
Department of Civil Engineering
Polar Engineering Research Group

Computational modelling of ice floe dynamics
in the Antarctic marginal ice zone

A research thesis in fulfilment of the requirements for a
Doctoral degree in the field of Civil Engineering

Prepared for: University of Cape Town

Author:
Mr. Rutger Marquart

Supervisors:
Prof. Sebastian Skatulla

Dr. Alfred Bogaers
Dr. Keith MacHutchon

September 10, 2022Univ
ers

ity
 of

 C
ap

e T
ow

n



The copyright of this thesis vests in the author. No 
quotation from it or information derived from it is to be 
published without full acknowledgement of the source. 
The thesis is to be used for private study or non-
commercial research purposes only. 

Published by the University of Cape Town (UCT) in terms 
of the non-exclusive license granted to UCT by the author. 

Univ
ers

ity
 of

 C
ap

e T
ow

n



Plagiarism Declaration

• I know that plagiarism is wrong. Plagiarism is to use another’s work and to pretend that it is one’s
own.

• Each significant contribution to and quotation in this document from the work or works of other people
has been attributed and has been cited and referenced.

• This thesis is my own work.

• I have not allowed and will not allow anyone to copy my work with the intention of passing it as his or
her own work.

Name Student No Date Signature
Rutger

Marquart MRQRUT001 September 10, 2022

i



Preface

This report is part of the fulfilment of a doctoral degree in the field of Civil Engineering at the University
of Cape Town (UCT) and is the result of four years of research under the supervision of Prof. Sebastian
Skatulla, Dr. Alfred Bogaers and Dr. Keith MacHutchon.

First, I would like to express my deepest appreciation to Sebastian Skatulla for inviting me to South Africa as
a research assistant at UCT in 2017, and for giving me the opportunity to start my PhD in 2018. I sincerely
thank both Sebastian and Alfred Bogaers for supervising me during my PhD project. They have provided
me with feedback regularly, allowing me to develop myself as a researcher in the field of Civil Engineering.
Many thanks to Dr. Keith MacHutchon and all my fellow students in the Polar Engineering Research Group
(PERG), who were always ready to lend a helping hand. They created a great working atmosphere at UCT.

I would like to thank the National Research Foundation (NRF) and the Marine and Antarctic Research
Centre for Innovation and Sustainability (MARIS) for giving me financial support during the four years of
my project. Computations were performed using facilities provided by the UCT’s ICTS High Performance
Computing team: hpc.uct.ac.za.

A special thanks to external researchers: Dr. Alberto Alberello (University of East Anglia), A/Prof. Alessan-
dro Toffoli (University of Melbourne), Prof. Marcello Vichi (UCT) and Dr. Carina Schwarz (University of
Duisburg-Essen) who have provided me with research data and feedback on my published paper ’A Compu-
tational Fluid Dynamics Model for the Small-Scale Dynamics of Wave, Ice Floe and Interstitial Grease Ice
Interaction’. I enjoyed working with them and look forward to doing so again in the near future.

I would also like to thank the captain, crew and fellow researchers on the SA Agulhas II to the Antarc-
tic marginal ice zone (MIZ) during the winter cruise in 2017 and both the SCALE winter and spring cruises
in 2019. These research expeditions yielded productive data as input for my numerical model and have each
been a once-in-a-life-time experience, which I will always cherish.

I am beyond grateful to my brother, Wijnand Marquart, and my friends, in particular Regardt Hennop,
for making me feel at home in Cape Town during my PhD.

Last, words cannot express my deepest gratitude to my parents for giving me the opportunity to study
in Cape Town and for their unconditional love and support.

R. Marquart
Cape Town, September 10, 2022

ii



Table of Contents

Plagiarism Declaration i

Preface ii

Table of Contents iii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

List of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

Summary xviii

1 Introduction 1

1.1 Background to study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Problem identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Aims and objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Scope and limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Layout of document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Literature study 7

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Sea ice rheology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Large-scale numerical modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.2 Small-scale numerical modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Atmospheric and oceanic forcing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

iii



2.3.1 Wind forcing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.2 Wave forcing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.3 Ocean current forcing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Model description 24

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Momentum balance equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Sea ice rheology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3.1 Grease ice rheology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3.2 Ice floe rheology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4 Atmospheric and oceanic forcing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4.1 Wave-dependent wind loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4.2 Current-dependent wave loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 Computational framework 34

4.1 Introduction to OpenFOAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1.1 Finite Volume Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1.2 Volume of Fluid Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.1.3 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 Implementation details of the small-scale sea ice model in OpenFOAM . . . . . . . . . . . . . . 56

4.2.1 Ice type separation via the Volume of Fluid Method . . . . . . . . . . . . . . . . . . . . 56

4.2.2 Numerical stability and convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2.3 Implementation of the ice floe rheology . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2.4 Spatial and temporal discretisation schemes . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2.5 Applied boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5 Model parameterisation and preliminary numerical studies 64

5.1 Model parameterisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2 Convergence analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.2.1 Grid size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

iv



5.2.2 Domain size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.3 Preliminary plausibility studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.3.1 Test case 1: Colliding ice floes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.3.2 Test case 2: Bulk velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.3.3 Test case 3: Atmospheric and oceanic forcing . . . . . . . . . . . . . . . . . . . . . . . . 78

5.3.4 Test case 4: Chequerboard oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.3.5 Test case 5: Ice floes hitting an obstacle . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6 Numerical investigation of mechanical behaviour of ice floe-grease ice interaction 86

6.1 Numerical study on the geometry of ice floes embedded in grease ice . . . . . . . . . . . . . . . 87

6.2 Numerical study on the mechanical behaviour of ice floe-grease ice interaction . . . . . . . . . . 94

6.2.1 Sea ice velocity and ice floe stress response . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.2.2 Grease ice stress, viscosity and strain rate response . . . . . . . . . . . . . . . . . . . . . 103

7 Numerical study of in situ ice floe motions 108

7.1 Image processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.2 Parameter sensitivity analysis - ice floe C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.2.1 Grease ice strength parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.2.2 Air drag coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.2.3 Water drag coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.2.4 Wave direction angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.3 Final parameter calibration and model verification . . . . . . . . . . . . . . . . . . . . . . . . . 116

8 Conclusion 122

9 Recommendations and future work 126

10 Appendix 128

10.1 Implementation details of the small-scale sea ice model in the Finite Volume Method . . . . . . 128

v



List of Figures

2.1 EP yield curve reproduced from Coon et al. [34] and Rothrock [156]. . . . . . . . . . . . . . . . 10

2.2 VP yield curve reproduced from Hibler III [69]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 A control volume reproduced from Shen et al. [164]. . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1 Logarithmic wind profile adapted from Buckley and Veron [28] and Sajjadi et al. [157]. . . . . . 30

4.1 Two-dimensional collocated uniform grid [35]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 Linear approximations of time, reproduced from Ferziger et al. [51] and Hutchings [82]. . . . . . 38

4.3 One-dimensional uniform grid resulting in a chequerboard pattern. . . . . . . . . . . . . . . . . 41

4.4 A schematic diagram of the least-squares method. . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.5 Two-dimensional staggered uniform grid [35]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.6 Two separate solutions resulting in a chequerboard pattern. . . . . . . . . . . . . . . . . . . . . 49

4.7 Cell 1-4: α1 = 0, cell 5-12: 0 < α1 < 1, cell 13-16: α1 = 1. . . . . . . . . . . . . . . . . . . . . . 51

4.8 Schematic diagram adapted from Roenby et al. [155], showing a reconstructed isoface. . . . . . 54

4.9 Schematic diagram adapted from Roenby et al. [155], showing face interface intersection lines. . 55

4.10 Schematic drawing of the zero-gradient and periodic boundary conditions. . . . . . . . . . . . . 56

5.1 Layout of the grid-size convergence analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2 Spatially-averaged sea ice rheology variables of the grid-size convergence analysis. . . . . . . . . 66

5.3 Layout of the domain-size convergence analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.4 Spatially-averaged sea ice rheology variables of the domain-size convergence analysis. . . . . . . 68

5.5 Initial sea ice layouts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.6 Ice floe collisions for different values of EY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.7 Ice floe stress and velocity magnitude response for different values of EY . . . . . . . . . . . . . 70

vi



5.8 Contour plots before, during and after ice floe collision with EY = 8.7 × 106Nm−1. . . . . . . . 71

5.9 Ice floe stress and velocity magnitude response for different values of Uin. . . . . . . . . . . . . 71

5.10 Initial ice layout at t = 0s, for different values of ∆h. . . . . . . . . . . . . . . . . . . . . . . . . 72

5.11 Ice floe stress and velocity magnitude response for different values of ∆h. . . . . . . . . . . . . 73

5.12 Contour plots showing the velocity magnitude with overlaying velocity vectors. . . . . . . . . . 73

5.13 Ice layout at t = 7.5s with increasing grease ice strength parameter values. . . . . . . . . . . . . 74

5.14 Ice floe stress and velocity magnitude response for different values of P ∗
g . . . . . . . . . . . . . . 74

5.15 Contour plots showing the bulk viscosity for increasing viscosity. . . . . . . . . . . . . . . . . . 75

5.16 Contour plots showing the velocity magnitude with overlaying velocity vectors. . . . . . . . . . 75

5.17 Contour plots showing the velocity gradient and grease ice stress. . . . . . . . . . . . . . . . . . 76

5.18 Ice floe velocity magnitude response for different values of Cwf
and Cwg . . . . . . . . . . . . . . 77

5.19 The phase between the wave elevation and velocity in the x-direction. . . . . . . . . . . . . . . 78

5.20 Ice floe stress and velocity magnitude response for different values of Caλ
. . . . . . . . . . . . . 79

5.21 Ice floe trajectory for three different values of Caλ
. . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.22 Ice floe stress and velocity magnitude response for different values of Caλ
. . . . . . . . . . . . . 80

5.23 Total stress state including stability terms resulting in chequerboard oscillations. . . . . . . . . 81

5.24 Partial stress state including stability terms resulting in no chequerboard oscillations. . . . . . 82

5.25 Ice floe stress and velocity magnitude response of the total and partial stress states. . . . . . . 83

5.26 Contour plots showing the layout of two ice floes obstructed by an obstacle. . . . . . . . . . . . 83

5.27 Ice floe stress and velocity magnitude response of two ice floes obstructed by an obstacle. . . . 84

5.28 Contour plots showing the stress magnitude of two ice floes obstructed by an obstacle. . . . . . 84

5.29 Contour plots showing the velocity magnitude of two ice floes obstructed by an obstacle. . . . . 85

6.1 Three realistic and one idealised sea ice layout, each with a 100 × 100m2 inner domain. . . . . . 87

6.2 Box plots for all three realistic sea ice layouts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.3 Spatially-averaged stress magnitude response for layouts 1-4 with νk ≈ 0.04m2s−1. . . . . . . . 89

6.4 Spatially-averaged strain rate magnitude response for layouts 1-4 with νk ≈ 0.04m2s−1. . . . . 92

6.5 Spatially-averaged bulk viscosity response for layouts 1-4 with νk ≈ 0.04m2s−1. . . . . . . . . . 93

6.6 Realistic sea ice layout, showing the inner and outer domain. . . . . . . . . . . . . . . . . . . . 95

6.7 Contour plots showing the wave elevation for T = 12s and νk ≈ 0.04m2s−1. . . . . . . . . . . . 96

vii



6.8 Contour plots showing the orbital wave velocity for T = 12s and νk ≈ 0.04m2s−1. . . . . . . . . 96

6.9 Contour plots showing the sea ice velocity for T = 12s and νk ≈ 0.04m2s−1. . . . . . . . . . . . 97

6.10 Contour plots showing the sea ice velocity vectors for T = 12s and νk ≈ 0.04m2s−1. . . . . . . . 97

6.11 Contour plots showing the ice floe stress magnitude for T = 12s and νk ≈ 0.04m2s−1. . . . . . . 97

6.12 Contour plots showing the minimum principal ice floe stress for T = 12s and νk ≈ 0.04m2s−1. . 98

6.13 Contour plots showing the minimum principal ice floe stress for T = 20s and νk ≈ 0.04m2s−1. . 98

6.14 Minimum principal stress analysis, showing a box plot and bar charts. . . . . . . . . . . . . . . 99

6.15 Correlation between variables of the collision in Zone I. . . . . . . . . . . . . . . . . . . . . . . 101

6.16 Correlation between variables of the collision in Zone II. . . . . . . . . . . . . . . . . . . . . . . 102

6.17 The influence of grease ice viscosity on the phase shift in Zone I. . . . . . . . . . . . . . . . . . 103

6.18 Contour plots showing the velocity gradient magnitude for T = 12s and νk ≈ 0.04m2s−1. . . . . 103

6.19 Contour plots showing the strain rate magnitude for T = 12s and νk ≈ 0.04m2s−1. . . . . . . . 104

6.20 Contour plots showing the bulk viscosity for T = 12s and νk ≈ 0.04m2s−1. . . . . . . . . . . . . 104

6.21 Contour plots showing the grease ice stress magnitude for T = 12s and νk ≈ 0.04m2s−1. . . . . 105

6.22 Strain rate magnitude analysis, showing a box plot and bar charts. . . . . . . . . . . . . . . . . 106

6.23 Strain rate response of grease ice over time at the interface and away from the interface. . . . . 106

7.1 Three consecutive sample images taken during the 2017 winter cruise. . . . . . . . . . . . . . . 109

7.2 In situ images as processed in Matlab [3]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.3 Three consecutive layouts with numbers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.4 Initial sea ice layout labeled with letters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.5 Displacements in the x-direction, for ice floes B, C, L and z. . . . . . . . . . . . . . . . . . . . . 112

7.6 Displacements in the y-direction, for ice floes B, C, L and z. . . . . . . . . . . . . . . . . . . . . 112

7.7 Displacement curves, obtained for ice floe C, for three different values of P ∗
g . . . . . . . . . . . 113

7.8 Displacement curves, obtained for ice floe C, for three different values of Caλ
. . . . . . . . . . . 114

7.9 Displacement curves, obtained for ice floe C, for three different combinations of Cwf
and Cwg

. . 115

7.10 Displacement curves, obtained for ice floe C, for three different values of θwa. . . . . . . . . . . 116

7.11 Calibration results with displacement curves in the x-direction. . . . . . . . . . . . . . . . . . . 120

7.12 Calibration results with displacement curves in the y-direction. . . . . . . . . . . . . . . . . . . 121

viii



10.1 Two-dimensional collocated uniform grid [35]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

ix



List of Tables

5.1 General parameters used in all simulations conducted in this project. . . . . . . . . . . . . . . . 64

6.1 Parameters used in the analysis of sea ice composition and rheology in Sec. 6.1. . . . . . . . . . 88

6.2 RMSE [kgs−2] for a wave forcing with wave period of T = 8s. . . . . . . . . . . . . . . . . . . 90

6.3 RMSE [kgs−2] for a wave forcing with wave period of T = 12s. . . . . . . . . . . . . . . . . . . 90

6.4 RMSE [kgs−2] for a wave forcing with wave period of T = 16s. . . . . . . . . . . . . . . . . . . 90

6.5 RMSE [kgs−2] for a wave forcing with wave period of T = 8s. . . . . . . . . . . . . . . . . . . 91

6.6 RMSE [kgs−2] for a wave forcing with wave period of T = 12s. . . . . . . . . . . . . . . . . . . 91

6.7 RMSE [kgs−2] for a wave forcing with wave period of T = 16s. . . . . . . . . . . . . . . . . . . 91

6.8 RMSE [s−1] for a wave forcing with wave period of T = 8s. . . . . . . . . . . . . . . . . . . . . 92

6.9 RMSE [s−1] for a wave forcing with wave period of T = 12s. . . . . . . . . . . . . . . . . . . . 93

6.10 RMSE [s−1] for a wave forcing with wave period of T = 16s. . . . . . . . . . . . . . . . . . . . 93

6.11 RMSE [kgs−1] for a wave forcing with wave period of T = 8s. . . . . . . . . . . . . . . . . . . 94

6.12 RMSE [kgs−1] for a wave forcing with wave period of T = 12s. . . . . . . . . . . . . . . . . . . 94

6.13 RMSE [kgs−1] for a wave forcing with wave period of T = 16s. . . . . . . . . . . . . . . . . . . 94

6.14 Parameters used in the sea ice dynamics analysis in this section. . . . . . . . . . . . . . . . . . 95

7.1 Acquired wind and wave parameters from the 2017 winter cruise. . . . . . . . . . . . . . . . . . 111

7.2 All combinations of water drag coefficients, Cwf
and Cwg for ice floe C. . . . . . . . . . . . . . 115

7.3 All combinations of the wave direction angle, θwa, for ice floe C. . . . . . . . . . . . . . . . . . 116

7.4 Calibration results of ice floes B, C, L and z for Cwf
= 0.06 and Cwg

= 0.024. . . . . . . . . . . 117

7.5 Calibration results of ice floes B, C, L and z for Cwf
= 0.07 and Cwg

= 0.028. . . . . . . . . . . 117

7.6 Calibration results of ice floes B, C, L and z for Cwf
= 0.08 and Cwg

= 0.032. . . . . . . . . . . 118

x



7.7 Calibration results of ice floes B, C, L and z for Cwf
= 0.09 and Cwg

= 0.036. . . . . . . . . . . 118

7.8 Calibration results of ice floes B, C, L and z for Cwf
= 0.10 and Cwg = 0.040. . . . . . . . . . . 119

xi



List of Symbols

Parameter Definition Unit

a wave amplitude m
ai wave amplitude with i = x, y in the x- and y-direction m
ak wave steepness -
Af ice floe concentration -
Afloe ice floe area m2

b time index -

c wave speed ms−1

Ca air drag coefficient -
Caλ

air drag multiplication factor -
Cwf,g

water drag coefficient for ice floes and grease ice -
C10 air drag coefficient at 10m from mean sea level -

dw water depth m
D solution domain m2

Dd diameter of idealised disk-shaped ice floe m
Di,m median of the ice floe caliper diameter with i = x, y in the x- and y-direction m

eY yield surface axes ratio -
EY Young’s modulus Nm−1

g gravitational acceleration ms−2

h sea ice thickness m
hf,g ice floe and grease ice thickness m
hw submerged ice floe thickness m
H wave height m
Hs significant wave height m

i time step indicator -
I identity matrix -
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k unit vector normal to the ice surface -
k wave number m−1

ki wave number with i = 1, 2 in the x- and y-direction m−1

li actual observations time series PDU
l̂i estimated time series PDU

m sea ice mass kgm−2

n unit normal vector -
nf number of ice floes -
Ni number of data points -

pwi wave-induced pressure Nm−2

Pg grease ice strength parameter Nm−1

P ∗
g constant grease ice strength parameter Nm−2

qi 25th and 75th percentile of a box plot with i = 1, 3 PDU

RMSEi root mean square error with i = x, y in the x- and y-direction PDU

SDi standard deviation with i = x, y in the x- and y-direction m

t time s
T wave period s

U sea ice velocity vector ms−1

Ux,y sea ice velocity in the x- and y-direction ms−1

Ua wind velocity vector ms−1

Uax,y
wind velocity in the x- and y-direction ms−1

Uin initial velocity in the x-direction ms−1

Umag velocity magnitude ms−1

Uo ocean current velocity vector ms−1

Uox,y ocean current velocity in the x- and y-direction ms−1

Uo,0 ocean current velocity at the mean sea level ms−1

Uw orbital wave velocity vector ms−1

Uwx,y,z orbital wave velocity in the x-, y- and z-direction ms−1

U∗ friction velocity vector ms−1

U∗
x,y friction velocity in the x- and y-direction ms−1

U10 wind velocity vector at 10m from mean sea level ms−1

w multiplier whisker of a box plot -

x x-coordinate m

xiii



y y-coordinate m

z z-coordinate m
z0 sea surface roughness length m
zc height of critical layer m

α non-dimensional phase fraction parameter -
αC Charnock constant -

∆ effective deformation rate s−1

∆h initial vertical distance in the y-direction between two ice floes m
∆min lower limit of the effective deformation rate s−1

ϵ strain tensor -
ϵ̇ strain rate tensor s−1

ϵ̇ij
Cartesian component of the symmetric strain rate tensor
with i = 1, 2, 3 and j = 1, 2, 3

s−1

ϵ̇mag strain rate magnitude s−1

ζ bulk viscosity kgs−1

ζc vertical curvilinear coordinate m

η shear viscosity kgs−1

η(x, t) wave elevation m

θa,w air and water turning angle rad
θwa wave direction angle rad
θwi true wind direction rad

κ von Kármán constant -

λ first Lamé parameter Nm−1

Λ wave length m

µ second Lamé parameter Nm−1

ν Poisson’s ratio -
νk kinematic viscosity m2s−1

ρ sea ice density kgm−3

ρa,w air and sea water density kgm−3

ρf,g ice floe and grease ice density kgm−3

σ stress tensor kgs−2

xiv



σ̇ stress rate tensor kgs−2s−1

σcol collision stress intensity kgs−2

σavg
col time-averaged collision stress intensity kgs−2

σpeak
col peak collision stress intensity kgs−2

σthres
col collision stress intensity threshold kgs−2

σf,g ice floe and grease ice stress tensor kgs−2

σij
Cartesian component of the symmetric stress tensor
with i = 1, 2, 3 and j = 1, 2, 3

kgs−2

σmag stress magnitude kgs−2

σmin minimum principal stress kgs−2

τ total wind shear stress vector Nm−2

τa atmospheric surface traction vector m2s−2

τfk Froude-Krylov stress vector m2s−2

τo ocean current drag vector m2s−2

τsd current-dependent skin drag vector m2s−2

τt oceanic surface traction vector m2s−2

τw wave traction vector m2s−2

ϕ velocity potential m2s−1

ω wave frequency s−1

Note that only the symbols directly related to the description (Chap. 3) and results (Chaps. 5, 6 and 7) of
the small-scale model are included in the List of Symbols.
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List of Abbreviations

Abbreviation Definition

ABL atmospheric boundary layer
AIDJEX Arctic Ice Dynamics Joint Experiment

BBM brittle Bingham-Maxwell
BC boundary condition

CDS central differencing scheme
CFD computational fluid dynamics
CICSAM Compressive Interface Capturing Scheme for Arbitrary Meshes
CoG centre of gravity

DEM discrete element method

EB elasto-brittle
EP elastic-plastic
EVP elastic-viscous-plastic

FDM finite difference method
FEM finite element method
FSI fluid-structure interaction
FVM finite volume method

HRIC High-Resolution Interface Capturing scheme

LS Level-set

MARIS Marine and Antarctic Research Centre for Innovation and Sustainability
MEB Maxwell-elasto-brittle
MIZ marginal ice zone
MULES Multidimensional Universal Limiter with Explicit Solution

NRF National Research Foundation
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ODE ordinary differential equation
OpenFOAM Open source Field Operation and Manipulation

PDE partial differential equation
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PERG Polar Engineering Research Group
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SIMPLE Semi Implicit Method for Pressure Linked Equations
SO Southern Ocean
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Summary

The contribution of Antarctic sea ice in global climate models requires a more accurate estimation, as a
relatively large part, approximately 4% of the Earth’s surface in the winter season, is covered by sea ice.
Understanding the dynamic and thermodynamic processes of sea ice results in a better comprehension of sea
ice behaviour in the Antarctic marginal ice zone (MIZ) and thus leads to better predictions.

Large-scale sea ice models operate at regions of 10 − 100km2, describing sea ice in a smeared model ap-
proach. However, the highly dynamic sea ice behaviour in the Antarctic MIZ, which is represented by the
area where sea ice and ocean waves interact, still eludes reliable prediction. A heterogeneous morphology,
consisting of relatively small and mobile ice floes, governed by collisional dynamics and fracture mechanics,
requires detailed finer-scale sea ice dynamics models. Therefore, this project focuses on small-scale modelling
of sea ice dynamics in the Antarctic MIZ. The detailed newly-developed model considers a heterogeneous sea
ice material composition, consisting of separately ice floes and grease ice with their distinct properties. The
material behaviour of ice floes is implemented using a Hookean-like flow rule, whereas grease ice is governed
by a viscous-plastic material law. The small-scale model developed in this study assumes that sea ice is
isothermal, as only small time windows of less than a minute are considered. As a result, thermodynamic
effects, such as sea ice melt and growth, are not taken into account.

This work describes key aspects of ice floe collision dynamics in wavy conditions, considering skin drag,
the Froude-Krylov force acting at the circumference of ice floes from the wave pressure gradient, and form
drag due to the surrounding grease ice deeper into the Antarctic MIZ in a low to medium wave energy regime.
Ice floes that interact with each other and the interaction between ice floes and grease ice are analysed. The
behaviour of the sea ice rheology of both ice floes and grease ice are studied in realistic sea ice layouts, sub-
jected to different wave properties and grease ice viscosity values. The influence of inertia on the phase shift
between the motion of the sea ice cover and the orbital wave velocity of the water layer underneath, is one of
the most important aspects in the small-scale model. The phase shift directly affects the interrelation between
the sea ice velocity, wave elevation and the ice floe collision dynamics. Additionally, the collision dynamics
shows that the ice floe collision pattern in the sea ice domain becomes more random for larger wave periods,
due to an increase of the kinetic wave energy. Lastly, strain rates exhibit high localised gradients due to form
drag at the interface between ice floes and grease ice, which corresponds to low viscosity values.

The small-scale model, demonstrated in this study, shows the general applicability of a detailed contin-
uum framework, contributing to the current research to small-scale atmosphere-ocean physical processes in
the Antarctic MIZ. The obtained results provide insights into high-resolution behaviour of sea ice on the
floe-scale. Furthermore, the newly-developed model can provide for the parametrisation of large-scale models,
improving existing global climate models.
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Chapter 1

Introduction

1.1 Background to study

Sea ice in the Antarctic is highly dynamic, covering a large area in the Southern Ocean (SO). From February
to September each year, sea ice expands from approximately 2.5 million km2 to 18 million km2, which in
winter is equivalent to approximately 4% of the Earth’s surface [136, 160]. The formation of sea ice in the
Antarctic is one of the most substantial seasonal variations on Earth [44]. It has a major impact on the global
climate and life of marine organisms in and below the ice [114]. Sea ice acts as an insulating layer between
the relatively warm ocean and cold atmosphere with a high albedo [7], resulting in a profound influence on
the heat, gas, and momentum exchange. The extent to which sea ice has an impact on these processes de-
pends on the distribution of the ice coverage, thickness, dynamics, ice type, and snow coverage [191, 200].
These processes determine the freshwater budget in the upper ocean layer, due to brine rejection during the
formation and expulsion of freshwater during the melt [114].

A large number of dynamic and thermodynamic processes make, especially the Antarctic marginal ice zone
(MIZ), a highly complex system. The MIZ represents the exterior area in the Antarctic, which is hundreds of
kilometres in width, that covers the transition from the open ocean to consolidated sea ice [96, 142], requiring
greater insight into sea ice dynamics and thermodynamics at the different stages of formation and melt during
its seasonal cycle. Sea ice is crucial in the SO’s biochemical cycles, growth of algal biomass, and the regulation
of the marine carbon pump [114], which is the sequestration by transport of carbon from the atmosphere into
the deep ocean [140].

Mostly young or first-year sea ice is encountered in the Antarctic MIZ, as most marine ice melts and does not
survive the first summer after sea ice formation [130]. During the Antarctic winter, when temperatures are
low, the formation of sea ice starts with randomly oriented loosely disk-shaped frazil crystals, which form in
turbulent and supercooled water [142]. In calm waters, the frazil crystals aggregate into a thin uniform sheet
of sea ice, called nilas. Subsequently, nilas grows downwards by freezing seawater onto its base. However,
particularly for the more turbulent waters of the SO, frazil ice crystals accumulate at the ocean surface, form-
ing a grease ice layer consisting of individual ice crystals [169]. Small irregular clumps of frazil ice crystals
form into small circular discs with a diameter of approximately ten centimeters. Interaction of pancake ice
by rafting, results in the aggregation of pancakes into larger pancakes, exhibiting the characteristic diameters
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of 1 − 10m, much smaller than ocean wavelengths [2].

Both polar regions, the Arctic and the Antarctic, play an important role in the global climate [167], but
are distinctly different from one another. Firstly, the morphology of the polar regions. The area within
the Arctic Circle, which includes the Arctic Ocean and is surrounded by open oceans and northern parts of
continental landmasses, can be defined as the Arctic. Both the frozen Antarctic continent, with elevations
exceeding 4km, and the surrounding SO, south of the Antarctic Convergence, can be defined as the Antarc-
tic. The Antarctic Convergence is an oceanographic barrier that moves in space and time, approximately
58◦ south [117]. The SO and the atmospheric polar vortex, which is a band of strong winds that form in
the stratosphere, thermally isolate the Antarctic continent from the rest of the world. The Arctic, on the
other hand, is highly affected by rivers and seasonal atmospheric transport from the neighbouring northern
continental parts [167]. Salinity in Antarctic waters is 3−4 PSU higher than in the Arctic, while precipitation
in the Antarctic is almost three times higher than in the Arctic. Secondly, the atmospheric conditions in the
polar regions are different. The Antarctic is subjected to strong surface forcing, severe pressure gradients, and
extreme storms, occurring frequently. Moreover, the Antarctic has a more dynamic circulation of the ocean
surface, which is associated with the Antarctic Circumpolar Current and parts of the northern polar gyres
[188]. These aspects all affect, and are affected by, sea ice concentration and distribution in the Antarctic.
Lastly, the atmospheric variability, which affects scale and processes in the SO, is more complex than in the
Arctic [167]. As a result, the Arctic is more accessible, as it is less remotely located, and weather conditions
are less severe in the Arctic than in the Antarctic. This makes research in the Arctic both easier and more
affordable. Atmosphere-ocean physical processes in the Antarctic MIZ are still poorly understood [188], due
to limited observations. Therefore, more research and a better understanding of the Antarctic MIZ is required.

Several studies have been performed to gain a better understanding into the behaviour of sea ice in the
polar regions. These studies range from in situ experimental studies to numerical modelling [2, 14, 67, 69,
118, 119, 123]. As in situ research in the Antarctic is expensive and difficult to access, numerical models
have mostly been used. The majority of dynamic-thermodynamic sea ice models developed in the past are
phenomenological, large-scale models, based on the Arctic, e.g. Hibler III [69], Keller [92], Wang and Shen
[207], which are widely applied in global climate modelling and help to understand the impact of sea ice on
seasonal changes.

The well-established viscous-plastic (VP) rheology by Hibler III [69] describes the large-scale drift of sea
ice suitably with a certain level of accuracy. The VP sea ice rheology relates the internal ice stress with
the strain rate. A large sea ice area with heterogeneous characteristics including fractures, leads, and open
water is modelled using a smeared model approach, in which several different types of ice are modelled as one
homogeneous material making use of averaged quantities. The model represent an ice-covered area at length
scales of 10−100km with a time scale in the order of days. This is the scale at which material properties have
been developed and verified. It, however, fails at simulating the observed properties of sea ice deformation [38].

Small-scale sea ice modelling increases the resolution and provides a more detailed description of the ac-
tual behaviour of different types of ice. The majority of existing finer-scale numerical models are based
on molecular dynamics schemes based on collision dynamics and discrete-element modelling [65, 75, 164],
considering sea ice physics and dynamics processes taking place at a floe level [63]. The one-dimensional
Discrete-Element bonded-particle Sea Ice model developed by Herman et al. [67] elucidates the significance of
skin drag on wave attenuation and floe collision dynamics due to prolonged collision and reduced restitution
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coefficient. The model makes use of a heuristic contact detection algorithm and includes simplified overwash,
elastic and inelastic contact force contributions. Contact forces are linked to the restitution coefficient, but
disregards tangential friction. Most Lagrangian models, including the discrete-element method (DEM) model
of Herman et al. [67], have in common the limitation of using highly simplified modelling equations or ice floe
geometries, which does not benefit the realistic behaviour of the model [65].

A direct link between sea ice characteristics and its mechanical properties is missing [218] and in situ data
to verify the existing theoretical models are limited [128, 185]. In this sense, the accurate modelling of the
interplay of temperature, waves, sea ice dynamics as well as wind and ocean currents is necessary not only
to predict sea ice dynamics and wave energy dissipation [4, 200], but also to advance understanding of the
governing mechanisms of sea ice growth in this region. In particular, deeper into the Antarctic MIZ, where
up to 100% sea ice concentrations are observed, the wave-ice interaction is highly complex, and is typically
characterised by floe collision, turbulent eddy generation at the ice-water interface due to skin drag and floe-
grease ice interaction [97, 170, 171, 186]. Hence, understanding sea ice dynamics and thermodynamics can
lead to a better comprehension of the Antarctic MIZ [65].

1.2 Problem identification

Sea ice modelling has helped to gain a better understanding of the polar regions, however, most of these
models are based on the Arctic. Research in the Arctic is more accessible than in the Antarctic, due to its
location and less severe weather conditions. Harsh atmospheric and oceanic conditions in the Antarctic MIZ
highly affect the seasonal sea ice advance and retreat [168]. As a result, the dynamics of sea ice in the MIZ
can be described by large variations both temporally and spatially, which is still insufficiently predicted by
current climate models [71]. Therefore, the understanding of physical processes between the atmosphere and
ocean in the Antarctic MIZ still requires attention. Observations that have been done in the Antarctic MIZ
are not sufficient to resolve the rapidly evolving dynamics of the ocean surface layer [188].

Besides wind forcing, wave action is a determining feature of pancake ice formation and growth, although in
situ data to verify the existing theoretical sea ice models is still very limited [128, 185]. Sea ice affects the
propagation of waves, however, to what extent is still largely unknown [45]. Describing the distinctive nature
of waves travelling through the Antarctic MIZ is essential for the understanding of sea ice dynamics.

Large- and meso-scale sea ice dynamics models are mainly continuum models, making use of effective sea
ice properties, such as a spatially variable ice concentration and an empirically derived thickness [168]. As the
observed sea ice properties and the scale dependency of sea ice are associated with specific sea ice constituents
[38, 150, 168], it is essential to distinguish between materials, which can only be accurately accounted for on
the small-scale. Large-scale models do not distinguish between different ice constituents with distinctively
different material behaviour. Additionally, they do not describe the interaction between sea ice materials in
a heterogeneous sea ice composition, considering the collision dynamics of realistically shaped ice floes, skin
drag and form drag on ice floes from surrounding grease ice [3, 67].

Finer-scale models on a floe level commonly use either a molecular dynamics schemes based on Hertzian
collision dynamics [18, 65, 75, 148, 164] or the Discrete-Element method [37, 67]. These models generally
describe ice floes floating in water as a collection of interacting particles, which simplifies the ice floe solid
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mechanics behaviour and the fluid-structure interaction significantly. Only a few continuum models are de-
veloped, which account for wave attenuation and dissipation effects in sea ice [207] or wave interaction with
a single ice floe [14, 80], however, to the best of our knowledge, no model has explicitly described a collection
of interacting ice floes surrounded by a viscous fluid.

In contrast to existing discrete particle and continuum models, the small-scale continuum approach devel-
oped in this project can account for the actual heterogeneous ice cover composition in terms of geometrical
layout of ice floes and interstitial grease ice. Additionally, the respective material properties are described
by a solid-like deformation behaviour of ice floes and a fluid-like viscous-plastic behaviour of grease ice by
using two different material laws. This allows for the detailed quantification of the impact of floe and grease
ice material properties, geometrical features including ice floe size, shape and concentration, as well as wave
forcing on the mechanical response of the sea ice cover. For this, a realistic sea ice layout is extracted from
in-situ image and video material recorded in the Antarctic MIZ [3] and suitable material parameter values are
chosen to independently describe the mechanics of ice floes and grease ice. As a first step, this study inves-
tigates wave-ice and ice-ice interactions focusing on the high-resolution ice rheology. Specifically, the stress,
strain and strain rate response of ice floe-grease ice interaction and ice floe collision dynamics is elucidated as
linked to grease ice viscosity while being subjected to an imposed wave.

The sea ice rheology is controlled by floe collision, the floe-grease ice interaction, skin drag, as well as the
heterogeneous ice cover composition in terms of geometrical layout and material properties. All aspects com-
bined, describing the collisional dynamics of ice floes due to wave action, have not been considered before.
This, however, based on recent observations by Alberello et al. [3, 4] and Vichi et al. [200], is crucial to
accurately predict the sea ice dynamics of the Antarctic MIZ.

1.3 Aims and objectives

The primary aim of this project is to gain a better understanding of sea ice on a smaller scale. Understanding
the motion of sea ice and its characteristic mechanical behaviour as linked to the rheology on the meter-scale
specific to the Antarctic MIZ will contribute to solving the puzzle of the sea ice impact on seasonal changes
and the global climate. The main objective is therefore to develop a small-scale model, describing the dy-
namics of sea ice in the Antarctic, focusing on the winter season. The large-scale model by Hibler III [69], as
implemented in the computational fluid dynamics (CFD) software OpenFOAM2, will serve as the basis for
the current model.

In contrast to previously developed models, this work specifically focuses on the sea ice dynamics modelling
deeper into the Antarctic MIZ in the low to medium wave energy regime during ice formation. The proposed
framework will be used to quantify the impact of floe and grease ice material properties, geometrical features
including ice floe size, shape, and concentration, as well as wave forcing on the mechanical response of the
sea ice cover. The intended model distinguishes between two ice constituents, ice floes and grease ice. Atmo-
spheric and oceanic conditions in the Antarctic MIZ are applied to the model, consisting of wave-dependent
wind forcing and current-dependent wave loading. In the formulation, the current-dependent wave loading is
implemented as an imposed harmonic propagating wave [72].

2 https://www.openfoam.com/
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In this study, the main research question is defined as follows:

How do oceanic and atmospheric conditions affect the dynamics of sea ice in the Antarctic MIZ on a
small scale?

Several objectives are set, to elaborate on the main research question and to assist in finding an answer:

1. The two-dimensional ocean’s sea ice cover is considered to consist of two main constituents or ice types,
namely, ice floes and grease ice, separately in a continuum fashion. Both materials are described by their
own specific sea ice rheology, each with different material characteristics, due to their inherently different
material behaviour. Ice floes are governed by solid mechanics, whereas grease ice by fluid dynamics.
Therefore, the first objective is the implementation of both material laws, including the analyses of ice
floe interaction with the corresponding interstitial grease ice.

2. The second objective is to implement more realistic atmospheric and oceanic conditions, taking into
account that these external forces are dependent on each other.

3. The third objective is the implementation of realistic sea ice compositions, particularly focusing on ice
floe shape and sea ice concentration. Corresponding in situ images, recorded by stereo cameras of the
sea ice cover in the Antarctic MIZ [3], will be used for calibration and verification purposes of the
small-scale model.

This project intends to demonstrate the suitability of the proposed computational framework and its algo-
rithms to address the collisional dynamics of free-floating ice floes, in a detailed fashion, on a smaller scale.
The small-scale model focuses on the interrelation between floe size, grease ice viscosity and wave forcing.

The newly-developed small-scale model contributes by resolving the lack of data of atmosphere-ocean physical
processes on a smaller scale [188]. In future, the model could be linked to the larger-scale, to provide insights
into parameter values used for global climate models.

1.4 Scope and limitations

Several general assumptions are applied to the small-scale model to limit the work and keep the scope of this
project manageable. The assumptions are listed as follows:

1. The model will be exclusively focused on the dynamics and interactions of ice floes and grease ice.
Thermodynamics does not fall within the scope of this project, as only small time periods of less than
a minute are considered. As a result, the solver is isothermal, which means that the temperature is
assumed constant and no energy equation is solved.

2. In reality, ice floes are a heterogeneous and anisotropic material [61, 115]. In this project, solid ice will,
however, be treated as homogeneous and isotropic.

3. Due to the presence of grease ice, a highly viscous fluid, ice floe collisions taking place in the field are
less energetic [66], therefore interactions between ice floes are not described by short violent collisions
but rather continuous churning contact varying in intensity. Ice floe collisions barely exceed a maximum
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compression strength of 2MPa [161, 168], therefore failure and fracture of sea ice are not considered to
be part of the scope of this work. Additionally, ice floe cohesion and ridging are not considered in the
ice floe collision dynamics, as it is seldom observed in the field, and unlikely to occur for the intended
time scales.

4. The infinitesimal small strain theory is applied in this study [81, 83], as ice floe displacements are small
compared to their dimensions. The geometry and material characteristics, such as stiffness and density,
are spatially not affected by its deformation.

5. Wave forcing, applied as external forcing, is imposed on the sea ice domain, which means that wave
scattering and dissipation effects are not part of the scope of work. The weight of the water affecting
the water pressure gradient is included as an external force, however, the gravitational effect of sea ice
on the velocity and acceleration in z-direction is not included in the two-dimensional model.

1.5 Layout of document

The thesis is structured as follows: in Chap. 2 a literature study is conducted, which elaborates on different sea
ice rheologies used in existing sea ice models. Additionally, different modelling methods are described, and an
overview of atmospheric and oceanic forcing is given. Chap. 3 describes the set of equations in the small-scale
model and explains the most important aspects in the model. Chap. 4 explains in detail the implementation
of the small-scale model in OpenFOAM. The model parameterisation and a plausibility study is presented in
Chap. 5, showing basic examples for the validation and verification of the small-scale model. Subsequently,
Chap. 6 discusses model results, focusing on the dynamics of realistic sea ice domains as influenced by ice
floe geometry and studying its underlying mechanical behaviour. Chap. 7 studies in situ ice floe motions to
demonstrate the applicability of the small-scale model to realistic sea ice layouts. Conclusions can be found
in Chap. 8, whereas future work and recommendations are discussed in Chap. 9.
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Chapter 2

Literature study

2.1 Introduction

Numerical sea ice modelling plays a key role in understanding the changing polar regions, allowing researchers
to predict the dynamic and thermodynamic response of sea ice. In particular, the versatile behaviour of sea
ice in the marginal ice zone (MIZ), which is subjected to melting, freezing and mechanical deformation, from
solar radiation, wind, wave and ocean current forcing and from interactions with surrounding sea ice. The sea
ice dynamics and morphology in the MIZ are characterised by a collection of relatively free-floating pancake
ice floes within a mixture of interstitial water and grease ice, which are exposed to wind and wave action [4].
The presence of highly mobile round pancake ice floes, which vary in size, thickness, age and structure, that
form in wavy conditions, is therefore a distinctive characteristic of the Antarctic MIZ during sea ice advance
in the winter season [124]. Deeper into the Antarctic MIZ, larger pancakes cluster into ice floes, which even-
tually form a continuous, consolidated sea ice cover of almost a meter thick [7]. When consolidated sea ice
breaks up during sea ice retreat in the spring season [181], it forms floes of various diameters, where the size
is often comparable to the wavelengths typical for the Southern Ocean (SO), ranging from 100−200m [19, 45].

