing
as merger time is approached reduces rapidly with increased resolution
(see also Fig. 3.15 though note that the legend differs there). Note:

horizontal axis scale changes at u/M = 1500.

the ρvvl choice of parameters is likely of too low resolution to make a robust claim on
convergence order with respect to varying δxp. However, as in these tests the global
resolution over the computational domain was not modified, it is not clear what sort of
convergence should be expected. Furthermore, the extent to which a time-integrator
order below the order of the spatial discretization affects GW waveform quality can
also be somewhat delicate (see e.g. the super-convergence discussion of Reisswig and
Pollney [311]). Nonetheless, this analysis suggests that it is possible to reduce the GW
phase error by accurately selecting the refinement level and hence resolution at the
punctures δxp.

EOB comparison As a last test, the GWs from the 10 orbit simulation are com-
pared to the state-of-the-art EOB model TEOBResumS [146]. The latter is a waveform
model informed by several existing NR datasets and faithfully models the two-body
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Figure 3.15: Phase differences ∆ϕ between simulations involving pa-
rameters of Tab. 3.1. Upper panel: A trend of ∆ϕ accumulating with
time is present. Merger time corresponding to ρh is indicated with a ver-
tical black line at u/M = 2037.5. A decrease in ∆ϕ occurs as δxp pairs
of decreasing values are compared. In order to mitigate a systematic
effect of varied spatial extent in the computational domain, also phase
differences at fixed xM such as ∆ϕ(ρl, ρm) and ∆ϕ(ρm, ρh) are com-
puted. These two differences are also shown rescaled with Q6 and Q′

6,
computed according to Eq. (3.6) under the assumption of 6th order spa-
tial discretization. Lower panel: Phase differences at merger computed
with reference data taken from the ρh run are depicted as a function of
puncture resolution. Data on the black reference curve would obey a

6th order convergence trend.

dynamics and radiation of spin-aligned BBH multipolar waveforms for a wide variety
of mass ratio and spin magnitudes. For this comparison, the GR-Athena++ ψ22 output
mode is first extrapolated to null infinity using the asymptotic extrapolation formula
[78, 313]:

lim
r→∞

rψ22 ∼ A

(
rψ22 −

(l − 1)(l + 2)

2r

∫
rψ22 dt

)
, (3.9)

where A(r) := 1 − 2M/r and r := R(1 +M/(2R))2, with R being the (finite) GW
extraction radius of an NR simulation. The extrapolated result is then integrated
as in the previous section to obtain the GW strain. The waveform comparison is
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Figure 3.16: Comparison between the GR-Athena++ BBH q = 1 wave-
form and the semi-analytical EOB model TEOBResumS. The plot shows
the (2, 2) multipole of the GW strain normalised to the symmetric mass
ratio ν = 1/4 and M and the instantaneous GW frequency. The time
is shifted to the mode amplitude peak that approximately defines the
merger time. The GR-Athena++ waveform corresponds to the highest
resolution simulation (ρh of Tab. 3.1), extracted at coordinate radius
R = 100M and extrapolated to null infinity using Eq. (3.9). Note: hor-

izontal axis scale changes at (t− tmgr)/M = −400.

performed by suitably aligning the two waveforms; the time and phase relative shifts
are determined by minimizing the L2 norm of the phase differences [234].

Fig. 3.16 shows that the two waveforms are compatible within the NR errors. The
accumulated EOB-NR phase differences are of order ∼0.1 rad to merger and∼0.4 rad to
the ringdown for the highest resolution GR-Athena++ simulation. The larger inaccuracy
of the ringdown part is a resolution effect related to the higher frequency of the wave in
this regime. The latter issue could be potentially improved by adding a refinement level
so as to better resolve the BH remnant. The maximum relative amplitude difference
is of order ∼0.01. The same comparison using the lowest resolution gives ∼0.4 rad
at merger (∼1 rad during the ringdown) and maximum relative amplitude differences
of ∼0.01. These results comparable favourably with those reported in Hannam et al.
[314]. Overall, this analysis demonstrates that GR-Athena++ can produce high- quality
data for waveform modeling.

3.4 Scaling tests

The scalability properties of GR-Athena++ are assessed with sets of weak and strong
scaling tests conducted for the physical problem setup of §3.3.2. In particular, BBH
evolutions of 20 RK time steps are considered, with full AMR and full production
grids choosing grid parameters nMB = 16, NL = 11, xM = 1536 M . Hybrid MPI and
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Figure 3.17: Strong scaling tests for GR-Athena++ with 4th order FD
for different regimes of number of cores. Left plot: speed-up (top panel)
and parallel efficiency (bottom panel) calculated with respect to the
first point of the series. In each series, the second point corresponds
to a theoretical speed-up by a factor of 2, the third point a factor of
4 and so on. Right plot: parallel efficiency as a function of the ratio

#MeshBlocks/#cores.

OMP parallelization is used for these tests. These tests are performed on the cluster
SuperMUC-NG at LRZ, on nodes equipped with 48 Intel Skylake Xeon Platinum 8174
cores each. The runs are performed by filling up the nodes launching 8 MPI tasks
with 6 OMP threads per node. Very good scaling properties are demonstrated using
up to 2048 nodes, for a total of ∼105 cores. The results obtained compare favourably
to the ones presented using the Dendro-GR code [280].

3.4.1 Scaling tests for 4th order FD

In the first set of tests GR-Athena++ is configured with Ng = 3, therefore utilizing 4th

order FD stencils.

Strong scaling tests Strong scaling tests are conducted for the 6 resolutions deter-
mined by nM = {64, 96, 128, 192, 256, 384}. For each resolution, a series of runs is
performed in which, for each run, the number of cores is increased with respect to the
previous one.

There are two constraints that induce upper and lower limits in the choice of
number of nodes and cores that must be taken into account. On one hand, a minimum
number of nodes must be employed for a given problem in order to have enough
memory to store all the variables for the given grid configuration. On the other hand,
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Figure 3.18: Weak scaling tests for GR-Athena++ with 4th order FD,
performed compiling the code with GNU compiler and Intel compiler.
The top panel reports the total CPU time measured by MPI rank 0
directly in the code through the C++ function clock_t. CPU time in
the bottom panel is measured instead using the profiling tool gprof;
here, times smaller than 2% of the total CPU time are neglected. Light-
coloured (left) bars represent results obtained with GNU compiler, while

dark-coloured (right) ones are for Intel compiler.

at most one OMP thread can be assigned to each MeshBlock, as a consequence of the
coarse-grained parallelization strategy of Athena++.

The left panel of Fig. 3.17 shows that excellent strong scaling performances are
obtained up to ∼1.5 × 104 cores, with efficiencies above 90%. For a given resolution,
a degradation in performances is observed when the number of cores increases above
a certain value. The right panel of Fig. 3.17 shows that the efficiency heavily depends
on the ratio between MeshBlock number (hereafter #MeshBlock) and number of cores
(hereafter #cores). For every resolution, efficiencies above 90% are obtained when
#MeshBlocks/# cores ≳ 10. This is a consequence of the parallelization strategy of
Athena++, in which one or more MeshBlocks are assigned to each OMP thread and it
turns out to be more efficient when many MeshBlocks are handled by each thread.

Comparing these results to the strong scaling plot of Fernando et al. [280], in the
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Figure 3.19: Strong scaling tests for GR-Athena++ with 6th order FD
for different regimes of number of cores. Left plot: speed-up (top panel)
and parallel efficiency (bottom panel) calculated with respect to the
first point of the series. In each series, the second point corresponds
to a theoretical speed-up by a factor of 2, the third point a factor of
4 and so on. Right plot: parallel efficiency as a function of the ratio

#MeshBlocks/#cores.

latter case the parallel efficiency decreases faster than the highest-resolution case of
Fig. 3.17, although the two results are obtained for slightly different # cores.

Weak scaling tests In order to ensure that the utilized resources increase at the
same rate as the number of overall computations, weak scaling tests are performed
by considering asymmetric grids in terms of NM . The weak scaling series of runs is
conducted as follows. The first run is performed on 1 node with a grid described
by the tuple NM = (128, 64, 64). The second run is performed on 2 nodes, with ny

doubled (NM = (128, 128, 64)). For the run on 4 nodes nz is also doubled (NM =

(128, 128, 128)) and for 8 nodes nx is doubled again (NM = (256, 128, 128)). This
procedure is continued up to 2048 nodes, and it allows to maintain an almost constant
ratio of ∼ 33 MeshBlocks/core.

Two independent series of tests are performed, once with the code compiled with
the Intel compiler and once with the code compiled with the GNU compiler.

The results are displayed in Fig. 3.18. The top panel of Fig. 3.18 shows that
the total CPU time per MPI task remains constant up to ∼105 cores, demonstrating
excellent weak scalability in an unprecedented regime of number of cores for a NR
code. The bottom panel shows the execution time of the main computational kernels.
As expected, most of the computational time is spent in the calculation of the RHS,
which indicates the absence of race conditions or other bottlenecks elsewhere in the
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Figure 3.20: Weak scaling tests for GR-Athena++ with 6th order FD,
performed on SuperMUC-NG at LRZ compiling the code with the GNU
compiler. The top panel reports the total CPU time measured by MPI
rank 0 directly in the code through the C++ function clock_t. CPU
time in the bottom panel is measured instead using the profiling tool
gprof; here, times smaller than 2% of the total CPU time are neglected.

code. The discrepancy of the total CPU time between the top and bottom panels gives
an estimate of the communication time among the MPI processes; the comparison
between the two plots suggests that also the communication time presents a good
scaling behaviour.

3.4.2 Scaling tests for 6th order FD

Additional scaling tests are performed analogously to §3.4 but for the code configured
with a 6th order FD scheme (Ng = 4). There are a few differences with respect to
the previous series of tests, due to the larger overall memory involved in this case. In
particular, the ratio #MeshBlocks/#cores needs to be reduced.

