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A list of abbreviations 

 
eGDR estimated glucose disposal rate 

IR insulin resistance 

MAps MBL-associated proteins 

MASPs MBL-associated serine proteases 

MBL mannan-binding lectin 

T1D type 1 diabetes 

T2D type 2 diabetes 
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ABSTRACT 

Activation of the lectin pathway of the complement system, as demonstrated by 

elevated levels of mannan-binding lectin proteins (MBL), contributes to vascular pathology 

in type 1 diabetes (T1D). Vascular complications are greatest in T1D individuals with 

concomitant insulin resistance (IR), however, whether IR amplifies activiation of the lectin 

pathway in T1D is unknown. We pooled pre-treatment data from two RCTs and performed a 

cross-sectional analysis on 46 T1D individuals. We employed estimated glucose disposal rate (eGDR), 

a validated IR surrogate with cut-points of: <5.1, 5.1 – 8.7, and >8.7 mg/kg/min to determine IR 

status, with lower eGDR values conferring higher degrees of IR. Plasma levels of MBL-associated 

proteases (MASP-1, MASP-2, MASP-3) and their regulatory protein MAp44 were compared among 

eGDR classifications. In a subset of 14 individuals, we assessed change in MASPs and MAp44 

following improvement in IR. We found that MASP-1, MASP-2, MASP-3, and MAp44 levels increased 

in a stepwise fashion across eGDR thresholds with elevated MASPs and MAp44 levels conferring 

greater degrees of IR. In a subset of 14 patients, improvement in IR was associated with significant 

reductions in MASPs, but not MAp44, levels. In conclusion, IR in T1D amplifies levels of MASP-1/2/3 

and their regulator MAp44, and improvement of IR normalises MASP-1/2/3 levels. Given that 

elevated levels of these proteins contribute to vascular pathology, amplification of the lectin 

pathway of the complement system may offer mechanistic insight into the relationship between IR 

and vascular complications in T1D. 

KEYWORDS: Type 1 diabetes, Mannan-Binding Lectin-Associated Serine Proteases, Complement, 

Insulin Resistance 
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Graphical abstract: Elevated levels of mannan-binding lectin (MBL) is associated with increased 

vascular complications in individuals with type 1 diabetes (T1D). Hyperglycaemia is one of underlying 

mechanisms contributing to increased levels of mannan-binding lectin-associated protease-1 and 2 

(MASP-1/2) and regulatory protein (MAp44). Insulin resistance in the context of T1D further 

amplifies MASP-1/2/3 and MAp44 levels. 
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1 Introduction 

Animal and clinical studies have recently confirmed a prominent role of the complement system 

in the pathogenesis of type 1 diabetes (T1D) by augmenting underlying organ-specific autoimmune 

processes.[1] Furthermore, the complement system has been implicated in the progression of 

microvascular and macrovascular complications.[1] Indeed, patients with T1D express elevated 

circulating levels of several complement system proteins,[2] including the central component C3,[3, 

4] and, present with tissue deposits of complement activation products [5, 6] which have been 

causally associated with vascular-thrombotic complications.[1] 

There is now clear evidence for the specific involvement of the lectin pathway of the 

complement system in the development of vascular complications. Activation of the lectin pathway 

is mediated by mannan-binding lectin (MBL) pattern recognition molecules via MBL-associated 

serine proteases (MASPs) and regulatory MBL-associated proteins (MAps), although the role and 

action of some of these components are yet to be fully elucidated.[7] We have previously shown 

that initiating the lectin pathway, namely complement activating MASP-1 and MASP-2, to be 

elevated in patients with T1D [2] and experimental studies demonstrate both MASP-1 and MASP-2 

to exhibit thrombin-like activity thus inducing clot formation.[8-10] Further, MBL levels have been 

reported to be increased in those with overt diabetic nephropathy,[11] and increased MBL levels are 

associated with progression to end-stage renal disease.[12] 