Sea ice dynamics is generally modelled in horizontal directions, consisting of processes such as ice drift and
deformation, whereas thermodynamics includes the one-dimensional growth and melt of sea ice in the vertical
direction [23]. One of the most challenging aspects of modelling sea ice dynamics is capturing the behaviour
across a wide range of spatial scales. Large-scale models, typically applied for global climate purposes, de-
scribe sea ice dynamics and thermodynamics on large temporal and spatial scales. They have proven their
contribution to the understanding of sea ice behaviour on large-scale (10 − 100km2), but at small scales
(< 10km2) the dynamics become highly discontinuous, resulting from interactions between many individual
floes and discrete fracture events.

This chapter is structured as follows: Sec. 2.2 elaborates on large-scale continuum models, focusing on their
sea ice rheology, and small-scale models. The latter, both developed in a continuum approach and an alterna-
tive discrete element approach, are discussed for comparison. Sec. 2.3 discusses pioneering studies related to
wind, wave and ocean current forcing, as well as the interrelationship between the atmosphere and the ocean.
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2.2 Sea ice rheology

Rheology is a branch of physics, which can be defined as the study of deformation and flow of a complex
non-Newtonian liquid or gas. Solids, subjected to an applied force, can also be described by a rheology,
behaving plastically rather than elastically [129]. A rheology, also known as a material law, or constitutive
equation, describes the relationship between two physical quantities with material-dependent parameters. In
sea ice dynamical models, a rheology describes the relationship between stress and strain rate, representing
the internal ice forces and the corresponding deformation of sea ice [24, 50]. These quantities are affected by
external forces and interactions of sea ice, such as interacting ice floes or ice floe-grease ice interactions.

This section describes five large-scale continuum sea ice models in the Eulerian framework, focusing on their
sea ice rheology. These five models are selected as they have shown their contribution to the sea ice modelling
community, each of them representing a distinctive sea ice rheology. Their objectives, pros and cons are
discussed.

Prior to reviewing the types of rheology, it is crucial to understand the difference between plasticity and
inelastic material laws. The latter, usually referred to as viscoplastic, is rate-dependent, which means that
the material properties are time-dependent, whereas plasticity is rate-independent [33].

Coon et al. [34] developed a sea ice model, which is described by an elastic-plastic (EP) rheology. Their
objective was to develop a model which includes sea ice dynamics and thermodynamics on a scale of 100
kilometres with temporal resolutions larger than one day. The drawback of this model is that no smaller
time periods and spatial scales can be considered. The model by Hibler III [69], using a viscous-plastic (VP)
rheology, has been recognised as the standard dynamic-thermodynamic sea ice model. The main objective of
this work was to understand the role of sea ice during seasonal changes, by studying thermodynamics and
the influence of ice dynamics on the distribution of ice thickness. Shortcomings in the model are the idealised
treatments of the thermodynamics, the coupling of sea ice with the ocean and the distribution equations of
the ice thickness [69].

Dansereau et al. [38], Rampal et al. [150] and Weiss et al. [209] believe that the VP rheology with its physical
assumptions, is inconsistent with observations of the mechanical behaviour of sea ice. Accordingly, Dansereau
et al. [38] presented the anisotropic Maxwell elasto-brittle (MEB) model, which considers observed sea ice
behaviour, such as the anisotropic distribution of sea ice ridges and leads and the strength of sea ice in ten-
sion. This model considers both the elastic and viscous properties of sea ice. Their objective was to develop
a continuum sea ice model including both damaging and healing mechanisms of sea ice. However, this model
does not allow solving the elastic and permanent deformations separately, resulting in a sea-ice velocity that
does not distinguish between reversible and irreversible deformations [38].

A model developed by Hunke and Dukowicz [81] describes an elastic-viscous-plastic (EVP) rheology, which
improves the numerical behaviour of the previously developed VP model by Hibler III [69]. The elastic part
does not alter the physical nature of the VP formulation. It is only added to improve numerical stability. The
EVP model provides more accurate results for shorter time scales associated with physical forcing, reproduces
VP model behaviour on longer time scales, and is computationally more efficient.

The discrete element method (DEM) is widely used to model granular media and discontinuous materials
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in a variety of contexts [37]. This method treats sea ice as a collection of individual rigid bodies, or particles,
[37, 64, 75, 73] that can interact independently, and therefore can capture the discontinuities in ice that are
common at small scales. The collisional rheology by Shen et al. [164] is obtained by equating collisional
energy losses to the deformational energy of colliding disk-shaped ice floes. This type of rheology stands out
by providing quantification of the velocity fluctuation, however, it has rarely been used in sea ice modelling
due to the applied unrealistic assumptions regarding collisional effects [65].

Nevertheless, DEM has been demonstrated as a promising tool for modelling sea ice dynamics [23]. The
Lagrangian description used in DEM, to describe the interaction between numerous particles is however com-
putationally expensive. For this reason, most global climate models resort to describing sea ice behaviour
using an Eulerian frame of reference [37, 196]. To date, most DEM applications to modelling sea ice, resort
to using simplified ice floe geometries, such as simple circular floes, and is therefore unable to account for the
interaction between a number of irregularly shaped floes [65].

2.2.1 Large-scale numerical modelling

2.2.1.1 Elastic-plastic rheology

AIDJEX (Arctic Ice Dynamics Joint Experiment) two-dimensional sea ice model developed by Coon et al.
[34] considers different types of sea ice, distinguished only by their thickness. Coon et al. [34], Rothrock [156]
and Thorndike et al. [192] use an elastic-plastic (EP) constitutive equation to describe the sea-ice behaviour.
The main variables in the model are the sea ice velocity vector, the stress tensor, and the sea ice thickness
distribution function. The latter can be defined as the fractional area, consisting of ice with a sea ice thickness
smaller than a given threshold.

The EP sea ice material law consists of a recoverable elastic part below the yield strength, in which energy
does not dissipate during deformation. The energy is stored, which is completely released after unloading.
This results in a full recovery of the deformed material, only if no plastic contribution is considered. The
unrecoverable plastic part allows energy dissipation, which results in a permanently deformed material. Coon
et al. [34] believe that an EP model can represent the mechanical behaviour of consolidated sea ice on a larger
scale. In their model, the plastic behaviour of sea ice and the ice thickness distribution are related. However,
on the condition that energy dissipation results in an increase of potential energy of sea ice, due to plastic
deformation.

The plastic part in the EP rheology is based on sea ice deformation observations on a small scale, such
as fractured sea ice and pressure ridges, which shows a characteristic of permanent deformation. There are
two main reasons that allow for the justification of using a plastic analysis for sea ice. Firstly, a plastic
material has successfully been used to simulate and describe granular materials, where sea ice and granular
materials share similar visual characteristics. Secondly, Parmerter and Coon [139] and Ukita and Moritz
[197] concluded, that energy during ridge formation, results in rate-independent work when a pressure ridge
is formed.

The elastic part in the sea ice rheology by Coon [34] is more formally added to solve the system of equations.
Nevertheless, individual ice floes show, to a certain degree, elastic behaviour under compression. Consolidated
sea ice, consisting of an assemblage of thick ice floes with hardly any thin ice, has a high yield stress. As a
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result, subcritical stress applied to the ice floes is likely to give rise to only elastic deformations, which are
small in comparison to plastic deformations. Sub-critical stress values can still be significant, which means
that stress assessment is required to determine the state of stress.

The yield function in two dimensional space used by Coon et al. [34] is illustrated by a curve in Fig. 2.1.
The yield curve for isotropic materials can be written in terms of σ1 and σ2, representing the principal
stresses. The orientation of the principal axes of stress does not affect the response. For isotropic materials,
the yield curve must be symmetric in σII , representing the second stress invariant [34, 156]. Additionally, the
plastic strain rate is projected normal to the yield curve and has an unknown magnitude. The principal axes
of both stress and strain rate are aligned.

Figure 2.1: EP yield curve reproduced from Coon et al. [34] and Rothrock [156], where σ1 and σ2 denote the
principal stresses, and σI and σII the stress invariants.

The infinitesimal small strain theory can be applied when material displacements are assumed small compared
to their dimensions. As a result, the total strain increment can be additively decomposed into the elastic
component and the plastic component of the strain increment. The elastic strain is related to stress by an
elastic law, such as Hooke’s law. Coon et al. [34] assumed that sea ice in its elastic behaviour is isotropic and
linear. The plastic strain increment is found by using both the yield curve and the associated flow rule. When
the stress state does not lie on the yield curve, the plastic strain increment equals zero. For plastic flow the
total strain increment consists of both an elastic and plastic component, however, Coon et al. [34] assumed
that the elastic component is negligible, which implies an ideal plastic.

2.2.1.2 Viscous-plastic rheology

The viscous-plastic (VP) model introduced by Hibler III [69], is based on the model previously developed by
Coon et al. [34]. In comparison to the AIDJEX approach, the VP model is less detailed, however, accom-
modates larger time increments with more straightforward boundary conditions (BCs). Hibler III’s objective
was to contribute to climate modelling with long-term simulations. Therefore, Hibler III [69] replaced the
elastic component in the constitutive equation by Coon et al. [34] with a viscous component, which allows
modelling of non-linear plastic flow without limitations regarding time increments and eliminates the need to
consider the elastic strain after unloading [50]. In addition to the momentum equation, two transport equa-
tions control the sea ice dynamics in Hibler III’s model. The momentum equation links internal and external
forces, the latter including the applied wind stress, ocean current stress, Coriolis force, caused by the Earth’s
rotation, and sea surface dynamic height, which includes the large-scale ocean circulation. Mass conservation
is ensured by replacing the thickness distribution equation with the two transport equations, which describe
the evolution of sea ice thickness and concentration accounting for deformation and growth-related effects.
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The sea ice rheology by Hibler III [69] describes the sea ice stress as related to the sea ice strain rate and an
internal sea ice strength parameter. The latter governs rate-independent compressibility behaviour and de-
pends on both transport equations. Two types of sea ice are distinguished: thick and thin ice, including open
water, which are intrinsically described by the sea ice concentration variable, where 100% ice concentration is
often referred to as consolidated sea ice. In the case of open water, ice thickness equals zero, which leads to
an ill-posed momentum equation, hence Hibler III [69] and Hutchings [82] introduced a lower limit on the sea
ice thickness of 0.5m. The ice stress, modelled as a VP material law, describes the homogeneous and isotropic
behaviour of sea ice. The VP rheology obeys the associated flow rule and the elliptical yield criterion [83, 82],
shown in Fig. 2.2.

Figure 2.2: VP yield curve reproduced from Hibler III [69], where σ1 and σ2 denote the principal stresses and
P the ice strength in compression.

The plastic part of the constitutive law is derived from the elliptical yield curve and the associated flow rule.
The yield curve represents all stress states in which the limit of linear viscous behaviour in ice is reached.
Once the limit is reached, ice starts behaving plastically. The yield curve and associated plastic flow rule are
used to obtain the stress and strain rate iteratively. The ice strength parameter depends on the transport
equations governing sea ice thickness and concentration, and two empirical constants, related to the sea ice
strength and sea ice concentration.

The viscous part of the constitutive law is parameterised by two material-dependent viscosity parameters.
These viscosities are strain rate dependent, and are coupled together. As strain rates approach zero, the
viscosity tends to infinity. To avoid this, Hibler III [69] suggested imposing a lower limit on the effective
deformation rate, ∆min = 2 × 10−9s−1. This marks a clear difference to the EP material law regarding the
treatment of stationary sea ice. The EP formulation can preserve high-stress values without relative motion,
whereas motionless sea ice in the VP framework slowly creeps. However, by increasing the viscosity in the
VP model, the plastic strain rate can become insignificant. As a result, the difference between plastic and
total strain rate is negligible [50].

The large viscosity values require implicit numerical methods, which are typically used to solve the sys-
tem without time step restrictions, such as iterative over-relaxation and line relaxation methods [81]. These
methods, however, suffer in several respects. Firstly, poor convergence characteristics with an increase in
mesh resolution. Secondly, they are not well suited to parallelizing the solution procedure. Lastly, the simu-
lation time of implicit numerical methods is time consuming. Additionally, the VP model by Hibler III [69] is
inaccurate in computing transient behaviour, which can be defined as the response of a system to any change
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from steady-state conditions. The VP formulation typically allows time steps in the order of a day, which
results in a poor time response due to the semi-implicit time discretisation schemes used for the treatment
of the VP rheology. For illustration, assuming daily time steps, the VP model works sufficiently accurate
only for a slowly varying wind forcing on the order of weeks. The VP framework results in correct transient
behaviour when time steps are chosen small enough, in the order of minutes for forcing of a daily period.

Most existing large-scale sea ice models are formulated on the VP approach by Hibler III [69], represent-
ing the mean global sea ice drift. Underlying physical assumptions, made in the VP formulation, are believed
to be inconsistent with sea ice observations, namely the order of magnitude of strain rates, the anisotropic
distribution of sea ice ridges and leads, the relationship between stress and strain rate and the strength of sea
ice in tension are examples of such observations. Several more recent studies believe that the VP rheology
requires re-evaluation [38, 150, 209].

2.2.1.3 Elastic-viscous-plastic rheology

The viscosity of sea ice in the VP model by Hibler III [69] endures a singularity, requiring implicit numerical
methods, which suffer from numerical difficulties [81]. Therefore, Hunke and Dukowicz [81] introduced two
different methods, to solve these numerical issues.

Firstly, a more efficient implicit numerical method is presented, which solves the equations in the VP model
by making use of the preconditioned conjugate gradient method. The convergence rate of conjugate gradient
methods is linear with the resolution, and therefore successfully used for computations in parallel. Secondly,
Hunke and Dukowicz [81] suggested to modify the VP model, by adding an elastic component to the VP
rheology. This modification results in a significant increase in numerical efficiency, is more accurate for tran-
sients, and shows original VP behaviour for long time-scales. At long time scales, the elastic component does
not alter the physical nature of the viscous-plastic rheology, but is only added to improve numerical stability.
This modification leads to a fully explicit numerical scheme, utilizing an elastic mechanism in regions of rigid
ice to significantly increase the computational efficiency of the VP numerical model, using an acceptably long
time step. The inaccurate computation of transient behaviour in the VP model by Hibler III [69] is resolved
by Hunke and Dukowicz [81] in their EVP formulation, also when larger time steps are used. As a result,
more accurate sea ice behaviour can be produced. The EVP rheology is equal to the VP formulation when
Young’s modulus goes to infinity, whereas the elastic equation is recovered [81] when the viscosity approaches
infinity. In other words, the elastic component controls the behaviour in case the viscosity goes to infinity.
Therefore, the EVP formulation serves as a regularisation of the VP rheology.

2.2.1.4 Viscous-elastic rheology

Fundamental assumptions in the VP model by Hibler III [69], are perceived to be conflicting with finer-scale
sea ice observations [38, 150, 209], which has led to the development of the Maxwell-elasto-brittle (MEB)
model by Dansereau et al. [38].

Dansereau et al. [38] developed a continuum model with a MEB rheology, derived from the existing elasto-
brittle (EB) framework by Girard et al. [56] and the well-known Maxwell viscous-elastic model. Their objective
was to consider a linear-elastic material law for small deformations with brittle fractures and a viscous-like
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relaxation term for larger permanent post-fracture deformations [137], including a damage and healing mech-
anism.

The MEB rheology differs from the Maxwell model in how viscosity is treated. MEB treats it as an ap-
parent viscosity that evolves, depending on the degree of damage and sea ice concentration, whereas in the
Maxwell model viscosity describes a creep-response. The visco-elasticity of sea ice and the damage degree are
coupled such that the viscosity is infinitely large for regions of undamaged sea ice with elastic deformations,
whereas the elastic behaviour disappears for extremely damaged regions. When considering damaged ice, the
viscous behaviour takes over, resulting in permanent deformations. Dansereau et al. [38] included a healing
mechanism, which compensates for damaging over larger time periods. Both elastic and plastic deformations
are solved concurrently, which results in naturally defined sea ice drift velocities.

The MEB rheology relates the stress and strain rate via Young’s modulus and the apparent viscosity. In
contrast to the Maxwell model, the MEB rheology considers these parameters as coupled mechanical parame-
ters, which change with the gradually developing non-dimensional degree of damage over space and time [38].
Damage refers to evolving leads in sea ice, which arise from internal stress values exceeding the mechanical
resistance of sea ice, leading to sea ice weakening. On the other hand, healing indicates the strengthening of
only the damaged sea ice cover by refreezing of leads. This implies that healing stops when the mechanical
parameters reached their undamaged values. The formulation of the degree of damage contains both the
damaging and healing mechanisms.

In contrast to existing sea ice models, such as Coon et al. [34] and Hibler III [69], the MEB rheology makes
use of the Mohr-Coulomb theory with a non-associated plastic flow rule in combination with the tensile stress
criteria for the damage criterion. In case the critical stress is locally exceeded, Young’s modulus decreases,
causing strain softening. Spatially long-range interactions within an elastic material, which allow for small,
local perturbations, in combination with strain softening, lead to redistribution of stress. This instigates
damage in adjacent elements, resulting in damage propagation.

Olason et al. [137] more recently developed a one-dimensional brittle Bingham-Maxwell (BBM) model, which
builds on the MEB framework presented above. The BBM model addresses two limitations encountered in
the the MEB model by Dansereau et al. [38]. Firstly, the MEB model requires a high computational cost.
Therefore, the momentum equation in the BBM model is solved by making use of an explicit scheme, which
is in the spirit of Hunke and Dukowicz [81]. Note, however, in contrast to the EVP rheology by Hunke and
Dukowicz [81], the elasticity component in the BBM rheology is implemented to represent the physical nature
of elasticity. Secondly, ice piles up over time to an unrealistically thick layer of sea ice. This is due to inade-
quate resistance to compression for long-term simulations, when performing simulations for time scales longer
than a year. Therefore, the BBM model considers an additional term that limits the ice thickness. Olason
et al. [137] introduced a friction element, connected in parallel to a dash-pot, which are both connected to a
spring in series. The dash-pot and spring still obey the viscous-elastic material law explained by Dansereau
et al. [38], however, the friction element provides resistance to compression. A new parameter was further
introduced, which represents the maximum pressure sea ice can resist before the ice starts ridging. In other
words, there is a threshold between elastic and permanent deformations, which limits the thickness of ice
piling up over time.
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2.2.2 Small-scale numerical modelling

The continuum models, explained in the previous sections, are large-scale models making use of averaged sea
ice properties, such as ice concentration and thickness. A single material, pack ice, is considered, in a smeared
model approach. This implies a large sea ice area with heterogeneous characteristics, being modelled as one
homogeneous material. The rheologies, however, differ in their relation, which link the internal ice stress with
the strain rate.

Several parametrisations are developed to enhance continuum sea ice models in their performance, when
granular effects significantly affect the behaviour of sea ice on large-scales. One group of parametrisations
is associated with the collisional rheology, which is relevant especially closer to the edge in the MIZ. The
stress response in fragmented sea ice is described by inelastic ice floe collisions. Ice floes show bumping and
interlocking behaviour, allowing for a sea ice rheology that distinctively differs from the rheologies proposed
by Coon [33], Dansereau et al. [38], Hibler III [69] and Hunke and Dukowicz [81].

A fundamentally different approach, focusing on ice floe collisions, was first studied by Solomon [174], who
implemented a one-dimensional framework modelling the transfer of momentum due to the relative velocity of
a pair of colliding ice floes. The influence of ice floe collisions on the sea ice rheology was discussed. Bratchie
[26] also discussed the influence of ice floe collisions on the sea ice rheology, considering a two-dimensional
domain with idealised uniformly-shaped disks, in which the deformation field describes the motion of the
idealised disks. Bratchie [26] assumed a plastic rheology, based on the hypothesis that ice ridges are formed
from ice floe collisions, resulting in energy dissipation from rate-independent ridging deformation.

According to Shen et al. [164], the theories by Bratchie [26] and Solomon [174] require a better understanding
regarding the transfer of momentum, including stresses, which play a part in ice floe collisions. Velocity fluc-
tuations caused by collisions were not considered in the models by Bratchie [26] and Solomon [174]. Shen et al.
[164] derived a collisional rheology considering rigid body collisions between ice floes in a two-dimensional,
fragmented, homogeneous sea ice area that slowly varies in time. The control volume consists of a cluster
of idealised uniformly-shaped disks, and can be decomposed in a horizontal and vertical control surface, as
illustrated in Fig. 2.3.

control volume

horizontal control surface vertical control surface

Dd

d

Figure 2.3: A control volume, reproduced from Shen et al. [164], with a cluster of idealised uniformly-shaped
disks with diameter, Dd, and thickness d.

The translational motion of disks is represented by a mean component and a fluctuation component, derived
from an ensemble of samples at a given time and location in the sea ice domain [164]. The method makes
use of two general velocity-related assumptions. Firstly, a distribution function with prescribed floe velocity
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fluctuations is assumed. Secondly, velocity magnitude fluctuation values are significantly larger than the mean
relative velocity between adjacent ice floes.

The collisional rheology is found by relating losses of the collisional energy to the deformational energy.
More specifically, the rate of work done by internal stresses in deformation, is equivalent to the rate of energy
that is dissipated [164]. Existing plastic rheologies also use this approach. Note, however, that the collisional
rheology by Shen et al. [164] distinctively differs from existing plastic rheologies as both the internal stresses
and dissipation of energy are explicitly determined by rigid body collisions between ice floes. Both the impact
force and the dissipation of energy are formulated in terms of the velocity of ice floe collisions, which implies
that the collisional rheology cannot be classified as a plastic rheology.

Shen et al. [164] neglects the fluid in between ice floes, to focus on the main characteristics of the colli-
sional rheology in the two-dimensional sea ice model. Two colliding ice floes with a relative velocity to each
other, transfer linear momentum with energy dissipation. Stress acting on the vertical control surface, rep-
resenting the vertical direction of the control volume, creates work which contributes to an increase in the
internal energy inside the control volume. The internal energy is described by disk fluctuation, of which the
fluctuation motion is comparable to the thermal motion of gas molecules [164].

Existing collisional rheology models [49, 105, 111, 162] have contributed to the understanding of sea ice
dynamics in the MIZ, however, the collisional rheology has rarely been used in sea ice modelling, due to the
rather unrealistic assumptions and idealised sea ice behaviour, resulting in an underestimation of the contri-
bution of collisional stress to the total stress state [65].

Bai et al. [14] believe that computational fluid dynamics (CFD) models on the kinematics of ice floes in
waves are limited. Accordingly, Bai et al. introduced a numerical model, which describes the kinematic re-
sponse of a small rigid floe affected by waves. Their aim was to reproduce a previously conducted physical
experiment [118, 119], which could not be properly calibrated, due to limited data available in literature.
Both the potential flow model HydroStar, which disregards fluid viscosity, and the viscous flow CFD model
in OpenFOAM are used to analyse the drift velocities for different shapes of ice floes. Their results found in
OpenFOAM correspond better to the experimental data, confirming that the influence of viscosity is funda-
mental in the kinematics of ice floes.

Despite matching results with experiments [14], small rigid ice floes were assumed, limiting the model to
dimensions only significantly smaller than the wave length. Therefore, Huang et al. [80] developed a numer-
ical model considering larger ice floes, which require a fluid-structure interaction (FSI) approach that fully
accounts for ice deformation and the hydro-elastic interaction between waves and ice. The fluid domain is
described by the Navier-Stokes equations, whereas the solid domain is governed by the St. Venant Kirchhoff
solid model. Additionally, a coupling scheme accounts for the interaction between the fluid and the solid. The
model by Huang et al. [80] is validated using existing experiments, and showed satisfactory results regarding
the prediction of overwash and the potential to include in wave-ice related studies.

The CFD models developed by Bai et al. [14] and Huang et al. [80] are recent examples of simulations,
which describe the interaction between a single ice floe and waves. Additional relevant continuum models,
considering wave-ice interaction, are explained in Sec. 2.3.2, mainly focusing on wave dissipation effects. All
small-scale continuum models, mentioned in this chapter, do not explicitly account for a collection of inter-
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acting floes in a viscous fluid. To the best of our knowledge, no detailed continuum model on small scale has
considered this before.

According to Damsgaard et al. [37], continuum models are generally not well suited to simulate the be-
haviour of sea ice in the MIZ, due to strong changes in mechanical properties. Numerical models, that can
simulate the dynamics of sea ice on a smaller scale and still produce the realistic behaviour of sea ice, are
required. While Damsgaard et al. [37] have stated that a continuum model cannot adequately describe the
dynamics of sea ice in a detailed fashion, the aim of the current study is to demonstrate that such a continuum
model is possible, when using modern CFD techniques.

The discrete element method (DEM) is an established method, which models granular and discontinuous
materials in many contexts [37]. This method models sea ice as a collection of individual rigid bodies, or
particles [37, 64, 73, 75] that interact with each other independently, and captures discontinuities in sea ice
on a small-scale. DEM is applied on an ice floe scale [78], where particles are represented by an assemblage
of ice floes [106], generally representing one ice floe per particle.

One of the first sea ice models using the DEM approach, was developed by Hopkins and Hibler [74], showing
a suitable method, modelling individual ice floe interactions. In the years that followed many sea ice models
with the DEM approach were developed, using polygonal-shaped floes [77], or disk-shaped floes [62], to study
the interaction of ice floes at the floe level.

A contact law, which describes the behaviour of particles in a DEM model, is used to compute the translational
and rotational forces acting in between particles. Hopkins and Thorndike [77] introduced the representation
of an assembly of floes, which are connected via inter-particle bonds. Alternatively, Hertzian contact models
can be used. The latter refers to a classical theory of contact mechanics to calculate inter-particle forces [89].
Herman [65] considered disk-shaped ice floes, which move within a two-dimensional space, represented as
individual grains and as an assemblage of bonded grains. Two independent mechanisms of interactions be-
tween neighbouring particles are described. In the first mechanism, particles only interact when they are in
direct contact with each other. In the second, particles are connected via a semi-elastic bond, which can
form when the neighbouring disks freeze together. In other words, these bonds represent new, usually thinner
ice filling cracks, leads and other open spaces between thicker ice sheets. Both mechanisms described above
transmit forces, however, bonds can also transfer momentum. Additionally, bonds can resist a certain tensile
strength [65].

Rabatel et al. [148] proposed a DEM model focusing on collisions of individual ice floes. They were the
only one in the community of sea ice modelling who modelled ice floes of arbitrary size and shape, derived
from satellite images from the Arctic. Ice classified as ’new ice’, which refers to recently frozen seawater that
is not solid ice yet such as grease ice, was not considered in their model.

Blockley et al. [23] believe that DEM is promising for sea ice modelling, however, this type of Lagrangian
approach suffers numerically, due to high computational costs. Hence, global climate models are still based
on the Eulerian framework [37, 196]. Most DEM sea ice models apply simplified modelling equations or ice
floe geometries, resulting in less realistic model behaviour [65]. Fundamental physical processes affecting floe
evolution, such as floe splitting, pressure ridging or floe aggregation, cannot yet be represented in a DEM
framework.
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In future, a combination of modelling methods using different frameworks, is one of the solutions mentioned
by Blockley et al. [23] to solve challenges the sea ice modelling community is currently facing related to multi-
scale physics. Small-scale modelling and upscaling techniques will help parametrising large-scale models, to
predict sea ice behaviour on both a regional and global scale.

2.3 Atmospheric and oceanic forcing

Sea ice dynamics in the Antarctic MIZ, which includes the direction and strength of ice movement, is gov-
erned by both the oceanic and atmospheric conditions, where atmosphere-ocean-sea ice interactions are most
intense [4, 182]. Wind forcing is the main driver of sea ice drift in both the Arctic and Antarctic, counter-
balanced by the internal stress of sea ice and the ice-ocean drag [103]. The Coriolis force acts perpendicular
to the motion of sea ice, and is significantly smaller than the three major forces. Apart from the wind load-
ing, waves potentially feature in the formation and growth of pancake ice floes, despite limited in situ data
available for verification purposes of existing theoretical models [128, 185]. Ocean waves that travel through
a sea ice cover, either consisting of individual ice floes typically found closer to the ice edge, or a continuous
sheet deeper into the MIZ, decrease in amplitude at a rate that depends on the sea ice characteristics due to
a combination of wave scattering and wave dissipation.

In global climate studies, the seasonal changes in the polar regions, in particular the rapid retreat of sea
ice from winter to summer, including its driving forces, are topics that still require attention. Especially,
the wind velocity close to the surface related to sea ice extent is ambiguous. Firstly, due to very limited,
irregularly distributed wind velocity observations in the Arctic and Antarctic. Executing experiments and
observations in the polar regions is challenging due to extreme weather conditions. Secondly, because of
the unreliability regarding the dependency of wind simulations on subjective parametrisations of boundary
layer stratification [6]. Therefore, computational modelling serves as a potential alternative regarding the
assimilation of data and weather forecasting [46].

2.3.1 Wind forcing

The interaction between the atmospheric wind forcing and sea ice has mainly been studied on a large-
scale [69, 120, 121], where the influence of the waves was not considered in the majority of the models,
due to insufficient understanding [13]. Therefore, existing wind-wave coupling models only focus on the direct
interaction between the wind forcing and ocean [72, 125, 147].

The work developed by Miles [125] is one of the well-known inviscid wind-wave coupling theories, used in
leading wave-prediction models [72]. The interaction, with a resonant character, between the near-surface
wind and the development of water waves for deep water in the atmospheric boundary layer (ABL) [215], is
described by Miles [125] by a logarithmic wind profile [8, 126, 213]. According to Miles [125] the maximum
air pressure is found on the windward side of the wave crest resulting in a pushing wind, moving the water
surface downwards. The minimum air pressure is found at the leeward side of the wave crest resulting in a
wind, which pulls the water surface up. As a result, energy transfers to the waves due to out-of-phase coupling
between pressure and sea surface motion [72]. In the theory by Miles [125], both the gas and liquid phase
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are assumed incompressible. Turbulent and viscosity effects are considered insignificant close to the ocean
surface [28, 29], hence are excluded [79, 126].

Phillips [147] postulated that convection of pressure fluctuations within turbulent air results in wave de-
velopment, starting from an initially smooth water surface, as opposed to the theory by Miles [125], which
considered a prescribed wave. Phillips [147] suggested a stochastic model, which states that the variance in
the water surface elevations grows linearly over time. Both wind-generation models are pioneering theories,
which have been frequently used by many researchers [107].

The marine ABL over ocean waves can be subdivided into two layers. The surface layer and a mixed layer.
The surface layer, which is approximately 1−100m high, is important regarding the interaction with the ocean
waves and is further subdivided (upwards from the water surface) into the viscous sub-layer, wave boundary
layer, and the inertial sub-layer. The viscous sub-layer, just above the air-sea interface, is a layer with a
thickness of just a few millimetres, where viscosity effects play an important role. Due to its insignificant
thickness, most models disregard the viscous sub-layer. The wave boundary layer, which is just a few meters
high, is in direct contact with the waves. In the inertial sub-layer, which lies above the wave boundary layer,
waves and wind exchange most of the mass, moisture, momentum, and heat. Both the wave boundary layer
and inertial sub-layer together are 10% − 20% of the entire marine ABL. The wind stress can be obtained by
using a quadratic drag law, which can be applied to models on different spatial scales simulating the ABL [43].

Wind properties associated with an elevation of 10m are generally used in atmospheric models, however,
some models provide values that correspond to heights of constant atmospheric pressure and ignore any ver-
tical velocity component. The wind speed at 10m elevation can be written in terms of the friction velocity,
which is not a physical velocity that can be measured, but a fictitious velocity instead [12]. The friction veloc-
ity, which requires an additional expression to compute, can then be related to the wind shear stresses acting
along the water surface [72]. According to Deskos et al. [43] and Wu et al. [215] the wind shear stress can be
decomposed into three components, consisting of the viscous, turbulent, and wave-coherent shear stresses. As
previously mentioned, the viscous component is only prominent in the viscous sub-layer, which corresponds to
the molecular viscosity of air [112]. The viscous shear stress [85] is generally disregarded due to high Reynolds
numbers characterising the ABL, whereas the turbulent stress is parametrised by applying the mixing length
theory.

When air flows over surface gravity waves, a considerable amount of momentum transfer takes place, re-
sulting in wave generation. Due to the motion of waves at the water surface, a secondary airflow is induced,
causing wave-induced stresses [190] which can significantly contribute to the total shear stress at the water
surface [86]. Consequently, both the transfer of momentum and the air drag coefficient at 10m elevation rely
on the ocean conditions [85]. It can be assumed that the total shear stress does not depend on height in the
viscous sub-layer [190], resulting in a layer of constant flux [12, 85] and a constant friction velocity value. For
wind-driven waves, the wave-induced stress decreases exponentially away from the ocean surface obeying an
exponential wind profile [47, 85, 102]. Most climatological models describe the momentum flux of the wind
at the air-water interface by making use of a roughness length parameter, which includes the viscous effects
and turbulence at the ocean surface [215]. At a height referring to the roughness length parameter the wind
velocity equals zero [85].

Buckley and Veron [28, 29] conducted an experimental study to investigate the detailed airflow above sur-
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face waves, considering different wave conditions with wave ages. They were able to obtain high resolution,
two-dimensional velocity measurements in the airflow above waves to get an estimate of the critical layer and
three velocity components that can be distinguished: the phase-averaged velocities, wave-coherent, and tur-
bulent momentum fluxes in a wave-following coordinate system. Measurements of the airflow were analysed
just above the wave surface, using a curvilinear coordinate system. The wind velocity can be decomposed
into a mean flow component, which depends on height, and a component considering turbulence with fluctua-
tions [172]. The mean flow can be split again, into a phase-independent mean component, and a wave-coherent
component [79]. The exponential velocity profile is used to describe the mean velocity profile [28, 29].

2.3.2 Wave forcing

Among small-scale processes in the Antarctic MIZ, waves play a crucial role in the formation of sea ice [163].
The propagation of waves from open ocean into the MIZ and wave-ice interaction are linked to wave scattering
and dissipation through the momentum transfer to ice floes, which mainly depend on sea ice characteristics
like ice floe geometry and floe size distribution [194]. Floe size distributions have only recently been intro-
duced in numerical large-scale sea ice dynamics models [19, 152]. In particular, at the ice edge, close to the
open ocean, high energy incident waves create complicated sea states resulting in violent ice floe motion and
collision patterns [163, 178].

The poorly known wave attenuation and dissipation rates of sea ice in the MIZ depend on several factors, such
as the type, thickness, and concentration of sea ice, as well as the wave properties, including wave energy [11].
Kinetic energy in waves is dissipated due to inelastic ice floe collisions, friction, ice floe rafting and ridging,
and inelastic bending [130]. However, a better understanding of the more detailed physical processes affecting
these rates is required. Unfortunately, due to limited available in-situ wind, wave, and sea ice data, research
progress on wave attenuation and dissipation is challenging [127, 187]. Sea ice observations and theoretical
studies conducted on wave propagation through a variety of sea ice types have recently become an area of
interest [20, 25, 97, 124, 185].

In real life, waves at the ocean surface consist of a large number of random propagating harmonic wave
components, travelling across the ocean with different wave directions, amplitudes, periods and phases [72].
The understanding of the behaviour of random (non-linear) waves is based on the concept of a harmonic
propagating linear wave, described by the linear wave theory. Additionally, three classical wave theories of
non-linear character have been developed. The Stokes wave theory [183] and the stream function theory [40]
for steep waves, and the cnoidal wave theory [100] for waves in shallow water.

In the Stokes wave theory and stream function theory, wave corrections are added to the basic harmonic
linear wave, to improve the approximation of a realistic propagating wave. In both theories the surface profile
and the corresponding velocity components are expressed in terms of a series of harmonics. The difference
between the two theories is that the Stokes theory is written in terms of the velocity potential, whereas the
two-dimensional stream function is applied to derive the stream function theory [72]. Furthermore, correc-
tions in the Stokes theory are successive, which implies that higher-order wave corrections are derived from
previously obtained lower-order ones. The stream function theory obtains wave corrections simultaneously
and satisfies the dynamic boundary condition. Both theories cannot be applied to very shallow water. Accord-
ingly, the cnoidal wave theory is derived by Kordeweg and de Vries [100] similarly to the Stokes wave theory
and the stream function theory, however, considering wave corrections which account for finite depth effects.
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Two approaches can be distinguished to model wave effects in the MIZ. In the first approach, one finite
solitary flexible ice floe is accurately modelled, which forms a sea ice cover consisting of a large number of
ice floes. The second approach makes use of continuum models, in which a region in the MIZ is described
mathematically with assumed a priori rheological properties. Generally, the second approach is preferred,
however, it is difficult to find a mathematical framework that includes the physical characteristics of the MIZ
accurately. According to Squire [178] this is challenging work which requires further investigation.

Floes in the MIZ are sensitive to the full six degrees of freedom of wave motion. Understanding the kinematic
response of one individual ice floe in waves is essential in understanding its effect on shipping and offshore
structures [14]. Several models on a smaller scale consider the motion of ice floes on waves and analyse ice
floe collisions [64, 65, 66, 76].

One of these models is the microscopic Lagrangian DEM model developed by Herman [66]. The horizon-
tal motion of ice floes in the x-direction is described as a function of various forces acting on individual floes.
Collision patterns are analysed, considering different values of the wave properties and sea ice concentration,
as well as ice floe size, drag, and restitution coefficients. This model distinguishes itself from existing models,
due to its approach to computing the forces acting on the ice floe. Herman [66] used the method of integration
to calculate the Froude-Krylov force. Wave diffraction, which is wave disturbance due to the presence of ice
floes, is not considered by Herman [66].

The momentum balance equation in the one-dimensional model by Herman [66] represents forces acting
on an individual ice floe. These forces consist of i) Froude-Krylov force, which is derived from the pressure
gradient due to the undisturbed elevation of the waves. ii) force related to added mass, representing additional
inertial forces either due to the imposed acceleration on a fluid by the acceleration of a body moving through
the fluid, or due to the acceleration of the fluid relative to the body [99]. iii) drag force, which is the sum
of skin drag and form drag. In densely packed ice floe areas, the form drag is generally small compared to
skin drag, due to the small spacing between closely packed ice floes. The skin drag can be computed by
integration of the local drag stress component over the bottom surface. iv) contact force, acting between
ice floes due to collisions is derived from the Hertzian contact model. It represents the sum of all possible
contact forces in one dimension acting on an individual ice floe. The contact force depends on the relative
velocity in the x-direction between two ice floes, and includes an elastic constant and a viscous-elastic damp-
ing coefficient. Both the elastic constant and damping coefficient depend on properties related to elasticity.
Rapid collisions are associated with high relative velocities, whereas more gentle collisions are linked to an al-
most zero relative velocity. Both collision types are included in the contact force in the model by Herman [66].

The simplified one-dimensional model by Herman [66] does not account for physical behaviour like wave
scattering and wave dissipation, as well as turbulence effects and eddy generation due to the basal ice rough-
ness. Additionally, aspects that are more essential in a two-dimensional domain, such as friction between ice
floes, especially during ice floe collisions, which can result in ice floe rotation. More realistically, wave-ice
interaction is modelled considering a two-layer model [207] or a three-layer model [219], as discussed below,
starting with the three classical continuum models.

Three classical continuum models include the influence of waves on ice, which are the mass loading model,
the thin elastic plate model and the viscous layer model. The aim of these continuum models is to describe
the propagation of ocean waves travelling through a region in the MIZ. The mass loading model [146, 210]
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emphasizes on the discontinuous nature of sea ice, considering the sea ice layer as an assemblage of non-
interacting point masses. The thin-elastic plate model [53] considers sea ice as a homogeneous semi-infinite
thin elastic plate, however, is unable to account for wave attenuation. Accordingly, additional mechanisms
were introduced to account for energy loss [15, 176, 177, 180, 203]. In the viscous layer model, the ocean
surface consists of a suspension of solid particles in water. Weber [208] introduced this model, which was
improved by Keller [92], who derived a model which describes the wave dispersion relation, considering a layer
of high viscous sea ice on top of a layer of water. Keller’s model was developed to support laboratory experi-
ments on grease ice by Newyear and Martin [133, 134]. The model, however, is not suitable for other ice types.

No comprehensive model has yet been developed which is capable of describing propagating gravity waves
through all types of sea ice cover [207]. The mass loading model for example, produced poor results regarding
the wave dispersion relationship when compared against laboratory experiments for high frequency waves in
grease ice [133]. The viscous layer model, on the other hand, provided wave attenuation and dispersion results
which corresponded well to laboratory results of Newyear and Martin [134]. Additionally, results from the
viscous layer model were consistent with observations of a pancake ice field in the SO [204]. The thin-elastic
plate model was developed to describe a continuous ice sheet, and more suited to studies of deep into the
MIZ. Field observations from Liu et al. [108] in a region of consolidated sea ice correspond well with results
obtained from the thin-elastic plate model.

Wang and Shen [207] developed a two-layer visco-elastic model which combines the three classical contin-
uum models, and describes propagating gravity waves through an ice cover consisting of various ice types.
The model consists of two layers of finite thickness, a homogeneous visco-elastic fluid layer on top of a layer
of inviscid water. The viscous part in the first layer represents either frazil ice or small ice floes smaller than
the wave length, whereas the elastic part represents larger ice floes equivalent to the wave length. Splitting
of a wave into a large number of wave modes was observed when propagating through a sea ice surface,
however, Wang and Shen [207] realised that only the dominant wave mode matters. Their model has been
used as a tool for future wave-ice modellers, to parameterise for different ice types in the dynamic polar regions.

A three-layer model by Zhao and Shen [219] builds on the model of Wang and Shen [207], which consists
of a visco-elastic ice layer, an upper ocean layer with eddy viscosity, and a lower ocean layer with inviscid
water. The three-layer formulation by Zhao and Shen [219] accounts for energy dissipation effects due to
the ice layer and the underlying boundary layer. The elastic part in the model is represented by undamaged
ice floes or ice sheets. The viscous part includes a variety of mechanisms, such as inelastic bending of ice
sheets, deformation of frazil ice, and ice floe collisions. All these processes result in wave dissipation, which
are parametrised into an equivalent viscosity. The model results produced by Zhao and Shen [219] are similar
to results previously found in models, such as the three classical continuum models, and the visco-elastic
model by Wang and Shen [207], but obtained under more simplified conditions. Wave modelers do not need
to choose between boundary layer damping and visco-elastic ice model, as it is all accounted for in the three-
layer model. The model parameters still require calibration and verification, based on data from in situ field
or the laboratory observations.

