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With the rise of schedules and scheduling problems, solutions proposed in literature
have expanded yet the disconnect between research and reality remains. The Uni-
versity of Cape Town’s (UCT) Examinations Office currently produces their schedules
manually with software relegated to error-checking status. While they have requested
automation, this study is the first attempt to integrate optimisation techniques into
the examination timetabling process. Tabu search and Nelder-Mead methodologies were
tested on the UCT November 2014 examination timetabling data with tabu search prov-
ing to be more effective, capable of producing feasible solutions from randomised ini-
tial solutions. To make this research more accessible, a user-friendly app was developed
which showcased the optimisation techniques in a more digestible format. The app in-
cludes data cleaning specific to UCT’s data management system and was presented to
the UCT Examinations Office where they expressed support for further development:
in its current form, the app would be used as a secondary tool after an initial solution
has been manually obtained.
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Chapter 1

Introduction

1.1 Background

For the sake of optimisation and efficiency, schedules have become the standard
in today’s society. Where schedules are needed, it begs the question of whether
an optimal schedule exists and what it looks like. This type of inquisition fuels
scientific research where the interest lies in both the theoretical aspects and real-world
applications of scheduling problems (Chandrasekharan and Wauters [16]). Regarding
scheduling problems, timetabling is a subset that has garnered sufficient interest such
that international conferences are held for it. The Practice and Theory of Automated
Timetabling (PATAT) is one such series of conferences, held biennially since 1995. One
of the most widely studied timetabling problems is educational in nature, namely
university course timetabling (Qu et al. [53]).

A simple timetabling problem can be thought of as assigning R = {r1, r2, ...} resources
and T = {t1, t2, ...} times to M = {m1, m2, ...} meetings subject to C = {c1, c2, ...}
constraints (Burke, Kingston, and De Werra [13]). If M is the examinations to be
scheduled, R the available venues, and T the time slots available during the exami-
nation period, then the timetabling problem becomes one of examination timetabling
and venue allocation. The constraints associated can be classified into hard or soft
constraints. Hard constraints are the rules that cannot be violated by the timetable. On
the other hand, soft constraints are not necessary, but enforced, to improve the quality
of the timetable. An example of a hard constraint is "no student can have two of their
exams scheduled at the same time" whereas a soft constraint would be "no student
should have to write three exams within a 24-hour day".

With timetables becoming increasingly complex, there has been more of a shift
from manually completing timetables to full automation of the process. Figure 1.1
reflects this sentiment when accessing Digital Science’s Dimensions software and
searching the publications with terms "timetabling AND university AND automation".
Technology innovation has accelerated this shift by allowing more computationally-
intensive approaches, and, while there have been a growing number of ever-evolving

https://patatconference.org/
https://app.dimensions.ai/analytics/publication/overview/timeline?search_mode=content&search_text=timetabling%20AND%20university%20AND%20automation&search_type=kws&search_field=full_search&year_from=2006&year_to=2021
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algorithms (Kingston [44]), many of them have not been tested on realistic data
(Torres-Ovalle et al. [67]). Benchmark datasets exist but these are far removed from
reality and the intricacies it involves. While certain constraints are universal for specific
timetabling problems, real-world problems generally have some unique constraints
which do not allow for a "plug-and-play" approach to algorithm implementation and
thus make finding an appropriate solution difficult (Vrielink et al. [69]).

Figure 1.1: Publications related to the terms "timetabling AND university AND au-
tomation" from 2006-2020. Sourced from [29].

This rings true for the University of Cape Town (UCT). Currently, their examination
timetabling is done manually - with software only being utilised to track constraint vi-
olations. The University of Cape Town’s problem is complicated by their philosophy on
a student’s academic career: students are allowed to take additional courses (electives)
as long as they meet its prerequisites; as opposed to prescribing a course plan for each
year of a degree as some other universities do. This degree-flexibility compounds the
difficulty in creating an exam timetable void of clashes. Nevertheless, the UCT Exam-
inations Office (hereafter, Examinations Office) administers this task and accomplishes
it in three phases. Using student records, they construct the first provisional timetable
where students and lecturers can then give feedback on its viability as issues may arise
which cannot be foreseen by the Examinations Office. For example, a lecturer not being
present at the university for the given day(s) in the examination period. Based on their
input, a second provisional timetable is created. Feedback is then sought again, and a
final timetable is released for the examination period based on the response.
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The main aim of this study is to streamline the construction of the first provisional
timetable by developing an algorithm that will automate the process. The Examina-
tions Office have expressed that they are generally able to create a first provisional
timetable without violations, increasing the likelihood of successful automation. This
study will not explore algorithms that will address the subsequent timetables in the
process. Perturbation theory is recommended for those interested.

1.2 Objectives of the thesis

The main objectives of this study are:

1. to automate the first phase in UCT’s examination timetabling process and evalu-
ate its applicability,

2. to present the automation in a simple and easy-to-use manner such that users will
not be required to have expertise in order to operate, and

3. to begin discourse on automation of UCT’s examination timetabling.

1.3 Thesis organisation

In this chapter we have given a brief introduction into the nature of this research and
what it aims to achieve. The next chapter gives an overview of methods employed
in timetabling literature. Chapter three contains an exploratory analysis of the data
received from the Examinations Office and subsets the data into what will be used
throughout the remainder of the paper. Chapters four and five describe the timetabling
problem formally and discuss the proposed algorithms, respectively. Following this,
the results of the automation are presented and reviewed (Chapter six). In an attempt
to make the algorithm and its output more usable, a graphical user interface (GUI) was
created as a means of operating the algorithm. Chapter seven details the creation of
this GUI and displays images of what users will see when operating the programme.
Though GUIs tend to be the focal point in software applications rather than the un-
derlying algorithms (Vrielink et al. [69]), the algorithm and GUI demonstrated herein
are equally valuable. Chapter eight closes the paper through summary and discussion,
giving recommendations and propositions for future work.

https://en.wikipedia.org/wiki/Perturbation_theory
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Chapter 2

Literature Review

A nondeterministic polynomial (NP) problem is a problem where it takes polynomial
time to check if a solution exists but longer to find a solution. If a problem is NP and
all other NP problems can be reduced to it in polynomial time, the problem is known
as NP-complete (Britannica, The Editors of Encyclopaedia [7]). Currently, no efficient
algorithms exist for solving NP-complete problems, and whether or not the possibility
exists is a Millenium Prize Problem. In 1995, Cooper and Kingston [22] proved that,
in practice, timetabling is an NP-complete problem. This explains the abundance of
differing approaches which Burke, Bykov, and Petrovic [8] classified into four groups:
graph-based sequential techniques, decomposition/clustering techniques, constraint-based tech-
niques, and meta-heuristics. As there have been many new developments since then
(Qu et al. [53]), the number of groups have expanded. Some of these techniques are
explored in this chapter.

2.1 Graph-Based Sequential Techniques

A basic timetabling problem can be represented as a vertex colouring problem where
each exam is represented as a vertex and an edge exists between two exams if and only
if at least one student is writing both exams. Figure 2.1 demonstrates how solving a
vertex colouring problem can be equivalent to solving a timetabling problem. The aim
is to colour the vertices in the minimum number of colours where vertices that share
an edge are differently coloured. Such a number, often denoted χ(G), is called the
chromatic number of the graph G and relates to the minimum number of time slots
needed to schedule exams without clashes.

If we denote the number of edges exam i has as di, and assume without loss of
generality that

d1 ≥ d2 ≥ · · · ≥ dn, (2.1)

then it can be proved that χ(G) ≤ d1 + 1 by Vizing’s theorem (Diestel, Schrijver, and
Seymour [28]). Welsh and Powell [70] proved that the number of colours needed is at

https://link.springer.com/referenceworkentry/10.1007%2F0-387-23483-7_307
https://link.springer.com/referenceworkentry/10.1007%2F0-387-23483-7_307
https://www.claymath.org/millennium-problems
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most α(G) where
χ(G) ≤ α(G) ≤ max

i
min (i, di + 1) (2.2)

The significance of (2.2) is that the upper bound is easily computed since di is at most
the maximum number of students that are registered for exam i. If the university
can accommodate the number of time slots suggested, the authors created a simple
algorithm that will assign each exam to one of those time slots.

Figure 2.1: An illustrated example showcasing the conversion of a graph colouring
problem to a timetable solution. Only the clashing of events, in this case exams, are
considered in this example. Two events with the same colour are clashing if there exists
an edge linking the two vertices (credit: Lewis, Paechter, and Rossi-Doria [46]).

For some cases, the above approach may not be applicable. For example, in university
timetabling, the algorithm may suggest an upper bound of time slots well into the
thousands, hence the length of the exam period would be infeasible. An alternative
approach that has been considered in the timetabling literature is a maximum clique
ordering method. A maximum clique is the largest set of vertices in a graph such
that every two distinct vertices share an edge (adjacent vertices). Once an ordering is
established, vertices are coloured accordingly.

Arguably one of the most famous clique strategies is that of Kempe chains which
were introduced by Alfred Bray Kempe [42] in his attempt to prove the four-colour
problem. A Kempe chain works by selecting two adjacent vertices. To ensure proper
colouring, these two vertices have to be different colours, say, c1 and c2. Create a
chain by finding all adjacent vertices, to either coloured vertex, that can be coloured
c1 or c2. This colouring process is continued, i.e. colouring adjacent vertices to c1-
or c2-coloured vertices until no other vertex can be added (maximal chain). This is
known as a (c1,c2)-Kempe chain. The Kempe chain process depicted in Figure 2.2 can
be applied as an extension of the second step in Figure 2.1. With an initial colouring,

https://www.britannica.com/science/four-color-map-problem
https://www.britannica.com/science/four-color-map-problem
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a Kempe chain can be used to create an alternative colouring without affecting the
colour feasibility of vertices outside the chain. In practical terms, this reshuffling may
be more suitable than the original solution.

