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Abstract: Geopolitical risks and conflicts wield substantial influence on the global economy and
financial markets, fostering uncertainty and volatility. This study investigates the intricate relation-
ship between gold and representatives of green and sustainable stocks in the US and EU during the
Russia-Ukraine conflict, employing multifractal detrended cross-correlation analysis (MF-DCCA)
and nonlinear Granger causality. MF-DCCA reveals significant multifractal properties and non-
linear cross-correlations across all time series pairs. Notably, conflict weakened the multifractal
cross-correlations between US stocks and gold, except for the TESLA/gold pair. A similar significant
change in the EU market’s multifractal properties was observed during the conflict. In conjunction
with MF-DCCA, Granger causality tests indicate bidirectional nonlinear relationships between gold
and green/sustainable stock markets in the USA and EU. Gold’s past movements significantly influ-
ence changes in all the considered green and sustainable stocks, enabling predictions of their behavior.
These findings shed light on multifractal dynamics during geopolitical crises and emphasize the bidi-
rectional relationships between gold and green and sustainable stock markets. This comprehensive
analysis informs investors and policy makers, enhancing their understanding of financial market
behavior amid geopolitical instability.

Keywords: multifractal cross-correlation; nonlinear Granger causality; green and sustainable stocks:
gold: Russia-Ukraine conflict

1. Introduction

The conflict between Russia and Ukraine, which began in February 2014 over a
dispute about the official status of Crimea and Donbas, escalated on 24 February 2022,
and eventually became the most significant war in Europe since World War II [1]. This
conflict had severe implications for global financial markets. Investor reactions to news
about geopolitical risks and conflicts are often exaggerated [2], which does not help the
overall market stability. As an example, Abbassi et al. [3] demonstrated that stock prices
are vulnerable to geopolitical risks and trade dependence, underscoring the vulnerability
of the stock markets in response to such events.

The economic consequences of the Russia-Ukraine (RU-UA) conflict range from sup-
ply chain shortages (especially in base metals and food) to higher inflationary pressures,
weaker growth prospects, and other impacts as the battle has escalated [4]. Since the out-
break of the RU-UA conflict, global equity markets have experienced negative cumulative
abnormal returns with significant heterogeneous effects [5], accompanied by substantial
volatility [6]. As inflationary pressures continue to mount and the conflict shows no signs
of abating, investor sentiment appears to have come under significant pressure. Bossman
and Gubareva’s [7] analysis of the financial impact of geopolitical risks triggered by the
Russia-Ukraine conflict on the seven major stock markets in emerging and developed
economies shows that the effect is asymmetric and market-specific, with Brazil, China,
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Russia, and Turkey being resilient to geopolitical risks during bear markets. The RU-UA
conflict and the lingering consequences of COVID-19 are forcing central banks to raise
interest rates to support currencies and social cohesion, fueling global economic concerns
of a possible sharp slowdown or recession, which, combined with inflation, would lead to
a highly adverse situation [8].

Stocks and gold prices are two important indicators of the health of the economy.
However, the relationship between stocks and gold prices is complex and can be influenced
by a number of factors. When the stock market rises, investors are generally optimistic
about the future and willing to invest in companies. On the other hand, when the stock
market falls, investors are more cautious and pull their money out of the market. Con-
versely, when there is economic uncertainty, gold is often seen as a safe haven for investors.
When the price of gold rises, it indicates that investors are concerned about inflation or
other economic factors that could negatively impact the value of traditional investments
like stocks.

However, green and sustainable stocks are relatively less studied in the academic
literature than traditional stocks, primarily due to the evolving nature of sustainable finance
and environmental, social, and governance (ESG) investing. Traditional finance research
has long focused on conventional metrics and analysis of standard stocks, for which well-
established data sources and historical performance evidence exist. In contrast, green and
sustainable stocks operate at the intersection of finance, environmental impact, and social
considerations. As interest in green and sustainable investing continues to grow, academic
research in these areas gradually expands; however, this growth has yet to fully bridge the
relative scarcity of scholarly work. As sustainability and ESG factors gain prominence in
investment decisions, we expect more research to be shedding light on the performance,
risks, and impacts of green and sustainable stocks.

The main objective of this study is to examine how the Russia-Ukraine conflict has
affected the relationship between the stock prices of selected green and sustainable com-
panies in the US and the EU and the price of gold. To achieve that goal, we employ
the multifractal detrended cross-correlation analysis (MF-DCCA) method to assess the
cross-correlation between gold and sustainable stocks in the US and EU. Subsequently,
we apply the nonlinear Granger causality test method to examine the causal relationship
between these financial instruments. Furthermore, this study contributes to closing the
existing research gap by exploring the impact of the Russia-Ukraine conflict on green and
sustainable stocks and their relationship with gold prices. This analysis enhances our
understanding of sustainable finance under geopolitical stress.

