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Real-Time Feature Extraction From
Electrocochleography With Impedance

Measurements During Cochlear Implantation
Using Linear State-Space Models

Raphael R. Andonie , Wilhelm Wimmer , Reto A. Wildhaber , Marco Caversaccio ,
and Stefan Weder

Abstract—Electrocochleography (ECochG) is increas-
ingly used to monitor the inner ear function of cochlear im-
plant (CI) patients during surgery. Current ECochG-based
trauma detection shows low sensitivity and specificity and
depends on visual analysis by experts. Trauma detec-
tion could be improved by including electric impedance
data recorded simultaneously with the ECochG. How-
ever, combined recordings are rarely used because the
impedance measurements produce artifacts in the ECochG.
In this study, we propose a framework for automated real-
time analysis of intraoperative ECochG signals using Au-
tonomous Linear State-Space Models (ALSSMs). We devel-
oped ALSSM based algorithms for noise reduction, artifact
removal, and feature extraction in ECochG. Feature extrac-
tion includes local amplitude and phase estimations and
a confidence metric over the presence of a physiological
response in a recording. We tested the algorithms in a con-
trolled sensitivity analysis using simulations and validated
them with real patient data recorded during surgeries. The
results from simulation data show that the ALSSM method
provides improved accuracy in the amplitude estimation
together with a more robust confidence metric of ECochG
signals compared to the state-of-the-art methods based on
the fast Fourier transform (FFT). Tests with patient data
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showed promising clinical applicability and consistency
with the findings from the simulations. We showed that
ALSSMs are a valid tool for real-time analysis of ECochG
recordings. Removal of artifacts using ALSSMs enables si-
multaneous recording of ECochG and impedance data. The
proposed feature extraction method provides the means to
automate the assessment of ECochG. Further validation of
the algorithms in clinical data is needed.

Index Terms—Autonomous linear state-space models,
biomedical engineering, biomedical signal processing,
biomedical telemetry, cochlear implants (CI), deafness,
electrocochleography (ECochG), feature extraction, hear-
ing preservation, impedance, real-time.

I. INTRODUCTION

COCHLEAR Implantation is a highly effective treatment
for patients suffering from severe-to-profound hearing

loss. For cochlear implant (CI) patients, an electrode array is
placed in the inner ear to stimulate the auditory nerve fibers to
transmit sound from an external microphone to the brain. To
optimize the surgical and audiological outcome, it is crucial to
preserve cochlear structure and function during implantation [1],
[2], [3], [4].

Electrocochleography (ECochG) is increasingly used to mon-
itor cochlear health during cochlear implantation [5], [6], [7],
[8], [9], [10], [11], [12], [13], [14]. ECochG measures cochlear
biopotentials in response to an acoustic stimulus. Using pure
tone stimulation (i.e., sinusoidal stimulus), responses are com-
monly recorded in pairs, consisting of a rarefaction (RAR)
and condensation (CON) response. RAR and CON refer to
the polarity of the longitudinal pressure wave of the applied
stimulus. Different response components can be derived from
these ECochG signals, which are suggested to originate from
different neurosensory sources within the cochlea [15]. The
cochlear microphonic (CM) mainly indicates the function of
the outer hair cells (OHC) and is an electrical reflection of the
acoustic stimulus [16]. It is considered the ECochG component
with the most predictive power regarding cochlear health [11],
[17], [18], [19], [20]. To measure the CM, the difference signal
(DIF) between CON and RAR is analyzed. However, acoustic
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Fig. 1. Schematic overview of a typical intraoperative real-time Electrocochleography (rt-ECochG) measurement. The cochlea generates biopo-
tentials as a response to acoustic stimulation. The rt-ECochG is recorded directly by the cochlear implant (CI) at the most apical intracochlear
electrode, which is slowly inserted through the round window. The signal is digitized at a sampling rate fs = 20.5 kHz and raw data chunks of a
few milliseconds length are buffered before stitched together to form a full response. The time span of a response is denoted an epoch and lasts
from 11 to 16 milliseconds. A response contains a condensation (CON) and rarefaction (RAR) response pair which result in the difference signal
(DIF) after subtraction. The DIF signal is used to analyze the cochlear microphonic (CM), a commonly used component of the ECochG signal. The
continuous recording of responses generates a sequence of epochs, which are combined into the rt-ECochG measurement. By extracting features
from the individual responses, feature traces are created over the duration of a measurement, as shown here on the basis of the CM amplitude. We
refer to a collection of feature traces as the insertogram.

harmonics in the measurements prevents perfect separation of
the single response component [11], [21], [22].

