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This review describes the intricate physiological interactions involved in the
application of extracorporeal therapy, with specific focus on cardiopulmonary
relationships. Extracorporeal therapy significantly influences cardiovascular and
pulmonary physiology, highlighting the necessity for clinicians to understand these
interactions for improved patient care. Veno-arterial extracorporeal membrane
oxygenation (veno-arterial ECMO) unloads the right ventricle and increases left
ventricular (LV) afterload, potentially exacerbating LV failure and pulmonary
edema. Veno-venous (VV) ECMO presents different challenges, where optimal
device and ventilator settings remain unknown. Influences on right heart function
and native gas exchange as well as end-expiratory lung volumes are important
concepts that should be incorporated into daily practice. Future studies should
not be limited to large clinical trials focused on mortality but rather address
physiological questions to advance the understanding of extracorporeal therapies.
This includes exploring optimal device and ventilator settings in VV ECMO,
standardizing cardiopulmonary function monitoring strategies, and developing
better strategies for device management throughout their use. In this regard, small
human or animal studies and computational physiological modeling may contribute
valuable insights into optimizing the management of extracorporeal therapies.
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Introduction

Extracorporeal support is increasingly used as a rescue strategy in cardiogenic shock,
including cardiac arrest (eCPR), where veno-arterial (VA) extracorporeal membrane
oxygenation (ECMO) can support the heart and lung functions temporarily (Abrams
et al., 2022), or in acute respiratory failure where veno-venous (VV) ECMO is used to
support lung function (Combes et al., 2022). During the last two decades, the use of both
ECMO modalities has increased almost exponentially, with over 151.000 treatments
registered in the ELSO registry through 2020 (Vyas and Bishop, 2022).

During VA ECMO, venous blood is usually drained from the right atrium and/or caval veins
and returned to the arterial system after oxygenation and decarboxylation in the oxygenator
(Jayaraman et al., 2017). The return cannula can be situated centrally in the ascending aorta, as is
common for post-cardiotomy patients, or percutaneously in the femoral artery, as is done in acute
cardiogenic shock or during eCPR (Jayaraman et al., 2017). In VV ECMO, venous blood is
usually drained from the IVC and returned to the right atrium directly, or via injection in the
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superior vena cava (SVC). The right heart then pumps already
oxygenated and decarboxylated blood through the lung, to the left
heart which in turn pumps the blood into the arterial circulation
(Jayaraman et al., 2017). Since VV ECMO requires adequate right
and left ventricular function, it is primarily used for patients with severe
pulmonary failure.

Different ECMO modalities and their associated cannulation
techniques have significantly different physiological impact on
cardiopulmonary physiology. VV ECMO mainly interacts with the
right heart and pulmonary function as it may decrease right ventricular
afterload (Petit et al., 2021), whereas VA ECMO bypasses - and affects -
the entire cardiopulmonary unit and its function.

The purpose of this review is to describe these interactions for
different ECMOmodalities, and to illustrate physiological concepts that
are relevant to properly manage extracorporeal support for severe
cardiac and/or pulmonary failure. Table 1 lists all the interactions
presented in this review and explains the underlying physiological
concepts, the clinical consequences and possiblemanagement strategies.

Veno-arterial ECMO

Interaction with left ventricular afterload

In VA ECMO, oxygenated and decarboxylated blood is returned
to the arterial system (Jayaraman et al., 2017). Since the left ventricle
(LV) must eject against an increased aortic pressure caused by the
ECMO inflow, this inherently increases LV afterload. Depending on
the LV state, this may have severe negative effects (Burkhoff et al.,
2015). In a pressure-volume plot, this is seen as a rightward-upward
shift of the loop, with an increase in aortic elastance (Ea) along with
an increase in LV filling volume and end-diastolic pressure
(Burkhoff et al., 2015). Because the LV end-diastolic pressure
increases exponentially at higher filling volumes, this may be
most relevant for an already distended and impaired left
ventricle, as is frequently seen in cardiogenic shock (Burkhoff

