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Abstract 

D:a,talog is the fusion of prolog and database technologies aimed at producing an dficil'llL 
logic-based, declarative language for databases. Since negation was added to Data.log, Dat­
alog has become more expressive. 

In this thesis, I focus my attention on adding negation to DatalogIC which is a language 
which has been implemented by Mark P. Wassell, a past MSc £tudent in the Department of 
Computer Science at UCT. I analyse and compare stratified, well-founded and inflationary 
semantics for negation, each of which has been implemented on top of INFORMIX; we call 
the resulting system NDatalog. According to the test results, we find that some results are 
unexpected. For example, when we evaluate a recursive stratified program, the results show 
that NDatalogstra is slower than NDatalogwellf although NDatalogwellf is more complex. After 
further investigation, I find the problem is that the NDatalog system has to spend a lot of 
time imitating the MINUS function, which does not exist in INFORMIX-SQL. So the run­
ning time depends on what kind of database system is used as backend. When we consider 
the time spent on pure evaluation, excluding auxiliary functions, we find that the results 
support our expectations, namely, that NDatalogstra is faster than NData.logwe11r which is 
faster than NDataloginfl• 
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Chapter 1 

Introduction 

The fields of deductive databases and logic programming are intimately related. Da.t.alog 
is a rule-based language that integrates logic programming and deductive databases. In 
order to develop extensions of Datalog, much research has been done during the last decade. 
One extension is the DatalogIC language which has been implemented hy Wassell at. the 
University of Cape Town [Was90]. As with other Datalog languages, Data.logIC programs 
allow one to define the transitive closure of a relation. For example, the transitive closure of 
arc can be computed as follows: 

r 1 : path(X, Y) : -arc(X, V). 
r 2 : path(X, Y): -palh(X, Z), arc(Z, Y). 

This query cannot be expressed in relational algebra or in SQL which is t.l1c most popular 
relational query language. On the other hand, a simple relation like' the complement of 
one relation with respect to another one cannot be expressed in Da.t.aloglC, a.lt.l1ouglt t.liis is 
definable by the relational algebra. For example, we may express vegetarian in relational 
algebra as: 

vegetarian(X) = person(X) - eaLmeat(X) 

which means that X is vegetarian if X is a person and X does not eat nwat. 

Unfortunately, there are frequent situations where we would like to use the 1wgatio11 of 
a predicate to help express a relationship by logical rules. In order to owrcome this defi­
ciency, it is necessary to introduce negation in logic programs and Data.log. 

Early theories about negation in logic programs were proposed by Reiter ( lht Closed World 
Assumption) [Rei78], and by Clark (Negation as Failure) [Cla78]. A survey of t.rea.tments of 
negation in logic programming was done by Shepherdson [She88]. 

1 



CHAPTER 1. INTRODUCTION 2 

In the past few years, much more research has been devoted to incorporating negation in 
deductive databases and logic programs. For instance, Chandra and Hare) first propos<'d a 
semantics for stratified logic programs with negation in [CH82]. Roughly spea.ki11g, a logic 
program is stratified if all mutually recursive predicates depend positively on one another. 
Let us see a program as follows: 

r 1 : bachelor(X) 
r 2 : h11,.5band(X) 

: -nwle(X), not h'U.sband(X). 
: -marricrl(X, F). 

Obviously, the program is stratified because there are no mutually recursive prcdi,a1.r·s dc·1w11-
dent negatively on one another. However not every logic program with negation is stratified, 
let us consider the next program: 

win(X) : -move(X, Y), not win(Y). 

Since the recursive predicate win depends negatively on itself, the program is not. st.rati­
fied. So Gurevich and Shelah [GS86b] investigate a11 inflationary model s<'mant i,s of logic 
programs with negation which leaves the programmer totally free to writ<> any program lie 
or she wants. But, for a given query, the answers given by the inflationary sPma.nt.ics a!ld 
by the st.ratified semantics may differ. Fortunately, Ull(lcr these circumsta11ccs, a simple 
modification of the original program will ensure that the same answer is obtained Ull(lcr the 
two semantic structures. This will be discussed in greater detail in chapters 2 and :t We 
also investigate another semantics which enables a programmer to write any program-~-tbe 
well-founded model semantics. This semantics, proposed in [GRS88], guarantees us the same 
answer as the stratified semantics when the logic programs are stratified. More detail will 
be discussed in chapters 2 and 4. 

Other semantics that have been proposed include the perfect model [Prz88], stable model 
[GL88], and default model [BF87] semantics, but we do not consider tlwm in this tlwsis. 
Bidoit [Bid91] surveys and compares different techniques to integrate ncgatio11 in rule-based 
query languages, and surveys the problem of defining the declarative semantics of logic pro­
grams with negation. 

This thesis is an attempt to survey and compare the major solutions of the current ideas 
on semantic models with negation in rule-based query languages, and then sy11thesize th('m 
into the Data.logIC system. Moreover, we explore which semantics with ncgatio11 is suited 
for a Data.log system including negation from two aspects: efficiency and expressiv<~ power. 



CHAPTER 1. INTRODUCTION 

1.1 Organization of the thesis 

The thesis consists of a further four chapters: 

Chapter 2 first gives a brief presentation of the basic concepts and notation of first or­
der logic [Llo87] and presents its syntax and semantics. Then Datalog is introduced through 
its proof theory and model theory [Ull88] [CGT89]. I describe the rationale behind the de­
velopment of Data.log, and discuss why negation is needed. I give an introduction to the 
three major semantics: stratified, inflationary and well-founded mocl.J.semantic.s which in­
volve negation and show some of the problems that arise when negation is introduced [CIISG] 
[GS86a.] [GRS88] [Bid91]. 

Chapter 3 describes a new system, NDatalog which is based on DataloglC [Wa.s90]. The 
NDatalog system was written in the C programming language, on the UNIX1 operating sys­
tem, using the INFORMIX2 database management system as the hackcnd. I give an overview 
of the system and then discuss the user-interface module and the eva.lua.tiou a.lgoritlum, 11sc'd. 

The latter convert a Data.log program into SQL3 statements and int.era.ct with INFORMIX. 
I analyse those semantics which involve negation that I mentioned iu Cha.pt.er 2 a.Il(l describe 
their implementation in the NDatalog system. Some major algorithms, 11a.111cly, Scrni-na.iVf\ 
Stratified, Well-founded and Inflationary, are given in this chapter. 

In Chapter 4, I focus on the efficiency of the different semantics. I brieOy a.na.lyse a.n<l 
compare those semantics that I have implemented in the NDatalog system through some 
specific examples. In order to demonstrate that our system prodnn·s correct. answers on 
logic programs, we compare our results with the XSB systcm4 • WP first. cli\·id<' logic pro­
grams into stratified and nonstratified logic programs, and then kst those programs dealing 
with recursive and nonrecursive rules. The testing shows that the dficicncy of the various 
semantics is different. For instance, when we compute a transitive closure program (Example 
4.1), the speed of the well-founded semantics is faster than the stratified semantics on large 
databases and the stratified semantics is faster than the inflationary, but XSB is much faster 
than all of them. This is unexpected because the stratified semantics should be faster than 
the well-founded semantics in this case. The reasons for this a.re discussed in Chapter 4. 
However, the stratified semantics is much faster than others when we evaluate nonrecursive 
rules with negation (see Example 4.2). Finally, when we compute a no11stra.tifie<l recursive 
program, our implementation of the well-founded semantics and inOa.t.iona.ry semantics is 
much fast.er than XSB (see Example 4.5 for more details). 

1 UNIX is a trademark of AT&T. 
2 INFORMIX is a registered trademark of lnformix Soft.ware, Inc. 
3 Structured Query Language. 
4 XSB is a logic programming system developed at the Department. ofCornput.C'r Scic11ce, SUNY at Stony 

Brook, USA. 
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Chapter 5 concludes the dissertation and mentions further work. The data struct 1l!'f'S and 

the standard algorithms used in the implementation are listed in Appendix A. 



Chapter 2 

Background 

The aim of this chapter is to introduce some well-known concepts and recall recent develop­
ments in logic programs with negation. We will discuss various alternative semantics with 
negation that have been proposed. 

2.1 Logic programs 

We begin by reviewing some well-known concPpts of first order logir (FOL) and logic 11rn­
grammi11_q (LP). The main notation used throughout the thesis is JH·cscnt.cd in tl1is st'd iou. 

FOL has two aspects: syntax and .semantics. The synia.1: of FOL sho11ld he compntable. 
That is, at least in theory, an automatic proof procedure should exist. 111 other words. it is 
concerned with well-formed formulas admitted by the grammar of a formal la11guage, as wdl 
as deeper proof-theoretic issues. The scmanhcs of FOL should be clear a11d easily intelligi­
ble. That is, the programmer should be able to understand the full mcani11g of what lie or 
she writes. In other words, it is concerned with the meanings attached to the W(•ll-formcd 
formulas and the symbols they contain. More details can be found in [Llo87] [Bid9 I]. 

2.1.1 Syntax 

In what follows, I will be giving some definitions of a first order theory, sud1 as the alphabet 
of FOL, a first order language, formulas, and Horn clauses. 

Definition: 2.1 A first order logic alphabet consists of six classes of symbols: 

5 



CHAPTER 2. BACKGROUND G 

l. Variables: words beginning with an uppercase letter, i.e., X, Y, Z. 

2. Constants: words beginning with a lowercase letter, i.e., a, b, c. 

3. Predicate Symbols: a.Iso words beginning with a lowercase letter, but we normally use 
a letter from the middle of the alphabet, i.e., p, q, r. 

4. Connectives: the symbols are{-,/\, V, -i}. 

5. Quantifiers: universal quantification, denoted (V), and existential q11ant.ificat.iou, de­
. noted (:l). 

6. Punctuation Symbols: ( ) ' D 

Definition: 2.2 A logic programming alphabet consists of five classes of symbols: 

1. Variables: words beginning with an uppercase let.tcr, i.e., X, Y, Z. 

2. Cons/ants: words beginning witl1 a lowercase letter, i.e., a, b, c. 

:3. Predirnfr Symbols: also words hcginning with a lowl'rcasc letter, hut W<' r10rrnally USf' 

a letter from t]l{' middle of the alphalH't, i.e., JJ, q, r-. 

4. Connectives: the symbols arf' { :-, ",". 110t}. 

,5. Punctualio11 Symbols: ( ) ' D 

Definition: 2.3 A tr:rm1 is either a variable or a constant. D 

Definition: 2.4 A formula is defined inductively as follows: 

1. If JJ is an 11-a,ry prcdicai.c and t1,, .. ,ln arc terms, tll('ll 71(1 1 , ... 1 / 11 ) is forrnul,1 (called 
an rdom.ic form.ula or, more simply, an atom). 

2. If F and G arc formulas, then so arc -,p, FI\ G, F V C: a11<l G - F. 

3. If Fis a formula and X is a variable, then (VX F) and (3X F) are formulas. □ 

Definition: 2.5 The first order language given by a first order logic alphabet. is t.lw set of 
all formulas constructed from the symbols of the alphabet [Llo87]. D 

1 \Ve arc not conceJ'IJcu with function symbols in this t.hesis. 
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The following example describes a formula in a first order language and its meaning. 

Example: 2.1 In the formula \IX(p(X) t-- q(X) I\ -.r(X)), Xis a variable, and p,q and r 
are predicate symbols. D 

Definition: 2.6 A literal is either an atom or the negation of an atom. A positirr liirral is 
an atom. A negative literal is the negation of an a.tom. A clause is a formula of the form 
VX1, ... ,X.,(B1 V ... V Bm) where each Bi is a literal and X1 .. . X,, are all the variables 
occurring in B 1 V ... V Bm [Llo87]. A Horn clause is a clause with at most. one posit.iw 
literal. We write a Horn clause as follows: 

(2.1) 

which is logically equiva.lent to 
(2.2) 

A rule is of the form (2.2), where L 0 is the hw.d of the rule (at the lcft-haud side of the 
symbol "t-"), and each L; (1 :Si :S n) is a subgnal. The subgoals together are ,alkd the 
body of the rule (at tl1e right-hand side of the symbol ''t-"). The body is possibly empty, 
a rule with an empty body being called a fact. If Lo is the only positive lit.rTal, then it. is 
called a definite clause; if Lo is empty , t- Li, ... , L11 , then it is called a d,Jinile goal. 

We sba.11 follow the logic programming style for expressing Horn clauses, 11f'i11g: 

for the Horn clause in (2.2). D 

Definition: 2. 7 A literal, term, fa.ct, clause, or rule containing no va.ria.ble symbob is called 
ground. □ 

Definition: 2.8 A substitution O is a finite set of the form {Xi/ti, .... X 11 / lri}, wlier<' each 
Xi is a. distinct variable and ea.ch ti is a term, sucli that X; i- ti. □ 

As we know, in the rea.l world, we cannot avoid con1pa.risons. For inst.a.11n·, ".Jolin is old<'r 
than Tom"; "6 is not equa.l to ,5"; etc. In order to Pxpress these fads, we Tl<'f~d t.o ddi11c some 
comparison operators. We call these operators built-in prulica.tcs (or, <valuabl( pndira.lrs): 
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We can use these opera.tors to denote the above examples, i.e., age(john) > age(lorn), 6 f:. 5. 
Useful properties of these operators are detailed in [Was90]. 

A logic program (or logic database) consists of a finite set of facts and rules. Facts are 
assertions about a relevant piece of the world, such as: "John is the brother of Tom". This 
is written brother(john, tom). Rules are sentences which allow us to deduce facts from other 
facts. An example of a rule is "If X is a parent of Y and Y is a parent of Z, then X is a 

grandparent of Z". This is written 

grandparcnt(X, Z): -parcnt(X, Y),parcnt(Y, Z). 

2.1.2 Semantics 

The semantics of a logic program is usually defined by means of particular modd of tl1e first 
order logic notation of the program. We recall below some well-known notions used to ddi1w 
the semantics of first order logic. The presentation essentially concc11tratf~s 011 Herbrand 
interpretations [ Bid91]. 

Definition: 2.9 Let L be a first order language. The Ilcrbrand 11ni11c1·sr /Ip ( or Jfr,.bnuul 
domain) for the language L is the set of all ground 1.erms2 which ra.n be formed out of I.he 
constants in L. If there are no constants in L, add an arbitrary constant, say a. □ 

Definition: 2.10 The Herbrand base HB for L is the set of all ground atoms (or atomic 
formulas) which can be formed by using predicates symbols from L with ground terms from 
the Herbrand universe Hu as terms (or arguments). D 

Definition: 2.11 A Herbrand interpretation Il1 for L 1s an assignment of values to the 
constants and predicates of L defined as follows: 

L Constants in L are assigned to thcmsel ves in Ilu. 

2. Each n-ary predicate symbol in Lis assigned a mapping from Hu x ... x Hu (11 1irnes) 
into { True, False } . □ 

Definition: 2.12 Let H1 be an interpretation of a first order language L. J\ Pariable a,c;­
signment ( with respect to HI) is an assignment to each variable in L of an element in tlw 
Hu. □ 

2In our case, there are just constants. 
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Definition: 2.13 Let H1 be a Herbrand interpretation of a first order lang11age L with no 
function symbols and let A be a variahle assignment. The term assignm.ent ( with r<'spcd to 
H1 and A) of the terms in L is defined as follows: 

1. Each variable is given its assignment according to A. 

2. Each constant is given its assignment according to JI T • □ 

Definition: 2.14 Let H1 be a Herbrand interpretation of a first order language l with no 
function symbols and let A be a variable assignment. A formula in L can be given a frulh 
value, true or false, (with respect to H1 and A) as follows: 

1. If the formula is an atom p(t1 , •.. , tn), then the truth value is ohtaint-'d by calrulating 
the va.lue of p1 

( t~, ... , t~), where p1 is the mapping assigned to p by H1 and (, ... , l~ 

are the term assignments of t 1 , ••. , tn with respect to H1 and A. 

2. If the formula has the form ,F, FI\ G, F VG or G +- F, then the truth value of the 
formula is given by the following Table 2.1: 

F G ,F F /\ G FV G G- F 

true true false true true true 

true false false false true false 

false true true false true true 

false false true false false true 

Table 2.1: The values of the formula. 

:3. If the formula has the form 3x F, then the truth value of the formula is true if there 
exists d E Hu such that F has truth value true with respect to H1 and A(:i:/d), where 
A( :r / d) is A except that x is assigned d; otherwise, its truth value is false. 

4. If the formula has the form Vx F, then the truth value of the formula is truP if, for all 
d E Hu, we have that F has truth value true with respect to H1 and /\(J·/d); otherwise, 
its truth va.lue is false. □ 

Example: 2.2 The informal semantics of VX(p(X) +- q(X) I\ ,r(X)) 18 "for every X, if 
q(X) is true and r(X) is false, then p(X) is true". □ 
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In a clause, every variable lies within the scope of an implicit universal quantifier. Therefore 
the truth value of a clause is independent of any variable assignment and we cau RJH'ak 

unambiguously of the truth value of a clause with respect to a Herbra.nd interpretation. 

Definition: 2.15 Let F be a set of formulas in L. A Herbrand model Il !If for F is a 
Herbra.nd interpretation of L that makes all the clauses of F true. We say that a. llcrbrand 
model H is contained in another Herbra.ud model 1l M if II ~ JIM. If a Ilcrbraud model 
for Fis contained in every other 1-Ierbra.nd model for F, then it is called tlw lrnsl lh rbmnd 
model (Hm) of F. □ 

Example: 2.3 In order to explain the above clearly, we give an example as follows. Con-
sider a program P: 

( a) p(l ). 

(b) q(2). 

(c) r(3). 

( d) p(X) : -q(X). 

(c) q(X): -r(X). 

The l!fTbrand 'Universe Hu is { 1,2,:J}. 
The Herbrand base JIB is { p(l),p(2),p(:3),q(l),q(2),q(3),1·(1),r(2),r(:3)}. 
A Hcrbrand model lh1 for P is { p(l ), p(2), p(:3), q(l ), q(2), q(3), r(2), r(:3)}. 
The least I/erbrand m,odd Hm for Pis { p(l),p(2),p(:3),q(2),q(3),r(:3)}. 
D 

2.2 Datalog 

2.2.1 What is Datalog ? 

The term "Da.talog" was first used by Maier and Warren [MW88] in order to develop a more 
powerful query language for relational databases. In fact, Data.log uses a syntadic subset 
of logic programs which does not allow function symbols as arguments of predicates. While 
the meaning of Data.log programs and logic programs is the same, how such programs are 
evaluated is different. Logic programs are evaluated top-down ( as in Prolog, for example), 
and Datalog programs are evaluated bottom-up. There a.re other differences; 1,;ec [Ul188] 



CHAPTER 2. BACKGROUND 11 

[CGT90] for more details. 

