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Abstract
PHYSIKALISCH-ASTRONOMISCHE FAKULTÄT

Theoretisch-Physikalisches Institut

zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.)

Applications of Machine Learning to Gravitational Waves

by Mgr. Ondřej Zelenka

Gravitational waves, predicted by Albert Einstein in 1916 and first directly observed in
2015, are a powerful window into the universe, and its past. Currently, multiple detec-
tors around the globe are in operation. While the technology has matured to a point
where detections are common, there are still unsolved problems. Traditional search
algorithms are only optimal under assumptions which do not hold in contemporary
detectors. In addition, high data rates and latency requirements can be challenging.

In this thesis, we use new methods based on recent advancements in machine learn-
ing to tackle these issues. We develop search algorithms competitive with conventional
methods in a realistic setting. In doing so, we cover a mock data challenge which we
have organized, and which served as a framework to obtain some of these results. Fi-
nally, we demonstrate the power of our search algorithms by applying them to data
from the second half of LIGO’s third observing run. We find that the events targeted
by our searches are identified reliably.
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Zusammenfassung
PHYSIKALISCH-ASTRONOMISCHE FAKULTÄT

Theoretisch-Physikalisches Institut

zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.)

Anwendungen des maschinellen Lernens auf Gravitationswellen

von Mgr. Ondřej Zelenka

Gravitationswellen, die 1916 von Albert Einstein vorhergesagt und 2015 erstmals direkt
beobachtet wurden, sind ein wichtiges Fenster zum Universum und seiner Vergangen-
heit. Derzeit sind mehrere Detektoren rund um den Globus in Betrieb. Auch wenn
die Technologie inzwischen so weit ausgereift ist, dass Detektionen häufig vorkommen,
gibt es immer noch ungelöste Probleme. Traditionelle Suchalgorithmen sind nur un-
ter Annahmen optimal, die bei modernen Detektoren nicht zutreffen. Darüber hinaus
können hohe Datenraten und Latenzzeiten eine Herausforderung darstellen.

In dieser Arbeit verwenden wir neue Methoden, die auf den jüngsten Fortschrit-
ten im Bereich des maschinellen Lernens basieren, um diese Probleme anzugehen. Wir
entwickeln Suchalgorithmen, die in einem realistischen Umfeld mit konventionellen
Methoden konkurrieren können. Dabei behandeln wir eine von uns organisierte Mock
Data Challenge, eine kompetitive Untersuchung verschiedener Methoden basierend
auf realistischen, jedoch künstlich generierten Daten, welche als Rahmen zur Erlan-
gung dieser Ergebnisse diente. Schließlich demonstrieren wir die Leistungsfähigkeit
unserer Suchalgorithmen, indem wir sie auf die Daten der zweiten Hälfte des drit-
ten LIGO-Beobachtungslaufs anwenden. Wir stellen fest, dass die Ereignisse, auf die
unsere Suchalgorithmen abzielen, zuverlässig wiedergefunden werden.
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Notation and abbreviations

New terms are first mentioned in italics, and new variables are defined using :=. We
make frequent use of the solar mass M⊙

.
= 1.99 ·1030 kg. Inferred parameters are given

as, e.g., m1 = 8.2+1.4
−1.6M⊙, where the first value refers to the median and the additive

sub- and superscript refer to the 10th and 90th percentile, respectively.
Throughout the text, matrix notation is used. Bold uppercase symbols refer to

matrices, e.g. W = (Wij)
m,n
i=1,j=1, while bold lowercase symbols are vectors: a = (ai)

n
i=1,

b = (bj)
m
j=1. Derivatives of scalar functions with respect to vectors and matrices are

taken element-wise:

∂C
∂a

:=

(︃
∂C
∂ai

)︃n

i=1

,
∂C
∂W

:=

(︃
∂C
∂Wij

)︃m,n

i=1,j=1

. (1)

Matrix-vector multiplication is defined as

Wa :=

(︄
n∑︂

j=1

Wijaj

)︄m

i=1

, bTW :=

(︄
m∑︂

i=1

biWij

)︄n

j=1

. (2)

The Hadamard (element-wise) product ⊙ and the tensor product ⊗ are defined as

a⊙ b := (aibi)
n
i=1 (m = n) , a⊗ b := (aibj)

n,m
i=1,j=1 . (3)

Finally, we define the cross-correlation operator over discrete samples

a ⋆ b :=

(︄
n∑︂

i=1

aibi+j−1

)︄m−n+1

j=1

. (4)
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The following abbreviations are used, and are introduced at their first appearance:

ASD amplitude spectral density.

BBH binary black hole.
BCE binary cross entropy.
BH black hole.
BHNS black hole-neutron star.
BNS binary neutron star.

CBC compact binary coalescence.
CNN convolutional neural network.

DAIN deep adaptive input normalization.
DNN deep neural network.

EOB effective-one-body.

FAP false alarm probability.
FAR false alarm rate.

GR general relativity.
GW gravitational wave.

ML machine learning.
MLGWSC-1 first machine learning gravitational-wave search challenge.

NR numerical relativity.
NS neutron star.

PSD power spectral density.

ROC receiver operating characteristic.

SGD stochastic gradient descent.
SNR signal-to-noise ratio.

USR unbounded softmax replacement.
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Chapter 1

Introduction

Few discoveries of modern physics have attracted as much attention as gravitational
waves (GWs), first predicted by Albert Einstein as a solution of his gravitational field
equations [1]. They are wave-like disturbances of the spacetime geometry, radiated
by high-energy events and propagating through the universe at long distances.

The first experimental evidence of their existence has been provided by radio ob-
servations of the Hulse-Taylor binary pulsar. First discovered in 1974, measurements
of its orbital period matched the prediction of its decay by GW emissions very accu-
rately [2, 3]. This was later named the first indirect detection of GWs and awarded
the 1993 Nobel Prize in Physics [4].

The first direct detection, however, had to wait until 14 September 2015, when GWs
from a binary black hole (BBH) merger were observed by the Laser Interferometer
Gravitational Observatory (LIGO) [5–8]. During the following years, further ground-
breaking detections occurred, such as the first observation of a binary neutron star
(BNS) merger [9, 10], or the observation of a BBH merger with an unprecedented
total mass of 150 solar masses [11, 12]. In addition, the first BNS event was ob-
served through both gravitational and electromagnetic waves, marking the first multi-
messenger observation using GWs [13–16].

Black holes (BHs) of masses up to ∼100M⊙ are believed to be the final stage of
massive stars. Supermassive BHs with masses ≳ 105M⊙ have been discovered and
confirmed through observations of the motion of nearby stars [17, 18] and accreting
matter, and even direct electromagnetic observations through the Event Horizon Tele-
scope [19, 20]. However, their formation mechanism is an open question. In the same
spirit, the population of BHs in the mass range [100M⊙, 10

5M⊙] is yet unknown [21].
GW observations of merging compact binaries are expected to shed light on these is-
sues as well as the overall mass distribution of BHs in the universe. BH population
and formation are critical questions of not only astronomy, but also cosmology [22–24].
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A lower-mass star may leave, as its remnant, a neutron star (NS) instead, which con-
sists of extremely dense neutron-degenerate matter. The behavior of this matter in-
cludes many effects which are difficult to reproduce in a laboratory. GW signals from
BNS mergers contain imprints of these effects and their observations expand our under-
standing of extremely dense matter and, by extension, high-energy particle physics [25,
26]. Furthermore, some elements crucial for life on Earth are created mostly in BNS
mergers [27–29].

BHs and NSs, along with white dwarves [30], are called compact objects. They
are known to exist in binaries originating from multiple formation mechanisms [31–
33]. These binaries gradually lose energy through GW radiation, until they eventually
merge into a single compact object (typically a BH). The late inspiral and merger
stages of compact binaries are some of the most extreme events in our universe, which
makes them a laboratory for strong gravity, capable of revealing deviations from the
general theory of relativity [34–36]. Other significant, although yet undetected, sources
include core-collapse supernovae [37, 38] and rapidly rotating NSs, emitting continuous
GWs through a multitude of effects [39–43]. For these reasons, GW observations are
a highly effective window into our universe, its composition and history [44, 45].

As GW research gradually attracted attention, multiple experimental detection
methods were conceived, such as interferometric detectors, resonant mass antennae [46–
48] or pulsar timing arrays [44, 49]. Specifically, the interferometric detectors have been
successful at detecting signals from mergers of compact binaries and are well suited to
this problem.

At the same time, the noise characteristic of contemporary detectors is compli-
cated, as the noise is colored and contains noise transients which may be mistaken for
astrophysical signals [50]. Due to this as well as comparatively weak signals, analy-
sis of detector data is a complex task, both searching for astrophysical origin signals
buried in noise, and recovering source properties, such as component masses and sky
location, and in the case of NSs, tidal deformabilities. In this work, we focus purely
on the detection problem.

Modeled searches rely on template banks which densely cover the parameter space
of potential sources. Each template is matched against the detector data and close
matches are marked as candidate events. They are called matched-filtering searches
and have been proven to be optimal in stationary Gaussian background noise [51].
Elaborate systems are employed to limit the effect of the deviations from the expected
noise distribution. Complicated parameter spaces require large template banks to
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ensure sufficient coverage.
The LIGO-Virgo collaboration employs three modeled searches: PyCBC [51–57],

GstLAL [58–61], and MBTA [62, 63], as well as the minimally modeled search coherent
WaveBurst (cWB) [64–68]. For a summary evaluation of GW catalogs [69–72], they
are applied in their offline regime after the observing period has ended, to the final
calibrated and cleaned dataset. To provide low-latency alerts for rapid electromagnetic
follow-up and potential multi-messenger detections, all the pipelines above in their
online configurations as well as the SPIIR [73–75] pipeline are used. Further pipelines
are in place to infer properties of GW sources [6, 72, 76–80].

As detector upgrades reduce the noise power and increase detector sensitivity [81],
certain effects become observable. These include highly eccentric orbits of a compact
binary [82], precession due to strong misaligned spins of its components [83], or higher
modes [84]. This adds new dimensions to the parameter space and grows the tem-
plate bank by a large factor, which increases the computational times of a search.
At the same time, multi-messenger astronomy requires very fast online searches and
sky localization pipelines while allowing higher false alarm rates than offline analyses.

Furthermore, projects for new detectors are underway, namely the Einstein tele-
scope [85–88] or Cosmic Explorer [89, 90]. They are expected to detect mergers
of intermediate-mass BHs with both stellar mass BHs and other intermediate-mass
BHs [91–93], providing a unique window into the BH populations in our universe, and
even a GW stochastic background, produced by a variety of cosmological sources [94–
102].

The Laser Interferometer Space Antenna (LISA) [103–105] mission is currently
scheduled to launch in 2037. It is the project of a space-borne detector most sensitive at
frequencies ∼10−2Hz and it will allow observations of sources undetectable by Earth-
based detectors most sensitive at ∼ 100Hz. Among the most significant of LISA
sources are extreme mass ratio inspirals : inspirals of stellar mass compact objects into
supermassive BHs. Observing such events will allow us to map the spacetime around
a supermassive BH and contribute to testing general relativity to an unprecedented
degree of accuracy, as well as results on BH uniqueness [44, 106]. Unlike fairly short
transients detected by LIGO, these sources are expected to be in the sensitive band of
LISA for up to months at a time and likely overlap.

Ideas to extend the network of GW detectors go as far as construction of gravita-
tional observatories on the Moon [107, 108]. All of these projects, while opening up
new possibilities, will also pose new challenges for data analysts of the future.



4 Chapter 1. Introduction

Machine learning (ML) is an interesting set of methods focused on algorithms which
improve their performance as they repeat their assigned task. Since its conception
in the 1950s [109], interest in the subject has wavered, and began to attract large
numbers of researchers in the 1990s and 2000s. This new rise was due to advancements
in hardware, software [110] and theory [111–113], as well as availability of data, which
led to a rapid increase of the potential of ML. By now, its applications range from
classification and prediction [114, 115], through generation of artificial data [116–118]
to playing games, such as chess or go, at a level where they can beat the best human
players [119, 120].

Deep neural networks (DNNs) are a class of ML models, made of large numbers of
very simple building blocks. When built in a suitable manner, they can perform com-
plex tasks efficiently despite their inherent simplicity [111, 121]. Convolutional neural
networks (CNNs) are particularly well suited to image processing, as evidenced by the
great success of the AlexNet [122] and a subsequent improvement using a very deep
152-layer network by a ML group from Microsoft [123], which were another driving
moment in ML history. CNNs are also well suited to time series data, such as speech
commands and their recognition by smartphones. Along with their development, mul-
tiple DNN frameworks have been built, such as PyTorch [124], TensorFlow [125, 126],
Caffe [127], or Theano [128].

Let us also mention a currently very popular application of ML methods, a language
model called ChatGPT [129]. “ChatGPT is a large language model developed by
OpenAI, based on the GPT-3.5 architecture. It has been trained on a massive corpus of
text data and is capable of generating human-like responses to a wide range of prompts.
While ChatGPT is not specifically designed for GW data analysis, its natural language
processing capabilities could potentially be applied to tasks such as text-based analysis
of scientific papers or communication between researchers in the field.”1

As such, this powerful method has found applications in many fields of physics [130–
133]. Most notable examples are in high-energy physics [134–145], astronomy [146–
155] or cosmology [156–158]. In connection to applications in signal processing [159–
161], this includes GW astronomy. The first steps in this direction have been done
by [162, 163], which successfully trained CNNs to recognize BBH signals in isolated
one-second samples of data in a single detector to a similar degree of accuracy as
traditional classification methods. These results sparked a large influx of new ML

1This description was generated by the ChatGPT chatbot as well as the citation [129] in the
BIBTEX format, except for the URL, which was incorrect in the generated citation.
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applications to search for GWs from compact binaries, including but not limited to
CNNs [164–176], as well as for other sources [177–188].

At the same time, applications to other GW data analysis problems also appeared,
such as parameter estimation [189–193], denoising [194–196], or fast waveform gener-
ation [197–200], required to accelerate matched-filter based analyses [201, 202]. Other
ML-based results include seismic noise removal [203–206] and advanced instrument
control techniques [207], or even more loosely related projects such as BH population
inference [208]. For a summary, see [209, 210].

Many of these applications are also under investigation by the G2net network [211],
which I have joined and participated in its activities. It has organized two mock data
challenges in GW detection using ML-based methods on the Kaggle platform [212–
214].

In this thesis, we follow up the pioneering papers [162, 163]. While important
results in their own frameworks, several crucial steps were yet to be done to become
a competitive search [164]. Primarily, they only used isolated samples in which the
waveforms were aligned in a small window, and the algorithm would merely assign
a ranking statistic to each sample, rather than taking a longer stream of data and
searching for events. Furthermore, the false alarm probabilities were much higher
than acceptable in conventional analyses [215], and they were in disagreement about
the effect of the loudness of signals presented to the network during different stages of
training.

These are the issues on which we focus in the projects described in this thesis: first,
we extend a search very similar to that of [163] to a lower false alarm rate and into
a full search algorithm. We apply it to a month-long continuous dataset and show
that its performance is close to an equivalent matched-filter search at false alarm rates
down to 1 per month. In the process, we develop a solution to the efficiency collapse
due to rounding errors in the Softmax layer, and optimize the training procedure to
achieve reliable convergence.

In the following project, we develop the search further into a two-detector search
capable of distinguishing astrophysical signals from noise transients, and we find that
our searches perform close to established matched-filter searches. This is done in the
framework of the mock data challenge which we have organized [216]. Finally, we
apply our searches to the latest data from the LIGO detectors [72]. We find that
they reliably reject noise transients and recover the events our searches are trained
to identify at false alarm rates < 5 per month, and signals coming from sources not
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covered by our training procedure provided they are loud enough.
The organization of this thesis is as follows: In chapter 2, basics of GWs, their

radiation from binary BHs, and their detection are covered. In chapter 3, foundations
of ML methods are introduced, and Chapter 4 presents results of a project on using
ML methods to search for BBH signals in strain data from a single GW detector.
Chapter 5 presents its extension to two detectors as part of a mock data challenge
on this topic, the MLGWSC-1, further developments of the search algorithm, and an
application to O3b data.
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Chapter 2

Gravitational waves

Geometric units G = c = 1 are employed, unless specified otherwise. Occasionally
we write c explicitly for clarity. For full spacetime indices, we use Greek characters,
such as µ, ν = 0, 1, 2, 3, while for spatial indices we use Latin characters, such as
i, j = 1, 2, 3.

2.1 Basics of gravitational-wave theory

In one of the great scientific breakthroughs of the 20th century, Albert Einstein has
followed up his special theory of relativity [217] by formulating the general theory
of relativity [1], also simply called general relativity (GR), which forms humanity’s
modern understanding of gravity and the universe. Its predictions have been verified by
numerous experiments [5, 218–221] in the more than 100 years since its first publication
and it has allowed physicists to understand numerous physical phenomena, as well as
predict new ones.

This chapter covers the basics of GR and GW theory crucial for our application,
mainly following [222]. We describe the basic principle of GW detectors, their noise
distribution and the basic methods used to analyze the measured data, in order to
give an introduction to the research projects described in Chapters 4 and 5.

2.1.1 General theory of relativity

The bedrock of GR is the tensor formalism of pseudo-Riemannian geometry, whose key
property is coordinate invariance. Tensors are defined as multilinear mappings in the
(co-)tangent spaces of a spacetime manifold. We usually work with their coordinate
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representations, which must follow the basic coordinate transformation laws (xµ → x′µ)

T ′α′
1...α

′
m
β′
1...β

′
n
= Tα1...αm

β1...βn

∂x′α′
1

∂xα1
. . .

∂x′α′
m

∂xαm

∂xβ1

∂x′β′
1
. . .

∂xβn

∂x′β′
n
. (2.1)

The ∂x′α′

∂xα and ∂xα

∂x′α′ are coordinate representations of the transition matrix on the
tangent and cotangent spaces of the manifold at a given point.

The main object used to fully describe the geometry and evolution of a spacetime
is the metric tensor gµν . Its inverse is denoted gαβ, defined by the equation

gαµgµν = δαν , (2.2)

using the Kronecker tensor

δαν :=

⎧
⎨
⎩
1 α = ν ,

0 α ̸= ν .
(2.3)

In a physical spacetime, the metric is required to be invertible, i.e. Eq. (2.2) must
have a solution for gαβ. It then follows that the solution is unique.

We make use of Einstein’s summation convention: an implied summation over each
spacetime index which appears once as covariant (lower index) and once contravariant
(upper index), e.g.

Tαµ
βUµκ :=

3∑︂

µ=0

Tαµ
βUµκ , (2.4)

where Tαµ
β and Uµκ are arbitrary tensors.

The Christoffel symbols are defined as

Γα
µν :=

1

2
gαβ (gβµ,ν + gνβ,µ − gµν,β) , (2.5)

using the convention of denoting partial derivatives of tensor fields as

Aα1...αm
β1...βn,ν :=

∂Aα1...αm
β1...βn

∂xν
. (2.6)
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The Christoffel symbols are not tensors, and in general, neither are partial derivatives
of tensors! Their purpose is the definition of the covariant derivative of a tensor

Tα1...αm
β1...βn;µ := Tα1...αm

β1...βn,µ

+ Γα1
µνT

να2...αm
β1...βn . . .+ Γαm

µνT
α1...αm−1ν

β1...βn

− Γν
µβ1T

α1...αm
νβ2...βn . . .− Γν

µβnT
α1...αm

β1...βn−1ν ,

(2.7)

which, despite consisting of non-tensor terms, is a tensor. In a similar manner, the
motion of a test particle follows the geodesic equation

d2xµ

dτ 2
+ Γµ

αβ
dxα

dτ

dxβ

dτ
= 0 . (2.8)

The Riemann curvature tensor Rρ
σµν is then defined using the commutator

Vσ;µν − Vσ;νµ = Vρ

(︁
Γρ

νσ,µ − Γρ
µσ,ν + Γρ

µλΓ
λ
νσ − Γρ

νλΓ
λ
µσ

)︁
⏞ ⏟⏟ ⏞

Rρ
σµν :=

, (2.9)

and the Ricci tensor Rµν and scalar R as its contractions

Rµν := Rα
µαν , R := gµνRµν . (2.10)

Using these curvature tensors, Albert Einstein formulated the gravitational field
equation, as a result of several assumptions, and matching the weak field regime to
Newtonian gravity, as [1, 222]

Rµν −
1

2
Rgµν = 8πTµν , (2.11)

where Tµν is the stress-energy tensor. It contains information on the matter in the
spacetime as well as fields which carry energy and momentum, e.g. the electromagnetic
field [223]. When Tµν = 0, we are dealing with a vacuum spacetime, otherwise it serves
as the source term in the equation and through its effect on spacetime geometry, it
leads to gravitational force.

