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Figure 1: We propose a motion-aware cone beam CT reconstruction method based on neural inverse rendering, which is

applicable to a variety of different scenarios. In the first row we show the reconstruction of a dental CBCT scan of a patient

opening the mouth, the bottom row shows the inhale and exhale phase of a 4D-CBCT of the thorax.

Abstract

In oral and maxillofacial cone beam computed tomography (CBCT), patient motion is frequently observed and, if not accounted

for, can severely affect the usability of the acquired images. We propose a highly flexible, data driven motion correction and

reconstruction method which combines neural inverse rendering in a CBCT setting with a neural deformation field. We jointly

optimize a lightweight coordinate based representation of the 3D volume together with a deformation network. This allows our

method to generate high quality results while accurately representing occurring patient movements, such as head movements,

separate jaw movements or swallowing. We evaluate our method in synthetic and clinical scenarios and are able to produce

artefact-free reconstructions even in the presence of severe motion. While our approach is primarily developed for maxillofacial

applications, we do not restrict the deformation field to certain kinds of motion. We demonstrate its flexibility by applying it to

other scenarios, such as 4D lung scans or industrial tomography settings, achieving state-of-the art results within minutes with

only minimal adjustments.

CCS Concepts

• Computing methodologies → Reconstruction; Volumetric models; Motion processing; Neural networks;

1. Introduction

Significant technical and algorithmic advances in recent decades
have made X-ray computed tomography one of the most important
medical imaging modalities. A specific type of computed tomogra-
phy, invented in the 1990s for oral and maxillofacial radiology, is
cone beam computed tomography (CBCT), in which the individ-
ual X-rays form a cone, and a flat panel detector is used to capture

unique X-ray images. Today, CBCT is not only used in dentistry
but also in other medical fields, such as interventional radiology or
image-guided radiotherapy, or even in industrial processes, such as
quality control of components.

A CBCT scanner rotates around the object under investiga-
tion and generates hundreds of images during the imaging pro-
cess. Thereby, CBCT acquisition times can range from 10 to 40
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seconds for typical dentomaxillofacial applications up to several
minutes, e.g. for 4D-CBCT thorax scans of the lung. Traditional
CBCT reconstruction algorithms, most notably the FDK algo-
rithm [FDK84], but also iterative reconstruction methods [GBH70,
AK84], assume stationary, non-deforming objects. The examined
object’s movement during acquisition can lead to image distor-
tions and other artifacts like blurring, streaks, and double contours
within the reconstructed volume [SHG∗11]. In some cases, such
as thorax scans of the lung, the patient’s respiratory motions are
unavoidable. Still, involuntary patient movements are also a con-
sistently reported phenomenon in dentomaxillofacial CBCT scans
[SNMS∗17,HDO∗13]. These often severely limit the clinical value
of the reconstruction and frequently lead to a repeat of the imag-
ing process, which in turn increases the patient’s exposure to radi-
ation [SNMS∗15, TJJ∗15, SNW16, SNCS∗18].

In 2020, a new approach to scene reconstruction called neural
radiance fields (NeRFs) [MST∗21] has been introduced. NeRFs al-
low the synthesis of a continuous volumetric representation of an
object using only a sparse set of two-dimensional images. Given
this synthetic representation, new, previously unseen views can be
generated. Later, neural radiance fields were extended to capture
non-rigidly deforming scenes by optimizing an additional contin-
uous volumetric deformation field that warps each observed point
into a canonical 5D NeRF [PSB∗21,PCPMMN20,LCM∗22]. Sim-
ilar to this technique, in this paper we present a reconstruction
method for non-stationary deformable objects solely based on the
acquired X-ray images without the need for any prior knowledge.
The quality of our reconstructions is equal to or better than specifi-
cally tailored state-of-the-art reconstruction methods.

In summary our main contributions are 1. a lightweight, mem-
ory efficient system for fast neural reconstruction in X-ray cone
beam computed tomography, 2. a prior-free deformable reconstruc-
tion model for various medical scenarios containing patient motion
and 3. the integration of a sparsity inducing regularization term into
the deformation field.