Strong scaling tests In the case of strong scaling tests, increasing the number of
communicated ghosts causes a translation of the curves of Figs. 3.17, as shown in
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Fig. 3.19. In the latter case it is possible to perform tests up to 1024 nodes, for a total
of ≈ 5 × 104 cores. The parallel efficiency (right panel) is above 90% as long as the
ratio #MeshBlocks/#core ≳ 6, analogously to the 4th order case.

Weak scaling tests For weak scaling tests a slightly different construction of the
grid is required. The initial grid for the run on 1 node is NM = (64, 64, 64) and then
the same procedure described in the case of 4th order FD is followed to conduct the
test. This allows one to decrease the load to ∼25 MeshBlocks/core. Similar weak
scaling results to the 4th order case are depicted in Fig. 3.20. The larger number of
communicated ghosts does not affect sensitively the percentage of time spent in ghost
communications and R/P operations with respect to the fraction of time spent in
RHS calculations, which still largely dominates. Also, the fraction of communication
time among MPI processes does not get worse. Overall the CPU time per MPI task
is approximately constant in both top and bottom panels, which indicates excellent
parallel performances also in this case.
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Chapter 4

GR-AthenaK: first performance-portable
dynamical spacetime solver

The latest advances in terms of hetereogeneous HPC platforms based on GPUs push
towards the creation of NR codes capable of efficiently using them. Two recent ex-
amples of such facilities are the Leonardo HPC System (CINECA, Italy) 1, and the
Perlmutter supercomputer (NERSC, USA) 2. The former provides 3456 computing
nodes, each equipped with four NVIDIA Ampere GPUs that are expected to provide
a total computational performance over 240 Pflops; the latter provides 1789 computing
nodes mounting four NVIDIA Ampere GPUs for a total of ∼60 Pflops.

The desirable property of new codebases is performance portability, i.e. the capa-
bility of achieving comparable performance across different platforms with the least
amount of architecture-dependent code. In particular, this includes the possibility of
executing a single codebase on both GPU accelerators and CPUs without substantial
performance loss. Currently, the Kokkos [315–317] programming model is arguably the
best option to achieve this goal. Kokkos is a C++ library based on templated program-
ming and provides an easy way to write portable parallel codes through abstractions
of parallel instructions and memory hierarchy.

The excellent scalability properties of Athena++, together with its intrinsic modular
structure, made it the perfect candidate to be refactored through Kokkos, resulting
in the performance-portable MHD solver K-Athena [318]. More recently, the AMR
infrastructure of Athena++ has been extended to the standalone and general-purpose
Parthenon, based on Kokkos [319].

The work presented in this Chapter is an effort towards the realization of GR-AthenaK,
the first performance-portable dynamical spacetime solver. GR-AthenaK implements

1https://leonardo-supercomputer.cineca.eu/hpc-system/
2https://docs.nersc.gov/systems/perlmutter/architecture/

https://leonardo-supercomputer.cineca.eu/hpc-system/
https://docs.nersc.gov/systems/perlmutter/architecture/
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the main features of GR-Athena++ in AthenaK, which is another Kokkos version of
Athena++ still under development.

This Chapter is organized as follows. §4.1 introduces the Kokkos framework; in §4.2
AthenaK and its main differences with respect to Athena++ are described; §4.3 similarly
details the refactorization of specific features of GR-Athena++ into GR-AthenaK; in
§4.4 GR-AthenaK is tested with cross-code comparisons against GR-Athena++, and its
convergence and performance properties are assessed; eventually, §4.5 discusses the
challenges and feasibility of BBH evolutions with GR-AthenaK.

4.1 Kokkos framework

Focusing on the two main target execution devices, i.e. CPUs and GPUs, the two
main differences in the code execution reside in the parallel execution and memory
management. The Kokkos library offers three abstractions for each of these instances,
allowing one to specify them with ease at compile time.

Parallel execution The first abstraction for parallel execution is the execution
space, i.e. on which device the parallel regions of the code are going to be executed.
Examples of possible device specifications are serial, OMP for CPUs, CUDA for
NVIDIA GPUs. The different code structures that can be executed in parallel consti-
tute the second abstraction, called execution pattern. These correspond for instance
to parallel for loops, parallel reductions and similar constructs, that are commonly
referred to as kernels. The third abstraction is the execution policy, which specifies
how parallel work is organized and distributed. There are two main types of execution
policies: the RangePolicy/MDRangePolicy and the TeamPolicy. The former policies
are the analogue of OMP parallelization of for loops of the types # omp pragma/# omp

pragma collapse (N). The latter policy distributes the parallel work among members
of teams with shared memory, allowing to exploit hierarchical parallelism and more
optimal memory management for specific purposes.

Memory managment Regarding memory management, the first abstraction is the
memory space, which specifies where data are located during the execution. Ideally,
execution space and memory space should coincide for best performances. In practice
GPUs are commonly mounted on CPU nodes, which represent the host in Kokkos

language. If memory space and execution space do not match, expensive deep copies
between the device and the host typically heavily penalize the performances. Different



4.2. Kokkos version of Athena++: AthenaK 85

devices have different optimal mappings between multidimensional array indices and
memory. This can be controlled through the memory layout, specifying whether data
should be mapped by row-major order (optimal for CPUs) or column-major order
(optimal for GPUs). Finally, the memory traits abstraction allows one to specify how
data are accessed.

Despite the great flexibility offered by the six abstractions above, the programmer
is not typically required to explicitly specify each one of them. While writing the code,
the developer needs to appropriately choose the execution patterns and the execution
policies that better suit the problem at hand. However, at compilation time the other
four abstractions will be automatically specified by default as the most optimal ones,
if they have not been explicitly determined. For instance, when compiling for CUDA
device, this will be automatically selected as the execution space and memory space
and the memory layout will be chosen as column-major order.

Finally, Kokkos provides an additional abstraction to manage the data through
multi-dimensional arrays called Views. These constitute one of the the main building
blocks of a Kokkos code and allow one to easily allocate, deallocate, copy and access
data on different devices.

4.2 Kokkos version of Athena++: AthenaK

This work is based on a previous refactoring of Athena++ with Kokkos performed by
the main authors of Athena++, which resulted in the new performance-portable code
AthenaK. In this section the main features of AthenaK are discussed.

To write a code with Kokkos, all arrays must be defined as Views and all par-
allel loops have to be written as Kokkos kernels. Additionally, all support func-
tions used in kernels must be defined as inline functions using the Kokkos macro
KOKKOS_INLINE_FUNCTION, which allows one to automatically compile such functions
for CUDA with the required __device__ attribute.

The MeshBlock-based structure of Athena++ as described in Chapter 3 is main-
tained in AthenaK, but with one fundamental difference between the two codes. The
coarse-grained MeshBlock-based OMP parallelization of Athena++ is abandoned in
AthenaK, because in this case it would require a large number of expensive kernel
launches, slowing down the execution of the code. In AthenaK MeshBlocks are packed
together in the new MeshBlockPack class and the main data structure of the code
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is a five-dimensional View containing all MeshBlocks (first index) and all the evolved
variables (second index) along the three spatial dimensions (last 3 indices).

AthenaK implements parallel kernels in two ways. The first is based on RangePolicy

parallelizing over the indices of the 5D Views. The other is based on TeamPolicy to
exploit hierarchical parallelism: the first four indices of a 5D View are mapped to
teams. The members of each team work simultaneously on 1D buffers of memory
corresponding to the last spatial index. Loops in this latter index are vectorized using
the Kokkos::TeamVectorRange policy.

Lastly, Athena++ makes use of persistent ghost buffers to allow asynchronous and
fast communication among different MPI processes. In AthenaK such buffers are de-
fined as 2D Views and stored in the memory space, in order to minimize deep copies
between device and host. Moreover, ghost communication is handled within appropri-
ate parallel kernels.

4.3 GR-AthenaK

The main goal of this work is to refactor GR-Athena++ into a Kokkos version, by
porting the Z4c system Eqs. (A.13) into AthenaK whilst maintaining the main features
of GR-Athena++.

4.3.1 Memory requirements

The biggest challenge when running on CUDA devices is represented by the limited
RAM capacity of most GPUs, which can hinder the execution of memory-intense
problems. The most extensive GPUs available to date in terms of memory are the
Ampere GPUs, with up to 80 GB of RAM.

The implementation of GR-Athena++ for the spacetime evolution makes use of a
total of 22 Z4c evolved variables, 13 ADM variables, used for initial data and to impose
the algebraic constraints and 7 Con variables that are used to monitor the constraint
violation during the evolution. For the evolved variables, 3 storages are required for
the RK time integration. When using refined grids (or multigrid), extra storage is
required for ghost communication of evolved variables. This storage holds half of the
points per side for each MeshBlock (see §3.1.2). In the following, cubic MeshBlocks
with size nMB are considered. The memory per MeshBlock required to perform a
spacetime evolution can be calculated as
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M = B ·
[ (
nMB + 2Ng

)3 · (3 · 22 + 13 + 7) + 22 σ

(
nMB

2
+ 2Ng

)3
]
, (4.1)

where B is the number of bytes of the floating point representation chosen and σ = 0

for unigrid case and σ = 1 for the multigrid case. The term proportional to σ takes
into account the additional coarse representation storage for multigrid case.

