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Background/purpose: Testing of dental materials when in contact with innate immune cells
has been so far hindered by the lack of proper in vitro models. Human primary monocyte-
derived macrophages (MDMs) would be an excellent option to this aim. However, the inability
to detach them from the tissue culture plates contrast the possibility to culture them on bio-
materials. The goal of the present work is to present and validate an innovative protocol to
obtain MDMs from peripheral blood monocytes, and to reseed them in contact with biomate-
rials without altering their viability and phenotype.
Materials and methods: We differentiated MDMs on ultra-low attachment tissue culture plastics
and recovered them with specific detachment solution in order to be reseeded on a secondary
substrate. Therefore, using biological assays (RT-PCR, Western blot, and immunofluorescence)
we compared their phenotype to MDMs differentiated on standard culture plates.
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Results: Transferred MDMs keep their differentiated M0 resting state, as well as the ability to be
polarized into M1 (pro-inflammatory) or M2 (anti-inflammatory) macrophages.
Conclusion: These data provide the dental material research community the unprecedented
possibility to investigate the immunomodulatory properties of biomaterials for dental appli-
cation.
ª 2023 Association for Dental Sciences of the Republic of China. Publishing services by Else-
vier B.V. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Over the past decades, the use of biomaterials has become
increasingly popular in reconstructive dentistry.1 For
example, dental implants are commonly used therapeutic
options for the rehabilitation of the masticatory, aesthetic,
and phonetic functions in partially or totally edentulous
patients;2 while bone grafting materials can be employed in
pre-implant reconstructive procedures to gain enough tissue
before implant placement.3 Notably, the combined use of
more and more performant solutions has been described to
speed the healing process, promoting longer success rate
after implant placement.4 Yet, the molecular mechanisms
behind this phenomenon are poorly understood, although it
has been well established that biomaterials have a profound
impact on the host immune cells response, which are further
known to play a pivotal role in bone healing and repair.5,6

Although in vitro settings do not completely resemble the
in vivo situations, they can be informative and provide
important insights into the mechanisms underlying biological
events. However, while an extensive in vitro characteriza-
tion of the osteogenic, osteoconductive and osteoinductive
properties of the above-mentioned biomaterials is available
in the literature,7e12 less is known regarding immune cells
activation and response.

Macrophages are monocyte-derived phagocytic cells,
which are essential components of the innate immune
system.13 They can arise from circulating blood monocytes
(monocyte-derived macrophages, MDMs) and play a pivotal
role during the resolution of tissue inflammation. Moreover,
already differentiated macrophages (also derived from an
ancestral myeloid progenitor) are present in adult tissues as
tissue resident M0 macrophages, which are the first cells to
meet biomaterials after implantation.14,15 In this second
scenario, according to the physicochemical properties of
the implanted biomaterial, M0 macrophages can skew their
resting phenotype and polarize into classically activated
pro-inflammatory (M1) or alternatively activated anti-
inflammatory (M2) macrophages.16e19 Notably, macro-
phage polarization is related to the bone remodeling phase
following dental implant placement, with specific effects
on function and differentiation of osteoclasts and osteo-
blasts.6,20 Hence, a complete in vitro characterization of
the response of already-differentiated macrophages when
in contact with dental biomaterials would be informative to
elucidate the molecular mechanisms behind their thera-
peutic success.

In vitro research on the role played by M0 macrophages
in the tissue interactions with biomaterials is challenging
1631
due to the lack of proper models. At present, knowledge is
mostly based on the use of murine macrophages.21e24

However, several discrepancies exist between murine and
human macrophages metabolism. For example, murine
macrophages have a stronger and less restricted activation
of the NO2 pathway if compared to human counterparts.25

