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Abstract 

 
There is poor knowledge on the genetic drivers of disease in African populations and this is 

largely driven by the limited data for human genomes from sub-Saharan Africa. While the 

costs of generating human genomic data have gone down significantly, they are still a barrier 

to generating large scale African genomic data. This project is therefore a proof-of-concept 

pilot study that demonstrates the implementation of a cost-effective, scalable genotyped 

virtual cohort that can address population level genomic questions. 

We optimised a tiered informed consent process that is suitable for the cohort study design 

and adapted it to conducting human genomic research in the African context. We used an 

existing dataset to explore statistical methods for modelling longitudinal routine health data 

into a standardised phenotype for genome wide association studies (GWAS). We then 

conducted a feasibility study and piloted the tiered informed consent process, DNA collection 

by buccal swab and DNA extraction from buccal swabs and peripheral blood samples. DNA 

samples were genotyped for approximately 2.2 million variants on the Infinium™
 H3Africa 

Consortium Array V2. Genotyping quality control (QC) was done in Plink 1.9 and genome 

wide imputation on the Sanger Imputation Service. We demonstrated successful variant 

calling and provide aggregate statistics for known aetiological variants for type 2 diabetes 

and severe COVID-19 as well as demonstrating the feasibility of running nested case-control 

GWAS with these data. 

We demonstrate the use of routine health data to provide complex phenotypes to link to 

genotype data for both non-communicable diseases (diabetes) and infectious diseases 

(Tuberculosis, HIV and COVID-19). 459 participants consented to providing a DNA sample 

and access to their routine health data and were included in the feasibility study. A total of 

343 DNA samples and 1782023 genotyped variants passed quality control and were 

available for further analysis. While most of the cohort population clustered with the 1000 

genomes African population, principal component analysis showed extensive population 

admixture. For the COVID-19 analysis, we identified 63 cases of severe COVID-19 and 280 

controls, and for the type 2 diabetes analysis we identified 93 cases and 250 controls using 

the routine health data of participants in the cohort. While the sample sizes were insufficient 

for a GWAS we were able to evaluate known type 2 diabetes mellitus and COVID-19 

variants in the study population. 

We have described how we conceptualised and implemented a genotyped virtual population 

cohort in a resource constrained environment, and we are confident that this design and 

implementation are appropriate to scale up the cohort to a size where novel health 

discoveries can be made through nested case-control studies. In the interim we demonstrate 

the analysis and validation of aetiological variants identified in other studies and populations. 
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1. Literature review 
 

1.1. Introduction 

 

1.1.1. Diabetes in sub-Saharan Africa 

 

Sub-Saharan Africa (SSA) is currently faced with a dual burden of infectious and increasing 

prevalence of non-communicable diseases (NCD’s) (Birungi et al., 2021; Garrib et al., 2019) 

and it is predicted that by 2030, NCD’s will surpass infections as the leading cause of 

morbidity and mortality in the region (Bigna & Noubiap, 2019; Gouda et al., 2019). Notably, 

cardiovascular disease and diabetes associated morbidity and mortality are putting a strain 

on already struggling public health systems (Adeniyi, Yogeswaran, Longo-Mbenza, & Goon, 

2016; Jaffar et al., 2021). An estimated 24 million African adults (20 – 79 years) are currently 

living with diabetes and with the number projected to reach 55 million by 2045 (IDF Diabetes 

Atlas 10th Edition, n.d.), the region is facing an impending diabetes epidemic (Gill et al., 

2008; Levitt, 2008).  

More than 90% of diabetes in SSA is type 2 diabetes mellitus (T2DM) (Hall et al., 2011) 

which is thought to be largely fuelled by lifestyle changes brought about by a surge in rural 

urban migration (Bertram et al., 2013) and an aging population (Pastakia et al., 2017). The 

situation is further exacerbated by the interaction of diabetes with infectious disease 

including HIV (Bam et al., 2020; Birungi et al., 2021; Bosire, 2021; Levitt et al., 2016), 

Tuberculosis (Al-Rifai et al., 2017; Berkowitz et al., 2018; Gennaro et al., 2019) and more 

recently COVID-19 (Apicella et al., 2020; Bramante et al., 2021; McGurnaghan et al., 2021) 

which further complicate the pathogenesis of T2DM in SSA.  

While it is well established that T2DM is a caused by a combination of lifestyle and genetic 

factors (Bertram et al., 2013; Gill et al., 2008; Hall et al., 2011; Levitt, 2008), most African 

studies have focused on the lifestyle drivers of the disease (Adeniyi, Yogeswaran, Longo-

Mbenza, & Goon, 2016; Adeniyi, Yogeswaran, Longo-Mbenza, Goon, et al., 2016; Amberbir 

et al., 2019; Manyema et al., 2015) and there remains a dearth of knowledge on the genetic 

drivers of T2DM in Africans.  

1.1.2. Genetics of T2DM  

 

Genome wide association studies (GWAS) have been used widely to study the genetics of 

T2DM in different populations. This approach has enjoyed wide success as there are 

currently over 700 known risk loci for T2DM identified mainly in European and Asian 

populations (DeForest & Majithia, 2022; Irgam et al., 2021; Ishigaki et al., 2020; Spracklen et 
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al., 2017) with the former dominating. While these studies have helped to advance our 

current knowledge on the genetics of T2DM, they are limited in their lack of representation 

from other populations, most notably continental Africans (DeForest & Majithia, 2022). In 

their analysis, Deforest & Mijita (2022) identified only one study (J. Chen et al., 2021) which 

included data from SSA populations in their meta-analysis (DeForest & Majithia, 2022). 

However, the lack of African populations in multi-ancestry meta-analyses is largely due to 

the unavailability of African data.  

To date, most of the genetic research on T2DM in Africans have been candidate gene 

studies done in North African populations (Yako et al., 2016) and the few done in 

populations from SSA have been dominated by participants from Nigeria, Ghana, Kenya and 

South Africa (Adeyemo et al., 2019; G. Chen et al., 2007; J. Chen et al., 2019, 2021; 

Chikowore et al., 2022; Rotimi et al., 2004). In addition, only two adequately powered T2DM 

GWAS (Adeyemo et al., 2019; J. Chen et al., 2019) have been performed in African 

populations. In their T2DM GWAS on 5321 participants from Nigeria, Kenya and Ghana, 

Adeyemo and colleagues (2019) identified the novel African specific T2DM locus ZRNAB3 

(Adeyemo et al., 2019). Similarly, Chen and colleagues (J. Chen et al., 2019) identified novel 

(rs73284431) in their GWAS of 4349 individuals from South Africa, Nigeria, and Kenya. 

While these studies have added significantly to the body of knowledge, the limited diversity 

in the sub-Saharan populations being studied is worrying in a region that boasts the greatest 

genetic diversity out of all populations (Choudhury et al., 2018). 

1.1.3 Genetic diversity in African populations 

 
The genetic diversity of African populations extends beyond inter-continental comparisons 

as significant differences also exist between African ancestry populations (Choudhury et al., 

2017, 2021; Kamiza et al., 2022; Patin et al., 2017). Numerous studies on the population 

structure in different African populations have revealed highly heterogenous populations with 

extensive admixture particularly in Southern Africa (Chimusa et al., 2013; Choudhury et al., 

2018; Daya et al., 2013; de Wit et al., 2010; Petersen et al., 2013). This genetic diversity has 

implications for both GWAS and post-GWAS analysis in African populations (Teo et al., 

2010). This is because the current GWAS methods are based on the premise of a genetic 

homogeneity in the population being studied and applying them indiscriminately to 

heterogenous population could result in loss of valid genetic associations (Kulminski et al., 

2016; Teo et al., 2010). In addition, this assumption of homogeneity, means that results from 

one populations can be inferred to another. However, recent studies have shown that there 

is poor transferability of genetic risk scores (GRS) and polygenic risk scores (PRS) from 

European ancestry populations to African populations (Chikowore et al., 2022; Kamiza et al., 
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2022). Additionally, in their investigation, Kamiza and colleagues (2022) showed that even 

between African populations, there is limited transferability of GRS predictions (Kamiza et 

al., 2022) further highlighting the urgent need for large scale generation of African genomic 

data with a wider population coverage (Fatumo, 2020). 

1.1.4. Barriers to doing human genomic research in Africa 

 
Given the significant potential for African genomic data to not only address African specific 

problems, but to also close gaps in global health issues (Fatumo, 2020; Gurdasani et al., 

2015; N. Mulder, 2017; Ramsay, 2012) efforts have been made to identify and address the 

barriers to doing genomic research in African populations (Adebamowo et al., 2018; Policy 

Paper: A Framework for the Implementation of Genomic Medicine for Public Health in Africa 

| The AAS, n.d.; Wonkam, 2021).  

Generating genomic data is a resource intensive process. One of the most cited barriers to 

doing human genomic research in Africa, is the general lack of resources needed to run the 

projects, the biggest being the set up and maintenance of adequate infrastructure 

(Adebamowo et al., 2018; Jongeneel et al., 2022; Policy Paper: A Framework for the 

Implementation of Genomic Medicine for Public Health in Africa | The AAS, n.d.; Ramsay, 

2012). While there are various infrastructure needs, the biggest pertains to the long-term 

storage of participant samples. This is usually done in biobanks such as the UK Biobank 

(Sudlow et al., 2015) and Biobank Japan (Nagai et al., 2017) which have the capacity to 

store an array of both baseline and follow-up biospecimen. These biobanks have worked to 

advance human genomic research in their populations as they enable the establishment of 

large disease agnostic population cohorts through which multiple diseases can be studied 

from the same resources (Ishigaki et al., 2020).  

Apart from the cost associated with setting up and maintaining biobanks, there are ethical 

considerations to be made when setting up such infrastructure, especially in countries that 

do not have strong laws governing the protection of personal information (Christoffels & 

Abayomi, 2020; de Vries et al., 2017; Grady et al., 2015; Mikkelsen et al., 2019). To avoid 

mis-use and potential harm to the participants, there needs to be adequate governance 

structures including informed consent in place to ensure that participant samples are only 

used for the purposes the participant consented to (de Vries et al., 2017; Nembaware et al., 

2019; Tiffin, 2018) 

 

The inadequate sample sizes in African genomic research are not always due to lack of 

funding. Some researchers fail to enrol adequate numbers into their studies and apart from 

research fatigue in some participants, inadequate participant recruit has also been attributed 
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to lack of appropriate informed consent tools (Adebamowo et al., 2018). To avoid excluding 

qualifying participants, it has been suggested that consent forms be translated into the local 

language, so that language is not a barrier. However, this can be a challenging and costly 

process to implement particularly in settings where multiple languages are spoken 

(Adebamowo et al., 2018). At the same time there have been calls to move away from the 

widely used broad consent in genomic research  (Grady et al., 2015; Maloy & Bass, 2020) 

and instead, use the tiered informed consent model which gives participants the autonomy to 

decide the secondary use of their data (Nembaware et al., 2019; Tiffin, 2018). In addition, 

because using participant centered informed consent models involves the patient in the 

decision making process regarding their data, it could also work to help build trust between 

participants and researchers and potentially improve their willingness to volunteer for 

genomic research activities (Adebamowo et al., 2018). 

Genomic studies require robust health data which can be used to generate phenotypes for 

the genotype data. Data collection is an expensive undertaking especially in studies that 

require follow-up visits. To mitigate this, large established population cohorts have opted for 

the secondary use of electronic medical records to generate phenotype data for their cohorts 

(Brumpton et al., 2022). This is a cost-effective way to collect longitudinal phenotype data 

because follow-up data can be easily accessed from the updated electronic health records of 

consenting participants. While there have been significant improvements in the generation of 

electronic routine health data in African countries (Boulle et al., 2019; Todd & Mahande, 

2020; Wabiri et al., 2019) in some countries it is still not adequate for secondary use in 

research. In such situations researchers often have to set up parallel data collection 

environments. This set-up is not only costly to the researcher, but it also burdens the 

participant who needs to give their data to multiple stakeholders.  

In addition to phenotype data, researchers also need to generate genomic data. While the 

costs of generating genotype data have reduced significantly, they are still a significant 

barrier to generating large scale African genomic data. In addition, to the actual genotyping 

or sequencing costs, because most African countries lack genotyping and sequencing 

facilities, as such researchers incur additional shipping costs, which can be prohibitive 

especially when shipping samples outside the country (Croxton et al., 2017). In addition to 

the cost, shipping samples can also potentially affect their integrity especially if the proper 

shipping conditions are not observed and this works to further increase the cost through re-

testing or re-shipping of samples (Croxton et al., 2017). There is therefore an urgent need to 

scale up local sequencing and genotyping capacities as this will drive down costs and 

enable more African researchers to conduct large scale genomic studies.  
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Genomic research has been a largely neglected area in African countries and it is not 

unexpected that there would be a shortage of adequately trained people to manage the 

various areas of the genomic research process (Adebamowo et al., 2018). In addition, the 

exodus of the few skilled individuals to countries in the global north has also been cited as a 

significant barrier to carrying out genomic research in African countries. To address some of 

these barriers and increase the uptake of genomic research in African populations, consortia 

such as the Human Hereditary and Health in Africa (H3Africa) have made significant 

contributions to advancing human genomic research in African countries (N. Mulder et al., 

2018; N. J. Mulder et al., 2017). In addition, to enabling the establishment of African led 

genomic research in 30 countries across the continent, they have made significant 

contributions to developing cost-effective tools that are suitable for genomic research in 

African populations. The most notable is the Infinium™H3Africa Consortium Array (H3Africa) 

which is a custom micro array genotyping chip that is enriched for novel African specific 

variants (N. Mulder, 2017). In addition, they have also established an imputation service that 

uses an African specific reference panel to allow for optimal variant calling of informative 

African genotypes (Baichoo et al., 2018).  

1.2. Study rationale 

 
The dearth of knowledge of the genetic drivers of disease in African populations is largely 

driven by the limited data for human genomes from sub-Saharan Africa as this was a 

previously neglected area of research. This is because while the costs of generating human 

genomic data have gone down significantly in recent years, they are still a barrier to 

generating large scale African genomic data that can address population level questions in 

resource limited settings.  

Single nucleotide polymorphism (SNP) genotyping is a cost-effective way of generating large 

scale genomic data and the recent availability of the Infinium™
 H3Africa Consortium Array V2 

(H3Africa chip), is making it possible to generate informative genotype data for genome wide 

association studies (GWAS) in African genomes. Most GWAS use the binary outcome of 

disease or no disease, however, in real life, disease phenotypes are more complex. This is 

because they are influenced by factors such as the environment, epigenome, and patient 

demographics. Therefore, using complex disease phenotypes that include these factors 

could potentially increase the utility of GWAS. 

Routine health data collected through the course of chronic disease including diabetes, are a 

rich source of data that could be used to describe complex disease outcomes. This is 

because this data contains patient demographics, laboratory results, prescribed medications 

and hospital encounters for a patient over time. This longitudinal data therefore has greater 
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utility than cross sectional data because it allows for the identification of time dependent 

disease patterns within an individual and allows a comparison to be made between 

individuals in a population. 

1.3. Aim 

 
The overarching aim of this research was to determine whether complex clinical phenotypes 

generated from routine health data can be used as a phenotype for genotype data in 

genome wide association studies in an African context. 

1.4. Objectives 

 

This PhD work was therefore a proof-of-concept study that aimed to demonstrate the 

creation of a virtual genotype cohort through the integration of complex clinical phenotypes 

from longitudinal routine health data and genotype data from the H3Africa chip using type 2 

diabetes (an NCD) and COVID-19 (an infectious disease) as case studies. 

This study had three main objectives: 

Objective 1 

To optimise and adopt a tiered informed consent that is suitable for the cohort study design 

and for conducting human genomic research in the African context. 

❖ Describe and apply a participant-centred consent strategy for collecting and accessing 

sensitive genomic and health data. 

❖ Recruit 300 participants who consent to the access and use of their individual 

longitudinal health data from the Provincial Health Data Centre and its linkage to their 

genotype data. 

❖ Collect samples (two buccal swabs) from each participant and send for DNA preparation 

and storage. 

Objective 2 

To use an existing routine health data set to generate descriptive statistics from the 

demographic data and to describe diabetes profiles in the population from which sampling 

for the cohort will be done. Additionally, this data will also be used to explore statistical 

methods for modelling longitudinal data so that it can be used as a GWAS phenotype. 

❖ Generate summary statistics from longitudinal clinical data for participants with T2DM in 

the Western Cape. 

❖ Explore and describe statistical modelling methods for analysing patient outcome data 

using longitudinal clinical data. 
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❖ Apply an appropriate statistical model to the longitudinal clinical data from the T2DM 

patient data to generate patient profiles (disease phenotypes).  

Objective 3 

To demonstrate data integration by linking genotype data to routine health data to 

understand genetic and clinical drivers of health outcomes in an African virtual cohort. 

❖ To generate genotype data for consenting participants using the H3Africa chip. 

❖ Optimise and apply existing genotyping quality control and imputation methods and tools 

that are suitable for genotype data from the H3Africa chip. 

❖ Demonstrate the feasibility of running nested case control GWAS with these data using 

T2DM and severe COVID-19 as phenotypes. 

1.5. Structure of the thesis 

 
This thesis comprises seven chapters. The first is an introductory chapter which consists of a 

literature review, the study rationale, aim and objectives. Chapters 2 to 6 address the 

different research objectives and chapter 7 is a general discussion. Chapters 2, 3 and 4 are 

published manuscripts. The candidate conducted all the data analyses, wrote the first drafts, 

addressed comments from reviewers and was first author for all the included manuscripts. 

The relevance of each manuscript to the thesis and more detailed author contributions are 

included at the start of each manuscript chapter. 
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2. Chapter 2 : An e-Consent framework for tiered informed consent for human 

genomic research in the global South, implemented as a REDCap template 
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Relevance of paper to the thesis 
 
This chapter addressed objective 1 of optimising and adopting a tiered informed consent that 

is suitable for both the cohort study design and for conducting human genomic research in 

the African context. Since creating a virtual genotyped cohort involves asking for sensitive 

genomic data and access to health records, special attention should be given to interactions 

with the participants and the consent process, to ensure that any consent given is truly 

informed. Traditional consent has largely been broad consent, but with introduction of 

legislation to protect personal information such as the POPI act in South Africa, there have 

been calls to move to a tiered consent model in research. At the same time there has been a 

shift to more collaborative research and data sharing among researchers. Therefore, to 

foster ethical data sharing and collaboration, there is a need to simplify and standardise the 

process through which researchers can identify consenting participants. At the same time 

there is also a need to ensure that participants give consent that is truly informed especially 

in genomic research where there is a privacy risk even with deidentified data. To address 

both these needs, we designed an electronic consent framework for tiered informed consent 

based in REDCap.  

 

 

 

 

 

 

 

 

 

https://doi.org/10.1186/s12910-022-00860-2


20 

 

2.1. Abstract 

 
Research involving human participants requires their consent, and it is common practice to 

capture consent information on paper and store those hard copies, presenting issues such 

as long-term storage requirements, inefficient retrieval of consent forms for reference or 

future use, and the potential for transcription errors when transcribing captured informed 

consent. There have been calls to move to electronic capture of the consent provided by 

research participants (e-consent) as a way of addressing these issues.  

 
A tiered framework for e-consent was designed using the freely available features in the 

inbuilt REDCap e-consent module. We implemented ‘branching logic’, ‘wet signature’ and 

‘auto-archiver’ features to the main informed consent and withdrawal of consent documents. 

The branching logic feature streamlines the consent process by making follow-up 

information available depending on participant response, the ‘wet signature’ feature enables 

a timestamped electronic signature to be appended to the e-consent documents and the 

‘auto-archiver’ allows for PDF copies of the e-consent documents to be stored in the 

database. When designing the content layout, we provided example participant information 

text which can be modified as required. Emphasis was placed on the flow of information to 

optimise participant understanding and this was achieved by merging the consent and 

participant information into one document where the consent questions were asked 

immediately after the corresponding participant information. In addition, we have provided 

example text for a generic human genomic research study, which can be easily edited and 

modified according to specific requirements. 

 
Building informed consent protocols and forms without prior experience can be daunting, so 

we have provided researchers with a REDCap template that can be directly incorporated into 

REDCap databases. It prompts researchers about the types of consent they can request for 

genomics studies and assists them with suggestions for the language they might use for 

participant information and consent questions. The use of this tiered e-consent module can 

ensure the accurate and efficient electronic capture and storage of the consents given by 

participants in a format that can be easily queried and can thus facilitate ethical and effective 

onward sharing of data and samples whilst upholding individual participant preferences. 
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2.2. Background 

 

Research involving human subjects generally requires voluntary participation and signed 

consent from participants granting researchers permission to use their biological and/or 

health data (Artal & Rubenfeld, 2017; Dankar et al., 2019; Pranati, 2010). To facilitate this 

process, researchers are required to provide detailed and transparent information about their 

research in a format that allows eligible participants to make informed decisions about 

whether to volunteer to participate in the research (Nishimura et al., 2013; Pranati, 2010; 

Tiffin, 2018; Trinidad et al., 2012). The informed consent process has frequently been 

criticised for not being participant-centred but rather more focused on meeting legal and 

regulatory requirements resulting in consent forms which use complex technical terms which 

lay persons cannot understand - especially those in vulnerable populations with limited 

health literacy (Nishimura et al., 2013; Pranati, 2010; Tiffin, 2018). There is therefore a need 

to improve the informed consent process by using consent documents that are 

straightforward and use easy-to-understand language to ensure that participants give truly 

informed consent (Lentz et al., 2016; Nishimura et al., 2013; Pranati, 2010).  

 

It is common practice to capture consent information on paper and store those hard copies, 

and while this has its advantages, it presents issues such as long-term storage requirements 

and inefficient retrieval of consent forms for reference or future use (De Sutter et al., 2021; 

Lentz et al., 2016; Vanaken & Masand, 2019). In addition, for tiered informed consent where 

participants answer a variety of questions about allowed data or specimen us, paper-based 

consents are inefficient and impractical for determining whose data or which specific data 

elements have consent for onward sharing, meta-analyses or sharing in aggregated form 

(Chalil Madathil et al., 2013). Participants may also express a variety of preferences for 

future contact and/or feedback of findings from the research programme. While it is possible 

to transcribe this information from hard copies into electronic format, this is time-consuming 

and prone to data capture error, which might lead to unacceptable transgression of 

participants’ choices about how their data and specimens might be used (Tiffin, 2018). There 

have been calls to move to electronic capture of the consent process (e-consent) as a way 

of addressing these issues (Chalil Madathil et al., 2013; De Sutter et al., 2020; Lentz et al., 

2016; Vanaken & Masand, 2019). However, there has been slow uptake of e-consent 

because of technical, legislative, and regulatory barriers to setting up and implementing e-

consent platforms. These include concerns about data security, legal validity of electronic 

signatures, and initial development costs (De Sutter et al., 2020, 2021; Haussen et al., 2017; 

Vanaken & Masand, 2019). 
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Researchers can find designing informed consent processes overwhelming and may not 

know how to implement them or what content is required. Using our experience in 

conducting tiered informed consent in South Africa, we have designed a REDCap-based 

electronic tiered informed consent framework that can aid in reducing barriers to uptake and 

implementation of e-consent in low- and middle-income countries. The framework is 

designed to improve the informed consent process for both participants and researchers 

involved in human genomic research, firstly by providing a comprehensive list of information 

for researchers to include in the consent documents, thus providing a tool which they can 

use as a check list to ensure that all essential information is available;  and secondly 

providing researchers with ready-to-use, downloadable template consent documents which 

have been written in straightforward genomic research language that is easier for 

participants to understand. In this paper we present the content for the modules that can be 

used to construct the integrated participant information and consent form and describe how 

the REDCap template can be implemented to create study-specific tiered consent. A 

checklist that summarises the processes and consent modules is provided as 

Supplementary file 2.1.  