2. Related work

Motion correction In general, motion correction in CBCT has at-
tracted a lot of interest in recent years, since it has applications
in many different fields, such as CBCTs of the beating heart, 4D-
CBCT thorax scans, or (mostly rigid) motion correction in max-
illofacial and oral scenarios. Typically, approaches applied to de-
forming regions such as the heart or lung make use of the peri-
odicity of the motion and divide the projection images into dif-
ferent phases, or make use of some sort of prior [FBSK14, MJR16,
BMA∗16,RCWH18]. Deformable CBCT also has applications out-
side the medical field. Zang et al. developed two algorithms for
continuously deforming objects in CBCT [ZIT∗18,ZIT∗19]. How-
ever, those rely heavily on a specific acquisition strategy, which
allows multiple initial reconstructions, that can later be iteratively
improved by estimating the deformation between them. In a medi-
cal context, especially in maxillofacial CBCT, this possibility is not
given.

Many successful prior-free motion correction methods can only
handle the case of single rigid patient motions [OJS∗17, SJP∗21,

NST∗19], or multiple rigid motions within one field of view (FOV)
[BNS∗23, BMA∗16]. They rely on a variety of different met-
rics, such as consistency conditions [BXA∗17, PMM∗19], auto-
focus [HBR∗17,RBSF13,SSY∗17] or reprojection error [NST∗19,
OJS∗17, BMA∗16]. Our method differs from these in that it is not
restricted to rigid motions and at the same time does not rely on
any external information, such as priors or periodicity.

Neural rendering and reconstruction Starting with NeRFs
(Mildenhall et al. [MST∗21]) in 2020, neural (inverse) rendering
has become a very active field of research. Its original main goal is
to synthesize novel views of complex 3D scenes which are captured
by a number of photographs from different positions and directions.
From here, research has gone in many different directions, e.g. im-
proving reconstruction speed by utilizing a parametric input encod-
ing, such as a grid [CLI∗20, JSM∗20, LGL∗20], a tree [TLY∗21]
or hashing [MESK22], or by supporting deformable and moving
scenes [PSB∗21, PCPMMN20, LCM∗22]. Neural rendering and
reconstruction based techniques have also been successfully ap-
plied to computed tomography, e.g. by Rückert et al. [RWL∗22],
Sun et al. [SLX∗21] or Shen et al [SPX23]. Recently, this tech-
nique has been used for 4D-CBCT scans of the lung [ZSPM23],
this work however still needs an available prior 4D CT scan and
was only able to produce results of dimension 643. Another recent
work [RKA∗21] also models the reconstruction as an implicit neu-
ral representation and jointly optimizes a deformation field. Their
deformation field is modeled as a tensor of polynomial coefficients,
such that each voxel is warped using a polynomial of degree k.
This approach is quite memory intensive and the resulting recon-
structions are supported only up to a resolution of 2563. Inspired
by those approaches we combine neural reconstruction and neural
deformation fields into a novel method, capable of producing high-
quality, high-resolution results.

3. Method

The key idea of our approach is to combine neural cone beam CT
reconstruction with a neural deformation field, i.e. a deformation
field realized by a neural network. This allows us to represent arbi-
trary motions and deformations, e.g., unwanted patient movements
such as head rotations, swallowing, etc. Contrary to classic, voxel-
based representations of the reconstructed volume, we employ a
coordinate-based representation, utilizing a multi layer perceptron
(MLP) together with a parametric input encoding. This volume rep-
resentation is continuous, i.e., allowing samples at arbitrary points
x∈R

3 and is also fully differentiable due to the nature of MLPs. To
account for deformations and patient motion, every input x together
with a timestamp t ∈ [0,1] is passed through a neural deformation
field, which models the current deformation state of the object. Its
output x̂ ∈ R

3 is fed into the continuous volume representation,
called density network, which then computes the density σ(x̂) at
the given position. For a brief overview see Fig. 2. As the deforma-
tion field is also implemented via an MLP with input encoding, the
whole pipeline is fully differentiable and can be optimized using a
(stochastic) gradient descent algorithm.
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Deformation Network W Density Network

hash encoding

Figure 2: Layout of the network architecture.