Figure 2.2: Example of a Kempe chain neighbourhood operator (credit: Lewis,
Paechter, and Rossi-Doria [46]).

Another widely used strategy is that of saturation degree ordering defined by Daniel
Brélaz [6]. The saturation degree of a vertex is the number of adjacent differently
coloured vertices. Coleman and Moré [21] adapted this strategy by using incidence
(number of adjacent coloured vertices) instead of saturation. These strategies are al-
ternate colouring techniques to Kempe chains, however, graph theory techniques are
more commonly used as components of other techniques - to add to their robustness.

2.2 Decomposition/Clustering Techniques

Decomposition techniques involve dividing a given problem into smaller subproblems,
which are optimised using appropriate algorithms. These techniques attempt to find
near-optimal solution by solving easier problems to reduce complexity. Despite being
one of the simpler techniques, very few papers implement decomposition techniques
in timetabling literature (Qu and Burke [52]). Difficulty is faced when attempting
to cluster timetabling problems as composite solutions may lose optimality, or be
infeasible (Abdul Rahman et al. [1]), and certain constraints may not allow clustering
as they cannot be evaluated on a decomposed problem (Qu et al. [53]). This inability
to reach optimality will almost surely result in dominable solutions. Nevertheless,
the improvement gained from an optimal solution may not justify the increased
computational time required. In addition, decision-makers may only be interested
in a feasible solution or have a limited time frame in which a solution must be obtained.
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In a paper by Burke and Newall [11], the authors decomposed a timetable prob-
lem into subproblems which their population-based algorithm could more effectively
handle. They noted that the execution time had considerably reduced and the quality
of solutions improved. However, if decomposition is not an option, execution time
could still be reduced if the algorithm allows parallelisation. The lack of timetable
parallelisation is due to sequential constructive algorithms being one of the most
popular methods (June et al. [40]). As the name suggests, these type of algorithms
create solutions successionally and thus do not contain independent chunks which can
be parallelised. Despite the difficulty that parallelisation entails, the payoff may be
substantial. Wu [76] used parallelisation in their course timetabling system, comparing
a single computer to five, and found that performance was improved by a factor of
12.47. The parallelisation speedup was superlinear in that the improvement factor was
greater than the number of computers used.

2.3 Multi-Criteria Techniques

Researchers in the field tend to focus solely on a singular objective function when deal-
ing with examination timetabling optimisation problems. There are, however, multiple
stakeholders that need to be considered, namely: administration, departments, and
students (Romero [56]). By its nature, timetabling problems have to take into account
various criteria when finding a solution, yet, when constructing objective functions,
the convention is to weight the criteria into a single value to be optimised (Silva,
Burke, and Petrovic [63]). The solution is highly dependent on the weights chosen and
therefore the choice of weights needs appropriate reasoning. With students preferring
long breaks between exams, for example, their considerations are almost always
treated as soft constraints. This is reflected in the objective function with the associated
weights being lower. However, as the student-as-consumer model becomes more
prevalent, the objectives of universities may change and likewise for their objective
functions’ weights (Clayson and Haley [20]).

The most commonly used multi-criteria technique to handle timetabling prob-
lems is the well-known goal programming (GP), characterised by Charnes and Cooper
[18]. Using this approach, each criterion, zk, is associated with a goal value, gk, for K
different criteria. An example of a criterion in the context of a timetabling problem
is to obtain a spacious timetable for students. A goal could be that no student has
to write exams back-to-back. In principle, each pair of criterion-goal is associated
with two deviation variables, d−k and d+k , which measure the underachievement
or overachievement of the goal. Using the Archimedean metric, the objective is to
minimise the sum of the weighted deviations or violation of the various criteria. That
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is, for K different criteria:

min
K

∑
k=1

(w−k d−k + w+
k d+k )

subject to

z1 + d−1 − d+1 = g1

. . .

zK + d−K − d+K = gK

(2.3)

If the purpose is to produce a more balanced solution then Chebyshev GP is employed,
conceptualised by Richard Bailey Flavell [32]. This variant minimises the worst-case
scenario for any criteria and therefore is also known as minimax GP as it minimises the
maximal deviation for any constraint. The difference between the two variants is the
objective function:

min max
k

(w−k d−k + w+
k d+k ) (2.4)

Archimedean and Chebychev GP are considered special cases of preemptive/lexico-
graphic GP (Ignizio [38]), which optimises according to constraint priority - only once
the minimum objective function value is found for a certain priority-class of constraints,
are the next (lower) priority-class of constraints introduced. For example, if there are
two priority classes, H and M, then the formulation of the objective function for H-
class criteria will look identical to (2.3) - assume α is the minimum value attained by
this function. The formulation of the M-class criteria objective function is:

min ∑
k∈M

(w−k d−k + w+
k d+k ) (2.5)

The H-class criteria constraints remain and the M-class criteria constraints are now
added. There is an additional constraint for each class above the current priority. In
this example, there is only one so the addition is:

∑
k∈H

(w−k d−k + w+
k d+k ) ≤ α (2.6)

Preemptive GP splits the solving process into multiple phases, essentially decomposing
the problem. This variant should only be pursued when a decision-maker can firmly
assign priorities to criteria and this is why setting up a preference for all criteria con-
sidered is a critical step when dealing with multi-criteria problems (Salas-Molina et al.
[59]). These three major variants all have differing philosophies of GP, and hence have
differing underlying distances in their calculations (Jones et al. [39]).
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2.4 Constraint-Based Techniques

In 1999, Brailsford, Potts, and Smith [5] published a paper on constraint satisfaction
algorithms and their applications. They intended to introduce these methods to the
operational research field as these methods were primarily used in artificial intelli-
gence and not widely known among operational researchers. A constraint satisfaction
problem consists of a set of variables, with defined domains, and a set of constraints.
As the name suggests, if the solution to a constraint satisfaction problem is feasible
then the selected variable values satisfy all constraints. This problem definition was
not unfamiliar to operational research due to George Bernard Dantzig inventing linear
programming (LP) in 1947 (Dantzig and Thapa [25]).

Constraint programming (CP) and LP have many similarities and have been in-
creasingly integrated in research (Van Hentenryck [68]). The main difference between
them is how constraints are defined and approached. The constraints in LP are
necessarily linear, whereas they can be non-linear in CP. In the case of timetabling, the
decision variables take the form of positive integers which results in integer LP being
used. CP and integer LP both use search tree methodology but LP algorithms empha-
sise the objective function and prune suboptimal solutions, whereas, CP algorithms
focus on constraints and prune infeasible candidate solutions. Brailsford, Potts, and
Smith remarked that if the problem does not allow much pruning then CP is likely to
be more efficient. Furthermore, if CP is used in a pure form without adaptation, it is
unlikely to be competitive with local search methods.

More than just a tool, CP advanced from applying constraints in logic program-
ming to constraint programming as a language (Rossi, Van Beek, and Walsh [57]).
Merlot et al. [48] published a paper where they employed a three-phase algorithm,
with constraint programming in the first phase, to solve the University of Melbourne’s
exam timetabling problem. The optimisation programming language they used, OPL,
was created by Pascal Van Hentenryck [68]. The algorithm proved successful as it was
superior to the university’s current process and obtained the best results reported in
literature on several benchmark timetabling problems. As suggested by Brailsford,
Potts, and Smith, Merlot et al. achieved this feat by incorporating local search methods
in phases two and three to further improve the constraint programming algorithm.

2.5 Local Search-Based Techniques

Local search-based techniques traverse search spaces iteratively by moving from the
current solution to a neighbouring solution (Pirlot [51]). These techniques usually
consist of general search principles arranged in a general search strategy (meta-
algorithims). They are more commonly known as general heuristics or metaheuristics.
These techniques also do not guarantee an optimal solution as they search non-
systematically and are non-exhaustive (Schaerf and Di Gaspero [61]). That being the

http://www.doc.ic.ac.uk/~cclw05/topics1/index.html
http://www.doc.ic.ac.uk/~cclw05/topics1/index.html
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case, the choice of neighbourhood construction is paramount to the effectiveness of
these techniques.

The most popular local search-based techniques are hill climbing (HC), simulated
annealing (SA), and tabu search (TS) (Schaerf and Di Gaspero [61]). HC is the simplest
form of the three, only performing moves that improve (or keep constant) the value
of the objective function. The main problem HC faces is converging towards local
extrema. SA and TS have differing philosophies on dealing with this. A move in SA
can have one of three outcomes: it improves the objective function and is accepted,
it worsens the objective function and is rejected, or it worsens the objective function
and is accepted based on an iteration-dependent probability function. The probability
function used decreases as iterations increase, making it less likely that a worse solu-
tion will be accepted. The idea is to avoid converging too soon in hopes to circumvent
local extrema. Kirkpatrick, Gelatt, and Vecchi [45], the inventors of SA, were inspired
by annealing (metallurgy) and therefore the probability function resembles a cooling
schedule. In contrast, Fred Glover [36] presented TS which utilises a memory-based
strategy. At each iteration, the best neighbouring solution is chosen irrespective of
the change in the objective function. The algorithm will remember previous solutions
and forbid moves towards those solutions in the future - the solutions are said to be
on the tabu list. The list encourages exploration of the search space by not allowing
moves towards previously explored areas. However, as iterations increase, solutions
are removed from the list based on the memory length (short/intermediate/long) and
can be revisited.