The design of AthenaK for communication between MeshBlocks inherited from
Athena++ requires the allocation of extra memory buffers, as mentioned at the end of
§4.2. For uniform grids, the total memory associated to such buffers simply corresponds
to the shell of ghost points surrounding the physical points of MeshBlocks. For refined
grids, a given MeshBlock can have more neighbors than the unigrid case (see Figs. 3.3,
3.4), belonging to finer refinement levels. In this case additional buffers are stored for
each one of the possible neighbors. The buffer memory per MeshBlock amounts to

MBuffer = 2 · 22 · B
{
(1 + σ)

[(
nMB + 2Ng

)3 − (nMB
)3]− 8σ (Ng)

3
}

(4.2)

where the factor 2 in front accounts for both receiving and sending buffer points, which
are stored separately and only the 22 Z4c evolved variables have associated buffers. The
difference between the two cubic terms calculates the shell of ghost points constituting
the buffers in unigrid (σ = 0). In the multigrid case (σ = 1) this quantity is almost3

doubled due to the particular implementation discussed above. The total amount of
memory required for a spacetime evolution is thus

Mtot = (M+MBuffer) ·NMB(n
MB), (4.3)

where NMB(n
MB) is the total number of MeshBlocks, which for a given mesh is a

(decreasing) function of their size nMB. For instance, a spacetime evolution with double
precision (B = 8), 6th order FD (Ng = 4), 1024 cubic MeshBlocks (NMB = 1024) with
323 points (nMB

x = nMB
y = nMB

z = 32) for a refined grid (σ = 1) requires Mtot ≈ 65.1

GB of storage.
Eq. (4.3) implies that to fit the memory constraints of GPUs it is important to

increase nMB for a given configuration, to decrease NMB and especially the memory
used to store buffer ghosts MBuffer. Differently from Athena++, decreasing NMB does

3Note the last term subtracted in the multigrid case.
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not lead to a performance hit, due to the different parallelization strategy, and has the
further advantage of reducing the overall communication. The limit in decreasing the
number of MeshBlock is dictated by the use of the AMR, which requires a sufficiently
fine partition of the grid in order to adequately resolve the desired features.

4.3.2 AthenaTensor views

In the Z4c system, numerous quantities are mathematically defined as tensors with spe-
cific symmetries, requiring common tensor operations in the RHS such as contractions
and index raising. Tensor symmetries can be used in the code to make calculations
more efficient and to save memory space. To achieve this in GR-AthenaK, new data
structures need to be defined.

The first step is the definition of the AthenaTensor class for tensor variables that
are stored in the whole spatial grid. Taking as an example the Z4c variables, these
are stored in a 5D View whose second index corresponds to the variable index. The
latter is conveniently sliced using the Kokkos::subview command. The resulting
Views are then remapped into tensor View structures with appropriate dimensions
and symmetries as follows. Scalar quantities such as the lapse function α result in 4D
slices of the original 5D View, and constitute 4D AthenaTensors. Vector quantities
such as the shift function β are 5D slices of the original 5D View, and constitute 5D
AthenaTensors with 1 tensor index running from 0 to 2. 2D tensors in the Z4c system
are all symmetric and thus have only 6 independent components; hence, they result in
5D slices of the original 5D View, with variable index running from 0 to 5. The latter
is then remapped into 6D AthenaTensors with 2 tensor indices running from 0 to 2
but with the appropriate symmetry.

The second step is the definition of the AthenaScratchTensor class for temporary
variables used in the calculations. The latter are defined as 2D arrays in the Kokkos

Scratch Memory Space. The first index is the tensor index, which is remapped similarly
to AthenaTensors. In this case, however, tensors can have up to 4 indices and different
kinds of symmetries. The second index is the spatial index, spanning the x direction.
Depending on the dimensionality of the tensor, AthenaScratchTensors can be up to
5D Views.

With the above data structures, calculations can be performed hierarchically as in
GR-Athena++, following Alfieri et al. [292]. In GR-AthenaK the main computational
kernels are organized as follows:
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1. Outer loops over MeshBlock index m and spatial indices k (z−direction) and j

(y−direction)

2. Tensor loops over tensor indices a, b, c . . .

3. Inner vectorized loops over the spatial index i (x−direction)

Such hierarchical computations can be performed in Kokkos only by selecting the
TeamPolicy execution policy. An example of such calculations in GR-Athena++ is
showed in the code snippet of Listing 4.1.

1 par_for_outer("z4c rhs loop",DevExeSpace (),scr_size ,scr_level ,0,nmb
-1,ks,ke,js,je ,KOKKOS_LAMBDA(TeamMember_t member , const int m,
const int k, const int j) {

2 ...
3 for(int a = 0; a < 3; ++a)
4 for(int b = a; b < 3; ++b) {
5 par_for_inner(member , is , ie , [&]( const int i) {
6 rhs.g_dd(m,a,b,k,j,i) = - 2. * z4c.alpha(m,k,j,i)
7 * z4c.A_dd(m,a,b,k,j,i)
8 + Lg_dd(a,b,i);
9

10 });
11 }
12 }
13 ...
14 });

Listing 4.1: RHS construction of the Z4c metric variable, showing the
hierarchical structure of the main kernels. The conformal metric g_dd is
a 6D AthenaTensor, where m is the MeshBlock index, a, b are the tensor
indices and k, j, i are the spatial indices. par_for_outer is the outer
loop carried out with TeamPolicy. Tensor loops over a and b contain

the internal par_for_inner vectorized loops along the x−direction.

rhs.g_dd, z4c.A_dd are 6D AthenaTensors, z4c.alpha is a 4D AthenaTensor and
Lg_dd is a 3D AthenaScratchTensor with two tensor indices. In the code,
AthenaScratchTensors are defined and stored in the par_for_outer loop and re-
cycled after usage. The main advantages of this implementation are the very efficient
usage of memory and the high readability of the code.
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4.3.3 Finite differences

In GR-AthenaK, derivatives are approximated using FD, but their implementation dif-
fers from that in GR-Athena++. The latter takes advantage of the very efficient strided
memory access. However, this is not possible within GR-AthenaK, because the memory
structure is architecture-dependent and additionally, the usage of Kokkos::subview

for slicing Views complicates the data location pattern in memory. For these reasons,
GR-AthenaK data are accessed through View indices. Similarly to GR-Athena++, FD
in GR-AthenaK are implemented in a way that preserves the associative property of
addition, thereby minimizing the truncation error associated with this operation.

4.4 GR-AthenaK tests

In this section three different sets of tests with BH evolutions are performed on
GR-AthenaK. 3D initial data are constructed by setting a static puncture at the ori-
gin of the grid which is subsequently evolved in time according to the Z4c evolution
equations. The correctness of the evolutions obtained with GR-AthenaK is assessed by
comparing sets of GR-AthenaK runs against benchmark GR-Athena++ runs and with
one series of self-convergence tests. Lastly, the performances of GR-AthenaK running
on CPUs and GPUs are compared to GR-Athena++.

For these tests GR-Athena++ and GR-AthenaK have been set up in the same way.
In particular, RK3 is used as time integrator, with CFL factor 0.25; CC and double
precision representation of data is used; Ng = 2 is selected, corresponding to an overall
2nd order accuracy. The Kreiss-Oliger dissipation parameter is selected as σKO = 0.1.
Simple outflow BC are employed.

For runs on CPUs, GR-Athena++ and GR-AthenaK have been compiled with the
GNU compiler; most of the simulations are performed on Broadwell (BDW) cores, if
not otherwise stated. For runs on GPUs, GR-AthenaK has been compiled with the
nvcc wrapper compiler, and CUDA module version V11.4.120 is used. The GPU used
for these tests is an Ampere100 GPU with 80 GB RAM.

4.4.1 Comparison tests

The solutions obtained with the GR-Athena++ and GR-AthenaK codes are compared
with sets of unigrid runs in which a cubic mesh with nM = 80 and physical size
xM = 80 M is partitioned in three different ways, i.e. using cubic MeshBlocks with
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Figure 4.1: Comparison tests between GR-Athena++ and GR-AthenaK
on unigrid meshes partitioned with MeshBlocks of different size. Left
plot: results for GR-AthenaK run on CPUs. Right plot: results for
GR-AthenaK run on one GPU. In both plots, top panel: direct com-
parison of x−slices of χ obtained with the two codes; bottom panel:
point-wise differences between the two solutions. Results are reported
at t = 100M . Analogous results are found for all directions and for all

the variables.

sizes nMB = {20, 40, 80}. This results in a total of {64, 8, 1} MeshBlocks, respectively.
The one puncture initial data are evolved up to t = 100M and GR-AthenaK simulations
are run on both CPUs and GPUs. This test checks that the solution is correct and
does not depend neither on how the mesh is partitioned, nor on the parallel device
employed for the evolution.

Fig. 4.1 shows the comparison of x−slices of the field variable χ evolved with
GR-Athena++ and GR-AthenaK after several time steps. The bottom panels of both
plots show that for evolutions of GR-AthenaK on CPUs and GPUs, differences in the
solutions given by the two codes are of the order of 10−15 at t = 100M for all grid
configurations. Notably, the difference curves in the bottom panel of both plots are
symmetric with respect to the origin of the axis. Analogous results are found for y−
and z− directions and for all grid variables. This indicates that the implementation of
the equations and FD are correct and the spacetime evolution is robust. To obtain such
results, it was necessary to implement explicit barriers in the computational kernels,
after each par_for_inner execution, causing a potential performance hit discussed
below.
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Figure 4.2: Convergence plot showing 2nd-3rd order convergence for
the one puncture problem. Top panel: x−slice of χ in the innermost re-
finement level for the three different resolutions considered here, where
medium and fine solutions are interpolated with cubic polynomials on
the coarse grid; bottom panel: absolute difference between medium
and coarse, and between fine and medium solutions and correspond-
ing rescaling demonstrating the convergence order. The simulations to
produce these data are run on GPUs. Similar results are obtained con-

sidering y− and z− slices and any other field variable.