We refer to real-time ECochG (rt-ECochG) as an ECochG
that was continuously recorded and instantly processed during
surgery [10]. A typical intracochlear rt-ECochG measurement
recorded by the CI’s most apical electrode during surgery is
shown in Fig. 1. Individual epochs are composed of several
buffers, which are acquired from repeatedly recorded responses.
In this way, response pairs (CON and RAR) are recorded at a rep-
etition rate of 1.25Hz. We obtain the DIF signal by subtracting
the RAR from the CON responses. The continuous recording
generates a sequence of epochs, referred to as the rt-ECochG
measurement. By extracting features (e.g. CM amplitude or
phase) from the epochs, feature traces are created over the
duration of a measurement. We refer to the collection of different
feature traces as the insertogram.

Studies have found a significant correlation between changes
in CM amplitude during CI electrode insertion and postoperative
preservation of residual hearing [4], [5], [23], [24]. However,
existing methods for trauma detection show low sensitivity
and specificity and are limited to functional preservation in
patients with substantial residual hearing [13], [19]. Moreover,
the current gold standard is the visual inspection of the ECochG
signals by an expert, which prevents the integration of the
analysis into an automated software [25], [26]. A promising
strategy to achieve more reliable automatic trauma detection is
to include more data such as the electrical impedance of the CI
electrodes in the analysis in addition to the rt-ECochG amplitude
features [27], [28], [29], [30], [31], [32]. Electrical impedance
data provides information about the electrode-tissue interface,
including the electrode-electrolyte interface and the surrounding
tissue resistance [33]. The increased complexity due to the

simultaneous measurement of rt-ECochG and impedance in real
time (rt-impedance) as well as the extraction of more signal
features poses new challenges to the signal processing methods
applied. In this paper, we present a new method for real-time
analysis of intraoperative rt-ECochG using autonomous lin-
ear state-space models (ALSSMs), enabling the simultaneous
measurement of rt-impedance data. Our ALSSM based algo-
rithms address a broad range of signal processing tasks such as
artifact removal, filtering and feature extraction [34].

II. MATERIALS AND METHODS

In this section, we briefly introduce the basics of ALSSM and
how we use it to create algorithms for processing rt-ECochG. In
addition, we show how we tested the performance of these new
algorithms using simulation data and how we validated them in
a visual proof of concept using exemplary real patient data. For
comparison, we also applied an established standard method to
both the simulations and the patient data.

A. ALSSMs as Signal Models

Model-based signal processing methods are well suited for
the analysis of biological signals, as they allow to incorporate
a priori knowledge of the signal physiology. ALSSMs enable
the efficient online implementation of such model-based al-
gorithms [34], [35], [36]. The ALSSMs in this study were
implemented using the open source software library lmlib [37].

Discrete-time ALSSMs can generate functions such as poly-
nomials, exponentials, and sinusoids, as well as linear combi-
nations of those [38]. An ALSSM of order N is given by the
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recursive state equation and the output equation

xi+1 = Axi (1)

mi = cxi (2)

with state transition matrix A ∈ RN×N , output vector c ∈
R1×N , state vector xi ∈ RN , model output mi ∈ R, and time
index i ∈ Z.

Substitution of xi in (2) with (1) leads to

mi(x0) = cAix0 (3)

with initial state vector x0. Note that the output of a model,
defined by A and c, is fully determined by the initial state x0.
For the sake of simplicity, we subsequently denote this initial
state x0 as x.