Datalog is the fusion of first order logic syntax and database theory aimed at producing 
a new logic-based data model and a logic-based language in the deductive database field 
(Horn clauses with no function symbols). It is a database query language based on the logic 
programming paradigm. 

From the above description of Data.log, we know Data.log is a kind of database query la11-
guage containing first order logic language properties. So all the concepts we gave in U,c 
previous section are suited to Data.log. Next We consider some definitions not covered i11 the 
previous section. 

Definition: 2.16 For the Data.log program P, 

(a) link(a,b). 

(b) link( a, c). 

( c) l in J.: ( b, d). 

(d) linJ.~(d, e). 

(e) path(X, Y): -linJ.~(X, Y). 

(f) path(X, Y): -path(X, Z), link(Z, Y). 

(g) ? - path(? X, ?Y). 

(a)~(d) are the set of ground facts called the E:r.:tcnsional Database (EDB). Predicates 
appearing in the EDB are called EDB prcdirates, which may only occm in rnle bodies. Rules 
(e)~ (f) are the set of rules called the Intensional Database (IDB) and predicates appca.rillg 
in the head of IDB rules are called IDB prediratcs. Of course, we should distinguish built-in 
predicates from IDB predicates. Rule (g) is a goal, a query form that is a co11ju11ctio11 of 
predicates written as: 

where the label l;; attached to the variable )Cj is empty,? or !. This indicates wlwt.lwr tlie 
variable is an existential, answer or an input variable, respectively [CGT89] [Was90]. □ 

Intuitively, the above shows that a Datalog program consists of ground facts, Dat.alog rules 
and query forms. From here on, EDB predicates and IDB predicates will he distinguislwd. 
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2.2.2 Safety of Datalog 

When we interpret a rule, moreover, we cannot ignore the fact that certain rules can produce 
infinite answer relations. For example, the rules: 

biggcrThan(X, Y) : -X > Y. 

favourite~sport(X, Y): -jump(Y). 

(2.4) 

(2.5) 

Rule (2.4) defines an infinite relation if X and Y arc allowed to range over t lie i11t.cgcrs 
or any infinite seL Assume jump denotes a set of sports involving jumping, for t'xa.rnplc, 
jump(longjump),ju,mp(highjump) and jump(triplejump). Rule (2.5) also defines all in­
finite set of pairs f avourite~port(X, Y ), because the rule means for all X, X's favourite 
sport is jumping, where X can range over an infinite set. 

From the above examples, we know that there are two sources of infiniteness. One is a 
variable that appears only in a built-in predicate, as in (2.4). The other is a variable that 
appears only in the head of a rule, as in (2.5). In order to avoid rules that create infinite 
relations appearing in the program, we can insist that each rule is safe. One way of doing 
this is to ensure that each variable appearing in the rule is lim,itcd [01188]. 

Definition: 2.17 We say a rule is safe if all its variables are limitcdJ. This nwa11s that the 
variables appeariug in the head must appear in the body, and variables appearing in huilt-in 
predicates must appear in other non-built-in predicates or be coruicctcd by a chain of = 
predicates to a limited variable or to a consta11t. D 

This is a very important definition and will be used throughout the thesis. \1/ben 1wgatiou is 
introduced to the body of rules in the logic program, the definition of sa.fety will be stronger. 
We will cover this in chapter 3. 

In addition, rules having no multiple occurrences of a variable or constants in tllf\ head will 
ease the evaluation of multiple rules in a predicate definition. Ullman iutroduccs a process 
to achieve this, called rectification [Ull88]. In outline, rectification involves the following: 

• For every constant "a" in the head, we replace it in the head by a new and distinct 
variable "Xa" and add "Xa. = a" to the body. 

• For every repeated variable "X" in the head, we replace it's ith occurrence by "X;" 
and add "X = X;" to the body. 

=1There is a diffrrent definition of safety in [BR86], namely, that a program is safe w!H'll it is guaranteed 
not to produce infinite answer relations. 
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Definition: 2.18 A fully rectified rule is one with no multiple occurrences of variables, arnl 
no constants in the head or the non-evaluable predicates of the body. This implies that all 
multiple occurrences of variables and constants will appear only in the evaluable predicates. 

From here on, the rules which we discuss will be treated as fully rectified rules. The recti­
fication algorithm is given in Appendix A.2.1. In order to study Data.log programs, we will 
briefly discuss the proof theory and model theory of Datalog. 

2.2.3 Proof theory of Datalog 

Proof theory is concerned with the analysis of logical inference [CGT89]. That is, 11cw 
Datalog facts can be proved using the Data.log rules in all possible ways from given Data.log 
facts. Consider a Data.log rule R of the form L0 : -Li, ... , Ln and a list of ground facts 
Fi, ... , Fn, If a substitution 0 exists such that, for each 1 ~ i ~ n, L;O = F;, then, from 
rule R and from the facts F1 , ... , Fn, we can infer in one step the fact L0 0. Tlic inferred 
fact may be either a new fact or it may be already known. What we have just d<'scrilwd is a 
general inference rule, which produces new Data.log facts from given Data.log rules and facts. 
We refer to this rule as Elementary Production (EP). In some sense, EP can he consickred 
a. meta-rule, since it is independent of any particular Da.t.alog rules, and it treats tll<'m just. 
as syntactic entities. 

Example: 2.4 Consider the Datalog rule R : p(X, Y) : -p(X, Z), p(Z, Y) and the ground 
facts {p(a,b),p(b,c)}. Then, by EP, we can infer in one step the fact {7>(a,c)} using the 
substitution 0 = {X/a, Y/c, Z/b}. This is a new fact. If we consider the Data.log rule 
R': p(X, Y): -p(Y,X) and the fact {p(a,a)}. We only can infer the fact itself by applying 
EP. □ 

Let us finally define the concept of inferred ground fact. Let C be a set of Data.log clauses. 
Informally, a ground fact F can be inferred from C, denote<l by Cf-- F, iff either FE C: or F 
ca.n be obtained by applying the inference rule EP a finite number of times. The relationship 
"f--" is more precisely defined by the following recursi vc rules: 

• Cf-- F if FE C. 

• C: f-- F if a rnlc R E C: and ground facts F1 , .•• , Fn exist such that V l :S i :S n, C f-- F; 
and F can be inferred in one step by the application of EP to R and F1 , • •• , Fn. 

The sequence of applications of EP which is used to infer a ground fact F from C is called 
a proof of F. Any proof can be represented as a proof tree with different levels and with th<' 
derived fact Fat the top. The proof theory of Datalog is sound and complete [CGT90]. 
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2.2.4 Model theory of Datalog 

Some concepts of model theory were introduced earlier. Data.log can be described very easily 
in terms of model theory. A Datalog rule can be interpreted in several different ways. A rule 
may be true under a certain interpretation in which case we say the interpretation satisfies 
the rule and false under another one. A fact F follows logically from a set of clauses C iff 
each interpretation satisfying every clause of C also satisfies F. If F follows from C, we 
write C I= F. 

Example: 2.5 Consider a set C consisting of the clauses C1 : p(X, Y) : -p(Y, X) a.nd 
C2 : {p(a, b)} and a fact F : {p(b, a)}. Clearly, for each possible interpretation of our 
constant and predicate symbols, whenever C1 and C2 are satisfied then F is also satisfied, 
hence, CI= F. □ 

The set cons( C) of all consequence facts of a set C of Data.log clauses can thus be charac­
terized as follows: The set cons( C) is the set of all ground facts in the Her brand base which 
satisfy ea.ch Her brand model of C. cons( C) is a Herbrand model of C for ea.ch set C of 
Datalog clauses. If cons( C) is a subset of every other Her brand model of C, we call cons( C) 
the lea.st Herbrand model (Hm) of C [CGT90]. 

2.2.5 The least fixpoint semantics 

Associated with every definite program is a monotonic mapping which plays a role in the 
theory. This section introduces some concepts that are useful. Da.talog is viewed as a set 
of rules and facts together with some basic operations for applying rules to facts in order to 
generate new facts. Thus we can associate a mapping T with a Data.log program. The fixed 
point semantics of Da.talog is given by means of the facts obtained by iterative application 
of the rules of the program to the facts, starting with an empty set of facts ( as extensively 
discussed in [Llo87) [Ull88) [Bid91]). 

Definition: 2.19 A relation Ron a. set O is a partial order if the following conditions a.i-e 
satisfied: 

l. xRx, for all x E 0. 

2. xRy and yRx imply x = y, for all x, y E 0. 

3. xRy and yRz imply xRz, for all x, y, z E 0. D 
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Definition: 2.20 Let S be a complete lattice and T : S ---+ 8 be a mapping. There is a 
partial order on S, denoted by "S:". We say that the mapping 1' is monotonic iff s :S s' 
entails T(s) S: T(s 1

) for each pairs and s1 in S. Lets E S, we say s is a fixpoint of Tiff 
T(s) = s [Llo87]. □ 

Definition: 2.21 A fixed point of a Data.log program with respect to a set of relations for 
the EDB predicates, say R1 , ... , Rn, is a solution for the relations corresponding to the IDB 
predicates. D 

A fixed point with respect to R1 , ••• , Rn, together with those relations, forms a model M 
of the Data.log program. We know the model M is not unique, so we shall continue to be 
interested primarily in fixed points and models that are minimal. 

Definition: 2.22 A fixed point s of T is a minimal fixed point iff there is no other fixed 
point s 1 E S such that s' S: s. □ 

Definition: 2.23 A fixed point .s of Tis a least Ji:rcd point, denoted lfp(T), iff for any fixed 
point s 1 E S, we haves :S s 1

• □ 

Notice that if there is a least fixed point, then that is the only minimal .fixrd point. An 
alternative semantics, known as the least fixed point semantics of a Data.log query, can also 
be given by defining a fixed point operator and taking the least fixed point as the result of 
the query. 

Up to now we have introduced a number of concepts a.bout Data.log. Duri11g the la.st dccad<', 
much research has been clone in order to develop extensions of Data.log, eRpecially, negation 
has been introduced into the bodies of Data.log rules. Technically, rules with negated Rub­
goals are not Horn clauses, but we shall see that the use of negated subgoals will iHcrcase the 
expressive power of Data.log programming. Negation in Data.log programming is the most 
important part of this thesis. 

2.3 Evaluation Methods 

In this section, we present methods for evaluating a Data.log program, namely, for generating 
the actual set of tuples which satisfy a given user's goal for a given Ret of Data.log rules. 
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2.3.1 Rule/Goal Graphs 

As in many areas of computer science and other disciplines, graph theoretic tools play an 
import a. role also in databases [Yan90]. In this section, we focus our attention on sonw 
definitions which are useful to our system. As with all disciplines where objects are studied, 
it helps to classify the Datalog-, programs4 . With Da.talog-,, the principle division is into 
recursive and non-recursive programs, while the primary investigation tool is the graph. The 
benefit of dividing programs into classes has been discussed in [BR86] [UI188] [Was90]. The 
most common graphs used are the rule/goal graph and reduced rule/qoal graph [BH.86]. 

Definition: 2.24 A rule/goal graph is a graph that has two sets of 110dcs: one ccmsist.s of 
square nodes which are associated with predicates, the other consists of oval nodes which a.re 
associated with rules. There is an a.re from a predicate node to a rule node if the predicate 
appears in the body of the rule and we label the arc "," if the predicate appears negatively 
in the body of the rule. There is also an arc from a rule node to a predicate node if the name 
of the head of the rule is the same as the predicate node's. □ 

Example: 2.6 Consider a Datalog-, program P, where c(X), s(X), and t(X, Y) are EDB 
predicates. 

r1: a(X) : - c(X), nol b(X). 
r2: b(X) : - not a(X). 
r3: p(X) : - q(X), not r(X). 
r4: p(X) : - r(X), not s(X). 
rs: p(X) : - t(X, 1"). 
r5: q(X) : - p(X). 
r1: r(X) : - q(X). 
r 8 : r(X) : - not c(X). □ 

From Definition 2.24 we get the rule/ goal graph shown in Figure 2.1. 

Definition: 2.25 Let G = (V, E), where V are called vertices, and E are ca.lied c<lges, he a 
digraph ( short for "directed graph"). A digraph G is strongly connected if. for each pair of 
vertices A and B, there is a pa.th from A to B ( and hence by interchanging the roles of A and 
B in the definition, there is a path from B to A as well). A strongly connected component 
(SCC) of a digraph is a maximal strongly connected subgraph. □ 

4 We will introduce negation in Section 2.4 
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Definition: 2.26 A reduced rule/goal graph is a variety of rule/goal graph which groups 
all nodes which are mutually recursive, the parts in dotted ovals in Figure 2.1, into a single 
node. In graph-theoretic terms we identify the strongly connected components of the rule/goal 
graph and form the acyclic condensation of the graph. D 

According to Definition 2.26, we ca.n easily draw up a reduced rule/goal graph in terms of 
Example 2.6 from Figure 2.1. This is shown in Figure 2.2. 

: c(X) 
L _____ J 

r------
1 r 
1 s(X) '-----;;,,.\ 

(X) : -qtX), n 
(X)_: -r X), n 
X). -p( ). 
X): -q(X). L-----J 

1------
1 r,---------
1 t(X, Y) I ______ I 

~ 
EXT predicate node Reduced rule node Dependency relation 

Figure 2.2: Reduced Rule/Goal Graph 

r(X) 
q(X) 

p(X) 

D 
INT predicate node 

The most important aspect of the rule/ goal graph is the grouping of predicate and rule 
nodes. Intuitively, this grouping provides an order of computing. We ca.n group definition 
( or goal) and rule predicate nodes in many ways, but different ways will directly influence 
the efficiency of the computation. 
We were concerned with SCCs in Definition 2.26. In Figure 2.2, the ovals a.re SCCss. Ac­
cording to the definition, SCCs give us a method to group the rule nodes. The algorithm 
then evaluates the SCCs in topological order, so that, if an SCC s1 contains a rule which is 
dependent on some rule in an sec S2, the S2 sec will be evaluated first. 

5The algorithm is shown in Appendix A.2 



CHAPTER 2. BACKGROUND 19 

Example: 2. 7 Consider Example 2.6 from Figure 2.1. Figure 2.3 illustrates the dqw11de11-
cies amongst the SCCs. Clearly, any ordering which has (3) as the last SCC is a correct 
topological ordering. 

2.3.2 Methods 

(1) 

(3) 

(2)~ 

(4) 

r3 : p(X) : -q(X), n 
r4 : p(X) : -r(X), n 
T6: q(X): -p(X). 

: r(X) : -q(X). 

rs: p(X): -t(X, Y). 

Reduced mlc node Dependency rdation 

Figure 2.3: SCC dependence graph 

As we aim to have a relational database system as a backend to our Data.log system, we 
should be able to convert rules into relational algebra expressions. Normally, we <lea.I with 
bottom-up and top-down evaluation methods which have been introduced in [BR86] [CGT89]. 
A bottom-up evaluation will start with the EDB predicates and generate relations for IDB 
predicates, using the query at the end to select the tuples required. A top-down evaluation 
will work from the query down generating joins of terminal symbols. Top-down is usually 
the more efficient, but more complex, while bottom-up is simpler, but less efficic11t since it 
does not use the query being presented until the end. The Prolog algorithm is an example of 
a top-down algorithm, while naive and semi-naive are two bottom-up methods. 'fl1f' 11aivf' 
evaluation can be improved, to give the so-called semi-naive eva.luation. Before we give the 
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naive and semi-naive algorithms, let us describe how to construct an exprcssioII of relational 
algebra that computes the relation for a positive rule body. 

Algorithm: 2.1 Computing the Relation for a Positive Rule Body, Using Relational Alge­
bra Operations (from [Ull88]). 

INPUT: The body of a rule of Data.log program, which we assume consists of subgoals 
Q1 , •.• , Qn involving variables X 1 , •.• , Xk, For each Q; = q;(A;1 , ... , A;k,) with an ordinary 
predicate, there is a relation Rq; already computed, where the A's are argumer1t.s, either 
variables or constants. 

OUTPUT: An expression of relational algebra, \\·hich we call 

that computes from the relations Rq1 , ••• , Rgn 6 , a relation R(X1 , ••• , Xk) with all and only 
the tuples (a1, ... , ak) such that, when we substitute ai for Xj, l S j S k, all the subgoals 
Q1, . .. , Qn arc made true. 

METHOD: The expression is constructed by the following steps. 

L For each ordinary Q;, let R; be the expression TT,Ja-F,(Rq;)). Here, Vi is a set of 
components including, for each variable X that appears among the arguments of Q;, 
exactly one component where X appears. Also, F; is a list of built-in predicates which 
a.re linked together with "AND" of the following form: 

• If position k of Q; has a constant a, then F; has the term i~ = a. 

• If positions k and l of Q; both contain the same variable, then F'; has the t<~rm 
k = I. 

If Qi is a subgoal such that there are no terms in F;, e.g., Q; = q(X, Y), then take F; 
to be the identically true condition, so Ri = Rq,. 

2. For each variable X not found among the ordinary subgoals, compute an expression 
Dx that produces a unary relation containing all the values that X could possibly have 
in an assignment that satisfies all the subgoals of rule p. Since pis safe. thcrr is some 
variable Y to which X is equated through a seque11Ce of oue or more = subgoals, and 
Y is limited either by being equated to some constant a in a subgoal or by being an 
argument of an ordinary subgoal. 

• If Y = a is a subgoal, then let D x be the constant expression { a } . 

6 Teclmically, not all relations may be present as arguments, because some of them may have built-in 
predicates and thus not have corresponding relations. 
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D 

• If Y appears as the jth argument of ordinary subgoal Qi, let Dx be I1J( Rq;), 

3. Let Ebe the natural join (tx:1) of all the R;'s defined in (1) and the Dx 's defined in (2). 
In this join, we regard Ri as a relation whose attributes are the variables a.ppea.ri11g in 
Q;, and we regard Dx as a relation with attribute Xi. 

4. Let EV AL_RU LE(Rp, Rq1 , ••• , Rqn) be crF(E), where Fis the list of built-in predicates 
appearing among qi, ... , qn, and E is the expression constructed in (3). If there arc no 
built-in subgoals, then the desired expression is just E. 

As we see from Figure 2.2, the reduced rule/goal graph has two types of nodes: the nodes 
for nonrccursive definitions and the nodes for the recursive components. Ea.ch type of 11ode 
is treated differently. 