Thus, not every finding in mice can be transferred to real-
life human situations. On the other hand, in vitro studies
have also been performed by using human immortalized
cell lines,26,27 which have, however, the limit to be of
neoplastic origin and to require pharmacological treat-
ments to achieve macrophage-like competences. This
aspect may lead to changes in their phenotype over time
and to the risk of obtaining inconsistent and unreliable
results. To overcome these issues, the use of primary
macrophages would be recommended. The ideal scenario
would be the isolation of primary blood monocytes, their
differentiation into differentiated MDMs (M0) and their
seeding in contact with the target biomaterial. However, at
present, this approach also has some caveats that need to
be addressed. Indeed, MDMs are usually differentiated on
standard tissue culture dishes. Given their strong adhesive
properties, MDMs cannot be easily detached and, thus,
should stand on the same surface for the duration of the
whole experiment. This aspect clearly limits the use of
these cells in combination with biomaterials. Moreover,
also the direct seeding of primary blood monocytes on
biomaterials before differentiation into MDMs is not
optimal, since it might prematurely affect their polariza-
tion, thus, as previously mentioned, not reflecting the
chronological order of cellular events in vivo. Indeed,
although monocytes come in contact with the surface of
biomaterials after blood invasion, their differentiation into
macrophages would require at least 3e4 days in vitro,
while tissue resident macrophages would experience the
surface of the biomaterial immediately after its implanta-
tion. Therefore, to properly understand the mechanisms
behind the interaction of primary macrophages with dental
materials, an ideal protocol should allow to i) differentiate
primary blood monocytes into MDMs on tissue culture dish,
ii) detach them without causing significant damage and
alteration and iii) transfer them on the surface of the target
biomaterial for experimental studies.

Herein, we developed a protocol to fulfill these pre-
mises. Using functional and biological assays, we demon-
strated that this new protocol (Test) does not affect the
phenotype of M0 macrophages, which kept a morphology
and CD68 expression comparable with M0 macrophages
differentiated from primary blood monocytes using the
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standard protocol (Control). Furthermore, we also showed
that M0 responsiveness to polarizing stimuli was not
affected. Indeed, M1 and M2 skewing was comparable be-
tween M0 differentiated with either the Control or the Test
protocol.

Materials and methods

The methodology followed in this report has been fully
illustrated in Fig. 1.

Ethics statement

This work was performed according to the Ethical Principles
for Medical Research Involving Human Subjects as stated in
the Declaration of Helsinki by the World Medical
Association.

Isolation, characterization, and differentiation of human
peripheral blood monocytes has been approved by the
Figure 1 Diagram of the experimental procedure followed to ob
cytes are seeded on standard (Control, Blue Petri dishes) or ULA-TCP
seven days. At day seven, MDMs differentiation is evaluated by immu
to cocktails of polarizing stimuli to drive their M1 (LPS 5 ng/ml and
the last time point, gene and protein expressed are analyzed by RT

1632
Comitato Etico dell’Area Vasta Emilia Nord, Italy (protocol
#3182 24.01.2018). Written informed consent was obtained
from the subjects involved in this study.

Human peripheral blood monocytes isolation and
differentiation into macrophages

Human peripheral blood monocytes were isolated from
whole human blood. Thirty ml of blood were collected by a
trained nurse and immediately transferred to the labora-
tory to be processed within 8 h. Blood samples were diluted
1:3 in Phosphate Buffered Saline (PBS), and 22 ml of the
suspension were carefully distributed over 15 ml of
FicollePaque� Plus (GE Healthcare Life Science, Pitts-
burgh, PA, USA). Samples were centrifuged at 400g for
30min at room temperature (RT) in a swinging-bucket rotor
without brakes to obtain a buffy-coat fraction of peripheral
blood mononuclear cells, which were harvested, resus-
pended in 50 ml of PBS, pelleted at 200�g for 10min at RT
tain and polarize MDMs. After purification, human blood mono-
s (TCPs, Grey Petri dishes) and cultured with M-CSF 50 ng/ml for
nofluorescence and immunoblot. Afterwards, MDMs are exposed
IFN-y 25 ng/m) or M2 (IL10 20 ng/ml) polarization for 2 days. At
-PCR, immunoblot and ELISA, respectively.



Journal of Dental Sciences 18 (2023) 1630e1637
and washed two more times in PBS with the same proced-
ure. Subsequently, cells were resuspended in RPMI medium
(Thermo Fisher Scientific, Waltham, MA, USA) supple-
mented with five percent of pooled AB human serum (Sig-
maeAldrich, St. Louis, MO, USA) and seeded at a final
density of 3x105 cells/ml either in standard tissue culture
plates (TCPs) or in ultra-low attachment surface flasks
(ULA-TCPs, both from Corning Inc., Corning, NY, USA). After
30min of incubation in standard culturing conditions (37 �C,
5% CO2), cultures were rinsed three times in PBS to purify
adherent monocytes from residual suspended cells. Culture
medium was finally renewed and supplemented with 50 ng/
ml of macrophage colony-stimulating factor (M-CSF) (R&D
Systems, Bio-Techne, Milan, Italy) to trigger macrophage
differentiation and to obtain MDMs. Medium was exchanged
every other day until day seven, prior to 24 h of resting in
M-CSF-free RPMI medium.