A downside to metaheuristics is that solution optimality cannot be proven and
thus there is no obvious stopping criteria. This enforces a more interactive approach
to problem-solving as algorithms are more reliant on user input, from parameter spec-
ification to solution evaluation, and the timetabling research community recognises
this as crucial (Schaerf [60]). Metaheuristics give the possibility of starting from any
initial solution. This ability supports interactive work by allowing the opportunity
for changes to be made to the algorithm without it breaking. For example, users are
given the freedom to adjust the current solution or update the constraints, as UCT
may do in the second and final phase of their exam timetabling process. These settings
can be used for initialisation and the solving process can continue. Real-life situations
are extensions of classical problems and metaheuristics have the advantage of easily
integrating problem-specific adjustments into their solving strategies. The requirement
of interaction balances automation and experience. Over time, the user’s domain
expertise grows, and they are able to adjust and adapt the algorithm to further reduce
the time required to solve the task (Chahal and De Werra [15]). It should be noted that
while metaheuristics are sensitive to their parameter configuration (Huang, Li, and
Yao [37]), fine-tuning is only vital when concerned with optimality (Pirlot [51]).

https://www.twi-global.com/technical-knowledge/faqs/what-is-annealing
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Thompson and Dowsland [66] produced the 1993 Swansea University timetable us-
ing SA. The final timetable produced was a substantial improvement over previous
years, only having 490 cases of (over 3000) students sitting two exams in two days.
Within a minute, their method could produce a feasible timetable. The authors also
employed Kempe chains to generate neighbourhood solution and reported that Kempe
chain neighbourhoods significantly outperformed SA but did not satisfy the reachabil-
ity condition: a concept where a path exists between any two vertices. Nevertheless,
the authors planned to use Kempe chains in future research as the methods they de-
signed to satisfy the reachability condition either performed poorly or required exces-
sive execution time. White and Xie [71] implemented a four-phase TS algorithm using
both short-term and long-term memory at the University of Ottawa. They found that
a 34% improvement was attributable to the algorithm’s long-term memory by compar-
ing schedules produced with and without this feature. From their research, they found
that short-term TS techniques make quick improvements from an initial solution but
fail to generate high-quality solutions and that the addition of long-term memory will
result in better solutions. Furthermore, they were able to automatically determine an
appropriate size for long-term memory.

2.6 Population-Based Algorithms

Similar to local search-based techniques, population-based algorithms are classified
under metaheuristics but were largely inspired by nature. They attempt to overcome
the issue of local extrema by generating multiple solutions, thereby increasing the
exploration of the search space (Cheng et al. [19]). An additional advantage of these
approaches is the parallelisability of the solution generation process (Giagkiozis,
Purshouse, and Fleming [35]). Having multiple solutions, the Pareto front can be
approximated. This set of non-dominated solutions award decision-makers multiple
equally-optimal solutions when problem-solving.

Motivated by Charles Darwin’s theory of evolution, Lawrence Jerome Fogel de-
vised evolutionary programming in 1960. Around this time, genetic algorithms, a
subset of evolutionary algorithms with a focus on gene propagation, were ideated
by John Henry Holland (De Jong, Fogel, and Schwefel [26]). An alternative subset is
differential evolution which was designed by Storn and Price [65] to be a stochastic
search method. Farmer, Packard, and Perelson [31] presented an algorithm based
on the immune system and, although not by design, the algorithm shares many
similarities to Holland’s. Substantiating Holland’s notion that natural systems provide
numerous insights for parallel computation, there are population-based algorithms
that mimic species interactions: two of which are particle swarm optimisation (PSO),
devised by Eberhart and Kennedy (Shi and Eberhart [62]), which mimics flocking of
birds and ant colony optimisation, formulated by Dorigo and Di Caro [30], which mimics
a colony of ants. Hybrid approaches to population-based algorithms also exist. For

https://www.encyclopedia.com/computing/dictionaries-thesauruses-pictures-and-press-releases/reachability
https://www.encyclopedia.com/computing/dictionaries-thesauruses-pictures-and-press-releases/reachability
https://www.igi-global.com/dictionary/pareto-front/21878
https://www.yourgenome.org/facts/what-is-evolution
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example, memetic algorithms integrate a local search-based technique on the individual
solutions generated by an evolutionary algorithm (Burke, Newall, and Weare [12]).

Of the evolutionary algorithms researched in exam timetabling, genetic algorithms,
and memetic algorithms, in particular, have been the most studied (Qu et al. [53]). The
simplest genetic algorithms are initialised with multiple solutions. These solutions
are known as the population (of solutions) and each solution, called a (parent) chro-
mosome, has an associated objective function value - a fitness value. Through some
selection method, two chromosomes are selected and crossover to produce a new
(child) chromosome. The crossover operation allows exploration of the search space,
whereas mutation is exploitative as they are applied to the child chromosomes. Finally,
the child chromosome will replace a chromosome from the initial population and the
process repeats. The replacement process can be influenced by fitness values, leaving
only the best solutions remaining in the population - directly paralleling the "survival
of the fittest" nature of evolution.

Arogundade, Akinwale, and Aweda [3] published a paper wherein they described
their use of genetic algorithms to solve a Nigerian university’s exam timetabling issues.
The university was not efficiently allocating its resources to meet its growing demands;
its grid-like system required manual adjustments to create a feasible solution. The
entire system was reworked, and the genetic algorithm implemented produced
better results while being more cost- and time-efficient. The improved system also
allowed larger inputs and more flexibility. Abela [2] showcased a parallelised genetic
algorithm on a school timetabling problem. They stated that parallelisation was easily
implemented owing to inherent parallelisability. However, their results showed less
than significant speedups as a consequence of certain critical paths of the program
not being parallelised. In their research, they achieved a sublinear speedup with a
peak speedup of 9.2 from 10 processors. Marie-Sainte [47] showed the performance
of PSO on data from the King Saud University. Their particular method was limited
to 100 exams, but the results revealed positive implementation nonetheless. The
University of Technology Malaysia used PSO to model the undergraduate information
and communication technology courses and also reported it suitable for timetabling
(Foong and Rahim [33]). Their results included a User Acceptance Test which the
system scored between 50% and 80% on all their criteria.

2.7 Hyper-heuristics

The term "hyper-heuristic" was first used by Denzinger and Fuchs [27] in artificial
intelligence and was independently used by Cowling, Kendall, and Soubeiga [23] to
describe "heuristics which choose heuristics" in optimisation. A hyper-heuristic is a
high-level approach to problem-solving. At each decision point, a hyper-heuristic
selects and applies an appropriate low-level heuristic (Burke et al. [9]). The motivation

https://www.britannica.com/science/survival-of-the-fittest
https://www.britannica.com/science/survival-of-the-fittest
https://economictimes.indiatimes.com/definition/user-acceptance-testing
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is to increase the general applicability of search methodologies.

Hyper-heuristics have largely been assessed on their ability to generate optimal
solutions; little research has been done to evaluate their generality. Pillay and Qu [50]
published a paper wherein they provided a taxonomy that classifies hyper-heuristics
into four levels based on their generality. If a hyper-heuristic can only be applied to
a single problem, then it is classified as having a generality level of one or two, based
on whether or not it can perform well on multiple benchmarks. Level three is given
to a hyper-heuristic if it can be applied to a single domain of multiple problems. The
highest level a hyper-heuristic can achieve is when it can be applied across domains.
The authors also categorised hyper-heuristics based on the heuristic nature of the
search space - whether the hyper-heuristic is selective or generative. A hyper-heuristic
is selective if it selects a low-level heuristic and generative if it creates one. A low-level
heuristic can be further classified based on whether it is constructive or perturbative,
i.e. whether it creates a solution or changes an existing one. In 2010, Burke et al. [9]
extended the classification of Pillay and Qu by introducing a new dimension, feedback.
Feedback deals with the learning mechanism of the hyper-heuristic and has three
learning possibilities: online learning, offline learning or without learning. Online
learning is when the hyper-heuristic learns as it solves a problem. Offline learning
is when the hyper-heuristic is trained beforehand and without learning is when the
hyper-heuristic does not use feedback from the search process. The two dimensions
hyper-heuristics are classified across are depicted in Figure 2.3.

Figure 2.3: A classification of hyper-heuristic approaches, according to two dimensions
(i) the nature of the heuristic search space, and (ii) the source of feedback during learn-
ing (credit: Burke et al. [9]).
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Burke et al. [10] applied a hyper-heuristic approach to solve education timetabling
problems. The hyper-heuristic they proposed was classified as selection constructive
as it used a tabu search algorithm to select a low-level constructive graph-based heuris-
tic. There were five heuristics to choose from and they each incorporated either online
learning or without learning in their feedback. Their results indicated that the hyper-
heuristic performed well on all the benchmark course timetabling problems, even ob-
taining the best-reported result for one benchmark. They tested both a single-stage
graph-based hyper-heuristic and its two-stage counterpart and found that the two-
stage obtained worse results. They hypothesised that this is due to the limitations of
the algorithm’s starting points. Experimental results also showed that increasing the
number of low-level heuristics would improve efficiency, but at the cost of increasing
the search space, and therefore also increasing the computational time.