4.4.2 Convergence tests

Convergence tests on GR-AthenaK are performed following Brügmann et al. [273].
These tests require one to have a large resolution in the proximity of the puncture,
which is achieved by using refined grids. In particular, three different simulations are
considered, with refined grids constructed starting from a cubic mesh with xM = 192M

and three resolutions, indicated by nM = {64, 96, 128} respectively. The initial mesh
is divided into cubic MeshBlocks with nMB = 32 and refined 7 times around the origin
of the axes, for a total of 8 refinement levels. This procedure results in maximum
resolutions at the puncture of δx = {6M, 4M, 3M} × 2−7, respectively. The simu-
lations corresponding to these grid spacings are referred to as coarse, medium, fine,
respectively. The results presented here are obtained with runs on GPUs.

Considering the setup described at the beginning of this section, 2nd order con-
vergence is expected. Communication among MeshBlocks for static mesh refine-
ment (SMR) is handled with 2nd order R/P operators.

Convergence is assessed by considering the χ variable in the innermost (and most
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Figure 4.3: Performances of GR-AthenaK comparing the execution
time on a GPU to the execution time of both GR-Athena++ and
GR-AthenaK on full BDW and SKX CPU nodes. Left panel: GR-AthenaK
runs; the total execution time is measured with Kokkos::Timer, while
the time spent in each kernel is measured with simple-kernel-timer of
kokkos-tools. Right panel reports data for GR-Athena++ runs; the to-
tal execution time is measured with the C++ function omp_get_wtime().
The black markers in both panels represent the speedup obtained by ex-

ecuting the code on one GPU.

resolved) refinement level. Here, the following procedure is applied. A common time
of t = 48M is considered, as this is a multiple of the integration time steps of all
the three simulations. The x−slice closest to the puncture4 is selected in the coarse
simulation; in the medium and coarse simulations, the corresponding samples of χ are
interpolated on the same physical points selected in the coarse simulation. Interpola-
tion is performed with cubic polynomials, which has a higher order accuracy than the
expected convergence order.

Fig. 4.2 shows that a convergence order between 2 and 3 is achieved, when rescal-
ing the fine-medium curve by the appropriate Qn calculated as in Eq. (3.6). The
convergence order is almost 3 at the puncture and decreases to about 2 close to the
MeshBlock boundaries, where communication happens.
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4.4.3 Performance tests

The performances of GR-AthenaK are evaluated by comparing the execution of the same
problem on a single GPU to the execution of both GR-AthenaK and GR-Athena++ on
CPU nodes using OMP parallelization. Runs on CPU nodes are performed on one
BDW node (24 cores) and one SKX node (36 cores), utilizing as many OMP threads
as available cores in one node.

The grid configuration selected for this test is chosen to achieve saturation of the
available memory of the GPU. To this aim, a refined grid is considered. According
to Eq. 4.3, using cubic MeshBlocks of size nMB = 32 with SMR and Ng = 2, a total
of MeshBlocks 1985 fit into the GPU memory for a spacetime evolution. The grid is
constructed by considering a cubic mesh with nM = 128 and xM = 1536M and cubic
MeshBlocks of size nMB = 32. Two refinement centers are considered, at positions
r± = (±3.75, 0, 0) with 14 refinement levels for both centers. This results in a total of
1744 MeshBlocks and ∼ 5.71 × 107 physical cells, or 1.25 × 109 physical data points
considering all the Z4c variables. The runs are conducted for 20 time steps.

Fig. 4.3 shows the results of the performance tests. The left panel demonstrates
that most of the execution time of GR-AthenaK is spent in the kernel calculating
the Z4c RHS, as expected. The execution times reported on the plot for BDW and
SKX correspond to runs performed with full nodes. To compare the performances of
runs on one GPU, the speedup with respect to CPU runs is calculated as the ratio
between the total execution times on CPU and the corresponding ones of GR-AthenaK
on the GPU. Speedups of ∼6 and ∼4 are found comparing GR-AthenaK on one GPU
to GR-AthenaK on one BDW and SKX full node, respectively (black diamonds, left
panel). Comparing the execution time on a single GPU to the one on a single core,
instead, speedups ∼ 140− 150 are found (black dot, left panel). Focusing now on the
right panel, comparing GR-AthenaK run on one GPU to GR-Athena++ on full BDW
and SKX nodes gives speedup GPU/core of ∼45 − 55. Overall, the number of cells
updated per second and per core is O(104) for both GR-Athena++ and GR-AthenaK,
while up to 2.4× 106 cells are updated per second on a GPU.

These results show that running the same problem on a single GPU with the new
GR-AthenaK code is slightly faster (by a factor 1.4 − 2) than running it on a full
CPU node with the GR-Athena++ code, while a speedup ∼50 is obtained comparing
the execution of one core to one GPU. However, GR-AthenaK on CPUs is a factor ∼3

4The puncture is defined analytically at the origin, but the CC grid used here does not include
the point O = (0, 0, 0).
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slower than GR-Athena++. This can be due to several factors. First, the coarse-grained
parallelism approach used in GR-Athena++ is particularly efficient for executions on
CPUs. Second, the explicit syncronization of team members by means of barriers,
required for a correct evolution on GPUs (see end of §4.4.1), have the side effect of
slowing down the computations. Third, FD are particularly efficient in GR-Athena++,
due to strided access to data through pointers; in GR-AthenaK on the other hand,
data are accessed less efficiently via View indices; additionally, in GR-AthenaK Ng is
regulated via a runtime parameter and if conditions are used to select the correct FD
stencil to be used.

4.5 Towards BBH evolutions

In the current version of GR-AthenaK, BBH initial data are included through the
external C library based on the pseudo-spectral approach of Ansorg, Brügmann, and
Tichy [304], as in GR-Athena++ (see §3.2.1). In particular, initial data are calculated on
CPUs, stored in the host and then deep copied in the device. This procedure does not
affect the overall performances as it is done only once when the problem is initialized.

However, AMR is required for BBH evolutions, in which the highest-refined regions
follow the two punctures. At the time of writing this Dissertation, AMR is being
implemented and tested for the specific problem of BBH evolution. In particular, the
box-in-box oct-tree AMR criterion as described in §3.2.3 is being included.

The missing features required for BBH simulations in GR-AthenaK are the imple-
mentation of the Sommerfeld BC coupled with the extrapolated outflows BC, high-
order R/P operators and wave extraction. However, for the latter all the necessary
infrastructure (lagrange interpolation, geodesic grid) are already in place and tested.

The remainder of this section is a discussion of the feasibility of BBH runs on
GPUs in terms of memory, taking the calibration runs of §3.3.2 as benchmark. For
all the tests presented in §3.3 of Chapter 3, cubic MeshBlocks of size nMB = 16 have
been chosen. For the calibration runs in particular, 11 refinement levels have been
used. The resulting number of MeshBlocks for the different resolutions of such runs
are reported in the second column of Tab. 4.1.

Due to the coarse-grained parallelism approach of GR-Athena++, each MeshBlock

can be handled at most by one OMP thread, and this limits the number of threads
that can be launched for a given grid setup (see discussion in strong scaling tests of
§3.4). Hence, in GR-Athena++ it is more efficient to partition the mesh with many
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Table 4.1: Recap of MeshBlock number for the calibration runs of
§3.3.2 and corresponding number of GPUs required for such simulations
according to Eq. 4.3. Different MeshBlock sizes nMB are considered.
Dashes correpond to impossible configurations, while entries that have
not been considered are marked with "?". Highlighted in bold are the

entries that are more relevant and discussed in the main text.

nMB 16 24 32
nM #MB #GPUs #MB #GPUs #MB #GPUs
64 1184 1 - - ? ?
96 5144 2 1184 1 1224 1
128 6336 2 - - 1184 1
192 22392 5 6336 3 ? ?
256 50688 10 - - 6336 6
384 175104 35 50688 22 ? ?

small MeshBlocks to be able to employ many threads, rather than having fewer large
MeshBlocks. In this case, a fixed choice of nMB regardless of the value of nM is good,
because this implies that for increasing resolution the number of MeshBlocks increases
and the number of threads can also be increased accordingly.

In GR-AthenaK, parallelism is based on the multi-index loops and the number of
threads that can be launched is limited only by the number of grid points to be
updated. Here, having many small MeshBlocks implies that a large number of ghost
points are stored, increasing the required memory, that rapidly becomes prohibitive for
runs on GPUs. In this case, adapting the MeshBlock size to the resolution is beneficial
for better performances and for the feasibility of higher resolution runs.

For instance, in the calibration run nM = 64, nMB = 16 the initial mesh in
GR-Athena++ is partitioned into

(
64
16

)3
= 64 MeshBlocks, which results in a total

of 1184 MeshBlocks (see Tab. 4.1). According to Eq. 4.3, it is feasible to perform
this simulation on 1 GPU (assuming Ampere GPU 80GB). Analogously, for nM = 96,
2 GPUs would be required to handle the 5144 MeshBlocks generated in this case.
However, by setting nMB = 24 the total number of MeshBlocks is reduced to 1184,
and the simulation can be performed on a single GPU. Similary, the higher resolution
run with nM = 128 can be performed on one GPU, provided that nMB = 32, (see
columns 5-6 of Tab. 4.1). Finally, it is possible to run the simulation nM = 192 on 3
GPUs if nMB = 48, nM = 256 on 5 GPUs with nMB = 64 and nM = 384 on 14 GPUs
with nMB = 96, compared to 5 GPUs, 10 GPUs, 35 GPUs respectively that would be
required by selecting nMB = 16.
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Conclusion

In the first part of this Dissertation, results from NR simulations are used to produce
models to characterize the remnant BH of BHNS mergers. These are demonstrated to
be crucial for GW modeling and observations. In the context of BNS mergers, the sys-
tematic study of the evolution of a binary in different setups highlights the importance
of high resolution simulations and advanced input physics to make reliable astrophys-
ical predictions based on NR. On the other hand, the feasibility of high-resolution
simulations that include advanced physics treatments is limited by the consequent in-
crease of computational cost and execution time. To perform such simulations new
NR codes, capable of efficiently making use of the latest many-core hardware infras-
tructures, are needed. In the second part of this Dissertation the new oct-tree based
spacetime solver GR-Athena++ is presented, demonstrating its correctness with cross-
code comparisons and convergence tests. GR-Athena++ represents a promising tool to
overcome the limitations mentioned above, showing excellent scalability properties up
to ∼O(105) cores. Lastly, the development of the first performance-portable spacetime
solver GR-AthenaK is discussed; the latter is a version of GR-Athena++ based on the
Kokkos framework, and can be compiled virtually for any hardware architecture, in-
cluding heterogeneous platforms. Full 3D spacetime simulations run on a single GPU
demonstrate speedup ∼50 compared to the same simulations run with GR-Athena++

on a single CPU core.

