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Spatial metabolomics identifies distinct tumor-specific and
stroma-specific subtypes in patients with lung squamous cell
carcinoma
Jun Wang1,5, Na Sun1,5, Thomas Kunzke1, Jian Shen 1, Philipp Zens2,3, Verena M. Prade1, Annette Feuchtinger1,
Sabina Berezowska 2,4✉ and Axel Walch1✉

Molecular subtyping of lung squamous cell carcinoma (LUSC) has been performed at the genomic, transcriptomic, and proteomic
level. However, LUSC stratification based on tissue metabolomics is still lacking. Combining high-mass-resolution imaging mass
spectrometry with consensus clustering, four tumor- and four stroma-specific subtypes with distinct metabolite patterns were
identified in 330 LUSC patients. The first tumor subtype T1 negatively correlated with DNA damage and immunological features
including CD3, CD8, and PD-L1. The same features positively correlated with the tumor subtype T2. Tumor subtype T4 was
associated with high PD-L1 expression. Compared with the status of subtypes T1 and T4, patients with subtype T3 had improved
prognosis, and T3 was an independent prognostic factor with regard to UICC stage. Similarly, stroma subtypes were linked to
distinct immunological features and metabolic pathways. Stroma subtype S4 had a better prognosis than S2. Subsequently,
analyses based on an independent LUSC cohort treated by neoadjuvant therapy revealed that the S2 stroma subtype was
associated with chemotherapy resistance. Clinically relevant patient subtypes as determined by tissue-based spatial metabolomics
are a valuable addition to existing molecular classification systems. Metabolic differences among the subtypes and their
associations with immunological features may contribute to the improvement of personalized therapy.
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INTRODUCTION
Lung squamous cell carcinoma (LUSC) and lung adenocarcinoma
(LUAD) are the most common histological subtypes of non-small
cell lung cancer (NSCLC), which accounts for almost 85% of all
human lung cancers1. Unlike LUAD, patients with LUSC have not
benefited from targeted therapies2–4, and there are substantial
differences of LUSC treatment responses among current ther-
apeutic options5. There continues to be great interest in
investigating additional predictive biomarkers to facilitate the
selection of those patients with LUSC who are most likely to
benefit from chemotherapy, immunotherapy, targeted therapy,
and other novel agents. To address this issue, research is now
focusing on the development of classification systems based on
multiple molecular levels, including genomics, transcriptomics,
and proteomics, which would aid in understanding LUSC and in
subsequently identifying therapeutic vulnerabilities and achieving
effective, biomarker-based patient stratification.
Genomic and transcriptomic technologies have provided

important insights into the molecular underpinnings of LUSC,
leading to preliminary patient stratification strategies6–10. The
Cancer Genome Atlas established four LUSC-related gene
subtypes associated with cell cycle and apoptosis, antioxidant
gene expression, phosphatidylinositide 3-kinase signaling, and
epigenetic signaling6. In addition, two recent studies performed
comprehensive proteogenomic characterization of LUSC11,12. One
of these identified five distinct molecular subtypes by multiomic
clustering analysis: the basal-inclusive subtype, classical subtype,
EMT-enriched subtype, inflamed-secretory subtype, and

proliferative-primitive subtype12. Based on these molecular
classification results, research such as the NCI’s Molecular Analysis
for Therapy Choice trial is attempting to capitalize on improved
molecular knowledge of LUSC to employ precision therapy13.
Combining multiple immunological markers, such as pro-

grammed cell death protein 1 (PD1), programmed death ligand
1 (PD-L1), cluster of differentiation 3 (CD3), and cluster of
differentiation 8 (CD8), with established molecular subtypes may
increase the predictive robustness and guide the implementation
of NSCLC precision medicine7. The genomic and transcriptomic
alterations in LUSC shape the functional proteome, control the
infiltration of immune cells, and present potential vulnerabilities
that can be exploited therapeutically. The immune checkpoint
pathway has been shown to play a crucial role in mediating
immune tolerance in NSCLC, with antibody agents that block this
pathway (e.g., agents against PD1/PD-L1) producing durable
responses14,15, and where expression of checkpoint markers
correlates with treatment efficacy5. Alternative markers for
checkpoint blockade response, including T-cell immunohisto-
chemistry and other immunological markers, are also being
considered16–18.
Many important clinical advances in LUSC have been driven by