2.3.3 Ocean current forcing

The ice-ocean current stress can be calculated using a quadratic drag law, which depends on the relative
velocity between the ocean current and sea ice. An alternative to the quadratic drag law is Stokes’ law, also
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known as the linear drag law, which is derived and suitable for spherical objects slowly moving through a
viscous fluid without turbulence effects [104, 184].

Ocean waves are affected by an underlying ocean current velocity [30]. The direction of wave propaga-
tion, the wave length, and the wave frequency are wave parameters that mainly change close to the ocean
surface [91, 166]. For this reason, the resultant flow of both the ocean current and wave forcing is dependent
on the ocean current variation in both space and time, the wave properties, and the relative direction between
the propagating wave and the ocean current. Two different types of currents can be distinguished: favourable
and adverse currents. Favourable currents move in the same direction as the waves, whereas adverse currents
move against the waves [166].

The ice-ocean boundary layer consists of a logarithmic boundary layer and an Ekman layer, representing
two different ocean current profiles below the sea ice cover. The logarithmic boundary layer, with depth-
independent stress, is a few meters deep, whereas the Ekman layer is one order of magnitude deeper and is
affected by the rotation of the Earth [32].

Kim et al. [95] assumed that the velocity of the ocean current is insignificant in comparison to the drift
of sea ice. Moreover, in-situ ocean current data below the sea ice cover in the MIZ is currently not available
yet, as these are seldom observed. Therefore, several recent models, such as Alberello et al. [4] and Biddle
and Swart [21] model free-drifting sea ice, where the ocean current velocity is assumed zero. In the case of
a current velocity equal to zero, both the sea ice velocity and ocean current stress are in proportion to one
another, but in opposite directions, resulting in damping [4].

2.4 Conclusion

Global climate models have significantly improved our knowledge regarding the polar regions, the majority
of which is derived from data obtained in the Arctic. Due to inadequate observations and limited in situ
data from the Antarctic MIZ, a better understanding of the various physical phenomena in this region is still
required, especially to resolve the rapidly evolving dynamics of the sea ice cover [188]. The lack of in situ
data complicates the calibration and verification of existing theoretical sea ice models [128, 185].

Large-scale sea ice models, such as Hibler III’s VP formulation, are commonly used for climate modelling
to gain a better understanding of the impact of sea ice on the seasonal cycle. The majority of these models
use a smeared model approach, which implies no detailed and accurate description of the interaction between
sea ice, the ocean and the atmosphere. The large-scale drift of sea ice can only be modelled to a certain degree
of resolution, but fails to correctly capture all of the observed mechanical properties of sea ice [38].

Propagating waves are affected by the interaction with sea ice, however, to what extent is still poorly under-
stood [45]. Simulating the characteristic properties of waves through a sea ice cover in the Antarctic MIZ
is essential to understand the detailed dynamics of sea ice. By making use of small-scale models, where the
resolution is increased, provides an opportunity to obtain a more detailed description of observed behaviour
for different sea ice types. Existing small-scale models at a floe level [63], are mainly developed in a Lagrangian
framework, applying the DEM [37, 65, 148, 164]. These models represent sea ice in the MIZ as rigid ice floes,
focusing on individual ice floe collisions. Sea ice, which has not yet fully solidified, such as grease ice, has not

22



been considered in these models. Most existing Lagrangian models are limited in their usability, given the high
number of simplifying assumptions, especially related the collision dynamics [65]. By contrast, the small-scale
continuum models that were outlined in this chapter, are unable to explicitly describe the interaction between
a collection of floes embedded within a viscous fluid.

The area of interest in this study is the region deeper into the Antarctic MIZ, consisting of realistically
shaped, free-floating ice floes embedded in a layer of grease ice, in relatively calm wavy conditions. The
implemented sea ice rheology is governed by ice floe collisions, the interaction between ice floes and grease ice,
as well as skin drag at the ice-ocean interface. A heterogeneous layout, with distinctive material properties for
both ice floes and grease ice, is subjected to a variety of waves and grease ice viscosity conditions. All these
aspects combined, implemented in a continuum Eulerian framework, have not been investigated previously.
Based on recent observations by Alberello et al. [3, 4] and Vichi et al. [200], these combined aspects are
essential to accurately predict the sea ice dynamics of the Antarctic MIZ. Accordingly, unlike the existing
small-scale models, the model developed as part of this study, will not only consider ice floe collisions, but
also include the influence of the waves interacting with a realistic sea ice domain.
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Chapter 3

Model description

3.1 Introduction

In this chapter the theory of the small-scale sea ice model is discussed, starting with an overview in which
the aim and objectives of the model are highlighted. Then, the most important equations in the model are
explained, regarding the sea ice rheology and the atmospheric and oceanic forcing. The implementation of
both ice constituents in OpenFOAM, including the numerical stability and convergence of the model, the
applied boundary conditions and divergence schemes are discussed in Chap. 4.

The primary aim of this study is to obtain a detailed insight in the mechanical behaviour of sea ice on a
small scale. This numerical model contributes to the ongoing research into the impact of sea ice on seasonal
changes and global climate change. The main objective is to develop a small-scale model in two-dimensions,
which describes the high-resolution dynamics of sea ice in the Antarctic marginal ice zone (MIZ).

As previously mentioned in Chap. 1, this study focuses on the dynamics of sea ice deeper into the Antarctic
MIZ, in the low to medium wave energy regime. In this region, the sea ice cover consists of relatively free-
floating ice floes surrounded by grease ice, subjected to a wind and wave forcing [4]. The dynamics of sea ice
is controlled by floe collision, the floe-grease ice interaction, skin drag, as well as the heterogeneous ice cover
composition in terms of geometrical layout and material properties. All aspects in combination describing the
collisional dynamics of ice floes due to wave action have not been considered before. This, however, based
on recent observations by Alberello et al. [3, 4] and Vichi et al. [200], is crucial to accurately predict the sea
ice dynamics of the Antarctic MIZ. Therefore, unlike the models previously developed, the ice floe collision
dynamics is addressed, as well as wave action and the realistic embedment of ice floes in a mixture of grease ice.

The proposed framework can quantify the impact of floe and grease ice material properties, geometrical
features including ice floe size, shape, and concentration, as well as wave forcing on the mechanical response
of the sea ice cover. Two ice materials are distinguished in the intended small-scale model, ice floes and
grease ice. Atmospheric and oceanic conditions in the Antarctic MIZ are applied to the model, consisting of
wave-dependent wind forcing and current-dependent wave loading. In the formulation, the current-dependent
wave loading is implemented as an imposed harmonic propagating wave [72].
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The main research question in this study is defined as follows:

How do oceanic and atmospheric conditions affect the dynamics of sea ice in the Antarctic MIZ on a
small scale?

The numerical small-scale model provides high-resolution data regarding the interaction between the atmo-
sphere, sea ice and the ocean.

3.2 Momentum balance equation

The momentum balance equation in the small-scale model describes the momentum transport of sea ice in a
two-dimensional continuum solution domain, expressed as

m

(
∂U

∂t
+ (U · ∇)U

)
= ∇·σ + τa + τt, (3.1)

where U represents the two-dimensional sea ice velocity vector and t the time parameter. The Coriolis force
and sea surface dynamic height, which are part of Hibler III’s large-scale momentum equation, are not included
in Eq. (3.1), as they can be considered negligible in models with small spatial and temporal scales. The sea
ice mass per unit area [69, 83, 197], m in kgm−2, is written as

m = ρh, (3.2)

where ρ is the sea ice density and h the thickness. The Cauchy stress tensor, σ, describes the sea ice stress
state, which depends on the relevant ice type, either for ice floes, σf , or for grease ice, σg. The in-plane
atmospheric and oceanic surface traction vectors are applied to the sea ice layer as external forcing, indicated
by τa and τt, respectively. Both terms are discussed in more detail in Sec. 3.4.

The velocity field of the sea ice domain is solved within the horizontal (x,y)-plane. Therefore, all terms
in the momentum balance equation are normalised by the respective density, written as

h

(
∂U

∂t
+ (U · ∇)U

)
= ∇·σ′ + τ ′

a + τ ′
t , (3.3)

where superscript ′ represents the normalised terms, which are divided through by the sea ice density, ρ.

Accordingly, each term in Eq. (3.3) has a unit equal to m2s−2. The unit for stress, σ, can be derived as[
m2

s2

]
= ∇·σ′ = ∇·σ

ρ
→
[

m2

s2

]
=
[

1
m

] [
m3

kg

]
σ → σ =

[
kg
s2

]
, (3.4)

which results in a unit that deviates from the standard SI units. Generally, stress has SI units of force per
area, Nm−2, which is equivalent to kgm−1s−2.

The change of ice thickness over time is negligibly small compared to the size of the domain in the lat-
eral direction. This allows for the assumption that both ice constituents are spatially constant. Only small
time windows of less than a minute are considered in the model, which implies that the thickness of sea ice
can be assumed unaffected by thermodynamic variation and rafting-related growth over time.
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3.3 Sea ice rheology

The sea ice rheology in the small-scale model describes the relationship between the internal ice stresses, σ,
and the corresponding ice deformation, which is expressed in terms of strain rate, ϵ̇. Strain rates, or velocity
gradients, are defined as the change in strain, or displacement gradients, of a material with respect to time.
This can be written as

ϵ̇(t) = dϵ

dt
≈ ∆ϵ

∆t
, with ∆ϵ = ϵb+1 − ϵb and ∆t = tb+1 − tb, (3.5)

where ϵ represents the strain tensor. The time index, b, is discretised with time step ∆t. The infinitesimal
small strain theory is applied in this study, which means that the sea ice strain rate tensor, ϵ̇ [81, 83], used in
the sea ice rheology, can be written in terms of the sea ice velocity gradient, ∇U , as

ϵ̇ = 1
2(∇U + (∇U)T ). (3.6)

The small-scale model distinguishes between two ice material constituents, grease ice and ice floes. Each
are described separately, in Sec. 3.3.1 and Sec. 3.3.2, by their own sea ice rheology. Grease ice behaves as a
viscous-plastic fluid, whereas ice floes have a solid-like character. The implementation of the combined set of
equations in OpenFOAM, which requires the volume of fluid (VoF) method, is derived in Chap. 4.

3.3.1 Grease ice rheology

Grease ice is modelled as a viscous fluid, using a viscous-plastic (VP) material law, which is similar to the
flow rheology developed by Hibler III [69] and Thorndike et al. [191], written as

σg = 2ηϵ̇ + I

(
(ζ − η)tr(ϵ̇) − Pg

2

)
, (3.7)

where the internal grease ice strength, Pg, dominates its compressibility. The spherical and deviatoric contri-
butions of the viscosities, ζ and η, respectively, are both strain rate-dependent. I represents the identity tensor.

In the small-scale model, the internal grease ice strength parameter, Pg, is defined as

Pg = P ∗
g h, (3.8)

where P ∗
g represents an empirical constant, excluding ice growth and concentration effects, as opposed to the

large-scale model by Hibler III [69]. As previously mentioned in Sec. 2.2.1.2, the ice strength parameter in the
VP model by Hibler III [69] depends on the sea ice thickness and sea ice concentration, which are formulated
in terms of transport equations. Both transport equations represent the average of multiple ice types over
time. The intended small-scale model does not compute averaged values, but differentiates between two ice
materials. This implies that the average sea ice concentration parameter does not feature in the small-scale
model, whereas the thickness parameter is separately parameterised for the two constituents. In other words,
a constant, but different thickness is considered for both ice types.
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Both strain rate-dependent viscosities are coupled via

ζ = Pg

2∆ , η = ζ

e2
Y

, (3.9)

where eY represents the ratio between the in-plane principal axes of the elliptical yield curve. The effective
strain rate is indicated by ∆ in s−1, which can be written as

∆ =
√

(ϵ̇2
11 + ϵ̇2

22)(1 + e−2
Y ) + 4e−2

Y ϵ̇2
12 + 2ϵ̇11ϵ̇22(1 − e−2

Y ), (3.10)

where ϵ̇11, ϵ̇22 and ϵ̇12 represent the Cartesian components of the symmetric strain rate tensor. The viscosity
tends to infinity for strain rate values approaching zero, however, this is addressed by imposing a lower limit
of the effective strain rate, i.e. ∆min = 2 · 10−7s−1 [104].

The units of both viscosities, as well as the unit of grease ice strength, deviate from the standard SI units due
to the normalised momentum balance equation. In Eq. (3.4), the unit of stress is derived, kgs−2. All terms in
Eq. (3.7) have the same unit as stress. As a result, the unit of Pg is kgs−2, whereas ζ and η have units in kgs−1.

The grease ice rheology, shown in Eq. (3.7), can be written in terms of the velocity gradient, ∇U , after
substitution of the strain rate tensor given in Eq. (3.6), as

σg = η(∇U + (∇U)T ) + I

(
(ζ − η)tr(∇U) − Pg

2

)
. (3.11)

3.3.2 Ice floe rheology

A ’Hookean-like’ flow rule is used to describe the constitutive law for the solid-like behaviour of ice floes,
assuming relatively small deformations. Hooke’s law can be written as

σf = 2µϵ + λItr(ϵ), (3.12)

where the effective elastic Lamé parameters, µ and λ in kgs−2, can be written as

µ = EY

2(1 + ν) , λ = νEY

(1 + ν)(1 − 2ν) . (3.13)

Young’s modulus is indicated by EY , and Poisson’s ratio is represented by ν.

A sea ice rheology in CFD models, describes the relationship between stress and strain rate. Hooke’s law is a
function of strain, ϵ. Since the intended model solves a single continuity equation, the ice floe rheology must
also be formulated in terms of velocity, and hence converted from strain, ϵ, into strain rate, ϵ̇. As a result,
the ice floe stress tensor, σf , must be written in terms of the ice floe stress rate tensor, σ̇f . Similarly, as done
for the strain rate in Eq. (3.5), σ̇f can be given by

σ̇f (t) = dσf

dt
≈ ∆σf

∆t
, with ∆σf = σb+1

f − σb
f and ∆t = tb+1 − tb. (3.14)
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Substitution of Eqs. (3.6) and (3.14) into Eq. (3.12), results in

σb+1
f = σb

f + ∆t
(
µ(∇U + (∇U)T ) + λItr(∇U)

)
, (3.15)

where the time index, b, is discretised with time step ∆t [81]. The implementation of the ice floe rheology in
the software OpenFOAM is discussed in Sec. 4.2.3.

3.4 Atmospheric and oceanic forcing

3.4.1 Wave-dependent wind loading

One of the founding wave-generation theories by Miles [125], describing the interaction between the wind and
the wave forcing [72], is derived without the influence of sea ice. The main difference between Miles’ theory,
and the theory used for the wind forcing in the small-scale model, is the presence of sea ice. Wave-generation
effects by the wind forcing are disregarded, because the small-scale model only considers an imposed wave.
This is a reasonable assumption, as only small time windows are studied. Therefore, the wave-dependent
wind loading considered in the small-scale model, represented by a wind stress on the apical plane, τa, is the
external tangential force per unit area simply applied to the wavy sea ice surface at a height oscillating with
the wave elevation by

τa = ρaCa|Ua| (Ua cos θa + k × Ua sin θa) , (3.16)

where ρa represents the air density, Ca the ice-air drag coefficient, and θa the wind turning angle. The turning
angle describes the angle between the wind stress and the wind direction [31]. A positive angle corresponds
to a stress vector that is oriented to the right of the wind direction. In other words, the angle is positive
if the rotation from the wind direction to the stress vector is clockwise. In this study, the direction of the
surface traction vector and the wind is assumed to be aligned, therefore θa = 0◦. The unit normal vector to
the surface [69] is indicated by k. The variable Ua represents the velocity of the wind boundary layer. The
cross product, ×, of both vectors simply results in the tangential y-component of τa.

As previously mentioned in Chap. 2, Hutchings [82] enforced a lower limit on the ice thickness, h = 0.5m.
The small-scale model does not make use of this lower limit, but includes the possibility of h = 0. This is
done by treating a portion of the in-plane atmospheric and oceanic surface traction vectors semi-implicitly,
ensuring that the mean sea ice velocity will be the velocity which satisfies the momentum balance equation,
τ ′

a + τ ′
t = 0. Accordingly, Eq. (3.16) can be written with a semi-implicit and explicit component, as

τa = −ρaCa|Ua − U | cos θaU︸ ︷︷ ︸
semi-implicit

+ ρaCa|Ua − U | (Ua cos θa + (Ua − U)k × sin θa)︸ ︷︷ ︸
explicit

, (3.17)

where Ua − U represents the relative velocity between wind and sea ice.

The wind velocity, Ua, above the wavy sea ice surface can be represented by the logarithmic wind pro-
file, as previously studied by [8, 28, 29, 102, 126, 213], both in the presence and absence of sea ice. The
logarithmic wind profile [85], Ua, with height z above the water surface, is given by

Ua(ζc(z)) = U∗

κ
ln
(

ζc(z)
z0

)
, with z > z0, (3.18)
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where the Von Kármán constant is given as κ ≈ 0.41 [12, 43]. ζc represents a vertical curvilinear coordinate
and U∗ is the wind friction velocity. The sea surface roughness length parameter is indicated by z0.

To find a value for the wind velocity close to the wind-wave interface, a wave-following curvilinear coor-
dinate, ζc, is introduced [28, 29, 59]. Using a fixed Cartesian coordinate in the z-direction would result in
velocity values that alternate in air and water. The curvilinear coordinate follows the wavy interface, where
ζc(z) = 0 corresponds to the ocean surface. ζc is related to the Cartesian z-coordinate, by

ζc = z − η(x, t), (3.19)

where η(x, t) represents the wave elevation. The wave elevation of a linear wave propagating in positive
x-direction can be written as

η(x, t) = a sin(ωt − kx), (3.20)

which is derived from the Laplace equation and a kinematic boundary condition (BC) at z = 0. The wave
amplitude is denoted by a, the wave frequency by ω, and k represents the wave number. The wave frequency,
ω = 2π/T , and wave number, k = 2π/Λ, are computed from the wave period T and the wave length Λ, using
the deep water dispersion relation ω2 = gk. The gravitational acceleration is indicated by g.

The wind friction velocity vector in ms−1 in the apical plane, can be written as

U∗ =

U∗
x

U∗
y

0

 , (3.21)

which is not physically a velocity, but the square root of the downward flux of eddy momentum. In two-
dimensions, the component in the z-direction equals zero. The total wind shear stress vector, τ , representing
the downward transport of the turbulence towards the surface, can be written as

τ = ρaU
∗2 = ρaU

2
10C10, (3.22)

where U10 and C10 denote the wind speed and air drag coefficient at 10m height above the mean water level.

Turbulent and viscous effects just above the surface are parametrised by the sea surface roughness length
parameter, z0, and the layer of critical height, zc [138, 157, 214, 215]. The sea surface roughness length can
be calculated by

z0 = αCU∗2

g
, with U∗ =

√
U∗

x
2 + U∗

y
2, (3.23)

where αC indicates the Charnock coefficient.

Ocean’s surface waves consist of a large number of wave components with random wave amplitudes, peri-
ods and phases, that travel in arbitrary wave direction [72]. A layer of turbulent airflow, with a height equal
to the so-called critical height, zc, passes over this random wave surface only if the primary wind and wave
components face in the same direction. The height of the critical layer can be found by comparing the speed
of the wave to the velocity profile of the wind. If zc > 0, a cat’s eye is formed, due to a wind velocity acting
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in the opposite wave direction below zc [157]. Obtaining the height of the critical layer is of importance.
If zc = 0m, the wind velocity profile starts increasing from zero at a height equal to the surface roughness
length, z0. The height of the critical layer, zc, can be calculated by equating the wave speed, c, to the wind
velocity profile, Ua(ζc(z)). The small-scale model does not include any viscous and turbulence effects from
the interaction between the wind and the water waves, allowing the assumption that zc ≈ 0. This implies
no turbulence layer, and results in a velocity profile that starts increasing from zero at a height z = z0, just
above the emerged ice floes.

A sketch of the logarithmic wind profile is shown in Fig. 3.1, indicating the curvilinear coordinate, the
sea surface roughness and critical height.

z

x

wind direction

critical height
surface roughness

grease ice wave direction

ice floe
-c

Figure 3.1: Logarithmic wind profile adapted from Buckley and Veron [28] and Sajjadi et al. [157].

Multiple studies have been conducted on the air drag coefficient, Ca. Paulson et al. [143] and Hidy [70] pro-
posed a constant drag coefficient. Garratt [54] and Smith [173] demonstrated a wind speed dependent drag
coefficient, whereas Wu et al. [214] and Amory et al. [8] suggest a drag coefficient in terms of the sea surface
roughness z0,

Ca(ζc(z)) =
(

κ

ln(ζc(z)/z0)

)2
, (3.24)

with a distinctive correlation between Ca and z0. An increase in the sea surface roughness results in an
increase in the drag coefficient.

An air drag multiplication factor, Caλ
, is introduced in the small-scale model. This multiplication factor

simply multiplies the wave dependent air drag coefficient in the entire domain with an arbitrary factor. A
factor equal to one corresponds to air drag coefficient values found by Wu et al. [214] and Amory et al. [8].
Inclusion of Caλ

in Eq. 3.24, results in

Ca(ζc(z)) = Caλ

(
κ

ln(ζc(z)/z0)

)2
. (3.25)

A detailed investigation into the multiplication factor, Caλ
, is performed in Chap. 5.

3.4.2 Current-dependent wave loading

The current-dependent wave loading implemented in the small-scale model is based on the linear wave theory,
describing the propagation of a harmonic wave in water. The linear wave theory, or the Airy wave theory, is
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based on both a mass balance equation and a momentum balance equation. Both can be expressed in terms of
the velocity potential, ϕ(x, y, z, t), which is a scalar function indicating the particle velocities in water. Note
that the velocity potential function can only be used if the water particles are irrotational. This implies that
particles may not rotate around their own axis. Water particles, under a harmonic wave, move with orbital
motion in the x- and z-direction.

Substitution of the velocity potential in the mass balance equation results in the Laplace equation, which
is a second-order differential equation. It is derived from the mass balance equation, but mass or mass density
as such has disappeared from the equation. Substitution of the velocity potential in the momentum balance
equation results in the linearised Bernoulli equation [72], which provides, in conjunction with the Laplace
equation, the wave-induced pressure, pwi, below the wavy water surface.

The linear wave theory only considers waves with a moderate wave steepness in shallow to deep waters.
Wave steepness is defined as the ratio between the wave height, H, and the wave length, Λ [122]. A moderate
wave steepness is equivalent to waves with H/Λ ≪ 1 [132]. Shallow water refers to a water depth, dw, which
satisfies dw ≪ Λ/2, whereas deep water is defined as dw ≫ Λ/2 [72]. In deep water, kdw → ∞, the water
particles move through circles, with an exponentially decreasing radius with water depth. In shallow water,
kdw → 0, the particles move in ellipses, which grow flatter towards the bottom.

Furthermore, only free waves and forced waves are considered in this theory. A free wave is subjected to
only gravity and can only be considered ’free’ when the atmospheric pressure at the air-water interface is
zero. A forced wave, on the other hand, is a free wave which is also exposed to external forcing. Substitu-
tion of both the wave elevation and the velocity potential function into the dynamic BC of zero atmospheric
pressure at z = 0, results in a correlation between the wave frequency, ω, and the wave number, k. This
correlation is also known as the dispersion relation.

Herman [66] applied the linear wave theory, assuming that the ice floes do not influence the motion of
the waves. In Herman’s model wave scattering and other wave-ice interaction effects were not considered. As
with Herman [66], the small-scale model also makes use of the linear wave theory. We, however, impose the
wave forcing, which implies that the wave elevation is known before solving the equations and that no wave
dissipation is considered.

The linear wave theory is still valid for harmonic propagating waves travelling on currents. However, waves are
affected by the current, resulting in a shift of the wave frequency and shape modification [30]. The intrinsic,
or relative frequency, represents the wave frequency in a shifted reference system, preserving the correlation
with the wave number and water depth [72]. The wave number is affected by the ocean current velocity and
can be found by rewriting the dispersion relation, after adding the influence of the ocean current velocity.

The resultant velocity of a wave travelling on an ocean current can simply be obtained by taking the sum of
both the velocity of the current and the wave [30, 166], where the current profile can be assumed constant
along the depth. For waves propagating within a current field, the oceanic surface traction vector, τt, is
represented by the sum of the flow due to the current and the wave as [30, 91, 94, 166]

τt = τo + τw, (3.26)
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where τo represents the ocean current drag and τw the wave traction, which in turn depends on the current
dependent skin drag, τsd, and Froude-Krylov stress due to the wave forcing, τfk, [66]. The ocean current drag,
acting at the basal plane of the ice due to the relative velocity of the ocean current and the ice is given by

τo = ρwCw|Uo − U |((Uo − U) cos θw + (Uo − U) × k sin θw), (3.27)

where ρw represents the water density, θw the ice-ocean turning angle and Cw the ice-ocean drag coefficient.
The constant ocean current velocity, Uo, at z = 0m, is given as

Uo =

Uox

Uoy

0

 , (3.28)

where Uox
and Uoy

represent the constant ocean current velocity in the x- and y-direction, respectively. The
component in the z-direction equals zero in the two-dimensional small-scale model.

Eq. (3.27) can be written in terms of a semi-implicit and explicit component, as

τo = −ρwCw|Uo − U | cos θwU︸ ︷︷ ︸
semi-implicit

+ ρwCw|Uo − U | (Uo cos θw + (Uo − U)k × sin θw)︸ ︷︷ ︸
explicit

, (3.29)

where Uo − U denotes the relative velocity between ocean current and sea ice.

The in-plane traction due to the waves, τw, derived from the linear wave theory [66, 72], consists of two
components, given by

τw = τsd + τfk, (3.30)

where τsd is the viscous component representing the current-dependent skin drag. It acts on the entire ice-
ocean interface as controlled by the drag coefficient. Both ice floes and grease ice have a different surface
roughness, affecting the drag coefficient. Therefore, the ice constituents have a constant, but different drag
coefficient. The small-scale model differentiates between both drag coefficients, via the non-dimensional pa-
rameter α of the VoF method.

The current-dependent skin drag, τsd, is given by

τsd = ρwCw|Uw − U |((Uw − U) cos θw + (Uw − U) × k sin θw), (3.31)

which can be written in terms of a semi-implicit and explicit component, as

τsd = −ρwCw|Uw − U | cos θwU︸ ︷︷ ︸
semi-implicit

+ ρwCw|Uw − U | (Uw cos θw + (Uw − U)k × sin θw)︸ ︷︷ ︸
explicit

, (3.32)

where Uw − U indicates the relative velocity between ocean current affected wave motion and sea ice.

As a wave travels, water passes energy along by moving in a circle. In deep water this movement is called
circular orbital motion [195]. In order to create orbital wave motion, the velocity components in the basal
plane must be coupled with the component in the z-direction. As a result, the current-dependent orbital wave
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velocity, Uw, is given as

Uw =

Uwx

Uwy

Uwz

 =

 a(ω − k1Uox
) sin(ωt − k1x) cos(θwa)

a(ω − k2Uoy
) sin(ωt − k2y) sin(θwa)

a(ω − k1Uox
− k2Uoy

) cos(ωt − k1x − k2y)

 , (3.33)

where the current-affected wave number, k, is determined by the modified dispersion relation [94, 166], as

(
ω − k

√
U2

ox
+ U2

oy

)2
= gk. (3.34)

This results in wave numbers in the x- and y-direction, as

k1 = k cos(θwa), k2 = k sin(θwa), (3.35)

where θwa represents the wave direction angle, measured with respect to the x-axis and positive in the counter-
clockwise rotation direction. A value of θwa = 0◦ is equivalent to a wave that propagates in the x-direction only.

The Froude-Krylov stress vector, τfk, accounts for the horizontal surge force due to the wave-induced pres-
sure [66], acting on the ice floe circumference, at the interface between ice floes and grease ice

τfk = −
∫

hw

pwindz, (3.36)

where hw represents the height of submersion for an ice floe portion and dz the differential length in the
z-direction. The unit vector n acts normal to the circumference of the ice floes directed outwards. The
wave-induced pressure, pwi, is written as

pwi = ρwga sin(ωt − kx), (3.37)

where the gravitational acceleration is denoted as g. Eqs. (3.36) and (3.37) can be rewritten as

τfk = n · hwaω2 cos(ωt − kx). (3.38)

Additionally, Herman [66] considered a collisional force and a force related to the added mass. The latter
is not considered in the small-scale model as Herman [66] concluded that the contribution of added mass is
small, especially considering that ice floe sizes in the small-scale model are much smaller than the wave length.
Interaction between colliding ice floes which resist collisional forces, are included in the small-scale model via
the stress and strain rate response. The same applies to form drag acting on the ice floe circumference due
to velocity differences of floes and surrounding grease ice. Both are implicitly included by the continuity
requirement of the velocity field throughout the domain which is modelled in a continuum fashion.
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Chapter 4

Computational framework

4.1 Introduction to OpenFOAM

OpenFOAM is an open-source platform that allows for the solutions of computational fluid dynamics (CFD)
problems. CFD is a tool in mathematics, physics and computational software, which is the field of solving
fluid flow problems numerically. OpenFOAM which stands for Open source Field Operation and Manipulation
makes use of the C++ programming language. A variety of numerical problems can be solved in OpenFOAM,
such as problems related to turbulent fluid flows, fluid-structure interaction, and heat transfer [14, 57].

In CFD simulations a set of partial differential equations (PDEs) describes the fluid flow. The PDEs represent
the mass, momentum, and energy conservation equations. Firstly, the conservation of mass states that the
rate of change of mass, in an arbitrary control volume, is equal to the mass production rate in the control vol-
ume. Secondly, momentum conservation equates the rate of change of momentum in a control volume to the
total force acting on the volume. In the event where no external forces are applied, momentum is unchanged
in the system [39]. Lastly, the conservation of energy is controlled by the first law of thermodynamics. The
latter does not allow generation or demolition of energy, however, energy phase transformation is allowed to
take place [9, 39, 211].

Fluid flow can be described either in a Lagrangian or an Eulerian frame of reference. In the Lagrangian
approach, known as the material description or convective form, the fluid can be described in terms of fluid
particles. Each fluid particle is tracked as it moves through space and time. Contrastingly, the Eulerian
framework, known as the spatial description or conservation form, considers a fixed domain through which a
fluid flows [39, 212]. Spatial positions are occupied by different particles at different times.

The intended small-scale model in OpenFOAM is developed in an Eulerian frame of reference, making use of
the approach of multiphase flow. This approach refers to any fluid flow consisting of more than one phase or
component. Multiphase flow can be described as ’interpenetrating continua’, including the concept of phase
volume fractions. This concept describes the space which is occupied by each phase. Additionally, the mass
and momentum conservation equations are met by each phase individually.

The most sophisticated multiphase model is the Eulerian-Eulerian multiphase model, because of a strong
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coupling between the dispersed and continuous phases [1]. For each phase a set of n momentum and conti-
nuity equations are solved [216]. Eulerian-Eulerian multiphase modelling can be subdivided into two flows,
dispersed flows with dispersed-continuous phase interactions and separated flows with continuous-continuous
phase interactions. Dispersed flows consist of particles, which include droplets and bubbles, in a continuous
phase. Separated flows can be identified as phases, which are separated by an interface [27, 36, 175].

Two alternative models, derived from the Eulerian-Eulerian multiphase model, are volume of fluid (VoF)
models, which describe separated flows, and mixture models, which represent dispersed flows. Both models
are a simplification of the Eulerian-Eulerian multiphase model, as all phases only share a single set of momen-
tum and continuity equations. The VoF model, applied to a fixed Eulerian grid, is a surface-tracking method
for two or more immiscible phases. The term ’immiscible’ implies that phases cannot mix together. Volume
fractions of each phase are tracked in the problem domain, with the primary aim to find the position of the
interface between phases. The mixture model is different from the VoF model in three aspects. Firstly, phases
in the mixture model can interpenetrate, which means that they can mix or merge together. Secondly, phases
in the mixture model can move with a different velocity, applying the concept of slip velocities. Lastly, the
mixture model allows interaction between phases in terms of transfer of mass and momentum [48].

PDEs describe the fluid flow, which can be formulated in their strong or weak form. In the strong or
differential form [144], which refers to the PDE and corresponding boundary conditions, the PDEs are not
directly solvable. The weak form is an integral form of the PDEs, which can be approximated when dis-
cretised [52]. Most commonly used discretisation schemes and solution methods include the finite difference
method (FDM), the finite element method (FEM), and the finite volume method (FVM). All three methods
approximate governing ordinary or partial differential equations [144]. Note, however, that these methods
only apply to the spatial discretisation. FEM is mainly used in structural mechanics, in which forces are
applied to a solid body and stress and deformation are modelled [109]. FDM is used for simple boundary
value problems with simple geometries [58], whereas FVM can be applied to more complex CFD geometries.

In 2018, Roenby et al. [153] released a new VoF method in OpenFOAM, called the isoAdvector method.
Their objective was to design a VoF-based interface advection method, that operates on arbitrary meshes,
preserves accuracy of the geometric schemes by explicit approximation of the interface. Additionally, mini-
mizes the geometric operations to reduce computational times.

Two important features within the OpenFOAM software, applied in the small-scale model, are the FVM
and the VoF method, in particular the isoAdvector method. Therefore, these methods are discussed thor-
oughly in this chapter.

4.1.1 Finite Volume Method

OpenFOAM is a utility and a set of libraries that facilitate solving PDEs by predominantly using the FVM.
The solution domain is subdivided, by means of a mesh, into a finite number of small control volumes, or
cells. Each control volume is bounded by a control surface [51]. The rate of change of a quantity within a
control volume, plus the flux through the boundary is equal to the rate of production [145].

The fundamental physical principles, consisting of the conservation of mass and momentum, are applied
to the fluid inside a control volume. These conservation equations are expressed in terms of coupled partial
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differential equations, which are integrated over each control volume. Subsequently, the divergence theorem
is applied to both convective and diffusive terms. As a result a volume integral is converted into a surface
integral, considering the flux through the cell faces of the control volume. Fluxes at the cell faces are obtained
by making use of differencing schemes, which are different in order, stability, accuracy, and convergence. As
a result, discretised momentum equations are obtained.

Per control volume three equations are required, to solve three unknown variables in the two-dimensional
Navier-Stokes equations. These variables are the velocities in the x- and y-direction, Ux and Uy, and the
pressure, p. In this section the notation of the velocities in the x- and y-direction is different, by simply
writing them as U and V , respectively. The momentum equations only provide two equations, which means
that one more equation is needed. The continuity equation is used, however, it does not explicitly contain the
pressure gradient for incompressible flows. Consequently, the continuity equation is rewritten in terms of the
pressure gradient by pressure-velocity coupling. The discretised momentum equations are used to find the
pressure-explicit continuity equation, written in a solvable algebraic form. As a result, each control volume
in two-dimensions has now three equations and three unknowns. This means that an algebraic system of
equations is obtained, which can be solved.

4.1.1.1 Collocated grid

Methods that make use of a collocated grid, store all variables at the central node of a cell, of which five cell
centres are illustrated by P, N, E, S, W in a two-dimensional uniform grid in Fig. 4.1. The cell faces of central
cell P are indicated by n, e, s, w. This configuration of storing variables at one location is beneficial regarding
computational costs [193], however, interpolation between cell centres is needed to find variable values at the
faces of each cell.

P

N

S

EW

n

e

s

w y

x

Figure 4.1: Two-dimensional collocated uniform grid [35].
.

The FVM will be explained in detail in this section by making use of the following continuity and momentum
equations in two dimensions. The continuity equation is written as

∂ρ

∂t
+ ρ

∂U

∂x
+ ρ

∂V

∂y
= 0, (4.1)

where ρ represents the density of an arbitrary fluid. Note that an incompressible fluid can be assumed when
changes in density are non-existent. When considering an incompressible fluid, where Dρ/Dt = 0 [39], the
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continuity equation, given in Eq. (4.1), can be rewritten as

∂U

∂x
+ ∂V

∂y
= 0. (4.2)

The momentum equation in the x-direction is written as

ρ
∂U

∂t
+ ρU

∂U

∂x
+ ρV

∂U

∂y
= − ∂p

∂x
+ ∂

∂x

(
µd

∂U

∂x

)
+ ∂

∂y

(
µd

∂U

∂y

)
+ Su, (4.3)

and in the y-direction given as

ρ
∂V

∂t
+ ρU

∂V

∂x
+ ρV

∂V

∂y
= −∂p

∂y
+ ∂

∂x

(
µd

∂V

∂x

)
+ ∂

∂y

(
µd

∂V

∂y

)
+ Sv, (4.4)

where the material derivative is shown on the left-hand side of both momentum equations, which represents the
change of velocity in both space and time. The first term on the left-hand side of both momentum equations
indicates the transient term, whereas the second and third terms describe the convective fluxes [17, 22, 39].
On the right-hand side, the first term represents the pressure gradient, whereas the second and third terms
describe diffusive fluxes with the dynamic viscosity, µd. Remaining source terms before volume integration
are included by Su and Sv in the x- and y-direction, respectively [84].

The discretised equations are linearised in time, by decomposition of time into discrete time steps. Both
implicit and explicit iterative methods can be applied to discretise the time-dependent terms, of which one of
the most basic is the Euler method. A first-order accurate method, which is used to solve ordinary differential
equations (ODEs). The following first-order ODE with initial condition [51, 82] is considered for illustration,
written as

dϕ(t)
dt

= F (t, ϕ), with ϕ(t0) = ϕ0, (4.5)

where the initial condition is denoted by ϕ(t0). Values of ϕ are obtained at time steps t1 = t0+∆t, t2 = t0+2∆t,
t3 = t0 + 3∆t, etc. A method is required to approximate the integration from tn to tn+1, which is given as∫ tn+1

tn

dϕ(t)
dt

dt = ϕn+1 − ϕn =
∫ tn+1

tn

F (t, ϕ)dt, (4.6)

where ϕn+1 represents the value of ϕ at tn+1. An approximation of the integral in Eq. (4.6) can be obtained
by using the value of the integrand at the initial point, as

ϕn+1 = ϕn + F (tn, ϕn)∆t, (4.7)

which is referred to as the explicit or forward Euler method. If one would use the final point to approximate
the integral, this would be written as

ϕn+1 = ϕn + F (tn+1, ϕn+1)∆t, (4.8)

which is called the implicit or backward Euler method. Potentially, the accuracy can be increased by splitting
the time step, or by applying a second-order method, such as the Mid-point Rule, or the Trapezium Rule.
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The Mid-point Rule can be mathematically formulated as

ϕn+1 = ϕn + F (t
n+ 1

2
, ϕn+ 1

2 )∆t, (4.9)

and the Trapezium Rule is given by

ϕn+1 = ϕn + 1
2
(
F (tn, ϕn) + F (tn+1, ϕn+1)

)
∆t, (4.10)

The four different schemes are illustrated in Fig. 4.2.

(a) (b) (c) (d)

Figure 4.2: Linear approximations of the time integral of ϕ, with (a) the Euler Explicit Method, (b) the Euler
Implicit Method, (c) the Mid-point Rule and (d) the Trapezium Rule. The figure is reproduced from Ferziger
et al. [51] and Hutchings [82].

The temporally-dependent terms in the momentum equations are constant over the cell volume, because the
FVM integrates cell centred values by multiplying the value by the volume. Accordingly, the temporally-
dependent terms are not included in the spatial discretisation scheme explained below.

The explanation of the FVM commences by integration of the momentum equations over the volume of
cell P . The equation in the x-direction can be written as∫

VP

(
ρU

∂U

∂x
+ ρV

∂U

∂y

)
dV = −

∫
VP

∂p

∂x
dV +

∫
VP

(
∂

∂x

(
µd

∂U

∂x

)
+ ∂

∂y

(
µd

∂U

∂y

))
dV. (4.11)

The divergence theorem, also known as the Gauss’ theorem, is used to convert a volume integral into a surface
integral. The theorem implies that the net flux of a vector field through a closed surface is equal to the total
volume of all sources and sinks over the region inside the surface [39]. In mathematical notation the divergence
theorem can be written as ∫

V

(∇ · F )dV =
∫

∂V

(F · n)dS, (4.12)

where the left-hand side represents the volume integral of vector field F , and the right-hand side the surface
integral of F . V represents a region in space with ∂V as its boundary surface. n indicates the unit normal
vector to the boundary edges. dV denotes the differential volume, and dS the differential surface.

Applying the divergence theorem used in Eq. (4.12) to the convective and diffusive terms in Eq. (4.11),
results after rearrangement in∫

∂VP

(ρUU + ρV U) · ndS −
∫

∂VP

(
µd

∂U

∂x
+ µd

∂U

∂y

)
· ndS = −

∫
VP

∂p

∂x
dV, (4.13)
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with on the right-hand side the pressure gradient term. Integrating the pressure gradient over the volume of
cell P results in source term, SUP

. It is approximated by interpolating pressure values of neighbouring cells
and then multiplied by the volume of cell P in two-dimensions, as

SUP
= −

∫
VP

∂p

∂x
dV ≈

(
∂p

∂x

)
P

∆x∆y, (4.14)

where (∂p/∂x)P represents the pressure gradient at the centre of cell P . The length of a uniform cell in the
x- and y-direction is indicated by ∆x and ∆y, respectively. On a uniform grid, as shown in Fig. 4.1, SUP

can
be written as

SUP
= (pe − pw)

∆x
(∆x∆y) = (pe − pw)∆y = 0.5(pE − pW )∆y, (4.15)

where pe and pw represent the pressure at faces e and w.

