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Abstract

Mass transport phenomena are fundamental to many scientific and engineering
applications. Two areas of great interest, i.e. catalytic synthesis and microchannel
mixing, are studied in the framework provided by the interplay of advection, diffusion
and reaction. This work aims to offer a deeper understanding of the role that the three
mechanisms have in different setups by analysing the evolution of the concentration
field, in order to improve the overall performance of the systems.

Gold nanoparticles are well-known for their high catalytic performance. Using a
lattice Boltzmann solver for the advection-diffusion-reaction equation and a random
walk particle tracking method, we compare the conversion curves generated by a
single large particle and by two smaller particles, with radii chosen such that the total
surface area is kept constant. Furthermore, we also model the anisotropic diffusion
induced by increased hydrodynamic resistance next to the catalytic surface of the
gold particles. We find that the reaction rates are independent of the particle size,
thus excluding the surface-modified diffusion regime of the reactant as a cause for the
experimentally observed change in the catalytic activity. Additionally, the reaction
kinetics of gold nanoparticles immobilised on patchy hybrid nonwovens are studied
in the context of the catalysed alcoholysis of dimethylphenylsilane with n-butanol.
The swellability of the functional patches in n-butanol is reflected in an observed
induction period. We propose an extended first order kinetics model, which captures
this behaviour through the introduction of a new parameter, i.e. the accessibility rate
of the reactants to the embedded catalytically active nanoparticles. Using our tool, a
good fit to the experimental results is obtained, which further highlights a strong
dependency of the accessibility rate on both the size and chemistry of the patches.

In the synthesis of complex chemical products, usually a series of catalytic
reactions involving simpler initial substances are required. A better alternative to
the traditional step-by-step approach, which requires isolation of each intermediate
product, are the one-pot cascade reactions where no recovery step is needed. We
study the case of a generic two-step A → B → C reaction where the Wolf-Lamb-type
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catalysts are immobilised on fibrous membranes to avoid their deactivation. The
reactants are transported from the first catalytic site to the second by advection and
diffusion. The efficiency of such a flow-through reactor is computed as a function of
two dimensionless parameters, i.e. the Péclet and the Damköhler number, using the
lattice Boltzmann method, the random walk particle tracking method and a simple
analytical model. Our results show that, at higher flow speeds the system becomes
less efficient, as the reactants have less time to reach the surface of the fiber, while
the total production increases due to a higher advective flux. Moreover, reducing the
distance between the two catalytic sites significantly increases the reaction efficiency,
with the side-by-side morphology, which places both catalyst on a single fiber, yielding
the best results.

Species mixing is a crucial process in microfluidic systems, such as the lab-on-a-
chip technology and bioprinting, having direct impact on the efficiency and sensitivity
of these devices. In this work we investigate the mixing inside a microchannel
where a deformable capsule is flowing through, in the context of two passive mixers,
i.e. serpentine channel and parallel lamination of the stream. Combining a lattice
Boltzmann/immersed boundary scheme for the Navier-Stokes equation with a finite
volume solver for the advection-diffusion equation, we simulate the coupled flow
field, membrane dynamics and concentration field. We confirm that, while the
channel geometry has a minimal impact on the mixing process, parallel lamination
considerably decreases the distance at which uniformity is achieved. Remarkably, the
passage of the microcapsule disrupts the local homogeneity over short distances in
front and behind its position. Furthermore, we record the same relative deviation in
the mixing values generated by the capsule for multiple concentration distributions
at the inlet.
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Zusammenfassung

Massentransportphänomene sind für viele wissenschaftliche und technische Anwen-
dungen von grundlegender Bedeutung. Zwei Bereiche von großem Interesse, nämlich
die katalytische Synthese und das Mischen in Mikrokanälen, werden im Rahmen des
Zusammenspiels von Advektion, Diffusion und Reaktion untersucht. Diese Arbeit zielt
darauf ab, ein tieferes Verständnis der Rolle zu vermitteln, die die drei Mechanismen in
verschiedenen Anordnungen spielen, indem die Entwicklung des Konzentrationsfeldes
analysiert wird, um die Gesamtleistung der Systeme zu verbessern.

Gold-Nanopartikel sind bekannt für ihre hohe katalytische Leistung. Unter Verwen-
dung eines lattice Boltzmann-Lösers für die Advektions-Diffusions-Reaktionsgleichung
und einer Random-Walk-Particle-Tracking-Methode vergleichen wir die Konversions-
kurven, die von einem einzelnen großen Partikel und von zwei kleineren Partikeln
erzeugt werden, wobei die Radien so gewählt werden, dass die Gesamtoberfläche
konstant bleibt . Darüber hinaus modellieren wir auch die anisotrope Diffusion, die
durch erhöhten hydrodynamischen Widerstand neben der katalytischen Oberfläche der
Goldpartikel induziert wird. Wir finden heraus, dass die Reaktionsgeschwindigkeiten
unabhängig von der Partikelgröße sind, wodurch das oberflächenmodifizierte Diffusi-
onsregime des Reaktanten als Ursache für die experimentell beobachtete Änderung
der katalytischen Aktivität ausgeschlossen werden kann. Zusätzlich wird die Reak-
tionskinetik von auf patchy hybrid nonwovens immobilisierten Goldnanopartikeln
im Rahmen der katalysierten Alkoholyse von Dimethylphenylsilan mit n-Butanol
untersucht. Die Quellbarkeit der funktionellen Patches in n-Butanol spiegelt sich
in einer beobachteten Induktionsperiode wider. Wir schlagen ein erweitertes Ki-
netikmodell erster Ordnung vor, das dieses Verhalten durch die Einführung eines
neuen Parameters erfasst, nämlich der Zugänglichkeitsrate der Reaktanten zu den
eingebetteten katalytisch aktiven Nanopartikeln. Mit unserem Tool wird eine gute
Anpassung an die experimentellen Ergebnisse erzielt, was eine starke Abhängigkeit
der Zugänglichkeitsrate sowohl von der Größe als auch von der Chemie der Patches
unterstreicht.



Bei der Synthese komplexer chemischer Produkte sind meist eine Reihe katalyti-
scher Reaktionen mit einfacheren Ausgangsstoffen erforderlich. Eine bessere Alternati-
ve zum traditionellen schrittweisen Ansatz, der die Isolierung jedes Zwischenprodukts
erfordert, sind die Eintopf-Kaskadenreaktionen, bei denen kein Rückgewinnungsschritt
erforderlich ist. Wir untersuchen den Fall einer generischen zweistufigen A → B → C-
Reaktion, bei der die Wolf-Lamb-Katalysatoren auf Fasermembranen immobilisiert
sind, um ihre Deaktivierung zu vermeiden. Die Reaktanten werden durch Advektion
und Diffusion von der ersten katalytischen Stelle zur zweiten transportiert. Der
Wirkungsgrad eines solchen Durchflussreaktors wird als Funktion zweier dimensions-
loser Parameter, nämlich der Péclet- und der Damköhler-Zahl, unter Verwendung
der Lattice-Boltzmann-Methode, der Random-Walk-Particle-Tracking-Methode und
eines einfachen analytischen Modells berechnet. Unsere Ergebnisse zeigen, dass das
System bei höheren Strömungsgeschwindigkeiten weniger effizient wird, da die Re-
aktanten weniger Zeit haben, die Oberfläche der Faser zu erreichen, während die
Gesamtproduktion aufgrund eines höheren Advektionsflusses steigt. Darüber hinaus
erhöht die Verringerung des Abstands zwischen den beiden katalytischen Stellen
die Reaktionseffizienz erheblich, wobei die Side-by-Side-Morphologie, bei der beide
Katalysatoren auf einer einzigen Faser platziert werden, die besten Ergebnisse liefert.

Das Mischen von chemische Spezies ist ein entscheidender Prozess in mikrofluidi-
schen Systemen wie der Lab-on-a-Chip-Technologie und dem Biodruck, der sich direkt
auf die Effizienz und Empfindlichkeit dieser Geräte auswirkt. In dieser Arbeit unter-
suchen wir das Mischen in einem Mikrokanal, durch den eine deformierbare Kapsel
strömt, im Kontext zweier passiver Mischer, dem Serptentinenkanal und der parallelen
Laminierung des Stroms. Durch die Kombination eines Lattice-Boltzmann-/Immersed-
Boundary-Schemas für die Navier-Stokes-Gleichung mit einem Finite-Volumen-Solver
für die Advektions-Diffusions-Gleichung simulieren wir das gekoppelte Strömungsfeld,
die Membrandynamik und das Konzentrationsfeld. Wir bestätigen, dass, während
die Kanalgeometrie einen minimalen Einfluss auf den Mischprozess hat, parallele
Laminierung den Abstand, bei dem Gleichmäßigkeit erreicht wird, erheblich verringert.
Bemerkenswerterweise stört die Passage der Mikrokapsel die lokale Homogenität nur
über kurze Distanzen vor und hinter ihrer Position. Darüber hinaus erfassen wir die
gleiche relative Abweichung in den von der Kapsel erzeugten Mischwerten für mehrere
Konzentrationsverteilungen am Einlass.
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1. INTRODUCTION

Mass transport phenomena deals with the movement of chemical species and play an important
role in most aspects of daily life as well as in many scientific and engineering disciplines. Despite
the wide range and the complexity of the applications based on mass transport processes, its
mechanisms can simply be highlighted while preparing a cup of tea. After dropping a teabag
in water, the emerging tea molecules start to travel and spread inside the whole cup from high
to low concentration regions, changing the color of liquid. This phenomenon, called diffusion,
is the result of random interactions between molecules and, ultimately, leads to homogeneous
concentration throughout the system. With diffusion being a slow process, it is very common to
stir the liquid in order to speed up mixing. Advection represents this bulk motion of fluid which
carries with it the distribution of tea molecules. For a complete description of mass transport
phenomena, a source which account for the production or consumption of species inside the system
has to be considered. In this example, the teabag is the place from where the tea molecules are
introduced in water. Usually, through sources are modelled the reactions between species, which
represents the local mechanisms and kinetics involving electron rearrangements that generates
molecule transformations. Ultimately, this translates into changes in the concentration field
giving rise to new gradients.

The framework provided by the interplay of these three processes is of great importance not
only for preparing a beverage, but also for describing a plethora of phenomena in various scientific
disciplines. Examples of studies include evolution of concentration following a reaction [1,
2], weather dynamics [3], environmental transport of contaminants and chemicals achieving
pollutant [4], modelling dispersal at active volcanoes [5] and even animal movement in dynamic
environments [6].

Of particular concern here are two areas of growing interest and significance: catalytic
reactions and mixing of species in microchannels. Catalysis represents the change of the rate of
a chemical reaction in the presence of an additional substance that is not consumed during the
process. It plays an essential part in industry as the manufacturing of most of the chemical-based
materials involves a catalytic stage. Catalysis has started to develop as a scientific discipline
at the beginning of the nineteenth century. Louis Thénard was one of the pioneers in this field,
identifying metals such as platinum, copper and iron as suitable catalysts in his studies on
decomposition of ammonia. An interesting case is represented by gold, which is considered a
poor catalyst being chemically inert and the most stable among metals. However, in 1987 it
has been noticed that gold nanoparticles (Au NPs) exhibit catalytic behaviour in the process of
oxidizing CO into CO2 [7]. Since then, many studies have shown that, in the nanometer range,
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Figure 1.1: Illustration of an advection-diffusion process in a cup of tea. Diffusion is the movement
of small tea molecules from higher (teabag) to lower concentration regions and given enough
time, it leads to a homogeneous distribution. Stirring represents the advection mechanism, i.e.
the bulk motion of fluid, which accelerates the mixing process.

gold becomes a good catalyst [8–10]. Beside their high catalytic performance, gold nanoparticles
offer additional advantages such as stability, easy recovery and recyclability, which makes them
relevant for applications in many areas, including medicine [11–13], photonics [14], sensors [15–17]
and electronics [18, 19].

A characteristic of the nanoparticles is their large total surface area which enhances the
catalytic performance. However, due to the large number of particles used in such processes
and their active surfaces, they are prone to aggregation, which reduces the surface available
for the reaction and decreases the activity. To minimise this effect, two popular solutions have
been developed, i.e. stabilising the nanoparticles using ligands and immobilising the particles on
solid supports. In the first case, the size [20–22], shape [23] and capping ligands [24] of Au NPs
have already been shown to have significant impact on the catalytic performance, influencing
the reaction rates. Regarding their size, Suchomel et al.[22] and Fenger et al.[25] have reported
that the catalytic activity increases as particles become smaller. However, in most cases the
comparison was made using the same quantity of gold for all sizes. This leads to a higher surface
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1. INTRODUCTION

area available in case of smaller radii when the total volume is kept constant, which offers a
simple explanation for this effect. One of the very few studies where the size-dependent catalytic
activity of Au NPs was analysed in the context of a constant total surface area is the work of
Piella et al. [26], which also shows a higher efficiency for smaller radii. The explanation proposed
here is based on the chemistry of ligands, i.e. gold atoms are lower coordinated on smaller
particles compared to the larger ones. To our knowledge, there has not been any attempt of
investigating this phenomenon for the perspective of the changes in the advection-diffusion of
the reactant around nanoparticles with different sizes.

The other strategy to avoid Au NPs aggregation, which has no influence on the catalytic activ-
ity of their surfaces, is the immobilisation of the nanoparticles on various types of solid supports.
The most common choices have been the use of inorganic supports such as metal oxides [27, 28],
nanotubes [29] and layered materials like graphene [30], or metal-organic frameworks [31, 32]
as hosts for the metal nanoparticles. Recently, the class of polymeric supports, which includes
porous polymers [33, 34] and polymer micelles [35] have become an interesting alternative due
to their properties which allow simple adjustments to the requirements of a specific reaction
process. Schöbel et al. [36] have proposed an efficient teabag-like catalyst system in the form
of nonwovens that have a polystyrene-based core and Au NPs-loaded patchy micelles as the
shell. One interesting property of this morphology is that the accessibility of the reactants to the
surface of the embedded nanoparticles is determined by the swellability of the patches and thus
an induction period is observed in the reaction process. Usually, when analysing reaction kinetics
that exhibit different stages, each regime is treated separately such that the classical simple
reaction rates laws can be applied [37]. However, developing mathematical models specifically
tailored for the particularities of a system can offer a better and more accurate insight into its
characteristics, i.e. the influence that the patch structure and chemistry have on the catalytic
performance [38].

The relevance of mass transport mechanisms in catalysis becomes clearer when studying
processes involving synthesis. Complex chemical products are manufactured as the result
of a series of catalytic reaction involving simpler initial substances. The traditional way of
implementing this is based on a step-by-step approach which requires the isolation and purification
of each intermediate product before the next reaction can take place. This leads to high costs,
long production time, while also generating large amounts of waste. As an alternative, the
cascade approach, where all the chain reactions take place without any additional recovery
step, has been developed. Due to the reduced number of operations, smaller quantities of
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solvents required and less waste produced, one-pot cascade reactions have received increasing
attention in many technological areas [39–41]. The biggest issue of this technique is that some
processes use incompatible catalysts (e.g acid and base) that annihilate each other when mixed
together [42, 43]. Similar to gold nanoparticles, the Wolf-Lamb-type catalysts can be immobilised
on solid supports, a great example being fibers prepared by electrospinning which have already
shown their potential [44, 45]. The fibers carrying the catalysts can then be assembled into
membranes through which the reactants are flowing. This type of reactor can be modelled
as an advection-diffusion-reaction system in order to understand how various parameters and
geometries influence the efficiency of the cascade reactions. Previous studies related to this
topic have mostly concentrated on diffusion dominated processes [46–48]. Works that include
advection are limited to simulations of two dimensional systems with reactive boundaries [49],
microchannels [50] and molecular dynamics simulations of spherical catalytic sites [51]. There is
currently a lack of computational studies that systematically investigate one-pot cascade reactions
and the effect of complex fiber morphologies on the catalytic efficiency of fibrous membranes.

Another topic of particular interest in this thesis is the process of mixing inside microchannels.
Microfluidics devices have been a major topic of research in the past decade, driven by the
high interest in the lab-on-a-chip technology [52]. These type of devices have had a significant
impact on the fields of chemistry, life sciences and bioengineering, with a growing number of
applications covering a wide range of processes such as polymerisation [53], synthesis [54], clinical
diagnostics [55, 56], drug delivery [57] and bioprinting [58]. Mixing has represented one of the
most fundamental and difficult to achieve feature of these systems. The microscale channels
generally have low flow rates being characterised by a laminar flow regime with no disruptions
between the layers. Therefore, diffusion becomes the main mechanism by which uniformity
of concentration is achieved. However, diffusion is a slow process that requires long time to
obtain a good mixing and as a result, additional methods of microfluidic mixing must be devised.
The progress in development of micromixers has been reviewed in a series of excellent recent
articles [59–61]. Increasing the contact area between the mixing species by splitting and folding
the streams has emerged to be one of the most efficient means of enhancing the diffusive mixing
performance, while being very reliable and easy to implement in microdevices [62]. Furthermore,
the geometry of the channel can also play a role, with serpentine microchannels [63] or obstacles
on the walls [64] providing a simple way to improve the efficiency. An interesting topic is the
addition of microcapsules or cells to the stream, which has significant relevance in the young and
evolving field of bioprinting [58]. However, the effect on the concentration distribution generated
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1. INTRODUCTION

by the passage of soft objects inside microchannels is still poorly understood.
Studying all the phenomena presented here requires the advection-diffusion-reaction equation

(ADRE) to be solved for each individual system. The availability of complete analytical solutions
is usually limited to simple cases and depends on the initial and boundary condition [65]. Thus,
the field of computational fluid dynamics is vital for solving mass transport problems and the
wide variety of methods that have been invented are well summarised by Krüger et al. [66].
The finite volume method (FVM) is one of the conventional solvers being based on discretising
the ADRE and has been often chosen for its simplicity. Alternatively, particle-based methods
simulate the behaviour of individual molecules or collections of molecules that form the fluid.
First example from this category is the random walk particle tracking (RWPT) [67] which can be
fairly easy to implement but requires high computational resources. A better and more popular
option is the lattice Boltzmann method (LBM) due to its ability to handle complex systems and
its suitability to high performance computing on parallel architectures [68].

This thesis aims to study the interplay of advection diffusion and reaction mechanisms in
the context of catalytic processes and microchannel mixing by developing multiple simulation
tools. It provides novel insight into the efficiency of flow-through catalytic reactors and the
impact produced by the passage of microcapsules inside micromixers. The content of this work
is organised as follows.