B. Localized ALSSM to Signal Fitting

The best approximation of an observed signal y ∈ RK with
K samples under the premise of a particular signal model is
defined as the model output m(x̂) yielding a minimal cost with
respect to the squared error. For local signal approximation with
ALSSMs in the interval i ∈ {a, . . . , b}, a, b ∈ Z, a cost segment

Jb
a(x, k; γ) =

k+b∑
i=k+a

γi−k (yi − cAi−kx
)2

(4)

is used at filter index k ∈ Z [34]. γi−k adds a left- or right-sided
exponentially decaying window to the cost term. By rewriting
(4) in the form

Jb
a(x, k; γ) = xTWkx− 2xTξk + κk (5)

with substitutes

Wk =
k+b∑

i=k+a

γi−k (Ai−k)T cTcAi−k ∈ RN×N (6)

ξk =

k+b∑
i=k+a

γi−kyi
(
Ai−k)T cT ∈ RN (7)

κk =

k+b∑
i=k+a

γi−ky2i ∈ R (8)

the actual computation can be performed in a sliding window
manner and with minimum computational effort as a recursive
least squares algorithm. In this case, the decaying window is
essential to ensure numerical stability. Finally, the optimal state
is given by

x̂k = argmin
x∈RN

Jb
a(x, k; γ) (9)

= W−1
k ξk. (10)

as showed in [34].

C. Constrained Parameter Optimization

To achieve a desired behavior of the model, in many cases it is
advantageous to restrict the space of solutions for (10) from RN

to a subspace of it. For a M dimensional subspace, we introduce
the linear constraint

x = Hv (11)

with the constraint matrixH ∈ RN×M . The minimization prob-
lem (10) then modifies to

v̂k = argmin
v∈RM

Jb
a(Hv, k; γ) (12)

=
(
HTWkH

)−1
HTξk. (13)

D. Composite Cost and Model Superposition

Multiple cost segments can be combined to achieve more
complex filter characteristics. Such a combination of cost seg-
ments is called a composite cost, of which there are several
variants [34].

To subsequently join P cost segments with individual decay
factors γ(p) and interval borders ap, bp, we get the summed cost

J̃(x, k) =
P∑

p=1

J
bp
ap(x, k; γ

(p)) (14)

i.e.,

κ̃k =
P∑

p=1

κ
(p)
k , (15)

ξ̃k =

P∑
p=1

ξ
(p)
k , (16)

W̃k =

P∑
p=1

W
(p)
k . (17)

While each segment in the composite cost has additionally
assigned its individual output vector c(p) and decay factor γ(p),
the transition matrix A and state vector x are common for all
segments. This simplifies the subsequent computation, but is not
a limitation of the method, since ALSSMs can be stacked. To
superimpose Q models, we can apply

A = diag
(
A(1), . . . , A(Q)

)
(18)

x =
[(
x(1)

)T
. . .

(
x(Q)

)T]T (19)

c =
[
c(1) . . . c(Q)

]
(20)

E. Signal and Event Classification Using ALSSMs

Since a cost as in (4), or more generally (14), provides a
measure of similarity between a model and the observed signal,
we can use the costs to evaluate the performance of several
models. We denote the ratio between two such cost remainders a
cost ratio, which is closely related to the likelihood ratio of two
alternative hypotheses in statistics. Since likelihoods are often
in logarithmic scale, we analogously introduce the log-cost ratio
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Fig. 2. Model of the amplifier drift artifact naturally occurring in intraop-
erative real-time Electrocochleography (rt-ECochG) when paralleled by
real-time impedance measurements. The line segments are connected
at the transition points of subsequent buffer cycles of the analog-to-
digital converter.

(LCR)

LCRk = −1

2
log

min
x∈X1

Jb
a(x1, k; γ1)

min
x∈X2

Jb
a(x2, k; γ2)

∈ R (21)

with X1 and X2 being distinct feature spaces [34].

F. Artifact Removal in ECochG Using ALSSMs

The currents injected by concurrent impedance measurements
cause the analog amplifier of the ECochG measurement system
to drift. As the polarity of these measurement currents alternate,
the resulting drift artifact resembles a stationary triangular wave
with the known period of a single buffer cycle. However, the
exact slopes of the artifact depend on the electric properties of
the surrounding tissue, which are unknown.

To compensate for the drift artifact, we design a piece-wise
linear model (cf., Fig. 2) of Q continuous line segments. The
model of line segment q ∈ {1, . . . , Q} is

m
(q)
i (x) = a

(q)
0 + a

(q)
1 i. (22)

The model is fitted to the raw measurement signal using a
composite cost over the full epoch duration.