The surface integrals in Eq. (4.13) are rearranged, such that the components in the x- and y-direction are
separated, and approximated in discretised form by∫

∂VP

(
ρUU − µd

∂U

∂x

)
· ndS ≈

∑
k

(
ρUU − µd

∂U

∂x

)
k

· (n∆y)k, with k = e, w, (4.16)∫
∂VP

(
ρV U − µd

∂U

∂y

)
· ndS ≈

∑
k

(
ρV U − µd

∂U

∂y

)
k

· (n∆x)k, with k = n, s. (4.17)

Substitution of cell faces k = e, w into Eq. (4.16) results in the discretised convective and diffusive terms in the
x-direction, given in Eq. (4.18). Substitution of k = n, s into Eq. (4.17), results in the discretised convective
and diffusive terms in the y-direction, given in Eq. (4.19), as(

ρUU − µd
∂U

∂x

)
e

(∆y)e −
(

ρUU − µd
∂U

∂x

)
w

(∆y)w, (4.18)(
ρV U − µd

∂U

∂y

)
n

(∆x)n −
(

ρV U − µd
∂U

∂y

)
s

(∆x)s. (4.19)

Collecting the convective flux terms in both Eqs. (4.18) and (4.19), results in

(ρUU)e(∆y)e − (ρUU)w(∆y)w + (ρV U)n(∆x)n − (ρV U)s(∆x)s. (4.20)

Eq. (4.20) can be rewritten as

CxeUe − CxwUw + CynUn − CysUs, (4.21)

where Cxe = ρ(U∆y)e, Cxw = ρ(U∆y)w, Cyn = ρ(V ∆x)n and Cys = ρ(V ∆x)s, represent the max flux
through the relevant cell faces. The velocity values at the cell faces, Ue, Uw, Un, and Us are calculated by
means of interpolation between cell centred values.

Collecting the diffusive flux terms in both Eqs. (4.18) and (4.19), results in

−
(

µd
∂U

∂x

)
e

(∆y)e +
(

µd
∂U

∂x

)
w

(∆y)w −
(

µd
∂U

∂y

)
n

(∆x)n +
(

µd
∂U

∂y

)
s

(∆x)s, (4.22)
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where ∂U/∂x and ∂U/∂y denote the gradients at the cell faces. These are obtained by making use of the
central difference scheme, resulting in diffusive flux terms, given by

−µd(∆y)e
UE − UP

∆x
+ µd(∆y)w

UP − UW

∆x
− µd(∆x)n

UN − UP

∆y
+ µd(∆x)s

UP − US

∆y
, (4.23)

which represents a second-order approximation. Eq. (4.23) can be rewritten as

ad
eUE + ad

wUW + ad
nUN + ad

sUS − ad
P UP , (4.24)

where ad
e = −µd(∆y/∆x)e, ad

w = µd(∆y/∆x)w, ad
n = −µd(∆x/∆y)n, ad

s = µd(∆x/∆y)s and ad
P = ad

e + ad
w +

ad
n + ad

s .

4.1.1.2 Interpolation schemes

The choice of interpolation scheme influences the stability and accuracy of the obtained results [16, 51].
Frequently-used schemes [39, 51, 87, 198] are outlined below, focusing on cells P and E with cell face e in
between. Note that in the explanation of the schemes the words ’positive’ and ’negative’ are used figuratively,
only to distinguish between two opposite flow directions.

• First Order Upwind Scheme [198]: scheme applicable to the convective flux terms, depending on the
flow direction. Ue = UP when the flow direction is in ’positive’ direction and Ue = UP when the flow
direction is in ’negative’ direction. This implies a constant value of Ue between the centre and the face
of the cell. Hence, this upwind scheme is only first-order accurate.

• Central Difference Scheme [39]: second-order accurate scheme. To find Ue, the cell centred velocity
values UP and UE are linearly interpolated, as

Ue = UP + UE − UP

xE − xP
(xe − xP ), (4.25)

where the x-coordinates of cell centres P and E are indicated by xP and xE , respectively. The x-
coordinate of cell face e is given by xe.

• Linear Upwind Scheme [87]: the second-order accurate scheme is generally applied to convective flux
terms, which essentially combines the First-Order Upwind and Central Difference schemes. A ’positive’
or ’negative’ flow direction results in a value of Ue equal to a linear equation

Ue = UP + ϕg(∇U)P · r, or Ue = UE + ϕg(∇U)E · r, (4.26)

respectively. ∇U indicates the known gradient at the centre of cell P , which is applied to enhance
the accuracy of the extrapolation. Additionally, ϕg, which is the gradient limiter representing a value
between zero and one, ensures that values do not exceed the local minimum or maximum values. r

denotes a vector between either the centre of cells P or E and face e, depending on the direction of the
fluid flow.

• QUICK scheme [51]: third-order accurate scheme, which stands for Quadratic Upwind Interpolation
for Convection Kinetics scheme. The velocity at cell face e, Ue, is approximated by making use of cell
centred values from cell P and two consecutive neighbouring cells, fitted by a parabolic function.
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If one would consider the First Order Upwind Scheme, the convective terms can be rewritten as

−ac
eUE − ac

wUW − ac
nUN − ac

sUS + ac
P UP , (4.27)

where ac
e = max(−Cxe, 0), ac

w = max(Cxw, 0), ac
n = max(−Cyn, 0), ac

s = max(−Cys, 0) and ac
P = ac

e + ac
w +

ac
n + ac

s + (Cxe − Cxw + Cyn − Cys), resulting in positive ac
i coefficients, with i = e, w, n, s. As the net mass

flux in cell P needs to be equal to zero, one could simply write ac
P = ac

e + ac
w + ac

n + ac
s.

The generalised diffusive-convective flux expression results in a discretised equation of the form

aP UP = aeUE + awUW + anUN + asUS + SUP
, (4.28)

where ae = ad
e + ac

e, aw = ad
w + ac

w, an = ad
n + ac

n, as = ad
s + ac

s and aP = ae + aw + an + as. As previously
noted, SUP

represents the source derived from the pressure gradient. As a result, a relation has been obtained
which links the velocity at the centre of cell P , UP , to neighbouring cell-centred velocity values. Eq. (4.28)
can be rewritten as

aP UP =
∑

aiUi + SUP
+ SU , (4.29)

which includes SU , representing remaining source terms after volume integration. ai indicates the sum of
convective and diffusive coefficients at the neighbouring cell faces and Ui denotes the velocity components of
the adjacent cell centres.

In the collocated grid approach interpolation of stored values, pP , pE and pW , is required to obtain the pres-
sure value at cell faces e and w. Fig. 4.3 illustrates linear interpolation of both cell faces on a one-dimensional
uniform grid. Additionally, the equation of the pressure gradient, given by(

∂p

∂x

)
P

= (pe − pw)
∆x

= (pE − pW )
2∆x

, (4.30)

shows that this approach results in a weak relation between the velocity values and the pressure field, as pP

is not directly used. This, however, can cause a numerical complication, namely chequerboard oscillations,
discussed in greater detail in Sec. 4.1.1.6. Two main methods do not suffer from chequerboard oscillations.
These methods are the staggered grid approach, explained in Sec. 4.1.1.4, and the collocated grid approach
in combination with the Rhie and Chow interpolation, described in Sec. 4.1.1.6.

PW Eew

Figure 4.3: One-dimensional uniform grid resulting in a chequerboard pattern.

For the calculation of the Linear Upwind Scheme, the velocity gradient, ∇U , at cell centroid P is required.
Several differencing schemes can be used to approximate the gradient, such as the Green-Gauss gradient
scheme. This study opted to make use of the least-squares gradient scheme, which is explained in Sec. 4.1.1.3,
using an arbitrary variable ϕ.
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4.1.1.3 Least squares gradients

Consider a two-dimensional collocated uniform grid with primary cell centroid P with neighbour cells N, E, S, W

as shown in Fig. 4.4. The value of an arbitrary variable ϕ at the cell centre of cell P can be extrapolated to the
values of neighbouring cell centres N, E, S, W by making use of the gradient at P . The extrapolated values
at cell centroid are compared to the actual value at N, E, S, W . The difference between these two values is
expressed as the error. Minimizing the sum of the errors squared at all neighbours of cell P with respect to
the gradient, results in a good approximation of the gradient.

P

N

S

EW

dPN

dPS

dPW dPE

PN

P

dPN

(a) (b)

P
N

Figure 4.4: A schematic diagram of the least-squares method, showing (a) a two-dimensional uniform grid
with distance vectors and (b) linear interpolation of an arbitrary variable, ϕ, between cell centres P and N .

The least-squares method [189] starts by expressing the value of ϕ at a neighbour cell, for example N , crossing
a single face, as

ϕN = ϕP + dP N · (∇ϕ)P , (4.31)

where dP N is the distance vector between cell centres P and N . (∇ϕ)P is the unknown in Eq. (4.31). An
additional equation is written for every cell face, resulting in a set of equations

ϕi = ϕP + dP i · (∇ϕ)P , (4.32)

where i = N, E, S, W . In each of these equations the gradient, (∇ϕ)P , is the same and is unknown. In the
uniform grid, as shown in Fig. 4.4, the distance vectors between cell centres are all equal.

Subtract ϕP from both sides of Eq. (4.32), results in

[ϕi − ϕP ] = [dP i][(∇ϕ)P ], (4.33)

which can be written in terms of a matrix equation, Mx = b, as

[dP i][(∇ϕ)P ] = [ϕi − ϕP ], (4.34)

where vector x represents the unknown gradient vector (∇ϕ)P , with i = N, E, S, W . M is the matrix of
coefficients, dP i. Vector b indicates the variable difference vector. If one would write out Eq. (4.34), this
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would result in


dP Nx

, dP Ny
, dP Nz

dP Ex
, dP Ey

, dP Ez

dP Sx
, dP Sy

, dP Sz

dP W x
, dP W y

, dP W z





(
∂ϕ

∂x

)
P(

∂ϕ

∂y

)
P(

∂ϕ

∂z

)
P

 =


ϕN − ϕP

ϕE − ϕP

ϕS − ϕP

ϕW − ϕP

 , (4.35)

which shows matrices which are not square, which implies that an exact solution cannot be obtained. There-
fore, an approximate solution is computed for (∇ϕ)P , resulting in an error in each equation

ei = ϕi − (ϕP + (∇ϕ)P · dP i, (4.36)

where ei represents the error for i = N, E, S, W . The least-squares solution minimises the sum of the errors
squared, which can be mathematically expressed as

(∇ϕ)P = G−1dT (ϕN − ϕP ), (4.37)

where G = (dTd). As a result, G is always a (3 × 3) matrix, which allows an easy computation of its inverse.

Note, however, that the least-squares gradient scheme does not work sufficiently well for thin cells. This
applies to a mesh, in which, for example, the cells in the y-direction, with corresponding distance vectors, are
small, whereas the cells in the x-direction, with corresponding distance vectors, are large. This would result
in a dominating gradient calculation in the x-direction. The trick to solve this dominant effect is to introduce
a weighting function, w = 1/|d|, as

[w][dP i][(∇ϕ)P ] = [w][ϕi − ϕP ], (4.38)

where w is a diagonal weighting matrix, wi = 1/|di|. The least-squares solution in Eq. (4.37) can now be
written as

(∇ϕ)P = G−1dTwTw(ϕN − ϕP ), (4.39)

where G = dTwTwd. In a static mesh, the distance vectors do not change in time. This means that the
quantity G−1 multiplied by dTwTw does not change in time. Accordingly, the values are calculated only
once for each cell in the mesh. Hence, the least-squares gradient is efficient to compute.

The second- and fourth order least-squares gradient schemes differ in their number of neighbouring cells
included in the calculation of the gradient. The second-order least-squares makes use of only direct neigh-
bours, whereas the fourth-order includes cells further away from the primary cell.

4.1.1.4 Staggered grid

Stronger coupling between the cell centred values of velocity and pressure can be obtained by making use of a
staggered grid approach. This configuration stores pressure values in the cell centres of the main grid, while
velocity values are stored in an additional offset grid. As a result, the velocity values are essentially stored
at the cell faces of the main grid, as shown in Fig. 4.5 for a system which is solved in two-dimensions using
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a staggered uniform grid. All other parameters are stored in the cell centres of the main grid. The staggered
grid approach is beneficial because interpolation is not required, due to the already calculated velocity values
in the displaced grid, representing the cell faces of the main grid [93]. A disadvantage of the staggered grid
approach is that two separate grids need to be generated and maintained. Additionally, it is difficult to handle
non-orthogonal grids in the staggered grid approach. As a result, this method is much more computationally
expensive than the collocated grid approach.

P EW

Vn

Vs

UeUw

N

S

Figure 4.5: Two-dimensional staggered uniform grid [35].

The pressure gradient source term, SUP
, for Ue between cell centres P , and E are shown in Eq. (4.15) for a

collocated grid approach. In a staggered grid approach, the pressure gradient source term is given as

SUP
= (pP − pE)∆y, (4.40)

showing strong coupling between the velocity and pressure, because it directly depends on the values of cell
centre P .

As previously mentioned, the momentum balance equation presents discretised equations, which are solved
for U and V , once the pressure values are known. However, the continuity equation is not directly linked
to pressure. As a result, pressure is modified by making use of an iterative procedure, to ensure that the
obtained velocity meets the continuity requirement. The pressure is corrected in each iteration step, which
iteratively modifies the velocity to a value that meets both the continuity and momentum equations. The
coupling between pressure and velocity is known as the Pressure Correction scheme, which is explained in
Sec. 4.1.1.5.

4.1.1.5 Pressure-velocity coupling

A well-known Pressure Correction scheme is the SIMPLE scheme, which stands for Semi Implicit Method for
Pressure Linked Equations scheme, developed by Patankar [141]. The discretised momentum equation for Ue

and Vn, can be given as

aeUe =
∑

aiUi + SUP
+ SU , anVn =

∑
aiVi + SVP

+ SV . (4.41)

In a staggered grid approach, Ue and Vn are cell-centred values in the displaced grid. Input from adjacent
cell-centred values are represented on the right-hand side of Eq. (4.41) by the summations. SUP

and SVP

indicate pressure-gradient source terms, whereas SU and SV represent the remaining source terms after volume
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integration. Eq. (4.41) can be rewritten as

Ue =
∑ aiUi

ae
+ DU (pP − pE) + sU , Vn =

∑ aiVi

an
+ DV (pP − pN ) + sV , (4.42)

where DU = ∆y/ae, DV = ∆x/an, sU = SU /ae and sV = SV /an. If one would assume initial values for the
pressure, Eq. (4.42) could be solved to find values for U and V , which, generally, do not meet the continuity
equation. Therefore, pressure and velocity corrections are introduced, resulting in the following corrected
variables, as

p∗ = p + p′, U∗ = U + U ′, V ∗ = V + V ′, (4.43)

which meet both the continuity and momentum equations. p, U and V represent the mean components,
whereas p′, U ′ and V ′ indicate the fluctuation components of pressure and velocity. The first step in solving
the corrections, is to substitute Eq. (4.43) into Eq. (4.42), which results into

(Ue + U ′
e) =

∑ ai

ae
(Ui + U ′

i) + DU (pP − pE) + DU (p′
P − p′

E) + sU , (4.44)

(Vn + V ′
n) =

∑ ai

an
(Vi + V ′

i ) + DV (pP − pN ) + DV (p′
P − p′

N ) + sV . (4.45)

Subsequently, subtracting Eq. (4.42) from Eqs. (4.44) and (4.45), gives

U ′
e =

∑ aiU
′
i

ae
+ DU (p′

P − p′
E), V ′

n =
∑ aiV

′
i

an
+ DV (p′

P − p′
N ), (4.46)

which results in a relationship between pressure and velocity corrections that still meets the momentum
equation. This method can be simplified by subdividing the corrections in two components as

p′ = p′
1 + p′

2, U ′ = U ′
1 + U ′

2, V ′ = V ′
1 + V ′

2 , (4.47)

which are substituted in Eq. (4.46), resulting in

U ′
e1 + U ′

e2 =
∑ aiU

′
i

ae
+ DU (p′

P 1 − p′
E1) + DU (p′

P 2 − p′
E2), (4.48)

V ′
n1 + V ′

n2 =
∑ aiV

′
i

an
+ DV (p′

P 1 − p′
N1) + DV (p′

P 2 − p′
N2). (4.49)

The SIMPLE scheme considers the two correction components as

U ′
e1 = DU (p′

P 1 − p′
E1), U ′

e2 =
∑ aiU

′
i

ae
+ DU (p′

P 2 − p′
E2), (4.50)

V ′
n1 = DV (p′

P 1 − p′
N1), V ′

n2 =
∑ aiV

′
i

an
+ DV (p′

P 2 − p′
N2), (4.51)

establishing a relation between U ′
1, V ′

1 , p′
1. The pressure and velocity components, indicated with subscript 2

on the right-hand side of Eq. (4.47), include the intricate part, which represents velocity corrections from
adjacent cell-centred values. The corrected velocity values have to meet the continuity equation, shown in
Eq. (4.2). After integration over cell volume P , the continuity equation can be written in discretised form as

(U∗
e − U∗

w)∆y + (V ∗
n − V ∗

s )∆x = 0, (4.52)
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which can be rewritten as

(U ′
e − U ′

w)∆y + (V ′
n − V ′

s )∆x = −Sm, (4.53)

where Sm = (Ue −Uw)∆y +(Vn −Vs)∆x represents the mass imbalance due to the original variables U and V .
The SIMPLE scheme disregards the second correction components U ′

2, V ′
2 , and P ′

2, which, after substitution
of Eqs. (4.50) and (4.51) into Eq. (4.53), results in

∆y [(DU )e(p′
P 1 − p′

E1) − (DU )w(p′
W 1 − p′

P 1)]

+ ∆x [(DV )n(p′
P 1 − p′

N1) − (DV )s(p′
S1 − p′

P 1)] = −Sm, (4.54)

which after rearrangement can be written as

aP p′
P 1 = aep′

E1 + awp′
W 1 + anp′

N1 + asp′
S1 + SU , (4.55)

where ae = ∆y(DU )e, aw = ∆y(DU )w, an = ∆x(DV )n, as = ∆x(DV )s, aP = ae+aw+an+as and SU = −Sm.

A drawback of the SIMPLE scheme is potentially slow convergence, which is due to the assumption that
the second velocity and pressure correction components can be disregarded.

Several alternatives to the SIMPLE scheme have been developed, mainly to enhance the speed of conver-
gence. One of these alternatives is the PISO scheme, which stands for Pressure Implicit solution by Split
Operator method scheme, developed by Issa et al. [84]. The approach of the PISO scheme is identical to the
SIMPLE scheme, however, the PISO scheme takes into account the previously abandoned second correction
components, U ′

2, V ′
2 , and P ′

2.

In the PISO scheme the second part of Eqs. (4.50) and (4.51) are computed by

U ′
e2 =

∑ aiU
′
i1

ae
+ DU (p′

P 2 − p′
E2), V ′

n2 =
∑ aiV

′
i1

an
+ DV (p′

P 2 − p′
E2). (4.56)

Eq. (4.56) is substituted into the discretised continuity equation, shown in Eq. (4.52), as

(U ′
e2 − U ′

w2)∆y + (V ′
n2 − V ′

s2)∆x = 0. (4.57)

As a result

∆y [(DU )e(p′
P 2 − p′

E2) − (DU )w(p′
W 2 − p′

P 2)] + ∆x [(DV )n(p′
P 2 − p′

N2) − (DV )s(p′
S2 − p′

P 2)] =

∆y

[∑ aiU
′
i1

aP

]
w

− ∆y

[∑ aiU
′
i1

aP

]
e

+ ∆x

[∑ aiV
′

i1
aP

]
n

− ∆x

[∑ aiV
′

i1
aP

]
s

, (4.58)

can be generically written as

aP p′
P 2 = aep′

E2 + awp′
W 2 + anp′

N2 + asp′
S2 + SU , (4.59)

where the coefficients related to ai with i = n, e, s, w are identical to the ones in Eq. (4.55). Note, however,
that SU represents the terms on the right-hand side of Eq. (4.58). This set of linear equations for the pressure
corrections p′

1 and p′
2, shown in Eqs. (4.55) and (4.59) can be solved, using the same methods employed for
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solving the discretised momentum equations mentioned above. The corresponding corrections to the velocities,
U ′

1, U ′
2, V ′

1 and V ′
2 are then obtained from Eqs. (4.50) and (4.51), and the pressure and velocities are thus all

updated.

4.1.1.6 Chequerboard oscillations

Chequerboard oscillations are undesirable numerical instabilities, associated with collocated FVM schemes,
which are encountered in the OpenFOAM software, causing poor distributions in a continuous domain. Vari-
ables alternate from cell to cell with under- and overestimated values, causing a jigsaw pattern, which resembles
a chequerboard pattern [88, 165]. Several approaches are known to reduce or prevent chequerboard oscilla-
tions, of which two main methods are discussed below.

A method to avoid chequerboard oscillations is by making use of the previously explained staggered grid
approach [141] in Sec. 4.1.1.4, which stores the pressure and velocity values at the cell centres of the main
grid and an additional displaced grid. A strong coupling between velocity and pressure values is obtained,
due to a direct relation with cell-centred values of cell P .

An alternative, frequently-used method to eliminate chequerboard oscillations, when utilizing a collocated
grid, is through Rhie and Chow interpolation [151]. Rhie and Chow interpolation mimics a staggered grid
approach and obtains the mass flux across cell faces by means of interpolation [217]. A correction term is
introduced, which calculates the difference in pressure gradient at the cell face between the actual value and
its interpolated value.

The derivation of the Rhie and Chow correction is explained on a one-dimensional uniform grid consider-
ing cell centres P and E with face e, as partly shown in the two-dimensional collocated uniform grid in
Fig. 4.1. The second term on the right-hand side is defined as the Rhie and Chow correction [16]

Ue = Ue − de

(
∂p

∂x

∣∣∣∣
e

− ∂p

∂x

∣∣∣∣
e

)
, (4.60)

where e represents the face in between cell centroids P and E. The component representing the interpolated
pressure gradient, shown in Eq. (4.60) with an overbar notation, ∂p/∂x, is subtracted from the actual calcu-
lated value of the pressure gradient at cell face e, resulting in a modified value of the interpolated velocity
at cell face e. de indicates the volume of the cell divided by the diagonal coefficients, (VP /aP ), interpolated
onto cell face e. The difference in values of the actual and interpolated pressure gradients contributes to the
damping of the chequerboard oscillations, which gently vanishes with the convergence rate of the solution [16].

Before explaining the derivation of the Rhie and Chow correction technique, the origin of chequerboard
oscillations requires more attention. Chequerboard oscillations are an undesirable effect, emerging from the
discretisation of the momentum equation. However, it depends on what discretisation scheme is applied.

The origin of oscillations is shown by explaining the process of discretisation and interpolation in more detail
below. For simplicity, only steady-state conditions are considered, which means that time-dependent terms
and source terms in the momentum equation are excluded from this derivation. The discretised momentum
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equation can be written as

aP UP +
∑

aiUi = − ∂p

∂x

∣∣∣∣
P

VP , (4.61)

which is identical to the discrete momentum equation shown in Eq. (4.29), however, without the source
term SU . The momentum equation essentially represents, on the left-hand side of the equation, convective
and diffusive fluxes from adjacent cells into cell P , which has to be in equilibrium with the pressure gradient
across cell P , written on the right-hand side of the equation. Eq. (4.61) can be rewritten as

UP = − 1
aP

∑
aiUi − VP

aP

∂p

∂x

∣∣∣∣
P

, (4.62)

which, again, can be rewritten as

UP = ŨP − dP
∂p

∂x

∣∣∣∣
P

, where ŨP = − 1
aP

∑
aiUi and dP = VP

aP
. (4.63)

The discretised momentum equations can also be obtained for cells E and W , shown in Fig. 4.1, using the
same approach, resulting in

UE = ŨE − dE
∂p

∂x

∣∣∣∣
E

, UW = ŨW − dW
∂p

∂x

∣∣∣∣
W

, (4.64)

which are used later in this section. However, first, the pressure gradient component is studied, computed
here using a central differencing scheme, where the gradient then becomes

∂p

∂x

∣∣∣∣
P

= pe − pw

∆x
= pE − pW

2∆x
, (4.65)

which is the primary cause of the chequerboard oscillations. The pressure gradient of cell centre P does not
depend on the pressure gradient values of cell P itself, but is rather only dependent on the cell-centred values
of the east- and west-side neighbours of cell P , cells E and W . To understand why this leads to chequerboard
oscillations, the continuity equation is discretised first, as

(Ue − Uw)∆y = 0, (4.66)

which is identical to the first term shown in Eq. (4.52). It can be assumed that the momentum equation is
solved before the continuity equation, which implies that velocity values at the cell centres are known. As a
result, values at the cell faces, Ue and Uw, can be computed by means of linear interpolation, as

Ue = 1
2(UP + UE), Uw = 1

2(UW + UP ). (4.67)

Then, Eq. (4.67) is substituted into the discretised continuity equation, given in Eq. (4.66), as(
1
2(UP + UE)

)
−
(

1
2(UW + UP )

)
= 0, (4.68)

which can be simplified as
UE − UW = 0. (4.69)
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The momentum equations for cells E and W , shown in Eq. (4.64), are substituted into Eq. (4.69), resulting in(
ŨE − dE

∂p

∂x

∣∣∣∣
E

)
−
(

ŨW − dW
∂p

∂x

∣∣∣∣
W

)
= 0. (4.70)

Lastly, the pressure gradient terms of cells E and W can be substituted into Eq. (4.70), as(
ŨE − dE

pEE − pP

2∆x

)
−
(

ŨW − dW
pP − pW W

2∆x

)
= 0, (4.71)

which represents the pressure calculation at cell centre P . pEE and pW W indicates the cell-centred pressure
values of cells EE, located on the east-side of cell E, and cell WW , located on the west-side of cell W . Note
that the pressure in cell P depends on the pressure in cells EE and WW , however, it does not depend on the
pressure in adjacent cells E and W . As a result, two separate solutions for the pressure field are obtained, as
illustrated in Fig. 4.6 by two different colours. Most software does not recognize chequerboard oscillations as
an error, but as two separate solutions instead. Therefore, it is the task of the user to recognize chequerboard
oscillations and to find a method to remove it.

PWWW E EE

Figure 4.6: Two separate solutions resulting in a chequerboard pattern.

Rhie and Chow [151] derived a technique that removes the chequerboard oscillations on a collocated grid.
They introduced a correction term, which is added to the method of linear interpolation. To obtain the
velocity value at cell face e, linear interpolation is used

Ue = lxUP + (1 − lx)UE , with lx = xe − xP

xE − xP
, (4.72)

resulting in an equation, which is identical to Eq. (4.25). The distance fraction is indicated by lx, which equals
0.5 for a uniform grid. A correction term is added to the linear interpolation equation, resulting in

Ue = lxUP + (1 − lx)UE + Correction, (4.73)

which can be rewritten as

Ue = Ue + Correction, (4.74)

where the overbar notation indicates linear interpolation [16]. Hence, Ue represents the velocity at cell face e,
which is linearly interpolated from velocity values at cell centres P and E. The concept behind the correction
term needs to be explained first. A staggered grid is introduced, as shown in Fig. 4.5, with cell centres of
the staggered grid aligned with cell faces of the main grid. Momentum equations for the staggered grid are
obtained, however, these will not be solved. Instead, these equations will be rearranged and rewritten in terms
of the variables at cell centres P and E.

The discretised momentum equation of cell face e can be written similarly as done for the momentum equations
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of cell E and W in Eq. (4.64), resulting in

Ue = Ũe − de
∂p

∂x

∣∣∣∣
e

, (4.75)

where Ue is the desired velocity on cell face e. Rearrangement of Eq. (4.75) is required, because Ũe is unknown.
Consequently, the main crux in the derivation of the correction term is the substitution of Ũe, by using linear
interpolation as

Ũe = lxŨP + (1 − lx)ŨE , (4.76)

with ŨP and ŨE as known values from Eqs. (4.63) and (4.64). Substitution of these equations into Eq. (4.76),
gives

Ũe = lx

[
UP + dP

∂p

∂x

∣∣∣∣
P

]
+ (1 − lx)

[
UE + dE

∂p

∂x

∣∣∣∣
E

]
, (4.77)

which can be rearranged by collecting the velocity and pressure gradient values, as

Ũe = [lxUP + (1 − lx)UE ] +
[
lxdP

∂p

∂x

∣∣∣∣
P

+ (1 − lx)dE
∂p

∂x

∣∣∣∣
E

]
. (4.78)

The first two terms on the right-hand side in square brackets can be written in overbar notation, as the
first term represents the linearly interpolated face velocity Ue and the second term indicates the interpolated
gradient on cell face e. This results in

Ũe = Ue + de
∂p

∂x

∣∣∣∣
e

, (4.79)

which is substituted back into the momentum equation of the staggered cell e, shown in Eq. (4.75), resulting in

Ue = Ue − de

(
∂p

∂x

∣∣∣∣
e

− ∂p

∂x

∣∣∣∣
e

)
, (4.80)

which assumes that de ≈ de [16]. Eq. (4.80), of which the second term is defined as the Rhie and Chow
correction, is identical to Eq. (4.60), which implies that the derivation is complete.

4.1.2 Volume of Fluid Method

The volume of fluid (VoF) method is a numerical FVM technique, used in software, such as OpenFOAM,
to describe the interface between two immiscible and incompressible fluids. This method determines volume
fractions of one of the fluids across cell faces per time step, to describe a sharp interface [55, 153]. Two VoF
methods can be distinguished, a geometric and algebraic approach. Geometric methods use information ob-
tained from volume fractions to explicitly reconstruct the interface. This in contrast to the algebraic method,
which solves a linear algebraic system to advect the interface, resulting in high computational efficiency [113].
Additionally, the algebraic approach does not have mesh restrictions. However, results are not as accurate as
the geometric method, due to the inability to maintain a constant width of the interface. The implementation
of the geometric method is more complex, with higher computational cost [153, 154].
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An alternative numerical technique for multiphase flows, similar to the VoF method, is the Level-set (LS)
method. This approach is more accurate than the VoF method at preserving a sharp interface, and in its in-
terfacial properties, such as normal and curvature, which are mainly used for surface tension effects. However,
a disadvantage of the LS method, compared with the VoF method, is the lack of mass conservation, which
can result in poorly computed flow regions [42].

VoF methods comprise three steps. The first step is the interface reconstruction method, in which an isosur-
face concept is used for modelling the interface inside cells. The second step is the interface advection, which
computes the total fluid volume transported across a cell face over a single time step. The third step is the
surface tension method, which includes interfacial surface tension effects. This step is generally incorporated
into the momentum equation as a source term, following the continuous surface force model [55], which is not
included in the small-scale model. Therefore, the surface tension method is not further elaborated on in this
section.

To explain the VoF method in more detail, an arbitrary domain D, with two incompressible isothermal
and immiscible fluids, A and B, are considered, see Fig. 4.7. The interface between fluid A and B is indicated
by surface S.

Domain D

Fluid A

Fluid B

Interface

1 2 3 4

8765

9 10 11 12

16151413

Figure 4.7: Cell 1-4: α1 = 0, cell 5-12: 0 < α1 < 1, cell 13-16: α1 = 1.

The evolution of the interface can be described by the continuity equation [159], which can be written as

d

dt

∫
VP

ρdV +
∫

∂VP

(ρU · n)dS = 0, (4.81)

in which the change of mass in a cell is written as the mass flux through the faces of the cell. VP represents
the volume of cell P with dV as the differential volume and ∂VP its volume boundaries. dS indicates the
differential surface, with n the unit normal vector pointing out of the volume. A prescribed velocity, U , is
assumed. Roenby et al. [155] disregarded viscous and surface tension effects for simplification. As a result
of incompressibility, both fluids are constant in density ρA and ρB [153]. Density, or any other composite
material parameter, shows a discontinuity at the interface, which therefore can be written in terms of the
Heaviside function, H, as

ρ = ρAH + ρB(1 − H). (4.82)

However, pure advection is considered in this example of incompressible fluids, resulting in a density-independent
solution. Hence, the Heaviside function, H, is used to eliminate density from the equation

H = ρ − ρB

ρA − ρB
, (4.83)
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where H = 1 for ρ = ρA and H = 0 for ρ = ρB .

Solution domain D is, by means of the FVM, discretised into a finite number of cells. Substitution of
Eq. (4.83) into Eq. (4.81) and additionally integrating Eq. (4.81) from time t to time t + ∆t, results after
some rearrangement in the updated volume fraction of cell P as

αP (t + ∆t) = αP (t) − 1
VP

∑
k

∫ t+∆t

t

∫
∂VP

(HU · n)dSdτ, (4.84)

where αP (t) is the volume fraction of cell P . A differential time frame within time step t to t+∆t is represented
by dτ . The double integral indicates the total volume of fluid A transported across all cell faces k = n, e, s, w

of cell P for a given time interval, which is given as

∆Vk(t, ∆t) =
∫ t+∆t

t

∫
∂VP

(HU · n)dSdτ, (4.85)

resulting in a fundamental equation, rewritten as

αP (t + ∆t) = αP (t) − 1
VP

∑
k

∆Vk(t, ∆t). (4.86)

Eq. (4.86) represents the fundamental continuity equation of cell P from which one must derive any consistent
interface advection method. A continuity equation is solved for the volume fraction for each additional phase
in a multiphase model. For two fluids A and B, as shown in the example given in Fig. 4.7, only one continuity
equation has to be solved, as a constraint condition requires that in each cell in the domain the sum of the
volume fractions equals one. The volume fraction of fluid A can be calculated as

αP (t) = 1
VP

∫
VP

HdV. (4.87)

Both the velocity field at the cell centres and the velocity field across the cell faces can be written similar
to Eq. (4.87), as

UP (t) = 1
VP

∫
VP

UdV, ϕk(t) =
∫

∂VP

(U · n)dS, (4.88)

where ϕk(t) is the volumetric face flux.

The evolution of the interface is described by an additional continuity equation for the volume fraction,
which can be obtained by integration and discretisation of the continuity equation [153, 155], as shown
in Eqs. (4.81) and (4.84).

Numerical difficulties are related to the discretisation of the continuity equation for the volume fraction.
One of these difficulties is ensuring an interface that is constant in thickness. In other words, the preven-
tion of artificial diffusion. Another difficulty is assuring a monotonic change of variables, also known as the
boundedness criterion [202]. Commonly used discretisation schemes, such as the upwind differencing scheme
(UDS) and the central differencing scheme (CDS) result in numerical diffusion or dispersion [201]. Accord-
ingly, higher-order discretisation schemes, such as CICSAM (Compressive Interface Capturing Scheme for
Arbitrary Meshes) and HRIC (High-Resolution Interface Capturing scheme) are introduced by Wac lawczyk
and Koronowicz [202], which focus on the convective term in Eq. (4.81), to preserve a sharp interface between
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phases [131].

Wac lawczyk and Koronowicz [202] compared both high-resolution schemes, CICSAM and HRIC. It can be
concluded that CICSAM is less sensitive to diffusion and preserves the shape of the interface better. The main
disadvantage of both schemes is their low order of accuracy, which requires further investigation [202]. The
difficulty regarding boundedness is tackled using MULES (Multidimensional Universal Limiter with Explicit
Solution).

Roenby et al. [153] developed the isoAdvector algorithm, which is an alternative to MULES. The isoAd-
vector method presents promising results, showing a sharper interface, shorter computations, and a lower
sensitivity to mesh size and element types [153, 154, 155]. The algorithm is explained, utilizing domain D

presented in Fig. 4.7, in Sec. 4.1.2.1.

4.1.2.1 IsoAdvector algorithm

The isoAdvector algorithm, based on the VoF method, has been developed by Roenby et al. [153]. The algo-
rithm combines advantages of both the algebraic and geometric methods. It performs on an arbitrary mesh,
preserves the accuracy, and minimizes the geometric operations to ensure acceptable calculation times. The
objective of the isoAdvector method is to find an approximation for the volume transport, ∆Vk(t, ∆t), of a
fluid across a cell face for a given time interval. New features are developed, consisting of two parts, which
are combined with existing VoF characteristics.

In the first part, the surface reconstruction step, an isosurface concept is considered, which redistributes
fluids inside interface cells that are occupied by two fluids. Both sides of the cell occupy exclusively a single
fluid. The second part, the interface advection step, models the motion of the face-interface intersection lines
and quantifies the fluid, which after integration over the time step, results in a good approximation of the
transported volume across the cell face for a given time interval [155]. The fundamental equation, given
in Eq. (4.86), does not contain information about the distribution of fluids inside a cell. Hence, a sub-grid
model has been introduced in the isoAdvector method. The sub-grid model can only be applied on the
condition that the cell size is small enough so that the interface is fully absorbed by the mesh. When meet-
ing that requirement, computation of the isosurface results in an adequate distribution of fluids in the cell [153].

Cell P represents one of the interface cells shown in Fig. 4.7. The volume fraction of fluid A in cell P

over a single time step t to t + ∆t is represented by αP (t + ∆t), and obtained by completing two parts. The
first part starts with the reconstruction of the fluid interface inside cell P from data at the previous time step,
t, using an isosurface approach that primarily interpolates volume fractions from the centre to all vertices of
cell P [153, 155].

By making use of an isovalue, α0, a constructed isosurface inside cell P can be obtained. A correct value
for α0 can be found by investigating all edges of cell P . Cut edges refer to edges with volume fractions
at one end of a vertex larger than α0 and at the other end of the same vertex smaller than α0. For these
relevant edges, intersection points are computed by linear interpolation, which are connected across cell faces
resulting in the cell-isosurface intersection. Fig. 4.8 shows cell P with vertices in red and intersection points
in blue. The intersection points form an isoface indicated in grey. The isoface cuts cell P into two sub-cells
and redistributes fluids A and B, such that fluid A is placed next to adjacent cells containing fluid A and
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fluid B is placed next to adjacent cells containing fluid B [153, 155].

Figure 4.8: Schematic diagram adapted from Roenby et al. [155], showing interface cell P with a reconstructed
isoface in grey. Vertices and intersection points are illustrated in red and blue. The centre of the isoface and
unit normal vector are depicted in black.

If one would take α0 values ranging from the minimum to the maximum α values found in the vertices of cell
P , the isosurface would travel across the volume of cell P . The selected isovalue, α0, is based on the volume
fraction from the previous time step, αP (t), with the corresponding isoface that has subdivided the cell into
two sub-cells [155].

In the second part, the interface advection step, the position of the interface inside cell P at the previ-
ous time step t is used to approximate the quantities of fluids A and B that moved across cell face k over the
time step t to t + ∆t [155]. To obtain αP (t + ∆t), the velocity on the interval is required, which is found by
assuming a constant velocity over the time step t to t + ∆t. Additionally, the velocity on the face dotted with
the differential face normal vector can be approximated in terms of the volumetric face flux, ϕk(t), as

(U · n)dS ≈ ϕk(t)
|Sk|

dS, with Sk =
∫

∂VP

ndS. (4.89)

where dS = d|S| and Sk is the mean normal vector of cell faces k pointing in outward direction of cell P .
∆Vk(t, ∆t) can be approximated by substitution of Eq. 4.89 into Eq. 4.85, resulting in

∆Vk(t, ∆t) ≈ ϕk(t)
|Sk|

∫ t+∆t

t

Akdτ, (4.90)

representing an approximation of the total volume of fluid A that moves across cell face k for a time interval
t to t + ∆t, with the submerged area of cell face k defined as

Ak =
∫

∂VP

HdS. (4.91)

Fig. 4.9 shows a schematic diagram of the top face of cell P , illustrating face-interface intersection lines at t

and t + ∆t. To find an estimate of how much the velocity moves the isoface within cell P , it is of importance
to find estimations of the variation of Ak over time within time step t to t + ∆t.

Note that first the velocity is interpolated to the centre of the isoface at time t, shown in Fig. 4.8 by a
black dot. The dot product is taken with the unit normal vector of the isoface, also shown in Fig. 4.8, result-
ing in the velocity perpendicular to the isoface. The location of all vertices and the centre of the isoface at
time step t are known, which means that the perpendicular distance between each vertex and the centre of

54



the isoface can be computed [153, 155].

t

t+ t

Figure 4.9: Schematic diagram adapted from Roenby et al. [155], showing face interface intersection lines in
blue at time interval t to t + ∆t. The black dotted lines represent the ’time of arrival’ of all vertices with the
shaded area illustrating a subinterval between τ2 and τ3, which should not be confused with the isoface shown
in Fig. 4.8.

As a result, the ’time of arrival’ of all vertices can be obtained, shown in Fig. 4.9 by τi with i = 1, 2, 3, 4 with τ1

and τ4 positioned outside of the of time interval t to t + ∆t. Between τ2 and τ3 the face-interface intersection
line has moved in a quadrilateral-shaped volume. Assuming that the motion of the line is constant in time,
then Ak can be expressed in terms of τ on the subinterval between τ2 and τ3.

If one would repeat this exercise for all subintervals, a value for Ak is obtained. Integration over time
results in a good approximation of the total volume that has been moved across the cell face, meaning a value
for ∆Vk(t, ∆t) has been found [153, 155].

4.1.3 Boundary conditions

Boundary conditions (BCs) are required to solve the system of differential equations, used as additional con-
straints to the system. The obtained solution satisfies both the differential equation and the BCs. Generally,
a boundary is subdivided into a set of patches. A patch comprises one or more enclosed areas of the boundary
surface, which do not have to be physically linked.

OpenFOAM has a large variety of BCs available. However, this section will only focus on two types: the
zero-gradient BC and the periodic BC. The zero-gradient BC and periodic BC are explained in more detail,
because these ones are applied in the small-scale model.

The zero-gradient BC simply extrapolates the quantity to the patch from the nearest cell value. This implies
that the quantity developed in space and its gradient is equal to zero in the direction perpendicular to the
boundary. In mathematical notation a zero-gradient BC can be written as

∂

∂n
ϕ = 0, (4.92)

where n represents the normal vector and ϕ an arbitrary variable in the domain. Fig. 4.10(a) illustrates the
zero-gradient BC by means of a schematic drawing. The boundary is named ’right’. The values of an arbitrary
variable, ϕ, are shown at the cell centre, indicated by black arrows. The red arrows represent the extrapolated
values, assuming a gradient equal to zero.
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Figure 4.10: Schematic drawing of the two types of BCs used in this study, illustrating (a) zero-gradient BCs
(b) periodic BCs.

The periodic BC can only be used when the expected flow pattern is of a periodically repeating nature, which
implies for example a forcing either spatially or temporally constant. Periodic BCs are used to approximate a
larger (infinite) domain by using a smaller part, a unit cell, to reduce computational effort. This BC represents
a coupling condition between a pair of patches.

Fig. 4.10(b) illustrates the periodic BC. The boundaries are named ’left’ and ’right’. Values at the cell
faces are indicated by a black arrow, which are linearly interpolated from their adjacent cell values. The red
arrows represent the coupled values. Cell faces on each coupled patch must have the same topology, which
means that the patches must have collocated points such that a one-to-one mapping exists between the faces
on each side. Patches are strictly paired, with variable values at the one boundary equal to variable values
at the matched boundary. The coupling is treated implicitly using the cell values adjacent to each pair of
periodic patches. The values at the cell faces are obtained, using linear interpolation between the cell values.