Chapter 2 introduces the basic theory that describes advection-diffusion-reaction phenomena
and a kinetic theory which serves as a foundation for the LBM. In chapter 3, the implementations
of three ADRE solvers, i.e. FVM, RWPT and LBM, are presented and their advantages and
disadvantages are discussed. Chapter 4 analysis the catalytic behavior of gold nanoparticles.
The reaction rates are monitored in relation to changes in the solvent diffusion around particles
of various sizes using LBM and RWPT simulations. Additionally, an analytical model for the
kinetics of reactions that exhibit an induction period is developed in order to fit the experimental
data. Chapter 5 discusses one-pot catalytic cascade reactions. The classical second order kinetics
model is extended to account for a delayed start in the second step. Furthermore, the efficiencies
for different configurations of flow-through reactors are simulated using LBM. Chapter 6 focuses
on the topic of mixing of chemical species inside microchannels. Passive mixing techniques such
as parallel lamination and serpentine channel are analysed while deformable microcapsules are
flowing through the system. Finally, a summary and an outlook are given in chapter 7.
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Chapter 2

Mass transport processes
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2. MASS TRANSPORT PROCESSES

Transport phenomena are essential to the universe being the underlying mechanism for any
process that involves physical change, starting from something as simple as mixing in hot cup of
tea to the existence of life on Earth. They describe the exchange of mass (transport of chemical
species), energy (heat transfer) and momentum (fluid dynamics) between different systems. In
many cases, these forms of transport occur simultaneously in engineering, meteorology and
environmental studies and they share a similar mathematical framework, despite covering diverse
topics such as thermodynamics and continuum mechanics [69]. It is possible to describe the
transport of mass, momentum or energy using three different scales:

• at macroscopic level, one can study the variation of the quantity of interest (i.e. mass,
energy or momentum) for a system due to inputs from the surroundings by analysing the
macroscopic balances. However, no insight of the details of the systems can be gained
as this offers only a global assessment of the problem, which can be employed as a good
starting point in an analysis or when only an overall view is required. Typical lengths at
this level are of the order of meters.

• at mesoscopic level the variation of mass, energy or momentum is studied only in a small
region of the system using equations that describe the rate of change. This way, it is
possible to obtain information about concentration, temperature, velocity and pressure
profiles within the system, which offer a deeper understanding of the processes. This level
is usually used in the micron to centimeter range.

• at microscopic level individual particles are studied and the molecular structure and
intermolecular forces are considered in order to gain a fundamental understanding of the
mechanisms of mass, energy and momentum transport. Studies at this level involve lengths
in the ranges of about 1 nanometer to 1 micrometer.

Throughout this work, our focus is on processes characterised by mass transport and its
interplay with momentum transport phenomena. This chapter introduces two fundamental kinds
of transport mechanism, advection and diffusion, which can be be observed in daily life and in
many hydrodynamic problems. Given the fact that the physical picture and the mathematical
framework of transport by advection and diffusion remain unchanged with respect to the fluid
property that is studied [70], in section 2.1 the equations will be derived in a generic form at the
macroscopic level and then the particular case for mass transport will be presented. Section 2.2
provides a concise summary of the kinetic theory which can be used to describe fluids at a
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2.1 Advection-Diffusion fundamentals

mesoscopic scale. Section 2.3 discusses the kinetics of chemical reactions, which influences the
mass transport by producing or destroying species.

2.1 Advection-Diffusion fundamentals

Advection represents the transport by bulk motion of a fluid. As matter is moving, the properties
associated with it are carried with that motion. A great illustration of this process is the oil
spilled in a river which is moving downstream being dragged along with the water. Another
example is the movement of the clouds due to the wind.

Diffusion is a less intuitive phenomenon, lacking a macroscopic explanation. For a given
finite temperature, molecules show random motion with high velocities over very short distances.
This happens even if the average velocity is zero, which makes the medium seem static at the
macroscopic level. Brownian motion is a famous example that is driven by this mechanism [71].
It was first described by Robert Brown in 1827 who studied the behavior of fine particles placed
on top of a water surface. By being constantly hit by random water molecules, these particles
follow Brownian trajectories as shown in Figure 2.1. Almost eighty years later, Einstein [72] and
Smoluchowski [73] simultaneously managed to explain this motion and related the mean squared
displacement of a particle to a system property, i.e. the diffusion coefficient D, according to

〈
|x⃗(t) − x⃗(0)|2

〉
= 2nDt, (2.1)

where x⃗ is the position of the particle and n is the dimension of the Brownian motion. Considering
a set of particles, initially confined to one place, it tends to spread out spontaneously due to
the random walk of each individual, which leads to a uniform spatial distribution. Due to this
phenomenon, two miscible fluids such as ink and water mix themselves when put together, with
both species diffusing until the concentrations are homogeneous throughout the system. Thus,
diffusion is the transport of properties via molecular interactions from regions of high content to
regions of low content.

Most transport processes can be classified as pure advective, pure diffusive or a combination
of both. Being two independent mechanisms, when advection and diffusion act simultaneously,
the result may be considered a superposition of the two transports. This property is highlighted
in Figure 2.2 by tracking the evolution of the spacial distribution of a set of particles in all
three possible scenarios: pure advection, pure diffusion and advection-diffusion. Even though
both advection and diffusion occur in fluids, their contributions may not be equally significant.

9



2. MASS TRANSPORT PROCESSES

Figure 2.1: Brownian trajectory of a particle at a water surface due to the random collisions
with the fluid molecules.

For instance, in a flow close to a stationary wall, the fluid velocity, which drives the advection,
approaches zero, thus diffusion becomes the dominant transport mechanism. Similarly, moving
away from the boundary, the velocity starts to increase and the advection might become dominant.
Additionally, diffusion is usually a slow process when the system considered is large. Equation
(2.1) shows that the mean squared displacement increases linearly with time, which means that
diffusion is proportional to

√
t. Meanwhile, for a constant velocity u⃗, advection scales linearly

with time since the displacement in this case is u⃗t. Thus, spacial scale also influences the
importance of the transport mechanisms.

x

C
u

(a)

x

C

DD

(b)

x

C

u

DD

(c)

Figure 2.2: Illustration of the three types of mass transport: (a) pure advection, (b) pure diffusion
and (c) advection-diffusion, driven by the advection velocity u and the diffusion coefficient D.
The grey curve represents the initial concentration distribution C(x, t = 0), while the three
colored curves show the distribution at a later time.
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2.1 Advection-Diffusion fundamentals

2.1.1 Advection and diffusion fluxes

We start by considering the advection flux of some property X of a fluid. The volume of fluid
crossing a unit area of a plane in a unit of time, depends on the velocity u⃗ of the flow. The
advection flux of X is also proportional to the fluid content of that property per unit of volume
V , thus its general expression is given by

j⃗adv
X = X

V
u⃗ (2.2)

For the transfer of a substance, X is replaced by the number of particles N of a species carried
in the volume V . Additionally, the advection flux of mass becomes

j⃗adv
mass = ρu⃗ (2.3)

since the mass per volume is just the density ρ.
For the diffusion transport, in order to have a nonzero net flux, a gradient in the property X

is required across the surface considered. According to this observation, the diffusion flux can be
considered proportional to the gradient in the following form

j⃗diff
X = −(diffusivity)∇⃗

(
X

V

)
, (2.4)

where diffusivity is the proportionality constant and the minus sign is the result of the flux
developing from the high content region to the low content region. Equation (2.4) is the
generalisation of Adolf Fick’s study of concentrations and fluxes of salt diffusing between two
reservoirs. Fick’s first law that describes the relation between the diffusive flux and the gradient
of the concentration of a species is usually written as [74]

j⃗ = −D∇⃗C (2.5)

where D is the diffusion coefficient or diffusivity and C is the concentration scalar field. The
diffusion coefficient is a material property that is usually temperature-dependent and its physical
unit is m2/s.

It should be noted that not all diffusion processes are described by Fick’s law (normal
diffusion). When the mean squared displacement does not scale linearly with time, the process
does not follow Fick’s law and is referred to as non-Fickian (anomalous diffusion). However, this
behavior is beyond the scope of this work.

11



2. MASS TRANSPORT PROCESSES

2.1.2 Continuity equation

Continuity equation is a stronger, local form of conservation laws stating that a property cannot
be created or destroyed and that it has to move by a continuous flow. In the most general form,
considering a control volume as shown in Figure 2.3, a conservation statement is described by
the balance between the local rate of change of a specific property and the net transport of that
property to the region, according to

(change) = (in − out). (2.6)

When a differential volume is considered, the net transport becomes the negative divergence of
fluxes. Thus, the differential form of equation (2.6) can be written as

∂(stored)
∂t

= −∇⃗ · (fluxes) (2.7)

change

in

out

Figure 2.3: Illustration of the conservation principle.

We will now proceed to derive the equation of continuity for the total mass of an incompressible
fluid. The transport is initially assumed to be caused only by advection, without considering the
species that form the fluid. We consider a two-dimensional volume as displayed in Figure 2.4.
Assuming that the system is in the steady state, the mass flowing into the control volume must
equal the mass flowing out. To quantify this, the boundary is dived into four surfaces. The rate
of mass advected across one face of the control volume is the dot product between the flux ρu⃗

and the differential surface area dA⃗. Since the normal vector of each surface points outwards
from the volume, the product is negative when mass is flowing into the region and positive when
it is advected out the region. The rates at which that mass is transported through each boundary

12
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x

y

Δx

Δy
(1)

(2)

(3)

(4)

Figure 2.4: Two dimensional flow through a control volume

can be computed as
(1) : −(ρux)|x ∆y

(2) : −(ρuy)|y ∆x

(3) : (ρux)|x+∆x ∆y

(4) : (ρuy)|y+∆y ∆x

(2.8)

Assuming that the mass is conserved, the net rate must be zero according to equation (2.6).
Therefore, summing all the contributions displayed in (2.8) yields

−(ρux)|x ∆y + −(ρuy)|y ∆x + (ρux)|x+∆x ∆y + (ρuy)|y+∆y ∆x = 0, (2.9)

which can be further divided by (∆x∆y), leading to

(ρux)|x+∆x − (ρux)|x
∆x

+
(ρuy)|y+∆y − (ρuy)|y

∆y
= 0. (2.10)

Reducing the control region to a differential volume by imposing ∆x → 0 and ∆y → 0, the
differential form of the continuity equation for the steady two dimensional flow is obtained as

∂(ρux)
∂x

+ ∂(ρuy)
∂y

= 0. (2.11)

This equation shows that the increase in advection mass flux through the differential volume in
one direction must be compensated by a decrease in the other direction since their sum must be
zero in order to have mass conservation. To account for any arbitrary number of dimensions,

13



2. MASS TRANSPORT PROCESSES

equation (2.11) can be rewritten as
∇⃗ · (ρu⃗) = 0. (2.12)

Next, we expand this model by considering the case when more mass is transported out of
the control volume compared to the amount advected in. In mathematical terms, this means
that the divergence in equation (2.12) becomes positive. There are two mechanism that can
lead to this outcome: the mass stored in the volume decreases over time and mass being created
inside the volume. For the time being, we consider only the first scenario which implies that the
flow is unsteady. The net rate of mass transport from equation (2.9) must equate the rate of
increase of mass inside the volume according to

−(ρux)|x ∆y + −(ρuy)|y ∆x + (ρux)|x+∆x ∆y + (ρuy)|y+∆y ∆x = (∆x∆y)∂ρ

∂t
. (2.13)

Performing the same division by the volume (∆x∆y) and taking the limit ∆x → 0 and ∆y → 0
yields the differential form of the continuity equation for an unsteady flow in two dimensions

∂ρ

∂t
+ ∂(ρux)

∂x
+ ∂(ρuy)

∂y
= 0. (2.14)

Under the assumption of mass conservation and that the only form of fluxes transporting mass
is advection, the continuity equation may be generalised to

∂ρ

∂t
+ ∇⃗ · (ρu⃗) = 0. (2.15)

2.1.3 Advection-Diffusion equation

We now focus our attention to the transport of chemical species in a fluid. Compared to the
previous case where the property of interest was the mass of the fluid, this time diffusion must
be considered as well as advection to track the species. Introducing the diffusive flux given by
the Fick’s law from equation (2.5) in (2.15), the advection-diffusion equation (ADE) for the
concentration of a species in a fluid reads

∂C

∂t
+ ∇⃗ · (Cu⃗) = ∇⃗ · (D∇⃗C). (2.16)

Although mass is neither created or destroyed, it can suffer changes in terms of its chemical
composition. Thus, a species may be produced or consumed through chemical reactions. A source
term q, modelling the reaction rates described in section 2.3, can be added to equation (2.16),
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thus leading to the advection-diffusion-reaction equation (ADRE) which reads

∂C

∂t
+ ∇⃗ · (Cu⃗) = ∇⃗ · (D∇⃗C) + q. (2.17)

This equation describes the local change in the concentration C through the three different
possible mechanisms:

• advection caused by the flow of the ambient fluid with the velocity u⃗;

• diffusion driven by the gradient of C according to Fick’s law;

• reaction, indicated by the source term q, that locally produces or consumes C.

If the diffusion coefficient D is homogeneous, the ADRE can be further simplified to

∂C

∂t
+ ∇⃗ · (Cu⃗) = D∇2C + q. (2.18)

2.2 Kinetic theory

In this section we offer a kinetic description of fluids, which is the foundation for our main
simulation method, i.e. the lattice Boltzmann method (section 3.3). Unlike the previous approach
used in this chapter to derive the transport equations from the macroscopic picture, we now
start from the microscopic scale where the movement of individual particles is tracked. The
central role at this level is played by the collisions between the molecules. We first assume
that the density of the fluid is sufficiently low so that only binary collisions are considered.
This also implies that the time spent colliding is neglectable. In order to avoid treating the
microscopical interactions quantum mechanically, kinetic theory operates at a mesoscopic level by
using a statistical description of a large number of particles. According to Bohr’s correspondence
principle, the quantum behaviour of a system is reduced to a classical behavior when the system
becomes large enough.

The fundamental variable is the particle distribution function f(x⃗, ξ⃗, t), which represents
the density of particles with the velocity ξ⃗ at the position x⃗ and time t. Thus, it has the units
kg · s3/m6. The macroscopic variables can be recovered from the moments of the distribution
function. These moments represent the integrals of f weighted with functions of ξ⃗, over the
entire velocity space. As an example, the density is obtained by considering the contribution of
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particles having any possible velocity at position x⃗ and time t as

ρ(x⃗, t) =
∫

f(x⃗, ξ⃗, t)d3ξ. (2.19)

Similarly, the momentum density can be found as the moment

ρ(x⃗, t)u⃗(x⃗, t) =
∫

ξ⃗f(x⃗, ξ⃗, t)d3ξ, (2.20)

where u⃗ is the mean velocity.

The multiple collisions between particles tend to even out the distribution of velocities in a
system around u⃗. Therefore, when a gas is left alone for long enough, the distribution function
f(x⃗, ξ⃗, t) will reach an equilibrium distribution feq(x⃗, ξ⃗, t) that is isotropic in velocity space
around ξ⃗ = u⃗.

Next we look for the equation that describes the evolution of f in time towards the equilibrium.
The total derivative of the distribution function is given by

df

dt
=
(

∂f

∂t

) dt

dt
+
(

∂f

∂xi

) dxi

dt
+
(

∂f

∂ξi

) dξi

dt
. (2.21)

Analysing the right-hand side, it can be noted that in the first term dt/dt = 1, in the second
term the particle velocity dxi/dt = ξi is recovered, while the body force dξi/dt = Fi/ρ is present
in the last term. Thus, the Boltzmann transport equation is obtained as

∂f

∂t
+ ξi

∂f

∂xi
+ Fi

ρ

∂f

∂ξi
= Ω(f), (2.22)

where Ω(f) = df/dt represents the total differential. This equation has a similar form to the
transport equation as the first two terms describe the advection of f with the velocity ξ. The
third term contains the forces that influence ξ, while the right-hand side represents the local
redistribution of f due to collisions. This source term Ω(f) is known as the collision operator.
The original collision operator proposed by Boltzmann considers all possible scenarios of binary
collisions for any given intermolecular forces and, as a result, has a very complicated form. Later,
Bhatnagar, Gross and Krook came up with a simpler version called the BGK operator [75]:

Ω(f) = −1
τ

(f − feq) . (2.23)

Although some accuracy is lost compared to the original operator, equation (2.23) manages
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2.3 Reaction kinetics

to capture the evolution of the distribution function towards its equilibrium through a single
parameter, i.e. the relaxation time τ . This time constant characterises the speed of this
equilibration process and is correlated to transport coefficients such as the diffusion coefficient.

Starting from the kinetic theory, it is possible to obtain the macroscopic descriptions of fluid
mechanics. We now proceed to show this for the simplest case represented by the continuity
equation for the mass of the fluid. Integrating the Boltzmann equation (2.22) over velocity space
yields

∂

∂t

∫
fd3ξ + ∂

∂xi

∫
ξifd3ξ + Fi

ρ

∫
∂f

∂ξi
d3ξ =

∫
Ω(f)d3ξ. (2.24)

Using the moments (2.19) and (2.20) that corresponds to the mass density and momentum
density, respectively, and assuming that the mass is conserved, the force term and the source
term vanishes allowing us to find the same continuity equations from (2.15):

∂ρ

∂t
+ ∂(ρui)

∂xi
= 0. (2.25)

This result shows that the mass equation is exact and invariable being independent on the
particular form of the distribution function and it also highlights the ability of the Boltzmann
equation to describe the macroscopic behavior of a fluid.

2.3 Reaction kinetics

Reaction kinetics represents the study of the rates at which a chemical process occurs. Any
chemical process can be broken down into a sequence of one or more single step processes
(elementary reactions). In many cases, reactions that are written as a single reaction equation
actually consist of a series of elementary steps. In general, an elementary process can be described
as a transition between two atomic or molecular states separated by a potential barrier. This
potential difference represents the activation energy of the process and determines the rate at
which it occurs. The wide variety of chemical species, types of reaction and the associated
potential energies results in the timescale required for the fulfilment of chemical reactions to
cover many orders of magnitude, from very slow processes (e.g. iron rusting) to extremely fast
reactions (e.g. combustion reactions occurring in flames).

The rate of a chemical reaction represents the change in concentration of either reactants or
products as a function of time. Considering a generic aA + bB → pP + qQ reaction, the rate is
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given by
rate = −1

a

d[A]
dt

= −1
b

d[B]
dt

= 1
p

d[P ]
dt

= 1
q

d[Q]
dt

, (2.26)

where [A] and [B] are the concentrations of the reactants, [P ] and [Q] the concentration of the
products and a, b, p, q the stoichiometric coefficients. Note that the negative sign is introduced
when the rate is defined using the concentration of a reactant. This is due to the rate of change
in this case being negative (reactant is consumed) while the reaction rate needs to be a positive
quantity.

The rate law is an equation that relates the rate of a reaction to the concentrations of the
chemical species involved. Elementary processes always follow a simple rate law, which takes the
form

rate = k[A]n[B]m... (2.27)

where k is the constant of proportionality between the rate and the concentration of the reactants
and is called the rate constant. The power of a particular concentration represents the order of
the reaction with respect to that reactant. The overall reaction order is the sum of all the powers.
Based on (2.26) and (2.27), it can be deduced that the rate law is a differential equation that
describes the rate of change in the concentration with respect to time. If we integrate the rate
law, we can obtain an expression for the concentration as a function of time, which is usually the
type of measurement performed in an experiment. The first three rate law in terms of complexity
are presented in both their differential and integrated form in Table 2.1.

Table 2.1: Differential and integrated form of the rate law for the first three reaction orders.
Reaction Order Differential form Integrated form

A → P zeroth d[A]
dt = −k [A]

[A]0
= −kt

A → P first d[A]
dt = −k[A] ln [A]

[A]0
= −kt

A + B → P second d[A]
dt = −k[A][B] ln [B][A]0

[A][B]0
= ([B]0 − [A]0) kt

[ ] = concentration of a species; [ ]0 = initial concentration; k = rate constant.