Remnant BH of BHNS mergers The application of the remnant model on syn-
thetic populations of BHNS indicates that light and moderately spinning BH rem-
nants surrounded by low-mass accretion discs are the most likely outcome for BHNS
if Λ ≲ 1000 and the BH has aligned spin aBH ≲ 0.75. The observation of GW170817
rules out NSs with Λ ≳ 1800 (≳ 2600) for the low-(high-)spin prior cases [17]. Simi-
larly, large aligned BH initial spins are disfavoured by current GW observations [178].
BHNS mergers are not expected to be accompanied by bright EM counterparts, since
remnant discs large enough to power a SGRB are found to be rare from this analysis,
unless BHNSs are characterized by large and aligned BH initial spins, very stiff EOS



98 Conclusion

and/or compact objects with mass 2 − 5M⊙ (i.e. within the mass gap suggested by
X-ray binaries). The BH remnant model constructed in this work is a key building
block of GW models for BHNSs [72, 130, 168]; notably, the extension of TEOBResumS

in [72] is the first GW model for BHNS mergers with higher modes and spin preces-
sion effect. GW models based on the remnant model of this work [130, 168] have
been used to characterize the sources of the signals GW200105 and GW200115 [45],
under the hypothesis of BHNS mergers. For GW200105, the remnant mass and spin
resulted as M• = 10.4+2.7

−2.0 and a• = 0.43+0.04
−0.03, while for GW200115, M• = 7.8+1.4

−1.6 and
a• = 0.38+0.04

−0.02.

Impact of input physics and resolution on BNS merger simulations This
work represents the first systematic study of the impact of different neutrino treatments
(namely LK, M0 and M1 schemes), turbulent viscosity and finite grid resolution on
the computation of multi-messenger observables from BNS merger simulations. The
overall dynamics and thermodynamics of the system are robust, implying that the
maximum remnant density can be inferred from GW observations. However, the time
of BH collapse varies significantly with the grid resolution. Viscosity tends to stabilize
the remnant NS, in agreement with previous findings. Differently from recent work,
possible signatures of out-of-thermodynamical equilibrium effects are identified in the
GW only at the highest resolutions considered; new high-resolution simulations will
be thus required to build accurate GW templates to observe these effects. Differ-
ent neutrino schemes impact significantly the mass, geometry and composition of the
remnant’s disc and ejecta. M1 simulations show systematically larger proton fractions,
reaching maximum values ≳ 0.4. r-process nucleosynthesis yields reflect the different
ejecta compositions, and are robust only if both neutrino emission and absorption are
simulated. Nuclear abundances obtained adopting M0 or M1 neutrino schemes are in
agreement with the solar residual pattern, unlike the ones obtained with LK scheme,
which are smaller for elements with A ≲ 130. Kilonova light curves computed with
spherically-symmetric radiation-hydrodynamics evolutions up to 15 days post-merger
are mostly sensitive to the ejecta mass and electron fraction. Accounting for multiple
ejecta components appears necessary for reliable predictions.

This work indicates that advanced neutrino transport schemes are absolutely nec-
essary in future long-term disc evolutions, and LK schemes should be abandoned. At
the same time, post-merger simulations at maximum mesh resolutions above 200 m
are insufficient to deliver quantitative results for astrophysical predictions. Advanced
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neutrino schemes, like the M1, and sub-grid-MHD effects are demonstrated to be nec-
essary ingredients for accurate predictions of the winds from long-term post-merger
simulations and, ultimately, for more complete understanding of the EM counterparts
to BNS mergers.

GR-Athena++ In this work GR-Athena++ is presented, a new high-performance space-
time solver with block-based AMR, built on top of Athena++. The correctness of the
code is assessed through cross-comparisons of full 3D BH evolutions against anal-
ogous results obtained with the benchmark code BAM; these tests include a single
spinning puncture evolution and the BBH inspiral calibration problem of Brügmann
et al. [273]. Additionally, 4th and 6th order convergence is demonstrated with series
of BBH mergers with full AMR. As an independent test, a quasi-circular ten orbit
BBH inspiral with the parameters of Hannam et al. [310] is performed. The resulting
generated waveforms are compared against waveforms computed with the GW model
TEOBResumS [146], obtaining accumulated phase differences between the two wave-
forms of the order of ∼0.1 rad to merger and ∼0.4 rad to the ringdown phase for the
highest resolution GR-Athena++ run. These tests prove that GR-Athena++ is accurate
and robust for BBH inspiral calculations and capable of providing high-quality data
for waveform modeling. The impressive scalability properties of Athena++ are main-
tained in GR-Athena++, which demonstrates strong scaling efficiencies above 95% for
up to ∼1.2×104 cores, whereas in weak scaling tests almost perfect scaling is achieved
up to ∼105 cores. For the high resolutions and consequent resources required for a po-
tential calculation describing an intermediate mass ratio BBH inspiral, GR-Athena++
scalability properties compare favorably with the code-base of Dendro-GR [280].

GR-AthenaK GR-AthenaK is the first performance-portable spacetime solver, obtained
by refactoring GR-Athena++ with Kokkos. The comparison of full 3D BH evolutions
against the benchmark code GR-Athena++ demonstrates the correctness of GR-AthenaK
at floating point level. Expected 2nd order convergence is shown in full SMR runs
executed on GPUs. Comparing performances of a 3D SMR BH run on a single GPUs
to the analogous run executed with GR-Athena++ on a single core, a speedup ∼50 is
obtained. However, a speedup of ∼150 is achieved comparing GR-AthenaK on 1 GPU
vs. GR-AthenaK on 1 CPU core. This translates into 2.28 × 106 cell-updates/s for
GR-AthenaK, against 4.19× 104 cell-updates/s of GR-Athena++ for the same problem.
Finally, by conveniently tuning the partition of the mesh grid, it is possible to execute
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Figure 4: Example of an AMR spherical grid produced with Athena++,
with geometric spacing along the radial coordinate. Such grids are well-

suited to track the ejecta of BNS and BHNS mergers.

BBH simulations on O(1) GPUs for medium-high resolution and O(10) GPUs for very
high resolution runs.

Outlook and future work The beginning of the new GW observing run O4 is
planned in May 2023 and will be carried out collaboratively by LIGO’s detectors,
Virgo’s detector in Italy and KAGRA’s detector in Japan. LIGO and Virgo project
sensitivity goals for BNS mergers of 160-190 Mpc and 80-115 Mpc, respectively. Im-
proved GW models for CB mergers are necessary for this incoming campaign.

TEOBResumS is one of the most advanced GW models for BHNS mergers and will
be crucial for off-line parameter estimation of such events. The accuracy of this model
is currently limited by the lack of available simulations. The model would benefit from
NR data covering the BHNS parameter space in the regions ν ≳ 0.83, aBH ≲ 0 and
Λ ≳ 4000 [72]. One possibility to perform such simulations is offered by interfacing
the recently available BHNS initial data solver Elliptica [320] to GR-Athena++. This
would allow on the one hand to produce high-quality waveforms and on the other
hand to study remnant discs and matter ejection in BHNS merger simulations taking
advantage of the flexibility offered by the GR-Athena++ AMR, as explained below.

The development of the matter sector of GR-Athena++ is currently ongoing, to-
gether with efforts towards the inclusion of magnetic fields [321] and advanced neu-
trino transport using the M1 scheme of Radice et al. [194]. The goal is to achieve
high-resolution, multi-physics, long-term NR simulations of BNS mergers that can
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capture their full complexity. The AMR of GR-Athena++ offers greater flexibility in
conducting these simulations, allowing to better resolve disc and to track the ejecta
by locally increasing the grid resolution with e.g. a density-based AMR criterion.
Additionally, Athena++ provides the option for using spherical grids with geometric
spacing which are well suited for following the long-term ejecta evolution. A visual
example of such grids is given in Fig. 4. In the near future, it is expected that these
advancements will enable detailed simulations of BNS mergers within GR-Athena++,
allowing accurate predictions of EM counterparts and r-process nucleosynthesis.

Currently, the AMR infrastructure for AthenaK is being developed by the authors
of the code. The other missing aspects for stable BBH evolutions concern the treat-
ment of BC and the implementation of high-order restrict/prolong operators. One
example of an immediate physical application of GR-AthenaK will be the simulation
of intermediate mass ratio BBH coalescence up to a mass ratio of 1:1000 [322]. The
latter is a very computationally demanding problem, but it is of increasing relevance
because such events are expected to fall in the sensitivity band of LISA [323].
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Appendix A

Numerical Relativity

This Appendix recaps the key concepts of NR, which is the fundamental tool employed
in this Dissertation. Throughout this Appendix geometric units G = c = 1 are used;
indices denoted with greek letters run from 0 to 3, while indices denoted with latin
letters from 1 to 3; Einstein summation convention is used for the sum on repeated
indices.