2.1.2 Linearized Einstein equation

A key part of gravitational field dynamics is the slow body motion and weak field
regime. As we will see later, it is this regime which determines how GWs move through
space and time from the source, eventually reach Earth and may trigger a man-made
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detector. First, we assume our spacetime to be a perturbation of flat spacetime:

gµν = ηµν + hµν , (2.12)

where

ηµν = ηµν =

⎛
⎜⎜⎜⎜⎝

−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎞
⎟⎟⎟⎟⎠

(2.13)

is the Minkowski metric and hµν is a small deviation. We can obtain the inverse to
first order as

gµν = ηµν − hµν + o (h) , hµν := ηµαηνβhαβ . (2.14)

Only taking O (h) terms in Eq. (2.11), we obtain the linearized Einstein equation

hσ
µ,σν + hσ

ν,σµ −□hµν − h,µν − (hσα
,σα −□h) ηµν = 16πTµν , (2.15)

using the trace h := ηµνhµν and the d’Alembert operator

□ := ηκλ
∂

∂xκ

∂

∂xλ
. (2.16)

We further define the trace reversal operation as

h̄µν := hµν −
1

2
hηµν , (2.17)

which is a 1-to-1 map and it simplifies Eq. (2.15) to

h̄
σ
µ,σν + h̄

σ
ν,σµ − h̄

σα
,σαηµν −□h̄µν = 16πTµν . (2.18)

Let us now introduce a coordinate transformation of the form

x′µ := xµ + ξµ (x) , ξ = O (h) , (2.19a)

⇒ h′
µν = hµν − ξµ,ν − ξν,µ . (2.19b)

In this context, such a transformation is also called a gauge transformation, as the h′
µν

describes a spacetime identical to that of hµν , only in a different set of coordinates.
Choosing a ξ such that □ξµ = h̄

µα
,α, which always has a solution for ξ, it holds
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h̄
′σ
µ,σν = 0. Therefore, we can fix the Lorentz gauge [222]

h̄
σ
µ,σν = 0 , (2.20)

in which case Eq. (2.18) simplifies to the well-known wave equation

□h̄µν = −16πTµν . (2.21)

2.1.3 Plane wave solution

We start by solving the homogeneous equation, i.e. Eq. (2.21) with Tµν = 0:

□h̄µν = 0 . (2.22)

As with any other wave equation, we must examine the plane wave solutions

h̄µν = Re [Aµν exp (ikαx
α)] , (2.23)

where the components of Aµν and kµ are constants, and Aµν is a symmetrical complex-
valued tensor. In order for this to be a solution, the following must hold:

Aµνk
ν = 0 , kαkα = 0 . (2.24)

This solution represents a plane GW: a perturbation of the spacetime geometry, prop-
agating at the speed of light (as kµ is a null vector) in a single direction.

To investigate its behavior closer, let us choose a coordinate system such that the
wave propagates along the z direction, i.e. kµ = (k, 0, 0, k). Furthermore, we use the
transverse-traceless gauge

h̄µνu
ν = 0 , h̄

µ
µ = 0 , (2.25)

where the uµ is a vector field whose components are constants. Let us choose this as
uµ = (1, 0, 0, 0). A detailed discussion of this gauge freedom goes beyond the scope
of this text, see, e.g., [222].

At this point, there are only two independent components in the amplitude tensor:
Axx = −Ayy and Axy = Ayx, corresponding to two independent polarizations of GWs.
For reasons detailed below, they are called “plus” and “cross” polarizations and denoted
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the following way:

Aµν =

⎛
⎜⎜⎜⎜⎝

0 0 0 0

0 A+ A× 0

0 A× −A+ 0

0 0 0 0

⎞
⎟⎟⎟⎟⎠

. (2.26)

Let us imagine a ring of test particles in a Minkowski spacetime, with zero initial
velocity. They remain stationary until a GW h passes through them. Obviously
ẋj = 0, j = 1, 2, 3 is still a solution to the geodesic equation to first order in h, as

Γj
00 =

1

2
gjµ (2gµ0,0 − g00,µ) =

1

2
ηjµ (2hµ0,0 − h00,µ) + o (h) = o (h) , (2.27a)

⇒ ẍj = −Γj
µν ẋ

µẋν = −Γj
00

(︁
ẋ0
)︁2

= 0 . (2.27b)

Therefore the test particles remain stationary in the transverse-traceless frame. How-
ever, due to the changes in the metric, the distances between any given pair of points
on the ring may change in time, as well as the angles in a triangle formed by any three
points on the ring.

To visualize these geometrical effects, we make use of an equivalent description of
these spatial structure changes, which consists of the same ring of test particles in the
stationary Minkowski spacetime. The ring, however, is being deformed by the wave
through the expression

(︄
x′

y′

)︄
=

⌜⃓
⎷⃓
(︄
1 + h+ h×

h× 1− h+

)︄(︄
x

y

)︄
≈
(︄
1 + h+

2
h×
2

h×
2

1− h+

2

)︄
. (2.28)

The approximation in Eq. (2.28) holds when h =
√︁

h2
+ + h2

× ≪ 1. This map deforms
the ring with radius r into an ellipse with semimajor and semiminor axis lengths

a = r
√
1 + h ≈ r

(︃
1 +

h

2

)︃
, b = r

√
1− h ≈ r

(︃
1− h

2

)︃
, (2.29)

respectively. In the simplest case h× = 0, the ring is extended in the x direction and
contracted in the y direction when h+ > 0, and vice versa when h+ < 0. When h+ = 0,
it can be shown in a similar manner that the h× polarization does the same along axes
at 45◦ angles with respect to the x and y axes. This effect is demonstrated in Fig. 2.1
on the example of a sine wave and is the reason for the polarizations being denoted +

and ×.
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h
+

φ = 0 φ = π/2 φ = π φ = 3π/2

h
×

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
φ/π

−0.25
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0.25

h
+
,h
×

Figure 2.1: Illustration of the effect of the GW polarizations h+ and h× passing through
matter. The top panel shows the phase of a hypothetical sine waveform with amplitude 0.4.
The bottom two rows show the effect of the wave passing through a circle of 16 stationary
test masses in the plane perpendicular to the wave vector k⃗ of the GW in cases where the
polarization is h+ and h×, respectively. The four columns show the effect of the wave at the

four phases highlighted in the top panel. The linear approximation of Eq. (2.28) is used.

2.1.4 Gravitational wave radiation

Let us now assume an isolated system of masses mA which move with respect to each
other. In analogy with electromagnetic theory, we define its dipole moment and its
traceless quadrupole moment as

d :=
∑︂

A

mAxA , Ijk :=
∑︂

A

mA

(︃
xAjxAk −

1

3
δjkr

2
A

)︃
, (2.30)

respectively, or in the continuous case,
∑︁

A mAf (xA) ↦→
∫︁
dmf (x).
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The solution to Eq. (2.21) can be expressed using the Green’s function approach.
Far from the source, it simplifies to the quadrupole formula [222]

h̄ij (t, r) =
2

r
Ï ij (t− r) , (2.31)

and the total energy radiated through GWs in all directions per unit time is

Lgw =
1

5

3∑︂

j=1

3∑︂

k=1

⟨︂(︁ ...
I jk

)︁2⟩︂
. (2.32)

As a consequence, a pair of point masses m1, m2 in a quasi-circular orbit can be
modeled simply by Newtonian mechanics with an energy loss rate following Eq. (2.32).
Their separation evolves as

a (t) = a0

(︃
1− t

τ0

)︃1/4

, (2.33)

where a0 is the initial separation, and they merge in a finite time [222]

τ0 =
5a40

256m1m2 (m1 +m2)
. (2.34)

The quadrupole formula (2.31) above describes gravitational radiation accurately
under the assumption of low density and velocities of the source. However, these
assumptions do not hold for currently observable GW sources close to merger. To
model them, more intricate techniques are required. Note that the dipole moment d

does not contribute to GW radiation; this is related to momentum conservation and
the spin-2 nature of the gravitational field [1, 222, 224, 225].

2.2 Compact binary coalescence

While the Einstein equation in Eq. (2.11) is complicated and non-linear and in many
applications requires numerical solvers, its solution representing the stationary grav-
itational field of a simple point particle of mass M has been derived and published
by Karl Schwarzschild barely a month after the publication of GR [226]. Its key fea-
ture is the sphere at the radial coordinate value r = 2M called the event horizon: a
barrier through which no null or timelike curve can exit the central object. An object
described by this metric is called a black hole (BH).
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Through the same formation mechanism as stellar BHs (gravitational collapse of
a massive star [227, 228]), an object may arise whose gravity is sufficient to overcome
the electron degeneracy pressure, but not the neutron degeneracy pressure, which is
the effect of the Fermi exclusion principle of the electron and neutron gas, respectively.
This object is called a neutron star (NS). The event horizon does not form and matter
from any part of the object can, in principle, leave its boundaries [229].

A significant topic of discussion are the masses of compact objects. The Tolman-
Oppenheimer-Volkoff limit MTOV ≈ 2.1M⊙ [230] is the upper bound on the mass of a
NS. The general consensus is that any NS above this mass would collapse into a BH.
For a BH, there is no specific limit based on its stability. However, stellar physics has
set an approximate range of masses for stellar BH formation at [5M⊙, 50M⊙] [22].

In principle, any system of accelerated masses radiates GWs following Eq. (2.31) in
the Newtonian limit. However, most are too weak to be detected by current detectors
on Earth. We focus on a particular type of event: a compact binary coalescence
(CBC). It is the final evolution stage of a binary composed of two compact objects,
which gradually loses energy through GW radiation and eventually merges into a single
compact object, typically a BH, and the only confidently detected GW source type
to date [72]. Specifically, the components of these binaries are BHs and/or NSs, as
binaries with a white dwarf (which is another compact object type) as one or both
of their components are not sufficiently loud to be relevant to contemporary GW
research [231]. This leaves us with 3 types of CBC events: binary black hole (BBH)
mergers, binary neutron star (BNS) mergers, and black hole-neutron star (BHNS)
mergers.

BNS and BHNS events come with a chance of a detectable electromagnetic coun-
terpart, allowing for multi-messenger observations, providing additional information
about the merger and allowing to better understand the microphysics of NS matter [15,
201]. In addition, some elements which naturally exist on Earth and without which
life could not exist, are produced by BNS mergers, making GW observations crucial
to better understand the universe and its history [232, 233].

In this thesis, we focus on BBH events as a suitable entry point into machine
learning-based GW data analysis for their relative simplicity, as no knowledge of nu-
clear matter properties is required. Furthermore, due to the steeply rising noise char-
acteristic of contemporary GW detectors towards lower frequencies (see Sec. 2.3), each
compact binary spends a limited time in a detector’s sensitive range. For the purpose
of a search it is sufficient to model this section of the inspiral, which is shorter in the
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category symbol name distribution

intrinsic m1 ≥ m2 component masses
χ1, χ2 dimensionless spins

extrinsic

Φ0 coalescence phase Φ0 ∈ [0, 2π)
Ψ polarization Ψ ∈ [0, 2π)
ι inclination cos ι ∈ [−1, 1]
θ declination sin θ ∈ [−1, 1]
φ right ascension φ ∈ [−π, π)
dL luminosity distance d2L ∈ R+

tc time of merger

Table 2.1: Summary of parameters required to describe a BBH merger as seen in a terrestrial
detector. The last column shows the corresponding astrophysical distribution where one

exists. The intervals refer to a uniform distribution.

case of a BBH merger than CBCs with a NS component, making them more suitable
for ML-driven analysis.

To fully describe a BBH merger with respect to the Earth, we require a total
of 15 parameters, summarized in Tab. 2.1. They are divided into two categories:
intrinsic and extrinsic. The former describe the physical properties of the system,
while the latter specify its relative position with respect to the Earth as well as the
time when the signal reaches the Earth. The intrinsic parameters are the masses
and angular momenta of the two components. The dimensionless spin is defined as
χi := Si/m

2
i , i = 1, 2, where Si is the angular momentum of the respective binary

component and mi its mass. Analysis of the Kerr spacetime [222, 234] reveals that
it must hold |χi| ≤ 1 for the object to be a BH and the opposite yields a spacetime
considered unphysical.

The extrinsic parameters are the luminosity distance dL, the time of merger as
seen by an observer on Earth tc, and a set of 5 angles which fully characterize the
coordinate transformation between the source and the detector. In fact, these are two
sets of Euler angles to match the two coordinate frames:

• source frame

– coalescence phase Φ0: rotation around the total angular momentum vector,

– inclination ι: angle between the orbital angular momentum at the reference
frequency and the line-of-sight to Earth,

– polarization Ψ: rotation around the line-of-sight, degenerate with the cor-
responding angle in the detector frame rotation,
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• detector frame

– right ascension φ: celestial equivalent of the longitude (rotation around the
Earth’s axis),

– declination θ: celestial equivalent of the latitude (angle between the equa-
torial plane and the line-of-sight),

– polarization Ψ: rotation around the line-of-sight, degenerate with the cor-
responding angle in the source frame rotation.

To fully model a CBC and compute the corresponding waveform, the following
methods are used:

• Numerical relativity (NR): a full discretization of the spacetime and numerical
evolution of gµν through the inspiral, merger and ringdown. Most accurate in
the late stages but highly computationally demanding. [235–242]

• Post-Newtonian expansion: Taylor expansion of the equations of motion in pow-
ers of v2/c2, v being the characteristic velocity of the system. Efficient but they
are asymptotic series which become inaccurate close to merger. [243–247]

• Effective-one-body (EOB) models: based on systematic resummations of post-
Newtonian expansion methods, a Hamiltonian is constructed which reduces the
system to the motion of a test particle in an external metric. Complete with
a phenomenological description of the merger and ringdown, very accurate and
efficient. [248–254]

• Phenomenological models: a simple model fit to hybrid EOB-NR waveforms.
Very accurate and efficient, they are the core of most contemporary conventional
analyses, along with EOB models. [255–260]

• NR surrogate models: ML-based models trained on NR waveforms. Accurate
and efficient, especially in highly precessing waveform. [261–270].

An example waveform generated by the phenomenological model IMRPhenomD [259]
is shown in Fig. 2.2. The characteristic shape of a gradual rise in both frequency
and amplitude, culminating and then quickly fading is called a chirp, and is a typical
shape of all BBH waveforms [271]. In case of BNS and BHNS mergers, the post-
merger section is much more pronounced due to the matter remaining outside the
remnant [272, 273].
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Figure 2.2: An example waveform from a BBH merger with component masses 36M⊙ and
29M⊙ at a luminosity distance of 470Mpc, with zero spins, roughly corresponding to the
GW150914 event [6]. The waveform has been generated by the phenomenological model
IMRPhenomD [259]. The dashed black line marks the time of the merger, on its left side is the

inspiral phase, and on the right side the ringdown.

2.3 Interferometric gravitational wave detectors

As shown in Sec. 2.1, a GW passing through several test masses contracts and dilates
the spacetime between these masses. This is used in interferometric GW detectors,
which in their essence replicate the design of a classical Michelson interferometer, as
the variation in distance between the beam splitter and the mirrors introduces a time-
dependent phase shift. Therefore, the light intensity seen by the photodetector carries
the GW signal [274].

Fig. 2.3 shows a simplified schematic of Advanced LIGO detectors. Assuming a
coordinate system with x and y axes along the detector arms and a GW passing along
the z axis orthogonal to the plane of the detector, a GW will extend and contract
its arms as demonstrated in Fig. 2.1. In this assumed geometrical arrangement, it
is insensitive to the × polarization, as the lengths of both arms change by the same
amount at the same time, introducing zero phase shift. On the other hand, the +

polarization extends one arm while contracting the other by the same amount, and
introduces the highest possible phase shift.

This coordinate system is generally not aligned with the coordinate system of the
source, and therefore it is necessary to perform a coordinate transformation described
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by the three Euler angles θ, φ and Ψ defined above. The final signal observed in the
detector is

h (t) = F+ (θ, φ, Ψ)h+ (t) + F× (θ, φ, Ψ)h× (t) , (2.35)

F+ (θ, φ, Ψ) and F× (θ, φ, Ψ) being the antenna patterns of the detector, and h+ (t)

and h× (t) the two independent polarizations of the given waveform. For further de-
tails, we refer the reader to [275].

The measured strain s contains noise, which severely limits our detection potential.
Elaborate data analysis techniques are required to extract signals from noisy data. To
cover the basics, we follow the guideline of [50].

On timescales on the order of hours, the noise in GW detectors can be described
as colored, stationary and Gaussian. In the frequency domain, it is uncorrelated,
Gaussian with zero mean, and can be described by the probability density function

p (n) = A · exp
(︃
−1

2
(n|n)

)︃
, (2.36a)

(a|b) := 2

∫︂ ∞

0

ã (f) b̃
∗
(f) + c.c.

Sn (f)
df , (2.36b)

where (·|·) is the noise-weighted inner product and Sn (f), which is called the power
spectral density (PSD), describes the noise variance at different frequencies. The noise
is often described in an equivalent manner using the amplitude spectral density (ASD)√︁

Sn (f). Over longer timescales, however, one can observe the PSD gradually change,
which we call PSD drift. Finally, A is a normalization constant such that

∫︂
p (n) dn = 1 . (2.37)

The shape of a PSD/ASD is given by multiple effects, the most significant be-
ing [277, 278]:

• seismic noise: mirror motion due to ground vibrations, earthquakes, etc.,

• thermal noise: due to fluctuations of atoms in the mirrors and their suspensions,

• quantum noise: due to the discrete nature of light,

• gas noise: due to residual gas molecules in the vacuum tubes,

• charging noise: due to interactions of static electric charges on the mirrors with
the metals of the tubes and supports.
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Figure 2.3: Simplified diagram of an Advanced LIGO detector (not to scale). A GW
propagating orthogonally to the detector plane and linearly polarized parallel to the 4-km
optical cavities will have the effect of lengthening one 4-km arm and shortening the other
during one half-cycle of the wave; these length changes are reversed during the other half-
cycle. The output photodetector records these differential cavity length variations. While a
detector’s directional response is maximal for this case, it is still significant for most other
angles of incidence or polarizations (GWs propagate freely through the Earth). Inset (a):
Location and orientation of the LIGO detectors at Hanford, Washington (H1) and Livingston,
Louisiana (L1). Inset (b): The instrument noise for each detector near the time of the signal
detection; this is an amplitude spectral density, expressed in terms of equivalent GW strain
amplitude. The sensitivity is limited by photon shot noise at frequencies above 150 Hz, and
by a superposition of other noise sources at lower frequencies [276]. Narrow-band features
include calibration lines (33-38, 330, and 1080 Hz), vibrational modes of suspension fibers
(500 Hz and harmonics), and 60 Hz electric power grid harmonics. Figure and caption taken

from [5].
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Example ASDs are shown in inset b) of Fig. 2.3; more specifically, they correspond
to the noise observed in LIGO detectors around the GW150914 event. They contain
all the characteristic properties of contemporary detector ASDs: steep rise at low and
high frequencies, minimum around 200Hz, narrow peaks at various frequencies.

One can visualize strain data from GW detectors using a spectrogram. The signal
is split into chunks (usually overlapping) and the frequency spectrum of the individual
chunks is computed and plotted using a colormap in the time-frequency space, taking
the time of the corresponding chunk on the x axis and the frequency of the Fourier
transform on the y axis.

The basic method relies on the Fourier transform. In GW science, it is more
common to use the Q-transform instead [279], which performs a very similar task
while covering the frequency space on a logarithmic scale more uniformly than the
Fourier transform. Fig. 2.4 shows, as an example, the spectrogram of the GW150914
event as recorded by the Hanford detector [5]. It clearly shows the typical chirp of a
CBC waveform as a patch of high power at a frequency growing with time, the random
weaker spots in the background representing the detector noise.

The noise distribution possesses another feature, namely noise transients, also
called glitches. They appear as a large amount of excess power and some can eas-
ily be confused for a GW chirp signal. This strongly reduces detector sensitivity in
segments where glitches are present. In LIGO-Virgo experiments, a large set of auxil-
iary channels is employed to detect anomalous behavior and flag segments which likely
contain a glitch, these are then excluded from most searches [280–284] using tools such
as Omicron [285]. Remaining ones are excluded through vetoes [52, 53, 286, 287]. The
daily median glitch rates in the H1, L1, and V1 detectors during the O3a and O3b
observing runs lie between 0.29min−1 and 1.17min−1, which corresponds to one glitch
in just over three minutes in the former case, and less than a minute in the latter [72,
288]. As conventional searches operate at false alarm rates <0.5month−1, this makes
handling glitches a crucial part of GW search algorithms.

Due to the various mechanisms which cause glitches to occur, they come in many
shapes, the understanding of which can be helpful in cleaning detector data, and ML-
based methods have been used to classify them [289–293]. For illustration, we attach
a set of spectrograms of different glitch types in Fig. 2.5. In this thesis, knowledge of
glitch morphology is not required, as the project of Ch. 4 and a part of Ch. 5 deal with
a Gaussian noise model, and in the remainder the focus is on ML models learning the
glitch morphology from data without information on their types.
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Figure 2.4: Q-transform plot of the GW150914 event [5] as seen by the LIGO detector in
Hanford, Washington. Figure taken from GWOSC [294].

Figure 2.5: Representative spectrograms for all glitch classes contained in the GravitySpy
dataset [289]. Figure taken from [295].
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2.4 Detector data analysis

2.4.1 Matched filtering

A GW search is expected to produce a set of candidate events, specified by a time and
a ranking statistic. The most standard searches are based on matched filtering : using
the noise-weighted inner product defined in Eq. (2.36b) to find matches between the
detector data stream and a template bank consisting of generated waveforms. This
section comprises a superficial overview of the methods relevant to our work, following
mainly [50].