The ALSSM parametrization for a line model as in (22) is

A(q) =

[
1 1

0 1

]
, c(q) =

[
1 0

]
(23)

with state vector

x(q) =
[
a
(q)
0 a

(q)
1

]T
, (24)

where a0 reflects the line offset and a1 the slope. A total of
Q ALSSMs are then stacked according to (18)-(20) to obtain
a composite cost (14). Each line model must connect to its
successor, which is provided by the equality constraints

m
(q)
qKB

= m
(q+1)
qKB

(25)

with KB being the buffer size, i.e., the width of each line
segment in number of samples. The cost segments match the

buffer cycle width. The filter is thus evaluated only once, at
k = 0. The constraints from (25) for Q = 4 are incorporated by
applying (13) with

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−KB KB KB 3KB 1

1 0 0 0 0

0 −2KB KB 3KB 1

0 1 0 0 0

0 0 −3KB 3KB 1

0 0 1 0 0

0 0 0 0 1

0 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (26)

The window functions are almost rectangular with a decay factor
for reverse recursion γ(q)

← = 1000
1000−1 , q ∈ {2, . . . , Q}, except for

the first window, where a slight decay was chosen with γ(1)
← =

0.5KB

0.5KB−1 with KB = 60 to emphasize the pre-stimulation base-
line.

With this strategy, the signal is reconstructed by subtracting
the artifact model trajectory from the raw epoch before the next
processing step.

G. Noise Reduction in DIF Using ALSSMs

The morphology of a CM response is mainly determined by
the acoustic stimulus [15]. This a priori knowledge enables to
design a specific ALSSM filter that accurately reproduces the
stimulation frequency f0. To approximate the CM, we used a
sinusoidal model of the form

mi = α · cos (Ω0i+ φ) (27)

with fixed frequency

Ω0 = 2πf0/fs, (28)

being normalized to the recording sampling rate fs. The estima-
tion parametersα andφ represent the amplitude and the phase of
the sinusoidal. The ALSSM parametrization equivalent to (27)
is

A =

[
cosΩ − sinΩ

sinΩ cosΩ

]
, c =

[
1 0

]
(29)

with state vector

x = α
[
sinφ cosφ

]T
, (30)

cf., Table I in [34]. For the composite cost window function, we
chose a symmetric exponential decay with γl for i = k + a . . . k
and γr for i = k + 1 . . . k + b. By adjusting the length and
window shapes of the cost segment, filters of different frequency
characteristics can be obtained. To form a bandpass filter, cen-
tered around f0 as shown in Fig. 3, our model can simply be
evaluated at m0(x) for every filter index k. By increasing the
window width L = b− a, we observe the frequency specificity
of the filter will also be increased. To preserve the frequency
specificity of the filters for different stimulation frequencies, we
adapt the window length accordingly.
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Fig. 3. Frequency responses of a sinusoidal Autonomous Linear
State-Space Model (ALSSM) filter with ground frequency f0 = 500Hz
and with two different window lengths L1 and L2 applying an exponen-
tially decaying window. We note that wider windows (as with L2) provide
a higher frequency specificity of the filter. L1 = 4ms, L2 = 8ms.

H. Morphological Analysis of the CM Using ALSSMs

The most commonly used feature to assess a CM response is
the amplitude at the f0-bin of the amplitude spectrum, obtained
by fast Fourier transform (FFT) to the DIF epoch. In analogy,
we extract the local amplitude and phase estimations α̂k and φ̂k,
respectively.

In a second step, we extract a confidence metric, how well our
model (27) represents the observed data. For this, we compare
the CM model (27) with a noise model by calculating

LCRk = −1

2
log

min
x∈R2

(
J0
a(x, k; γl) + Jb

1(x, k; γr)
)

J0
a(0, k; γl) + Jb

1(0, k; γr)
(31)

according to (21) [35]. Any LCR > 0 indicates that the CM
model explains the observation locally better than the noise
model. To aggregate the amplitude information of a full epoch,
we calculate an LCR-weighted average of the amplitudes. In
doing so, plausible signal periods are emphasized. We param-
eterized the average with a window function (Hamming win-
dow) similar to the FFT to minimize windowing effects. The
per-epoch average amplitude is therefore given by

α =
K∑

k=0

wkLCRkαk (32)

with wi being the window function value. In analogy to (32),
the per-epoch average

LCR =

K∑
k=0

wkLCRk (33)

is calculated to quantify an entire epoch.