et al., 2015). These effects lead to reduced LV ejection fraction
and decreased stroke volume (Truby et al., 2017), and can promote
pulmonary edema and cardiac ischemia, and may increase the risk
for LV thrombus - all factors ultimately impairing myocardial and
patient recovery (Grandin et al., 2022). Right heart function further
determines the extent of LV overload, where an increased right
ventricular function, e.g., increased end-systolic pressure volume
relationship (ESPVR) may overload a dysfunctional LV further
(Donker et al., 2021). Strategies to reduce LV afterload and the
accompanying distension include either pharmacological afterload
reduction, primarily through the use of vasodilators, or blood
volume reduction, or if necessary mechanical unloading by
means of an Impella device, intra-aortic balloon pump or LV
venting catheters (Burkhoff et al., 2015; Donker et al., 2019;
Kowalewski et al., 2020). Recent studies and meta analyses show
that between 26.7% and 49.0% of patients undergoing VA ECMO
receive mechanical unloading and mechanical unloading was
associated with a decreased mortality (Kowalewski et al., 2020;
Schrage et al., 2020; Grandin et al., 2022), but data from
prospective trials are missing. Mechanical unloading has been
associated with an increased VA ECMO weaning success
(Kowalewski et al., 2020), but a higher complication rate has
been observed (Schrage et al., 2020; Grandin et al., 2022). Entry
and exit strategies for mechanical unloading in VA ECMO will need
further clarification in future research and management strategies
for LV overload should be tailored to the underlying
pathophysiological process (Donker et al., 2022). If mechanical
unloading is applied, an early strategy may be beneficial (Schrage
et al., 2023).

Venous return as a limiting factor in
extracorporeal support

Guyton’s model of venous return (VR) has been the subject of
debate. Using a series of carefully designed physiological

TABLE 1 Interactions between extracorporeal support and the cardiopulmonary system.

Native
system

Artificial
system

Physiological interaction Clinical impact Management

Cardiovascular VA ECMO Increase in LV afterload LV distension and reduced function,
pulmonary edema

Unloading of LV, cannulation strategy

Cardiovascular VA ECMO Venous return function Flow limitation during VA ECMO Increase in MSFP or reduction in RVR

Cardiovascular VA ECMO Opposing flow from two circuits Differential hypoxia (Harlequin, North-
South)

Cannulation strategy

Pulmonary VA ECMO Transfer of gas exchange Monitoring of limited lung function Weaning strategy

Pulmonary VA ECMO Flow cessation through lung Lung deterioration Partial unloading, pneumonia treatment,
bronchoscopy

Cardiovascular VV ECMO Reduced RV strain Reduced RV failure Optimize device and ventilator settings with
regards to RV function

Cardiovascular VV ECMO Venous admixture and oxygen
saturations

Curvilinear function of arterial
saturation

Management of high and low cardiac output

Pulmonary VV ECMO CO2 elimination through artificial lung Limiting ventilator induced lung injury Ventilator strategies

Pulmonary VV ECMO Changes in respiratory quotient and
nitrogen content

Changes in gas exchange and end-
expiratory lung volumes

Management of ECMO sweep gas flow oxygen
fraction
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experiments (Berger et al., 2016a; Moller et al., 2017; Moller et al.,
2019) we have addressed arguments previously raised against the
model (Werner-Moller et al., 2020). Although the full nuance of the
debate is beyond the scope of this review, the following reasoning
rests unaffected by any remaining controversies. Since the blood
volume exceeds the unstressed capacitance, the circuit is pressurized
by a stressing volume which creates a positive transmural vascular
pressure, present also at zero flow. This is a manifestation of the
static energy stored in the vessel walls (Magder, 2016). Mean
systemic filling pressure (MSFP) is the equilibrated arteriovenous
pressure at zero flow and equals the ratio of stressed vascular volume
to the systemic vascular compliance (Werner-Moller et al., 2022).
During flow, ventricular and/or ECMO pump work shifts part of
this stressing volume from the venous to the arterial compartment.
A prerequisite for flow is the presence of a pressure gradient pushing
blood from points of higher pressure to points of lower pressure.
Venous return requires MSFP to exceed right atrial (RA) pressure
(PRA) and the flow is opposed by the resistive properties of (mainly,
but not exclusively) venous vessels (resistance to VR: RVR) (Berger
et al., 2016b; Berger et al., 2019). While acknowledging that RVR is a
mathematical abstraction representing complex physiology, it
nevertheless can be expressed with the following relationship:

Venous return � MSFP − PRA

RVR

The soft vessel walls of the vascular circuit will start to collapse as
the distending transmural pressure decreases to zero (Moller et al.,
2017; Moller et al., 2019). When right-sided pump function (the
native RV or an ECMO pump) drains more volume than the VR
return function can push from the periphery into the RA, vessels
collapse, further limiting flow as resistance increases towards
infinity. In this situation, cardiac output and/or ECMO flow
cannot be increased by increases in pump speed unless VR be
increased firstly. According to the above presented formula, this
can only be achieved by increasing stressed volume and MSPF, by
means of vasopressors and/or volume expansion, or decreasing the
resistance to venous return (RVR) (Moller et al., 2019).