MDMs detachment and reseeding

MDMs, differentiated from monocytes seeded in ULA-TCPs,
were collected, and reseeded on standard TCPs seven days
after their isolation. In brief, poorly adherent MDMs were
mechanically collected by rinsing with PBS. To detach
tightly adherent MDMs, the Macrophage Detachment Solu-
tion DXF (MDS, PromoCell GmbH, Heidelberg, Germany) was
then applied for 20min at four degrees on gentle shaking.
Detached MDMs were collected, mixed with those recov-
ered mechanically, diluted 1:1 with washing buffer (PBS,
2 mM EDTA, 0.1% human serum albumin), centrifuged at
350g for 15min at RT, resuspended in M-CSF-free RPMI
medium at a final density of 3x105 cells/ml and reseeded on
standard TCPs for 24 h to allow cell adhesion. Cell
morphology was daily monitored using a Nikon Eclipse
TE300 inverted microscope equipped with a digital camera
Nikon SIGHT DS-U1 (Nikon Europe BV, Burgerweeshuispad,
Amsterdam, Netherlands).

M1/M2 polarization

To skew MDMs (M0) toward an inflammatory (M1) or anti-
inflammatory (M2) phenotype, cells were incubated 48 h in
RPMI supplemented with lipopolysaccharide (LPS) 5 ng/ml
and interferon-y (IFN-y) 25 ng/ml, or with interleukin 10
(IL10) 20 ng/ml (all from Sigma-Aldrich), respectively. As a
control, MDMs were maintained in fresh complete RPMI.

Immunofluorescence (IF)

For staining, cells were fixed in four percent para-
formaldehyde for 15min at RT, rinsed twice in PBS, per-
meabilized with Triton-X-100 for 5 min at RT, blocked in 10%
Bovine Serum Albumin (BSA, Sigma-Aldrich) and two
percent normal goat serum (Thermo Fisher Scientific), and
incubated overnight at four degrees in the presence of the
mouse monoclonal anti-CD68 antibody (SantaCruz
Biotechnology, Dallas, TX, USA) diluted 1:100 in blocking
solution. Afterwards, cultures were washed three times in
PBS and incubated with the Alexa Fluor 488 anti-mouse IgG
antibody diluted 1:400 in blocking solution (Thermo Fisher
Scientific) for 1 h at RT. Secondary antibody incubation was
1633
followed by three washings in PBS and nuclei counter-
staining with 1 mg/ml DAPI (Sigma-Aldrich) for 20min at RT.
Samples were finally mounted on coverslips using the
Glycergel mounting medium (DAKO, Agilent Technologies,
Santa Clara, CA, USA). Samples were analyzed under a
confocal microscope (LSM900 AiryscandCarl Zeiss, Jena,
Germany).

RNA extraction, cDNA synthesis and real-time
polymerase chain reaction (RT-PCR)

Total RNA was isolated with the GeneJET RNA Purification
Kit (Thermo Fisher Scientific) following manufacturer’s in-
structions. RNA concentration was measured with a spec-
trophotometer NanoDrop� 1000 (Thermo Fisher Scientific)
and stored at �80 �C. Two-hundred-fifty nanograms of total
RNA were used as a template for cDNA synthesis using a
RevertAid RT Reverse Transcription kit (Thermo Fisher Sci-
entific). Gene expression was detected by RT-PCR using a
Power Up SYBR Green Master Mix (Thermo Fisher Scientific)
on a Step One Plus apparatus (Applied Biosystems, Thermo
Fisher Scientific). Data analysis was performed applying the
dCT method, when absolute mRNA normalized to RPL15
levels are reported, or by ddCT method, when mRNA
normalized to RPL15 levels are further referenced to a
control sample set to one.

The sequences of the RT-PCR primers used are listed in
the Suppl. Table 1. Sequences were designed with the NCBI
primer designing tool (http://ncbi.nlm.nih.gov/tools/
primer-blast) and tested for specificity and efficiency
using cDNA standard curves.