 
The REDCap-based tiered e-consent module presented here facilitates the electronic 

capture of participants’ consent choices so no additional data entry is required and errors are 

kept to a minimum. We recommend that this process is undertaken by trained personnel 

who can accurately capture the preferences of the participants. We have also provided a 

REDCap database template so that researchers can easily incorporate this tiered informed 

consent module into their new REDCap research databases in a “ready-to-use” format, 

selecting elements and modifying the contents to fulfil their requirements without needing to 

develop new material de novo. For re-use of data and specimens, the captured information 

can be rapidly and easily queried to identify which resources have consent for other onward 

uses, and which participants might be re-contacted in the future for follow-up or related 

studies – thus facilitating efficient and ethical data-sharing and follow-up with participants 

where their consent has been given. 

2.3. Construction and content 

 

2.3.1. Setting up the tiered e-consent framework in REDCap 

 

Research Electronic Data Capture (REDCap) is a secure online databasing platform that 

allows production of generalisable data capture instruments for research (Harris et al., 

2009). REDCap has an inbuilt e-consent framework where consent is administered as a 

survey (Lawrence et al., 2020). The tiered e-consent framework for genomic research was 
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designed using tools in REDCap version 10.9.4 and is available as template data dictionary 

(ConsentFramework_Data_Dictionary) which researchers can download from GitHub 

(https://github.com/CIDRI-Africa/e-Consent-framework) and import into REDCap to set-up 

their own tiered e-consent module (Figure 2.1).  

The tiered e-consent template is modular, allowing users to select elements which are 

suitable for their study. In addition, guidance documents which include a REDCap set-up 

guide, an instrument index which describes the data collection instruments available in the 

module and PDF copies of example data collection instruments are also available in the 

GitHub repository (see Supplementary file 2.2). 

All consent documents used in a human genomics study need ethics approval before they 

can be used. The ethics review process for this REDCap based tiered e-consent module is 

like that of the paper-based consent because it does not contain any multi-media information 

such as videos. All the online tiered e-consent documents can be downloaded and submitted 

as PDFs to the institutional review board (IRB) and if required, a link can be set-up to give 

the IRB access to consent surveys online, on the REDCap platform. To successfully 

implement the tiered e-consent, research staff will need to be trained on how to navigate the 

REDCap platform and how to administer tiered informed e-consent. 

Figure 2.1. Flow diagram showing the workflow for setting up and implementing the tiered e-

consent framework in REDCap for a new human genomic research study. 

2.3.2. Tiered e-consent data collection instruments 

The tiered e-consent module has three data capture instruments documents namely, the 

main consent and withdrawal of consent which are both surveys and an optional study meta 

data form. The inbuilt REDCap e-consent module has eight freely available features 

previously described by Lawrence et al.(2020) (Lawrence et al., 2020) which enhance the 

utility and security of the data capture instruments. For this tiered e-consent module we 

https://github.com/CIDRI-Africa/e-Consent-framework
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implemented ‘branching logic’, ‘wet signature’ and ‘PDF-consent document repository (auto-

archiver)’ (Lawrence et al., 2020) to the main consent and withdrawal of consent documents. 

The branching logic feature streamlines the consent process by making follow-up 

information available depending on participant response and it was used in both the consent 

surveys. The ‘wet signature’ feature enables a timestamped electronic signature to be 

appended to the e-consent documents and the ‘auto-archiver’ allows for PDF copies of the 

e-consent documents to be stored in the database (Figure 2.2) (Lawrence et al., 2020).

2.3.3. Additional REDCap survey customisations 

To ensure that tiered e-consent framework facilitates improved data quality, storage, 

retrieval and integrity, REDCap has additional customisations (see Supplementary file 2.3) 

which can be enabled for the consent surveys. When generating new records, the ‘designate 

a secondary unique field’ customisation allows the user to assign one of the variables such 

as the participant study ID as a unique value which cannot be duplicated. When this feature 

is enabled, each time that variable is entered, it is checked in real time to ensure that it has 

not been assigned already. This will help with improving data quality as participants will not 

be assigned the same study ID especially in multi-site studies or where multiple people are 

carrying out consent simultaneously. When enabled, the ‘display the Today/Now button for 

all date and time fields on forms/surveys’ ensures that the current date or time will be set 

automatically by clicking a button. The ‘set a custom record label’ feature allows another 

variable such as the participant study ID to be appended to the system generated numeric 

record name, to simplify the query and retrieval of individual participant records from the 

database. To ensure data integrity, three additional customisations namely ‘require a reason 

when making changes to existing records’, ‘enable the data history pop up for all data 

collection documents’ and ‘enable the field comment log or data resolution workflow (data 

queries)’ can be enabled. These features described in detail in Supplementary file 2.3, 

ensure that any changes made to the consent documents after verification and signing are 

not only sanctioned but are recorded appropriately to ensure data integrity. In addition, user 

rights and permissions can also be set to determine who can add and/or edit records in the 

tiered e-consent framework.
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Figure 2.2. The (A) 'wet signature' and (B) 'auto-archiver' features in the tiered e-consent framework 
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2.3.4. Language and layout of data collection instruments 

The content of the main consent was adapted from the tiered informed consent framework of 

Nembware and colleagues (Nembaware et al., 2019) with some modifications, most notable 

of which was the addition of consent for the use of participant genomic data in population 

and ancestry studies which was excluded from that framework. Most consent documents 

have the same layout, where participant information is presented first, and consent 

questions are asked at the end or even on a separate document. When designing the 

content layout of the main consent document in the tiered e-consent framework, emphasis 

was placed on the flow of information to optimise participant understanding. This was 

achieved by merging the consent and participant information into one document where the 

consent questions were asked immediately after the corresponding participant information 

(Figure 2.3). This format is intended to allow the participant to ask further questions and 

seek clarity before making a consent choice. In addition, we have provided example text for 

a generic human genomic research study on type 2 diabetes where the researchers are 

collecting both DNA and routine electronic health data from participants (Figure 2.3). This 

text can be easily edited and modified to suit different research topics, and we recommend 

participant information and consent questions are modified and validated to suit each context 

in which this template is used. 
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Figure 2.3. The layout of the consent was changed so that consent questions came directly 

after the corresponding participant information. This figure also shows the simple language 

used and how tiered informed consent was implemented in the e-consent framework. 

2.4. Utility 

2.4.1. E-consent platform 

One of the barriers to the uptake and implementation of e-consent is the choice of a hosting 

platform and the costs associated with setting it up (De Sutter et al., 2021; Haussen et al., 

2017). This tiered e-consent platform was set-up in REDCap because REDCap already has 

an inbuilt e-consent framework which has been tested and shown to support various types of 

e-consent models (Chen et al., 2019; Frelich et al., 2015; Haussen et al., 2017; Lawrence et

al., 2020) and is freely available on a licence agreement to organisations that are part of the 

REDCap consortium (Harris et al., 2019). The REDCap consortium currently comprises of 

more than 4000 institutions in 137 countries and membership has the added advantage of 

free access to technical support and improvements to the platform (Harris et al., 2019; 

Lawrence et al., 2020). In addition, using REDCap as the hosting platform, has the added 
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advantage of having a single database for capturing and storing all research related data 

and this functionality was demonstrated for a Tuberculosis database (TBDBT) by Allie et 

al.(2020) (Allie et al., 2021). 

2.4.2. Administering tiered e-consent 

One of the objectives of this tiered e-consent framework was to improve participant 

understanding of human genomics research so that they could make truly informed consent. 

So, while e-consent modules are commonly designed to be participant self-administered 

(Doerr et al., 2016; Haas et al., 2021; Haussen et al., 2017; Kim et al., 2017; Wilbanks, 

2018), the main consent document in the tiered e-consent framework will be administered 

face-to-face by a trained member of the research team. This mode was preferred because it 

affords the participant the opportunity to ask questions if they seek clarity and numerous 

studies have shown that participants prefer to interact with the research team as this is 

associated with building rapport and establishing trust (De Sutter et al., 2021; Nishimura et 

al., 2013; Vanaken & Masand, 2019). In addition, because this framework was developed for 

use in low and middle-income countries, a self-administered e-consent would not be 

practical. This is because REDCap is an online platform and surveys are sent to participants 

as a link therefore, this would potentially exclude participants who do not have access to a 

smart device or an internet connection and those who have limited digital literacy particularly 

the elderly and those in rural areas (De Sutter et al., 2020; Simon et al., 2018; Vanaken & 

Masand, 2019).  

2.4.3. Data capture and storage 

The main consent document uses tiered informed consent (Nembaware et al., 2019) and 

captures eleven different types of consent in one document (Table 2.1). The consents listed 

are the most common in human genomic research, but the list is not exhaustive, and users 

of this framework can choose which elements to include or leave out in their consent form 

based on their research needs. The ‘Add/Edit records’ function under the data collection 

page on the e-consent framework is used to initiate the consent process and launch the 

consent documents as surveys. REDCap automatically assigns a new consent survey with a 

unique record name (PID) which is numeric, system generated and cannot be changed 

(Figure 2.4A). In addition, to ensure data quality and integrity, REDCap has mandated auto 

numbering for all survey instruments, so that users cannot manually name new records a 

feature which ensures records do not share a PID. 
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Table 2.1. List of the type of consents that are available in the main consent of the tiered e-
consent framework.  

• Primary consent for collecting biospecimens and health data for specific disease in

current study.

• Consent for access to medical records

• Consent for return of individual results

• Consent for return of individual results that are actionable and/or treatable

• Consent for return of individual results that are NOT actionable and/or treatable

• Consent for inclusion of individual data in genetic summary data

• Consent for use of genetic and health data for future studies on specific disease

• Consent for use of genetic and health data for future studies on other health

conditions or related health processes

• Consent to re-contact for future studies

• Consent for use of genetic and health data in international studies

• Consent for use of genetic data in population origins and ancestry studies

If the consent process is not completed in one sitting, the records page has a dashboard 

which shows the status of each record (Figure 2.4B), and the current progress can be saved 

and concluded later. The PID is central to data retrieval, because once assigned it is linked 

to all data collection documents in the e-consent module for each participant. To retrieve an 

existing record, it is queried by PID and while this may be practical for a few records it will be 

impractical for projects with many participants. To mitigate this, a participant specific custom 

record label (see Supplementary file 2.4) such as the participant study ID can be appended 

to the PID allowing the user to retrieve individual participant records easily. The records 

home page also allows for records linked to a PID to be downloaded as PDFs and shared 

with those authorised to view them. To ensure data security and privacy, the consent 

documents in the tiered e-consent framework, are strictly for collecting consent information 

and do not collect sensitive participant information such as demographic data or contact 

details. In addition, to ensure data integrity, REDCap has the functionality to assign user 

roles and permissions for accessing, editing and/or deleting existing records after they have 

been verified and signed by the participant (Figure 2.4C). 
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Figure 2.4. An overview of the records home page in REDCap. (A) Assignment of a PID to initiate collection of consent data, (B) dashboard 

showing the status of data collection in each instrument and (C) an example of user permission assignment
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2.4.4. Data verification 

To meet legal and regulatory requirements all consent documents are validated by date-

stamped electronic signature (Figure 2.5A). In cases where an electronic signature is not 

legally recognised, the consent can still be done online, and the form downloaded and 

signed by hand. The signed form or the signature itself can then be scanned and uploaded 

as an attachment alongside the signature field in the e-consent form. In this instance we 

would recommend archiving the signed paper forms in case they are required in the future. 

This will ensure that all consent data is still captured electronically directly into the REDCap 

database. For transparency, the e-consenting process will have two verification steps. The 

first is audio verification (Figure 2.5B) for which participant permission will be sough before 

the consenting begins, and the audio file generated can also be uploaded and stored in 

REDCap. The second is through the ‘auto-archiver’ feature (Figure 2.5C) which gives the 

participant an opportunity to verify that their choices were captured accurately before the 

consent is finalised. 
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Figure 2.5. Verification and validation of the e-consent process by (A) electronic signature, (B) audio verification and (C) review and 

certification of the consent choices made by the participant before form submission. 
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2.4.5. Data query and export 

All data that are entered into the tiered e-consent module are automatically stored in 

REDCap and can be viewed and downloaded from the Reports tab (Figure 2.6A). REDCap 

automatically creates reports, but also allows for the customisation of reports to suite specific 

research needs by allowing users to select which data elements to include in each report. 

For the tiered e-consent module, we created two customised reports, being the consent 

dashboard (see Supplementary file 2.4) and the study withdrawal dashboard (see 

Supplementary file 2.5), which contain information on who has consented and/ or withdrawn 

from the study both at an individual level and for the entire study population. In addition, 

because this is tiered consent, the study population data is summarised for each type of 

consent covered in the main consent (see Supplementary file 2.6).  

REDCap supports automated export of study reports, and the data can be downloaded in a 

format suitable to a selection of commonly used statistical packages (Figure 2.6B). These 

reports also allow researchers to easily monitor the progress of their recruitment process in 

real time for in-house use and for submitting study progress reports to institutional ethics 

review boards. To protect participant privacy, there is an option to hide all tagged identifier 

fields and/or hash-to the record ID field. In addition, because the ‘data exports, reports and 

stats’ feature make it easy for researchers to query the database, identify consenting 

individuals and download their consent data this will facilitate ease of collaboration among 

researchers conducting human genomic studies. 

2.4.6. Withdrawal of consent 

An important feature of voluntary participation in research, is that participants can withdraw 

from the study whenever they wish. To accurately document participants who wish to 

withdraw their consent, the withdrawal of consent document is used. The consent can be 

partial, or complete and ‘branching logic’ (Figure 2.7) is used to differentiate the two. If a 

participant selects to withdraw from the study completely (Figure 2.7A) then the next option 

is to provide a reason and then sign. However, if a participant wishes to withdraw only 

certain parts of their consent, then a list of options opens, and the relevant ones are 

selected. Following this, the rest of the process is the same as for complete withdrawal.  
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Figure 2.6. The data export, reports, and statistics page in REDCap. (A) An overview of all reports in the database and (B) the dashboard for 

the automated export of data from REDCap. 
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Figure 2.7. Implementation of ‘branching logic’ in the withdrawal of consent document. (A) Complete withdrawal and (B) partial withdrawal with 

the option for the participant to select which elements they want to withdraw their consent
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2.5. Discussion 

Part of ethical research is ensuring that we make the best use of collected data and 

specimens, in line with the permissions that are given by participants. The use of broad 

consent has created some barriers to onward use of data, as it is not always clear exactly 

what participants have or have not agreed to; and it also makes it difficult to respect the 

individual preferences and autonomy of participants (Tiffin, 2018). With the advent of 

legislation that protects privacy of individuals, like the General Data Protection Regulation 

(GDPR) in the European Union (EU), or the Protection of Personal Information (POPI) Act in 

South Africa, it is important to have consent from individuals specifically for sharing their 

health and data with other researchers and/or across international borders. While asking 

consent for each specific use might limit re-use for new types of research in the future that 

we do not yet know about, including consent specifically to be re-contacted means that 

researchers can contact participants about new types of studies in the future. Whilst not all 

participants might agree to re-contact for future studies, for those that do, this provides an 

option to consult them directly without the researcher or an ethics review board making 

these important decisions on behalf of the participant but without their knowledge.  

Building informed consent processes without prior experience can be daunting, so we have 

aimed to assist researchers by developing this template that reminds researchers of the 

types of consent they can request for genomics studies and assists them with suggestions 

for the language they might use for participant information and consent questions; whilst 

allowing them the freedom to include or exclude certain modules and modify the language 

that they use. Finally, immediate electronic capture of the consents given by participants can 

facilitate accurate and efficient onward sharing of data and samples according to participant 

preferences that can be easily electronically queried. This can replace the current common 

practice of unwieldy storage of paper consent forms that need to be reviewed individually to 

determine which data or samples can be re-used. The use of this e-consent module can thus 

facilitate efficient and ethical data- and sample-sharing, whilst respecting the specific 

preferences and choices of each participant. 

Whilst this REDCap template utilises a digital approach to presenting and capturing the 

informed consent process, which comes with the described advantages such as improved 

data fidelity and streamlined databasing of participant choices, the fundamental process and 

material content of tiered informed consent remains consistent with current paper-based 

tiered informed consent processes for health genomics research (Nembaware et al., 2019, 
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2020). This point can be communicated clearly to ethics review committees assessing the 

use of the template for the first time. As with current practice, and as described here, it 

remains important to validate the informed consent process to ensure it is locally relevant, 

through community engagement, for example by holding community-based focus groups to 

evaluate local accessibility of the content. Other important inputs include training 

researchers in the use of the digital informed consent process to ensure high quality data 

collection as well as to ensure participants understand how the digital tool is being used. 

Ongoing data quality control can also ensure effective use and appropriate data capture with 

the REDCap informed consent tool. Through these approaches, participants, researchers, 

and ethics review boards can gain confidence that the informed consent process is operating 

as intended. 
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Relevance of paper to the thesis 

Since the virtual genotyped cohort will be piloted in people with type 2 diabetes, the primary 

aim of this epidemiologic analysis was to describe the population from which these 

participants would be recruited. This is especially relevant here in South Africa where we 

have high infectious disease comorbidities. This was done by generating summary statistics 

from the demographic, laboratory and pharmacy data using an HIV comorbidities cohort data 

set from the provincial health data centre. This analysis also addressed objective 2 where 

we explored statistical methods for modelling longitudinal data so that it can be used as a 

GWAS phenotype. 

https://doi.org/10.1371/journal.pone.0251303
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3.1. Abstract 

Background 

It is widely accepted that people living with diabetes (PLWD) are at increased risk of 

infectious disease, yet there is a paucity of epidemiology studies on the relationship between 

diabetes and infectious disease in SSA. In a region with a high burden of infectious disease, 

this has serious consequences for PLWD.  

Methods and Findings 

Using routinely collected longitudinal health data, we describe the epidemiology of diabetes 

in a large virtual cohort of PLWD who have a high burden of HIV and TB, from the 

Khayelitsha subdistrict in the Western Cape Province in South Africa. We described the 

relationship between previous TB, newly diagnosed TB disease and HIV infection on 

diabetes using HbA1c results as an outcome measure. The study population was 

predominately female (67%), 13% had a history of active TB disease and 18% were HIV 

positive. The HIV positive group had diabetes ascertained at a significantly younger age (46 

years c.f. 53 years respectively, p<0.001) and in general had increased HbA1c values over 

time after their HIV diagnosis, when compared to the HIV-negative group. There was no 

evidence of TB disease influencing the trajectory of glycaemic control in the long term, but 

diabetes patients who developed active TB had higher mortality than those without TB 

(12.4% vs 6.7% p-value < 0.001). HIV and diabetes are both chronic diseases whose long-

term management includes drug therapy, however, only 52.8% of the study population with 

an HIV-diabetes comorbidity had a record of diabetes treatment. In addition, the data 

suggest overall poor glycaemic control in the study population with only 24.5% of the 

participants having an HbA1c <7 % at baseline despite 85% of the study population being on 

diabetes treatment. 

Conclusion 

The epidemiologic findings in this exploratory study highlight the need for further research 

into diabetes outcomes in a high TB and HIV burden setting and demonstrate that routine 

health data are a valuable resource for understanding disease epidemiology in the general 

population.  
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3.2. Introduction 

Sub-Saharan Africa (SSA) is currently undergoing an epidemiologic shift and the health 

systems in the region are dealing with the dual burden of infectious diseases and an 

increasing prevalence of non-communicable diseases (NCDs) (Africa, n.d.; Levitt, 2008) . 

NCDs are overtaking infectious disease as the leading cause of disability and mortality in the 

region (Africa, n.d.; Gouda et al., 2019; Noncommunicable Diseases, n.d.). This 

epidemiologic transition is already evident in South Africa where, although Tuberculosis (TB) 

was still the overall leading cause of natural deaths from 2015 - 2017, in the same time 

period, Diabetes Mellitus (DM) was the second leading cause of death (Africa, n.d.). The 

burden of DM is putting a strain on already struggling public health systems, and with an 

estimated 19 million people with diabetes in the region currently, projected to increase to 29 

million by 2030, SSA is facing an impending diabetes epidemic (IDF Diabetes Atlas 9th 

Edition 2019, n.d.) 

More than 90% of diabetes in SSA is type 2 diabetes mellitus (T2DM) (Hall et al., 2011) 

which is thought to be largely fuelled by lifestyle changes brought about by a surge in rural-

urban migration (Bertram et al., 2013). The diabetes epidemic in SSA including South Africa 

is further complicated by the ongoing HIV epidemic. South Africa is already implementing the 

UNAIDS 90-90-90 strategy which aims to get 90% of all those who test positive for HIV on 

anti-retroviral therapy (ART) (Williams et al., 2017). This widespread use of ART has 

significantly increased the life expectancy of people living with HIV (PLWH), and the country 

is now supporting an aging HIV population that  are developing comorbidities such as DM 

associated with aging which might also occur at earlier ages than in the general population 

(Rasmussen et al., 2015; Schouten et al., 2014). Studies have shown that in addition to 

demographic and lifestyle risk factors for DM the chronic use of ART, especially HIV 

protease inhibitors (PIs) and non-nucleoside reverse transcriptase inhibitors (NNRTIs), also 

contribute to  the risk of developing DM (Araujo et al., 2014; Dave et al., 2011; Levitt et al., 

2016; Nansseu et al., 2018). 

While the widespread use of ART is reducing HIV/AIDS related morbidity and mortality - 

especially due to TB co-infection which is the leading cause of death in HIV positive people - 

it could potentially fuel the resurgence of diabetes-associated TB (Harries et al., 2011, 2015; 

Reid et al., 2013; Williams et al., 2017). The relationship between TB and DM is well 

established (Restrepo, 2007) and studies have shown that diabetes increases the risk of 

developing active TB, recurrent TB and severe TB disease and results in worse TB 

treatment outcomes (Cheng et al., 2017; Chiang et al., 2015; Leung et al., 2008; Munseri et 

al., 2019; Pizzol et al., 2017, 2018; Workneh et al., 2017). The threat of a TB-DM dual 
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epidemic in South Africa is a cause for concern given that the country is in the top eight 

highest TB burden countries, and in 2019 accounted for 3.6% of the global total of people 

who developed active TB (Global Tuberculosis Report 2020, n.d.), and the trilateral overlap 

with HIV may therefore have implications for TB control (Oni et al., 2017). In addition, most 

of the DM in SSA including South African is undiagnosed until it presents with severe 

symptoms, so by the time most people get diagnosed they are already at risk of DM-related 

complications (Mbanya et al., 2010; Stokes et al., 2017).  

It is widely accepted that people living with diabetes (PLWD) are at increased risk of 

infectious disease, yet there is a paucity of epidemiology studies on the relationship between 

diabetes and infectious disease in SSA. In a region with a heavy burden of infectious 

disease, this has serious consequences for PLWD in the region. Here, we describe the 

epidemiology of diabetes in a large virtual cohort of PLWD from the Western Cape Province 

in South Africa, who have a high burden of HIV and TB, using routinely collected longitudinal 

health data. We describe the relationship between previous and newly diagnosed TB 

disease and HIV infection and pre-existing diabetes using National Glycohemoglobin 

Standardization Program (NGSP) HbA1c as an outcome measure. 