I. Verification With Simulation Data

To test the suitability of the sinusoidal CM model, we per-
formed a controlled sensitivity analysis of the amplitude esti-
mation algorithm using simulated ECochG signals. Testing with
simulation data allows to exclude external disturbances from the

Fig. 4. Comparison of intraoperative real-time electrocochleography
(rt-ECochG) responses to simulation data with normalized amplitudes.
Shown are the difference signals (DIF) obtained by subtraction of re-
sponses from a condensation and rarefaction 500Hz acoustic pure tone
stimulus. (a) DIF exhibiting sinusoidal peaks. (b) DIF exhibiting sharp
peaks. (c) DIF exhibiting round peaks.

analysis and to examine the CM amplitude estimation separately
from the artifact removal.

For signal synthesis, we used a verified open-source model
of the auditory periphery by Zilany et al. [39], [40], [41], [42],
[43], [44], [45]. This model allows to simulate IHC and OHC
responses to a user-defined acoustic stimulus. We reproduced
three typical ECochG waveforms (A, B and C) as seen dur-
ing surgery by combining the simulated IHC and OHC cell
potentials [45]. For each waveform, we varied the recruitment
coefficients CIHC, COHC ∈ [0, 1] of IHCs and OHCs as well as
the intensity I ∈ R (in dBSPL, sound pressure level SPL) of the
11ms acoustic 500Hz pure-tone stimulus in the simulation. The
actual simulation parameters were A: I = 60dBSPL, CIHC =
COHC = 1, B: I = 110 dBSPL, CIHC = COHC = 0.5, C: I =
60dBSPL, CIHC = 0, COHC = 1. Fig. 4 compares real intraoper-
ative rt-ECochG recordings to the simulations. We added artifi-
cial pink noise to the signals to simulate different signal-to-noise
ratios (SNRs).

For comparison, we also applied a commonly used conven-
tional method on the same data set, which we reproduced to the
best of our knowledge [20], [46]. In the conventional method,
the discrete amplitude spectrum of the response is calculated
using the FFT. The CM amplitude is then estimated using the
f0-bin of the spectrum’s absolute values. To interpolate in fre-
quency domain (Δf ≈ 25Hz) and minimize leakage, the signal
is zero-padded and multiplied with a Hamming window before
the FFT. To estimate the noise level and its standard deviation, 3
preceding and 3 succeeding bins, starting 9 bins away from the
f0-bin are used [20]. With that, we also calculated the z-score
of the f0-bin.

We evaluated the performance of the algorithms using Monte
Carlo simulations. The test includes estimations of the CM
amplitude and an evaluation of response confidence metrics in
the DIF signal for the three test waveforms (Fig. 4(a)–(c)). In
the conventional method, the z-score was used as the confidence



3142 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 70, NO. 11, NOVEMBER 2023

metric. The performances of the different methods were evalu-
ated with 10’000 samples per test waveform with SNRs in the
range of −10 dB to +20 dB.

J. Validation With Intraoperative Recordings

For illustration purposes, we applied the algorithms to a few
exemplary patient data from an ongoing observational study and
present the results graphically. More specifically, the real data
presented throughout this paper come from five patients who
averaged 59.2 years of age at implantation and had a pure tone
average (PTA) of 76.7 dBHL (hearing level HL).

We recorded rt-ECochG and rt-impedance data from CI pa-
tients during electrode insertion. The experimental study has
been approved by the local institutional review board Kantonale
Ethikkommission Bern (Cantonal Ethics Committee of Bern),
Switzerland (BASEC ID 2019-01578) and was conducted in
compliance with the Declaration of Helsinki. All participants
or their legal guardian gave written informed consent before
participating in the study.