2.3.3 Evaluating N onrecursive Rules 

Because the rules a.re rectified, we have only to project the rclatiori for each rule) hocly onto 
the variables of the head and, for each predicate, take the union of the relations produced 
from each of its rules. 

Algorithm: 2.2 (Nonrec) Evaluating Nonrecursive Rules Using Relational Algebra Opera­
tions ( from [Ull88]). 

INPUT: All IDB predicates and EDB predicates appearing in a nonrccursivc Data.log pro­
gram. 

OUTPUT: An expression of relational algebra for each IDB predicate p m terms of the 
relation R 1 , ... , Rm for the EDB predicates. 

METHOD: Begin by constructing the dependency gra.ph for all input rules, an<l order the 
predicates Pt, ... , Pn, so that if the dependency graph for these rules has an arc from Pi to JJ.i, 
then i < j. We can find such an order because the rules arc nonrccursivc, and therefore the 
dependency graph has no cycles. Then for i = 1, 2, ... , n, form the expression for rdatio11 
Pi for Pi as follows. 

7Since any X for which Dx is constructed cannot be an attribute of any R;, the natural join really 
involves the Cartesian product of all the Dx 's, if any. See (Ull88] for more details. 
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1. For each rule r having p; as its head, use Algorithm 2.1 to find an expression J:,',. that 
computes the relation Rr for the body of rule r, in terms of relatious for the predicates 
appearing in r's body. If the predicate q appearing in r's body is an EDB predicate, 
let Q be the given relation for q. 

2. Since all rules are nonrecursive, all the predicates appearing in the body of r already 
have expressions for their relations in terms of the EDB relations. Substitute the 
appropriate expression for each occurrence of an IDB relation in the expression Er to 
get a new expression Fr. 

3. Vie may assume that the head of each rule for p; is p;(X1 , ... ,Xk) because the rules 
are rectified. Then take the expression for Pi to be the union over all rules r for Pi, of 
Tix 1 , ••• ,xk(J<~). □ 

Example: 2.8 In order to illustrate Algorithm 2.2, let us consider an exam pk ( [Ull88]) 
which has three rules: 

r1: p(a,Y) :-r(X,Y). 
r2: p(X, Y) : - s(X, Z), r(Z, Y). 
r3: q(X, Y) : - p(X, Z), s(Z, Y). 

where r and s are EDB predicates with relations Rand S', p and q are IDB predirntes, for 
which we want to compute relations P and Q. We begin by rectifyillg the rules: 

r 1 : p(X, Y) : - r(Z, }'), X = a. 
r2: p(X, Y) : - s(X, Z), r(Z, Y). 
r3: q(X, Y) : - p(X, Z), s(Z, Y). 

Fn.,m the dependency graph we know q depends on p, so the proper order is to work on 
p first, then q. We can get the relations for the body of r 1 and r 2 by Algorithm 2.L 
R(Z, Y) t><l Dx(X) and S(X, Z) t><l R(Z, Y), where Dx = {a}. \!Ve project these expressions 
onto the list of attributes X, Y before the union is taken. The expression for Pis 

P(X, Y) = IIx,Y(R(Z, Y) t><l {a}(X)) u l1xy(S(X, Z) t><l R(Z, }•")) 

Next, we consider q. By Algorithm 2.1, the expression for the body of r 3 is P(X, Z) t><l 

S(Z, Y) so the expression for Q is 

(J(X, Y) = Ilx,dP()( Z) t><l S(Z, Y)) 

D 
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2.3.4 Evaluating Recursive Rules 

In the last subsection we gave an algorithm which does not apply to recursive rules, because 
for recursive rules there must be cycles in the dependence graph and we canno1. find an order 
as we did in Algorithm 2.2. So when we try to evaluate a predicate on the cycle, there will 
be a rule with a subgoal whose expression is not yet available. 

Bottom-up evaluation is the simplest of the evaluation methods when recursive rnle8 arc 
involved. Let us express the set of provable facts for the predicate p; ( corresponding to IDB 
relation P;, l S i S rn) by the assignment 

Pi:= EV AL(Pi, R1, ... , Rk, Pi, ... , Pm) 

where EV AL is the union of EV AL_RU LE which was defined in Algorithm 2.1 for each of 
the rules for Pi, projected onto the variable~ of the head. R1 , ... , Rk are EDB relations a.nd 
A, ... , Pm are the IDB relations which are to be computed. 

Naive Evaluation 

Algorithm: 2.3 (Naive.sec) Naive Eva.luation of a11 SCC in a Simple Data.log Program. 
INPUT: All rules for an sec with recursive predicates Pl, ... , Pn aud rclatiolls H1, ... , HA· 
for a.II other predicates in bodies oft liesc rules. 

OUTPUT: Relations A 1 • 0 • 1 Pn for Pl 1 •• , 1 Pn in the current sec. 

METHOD: We initialize each P; to the empty set, and the R/s arc given. Then evalu­
ating each rule as: P; = EV AL(Pi, R 1 , •.• , Rk, P 1 , ... , Pm) and repeatedly a.pply E\l AL to 
obtain new va.lues for the P;. When at some point, no more new facts can be added to IDB 
relation Pi, output P;. 

for i := 1 to m do begin /*m is the number of IDB predicates*/ 
pi:= 0: 

end 
repeat 

for i := 1 to m do begin 
P; .old:= P;;/*save old P's*/ 

end 
for i := 1 to m do begin 

P; := EV AL(p;, R1, ... , Rk, Pi.old, ... , Pm.old); 
j* Ri is a. relation which has been computed or an EDB relation*/ 

end 
until P; = P; .old for all i; 
output P;'s 
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Algorithm: 2.4 (Naive) Naive Evaluation of a Sample Datalog Program. 
INPUT: Data.log program with IDB relations Pi, ... , Pm, EDB relations R1 , ••• , Rk. 

OUTPUT: Relations Pi, ... , Pn for Pi, ... ,Pn· 

METHOD: Compute SCCs and for ea.ch SCCi (i= 1 to n) call Algorithm 2.:3, 

Naivescc(SGGi, Pi, ... , Pi, R1, ... , Rk) 

where P1 , ... , P1(l S: l S: m) are IDB relations in lower SC Cs. D 

Example: 2.9 Consider the logic program P: 

, 1 : anccstor(X, Y) : - ancesior(X, Z), parcnl(Z, Y). 
, 2 : ancesior(X, Y) : - parcnt(X, Y"). 

assume PAR and ANG are the relations of parent and ance.sior, respectively, wll('rc 

PAR= {(b,a), (b,g), (a,d), (a,e), (d,.f), (c,h)}. 

We translate the program into the relational algebra expression: 

ANC = I1x,v(ANG t><l PAR) LJ PAR 

24 

Let us follow Algorithm 2.3. Initially, we set ANG0 = 0. We then c~uter 1 he repeat loop. 
We initialize ANG.old= ANC = 0. Now we compute the first ,·alnc of ANC. Since the 
join with an empty relation is empty: 

ANG1 =PAR= {(b,a), (b,g), (a,d), (a,c), (d,f), (r,h)}. 

ANG 1 f. ANG.old, so we enter the second iteration. After saving ANC1 to ANC.old, we 
compute the next value of ANC as follows: 

ANG2 = {(b,a), (b,g), (a,d), (a,e), (d,f), (c,h), (b,d), (b,e), (a,f)}. 

Note here that ANG2 = ANG1 U{(b, d), (b, e), (a, f)}. ANC2 f. ANG.old, so we niter the 
third iteration. After setting ANG.old= ANG2, we obtain: 

ANG3 = {(b,a), (b,g), (a,d), (a,e), (d,f), (c,h), (b,d), (b,t), (a,f), {h,f)}. 

Here ANG3 = ANG2 LJ{(b,f)}. ANG3 is different from ANG.old, so we <'Ht.er tll<' fourtl1 
iteration. Let ANG.old= ANG3 , then: 

ANG4 = {(b,a), (b,g), (a,d), (a,e), (d,f), (c,h), (b,d), (b,c), (a,I), (b . .f)}. 

Finally, ANG4 =ANG.old= ANC3 and the loop terminates. o 
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\Ve see from the example, however, inefficiencies arise since if a tuple is proved in one itera­
tion then, as its antecedent tuples are still in Pi, it will be proved again in each subsequent 
iteration. In order to avoid this, we just pay attention to the new tuples that a.re produced 
by ea.ch rule which can be found if we substitute the full relation for all but one of the 
subgoals and substitute only the incremental tuples for the others. There is a. well-known 
evaluation method which takes advantage of incremental relations, called ''semi-naive" eval­
uation [Ull88], which we will describe next. 

Semi-naive Evaluation 

The naive eva.luation met.hod is simple, but it may repeat a lot of computation. A semi-naive 
evaluation is a bottom-up technique designed for elimi11ati11g redundancy in the evaluation of 
tuples at different iterations [CGT89]. Semi-naive evaluation aims to overcome redundancies 
in the looping mechanisms by only calculating the increment between the old value for a 
relation and the new, thus the old tuples will not be recalculated. We must do this substitu­
tion using ea.ch subgoal in turn a.s the subgoal with the incrementa.l relation, and tlic11 take 
the union of the resulting relations. Since we cannot get a.ny increment.al tuples for EDB 
relations, we may just take the union over the IDB predicates. Let us define more formally 
the operation of incremental evaluation of the relations associated with rules and pn·dica.1,es. 
Let r be a. rule with ordina.ry subgoals 51 , ••• , S',,; we exclude from this list any subgoals 
with built-in predicates. Let R1 , ••• , Rn be the current relations associated wit!, subgoals 
81, ... , Sn, respectively, let 6R1, ... , L:.Rn be the list of corresponding i11crernenta.l relations 
which is the difference between the old R; and the new one. Recall that E\/ AL_RU LE() 
is defined by Algorithm 2.1. Then the incremental relation for rule r is the union of the n 
relations 

EV AL_RU LE(r, R1, ... , Ri-1, L:.Ri, Ri+1, ... , Rn) 

for 1 :S i '.S n. That is one incremental relation 6R; is substituted for the full relation Ri in 
each term. Formally, we define: 

= LJ EVAL_RULE(r,R1, ... ,Ri-1,6Ri,R;+1,••·,Rn) 
J<i<n 

Now, suppose we are given relations R1 , ••• , lh for the EDB predicates r 1 •••• , r~.. For 
the IDB predicates p1 , ••• , Pm we are given associated relations P1 , ••• , Pm and associated 
incremental relations 6Pi, ... , L:.Pm. Let p; be an IDB predicate. Define: 

to be the union of what EVAL.JiULE_JNCR() produces for each rule for Pi· Since tl1c incre­
mental relations for the EDB predicates are 0 in each application of EV AL_HU LE_! NC: H(), 
so the terms for those subgoals that a.re EDB predicates do not have to appear in tll(' union 
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for EV A LRU LE_] NCR(). \Ve shall next give the complete scmi-naiw algorithm for lin­
ear programs that has been implemented in the Data.log system. Restricting programs to 
linear recursive is not a problem as most "real life" recursive situations arc linearly recursive 
[BR86]. More details have been given in [Ull88] [Was90]. 

The Data.log system actually uses a slightly more sophisticated a.lgorithm---it analyses the 
rule dependence graph and finds the SC Cs ( strongly-connected components) in the graph 
(see Section 2.3.1 ). 

Algorithm: 2.5 (Semi-naivescc) Semi-Naive Evaluation of an SCC in Simple Data.log Pro­
gram. 
INPUT: Same as Algorithm 2.3. 

OUTPUT: Same as Algorithm 2.3. 

METHOD: The first stage is to set up the temporary tables for each IDB predicate p;: 

• P;.delta-the difference between the current value of the relation and th<' val11e of the 
relation from the previous iteration. 

• P;--thc current value of the relation. 

Compute the rules that involve no IDB predicates in the body once, a11d let h he tlw rclatio11 
for predicate p;. Then use EVAL_J NCR() repeatedly on increnH'!ltal IDB relations. For 
each IDB predicate Ji;, there is an associated relation P; that holds all the tuples, and tl]('r<' 
is an incrcrnc11tal relation P;.delta that holds only the tuples added 011 the previous ro1111d. 

Thf' computation is shown in Figure 2.4. □ 

Algorithm: 2.6 (Semi-naive) Semi-Naive Evaluatio11 of a Sample Data.log Program. 
INPUT: Data.log program with IDB relations P1 , ••• , Pm, EDB relations R 1 ••.• , lh. 

OUTPUT: Relations Pi, ... , Pn for JJ1, ... ,Pn· 

;"-.-1ETIIOD: Compute SCCs and for each SCCi (i= 1 to n) call Algorithm 2.5, 

where P1, ... , P1(1 S l Sm) are IDB relations in lower SCCs. □ 
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for i := 1 to m do begin /*mis the number of all IDB predicates*/ 
Pi.delta := EV AL(pi, R1 , ••• , Rk, 0, ... , 0); 

end; 
irepeat 

P; := P;.delta; 

for i := 1 to m do begin 
Pi.old:= P;.dclta;/*save old ?.delta's*/ 

end; 
for i := 1 to m do begin 

P;.della := EV AL_! NC R(pi, li1, ... , Rk, P1, ... , Pm, Pi .old, ... , P111 .old); 
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P;.dclta := P;.delta - P; /*remove "new'' tuples that actua.lly appeared before*/ 
end; 
for i := 1 to m do begin 

P; := P; u P;.dclla; 
end 

until Pi.delta= 0 for all i; 
output P; 's 

Figure 2.4: Semi-naive.,cc evaluation of Datalog programs. 
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Example: 2.10 Recall Example 2.9. Let us follow Algorithm 2.5 on the same example. 
Initially, we obtain: 

ANC1 .delta PAR 

- {(b,a), (b,g), (a,d), (a,e), (d,.f), (c,h)}. 

ANC1 - ANG1.delta 

- {(b,a), (b,g), (a,d), (a,e), (d,f), (c,h)}. 

ANG.old= ANG1.delta= {(b,a), (b,gL (a,d), (a,e), (d,f), (c,h)}. 

ANG2.delta = {(b,d), (b,e), (a,f)}-ANG 1 

- {(b,d), (b,e), (a,.f)} 

ANG2 - ANG1 LJ ANG2 .delta 

- {(b,a), (b,g), (a,d), (a,e), (d,.f), (c,h), (b,d), (b,e), (a,f)}. 

ANG.old= ANG2.delta = {(b, d), (b, e), (a,!)}. 

ANG3 .delta = {(b,J)} -ANG2 = {(b,J)} 

ANG3 = ANC2 LJ ANC3 .delta 

= {(b,a), (b,g), (a,d), (a,e), (d,J), (c,h), (b,d), (b,e), (a,.f), (b,.f)}. 

ANG.old= ANC3 .delta = {(b,J)}. 

ANC4 .delta = {0} - ANC3 

- 0 

ANC4 = ANC3 LJANC4 .delta 

= {(b,a), (b,g), (a,d), (a,e), (d,J), (c,h), (b,d), (b,c), (a,f), (b,I)}. 

The computation terminates because ANG4 .delta= 0. ANC4 is the final result. D 

Obviously, the results of two computations, naive and semi-naive, are tl1e same, but the 
latter is more efficient. In Example 2.10 only ANCi_dcfta has been involved in the joins, 
while in Example 2.9 we had to compute joins for ead1 of tl1e temporary ANC;, whicl1 always 
have at least as many tuples than the corresponding values of ANC;.delta. 
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2.4 Negation in logic programs and Datalog 

In this section, the main topic of discussion is why negation is needed. We first look at our 
real world. Roughly speaking, there are two aspects to objects in the world8, for instance, 
{positive, negative}, {true, false}, {good, bad}, or {black, white}. Under some premises, 
we may illustrate one aspect of some thing using its opposite, for example, in mathematical 
logic, we can say not(not(A)) is A. We will replace "not" with "-,", as follows: 

A = -,( -,A ) 

Example: 2.11 Let us consider the rule: If Xis a person and X doesn't eat meat, then X 
is a vegetarian. In Datalog without negation, there is no way to represent such a rule. D 

As we have demonstrated above the necessity of negation in our real world, we will next 
the feasibility of negation in our logical world. 

In recent years, various semantics for negation in logic programming have been studied. 
There are three well-known semantics in our survey. One is the Closed World Assumption 

(CWA) model [Rei78], another is the Negation as Failure (NF) model [Cla.78], and the t.liird 
is the Completed Data Base (COMP) (or Cornpldion) model [Llo87]. In fart, the last one 
has been introduced by Clark [Cla78] for justifying the use of the negation as failure rule 
in Prolog and developed by Lloyd [Llo87]. Roughly speaking, the CWA is that a ground 
atom is taken to be false if it is not a logical consequence of the program; NF states that a 
ground atom can be inferred to be false if every possible proof of the ground a.tom fails. The 
CWA is in fact made implicitly when evaluating queries on relational databases. Since we 
arc concerned in this thesis with evaluating Data.log programs rather than logic programs, 
we will not discuss these semantics further. 

Definition: 2.27 A Data.log with negation clause, denoted by Datalog-., is either a positive 
(ground) fact or a rule where negative literals are allowed to appear in the body. Data.log.., 
is not a Horn clause, but is an extended form of Horn clause which has the form: 

(2.6) 

either as 
(2.7) 

or as 

(2.8) 

8 For now, we are only concerned with a 2-valuecl world. 
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Pi, ... ,Pn (from Form(2.7)) are the positive literals, ,Pn+I,···,'Pn+m are t.hc negated 
literals, and a conjunction of them is called the body of the clause. The unnegated literal 
Po is called the head of the clause. We have a regulation that the head comprises at most 
one positive literal. Also, for safety reasons we require that each variable occurring in a. 

negative literal of a rule body also occurs in a positive literal of the same rule body. We also 
use DataloC to denote the language in which Data.log-, rules are allowed. The Data.log-, 
language has been described in [Ull88} [CGT89}. D 

Example: 2.12 Let us recall Example 2.11. Assume that the predicate symbols person, 
eat..:rneat and vegetarian, represent the properties of being a person, a person who eats meat, 
and a vegetarian, respectively. Now we can represent the example as a Data.log-, clause as 
follows: 

vegetarian(X) : -person(X), not eai..:rneat(X). 

Note that in relational algebra an expression corresponding to the above rule can be fornrn­
lated with ease by use of the minus operator ''-". Assume the onc-colunrn relation P<T.son 

contains the name of all persons and another one-column relation Ral_mcat cont.a.ins the 
names of all people who eat meat. Then we obtain the relation V cgclarian, that is, the 
names of all V cgcfarians, simply hy subtracting EoLrneat from Person, thus 

Vegetarian= Person - EaLrneat. 