3.3. Methods 

3.3.1. Ethics 

Ethics approval was granted by the University of Cape Town (HREC REF: 509/2019) and 

data access was approved by Western Cape Government Health (WCGH), South Africa. All 

data were de-identified and data perturbation was employed by the Provincial Health Data 

Centre (PHDC, WCGH) prior to release, so that the data used were anonymised and cannot 

be reidentified. Data transfer was effected through secure platforms using AES256 

encryption and password protection, and analysis was undertaken on a secured, firewall-

protected server. Re-use of this dataset requires approval from the PHDC, and the authors 

can be contacted to advise on this process. 

3.3.2. Study population 

The study population was selected from the Western Cape Population as represented in the 

PHDC, a health information exchange containing routine health data for about 7 million 

healthcare clients, collated daily from multiple electronic health data sources in the Western 

Cape Province, South Africa (Boulle et al., 2019). Inclusion criteria were: (1) Having 

attended at least one Government Health Facility in the Khayelitsha sub-district in the 

Western Cape, South Africa, in the period 1 January 2016 to 31 December 2017, (2) aged 

18 or older by December 2017 and (3) diagnosis of diabetes was inferred in people who ever 
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had an HBA1c of ≥ 6.5% (“Use of Glycated Haemoglobin (HbA1c) in the Diagnosis of 

Diabetes Mellitus,” 2011), a 2-hr glucose of ≥ 11.1mmol/l after an oral glucose tolerance test, 

had been dispensed oral hypoglycaemic agents used exclusively for the management of 

diabetes or insulin. The Khayelitsha subdistrict is a high-density urban area with large areas 

of informal housing and generally poor socioeconomic conditions. Exclusion criteria were: 

Diabetes ascertainment at less than 18 years of age, used as a proxy for early onset Type 1 

Diabetes; and diabetes ascertainment occurring during pregnancy, used as a proxy for 

gestational diabetes (Figure 3.1). HbA1c is used as a diabetes outcome measure because it 

is the gold standard for diagnosing and monitoring diabetes control (“International Expert 

Committee Report on the Role of the A1C Assay in the Diagnosis of Diabetes,” 2009; “Use 

of Glycated Haemoglobin (HbA1c) in the Diagnosis of Diabetes Mellitus,” 2011), so people 

who did not have any recorded HbA1c values were also excluded from the analysis. HbA1c 

may underestimate glycaemia in PLWH but despite this remains highly specific for DM 

diagnosis (Eckhardt et al., 2012). When analysing medications, a subset was created which 

excluded those with no diabetes treatment records (Figure 3.1). 

Figure 3.1. Flow chart showing the selection of the study population from the PHDC routine 

health data. 

Retrospective PHDC data for 13 771 individuals with recorded HbA1c values were analysed 

together with population demographics (data as of 31 December 2017) using descriptive 

statistics. A diagnosis is inferred by the PHDC using laboratory and pharmacy data, and is 

not a clinical diagnosis, so is referred to as ‘ascertainment’ to make this distinction, and is 
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described in (Boulle et al., 2019). Diabetes metrics include: Age at ascertainment, ‘Linkage 

to HbA1c testing’ was defined as having had a recorded HbA1c laboratory test result within 

one year of the last recorded diabetes-related health facility encounter, ‘Ever started 

diabetes treatment’ was defined as those with a recorded diabetes treatment start date and 

‘linkage to diabetes treatment’ as those who had a record of diabetes drugs being prescribed 

within one year of their last recorded diabetes-related health facility encounter. ‘Baseline 

HbA1c’ was defined as the first recorded HbA1c value either at diabetes ascertainment or 

within the first year after diabetes ascertainment. TB metrics include: date of ascertainment 

of TB episodes for individuals from PHDC inferred episodes, ‘Ever had Tuberculosis’ was 

defined as having had a TB episode at any time in an individual’s recorded medical history 

and ‘TB-Diabetes comorbidity’ as having a recorded TB episode after Diabetes 

ascertainment. HIV metrics include the date of ascertainment of HIV from PHDC inferred 

episode data. HIV status was determined using date of HIV ascertainment and a record of 

initiation on HIV anti-retroviral therapy (ART).   

Summary statistics were calculated for the study population. For continuous data, median 

and interquartile range were calculated and for grouped data, percentages were calculated. 

For median values, the Wilcoxon rank sum test was used to calculate significance of 

differences between groups; and significance of the differences in proportions between 

groups was tested using the Fisher’s exact test. 

3.3.4. TB and HIV comorbidities in the study population 

New cases of Diabetes, TB and HIV were calculated for each year from 1st January 2011 to 

31st December 2017. New Diabetes cases per year were counted as those with date of 

diabetes first ascertainment in that year, and this time range reflects a period during which 

most of the electronic data sources of the PHDC were in common use with relatively 

complete mortality data. New TB cases in each year were inferred from the PHDC episodes 

data as those where TB episode date was after date of diabetes first ascertainment. 

Likewise, new HIV cases were those where the date of HIV ascertainment was after 

diabetes ascertainment. The incidence of both TB and HIV per year in the study population 

over that 6-year period was calculated from these numbers. 

Summary statistics describe the study population with a history of TB, comparing individuals 

with a TB episode before Diabetes was ascertained and those who developed active TB 

after their diabetes was ascertained (TB-Diabetes comorbidity). A person can have multiple 

cases of TB in their lifetime, and each time they are ascertained with TB it is recorded in the 

PHDC as a new TB episode with a start date and an end date. The ascertainment of TB 
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episodes in relation to diabetes ascertainment was inferred using the episodes data to 

generate counts of the TB episodes of individuals before and after Diabetes ascertainment. 

The HIV and TB status of the individual at the time of each HbA1c test was calculated and 

the ‘time to HbA1c ascertainment relative to TB ascertainment’ was inferred from the PHDC 

data by calculating the time difference in years between when each HbA1c test was done 

and when TB was ascertained in that individual. Negative time values were for HbA1c tests 

done before TB ascertainment, and positive time values were for HbA1c tests done after TB 

ascertainment.  

The ‘time to HbA1c ascertainment relative to HIV ascertainment’ was inferred from the 

PHDC data by calculating the time difference in years between when each HbA1c test was 

done and when HIV status was ascertained in that individual. Negative time values were for 

HbA1c tests done before HIV ascertainment, and positive time values were for HbA1c tests 

done after someone is diagnosed as HIV positive.  

3.3.5. Diabetes treatment 

Counts of the different diabetes drugs of individuals who had ever started diabetes treatment 

were done and stratified according to diabetes duration of the study participants. The Chi-

squared test measured statistical significance in the difference in the proportions of people 

who were in the different groups. 

3.4. Results 

3.4.1. The study population 

There were 16 969 individuals with an inferred diabetes episode, and of these, 15 842 were 

identified as most likely having Type 2 Diabetes Mellitus (T2DM) according to the described 

inclusion/exclusion criteria. Of the individuals with T2DM, 13 771 had recorded HbA1c 

laboratory results and 13 528 had pharmacy records for diabetes medications in the PHDC 

routine data (Figure 3.1). Of the study population, 67% had an average of one HbA1c test 

annually for the years assessed, although timing/spacing of the tests was not consistent.  

Summary statistics (Table 3.1) show the study population was 67% female, with a median 

age at diabetes ascertainment of 52 years (IQR: 44, 59) and a 58% (N = 8003) people had 

been ascertained with diabetes less than 5 years. Diabetes is a progressive disease and we 

saw the median HbA1c was higher if the period since diabetes ascertainment was longer, 

with those ascertained more than 10 years previously having significantly higher HbA1c 

(Table 3.1). Almost everyone (>99%) who had had diabetes for more than 5 years was on 

diabetes treatments compared to only 75.1% (p<0.001) in those were ascertained less than 
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5 years earlier (Table 3.1). In addition, 18% were ascertained as HIV-positive, and there was 

no significant difference in the proportion of HIV-positive individuals when considering how 

long they have had diabetes. There was, however, a significant difference in the proportions 

of people who had a history of TB, where those who have had diabetes for less than 5 years 

had the lowest proportion (11.4%) and those who have had diabetes for 10 years or more 

having the highest proportion of people (17.9%). The same trend was observed for those 

who had a TB-Diabetes comorbidity, where 91.8% of those with a history of TB who have 

had diabetes 10 years or more had an active TB episode after being ascertained with 

diabetes (Table 3.1). 

Table 3.1. Characteristics of the whole study population, and stratified by duration of 

diabetes in years 

All 

N=13771 

0- 5 Years

N=8003

5-10 Years

N=5219

≥ 10 Years 

N=549 

p-

value 

Sex (Female) 9246 (67.2%) 5225 (65.4%) 3635 (69.7%) 386 (70.4%) <0.001 

Age at diabetes 

ascertainment (Years) 

52.0 

[44.0;59.0] 

52.0 

[44.0;61.0] 

51.0 

[44.0;58.0] 

50.0 

[42.0;57.0] 

<0.001 

Baseline HbA1c (%) a 8.5  [7.0;11.1] 7.9  [6.8;10.5] 9.5  [7.6;11.8] 9.9 

[8.3;11.5] 

<0.001 

Last HbA1c (%) 9.5  [7.2;12.7] 8.6  [6.8;12.4] 10.3 
[8.0;13.1] 

10.8 
[8.6;13.2] 

<0.001 

Patient outcome 
 (Deceased) 

631 (4.6%) 377 (4.7%) 237 (4.5%) 17 (3.1%) 0.213 

Diabetes duration since 
ascertainment 
 (Years) 

4.1  [1.2;6.5] 1.6  [0.1;3.3] 6.6  [5.9;7.8] 10.7 
[10.3;11.2] 

0.000 

Ever started diabetes 
treatment 

11745 (85.3%) 6012 (75.1%) 5186 (99.4%) 547 (99.6%) 0.000 

Ever had Tuberculosis 1839 (13.4%) 910 (11.4%) 831 (15.9%) 98 (17.9%) <0.001 

TB-Diabetes comorbidity b 1008 (55.9%) 372 (41.9%) 547 (67.0%) 89 (91.8%) <0.001 

HIV Positive 2508 (18.2%) 1478 (18.5%) 932 (17.9%) 98 (17.9%) 0.657 

a. Baseline HbA1c was defined as the first recorded HbA1c value either at diabetes ascertainment or within the
first year after diabetes ascertainment.

b. Proportions calculated from those who had ever had Tuberculosis

3.4.2. TB and HIV in people living with diabetes 

Comparing HIV-positive and HIV-negative groups showed people living with HIV (PLWH) 

had diabetes ascertained at a significantly younger median age than the HIV-negative 

population (46 years c.f. 53 years respectively, p<0.001) (Table 3.2). In addition, PLWH had 

a significantly higher most recent HbA1c than the HIV-negative population (12.1% c.f. 9.1%, 

p<0.001). In line with other findings, the percentage of people who have ever had TB was 
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significantly higher amongst PLWH (32% vs 9%), but the proportion of HIV-negative 

individuals who developed active TB after diabetes ascertainment was significantly higher 

(62% c.f. 48%, p<0.001) than for PLWH. There was a significantly higher proportion of 

people with a history of TB in those who were ascertained with HIV before diabetes (35.9% 

c.f. 26.5%, p<0.001) compared to those who were ascertained HIV after diabetes.; and there

was a significantly higher proportion of people with a TB-Diabetes comorbidity (88.5% c.f. 

30.1%, p<0.001) in those who were ascertained with HIV after diabetes compared to those 

who were ascertained HIV before diabetes (Supplementary Table 3.1). In addition, there was 

a significant difference in the percentage of people who were deceased when comparing 

those ascertained with HIV before or after diabetes ascertainment (4.5% c.f. 8.1%, p<0.001). 

This is unlikely to be only an effect of age, as the median ages at diabetes ascertainment in 

these two groups are 45.0 (IQR: 39.0, 52.0) c.f. 47.0 (IQR: 39.0, 53.0) years. 

Table 3.2. Characteristics of the whole study population, and stratified by the HIV status of 

the participants 

ALL 
N=13771 

HIV Negative 
N=11263 (82%) 

HIV Positive 
N=2508 (18%) 

p-value

Sex (Female)     9246 (67.2%) 7520 (66.9%) 1726 (68.9%) 0.054 

Age at diabetes 
ascertainment (Years) 

52.0  [44.0;59.0] 53.0  [46.0;61.0] 46.0  [39.0;52.0] <0.001 

Age categories <0.001 

18-39 2110 (15.3%) 1445 (12.8%) 665 (26.5%) 

40-49 3718 (27.0%) 2742 (24.3%) 976 (38.9%) 

50-59 4576 (33.2%) 3906 (34.7%) 670 (26.7%) 

60-69 2357 (17.1%) 2191 (19.5%) 166 (6.6%) 

70-79 805 (5.8%) 779 (6.9%) 26 (1.0%) 

>=80 205 (1.5%) 200 (1.8%) 5 (0.2%) 

Baseline HbA1c (%) 8.5  [7.0;11.1] 8.6  [7.0;11.1] 8.4  [6.9;10.9] 0.008 

Baseline HbA1c < 7%       2820 (24.5%) 2268 (24.0%) 552 (26.4%) 0.023 

Last HbA1c (%) 9.5  [7.2;12.7] 9.1  [7.1;12.0] 12.1  [7.9;15.0] <0.001 

Last HbA1c < 7%      2928 (21.3%) 2509 (22.3%) 419 (16.7%) <0.001 

Patient outcome 
(Deceased) 

      631 (4.6%) 488 (4.3%) 143 (5.7%) 0.004 

Ever started diabetes 
treatment 

11745 (85.3%) 9631 (85.5%) 2114 (84.3%) 0.126 

Linkage to diabetes a  

treatment 

    10707 (91.2%) 8913 (92.5%) 1794 (84.9%) <0.001 
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ALL 
N=13771 

HIV Negative 
N=11263 (82%) 

HIV Positive 
N=2508 (18%) 

p-value

Linkage to HbA1c 
testing b 

    9264 (67.3%) 7580 (67.3%) 1684 (67.2%) 0.909 

Ever had Tuberculosis     1839 (13.4%) 1039 (9.2%) 800 (31.9%) <0.001 

Tuberculosis-Diabetes 
comorbidity 

    1008 (55.9%) 627 (62.0%) 381 (48.2%) <0.001 

a. Proportions of patients having a record of diabetes drugs being prescribed within one year of their last
recorded diabetes-related hospital encounter (calculated from those who had ever started diabetes treatment)

b. Proportion of patients having a recorded HbA1c laboratory test result within one year of the last recorded
diabetes related hospital encounter

The TB population (Supplementary Table 3.1) was 57% female with a median age at 

diabetes ascertainment of 49 years, and everyone in this cohort diagnosed with TB was 

linked to TB treatment. In addition, people with a history of TB had worse outcomes as we 

saw significantly more deceased people in this group when compared to those without a 

history of active TB disease (10% c.f. 3.8%, p<0.001). There was no significant difference in 

the gender distribution or age at diabetes ascertainment between those ascertained with TB 

before or after diabetes ascertainment (Table 3.3). The median baseline HbA1c of 10.1% 

(IQR: 7.6, 12.3) was significantly higher (p-value < 0.001) in those diagnosed with TB after 

diabetes when compared to those diagnosed with TB before diabetes at 8.2% (IQR: 6.8, 

11.0). The results also suggest that developing active TB after a diabetes diagnosis may 

result in worse outcomes, as significantly more people in this group died (12%) when 

compared to those who had TB before being diagnosed with diabetes (7%). This is unlikely 

to be only an effect of age, as the median ages at diabetes ascertainment in these two 

groups are 49.0 (IQR: 41.2, 57.0) c.f. 48.0 (IQR: 41.0, 56.0) years. 

Table 3.3. Characteristics of the study population with a history of Tuberculosis (TB) and 
stratified by the onset of the TB episode in relation to diabetes ascertainment 

ALL 
N=1802 (98%) a 

TB episode before 
diabetes 
ascertainment 
N=794 (44%) 

TB episode after 
diabetes 
ascertainment 
N=1008 (56%) 

p-value

Sex (Female) 1023 (56.8%) 442 (55.7%) 581 (57.7%) 0.415 

Age at diabetes 
ascertainment (Years) 

49.0  [41.0;56.0] 49.0  [41.2;57.0] 48.0  [41.0;56.0] 0.13 

Baseline HbA1c (%) 9.2  [7.1;11.8] 8.2  [6.8;11.0] 10.1  [7.6;12.4] <0.001 

Baseline Hba1c < 7% 327 (22.3%) 189 (28.9%) 138 (17.0%) <0.001 

Last HbA1c (%) 11.0  [7.6;14.1] 10.8  [7.2;14.4] 11.1  [8.0;13.9] 0.130 
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ALL 
N=1802 (98%) a 

TB episode before 
diabetes 
ascertainment 
N=794 (44%) 

TB episode after 
diabetes 
ascertainment 
N=1008 (56%) 

p-value

Last HbA1c < 7% 328 (18.2%) 173 (21.8%) 155 (15.4%) <0.001 

HIV Positive 791 (43.9%) 410 (51.6%) 381 (37.8%) <0.001 

Diabetes duration since 
ascertainment (Years) 

5.1  [1.8;7.1] 3.3  [0.5;6.1] 6.1  [3.5;7.9] <0.001 

Patient outcome 
(Deceased) 

178 (9.9%) 53 (6.7%) 125 (12.4%) <0.001 

Ever started TB 

treatment 

1802 (100.0%) 794 (100.0%) 1008 (100.0%) . 

Ever started diabetes 
treatment 
Treatment

1579 (87.6%) 640 (80.6%) 939 (93.2%) <0.001 

Linkage to diabetes 

treatment b 

treatment:

1350 (85.5%) 536 (83.8%) 814 (86.7%) 0.120 

Linkage to HbA1c 
testing c

1209 (67.1%) 532 (67.0%) 677 (67.2%) 0.983 

a. 35 (2%) individuals who had ever had TB did not have enough data to classify when they had a TB episode

relative to diabetes ascertainment
b. Proportions of patients having a record of diabetes drugs being prescribed within one year of their last
recorded diabetes-related hospital encounter (calculated from those who had ever started diabetes treatment)
c. Proportion of patients having a recorded HbA1c laboratory test result within one year of the last recorded

diabetes related hospital encounter

3.4.3. Annual incidence of TB and HIV 

New cases of Diabetes, TB and HIV were calculated in each year from 1st January 2011 to 

31st December 2017. There was a steady increase of newly ascertained diabetes cases over 

the six-year period excluding 2012 and 2013 (Figure 3.2). The data also show there were 

almost equal numbers of new TB and HIV cases in the study population, and these numbers 

steadily decreased over the six-year period except for 2012 in which there was a spike for 

both. The TB and HIV incidence in this diabetes population were calculated at 1.06% per 

year and 0.98% per year respectively, calculated over the six-year period. 
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Figure 3.2. Bar graph showing new diabetes cases (bars) from January 2011 to December 

2017 overlaid with line plots of new Tuberculosis (solid line) and HIV (dashed line) cases in 

these diabetes patients in the same time period. 

3.4.4. Multiple episodes of TB 

A person can have multiple cases of TB in their lifetime. Each time they are ascertained with 

TB it is recorded in the PHDC as a TB episode with start and end dates, and the 

ascertainment of TB episodes in relation to diabetes ascertainment was inferred using these 

data. There was a statistically significant difference (p-value < 0.001) in the distribution of TB 

episodes ascertained before and after diabetes ascertainment (Figure 3.3). The data show 

that after their first TB episode, significantly more people were getting subsequent TB 

episodes after diabetes ascertainment.  
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Figure 3.3. Distribution of repeat Tuberculosis (TB) episodes in the study population before 

and after diabetes ascertainment 

3.4.5. HbA1c before and after TB ascertainment 

The overall mean population HbA1c measured during both the 5 years before and 5 years 

after TB ascertainment is greater than 9% and is higher at the longer times since TB 

diagnosis, despite the majority of these patients receiving diabetes treatment (Figure 3.4A). 

Most of the HbA1c values of patients not on diabetes treatment are concentrated around an 

HbA1c of 6.5% which is the cut off HbA1c value for diagnosing diabetes, so it is reasonable 

to assume that these individuals are not yet receiving dispensed diabetes medications. 

Immediately after TB ascertainment, however, mean HbA1c is lower and there are more 

HbA1c values below 6.5% when compared to before TB ascertainment. In addition, after TB 

ascertainment, there are more recorded HbA1c values of patients not on diabetes treatment, 

and while most of these HbA1c values are concentrated around 6.5%, there are patients 

with HbA1c greater than 9% who are not on diabetes treatment. Both before and after TB 

ascertainment there is no distinct pattern for HbA1c values of patients who have had one or 

two TB episodes (Figure 3.4B), but for patients who have had three or four TB episodes the 

HbA1c values are mostly greater than 9%, and this is true for both before and after TB 

ascertainment. HbA1c values of participants who were deceased at study end were 
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distributed randomly across the different HbA1c ranges both before and after TB 

ascertainment (Supplementary Figure 3.1).  

3.4.6. HbA1c values with respect to HIV ascertainment 

The overall mean HbA1c measured during the 5 years before HIV ascertainment is greater 

than 9% but is generally lower at later time points and generally lowest (less than 9%) 

immediately after HIV ascertainment (Figure 3.5A). After HIV ascertainment, however, the 

overall mean HbA1c is generally a bit higher at later time points averaging just above 9%. 

Before HIV ascertainment the HbA1c values of those who are not on diabetes treatment are 

concentrated around the 6.5 % diabetes diagnosis threshold, however after HIV 

ascertainment the HbA1c values of those not on diabetes treatment are distributed randomly 

across the different HbA1c values (Figure 3.5A). After HIV ascertainment, there were more 

recorded HbA1c values in individuals who have had TB, and the HbA1c values of those 

patients were distributed randomly across the different HbA1c ranges both before and after 

HIV ascertainment (Figure 3.5B). Similarly, HbA1c values of participants who were 

deceased at the study end were distributed randomly across the different HbA1c ranges 

both before and after HIV ascertainment (Supplementary Figure 3.2).  
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Figure 3.4. Effect of Tuberculosis ascertainment on HbA1c (%) over a 5-year period. A. 

HbA1c plotted by diabetes treatment i.e. on diabetes treatment (grey circle) or not on 

diabetes treatment (dark-red star). B. HbA1c plotted by TB episode i.e. 1 episode (grey 

circle), 2 episodes (pale-green square), 3 episodes (steel-blue star) or 4 episodes (dark-red 

diamond).  
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Figure 3.5. Effect of HIV ascertainment on HbA1c (%) over a 5-year period. A. HbA1c 

plotted by diabetes treatment i.e. on diabetes treatment (grey circle) or not on diabetes 

treatment (dark-red star). B. HbA1c plotted by TB history i.e. never had TB (grey circle) or 

have had TB (dark-red star). 
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3.4.7. Diabetes treatment 

The study population was dispensed the three main diabetes drug classes available in the 

National Formulary for the Public Sector:  Metformin (MTF), Sulphonylurea (SU) and insulin 

(Table 3.4). In line with current treatment practices, most of the population were on oral 

drugs and the most widely prescribed drug was metformin for 95% of the population, with 

41% of treatment patients on insulin. In addition, the use of Insulin increased significantly 

with increasing duration of diabetes with 79.6% of the people who have had diabetes for 

more than 10 years on insulin (Table 3.4). This result is in line with the high median HbA1c 

of patients, but even though 85% of the study population was on treatment, the HbA1c was 

generally high and also seemed to be higher at later timepoints after diagnosis - suggesting 

that diabetes is failing to be controlled the longer patients have had the condition (Table 3.1). 