Let H1 be the hypothesis that a segment of data s from a single detector includes
a specific GW waveform h

s = n+ h , (2.38)

n being the background noise following Eq. (2.36a). In addition, let H0 be the hypoth-
esis that s is composed purely of noise n. One can then use the Bayes theorem [50,
296] and the expected noise distribution

p (H1|s) =
p (s|H1) p (H1)

p (s|H1) p (H1) + p (s|H0) p (H0)
=

[︃
1 +

p (H0)

p (H1) Λ (s)

]︃−1

, (2.39)

using the likelihood ratio

Λ (s) :=
p (s|H1)

p (s|H0)
. (2.40)

As p (H1|s) is a purely growing function of Λ (s), we can use the likelihood ratio as
an equivalent detection ranking statistic. Furthermore, let us assume that h = h (θ),
θ being the source parameters, in case of a BBH merger the ones described in Sec. 2.2.
In the context of a search, they are also randomly distributed, and thus it holds

p (s|H1) = A

∫︂
exp

[︃
−1

2
(s− h (θ) |s− h (θ))

]︃
p (θ) dθ (2.41a)

⇒ Λ (s) =

∫︂
exp

[︃
1

2
ρ2 (s, θ)

]︃
p (θ) dθ , (2.41b)

ρ2 (s, θ) := (2s− h (θ) |h (θ)) . (2.41c)

The integrand of Eq. (2.41b) is generally sharply peaked around its maximum [50].
Therefore, this maximum is expected to be a good approximation, up to a constant
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rescaling [50]. This is equivalent to taking a maximum of the argument of the expo-
nential

ρ2MF := max
θ

ρ2 (s, θ) . (2.42)

Typically, ρMF is called the matched-filter signal-to-noise ratio (SNR), and is used as
a ranking statistic in detection.

As the extrinsic parameters of a signal are unknown prior to detection, and there-
fore the antenna patterns as well as the amplitude are unknown too, a search looks
for

h (θ) = ph+ (µ) + qh× (µ) , p, q ∈ R , (2.43a)

(h+|h+) = (h×|h×) = 1 , (h+|h×) = 0 , (2.43b)

where the p and q parameters encompass the dependence on all extrinsic parameters
besides the merger time, and µ are the intrinsic parameters. When dealing with
waveforms without higher modes in a single detector, these are degenerate and the full
morphology can be obtained by varying µ and the coefficients p and q:

ρ2MF (s) = max
µ

max
p,q

(2s− ph+ (µ)− qh× (µ) | ph+ (µ) + qh× (µ)) . (2.44)

The optimization over p and q can be done analytically as simply as

pmax = (s|h+ (µ)) , qmax = (s|h× (µ)) , (2.45a)

ρ2MF (s) = max
µ

[︁
(s|h+ (µ))2 + (s|h× (µ))2

]︁
. (2.45b)

Furthermore, (s|hn) with hn a normalized waveform is called a matched filter and is a
crucial element of parameter estimation algorithms.

A template bank is a collection of normalized waveforms, covering densely the
intrinsic parameter space µ. An algorithm searching for events then computes the
ρMF for each waveform from the template bank, shifting it through the entire dataset
under examination to account for an unknown event time. This can be done using a
convolution, computed efficiently using fast Fourier transform algorithms, which also
motivates the use of CNN models (see Sec. 3.3) later in this thesis.

We also define the optimal SNR of a waveform h as

ρ2opt := (h|h) , (2.46)
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which deviates from the ρMF through the (n|h) terms when the template h is the true
injection. When dealing with a waveform outside a detector without knowledge of a
background noise sample, ρopt provides an approximation of ρMF.

Furthermore, when using a network of multiple detectors with SNRs ρI indexed by
I, let us assume the noise distributions of the individual networks to be independent

ρ2net ∝ log Λ = log

(︄∏︂

I

ΛI

)︄
=
∑︂

I

log ΛI ∝
∑︂

I

ρ2I (2.47)

Based on this, we define the network SNR [52]

ρ2net :=
∑︂

I

ρ2I . (2.48)

In matched-filter based detection pipelines, in case of coincident triggers from multiple
detectors, the formula above is commonly used as a ranking statistic.

One may notice that Eq. (2.36b) can be rewritten as

(a|b) = 2

∫︂ ∞

0

[︂
ãw (f) b̃

∗
w (f) + c.c.

]︂
df , (2.49a)

ãw (f) :=
ã (f)√︁
Sn (f)

. (2.49b)

Plugging this into the noise distribution in Eq. (2.36a) we see that this transformation
yields uncorrelated noise, which corresponds to a flat PSD. This way, one can transform
a stream of colored data a to a white stream aw, and we call this process whitening.
At the same time, this changes the waveform morphology when injections are present
in the data.

2.4.2 Search evaluation

Finally, we focus on evaluating the performance of a GW search algorithm. Let us
assume a stream of test data of length T , consisting entirely of noise, and a search
algorithm which produces Nf triggers, each consisting of a merger time and a ranking
statistic. Denoting by Nf>t the number of triggers whose ranking statistics exceed a
detection threshold t ∈ R, we define the false alarm rate (FAR)

F (t) :=
Nf>t

T
, (2.50)
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and we require its inverse t (F), which returns the threshold corresponding to the
desired FAR. We say a point with a ranking statistic ρ is a trigger at FAR F , if

ρ > t (F) . (2.51)

Let ζ (F ; x, θ) be the probability of a search triggering at a FAR of F on a noise
sample injected with a waveform produced by a source, whose spatial position with
respect to the Earth is x and θ are the other parameters required to describe the
source. The sensitive volume of a search at FAR F is then calculated as [52]

V (F) :=

∫︂
ζ (F ; x, θ)ϕ (x, θ) dx dθ , (2.52)

where ϕ (x,θ) is the distribution of injection parameters. When the injections are
performed uniformly in volume up to a maximum distance dmax, it can be approximated
by [52]

V (F) ≈ V (dmax)
NI,F

NI

, (2.53)

where V (dmax) is the volume of a sphere with radius dmax, NI,F is the number of
detected injections at a FAR of F , and NI is the total number of injections.

Finally, the sensitive distance is simply the radius of a sphere with volume V (F)

d (F) :=
3

√︃
3V (F)

4π
≈ dmax

3

√︃
NI,F

NI

. (2.54)

We call the plot of d (F) the sensitivity curve. It carries information on the perfor-
mance of the search at various values of F and, by extension, the threshold t. It is
a common measure of production search sensitivity [52] and, in its essence, is closely
related to the receiver operating characteristic [297] (see Sec. 3.1).
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Machine learning

In a great deal of problems in natural sciences, one must turn to approximation meth-
ods. This may amount to, e.g., expanding a function in its Taylor series and only
taking its first several terms, replacing interaction potentials between different par-
ticles in a many-particle system by an effective potential, or a great multitude of
other methods [298]. Function approximation is one of the most usual applications of
machine learning [130, 145, 299–304].

Tom M. Mitchell broadly defined machine learning (ML) as [305]:

“A computer program is said to learn from experience E with respect to
some class of tasks T and performance measure P , if its performance at
tasks in T , as measured by P , improves with experience E.”

Supervised learning relies on a sufficient amount of available data in the form of input-
output pairs to tune the free parameters of a model through iterative applications to
the data. Under favorable conditions, this will result in the model approximating the
target function well; in fact, these methods are capable of approximating an arbitrary
function to an arbitrary degree of precision with a sufficiently flexible model [121, 306,
307]. Naturally, such a method also has a lot of pitfalls, which can very easily break the
faithfulness of the approximation, summarized by no free lunch theorems [308–310].

A common example in introductory courses to ML is the classification of hand-
written digits from the MNIST dataset [311]. It comprises 70 000 grayscale 28 × 28-
pixel images, with integer labels from 0 to 9. Simple networks trained over times on
the order of a minute using a consumer GPU are capable of exceeding an accuracy of
99% in digit classification on the MNIST dataset.

ML methods are very versatile, and function approximation by supervised learning
is but a small example. This thesis only uses ML for approximation. In this chapter, we
introduce the basics of this method. We will mostly follow [114], which is a thorough
introduction into ML methods for applications in physics, going further than function
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approximation and also covering autoencoders or generative methods, for example.
For more comprehensive material on ML, see [115].

3.1 Basics of machine learning

Let us start with a generic supervised learning problem. We denote the function, which
we would like to approximate, f ∗. It is sometimes called the true model. Typically, it
will hold

f ∗ : X → Y , (3.1a)

X ⊂ Rm, Y ⊂ Rn, m, n ∈ N . (3.1b)

We would like to create a function which approximates f ∗. To do this, we require a
further four ingredients:

• Model To approximate the f ∗ declared in Eq. (3.1a), we will use a function
which accepts p extra parameters

f : X × Rp → Y . (3.2)

The θ ∈ Rp is a set of parameters usually called weights which are tuned during
the training process in a manner which improves the faithfulness of the approx-
imation

f (x, θ) ≈ f ∗ (x) . (3.3)

The choice of a suitable model for a given problem is a complex issue. In some
cases, a simple lower-order polynomial will work out well, with its coefficients
as the trainable weights, while in others, it is necessary to apply a large neural
networks with many weights.

• Data Another necessary ingredient is a set of inputs for the f ∗ function and its
corresponding outputs, typically including noise σ:

X ∈ XN , Y,σ ∈ YN , (3.4a)

∀i = 1, 2, . . . , N :Yi = f ∗ (Xi) + σi . (3.4b)
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• Loss function In addition, we must define a loss function C (often also called
cost, error or energy), which measures a scalar deviation between two sets of
elements of the target space Y . It will not only measure how well our model is
performing, it is also a crucial ingredient for the training process itself.

The most common loss used for a prediction problem is the mean squared error
loss

MSE : Rmn × Rmn → R , (3.5a)

Ȳ, Y ↦→ 1

mn

m∑︂

i=1

n∑︂

j=1

(︁
Ȳ ij − Yij

)︁2
. (3.5b)

In case of a classification problem, one would typically use, as their target space,
all possible sets of probabilities for the n classes Y = {p ∈ Rn|∑︁n

i=1 pi = 1}.
Then the loss function used would typically be the Categorical Cross Entropy

CCE : Rmn × Rmn → R , (3.6a)

Ȳ, Y ↦→ − 1

mn

m∑︂

i=1

n∑︂

j=1

log
(︁
Ȳ ij

)︁
Yij . (3.6b)

In binary classification, it is often implemented to work with only one probability
as input and obtain the other as a complement to one, and called the binary cross
entropy (BCE).

• Optimizer The final basic ingredient is an algorithm which searches for extrema
of functions with high-dimensional input spaces. The idea of supervised learn-
ing is tuning the weights θ by searching for the minimum of the loss function
evaluated over a large amount of input-output pairs X, Y:

θ∗ = argmin
θ

C (f (X, θ) , Y) . (3.7)

These are the trained network weights, and the intended approximation is

f (x, θ∗) ≈ f ∗ (x) . (3.8)

A very simple and yet extremely useful example is linear regression, where one
searches for the best fit of a linear function to supplied data, using the L2 loss, also
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referred to as the least squares method. In a 1-dimensional setting, this is as simple as
f (x, θ) = ax+ b, θ = (a, b), which can be optimized analytically.

In some special cases, such as the linear regression mentioned above, the expressions
for the a, b values which minimize the L2 value over multiple data points can be
obtained analytically. However, when training more complicated models, this is no
longer an option; due to complicated and rugged landscapes of the loss in the space
of possible weights θ, one must instead turn to gradient-descent based methods. This
requires efficient algorithms for gradient computation, which we cover in Sec. 3.3.4.

Besides the loss function used for training, often a different metric is crucial but
cannot be directly optimized by the training procedure, e.g. due to discontinuities
which disallow usage of gradient-descent based methods. When dealing with a binary
classification problem, the model returns its degree of confidence that the input sample
belongs to a certain class and say the model has assigned it to a particular class
depending on whether the model output exceeds a given threshold or not. The accuracy
is defined as the percentage of samples which were classified correctly by the model.

A more complex method of evaluation is the receiver operating characteristic
(ROC) used in signal processing. It is the dependence of the percentage of sam-
ples from class A classified correctly on the percentage of samples from another class
incorrectly classified as class A, evaluated as the threshold is varied [297]. While we do
not directly apply this metric, it is closely related to the sensitivity curve as described
in Sec. 2.4.2 and is applied in the pioneering literature we are following [163].

3.2 Training a model

While the method outlined in Sec. 3.1 seems quite simple, it comes with a large set of
caveats and potential complications. Not only is finding the minimum of C a difficult
task by itself, in many cases, the actual global minimum may perform very poorly
when presented with new data despite being the best fit to the training data. This
section describes some of the main pitfalls and the basic solutions to overcome them.

3.2.1 Optimization

Let us consider the training problem as introduced in Sec. 3.1:

θ∗ = argmin
θ

C (f (X, θ) , Y) . (3.9)
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Gradient descent

We first consider a simple iterative process:

mj = ∇θC (f (X, θj−1) , Y) + γmj−1 , (3.10a)

θj = θj−1 − ηmj , (3.10b)

where the parameters η and γ parameters are named learning rate and momentum,
respectively.

When γ = 0, this is an optimization method called gradient descent, approximating
the continuous process

dθ (t)

dt
= −η∇θC (f (X, θ (t)) , Y) , (3.11)

which is guaranteed to reduce the loss unless in a point with zero gradients. Eqs. (3.10)
are convergent when optimizing a convex function given a suitable value for η, but in
a DNN training procedure, the function being optimized often possesses many local
minima and saddle points. The gradient descent method struggles with these and can
easily get stuck in a local minimum and is therefore unsuitable for this task.

These issues are partly resolved when γ ̸= 0, which is called gradient descent with
momentum. The corresponding continuous process is described by a second-order
differential equation, following the analogy to the inertia of a physical body in motion.
This helps the optimizer to traverse local minima. However, there is another issue.

In complex models with many weights, gradients with respect to different weights
often differ by several orders of magnitude, and therefore they are optimized much
slower. Increasing the learning rate improves the convergence speed of these weights
but causes others to diverge, as described further in Fig. 3.1.

Second moment methods

The convergence issue described above can be partly resolved by using second moment
methods, which keep a running average of not only the gradient but also its square.
Examples include Adagrad [312] and RMSProp [313]. In this thesis, we use an opti-
mizer designed to combine the advantages of Adagrad and RMSProp, the Adam [314]
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Figure 3.1: Gradient descent optimization of a function given as f (x, y) = x2 + y2/20
using four different learning rates. All optimizations start from the same point (1, 1) and the
momentum parameter is set to γ = 0. The process is separable into the x and y directions and
learning rates which converge quickly in one direction either diverge or converge slowly in the
other in the highly asymmetric case. A similar effect frequently occurs in landscapes being
optimized in neural network training procedures and can be alleviated using second-order

gradient-descent based methods.

algorithm, defined as

gj = ∇θC (f (X, θj−1) , Y) , (3.12a)

mj = β1mj−1 + (1− β1)gj , (3.12b)

vj = β2vj−1 + (1− β2)g
2
j , (3.12c)

m̂j = mj/
(︁
1− βj

1

)︁
, (3.12d)

v̂j = vj/
(︁
1− βj

2

)︁
, (3.12e)

θj = θj−1 − η
m̂j√︁
v̂j + ϵ

, (3.12f)

with parameters:

• η: learning rate

• β1, β2: decay of first and second moment, respectively
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• ϵ: regularization parameter

It follows the same basic idea as gradient descent with momentum in Eqs. (3.10). The
optimization step in Eq. (3.12f) differs from gradient descent in that the step length in

different directions is rescaled by
(︂√

v̂ + ϵ
)︂−1

in order to make the optimization more
uniform. This helps to resolve the issue of optimizing a highly anisotropic function.
The ϵ parameter is a regularization to prevent division by zero.

The power of this algorithm lies in the reduction of differences in convergence speed
in different directions and therefore an increased robustness and speed of optimization.
In addition, it is much less sensitive to the choice of learning rate than regular gradient
descent; we have found the Adam algorithm to converge in reasonable time for η values
up to 6 orders of magnitude apart, and a mere one order of magnitude for the gradient
descent method, in searching for the minimum of the Beale function [315, 316].

Stochastic optimization

The methods described above rely on the gradient ∇θC (f (X, θ) , Y) and its re-
peated computation as the weights θ are modified with each iteration of the optimizer.
In many modern applications, this is computationally too expensive, as the sizes of
datasets often go into the millions or higher, and this would lead to infeasible training
times. To resolve this, we turn to stochastic methods.

Let us split our dataset (X, Y) with m samples into mini-batches, also simply
called batches

(j)X := (Xi)
(j+1)l
i=jl , (j)Y := (Yi)

(j+1)l
i=jl , j = 0, 1, . . . , m/l − 1 . (3.13)

The parameter l is called the batch size and for simplicity, we assume m/l ∈ N. If the
input space X is sufficiently well sampled and the batch size is high enough, one can
approximate the gradient by computing it over individual batches

∇θC (f (X, θ) , Y) ≈ ∇θC
(︁
f
(︁
(j)X, θ

)︁
, (j)Y

)︁
, j = 0, 1, . . . , m/l − 1 . (3.14)

A stochastic optimizer will then iterate over the entire dataset and perform a single
optimization step on each batch. Its application to the gradient descent algorithm is
well known as stochastic gradient descent (SGD). When using second moment opti-
mizers to train complex neural networks, the word “stochastic” is often omitted but
stochastic gradient computation is implicitly used.
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Initial state

All methods mentioned in this section are iterative and require an initial set of values
for θ. A usual method to acquire the initial θ for the training is random initialization.
There are multiple standard distributions from which to draw the initial weights [317–
320] for different use cases.

We mention in particular two of the most typical ones: the uniform Glorot ini-
tialization [317] and the uniform Kaiming distribution [318], which both consist of a
zero-mean non-correlated uniform distribution and an elaborate formula for the bound-
ary, based on the network architecture and the specific layer being initialized. They
are used by default by the two most usual neural network frameworks: Kaiming by
the PyTorch library, and Glorot by TensorFlow.

In some cases, it has proven useful to use weights obtained through training on
a different problem as initial weights for a new training run. This method is called
transfer learning [321, 322]. In Ch. 4, we test the effects of a method based on transfer
learning on the performance of a ML-based GW search.

3.2.2 Model selection

As we have mentioned in the introduction of this section, in many cases, the actual
global minimum may perform very poorly when presented with new data despite being
the best fit to the training data. In the same spirit, when multiple models are trained,
the one which performs best on the data used for optimization may prove to be a bad
fit on new data, despite being produced by the same distribution. This is a common
phenomenon in ML and can be illustrated on a simple example.

Let us use polynomials of various orders to model data which was generated by a
noisy polynomial, as shown in Fig. 3.2. The x values of the training data are 11 and
101 in the top and bottom panels, respectively, uniformly spaced values from 0 to 1.
The corresponding y values are determined by a 10th order noisy polynomial

f ∗ (x) = 15x10 − 10x5 + 2x , y = f ∗ (x) + σ , (3.15)

where σ is uncorrelated Gaussian noise with a standard deviation of 0.2, and operations
of the equation above are performed element-wise. We fit polynomials of orders 1, 5
and 10 to the training data to minimize the mean squared error. Considering that the
10th order polynomial is the only model which is in principle capable of reproducing
the true model f ∗, one might expect it to be the most suitable. Indeed, it does
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Figure 3.2: Plots of several polynomial fits using different numbers of training points
(top panel: N = 11, bottom panel: N = 101) illustrating the issue of overfitting. The
corresponding training and test loss values are in table below, rounded to 2 significant digits.
While the 10th order polynomial fits the training data the best in both cases, the 5th order
is better at predicting new values not used to train the network in the N = 11 case. In the

N = 101 case, both perform well visually but the 10th order reaches a lower test loss.
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Figure 3.3: Simplified illustration of the bias-variance trade-off. The red line marks the
ideal model complexity, also called capacity. On the right side, the model is underfitting,
i.e. fits the training data better, but fails to generalize to new data. On the left side, the
model complexity is insufficient to capture the behavior of the true model, and it is therefore

underfitting. Figure taken from [115].

yield the best fit to the training data, being the only model to reproduce it exactly
(up to machine precision) in the N = 11 case (more specifically, the fit returns the
corresponding Lagrange interpolation polynomial [323]).

However, our goal is to predict new data, rather than reproduce the training data.
For this reason, one must check the performance of the trained model on independently
generated test data. In this experiment, the test data consists of 20 x values drawn
from a uniform distribution over the interval [0, 1], and y computed the same way as in
the training dataset (see Eq. (3.15)). In the N = 11 case, the 10th order polynomial
gives the worst test loss value of the tested models, as can be seen in the table of
Fig. 3.2. Clearly, the best approximation of f ∗ and of the training data is achieved
by the 5th order polynomial. In the N = 101 case, both higher-order models perform
well visually, while the loss values show a lower test loss of the 10th order polynomial.
Clearly, a suitable choice of model depends strongly on the number of data points and
many other parameters of the problem.

This failure to generalize despite a good fit on a specific dataset is a phenomenon
called overfitting which may occur in many different applications of ML methods. As
seen above, a more complex model may perform worse than a simpler one, depending
on multiple factors including the availability of data. At the same time, a model which
is too simple will also underperform, which is called underfitting. This behavior is part
of a more general relationship called the bias-variance trade-off [114, 115, 324], further
illustrated in Fig. 3.3.

In a typical ML model such as a DNN, however, training using gradient-descent
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based methods is much slower and results more difficult to visualize than in our ex-
ample. In addition, often the model runs into overfitting issues later in the training
procedure after passing through some states which perform better, and early stopping
can be employed [115, 325, 326]. One might try to search for the ideal time to stop
the training process by tracking the test loss - however, this indirectly influences the
model weights through the test data, which is undesirable and may, in a certain sense,
also lead to overfitting.