The main factors that influence the reaction rate are:

• concentration of reactants: as the concentration of reactants increases, so does the likelihood
of collisions between reactant molecules;

• temperature: at higher temperatures reactant molecules have more energy which increases
the frequency of collisions;
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• catalysts: their presence speeds up reactions by lowering the activation energy;

• surface area of a solid reactant: more area for reactants to be in contact;

• pressure of gaseous reactants: raising pressure increases the number of collisions between
reactants.
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Simulation methods
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Even though the equations that describe the mass transport in a fluid presented in section 2.1
might not seem too complicated, their solutions exhibit complex behavior such that analytical
solutions are extremely rare, being available only in some special cases. Potential nonlinearities
and the boundary conditions associated with complex shapes make numerical solutions the only
option for most fluid problems. This has led to the development of a new field, i.e., computational
fluid dynamics (CFD), soon after the electronic computers became available.

There are many methods used for solving fluid flows problems. While some of them are more
general, being used for any PDE with minor adaptation for CFD, other methods are specifically
tailored for finding fluid solutions. Throughout this work, three methods are employed for
simulating advective-diffusive transport of reactive species in hydrodynamic systems. Based
on their approach, a wide range of the methods is represented by the ones described in this
chapter. Section 3.1 covers the finite volume method which is a ”top-down” approach where the
macroscopic fluid equations are directly discretised and solved using general-purpose solvers. In
contrast, random walk particle tracking (section 3.2) and lattice Boltzmann (section 3.3) can be
considered ”bottom-up” methods being particle-based solvers where a microscopic or mesoscopic
description of the fluid is used.

Although our focus is on solving the ADRE (2.18), we must point out that the term that
determines the advection contains the velocity u⃗ which is externally imposed. This represents
the flow field which is usually obtained from solving the Navier-Stokes equation. Since the
species concentration does not affect the fluid dynamics, we use a hybrid scheme where a lattice
Boltzmann method is used to compute the velocity field for the studied system. Then, the result
is used as input for one of the methods that solve the ADRE as described below.

3.1 Finite volume method

Finite volume method (FVM) is one of the conventional numerical methods which take the
equation that microscopically describes the system of interest and directly solve it using a method
of approximation. It is a method based on the divergence theorem for representing and evaluating
partial differential equations in the form of algebraic equations. In FVM, the simulated space
is divided into smaller volumes V , which may vary in shape and size throughout the system,
allowing for an accurate representation of complex geometries. In the middle of each finite
volume, the solution is constructed as an average value within that volume.

By design, FVM is most suited for conservation equations which are characteristic for fluid
mechanics. This allows for quantities such as mass, momentum or heat to be perfectly conserved.
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3.1 Finite volume method

Figure 3.1: Illustration of a generic control volume VP constructed around the central point P
while f denotes the face centre.

To show how this method works, we consider as a starting point the ADE for the concentration
field C(x⃗, t)

∂C

∂t
+ ∇⃗ · (Cu⃗) = ∇⃗ · (D∇⃗C) + q, (3.1)

where u⃗ is the flow field, D is the diffusion coefficient and q is a source term. For a generic
control volume VP centred around a point P as illustrated in Figure 3.1, the transport equation
can be integrated according to∫

VP

∂C

∂t
dV +

∫
VP

∇⃗ · (Cu⃗)dV =
∫

VP

∇⃗ · (D∇⃗C)dV +
∫

V
qdV. (3.2)

Applying the divergence theorem for the terms describing the advection and the diffusion fluxes
yields ∫

VP

∂C

∂t
dV +

∮
∂VP

(Cu⃗) · dS⃗ =
∮

∂VP

(D∇⃗C) · dS⃗ +
∫

V
qdV, (3.3)

where ∂VP is the surface enclosing the volume VP and dS⃗ is the infinitesimal surface normal
element. This step is central to the FVM and highlights the conservation law which states that
the sum of all sources and sinks of the field in a region is equal to the net flux across the volume’s
boundary. By splitting the domain into surfaces f , equation (3.3) can be written as

∫
VP

∂C

∂t
dV +

∑
f

[∫
f
(Cu⃗) · dS⃗

]
=
∑

f

[∫
f
(D∇⃗C) · dA⃗

]
+ q̄VP , (3.4)

with the additional step of using the average value q̄ of the local source term, which is exact if q

is either constant or varies linearly within the control volume.

Up to this point, no approximations were introduced, so equation (3.4) is exact if the finite
volumes VP perfectly fit the total volume of the system. The difficulty is represented by the two
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Figure 3.2: Illustration of (a) the linear interpolation scheme and (b) the upwind scheme used
for computing the value of a variable Φ at the interface f between the centres P and N of two
adjacent volume elements.

surface integrals which cannot be computed due to the unknown values of the fluxes throughout
the surfaces f . This can be overcome by approximating the integrants using the mid point rule,
which is second order accurate, yielding∫

VP

∂C

∂t
dV +

∑
f

[
(Cu⃗)f · S⃗f

]
=
∑

f

[
(D∇⃗C)f · S⃗f

]
+ q̄VP , (3.5)

where S⃗f is the face area vector. Given the fact that all variables are evaluated and stored in
the centres P , the averages that are assigned at f are computed by some form of interpolation
from the central values of the control volumes that are separated by that surface. Here we only
present two simple methods that we have employed for our FVM implementation. First one is
the central differencing scheme shown in Figure 3.2(a) where a generic quantity Φ is computed
at the interface f by a linear interpolation

Φf = |fN |
|PN |

ΦP +
(

1 − |fN |
|PN |

)
ΦN . (3.6)

This method is second order accurate and was used for computing the magnitude of velocities
and diffusive fluxes on the surfaces f . However, by introducing the advective flux, this method
can lead to oscillatory solutions in some scenarios, which may cause unphysical behavior [76].
This is mostly because the solution is not bounded by the boundary values. Thus, an upwind
scheme was chosen for the advective flux. As described in Figure 3.2(b), the face values are
computed as

Φf =

 ΦP , if F⃗ ≥ 0
ΦN , if F⃗ < 0

, (3.7)
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where F⃗ shows the direction of the flux. While this method solves the problems with the
oscillations by being bounded, it is only first order accurate and, as a result, it introduces some
amount of artificial diffusion.

After the spatial discretization is completed, we can proceed with the temporal discretization
which requires additional approximation. For this process we employ the Euler approximation of
a derivative. Given the definition, the derivative of C with respect to t is the slope of the curve
over an infinitesimal interval, which, in an approximation, can be extended to the finite interval
∆t according to

∂C(t)
∂t

= lim
∆t→0

C(t + ∆t) − C(t)
∆t

≈ C(t + ∆t) − C(t)
∆t

. (3.8)

Obviously, to increase the accuracy, ∆t has to be closer to the infinitesimal definition. Moreover,
the choice of the interval has to be tailored according to the solution itself: a system that varies
fast requires a smaller value of ∆t to record its full behavior compared to a slowly varying one.

The main advantage of finite volume in CFD lies in its simple principle. The use of control
volumes makes it fundamentally conservative such that the quantity of interest, which in this
case is the concentration, is conserved throughout the whole domain for a closed system. Another
advantage is that FVM is easily formulated to allow for irregular meshes. This leads to a better
representation of complex geometries and makes it possible to increase the resolution in the
regions of high interest by splitting it up into finer volumes.

On the other hand, generating irregular grids that accurately captures the geometry of the
system may be itself a difficult task. Another downside is that FVM become more cumbersome
when increased accuracy is sought through higher-order interpolation schemes coupled with
unstructured mashes [77].

3.2 Random walk particle tracking method

In contrast to the conventional solvers, particle-based methods model the fluid through particles,
which may correspond to atoms, molecules, collections or even distributions of molecules. RWPT
is fundamentally a simple microscopic method which, as the name suggests, tracks the position
of particles throughout the continuous space of a system.

The movement of a particle at a position x⃗(t), that is being advected by a flow field u⃗ (x⃗(t))
and also diffuses, is given by the Langevin equation [78]

dx⃗(t)
dt

= u⃗ (x⃗(t)) +
√

2nDξ⃗(t), (3.9)
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where D is the diffusion coefficient, n represents the dimension of the motion and ξ⃗(t) is a
vectorial white noise characterised by < ξ⃗(t) >= 0⃗. Perez et al. [67] have shown that the
ADRE (2.18) is recovered starting from this description of an individual particle. Thus, based
on this equivalence, the evolution of the concentration of a species is studied by tracking a large
number of non-interacting particles that obey the Langevin model.

For the numerical implementation, equation (3.9) is discretized using the Euler scheme as

x⃗(t + ∆t) = x⃗(t) + u⃗ (x⃗(t)) ∆t +
√

2nD∆tξ⃗(t). (3.10)

The displacement is a superposition of a deterministic (advection) and a stochastic (diffusion)
component. At any time step, each particle is propagated through the medium using the
velocity field obtained from the solution of the external NS equation to simulate advection and
a Brownian random displacement is added to model diffusion. In our studies, RWPT is used
more for comparison to check the main numerical method, thus, for simplicity, we restrict its
application only to 2D systems. The externally imposed velocity u⃗ is obtained by applying a
bilinear interpolation to a discrete flow field obtained using a grid-based solver. The length of the
diffusion step is considered constant in time and has the value computed from the mean squared
displacement (2.1) as |x⃗(t + ∆t) − x⃗(t)| =

√
4D∆t, while the direction is randomly selected each

time. The particle position is then updated by the Euler integration with ∆t = 0.5.
We have employed RWPT to study systems where a solvent would perform a first order

reaction only in the presence of a catalyst that is immobilised on a solid support. To model
this reaction, a thin reactive zone is considered around the substrate and every particle within
that region has a probability to react during a time step given by k∆t, with the typical values
k∆t ≪ 1. The collision between a particle and the solid support is considered elastic, such that
the normal component of the particle velocity is inverted while the tangential component remains
unchanged.

The main advantage of RWPT over FVM is that, by avoiding to solve the transport equation
directly, it is virtually free of numerical dispersion and artificial oscillations, and therefore
it is also free of negative concentrations and mass loss. This approach also allows for high
parallelization of the code due to the particles not interacting one with another. The mesh used
for computing the concentration of a species by averaging the number of particles from a region
of the system, is independent of the one chosen to solve the hydrodynamics, which makes the
resolution customizable such that point or linear sources can be better represented.

On the other hand, this method requires the total number of particles used to be larger
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enough in order to have an accurate concentration mesh. If too few particles are released in a
particle-tracking experiment, it is possible that the trajectories are polluted by statistical outliers
and do not satisfactorily represent the desired ensemble average, which may lead to erroneous
conclusions. Regarding the optimal number of particles to be used in a simulation, there is no
general answer. Thus, for each system, some tests have to be done by repeating the simulation
for an increasing number of particles until the concentration will stop fluctuating. Even so, the
solution might not be smooth due to the stochastic nature of the diffusive contribution. Opting
to increase the number of particles and to decrease the time step to improve the results leads to
a significant increase of computational time and memory.

3.3 Lattice Boltzmann method

In section 2.2 we have shown that while the Boltzmann equation describes the dynamics of a
gas at a mesoscopic level, it leads to the equations of fluid mechanics on the macroscopic scale.
Thus, by solving the Boltzmann equation for a given problem, it is possible to obtain a solution
to a macroscopic equation, such as NSE or ADRE, for the same system. The fundamental
variable of the kinetic description of a fluid, the distribution function f

(
x⃗, ξ⃗, t

)
depends on

seven parameters corresponding to the physical space, velocity space and time, which makes the
Boltzmann equation (2.22) even more difficult to solve analytically than the ADRE (2.18) for
instance. However, trying to solve it numerically turns out to be very simple to implement and
to optimise for parallel computing. This is a consequence of the fact that the moments of the
Boltzmann equation lead to the equations for mass or momentum conservation so, in order to
get the correct macroscopic behavior, a lot of the underlying physics is irrelevant.

Inspired by the original lattice gas model [79], the Lattice Boltzmann Method (LBM) tracks
the distribution of particles over a discretized space and time domain with a resolution ∆x and
∆t, respectively. Although many sets of units can be chosen, usually the artificial lattice units
where ∆x = 1 and ∆t = 1, are preferred. This allows for simple conversion of quantities to
physical units and, to ensure that the same phenomenon described in other units is simulated,
one has to check that the relevant dimensionless numbers (e.g. Re, Pe) remain constant from
one system to another. The velocity space is also discretized and many velocity sets tailored
for different purposes exist. They are represented as DdQq, where d is the number of spatial
dimensions covered by the velocity set and q is the number of velocities. Choosing to increase
the number of velocities results in improved accuracy but it also requires more computational
resources, so the right balance may vary from one case to another. In order to make sure that
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Figure 3.3: D3Q19 velocity set. The rest velocity c⃗0 = 0⃗ is not displayed.

the desired physics is captured, while the number of velocities is kept at a minimum, we opt for
D3Q19 which is widely regarded as a good compromise for laminar flows (cf. section 3.4.7 in
[66]). As shown in Figure 3.3, the velocities connect neighbouring nodes of the regular grid, thus
preventing particles from ending up somewhere between them. Additionally, each velocity has a
weight wi, such that ∑i wi = 1 and ∑i wic⃗i = 0. More details about the D3Q19 velocity set are
provided in table 3.1.

Table 3.1: Properties of the D3Q19 velocity set illustrated in Fig 3.3.
Number i Velocity c⃗i Length |⃗ci| Weight wi

0 (0, 0, 0) 0 1/3
1..6 (±1, 0, 0), (0, ±1, 0), (0, 0, ±1) 1 1/18
7..19 (±1, ±1, 0), (±1, 0, ±1), (0, ±1, ±1) 1/

√
2 1/36

The velocity sets are also characterised by a constant cs representing the isothermal model’s
speed of sound (cf. section 12.1 in [66]). In most cases, including D3Q19, its expresion is given by

c2
s = 1

3
∆x2

∆t2 . (3.11)

Discretising the Boltzmann equation (2.22) in physical space, velocity space and time leads
to the lattice Boltzmann equation (LBE)

fi (x⃗ + c⃗i∆t, t + ∆t) = fi (x⃗, t) + Ωi (x⃗, t) . (3.12)
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This shows that the discrete-velocity distribution of particles fi(x⃗, t), also called particle popula-
tion and representing the density of particles with velocity c⃗i, move from a lattice node at x⃗ to a
neighbouring point x⃗ + c⃗i∆t after one time step ∆t. The collision operator Ωi is responsible for
redistributing particles between the populations at each site. Using the BGK operator (2.23),
relaxation of distributions towards the equilibrium f eq

i , at a rate given by the relaxation time τ ,
takes the form

Ωi(f) = −fi − feq
i

τ
∆t. (3.13)

Thus, the LBE (3.12) becomes

fi (x⃗ + c⃗i∆t, t + ∆t) = fi (x⃗, t) − ∆t

τ
(fi(x⃗, t) − f eq

i ) . (3.14)

This equation can be separated into two-step scheme used to transport the particles throughout
the system. First the collision (relaxation) is performed according to

f∗
i (x⃗, t) = fi(x⃗, t) − ∆t

τ
(fi(x⃗, t) − f eq

i (x⃗, t)) , (3.15)

where f∗
i denotes the population after relaxation. The second step is the streaming (propagation)

of the new distribution functions to neighbouring nodes that the corresponding velocity points to

fi(x⃗ + c⃗i∆t, t + ∆t) = f∗
i (x⃗, t). (3.16)

After completion, one time step has elapsed and the macroscopic moments, such as density or
concentration, are computed from fi(x⃗, t) (as described in 3.3.1 and 3.3.2). The operations are
repeated until the last time step or convergence has been reached.

A major advantage of LBM is its fundamental implementation simplicity by being based on
the Boltzmann equation, in contrast with conventional methods which rely on the more complex
equations of fluid mechanics. Moreover, the detail in LBM is the particle description within each
node, such that the interactions between nodes consist of simple, linear operations, while the
local collisions require the heavier computations. This makes LBM suitable for high-performance
computing on parallel architectures and more flexible to be adapted to particular cases compared
with most methods [68].

Until this point the general characteristics of LBM have been presented. Next, we first offer
a short description of its implementation for a Navier-Stokes solver that we have employed to
generate the flow field and then, we introduce the LBM for ADRE that we have developed and
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used for simulating the actual transport of species.

3.3.1 Lattice-Boltzmann for Navier-Stokes equation

An incompressible flow is governed by the Navier-Stokes equation (NSE)

ρ
Du⃗

Dt
= −∇p + η∇2u⃗ + F⃗ , (3.17)

where ρ is the density of the fluid, u⃗ is the flow velocity, p is the pressure, η is the dynamic
viscosity and F⃗ is the external body force. The Chapman-Enskog analysis shows that the
Boltzmann equation leads to fluid behavior as described by the Navier-Stokes equation [66, 80].
To offer a brief introduction to the LBM for NSE we will look at how the properties of the fluid
are linked to the LB concepts presented.

The NSE involves two conserved quantities, density and momentum density, that are repres-
ented in LBM as

ρ(x⃗, t) =
∑

i

fi(x⃗, t)

ρu⃗(x⃗, t) =
∑

i

c⃗ifi(x⃗, t).
(3.18)

For the equilibrium distribution, it has been shown that a good stability is acquired through
the Taylor expansion of the Maxwell-Boltzmann equilibrium distribution function up to second
order [81]

f eq
i (x⃗, t) = wiρ

(
1 + u⃗ · c⃗i

c2
s

+ (u⃗ · c⃗i)2

2c4
s

− u⃗ · u⃗

2c2
s

)
, (3.19)

that depends only on the local density and the local fluid velocity. These quantities are
computed using the local populations fi according to equations (3.18), with the velocity found
as u⃗(x⃗, t) = ρu⃗(x⃗, t)/ρ(x⃗, t).

The relaxation time, which determines the rate of equilibration of the distributions, is set via
the macroscopic kinematic viscosity of the fluid as

ν = c2
s

(
τ − ∆t

2

)
. (3.20)

Starting from this basic concepts, the free software package ESPResSo [82] has been developed
to solve NSE. Thus, we have used it to simulate the flow for each of our studies, in order to
get the velocity field required for advection-diffusion problems. To produce a flow, a pressure
gradient from one end of the system to another is required. This is implemented as body force
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f acting on every lattice node. Setting the boundaries of the system as periodic, the velocity
profile develops with each time step until convergence is reached.

Throughout our studies, a large variety of geometries are considered. Implementing them in
ESPResSo is quite straightforward: individual nodes of the lattice are set to be solid nodes, i.e.
populations cannot end up there, such that the shape is modeled into the grid. At these sites, a
bounce-back boundary condition ensures the no-slip condition (chapter 5 in [66]).

