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Machine learning based 
readmission and mortality 
prediction in heart failure patients
Maziar Sabouri 1,2,9, Ahmad Bitarafan Rajabi 2,3,4,9, Ghasem Hajianfar 2, Omid Gharibi 1,2, 
Mobin Mohebi 5, Atlas Haddadi Avval 6, Nasim Naderi 2* & Isaac Shiri 7,8*

This study intends to predict in-hospital and 6-month mortality, as well as 30-day and 90-day hospital 
readmission, using Machine Learning (ML) approach via conventional features. A total of 737 patients 
remained after applying the exclusion criteria to 1101 heart failure patients. Thirty-four conventional 
features were collected for each patient. First, the data were divided into train and test cohorts with a 
70–30% ratio. Then train data were normalized using the Z-score method, and its mean and standard 
deviation were applied to the test data. Subsequently, Boruta, RFE, and MRMR feature selection 
methods were utilized to select more important features in the training set. In the next step, eight 
ML approaches were used for modeling. Next, hyperparameters were optimized using tenfold cross-
validation and grid search in the train dataset. All model development steps (normalization, feature 
selection, and hyperparameter optimization) were performed on a train set without touching the hold-
out test set. Then, bootstrapping was done 1000 times on the hold-out test data. Finally, the obtained 
results were evaluated using four metrics: area under the ROC curve (AUC), accuracy (ACC), specificity 
(SPE), and sensitivity (SEN). The RFE-LR (AUC: 0.91, ACC: 0.84, SPE: 0.84, SEN: 0.83) and Boruta-LR 
(AUC: 0.90, ACC: 0.85, SPE: 0.85, SEN: 0.83) models generated the best results in terms of in-hospital 
mortality. In terms of 30-day rehospitalization, Boruta-SVM (AUC: 0.73, ACC: 0.81, SPE: 0.85, SEN: 
0.50) and MRMR-LR (AUC: 0.71, ACC: 0.68, SPE: 0.69, SEN: 0.63) models performed the best. The best 
model for 3-month rehospitalization was MRMR-KNN (AUC: 0.60, ACC: 0.63, SPE: 0.66, SEN: 0.53) 
and regarding 6-month mortality, the MRMR-LR (AUC: 0.61, ACC: 0.63, SPE: 0.44, SEN: 0.66) and 
MRMR-NB (AUC: 0.59, ACC: 0.61, SPE: 0.48, SEN: 0.63) models outperformed the others. Reliable 
models were developed in 30-day rehospitalization and in-hospital mortality using conventional 
features and ML techniques. Such models can effectively personalize treatment, decision-making, 
and wiser budget allocation. Obtained results in 3-month rehospitalization and 6-month mortality 
endpoints were not astonishing and further experiments with additional information are needed to 
fetch promising results in these endpoints.

Heart Failure (HF) is the underlying cause of over one-third of cardiovascular deaths, with more than 64 million 
sufferers  worldwide1. Acute Heart Failure (AHF) is a clinical condition caused when the myocardium function 
is either lost or exacerbated rapidly or quickly. As a result of this condition, the heart is often unable to sustain 
a sufficient cardiac output and meet metabolic demands. This condition puts patients’ quality of life, function, 
and lifespan at  risk2,3.

HF is a common disorder that can increase in-hospital  mortality4. Furthermore, AHF has 30-day and 1-year 
hospital readmission rates of 16–19% and 53%, respectively, as depicted in various  trials5,6. In Khan et al.7 study, 
6,669,313 and 5,077,949 HF rehospitalizations cases for 30 and 90 days were examined, and 18.2% and 31.2% 
were readmitted in each group, respectively. In a study by Fudim et al.8, patients who were readmitted within 30 
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days were likelier to die (all-caused death) after six months. Furthermore, readmissions account for a significant 
fraction of overall healthcare expenditures, making them costly for public and private payers in any  country9. 
In a study by Lahewala et al.10, 21.3% of 715,993 HF cases were readmitted to a different hospital. When they 
were referred to a different hospital, they encountered a higher rate of in-hospital mortality, length of stay, and 
expenses ($22,602 against $13,740). Beyond monetary costs, rehospitalization would expose patients to the 
potential dangers of stress and hospital-acquired  infections11. Hospitals have enacted various strategies for reduc-
ing readmission rates, such as patient education and proper follow-up after discharge. The education provided 
to patients may include specific guidelines about when to return for follow-up appointments and how to utilize 
their medications properly. By empowering patients with this knowledge, they become more informed and better 
equipped to manage their condition at home, which can help to prevent future hospitalizations. Nevertheless, 
these approaches are highly time-consuming and labor-intensive. Hence, identifying factors associated with 
readmission seems crucial for better recognizing appropriate preventive  methods11–15.