2.8 Summary

This chapter has reviewed the literature on timetabling, specifically examination
timetabling. The purpose is to expose the reader to various methods explored, but
also implemented in practice. With UCT having done no automation in this field, their
infrastructure is lacking. This paper aims to start building the foundation wherein
later iterations can improve upon. Literature makes it clear that many methods can
solve this problem and therefore the focus is on selecting one and making it work
rather than selecting the most appropriate necessarily.
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Chapter 3

Data wrangling

Before defining the problem and its probable solution(s), it’s important to delve into the
available data as it governs what can be explored and what needs to be assumed. Three
files were received from the Examinations Office in connection with the November 2014
exams: student data, venue locations and capacities, and a provisional timetable. The
data was obtained from an external human resources management system and required
processing. Data cleaning was done in R (R Core Team [54]) and RStudio (RStudio
Team [58]) along with the readxl (Wickham and Bryan [74]) and stringr (Wickham
[73]) packages.

3.1 Student data

Students each have a unique ID associated with them. By filtering IDs, this file shows
all courses that each student was registered for in 2014. Each course ends in an indicator
which identifies the type of course and when it is offered. Only courses that were going
to be examined in the November period are of interest, and the rest were removed.
Also of interest is whether a student requires special needs. Special needs requirements
are equipment-orientated (such as needing a computer) or time-orientated (requiring
extra time). The specific requirements each student has is detailed in the document
where extra time is recorded as a number of additional minutes per hour the student
is allowed. Regardless of the nature, students with special needs must be scheduled in
venues separate from those without special needs.

Table 3.1: An example of the student’s data after cleaning

ID Code Special Venue Extra-Time

911069 ACC1012S 0 0 0
928206 MEC2000X 0 1 10
906266 BUS5000W 1 1 15
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In Table 3.1, Special is a binary variable which denotes if a student has a special need
other than just additional time, Venue indicates whether the student will write in the
venue separate from non-extra-time students, and Extra-Time records the number of
additional minutes per hour the student is entitled to.

3.2 Venue locations and capacities

All venues available to UCT and their seating capacities are contained herein. Unfor-
tunately, many problems inhibit correct usage of this information:

• There exist multiple venues with 1000 seating capacity which are used as catch-
alls when departments, themselves, handle the venue allocation.

• There are Take home exam and Online venues that cannot be allocated unless some
specification is met - not included in any of the files obtained from UCT.

• The file contains out-of-date venues. These result when venues are renamed, such
as Jameson Hall to Sarah Baartman Hall. Both these venues exist in this file and,
without information on all the renamings that have taken place, duplicates cannot
be removed.

• No indication is given to special venues, such as computer labs, nor was there
any indication to exams that required special venues.

• The Examinations Office indicated that they had a priority system to venue allo-
cation, however no such priority is shown in the file itself.

For these reasons, venue allocation will not be possible and is not included in the mod-
els.

3.3 Provisional timetable

Ideally, prospective scheduling would create this file as it includes a provisional
timetabling of the exams. The necessary information from this file is the courses that
require scheduling, number of assessments scheduled for those courses and their
durations (Table 3.2). The provisional solution will be used for comparative purposes
later in this study.

Table 3.2: An example of the extracted information from the provisional timetable

Course Assessment Duration (Hours) Date Starting time

BUS3043S Paper 2 2.00 31/10/2014 03:00 PM
CHM5003W Online exam 1.75 07/11/2014 01:00 PM
CSC3003S Paper 1 3.17 28/10/2014 10:00 AM
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3.4 Joint cleaning

After cleaning each file separately, the files were compared. The Special and Venue
indicators could be removed from the student data as venue allocation would not be
possible. Many courses could also be removed from the student data as they were
not present in the provisional timetable. A reason for this is that certain courses may
simply not have exams and therefore do not require one to be scheduled. Likewise, the
provisional timetable included courses that had no students from the student data. A
possible reason for this was given by the Examinations Office: certain departments take
care of their scheduling themselves as their students would not have courses outside
of their department. For example, dance students will have their exams scheduled by
their department so the Examinations Office may not have their student data, but the
timetable will include their exams as part of the entire UCT exam timetable.

After removing the aforementioned courses and exams, the data was merged.
Courses were renamed based on the course and assessment. For courses with multiple
assessments, each course-assessment pair was treated as a unique course to make
scheduling easier. Using the duration variable from the provisional timetable, the
duration for each course-assessment (hereafter, exam) was calculated for each student,
including extra time if necessary. Table 3.3 showcases the format of the final dataset
after the cleaning process has completed. This data is the data that will be used during
implementation of the methods.

Table 3.3: An example of the final data after the cleaning process has completed

ID Exam Duration (Hours)

911069 ACC1012S-Paper 2 2.00
994706 CSC2002S-Paper 1 3.17
964304 PBL4601S-Paper 1 10.00

Before cleaning, the student data and provisional timetable contained 92940 and 650 ob-
servations respectively. After their individual wrangling, these observations dropped
to 92936 and 645 observations - virtually no change. Once these datasets were com-
bined however, the resultant dataset only contained 60100 observations. About a third
of the data proved unnecessary and could be removed. The new data included 15636
unique students who were required to sit 598 unique exams. On average, each student
would have to sit 3.84 exams.
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Chapter 4

Problem Formulation

The UCT November 2014 examination period spanned 15 days with an assumed 19
possible starting times for exams from Monday to Thursday and 16 for Friday. The
solution created by the Examinations Office started on the hour or at the half-hour. The
earliest and latest starting times were inferred from this solution and it was assumed
that every half-hour is a possible starting time. This resulted in 276 possible starting
times (throughout the week) for the 598 examinations. The examination timetabling
problem can be represented as follows:

• E: A set of e examinations to be scheduled E1, E2, ..., Ee

• S: A set of s students who will write the e exams S1, S2, ..., Ss

• T: A set of t starting times T1, T2, ..., Tt

• D: An allocation matrix where Dmi denotes the number of full periods student Sm

is allocated for exam Ei

• R: A matrix where Rmi denotes that student Sm will sit exam Ei. Rmi = 1 if
Dmi > 0.

• The scheduled examination timetable X where Xi = k denotes that exam Ei is
scheduled to start at time Tk

The problem is to assign the set of e exams to the available t starting times such that the
costs are minimised. It is noted that the Mara University of Technology had exams of
similar durations (120, 150 or 180 minutes) allowing Kendall and Hussin [43] to create
time slots long enough for any exam to be scheduled within. This meant that their
algorithm dealt with uniform slot durations, which made allocation of exams much
easier as they wouldn’t have to consider overlaps between exams. This simplification,
however, cannot be performed for UCT’s examination timetabling problem for two
reasons. Firstly, the range of durations for their exams are much larger (from 30 minutes
to 8 hours), and, secondly, the students may require extra time. Extra time concession is
given to a student on a per hour basis and the most given in 2014 was 30 minutes. This
can result in an 8-hour exam needing a 12-hour slot. Forcing exams to be scheduled
according to the most time required by a student for that exam would be too restrictive
on the scheduling process, thus, exams need to be scheduled on a student level.



22 Chapter 4. Problem Formulation

4.1 Constraints

Hard constraints are those which are required to be met. In this work, only a single
constraint is considered:

• All exams must be scheduled, and only once:

Xi ∈ {1, 2, ..., t} ∀ i = 1, 2, ..., e (4.1)

4.2 Costs

Soft constraints are governed by the problem-holder’s policies and procedures, in this
case the University of Cape Town. Soft constraints dictate the quality of the timetabling
and can be violated as they have related costs. The soft constraints considered are:

• Conflict: Ideally, a student should be able to sit all their exams at the scheduled
time. However, this cannot always be guaranteed. Let δmij = 1 if student Sm

cannot sit both exams Ei and Ej and let αij = 1 if exam Ei is scheduled after exam
Ej. The total number of clashes/conflicts (Zc) within a timetable X is therefore:

Zc =
s

∑
m=1

e−1

∑
i=1

e

∑
j=1+1

δmij

subject to

(1− αij)(1− δmij)(Xi + Dmi) < Xj

αij(1− δmij)(Xj + Dmj) < Xi

(1− αij)Xi < Xj

δmij ∈ {0, 1}

αij ∈ {0, 1}

Dmi does not necessarily equal Dmj therefore two equations are needed. Here, αij

is used to nullify an equation based on the timeline of events.

• Proximity: A cost Pij is given whenever a student has to sit two exams Ei and Ej

scheduled n periods apart. If P = 1.001276−n, then the total proximity cost (Zp)
is:

Zp =
s

∑
m=1

e−1

∑
i=1

e

∑
j=i+1

RmiRmjPij

subject to

|Xi − Xj| = nij

Pij = 1.001276−nij
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The proximity cost decreases exponentially as the number of periods between ex-
ams increase. This forces solutions to prefer schedules that have large gaps in
timetables from the student’s perspective. The constant of 1.001 is used to ensure
the cost is relatively small even for large proximities.

4.3 Objective Function

The objective function consists of minimising the total conflict cost (Zc) and total prox-
imity cost (Zp). As is, the objective function will be affected by the scales of the costs,
therefore, each cost needs to be normalised. This requires knowledge of the minimum
and maximum achievable values for each cost. The maximum is easily identified as any
solution with all examinations scheduled to start at the same time, on the same day, will
contain the maximal conflict and proximity costs. Obtaining the minimal conflict and
proximity costs are not as simple. A minimiser ran for over two days and showed that
a no-conflict solution exists. An estimate for the smallest proximity cost was obtained
but it may not be the minimum. Table 4.1 below displays all estimates for both costs.

