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Background and objective: Deep learning based medical image analysis technologies have the potential to greatly 
improve the workflow of neuro-radiologists dealing routinely with multi-sequence MRI. However, an essential 
step for current deep learning systems employing multi-sequence MRI is to ensure that their sequence type 
is correctly assigned. This requirement is not easily satisfied in clinical practice and is subjected to protocol 
and human-prone errors. Although deep learning models are promising for image-based sequence classification, 
robustness, and reliability issues limit their application to clinical practice.

Methods: In this paper, we propose a novel method that uses saliency information to guide the learning of features 
for sequence classification. The method uses two self-supervised loss terms to first enhance the distinctiveness 
among class-specific saliency maps and, secondly, to promote similarity between class-specific saliency maps and 
learned deep features.

Results: On a cohort of 2100 patient cases comprising six different MR sequences per case, our method shows an 
improvement in mean accuracy by 4.4% (from 0.935 to 0.976), mean AUC by 1.2% (from 0.9851 to 0.9968), and 
mean F1 score by 20.5% (from 0.767 to 0.924). Furthermore, based on feedback from an expert neuroradiologist, 
we show that the proposed approach improves the interpretability of trained models as well as their calibration 
with reduced expected calibration error (by 30.8%, from 0.065 to 0.045). The code will be made publicly 
available.

Conclusions: In this paper, the proposed method shows an improvement in accuracy, AUC, and F1 score, as well 
as improved calibration and interpretability of resulting saliency maps.

1. Introduction

For many years, MRI has played an important role in the diagnostic 
process that helps doctors and radiologists in their clinical workflow. 
In neuroimaging, MRI images serve to diagnose patients, follow up 
on their response to treatment, and assist in their prognosis, among 
other tasks. To cover different pathological or physiological conditions, 
different sequences are typically needed to provide different types of 
information. Hence, correct annotation of image sequences is a very 
important initial step of the image process pipeline in the clinics.

As more MRI scanners are introduced to medical centers, the amount 
of collected MRI images grows rapidly accordingly. The challenges of 
classifying collected sequences arise from a large amount of data. On 
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top of that, scanners from different manufacturers have different nam-

ing formats as well as scanning protocols. Specifically, metadata from 
Digital Imaging and Communications in Medicine (DICOM) are not 
standardized throughout all medical centers, and each center might 
use different naming systems. For example, the “series description” 
(0008,103E) can vary from center to center due to local regulations, 
technician’s preferences, etc. [1]. In the clinical routine, accurate se-

quence annotation is challenged by the exhausting manual annotation 
required from professionals, which takes much effort and time. Automa-

tion is thus indeed highly requested, typically done via machine learn-

ing techniques. Previously, some methods have been proposed to tackle 
this issue using features extracted from DICOM metadata. [1] proposed 
to rely on the “series description” tag as ground truth for sequence clas-
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sification. They report high-accuracy results (with accuracies ranging 
from 97.4% to 99.96%). However, as discussed, this tag has a large vari-

ability and can be very unreliable in clinical practice. [2] proposed to 
combine DICOM metadata and pixel information to train a deep learn-

ing sequence classification model. A few proposed methods are based 
on training deep learning models to classify image sequence types. [3]

applied AlexNet [4] or GoogleNet [5], which reported accuracy levels 
ranging from 60.7% to 100%, while [6] proposed to use a modified 
Visual Geometry Group network (VGGNet [7]) accompanied by data 
augmentation, which reported the accuracy at 99%. Similarly, [8] uti-

lized selected three-dimensional-cropped slabs of brain images during 
model training and leveraged test domain data to improve model per-

formance (with an accuracy of 96.81%), and [9] only relied on single 
slice per volume to classify different sequences using ResNet18 [10]

(with an accuracy of 79%), ResNet34 (with an accuracy of 81%), and 
ResNet50 (with an accuracy of 84%) networks.

In real-life applications, these methods can be trained and applied 
to internal datasets from a medical center (i.e., trained and tested on 
a local dataset). However, in MR-related deep learning applications, 
it is known that model performance drops when disparity exists be-

tween training and test datasets [11–13]. Hence, training models with 
multi-center datasets is a desired property of modern deep learning 
systems, which require large amounts of data, typically from public 
datasets. However, for neuroimaging applications, publicly available 
datasets commonly need to be skull-stripped for anonymization and 
data protection regulations [14]. For this reason, we postulate that a 
more realistic clinical scenario is to assess the performance of deep 
learning models, trained with skull-stripped brain images, and tested 
on original brain images. This follows the rationale that models trained 
on publicly available multi-center datasets aim at classifying image se-

quences at the very beginning of the image processing pipeline of a 
local center to enable further processing steps, including, for instance, 
skull-stripping. Another strategy could be running a sequence classifica-

tion after skull-stripping. However, current skull-stripping methods are 
designed to work on either a specific sequence (typically T1-weighted) 
or have been trained to cover a few sequences, as is the case of [15]

and likely will have issues on sequences not seen during training. [16]

also concludes that skull-stripping methods need to be reliable regard-

ing sequence variations, suggesting the dependency of these algorithms 
on the sequence type. In addition, the sequence classification followed 
by the skull-stripping scenario also emerged in our workflow as part 
of a multi-center project on multisequence brain MRI (The Swiss-First 
project [17]), where automated MRI sequence classification was re-

quested due to the time-consuming nature of the task for the clinical 
collaborators of the project. We note that this is not a specific scenario 
but rather a typical one encountered in multicenter and multisequence 
clinical studies. Since such a more clinically-oriented scenario has not 
been explored in the literature, we extended the project’s objectives 
to develop a solution presented in this study. The Swiss-First project 
uses acquisition protocols that are already more strict than daily clini-

cal routine, yet the issue of MRI sequence classification still appeared. 
We believe this problem has been overlooked in the medical image com-

puting community.

