University of Cape Town

Department of Computer Science

An Empirical Study of Negation
in Datalog Programs

By
Tian Xiao Jun

A thesis
Prepared Under the Supervision of
Associate Professor P.'T. Wood
In Fulfilment of the Requirements for the
Degree of Master of Science in
Computer Science

September 1996

The copyright of this thesis vests in the author. No
guotation from it or information derived from it is to be
published without full acknowledgement of the source.
The thesis is to be used for private study or non-
commercial research purposes only.

Published by the University of Cape Town (UCT) in terms
of the non-exclusive license granted to UCT by the author.

Abstract

Datalog is the fusion of prolog and database technologies aimed at producing an ecfficient,
logic-based, declarative language for databases. Since negation was added to Datalog, Dat-
alog has become more expressive.

In this thesis, I focus my attention on adding negation to DataloglC which is a language
which has been implemented by Mark P. Wassell, a past MSc student in the Department of
Computer Science at UCT. I analyse and compare stratified, well-founded and inflationary
semantics for negation, each of which has been implemented on top of INFORMIX; we call
the resulting system NDatalog. According to the test results, we find that some results are
unexpected. For example, when we evaluate a recursive stratified program, the results show
that NDataloggra 1s slower than NDatalogyens although NDatalogyens is more complex. After
further investigation, I find the problem is that the NDatalog system has to spend a lot of
time imitating the MINUS function, which does not exist in INFORMIX-SQL. So the run-
ning time depends on what kind of database system is used as backend. When we consider
the time spent on pure evaluation, excluding auxiliary functions, we find that the results

support our expectations, namely, that NDatalog,, is faster than NDatalogyens which is
faster than NDatalogj,g.

Acknowledgements

Many thanks to my supervisor, Professor Peter Wood, for his assistance and excellent guid-
ance through the various stages of this work. I would also like to thank Professor Pieter
Kritzinger and all of the staff in the Computer Science Department here at UCT for their
kindly help and wish them well for the future.

I wish to thank my wife Li Xiao-liang, my parents and my brother for their continual enthu-
siasm and interest in my work.

Contents

1 Introduction

1.1

Organization of the thesis

............................

2 Background

2.1

2.2

2.3

2.1.1 Syntax e e e e e e e e e e e e e e

Datalog e e e e e e e
221 WhatisDatalog? o

2.2.2 Safety of Datalog

aaaaaaaaaaaaaaaaaaaaaaaaa

2.2.3 Proof theory of Datalog

2.2.4 Model theory of Datalog

........................

2.2.5 The least fixpoint sernantics

.......................

Evaluation Methods
23.1 Rule/Goal Graphs
2.3.2 Methods e e e e e

2.3.3 Evaluating Nonrecursive Rules

2.3.4 Evaluating Recursive Rules

.......................

10
10
12
13
14
14
15
16
19
21

23

CONTENTS i

2.4 Negation in logic programs and Datalog 29
2.5 Different semantics for Datalog™, 31
2.5.1 Stratified semantics Lo oo oo 31
2.5.2 Inflationary semantics L 0 Lo 33
2.5.3 Well-founded semantics. L. 34

2.6 EXPressive POWET v i it e e e e e e e e e e e e 36
3 Implementation of NDatalog 38
3.1 The NDatalog Language 38
3.1.1 The BNF of NDatalog 39

3.2 System View e e e e e e e e 41
3.2.1 UserInterface 41

3.3 Relation DOM and Negative Facts 45
3.4 Safety in NDatalog System 49
3.5 Evaluating Positive Rules with SQL 51
3.5.1 Evaluating Nonrecursive Rules with SQL 53
3.5.2 Evaluating Recursive Ruleswith SQL 54

3.6 Evaluating Negative Rules with SQL 56
3.6.1 Evaluating stratified semantics. 59
3.6.2 Evaluating inflationary semantics 61
3.6.3 Evaluating well-founded semantics 63

4 Testing and Results 68
4.1 The XSBsystem 68
4.2 Testing restricted programs on NDatalog 69

CONTENTS

4.2.1 Restricted programs without negation

..................

4.2.2 Restricted programs with negation

4.3 Testing nonrestricted programs on NDatalog

.................

5 Conclusion and Further Work
5.1 Conclusion

.....................................

5.2 TFurther work

...................................

A Data Structures and Algorithms
A.1 Data Structures oL oL o
A2 Algorithms. e

A.2.1 Rectification

................................

A.2.2 Testing for and Finding a Stratification

.................

A.2.3 Finding Strong Connected Components

i

89
89

91

95
95
97
97
98

99

Chapter 1

Introduction

The fields of deductive databases and logic programming are intimately related. Datalog
is a rule-based language that integrates logic programming and deductive databases. In
order to develop extensions of Datalog, much research has been done during the last decade.
One extension is the DataloglC language which has been implemented by Wassell at the
University of Cape Town [Was90]. As with other Datalog languages, DataloglC programs
allow one to define the transitive closure of a relation. For example, the transitive closure of
arc can be computed as follows:

ri: path(X,
X,

)i —are(X,Y).
ro: path(:

}/
Y): —path(X,Z),arc(Z,Y).

This query cannot be expressed in relational algebra or in SQL which is the most popular
relational query language. On the other hand, a simple relation like the complement of
one relation with respect to another one cannot be expressed in DataloglC, although this is
definable by the relational algebra. For example, we may express vegetarian in relational
algebra as:

vegetartan(X) = person(X) — eat_.meat(X)

which means that X is vegetarian if X is a person and X does not eat meat.

Unfortunately, there are frequent situations where we would like to use the negation of
a predicate to help express a relationship by logical rules. In order to overcome this defi-
ciency, it is necessary to introduce negation in logic programs and Datalog.

Early theories about negation in logic programs were proposed by Reiter (the Closed World
Assumption) [Rei78], and by Clark (Negation as Failure) [ClaT8]. A survey of treatments of
negation in logic programming was done by Shepherdson [She88].

CHAPTER 1. INTRODUCTION 2

In the past few years, much more research has been devoted to incorporating negation in
deductive databases and logic programs. For instance, Chandra and Harel first proposed a
semantics for stratified logic programs with negation in [CH82]. Roughly speaking, a logic
program is stratified if all mutually recursive predicates depend positively on one another.
Let us see a program as follows:

ri: bachelor(X) : —male(X), not husband(X).
ro: husband(X) : —married(X,Y).

Obviously, the program is stratified because there are no mutually recursive predicates depen-
dent negatively on one another. However not every logic program with negation is stratified,
let us consider the next program:

win(X) : —move(X,Y), not win(Y).

Since the recursive predicate win depends negatively on itself, the program is not strati-
fied. So Gurevich and Shelal, [GS86b] investigate an inflationary model semantics of logic
programs with negation which leaves the programmer totally free to write any program he
or she wants. But, for a given query, the answers given by the inflationary semantics and
by the stratified semantics may differ. Fortunately, under these circumstances, a simple
modification of the original program will ensure that the same answer is obtained under the
two semantic structures. This will be discussed in greater detail in chapters 2 and 3. We
also investigate another semantics which enables a programmer to write any program--the
well-founded model semantics. This semantics, proposed in [GRS88], guarantees us the same
answer as the stratified semantics when the logic programs are stratified. More detail will
be discussed in chapters 2 and 4.

Other semantics that have been proposed include the perfect model [Prz88], stable model
[GL88], and default model [BF87] semantics, but we do not consider them in this thesis.
Bidoit [Bid91] surveys and compares different techniques to integrate negation in rule-based
query languages, and surveys the problem of defining the declarative semantics of logic pro-
grams with negation.

This thesis is an attempt to survey and compare the major solutions of the current ideas
on semantic models with negation in rule-based query languages, and then synthesize them
into the DatalogiC system. Moreover, we explore which semantics with negation is suited
for a Datalog system including negation from two aspects: efficiency and expressive power.

CHAPTER 1. INTRODUCTION 3

1.1 Organization of the thesis

The thesis consists of a further four chapters:

Chapter 2 first gives a brief presentation of the basic concepts and notation of first or-
der logic [L1087] and presents its syntax and semantics. Then Datalog is introduced through
its proof theory and model theory [UlI88] [CGT89]. I describe the rationale behind the de-
velopment of Datalog, and discuss why negation is needed. I give an introduction to the
three major semantics: stratified, inflationary and well-founded modahsemantics which in-
volve negation and show some of the problems that arise when negation is introduced [CH85]

(GS86a] [GRS88] [Bid91].

Chapter 3 describes a new system, NDatalog which is based on DataloglC [Was90]. The
NDatalog system was written in the C programming language, on the UNIX! operating sys-
tem, using the INFORMIX? database management system as the backend. 1 give an overview
of the system and then discuss the user-interface module and the evaluation algorithms used.
The latter convert a Datalog program into SQL? statements and interact with INFORMIX.
[analyse those semantics which involve negation that I mentioned in Chapter 2 and describe
their implementation in the NDatalog system. Some major algorithms, namely, Semi-naive,
Stratified, Well-founded and Inflationary, are given in this chapter.

In Chapter 4, 1 focus on the efficiency of the different semantics. I briefly analyse and
compare those semantics that I have implemented in the NDatalog system through some
specific examples. In order to demonstrate that our system produces correct answers on
logic programs, we compare our results with the XSB system®. We first divide logic pro-
grams into stratified and nonstratified logic programs, and then test those programs dealing
with recursive and nonrecursive rules. The testing shows that the efliciency of the various
semantics is different. For instance, when we compute a transitive closure program (Example
4.1), the speed of the well-founded semantics is faster than the stratified semantics on large
databases and the stratified semantics is faster than the inflationary, but XSB is much faster
than all of them. This is unexpected because the stratified semantics should be faster than
the well-founded semantics in this case. The reasons for this are discussed in Chapter 4.
However, the stratified semantics is much faster than others when we evaluate nonrecursive
rules with negation (see Example 4.2). Finally, when we computec a nonstratified recursive
program, our implementation of the well-founded semantics and inflationary semantics is
much faster than XSB (see Example 4.5 for more details).

1UNIX is a trademark of AT&T.
2INFORMIX is a registered trademark of Informix Software, Inc.
3Structured Query Language.

4XSB is a logic programming system developed at the Department of Computer Science, SUNY at Stony
Brook, USA.

CHAPTER 1. INTRODUCTION 4

Chapter 5 concludes the dissertation and mentions further work. The data structures and
the standard algorithms used in the implementation are listed in Appendix A.

Chapter 2

Background

The aim of this chapter is to introduce some well-known concepts and recall recent develop-
ments in logic programs with negation. We will discuss various alternative semantics with
negation that have been proposed.

2.1 Logic programs

We begin by reviewing some well-known concepts of first order logic (FOL) and logic pro-
gramming (LP). The main notation used throughout the thesis is presented in this section.

FOL has two aspects: syntar and semantics. The syntar of FOL should be computable.
That is, at least in theory, an automatic proof procedure should exist. In other words. it is
concerned with well-formed formulas adiitted by the gramimar of a formal language, as well
as deeper proof-theoretic issues. The semantics of FOL should be clear and easily intelligi-
ble. That is, the programmer should be able to understand the full meaning of what le or
she writes. In other words, it is concerned with the meanings attached to the well-formed
formulas and the symbols they contain. More details can be found in [LIo87] [Bid91].

2.1.1 Syntax

In what follows, I will be giving some definitions of a first order theory, such as the alphabet
of FOL, a first order language, formulas, and Horn clauses.

Definition: 2.1 A first order logic alphabet consists of six classes of symbols:

CHAPTER 2. BACKGROUND 6

1.

Variables: words beginning with an uppercase letter, i.e., X, Y, Z.
Constants: words beginning with a lowercase letter, i.e., a, b, c.

Predicate Symbols: also words beginning with a lewercase letter, but we normally use
a letter from the middle of the alphabet, i.e., p, q, 7.

. Connectives: the symbols are {«—,A,V,—}.

Quantifiers: universal quantification, denoted (V), and existential quantification, de-

noted (3).

Punctuation Symbols: () , O

Definition: 2.2 A logic programming alphabet consists of five classes of symbols:

fa——

I

Variables: words beginning with an uppercase letter, i.e., X, Y, 7.

. Constants: words beginning with a lowercase letter, i.c., a, b, c.

Predicate Symbols: also words beginning with a lowercase letter, but we normally use
a letter from the middle of the alphabet, i.c., p. g, r.

. Connectives: the symbols are {:-, ", not}.

. Punctuation Symbols: () , O

Definition: 2.3 A {erm! is either a variable or a constant. O

Definition: 2.4 A formula is defined inductively as follows:

. If pis an n-ary predicate and #y,...,1, are terms, then p(iy,...,1,) is formula (called

an atomic fermula or, more simply, an alom).

If I'' and G are formulas, then so are =F, FAG, I'V (and G « I

. If F'is a formula and X is a variable, then (VX F) and (3X F) are formulas.O

Definition: 2.5 The first order language given by a first order logic alphabet is the set of
all formulas constructed from the symbols of the alphabet [L1o87]. O

We are not concerned with function symbols in this thesis.

CHAPTER 2. BACKGROUND T

The following example describes a formula in a first order language and its meaning,

Example: 2.1 In the formula VX (p(X) « ¢(X) A =r(X)), X is a variable, and p,q and r
are predicate symbols. O

Definition: 2.6 A [iteral is either an atom or the negation of an atom. A positive literal is
an atom. A negative literal is the negation of an atom. A clause is a formula of the form
VXi,....,Xs(By V...V B,,) where each B; is a literal and X;...X, are all the variables
occurring in By V...V By, [Llo87]. A Horn clause is a clause with at most one positive
literal. We write a Horn clause as follows:

—\L1V...V—1LnVL(, (21)

which is logically equivalent to
L()(—'Ll/\,..,/\Ln (22)

A rule is of the form (2.2), where Ly is the head of the rule (at the left-hand side of the
symbol "«") and each L; (1 < ¢ < n)is a subgoal. The subgoals together are called the
body of the rule (at the right-hand side of the symbol "«"). The body is possibly cmpty,
a rule with an empty body being called a fact. If Lo is the only positive literal, then it is
called a definite clause; if Loy is empty , « Lq,..., L,, then it is called a dcfinite goal.

We shall follow the logic programming style for expressing Horn clauses, using:
Ly:—Ly,...,Ly. (2.3)

for the Horn clause in (2.2). O

Definition: 2.7 A literal, term, fact, clause, or rule containing no variable symbols is called
ground. O

Definition: 2.8 A substitution 0 is a finite set of the form {X;/t;...., X, /t,}, where each
X; is a distinct variable and each {; is a term, such that X, #¢,. O

As we know, in the real world, we cannot avoid comparisons. For instance, “John is older
than Tom”; “6 is not equal to 5”; etc. In order to express these facts, we need to define some
comparison operators. We call these operators buill-in predicates (or, evaluable predicales):

{>2,=#<,<}

CHAPTER 2. BACKGROUND 8

We can use these operators to denote the above examples, i.e., age(john) > age(tom), 6 # 5.
Useful properties of these operators are detailed in [Was90].

A logic program (or logic database) consists of a finite set of facts and rules. Facts are
assertions about a relevant piece of the world, such as: “John is the brother of Tom”. This
is written brother(john,tom). Rules are sentences which allow us to deduce facts from other
facts. An example of a rule is “If X is a parent of ¥ and Y is a parent of Z, then X is a
grandparent of Z”. This is written

grandparent(X,Z) : —parent(X,Y), parent(Y, Z).

2.1.2 Semantics

The semantics of a logic program is usually defined by means of particular model of the first
order logic notation of the program. We recall below some well-known notions used to define
the semantics of first order logic. The presentation essentially concentrates on Herbrand
interpretations [Bid91].

Definition: 2.9 Let L be a first order language. The Herbrand universe Hy (or Herbrand
domain) for the language L is the set of all ground terms? which can be formed out of the
constants in L. If there are no constants in L, add an arbitrary constant, say «.0O

Definition: 2.10 The Herbrand base Hp for L is the set of all ground atoms (or atomic

formulas) which can be formed by using predicates symbols from L with ground terms from
the Herbrand universe Hy as terms (or arguments). O

Definition: 2.11 A Herbrand interpretation Hjy for L is an assignment of values to the
constants and predicates of L defined as follows:

1. Constants in L are assigned to themselves in Hy.

2. Each n-ary predicate symbol in L is assigned a mapping from Hy x ... x Hy (n times)
into { True, False }. O

Definition: 2.12 Let H; be an interpretation of a first order language L. A wvariable as-

signment (with respect to Hy) is an assignment to each variable in L of an element in the
Hy. O

2In our case, there are just constants.

CHAPTER 2. BACKGROUND 9

Definition: 2.13 Let H; be a Herbrand interpretation of a first order langnage I with no
function symbols and let A be a variable assignment. The term assignment (with respect to
H; and A) of the terms in L is defined as follows:

1. Each variable is given its assignment according to A.

2. Each constant is given its assignment according to H;. O

Definition: 2.14 Let H; be a Herbrand interpretation of a first order language L with no
function symbols and let A be a variable assignment. A formula in L can be given a trulh
value, true or false, (with respect to H; and A) as follows:

1. If the formula is an atom p(ty,...,%,), then the truth value is obtained by calculating
the value of p'(t,...,t.), where p' is the mapping assigned to p by Hy and t,,....1.
are the term assignments of #;,...,%, with respect to H; and A.

n

2. If the formula has the form —=F, FAG, F'V G or G « F, then the truth value of the
formula is given by the following Table 2.1:

F G —F FA G FV G G<—F
true true false true true true
true false false false true false
false true true false true true
false false true false false true

Table 2.1: The values of the formula.

3. If the formula has the form Jz F', then the truth value of the formula is true if there
exists d € Hy such that F' has truth value true with respect to Hy and A(x/d), where
A(z/d) is A except that x is assigned d; otherwise, its truth value is false.

4. 1f the formula has the form Vz F', then the truth value of the formula is true if, for all
d € Hy, we have that F' has truth value true with respect to Hy and A(a/d); otherwise,
its truth value is false. O

Example: 2.2 The informal semantics of VX (p(X) « ¢(X) A =r(X)) is “ for every X, if
q(X) is true and r(X) is false, then p(X) is true”. O

CHAPTER 2. BACKGROUND 10

In a clause, every variable lies within the scope of an implicit universal quantifier. Therefore
the truth value of a clause is independent of any variable assignment and we can speak
unambiguously of the truth value of a clause with respect to a Herbrand interpretation.

Definition: 2.15 Let F be a set of formulas in L. A Herbrand model Hp for F is a
Herbrand interpretation of L that makes all the clauses of F true. We say that a Herbrand
model H is contained in another Herbrand model Hyy if H C Hp;. If a Herbrand model

for F is contained in every other Herbrand model for F. then it is called the least Herbrand
model (H,,) of F. O

Example: 2.3 In order to explain the above clearly, we give an example as follows. Con-
sider a program P:

The Herbrand universe H; is {1,2 3}.