To resolve this, a third independent set is used, called the validation dataset. It
never directly influences the training process, the model loss over it is regularly calcu-
lated during the optimization and the resulting curve is used to determine at which
point the network may have started to overfit and which state is suitable for further
testing. Training a complex ML model using a stochastic optimizer then consists of
the following steps (or a variation thereof):

1. Perform E ∈ N optimization epochs, in each:

(a) Loop over training batches, on each:

i. Compute batch loss and its gradients

ii. Apply the optimizer to tune the weights

(b) Compute validation loss

(c) Save current network state

2. Select suitable state based on validation losses

3. Calculate the test loss

3.3 Neural networks

In the previous sections, we have introduced the basic procedure of training a ML
model to approximate a function using input and output samples. We have not,
however, discussed examples of ML models. This section introduces neural networks,
as a wide class of common ML models. Especially some of their subclasses, such as
CNNs, have become very popular in the 2010s due to their great success in many
applications, most notably various areas of computer vision [327–332] and associated
problems such as autonomous driving [333–336].
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3.3.1 The neuron

Let us start by defining a simple function f : Rn → R

f (x) := σ

(︄
n∑︂

i=1

wixi + b

)︄
, (3.16)

where the linear combination coefficients wi are called weights and the b is called a
bias, and the σ is an activation function. Popular choices include:

Identity: I (z) = z , (3.17a)

Step function: Θ(z) =

⎧
⎨
⎩
0 if z < 0 ,

1 if z ≥ 0 ,
(3.17b)

Sigmoid: S (z) =
1

1 + exp (−z)
, (3.17c)

Rectified Linear Unit: ReLU (z) =

⎧
⎨
⎩
0 if z < 0 ,

z if z ≥ 0 ,
(3.17d)

Exponential Linear Unit:
(typically α = 1)

ELU (z) =

⎧
⎨
⎩
α (exp (z)− 1) if z < 0 ,

z if z ≥ 0 .
(3.17e)

This function f is called an artificial neuron. The original idea was using the step
function Θ as its activation, and the neuron would then be called a perceptron. Its
structure is inspired by the function of actual neurons in a human brain: there are mul-
tiple inputs from cells in sensory organs, or from other neurons, the neuron performs
a simple operation, as a result of which it “fires” (f (x) = 1) or not (f (x) = 0).

However, for training using gradient-descent methods, Θ is unsuitable, as its deriva-
tive is zero almost everywhere in R, which prevents weight optimization. Traditionally,
this has driven interest in using the sigmoid S or the closely related hyperbolic tan-
gent, as they approach the same asymptotes as Θ. Lately, however, there has been
great interest in using linear units, such as ReLU and ELU (see above), due to their
quick and simple evaluation as well as numerical properties.

When training through loss minimization, both the weights wi and the bias b are
optimized. Therefore, they are somewhat confusingly both called weights of the model.
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3.3.2 The dense neural network

We can then build a basic neural network by using m neurons with independent sets
of weights to produce an m-dimensional output. The weights can be organized in an
m× n matrix and the biases in a vector of length m

f : Rn → Rm , (3.18a)

x ↦→ ȳ, ȳj = σ

(︄
n∑︂

i=1

Wjixi + bj

)︄
, j = 1, 2, . . . , m . (3.18b)

For practicality, we define the extension of the activation functions defined for a one-
dimensional input in Eqs. (3.17) to vector inputs element-wise, so that we can also
write the equation above in a more compact manner as

ȳ = f (x) = σ (Wx+ b) . (3.19)

With m > 1 outputs, a very useful activation function can be the Softmax

Softmax : Rm → Rm , z ↦→ exp (z)∑︁m
i=1 exp (zi)

, (3.20)

producing a set of m non-negative outputs which sum up to 1. For this reason, it is
often used for classification problems, the outputs being interpreted as probabilities.

In building more complex networks, this function is referred to as a dense layer
and often, multiple of them are used. However, it can already be a fairly well-
performing network: it is quite simple to achieve an accuracy of over 90% on the
MNIST dataset [311] using a shallow network with n = 282 = 784, m = 10, with the
Softmax activation, a cross entropy loss and a simple SGD optimizer.

Let us now define a deep neural network (DNN). It is, quite simply, a chain of
dense layers, defined in Eqs. (3.18). For an input size n and output size m, let us take
a sequence of L+ 1 positive integers n(0) = n, n(1), . . . , n(L−1), n(L) = m, and build L

layers f (1), f (2), . . . , f (L)

∀i = 1, 2, . . . , L : f (i) : Rn(i−1) → Rn(i)

, (3.21a)

f (i) (x) = σ(i)
(︁
W(i)x+ b(i)

)︁
. (3.21b)

As indicated by the indices in brackets, individual layers have independent weights,
biases, sizes and even activation functions (although these are frequently the same
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through the entire network). They are then applied sequentially to the input, forming
the final expression for the network

f := f (L) ◦ f (L−1) ◦ . . . ◦ f (2) ◦ f (1) . (3.22)

When training a DNN, all weight matrices and bias vectors are optimized, so the
full set of free parameters is θ =

(︁
W(i), b(i)

)︁L
i=1

. Somewhat confusingly, the term
“weights” can refer either just to the W(i) matrices, or to all free parameters θ (cf.
Sec. 3.1). For the rest of this thesis, it will refer to the specific matrices when discussing
individual layers, and to the full set of parameters when talking about a network in
general, which is an established convention in the ML community.

In addition, while we defined a dense layer as the combination of a linear map and
an activation function, it is conventional in practical applications to separate them
and use the term “dense layer” or “linear layer” to refer to the linear map and define
the activation function as a standalone layer. From this point forward, we follow this
terminology.

3.3.3 Convolutional neural networks

One of the main applications for DNNs is image processing. Fully connected networks
as described in Sec. 3.3.2 are, however, inefficient for this purpose, as the number of
trainable weights rises too fast as the input size increases. This can be resolved by
leaving out less important connections in the network and sharing weights between
some neurons in a manner which preserves the relevant connections and symmetries
and allows for a more feasible scaling.

The conventional solution for image processing is to employ a 2-dimensional con-
volutional neural network (CNN). In this work we only require the 1D CNN, which
is a simpler version used extensively in time-series applications. Unlike the DNNs
discussed above, 1D CNNs deal with two-dimensional data. Thus, when dealing with
layers specific to CNNs, matrices denoted by bold uppercase letters refer to individual
input samples rather than entire datasets.

To build a typical CNN design, we require three new layers:

• Let us assume a 2-dimensional input tensor X of the shape Cin × L (the first
being the channel dimension), a weight tensor W of the shape Cout × Cin ×K



3.3. Neural networks 41

and a bias vector b of length Cout. We then define the 1D convolutional layer as

Conv1D (X) :=

(︄
bi +

Cin∑︂

j=1

Wij ⋆Xj

)︄Cout

i=1

. (3.23)

Its number of trainable parameters is much lower than that of a fully connected
layer with equivalent input and output sizes. Not only have many connections
between neurons been removed, a lot of weights are also shared between connec-
tions. In the 2D case, this is done analogically, computing the cross-correlation
along two dimensions (the weights W also possess an additional dimension).

This definition emulates the inner workings of the visual cortex of some ani-
mals [337] and possesses translational symmetry, which is desirable for typical
image processing tasks, which attempt to detect edges and extract objects which
may be located in different parts of the input image. In a similar manner, one
would expect a certain degree of translational invariance in a network meant to
process one-dimensional signals.

There are additional parameters which affect the behavior and even output size of
a standard convolutional layer, namely the stride and dilation. Multiple padding
methods are also frequently used and available in most frameworks. In this
work, we limit ourselves to the case where stride = dilation = 1 and no padding
is applied, which leads to the simplified definition given above. For details on
these extensions, see [124, 126].

• Another crucial component of CNNs are downsampling operations. The most
typical is the MaxPool1D layer, for an input shape Cin×L defined by its output

MaxPool1D (X) :=
(︁
max

(︁
{Xi,m+K(j−1)}Km=1

)︁)︁Cin,⌊L/K⌋
i=1,j=1

, (3.24)

where K ∈ N is the layer’s kernel size (fully independent of the convolution
kernel size). This corresponds to splitting the input into tiles of length K and
only taking the highest element from each tile as the output. In the same way as
the convolutional layer, the MaxPool2D layer is applied over two dimensions in
the image processing applications and possesses a certain degree of translational
and rotational invariance.

• Finally, the flattening layer has no trainable parameters. It merely takes a
higher-dimensional tensor and rearranges its elements into a lower-dimensional
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one, without changing any of its values. Different options for ordering the output
tensor elements exist but are irrelevant when followed by a randomly initialized
dense layer, which is very often the case.

Taking these components, the basic CNN design consists of

1. several convolutional blocks, each with

(a) a convolutional layer,

(b) a downsampling operation,

(c) an activation function,

2. flattening,

3. a dense neural network.

3.3.4 Back-propagation

In order to train neural networks using gradient-descent based methods, an efficient
gradient computation algorithm is required. While a direct differentiation of Eq. (3.22)
iteratively applying the chain rule

d

dx
(f ◦ g) (x) = df

dg
(g (x)) · dg

dx
(x) (3.25)

for each individual weight is possible, it is not computationally efficient when applied to
a DNN. In this subsection, we demonstrate a more efficient process, which gradually
computes gradients, starting from the output layer and moving towards the input,
making use of mean products of the previously computed gradients. This process is
called back-propagation and it is at the heart of the vast majority of DNN applications
today [114, 115, 338].

Let us focus on a single evaluation of a dense neural network f as defined in
Eqs. (3.21), (3.22), also called a feed forward, from an input vector x to the output
ȳ = f (x). For convenience, we denote some mean products of the process, building
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the feed-forward algorithm as

a(0) := x , (3.26a)

∀l = 1, 2, . . . , L : z(l) := W(l)a(l−1) + b(l) , (3.26b)

a(l) := σ(l)
(︁
z(l)
)︁
, (3.26c)

ȳ = a(L) . (3.26d)

Note that while we define the loss function over a dataset of individual samples, in
this section we work with the loss over a single sample for simplicity.

For training the network, we will typically be taking partial derivatives of a loss
function C = C (f (x, θ) , y) with respect to the network weights θ. Moving backwards
through the network, one can simply compute the derivatives in matrix form as

∂C
∂a(L)

=
∂C
∂ȳ

, (3.27a)

∀l = L, L− 1, . . . , 1 :
∂C
∂z(l)

=
∂C
∂a(l)

⊙ σ(l)′ (︁z(l)
)︁
, (3.27b)

∂C
∂a(l−1)

=

(︃
∂C
∂z(l)

)︃T

W(l) , (3.27c)

∂C
∂W(l)

=
∂C
∂z(l)

⊗ a(l−1) , (3.27d)

∂C
∂b(l)

=
∂C
∂z(l)

. (3.27e)

This provides us with an iterative algorithm, which yields the gradients of the loss
function with respect to all the trainable weights through Eqs. (3.27d), (3.27e).

In the case of a more complex architecture such as a CNN, the procedure follows the
same basic idea: moving from the output to the input layer and reusing information
from the previous layer to compute the partial derivatives of the loss function with
respect to network weights. DNN frameworks include a very efficient and versatile
implementation of the back-propagation algorithm over a full batch of samples [124,
125, 127, 128].
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In a convolutional layer as given by Eq. (3.23), carefully computing the partial
derivatives yields

∂C
∂Xrs

=
Cout∑︂

k=1

K∑︂

i=1

∂C
∂Ȳ k(s+1−i)

Wkri , (3.28a)

∂C
∂Wrst

=
L+1−K∑︂

l=1

∂C
∂Ȳ rl

Xs(t+l−1) , (3.28b)

∂C
∂br

=
L+1−K∑︂

l=1

∂C
∂Ȳ rl

. (3.28c)

3.4 Regularization

In Sec. 3.2 we have covered some issues one may run into when attempting to train a
complex model. A set of techniques to counter them summarily called regularization
have been developed [115, 339] and this section describes several of them.

3.4.1 Exploding gradients

Depending on the training setup, the loss may diverge at specific points and in its
vicinity, its gradients may become very large. This breaks the approximate equiva-
lence of Eqs. (3.10) and (3.11) and the optimizer may perform very large steps which
deteriorate the network’s performance. This can be resolved using gradient norm clip-
ping [340, 341], which replaces the gradients by

clip (∇θC (f (X, θ) , Y) , gmax) , (3.29a)

clip (g, gmax) :=

⎧
⎨
⎩
(gmax/ ∥g∥) · g if ∥g∥ ≥ gmax ,

g otherwise ,
(3.29b)

where gmax is a positive parameter, ∥·∥ is any norm and the clip in the top equation
is performed over a single vector of gradients with respect to all trainable parameters.
In some cases, it may also accelerate the training procedure [342].

The categorical cross-entropy loss (see Eqs. (3.6)) is divergent when for a certain
i, j pair it holds Ȳ ij = 0, Yij > 0, which then leads to exploding gradients. To counter
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this issue, we have designed a simple regularized loss

CCEreg

(︁
Ȳ, Y

)︁
:= − 1

mn

m∑︂

i=1

n∑︂

j=1

log
(︁
(1− ε) Ȳ ij + ε

)︁
Yij , (3.30)

where 0 < ε ≪ 1 is a regularization parameter. This way, the argument of the
logarithm is never less than ε, preventing any divergences. Note that the loss is linear
with respect to the labels, which is a useful property due to the approximation of
Bayesian posteriors as described in Eq. (4.1).

3.4.2 Overfitting

In cases where a complex model is required and the available data is insufficient, one
will easily run into issues with overfitting. To resolve this, a set of techniques exists
called data augmentation, which effectively increase the size of the dataset by deriving
new samples based on existing ones [343, 344]. In the case of image data, these typically
consist of random cropping, rotations, mirroring, zoom, or noise injection; in case of
audio data, time shifting or noise injection; or in the case of text data, replacement of
words with synonyms.

We use a related technique, called a dropout layer [345, 346]

Dropout : Rm → Rm , (3.31a)

x ↦→ ȳ , (3.31b)

ȳj =

⎧
⎨
⎩
0 probability p ,

xj

1−p
probability 1− p ,

(3.31c)

where p ∈ (0, 1) is a parameter. Typically, this dropout layer is only inserted during
training but removed for evaluation (in fact, for simplicity, PyTorch allows to keep
the layer and offers the model to switch between a training mode, where the Dropout
behaves as above, and an evaluation mode, where it acts as an identity function).

In a CNN, it is usually inserted in the later part, consisting mainly of dense lay-
ers (variants exist, however, which zero out an entire channel in the convolutional
part [124, 347]). While not a noise injection per se, it does introduce additional
stochasticity and the effect is similar to that of a noise injection method.





47

Chapter 4

Single-detector searches and training
strategies

The first steps into GW data analysis using ML-based algorithms have been done
in [162, 163], where CNNs following the basic design shown in Sec. 3.3 were trained
using generated data to distinguish samples consisting of detector noise and a non-
spinning BBH waveform injection from those only containing pure noise, and evaluated
using traditional ML metrics such as the accuracy and the ROC.

One of the questions raised by the two publications is the choice of SNRs of wave-
form injections in the training dataset. In [162], a method called curriculum learning
was applied. It consists of starting the training with very loud signals and gradually
reducing their SNRs during the training and it is a form of transfer learning [348–350].
The two initial publications, however, disagree on its effect: while [162] found a no-
ticeable improvement in its use, [163] found no difference. This is one of the issues
addressed in this project.

Furthermore, the pioneering papers succeeded in classifying isolated data samples
at false alarm probabilities (FAPs) down to 10−3 (per noise sample analyzed). To
obtain a GW search algorithm, it is necessary to extend these results from isolated
data samples to continuous streams of data and evaluate them using task-appropriate
metrics in use by the GW data analysis community (see Sec. 2.4.2). Namely, these
are the FAR and the sensitive distance [52]. In order to compete with traditional
GW search algorithms, this also includes a reduction of the FAP by several orders of
magnitude.

The contents of this chapter describe a project conducted by a collaboration of
the Albert-Einstein-Institut Hannover (represented by Marlin Schäfer, Alex Nitz and
Frank Ohme) and the FSU Jena (represented by myself and prof. Bernd Brügmann),
which reproduced the results described in [163] and extended them to achieve the
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goals above, and culminated in the publication of [215]. All relevant code and data
are available publicly as part of the data release at [351].

This work has also been successfully extended to a two-detector search by applying
the network to both detector streams and using a simple probabilistic formula to search
for coincident triggers [352].

4.1 Experimental setup

Following [163], the training data consists of 1 second samples of Gaussian noise
and non-spinning BBH injections. The waveforms are generated using the model
SEOBNRv4_opt [353], which is an optimized version of the EOB model SEOBNRv4 [252],
through PyCBC [354] and, by extension, LALSuite [355, 356]. As we are working with
a single detector and the waveforms only include the dominant modes (2, ±2), the full
waveform morphology can be obtained by varying the component masses m1, m2, the
coalescence phase Φ0, and either the luminosity distance or the optimal SNR, fixing
all other parameters.

We choose to set the sky position to be overhead the LIGO Hanford detector [357]
and the inclination as well as the polarization to 0. All generated waveforms are
rescaled to obtain a given optimal SNR, therefore the choice of distance is irrelevant
(dL = 1Mpc is passed to the approximant). Pairs of masses are drawn from a uniform
distribution over [10M⊙, 50M⊙] and the higher and lower value is assigned to m1 and
m2, respectively, to satisfy the definition of the primary and secondary masses. For
each mass pair, 5 different coalescence phases are drawn uniformly from [0, 2π), and
the resulting waveforms are combined with 5 independently generated noise samples.

While [163] uses a sampling rate of 8192Hz, all BBH signals from the chosen mass
distribution merge at lower frequencies than 1024Hz and the detector sensitivity drops
sharply at both high and low frequencies. For this reason, we restrict our search to
the frequency range [20Hz, 1024Hz]. This is a standard procedure done in current
searches as well and we have verified that little to no SNR is lost due to this. In
accordance, we reduce the sampling rate to 2048Hz for computational efficiency while
reaching the Nyquist frequency of 1024Hz [358]. As our networks converge to results
comparable to [163], we are confident that this reduction has no negative impact on
the resulting network’s performance.

The waveform approximant lower-frequency cutoff is set to 20Hz. The signal is
then projected onto the Hanford detector, whitened by the aLIGOZeroDetHighPower
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PSD [355, 359, 360], and its optimal SNR is scaled to 1. To reduce the trained
network’s sensitivity to the exact alignment of the waveform in the input window, the
merger is placed randomly in the [0.6 s, 0.8 s] range within the 1 second-long window.

All noise is generated by the same aLIGOZeroDetHighPower PSD used to whiten
the waveforms and whitened by the same procedure. Whitening and storing them
separately allows us to dynamically change the optimal SNRs of injections during the
training procedure, which is desirable as we test training strategies (see Sec. 4.3).

In this way, the training dataset is generated. It consists of 200 000 independent
noise samples and 100 000 waveforms stemming from 20 000 independent component
mass pairs. When combined, 100 000 noise samples are used with a BBH injection and
100 000 without one, forming the “signal” and “noise” classes. The validation dataset
is assembled in the same way and has the same numbers of samples as the training
dataset, as it may directly influence the training process through training strategies.

Due to this, metrics derived off of the validation dataset may be biased and we
require a third dataset called the efficiency set, whose usage is described below. It con-
sists of 400 000 independent noise samples and 10 000 waveforms and is not assembled
the same way as the training and validation sets.

Ideally, one would train the network to approximate the Bayesian posteriors y =

(p (H1|d) , p (H0|d)). Following [189], taking the cross entropy (see Eq. (3.6)) over a
given prior distribution yields

⟨C⟩ = −
∫︂

p (d) dd [p (H1|d) log f (d)0 + p (H0|d) log f (d)1]

= −p (H1)

∫︂
p (d|H1) dd log f (d)0 − p (H0)

∫︂
p (d|H0) dd log f (d)j

≈ −p (H1)

Nwave

Nwave∑︂

j=1

log f
(︁
Xwave

j

)︁
0
− p (H0)

Nnoise

Nnoise∑︂

j=1

log f
(︁
Xnoise

j

)︁
1

= − 1

N

N∑︂

j=1

[︁
log
(︁
Ȳ j0

)︁
Yj0 + log

(︁
Ȳ j1

)︁
Yj1

]︁
,

(4.1)

where f is the model under evaluation and Xwave and Xnoise are datasets containing
and not containing injections, respectively. These have lengths Nwave and Nnoise and
follow their corresponding distributions p (d|H1) and p (d|H0), respectively. Naturally,
it holds N = Nwave + Nnoise and the priors are p (H1) = Nwave/N , p (H0) = Nnoise/N .
Finally, the labels Yj are set to (1, 0) for a sample with an injection, and (0, 1) for a
pure noise sample. We call the network output probability Ȳ j0 the p-score.
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This means that the BCE loss measured with respect to the Bayesian posteriors as
labels can be approximated using the so-called one-hot labels as defined above. This
approximation only holds over a sufficiently large dataset to justify the approximation
of the average by a sum over samples following the corresponding distribution as in
Eq. (4.1).

Therefore we use one-hot labels in our training. Due to exploding gradients during
training, instead of the BCE, the regularization of Eq. (3.30) is used

BCEreg

(︁
Ȳ, Y

)︁
= − 1

mn

m∑︂

i=1

n∑︂

j=1

log
(︁
(1− ε) Ȳ ij + ε

)︁
Yij , (4.2)

which converges to the BCE as ε → 0. We set ε = 10−6. It should be noted that the
critical property for the derivation in Eq. (4.1) is that the loss is a linear function of
the label probability, and this property is preserved in the regularized loss. We make
use of the Adam optimizer (see Eqs. (3.12)) with the learning rate set to η = 10−5 and
the others at their default values β1 = 0.9, β2 = 0.999, ϵ = 10−8 [314].