Another important challenge that has been rarely mentioned is in-

accurately classifying T1-weighted MRI sequences (T1) and T1-post-

Gadolinium (T1Gd) MRI sequences, which are very similar in appear-

ance [18] (except for the areas where the contrast agent takes up), 
but have quite different objectives from a diagnostic and deep learn-

ing point of view (e.g., in brain tumors, the T1Gd sequence is the main 
driver in segmenting the active area of the tumor). Recently, in [9], the 
authors showed that T1Gd is easily misclassified as T1.

In summary, MRI sequence classification using deep learning has 
shown promising results. However, for clinical routine, model perfor-

mance needs to be robust and highly accurate since any mistakes made 
at this initial point of the processing pipeline can have large detrimental 
effects on subsequent steps.

Saliency maps are one type of output yielded by the interpretability 
of models. Saliency maps are used to highlight which areas of an image 
are more important to a model. Beyond interpretation, saliency maps 
have also been used as an inductive bias during model training [19]

and optimization of data augmentation policies [20]. In these works, 
saliency maps are used to enforce that saliency maps across different 
classes are as distinctive as possible.

Motivated by these works, we investigated the possibility of intro-

ducing saliency information during the training of a sequence classifi-

cation model. We propose to do this via two self-supervised loss terms 
used during model training, such that the proposed saliency-driven loss 
terms act as a regularizer, enhancing the distinctiveness among class-

specific saliency information, as well as the similarity between saliency 
information and deep features learned for the same class.

On a cohort of 2100 patient cases, comprising six different MR 
sequences per case, our result shows improved performance in the 
clinical scenario where sequence classification models are trained on 
skull-stripped brain images and tested on original brain images. At the 
sequence level, we also show the ability of the approach to drastically 
improve results on the hardest classification between T1 and T1Gd se-

quences. Furthermore, we show that the proposed approach improves 
the interpretability of trained models as well as their calibration.

In the following sections, we describe the proposed approach, 
termed SaRF, for Saliency Regularized Features, as well as the data and 
the implemented experimental setup.

2. Methods

In this section, we first introduce the MRI image sequences that are 
classified in this work, followed by a description of our proposed SaRF 
approach.

2.1. MRI image sequences

In this study, we focused on six MR sequences routinely used. In 
clinical practice, the first four types of sequences are used together 
for brain tumor diagnosis, which are T1-weighted images (T1), T2-

weighted images (T2), T1-weighted images with Gadolinium contrast 
agent (T1Gd), and Fluid-attenuated inversion recovery (FLAIR) images. 
T1 images are widely used for brain anatomy. T2 images are widely 
used to detect image tissue anomalies such as brain tumors and lesions. 
Compared to T2 images, FLAIR images are able to suppress hyper-

intense signals from cerebrospinal fluids, providing better localization 
for anomalies. T1Gd images can highlight active tumoral areas, mak-

ing it an essential sequence for a broad spectrum of disorders of the 
central nervous system (CNS) featuring a breakdown of the blood-brain-

barrier (BBB), such as multiple sclerosis, stroke, infection, brain tumors, 
etc., for both detection and therapeutic guidance. In medical imaging 
computing-related challenges, such as the brain tumor segmentation 
challenge (BraTS) [21], and the Ischemic Stroke Lesion Segmentation 
(ISLES) [22,23] challenge, these four sequences are also used.

Apart from that, two other sequence types are also commonly used: 
diffusion-weighted imaging (DWI) and susceptibility-weighted imaging 
(SWI). DWI images help to distinguish benign and malignant tumors 
based on reduced diffusion or elevated diffusion. SWI images help to 
identify various compounds, such as blood, iron, and diamagnetic cal-

cium, based on the magnetic susceptibility differences of these com-

pounds. Fig. 3 shows examples of these six different sequences for one 
patient case.

2.2. Saliency-regularized features: SaRF

The overview of SaRF is shown in Fig. 1. During model training, 
class-specific saliency maps are calculated for each training image (e.g., 
using Deep Taylor Decomposition during a backward process) and for 
all potential sequence types (in this example, six) and aggregated to 
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Fig. 1. Overview of the proposed SaRF approach. During model training, for each training image, class-specific saliency maps are calculated (e.g., using Deep Taylor 
Decomposition during a backward process) for all potential sequence types (in this example, six) and aggregated to yield a class-distinctiveness loss. Additionally, 
for each class, a feature vector from the second-to-last layer (forward pass) is extracted and compared to the corresponding class-specific saliency vector, to form a 
saliency-feature loss. These two terms are combined with the standard cross-entropy loss term to form the final loss function used for model training.

yield a class-distinctiveness loss. Additionally, for each class, a feature 
vector from the second-to-last layer (forward process) is extracted and 
compared to all (six) class-specific saliency vectors, to form a saliency-

feature loss. These two terms are combined with the standard cross-

entropy loss term to form the final loss function used during model 
training.

Given an input image, saliency maps show levels of pixel importance 
to the given task. High intensities in the saliency map reflect larger 
pixel attribution and impact on the task. In a classification task setting 
comprising 𝐾 classes, a total of 𝐾 class-specific saliency maps can be 
calculated. This is referred to as intra-sample saliency maps [19]. Based 
on this property, we aim to drive the training process to derive distinc-

tive intra-sample saliency maps. Some interpretability approaches, such 
as Deep Taylor Decomposition (DTD) [24], enable calculating saliency 
maps at a specified layer. We take this advantage and calculate saliency 
maps to regularize the learned feature at that specified layer.