3.1. Neural Computed Tomography

In general, computed tomography aims to find the solution of the
inverse problem

I = I0 exp



−

t f∫

tn

σ(γ(t))dt



 (1)

which can be derived using Beer-Lamberts law. Here, I0 is the
initial intensity at the source and I is the measured intensity at
the detector along the ray γ. The value σ(x) is the attenuation of
the scanned object (effectively the density) at the spatial position
x ∈R

3. In practice, Eq. (1) is usually transformed into the logarith-
mic domain

log(I0)− log(I) =

t f∫

tn

σ(γ(t))dt (2)

as its discretization then results in a sum of all values along each
ray γ, i.e.

b := log(I0)− log(I)≈
Nγ

∑
i=1

σ(γ(ti))δi =: b̃ (3)

where Nγ is the number of samples along the ray γ, and δi are the
(possibly) varying step sizes, depending on the ray sampling strat-
egy.

Choosing a differentiable loss function L makes it possible to
optimize Eq.(3) for σ in a gradient descent based fashion. Tradi-
tionally, L is chosen to be the L2 norm of the residual, as this results
in a simple least-squares problem that can be solved by algorithms
with high convergence rates, such as the conjugate gradient method
for least squares (CGLS).

In our approach, the classic voxel-based representation of σ is
substituted by a neural network, which is adjusted in each training
iteration by feeding the re-projection error L(b̃,b) back into the
network at each input sampling point x = γ(t). As this is optimized
using a gradient descent algorithm that does not depend on higher
order derivatives, we have more freedom in choosing a suitable loss
function L and in the implementation, we decided for Huber loss
[Hub64], as it turns out to be more stable against outliers and less
susceptible to noise in real-world data.

3.1.1. Input Encoding

In practice, it is beneficial to encode the three dimensional spatial
input coordinates into a domain of higher dimension [TSM∗20]
because neural networks tend to produce overly smooth results

[RBA∗18] and thus need a very high number of training steps until
high-frequency information is learned (if ever).

Earlier works in this field encoded the input into a domain of
higher dimension and frequency, e.g., by

Enc(x) = (sin(20πx),cos(20πx), . . . ,sin(2kπx),cos(2kπx)) (4)

for a given maximum k, aka frequency encoding, as used in the
original NeRF paper [MST∗21]. This encoding enables the network
to learn higher frequency features earlier in the training process.

More recently, parameterized input encodings have emerged,
where the encoding itself is also optimized in the training process.
In such network architectures, most of the information is actually
embedded in the encoding, and the network can be of very small
size (in some cases only one hidden layer). Müller et al. [MESK22]
presented the multiresolution hash encoding, a parameterized in-
put encoding that allows for short training times on a single GPU.
Here, each spatial input vector x is located within a multiresolution
grid, with resolutions increasing from Nmin to Nmax across L lev-
els, of which each grid point at each level is associated with an F-
dimensional vector of parameters (feature vector) via a spatial hash
function with a fixed hash table size T . The final input of the MLP
is computed by using linear interpolation of the feature vectors at
each level (proportional to the distance of x to its neighboring grid
points) and then concatenating the resulting feature vectors of each
level.

3.2. Neural Deformation Fields

We model the motion and deformation of a subject undergoing cap-
ture with a deformation field Γ composed of a neural network W

(more precisely, an MLP with input encoding) acting on input co-
ordinates x ∈ R

3 and timestamp t ∈ [0,1], and an embedding S
(see Sec. 3.2.1). Γ represents the deformation of the subject at each
given time t, which in our case is the normalized index of the cur-
rent acquisition image, so it can be seen as a function

Γ : R4 → R
3, (x, t) 7→ x̂.

The coordinate x̂ within the canonical, or default, state is then en-
tered into the reconstruction network representing σ. Essentially, Γ

bends each ray γ before it is traced through the density network.
Some previous work enforces the canonical state to be e.g., at time
t = 0; however, in our experiments, we find that anchoring this state
to a particular frame is not advantageous.

The positional input x of the deformation network W is encoded
using frequency encoding, as in Eq. (4). Using frequency encoding
for the time parameter can also lead to a "wobble effect" in the
deformation field. Therefore we encode the time parameter t using
a 1D grid of Nt feature vectors y ∈ R

Ft with linear interpolation,
which are also optimized during the learning process. Encoding
t in this way allows the deformation field to remain stationary for
frames in which motion is absent. We chose Ft = 16 in all cases and
Nt to be the number of projection images, if not stated otherwise,
thus assigning each image one feature vector. In all experiments x

is encoded using four frequencies, i.e. setting k = 3 in Eq.(4). We
employ the coarse-to-fine regularization scheme to the positions x,
as described by Park et al. [PSB∗21], activating higher frequencies
consecutively over the course of 16’000 iterations.