The complement system also plays a role in the development of insulin resistance (IR) and 

progression to type 2 diabetes (T2D).[13, 14] For example, hepatic- and adipose-derived 

complement proteins are associated with IR,[15] and in vitro and animal work shows upregulation of 

complement protein synthesis in obese mice and cultured adipose tissue from insulin-resistant 

humans.[16] This is further supported through the demonstration of adipose tissue and global 

weight loss in complement protein knockout, and complement protein receptor knockout mice 

whilst under IR-inducing diet conditions.[17, 18]  
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Whereas IR is often discussed within the context of T2D, our group [19] and others [20-22] have 

recently shown IR to be a prevalent feature of T1D and a strong predictor of vascular complications 

in this population. The evidence for the role of MBL in T1D, vascular complications, and IR, raises the 

intriguing question of whether IR within the context of T1D further amplifies complement activation, 

which, if demonstrated could play a pathological role in the increased rate of vascular complications 

in this population. Therefore, the aim of our present study was to assess plasma concentrations of 

MBL-associated serine proteases (MASP-1/2/3) and -associated proteins (MAp44) in relation to IR, 

and, assess whether improvement in IR modifies MASP-1/2/3 and Map44 levels.  

2 METHODS & MATERIALS 

2.1 Study design and population 

We performed a cross-sectional analysis on pooled data from two studies (NCT05231642; 

ISRCTN13641847) which had previously received ethical approval from local National Health 

Service Research Ethics Committees. All participants gave written informed consent in accordance 

with the Declaration of Helsinki.  

In the present analysis, we included 46 participants meeting the following inclusion criteria: 

classical presentation of T1D (including primary osmotic symptoms, weight loss, hyperglycaemia, 

ketosis, insulin initiation at diagnosis); aged 18-50 years; diagnosed with T1D for a minimum of 5-

years on enrolment; treated on a stable (>12 months) basal-bolus insulin regimen consisting rapid-

acting insulin analogues lispro or aspart and basal insulin glargine delivered through multiple daily 

injections or continuous subcutaneous insulin infusion; and free of diabetes-related complications 

except for background retinopathy.  

For our main analysis, we used baseline pre-treatment data across both studies. Data 

collection occurred during a morning-time laboratory visit, with patients adopting an overnight fast 
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(> 10 hours). We obtained venous blood samples from which citrated plasma was separated within 

2-hours of the collection and stored in aliquots for retrospective analysis. During this visit, we 

obtained the following clinical data (age, duration of diabetes, HbA1c, insulin requirements, BMI, 

blood pressure, and eGDR). Blood pressure was assessed via an automated oscillometric device 

(Intellisense HEM-907XL, Omron, Japan); participants were categorised as hypertensive if 

≥140/90mmHG, pre-existing physicians’ diagnosis, or antihypertensive use [23]. Insulin resistance 

was assessed by calculating the estimated glucose disposal rate (eGDR) using a composite of BMI, 

HbA1c and hypertensive status using the following formulae: eGDR = 19.02 – (0.22 X BMI [kg/m2) – 

(3.26 X HTN) – (0.61 X HbA1c [%]), whereby HTN is hypertension (1 = yes, 0 = no).[24] In a subset of 

patients, we collected repeat blood samples during routine clinic follow-up at ~6 months following a 

standardised intervention that aimed at improving IR through achieving weight loss, adjusting insulin 

doses, and regular patient contact; due to a loss of follow-up or missed appointments repeat blood 

samples were obtained from 14 patients only.  

2.2 Laboratory measurements 

We measured levels of MASP-1, MASP-2, MASP-3, and MAp44 from citrated samples which 

had been stored in aliquots at -80°C. MASP-1 was determined with a competition enzyme-linked 

immunosorbent assay (ELISA) using a MASP-1-specific antibody, as described earlier.[25] Plasma 

levels of MASP-2 and MASP-3 were measured with commercial ELISA kits (Hycult Biotech, Uden, the 