In general, the loss objective of the proposed SaRF is defined as the 
linear combination of a cross-entropy loss 𝑐𝑒, a saliency distinctiveness 
loss 𝑠𝑑 , and a saliency-feature consistency loss 𝑠𝑓 :

𝑡𝑜𝑡𝑎𝑙(𝐼) = 𝑐𝑒(𝐼) + 𝛼 ⋅𝑠𝑑 (𝐼) + 𝛽 ⋅𝑠𝑓 (𝐼), (1)

where 𝐼 ∈ ℝ𝑁 is the input image, 𝛼 and 𝛽 are hyper-parameters that 
control the weight of each loss term. Below, we detail each saliency 
regularization loss term.

2.2.1. Saliency distinctiveness loss 𝑠𝑑

The proposed saliency distinctiveness loss 𝑠𝑑 aims at promoting the 
distinctiveness of class-specific saliency maps.

𝑠𝑑 (𝐼) =
(
𝐾

2

)−1 𝐾−1∑
𝑖=1

𝐾∑
𝑗=𝑖+1

|||𝐶𝑜𝑠𝑆𝑖𝑚(𝑆𝐿
𝑖
(𝐼), 𝑆𝐿

𝑗
(𝐼))||| , (2)

where 𝐶𝑜𝑠𝑆𝑖𝑚(𝑆𝐿
𝑖
(𝐼), 𝑆𝐿

𝑗
(𝐼)) is the cosine similarity between the 

saliency of class 𝑖 and 𝑗 for input image 𝐼 at layer 𝐿. 
(𝐾
2

)−1
takes the 

mean of all calculated cosine similarity values from all combinations of 
class pairs for 𝐾 classes where 

()
is the combination operator.

Our study uses DTD to calculate saliency information at the second-

to-last layer. In the setting of DTD, for an input image 𝐈 ∈ R𝑁 , the 
prediction output 𝐹 (𝐈) is decomposed backward layer by layer. In this 

process, each neuron is assigned a relevance score, and the assigning 
process is approximated by Taylor expansion. The collection of the rel-

evance score for one layer is the saliency of this layer. This process starts 
at the output layer and eventually back-propagates to the input image 
space as shown in Fig. 3. During the process, the saliency of each layer 
can be calculated. This saliency information is a vector at the second-to-

last layer, hence termed saliency vector. In section 4, we visualize the 
relevance score in the image space to show the effect of the proposed 
regularization terms.

2.2.2. Saliency-feature consistency loss 𝑠𝑓

The second regularization term of the proposed SaRF is the saliency-

feature consistent loss 𝑠𝑓 , which aims at enforcing the similarity be-

tween the calculated saliency vector and the learned feature for a given 
class.

𝑠𝑓 (𝐼) =
1
𝐾

[ 𝐾∑
𝑖=1,𝑖≠𝑙

|||𝐶𝑜𝑠𝑆𝑖𝑚(𝑆𝐿
𝑖
(𝐼), 𝐹 𝐿

𝑙
(𝐼))|||

− |||𝐶𝑜𝑠𝑆𝑖𝑚(𝑆𝐿
𝑙
(𝐼), 𝐹 𝐿

𝑙
(𝐼))||| ] (3)

where 𝐹𝐿
𝑙
(𝐼) is the feature of input image 𝐼 at layer 𝐿 whose ground 

truth class is 𝑙. 𝐶𝑜𝑠𝑆𝑖𝑚(𝑆𝐿
∗ (𝐼), 𝐹𝐿

𝑙
(𝐼)) is the cosine similarity between 

the saliency 𝑆𝐿
∗ (𝐼) at layer 𝐿 and the feature 𝐹𝐿

𝑙
(𝐼). The intuition of this 

loss is to enforce that learned features are similar to saliency maps com-

puted for the ground truth class, while being orthogonal to the saliency 
vectors of the other classes. This intuition is enlightened by the find-

ings in [25], which emphasizes that the explanation of a model should 
perfectly approximate the targeted model. Based on this perspective, 
we studied the possibility of enforcing the alignment between produced 
saliency maps and deep features of a model. In this way, the proposed 
saliency-feature consistency loss term of SaRF yields saliency maps that 
approximate learned features.

3. Experiments

3.1. Datasets

Our dataset comes from the Swiss-First study [17] aiming at per-

forming early detection of epilepsy. Around 500 to 600 patients across 
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Table 1

Data source description. The Swiss-First study is within a multi-center project where there 
is no unified scanning protocol. The content provided is the subject number and the pa-

rameter range used during image acquisition. We provide the summary of the dataset in 
terms of magnetic field strength (1.5T or 3T), slice thickness range (in mm), spacing range 
(in mm), pixel size range (in mm × mm), scanning vendor manufacturer (Philips, Siemens 
or GE, in total 350 subjects), Gender (Female or Male, in total 350 subjects), and age range.

Sequence DWI FLAIR SWI T1 T1Gd T2

Field 95 (1.5T) 89 (1.5T) 104 (1.5T) 70 (1.5T) 95 (1.5T) 66 (1.5T)

Strength 255 (3T) 261 (3T) 246 (3T) 280 (3T) 255 (3T) 284 (3T)

Slice 1.5 ∼ 0.7 ∼ 1.2 ∼ 0.9 ∼ 0.7 ∼ 1 ∼
Thickness 5 5 14.4 6 6 5

Spacing 1.5 ∼6.5 0.7 ∼6 0.85 ∼1.3 0.9 ∼7.2 0.75 ∼7.2 3 ∼6.5

Pixel 0.55×0.55 0.43×0.43 0.29×0.29 0.24×0.24 0.24×0.24 0.21×0.21

∼ ∼ ∼ ∼ ∼ ∼
Size 1.81×1.81 1.3×1.3 0.94×0.94 1×1 1×1 0.45×0.45

Philips 12 12 8 15 14 24

Siemens 338 338 341 334 335 326

GE 0 0 1 1 1 0

Female 167 162 167 163 172 174

Male 183 188 183 187 178 176

Age 18∼92 18∼92 18∼92 18∼92 18∼92 18∼93

different centers in Switzerland are included in the study. In this study, 
we randomly selected 350 brain volumes for each sequence to have a 
balanced representation of sequence types, for a total of 2100 image vol-

umes. The selected volumes contain both epileptic and healthy image 
volumes.