genomic and proteomic profiling of bulk tumor material, and thus
we anticipate that the same will prove true of bulk metabolomic
characterization in the LUSC tissues. Recently, one study
demonstrates the feasibility of an ensemble machine learning
approach to accurately predict NSCLC patient survival from tumor
core biopsy metabolomic data19, while another study suggests
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that metabolomic analysis of lung tumor core biopsies can
differentiate patients into low- and high-risk groups based on
survival events and probability20. The two studies applied liquid
chromatography-tandem mass spectrometry (LC-MS/MS) and
showed great promise of metabolomics in identifying diagnostic
and prognostic biomarkers for NSCLC patients in clinical
practice19,20. High-mass-resolution matrix-assisted laser
desorption-ionization (MALDI) imaging mass spectrometry (IMS)
directly enables the detection and localization of thousands of
different molecules within a routinely preserved tissue section,
allowing for the discrimination of tumor and stroma regions in
NSCLC tissues21 and tumor subtyping22–24. The metabolic
compositions of both tumor and stroma regions were able to
provide rich molecular information and may contribute to
estimating prognosis in patients diagnosed with NSCLC. Spatial
metabolomics enables immunophenotype-guided in situ meta-
bolomics, facilitating the automated and objective identification
of histological and functional features in intact tissue sections and
the comprehensive analyses of metabolic constitutions of tumor
and the stroma regions from large-scale clinical cohort studies25.
This is the first large-scale study to stratify LUSC patients based

on their tissue metabolic profiles. High-mass-resolution MALDI-IMS
combined with consensus clustering analysis was applied to
establish metabolic classification based on tumor- and stroma-
specific tissue regions in LUSC patients. The results were tested in
an independent cohort to demonstrate the ability of metabolic
subtypes to associate with the response to chemotherapy. The
metabolic constitution in LUSC provides an alternative option with
which to stratify LUSC patients.

RESULTS
Identification of LUSC patient subtype based on metabolite
profiling
A schematic overview of the conceptual methodology in this
study is shown in Fig. 1. To determine whether tumor and stroma
regions in the primary resected patient cohort had significant
differences in metabolite composition, we performed tumor and
stroma region-specific unsupervised consensus clustering analysis.
Consensus matrix heatmaps and cumulative distribution function
(CDF) plots were drawn to determine the optimal number of
clusters. The delta area plot shown in Fig. 2a, b reflects the relative
changes in the area under the CDF curve. The largest changes in
area for tumor-specific and stroma-specific data occurred when
the number of clusters was set to 4, at which point the relative
increase in area became noticeably smaller. Thus, the optimal
cluster numbers for both tumor-specific and stroma-specific data
were set to 4. Color-coded consensus heatmaps were obtained by
applying consensus clustering to tumor- and stroma-specific
datasets (Fig. 2c, d). As shown in Fig. 2c, the blocks are barely
overlap in the heatmap, indicating that the four clusters could be
distinguished on tumor-specific spectra. The four stroma-specific
clusters also have clean boundaries, indicating good cluster
stability over repeated iteration (Fig. 2d). Of the 313 tumor
regions, 91 were assigned to subtype T1 (29%), 64 to T2 (20%), 81
to T3 (26%), and 77 to T4 (25%). Furthermore, of the 268 stroma
regions, 100 were assigned to subtype S1 (37%), 71 to subtype S2
(27%), 22 to subtype S3 (8%), and 75 to subtype S4 (28%).
To estimate the ability of MALDI-IMS data to distinguish LUSC

subtypes, we additionally assessed the variance among molecular
subtypes using sparse partial least-squares discriminant analysis
(sPLSDA). The results revealed clear separation of both tumor- and
stroma-specific subtypes, indicating that they could be readily
distinguished based on metabolite levels (Fig. 2e, f). The alluvial
diagram shown in Fig. 2g indicates the distribution of patients
between tumor- and stroma-specific subtypes. Subtype similarities
are observed between T1 and S2.

Correlation of tumor- and stroma-specific subtypes with
immunological features and DNA damage
To explore differences in tumor- and stroma-specific subtypes, we
investigated their associations with DNA damage (γH2AX expres-
sion) and immunological features including cluster of differentiation
3 (CD3), cluster of differentiation 8 (CD8), and programmed death
ligand 1 (PD-L1). All associations of those features with tumor-
specific subtypes and stroma-specific subtypes are shown in Fig. 3a,
b (left) and Supplementary Tables 2 and 3. Among the four tumor-
specific subtypes (Fig. 3a), PD-L1 (p= 0.0012), CD3 (p= 0.0002), CD8
(p= 0.0001), and γH2AX (p= 0.0016) are positively correlated with
tumor-specific subtype T1. Conversely, tumor-specific subtype T2 is
negatively correlated with PD-L1 (p= 0.0390), CD3 (p= 0.0071), CD8
(p= 0.0080), and γH2AX (p= 0.0933). No significant correlation is
found between T3 and these features. Tumor-specific subtype T4 is
positively correlated with PD-L1 (p= 0.0004) and γH2AX
(p= 0.0333). Meanwhile, T4 shows no significant correlation with
CD3 (p= 0.9919) or CD8 (p= 0.1755). Based on these results, we
categorize the tumor-specific subtype with negative associations
with PD-L1, CD3, and CD8 as T1(PD-L1-CD3-CD8-), that with positive
associations with PD-L1, CD3, and CD8 as T2(PD-L1+CD3+CD8+),
that with elevated PD-L1 protein expression as T4(PD-L1+), and the
remaining tumor subtype as T3. The distribution of the expression of
all immunological features and DNA damage in the tumor-specific
subtypes is shown as boxplots in Fig. 3a (right).
As shown in Fig. 3b, stroma-specific subtype S2 is negatively

associated with PD-L1 (p= 0.0058), CD3 (p= 0.0041), CD8
(p= 0.3660), and γH2AX (p= 0.1242). In contrast, stroma-
specific subtype S4 is positively associated with PD-L1
(p= 0.0056), CD3 (p= 0.0019), CD8 (p= 0.0017), and γH2AX
(p= 0.1242). No significant correlations with these features are
found in S1 and S3. Thus, stroma-specific subtypes are
accordingly renamed S1, S2(PD-L1-CD3-CD8-), S3, and S4(PD-
L1+CD3+CD8+). The distribution of the expression of all
immunological features and DNA damage in stroma-specific
subtypes is shown as boxplots in Fig. 3b (right).