The MF-DCCA technique was first proposed by Zhou [9] and has since been success-
fully applied in a variety of fields, including financial markets [10–14], cryptocurrencies [15],
Internet of Things [16], and various environmental phenomena [17–19]. Moreover, gold
has also been an interesting research object when speaking about MF-DDCA. For instance,
gold was analyzed in world markets [20], Chinese markets [21], and with Bitcoin and
crude oil [22]. Multifractal analysis is commonly used to study crises’ impact on markets.
Bentes [23] investigated the safe haven attributes of gold in CIVETS countries and observed
that, prior to the pandemic, gold did indeed exhibit safe haven characteristics; however, as
the crises of COVID-19 and the RU-UA conflict unfolded, an increase in multifractality was
detected, signifying the diminishing safe haven property of gold during these crises times.
Aslam [24] applied multifractal analysis to evaluate the impact of the COVID-19 pandemic
on agricultural futures markets and found significant changes in intraday multifractal
properties and market efficiency. Mensi [25] used multifractal analysis to study Islamic
stock markets and found different levels of efficiency across sectors and changes after the
global financial crisis. In addition, multifractal analysis was used to evaluate the impact
of the Russia-Ukraine conflict on the intraday efficiency of energy markets [26] and to
investigate the multifractal characteristics of the cross-correlation between geopolitical risk
and energy markets [27].
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In addition to multifractal techniques, Granger causality analysis is widely used to
explore nonlinear causal relationships among financial variables that provide insight into
how different factors interact with and influence market dynamics. Linear models often
cannot capture the complex dynamics during financial crises or significant geopolitical
events such as the Russia-Ukraine conflict. Researchers can gain valuable insights into how
financial markets nonlinearly respond to such events, providing important information for
investors and decision makers. For example, Fernandez [28] used the nonlinear Granger
causality test to study the spillover effects of the US subprime crisis on Asian and European
economies and its impact on currency and stock markets. Similarly, Alzahrani et al. [29]
examined the nonlinear Granger causality between wavelet-transformed spots and future
oil prices. This method extends across various domains, encompassing stock markets [30]
and their interactions with oil markets [31,32], investor sentiment [33], geopolitical risk
assessments [34], responses to events like COVID-19 [35], and considerations of mental
health [36].

The following sections of this paper are organized as follows: Section 2 explains
the materials and methods used, Section 3 presents the results, and Section 4 presents
our conclusions.

2. Methodology and Data

This section presents a concise overview of the MF-DCCA and nonlinear Granger
causality test methodologies, outlining their key objectives and primary steps.

2.1. MF-DCCA

The MF-DCCA is one of the most predominant methods for examining multifractal
patterns in cross-correlations of time series. Multifractal cross-correlation implies that
shared underlying processes or factors influence both time series, but their relationship is
more intricate and nuanced than a straightforward linear correlation can depict. MF-DCCA
offers distinct advantages over comparable methods when it comes to examining the re-
lationship between two time series. MF-DCCA excels at discovering hidden nonlinear
relationships that are often missing in linear methods. Its ability to handle scale invariance
makes it suitable for capturing both short-term fluctuations and long-term trends. This
is particularly valuable in finance, where multifractal scaling is common due to complex
interactions. MF-DCCA is also robust against noise, provides statistical significance testing,
and can be used outside of finance, increasing its versatility. However, it requires computa-
tional resources that are sensitive to parameter settings and may not always provide direct
causal insights.

To investigate the multifractal cross-correlation between the stock prices of selected
green and sustainable companies in the US and EU and the price of gold, the following
steps are taken.

Step 1. Let xt and yt be two time series of the same length N. The cumulative deviation
series, X(t) and Y(t), are calculated for both time series using (1), where x and y represent
the averages of the time series, and t = 1, 2, . . . , N:

X (t) =
t

∑
k=1

(xk − x ) and Y (t) =
t

∑
k=1

(yk − y ) (1)

Step 2. The X(t) and Y(t) are divided into Ns non-overlapping segments, where s is the
time scale. This process is also performed from the end to the start of the series to ensure
all information is used. As a result, two sets of Ns non-overlapping segments are obtained.
Step 3. Compute local trends with a kth-order polynomial fit via the least squares method
for each sub-segment ν

xν(i) = a1ik + · · ·+ aki + ak+1

yν(i) = b1ik + · · ·+ bki + bk+1

(2)
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where i = 1, 2, . . . , s; k = 1, 2, . . .; ν = 1, . . . , Ns.
Step 4. For each of the 2Ns segments, we determine the local variance

F2(v, s) =
1
s

s

∑
i=1
|X[(v− 1)s + i]− xv(i)||Y[(v− 1)s + i]− yv(i)| (3)

for segments v = 1, 2, . . . , Ns and

F2(v, s) =
1
s

s

∑
i=1
|X[N − (v− Ns)s + i]− xv(i)||Y[N − (v− Ns)s + i]− yv(i)| (4)

for segments v = Ns + 1, Ns + 2, . . . , 2Ns.
Step 5. Then, we compute the qth order wave function

Fq(s) =
{

1
2Ns

2Ns
∑

v=1

[
F2(v, s)

] q
2

} 1
q

, q 6= 0

F0(s) = exp{ 1
4Ns

2Ns
∑

v=1
log F2(v, s)

}
, q = 0.