Table 1 describes the main characteristics of the dataset used for 
the study. For all brain images selected in this dataset, we collect the 
statistics of important scanning information. For example, the number 
of brain images scanned in 1.5 T and 3 T, the min slice thickness and 
the max slice thickness, etc.

3.2. Data split and pre-processing

The 350 image volumes per sequence were randomly split into 250 
for model training and validation purposes and the remaining 100 image 
volumes were used to construct the test dataset. For the training and 
evaluation set (250 volumes), we apply 5-fold cross-validation and each 
fold consists of 200 image volumes for training and 50 image volumes 
for evaluation. The models trained in different folds will be tested on 
the test dataset.

During pre-processing, the selected brains were roughly aligned to 
the same origin and cropped in a similar range of 140 mm in the cranio-

caudal direction to cover the brain tissue and skull.

To simulate the aforementioned scenario where training images 
stem from publicly available skull-stripped datasets, we use HD-

BET [15] to perform skull-stripping on the training and validation 
datasets. Accordingly, we note that the test dataset was not skull-

stripped. The test data in this scenario corresponds to the original 
(non-skull-stripped) brain images since such a classification system is 
meant to be used as the first step of a multi-sequence or multi-modal 
deep learning pipeline where knowing the sequences is needed to cor-

rectly order the inputs to the deep learning during inference time. We 
performed z-score normalization for each image volume and selected 7
slices at percentiles [20, 30, 40, 50, 60, 70, 80] in the Cranio-caudal 
direction, resulting in 1400 slices per class. For a 2D convolutional net-

work, in total, we have 8400 slices for training. We performed this 
selection to ensure foreground presence on selected slices used for 
model training.

3.3. Model evaluation

As introduced in section 3.2, we perform 5-fold cross-validation. The 
model trained in each fold will select the model parameter with the 
smallest validation loss and then be evaluated on the test dataset. To 
predict the class of an input image volume, we make slice-wise predic-

tions on the selected 7 slices, and predict the mean probability vectors, 
followed by selecting the maximum probability as the predicted class 
for the image volume. As classification metrics, we report accuracy, 
area under the curve (AUC) value from the receiver operating character-

istic (ROC), and F1 score for each class. We also report mean accuracy 
(ACC), AUC, and F1 across all six classes for one test.

We also evaluated the calibration level of trained models, which 
is important to assess the reliability of the model’s prediction confi-

dence. Well-calibrated models match realistic predictions. If the model 
is poorly calibrated, the prediction value is not reliable. Poorly cali-

brated models can be over-confident or under-confident. To quantify 
the calibration of the model, the expected calibration error (ECE) [26]

is typically used. We also visualize the calibration using reliability dia-

gram [27]. We use the python and python library scikit-learn [28] for 
the metric calculations.

3.4. SaRF and ablations

As a baseline, we set 𝛼 = 0 and 𝛽 = 0 to train a model, equivalent 
to training a model only with the cross-entropy loss. For the proposed 
SaRF, we set 𝛼 = 5, 𝛽 = 0.5 to train the model. We also compare our 
result against focal loss, which we believe is a competitive alternative 
and used in medical image classification [29–32].

To investigate the effect of the regularization terms, we turned ‘on’ 
and ‘off’ the saliency distinctive loss and the saliency-feature consis-

tency loss by setting 𝛼 = 5∕0 or 𝛽 = 0.5∕0 when training models.

We further investigated how the 𝛼 and 𝛽 settings would affect the 
performance by conducting 64 combinations of 𝛼 and 𝛽 pairs taking 
values in the range [0, 0.2, 0.5, 1, 2, 5, 10, 20] when training models.

To investigate the generalizability of the proposed method, we also 
experiment with a different saliency method, GradCAM [33], to cal-

culate the saliency information involved during the model’s training. In 
addition, we experiment with focal loss [34] that replaces cross-entropy 
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Table 2

Classification results for each sequence type between the baseline and the 
proposed SaRF (𝛼 = 5, 𝛽 = 0.5), and average across all of them. SaRF yielded 
major improvements (> 10%) in classifying SWI, T1, and T1Gd. The im-

provement in classifying the T1 sequence is the largest across all six se-

quences. The best results in F1 score with major improvement (> 10%) are 
shown in bold, and the results in italics indicate worsened results.

Sequence Methods ACC AUC F1

DWI Baseline 0.973 ± 0.032 0.9996 ± 0.0008 0.929 ± 0.080

SaRF 0.996 ± 0.002 0.9999 ± 0.0001 0.989 ± 0.006

FLAIR Baseline 0.981 ± 0.009 0.9817 ± 0.0117 0.939 ± 0.030

SaRF 0.991 ± 0.003 0.9930 ± 0.0044 0.972 ± 0.008

SWI Baseline 0.943 ± 0.045 0.9983 ± 0.0030 0.862 ± 0.094

SaRF 0.994 ± 0.005 0.9999 ± 0.0002 0.982 ± 0.016

T1 Baseline 0.855 ± 0.018 0.9696 ± 0.0218 0.226 ± 0.163

SaRF 0.944 ± 0.037 0.9970 ± 0.0031 0.782 ± 0.162

T1Gd Baseline 0.896 ± 0.018 0.9612 ± 0.0293 0.726 ± 0.068

SaRF 0.945 ± 0.029 0.9907 ± 0.0084 0.857 ± 0.069

T2 Baseline 0.962 ± 0.071 0.9999 ± 0.0000 0.919 ± 0.014

SaRF 0.985 ± 0.024 0.9999 ± 0.0001 0.961 ± 0.060

ALL Baseline 0.935 ± 0.019 0.9851 ± 0.0103 0.767 ± 0.068

SaRF 0.976 ± 0.014 0.9968 ± 0.0020 0.924 ± 0.046

and apply the proposed SaRF loss terms. We use the same parameter set-

ting for these two experiments as the proposed SaRF, with 𝛼 = 5, 𝛽 = 0.5
to train the model.