A.1 3+1 decomposition of spacetime

A key feature of the EFE (Eqs. (1)) is that they are fully covariant, and there is no
distinction between space and time. However, to be able to evolve spacetime in order
to make predictions it is necessary to refactorize such equations as a Cauchy problem,
in which a set of initial data and appropriate boundary conditions for the gravita-
tional field can be specified initially and then evolved in time. This requires making a
clear separation between space and time. One of the most popular approaches to this
problem is the 3+1 formalism, [302, 324, 325]. In the following, only spacetimes with
metric gµν that are globally hyperbolic, i.e. that admits a Cauchy surface are con-
sidered. Such spacetimes can be completely foliated into three-dimensional spacelike
hypersurfaces usually labeled as Σt, where t is a parameter that can be considered a
universal time function. Considering two close hypersurfaces Σt and Σt+dt, the space-
time is locally characterized by three quantities. First, the three-dimensional metric
γij, that defines proper distances on a given hypersurface dl := γijx

ixj; second, the
lapse function α(t, xi), which gives the proper time dτ := α(t, xi)dt measured by Eu-
lerian observers, i.e. observers moving in the normal direction to hypersurfaces; third,
the shift vector βi(t, xi), which is the velocity between Eulerian observers and the lines
of constant spatial coordinates xit+dt := xit − βi(t, xi)dt. Because α and βi contain the
information about the choice of coordinates, they play the role of gauge functions, and
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can be freely specified. This encodes the fact that EFE are invariant under a change
of coordinates. The expression of the spacetime metric in terms of α, βi and γij reads

gµν =

(
−α2 + βkβ

k βi

βj γij

)
(A.1)

while the unit normal vector to Σt can be expressed as

nµ =
(
1/α,−βi/α

)
(A.2)

A.1.1 Spacetime evolution and constraint equations

In order to find the evolution equations, the concept of extrinsic curvature is needed.
This is a measurement of the change of the normal vector under parallel transport
within an hypersurface. Defining the projector operator onto hypersurfaces

Pα
β := δαβ + nαnβ , (A.3)

the extrinsic curvature tensor is defined as

Kµν := −Pα
µ∇αnν . (A.4)

The extrinsic curvature tensor is purely spatial by definition and also symmetric, i.e.
Kµν = Kνµ. It can be shown that Kµν corresponds to a sort of velocity of the spatial
metric as seen by an Eulerian observer, i.e.

Kµν = −1

2
Lnγµν (A.5)

where Ln denotes the Lie derivative with respect to the unit normal vector. From
here the evolution equations for the spatial metric in the coordinates adapted to the
foliation can be derived, which read

∂tγij = −2αKij +Diβj +Djβi , (A.6)

where Di denotes the covariant derivative associated to γij. The latter equations
are purely kinematic and were obtained purely from geometrical considerations. The
actual spacetime dynamics are encoded in the EFE, which give the evolution equations
for Kij.
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To rewrite the EFE in the 3+1 formalism, the first step is to project the intrinsic
curvature described by the Riemann tensor Rαβγδ onto the hypersurfaces Σt. The
projections Pα

λ P
β
ρ P

γ
σP

δ
ηRαβγδ and Pα

λ P
β
ρ P

γ
σ n

δRαβγδ lead respectively to the Gauss-
Codazzi and Codazzi-Mainardi equations. Combining such equations with the EFE
gives respectively the following equations, written here in the coordinates adapted to
the foliation:

(3)R+K2 −KijK
ij = 16πρADM (A.7a)

Dj

(
Kij − γijK

)
= 8πji (A.7b)

where (3)R is the Ricci scalar (3)Rij(3)Rij calculated with γij, K is the trace of the
extrinsic curvature and ρADM := nµnνTµν , ji := −P iµnνTµν are respectively the lo-
cal energy and momentum measured by Eulerian observers. The key feature of the
4 equations Eqs. (A.7) is that they do not contain the lapse and the shift function.
Thus, they do not give information about the evolution of the system but they must
be satisfied at all times during evolution and are known as constraint equations. In
particular, the first row and the second row are respectively the Hamiltonian and
momentum constraints. The 6 evolution equations for the extrinsic curvature are ob-
tained by combining the projection Pα

λ P
β
ρ n

γnδRαβγδ together with the Gauss-Codazzi
equations and the EFE. In the coordinates adapted to the foliation the result is

∂tKij = βk∂kKij +Kki∂jβ
k +Kkj∂iβ

k −DiDjα

+ α
[
(3)Rij +KKij − 2KikK

k
j

]
+ 4πα [γij (SADM − ρADM)− 2Sij] ,

(A.8)

where SADMαβ := P µ
αP

ν
β Tµν and SADM := Sµ

ADMµ. Eqs. (A.8), together with Eqs.
(A.6), allow one to rewrite the EFE as a Cauchy problem. The result is a system
of partial differential equations that is first order in time and second order in space,
and is therefore suitable for numerical evolution. Note that there are no evolution
equations for α and βi because these are gauge functions that can be freely specified.
The evolution equations Eqs. (A.6) and (A.8) are known as standard ADM equations
and arise from a non trivial rewriting of the original ADM equations developed in [326]
due to York [302].

A.2 The Z4c formulation of EFE

It turns out that the standard ADM equations are not well posed, and their numerical
evolution present violent instabilities in many cases. However, the 3+1 evolution
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equations obtained above are not unique, because it is always possible to obtain new
valid equations by adding multiples of the constraint equations to them. The resulting
equations will be mathematically different from the starting equations, but they will
still describe the same spacetime. This non uniqueness is key in the development
of the BSSNOK formulation of the EFE [327–329], which is based on the conformal
decomposition of the spacetime metric and promotion of conformal Christoffel symbols
to evolved variables, and has been proven to be particularly robust for many different
spacetimes, with and without the presence of matter. Another approach is the so-called
Z4 formulation [330], in which an auxiliary dynamical vector field Zα is included in
the EFE, improving the mathematical properties of their 3+1 decomposition at the
cost of adding a new constraint equation for this field. One of the most popular
approaches used nowadays is based on the Z4c formulation [296, 331–333] and combines
the strengths of BSSNOK and Z4 [288], as discussed below. The Z4c approach is used
in most of the codes considered in this Dissertation, with the exception of Chapter
1. The data used in the latter were produced with the SACRA code [147], which
implements the BSSNOK formulation of the EFE.

A.2.1 The Z4c equations

The constraint damped Z4 formulation [330, 334, 335] replaces the EFE by

Rαβ+∇αZβ+∇βZα = 8π

(
Tαβ −

1

2
gαβT

)
+κ1 [tαZβ + tβZα − (1 + κ2)gαβtcZ

c] (A.9)

where Zα is an additional field, tα is a timelike vector field and κ1, κ2 are constraint
damping parameters. Solutions of Eq. (A.9) are also solutions of the original EFE if
the constraint Zα = 0 is satisfied.

In order to obtain stable evolution equations, the following definitions are used.
First of all, Zα is decomposed as

Θ := −nαZ
α, Zi := Pα

i Zα ; (A.10)

Next, as in the BSSNOK formulation, a conformal decomposion of the 3-metric and
of the extrinsic curvature is introduced, via the so-called conformal factor ψ := γ1/12,
where γ := det γij:

γ̃ij := ψ−4γij, Ãij := ψ−4

(
Kij −

1

3
Kγij

)
; (A.11)
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where the quantity Ãij represents the conformally-rescaled trace-free part of Kij. Fur-
thermore, the following quantities come into play

χ := γ−1/3, K̂ := K − 2Θ,

Γ̃i := 2γ̃ijZj + γ̃ij γ̃kl∂l[γ̃jk], Γ̂i := γ̃jkΓ̃i
jk;

(A.12)

where Γ̃i
jk is the Christoffel symbols of the conformal metric and the definition of

χ implies that χ = ψ−4. Finally, using these definition, Eqs. (A.9) can be 3+1
decomposed considering the set of dynamical variables

(
χ, γ̃ij, K̂, Ãij, Θ, Γ̃

i
)
. The

result of this procedure is the Z4c system of equations, which reads:

∂tχ =
2

3
χ
[
α(K̂ + 2Θ)− ∂iβi

]
+ βi∂iχ , (A.13a)

∂tγ̃ij =− 2αÃij + βk∂kγ̃ij −
2

3
γ̃ij∂kβ

k

+ 2γ̃k(i∂j)β
k ,

(A.13b)

∂tK̂ =−DiDiα + α

[
ÃijÃ

ij +
1

3
(K̂ + 2Θ)2

]
+ βi∂iK̂ + ακ1(1− κ2)Θ + 4πα[SADM + ρADM] ,

(A.13c)

∂tÃij = χ[−DiDjα + α(Rij − 8πSADM ij)]
TF

+ α[(K̂ + 2Θ)Ãij − 2Ãk
iÃkj] + βk∂kÃij

+ 2Ãk(i∂j)β
k − 2

3
Ãij∂kβ

k ,

(A.13d)

∂tΘ =
α

2

[
H̃ − 2κ1(2 + κ2)Θ

]
+ βi∂iΘ , (A.13e)

∂tΓ̃
i =− 2Ãij∂jα + 2α

[
Γ̃i

jkÃ
jk − 3

2
Ãij∂j[ln(χ)]

− κ1(Γ̃i − Γ̂i)− 1

3
γ̃ij∂j[2K̂ +Θ]− 8πγ̃ijSADM j

]
+ γ̃jk∂k∂jβ

i +
1

3
γ̃ij∂j∂kβ

k

+ βj∂jΓ̃
i − Γ̂j∂jβ

i +
2

3
Γ̂i∂jβ

j .