The Herbrand base Hpg is { p(1),p(2),7 (),q(1),4(2),q(3),7(1),7(2),7(3)}.
A Herbrand model Hpyy for P i% { p(1),p(2),p(3),q(1),q(2),q(3),7(2),7(3)}.
The least Herbrand model H,, for P is { p(1), p(2),p(3),4(2),4(3),7(3)}

]

2.2 Datalog

2.2.1 What is Datalog ?

The term “Datalog” was first used by Maier and Warren [MW88] in order to develop a more
powerful query language for relational databases. In fact, Datalog uses a syntactic subset
of logic programs which does not allow function symbols as arguments of predicates. While
the meaning of Datalog programs and logic programs is the same, how such programs are
evaluated is different. Logic programs are evaluated top-down (as in Prolog. for example),
and Datalog programs are evaluated bottom-up. There are other differences; see [Ul88]

CHAPTER 2. BACKGROUND 11

[CGTI0] for more details.

Datalog is the fusion of first order logic syntax and database theory aimed at producing
a new logic-based data model and a logic-based language in the deductive database field
(Horn clauses with no function symbols). It is a database query language based on the logic
programming paradigm.

From the above description of Datalog, we know Datalog is a kind of database query lan-
guage containing first order logic language properties. So all the concepts we gave in the
previous section are suited to Datalog. Next we consider some definitions not covered in the
previous section.

Definition: 2.16 For the Datalog program P,

(g) 7= path(?X,?Y).

(a)—(d) are the set of ground facts called the FEztensional Databasc (EDB). Predicates
appearing in the EDB are called EDB predicates , which may only occur in rule bodies. Rules
(e)— (f) are the set of rules called the Intensional Database (IDB) and predicates appearing
in the head of IDB rules are called IDB predicates. Of course, we should distinguish built-in
predicates from IDB predicates. Rule (g) is a goal, a query form that is a conjunction of
predicates written as:

? - (11(111X117 ceey llmlxlml)a sy qn(ln] ‘\"n,la ceey lnm,,)(nmn)

where the label [;; attached to the variable Xj; is empty, 7 or !. This indicates whether the
variable is an existential, answer or an input variable, respectively [(GT89] [Was90]. O

Intuitively, the above shows that a Datalog program consists of ground [acts, Datalog rules
and query forms. From here on, EDB predicates and IDB predicates will be distinguished.

CHAPTER 2. BACKGROUND 12

2.2.2 Safety of Datalog

When we interpret a rule, moreover, we cannot ignore the fact that certain rules can produce
infinite answer relations. For example, the rules:

biggerThan(X,Y): =X > Y. (2.4)

favourite_sport(X,Y) : —jump(Y). (2.5)

Rule (2.4) defines an infinite relation if X and Y are allowed to range over the integers
or any infinite set. Assume jump denotes a set of sports involving jumping, for example,
jump(longjump), jump(highjump) and jump(triplejump). Rule (2.5) also defines an in-
finite set of pairs favourite_sport(X,Y), because the rule means for all X, X’s favourite
sport is jumping, where X can range over an infinite set.

From the above examples, we know that there are two sources of infiniteness. One is a
variable that appears only in a built-in predicate, as in (2.4). The other is a variable that
appears only in the head of a rule, as in (2.5). In order to avoid rules that create infinite
relations appearing in the program, we can insist that each rule is safe. One way of doing
this is to ensure that each variable appearing in the rule is limited [UlI&8].

Definition: 2.17 We say a rule is safe if all its variables are limited®. This means that the
variables appearing in the head must appear in the body, and variables appearing in built-in
predicates must appear in other non-built-in predicates or be connected by a chain of =
predicates to a limited variable or to a constant. O

This is a very important definition and will be used throughout the thesis. When negation is
introduced to the body of rules in the logic program, the definition of safety will be stronger.
We will cover this in chapter 3.

In addition, rules having no multiple occurrences of a variable or constants in the head will
ease the evaluation of multiple rules in a predicate definition. Ullman introduces a process
to achieve this, called rectification [UlI88]. In outline, rectification involves the following:

o lor every constant “a” in the head, we replace it in the head by a new and distinct
variable “X,” and add “X, = a” to the body.

e [or every repeated variable “X” in the head, we replace it’s ith occurrence by “X;”
and add “X = X;” to the body.

3There is a different definition of safety in [BR86], namely, that a program is safe when it is guaranteed
not to produce infinite answer relations.

CHAPTER 2. BACKGROUND 13

Definition: 2.18 A fully rectified rule is one with no multiple occurrences of variables, and
no constants in the head or the non-evaluable predicates of the body. This implies that all
multiple occurrences of variables and constants will appear only in the evaluable predicates.

From here on, the rules which we discuss will be treated as fully rectified rules. The recti-
fication algorithm is given in Appendix A.2.1. In order to study Datalog programs, we will
briefly discuss the proof theory and model theory of Datalog.

2.2.3 Proof theory of Datalog

Proof theory is concerned with the analysis of logical inference [CGT89]. That is, new
Datalog facts can be proved using the Datalog rules in all possible ways from given Datalog
facts. Consider a Datalog rule R of the form Ly : —Ly,...,L, and a list of ground facts
Fy,... F,. If a substitution # exists such that, for each 1 <: < n, L;0 = F;, then, from
rule B and from the facts Fi,..., F,, we can infer in one step the fact Ly0. The inferred
fact may be either a new fact or it may be already known. What we have just described is a
general inference rule, which produces new Datalog facts from given Datalog rules and facts.
We refer to this rule as Elementary Production (EP). In some sense, EP can be considered
a meta-rule, since it is independent of any particular Datalog rules, and it treats them just
as syntactic entities.

Example: 2.4 Consider the Datalog rule R : p(X,Y) : —p(X, Z),p(Z,Y) and the ground
facts {p(a,b),p(b,c)}. Then, by EP, we can infer in one step the fact {p(a,c)} using the
substitution # = {X/a,Y/c,Z/b}. This is a new fact. If we consider the Datalog rule
R :p(X,Y): —p(Y,X) and the fact {p(a,a)}. We only can infer the fact itself by applying
EP. O

Let us finally define the concept of inferred ground fact. Let C be a set of Datalog clauses.
Informally, a ground fact F' can be inferred from C, denoted by C' F I, iff either I € C' or F
can be obtained by applying the inference rule EP a finite number of times. The relationship
7" is more precisely defined by the following recursive rules:

e CHFifFeC.

o C'F Fifarule R € C and ground facts F, ..., F, exist such that VI <: < n, C'F F;
and F' can be inferred in one stép by the application of EP to R and Fy,.... [,.

The sequence of applications of EP which is used to infer a ground fact F' from C is called
a proofof I'. Any proof can be represented as a proof tree with different levels and with the
derived fact F' at the top. The proof theory of Datalog is sound and complete [(!GT90].

CHAPTER 2. BACKGROUND 14

2.2.4 Model theory of Datalog

Some concepts of model theory were introduced earlier. Datalog can be described very easily
in terms of model theory. A Datalog rule can be interpreted in several different ways. A rule
may be true under a certain interpretation in which case we say the interpretation satisfies
the rule and false under another one. A fact F' follows logically from a set of clauses C iff
each interpretation satisfying every clause of C' also satisfies F. If I follows from C, we

write C' = F.

Example: 2.5 Consider a set C' consisting of the clauses C; : p(X,Y) : —p(Y,X) and
Cy : {p(a,b)} and a fact F : {p(b,a)}. Clearly, for each possible interpretation of our
constant and predicate symbols, whenever C; and C; are satisfied then F' is also satisfied,

hence, C = F. O

The set cons(C) of all consequence facts of a set C' of Datalog clauses can thus be charac-
terized as follows: The set cons(C') is the set of all ground facts in the Herbrand base which
satisfy each Herbrand model of C. cons(C) is a Herbrand model of C' for each set C' of
Datalog clauses. If cons(C) is a subset of every other Herbrand model of ', we call cons(C')
the least Herbrand model (H,,) of C' [CGT90].

2.2.5 The least fixpoint semantics

Associated with every definite program is a monotonic mapping which plays a role in the
theory. This section introduces some concepts that are useful. Datalog is viewed as a set
of rules and facts together with some basic operations for applying rules to facts in order to
generate new facts. Thus we can associate a mapping T' with a Datalog program. The fixed
point semantics of Datalog is given by means of the facts obtained by iterative application
of the rules of the program to the facts, starting with an empty set of facts (as extensively

discussed in [L1o87] [U1188] [Bid91]).

Definition: 2.19 A relation R on a set O is a partial order if the following conditions are
satisfied:

1. zRz, for all z € O.
2. Ry and yRz imply z =y, for all z,y € O.

3. zRy and y Rz imply zRz, for all z,y,z € O. O

CHAPTER 2. BACKGROUND |

<t

Definition: 2.20 Let S be a complete lattice and T' : S — S be a mapping. There is a
partial order on S, denoted by “<”. We say that the mapping T' is monotonic iff s < s
entails T'(s) < T(s') for each pair s and s' in S. Let s € S, we say s is a fixpoint of T" iff
T'(s) = s [Llo87].0

Definition: 2.21 A fized point of a Datalog program with respect to a set of relations for
the EDB predicates, say Ry, ..., R,, is a solution for the relations corresponding to the IDB
predicates. O

A fixed point with respect to Ry,..., R,, together with those relations, forms a model M
of the Datalog program. We know the model M is not unique, so we shall continue to be
interested primarily in fixed points and models that are minimal.

Definition: 2.22 A fixed point s of T is a minimal fixed point iff there is no other fixed
point s € S such that s’ < s. O

Definition: 2.23 A fixed point s of T is a lcast fized poini, denoted [fp(T"), iff for any fixed
point 8" € S, we have s < s'. O

Notice that if there is a least fized point, then that is the only minimal fixed point. An
alternative semantics, known as the least fized point semantics of a Datalog query, can also

be given by defining a fixed point operator and taking the least fixed point as the result of
the query.

Up to now we have introduced a number of concepts about Datalog. During the last decade,
much research has been done in order to develop extensions of Datalog, especially, negation
has been introduced into the bodies of Datalog rules. Technically, rules with negated sub-
goals are not Horn clauses, but we shall see that the use of negated subgoals will increase the
expressive power of Datalog programming. Negation in Datalog programming is the most
important part of this thesis.

2.3 Evaluation Methods

In this section, we present methods for evaluating a Datalog program, namely, for generating
the actual set of tuples which satisfy a given user’s goal for a given set of Datalog rules.

CHAPTER 2. BACKGROUND 16

2.3.1 Rule/Goal Graphs

As in many areas of computer science and other disciplines, graph theoretic tools play an
importa. role also in databases [Yan90]. In this section, we focus our attention on some
definitions which are useful to our system. As with all disciplines where objects are studied,
it helps to classify the Datalog™ programs*. With Datalog™, the principle division is into
recursive and non-recursive programs, while the primary investigation tool is the graph. The
benefit of dividing programs into classes has been discussed in [BR86] [Ul188] [Was90]. The
most common graphs used are the rule/goal graph and reduced rule/goal graph [BRS6].

Definition: 2.24 A rule/goal graph is a graph that has two sets of nodes: one consists of
square nodes which are associated with predicates, the other consists of oval nodes which are
associated with rules. There is an arc from a predicate node to a rule node if the predicate
appears in the body of the rule and we label the arc =" if the predicate appears negatively
in the body of the rule. There is also an arc from a rule node to a predicate node if the name
of the head of the rule is the same as the predicate node’s. O

Example: 2.6 Consider a Datalog™ program P, where ¢(X), s(X), and 1(X,Y) are EDB

predicates.

ri: a(X) : — o(X), not b(X).
ro: O(X) 1 — not a(X).

ra: p(X) = q(X), not r(X).
ry: p(X) = (X)), not s(X).
rs: p(X) = 1(X,Y).

re: q(X) 1 — p(X).

ree r(X) = q(X).

rg: 1T(X) :— not ¢(X).0

From Definition 2.24 we get the rule/goal graph shown in Figure 2.1.

Definition: 2.25 Let G = (V, E), where V are called vertices, and I are called cdges, be a
digraph (short for “directed graph”). A digraph G is strongly connected if. for each pair of
vertices A and B, there is a path from A to B (and hence by interchanging the roles of A and
B in the definition, there is a path from B to A as well). A strongly connected component
(SCC) of a digraph is a maximal strongly connected subgraph.O

4We will introduce negation in Section 2.4

CHAPTER 2. BACKGROUND

__—_.. ~

\ .
1+ EXT predicate node X y)—': Q Rule node

INT predicate node —— = Dependency relation

Figure 2.1: Rule/Goal Graph

17

CHAPTER 2. BACKGROUND 18

Definition: 2.26 A reduced rule/goal graph is a variety of rule/goal graph which groups
all nodes which are mutually recursive, the parts in dotted ovals in Figure 2.1, into a single
node. In graph-theoretic terms we identify the strongly connected components of the rule/goal
graph and form the acyclic condensation of the graph. O

According to Definition 2.26, we can easily draw up a reduced rule/goal graph in terms of
Example 2.6 from Figure 2.1. This is shown in Figure 2.2.

—= 4(X)

ca(X) : —e(X),not b(X).
Tl U((X)> X o) b(X)

ro b :—not a(X).

r(X)
q(X)
p(X)
[
"HX,Y) i rs 2 p(X): —=t(X,Y).
______ I
o > I
- _ __I
EXT predicate node Reduced rule node Dependency relation INT predicate node

Figure 2.2: Reduced Rule/Goal Graph

The most important aspect of the rule/goal graph is the grouping of predicate and rule
nodes. Intuitively, this grouping provides an order of computing. We can group definition
(or goal) and rule predicate nodes in many ways, but different ways will directly influence
the efficiency of the computation.

We were concerned with SCCs in Definition 2.26. In Figure 2.2, the ovals are SCCs®. Ac-
cording to the definition, SCCs give us a method to group the rule nodes. The algorithm
then evaluates the SCCs in topological order, so that, if an SCC s; contains a rule which is
dependent on some rule in an SCC s,, the s; SCC will be evaluated first.

5The algorithm is shown in Appendix A.2

CHAPTER 2. BACKGROUND 19

Example: 2.7 Consider Example 2.6 from Figure 2.1. Figure 2.3 illustrates the dependen-
cies amongst the SCCs. Clearly, any ordering which has (3) as the last SCC is a correct
topological ordering.

X
X

)i

(2) Urg:r(X) : —not ¢(X).

:p(X) 2 —¢(X),not r(X).
74 1 p(X) 1 =r(X), not s(X).
16 : ¢(X) : —p(X).
(X)) —q(X).

ro : p(X) m

S

Reduced rule node Dependency relation

3)

4)

Figure 2.3: SCC dependence graph

2.3.2 Methods

As we alm to have a relational database system as a backend to our Datalog system, we
should be able to convert rules into relational algebra expressions. Normally, we deal with
bottom-up and top-down evaluation methods which have been introduced in [BR86] [CGTS9].
A bottom-up evaluation will start with the EDB predicates and generate relations for IDB
predicates, using the query at the end to select the tuples required. A top-down evaluation
will work from the query down generating joins of terminal symbols. Top-down is usually
the more eflicient, but more complex, while bottom-up is simpler, but less efficient since it
does not use the query being presented until the end. The Prolog algorithm is an example of
a top-down algorithm, while naive and semi-naive are two bottom-up methods. The naive
evaluation can be improved, to give the so-called semi-naive evaluation. Before we give the

CHAPTER 2. BACKGROUND 20

naive and semi-naive algorithms, let us describe how to construct an expression of relational
algebra that computes the relation for a positive rule body.

Algorithm: 2.1 Computing the Relation for a Positive Rule Body, Using Relational Alge-
bra Operations (from [U1188]).

INPUT: The body of a rule of Datalog program, which we assume consists of subgoals
Q1,---,Qn involving variables Xi,..., X}. For each Q; = ¢;(Ai1,. .., A,) with an ordinary
predicate, there is a relation R, already computed, where the A’s are arguments, either
variables or constants.

OUTPUT: An expression of relational algebra, which we call
EVAL RULE(R,, R,,,...,R,,)

that computes from the relations R,,,..., R,,°, a relation R(Xy,..., X)) with all and only
the tuples (a1,...,ax) such that, when we substitute a; for X;, 1 < 5 <k, all the subgoals
@1, .., arc made true.

METHOD: The expression is constructed by the following steps.

1. For each ordinary @Q;, let R; be the expression Ily,(or(R,)). Here. V; is a set of
components including, for each variable X that appears among the arguments of @,
exactly one component where X appears. Also, F; is a list of built-in predicates which
are linked together with “AND” of the following form:

e If position k£ of (); has a constant a, then F; has the term k = «.

o If positions k and [of (); both contain the same variable, then F; has the term

k=1

If @Q; is a subgoal such that there are no terms in F;, e.g., Q; = q(X,Y). then take F;
to be the identically true condition, so R; = R,,.

2. Tor each variable X not found among the ordinary subgoals, compute an expression
Dx that produces a unary relation containing all the values that X could possibly have
in an assignment that satisfies all the subgoals of rule p. Since p is safe. there is some
variable Y to which X is equated through a sequence of one or more = subgoals, and
Y is limited either by being equated to some constant a in a subgoal or by being an
argument of an ordinary subgoal.

o If Y = a is a subgoal, then let Dy be the constant expression { a }.

Technically, not all relations may be present as arguments, because some of them may have built-in
predicates and thus not have corresponding relations.

CHAPTER 2. BACKGROUND 21

o If ¥ appears as the jth argument of ordinary subgoal Q;, let Dx be II;(R,,).
3. Let E be the natural join () of all the R;’s defined in (1) and the Dx’s defined in (2).

In this join, we regard R; as a relation whose attributes are the variables appearing in
Q:, and we regard Dy as a relation with attribute X7.

4. Let EVAL_.RULE(R,,Ry,,...,R,,) be op(E), where I' is the list of built-in predicates
appearing among qi, - .., ¢n, and F is the expression constructed in (3). If therec are no
built-in subgoals, then the desired expression is just E.

As we see from Figure 2.2, the reduced rule/goal graph has two types of nodes: the nodes
for nonrecursive definitions and the nodes for the recursive components. Each type of node
is treated differently.

2.3.3 Evaluating Nonrecursive Rules

Because the rules are rectified, we have only to project the relation for each rule body onto
the variables of the head and, for each predicate, take the union of the relations produced
from each of its rules.

Algorithm: 2.2 (Nonrec) Evaluating Nonrecursive Rules Using Relational Algebra Opera-
tions (from [U1188]).