3.3.2 Lattice-Boltzmann for Advection-Diffusion-Reaction equation

The LBM is also a powerful method to simulate systems with coupled fluid dynamics and
diffusion, therefore we have developed a separate LBM-based solver for ADRE to compute the
concentration fields of various species. The NSE and ADRE are very similar, with the former
being viewed as an ADE for the fluid momentum density ρu⃗. Thus, the lattice Boltzmann
equation (3.12) is easily adapted to advection-diffusion processes in the form

gi(x⃗ + c⃗i∆t, t + ∆t) − gi(x⃗, t) = Ωi(x⃗, t) + Qi(x⃗, t), (3.21)

with gi denoting the populations to distinguish from the fluid model and Qi being the source
term. The BGK collision operator

Ωi(x⃗, t) = − 1
τg

(gi(x⃗, t) − geq
i (x⃗, t)) , (3.22)

gives the diffusion coefficient D through the relaxation time τg as

D = c2
s

(
τg − ∆t

2

)
. (3.23)

Unlike the LBM for NSE, the advcetion-diffusion implementation has only one conserved
quantity, the concentration C, which is defined in terms of the distribution function by

C =
∑

i

gi. (3.24)

The velocity u⃗ is externally imposed, being provided as the solution of the NSE for the same
system.

The equilibrium distribution that is linear in C, but quadratic with respect to the velocity,
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and has the form [83]

geq
i = wiC

(
1 + c⃗i · u⃗

c2
s

+ (c⃗i · u⃗)2

2c4
s

− u⃗ · u⃗

2c2
s

)
, (3.25)

offers good accuracy and convergence.

Source term

Through the source term, it is possible to model chemical reactions which produce or consume
species. We consider an elementary first order reaction A → B with the rate constant k as
described in section 2.3. Since there are two species, A and B, each is characterised by its
own LBE. Assuming that they are independent with respect to advection and diffusion, the
only difference between the two equations lies in the source terms QA

i and QB
i , accounting for

the consumption of A and production of B respectively. The the macroscopical quantity k is
introduced in the discretized source terms in the form [84–86]

QA
i = −k∆twiCA

QB
i = +k∆twiCA

(3.26)

As our aim in our studies is to model a surface-catalytic reaction, we use (3.26) only for those
populations that stream into a reactive boundary node. For all others, we set QA,B

i = 0.

Boundary conditions and flux computation

In advection-diffusion processes, if the concentration field cannot penetrate a boundary, the
normal flux of C must be zero. However, unlike in fluid dynamics where the velocity vanishes
next to a wall, the concentration along a boundary can vary generating a tangential flux. This
behavior can be recovered from the anti-bounce-back scheme (cf. section 8.5.2 in [87]) which, for
a node x⃗b next to a stationary wall, reads

gī (x⃗b, t + ∆t) = −g∗
i (x⃗b, t) + 2wiCw (3.27)

where gī is the population streaming away from the boundary, g∗
i the post-collision population

streaming towards the wall and Cw is the imposed wall concentration.
Another type of boundary condition is to specify a normal gradient. Neumann boundary

conditions are useful for the systems where the concentration does not change along the outflow
direction at the outlet. This can be transformed into a Dirichlet boundary condition by setting
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Cw = Cb in equation (3.27), where Cb is the concentration of the node that is just before the
outlet. In practice, this can be implemented by copying the post collision populations from the
plane in front of the outlet to the outlet plane before propagation.

To compute the flux of a species, we consider a plane perpendicular to the flow direction.
The difference between all populations that cross this plane streaming along the flow and those
streaming in the opposite direction is computed for each node and subsequently averaged across
all nodes.

Validation

Advection-Diffusion of a Gaussian Hill

We consider the diffusion and advection of a species in a uniform velocity field u⃗ on a 2D domain.
Starting with a Gaussian concentration profile with the width σ0 given by

C (x⃗, t = 0) = C0 exp
(

−(x⃗ − x⃗0)2

2σ2
0

)
, (3.28)

the numerical results can then be compared to the analytical solution [87]

C (x⃗, t) = σ2
0

σ2
0 + σ2

D

C0 exp
(

−(x⃗ − x⃗0 − u⃗t)2

2
(
σ2

0 + σ2
D

) )
, (3.29)

where σ2
D = 2Dt. For our LBM simulations, we set the initial concentration C0 = 1 and place

the Gaussian hill with the width σ0 = ∆x in the center of a 100 × 1 × 100 simulation box. As in
most of our simulations, we use here ∆x = 1, ∆t = 1 and τg = ∆t which offers the best stability.
Replacing these values in equation (3.23) results in a diffusion coefficient D = 0.1666.

First, we consider only the diffusive regime (Pe = 0) by choosing u⃗ = 0⃗. Figure 3.4 illustrates
that our implementation reproduces the analytical results and the small difference between the
two does not increase over time.

By introducing a velocity u⃗ = (0.1, 0.1)∆x/∆t, the previous profile starts to shift. Again, a
very good agreement between our simulations and the theoretical results is achieved, as seen in
Figure 3.5.
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Figure 3.4: Concentration profile of the Gaussian hill in the pure diffusion regime at (a) t = 100∆t
and (b) t = 800∆t.

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0 10 20 30 40 50 60 70 80 90 100

C
/C

0

x/∆x

LBM
Analytical

(a)

0.000

0.002

0.004

0.006

0.008

0.010

0 10 20 30 40 50 60 70 80 90 100

C
/C

0

x/∆x

LBM
Analytical

(b)

Figure 3.5: Concentration profile of the Gaussian hill in the advection-diffusion regime at (a)
t = 50∆t and (b) t = 100∆t.

Advection-diffusion in a microchannel

A more challenging benchmark problem than the Gaussian hill is to replicate the three regimes
of dispersion for a point discharge of tracer particles in laminar pipe flow, as described in [88].
Starting from a δ-function initial concentration at the center of the pipe, the moments of the
longitudinal distribution of the tracer, Mn(t), can be computed according to equation (1.5) of
[88]. The width of the distribution is then defined as

σ(t) =
√

M2(t) − M2
1 (t). (3.30)

Analyzing its time dependency reveals the three stages of longitudinal dispersion. In the beginning,
Fickian diffusion dominates (σ ∼

√
2DLatinit), followed by the anomalous regime where the width

scales superdiffusively (σ ∼
√

8/3DLatinit
2). Finally, at large times, the flow enters the Taylor
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regime where the width scales diffusively again (σ ∼
√

2Deff
Latinit), but with a larger diffusion

coefficient Deff
Latini = 1

192DLatini+DLatini
, where DLatini is the dimensionless diffusion coefficient.

A 20000 × 123 × 123 grid was used to model a pipe with a radius R = 60. The centerline
velocity of the flow was set to U0 = 0.4 and a relaxation time τ = ∆t was used as above, thus
fixing the dimensionless diffusion coefficient DLatini = D

RU0
= 6.94×10−3. Computing the width of

the distribution σ as a function of time, shows a very good agreement with the theoretical values
especially for the diffusive and Taylor regimes (Figure 3.6). In order to obtain a clear anomalous
regime, a very large lattice must be used which requires a lot of memory. The alternative would
be to set the relaxation time close to τ = 0.5∆t, but that can lead to negative populations and
therefore it is avoided here.
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Figure 3.6: The three stages of longitudinal dispersion reproduced by the numerical model with
DLatini = 6.94 × 10−3.

Homogeneous reaction

We consider a homogeneous distribution of a species A in a periodic 50 × 50 × 50 system that
performs a first-order A → B reaction. The well known rate law CA(t) = e−ktCA(0) is compared
to the results obtained using the linear source term implemented in LBM (cf. equation (3.26))
and RWPT (cf. section 3.2). Figure 3.7 shows that our assumed form matches very well the
theoretical model in the low k regime and that for higher values a good compromise between
speed and accuracy can be achieved by setting the time step ∆t = 0.5 for the particle based
model. The LBM model with ∆t = 1 decays to zero instantaneously as expected for k = 1.
However, in all our studies, we only consider surface-reaction sites that represent only a very
small fraction of the whole system. Therefore, the inaccuracy introduced in LBM for large
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reaction rate constants is less significant than here. Moreover, throughout our investigations, we
also provide comparisons with RWPT which almost always show a good agreement.
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Figure 3.7: Conversion curves for a first-order homogeneous reaction with the reaction rate
constants (a) k = 0.01 and (b) k = 1.
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Chapter 4

Kinetic studies on catalytic behavior of gold
nanoparticles using first and pseudo-first
order reaction models
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4. KINETIC STUDIES ON CATALYTIC BEHAVIOR OF GOLD
NANOPARTICLES USING FIRST AND PSEUDO-FIRST ORDER REACTION
MODELS

Bulk gold is chemically inert being the most stable among metals and is generally regarded as a
poor catalyst. However, when the size of the particles is reduced to the nanometer range, the
gold nanoparticles (Au NPs) become surprisingly active [8–10]. The first major discovery of the
catalytic activity of Au NPs dates back to 1987 and highlights their potency to oxidize CO into
CO2 even at low temperatures [7]. Starting from this initial reaction which led to the development
of closely related practical applications (e.g. gas masks), the high catalytic activity of Au NPs
has generated significant interest in many other areas such as biomedical applications [11–13],
sensors [15–17] and electronics [18, 19]. Other advantages of Au NPs that make them attractive for
the industrial usage include simple purification process, stability, easy recovery and recyclability.
As a result, significant steps towards achieving a more sustainable chemical industry [89] were
made once several important Au NP-catalyzed processes were also developed, such as the aerobic
oxidation of methanol to the important chemical methyl formate [90] and the production of vinyl
acetate and vinyl chloride, which are then used for the synthesis of polymers [91].

A particularity of catalysis involving NPs is represented by their high active surface area.
This is a vital morphological characteristic for reaching a good catalytic performance, but, at
the same time, it increases the likelihood of NPs aggregating, which in turn will result in a loss
of surface, and hence a reduced activity. To overcome this, two major approaches exist, i.e.,
using ligands for NP stabilisation and immobilization of NPs on a solid support, each of these
methods will serve as a base for a different study of the catalytic process in this chapter. Section
4.1 focuses on the influence of the size of polyvinylpyrrolidone (PVP) conjugated Au NPs on
the catalytic activity from the perspective of the advection-diffusion processes that the reactant
undergoes. In Section 4.2 we analyse the reaction kinetics of a ”tea-bag”-like catalyst system
where the Au NPs are embedded in hybrid nonwovens and we propose a novel analytical model
to fit the experimentally observed catalytic activity.

We have published parts of the following two sections in Advanced Materials Interfaces 9,
2100867 [92] and Nanoscale Adv. 2, 438 [38], respectively.

4.1 Size dependent catalytic activities of gold nanoparticle

Previous studies regarding the size [25, 26, 93], shape [23] and capping ligands [24] of Au NPs
show that they play important roles in catalytic activities and determine the reaction rates. Most
of the research on the influence of the size of Au NPs has focused on the 4-nitrophenol reductive
reaction and it has been shown that smaller particles have a higher activity compared to larger
particles due to their higher ratio of surface area to volume. However, there is only a very limited
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amount of studies on this topic where various particle diameters were used while keeping the
total surface area constant. One of the first observations is attributed to Sau et al. [20] who noted
a decrease of the reaction rate with the increase of the diameter of the NPs. Similarly, Piella et
al. [26] found the same general trend except for sizes below 13 nm, where it reverted, indicating
that smaller particles have less efficient catalytic activity. This unexpected non-monotonic
behavior has been attributed to a couple of chemical properties specific to both the NPs and the
reactant, such as a less efficient electronic transfer to the catalytic Au site for surfaces smaller
than a threshold value [25], as well as possible surface degradation of Au NPs which significantly
hinders the accessibility of reactant and, therefore, their catalytic performance [94].

In this section we try to provide insight into the influence of the size of Au NPs on their
catalytic activity by investigating the impact of the advection-diffusion effects of the reactants
on this process using different simulation methods. Furthermore, we consider the changes in
motion that a particle of reactant undergoes near the surfaces of NPs where the diffusion becomes
anisotropic. The numerical results are then compared to the experimental findings from the
catalysis of 4-nitrophenol reductive reaction in the presence of sodium borohydride (NaBH4)
using Au NPs [92].

4.1.1 System description

For this study we consider two different systems with either one large or two small nanoparticles
surrounded by solvent containing an initially homogeneous concentration of the reactant A
(nitrophenol). The first case, illustrated in Figure 4.1(a), consists of a single sphere with a radius
R = 21 while Figure 4.1(b) shows the system with two spheres, each having a radius R = 15.
The values of the radii were chosen such that the total surface area is identical. In both cases
the simulation box size is 100 × 180 × 100 and periodic boundary conditions are assumed. The
methods used for simulating these systems are LBM and RWPT. An advantage of using both of
them is represented by the fact that any effect generated by the discretization of the spheres on
a grid in the first case, should be noticed when compared with the results from RWPT where
space is continuous.

The reaction used as a model for this study is the conversion of nitrophenol (A) into
aminophenol (B) in the presence of the solvent NaBH4 and the Au NPs. Given the fact that
NaBH4 is available in excess, we assume a first order A → B reaction taking place when the
reactant is in the immediate proximity to the surface of the NPs. We assign to the reaction rate
constant the value k = 0.1 which should provide a good accuracy for our models (cf. Figure 3.7).
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(a) (b)

Figure 4.1: Illustration of the concentration of the product species at t/tmax = 0.01 in the
absence of advection for (a) a single sphere with the radius R = 21 and (b) two identical spheres
with the radius R = 15. Red and blue areas represent high and low concentrations, respectively.

4.1.2 Results and discussion

We start by implementing the LBM as described in section 3.3.2 to solve the ADRE for the two
systems. First we consider the case where the reactant is transported throughout the system
via diffusion only. Figure 4.2(a) show that, according to our diffusion-reaction model, the large
and small NPs exhibit very similar catalytic activities when the total surface area is constant.
Introducing an additional hydrodynamic flow with a maximum velocity umax = 0.3 which would
correspond to stirring in an experiment, does not affect the previous finding, i.e. the reaction
rate is entirely independent of the NP size (Figure 4.2(b)).

Next, we consider the impact that a sphere has on the diffusion coefficient of the reactant
molecules in the immediate neighbourhood of its surface. It has been shown that, by increasing
the hydrodynamic resistance, the diffusion of the molecules close to the surfaces is slowed down [95–
97]. Thus, the diffusion perpendicular to the surface is slowed down more comparatively to
the diffusion parallel to the surface. To investigate the influence of this effect in our systems,
we extend the RWPT method from section 3.2 to account for the anisotropic surface-modified
diffusion. Being a 2D model, we consider for both cases a domain with a size of 180 × 140
simulation units, where the spheres are replaced with one circle having the radius R = 30 for
the large NP and two circles with radii R = 15 for the small NPs, respectively. This way, the
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Figure 4.2: Conversion rates of the single and the two NPs using LBM (a) in the diffusion only
case and (b) with a maximum advection velocity umax = 0.3

same total circumference is ensured for both systems, which corresponds to the surface area
conservation in the 3D model. A set of 100000 point particles representing the reactant species A

is randomly placed in the periodic domain generating an initial homogeneous distribution. Each
particle follows a random walk with a constant step size of 0.1 in a random direction, simulating
normal, isotropic diffusion. When a reactant particle reaches the surface of the catalytic NP,
the reaction A → B takes place with a fixed probability corresponding to the reaction rate
k = 0.1. To introduce the anisotropic diffusion, we consider an area starting from the circle
to a maximum distance of 1 simulation units away from it, where diffusion perpendicular to
the NP surface is strongly hindered by choosing a step size of 0.025, while lateral diffusion is
hindered comparatively more mildly by setting the displacement tangential to the surface at 0.05.
The chosen values correspond, approximately, to the well-known asymmetric diffusion of single
particles near a wall [98, 99].

We proceed to compare the numerical results using isotropic and anisotropic diffusion for
both large and small Au NPs. Figure 4.3 shows that reaction progress is very similar in all
cases, the efficiency being minimally affected for the two systems. To conclude this investigation,
we can rule out even a complex surface-modified diffusion scenario as an explanation for the
experimentally observed enhanced catalytic activity of large NPs. This leaves the heterogeneous
formation of defects on the surface of Au NPs due to the synthetic procedure, as a more likely
explanation, with recent studies suggesting that defects between crystalline domains are larger
for bigger NPs, which could either enhance association and dissociation of molecules or lead to
the leaching process of gold species [92].
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Figure 4.3: Conversion rates of the two systems using the particle model with isotropic diffusion
as well as the more complex scenario accounting for the anisotropic surface-modified diffusion
coefficients

4.2 Modeling the kinetics of a pseudo-first order reaction with
an induction period

4.2.1 Embedded Au NP in patchy nonwovens

An important aspect regarding the catalytic performance of Au NPs is their proneness to
aggregation, which leads to a decreased activity. Using low molecular weight or polymeric
ligands for NP stabilisation is an often encountered strategy to prevent aggregation, but it might
influence the catalytic activity of Au NPs and, as time passes, the ligands can fade away from
the surface of NPs, causing destabilization and, thus, agglomeration [100, 101]. An alternative
approach is the immobilization of NPs on solid inorganic support such as metal oxides and
silica [28, 102], nanotubes [29] and 2D materials like graphene [30]. Other studies have employed
metal-organic frameworks as versatile host materials [31, 32]. Recently, polymeric supports such
as porous polymer [33, 34], microgels [103] or polymer micelles [35, 104] have attracted more
attention due to their properties that can be easily tailored to the requirements of a specific
catalytic application. Additionally, polymer nanofibers produced by electrospinning can be used
for immobilization of NPs allowing a good recyclability of them [105, 106]. However, this feature
is lost in case of hybrid nonwovens as they lack in a precise confinement of NPs, which leads to
a reduction of the ratio between the surface and the volume following the process of nanofiber
removal.
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Figure 4.4: Preparation process of Au NP-loaded patchy hybrid nonwovens for the experimental
study performed by Hils et al. [38]. First the functional, patchy surface-compartmentalized
nonwovens are produced by electrospinning of polystyrene as the core and patchy wCCMs or
sCCMs as the shell (A), then the Au NPs are loaded in a simple dipping process (B).

Schöbel et al. [36] have proposed a teabag-like catalyst system consisting of Au NP-loaded
patchy nonwovens with functional, nanopatches on the surface of nonwovens. Based on this
approach, Hils et al. [38] have conducted an experimental study on the influence of patch size and
chemistry on the catalytic activity of patchy hybrid nonwovens in Au NP catalysed alcoholysis
of dimethylphenylsilane in n-butanol. Figure 4.4 illustrates their preparation process where the
patchy nonwovens were produced by electrospinning with two different geometries for shells,
i.e. patchy worm-like crystalline-core micelles (wCCMs) and spherical crystalline-core micelles
(sCCMs), which were then loaded with Au NPs in a simple dipping process. Furthermore, to
increase the variety of physical and chemical properties of the patches, the following triblock
terpolymers were used in the synthesis of the patchy micelles: S28E15DiPA41

156 (s-SEDiPA),
S48E21DiPA41

181 (as-SEDiPA) and S33E17DMA50
132 (s-SEDMA). A total of five different patchy

hybrid nonwovens were prepared, with s-SEDiPA and as-SEDiPA used for both wCCMs and
sCCMs, while s-SEDMA was selected only for wCCMs. Table 4.1 presents the average radius
and length for sCCMs and wCCMs, respectively.