Several studies have been conducted to predict which patients will be readmitted, identifying multiple etiolo-
gies for AHF  readmission16. Some factors, such as age, sex, and race, are tied to the patient, while others, like 
misdiagnosis and inadequate post-discharge follow-up, depend on the healthcare system. Such factors are giving 
rise to preventable  readmissions17. Recently, an ongoing trend has been toward implementing Machine Learning 
(ML) techniques as predictive models for analyzing and classifying different data types. ML is a scientific disci-
pline seeking to solve complex challenges to build models based on data sets containing significant information 
without explicit programming  rules18–21.

In several in-hospital mortality studies using ML, the Area Under the ROC Curve (AUC) ranges from 0.720 
to 0.913 were  reported22–24. Many studies have also been conducted on 30-day readmission, with AUCs ranging 
from 0.546 to 0.78425–34. In two studies concerning 3-month readmission, the AUC value ranged from 0.570 to 
0.77031,35. According to Shin et al.33, ML methods outperform conventional statistical models in predicting HF 
readmissions and mortalities. Using conventional features, our study exerts ML algorithms to predict in-hospital 
and 6-month mortality, as well as 30-day and 3-month hospital readmission rates.

Material and methods
Figure 1 illustrates a summary of the steps taken in the current study. Each stage will be fully reviewed in the 
following sections.

Patients’ data
In the present study, we used the data from the Rajaie Acute Systolic Heart Failure (RASHF)  registry36. RASHF is 
a prospective hospital-based study conducted at Rajaie Cardiovascular Medical and Research Center (RCMRC). 
Observations were made on 1101 hospitalized systolic HF patients with acute decompensation before detecting 
any endpoints. This study has been approved by the Iran University of Medical Sciences (IUMS). All protocols 
and methodologies employed adhered to ethical guidelines. Patient consent procedures were exempted by the 
IUMS ethics committee.

Figure 1.  A visual demonstration of all the steps involved in this study.
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The present prospective work includes adult patients with Left Ventricle Ejection Fraction (LVEF) < 40% and 
either newly developed or deteriorating HF symptoms. Patients’ data has been collected based on international 
definitions and guidelines over a period of 6  years37. Of 1101 patients, 364 were excluded due to missing data 
or suffering from cardiogenic shock, acute coronary syndrome, and chronic hemodialysis for end-stage renal 
disease. Such patients undergo different management compared to other AHF patients. In total, 737 patients 
were included in this study, among which 529 patients were men (71.8%, mean age = 55.00) and 208 were women 
(28.2%, mean age = 57.89).

An experienced registry team collected the data on admission day and during the hospital  stay36. A detailed 
history was collected on the first day of the hospital stay, and an experienced cardiologist performed a thorough 
physical examination and echocardiography. The cardiologist measured LVEF, Pulmonary Artery Pressure (PAP), 
Inferior Vena Cava (IVC) size, Right Ventricular (RV) dysfunction, Mitral Regurgitation (MR), and Tricuspid 
Regurgitation (TR) in echocardiography. After examining the electrocardiogram, they also reported the wide QRS 
complex and atrial fibrillation (AF) parameters. In addition, laboratory data such as sugar level, Complete Blood 
Count (CBC), serum creatinine (Cr), Blood Urea Nitrogen (BUN), potassium (K), sodium (Na), magnesium 
(Mg), bilirubin, and liver enzymes were collected on admission day. These tests were done using conventional 
standard laboratory procedures in Rajaie Hospital’s laboratory. BUN and Cr levels were measured daily until the 
discharge day. Thirty-four features and four considered endpoints are depicted in Table 1 with their explanation. 
Values of these features can also be seen in Table 1S. The features used in the study were derived from guidelines 
related to heart failure patients, which are established and accepted medical standards for the assessment and 
treatment of this condition. These guidelines include recommendations for specific diagnostic tests, laboratory 
values, or other clinical measures that are relevant to the management of heart  failure37,38. Regarding the end-
points, they are the most frequent endpoint both in the clinic and in recent  studies36,39.