© 2023 The Authors.
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Figure 3: Elastic energy (red) in a motion-impaired clinical appli-

cation within the same slice when using the regularization term

∥logΣ∥2
F (left image) compared to ∥Σ − I∥1 (right image). Our

sparsity inducing regularization term is more effective in remov-

ing non-rigid deformations, visible as fewer red streaks in the right

image.

3.2.1. Embedding

The easiest and probably most canonical implementation of the de-
formation field would be to learn an offset vector ∆x for each input
(x, t) and simply add it to the position, s.t.

x̂ = x+∆x.

This formulation was implemented by Pumarola et al. [PCP-
MMN20] and is sufficient to represent any possible deformation.
As Park et al. [PSB∗21] already stated, it has the disadvantage that
rotations are dependent on the input position and the offset vector
will vary depending on the distance to the rotation axis. We adopt
the method of Park et al. where the network learns an SE(3) field,
i.e. the output of W is a vector (r,v)∈R

6 describing a rotation with
angle θ = ∥r∥ and axis r̂ = r/θ and a translation v, which are input
into the embedding S. The canonical coordinate x̂ can be computed

by x̂= e[r]×x+Gv, where e[r]× is the matrix exponential which can
be found using Rodrigues’ formula

e
[r]× = I +

sin(θ)

θ
[r]×+

1− cos(θ)

θ2
[r]2× (5)

and

G = I +
1− cos(θ)

θ2
[r]×+

θ− sin(θ)

θ3
[r]2×. (6)

This means Γ can be composed as Γ = S ◦W . Since every single
step of the pipeline is differentiable, the network can be trained by
feeding the gradient of L w.r.t. the input of σ into the backward
pass of the deformation network (or the embedding to be precise).

3.3. Regularization

Regularization of the deformation field plays a crucial part in
the training process. As the loss function is defined via the re-
projection error in Eq. (3), which simply sums up attenuation values
along each ray γ, expansions and contractions in the deformation
field along the given ray have no influence on the actual error. To
combat this, Park et al. [PSB∗21] use an elastic regularization term,
which penalizes singular values ̸= 1 of the Jacobian JΓ of Γ for any
fixed timestamp t. For JΓ =UΣV T , their formulated regularization
term is λelastic∥logΣ∥2

F . The idea is to minimize the amount of com-
pression and expansion in the deformation field by encouraging the

linear part of Γ (given by JΓ) to be a pure rotation. They use the
logarithmic singular values to achieve equal weight of contractions
and expansions of the same factor.

This term can also be applied to our scenario. However, since
the L2 norm is used, small deformations become insignificant in
the regularization term. This poses a problem as even small defor-
mations might accumulate and can introduce unwanted effects, e.g.
shearing or global deformations. We only want to allow few non-
rigid areas in the deformation field and therefore replace the L2
with the L1 norm. Also, we do not use logarithmic singular values
because strong contractions, such as those around the teeth when a
patient opens or closes the mouth, would be heavily weighted. So
we penalize the absolute deformation, leading to

Lelastic-s(x) = λelastic∥Σ− I∥1,

and set λelastic = 10−3. This encourages the network to learn mostly
rigid motions overall, as we expect the patient movements in our
context to be mostly of rigid nature. In contrast to Park et al.
[PSB∗21] we do not apply the Geman-McClure robust error func-
tion [GM85]. We find that this can leave the network stuck in cer-
tain unfavourable states, as (wrongfully) placed strong deforma-
tions in early iterations can persist in the final reconstruction. Also,
very large gradients of Lelastic-s are inherently prevented by omit-
ting the logarithm and using the L1 norm. We weight the regular-
ization term with the density σ(x̂) at the current location to penalize
deformations in high density matter, such as bones, stronger than in
soft tissue or empty space. In addition the output of both σ and W is
L2 regularized with λL2 = 10−6 to prevent the networks from over-
fitting to certain local minima. This value could be tuned for each
application, but we have instead opted for a fixed value to minimize
per-scenario adjustments. We employ no regularization in the time
domain. This can implicitly be achieved by choosing a smaller grid
size Nt . Contrary to many other solvers for inverse problems, and
some closely related work [RWL∗22], we do not explicitly apply
a total variation (TV) regularization term, since the network tends
towards smooth results anyways.