Netherlands). MAp44 was determined with a time-resolved immunofluorometric assay (TRIFMA) 

using a catching antibody and a biotinylated detecting antibody in a sandwich-type assay, as 

described previously.[26] Intraassay coefficients of variance of all assays were <10%. Routine 

parameters, namely HbA1c, were determined using local hospital laboratories. 
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2.3 Statistical analysis 

Data were analysed using SPSS Statistics version 25 (IBM SPSS Statistics 25, IBM Corporation, 

USA). Descriptive characteristics of the study population are presented as mean±SD or median 

[interquartile range] for continuous variables and as frequency (%) for categorical variables; 95% 

confidence intervals (CIs) and β coefficients are presented where relevant; statistical significance 

was accepted at P<0.05. For descriptive purposes, we categorised individuals based on IR status, 

corresponding to eGDR cut-points of: <5.1, 5.1 – 8.7, and >8.7 mg/kg/min, with lower eGDR values 

conferring higher degrees of IR. We established three eGDR thresholds as derived from previously 

published work.[27] One-way ANOVA with post-hoc Bonferroni or Kruskal-Wallis test was applied to 

compare differences in clinical parameters between eGDR categories. Bivariate correlations of 

parameters were analysed using Pearson’s correlation coefficients. We applied unadjusted and 

adjusted generalised linear regression analyses to examine the relationship between eGDR with 

MASPs and MAp44, with age, sex, and diabetes duration as potential confounders. As HbA1c is a 

component for eGDR calculation, the mediation effect of HbA1c, therefore, was tested with the 

Mediation model using PROCESS v4.0 macro for SPSS.[28] Differences between baseline and 6-

month time points were assessed using paired samples t-tests, with the magnitude of change 

presented as a scattered plot. 

3 RESULTS 

3.1 Characterisation of diabetes patients 

Our study population comprised n=46 patients with T1D. In line with our previously published 

work,[27] we stratified this cohort by IR status, with IR cut points corresponding to an eGDR of <5.1, 

5.1 – 8.7, and >8.7 mg/kg/min, with lower eGDR values conferring higher degrees of IR; baseline 

demographic and clinical characteristics are presented in Table 1.  
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3.2 Insulin resistance increases plasma levels of MASPs and 

MAp44 in T1D patients 

MASP-1, MASP-2, MASP-3, and MAp44 levels increased in a stepwise manner across eGDR 

thresholds with MASPs and MAp44 levels highest in patients with greater degrees of IR (Table 1, 

Figure 1). Table 2 shows the unadjusted and adjusted associations of eGDR with MASPs and MAp44. 

In unadjusted regression analyses, eGDR was inversely associated with MASP-1, MASP-2, MASP-3, 

and MAp44; these findings remained robust following adjustment for confounders (age, sex, and 

diabetes duration). Additionally, the Mediation model also demonstrated that the effect of eGDR on 

MASPs and Map44 was not mediated by HbA1c suggesting the effect was driven by other 

components of eGDR such as BMI or hypertension (Supplementary Figure 1). 

 

3.3 Reducing insulin resistance improves MASPs and MAp44 in 

T1D patients 

In a subgroup (n=14) of patients, we measured levels of MASPs and MAp44 at baseline and 26±1 

weeks after improving IR (Supplementary Figure 2). Overall, a small (-0.41±0.19 mg/kg/min [%-

6.85±3.24]) but statistically significant increase in eGDR was associated with significant reductions in 

MASPs, but not MAp44, levels (Figure 2). Reductions in MASP-1, MASP-2, and MASP-3 were 

statistically significant at a threshold improvement of ≥7% in eGDR (MASP-1: <7%eGDR p=0.180 vs. 

≥7%eGDR p=0.042; MASP-2: <7%eGDR p=0.0496 vs. ≥7%eGDR p=0.038; MASP-3: <7%eGDR p=0.146 

vs. ≥7%eGDR p=0.021). Collectively, these data indicate that IR may represent an important 

mediator of MASP levels in T1D. 
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4 Discussion 

It is well established that MBL is elevated in people with insulin resistance, T2D, and T1D, 

and that increased MBL levels are associated with vascular complications and mortality.[11, 12, 29-

31] However, plasma levels of the MBL-associated serine proteases, MASP-1, MASP-2 and MASP-3, 

and their regulator MA4p44, have not been studied in T1D individuals with concomitant insulin 

resistance. Here we show for the first time that individuals with T1D with IR express higher levels of 

MASP-1, MASP-2, MASP-3, and their regulator MAp44 as compared to IR-naive T1D individuals. 