Differential hypoxia due to differing oxygen
content in the native and artificial arterial
system

In the setting of VA ECMO, the native arterial and artificial
flows with differing oxygen and carbon dioxide contents, both enter
the arterial system (Berger et al., 2023). In addition to an increase in
left ventricular afterload, oxygenated blood from the artificial circuit
may not reach all organs depending on cannulation strategy and left
ventricular function (Wilson et al., 2022). In patients treated with
peripherally cannulated VA ECMO with an improving left
ventricular function but poor pulmonary function, differential
hypoxia (a.k.a. north-south or harlequin phenomenon) may
become a concern: Poorly oxygenated blood from the LV reaches
the right and upper quadrants of the body, including heart and
brain, while the highly oxygenated blood from the membrane lung
injected into the femoral artery cannot reach these important organs
(Blandino Ortiz et al., 2021). Monitoring of differential hypoxia may
be done comparing blood gas analyses from the right radial artery

against blood drawn from the left radial or femoral artery.
Differential hypoxia may also be present in the venous system
during VA ECMO: oxygen saturations in the blood drained from
the IVC may differ substantially from the oxygen saturations in the
pulmonary artery (Berger et al., 2023) and SVC (Hou et al., 2015).
Progressively decreasing pulmonary artery saturation may further
decrease left ventricle saturation due to an increase in venous
admixture (Takala, 2007). Resolution may be achieved through
either repositioning the drainage cannula towards the SVC (Hou
et al., 2015; Falk et al., 2022) or modification of the cannulation
strategy. A common solution is V-AV ECMO (blood is drained from
the IVC and injected in the SVC as well as the femoral artery) or in
the case of a failing right ventricle VV-A ECMO (drainage from both
the IVC and SVC) (Blandino Ortiz et al., 2021; Wilson et al., 2022).
The key to improve differential hypoxia is increased drainage from
the SVC, as oxygen-rich blood from the IVC then enters the RA and
attenuates differential hypoxia (Hou et al., 2015; Berger et al., 2023).

Transfer and monitoring of gas exchange in
VA ECMO

Lung function often deteriorates during VA ECMO, mainly due to
increased LV filling pressures with subsequent congestion of the
pulmonary vasculature (Pasero et al., 2014). The artificial lung may
provide complete gas exchange for the patient, and the mechanical
power necessary for lung ventilation is transferred to the membrane
lung (Bachmann et al., 2020a). The extent of this transfer is directly
linked to the amount of blood passing through the native lung
(Bachmann et al., 2021). Monitoring of native lung function is
difficult, but may be achieved with assessment of true oxygen
uptake and CO2 removal through volumetric measurements (Berger
et al., 2023). To fully wean and remove the ECMO circuit, the native
lung must tolerate sufficient cardiac output and provide adequate gas
exchange. Monitoring the native cardiopulmonary unit in terms of gas
exchange and cardiac output may therefore guide the weaning process.
While traditional measurement of cardiac output by thermodilution
may fail (Bachmann et al., 2020b), measurements of gas exchange allow
assessment of native cardiac output and lung function (Berger et al.,
2023). However, depending on differential hypoxia and varying CO2

content between the arterial and venous compartments of the artificial
and native circuits, gas exchange in the artificial circuit may provide
only limited information about the native circuit (Berger et al., 2023).

Deterioration of pulmonary function due to
flow cessation

Experimental data suggests that flow cessation and the absence
of pulmonary blood flow may lead to fibrosis, reduced pulmonary
compliance and lung necrosis (Koul et al., 1991). It appears that
several pathophysiological interactions exist which may significantly
impact the native pulmonary function. Increased pulmonary edema
due to increases in left ventricular filling pressures, structural
changes due to inflammation and absence of pulsatile flow
worsened by systemic inflammation may lead to long-term lung
injury (Roumy et al., 2020). Strategies to improve lung function may
include unloading of the left ventricle, prompt and adequate
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treatment of pneumonia and pre-weaning bronchoscopy (Luedi
et al., 2018; Roumy et al., 2020), and optimized ventilation
strategies (Rali et al., 2023).