As the network is trained, its performance is evaluated on the efficiency set. Tra-
ditionally, one would use metrics such as accuracy, precision and recall [297], or the
ROC curve, such as in [163]. To optimize for search performance, we develop a metric
closely related to the ROC curve as well as to those discussed in Sec. 2.4.2.

We define the false alarm probability (FAP) of the network at a fixed threshold as
the fraction of noise samples which exceed this threshold when the network is applied.
We define the efficiency as the true-positive probability at a fixed FAP. To compute
it, we sort the p-score outputs of the network over all noise samples in the efficiency
set, whose number we denote Nn. Then we compute

x = ⌊Nn · FAP⌋ , (4.3)

where ⌊·⌋ denotes the flooring operation, and choose the x-th largest of the sorted p-
scores as the detection threshold. Then, the waveforms are injected into noise samples
from the efficiency set at a fixed SNR and evaluated by the network. We calculate the
percentage of those which exceed the detection threshold and call it the efficiency of the
network. In this chapter, the FAP = 10−4 value is fixed for all efficiency calculations,
and SNRs 3, 6, 9, 12, 15, 18, 21, 24, 27 and 30 are used. Where a single efficiency is
given, it is an arithmetic mean of the efficiencies at these SNRs.
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layer type kernel size output shape
Input + BatchNorm1D 1× 2048
Conv1D + ELU 64 8× 1985
Conv1D 32 8× 1954
MaxPool1D + ELU 4 8× 488
Conv1D + ELU 32 16× 457
Conv1D 16 16× 442
MaxPool1D + ELU 3 16× 147
Conv1D + ELU 16 32× 132
Conv1D 16 32× 117
MaxPool1D + ELU 2 32× 58
Flatten 1856
Dense + Dropout + ELU 64
Dense + Dropout + ELU 64
Dense + Softmax 2

Table 4.1: The CNN architecture used for training. Note that the shapes are given as used
by PyTorch. When using TensorFlow or other packages which put the channel dimension
after the spatial one, the two-dimensional tensors before the Flattening layer are transposed.

The CNN architecture used for this project is based on [163] with several modifi-
cations. Primarily due to the input size reduction from 8192 to 2048, the MaxPool1D
sizes have been reduced and the input size of the first dense layer after flattening has
been changed accordingly. Furthermore, due to initial issues with training, we have
decided to add a batch normalization layer [361] in the beginning of the network,
known to accelerate training. The final architecture used for training is summarized
in Tab. 4.1.

The network was implemented twice and trained using both implementations. One
has been performed using the Python framework PyTorch [124] by myself, while the
other uses the package TensorFlow [125, 126] and has been done by Marlin Schäfer.
We have thus verified that different frameworks provide equivalent results.

4.2 Unbounded Softmax replacement

The left panel of Fig. 4.1 shows the efficiency of a network trained with the optimal
SNRs drawn from the [5, 15] interval (the “fixed low mean”, see Sec. 4.3) as a function of
the optimal SNR of the waveforms in the efficiency set. While it reproduces the results
of [163] at FAPs down to 10−3, reducing it to 10−4 causes the network performance to
degrade to zero efficiency.
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Figure 4.1: The efficiency of the “fixed low mean” network evaluated at different optimal
SNRs and FARs. In the left panel, the network is used as it was trained, with a Softmax as
its final layer. The lines labeled “ref.” are the results of Fig. 3 in [163]. In the right panel,

results of the same network are shown, evaluated using the USR modification.

Further analysis reveals that out of the 400 000 samples used to fix FAP = 10−4,
over 40 are classified by the network at a p-score of 1. Therefore, during the efficiency
calculation, the trigger threshold is set to 1, which is the highest value that the network
can output and none of the samples containing waveform injections can exceed it,
resulting in an efficiency of 0. This is due to a rounding error in the Softmax layer.
Below, we develop a simple modification which removes this issue.

Let us denote by x0, x1 the outputs of the last dense layer in the network, i.e.
inputs to the Softmax layer. Its first output (the p-score) can be expressed in exact
arithmetic as

Softmax (x0, x1)0 =
exp (x0)

exp (x0) + exp (x1)
=

1

1 + exp [− (x0 − x1)]
. (4.4)

In fact, ML frameworks employ this form when x0 > x1 for numerical stability, as its
definition is much more prone to overflows. While the Softmax output is less than one
in exact arithmetic, for x0−x1 ≳ 16 it is rounded up to 1 in single-precision arithmetic.
While raising the floating-point precision would be helpful, even in quadruple precision
this issue will occur at x0 − x1 ≳ 45, which is a value reached by some noise samples
in our experiment.

To resolve this, we turn to a different ranking statistic with better numerical prop-
erties. One can choose any purely growing function of the p-score. We propose two
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Figure 4.2: Comparison of sensitivity curves of the “fixed low mean” model with the three
different choices of the final activation evaluated at different floating-point precisions where
applicable. All three InvSoftmax curves as well as the USR 32 curve overlap through the
whole range and provide comparable performance. However, the original Softmax activation
degrades in performance with respect to the USR even when quadruple-precision arithmetic

is used. For details on the evaluation of the sensitivity curves, see Sec. 4.4.

suitable choices:

USR (x0, x1) := x0 − x1 , (4.5a)

InvSoftmax (x0, x1) := − Softmax (x0, x1)1 = − 1

1 + exp (x0 − x1)
. (4.5b)

As the p-score is a purely growing function of x0−x1, we can freely choose the former
as our ranking statistic instead. Since this maps the original output range from (0, 1)

to R, we call this modification the unbounded softmax replacement (USR).
The InvSoftmax is also a purely growing function of the p-score:

InvSoftmax (x0, x1) = Softmax (x0, x1)0 − 1 , (4.6)

therefore it is a valid ranking statistic. It pushes the problem described above to
x0 − x1 ≳ 104 in single precision, x0 − x1 ≳ 745 in double precision, and x0 − x1 ≳

11400 in quadruple precision floating-point arithmetic. In the denominator, the term
vanishing through rounding errors is the constant rather than the exponential, and
thus the ordering of values is partly preserved.
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On the other hand, the USR removes this issue altogether. Fig. 4.2 shows a set
of sensitivity curves of one of the networks, using the original network output and
both modifications in different degrees of precision. While even the single-precision
InvSoftmax seems to perform comparably to the USR, for robustness and simplicity
we have decided to use the USR for evaluation. This leads to the efficiency curves
shown in the right panel of Fig. 4.1, resolving the issue. However, it should be noted
that based on the rounding thresholds above, the InvSoftmax can also be a suitable
option when 64-bit floating point number representation is used.

4.3 Training strategies

We performed a set of experiments to investigate the effect of curriculum learning. We
have designed 15 ways of adjusting the training SNRs throughout the training, which
we call training strategies, and they are summarized in Tab. 4.2. They are split into
two categories called “curriculum” and “fixed”. The latter consists of 5 strategies, in 3 of
which the optimal SNR of the waveforms in the training dataset is a single fixed value
(30, 15, and 8, respectively), and in the remaining two an interval is chosen and the
optimal SNR for each training sample is drawn randomly from a uniform distribution
over the interval. This interval is [5, 15] for the “low” strategy and [5, 100] for the
“full” strategy.

The curriculum category consists of 10 strategies which start by drawing the opti-
mal SNRs randomly from the [90, 100] interval and gradually change it to lower values.
We chose 5 conditions which determine when to reduce the SNR range and 2 methods
by which the new range is determined. In the strategies not marked “relative”, both
ends of the interval are reduced by 5 each time the relevant condition is fulfilled until
[5, 15], which then remains unchanged for the remainder of the training procedure.

In the strategies marked “relative”, both ends of the range are reduced by 10%

of the previous value until the lower end falls below 5. This also reduces the length
of the interval by 10% in each step. Once the final step brings its lower end below
5, the entire interval is shifted up to be on this threshold. The final interval is then
approximately [5, 5.523].

In the “epochs” condition, this step is performed once every 5 training epochs,
while the others are based on metrics computed over the validation dataset. After
every epoch, the loss and accuracy over the validation dataset are computed. In the
“accuracy” strategy, the condition is the validation accuracy reaching 0.95, and in
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Type Name Condition

Curriculum

accuracy when validation
accuracy ≥ 0.95accuracy relative

epochs every 5 epochsepochs relative
loss when validation

loss ≤ 0.2loss relative
plateau accuracy 6 epochs validation

accuracy plateauplateau accuracy relative
plateau loss 6 epochs validation

loss plateauplateau loss relative

Fixed

30 SNR = 30
15 SNR = 15
8 SNR = 8
low SNR ∈ [5, 15]
full SNR ∈ [5, 100]

Table 4.2: Summary of training strategies used. Curriculum strategies not marked “relative”
reduce both ends of the interval by 5 whenever the condition in the last column is fulfilled,
while those marked “relative” instead reduce both ends by 5% of the previous value. This is
performed until the lower end reaches 5. In the “fixed” strategies, the SNR values are drawn
from a uniform distribution over the interval in the last column, or set to a single value where

specified.

the “loss” strategy it is the validation loss dropping to 0.2. In the strategies marked
“plateau”, the condition is that the corresponding metric has failed to improve by more
than 0.01% for 6 consecutive epochs.

To eliminate the bias of favorable weight initializations, the network is trained 50
times using each strategy, resulting in a total of 750 training runs. Three runs using
each strategy have been selected for further evaluation using the efficiency values.
First, the average efficiency over all 10 SNR values 3, 6, . . . , 30 is computed at each
epoch of each run. The epoch is selected as the maximum of this efficiency averaged
over all 50 runs of the corresponding strategy. Finally, three network states are chosen
at this epoch based on the average efficiencies of the runs. The “high” and “low” refer
to the states with the highest and lowest efficiency, and “mean” the closest to average.
Over all 15 strategies, this leads to a total of 45 network states being evaluated in the
following section.

Figs. 4.3, 4.4 show the efficiency evolution over all 750 training runs, evaluated at
SNR = 9. While we monitor other SNRs as well, we are particularly interested in
this region for three reasons. First, at SNR ≥ 12, almost all networks recover close



56 Chapter 4. Single-detector searches and training strategies

0 100 200
Epochs

0.0

0.5

1.0

E
ffi

ci
en

cy

Accuracy

Average

Example

0 100 200
Epochs

0.0

0.5

1.0

E
ffi

ci
en

cy

Accuracy relative

0 100 200
Epochs

0.0

0.5

1.0

E
ffi

ci
en

cy

Epochs

0 100 200
Epochs

0.0

0.5

1.0

E
ffi

ci
en

cy

Epochs relative

0 100 200
Epochs

0.0

0.5

1.0
E

ffi
ci

en
cy

Fixed 8

0 100 200
Epochs

0.0

0.5

1.0

E
ffi

ci
en

cy

Fixed 15

0 100 200
Epochs

0.0

0.5

1.0

E
ffi

ci
en

cy

Fixed 30

0 100 200
Epochs

0.0

0.5

1.0

E
ffi

ci
en

cy

Fixed full range

0 100 200
Epochs

0.0

0.5

1.0

E
ffi

ci
en

cy

Fixed low range

0 100 200
Epochs

0.0

0.5

1.0

E
ffi

ci
en

cy

Loss

0 100 200
Epochs

0.0

0.5

1.0

E
ffi

ci
en

cy

Loss relative

0 100 200
Epochs

0.0

0.5

1.0

E
ffi

ci
en

cy

Plateau accuracy

0 100 200
Epochs

0.0

0.5

1.0

E
ffi

ci
en

cy

Plateau accuracy relative

0 100 200
Epochs

0.0

0.5

1.0

E
ffi

ci
en

cy

Plateau loss

0 100 200
Epochs

0.0

0.5

1.0

E
ffi

ci
en

cy

Plateau loss relative

Figure 4.3: Efficiencies of all training runs by training strategy, evaluated at SNR =
9, FAP = 10−4. Each panel shows 50 efficiency curves corresponding to all runs using a
particular training strategy in light gray, and one randomly chosen run highlighted in dark
gray. The dashed black line shows their average and the dashed red line marks the maximum
of the efficiency averaged over all SNRs as well as over all fifty runs of the given strategy,
which is chosen to select the three states meant for final evaluation. All efficiencies are

computed using the Softmax activation.
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Figure 4.4: Efficiencies of all training runs by training strategy, evaluated at SNR =
9, FAP = 10−4. Each panel shows 50 efficiency curves corresponding to all runs using a
particular training strategy in light gray, and one randomly chosen run highlighted in dark
gray. The dashed black line shows their average and the dashed red line marks the maximum
of the efficiency averaged over all SNRs as well as over all fifty runs of the given strategy,
which is chosen to select the three states meant for final evaluation. All efficiencies are

computed using the USR modification.
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to 100% of signals and cannot be separated by efficiency. Second, most GWs are
expected to be found at low SNRs, which makes these values most important. Third,
SNR = 8 is often used as a threshold above which matched-filter searches can safely
detect most signals, and so probing near this value is a very good overall performance
measure. More detailed plots at selected SNRs are available for all strategies in the
data release [351].

Fig. 4.3 contains drops to zero efficiency on many individual runs and in the case of
some strategies, of all the given runs. Further analysis reveals that the trigger threshold
in these cases is equal to 1, and is therefore a consequence of the issue described in
Sec. 4.2. Fig. 4.4 shows the efficiency evolution of the same runs as Fig. 4.3 with the
USR applied. All efficiency drops observed in Fig. 4.3 disappear when the USR is
applied.

Let us further examine Fig. 4.4 to determine the effect of training strategies on
the trained network efficiencies. Most training strategies do not have a major impact,
as all converged networks except “fixed 15” and “fixed 30” reach efficiencies from 90%

to 94%. At SNR = 6 the efficiency consistently drops between 24% and 33%, and
at SNR ≥ 12 all strategies besides the two exceptions reach 100%. The “fixed 15”
strategy reaches this milestone at SNR = 15 and “fixed 30” only at SNR = 21.

Efficiencies of the “fixed low” and “fixed 8” runs at SNR ≥ 18 have managed
to match those of other runs, despite only seeing weaker signals in their training.
Conversely, “fixed 15” and “fixed 30” perform well at high SNRs but much worse than
others at SNR ≤ 12. This implies that CNNs can learn to generalize from weaker
signals to stronger ones but not vice versa.

The relative plateau strategies did not converge within the 200 epochs. An ad-
ditional 200 were performed and this has allowed them to converge. In the end, all
converged runs except “fixed 15” and “fixed 30” reached very similar efficiencies and
differ mainly in the number of epochs it took to reach their optimal states. We there-
fore conclude that the choice of training strategy is of little importance to the eventual
performance of the network. Instead, it is crucial to include low SNR signals in the
training dataset to achieve optimal performance.

In addition, we have repeated these experiments while varying the network hyper-
parameters, to ensure the robustness of our results to small differences in the network
architecture. We found no significant differences in the final efficiencies, merely varia-
tions in the training time.



4.4. Search evaluation 59

Parameter Uniform distribution
Approximant SEOBNRv4_opt
Component masses m1, m2 ∈ [10M⊙, 50M⊙]
Spins χ1, χ2 = 0
Coalescence phase Φ0 ∈ [0, 2π)
Polarization Ψ ∈ [0, 2π)
Inclination cos ι ∈ [−1, 1]
Declination sin θ ∈ [−1, 1]
Right ascension φ ∈ [−π, π)
Luminosity distance d2L ∈

[︁
5002Mpc2, 70002Mpc2

]︁

Table 4.3: Injection parameters for the test dataset. A uniform distribution is applied over
the intervals in the second column. The injection times are determined by drawing the time

between any two consecutive injections from a uniform distribution over [16 s, 22 s].

4.4 Search evaluation

As described in Sec. 2.4.2, a traditional GW search pipeline is expected to produce a
set of candidate events, each accompanied by a ranking statistic. To build a search
algorithm based on our CNN, we employ the sliding window approach. The test data
is first sliced into 1 s segments at a step size of 0.1 s to ensure that in any potential
waveform, the merger time is always in the same interval as in the training data in at
least one slice. These slices are then whitened and fed to the network and the outputs
which exceed a given trigger threshold are clustered by time. The maximal separation
of two successive triggers in a cluster is 0.2 s. Each cluster is then a candidate event in
the output, the time associated with a given event is the first time when the maximum
p-score is reached, and the corresponding ranking statistic is that of the maximum.

To evaluate the sensitivity of this algorithm, a test dataset has been generated. It
consists of 1 month of simulated Gaussian noise generated by the same PSD as the
training data with injections separated by a time randomly drawn from a uniform
distribution over the interval [16 s, 22 s]. The injections are generated by the same
SEOBNRv4_opt approximant as the ones used for training. The injection parameters
are summarized in Tab. 4.3.

As a baseline, we have run the PyCBC [51–55] matched-filter search. The cor-
responding template bank covers the component mass range [10M⊙, 50M⊙]. Due to
the discretization of the mass space, the maximization in Eq. (2.45b) is inexact. The
distribution of masses in the template bank is performed in a way which guarantees
that the loss in SNR due to discretization is ≤ 3%. The search is implemented by
pycbc_inspiral and configured to output a set of times where the convolution of any



60 Chapter 4. Single-detector searches and training strategies

template with the data returns ρMF > 5. The configuration files are included in the
data release [351].

All sensitivity curves are evaluated by the procedure described in Sec. 2.4.2 using
both the Softmax activation and the USR in case of the CNNs. The trigger threshold
was set to 0.1 when using the Softmax, and following Eqs. (4.4), (4.5a), it holds

Softmax (x0, x1)0 = 0.1 ⇒ USR (x0, x1)
.
= −2.2 , (4.7)

therefore we use the threshold −2.2 when the USR is applied. A trigger is marked
as a true positive if there was an injection within 0.3 s of the reported event time,
otherwise it is considered a false positive.

The resulting sensitivity curves of the networks trained by the “fixed low” strategy
are shown in Fig. 4.5. All searches perform comparably at F ≥ 105 per month. At
lower values, the searches using the USR perform slightly worse than the matched-
filter search but retain at least 91.5% of its sensitivity down to F = 1month−1.
However, the searches using the Softmax activation suffer from the rounding issue
at F ≲ 103month−1, essentially losing all sensitivity. Sensitivity curves of all training
strategies are available in the data release [351] and they show very similar behavior
except for the “plateau accuracy relative” and “plateau loss relative”, which did not
fully converge, and “fixed 15” and “fixed 30”, which did not learn to detect signals at
SNR < 15 as they were not represented in the training data.

All results above used the exact same PSD for data generation and whitening.
However, this is unrealistic, as the PSD in detectors drifts over time [72]. To ensure
that the network is robust with respect to small changes to the noise characteristic,
we have evaluated the sensitivity on data with the same PSD rescaled by a factor of
1.05. This reduced the sensitive distance at all FARs by ≈ 1/

√
1.05, in agreement

with the theoretical explanation. To test a more realistic variation, we used 20 PSDs
derived from the O3a observing run [362] and chose one as reference. We took ratios
of the others and the reference and chose the one with the largest mean deviation
from unity, and multiplied it with the PSD used to generate the training data to
obtain a realistically varied PSD. Generating and whitening the data by this varied
PSD reduced the sensitivity at F < 100month−1 to a similar level as observed for the
scaled PSD.
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Figure 4.5: Sensitivity curves of networks trained by the “fixed low” strategy at epoch 186.
The “high”, “mean” and “low” labels refer to the three states selected for further analysis. The
curve labeled “Matched Filtering” has been produced by the PyCBC pipeline and serves as

a baseline.

In conclusion, for the parameter space under consideration, the single-detector
networks retain performance closely following matched-filter methods even on long
duration continuous datasets and when considering FAR thresholds down to once per
month. While more sophisticated ML-based methods exist, we believe there is still
much to be learned from these first steps.
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Chapter 5

First machine learning
gravitational-wave search challenge

The contents of this chapter describe a project conducted by a collaboration of the
Albert-Einstein-Institut Hannover (represented by Marlin Schäfer, Alexander Nitz and
Frank Ohme) and the FSU Jena (represented by myself and prof. Bernd Brügmann),
with Elena Cuoco, Chris Messenger and Eliu Huerta as scientific advisors, and con-
tributions of other participating groups. The project is a mock data challenge called
the First machine learning gravitational-wave search challenge (MLGWSC-1), meant
to create a unified framework for testing ML-based algorithms for detection of BBH
merger waveforms in LIGO data. For its full results and all relevant code and data,
see [216, 363].

In the second part of this chapter, we focus on our team’s submission to the
MLGWSC-1 and its further development after the end of the challenge. Finally, we
apply the updated searches to latest LIGO data. The code used to develop the sub-
mission is available in the data release [364].

5.1 Test data

The MLGWSC-1 provides the participants with the scripts to generate test data and
evaluate their model. The test data generation script accepts a seed for random number
generation, which was unknown until the challenge deadline. Therefore, it is possible
to evaluate a submission on test data following the challenge distribution, but not to
optimize it over the dataset used for the final evaluation.