After discharge, all patients were monitored from hospital documents and/or phone calls for up to six months 
to be followed up on mortality and readmission. Predictions of patient outcomes were evaluated under four 
specific criteria: (1) patients who died in the hospital (in-hospital mortality), (2) patients who died within six 
months (6-month mortality), (3) patients who were readmitted within 30 days (30-day hospital readmission), 
and (4) patients who were readmitted within 90 days (3-month hospital readmission). Among 737 patients, 433 
had none of these conditions; however, 304 patients experienced at least one event: 82 in-hospital mortality, 81 
30-day hospital readmission, 170 3-month hospital readmission, and 91 6-month mortality.

Train-test split
A 70:30 ratio was used to split the dataset into training and testing groups for each individual endpoint. First, the 
data underwent a comprehensive review to deal with missing and outlier data. Data that deviated by more than 
three standard deviations from the mean were omitted as outliers. Continuous missing variables were imputed 
using averaging, and categorical features with missing values were excluded from the analysis. Then, train data 
were normalized using the Z-score method, and its mean and standard deviation were applied to the test data. 
In the in-hospital mortality endpoint, all the samples of this study were used, but for the other three endpoints, 
the patients who died in the hospital were excluded.

Feature selection and ML model development
Three feature selection methods were used to select the important features: (1) Recursive Feature Elimination 
(RFE), (2) Minimum Redundancy Maximum Relevant (MRMR), and (3) Boruta (detailed explanations of each 
method can be found in the Supplementary Material S1). Next, the ML modeling was performed using eight 
algorithms, including K-Nearest Neighbor (KNN), Logistic Regression (LR), Multi-Layer Perceptron (MLP), 
Naïve Bayes (NB), Quadratic Discriminant Analysis (QDA), Random Forest (RF), Support Vector Machine 
(SVM), and eXtreme Gradient Boosting (XGB).

Next, hyperparameter optimization was performed using stratified tenfold cross-validation (to minimize over-
fitting) and grid search in the training dataset. Then, the Synthetic Minority Oversampling Technique (SMOTE) 
was used to address the class imbalance issue in our data during cross-validation and hyperparameter optimiza-
tion in the training set. While tenfold cross-validation was used, nine folds were oversampled with SMOTE, and 
one fold remained as the original validation set. Then, after finding the optimal hyperparameters, SMOTE was 
applied to the entire training data and models with optimum hyperparameter were trained with this dataset. At 
last, 1000 bootstraps were executed on the test dataset. Therefore, three feature selection methods and eight ML 
models bring 24 models for each of the four mentioned endpoints.

Model evaluation and statistical analysis
The 24 developed models were evaluated using four metrics: area under the receiver operating characteristic 
curve (AUC), accuracy (ACC), sensitivity (SEN), and specificity (SPE). The AUCs of all models were compared 
using the Wilcoxon rank sum test, and the False Discovery Rate (FDR) was then corrected using the Benja-
mini–Hochberg technique. As a result, modified p-values, also referred to as q-values were evaluated. P-values 
under 0.05 were regarded as statistically significant. All models were developed in R programming language 4.0 
using mlr library 2.1840 in Ubuntu 18.04.

Ethics approval
This retrospective study was approved by the ethics committee of Iran University of Medical Sciences (IR.IUMS.
FMD.REC.1398.404).
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Results
Feature selection
As mentioned before, this study used three different methods to select features: MRMR, Boruta, and RFE. As 
the best predictive features, Boruta’s method selected 12, 12, 9, and 11 features for in-hospital mortality, 30-day 
hospital readmission, 3-month hospital readmission, and 6-month mortality, respectively (Fig. 2). The MRMR 