3.5. Faithfulness study on learned features

To quantitatively analyze if the proposed SaRF improves the inter-

pretability of learned features, we followed the QUANTUS [35] frame-

work and performed the faithfulness study. In QUANTUS, the faithful-

ness study is defined to quantify to what extent explanations follow the 
predictive behavior of the model, asserting that more important features 
affect model decisions more strongly. It was originally defined to com-

pare different interpretability methods, but it also applies to this work, 
which assumes that improved feature learning leads to more important 
features being highlighted in DTD saliency maps. For faithfulness, we 
adopted the Remove and Debias (ROAD) approach [36] with the ‘Most 
Relevant First’ order [37], which measures the accuracy of a model on 
a test set in an iterative process by removing the k-most important pix-

els (as yielded by the corresponding saliency map). The pixel intensity 
is replaced by an imputed value from neighbors with randomly sam-

pled linear noise during the removal. A saliency map is more faithful 
if the drop in model performance is higher when perturbing the most 
important pixels in the MRI image. Following the definition of faith-

fulness, we can quantify how the proposed SaRF inductive bias yields 
improved learned features compared to the baseline model. We applied 
the faithfulness test to all test images and predicted the volume classes 
at different removal levels. The result is evaluated with the F1 score 
since it is the most sensitive metric.

3.6. Training details

We used ResNet18 as the backbone architecture, with minor adap-

tations to work with medical images and saliency calculation. Dur-

ing training, we use RMSprop optimizer at the learning rate of 10−5. 
The weight decay was set to 10−4 with momentum set to 0.9. We set 
the number of training epochs to 200 to ensure convergence of the 
loss. After training, we selected the saved model yielding the best 
validation loss at the end of each epoch for testing. All the exper-

iments were executed with Pytorch running on Nvidia Geforce GTX 
1080ti graphic cards. The code will be available via GitHub https://

github .com /yousuhang /SaRF.

4. Results

4.1. Comparison of SaRF and the baseline

General results are shown in Table 2. The results in bold show major 
improvement (>10%), and the results in italics indicate worsened re-

sults. The mean and standard deviation for each metric was calculated 
from 5-fold cross-validation on the test dataset. The results of both base-

line and SaRF have values close to 1 in ACC and AUC. SaRF achieves 
improvements across the board for ACC and AUC. The major improve-

ments are observed for the F1 score, with improvements of 20.5% (from 
0.767 to 0.924), particularly for the T1 sequence, going from 0.226 to 
0.782. These results demonstrate the ability of the proposed method 
to yield improved classification results, especially for the T1 sequence, 
which largely lacks accuracy for the baseline model.

We also plotted the average confusion matrix for the baseline and 
proposed SaRF, consisting of an average across 5-fold test results. In 
each confusion matrix plot of Fig. 2, rows correspond to the predicted 
classes, and the columns correspond to the ground truth classes. Results 
were normalized with respect to the ground truth class, where the sum-

mation of each row is 1. For example, in the confusion matrix for the 
baseline model, the T1 classification (row T1), 13.6% of predictions are 
correct, while 41% of T1 test sequences were classified as T1Gd by this 
model, and 21.8% T1 test sequences were classified as SWI. The confu-

sion matrix shows that the major improvement occurs for the T1 and 
T1Gd sequences, wherein current approaches yield large classification 
errors. With the proposed SaRF approach, the improvement is remark-

able, from 0.136 to 0.668 on T1, from 0.84 to 0.96 on T1Gd, and from 
0.886 to 0.946 on FLAIR, while not sacrificing accuracy on other se-

quences.

To investigate the interpretability of trained models, we compared 
the saliency maps of SaRF and baseline models for test cases. In Fig. 3, 
we present one exemplary slice per sequence for one subject. We se-

lected the slice containing a large area of non-brain tissue to investigate 
how these regions are used for each model since the training data is 
skull-stripped. In Fig. 3, each row shows the input slice on the left side 
and saliency maps on the right side divided into two smaller rows. The 
top row shows the saliency maps for the baseline model, whereas the 
bottom rows show saliency maps for models trained with SaRF. For ex-

ample, in the row DWI and the column DWI, the upper image is the 

https://github.com/yousuhang/SaRF
https://github.com/yousuhang/SaRF
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Fig. 2. Mean Confusion Matrix of the baseline in the left and SaRF 𝛼 = 5, 𝛽 = 0.5 in the right. The horizontal is the predicted class, and the vertical is the ground truth 
class. The values are normalized horizontally for each ground truth class, where the summation of each row is 1.

Fig. 3. Input image in the left and calculated saliency maps for each class in the right. For each input image, the top row are the saliency maps for the baseline, 
and the bottom row are the saliency maps for SaRF 𝛼 = 5, 𝛽 = 0.5. Input images are examples from the test dataset. On the right, each column are the saliency maps 
calculated for the denoted class. For example, in the row DWI and the column DWI, the upper image is the saliency map calculated for the input DWI image for class 
DWI for the baseline method, and the lower image is the saliency map calculated for the same input and the same class for the proposed SaRF. The yellow arrows 
6

point out the muscle tissue linked to the eyes as suggested by the neuroradiologist.
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Table 3

F1 scores of the classification results for each sequence type and average across all six sequences. 
Each column shows the result of the model evaluated on the test set in a 5-fold cross-validation. 
From left to right are the baseline method, the method only uses focal loss as the loss function, the 
proposed SaRF (𝛼 = 5, 𝛽 = 0.5), SaRF using GradCAM in saliency calculation (𝛼 = 5, 𝛽 = 0.5), SaRF 
using focal loss to replace the cross-entropy (𝛼 = 5, 𝛽 = 0.5). The best results in the ‘ALL’ row with 
major improvement (> 10%) are shown in bold.