Table 4.1: Physical properties of the patchy micells
Polymer Radius (sCCMs) [nm] Length (wCCMs) [nm]

s-SEDiPA 31.4±0.3 260±100
as-SEDiPA 35.8±0.3 480±240
s-SEDMA - 510±310
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4.2.2 Catalytic activity of Au NP-loaded patchy hybrid nonwovens

The alcoholysis of dimethylphenylsilane in n-BuOH is then used as a benchmark [36] for the
catalytic activity of the patches having various morphologies and sizes. To investigate the effect
of swelling of the patches in n-butanol, 10 consecutive cycles were performed with data on the
kinetics being collected for the first and last cycles. The conversion curves for the first cycles
(Figure 4.5(a)) show that, irrespective of the micelle shape and patch size, the hybrid nonwovens
have an initial slow stage (induction period) of 1 h with full conversion being reached between
5 h and 9 h. However, the induction times are decreased to about 10-20 minutes for the 10th

catalysis cycles, while the total conversion is obtained in 4-5 hours. This suggests that the first
cycles are characterised by an initial period where the patches swell in the reactant, making it
accessible to the reaction sites, i.e., the embedded Au NPs.
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Figure 4.5: Conversion curves of the catalytic alcoholysis of dimethylphenylsilane in n-BuOH for
the (a) first and (b) tenth cycles, using the five different Au NP-loaded patchy hybrid nonwovens

Considering that n-BuOH is in excess compared to silane (E), the classical pseudo-first order
kinetics can be assumed. Starting from the rate law characterising the reaction

d [E]
dt

= −kclassical [E] [n−BuOH] , (4.1)

under the condition [n−BuOH] = const, the form corresponding to a first order reaction
(section 2.3) is recovered

d [E]
dt

= −kapp,classical [E] , (4.2)
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where the apparent rate constant is

kapp,classical = kclassical [n−BuOH] . (4.3)

Integrating equation (4.2), a linear relation is recovered

−ln [E]
[E]0

= kapp,classicalt (4.4)

which allows for the apparent reaction rate constant to be computed from the slope of the
corresponding first order kinetics plot. To rule out the effect of initial swelling from the dry state,
manifested by the long induction times observed for the first catalysis cycles, we will apply the
classical pseudo-first order reaction model only to the tenth cycles. Similar to Figure 4.6, all the
kinetics plots exhibit a linear behavior only in the latter stages of the reaction, despite the large
excess of n-BuOH compared to silane. Thus, for a better quantitative insight into the kinetics of
the reaction, a new model has to be developed.
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Figure 4.6: Kinetics plot for the tenth cycle of the catalytic alcoholysis of dimethylphenylsilane
with an Au NP-loaded patchy nonwoven based on as-SEDiPA with (a) sCCMs and (b) wCCMs.
The plots do not exhibit a linear dependence over the full time range, ruling out the classical
pseudo-first order kinetics model as an accurate fit.

4.2.3 Model and results

In order to account for the influence of patch swelling, we extend the classical pseudo-first order
kinetics model to include the observed induction period. Starting from the previous remarks
that the slop of the kinetic plots is not constant, the rate law from equation (4.1) is adjusted
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accordingly:
d [E]

dt
= −k (t) [E] [n−BuOH] . (4.5)

To address the swelling of the patches, we consider the two reactants to slowly became available
to the catalytically active Au NPs with a certain accessibility rate r. Thus, the increasing
availability of the reactants over the time t is modeled by the variable reaction rate k(t) according
to

k(t) = k0
(
1 − e−rt

)
. (4.6)

The accessibility rate r is a parameter controlling how quickly this process occurs. By replacing
(4.6) in (4.5), the rate law can be written as

d [E]
dt

= −kapp

(
1 − e−rt

)
[E], (4.7)

where kapp = k0[S] is the apparent rate constant. Separating variables and integrating equa-
tion (4.7) yields

−
∫ [E]

[E]0

d[E′]
[E′] =

∫ r

0
kapp

(
1 − e−rt′) dt′. (4.8)

The natural logarithm form of the power law expression is then obtained as

−ln [E]
[E]0

= kapp

(
e−rt

r
+ t

)
− kapp

r
. (4.9)

The classical pseudo-first order kinetics equation (4.4) is recovered from the equation (4.9) of our
model in the limit r → ∞, which corresponds to the immediate availability of the reactants.

Similar to the approach in the classical model, we consider only the kinetics of the 10th cycles.
The experimental data were fitted with equation (4.9) and the two parameters from our model,
i.e., the apparent rate constant (kapp) and the accessibility rate (r), were determined for all five
types of patchy hybrid nonwovens. Figure 4.7 shows that an accurate fit over the full time range
is achieved. Additionally, the rate constants are in comparable range with the values obtained by
using the classical 1st order kinetics model where only the linear part of the plot was fitted using
equation (4.4) (table 4.2). For a quantitative comparison between the different catalyst systems,
the apparent rate constants have to be normalised to the concentration of n-BuOH and the total
surface area of the catalytically active Au NPs. Moreover, knowing the values for kapp and r it is
possible to compute from equation (4.9) the corresponding induction times (tind) and reaction
times (tR) representing the time required for 3% conversion and 99% conversion, respectively.
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Figure 4.7: Kinetic study of the 10th cycle of the catalytic alcoholysis of dimethylphenylsilane
with an Au NP-loaded patchy nonwoven based on as-SEDiPA with (a) sCCMs and (b) wCCMs.
Experimental data is fitted using equation (4.9) from our extended pseudo-first order kinetics
model.

Table 4.2: Comparison of the apparent rate constants and the normalised rate constants obtained
using the classical and our extended pseudo-first order kinetics model

Hybrid nonwovens kapp,classical [h−1] kapp [h−1]

s-SEDiPA(s) 1.21±0.02 1.77±0.10
s-SEDiPA(w) 1.11±0.06 1.54±0.11
as-SEDiPA(s) 1.09±0.06 1.18±0.10
as-SEDiPA(w) 1.18±0.11 1.27±0.11
s-SEDMA(w) 1.28±0.11 1.55±0.26

All this values are presented in table 4.3.
Analysing the hybrid nonwovens based on s-SEDiPA and as-SEDiPA, the normalised rate

constants are very similar when the same composition of the polymer is used, making k inde-
pendent of the CCMs chosen. However, when comparing the two polymers, the accessibility
rates for as-SEDiPA are higher with respect to those of s-SEDiPA. This contributes to shorter
induction and reaction times for the as-SEDiPA based nonwovens, despite having a lower reaction
rate constant compared to s-SEDiPA based nonwovens. This behavior may emerge from the
chemical properties resulting from the difference in length and radius of the CCMs (table 4.1) for
the two polymers. Changing the patch chemistry and comparing the nonwovens using wCCMs
(s-SEDiPA(w) and s-SEDMA(w)) it is possible to study the influence of patch swelling on the
catalytic activity as SEDMA patches are more hydrophilic and, thus, expected to swell faster in
n-BuOH. The differences can be noted starting from the 1st catalysis cycle (Figure 4.5(a)) where,
although the induction times are similar (tind ≈ 1 h), the total reaction time for s-SEDMA(w)
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Table 4.3: Kinetic parameters for the 10th cycles of the catalytic alcoholysis of dimethylphenylsil-
ane in n-BuOH

Hybrid nonwovens kapp [h−1] k [Lm−2mol−1s−1] r [h−1] tind [h−1] tR [h]

s-SEDiPA(s) 1.77±0.10 (1.97 ± 0.51) × 10−2 0.29±0.02 0.35 5.29
s-SEDiPA(w) 1.54±0.11 (2.10 ± 0.55) × 10−2 0.38±0.05 0.33 5.25
as-SEDiPA(s) 1.18±0.10 (1.19 ± 0.31) × 10−2 0.79±0.15 0.27 5.16
as-SEDiPA(w) 1.27±0.11 (1.20 ± 0.32) × 10−2 1.43±0.38 0.18 4.32
s-SEDMA(w) 1.55±0.26 (1.56 ± 0.47) × 10−2 0.54±0.16 0.28 4.68

decorated nonwoven is the lowest of all, more so compared to s-SEDiPA(w) based nonwoven (6 h
vs. 9 h). For the 10th cycle, s-SEDMA(w) still has lower tind and tR and a higher accesibility
rate than s-SEDiPA(w) but the gap is greatly reduced highlighting the effect of patch swelling
on the reaction kinetics.

In conclusion our extended pseudo-first order kinetics model proves to be a useful tool for
analysing reactions that present an induction period, being able to reproduce the experimental
results over the full time range compared to the classical model where an accurate fit is possible
only for the final part of the observed period that exhibits a linear behavior. In this study we
have employed it to study the catalytic activity of Au NP-loaded patchy hybrid nonwovens in
the alcoholysis of dimethylphenylsilane and it has revealed that the patch size and chemistry
affects the accessibility of the reactants to the surface of the embedded NPs, thus influencing the
reaction kinetics. The novelty of our model is the introduction of the accessibility parameter
(r), which describes the rate at which the reactants (dimethylphenylsilane and n-BuOH) become
available to the embedded Au NPs, thus playing an important role in the characterisation of the
hybrid nonwovens. This parameter is the largest for as-SEDiPA(w) and results in the shortest
observed induction and reaction times, despite the lower normalized rate constant in comparison
to s-SEDMA(w) and s-SEDiPA(w) based hybrid nonwovens.
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Chapter 5

Analytical and computational study of
multistep reaction processes in one-pot
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Using the state-of-the-art synthetic organic chemistry and having enough time and material
resources available, it is possible to produce almost any isolated and designed organic molecule.
The traditional organic synthesis, as it is usually done in laboratory, uses a step-by-step approach
to convert an initial substance into a final product through a series of reactions. In this process,
a recovery step is required after each reaction in order to isolate and purify each intermediate
product before the next conversion step can be performed. These laborious recycle loops increase
the processing costs and generate large amounts of waste, while also limiting the potential to
scale up and shorten the time to market the final products.

Given the increasing attention for sustainability, the development of new techniques and
strategies that can reduce waste and toxic by-products and improve resource efficiency has become
essential in chemical synthesis. During the course of evolution, nature was faced with a similar
issue, needing to synthesize a wide range of molecules starting from simple precursors. As a result,
biosynthesis is performed through a cascade approach without any additional recovery step [107].
This way, there are fewer unit operations and the concentrations are kept low requiring less solvent
and yielding less waste. An example of a common multistep syntheses is the transformation of
fructose 1,6-diphosphate to lactic acid through two intermediate products, i.e. dihydroxyacetone
phosphate and glyceraldehyde 3-phosphate, respectively. Cascade chemical reactions, which
consists of multiple bond-forming events carried out in one pot, play an important role not only
in nature but also in many technological applications [39–41].

The main hurdle in implementing catalytic cascades on a wider scale is that catalysts used
may be chemically incompatible with each other (e.g. acid and base) thus preventing their
mixing requires special attention. Examples for such reactions include the Knoevenagel [42, 108]
or the Baylis-Hillman [43] reaction. Choen et al. have showed that Wolf-Lamb-type catalysts,
which deactivate each other when they come in contact, can be used in one-pot cascade reactions
by immobilizing them on solid supports [109]. Besides preventing the deactivation, good mass
transport and accessibility of the active sites must be achieved. Various porous carrier systems
that exhibit these properties have been studied ranging from polymeric microcapsules [110] to
microporous organic nanotube networks [108].

In this chapter two-step reactions using incompatible catalysts are considered and analysed
from two different perspectives. First, to gain a greater understanding of the process, we
investigate the reaction kinetics of different carrier systems in section 5.1. Similar to the previous
chapter, the classical equations are tailored according to the specifics of the experiment and then
used to fit the results. Section 5.2 focuses on the potential of fibrous membranes as catalytic
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sites for cascade reactions in flow-through reactors. For this, the efficiencies of various membrane
geometries are computed using a lattice Boltzmann based solver for the advection-diffusion-
reaction equation, a random walk particle tracking method and a simple theoretical model that
we have developed.

Parts of section 5.1 have been published in Chem. Eur. J. 25, 13640 [111] and ACS Applied
Polymer Materials 3, 1349 [112], while results form section 5.2 are included in Computers &
Fluids 240, 105438 [113].

5.1 Kinetics of one-pot cascade reactions

Chemically incompatible functional groups, such as acid and base, deactivate each other when
they come in contact. When used in one-pot reactions, these Wolf-Lamb-type catalysts lose
their catalytic activity, thus requiring site isolation by compartmentalization. Early studies in
this field have showed that the incompatible catalysts can be immobilized on polymeric solid
supports [109, 114]. Although many different approaches have been developed, one-pot multistep
reactions are still not widely applicable due to the limited reusability and time consuming
procedures required for producing the appropriate carriers.

One of the most promising concept is the use of polymers as carriers for mesoporous struc-
tures [115–117]. Starting from this model, we analyse two different processes for achieving the
high potential of multistep one-pot cascade reactions while using systems that are modular and
easy to modify. First, we consider electrospinning as a technique to obtain fibers with diameters
ranging from a few hundred nanometers to a few micrometers [45]. By applying a high voltage
between a needle and a collector, the polymeric solution is stretched towards the collector. In this
process, the solvent evaporates and the solid fibers randomly deposit forming a porous polymer
membrane. This approach allows the preparation of catalytic membranes in large amounts and
sizes and, by direct spinning of polymeric acid or bases, there is no need for any precise chemistry
for the immobilisation of catalytic functional groups.

The other method consists of printing a patterned polymer catalysts on a carrier material [111].
Three dimensional printing has the advantage of precise material structuring and fine tuning
of the size and shape. The 2D patterned Wolf-Lamb-type catalysts on a neutral substrate by
direct printing of the catalytically active polymers or the electrospun membranes can then be
individually fixed in frames and introduced in a reaction medium in one-pot without coming in
contact with each other. This techniques can be easily extended in a modular way with more
than two incompatible catalysts for cascade reactions.
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Figure 5.1: Two step reaction sequence catalysed by incompatible acid and base catalysts.
The reaction components are dimethoxybenzylacetale (A), water (B), benzaldehyde (C), ethyl
cyanoformate (D) and cyano(phenyl)methyl ethyl carbonate (E) while the reaction kinetic
parameters for the first and second step are k1 and k2, respectively.

The electrospun polymeric catalyst membranes were previously analysed by Pretscher et
al. [45], thus we first attempt to use the same experimental conditions for the printed mem-
branes [111]. The reactions used for testing the catalytic activity consists of the acidic catalyzed
deacetylation of dimethoxybenzylacetale (dissolved in dimethylformamide) to benzaldehyde,
which reacts with ethyl cyanoformate basic catalyzed to cyano(phenyl)methyl ethyl carbonate.
The steps involved in the making and breaking of the bonds during this process can be further
separated in the series of reactions as presented in Figure 5.1 in order to obtain the reaction
mathematical model in the form of an equation system for the five concentrations:

dcA
dt

= −k1cA(t)cB(t) (5.1a)
dcB
dt

= −k1cA(t)cB(t) (5.1b)
dcC
dt

= k1cA(t)cB(t) − k2cC (t − ∆t) cD(t) (5.1c)
dcD
dt

= −k2cC (t − ∆t) cD(t) (5.1d)
dcE
dt

= k2cC (t − ∆t) cD(t) (5.1e)

where cA is the concentration of (dimethoxy)methyl benzene, cB is the concentration of water,
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cC is the concentration of benzaldehyde, cD is the concentration of ethyl cyanoformate, cE is the
concentration of cyano(phenyl)methyl ethyl carbonate while k1 and k2 are the reaction rates of
the first and second reaction step, respectively. The equations (5.1) resemble the classical second
order kinetics model described in section 2.3, while also having the additional parameter ∆t.

The fitting of the reaction rates and the concentrations based on the experimental values
are performed using a nonlinear least-squares solver in Matlab version R2019b. To understand
the role of ∆t, we first fit the experimental data for ∆t → 0 as shown in Figure 5.2(a). The
fit function works very well for the first reaction showing a good validity for cA and cC, but
the mismatch for cE suggests that the second reaction has a delayed starting time. Moreover,
analysing the fitted parameters displayed in table 5.1, we can clearly notice that the value
obtained for cD(0) = 3.2 mol L−1 is too high compared to the initial amount of D used in the
experiment, i.e., cD(0) = 0.6 mol L−1. The behavior of the conversion curves during the initial
period of the process, shows that, even though the product C is quickly generated in the first
reaction, the second step started only after a significant amount of cC is produced. This can be
explained by the fact that it requires a certain amount of time before C becomes available for
the final reaction.
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Figure 5.2: Kinetic study of the two-step cascade reaction described by Figure 5.1. (a) The
classical model (∆t → 0) shows a good fit only for the first reaction, while (b) the addition of
the ∆t parameter provides a better fit for all quantities.

To model this retarded start, we have introduced the parameter ∆t in the equations (5.1c)-
(5.1e) which account for the second step. As expected for the new fit, the parameters describing
the first reaction show very small variations, while the second step is considered to start with a
delay of 52 min. Although the value for the initial concentration of D has improved, this time it
is only close to half of the expected result. Therefore, we fix cD(0) = 0.6 mol L−1 to maintain the
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Table 5.1: Fitted parameters after solving equations 5.1 for the cascade reaction using the
2D-printed structures

Parameter Fitted value
∆t fixed cD(0) free cD(0) fixed

cA(0)
[
mol L−1] 0.496 0.484 0.485

cB(0)
[
mol L−1] 0.448 0.440 0.439

cD(0)
[
mol L−1] 3.199 0.355 0.600

∆t [min] 0.030 52.000 39.000
k1
[
mol (L min)−1] 0.555 0.489 0.509

k2
[
mol (L min)−1] 0.001 0.027 0.011

experimental initial condition, which leads to a good alignment of the fitted amount of cC and
cE (Figure 5.2(b)). The resulting fitted parameters displayed in table 5.1 are close to the values
observed in the experiment, only the amount of water cA(0) = 0.485 mol L−1 is significantly
lower than the concentration of 1 mol L−1 used in the reaction. However, it may be explained by
the adsorption of water within the printed structures which leads to a decrease of its availability.

After testing the model on a reaction that used the 2D patterned structures as Wolf-Lamb-
type catalysts, we switch our focus to a direct comparison between this type of carrier and the
electrospun membranes. For this, a new experiment was carried out using both systems [112].
The cascade reaction converts dimethoxy methylbenzene to benzaldehyde to ethyl-2-cyano-
3-phenyl acrylate (Figure 5.3). Compared to the previous experiment, there is a change in
the second step such that D is represented by ethyl cyanoacetate while the final product E is
ethyl-2-cyano-3-phenyl acrylate. Moreover, for a deeper insight into the chemical properties of
the carriers, the electrospun membranes were dissolved in both toluene and dimethylformamide
(DMF), while for the printed structures only toluene was used. Using the observations from
the first study, we proceed to fit the experimental data using the differential equations (5.1)
with cD(0) = 0.6 mol L−1 being fixed. The fitted parameters presented in table 5.2 show good
agreement with the reaction conditions, i.e., cA(0) = 0.5 mol L−1, cB(0) = 1 mol L−1 and
cD(0) = 0.6 mol L−1. Similar to the behaviour observed in the first experiment, the concentration
of water is lower than the expected value only for the printed structure, signaling again the
adsorption of water within the system.