(A.13f)

where SADM i := ji defined below Eq. (A.7) and [. . . ]TF means that one has to compute
the trace-free part of the expression in parentheses. Moreover, parentheses enclosing
indexes mean that symmetrization is performed over such indexes.
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The Ricci tensor appearing in Eqs. (A.13d) is decomposed as follows:

Rij =R̃χ
ij + R̃ij, (A.14)

where in terms of the covariant derivative D̃i compatible with γ̃jk the two terms read

R̃χ
ij =

1

2χ

[
D̃iD̃jχ+ γ̃ijD̃

lD̃lχ−
1

2χ
D̃iχD̃jχ

]
− 3

4χ2
D̃lχD̃lχγ̃ij ,

(A.15)

R̃ij =−
1

2
γ̃lm∂l∂mγ̃ij + γ̃k(i∂j)Γ̃

k + Γ̂kΓ̃(ij)k

+ γ̃lm(2Γ̃k
l(iΓ̃j)km + Γ̃k

imΓ̃klj).
(A.16)

As already mentioned, the 3+1 decomposition of EFE includes the constraint equa-
tions, which must be satisfied at all times during the evolution. However, a common
approaches is to carry out free evolutions, in which the constraints are used to as-
sess the quality of the numerical calculations. The dynamical constraints in terms of
transformed variables (H̃, M̃i, Θ, Z

i) read:

H̃ := R− ÃijÃ
ij +

2

3

(
K̂ + 2Θ

)2 − 16πρADM = 0, (A.17a)

M̃j :=D̃iÃ
i
j −

3

2
Ãi

j∂i[ln(χ)]

− 2

3
∂j[K̂ + 2Θ]− 8πSADM j = 0,

(A.17b)

Θ = 0, Z i = Γ̃i − Γ̂i = 0. (A.17c)

Additionally, the definitions of Eqs. (A.11) and Eqs. (A.12) imply that the following
algebraic constraints must be satisfied:

ln(det γ̃) = 0, γ̃ijÃij = 0 . (A.18)

To ensure consistency and stable evolution, the latter need to be continuously enforced
during numerical evolution [288].
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A.2.2 Gauge choice and hyperbolicity

The gauge functions α and βi can be freely specified in principle, as already mentioned
in §A.1.1. However, Ref.[331] shows that the Z4c system is strongly hyperbolic, i.e.
it admits a first-order strongly hyperbolic reduction [336, 337] when coupled with the
puncture gauge condition. The latter consists of the Bona-Másso lapse [338] and the
gamma-driver shift [339]:

∂tα = −µLα
2K̂ + βi∂iα ,

∂tβ
i = µSα

2Γ̃i − ηβi + βj∂jβ
i .

(A.19)

A common choice is to specify the 1 + log lapse µL = 2/α, together with µS = 1/α2.
Initially a “precollapsed” lapse and zero-shift is set:

α|t=0 = ψ−2
∣∣
t=0

, βi
∣∣
t=0

= 0; (A.20)

where the choice is motivated by a resulting reduction in initial gauge dynamics [55].
The shift damping parameter η in Eq.(A.19) reduces long-term drifts in the metric
variables [339] and effectively magnifies the spatial resolution near a massive feature,
thus reducing the noise in its local motion and extracted gravitational waveforms [273].
A common choice that leads to successful time evolution of BBH of comparable masses
[273] and improves stability in general [288] is η = 2/M , where M is the total ADM
mass [326] of the system.

A.3 General relativistic hydrodynamics

In order to simulate the dynamics of compact objects such as NSs, a formulation for
GRHD that is consistent with the Z4c system is needed. Matter is considered a perfect
fluid composed of a single particle species, described by the stress-energy tensor

Tαβ = ρhuαuβ + pgαβ . (A.21)

In the latter expression, ρ is the rest-mass density of the fluid, h := 1 + ϵ + p/ρ

is the specific enthalpy, ϵ is the specific internal energy, p is the pressure and uα is
the 4−velocity of the fluid, normalised as uαuα = −1. The total energy density is
e = ρ (1 + ϵ). The GRHD evolution equations for a perfect fluid follow from the local
conservation law of Tαβ, the conservation of the baryon number and the EOS of the



110 Appendix A. Numerical Relativity

fluid, which read respectively:

∇αT
αβ = 0, (A.22)

∇α (ρu
α) = 0, (A.23)

P (ρ, ϵ) = p. (A.24)

The first step to obtain a system of evolution equations is to define the conservative
variables q⃗ :=

√
γ (D, Sk, τ) where D := Wρ is the rest-mass density of the fluid,

Sk := W 2ρhvk is the momentum density and τ := (W 2ρh− p) − D = ρADM − D is
the internal energy. All these quantities are defined for Eulerian observers. In these
definitions, vi := ui/W+βi/α is the fluid velocity in the reference frame of the Eulerian
observer and W = 1/

√
1− γijvivj is the Lorenz factor between the fluid frame and

the Eulerian observer. Now, Eqs. (A.22) and (A.23) can be written in first-order
flux-conservative form [340] as

∂tq⃗ + ∂if⃗
i (q⃗) = s⃗ (q⃗) . (A.25)

f⃗ i represent the fluxes, which read

f⃗ i =
√−g


D
(
vi − βi

α

)
Sk

(
vi − βi

α

)
+ pδik

τ
(
vi − βi

α

)
+ pvi

 (A.26)

and s⃗ are the source terms

s⃗i =
√−g

 0

T αβ
(
∂αgβk − Γδ

αβgδk
)

α
(
T α0∂α lnα− T αβΓ0

αβ

)


=
√−g

 0

T 00
(
1
2
βiβj∂kγij − α∂kα

)
+ T 0iβj∂kγij + T 0

i ∂kβ
i + 1

2
T ij∂kγij

T 00 (βiβjKij − βi∂iα) + T 0i (2βjKij − ∂iα) + T ijKij


(A.27)

where g := det gαβ. Note that both s⃗ and f⃗ i depend on the so-called primitive variables
w⃗ := (p, ρ, ϵ, vi). Eq. (A.25) implies the conservation of the rest mass (also known as
baryonic mass) Mb

Mb :=

∫
d3xq0 =

∫
d3x
√
γD . (A.28)



A.3. General relativistic hydrodynamics 111

The ADM matter variables defined in the previous two sections are given by the
expressions

ρADM = τ +D, Si
ADM = Si, Sij

ADM = ρhW 2vivj + γijp . (A.29)

The system (A.25) is strongly hyperbolic if the EOS Eq. (A.24) is causal, i.e. the
speed of sound cs :=

(
∂P
∂ρ

+ P
ρ2

∂P
∂ϵ

)
1
h

is smaller than c [340]. The EOS describes the
properties of the NS fluid. The simplest example of EOS is the polytropic EOS,
which is of the form P (ρ) = KρΓ, where K and Γ are known as polytropic constant
and adiabatic index, respectively. Assuming that for a NS in equilibrium the matter
is in hydrostatic and thermodynamic equilibrium, highly degenerate and cold, it is
appropriate to describe the fluid composing the NSs with polytropic EOSs. In the
literature the NS matter for BNS merger simulations has been widely described with
piece-wise polytropic EOSs, in which the parameters K and Γ above assume different
values for different density ranges. The assumption of cold matter is not anymore
appropriate when the two NSs collide, and finite-temperature EOSs ought to be used
for more realistic simulations.
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Appendix B

Gravitational wave extraction

In GR-Athena++, GW extraction is performed by first calculating the Weyl scalar
Ψ4, i.e. the projection of the Weyl tensor onto an appropriately chosen null tetrad
k, l,m, m̄. Following the definitions in Brügmann et al. [273]:

Ψ4 = −Rµνρσk
µm̄νkρm̄σ, (B.1)

where the Riemann tensor is used instead of the Weyl tensor because GWs are ex-
tracted in vacuum. The 4D Riemann tensor is constructed from 3 + 1 split ADM
variables using the Gauss-Codazzi relations as detailed in Brügmann et al. [273]. The
null tetrad is computed starting from a purely spatial coordinate basis:

ϕi =(−y, x, 0), ri =(x, y, z), θi =ϵiklϕ
krl ; (B.2)

which is then Gram-Schmidt orthonormalised. The components of the newly formed
orthonormal, spatial triad are extended to 4-vectors with 0th components set to 0. The
null tetrad is finally constructed as:

k =
1√
2
(n− r̂), l =

1√
2
(n+ r̂);

m =
1√
2
(θ̂ + iϕ̂), m̄ =

1√
2
(θ̂ − iϕ̂); (B.3)
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where nµ is the normal vector defined in Eq. (A.2). The Weyl scalar is then decomposed
in multipoles onto spherical harmonics of spin-weight s = −2 as follows1:

ψℓm =

∫ 2π

0

∫ π

0
−2Y ℓmΨ4 sinϑdϑdφ, (B.4)

−2Yℓm =

√
2ℓ+ 1

4π
dℓm(ϑ)e

imφ, (B.5)

dℓm(ϑ) =

k2∑
k=k1

(−1)k((ℓ+m)!(ℓ−m)!(ℓ− 2)!(ℓ+ 2)!)1/2

(ℓ+m− k)!(ℓ− k − 2)!k!(k −m+ 2)!