3.4. Implementation

Our implementation is based on the instant-ngp project by Müller
et al. [MESK22], which we altered and extended to our needs. This
implementation makes use of the tiny-cuda-nn framework [Mü21],
which provides data structures for fast inference and training times,
however requires manual computation of gradients. For the hash
grid input encoding of the density network, we adopted some key
parameters of the grid, namely L= 16 layers, each with feature vec-
tors of size F = 2. We chose a hash table size of T = 219, as smaller
sizes will lead to reconstructions of diminished spatial resolution
and much larger sizes severely slower the training process. These
values provide a trade off between reconstruction quality, conver-
gence speed and training efficiency. The original authors provide a
thorough investigation of the mentioned meta parameters. As they
also steer the total number of training parameters, they directly in-
fluence the size of the reconstruction on the disk. With the chosen
values the full reconstruction takes up less than 23 MB. The coars-
est resolution of the grid Nmin was set to 16 and Nmax to 1024.

Similar to the original implementation we cull empty space by

© 2023 The Authors.
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(a) FB+FS (b) FB+HS (c) HB+FS (d) Reference

Figure 4: Visual comparison of the moved skull with different scan geometries. (a) Motion-corrected full scan (360°), (b) short scan (186°),

(c) half-beam full scan and (d) high-fidelity unmoved reconstruction by vendor. The left column in each scenario shows the provided vendor’s

reconstruction, the right one ours. We report the PSNR and SSIM compared to the high-fidelity scan.

using an occupancy grid of size 643, which indicates whether
the current cell contains any information. We set a threshold of
σ(x) ≤ 10−1. Additionally, empty cells are randomly activated
with a chance of 10%. We use a uniform step size to sample points
on each ray throughout the whole volume, with random perturba-
tion of the starting point. It is set such that the maximum number of
samples per ray is capped at Nγ = 512. Choosing a bigger number
without simultaneously increasing the batch size lowers the con-
vergence rate drastically, setting Nγ too small results in diminished
spatial resolution. We use the Adam [KB17] optimizer with a learn-
ing rate of 3× 10−3 for the density and 10−2 for the deformation
network, which are exponentially decayed during the training pro-
cess. Additionally, the weights of the density network’s MLP are
decayed with an L2 regularization of factor 10−6, the deformation
network’s weights as well as the feature vectors y with a factor of
10−5. The deformation network is trained with β1 = 0.9, β2 = 0.99
and ε = 10−13. For the density network we set β1 = 0.9,β2 = 0.95
and decay ε from 10−5 to 10−15 during the training process. We
find that initially using a larger epsilon reduces the resolution in
early iterations, as small gradients in higher levels of the hash en-
coding lose significance, which helps the deformation field in cases
of strong movements. Since typical NeRF scenarios take place in
the visible light spectrum, mostly only the surface of an object is
of interest, enabling very effective early ray termination. In an X-
ray setting this is not possible, which inherently increases the av-
erage number of samples per ray. For this reason we increased the
learning batch size when compared to the original implementation
of instant-ngp to 219 to achieve a reasonable number of rays per
batch.

Network architecture Both our networks are very slim, fully
connected MLPs with 64 neurons per layer. We use only three hid-
den layers in both networks and the ReLU activation function. The
deformation network features a linear output layer and the density
network’s output is passed through a Squareplus [Bar21] output ac-
tivation to ensure meaningful positive density values.

Whole head Accuitomo 170 Local Tomo
Motion PSNR SSIM PSNR SSIM PSNR SSIM

None 39.1 0.99 39.2 0.98 31.5 0.96
Cont. 31.2 0.94 29.7 0.92 28.2 0.89

Sudden 35.5 0.97 35.5 0.97 31.7 0.94

Table 1: Comparison between our results and the ground truth us-

ing the synthetically generated data sets. The case without motion

provides a baseline for the reconstruction quality.

4. Results

4.1. Maxillofacial CBCT

In this section we evaluate our algorithm on synthetic and actual
scan data in maxillofacial and oral applications. All results pre-
sented in this section were obtained after training for 35’000 itera-
tions.