Table 3.4. Pharmacy counts with last recorded HbA1c values for the whole population and 

stratified by duration of diabetes in years since ascertainment. 

ALL 
N=13528 

0 – 5 Years 
N=7748 

5 – 10 Years 
N=5232 

≥ 10 years 
N=548 

p-value

Metformin 12702 (95.2%) 7137 (94.4%) 5051 (96.6%) 514 (93.8%) <0.001 

Sulphonylurea 8309 (62.3%) 3846 (50.9%) 4046 (77.4%) 417 (76.1%) <0.001 

Insulin 5513 (41.3%) 2012 (26.6%) 3065 (58.6%) 436 (79.6%) 0.000 

Metformin & 
Sulphonylurea 

8684 (64.2%) 4093 (52.8%) 4150 (79.3%) 441 (80.5%) <0.001 

Metformin & 
Insulin 

5078 (37.5%) 1745 (22.5%) 2927 (55.9%) 406 (74.1%) 0.000 

Metformin, Insulin & 
Sulphonylurea 

3778 (27.9%) 1039 (13.4%) 2416 (46.2%) 323 (58.9%) 0.000 

Many PLWD also had TB and HIV comorbidities, and while all the TB and HIV patients in 

this study were recorded as having started treatment for each disease respectively, not all 

diabetes patients were on treatment for diabetes. For the PLWD with TB and HIV 

comorbidities, only 59.5% (1088) of those with a TB-DM comorbidity were recorded as being 

on treatment for both TB and diabetes simultaneously, while only 52.5% (1323) of those with 

an HIV-DM comorbidity were recorded as being on both HIV and diabetes treatment 

simultaneously. Only 40.6% (743) of patients with a triple TB-HIV-DM comorbidity were 

recorded as being on treatment for all three conditions simultaneously (Supplementary Table 

3.3). 
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3.5. Discussion 

The study population was drawn from individuals visiting health care facilities with over-

representation of women, in line with other reports showing men are less likely to seek 

health care compared to women, and there is a general bias due to physically healthy 

women linking to health care through contraceptive and maternal health programmes 

whereas health men seldom visit health facilities (Abaerei et al., 2017). The distribution of 

people in the different age categories was similar for both men and women and the 

proportion of diabetes cases was highest at 33% in both men and women in the 50-59 age 

group (Supplementary Table 3.4). A significantly higher proportion of HIV positive people 

had diabetes ascertained at less than 50 years of age (65.4% vs 37.1%; p-value < 0.001) 

when compared to those who were HIV-negative at diabetes ascertainment (Table 3.2). 

Whilst there may be a causal relationship between HIV and diabetes, it is also possible that 

HIV positive people may have earlier ascertainment of diabetes because they are accessing 

care frequently and therefore getting screened and diagnosed earlier rather than diagnosis 

only happening once they develop severe symptoms. Median baseline HbA1c was similar 

for HIV positive 8.4% (IQR: 6.9, 10.9) and HIV negative groups 8.6% (IQR: 7.0, 11.1), 

suggesting that PLWH may be presenting with similar diabetes severity to HIV-negative 

patients at diagnosis. T2DM is a disease that is associated with ageing, but when comparing 

the HIV-positive and HIV-negative groups we saw a significantly higher proportion of people 

PLWH who were between 18-39 years (26.5 % c.f. 12.8% p-value < 0.001) being 

ascertained with T2DM (Table 3.2). This could be due to the interaction with HIV and 

Diabetes which increases the risk of diabetes and pre-diabetes in PLWH and especially 

those on highly active ART (HAART). There is also evidence that HIV significantly increases 

the risk of developing T2DM and that using highly active anti-retroviral therapy (HAART) 

induces hyperglycaemia (Araujo et al., 2014; Dave et al., 2011; Levitt et al., 2016), which is 

supported by our observations that, in a population with pre-existing diabetes, HIV co-

infection appears in tandem with apparent glycaemic decline. We observed a median value 

of 8.4% (IQR: 6.9, 10.9) at baseline compared to 12.1% (IQR: 7.9, 15.0) at the last recorded 

HbA1c in this population, while in the HIV negative population there was only a slightly 

higher median of 9.1% (IQR: 7.1, 12.0) at the last recorded HbA1c compared to 8.6% (IQR: 

7.0; 11.1) at baseline (Table 3.2). As all the HIV positive people in this study are on ART, the 

medications and the natural course of HIV infection might be contributing to the observed 

chronic hyperglycaemia.  Other possibilities explanations include that HIV and diabetes care 

may not be well integrated in primary care clinics yet, and PLWH and DM may need to 

attend multiple clinics on multiple days leading to poor attendance. 
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The strong association between TB and HIV is well established and is reflected here with a 

TB burden in the HIV-positive population that is almost four times that in the HIV-negative 

population. Given the relationship between TB and HIV, a higher TB-Diabetes comorbidity in 

the HIV-positive group was expected, but we observed the opposite with significantly more 

HIV-negative people (62% c.f. 48.2%; p-value < 0.001) having a higher TB-Diabetes 

comorbidity (Table 1). This observation supports studies done in Nigeria (Lawson et al., 

2017) and Tanzania (Faurholt-Jepsen et al., 2011) which showed that HIV negative people 

living with diabetes had an increased risk of developing pulmonary TB than HIV-positive 

people living with diabetes. It is estimated that up to 80% of the population in South Africa is 

infected with Mycobacterium tuberculosis however, not everyone who is infected progresses 

to TB disease (WHO Global Tuberculosis Report 2019, 2019). Studies have shown that in 

people with diabetes, the increased risk of TB disease is not necessarily from newly 

acquired infections, but rather by progression from latent to active TB (Koesoemadinata et 

al., 2017), however the biological mechanisms have not yet been elucidated. It is possible 

that in our study, the significantly higher proportions of HIV-negative people with TB could be 

driven by progression from latent to active TB disease caused by diabetes especially given 

that this population group is not put on TB preventive therapy, while it is part of clinical care 

in PLWH in South Africa (WHO Global Tuberculosis Report 2019, 2019). As the prevalence 

of diabetes continues to increase, it threatens to derail TB epidemic control efforts and there 

have been recent calls to assess the use  of TB preventive therapy in people with diabetes 

(Harries, 2019; Jeon & Murray, 2008).  

The relationship between T2DM and TB has been widely studied, but few studies have 

focused on the impact of active TB disease comorbidity on pre-existing diabetes. In this 

study we looked at the association between active TB disease and diabetes prognosis using 

HbA1c as an outcome. The target HbA1c for patients in care is 7% and as HbA1c levels 

increase so does the risk of diabetes complications (Sherwani et al., 2016). Results from our 

study show that in people with pre-existing diabetes, overall mean HbA1c is highest in the 

year before TB ascertainment and lowest in the year after (Figure 3.4). A possible 

explanation for this observation in our study population could be that the participants were 

linked to diabetes care following TB diagnosis resulting in an improvement in their diabetes 

control. It is also possible that having a TB diagnosis and subsequent in these individuals 

might result in better control of diabetes and improved HbA1c levels once they are not TB-

positive. Because our data are routine health data and do not include any clinician notes, 

however, we cannot conclude this from these data alone.  Even though the HbA1c was 

generally lower after TB ascertainment, it was greater that > 9% overall which is still 

classified as uncontrolled diabetes. Our results are not comparable to many other studies 
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(Aftab et al., 2017; Boillat-Blanco et al., 2016; Gupte et al., 2018; Tabarsi et al., 2014) 

because most of these studies were cross sectional or had a short follow up time and did not 

report HbA1c before TB ascertainment. In addition, the studies investigated the impact of TB 

on the diagnosis of new diabetes and not on pre-existing diabetes. Overall, we observed that 

having TB disease did not seem to influence the trajectory of glycaemic control in the long 

term, but PLWD who developed active TB had worse outcomes, as we saw significantly 

more deaths (12.4% vs 6.7% p-value < 0.001) in this group (Table 3.2).  Previous studies 

have shown that TB patients  diagnosed with diabetes have worse TB outcomes (Chiang et 

al., 2015; Wu et al., 2016) and the same seems to hold true for TB patients with pre-existing 

diabetes. Since survival was the only patient outcome measure used in this study beyond 

HbA1c values, we could not determine the impact of the observed chronic hyperglycaemia 

on risk of developing diabetes related vascular complications which were observed in other 

studies (Litwak et al., 2013). 

HIV and diabetes are both chronic progressive illnesses which put a huge burden on the 

health care system (Williams et al., 2017), it is therefore important to understand how these 

two diseases affect each other in the South African context. While several studies have 

investigated the impact of HIV on glucose metabolism and the risk on developing pre-

diabetes and diabetes (Araujo et al., 2014; Dave et al., 2011; Levitt et al., 2016), there is a 

paucity of studies investigating how HIV impacts the prognosis of pre-existing diabetes. In 

this study we aimed to investigate HbA1c levels in relation to new HIV infection in the 

context of pre-existing diabetes. Prior studies also show that HbA1c readings underestimate 

glycemia in HIV-infected individuals (Diop et al., 2006; P. S. Kim et al., 2009; S.-Y. Kim et 

al., 2014) and the results in our study might reflect these findings because we see a drop in 

mean HbA1c in the year following HIV ascertainment which only increases slightly over time. 

In addition, we also saw an overall trend in which HbA1c was lower before HIV 

ascertainment and this could be a possible indicator of undiagnosed HIV (Figure 3.5). It is 

also possible that the level of hyperglycaemia in PLWD who HIV are positive could be 

underestimated, suggesting that the utility of HbA1c in monitoring glycaemic control in HIV 

endemic settings like South Africa warrants further investigation. 

T2DM can be managed using a combination of lifestyle changes and drug therapy and 

HbA1c levels are used as a proxy measure of long term diabetes control (“International 

Expert Committee Report on the Role of the A1C Assay in the Diagnosis of Diabetes,” 

2009). An HbA1c < 7% is the target level for good glycaemic control (“Intensive Blood-

Glucose Control with Sulphonylureas or Insulin Compared with Conventional Treatment and 

Risk of Complications in Patients with Type 2 Diabetes (UKPDS 33),” 1998), however 

studies have shown that worldwide, people living with diabetes are failing to reach this 
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glycaemic target (Camara et al., 2015; Erasmus et al., 1999; Litwak et al., 2013; Musenge et 

al., 2015; Pinchevsky et al., 2015). This study had similar results with only 24.5% (n = 2820) 

of the study population showing good glycaemic control at baseline. While this is worrying, it 

reflects that more than two thirds of diabetes in SSA including in South Africa is undiagnosed 

(Mbanya et al., 2010) until patients present with symptoms of chronic hyperglycaemia. The 

aim of diabetes management is controlling hyperglycaemia to reduce the risk of  progression 

to microvascular and macrovascular complications (“Intensive Blood-Glucose Control with 

Sulphonylureas or Insulin Compared with Conventional Treatment and Risk of Complications 

in Patients with Type 2 Diabetes (UKPDS 33),” 1998), but this study indicated that this 

population is failing to reach this target despite 85% being recorded as being on treatment. 

This is a worrying trend which is possibly due to a combination of diabetes disease 

progression with time, and a lack of compliance and adherence with the treatment and 

lifestyle changes [52,54–56]. Further analysis is needed to establish adherence and 

compliance in the study population, as this cannot be determined from the retrospective data 

alone. 

HIV and diabetes are both chronic diseases whose long-term management includes drug 

therapy, however, only 52.8% of the study population with an HIV-diabetes comorbidity were 

on diabetes treatment. It is possible that there are both patient, provider and systems issues 

causing delay in initiation of therapy. Some patients might also get their diabetes care in the 

private health sector at different times during their care, and private health data were not 

included in this study, but it is unlikely that they would access public health facilities for one 

illness but not the other. These data suggest that a coordinated response is needed to 

address the gaps and provide an holistic, integrated care for people living with diabetes, 

especially in the context of the high burden of infectious diseases in Africa. Such an 

integrated approach would include education of PLWD, availability of health professionals 

with required skills, and sociodemographic considerations  (Gennaro et al., 2019). It will be 

important to better understand why almost 50% of patients with HIV-diabetes comorbidity 

are not on diabetes treatment despite the high median HbA1c suggesting a need for 

treatment intervention, and prospective studies can explore factors that determine treatment 

timelines especially with associated HIV diagnosis.  

3.6. Potential limitations of the study 

There is a two-tier health system in South Africa where some individuals receive private 

health care, some receive only government health care, and there are also many individuals 

who access both types of service and transition back and forth depending on their 

employment and health insurance status (Chopra et al., 2009; Winchester & King, 2018). We 
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therefore expect that an exhaustive health record for each individual may not be available 

through the PHDC. Some patients did not have recorded HbA1c results and pharmacy 

records, and this may could be due to private health service utilisation, as well as the 

staggered roll-out of electronic health data platforms in the Province which means that data 

completeness may fluctuate according to the facility attended and year of service provision. 

Also, South Africa has a federated health service whereby provinces manage healthcare 

services (Chopra et al., 2009; Winchester & King, 2018), and coupled with a highly migratory 

working population, it is possible that records are missing when individuals move to other 

provinces in South Africa for periods of time. 

3.7. Conclusion 

To our knowledge this is the first study in South Africa to use longitudinal routine health data 

to study the relationship between active TB disease and HIV infection in the context of pre-

existing diabetes using National Glycohemoglobin Standardization Program (NGSP) HbA1c 

as an outcome measure. In addition, we were able to establish temporal order of disease 

ascertainment. The study had a large sample size and long-term retrospective data, 

reducing selection bias arising from including people actively seeking care. In addition, these 

routine health data reflect a more accurate picture of diabetes in the general population than 

would actively managed clinical studies involving diabetes patients. The epidemiologic 

findings in this exploratory study demonstrate that routine health data are a valuable 

resource for understanding disease epidemiology and highlighted the need for further 

research into diabetes outcomes in a high TB and HIV burden setting. 
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Relevance of paper in thesis 

The association between diabetes and infectious disease is well established and in the 

previous chapter we demonstrated the link between diabetes and the infectious diseases 

TB, and HIV. Similarly at the start of the COVID-19 pandemic, several large studies reported 

on the association of increased severity of COVID-19 with diabetes, but most of the studies 

were from countries in the global north. At the time of doing the analysis, there were no large 

studies with a focus on diabetes from Africa that had been reported. In this analysis we 

addressed this knowledge gap and highlighted the utility of routine health data in 

understanding the epidemiology of an emerging infectious disease. We were able to scale 

up the data analysis pipelines that had been used in the Khayelitsha cohort and applied 

them to a large cohort in the Western Cape Province. This analysis also addressed objective 

2 where we further explored statistical methods for modelling longitudinal data so that it can 

be used as a GWAS phenotype. 

https://doi.org/10.1016/j.diabres.2021.108925
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4.1. Abstract 

Background 

COVID-19 outcomes and risk factors, including comorbidities and medication regimens, in 

people living with diabetes (PLWD) are poorly defined for low- and middle-income countries. 

Methods  

The Provincial Health Data Centre (Western Cape, South Africa) is a health information 

exchange collating patient-level routine health data for approximately 4 million public sector 

health care seekers. Data from COVID-19 patients diagnosed between March and July 

2020, including PLWD, were analysed to describe risk factors, including dispensed diabetes 

medications and comorbidities, and their association with COVID-19 outcomes in this 

population.  

Findings 

There were 64,476 COVID-19 patients diagnosed. Of 9305 PLWD, 44.9% were hospitalised, 

4.0% admitted to ICU, 0.6% received ventilation and 15.4% died. In contrast, proportions of 

COVID-19 patients without diabetes were: 12.2% hospitalised, 1.0% admitted, 0.1% 

ventilated and 4.6% died. PLWD were significantly more likely to be admitted (OR:3.73, 95 

%CI: 3.53, 3.94) and to die (OR:3.01, 95 %CI: 2.76,3.28). Significant hospitalised risk factors 

included HIV infection, chronic kidney disease, current TB, male sex and increasing age. 

Significant risk factors for mortality were CKD, male sex, HIV infection, previous TB and 

increasing age. Pre-infection use of insulin was associated with a significant increased risk 

for hospitalisation (OR:1.39, 95 %CI:1.24,1.57) and mortality (OR:1.49, 95 % CI:1.27; 1.74) 

and metformin was associated with a reduced risk for hospitalisation (OR:0.2, 95 %CI: 0.55, 

0.71) and mortality (OR 0.77, 95 %CI:0.64; 0.92).  

Interpretation 

Using routine health data from this large virtual cohort, we have described the association of 

infectious and noncommunicable comorbidities as well as pre-infection diabetes medications 

with COVID-19 outcomes in PLWD in the Western Cape, South Africa. 
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4.2. Introduction 

Infection with SARS-CoV-2 has caused a global pandemic that has not spared any country. 

At the time of writing, 107 million people have been infected and 2.4 million people have died 

from Coronavirus Disease in 2019 (COVID-19) (COVID Live - Coronavirus Statistics - 

Worldometer, n.d.). It has now been well established that people living with diabetes (PLWD) 

are at increased risk of more severe infection with SARS-CoV-2 (“COVID-19,” 2020). 

Observational data of COVID-19 from countries which were at the forefront of this pandemic 

have reported greater morbidity and mortality in PLWD than those without diabetes, when 

studied in well-defined populations from the UK (Barron et al., 2020; Holman et al., 2020; 

Mancia et al., 2020; McGurnaghan et al., 2021; Williamson et al., 2020). Publications from 

low-middle income countries of Mexico, Brazil and South Africa have similarly confirmed this 

risk (Bello-Chavolla et al., 2020; Martins-Filho et al., 2021; Western Cape Department of 

Health in collaboration with the National Institute for Communicable Diseases, 2021). 

Determinants of COVID-19 mortality risk among people with diabetes have been explored in 

a few studies from the UK, Ireland and France (Barron et al., 2020; Cariou et al., 2020; 

Holman et al., 2020; McGurnaghan et al., 2021). Age, sex, duration of diabetes, body mass 

index (BMI), black and South Asian ethnicity, lower socio-economic status, poorer glycaemic 

control, and pre-existing cardiovascular disease were reported to increase risk.  

In this study, we used linked-routine health data at the end of the first wave of COVID-19, 

collated from a variety of electronic platforms for adults attending public sector health 

facilities in the Western Cape Province, South Africa, to identify whether diabetes is 

associated with greater morbidity and mortality from COVID-19. By using routinely collected 

data, we aimed to determine whether there were any predictors for more severe COVID-19, 

among these patients. 

4.3. Methods 

4.3.1. Study design 

In this cohort study, we used data from the first wave of the pandemic in the Western Cape 

Province, from 04 March 2020 (when the first case was identified) to 15 July 2020, when 

infection rates had dropped. 

4.3.2. Selection of study population 

The Provincial Health Data Centre (PHDC) is a health information exchange, housed by the 

Western Cape Department of Health that collates and links routine health data from a variety 
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of electronic platforms used across the Western Cape Province (Boulle et al., 2019). These 

include demographic data from facilities, dispensing data for medications, laboratory data, 

and data from a variety of disease-specific and service delivery data systems. The data are 

updated daily and linked to a deduplicated patient master index (PMI), which represents 

approximately 5.25 million that rely solely on the public sector for health care.  

The study population was identified from the Western Cape Population, as represented in 

the PHDC. Inclusion criteria were: (1) having attended at least one Government Health 

Facility in the Western Cape, South Africa, in the period 1 January 2010 to 31 December 

2019, used as a proxy for patients accessing public sector health care and (2) a laboratory 

confirmation of SARS-CoV-2 infection up and until the 15 July 2020. A COVID-19 diagnosis 

was inferred from PHDC records, using evidence of a positive SARS-CoV-2 polymerase 

chain reaction (PCR) laboratory result. Records without patient COVID-19 outcome 

(deceased or recovered) by October 2020, were excluded. 

Data descriptors: All retrospective, routine health data accessed in PHDC for public health 

sector patients with a COVID-19 outcome, were analysed using R version 3.6.1 (2019-07-

05). Descriptive statistical methods assessed population demographics as of 31 July 2020. 

‘Age’ was the age at COVID-19 diagnosis in years, ‘sex’ was the gender recorded in PHDC 

records (male, female), ‘pregnant’ indicated pregnancy status at COVID-19 diagnosis. 

‘Hospital_admission’ referred to hospital admission contemporaneous with COVID-19, 

‘admitted_to_ICU’ represents admission to an intensive care unit (ICU) due to COVID-19 

and ‘ventilated’ means a ventilator was required, as part of COVID-19 patient care. 

‘New_diabetes’ is diabetes diagnosed subsequent to the COVID-19 diagnosis, ascertained 

from the date of first evidence of diabetes using PHDC records. 

Comorbidity data were provided for six comorbidities: Human Immunodeficiency Virus (HIV), 

chronic kidney disease (CKD), chronic obstructive pulmonary disease (COPD) or asthma, 

hypertension, diabetes mellitus (DM) and tuberculosis (TB). TB was further stratified into 

‘TB-current’, a TB episode ongoing at time of COVID-19 diagnosis; and ‘TB-previously’, a TB 

episode occurring prior to COVID-19 diagnosis. Comorbidity episodes are inferred from a 

combination of facility visits, laboratory results and medications, are not clinician-validated 

for individual patients, and may have some margin of error. Data were not available for 

cardiovascular disease (CVD) episodes in this group. In brief: diabetes status was inferred in 

people who ever had an HBA1c of ≥ 6.5%, a 2-hr glucose of ≥ 11.1mmol/l after an oral 

glucose tolerance test, had been dispensed oral hypoglycaemic agents used exclusively for 

the management of diabetes or insulin, or had been assigned a diabetes ICD-10 diagnostic 



76 

code [12]. For CKD, TB and HIV, laboratory results, specialist facility visits, and dispensed 

medications were used to define the nature of the condition. For hypertension and COPD or 

asthma, only dispensed medication was used to define the condition, without identifying 

patients with specific diagnoses who were untreated. Currently, CVD algorithms are under 

development and were not available for this study. 

Pharmacy data from PHDC described the dispensing date for medicines. The association of 

medication on hospitalisation and mortality in PLWD diagnosed with COVID-19 was 

analysed from a subset of patients collecting medication from healthcare facilities linked to 

the electronic pharmacy records. Patient counts estimated the proportions of patients on 

various drugs in the year preceding COVID-19 diagnosis and post diagnosis, recognising 

that not all issued pharmacy drugs are always captured in the PHDC records. The 

medications selected and grouped were as follows: oral diabetes drugs (metformin, 

glimepiride), insulin (actrapid, Protaphane®, Actraphane®, Humulin N®, Humlin R®, 

Humulin 30/70®, insulin lispro, insulin aspart, insulin glargine, insulin detemir), statin 

(simvastatin, atorvastatin), angiotensin converting enzyme (ACE) inhibitor (enalapril), 

angiotensin receptor blocker (ARB) (losartan), steroids (dexamethasone, prednisone), 

hydrochlorothiazide (HCTZ) and anti-retroviral therapy (ART). These drugs were selected 

specific classes reflecting the formulary for the Western Cape Department of Health. 