4.2 Implementation details of the small-scale sea ice model in Open-
FOAM

The OpenFOAM features, explained in Sec. 4.1, are applied in this section to the small-scale sea ice model.
The implementation in OpenFOAM is described, by making use of the FVM and VoF method. Both the ice
floe rheology and grease ice rheology are discussed thoroughly, showing a combined set of equations. The
numerical stability and convergence of the model are described and the applied boundary conditions, as well
as the divergence schemes in the small-scale model are mentioned.

4.2.1 Ice type separation via the Volume of Fluid Method

In order to spatially distinguish between the material constituents, the VoF method is used. The VoF method
is a numerical technique, describing the interface between two immiscible and incompressible fluids in a com-
putational fluid dynamics model. This method determines volume fractions of fluids across the cell faces per
time step and distinguishes both materials based on the non-dimensional parameter α [153, 154, 155].

The VoF method is complemented with an interface compression scheme, that enforces a sharp interface
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between dominantly solid-like ice floes and viscous-plastic fluid-like interstitial grease ice. This project specif-
ically makes use of the IsoAdvector scheme, discussed in Sec. 4.1.2.1. Cells containing exclusively ice floes
or grease ice have phase fractions, α, of 1 or 0, respectively. All intermediate values (0 < α < 1) have no
physical interpretation, but are needed in the FVM to ensure a smoothly varying continuous field. The region
of 0 < α < 1 should be numerically constrained to the thin interface between the two ice materials.

The VoF method in the small-scale model, with its non-dimensional parameter α, differentiates between
ice floes and grease ice. This can be formulated as

α2 = 1 − α1, (4.93)

where α1 = 1 represents ice floes and α1 = 0 (and thus α2 = 1) represents grease ice.

With the VoF approach in mind, the normalised momentum balance equation, shown in Eq. (3.3), can be
written as

h

(
∂U

∂t
+ (U · ∇)U

)
= α1

(
∇·σ′

f

)
+ α2

(
∇·σ′

g

)
+ S′, (4.94)

where the normalised Cauchy stress tensor, σ′, is written either in terms of the normalised ice floe stress,
σ′

f , or grease ice stress, σ′
g. The normalised source terms, which originate from the atmospheric and oceanic

forcing, are included in the source term S′.

Eq. (4.94) shows how the VoF method distinguishes between the normalised ice floe stress and grease ice
stress. The same method is applied to all material parameters, such as the sea ice density and thickness,
given as

ρ = α1ρf + α2ρg, h = α1hf + α2hg, (4.95)

where ρf and ρg represent the density of ice floes and grease ice, respectively, with corresponding thickness,
indicated by hf and hg.

The momentum equation is written to solve the system of the form

Mx = b, (4.96)

where matrix M represents a sparsely populated, diagonally dominant matrix. Additionally, implicit and
explicit terms are distinguished. Implicit terms are included within matrix M , whereas explicit terms are
incorporated as a source within vector b. The variables that need to be solved are represented by vector x.
The momentum equation is treated semi-implicitly, which requires iteration until convergence is obtained.

57



Substitution of Eqs. (3.11) and (3.15) in Eq. (4.94), results, after rearrangement, in

h

(
∂U

∂t
+ (U · ∇)U

)
= α1

∇·σ′b
f + ∇ · (∆tµ′(∇U + (∇U)T ) + ∇ · (λ′Itr(∇U))︸ ︷︷ ︸

explicit

 (4.97)

+ α2

∇· (η′∇U)︸ ︷︷ ︸
implicit

+ ∇ · (η′∇U)T ) + ∇ · (ζ ′ − η′)Itr(∇U) − ∇p′
g︸ ︷︷ ︸

explicit

+ S′,

where p′
g = P ′

g/2. As a result, a combined set of equations is obtained. The implicit and explicit terms
are indicated in Eq. (4.97) for both the ice floe and grease ice rheology. The normalised viscosities, Lamé
parameters and grease ice strength parameter are represented by a superscript ′.

Both ice floes and grease ice are modelled in a continuum fashion, using the FVM implementation in Open-
FOAM. As a result, the form drag, acting at the circumference of the ice floes due to the velocity differences of
floes and the surrounding grease ice, is implicitly accounted for by the continuity requirement of the velocity
field throughout the domain. This requirement, in a continuum approach comprising of two ice constituents,
enforces the velocity continuity at the interface.

The continuity requirement also governs the interaction between colliding ice floes, which resists the colli-
sion forces via the stress and strain rate response. As a result, the floe-floe and the floe-grease ice interactions
are naturally accounted for in terms of their normal and tangential force components.

4.2.2 Numerical stability and convergence

The numerical solution of the combined set of equations, shown in Eq. (4.97), can be stabilised to improve
convergence. This is done through the addition of implicit terms, which are subtracted as explicit terms.
Both the implicit and explicit terms cancel each other out at convergence within a single time step, which
implies that the net contribution is zero. This trick is referred to as matrix conditioning [82].

The reason for adding implicit terms into matrix M , is to increase the portion of implicit terms. Other-
wise, the explicit portion of the diffusive terms would be larger than the implicit part. As a result the solution
would be driven by the set of explicit source terms, which negatively impact convergence rates [82]. It has the
further additional benefit of improving the diagonal dominance of the matrix, which improves the convergence
speeds of sparse, iterative, linear solvers.

The term ∇ · (∆t(2µ′ + λ′)∇U) is added to the ice floe rheology as implicit term and subtracted as ex-
plicit term, whereas ∇ · (ζ ′∇U) is implicitly added to the grease ice rheology and subtracted explicitly. This
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results in the momentum equation, which can be written as

h

(
∂U

∂t
+ (U · ∇)U

)
=α1

∇ · (∆t(2µ′ + λ′)∇U)︸ ︷︷ ︸
implicit

 (4.98)

+α1

∇·σ′b
f + ∇ · (∆tµ′(∇U + (∇U)T ) + ∇ · (λ′Itr(∇U)) − ∇ · (∆t(2µ′ + λ′)∇U)︸ ︷︷ ︸

explicit


+α2

∇· (η′ + ζ ′∇U)︸ ︷︷ ︸
implicit

+ ∇ · (η′∇U)T ) + ∇ · (ζ ′ − η′)Itr(∇U) − ∇ · (ζ ′∇U) − ∇p′
g︸ ︷︷ ︸

explicit

+ S′.

A more detailed explanation regarding the implicit and explicit contribution of the ice floe rheology, is dis-
cussed in Sec. 4.2.3.

When a coupled system is solved by means of iteration, changes in one variable can affect the coefficients
determining another. This could lead to slow convergence or even divergence. The convergence can be im-
proved by limiting the change in each variable between corrector steps. This is done by means of relaxation
of the solution. To do this for the velocity between iterations, velocity is updated before each solution of the
momentum equation [82].

The easiest method is choosing a fixed value for the relaxation parameter, ω, for all time steps. The relaxation
parameter is, however, extremely problem specific, which implies that a fixed value is most ineffective. The
value of the relaxation parameter needs to be small enough to ensure that the iteration does not diverge,
but should be as large as possible to make most use of the new solution and to avoid unnecessary iterations.
Therefore, the optimal ω value is problem specific and unknown beforehand, as it may vary between time
steps. Even an optimal fixed value leads to more iterations than a suitable dynamic relaxation parameter [101].

Accordingly, the small-scale model applies Aitken’s dynamic relaxation method, which is commonly used
within the community of fluid-structure interactions. The main concept of Aitken’s method is to utilize val-
ues from two previous iterations, to improve the current solution. The update of the velocity, including a
relaxation factor, ωk, results in

Uk+1 = Uk + ωkrk+1, (4.99)

where k represents the current coupling iteration count and rk+1 the solution residual. Aitken’s dynamic re-
laxation defines an update rule to dynamically modify the relaxation parameter using the residual results from
two previous iterations. This relaxation method has proven to significantly accelerate the overall behaviour
of convergence.

4.2.3 Implementation of the ice floe rheology

The generalised Hooke’s law ideally represents the elastic ice floe rheology with small deformations, where
ice floes undeform to their original unstressed state after unloading. However, the method proposed in the
small-scale model has a Hookean-like flow rule for solid regions. Given the implementation of the floe rule,
while the model is capable of representing ’solid-like’ behaviour, it does not account for elastic unloading
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back to the original undisplaced configuration. In other words, once an ice floe has been deformed, it won’t
undeform to its original state. This issue, however, is effectively limited as only ice floes are considered deeper
into the MIZ, where gentle floe collisions take place. Therefore, the kinetic energy of colliding ice floes can be
considered to be largely dissipated due to inelastic deformations of the soft outer rim of ice floes.

A detailed description of the implementation of the ice floe rheology is discussed, explaining the phenomenon
of chequerboard patterns which is a major complication of the stress distribution, when solving the solid flow
rule using the FVM method. Given the limitations of the FVM method, fully avoiding chequerboarding is
not possible, when considering the solid flow rule. This section will therefore elaborate on an alternative
formulation to avoid chequerboard oscillations.

The normalised momentum balance equation, shown in Eq. (4.94), is given as

h

(
∂U

∂t
+ (U · ∇)U

)
= α1

(
∇·σ′

f

)
+ α2

(
∇·σ′

g

)
+ S′, (4.100)

showing the divergence of the normalised ice floe stress tensor, ∇·σ′
f .

As previously mentioned in Chap. 3, Hooke’s law can be rewritten in linearised form, as

σ′b+1
f︸ ︷︷ ︸

current time step

= σ′b
f︸︷︷︸

previous time step

+ ∆t
(
µ′(∇U + (∇U)T ) + λ′Itr(∇U)

)︸ ︷︷ ︸
current time step

, (4.101)

where the stress is defined in terms of the velocity. The calculation of the stress at the current time step,
shown on the left-hand side of Eq. (4.101), depends on the stress from the previous time step plus a sea ice
velocity-dependent stress component at the current time step. Stress from the previous time step, σ′b

f , is
entirely decoupled from U and is essentially a constant for a given time step, which cannot be updated.

A collocated FVM approach, however, cannot track the stress state without a numerical complication, which
is the chequerboard pattern in the stress distribution, leading to undesirable stress results. Chequerboard
oscillations can occur under two circumstances i) stress from the previous time step, as the stress is essentially
a constant, ii) stress from the current time step. The same issue arises when solving for the pressure gradient,
explained in Sec. 4.1.1.1. The main difference, however, is that unlike the pressure gradient, σ′b

f is a constant,
and therefore cannot be updated within the current time step. This is an unsolvable problem given the current
choice of the implemented framework and requires an alternative stress approach.

As previously mentioned in Sec. 4.2.2, the divergence of the normalised ice floe stress tensor, ∇·σ′
f , can

be split, and written in implicit and explicit terms, as

∇·σ′
f =α1

∇ · (∆t(2µ′ + λ′)∇U)︸ ︷︷ ︸
implicit

 (4.102)

+α1

∇·σ′b
f + ∇ · (∆tµ′(∇U + (∇U)T ) + ∇ · (λ′Itr(∇U)) − ∇ · (∆t(2µ′ + λ′)∇U)︸ ︷︷ ︸

explicit

 ,
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where, ∇ · (∆t(2µ′ + λ′)∇U), is added implicitly and subtracted explicitly for stabilisation, to improve con-
vergence and to resolve chequerboard oscillations. If the implicit and explicit terms were not included, then
chequerboarding would occur when considering the stress from the current time step. Mathematically, at
convergence, both the added implicit and explicit terms cancel each other out, however, they are included
to add crucial computational stability in the spirit of the Rhie and Chow interpolation. Note, however, as
mentioned in Sec. 4.1.1.6, that the Rhie and Chow interpolation solves chequerboard oscillations referring to
the current time step. This implies that chequerboard oscillations in the small-scale model, are not fixed by
the Rhie and Chow interpolation, as these oscillations originate from stress at the previous time step.

In the alternative stress approach, implicit and explicit terms are separately implemented, starting with
the normalised explicit part of the stress divergence, which can be written as

∇ · σ′b+1
f = ∇ · (σ′

D − ∆t(2µ′ + λ′)∇U), (4.103)

where σ′
D represents the stress at the current time step, given as

σ′
D = ∆t(µ′(∇U + (∇U)T ) + λ′Itr(∇U)). (4.104)

The second term on the right-hand side of Eq. (4.103), subtracted from σ′
D, is implicitly added to the left-hand

side of the equation of motion as a Laplacian term. The Laplacian operator is mathematically the divergence
of the gradient of a function. A Laplacian term computes gradients at the cell centres, and subsequently
interpolates gradients to face centres, whereas an explicit divergence term interpolates cell centred values to
face centres. Hence, it includes both gradient and cell centred values for corrections.

Including the stability terms resolved the oscillations associated with stress from the current time step.
As shown in Eq. (4.102), an additional benefit of adding a Laplacian term to the equation of motion is the
inclusion of an implicit stress component, which is velocity dependent. However, the stability terms do not
address the chequerboard oscillations associated with stress from the previous time step. Therefore, this stress
component requires a different approach, which is discussed below.

The second normalised explicit part of the stress divergence can be written as

∇·σ′b
f , (4.105)

which represents the divergence of the stress tensor from the previous time step. Stress from the previous
time step is a constant and cannot be updated within the current time step. Accordingly, in the alternative
stress approach, the stress from the previous time step is advected, to ensure that the old stress moves along
with the moving ice floes, as (

∂σ′b
f,ij

∂t
+ ∇ · (σ′b

f,ijU)
)

= 0, (4.106)

where σ′b
f,ij is a scalar, which represents each stress component from the previous time step, with i and

j = 1, 2, 3. The cell-centred values of ∇ · σ′b
f are computed explicitly by using the formal definition of the

divergence, as

∇ · Ti = tr(∇Ti), (4.107)
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rather than the default divergence operator in OpenFOAM. The default operator makes use of Gauss’ theo-
rem. This, however, as previously explained in Sec. 4.1.1.1, results in chequerboard oscillations.

By manually redefining the divergence operator, using a combination of gradient terms, a higher order gradi-
ent stencil can be used. Three separate vectors are created, Ti, with i = 1, 2, 3. Each vector represents a part
of σ′b

f , as

σ′b
f =

T1

T2

T3

 =

σ′b
f,11 σ′b

f,12 σ′b
f,13

σ′b
f,21 σ′b

f,22 σ′b
f,23

σ′b
f,31 σ′b

f,32 σ′b
f,33

 , (4.108)

where the gradient operators are set to fourth-order least-squares [57], allowing the inclusion of information
from more neighbouring cells.

If one could account for the full historical stress then it would be possible to solve for the full stress state,
and therefore be able to account for elastic unloading. While the above treatment resolves chequerboard
oscillations, when considering partial information from the previous time steps, chequerboarding does still
happen if the full previous time step stress is retained. This is discussed in more detail in Sec. 5.3.4.

4.2.4 Spatial and temporal discretisation schemes

Ice floes and interstitial grease ice are spatially discretised in OpenFOAM with the finite volume approach, as
shown in the Appendix in Chap. 10. The discretisation of the divergence and gradient terms of an arbitrary
variable ϕ, at cell centroids and faces, is essential to compute the discretised set of equations [39].

In the small-scale model, the second- and fourth-order least-squares gradient schemes and the Gauss lin-
ear divergence scheme are used for the spatial discretisation. The Gauss divergence scheme is the default
choice for the computation of the finite volume discretisation of Gaussian integration. It requires the interpo-
lation of values from cell centres to cell faces. The Gauss entry requires a more specific interpolation scheme.
The small-scale model makes use of the linear interpolation scheme, also known as the central differencing
scheme.

The Euler implicit method is applied for temporal discretisation. The spatially, and temporal discretisa-
tion schemes are explained in Sec. 4.1.

4.2.5 Applied boundary conditions

The zero-gradient BC, explained in Sec. 4.1, is used in the majority of the simulations in this project. This
BC is, however, restricted in its implementation. The domain boundary is numerically approximated by hor-
izontal zero-gradient BCs, which implies that the gradient of all variables in the direction perpendicular to
the boundary is assumed zero. This is incorrect, as for any non-boundary cell in the domain, cell face values
are found by means of linear interpolation. This results in an error, which is introduced to cell values directly
adjacent to the boundary.

It is, potentially, possible to solve this boundary issue, by developing a BC from scratch. However, a truly
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suitable solution in the application of the small-scale model, has not been found yet. This boundary error
does, however, not affect the variable values further away from the boundary. To overcome this inconsistency
in all numerical test cases performed in this study, the sea ice domain is enlarged. Subsequently, only the
inner portion of the domain is used for the analysis of the results, to ensure that any inconsistencies resulting
from the boundary does not influence the results.

The period BC is used in Chap. 5. Applying this BC to all variables in the sea ice domain, essentially
means that ice floes and grease ice leaving the domain on for example the right-hand side, enter the domain
on the paired left-hand side.
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Chapter 5

Model parameterisation and
preliminary numerical studies

In this chapter all general parameters used in all simulations conducted in this project, are presented in Sec. 5.1.
Preliminary numerical convergence analyses are described in Sec. 5.2, creating conditions for simulations
conducted in Chap. 6. In Sec. 5.3 plausibility studies are discussed, describing simplified sea ice dynamics
problems, which contribute to the validation and verification of the small-scale model.

5.1 Model parameterisation

Both the theory and the implementation of the small-scale model, as described in Chaps. 3 and 4, respectively,
are applied to a wide range of simulations, with different domain sizes, sea ice layouts and external forcings.
Parameter values that are the same in all simulations throughout this thesis, are listed in Tab. 5.1.

Table 5.1: General parameters used in all simulations conducted in this project.
Parameter Definition Value Unit
C10 air drag coefficient at a height of 10m 0.0015 [172] -
eY yield surface axes ratio 2 [68, 81, 104] -
EY Young’s modulus 8.7 × 106 [161] Nm−1

g gravitational acceleration 9.81 ms−2

hf,g thickness ice floes and grease ice 0.31, 0.1 [116] m
hw submerged ice floe thickness 0.189 m
αC Charnock constant 0.011 [43, 158] -
∆min lower limit of the effective deformation rate 2 × 10−7 [104] s−1

θa,w air and water turning angle 0 [182] rad
κ von Kármán constant 0.41 [12, 43] -
λ first Lamé parameter 6.4 × 106 [161] Nm−1

µ second Lamé parameter 3.3 × 106 [161] Nm−1

ν Poisson’s ratio 0.33 [66] -
ρf,g density ice floes and grease ice 879, 997 [149] kgm−3

ρa,w air and sea water density 1.3 [104], 1026 [120] kgm−3
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The thickness and density of ice floes are based on averaged values of in situ measurements taken in the
Antarctic during the SCALE1 winter cruise in 2019 by Skatulla et al. [168]. The thickness and density of
grease ice are based on values found in literature [116, 149], assuming that grease ice is a two-phase mixture,
consisting of a solid, pure ice, and a liquid, seawater. A solid ice fraction of 20% is considered [116]. The
yield surface axes ratio of grease ice is derived from values found in Hibler [68], Hunke and Dukowicz [81] and
Leppäranta and Hibler [104].

The effective elastic ice floe parameters are approximated in the spirit of characteristics for uncompacted
snow [161], considering the very soft rim of ice floes [44], dominating the floe deformation behaviour for gentle
collisions.

According to Wu [213] the Charnock coefficient, αC , is a constant between 0.012 and 0.035. Growing wave
heights result in increasing aerodynamic roughness, which increases the Charnock coefficient value. The
Charnock coefficient, αC , is dependent on parameters such as wave age and wind speed [112], which rep-
resents to some extent how much the wind is decelerated by the waves. Andreas [10] suggests a Charnock
coefficient for snow and sand between 0.010 and 0.016. Saucier et al. [158] has modelled the sea ice-ocean
seasonal cycle in Hudson Bay, Foxe Basin, and Hudson Strait in Canada and used a Charnock coefficient
equal to 0.011.

5.2 Convergence analyses

The convergence analyses concerning grid and domain size are conducted to find i) the optimal cell size to
be used in the discretisation of FVM, in Sec. 5.2.1, and ii) the critical ratio of floe diameter to domain size
as linked to the imposed wave forcing, in Sec. 5.2.2. The domain size convergence analysis allows to find
the threshold between large- and small-scale modelling, where detailed small-scale modelling is required to
actually capture the mechanical response.

Simplified ice layouts are used, consisting of randomly distributed disk-shaped ice floes of constant diam-
eter, Dd = 20m. Loset et al. [110] defined a small ice floe as any relatively flat piece of sea ice, which is
20 − 100m across. The disks are surrounded by grease ice with a temporally and spatially varying viscosity,
νk ≈ 0.04m2s−1, as found in literature [134, 142, 205, 206], corresponding to a constant grease ice strength pa-
rameter, P ∗

g = 0.02Nm−2. The wave parameters are chosen to maintain a constant wave steepness, ak = 0.06,
across the considered cases. This corresponds to storm waves propagating into the marginal ice zone (MIZ), to
highlight their effect on heterogeneous sea ice conditions [5]. The time step, ∆t = 0.01s, for the Euler implicit
method is chosen, providing stable simulations. All variables at the boundary of the domain are numerically
approximated by zero-gradient boundary conditions (BCs).

In the grid size convergence analysis the domain is exposed to a harmonic propagating wave with period
T = 18s, which is equivalent to a wave length of Λ = 506m, and amplitude a = 4.8m, typically encountered
in the Antarctic MIZ [4]. In the domain size convergence analysis three different wave forcing scenarios are
considered with periods T = 6s, T = 12s and T = 18s, equivalent to wave lengths of Λ = 56m, Λ = 225m
and Λ = 506m, respectively, to cover the majority of occurring wave conditions and amplitudes a = 0.5m,
a = 2.1m and a = 4.8m, respectively.

1 Southern oCean seAsonal Experiment http://scale.org.za/
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5.2.1 Grid size

A convergence analysis is conducted, to find the most suitable cell size to study ice floe dynamics. A 100 ×
100m2 inner domain size is considered, with disk-shaped ice floes of 20m-diameter [110]. As zero-gradient
BCs are applied, the domain is enlarged to 300 × 300m2 to exclude undesired boundary effects for the inner
domain, as shown in Fig. 5.1 by the black box. Multiple simulations are carried out, each time with an
increasing number of cells in the problem domain.

(1) (2) (3)

Figure 5.1: Three different grid refinement levels of a 300×300m2 domain of uniformly distributed disk-shaped
pancake floes each with 100 × 100m2 inner domains with discretisations of (1) 2500 cells with a 2 × 2m cell
size, (2) 10000 cells with a 1 × 1m cell size and (3) 160000 cells with a 0.25 × 0.25m cell size.

To accurately resolve the interface of ice floes and the surrounding grease ice, discretisations featuring a higher
number of cells provide a sharper boundary as indicated by the white colour in the ice floe-grease ice layouts
depicted in Fig. 5.1 at t = 0s. For each discretisation refinement level, the spatial average of ice floe stress
and grease ice strain rate magnitudes, σmag and ϵ̇mag, respectively, as well as the grease ice bulk viscosity, ζ,
are computed. The stress and strain rate magnitude are calculated as

σmag = √
σijσij , ϵ̇mag =

√
ϵ̇ij ϵ̇ij , (5.1)

where σij and ϵ̇ij represent the Cartesian components of both the stress and strain rate tensor, respectively.
Once the average is unaffected by changes in cell size, a suitable mesh is deemed to be found.

(a) (b) (c)

Figure 5.2: Comparing the domain-averaged sea ice rheology variables for four different discretisations, show-
ing (a) the stress magnitude [kgs−2], (b) the strain rate magnitude [s−1] and (c) the bulk viscosity [kgs−1].
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Fig. 5.2 shows the main sea ice rheology variables for four different number of cells in the 100 × 100m2 inner
domain. The black and grey curves, representing 90000 and 160000-cell inner domains, respectively, show
similar values indicating convergence. From the grid-size convergence analysis performed, the required cell
size providing mesh-independent results was determined as 0.33 × 0.33m2. Therefore, the problem domain of
all simulations conducted in the upcoming chapters have a cell size of at least 0.33 × 0.33m2.

5.2.2 Domain size

If large-scale regional models are to be informed by the actual material behaviour as originated on a smaller
scale, averaged material parameters need to be obtained from homogenisation and upscaling procedures.
These rely on the identification of the minimum domain size threshold where the actual kinematics and ma-
terial composition of the problem must be addressed in detail and the averaged quantities are statistically
representative for larger domains. Here, the focus is placed on the ice floe interaction as influenced by inter-
stitial grease ice and wave dynamics.

A total domain size of 3600 × 3600m2 is considered with disk-shaped ice floes of 20m-diameter [110], from
which results are extracted for smaller inner domains, ranging from 100 × 100m2 to 3200 × 3200m2. This
ensures a boundary zone of at least 400m around each of the inner domains to exclude unwanted bound-
ary effects due to the zero-gradient BCs. Fig. 5.3 shows the smallest three inner domain sizes ranging from
100 × 100m2 to 400 × 400m2.

100x100m2

200x200m2

400x400m2

Figure 5.3: Inner domain sizes ranging from 100 × 100m2 to 400 × 400m2 with constant ice floe-grease ice
ratios. Ice floes are modelled as disk-shaped floes of 20m-diameter. Red and blue represent ice floes and grease
ice, respectively, considering constant ice floe and grease ice thicknesses of 0.31m and 0.1m, respectively.

The ice floe concentration from the largest domain size, 3200 × 3200m2, to the smallest, 100 × 100m2, ranges
from 40% to 38%, due to a randomly distributed sea ice layout. The domain is discretised, using a constant
cell size of 2 × 2m2. The threshold for convergence concerning the minimum required domain size is found
by calculating the domain-averaged stress and strain rate magnitudes, σmag and ϵ̇mag, respectively, as well as
bulk viscosity, ζ, for increasing inner domain sizes. Once the average is unaffected by changes in the domain
size, the transition from small to large-scale modelling is identified, and the link to a phenomenological model
using homogeneous material properties is established. This allows to study the detailed mechanical response
of the sea ice rheology on a smaller scale, which is different for any domain size smaller than the threshold.
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(a) (b)

(e)(d)

(c)

(f)

(i)(h)(g)

Figure 5.4: Comparing the domain-averaged sea ice rheology variables for different inner domain sizes. Three
different wave periods are considered, T = 6s, T = 12s and T = 18s, showing (a) the stress magnitude [kgs−2]
for T = 6s, (b) the stress magnitude [kgs−2] for T = 12s, (c) the stress magnitude [kgs−2] for T = 18s, (d)
the strain rate magnitude [s−1] for T = 6s, (e) the strain rate magnitude [s−1] for T = 12s, (f) the strain
rate magnitude [s−1] for T = 18s, (g) the bulk viscosity [kgs−1] for T = 6s, (h) the bulk viscosity [kgs−1] for
T = 12s and (i) the bulk viscosity [kgs−1] for T = 18s.

Figs. 5.4(a-c) show the overall domain-averaged stress in both ice floes and grease ice for different domain
sizes and three different wave periods. Clearly, smaller wave periods reduce the required domain size for
convergence. For the largest wave period of T = 18s, the threshold is identified at an inner domain size of
1600 × 1600m2, where the blue and red curves in Figs. 5.4(c), (f) and (i), representing an inner domain size
of 1600 × 1600m2 and 3200 × 3200m2, respectively, show very similar values. In contrast to the smallest wave
period of T = 6s, the minimum needed inner domain size is only 400 × 400m2.

Accordingly, to justify small-scale modelling a domain-size threshold is identified as smaller than 400 × 400m2

where temporal and spatial fluctuations of the sea ice rheology variables become significant for all considered
wave periods T = 6 − 18s with uniformly disk-shaped ice floes with a 20m diameter. This wave period-
dependent threshold marks the transition from small- to large-scale modelling, where a phenomenological
model with homogenised material properties can be utilised. Finding the threshold, allows studying the de-
tailed mechanical response of the sea ice rheology on a smaller scale, which is different for any domain size
smaller than the threshold.
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5.3 Preliminary plausibility studies

In this section, plausibility studies are undertaken, showing simplified problems of ice floe-grease ice inter-
action, from which straightforward results are expected. These simulations contribute to the validation and
verification of the small-scale model. Flaws in the model are shown and points for future improvements are
presented.

Test case 1 studies the ice floe and grease ice behaviour of a simplified ice layout, named Layout A. The
initial layout is shown in Fig. 5.5(a). Two disk-shaped ice floes with a diameter of Dd = 10m move towards
each other until collision. Both ice floes are given an initial velocity only, acting in opposite x-direction, equal
to |0.5|ms−1. The ice floes are embedded in a grease ice domain, D = 50 × 30m2, which is initially at rest.
The domain is discretised, using a constant cell size of 0.25 × 0.25m2. The simulation time is t = 30s, with a
time step size of ∆t = 0.01s. The boundaries of all fields in the domain are set to zero-gradient BCs.

Test cases 2, 3 and 4 discuss the response of a simplified ice layout, named Layout B. The initial layout,
shown in Fig. 5.5(b), is subjected to atmospheric and/or oceanic forcing. One disk-shaped ice floe with a
diameter of Dd = 10m is embedded in a D = 50 × 30m2 grease ice domain. These test cases have a constant
cell size of 0.25 × 0.25m2. The simulation time, time step size and BCs are defined in the relevant sections,
as these differ per test case.

(a) (b)

Figure 5.5: Initial layout, showing (a) Layout A for Test case 1 and (b) Layout B for Test cases 2, 3 and 4.

Test case 5 describes a more advanced example of two ice floes hitting an obstacle. Flaws observed in the set
of the ice floe rheology equations are explained. These flaws, however, do not affect model results in Chap. 6.
All basic simulations in this chapter allow for a small uniform write interval of 0.1s, which capture a more
detailed response. As a result, curves in this chapter are shown without markers, to keep the graphs clean.

5.3.1 Test case 1: Colliding ice floes

This test case shows four simple numerical examples, making use of Layout A. Ice floe and grease ice material
properties are discussed, by conducting a sensitivity study. The behaviour of both ice constituents is analysed,
contour plots are shown and the stress and velocity magnitude are plotted.

In the first three examples, focus is on the stiffness, the initial ice floe position and the ice floe resistance in
the domain. Default parameter values are set for Young’s modulus, EY = 8.7 × 106Nm−1, the initial vertical
distance between the centre of the two ice floes, ∆h = 0m, and the constant grease ice strength parameter,
P ∗

g = 0.02Nm−2. The last example elaborates on the behaviour of grease ice in the domain, explaining the
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grease ice rheology, by discussing the contour plots of the velocity (gradient), strain rate, and stress magnitude.

5.3.1.1 Example 1: Ice floe stiffness

The sensitivity of ice floe stiffness is studied in the first example by variation of the value of Young’s modulus,
EY in Nm−1. Note that the units of Young’s modulus, Nm−1, deviate from the standard SI-units, Nm−2, be-
cause all terms in the momentum equation are normalised with respect to the density of sea ice in the domain.

Fig. 5.6 shows ice floe collisions for three different values of Young’s modulus, EY = 1 × 105Nm−1, EY =
5 × 105Nm−1 and EY = 1 × 108Nm−1. As one would expect, the ice floe stiffness increases for increasing
Young’s modulus.

(a) (b) (c)

Figure 5.6: Ice layout at t = 30s, showing (a) EY = 1 × 105Nm−1, (b) EY = 5 × 105Nm−1 and (c)
EY = 1 × 108Nm−1.

The impact of ice floe collisions for varying ice floe stiffness is mapped by plotting the stress and velocity
magnitude curves over time in Fig. 5.7. Note that the x-axis shows values between t = 5 − 15s, to emphasize
the stress and velocity response just before, during, and just after ice floe collision. The highest average stress
magnitude value over both ice floes, 4701kgs−2, representing the largest collision stress intensity, corresponds
to Young’s modulus of EY = 1×108Nm−1. The velocity curves, presented in Fig. 5.7(b), show a discontinuity
at the time of the collision, due to the rapid decrease of the velocity to zero. The discontinuity in the curves is
smoother for decreasing stiffness because the collision is dampened for lower stiffness values. Young’s modulus
used in the simulations of the small-scale model, EY = 8.7 × 106Nm−1, is based on values found in literature
[161], resulting in a numerically stable simulation.

(a) (b)

Figure 5.7: Seven different values of Young’s modulus, showing (a) the ice floe stress magnitude [kgs−2] and
(b) the ice floe velocity magnitude [ms−1]. All simulations have a simulation time of 30s, however, only
t = 5 − 15s is shown to emphasize on the ice floe collision.
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In Fig. 5.8 contour plots show the stress magnitude and velocity distribution in the x-direction before, during
and after ice floe collision with ice floe stiffness, EY = 8.7 × 106Nm−1. Before collision, both ice floes have a
velocity in the x-direction equal to |0.45|ms−1, acting in opposite directions, with a low ice floe stress magni-
tude close to 50kgs−2, which is equally distributed over the floes. Once the ice floes collide, the initial velocity
reduced, but minimally, due to the low resistance of the grease ice viscosity. At the instance of collision, a
local stress concentration of approximately 20500kgs−2 is observed. However, the average stress magnitude
over both floes is approximately 1936kgs−2. After the collision, the ice floe velocity and stress magnitude are
zero.

(a) (b) (c)

(d) (e) (f)

Figure 5.8: The ice floe stress magnitude [kgs−2], showing (a) before, (b) during, and (c) after ice floe
collision, as well as the ice floe velocity in the x-direction [ms−1], showing (d) before, (e) during and (f) after
ice floe collision with EY = 8.7 × 106Nm−1.

The velocity magnitude curve for EY = 1 × 105Nm−1 in Fig. 5.7 is highly unreliable, due to an increasing ve-
locity magnitude before collision. This cannot be true as the ice floes are only subjected to an initial velocity.
Therefore, the resistance of grease ice viscosity should result in a decreasing ice floe velocity before the colli-
sion. This counter-intuitive behaviour is due to a relatively high initial velocity of |0.5|ms−1 in combination
with an ice floe stiffness that is too low. This implies that the relation between velocity and Young’s modulus
is crucial. Results are unreliable when the ratio of velocity to Young’s modulus is too high.

(a) (b)

Figure 5.9: Three different initial velocity values with Young’s modulus, EY = 1 × 105Nm−1, showing (a) the
ice floe stress magnitude [kgs−2] and (b) the ice floe velocity magnitude [ms−1].
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The relation between velocity and Young’s modulus is investigated in more detail, by studying the lowest
Young’s modulus separately, mainly focusing on the time before ice floe collision. Fig. 5.9 shows the ice floe
stress and velocity magnitude response for EY = 1 × 105Nm−1 with three different initial velocity values of
|0.1|ms−1, |0.25|ms−1 and |0.5|ms−1. The latter shows an ice floe stress magnitude curve, which increases
before collision. This results in an increase in the ice floe velocity magnitude, shown in Fig. 5.9(b). Reducing
the initial velocity, Uin, results in improved ice floe stress steady-state conditions before collision, and there-
fore a more controlled velocity magnitude curve. Note that for Uin = |0.1|ms−1, the ice floes have not yet
collided, hence no stress peak and decreasing velocity magnitude is observed.

This example has shown that a critical stability criteria forms the foundation of the physics and solution
method. Therefore, it can be stated that the model is numerically stable only for values of Young’s modulus
larger than EY = 1 × 105Nm−1.

5.3.1.2 Example 2: Ice floe position

In the second example, the initial position of ice floes relative to each other are studied. The purpose of this
example is to show that the ice floe response results in expected behaviour. The collision stress intensity
should decrease for increasing vertical distance between ice floes, measured from the centres of the ice floes.
Three initial layouts are considered, as shown in Fig. 5.10, each with a different vertical distance, ∆h, be-
tween the floes. Both ice floes are only given an initial ice floe velocity acting in opposite x-direction equal to
|0.5|ms−1.

(a) (b) (c)

Figure 5.10: Ice layout at t = 0s, showing (a) ∆h = 0m, (b) ∆h = 4m and (c) ∆h = 8m.

Both ice floe stress and velocity magnitude curves are plotted in Fig. 5.11 for three simulations with the differ-
ent initial positions. No vertical distance between the centre of the ice floes corresponds to a frontal collision,
resulting in the highest average ice floe stress magnitude value over both ice floes, shown in Fig. 5.11(a). The
shape of the collision peak in the stress curve is wider for increasing vertical distance, due to shearing taking
place between ice floes when they move past each other.

Additionally, the stress curves indicate that an increasing vertical distance between ice floe positions re-
sults in a delayed collision response, which corresponds to the velocity plot where the discontinuity in the
curve occurs at a later time step for increasing vertical distance. The stress curve of the largest vertical
distance, ∆h = 8m, is significantly smaller because the ice floes barely touch each other. This can also be
seen in the velocity plots shown in Fig. 5.11(b), where the discontinuity in the curve is much smoother.
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(a) (b)

Figure 5.11: Three different values of the vertical distance between the initial ice floe position, showing (a)
the ice floe stress magnitude [kgs−2] and (b) the ice floe velocity magnitude [ms−1].

Fig. 5.12 illustrates the velocity vector plots of the three simulations, emphasizing ice floe rotations. The
contour plots are shown at a time step of t = 10s. This time step corresponds to the moment in time when
the ice floes, with an initial vertical distance of ∆h = 4m, collide. Fig. 5.12(a) represents the velocity vectors
of ∆h = 0m just after the frontal ice floe collision, with ice floe velocity vectors close to zero. Fig. 5.12(b)
exemplifies the velocity vectors of ∆h = 4m at the instance of ice floe collision, with ice floe velocity vectors
of approximately Umag = 0.4ms−1, pointing in opposite directions. Fig. 5.12(c) shows the velocity vectors
of ∆h = 8m before the ice floe collision, with ice floe velocity vectors close to Umag = 0.4ms−1, acting in
opposite direction.

(a) (b) (c)

Figure 5.12: Velocity magnitude contour plots with overlaying velocity vectors [ms−1] at t = 10s, showing (a)
∆h = 0m, (b) ∆h = 4m and (c) ∆h = 8m.

5.3.1.3 Example 3: Ice floe resistance

In the third example, the influence of grease ice viscosity on the stress and velocity response of ice floes in
grease ice is studied. Different constant grease ice strength parameter values are considered, focusing on the
ice floe behaviour. The grease ice behaviour is discussed in Sec. 5.3.1.4. The purpose of this example is to
show that the response of ice floes results in expected behaviour. An increase in grease ice viscosity should
result in a higher floe resistance, which in turn results in a smaller distance travelled.

The constant grease ice strength parameter values range from P ∗
g = 0.02Nm−2 to P ∗

g = 2Nm−2. The ice
floes only have an initial velocity in opposite direction equal to |0.5|ms−1, which implies that an increase
in grease ice viscosity results in increased resistance and therefore a delayed response with damped collision
impact.
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In Fig. 5.13, three ice layouts are shown at t = 7.5s for increasing viscosity. It can be seen that the ice floes
have covered a smaller distance in a higher grease ice viscosity.

(a) (b) (c)

Figure 5.13: Ice layout at t = 7.5s, showing (a) P ∗
g = 0.02Nm−2, (b) P ∗

g = 0.2Nm−2 and (c) P ∗
g = 2Nm−2.

Ice floe stress and velocity magnitude curves are shown in Fig. 5.14, for the three different grease ice viscosi-
ties. The average ice floe stress magnitude over both ice floes is higher for a lower viscosity, which confirms
that the grease ice viscosity acts as a dampening effect between colliding ice floes.

(a) (b)

Figure 5.14: Three different values of the grease ice viscosity parameter, showing (a) the ice floe stress
magnitude [kgs−2] and (b) the ice floe velocity magnitude [ms−1].

The stress magnitude curves show that a higher grease ice viscosity results in a delayed collision response,
due to a higher floe resistance. This corresponds to the velocity curves, where the discontinuity in the curve
represents the ice floe collision. An increase in viscosity results in an increase in inertia, which in turn results
in a decreasing sea ice velocity.

5.3.1.4 Example 4: Grease ice behaviour

In this example, the emphasis is on the behaviour of the grease ice in the domain, to discuss intricacies of
modelling the grease ice strain rate in the viscous-plastic model. Both ice floes are only subjected to an initial
ice floe velocity of |0.5|ms−1, acting in opposite x-direction. Three different constant grease ice viscosity
parameter values are considered, P ∗

g = 0.02Nm−2, P ∗
g = 0.2Nm−2 and P ∗

g = 2Nm−2. The grease ice velocity
(gradient), stress and strain rate magnitudes are discussed, showing contour plots of these variables over time.

The grease ice velocity is initially equal to zero. Due to the moving ice floes, surrounding stationary grease
ice is affected and starts moving. An increase in the constant grease ice strength parameter, results in an in-
creased amount of grease ice affected in the domain. This is shown in bulk viscosity contour plots at t = 7.5s,
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depicted in Fig. 5.15, for an increasing constant grease ice strength parameter. High viscosity values are
illustrated at the boundary, which decrease for an increasing constant grease ice strength parameter, P ∗

g .

(a) (b) (c)

Figure 5.15: Bulk viscosity contour plots at t = 7.5s, showing (a) P ∗
g = 0.02Nm−2, (b) P ∗

g = 0.2Nm−2 and
(c) P ∗

g = 2Nm−2.

Fig. 5.16 shows velocity magnitude contour plots and overlaying velocity vectors for the three different con-
stant grease ice strength parameter values at t = 7.5s. The velocity vectors in grease ice point in the direction
of the moving ice floes, as stationary grease ice is dragged in by the moving ice floes. The centre of rotational
motion in grease ice are indicated above and below the ice floes. These rotations move away from the ice floes
for an increasing viscosity. Moreover, a higher viscosity shows a larger turning radius in the grease ice, as a
higher viscosity results in a higher inertia. As the ice floes move closer to each other, grease ice in between is
squeezed in the vertical directions.

(b) (c)(a)

Figure 5.16: Velocity magnitude contour plots and overlaying velocity vectors [ms−1] at t = 7.5s, showing (a)
P ∗

g = 0.02Nm−2, (b) P ∗
g = 0.2Nm−2 and (c) P ∗

g = 2Nm−2.

As previously mentioned in Chap. 3, the strain rate magnitude, ϵ̇, and grease ice rheology can be expressed
in terms of the velocity gradient, ∇U . Fig. 5.17 shows the velocity gradient, strain rate and stress magnitude
contour plots before collision, at t = 7.5s, and after collision, at t = 15s.