(5)

If the series are long-range power-law correlated, Fq(s) increases when s increases.
In this case, the power-law correlations satisfy Fq(s) ∼ shxy(q), where hxy(q) denotes the
generalized Hurst exponent. If there is only short-range or no correlation in the time
series, then hxy(2) = 0.5. If there is a long-range power-law correlation, then hxy(2) 6= 0.5.
Furthermore, if hxy(2) > 0.5, the long-range auto-correlations are persistent, while if
hxy(2) < 0.5, long-range auto-correlations are anti-persistent. To measure the strength
of multifractal features, we compute ∆hxy = hxy (qmin)− hxy(qmax). The larger ∆Hxy, the
stronger the multifractal feature.

The generalized Hurst exponent hxy is directly related to the multifractal scaling
exponent τ(q) via the following relation: τ(q) = qhxy(q) − 1. A linear form for the
multifractal scaling exponent characterizes the monofractal time series.

The singularity strength αxy = hxy(q) + qh
′
xy(q) describes the singular degree of each

segment in a complex system. The singularity spectrum fxy(α) = qaxy − qhxy + 1 describes
the fractal dimension. The spectrum gives information about the relative dominance
of various fractal exponents in the series. The wider the range of singularity strength
∆αxy = αmax

xy − αmin
xy , the more intense data fluctuation exists.

2.2. Nonlinear Granger Causality

The Granger causality test method proposed by Granger [37] is widely used to analyze
the risk conduction effect. Existing research proposes the nonlinear Granger Causality
test method [38] based on the linear Granger causality test method, which compensates
for the limitation of the linear Granger causality test method. Hence, the key advantage
of the nonlinear Granger causality test is its ability to uncover complex, nonlinear causal
relationships in data.

The process of conducting a nonlinear Granger causality test is outlined as demon-
strated by [30,36]. Consider two time series, {Xt} and {Yt}, which are assumed to exhibit
strict stationarity and weak dependence. The m-length leading vector of {Xt} is represented
as {Xm

t }, while the lag vectors of α-length and β-length for {Xt} and {Yt} are denoted as
Xα

t−α and Yβ
t−β, respectively.
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Formally, we define that

Xm
t ≡ (Xt, Xt+1, Xt+2, . . . , Xt+m−1)

Ym
t ≡ (Yt, Yt+1, Yt+2, . . . , Yt+m−1)

Xα
t−α ≡ (Xt, Xt+1, Xt+2, . . . , Xt−α)

Yβ
t−β ≡

(
Yt, Yt+1, Yt+2, . . . , Yt−β

)
.

(6)

For given values of m, α, and β (each greater than or equal to 1) and a positive constant
e, the nonlinear Granger causality test indicates that {Yt} fails to Granger-cause {Xt} if the
following condition is met [30,36]:

Pr
(∣∣∣∣Xm

t – Xm
s
∣∣∣∣ < e

∣∣∣∣Xα
t−α – Xα

s−α

∣∣∣∣ < e,
∣∣∣∣Yβ

t−β – Yβ
s−β

∣∣∣∣ < e
)

= Pr
(
Xm

t – Xm
s
∣∣∣∣ < e

∣∣∣∣ Xα
t−α − Xα

s−α

∣∣∣∣< e
)
.

(7)

Here, Pr(·) denotes the probability and ‖ · ‖ denotes the maximum norm.
The left-hand side probability signifies the likelihood that two arbitrary m-length lead-

ing vectors of {Xt} are within a distance of e from each other, provided their corresponding
α-length lag vectors of {Xt} are at a distance shorter than e from each other.

Testing the null hypothesis H0 : {Yt} does not exhibit nonlinear Granger causal-
ity with respect to {Xt} but becomes more insightful when expressing the conditional
probabilities through ratios of their corresponding joint probabilities.

We utilize the ratios of joint probabilities, denoted as C1(m+α,β,e)
C2(α,β,e) and C3(m+α,e)

C4(α,e) , to
assess the left-hand and right-hand sides. We define joint probabilities as follows [30,36]:

C1(m + α, β, e) ≡ Pr
(∣∣∣∣∣∣Xm+α

t−α − Xm+α
s−α

∣∣∣∣∣∣< e,
∣∣∣∣∣∣Yβ

t−β – Yβ
s−β

∣∣∣∣∣∣< e
)

C2(α, β, e) ≡ Pr
(∣∣∣∣∣∣Xα

t−α – Xα
s−α

∣∣∣∣∣∣< e,
∣∣∣∣∣∣Yβ

t−β – Yβ
s−β

∣∣∣< e
)

C3(m + α, e) ≡ Pr
(
||X m+α

t−α − Xm+α
s−α

∣∣∣∣∣∣< e
)

C4(α, e) ≡ Pr
(∣∣∣∣Xα

t−α – Xα
s−α

∣∣∣∣< e
)

(8)

Given the provided values of m, α, and β (all of which are greater than or equal to 1)
and a positive constant e, the null hypothesis H0 can be formulated as follows [30,36]:

H0 :
C1(m + α, β, e)

C2(α, β, e)
=

C3(m + α, e)
C4(α, e)

(9)

Let us define I as a kernel, denoted as I = (Z1, Z2, e), which takes on the value
of 1 when two compatible vectors Z1 and Z2 are within a maximum norm distance of e
from each other, and 0 otherwise. This kernel function plays a crucial role in determining
proximity based on the specified conditions, [30,36].