Laboratory data for all patients admitted to hospital for COVID-19 were analysed. The first 

available blood results in the period 2 days before and up to 5 days after the hospital 

admission for COVID-19, were considered as ‘‘admission investigations”. 

4.3.3. Outcomes 

We assessed the cumulative incidence of hospital admissions and deaths in PLWD 

diagnosed with COVID-19. For COVID-19 cases, the PHDC collates deaths data from 

hospital records, forensic pathology services, the National Institute for Communicable 

disease (NICD) notifications and death certification records. 

Summary statistics were generated for the whole population and stratified by different sub-

groups in the population. For continuous data, median and interquartile range were 

calculated and for grouped data, percentages were calculated. Multivariate logistic 

regression was used to estimate the effect on two outcomes, hospital admission and 

mortality and included all available co-variates.  

4.3.4. Ethics 
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The study was approved by the University of Cape Town Faculty of Health Sciences Ethics 

Review Board (HREC Ref: 286/2020). As this study comprised anonymized and perturbed 

data, a waiver was granted for informed consent.  

4.4. Results  

4.4.1. Patient characteristics 

Selection of the study population is described in Figure 1. Of approximately 4.0 million active 

patients aged ≥ 20 years in the PHDC database, 64 476 were diagnosed with COVID-19 by 

15 July 2020, of whom 2993 (4.6%) died (Table 4.1).  

Figure 4.1. Flow chart showing the selection of the study population from the PHDC routine 

health data. 

4.4.1.1. The COVID-19 patient population 

Population pyramids illustrate the youthful distribution of the Western Cape population, with 

80% of the population under 50 years of age (Figure. 4.2A). For COVID-19 patients, a 

greater proportion (61.7%, n = 39 752) were women. Most patients (45.6%, n = 29 379) were 

18 to 39 years old, with 70% of patients ≤ 50 years old. In this group, hypertension (19.6%, n 

= 12 623), diabetes (14.4%, n = 9305) and HIV infection (12.3%, n = 7933) were most 

prevalent co-morbidities. There were 16.9% (n = 10 887) hospitalised, 1.4% (n = 917) 

required intensive care, and 0.2% (n = 130) needed ventilation (Table 4.1). 
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Table 4.1. Characteristics of the Western Cape public health sector patients with COVID-19. 

The results have been grouped by Diabetes status (No Diabetes or Diabetes). 

ALL No Diabetes Diabetes 

N=64476 N=55171 N=9305 

Sex: 

Female 39752 (61.7%) 34107 (61.8%) 5645 (60.7%) 

Male 24669 (38.3%) 21012 (38.1%) 3657 (39.3%) 

Age (years) 40.0 [30.0;52.0] 37.0 [29.0;49.0] 55.0 [46.0;63.0] 

Age distribution: 

0-18 2654 (4.1%) 2635 (4.8%) 19 (0.2%) 

18-39 29379 (45.6%) 28135 (51.0%) 1244 (13.4%) 

40-49 13098 (20.3%) 11246 (20.4%) 1852 (19.9%) 

50-59 10613 (16.5%) 7727 (14.0%) 2886 (31.0%) 

60-69 5323 (8.3%) 3260 (5.9%) 2063 (22.2%) 

70-79 2340 (3.6%) 1390 (2.5%) 950 (10.2%) 

>=80 1069 (1.7%) 778 (1.4%) 291 (3.1%) 

Outcome: 

Active 11 (<0.1%) 10 (<0.1%) 1 (<0.1%) 

Died 2993 (4.6%) 1559 (2.8%) 1434 (15.4%) 

Recovered 61374 (95.3%) 53518 (97.2%) 7856 (84.6%) 

HIV 7933 (12.3%) 7022 (12.7%) 911 (9.8%) 

TB current 791 (1.2%) 679 (1.2%) 112 (1.2%) 

TB previously 3945 (6.1%) 3302 (6.0%) 643 (6.9%) 

Asthma or COPD 4202 (6.5%) 2981 (5.4%) 1221 (13.1%) 

Hypertension 12623 (19.6%) 7462 (13.5%) 5161 (55.5%) 

CKD 1448 (2.2%) 596 (1.1%) 852 (9.2%) 

Pregnant 958 (1.5%) 873 (1.6%) 85 (0.9%) 

Hospital admission 10887 (16.9%) 6706 (12.2%) 4181 (44.9%) 

ICU admission 917 (1.4%) 544 (1.0%) 373 (4.0%) 

Ventilated 130 (0.2%) 78 (0.1%) 52 (0.6%) 

New diabetes 1053 (11.3%) 0 (0.0%) 1053 (11.3%) 

HIV, Human immunodeficiency virus; TB, Tuberculosis; COPD, Chronic obstructive pulmonary 

disease; CKD, chronic kidney disease; ICU, intensive care unit.  
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4.4.1.2. The diabetes/COVID-19 patient population 

In 9305 PLWD with COVID-19, 11.3% (n = 1053) were newly diagnosed with DM during 

their COVID-19 episode. The 45–69-year-old age group had the most COVID-19 cases, with 

66.5% of patients ≥ 50 years old and most patients in the 50–59 years category (31.0%; n = 

2886). More women (60.7%, n = 5645) were diagnosed across all age groups (Figure. 2B). 

Hospital admissions appeared similar across genders, with the largest proportion of 

admissions for the 45–69-year age group (Figure. 2C). The distribution of COVID-19 deaths 

was similar, but men aged 55–69 years had the highest mortality (Figure. 2D). Compared to 

those without diabetes, a larger proportion of PLWD with COVID-19 were hospitalised 

(44.9%, c.f. 12.2%), admitted to ICU (4.0% c.f. 1.0%), and required ventilation (0.6% c.f. 

0.1%) (Table 4.1). 

4.4.2. Risk factors for admission and mortality in patients with COVID19 

Logistic regression assessed the association of patient comorbidities and demographics with 

hospital admissions and mortality. For the total population of COVID-19 patients, current TB 

(OR:5.39, 95% CI: 4.61, 6.29), DM (OR:3.73, 95% CI: 3.53, 3.94), CKD (OR:1.87, 95% CI: 

1.65, 2.10), COPD (OR:1.66, 95% CI: 1.54, 1.79), HIV infection (OR:1.64, 95% CI: 1.53, 

1.75), male sex (OR:1.35, 95% CI: 1.29, 1.41), age per 5-year intervals (OR:1.18, 95% CI: 

1.17, 1.19) were all associated with an increased risk for admission to hospital. Treated 

hypertension and previous TB were not associated with an increased risk for admission 

(Figure 4.3A). 

Current TB (OR:4.68, 95% CI: 3.74, 5.82), DM (OR:3.01, 95% CI: 2.76, 3.28), HIV infection 

(OR:2.06, 95% CI: 1.82, 2.32), CKD (OR:1.82, 95% CI: 1.58, 2.09), male sex (OR:1.65, 95% 

CI: 1.52, 1.79), age per 5-year intervals (OR:1.42, 95% CI: 1.40, 1.44) and previous TB 

(OR:1.27, 95% CI: 1.10, 1.47) were associated with an increased risk for mortality. Treated 

hypertension (OR:0.91, 95% CI: 0.83, 0.99) was however, associated with a reduced 

mortality and COPD appeared to have a neutral effect on mortality (Figure 4.3B). 



80 

Figure 4.2. Population pyramids showing the distribution of people living with diabetes (PLWD) in the Western Cape (WC) population (A), 

PLWD with COVID-19 (B), PLWD with COVID-19 who got admitted into hospital for COVID-19 (C) and PLWD who died from COVID-19 (D).
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Figure 4.3. Impact of comorbidities and demographics on COVID-19 patient outcomes. 

Odds Ratios (circles) with 95% Confidence Intervals (horizontal lines) are shown for 

COVID19 patient outcomes: A. Admission to hospital, and B. Mortality (death). ***p<0.0001, 

**p<0.001, *p<0.01. TB, tuberculosis; CKD, chronic kidney disease; COPD, chronic 

obstructive pulmonary disease; HIV, human immunodeficiency virus. 
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4.4.3. Risk factors for hospitalisation and mortality in PLWD diagnosed with COVID-19 

For PLWD who had COVID-19, HIV infection (OR:1.67, 95% CI: 1.44, 1.93), CKD (OR:1.60, 

95% CI: 1.39, 1.87), current TB (OR:1.55, 95% CI: 1.05, 2.29), male sex (OR:1.41, 95% CI: 

1.29, 1.54) and age per 5-year intervals (OR:1.15, 95% CI: 1.13, 1.17), were associated with 

an increased risk for hospitalisation. Treated hypertension (OR:0.73, 95% CI: 0.67, 0.79) 

was associated with a reduced risk for hospitalisation. Previous TB was not associated with 

hospitalisation (Figure 4.4A). CKD (OR:1.71, 95% CI: 1.44, 2.02), male sex (OR:1.70, 95% 

CI: 1.51, 1.92), HIV infection (OR:1.62, 95% CI: 1.32, 1.98), current TB (OR:1.59, 95% CI: 

0.99, 2.50), previous TB (OR:1.54, 95% CI: 1.23, 1.90) and age per 5-year intervals 

(OR:1.33, 95% CI: 1.30, 1.37) were associated with an increased risk of mortality. Treated 

hypertension (OR:0.76, 95% CI: 0.67, 0.86) was also associated with a reduced risk for 

mortality and COPD was not associated with mortality (Figure 4.4B). 

4.4.4. The effect of medication on hospitalisation and mortality in PLWD 

Dispensing records for the preceding six months were available for 61.4% (n = 5708) of 

PLWD who were diagnosed with COVID-19 and who accessed their healthcare from a 

facility with a computer-based pharmacy system. Of these, 928 (16.3%) died and 4780 

(83.7%) recovered (Supplementary Table 4.1). When comparing PLWD who were 

diagnosed with COVID19 and who accessed their healthcare from a facility with a computer-

based pharmacy system to those PLWD who accessed their healthcare from a facility with 

no computer based pharmacy system it was noted that they were older [57.0 (48.0; 65.0) vs 

52.0 (42.0; 61.0)] years old; 72.3% >50 years old vs 57.2% >50 years old] and were more 

likely to have comorbidities such as HIV infection, current TB, asthma/COPD, hypertension 

and CKD but had a similar outcome (Supplementary Table 4.2). Furthermore, in this cohort 

of patients accessing their healthcare from a facility with a computer based pharmacy 

system there were similar risk factors associated with hospitalisation and mortality when 

compared to the whole group (Figure 4.5A and 4.5B). 

Use of insulin (OR:1.39, 95% CI: 1.24,1.57), was associated with an increased risk for 

hospitalisation whereas use of hydrochlorothiazide (OR:0.87, 95% CI: 0.77,0.97), a statin 

(OR:0.83, 95% CI: 0.72, 0.94) and metformin (OR:0.62, 95% CI: 0.55,0.71) were associated 

with a reduced risk for hospitalisation. Use of steroids, ARB, beta-blocker, ART, aspirin, 

ACE-I, or a sulphonylurea were not associated with hospitalisation (Figure 4.5A). Use of 

insulin (OR1.49, 95% CI: 1.27; 1.74), ARB (OR 1.34, 95% CI: 1.06; 1.70) and aspirin 

(OR1.24, 95% CI: 1.05; 1.46) were associated with an increased mortality whereas use of 

metformin (OR 0.77, 95% CI: 0.64; 0.92) was associated with a reduction in mortality. The 
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use of steroids, beta-blocker, ACE-I, ART, sulphonylurea, statin and hydrochlorothiazide 

were not associated with mortality (Figure 4.5B). 

Figure 4.4. Impact of comorbidities and demographics on outcomes in COVID-19 patients 

with DM. Odds Ratios (circles) with 95% Confidence Intervals (horizontal lines) are shown 
for COVID-19 patient outcomes: A. Admission to hospital, and B. Mortality (death). 
***p<0.0001, **p<0.001, *p<0.01. HIV, human immunodeficiency virus; CKD, chronic kidney 
disease; TB, tuberculosis; COPD, chronic obstructive pulmonary disease. 
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Figure 4.5. Impact of common comorbidities, medications dispensed in the 6 months prior to 

COVID-19 diagnosis and demographic factors to the outcomes of COVID-19 patients with 

DM. Odds Ratios (circles) with 95% Confidence Intervals (horizontal lines) are shown for 

COVID-19 patient outcomes: A. Admission to hospital, and B. Mortality (death). ***p<0.0001, 

**p<0.001, *p<0.01. HIV, human immunodeficiency virus; TB, tuberculosis; CKD, chronic 

kidney disease; COPD, chronic obstructive pulmonary disease; ARB, angiotensin receptor 

blocker; ACE, angiotensin converting enzyme. 
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4.4.5. Risk factors for mortality in PLWD hospitalised with COVID-19 

Detailed laboratory investigations were available for 3664 PLWD who were hospitalised, 

shown in detail in Supplementary Table 4.3. All stages of CKD were associated with an 

increased mortality [stage 5 (OR:5.53, 95% CI: 3.60, 8.60), stage 4 (OR:3.44, 95% CI: 2.39, 

4.98), stage 3B (OR:3.68, 95% CI: 2.63, 5.16), stage 3A (OR:1.45, 95% CI: 1.08, 1.93)]. 

Other factors associated with an increased mortality were male sex (OR:1.54, 95% CI: 1.26, 

1.89) and age per 5-year intervals (OR:1.21, 95% CI: 1.15, 1.26) (Figure 4.6).  

Figure 4.6. Impact of common comorbidities and laboratory results at admission, as well as 

demographic factors to mortality in hospital admitted diabetes patients with COVID-19. Odds 

Ratios (circles) with 95% Confidence Intervals (horizontal lines) are shown for COVID-19 
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patient outcomes. ***p<0.0001, **p<0.001, *p<0.01. eGFR, estimated glomerular filtration 

rate; HIV, human immunodeficiency virus. 

Treated hypertension (OR:0.77, 95% CI: 0.61, 0.92), a normal lymphocyte count (OR:0.76, 

95% CI: 0.68, 0.88) and an unknown (OR:0.62, 95% CI: 0.50, 0.76) or normal (OR:0.50, 

95% CI: 0.30, 0.80) d-dimer were associated with a reduced risk for mortality. No level of 

HbA1c was associated with mortality (Figure 4.6). 

4.5. Discussion 

To our knowledge, this is the largest study of patients with COVID-19 from Africa and the 

Southern Hemisphere, which describes the association of diabetes with severe COVID-19 

(hospitalisation and mortality), adjusting for key confounding factors. The key findings were 

that increasing age, male sex, diabetes, current tuberculosis, HIV infection and chronic 

kidney disease were significantly associated with admission to hospital and mortality. In 

PLWD, HIV-infection, chronic kidney disease, current tuberculosis, male sex and increasing 

age were significantly associated with admission to hospital and mortality. Use of metformin 

was associated with a reduced risk of hospitalisation and mortality in PLWD.  

Our results show an increased risk of hospital admission, ICU admission and death in 

people diagnosed with COVID-19 who have diabetes, with half of all COVID-19 deaths 

occurring in people with diabetes. After adjusting for various variables such as age, sex and 

co-morbid disease, including HIV status, PLWD had almost four times the risk for 

hospitalisation and three times the risk of death relative to people without diabetes. This 

larger study also confirms earlier findings from an analysis performed before 1 June 2020, of 

COVID-19 death in the general population, being associated with age, male sex, chronic 

kidney disease, and in people with active tuberculosis and HIV (Western Cape Department 

of Health in collaboration with the National Institute for Communicable Diseases, 2021).  

This high risk for hospitalisation and death for PLWD is well recognised in other series. 

Metanalyses of studies including small numbers of patients with COVID-19 have reported a 

mortality risk of between 1.9-3.5 for patients with diabetes (Apicella et al., 2020) and the 

largest cohort study of PLWD in primary care reported a risk for mortality of 2.03 for patients 

with T2DM (Barron et al., 2020). In this cohort mortality was high with 15.4% of PLWD and 

COVID-19 having died, 3.3% of those not hospitalised and 30.3% of those admitted to 

hospital. Early data from Wuhan reported a mortality rate of 20% for hospitalised patients 

with COVID-19 and diabetes (Shi et al., 2020). This mortality rate for hospitalised patients is 
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similar to a retrospective cohort analysis of 1126 patients with diabetes hospitalised with 

COVID-19 at a large academic medical centre in New York City, where the mortality rate 

was 33.1%, but in patients with a mean age almost 10 years older than in this cohort 

(Agarwal et al., 2020). Updated results from the French CORONADO Study of 2796 PLWD 

(mean age 69.7) who were hospitalised reported a mortality rate of 11.2% within 7 days, 

which continued to increase to 20.6% by 28 days (Wargny et al., 2021). We can only 

speculate about factors that account for such a high mortality in our setting, even in relatively 

young patients, which includes social determinants such as poor access to care, general 

poor standards of chronic care for diabetes such as glycaemic control and management of 

complications, higher threshold for admission and reduced access to ICU beds once 

admitted (Govender et al., 2012). The high background of infectious diseases in the 

population may also contribute to mortality.  

Amongst PLWD we corroborated well-described associations for death including age, male 

sex, and CKD (Apicella et al., 2020; Holman et al., 2020). In this population, 9.8% were 

infected with HIV and 1.2% had active tuberculosis, with concurrent HIV and tuberculosis 

exhibiting more severe disease, as evidenced by higher hospitalisation and death rates. 

PLWD with treated hypertension had a reduced risk of mortality in our dataset, 

acknowledging that the hypertension episode is inferred from prescribed medications, and 

the impact of untreated hypertension on outcomes could not be assessed. Although 

hypertension has frequently been found to be associated with poor outcomes of COVID-19 

in other studies, we could not find an association and even described a small but significant 

reduction in risk of poor outcomes in our cohort. McGurnaghan et al (2021), also failed to 

demonstrate an association between HPT or HPT treatment and worse outcomes in PLWD 

in Scotland (McGurnaghan et al., 2021). In our dataset, a hypertension episode is defined 

only on the basis of patients receiving hydrochlorothiazide dispensed as an antihypertensive 

and blood pressure observational data are not available for analysis, meaning that 

undiagnosed/untreated hypertension is not documented in the current dataset. Given that 

Berry et al (2017), described that 48.7% of South Africans with hypertension are 

undiagnosed (Berry et al., 2017), it is plausible that patients who are receiving medication for 

hypertension have better outcomes than the many patients in the cohort who are likely to 

have undiagnosed and/or untreated hypertension, and the population of patients that are 

diagnosed with hypertension and dispensed medication may be different from those in other 

series. In the subset of PLWD for whom full prescription data were available for the 6 months 

preceding the diagnosis of COVID-19, use of ARB, insulin and aspirin had a moderate 

independent association with mortality, yet metformin was protective. Episode data for 

cardiovascular disease, as a risk factor were not available for this cohort, but dispensing 
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records for aspirin, statin, betablocker, ACE and ARB were all associated with worse 

outcomes in the cohort. We postulate that these medications may be a surrogate marker for 

cardiovascular disease, potentially explaining the higher risk of poor outcomes in patients 

receiving these medications. An early report from Wuhan, China, also suggested that 

metformin was associated with a decreased mortality in hospitalized COVID-19 patients (Luo 

et al., 2020). Moreover, metformin was found to be associated with reduced risk of early 

death in the French CORONADO study (Lalau et al., 2021) and with decreased mortality in 

women with COVID-19, based on a United Health data analysis (Bramante et al., 2021). 

Three metanalyses have (Hariyanto & Kurniawan, 2020; Kow & Hasan, 2021; Lukito et al., 

2020) corroborated these findings. It is possible that metformin use, may reflect PLWD with 

less advanced disease and fewer complications, such as chronic kidney disease in which it 

is contraindicated or possibly, patients who are more adherent to prescribed therapy. A 

recent paper using propensity scoring to adjust for such con founders failed to show an 

association of metformin use on susceptibility or outcome (Wang et al., 2021). Although we 

show, as have others, that use of insulin is associated with worse outcomes, this most likely 

simply reflects a group of PLWD of longer disease duration and thus more vascular and 

other complications.  

We did not demonstrate an association with HbA1c results and poorer outcomes in PLWD. 

Similarly, the Italian CORONADO Study and the population-based study from Scotland also 

failed to demonstrate an association between HbA1c and mortality (Cariou et al., 2021; 

McGurnaghan et al., 2021). However, there are studies that have shown an association 

between poor outcome and worse glycaemic control. In some of these population studies 

PLWD were compared to a ‘non-diabetic’’ population [9], but in other studies where 

increments in HbA1c levels were compared exclusively in PLWD an association with poorer 

outcomes was shown (Holman et al., 2020). Our data should, however, be considered with 

caution, as only a small proportion (31.5%) of PLWD had an HbA1c analysed in the 

preceding year. The reasons for this could be due to poor linkage to care, and also may 

reflect missing data due to patients opting for either public or private health care depending 

on their changing financial and employment circumstances. Private healthcare data in our 

system are not available, limiting analysis of this subset.  

Strengths of the study include the large study size, with near complete ascertainment of 

outcome data, laboratory confirmed SARS-CoV-2 diagnosis in all COVID-19 cases, the 

inclusion of hospitalised and non-hospitalised cases and deaths, as well as modelling the 

independent association of diabetes with death. Patients newly diagnosed with diabetes 

during testing or admission, based on a diagnostic HbA1c were also included. Limitations 
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include that the classification cascade used to identify somebody as having diabetes using 

the routine health data in the PHDC is still in the process of formal validation, but, if anything, 

may provide an underestimate of actual diabetes prevalence. Also, given the predominantly 

administrative nature of data capture, important comorbidities, lack of data on other potential 

risk factors including socio-economic status, lack of observational clinical data such as blood 

pressure, smoking and body mass index (BMI) limit the included comorbidities. In addition, 

data relating to some biochemical variables may be incomplete due to potential 

public/private health sector patient mobility, for example HbA1c data. Admission criteria for 

ICU and data capturing in the various facilities in the Western Cape is variable and possibly 

incomplete. The missing data for some comorbidities for example, cardiovascular disease, 

along with the absence of other potential confounders may result in large residual 

confounding in the associations described.  