Obviously, the negative subgoal that was introduced into the Data.log rult~ body incn·asf'd 
the expressive power of Datalog. D 

Just as we mentioned before, there are two aspects of all things. We allow the use of n<'gative 
information to increase the expressive power of Data.log programs. However here are some 
of the problems we face if we allow a program P to contain rules with negated predicates: 

L We shall encounter the first problem in what rules with negation mean. Sometimes 
for a rule with negation there is an apparent divergence between what we intuitively 
expect the rule should mean and the answer we would get. 

2. \Vhen rules with negation are allowed, there might not be a least fixed point, but 
several minimal fixed points. 

I\fore details are discussed in [Ull88]. 
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2.5 Different semantics for Datalog· 

In the previous section, we have related why negation is needed intuitively. In this section, 
we will specify some previously proposed semantics for Datalog-,. These semantics have 
been implemented in our system described in Chapter 3. Different techniques to integrate 
negation in logic programs are surveyed by Bidoit [Bid91]. 

2.5.1 Stratified semantics 

Stratified negation was first proposed by Chandra. and Ha.rel [CH82] a.n<l la.ter, iudcpendently, 
rediscovered by [Gel88] [Naq86] [ABW86] [Prz88]. Stratified negation in Data.log.., help deal 
with the problem of many minimal fixed points. 

Definition: 2.28 A Data.log-. program P is stratified if we can group all predicates into 
strata, that is, disjoint sets S1 , •.. , Sn, which are the largest sets of predicates such that 

l. All predicates with the same predicate name belong to the same stra1u1r1. 

2. If a predicate pis the head of a rule with a subgoal that is a ncgativ<' predicate q, then 
q is in a lower stratum than p. In other words, Sp > Sq if there is a rule of the form 

p : - ... ,not q, . .. 

3. If predicate pis the head of a rule with a subgoal that is a positive q, tbcu tlie stratum 
of p is at least as high as the stratum of q. In other words, Sp 2: S'q if there C'Xist.s a 
rule of the form 

p : - ... ,q, ... 

Any grouping Si of P satisfying the above conditions is called a sirafi.ficalinn of P. □ 

In order to discuss stratified Data.log-, more intuitively, let us recall the definition of a de­
pendency graph from [CGT89]. 

Definition: 2.29 The dependency graph of a Data.log-, program P, denoted by Gp, is defined 
as follows. The nodes of Gp consist of the IDB predicate symbols occurring in P. There is 
an edge< q,p > from q top in Gp iff the predicate symbol q occurs positively or negatively 
in a body of a rule whose head predicate is p. We will mark the edge < q, p > with "," iff 
there exists a rule with head predicate p and with negative predicate q in the body. D 
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Example: 2.13 Consider the following Datalog-, program P with EDU predicated: 

p not q, s. 
q q. 
q d, not r. 
T' d. 
s q. 

The dependency graph Gp of the program Pis depicted in Figure 2.5. D 

7 

Figure 2.5: Dependency Graph Gp 

An alternative definition of a stratified program in terms of a dependency graph is a.s follows. 

Definition: 2.30 A Datalog-, program Pis stratified iff its dependency graph Gp does not 
contain any cycles involving a negative edge, labeled with ",". See [ABW86] for more 
details. D 

Some definitions which extend the class of stratified Data.log-, have also beeu proposed. For 
example, Przymusillski proposed a class of logic programs called locally stratified logic pro­
grams in [Prz88]. Another class of stratified programs, called modular stratified programs, 
was proposed by Ross in [Ros90]. This generalizes both stratification and local stratification. 
A program is modularly stratified if and only if its mutually recursive components are locally 
straizfied once all instantiated rules with a false subgoal that is defined in a "lower" compo­
nent are removed. However, we did not implement these extensions of stratified semantics 
in this thesis and we will leave them for future extensions. 
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2.5.2 Inflationary semantics 

In this section we will introduce an approach which leaves the programmer totally free to 
write any Datalog.., program he or she wants. A semantics for Datalog.., programs, the 
inflationary semantics, was first proposed by Gurevich and Shelah in [GS8Gb] and later, 
studied further in [KP91] [AV91]. 

Definition: 2.31 The term inflationary operator was coined in [GS86b] where an operator 
J-l mapping k-ary relations to l.~-ary relations is said to be inflationary if 8 ~ II( S) for every 
k-ary relation S. In other words, if M is a mapping from k-ary relations to k-ary relati011s, 
then the opera.tor inf _}M(S) =SU M(S) is inflationary. 

Definition: 2.32 [KP91] Consider a Data.log.., program P over an arbitrary but fixc<l fi11it.e 
vocabulary o-9 having a single IDB relation S. Let k be the arity of 8 an<l supposP that 
D = ('1/1i R 1 j, •• , Rn) is a database over O" having universe 'tp. If we have a. ma.ppiug 0, t.be 
inflationary semantics of the Data.log.., program Pon D is defined by iterating the mappi11g 
0 in the following way: we define first the sequence en, n ~ 1, of 1.:-ary rel at.ions ou 1/• by 
the equations 

and then we put 

(X) 

The inflationary semantics of the Data.log.., program P on the database D is the k-ary 
relation 0 00 • For Data.log.., programs with more than one IDB relation, the inflnlionary 
semantics is defined in a similar way by simultaneous induction in the defining equations. □ 

In what follows we will illustrate how the inflationary semantics of a Dat.alog.., program can 
be computed. Let P be a DataloC program and E an EDB. The infiatiouary twa.luation of 
P on E is performed iteratively so that all rules of P are processed in pa.rallcl at each step. 
From the EDB and the facts already derived, new facts are derived by applying tllf' rules of 
P. These new facts a.re added to the result at the end of ea.ch step. At. ca.ch step, the CvVA 
is made temporarily during the evaluation of the rule bodies-it is assumed that the negation 
of all facts not yet derived is valid. The procedure terminates wheu no more additio11al fads 
can be derived. Let us see an example a.s follows: 

~i.e., we have a fixed sequence O' = (R1 , ... , Rn) of database relational symbols such that. rach R; is of 
arity m;. 
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Example: 2.14 Consider a Datalog· program P where dis the only EDB prrdirnfr-. 

r1: s(X) : -p(X), q(X), not r(X). 
r2: p(X) : -d(X), not q(X). 
r3: q(X) : -d(X), not p(X). 
r4: r(X) : -d(X), d(O). 

We ask that this program be evaluated on an inflationary basis on an EDB E = { d(l)}. 
Let A1 be the mapping associated with P. Initially, M 0 = M(©) = {d(l)}. Aft.er the first 
iteration, we get two new facts: one is p( 1) from r 2 and the other is q( 1) from r3 • \Ve can 
write M 1 = M 0 U A1(M0 ) = {d(l),p(l),q(l)}. After the second iteration, rule r 1 produces 
the new fact s(l), so M 2 = AP UM(M1 ) = {d(l},p(l), q(l), s(1)}. Since no further facts are 
derivable, the procedure stops with the result {d(l),p(J),q(l),s(l)}. Obviously, tl1c result 
is a least fixpoint of the Datalog· program P. This is also a Herbrand model of PUE but 
this model is not minimal since {d(l),p(l)} and {d(l), q(l)} are smaller models of PUE. □ 

In [Bid91] [AV91], they give two different ways of "evaluating" the inflationary model seman­
tics. One is the deterministic fixpoint semantics which corresponds to "apply ALL rnlcs" at 
once, the other is the non-deterministic semantics which corresponds rather to "apply ONE 
rule" at a time. \Ve adopt the first approach in our system which is described in more detail 
in the next chapter. 

2.5.3 Well-founded semantics 

In this section we will investigate another semantics which enables a programmer to write any 
Data.log· program--the well-founded (partial) model. It was proposed first by Gelder, Ross, 
and Schlipf in [GRS88]. Their method nicely extends the stratified approach to arbitrary 
logic programs with negation. Later a fixpoint method for computing the well-founded 
partial model was given in [Gel88], while resolution-based procedural semantics for well­
founded negation is provided in [Ros89]. Further important papers related to well-founded 
model semantics a.re [Prz89] and [Bid91] where the relationship to logical constructivism is 
investigated. First we introduce some definitions. 

Definition: 2.33 Let S be a set of literals. \Ve denote the set formed by taking the com­
plement of ea.ch literal in S by ..., · 8. 

• If q E ..., • S then we say the literal q is inconsisfenf with 8. 
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D 

• If some literal in a set of literals R is inconsistent with the set of literals ,')' then we say 
R and S are inconsistent. 

• If a set of literals Sis inconsistent with itself, then we say Sis inconsisirnt; otherwise 
it is consistent. 

Definition: 2.34 Let P be a Data.log-, program, HB its associated Herbrand base, a!l(l J 
be a set of literals. We say that Up(]) ~ HB is an unfounded set of P with rcsptci to I if each 
atom p E Up(]) satisfies the following condition: For each instantiated rule r of P whose 
head is p, ( at lea.st) one of the following holds: 

L The complement of some subgoal literal in rule r is in J. 

2. Some positive subgoal literal of ruler is in Up(/). 

A literal that makes either of the above conditions true is called a witness of 1111.usability for 
rule r with respect to J. The union of all unfounded sets with respect to a givc•n I iH also 
unfounded, and is called the g1·rnte.st unfmmdrd set, denoted by [IJ,(J). D 

Example: 2.15 Consider the following program from [GRS88], where the atoms arc abbre­
viated to single letters. 

r1: a - c, not b. 
r2: b - not a. 

r3: C. 

r4: p - q, not r. 
rs: p - r, not s. 

r6: q - p. 

r1: r - q. 

From the definition above, we say the atoms {p, q, r, s} form an unfounded set and tl1e pair 
{ a, b} do not form an unfounded set. The difference between {p, q, r, s} and { a, b} is that: 
declaring any of p, q or r false does not resurrect a proof for any other element of the set. 
Clearly s can never be proven because it has no rules in the program. However, as soon as 
one of a or b is declared false, it becomes possible to prove the other 1s true ( only if c is true, 
in the case of a). And if both are declared false at once, we have an inconsistency. D 
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Definition: 2.35 For a set of literals J: 

• Tp(J) is the usua.l immediate consequence transformation defined by: p E Tp(J) if and 
only if there is some instantiated ruler of P such that r has head p, and e,icb subgoa.l 
literal in rule r occurs in J. 

• U p(J) is the greatest unfounded set of P with respect to I. 

D 

Immediately from the definitions we can prove that Tp(J), Up(J), and 11/p( I) are mo1101.onic 
tra.nsformat ions. 

Definition: 2.36 Let P be a DataJoC program. The well-founded model of P is the least 
fixpoint of the operator lVp(J) associated with P. Every negative literal denotes that its 
atom is false, every positive literal denotes that its atom is true, and missing atoms have 
undefined truth value. So the well-founded model semantics is based on three-valued logic. □ 

Example: 2.16 Recall Example 2.15, a well-founded model is { c, ,p, ,q, ,,, ,s }. □ 

2.6 Expressive power 

From the previous sections, we know that a Data.log program is a Data.log..., program with the 
a.dditiona.l condition that no negation occurs in the body of the rules. So intuitively speaking, 
Data.log..., programs have greater expressive power than Datalog programs. In this thesis, we 
introduce stratified (Datalog~rJ, inflationary (Datalog~fl) and well-founded (Datalog;,,11r) 
semantics. In [Bid91], there is a comparison of Datalog~ra with FOL and FP, Datalog:11 

with FP and Datalog:ellf with FP. The following result hol<ls on finite databases. 

Theorem: 2.1 ([Bid91] [AV91] [KP91]) 
Datalog is a strict subclass of Datalog~ra, Datalog:eur and Datalog:n-

However, it has been discussed above that Datalog~ra cannot express all Dai it.log..., programs. 
In particular, it cannot express the Data.log..., programs inrnlvi11g an edge labeled with "," 
in a cycle of its dependency graph. Thus: 
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Theorem: 2.2 ([Bid91] [AV91] [KP91]) 
Data.log~ra is a strict subclass of Datalog:enf and Datalog~1i, that is, Datalog:ellf and Datalog~11 

are more expressive than Datalog~ra· 

The next question, of course, is which semantics is more expressive: Datalog:em or Da.talog~11 • 

We know that there are no syntactic restrictions on programs for Datalog~fl and Datalog:ellf· 
But which one has more expressive power? In [KP91], they give a program P which with in­
flationary semantics is used to compute what they call the distance query. \Vith ·well-founded 
semantics P computes only the transitive closure. It is an open problem (see [Kol89]) wlici.llf'r 
one can always find a well-founded program to compute the same query as a.11 inflationary 
program. On the other hand, there must exist a program which can make the inflationary 
senrnntics correspond to the well-founded semantics. \Ve can rewrite a program P to a pro­
gram P' such that inflationary(P1 )=well-founde<l(P) (see chapters :3 and 11 for more dda.ils). 

The same problem is discussed in [Bid91] [AV91] [KP91) and a direct proof is provided 
[AV91], Thus 

Lemma: 2.1 Datalog~fl has at lea.st the same expressive power as Datalog:.,nr· 

For the expressive power of various semantics for negation which we ha\·e chosen, the fol­
lowing summaries known results on finite <la.ta.bases ( C denotes proper inclusion in terms 
of expressive power ). 

Data.log C Datalog~ra C Datalog:cllf s;;; Data.log;:',fl 



Chapter 3 

Implementation of NDatalog 

Our implementation of Datalog-,, which is called NDatalog, evaluates programs containing 
negation. NDatalog extends the DatalogIC [Was90] language which was devised t.o serve 
as a vehicle for semantic optimization and was implemented on top of an Oracle 1clational 
database system. Since the DataJogIC system did not include any form of negation, so J had 
to devise ways to implement the three forms of negation by translating to SQL (s<·e Section 
3.6). I bad extended the DatalogIC system to indude the negation sy1it,ax, as well as an 
evaluation algorithm for each negation semantics. In addition, NDatalog system 11scs t.l1r­

IN FORMIX database system instead of Oracle. 

In tb1s chapter, I draw together the ideas introduced in the previous chapter OJI Datalog-.. 
I first outline the syntax of the language NDatalog. And then, we focus our aHc11tio11 011 

how the various semantics for negation which have been described are irnplcrnented ill the 
NDatalog system. 

3.1 The NDatalog Language 

The NDatalog language is based on the DatalogIC language, but can in addition express 
negation semantics in Horn clause form as a part of the program. 

Similar to Data.logIC, and as I mentioned in the previous chapter, there are two types 
of predicate definition in the NDatalog language: one for intensiona.l predicates, the other 
for extensional predicates. This is intended to introduce some modularisation iut.o NDa.ta.log 
programs. An intensional predicate is given a definition that starts with tf1e ''INT" reserved 
word, which is followed by the name of the predicate and its argument. list ( which must be 
variables). This is the huLd of the definition. An INT predicate leads to oIJe or more rulc8. 

38 
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Any rule in the definition which has a head matching the definition (irnme predicate and 
arguments) can be written with the head omitted. A predicate which is in the rule's body 
can be negated. The definition for extensional predicates starts with the "EXT" reserved 
word, followed by the definition head. The head of extensional definitions must contain the 
name of the relation being described and its attributes as they appear in the database. If 
this was not done, we could not convert the rules into SQL expressions. The name of the 
relation and the arguments in an intensional definition are also used as the name for the 
SQL table definition for the predicate. Sections 3.5 and 3.6 will give more details on this. 

As well a.s a set. of predicate definitions, a program contains a set of query forms, a.s we 
discussed in Definition 2.16. There we specify what queries the program will accept. Vari­
ables in a query are preceded by a label. A "?" indicates that the variable is an input 
variable, while a "!" indicates that it is an output variable. At runtime, users are given a list 
of query forms from which they select a query to be evaluated. The system collects bindings 
for the input variables in the query selected, processes the query and returns bindings for the 
output variables. The query forms are important as the system is made aware bf the type 
of queries that arc going to be asked and can therefore optimise and compile the program 
accordingly. Ideally the user should be allowed to present arbitrary queries but this has not 
been implemented. 

Example: 3.1 Now ld us look back at Example 2.12. To change t.lic example a little, wc 
suppose that person(X) is an EDB relation, and eatJneaf(X, Y) is an EDB relation with 
the meaning that X eats meat Y (Y may be baby chicken, etc.). So we can write a program 
in N Datalog to define a set of vegetarians as follows: 

EXT pcrson(X){} /* The variable type has been defined when we create tbe table rn 
INFORMIX. * / 
EXT cal_meat(X, Y){} 
INT vegetarian(X){ 

: -person(X), not eatJncat(X, Y). 
} 

?-vegetarian(? X). 
lJ .. 

Converting the relation eaLrneat(X) into eai_meat(X, Y), results in some new problems. 
We will discuss them more in Section 3.4. 

3.1.1 The BNF of NDatalog 

The Backus-Naur specification of NDatalog is presented below. The items which are m 
DalalogIC but not in NDatalog are in italics. 
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::= { Statement } Program 
Statement 
IntJ)efini tion 
ExLDefini tion 
lnside...statement 
Headless_Rule 
Rule 

::= ExLDefinition j Int_Dcfinition I Rule I Query I lnirgrify_Constr 
::= 'INT' Head_Fredicate '{' { Inside~<:tatemcnt} '}' 

Query 
lnicgrify_Constr 

Horn_CLBody 
Predicate 
Posi ti ve_f>redicate 
Negation_Predicatc 
Hcad_predi cate 
Corn parison_Op 
Argument 
Variable 
Label 
Constant 

::= 'EXT' Head_Fredicate '{' { Integrit.y_Consf.r} '}' 

::= Headless_Rule I Rule I Intcgrity_Constr 
::= ':-' Horr1-CLBody '.' 
::=Predicate':-' Horn_CLBody '.' 
::=[Predicate]'?-' Horn_CLBody '.' 
::= 'IC' Horn_CLBody '_,' '.' I 'IC''_,' Predicate'.' 

I 'IC' Horn_CLBody '_,'Predicate'.' 
::= { Predicate I Comparison_Op } 
::= Positive_f>redicate I Negation_Predicate 
::= PRED_ID '(' Argument {','Argument}')' 
::= 'not' PRED_ID '(' Argument { ',' Argument } ')' 
::= PRED_ID '(' Variable {','Variable}')' 
::= Argument OPERATOR Argument 
::= Variable I Constant 
::= [Label] VARJD 
::='!'I'?' 
::= STRING I INTEGER 

The lexical symbols are as follows: 

• PRED_ID is an alphanumeric string beginning with a lowercase ldtPr. 

• VAR.JD is an alphanumeric string beginning with a capita.I letter. 

• STRI.'.'JG is an alphanumeric string delimited with single quot.es. 