Table 4.1: Cost extrema

Maximum Minimum

Conflict 105618 0
Proximity 139169.3 121401*

* Not necessarily the true minimum

Let ZU and ZL denote the maximum and minimum of each cost respectively, then a
normalised cost Z∗ is:

Z∗ = Z −ZL

ZU −ZL (4.2)

A normalised cost is dimensionless. Simply adding the two costs together is equivalent
to assigning the same priority to both costs. With conflict dictating the feasibility of a
solution, it should be weighed much higher than proximity. A constant multiplier, C,
is incorporated into the conflict cost to guarantee that it is given preference during the
minimisation process. Three levels are tested: C = 1, C = 139170, and C = 70000. Each
level was ran five times with 500 iterations for the minimiser each time. The results
for each cost is displayed (Figure 4.1). The C = 70000 runs are omitted as they were
identical to the C = 139170 runs.
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Figure 4.1: Sensitivity analysis of the multiplier, C, on each cost. Runs were grouped
and smoothed using general additive models.

When costs were weighted equally, a point was reached where the objective function
began to prefer minimising proximity over conflict. This choice is synonymous with
minimising in favour of infeasibility and is clear evidence for the requirement of the
multiplier. With C = 139170, the conflict cost is strictly decreasing upon closer inspec-
tion of individual runs. This causes the minimisation of the proximity cost to suffer,
as expected. The objective function has shown to behave correctly when C = 139170,
thus, the final objective function is: 139170Z∗c +Z∗p .
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Chapter 5

Proposed Algorithms

This chapter outlines the algorithms that will be used to solve the problem formulated
in the previous chapter. The main algorithm considered is tabu search. The reasoning for
this is that literature has proven its success with similar-sized datasets and the author
is familiar with its implementation. Nelder-Mead was selected as another algorithm as
a deterministic counterpart. This allows comparisons to be made against the stochastic
nature of tabu search. Nelder-Mead was specifically chosen as it is the default method
in R’s optim function.

5.1 Tabu Search

Tabu search is a metaheuristic that employs local search methods for optimisation. The
local search methods prohibit certain solutions (hence the term tabu) based on the op-
timisation history, but concession can be made if aspiration criteria are met. With an
initial solution, tabu search begins by identifying and selecting neighbouring solutions.
A neighbour is defined by the local search method implemented. This dissertation has
three neighbourhoods, only using one during an iteration. Let X be a solution, then a
neighbour N can be:

• Random: All Ni can be different to all Xi;

• Swapped: There exists i and j such that Ni = Xj and Nj = Xi but Nk = Xk if k ̸∈ {i, j};
or

• Changed: Except for a single j, Ni = Xi ∀ i ̸= j.

A tabu list functions as the method’s memory since it records which moves create cho-
sen neighbours. While moves are in memory, neighbours created from those moves are
disallowed. Aspiration criteria detail when disallowed neighbours can be chosen but
no such criteria is introduced in this dissertation as the prohibitions are integrated into
the neighbour generation process. Thus, all neighbours created are explicitly allowable.
That said, the list has limited recollection, allowing previously forbidden moves to be-
come permissible as newer moves enter the list. Selected neighbours are evaluated and
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the best neighbouring solution replaces the current solution - the incumbent solution is
updated if necessary. The method can then begin again as the iteration has concluded.

5.2 Nelder-Mead

In any given space, a simplex is the simplest possible "flat"-sided geometric object. In
this context, "flat" means that each side of a (k + 1)-polytope consists of k-polytopes
that may have (k − 1)-polytopes in common. The simplest three-dimensional poly-
hedron is a tetrahedron, making it a simplex in the third dimension. Similarly,
the triangle is a two-dimensional simplex. Nelder and Mead [49] used the ideas
introduced by Spendley, Hext, and Himsworth [64] to create a minimisation method
which uses simplices effectively. In a k-dimensional simplex, there are k + 1 vertices
and each vertex is a solution to the optimisation problem. The Nelder-Mead method
starts by the creation and evaluation of a simplex. Let yi denote the evaluation of
the vertex vi, then, without loss of generality, order the vertices v1, v2, ..., vk+1 where
y1 ≤ y2 ≤ ... ≤ yk+1.

By consistently updating vertices, the simplex traverses the search space towards
the optimal vertex/solution. This process begins by calculating the centroid of the
simplex, v̄:

v̄ =
1
k

k

∑
i=1

vi (5.1)

The centroid is the average of all vertices, excluding the worst (vk+1). If a vertex is an n-
dimensional solution, then each element of the centroid is the element-wise average of
the vertices. The centroid is used to calculate new vertices that will replace vk+1 if cer-
tain criteria are met. These vertices are created using three geometric transformations -
reflection, contraction, and expansion. The reflected vertex, vr, is defined as:

vr = (1 + α)v̄− αvk+1 α > 0 (5.2)

Let yr denote the evaluation of vr. If yr < y1, a new minimum has been produced and
the vr is expanded:

ve = γvr + (1− γ)v̄ γ > 1, γ > α (5.3)

The expanded vertex, ve, is evaluated, and, if ye < y1, then ve replaces vk+1. Otherwise,
vr replaces vk+1. The process can now restart with the new simplex. If y1 ≤ yr ≤ yk, i.e.
vr is at least as bad as the second-worst solution, then vr replaces vk+1 and the process
restarts with the new simplex. If yk < yr, the worst vertex can be replaced by vr if
yr ≤ yk+1. After which the contracted vertex, vc, can be calculated:

vc = βvk+1 + (1− β)v̄ 0 < β < 1 (5.4)
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If the evaluation of vc, yc, is better than the worst vertex, vc replaces vk+1. If the con-
traction has failed, i.e yc > yk+1, each vertex of the simplex is shrunk towards the best
vertex:

vi =
1
δ
(vi + v1) 0 < δ < 1 (5.5)

This completes an iteration of the Nelder-Mead method and it can be restarted with the
new simplex.

5.3 Parameter fine-tuning

An algorithm’s effectiveness can have widely varying results depending on the choice
of parameter values. While some of these parameters, such as the run time of an al-
gorithm, may have clear relations to the success of the algorithm, others may require
tuning. This section explores the main parameter(s) in each algorithm and suggests
baseline characteristics.

5.3.1 Choice of neighbourhood

By running the tabu search with an exclusive neighbourhood, the optimal threshold
for each neighbourhood can be discovered. Five 500-iteration runs were ran for each
neighbourhood. A tabu list length of 50 was used with five neighbours selected during
each iteration. The results thereof are shown by Figure 5.1.

Figure 5.1: Sensitivity analysis of the tabu search neighbourhood on each cost. Runs
were grouped and smoothed using general additive models.

The random neighbourhood had the fastest initial improvement in solution. The sharp
drop in the number of conflicts show that it should be the neighbourhood used upon
initialisation of the method. Once solutions improve and reach a conflict value of
around 2500, the changed neighbourhood should be implemented as it had the steep-
est slope after 2500 clashes until roughly the 600-clashes mark is reached. It can be
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argued that the swapped neighbourhood should be used below this threshold. How-
ever, the problem with the swapped neighbourhood is that it is the best neighbourhood
if, and only if, the optimal selection of periods has already been chosen. The swapped
neighbourhood essentially shuffles periods around in an attempt to find the optimal
timetabling. An artefact of this is that the method becomes trapped in a local mini-
mum. For this reason, the changed neighbourhood will be used from the 2500 clashes
mark and below as it allows the possibility of obtaining the optimal solution.

5.3.2 Coefficients

In their 1965 paper, Nelder and Mead tested various coefficient combinations. Their
results showed that the combination of α = 1, γ = 2, β = 0.5, δ = 2 worked best. In all
their tests, they kept δ fixed. This baseline combination is compared to a combination
with enlarged coefficients and a combination with shrunken coefficients. All combina-
tions fix δ = 2:

• Baseline: α = 1, γ = 2, β = 0.5

• Enlarged: α = 1.5, γ = 3, β = 0.75

• Shrunken: α = 0.5, γ = 1.5, β = 0.25

In Figure 5.2 below, each coefficient combination was used in five runs each, with 100
iterations per run. From Figure 5.2, the baseline combination produces the best results
and will be used in future runs. Nevertheless, there does not seem to be a significant
difference between combinations. It should be noted that not much improvement has
been made by any of the runs over the 100 iterations, especially when compared to the
first 100 iterations of the tabu search runs. This may suggest that tabu search is better
suited to this problem than Nelder-Mead.

Figure 5.2: Sensitivity analysis of the Nelder-Mead coefficient combination on each
cost. Runs were grouped and smoothed using local polynomial regression.



5.4. Coded methods 29

5.4 Coded methods

The methods described were coded in R. In order to complete the coding of both meth-
ods, a stopping criterion is required. A natural stopping point would be at a specific
objective function value or once a maximum number of iterations has been completed.
This requires intimate knowledge of the data, the objective function and possibly the
method(s). A layman is unlikely to possess the ability to ascertain appropriate values
for any of these criteria. Therefore, a more intuitive stopping criterion is a time limit.
By limiting time, multitasking is encouraged as users can expect results at a later
time and continue with other work. The stringr, dplyr (Wickham et al. [75]), and
parallel (R Core Team [55]) packages were used to help speed up methods.

Let f be the objective function to be minimised on a solution v and fc(v) the
conflict value of solution v, then tabu search and Nelder-Mead can be described by
Algorithms 1 and 2 respectively. Where possible, default values are supplied for
optional input if they are not given. In the case of Nelder-Mead, it uses a simplex so
assume a solution is k-dimensional. In this dissertation, the other k vertices in the
simplex are changed neighbours of the initial solution.