In conclusion, there is convincing evidence from many large population-based studies that 

PLWD are at greater risk of severe COVID-19 disease (hospital and ICU admissions) and of 

death than those without diabetes. This study adds to the body of evidence from a low and 

middle-income country, where the burden of DM affects younger people, compared to high 

income countries where older people are predominantly affected. We show that the 

population with diabetes is at particularly high risk, possibly due to poorer access to optimal 

care for diabetes. We also show that concurrent HIV infection and DM are associated with 

more severe disease and that metformin use in particular, is associated with a reduced 

mortality. These findings are of major public health importance, which raise the question of 

how to ameliorate the high-risk burden of PLWD in COVID-19. It is incumbent upon us as 

healthcare providers to offer education and close monitoring of risk in PLWD. It is too 

premature to recommend widespread use of metformin. Additional interventions may include 

home oxygen saturation monitoring, ensuring adequate glycaemic control, early identification 

of deterioration in symptoms with rapid access to hospital admission and consideration for 

pre-emptive admissions to hospital for those PLWD who are deemed to be at very high risk 

of severe COVID-19. 
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5. Chapter 5: Routine health data describe adherence and persistence

patterns for oral diabetes medication for a virtual cohort in the Khayelitsha

sub-district of Cape Town, South Africa

Relevance of chapter in thesis 

The management of T2DM includes the use of long-term anti-diabetes medication however, 

numerous research has shown that PLWD are not adherent to their treatment. Data on 

adherence in PLWD in sub-Saharan Africa has largely been limited to cross-sectional data 

using patient self-reporting. In this chapter we explore methods to use longitudinal routine 

health data to describe adherence and persistence patterns for diabetes medication use. We 

then use these methods to better understand adherence and persistence patterns to 

metformin in a virtual cohort of people with T2DM who are starting their diabetes treatment in 

the Western Cape Province of South Africa. The methods optimised in this chapter further 

highlighted the how longitudinal routine health data can be modelled to describe patient 

phenotypes at both an individual and population level. 
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5.1. Abstract 

Introduction 

Type 2 diabetes mellitus (T2DM) is managed using a combination of lifestyle modifications 

and antidiabetic drugs, with the aim of achieving glycaemic control. Studies have shown that 

people with T2DM who are on treatment often fail to reach glycaemic control. Given the 

significance of adherence in achieving optimal glycaemic control, and because management 

of diabetes with drugs is a lifelong process, it is important to understand adherence through 

the analysis of longitudinal medications data. 

Methods 

Using retrospective routine health data and recorded metformin dispensing episodes as a 

proxy for medication use, we describe longitudinal persistence and adherence to oral 

diabetes medication in a virtual cohort of people with diabetes (PLWD) in the Khayelitsha 

subdistrict in the Western Cape Province, South Africa. Adherence was measured in 120-

day sliding windows in a two-year period and used to estimate metformin adherence 

trajectories. Multinomial logistic regression was used to identify factors which influence 

metformin adherence trajectories for individuals in the study population.  

Results 

An analysis of the pharmacy dispensing records showed that the study participants had 

varying medication refill patterns. While some refilled their prescriptions consistently others 

had gaps in treatment which resulted in periods of non-persistence and multiple treatment 

episodes across the two years assayed which ranged in number from one to as high as five 

in some participants. There was a general trend of decreasing adherence over time and 

across all sliding windows in the two-year observation window, and by the end of the two-

year period only 25% of the study population achieved medication adherence (>= 80% 

adherence). Four adherence trajectories; ‘low adherence gradual decline (A), ‘high 

adherence rapid decline’ (B), ‘low adherence gradual increase (C) and ‘adherent’ (D) were 

identified. Only trajectory D represented participants who were adherent at treatment start 

and were still adherent at the end of two years. Taking HIV antiretroviral treatment before or 

concurrently with diabetes treatment and taking metformin in combination with sulphonylurea 

and/or insulin were all associated with a participant having long-term adherence (trajectory 

D). Increasing participant age at the start of treatment was associated with long-term non-

adherence (trajectory A and B) while participant sex did not influence adherence trajectory. 

Conclusion 
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Routine data shows real life medication implementation patterns which might not be seen 

under controlled study conditions. The findings from this study illustrate the utility of these 

data in describing longitudinal adherence patterns at both an individual and population level. 

5.2. Introduction 

Diabetes is one of the fastest growing global health threats with an estimated 1 in 10 people 

currently living with the disease(IDF Diabetes Atlas 10th Edition, n.d.). Type 2 diabetes 

mellitus (T2DM) is the most prevalent form of diabetes accounting for more than 90% of all 

cases (Campos, 2012; Fowler, 2008; Rask-Madsen & King, 2013; Zheng et al., 2018). 

Chronic hyperglycaemia increases the risk of developing micro- and macro-vascular 

complications which are associated with increased morbidity and mortality in people living 

with diabetes (PLWD) (Campos, 2012; Fowler, 2008; Rask-Madsen & King, 2013). To 

minimise the risk of developing complications, T2DM is managed using a combination of 

lifestyle modifications and antidiabetic medications with the aim of achieving glycaemic 

control - established as a glycated haemoglobin (HbA1c) of less than 7%(“Intensive Blood-

Glucose Control with Sulphonylureas or Insulin Compared with Conventional Treatment and 

Risk of Complications in Patients with Type 2 Diabetes (UKPDS 33),” 1998). Antidiabetic 

medications can effectively reduce hyperglycaemia and improve glycaemic control(Aikens & 

Piette, 2013; Chepulis et al., 2020; Cohen et al., 2010; “Intensive Blood-Glucose Control with 

Sulphonylureas or Insulin Compared with Conventional Treatment and Risk of Complications 

in Patients with Type 2 Diabetes (UKPDS 33),” 1998; Raum et al., 2012). Studies have 

shown, however, that PLWD who are on treatment often fail to reach glycaemic targets 

(Afroz et al., 2019; Camara et al., 2015; Erasmus et al., 1999; Govender et al., 2017; Lin et 

al., 2017; Musenge et al., 2015; Pinchevsky et al., 2015; Polonsky & Henry, 2016; Raum et 

al., 2012). While there are several factors that can contribute to lack of glycaemic control 

including the natural progression of the disease, one of the key factors is non-adherence to 

diabetes treatment (García-Pérez et al., 2013; Khunti et al., 2019; Polonsky & Henry, 2016): 

treatment non-adherence has been shown to negatively impact treatment efficacy and lead 

to increased morbidity and mortality in PLWD (Evans et al., n.d.; Ho et al., 2006; Lin et al., 

2017). 

Sub-Saharan Africa (SSA) currently has the lowest prevalence of diabetes in the world, but, 

has the highest diabetes-related morbidity and mortality in people under 60 years (IDF 

Diabetes Atlas 10th Edition, n.d.). Non-adherence to diabetes treatment has also been 

widely studied in SSA, but most of the data have been from cross sectional studies. These 

studies have reported varying trends of adherence ranging from as low as 25% to as high as 

75% and identified several factors including sex, socio-economic status, age, high cost of 
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medication, comorbidities, pill burden, medication availability, drug side-effects and being 

asymptomatic as having an influence on adherence to antidiabetic medication PLWD (Ali et 

al., 2017; Demoz et al., 2020; Kretchy et al., 2020; Rwegerera, 2014; Shilubane & Cur, 

2010; Waari et al., 2018). While these studies have provided valuable insight about 

adherence to diabetes treatment PLWD in SSA, they are limited in that they rely on patient 

self-reporting, a subjective measure that is prone to bias and only estimates adherence at a 

single time point. Management of diabetes is a lifelong process, and an individual’s 

medication adherence patterns can change over time, therefore, it is important to estimate 

adherence using longitudinal data (Egede et al., 2014; Lo-Ciganic et al., 2016). 

There is a paucity of data on longitudinal adherence patterns to diabetes medication PLWD 

in SSA. This is worrying in a region that is predicted to soon have an exponential increase in 

diabetes prevalence (IDF Diabetes Atlas 10th Edition, n.d.). Given the significance of 

adherence in achieving optimal glycaemic control, estimating longitudinal adherence can 

better elucidate temporal adherence patterns which can be more informative and useful for 

improved patient care and targeted interventions (Egede et al., 2014; Lo-Ciganic et al., 

2016). In the current study we explore methods to use longitudinal routine health data to 

describe adherence and persistence patterns for diabetes medication use. We then use 

these methods to better understand adherence and persistence patterns to metformin in a 

virtual cohort of people with T2DM who are starting their diabetes treatment in the Western 

Cape Province of South Africa. 

5.3. Methods 

5.3.1. Study population 

The study population was selected from a pre-existing dataset of public health care seekers 

in the Khayelitsha sub-district in the Western Cape Province. The Khayelitsha subdistrict is a 

high-density urban area with generally poor socioeconomic conditions and a high burden of 

TB and HIV. The study population in the pre-existing dataset were selected from the 

Western Cape population as represented in the PHDC, a health information exchange 

containing routine health data for about 7 million healthcare clients, collated daily from 

multiple electronic health data sources in the Western Cape Province, South Africa(Boulle et 

al., 2019). Inclusion criteria in the pre-existing dataset were: (1) Having attended at least one 

Government Health Facility in the Khayelitsha sub-district in the Western Cape, South Africa, 

in the period 1 January 2016 to 31 December 2017, and (2) aged 18 or older by December 

2017. 



99 

In the current study, inclusion criteria were: (1) a diagnosis of diabetes inferred from PHDC 

records using listed disease evidences of at least one glycated haemoglobin (HbA1c) value 

greater than or equal to 6.5%(“Use of Glycated Haemoglobin (HbA1c) in the Diagnosis of 

Diabetes Mellitus,” 2011), fasting glucose results, and/or dispensed diabetes drugs, and (2) 

diabetes medication dispensed at health facilities linked to electronic routine pharmacy 

records. Exclusion criteria were: (1) no recorded dispensing of metformin in the study 

observation window, (2) diabetes ascertainment at less than 18 years of age and diabetes 

treatment using insulin only, used as a proxy for early onset Type 1 Diabetes, (3) diabetes 

ascertainment occurring during pregnancy, used as a proxy for gestational diabetes, (4) 

diabetes treatment start after 31st March 2018 as there would be insufficient data for a two-

year follow-up and (5) diabetes treatment start before 1st January 2011 as there would be 

insufficient data in the PHDC records. 

The study had a two-year window for observing medication dispensing patterns for PLWD in 

the Khayelitsha sub-district. Diabetes treatment start date was defined as day 0 in the 

observation window and all individuals were followed up for two-years from their diabetes 

treatment start date. The study analysed retrospective routine health data and used 

recorded medication dispensing episodes as a proxy for medication use. Since metformin is 

a first-line drug for treating type 2 diabetes (“Effect of Intensive Blood-Glucose Control with 

Metformin on Complications in Overweight Patients with Type 2 Diabetes (UKPDS 34),” 

1998; Guidelines, n.d.; Zaccardi et al., 2020), metformin dispensing was used as a proxy for 

diabetes treatment. 

Retrospective PHDC data for 10541 individuals who were recorded as having started 

diabetes treatment on metformin were analysed together with population demographics 

assessed as of 31 December 2017, using descriptive statistics. A diagnosis is inferred by the 

PHDC using laboratory and pharmacy data and is not a clinical diagnosis made during a 

consultation, so is referred to as ‘ascertainment’ to make this distinction. The process of 

episode ascertainment is described in further detail in (Boulle et al., 2019; Tamuhla et al., 

2021). Diabetes metrics include: ‘Diabetes ascertainment age’, ‘Diabetes treatment initiation 

age’ which was defined as the participant age at the recorded diabetes treatment start date, 

‘Diabetes treatment initiation’ which was inferred from the PHDC data by calculating the time 

interval in years between diabetes ascertainment date and diabetes treatment start date, 

‘Diabetes treatment formulation’ which was defined as the combination of the different 

classes of diabetes medication dispensed to an individual in the study observation window, 

‘Hypertension’ which was defined as hypertension ascertainment before or during the study 

observation window identified by dispensing of anti-hypertensive medication, and 

‘Tuberculosis’ which was defined as a Tuberculosis episode ascertained during the study 
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observation window, and ‘HIV positive’ which was defined as HIV infection ascertainment 

before or during the study observation window. 

 In South Africa, HIV is managed through a parallel, vertically funded, well-resourced chronic 

disease programme with a large focus on adherence, which may impact adherence to other 

chronic disease including diabetes. Since the Khayelitsha sub-district has a high burden of 

HIV, to determine if there were differences in adherence based on HIV antiretroviral therapy 

(ART) use, we compared the sub-populations who were identified as using HIV ART vs 

those who were not. ‘HIV antiretroviral therapy’ use was defined as having started HIV ART 

before or during the study observation window. 

Summary statistics were calculated for the study population. For continuous data, median 

and interquartile range were calculated and for grouped data, percentages were calculated. 

5.3.2. Diabetes treatment persistence and adherence 

The R statistical software (Team, 2020) package AdhereR (Dima & Dediu, 2017) was used 

to calculate persistence and adherence to diabetes oral drugs in the study population. 

‘Persistence’ was defined as a period of continuous medication dispensing with treatment 

gaps of less than 90 days (Dima & Dediu, 2017; Vrijens et al., 2012). ‘Treatment gaps’ were 

defined as the time interval between dispensing events where no medication was dispensed, 

and in this study if a treatment gap was equal to or exceeded 90 days this was defined as 

‘non-persistence’ or ‘treatment discontinuation’ (Dima & Dediu, 2017). If an individual was 

then dispensed medication following a period of ‘non-persistence’, this was treated as a new 

‘treatment episode’ and the number of treatment episodes was determined by how often an 

individual discontinued and re-started treatment in the observation window (Dima & Dediu, 

2017). 

‘Adherence’ was defined as how well the treatment regimen was implemented and it was 

calculated for each specified medication dispensing observation window (Dima & Dediu, 

2017; Vrijens et al., 2012). Since we were interested in how well the treatment regimen was 

implemented in the first two years following the first recorded treatment start episode, we 

calculated adherence to metformin in successive 4 month intervals or ‘sliding windows’ over 

the two year observation window (Dima & Dediu, 2017). Sliding window adherence was 

used to elucidate any temporal changes in adherence which would not be observed if one 

overall adherence measure was used (Dima & Dediu, 2017). Some patients were on more 

than one diabetes oral drug during the observation window, but adherence was calculated 

for only the drug metformin to avoid over-estimating adherence, given that AdhereR does 

not have the functionality to distinguish concurrent medication use in a treatment 
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episode(Dima & Dediu, 2017). In this way, we used metformin as an index medication for 

measuring T2DM treatment adherence in PLWD.  

5.3.3. Adherence trajectories 

Metformin adherence trajectories for the two-year observation window were estimated from 

the sliding window adherence estimates using the R (Team, 2020) package kml (Genolini et 

al., 2015; Genolini & Falissard, 2010). The kml package  applies k-means clustering to 

longitudinal data and clusters it into groups with similar characteristics (Genolini et al., 2015; 

Genolini & Falissard, 2010). The k-means clustering algorithm was implemented as 

previously described (Genolini et al., 2015), and the number of runs to determine each 

cluster partition was set to 200. Following cluster assignment, summary statistics were 

calculated for the sub-populations in each cluster. For continuous data, median and 

interquartile range were calculated and for grouped data, proportions were calculated. 

Wilcoxon rank sum was used to calculate significance of difference in median values 

between clusters, and Fisher’s exact test to calculate significance of difference in proportions 

between clusters. Multinomial logistic regression was used to determine which factors 

influenced adherence trajectory in individuals in the study population, using the defined 

clusters as the dependent variable (outcome) and demographic and comorbidity profiles as 

independent variables (risk factors).  

5.3.4. Monitoring treatment outcome using HbA1c 

HbA1c testing is the gold standard for monitoring glycaemic control in PLWD, particularly 

those on treatment (“International Expert Committee Report on the Role of the A1C Assay in 

the Diagnosis of Diabetes,” 2009; “Use of Glycated Haemoglobin (HbA1c) in the Diagnosis 

of Diabetes Mellitus,” 2011). To determine the implementation of HbA1c testing in the study 

population, counts of patients with HbA1c measures were done at baseline and at six-month 

intervals for the duration of the two-year study observation window. Baseline HbA1c was 

defined as the latest HbA1c test result up to 3 months before treatment was initiated. Median 

HbA1c measures were also calculated for those with available data. Summary statistics 

were calculated for the sub-populations in each trajectory cluster. For continuous data, 

median and interquartile range were calculated and for grouped data, proportions were 

calculated. Wilcoxon rank sum was used to calculate significance of difference in median 

values between clusters and Fisher’s exact test to calculate significance of difference in 

proportions between clusters. 

5.3.5. Health care utilisation 
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The number of health facility encounters for each study participant was calculated for a 

three-year period starting from the six months prior to the diabetes treatment initiation until 6 

months after the treatment observation window and used as a proxy for health care 

utilisation. During the two-year observation window, health facility encounters were counted 

in four month sliding windows. Counts of the total number of participants with health facility 

encounters were done and median encounters were also calculated. 

5.3.6. Ethics 

Ethics approval was granted by the University of Cape Town (HREC REF: 509/2019) and 

data access was approved by Western Cape Government Health (WCGH), South Africa. All 

data were de-identified and data perturbation was employed by the Provincial Health Data 

Centre (PHDC, WCGH) prior to release, so that the data used were anonymised and cannot 

be reidentified. Data transfer was effected through secure platforms using AES256 

encryption and password protection, and analysis was undertaken on a secured, firewall-

protected server. Re-use of this dataset requires approval from WCGH and contact details to 

apply for access are provided in the data availability statement. 

5.4. Results 

5.4.1. The study population 

There were 16979 individuals with an inferred diabetes episode, of which 10541 met the 

described inclusion/exclusion criteria and were included in the study population. Summary 

statistics (Table 5.1) showed that the study population was 67% female with a median age 

for diabetes treatment initiation of 52 (IQR: 45,60) years. Most of the study population 

(53.7%) initiated diabetes treatment at diabetes ascertainment while 25.6% initiated 

treatment more than one year after diabetes ascertainment. Hypertension (61.8%), HIV 

(14.9%) and Tuberculosis (13.1%) were the most prevalent comorbidities with available 

data. In this study population, only 76.5% of people living with HIV (PLWHIV) had initiated 

HIV anti-retroviral treatment (Supplementary Table 5.1) before or during the two-year study 

observation window. 

5.4.2. Diabetes treatment 

PLWD in this study population were treated with metformin, sulphonylurea (gliclazide, 

glimepiride or glibenclamide) and insulin. During the two-year observation window, 2803 

(30.2%) participants were treated with metformin only, 4109 (44.3%) with metformin and 

sulphonylurea and 2372 (25.5%) with metformin, sulphonylurea and insulin (Table 5.1). 

Comparing HIV-negative and HIV-positive groups showed no difference in the proportion of 

people on the different diabetes treatment formulations between the two groups in this study 
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population (Supplementary Table 5.1). However, there was a significant difference in 

diabetes treatment initiation with a higher proportion of the HIV-positive group initiating 

treatment within one year of diabetes ascertainment compared to the HIV-negative group 

(Supplementary Table 5.1). 

5.4.3. Diabetes treatment implementation 

5.4.3.1. Persistence 

An analysis of medication refill patterns in the study population in the two-year observation 

window showed that some individuals refilled their medication consistently while others had 

gaps in treatment. These gaps in treatment resulted in periods of non-persistence and 

multiple treatment episodes across the two years assayed which ranged in number from one 

to as high as five in some participants. Medication refill patterns of five study participants are 

illustrated in the plots in Figure 5.1 to illustrate the types of profiles seen in the study 

population: participant D had three treatment episodes, the first was at treatment initiation 

with a 28-day supply of metformin following which they had no recorded medication refill for 

102 days which resulted in a period of non-persistence. Following treatment re-initiation, in 

the second treatment episode, the treatment formulation was changed to include a 

sulphonylurea (gliclazide). While this treatment episode was longer than the first, it also had 

medication refill gaps which resulted in the calculated adherence for the episode being 68% 

shown in the grey bar (Figure 5.1). The participant then had another period of non-

persistence, following which they re-initiated treatment resulting in a third treatment episode. 

In contrast, participant B refilled their medication consistently and did not have any periods 

of non-persistence during the two-year observation window (Figure 5.1).  
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Figure 5.1. Diabetes oral medication refill patterns in five example patients in the study 

population. All oral diabetes medication (metformin and sulphonylurea) issued to patients 

during the observation window are shown. 
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5.4.3.2. Adherence 

Since we observed that the study participants had varying medication refill patterns, we 

calculated adherence to metformin in the two-year observation window in 120-day sliding 

windows. The results in Figure 5.2 show that while some individuals, like participant B, had 

consistent adherence measures in the different sliding windows, others had varying levels of 

adherence at different time points in the two-year observation window. The 120-day sliding 

window adherence measures show that participant A oscillated between 17 – 35% 

adherence, while participant D started at 98% adherence in the first 120 days and their 

adherence measures gradually decreased with each subsequent sliding window to as low at 

25% after 360 days on diabetes treatment (Figure 5.2).  
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Figure 5.2. Longitudinal metformin adherence calculated in 120-day sliding windows in a 

two-year observation window. The results of four patients from the study population are 

shown. 
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5.4.4. Longitudinal adherence patterns 

There is a general trend of decreasing adherence over time and across all sliding windows in 

the two-year observation window and by the end of the two-year period only 25% of the 

population achieved medication adherence (>= 80% adherence) (Figure 5.3A).  

Figure 5.3. (A). A stacked area chart showing the proportion of patients in different 

adherence categories to visualise longitudinal trends in patient adherence. Each line 

represents the proportion of patients at a given time point and the colour below the line 

represents the corresponding adherence category. (B). Predicted two-year longitudinal 
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metformin adherence trajectories for individuals in the study population. Four trajectories are 

shown: A (Low adherence gradual decline), B (High adherence rapid decline), C (Low 

adherence gradual increase) and D (Adherent). Adherence is shown on the y-axis and the 

four-month sliding windows are represented as times 1 – 6 on the x-axis. The percentage 

bar shows the proportion of patients in each adherence trajectory. 

In addition, the proportion of adherent patients reduced with each subsequent sliding 

window and the lowest numbers (11.2%) were observed at 20 months post treatment 

initiation. Most of the non- adherent participants had adherence measures in the 0-20% 

adherence category across all sliding windows over the two-year observation period and 

proportion of patients with 0-20% adherence measures increased steadily over time from 

27.5% at 4 months to 57.4% at 20 months post treatment initiation (Figure 5.3A). In the 20-

24 month sliding window, we observed a slight decrease in the proportion of non-adherent 

participants, however, the proportion of participants who were adherent was approximately 

half (12.7%) of what it was 4 months after initiating treatment (25.0%) (Figure 5.3A). 

5.4.5. Longitudinal metformin adherence trajectories 

The longitudinal clustering of the 120-day sliding window adherence measures for each 

patient in the study population produced clusters with between 2 to 6 partitions, however, 

there was discordance among the five-criterion used to determine cluster partition choice 

(Supplementary Figure 5.1). The two-cluster partition which represents the typical binary 

outcome of adherent or non-adherent had the highest score, but in this study, we selected 

the four-cluster partition as the choice that best represented the study setting (Figure 5.3B) 

because we are interested in a more granular classification to understand the range/levels of 

adherence or non-adherence. In this approach, the adherent and non-adherent categories 

are further broken down to create four clusters consisting of one adherent cluster and 3 that 

represent non-adherence at different levels. The cluster partitioning of the 4 clusters 

converged on one distribution, whereas the 3, 5 and 6-cluster options had alternative 

compositions which made them less reliable.  

In the four-cluster partition, the highest proportion of study participants (44.2%) were 

assigned to “trajectory A” which represented individuals who initiate treatment with low 

adherence measure that continue to decline gradually over time. “Trajectory B” had 25.8% 

membership and represents participants who were adherent in the first four months of 

treatment (Figure 3B), but their adherence declined rapidly thereafter and continued to 

decline over time. “Trajectory C” which had a membership of 15.4% was made up of 

participants who start treatment with low adherence, but over time have a gradual 

improvement in adherence. “Trajectory D” which has the lowest membership (14.6%) is the 



109 

only trajectory with individuals that start treatment adherent and maintain their adherence 

long term, even though they start to decline slightly after month 16 (Figure 5.3B). The results 

in Figure 3B also show that for all trajectories except D, there is a sharp decline in 

adherence between the 1st and 2nd sliding window, following which trajectory C has an 

improvement while trajectories A and B continue to decline. 