×
(
cos

(
ϑ

2

))2ℓ+m−2−2k (
sin

(
ϑ

2

))2k−m+2

(B.6)

k1 = max(0,m− 2), (B.7)

k2 = min(ℓ+m, ℓ− 2). (B.8)

The modes of the gravitational wave strain hℓm are computed from the Weyl scalar
Ψ4 projected on coordinate spheres and decomposed in s = −2 spin weighted spherical
harmonics, ψℓm by solving

ψℓm = ḧℓm , (B.9)

using the method of [311]; the strain is then given by the mode-sum:

R (h+ − ih×) =
∞∑
ℓ=2

ℓ∑
m=−ℓ

hℓm(t) −2Yℓm(ϑ, φ) . (B.10)

where R is the finite radius at which GWs are extracted. Following the convention
of the LIGO algorithms library [342, 343], the GW amplitude and phase are defined
through

Rhℓm = Aℓm exp(−iϕℓm), (B.11)

and the correspondent pulsation and frequencey are, respectively ωℓm = dϕℓm/dt,
fℓm = ωℓm/2π.

1The convention here is that of Goldberg et al. [341] up to a Condon-Shortley phase factor of
(−1)m.
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Geodesic spheres

The computation of several quantities of interest such as GW extraction in spacetime
evolutions, requires integration over spherical surfaces. Typically, the most common
coordinatization for a 2-sphere S2

R consists in working in polar spherical coordinates
and uniformly sampling the the polar and azimuthal angles. This procedure, though,
has the undesirable effects of leading to clustering of points towards the poles.

In GR-Athena++ triangulated geodesic spheres are used. A geodesic sphere QR of
radius RQ may be viewed as the boundary of a convex polyhedron embedded in R3

with triangular faces, which is homeomorphic to S2
R. Increasing the number of vertices

of a geodesic sphere leads to more accurate approximantions to S2
R, as depicted in

Fig. C.1.
The construction of geodesic grids used in GR-Athena++ starts from a regular icosa-

hedron with 12 vertices and 20 plane equilateral triangular faces, embedded in a unit
sphere. The initial icosahedron is then refined using the “non-recursive” approach
outlined in Wang and Lee [344]. Considering one of the equilateral triangles that con-
stitute the surface of the icosahedron, each side of the triangle is split into nQ equal
segments. The partitioning points on each side of the triangle are then connected with
straight lines parallel to the sides of the initial triangle and the result is that the initial
plane equilateral triangle is divided into n2

Q smaller equilateral triangles. The vertices
of such partitioning triangles are then projected onto the unit sphere, and together
with the original 12 vertices of the icosahedron they form the convex polyhedron used
as a grid. The resulting polyhedron has 10n2

Q+2 vertices, in which the physical quan-
tities to be integrated are defined. The left panel of Fig. C.1 shows a grid consisting of
92 vertices, corresponding to nQ = 3, while the right panel shows the grid consisting
of 9002 vertices (nQ = 30) that is typically used in production runs.

Integrals on the sphere are computed with numerical quadratures. For geodesic
spheres, this is done as follows. Each grid point is a shared corner among 6 (or
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Figure C.1: Structure of the geodesic grid used by GR-Athena++. Left
panel: low resolution example with 92 vertices. Right panel: a grid used

for GW extraction in production simulations (9002 vertices).

5, as explained below) triangles. A solid angle is associated to each grid point by
constructing cells formed by connecting the circumcenters of all the triangles that
share the target vertex point. The resulting cells (called Voronoi cells) are mostly
hexagons, except the ones corresponding to the 12 vertices of the original icosahedron,
which have only five neighbors and are therefore pentagons; the total number of cells
coincides with the total number of vertices, i.e. 10n2

Q+2. The solid angles subtended by
the cells at the center of the sphere are used as weighting coefficients when computing
the averages. The logical connection between the neighboring cells is implemented as
described in Randall et al. [345].

Using geodesic grids ensures more even tiling of the sphere compared to the uniform
latitude-longitude grid of similar resolution. This might have an impact when com-
paring the two methods of calculation of quantities on the sphere. However, possible
discrepancies are expected to converge away with spherical grid resolution.
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Input physics in WhiskyTHC

In WhiskyTHC the proton and neutron number densities np and nn are evolved sepa-
rately according to

∇a(J
a
p,n) = Rp,n (D.1)

where Ja
p,n := np,nu

a is the four-current associated to np,n and Rp = −Rn is the
net lepton number deposition rate due to absorption and emission of neutrinos and
antineutrinos. nb denotes the total baryon number density, such that nb = np + nn

while Ye is the electron fraction, defined as the net number density of electrons and
positrons, normalised to nb. Under the assumption of charge neutrality, np = Yenb.
The expressions for Rp,n depend on the particular neutrino treatment employed, which
will be discussed in this appendix.

D.1 Neutrino schemes

In the work of Chapter 2, weak interactions and neutrino radiation are simulated
with three different schemes, namely the LK scheme, the M0 scheme (which is always
coupled with the LK scheme), and the M1 transport scheme. In all schemes, three
different neutrino species are explicitly modelled: νe, ν̄e, and νx, where the latter
represents a collective species describing heavy flavour neutrinos and antineutrinos.
Moreover, all schemes are grey, i.e. the explicit dependence on the neutrino energy is
integrated out for all the relevant quantities.

Neutrino LK scheme The LK scheme [221, 348] accounts for the net emission of
neutrinos that are produced as a result of weak interactions happening during and
after the NS collision. The reactions that are typically considered are summarised in
Tab. D.1. Due to the large variety of conditions experienced by matter in BNS mergers,
neutrinos that are produced in the process can be roughly divided in two components.
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Table D.1: List of weak reactions typically considered in WhiskyTHC. ν
denotes a generic neutrino species amongst electron neutrino νe, electron
antineutrino ν̄e or heavy flavour neutrinos νx. The latter is an effective
neutrino species containing muon and tau neutrinos and their antineu-
trinos collected together. N and A indicate respectively nucleons and

generic nuclei.

Reaction Reference
νe + n↔ p+ e− [346]
ν̄e + p↔ n+ e+ [346]
e+ + e− → ν + ν̄ [180]
γ + γ → ν + ν̄ [180]
ν +N → ν +N [180]

N +N → ν + ν̄ +N +N [347]
ν + A→ ν + A [15]

A first component gets trapped in the high-density and optically thick regions of the
NS remnant, with the possibility of diffusing out on the diffusion timescale. Such
component is close to thermodynamical and weak equilibrium with matter. A second
component streams freely from the low-density, optically thin regions, with a small
probability to further interact with the surrounding matter. The LK scheme uses a
phenomenological formula to interpolate between the diffusion rate and the production
rate, where the former (latter) is the relevant one in optically thick (thin) conditions.
The scheme crucially relies on the evaluation of the optical depth inside the com-
putational domain. The resulting effective rates correspond to neutrinos leaving the
system, carrying away energy and lepton number. In particular, the particle emission
rates correspond to the rates appearing on the right-hand side of Eq. (D.1), while the
total energy emission rate, Q, is included in the simulations as a source term in the
Euler equations

∇bT
ab = Qua . (D.2)

Technical details on the numerical schemes employed for the discretization of Eq. (D.1)
and Eq. (D.2) can be found in Radice et al. [96]. Such a LK scheme catches the essential
cooling effect in NS matter provided by the emission of neutrinos. Moreover, it also
affects the matter composition by allowing the conversion of neutrons into protons,
and viceversa. However, neutrinos are not explicitly transported and the possible
interaction of streaming neutrinos with matter in optically thin condition is neglected.
Additionally, no neutrino trapped component is explicitly modelled in it (i.e., neutrino
radiation is not included in the stress-energy tensor), since the density of particles
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and energy of equilibrated neutrinos are used only to compute the diffusion rates.
The non-inclusion of a neutrino trapped component in the remnant NS excludes the
correct modelling of out-of-equilibrium effects that might manifest due to the transition
from a neutrino-less beta equilibrium to a new equilibrium state with the presence of
neutrinos. Moreover, the formation and presence of a trapped neutrino gas might
change the pressure in the remnant and therefore potentially have an impact on its
stability [82].

Neutrino reabsorption: LK+M0 and M1 schemes The interaction of the free-
streaming neutrino component with matter in optically thin conditions can be sim-
ulated in WhiskyTHC using the M0 scheme, as described in Radice et al. [221]. The
M0 scheme accounts for possible re-absorption of the emitted neutrinos, as computed
by the LK scheme, and the consequent change in matter’s composition (i.e., Ye) and
temperature. In the simulations of Chapter 2, the M0 scheme is implemented on a
spherical grid centred at the centre of the computational grid, with outer radius ∼756
km.

A more appropriate way to include neutrinos in the simulations is the M1 scheme,
which is an approximated approach to neutrino transport that applies to neutrino radi-
ation in all relevant regimes. The Boltzmann equations describing neutrino transport
are first cast into a system of 3+1 equations, similar to the hydrodynamics equations,
using a moment-based approach [349, 350]. The resulting equations are then evolved
consistently to the hydrodynamics and spacetime equations. In the M1 scheme, the
terms that describe neutrino interactions with matter are included directly in the
stress-energy tensor of EFE. WhiskyTHC implements the module THC_M1, presented in
Radice et al. [194]. This scheme requires a closure, i.e. an expression for the pressure
in terms of the energy and the flux. Here the approximate analytic Minerbo closure
is adopted. The latter is exact in the optically thick limit (matter and radiation in
thermodynamic equilibrium) and in the optically thin limit (radiation streaming at the
speed of light in the direction of the radiation flux) if the system has some symmetries
(slab, spherical). The two limits are then connected by means of the Eddington factor
as described in Radice et al. [194]. The weak interactions considered in THC_M1 are
the same ones included in the LK scheme, listed in Tab. D.1.
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D.2 Turbulent viscosity

An effective treatment to simulate turbulent viscosity is implemented with the GRLES
method [208]. In particular, this is a sub-grid model which is used to include the effect
of magnetic-induced viscosity and consequent angular momentum transport in the NS
matter. The viscosity parameter is related to a density-dependent mixing parameter,
which is estimated from high-resolution MHD simulations in full GR from Kiuchi et al.
[197], as described in detail in Radice [208].
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