VV ECMO

Impact on mechanical power applied to the
native lung

Veno-venous ECMO has the potential benefit of reducing
ventilator induced lung injury. In animal studies, near apneic
ventilation has significantly decreased histological lung damage
in a model of severe ARDS (Grandin et al., 2022). It is possible to
transfer the work of CO2 removal from the native to the artificial
lung, and native CO2 removal is inversely proportional to
artificial CO2 removal (Berger et al., 2023). However,
transitional changes in CO2 removal may readily be
compensated by extensive CO2 storages in the body (Giosa
et al., 2021). Reducing mechanical power may prove to be the
goal in VV ECMO therapy, but optimal ventilator settings remain
unknown. Although, in a model of iso-energetic ventilation,
similar power application led to similar lung damage
independently of the components of the mechanical power
(Cressoni et al., 2016), ventilation strategies should aim to
optimize and protect lung, heart and remote organ function.

Interactions with right ventricular function

A hallmark of acute respiratory distress syndrome is RV failure
due to the burdens of increased afterload from hypoxic pulmonary
vasoconstriction and mechanical ventilation (Zochios et al., 2017).
Echocardiography may promptly identify patients with acute cor
pulmonale and treatment strategies include initiation of VV ECMO
(Vieillard-Baron et al., 2002; Petit et al., 2021). The findings of acute
cor pulmonale in the setting of ARDS have led to the concept of RV
protective ventilation (Vieillard-Baron et al., 2016; Petit et al., 2021),
which may be facilitated by VV ECMO. In VV ECMO oxygenated
blood is pumped into the pulmonary vasculature which ameliorates
the effects of hypoxic pulmonary vasoconstriction (Holzgraefe et al.,
2020; Zante et al., 2021). This effect depends on the prevailing degree
of alveolar hypoxia, but substantial decreases in pulmonary vascular
resistance and pulmonary artery pressures have been demonstrated
through VV ECMO initiation (Reis Miranda et al., 2015; Holzgraefe
et al., 2020). Furthermore, transfer of gas exchange to the artificial
lung may reduce the need for mechanical ventilation with the
potential to further reduce RV strain (Bunge et al., 2018). Right
ventricular function may become an important factor in future
strategies for VV ECMO initiation and weaning. Importantly, the
level of support during ECMO therapy may also impact RV
function: Total transfer of gas exchange and absolute lung rest
may promote atelectasis with associated RV-strain while support at
an inadequate level may risk exacerbation of lung injury caused by
mechanical ventilation (Spinelli et al., 2021). Optimal settings
should be chosen considering both RV strain and the mechanical
power applied to the lung. Figure 1 provides a theoretical illustration
of this concept.

Venous admixture and arterial oxygen
saturation

Arterial saturations are dependent on cardiac output, V/Q ratio
in the lung, and venous oxygen content. In states of high shunt, as
may be present in up to 50% of ARDS patients, low cardiac output
states with low venous oxygen saturations may heavily impact
oxygen saturation in the arterial system (Takala, 2007). In the
setting of VV ECMO, the venous admixture is dependent on the
ratio of ECMO flow to cardiac output (Schmidt et al., 2013) as well as
the respective oxygen contents. In cases of high cardiac output and
significant shunt, arterial saturations may decrease in a curvilinear
function as the ratio of ECMO flow to cardiac output decreases
(Zante et al., 2021). However, even if arterial oxygen saturation
decreases with higher cardiac output, oxygen delivery will improve
(Zante et al., 2021).