5.4.6. Characteristics of the adherence trajectory sub-populations 

Comparing the four adherence trajectory groups (Table 5.1) showed that there were 

differences in age at diabetes treatment initiation between the groups, with the adherent 

group (D) having the youngest median age at treatment initiation of 49 years (IQR: 42,57). 

There were also differences in diabetes treatment formulation between the groups with the 

low adherence-gradual decline group (A) having the highest proportion of individuals 

(43.6%) on metformin only. There were also differences in diabetes treatment initiation with 

the high adherence-rapid decline group (B) having the highest proportion of individuals 

(29.9%) who initiated treatment more than a year after diabetes ascertainment. There was 

also a difference in the prevalence of hypertension between the groups with the low 

adherence-gradual increase group (C) having the highest proportion of individuals who were 

ascertained with hypertension (68.1%). In addition, trajectory D, the adherent group, had the 

highest proportion of participants who were HIV positive (22.8%) and on HIV antiretroviral 

therapy (ART) (20.5%).  

Table 5.1. Characteristics of the study population stratified by longitudinal metformin 

adherence trajectory  

Whole 
study 

population 
N=10541 

Adherent 

(D) 
N=1544 

Low 
adherence 
gradual 

decline (A) 
N=4656 

High 
adherence 
rapid 

decline (B) 
N=2716 

Low adherence 
gradual 

increase (C) 
N=1625 

Sex: Female 7053 
(67.0%) 

1014 
(65.8%) 

3136 
(67.4%) 

1830 
(67.5%) 

1073 (66.2%) 

Diabetes 
Ascertainment 
Age (Years) 

52.0 
[44.0;59.0] 

49.0 
[42.0;57.0] 

53.0 
[45.0;61.0] 

52.0 
[45.0;59.0] 

51.0 [44.0;58.0] 

Diabetes Treatment  
Initiation Age (Years) 

53.0 
[45.0;60.0] 

50.0 
[43.0;57.0] 

54.0 
[45.0;62.0] 

53.0 
[46.0;60.0] 

52.0 [44.0;59.0] 

Diabetes Treatment 
Formulation: 

Metformin only 3525 
(33.4%) 

274 
(17.7%) 

2029 
(43.6%) 

756 (27.8%) 466 (28.7%) 
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Whole 

study 
population 
N=10541 

Adherent 
(D) 
N=1544 

Low 
adherence 

gradual 
decline (A) 
N=4656 

High 
adherence 

rapid 
decline (B) 
N=2716 

Low adherence 

gradual 
increase (C) 
N=1625 

Metformin & 
Sulphonylurea 

4417 
(41.9%) 

770 
(49.9%) 

1682 
(36.1%) 

1188 
(43.7%) 

777 (47.8%) 

Metformin, 
Sulphonylurea & 
Insulin 

2599 
(24.7%) 

500 
(32.4%) 

945 (20.3%) 772 (28.4%) 382 (23.5%) 

Diabetes Treatment 
Initiation: 

At diabetes 
ascertainment 

5828 
(55.3%) 

863 
(55.9%) 

2693 
(57.8%) 

1352 
(49.8%) 

920 (56.6%) 

Within 1 year of 
ascertainment 

2156 
(20.5%) 

313 
(20.3%) 

926 (19.9%) 553 (20.4%) 364 (22.4%) 

More than 1 
year after 
ascertainment 

2557 
(24.3%) 

368 
(23.8%) 

1037 
(22.3%) 

811 (29.9%) 341 (21.0%) 

HIV Antiretroviral 

Therapy: 

1202 
(11.4%) 

317 
(20.5%) 

472 (10.1%) 236 
(8.7%) 

177 (10.9%) 

HIV Positive: 1572 
(14.9%) 

352 
(22.8%) 

651 (14.0%) 336 (12.4%) 233 (14.3%) 

Hypertension: 6517 
(61.8%) 

933 
(60.5%) 

2749 
(59.0%) 

1728 
(63.6%) 

1107 (68.1%) 

Tuberculosis: 1385 
(13.1%) 

236 
(15.3%) 

647 (13.9%) 325 (12.0%) 177 0.9%) 

5.4.7. Predictors for longitudinal diabetes treatment adherence trajectory 

Low adherence gradual decline (A) vs Adherent (D) 

Treatment age (OR: 1.02, 95% CI: 1.01 – 1.03), HIV ascertainment (OR: 1.70, 95% CI: 1.16 

– 2.50) or TB ascertainment (OR: 1.28, 95% CI: 1.07 – 1.53)  before and/or concurrently with

diabetes treatment were associated with a higher likelihood of an individual having 

adherence trajectory A when compared to trajectory D. HIV antiretroviral treatment (OR: 

0.26, 95% CI: 0.17 – 0.39) or hypertension ascertainment (OR: 0.77, 95% CI: 0.68 – 0.87) 

before and/or concurrently with diabetes treatment was associated with a lower likelihood of 

having adherence trajectory A when compared to trajectory D. When compared to 

individuals on metformin only, people who were on metformin & sulphonylurea (OR: 0.29, 

95% CI: 0.25– 0.34) or metformin, sulphonylurea & insulin (OR: 0.25, 95% CI: 0.21 – 0.30) 

were all associated with a lower likelihood of having adherence trajectory A when compared 
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to trajectory D. Sex and time of treatment initiation in relation to ascertainment were not 

associated with patient adherence trajectory (Supplementary Figure 5.2). 

High adherence rapid decline (B) vs Adherent (D) 

Treatment age (OR: 1.01, 95% CI: 1.00 – 1.02) or HIV ascertainment before and/or 

concurrently with diabetes treatment (OR: 1.56, 95% CI: 1.05 – 2.31) were associated with a 

higher likelihood of a patient having adherence trajectory B when compared to trajectory D. 

When compared with initiating treatment at diabetes ascertainment, treatment initiation more 

than one year after diabetes ascertainment (OR: 1.43, 95% CI: 1.23 – 1.67) was associated 

with a higher likelihood of an individual having trajectory B when compared to trajectory D. 

Taking HIV antiretroviral treatment before or concurrently with diabetes treatment (OR: 0.26, 

95% CI: 0.17 – 0.40) was associated with a lower likelihood of having trajectory B when 

compared to trajectory D. When compared to individuals on metformin only, people who 

were on metformin & sulphonylurea (OR: 0.54, 95% CI: 0.45 – 0.63) or metformin, 

sulphonylurea & insulin (OR: 0.52, 95% CI: 0.44 – 0.63) had a lower likelihood of having 

adherence trajectory B when compared to trajectory D. Sex, hypertension, tuberculosis and 

treatment initiation within one year of diabetes ascertainment were not associated with 

patient adherence trajectory (Supplementary Figure 5.2). 

Low adherence gradual increase (C) vs Adherent (D) 

Hypertension ascertainment (OR: 1.28, 95% CI: 1.10 – 1.50) before and/or concurrently with 

diabetes treatment was associated with a higher likelihood of a patient having adherence 

trajectory C when compared to trajectory D. Taking HIV antiretroviral treatment before or 

concurrently with diabetes treatment (OR: 0.35, 95% CI: 0.22 – 0.55) was associated with a 

lower likelihood of a having trajectory C when compared to trajectory D. When compared to 

individuals on metformin only, people who were on metformin & sulphonylurea (OR: 0.59, 

95% CI: 0.49 – 0.71) or metformin, sulphonylurea & insulin (OR: 0.46, 95% CI: 0.38 – 0.57) 

had a lower likelihood of having adherence trajectory C when compared to trajectory D. Sex, 

tuberculosis, treatment initiation, treatment age and HIV were not associated with patient 

adherence trajectory (Supplementary Figure 5.2). 

5.4.8. Monitoring glycaemic control using HbA1c 

8474 study participants had at least one HbA1c measure in the two-year observation period, 

however, only 26.7% (2262) had a baseline HbA1c before initiating diabetes treatment 

(Table 2). The median HbA1c at baseline was above 9% for all adherence trajectories and 

the highest in trajectory D at 10.9% (IQR: 8.60, 13.0) and the lowest in trajectory A at 9.1% 

(IQR: 7.30, 11.3). While there was a general trend of decreasing median HbA1c across all 

adherence trajectories in the two-year observation, it was still above 8% across all 
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trajectories. In addition, there was also a general trend of low HbA1c implementation with 

less than 35% of the study population having an available HbA1c measure in each of the 

sampled time periods during the two-year observation window (Table 5.2). When looking at 

HbA1c implementation in general, the proportion of study participants with at least one 

HbA1c in the first year following diabetes ascertainment was less than 90% across all 

adherence trajectories and there was a gradual decrease in the number of individuals with 

recorded HbA1c measures in each successive year and after 5 years less than 40% of the 

study population had a recorded HbA1c measure (Supplementary Table 5.2).  

Table 5.2. HbA1c measures and proportions of study participants with available HbA1c 

measures in the period before treatment initiation (Baseline) and in six-month intervals 

during the two-year observation window.  

Whole study 

population 
N=8474 

Adherent 

(D) 
N=1442 

Low 
adherence 
gradual 

decline (A) 
N=3152  

High 
adherence 
rapid decline 

(B) 
N=2444 

Low 
adherence 
gradual 

increase (C) 
N=1436 N¥ 

Baseline HbA1c 
(%), 
median [IQR]  

9.7 [7.6;11.9] 10.9 
[8.6;13.0] 

9.1 [7.3;11.3] 9.9 [7.8;12.3] 9.6 [7.8;11.7] 2262 

Participants with 

baseline HbA1c, 

N (%) 

2262 
(26.7%) 

339 
(23.5%) 

945 (30.0%) 585 (23.9%) 393 (27.4%) 

Six-month 
HbA1c (%), 
median [IQR]  

9.1 [7.3;11.5] 9.7 
[7.7;11.7] 

8.6 [7.0;11.1] 9.5 [7.4;11.7] 8.8 [7.2;11.5] 2328 

Participants with 

six-month 

HbA1c, N (%) 

2328 
(27.5%) 

440 
(30.5%) 

769 (24.4%) 765 (31.3%) 354 (24.7%) 

One-year 

HbA1c (%), 

median [IQR] 

8.7 [7.1;11.0] 8.7 

[7.2;10.9] 

8.4 [7.0;10.8] 8.8 [7.1;11.5] 8.9 [7.1;10.9] 2694 

Participants with 

one-year 

HbA1c, N (%) 

2694 
(31.8%) 

539 
(37.4%) 

887 (28.1%) 844 (34.5%) 424 (29.5%) 

Eighteen-month 

HbA1c (%), 

median [IQR] 

8.5 [7.1;10.9] 8.5 
[7.1;10.7] 

8.6 [7.0;11.0] 8.5 [7.1;10.7] 8.6 [7.1;10.9] 2157 
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Whole study 
population 
N=8474 

Adherent 
(D) 
N=1442 

Low 
adherence 

gradual 
decline (A) 
N=3152  

High 
adherence 

rapid decline 
(B) 
N=2444 

Low 
adherence 

gradual 
increase (C) 
N=1436 N¥ 

Participants with 

eighteen-month 

HbA1c, N (%) 

2157 
(25.5%) 

398 
(27.6%) 

636 (20.2%) 632 (25.9%) 491 (34.2%) 

Two-year 

HbA1c (%), 

median [IQR] 

9.0 [7.2;11.3] 9.2 
[7.3;11.4] 

8.9 [7.2;11.2] 8.9 [7.2;11.3] 9.1 [7.3;11.3] 2597 

Participants with 

two-year 

HbA1c, N (%) 

2597 
(30.6%) 

490 
(34.0%) 

859 (27.3%) 757 (31.0%) 491 (34.2%) 

¥Number of participants with available data

Across all adherence trajectories general health care utilisation was highest in the first four 

months after treatment initiation (Supplementary Table 5.3). Trajectory A dropped to 67.2% 

after 8 months and maintained a health care utilisation of between 60 -70 % for the duration 

of the study observation window. Trajectories B, C and D all maintained a health utilization 

above 80% up to 16 months in the study observation period, but by the end of the two-year 

period, only Trajectory C still had a health care utilisation above 80% (Supplementary Table 

5.3).  

5.5. Discussion 

Pharmacy dispensing records from administrative health data have been widely used to 

estimate adherence to antidiabetic medication because they allow for the use of objective 

measures of adherence such as medication possession ratio (MPR) and proportion of days 

covered (PDC) (Chepulis et al., 2020; Kirkman et al., 2015; Lin et al., 2017; Lo-Ciganic et al., 

2016; Melzer-Cohen et al., 2020; Nishimura et al., 2019). In the current study we similarly 

used pharmacy dispensing records as a proxy for medication use and used a modified 

continuous measure of medication acquisition (CMA) to estimate adherence to metformin. 

The modified CMA was used because it allowed for the estimation of longitudinal adherence 

in sliding windows (Dima & Dediu, 2017) and CMA has been shown to produce adherence 

estimates comparable to other commonly used measures including MPR(Hess et al., 2006). 

Adherence was only estimated for the drug metformin because unless contraindicated, 

metformin is the prescribed first line drug for the management of T2DM in South Africa 

(Guidelines, n.d.). In addition, diabetes treatment is done in an additive manner, where new 

drugs are added as a complement to the existing regimen (Figure 5.1), therefore estimating 

adherence using metformin only did not underestimate the measure in this study. 
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To monitor glycaemic control, the South African guidelines on the management of T2DM 

recommend HbA1c measures be done at the initial visit, then every 3 – 6 months annually 

thereafter (Guidelines, n.d.). However, in this study population, use of HbA1c to monitor 

glycaemic control was poorly implemented as most study participants had only one measure 

annually, while some were not having their HbA1c monitored at all (supplementary Table 

5.2). This situation is not unique to this study population as similar trends of low HbA1c 

implementation as a monitoring tool have also been observed elsewhere in South Africa 

(Essel et al., 2015; Govender et al., 2017) and in Singapore (Lin et al., 2017). In the current 

study, we observed median HbA1c values that were increasing over time even in those who 

were adherent to treatment (Supplementary Table 5.2). However, it might not be that HbA1c 

values in the population are increasing over time, but rather this observed trend could be 

because those who are accessing care and getting their HbA1c tested are those who are 

symptomatic and have chronic hyperglycaemia (Govender et al., 2017) that is more difficult 

to control. In addition, because the proportion of people with recorded HbA1c was 

decreasing every year (Supplementary Table 5.2), this could mean that the available HbA1c 

values do not accurately reflect what is happening in the population since they might be 

biased to those who have symptomatic hyperglycaemia. Since hyperglycaemia is largely 

asymptomatic, there is a need for regular monitoring of glycaemic control especially in 

‘healthier’ asymptomatic individuals to prevent early onset of diabetes-related morbidity. 

Polypharmacy and comorbidities have been reported as negative predictors of adherence 

(Egede et al., 2014).In this study, however, we observed that individuals with chronic 

comorbidities that also required long term medication were likely to be adherent to their 

diabetes treatment. Similar findings were also observed in a study in Ethiopia where 

adherence to diabetes treatment increased with the number of non-diabetes medication an 

individual was prescribed (Rwegerera, 2014). This difference in observation maybe be 

because prior studies were done in older populations whereas our study population and the 

Ethiopian study population are generally younger with a median age of diabetes 

ascertainment less than 60 years (Table 5.1). In addition, non-adherence due to 

polypharmacy is believed to be largely linked to medication costs, and in our study 

population the cost of treatment is not a barrier as health care is provided for free in public 

health facilities in South Africa. In addition, we also observed that people who were on a 

complex diabetes treatment regimen were more likely to be adherent (Supplementary Figure 

5.2) than those on metformin only. This may be because these are people who might have 

more advanced disease and are therefore symptomatic and seeking and receiving more 

routine care. Results from a study using patient self-report in Ethiopia, however, found that 
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participants who were on complex regimens were less likely to be adherent as they 

perceived themselves to be sicker and their situation helpless (Ali et al., 2017). 

Results from the current study showed that individuals with long term adherence (trajectory 

D) had higher median health care encounters across all sliding windows in the two-year

study observation period (Supplementary Table 5.3). Similar findings were seen in other 

studies where individuals who had frequent access to health care were more likely to be 

adherent to diabetes treatment (Dobbins et al., 2019). In addition, in the current study PLWD 

on ART were more likely to have long term adherence. This might be because HIV infection 

in particular adherence to ART is managed through well-resourced programme in South 

Africa, therefore PLWHIV are accessing health care more (Osei-Yeboah et al., 2021) and 

are therefore likely to have better linkage to care for other comorbidities including diabetes. 

Given all these observations, it might be worth modelling the level of care given to PLWHIV 

in South Africa to PLWD.  This could be particularly beneficial at the beginning of treatment 

since we observed that adherence in the first 4 months of initiating treatment was already 

less than 30% in this study population suggesting an urgent need for early intervention 

especially for those that initiate treatment while asymptomatic. 

The use of routine data has made it possible to assess adherence in a very large virtual 

cohort of PLWD, and to understand some of the drivers of adherence across this large and 

diverse virtual population. Understanding real-world data in this way can provide insights into 

how healthcare clients access their medication and provide insights to design interventions 

to support healthcare clients in achieving better adherence trajectories. 
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6. Chapter 6: Implementation of a genotyped virtual African population

cohort: A feasibility study in the Western Cape Province, South Africa

Relevance of chapter in thesis 

There is currently limited knowledge on the genetic drivers of disease in African populations 

as this was a previously neglected area of research. While there has been an increase in the 

amount of African genomic data generated in recent times, it is still an expensive 

undertaking and not easily scalable to large cohorts. This chapter describes a pragmatic 

approach to use routine health data to generate health phenotypes that can be linked to 

genotype data from consenting individuals. It describes a feasibility study which combines 

the tools and methods optimised in chapters 2 – 5 to demonstrate the implementation of a 

scalable and cost-effective genotyped virtual African cohort, with an approach that can be 

set up in under-resourced settings.  
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6.1. Abstract 

Background 

Despite recent efforts to increase the amount of African genomic data being generated, 

there remains a dearth of knowledge on the genetic drivers of disease in African ancestry 

populations which is largely driven by the prohibitive cost of undertaking large scale genomic 

research in Africa.  

Methods 

We piloted the implementation of a cost-effective scalable virtual genotyped cohort in the 

Western Cape Province, South Africa. Participant recruitment was done using a tiered 

informed consent model and we piloted DNA collection by buccal swab from consenting 

participants. We used micro-array genotyping to generate genotype data from buccal swab 

and peripheral blood DNA samples. Phenotype data was derived from the routine health 

data of the participants. Finally, we demonstrated the feasibility of running nested case 

control genome wide association studies with these data using type 2 diabetes mellitus 

(T2DM) and severe COVID-19 as phenotypes. 

Results 

We genotyped 2 267 346 single nucleotide polymorphisms (SNPs) in 459 participant 

samples. A total of 1782023 (78.6%) SNPs and 343 (74%) samples passed quality control 

(QC) and were available for further analysis. A higher proportion (80.3%) (49/61) of buccal 

swab samples passed QC compared to 73.8% (294/398) of blood samples. Principal 

component analysis showed extensive admixture in the study population. 31 known COVID-

19 associated variants were identified and when comparing their occurrence in cases and 

controls no significant differences were observed. Similarly, 43 known T2DM variants were 

identified and only rs12742393 (OR: 2.49, 95% CI: 1.69 – 3.66, p-value < 0.001), rs2466293 

(OR: 2.60, 95% CI: 1.72 – 3.92, p-value < 0.001) and rs9581943 (OR: 4.11, 95% CI: 2.60 – 

6.51, p-value < 0.001) occurred in significantly higher counts in the T2DM cases than the 

controls. 

Conclusion 

We have described how we conceptualised and implemented a genotyped virtual population 

cohort in a resource constrained environment, and we are confident that this design and 

implementation are appropriate to scale up the cohort to a size where novel health 

discoveries can be made through nested case-control studies. 



124 

6.2. Introduction 

Despite recent efforts to increase the amount of African genomic data being generated 

(Achidi et al., 2008; Choudhury et al., 2017; N. Mulder et al., 2018; N. J. Mulder et al., 2017), 

there is still a marked underrepresentation of African populations in genomic research 

(Campbell & Tishkoff, 2008; Popejoy & Fullerton, 2016). At the same time Africa is 

undergoing an epidemiologic shift and is experiencing an exponential increase in the 

prevalence of non-communicable diseases (NCDs) like T2DM (Bigna & Noubiap, 2019; 

Gouda et al., 2019). While it is well known that NCDs like T2DM are caused by a 

combination of lifestyle and genetic factors (Bertram et al., 2013; Gill et al., 2008; Hall et al., 

2011; Levitt, 2008), most African studies have focused on the lifestyle drivers of theses 

disease (Adeniyi, Yogeswaran, Longo-Mbenza, & Goon, 2016; Adeniyi, Yogeswaran, Longo-

Mbenza, Goon, et al., 2016; Amberbir et al., 2019; Manyema et al., 2015) and there remains 

a dearth of knowledge on their genetic drivers in African ancestry population.  

While the costs of generating human genomic data have reduced significantly in recent 

times, in Africa, they are still a barrier to the large-scale implementation of genomic research 

(Adebamowo et al., 2018; Policy Paper: A Framework for the Implementation of Genomic 

Medicine for Public Health in Africa | The AAS, n.d.; Ramsay, 2012). Single nucleotide 

polymorphism (SNP) genotyping is a widely used cost-effective method of generating large 

scale genomic data however, previously available micro-array genotyping chips were not 

always optimal for identifying disease associated variants in African ancestry populations 

(Johnston et al., 2017; Popejoy & Fullerton, 2016). The recent availability of the Infinium™ 

H3African Consortium V2 array (H3Africa chip) (H3Africa Chip, n.d.) which contains novel 

African variants has now made it possible to generate informative genotype data for genome 

wide association studies (GWAS) in African genomes.  

Since GWAS identify the association of genotypes with phenotypes, it is critical to ensure 

that phenotype definition is accurate and generated in a standardised way to avoid 

introducing bias which can create spurious associations (“Dissecting the Phenotype in 

Genome-Wide Association Studies of Psychiatric Illness,” 2009; Uffelmann et al., 2021). 

While electronic medical records have been widely used to as a readily available cost-

effective resource for generating GWAS phenotypes (Abul-Husn & Kenny, 2019; Anderson 

et al., 2016; Casey et al., 2016; Hoffmann et al., 2018; Kho et al., 2013; Ohno-Machado et 

al., 2018; Pendergrass & Crawford, 2019; Zhao et al., 2019) they are currently not widely 

available in African countries. However, the increasing availability of electronically captured 

and curated patient routine health data in African health systems (Boulle et al., 2019; Lemma 

et al., 2020; Wabiri et al., 2019) presents an opportunity to use these in data in African 
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genomic studies. In addition, we have previously demonstrated how routine health data can 

be modelled to describe patient phenotypes at both an individual and population level (Dave 

et al., 2021; Tamuhla et al., 2021). 

Given NCDs are predicted to surpass infections as the leading cause of morbidity and 

mortality in the Africa by 2030 (Bigna & Noubiap, 2019; Gouda et al., 2019) and that the 

genetic risk of diseases in African populations cannot be accurately predicted with the 

existing resources, there is an urgent need to perform large scale genomic research in Africa 

(Chikowore et al., 2022; Kamiza et al., 2022). The current study is intended as a proof-of-

concept study demonstrating how a virtual genotyped cohort linking routine health data and 

genotype data is feasible for generating new research outputs and understanding disease 

aetiology in less-resourced environments. 