Table 1.  The general definition of all features. HF heart failure, BUN blood urea nitrogen, CRF chronic renal 
failure, Cr serum creatinine, Hb hemoglobin, ICD implantable cardioverter defibrillator, CRT  cardiac 
resynchronization therapy, IHD ischemic heart disease, CAD coronary artery disease, IVC inferior vena cava, 
LFT liver function tests, LVEF left ventricular ejection fraction, MR mitral valve regurgitation, Na serum 
sodium, NYHA New York heart associationَ, PAP pulmonary artery pressure, Pro BNP pro brain natriuretic 
peptide, RV right ventricle, SBP systolic blood pressure, TR tricuspid valve regurgitation, AF atrial fibrillation, 
WRF worsening renal function. *Should be at least moderate, according to the experienced cardiologist’s 
echocardiography report. **During the index hospitalization up until discharge, WRF (worsening renal 
function) was defined as a definite rise in serum creatinine of 0.3 mg/dL from baseline (on the first admission 
day).

Column name Definition Description

Binary Features

History/physical Exam

Diabetes Presence of diabetes mellitus Yes/no

Hypertension Presence of hypertension Yes/no

IHD/CAD Presence of ischemic heart disease or coronary artery 
disease Yes/no

CRF Presence of chronic kidney failure Yes/no

Smoking history History of smoking Yes/no

ICD/CRT Presence of intracardiac defibrillator or cardiac resyn-
chronization therapy Yes/no

Edema Presence of Edema Yes/no

Ascites Presence of ascites Yes/no

Infection Presence of infection on admission Yes/no

Electro/Echocardiogram

Wide QRS complex Presence of wide QRS in ECG on admission Yes/no

AF Presence of atrial fibrillation rhythm on admission Yes/no

RV dysfunction* At least moderate right ventricular dysfunction severity 
by echo Yes/no

MR* At least moderate mitral regurgitation by echo Yes/no

TR* At least moderate tricuspid valve regurgitation by echo Yes/no

 During hospital stay

Abnormal LFT Presence of abnormal liver function test during admis-
sion Yes/no

WRF** Presence of worsening renal function during admission Yes/no

Dialysis Performing dialysis for a patient during admission Yes/no

Inotrope Using inotrope drugs for patients during admission Yes/no

Follow-up

In-hospital mortality In-hospital death Yes/no

3-month readmission Rehospitalization within three months Yes/no

1-month readmission Rehospitalization within one month Yes/no

6-month mortality Discharge but dead in 6 months Yes/no

Other Features

History/physical Exam

Sex (male, female) The patient’s gender Male/female

Age The patient’s age Years

HF etiology Cause of heart failure Ischemic/non-ischemic

HR Heart Rate Heartbeats per minute

SBP Systolic blood pressure Systolic blood pressure by millimeter of mercury

NYHA Class New York heart association class (the degree of dyspnea) 1–2–3–4 (ordinal)

Electro/Echocardiogram

LVEF (%) Left ventricular ejection fraction by echo percent (%)

PAP Pulmonary artery pressure by echo in mmHg

IVC size Inferior vena cava size millimeters

Lab tests

Cr Baseline (first) serum creatinine level mg/dl

BUN Baseline BUN level mg/dl

Uric acid Baseline serum uric acid level mg/dl

Hb Baseline Hemoglobin level d/dl

Na Baseline serum sodium mg/dl

Pro-BNP Baseline Pro BNP level pg/mL

Discharge Cr Serum creatinine level at the discharge or death day mg/dl
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Figure 2.  Boruta’s feature selection method depicts the importance of different features in four different 
outcomes: In-hospital mortality, 30-day hospital readmission, 3-month hospital readmission, and 6-month 
mortality, shown from top to bottom, respectively. Green, yellow and red colors indicate the importance of 
the selected features in order from more important to less important. Green, yellow, and red boxes represent 
important, tentative, and unimportant features and blue boxes represent shadow. Each boxplot has a minimal, 
average, and maximum amount of importance.
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analysis selected 10 features for each endpoint (Fig. 3). RFE feature selection chose 9, 3, 14, and 3 features for 
in-hospital mortality, 30-day readmission, 3-month readmission, and 6-month mortality, respectively (Fig. 4).