• INTEGER is a string of digits. 

• OPERATOR is one of { >, >=, <, <=, ! =, = }. 

• Comments are delimited with I* and * I-

• I I indicates that the rest of the line is a comment. 

Note that only query variables use the labels ! and ?. 

Definition: 3.1 A. NDatalog program is a complete NDatalog program if it iucluclcs EXT, 
I:;T and query define clauses. In the NDatalog program, we shall allow a ncg;c1tcd subgoal 
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to appear only in the body of an lNT definition (rule), forbid the name of an INT definition 
to be the same as an EXT definition, and require that at least one EXT relation be used by 
the program. D 

3.2 System View 

In this section, I will describe the structure of NDatalog system as shown in Figure :L J. 

3.2.1 User Interface 

Just as with other systems, we need a program which handles all the interact.ion bctwceu 
the user and the system. A parser, written using the UNIX tools, Lex and YACC, panws 
NDatalog programs. The commands available to the user arc as follows: 

• parse -[optionl[Jilcname] 

[option] 
s Stratified model. 
w \,\/ell-founded model. 

Inflationary model. 

[filename] A NDatalog program's name. 
Parses the given NData.log program, building a rule/goal graph; it also checks safety 
and reports errors. The program then becomes the current program. 

• compile Depending on the option selected in the parse command, compiles the current 
program into SQL expressions. 

• list [option] 

[option] 
defn { defn name } { root } 
query 
all 
prog 

Lists definition "name". 
Lists all queries. 
Gives a list of all definitions. 
List current program. 

• query [queryname] Executes the named query. 

• quit Exit the NData.log system. 
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Program and 
User Commands 

Key 

D 
System process 

r---------------------------------------1 
Parse 

Parser 

Ruic/Goal Graph 

Conversion to SQL 

User Query and 
Answers 

user Input/Output 

0 
Base 

Group Definition and 

Rule Nodes 

Data Flow 

Figure 3.1: Overview of the NDatalog system 
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Example: 3.2 Assume EDB relation rnale(X) = { tom, tony, david, park, sam, hob, bell 
} and married(X, Y) = { (tony, mary), (sam, tina), (bob, susan) }. Consider the program: 
EXT married ( X, Y) { } 
EXT male ( X ) { } 

E'•;T female ( X ) { 
:- married ( Y, X ), not male ( X ). 

} 

?-femlc('?X). 

Assuming the program is stored in file "test", let us see how the program is parsed, compiled 
gut:ricd. User commands a.re in typewriter font, while system input and output is in 

ii a.lies. 

Starting at the UNIX prompt $, the user enters the NDatalog system. 

$dlog 

Wclcomf' to NDatalog. Enter •?' for help. 

dlop;> parse -s test 

Checking stratified: Program is st.ratified. 
Note: in or<ler to keep the program running, we overlook the safety checki11g here 
Program test, has been parsed. (0 errors O warnings) 
Log file is tcsf.lis 

dfog>list program 

Program t.ype = No specific type 
EXT married ( X00, YOJ) { 

File name : married Index : None 
} 

INT female ( X00) { 
female ( X00) :- married ( YJO, .Xll ), not male ( X20 ), Xll = X20, X00 = Xll. 

} 
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EXT male ( X00) { 
File name : male Index : None 

} 

Note: the program is fully rectified. 

dlog>compile 
Compiling Queries. SQL st.at.ernents sent. t.o tesl .. sql file 
Connect.cd lo INFORMIX user: Tian 
cornrn=· · · 
It will convert the NDatalog program into SQL. 
comm= An available SQL sentence ( described in the next sections) 
Stratified took 0 :0 :3 (3) 

Activity 

Stratified 

Total Time 

cllog>query QueryO 
Query out.put sent t.o tesl.sqlout 
unloaded 3 rows 
QucryO t.ook 0 :0 : 1 (1 ) 

Activity 

Stratified 
QueryO 

Total Time 

dlog>quit 

Time h:m:s (s) 

o: o: 3P) 

0:0:3(:3) 

Time h:m:s (s) 

0:0:3(:~) 
0:0:1(1) 

0:0:4(4) 

- --===< <NDatalo,r Session Terminated>>===--o 

Disconnect.ed from INFORMIX user: Tian 
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> cat test.sqlout 
Result of query: QueryO 

mary 
susan 
tina 

D 

3.3 Relation DOM and Negative Facts 

4.t":i 

In Chapter 2 we introduced the closed world assumption. We know that a negated suhgoal 
,q(X1 , •.• , Xn) may be interpreted as a finite relation. We define a relation DOM of arity 
one which is the union of the constants appearing in the EDB relations and in the rules 
themselves. As Ullman [Ull88] discussed , since we assume the rules are safe (Definition 
2.17), no symbol not in the EDB or the rules can appear in a substitution that makes the 
body of rule true. Therefore, we lose nothing by restricting the relation for a negated subgoal 
to consist only of tuples whose values are chosen from DOM. 

Thus, let Q be an arity n relation on q which has already been computed for or 1s an 
EDB predicate. Let the relation Q for subgoal ,q(X1 , ••• , Xn) be expressed as; 

Q = DOM x ... x DO A1 -Q 
n times 

In this thesis, I propose another way of expressing the relation Q. It also uses the DOM 
concept, but divides DOM into DOMx, (1 :S i :S n ). Each DOA1x; (Xi is the name of 
an attribute) is the union of the symbols appearing in the same attribute type in the EDB 
relations and DOMx; = DOMx; if attribute X; and Xj have the same type. So the form 
above can be written: 

Q' = DOMxl X ••. X DOMx; X ... X DOAfxn - Q 

The benefit of this is shown in the next example. 

(3.2) 

Example: 3.3 Let Rand S be the two relations of Figure 3.2. From the DOM definition in 
[Ull88], we can get a one arity relation DOM which includes all tomponents in Rand S (no 
duplicates, see Figure 3.3(a)). If we want to indicate the domain of a relation of arity two, 
we just take the Cartesian product of DOM with itself (Figure 3.3(d)). On the other hand, 
Figure 3.3(6) and (c) show us two relations DOMw and DOMName· \Ve can also get a 
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ID 

1 

2 

1 

Name 

a 

b 

b 

ID 

l 

3 

(a) Relation R (b) Relation S 

Figure 3.2: Two Relations 

domain of a relation of arity two by taking the Cartesian product of DOJ\1w and DOJ\1Name 
(Figure 3.3(e)). There will be a difference between Figure 3.3(d) and Figure :3.:3(e) if the 

· of R and S are of different types. Now let us express a negative relation R usiug 
form '.3.1 and form :3.2, respectively. The results are shown in Figure :t4(a) and (h). 
□ 

Obviously, the relation R which is created hy form :3.2 (Figure :3.4(b)) is more useful, because 
form :3.1 creates a relation R which includes numerous tuples which contain values of the 
wrong type. For instance, in Figure 3.4(a), some values are of different types but appear in 
an attribute together. In other words, we want to create a relation Q' that adopts form :l.2, 
where the Cartesian product will give (N1 *···*Ni*···* N,,) tuples in the relation CJ', where 
Ni is number of tuples in DOMx;, and n is number of attributes of the relatiou Q'. 011 t.hc 
other hand, form :u can produce Nn tuples ( where N is the number of values in DOM). 
From the definition above, we know that Ni ~ N, so relation Q' may be much smaller than 
Q. Ni = N and CJ'= Q, if and only if all attributes of the relation Q are of the same type. 

Using Q' rather than Q does not change the answers to queries, because t.he rules I lia.t 
we discuss must be safe. This means that the relation Q coul<l not appear in a rule's Lody 
alone and all attributes of the relation Q must be restricted by a non-negati\'e relation R. 
Thus, all values of the wrong type will be deleted by the join of relation R an<l Q, dt:'noted 
R t><J Q. For example, for the safe rule: 

p(X, Y) : -t(X, Y), not r(X, Y). 

given relation T fort and R for r, Pis T(X, Y) t><J R(X, Y). Assume the relatio11 T(X, Y) = 
{(l, a), (1, b), (2, a), (2, b), (3, a), (3, b)}, and the relation R is in Figure :3.2(a). Let us compute 
the rule by using the two negative relations which are shown in Figure 3.4. We get the same 
result that P(X, Y) = {(2, a), (3, a), (3, b)}. 
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X ID Name 
I 1 a 
2 2 b 

3 3 
a 

b 

(a) Relation DOM (b) Relation DOA1w (c) Relation DOJ\1N(Jmr 

X X X X ID Name 

1 I 3 a 1 a 

1 2 3 b l b 

I 3 a 1 2 a 

I a a 2 2 b 

I b a 3 3 a 

2 I a a 3 b 

2 2 a b 

2 3 b I 

2 a b 2 

2 b b 3 

3 I b a 

3 2 b b 

3 3 

(d) DOM X DOA1 (e) DOMw X DOJ\JNamr 

Figure :3.3: Domains and Cartesian Products of Domains 
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ID Name ID Name ID Name 

I I a I 2 a 
I 2 a 2 3 a 
I 3 a 3 
2 I a a 3 b 

2 2 a b 

2 3 b 1 

2 a b 2 

3 I b 3 

3 2 b a 

3 3 b b 

3 a 

3 b 

(a) R = DOM x DOM - R (b) R = DOMm X DOAlNnme - H 

Figure 3A: Two Negative Relations 
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3.4 Safety in NDatalog System 

Recall Definition 2.17 where we defined rules to be "safe" if all their variables were limited, 
either by being an argument of a nonnegated, ordinary subgoal, or by being equated to a 
constant or to a limited variable, perhaps through a chain of equalities. Unfortunately, when 
we allow the rule to have some negated subgoals, the definition is sometimes not strong 
enough. Consider the example below. 

Example: 3.4 Recall Example 3.1 from Chapter 3: 

EXT person(X){} 
EXT eaLmeat(X, Y){} 
INT vcgelarian(X){ 

: -person(X), not eatJJwat(X, Y"). 
} 
" t . (?X) r-vege arzan . . 
when we compute the answer using Algorithm 2.2, we find that the answer is not the one 
we expect, which is vegetarian(X) = { rnary,peter} (See Figure 3.5). 

The reason that the answer produced is wrong is that some variables appear in a llcga.t.cd 
subgoal but not in a nonnegated subgoal. □ 

To avoid this wrong result, we need a stronger safety definition when we ha.vc negated sub­
goals in the rule: we are not allowed to use uegate<l subgoals to help prove varia.hlcs to be 
limited. 

We say the rule of Example 3.4 is not safe, since Y appears in a negated subgoal but 
not in a nonnegated subgoal, so it could not be limited. However, as we will see in what 
follows, if we meet the problem above, we can convert such a rule to a pair of safe rules that 
intuitively mean the same thing (see [Ull88]). 

Example: 3.5 Let us rewrite the rules in Example 3.4, by creating a new rule that can 
project out Y from eat.:meat, giving a definition for nonvegetarians: 

EXT pcrson(X){} 
EXT eaLmeat(X, Y){} 
INT nonvegetarian(X){ 

: -eat_rneat(X, Y). 
} 
INT vegetarian(X){ 

: -person(X), not nonvcgetarian(X). 
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person(X) 

X 

mary 

tom 

john 

peter 

joy 

eaLmeat(X,Y) 

X y 

tom beef 

john chicken 

joy lamb 

(a) Relation R (b) Relation S 

-, eat.Jncat.(X,Y) 

X y X y 

tom chicken mary beef 

tom lamb mary chicken 

john beef mary lamb 

john lamb peter beef 

joy beef peter chicken 

joy chicken peter lamb 

(c) Relation S = DOMx x DOMy - 8 

DOMx 

X 

mary 

tom 

john 

peter 

joy 

Figure 3.5: A Computed R.esult 

DO My 

vegetarian(X) 

X 

mary 

tom 

john 

peter 

joy 

y 

beef 

chicken 

lamb 

(d) Rrlation RI\ S 
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} 
?-vegetarian(? X). 

□ 

I should mention here that our system does not perform this rewriting automatically at the 
moment and this will be left for further work. 

3.5 Evaluating Positive Rules with SQL 

The principal part of this section is a description of how to convert a fully rectified rule into 
SQL statements. We shall deal with only sa.fe Data.log rules that have no negation in this 
section. As we aim to have a relational database system as a back-end to our NDatalog 
system, we should be able to convert rules into SQL expressions. vVe focus our attention 
on how to convert a rule into SQL. We first briefly introduce the most typical statement of 
SQL language, the so-call query block. An SQL block has tbe form: 

SELECT 
FROM 
WHERE 

< 
< 
< 

attributeJist > 
relations > 
predicates > 

The SQL block has a simple interpretation in relational algebra: 

• It is equiva.lent to performing a selection operation using the predicate of the WHERE 
clause. 

• On the Cartesian product of the relations specified by the FROM clause. 

• Projecting the result on the attributes of the SELECT clause. 

It is worth noting that the Cartesian product reduces to a join if the predicate of the vVHERE 
clause includes the join condition and no Cartesian product is required if the FROM clause 
contains just one relation. 

Consider the Data.log rule 
(3.3) 
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where 8 is a list of built-in predicates of the form :r1 op x 2 , where op is one of>, 2':, <, S, = 
or -/=, and Xi is a variable or a constant (no functions are allowed). 

We convert the rule into SQL expressions by calling the function SQL(). Corn,ider the 
form :t3, assume the relations Rq;(l S: i ::; n) are already computed, we obtain t.he SQL 
express10n 

SELECT 
FROM 
WHERE 

aliasm1. Ym1 l ••• , aliasmk • }'m,k 

Rq1 alias1, ••• , Rqn aliasn 
8'' 

where 

• Each variable in a predicate occurrence is mapped onto its 'Underlying attribute taken 
from the predicate's definition. This is the attribute that appears in the same position 
in the head of the definition as the variable does in the predicate occurrence ( see the 
end of Example 3. 7 for an example of this). Each variable in the rule has a unique 
underlying attribute because the rule is fully rectified. 

• alias; is a unique alias for q;. We have to use aliases as there may be more than one 
occurrence of a predicate in the body of the rule. 

• Ym, is the underlying attribute of the first body variable that is equated to the hea<l 
variable Xm; while alia.sm, is the alias of the predicate occurrence (i.e. qm;) in which 
the body variable appears. 

• 8'' is the same as 8 except that every variable, X; is replaced with alia8;.X,:, where 
aliasi is the alias of the predicate occurrence containing x;, and 8'' is a list of com­
parisons involving only the variables mentioned in the non-built-in predicates and the 
comparisons in 8'' are linked together with "AND"s. 

Example: 3.6 Consider the rule 

rnanager(Enarne, Mnarne): -ernp(Enarnc, Dept), dept(Mnarne, Dept.). 

We convert the rule into the SQL expression 

D 

SELECT 
FROM 
WHERE 

ernp1 .Enarne, dept 2 .Mnarne 

ernp ernp1 , dept depi2 

emp1 .Dept = dept2.Dept 
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3.5.1 Evaluating Nonrecursive Rules with SQL 

Because the rules are rectified, we project each expression onto the same variables of the 
rule's head and, for each predicate, take the union of the expression produced from ea.ch of 
its rules. On encountering a nonrecursive intensional definition Rp, the NDatalog system 
generates an SQL "CREATE TABLE" statement. If RP has attributes X1 , ... , Xk, and is 
defined by rules Rp1 , • •• , RPn, then SQL( Rp) is the expression: 

CREATE TABLE 
INSERT INTO 

RP (X1 char(20), ... , Xk cha.r(20) )1; 
Rp 
SQL(RPI) 
UNION 

where, for each i = 1, ... , n, SQL(Rp;) is 

SELECT 
FROM 
WHERE 

Rp,.X1,,, .. Rp,.Xk 
RP, 
Rp;•X1 = Rp.X1 AND ... AND Rp,.Xk = Rp.Xk 

Example: 3. 7 Consider a Data.log program 

EXT manager(N ame, Dept){} 
EXT dcpt(Enum, Dept){} 
EXT emp(Ename, Enum){} 

INT job(N ame, Dept){ 

} 

: -emp(Name,Enum),manager(Name,Dept),Enwn <' 20'. 
: -emp(N ame, Enum ), dept(Enum, Dept). 

?- job(?Name, ?Dept). 

We convert the program into the SQL expressions 

1 In order to simplify the system, we only consider the character type. The focus of the work was on 

evaluating rules with negation. 
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□ 

CREATE TABLE job 
INSERT INTO job 

CREATE TABLE 
INSERT INTO 

(Name char(?0), Dept char(20)); 
SELECT empl.Ename, manager2.Dept 
FROM emp empl, manager manager2 
WHERE empl.Ename = manager2.Na.me 
AND empl.Enum < '20' 
UNION 
SELECT ernpl .Ena.me, dept:3.Dcpt 
FROM emp empl, dept dept:3 
WHERE ernpl.Enum = dcpt3.Enum; 

Query0 (Name char(20), Dept char(20)); 
Query0 SELECT DISTINCT jobl.Namc, jobl.Dept 
FROM job jobl; 

Consider a Datalog program with given EDB relations R1 , .•• , lh and with positive IDB 
relations Pi, ... , Pm to be computed. For each i, (1 ::Si ::=:; m), we could have an evaluation 
statement of the form 

where EV AL is the union of SQL() for each of the rules for JJi. This form indicates a.11 SQL 
expression as discussed above. 

3.5.2 Evaluating Recursive Rules with SQL 

On encountering a recursive node in the reduced dependency tree, Section 2.:3.4 described 
two methods: naive and semi-naive. Corresponding algorithms were given also. In t.Iiis 
subsection, the main difference is that we evaluate recursive rules with SQL rather than 
relational algebra. Let us see how to evaluate a recursive rule by the semi-naive method. 

Example: 3.8 Recall the ancestor example (Example 2.9). The base is the following SQL 
expression: we use the ordinary EV AL operation to compute the rules wit.bout IDB predi­
cates in the body (see Figure 2.4). 
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DROP TABLE 
CREATE TABLE 
INSERT INTO 

DELTAancestor; 
DELT Aancestor (X char(20), Y char(20)) ; 
DELT Aancestor (X, Y) 
SELECT parentl.X, parentl.Y 
FROM parent parentl; 

DROP TABLE ancestor; 
CREATE TABLE ancestor (X char(20), Y char(20)) ; 
INSERT INTO ancestor 

SELECT DISTINCT * FROM DELT Aancetdor : 

55 

Next we enter the repeat loop. Here we call the EV AL.SQL() function which evaluatC's an 
SQL expression that is equivalent to the EVAL_/NCR() function given in Section 2.JA. 