I = (Z1, Z2, e) =

{
1, ‖ Z1 − Z2 ‖ ≤ e

0, ‖ Z1 − Z2 ‖> e
(10)
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The correlation-integral estimators of the joint probabilities can subsequently be ex-
pressed as follows [30,36]:

C1(m + α, β, e, λ) ≡ 2
λ(λ−1)∑ ∑

t<s
I
(
xm+α

t−α , xm+α
s−α , e

)
· I
(

yβ
t−β , yβ

s−β , e
)

C2(α, β, e, λ) ≡ 2
λ(λ−1)∑ ∑

t<s
I
(
xα

t−α , xα
s−α , e

)
· I
(

yβ
t−β , yβ

s−β , e
)

C3(α, β, e, λ) ≡ 2
λ(λ−1)∑ ∑

t<s
I
(

xm+α
t−α , xm+β

s−β , e
)

C4(α, e, n) ≡ 2
λ(λ−1)∑ ∑

t<s
I
(

xα
t−α , xβ

s−β , e
)

(11)

where t, s = max(α, β) + 1, . . . , T −m + 1, n = T −max(α, β)−m + 1.
When considering the provided values of m ≥ 1, Lx ≥ 1, Ly ≥ 1, and e > 0, the

test statistics are defined utilizing the joint probability estimators as follows [30,36]:

√
n
[

C1(m + α, β, e)
C2(α, β, e)

− C3(m + α, e)
C4(α, e)

]α

∼ N
(

0, σ2(m, α, β, e)
)

. (12)

In this context, the variance is consistently estimated [39]. Assuming the values of
m, α, and β ≥ 1 and e > 0, if {Xt} does not satisfy the nonlinear Granger cause with
respect to {Yt}, then the test statistic follows an asymptotic normal distribution with a zero
mean and a constant variance. The conventional critical values are applicable when used to
test the null hypothesis that the stock price {Xt} does not nonlinearly Granger-cause {Yt},
due to the asymptotic normality of the test statistics. A similar procedure is employed to
test the hypothesis that {Yt} does not nonlinearly Granger-cause {Xt}.

2.3. Data

We selected 8 representatives of stocks of the greenest and sustainable companies from
the United States and Europe. In selecting companies for this study, we were guided by
several key criteria. First, we sought diversity across industries, encompassing renewable
energy, waste management, utilities, and real estate, thus addressing various environmen-
tal challenges. Second, we focused on industry leaders renowned for their innovation,
providing valuable insights into the intersection of innovation and sustainability. Third, we
prioritized companies with significant global impact, actively shaping sustainability trends
and supply chains. Fourth, to facilitate comparisons, we considered companies operating
in both the United States and Europe, regions that are at the forefront of sustainability.
Finally, and most crucially, the availability of robust and reliable data, critical to scientific
research, strongly influenced our selection, leading us to the eight chosen companies. The
data were obtained from the Yahoo Finance website. The selected time series spanned from
August 4, 2014, to February 21, 2023, and a description of the gold and stocks series can be
found in Table 1.

Table 1. Description of data.

Tesla (TSLA)
A sustainable energy company based in the United States that

manufactures electric vehicles and renewable energy products to
reduce the world’s dependence on fossil fuels.

First Solar (FSLR)
A US-based environmentally friendly technology company that

specializes in solar cell manufacturing and is driving the
transition to renewable energy sources.

NextEra Energy (NEE)
A US-based clean energy company that generates electricity from

renewable sources such as wind and solar power and is
committed to reducing carbon emissions.
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Table 1. Cont.

Waste Management (WM)
A US-based waste management and environmental services

company that works to minimize waste and promote recycling to
create a more sustainable future.

Duke Energy (DUK)
A US-based energy company that has made significant

investments in renewable energy and has a goal of zero carbon
emissions by 2050.

Vonovia SE (VNA.DE)
A German real estate company focused on sustainable housing,

promoting energy efficiency, and reducing the carbon footprint of
its buildings.

Vestas Wind Systems A/S
(VWS.CO)

A Danish wind turbine manufacturer driving the shift to
renewable energy sources and reducing carbon emissions.

Schneider Electric (SU.PA)
A French multinational company specializing in energy

management and automation solutions that help optimize energy
efficiency and reduce environmental impact.

Gold
Many factors, including global economic trends, political events,
and changes in interest rates, influence the price of gold. In recent
years, gold prices have fluctuated due to different uncertainties.

The evolution and development of prices are depicted in Figure 1, while the descriptive
statistics and stationarity tests are presented in Table 2.
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Table 2. Descriptive statistics and unit root test results.