4.1.1. Synthetic data

We applied our algorithm to synthetically generated CBCT projec-
tion data of a parameterized head model, which were generated by
Birklein et. al [BNS∗23]. During the simulated scan, the model un-
dergoes rigid motion of the cranium while simultaneously opening
its mouth. Forwards projections were performed using two different
motion profiles, one where the patient performs a continuous, high
frequency motion of the cranium (15° rotation and 6 mm transla-
tion) while slowly opening the mouth (5 mm) and one of a sudden
motion of the cranium (3° rotation, 2 mm translation) followed by
a sudden mouth opening (also 5 mm). The exact motion pattern for
the first scenario can be seen in [BNS∗23], Fig. 5. The second sce-
nario resembles the motion pattern observed in our clinical scenar-
ios more closely. Tab. 1 compares the motion corrected reconstruc-
tion to the ground truth. The first row of each scenario is an un-
moved reconstruction and provides a baseline to the reconstruction
quality. We evaluate three different device configurations, first, one
where the whole head is in the FOV in every frame, the second one
resembles the configuration with the widest FOV of the Accuitomo

© 2023 The Authors.
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170 device and the third one produces local tomography scans with
truncation effects, since only a small part of the patient can be seen
in each image. In all test cases the result is of high visual quality
and free of motion artifacts. A single sudden movement, such as a
patient nodding, poses no problem for our algorithm and both met-
rics used in Tab. 1 come very close to the baseline reconstruction.
It is even possible to compensate strong motions in narrow local to-
mography scenarios. The motion patterns of the continuous motion
test cases were created by using a random walk for each of the six
degrees of freedom, inducing very rapid changes in motions. Anal-
ogous to Park et al. [PSB∗21] we find our method struggles with
such rapid changes of motions, which explains the worse SSIM
and PSNR values in the continuous motion test profiles.

4.1.2. Scan data

To validate the proposed method on actual acquisitions, which al-
ways contain some amount of noise and scatter in practice, we ap-
ply our algorithm to scans of a controllable moving skull in various
scenarios as well as to motion-impaired patient data from a clinical
application. In all acquisitions from real CBCT machines we also
optimize for the emitted energy, i.e. I0 from Eq. (1) to account for
slight calibration errors.

Movable skull We placed a skull mounted on a Stewart platform
inside two different CBCT machines. The first one is a 3D Accuit-
omo 170 device and the second one a KaVo OP 3D Vision. Addi-
tionally to rigid cranial motions, this skull also supports separate
motions of the lower jaw. Fig. 4d shows the vendor reconstruction
of an unmoved, high fidelity scan (900 images) which we use as ref-
erence. For the results shown in Fig. 4 (a)-(c) we simulated a single
strong nodding motion of the patient (about 1.2 cm in total) com-
bined with a sudden motion of the lower jaw (about 7 mm) before
employing our algorithm. The data for Fig. 4a was acquired using
the Accuitomo 170 standard protocol (full beam, 512 images). In
our reconstruction no motion artifacts are visible at all. Also notice
how the bright metal spring in the highlighted area shows less arte-
facts than in the reference reconstruction. Fig. 4b was created using
the short scan protocol (full beam, 265 images) of the same device.
Here the machine only performs half a rotation around the patient.
Our reconstruction still shows some blurriness, which is for exam-
ple visible in the highlighted box, but does not show motion arte-
facts like streaks or double contours, as the vendor’s does. Lastly,
Fig. 4c was acquired using a device which pursues a lateral-offset
detector strategy, that is employing a full rotation around the patient
using a half-beam geometry, such that each image contains (about)
half the skull. The effect of the skull’s motion can very clearly be
seen in the top row of Fig. 4c, as the reconstruction seems to be cut
in half. Our reconstruction does not show this artefact anymore. In
a previous work [BNS∗23] correcting motions in setups (b) and (c)
was not yet possible.

Clinical application Fig. 5 shows reconstructions in actual clini-
cal applications. In the left column one can see reconstruction of
the device’s vendor (Fig. 5a), the middle one shows the motion-
corrected result of Birklein et al. [BNS∗23], and in the right im-
ages our result (Fig. 5c) can be seen. Our algorithm was capable
of removing visible motion artifacts in both setups, which appear

(a) Vendor (b) Birklein et al. (c) Ours

Figure 5: Slices of two different motion-impaired clinical CBCT

acquisitions. Top row shows the reconstruction of a short scan

(186°), bottom row a full scan.

in the left reconstructions very noticeably as double contours and
streaks, especially in the bottom image. To some extent they still
appear in the middle column, e.g. the zygomatic bone in the second
example still shows double contours. The first patient performed a
slight motion towards the end of the scan, while the strong artifacts
in the second scenario are induced by a sudden forwards-motion of
the patient of about 7 mm halfway during the scan. Also notice the
low level of noise of the proposed reconstruction method.