The rate of change in velocity per unit of distance is known as the velocity gradient. Figs. 5.17(a) and
(d) illustrate high velocity gradient values at the ice floe-grease ice interface, whereas low values are shown
at the boundary of the domain. The gradient is high at the ice floe-grease ice interface, due to a velocity
difference between ice floes and grease ice, resulting in high strain rate magnitude values. The bulk viscosity
is inversely related to the strain rate, which in turn results in low bulk viscosity values at the interface, as can
be observed in Fig. 5.15.

As strain rate is directly related to the velocity gradient, the strain rate magnitude contour plots, shown
in Figs. 5.17(b) and (e), are similar to the contour plots of the velocity gradient. The lower strain rate values
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indicated above and below the ice floes in Figs. 5.17(b) and (e) represent the centre of the rotational motion
in the grease ice.

(a) (b) (c)

(d) (e) (f)

Figure 5.17: Contour plots showing (a) the velocity gradient magnitude [s−1] at t = 7.5s, (b) the strain
rate magnitude [s−1] at t = 7.5s, (c) the grease ice stress magnitude [kgs−2] at t = 7.5s, (d) the velocity
gradient magnitude [s−1] at t = 15s, (e) the strain rate magnitude [s−1] at t = 15s and (f) the grease ice
stress magnitude [kgs−2] at t = 15s.

The grease ice stress depends on both the viscosity and strain rate variables. Accordingly, similar grease ice
stress contour plots are shown in Figs. 5.17(c) and (f). Before ice floe collision, the ice floes move towards
each other, resulting in a high grease ice stress magnitude in between the ice floes, whereas the magnitude is
small on the left- and right-hand side of the ice floes. The centre of the grease ice rotations is the boundary
between large and small stress magnitudes. After ice floe collision, grease ice on the outer side of the ice floes
builds up, resulting in large magnitude values.

5.3.2 Test case 2: Bulk velocity

During the winter cruise to the Antarctic MIZ in 2017 and 2019, sea ice characteristics and the dynamics
of ice floes and grease ice have been observed. Additionally, in situ image material is recorded by stereo
cameras of the sea ice cover in the Antarctic MIZ [3]. From observations, researchers noticed that ice floes
with interstitial grease ice move together as a whole, covering large distances due to oceanic and atmospheric
drivers. Ice floes and grease ice can only move collectively, if both constituents have a similar bulk velocity,
representing the average flow velocity. If not, ice floes and grease ice would separate from one another.

The water drag coefficient is one of the parameters affecting ice floe and grease ice displacements. Both
ice constituents considered in the small-scale model, ice floes and grease ice, do not have the same water drag
coefficient. Accordingly, it is of importance to find a ratio between both drag coefficients, to ensure that the
bulk velocity of both ice constituents is similar.

This test is conducted with Layout B. The sea ice domain is subjected to a harmonic propagating wave
with wave period, T = 15.06s and wave amplitude, a = 2.77m. The wave properties are based on values
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obtained by Alberello et al. [4]. This test case has a simulation time of t = 60s with time steps between
∆t = 0.01 − 0.001s. Zero-gradient BCs are applied to all variables in the domain.

The water drag coefficient value for ice floes, initially considered in this section, is equal to Cwf
= 0.01.

Corresponding grease ice drag coefficient values range between Cwg
= 0.001 − 0.01 with increments equal to

0.001. Once the bulk velocity of both constituents, i.e. the averaged velocity magnitude curves, are similar
for both ice floe and grease ice, the ratio between both drag coefficient values is found. Subsequently, water
drag coefficient values of ice floes are increased from Cwf

= 0.01 to Cwf
= 0.05, using the obtained ratio

to find the corresponding Cwg
values. This is done, to confirm that the obtained ratio can also be applied

to higher water drag coefficient values for ice floes. Once this is established, the final value of the ratio is found.

In Fig. 5.18(a), a velocity magnitude curve is shown for ice floes with a water drag coefficient value equal
to Cwf

= 0.01 and three velocity magnitude curves for grease ice with water drag coefficient values ranging
between Cwg

= 0.002 − 0.06. A similar bulk velocity for both ice constituents is found for Cwg
= 0.004,

resulting in a drag coefficient ratio of ice floe to grease ice equal to 2.5 : 1.

(a) (b)

Figure 5.18: Ice floe velocity magnitude [ms−1] for different water drag coefficient values for ice floe and grease
ice, showing (a) Cwf

= 0.01 with Cwg
= 0.002 − 0.06, respectively, and (b) Cwf

= 0.02 and Cwf
= 0.05 with

obtained drag coefficient ratio, resulting in Cwg
= 0.008 and Cwg

= 0.02, respectively.

Fig. 5.18(b) shows the ice floe velocity magnitude curves with water drag coefficients, Cwf
= 0.02 and

Cwf
= 0.05, and corresponding water drag coefficients for grease ice, which meet the obtained drag coefficient

ratio. Higher water drag coefficient values also result in similar velocity magnitude values for both ice con-
stituents. Accordingly, a drag coefficient ratio of ice floe to grease, 2.5 : 1, is hereby confirmed.

Higher water drag coefficient values result in velocity curves that reach equilibrium faster. However, the
velocity magnitude is fairly high for ice floe drag coefficient values larger than Cwf

= 0.02. According to
Alberello et al. [4], the average measured daily drift velocity, in the sector that was the focus of their study in
the Antarctic MIZ, was 0.35ms−1. The value measured by Alberello et al. [4] is more than 50% higher than
velocity values previously reported by Heil and Allison [60].

Accordingly, in the small-scale model, an ice floe drag coefficient value of Cwf
= 0.02 is used in future

simulations, with corresponding grease ice drag coefficient value equal to Cwg
= 0.008. In this example, these

coefficients result in a bulk velocity value equivalent to an averaged velocity magnitude value of approximately
0.15ms−1.

Inertia effects on the sea ice velocity are investigated, by modifying the sea ice density. The x-component of
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the orbital wave velocity is maximum at the crest of a wave propagating in water, minimum at the trough of
the wave, and zero at the mean sea water level. If one would plot the wave elevation and the orbital wave
velocity in the x-direction, both curves would be in phase. In other words, both variables have the same
frequency, and as a result, their maximum and minimum would coincide.

Considering sea ice implies the inclusion of inertia, which affects the sea ice velocity response. Fig. 5.19
shows the wave elevation and both the ice floe and grease ice velocity curves for an increasing ice floe and
grease ice density.

(a) (b)

Figure 5.19: Comparing the phase between the wave elevation [m] and the velocity in the x-direction [ms−1]
for three different density values, for (a) ice floes and (b) grease ice.

Density values equal to zero correspond to a water wave. Note that the density values are unrealistic, how-
ever, that is not of importance here. The purpose of this example is to show the effect of inertia on the
velocity. An increase in density, and therefore an increase in inertia, results in a shift of the velocity curve in
the positive x-direction. In other words, the wave elevation and sea ice velocity in the x-direction are out of
phase. Moreover, an increase in inertia results in a decrease of the velocity amplitude.

5.3.3 Test case 3: Atmospheric and oceanic forcing

The air drag multiplication factor is one of the parameters affecting ice floe and grease ice displacements. In
this example, the sensitivity of the air drag coefficient, Ca, on ice floe displacement is studied in Layout B.
Values of the air drag multiplication factor, Caλ

, range between 1 - 10. A multiplication factor is included,
shown in Eq. (3.25) in Chap. 3, which simply multiplies the wave-dependent air drag coefficient in the entire
domain by a certain value.

This test case consists of two examples. In the first example the ice floe is subjected to a wind forcing
only. The initial ice floe velocity is equal to zero, which increases until steady-state conditions are reached.
In the second example, the ice floe is subjected to a wind and wave forcing, using the steady-state conditions
from the first example as input.

In the first example, the sea ice domain is subjected to a wind forcing in the x-direction with a true wind
speed of 18.9ms−1. This test case has a simulation time of t = 300s with a time step size of ∆t = 0.01s.
Periodic BCs are applied to all variables in the domain, allowing the ice floe to reach steady-state conditions,
so that the applied wind forcing is fully developed.
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Fig. 5.20 shows the ice floe stress and velocity magnitude curves for three different values of the air drag
multiplication factor. Both the stress and velocity magnitude curves show that ice floes reach equilibrium
conditions earlier for larger air drag coefficient values. After approximately t = 200s all three simulations
have reached steady-state conditions.

(a) (b)

Figure 5.20: Three different air drag multiplication factor values, showing (a) the ice floe stress magnitude
[kgs−2] and (b) the ice floe velocity magnitude [ms−1].

The second example has a simulation time of t = 60s, with a time step size of ∆t = 0.01s. Zero-gradient BCs
are applied to all variables in the domain. The wind forcing has a true wind speed of 18.9ms−1 with a wind
direction angle of 321.7◦, which corresponds to a north-western wind. The wind properties are based on values
found by Vichi [199] during the winter cruise in 2017. The wind forcing is applied in combination with a wave
forcing propagating in the x-direction with wave period T = 15.06s and wave amplitude a = 2.77m [3], result-
ing in a 45◦ angle between the wind and wave forcing. A north-western wind requires x- and y-components of
the velocity, which are derived from the obtained steady-state velocity magnitude values, shown in Fig. 5.20(b).

Results of the second example are illustrated in Fig. 5.21, showing the ice floe trajectories, by tracking
the centre of the ice floe. The trajectories are indicated in black with increments of ∆t = 0.1s until t = 60s for
three different values of the multiplication factor, Caλ

= 1, 5 and 10. These values correspond to a domain-
averaged air drag coefficient equal to Ca = 0.0026, 0.0128 and 0.0251, respectively.

(a) (b) (c)

Figure 5.21: Ice floe trajectory for three different values of the air drag multiplication factor, showing (a)
Caλ

= 1, (b) Caλ
= 5 and (c) Caλ

= 10.

Fig. 5.22(a) shows the stress magnitude curves, which increase in magnitude for increasing air drag multipli-
cation factor. An increasing wave-dependent air drag coefficient results in an increasing wind forcing, which
in turn, depending on the wind direction, enhances the wave amplitude on the one side and reduces the wave
amplitude on the other side.
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(a) (b)

Figure 5.22: Three different air drag multiplication factor values, showing (a) the ice floe stress magnitude
[kgs−2] and (b) the ice floe velocity magnitude [ms−1].

This phenomenon can be seen in the ice floe velocity magnitude curves in Fig. 5.22(b), where the smaller
velocity magnitude amplitudes at approximately t = 15s, t = 30s and t = 45s gradually disappear for larger
multiplication factors. Note that the velocity magnitude at t = 0s is equal to the steady-state conditions
found in Fig. 5.20(b). Additionally, the stress and velocity curves for Caλ

= 10 end at t = 50s, as the floe
moves out of the domain.

5.3.4 Test case 4: Chequerboard oscillations

This test case focuses on the elastic ice floe rheology in OpenFOAM. The implementation of the Hookean-
like flow rule is explained, discussing an associated numerical complication, named chequerboard oscillations.
The problem of chequerboard oscillations is visualised and the alternative stress implementation method is
presented.

The sea ice domain, Layout B, is subjected to a wave with a wave period, T = 12s, and a wave ampli-
tude, a = 2.1m. This example has a simulation time of t = 60s, with a time step size of ∆t = 0.01s. Only the
last 30s are used for the analysis, as only near steady-state conditions are considered.

For ease of reading, the normalised, linearised form of Hooke’s law is shown here again, written as

σ′b+1
f︸ ︷︷ ︸

current time step

= σ′b
f︸︷︷︸

previous time step

+ ∆t
(
µ′(∇U + (∇U)T ) + λ′Itr(∇U)

)︸ ︷︷ ︸
current time step

, (5.2)

which shows a constant stress component from the previous time step and a velocity-dependent contribution
from the current time step. However, as mentioned previously in Sec. 4.2.3, the stress component from the
previous time step results in chequerboard oscillations.

Accordingly, this test case shows an alternative stress implementation, to avoid chequerboard oscillations.
The normalised ice floe stress at the previous time step, σ′b

f , is treated either considering the total stress state
or a partial stress state.
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Both stress states are explained by substituting values for parameter b. When b = 1

σ′2
f︸︷︷︸

time step 2

= σ′1
f︸︷︷︸

time step 1

+ ∆t(µ′(∇U2 + (∇U2)T ) + λ′Itr(∇U2))︸ ︷︷ ︸
time step 2

, (5.3)

where Ui represents U with time step indicator i. The first term on the right-hand side is a constant stress
component from time step 1. The second term on the right-hand side is a velocity dependent stress component
from time step 2. When b = 2

σ′3
f︸︷︷︸

time step 3

= σ′2
f︸︷︷︸

time step 2

+ ∆t(µ′(∇U3 + (∇U3)T ) + λ′Itr(∇U3))︸ ︷︷ ︸
time step 3

. (5.4)

Note that only three values, b = 1, 2, 3 are shown here to explain the difference between a total and a partial
stress state, containing values from both the current and previous time steps. However, this does not apply
to these three time steps only, but to all time steps throughout a simulation. The total and partial stress
states differ in their approach when Eq. (5.3) is substituted into Eq. (5.4). The substitutions are explained
separately in Secs. 5.3.4.1 and 5.3.4.2.

5.3.4.1 Example 1: Total stress state

In this first example the total stress state is shown, which refers to the stress state from the previous time
step, including both the constant stress component and the velocity-dependent contribution. Including the
total stress state would allow for the floes to elastically unload after a collision. However, this leads to severe
chequerboarding issues. Substitution of the total stress state, given in Eq. (5.3), into Eq. (5.4), results in

σ′3
f︸︷︷︸

time step 3

= σ′1
f︸︷︷︸

time step 1

+ ∆t(µ′(∇U2 + (∇U2)T ) + λ′Itr(∇U2))︸ ︷︷ ︸
time step 2

+ ∆t(µ′(∇U3 + (∇U3)T ) + λ′Itr(∇U3))︸ ︷︷ ︸
time step 3

, (5.5)

which results in ice floe stress magnitude contour plots shown in Fig. 5.23 for time steps t = 31s, t = 45s
and t = 60s. The black box in the top-right corners shows the top part of the ice floe in more detail to
highlight chequerboard oscillations. Stress distribution results are unreliable due to chequerboard patterns.
This problem cannot be solved with the current set of equations using a collocated FVM grid, as is used within
OpenFOAM. Consequently, stress from the previous time step is only partially implemented, explained in the
second example in Sec. 5.3.4.2.

(a) (b) (c)

Figure 5.23: Total stress state including stability terms resulting in chequerboard oscillations, showing for
three different time steps (a) t = 31s, (b) t = 45s and (c) t = 60s.
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5.3.4.2 Example 2: Partial stress state

In this second example the partial stress state is shown, referring to the previous time step which retains the
velocity-dependent stress component, but disregards the constant component from the previous time step.
This alternative stress implementation solves the chequerboard complication. However, the stress magnitude
value is underpredicted, as the previous time step is only partially considered.

In case of the partial stress state, the second time step, shown in Eq. (5.3) should only depend on the
velocity-dependent stress component from time step 2, as the constant stress component from time step 1 is
disregarded. Substitution of the partial stress state in Eq. (5.3) into Eq. (5.4), results in

σ3︸︷︷︸
time step 3

= ∆t(µ(∇U + (∇U)T ) + λItr(∇U))︸ ︷︷ ︸
time step 2

+ ∆t(µ(∇U + (∇U)T ) + λItr(∇U))︸ ︷︷ ︸
time step 3

, (5.6)

which leads to underprediction of the stress state. The extent to which stress is underestimated is discussed
below.

The partial stress state solely considers the velocity-dependent stress component. Fig. 5.24 shows the stress
magnitude distribution at time steps t = 31s, t = 45s and t = 60s. The black box in the top-right corners
shows the top part of the ice floe in more detail to highlight the absence of chequerboard patterns.

(a) (b) (c)

Figure 5.24: Partially implemented stress state resulting in no chequerboard oscillations, showing for three
different time steps (a) t = 31s, (b) t = 45s and (c) t = 60s.

Differences between the total and partial stress states are mapped by plotting ice floe stress and velocity
magnitude values in Fig. 5.25. Note that both curves start at t = 31s, as only the velocity response at near
steady-state conditions is considered. The total stress state is approximately twice the stress of the partial
stress state. Bear in mind, however, that the results of the total stress state cannot be trusted due to the
chequerboard oscillations. Therefore, the plotted total stress state might not be the actual stress state, but
fundamentally incorrect. As a result, stress states are preferably underpredicted, rather than completely un-
reliable. The velocity is significantly less affected by the chequerboard problem, as both the total and partial
stress states show similar ice floe velocity magnitude curves.

By accounting for the partial stress state, the Hookean elastic equation, given in Eq. (3.12), is changed
to a Hookean-like flow rule. Any deformation is permanent, where the floes will not return to their unde-
formed configuration once the external forcing has been removed. The floes do, however, still behave solid like,
where any internal stress state, leads to a large resistance to deformation. This will further be demonstrated
in the subsequent test case in Sec. 5.3.5.
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(a) (b)

Figure 5.25: Total and partial stress states including stability terms, showing (a) the ice floe stress magnitude
[kgs−2] and (b) the ice floe velocity magnitude [ms−1].

5.3.5 Test case 5: Ice floes hitting an obstacle

This test case elaborates on the ice floe rheology, specifically focusing on the Hookean-like behaviour of ice
floes. Two disk-shaped ice floes with a diameter of Dd = 10m are subjected to a 0.4ms−1 ocean current
velocity. An obstacle is placed in the middle of a D = 50 × 30m2 domain, obstructing the flow of the ice
floes. Ice floes 1 and 2 refer to the ice floes in their initial position on the left- and right-hand side of the
obstacle, respectively, shown in Fig. 5.26(a). This test case has a simulation time of t = 160s. A constant cell
size, 0.125 × 0.125m2, is used with a time step size of ∆t = 0.01s. The left- and right-hand boundaries are
implemented as periodic BCs. Ice floes leaving the domain on the right-hand side, move into the domain on
the left-hand side. Slip BCs are imposed along the obstacle boundaries, to allow for non-zero velocity values.

(a) (b)

(e)(d)

(c)

(f)

1 2

Figure 5.26: Two ice floes are subjected to an uninterrupted constant ocean current forcing obstructed by an
obstacle, showing (a) t = 0s, (b) t = 15s, (c) t = 77.7s, (d) t = 100s, (e) t = 120.8s and (f) t = 132s. Ice floe
inaccuracies are highlighted by an arrow, whereas cells of minor separation are highlighted by a black circle.

Two ice floes move from left to right due to a constant, uninterrupted ocean current forcing. Ice floe 1 hits the
obstacle and rotates across. Ice floe 2 moves out of the domain on the right-hand side and enters the domain
on the left-hand side. Subsequently, ice floe 2 collides with ice floe 1. Ice layouts are depicted in Fig. 5.26 for

83



six different time steps, t = 0s, t = 15s, t = 77.7s, t = 100s, t = 120.8s and t = 132s, representing a specific
stress and velocity response. The corresponding average stress and velocity magnitude curves of both ice floes
are depicted in Fig. 5.27.

(a) (b)

Figure 5.27: Ice floe response, showing (a) the ice floe stress magnitude [kgs−2] and (b) the ice floe velocity
magnitude [ms−1].

At t = 77.7s a peak in the stress magnitude curve is observed, together with a decreasing ice floe velocity
magnitude. The corresponding stress magnitude contour plots are shown in Figs. 5.28(b) and (c). The latter
shows the same time step as Fig. 5.28(b), however, the stress legend bar was rescaled to highlight concentrated
peak stresses.

(a) (b) (c)

(d) (e) (f)

Figure 5.28: Stress magnitude contour plots [kgs−2] at four time steps, (a) t = 15s, (b) t = 77.7s, (c)
t = 77.7s, (d) t = 120.8s, (e) t = 120.8s and (f) t = 132s. Ice floe cells of minor separation are highlighted
by a black circle.

The black box in the top-right corner zooms in on the peak stress, highlighted by a black circle at the tip of
the obstacle. This excessively high peak stress cannot be explained physically but originates from permanent
deformations in the solid floe, described as a numerical complication in the small-scale model. Due to this
numerical complication, the ice floe struggles to move over the obstacle without inaccuracies. Fig. 5.29(b)
shows the velocity magnitude distribution, highlighting the velocity at the tip of the obstacle. The cells with
extremely high peak stress correspond to velocity magnitude values close to zero.
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In Fig. 5.26(d) the sea ice layout is shown at t = 100s, highlighting inaccuracies in the ice floe by an arrow.
Due to the implementation of Hookean-like ice floe behaviour, minor deformations are permanent. In other
words, once a relative deformation has occurred, the ice floe cannot deform back. Permanent deformations,
in combination with a stationary obstacle, result in minor separation of the ice floe. This is observed at the
tip of the obstacle and highlighted by a black circle. The stress magnitude values in the ice floe cells of minor
separation are extremely high. This is incorrect, however, it is a consequence of the implementation of the
Hookean-like ice floe behaviour. Similar behaviour can be observed in Fig. 5.26(e) at t = 120.8s.

The stress magnitude peak at t = 120.8s is due to the collision of both ice floes, depicted in Figs. 5.28(d)
and (e). The latter shows the same time step as Fig. 5.28(d), however, the stress legend bar was rescaled
to highlight the peak stresses. Fig. 5.29(c) shows the velocity magnitude distribution, highlighting velocity
values at the tip of the obstacle close to zero. Note that the velocity magnitude curve, shown in Fig. 5.27,
barely drops at t = 120.8s, despite the collision between the two ice floes. This is because of a high velocity
of ice floe 2 before the collision, pushing ice floe 1 forward.

(a) (b) (c)

Figure 5.29: Velocity magnitude contour plots [ms−1] at three time steps, (a) t = 15s, (b) t = 77.7s and (c)
t = 120.8s. Ice floe cells of minor separation are highlighted by a black circle.

This test case shows what still needs to be improved in the model, however, fixing this separation issue at
the obstacle is currently not a requisite. The approach works for colliding ice floes, as shown by Test case 1
in Sec. 5.3.1.
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Chapter 6

Numerical investigation of mechanical
behaviour of ice floe-grease ice
interaction

From the domain-size convergence analysis conducted in Chap. 5, it was found that any inner domain size
smaller than 400 × 400m2 results in clear differences in mechanical response for any wave period larger than
T = 6s. For that reason, results in this section consider an inner domain size of 100×100m2, which is expected
to produce temporal and spatial fluctuations of the stress and strain rate distributions, depending on the ratio
of ice floe diameter and wave length, and thus, warrant detailed small-scale modelling.

In this chapter the high-resolution mechanical response of sea ice due to wave-ice interaction is studied.
The sea ice domain is subjected to a simplified imposed harmonic wave forcing with different wave charac-
teristics. The sea ice rheology variables, consisting of sea ice stress, strain rate, viscosity, and velocity, are
separately analysed for ice floes and grease ice to better understand the behaviour of both ice constituents.
The distribution of variables is analysed in a realistic sea ice domain, which is extracted from in situ image
and video material recorded by stereo cameras of the dynamics of sea ice in the Antarctic marginal ice zone
(MIZ) [3]. The sea ice domain is subjected to a simplified harmonic wave forcing with different wave charac-
teristics.

Sec. 6.1 concentrates on the ice composition in terms of ice type as well as floe shape and diameter. Three
images were taken in close proximity to each other, during the 2017 winter cruise to the Antarctic MIZ.
Homogeneous sea ice conditions were observed with only slightly differing sea ice properties in terms of ice
floe concentration and median ice floe caliper diameter. From these images, realistic sea ice layouts were
obtained, implemented in the small-scale model as initial sea ice composition.

Sec. 6.2 focuses on the motion of sea ice, ice floe collisions, and the interaction between waves, ice floes,
and grease ice. Additionally, the effect of grease ice viscosity is mapped on both stress and strain rate re-
sponse of sea ice, considering different grease ice viscosities.

As the focus of this section is on the mechanics of wave-ice interaction, wind and ocean current veloci-
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ties are set to zero. Accordingly, the external forcing of the sea ice domain only considers the wave action via
the Froude-Krylov force acting on the submerged floe circumference below the grease ice layer, and the skin
drag on the entire ice-ocean interface controlled by the water drag coefficient.

All simulations conducted in Secs. 6.1 and 6.2 have a simulation time of t = 60s, with a time step size
of ∆t = 0.01s, and a uniform write interval of 1s and 0.5s, respectively, illustrated by markers in the curves.
A write interval indicates what interval is used to write data as output to a file [57]. Only near steady-state
conditions are considered in the upcoming analyses, which are reached after 30s.

Zero-gradient BCs are applied to all boundaries in the sea ice domain, which simply extrapolates the quantity
to the patch from the nearest cell value, effectively dampening the wave propagation and introducing an error
that only affects the immediate boundary cells. To exclude these boundary effects, the 100 × 100m2 inner
domain are embedded in an outer domain of 300 × 300m2, to which the boundary conditions are applied. The
domain is discretised, using a constant cell size of 0.33 × 0.33m2, found as the optimal cell size in the grid-size
convergence analysis, conducted in Chap. 5.

6.1 Numerical study on the geometry of ice floes embedded in
grease ice

The objective of this numerical study is to map the influence of the ice floe geometry on the stress, strain
rate and bulk viscosity response on a small-scale. Additionally, the different sea ice layouts help to verify the
robustness of the numerical framework with respect to the natural variability of the ice floe distribution in
the MIZ.

(1) (2) (3) (4)

Figure 6.1: (1-3) Realistic sea ice layouts and (4) idealised with disk-shaped floes, each with a 100 × 100m2

inner domain embedded in a 300 × 300m2 outer domain.

Three realistic layouts and one idealised sea ice configuration with disk-shaped floes, comparable in terms
of sea ice concentration, are illustrated in Fig. 6.1. Geometric properties of ice floes for all four layouts are
summarised in Tab. 6.1, including both the ice floe caliper diameter and standard deviation in the x- and
y-direction, ice floe concentrations, wave characteristics, and grease ice viscosity values.
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All sea ice layouts are subjected to three different wave forcing, using wave periods ranging between T = 8−16s
with constant wave steepness, ak = 0.06 [41]. The domain-averaged grease ice viscosity value, νk ≈ 0.04m2s−1,
is in agreement with literature values [134, 205, 206]. The viscosity of the grease ice rheology is strain rate-
dependent via the grease ice strength parameter, Pg, which in turn depends on the empirical constant, P ∗

g .
The value of P ∗

g is chosen so that the domain-averaged viscosity provides a close match to the predefined
value of νk ≈ 0.04m2s−1.

Table 6.1: Parameters specifically used in the analysis of sea ice composition and rheology, where XCD and
YCD denote the ice floe caliper diameter in the x- and y-directions [m], respectively. The standard deviation
in the x- and y-directions [m] is indicated by XSD and YSD, respectively.

Parameter Definition Value Unit
a wave amplitude 1, 2.1, 3.8 m
ak wave steepness 0.06 [41] -
Af ice floe concentration Layout 1, 2, 3, 4 54.7, 59.7, 57.3, 59.7 %
Cwf,g

water drag coefficient for ice floes and grease ice 0.02, 0.008 -
Dx,m median XCD Layout 1, 2, 3, 4 13.0, 11.0, 9.3, 9.7 m
Dy,m median YCD Layout 1, 2, 3, 4 10.0, 7.0, 8.0, 9.7 m
nf number of ice floes Layout 1, 2, 3, 4 41, 60, 49, 23 -
P ∗

g grease ice strength parameter 0.024 Nm−2

SDx XSD Layout 1, 2, 3, 4 8.8, 7.3, 9.2, 0 m
SDy YSD Layout 1, 2, 3, 4 5.5, 4.3, 5.6, 0 m
T wave period 8, 12, 16 s
Λ wave length 100, 225, 400 m
νk kinematic grease ice viscosity 0.04 m2s−1

The ice floe concentration differs slightly between the different layouts, with an average value equal to 57.9%
(±3.2%). The median ice floe caliper diameter in both the x- and y-direction is equal 10.8m (±2.2m) and
8.7m (±1.7m), respectively.

The distribution of the ice floe caliper diameter is mapped for all realistic sea ice layouts through the use of
box plots, as shown in Fig. 6.2. Layout 2 has the smallest interquartile range, which refers to the distance
between the bottom, 25th percentile, and the top, 75th percentile, of the box plot. This is also reflected in the
standard deviation, which shows the lowest values in both the x- and y-direction for Layout 2. This indicates
that Layout 2 features the largest portion of medium-size floes and is the most homogeneous in size. Layout 3,
on the other hand, exhibits the largest spread of floe sizes, in particular concerning large floes.
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Figure 6.2: Box plots for all three realistic sea ice layouts, showing the distribution of (a) the caliper diameter
in the x-direction [m] and (b) the caliper diameter in the y-direction [m].
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As Layout 2 is the most homogeneous, its mechanical response is expected to be closest to the idealised sea ice
Layout 4. Therefore, Layout 4 is chosen to study the error introduced by completely disregarding floe shape
and variations in floe diameter. To specifically focus on the sensitivity regarding ice floe shape and diameter,
and study their effect on the stress, strain rate, and viscosity variables, in both the grease ice and ice floe
rheology, the ice floe concentration of Layout 4 is chosen to be the same as the concentration in Layout 2.
Additionally, the mean ice floe caliper diameter in Layout 4 has been derived from Layout 2, such that the
average area per ice floe, Afloe = 293m2, is identical.

Fig. 6.3 shows the spatially-averaged stress in both ice floes and grease ice for wave periods T = 8s, T = 12s
and T = 16s. An increasing wave period results in an increasing stress amplitude and a decreasing stress
frequency.

(a) (b) (c)

(f)(e)(d)

Figure 6.3: Spatially-averaged mechanical sea ice response for layouts 1-4 with νk ≈ 0.04m2s−1, showing the
ice floe stress magnitude [kgs−2] for (a) T = 8s, (b) T = 12s and (c) T = 16s and the grease ice stress
magnitude [kgs−2] for (d) T = 8s, (e) T = 12s and (f) T = 16s.

The discrepancy between the curves of the four considered layouts is investigated and expressed in terms of
the root mean square error (RMSE), which can be calculated by

RMSE =

√∑Ni

i=1(li − l̂i)2

Ni
, (6.1)

where li and l̂i represent the values of stress, strain rate and bulk viscosity, of two layouts to be compared
with each other for a particular wave period. The number of values, which is one value per time step, is
indicated by Ni, equal to 30. The unit of the RMSE is the same as the quantity being estimated and should
be close to zero for good approximations. Tabs. 6.2-6.4 show the RMSE values obtained from the ice floe
stress curves for all wave periods and corresponding sea ice layouts. Note that the zero RMSE values on the
diagonal are excluded from the calculation of the average RMSE.
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Table 6.2: Comparison of the ice floe stress response in all layouts. The discrepancy between the stress curves
is expressed in terms of the RMSE [kgs−2], for a wave forcing with wave period of T = 8s.

RMSE (kgs−2) Layout 1 Layout 2 Layout 3 Layout 4 Average
Layout 1 0 5.4 2.8 11.0 6.4
Layout 2 5.4 0 6.0 6.4 5.9
Layout 3 2.8 6.0 0 11.9 6.9
Layout 4 11.0 6.4 11.9 0 9.8
Average 6.4 5.9 6.9 9.8

Table 6.3: Comparison of the ice floe stress response in all layouts. The discrepancy between the stress curves
is expressed in terms of the RMSE [kgs−2], for a wave forcing with wave period of T = 12s.

RMSE (kgs−2) Layout 1 Layout 2 Layout 3 Layout 4 Average
Layout 1 0 7.3 3.4 15.6 8.8
Layout 2 7.3 0 7.8 8.8 8.0
Layout 3 3.4 7.8 0 15.8 9.0
Layout 4 15.6 8.8 15.8 0 13.4
Average 8.8 8.0 9.0 13.4

Table 6.4: Comparison of the ice floe stress response in all layouts. The discrepancy between the stress curves
is expressed in terms of the RMSE [kgs−2], for a wave forcing with wave period of T = 16s.

RMSE (kgs−2) Layout 1 Layout 2 Layout 3 Layout 4 Average
Layout 1 0 8.1 5.2 16.8 10.0
Layout 2 8.1 0 11.4 11.4 10.3
Layout 3 5.2 11.4 0 20.0 12.2
Layout 4 16.8 11.4 20.0 0 16.1
Average 10.0 10.3 12.2 16.1

Visually the discrepancy in the ice floe stress curves seems to decrease for increasing wave period. However,
the RMSE values increase for increasing wave period, due to increased ice floe stress magnitudes. Layout 4
exhibits a higher ice floe stress magnitude with a larger amplitude, compared to the realistic sea ice layouts.
This coincides with the largest average RMSE values for Layout 4, shown in Tabs. 6.2-6.4, signifying the
mounting influence of the detailed heterogeneous sea dynamics description. High stress values are the result
of ice floe collisions. Accordingly, if the domain-averaged ice floe stress value at a certain point in time is
higher, then more floes and floe interfaces are involved in collisions. The small distance in between ice floes
on the left-hand side of the inner domain in Layout 4, causes collisions and therefore high stress values. This
also explains why Layout 2 shows the highest ice floe stress curve, when comparing only the realistic sea ice
layouts, shown in Figs. 6.3(a-c).

With regards to the influence of floe shape and diameter variations, the ice floe stress response of the idealised
sea ice composition Layout 4 is distinctly different from realistic Layout 2, with increasing discrepancy for
increasing wave period. The reason is that the stress response of Layout 4 is being overestimated by the
idealisation of ice floe geometry. The total interface area is maximised using the constant average diameter
for all floes, resulting in the largest potential collision surface area. The RMSE values calculated from the
discrepancy in the ice floe stress curves between Layout 2 and 4 for wave periods, T = 8s, T = 12s and
T = 16s are 6.4kgs−2, 8.8kgs−2 and 11.4kgs−2, respectively.

Figs. 6.3(d-f) show the spatially-averaged grease ice stress for sea ice Layouts 1-4. Results of the three
realistic sea ice layouts (Layout 1-3) are very similar for all wave periods, due to a comparable concentration
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of grease ice in all layouts. However, not only the grease ice concentration in the domain is of importance,
also the fact that the grease ice field is influenced by the motion of ice floes during interaction. Layout 4 has
a significant number of ice floes within a small distance, resulting in ice floe-ice floe interaction. This, in turn,
affects the grease ice stress response in between these ice floes, similar to the behaviour observed in the ice
floe collision test case investigated in 5.3.1. This explains the deviating grease ice stress curves for Layout 4,
more pronounced for the smallest wave period. This results in average RMSE values for Layouts 1-3 which
are lower than the average RMSE for Layout 4.

In Tabs. 6.5-6.7 the RMSE of the grease ice stress magnitudes is given for all four layouts, subjected to
wave periods T = 8s, T = 12s and T = 16s. The uniformity of floe diameter and shape results in a discrep-
ancy in grease ice stress between realistic Layout 2 and the idealised composition Layout 4, mainly visible
for the lowest wave period, T = 8s, in Fig. 6.3(d). The RMSE values calculated from the discrepancy in
the grease ice stress curves between Layout 2 and 4 for wave periods, T = 8s, T = 12s and T = 16s are
0.00023kgs−2, 0.00025kgs−2 and 0.00024kgs−2, respectively.

Table 6.5: Comparison of the grease ice stress response in all layouts. The discrepancy between the stress
curves is expressed in terms of the RMSE [kgs−2], for a wave forcing with wave period of T = 8s.

RMSE (kgs−2) Layout 1 Layout 2 Layout 3 Layout 4 Average
Layout 1 0 0.00007 0.00005 0.00020 0.00011
Layout 2 0.00007 0 0.00010 0.00023 0.00013
Layout 3 0.00005 0.00010 0 0.00020 0.00012
Layout 4 0.00020 0.00023 0.00020 0 0.00021
Average 0.00011 0.00013 0.00012 0.00021

Table 6.6: Comparison of the grease ice stress response in all layouts. The discrepancy between the stress
curves is expressed in terms of the RMSE [kgs−2], for a wave forcing with wave period of T = 12s.

RMSE (kgs−2) Layout 1 Layout 2 Layout 3 Layout 4 Average
Layout 1 0 0.00010 0.00005 0.00019 0.00011
Layout 2 0.00010 0 0.00008 0.00025 0.00014
Layout 3 0.00005 0.00008 0 0.00021 0.00011
Layout 4 0.00019 0.00025 0.00021 0 0.00022
Average 0.00011 0.00014 0.00011 0.00022

Table 6.7: Comparison of the grease ice stress response in all layouts. The discrepancy between the stress
curves is expressed in terms of the RMSE [kgs−2], for a wave forcing with wave period of T = 16s.

RMSE (kgs−2) Layout 1 Layout 2 Layout 3 Layout 4 Average
Layout 1 0 0.00009 0.00005 0.00016 0.00010
Layout 2 0.00009 0 0.00005 0.00024 0.00013
Layout 3 0.00005 0.00005 0 0.00020 0.00010
Layout 4 0.00016 0.00024 0.00020 0 0.00020
Average 0.00010 0.00013 0.00010 0.00020
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(a) (b) (c)

Figure 6.4: Spatially-averaged mechanical sea ice response for layouts 1-4 with νk ≈ 0.04m2s−1, showing the
strain rate magnitude [s−1] for (a) T = 8s, (b) T = 12s and (c) T = 16s.

The spatially-averaged grease ice strain rate curves are shown in Figs. 6.4(a-c) for all sea ice layouts. Looking
only at the realistic sea ice layouts a distinctly smaller strain rate magnitude is exhibited for Layout 1, which
can be explained by investigating both the ice floe concentration differences and the number of ice floes in
the domain. Layout 1 has both, the smallest number of ice floes and concentration of ice floes, but largest
average floe size in the domain. The latter means less interface area in relation to total floe area.

Strain rates at the interface between ice floes and grease ice are higher than strain rates away from the
interface, hence strain rate at the interface dominate the spatially-averaged grease ice strain rate curves. A
smaller concentration of ice floes results in a higher grease ice concentration, which implies a higher ratio
between grease ice further away from the interface and grease ice at the interface. This in turn results in lower
spatially-averaged grease ice strain rate values, and together explains the lower strain rate magnitude curves
for Layout 1. Layout 2 has both, a higher number of ice floes and a higher ice floe concentration, compared to
Layout 3 but also a larger average floe size. In combination, it results that both strain rate magnitude curves
are close together.

Comparing the grease ice strain rate curves of Layout 2 and 4, it can be seen that the average strain rate
is lower for the idealised Layout 4, due to fewer ice floes in the domain but effectively same floe size. In
Tabs. 6.8-6.10 the RMSE is calculated for the grease ice strain rate magnitude curves of all four layouts
subjected to wave periods T = 8s, T = 12s and T = 16s. The discrepancy in the grease ice strain rate
between Layouts 2 and 4 increases for increasing wave period, as for, T = 8s, T = 12s and T = 16s RMSE

values are equal to 0.0031s−1, 0.0035s−1 and 0.0055s−1, respectively.

Table 6.8: Comparison of the grease ice strain rate response in all layouts. The discrepancy between the
strain rate curves is expressed in terms of the RMSE [s−1], for a wave forcing with wave period of T = 8s.

RMSE (s−1) Layout 1 Layout 2 Layout 3 Layout 4 Average
Layout 1 0 0.0018 0.0017 0.0014 0.0016
Layout 2 0.0018 0 0.0005 0.0031 0.0018
Layout 3 0.0017 0.0005 0 0.0030 0.0017
Layout 4 0.0014 0.0031 0.0030 0 0.0025
Average 0.0016 0.0018 0.0017 0.0025
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Table 6.9: Comparison of the grease ice strain rate response in all layouts. The discrepancy between the
strain rate curves is expressed in terms of the RMSE [s−1], for a wave forcing with wave period of T = 12s.

RMSE (s−1) Layout 1 Layout 2 Layout 3 Layout 4 Average
Layout 1 0 0.0026 0.0019 0.0009 0.0018
Layout 2 0.0026 0 0.0007 0.0035 0.0023
Layout 3 0.0019 0.0007 0 0.0028 0.0018
Layout 4 0.0009 0.0035 0.0028 0 0.0024
Average 0.0018 0.0023 0.0018 0.0024

Table 6.10: Comparison of the grease ice strain rate response in all layouts. The discrepancy between the
strain rate curves is expressed in terms of the RMSE [s−1], for a wave forcing with wave period of T = 16s.

RMSE (s−1) Layout 1 Layout 2 Layout 3 Layout 4 Average
Layout 1 0 0.0032 0.0028 0.0023 0.0028
Layout 2 0.0032 0 0.0005 0.0055 0.0031
Layout 3 0.0028 0.0005 0 0.0051 0.0028
Layout 4 0.0023 0.0055 0.0051 0 0.0043
Average 0.0028 0.0031 0.0028 0.0043

Eq. (3.9) in Chap. 3 shows that the relation between the grease ice strain rate and bulk viscosity is inversely
proportional. An increase in grease ice viscosity results in a decreasing strain rate and vice versa. This
explains why the bulk viscosity curves of Layout 1 are higher than the curves of Layouts 2 and 3, mainly
observable in Figs. 6.5(a) and (b).

(a) (b) (c)

Figure 6.5: Spatially-averaged mechanical sea ice response for layouts 1-4 with νk ≈ 0.04m2s−1, showing the
bulk viscosity [kgs−1] for (a) T = 8s, (b) T = 12s and (c) T = 16s.

In Tabs. 6.11-6.13 the RMSE is calculated for the grease ice bulk viscosity curves of all four layouts subjected
to wave periods T = 8s, T = 12s and T = 16s. Due to the direct interrelation between the strain rate and
bulk viscosity variables, the average discrepancy in grease ice viscosity between Layout 2 and 4 is also high
for wave periods, T = 8s, T = 12s and T = 16s, with RMSE values decreasing for increasing wave period,
equal to 0.782kgs−1, 0.386kgs−1 and 0.247kgs−1, respectively.
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Table 6.11: Comparison of the grease ice bulk viscosity response in all layouts. The discrepancy between
the bulk viscosity curves is expressed in terms of the RMSE [kgs−1], for a wave forcing with wave period of
T = 8s.

RMSE (kgs−1) Layout 1 Layout 2 Layout 3 Layout 4 Average
Layout 1 0 0.429 0.568 0.488 0.495
Layout 2 0.429 0 0.212 0.782 0.474
Layout 3 0.568 0.212 0 0.843 0.541
Layout 4 0.488 0.782 0.843 0 0.704
Average 0.495 0.474 0.541 0.704

Table 6.12: Comparison of the grease ice bulk viscosity response in all layouts. The discrepancy between
the bulk viscosity curves is expressed in terms of the RMSE [kgs−1], for a wave forcing with wave period of
T = 12s.