A first analysis of the conversion curves for electrospun membranes and 2D-printed structures
in toluene (Figure 5.4(a) and (b)) reveals that the overall reaction time is lower for the printed
structure. The first reaction step of the conversion to benzaldehyde is finished (more than 95%
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Figure 5.3: Catalytic Wolf–Lamb-type reaction of dimethoxy methylbenzene (A) to benzaldehyde
(C) to ethyl-2-cyano-3-phenyl acrylate (E) in toluene and DMF

conversion), while the second step is completed after approximately 30 minutes. On the other
hand, the electrospun membranes required 90 minutes for the first conversion and about 150
minutes for the full yield of the final product. This clear difference in favor of the printed
structure can be explained by the swelling of fibers in electrospun membranes in the reaction
medium, which leads to the formation of a gel. Thus, the reachability of catalytic sites seems to
be hindered due to a more difficult mass transport within the fibrous gel network. In contrast,
the printed structures are denser, requiring a shorter diffusion length to reach the sites, which
leads to an increase in catalytic performance. The same observations can be made by analysing
the fitted kinetic parameters from table 5.2, with the reaction rate for the first step k1 being
more than 10 times higher for the 2D-printed structures compared to the electrospun membranes.
Additionally, the value of k2 is roughly 5 times higher for the printed structures, explaining the
faster conversion. A comparison between the two solvents (Figure 5.4(a) and (c)) reveals that
the first step requires 180 minutes in both cases, the values for k1 being very similar. However,
the large difference in k2 shows that toluene is a better solvent for this specific system. This
translates into a total reaction time of 150 minutes and 180 minutes for toluene and DMF,
respectively.
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Figure 5.4: Kinetic study of the two-step cascade reaction described by Figure 5.3 using
(a) electrospun catalytic membranes in toluene, (b) 2D-printed structures in toluene and (c)
electrospun catalytic membranes in DMF

To summarise, we have showed that the implementation of the parameter ∆t to model the
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Table 5.2: Fitted parameters after solving equations (5.1) for the cascade reaction (Figure 5.3)
using different solvents and structures

Parameter
Fitted value

electrospun membrane 2D-printed structure electrospun membrane
in toluene in toluene in DMF

cA(0)
[
mol L−1] 0.492 0.504 0.502

cB(0)
[
mol L−1] 1.103 0.799 1.267

cD(0)
[
mol L−1] 0.600 0.600 0.600

∆t [min] 25.000 6.500 25.000
k1
[
mol (L min)−1] 0.073 0.949 0.067

k2
[
mol (L min)−1] 0.058 0.250 0.035

delayed start in the differential equations, improves the fitting of the experimental data and offers
an additional tool for studying the kinetics of the cascade reactions. Furthermore, it indicates
that the slow start of the second step is not due to an intrinsic mechanism, but only that it
requires a sufficient amount of the intermediate species to be produced from the first reaction.

5.2 Cascade reaction processes in catalytic fibrous membranes

Cascade reactions have attracted great attention recently due to being green processes for saving
time, cost and improved atom efficiency compared to the standard multistep reactions which
require consecutive product separation and isolation. The multiple catalysts and reagents, are
combined in a single reaction vessel to undergo a sequence of precisely staged catalytic steps in a
cascade manner. To illustrate this process, we consider an initial species A that reacts to the final
product C via an intermediate species B with the two first order elementary reactions A → B and
B → C each requiring a different catalyst. Such reactions were initially limited to the compatible
catalysts combinations, excluding the many cases where the two are chemically incompatible (e.g.
acid and base) thus preventing their mixing [118]. The site-isolated immobilisation of catalysts
made possible the occurrence of acid and base (Wolf-Lamb-type) catalysed sequence of reactions
in one pot. The major challenge in this processes is to achieve efficient flux of the intermediate
products between different catalytic sites, while at the same time preventing physical contact
of the incompatible catalysts. Form the various carrier systems previously presented in this
chapter, we focus on electrospun fibrous membranes, which fulfill both requirements since they
combine the ability to precisely locate different catalysts in compartments spatially separated
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from each other with a high porosity required for a good mass transport. Moreover, their great
potential as efficient reactor systems for cascade reactions with incompatible catalysts has also
been experimentally demonstrated [44, 45, 111]. In our approach, two types of elongated fibers,
one containing the first and the other the second catalyst, are combined into membranes through
which the reactants are flowing.

In this section, we focus on predicting the reaction efficiency of one-step and two-step reactions
where the catalytic sites have a cylindrical geometry and an additional external flow acts to
transport the reactants between the various sites. These advection-diffusion-reaction systems
are simulated using two different methods (LBM and RWPT) and, along with an approximative
analytical model, the efficiencies are computed as function of the two relevant dimensionless
parameters (the Péclet and the Damköhler number) that characterise the balance between the
three phenomena.

5.2.1 System setup

We start by analysing and modeling the flow-through reactor setup. The fibers are introduced as
infinitely long cylinders arranged in various geometries ranging from just one fiber performing
a single reaction to two membranes consisting of randomly arranged fibers, responsible for the
multi-step reactions. To ensure the mass transport between fibers, a pressure gradient has to be
set from the entrance to the exit of the system in order to generate the flow field specific to a
reactor.

Single reaction

First, we consider an A → B reaction driven by a single catalyst. The catalytically active site is
modeled in the shape of an isolated cylinder with radius R = 5, that is placed in the middle of a
300 × 300 box as illustrated in Figure 5.5(a). Due to the translational symmetry along the fiber
axis, the third dimension of the reactor becomes irrelevant. Next, we generate a regular fibrous
membrane by adding multiple cylinders in the same region. For this geometry, 6 fibers with a
radius R = 3 and random positions and orientations were placed in a 120 × 100 × 120 simulation
box, as displayed in Figure 5.5(b).

Cascade reaction

The scope of our study is to understand and to predict reaction efficiencies for the A → B → C

cascade reactions. Thus, we introduce the simplest case of two individual fibers being the carriers
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(a) (b)

Figure 5.5: Illustration of the system geometries and the flow field used in our single-reaction
studies: (a) an isolated fiber, (b) a membrane with randomly oriented fibers

of the catalysts responsible for the A → B and the B → C reaction, respectively. Figure 5.6(a)
shows such a system for two fibers having a radius R = 5 and separated by a distance ξ = 100 in
a box of 1000 × 300.

The special fiber morphology called side-by-side, which can immobilize two incompatible
catalysts next to each other with a common interface running all throughout the length of the
fiber [119], is presented in Figure 5.6(b). In order to achieve a fair comparison between the
different morphologies, the total surface area of the catalytically active sites must be constant.
Therefore we set the radius R = 10 for the single side-by-side fiber, while the simulation box size
is 1000 × 300.

Similar to the single reaction case, we further consider the case of fibrous membranes consisting
of six randomly orientated fibers as displayed in Figure 5.6(c) and (d). However, for computational
reasons, we had to reduce the dimensions of the systems such that for the single fiber morphology
a radius of R = 3 and a box size of 200 × 60 × 60 is used, while for the side-by-side fibers we
have opted for R = 6 and a 160 × 60 × 60 box.

System parameters and dimensionless numbers

The behavior of these flow-through reactors is determined by the balance between advection,
diffusion and reaction. Thus, it is convenient to characterise our systems using two dimensionless
numbers which encapsulate the three different phenomena. First one is the Péclet number

Pe = u0R

D
, (5.2)
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ξ
-�

(a) (b)

(c) (d)

Figure 5.6: Illustration and flow field for: (a) two fibers, (b) a single side-by-side fiber, (c) two
membranes, each carrying a different catalyst, (d) a single side-by-side membrane

giving the ratio between the advection velocity u0, the fiber radius R and the diffusion coefficient
D. For u0 we choose the centerline, i.e., maximum velocity at the entrance. The second is the
Damköhler number

Da = kR2

D
, (5.3)

giving the ratio between the reactive and the diffusive time scales, with k being the reaction rate
constant. To compare the different parameters and geometries, we use as an output parameter
for our studies the reaction efficiency defined as

ϵ = NB

NA + NB
for A → B (5.4)

ϵ = NC

NA + NB + NC
for A → B → C (5.5)

where Nx is the number of particles of species x that flow out of the system per time unit.
Additionally, another quantity that may be of interest when analysing a flow-through reactor is
the production rate. Thus, we also compute the amount of final product that leaves the reactor
per unit of time in order to have a qualitative description of the systems for a direct comparison
with the efficiency trends. As both the system parameters as well as the main output quantity
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are dimensionless and thus independent of the employed unit system, we use simulation units
throughout this study for simplicity.

5.2.2 Simulation methods

Lattice Boltzmann

The evolution of the concentration field of each species throughout a system is determined by the
ADRE (2.17). Since the species concentration does not affect the fluid dynamics, the flow field u⃗

is constant in time, but not in space due to the fibers. Thus, we first compute the steady-state
velocity field using a NSE solver for each system described before. Then, the resulting u⃗ is used
as an input for an ADRE solver. Due to its amenability to parallelisation combined with the
ability to handle the complex geometries displayed by the fibrous membranes arrangements, we
opt to use the lattice Boltzmann method (section 3.3) for both equations.

For the NSE, we use the LBM implementation from the free software package ESPResSo [82,
120, 121]. Here we set the time step ∆t = 1, the lattice spacing ∆x = 1 and a body force
f = 10−6 in x direction to generate the pressure difference. For simplicity, each system geometry
is simulated only once for about 6000 time steps until the steady flow is reached at this low
pressure gradient. To obtain other velocities, we use the linearity of Stoke flow and we just
multiply the previously generated field with a constant scaling factor. There is no loss of accuracy
due to this procedure at Re ≪ 1, a condition which is satisfied in most of our setups. Even at
the highest velocities that occur in our study, the maximum corresponding Reynolds number
is Re ≈ 7, for which the inertial corrections are expected to be small and linearity is still a
reasonable approximation.

The boundaries of the system are periodic in all directions, while at surfaces of the fibers a
bounce-back boundary condition ensures the no-slip condition.

To solve the ADRE, we have implemented a LBM as described in section 3.3.2. We simulate
our systems by employing the same lattice as the one utilised in the NS LBM above. Using
a time step of ∆t = 1, a steady concentration profile is typically obtained after a number of
time steps ranging from 130000 in the low Pe regime to 8000 for higher Pe. To replicate the
flow-through reactor, we set a homogeneous concentration of the initial substance CA = 1 as
a boundary condition at the entrance while for the rest of the species a simple bounce-back is
performed. At the channel outlet, the normal derivatives are set to zero for every species.

The output parameters are computed by measuring the outflux of the species through a
plane perpendicular to the flow direction and located two lattice points away from the right
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system boundary. At this position, the difference between all the populations streaming towards
the outlet (right) and those streaming to the left is computed for each node and subsequently
averaged across all nodes. The concentrations are then directly proportional to the particle
numbers N in equation (5.5). The remainder of the boundaries are considered periodic.

Membrane generation

Membranes were generated by placing randomly oriented cylindrical fibers inside the simulation
box. Cases where two or more fibers showed significant overlap were discarded. The cylinders
are then included as boundaries as described in Section 5.2.1 into the ESPResSo software. Due
to the random orientation, the periodicity of the fibers cannot be ensured, and thus the cylinders
are closed at both ends to avoid the fluid running inside. The boundaries used for generating the
flow fields are then inserted in the ADRE solver to simulate the concentration fields throughout
the exact same systems.

Random walk

In addition to the LBM, we have also used a random walk particle tracking method (section 3.2).
However, for simplicity and computation efficiency, we limit our implementation of RWPT to
2D systems. Thus, we only simulate the geometries with translational invariance along the fiber
axes, i.e. systems illustrated in Fig. 5.5(a) as well as 5.6(a) and (b). Since the space in RWPT
method is continuous, the discrete flow field generated with ESPResSo is interpolated to obtain
the advective contribution for each particle at every time step. The fibers are not imported as
the discretised lattice version from LBM, instead are modeled as circles with the center position
and radius identical to the ESPResSo setup.

To introduce the reactions, we consider a thin reactive zone of size δ = 0.2 around each
fiber carrying a catalyst. Every particle of a species that performs a reaction in the presence
of that catalyst, has the probability k∆t to react within a time step inside that region. The
collision between a particle and a fiber is considered elastic, such that the normal component of
the particle velocity is inverted while the tangential component is not affected.

We implement the constant homogeneous concentration CA = 1 along the inlet surface of the
system by periodically adding or removing particles at random locations when necessary. For the
rest of the species a bounce-back is set at the entrance. At the outlet, all particles that exceed
the dimension of the system are removed. The other boundaries are considered periodic. The
efficiency is computed using the definition given in equation (5.5) by counting the number of
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particles that leave the reactor for each species during one time step.

5.2.3 Results and theoretical model

Single reaction

We start our investigation by considering a single catalytic fiber placed in the middle of a domain
as displayed in Figure 5.5(a). The initial reactant A is advected by a fluid from left to right
and, after suffering a reaction on the surface of the fiber, is converted into the product species
B. Using the definition from equation (5.5), the efficiency is computed as a function of the
Péclet number, both from the LBM and RWPT simulations. Figure 5.7 shows the decrease of
the efficiency ϵ with Pe, which can be explained by the fact that at higher velocities (higher Pe),
the particles spend less time near the catalyst and thus, a smaller fraction of them can reach the
catalytic site and react. Changing the reaction rate k reveals that this behavior is qualitatively
independent of the dimensionless Damköhler number Da which can be seen by comparing Figure
5.7(a) and (b).
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Figure 5.7: Efficiency of an A → B reaction as a function of Pe for a system containing a
single fiber as illustrated in Figure 5.5(a). The corresponding Damköhler numbers are set to (a)
Da = 150 via k = 1 and (b) Da = 1.5 via k = 0.01.

For a deeper insight into the behavior shown by the simulation results, we propose an
approximative analytical model. We consider a single fiber represented by an infinitely long
cylinder with radius R in a domain with the width l from the center, as illustrated in Figure 5.8.
The species are advected from left to right by a steady flow. Next, we consider a maximum
distance d from the surface of the cylinder at which a particle is able to reach the fiber through
diffusion. In contrast, all particles outside this region around the cylinder are assumed to be
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advected without ever interacting with the catalytic fiber.

R

u0

ld

Δ

flow

Figure 5.8: Illustration of the approximative theoretical model. The streamline separates the
particles of reactant that never reach the cylinder from those that suffer at least one collision
with it. The reaction can take place only in the highlighted region at a maximum distance ∆
from the surface of the fiber

Assuming a homogeneous distribution of species at the inlet and a much larger domain size
compared to the cylinder, the fraction of particles that suffer at least a collision can be expressed
as the ratio between the widths of the two regions

ϵcoll = d

l
. (5.6)

For a particle moving with the velocity u⃗0 along the streamline placed at the distance d from the
fiber, the time ta required to advect past the cylinder is equal to the time tD required to diffuse
towards the cylinder:

ta = π (R + d)
u0

(5.7)

tD = d2

2D
, (5.8)

where the one dimensional diffusion was considered due to the radial symmetry of the system.
Equating (5.7) and (5.8) yields the following quadratic equation for d

1
2D

d2 − π

u0
d − πR

u0
= 0. (5.9)
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Considering that only half of the particles diffuse towards the cylinder, replacing the solution of
(5.9) in (5.6) and introducing the Péclet number gives using the positive root of (5.9)

ϵcoll = 1
2

 π

Pe +
√

π2

Pe2 + π

2Pe

 R

l
. (5.10)

The reaction of the particles that reach the surface of the fiber is characterised by the reaction
rate constant k and thus the efficiency (5.5) can be rewritten as

ϵ = ϵcoll
(
1 − e−ktr

)
(5.11)

where the reaction time scale tr represents the time that the particle spends in the proximity of
the catalytic surface. To determine tr we consider a thin reaction shell of width ∆ as displayed
in Figure 5.8, within which the reaction can take place. The ratio between the reactive and the
diffusive timescale can be expressed as the ratio α between the areas within which the reaction
takes place and the area where collisions take place

α = tr
tD

= (R + ∆)2 − R2

(R + d)2 − R2
. (5.12)

Assuming that the widths of the two regions are much smaller than the radius of the fiber, the
ratio can be estimated in a simpler form as

α
(R≫d,∆)

≈ ∆
d

. (5.13)

This yields the new expression for the efficiency

ϵ = ϵcoll
(
1 − e−kαtD

)
. (5.14)

The width of the reaction region represents a fitting parameter for our model and a value of
∆ = 0.5 is selected for all simulations. Our choice is directly linked to the LBM algorithm where
the space is discretised in a rectangular grid with unit spacing, and thus the average distance
between the reactive surface and a neighboring lattice point will be of the order of half a grid cell.

For the single fiber case, the efficiencies predicted by this model are in very good agreement
with the simulation results as shown in Figure 5.7. Deviations occur only in the low Pe regime
where the width d of the collision zone increases and becomes comparable with the system width
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l. As result, the idealized clear-cut separation between the collision and the no-collision zone on
which our model is based becomes increasingly blurred, leading to less accurate predictions.

To estimate the total production from this theoretical model, the efficiency is multiplied by
the flux of particles at the inlet. The difference between 2D and 3D systems becomes relevant
when measuring the total number of B particles that leave the domain per unit of time, so we
account for this by considering the number of node layers in the third dimension present in the
LBM. The corresponding results, displayed in Figure 5.9, show a reasonable qualitative agreement
between the three sets of data with the expected overestimated value from the theoretical model
in the low Pe regime. Despite the drop in efficiency noticed in Figure 5.7, there is an increase of
the total production at higher flow speeds due to the higher mass flux. This effect is especially
obvious at large reaction rate constants, where the most of the particles react in a very short
amount of time when close to the fiber.
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Figure 5.9: Production rate of B species as a function of Pe for (a) Da = 150 (k = 1) and (b)
Da = 1.5 (k = 0.01).

To further investigate the role of the reaction rate, we now focus on its influence on the
efficiency. The numerical results presented in Figure 5.10 show the predicted trend that ϵ increases
with Da. The growth rate slows down with increasing Da and eventually a plateau is reached
where the reaction rate is so high that every molecule that collides with the surface immediately
reacts and thus no further increase in efficiency is possible. This behavior is qualitatively and,
within some limits, also quantitatively reproduced by the theoretical model. We note again that
the only adjustable parameter of our model is set to ∆ = 0.5 throughout the entire study and
not re-fitted for each simulation series individually.

The corresponding total production plots are shown in Figure 5.11 where, similarly to the
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Figure 5.10: Efficiency of an A → B reaction, in the presence of a single fiber, as a function of
Da for (a) Pe = 1, (b) Pe = 7, (c) Pe = 20.

previous cases, the best agreement is reached at high Péclet numbers.
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Figure 5.11: Production rate of an A → B reaction, in the presence of a single fiber, as a function
of Da for (a) Pe = 1, (b) Pe = 7, (c) Pe = 20.