Association of tumor-specific and stroma-specific subtypes
with patient prognosis and clinicopathological features
The potential differences in prognosis among the tumor- and
stroma-specific subtypes were analyzed. The Kaplan–Meier curve
and log-rank test indicate better outcomes for subtype T3 than for
T1(PD-L1-CD3-CD8-) (p= 0.0158) and T4 (PD-L1+) (p= 0.0404)
(Fig. 3c). No statistically significant differences are observed in other
pairwise tumor-specific subtype comparisons or overall in the four
tumor-specific subtype comparisons. The multivariate Cox regres-
sion analysis shows that T3 can serve as a subtype with an
independent effect on prognosis with regard to the UICC
classification system (p= 0.021, HR= 0.439) (Fig. 3d). In the
stroma-specific subtypes, S4(PD-L1+CD3+CD8+) has a better prog-
nosis than S2(PD-L1-CD3-CD8-) (p= 0.0394). Survival does not differ
significantly in other pairwise subtype comparisons or in an overall
comparison of the four subtypes (Fig. 3e). None of the stroma-
specific subtypes is found to serve as independent predictors of
prognosis with regard to the UICC classification system (Fig. 3f).
We next investigated whether tumor-specific and stroma-

specific subtypes differed in the most common clinicopathological
characteristics. In all tumor-specific and stroma-specific subtypes,
no associations were found with age, sex, resection status, grade,
UICC stage, or TNM stage (Supplementary Fig. 1).

Tumor- and stroma-specific metabolic subtypes with distinct
metabolites and related metabolic pathways
To obtain a deeper insight into the underlying differences in
metabolites among the metabolic subtypes, a correlation network
analysis and quantitative enrichment analysis were conducted
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based on each of the tumor- and stroma-specific subtypes, and
significantly correlated metabolites of each subtype were
identified and visualized as networks and pathways as shown in
Fig. 4a and Supplementary Fig. 2. As shown in Fig. 4a, the dense

cluster and enriched pathways in T1(PD-L1-CD3-CD8-) indicates a
correlation of lipid metabolism and pyrimidine metabolism. For
the T2(PD-L1+CD3+CD8+) subtype, there are correlations of
metabolites involved in amino acid metabolism and nucleotide

tumor-specific subtypes stroma-specific subtypes

clustering analysis
   (primary cohort)
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 (NAC-treated cohort)
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Fig. 1 Study design for combining spatial metabolomics with consensus clustering analysis to stratify LUSC patients. LUSC patients were
analyzed with spatial metabolomics by MALDI–IMS. The pipeline includes immunophenotype-guided spatial metabolomics, data
preprocessing, and data analysis. Separate consensus clustering analyses were performed using the metabolic features evaluated in tumors
and the stroma, resulting in tumor and stroma-specific subtypes. The tumor and stroma-specific subtypes of the primary resected cohort were
then characterized by clinicopathological features, clinical outcomes, molecular features (immunological features and DNA damage marker),
and specific metabolic pathways. The independent NAC-treated cohort was applied to associate chemotherapy responses with the
established metabolic subtypes.
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metabolism. For the T3 subtype, there are multiple correlations of
metabolites involved in nucleotide metabolism. T4(PD-L1+) is
representatively characterized by amino acid metabolism. As
shown in Supplementary Fig. 2, the most representative pathways
are amino acid metabolism and nucleotide metabolism in
S1 subtype. Similar to the T1(PD-L1-CD3-CD8-) subtype, S2(PD-
L1-CD3-CD8-) demonstrates a correlation of lipid metabolism and
pyrimidine metabolism. S3 is representatively characterized by lipid
metabolism. For the S4 subtype, there are correlations of
metabolites involved in nucleotide metabolism. Figure 4b showed
the spatial distribution of representative metabolites selected from
correlated networks of tumor-specific subtypes. The above results
demonstrate that tumor- and stroma-specific subtypes are
correlated with diverse metabolites and metabolic pathways.
Specifically, the subtype similarities of enriched metabolic pathways
are observed between T1(PD-L1-CD3-CD8-) and S2(PD-L1-CD3-CD8-).