Before the surgical incision, we placed a sterile insert foam
eartip with a connected sound tube into the patient’s external
auditory canal [47], [48]. For stimulation, we connected the
acoustic unit of a hybrid sound processor (Nucleus 7, Cochlear
Ltd., Sydney, Australia) to the sound tube. Prior to insertion, we
transcutaneously connected the sterile-packed transmitter coil of
the sound processor to the implant. Insertion was then performed
with pure tone stimulation and measurement of both rt-ECochG
and impedance through the implant (CI622, Cochlear Ltd.,
Sydney, Australia) using the manufacturer’s measurement soft-
ware (Cochlear Research Platform 2.0, Cochlear Ltd., Sydney,
Australia). The applied pure tone stimuli were 11 ms long and
had an amplitude of either 100 dBHL for 250Hz or 108dBHL

for 500Hz. The epochs were recorded unfiltered over a window
of 16 ms and a sampling rate of 20.5kHz. Impedance data were
obtained using the default intraoperative setting of the Cochlear
Research Platform 2.0, in which the monopolar impedances
of all electrodes are measured simultaneously to rt-ECochG.
The results of the measurements were not communicated to the
surgeon until the insertion was complete. This was done to avoid
influencing the insertion process.

We post-processed the collected data using our signal pro-
cessing pipeline, which includes artifact removal, amplitude es-
timation, and LCR calculation. For comparison, we recorded the
amplitude trace provided by the measurement software similar
to the conventional method explained in Section II-I.

III. RESULTS

A. Verification With Simulation Data

Fig. 5 compares the simulation results of the algorithms for
determining the confidence metric of the CM responses for the
three test waveforms (Fig. 4(a)–(c)). The top panel contains the
results for the ALSSM method, while the bottom panel depicts
the results of the conventional method. The curves show that
the ALSSM method provides a more homogeneous result over

Fig. 5. Evaluation of confidence metrics for electrocochleography
(ECochG) responses in simulation data at different signal-to-noise ratios
(SNRs). The curves show mean values for n = 10′000 trials of three
characteristic waveforms (Fig. 4(a)–(c)) with added random noise. Top
panel: Logarithmic cost ratio (LCR) obtained by comparing a localized
Autonomous Linear State-Space Model (ALSSM) of the cochlear micro-
phonic (CM) versus a pure noise model. Bottom panel: z-score obtained
by a FFT-based spectral estimation.

different CM shapes, especially in the range of distinct responses
with SNR > 0 dB.

As a first approach to establish a threshold for binary clas-
sification of the presence of physiological responses, we chose
LCR > 0.35, where the cost of the CM model exceeds twice the
cost of the noise model. As a result, signals for all test waveforms
with SNR > −2 dB are being considered significant. Using
the conventional method, on the other hand, even signals with
SNR > −7.5 dB (waveforms A and C) and SNR > −10.3 dB
(waveform B) are considered significant responses (p < 0.01).

Fig. 6 shows the relative absolute errors of the amplitude
estimation comparing the ALSSM method and the conventional
method at different SNRs. Each panel corresponds to the results
of one of the three test waveforms (Fig. 4(a)–(c)).

The ALSSM estimated the CM amplitude more accurately in
all simulations, and performed particularly well for waveforms
(A) and (C). Both methods showed the largest error for waveform
(B). The ALSSM method achieved a smaller error in this case as
well. At SNRs < −7.5dB, the estimation error of the ALSSM
method is higher than the error of the conventional method. Since
responses with such a low SNR are not considered significant by
either method, the amplitude estimates in this range are invalid
anyway.

B. Validation With Intraoperative Recordings

The top panel in Fig. 7 shows a raw DIF epoch from a rt-
ECochG measurement distorted by the artifact as described in
Section II-F together with the estimated artifact model trajectory.
We reconstructed the signal as described in Section II-F (bottom
panel). We applied the CM ALSSM (27) withL = 2ms for noise
reduction. By using the ALSSM as a bandpass filter, the transient
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Fig. 6. Absolute errors of cochlear microphonic (CM) amplitude esti-
mations in simulated electrocochleography (ECochG) data at different
signal-to-noise ratios (SNRs). Each panel shows the averaged results
for one of three characteristic waveforms (Fig. 4(a)–(c)) with added
random noise from n = 10′000 trials. For comparison, the CM ampli-
tudes were estimated by the new method using Autonomous Linear
State-Space Models (ALSSM) and a conventional algorithm based on
the fast Fourier transform (FFT).