Effect of respiratory quotient on end-
expiratory lung volumes

Gas exchange from an artificial lungwill affect the gas content in the
pulmonary artery and thereby modify gas exchange ratios in the native
lung.With inadequate oxygenation and CO2 removal mainly occurring
through the artificial lung, the respiratory quotient (RQ = VCO2/VO2)
of the native lung is reduced (Cipriani et al., 2020; Gattinoni et al., 2022).
This impacts the alveolar gas composition, in particular the alveolar pO2

and oxygenation. Gattinoni and others demonstrated already in
1978 that depending on the RQ, higher fractions of inspired oxygen
concentrations are necessary to produce an arterial saturation of 90%–
94% (Gattinoni et al., 1978). A recently published theoretical analysis
demonstrated that if CO2 removal is provided completely through the
artificial lung and the RQ of the native lung reaches values <0.1, an FiO2

of 1.0 may be necessary to reach pO2 values of only 100 mmHg
(Cipriani et al., 2020). Physicians operating ECMO or ECCO2R
should be aware that inadvertent hypoxia may occur if the artificial
lung is primarily used to remove CO2 without providing oxygenation. If
the artificial lung also provides oxygenation, this effect is drastically
diminished. The gas content in the pulmonary artery not only impacts
the respiratory quotient, but also affects the nitrogen content of blood
and alveoli. High oxygen fractions in the native lung will increase
alveolar nitrogen washout over time, potentially leading to resorption
atelectasis (Gattinoni, 2016). Although also demonstrated already in the
1970s (Kolobow et al., 1978), this effect has not been investigated in the
setting of modern ECMO therapy for ARDS. Therefore, future
physiological studies of severe ARDS should examine whether
changes in sweep gas oxygen fraction may help to stabilize end-
expiratory lung volumes.

Discussion

Extracorporeal therapy has a major impact on cardiovascular
and pulmonary physiology, and clinical management, especially in
absence of data from large clinical studies, should rely on sound
physiological concepts. Understanding these concepts may help
clinicians adapt management strategies with the goal of
improving daily clinical care and ultimately patient outcome.
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In VA ECMO, both the cardiac and pulmonary physiology
are severely altered: While the RV is inherently unloaded in VA
ECMO, LV afterload is always increased, and LV function may
deteriorate substantially if important measures such as adequate
consideration to ECMO flow and principles of LV unloading are
not considered. To increase maximum achievable ECMO flow
and to allow further increase in oxygen delivery, factors enabling
venous return must be understood. When operating at staccato
flow, further increase in pump speed will only worsen vascular
collapse as vessel walls, already with negative transmural
pressure, are being pushed towards the ECMO cannula
orifices. At this point, only improvement of factors promoting
venous return can increase the potential ECMO flow. In VV
ECMO, interactions revolve around the right ventricle as well as
the pulmonary function. The concept of venous return holds true
in VV ECMO, but as the drainage and return cannula may
communicate through the venous system, increases in pump
speed do not lead to vessel collapse but rather increase
recirculation, without the potential to improve patient
oxygenation. Effects of VV ECMO on right ventricular
function, particularly afterload reduction (Reis Miranda et al.,
2015; Holzgraefe et al., 2020; Petit et al., 2021) should be

incorporated into treatment strategies, and changes in gas
exchange and resulting arterial oxygen saturations depending
on RQ, nitrogen content and venous admixture are important for
daily clinical management (Ficial et al., 2021; Zante et al., 2021).

Future studies should concentrate on physiological
questions. In VA ECMO, these questions should focus on
maintaining LV and pulmonary function until organ
recovery can be achieved. In VV ECMO the optimal device
and ventilator settings remain unclear, but the strategy should
consider gas composition, RV function, and minimized
collateral damage to remote organs. Standardized monitoring
strategies of cardiopulmonary function needs to be defined
including new approaches such as integral gas exchange
assessment and adapted thermodilution (Bachmann et al.,
2020b; Bachmann et al., 2021; Berger et al., 2023).

Large clinical trials may help to answer questions regardingmortality
or long-term patient outcome, but small physiological animal and patient
studies, and computational physiological modeling, are necessary to fully
understand the impact of extracorporeal therapy on the
cardiopulmonary system, and to adapt and optimize the entry,
maintenance and exit strategies of these devices and to identify the
important research questions that need to be answered.

FIGURE 1
Theoretical analysis of proposed interaction between CO2 removal, mechanical power, and RV power. (A) Relationship between total VCO2, VCO2

lung and VCO2 ECMO. An increase in the transfer from lung to VV ECMO reduces VCO2 lung in a linear relationship. (B) Mechanical power (MP) as a
function of gas exchange transfer from the lung to the ECMO. While the mechanical power at the lung (MPLung) is a linear function of lung VCO2, the RV
power (MPRV) may form a u-shaped curve. A potential optimal setting (red point) refers to theminimumof the power sums and indicates the optimal
points of gas exchange transfer.
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