Three stroma-specific subtypes correlate with chemotherapy
efficiency in an independent neoadjuvant chemotherapy-
treated cohort (NAC-treated cohort)
A previous study established a metabolomic classifier which
comprises 100 metabolites to evaluate the response to

chemotherapy in patients with non-small cell lung cancer26. This
metabolomic classifier was established by applying spatial
metabolomics and machine learning. The metabolomic classifier
could stratify NSCLC patients into chemotherapy-sensitive and
chemotherapy-resistant groups, and thus assess those patients’
response to chemotherapy. The metabolomic classifier of tumor
and stroma were separately applied to associate chemotherapy
responses in the established tumor- and stroma-specific subtypes.
As shown in Fig. 5a, the stroma metabolomic classifier can
distinguish the stroma-specific subtypes in our discovery cohort.
In the NAC-treated cohort (n= 40), patients treated with
chemotherapy were classified into the four stroma-specific
subtypes (Fig. 5b). The proportion of chemotherapy-resistant
patients was significantly higher in the S2(PD-L1-CD3-CD8-)
subtype (92%) than in the S1 subtype (44%) (p= 0.018) and
S3 subtype (22%) (p= 0.002) (Fig. 5c). In addition, chemotherapy-
treated patients in the S2(PD-L1-CD3-CD8-) subtype also had a
worse prognosis than patients in the S1 (p= 0.005) and
S3 subtypes (p= 0.006) (Fig. 5d). Multivariate analysis shows that
stroma-specific subtypes S1 and S2(PD-L1-CD3-CD8-) can serve as
subtypes that are independently predictive of prognosis with
regard to the major pathological response (MPR) and UICC
classification system [S1: p= 0.024, HR= 0.381; S2(PD-
L1-CD3-CD8-): p= 0.002, HR= 4.187] (Fig. 5e). No association of
tumor-specific subtypes with chemotherapy response is found
(Supplementary Fig. 3). Overall, these analyses demonstrate the
correlation of these stroma-specific subtypes with survival and
reveal their potential as biomarkers reflecting the response to
chemotherapy.

DISCUSSION
This study establishes metabolic subtypes in a large series of 330
patients with lung squamous cell carcinoma (LUSC). We define
four distinct tumor-specific subtypes: T1(PD-L1-CD3-CD8-), T2(PD-
L1+CD3+CD8+), T3, and T4(PD-L1+), and four stroma-specific
subtypes: S1, S2(PD-L1-CD3-CD8-), S3, and S4(PD-L1+CD3+CD8+).
The characteristics of these subtypes are summarized in Fig. 6.
T1(PD-L1-CD3-CD8-) is characterized by low immune cell infiltra-
tion, low PD-L1 expression, low DNA damage (γH2AX expression),
and poor prognosis. By contrast, T2(PD-L1+CD3+CD8+) is char-
acterized by high immune cell infiltration, high PD-L1 expression,
and good prognosis; meanwhile, T3 has a favorable prognosis.
Finally, T4(PD-L1+) is characterized by high PD-L1 expression.
Stroma-specific subtypes are linked to immunological features
and prognosis. An independent neoadjuvant chemotherapy-
treated cohort (NAC-treated cohort) confirms that the S2(PD-
L1-CD3-CD8-) subtype has an association with chemotherapy
resistance. Taken together, our results suggest that distinct
subtypes of LUSC as defined using metabolomics may show
better responses to specific targeted therapies.
In recent years, molecular methods have been used for the

classification of cancer into molecular subtypes2–4,6–8,27. Our
subtype classification drew from these stratification approaches
and supplemented them using tissue metabolomics to stratify
LUSC patients. However, previous metabolomics stratification
studies on patients with lung cancer focused largely on a mixture
of tumor and stroma regions, analyzing few stromal regions from
tumors and matching nonmalignant tissue. One study recently
proposed distinctive stroma-based lung cancer subtypes by using
single-cell RNA-sequencing28. In this study, we successfully
separately performed the classification of tumor epithelial cells
and stromal cells based on tissue-based spatial metabolomics. We
found that the metabolic profiles of tumor and stroma tissues can
be used to assign them to specific metabolic categories. Both
tumor and stroma regions play important roles in the LUSC
stratification, which could be confirmed by the tumor-specific
subtype associations for several immune-related markers,

Table 1. Summary of patient characteristics.

Characteristic Numbers

Number of patients 330

Age [years]

Median 69

Range 43–85

Sex

Male 281 (85%)

Female 49 (15%)

pT stage

T1 72 (22%)

T2 157 (48%)

T3 75 (22%)

T4 26 (8%)

pN stage

N0 187 (57%)

N1 105 (32%)

N2 38 (11%)

M

M0 321 (97%)

M1 9 (3%)

UICC stage

I 98 (30%)

II 113 (34%)

III 110 (33%)

IV 9 (3%)

Primary resection status

R0 287 (87%)

R1 40 (12%)

R2 3 (1%)

Grade

G1 6 (2%)

G2 163 (49%)

G3 161 (49%)