INPUT: All IDB predicates and EDB predicates appearing in a nonrecursive Datalog pro-
gram.

OUTPUT: An expression of relational algebra for each IDB predicate p in terms of the
relation Ry,..., R, for the EDB predicates.

METHOD: Begin by constructing the dependency graph for all input rules, and order the
predicates py, ..., pn, so that if the dependency graph for these rules has an arc from p; to p;,
then 2 < 7. We can find such an order because the rules are nonrecursive, and therefore the
dependency graph has no cycles. Then for ¢« = 1,2,...,n, form the expression for relation
P; for p; as follows.

"Since any X for which Dx is constructed cannot be an attribute of any R;, the natural join really
involves the Cartesian product of all the Dx’s, if any. See [UlI88] for more details.

CHAPTER 2. BACKGROUND 22

1. For each rule r having p; as its head, use Algorithim 2.1 to find an expression Iv, that
computes the relation R, for the body of rule r, in terms of relations for the predicates
appearing in r’s body. If the predicate ¢ appearing in r’s body is an EDB predicate,
let () be the given relation for q.

2. Since all rules are nonrecursive, all the predicates appearing in the body of r already
have expressions for their relations in terms of the EDB relations. Substitute the
appropriate expression for each occurrence of an IDB relation in the expression I, to
get a new expression Fi.

3. We may assume that the head of each rule for p; is p;(Xi,..., Xk) because the rules
are rectified. Then take the expression for P; to be the union over all rules r for p;, of

[y, x,(f7). O

Example: 2.8 In order to illustrate Algorithm 2.2, let us consider an example ([UlI88])
which has three rules:

ri: pla,Y) :—r(X,Y).
ror p(X,Y) = s(X,2), r(Z,Y
r3: (I(va) P(’Z)3 ‘5(’)

where r and s are EDB predicates with relations R and S, p and ¢ are IDB predicates, for
which we want to compute relations P and). We begin by rectifying the rules:

ri: p(X,Y) :=r(Z,)Y), X =a.
rat p(X,Y) 1= s(X,Z), r(Z,Y).
ra: q(X,Y) 1= p(X,2), s(Z,Y).

From the dependency graph we know ¢ depends on p, so the proper order is to work on
p first, then ¢q. We can get the relations for the body of r; and r, by Algorithm 2.1,
R(Z,Y)X Dx(X)and S(X,Z) X R(Z,Y), where Dx = {a}. We project these expressions

onto the list of attributes X, Y before the union is taken. The expression for P is
P(X,)Y)=xy(R(Z,Y) X {a}(X))Ullxy(S(X,Z) X R(Z,Y))

Next, we consider q. By Algorithm 2.1, the expression for the body of r3 is P(X,7) X
S(Z,Y) so the expression for @ is

Q(X,Y) = yy(P(X,7) X S(Z,Y))

CHAPTER 2. BACKGROUND 23

2.3.4 Evaluating Recursive Rules

In the last subsection we gave an algorithm which does not apply to recursive rules, because
for recursive rules there must be cycles in the dependence graph and we cannot. find an order
as we did in Algorithm 2.2. So when we try to evaluate a predicate on the cycle, there will
be a rule with a subgoal whose expression is not yet available.

Bottom-up evaluation is the simplest of the evaluation methods when recursive rules are
involved. Let us express the set of provable facts for the predicate p; (corresponding to IDB
relation P;;1 < < m) by the assignment

P;:= EVAL(pi,Ry,..., R, P1, ..., Pn)

where EV AL is the union of EVAL_RULE which was defined in Algorithm 2.1 for eacli of
the rules for p;, projected onto the variables of the head. Ry,..., Ry are EDB relations and
Py, ..., P, are the IDB relations which are to be computed.

Naive Evaluation

Algorithm: 2.3 (Naive,..) Naive Evaluation of an SCC in a Simple Datalog Program.
INPUT: All rules for an SCC with recursive predicates py,...,p, and relations Ry, ..., It
for all other predicates in bodies of these rules.

OUTPUT: Relations Py, ..., P, for p;,...,p, in the current SCC.

METHOD: We initialize cach P; to the empty set, and the R;’s are given. Then evalu-
ating each rule as: P, = EVAL(p;, Ry,..., Rk, P1,..., Py) and repeatedly apply 'V AL to
obtain new values for the P;. When at some point, no more new facts can be added to IDB
relation F;, output P;.

fori:= 1 to m do begin /*m is the number of IDB predicates®/
P; =0,
end
repeat
fori:=1to m do begin
P;.old := P;;/*save old P’s*/
end
fori:=1to m do begin
P, := EVAL(pi, R1,..., Ry, Py.old, ..., Py.old);
/*R; is a relation which has been computed or an EDB relation*/
end
until P, = P;.0ld for all 1;
output F;’s

CHAPTER 2. BACKGROUND 24
0

Algorithm: 2.4 (Naive) Naive Evaluation of a Sample Datalog Program.
INPUT: Datalog program with IDB relations P,..., P, EDB relations Ry, ..., Rx.

OUTPUT: Relations Py,..., P, for p1,...,pn.

METHOD: Compute SCCs and for each SCC; (i= 1 to n) call Algorithm 2.3,
Naivescc(SCC,-, P], ceey P], Rl, ey Rk)

where Py, ..., P(1 <1< m) are IDB relations in lower SCCs. O

Example: 2.9 Consider the logic program P:

ri: ancestor(X,Y) : — ancestor(X, Z), parent(Z,Y).
X,Y) :

re: ancestor(— parent(X,Y).

assume PAR and ANC are the relations of parent and ancestor, respectively, where
PAR = {(b,a), (b,9), (a,d), (a,e), (d,f), (c,h)}.
We translate the program into the relational algebra expression:
ANC =1lxy(ANC X PAR)| JPAR

Let us follow Algorithm 2.3. Initially, we sct ANC® =). We then enter the repeat loop.
We initialize ANC.old = ANC = . Now we compute the first value of ANC'. Since the
join with an empty relation is empty:

ANC' = PAR = {(b,a), (b,9), (a,d), (a,c), (d,[), (e,h)}.
ANC' # ANC.old, so we enter the second iteration. After saving ANC! to ANC'.old, we

compute the next value of ANC as follows:

ANC? = {(bva)v (bvg)’ (avd)v (aae)v (d7f)’ (Cah')a (b’d)v (bve)v (aaf)}

Note here that ANC? = ANC*U{(b,d), (b,¢), (a,f)}. ANC?*# ANC.old, so we enter the
third iteration. After setting ANC.old = ANC?, we obtain:

ANC? = {(b,a), (b,9), (a,d), (a,e), (d,[), (c,h), (b.d), (b,e), (a,[), (b, [)}.

Here ANC?® = ANC?U{(b, f)}. ANC? is different from ANC.old, so we enter the fourth
iteration. Let ANC.old = ANC3, then:

ANC* = {(b,a), (b,g), (a,d), (a,e), (d,]), (¢,h), (b,d), (b,¢), (a,[), (b f)}.
Finally, ANC* = ANC.old = ANC® and the loop terminates. O

CHAPTER 2. BACKGROUND 25

We see from the example, however, inefficiencies arise since if a tuple is proved in one itera-
tion then, as its antecedent tuples are still in P;; it will be proved again in each subsequent
iteration. In order to avoid this, we just pay attention to the new tuples that are produced
by each rule which can be found if we substitute the full relation for all but one of the
subgoals and substitute only the incremental tuples for the others. There is a well-known
evaluation method which takes advantage of incremental relations, called “semi-naive” eval-
uation [UlI88], which we will describe next.

Semi-naive Evaluation

The naive evaluation method is simple, but it may repeat a lot of computation. A semi-naive
evaluation is a bottom-up technique designed for eliminating redundancy in the evaluation of
tuples at different iterations [CGT89]. Semi-naive evaluation aims to overcome redundancies
in the looping mechanisms by only calculating the increment between the old value for a
relation and the new, thus the old tuples will not be recalculated. We must do this substitu-
tion using each subgoal in turn as the subgoal with the incremental relation, and then take
the union of the resulting relations. Since we cannot get any incremental tuples for EDB
relations, we may just take the union over the IDB predicates. Let us define more formally
the operation of incremental evaluation of the relations associated with rules and predicates.
Let be a rule with ordinary subgoals Si,...,S,; we exclude from this list any subgoals
with built-in predicates. Let Ry, ..., R, be the current relations associated with subgoals
S1,. .., 5, respectively, let ARy, ..., AR, be the list of corresponding incremental relations
which is the difference between the old R; and the new one. Recall that EVAL_RULFE()

is defined by Algorithm 2.1. Then the incremental relation for rule r is the union of the n
relations

EVAL_RULE(r,Ry,...,Ri-1, AR;, Riy1,. .., Rn)

for 1 <1 < n. That is one incremental relation AR; is substituted for the full relation R; in
each term. Formally, we define:

EVAL_RULE_INCR(r,Ry,...,R,,ARy,...,AR,)
= |J EVAL.RULE(r,Ry,...,Rici, AR, Riy1,... . R,)
1<i<n

Now, suppose we are given relations Ry,..., Ry for the EDB predicates ry....,r.. For
the IDB predicates p;,...,pm we are given associated relations Py,..., P, and associated
incremental relations APy, ..., AP,. Let p; be an IDB predicate. Define:

P = EVALINCR(pi,Ry,...,Ri, Pr,y..., Puy, APy, .., AP

to be the union of what EVAL_RULE_INC R() produces for each rule for p;. Since the incre-
mental relations for the EDB predicates are §) in each application of EVAL_RULE_INCR(),
so the terms for those subgoals that are EDB predicates do not have to appear in the union

CHAPTER 2. BACKGROUND 26

for EVAL_RULE_INCR(). We shall next give the complete semi-naive algorithm for lin-
ear programs that has been implemented in the Datalog system. Restricting programs to
linear recursive is not a problem as most "real life” recursive situations are linearly recursive

[BR86]). More details have been given in [UlI88] [Was90].
The Datalog system actually uses a slightly more sophisticated algorithm-—-it analyses the

rule dependence graph and finds the SCCs (strongly-connected components) in the graph
(see Section 2.3.1).

Algorithm: 2.5 (Semi-naive,.) Semi-Naive Evaluation of an SCC in Simple Datalog Pro-
gram.

INPUT: Same as Algorithm 2.3.

OUTPUT: Same as Algorithm 2.3.

METHOD: The first stage is to set up the temporary tables for each IDB predicate p;:

o P.delta—the difference between the current value of the relation and the value of the
relation from the previous iteration.

o P,—the current value of the relation.

Compute the rules that involve no IDB predicates in the body once, and let P; be the relation
for predicate p;. Then use EVAL_INCR() repeatedly on incremental IDB relations. For
each IDB predicate p;, there is an associated relation P; that holds all the tuples, and there
is an incremental relation P;.delta that holds only the tuples added on the previous round.
The computation is shown in Figure 2.4. O

Algorithm: 2.6 (Semi-naive) Semi-Naive Evaluation of a Sample Datalog Program.
INPUT: Datalog program with IDB relations P,..., P,, EDB relations Ry, ..., Ry.

OUTPUT: Relations Py,..., P, for p1,...,px.

METHOD: Compute SCCs and for each SCC; (i= 1 to n) call Algorithm 2.5,
Semi'naivescc(scciv Pla ceey P], R17 cety Rk’)

where Py, ..., P(1 <1< m) are IDB relations in lower SCCs. O

CHAPTER 2. BACKGROUND 27

fori:=1to m do begin /*m is the number of all IDB predicates*/
P,.delta := EV AL(pi, R1,..., R, 0,...,0);
P; := P,.della;
end;
repeat
fori:=1to m do begin
P;.old := P;.delta;/*save old P.delta’s*/
end;
fori:=1to m do begin
Pdella:= EVALINCR(pi,Ry,..., Rk, Pr,..., Pn, Prold, ... P,.old);
P;.delta := P;.delta — P; [*remove “new” tuples that actually appeared hefore*/
end;
fori:=1 to m do begin
P; := P, U P.dclla;
end
until P;.delta = () for all i;
output P;’s

Figure 2.4: Semi-naive,.. evaluation of Datalog programs.

CHAPTER 2. BACKGROUND 28

Example: 2.10 Recall Example 2.9. Let us follow Algorithm 2.5 on the same example.
Initially. we obtain:

ANC'.delta = PAR
= {(b’a)a (b,g), (a,d), (a,e), (daf)w (c, h)}'

ANC' = ANC'.delta
= {(b»a)’ (b,g), (a'vd)’ (ave)» (daf)a ((,‘, h)}
ANC.old = ANC'.delta = {(b,a), (b,9), (a,d), (a,e), (d,f), (c,h)}.

ANC2.delta a,f)} — ANC"