Immunoblotting

Whole cell lysates were obtained by recovering sample with
Laemmli buffer (250 mM Tris-HCl pH6.8, 8% SDS, 40% glyc-
erol and 0.4 M DTT) diluted at its working concentration
with lysis buffer (20 mM Tris-HCl ph7.5, 150 mM NaCl, 1 mM
EDTA, 1 mM EGTA, 1% Triton, 2.5 mM sodium pyrophos-
phate, 1 mM b-glycerophosphate, 1 mM Na3VO4, 1 mM NaF,
2 mM imidazole) supplemented with a protease inhibitor
cocktail (Complete Mini EDTA-free, Roche, Basel,
Switzerland). Cell lysates were subsequently heated 10min
at 95 �C, and proteins determined by the Lowry method.
Twenty micrograms of total protein were loaded on a 10%
gel and separated under reducing conditions at 100 V for 1 h
and a half by SDS-PAGE. Proteins were blotted onto PVDF
membranes overnight at four degrees. Blotted membranes
were washed in Tris-buffered saline (50 mM Tris Base,
150 mM NaCl, pH7.5) containing Tween-20 (TBS-T), blocked
in 10% blocking solution for 1 h, incubated with primary
antibody overnight at four degrees on a shaker, washed
three times in TBS-T and incubated with horseradish
peroxidase-conjugated anti-mouse IgG (1:10,000). Finally,
membranes were washed three more times in TBS-T before
being exposed to the ECL Chemiluminescent HRP Substrate
(Sigma Aldrich) for 1 min. Protein visualization was finally
performed using the iBright� FL1500 automated system
(Thermo Fisher Scientific). Primary antibodies used for
immunoblotting were the mouse monoclonal anti-CD68
(1:500, sc-17832, SantaCruz Biotechnology), rabbit
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polyclonal anti-NF-kB (1:1000, Cell Signaling, Danvers, MA,
USA), rabbit polyclonal anti-pNF-kB (1:1000, Cell Signaling),
mouse monoclonal anti-b-actin (1:4000, Sigma-Aldrich).

Multiplex cytokine/chemokine array

At the end of culturing time, media were collected,
centrifuged for 5 min at 1000g to remove any cell debris,
and stored at �80 �C until multiplex analysis of the
secreted cytokines. The Human Procarta Plex Seven-plex
(Thermo Fisher Scientific) was customized for the titra-
tion of the pro-inflammatory cytokines interleukin 1b (IL1-
s), 8 (IL8), 6 (IL6) and tumor necrosis factor (TNF) and of
the anti-inflammatory cytokines interleukin 4 (IL4) and
transforming growth factor b1 (TGFb1). Cytokine detection
was performed following manufacturer’s recommendation
and quantification was carried out with the Bioplex
MAGPX� (BioRad Instrument, Hercules, CA, USA).

Statistical analysis

Data were analyzed with Prism6.1 (GraphPad, La Jolla, CA,
USA). Values have been reported as means � standard de-
viation (SD) of three experiments performed in multiple
replicates. Differences between the groups were evaluated
with t-test or with one-way ANOVA, as specified for each
figure. Differences were considered significant when
P < 0.05.

Results

Differentiation of human peripheral blood
monocytes into resting MDMs M0 macrophages

MDMs obtained in standard culture conditions are endowed
with a spread morphology. Furthermore, they strictly
adhere to the culture substrate and possess little pro-
trusions, which are used to explore the surrounding
milieu.28 Live imaging of MDMs (Fig. 2A) show that our
experimental (Test) protocol for macrophage
Figure 2 MDMs (M0) differentiation (A) Live imaging of MDMs (res
detachment, and reseeding (Test). Scale bar: 50 mm (B) IF stainin
rophages with both the Control and the Test protocols. White boxe
Nuclei (blue) (C) CD68 protein expression was further confirmed
quantification. kDa: kilo Dalton.

1634
differentiation did not affect either the morphology or the
adhesion properties of the cells to the culture plate
notwithstanding detachment and reseeding. Indeed,
resting M0 MDMs obtained with both protocols are plastic
adherent, pancake-shaped and with extending pseudo-
podia. To confirm resting M0 macrophages phenotype, the
expression of CD68 was evaluated. CD68 is a well-known
and established surface marker of the MDMs lineage,
which is maintained also after M1 or M2 polarization
(Suppl.Fig.1).29 Its expression has been investigated in
resting M0 MDMs by IF (Fig. 2B). While the abundance of
CD68-positive cells was comparable between the two
groups, the Test group showed an increased and more
intense signal in some cells. However, when the expression
of CD68 was studied by immunoblot (Fig. 2C), no significant
difference in CD68 expression was detected between the
groups, although a tendency to an increased expression was
observed in the Test group. Overall, these data indicate
that detachment and reseeding of MDMs do not substan-
tially affect their M0 phenotype.