M: distant metastases (M0: absent; M1: present).
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Fig. 2 Identification of tumor- and stroma-specific subtypes and their association with molecular features. The relative change in the area
under CDF curve of a tumor and b stroma datasets. The number of clusters is changed from 2 to 10. Delta area plot reflecting the relative changes
in the area under the CDF curve. Setting the number of clusters to 4 leads to the relative increase in area became noticeably smaller; this number
was thus selected as the optimal number of clusters. Consensus matrix heatmap of the chosen four clusters of c tumor- and d stroma-specific
datasets. A color gradient ranging between 0 and 1 is defined as the average consensus value for all pairs of individuals. A value closer to 1 indicates
better cluster stability. Three-dimensional sPLSDA analysis suggests that patients could be stratified into four subtypes in both e tumor- and
f stroma-specific datasets. Points representing samples are colored according to the metabolic subtypes of patients. g Alluvial diagram depicts the
relationship of tumor- and stroma-specific subtypes. CDF cumulative distribution function, sPLSDA sparse partial least-squares discriminant analysis.
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including PD-L1, CD3, and CD8, being retained in the stroma-
specific subtypes. However, stroma-specific subtypes were con-
firmed to be associated with chemotherapy response, while tumor
metabolite signatures were not. This shows that tumor- and
stroma-specific metabolite patterns from the same patient may

convey different information, and the same patient cohort may
have different subtype patterns in tumor- and stroma-specific
regions. Thus, subtypes must be more precisely identified for
individual tumor or stroma regions, rather than regions containing
a mixture of tissues.
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Several predictors of response to chemotherapy have been
proposed in small cell lung cancer29. However, none yet provides
a robust prediction of the benefit of chemotherapy in LUSC
patients. There is thus an urgent need for a priori identification of
responders to improve treatment outcomes. A metabolomic
classifier was established in a previous study, and could assess
the response to chemotherapy in patients with non-small cell lung
cancer26. In the current study, LUSC patients from this recent
study were used as an independent cohort and the identical
metabolomic classifier was applied. Key metabolomic patterns
distinguishing the LUSC stroma-specific subtypes, as first observed
in the discovery cohort, were confirmed from the independent
NAC-treated LUSC cohort. We successfully confirmed that our
stroma-specific subtypes can further stratify patient responses to
chemotherapy, with LUSC patients possessing S1 and S3
exhibiting better clinical responses to chemotherapy than
S2(PD-L1-CD3-CD8-) patients. This evidence suggests that those
assigned to the S1 and S3 subtypes are associated with a benefit
from chemotherapy. In addition, the LUSC patients analyzed from
the independent cohort could be classified into one of the four
stroma-specific subtypes in the discovery cohort, raising the
realistic possibility that prospective subtyping could be performed
in a single trial, wherein patients are assigned to other treatment
arms on the basis of their LUSC subtype [e.g., T2(PD-
L1+CD3+CD8+) to PD-L1 immune checkpoint inhibitor].
To date, only immunotherapy has evolved into a successful

therapeutic strategy for patients with LUSC30,31, but differences in
patients’ responses to PD-1/PD-L1 inhibitors hinder its clinical
application32. Effective prediction of the response to immunother-
apy could dramatically enhance the proportion of patients who
benefit while preventing overtreatment. T2(PD-L1+CD3+CD8+)
captures several immunological features that are predictive of
response to immunotherapy. The predictive biomarker for this
immunotherapeutic class is PD-L1 overexpression14,15. Apart from
this, the rate of tumor-infiltrating lymphocytes (TILs) is considered
a potentially important predictive marker in a broad variety of
tumor types33–35. In addition, pioneering studies in this field have
confirmed a close correlation between TILs and PD1 overexpres-
sion in NSCLC36–39. Consequently, we expect T2(PD-
L1+CD3+CD8+) to be susceptible to immune checkpoint inhibi-
tors, such as PD-1/PD-L1 blockade, because of its positive
association with PD-L1 expression, and CD3 and CD8+ T-cell
infiltration. Besides the low expression of PD-L1, the T1(PD-
L1-CD3-CD8-) subtype also shows low expression of CD3 and CD8.
If confirmed in future studies, molecular classification might
potentially be used to identify tumors of the T1(PD-L1-CD3-CD8-)
subtype in order to select optimal treatment, particularly as these
cases appear to represent an “immunologically ignorant” group
unlikely to respond to immune checkpoint inhibitors.
To investigate the metabolites’ processes and events that play a

role in the established tumor or stroma subtypes, we performed
metabolic network analysis determining the correlations between
endogenous metabolites. The metabolites that are correlated
within each subtype comprise different classes of biomolecules,
such as nucleotides and amino acids. These are involved in various
pathways contributing to cancer cell growth and survival40. Cancer

cells exhibit the deactivation of crucial DNA damage response
signaling routes and have often undergone rewiring of their
metabolism and energy production networks41,42. In addition,
amino acids play a role in energy generation, maintaining cellular
redox homeostasis and driving the synthesis of nucleic acids.
Typically, alongside its association with the DNA damage-related
protein γH2AX, T1(PD-L1-CD3-CD8-) also 2’-demonstrates a dense
cluster which strongly involves 2'-deoxycytidine diphosphate,
cytidine diphosphate (CDP), uridine diphosphate (UDP), 2’-
Deoxyinosine 5’-phosphate and cytidine in the metabolite net-
work, which can be interpreted as an involvement in nucleotide
metabolism occurring in response to DNA damage.
One major advantage of using FFPE TMAs in this study is the