Having understood the system behavior for a single isolated fiber, we proceed to investigate
the effect of multiple fibers. If the fibers are close to each other, this is a non-trivial extension
as the catalytically active sites can compete with each other for the same pool of reactants.
As a result, the overall efficiency of the system becomes less than the sum of each individual
fiber’s efficiency. To reduce potential biases in the arrangement of the cylinders, we consider two
different membranes, each consisting of six randomly aligned fibers as illustrated in Figure 5.5(b).
Being a truly 3D system, the RWPT method cannot be applied to the membranes, so only
the LBM is used for numerical simulations. The results shown in Figure 5.12 reveal the same
general trend of efficiency decreasing as Pe increase, that is also observed for the single fiber.
However, the decline of efficiency appears to be less drastic than in the isolated fiber scenario.
The production rates associated to the membranes are plotted in Figure 5.13.

Our theoretical model can also be extended to account for the multiple fibers that form
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Figure 5.12: Efficiency of an A → B reaction performed by a membrane consisting of six randomly
oriented fibers as illustrated in Figure 5.5(b). The reaction rates correspond to (a) Da = 150
and (b) Da = 1.5.
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Figure 5.13: Production rates of an A → B reaction performed by a membrane consisting of
six randomly oriented fibers as illustrated in Figure 5.5(b). The reaction rates correspond to
(a) Da = 150 and (b) Da = 1.5.

the membranes. For this, we consider n identical fibers each having a random orientation.
Being close to each other, one can assume that the reactive regions of size d corresponding to
different cylinders overlap, and thus all fibers share the same pool of potential reacting molecules
. Accordingly, the efficiency of the ith fiber from the membrane can be expressed as the efficiency
of a single fiber applied to the unreacted particles left over from the previous (i − 1) fibers.
Adding up all the n fibers, the overall efficiency of the membrane is given by

ϵmem =
n∑

i=1
ϵ (1 − ϵ)i−1 . (5.15)
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Performing the summation yields

ϵmem = ϵ
(1 − ϵ)n − 1
(1 − ϵ) − 1 , (5.16)

which leads to the final form for the efficiency of a n-fiber membrane

ϵmem = 1 − (1 − ϵ)n . (5.17)

As it can already be seen in Figure 5.12, this model extension is in similarly good agreement
with the simulation data as was already the case with the single fiber.

5.2.4 Cascade reaction

In order to study the A → B → C cascade reaction, a second fiber or membrane, responsible
for the conversion of B into C, is introduced into our simulation and theoretical model. This
adds a new parameter compared to the single reaction, which is the distance ξ between the
two catalytically active sites. In the limit ξ → 0, the side-by-side morphology is recovered as
illustrated in Figure 5.6. We will proceed to investigate the cascade reactions by considering
both the pure diffusion case and advection-diffusion case.

Pure diffusion case

To assess more clearly the influence of the catalyst distance, we start by investigating a slightly
modified simulation setup where the external flow is absent and so the transport is driven by
diffusion only. Additionally, at the start of the simulation, particles representing A species are
homogeneously distributed throughout the whole system and periodic boundaries are imposed
in all directions. Since there is no inflow and outflow of substance, instead of the efficiency
ϵ, we now monitor the total concentration of the three species over time. To study the single
fibers, a 300 × 300 box was used and two fibers with a radius R = 5 were placed far away
from each other for the individual approach, while for the side-by-side morphology a single fiber
with a radius R = 10 was considered such that the total surface area is conserved. For the
randomly generated membranes, the box size was set to 200 × 60 × 60 and six fibers were used
to form a membrane having R = 3 and R = 6 for the individual and side-by-side, respectively.
Figure 5.14(a) shows the corresponding data for two fibers separated by a distance ξ = 100
compared to the side-by-side morphology. Even though the total surface areas for both systems
were kept constant, the side-by-side morphology proved to be faster due to the placement of the
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Figure 5.14: Conversion curves for the A → B → C cascade reaction in the absence of external
flow for Da = 150. (a) The comparison between two fibers separated by ξ = 100 and the
side-by-side morphology shows a slight superiority of the latter. (b) The effect becomes more
obvious for the membrane geometries.

catalysts next to each other such that the intermediate species required less time to reach the
next catalytic site. The same effect is present in an accelerated form in the case of membranes
(Figure 5.14(b)). As expected, similar behaviours, albeit to a lesser extent, are observed at lower
Da as shown in Figure 5.15.
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Figure 5.15: Conversion curves for the A → B → C cascade reaction in the absence of external
flow for Da = 1.5. (a) The comparison between two fibers separated by ξ = 100 and the
side-by-side morphology shows almost no difference. (b) The superiority of the side-by-side
morphology becomes clearer for the membrane geometries.

Advection-Diffusion case

While the effect introduced by the parameter ξ in the basic setup of the pure diffusion scenario
was relatively obvious, its robustness even in flow is not so clear. Thus, we now return to study
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the flow-through reactor systems by first considering the system illustrated in Figure 5.6(a). The
efficiency ϵ is computed as a function of Pe for different distances ξ, using LBM and RWPT
simulations. The results, presented in Figure 5.16, exhibit the same trend as in the previous
section, namely that a closer spacing leads to more efficient reactions, with the highest efficiency
achieved for the side-by-side morphology. Here we must note that the relatively large difference
between the ξ = 2 and the side-by-side scenario can be mostly attributed to the definition of Pe
which involves the differing radii R = 5 and R = 10, respectively.
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Figure 5.16: Efficiencies of A → B → C cascade reactions simulated using (a) LBM and (b)
RWPT method for Da = 150. The two fibers that perform the reactions are separated by
a distances ξ, as illustrated in Figure 5.6(a). The large difference between the side-by-side
morphology and ξ = 2 is mostly due to the definition of Pe which involves the different radii
R = 10 and R = 5, respectively.

For a more accurate comparison, the efficiency is represented as a function of the absolute flow
velocity in Figure 5.17. Although the difference shrinks in this case, the trend still shows that
having the two catalytic sites closer to each other is more beneficial, and thus the side-by-side
morphology remains the most efficient geometry.

We now look to extend our theoretical model to include the second catalyst. For simplicity,
we start by placing the second reaction site downstream at a distance ξ > 2d from the first
one such that the two collision regions do not overlap. Since the two fibers are considered far
away, the B particles produced at the first catalytic site have enough time and space to diffuse
throughout the system such that we can assume a fairly homogeneous distribution approaching
the second site. As a result, the expected efficiency is then given by the product of the efficiency
for each individual fiber

ϵABC = ϵ2. (5.18)

By analysing Figure 5.16, it can be seen that this approach indeed reproduces well the simulation
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Figure 5.17: Efficiencies of A → B → C cascade reactions plotted as a function of the absolute
flow velocity. The system illustrated in Figure 5.6(a) was simulated using (a) LBM and (b)
RWPT method for Da = 150.

data at large ξ.

In order to simulate the cascade reaction for a multi-fiber system, two membranes separated
by ξ = 50, each carrying a different catalyst were assembled using six randomly orientated
fibers with a radius R = 3, as shown in Figure 5.6(c). Similar to the previous approach,
the side-by-side membrane consisting of six fibers but with a radius R = 6 and illustrated in
Figure 5.6(d), was also studied for comparison. To discard possible biases introduced by the
random generation of the membranes, three different configurations were considered. In complete
analogy to equation (5.18), our model predicts the total efficiency in the form

ϵmem,ABC = ϵ2
mem (5.19)

which is in good agreement with the simulation data as shown in Figure 5.18. The match between
the model and all three random membranes illustrates that the precise arrangement of fibers
within a membrane is only of secondary importance for its catalytic efficiency.

Since the catalytic sites are next to each other in the side-by-side configuration, we can
assume that shortly after the B particles are produced, almost all of them reach the second
site. Therefore, the efficiency (5.17) of a geometrically identical membrane performing a simple
A → B reaction can be viewed as the limiting case for the side-by-side membrane. This behaviour
can be clearly observed in Figure 5.19 which displays the efficiencies and production rates as a
function of the absolute flow velocity for a more accurate evaluation of the gap between the two
morphologies.
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Figure 5.18: (a) Efficiencies and (b) Production rates of randomly generated membranes for the
A → B → C reaction at Da = 150. All three sets of membranes for each morphology show good
agreement with the proposed model, despite the various arrangements.

5.2.5 Summary

The efficiency of fibrous membranes as catalyst carriers in flow-through reactors was studied
using a lattice Boltzmann solver for the advection-diffusion reaction equation. Complementary,
an approximative theoretical model was developed as a tool for predicting the behaviour of such
systems. First, the two methods were applied on the simple A → B first order reactions, followed
by the introduction of a second catalytic site further down the stream in order to evaluate the
efficiency of the multi-step A → B → C reactions. The catalytic performance of the flow-through
reactors were predicted as a function of two dimensionless numbers, i.e. the Péclet number which
capture the ratio between advective and diffusive transport and the Damköhler number which
relates reaction to diffusion. Moreover, the influence of the geometry of the system was analysed
in the context of two different fiber morphologies. Our analytical model, characterised by a single
adjustable parameter ∆, proved to be in full agreement with the numerical results.
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Figure 5.19: (a) Efficiencies and (b) Production rates of randomly generated membranes for the
A → B → C reaction as a function of the absolute flow velocity, for Da = 150. While the data
for the individual fiber membranes show good agreement with equation (5.19), the behavior of
the side-by-side configuration can be fairly well approximated by equation (5.17) which describes
a simple A → B reaction.
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Chapter 6

Species mixing in a microchannel
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Microfluidic devices have attracted considerable interest over the last two decades having
applications in a wide range of processes such as chemical synthesis [54, 122], biological pro-
cessing [123, 124], clinical diagnostics [125] or bioprinting [58]. Reduced sample consumption,
precise control of output, low cost and portability are some of the advantages associated with
microfluidic devices. A fundamental role in this systems is played by mixing which determine
the performance of these processes. Given their small dimensions, microfluidic devices are
characterised by low Reynolds number corresponding to laminar flow. Therefore, in the absence
of turbulence, mixing is driven only by diffusion which is a slow process and requires longer
microchannels to reach a homogeneous state. As result, additional mechanisms are sought to
enhance mixing efficiency within shorter distances, which can reduce the size of the devices and
increase its throughput.

Due to the continuing growing interest in microfluidic applications, the theory behind flows and
mixing at microscale and the progress on the development of micromixers have been summarised
in several state-of-art reviews [59, 126–128]. Based on how the fluids are manipulated, mixers are
classified as active type and passive type. Active micromixers require external energy source to
employ active elements such as pressure [129], acoustic [130] and electric field perturbations [131]
and offer the highest degree of mixing. By contrast, passive mixers rely only on pressure gradient
to drive the flow and uses elements such as channel geometry and special microstructures to
split, break or fold the streams in order to achieve homogeneous mixing [60]. Although passive
mixers may not always be simple to manufacture, they are easier to integrate and more robust
compared with active mixers, which makes them more widely used.

From the various passive mixers that have been proposed over the years [61], we focus on the
most popular types, i.e. obstacle based and lamination based micromixers. In the first case, it
has been shown that various channel shapes containing embedded grooves or barriers can achieve
high mixing efficiencies [132, 133]. However, at low Reynolds number, the serpentine channel
does not significantly improve mixing by itself [134] and additional obstacles are required [135].
Lamination based mixers split the streams in order to form multilayered flows which leads to
excellent mixing in short amount of time [62].

In this chapter, we investigate micromixing in the presence of a deformable capsule that is
flowing through the channel. To our knowledge there is a lack of studies on topic, which can
have direct implications in fields such as drug delivery [136] or bioprinting [58]. Therefore, the
influence of the capsule on the mixing process is analysed in combination with some simple
passive mixers. Obstacle based designs have been discarded due to the high local strains which
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can damage the microcapsule through shearing and only used for comparison. For the channel
geometry, a sinusoidal shape was chosen due to its increased efficiency compared with the
straight or the simple serpentine channel [63]. Additionally, coaxial, side-by-side and parallel
lamination concentration distribution were imposed at the inlet and their mixing performances
were compared.

6.1 Mixing in microfluidic devices

6.1.1 Mixing principles

Generally speaking, the laws that describe the flow at macroscale are also valid for flows in
microsystems. However, microfluidic devices cannot be viewed just as a scaled-down version of
their macroscale equivalent because some physical properties such as the ratio between surface
area and volume, diffusion or surface tension do not exhibit linear behaviour from large to small
systems. Thus, microfluidic devices should be designed in ways that take advantage of the
characteristics of the mixing in a confined space.

One of the most important differences that arise at small length scale is that inertial effects
that typically result in turbulence and good mixing on the macroscale are dominated by the
viscous effects in microfluidics. The relative importance of inertial to viscous forces for a given
flow condition is given by the Reynolds number

Re = uR

ν
, (6.1)

where u is the velocity of fluid, R is the channel radius and ν is the kinematic viscosity of the
fluid. Due to small channel size (R), microfluidic systems are characterised by low Re, often less
than 1. In this case, the fluid flow is laminar, with the streamlines which follow the velocity fields
not crossing each other. Since the advective mass transport happens only along the streamlines,
no transfer between adjacent layers of fluid is possible. As a result, only diffusion can lead to
mass transport normal to the velocity field at low Reynolds number.

Diffusion is the process of spreading molecules from a region of high concentration to one
of lower concentration by Brownian motion as described in section 2.1. For an isolated system
with an initial non-uniform concentration, a state of homogeneous concentration distribution is
ultimately achieved. The mixing time tmix depends on the diffusion coefficient and the striation
length lst, which represents the distance over which diffusion acts to homogenise the concentration
field. Being a nonlinear process, for normal diffusion time scales quadratically with the distance

77



6. SPECIES MIXING IN A MICROCHANNEL

according to

tmix ∼ l2st

D
. (6.2)

This clearly shows that a faster mixing can be achieved by reducing the striation length. Figure 6.1
highlights that by halving the diffusion path, the same state of mixing is achieved four times
faster. The relative importance of diffusion to advection is given by another dimensionless

t = 0

→

t = 5∆t

→

t = 20∆t

→

t = 80∆t

→ → →

Figure 6.1: Comparison of the concentration fields starting from two different initial distributions
of an unmixed solution driven by diffusion. Halving the striation length decreases the mixing
time fourfold.

number, i.e. the Péclet number
Pe = uR

D
, (6.3)

where D is the diffusion coefficient. It can also be viewed as the ratio of characteristic diffusion
time (tdiff ) to the characteristic advection time (tadv).

Considering a cylindrical channel with the radius R and a homogeneous concentration source
placed at the entrance at a distance h from the channel walls as illustrated in Figure 6.2. Inside
the channel, the typical steady Poiseuille profile develops with the maximum velocity magnitude
U0 and the average flow velocity u = U0

2 . Since diffusion is the only contribution to mass transport
across tangent fluid layers, the Péclet number normal to the direction of advection is always zero.
The diffusion length ldiff in a plane perpendicular to the centreline at a distance x from the inlet
can be computed according to equation (2.1) as

ldiff (x) =
√

4Dtadv(x). (6.4)

The characteristic timescale tadv(x) for a flow to traverse the length x is x/U0. Thus, ldiff is
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h

R

x

U0

Figure 6.2: Illustration of a cylindrical microchannel with the radius R and the steady Poiseuille
flow inside. At the inlet a homogeneous concentration is set at a distance h from the channel
walls.

given by
ldiff (x) =

√
4D

x

U0
. (6.5)

Assuming that a high degree of mixing is achieved when the diffusion length scale exceeds the
distance to the channel walls, we can introduce the condition for effective mixing

ldiff
h

> 1. (6.6)

This is equivalent to requiring a large value of the following dimensionless number

θmix = 2
√

Dx

U0h2 . (6.7)

6.1.2 Mixer performance

One of the most common way to measure mixing is based on the concentration distribution inside
the channel. By dividing the volume of interest and computing the deviation of concentration in
each sub-volume from the average value, the mixing variance coefficient (MVC) is obtained as
follows [137]

MVC = 1
N

N∑
i=1

(ci − cavg)2 , (6.8)

where N is the number of sub-domains, ci is the concentration in the ith sub-volume and cavg is
the average concentration in the whole domain. When the concentration becomes homogeneous,
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the value of MVC approaches zero.
To compare systems where the initial total concentration changes, we also consider the

coefficient of variation (COV) to quantify the radial mixing. Although it shares the same
approach as MVC, COV represents the relative standard deviation and is expressed as [138]

COV = 1
cavg

√∑N
i=1 (ci − cavg)2

N
. (6.9)

As a result, it is a dimensionless number that makes it possible to compare data sets with widely
different cavg. However, if the average value is close to zero, COV approaches infinity and is
therefore sensitive to small changes of cavg.

6.2 Simulation setup

Our main goal is to investigate the advection-diffusion of a species inside microchannels and the
changes in the mixing performance caused by the passage of a microcapsule. For this, we compare
multiple channel setups, incorporating different passive mixer elements and various concentration
distributions at the inlet. In this section we present all the systems that are considered, followed
by a description of the simulation methods used for modelling the interplay of three different
processes: diffusion, fluid flow and the capsule’s membrane dynamics.

6.2.1 System geometry

The basic geometry consists of a straight microchannel which is modelled as a cylinder with a
radius of 95 µm and a length of 900 µm, which in simulation units corresponds to R = 19 and
L = 180 grid nodes, respectively. Here, one or more substances are being constantly fed into the
system where they are transported from one end to another. The patterns considered in this
study for the concentration distribution of the species at the inlet are shown in Figure 6.3. First
a central circular distribution of the species is used to replicate the inner-layer in the coaxial
printing nozzle [139, 140]. Another case that is analysed here consists of placing two fluid flows
in a side-by-side manner at the entrance such that the species homogeneously fills half of the
channel at inlet. This corresponds to T- and Y-shaped channels [141, 142]. Additionally, the
side-by-side distribution can be improved considering the principles stated in Section 6.1.1, by
halving the striation length using parallel lamination [143].

The advection is driven by a Poiseuille flow, as illustrated in Figure 6.4, which is the result of
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(a) (b) (c)

Figure 6.3: Concentration distribution of the species at the inlet: (a) a central circular shape
with a radius of 5 grid nodes, (b) half of the channel is filled and (c) the previous species stream
is split in half using parallel lamination.

inflow/outflow boundary conditions for the fluid velocity at the inlet and outlet and a no-slip
condition at the walls of the channel. We model the incompressible Newtonian fluid using the
properties of water, i.e. density ρ = 103 kg/m3 and kinematic viscosity ν = 1.2 · 10−6 m2/s.
Because the channel is of micrometer scale, the flow is usually in the Stokes flow regime, thus,
throughout our simulations, the Reynolds number is kept to small values Re ≪ 1. For the
diffusion, we consider the simple case of oxygen in water which has the diffusion coefficient
D = 2 · 10−9 m2/s around room temperature [144]. Furthermore, we set Pe = 10 for every system
that is simulated.

To study the mixing throughout the channel, we consider three additional setups as displayed
in Figure 6.5. First, an obstacle in form of a sphere with the radius r = 12 is fixed at x = 30
from the inlet. Then, we test the impact of the shape of the system by using a wavy channel
constructed as sinusoidal wave [145]. Lastly, we introduce synthetic microcapsules which are
impermeable for the fluid and the species and we flow them through the channel as another
form of a mixer element. Initially, they are modelled as spheres having the radii r = 12 and are
then deformed by the hydrodynamic forces. To characterise the deformation of the capsules, we
introduce another dimensionless number, i.e. the capillary number Ca, representing the relation
between viscous forces and the surface tension forces acting across the membrane. It is defined as

Ca = µu

σ
, (6.10)

where µ is the dynamic viscosity of the fluid and σ is the surface tension.