Algorithm 1 Template of the tabu search method

Required input: Exam data, time limit
Optional input: Initial solution, tabu list length, number of neighbours, seed

1: set seed
2: v← v0 ▷Generation of an initial solution if none is given
3: vb ← v
4: Generate a tabu list ▷Determined by the tabu list length
5: repeat ▷Based on the number of neighbours, n, and the tabu list
6: if fc(v) > 2400 then
7: Generate n random permissible neighbours v1, v2, ..., vn

8: else
9: Generate n changed permissible neighbours v1, v2, ..., vn

10: Select vi from the neighbours such that f (vi) ≤ f (v1), f (v2), ..., f (vn)

11: v← vi

12: if f (v) < f (vb) then
13: vb ← v

14: Update tabu list based on neighbours generated
15: until time limit is exceeded

Output: Best solution found, vb
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Algorithm 2 Template of the Nelder-Mead method

Required input: Exam data, time limit
Optional input: Initial solution, coefficients (α, γ, β, δ), seed

1: set seed
2: v← v0 ▷Generation of an initial solution if none is given
3: Generate a simplex S from v ▷S has k + 1 vertices
4: Order the vertices of S: v1, v2, ..., vk+1 such that f (v1) ≤ f (v2) ≤ ... ≤ f (vk+1)
5: repeat

6: v̄ =
1
k ∑k

i=1 vi ▷centroid of S (without the worst vertex)

7: vr = (1 + α)v̄− αvk+1 ▷reflective vertex of S
8: if f (vr) < f (v1) then
9: ve = γvr + (1− γ)v̄ ▷expanded vertex of S

10: if f (ve) < f (v1) then
11: vk+1 ← ve
12: else
13: vk+1 ← vr

14: else if f (vr) ≤ f (vk) then
15: vk+1 ← vr
16: else
17: if f (vr) ≤ f (vk+1) then
18: vk+1 ← vr

19: vc = βvk+1 + (1− β) ▷contracted vertex of S
20: if f (vc) > f (vk+1) then

21: vi =
1
δ
(vi + v1) for all i ∈ {1, 2, ..., k + 1} ▷shrink the entire simplex

22: else
23: vk+1 ← vc

24: until time limit is exceeded
Output: Best solution found, v1
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Chapter 6

Results

This dissertation implemented and tested the tabu search and Nelder-Mead methods
described in Proposed Algorithms, on the UCT examination timetabling data, on a
PC with an Intel i7 3.6 GHz processor, 8 Gb RAM and Windows 10. Each method was
tested at time limits of 30 minutes, 1 hour, and 2 hours. The 2-hour time limit may seem
short but, for example, papers by Čupić, Golub, and Jakobović [24] and Carter, Laporte,
and Lee [14] managed to obtain results within minutes. Another reason for the shorter
time limit is to push the envelope. The debate may be that if a computer takes just as
long as a human then the human should do it as their skill can be trusted. By showing
what’s possible within only two hours the narrative changes to what the computer can
do given more time. This links back to objective three of this paper, discourse. Tests
were conducted five times each and the results obtained are discussed in this chapter.
Five repetitions were chosen to gain some insight into what the average performance
of the algorithms are. All figures and tables were created using the ggplot2 (Wickham
[72]), viridis (Garnier et al. [34]), and ggpubr (Kassambara [41]) packages in R and
can be found in Appendix A.

6.1 Tabu Search

A tabu list length of 50 with five neighbours generated per iteration was used for all
runs, with each run having a random seed value. The differences between the initial
(seed) solution and the best solution, after the time limit was reached, was recorded
and tabulated. A collated summary of these tables is given on the following page (Table
6.1). For example, in the best 30-minute run, the tabu search method reduced the initial
solution’s total cost by 5866.390 after 30 minutes elapsed. Surprisingly, the average
improvement from the 1-hour time limit is greater than that of the 2-hour time limit.
This is likely due to the randomness of the initial solutions coupled with the increasing
difficulty in improvement as solutions get closer to feasibility.
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Table 6.1: Summary of improvements from tabu search runs on random initial solu-
tions

Run Total Cost Conflict Cost Proximity Cost Run Time

30-mins Best 5866.390 4452 1943.3 30.0125 mins
Average 4913.661 3729 1025.7 30.0485 mins

1-hour Best 6114.076 4640 1297.4 1.0013 hours
Average 5413.893 4109 1790.8 1.0012 hours

2-hour Best 6355.227 4823 1595.8 2.0004 hours
Average 5187.538 3937 2177.9 2.0004 hours

Without an idea of the initial and final conflicts, it is difficult to put the improvements
into perspective. Figure 6.1 shows the change in conflicts of each of the five 2-hour
time limit runs. In these runs, tabu search has reduced each solution by a factor of
around 100. Despite this, none of the solutions have zero clashes: the minimum clashes
reached was 27. This suggests that more than two hours is required to obtain a feasible
solution if a random solution is used.

Figure 6.1: Conflict value as best solutions change in tabu search runs with 2-hour time
limits

Figure 6.1 also reveals that the threshold for changing neighbourhoods is possibly too
low, seeing the kink in at least one run. The 30-minute and 1-hour time limit figures
exhibit the same problem as this one. In this case, the fifth run has been significantly
hindered in its improvement by not switching neighbourhoods sooner. This then cre-
ates a time sink as the method struggles to optimise the run until it has at most 2400
clashes so that its neighbourhood can be changed. A possible improvement would be
to increase the threshold value to 2600.
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6.2 Nelder-Mead

Nelder-Mead was tested with two objectives in mind. Firstly, its performance relative
to tabu search and, secondly, its performance as a secondary optimiser. The Nelder-
Mead baseline coefficient values were used: α = 1, γ = 2, β = 0.5, δ = 2.

6.2.1 Against tabu search

In order to test its performance relative to tabu search, it was given the same seeds
so that the improvements from each Nelder-Mead run can be compared directly to its
tabu search counterpart. By comparing the Nelder-Mead summary table (Table 6.2)
to the tabu search summary table (Table 6.1), a clear difference in optimisation ability
can be seen. In the best 30-minute run, the proximity cost actually worsened instead of
improved thus the negative value in the table. This perfectly demonstrates the intention
of choosing the weight values for the objective function as conflict was reduced by
worsening the proximity cost.

Table 6.2: Summary of improvements from Nelder-Mead runs on random initial solu-
tions

Run Total Cost Conflict Cost Proximity Cost Run Time

30-mins Best 1478.429 1122 -4.7 32.3064 mins
Average 923.427 701 29.0 33.6169 mins

1-hour Best 3143.977 2386 164.1 1.0738 hours
Average 1784.395 1354 41.9 1.0792 hours

2-hour Best 2412.668 1831 147.6 2.0968 hours
Average 1928.550 1464 55.9 2.1153 hours

Table 6.2 also shows that tabu search improvements are at least three times greater than
Nelder-Mead on average. For these runs, the average improvement in the 1-hour time
limit runs is worse than that of the 2-hour time limit runs. A reason for this can be
explained by looking at Figure 6.2. After two hours, the best solution obtained from
the five runs still had 1768 clashes. For context, the best tabu search run obtained a
solution with 27 clashes in this time. Moreover, this Nelder-Mead run had the best
initial solution out of the five and the best solution from the tabu search runs had the
second-worst initial solution out of the five - an initial difference of 1455 conflicts. The
Nelder-Mead runs had not yet reached a point where the difficulty in improvement
really mattered as solutions were still far from feasible. These results show that tabu
search is the clear favourite between the two methods.
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Figure 6.2: Conflict value as best solutions change in Nelder-Mead runs with 2-hour
time limits

6.2.2 Ensembled with tabu search

Nelder-Mead is demonstrably worse than tabu search at improving random initial so-
lutions. However, if the solutions are already near-feasible then Nelder-Mead may be
more effective. To test this hypothesis, the tabu search runs used previously had their
output used in Nelder-Mead runs. These Nelder-Mead runs did not use new seeds and
continued from the tabu search seeds. The time limit given to the Nelder-Mead runs
were the same as those given to the tabu search runs, e.g., a 30-minute tabu search run
would have a 30-minute Nelder-Mead run after. Table 6.3 displays the summary of
these runs.

Table 6.3: Summary of improvements from Nelder-Mead runs on tabu search initial
solutions

Run Total Cost Conflict Cost Proximity Cost Run Time

30-mins Best 140.991 107 -1.0 41.5034 mins
Average 70.100 53 -11.7 39.8016 mins

1-hour Best 25.036 19 6.4 1.1516 hours
Average 18.449 14 26.4 1.1693 hours

2-hour Best 23.715 18 -54.7 2.2269 hours
Average 10.010 8 -70.8 2.0997 hours
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Apart from the 1-hour time limit runs, the promixity cost figures have all increased.
Moreover, the run times for these Nelder-Mead runs are higher than the previous
section’s Nelder-Mead runs: as solutions improve, the probability of the worst vertex
improving in the Nelder-Mead simplex decreases. Thus, the simplex is more likely
to be shrunk. Out of all its operations, shrinking the simplex requires the most time
and therefore the average run time will increase as shrinking becomes more common.
The Nelder-Mead method has shown that it can improve solutions, even near-feasible
ones, but it begs the question whether the time spent on it should rather be used to
increase the tabu search time limit.