Sequence Baseline Focal Loss SaRF SaRF (GradCAM) SaRF (Focal Loss)

DWI 0.929 ± 0.080 0.936 ± 0.053 0.989 ± 0.006 0.962 ± 0.060 0.992 ± 0.010

FLAIR 0.939 ± 0.030 0.947 ± 0.026 0.972 ± 0.008 0.926 ± 0.052 0.970 ± 0.007

SWI 0.862 ± 0.094 0.805 ± 0.112 0.982 ± 0.016 0.950 ± 0.032 0.991 ± 0.007

T1 0.226 ± 0.163 0.222 ± 0.133 0.782 ± 0.162 0.389 ± 0.213 0.799 ± 0.060

T1Gd 0.726 ± 0.068 0.671 ± 0.126 0.857 ± 0.069 0.706 ± 0.061 0.851 ± 0.032

T2 0.919 ± 0.014 0.957 ± 0.042 0.961 ± 0.060 0.969 ± 0.227 0.943 ± 0.070

ALL 0.767 ± 0.068 0.756 ± 0.071 0.924 ± 0.046 0.817 ± 0.057 0.924 ± 0.027

saliency map calculated for the input DWI image for class DWI for the 
baseline method, and the lower image is the saliency map calculated 
for the same input and the same class for the proposed SaRF. A quali-

tative assessment shows that: 1) SaRF shows more distinctive saliency 
maps across different class. For example, for the FLAIR sequence, the 
saliency maps for the baseline model are similar among class, whereas 
they are visually more distinctive for SaRF. 2) SaRF can highlight some 
anatomically meaningful areas for neuroradiologists when classifying 
sequences. One example is shown in Fig. 3. The yellow arrows indi-

cate that the muscle tissue linked to the eyes is much more highlighted 
in SaRF compared to the baseline in the T1Gd sequence (T1Gd-T1GD 
column-row), while in T1, conversely not highlighted (T1-T1 column-

row). This agrees more with the criteria in manual classification be-

tween T1 and T1Gd, whereas in the baseline method, the muscle tissue 
is not specially highlighted in the T1Gd-T1GD column-row but more 
highlighted in T1-T1 column-row (the muscle linked to the right eye). 
3) The skull and non-brain tissues contribute to the classification pro-

cess for both the baseline and regularized models.

4.2. Faithfulness test between SaRF and the baseline

The result of the faithfulness test comparing SaRF and the baseline 
is shown in Fig. 5-(a). Since SaRF and the baseline have different F1 
scores, as shown in Table 2 (‘ALL’ row), we measure the decrease of F1 
score when different percentages of removal (x-axis) are applied to the 
test dataset. The decreased value (y-axis) is calculated by subtracting 
the mean F1 scores at different removal percentages from the F1 score 
without removal. Therefore, the larger decreased value is better. In the 
initial 10% most relevant pixels removal, these two methods show no 
apparent difference in F1 decrease. As the removal process continues, 
the proposed SaRF shows a larger decrease in F1 and, eventually, a gap 
(around 0.1) between the two methods. This shows that the proposed 
SaRF leads to more faithful learned features.

4.3. Ablations on comparing different methods

The results of ablations comparing F1 scores of different methods 
are shown in Table 3. Other metrics (ACC and AUC) results are pre-

sented in Appendix A. From left to right are the baseline method, focal 
loss as the single loss function, the proposed SaRF (𝛼 = 5, 𝛽 = 0.5), SaRF 
using GradCAM in saliency calculation (𝛼 = 5, 𝛽 = 0.5), SaRF using focal 
loss to replace the cross-entropy (𝛼 = 5, 𝛽 = 0.5). The mean and stan-

dard deviation are calculated from 5-fold cross-validation on the test 
dataset. Comparing the baseline and the focal loss method, they have 
similar performance, which shows that the selected baseline is solid, 
as used in former works [3,6,8,9]. The SaRF calculated with GradCAM 
during saliency calculation has an improvement of 6.5% (from 0.767 to 
0.817) for the F1 score but is lower than the proposed SaRF using DTD 
(20.5% improvement). A potential reason for this difference is that the 

calculation of GradCAM is different from DTD, and the gradient scale 
of each saliency loss term differs from the proposed SaRF’s saliency loss 
terms. Therefore, the selected parameter setting (𝛼 = 5, 𝛽 = 0.5) might 
not be optimal for SaRF with GradCAM. The SaRF replacing cross-

entropy with focal loss during model training has an improvement of 
20.5% (from 0.767 to 0.924) for the F1 score, the same as the proposed 
SaRF (with DTD using cross-entropy loss). Both modified SaRF methods 
show major improvements in T1 sequence classification, going from F1 
metric values of 0.226 to 0.389 and from 0.226 to 0.799, respectively. 
These results demonstrate the ability of the proposed SaRF loss terms to 
yield improved classification results also in the case of using a different 
saliency calculation method (i.e., SaRF with GradCAM) and the case ap-

plying to a different loss function (SaRF with focal loss). The ablation 
experiment comparing different methods shows that our proposed SaRF 
can be easily applied to different losses, and the SaRF loss terms can be 
calculated using different saliency methods.