81



6. SPECIES MIXING IN A MICROCHANNEL

(a)

0 20 40 60 80 100 120 140 160 180
X

0

10

20

30

40

Y  

0 20 40 60 80 100 120 140 160 180
X

0

10

20

30

40

Y  

0.0017 0.0   0.0012 0.0008 0.0004
velocity magnitude

(b)

0

0.0003

0.0006

0.0009

0.0012

0.0015

0.0018

0 30 60 90 120 150 180

ve
lo

ci
ty

X

(c)

0

0.0003

0.0006

0.0009

0.0012

0.0015

0.0018

0 10 20 30 40

ve
lo

ci
ty

Y

Figure 6.4: (a) The steady flow field inside the microchannel with (b) the longitudinal profile
along the centreline and (c) the transversal profile at x = 120.

6.2.2 Simulation methods

Considering the most complex case where the mixing is not only influenced by the diffusion of
the species and the flow field inside the channel but also by the moving impermeable capsule,
one has to pay attention to the coupling of three different phenomena: advection, diffusion and
the membrane dynamics of the immersed boundary. Given the time dependent velocity field of
the fluid and the continuous movement of the capsule, the coupled solvers for the flow field and
the concentration field have to be run at each time step.

Fluid dynamics

We start by considering the simulation of the fluid dynamics. The flow fields are computed by
employing the LBM implementation for the NSE solver from the open source software package
ESPResSo [82] as described in section 3.3.1. Due to limitations in the method used for modeling
the capsule and the ADE solver extension that are later discussed, we must resort to using
inflow/outflow boundary conditions to drive the advection. Thus, the velocity u is imposed on
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(a) (b)

Figure 6.5: The steady flow field inside (a) a straight microchannel with a rigid sphere placed at
x = 30 and (b) a wavy microchannel with a deformable synthetic microcapsule flowing through
it.

the boundaries representing the inlet and outlet. The other walls have a no-slip condition which
leads to the formation of the parabolic flow profile in the steady-state with the average velocity u.
Figure 6.4 shows the effect introduced by the chosen BC at inlet and outlet, with the Poiseuille
profile not being fully developed close to the two ends of the channel, even in the steady-state.

Membrane dynamics

The coupling between fluid and the capsule is achieved via the framework of the immersed-
boundary method (IBM) [146, 147] which was already successfully implemented in ESPResSo [148–
150]. The IBM consists of two main steps: the elastic forces acting on the capsule are passed
to the fluid while the massless capsule is advected with the local fluid velocity due to no-slip
boundary condition. The inlet and outlet boundaries are considered periodic for the capsule. It
should be noted here that due to technical issues of the implementation used for this method, we
avoid using a pressure gradient within the channel. As a result, generating the advection requires
us to prescribe a certain average flow velocity as previously mentioned.

The membrane of the capsule is represented by an infinitely thin elastic sheet, discretized by
a set of nodes connected by triangles as illustrated in Figure 6.6. The triangulation of the surface
is performed using successive refinements of an icosahedron as described by Krüger et al. [151].
The shell of the capsule usually consists of an elastic polymer which can vary its area through
stretching caused by hydrodynamic forces. Therefore, its mechanics can be described using the
Neo-Hookean framework [152, 153]. Employing a similar setup, where an initially undeformed
capsule is flowing through a cylindrical channel, Chu et al. have computed the critical capillary
number beyond which a capsule modeled by the Neo-Hookean law does not reach a steady state
for a given size [154]. In our case, the typical value Ca = 0.05 is much lower than the threshold
for the size ratio r/R = 0.63 between the radius of the spherical capsule and the radius of the
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channel.

(a) (b)

Figure 6.6: The geometry of the triangulated infinitely thin elastic membrane used in the
simulations: (a) the initially spherical capsule is placed in a Poiseuille flow and (b) it deforms
axisymetrically.

Species transport

Our focus in this study is represented by species which diffuse inside the channel and are advected
by the flow field computed with the LBM at each time step, while also being influenced by
the movement of the capsule. To solve the ADE which describe their transport throughout
the system, we have opted to extend ESPResSo with the finite volume method presented in
section 3.1. For the spatial discretization we use the same lattice employed by the LBM for the
flow simulation.

The boundaries introduced for the fluid are also inherited, with different conditions available
to be assigned to them. We start with the walls forming the channel which are considered
impermeable and thus, a zero flux is imposed. At the inlet, a fix concentration C0 is set for the
nodes that form the desired pattern, while, for simplicity, the rest are considered impermeable.
Analysing the longitudinal flow profile in Figure 6.4 (b), it can be noticed that the advective
flux is influenced by the changing velocity near the two ends. As a result, the amount of species
that are transported from the inlet is less than the expected value. At the outlet it is often
assumed that the concentration does not change along the flow direction, which translates to a
zero gradient boundary condition. However, due to the aforementioned effect, the advective flux
decrease close to the exit, which would lead to a constant accumulation of concentration in that
region. Therefore, we choose to impose a fix concentration C = 0 at the outlet which prevents
this behaviour.
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6.3 Numerical results

6.3.1 Coaxial distribution

We start our investigation with an empty straight channel having the coaxial setup at inlet where
the species is homogeneously distributed in a circular shape with the radius of 5 grid nodes as
displayed in Figure 6.3(a). To assess the impact that the distortions of the flow field near the
inlet and outlet, highlighted in Figure 6.4, have on the mixing process, we have additionally
simulated the advection-diffusion of the species inside the same system using the LBM described
in section 3.3.2. For the LBM, besides being able to use a pressure gradient to generate the
Poiseuille flow field, we have also imposed a zero gradient for the concentration at the outlet to
replicate the classical outflow boundary condition. Figure 6.7 shows a significant discrepancy in
the MVC results between the two methods close to the inlet, which can be attributed to a larger
quantity of species being fed into the channel when using LBM, compared to the implementation
of FVM in ESPResSo. However, when using COV to measure the mixing, a very good agreement
is obtained. Therefore, our extended ESPResSo package proves to be a useful tool at least for
qualitative studies of mixing performance inside various systems.
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Figure 6.7: Mixing in a straight microchannel with the coaxial inlet concentration distribution,
measured using (a) MVC and (b) COV. The case of adding a spherical obstacle at x = 30
(Figure 6.5(a)) is also considered.

Using the analytical analysis from section 6.1.1, we can evaluate the dimensionless number
θmix for our current setup to estimate the distance required for efficient mixing to be obtained.
For the coaxial inlet boundary condition h = 14, which means that θmix > 1 is satisfied for x > 52.
The numerical results presented in Figure 6.7(b) show indeed that a good mixing (COV < 5%)
is achieved beyond x = 56, while a complete mixing (COV < 1%) occurs from x = 84. The
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addition of a fix sphere with the radius r = 12 at x = 30 from the inlet, significantly accelerates
this process such that mixing is completed from x = 35.

Next, we turn our attention to the wavy channel illustrated in Figure 6.5(b). The low Re
regime makes the results obtained with this geometry almost indistinguishable from the ones
produced by the empty straight channel. Figure 6.8 shows that in both systems the total mixing
occurs at the same distance. A more interesting case is represented by the addition of the
microcapsule which is flowing though out the channel. After the time required in the previous
case to reach the steady-state, we measure the mixing inside the system when the deformed
capsule is in the second half of the channel. The first thing that we notice is the disturbance
in the mixing process that occurs around the position of the capsule which can clearly be seen
in Figure 6.8(b). This heterogeneity is characterised by two peaks, each corresponding exactly
to the front and to the back of the capsule, respectively. To explain this behaviour we consider
the passage of the capsule from the entrance of the channel to the current position. Close to
the inlet, the species is not well mixed and, as a result, small volumes of high concentration,
that are either right in front or behind the capsule, are being advected together with it. The
membrane is impermeable for the species, and thus the capsule hampers the diffusion from these
pockets of higher concentration compared with the regions next to the walls, where transport is
less obstructed. To further highlight this, we note that the mixing increases from the front or
from the back of the capsule towards the median part where a high homogeneity is achieved.
This point corresponds to the transversal cross section of the channel that has the largest area
occupied by the capsule. Although this disturbance in the mixing extends more then the length
of the capsule, it only occurs on short distances, such that closer to the inlet no effect is measured
compared to the case of the empty channel.

6.3.2 Side-by-side distribution

We now change the pattern of the species distribution at the inlet to the side-by-side configuration
as illustrated in Figure 6.3(b). Given the fact that the species fill exactly half of the cross section,
this time we may consider the radial distance for the diffusion to correspond to the radius of
the channel, such that h = 19. As a result, the analytical condition θmix > 1, required to obtain
mixing of the species, is fulfilled for x > 95. This result suggests that the distance at which a
homogeneous distribution can be observed significantly increases. Therefore we have opted to
extend the length of the straight channel to 240 grid nodes for this simulation. The computational
results displayed in Figure 6.9 show that a good mixing (COV < 5%) occurs from x = 135, while
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Figure 6.8: Comparison of the mixing performance between an empty straight channel, an empty
wavy channel and an wavy channel with a microcapsule flowing through it. The results are
measured after the steady-state is reached, using (a) MVC and (b) COV. The coaxial setup is
used as a boundary condition for the concentration at the inlet.

complete mixing (COV < 1%) is achieved beyond x = 212. Due to the complete separation of
the species into the two halves of the channel at the inlet, this time the addition of the fixed
sphere close to the entrance increases the distance required for the mixing process.
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Figure 6.9: Comparison of the mixing performance between the simple side-by-side (Figure 6.3(b))
and the laminar (Figure 6.3(c)) concentration distribution at the inlet in a straight channel using
(a) MVC and (b) COV. The case of adding a spherical obstacle at x = 30 (Figure 6.5(a)) is also
considered.

An enhancement in the mixing performance can be achieved through the process of parallel
lamination. Each of two different concentration streams from the inlet (Figure 6.3(b)) are
divided into two laminae such that the distribution illustrated in Figure 6.3(c) is obtained.
According to equation 6.2, this should lead to mixing that is faster by a factor of four. Due to the
linearity between time and distance, the length required for the same level of homogeneity to be
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achieved should also be only a quarter of the previous value. Figure 6.9 shows the improvement
characteristic to this setup, with a good mixing of COV < 5% being obtained from x = 37.
However, complete mixing (COV < 1%) occurs only beyond x = 108, which is approximately
half the distance required in the initial case. This discrepancy compared to the expected value
can be explained by the lack of periodic boundaries in the direction normal to the laminae,
and therefore, the particles next to the walls require more time to reach the depleted zones,
which becomes noticeable when total mixing is sought. We also note that in the case of parallel
lamination, the fixed sphere has almost no impact due to the fact that the species are more
evenly distributed at the inlet.

For the study of the wavy channel geometry effects, we revert to the initial grid length of 180
nodes due to computational reasons. Figure 6.10 shows that for the side-by-side concentration
distribution, the wavy channel enhances mixing such that a value of COV < 5% is reached from
x = 108. The reason why the difference is noticeable now may be attributed to the fact that the
species is placed closer to the channel walls at the inlet, unlike the coaxial distribution where it
is concentrated in the centre.
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Figure 6.10: Comparison of the mixing performance between the straight and the wavy channel
geometries using (a) MVC and (b) COV.

Next, we introduce the deformable microcapsule into the wavy channel and measure the
mixing level when it reaches the same position that was analysed for the coaxial distribution.
Again, in Figure 6.11 we notice the same effect around the capsule as described for the previous
inlet concentration distribution. The interesting aspect is that the same level of heterogeneity is
induced by the capsule, for both the simple side-by-side and the parallel lamination pattern, even
though a better mixing is achieved for the latter in the absence of the perturbation. Moreover,
for all three cases of concentration distribution considered in our study, the peaks in front of
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the capsule and behind it have almost exactly the same values of COV = 25% at x = 137 and
COV = 44% at x = 116, respectively.
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Figure 6.11: Mixing performance in a wavy channel with and without a microcapsule flowing
though it measured using (a) MVC and (b) COV. Both the simple side-by-side (Figure 6.3(b))
and the parallel lamination (Figure 6.3(c)) concentration distributions are considered for the
inlet.
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7. CONCLUSIONS AND OUTLOOK

In this thesis, advection-diffusion-reaction processes were studied in the light of two key research
areas, i.e. chemical synthesis and microfluidics. Using numerical simulations and developing
simple theoretical models, we were able to offer new insight into the properties and characteristics
of novel techniques that have emerged in these fields. For this, we have implemented three
different solver, namely LBM, RWPT and FVM, which, coupled with a fluid solver, allowed us to
track the evolution of the concentration fields in various systems. Moreover, we have shown that
a better understanding of the reaction processes can be gained by developing kinetics models
tailored for the systems of interest. In this regard, two new tools have been proposed for studying
reactions with an induction period by extending the classical first-order and second-order kinetics
models with an additional parameter.

The catalytic performance of gold nanoparticles was analysed in chapter 4. First, we
investigated the impact that the size of the particles has on the reaction process from the
perspective of the advection-diffusion mechanisms that describe the reactant transport. To
compare systems with different particle sizes but constant total surface areas, we have employed
a lattice Boltzmann scheme and a random walk particle model. The latter allowed for modelling
the anisotropic diffusion induced by the higher hydrodynamic resistance close to the surface of
the nanoparticles. All our results showed that the reaction rates are independent of the particle
size, thus ruling out the surface-modified diffusion of the reactant as a possible explanation for
the change in the catalytic performance that was observed in the experiments.

Furthermore, gold nanoparticles can be embedded on patchy nonwovens in order to prevent
their aggregation and their particular catalytic activity was also studied. To account for the
induction period due to the swelling of the patches in the reactants, we have proposed an
extended pseudo-first order kinetics model. The novelty is represented by the introduction of the
accessibility parameter r which determines the rate at which the reactants become available to
the catalytic sites. Using this model we were able to accurately fit the experimental results over
the full time range which revealed that both the geometry and the composition of the patches
affect the catalytic performance by having different accessibility rates.

Chapter 5 is dedicated to the study of one-pot multi-step reactions using Wolf-Lamb-type
catalysts. Initially we analysed the kinetics of a two-step reaction with different type of catalytic
sites. The measured reaction rates exhibited a slow start of the second reaction which could not
be replicated using the classical second order kinetics model. Therefore, we have introduced an
additional parameter ∆t in the equations that account for the second step. The improvement in
the fitting suggested that the delayed start is caused by the lack of intermediate species available
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in the beginning and not by some intrinsic mechanisms.

The efficiency of flow-through reactors using fibrous membranes as catalytic carriers for
cascade reactions was then considered. Using the lattice Boltzmann method, we were able to
simulate the interplay of the three mechanisms (advection, diffusion and reaction) that describe
such systems. The reactor efficiency was computed as a function of two dimensionless parameters:
the Péclet number which measures the ratio between the advective and diffusive transport and
the Damköhler number which gives the ration between reactive and diffusive time scales. The
membrane geometry was also taken into account, with the side-by-side fiber morphology yielding
better performances due to the close proximity of the reaction sites and thus supporting the
recent experimental efforts to immobilise two catalysts on a single fiber. Additionally, we have
also developed an approximative theoretical model, characterised by a single adjustable parameter
∆, which showed a good agreement with the numerical results. Thus, our analytical model
can be a useful tool for a quick estimation of the efficiency of a cascade reaction system using
fibrous membranes as catalytic carriers. For further studies, our simulation code can be used
for modelling more complex morphologies, such as mesoporous and core-shell fibers, as well as
different fiber mats configurations. Another important development would be the implementation
of an upscaling step which would allow our computational model to simulate the behaviour of the
full centimeter-scale flow chamber. For this step, the same ADRE equation would be employed,
but the diffusion coefficient and the reaction rate constant are replaced with the effective values
which incorporate the influence of the individual fiber arrangement and morphology, computed
using the fiber-scale method presented here.

The last part of this work (chapter 6) focuses on the study of the mixing process inside
microchannels. The combined lattice Boltzmann/immersed boundary method has been extended
with a finite volume method to be able to compute the coupled flow field, membrane dynamics
and concentration field throughout the channel. Using coaxial and side-by-side concentration
distributions of the species at the inlet, we were able to compute the distance required for
an effective mixing. Passive elements to enhance homogeneity, such as channel geometry and
lamination of the species stream, were considered, with the latter showing a significant reduction
in the mixing length. A novel and significant result was the influence of a suspended deformable
microcapsule on the species distribution. Notably, the mixture uniformity was worsened around
the position of the capsule, the highest variations being recorded right in front of and behind it.
This behavior was attributed to the volumes of unmixed species from the inlet being transported
with the capsule, while their diffusion is blocked by the impermeable membrane. It was also
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shown that the relative variance in the mixing induced by the suspended capsule has the same
value for all concentration distributions that were considered at the inlet. Our study can be
extended by considering a wider range of parameters for the fluid and capsule properties, as well as
different mixers, such as herringbone groove channel [155, 156] and alternate injection design [157].
Furthermore, in the framework of ESPResSo package, the LBM/IBM implementation has already
been successfully used to simulate suspensions of red blood cells [149, 158]. Therefore, our
extension can be used to model the transport of molecules (e.g. oxygen, drug carrier) in blood
vessels and offer a deeper insight into their dispersion from the point of release to the channel
walls [159].
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[36] J. Schöbel, M. Burgard, C. Hils, R. Dersch, M. Dulle et al., Bottom-up meets top-
down: Patchy hybrid nonwovens as an efficient catalysis platform, Angewandte Chemie
International Edition 56, 405 (2017)

[37] L. Qi, Y. Wei, L. Xu and Z. Liu, Reaction behaviors and kinetics during induction period
of methanol conversion on HZSM-5 zeolite, ACS Catalysis 5, 3973 (2015)

[38] C. Hils, M. Dulle, G. Sitaru, S. Gekle, J. Schöbel et al., Influence of patch size and chemistry
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[153] D. BARTHÈS-BIESEL, A. DIAZ and E. DHENIN, Effect of constitutive laws for two-
dimensional membranes on flow-induced capsule deformation, Journal of Fluid Mechanics
460, 211–222 (2002)

[154] T. Chu, A.-V. Salsac, E. Leclerc, D. Barthès-Biesel, H. Wurtz et al., Comparison between
measurements of elasticity and free amino group content of ovalbumin microcapsule
membranes: Discrimination of the cross-linking degree, Journal of Colloid and Interface
Science 355, 81 (2011)

[155] J. Aubin, D. Fletcher and C. Xuereb, Design of micromixers using CFD modelling, Chemical
Engineering Science 60, 2503 (2005)

[156] S. Hossain, A. Husain and K.-Y. Kim, Optimization of micromixer with staggered herring-
bone grooves on top and bottom walls, Engineering Applications of Computational Fluid
Mechanics 5, 506 (2011)

[157] J. MacInnes, Z. Chen and R. Allen, Investigation of alternating-flow mixing in microchannels,
Chemical Engineering Science 60, 3453 (2005)
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