MDMs M0 macrophages skewing into pro- M1 or anti-
inflammatory M2 macrophages

Next, we wished to ascertain whether our Test protocol
affected the capacity of MDMs to be polarized into M1 or M2
macrophages, when exposed to specific stimuli (Fig. 3A).
First, we studied the capacity of MDMs M0 macrophages to
be activated. To this purpose, we analyzed the expression
of NF-kB and its phosphorylated form (pNF-kB) by immu-
noblot before and after polarization (Fig. 3B). In both cases
(Control vs. Test), while the expression of NF-kB was
comparable among all the groups, the pNF-kB signal was
2.5-fold increased after M1-M2 skewing if compared to the
resting M0 counterparts, indicating responsiveness of the
cells to external stimuli. Then, we studied the induction of
pro- and anti-inflammatory specific markers in M1 and M2
polarized macrophages. RT-PCR analysis for IL8 mRNA levels
(gene CXCL8), IL6 and TNF (pro-inflammatory cytokines)
revealed a clearly induced expression of these genes for the
M1 phenotype in both the experimental groups (Fig. 3C).
ting M0) after differentiation (Control) or after differentiation,
g of CD68 (green) confirms monocyte differentiation into mac-
s indicate close-ups. Scale bars: 50 mm (IF); 10 mm (close-up).
by immunoblot. Histograms at the right indicate CD68 bands



Figure 3 M1-M2 polarization (A) Diagram of the strategy adopted to differentiate resting M0 macrophages into pro-inflammatory
M1 or anti-inflammatory M2 macrophages (B) Immunoblot showing NF-kB and pNF-kB expression in resting M0 and M1 or M2
polarized macrophages. Histograms at the right indicate pNF-kB bands quantification. *Z P < 0.05 M0 vs. M1 or M2. kDa: kilo Dalton
(C) Heatmap showing absolute mRNA levels (white, low expression; red, high expression) of M1 (CXCL8, IL6 and TNF ) and M2 (CD206
and IL10) markers expressed by resting M0, pro-inflammatory M1 or anti-inflammatory M2 macrophages obtained with either
Control or Test protocol. CXCL8, IL6, TNF and IL10 relative mRNA expression levels are also reported in the histograms at the right.
mRNA levels have been normalized for each group (Control vs. Test) to the levels expressed in the resting M0 macrophages (set to
one). * Z P < 0.05 M1 or M2 vs. M0; � Z P < 0.05 M1 vs. M2 (D) Heatmap showing amount (white, low expression; red, high
expression) of pro- (IL8, IL6, TNF and IL1b) and anti-inflammatory (IL4 and TGFb1) cytokines secreted in the medium by resting M0,
pro-inflammatory M1 or anti-inflammatory M2 macrophages obtained with either Control or Test protocol for monocyte isolation
and differentiation. IL8, IL6, TNF and IL1b quantifications are also reported in the histograms to the right. * Z P < 0.05 M1 or M2 vs.
M0; � Z P < 0.05 M1 vs. M2.
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Conversely, CD206 and IL10 expression were enhanced in
the M2 phenotype. The same tendency was also confirmed
at the protein level for IL8, IL6 and TNF in the MDM
conditioned medium (Fig. 3D). Since IL10 was used as a
polarizing cytokine for M2 state, its quantification at pro-
tein level has not been reported. The only substantial dif-
ference between macrophages cultured with the Control
method and those cultured with the Test protocol was the
increased secretion of IL8 detected in M0 and M2 macro-
phages in the Test group. Additionally, the secretion of the
pro-inflammatory cytokine IL1b was also found to be more
expressed in the M1 phenotypes in both the groups
(Fig. 3D). Surprisingly, also the expressions of IL4 and of
TGFb1, which are normally identified as anti-inflammatory
1635
cytokines, have been found to be enhanced in the two
groups in the M1, rather than in the M2 phenotypes.
Discussion

The availability of reliable in vitro models to explore how
biomaterial characteristics influence the local inflamma-
tory response is a relevant biological end point, which
might be of utmost importance to predict their integration.
Herein, we provide the dental materials research commu-
nity a suitable protocol to allow, for the first time, the use
of primary human MDMs studies on changes induced by
biomaterials. MDMs are a common and validated research