Figure 6.3: Conflict value as best solutions change in Nelder-Mead runs with a 1-hour
time limits on tabu search runs with 1-hour time limits

Figure 6.3 shows the 1-hour time limit Nelder-Mead runs. At best, they have only de-
creased the total conflicts by 30 in a 1-hour time span. Tabu search has shown that, with
an additional hour, it can reduce conflicts by much more than this. A positive note is
that the 2-hour time limit runs were further decreased when Nelder-Mead was applied.
This does not disprove that a 4-hour time limit tabu search run will not outperform the
2-hour time limit Nelder-Mead runs but it does prove that the method is capable, given
enough time. Further testing needs to be done to ascertain the usefulness of the Nelder-
Mead method.
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Chapter 7

Graphical User Interface

In this chapter, a decision support system is designed so as to provide the Examinations
Office with a tool that may be used to generate examination timetables in line with their
objectives. The platform may also be seen as a tool to enhance the repeatability of the
work performed in this dissertation. The app was created using the shiny (Chang et al.
[17]), shinyjs (Attali [4]), readxl, and stringr packages in R.

7.1 App architecture

The main purpose of the app is to provide support to a user during the process of
generating examination timetables. It is envisaged that the user of the app will be an
Examinations Office manager and that such a user, having access to this dissertation,
can gain a basic understanding of the solution approaches employed in the app.
The user is, however, not expected to know the working of the tabu search and
Nelder-Mead methods prior to using the app. The code of these methods are neatly
packaged and the platform allows the user to easily change the problem parameters
without having to explicitly make changes to the programming code.

The user is required to import the data into the application if no data has been
stored locally. From here, the user gains the ability to view the data as well as run
the solution approaches according to user-specified parameters. Once a run has
completed, the application is updated and the user can view the new timetable.
Various forms of output are created by the app and the user may download these if
required.

7.2 App implementation

Upon starting the app, the user lands on the Data tab. Users will be met with the "new
data" selection under Data and are required to import the necessary data files into the
application, using the "browse" buttons (Figure 7.1, 1), before the additional tabs are
unlocked (Figure 7.1, 2). These data files are the student data, provisional timetable,
and venue locations and capacities files described in Implementation and should be
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imported under Student data, Exams, and Venues respectively. In practice, these files
would be pulled from the human resources management system and imported directly
into the app. For easy assimilation, the app requires .xls and .xlsx file extensions.
Once all files have been imported, the user has the option to upload a solution under
Solution (Optional) in the form of a text file (.txt). If none is provided, a default
solution will be used.

Figure 7.1: An example of the app landing page and its features

The user has now completed the initial requirements and can select the "use these
files" button (Figure 7.1, 3). If done, the application will begin cleaning the attached
files according to the Data wrangling section in Implementation. The cleaned files
are stored by the app and will be used in all further processes. The first of which is
to create an initial examination timetabling with the solution (default or provided).
The solution will be displayed on the Data tab (Figure 7.1, 4) and the user can cycle
through the entries using the page numbers in the bottom right of the app. The user
may also filter the entries using the text boxes above the page numbers or download
the timetable in excel format via the "download timetable" button. If the data has been
cleaned previously, the user can select "existing data" from the Data drop-down box
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(Figure 7.1, 5) as the cleaned files should be stored locally. The user will then only
be given the option of uploading a solution and the same process will be completed
once the user selects the "use this file" button, previously the "use these files" button.
After either form of initialisation, additional tabs are unlocked: Students, Tabu Search,
Nelder-Mead, and Full Algorithm.

By selecting the Students tab, the user can view the timetable from a student per-
spective: entries are given for all students and the exams they will be sitting (Figure
7.2, 1). Here, Duration is the student-specific (extra-time included) exam duration
allowed. In the top-left box, the objective function value of the timetable is displayed
along with its component values (Figure 7.2, 2). Below this, the "show clashes only"
button subsets the data to only show the entries which result in conflicts (Figure 7.2,
3). Selecting this button transforms the button to "show full data" where the data will
be reverted if selected. The full and subsetted datasets are downloadable as excel files
using the "download timetable" and "download clashes timetable" respectively.

Figure 7.2: An example of the Students tab of the app

The last three tabs (Tabu Search/Nelder-Mead/Full Algorithm) should be used when
improvements are needed for the current timetable. When selecting the Tabu Search
or Nelder-Mead tab, the user is confronted with a checkbox on whether to use the
uploaded solution (Figure 7.3, 1). This refers to the solution used in the current
timetable (default or provided). Checking this box means that the current timetable
should be used as the initial solution for the optimisation method. Leaving this box
unchecked means that a new random initial solution will be used, affected by the
Seed value. The user should then select the required run time duration (Figure 7.3,
2). The available units of time are "seconds", "minutes", and "hours" with 60, 60, and
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24 being the maximum time limit for the respective units. As a default, the change
arguments box is unchecked (Figure 7.3, 3). This ensures that users do not accidentally
change the optimisation method’s parameters by prohibiting changes to the current
arguments. If the user would like to change the arguments, they should tick the box
and the prohibition will be lifted (Figure 7.3, 4). After configuration, the user should
select the "run algorithm" button to being optimisation (Figure 7.3, 5).

Figure 7.3: An example of the Tabu Search (left) and Nelder-Mead (right) tabs of the app

Once the run time duration has reached the specified time limit, the method will stop
optimisation and update the app. The current tab will be updated with the run time
of the method, the objective function value and its components, and a plot of the
history of the conflict values, which may be downloaded as a .png file by selecting
the "download plot" button (Figure 7.3, 6). The tabu search plot will contain a red
horizontal line at the 2400-clashes mark if the method has changed its neighbouring
solution generation process during the run. The "download solution" button will
download the final solution from the optimisation as a .txt file. This file is formatted
to allow it to be directly imported into the app on future use. The app also uses the
final solution to update the Data and Students tabs. These tabs will now reflect the
new timetable from the optimisation while retaining all previous functionality. Lastly,
the Full Algorithm tab is simply an amalgam of the Tabu Search and Nelder-Mead tabs.
The reason for this tab is to allow ensembled runs as explained in Results. The only
additional parameter is the checkbox whether to use the seed for the Nelder-Mead
portion of the method (Figure 7.4, 1). To replicate the ensembled runs, this box should
not be ticked. Ticking this box is equivalent to running the Nelder-Mead tab with "use
uploaded solution" after running the Tabu Search tab.
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Figure 7.4: An example of the Full Algorithm tab of the app
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Chapter 8

Discussion and Conclusion

In essence, the UCT examination timetabling process has successfully been automated
herein and been presented in a user-friendly manner with the accompaniment of the
app in Graphical User Interface. Neither the automation nor the app are free from
improvements however. Nevertheless, each section of the automation process is dis-
cussed in this chapter with future considerations on the development of the respective
section.

8.1 Solution

The best solution achieved through the test runs still included 27 conflicts and is there-
fore infeasible but when compared to the provisional timetable, the solution is notably
favourable. Table 8.1 shows the cost breakdown of the provisional timetable and the
best test run, including a row which shows the difference between the two solutions’
costs. It is reasonable to believe that this provisional timetable solution was not the one
published for November 2014 examination period as there would have definitely been
issues for certain students. That said, one can assume that at least some time was spent
creating this solution and if the time spent exceeded 2 hours then utilisation of the app
is substantially superior.

Table 8.1: Cost breakdown

Conflict Proximity Total

Provisional timetable 307 126664.6 404.8
Best test run 27 124864.6 35.8

Difference 280 1800 369

The conflicts in the provisional timetable are due to 302 unique students and 28
unique exams whereas the conflicts in the best test run are due to 27 unique students
and 39 unique exams. Bear in mind that for a conflict to exist, a student should be
unable to sit two or more exams and that’s why the number of unique exams are
larger than the number of conflicts for the best test run. Note that the conflicts in
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provisional timetable are generated by less unique exams than those in the best test
run. This suggests that conflicts in the provisional timetable are more likely a case of
difficult-to-schedule courses whereas the conflicts in the best test runs are likely a case
of difficult-to-schedule students. As mentioned in the introduction, degree-flexibility
allows more unique course combinations and therefore may require a more complex
exam timetable. Out of the two solutions, there are no students that feature in both
and only one exam, PSY2003S paper 1, causes conflicts in both solutions.

8.2 Data

Insufficient data can severely impact the scope of a problem as is the case with the
UCT November 2014 examination scheduling problem. It was immediately clear that
automation of venue allocation would not be possible due to the lack of data, unfortu-
nately making this an incomplete automation process. Here, data does not just pertain
to the files obtained from the Examinations Office but also includes the information
from meetings and documentation. Literature on examination scheduling assisted in
identifying the data that was needed to automate UCT’s exam scheduling but assump-
tions were still required in cases where the data was not available. For example, the
longest exam scheduled to start at 5 pm (the last period) in the Examinations Office’s so-
lution was 3 hours and 15 minutes. The most amount of time required by an extra-time
student for any of these exams was 15 minutes per hour. This means that the student
would have possibly ended up completing their sitting after 9 pm. The Examinations
Office did not specify if they had a time point where students should not be required
to be on campus but one can imagine that it would not be too late as some students
may require public transportation, making late ending times unsafe and inconvenient.
Feedback is also a form of data and, ideally, the app would have been developed in
tandem with the Examinations Office to customise it to their specific needs.

8.3 Problem Formulation

Constraints, costs, and objective functions are highly subjective and depend entirely
on the problem at hand. The feasibility of a solution can change as those elements
change. This makes identifying the solution space and feasibility region an important
step towards automation. The formulation shown in Problem Formulation contains a
very general objective function and has little to no UCT-specific constraints and costs.
The University of Cape Town is an established tertiary institution so it is likely that
it keeps its constraint and costs (relatively) constant for examination timetabling. The
2019 UCT Examinations Policy & Procedures Manual details guidelines that the exam
schedulers should follow. However, these guidelines could not be adhered to as they
require a lot more information than was made available. The Examinations Office may
also have certain criteria they follow which the manual does not explicitly state. These
criteria would take the form of soft constraints or costs. More communication with the

https://www.uct.ac.za/sites/default/files/image_tool/images/328/about/policies/Policy_Examinations_Policy_Manual_2019.pdf
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Examinations Office would be required for a full formulation of the UCT examination
scheduling problem.

