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Introduction

Nowadays, enzymes are broadly used as highly selective 
and greener biocatalysts with respect to other traditional 
chemical catalysts that can be toxic and/or result into more 
waste production [1, 2]. However, the full implementation 
of biocatalytic reactions on large scale is still a challenging 
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Abstract
Flow biocatalysis has emerged as an empowering tool to boost the potential of enzymatic reactions towards more automa-
tized, sustainable, and generally efficient synthetic processes. In the last fifteen years, the increasing number of biocata-
lytic transformations carried out in continuous flow exemplified the benefits that this technology can bring to incorporate 
biocatalysis into industrial operations. This perspective aims to capture in a nutshell the available methodologies for flow 
biocatalysis as well as to discuss the current limitations and the future directions in this field.
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task [3]. Enzymes may suffer from (i) low stability under 
harsh conditions such as presence of organic co-solvents, 
extreme temperatures (i.e. mesophilic enzymes operate 
at 20–45ºC), or extreme pH (i.e. highest activity of most 
enzymes remains between pH 6 and 8), (ii) substrate/product 
inhibition, (iii) dependency on costly cofactors (i.e. price for 
NADPH can be > 1,000 €/g), [4] and (iv) low productivity 
rate, among others. Several technologies have emerged with 
the aim to alleviate those drawbacks and bring biocataly-
sis closer to industrial set-ups [3]. A clear step to boost the 
potential of biocatalysis is the incorporation of enzymatic 
reactions into continuous flow reactors, which is generally 
known as Flow Biocatalysis [5]. The transition from batch 
to flow offers numerous advantages. For instance, flow set 
ups offer a higher surface-volume ratio; increased automa-
tion of the systems, reducing the risks associated with haz-
ardous intermediates; better experimental reproducibility, 
lower production of waste; etc. Specifically, flow biocataly-
sis offers the great advantage to be able to continuously syn-
thesize a product of interest with high control of the reaction 
parameters (i.e. substrate concentration, reaction rate) and 
a straightforward coupling of downstream processes (i.e. 
product purification, reuse of co-solvents). Such a set-up 
is highly desired to develop more cost-effective processes 
for chemical manufacturing, while contributing to greener 
synthetic routes.

The rise of flow biocatalysis is easily recognizable 
when looking at the steady increase of scientific arti-
cles, conference presentations, and lectures over the 
last years. In fact, scientific publications containing 
the keyword ‘Flow Biocatalysis’ started to increase 
intensely in 2008 according to the database Scopus 
(Fig. 1). Just in the last five years almost 400 pub-
lications came out, including entire reviews focusing 
on this topic [5–13]. Flow biocatalytic approaches are 
also gaining attention in industry, especially in phar-
maceutical synthesis [14–17]. Yet, while enzymatic 

reactions in continuous flow are far from being exten-
sively exploited in industrial processes, the growing 
interest in biocatalytic transformations is clear, as it 
has been recently shown by the survey carried out 
by Gallou, Gröger, and Lipshutz to different chemi-
cal industries around the world [18]. Herein, we will 
discuss the current and future directions for flow bio-
catalysis and its role in the leverage of enzymatic 
transformations towards more efficient and sustain-
able chemistry.

Current landscape of enzymatic reactions in 
continuous flow

Enzyme immobilization

Enzyme immobilization as the linkage of enzyme molecules 
to a solid support is typically associated with the integration 
of biocatalytic reactions into flow systems [19]. Not only, 
enzyme immobilization can stabilize the protein structure 
under the required operational conditions, but also facili-
tates the reusability of the biocatalyst through easy separa-
tion of the heterogenous biocatalyst (enzyme-support entity) 
from the reaction medium that continuously flows through 
the reactor. This is one of the key concepts that enhances 
the sustainability and efficiency of biocatalytic reactions in 
flow. Notwithstanding, the impact of the costs and waste 
production on to the final productivity must be carefully 
evaluated when using immobilized enzymes. In order to 
evaluate the suitability of a heterogeneous biocatalyst for 
its implementation into a flow reactor, Bolivar and López-
Gallego have summarized the most fundamental aspects 
that should be considered [20]. Surface-protein engineering, 
material engineering, and reactor design are the three pil-
lars which must be optimized to achieve a balance between 
the activity and stability of the biocatalyst. Therefore, the 

Fig. 1 Scientific publications 
including the keywords ‘Flow 
biocatalysis’ reported yearly 
during the last four decades. The 
database Scopus has been used as 
data source
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field of flow biocatalysis advances parallelly to the field of 
enzyme immobilization.