Il
——
—
<
ISH
SN—
<
~~~
o
-
(e
~
-
—_

ANC? = ANC'\JANC®delta
= {(b,a), (b,9), (a,d), (a,€), (d,f), (c,h), (b,d), (b,e), (a,[)}.

ANC.old = ANC?.delta = {(b,d), (b,e), (a, f)}.

ANC3.delta = {(b,f)} — ANC?* = {(b, f)}

ANC® = ANC*|JANC®.delta
= {(b,a), (b,9), (a,d), (a,¢€), (d, [), (c,h), (b,d), (b,e), (a,f), (b, [)}.
ANC.old = ANC®.delta = {(b, [)}.

ANC*delta = {0} — ANC®
=0

ANC* = ANCBUANC4.(lelia
= {(bva)’ (bag)a (avd)a ((1,6), (daf)a (C,h), (bad)a (b,C), (a’vf)’ (b~ I)}

The computation terminates because ANC*.delta = ). ANC* is the final result. O

Obviously, the results of two computations, naive and semi-naive, are the same, but the
latter is more efficient. In Example 2.10 only ANC*.dclta has been involved in the joins,
while in Example 2.9 we had to compute joins for each of the temporary ANC",| which always
have at least as many tuples than the corresponding values of ANC".delta.



CHAPTER 2. BACKGROUND 29

2.4 Negation in logic programs and Datalog

In this section, the main topic of discussion is why negation is needed. We first look at our
real world. Roughly speaking, there are two aspects to objects in the world®, for instance,
{positive, negative}, {true, false}, {good, bad}, or {black, white}. Under some premises,
we may illustrate one aspect of some thing using its opposite, for example, in mathematical
logic, we can say not(not(A)) is A. We will replace “not” with “=" as follows:

A=-(-A)

Example: 2.11 Let us consider the rule: If X is a person and X doesn’t eat meat, then X
is a vegetarian. In Datalog without negation, there is no way to represent such a rule. O

As we have demonstrated above the necessity of negation in our real world, we will next
discuss the feasibility of negation in our logical world.

In recent years, various semantics for negation in logic programming have been studied.
There are three well-known semantics in our survey. One is the Closed World Assumption
(CWA) model [Rei78], another is the Negation as Failure (NF) model [Cla78], and the third
is the Completed Data Base (COMP) (or Completion) model [Llo87]. In fact, the last one
has been introduced by Clark [Cla78] for justifying the use of the negation as failure rule
in Prolog and developed by Lloyd [L1087]. Roughly speaking, the CWA is that a ground
atom is taken to be false if it is not a logical consequence of the program; NF states that a
ground atom can be inferred to be false if every possible proof of the ground atom fails. The
CWA is in fact made implicitly when evaluating queries on relational databases. Since we
are concerned in this thesis with evaluating Datalog programs rather than logic programs,
we will not discuss these semantics further.

Definition: 2.27 A Datalog with negation clause, denoted by Datalog™, is either a positive
(ground) fact or a rule where negative literals are allowed to appear in the body. Datalog™
1s not a Horn clause, but is an extended form of Horn clause which has the form:

_‘Pl,...,_‘Pn,Pu,P”.,’.],...,Pn+m. (26)
either as
Py:—-P,...,P,, not Poyy,..., not Poyn. (2.7)
or as
PU(-—PI,,..,PH," n+17-’-7_'])n+m- (28)

8For now, we are only concerned with a 2-valued world.



CHAPTER 2. BACKGROUND 30

Py, ..., P, (from Form(2.7)) are the positive literals, =P, 41,..., Py, are the negated
literals, and a conjunction of them is called the body of the clause. The unnegated literal
Py is called the head of the clause. We have a regulation that the head comprises at most
one positive literal. Also, for safety reasons we require that each variable occurring in a
negative literal of a rule body also occurs in a positive literal of the same rule body. We also
use Datalog™ to denote the language in which Datalog™ rules are allowed. The Datalog™

language has been described in [Ull188] [CGT89]. O

Example: 2.12 Let us recall Example 2.11. Assume that the predicate symbols person,
eat_meat and vegetarian, represent the properties of being a person, a person who eats meat,

and a vegetarian, respectively. Now we can represent the example as a Datalog™ clause as
follows:

vegetarian(X) : —person(X), not eat_meat(X).

Note that in relational algebra an expression corresponding to the above rule can be formu-
lated with ease by use of the minus operator “~”. Assume the one-column relation Person
contains the name of all persons and another one-column relation Fat_mcat contains the
names of all people who eat meat. Then we obtain the relation Vegelarian, that is, the

names of all Vegetarians, simply by subtracting Eat_meat from Person, thus
Vegetarian = Person — Fat_meat.

Obviously, the negative subgoal that was introduced into the Datalog rule body increased
the expressive power of Datalog. O

Just as we mentioned before, there are two aspects of all things. We allow the use of negative
information to increase the expressive power of Datalog programs. However here are some
of the problems we face if we allow a program P to contain rules with negated predicates:

1. We shall encounter the first problem in what rules with negation mean. Sometimes
for a rule with negation there is an apparent divergence between what we intuitively
expect the rule should mean and the answer we would get.

2. When rules with negation are allowed, there might not be a least fixed point, but
several minimal fixed points.

More details are discussed in [UlI88].



CHAPTER 2. BACKGROUND 31

2.5 Different semantics for Datalog™

In the previous section, we have related why negation is needed intuitively. In this section,
we will specify some previously proposed semantics for Datalog™. These semantics have
been implemented in our system described in Chapter 3. Different techniques to integrate
negation in logic programs are surveyed by Bidoit [Bid91].

2.5.1 Stratified semantics

Stratified negation was first proposed by Chandra and Harel [CH82] and later, independently,
rediscovered by [Gel88] [Naq86] [ABWS86] [Prz88]. Stratified negation in Datalog™ help deal
with the problem of many minimal fixed points.

Definition: 2.28 A Datalog™ program P is stratified if we can group all predicates into
strata, that is, disjoint sets Sy,..., Sy, which are the largest sets of predicates such that

1. All predicates with the same predicate name belong to the same stratuimn.

2. If a predicate p is the head of a rule with a subgoal that is a negative predicate ¢, then
g is in a lower stratum than p. In other words, S, > S, if there is a rule of the form

pi— ...,nol q,...

3. If predicate p is the head of a rule with a subgoal that is a positive ¢, then the stratum
of p is at least as high as the stratum of ¢. In other words, S5, > S, if there exists a
rule of the form

P i— ..,y ..

Any grouping S; of P satisfying the above conditions is called a stratification of P. O

In order to discuss stratified Datalog™ more intuitively, let us recall the definition of a de-
pendency graph from [CGT89].

Definition: 2.29 The dependency graph of a Datalog™ program P, denoted by Gp, is defined
as follows. The nodes of Gp consist of the IDB predicate symbols occurring in P. There is
an edge < ¢,p > from ¢ to p in Gp iff the predicate symbol ¢ occurs positively or negatively
in a body of a rule whose head predicate is p. We will mark the edge < ¢,p > with “=” iff
there exists a rule with head predicate p and with negative predicate ¢ in the body. O



CHAPTER 2. BACKGROUND 32

Example: 2.13 Consider the following Datalog™ program P with EDB predicate d:

:— notg,s.
= q.

: d, not r.
= d.
= q.

n I QRT3
|

The dependency graph Gp of the program P is depicted in Figure 2.5. O

Figure 2.5: Dependency Graph Gp

An alternative definition of a stratified program in terms of a dependency graph is as follows.

Definition: 2.30 A Datalog™ program P is stratified iff its dependency graph Gp does not

contain any cycles involving a negative edge, labeled with “=". See [ABW&86] for more
details. O

Some definitions which extend the class of stratified Datalog™ have also been proposed. For
example, Przymusinski proposed a class of logic programs called locally stratificd logic pro-
grams in [Prz88]. Anether class of stratified programs, called modular stratificd programs,
was proposed by Ross in [Ros90]. This generalizes both stratification and local stratification.
A program is modularly stratified if and only if its mutually recursive components are locally
stratified once all instantiated rules with a false subgoal that is defined in a “lower” compo-
nent are removed. However, we did not implement these extensions of stratified semantics
in this thesis and we will leave them for future extensions.



CHAPTER 2. BACKGROUND 33

2.5.2 Inflationary semantics

In this section we will introduce an approach which leaves the programmer totally free to
write any Datalog™ program he or she wants. A semantics for Datalog™ programs, the
inflalionary semantics, was first proposed by Gurevich and Shelah in [GS86D] and later,
studied further in [KP91] [AV91].

Definition: 2.31 The term inflationary operator was coined in [GS86b] where an operator
H mapping k-ary relations to k-ary relations is said to be inflationaryif S C H(S) for every
k-ary relation S. In other words, if M is a mapping from k-ary relations to k-ary relations,
then the operator inf_M(S) =S U M(S) is inflalionary.

Definition: 2.32 [KP91] Consider a Datalog™ program P over an arbitrary but fixed f{inite
vocabulary ¢® having a single IDB relation S. Let k be the arity of .S and suppose that
D = (4, Ry,...,R,) is a database over o having universe . If we have a mapping ©, the
inflationary semantics of the Datalog™ program P on D is defined by iterating the mapping
O in the following way: we define first the sequence O™, n > 1, of k-ary relations on ) by
the equations

e'=0(), ©"'=0"uUeO")

and then we put

The inflationary semantics of the Datalog™ program P on the database D is the k-ary
relation ©*. For Datalog™ programs with more than one IDB relation, the inflationary
semantics is defined in a similar way by simultaneous induction in the defining equations. O

In what follows we will illustrate how the inflationary semantics of a Datalog™ program can
be computed. Let P be a Datalog™ program and £ an EDB. The inflationary evaluation of
P on FE is performed iteratively so that all rules of P are processed in parallel at cach step.
From the EDB and the facts already derived, new facts are derived by applying the rules of
P. These new facts are added to the result at the end of each step. At each step, the CWA
1s made temporarily during the evaluation of the rule bodies-it is assumed that the negation
of all facts not yet derived is valid. The procedure terminates when no more additional facts
can be derived. Let us see an example as follows:

“i.e., we have a fixed sequence o = (Ry,..., R,) of database relational symbols such that each R; is of
arity m;.



CHAPTER 2. BACKGROUND 31

Example: 2.14 Consider a Datalog™ program P where d is the only EDB predicale.

ri: (X)) —p(X),q(X), not r(X).
ror p(X): —d(X), not ¢(X).

r3: q(X): —d(X), not p(X).

ra: r(X) 1 —d(X),d(0).

We ask that this program be evaluated on an inflationary basis on an EDB E = {d(1)}.
Let M be the mapping associated with P. Initially, M® = M(0) = {d(1)}. After the first
iteration, we get two new facts: one is p(1) from r, and the other is ¢(1) from r;. We can
write M' = M° U M(M°) = {d(1),p(1),q(1)}. After the second iteration, rule r; produces
the new fact s(1), so M? = MP*UM(M?') = {d(1),p(1),q(1),s(1)}. Since no further facts are
derivable, the procedure stops with the result {d(1).p(1),q(1),s(1)}. Obviously, the result
is a least fixpoint of the Datalog™ program P. This is also a Herbrand model of P U I but
this model is not minimal since {d(1)},p(1)} and {d(1),q(1)} are smaller models of PUE. O

In [Bid91] [AV91], they give two different ways of “evaluating” the inflationary model seman-
tics. One is the deterministic fixpoint semantics which corresponds to “apply ALL rules™ at
once, the other i1s the non-deterministic semantics which corresponds rather to “apply ONIE

rule” at a time. We adopt the first approach in our system which is described in more detail
in the next chapter.

2.5.3 Well-founded semantics

In this section we will investigate another semantics which enables a programmer to write any
Datalog™ program—the well-founded (partial) model. It was proposed first by Gelder, Ross,
and Schlipf in [GRS88]. Their method nicely extends the stratified approach to arbitrary
logic programs with negation. Later a fixpoint method for computing the well-founded
partial model was given in [Gel88], while resolution-based procedural semantics for well-
founded negation is provided in [Ros89]. Further important papers related to well-founded
model semantics are [Prz89] and [Bid91] where the relationship to logical constructivism is
investigated. First we introduce some definitions.

Definition: 2.33 Let S be a set of literals. We denote the set formed by taking the com-
plement of each literal in S by — - S.

o If ¢ € =- S then we say the literal ¢ is inconsistent with S.



CHAPTER 2. BACKGROUND 35

e If some literal in a set of literals R is inconsistent with the set of literals 5 then we say
R and S are inconsistent.

o If a set of literals .5 is inconsistent with itself, then we say S is inconsistent; otherwise
it 1s consistent.

Definition: 2.34 Let P be a Datalog™ program, Hp its associated Herbrand base, and [
be a set of literals. We say that U,(I) C Hp is an unfounded set of P with respect to Iif each
atom p € U,(I) satisfies the following condition: For each instantiated rule r of P whose
head is p, (at least) one of the following holds:

1. The complement of some subgoal literal in rule r is in 1.

2. Some positive subgoal literal of rule r is in U,(I).

A literal that makes either of the above conditions true is called a witness of unusability for
rule » with respect to I. The union of all unfounded sets with respect to a given I is also
unfounded, and is called the greatest unfounded sct, denoted by Up([). O

Example: 2.15 Consider the following program from [GRS88], where the atomns are abbre-
viated to single letters.

ry: a :— ¢, notb.
rot b 1 — not a.
r3: C.

T4t p :—q, notr.
Ts: p :— T, nots.
Te: q :— P.
7T o — Q.

From the definition above, we say the atoms {p, g, r, s} form an unfounded set and the pair
{a,b} do not form an unfounded set. The difference between {p,q,r,s} and {a, b} is that:
declaring any of p, q or r false does not resurrect a proof for any other element of the set.
Clearly s can never be proven because it has no rules in the program. However, as soon as
one of a or b is declared false, it becomes possible to prove the other is true {only if ¢ is true,
in the case of a). And if both are declared false at once, we have an inconsistency. O



CHAPTER 2. BACKGROI'ND 36

Definition: 2.35 For a set of literals I:

e Tp(I) is the usual immediate consequence transformation defined by: p € Tp(1) if and
only if there is some instantiated rule » of P such that r has head p, and each subgoal
literal in rule r occurs in /.

e Up(I) is the greatest unfounded set of P with respect to I.
o Wp(I)=Tp(I)u~-Up(I). |

Immediately from the definitions we can prove that Tp(1I), Up(I), and Wp(I) are monotonic
transformations.

Definition: 2.36 Let P be a Datalog™ program. The well-founded model of P is the least
fixpoint of the operator Wp(I) associated with P. Every negative literal denotes that its
atom is false, every positive literal denotes that its atom is true, and missing atoms have
undefined truth value. So the well-founded model semantics is based on three-valued logic.O

Example: 2.16 Recall Example 2.15, a well-founded model is {¢, —p, ng, -r,—~s}. O

2.6 Expressive power

Irom the previous sections, we know that a Datalog program is a Datalog™ program with the
additional condition that no negation occurs in the body of the rules. So intuitively speaking,
Datalog™ programs have greater expressive power than Datalog programs. In this thesis, we
introduce stratified (Datalogg,,), inflationary (Datalog;q) and well-founded (Datalogy.)
semantics. In [Bid91], there is a comparison of Datalogy,, with FOL and FP, Datalog;,
with FP and Datalog,,; with FP. The following result holds on finite databases.

Theorem: 2.1 ([Bid91] [AV91] [KP9I1])
Datalog is a strict subclass of Datalog, ., Datalog,.;; and Datalog;,g.

However, it has been discussed above that Datalog} , cannot express all Datalog™ programs.
In particular, it cannot express the Datalog™ programs involving an edge labeled with “-”
n a cycle of its dependency graph. Thus:



CHAPTER 2. BACKGROUND 37

Theorem: 2.2 ([Bid91] [AV91] [KP91])

Datalogg,, is a strict subclass of Datalogy,;;; and Datalog] 4, that is, Datalog,.;;; and Datalog;;q
are more expressive than Datalogg, ..

The next question, of course, is which semantics is more expressive: Datalog,; or Datalog 4.
We know that there are no syntactic restrictions on programs for Datalog] g and Datalogg.-
But which one has more expressive power? In [KP91], they give a program P which with in-
flationary semantics is used to compute what they call the distance query. With well-founded
semantics PP computes only the transitive closure. It is an open problem (see [[K0l89]) whether
one can always find a well-founded program to compute the same query as an inflationary
program. On the other hand, there must exist a program which can make the inflationary
semantics correspond to the well-founded semantics. We can rewrite a program P to a pro-
gram P’ such that inflationary(P')=well-founded(P) (see chapters 3 and 4 for more details).

The same problem is discussed in [Bid91] [AV91] [KP91] and a direct proof is provided
by [AV91]. Thus

Lemma: 2.1 Datalog; 4 has at least the same expressive power as Datalogy ;.

For the expressive power of various semantics for negation which we have chosen, the fol-
lowing summaries known results on finite databases ( C denotes proper inclusion in terms
of expressive power ).

Datalog C Datalog_; . C Datalog, ;; € Datalog; 4



Chapter 3

Implementation of NDatalog

QOur implementation of Datalog™, which is called NDatalog, evaluates programs containing
negation. NDatalog extends the DataloglC [Was90] language which was devised to serve
as a vehicle for semantic optimization and was implemented on top of an Oracle relational
database system. Since the DataloglC system did not include any form of negation, so 1 had
to devise ways to implement the three forms of negation by translating to SQL (sce Section
3.6). I had extended the DataloglC system to include the negation syntax. as well as an
evaluation algorithm for each negation semantics. In addition, NDatalog system uses the

INFORMIX database system instead of Oracle.

In this chapter, I draw together the ideas introduced in the previous chapter on Datalog™.
[ first outline the syntax of the language NDatalog. And then, we focus our attention on
how the various semantics for negation which have been described are implemented in the
NDatalog system.

3.1 The NDatalog Language

The NDatalog language is based on the DatalogIC language, but can in addition express
negation semantics in Horn clause form as a part of the program.

Similar to DataloglC, and as I mentioned in the previous chapter, there are two types
of predicate definition in the NDatalog language: one for intensional predicates, the other
for extensional predicates. This is intended to introduce some modularisation into NDatalog