Fig. 7. Epoch from an intraoperative real-time electrocochleogra-
phy (rt-ECochG) measurement, distorted by the amplifier drift artifact
caused by concurrent real-time impedance measurements before and
after application of the Autonomous Linear State-Space Model (ALSSM)
filters. Top panel: Raw epoch before processing (gray) and artifact
estimation (black dased). Bottom panel: Reconstructed signal before
(gray) and after (black) noise reduction.

portions of the signal are reproduced. Note that the parameters
of the localized model were also estimated at the same time.

Fig. 8 shows the pipeline result for a 250Hz pure-tone inser-
togram (i.e., rt-ECochG and rt-impedance measurements from
the start of the electrode array insertion until full insertion), with
three exemplary DIF epochs of different distortion and noise
levels shown individually. The examples show that artifacts can
be removed applying the artifact model. Further, the CM model
fits well to the observed data within the window considered for
the cost computations.

The result is an amplitude trace with artifacts removed, which
at the same time retains its fast features. This becomes especially
evident when comparing the ALSSM amplitude trace with the
amplitude trace obtained using the conventional method. The
intermediate rise in amplitude between 25 and 60 seconds as
estimated by the conventional method coincides with the pas-
sage of the apical electrode through the round window at the
start of the insertion (drop in apical impedance |Z22|). This is
not reproduced by the ALSSM method. Finally, the per-epoch
average LCR provides an additional confidence metric.

Impedance traces of the apical (ICE 22) and basal (ICE
01) intracochlear electrodes are shown in the bottom panel to
illustrate the entire insertogram. The impedance of the apical
electrode elevates at 90 seconds, as expected due to the geometry
of the cochlea, but then decreases towards the initial level [33],
[49], [50], [51]. The impedance of the basal electrode drops
sharply around 155 seconds after entering the fluid filled scala
tympani. This event coincides with a spike in the CM amplitude
estimate of the conventional method. However, this spike is not
visible in the amplitude trace of the ALSSM method (Fig. 8,
Epoch C).

IV. DISCUSSION

We have implemented a signal processing pipeline for real-
time morphological analysis of rt-ECochG signals. This sig-
nal processing pipeline includes artifact removal (IV-A), noise
reduction (IV-B), and a local model for feature extraction (IV-C).

A. Artifact Removal

We demonstrated that artifacts caused by simultaneous rt-
impedance measurements can be removed in rt-ECochG using
our artifact ALSSM. The model-based approach allows the
discontinuities of the artifact to be adequately represented. The
estimation of the artifact becomes optimal when all other signal
components are offset free over each single buffer cycle. How-
ever, the effects of this requirement are mitigated by constraining
the individual models over the entire epoch. In addition, common
modes of CON and RAR are eliminated in the DIF signal. In the
future, the artifact parameters obtained with our approach poten-
tially allows the derivation of intracochlear capacitive properties
during the recording of an insertogram.

B. Noise Reduction

In the example from Fig. 7, we showed that the CM model
is suitable for noise reduction in the DIF signal. The sinusoidal
ALSSM behaves like a band-pass filter, which becomes less
frequency specific when the window is shortened.

C. Feature Extraction

We used ALSSMs to locally fit a CM model to the observed
data by estimating amplitude and phase. Simultaneously, we pro-
vided a confidence metric about the presence of a physiological
response using LCR.