The immobilization of enzymes on solid supports has 
indeed come a long way during the last 50 years. The first 
examples of biocatalyst immobilization featured the adsorp-
tion of only one enzyme, typically a hydrolase, to a solid 
particle [21]. Nowadays, the co-immobilization of several 
enzymes working synergistically on an enzymatic cas-
cade is possible, even tuning each enzyme immobilization 
through a different binding chemistry [22–24]. Further-
more, the reversible co-immobilization of cofactors needed 
for the biocatalytic reactions have been achieved, allowing 
the development of self-sufficient heterogenous biocata-
lysts that contribute to reduce the costs of the synthetic pro-
cesses [25]. Regarding the support onto which the enzyme 
is attached, different techniques are available: anchoring to 
microparticles, entrapment into hydrogels, or carrier-free 
immobilization (such as crosslinking of enzymes) [19, 26]. 
Noteworthy, the immobilization of biocatalysts from whole 
cells or cell extracts can be also performed through all those 
techniques [27–29].

In the industrial landscape, the increasing interest on sta-
bilization of enzymes via immobilization has encouraged 
the establishment of companies specifically focused on the 
preparation of immobilized biocatalysts [30].

Reactor design

Transferring enzymatic reactions from batch to flow mode 
requires the adaptation of the reactor as well. Several types 
of reactors which were already used in flow chemistry have 
been adopted for the integration of enzymatic reactions in 
continuous flow (Fig. 2). The most user-friendly configura-
tion are likely continuous stirred tank reactors (CSTRs) as 
their set-up is very similar to a stirred batch reactor [31–33]. 
The operation of CSTRs in continuous mode involves an 
inlet to feed the substrate solution to the reactor vessel and 
the outlet line to recover the product within the reaction mix-
ture. This is a good option for newcomers to the field of flow 
biocatalysis, but the use of immobilized enzymes in CSTRs 
must be carefully considered because the mechanical stirring 

can damage the heterogeneous biocatalysts by shredding the 
support. As an alternative, membrane reactors (MRs) offer 
the opportunity to work with free biocatalysts due to the use 
of a membrane that can separate the biocatalyst from the 
product molecules which are much smaller [34], although 
MR can be also operated with immobilized biocatalysts.

The most promising and widely used reactors for flow 
biocatalysts at present are packed-bed reactors (PBRs) [22, 
35–38]. These reactors are column-shaped and contain 
the heterogenous biocatalyst occupying around half of the 
reactor volume. Due to the high surface/volume ratio, the 
reactants flowing through the PBR can be transformed to 
the corresponding products accomplishing high conversion 
rates. Unfortunately, PBRs also suffer limitations such as 
the inability to process solid reactants or slurries.

In order to screen and optimize the reaction conditions, 
microreactors are an attractive solution that permit to per-
form different reactions simultaneously while reducing the 
reagent consumption and waste generation [39, 40]. The 
microfluidic devices also allow the study of immobilized 
enzymes as those are usually attached to the reactor wall. 
The last trend on (micro)reactor design for flow biocatalysis 
are 3D-printed reactors which allow the tailor-made design 
of the reactor in consideration of the reaction challenges 
[41, 42].

Downstream processing

One of the biggest advantages of performing enzymatic 
reactions under flow conditions is the in-line coupling of 
downstream processing. After the enzymatic reaction is 
completed, the separation of the product from the unreacted 
substrates, by-products, or co-solvents used during the reac-
tion requires special attention. In-line downstream process-
ing contributes to reducing the waste production as well as 
simplifying the multi-step synthetic reactions. Recently, 
Kara and co-workers have reviewed the main downstream 
techniques used in flow biocatalysis [43]:

 ● Liquid-liquid extraction is a simple strategy in which 
the different physico-chemical properties of the product 

Fig. 2 Schematic representation of different types of flow reactors
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packed into a column that is connected downstream to 
the flow bioreactor. In addition, novel scavenger materi-
als (i.e. lignin) from natural sources have been success-
fully applied [50].

 ● Precipitation and filtration are often employed for an 
easy product recovery (Fig. 3C) [38]. Different meth-
ods are available for the crystallization of the product, 
not only to allow its downstream purification but also 
to shift the reaction equilibrium when the crystallization 
occurs in situ [51].

are harnessed to enable its solubility into a target sol-
vent, thus promoting its purification. This strategy also 
allows for the separation of unreacted starting materials 
or cofactors that are water-soluble and can be recycled 
into the flow system (Fig. 3A) [44–48].

 ● Scavenger resins are widely employed to purify a target 
molecule in a liquid-solid extraction. The process known 
as “catch and release” strategy allows for the separation 
of the product (or other target molecules) by attachment 
to the resin, and then the purified molecule is released 
into a new liquid phase (Fig. 3B) [35–37, 49]. Typically, 
sorbent materials which are commercially available are 