programs. An intensional predicate is given a definition that starts with the “INT” reserved
word, which is followed by the name of the predicate and its argument list (which must be
variables). This is the head of the definition. An INT predicate leads to one or more rules.

38



CHAPTER 3. IMPLEMENTATION OF NDATALOG 39

Any rule in the definition which has a head matching the definition (same predicate and
arguments) can be written with the head omitted. A predicate which is in the rule’s body
can be negated. The definition for extensional predicates starts with the “EXT” reserved
word, followed by the definition head. The head of extensional definitions must contain the
name of the relation being described and its attributes as they appear in the database. If
this was not done, we could not convert the rules into SQL expressions. The name of the
relation and the arguments in an intensional definition are also used as the name for the
SQL table definition for the predicate. Sections 3.5 and 3.6 will give more details on this.

As well as a set of predicate definitions, a program contains a set of query forms, as we
discussed in Definition 2.16. There we specify what queries the program will accept. Vari-
ables in a query are preceded by a label. A “?” indicates that the variable is an input
variable, while a “!” indicates that it is an output variable. At runtime, users are given a list
of query forms from which they select a query to be evaluated. The system collects bindings
for the input variables in the query selected, processes the query and returns bindings for the
output variables. The query forms are important as the system is made aware of the type
of queries that are going to be asked and can therefore optimise and compile the program

accordingly. Ideally the user should be allowed to present arbitrary queries but this has not
been implemented.

Example: 3.1 Now let us look back at IExample 2.12. To change the example a little, we
suppose that person(X) is an EDB relation, and eat_meat(X,Y) is an EDB relation with
the meaning that X eats meat Y (Y may be baby chicken, etc.). So we can write a program
in NDatalog to define a set of vegetarians as follows:

EXT person(X){} /* The variable type has been defined when we create the table in
INFORMIX. */
EXT ecat_meat(X,Y){}
INT vegetarian(X){
: —person(X),not eat_meat(X,Y).
{
T-vegetarian(?X).
]

~

Converting the relation eat_meat(X) into eai_meat(X,Y’), results in some new problems.
We will discuss them more in Section 3.4.

3.1.1 The BNF of NDatalog

The Backus-Naur specification of NDatalog is presented below. The items which are in
DatalogIC but not in NDatalog are in italics.



CHAPTZR 3. IMPLEMENTATION OF NDATALOG 40

Program =
Statement =
Int_Definition
Ext_Definition
Inside_statement
Headless_Rule
Rule

Query
Integrity_Constr

I

Il

Il

Il

Horn_Cl_Body =
Predicate =
Positive Predicate =
Negation_Predicate ::=
Head_Predicate =
Comparison_Op =
Argument =
Variable
Label =

Constant =

Il

{ Statement }

Ext_Definition | Int_Definition | Rule | Query | Integrity_Constr
‘INT’ Head Predicate ‘{’ { Insidestatement } ‘}’
‘EXT’ Head Predicate ‘{’ { Integrity-Constr } ‘}’
Headless_Rule | Rule | Integrity_Constr

‘- Horn_Cl_Body .’

Predicate ‘:-> Horn_Cl_Body *.’

[Predicate] ‘7-> Horn_Cl_Body .

‘IC’ Horn_Cl.Body ‘=’ *." | ‘{IC” ‘=’ Predicate ‘.’
| ‘IC’ Horn_Cl_Body ‘—’ Predicate ‘.’

{ Predicate | Comparison_Op }
Positive_Predicate | Negation_Predicate
PRED_ID ‘(" Argument { ¢,” Argument } )’

‘not’ PRED_ID ‘(* Argument { ‘" Argument } )’
PRED_ID ‘(’ Variable { ¢, Variable } ‘)’
Argument OPERATOR Argument

Variable | Constant

[Label] VARID

L!’ I ¢?7

STRING | INTEGER

The lexical symbols are as follows:

e PRED_ID is an alphanumeric string beginning with a lowercase letter.

e VARD is an alphanumeric string beginning with a capital letter.

e STRING is an alphanumeric string delimited with single quotes.

INTEGER is a string of digits.
OPERATOR isone of { >, >=,<, <=, == }.
Comments are delimited with /* and */.

// indicates that the rest of the line is a comment.

Note that only query variables use the labels ! and 7.

Definition: 3.1 A NDatalog program is a complele NDatalog program if it includes EXT,
INT and query define clauses. In the NDatalog program, we shall allow a negated subgoal



CHAPTER 3. IMPLEMENTATION OF NDATALOG 41

to appear only in the body of an INT definition (rule), forbid the name of an INT definition
to be the same as an EXT definition, and require that at least one EXT relation be used by
the program. O

3.2 System View

In this section, I will describe the structure of NDatalog system as shown in Figure 3.1.

3.2.1 User Interface

Just as with other systems, we need a program which handles all the interaction hetween
the user and the system. A parser, written using the UNIX tools, Lex and YACC, parses
NDatalog programs. The commands available to the user are as follows:

e parse -[option][filename)

[option]

s Stratified model.

w Well-founded model.
1

Inflationary model.

(filename] A NDatalog program’s name.
Parses the given NDatalog program, building a rule/goal graph; it also checks safety
and reports errors. The program then becomes the current program.

e compile Depending on the option selected in the parse command, compiles the current
program into SQL expressions.

e list [option]

[option]

defn { defn name }{ root } Lists definition “name”.
query Lists all queries.

all Gives a list of all definitions.
prog List current program.

e query [queryname] Executes the named query.

e quit Exit the NDatalog system.



CHAPTER 3. IMPLEMENTATION OF NDATALOG

________________________________________

| Parse !
l |
Program and | Group Definition and :
User Commands : Parser Rule Nodes E
\ |
. 1 X
! !
|
I
I
i
: Algorithm
, x Rule/Goal Graph
(Informix) | base
I
Compile

[ User Query and }
Answers

—> () —

System process user Input/Output Base Data Flow

Key

Figure 3.1: Overview of the NDatalog system



CHAPTER 3. IMPLEMENTATION OF NDATALOG 13

Example: 3.2 Assume EDB relation male(X) = { tom, tony, david, park, sam, bob, bell

} and married(X,Y) = { (tony, mary), (sam, tina), (bob, susan) }. Consider the program:
EXT married ( X,Y) { }

EXT male ( X ) { }
INT female ( X ) {
:- married (Y, X ), not male ( X ).
}
?7-femle(7X).

Assuming the program is stored in file “test”, let us see how the program is parsed, compiled

and queried. User commands are in typewriter font, while system input and output is in

italics.

Starting at the UNIX prompt $, the user enters the NDatalog system.
fdlog

Welcome to NDatalog. Enter *?7’ for help.

dlog>parse -s test

Checking stratified: Program is stratified.

Note: in order to keep the program running, we overlook the safety checking here
Program test has been parsed. (0 errors 0 warnings)

Log file is test.lis

dlog>list program

Program type = No specific type

EXT married ( X00, Y01) {

File name : married Index : None

INT female ( X00) {
female ( X00) :- married ( Y10, X11 ), not male ( X20 ), X11 = X20, X00 = X11.
}



CHAPTER 3. IMPLEMENTATION OF NDATALOG

EXT male ( X00) {

File name : male Index : None
}

Note: the program is fully rectified.

dlog>compile

Compiling Queries. SQL statements sent to test.sql file

Connected to INFORMIX user: Tian

comm=: - -

It will convert the NDatalog program into SQL.

comm= An available SQL sentence (described in the next sections)

Stratified took 0 :0 :3 (3 )

Activity Time  h:m:s (s)
Stratificd 0:0:3(3)
Total Time 0:0:3(3)

dlog>query Query0

QQuery output sent to test.sqlout
unloaded 3 rows

Query0 took 0 :0 :1 (1)

Activity Time  h:m:s(s)
Stratified 0:0:3(3)
Query0 0:0:1(1)
Total Time 0:0:4(4)

dlog>quit
——===<<NDatalog Session Terminated>>===—-
Disconnected from INFORMIX user: Tian

44



CHAPTER 3. IMPLEMENTATION OF NDATALOG 45

> cat test.sqlout
Result of query: Query0

mary
susan
tina

O

3.3 Relation DOM and Negative Facts

In Chapter 2 we introduced the closed world assumption. We know that a negated subgoal
-¢(Xi,...,X,) may be interpreted as a finite relation. We define a relation DOM of arity
one which is the union of the constants appearing in the EDB relations and in the rules
themselves. As Ullman [Ull88] discussed , since we assume the rules are safe (Definition
2.17), no symbol not in the EDB or the rules can appear in a substitution that makes the
body of rule true. Therefore, we lose nothing by restricting the relation for a negated subgoal
to consist only of tuples whose values are chosen from DOM.

Thus, let @ be an arity n relation on ¢ which has already been computed for or is an
EDB predicate. Let the relation @) for subgoal —¢(Xj, ..., X,) be expressed as:

Q =DOM x...x DOM —Q (3.1)

n times

In this thesis, I propose another way of expressing the relation (). It also uses the DOM
concept, but divides DOM into DOMy, (1 < ¢ < n). Each DOMy, (X; is the name of
an attribute) is the union of the symbols appearing in the same attribute type in the EDB
relations and DOMy, = DOMy, if attribute X; and X; have the same type. So the form
above can be written:

Q'ZDOMxlX...XDOMXiX...XDOA'fxn—Q (3.2)

The benefit of this is shown in the next example.

Example: 3.3 Let R and S be the two relations of Figure 3.2. From the DOM definition in
[U1188], we can get a one arity relation DOM which includes all components in R and S (no
duplicates, see Figure 3.3(a)). If we want to indicate the domain of a relation of arity two,
we just take the Cartesian product of DOM with itself (Figure 3.3(d)). On the other hand,
Figure 3.3(b) and (c) show us two relations DOM;p and DOMpom.. We can also get a



CHAPTER 3. IMPLEMENTATION OF NDATALOG 46

ID | Name ID
1 1
2 3
1
(a) Relation R (b) Relation S

Figure 3.2: Two Relations

domain of a relation of arity two by taking the Cartesian product of DOMp and DOMn,me
(Figure 3.3(e)). There will be a difference between Figure 3.3(d) and Figure 3.3(e) if the

attributes of R and S are of different types. Now let us express a negative relation R using

form 3.1 and form 3.2, respectively. The results are shown in Figure 3.4(a) and (b).
0O

Obviously, the relation R which is created by form 3.2 (Figure 3.4(b)) is more useful, because
form 3.1 creates a relation R which includes numerous tuples which contain values of the
wrong type. For instance, in Figure 3.4(a), some values are of different types but appear in
an attribute together. In other words, we want to create a relation Q' that adopts form 3.2,
where the Cartesian product will give (Ny*---% N;*---x N,)) tuples in the relation Q)', where
N; is number of tuples in DOMy,, and n is number of attributes of the relation @'. On the
other hand, form 3.1 can produce N™ tuples (where N is the number of values in DOM).
From the definition above, we know that N; < N, so relation Q' may be much smaller than
Q. N; = N and Q' = Q, if and only if all attributes of the relation @) arc of the same type.

Using @)’ rather than @ does not change the answers to queries, hecause the rules that
we discuss must be safe. This means that the relation () could not appear in a rule’s body
alone and all attributes of the relation @ must be restricted by a non-negative relation R.
Thus, all values of the wrong type will be deleted by the join of relation R and @, denoted
R4 Q. For example, for the safe rule:

p(X,Y): —=t(X,Y),not r(X,Y).

given relation T for ¢t and R for r, P is T(X,Y) > R(X,Y). Assume the relation T(X,Y) =
{(1,a),(1,b),(2,a),(2,b),(3,a),(3,b)}, and therelation R isin Figure 3.2(a). Let us compute

the rule by using the two negative relations which are shown in Figure 3.4. We get the same
result that P(X,Y) = {(2,a),(3,a),(3,b)}.



CHAPTER 3. IMPLEMENTATION OF NDATALOG

X ID Name
1 1 a

2 2 b

3

a

b

(a) Relation DOM (b) Relation DOM;p  (c) Relation DOMp gmme

X X X X ID |Name
11 3 a I'la
12 3 b L ]b
1 3 a 1 2 | a
1 a a 2 2 b
1 b a 3 3 | a
2 1 a a 3 b
2 2 a b
23 b1
2 a b 2
2 b b 3
3 1 b a
32 b b
303
(d) DOM x DOM (e) DOM;p x DOMp um.

Figure 3.3: Domains and Cartesian Products of Domains



CHAPTER 3. IMPLEMENTATION OF NDATALOG 48

ID Name | ID Name ID Name
1 1 a 1 2 a
1 2 a 2 3 2
1 3 a 3
2 1 a a 3 b
2 2 a b
2 3 b 1
2 a b 2
3 1 b 3
3 2 b a
3 3 b b
3 a
3 b
(a) R=DOM x DOM - R (b) R=DOM;p x DOMpName — R

Figure 3.4: Two Negative Relations



CHAPTER 3. IMPLEMENTATION OF NDATALOG 49

3.4 Safety in NDatalog System

Recall Definition 2.17 where we defined rules to be “safe” if all their variables were limited,
either by being an argument of a nonnegated, ordinary subgoal, or by being equated to a
constant or to a limited variable, perhaps through a chain of equalities. Unfortunately, when

we allow the rule to have some negated subgoals, the definition is sometimes not strong
enough. Consider the example below.

Example: 3.4 Recall Example 3.1 from Chapter 3:

EXT person(X){}
EXT eat_meat(X,Y){}
INT vegetarian(X){
: —person(X),not eat-meal(X,Y).
}
I-vegetarian(?X).
when we compute the answer using Algorithm 2.2, we find that the answer is not the one
we expect, which is vegetarian(X) = { mary,peter } (See Figure 3.5).

The reason that the answer produced is wrong is that some variables appear in a negated
subgoal but not in a nonnegated subgoal. O

To avoid this wrong result, we need a stronger safety definition when we have negated sub-
goals in the rule: we are not allowed to use negated subgoals to help prove variables to be
limited.

We say the rule of Example 3.4 is not safe, since Y appears in a negated subgoal but
not in a nonnegated subgoal, so it could not be limited. However, as we will see in what
follows, if we meet the problem above, we can convert such a rule to a pair of safe rules that
intuitively mean the same thing (see [UlI88]).

Example: 3.5 Let us rewrite the rules in Example 3.4, by creating a new rule that can
project out Y from eat_meat, giving a definition for nonvegetarians:

EXT person(X){}
EXT eat_meat(X,Y){}
INT nonvegetarian(X){
: —eat_meat(X,Y).
}

INT vegetarian(X){
: —person(X),not nonvegetarian(X).



CHAPTER 3. IMPLEMENTATION OF NDATALOG

person(X) eat_meat(X,Y)
X X Y
mary tom beef
tom john chicken
john joy lamb
peter
joy

(a) Relation R

- eat_meat(X,Y)

(b) Relation S

X Y X Y
tom chicken mary beef

" tom lamb mary chicken
john beef mary lamb
john lamb peter beef
joy beef peter chicken
joy chicken peter lamb

(c) Relation S = DOMx x DOMy — S

DOMx DOMy
X Y
mary beef

tom chicken
john lamb
peter
Joy
vegetarian(X)
X

mary

tom

john

peter

joy

Figure 3.5: A Computed Result

(d) Relation RA'S

0



CHAPTER 3. IMPLEMENTATION OF NDATALOG by

}
?-vegetarian(?X).
O

I should mention here that our system does not perform this rewriting automatically at the
moment and this will be left for further work.

3.5 Evaluating Positive Rules with SQL

The principal part of this section is a description of how to convert a fully rectified rule into
SQL statements. We shall deal with only safe Datalog rules that have no negation in this
section. As we aim to have a relational database system as a back-end to our NDatalog
system, we should be able to convert rules into SQL expressions. We focus our attention
on how to convert a rule into SQL. We first briefly introduce the most typical statement of
SQL language, the so-call query block. An SQL block has the form:

SELECT < attributelist >
FROM < relations >
WHERE < predicates >

The SQL block has a simple interpretation in relational algebra:

o [t is equivalent to performing a selection operation using the predicate of the WHERE
clause.

e On the Cartesian product of the relations specified by the FROM clause.

e Projecting the result on the attributes of the SELECT clause.

It is worth noting that the Cartesian product reduces to a join if the predicate of the WHERE
clause includes the join condition and no Cartesian product is required if the FROM clause
contains just one relation.

Consider the Datalog rule

p(;—;g) : _ql(:XTl)v cee 1qn(‘Xn)’ 6 (33)



CHAPTER 3. IMPLEMENTATION OF NDATALOG 52

where 0 is a list of built-in predicates of the form 2, op x,, where op is one of >, >, <, <, =
or #, and z; is a variable or a constant (no functions are allowed).

We convert the rule into SQL expressions by calling the function SQL(). Consider the
form 3.3, assume the relations R, (1 < i < n) are already computed, we obtain the SQL
expression

SELECT  aliasy,.Yo,,...,aliasm,, .Y,
FROM R, aliasy,...,R,, alias,
WHERE ¢§"

where

e Each variable in a predicate occurrence is mapped onto its underlying altribute taken
from the predicate’s definition. This is the attribute that appears in the same position
in the head of the definition as the variable does in the predicate occurrence (see the
end of Example 3.7 for an example of this). Each variable in the rule has a unique
underlying attribute because the rule is fully rectified.

e alias; is a unique alias for ¢;. We have to use aliases as there may be more than one
occurrence of a predicate in the body of the rule.

o Y. is the underlying attribute of the first body variable that is equated to the head
variable X,,. while alias,,, is the alias of the predicate occurrence (i.e. ¢,,) in which
the body variable appears.

e 5" is the same as § except that every variable, X; is replaced with alias;.X;, where
alias; is the alias of the predicate occurrence containing z;, and 8" is a list of com-
parisons involving only the variables mentioned in the non-built-in predicates and the
comparisons in 6 are linked together with “AND”s.

Example: 3.6 Consider the rule
manager( Ename, Mname) : —emp(Ename, Dept), dept(Mname, Dept).
We convert the rule into the SQL expression
SELECT emp;.Ename, depty. Mname

FROM emp empy, dept depty
WHERE emp;.Dept = depty.Dept



CHAPTER 3. IMPLEMENTATION OF NDATALOG 53

3.5.1 Evaluating Nonrecursive Rules with SQL

Because the rules are rectified, we project each expression onto the same variables of the
rule’s head and, for each predicate, take the union of the expression produced from each of
its rules. On encountering a nonrecursive intensional definition R,, the NDatalog system

generates an SQL “CREATE TABLE” statement. If R, has attributes X3,..., Xk, and is
defined by rules R,,,..., Rp,, then SQL(R,) is the expression:

CREATE TABLE R, (X, char(20), ..., Xi char(20));
INSERT INTO R,

SQL(R,,)

UNION

UNION
SQL(R,,);

where, for each 1 = 1,...,n, SQL(R,,) is

SELECT R, .Xi,.... Ry X,
FROM R,
WIHERE R, .X; = R,.X; AND ... AND R, .X; = R,. X

Example: 3.7 Consider a Datalog program

EXT manager(Name, Dept){}
EXT dept(Enum, Dept){}
EXT emp(Ename, Enum){}

INT  job(Name, Dept){
. —emp(Name, Enum), manager(Name, Dept), Enum <’ 20'.
: —emp(Name, Enum), dept( Enum, Dept).

7- job(?Name,?Dept).

We convert the program into the SQL expressions

'In order to simplify the system, we only consider the character type. The focus of the work was on
evaluating rules with negation.



CHAPTER 3. IMPLEMENTATION OF NDATALOG 54

CREATE TABLE job (Name char(20), Dept char(20));
INSERT INTO job SELECT empl.Ename, manager2.Dept
FROM emp empl, manager manager2
WHERE empl.Ename = manager2.Name
AND empl.Enum < ’20’
UNION
SELECT empl.Ename, dept3.Dept
FROM emp empl, dept dept3
WHERE empl.Enum = dept3.Enum;

CREATE TABLE Query0 (Name char(20), Dept char(20));
INSERT INTO Query0 SELECT DISTINCT jobl.Name, jobl.Dept
FROM job jobl;

Consider a Datalog program with given EDB relations Ry,..., R and with positive IDB
relations P, ..., P, to be computed. For each 7, (1 < < m), we could have an evaluation
statement of the form

Pi:=EVAL(pi, Riy..., Ri, Piy... ) Pr)