4.4. Ablations on parameters of each saliency regularization term

The results of the ablation study analyzing the impact of each loss 
term of SaRF are shown in Fig. 4, using the F1 score (other metrics 
are presented in Appendix A). In Fig. 4, the baseline, SaRF, ablation 
𝛼 = 5, 𝛽 = 0, and ablation 𝛼 = 0, 𝛽 = 0.5 are in blue, red, orange, and 
green, respectively. The major improvements occur for the sequences 
T1 and T1Gd. The results show that both the saliency-feature consis-

tency loss term and the saliency distinctiveness loss term yield dis-

tinctive performance improvements except for the T2 sequence when 
applied separately. Combining the two loss terms, the performance is 
further improved for each classification compared to solely using each 
loss term.

We also compared the calibration levels of the trained model among 
the four studied ablation settings. Shown in Fig. 5-(b), the added reg-

ularization yields a reduction of ECE (lower is better). The results of 
the ablation study on other hyper-parameter settings for the saliency 
distinctiveness and saliency-feature consistency are shown in Fig. 5-(c). 
Other metrics results are presented in Appendix A (Fig. 6, Table 4 and 
Table 5). Comparing the variation of different parameter settings, we 
observe that the impact of the saliency-feature consistency loss is larger 
than the impact of the saliency distinctiveness loss term.

5. Discussion

Sequence classification is essential as a building block in deep learn-

ing imaging pipelines requiring multi-sequence inputs. Correct iden-

tification of sequence type is hence essential to ensure the correct 
utilization of imaging information by a trained deep learning model. 
Although this information can be included in DICOM metadata, in prac-

tice, there is large heterogeneity in how this information is encoded. 
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Fig. 4. Ablation study on the importance of each loss term of SaRF. Violin plot of test F1 scores of each setting for all cross-validation folds. The major improvements 
occur for the sequences T1 and T1Gd.

Fig. 5. (a) Faithfulness test on F1 score between the proposed SaRF (orange) and the baseline (blue). The x-axis is the percentage of the most salient pixels (highest 
intensity yielded in saliency maps for unmodified test images) removed from the input test images for prediction. The y-axis is the decreased value between the 
mean predicted F1 scores of the modified images and the mean predicted F1 scores of the unmodified test images, i.e., the F1 scores of the ‘ALL’ row in Table 2. 
Higher values are better. (b) The reliability diagram of models trained with four different 𝛼, 𝛽 settings. Blue: Baseline, Red: SaRF, Orange: ablation 𝛼 = 5, 𝛽 = 0, Green: 
ablation 𝛼 = 0, 𝛽 = 0.5. Respectively, the ECE values are 0.065 ± 0.017, 0.058 ± 0.011, 0.05 ± 0.01, and 0.045 ± 0.014. The gray dash diagonal line represents a 
perfect calibration (ECE = 0). Lower ECE values are better. (c) Mean F1 scores for different hyper-parameter 𝛼, 𝛽 pairs used during training. The mean F1 scores are 
tested and averaged across all cross-validation folds of trained models.

For example, a T1Gd (for gadolinium) sequence can be termed dif-

ferently as “T1c”, “T1ce”, “T1-post-GAD”, etc. Furthermore, it is also 
common that this information is not stored under the same tag values 
by different vendors or software tools. Due to this and other reasons, 
image-based sequence classification from imaging information provides 
an alternative mechanism to be incorporated in a hybrid fashion with 
DICOM-based sequence classification.

In this study, we propose to use interpretability information to guide 
the learning process of a sequence classification model. This is based on 
the strong link between model performance and model interpretability, 
as discussed in [38], and as reported as well for other tasks in [19,20]. 
One of the novel loss terms proposed in this study considers the simi-

larity between the latent representation of saliency maps and the deep 
features. The rationale aligns with recent findings in [25], which sug-

gests that a proper explanation of a model should align with its deep 
features. Although our faithfulness study shows an improvement in the 
alignment, the clinical meaning of such learned features still requires 
verification if the more highlighted features are more clinically signifi-

cant. To address this issue, we consulted with a senior neuroradiologist 
to evaluate saliency maps from both the baseline and the proposed SaRF 
results. We presented to the neuroradiologist six randomly chosen se-

quences from different patient cases. On each sequence, we displayed 
six class-specific saliency maps (similar to those shown in Fig. 3. We 
blinded the methods and asked the expert to select per sequence, which 
saliency maps he would prefer, and provide justification. The expert 
commented that specifying brain regions that are sequence-specific is 
a difficult task, but he was able to find a few patterns he considered 
relevant to guide his selection. For example, the expert pointed out a 
checkerboard effect in the T2 sequence and believed that the method 
was attending to this area due to the inhomogeneity of magnetic field 
strength. This could be attributed to a potential shortcut learning of the 
model, while our regularized training seems to be resistant to this ef-

fect. However, even for the neuroradiologist, it is not known what the 
correct regions of interest per sequence should be (i.e., ground-truth 
saliency regions per sequence).
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In the ablations study in section 4.3, we show that our method can 
be easily extended by changing the saliency calculation method (as 
the results with GradCAM) or by jointly working with other types of 
losses (as the results with the focal loss) and still achieve improved 
performance in the classification task. Beyond that, we also tested 
with ResNet34 and ResNet50 as backbone models, following [9]. Re-

sults showed that the proposed SaRF approach leads to significant im-

provements for both ResNet34 (from 0.747 to 0.852 in F1 scores) and 
ResNet50 (from 0.808 to 0.844 in F1 scores), suggesting the generaliza-

tion capabilities of SaRF for different CNN architectures.