Specifically, we show that plasma levels of MASPs, and MAp44, increase in a stepwise fashion across 

eGDR thresholds, and that subsequent improvement in eGDR at a threshold > 7% is associated with 

significant reductions of MASP-1, MASP-2, and MASP-3.  

Overactivation of the lectin pathway has been consistently reported in individuals with T1D 

[2, 31, 32] with previous work suggesting glycaemic control to modulate amplification.[2, 33] For 

example, in mice, increased MBL-C levels increased as a consequence of increasing plasma glucose 

concentrations in streptozotocin-induced diabetes in mice,[34] and other studies demonstrate 

protection from hyperglycaemic complications in MBL knockout or insulin-treated mice.[35] 

Complement proteins contribute to glucose homeostasis via pleiotropic effects on glucose uptake, 

storage, and disposal in hepatocytes.[36] Previous work has demonstrated an interaction between 

MBL and the glycation product fructoselysine resulting in activation of the complement lectin 

pathway,[33] and consequently amplification of the inflammatory response. In the present study, 

MASP levels in our patients without IR were elevated to a similar level as previously reported.[2] 

However, our data show that MASPs and MAp44 are elevated further in the presence of IR – 

an effect which we also report is reversed following IR remission. Importantly, our mediation model 

revealed that this effect was not mediated by HbA1c, which would suggest that IR has an 

independent and direct role in increasing MBL and its associated serine proteases. Whereas insulin-

resistant states typically bolster advanced glycation end products (AGEs) via a hyperglycaemic and 
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hyperlipidaemic milieu,[37-39] it is possible that mechanisms beyond or independent to AGEs are 

mechanistically linked to insulin sensitivity, potentially via lipogenic and proinflammatory pathways 

which directly impair insulin signalling and induce immunologic alterations. Indeed, prior work 

within the setting of IR-T2D individuals demonstrate that serine proteases are heavily implicated in 

the development of complications – an association in which IR is likely the main modulator [11, 12, 

29-31]. If consistent in T1D, this would support our hypothesis that IR is a fundamental pathological 

mediator of vascular complications in this population. 

Our study is not without limitations. Firstly, because of limited available evidence on the 

topic of IR in T1D, we chose a pilot study case-control design with a conservative sample size, and we 

were unable to measure precursors of other complement pathways. Further, eGDR, although a 

validated surrogate of IR in T1D is not a direct assessment of IR, and therefore we cannot exclude 

the potential for an interaction between the constituent components of eGDR, namely body weight, 

hypertension, and hyperglycaemia. Notwithstanding these limitations, this work is the first to report 

the mediating effect of IR in T1D on MASPs and MAp44 providing a benchmark to launch future 

larger, prospective, and mechanistic studies investigating the role of the complement system in the 

development of complications in T1D individuals with IR. 
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6 TABLES 

Table 1. Clinical characteristics and MASPs and MAp44 levels of the study population 

 
All patients 

IR Status 

 eGDR <5.1 eGDR 5.1 – 8.7 eGDR >8.7 

n 46 8 30 8 
Sex (%male) 50 37.5 50.0 62.5 
Age (years) 29.6±6.8 29.1±7.5 29.6±6.1 29.8±9.1 

BMI 27.2±2.9 29.9±1.7 27.0±3.0* 25.1±1.1* 
Hypertension (%) 52.2 100 53‡ 0* 

HbA1c (%) 7.74±0.96 8.50±0.81 7.81±0.88‡ 6.71±0.42* 
eGDR (mg/kg/min) 6.61±1.88 4.00±0.74 6.56±1.12*‡ 9.39±0.47* 