Runtimes The runtime of our algorithm is independent from the
data set since we fix the training batch size and number of itera-
tions. It is mostly dominated by the elastic regularization term, as
its computation requires additional backwards passes of the defor-
mation network. We obtained the presented results after 25 mins on
an Nvidia RTX 3090 GPU.

4.2. Applications beyond maxillofacial CBCT

In this section we explore further applications of the proposed
method, as motion correction and deformable CBCT is not only of
interest in maxillofacial and oral scenarios. Since we do not expect
much rigid motion but rather non-rigid deformations, e.g. breathing
motion in 4D lung scans, we do not apply the elastic regularization
term in any of the following results. This also shortens the runtime
considerably to less than 10 minutes.

4.2.1. 4D-CBCT

In lung cancer treatment, 4D-CBCT is a technique typically em-
ployed to provide accurate tumor localization in the space-time do-
main by binning the 2D projection images into different breath-
ing phases (typically 10) of the patient [SZRvH05] and performing
reconstructions of each phase. Compared to traditional 3D-CBCT
this can mitigate artifacts introduced by the breathing motion and
additionally makes it possible to track moving tissue over time. If
applied naively however it leads to very strong streaking artifacts
due to the limited number of projections per phase. For this rea-
son, 4D-CBCT scan times are typically much longer than in 3D-
CBCT [BAMR∗19]. In the recent past a lot of effort went into the
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(a) Clinical Varian (b) Clinical Elekta

Figure 6: Start of the inhale phase of real one minute 4D-CBCT

lung scans. The data sets were part of the SPARE Challenge

[SGL∗19]. 4D animations are provided in the supplemental ma-

terial of this paper.

development of algorithms capable of producing high quality re-
sults with short scan times. Some methods make use of a priori mo-
tion models computed from previously acquired 4D planning CTs
[RWvHS09, MJR16], while others match the reconstructions of
the different phases to a common fixed frame [RCWH18, WG13],
which is more similar to our deformation approach.

With our method, binning the projections into different phases
is not strictly necessary, as our deformation field is contiguous in
the time domain and is being optimized simultaneously with the
reconstruction. It is possible to make use of the respiratory phase
signal by sorting the acquisition images according to this signal.
We find that this measure can improve the quality of the results, as
it ensures a minimal deformation between two consecutive images.
Many devices employ a so called bowtie filter, effectively reduc-
ing radiation dose in peripheries of the patient [YRLL19]. As our
method depends on the projection error of the reconstruction, it
is necessary to have an approximate knowledge of the attenuation
characteristics of the filter used. In all our test cases we could es-
timate those from the projection data. Fig. 6 shows two examples
of clinical 4D-CBCTs of the lung. The images depict slices of the
start of the inhale cycle. Fig. 6a stems from a one minute scan with
a full rotation half-beam geometry (680 projections), Fig. 6b from
a half scan with full-beam geometry (340 projections).

We also performed a quantitative evaluation of our approach us-

Body Lung PTV Bone

RMSE
×10−3

1.662
0.367

1.569
0.282

1.621
0.301

1.576
0.320

SSIM
0.766
0.053

0.716
0.068

0.774
0.054

0.691
0.085

Table 2: Mean (first value) and standard deviation (second value)

of RMSE and SSIM values of the SPARE challenge benchmark.

ing the Monte-Carlo simulated acquisitions from the SPARE chal-
lenge [SGL∗19]. We find that the reconstruction quality of our ap-
proach is, on average, better than all other algorithms tested, both
in terms of RMSE as well as SSIM, in three out of four categories.
In the very narrow planning target volume (PTV) category, our
method struggles a bit but creates results of comparable quality
nevertheless. As Fig. 7 shows, the spatio-temporal accuracy of our
method is state-of-the-art. Please note that we do not make use of
any priors (as some other methods do) but are purely data driven.