Whole
Period Mean Med Max Min SD Ske Kur JB ADF PP Obs

TSLA 87.56 21.68 409.97 9.58 107.61 1.21 2.95 438.99 ** −2.03 −2.13 1816
FSLR 66.14 59.92 180.19 26.33 28.95 1.74 6.35 1764.82 ** −1.60 −1.63 1816
NEE 47.11 39.44 90.25 18.53 22.58 0.38 1.64 183.64 ** −3.26 −3.40 1816
WM 98.04 91.08 175.29 44.05 37.53 0.37 1.94 127.08 ** −3.45 * 3.26 1816
DUK 87.16 85.82 115.43 64.15 10.77 0.45 2.41 88.89 ** −4.36 ** −4.46 ** 1816

VNA.DE 38.78 29.16 62.22 18.12 11.17 0.14 1.96 87.61 ** −0.59 −0.42 1816
VWS.CO 129.64 110.02 312 34.06 61.32 0.82 2.68 212.8 ** −2.66 −2.47 1816
SU.PA 88.43 72.34 177.82 45.93 32.68 0.87 2.37 256.76 ** −2.24 −2.36 1816
GOLD 1458.49 1319.4 2051.5 1050.8 276.23 0.46 1.62 205.91 ** −3.21 −2.81 1816

Before RU-UA conflict
TSLA 67.95 20.42 409.97 9.58 96.31 1.77 4.8 1056.91 ** −1.54 −1.52 1604
FSLR 59.41 55.66 121.14 26.33 18.62 0.76 3.17 156.54 ** −2.69 −2.69 1604
NEE 42.83 36.23 90.25 18.53 20.41 0.65 2.08 168.18 ** −2.87 −2.81 1604
WM 89.99 85.81 166.83 44.05 32.14 0.50 2.36 95.24 ** −2.53 −2.92 1604
DUK 84.96 83.99 107.93 64.15 9.17 0.43 2.54 63.22 ** −4.27 ** −4.20 ** 1604

VNA.DE 39.98 40.49 62.22 18.12 11.02 0.02 1.99 67.92 ** −3.10 −2.96 1604
VWS.CO 122.72 105.45 312 34.06 61.52 1.14 3.29 353.37 ** −2.10 −1.86 1604
SU.PA 82.44 70.69 177.82 45.93 29.73 1.35 3.77 529.71 ** −1.85 −1.90 1604
GOLD 1412.17 1293.5 2051.5 1050.8 258.41 0.77 2.11 212.21 ** −2.73 −2.50 1604

After RU-UA conflict
TSLA 235.96 236.82 381.82 108.1 63.95 −0.10 2.32 4.41 −2.06 −2.18 212
FSLR 117.12 122 180.19 61.4 40.23 0.00 1.40 22.51 ** −1.93 −2.03 212
NEE 79.50 80.16 89.77 67.02 5.4 −0.22 2.13 8.45 * −1.93 −2.56 212
WM 158.93 157.95 175.29 141.91 7.33 0.28 2.57 4.48 −2.88 * −2.91 * 212
DUK 103.82 104.75 115.43 85.97 6.56 −0.46 2.72 8.29 * −2.60 −2.84 212

VNA.DE 26.69 27.07 47.5 18.97 7.52 0.87 2.68 27.92 ** −1.41 −1.23 212
VWS.CO 182.02 184.28 235.4 134.88 21.66 −0.30 2.22 8.51 * −2.13 −2.02 212
SU.PA 133.76 133.38 156.28 112 11.59 0.03 2.08 7.53 * −1.79 −1.68 212
GOLD 1808.9 1811.6 2040.1 1626.7 96.81 −0.00 2.05 7.95 * −1.45 −1.42 212

Note: ** indicates significance at 1% level, * indicates significance at 5% level.

Descriptive statistics for eight stocks and gold were analyzed for three periods: the
whole period, before the RU-UA conflict, and after the conflict. The analysis revealed some
interesting findings about the behavior of these assets during the different periods.

First, the average price of most stocks and gold increased after the RU-UA conflict
compared with the period before. This can be attributed to the market’s response to
geopolitical events, where investors tend to favor safe assets such as gold and utility stocks
during periods of uncertainty. In contrast, the average price of Vonovia SE (VNA.DE)
declined after the RU-UA conflict, which could be attributed to factors such as increased
competition, supply chain disruptions, and/or regulatory issues. The median values are
not significantly different from the mean values.

Second, the standard deviation (SD) for all stocks and gold declined after the RU-UA
conflict compared with the pre-conflict period. This can be explained by the significantly
lower number of observations after the conflict and the fact that they are green and sustain-
able companies since, from a theoretical point of view, we could expect increased volatility
in the market due to geopolitical tensions.

The results also suggest that investors should carefully consider the risks associated
with investing in individual stocks, especially those with high volatility. These conclusions
are important for both investors and policy makers, as they highlight the need for careful
analysis and monitoring of market behavior in times of uncertainty.