The test data consists of two streams, one for each LIGO detector (L1 and H1),
and further split into shorter segments. Each dataset is stored in a file of the HDF5
format [365] and contains the two groups titled “L1” and “H1” consisting of multiple
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segments denoted by their GPS start time in seconds. The segments have a mini-
mum duration of 2 hours and they consist of detector noise sampled at 2048Hz and
potentially BBH waveform injections. We have decided to split the data into smaller
independent segments due to the fact that the sensitivity of a real detector varies over
time. This renders certain parts of the data unusable for analysis. Therefore, search
algorithms need to be able to handle gaps in the data. Splitting the data into indepen-
dent segments accounts for these gaps and allows us to use different PSDs in different
segments of the data and effectively model the PSD drift.

To properly isolate effects which cause specific algorithms to struggle, the test data
exists in four distinct difficulties labeled 1 through 4 from the simplest to the most
complex. This complexity is reflected in the distributions of both the background noise
and the waveform injections.

All waveforms are generated using IMRPhenomXPHM [260], a phenomenological BBH
inspiral-merger-ringdown waveform model. It models the precession in case of mis-
aligned component spins as well as higher modes accurately. The parameter distribu-
tions vary between the datasets, going from simple spinless short mergers in stationary
Gaussian noise in the first to precessing longer events in the fourth.

The extrinsic merger parameters are drawn from the corresponding astrophysical
distributions summarized in Tab. 5.1. The exception is the distance, as instead of dL
we draw the chirp distance [366]

dc := dL

(︃Mc,0

Mc

)︃5/6

, Mc :=
(m1m2)

3/5

(m1 +m2)
1/5

, Mc,0 :=
1.4

21/5
M⊙ , (5.1)

where Mc is the chirp mass, and Mc,0 is merely a fiducial chirp mass used as a basis
for calculation. Note that in contrast to [366] we use the luminosity distance instead
of the effective distance as a basis. Sampling the chirp distance instead of injecting
uniformly in volume reduces the maximum luminosity distance for systems with low
Mc and increases the number of detectable low mass systems. Thus, we can make
statistically meaningful statements about the sensitivity for these systems without a
large increase in the amount of data analyzed.

The distributions of component masses and spins, as well as the choice of modes
generated, depend on the dataset choice and are listed in the sections below. The lower
frequency cutoff is set to 20Hz. The separation between consecutive merger times is
drawn from a uniform distribution over [24 s, 30 s]. Finally, we apply a taper to the
start of each waveform.
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Parameter Uniform distribution
Coalescence phase Φ0 ∈ [0, 2π)
Polarization Ψ ∈ [0, 2π)
Inclination cos ι ∈ [−1, 1]
Declination sin θ ∈ [−1, 1]
Right ascension φ ∈ [−π, π)
Chirp distance d2c ∈

[︁
1302Mpc2, 3502Mpc2

]︁

Table 5.1: Summary of the extrinsic test data injection parameters. The merger times are
separated by times from a uniform distribution over [24 s, 30s]. The intrinsic parameters are

given in the text as they differ between datasets.

Once waveforms are injected into the background noise, the resulting data is called
the foreground. The foreground and background are stored in the format described
above and both are used in the evaluation of submissions. A lower frequency cutoff of
15Hz is applied to the data in both files, further processing is left to the submitted
algorithms and factored into the performance evaluation. In addition, a third file
containing information on the injections is also saved and required for evaluation.

5.1.1 Dataset 1

The noise used in the first dataset is Gaussian and stationary, and a single fixed PSD
is used. The aLIGOZeroDetHighPower PSD [355, 359, 360] is chosen for use in all
segments of both detectors. Thus, there are no sharp peaks in the noise distribution,
and the noise distribution of each segment is known to the participants.

To generate the waveforms, component masses are drawn from a uniform distribu-
tion over [10M⊙, 50M⊙] and the higher and lower value are the primary and secondary
mass, respectively. All spin components are set to zero and no higher modes are sim-
ulated, setting the mode array to (2, 2) , (2, −2). The signal length is then on the
order of 1 s.

This dataset represents a solved problem as it has been excessively studied in the
past [162, 163, 215, 352], and is meant as a starting point where researchers can refer
to existing literature. The final challenge set was generated with the seed 1068209514
and a start time of 0.

5.1.2 Dataset 2

In the second dataset, the noise is again Gaussian and stationary. The PSD, however,
is not fixed and it is more complex, being derived from real data and containing sharp
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peaks. We derived 20 PSDs off of the open data from the O3a observing run [367],
which are available to the challenge participants. For each detector, the PSD is picked
randomly out of these, and remains fixed through all segments in that detector.

Each binary component is allowed to have a spin aligned with the orbital angular
momentum and its z-component is uniformly distributed in [−0.99, 0.99]. The mass
range is extended to [7M⊙, 50M⊙]. Through these changes, the maximum length of
waveforms has increased to ≈ 20 s. As in the previous dataset, no higher order modes
are included.

This dataset represents a considerable increase in difficulty, as it requires the sub-
missions to estimate the PSD in algorithms which include whitening, and due to the
increase in signal duration, which is known to have been problematic in many previous
ML algorithms [167, 177, 368]. The final challenge set was generated with the seed
2743406703 and a start time of 0.

5.1.3 Dataset 3

In the third dataset, the procedure to generate noise is the same as in the second, with
one major difference: the PSD is picked randomly for each segment of each detector.
This introduces an effect somewhat similar to the PSD drift of real detector noise.

The distribution of component masses, and therefore the maximum waveform du-
ration ≈ 20 s, remains the same as in dataset 2. However, the spin distribution is
altered to allow for misaligned spins. Their magnitudes follow a uniform distribution
over [0, 0.99] and the orientations are isotropically distributed. The spins of both bi-
nary components are independent of each other. In addition, all higher-order modes
available to IMRPhenomXPHM are used: (2, 2), (2, −2), (2, 1), (2, −1), (3, 3), (3, −3),
(3, 2), (3, −2), (4, 4), (4, −4) [260]. The maximum length of waveforms is ≈ 20 s.

The challenge of this dataset is intended to be the introduction of precession effects
and higher modes, which can substantially alter the waveform morphology. Their
inclusion in production searches relying on accurate signal models requires increases
in template bank size up to millions of templates [83, 84]. The final challenge set was
generated with the seed 470182217 and a start time of 0.

5.1.4 Dataset 4

In the fourth dataset, real detector noise from the O3a observing run [357, 367] was
used, obtained through GWOSC [362]. The data quality in LIGO detectors is tracked
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through a set of flags [284, 362, 369]. The noise was sampled from the parts of the
O3a observing run which had the DATA quality flag (i.e. data is available) and none of
the flags CBC_CAT1, CBC_CAT2, CBC_HW_INJ, BURST_HW_INJ (i.e. data from auxiliary
channels suggests high data quality and no hardware injections are performed) in both
LIGO detectors H1 and L1. In addition, a 20 second window was removed centered on
any detection listed in GWTC-2 [70], and any remaining segments shorter than 2 hours
are discarded. To allow for different noise realizations based on the seed supplied to
the data generation algorithm, the L1 data is shifted by a random time from [0, 240 s],
while the H1 data is kept fixed.

The waveforms are generated in a way identical to the previous dataset. This
dataset is intended to be indicative of a real-world search in a parameter space which
is currently sparsely searched. As many ML searches have proven to generalize well
from Gaussian to real detector noise [164, 173, 192, 370], contributions which perform
well on dataset 3 are expected to do so on dataset 4 as well. At the same time, handling
short glitches may prove difficult for searches focusing on the merger and ringdown.
The final challenge set was generated with the seed 2514409456 and a start time of 0.

5.2 Evaluation

A submission is required to take as input a dataset in the format described in Sec. 5.1,
and output a set of events in an HDF5 file [365]. The file has to contain three one-
dimensional datasets of equal size:

• “time”, containing the GPS times where the algorithm predicts an injection,

• “stat”, consisting of ranking statistic values of the events,

• “var”, containing the estimated timing accuracies of the events.

The evaluation process includes applying the submission to both the foreground and
the background file, and the outputs are called foreground events and background
events, respectively. Following Eq. (2.50), the background events are used to determine
the relationship between the trigger threshold and the FAR, and following Eqs. (2.53),
(2.54), the foreground events are used to estimate the relationship between the trigger
threshold and the sensitive distance.

Participants may choose to optimize their submission on any of the 4 datasets
described in Sec. 5.1. However, each team is only allowed to submit a single algorithm,
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which is then evaluated on all 4 datasets. This tests the ability of the submissions to
adapt to varying conditions.

Evaluation datasets were generated by the procedure described in Sec. 5.1 in the
length of 30 days = 2592000 s and the submissions were tested on the Atlas computing
cluster at the Albert-Einstein-Institut in Hannover. Standardized hardware is used to
evaluate the contributions, including 8 nVidia RTX 2070 Super GPUs with 8 GB of
VRAM each, as well as an assortment of ML packages, including PyTorch and Tensor-
Flow [216, 363]. To provide a fair evaluation procedure, the evaluation of submissions
has been performed using datasets generated by the script supplied by the organizers,
with a seed previously unknown to the participants as well as the organizers.

Like in Ch. 4, the final evaluation of submissions is performed using the sensitivity
curves expressed through the FAR and sensitive distance (see Sec. 2.4.2). An injection
is considered found by a search if there is at least one foreground event within ±∆t

of the injection, ∆t being the timing accuracy assigned to the event by the search
algorithm. The injections are not performed uniformly in volume, as we are drawing
the chirp distance rather than luminosity distance. Eq. 2.53 is thus modified to

V (F) ≈ V (dmax)

NI

NI,F∑︂

i=1

V

(︃
dc,max

(︂
Mc,i

Mc,0

)︂5/6)︃

V

(︃
dc,max

(︂
Mc,max

Mc,0

)︂5/6)︃ =
V (dmax)

NI

NI,F∑︂

i=1

(︃ Mc,i

Mc,max

)︃5/2

. (5.2)

In addition, the wall-clock runtimes of the submissions are recorded as a secondary
evaluation metric.

5.3 Results

By the extended deadline on 14 April 2022, 6 contributions have been submitted to the
MLGWSC-1. These comprise 4 based on ML methods, and 2 conventional analyses:
the matched-filtering based search PyCBC [51–55], and the loosely modeled search
cWB [64–68, 371, 372].

The main results can be seen in Fig. 5.1. Each panel contains the sensitivity curves
achieved by the submissions on one of the test datasets. We focus on the low FAR
region and truncate the plot at F = 1000month−1 for two reasons. First, standalone
search algorithms may only report events with low FARs. Second, at high FARs,
a large number of detection originate from false associations, i.e. they are random
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Figure 5.1: Sensitivity curves of all submissions over the 4 test datasets. Solid lines refer
to ML-based submissions, dashed lines to others. Error bars on the sensitive distance are
not plotted as they are smaller than 80 Mpc at every point of every curve and would not be

visible.

noise coincidences close enough to an injection and counted as true positives by the
evaluation mechanism.

The errors on the sensitive distance estimated from the variance of the sum over
randomly drawn waveform parameters are smaller than 80 Mpc over all curves. Due
to time constraints, results from the cWB algorithm are only available for datasets 3
and 4. In addition, the PyCBC search used a different template bank for dataset 1
than for the remaining three datasets.

We focus mainly on the two ML-based submissions “D: TPI FSU Jena”, and “E:
Virgo-AUTh”. The former is a followup to [163, 215], developed primarily by myself
and described in detail in Sec. 5.4, and the latter follows along similar lines. Fur-
thermore, we closely follow the “B: PyCBC” contribution as a matched-filter baseline.
For more details on the other submissions and a more detailed discussion of results
see [216].

We find that the results of the two submissions are very close to each other in sen-
sitivity on the first three datasets, with the TPI FSU Jena reaching a slightly higher
sensitivity at all FARs. At the same time, the Virgo-AUTh submissions retains ≥ 90%
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Figure 5.2: The injections from dataset 2 identified by the PyCBC and TPI FSU Jena
submissions with a F ≤ 1000month−1 in the signal duration τ0 versus mass ratio q plane.
The scatter plot shows injections that are found only by one of the two algorithms. Injections
that are missed or found by both are only shown in the 1D marginal distribution histograms.

of the sensitive distance achieved by TPI FSU Jena submission for F ≥ 2month−1.
On dataset 4, however, the Virgo-AUTh submission manages to maintain stable per-
formance, while the TPI FSU Jena contribution is dominated by background triggers
and loses all sensitivity at F ≲ 100month−1. As datasets 3 and 4 have the same
distribution of waveforms and the same PSDs and differ merely by the non-Gaussian
features of the noise in dataset 4, it is clear that the culprit is a collection of ∼ 1000

triggers caused by noise transients.
In comparison to the PyCBC search, on datasets 1-3 the TPI FSU Jena submission

is the leading ML search and retains ≥ 93.5% of the sensitive distance achieved by the
PyCBC submission at all FARs and at times, even outperforms PyCBC marginally.
On dataset 4, the leading ML search is Virgo-AUTh, and it retains ≥ 87% of the
sensitivity of PyCBC at F ≥ 10month−1. At lower FARs, the sensitivity gap widens
and at F = 1month−1, it achieves 70% of the sensitive distance of PyCBC.

Besides studying the sensitivity curves, we also generated found-missed plots for
all submissions to highlight specific parameter space areas where the ML searches are
competitive and where further development is required. Let us define the mass ratio
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q := m1/m2, and the chirp time parameter

τ0 :=
5

256 (πfL)
8/3

M−5/3
c , (5.3)

where fL is the lower frequency cutoff of the waveform. The τ0 is, to first order, the
time it takes the binary from orbiting at fL to merger [373, 374], and allows us to
study how well the searches react to waveforms of different lengths.

Fig. 5.2 shows injections in dataset 2 which were identified by exactly one of the
PyCBC and TPI FSU Jena submission in the τ0 - q space. It shows that the two
searches are competitive in the comparable mass region, and the main difference is in
the τ0 distribution of found signals. Most τ0 > 2 signals found by the TPI FSU Jena
search are also found by PyCBC, while the converse is not the case. This indicates that
the short duration of the input windows used by the ML algorithm is still a limiting
factor. This limitation would likely be more severe if signals from BNS and/or BHNS
systems were included.

In this section, we have provided only a superficial summary of the MLGWSC-
1 results. For a more detailed analysis of the sensitivities and found-missed plots,
see [216]. Detailed plots demonstrating further insights into the parameter space
coverage by the different algorithms are available in the data release [363].

As a final note, due to parallelization of the data preprocessing stage and GPU
acceleration of the CNN evaluation, the TPI FSU Jena submission is the fastest of all
6, evaluating a full one-month dataset in ∼ 1 hour, closely followed by the Virgo-AUTh
algorithm at ∼ 1.5 hour. The PyCBC search required ∼ 43 hours on datasets 2-4 (as
it used a different template bank on dataset 1) while using no GPU acceleration and
running only on CPUs. At the same time, it is a production search optimized to run
on CPUs, making the runtimes inherently incomparable.

5.4 Submission by the TPI FSU Jena team

In this section we focus on the contribution labeled “D: TPI FSU Jena” in more detail.
It is based on the results of Ch. 4 and [163, 215] with minor alterations to handle a
two-detector input and optimize the network architecture to the problem at hand. All
code used to build the submission is available in the data release [364].
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Parameter Uniform distribution
Approximant IMRPhenomXPHM
Waveform modes all available (see Sec. 5.1.3)
Component masses m1, m2 ∈ [10M⊙, 50M⊙]
Spin magnitudes |χ1| , |χ2| ∈ [0, 0.99]
Spin directions isotropic
Coalescence phase Φ0 ∈ [0, 2π)
Polarization Ψ ∈ [0, 2π)
Inclination ι ∈ [0, 2π]
Declination sin θ ∈ [−1, 1]
Right ascension φ ∈ [−π, π)
Luminosity distance dL = 1Mpc

Table 5.2: Distributions used to draw waveform parameters for the training data.

5.4.1 Training data

In a similar manner to Ch. 4, the training and validation data consist of noise samples,
half of which are pure noise and the other half include a waveform injection. They
are stored separately, already whitened, to be injected in real time at a varying SNR
while training. Since multiple PSDs are used and the PSD is required to whiten the
waveform, each waveform is tied to a specific noise sample. In architecture optimiza-
tion, a smaller dataset of 400 000 Gaussian noise samples, 200 000 of which contain a
waveform injection, is used. To train the final submission, we used a dataset of 106 real
noise samples, 5 · 105 containing a waveform injection. In both cases, the validation
dataset is generated in the same way and contains 0.2 as many samples in either class
as the training dataset.

To generate Gaussian noise, we use PSDs derived from the real noise file which
is part of the MLGWSC-1. The PSD of each dataset is estimated using a segment
duration of 1.25 s. For each dataset start time in the original file, we have one PSD
per detector. The procedure then repeatedly iterates through the dataset start times
and uses the two PSDs to generate the noise in the corresponding detectors. Each
noise sample is whitened by the generating PSD using a maximum filter duration of
0.25 s, which leaves us with samples of length 1 s.

Real noise for training the submission is obtained by slicing data from the supplied
real noise file. A set of available dataset start times is selected at random and each is
whitened by its PSDs, estimated with a segment duration of 0.5 s and maximum filter
duration 0.25 s. It is then sliced into 1 s segments with a step size of 0.5 s. These PSDs
are also used to whiten the sample’s corresponding waveform.
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The waveform generation process follows a similar procedure to those in the test
datasets 3 and 4. Unlike the single-detector experiment in Ch. 4, we need to sample
over the extrinsic parameters which we could previously set to a fixed value. It is
possible that the model will learn the effects of the mutual geometrical arrangement of
the two detectors, and thus the dataset should comprise injections which corresponds
to a single event as registered by the two LIGO detectors.

Tab. 5.2 contains the distributions used for all parameters. Note three differences
with respect to the distributions of Tab. 5.1 and Sec. 5.1.3:

• Distance: it is irrelevant as we normalize the waveforms to a fixed network SNR.

• Component masses: instead of [7M⊙, 50M⊙], they are drawn from [10M⊙, 50M⊙]

for consistency with the experiments of Ch. 4. In addition, the results are ex-
pected to deteriorate when the network with an 1 second input window is pre-
sented with signals up to ≈ 20 s. A set of additional training run demonstrates
that the effect on the results is marginal and does not lead to a systematic
improvement. (see App. A).

• Inclination: instead of the astrophysical distribution cos ι ∈ [−1, 1], we have used
ι ∈ [0, 2π]. This is due to an oversight on our part. The dominant effect of the
inclination is a multiplicative rescaling of the amplitude and is irrelevant since
we are normalizing the waveforms to a fixed network SNR, and the waveform
morphology is affected only through higher modes. While these are included
in test datasets 3 and 4, the effect is expected to be negligible and a separate
training run with the correct astrophysical distribution confirmed that this does
not affect the network performance.

Each waveform is generated using pycbc.waveform.get_td_waveform and pro-
jected onto the two LIGO detectors. The merger time is drawn uniformly from
[0.6 s, 0.8 s] within the input window and the rest is clipped while leaving an extra
0.125 s on both sides. The network SNR is computed (cf. Eq. (2.48))

ρnet = (hH1|hH1) + (hL1|hL1) (5.4)

and the waveform is whitened using the same PSD as the corresponding noise sample,
cropping the excess time on both ends due to wraparound corruption, and divided
by the computed ρnet to obtain a waveform with ρnet = 1. Waveforms are injected
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into the background noise at runtime at optimal network SNRs drawn uniformly from
[7, 20] and the SNRs are generated every epoch.

For testing the submission and its follow-up experiments, datasets 1-4 were gener-
ated using the script supplied by the challenge organization team, in a length of 30
days and a start time of 0. For all four, the seed value 04261537 was used. In the
following, these are referred to as the development datasets.

5.4.2 Architecture

The architecture used is based on that of Ch. 4, slightly restructured and optimized.
First, the number of input channels of the first convolutional layer is changed from
one to two. As in Ch. 4, the Softmax is used for training and the USR for evaluation;
to allow for a more robust usage of this method, however, the Softmax layer has been
removed (without applying the USR) and the resulting CNN is called the base network.
For further details, see the data release [364].

The architecture has been optimized by varying the overall width and depth of the
network using a set of 4 procedures described in Tab. 5.3. A more thorough variation
of different layer parameters separately has not been performed.

The base network architecture has been optimized by training each of the networks
in Tab. 5.4 on a training dataset consisting of 400 000 noise samples and 200 000
waveforms. The noise is Gaussian, using the PSDs of the real noise file included in the
MLGWSC-1. The waveforms are generated and processed in the same way as above.
The Adam optimizer [314] was used with the learning rate η = 10−5 and the default
values β1 = 0.9, β2 = 0.999, ϵ = 10−8, and a batch size of 32. Each network was
trained for 100 epochs, its state was saved at the end of each epoch, and the one with
the lowest validation loss was selected for evaluation.

Fig. 5.3 shows the sensitivity curves of all network architectures in Tab. 5.4 eval-
uated on the development datasets 3 and 4. On both datasets, all networks per-
form fairly similarly except half_depth, which is less sensitive. At a closer look,
one can isolate that the double_full_depth performs the best on dataset 3, with
double_depth nearly indistinguishable and quadruple_depth a close third, and on
dataset 4, quadruple_depth performs the best with double_depth a close second.
Based on this, we have chosen the double_depth architecture described in Tab. 5.5
for the final submission.