ability to directly detect and visualize metabolites, assigning them
to specific tumor or stroma types in their native histological
context. Compared to fresh frozen samples, FFPE TMAs offer
superior morphological integrity23, enabling better tumor and
stroma classification of metabolite content. A major limitation of
using FFPE TMAs is the reduced or removed intensity of
hydrophobic molecules. In a previous study, it was found that
although metabolite peaks in the low mass range (m/z 50–400)
were comparable to those in fresh frozen tissue, several peak
intensities were decreased in the mass range above m/z 60024.
The loss of hydrophobic molecules, for example, lipids, from the
sample is a general limitation with FFPE patient samples due to
the tissue embedding process and removal of paraffin wax via
solvents, but there were classes of robust metabolites both
chemically and spatially preserved in FFPE tissue specimens23.
Moreover, many mass spectrometry studies, including those
based on liquid- and gas-chromatography MS, have demonstrated
that metabolites are reliably retained in FFPE tissue samples43,44. A
recently published protocol for metabolomic and lipidomic
profiling in FFPE kidney tissue by LC-MS with subsequent
detection of selected lipid species by an independent in situ MS
imaging approach demonstrates the complementary use of both
techniques45.
In summary, our approach presented in this paper was

successfully applied to reveal the ability of metabolomics to
stratify LUSC patients. Such studies should aid in connecting
metabolic profiles to clinical immunological features and in
subsequently identifying therapeutic vulnerabilities and achieving
effective, biomarker-based patient stratification.

METHODS
Patients and tissue samples for the primary resected
squamous cell lung carcinoma (LUSC) cohort
This study includes two retrospective single-center patient cohorts
of primary resected and neoadjuvant chemotherapy-treated LUSC
cases (Fig. 1). We analyzed 330 consecutive patients with primary
resected LUSC46, diagnosed at the Institute of Tissue Medicine and
Pathology, University of Bern, without previous or concomitant
diagnosis of LUSC of other organs, to reliably exclude metastatic
lung disease. The cohort of primary resected LUSC was resected
and diagnosed during 2000–2013. The study was performed in

Fig. 3 Association of metabolic subtypes with molecular features and prognosis. Molecular features (CD8, CD3, PD-L1, and γH2AX)
significantly associated with tumor- (a, left) and stroma-specific (b, left) subtypes by Spearman’s rank-order correlation analysis and the
distribution of expression per molecular feature in each subtype as shown by boxplots (a and b, right). Each box plot displays the interquartile
range (IQR), with the lower boundary representing the 25th percentile and the upper boundary representing the 75th percentile. The line
within the box displays the median, and the whiskers extend to ±1.5 × IQR. Two-sided p value was calculated by Kruskal–Wallis test and post
hoc Dunn’s multiple comparison test. c Survival analysis of tumor-specific subtypes using Kaplan–Meier curves by log-rank test and
d multivariate Cox proportional hazard analysis of tumor-specific subtypes as well as UICC stage. T3 remains significant in multivariate
analysis, indicating that it is a factor independently predictive of patient survival. e Survival analysis of stroma-specific subtypes using
Kaplan–Meier curves by log-rank test and f multivariate Cox proportional hazard analysis of stroma-specific subtypes as well as UICC stage.
* represents two-sided p < 0.05, ** represents two-sided p < 0.01, *** represents two-sided p < 0.001.
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accordance with the Declaration of Helsinki, and the local Ethics
Committee of the Canton of Bern approved the study and waived
the requirement for written informed consent (KEK 200/14). In this
study, we used only tissue material from the archives of the
Institute of Pathology which is left after the diagnostic process has

been finalized. Due to the retrospective nature of the study and
reusage of left-over or already collected material, and also due to
the significant number of patients already deceased, the require-
ment for informed consent was waived by the local ethics
committee. It was argued that contacting the relatives and the
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associated stress this would cause them would be dispropor-
tionate. Patients with documented refusal to participate in
research, i.e., patients who refused that their tissue and data is
used in retrospective research, had been excluded from the study.
The cohort was assembled according to pathology files and
validated according to clinical files. The histology of all cases was
reassessed in accordance with current World Health Organization
guidelines for the diagnosis of LUSC47. All tumors were restaged in
accordance with the Union for International Cancer Control (UICC)
2017, 8th edition, tumor–node–metastasis (TNM) classification48.
Disease-specific survival was defined as the duration from the date
of diagnosis until death due to LUSC other than other causes. For
patient characteristics, see Table 1. A tissue microarray was
constructed from formalin-fixed, paraffin-embedded (FFPE) tissue
blocks, as described previously49. Representative tissue blocks
were selected for each tumor after reviewing all available slides
per case (hematoxylin and eosin stained), and eight tumor cores
were randomly selected from the block by placing digital
annotations on the scanned slide. The eight cores were placed
on tissue microarray blocks to exclude technical assessment bias.