DROP TABLE 
CREATE TABLE 
INSERT INTO 

INSERT INTO 

DELETE FROM 

INSERT INTO 

0 LDancestor; 
OLDancestor (X cha.r(20), Y char(20)) ; 
OLDancestor 
SELECT DISTINCT * FROM DELT Aancestor; 
DELT Aancestor (X, Y) 
SELECT DISTINCT o.nccstorl.X, parent2.Y 
FROM OLDancestor ancestorl, parent parcnl2 
WHERE o.ncesiorl.Y = parent2.X; 
DELTAanccstor WHERE EXISTS ( 
SELECT* 
FROM ancestor 
WHERE DELT Aancestor.X = ance.stor.X 
AND DELT Aancestm·.Y = ancestor.Y ); 
ancestor 
SELECT* FROM ancestor 
UNION 
SELECT * FROM DELT Aancestor; 

We repeat this until DELTAancestor is empty, after which we output ancestor. Because no 
l\1INUS function exists in INFORMIX-SQL, we replace MINUS with the DELETE function. 
We also can use the SELECT function instea.d of the DELETE function to implement. a. 

l\flNUS evaluation, the SQL expression is 
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INSERT INTO DELT Aancestor (X, Y) 
SELECT DISTINCT ancestorLX, parent2.Y 
FROM ancestor ancestorl, parent parenl2 
WHERE ancestor LY= parent2.X; 
AND NOT EXISTS ( 
SELECT* 
FROM ancestor 
WHERE DELTAancestor.X = ance8tor.X 
AND DELT Aancestor.Y = ancestor.Y ); 

!i6 

We prefer to use the DELETE function because it is more intuitive and the runni11g times 
of the two methods are similar. D 

3.6 Evaluating Negative Rules with SQL 

It is time to discuss how to evaluate rules with negation. First I give a method to create 
DOM using SQL sentences. Assume R 1(X1 , ••• , Xm), ... , Rk(X1 , ••• , X,,) arc EDB relations, 
then 

CREATE TABLE 
INSERT INTO 
SELECT 

DOM(X char(20)); 
DOM(X) 
R1alia.5.X1 

FROM 
UNION 

UNION 
SELECT 
FROM 
UNION 

UNION 
SELECT 
FROM 

R1 R1alia.5 

R1alias.X111 

R1 R1alias 

Rkalias.):,.·n 
Rk Rkalia8 

Let Q(X1 , ••• , Xn) be an IDB relation for q, theu DOMq is 

CREATE TABLE 
INSERT INTO 
SELECT 
FROM 

DO!l1q(X1 char(20), ... , Xn char(20)); 
DO!l1q(X1,•••,Xn) 
DOM1 .X, ... , DOtfn.X 
DOM DO!vf1, ... , DOM DO.Mn 
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Now, let us put negative subgoals into the form (3.3) as 

p(Xo) : -qi (X1 ), ... , qi(Xi), nut qi+l (Xi+l ), ... , not qn(Xn )i 15 

We derive the SQ L., expression 

SELECT 
FROM 
WHERE 

aliasm1 .Ym 1 , ••• , aliasmk.}~k 

q1 alias1, ... , qi aliasi, not q;+1 al-ias;+ 1 , .•• , not qn aiia.s 11 

15" 

where not qj ( Xj) ( i + 1 :S j :S n) can be obtained by: 

1. creating DO Mq1 , and 

2. subtracting q:i from DOM91 • 

We have discussed above how to create a DOM relation using SQL. The :;;uhtraction is done 
as follows: 

DELETE FROM 
WIIERE EXISTS ( 
SELECT 
FROM 
WHERE 

qjl.Yi, .. ,,qjl.Yk 
qj qj 1 
DOJ\1q,·Yi = qil.Yi AND ... AND DOJ\1,,1 .Vi = ff.ii.}·~, ); 

The only difference to the previous expression is that the negated subgoals are involved and 
we must create the relation for the negated subgoals. It can easily be solved by creating a 
relation DOM as we discussed in Section 3.3. 

Let us recall Algorithm 2.1 and modify it for a rule body with negation, so we get an 
algorithm as follows. 

Algorithm: 3.1 Computing the Relation fur a Rule Body with Negation. 

INPUT: The body of a rule. 

OUTPUT: An expression of SQL, which we call 

SQL-,(Rp, Rq1 , • • •, Rq;) RqJ~l, • • •, Rqn) 

METHOD: The same as Algorithm 2.1, except that if there is a subgoal no,: q(X1 , •.• , Xn), 
we use a negative relation expression in SQL as shown above. D 



CHAPTER 3. IMPLEMENTATION OF NDATALOG ,58 

We can get an algorithm, Nonrec..,, by modifying Algorithm 2.2 for the nonrccursive rules 
with negation. 

Algorithm: 3.2 (Nonrec""') Evaluating Nonrecursive Rules with Negation Using SQL. 

INPUT: A nonrecursive NDatalog program and a relation for each EDB predicate appearing 
in the program. 

OUTPUT: An expression for each IDB predicate p. 

METHOD: Sarne as Algorithm 2.2, but each Pi is given by 

Pi:= EV AL-,(Pi, Rt,.,, 1 Rk, Pi,.,,, P,7, Pj+I,.,,, P111 ) 

where EV AL.., is the union of SQL.., for each of the rules for Pi (Algorithm :tl). D 

recursive rules with negation, we can modify Algorithms 2.4 (Naive) aJJd 2.G (Semi-naive) 
to Naive.., and Semi-naive..,, respectively. 

Algorithm: 3.3 (Naive:;'cJ Naive Evaluation of an SCC with Negation. 

INPUT: Rules for an SCC, the current values for the IDB predicates, the true EDB val­
ues, and the not true EDB values. \Ve use four input arguments because they are needed 
in the algorithm for the well-founded semantics presented in Section :t6.3. In this case, the 
IDB predicates arc each initialized to the empty set (as in Algorithm 2.:J) and t.he not-true 
facts in the EDB relations are just the complement of the true facts in the EDB relations 
with respect to DOM. That is, we call 

Naive-:Cc(SCC, 0, {R1, ... , Rk}, {R1, ... , Rk}) 

METHOD: Same as Algorithm 2.3, but it must call Algorithm 3.2 instead of Algorithm 2.2. 
We replace EV AL() by EV AL"''(). □ 

Algorithm: 3.4 (Naive..,) Naive Evaluation of a Data.log Program with Negation. 

METHOD: Same as Algorithm 2.4, but it must call Algorithm 3.:3 for each SCC. D 

Algorithm: 3.5 (Semi-naive_, ) Semi-Naive Evaluation of an SCC with Negation . . ,cc 

11ETHOD: Same as Algorithm 2.,5, but it must call Algorithm 3.2 not. Algorithm 2.2. 
Here we replace EV AL() and EV AL_J NCR() by EV AL..,() and EV AL_SQ L ..,(), wher<' 
EV AL_SQL ..,() is EV AL_J NCR() evaluation allowing negative predicat<·s in a rule's body. 

□ 
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Algorithm: 3.6 (Semi-naive..,) Semi-Naive Evaluation of a Data.log Program with Nega­
tion. 

METHOD: Same as Algorithm 2.6, but it must call Algorithm 3.5 for each SCC. o 

Example: 3.9 Consider a simple stratified NDatalog program: 

r1 : p(X) 
r2 : q(X) 

: - r(X). 
: - s(X), not p(X). 

Let EDB predicates r and s have correspondiug relations R and S, and let IDB pr<'dicates 
p and q have relations P and Q. Suppose R = {1} and 5' = {1, 2}. Obviously, this is a 
nonrecursive program with negation. Therefore we use Algorithm 3.2, starting with predicate 
p because the subgoal not p appears in the body of r 2 . We use the ordinary 8V AL.., 01wrn.t.ion 
to compute r1, so relation P gets tuple {1 }, and at same time, we get P = DOM - P = {2} 
because DOM = {1, 2}. The next stage of the evaluation is similar, so that rf'lation (J 
contains tuple {2} from r2. Repeating the above evaluation, the program ca11 110 lougcr yield 
new tuples so we reach the least fixpoint. □ 

In Chapter 2, we surveyed different techniques to int.cgrak negation in logic programs. We 
chose three semantics, namely, stratified, well-founded and inflationary t.o compute logic 
programs in order to compare them. In the next subsections, our main aim is to describe 
the implementation of the different semantics in the NDatalog system. 

3.6.1 Evaluating stratified semantics 

In the previous chapter, we have discussed when a program is stratified from a theoretical 
point of view. An algorithm that tests for and finds a stratification which is implemented 
in NDatalog is in Appendix A. Here we introduce a way to test for and find a stratification 
from graph theory. 

Definition: 3.2 We say a logic program Pis stratified iff there arc 110 cycles which contain 
a. negative edge in its definition dependency graph. We can get a stratification from the 
a.cyclic graph as follows: 

• All definition nodes are assigned to stratum 1 at the beginniug. 

• Assume there is an edge from p to q (p ---+ q) and let p and q current.!y be assigned to 
strata i and j respectiYely. If the edge is positive and j < i, then reassign q to stratum 
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i (no change for j ~ i). If the edge is negative and j ::; i, then reassign q to stratum 
i + 1 (no change for j > i). 

Recall Example 2.13, where the definition dependency graph 1s shown m Figure :J.6. A 
stratification is given by the numbers labeling the nodes. □ 

7 

Figure :3.G: Testing For And Finding A Stratification Dependency Graph 

The main point mentioned before is that once we get an order for the program, we ca11 
evaluate the program. We now focus our attention on how to eva.lua.tc a. stratified program 
in the NDatalog system. The algorithm is as follows: 

Algorithm: 3. 7 Evaluation of Stratified Semantics. (NDatalogstra) 
INPUT: An NDatalog program. 
OUTPUT: The solution to the relational equations obtained from Uw program. 
METHOD: Let the function TFS() be testing for and finding a stratification which decides 
whether the program is stratified and if it is, produces a stratification which groups the 
predicates into strata. Let function max-strata() return the maximum number of strata .. 
The TFS function also orders rules within a stratum on the basis of the rule dependence 
graph, so that evaluating rules in the given order yields the correct result. The strata give 
us an order in which the relations for the IDB predicates may be computed. The useful 
property of this order is that following it, we may treat any negated subgoals as if they were 
EDB relations. For a set of recursive rules, we use the semi-naive evaluation approach in 
Algorithm 3.5, otherwise we evaluate rules directly. 

begin 
TFS(progra.m); 
if non-stratified program 
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end 

□ 

print error information; 
else 

for i:= 1 to max-strata(program) do begin 
if ( nonrecursi ve) 

endfor 

Call Algorithm 3.2 to evaluate the rules 
in the order generated by TFS; 

else 
Call Algorithm 3.5 to evaluate the rules using Semi-na.ive-, 
evaluation in the order generated by SCC; 

output all IDB predicates computed results; 
endif 

3.6.2 Evaluating inflationary semantics 

61 

[GS86h] [KP91] [AV91] proposed and analyzed another evaluation approach which ca11 com­
pute programs that involve unstratified negation, named inffotionary scmantics. [Bid91] 
described two different evaluation possibilities for illflationary sema11tics: det.errninist.ic and 
non-deterministic. Roughly speaking, deterministic semantics corresponds to "apply ALL 
rules" at once; non-deterministic semantics corresponds to "apply ONE rule" at. a time. 
Intuitively, the result of non-deterministic semantics ckpc11ds on the position of rnlcs in the 
program. Therefore, we implemented the deterministic semantics. 

The way that deterministic evaluation of the inflationary semantics proceeds is: consider 
first the empty Hcrbrand interpretation and apply all rules whose premises arc satisfiPd 
by the empty interpretation at once. Then repeatedly apply all rules which are satisfied 
by the last interpretation until no new interpretation appears. A concrete algorithm for 
deterministic inflationary semantics implemented in NData.log is shown below. 

Algorithm: 3.8 Evaluation of Inflationary Model Semantics. (NDatalogi 11 n) 
INPUT: An NDatalog program with IDB predicates JJ1, ... , Pm· 
OUTPUT: A solution to the relational equations obtained from the program. 
METHOD: Similar to the Algorithm 3.3 (Naive:Oc). 

begin 
for i := 1 to m do begin 
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P; := 0; 
endfor 
repeat 

for i := 1 to m do begin 
OLD_Pi = Pi; 
if (P; is used in a negative subgoa.l) 

P; := DO.Mp; - P;; 
endfor 
for i := 1 to m do begin 

TEl\1 P _pi := EV AL ....,(pi, R1, ... , Rk, P1, ... , P.i, 
-JJ. J:J )· 1+1, · · ·, m , 

endfor 
for i := 1 to m do begin 

P; := P; u T El\1 P _P;; 
endfor 

until(OLD_P; = P; for all (1 ~ i ~ m)); 
output computed results for all IDB predicates; 
end 

D 
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Example: 3.10 Consider the logic program P which we used in chapter 2. Assum<' that 
we have a.n EDB rdation LINK= {(a,b),(a,c),(b,d),(d,c)}. 

r 1 : path(X, Y) : -linJ.~(X, Y). 
r 2 : path(X, Y) : -path(X, Z), linJ.~(Z, Y). 

Initially, the relation P ATJ/ is empty a.s we discnssed above. On the first ro1111d, t.ltc deter­
ministic evaluation leads to the relation TEMP _p ATH which is { ( a, b), ( a, c), ( b, d), (d, c)}, 
so the relation 

PATH= TEMP_PATH = {(a.,b),(a,c),(b,d),(d,c)}. 

On the second round, 

TE 111 P _p AT H = (PATH tx1 LIN J{) U LIN I{ = { (a, b), (a., c) 1 ( b, d), ( d ,c), ( a, d), ( b, c) } . 

At the end of this round, 

PATH= {(a.,b),(a.,c),(b,d),(d,c),(a,d),(h,c)}. 
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On the third round, only one new tuple (a, e) is produced from r 2 so that 

PATH= {(a, b), (a, c), (b, d), (d, e), (a, d), (b, e), (a, e)} 

at the end of this round. On the fourth round, no more new tuples be produced from the 
program and the repeat loop terminates. □ 

Example: 3.11 Let us consider another example which we used in chapter 2, Example 2.14, 
and an EDB D = {d(l)}. 

r1: s(X) : -p(X), q(X), not r(X). 
r2: p(X) : -d(X), not q(X). 
r3: q(X): -d(X), not p(X). 
r4: r(X) : -d(X), d(O). 

Initially, the relations S, P, Q, Rare empty and S = {1}, P = {1}, Q = {l}, R = {l}. On 
the first round, we get two new tuples from r 2 and r3 , so the relations P = {1}, Q = {l} and 
P = {0}, Q = {0}. On the second round, a. new tuple, s(l) is produced from r 1 , so S' = {1} 
and S' = { 0}. On the third round, no more new tuples a.re produced from the progrnm a.11d 
the procedure stops with the result {p(l),q(l),s(l)}. □ 

It is worth noting that when we use Algorithm 3.8 to compute some NData.log programs, the 
inflationary semantics of the program dews not correspond to the i11t.11iiiw• meaning of the 
program. However, the programs can be easily modified so that their i111l,1tiona.ry semantics 
corresponds to the intuitive definition. We will discuss more about this in the next chapt<-r. 

3.6.3 Evaluating well-founded semantics 

Some basic principles of the well-founded semantics have been introduced in Chapter 2. As 
we know, not all logic programs are stratified and we sometimes need recursion through 
negative predicate occurrences. 

Example: 3.12 Let us consider an example discussed in [Bicl91]. There is a. NDatalog 
program P that defines an even number for a. finite subset of the natma.l 1111mbers, say for 
the natural numbers from O to i. The order on natural numbers is represented by meaus of 
an EDB relation SUC = {(0,1),(1,2), ... ,(i-l,i)} (instead of using a function), and the 
other EDB relation is EV ENO= {O}. The NDatalog program is thrn writ.ten: 

r 1 : even(X) 
r2 : even(X) 

: -evenO(X). 
: -sue(},,., X), not even(Y). 
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Obviously, this is a nonstratified program. Let us follow Algorithm 3.5 (Semi-naive:;,,,) when 
computing the program. At first, relation EV EN gets only the tuple {O} from r 1 and 

EV EN= EV EN.delta= DOAf - EV EN= {l, 2, ... , i} 

on the first round. Then we will through the repeat-loop for the first time, where we arc go­
ing to contribute some tuples to EV EN.delta. These tuples then find their way into EV EN 
at the end of repeat-loop. That is, on second round we compute: 

EV EN.delta EV AL_SQL--,(even, EV ENO, SUC, EV EN.delta, EV EN.delta) 

IIx(SUC(Y, X) t><l EV EN(Y).delta) 

After removing those tuples that actually appeared before, the relation EV EN.delta contains 
{2, 3, ... , i}. At the end of this round, the relation EV EN = EV EN U E\I EN.delta = 
{O, 2, ... , ·i} and E\I EN = EV EN.delta = D0.111 - EV EN = {1 }. On the third round, 
E\I EN.delta= EV EN.delta - EV EN = {2} - {O, 2, ... , i} = 0, and this stops tlie repeat 
loop. Finally, the relation EV EN is {O, 2, 3, ... , i} and this is not what we we iut.uitivcly 
expect the rules should mean. D 

This result shows that Algorithm :J.5 is not correct for all kinds of NDa.talog pro~rarns. In 
fact, Algorithm :3.5 does not handle the case in which the ckpcndcncy graph co11t.ai11s a cycle 
in which an edge is labeled with "-,". Fortunately, [GRS88] proposed the well-fo1111d<'d model 
which is suitable for every program with negation, not just stratified programs. In [KSS91], 
they describe an algorithm to evaluate the well-founded models. The evaluation mdhod for 
computing the well-founded model semantics is based 011 the doubled progrn:111. 

Definition: 3.3 Consider a clause C: 

in any NData.log program P. In the doubled program D( P), C is rPprcscnt.cd by precisely 
two clauses: 

l. an unclashccl clause: 

2. and a dashed clause: 

The set of unclashed clauses is termed the "undashed half' of the doubled program, while 
the rest are termed its "dashed half'. D 
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The intuition behind this procedure is to compute the well-founded model of P using the 
two sets of clauses. One computes the true facts, the other computes the complement of 
the false facts. Each clause is positive if we consider the negated predicates to be fixed, so 
we can compute the fixpoint of each one using standard bottom-up techniques for programs 
without negation. Next we present a bottom-up operational procedure for computing the 
well-founded model in our NDatalog system. This procedure provides a practical method of 
handling all kinds of programs. 