RMSE (kgs−1) Layout 1 Layout 2 Layout 3 Layout 4 Average
Layout 1 0 0.135 0.238 0.270 0.214
Layout 2 0.135 0 0.177 0.386 0.233
Layout 3 0.238 0.177 0 0.450 0.288
Layout 4 0.270 0.386 0.450 0 0.369
Average 0.214 0.233 0.288 0.369

Table 6.13: Comparison of the grease ice bulk viscosity response in all layouts. The discrepancy between
the bulk viscosity curves is expressed in terms of the RMSE [kgs−1], for a wave forcing with wave period of
T = 16s.

RMSE (kgs−1) Layout 1 Layout 2 Layout 3 Layout 4 Average
Layout 1 0 0.140 0.176 0.147 0.154
Layout 2 0.140 0 0.232 0.247 0.206
Layout 3 0.176 0.232 0 0.218 0.209
Layout 4 0.147 0.247 0.218 0 0.204
Average 0.154 0.206 0.209 0.204

6.2 Numerical study on the mechanical behaviour of ice floe-grease
ice interaction

The objective of this numerical study is to map the high-resolution mechanical behaviour of interacting ice
floes embedded in grease ice. Additionally, the effect of grease ice viscosity on both the stress and strain rate
response of sea ice is discussed, considering an imposed wave forcing.

A detailed analysis is performed of sea ice dynamics and its characterizing rheology variables. Ice floe and
grease ice properties and wave characteristics used in this section are summarised in Tab. 6.14. A 100×100m2

realistic heterogeneous sea ice layout, shown in Fig. 6.6, is subjected to five different wave characteristics prop-
agating in the x-direction, where the wave periods with corresponding wave amplitude have a prescribed wave
steepness, ak = 0.06 [41], found by varying the amplitude of the waves. The chosen three kinematic grease
ice viscosity values are in-line with Newyear and Martin [134], Paul et al. [142], Wadhams et al. [205], Wang
and Shen [206]. The bulk viscosity is directly related to the grease ice strength parameter, Pg, as shown in
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Eqs. (3.8) and (3.9). Accordingly, values for P ∗
g are determined such that the resulting domain-averaged bulk

viscosity provides a close fit to the corresponding kinematic grease ice viscosity values.

Table 6.14: Parameters used in the sea ice dynamics analysis in this section.
Parameter Definition Value Unit
a wave amplitude 2.1, 2.9, 3.8, 4.8, 6 m
ak wave steepness 0.06 [41] -
Cwf,g

water drag coefficient for ice floes and grease ice 0.02, 0.008 -
P ∗

g grease ice strength parameter 0.006, 0.024, 0.096 Nm−2

T wave period 12, 14, 16, 18, 20 s
Λ wave length 225, 306, 400, 506, 625 m
νk kinematic grease ice viscosity 0.01, 0.04, 0.16 [134, 142, 205, 206] m2s−1

The presentation of the sea ice dynamics analysis results in Sec. 6.2 is split into two subsections. In Sec. 6.2.1,
the response of the sea ice velocity field and the relative motion between ice floes are studied. Additionally,
the interaction between ice floes is discussed, focusing on the number of ice floe collisions with corresponding
collision stress intensity. Contour plots are shown for a time window of one wave length, allowing for a com-
parison between the different wave periods and to illustrate the most important time frames within one wave
length. Furthermore, the impact of the stress response on changes in grease ice viscosity is discussed.

Sec. 6.2.2 studies the interaction between two ice floe pairs and the interface between ice floes and grease
ice. The detailed stress, strain rate, viscosity and velocity gradient distributions are shown, by means of
contour plots in a realistic heterogeneous sea ice domain. The strain rate is highly dependent on the velocity
gradient, as shown in Eq. (3.6) in Chap. 3. Additionally, the impact of the strain rate response on changes in
grease ice viscosity is mapped.

Figure 6.6: Realistic sea ice layout, showing a 100 × 100m2 inner domain with a total of 90000 FVM cells
indicated by a black rectangle, embedded in a 300 × 300m2 outer domain with a total of 810000 FVM cells.

6.2.1 Sea ice velocity and ice floe stress response

The wave elevation of an imposed gravity wave with a period of T = 12s is illustrated in Fig. 6.7, shown
for a time window of one wave length between t = 38s and t = 50s. The wave propagates in the horizontal
x-direction through the 100 × 100m2 inner domain with a total of 90000 FVM cells, consisting of grease ice
with a domain-averaged kinematic viscosity of νk ≈ 0.04m2s−1.
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(a) (b) (c) (d) (e)

t=38s t=41s t=44s t=47s t=50s

Figure 6.7: Wave elevation [m] for an imposed wave forcing exemplified for T = 12s and kinematic grease ice
viscosity νk ≈ 0.04m2s−1, illustrating (a-e) one wave length between t = 38s and t = 50s.

The five time steps show characteristic positions within one wave length. Figs. 6.7(a,c,e) show a domain-
averaged wave elevation equal to zero, with a descending wave flank in Figs. 6.7(a,e) and an ascending wave
flank in Fig. 6.7(c). The wave trough is depicted in Fig. 6.7(b), whereas the wave crest is shown in Fig. 6.7(d).

(a) (b) (c) (d) (e)

t=38s t=41s t=44s t=47s t=50s

Figure 6.8: Orbital wave velocity [ms−1] for an imposed wave forcing exemplified for T = 12s and kinematic
grease ice viscosity νk ≈ 0.04m2s−1, illustrating (a-e) one wave length between t = 38s and t = 50s.

The imposed orbital wave velocity in the x-direction, shown in Fig 6.8, results in the sea ice velocity (in the
x-direction), depicted in Fig. 6.9. The sea ice velocity distribution is characterised by a delayed response and
exhibits clear floe size-dependent differences, both due to the effect of inertia. Temporary contact between
ice floes is indicated when sharing the same velocity magnitude. The predominantly oscillatory nature of the
induced orbital wave velocity yields a negligible net-resultant horizontal movement of ice floes over time, due
to ice floes that move back and forth in an orbital motion.

Ice floes at the centre of Fig. 6.9(a) at t = 38s, are located in an ascending wave flank with an orbital
wave velocity in the x-direction equal to zero and a maximum positive floe velocity in the x-direction indicat-
ing a sliding motion of ice floes in forward direction. At t = 41s, the centrally located ice floes are in the wave
trough, showing a largest negative orbital wave velocity and, due to inertia, a floe velocity in the x-direction
close to zero indicating a clear phase shift between both. Considering that subsequently at t = 44s at the
centre of Fig. 6.9(c) the ice floe velocity is maximum negative, it is clear that the ice floe motion is diverging in
the wave trough. Similarly, looking the contour plots at t = 47s and t = 50s, respectively, one finds converging
ice floe motion at the wave crest. The effect of gravitation-caused sliding of ice floes downwards both wave
flanks would lead to the opposite motion behaviour but can be considered negligible [66].
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t=38s t=41s t=44s t=47s t=50s

Figure 6.9: Sea ice velocity [ms−1] for an imposed wave forcing exemplified for T = 12s and kinematic grease
ice viscosity νk ≈ 0.04m2s−1, illustrating (a-e) one wave length between t = 38s and t = 50s.

Fig. 6.10 highlights the velocity differences of ice floes and the surrounding grease ice, where only the former
are affected by form drag and collision-induced rotation. Due to the orbital sea ice motion, vertical bands,
along which the velocity vectors point in opposite direction on either side, indicate floes being located between
trough and crest according to the wave elevation plots illustrated in Fig. 6.7. Colliding ice floes temporarily
show shared velocity values and velocity directions at contact.

t=38s t=41s t=44s t=47s t=50s

(a) (b) (c) (d) (e)

Figure 6.10: Sea ice velocity vectors [ms−1] for an imposed wave forcing exemplified for T = 12s and kinematic
grease ice viscosity νk ≈ 0.04m2s−1, illustrating (a-e) one wave length between t = 38s and t = 50s.

In Fig. 6.11 the areas marked by white rectangles highlight the evolution of two ice floe collisions over time for
a wave forcing with T = 12s, characterised as points of highly localised stress magnitudes. The floe interaction
is not characterised by short violent collisions but rather continuous churning contact varying in intensity.

(a) (b) (c) (d) (e)

t=38s t=41s t=44s t=47s t=50s

Figure 6.11: Ice floe stress magnitude [kgs−2] for an imposed wave forcing exemplified for T = 12s and
kinematic grease ice viscosity νk ≈ 0.04m2s−1, illustrating (a-e) one wave length between t = 38s and
t = 50s. The white rectangles at the bottom-right (Zone I) and centre (Zone II) mark floe collisions.
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For the more prominent ice floe collision in the bottom-right (Zone I), the collision stress intensity is most
pronounced when the two colliding floes left the trough at t = 41s and passed the crest t = 47s as shown
in Figs. 6.11(b) and (d) which can be determined from Figs. 6.7(b) and (d), respectively. Similarly, the floe
collision found in the domain centre (Zone II) exhibits a high stress intensity when the two involved floes
passed the crest at t = 38s, left the trough at t = 44s and passed the crest again at t = 50s. This is studied
in more detail, later in this section, for specific floe collisions.

The minimum principal stress, σmin, if negative, is the maximum compressive stress, acting normal to the
plane where shear stress is zero, and provides an indication of the collision stress intensity. Contour plots
of the minimum principal ice floe stress for wave forcing with T = 12s and T = 20s are illustrated in
Figs. 6.12 and 6.13, showing the evolution of ice floe collisions over time. Note that the legends differ, as
they are wave period dependent. T = 20s yields a higher number of ice floe collisions, whereas for T = 12s
only a few selected pairs of floes directly interact with each other, specifically, floes which have been in close
vicinity at t = 0s already, for example as marked by the white rectangles (Zones I and II). Differences in ice
floe collision patterns are due to an increasing wave kinetic energy for increasing wave period on condition
that a prescribed wave steepness is considered.

(a) (b) (c) (d) (e)

t=38s t=41s t=44s t=47s t=50s

Figure 6.12: Minimum principal ice floe stress [kgs−2] for an imposed wave forcing exemplified for T = 12s
and kinematic grease ice viscosity νk ≈ 0.04m2s−1, illustrating (a-e) one wave length between t = 38s and
t = 50s. The white rectangles at the bottom-right (Zone I) and centre (Zone II) mark floe collisions.

(a) (b) (c) (d) (e)

t=35s t=40s t=45s t=50s t=55s

Figure 6.13: Minimum principal ice floe stress [kgs−2] for an imposed wave forcing exemplified for T = 20s
and kinematic grease ice viscosity νk ≈ 0.04m2s−1, illustrating (a-e) one wave length between t = 35s and
t = 55s. The white rectangles at the bottom-right (Zone I) and centre (Zone II) mark floe collisions.

The interrelation between wave elevation, velocity in the x-direction and ice floe collision stress intensity over
time are discussed for the ice floe collisions occurring in Zone I and Zone II. Considering wave forcings with
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T = 12s, T = 16s and T = 20s, the minimum principal stress collision intensity observed over a time window
of one wave length yields a peak collision stress intensity in Zone I equal to σpeak

col = −973kgs−2, −1186kgs−2,
and −1535kgs−2, respectively, and in Zone II equal to σpeak

col = −371kgs−2, −410kgs−2, and −541kgs−2, re-
spectively.

Ice floe collisions occur for all five wave periods considered, but their number increases with the wave period,
as found by visual inspection of Fig. 6.12 as opposed to Fig. 6.13. This is also reflected by the percentages
of FVM cells exhibiting highly localised minimum principal stress values (> 2MPa [161, 168]) which is only
0.10%, 0.50% and 1.18% for wave periods T = 12s, T = 16s and T = 20s, respectively. These results support
the assumption of no ice floe failure and fracture in the small-scale model, as mentioned in Chap. 1. Mainly
the same ice floes collide for wave periods with T < 16s. A larger variety of ice floes collide for the larger
wave periods with T ≥ 16s, due to a higher kinetic wave energy in the system.

In Fig. 6.14(a) box plots show the minimum principal stress values of all FVM ice floe cells in the inner
domain accumulated (collection of all the ice floe stress values) between one wave length with νk ≈ 0.04m2s−1

for the five wave forcing increasing from T = 12 − 20s. All wave periods show sample skewness, representing

(a) (b)

(c)

Figure 6.14: Five waves with a wave period T = 12 − 20s, showing (a) box plots with minimum principal
stress values [kgs−2] of all ice floe cells in the inner problem domain with νk ≈ 0.04m2s−1, (b) number of
ice floe collision cells [−] for kinematic grease ice viscosity ranging from νk ≈ 0.01 − 0.16m2s−1 and (c)
temporally- and spatially-averaged collision stress intensity [kgs−2] for kinematic grease ice viscosity ranging
from νk ≈ 0.01 − 0.16m2s−1.

the mean minimum principal stress in ice floes indicated by a black circle ranging between σcol = −18.88kgs−2

and −62.01kgs−2. The median is indicated by a red horizontal line, ranging between σcol = −10.15kgs−2 and
−53.60kgs−2. The maximum and minimum whisker length, representing the upper and lower adjacent, re-
spectively, are calculated by q3 +w(q3 − q1). w denotes the multiplier whisker, which is equal to 1.5. The 25th
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percentile is indicated by q1 and the 75th percentile is given by q3. All FVM cell-values in the inner problem
domain beyond the maximum and minimum whisker length are defined in statistical outliers, indicated by
red plus symbols in Fig. 6.14(a). Specifically, the negative minimum principal stress outliers refer to ice floe
portions under severe compression as found in floe collision zones illustrated in Figs. 6.12 and 6.13. The corre-
sponding lower adjacent in the box plot, shown in Fig. 6.14(a), is used to define the collision stress threshold,
which equals σthres

col = −142.8kgs−2, −149.5kgs−2, −154.4kgs−2, −166.3kgs−2, −200.8kgs−2 for wave forcings
with T = 12s, T = 14s, T = 16s, T = 18s and T = 20s, respectively. The number of extreme minimum
principal stress outliers, referred to as collision stress in the following, indicate the number of cells directly
affected by floe collisions, where their number increases with the frequency and severity of floe collisions.
Fig. 6.14(b) shows the total number of minimum principal stress outliers accumulated during one wave length
in the inner domain and Fig. 6.14(c) shows the temporally and domain-averaged collision stress value for all
five wave forcing with kinematic grease ice viscosities νk ≈ 0.01m2s−1, νk ≈ 0.04m2s−1, and νk ≈ 0.16m2s−1,
respectively. The number of cells associated with collisions show a clear gradual increase for increasing wave
period. Consequently, the temporally- and spatially-averaged collision stress intensity also increases for in-
creasing wave period. The stress response is not significantly impacted by changes in viscosity within the
given range as found in situ [134, 142, 205, 206]. The main reason is that the used range of viscosity values is
relatively small. Therefore, differences in viscosity values only result in relatively small changes. Additionally,
the small-scale model considers an imposed wave. If the wave would freely propagate and dissipate energy
after entering the ice field, both the strain rate and the stress distribution would be affected and decrease
further due to the presence of sea ice. However, this effect would be small in a small sea ice domain.

To study the two ice floe collisions occurring in the bottom-right corner (Zone I) and in the centre (Zone II), as
shown in Figs. 6.12 and 6.13, in more detail, the mean wave elevation, velocity in the x-direction and collision
stress intensity of both floes combined are plotted over time for wave forcing with T = 12s, T = 16s and
T = 20s. Firstly, the most prominent ice floe collision is discussed in Fig. 6.15, which refers to the collision
in Zone I. Figs. 6.15(a,d,g) show the absolute value of the mean collision stress intensity and wave elevation
over time for wave forcing with T = 12s, T = 16s and T = 20s, respectively. All wave periods show a similar
correlation, where the collision stress intensity shows minimum and maximum collision stress magnitudes just
before and after both, the wave crest and the wave trough, respectively. The time-averaged collision stress
intensity in Zone I over one entire wave length passing through increases for increasing wave period, namely
σavg

col = −233kgs−2 for T = 12s and t = 38 − 50s, −248kgs−2 for T = 16s and t = 30 − 46s, and −303kgs−2

for T = 20s and t = 35 − 55s. The absolute value of the collision stress intensity and the number of ice floe
collision FVM cells involved, show a direct relation, that is, an increase in the collision stress intensity results
in an increasing number of ice floe collision cells, as depicted in Figs. 6.15(b,e,h). The total number of ice floe
collision FVM cells accumulated for all time steps during one entire wave length passing through Zone I are
equal to 4168, 5991 and 7608 for wave periods T = 12s, T = 16s and T = 20s, respectively. Discontinuities
in the curves of the domain-averaged collision stress intensity, as depicted in Figs. 6.15(a,b,d,e,g,h), indicate
that the minimum principal stress of the two floes is below the previously defined collision stress threshold,
σthres

col . This is either due to ice floes that have temporarily detached themselves leading to the absence of ice
floe collision cells or due to ice floe contact with low stress intensity.

Secondly, the interrelations between mean wave elevation, velocity in the x-direction and collision stress
intensity are shown for the two ice floes close in the centre (Zone II) of the inner domain in Fig. 6.16. The time-
averaged collision stress intensity values over a time window of one wave length are equal to σavg

col = −184kgs−2,
−190kgs−2, and −250kgs−2 for a wave period with T = 12s, T = 16s and T = 20s, respectively, showing that
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this collision is less violent. These values, in addition to the time-averaged collision stress intensity values
found for the collision in Zone I, correspond to the increasing collision stress intensity with increasing wave
period, as shown in Fig. 6.14(c) for all collisions occurring in the inner domain.

(a) (b) (c)

(f)(e)

(h) (i)

(d)

(g)

Figure 6.15: Correlation between variables of the collision in the bottom-right corner (Zone I) of the inner
domain. (a,d,g) absolute value of the ice floe collision stress intensity [kgs−2] vs. wave elevation [m], (b,e,h)
absolute value of the ice floe collision stress intensity [kgs−2] vs. the number of ice floe collision cells over
time [−], (c,f,i) sea ice velocity in the x-direction [ms−1] vs. orbital wave velocity in the x-direction [ms−1],
shown for three different wave forcings with νk ≈ 0.04m2s−1 (a-c) T = 12s, (d-f) T = 16s and (g-i) T = 20s.

The total number of ice floe collision cells involved in the collision in Zone II is equal to 545, 843 and 1206,
for wave periods T = 12s, T = 16s and T = 20s, respectively. Comparing these numbers with the numbers
of the collision in Zone I, a similar trend can be observed. The same applies to the total number of ice
floe collision cells in the entire inner domain, illustrated in Fig. 6.14(b). Fig. 6.16 shows similar collisional
behaviour as observed previously in Fig. 6.15 for the collision in Zone I. The collision is less violent, as the
collision stress intensity and the number of collisions are lower than for the collision occurring in Zone I. This
is to be expected, considering that the two colliding floes in Zone I are positioned subsequently of each other
with respect to the horizontal wave propagation direction. The two floes in Zone II, however, are positioned
parallel to each other, which limits the momentum transfer. More interruptions are observed in the collision
stress intensity curve where the minimum principal stress values σmin < σthres

col and the two floes are not
engaged in full collision contact.

The local sea ice velocity and the orbital wave velocity in the x-direction, shown in Figs. 6.15(c,f,i) and 6.16(c,f,i)

101



for three different wave periods, T = 12s, T = 16s and T = 20s, respectively, show similar behaviour for both
ice floe collisions. Note, however, that the curves are slightly shifted, due to a different location of the ice
floe collisions in the inner domain. Hypothetically speaking, ice floe collisions in the inner domain would not
occur when the sea ice cover is at rest, which implies that the sea ice velocity and wave elevation are in phase
and equal to zero. However, due to the influence of sea ice inertia, the collision stress intensity is out of phase
with the velocity and wave elevation. As a result, the interrelation between sea ice velocity, wave elevation
and collision stress intensity is not straight-forward.

(a) (b) (c)

(f)(e)

(h) (i)

(d)

(g)

Figure 6.16: Correlation between variables of the collision in the centre (Zone II) of the inner domain. (a,d,g)
absolute value of the ice floe collision stress intensity [kgs−2] vs. wave elevation [m], (b,e,h) absolute value
of the ice floe collision stress intensity [kgs−2] vs. the number of ice floe collision cells over time [−], (c,f,i)
sea ice velocity in the x-direction [ms−1] vs. orbital wave velocity in the x-direction [ms−1], shown for three
different wave forcings with νk ≈ 0.04m2s−1 (a-c) T = 12s, (d-f) T = 16s and (g-i) T = 20s.

The relative motion of the ice layer with respect to the ocean layer underneath is generally influenced by the
wave forcing and the ice composition [171]. In particular, inertia of the ice cover opposing the oscillatory
orbital wave velocity and the frictional contact at the ice basal plane, result in a lag of the sea ice velocity
behind the orbital wave velocity. The phase shift between the sea ice velocity and the orbital wave velocity
in the x-direction is constant over time and equal to 2.5s, 3.5s and 4s, for wave periods T = 12s, T = 16s and
T = 20s, respectively. Thus, the constant phase shift is not the same for all wave periods, but increases for
increasing wave period.

From Fig. 6.17, it can be seen that the effect of grease ice viscosity on the phase shift in Zone I is negligible
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considering the lowest and highest kinematic grease ice viscosity values, νk ≈ 0.01m2s−1 and νk ≈ 0.16m2s−1,
respectively. The effect of inertia, on the interrelation between the sea ice velocity and wave elevation, has
also been discussed in Test case 2 in Sec. 5.3.2.

(a) (b)

Figure 6.17: The influence of grease ice viscosity values, νk ≈ 0.01m2s−1 and νk ≈ 0.16m2s−1, on the phase
shift in Zone I, showing for a wave period of (a) T = 12s and (b) T = 20s.

6.2.2 Grease ice stress, viscosity and strain rate response

The previously observed heterogeneous ice motion characteristics are caused by the heterogeneous sea ice
composition and distinct differences in material behaviour of its two constituents, ice floes and grease ice,
respectively. The viscous stress response of grease ice is non-linear and highly strain rate-dependent and
generally several orders of magnitude smaller than the ice floe stress. The magnitude of the velocity gradient
is shown in Fig. 6.18. The distribution of the strain rate magnitude, illustrated in Fig. 6.19, is qualita-
tively similar to the velocity gradient magnitude distribution. Note that the legends of both variables are
capped to improve clarity of the contour plots. The inner domain contains values up to ϵ̇mag ≈ 0.15s−1

and ∇Umag ≈ 0.15s−1 at the interface between ice floes and grease ice. The sea ice velocity gradient, and
therefore the strain rate, approaches zero when the sea ice velocity is either at its maximum or minimum,
which corresponds to a wave elevation close to zero, in between the wave crest and the wave trough.

(a) (b) (c) (d) (e)

t=38s t=41s t=44s t=47s t=50s

Figure 6.18: Velocity gradient magnitude [s−1] for an imposed wave forcing exemplified for T = 12s and
kinematic grease ice viscosity νk ≈ 0.04m2s−1, illustrating (a-e) one wave length between t = 38s and
t = 50s.
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(a) (b) (c) (d) (e)

t=38s t=41s t=44s t=47s t=50s

Figure 6.19: Strain rate magnitude [s−1] for an imposed wave forcing exemplified for T = 12s and kinematic
grease ice viscosity νk ≈ 0.04m2s−1, illustrating (a-e) one wave length between t = 38s and t = 50s.

(a) (b) (c) (d) (e)

t=38s t=41s t=44s t=47s t=50s

Figure 6.20: Bulk viscosity [kgs−1] for an imposed wave forcing exemplified for T = 12s and kinematic grease
ice viscosity νk ≈ 0.04m2s−1, illustrating (a-e) one wave length between t = 38s and t = 50s.

The grease ice bulk viscosity, ζ, is a nonlinear function of the strain rate. The viscosity distribution, shown
in Fig. 6.20, and the strain rate suffer from a singularity with locally very high viscosity values when strain
rates approach zero, despite matching temporally and spatially-averaged grease ice viscosity with values found
in literature [134, 205, 206]. Note, however, that the inner domain locally contains bulk viscosity values of
ζ ≈ 100kgs−1, which are capped in the legend at ζ = 2kgs−1, to enhance clarity in the contour plots. As
expected for shear thinning behaviour, the bulk viscosity exhibits clear minima where the strain rate has
maxima, in particular at the floe-grease ice interfaces.

The grease ice stress distribution, shown in Figs. 6.21(a-e), is through its dependency on the strain rate
a function of the velocity gradient. A sharp interface, shown in Figs. 6.21(a,c,e), corresponds to the position
in the domain, where the velocity gradient and strain rate magnitude approach zero, leading to locally very
high viscosity values. The grease ice stress magnitude distribution, including sharp interface, is studied in
detail by plotting the spherical part of the grease ice stress tensor given by its trace, sph(σg) = 1

3 tr(σg), in
kgs−2 in Figs. 6.21(f-j), over a horizontal line, as illustrated by white arrows in Figs. 6.21(a-e).

The spherical part of the grease ice stress tensor refers to stress linked to volume change (tension or compres-
sion). The graphs are directly placed under the distributions and equal in size, allowing direct comparison
between the grease ice stress magnitude distributions and the evolution of sph(σg) over the horizontal line.
Note that the white arrows also cross ice floes, resulting in sph(σg) values equal to zero, shown by disconti-
nuities in the stress curves in Figs. 6.21(f-j).
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(a) (b) (c) (d) (e)

t=38s t=41s t=44s t=47s t=50s

(f) (g) (h) (i) (j)

Figure 6.21: Grease ice stress magnitude [kgs−2] for an imposed wave forcing exemplified for T = 12s and
kinematic grease ice viscosity νk ≈ 0.04m2s−1, illustrating (a-e) one wave length between t = 38s and t = 50s
and (f-j) the spherical part of the grease ice stress tensor, sph(σg) [kgs−2], plotted over a horizontal line,
represented by white arrows for all five time steps.

As expected for fluid-like behaviour, defined by the VP rheology in Eq. (3.7), sph(σg) ≤ 0 is found, indicating
resistance capacity only in compression and shear. The diverging velocity distribution in the wave trough
at t = 41s (Fig. 6.9(b)) therefore leads to very small spherical stress values whereas the converging velocity
distribution at the crest at t = 47s (Fig. 6.9(d)) results in large spherical stress values indicating compression.
At the interface, high strain rate values dominate the stress response, resulting in intermediate grease ice
stress magnitude values, indicated in green.

The effect of grease ice viscosity on strain rate distributions is investigated, by creating box plots, show-
ing the differences in mechanical response over all five wave periods, averaged over a time period of one wave
length, as depicted in Fig. 6.22(a). These box plots specifically provide information regarding interface effects
between ice floes and grease ice. Each box plot, shown in Fig. 6.22(a), represents strain rate magnitude values
of all grease ice FVM cells in the inner domain with νk ≈ 0.04m2s−1 for the five wave forcings within the
range of T = 12 − 20s. All wave periods show sample skewness, with mean values, indicated by a black
circle, ranging between ϵ̇mag = 0.0105 − 0.0212s−1. The median is indicated by a red horizontal line, rang-
ing between ϵ̇mag = 0.0044s−1 and ϵ̇mag = 0.0074s−1. The maximum whisker lengths of ϵ̇mag = 0.0098s−1,
ϵ̇mag = 0.0196s−1, ϵ̇mag = 0.0332s−1, ϵ̇mag = 0.0460s−1, ϵ̇mag = 0.0555s−1 for wave forcing with T = 12s,
T = 14s, T = 16s, T = 18s and T = 20s, respectively, represent the upper adjacent that serves as the threshold
between the 75th percentile and the outliers. Each outlier illustrates a FVM cell in the inner domain with
an extreme strain rate value, which is located at the ice floe-grease ice interface. The number of extreme
strain rate values indicate the number of interface FVM cells and how pronounced the form drag on the ice
floe-grease ice interface is. Fig. 6.22(b) shows the number of outliers accumulated over one wave length, which
are cells of extreme strain rate magnitude values. Fig. 6.22(c) shows the temporally and domain-averaged
strain rate outliers found at the interface for all five wave forcing with νk ≈ 0.01m2s−1, νk ≈ 0.04m2s−1, and
νk ≈ 0.16m2s−1. The number of interface FVM cells gives an indication for strain rate localisation due to form
drag, and shows a similar trend as previously found for the ice floe collision pattern. The smaller wave periods,
with T < 16s, show a higher number of interface FVM cells, whereas the number of interface FVM cells is
smaller for the larger wave periods, with T ≥ 16s. The mean strain rate at the interface, however, increases
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for increasing wave period. From this inverse relationship it can be concluded that larger wave periods lead
to stronger strain rate localisation due to form drag in terms affected interface area and magnitude.

(a) (b)

(c)

Figure 6.22: Five waves with a wave period T = 12 − 20s, showing (a) box plots with strain rate magnitude
values [s−1] of all grease ice cells in the inner domain with νk ≈ 0.04m2s−1, (b) number of interface cells
[−] for kinematic grease ice viscosity ranging from νk ≈ 0.01 − 0.16m2s−1 and (c) mean strain rate at the
interface [s−1] for kinematic grease ice viscosity ranging from νk ≈ 0.01 − 0.16m2s−1.

As for the ice floe collision stress previously discussed in Sec. 6.2.1, variations in viscosity do not significantly
affect the number of outliers and mean strain rate values at the interface. This is mainly due to the relatively
small range of viscosity values away from the singularity values, and because the small-scale model considers
an imposed wave. A freely propagating wave would dissipate energy, affecting both the strain rate and the
stress distributions, which would decrease further due to the presence of sea ice. However, this effect can be
assumed small in a small sea ice domain.

(a) (b)

Figure 6.23: Effect of varying wave forcing on the strain rate response of grease ice, ϵ̇mag, over time, showing
(a) at the ice floe-grease ice interface and (b) in between ice floes (away from the interface).
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Lastly, Fig. 6.23 shows the spatially averaged strain rate values at the interface (values > maximum whisker
length, Fig. 6.23(a)) and in between ice floes, away from the interface (values < maximum whisker length,
Fig. 6.23(b)), for wave forcing with T = 12s, T = 16s and T = 20s. Both, the strain rate magnitude values
at the ice floe interface and away from the interface show a direct correlation with increasing wave period.
Moreover, the values at the interface are approximately one order of magnitude greater than the grease ice
strain rate magnitudes in between ice floes.
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Chapter 7

Numerical study of in situ ice floe
motions

In this chapter the ability of the small-scale sea ice dynamics to reproduce actual ice floe motion characteristics
is investigated. For this purpose, sea ice observation data from the 2017 winter cruise are used. Data was
obtained approximately 100km from the edge of the Antarctic marginal ice zone (MIZ) at ±62-64◦ south and
±30◦ east. Images and wave buoy data were collected to monitor the ocean surface during an intense storm
on the 4th of July 2017. This data can assist in gaining a better understanding of the sea ice cover, such as
the sea ice concentration, pancake ice shape, and floe size distribution [3].

In Sec. 7.1 the procedure of image processing in Matlab is explained, from which ice floe displacement data
in the horizontal plane is obtained. Subsequently, a sensitivity analysis is conducted in Sec. 7.2, discussing
the sensitivity of the unknown parameter values, which require calibration. The final parameter calibration
and model verification results are discussed in Sec. 7.3.

7.1 Image processing

A system of two GigE monochrome industrial CMOS cameras with a 2/3 inch sensor, installed on the monkey
bridge of the S.A. Agulhas II, at a height of approximately 34m from the ocean surface, recorded in situ image
and video material [3]. Two waves-in-ice observation systems (WIIOS) [98], deployed in close proximity to
one another, acquired wave data for 12 minutes and generated a value averaged over that time. The main
parameters of the wave data from the WIIOS include time, latitude, longitude, wave height, wave period, and
ship velocity components in the x- and y-direction.

A large number of consecutive in situ images with corresponding WIIOS data are used for the calibration
of the small-scale model, to map the motion of first-year sea ice in the horizontal plane. Three consecutive
samples of in situ images of the sea ice cover, taken during the 2017 winter cruise, are shown in Fig. 7.1.
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Figure 7.1: Three consecutive sample images of the sea ice cover taken during the 2017 winter cruise.

Before images can be used for calibration purposes, they were processed by rotating each image, optimising
the colour contrast, and eliminating the ship, using a mask in the bottom-right corner. Approximately 5%
of the processed images were removed after quality control, due to poor reconstruction of the floes [3]. The
resulting field of view, found by Alberello et al. [3], is 28 × 28m2. Figs. 7.2(a) and (b) show an example of
a successfully processed image. The red box, shown in Fig. 7.2(b) and (c), represents the domain that is
implemented in OpenFOAM, equal to 21 × 21m2.

(b) (c)(a)

Figure 7.2: In situ images as processed in Matlab [3], showing (a) and (b) the rotation, colour optimisation
and the ship elimination using a mask and (c) the box in the top-left corner with the floe layout implemented
as realistic sea ice layout in OpenFOAM.

According to data obtained from the WIIOS, images were taken in wave conditions with a dominant wave
period of T = 15s and a significant wave height of Hs = 5.5m. The photo acquisition is 2Hz, which is equal
to a time step size of ∆t = 0.5s between photos. To ensure no relative motion between ice floes and the ship,
only photos that were taken when the ship was stationary were considered. All floes in the domain are labeled
with numbers. An example is shown in Fig. 7.3 for three consecutive time steps.

The centre of gravity (CoG) of each ice floe is known, assuming a constant density distribution over the
ice floes. The CoG is illustrated by circles in Fig. 7.3, from which the x- and y-coordinates can be obtained.
As the coordinates of all ice floes in each time step are known, it allows for tracking the motion of ice floes in
the horizontal plane. The layout from which tracking of ice floes starts, is referred to as the initial layout.

Note that the numbering of ice floes in Fig. 7.3 is different for each time step. This is because floes en-
ter and/or leave the domain, or due to sub-optimal ice floe reconstruction. Accordingly, each ice floe in the
initial layout, shown in Fig. 7.3(a), is additionally labelled with a letter, which allows referring to the same
ice floe over time. The letter labelling is illustrated in Fig. 7.4.
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(c)(b)(a)

Figure 7.3: Three consecutive layouts, in which each ice floe is labeled with a number. The centre of gravity
of each ice floe is represented by a circle, showing (a) the initial layout, from which tracking of ice floes starts,
(b) and (c) consecutive layouts.

The imaging analysis allows for tracking the majority of the ice floes. To ensure the reliability of the imaging
analysis, the area and the equivalent diameter of the ice floes are calculated per time step. The area and
equivalent diameter of several ice floes in the domain are significantly different between time steps, due to a
poor reconstruction of the ice floes during processing in Matlab. Therefore, only floes with a dissimilarity in
area and equivalent diameter, less than 5% between all steps of motion, are considered in this analysis.

C

z

B

L

Figure 7.4: Initial sea ice layout labeled with letters. Ice floes B, C, L and z are highlighted in red.

As previously mentioned, two external forcings drive the sea ice motion in the small-scale model, current-
dependent wave forcing and wave-dependent wind forcing. In terms of the wave forcing, both the wave period
and wave height, are acquired by the WIIOS [3, 98], during the 2017 winter cruise. These are, together
with the wave direction, θwa, the only required wave parameters to describe a simplified imposed sinusoidal
harmonic propagating wave as implemented in the small-scale model.

In terms of the wind forcing, the wind magnitude at 10m above sea level and wind direction, are measured
by Vichi [199] during the 2017 winter cruise. Both θw and θa are set to zero, as it can be assumed that on a
small-scale the ocean current and air drag point in the same direction as the ocean current and wind velocity
[182]. This means that, besides the already known parameters shown in Tab. 7.1, only four parameters in
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the small-scale model need to be calibrated based on the image-derived motion data: the constant grease ice
strength parameter, P ∗

g , both air and water drag coefficient values, Ca and Cw, respectively, and the wave
direction, θwa.

Table 7.1: Acquired wind and wave parameters from the 2017 winter cruise, used for the calibration of small-
scale model results.

Parameter Definition Value Unit
a wave amplitude 2.769 m
U10 true wind speed at 10m above sea level 18.9 ms−1

T wave period 15.06 s
θwi true wind direction 321.7 ◦

Ice floes B, C, L and z in the sea ice domain, highlighted in red in Fig. 7.4, show the highest number of
uninterrupted time steps with a dissimilarity in area and equivalent diameter less than 5%. Accordingly,
these four ice floes are used for calibration. The small-scale model is considered successfully calibrated when
floe displacements obtained from the imaging analysis and simulation results from OpenFOAM correspond
to each other. The difference between floe displacement is expressed in terms of the root mean square error
(RMSE). Values close to zero imply a successful calibration.

Figs. 7.5 and 7.6 show blue triangular data points, which represent displacements of ice floes B, C, L and
z obtained from the imaging analysis. Ice floe displacements in the x- and y-direction are calculated using
∆i = i(t) − i(t − ∆t), with i representing x and y, respectively. While the photo sampling rate is 2Hz, which
is equivalent to ∆t = 0.5s, the actual time step between two consecutive data points can be larger than 0.5s
due to the previously mentioned quality control of images during post-processing and due to the reliability
requirement used in the imaging analysis.

Before proceeding with the calibration of the model, however, the sensitivity of the involved parameters
is studied focusing on floe C. The four involved parameters in the small-scale model, which require calibration
are the constant grease ice strength parameter, P ∗

g , both air and water drag coefficient values, Ca and Cw,
respectively, and the wave direction angle, θwa.
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(a) (b)

(c) (d)

Figure 7.5: Displacements in the x-direction, ∆x [m], showing for ice floe (a) B, (b) C, (c) L and (d) z.

(a) (b)

(c) (d)

Figure 7.6: Displacements in the y-direction, ∆y [m], showing for ice floe (a) B, (b) C, (c) L and (d) z.
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7.2 Parameter sensitivity analysis - ice floe C

A sensitivity study is conducted, applied to ice floe C for all four parameters to be calibrated. To perform
the sensitivity analysis, each of the parameters is varied around a set of base parameters, where the base pa-
rameters are: Cwf

= 0.02, Cwg
= 0.008, Caλ

= 1, P ∗
g = 0.02Nm−2, and θwa = 45◦. Parameters influence each

other, which means that matching ice floe displacement results depend on a combination of the parameter
values. Therefore, the sections below only give an indication of how sensitive the displacement of ice floe C
is towards a particular parameter. The most suitable combinations of parameter values, fitting motion of all
four ice floes is determined in Sec. 7.3.

All simulations conducted for the sensitivity analysis of the small-scale model have a simulation time, t = 60s.
Note that some simulations finish earlier because tracking of ice floe C stopped after it has moved out of the
domain. Simulations have a time step size of ∆t = 0.01s, providing computationally stable simulations. A
uniform write interval is set to 0.5s. The domain is discretised with a constant cell size of 0.20 × 0.20m2. The
boundaries of all fields in the domain are set to zero-gradient boundary conditions (BCs).

7.2.1 Grease ice strength parameter

The sensitivity of the constant grease ice strength parameter, P ∗
g , on ice floe displacement is studied by rang-

ing P ∗
g values between 0.02Nm−2 and 2Nm−2.

In Fig. 7.7 displacements are shown in both the x- and y-direction for different values of P ∗
g . In all three

simulations a part of ice floe C moved out of the domain before t = 60s was reached. A significant increase in
the constant grease ice strength parameter of two orders of magnitude, does not affect the ice floe displacement
in the x- and y-directions. Therefore, P ∗

g = 0.02Nm−2, closest to realistic grease ice viscosity values used in
literature [134, 142, 205, 206], is used for the calibration in Sec. 7.3.

(a) (b)

Figure 7.7: Displacement curves [m], obtained for ice floe C, are shown for three different values of P ∗
g ,

illustrating motion in the (a) x-direction and (b) y-direction.

7.2.2 Air drag coefficient

The sensitivity of the air drag coefficient, Ca, on ice floe displacement is studied by ranging three values
of the air drag multiplication factor, Caλ

, between 0.5 and 1.5. As mentioned previously in Sec. 3.4.1, a
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multiplication factor multiplies the wave dependent air drag coefficient in the entire domain with an arbitrary
factor. A value equal to one corresponds to air drag coefficient values found in literature [8, 214].

In Fig. 7.8 ice floe displacements are shown in both the x- and y-direction for different Caλ
values, Caλ

= 0.5, 1,

and 1.5, each corresponding to a domain-averaged air drag coefficient equal to Ca = 0.0013, 0.0026 and 0.0038.

(a) (b)

Figure 7.8: Displacement curves [m], obtained for ice floe C, are shown for three different values of Caλ
, in

the (a) x-direction and (b) y-direction.

All simulations start with a non-zero initial sea ice velocity, corresponding to a velocity that has reached
equilibrium conditions after only applying a wind forcing first. This is done to ensure that the wind forcing
is fully developed in the short time windows. The initial sea ice velocity increases for increasing air drag
coefficient, resulting in higher initial ice floe displacements for larger Ca values.

Additionally, an increasing wave-dependent air drag coefficient results in an increasing wind forcing, which in
turn, results in a shift of the displacement curve away from the equilibrium of zero displacements. Note that
curves with larger multiplication factors finish earlier because tracking of ice floe C stopped after it has moved
out of the domain due to an increased wind forcing. Displacement data points from the imaging analysis,
shown in Figs. 7.5 and 7.6 mainly oscillate around zero, implying that a multiplication factor Caλ

= 0.5 is
most suitable for the calibration in Sec. 7.3.

7.2.3 Water drag coefficients

The sensitivity of water drag coefficients on the displacement of ice floe C is studied by ranging values of water
drag coefficient values for ice floes, Cwf

, from 0.02 - 0.10 considering increments of 0.01, and corresponding
water drag coefficient values for grease ice, Cwg

, from 0.008 - 0.040. The reason for different coefficient values
between ice floes and grease ice is derived from the density difference, resulting in a negligibly small bulk
velocity between the two ice constituents. As previously mentioned in Sec. 5.3.2, the water drag coefficient
ratio of ice floe to grease ice was obtained as 2.5 : 1.

Displacements of ice floe C are shown in Fig. 7.9 for three different Cwf
values with corresponding Cwg

values. All curves end before t = 60s, as a part of ice floe C has moved out of the domain. Note, however,
that the curves of Cwf

= 0.02, with corresponding Cwg
= 0.008, end earliest, because the contribution of the

wind is more pronounced for smaller water drag coefficient values.
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(a) (b)

Figure 7.9: Displacement curves [m], obtained for ice floe C, are shown for three different combinations of
Cwf

and Cwg
, in the (a) x-direction and (b) y-direction.