Patients and tissue samples for the independent neoadjuvant
chemotherapy-treated cohort
The NAC-treated cohort comprises 40 cases26 diagnosed at the
Institute of Pathology of the University of Bern between 2000 and
2016. All eligible patients had a pathology-confirmed diagnosis.
The NAC-treated cohort was separated into long-term (n= 19)
and short-term survivors (n= 21) according to median overall
survival26. The cohort included consecutive patients who received
at least one cycle of platinum-based chemotherapy prior to
resection (Supplementary Table 1). The study was approved by the
Cantonal Ethics Commission of the Canton of Bern (KEK 2017-
00830), which waived the requirement for a written informed
consent from patients. Due to the retrospective nature of the
study and reusage of left-over or already collected material, and
also due to the significant number of patients already deceased,
the requirement for informed consent was waived by the local
ethics committee. It was argued that contacting the relatives and
the associated stress this would cause them would be dispropor-
tionate. Patients with documented refusal to participate in
research, i.e., patients who refused that their tissue and data is
used in retrospective research, had been excluded from the study.
A tissue microarray was constructed from FFPE tissue blocks. The
NAC-treated cohort was integrated for an independent study for
evaluating the response to chemotherapy of the metabolic
subtypes.

High-mass-resolution MALDI-Fourier transform ion cyclotron
resonance (FT-ICR) IMS
Data for spatial metabolomics of the primary resected LUSC
cohort and NAC-treated cohort were obtained from previous
studies26,46. High-mass-resolution MALDI FT-ICR IMS was per-
formed as previously described23. In brief, FFPE sections (4 μm)
were mounted onto indium–tin–oxide (ITO)-coated glass slides

(Bruker Daltonik). The air-dried tissue sections were spray-coated
with 10mg/mL 9-aminoacridine hydrochloride monohydrate
matrix (Sigma-Aldrich) in methanol (70%) using the SunCollect
sprayer (Sunchrom). Spray-coating of the matrix was conducted in
eight passes, utilizing a line distance of 2 mm and a spray velocity
of 900 mm/min.
Metabolites were detected in negative-ion mode on a 7 T

Solarix XR FT-ICR mass spectrometer (Bruker Daltonik) equipped
with a dual electrospray ionization MALDI (ESI-MALDI) source and
a SmartBeam-II Nd:YAG (355 nm) laser. The SCiLS Lab software
2020b was used to export the selected peaks of the mass spectra
as processed and root mean square-normalized imzML files. Peak
annotations were based on accurate mass matching with the
Human Metabolome Database (HMDB) (https://hmdb.ca/) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) database
(https://www.genome.jp/kegg/).

Immunophenotype-guided IMS and data processing
The SPACiAL workflow was used as previously described25 to
automatically annotate tumor and stroma regions in LUSC tissues
in the primary resected cohort and NAC-treated cohort (Supple-
mentary Fig. 4). SPACiAL is a computational multimodal workflow
that includes a series of image and MALDI data processing steps
to combine molecular imaging data with multiplex immunofluor-
escence. First, after MALDI–IMS analysis, the 9-aminoacridine
matrix was removed from tissue sections, followed by immuno-
fluorescence staining. Double staining of the TMA was performed
using the epithelial marker pan-cytokeratin [monoclonal mouse
pan-cytokeratin plus (AE1/AE3þ8/18), 1:75, catalog no. CM162;
Biocare Medical] and vimentin (Abcam, clone ab92547, 1:500).
Second, single-channel images of pan-cytokeratin and vimentin
were used to annotate and separate tumor and stroma using
fluorescence imaging. Regions positive for pan-cytokeratin were
defined as tumor. Regions negative for pan-cytokeratin but
positive for vimentin were defined as stroma; third, the digitized
and co-registered fluorescence images were scaled to match the
exact MALDI resolution and converted into numerical matrices
comprised of values corresponding to the lightness values for
each pixel; fourth, objective tissue annotations were assigned
based on semantics and function. The annotatable patient cases
formed the basis of our calculations. The entire workflow is
applied to the same tissue section, allowing for the automatic
integration of morphological and spatial metabolomics data for
thousands of molecules.