Below are illustrations of performance metrics for each of the four outcomes. Eight classifiers and three fea-
ture selection methods were used and AUC, ACC, SEN, and SPE of each model were reported. The results of all 
the models of this study can be seen in Fig. 5, and the ROC curves of the best models from each endpoint can 
be seen in Fig. 6. Also, in Tables 2S–9S, all models’ mean, standard deviation, and confidence interval are given.

In-hospital mortality
As represented in Fig. 5, several models performed well concerning in-hospital mortality. The RFE-LR (AUC: 
0.91, ACC: 0.84, SPE: 0.84, SEN: 0.83) and Boruta-LR (AUC: 0.90, ACC: 0.85, SPE: 0.85, SEN: 0.83) models yield 
the best performance in terms of in-hospital mortality outcome prediction.

30-day readmission
Boruta-SVM and MRMR-LR models yield the best results for 30-day rehospitalization with AUC: 0.73 (ACC: 
0.81, SPE: 0.85, SEN: 0.50) and AUC: 0.71 (ACC: 0.68, SPE: 0.69, SEN: 0.63), respectively.

3-month readmission
MRMR-KNN (AUC: 0.60, ACC: 0.63, SPE: 0.66, SEN: 0.53) was the top model for 3-month rehospitalization 
prediction.

6-month mortality
The MRMR-LR (AUC: 0.61, ACC: 0.63, SPE: 0.44, SEN: 0.66) and MRMR-NB (AUC: 0.59, ACC: 0.61, SPE: 0.48, 
SEN: 0.63) models performed better than others in terms of 6-month mortality prediction.

Wilcoxon rank sum test
Using the Wilcoxon rank sum test, the AUC of different models in each endpoint was compared with all other 
23 models. The overview of this comparison is given in Fig. 7. In the in-hospital mortality endpoint, RFE-LR, 
Boruta-LR, MRMR-LR, and RFE-NB as of best models in this end-point had 23, 23, 17, and 17 significant 
q-values, respectively. The best models in the 30-day rehospitalization endpoint were Boruta-SVM, MRMR-LR, 
MRMR-NB, and Boruta-NB with 23, 22, 22, and 22 significant q-values. The top model in the 3-month rehos-
pitalization endpoint was the MRMR-KNN with 23 significant q-values. Finally, in the six-month mortality 
endpoint, the best models were MRMR-LR and MRMR-NB with 23 significant q-values.

Figure 3.  Features were ranked according to their importance values regarding four different outcomes 
according to MRMR’s feature selection. In-hospital mortality, 30-day hospital readmission, 3-month hospital 
readmission, and 6-month mortality are shown from left to right. The selected features are listed with their 
scores in the table under the figure.
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Discussion
In this study, ML frameworks were implemented for in-hospital mortality, 6-month mortality, 30-day hospital 
readmission, and 3-month hospital readmission prediction. Eight different classifiers and 34 features were used 
to predict different endpoints. The accurate readmission prediction may allow hospitals to focus on those who 
are at the highest risk. Feature selection in the in-hospital mortality led to the selection of Inotrop, WRF, Abnor-
mal LFT, Dialysis, and Edema features in all three feature selection methods. Also, Discharge Cr, Base Cr, and 
age were selected by two feature selection methods. In the 30-day readmission, WRF, Base Cr, RV dysfunction, 
and Edema features were selected according to their importance in all feature selection methods, and Discharge 
Cr was also selected twice. In the 3-month readmission, the important features that were selected in all feature 
selection methods included Hb, Base Cr, and TR, and the opposite features were also selected twice: CRF, PAP, 
Discharge Cr, IVC, Edema, Dialysis, and Diabetes. Finally, CRF was selected three times, and SBP, Uric acid and 
Hb features were selected twice for 6-month mortality.