The network is then trained with a Softmax layer appended using one-hot labels
(1, 0) , (0, 1) on the training dataset described in Sec. 5.4.1 using real noise and a total
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layer kernel channels

↦→

layer kernel channels
Conv1D K M ↦→ N Conv1D + ELU 1 + ⌊K/2⌋ M ↦→ M ′

Conv1D K − ⌊K/2⌋ M ′ ↦→ N
Dense M ↦→ N Dense + Dropout + ELU M ↦→ M ′

Dense M ′ ↦→ N

(a) Double depth procedure. For the first convolutional layer in the network it holds M ′ = N ,
otherwise M ′ = M . For the last dense layer in the network M ′ = M , otherwise M ′ = N .

layer kernel channels
↦→

layer kernel channels
Conv1D + ELU K1 M ↦→ M ′ Conv1D K1 +K2 − 1 M ↦→ N
Conv1D K2 M ′ ↦→ N

(b) Half depth procedure. Dense layers remain unchanged.

layer kernel channels
↦→

layer kernel channels
Conv1D K M ↦→ N Conv1D K 2M ↦→ 2N
Dense M ↦→ N Dense 2M ↦→ 2N

(c) Double width procedure. The first and last layer of the network retain their M = 2 and
N = 2, respectively.

layer kernel channels
↦→

layer kernel channels
Conv1D K M ↦→ N Conv1D K ⌊M/2⌋ ↦→ ⌊N/2⌋
Dense M ↦→ N Dense ⌊M/2⌋ ↦→ ⌊N/2⌋

(d) Half width procedure. The first and last layer of the network retain their M = 2 and
N = 2, respectively.

Table 5.3: Summary of hyperparameter variation procedures used to optimize the submis-
sion network architecture.

name Conv1D Dense
original
half_width half width half width
half_depth half depth
double_width double width double width
double_depth double depth
double_full_depth double depth double depth
quadruple_depth 2× double depth

Table 5.4: Architectures tested in hyperparameter optimization. The second and third
column refer to procedures given in Tab. 5.3 on the convolutional and fully connected layers,
respectively. On the last line, 2× corresponds to two subsequent applications of the procedure.
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Figure 5.3: Sensitivity curves of network architectures of Tab. 5.4 on datasets 3 and 4.

of 106 samples, half of which contain an injected waveform. The Adam optimizer [314]
was used with the learning rate η = 4·10−6 and the default values β1 = 0.9, β2 = 0.999,
ϵ = 10−8, and a batch size of 32, for 250 training epochs. As the loss function, we
chose the regularized BCE (see Eq. (4.2)) with ε = 10−6. Gradient p = 2 norms were
clipped to a maximum of 100 over the entire network at each training batch.

To evaluate the network on continuous data, the sliding window approach is used.
As the test data of the MLGWSC-1 consists of segments, each segment is whitened
separately using a sample duration of 0.5 s and filter duration 0.25 s, as in the noise
sliced into training data. The data is then sliced into 1 second slices at a step size of 0.1
s. The network is applied to the slices using the USR, by taking x0−x1, x0,1 being the
base network outputs. Times where the output exceeds a threshold t are considered
first-level triggers and they are assigned a GPS time at 0.6 seconds through the input
window. The first-level triggers are clustered into events with a maximum separation
of 0.3 seconds, and the events are assigned the GPS time and ranking statistic at the
first occurrence of the maximum ranking statistic in the cluster. The timing accuracy
of all events is set to a fixed value of 0.2 s to match the size of the merger time window
in the training injections.

To choose a suitable value for the first-level trigger threshold t, we decided to
optimize for a maximum number of triggers. At very low thresholds, we expect a



5.4. Submission by the TPI FSU Jena team 77

layer type kernel size output shape
Input + BatchNorm1D 2× 2048
Conv1D + ELU 33 16× 2016
Conv1D + ELU 32 16× 1985
Conv1D + ELU 17 16× 1969
Conv1D 16 16× 1954
MaxPool1D + ELU 4 16× 488
Conv1D + ELU 17 16× 472
Conv1D + ELU 16 32× 457
Conv1D + ELU 9 32× 449
Conv1D 8 32× 442
MaxPool1D + ELU 3 32× 147
Conv1D + ELU 9 32× 139
Conv1D + ELU 8 64× 132
Conv1D + ELU 9 64× 124
Conv1D 8 64× 117
MaxPool1D + ELU 2 64× 58
Flatten 3712
Dense + Dropout + ELU 128
Dense + Dropout + ELU 128
Dense 2

Table 5.5: Base network architecture chosen for the MLGWSC-1 submission.

sufficient number of first-level triggers to produce a small number of longer events
after clustering, and at very high thresholds we expect few first-level triggers and
therefore, few events as well. Due to this, we expect the number of triggers as a
function of t to have a peak, which could be a suitable value for the submission.

To test this hypothesis and determine the optimal threshold, we applied the trained
search at different thresholds to test datasets 3 and 4, generated in a reduced length
of 1 day using the seed 14021995. The resulting sensitivity curves as well as numbers
of triggers are shown in Fig. 5.4. The figure confirms a peak at t = −8 on both
datasets on foreground as well as background data, which was subsequently chosen for
the submission to the MLGWSC-1. However, the sensitivity curves suggest that at
low FARs, the algorithms’ performance is insensitive to the choice of the threshold.

For reproducibility, we have used a test dataset generated by the public resources
of the MLGWSC-1 whose noise overlaps with that of the training data to present
our results. To ensure the consistency of the experiments, a second dataset has been
used following the same distribution but excluding the segments used in the previously
applied test data as well as the training data (see Sec. 5.6).
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Figure 5.4: Numbers of triggers (top panel) and corresponding sensitivity curves (bottom
panels) of the search when integer first-level trigger thresholds t ∈ [−10, 10] are used. Testing
is performed on test datasets 3 and 4 of reduced length 1 day. Due to large overlap between the
sensitivity curves, rather than color-coding, their left ends are annotated with the threshold

value. All curves reach the same point at the right end F = 1day−1.
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5.5 Correction of performance issues

As seen in Sec. 5.3 and shown in Fig. 5.1, the TPI FSU Jena submission, described in
this section, has performed comparably to the Virgo-AUTh submission on test datasets
1-3, and lost all sensitivity at F ≲ 102 per month, unlike Virgo-AUTh. The cause of
the degradation was a large number of background triggers which raised the threshold
at F ≲ 100month−1 above the ranking statistic of the loudest injection.

The search contains no mechanisms designed to reject triggers from noise tran-
sients (besides the exclusion of segments with the CBC_CAT1, CBC_CAT2, CBC_HW_INJ,
BURST_HW_INJ flags). Instead, it was meant to learn the distinction between noise
transients and BBH signals from the learning data. In this section, we make modifi-
cations which lead to an improvement in sensitivity by learning to reject short noise
transients.

We have isolated 3 differences between our algorithm and that of Virgo-AUTh
which may be the cause of the performance gap:

• architecture: The Virgo-AUTh team has used a ResNet-like architecture [123,
375], while we chose the CNN architecture optimized in Sec. 5.4.2.

• data normalization: The Virgo-AUTh team has determined that the deep adap-
tive input normalization (DAIN) [376] layer leads to better performance than
the batch normalization used by us [375, 377].

• dataset composition: The training data used by the Virgo-AUTh team has
used non-overlapping slices to obtain noise data for training, while ours over-
lap halfway, potentially reducing our effective dataset size.

We have attempted to resolve the issue by modifying these aspects of our search
individually as well as combined in order to isolate their effects. In experiments using
the ResNet-like architecture, we have observed systematically lower performance and
longer training times than when using our optimized CNN. Therefore we have decided
to keep the architecture used for our original submission.

To test the effect of the normalization, we have implemented the DAIN [376] in
our search and evaluated its performance, as well as one where the normalization was
removed entirely. Both options improved the search performance; however, higher
sensitivities were obtained in the experiments without an input normalization layer.

Finally, we have attempted to increase the size of our dataset as well as increase
the percentage of pure noise samples in order to address the issue of the reduced
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effective noise dataset size. Surprisingly, experiments with a larger dataset brought no
discernible improvement. Instead, the critical step was to build the training data out of
75% pure noise and 25% with injections. Shifting this ratio further led to deterioration
again.

Therefore, we have decided to make those two changes to the submission algorithm
to improve its performance: remove the normalization layer and change the ratio of
classes in the training dataset. We perform the second by using the same generated
training dataset and reading in all of the noise samples but only half of the waveforms,
i.e. the final dataset consists of 750 000 pure noise samples and 250 000 containing an
injection.

Epoch selection

The final issue to tackle at this point is the selection of the optimal network state.
While the network state for the submission has been chosen primarily based on low
validation loss values, we suspected these may not translate directly to high sensitivity.
Since the most relevant FARs are the lowest, we choose the sensitive distance at
F = 1month−1 as the main metric to optimize.

The network was trained in 6 independent training runs using the setup at which
we arrived above and its sensitivity curves were evaluated at each of the 250 epochs
of the training procedure. Fig. 5.5 compares the sensitive distance at F = 1month−1

to the corresponding validation loss value. On dataset 4, it clearly demonstrates that
there is no direct relationship between these two metrics and thus choosing the ideal
network state based on the loss curve is unreliable.

We therefore choose suitable states based on the sensitive distance on dataset 4 at
F = 1month−1 during training. The corresponding sensitivity evolution is displayed
in Fig. 5.6. On dataset 3, the sensitivity rises to ∼ 1500Mpc in the first ∼ 50 epochs
in all 6 runs, and remains stable with a minor decline towards the end. On dataset
4, however, there is a large number of jumps which are undesirable, as they suggest a
degree of instability in the training procedure.

Unfortunately, we were unsuccessful in resolving this issue. At the same time,
each of the 6 runs has reached at least 1149Mpc in sensitive distance on dataset 4 at
F = 1month−1 at some point during the training, and Run 1 even above 1400Mpc.
For reference, the Virgo-AUTh submission reaches a sensitive distance of .

=1092Mpc

at F = 1month−1 on the challenge dataset 4. We therefore conclude that despite the
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Figure 5.5: Scatter plot of the validation loss vs. the sensitive distance at all training
epochs for a set of 6 training runs. The sensitive distance in the top and bottom panels is

evaluated on datasets 3 and 4, respectively, at F = 1month−1.
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Figure 5.7: Sensitivity curves of all original submissions over the 4 test datasets used to
evaluate the MLGWSC-1. The R1/0021 algorithm replaces our original submission, and the
AResGW replaces the Virgo-AUTh submission. The original contributions are represented

by dotted lines instead.

sensitivity oscillations, our training procedure reliably leads to well-trained networks
when a detailed state selection procedure is employed.

In the following, we select the states at the global maxima of the curves of Fig. 5.6
and apply them to more data. For this purpose they are referred to in the format
R<run number>/<four-digit epoch number>. As the maximum over all 6 curves is
reached by the first run at epoch 21, the corresponding state R1/0021 is the one we
emphasize the most. As such, we evaluate it on the challenge datasets used to produce
Fig. 5.1, and plot the results in Fig. 5.7.

On datasets 1-3 we observe a small decline in sensitivity. This is to be expected,
as we modified a setup which was highly efficient on Gaussian noise to optimize it
on a different background noise distribution, and the model may now reject injections
which are similar to a glitch. Despite this decline, our search retains its position as
the leading ML submission.

On dataset 4, our updated search performs marginally worse than the Virgo-AUTh
submission at F ≳ 10month−1. At lower values, the Virgo-AUTh search declines faster
than previously, while R1/0021 remains more stable and reaches a FAR of 1 per month
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at a sensitive distance ∼ 1300Mpc, closely beating the cWB algorithm as well, while
still underperforming in comparison to the PyCBC search.

It should be emphasized at this point that our updated search had much more
time for development as well as information about both the Virgo-AUTh search and
the overall results of the challenge. In the same spirit, the Virgo-AUTh team has also
improved the performance of their search under the name AResGW, narrowly beating
the PyCBC submission on dataset 4 at all FARs. On datasets 1-3, AResGW also
outperforms the PyCBC search at F ≳ 5month−1 while performing marginally worse
at FARs down to 1 per month. For further details, we refer the reader to [375, 377].

5.6 Validation

Following Sec. 3.2, a ML algorithm must be independently evaluated on previously
unused test data. In the framework of the MLGWSC-1, when test data of dataset 4 is
generated, changing the seed value alters the noise by a time shift. One may therefore
make the case that the noise data generated at different seeds is mutually correlated,
which introduces a bias in the evaluation procedure.

During the development of the original submission, a test dataset was used for
optimization of the algorithm. After doing so, it is necessary to validate it on a
fully independent dataset to prevent overfitting. We ensure this by only using those
segments from real_noise_file.hdf which neither appear in the test dataset used
for development nor have been sliced into training data. We generate the data with
a seed value of 1935132042 and a start time of 0 in a length of 3 days and call the
resulting dataset cropped, for details see App. B.

To ensure that the submission did not suffer from overfitting, we apply it to the
cropped dataset and compare the sensitivity curve to the one obtained on the dataset
used in development in the top panel of Fig. 5.8. There is a minor decline in sensitivity
at F > 100month−1, which is expected, and the gap closes when approaching this
value. At F ≲ 100month−1, the sensitivity is zero in the same way as the on the
development dataset.

In addition, to ensure the robustness of our improved algorithm as described in
Sec. 5.5, we also evaluate the networks obtained at peak sensitivity of Fig. 5.6 on the
cropped dataset. The resulting sensitivity curves can be seen in the bottom panel
of Fig. 5.8. These also suggest that a potential overfitting issue is negligible, as the
curves obtained on the development and cropped datasets match each other quite
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Figure 5.8: Sensitivity curves of the submission (top panel) and the 6 network states
obtained as maxima of the curves in the lower panel of Fig. 5.6 (bottom panel). The solid
lines have been evaluated on the dataset used for development, while the dashed lines have
been evaluated on a month-long dataset 4, generated excluding the noise segments which
appear in the challenge dataset 4, as well as in the training data. The top panel’s legend
transfers to the bottom panel as well, i.e. a solid and a dashed line of the same color are the
development and cropped dataset sensitivity curves, respectively, of the network given by the

corresponding color in the bottom panel’s legend.
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closely. The exception is the R5/0193 network at F ≤ 10month−1, which experiences
a significantly larger decline in this area than others.

Based on the bottom panel of Fig. 5.8, we expect the networks R1/0021, R2/0150,
and R3/0036 to perform well, as their sensitive distance on the cropped dataset at
F = 1month−1 lies between 1300Mpc and 1400Mpc. At the same time, it should
be noted that besides this inference, results obtained on the cropped dataset had no
influence on any other results in this thesis.

5.7 Application to O3b data

The O3 LIGO observing run was split by a commissioning break into two phases, O3a
and O3b [357, 362]. The first part was used through this chapter to train as well
as test CNN-based searches for BBH merger waveforms. In this section, we apply
the searches developed in Sec. 5.5 to real data recorded by LIGO through the O3b
phase and cross-reference the output with the transients recorded in the GWTC-3
catalog [72].

The script used to query O3a data and subsequently process it into the noise file
used to generate the noise of dataset 4 of the MLGWSC-1 has been modified to fetch
O3b data and run including known events and a minimum segment duration of one
minute. The resulting file consists of 2377 segments, totaling 8228706 seconds of data.
This corresponds to roughly 95 days and 6 hours out of the full 147 days and 2 hours
forming the O3b observing run, as we only use segments where data from both LIGO
observatories is available in sufficient quality (see Sec. 5.1.4).

All 6 searches corresponding to the highest peaks of each line in the bottom panel
of Fig. 5.6 have been applied to this data. The GWTC-3 catalog [72] consists of 35
confident detections and 7 marginal. Events lying outside the segments of available
data are excluded, leaving us with 31 confident and 4 marginal events to be found. In
addition, an event which occurs close to the beginning or the end of the segment may
be more difficult to identify, and we have verified that this does not occur. In fact,
all events were at least two hundred seconds from either end of their corresponding
segment, with the exception of GW200316_215756, which occurred 46.1 seconds after
its segment began.

Although the maximum NS mass is currently uncertain, estimated to be between
2.1M⊙ and 2.7M⊙ [378–381], following [72] we use 3M⊙ as a robust upper limit. Of
the 35 confident detections, 32 are unambiguous BBHs, as they are estimated at
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m2 > 3M⊙ at 97% probability. The three remaining events are GW191219_163120,
GW200115_042309, and GW200210_092254, and they are BHNS merger candidates.
All three are among the 31 events in the analyzed segments. None of the GWTC-3
events are BNS candidates [72].

Tab. 5.6 shows FARs at which the searches under evaluation detected events from
the GWTC-3-confident catalog. An event is considered detected by a search if it
triggered within 0.2 seconds of the merger time given in the GWTC-3 catalog at a FAR
lower than 1000 per month. The FARs are estimated as the number of false alarms
assigned a higher ranking statistic than the corresponding event, divided by the total
length of analyzed data. It should be noted that at very low FAR values down to zero,
these values are inaccurate as the noise distribution has not been sampled well in this
region, and are to be taken with a grain of salt. None of the 4 GWTC-3-marginal events
in the available segments were found by either of the searches at F < 1000month−1.

First, let us focus on the 9 events in the top section, i.e. those whose 90% credible
intervals on component masses lie completely in the [10M⊙, 50M⊙] range used to
generate training data. 6 of them are identified at F ≤ 5month−1, in most cases
∼ 1month−1, by all 6 evaluated searches. Let us comment shortly on the remaining 3:

• GW200208_130117 This event is found by all searches at F < 20month−1,
and by 4 at F < 4month−1.

• GW200219_094415 This event is found by all searches at F < 40month−1,
and by 3 at F < 10month−1.

• GW200308_173609 This event is missed by all searches. At ρnet
.
= 7.1, it

is the second faintest event in GWTC-3. It was only marked confident by the
pycbc_bbh search at pastro = 0.86, while other searches reported pastro < 0.5.
According to the catalog’s parameter inference pipeline, this is due to a high
distance from Earth at dL = 5.4+2.7

−2.6Gpc (median and 90% credible intervals),
the largest median luminosity distance in the catalog.
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[︁
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GW200224_222234 20.0 0.0 0.9 0.0 0.0 0.0 0.0
GW200311_115853 17.8 0.0 0.9 0.6 1.3 0.0 6.0
GW200225_060421 12.5 0.0 1.6 0.0 0.0 1.9 0.3
GW191215_223052 11.2 0.0 1.9 1.3 1.3 0.0 1.3
GW200208_130117 10.8 19.2 2.2 3.5 3.1 1.6 10.1
GW200219_094415 10.7 5.0 4.7 8.8 38.7 12.6 19.5
GW200209_085452 9.6 1.3 2.8 0.9 2.8 2.2 0.3
GW191204_110529 8.8 1.6 3.1 0.0 3.1 5.0 3.1
GW200308_173609 7.1 - - - - - -
GW191222_033537 12.5 0.0 4.1 2.5 2.5 0.3 0.3
GW200128_022011 10.6 25.5 3.1 0.0 11.7 10.4 2.2
GW191230_180458 10.4 6.6 149 19.5 98.9 36.9 5.0
GW191127_050227 9.2 38.7 2.8 4.4 18.6 3.1 6.6
GW200220_124850 8.5 215 517 956 96.1 695 375
GW191126_115259 8.3 - - - - - -
GW200216_220804 8.1 - 189 - - 841 -
GW191113_071753 7.9 - 634 391 - 713 647
GW200306_093714 7.8 485 407 720 - 69.3 -
GW200208_222617 7.4 38.1 6.0 19.5 55.1 159 187
GW200322_091133 6.0 810 898 - - - -
GW191204_171526 17.5 3.5 8.8 4.1 4.4 7.6 6.0
GW191109_010717 17.3 0.0 1.9 0.9 0.6 1.3 0.9
GW191129_134029 13.1 - - - - - -
GW200115_042309 11.3 - - - - - -
GW200202_154313 10.8 - - - - - -
GW200316_215756 10.3 - - - - - -
GW191105_143521 9.7 - - - - 658 -
GW191219_163120 9.1 - - - - - -
GW191103_012549 8.9 - - - - - -
GW200210_092254 8.4 - - - - - -
GW200220_061928 7.2 - - - - - -

Table 5.6: List of O3b events and their identification by the 6 searches of Fig. 5.8. Only
events from the GWTC-3-confident catalog [72] are included. Events which were not recovered
by the given search are marked by a hyphen. The accompanying SNR values come from the
catalog’s parameter inference pipeline based on Bilby [78, 79, 382]. In addition, 4 events were

omitted due to insufficient data quality or availability.
The events are split into three sections by horizontal lines. The top section contains
events whose 90% credible intervals for both component masses lie fully in the interval
[10M⊙, 50M⊙] used to generate the training data. For events in the second section, at
least one does not fulfill this but both intervals lie at least partly in the training range, and
in the third section, at least one of the intervals lies fully outside the training range. Within
each section, the events are sorted by their SNRs in a descending order. The credible intervals

come from the parameter estimation supplied by GWOSC [383].



5.7. Application to O3b data 89

In a further 11 events, the 90% credible intervals of both component masses lie at
least partly in the training range, and at least one lies partly outside. These comprise
the second section of Tab. 5.6. 5 of them are found at F < 10month−1 by at least
one search, while the remaining 6 are recovered only at F > 96month−1 or missed
completely. Two of the former are found to a comparable degree of confidence as some
of the events above:

• GW191222_033537 This event is found by all searches at F ≤ 4.1month−1.
Its component masses are estimated at 45.1+10.9

−8.0 M⊙, 34.7
+9.3
−10.5M⊙, putting the

secondary mass interval fully into the training range, and just under half of the
primary as well. At ρnet

.
= 12.5, it is one of the louder events in the available

segments and the loudest of events in the second section of Tab. 5.6.

• GW191127_050227 This event is found by all searches at F < 40month−1,
and by 3 at F < 5month−1.