where EV AL is the union of SQL() for each of the rules for p;. This form indicates an SQL
expression as discussed above.

3.5.2 Evaluating Recursive Rules with SQL

On encountering a recursive node in the reduced dependency tree, Section 2.3.4 described
two methods: naive and semi-naive. Corresponding algorithms were given also. In this
subsection, the main difference is that we evaluate recursive rules with SQL rather than
relational algebra. Let us see how to evaluate a recursive rule by the semi-naive method.

Example: 3.8 Recall the ancestor example (Example 2.9). The base is the following SQL
expression: we use the ordinary EV AL operation to compute the rules without IDB predi-
cates in the body (see Figure 2.4).



CHAPTER 3. IMPLEMENTATION OF NDATALOG

[
s

DROP TABLE DELT Aancestor;
CREATE TABLE DELT Aancestor (X char(20), Y char(20)) ;
INSERT INTO DELT Aancestor (X, Y)

SELECT parentl.X, parentl.Y

FROM parent parentl;
DROP TABLE ancestor;
CREATE TABLE ancestor (X char(20), Y char(20)) ;
INSERT INTO ancestor

SELECT DISTINCT * FROM DELT Aancestor ;

Next we enter the repeat loop. Here we call the EVAL_SQL() function which evaluates an
SQL expression that is equivalent to the EVAL_INCR() function given in Section 2.3.4.

DROP TABLE OLDancestor;
CREATE TABLE OLDancestor (X char(20), Y char(20)) ;
INSERT INTO OLDancestor
SELECT DISTINCT * FROM DELT Aancestor;
INSERT INTO DELT Aancestor (X,Y)
SELECT DISTINCT ancestorl.X, parent2.Y
FROM OLDancestor ancestorl, parent parent?
WHERE ancestorl.Y = parent2.X;
DELETE FROM  DELT Aancestor WHERE EXISTS (
SELECT *
FROM ancestor
WHERE DELT Aancestor.X = ancestor.X
AND DELT Aancestor.Y = ancestor.Y );
INSERT INTO ancestor
SELECT * FROM ancestor
UNION
SELECT * FROM DELT Aancestor;

We repeat this until DELT Aancestor is empty, after which we output ancestor. Because no
MINUS function exists in INFORMIX-SQL, we replace MINUS with the DELETE function.
We also can use the SELECT function instead of the DELETE function to implement a
MINUS evaluation, the SQL expression 1s



CHAPTER 3. IMPLEMENTATION OF NDATALOG 56

INSERT INTO DELT Aancestor (X, Y)
SELECT DISTINCT ancestorl.X, parent2.Y
FROM ancestor ancestorl, parent parent2
WHERE ancestorl.Y = parent2.X;
AND NOT EXISTS (
SELECT *
FROM ancestor
WHERE DELT Aancestor. X = ancestor.X
AND DELT Aancestor.Y = ancestor.Y );

We prefer to use the DELETE function because it is more intuitive and the running times
of the two methods are similar. O

3.6 Evaluating Negative Rules with SQL

It is time to discuss how to evaluate rules with negation. First I give a method to create

DOM using SQL sentences. Assume Ry (Xq,...,Xn),..., Re(X1,..., X,) are EDB relations,

then

CREATE TABLE DOM(X char(20));
INSERT INTO DOM(X)

SELECT Rialias. X,
FROM Ry Rialias
UNION
UNION
SELECT Ryalias. X,
FROM Ry Ryalias
UNION
UNION
SELECT Rialias. X,
FROM Ry Rialias

Let Q(Xy,...,X,) be an IDB relation for ¢, then DOM, is

CREATE TABLE DOM,(X, char(20),..., X, char(20));
INSERT INTO  DOM,(X,...,Xn)

SELECT DOM,.X,...,DOM,.X

FROM DOM DOM,,...,DOM DOM,



CHAPTER 3. IMPLEMENTATION OF NDATALOG AT

Now, let us put negative subgoals into the form (3.3) as

P(TO) : —(II(TI)a oo qi(X5), not Gi+1(Xit1)s - - -, not qa(Xy), 6
We derive the SQ L™ expression

SELECT  aliasp,.Yn,,...,aliasy,,.Y

mg
FROM q1 aliasy, ..., ¢ alias;, not g4y alias;yy, ..., not q, alias,
WHERE §"

where not ¢;(X;) (i +1 < j < n) can be obtained by:

1. creating DOM,,, and

2. subtracting g¢; from DOM,, .

We have discussed above how to create a DOM relation using SQL. The subtraction is done
as follows:

DELETE FROM DOM,,
WHERE EXISTS (

SELECT ¢;1.Y, .. q1.Y
FRONI (]]‘ qjl
WHERE DOM, .Yy = q;1.Yy AND ... AND DOM,, .Y}, = q;1.Y} );

The only difference to the previous expression is that the negated subgoals are involved and
we must create the relation for the negated subgoals. It can easily be solved by creating a
relation DOM as we discussed in Section 3.3.

Let us recall Algorithm 2.1 and modify it for a rule body with negation, so we get an
algorithm as follows.

Algorithm: 3.1 Computing the Relation for a Rule Body with Negation.
INPUT: The body of a rule.

OUTPUT: An expression of SQL, which we call
SQL™(Rp,Rgyy--- Ry, Ry (s Ry,)

METHOD: The same as Algorithm 2.1, except that if there is a subgoal noi ¢(Xj,..., X,),
we use a negative relation expression in SQL as shown above. O



CHAPTER 3. IMPLEMENTATION OF NDATALOG 58

We can get an algorithm, Nonrec™, by modifying Algorithm 2.2 for the nonrecursive rules
with negation.

Algorithm: 3.2 (Nonrec™) Evaluating Nonrecursive Rules with Negation Using SQL.

INPUT: A nonrecursive NDatalog program and a relation for cach EDB predicate appearing
in the program.

OUTPUT: An expression for each IDB predicate p.

METHOD: Same as Algorithm 2.2, but each P; is given by
P;i:= EVAL(piyRy,..., R, Pr,..., P;, Piy1,..., P)
where KV AL™ is the union of SQ L™ for each of the rules for p; (Algorithm 3.1). O

For recursive rules with negation, we can modify Algorithms 2.4 (Naive) and 2.6 (Semi-naive)
to Nailve™ and Semi-naive™, respectively.

Algorithm: 3.3 (Naive]..) Naive Evaluation of an SCC with Negation.

INPUT: Rules for an SCC, the current values for the IDB predicates, the true EDB val-
ues, and the not true EDB values. We use four input arguments because they are needed
in the algorithm for the well-founded semantics presented in Section 3.6.3. In this case, the
IDB predicates arc cach initialized to the empty set (as in Algorithm 2.3) and the not-true
facts in the EDB relations are just the complement of the true facts in the EDB relations
with respect to DOM. That is, we call

Naive,, (SCC,0,{Ry,..., R}, {R,..., R})
METHOD: Same as Algorithm 2.3, but it must call Algorithm 3.2 instead of Algorithm 2.2.
We replace EVAL() by EVAL™(). O

Algorithm: 3.4 (Naive™) Naive Evaluation of a Datalog Program with Negation.

METHOD: Same as Algorithm 2.4, but it must call Algorithm 3.3 for each SCC. O

Algorithm: 3.5 (Semi-naive;, ) Semi-Naive Evaluation of an SCC with Negation.
METHOD: Same as Algorithm 2.5, but it must call Algorithm 3.2 not Algorithm 2.2.
Here we replace EVAL() and EVALINCR() by EVAL™() and EVAL.SQL™(), where

EVAL.SQL™()is EVAL_INCR() evaluation allowing negative predicates in a rule’s body.
O



CHAPTER 3. IMPLEMENTATION OF NDATALOG 59

Algorithm: 3.6 (Semi-naive™) Semi-Naive Evaluation of a Datalog Program with Nega-
tion.

METHOD: Same as Algorithm 2.6, but it must call Algorithm 3.5 for each SCC. O

Example: 3.9 Consider a simple stratified NDatalog program:

Let EDB predicates r and s have corresponding relations R and S, and let IDB predicates
p and g have relations P and Q. Suppose R = {1} and S = {1,2}. Obviously, this is a
nonrecursive program with negation. Therefore we use Algorithm 3.2, starting with predicate
p because the subgoal not p appears in the body of r,. We use the ordinary £V AL™ operation
to compute 7y, so relation P gets tuple {1}, and at same time, we get P = DOM — P = {2}
because DOM = {1,2}. The next stage of the evaluation is similar, so that relation Q
contains tuple {2} from r,. Repeating the above evaluation, the program can no longer yield
new tuples so we reach the least fixpoint. O

In Chapter 2, we surveyed different techniques to integrate negation in logic programs. We
chose three semantics, namely, stratified, well-founded and inflationary to compute logic
programs in order to compare them. In the next subsections, our main aim is to describe
the implementation of the different semantics in the NDatalog system.

3.6.1 Evaluating stratified semantics

In the previous chapter, we have discussed when a program is stratified from a theoretical
point of view. An algorithm that tests for and finds a stratification which is implemented
in NDatalog is in Appendix A. Here we introduce a way to test for and find a stratification
{rom graph theory.

Definition: 3.2 We say a logic program P is stratified iff there are no cycles which contain
a negative edge in its definition dependency graph. We can get a stratification from the
acyclic graph as follows:

e All definition nodes are assigned to stratum 1 at the beginning.

e Assume there is an edge from p to ¢ (p — ¢) and let p and ¢ currently be assigned to
strata ¢ and j respectively. If the edge is positive and j < ¢, then reassign ¢ to stratum



CHAPTER 3. IMPLEMENTATION OF NDATALOG 60

¢ (no change for j > 7). If the edge is negative and j < 7, then reassign ¢ to stratum
¢ + 1 (no change for j > 7).

Recall Example 2.13, where the definition dependency graph is shown in Figure 3.6. A
stratification is given by the numbers labeling the nodes. O

Figure 3.6: Testing For And Finding A Stratification Dependency Graph

The main point mentioned before is that once we get an order for the program, we can
evaluate the program. We now focus our attention on how to evaluate a stratified program
in the NDatalog system. The algorithm is as follows:

Algorithm: 3.7 Evaluation of Stratified Semantics. (NDatalogg,,)

INPUT: An NDatalog program.

OUTPUT: The solution to the relational equations obtained from the program.

METHOD: Let the function TFS() be testing for and finding a stratification which decides
whether the program is stratified and if it is, produces a stratification which groups the
predicates into strata. Let function max-strata() return the maximum number of strata.
The TFS function also orders rules within a stratum on the basis of the rule dependence
graph, so that evaluating rules in the given order yields the correct result. The strata give
us an order in which the relations for the IDB predicates may be computed. The useful
property of this order is that following it, we may treat any negated subgoals as if they were
EDB relations. For a set of recursive rules, we use the semi-naive evaluation approach in
Algorithm 3.5, otherwise we evaluate rules directly.

begin
TFS(program);
if non-stratified program



CHAPTER 3. IMPLEMENTATION OF NDATALOG 61

print error information;
else
for i:= 1 to max-strata(program) do begin
if (nonrecursive)
Call Algorithm 3.2 to evaluate the rules
in the order generated by TFS;
else
Call Algorithm 3.5 to evaluate the rules using Semi-naive™
evaluation in the order generated by SCC;

endfor
output all IDB predicates computed results;
endif
end
O

3.6.2 Evaluating inflationary semantics

[GS86b] [KP91] [AVI1] proposed and analyzed another evaluation approach which can com-
pute programs that involve unstratified negation, named nflationary semantics. [Bid91]
described two different evaluation possibilities for inflationary semantics: deterministic and
non-deterministic. Roughly speaking, deterministic semantics corresponds to “apply ALL
rules” at once; non-deterministic semantics corresponds to “apply ONE rule” at a time.
Intuitively, the result of non-deterministic semantics depends on the position of rules in the
program. Therefore, we implemented the deterministic semantics.

The way that deterministic evaluation of the inflationary semantics proceeds is: consider
first the empty Herbrand interpretation and apply all rules whose premises are satisfied
by the empty interpretation at once. Then repeatedly apply all rules which are satisfied
by the last interpretation until no new interpretation appears. A concrete algorithm for
deterministic inflationary semantics implemented in NDatalog is shown below.

Algorithm: 3.8 Evaluation of Inflationary Model Semantics. (NDatalog;,g)
INPUT: An NDatalog program with IDB predicates py,..., pp.
OUTPUT: A solution to the relational equations obtained from the program.

METHOD: Similar to the Algorithm 3.3 (Naive,,..).

begin
for i:=1to m do begin



CHAPTER 3. IMPLEMENTATION OF NDATALOG 62

P = 0;
endfor
repeat
fori:=1 to m do begin
OLD_P;, = P;

if (P; is used in a negative subgoal)
P;:= DOMp, — P;;
endfor
for1:=1 to m do begin
TEMP_P; := EVAL (pi, Ry,...,Rg, P1,..., P},
Provs- s P

endfor
for1:=1to m do begin
P :=FPUTEMP_P;
endfor
until(OLD_P; = P; for all (1 <i<m));
output computed results for all IDB predicates;
end

Example: 3.10 Consider the logic program P which we used in chapter 2. Assume that
we have an EDB relation LINK = {(a,b), (a,c),(b,d),(d,¢)}.

ri: path(X,Y): =link(X,Y).
ror path(X,Y) : —path(X, Z),link(Z,Y).

Initially, the relation PAT H is empty as we discussed above. On the first round, the deter-
ministic evaluation leads to the relation TEM P_PAT H which is {(a,b), (a,¢),(b,d),(d, c)},
so the relation
PATH =TEMP_PATH = {(a,b),(a,c),(b,d),(d,c)}.
On the second round,
TEMP_PATH = (PATH =< LINK)U LINK = {(a,b),(a,c),(b,d),(d,¢),(a,d), (b, c)}.
At the end of this round,

PATH = {(a,b), (a,c), (b,d), (d, ), (a,d), (b, c)}.



CHAPTER 3. IMPLEMENTATION OF NDATALOG 63

On the third round, only one new tuple (a, ) is produced from r; so that
PATH = {(a,b),(a,c),(b,d),(d,e),(a,d),(be),(a,e)}

at the end of this round. On the fourth round, no more new tuples be produced from the
program and the repeat loop terminates. O

Example: 3.11 Let us consider another example which we used in chapter 2, Example 2.14,
and an EDB D = {d(1)}.

ri: s(X) : =p(X),q(X), not r(X).
r: p(X): —d(X), not ¢(X).

r3: q(X): —=d(X), not p(X).

rq: (X)) —d(X),d(0)

Initially, the relations S, P, @, R are empty and S = {1}, P = {1}, Q = {1}, R ={1}. On
the first round, we get two new tuples from ry and rj, so the relations P = {1}, Q = {1} and
P = {0}, Q@ = {0}. On the second round, a new tuple, s(1) is produced from 7, so S = {1}
and S = {0}. On the third round, no more new tuples are produced from the program and
the procedure stops with the result {p(1),¢(1),s(1)}. O

It is worth noting that when we use Algorithm 3.8 to compute some NDatalog programs, the
inflationary semantics of the program does not correspond to the intuitive meaning of the
program. However, the programs can be easily modified so that their inflationary semantics
corresponds to the intuitive definition. We will discuss more about this in the next chapter.

3.6.3 Evaluating well-founded semantics

Some basic principles of the well-founded semantics have been introduced in Chapter 2. As
we know, not all logic programs are stratified and we sometimes need recursion through
negative predicate occurrences.

Example: 3.12 Let us consider an example discussed in [Bid91]. There is a NDatalog
program P that defines an even number for a finite subset of the natural numbers, say for
the natural numbers from 0 to :. The order on natural numbers is represented by means of
an EDB relation SUC = {(0,1),(1,2),...,(¢ — 1,7)} (instead of using a function), and the
other EDB relation is EVENO = {0}. The NDatalog program is then written:

ri: even(X) :—even0(X).
ro: even(X) :—suc(Y,X),not even(Y).



CHAPTER 3. IMPLEMENTATION OF NDATALOG 64

Obviously, this is a nonstratified program. Let us follow Algorithm 3.5 (Semi-naive,. ) when
computing the program. At first, relation EVEN gets only the tuple {0} from r; and

EVEN = EVEN .delta= DOM — EVEN = {1,2,...,1}

on the first round. Then we will through the repeat-loop for the first time, where we are go-
ing to contribute some tuples to EV EN.delta. These tuples then find their way into EV N
at the end of repeat-loop. That is, on second round we compute:

EVEN.delta = EVAL_SQL (even, EVENO,SUC,EVEN.delta, EVEN.delia)
= Mx(SUC(Y,X) s EVEN(Y).delta)

After removing those tuples that actually appeared before, the relation EV [ N.dclla contains
{2,3,...,1}. At the end of this round, the relation EVEN = EVEN U LV EN.dclta =
{0,2,...,¢} and EVEN = EVEN.delta = DOM — EVEN = {1}. On the third round,
EVEN.delta = EVEN.delta — EVEN = {2} — {0,2,...,7} = 0, and this stops the repeat
loop. T'inally, the relation EVEN is {0,2,3,...,¢} and this is not what we we intuitively
expect the rules should mean. O

This result shows that Algorithim 3.5 is not correct for all kinds of NDatalog programs. In
fact, Algorithm 3.5 does not handle the case in which the dependency graph contains a cycle
in which an edge is labeled with “=”. Fortunately, [GRS88] proposed the well-founded model
which is suitable for every program with negation, not just stratified programs. In [IKSS91],
they describe an algorithm to evaluate the well-founded models. The evaluation method for
computing the well-founded model semantics is based on the doubled program.

Definition: 3.3 Consider a clause C':
Po— Py Py 2Py ooy Py
in any NDatalog program P. In the doubled program D(P), C is represented by precisely

two clauses:

1. an undashed clause:
Po . '—Pl,...,Pn,""P
2. and a dashed clause:

! ! !

PO:_Pl""’Pﬂ’-_‘ n+1a---,—‘1)n+m~

The set of undashed clauses is termed the “undashed half” of the doubled program, while
the rest are termed its “dashed half”. O



CHAPTER 3. IMPLEMENTATION OF NDATALOG 65

The intuition behind this procedure is to compute the well-founded model of P using the
two sets of clauses. One computes the true facts, the other computes the complement of
the false facts. Each clause is positive if we consider the negated predicates to be fixed, so
we can compute the fixpoint of each one using standard bottom-up techniques for programs
without negation. Next we present a bottom-up operational procedure for computing the
well-founded model in our NDatalog system. This procedure provides a practical method of
handling all kinds of programs.

Algorithm: 3.9 Evaluation of Well-Founded Model Semantics. (NDatalogyenr)

INPUT: An NDatalog program.

OUTPUT: A solution to the relational equations obtained from the program.

METHOD: First, compute the order of definition nodes for the program by the Strongly
Connected Components (SCC) algorithm (see Appendix A.2). Group the rule nodes into
four groups below, so we also get an order of rule nodes. Use EDB relations to compute the
DOM relation. Assume

E™ represents the true facts in lower strata.

e [Y~ represents the not false facts in lower strata.

It represents the true facts in current stratum (Strongly Connected Component).

e [~ represents the not false facts in current stratum.

It and I~ refer to the results of evaluations each time around the loop, and the current
evaluation (assume [%) is based on the previous results (assume I7), and vice versa. We
repeat the doubled computing until there is no change in I7.

We divide the rules of each SCC in the NDatalog program into four parts:

rulel: Rules with no IDB predicates in the body.
rule2: Rules with some IDB predicates in the body.

begin
E* := E~ := all EDB relations;
SCC(program);
n:=max-number-by-SCC(program);
for i:= 1 to n do begin
It =1 :=1I%.0ld:=0;



CHAPTER 3. IMPLEMENTATION OF NDATALOG 66

It :=Naive] (rulel, 0, Et, E7);
repeat
It.old :=17;
I7:=Nawe,. (rule2, [T, E*, E~) U It.o0ld,

It:=Naive, (rule2, I~, E* E~) U It.old,
until(/*t = I't.old);
Et:=Et U It
E-=FE~Ul;
endfor
output computed results of all IDB predicates in E;

end

Naive}. () is described in Algorithm 3.32.
a

Example: 3.13 Now let us use Algorithm 3.9 to evaluate Example 3.12 again. As a matter
of convenience, we use the natural numbers from 0 to 9. Figure 3.7 illustrates the evalnation
process. For this example, the function SCC() only finds one strongly connected component.
Hence, the algorithm executes the for loop once. The repeat loop executes five times as
shown in the figure. O

2In [KSS91], they used semi-naive evaluation.



CHAPTER 3. IMPLEMENTATION OF NDATALOG

EVENt = EVENt + EVEN- = EVEN~—
+ TN —
EVENT.old UEVEN? old ~EVEN UEVEN?Y old -~EVEN
initial - 0 1,2,...9 — —
0 — — 02,3,..9 !
1
0 0,2 13.4,..9 _ ___