Fig. 3 Flow biocatalytic reactors 
coupled to in-line downstream 
processes. (A) liquid-liquid-
extraction was used to separate 
the product (ester) in the organic 
phase [45]. (B) liquid-liquid 
extraction allowed a first separa-
tion of the co-substrates and 
side product from the interme-
diate and product. In a second 
step, a scavenger column was 
used to isolate the final product 
(S-alcohol). Moreover, another 
scavenger column was employed 
for the separation and recycling 
of the co-substrates by “catch-
and-release” strategies. For 
example, glucuronic acid was 
retained onto Ambersep 900 OH 
which is a strongly basic resin, 
and could be released by the 
addition of an acidic solution 
[35]. (C) Product precipitation 
was achieved by cooling down 
the solution exiting the flow 
stream. Then, in a separate step, 
filtration and drying were carried 
out to isolate the final product 
(vidarabine) [38]. Figure 3A and 
3B are reproduced from ref. [45] 
and ref. [35] with permissions of 
Springer Nature
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Photobiocatalysis in flow

One of the most recent additions to the field of flow bio-
catalysis are photobiocatalytic reactions [65]. Light can be 
harnessed either (i) to excite the substrate before the reaction 
proceeds, or (ii) to bring the biocatalyst to an excited state 
in which it is active [66, 67]. In photobiocatalytic reactions, 
the use of whole-cell biocatalyst is more common than free 
enzymes due to the instability of the latter. Indeed, this is 
an important parameter when integrating photobiocatalysis 
in flow reactors. New types of reactors have been designed 
to adapt photobiocatalytic reactions to flow set-ups, for 
instance, to avoid the decrease on enzyme stability due to 
exposure to high temperatures while ensuring the right light 
penetration into the photobioreactor [68]. Overall, photobi-
ocatalysis has brought new-to-nature reactivities as well as 
an alternative manner to improve the sustainability of bio-
transformations (i.e. light-dependent cofactor regeneration). 
Now, the biggest challenge to overcome is the obtainment 
of industrially-relevant processes since both the techniques 
have limitations in terms of instruments/reactors.

Bioinformatics and machine learning

In recent years, bioinformatic tools have played a key role in 
the development of enzymatic processes, from the optimiza-
tion of the catalytic activity of the enzyme to the reaction 
process [69–72]. Now, artificial intelligence and machine 
learning strategies are entering the field of continuous flow 
biocatalysis aiming at further automation of continuous pro-
cesses [73–75]. Nevertheless, not all reactions can be oper-
ated in continuous flow and databases are still limited. But 
the potential of computational tools on the development of 
more efficient biocatalysts, reaction optimization, and reac-
tion screening can be revolutionary in the near future by 
reducing the experimental time required.

Conclusions

In this perspective, we have highlighted the main 
research streams within the field of flow biocatalysis, 
focusing on the biocatalyst, the reactor, and the down-
stream processes. The advantages of this key enabling 
technology have been discussed and summarized in 
Table 1. Yet, Flow Biocatalysis is a field in develop-
ment that present certain challenges, but it is rapidly 
growing to meet the request of process intensification 
at industrial scale.

Noteworthy, in-line analysis by UV or NMR among others 
can be also coupled downstream the continuous flow reac-
tor [32].

New trends in flow biocatalysis

Multi-enzyme cascades

The current accessibility to numerous and diverse biocata-
lysts has certainly unveiled the potential of multi-enzyme 
reactions [52]. In this regard, flow biocatalysis facilitates 
the integration of different enzymatic steps into a cascade. 
On one hand, the compartmentalization of each biocatalytic 
step into single reactors allows to operate each enzyme at 
its optimal conditions (temperature, pH, co-solvents) [53]. 
On the other hand, the integration of different biocatalysts 
into the same flow reactor, either by co-immobilization of 
enzymes on the same support [25, 54, 55] or by mixing of 
different immobilized biocatalysts [35, 56, 57], has proven 
to favor the reaction rate compared to batch reactions. Cer-
tainly, what makes flow biocatalysis truly valuable for enzy-
matic cascades is the elimination of issues related to product 
inhibition, as the flow itself continuously removes the newly 
formed product. Despite all the above-mentioned benefits, 
the intensification of a multi-enzymatic process in flow is 
still a very complex task that requires optimization efforts 
for each individual enzyme/reaction [16, 58, 59]. For this 
reason, the integration of multi-enzyme cascades into indus-
trial set-ups has been barely explored to date, although this 
field is advancing steadily.

Chemoenzymatic approaches

The combination of chemical and enzymatic steps in syn-
thetic procedures is a very appealing strategy to introduce 
(flow) biocatalysis at large scale [58]. The integration of 
telescoped chemoenzymatic approaches in flow systems 
facilitates the separation of chemo- and biocatalysts, allow-
ing them to perform at their best reaction conditions that 
might be difficult to achieve, if at all possible, when per-
formed in batch mode (for instance, enzyme incompatibil-
ity with a chemical reaction that happens at 150ºC). In-line 
purification/separation methods are also a great advantage 
of flow systems to promote the compatibility of chemo- and 
biocatalytic reactions, as precise control over the product 
of one catalytic step can be executed before carrying out 
the next one. As result, reduced reactions times and more 
reproducible yields can be obtained. Hence, chemo-enzy-
matic flow reactions are a very active research area in both 
academia and industry as it can be appreciated in the recent 
literature [48, 60–64].
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