L. Parisi, M.G. Bianchi, B. Ghezzi et al.
tool in other fields of basic research, such as cancer biology
and hematology.30,31 However, their use in dental materials
field has been so far hindered by their own nature. Indeed,
MDMs, which are obtained by differentiation of human
blood monocytes on standard culturing substrates, are
tightly adherent cells.30 This contrasts the possibility to
detach and reseed them on the target biomaterials,
without causing mechanical cell damage and rupture
before testing. By the combined use of ULA-TCPs and a
solution optimized to detach macrophages (Macrophage
Detachment Solution DXF, Promega) we were able to suc-
cessfully recover MDMs from the first culturing substrate
and to reseed them on standard TCPs without altering their
phenotype and their capacity to be activated and polar-
ized. To validate the suitability of our method, we first
investigated the capability of the macrophages differenti-
ated with the Test protocol to adhere to conventional TCPs
and to keep their differentiated M0 state after their re-
covery from ULA-TCPs (Fig. 2). Our method allowed to
obtain a good number of viable cells, which adhere to the
experimental culture plate after collection. Most impor-
tantly, this evidence indicates that our protocol does not
affect the integrity of the adhesion molecules complex.
Moreover, it was also possible to observe that the
morphology of the cells obtained with our Test protocol was
completely conserved and comparable with that shown by
macrophages differentiated and maintained on conven-
tional TCPs. Besides maintaining a proper morphology, de-
tached and reseeded MDMs also continued to exhibit CD68
expression. However, while in the Test group CD68
expression was heterogeneous and strongly detectable in
some cells, its signal in the Control group was more ho-
mogeneous, mostly likely due to a complete redistribution
of the signal. This evidence could be explained by the fact
that cells of the Control group were let undisturbed on
standard culture plates throughout the period of differen-
tiation. This hypothesis is also supported by immunoblot
that did not show evident differences of average CD68
expression between cells obtained with the two methods,
confirming that the two populations are comparable. We
then investigated the functionality of the M0 resting mac-
rophages obtained with either protocol (Fig. 3). To this
purpose, MDMs obtained with the Test or the Control pro-
tocol were exposed to specific polarizing stimuli. Macro-
phage polarization into M1 or M2 involves the activation of
the master regulator of the inflammatory response NF-kB.
After its phosphorylation, NF-kB (pNF-kB) migrates in the
cell nucleus and promotes the transcription of several in-
flammatory or anti-inflammatory genes coding for several
cytokines that are secreted during macrophage activa-
tion.32 The NF-kB dependent responses were comparable in
cells obtained with the two methods. Of note, pNF-kB
levels were higher after polarization compared to M0
resting macrophages, indicating the expected responsive-
ness of the cells to the polarization. Consistently, either
mRNA abundance or the secretion of specific pro- and anti-
inflammatory cytokines was increased by the M1 and M2
stimuli, respectively. The magnitude of the response was
comparable between the cells differentiated with the
Control or the Test method, with the exception of IL8.

We acknowledge that enzymatic or not-enzymatic ap-
proaches might also be proposed for the detachment and
1636
reseeding of MDMs. However, the use of strong enzymatic
strategies, such as trypsin or accutase, have been shown to
affect the integrity of surface markers, therefore, likely
affect the biological properties of the cells.33 On the other
hand, methods to achieve macrophage detachment without
involving enzymatic approaches have been based on the
prolonged use of solutions, containing calcium-chelating
substances. In this case, challenges are due to the exces-
sively long incubation times, which are required to obtain a
sufficient cell recovery, and which may trigger apoptosis
after reseeding of the cells.34

Another critical issue that might arise from our work is
the fact that after their implantation, biomaterials are
immediately soaked with patient’s own blood. The
consequent conditioning of the surface with autologous
protein and macromolecules makes virtually impossible
the direct interaction of the biomaterial surface with
cells.35,36 Although this was not our focus, this aspect
needs to be clearly addressed and considered in future
studies. Additionally, also the monocytes present in the
blood stream interact with the biomaterial surface and
thus differentiate into macrophages. Consequently, the
direct seeding of monocytes on biomaterials would also
be a possibility to study the immunoregulative properties
of biomaterials. However, since monocytes require at
least 3e4 days for completely differentiate into macro-
phages, it is highly improbable that their response would
be more relevant than that of already differentiated
tissue resident macrophages (M0), which experience the
implantation of the foreign material immediately after its
placement.

In conclusion, we believe that our non-conventional
protocol, consisting of i) culturing MDMs on ULA-TCPs, ii)
maximizing their recovery avoiding enzymatic treatments
and iii) re-seeding them in contact with the target sub-
strate, is a reliable method to prepare cells for the study of
the response of human primary innate immune cells to
biomaterials in vitro.
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