Unit root tests determine whether a time series data set is stationary or not. A station-
ary series has a constant mean, variance, and autocorrelation, facilitating its modelling and
analysis. The Augmented Dickey-Fuller (ADF) and Phillips-Perron (PP) tests are commonly
used unit root tests. From the results, it can be seen that all time series are stationary over
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the entire period, except Duke Energy (DUK) for the whole period and before the conflict
and Waste Management (WM) after the conflict.

3. Results
3.1. MF-DCCA

In this section, we present results of MF-DCCA used to examine the cross-correlation
between selected US (TSLA, FLSR, NEE, WM, DUK) and EU stock prices (VNA.DE,
VWS.CO, SU.PA) and the gold price. The analysis was conducted for the entire period and
separately for the series before and after the RU-UA conflict in order to examine the impact
of the conflict. The reason is that previous crises, such as COVID-19, have significantly
affected the gold price and may have affected the multifractality and persistence of both
the gold market and green and sustainable stocks.

We first present results from MF-DCCA for the entire period to determine whether
the degree of multifractal cross-correlation between the price of gold and stocks increases
with the time scale. Figures 2 and 3 illustrate the fluctuation functions for the US and EU
companies, respectively. We only show the results for q-orders −10, −6, −2, 2, 6, and
10. All fluctuation functions exhibit an upward slope, suggesting that the cross-correlated
multifractal behavior of assets increases with the time scale. This is the first evidence that
the gold price amplifies the multifractal behavior of both US and EU stocks.

The values of the cross-correlation generalized Hurst exponents for both the US and
EU markets decline as the values of q increase, validating a strong multifractal behavior, as
shown in Figure 4a,d. Moreover, we can observe persistence, since hxy(2) is greater than
0.5. Another indication of multifractality is provided by the scaling exponent properties,
which exhibit a nonlinear relationship with q (Figure 4b,f). Lastly, we examine the strength
and spectrum of multifractality to analyze the time series pair. The width of the multifractal
spectra is considerably larger than zero, which demonstrates that the series are multifractal
(Figure 4c,f).

Now, we compare time series pairs in the pre-conflict and conflict periods. First, we
analyze the results for US stocks (Figure 5). Focusing on green and sustainable stocks in the
US market during the pre-conflict period, we found that the generalized Hurst exponent
decreases with increasing q, indicating that each series pair possesses a multifractal property
(Figure 5a,b). Furthermore, when q = 2, the exponents are larger than 0.5, indicating that all
time series pairs have persistence. During the conflict period, we observed a lower decay
rate of the exponent for all stocks except for DUK. The exponent for DUK did not follow the
same pattern as in the pre-conflict period. The values of the generalized Hurst exponents
during the conflict period were larger than those in the pre-conflict period, indicating that
the cross-correlation was more persistent during the conflict period. The scaling exponents
for US markets are nonlinearly dependent on q, showing further evidence of multifractality
for both periods (Figure 5c,d). Lastly, we use multifractal strength and spectra to examine
time series pairs in the pre- and post-conflict periods. The widths of multifractal spectra
are significantly nonzero, indicating that all the series are multifractal (Figure 5e,f).

Overall, we can conclude that multifractal cross-correlation exists between US stocks
and gold prices in both periods. These results mean that the time series are correlated in a
complex, nonlinear way that a single correlation coefficient cannot fully describe.

Regarding the EU market, we found that during the pre-conflict period, there was evi-
dence of multifractal cross-correlation between gold and the selected green and sustainable
stocks (Figure 6). Specifically, we observed that the scaling exponents decrease with increas-
ing q, indicating multifractality in the cross-relations (Figure 6a,b). The scaling exponents
for q < 0 are larger than those for q > 0, although they are all larger than 0.5. This suggests
that the cross-correlated behavior of small fluctuations is more persistent than that of large
fluctuations. The nonlinear dependency and multifractality of the analyzed relationships
are further supported by the fact that the multifractal exponents are nonlinearly dependent
on q. To better understand the nonlinear relationship between gold and the selected green
and sustainable stocks in the EU market, we conducted a further analysis using multifractal
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spectra. Our results showed that during the pre-conflict period, there were clear departures
from a random walk process for all cases, supporting the presence of multifractality in the
cross-correlations. However, during the conflict period, we observed significant changes in
the results and cross-correlation properties, suggesting a possible impact on the underlying
dynamics of the system—specifically, the generalized Hurst exponent of VNA.DE/Gold
and VWS. CO/Gold was no longer a decaying function of q for q > 0. This suggests
that the conflict may have affected the strength or nature of the interactions between the
components of the system. Furthermore, our analysis showed that the functions were
monotonically increasing for 0 < q < 2, indicating an increase in the persistence of the
cross-correlations, with the “normal” fluctuations enhancing. The multifractal exponents
did not show an obvious nonlinear dependence with q (Figure 6c,d), while the multifractal
spectra no longer had a reversed U shape (Figure 6e,f). Regarding the pair SU. PA/Gold,
the results still exhibited multifractal properties as in the pre-conflict period, but they were
much weaker. Overall, our findings suggest that the conflict significantly impacted the
multifractal nature and cross-correlations of the relationships between gold and the selected
green and sustainable stocks in the EU market.