Adjustments To ensure small motions between consecutive
frames we use the provided phase signal and sort the projection
images accordingly. In the input encoding for the deformation field
we decrease the number of cells Nt used for the time coordinate
t to 10. This number is inspired by the common binning process
in 4D-CBCT and leads to a smoother deformation field (along the
time axis), therefore resulting in a smoother breathing motion. At
the same time the learning rate of the deformation network is de-
creased to 10−3 and the learning rate of the feature vectors y is
further decreased by a factor of 5× 10−2 compared to the MLP’s.
This increases the stability, especially in cases with high rates of
scatter or in low dose simulations.

4.2.2. Deformable CBCT in non-medical applications

4D-CBCT also has use cases outside of the medical field. Zang
et al. [ZIT∗18,ZIT∗19] explore applications of deformable CT and
develop two successive algorithms to solve this problem using their
altered acquisition strategy. We applied our algorithm to the rose
dataset, which was kindly made public. Note that we had to use a
subsampled version (factor 1/2 for width and height, respectively,
and skipping every second frame), since the full resolution would
not fit in our GPU VRAM.

Fig. 8 shows the same slice of the reconstruction at three differ-
ent timestamps from left to right: start of the acquisition, halfway
through the acquisition and at the end. Our simple formulation of
only a deformation field and a reference volume is sufficient to cre-
ate a result of high quality in this case. In this scenario the elastic
regularization is not applied either. Please note that it is not possi-
ble to accurately represent topological changes in the object, such
as leaves that are fused at the end of the scan but not at the begin-
ning.

5. Limitations

We model the 4D scene as a reference 3D volume and a 4D de-
formation field. As both are continuous and differentiable in each
coordinate, our formulation is not able to represent topological

© 2023 The Authors.

Proceedings published by Eurographics - The European Association for Computer Graphics.



L. Birklein, E. Schömer, R. Brylka, U. Schwanecke & R. Schulze / Neural Deformable CBCT

Figure 7: Quantitative evaluation of 4D-CBCT scans of Monte-Carlo simulated data sets compared to other algorithms (we adapted Fig. 5

and 7(a) from Shieh et al. [SGL∗19]). Left hand side: RMSE and SSIM values compared to the ground truth. Right hand side: magnitude of

the translation error of the PTV area when aligning to the ground truth. Results of our method are leftmost.

changes which might happen during a scan, as for example in Sec.
4.2.2. Park et al. [PSH∗21] combat this by introducing the time
component into the density network through a "slicing network".
First experiments showed that this might also be possible with our
approach, however we could not create consistent results, as the
timing of when to introduce these coordinates into the network
seems to be crucial and may vary from one setting to another. We
hope to overcome this limitation in future research. Fig. 9 shows
the reconstruction of a highly viscous fluid at the beginning and
end of the scan, respectively. Although the reconstructions appear
surprisingly convincing at first glance, in cases of such extreme de-
formation using only one reference volume does not seem to be
enough, as they still contain many artifacts (notice the "swirls" in
the bottom part of the left image).

Although we discourage non-rigid deformations in maxillofacial
applications by applying the elastic regularization term, the defor-
mation network may find deformations which are not present in the
data (see Fig. 3 for example). This can happen for different reasons,
including truncation effects due to local tomography or physical
effects like noise, beam hardening, or scatter, which are explicitly
ignored in the forward projection. Also, miscalibrations can play
a role, e.g., if I0 from Eq. (1) is set wrong and our optimization

Figure 8: Deforming 4D-CBCT scan of a wilting rose scanned

over the course of nine hours. For the sake of visualization, the

colors have been inverted. The data set is provided by Zhang et

al. [ZIT∗18].

Figure 9: Reconstruction of a highly viscous fluid undergoing a

strong deformation during the acquisition. This data set was also

created by Zhang et al. [ZIT∗18]

cannot recover it. While our method generally applies to local to-
mography, these deformations seem more pronounced in scenarios
with smaller ROIs. Suppose present motion is expected, or even
known, to be solely rigid. In that case, it can easily be incorporated
into the process by setting the number of frequencies for the input
encoding of Γ to 0.

6. Conclusion

We presented a novel method for deformable cone beam CT based
on neural inverse rendering, applicable to a number of different sce-
narios. Our approach requires no prior information and produces
4D reconstructions of equal or better quality than task specific re-
construction methods in a matter of minutes. We could demonstrate
its effectiveness in dental, 4D lung as well as industrial CBCT set-
tings, both on synthetic and real-world data, showcasing a great
flexibility.

© 2023 The Authors.
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