02 — — 02,45....9 13
2
0.2 0,2.4 1,3.56.....9 — —
3 024 — — 02.46.7..9 13.5
024 0,2,4,6 13,5.7,8,9 — —
02,4,6 — — 0.2,4,6,8.9 13,57
4
0,2,4,6 0,2,4,6,8 1,3,5,7,9 — —
02,46, — — 0,2,4,6,8 13,5,7.9
5
0,2,4,6,8 0,2,4,6,8

Figure 3.7: Calculating the well-founded model

67



Chapter 4

Testing and Results

In the last chapter we described the evaluation algorithms for three semantics of negation.
In this chapter, we will test the various semantics embodied in NDatalog based on various
programs and analyse the results. From a theoretical point of view some comparisons have
been done [Bid91] [AV91] [KP91] [CGT89] that we mentioned in chapter 2. We will compare
the efficiency of the various semantics through an empirical study in this chapter. For the
sake of further discussion, we first divide the logic programs into two groups: restricted logic
programs (stratified programs) and nonrestricted logic programs (nonstratified programs).
For each test, I give the program used and a table in which the times for cach column are
the averages obtained from 10 test runs.

4.1 The XSB system

The XSB system (version 1.4.0) is a top-down evaluation system for Prolog programs which
has been developed by the Department of Computer Science, SUNY at Stony Brook, USA.
There is a meta-interpreter to compute the well-founded semantics in the XSB system; it
is based on the XOLDTNF algorithm!, which can be exponential. In order to check the
correctness of our NDatalogyens evaluation, we chose the XSB system as our comparison
tool. We found the results of NDatalogyenr and XSB are the same when we tested using
various Datalog™ programs. Meanwhile, there are also some time comparisons shown in the
tables which follow. XSB is not coupled to an external database and evaluates programs
containing negation in a top-down manner. As a result, we expected it to be faster than our
system. It is used so that we may check the correctness of results produced by our system,
as well as compare the speed of evaluation to determine the feasibility of our system as an

IThis algorithm is an extension of the OLDT algorithm and it computes, under certain conditions, the
well-founded semantics of general logic programs. See [War91] for more details.

68



CHAPTER 4. TESTING AND RESULTS 69

efficient alternative.

4.2 Testing restricted programs on NDatalog

In this section, I present a few tests I made on the system in order to compare the cfficiency
of NDatalogg,, with the others. First, I discuss the tests for recursive and non-recursive
programs, then I give test results, and finally I discuss the query processing time required
using different semantics in the NDatalog system.

4.2.1 Restricted programs without negation

In order to compare more clearly, let us first consider the program below.

Example: 4.1 This is the common problem of computing the transitive closure (T'C) of a
directed graph. Define an EDB predicate arc(X,Y) which states that there is an arc from
node X to node Y. Then we can express the paths in the finite graph by the rules:

ri: path(X,Y) : —arce(X,Y).
ro: path(X,Y) : —path(X, Z),arc(Z,Y).

Assume the arcs relation is given by ARC(X,Y) = {(0,1),(1,2),...,(z — 1,7)}, where ¢
is a finite positive integer. Then what will happen when we choose different semantics to

0 1

O———0--->0----=0-->0

Figure 4.1: A path graph



CHAPTER 4. TESTING AND RESULTS 70

compute the path relation? The result is that we get the same answer no matter what kind
of semantics are chosen. The result is as shown in Figure 4.1.

path(X,Y) = {(0,1),(0,2),...,(0,3),(1,2),(1,3),...,(1,4),
L (=1,4)}

In this case, we can say that NDatalogg,, has the same expressive power with NDatalogyenr
and NDatalogig for the Datalog programs without negation. The times for testing on the

NDatalog system using the various semantics, as well as XSB, are shown in Table 4.1 and
Figure 4.2. O

TG N Datalogsira N Datalogweus N Datalogin 1 XSB Rem;l;tt:p]es
=10 6.33 5.00 7.00 1.20 55
i=20 18.70 15.30 22.67 3.50 210
i=30 72.14 54.70 77.22 7.66 465
i=40 172.46 109.28 153.09 12.50 820
i=50 309.75 194.10 280.07 20.20 1275

Table 4.1: The times (in seconds) for a recursive program without negation

From Table 4.1 we can see that in this case XSB is much faster than NDataloggya, NDatalogyens
and NDatalog;,qn when the databases grow in size. At the same time, NDatalogg,, and

NDataloginq take longer than NDatalogyens. It should be pointed out that the times spent

on executing the stratified program, NDatalogg,, should be faster than NDatalogyes, but

we get the opposite result. For NDatalogga, we use the semi-naive algorithm which includes

a MINUS operation to remove “new” tuples that appcared before in the repeat-loop (see

Figure 2.4):

AP(X):=AP(X) - P(X)

But the problem is that there is no MINUS function in the INFORMIX-SQL language, so
we have to use another function instead. For example, we can use the DELETE or SELECT
functions as follows:

DELETE FROM AP
WHERE EXISTS ( SELECT P.X
FROM P
WHERE PX =APX)



CHAPTER 4. TESTING AND RESULTS 71

Time(s)
350
— NDatalogyeus
‘‘‘‘ NDataloginpi
300+ = NDatalogs,a /
"""""" XSB /
/
/)
/)
250/~ K
/)
/I
/)

200

150

100

50

Database
tuples

10 20 30 40 50

Figure 4.2: A times comparison graph for a recursive program without negation



CHAPTER 4. TESTING AND RESULTS 72

or

INSERT INTO AP
SELECT X FROM AP
WHERE AP.X =PX
AND NOT EXISTS (
SELECT X
FROM P
WHERE PX =APX)

It turns out that these functions are very time consuming. In our system, we usc the
DELETE function as we mentioned in chapter 3. The times we obtained when using NOT

EXISTS were similar to those with DELETE.

For NDataloging, the problem is that the algorithm duplicates evaluation of parts of the
program. For example, if a rule only involves EDB predicates in its body, we should evaluate
it only one time because we cannot get more new facts from the rule. However, NDatalogi,g
will evaluate it at least twice. The check for equality of relations is also expensive in the
repeat-loop and the number of NDatalog;,q iterations is more than for NDatalogyens. We
should also point out that for this example the MINUS operation does not improve efficiency
since only new tuples are generated on each iteration.

There are time proportion graphs shown in Figures 4.3, 4.4 and 4.5 for stratified, well-
founded and inflationary semantics, respectively. These graphs represent the percentage of
time spent on various stages of the evaluation. From Figure 4.3, it is easy to sce how expen-
sive it is to imitate the MINUS function in INFORMIX-SQL. If we only consider the time of
rule evaluation in Figures 4.3, 4.4 and 4.5, the result is given in Table 4.22. For NDatalogg,,
and NDataloging the proportion of time is given by eval in Figure 4.3 and Figure 4.5, re-
spectively. For NDatalogyenr, the proportion of time is given by both eval P~ and eval P*
in I'igure 4.4. There is a time comparison graph shown in Figure 4.6. The relative efficiency
of the three semantics is now more in line with our expectations.

As another experiment, I also wrote another program using naive evaluation with stratified
semantics (NDatalogh?**) to remove the problem of the MINUS operation. We would now
expect the times for NDatalogyens and NDatalogh®¥® to be similar. The times for testing
are shown in Table 4.3 and Figure 4.7. The reason NDatalogyeys is still somewhat faster
than NDatalogh®¥® is that the termination condition (IT = I*.old) in NDataloguy (sce

Algorithm 3.9) is tested only half as often as in NDataloghi**.

2Since XSB does not use an external database systern, it is not possible to determine how much time is
spent on different operations.



CHAPTER 4. TESTING AND RESULTS

minus (54%)
— eval (5%)

- keep old (3%)
- init-eval (2%)

— other (11%)

check empty (4%)

union (22%)

Figure 4.3: A time proportion graph for stratified semantics.

keep old (10%) — eval P- (29%)

— init P+ {2%)
other (1%)
eval P+ (31%)

- check equal (27%)

Figure 4.4: A time proportion graph for well-founded semantics.

eval (57%)
_— init-eval (3%)

—— keep old (6%)

----- other (4%)

check equal (30%)

Figure 4.5: A time proportion graph for inflationary semantics.



CHAPTER 4. TESTING AND RESULTS 74

TGs) N Datalogsira N Datalogweus N Datalogin i XSB Result tuples
path

i=10 0.25 2.61 3.97 o 55

i=20 0.92 8.69 15.01 R 210

i =30 2.77 23.52 37.47 - 465

i =40 6.93 61.55 87.34 _ 820

i =250 15.07 103.99 185.43 _— 1275

Table 4.2: The times (in seconds) for a recursive program without negation (only rule eval-
uation)

1(s) NDatalogetra NDatalogy.euy NDatalogin 1 XSB N Datalogl@ive Res”]:);‘l’]';les
i=10 6.33 5.00 7.00 1.20 5.33 55
i=20 18.70 15.30 22.67 3.50 16.67 210
i=30 72.14 54.70 77.22 7.66 62.00 465
=40 172.46 109.28 153.09 12.50 125.00 820
=50 309.75 194.10 280.07 20.20 220.00 1275

Table 4.3: The times for a recursive program without negation



CHAPTER 4. TESTING AND RESULTS 5
Time(s)
200
- NDatalogwe”f ,
“““ N Dataloging N
— — ~ NDatalogsiya ’,'
150 B ,I
1
100
50
Database
0 tuples

10 20 30 40 - 50

Figure 4.6: A times comparison graph for a recursive program without negation (only rule
evaluation)



CHAPTER 4.

Time(s)

TESTING AND RESULTS

350

3001

2501

2007

150

100

50

— NDatalogyey
“““ NDatalogin s
— — ~ NDatalogsira

— — NDatalog™*v*

stra

50

Database
tuples

Figure 4.7: A times comparison graph for a recursive program without negation



CHAPTER 4. TESTING AND RESULTS 7

4.2.2 Restricted programs with negation

Example: 4.2 Consider a logic program that defines a bachelor relation. Let Malc(X) be
an EDB relation with the obvious meaning and Married(X,Y) be an EDB relation with
the meaning that X is the husband of Y. Then a bachelor relation can be defined as follows:

r1:  bachelor(X) :—male(X),not husband(X).
ro:  husband(X) :—married(X,Y).

The results are shown in Figure 4.8 after computing the programn with various semantics.
Assume the relation Male contains 50, 100 and 200 tuples, while the rclation Marricd
contains 25 tuples. A table of execution times is shown in Table 4.4.  Irom [Figure 4.8,

male married bachelor bachelor
X X Y X -
— — oy tony tom
) tony
tony sam tlna davld
o david
david bob susan park
park
rk bell
bob
bob
sam
<am N Datalogsra
bell
bell
NDatalogeny
N Datalog, s

Figure 4.8: Answers to the bachelor program

obviously, the inflationary semantics produces a result which is not wanted by us. The reason
is that the inflationary semantics fires all rules at once. From [Rei78] [ClaT8], we know that
the relation

Husband = DOM — Husband

and the relation Husband is empty at the beginning. So r; will get all the tuples of male after
the first iteration. In order to avoid this apparent divergence between what we intuitively
expect a rule should mean and what answer we would get if the programs contain some
negative predicates, sometimes we have to modify the rules which contain only negative IDB
predicates and EDB predicates in their bodies by defining a new IDB predicate and putting
it into the rule’s body. The new predicate is used to delay the derivation of new tuples in



CHAPTER 4. TESTING AND RESULTS 78

T(s) N Datalogsra N Datalogwen; N Dataloginsi XSB Result tuples
bachelor
male= 50 1.6 4 —_— 2.0 25
male= 100 1.8 4.5 E— 6.0 75
male= 200 2.7 6.8 — 22.5 175

Table 4.4: Times for the bachelor program

bachclor until the new predicate and husband have been computed in the current iteration.
Finally, the result which is evaluated by NDatalogi,q should be same as the other semantics.
This rewriting can be done automatically so that the programmer is relieved of the task. A
generalisation of the method for all restricted programs is described below in Example 4.3.
For example, we can change the above program by making a new IDB predicate men and
putting it into r;, and then define men to be the same as the EDB predicate male. We
rewrite the program as:

ri: bachclor(X) : —male(X), not husband(X),men(.X).
ro:  husband(X) :—marricd(X,Y).
r3: men(X) : —male(X).

For this new program, NDatalog;,q provides the expected answer. A running times compar-
ison is shown in Table 4.5 and Figure 4.9. O

T® \ | NDatalog.ira N Datalogu.uy N Datalogungi XSB Result tuples
bachelor
male= 50 1.8 5.5 6.2 2.5 25
male= 100 2.4 7.5 8.8 9.0 ™
male= 200 3.3 9.7 12.2 35.5 175

Table 4.5: Times for the modified bachelor program

From this example we know that we should be careful in choosing the inflationary seman-
tics when the programs involve some negative subgoals in a rule’s body. But we still can



CHAPTER 4. TESTING AND RESULTS 79

Time(s)
40
—— NDatalogyey
_____ NDatalogi, s
" — — - NDatalogsa
----------- XSB
30—
20—
10— ',."""‘—”“’
= T | | | ! | | male tuples
. % 100 150 200

Figure 4.9: A times comparison graph for the modified bachelor program



CHAPTER 4. TESTING AND RESULTS S0

say that NDatalogga, NDatalogi,g and NDatalogywens have the same expressive power using
restricted programs with negation. Now let us compare Table 4.5 against Table 4.4. The
times for the modified program are about 1.5 times slower than the original program. It is
interesting that XSB becomes slower when negation is involved and there is a big database.
The reason is that, for the well-founded semantics in XSB, a very simple meta-interpreter is
used. This interpreter simulates an algorithm, called XOLDTNF, which can be exponential
as mentioned in section 5.1. We also sece that stratified is faster than well-founded here,
because the program is not recursive and therefore removal of tuples is not needed.

Let us use an example to illustrate a standard way to modify the restricted programs in
order to ensure that the inflationary semantics has the same meaning as the stratified and
well-founded semantics when some negative subgoals are involved.

Example: 4.3 Let us continue to consider Example 4.2. As we know, this is a stratified
program with bachelor in stratum 2 and husband in stratum 1. According to the number
of the stratum, let us define a new IDB predicate stratum1(X). Assuming there is an EDB
predicate stratum0(1), the program will be converted to

ri: bachelor(X)  : —male(X),not husband(X), stratum1(7).
ro: husband(X)  —marricd(X,Y). stratum0(Z).
ra:  stratum1(X) : —stratum0(X).

As seen from the example, for the inflationary semantics, we just use some “temporary”
relations (the number of “temporary” relations depends on the number of strata in the
program) to delay the firing of certain rules. We add an extra stratum subgoal to cach
rule according to its stratum number. In addition, if there are n strata, we first assume
stratumo(1) is an EDB fact, and then add n — 1 rules to the program where cach rule has
the form stratum;(X) : —stratum;_1(X). (1 <2 <n —1). In this way we can get the same
meaning with the stratified and well-founded semantics if the programs are stratified. Let
us consider another example.

Example: 4.4 Assume people(Person) = {a1,az,...,a;}, seen(Person, Film) = {(a1, f1),
(ah f2), ceey (Gl, fxo), ((12, fl), sy (az, fio), (a'h fl)7 (as, fs), (Gs, fe), (a7, f7), (as, .fs), (a9, fo),
(a0, f10)} and showing(Film) = {fi1, f2,..., fio} are EDB predicates, and in order to com-
paring easily, we only increase the number of people. Let seen_all_films(Pcrson) be an
IDB predicate which represents people who have seen every film that is currently showing.
Then seen_all_films(Person) can be defined by the following program:



CHAPTER 4. TESTING AND RESULTS 81

ri: seen_all_films(Person) : — people(Person),not not_seen_some_film(Person).
ro: not_seen_some_film(Person) :— people(Person),showing(Film),
not seen(Person, Filn:).

Clearly, the program is a stratified program and there are 3 strata. If we wish to get the
same results as the stratified and well-founded semantics from the inflationary semantics,
we need to rewrite the program by using the way which we have just mentioned above. The
program will be converted to

r1: seen_all_films(Person) : —  people(Person),not not_scen_some_film(Pcrson),
stratum?2(X).

ro: nol_scen_some_film(Person) :— people(Person), showing(Film),
not seen(Person, Film), stratuml1(X).

r3: stratum?2(X) : —  stratum1(X).

ry: stratuml(X) i —  stratum0(X).

A comparison of running times is shown in Table 4.6 and Figure 4.10. O

& N Datalog,ira N Datalogyeny N Datalogin i XsB

A
1 =10 5.7 10.2 11.4 5.1
1= 20 9.3 14.9 15.5
1= 30 15.7 22.7 22.8 _—
1= 40 24.5 32.4 30.3 e
1= 50 35.3 42.9 39.9 ——

Table 4.6: Times for the modified program for seen_all_film s

As we see, NDatalogg, is faster than NDataloging and NDatalogyens. The reason is that both
examples in this section are nonrecursive, so NDatalogs,. never uses the MINUS operation.

3XSB could not run for ¢ > 10 in this example.



CHAPTER 4. TESTING AND RESULTS

Time(s)
50
N Datalog.,cuy
'''' N Datalogin i
~ " NDatalog,,
40 1
30 - g
/
s
20 T
// s
> o~ -
10+ -7
Vi P -~
7
7
7
7
1 } | I
0 I } t T

Figure 4.10: Running times for the modified program for scen_all_films

82

people’s
tuples



CHAPTER 4. TESTING AND RESULTS 83

4.3 Testing nonrestricted programs on NDatalog

In the last section we have dealt with stratified programs. Recall that some queries are not
expressible by stratified programs. So in this section, we will focus our attention on all kinds

of Datalog™ programs and not just stratified programs. First let us quote an example which
is discussed by [Bid91].

Example: 4.5 Consider a logic program that defines even numbers for a finite subset of
natural numbers. There is an EDB predicate suc(X,Y) which represcuts the finite natural
numbers from 0 to ¢. Suppose there exist facts { suc(0,1),---,suc(i — 1.7),cven0(0) }. The
program should be written:

ri: even(X) :— even0(X).
ror even(X) :— suc(Y,X),not even(Y).

Obviously, the program is not stratifiable because of the negation appearing in the recursive
rule ro. How about the other semantics? After testing on the NDatalog system, we find that
NDatalogyenr gives us even numbers as we would expect. Times are shown in Table 1.7, with
the corresponding graphs in Figure 4.11.

Result tuples
T(s) N Dataloggiyq NDatalogyeny N Datalogin g XSB
even

1=35 3.4 0.5 3

1 =10 - 5.8 - 2.5 6

1 =20 - 11.9 I 30.3 11

1 =30 —_— 19.3 E—— 150.5 16

1 =40 — 30.3 e 498.0 271

1 =50 _— 39.2 _— 1458.0 26

Table 4.7: The times for the even program

For NDatalogi,a, all natural numbers are given except cven(1). The problem is, as we
mentioned in Example 4.2, that there is not any positive IDB predicate to restrict the

negative predicate not even(Y') in r; in the program. Can we find a logic program which



CHAPTER 4. TESTING AND RESULTS 84
Time(s)
40
—— NDatalog,euy
---------- XSB
30 r
20—
i
10/
....... T 1 1 1 | . | . Database
0 10 20 30 40 50 tuples

Figure 4.11: XSB vs NDatalogyens for the even program



CHAPTER 4. TESTING AND RESULTS 85

computes even numbers using NDatalogi,q? Fortunately, the program can be easily modified
in a similar way to Example 4.3. We need to introduce an IDB predicate reached into ry
that will intuitively be used to delay the production of certain facts and achieve the goal of
restricting the negative predicate not even(Y’). The modified program follows:

r: even(X) : — even0(X).
ro: even(X) : — suc(Y, X),not even(Y),reached(Y).
r3:  reached(X) :— even0(X).

)

(X
rq: reached(X) :— suc(Y,X),reached(Y).

Now the inflationary semantics produces the same answer as the well-founded semantics,
that is, it corresponds to the intended definition of even numbers. A table of running times
is shown in Table 4.8, with the corresponding graphs in Figure 4.12.