Algorithm: 3.9 Evaluation of Well-Founded Model Semantics. (NDatalogwcllf) 
INPUT: An NDatalog program. 
OUTPUT: A solution to the relational equations obtained from the program. 
METHOD: First, compute the order of definition nodes for the program by the Strongly 
Connected Components (SCC) algorithm (see Appendix A.2). Group the rule nodes into 
four groups below, so we also get an order of rule nodes. Use EDB relations to compute Uw 
DOM relation. Assume 

• E+ represents the true facts in lower strata. 

• E- represents the not false facts in lower strata. 

• [+ represents the true facts in current stratum (Strongly Connected Component). 

• 1- represents the not false facts in current stratum. 

1+ and 1- refer to the results of evaluations each time around the loop, and the current 
evaluation (assume 1+) is based on the previous results (assume 1-), and via: versa. We 
repeat the doubled computing until there is no change in J+. 

\Ve divide the rules of each SCC in the NDatalog program into four parts: 

begin 

rulel: Rules with no IDB predicates in the body. 
rule2: Rules with some IDB predicates in the body. 

E+ := E- := all EDB relations; 
SCC(program); 
n:=max-number-by-SCC(program ); 
for i:= 1 to n do begin 

J+ := 1- := 1+ .old:= 0; 
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end 

endfor 

1+ :=N aive:Oc( rule 1, 0, E+, E- ); 
repeat 

1+ .old := 1+; 
J-:=Naive:Oc(rule2,l+,E+,E-) U J+.o[d; 
J+:=N aive:Oc(rule2, 1-, E+, E-) U J+ .old; 

until(]+ = 1+ .old); 
E+:=E+ U J+; 
E-:=E- U 1-; 

output computed results of a.II IDB predicates in E+; 

N aive:OJ) is described in Algorithm 3.32 • 

D 
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Example: 3.13 Now let us use Algorithm 3.9 to evaluate Example 3.12 again. As a matt.er 
of convenience, we use the natural numbers from O to 9. Figure 3. 7 illustrates the ewd11aticm 
process. For this example, the function SCC() only finds 011e strongly conneded comp<1rn•111.. 
Hence, tlic a.lgorithm executes the for loop once. The repeat loop exerntcs five 1illl<'S as 
shown in tlie figure. D 

2 In [KSS91], they used semi-naive evaluation. 
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EVEN+ == EVEN+ EV EN- == EV J,;N-
EVEN+.o/d UEV EN+ .old 

-,EVEN+ uEV EN+ .old 
-,EVEN-

initial - 0 1,2, ... ,9 - -

0 - - 0,2,3, ... ,9 I 

1 

0 0,2 1,3,4, ... ,9 - --

0,2 - - 0.2,4,5 .... ,9 1.3 
2 

0,2 0,2.4 1,3,5,6 .... ,9 - -

0,2,4 - - 0,2.4,6,7, ... ,9 1.3.5 
3 

0,2,4,6 1,3,5,7,8,9 - -
0,2,4 

0,2,4,6 - - 0,2,4,6,8,9 1.3,5.7 
4 

0,2,4,6 0,2,4,6,8 1,3,5,7,9 - -

0,2,4,6,8 - - 0,2,4,6,8 1.3,5,7,9 
5 

0,2.4,6,8 0,2,4,6,8 

Figure 3. 7: Calculating the well-foun<led mo<lcl 



Chapter 4 

Testing and Results 

In the last chapter we described the evaluation algorithms for three semantics of negation. 
In this chapter, we will test the various semantics embodied in NData.log based 011 various 
programs and analyse the results. From a theoretical point of view some comparisons have 
been done (Bid91] (AV91] [KP91] (CGT89] that we mentioned in chapter 2. We will compare 
the efficiency of the various semantics through an empirical study in this chapter. For the 
sake of further discussion, we first divide the logic programs into two groups: wstricl.<'d logic 
programs (stratified programs) and nonrestricted logic programs (nonstra.tified programs). 
For each test, I give the program used and a table in which the times for each rnh1m11 are 
the averages obtained from 10 test runs. 

4.1 The XSB system 

The XSB system (version 1.4.0) is a top-down evaluation system for Prolog programs which 
has been developed by the Department of Computer Science, SUNY at Stony Brook, USA. 
There is a meta-interpreter to compute the well-founded semantics in the XSB system; it 
is based on the XOLDTNF algorithm1, which can be exponential. In order to check the 
correctness of our NDatalogwellf evaluation, we chose the XSB system as our comparison 
tool. We found the results of NDatalogwellf and XSB are the same when we tested using 
various Data.log-, programs. Meanwhile, there are also some time comparisons shown in the 
tables which follow. XSB is not coupled to an external database and evaluates programs 
containing negation in a top-down manner. As a result, we expected it to be faster than our 
system. It is used SQ that we may check the correctness of results produced by our system, 
as well as compare the speed of evaluation to determine the feasibility of our system as an 

1This algorithm is an extension of the OLDT algorithm and it computes, undPr certain conditions, the 
well-founded semantics of general logic programs. See [\Var91] for more <let.ails. 

68 
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efficient alternative. 

4.2 Testing restricted programs on NDatalog 

In this section, I present a few tests I made on the system in order to compare the cfticie11cy 
of NDatalogstra with the others. First 1 I discuss the tests for rccursi ve aud no11-recursivc 
programs, then I give test results, and finally I discuss the query processiug time required 
using different semantics in the NDatalog system. 

4.2.1 Restricted programs without negation 

In order to compare more clearly, let us first consider the program below. 

Example: 4.1 This is the common problem of computing the transitive closure (TC) of a 
directed graph. Define an EDB predicate arc(X, Y) which states that there is an arc from 
node X to node },.._ Then we can express the paths in the finite graph Ly tlie rules: 

, 1 : path(X, Y): -an·(X, Y). 
r 2 : path(X, Y) : -path(X, Z), arc(Z, Y). 

Assume the arcs relation is given by ARC(X,Y) = {(0,1),(1,2), ... ,(i -1,i)}, where i 
is a finite positive integer. Then what will happen when we choose different sernant.ics to 

0 1 2 i-1 l 
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I 
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Figure 4.1: A path graph 
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compute the path relation? The result is that we get the same answer no malt er what. kind 
of semantics are chosen. The result is as shown in Figure 4.1. 

path ( X, Y) = { ( 0, 1 ) , ( 0, 2), ... , ( 0, i), ( 1, 2), ( 1, 3), ... , ( 1 , -i), 

... ,(i-1,i)} 

In this case, we can say that NDatalogstra has the same expressive power with NDatalogw.-,llf 
and NDataloginfl for the Data.log programs without negation. The times for t.cst.ing 011 the 
NData.log system using the various semantics, as well as XSB, arc show11 in Tahlf' 4. J and 
Figure 4.2. □ 

~ XSB 
Result tuples 

N Dat.alog,tra N Data/ogwellf N Da.lalog;nJI 
path 

i=I0 6.33 5.00 7.00 1.20 55 

i=20 18.70 15.30 22.67 3.50 210 

i=30 72.14 54.70 77.22 7.66 465 

i=40 172.46 109.28 153.09 12.50 820 

i=50 309.75 194.10 280.07 20.20 1275 

Table 4,1: The times (in seconds) for a recursive program without 11egaJio11 

From Table 4.1 we can see that in this case XSB is much fa.stcr than NData.logstra, NData.logwdlf 
and NDataloginfl when the databases grow in size. At. the same time, NDa.talogs,ra a.11d 
NDataloginfl take longer than NDatalogwcllf· It should be pointed out that the times spent 
on executing the stratified program, NDatalogstra should he faster than NDa.t.alogwr.11r, but. 
we get the opposite result. For NDatalogstra, we use the semi-naive algorithm which includes 
a MINUS operation to remove "new" tuples that appeared before in the repeat-loop (sec 
Figure 2.1): 

6P(X) := 6P(X) - P(X) 

But the problem is that there is no MINUS functioll in the INFORMIX-SQL languag(•, so 
we have to use another function instead. For example, we call use the DELETE or SELECT 
functions as follows: 

DELETE FROM 
WHERE EXISTS 

6P 
(SELECT 
FROM 
WHERE 

P.X 
p 

P.X = 6P.X) 
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Figure 4.2: A times comparison graph for a recursive program without negation 
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or 

INSERT INTO 
SELECT X FROM 
WHERE 

6.P 
6.P 
6.P.X= P.X 
AND NOT EXISTS ( 
SELECT 
FROM 
WHERE 

X 
p 

P.X = L-iP.X 
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It turns out that these functions are very time consuming. In our system, we use the 
DELETE function as we mentioned in chapter 3. The times we obtained when nsiug NOT 
EXISTS were similar to those with DELETE. 

For NDataloginfl, the problem is that the algorithm duplicates evaluation of parts of the 
program. For example, if a rule only involves EDB predicates iu its body, we should eva.luatc 
it only one time because we cannot get more new facts from the rule. II owcver, N Dataloginfl 
will evaluate it at least twice. The check for equality of relations is also expcn~;vc in the 
repeat-loop and the number of NDataloginfl iterations is more than for NData.logwcllf• \Ve 
should also point out that for this example the MINUS operation does not improve· efficiency 
since only new tuples are generated ou each iteration. 

There are time proportion graphs shown in Figures 4.:3, 4.4 and 4.5 for stratified, well­
founded and inflationary semantics, respectively. These graphs represent the percn1tage of 
time spent on various stages of the evaluation. From Figure 4.3, it is easy to see how expen­
sive it is to imitate the MINUS function in INFORMIX-SQL. If we only consider tl1c time of 
rule evaluation in Figures 4.:3, 4.4 and 4.5, the result is given in Table 4.22 • For N Datalogstrn 
and NDataloginfl the proportion of time is given by eval in Figure 11.:3 and Figure 4 ,5, re­
spectively. For NDatalogwellf, the proportion of time is given by both eval p- and rval p+ 
in Figure 4.4. There is a time comparison graph shown in Figure 4.G. The relati vc dficic11cy 
of the three semantics is now more in line with our expectations. 

As another experiment, I also wrote another program using naive evaluation with stratified 
semantics (NDatalog~t~~") to remove the problem of the MINUS operation. \Ve would 110w 
expect the times for NDatalogwellf and NDatalog~1~~e to be similar. Tlw times for testing 
arc shown in Table 4.3 and Figure 4.7. The reason NDatalogwcllf iH still 8omcwhat faster 
than NDatalog~t~:e is that the termination condition u+ = J+.o/d) in NDatalogwdlf (see 
Algorithm 3.9) is tested only half as often as in NDatalog~t:-~". 

2Since XSB does not use an external database system, it is not possible to dr~t<'rrnine how much t.inw is 
spent on different operations. 
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minus (54%) -

/- eval (5%) 

-- keep old (3%) 

-- init-eval (2%) 

--other(11%) 

check empty (4%) 

Figure 11.3: A time proportion graph for stratified semantics. 

keep old (10%) 

eval P+ (31%) 

eval P- (29%) 

-- init P+ 12%) 
~other(1%) 

-- - check equal (27%) 

Figure 4.1: A time proportion graph for well-founded semantic,. 

eval (57%) 

/- init-eval (3%) 

--- keep old (6%) 

---- other (4%) 

- check equal (30%) 

Figure 4.5: A time proportion graph for inflationary semantics. 

n 
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~ N Datalogstra N Dat.alogwdlf N Dat.aloginfl XSB Result tuples 

path 

i = 10 0.25 2.61 3.97 55 --

i = 20 0.92 8.69 15.01 -- 210 

i = :rn 2.77 23.52 37.47 -- 465 

i = 40 6.93 61.55 87.34 -- 820 

i = 50 15.07 103.99 185.43 -- 1275 
·-

Table 4.2: The times (in secon<ls) for a recursive program without negation (011ly rnlc eval­
uation) 

~ N Data/ogstrn N Da.talogwellf N D,,,ta,/og;n JI XSB N ]]otalog:1t;.1~'f'! 

Result tuples 
path 

i=J0 6.33 5.00 7.00 1.20 5.33 55 

i=20 18.70 15.30 22.67 3.50 16.67 210 

i=30 72.14 54.70 77.22 7.66 62.00 465 

i=40 I 72.46 109.28 153.09 12.50 125.00 820 

i=50 309.75 194.10 280.07 20.20 220.00 1275 

Table 4.3: The times for a recursive program without negation 
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evaluation) 
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4.2.2 Restricted programs with negation 

Example: 4.2 Consider a logic program that defines a bachelor relation. Let Afa.lc(X) be 
an EDB relation with the obvious meaning and .Married(X, Y) be an EDB relation vviLh 
the meaning that Xis the husband of Y. Then a bachelor relation can be defined as follows: 

r1: bachelor(X) 
r 2 : husband(X) 

: -male(X), not husband(X). 
: -married(X, Y). 

The results are shown in Figure 4.8 after computing the program with various semantics. 
Assume the relation .Male contains 50, 100 and '.WO tuples, while the relation Afarricd 
contains 25 tuples. A table of execution times is shown in Table 4.4. From Figure 4.8, 

male 

X 

tom 

tony 

david 

park 

bob 

sam 

bell 

married bachelor 

X y X 

tom marry tony 

sam tina david 

bob susan park 

bell 

N Datalog8 trn 

N Dalalog111r11J 

Figure 4 .8: Answers to the bachelor program 

bachelor 

X 

tom 

tony 

david 

park 

bob 

sam 

bell 

N Dafalog;nJI 

obviously, the inflationary semantics produces a result which is not wanted by us. The reason 
is that the inflationary semantics fires all rules at once. From [Rei78] [Cla78], we know that 
the relation 

II us band = DO 1'1 - II us band 

and the relation H u.sband is empty at the beginning. So r 1 will get all the tuples of 1rni.lc after 
the first iteration. In order to avoid this apparent divergence between what we intuitively 
expect a rule should mean and what answer we would get if the programs contain some 
negative predicates, sometimes we have to modify the rules which contain only negative IDB 
predicates and EDB predicates in their bodies by defining a new IDB predicate and putting 
it into the rule's body. The new predicate is used to delay the derivation of new tuples in 
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~ N Doi.rl,/og,tra N Dotalog,.,e11J N Dofo/og;nJI XSB Result tuples 

bachelor 

mal= 50 1.6 4 -- 2.0 25 
-
ma!~ 100 1.8 4.,5 -- 6.0 75 

mal= 200 2.7 6.8 -- 22.5 175 

Table 4.4: Times for the bachelor program 

bachelor until the new predicate and husband have been computed int.he currcut. it.erat.ion. 
Finally, the result which is Pvaluated by NData.loginfl should be same as the other semantics. 
This rewriting can be done automatically so that the programmer is relieved of the task. A 
generalisation of the method for all restricted programs is described below in Example /4.:t 
For example, we can change the above program by making a new IDR predicate nun ,md 
putting it into r 1 , and then define men to be the same as the EDB predicate male. \1/c 
rewrite the program as: 

r· 1 : lwchrl or( X) 
r 2 : husbo.nd(X) 
r3: men(X) 

: -mo.fr(X), not husba.nd(X), men(){). 
: -ma.rricd(X, Y). 
: -ma.le(X). 

For this new program, NDataloginfl provides the expected answer. A running times compar­
ison is shown in Table 4.5 and Figure 4.9. D 

~ N Du.f.a/og,trn N Duta/ogwdlf N Dataloginfl XSR Result tuples 

bachelor 

male:::: 50 1.8 5.5 6.2 2.5 25 

male:::: 100 2.1 7.5 8.8 D.O 75 

male:::: 200 3.:l 9.7 12.2 :)5.5 175 

Table 4.5: Times for the modified bachelor program 

From this example we know that we should be careful in choosing the iuflationa.ry seman­
tics when the programs involve son:H,: negative subgoa.ls in a rule's body. But we st.ill call 
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say that NData.logstra, NDataloginfl and NData.logwellf have the same expressive pmvcr using 
restricted programs with negation. Now let us compare Table 4.,5 aga.inst Table 4 .1. The 
times for the modified program are about 1.5 times slower than the original program. It is 
interesting that XSB becomes slower when negation is involved and there is a big data base. 
The reason is that, for the well-founded semantics in XSB, a very simple meta-interpreter is 
used. This interpreter simulates an algorithm, called XOLDTNF, which can be expo11ential 
as mentioned in section 5.1. We also see that stratified is faster than well-founded here, 
because the program is not recursive and therefore removal of tuples is not needed. 

Let us use an example to illustrate a standard way to modify the restricted programs in 
order to ensure that the inflationary semantics has the same meaning as the stratified and 
well-founded semantics when some negative subgoals are involved. 

Example: 4.3 Let us continue to consider Example 4.2. As we know, this is a stratified 
program with bachelor in stratum 2 and husband in stratum 1. According to the number 
of the stratum, let us define a new IDB predicate stratwnl (X). Assuming there is an EDB 
predicate slralumO(l ), the program will be converted to 

□ 

barhelor(X) 
husband(X) 
sirnluml (X) 

: -rnalc(X ), not hu8band(X), strrduml ( Z). 
: -n1.arricd(X, Y) . .slrat,a,nO(Z). 
: -slratumO(X). 

As seen from the example, for the inflationary semantics, we just use some "temporary'' 
relations (the number of "temporary" relations depends on the number of strata. iu tlw 
program) to delay the firing of certain rules. We add an extra stratum su hgoa.l to each 
rule according to its stratum number. In addition, if there are n strata, we first assunw 
stratum0 (l) is an EDB fact, and then add n - l rules to the program where each rule has 
the form .stralum;(X): -straturn;_ 1(X). (1 :Si :Sn -1). In t!tis way we can get the same 
meaning with the stratified and well-founded semantics if the programs arc stratified. Let 
us consider another example. 

Example: 4.4 Assume people(Person) = {a1, a 2 , •.• , ai}, seen(Person, Film)= {(a1 , .ft), 
(a1, !2), ... , (a.1, fio), (a.2, /i), ... , (a2, !10), (a,i, Ji), (as, fs), (a6, .'6), (a.7, J, ), (a.B, .fB), (ag, .fo), 
(a10,f10)} and shmoing(Film) = {f1,fz, ... ,.fio} are EDB predicates, and in order to com­
paring easily, we only increase the number of people. Let seen_a[Lfilms(Pcr.r;on) be an 
IDB predicate which represents people who have seen every film that is currently showing. 
Then secn_all_.films(Person) can be defined by the following program: 
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r 1 : seen_all_f ilrns(Person) 
r 2 : noi_seen...,some_.film(Person) 

people(Person), not not...,seen...,som.e-.f ilni(I'er.5on). 
people(Person), showing(Filrn), 
not seen( Person, Filrn ). 