The simulations showed that the per-epoch average LCR
yields similar results for all tested waveforms, and therefore is a
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Fig. 8. Intraoperative real-time electrocochleography (rt-ECochG) with concurrent impedance measurements during cochlear implant (CI) elec-
trode insertion. The rt-ECochG signals show the difference (DIF) of the responses obtained from condensation and rarefaction acoustic stimuli.
The rt-ECochG was measured directly using the apical intracochlear electrode (ICE) of the CI. Top panels: Raw DIF epochs and artifact estimation
using Autonomous Linear State-Space Models (ALSSM). The three epochs represent different groups of observed signals during surgery, namely
(a) small response, heavily distorted by the impedance measurements, otherwise small SNR; (b) large response, distorted by the impedance
measurements, low SNR; (c) medium response, heavily distorted by the impedance measurements, otherwise medium SNR. Second-top panels:
Corrected DIF epochs after artifact removal and trajectories of locally fitted sinusoidal ALSSMs over the cost window width at the location of the
maximum logarithmic cost ratio (LCR) representing the cochlear microphonic (CM). Black, dashed: Extrapolation of the CM model trajectory over
the full epoch. Second-bottom panel: Estimated CM amplitude trace over the course of the CI electrode insertion obtained using the ALSSM method
and the f0-bin of the FFT. Gray scale: Per-epoch average LCR obtained using the ALSSM method. Bottom panel: Clinical impedance traces during
CI electrode insertion, obtained from the apical (ICE-22) and basal (ICE-01) intracochlear electrodes.

more robust confidence metric for signal classification than the
z-score from the conventional method. Thus, objective analysis
for different rt-ECochG waveforms is facilitated with the novel
ALSSM method. The steeper slope of the LCR curves relative to
the dynamic range in the region of SNR = 0 dB implies a higher
resolution of the confidence metric available for classifying
the signals. Our first attempt to find a suitable threshold for
binary classification of responses based on the LCR still needs
refinement, since the classification with an LCR threshold of
0.35 showed to be rather conservative.

With the ALSSM method, the amplitude of simulated CM
could be estimated more accurately than with the conventional
method. The localized CM model provides a more detailed
representation of the amplitudes in a single epoch. By weighting
the individual amplitudes in an epoch using LCR, the per-epoch
average amplitude can be estimated more robustly. The ampli-
tude estimation for both methods could possibly be improved
by considering the harmonics.

ECochG signals exhibit a rich morphology that includes fea-
tures such as onset delay, phase, and envelope that could be

used for trauma detection in the future. In a next step, it will
be important to precisely determine these features by fitting a
global CM model. In this context, the LCR and phase estimation
of the CM ALSSM are indispensable [35], [36].

D. Study Limitations

The main limitation of the current study is the complexity
of the CM model. To obtain a morphological description and
feature set adequate for trauma detection, the full CM must be
fitted with its transient components, in place of a local model. In
addition, the artifact estimation could be improved by fitting a
global CM model simultaneously with the artifact model, which
is feasible with our approach, since ALSSMs can be stacked.
Finally, ECochG response components other than the CM such
as the auditory nerve neurophonic should be taken into account
for trauma detection, so these must also be analysed.

The simulation data enable the evaluation of new algorithms
for the analysis of intraoperative ECochG in a controlled sen-
sitivity analysis. Still, the simulations do not correspond to
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complete ECochG responses, but only reflect the cumulative
cell potentials of the OHC and IHC clusters. To obtain more
vivid ECochG simulations, a computer model of the cochlea is
required [45].

The proposed signal processing pipeline has been illustrated
by only few intraoperative examples. A prospective study in a
larger clinical cohort is required to evaluate the classification
performance of our approach.

V. CONCLUSION

We introduced a tool for the analysis of intraoperative real-
time electrocochleography (rt-ECochG) based on Autonomous
Linear State-Space Models (ALSSMs). The analysis includes
artifact removal, noise reduction, and feature extraction together
with a confidence metric (Logarithmic Cost Ratio, LCR) for the
physiological response. Our signal processing pipeline enables
the combination of rt-ECochG with simultaneously recorded
impedance data for the purpose of improved automated trauma
detection during cochlear implantation. We tested the feature
extraction algorithms in simulated data and applied the full
signal processing pipeline to a typical intraoperative measure-
ment. The controlled sensitivity analysis with simulated data
showed that our algorithms performed superior to conventional
FFT-based methods. With our approach, it is feasible to perform
a robust morphological analysis of the physiological response.
Rt-ECochG waveforms can be described more efficiently with
ALSSMs than with FFT. The LCR provides the means to
automatically decide on the validity of a measured response.
Since the presented algorithms are computationally efficient,
they could be implemented on the implant itself for future
applications other than intraoperative trauma detection, such as
cochlear health monitoring while the patient wears the implant.
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