Some limitations are worth mentioning. In this study, we only in-

clude six types of sequences from the Swiss-First project. In other 
clinical settings, other types of sequences, such as perfusion-weighted 
imaging sequences, should also be included in future works. During 
the pre-processing of brain skull-striping, without access to the ground 
truth of skull-stripped brains from radiologists, we used HD-BET, which 
was originally trained with four types of sequences (T1, T1Gd, T2, 
and FLAIR). The tool might not perfectly skull-strip DWI and SWI se-

quences. Compared to the baseline with only cross-entropy loss, the 
proposed SaRF with saliency calculation increases the computation time 
by more than 50% during model training. As discussed above, the neu-

roradiologist’s qualitative evaluation of saliency maps is limited by the 
number of cases and limited understanding of the connection between 
saliency maps and clinical decisions (ground-truth saliency regions per 
sequence).

In the future, we would like to investigate how to better character-

ize and define what regions of interest should mostly drive a sequence 
classification model, as well as to investigate how changes on saliency 
maps are quantitatively connected to performance improvements. Fu-

ture work also includes conducting a larger qualitative analysis with 
clinical experts and extending the study to other MR sequences, in-

cluding diffusion and perfusion MRI. Beyond classification, we think 
the approach can be extended to segmentation problems, provided in-

terpretability saliency maps for segmentation tasks are available. For a 
practical challenge that might occur when a new imaging sequence type 
is introduced in the clinics, an interesting further venue of research is 
to combine the present approach with generalized zero-shot learning, 

as proposed in [39]. Beyond CNN, it would be interesting to extend 
the proposed to other types of architectures, such as vision transform-

ers [40].

6. Conclusion

In this study, we proposed SaRF, a novel method that introduces 
saliency information via two self-supervised loss terms during the train-

ing of a deep learning classification model. The saliency distinctiveness 
loss enhances the distinctiveness among class-specific saliency maps, 
and the saliency-feature consistency loss enhances the similarity be-

tween saliency maps and corresponding learned deep features for the 
same class. The proposed SaRF shows an improvement in terms of 
accuracy, AUC, and F1 score, as well as improved calibration and in-

terpretability of resulting saliency maps.
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Appendix A. Meam ACC & AUC heat-map and ACC & AUC 
comparison among different methods

Fig. 6. Mean ACC heat-map (left) and Mean AUC heat-map (right) for different hyper-parameter 𝛼, 𝛽 pairs used during training. The mean AUCs are tested and 
averaged across five folds.
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Table 4

ACC scores of the classification results for each sequence type and average across all six sequences. 
Each column represents the method used in a 5-fold cross-validation. From left to right are the 
baseline method, the method only uses focal loss as the loss function, the proposed SaRF (𝛼 = 5, 𝛽 =
0.5), SaRF using GradCAM in saliency calculation (𝛼 = 5, 𝛽 = 0.5), SaRF using focal loss to replace the 
cross-entropy (𝛼 = 5, 𝛽 = 0.5).

Sequence Baseline Focal Loss SaRF SaRF (GradCAM) SaRF (Focal Loss)

DWI 0.973 ± 0.032 0.977 ± 0.020 0.996 ± 0.002 0.986 ± 0.023 0.997 ± 0.003

FLAIR 0.981 ± 0.009 0.983 ± 0.008 0.991 ± 0.003 0.978 ± 0.014 0.990 ± 0.002

SWI 0.943 ± 0.045 0.912 ± 0.068 0.994 ± 0.005 0.983 ± 0.011 0.997 ± 0.002

T1 0.855 ± 0.018 0.855 ± 0.014 0.944 ± 0.037 0.877 ± 0.029 0.945 ± 0.014

T1Gd 0.896 ± 0.018 0.886 ± 0.010 0.945 ± 0.029 0.866 ± 0.039 0.945 ± 0.011

T2 0.962 ± 0.071 0.984 ± 0.016 0.985 ± 0.024 0.989 ± 0.008 0.978 ± 0.029

ALL 0.935 ± 0.019 0.933 ± 0.019 0.976 ± 0.014 0.946 ± 0.015 0.975 ± 0.009

Table 5

AUC scores of the classification results for each sequence type and average across all six sequences. Each 
column represents the method used in a 5-fold cross-validation. From left to right are the baseline method, 
the method only uses focal loss as the loss function, the proposed SaRF (𝛼 = 5, 𝛽 = 0.5), SaRF using GradCAM 
in saliency calculation (𝛼 = 5, 𝛽 = 0.5), SaRF using focal loss to replace the cross-entropy (𝛼 = 5, 𝛽 = 0.5).

Sequence Baseline Focal Loss SaRF SaRF (GradCAM) SaRF (Focal Loss)

DWI 0.9996 ± 0.0008 0.9982 ± 0.0038 0.9999 ± 0.0001 0.9996 ± 0.0005 0.9999 ± 0.0000

FLAIR 0.9817 ± 0.0117 0.9897 ± 0.0072 0.9930 ± 0.0044 0.9900 ± 0.0003 0.9962 ± 0.0030

SWI 0.9983 ± 0.0030 0.9999 ± 0.0000 0.9999 ± 0.0002 0.9998 ± 0.0003 0.9999 ± 0.0000

T1 0.9696 ± 0.0218 0.9867 ± 0.0081 0.9970 ± 0.0031 0.9799 ± 0.0148 0.9973 ± 0.0023

T1Gd 0.9612 ± 0.0293 0.9589 ± 0.0184 0.9907 ± 0.0084 0.9621 ± 0.0300 0.9922 ± 0.0058

T2 0.9999 ± 0.0000 0.9999 ± 0.0000 0.9999 ± 0.0001 0.9999 ± 0.0002 0.9999 ± 0.0001

ALL 0.9851 ± 0.0103 0.9889 ± 0.0053 0.9968 ± 0.0020 0.9886 ± 0.0072 0.9976 ± 0.0015
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