Diabetes duration (years) 17.0 [12.8, 19.3] 16.7 [11.8, 21.3] 17.0 [14.0, 20.0] 12.5 [8.0, 17.5] 
Daily insulin dose (U/day) 44.1±6.7 55.9±4.9 42.9±3.2*‡ 36.7±1.0* 

MASP-1 (µg/ml) 11.35 [9.25, 13.39] 14.24 [13.30]  11.23 [9.91, 12.82]*‡ 8.96 [8.50, 9.16]* 

MASP-2 (ng/ml) 407 [352, 456] 535 [465, 579] 403 [383, 439]*‡ 329 [309, 338]* 

MASP-3 (µg/ml) 8.33 [7.69, 8.77] 9.65 [9.11, 10.71] 8.33 [7.87, 8.61]*‡ 7.33 [7.01, 7.42]* 
MAp44 (µg/ml) 1.62 [1.40, 2.09] 2.34 [2.14, 2.46] 1.62 [1.46, 1.88]*‡ 1.25 [1.10, 1.39]* 
Note: Metric variables are reported as mean±SD or median [interquartile percentile]; categorical variables are reported as frequency (percentage). Conditional differences 
were assessed using one-way ANOVA or Kruskal-Wallis test. * = significantly different from eGDR<5.1; 

‡
 = significantly different from eGDR>8.7; MASP = mannan-binding 

lectin-associated serine proteases; MAp44 = mannose-binding lectin-associated protein. 
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Table 2. Linear regression analysis between eGDR and MASPs and MAp44 in patients with T1D 

 Model 1 Model 2 
 β (CI) P value β (CI) P value 

MASP-1 (µg/ml) -0.852  
(-1.082 to -0.622) 

<0.001** -0.876  
(-1.113 to -0.639) 

<0.001** 

MASP-2 (ng/ml) -34.78  
(-41.72 to -27.84) 

<0.001** -35.42  
(-42.53 to -28.33) 

<0.001** 

MASP-3 (µg/ml) -0.433  
(-0.505 to -0.360) 

<0.001** -0.435  
(-0.508 to -0.361) 

<0.001** 

MAp44 (µg/ml) -0.197  
(-0.225 to -0.169) 

<0.001** -0.203  
(-0.231 to -0.176) 

<0.001** 

Note: Model 1 is unadjusted; Model 2 was fit to estimate associations with adjustment for age, sex, and diabetes duration;  
*denotes significant association at P<0.05; ** denotes a significant association at P<0.001. MASP = mannan-binding lectin-associated serine proteases; MAp44 = mannose-
binding lectin-associated protein. 
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7 FIGURE LEGENDS 

Figure 1. MASPs and MAp44 levels in T1D patients stratified by IR status. A: MASP-1; B: MASP-2; C: 
MASP-3; D: MAp44. *denotes significant association at P<0.05; ** denotes a significant association 
at P<0.001; *** denotes a significant association at P<0.0001; Closed circles = eGDR <5.1, grey circles 
= eGDR 5.1 – 8.7; open circles = eGDR >8.7; MASP = mannan-binding lectin-associated serine 
proteases; MAp44 = mannose-binding lectin-associated protein.  

 

Figure 2. %Change from baseline to 6 months in MASPs and MAp44 (Y-axis) following 
improvement in eGDR (X-axis) in T1D patients. A: MASP-1; B: MASP-2; C: MASP-3; D: MAp44. 

  

D
ow

nloaded from
 https://academ

ic.oup.com
/cei/advance-article/doi/10.1093/cei/uxad113/7313519 by U

niversitaetsbibliothek Bern user on 17 O
ctober 2023



 

 

  

D
ow

nloaded from
 https://academ

ic.oup.com
/cei/advance-article/doi/10.1093/cei/uxad113/7313519 by U

niversitaetsbibliothek Bern user on 17 O
ctober 2023



 

 

 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/cei/advance-article/doi/10.1093/cei/uxad113/7313519 by U

niversitaetsbibliothek Bern user on 17 O
ctober 2023


	1