In Tab. 7.2 all combinations of the water drag coefficient values are shown, complemented with resulting
absolute wave amplitude values in both the x- and y-direction. The wave amplitude is shown because a
simplified sinusoidal harmonic propagating wave can be described by just the wave amplitude, the already
known wave period, T = 15.06s and the wave direction angle. The default value of the wave direction angle
is set to θwa = 45◦, resulting in wave amplitude values equal in the x- and y-direction.

Table 7.2: All combinations of water drag coefficients, Cwf
and Cwg

, with corresponding absolute wave
amplitude values in the x- and y-direction for ice floe C. ax and ay represent the amplitude in the x- and
y-direction.

P ∗
g (Nm−2) Caλ

(-) θwa (◦) Cwf
(-) Cwg

(-) ax (m) ay (m)
0.02 1 45 0.02 0.008 |0.08| |0.08|
0.02 1 45 0.03 0.012 |0.12| |0.12|
0.02 1 45 0.04 0.016 |0.15| |0.15|
0.02 1 45 0.05 0.020 |0.17| |0.17|
0.02 1 45 0.06 0.024 |0.19| |0.19|
0.02 1 45 0.07 0.028 |0.21| |0.21|
0.02 1 45 0.08 0.032 |0.23| |0.23|
0.02 1 45 0.09 0.036 |0.24| |0.24|
0.02 1 45 0.10 0.040 |0.25| |0.25|

7.2.4 Wave direction angle

The sensitivity of the wave direction angle, θwa, on ice floe displacement is studied by running simulations
for θwa ranging from 25 - 45◦, considering increments of 5◦. Three different wave direction angles are shown
in Fig. 7.10.

Wave direction angles of 0◦ and 90◦ correspond to waves propagating only in the x- and y-direction, re-
spectively. Note that the displacement curves finish earlier for smaller wave direction angles, as a part of ice
floe C has moved out of the domain. The reason for this is that a smaller wave direction angle results in a
larger displacement in the x-direction and a smaller displacement in the y-direction. All wave direction angle
variations for ice floe C are shown in Tab. 7.3.
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(a) (b)

Figure 7.10: Displacement curves [m], obtained for ice floe C, are shown for three different values of θwa, in
the (a) x-direction and (b) y-direction.

Table 7.3: All combinations of the wave direction angle, θwa, with corresponding absolute wave amplitude
values in the x- and y-direction for ice floe C.

P ∗
g (Nm−2) Caλ

(-) θwa (◦) Cwf
(-) Cwg

(-) ax (m) ay (m)
0.02 1 25 0.02 0.008 |0.10| |0.05|
0.02 1 30 0.02 0.008 |0.09| |0.06|
0.02 1 35 0.02 0.008 |0.08| |0.07|
0.02 1 40 0.02 0.008 |0.08| |0.07|
0.02 1 45 0.02 0.008 |0.08| |0.08|

7.3 Final parameter calibration and model verification

A smooth fit of the motion data obtained from the imaging analyses, with time periods ranging between
10 − 25s, are compared to modelled results from OpenFOAM, such that a most accurate interval is found
within the 60s simulation time window.

The calibration and model verification is expressed in terms of the RMSE. In both the x- and y-direction
the RMSE is calculated as

RMSE =

√∑Ni

i=1(li − l̂i)2

Ni
, (7.1)

where li and l̂i represent the ice floe displacement values in both the x- and y-direction of a smooth fit of the
motion data obtained from the imaging analysis and the simulated fitting curve from OpenFOAM, respectively.

The ice floe motion of four ice floes in the sea ice domain is calibrated, namely for ice floes B, C, L, and
z. The small-scale model is considered successfully calibrated when floe displacements obtained from the
imaging analysis correspond to simulation results, which is when RMSE values are close to zero. The
RMSE is calculated and indicated for the four ice floes in Tabs. 7.4-7.8. The drag coefficients for ice floes,
Cwf

, range from 0.06 - 0.10, considering increments of 0.01. The corresponding water drag coefficient values
for grease ice, Cwg

, range from 0.024 - 0.040. The constant grease ice strength parameter and the air drag
multiplication factor are set to P ∗

g = 0.02Nm−2 and Caλ
= 0.5 in all the calibration results.
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Table 7.4: Calibration results of ice floes B, C, L and z for Cwf
= 0.06 and Cwg

= 0.024.
Ice floe θwa [◦] Cw,i [-] Cw,g [-] ax [m] ay [m] RMSEx [m] RMSEy [m]

∑
RMSEx [m]

∑
RMSEy [m]

B 25 0.06 0.024 |0.25| |0.12| 0.0662 0.0986

0.1759 0.4515C 25 0.06 0.024 |0.25| |0.12| 0.0416 0.1096
L 25 0.06 0.024 |0.25| |0.12| 0.0353 0.1752
z 25 0.06 0.024 |0.25| |0.11| 0.0328 0.0681

B 30 0.06 0.024 |0.24| |0.14| 0.0737 0.1002

0.1924 0.4801C 30 0.06 0.024 |0.24| |0.14| 0.0454 0.1186
L 30 0.06 0.024 |0.24| |0.14| 0.0418 0.1823
z 30 0.06 0.024 |0.24| |0.14| 0.0315 0.0790

B 35 0.06 0.024 |0.22| |0.16| 0.0830 0.1041

0.2155 0.5148C 35 0.06 0.024 |0.22| |0.16| 0.0514 0.1285
L 35 0.06 0.024 |0.23| |0.16| 0.0485 0.1908
z 35 0.06 0.024 |0.22| |0.16| 0.0326 0.0914

B 40 0.06 0.024 |0.21| |0.18| 0.0944 0.1093

0.2471 0.5512C 40 0.06 0.024 |0.21| |0.18| 0.0579 0.1385
L 40 0.06 0.024 |0.21| |0.18| 0.0577 0.1996
z 40 0.06 0.024 |0.21| |0.18| 0.0371 0.1038

B 45 0.06 0.024 |0.19| |0.19| 0.1054 0.1152

0.2859 0.5879C 45 0.06 0.024 |0.19| |0.19| 0.0679 0.1487
L 45 0.06 0.024 |0.19| |0.19| 0.0676 0.2070
z 45 0.06 0.024 |0.19| |0.19| 0.0450 0.1170

Table 7.5: Calibration results of ice floes B, C, L and z for Cwf
= 0.07 and Cwg

= 0.028.
Ice floe θwa [◦] Cw,i [-] Cw,g [-] ax [m] ay [m] RMSEx [m] RMSEy [m]

∑
RMSEx [m]

∑
RMSEy [m]

B 25 0.07 0.028 |0.27| |0.13| 0.0463 0.0986

0.1318 0.4686C 25 0.07 0.028 |0.27| |0.13| 0.0265 0.1156
L 25 0.07 0.028 |0.27| |0.13| 0.0181 0.1793
z 25 0.07 0.028 |0.27| |0.13| 0.0409 0.0751

B 30 0.07 0.028 |0.26| |0.15| 0.0551 0.1021

0.1454 0.5062C 30 0.07 0.028 |0.26| |0.15| 0.0304 0.1267
L 30 0.07 0.028 |0.26| |0.15| 0.0243 0.1880
z 30 0.07 0.028 |0.26| |0.15| 0.0356 0.0894

B 35 0.07 0.028 |0.25| |0.17| 0.0654 0.1078

0.1652 0.5461C 35 0.07 0.028 |0.24| |0.17| 0.0361 0.1377
L 35 0.07 0.028 |0.25| |0.17| 0.0317 0.1973
z 35 0.07 0.028 |0.25| |0.17| 0.0320 0.1033

B 40 0.07 0.028 |0.23| |0.19| 0.0767 0.1150

0.2471 0.5512C 40 0.07 0.028 |0.23| |0.19| 0.0439 0.1493
L 40 0.07 0.028 |0.23| |0.19| 0.0411 0.2068
z 40 0.07 0.028 |0.23| |0.19| 0.0318 0.1173

B 45 0.07 0.028 |0.21| |0.21| 0.0903 0.1232

0.2327 0.6325C 45 0.07 0.028 |0.21| |0.21| 0.0536 0.1612
L 45 0.07 0.028 |0.21| |0.21| 0.0524 0.2171
z 45 0.07 0.028 |0.21| |0.21| 0.0364 0.1310
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Table 7.6: Calibration results of ice floes B, C, L and z for Cwf
= 0.08 and Cwg

= 0.032.
Ice floe θwa [◦] Cw,i [-] Cw,g [-] ax [m] ay [m] RMSEx [m] RMSEy [m]

∑
RMSEx [m]

∑
RMSEy [m]

B 25 0.08 0.032 |0.29| |0.14| 0.0287 0.0995

0.1099 0.4825C 25 0.08 0.032 |0.29| |0.14| 0.0160 0.1198
L 25 0.08 0.032 |0.29| |0.14| 0.0124 0.1825
z 25 0.08 0.032 |0.29| |0.13| 0.0528 0.0807

B 30 0.08 0.032 |0.28| |0.16| 0.0385 0.1046

0.1154 0.5272C 30 0.08 0.032 |0.28| |0.16| 0.0197 0.1335
L 30 0.08 0.032 |0.28| |0.16| 0.0112 0.1932
z 30 0.08 0.032 |0.28| |0.16| 0.0460 0.0959

B 35 0.08 0.032 |0.26| |0.19| 0.0505 0.1123

0.1311 0.5740C 35 0.08 0.032 |0.26| |0.18| 0.0246 0.1462
L 35 0.08 0.032 |0.27| |0.18| 0.0171 0.2030
z 35 0.08 0.032 |0.26| |0.18| 0.0389 0.1125

B 40 0.08 0.032 |0.25| |0.21| 0.0630 0.1213

0.1574 0.6243C 40 0.08 0.032 |0.25| |0.21| 0.0323 0.1597
L 40 0.08 0.032 |0.25| |0.21| 0.0278 0.2150
z 40 0.08 0.032 |0.25| |0.21| 0.0343 0.1283

B 45 0.08 0.032 |0.23| |0.23| 0.0758 0.1308

0.1938 0.6723C 45 0.08 0.032 |0.23| |0.23| 0.0429 0.1725
L 45 0.08 0.032 |0.23| |0.23| 0.0412 0.2251
z 45 0.08 0.032 |0.23| |0.23| 0.0339 0.1439

Table 7.7: Calibration results of ice floes B, C, L and z for Cwf
= 0.09 and Cwg

= 0.036.
Ice floe θwa [◦] Cw,i [-] Cw,g [-] ax [m] ay [m] RMSEx [m] RMSEy [m]

∑
RMSEx [m]

∑
RMSEy [m]

B 25 0.09 0.036 |0.31| |0.14| 0.0144 0.1007

0.1210 0.4994C 25 0.09 0.036 |0.30| |0.14| 0.0187 0.1250
L 25 0.09 0.036 |0.31| |0.14| 0.0224 0.1859
z 25 0.09 0.036 |0.31| |0.14| 0.0655 0.0878

B 30 0.09 0.036 |0.30| |0.17| 0.0248 0.1076

0.1153 0.5488C 30 0.09 0.036 |0.29| |0.17| 0.0191 0.1398
L 30 0.09 0.036 |0.30| |0.17| 0.0142 0.1974
z 30 0.09 0.036 |0.29| |0.17| 0.0572 0.1040

B 35 0.09 0.036 |0.28| |0.20| 0.0377 0.1170

0.1168 0.6016C 35 0.09 0.036 |0.28| |0.20| 0.0195 0.1539
L 35 0.09 0.036 |0.28| |0.20| 0.0107 0.2090
z 35 0.09 0.036 |0.28| |0.20| 0.0489 0.1217

B 40 0.09 0.036 |0.26| |0.22| 0.0504 0.1271

0.1345 0.6544C 40 0.09 0.036 |0.26| |0.22| 0.0248 0.1685
L 40 0.09 0.036 |0.26| |0.22| 0.0183 0.2207
z 40 0.09 0.036 |0.26| |0.22| 0.0410 0.1381

B 45 0.09 0.036 |0.24| |0.24| 0.0654 0.1385

0.1693 0.7086C 45 0.09 0.036 |0.24| |0.24| 0.0351 0.1822
L 45 0.09 0.036 |0.24| |0.24| 0.0323 0.2331
z 45 0.09 0.036 |0.24| |0.24| 0.0365 0.1548
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Table 7.8: Calibration results of ice floes B, C, L and z for Cwf
= 0.10 and Cwg

= 0.040.
Ice floe θwa [◦] Cw,i [-] Cw,g [-] ax [m] ay [m] RMSEx [m] RMSEy [m]

∑
RMSEx [m]

∑
RMSEy [m]

B 25 0.10 0.040 |0.32| |0.15| 0.0060 0.1026

NaN NaNC 25 0.10 0.040 |0.32| |0.15| NaN NaN
L 25 0.10 0.040 |0.33| |0.15| 0.0345 0.1891
z 25 0.10 0.040 |0.32| |0.15| 0.0782 0.0931

B 30 0.10 0.040 |0.31| |0.18| 0.0129 0.1108

0.1278 0.5674C 30 0.10 0.040 |0.31| |0.18| 0.0204 0.1442
L 30 0.10 0.040 |0.31| |0.18| 0.0254 0.2014
z 30 0.10 0.040 |0.31| |0.18| 0.0691 0.1110

B 35 0.10 0.040 |0.29| |0.21| 0.0253 0.1211

0.1229 0.6249C 35 0.10 0.040 |0.29| |0.21| 0.0205 0.1609
L 35 0.10 0.040 |0.30| |0.21| 0.0179 0.2137
z 35 0.10 0.040 |0.29| |0.21| 0.0592 0.1292

B 40 0.10 0.040 |0.27| |0.23| 0.0405 0.1336

0.1276 0.6829C 40 0.10 0.040 |0.27| |0.23| 0.0220 0.1758
L 40 0.10 0.040 |0.28| |0.23| 0.0158 0.2265
z 40 0.10 0.040 |0.27| |0.23| 0.0493 0.1470

B 45 0.06 0.040 |0.25| |0.25| 0.0563 0.1455

0.1544 0.7403C 45 0.06 0.040 |0.25| |0.25| 0.0305 0.1913
L 45 0.06 0.040 |0.26| |0.26| 0.0255 0.2394
z 45 0.06 0.040 |0.25| |0.25| 0.0421 0.1641

Note that Tab. 7.8 shows NaN, which means ’not a number’, for a wave direction angle of 25◦. This is because
ice floe C moved out of the domain. Accordingly, RMSE values could not be calculated. The best fit in the
calibration results, shown in the Tabs. 7.4-7.8, can be visualised by plotting the ice floe displacement curves
in the x- and y-direction.

As previously mentioned in Sec. 7.1, displacements obtained from the imaging analysis are indicated by
blue triangular data points. Albeit the photo sampling rate is 2Hz, which is equal to ∆t = 0.5s, the actual
time step between two consecutive data points can be larger than 0.5s due to the previously mentioned quality
control of images during post-processing and the reliability requirement used in the imaging analysis. The
blue curve represents a smooth fit of the motion data obtained from the imaging analysis used as calibration
target. The simulated fitting curve from OpenFOAM, indicated in red, has the same time increment, which
allows for comparing the idealised fitting curve to the simulated fitting curve.

Displacement curves in the x-direction are illustrated in Fig. 7.11, showing RMSEx values close to zero.
One set of parameters is obtained, which is applicable to all four ice floes in the entire domain. The best fit is
obtained with θwa = 25◦, Cw,f = 0.08 and Cw,g = 0.032, resulting in

∑
RMSEx = 0.1099m. This set of pa-

rameters generates successfully calibrated ice floe displacements in the x-direction. Ice floe z, however, shows
an RMSEx value, which is significantly higher than the remaining ice floes. This is due to the wave period
of ice floe z, obtained from the imaging analysis, which is slightly smaller than the wave amplitude value as
given by the WIIOS. These calibrated parameters of all four ice floes together, represent the parameter values
of the entire domain.
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(a) (b)

(d)(c)

Figure 7.11: Calibration results with displacement curves in the x-direction [m], showing for (a) ice floe B
with RMSEx = 0.0287m, (b) ice floe C with RMSEx = 0.0160m, (c) ice floe L with RMSEx = 0.0124m
and (d) ice floe z with RMSEx = 0.0528m.

On the other hand, the displacement curves in the y-direction are extremely poor. Fig. 7.12 shows the dis-
placement curves in the y-direction which are paired with the best fit in the x-direction, depicted in Fig. 7.11.∑

RMSEy = 0.4825m, is almost five times larger than
∑

RMSEx = 0.1099m. This can be explained by two
reasons. Firstly, the data is obtained during an intense storm on the 4th of July 2017, which complicates the
calibration. Both the quality control of images during post-processing and the reliability requirement used in
the imaging analysis are significantly affected. Secondly, WIIOS generated values representing the main wave
period and corresponding wave amplitude propagating through the sea ice domain, averaged over a period
of 12 minutes. These main wave properties are used as input in the OpenFOAM simulations, resulting in
only an accurate solution in the main direction. In real life, however, especially during a storm, an infinite
number of wave periods and wave amplitudes are propagating through a domain in an infinite number of
wave directions [72], resulting in more chaotic ice floe motion. This motion is captured in the photos of the
imaging analysis, resulting in more complex displacement curves in the y-direction.

The wave forcing implemented in OpenFOAM is described by one sine function only. Therefore, when com-
paring idealised simulation results to chaotic motion of ice floes captured in images, it is currently not yet
possible to simulate the motion of ice floes sufficiently in both the x- and y-direction with just one value for
the wave period and the wave amplitude. However, the drag coefficient values and wave direction are chosen
such, that the wave amplitude of the simulated results in the y-direction are relatively close to the results
from the imaging analysis, as can be seen in Fig. 7.12, yet, the wave period is far off.

The calibration results found in both the x- and y-direction are not a unique solution, but rather ill-posed.
More than one set of parameters could generate the same ice floe displacement results, as the wind forcing
could have a more pronounced effect on the interplay between the wind and the wave forcing. For this reason,
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(d)(c)

Figure 7.12: Calibration results with displacement curves in the y-direction [m], showing for (a) ice floe B
with RMSEx = 0.0995m, (b) ice floe C with RMSEx = 0.1198m, (c) ice floe L with RMSEx = 0.1825m
and (d) ice floe z with RMSEx = 0.0807m.

the air drag multiplication factor is roughly chosen, as opposed to the more thoroughly obtained water drag
coefficients. In this calibration analysis only one set of parameters is presented.
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Chapter 8

Conclusion

The global climate strongly depends on sea ice in the polar regions [167]. A substantial part of the Southern
Ocean (SO), in winter equivalent to 4% of the Earth’s surface [136, 160], is covered by highly dynamic sea
ice in the Antarctic marginal ice zone (MIZ), which due to a wide variety of dynamic and thermodynamic
processes form the basis of an extremely complex system. The impact of waves on sea ice is one of these
dynamic processes on small-scale, which is a fundamental aspect in the formation of sea ice [163], causing
a highly non-uniform strain rate distribution due to the heterogeneous ice composition and the interaction
between colliding ice floes [163, 178].

To date, mainly large-scale models have been developed [34, 69], where these models consider a smeared
model approach with effective sea ice properties [168, 179]. The well-established viscous-plastic (VP) rheol-
ogy by Hibler III [69] describes the large-scale drift of sea ice, however, only with a certain level of accuracy.
The actual properties of sea ice and the scale dependency are linked to distinct sea ice materials [38, 150],
which is only sufficiently included in small-scale models [168]. Modelling the detailed interaction between
the atmosphere, the sea ice ocean surface and the underlying ocean, is crucial to improve the understand-
ing of the dynamic sea ice cover, which ultimately contributes to more accurate predictions on the larger-scale.

Discrete non-continuum models are often believed to be more suitable to deal with the strong spatial vari-
ations in the mechanical properties on small scale [37]. However, they suffer from simplifying assumptions
related to the collision dynamics [65]. Existing small-scale continuum models, summarised in Chap. 2, do
not explicitly describe an assembly of ice floes surrounded by a VP fluid, such as grease ice. This work,
on the other hand, demonstrated that a continuum small-scale approach is able to capture the mechanical
response on small-scale and provide new insights with regards to the detailed distributions of stress and strain
rate including areas of highly localised behaviour. The newly-developed continuum small-scale model in this
study considers a detailed heterogeneous sea ice layout with irregularly-shaped ice floes embedded in grease
ice. Both ice constituents are governed by their own sea ice rheology, in which ice floes are described by a
solid-like flow rule, controlled by floe collisions. Grease ice is represented by a VP material law, derived from
the well-known VP rheology by Hibler III [69]. The interaction between waves and sea ice is investigated,
considering skin drag, form drag and the Froude-Krylov force. Additionally, the interaction between ice floes
and grease ice is implicitly accounted for. All aspects mentioned above, combined in one numerical framework,
have not been studied before.
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The main research question in this study reads as follows:

How do oceanic and atmospheric conditions affect the dynamics of sea ice in the Antarctic MIZ on a
small scale?

The answer to the main research question is found, by studying different main aspects of sea ice dynamics,
focusing on the implementation of the sea ice rheology in Chaps. 4 and 5, the heterogeneous sea ice compo-
sition subjected to wind and wave forcing, ice floe collision dynamics and the interaction between ice floes
and grease ice in Chap. 6, including the ice floe motion and displacements in Chap. 7. The response of the
material behaviour of ice floes and grease ice is expressed in terms of stress, strain rate, velocity and viscosity.
The most important findings and corresponding conclusions of the main aspects of sea ice dynamics studied
in this work, are discussed below.

The small-scale model, developed in the computational fluid dynamics (CFD) software OpenFOAM, is for-
mulated in terms of velocity rather than displacements. Consequently, the ice floe rheology is implemented
as a Hookean-like flow rule for solid regions. This is because chequerboard oscillations were encountered,
originating from the implementation of the ice floe stress. The stress state from the previous time step is
entirely decoupled from the velocity, and thus in essence a constant, which in the current set of equations
cannot be updated, as explained in Sec. 4.2. This is a limitation of the solver, as OpenFOAM strictly works
with a collocated grid approach. It is important to note that the current implementation, consisting of the
partially implemented stress state as studied in Sec. 5.3.4, avoids numerical complications due to chequer-
board oscillations. However, it does not account for elastic unloading, because the total stress state cannot
be accurately tracked and updated over time within a purely Eulerian approach. This implies that a portion
of the elastic stored strain energy is continuously dissipated. The introduced error, however, is effectively
limited as this study considers regions deeper into the MIZ, where ice floes move more gently in surrounding
grease ice, causing gentle floe collisions. Therefore, the kinetic energy of colliding ice floes can be assumed
to largely dissipate due to inelastic deformation of the soft outer floe rims. In this sense, there is effectively
no elastic collision restitution taking place and colliding ice floes detach from each other due to the action of
grease ice form drag and the Froude-Krylov force.

On the other hand, the grease ice rheology only depends on variables from the current time step. How-
ever, the grease ice rheology suffers from a singularity, resulting in locally very high viscosity values, when
strain rate values approach zero. As a result, viscosity values not affected by the singularity in the inner
domain are underestimated. Consequently, the difference between the three considered kinematic viscosity
values is also to some degree underestimated. Additionally, the singularity results in a stress discontinuity in
grease ice, which ideally should be more gradual.

The current implementation of the sea ice rheology is able to clearly distinguish between easily deformable
regions, grease ice, and stiff regions, ice floes, with a continuous approximation of the velocity field distribu-
tion over the domain. The interaction of colliding ice floes, which resist collisional forces, are accounted for
in the small-scale model via the elastic stress and strain rate response. Form drag acts on the circumference
of ice floes due to velocity differences between ice floes and grease ice. Both are implicitly included, due to
the continuity requirement of the velocity field throughout the domain, which is modelled as a continuum,
and separated using a VoF approach. The importance of detailed small-scale modelling on the sub-kilometre
scale is demonstrated, resolving the mechanical response of a heterogeneous sea ice cover due to the complex
interaction of waves, floes, and grease ice. In particular, the floe shape and diameter variations as well as the
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different wave-ice interaction mechanisms are accounted for.

The heterogeneous sea ice composition is studied in Sec. 6.1, by comparing three realistic sea ice layouts,
extracted from in situ images of the Antarctic MIZ, and one idealised sea ice layout. It was found that the
mechanical sea ice response depends on the detailed distribution of ice floes. Additionally, the robustness of
the implemented frame work was demonstrated. In the case of homogeneous sea ice conditions with simi-
lar ice concentrations and median floe caliper diameters, discrepancies expressed in terms of the root mean
square error (RMSE), of ice floe stress and grease ice strain rate curves, seem to increase for increasing wave
period due to an increase in sea ice velocity. However, discrepancies in the grease ice viscosity curves decrease
for increasing wave period, as strain rate and viscosity are inversely related. An increasing ratio of ice floe
diameter to wave length results in a reduced stress and strain rate response in the considered realistic sea ice
layouts. Observations of significantly larger differences in ice floe stress between layouts, compared to that of
grease ice, are explained by the Froude-Krylov force. It is the main source for those observations, considering
that it solely acts on the ice floe circumference. As such, the dependency on the ratio of floe diameter to
wave length becomes significant. Additionally, both the number of ice floes in the domain and the position
of the ice floes relative to each other have a significant impact on the behaviour of the stress, strain rate,
and viscosity variables. The influence of floe shape and diameter variations was shown to be significant by
comparing results from a randomly distributed idealised sea ice layout with disk-shaped floes with identical
ice concentration and average area per ice floe. The largest discrepancy between the realistic and idealised
layouts was shown for the grease ice viscosity and strain rate magnitude.

Ice floe collision dynamics was investigated in Sec. 6.2, by conducting a numerical analysis of the rheol-
ogy variables. Stress due to the Froude-Krylov force, acting at the circumference of ice floes, results in ice
floe stress which is several orders of magnitude greater than stress acting in grease ice. The wind and ocean
current velocities were set to zero, resulting in a near negligible net ice floe movement in horizontal direction,
due to the orbital wave velocity. The relative motion between the sea ice cover and the ocean layer under-
neath is affected by the sea ice layout and the wave forcing [171]. As a result, a phase shift due to inertia can
be observed between the sea ice velocity and the orbital wave velocity in the x-direction, which is constant
over time and increases for increasing wave period. This phase shift leads to a less straight-forward interplay
between the sea ice velocity, wave elevation and collision stress intensity. Smaller wave periods, with T < 16s,
result in little ice floe collisions, with mainly the same ice floes colliding over time and an oscillating collision
stress intensity. A larger variety of ice floes collide for larger wave periods, with T ≥ 16s, due to a higher
kinetic wave energy in the system. Therefore, the number of ice floe collisions and the collision stress intensity
gradually increase for increasing wave periods.

The effects of floe inertia and form drag within the surrounding grease ice were demonstrated with respect to
velocity and strain rate distributions in Sec. 6.2.2. Both exhibited high localised gradients at the floe-grease
ice interface. The number of interface cells, represented by extreme strain rate magnitude values due to form
drag, shows a similar correlation as previously found for the collision pattern. The smaller wave periods, with
T < 16s, show a higher number of interface cells, whereas the number of interface cells is smaller for the
larger wave periods, with T ≥ 16s. Therefore, for smaller wave periods, form drag of solitary floes is more
pronounced, as indicated by a higher number of extreme strain rate magnitude values. This, however, does
not affect the mean strain rate magnitude at the interface, as the results show higher values for increasing
wave period. Both, grease ice away from the interface, and grease ice at the interface, show higher strain rate
values for larger wave periods, due to a higher sea ice velocity magnitudes.
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It was shown in Secs. 6.2.1 and 6.2.2 that increasing grease ice viscosity barely affects the sea ice stress
and strain rate response. This is mainly due to the considered range of viscosity values which reflect in situ
conditions but are relatively small. The resulting mechanical response exhibits negligibly small differences.
Additionally, an imposed harmonic wave is considered whereas a freely propagating wave in sea ice would
dissipate energy, affecting both the stress and strain rate response. However, this affect can be disregarded,
due to the small size of the considered sea ice domain.

Ice floe displacements were studied in Sec. 7.3, considering in situ ice floe motions. Final parameter val-
ues for calibration and model verification were obtained. The inverse analysis was performed using four ice
floes, obtained from image analysis of actual sea ice layouts, which showed the highest number of uninter-
rupted time steps in the imaging analysis and satisfy the reliability requirement. The modelled results, using
the calibrated parameters, produced closely correlated dominant displacements in the x-direction, but less
accurately the small motion component in the y-direction. It should be noted, however, that the calibrated
parameters are not unique, since the nature of the problem is an ill-posed one. This implies that the interrela-
tion between the wind and wave forcing parameters may be varied producing the same results. For this reason
the air drag multiplication factor was studied to a lesser extent, in comparison to the water drag coefficients,
which were investigated more rigorously. While multiple sets of parameters could lead to the same results in
Sec. 7.3 only one set was presented.

The newly-developed model, presented in this thesis, serves as pioneering work of small-scale sea ice mod-
elling in a continuum framework. This project demonstrated the general applicability of this computational
approach in a detailed fashion, to describe the collision dynamics of ice floes in grease ice. The small-scale
model is distinctively different from the existing continuum small-scale models which describe wave-ice in-
teraction, as outlined in Chap. 2. The obtained results of interacting ice floes in grease ice show a higher
resolution of the mechanical behaviour of sea ice on the meter-scale, as discussed in Chaps. 6 and 7. The
model provides insights regarding the ongoing research to data of small-scale atmosphere-ocean physical pro-
cesses, which is still limited [188]. Additionally, the newly-developed model can be used for parametrisation
of large-scale models, which contribute to global climate modelling.
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Chapter 9

Recommendations and future work

To further improve the general applicability of the newly-developed small-scale model, a couple of recommen-
dations are listed below.

In the current formulation of the rheologies in OpenFOAM, both grease ice and ice floes were described
by using velocity as the primary variable to be solved for. This resulted in chequerboard oscillations. One
possible solution to this would be to split the formulation of both ice constituents into two separate formu-
lations, which are independently implemented. This implies that grease ice would have velocity as primary
unknown, whereas for ice floes this would be displacement. This may resolve the currently encountered issue
regarding chequerboard oscillations and corresponding permanent ice floe deformations. Two numerical ap-
proaches, which can be implemented in the software OpenFOAM, allow splitting of the formulation of both
ice constituents: the fluid-structure interaction (FSI) method [80, 135] or the reference mapping method [90].

The model can be extended by considering water as a third component, besides the two existing ice compo-
nents, ice floes and grease ice. This would allow for the modelling of a sea ice region closer to the edge of the
marginal ice zone (MIZ), where the interplay between sea ice and open water is more prominent, compared
to sea ice regions found deeper into the MIZ. Additionally, the influence of ice floe-grease ice-open water area
ratios should be studied in terms of collision frequency and violence, with differences in phase shift, tempo-
rary and permanent fusing and separation of floes at collision. Furthermore, ice drag coefficients influence
the grease ice viscosity, which in turn affects the collision dynamics. To what extent though, is still unknown,
and therefore requires further investigation.

The viscosity suffers from a singularity with locally very high viscosity values in the sea ice domain. This
is because of the strain rate values, which approach zero. The existing VP rheology should be reformulated
to avoid the singularity. This would affect the stress and strain rate results, which are related to a varying
viscosity. The viscosity values, which are not affected by the singularity in the inner domain, would then
not be underestimated. Consequently, wave dissipation effects due to an increase in viscosity would be more
pronounced.

The current framework considers an imposed wave, affecting the stress and strain rate response to a still
uncertain extent. A more in-depth study, considering the effects of wave dissipation, is necessary to under-
stand the influence of the imposed wave on stress, strain rate and viscosity results. Additionally, the thickness
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of both ice floes and grease ice is implemented as a parameter, which is constant both spatially and tempo-
rally. The reason for not including thickness variations was because the change of sea ice thickness is negligibly
small compared to the size of the domain in the lateral direction. This assumption, however, may affect the
interaction between ice floes and grease ice. Due to the applied wave forcing ice floes move back-and-forth,
following the orbital wave motion. As a result, the thickness of grease ice in between ice floes can increase
or decrease, which may influence the ice floe collision dynamics. In future versions of the model, both the
thickness of ice floes and grease ice should be implemented as a variable, allowing sea ice thickness variations.

Lastly, the currently implemented wave forcing only allows for an accurate calibration in the main direc-
tion, as the calibration of the small-scale model in the y-direction is inadequate. More advanced data from
the Antarctic MIZ in winter, coupled with a wave dynamics model which considers multiple wave directions
and spectra, is essential to calibrate the model in both the primary and secondary direction.
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Chapter 10

Appendix

10.1 Implementation details of the small-scale sea ice model in the
Finite Volume Method

The normalised momentum equation, shown in Eq. (4.100), is spatially discretised, utilizing the FVM. The
volume of cell P is integrated in a two-dimensional uniform grid, as shown in Fig. 10.1. Five cell centres are
illustrated by P, N, E, S, W . The cell faces of central cell P are indicated by n, e, s, w.

P

N

S

EW

n

e

s

w

Figure 10.1: Two-dimensional collocated uniform grid [35].
.

The time-dependent term in Eq. (4.97) is constant over the cell volume. Therefore, this term is not included
in the spatial discretisation scheme explained below. Additionally, the stress term, ∇·σ′b

f , pressure term,
∇p′

g, and source term, S′, are not part of the discretisation, as the focus is on the convective terms and the
extensive diffusive terms.
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The normalised convective and diffusive terms of the momentum equation in the x-direction are given as
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where U and V represent the velocity in the x- and y-direction, respectively. Eq. (10.1) can be rewritten as
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The FVM discretisation is applied to the normalised convective and diffusive terms of the momentum equation
in the x-direction. The integration over the volume of cell P can be written, after rearrangement, as∫
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Subsequently, the divergence theorem is applied to Eq. (10.3). After rearrangement, this can be written as∫
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The components in the x- and y-direction are separated, and written in discretised form. For the x-direction,
this results in∑
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with k = e, w. In y-direction, the discretised form is given as
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with k = n, s. Substitution of cell faces k = e, w into Eq. (10.5) results in the discretised convective and
diffusive terms in the x-direction. Substitution of cell faces k = n, s into Eq. (10.6) results in the discretised
convective and diffusive terms in the y-direction.

Collecting the discretised convective flux terms in both Eqs. (10.5) and (10.6), results in

(hUU)e(∆y)e − (hUU)w(∆y)w + (hV U)n(∆x)n − (hV U)s(∆x)s. (10.7)

Eq. (10.7) can be rewritten as

CxeUe − CxwUw + CynUn − CysUs, (10.8)

where Cxe = h(U∆y)e, Cxw = h(U∆y)w, Cyn = h(V ∆x)n and Cys = h(V ∆x)s. These coefficients represent
the max flux through the relevant faces. Considering the First Order Upwind Scheme, the convective terms
can be rewritten as
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where ∂U/∂x, ∂U/∂y, ∂V/∂x, and ∂V/∂y, represent the gradients at the cell faces. These gradients can be
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found by utilizing the central difference scheme, resulting in diffusive flux terms, given as
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VE − VP

∆x
+ 2α1∆tµ′(∆y)w

UP − UW

∆x
+ α1∆tµ′(∆y)w

VP − VW

∆x
+ 2α1∆tλ′(∆y)w

UP − UW

∆x

+ 2α2ζ ′(∆y)w
UP − UW

∆x
+ α2η′(∆y)w

VP − VW

∆x
− α1∆tµ′(∆x)n

UN − UP

∆y
− 2α1∆tλ′(∆x)n

VN − VP

∆y

− α2η′(∆x)n
UN − UP

∆y
− 2α2ζ ′(∆x)n

VN − VP

∆y
+ 2α2η′(∆x)n

VN − VP

∆y
+ α1∆tµ′(∆x)s

UP − US

∆y

+ 2α1∆tλ′(∆x)s
VP − VS

∆y
+ α2η′(∆x)s

UP − US

∆y
+ 2α2ζ ′(∆x)s

VP − VS

∆y
− 2α2η′(∆x)s

VP − VS

∆y
. (10.11)

Eq. (10.11) can be rewritten as

(
−2ad1

e (µ′ + λ′) − 2ζ ′ad2
e

)
UE +

(
−2ad1

w (µ′ + λ′) − 2ζ ′ad2
w

)
UW +

(
−ad1

n (µ′ + η′)
)

UN (10.12)

+
(
−ad1

s (µ′ + λ′)
)

US −
(
−2ad1

e (µ′ + λ′) − 2ζ ′ad2
e

)
UP −

(
−2ad1

w (µ′ + λ′) − 2ζ ′ad2
w

)
UP

−
(
−ad1

n (µ′ + η′)
)

UP −
(
−ad1

s (µ′ + η′)
)

UP +
(
ad1

e µ′ − ad2
e η′)VE +

(
−ad1

w − ad2
w η′)VW

+
(
−2ad1

n λ′ − 2ad2
n (ζ ′ − η′)

)
VN +

(
−2ad1

s λ′ − 2ad2
s (ζ ′ − η′)

)
VS −

(
−ad1

e µ′ − ad2
e η′)VP

−
(
−ad1

w µ′ − ad2
w η′)VP −

(
−2ad1

n λ′ − 2ad2
n (ζ ′ − η′)

)
VP −

(
−2ad1

s λ′ − 2ad2
s (ζ ′ − η′)

)
VP ,

where the terms which include α1 can be written as ad1
k = α1∆t(∆y/∆x)k for k = e, w and ad1

k = α1∆t(∆x/∆y)k

for k = n, s. The same principle can be applied to the terms which include α2, where ad2
k = α2(∆y/∆x)k for

k = e, w and ad2
k = α2(∆x/∆y)k for k = n, s.

Eq. (10.12) can be simplified as

aU
e UE + aU

wUW + aU
n UN + aU

s US − aU
e UP − aU

wUP − aU
n UP − aU

s UP (10.13)

+aV
e VE + aV

wVW + aV
n VN + aV

s VS − aV
e VP − aV

wVP − aV
n VP − aV

s VP ,

where aU
e = −2ad1

e (µ′ + λ′) − 2ζ ′ad2
e , aU

w = −2ad1
w (µ′ + λ′) − 2ζ ′ad2

w , aU
n = −ad1

n (µ′ + η′), aU
s = −ad1

s (µ′ + λ′),
and aV

e = ad1
e µ′ − ad2

e η′, aV
w = −ad1

w − ad2
w η′, aV

n = −2ad1
n λ′ − 2ad2

n (ζ ′ − η′), aV
s = −2ad1

s λ′ − 2ad2
s (ζ ′ − η′).

Eq. (10.13) can be rewritten as

aU
e UE + aU

wUW + aU
n UN + aU

s US − aU
P UP + aV

e VE + aV
wVW + aV

n VN + aV
s VS − aV

P VP , (10.14)

where aU
P = aU

e + aU
w + aU

n + aU
s , and aV

P = aV
e + aV

w + aV
n + aV

s .

The generalised expression can be found by collecting the discretised convective and diffusive terms. This
results in the discretised equations of the form

aP UP + aV
P VP = aeUE + awUW + anUN + asUS + aV

e VE + aV
wVW + aV

n VN + aV
s VS , (10.15)

where ae = aU
e − ac

e, aw = aU
w − ac

w, an = aU
n − ac

n, as = aU
s − ac

s and aP = ae + aw + an + as.

As a result, a relation has been obtained which links the velocity at the centre of cell P , UP , to neighbouring
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cell-centred velocity values. Eq. (10.15) can be rewritten as

aU
P UP + aV

P VP =
∑

aiUi +
∑

aV
i Vi + S′

UP
+ S′

U , (10.16)

which includes S′
UP

and S′
U , representing the pressure term and the source terms after volume integration. ai

and aV
i indicate the sum of convective and diffusive coefficients at the neighbouring cell faces and Ui and Vi

denote the velocity components of the adjacent cell centres.
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[80] L. Huang, K. Ren, M. Li, Z. Tuković, P. Cardiff, and G. Thomas. Fluid-structure interaction of a large
ice sheet in waves. Ocean Engineering, 182:102–111, 2019.

[81] E. C. Hunke and J. K. Dukowicz. An elastic-viscous-plastic model for sea ice dynamics. J. Phys.
Oceanogr, 27(9):1849–1867, 1997.

[82] J. K. Hutchings. On modelling the mass of Arctic sea ice. University of London, University College
London (United Kingdom), 2000.

137



[83] J. K. Hutchings, H. Jasak, and S. W. Laxon. A strength implicit correction scheme for the viscous-plastic
sea ice model. Ocean Modelling, 7(1):111–133, 2004.

[84] R. I. Issa, A. Gosman, and A. Watkins. The computation of compressible and incompressible recircu-
lating flows by a non-iterative implicit scheme. Journal of Computational Physics, 62(1):66–82, 1986.

[85] P. Janssen and P. A. Janssen. The interaction of ocean waves and wind. Cambridge University Press,
2004.

[86] P. A. E. M. Janssen. Wave-induced stress and the drag of air flow over sea waves. Journal of Physical
Oceanography, 19(6):745–754, 1989.

[87] H. Jasak. Error analysis and estimation for the finite volume method with applications to fluid flows.
PhD thesis, Imperial College London (University of London), 1996.

[88] C. S. Jog and R. B. Haber. Stability of finite element models for distributed-parameter optimization
and topology design. Computer methods in applied mechanics and engineering, 130(3-4):203–226, 1996.

[89] K. L. Johnson. Normal contact of elastic solids – Hertz theory, page 84–106. Cambridge University
Press, 1985.

[90] K. Kamrin, C. H. Rycroft, and J.-C. Nave. Reference map technique for finite-strain elasticity and
fluid–solid interaction. Journal of the Mechanics and Physics of Solids, 60(11):1952–1969, 2012.

[91] A. Kang, B. Zhu, P. Lin, J. Ju, J. Zhang, and D. Zhang. Experimental and numerical study of wave-
current interactions with a dumbbell-shaped bridge cofferdam. Ocean Engineering, 210:107433, 2020.

[92] J. B. Keller. Gravity waves on ice-covered water. Journal of Geophysical Research: Oceans, 103(C4):
7663–7669, 1998.

[93] M. Ketabdari, H. Saghi, and H. Rezaei. Comparison of staggered and collocated grids for solving
navier-stokes equations. In 5th National Congress on Civil Engineering, 2010.

[94] S.-Y. Kim, K.-M. Kim, J.-C. Park, G.-M. Jeon, and H.-H. Chun. Numerical simulation of wave and
current interaction with a fixed offshore substructure. International Journal of naval Architecture and
ocean engineering, 8(2):188–197, 2016.
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