In patients with cardiovascular disease, kidney function evaluation is crucial due to its significant impact on 
patient outcomes. BUN and creatinine are usually used to evaluate kidney function, reflecting the kidneys’ ability 
to filter waste from the blood. Kidney function holds prominence as a key endpoint in various cardiovascular 
studies, cohorts, and  registries41. Furthermore, Inotropes are prescribed for patients with low cardiac output. 
Epidemiological research demonstrates that within this specific group, the mortality rate is the  highest42. Also, 
HF patients may be irresponsive to drug therapy and suffer from deteriorating functions of multiple organs, 
such as the kidney and  liver42. Therefore, these characteristics affect the chance of readmissions or mortality 
more  significantly42. Accordingly, in the study conducted by Luo et al.24, they included the liver functions of 
the patients by measuring minimum and mean values for Prothrombin Time (PT) and Partial Thromboplastin 
Time (PPT). In other studies by Li et al.23 and Kwon et al.43, renal functionality is assessed by measuring either 
means of creatinine or chronic renal insufficiency. In all mentioned studies, systolic and diastolic blood pressures 
were considered along with BUN. Kwon et al.44 also took EF, Left Ventricular Systolic Dimension (LVSD), Left 
Ventricular Diastolic Dimension (LVDD), and AF into account. In our study, we included any malfunctions in 
any liver tests to representing hepatic function by introducing Abnormal LFT feature. Regarding the kidney, 
Baseline Cr, Discharge Cr, WRF, dialysis, and CRF describe patients’ renal function.

Figure 4.  Illustration of RFE feature selection according to accuracy with 2 to 34 sets of features for four 
endpoints.
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We implemented three methods of selecting the features in this study: RFE, MRMR, and Boruta. Aligned 
with the previously mentioned important features, MRMR and Brouta feature selection methods scored Inotrope 
and WRF as the first and second significant features, respectively. Consequently, these two features are of great 
importance in predicting in-hospital mortality. The RFE feature selection method, however, does not provide 
the importance of each selected feature separately. As can be seen from the results, the best performance was 
achieved in the in-hospital mortality endpoint.

In the following sections, we will discuss different studies for various endpoints. Additionally, Table 2 com-
pares the results of other studies with ours.

In-hospital mortality
Luo et al.24 designed an ML model using the clinical features to investigate in-hospital mortality risk from HF. 
They showed that ML models can predict in-hospital mortality risks better than conventional methods. Their 
best results were obtained from XGB with AUC: 0.831 and 0.809 in internal and external datasets, respectively. 
 In22, five ML algorithms were used to develop models for predicting in-hospital mortality due to HF in 59,125 
cases with 6.2% in-hospital mortality. The best-performing algorithms among all five models were XGB and GB 
with AUC: 0.882. Li et al.23 investigated in-hospital deaths due to HF in 1177 patients, among which 13.52% 
died in the hospital. The LASSO regression model outperformed XGB and GWTG-HF risk scores with an AUC 
of 0.8562 (AUC via bootstrap: 0.8518). Kwon et al.43 used the deep neural network (DNN) method for predict-
ing the mortality of patients with AHF (DAHF). A total of 12,644 datasets from two hospitals were utilized as 
train datasets and 4759 datasets from 10 hospitals were used as test datasets. The DAHF method demonstrated 
the highest performance with an AUC of 0.880. In another study, Kwon et al.44 used a deep learning model to 
investigate the in-hospital mortality of patients with heart disease based on their echocardiography. In total, 

Figure 5.  Illustration of the AUC (A), accuracy (B), sensitivity (C), and specificity (D) of four outcomes 
(in-hospital mortality, 6-month mortality, 30-day hospital readmission, and 3-month hospital readmission) 
using three different feature selection methods and eight classifiers.
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25,776 patients from two hospitals were enrolled. The second hospital (external dataset) is also divided into two 
subgroups: Coronary Artery Disease (CAD) and HF. The model with AUC: 0.912, 0.898, 0.958, and 0.913 for 
internal and external validation, CAD, and HF had the best performance, respectively. Our models also demon-
strated reliable performance like the models reported  in22–24,43. Notably, our study provided all four evaluation 
metrics (AUC, ACC, SEN, SPE) with promising values, while in some studies, AUC is solely reported, which is 
not a suitable metric in the unbalanced dataset.