8.4 Algorithm

Two algorithms were tested during the automation process. Unfortunately, the results
from the Nelder-Mead algorithm were less than satisfactory but still provided valuable
insight. When time is not a limiting factor, an algorithm needs to be robust enough to
traverse the solution space in order to discover a feasibility region. An issue with using
a simplex is that each step in the algorithm creates a solution linked to the simplex and
this can be problematic when the entire simplex is situated in a locally minimal region.

The tabu search was able to avoid early convergence with the use of differing
neighbouring solution generations. The first type of generation, random, creates
solutions which do not have to be linked to the initial solution in any way, therefore
rapid exploration is possible. The use of the second and third types of generation,
swapped and changed, then help to refine solutions towards feasibility. Additionally,
tabu searching provides efficient time usage with iterations of roughly the same dura-
tion. With the Nelder-Mead algorithm requiring differing amounts of time depending
on the initial solution, it gives the user a non-intuitive understanding of setting the
time limit since the user would not be able to estimate the number of iterations the
algorithm would complete.

Tabu searching is not without its faults though. The results sections has shown
that tabu searching can have difficulty moving from a near-feasible to feasible so-
lution. As tabu searching is similar to simulated annealing and genetic algorithms,
comparisons should be made to check if tabu searching is indeed a good choice.
Perhaps the solution generation process could be adapted to include other techniques
proven in literature or perhaps a different algorithm should be used altogether. A
future consideration would be to automatically attain the best arguments for the
algorithm and dynamically change them if necessary. Further testing should also be
done on when to switch neighbouring solution generation types as Results hinted at
non-optimal neighbourhood switching.

It should be noted that the run times of the algorithms are likely to decrease if a
faster programming language is used. As R uses C/C++ and Fortran at its lower
level, writing the algorithms in these languages directly will reduce overhead and thus
should increase the speed at which an algorithm completes its iterations.
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8.5 Graphical User Interface

It has been shown that an app can streamline the workflow of the UCT examination
timetabling. While basic in its functionality, the app can successfully automate the
scheduling process and provide the necessary output. However, the app is not without
its issues. Proper fool-proofing has not yet been administered as it is possible to
break the app in many ways. The app also lacks helpful tips and guidelines to steer
users towards correct app usage. This all assumes the user can launch the app in
the first place. The app requires R software and multiple other packages in order to
execute certain functions and a user would have to open an R script and subsequently
run the code to actually launch the app. This may prove difficult as individuals are
accustomed to clicking an icon on their desktop or in their start menu. A workaround
exists where an executable (.exe file) can be created that will perform all these tasks for
the user, including downloading and installing R and its packages, but this has yet to
be attempted.

A key task that the app cannot perform is to allow users to change constraints/costs
and manually adjust the solution. As mentioned previously, UCT creates provisional
timetables before finalising their examination schedule. As new constraints are
introduced, the current solution may become infeasible and require adjustments.
Rerunning the entire algorithm may be unnecessary if an improvement is clearly
visible to the user. Unfortunately, the user cannot interact with the app to update the
constraints and solution. Changing the constraints would require the user to have
knowledge of R so that they can re-code the constraints and as the solution is given
in text file format, adjustment would require opening the file and changing the values
of the solution. Unless the user understands the workings behind the algorithms, it
would not result in the intended adjustments.

On the technical side, it is evident that running the algorithms through the app
are slower than running them through the script. Naturally, the hardware that the app
is run on will affect the speeds at which actions are completed but, because the app
itself requires resources, less resources are available for the algorithms when needed.
On a whole, the slow down is negligible but a clear difference in run times are visible
when utilising the Nelder-Mead algorithm, in the Nelder-Mead or Full Algorithm tabs.
All apps require resources to operate but creating the app through R (and shiny) may
be more resource intensive than alternatives. Furthermore, the app code itself may
also not be optimised which only worsens the slowdown effect. The problem areas
with the app are predominantly (i) user experience and that (ii) feedback is needed
to ascertain what future app developments should include. A meeting was held with
the Examinations Office where the app was showcased, and they were in accord with
the considerations discussed. In the meeting, they mentioned that, in its current state,
if the app contained the constraints that UCT uses, it would be used as a secondary
tool. Essentially, once an agreeable solution has been obtained by the Examinations
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Office, it would be fed into the app for further improvement (if possible). Hence, if the
app was expanded into a more substantial programme, the Examinations Office is in
support of its use over their current system(s).
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Appendix A

Additional Results

A.1 Tables

A.1.1 Tabu search

Table A.1: Improvement from tabu search with a 30-minute time limit on random ini-
tial solutions

Run Total Cost Conflict Cost Proximity Cost Run Time (Mins)

First 3607.779 2738 -184.5 30.0881
Second 5359.056 4067 1407.7 30.0457
Third 5866.390 4452 1943.3 30.0125
Fourth 4320.687 3279 661.6 30.0767
Fifth 5414.392 4109 1300.4 30.0196

Table A.2: Improvement from tabu search with a 1-hour time limit on random initial
solutions

Run Total Cost Conflict Cost Proximity Cost Run Time (Hours)

First 6114.076 4640 1297.4 1.0013
Second 5112.718 3880 2605.9 1.0015
Third 5892.732 4472 1731.7 1.0016
Fourth 5112.688 3880 2073.7 1.0004
Fifth 4837.248 3671 1245.3 1.0011
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Table A.3: Improvement from tabu search with a 2-hour time limit on random initial
solutions

Run Total Cost Conflict Cost Proximity Cost Run Time (Hours)

First 3933.368 2985 2012.4 2.0000
Second 4685.797 3556 2696.0 2.0008
Third 5862.481 4449 2721.3 2.0005
Fourth 6355.227 4823 1595.8 2.0004
Fifth 5100.818 3871 1863.9 2.0001

A.1.2 Nelder-Mead

Against tabu search

Table A.4: Improvement from Nelder-Mead with a 30-minute time limit on random
initial solutions

Run Total Cost Conflict Cost Proximity Cost Run Time (Mins)

First 699.687 531 40.3 34.2233
Second 1478.429 1122 -4.7 32.3064
Third 994.847 755 62.7 35.4845
Fourth 884.162 671 65.4 32.0511
Fifth 560.010 425 -18.7 34.0193

Table A.5: Improvement from Nelder-Mead with a 1-hour time limit on random initial
solutions

Run Total Cost Conflict Cost Proximity Cost Run Time (Hours)

First 3143.977 2386 164.1 1.0738
Second 1436.265 1090 24.0 1.0426
Third 1013.295 769 73.4 1.0003
Fourth 1770.951 1344 -29.9 1.0619
Fifth 1557.488 1182 -21.8 1.2176

Table A.6: Improvement from Nelder-Mead with a 2-hour time limit on random initial
solutions

Run Total Cost Conflict Cost Proximity Cost Run Time (Hours)

First 1651.047 1253 52.1 2.2025
Second 1608.880 1221 21.4 2.1163
Third 1933.028 1467 24.4 2.0098
Fourth 2037.125 1546 34.2 2.1512
Fifth 2412.668 1831 147.6 2.0968
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Ensembled with tabu search

Table A.7: Improvement from Nelder-Mead with a 30-minute time limit on tabu search
initial solutions

Run Total Cost Conflict Cost Proximity Cost Run Time (Mins)

First 64.568 49 30.2 42.4789
Second 39.530 30 2.5 42.8798
Third 140.991 107 -1.0 41.5034
Fourth 77.743 59 -2.5 30.0153
Fifth 27.666 21 -87.7 42.1306

Table A.8: Improvement from Nelder-Mead with a 1-hour time limit on tabu search
initial solutions

Run Total Cost Conflict Cost Proximity Cost Run Time (Hours)

First 25.036 19 6.4 1.1516
Second 23.716 18 -39.3 1.2239
Third 3.954 3 19.5 1.1494
Fourth 15.808 12 -81.4 1.1523
Fifth 23.731 18 226.9 1.1697

Table A.9: Improvement from Nelder-Mead with a 2-hour time limit on tabu search
initial solutions

Run Total Cost Conflict Cost Proximity Cost Run Time (Hours)

First 6.587 5 -22.6 2.1079
Second 3.953 3 5.9 2.0000
Third 6.572 5 -287.8 2.0001
Fourth 9.224 7 5.2 2.1638
Fifth 23.715 18 -54.7 2.2269
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A.2 Figures

A.2.1 Tabu search

Figure A.1: Conflict value as best solutions change in tabu search runs with 30-minute
time limits

Figure A.2: Conflict value as best solutions change in tabu search runs with 1-hour time
limits
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A.2.2 Nelder-Mead

Against tabu search

Figure A.3: Conflict value as best solutions change in Nelder-Mead runs with 30-
minutes time limits

Figure A.4: Conflict value as best solutions change in Nelder-Mead runs with 1-hour
time limits
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Ensembled with tabu search

Figure A.5: Conflict value as best solutions change in Nelder-Mead runs with a 30-
minute time limits on tabu search runs with 30-minute time limits

Figure A.6: Conflict value as best solutions change in Nelder-Mead runs with a 2-hour
time limits on tabu search runs with 2-hour time limits
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