Clearly, the program is a stratified program and there are 3 strata. If we wish to get the 
same results as the stratified and well-founded semantics from the inflationary semantics, 
we need to rewrite the program by using the way which we have just mentioned abov<~. The 
program will be converted to 

r1 : seen_all_films(Persun) 

r 2 : noL.sc,en....some_J-ilm(Person) 

r 3 : .siraium2(X) 
r 4 : stratuml(X) 

peuple(Person), not nol...,sc<::r1._so·m.c-.film(Pcr8on), 
.stratum.2( X). 
people(Perum), .shuwing(Pilm.), 
not .seen(Per.son, Film), .straturnl(X). 
stratuml(X). 
stratumO(X). 

A comparison of running times is shown in Table 4.63 and Figure 4.10. D 

~ N Data.log,tra N Datalogwellf N Datalog;nJI XSB 

j = JU ,5.7 10.2 11.4 .'i.l 

i = 20 !J.3 14.9 15.5 --

i = 30 15.7 22.7 22.8 --

i = 40 24.5 32.4 30.3 --

i = 50 :l5.3 42.9 39.9 --

Table 4.6: Times for the modified program for seen_all_fil1118 

As we see, NDatalogstra is faster than NDataloginfl and NDatalogwellf• The reason is t.l1a.t both 
examples in this section are nonrecursive, so NDatalogstra never uses the MINUS operation. 

;jXSB could not run for i > 10 in this example. 



CHAPTER 4. TESTING AND RESULTS 

Time(s) 
50~----------------------------, 

40 

30 

20 

10 

0 

N Datalog111c111 

N Dataloginfl 
N Datalog.,tra 

20 

.,,. 

30 

.,,. 
.,,. 

/ 
/ 

40 

/ 
/ 

/ 

/ 

/ 

50 

Figure 4.10: Running times for the modified program for 8ccn_all_film8 

82 

people's 
tuples 



CHAPTER 4. TESTING AND RESULTS 

4.3 Testing nonrestricted programs on NDatalog 

In the last section we have dealt with stratified programs. Recall that some queries a.re not 
expressible by stratified programs. So in this section, we will focus our attention on all kinds 
of Data.log-, programs and not just stratified programs. First let us quote an example which 
is discussed by [Bid91]. 

Example: 4.5 Consider a logic program that defines even numbers for a. finite su hsct of 
natural numbers. There is an EDB predicate s-uc(X, Y) which represents the finite natural 
numbers from Oto i. Suppose there exist facts { .mc(O, l), · · ·, su.c(i - Li), f,vrn0(0) } . The 
program should be written: 

r 1 : even( X) 
r 2: even(X) 

: - evcnO(X). 
: - .suc(Y, X), not even(Y). 

Obviously, the program is not stratifiable because of the negation appearing in the recursive 
rule r 2 • How about t.he other semantics'? After testing on the NDa.talog system, we find t.liat 
NDat.alogwc11r gives us even numbers as we would expect. Times are shown in Table• ,1.,, with 
the corresponding graphs in Figure 4.11. 

~ 
Rcsul! tuples 

N Datalor1.,1,·a N Datalog.,.,111 N Dafalo!/infl XSB 
even 

i = 5 -- 3.4 -- 0.5 3 

i = 10 -- 5.8 -- 2.5 6 

i = 20 -- 11.9 -- 30.3 11 

i = .JO -- 19.3 -- 150.5 16 

i = 40 -- 30.3 -- 498.0 21 

i = 50 -- 39.2 -- 1458.0 '..W 

Table 4.7: The times for the evrn program 

For NDa.talog;nfl, all natural numbers are given except cven(1 ). The probkm is, a.s we 
mentioned in Example 4.2, that there is not any positive IDB predicate to restrict the 
negative predicate not even(Y) in r 2 in the program. Can we find a logic program \\·hid1 
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computes even numbers using NDataloginfl? Fortunately, the program can he easily modified 
in a similar way to Example 4.3. We need to introduce an IDB predicate rw,ched into r 2 

that will intuitively be used to delay the production of certain facts and achieve the goal of 
restricting the negative predicate not even(Y). The modified program follows: 

r1: cven(X) 
r2: even(X) 
r3: reached(X) 
r4: reached(X) 

: - evenO(X). 
: - suc(Y, X), not rnen(Y), reached(Y). 
: - evenO(X). 
: - suc(Y, X), reached(Y). 

Now the inflationary semantics produces the same answer as the well-founded semantics, 
that is, it corresponds to the intended definition of even numbers. A table of runniHg times 
is shown in Table 4.8, with the corresponding graphs in Figure 4.12. 

Another standard method which modifies nonrestricted programs in order to make the infla­
tionary semantics have the same meaning as the well-founded semantics when some negative 
subgoal are involved is discussed in [AV91] and [Bid91]. D 

~ N Data/o_qstra N Dat.alo_qwdlf N Da.f.alo_q,nfl XSB Result tuples 

reached even 

i = 5 - 6.7 7.1 1.5 (i ;3 

i = 10 - 11.0 12.5 142 11 (j 

i = 20 - 17.8 20.8 over 3 hours 21 11 

i = 30 - 30.4 :n.2 over 3 hours :n 16 

i = 40 - 43.0 50.8 over 3 hours 41 21 

i = 50 - 65.6 67.1 over 3 hours 51 26 

Table 4.8: The times for the modified even program 

It is time to compare Table 4.8 and Table 4. 7. Obviously, XSB is good for small samples in 
this case, namely, nonstratified programs. When the databases grow, the times of XSB have 
a sudden change as i = 20 in Table 4.7 and i = 10 in Table 4.8. This would seem to indicate 
exponential behavior. So using a meta-interpreter in XSB is just not a very good way to 
compute the well-founded semantics [War94]. In order to make the inflationary semantics 
have the same meaning as the well-founded semantics~ we may have to modify the program. 
As Table 4.8 shows, the times for the modified program is about 1.9 times longer than before 
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using NDatalogwellf· But the change may bring about a 57 times increase for XSB. 

\Ve also tested an example [Ros90] which concerns the operation of a complex mechanism 
that is constructed from a number of components each of which may itself have smaller 
components. 

Example: 4.6 We express that the mechanism is known to be working either if it has been 
(successfully) tested, or if all its components (assuming it has at least one wmponent) are 
known to be working. The program can be written as follows: 

r1: working(X) 
r2: working(X) 
r3: ha.s_suspecLpart(X) 

: - tested(X). 
: - part(X, Y), not ha.s_suspccLpart(X). 
: - part(X, Y), not working(Y). 

Here, tested and part are EDB predicates, A table of part for i = 10 is shown in Table 4.9. 
The tested components are a and all even numbers. Evaluating the program gives working 

~ 1 2 3 4 5 6 7 8 9 lO 

a * * * * * 
b * * * * * 
C * * * * * * * * * * 

Table 4.9: Table for part(X, Y) for i = 10. 

components which are a, b and all even numbers. The times for getting these results from 
NDatalogwellf and XSB are shown in Table 4.10 for 5 different values for part(X, Y). Once 
agaiu, we see that XSB is very slow. D 
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~ N Datalog,tra N Datalogw,llf N Datalog;nJl XSB 

i = 10 -- 5.7 -- 12.6 

i = 20 -- 6.3 -- 210.7 

--

i = 30 -- 6.7 -- 1282.!:l 

i = 40 -- 7.0 -- 41:30.0 

i = 50 -- 8.7 -- 12:rnti.0 

Table 4.10: The times for getting working parts 



Chapter 5 

Conclusion and Further Work 

5.1 Conclusion 

Since theories about negation in logic programming were proposed by Reiter [Rei78], a.11d 
by Clark [Cla.78], more general theories have been nicely developed in Data.log during the 
la.st ten yea.rs. In particular, the interaction of negation and recursion has been extensively 
studied. 

This thesis can be considered as being comprised of three phases: introduce negation into 
Datalog, analyse current semantics models with negation, and compare the efficiency or the 
various semantics. In the introduction phase, Chapter 2 and '.3, I introduced Data.log which 
is a declarative language for deductive databases that has a Prolog-like synt.ax hut whose 
programs arc evaluated using database operations. Some concepts of Tlf'gation, such as the 
Closed World Assumption and Negation As Failure, and semantics with negation, such as 
the Stratified, Well-founded and Inflationary semantics, were introduced in Chapter 2. 

An overview of the NDatalog System and an evaluable NDatalog language which is bas~d 
on the DatalogIC language was introduced in Chapter ;3. Iu addition, I <lescribcd how 
NDatalog programs arc converted into SQL statements and evaluated. I further discussed 
three different semantics with negation, Stratified, Inflationary and \Vell-founcled, and I ga.vc 
corresponding implementation algorithms. 

In the comparison phase, Chapter 4, I presented a performance ana.lysis and comparison 
of the various semantics with negation on the NDatalog system. Firstly, th<:' results iucli­
cate that, for a recursive program without negation, XSB is much fast.er than NDatalogwellf, 
NDatalogstra and NDataloginfl (see Figure 4.2). NDatalogwr-llf is faster than NDa.talogstra, but 
when we further analyse the operation time, we find most time is spent on removi11g "new" 

89 
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"new" tuples in NDatalogstra, the problem being that removini:s tuples using INFORMIX­
SQL is slow; if we only consider pure evaluation time, the result is that NDatalogstra is much 
faster than NDatalogwellf and NDataloginfl (see Figure 4.6). For nonrecursive programs with 
negation, NData.logstra is much faster than NDatalogwellf, NDataloginfl and XSB (see Figure 
4.9). NData.logwellf is faster than NDataloginfl and XSB when we evaluate nonstra.tified pro­
grams on big databases (see Figure 4.12). Furthermore, results are presented to indicate 
that XSB is much faster than NDatalogstra, NDataloginfl and NDa.talogwellf when no nega­
tive subgoals a.re involved (see Figure 4.2). Finally, performance comparisons indicate that 
XSB is not always a.bout an order of magnitude faste1· than current deductive databaRes sys­
tems as claimed in [Wa.r~H ]. I hope these results may provide information of use in dcRigning 
and implementing the next generation of logic programming and dedurtive database systems. 

Figure .5.1 shows the hierarchy of expressiveness of different semantics models of N Da.talog 
in this tht:sis. 

D 
Programs without negation Stratified programs Non-stratified programs 

Figure 5.1: Hierarchy of expressiveness of different versions of N Datalog 
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5.2 Further work 

We have expanded the power of the original Datalog system [Was90], including the ability 
to handle rules which have negation subgoals, but the ability to express disjunctions and 
functions have still not been included. If the last of these can be achieved we can use Skolem 
functions to model existential variables and thus solve the subset constraint problem men­
tioned in [Was90]. 

Even though we have described three main semantics with negation, there are several aspects 
of semantics of negation in logic programming that are not dealt with in this thesis which we 
leave for further work, for example, the perfect model semantics [PrzSS], the stahl<' model 
semantics [GLSS] and the default model semantics [BF87]. 

So far I do not consider extensions of the NDataJog language which allow for negativf' lit.er­
a.ls in heads of rules as discussed by [AV91]. These negative literals arc intcrprde<l as tuple 
deletions and are interesting with respect to expressive power. 

It is also important to improve the NDatalog system so that it can create EIJB relations 
directly and not in a DBMS such as INFORMIX. However, as evaluation speed is also im­
porta.nt especially if we wish to evaluate the programs with negation, we should he careful 
in computing the DOM relation wlic11 large amounts of <la.ta are iHvolved. If we an'. t.o <'X­

pand the system to handle the DOM relation optimisation, as we discussed in Chapter :J, a 
corresponding expausion of the data types will have to be implemented. 
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Appendix A 

Data Structures and Algorithms 

This appendix details some of the data structures which are based on tlic Datalog!C system 
and a.re somewhat different. Some principle algorithms used in the NDa.talog system a.re 
given here a.lso. 

A.I Data Structures 

In this sect.ion, t.he main data structures a.re ou1lined a.s follows. 

Definition Nodes 

The DEFNNODE structure holds the information for both the IDB and EDB predicates. 
For an IDB predicate, the structure has the following major fields: 

• Name of the definition. 

• Argument list. 

• Negation~A label is TRUE if the definition includes negation in the tree. 

• Stratum number. 

• Non-recursive rule list. 

• Recursive rule list. 

• Cl1ild list~List of the other definitions in this definition's recursive cornpo1w11t. 

95 



APPENDIX A. DATA STRUCTURES AND ALGORITHMS 96 

• Recursive component-List of all definitions which depend on this one. 

• Pointers to left and right children in definition tree. 

EDB predicate definitions will have only the name, argument list and negation label fields. 

Rule Nodes 

The RULENODE structure is used for the rules and queries. The following is a list. of 
the major fields in the structure. 

• Name of the rule. 

• Argument list for the head of rule. 

• Negation-A label is TRUE if the rule have negation in the body. 

• Body predicate list. 

• Reloplist of rules. 

Predicate Nodes 

The PREDNODE structure can be of two types: Predicate and Rclop. The former is 
for non-evaluable predicates, while the latter is for ('Valuable predicates. Thf'sc arc linked 
together to form the body of the rules. For database predicates the structure is as follows: 

• Name of the predicate. 

• Argument list-List of arguments in this occurrence. 

• Negation-A label is TRUE if the predicate is negated. 

• Predicate number-A number indicating the prcdicate's position in the body of the rule. 

• Pointer to definition for this predicatc1 . 

There is one occurrence of the structure for each occurrence of a predicate in the program. 
Evaluable predicates are held in a structure that has fields for: 

• Type of operator (" = ", " -=/- ", " > ", " ~ ", " < "or" ~ "). 

1This is the definiton to rule arc in the rule/goal graph. 
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• Pointer to first operand. 

• Pointer to second operand. 

Argument Node 

An argument that appears in a definition head, the head of a rule or a predicate occurrence 
is hel,) in the ARGNODE structure. An argument can be one of three types: VARIABLE, 
CONST _STRING and CONST __NUM. The union type structure is not used since there is 
some sharing of fields. 

• Type of argument. 

• String-This is the text version of the argument ( as it appeared to the lexical analyi-cr ). 

• Number-For variables this is the argument's position in a.n argument list; for CONST _NUM 
arguments this is the number itself. 

• Adornment-Used in production of adorned program (possible values arc BOUND or 
FREE). 

• Label-Used in queries (possible values are BOUND, FREE, or EXISTGNTIAL). 

A.2 Algorithms 

A.2.1 Rectification 

Algorithm: A.1 Fully Rectify a Rule 
Input: A rule. 
Output: Fully Rectify a Rule. 

begin {rectification} 
for every predicate, p;, in the rule (head and body) 

for every argument a in arglist of Pi 
if a is a variable, X 

Convert X to Xi form; 
if there is a variable v with same name as X in 7' 

Add "Xj = v '' to the reloplist for the rule; 
j*T is lookup table for variables*/ 

Add XJ to T (replacing v if necessary); 
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else 
Copy and convert a to a variable X 0 ; 

Add "X0 = a" to reloplist; 
endif 

endfor 
endfor 

end {rectification} 

A.2.2 Testing for and Finding a Stratification 

Algorithm: A.2 Testing for and Finding a Stratification (TFS) [Ull88] 
INPUT: A set of NDatalog rules. 
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OUTPUT: A decision whether the rules arc stratified. If so, produce a stratification. 
METHOD: Start with every predicate assigned to stratum 1. Repeatedly examine the mies. 
Ha rule with head predicate p has a negated subgoal with predicate q, let JJ and q c11rrn1tly 
be assigHed to strata i and j respectively. If i :S j, reassign p to stratum j + 1. FurtlH'rtnor<', 
if a rule with head p bas a no11negated subgoal with predicate q of stratum j, a11d i < .i, 
rf'assign p to stratum j. These laws are formalized as follows: 

begin 

end 

for each predicate p do 
stra.tum[p] := 1; 

endfor 
repeat 

for each rule r with head predicate p do begin 
for each negated subgoal of r with predicate q do 

stratum[p] := max(stratum[p],l+stratum[q]); 
for each nonnegated subgoal of r with predicate q do 

stratum[p] := max(stratum[p],stratum[q]) 
endfor 

untilthere arc no changes to any stratum 
or some stratum exceeds the number of predicates 

if some stratum exceeds the number of predicates 
reture( "no") 

endif 
output an order of definitions from stratum 
rcturn("yes") 
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A.2.3 Finding Strong Connected Components 

Algorithm: A.3 Strong Connected Components (SCC) [SB88] 
Input: G = (V, E), a digraph represented by linked adjacency lists. 
Output: An order of vertices ( definition nodes) in each strong component. 

Procedure StrongCom ponents( adjacency List: Header List; n: integer); 
var 

dfsN umber: array[VertexType) of integer; 
low: array[VertexType] of integer; 
<lfn: integer; 
v: VertexType; 
order: tl1c order number of vertex; 
SC: Stack; 
We define that TOP is a function that returns the top item on a stacl;; 
remo\'ccl: array[VertexTypc] of boolean; 

Procedure SCompDFS(v: VcrtexType); 
Var 

w: VertcxType; 
ptr: Nodepointer; 

begin { SCompDFS } 
{ Process vcrlc:r when first encountered. } 
dfn:=<lfn+ 1; 
dfsN umber[ v]:=<lfn; low[ v]:=dfn; 
rcmove[v]:=FALSE; 
ptr:=adjacency List[v]; 
while ptr # nil do 

w:=ptrj.vertex; 
if dfsNurnber[w]==0 {unmarked} then 

SCompDFS( w ); 
{ Now backing up from w to v } 
low[v] :=min (low[v] ,low[w]) 

else{ w was already encountered } 
if not removed[w] then 

low[v]:=min( dfsN umber[w],low[v]) 
endif{ if w is still in the tree } 

end if { of processing w } ; 

ptr:=ptri .liuk; 
end while; 
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{ Now backing up from v} 
if low[v)==dfsNumber[v) then 

output an order number i of the definition node for a new strong component; 
removed(v):=TRUE; 
output order; 
while SC is nonempty and dfsNumber[TOP(SC)) > dfsNumber[v) do 

output order (of TOP(SC)); 
removed[TO P(SC)] :=TRUE; 
pop SC 

endwhile{ while vertices from SC are in current strong com.ponent } 
order: =order+ 1; 

else{ haven't found a new strong component } 
push v onto SC 

endif { backing up from v } 
endbegin{ ScompDFS } 

begin { StrongComponents } 
for v:= 1 ton do dfsNumber[v]:=0 endfor; 
dfn:=0; 
for v:= 1 to n do 

order:=l; 
if G contain recursive then 

if dfsNumber(v]==0 then SCompDFS(v) endif 
else 

output order; 
endif 

endfor 
end begin { StrongComponents } 

D 
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