30-day readmission
In a study by Liu et al.29, 303,233 patients hospitalized with congestive HF were investigated for unplanned 
30-day readmissions. Of them, 53,649 cases were readmitted after 30 days. The Medical Code Embedding Deep 
Set Architecture (MCEDSA) model showed the highest result with an AUC of 0.618. Awan et al.26 examined 
HF readmissions or deaths within 30 days in 10,757 patients, of which 23.6% of cases died or were readmitted 
after 30 days. They obtained an AUC of 0.62 (Sensitivity: 48.42%, Specificity: 70.01%) by the MLP model. Zheng 
et al.34 implemented models for 1641 HF patients (316 instances were re-hospitalized 30 days after discharge). 
They also compared the results with the LACE score (L: Length of patient stay in the hospital, A: Acuity of 
admission of the patient in the hospital, C: Comorbidity, and E: Emergency visit) risk-prediction model. Due to 
imbalanced data, they utilized a replication-based random oversampling technique. As a result, they achieved 
an accuracy of 78.4% (Sensitivity: 97.3%, Specificity: 8.6%) for PSO-SVM with Radial Basis Function (RBF) as 
their best model. Futoma et al.45 used an MLP to predict 30-day hospital readmission, in which 1,328,384 patients 
with various diseases were included, with 19% of cases of HF being readmitted in 30 days, which had an AUC 
of 0.676. However, they only provided an AUC metric, which may not be considered an adequate performance 
metric for imbalanced datasets. In another study, Golas et al.27 examined 30-day readmission risk prediction on 
11,510 unique HF patients (6,369 cases were readmitted within 30 days after discharge). They trained a Deep 
Unified Network (DUN) model and compared it to LR, GB, and maxout networks. Our study’s best-developed 
model in the 30-day readmission endpoint was Boruta-SVM (AUC: 0.71, ACC: 0.68, SEN: 0.63, and SPE: 0.69).

Figure 6.  ROC curves of 4 best models in each endpoint.
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3-month readmission
In the study of Sarijaloo et al.35, SVM, RF, LASSO, and GB ML models were used to select the best features 
engaged with 90-day readmissions in 3189 HF patients, with 15.2% 90-day readmission. Extracted variables 
were fed to the LR algorithm to develop the risk-predictor model to evaluate 90-day readmissions and deaths. 
Results showed that the ML-LASSO + LR model, with an AUC and SEN of 0.760 and 0.83, was superior to all 
other models. Park et al.31 evaluated 90-day rehospitalization and death of patients with HF by dividing the 
dataset into two groups: 1965 sufferers of HF with preserved EF (HFpEF) and 1124 individuals suffering HF 
with reduced EF (HFrEF). The reported average AUC for each model showed that the HFpEF model, with an 
AUC of 0.770, performed better than both generic and HFrEF models. Our best model’s performance in this 
endpoint was MRMR-KNN (AUC: 0.60, ACC: 0.63, SEN: 0.53, and SPE: 0.66) was not satisfying. However, it 
is worth noting that most of the other studies typically reported AUC alone, which restricts the comprehensive 
evaluation of a model.

6-month mortality
To the best of our knowledge, no ML study has addressed the 6-month mortality prediction. Our study yielded 
suboptimal results; nevertheless, it serves as an initial point for future research in 6-month mortality prediction. 
In conclusion, short-term endpoints (in-hospital mortality and 30-day readmission) exhibited better perfor-
mance than long-term endpoints (3-month readmission and 6-month mortality), possibly due to the relevance 

Figure 7.  Wilcoxon signed-rank test is used to compare the performance of all models. Models were evaluated 
against each other in rows and columns. If the comparison between the row and column models shows a non-
significant value, it would be highlighted in red. Light blue indicates that the column model was superior to the 
row model in terms of the p-value.
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of features used in this study to short-term outcomes. However, further investigations are warranted to confirm 
this observation.

Limitations
Our study suffers from a few limitations concerning research methodology. The number of samples we examined 
was small compared to other studies. So, we used different feature selection methods, stratified tenfold cross-
validation for hyperparameter optimization, and bootstrapping on test data to avoid the overfitting problem. 
Of 737 patients, 529 were male (71%), which makes up a disproportionate patient population compared to 208 
female patients (29%). Moreover, single-centered data collection may influence the results by particular socioeco-
nomic or demographic aspects. In addition, some clinical features used in other studies could not be collected in 
this research. Other variables could contribute to the predictability, but their inclusion would require more time 
and expense. We did not consider non-clinical factors such as psychological support despite the  importance28. 
In addition, quality of life and functionality should be considered as endpoints, but this study only focused on 
mortality and readmissions. Finally, the lack of external data was also a limitation of the study. To sum up, in 
the future, there is potential to further improve the development of machine learning models by using more 
extensive and diverse datasets. This can include collecting data from multiple centres or sources, which can help 
to increase the generalizability of the models across different populations and contexts. In addition, deep learning 

Table 2.  A general comparison at one glance. Empty cells represent the information not reported by the 
authors.