A consistent fall in the generalized Hurst exponents further strengthens the multi-
fractality of time fluctuations of the cross-correlation between the gold price and the US
green and sustainable stock markets. Turning to the specific case of q-order 2, it is clearly
seen that the generalized Hurst exponents are higher in the conflict than in the pre-conflict
period. The implication is that the conflict intensifies the impact of gold prices on the
persistence of all the stock markets, making them less efficient than before the conflict. All
time series pairs have a larger ∆hxy and a larger ∆αxy in the pre-conflict period, suggesting
stronger multifractality and greater cross-correlations, except TSLA, where all the values
are larger in the conflict period. The implication is that the conflict intensifies the impact
of gold prices on the persistence of all the stock markets, making them less efficient than
before the conflict. All the stock markets’ generalized Hurst exponents rise significantly
above 0.5. Thus, the null hypothesis of random walk is rejected in favor of persistence and
market inefficiency.

The prices of selected EU green and sustainable companies show the same dynamics
concerning gold prices. The multifractal features of cross-correlation are weaker in the
period after the conflict. This can be viewed in terms of lower values of ∆hxy and ∆αxy.

The results in Tables 3 and 4 could be interpreted [in several ways. First, the time series
pairs are still correlated after the conflict, but the nature of the correlation has changed.
The larger value of ∆hxy and ∆αxy in the pre-conflict period could indicate a stronger,
more complex correlation between the time series pairs during that time, which has since
weakened or become more linear. Second, the conflict itself may have affected the dynamics
of one or both of the time series, leading to changes in their multifractal properties. Finally,
it is important to consider the possibility of spurious correlations or other confounding
factors that could affect the MF-DCCA analysis. For example, if other significant events
or trends are happening around the same time as the conflict, these could influence the
analysis results. In any case, further analysis and contextual information would be needed
to fully interpret the results of the MF-DCCA analysis and understand the implications of
the results before and after the RU-UA conflict.

3.2. Nonlinear Granger

While the MF-DCCA methodology is proficient in detecting cross-correlations, it does
not possess the capacity to discern the direction of a relationship. Hence, we employ the
nonlinear Granger causality test method to establish and characterize causal relationships,
subsequently comparing the obtained results using the multifractal approach on the whole
considered period. It is imperative to maintain stationarity in the time series utilized for the
Granger causality test in order to mitigate the influence of any autoregressive phenomena.
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Table 3. US: multifractal metrics.

Stock Metric Total Pre Post

TSLA
hxy(2) 1.516 1.509 1.497
∆hxy 0.323 0.368 0.526
∆αxy 0.474 0.525 0.714

FSLR
hxy(2) 1.495 1.496 1.423
∆hxy 0.310 0.289 0.215
∆αxy 0.446 0.415 0.344

NEE
hxy(2) 1.537 1.522 1.638
∆hxy 0.564 0.698 0.413
∆αxy 0.782 0.928 0.559

WM
hxy(2) 1.530 1.520 1.539
∆hxy 0.453 0.505 0.375
∆αxy 0.681 0.722 0.525

DUK
hxy(2) 1.554 1.547 1.652
∆hxy 0.591 0.681 0.170
∆αxy 0.803 0.903 0.292
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Table 4. EU: multifractal metrics.

Stock Metric Total Pre Post

VNA.DE
hxy(2) 1.527 1.532 1.486
∆hxy 0.579 0.616 0.204
∆αxy 0.797 0.840 0.343

VWS.CO
hxy(2) 1.497 1.489 1.525
∆hxy 0.219 0.271 0.203
∆αxy 0.346 0.396 0.339

SU.PA
hxy(2) 1.505 1.495 1.499
∆hxy 0.454 0.603 0.294
∆αxy 0.643 0.831 0.434

Tables 5 and 6 show that bidirectional nonlinear Granger causality relationships
exist between gold and two sustainable and green stock markets (EU and USA), where
α = β = 1, 2, 3, 4.

Table 5. Nonlinear Granger causality test results: USA.

α

Test

TSLA Gold FSLR Gold NEE Gold WM Gold DUK Gold

= → → → → → → → → → →
β Gold TSLA Gold FSLR Gold NEE Gold WM Gold DUK

1
Statistics 1.145 65.220 1.011 65.574 1.180 68.139 1.895 74.430 3.611 3.611
p-value 0.325 <0.01 0.431 <0.01 0.299 <0.01 1 <0.01 <0.01 <0.01

2
Statistics 1.4778 56.839 1.407 57.151 2.661 57.389 0.194 59.542 4.373 57.800
p-value 0.1 <0.01 0.129 <0.01 <0.01 <0.01 1 <0.01 <0.01 <0.01

3
Statistics 0.907 36.639 0.877 36.504 1.614 36.613 0.233 37.471 2.557 36.946
p-value 0.585 <0.01 0.627 <0.01 0.036 <0.01 1 <0.01 <0.01 <0.01

4
Statistics 0.5428 23.868 0.525 22.962 0.900 23.213 0.115 24.103 1.424 23.427
p-value 0.976 <0.01 0.981 <0.01 0.615 <0.01 1 <0.01 0.070 <0.01

Note: α = β denotes the residual series of lag order numbers; TSLA→ Gold means the original hypothesis: TSLA
is not a Granger causality of gold. The others have the same meaning; e = 1.5σ, m = 1.