Another standard method which modifies nonrestricted programs in order to make the infla-
tionary semantics have the same meaning as the well-founded semantics when some negative

subgoal are involved is discussed in [AV91] and [Bid91]. O

T® \|NDatalogera  |NDatalogwens | N Datalogins: XSB mii:zt mp]:ien
1=95H — 6.7 7.1 1.5 6 3
i=10 - 11.0 12.5 142 11 6
1= 20 — 17.8 20.8 over 3 hours 21 11

i =30 — 304 37.2 over 3 hours 31 16
1 =40 - 43.0 50.8 over 3 hours 11 21

i =50 - 65.6 67.1 over 3 hours 51 26

Table 4.8: The times for the modified even program

It is time to compare Table 4.8 and Table 4.7. Obviously, XSB is good for small samples in
this case, namely, nonstratified programs. When the databases grow, the times of XSB have
a sudden change as © = 20 in Table 4.7 and : = 10 in Table 4.8. This would seem 1o indicate
exponential behavior. So using a meta-interpreter in XSB is just not a very good way to
compute the well-founded semantics [War94]. In order to make the inflationary semantics
have the same meaning as the well-founded semantics, we may have to modify the program.
As Table 4.8 shows, the times for the modified program is about 1.9 times longer than before



CHAPTER 4. TESTING AND RESULTS

Time(s)
150
: —— NDatalog,.uy

i _____ N Datalogi, g

i .......... XSB
100—

wb
...... , | ‘ | 1 | L | ]
0 L 20 30 40

Figure 4.12: A times comparison graph for the modified even program

86

Databasc
tuples



CHAPTER 4. TESTING AND RESULTS 87

using NDatalogyens. But the change may bring about a 57 times increase for XSB.

We also tested an example [Ros90] which concerns the operation of a complex mechanism

that is constructed from a number of components each of which may itself have smaller
components.

Example: 4.6 We express that the mechanism is known to be working either if it has been
(successfully) tested, or if all its components (assuming it has at least one component) are
known to be working. The program can be written as follows:

ri: working(X) : — tested(X).
rot working(X) : — part(X,Y),not has_suspect_part(X).
r3: has_suspect_part(X) :— part(X,Y),not working(Y).

Here, tested and part are EDB predicates. A table of part for 2 = 10 is shown in Table 4.9.
The tested components are a and all even numbers. Evaluating the program gives working

X Y 1 2 3 4 5 6 7 8 9 10
a * * * * *

b * * * * *
c * * * * * * * * * *

Table 4.9: Table for part(X,Y) for : = 10.

components which are a, b and all even numbers. The times for getting these results from
NDatalogyenr and XSB are shown in Table 4.10 for 5 different values for part(X,Y). Once
again, we see that XSB is very slow. O



CHAPTER 4. TESTING AND RESULTS

88

T(s) \ N Dataloggiyrq NDatalogyeny N Datalogin 1 XSB

1 =10 - 5.7 - 12.6
i=20 - 6.3 _— 210.7
i=30 - 6.7 B 1282.9
i =40 E— 7.0 —_— 4430.0
i=50 - 8.7 —_— 12396.0

Table 4.10: The times for getting working parts




Chapter 5

Conclusion and Further Work

5.1 Conclusion

Since theories about negation in logic programming were proposed by Reiter [Rei78], and
by Clark [ClaT78], more general theories have been nicely developed in Datalog during the
last ten years. In particular, the interaction of negation and recursion has been extensively
studied.

This thesis can be considered as being comprised of three phases: introduce negation into
Datalog, analyse current semantics models with negation, and compare the efficiency of the
various semantics. In the introduction phase, Chapter 2 and 3, I introduced Datalog which
1s a declarative language for deductive databases that has a Prolog-like syntax but whose
programs are evaluated using database operations. Some concepts of negation, such as the
Closed World Assumption and Negation As TFailure, and semantics with negation, such as
the Stratified, Well-founded and Inflationary semantics, were introduced in Chapter 2.

An overview of the NDatalog System and an evaluable NDatalog language which is based
on the DataloglC language was introduced in Chapter 3. In addition, I described how
NDatalog programs are converted into SQL statements and evaluated. 1 further discussed
three different semantics with negation, Stratified, Inflationary and Well-founded, and I gave
corresponding implementation algorithms.

In the comparison phase, Chapter 4, I presented a performance analysis and comparison
of the various semantics with negation on the NDatalog system. [irstly, the results indi-
cate that, for a recursive program without negation, XSB i1s much faster than NDatalogy.s,
NDatalogg,a and NDatalog,g (see Figure 4.2). NDatalogy.s is faster than NDatalogg,,, but
when we further analyse the operation time, we find most time is spent on removing “new”

89



CHAPTER 5. CONCLUSION AND FURTHER WORK 90

“new” tuples in NDatalogga, the problem being that removing tuples using INFORMIX-
SQL is slow; if we only consider pure evaluation time, the result is that NDatalogg,, is much
faster than NDatalogyens and NDatalogi,g (see Figure 4.6). For nonrecursive programs with
negation, NDatalogg, is much faster than NDatalogyenr, NDataloging and XSB (see Figure
4.9). NDatalog,.ns is faster than NDatalogi,a and XSB when we evaluate nonstratified pro-
grams on big databases (see Figure 4.12). Furthermore, results are presented to indicate
that XSB is much faster than NDatalogga, NDatalogi,g and NDatalogwenr when no nega-
tive subgoals are involved (see Figure 4.2). Finally, performance comparisons indicate that
XSB is not always about an order of magnitude faster than current deductive databases sys-
tems as claimed in [War91]. I hope these results may provide information of use in designing
and implementing the next generation of logic programming and deductive database systems.

Figure 5.1 shows the hierarchy of expressiveness of different semantics models of NDatalog
in this thesis.

Programs without negation Stratified programs Non-stratificd programs

Figure 5.1: Hierarchy of expressiveness of different versions of NDatalog



CHAPTER 5. CONCLUSION AND FURTHER WORK 91

5.2 Further work

We have expanded the power of the original Datalog system [Was90], including the ability
to handle rules which have negation subgoals, but the ability to express disjunctions and
functions have still not been included. If the last of these can be achieved we can use Skolem

functions to model existential variables and thus solve the subset constraint problem men-
tioned in [Was90].

Even though we have described three main semantics with negation, there are several aspects
of semantics of negation in logic programming that are not dealt with in this thesis which we
leave for further work, for example, the perfect model semantics [Prz88], the stable model
semantics [GL88] and the default model semantics [BF87].

So far I do not consider extensions of the NDatalog language which allow for negative liter-
als in heads of rules as discussed by [AV91]. These negative literals arc interpreted as tuple
deletions and are interesting with respect to expressive power.

It is also important to improve the NDatalog system so that it can create EDB relations
directly and not in a DBMS such as INFORMIX. However, as evaluation speed is also im-
portant especially if we wish to evaluate the programs with negation. we should be careful
in computing the DOM relation when large amounts of data are involved. If we are to ex-
pand the system to handle the DOM relation optimisation, as we discussed in Chapter 3, a
corresponding expansion of the data types will have to be implemented.



Bibliography

[ABWS6)

[AVO1]

[BFS8T]

[Bid9l]

[BR86)

[CGTS9)

[CGT90]

[CH82]

[CHS5)

[ClaT8]

K. Apt, H. Blair, and A. Walker, Towards a Theory of Declarative Knowledge.
In Proceedings, Workshop on Foundations of Deductive Dalabases and Logic
Programming, Washington DC, pp. 546-629, 1986.

S. Abiteboul and V. Vianu, Datalog Extensions for Database Queries and Up-
dates. In Journal of Computer and System Sciences, 43:62-124, 1991.

N. Bidoit and C. Froidevaux, Minimalism subsumes default logic and circum-
scription in stratified logic programming, In Proc. Logic In Computer Science,

(IEEE, New York 1987) pp. 89-97.

N. Bidoit, Negation in Rule-based Database Languages:a Survey. In Theoretical
Computer Science, 78 (1991) pp. 3-83, North-Holland.

F. Bancilhon and R. Ramakrishnan, An Amateur’s Introduction to Recursive
Query Processing Strategies. In Proc. ACM-SIGMOD Conference on the Man-
agement of Data, pages 16-52, 1986.

Stefano Ceri, Georg Gottlob, and Letizia Tanca, What You Always Wanted
to Know About Datalog(And Never Dared to Ask). In IEEE Transactions on
Knowledge and Data Engineering, 1(1):146-166,March 1989.

Stefano Ceri, Georg Gottlob, and Letizia Tanca, Logic Programming and
Databases. Springer-Verlag 1990.

A. Chandra and D. Harel, Structure and Complexity of Relational Queries. In
Comput. System Sci., 25(1) pages:99-128, 1982.

A. Chandra and D. Harel, Horn Clause Queries and Generalizations. In .J. Logic
Programming, 1(1985), pp. 1-15.

K. L. Clark, Negation as Failure. In Logic and Data Bases H.A. Gallaire and J.
Minker, Eds., pp. 293-322, Plenum, New York, 1978.

April 1994.

92



BIBLIOGRAPHY 93

[Gel8S)

[GL8S]

[GRSSS]

[GS86a]

[GS86b]

[Kol89]

[KP91]

[KSS91]

[L1087]

[MWSS]

[Nay86)

[Prz88]

[Prz89)]

A. Van Gelder, Negation as Failure Using Tight Derivations for General Logic
Programs. In Foundations of Deductive Databases and Logic Programming,
pages 149-176, 1988.

Michael Gelfond and Vladimir Lifschitz, The Stable Model Semantics for
Logic Programming. In Proc. 5th International Conference on Logic Program-
ming, 1988, pp. 1070-1080.

A. V. Gelder, A. Ross, and J. S. Schlipf, The Well-founded Semantics for
General Logic Programs. In 7th ACM Symp. Principles Database Syst.(PODS).
pp. 221-230, Mar 1988.

D. M. Gabbay and M. J. Sergot, Negation as Inconsistency. In Journal of Logic
Programming, 3(1):1-36, 1986.

Gurevich and Shelah, Fixed Point Extensions of I'irst Order Logic. In Proc.
26th Symp. on Foundalions of Computer Science, 346-353 , 1986.

PH. G. Kolaitis, On the expressive power of stratified logic programs. In Inform.
and Comput, Report CRL 89-14, Univ. of California, Santa Cruz, August 1989.

Phokion G. Kolatts and Christos H. Papadimitriou, Why Not Negation by
Fixpoint? In Journal of Computer and System Sciences, 43:125- 114, 1991.

David B. Kemp and Peter J. Stuckey and Divesh Srivastava, Magic Sets and
Bottom-up Evaluation of Well-Founded Models. In Logic Programming, Pro-

ceedings of the 1991 International Symposium, edited by Vijay Saraswat and
Kazunoti Ueda, pp. 337-351, 1991.

J. W. Lloyd, Foundations of Logic Programming. 2ud extended ed. New York:
Springer-Verlag, 1987.

David Maier and David S. Warren, Computing with Logic- logic programming
with prolog. The Benjamin/Cummings Publishing Company, Inc. 1988.

S.A. Naqvi, A Logic for Negation in Database Systems. In Proc. Workshop
on Foundations of Deductive Databases and Logic Programming, pages 378387,
1986.

T.C. Przymusinska, Perfect Model Semantics. In Proc. 5th International Con-
ference on Logic Programming, 1988, pp. 1081-1096.

T.C. Przymusinska, Every Logic Program Has a Natural Stratification and an
Iterated Fixed Point Model. In ACM Symposium on Principles of Database
Systems, 1989.



BIBLIOGRAPHY 94

[Rei78]

[Ros89]

[Ros90]

[SB&S]

[She88]

[U1188]

[War91]

[War94]
[Was90]

[Yan90]

Raymond Reiter, The Closed World Assumption. In Logic and Data Bases H.A.
Gallaire and J. Minker, Eds., pp. 55-76, Plenum, New York, 1978.

K.A. Ross, A Procedural Semantics for Well-Founded Negation in Logic Pro-

grams. In Proc. of the 8th ACM Symposium on Principles of Database Systems,
99-33, 1989.

K.A. Ross, Modular Stratification and Magic Sets for DATALOG Programs with
Negation. In Proc. of the 9th ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, pages 161-171, April 1990.

Sara Baase, Computer Algorithims-Introduction to Design and Analysis. second
edition, page 191-197, 1988.

John C. Shepherdson, Negation in Logic Programming. In Foundations of De-
ductive Databases and Logic Programming, (Jack Minker, 1id.), Morgan Kauf-
mann Publishers, Los Altos, CA, 19-88, 1988.

Jeffrey D. Ullman, Database and Knowledge-Base Systems. volume 1, Computer
Science Press, Potomac, Md., 1988.

David S. Warren, Computing the Well-Founded Semantics of Logic Programs. In
Technical Report 91/12 Computer Science Department, SUNY at Stony rook.

In private communication with Prof. David S. Warren in 1994.

Mark P. Wassell, Semantic Optimisation in Datalog Programs. MSc Thesis,
Department of Computer Science, University of Cape Town, S.A.; 1990.

Mihalis Yannakakis, Graph-theoretic Methods in Database Theory. In Proc.
9th ACM SIGMOD Symp. on Principles of Database Systems, pp. 230-242.
Nashville, Tennessee. Apr. 1990.



Appendix A

Data Structures and Algorithms

This appendix details some of the data structures which are based on the DataloglC system
and are somewhat different. Some principle algorithms used in the NDatalog system are
given here also.

A.1 Data Structures

In this section, the main data structures are outlined as follows.

Definition Nodes

The DEFNNODE structure holds the information for both the IDB and IKDB predicates.
For an IDB predicate, the structure has the following major fields:

e Name of the definition.

o Argument list.

o Negation-A label is TRUE if the definition includes negation in the tree.

e Stratum number.

e Non-recursive rule list.

o Recursive rule list.

¢ Child list-List of the other definitions in this definition’s recursive component.



APPENDIX A. DATA STRUCTURES AND ALGORITHMS 96

e Recursive component-List of all definitions which depend on this one.

e Pointers to left and right children in definition tree.

EDB predicate definitions will have only the name, argument list and negation label fields.

Rule Nodes

The RULENODE structure is used for the rules and queries. The following is a list of
the major fields in the structure.

e Name of the rule.

Argument list for the head of rule.

Negation-A label is TRUE if the rule have negation in the body.

Body predicate list.

Reloplist of rules.

Predicate Nodes

The PREDNODE structure can be of two types: Predicate and Relop. The former is
for non-evaluable predicates, while the latter is for evaluable predicates. These are linked
together to form the body of the rules. For database predicates the structure is as follows:

e Name of the predicate.

Argument list-List of arguments in this occurrence.

Negation—-A label is TRUL if the predicate is negated.

Predicate number-A number indicating the predicate’s position in the body of the rule.

Pointer to definition for this predicate!.

There is one occurrence of the structure for cach occurrence of a predicate in the program.
Evaluable predicates are held in a structure that has fields for:

e Type of operator (“=",“#£",“>" “>7 “ < or* <7).

IThis is the definiton to rule arc in the rule/goal graph.



APPENDIX A. DATA STRUCTURES AND ALGORITHMS 97

Pointer to first operand.

Pointer to second operand.

Argument Node

An argument that appears in a definition head, the head of a rule or a predicate occurrence
is hel! in the ARGNODE structure. An argument can be one of three types: VARIABLE,
CONST_STRING and CONST_NUM. The union type structure is not used since there is

some sharing of fields.

Type of argument.
String-"This is the text version of the argument (as it appeared to the lexical analyser).

Number-For variables this is the argument’s position in an argument list; for CONST_NUM
arguments this is the number itself.

Adornment-Used in production of adorned program (possible values are BOUND or

FREE).

Label-Used in queries (possible values are BOUND, FREE, or EXISTENTIAL).

A.2 Algorithms

A.2.1 Rectification

Algorithm: A.1 Fully Rectify a Rule
Input: A rule.
Output: Fully Rectify a Rule.

begin {rectification}

for every predicate, p;, in the rule (head and body)
for every argument a in arglist of p;
if a is a variable, X

Convert X to X; form;

if there is a variable v with same name as X in 7'
Add “XJ’: = v” to the reloplist for the rule;
/*T is lookup table for variables™/

Add YJ‘ to T' (replacing v if necessary);



APPENDIX A. DATA STRUCTURES AND ALGORITHMS 98

else
Copy and convert a to a variable X,;
Add “X, = a” to reloplist;
endif
endfor
endfor
end{rectification}

A.2.2 Testing for and Finding a Stratification

Algorithm: A.2 Testing for and Finding a Stratification (TFS) [U1188]

INPUT: A set of NDatalog rules.

OUTPUT: A decision whether the rules are stratified. If so, produce a stratification.
METHOD: Start with every predicate assigned to stratum 1. Repeatedly examine the rules.
If a rule with head predicate p has a negated subgoal with predicate ¢, let p and ¢ currently
be assigned to strata 7 and j respectively. If ¢+ < 7, reassign p to stratum 7+ 1. Furthermore,
if a rule with head p has a nonnegated subgoal with predicate g of stratum j, and ¢ < j,
reassign p to stratum j. These laws are formalized as follows:

begin
for each predicate p do
stratum[p] := 1;
endfor
repeat
for cach rule r with head predicate p do begin
for each negated subgoal of r with predicate q do
stratum(p] := max(stratum(p],1+stratum|q]);
for each nonnegated subgoal of r with predicate q do
stratum|p] := max(stratum|p],stratum|q))
endfor
untilthere are no changes to any stratum
or some stratum exceeds the number of predicates
if some stratum exceeds the number of predicates
reture(“no”)
endif
output an order of definitions from stratum
return(“yes”)
end



APPENDIX A. DATA STRUCTURES AND ALGORITHMS 99

A.2.3 Finding Strong Connected Components

Algorithm: A.3 Strong Connected Components (SCC) [SB88]
Input: G = (V, E), a digraph represented by linked adjacency lists.
Output: An order of vertices (definition nodes) in each strong component.

Procedure StrongComponents(adjacencyList: HeaderList; n: integer);
var
dfsNumber: array[VertexType| of integer;
low: array[VertexType] of integer;
dfn: integer;
v: VertexType;
order: the order number of vertex;
SC: Stack;
We define that TOP is a function that returns the top item on a stack
removed: array|[VertexType| of boolean;

Procedure SCompDFS(v: VertexType);
Var

w: VertexType;

ptr: Nodepointer;

begin { SCompDFS }
{ Process verlex when first encountercd. }
dfn:=dfn+1;
dfsNumber[v]:=dfn; low[v]:=dIn;
remove[v]:=FALSE;
ptr:=adjacencyList[v];
while ptr # nil do
w:=ptrT.vertex;
if dfsNumber[w]==0 {unmarked} then
SCompDFS(w);
{ Now backing up from w to v}
low[v]:=min(low[v],low[w])
else{ w was already encountered }
if not removed[w| then
low[v]:=min(dfsNumber[w],low[v])
endif{ if w is still in the tree }
endif{ of processing w };
ptr:=ptrT.link:
endwhile;



APPENDIX A. DATA STRUCTURES AND ALGORITHMS

{ Now backing up from v }
if low[v]==dfsNumber[v] then
output an order number i of the definition node for a new strong component,
removed[v]:=TRUE;
output order;
while SC is nonempty and dfsNumber[TOP(SC)] > dfsNumber[v] do

output order (of TOP(SC));
removed[TOP(SC)]:=TRUE,;
pop SC
endwhile{ while vertices from SC are in current strong component }
order:=order+1;
else{ haven’t found a new strong component }
push v onto SC
endif{ backing up from v }
endbegin{ ScompDFS }

begin { StrongComponents }
for v:i=1 to n do dfsNumber[v]:=0 endfor;
dfn:=0;
for v:i=1 to n do
order:=1;
if G contain recursive then
if dfsNumber[v]==0 then SCompDFS(v) endif
else
output order;
endif
endfor
endbegin{ StrongComponents }

O

100



	Blank Page