Model Endpoint Cause References AUC ACC SEN SPE

Deep neural network

In-hospital mortality

HF Kwon et al.44 0.913 – – –

RFE-logistic regression HF This study 0.91 0.84 0.83 0.84

Boruta-logistic regression HF This study 0.90 0.85 0.83 0.85

MRMR-logistic regression HF This study 0.90 0.85 0.79 0.86

RFE-Naïve Bayes HF This study 0.90 0.85 0.75 0.86

Boruta-Naïve Bayes HF This study 0.89 0.86 0.79 0.87

Gradient boosting HF König et al.22 0.882 – – –

eXtreme gradient boosting HF König et al.22 0.882 – – –

RFE-quadratic discriminant analysis HF This study 0.88 0.87 0.74 0.89

MRMR-Naïve Bayes HF This study 0.88 0.84 0.66 0.86

MRMR-quadratic discriminant analysis HF This study 0.88 0.86 0.62 0.89

Deep neural network HF Kwon et al.43 0.88 – – –

Boruta-quadratic discriminant analysis HF This study 0.87 0.86 0.75 0.87

Boruta-multi-layer perceptron HF This study 0.87 0.89 0.62 0.92

RFE-K-nearest neighbors HF This study 0.86 0.87 0.70 0.89

LASSO regression HF Li et al.23 0.856 – – –

Boruta-K-Nearest neighbors HF This study 0.85 0.83 0.67 0.85

eXtreme gradient boosting HF Li et al.23 0.842 – – –

eXtreme gradient boosting HF Luo et al.24 0.831 – – –

MRMR-K-nearest neighbors HF This study 0.82 0.83 0.71 0.84

Boruta-support vector machine

30-day readmission

HF This study 0.73 0.81 0.50 0.85

MRMR-logistic regression HF This study 0.71 0.68 0.63 0.69

Deep unified network HF Golas et al.27 0.705 – – –

MRMR-Naïve Bayes HF This study 0.70 0.70 0.54 0.72

Boruta-Naïve Bayes HF This study 0.69 0.67 0.50 0.69

Neural network HF Futoma et al.45 0.676 – – –

Multi-layer perceptron HF Awan et al.26 0.62 – 0.4842 0.7001

Neural network HF Liu et al.29 0.618 – – –

Support vector machine HF Zheng et al.34 – 0.784 0.973 0.086

Random forest HF Zheng et al.34 – 0.744 0.874 0.307

Logistic regression

3-month readmission

HF Park et al.31 0.77 – – –

ML-LASSO + logistic regression HF Sarijaloo et al.35 0.76 – 0.83 –

Logistic regression HF Park et al.31 0.755 – – –

MRMR-K-Nearest neighbors HF This study 0.60 0.63 0.53 0.66

MRMR-logistic regression
6-month mortality

HF This study 0.61 0.63 0.44 0.66

MRMR-Naïve Bayes HF This study 0.59 0.61 0.48 0.63
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methods have shown great promise in recent years and can be utilized to further enhance the performance of 
machine learning models.

Conclusion
This study highlighted the potential use of ML in predicting patients with HF who experienced in-hospital 
mortality and 30-day rehospitalization. Implementing conventional features and ML methods lead to reliable 
predictive models to predict patients who experienced in-hospital mortality and 30-day rehospitalization. These 
models could potentially help physicians thoroughly examine specific patients and target more effective hospi-
tal care. They also can be potentially effective in personalizing treatment, decision-making, and better budget 
allocation. However, the models designed to predict 3-month rehospitalization and 6-month mortality in this 
study need more investigation. Therefore, more studies must be conducted to achieve more promising results 
in other endpoints.

Data availability
The datasets used/analyzed in the current study are available from corresponding authors on request.
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