Table 6. Nonlinear Granger causality test results: EU.

α

Test

VNA.DE Gold VWS.CO Gold SU.PA Gold

= → → → → → →
β Gold VNA.DE Gold VWS.CO Gold SU.PA

1
Statistics 5.837 59.587 0.864 73.112 −0.828 74.123
p-value <0.01 <0.01 1 <0.01 1 <0.01

2
Statistics 5.074 55.914 0.121 58.703 0.261 60.142
p-value <0.01 <0.01 1 <0.01 1 <0.01

3
Statistics 2.988 36.354 0.171 37.032 0.2756 38.078
p-value <0.01 <0.01 1 <0.01 1 <0.01

4
Statistics 1.688 23.110 0.123 23.464 0.193 24.348
p-value 0.014 <0.01 1 <0.01 1 <0.01

Note: α = β denotes the residual series of lag order numbers; VNA.DE→ Gold means the original hypothesis:
VNA.DE is not a Granger causality of gold. The others have the same meaning; e = 1.5σ, m = 1.

The past values of TSLA, FSLR, NEE, WM, and DUK do not significantly Granger-
cause changes in Gold’s value for most lag orders. The p-values for these cases are above
0.01, indicating a lack of significant causal influence. On the other hand, gold’s past values
significantly Granger-cause fluctuations in TSLA, FSLR, NEE, WM, and DUK for most lag
orders (p < 0.01). This suggests that gold’s past movements can predict changes in these
stocks. As the lag order decreases, the p-values generally remain below 0.01 for gold’s
influence on the stocks, confirming the consistent predictive relationships.
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The nonlinear Granger causality test reveals significant relationships between gold
and EU stocks, investigated in both directions. Our analysis indicates that gold’s past
values exhibit a robust and nonlinear influence on changes in the value of all three stocks,
VNA.DE, VWS.CO, and SU.PA. The past values of VNA.DE significantly and nonlinearly
influence changes in gold’s value, suggesting a predictive relationship. On the other
hand, p-values for the relationships VWS.CO→Gold and SU.PA→Gold are consistently
greater than 0.01 for all lag orders. This indicates that the past values of VWS.CO and
SU.PA do not significantly Granger-cause changes in gold’s value, suggesting an absence of
predictive influence.

4. Conclusions

In this paper, we investigate the impact of gold prices on the persistence and efficiency
of green and sustainable stocks in the US and EU markets. Our results are of great impor-
tance to investors, financial institutions, governments, and policy makers as they shed light
on the complex relationship between these variables and their implications for financial
markets and economic policies.

First, we use MF-DCCA to uncover multifractal cross-correlations between the prices of
selected green and sustainable stocks and the price of gold. Our analysis reveals significant
multifractal properties and nonlinear cross-correlations between all pairs of time series
examined. In particular, we observe a distinct shift in multifractal properties within
the EU market, especially during the period of the RU-UA conflict. This highlights the
differential resilience of green and sustainable stock markets during geopolitical events
and underscores the need to assess market dynamics and their potential impact on asset
prices during periods of uncertainty.

To further explore these cross-correlations, we use the nonlinear Granger causality test
method, which uncovered bidirectional nonlinear Granger causality relationships between
gold and both US and EU green and sustainable stocks. This finding deepens our under-
standing of the complex linkages within financial markets and underscores the importance
of considering gold as a relevant risk factor in portfolio construction. Consequently, this
finding has direct implications for the risk management and diversification strategies of
investors and portfolio managers.

Financial institutions should take these insights into account when designing and man-
aging financial products and services, as they play a central role in facilitating investment
in these markets. Recognizing the potential substitution effect between the two markets
can inform the development of financial instruments that are aligned with investors’ risk
exposures and sustainability preferences. In addition, institutions need to actively monitor
and manage risks arising from market spillover effects to ensure portfolio stability.

For governments and policy makers, especially those committed to sustainable finance
and climate-friendly investing, this study offers valuable insights. Policy makers should
consider potential spillover effects and contagion risks when creating regulatory frame-
works and incentives to encourage investment in green and sustainable stocks. Recognizing
that these markets are interconnected is essential to a holistic and adaptive approach to
sustainable finance. This allows investors and policy makers to navigate evolving market
dynamics while aligning financial goals with global sustainability goals, ensuring the
stability of financial markets.

It is vital to explore the causes of these dynamic changes for a more comprehensive
understanding. Therefore, future research should examine these series using additional
methods such as wavelet analysis or empirical mode decomposition to gain further insight
into the changes in time series properties before and after the conflict.
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