In the remaining 11 events, in the third section, the 90% credible interval of at
least one component mass lies fully outside the training range. 8 are completely
missed, including all three BHNS candidates. One event is found by a single search at
F .

= 658month−1, and the remaining two are recovered by all searches:

• GW191204_171526 This event is found by all searches at F < 10month−1.
The secondary mass, estimated at m2 = 8.2+1.4

−1.6M⊙, lies just under the lower end
of the training range.

• GW191109_010717 This event is found by all searches at F < 2month−1.
Its primary mass lies above the upper end of the training range, estimated at
m1 = 65+11

−11M⊙.

They are the third and fourth loudest, respectively, events in the analyzed segments,
and the loudest in the third section of Tab. 5.6. This demonstrates that our networks
are sensitive to louder events even outside the parameter space region used for training.

To summarize, the searches can reliably identify ρnet ≥ 8 events in the parameter
space area used to train them at low FARs, as well as the louder events outside.
To illustrate the search results, we present Q-transform spectrograms of some of the
loudest events returned by the R1/0021 search. Fig. 5.9 shows the two loudest events,
which we identified as the BBH mergers GW200225_060421 and GW200224_222234.
Fig. 5.10 shows the two loudest false alarms.
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Figure 5.9: Q-transform plots of the two loudest O3b events as returned by the R1/0021
search. The full vertical white line denotes the time returned by the search and the time axis

is shifted to zero at this time.
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Figure 5.10: Q-transform plots of the two loudest O3b false alarms as returned by the
R1/0021 search. The full vertical white line denotes the time returned by the search and the

time axis is shifted to zero at this time.
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Spectrograms of the loudest 128 events returned by each of the 6 searches analyzed
in Tab. 5.6 annotated by the corresponding event name or time in case of a false alarm
are available in [364]. They clearly demonstrate that a majority of loud false alarms
feature a glitch in their spectrogram, often one which resembles the characteristic chirp
observed in CBCs. More specifically, looking at the highest significance events from
each run, it seems by eye that different searches are sensitive to different glitch types
(see Fig. 2.5):

• R3/0036 and R4/0038 mainly to the “whistle” glitches,

• R2/0150 and R5/0193 mainly to the “extremely loud” glitches,

• R1/0021 and R6/0026 to a mixture of the ones above, as well as “chirp” or “blip”
types.
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Chapter 6

Conclusion

In this dissertation, several results on using ML-based algorithms to detect GW signals
radiated by BBHs were developed and presented. Namely, we have explored efficient
ways of training CNN-based searches on LIGO data, examined their crucial properties,
and developed methods of correcting some issues which may arise. Especially, the
methods introduced here pushed FARs down to production levels of 1 per month,
demonstrating that they are ready for real world deployment in the tested scenarios.

In the project described in Ch. 4 [215], we have followed up the pioneering appli-
cations of ML methods to GW data [162, 163]. First, we reproduced their results in
classifying isolated GW detector data samples, and extended them to a lower FAR,
which is critical for GW searches. In the process of doing so, we developed the USR,
a method to resolve a particular numerical issue which occurred frequently in our
experiments and prevented evaluation at low FARs.

Furthermore, we tested multiple methods of curriculum learning, a method of in-
creasing the training dataset’s complexity as the training process progresses. We have
concluded that the crucial part is the inclusion of fairly weak signals in the training
data, and there was no benefit in introducing them later during the training process.
We observed that networks which were presented with weak signals during training
could generalize to stronger signals during testing, while the opposite is not the case.

Following this, we have applied the networks trained in the first part of this project
to search for BBH signals in continuous data. By applying the sliding window ap-
proach, we have extended these networks into single detector search algorithms which
remain sensitive down to a FAR of 1 per month. A comparison with an equivalent
matched-filtering pipeline, namely the PyCBC search [51–55], shows that our searches
retain ≥ 91.5% of the conventional pipeline down to FAR = 1month−1. We have
performed all experiments of this project in both PyTorch [124] and TensorFlow [125,
126] with virtually indistinguishable results.
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In the project described in Ch. 5, we followed up the previous project by organizing
a mock data challenge titled MLGWSC-1, focusing on searches for BBH waveforms in
continuous segments in two detectors [216]. It included multiple test datasets following
different distributions for both the waveform injections and the background noise,
which allowed us to better understand the impact of effects such as precession, a longer
inspiral time, or differing levels of noise realism on the submissions’ performance. The
noise in the final dataset consisted of real detector noise from the O3a observing run,
including noise transients.

The MLGWSC-1 attracted 4 ML-based submissions and 2 conventional search
algorithms as baselines (a targeted BBH search, and a loosely modeled search). One
of the ML searches was developed by our group and is a coherent search based on
Ch. 4 and trained using real O3a noise. On the datasets built upon Gaussian noise,
our submission has reached the highest sensitivities, operating at >90% of the sensitive
volume of the PyCBC search. In addition, due to an efficient parallelization of segment
whitening and serialized GPU evaluation of the CNN at the core of our search, we have
achieved the lowest runtimes of all MLGWSC-1 submissions on the given hardware.

Unlike conventional searches, we supplied no additional information nor veto sys-
tems to reject likely false alarms from noise transients, and let the network learn their
morphology by itself. While this was unsuccessful in the original submission and the
search results were dominated by triggers from those noise transients, further effort at
optimization has allowed us to resolve this issue. By removing the batch normalization
layer and optimizing the distribution of the training data, we have managed to surpass
all other challenge contributions besides the PyCBC search on real noise, at the cost
of a slight loss of sensitivity on the datasets based on Gaussian background noise. At
the same time, the leading ML submission has also been improved and surpassed both
our updated algorithm and the PyCBC search [375, 377].

Finally, we have applied several of the trained searches to data from the second
half of LIGO’s third observing run. Out of the known BBH events [72] at which our
searches are directed (i.e. those with both component masses in the [10M⊙, 50M⊙]

range) and which were in the analyzed segments, our searches detected all but one
at FAR < 10month−1, the exception being a very weak signal at ρnet = 7.1 due
to its large distance from Earth. In addition, we have observed that the trained
networks tend to produce the loudest false alarms on different types of background
noise transients, suggesting a potential improvement in the future by using an ensemble
of networks [173].
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Figure 6.1: Overview of segments with available data of sufficient quality in the H1, L1
and V1 detectors. Following Sec. 5.1.4, this refers to segments with the DATA flag and none of
the CBC_CAT1, CBC_CAT2, CBC_HW_INJ, BURST_HW_INJ flags in the detector in question. Top:
bar plot demonstrating the timeline of the segments. Bottom: table containing the total
lengths of those segments. First three columns: total sufficient quality uptimes in each of
the detectors. Following three columns: total lengths of the pairwise intersections of these
segments, and in the last column, the total length of their intersection over all three detectors.

Contemporary GW detectors are very complicated tools and require nearly contin-
uous maintenance, leading to a lot of downtimes, as seen in Fig. 6.1. In fact, in Sec. 5.7,
only taking segments where data in both H1 and L1 was available in sufficient quality
left us with less than two thirds of the O3b observing run. It would be beneficial for
a search to also include V1 data; at the same time, this would likely leave us with an
even smaller part of the observing run’s duration.

A possible solution is to train multiple search algorithms to account for the up-
/downtimes of different combination of detectors. In this thesis, we have covered the
situation of a single detector in Ch. 4, and due to the fundamental symmetries of
the problem, the solution is applicable in any particular detector with a similar noise
characteristic. While no noise transients were included, it is likely that following the
methods of Ch. 5 one could incorporate them into the single-detector searches.

The two-detector situation has been covered in Ch. 5 in the H1-L1 case, includ-
ing treatment of noise transients. In the case of multiple detectors, their relative
geographic position and orientation does affect the training data distribution, and
therefore a search would need to be retrained to achieve optimal sensitivity during
downtimes of H1 or L1. A coincident search would also likely perform well in this
case [352].
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In a three-detector case, it is also expected that the architecture of Tab. 5.5, with
some modifications, would perform well. As more detectors join the network, such
as KAGRA in Japan, all possible situations can be covered this way. While coinci-
dent searches are easier to extend to more detectors, fully coherent searches are more
sensitive in networks with more than two detectors [384–386].

At the same time, this method is inefficient as the number of CNNs required to
cover all cases over n detectors is 2n − 1 (when one algorithm is sufficient to cover all
single-detector cases, it is 2n−n instead). In addition, the ranking statistics produced
by separately trained networks are likely to be mutually incompatible. It is thus
highly desirable to find ML-based algorithms which are more flexible in this regard as
well as reproduce the sensitivity of the algorithms described in this thesis and extend
their comparative performance to matched-filter based searches to higher numbers of
detectors.

Furthermore, throughout this thesis, we have focused merely on comparable-mass
BBH mergers with masses in the [10M⊙, 50M⊙] mass range. Staying in the realm of
LIGO-Virgo-KAGRA binaries, it is critical to also cover masses outside this range, as
evidenced by the results of Sec. 5.7, as well as BNS and BHNS mergers.

This presents us with the issue of very different inspiral times; while those we
investigated are on the order of 1 second, extending the range to [7M⊙, 50M⊙] al-
ready allows inspirals up to a length of 20 seconds. In the case of BNS mergers, the
source may spend more than a minute in a detector’s sensitive band, and any con-
ceivable method of extending the input window length of a CNN without considerable
downsampling leads to a quick rise in the model complexity.

On this scale, the problem may be resolved using a piece-wise downsampling, re-
taining the higher-frequency content at the end of the input window [279, 352], or
simply using a shorter input; this way, however, a considerable part of the waveform’s
SNR is not seen by the search, limiting its sensitivity. Looking further into the future
at processing of LISA data, it is necessary to develop algorithms which search for
waveforms spending up to months in the sensitive band of a detector. In addition, it
is likely to encounter overlapping signals in this case.

A potential solution here lies in the use of recurrent neural networks, in particular
long short-term memory networks [387], which keep an internal state. When applied
sequentially to time series slices or individual elements, they may be capable of effec-
tively searching for signals longer than the input window, or reject long noise transients
effectively [171, 176, 183, 187, 388, 389].
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Another issue in the usage of CNNs is a reduced understanding of the model’s
inner workings in comparison to matched-filter based pipelines. Along with DNN-
based architectures, an associated trend is interpretability of those architectures [390–
395]. An important direction in future research will be to make sure ML-based models
are interpretable rather than black boxes [396, 397].

Throughout the time spent working on these projects, I have also taught in a course
focused on ML for physicists completed by student projects, and seen many interesting
applications to real physics problems by the students (mostly with no relation to
GW research, and rather frequently in applied optics). The projects covered in this
dissertation as well as these student projects and many others demonstrate that ML
methods are a very useful part of a physicist’s toolbox.

In conclusion, ML applications to physical problems are expected to become a
standard part of a physicist’s toolbox in the near future. There is great potential for
their use in GW astronomy which is being exploited by more and more researchers
and it is an exciting time of this rapidly growing field. Perhaps there will soon be
ML-based online searches in use by the LIGO-Virgo-KAGRA collaboration, leading
to joint analyses using both ML and matched-filter based methods, exploiting the
strengths of both approaches.
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Appendix A

Experiment with an extended mass
range

In Sec. 5.5, we have trained a set of six networks to identify BBH waveforms in the
MLGWSC-1 test data, optimized on the real detector noise of dataset 4 (see Sec. 5.1.4.
As the architecture is best suited to detecting short signals, we have used component
masses m1, m2 ∈ [10M⊙, 50M⊙] for the training data waveforms, with a length on
the order of 1 second. Therefore the waveforms with m2 ∈ [7M⊙, 10M⊙] and a maxi-
mum length ≈ 20 s are not represented in the training dataset while contained in test
datasets 2-4.

An identical experiment has been performed with a single difference: the com-
ponent masses for the training dataset are drawn from a uniform distribution over
[7M⊙, 50M⊙]. The evolution of the sensitivity over datasets 3 and 4 at F = 1month−1

is shown in Fig. A.1 and is a direct equivalent of Fig. 5.6. Again, we decided to focus on
the global maximum of each curve in the bottom panel, i.e. on dataset 4, and denote
the network states in the format E<run number>/<four-digit epoch number>.

In two runs, this maximum exceeds 1300Mpc (the higher being the state E4/0036,
in one it is .

= 950Mpc, and in the remaining three it exceeds 1200Mpc but remains
below 1300Mpc. In addition, we evaluate the E4/0036 state on the datasets used for
the MLGWSC-1 results, and display the sensitivity curves in Fig. A.2. While this is a
significant improvement over our original submission, the corrected results of Sec. 5.1.4,
namely the R1/0021 search, seem to perform slightly better in the framework of the
MLGWSC-1.

Finally, we applied the six networks selected by the maxima of the sensitivity on
dataset 4 at a FAR of 1 per month to O3b data, taking the same steps as in Sec. 5.7.
The results are shown in Tab. A.1. In comparison to the analysis of Tab. 5.6, we see an
expected increase of events with component masses in the training range, which is now
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Figure A.1: Evolution of the sensitive distance during training for a set of 6 training
runs. The sensitive distance in the top and bottom panels is evaluated on datasets 3 and 4,

respectively, at F = 1 per month.
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Event name ρMF F
[︁
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]︁

GW200224_222234 20.0 0.6 0.0 0.0 0.0 0.0 3.1
GW200311_115853 17.8 0.6 0.9 0.0 0.0 0.0 10.1
GW200225_060421 12.5 0.6 0.0 0.0 0.0 0.0 5.4
GW191215_223052 11.2 1.6 0.0 0.3 0.0 0.3 20.5
GW200208_130117 10.8 6.9 4.4 1.6 5.7 2.2 43.5
GW200219_094415 10.7 24.3 3.8 9.4 2.8 6.0 60.5
GW200209_085452 9.6 8.2 0.9 3.1 0.0 5.4 17.6
GW191204_110529 8.8 6.3 0.9 12.0 1.6 7.2 35.6
GW200306_093714 7.8 812 - 806 486 - -
GW200308_173609 7.1 - - - - - -
GW191204_171526 17.5 1.9 0.0 4.1 2.2 0.3 11.7
GW191129_134029 13.1 188 86.6 - - - 657
GW191222_033537 12.5 8.8 0.9 0.3 0.0 0.0 17.6
GW200202_154313 10.8 - - - - - -
GW200128_022011 10.6 3.8 0.9 6.3 3.1 20.2 34.6
GW191230_180458 10.4 25.8 8.2 19.2 6.9 40.0 59.8
GW200316_215756 10.3 - - - - - -
GW191105_143521 9.7 204 49.1 660 283 816 395
GW191127_050227 9.2 3.8 1.6 12.6 1.3 14.5 45.7
GW191103_012549 8.9 - - - - - -
GW200220_124850 8.5 66.1 52.9 488 123 47.2 173
GW191126_115259 8.3 - - - - - -
GW200216_220804 8.1 - - - 650 - -
GW191113_071753 7.9 728 335 289 593 115 838
GW200208_222617 7.4 54.8 37.2 157 441 155 123
GW200322_091133 6.0 - - - - - -
GW191109_010717 17.3 5.7 1.6 0.0 0.0 0.0 10.1
GW200115_042309 11.3 - - - - - -
GW191219_163120 9.1 - - - - - -
GW200210_092254 8.4 - - - - - -
GW200220_061928 7.2 - - - - - -

Table A.1: List of O3b events and their identification by the 6 searches at the peak of each
curve in the bottom panel of Fig. A.1. Only events from the GWTC-3-confident catalog [72]
are included. Events which were not recovered by the given search are marked by a hyphen.
The accompanying SNR values come from the catalog’s parameter inference pipeline based
on Bilby [78, 79, 382]. In addition, 4 events were omitted due to insufficient data quality or

availability.
The events are split into three sections by horizontal lines. The top section contains events
whose 90% credible intervals for both component masses lie fully in the interval [7M⊙, 50M⊙]
used to generate the training data. For events in the second section, at least one does not
fulfill this but both intervals lie at least partly in the training range, and in the third section,
at least one of the intervals lies fully outside the training range. Within each section, the
events are sorted by their SNRs in a descending order. The credible intervals come from the

parameter estimation supplied by GWOSC [383].
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Figure A.2: Sensitivity curves of all original submissions over the 4 test datasets used to
evaluate the MLGWSC-1. The R1/0021 algorithm replaces our original submission, which
is represented by a dotted line instead, and the E4/0036 search is added as the dash-dotted

line.
.

[7M⊙, 50M⊙]: 10 instead of 9 events with 90% credible intervals of both masses in the
training range, 16 instead of 11 with both credible intervals at least partially in the
training range but at least one not fully, and 5 instead of 11 with at least one credible
interval fully outside the training range. However, we do not observe a significant
improvement in the FAR assigned to either of the events in comparison to Tab. 5.6.
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Segment keys

This appendix briefly lists the keys of real noise segments used in Ch. 5. Namely,
Tab. B.1 lists keys of data used to slice into noise for the training data, and Tab. B.2
keys of data used to generate the test datasets used for the algorithm development and
in the MLGWSC-1 evaluation. The overlap of these two lists is highlighted in bold.

Finally, Tab. B.3 lists keys of data used to generate the dataset for final validation
as described in Sec. 5.6. It does not overlap with either of the previous two and thus
there is no need for highlighting selected keys.

1238758280 1239087144 1239153852 1240944877 1241569759 1241597289
1242107494 1242258122 1242610603 1242787561 1242857540 1243393030
1243630285 1243831494 1243964965 1244839875 1244866703 1245047190
1245191877 1245332582 1245451429 1245742090 1245761268 1246048419
1246591138 1246757180 1246780061 1247517902 1247555609 1247664213
1248174787 1248435939 1249629768 1249781664 1250041152 1250152309
1250397388 1250430837 1250553015 1250709596 1250746105 1251862303
1252541512 1252694121 1252720941 1252808733 1253156172 1253717896
1253741480 1253853775

Table B.1: Keys of 50 segments used to slice into training data. Printed in bold are those
which overlap with Tab. B.2.
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1238205077 1238400368 1238546548 1238561176 1238645908 1238677592
1238731472 1238758280 1238805513 1238819847 1238834634 1238918966
1238996844 1239060175 1239069672 1239087144 1239153852 1239168627
1239213619 1239449416 1239672094 1239795022 1240266411 1240285237
1240305829 1240360864 1240374893 1240398856 1240554257 1240594566
1240624416 1240658946 1240704124 1240712035 1240750853 1240764595
1240797030 1240821143 1240872265 1240919432 1240944877 1240961313
1241093496 1241123882 1241204835 1241243173 1241302064 1241310401
1241417186 1241508299 1241546152 1241569759 1241597289 1241619262
1241651790 1241689644 1241739106 1241758890 1241833954 1241857376
1241939956 1242071794 1242107494 1242124680 1242189936 1242242537
1242258122 1242279531 1242326536 1242346161 1242401394 1242442982
1242451141 1242459872 1242522327 1242535516 1242558506 1242567217
1242576179 1242610603 1242645739 1242692672 1242773677 1242787561
1242857540 1242877872 1242966830 1242997805 1243053828 1243078770
1243117125 1243162956 1243217565 1243254523 1243281488 1243330888
1243345012 1243393030 1243449741 1243518145 1243541014 1243560610
1243586469 1243630285 1243645650 1243673479 1243736093 1243754588
1243779090 1243823546 1243831494 1243888254 1243915837 1243947945
1243964965 1243993765 1244056996 1244067109 1244082986 1244106430
1244259779 1244331130 1244349588 1244367288 1244421366 1244471454
1244486004 1244499334 1244522898 1244543819 1244593951

Table B.2: Keys of 131 segments used in the test datasets used for development and to
evaluate the MLGWSC-1. Printed in bold are those which overlap with Tab. B.1.
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1244608795 1244646462 1244654715 1244704480 1244772092 1244936272
1244986313 1245075223 1245091570 1245130318 1245200586 1245256976
1245308619 1245342373 1245464815 1245475577 1245569309 1245579592
1245653511 1245781152 1245828293 1245853320 1245892667 1245910462
1245967232 1246084506 1246170217 1246209961 1246239228 1246261454
1246286035 1246328016 1246378432 1246453148 1246487234 1246509724
1246527239 1246561826 1246631092 1246681818 1246841314 1246865565
1247260178 1247296003 1247359793 1247388908 1247401589 1247442444
1247460978 1247470158 1247583307 1247639142 1247694238 1247741180
1247750009 1247773736 1247810072 1247874995 1248112051 1248132105
1248200542 1248227246 1248242646 1248257816 1248283368 1248301521
1248331543 1248361429 1248381203 1248476855 1248511438 1248593325
1248683713 1248743587 1248798693 1248813258 1248834454 1248959459
1248991663 1249000658 1249093446 1249126630 1249163431 1249196261
1249216161 1249276049 1249323317 1249345682 1249367294 1249378088
1249399139 1249416034 1249428701 1249467944 1249497203 1249557842
1249584314 1249615368 1249663752 1249689290 1249716729 1249871829
1250031076 1250058904 1250108107 1250136805 1250196966 1250228595
1250242200 1250302734 1250473133 1250506415 1250617985 1250643575
1250656435 1250675600 1250799366 1250821662 1250848841 1250866922
1250916949 1250997653 1251010542 1251043190 1251176536 1251213336
1251227166 1251242198 1251261339 1251292071 1251332604 1251353035
1251420609 1251454669 1251523468 1251591106 1251646225 1251678305

Table B.3: Keys of 136 segments used in the test dataset used for the final evaluation.
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