Immunohistochemistry (IHC)
IHC staining for cluster of differentiation 3 (CD3), cluster of
differentiation 8 (CD8), and programmed death ligand 1 (PD-L1)
was performed as previously described49 on consecutive sections.
In brief, an automated immunostainer (Bond III, Leica Bio-systems)
with anti-CD3 (Abcam Cambridge; clone SP7, 1:400, RRID:
AB_443425), anti-CD8 (Dako, clone C8/144B, 1:100, RRID:
AB_2075537), and anti-PD-L1 (Cell Signaling Technology, clone
E1L3N, 1:400, RRID: AB_2687655) was used. CD3 and CD8

Fig. 4 Metabolite characteristics and enriched pathways of tumor subtypes. a (top) Correlation networks of endogenous metabolites
within each of the four tumor-specific subtypes. Correlations between metabolites were calculated and filtered (adjusted two-sided p < 0.001).
Edges represent positive (green) and negative (pink) correlations between metabolites. Node color in the network indicates metabolic
pathways. a (bottom) Quantitative enrichment pathway analysis within each of the four tumor-specific subtypes. Pathways enriched in each of
the tumor-specific subtypes are represented by scatter plots. The x-axis indicates the pathway enrichment ratio, and the y-axis indicates the
pathway term. Dot color indicates the adjusted p value. Dot size indicates the counts of metabolites. b Ion distribution maps of representative
metabolites in the tumor-specific subtypes. Linoleate and (9Z)-Octadecenoic acid are selected from the correlation network T1(PD-
L1-CD3-CD8-). dCDP is selected from the correlation network T1(PD-L1-CD3-CD8-) and T2(PD-L1+CD3+CD8+). Succinate shows in the
correlation networks T1(PD-L1-CD3-CD8-) and T3. CDP and IMP are selected from the correlation network T3. S-Adenosyl-L-homocysteine is
selected from the correlation network T4(PD-L1+). IMP inosine monophosphate, CDP cytidine diphosphate, dCDP 2’-deoxycytidine
diphosphate.
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Fig. 5 Association with chemotherapy response in the stroma-specific subtypes. Heatmap illustrating the abundance of metabolites shows
stroma-specific subtype classification (a, left) in the discovery cohort and (b, left) NAC-treated cohort. The percentage of patients in the
stroma-specific subtypes in the discovery cohort (a, right) and NAC-treated cohort (b, right). c Numbers of long-term survivors (chemotherapy-
sensitive patients) and short-term survivors (chemotherapy-resistant patients) in the stroma-specific subtypes. Two-sided p value was
calculated by Fisher’s exact test. d Survival comparison using log-rank test between overall and pairwise subtypes. e Multivariate Cox
proportional hazard analysis for each of the stroma-specific subtypes, MPR as well as UICC stage. S1 and S2(PD-L1-CD3-CD8-) remain
significant in multivariate analysis. * represents two-sided p < 0.05, ** represents two-sided p < 0.01, *** represents two-sided p < 0.001.
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expression was determined using image analysis (Aperio Image
Scope) and adjusted for core completeness. PD-L1 expression was
assessed by a pathologist (S. Berezowska) as the proportion of
positive tumor cells.

Immunofluorescence analysis of γH2AX
Immunofluorescence analysis of γH2AX expression was achieved
using primary antibodies against pH2A.X (Cell Signaling Technol-
ogy; catalog no. 2577, 1:400, RRID: AB_2118010) and pan-
cytokeratin [monoclonal mouse pan-cytokeratin plus (AE1/
AE3þ8/18), 1:75, catalog no. CM162; Biocare Medical] on
consecutive sections. Slides were digitized at ×20 objective
magnification using an Axio Scan.Z1 (Zeiss). Quantification was
performed by digital image analysis in Definiens Developer XD2,
following a previously published procedure50. The quantified
parameter was the proportion of γH2AX- and pan-cytokeratin-
positive cells to the total number of pan-cytokeratin-positive cells.

Consensus clustering
Consensus clustering was conducted using the ‘ConcensusClus-
terPlus’ package in R using HMDB-annotated metabolites to
explore LUSC subtypes based on the patient sample matrix. The
consensus matrix was used to check cluster co-occurrence, find
intrinsic groupings over variation in different numbers of clusters,
and use hierarchical clustering on the distance matrix. We used a
prespecified subsampling parameter of 80% with 1000 iterations
and assigned the number of potential clusters (K) to range from 2
to 10 in order to avoid producing an excessive number of clusters
that would not be clinically useful. The matrix was arranged so
that samples belonging to the same cluster were adjacent to
each other.

Correlation network analysis and quantitative pathway
analysis
Correlation networks were created using Cytoscape (v. 3.8.0). All
networks were visualized using the absolute value of the
correlation coefficient calculated by Spearman’s rank-order
correlation. Metabolites with at least one significant correlation
are shown (p < 0.001). Quantitative pathway analysis was
performed via the KEGG database using the MetaboAnalyst online
tool (www.metaboanalyst.ca) based on the correlated metabolites.

Statistical analysis
All statistical tests were conducted using Python or R. Correlations
were calculated using Spearman’s rank-order correlation. The
significance of differences in clinicopathological characteristics
among tumor- and stroma-specific subtypes was evaluated by chi-
squared test or Fisher’s exact test. To determine the intensity of
differences of representative metabolites, Kruskal–Wallis test and
post hoc Dunn’s multiple comparison test were used in
conjunction with Benjamini–Hochberg correction. Further com-
parisons to identify the statistical significance of differences in
patient survival were performed using the Kaplan–Meier curve
and the log-rank test. Multivariate survival analysis was performed
using Cox proportional hazard regression model. A two-sided p
value of <0.05 was considered statistically significant.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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