6.3 Methods 

6.3.1. Ethics 

Ethics approval was granted by the University of Cape Town (HREC REF: 509/2019) and 

permission to conduct the study at Groote Schuur Hospital diabetes clinics and access 

participant routine health data was granted by the Western Cape Government Health 

(WCGH), South Africa. A tiered informed consent model was used (Nembaware et al., 2019; 

Tamuhla et al., 2022) and the participant information and consent forms were in provided in 

both English (Supplementary file 6.1) and isiXhosa (Supplementary file 6.2) to ensure that 

language was not a barrier for prospective participants. Genomic data was de-identified 

using bar-coding of consent forms and collection tubes prior to recruitment and sample 

collection. Using the barcoded consent forms with the recorded Clinicom folder number, the 

Provincial Health Data Centre (PHDC, WCGH) (Boulle et al., 2019) then linked clinical 

records to the barcode number using the clinical folder number and returned de-identified 

data with only the barcode as an identifier. This facilitated linkage of data without overt 

exposure of personal participant details adds an additional layer of privacy protection, even 

though permission was provided by participants for the use of their identified data.  Data 

transfer was effected through secure platforms using AES256 encryption and password 

protection, and analysis was undertaken on a secured, firewall-protected server. 

6.3.2 Study population and sampling 

All adults (18 years or older at recruitment) who consented to access of their clinical data 

from the PHDC and to give a DNA sample were eligible for participation in the study. DNA 

samples were collected using buccal swabs and two swabs were collected from each 

consenting participant. The buccal swab method was chosen because it is relatively 
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inexpensive, easy to administer, non-invasive and the samples are easy to store and 

transport after collection (Matimba et al., 2008). DNA samples for genotyping were prepared 

from the buccal swabs at an external commercial facility (Central Analytic Facility, 

Stellenbosch University) and this approach was chosen to allow for the optimisation of DNA 

preparation protocols that can be scaled for large sample sizes. DNA quantification was 

done using the Qubit dsDNA High Sensitivity (HS) Assay kit according to the manufacturer's 

instructions.  

In addition, since we were piloting a study design that would allow the cohort to grow over 

time, we piloted a collaborative recruitment strategy where different groups with consenting 

participants can collaborate and combine their DNA samples for genotyping in the same 

batch to increase sample size and reduce the cost. To test this approach, DNA extracted 

from peripheral blood samples of consenting participants from the HIATUS study was 

included for genotyping in this study. Participant recruitment into the HIATUS study has been 

described in detail elsewhere (du Bruyn et al., 2023). 

6.3.3. Genotyping 

DNA samples from 459 unrelated study participants were genotyped on the Infinium™ 

H3Africa Consortium Array V2 (H3Africa chip), a custom genotyping chip with ~2.26 million 

SNPs  including novel African variants (H3Africa Chip, n.d.). Array BeadChips were 

analysed on the Illumina iScan™ System and the GenomeStudio™2.0 Genotyping Module 

was used to make genotype calls and generate PLINK PED and MAP files (Purcell et al., 

2007) from the raw genotype data.  

6.3.4. Genotyping quality control 

Quality control (QC) of the genotyped data was done in PLINK1.9 (Purcell et al., 2007) using 

the protocol from Marees and colleagues (Marees et al., 2018) with some modifications. QC 

was done for both samples (n = 459) and SNPs (n = 2 267 346).  

Sample QC 

Samples with a genotype call rate of less than 98% were excluded from the dataset. 

Discordant sex information is when the recorded sex and the genotype sex do not match 

and for this analysis sex imputation using the genotype sex was done for samples with 

discordant sex information (Marees et al., 2018). All samples failing sex imputation were 

excluded from the dataset. Samples were checked for relatedness and those with an identity 

by descent (IBD) score of more than 0.2 were also excluded (Marees et al., 2018). Finally, 

samples with an outlying heterozygosity score (more than 3 standard deviations from the 

mean) were also excluded from the dataset (Marees et al., 2018). 
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SNP QC 

SNPs with a missingness of more than 2%, a Hardy-Weinberg equilibrium p-value less than 

1 × 10-6 and a minor allele frequency (MAF) less than 1% were all excluded from the 

dataset. A MAF threshold of 1% was used instead of the widely used 5% because the 

H3Africa chip contains some variants that occur with a MAF =< 1%  in African populations 

(H3Africa Chip, n.d.) and the same threshold has been applied in a recent study (Choudhury 

et al., 2022) which also used genotype data from the H3Africa chip. In addition, all non-

autosomal SNPS (X, Y and mitochondrial) were also excluded from the data during QC 

(Marees et al., 2018). 

6.3.5. Population stratification 

The structure of the study population was assessed using multi-dimensional scaling (MDS) 

and principal component (PC) analysis  in PLINK1.9 (Purcell et al., 2007) following the 

protocol from Marees and colleagues (Marees et al., 2018). Prior to conducting the MDS and 

PC analysis, the data were first LD pruned leaving only a subset of uncorrelated SNPs which 

were then merged with the 1000 Genomes data which contains well defined reference 

populations. Following the analysis, 10 MDS components were extracted as covariates to be 

used in the genome wide association analysis to control for population stratification bias. 

MDS and PCA plots were generated using R statistical software (Team, 2020). 

6.3.6. Imputation 

Prior to phasing and imputation, reference allele mis-match was checked and any 

problematic data subsequently fixed and normalised using BCFtools (Danecek et al., 2021). 

Phasing using EAGLE2 (Loh et al., 2016) and genome wide imputation using positional 

Wheeler-Burrows transform (PWBT) (Durbin, 2014) were then done on the Sanger 

Imputation Service using the African Genome Resources reference panel (Sanger 

Imputation Service - Wellcome Sanger Institute, n.d.). 

6.3.7. Nested case-control GWAS 

6.3.7.1. Identification of cases and controls 

To demonstrate the feasibility of carrying out a GWAS with these data, two nested case-

control GWAS (T2DM and severe COVID-19) were done using the pre-imputation quality-

controlled data. This was undertaken as a proof-of-principle analysis recognising that the 

studies would not have sufficient statistical power to generate decisive results. The cases 

and controls for the two studies were identified using phenotype data inferred from the 

PHDC records of the study population. A T2DM case was inferred from PHDC records using 
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listed disease evidences of at least one glycated haemoglobin (HbA1c) value greater than or 

equal to 6.5% (“Use of Glycated Haemoglobin (HbA1c) in the Diagnosis of Diabetes 

Mellitus,” 2011) and/or dispensed diabetes drugs as previously described (Tamuhla et al., 

2021). A severe COVID-19 case was also inferred from PHDC records using listed disease 

evidences of a positive SARS-CoV-2 polymerase chain reaction (PCR) laboratory result and 

hospital admission for the treatment of SARS-CoV-2 infection as previously described (Dave 

et al., 2021). The participants who did not meet the defined case criteria were then treated 

as controls. 

6.3.7.2 GWAS 

Since the phenotypes in both studies were binary, A logistic regression GWAS using the 10 

MDS components as covariates was done in PLINK1.9 (Purcell et al., 2007). Quantile-

quantile (QQ) plots were plotted in R to check for biases in the data which if not controlled 

for could result in erroneous false positive associations (Marees et al., 2018). Manhattan 

plots were also plotted in R to identify SNPs with the strongest associations based on -log10 

of their p-values.  

6.3.8 Identification of known T2DM and COVID-19 variants 

To do a descriptive analysis in this study population for known disease-associated variants 

previously identified in other populations, known T2DM and COVID-19 SNPs were identified 

from the literature, and compiled into lists. Using PLINK1.9 (Purcell et al., 2007) SNPS from 

the list were identified in the study dataset and extracted from the genotyped data, and their 

allelic counts and associated odds ratios calculated to determine their occurrence in the 

cases compared to the controls for each disease phenotype. 

6.3.9. Statistical analysis 

Summary statistics were calculated for the study population using R version 3.6.3 (Team, 

2020). For continuous data, median and interquartile range were calculated and for grouped 

data, percentages were calculated. For median values, the Wilcoxon rank sum test was 

used to calculate significance of differences between groups; and significance of the 

differences in proportions between groups was tested using the Fisher’s exact test. The 

Bonferroni correction was applied to adjust for multiple testing.  

6.4. Results 

6.4.1. DNA quality from buccal swabs 

We collected two buccal swabs samples from 61 consenting participants and the DNA was 

extracted and stored separately for each sample. DNA from 49 (80.3%) participants was 
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successfully extracted from both buccal swabs while in 12 (19.7%) participants only 1 of the 

buccal swabs gave an adequate DNA sample. Qubit quantification of the extracted DNA 

gave a median concentration of 36.9 (IQR: 23.0, 57.5) ng/μl and total median DNA yield of 

2.79 (IQR: 1.88, 4.27) μg per sample. In addition, the highest DNA yields were obtained from 

patient self-administration under clinician supervision (data not shown).  

6.4.2. Genotyping quality control 

The total genotype call rate for the study was 97.0% before QC. A total of 1782023 (78.6%) 

SNPs and 343 (74%) samples with a final total genotype call rate of 99.9% passed QC and 

were available for further analysis. When comparing the QC pass rate by sample type, a 

higher proportion of buccal swab samples (80.3%) (49/61) passed QC compared to 73.8% 

(294/398) of blood samples (Table 6.1) and most of the excluded samples (n= 95) were due 

to excessive genotype missingness at a 2% threshold. For individual SNPs, 12.6% (n= 

285975) of the genotyped SNPs were excluded because they had a MAF less than the 1% 

threshold. 

6.4.3 Population structure 

An analysis of the population structure using principal components (Figure 6.1) and multi-

dimensional scaling (MDS) (Supplementary Figure 6.1) showed extensive admixture in the 

study population. This is because while some of the study population clustered with the 

African population in the 1000 Genomes data, a significant proportion did not form clusters 

and were spread across the plot, showing extensive genetic variation.  



130 

Figure 6.1. Principal component (PC) analysis plot using PC1 and PC2. These two 
components show the genetic variation of the study population in comparison to well defined 
continental populations in the 1000 Genomes dataset. AFR (♦) is African, AMR (x) is 
American, ASN (*) is Asian, EUR (⊕) is European and Genotyped cohort (♦) is the study 

participants from the Western Cape Province, South Africa. 

6.4.4. Study population in the nested case-control GWAS 

The 343 people who passed QC were predominantly female 66.8% (n = 229) and had a 

median age of 45 years [IQR: 35, 56] (Table 6.1).  

When looking at each case-study separately, there were 63 cases of severe COVID-19 

identified and 280 controls (Table 6.1). When comparing cases and controls there were 

significant differences (p< 0.001) in sex distribution and the controls had a high proportion of 

females (71.4%) whereas the cases were mostly male (54.0%) (Table 6.1). Similarly, there 

were significant differences (p<0.001) in median age between cases and controls. The 

cases had a median age of 54.0 years [IQR: 44.0, 64.5] compared to a younger control 

population of 43.0 years [IQR: 34.0, 54.0] (Table 6.1). There was no significant difference 

(p=0.842) between the cases and controls when looking at the DNA sample types that 

generated the genotype data in the severe COVID-19 GWAS (Table 6.1).  
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Table 6.1. Characteristics of the study participants in the severe COVID-19 nested case-

control GWAS stratified by sample collection (buccal swab and peripheral blood) 

All (n = 343) Controls (n = 280) Cases (n = 63) p-value 

Sex: <0.001 

Male 114 (33.2%) 80 (28.6%) 34 (54.0%) 

Female 229 (66.8%) 200 (71.4%) 29 (46.0%) 

Age (years) 45.0 [35.0;56.0] 43.0 [34.0;54.0] 54.0 [44.0;64.5] <0.001 

DNA sample: 0.842 

Blood 294 (85.7%) 241 (86.1%) 53 (84.1%) 

Buccal swab 49 (14.3%) 39 (13.9%) 10 (15.9%) 

For the T2DM GWAS, 93 cases and 250 controls were identified from the 343 samples that 

passed QC (Table 6.2). While the controls had a higher proportion of females (69.2%) 

compared to the cases (60.2%), there were no significant differences (p=0.149) in the sex 

distribution between the cases and controls (Table 6.2). There were however significant 

differences in age (p-value < 0.001) with the controls being younger with a median age of 

40.5 years [IQR: 32.0, 50.0] while the median age for the cases was 57.0 years [IQR: 49.0, 

65.0]. There were also significant differences in the DNA samples that generated the 

genotype data for the cases and controls. All the controls were from blood samples whereas 

the cases were genotyped from almost equal proportions of blood and buccal swab samples 

(Table 6.2). Since the genotyping was done in the same batch, there is no need to control for 

the DNA sample type. 

Table 6.2. Characteristics of the participants in the T2DM nested case-control GWAS 

stratified by sample collection (buccal swab and peripheral blood). 

All (n = 343) Controls (n = 250) Cases (n = 93) p-value 

Sex: 0.149 

Male 114 (33.2%) 77 (30.8%) 37 (39.8%) 

Female 229 (66.8%) 173 (69.2%) 56 (60.2%) 

Age (years) 45.0 [35.0;56.0] 40.5 [32.0;50.0] 57.0 [49.0;65.0] <0.001 

DNA sample: <0.001 

Blood 294 (85.7%) 250 (100.0%) 44 (47.3%) 

Buccal swab 49 (14.3%) 0 (0.0%) 49 (52.7%) 
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6.4.5 Severe COVID-19 GWAS 

Since the phenotype was binary, a logistic regression GWAS was done to identify variants 

associated with severe COVID-19 in our study population. From the results in Figure 6.2, no 

genotyped variants in the pre-imputation dataset were associated with severe COVID-19. 

This is because none had a p-value that crossed the genome wide significance threshold of 

5x10-8. However, 11 SNPs crossed the suggestive threshold p-value of 1x10-5 (Figure 6.2). 

In addition, the annotated SNPs on the Manhattan plot had p-values smaller than the 

suggestive threshold, and when multiple SNPs on the same chromosome cross the 

threshold only the one with the smallest p-value is annotated (Figure 6.2). 
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Figure 6.2. Manhattan plot of a severe COVID-19 case-control GWAS in 343 individuals from a virtual genotyped cohort in the Western Cape 

Province, South Africa. The genome wide significant threshold (5x10-8) is shown by the top horizontal line and the suggestive threshold (1x10-5) 

by the bottom horizontal line. The following annotated SNPs; kgp3361121, rs38660236, kgp11107566, kgp11995763, snp-known73452153, 

snp-known8074674 and kgp8145737 crossed the suggestive threshold. The SNPs highlighted in green represent known COVID-19 variants 

that were identified in the pre-imputation quality control dataset.  
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A quantile-quantile (QQ) plot (Figure 6.3) of the -log10 p-values from the Manhattan plot in 

Figure 6.2 showed that the observed associations were not confounded by the population 

admixture (Figure 6.1) that is present in the study population. 

Figure 6.3. Quantile-quantile (QQ) plot of -log10 p-values from the severe COVID-19 GWAS 

Manhattan plot 

6.4.6 T2DM GWAS 

Since the phenotype was binary, a logistic regression GWAS was done to identify variants 

associated with T2DM in our study population. From the results in Figure 6.4, no genotyped 

variants in the pre-imputation dataset were associated with T2DM. This is because none had 

a p-value that crossed the genome wide significance threshold of 5x10-8. However, 4 SNPs 

crossed the suggestive threshold p-value of 1x10-5 and are annotated on the plot (Figure 

6.4). 
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Figure 6.4. Manhattan plot of the T2DM case-control GWAS in 343 individuals from a virtual genotyped cohort in the Western Cape Province, 

South Africa. The suggestive threshold (1x10-5) is shown by the horizontal line and the following annotated SNPs; h3a_37_65141607_GA, 

kgp12340504, rs8050946 and rs6566531crossed it. The SNPs highlighted in green represent known T2DM variants that were identified in the 

pre-imputation quality control dataset.
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A quantile-quantile (QQ) plot (Figure 6.5) of the -log10 p-values from the Manhattan plot in 

Figure 6.4 showed that the observed associations were not confounded by the population 

admixture (Figure 6.1) that is present in the study population. 

Figure 6.5. Quantile-quantile (QQ) plot of -log10 p-values from the T2DM GWAS Manhattan 
plot 

6.4.7. Identification of known COVID-19 associated variants 

A total of 31 known COVID-19 variants were identified in the pre-imputation dataset and of 

these, 17 SNPs had an allele count of 0 in both cases and controls (Supplementary Table 

6.1) meaning that they were not present in any of the samples in our study. A comparison of 

the occurrence of the remaining 14 COVID-19 associated variants in cases and controls 

identified 6 SNPs associated with reduced odds of occurring in severe COVID-19 cases 

(odds ratio < 1), however, after adjusting for multiple-testing these odds were not statistically 

significant (Table 6.3). Similarly, the 8 SNPs associated with increased odds of occurring in 

severe COVID-19 cases did not have statistically significant odds after adjusting for multiple 

testing. These 14 COVID-19 associated variants occurring in our study population were 

highlighted in green on the GWAS Manhattan plot (Figure 6.1) and after the multiple testing 

adjustment in this genome wide hypothesis testing, they are not highlighted as potential 

aetiological variants. A larger sample size would be required to make reliable conclusions in 

this scenario. 
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Table 6.3. Allele counts of known COVID-19 associated variants identified in the feasibility study pre-imputation data. 

SNP Nearest 

gene 

Base pair 

locationa 

Risk 

alleleb

Risk allele 

counts 

Cases 

(n= 63) 

Risk allele 

counts 

Controls 

(n = 280) 

Odds ratio 95% CIc p-value

unadjustedd

p-value

adjustede 

rs1801274 FCGRA2 Chr 1, 161479745 A 58 282 0.84 0.57-1.24 0.380 1 

rs360102 TMEM63A Chr 1, 226067862 A 46 168 1.33 0.89-2.00 0.162 1 

rs7595310 STK39 Chr 2, 168810137 G 50 153 1.75 1.17-2.62 0.006 0.084 

rs17448496 PPP2RB2 Chr 5, 146015615 G 16 44 1.71 0.93-3.13 0.082 1 

rs17142392 LY86 Chr 6, 6626983 C 48 217 0.97 0.65-1.45 0.892 1 

rs1799945 HFE Chr 6, 26091179 G 6 10 2.75 0.98-7.71 0.046 0.637 

rs3131294 NOTCH4 Chr 6, 32180146 A 1 7 0.63 0.08-5.18 0.666 1 

rs2069837 IL6 Chr 7, 22768027 G 19 80 1.06 0.62-1.83 0.818 1 

rs657152 ABO Chr 9, 136139265 C 59 248 1.11 0.75-1.63 0.604 1 

rs2923084 CAND1.11 Chr 11, 10388782 G 51 234 0.95 0.64-1.40 0.788 1 

rs10774671 OAS1 Chr 12, 113357193 G 54 289 0.70 0.48-1.04 0.076 1 

rs10735079 OAS3 Chr 12, 113380008 G 40 128 1.55 1.02-2.38 0.040 0.562 

rs1024611 MCP-1 Chr 17, 32579788 G 28 86 1.57 0.98-2.54 0.061 0.860 

rs4800182 OSBPL1A Chr 18, 21812972 G 39 209 0.75 0.49-1.13 0.170 1 

a. Location of the SNP on the genome denoted by chromosome number and base pair position
b. Alleles aligned to genome build GrCh37
c. 95% confidence interval
d. Fisher’s exact test p-value

e. Bonferroni corrected p-value
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6.4.8. Identification of known T2DM variants 

A total of 43 known T2DM variants were identified in the pre-imputation dataset and of these, 

30 SNPs had an allele count of 0 in both cases and controls (Supplementary Table 6.2) 

meaning that they were not present in any of the samples in our study. A comparison of the 

occurrence of the remaining 13 T2DM associated variants in cases and controls identified 2 

SNPs associated with reduced odds of occurring in T2DM cases (odds ratio < 1) and after 

correcting for multiple testing, neither occurred in significantly lower counts in T2DM cases 

than controls. The other 11 SNPs were associated with increased odds of occurring in T2DM 

cases and of these, only rs1801133 (OR: 2.26, 95% CI: 1.29 – 3.97, p-value = 0.048), 

rs2495477 (OR: 1.71, 95% CI: 1.21 - 2.42, p-value = 0.028), rs12742393 (OR: 2.49, 95% CI: 

1.69 – 3.66, p-value < 0.001),  rs10033601 (OR: 1.66, 95% CI: 1.18 – 2.32 , p-value = 

0.043), rs2466293 (OR: 2.60, 95% CI: 1.72 – 3.92 , p-value < 0.001) and rs9581943 (OR: 

4.11, 95% CI: 2.60 – 6.51, p-value < 0.001) occurred in significantly higher counts in the 

T2DM cases than controls in our study population. In addition, the 13 T2DM associated 

variants occurring in our study population are highlighted on the GWAS Manhattan plot 

(Figure 6.4) but due to the multiple testing adjustment in this genome wide hypothesis 

testing, they are not highlighted as potential aetiological variants. A larger sample size would 

be required to make reliable conclusions in this scenario. 
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Table 6.4. Allele counts of known T2DM associated variants identified in the genotyped cohort pre-imputation data. 

a. Location of the SNP on the genome denoted by chromosome number and base pair position
b. Alleles aligned to genome build GrCh37

c. 95% confidence interval
d. Fisher’s exact test p-value
e. Bonferroni adjusted p-value

SNP Nearest 

gene 

Base pair 

locationa 

Riskb 

Allele 

Risk allele 

counts 

Cases 

(n= 93) 

Risk allele 

counts 

Controls 

(n = 250) 

Odds Ratio 95% CIc p-value

unadjustedd

p-value

adjustede 

rs1801133 MTHFR Chr 1, 11856378 A 24 31 2.26 1.29-3.97 0.004 0.048 

rs3480 FNDC5 Chr 1, 333328165 A 100 235 1.31 0.93-1.84 0.115 1 

rs2495477 PCSK9 Chr 1, 55518467 A 83 160 1.71 1.21-2.42 0.002 0.028 

rs12742393 NOS1AP Chr 1, 162224586 C 61 82 2.49 1.69-3.66 2.61 x 10-6 3.39 x 10-5 

rs11708067 ADCY5 Chr 3, 123065778 G 24 66 0.97 0.59-1.61 0.918 1 

rs10033601 FBXW7 Chr 4, 153252061 A 103 214 1.66 1.18-2.32 0.003 0.043 

rs622342 SLC22A1 Chr 6, 160572866 C 44 97 1.29 0.85-1.93 0.220 1 

rs2466293 SLC30A8 Chr 8, 118185938 G 52 65 2.60 1.72-3.92 3.65 x 10-6 4.75 x 10-5 

rs2637248 LRMDA Chr 10, 78273721 A 57 152 1.01 0.70-1.46 0.950 1 

rs1695 GSTP1 Chr 11, 67352689 G 76 263 0.62 0.44-0.88 0.006 0.081 

rs9581943 PDX1 Chr 13, 28493996 A 49 40 4.11 2.60-6.51 2.06 x 10-10 2.68 x 10-9 

rs16948048 ZNF652 Chr 17, 47440466 G 51 130 1.07 0.74-1.57 0.708 1 

rs1799817 INSR Chr 19, 7125297 A 51 108 1.37 0.93-2.02 0.108 1 
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6.5. Discussion 

In this analysis we conducted a feasibility study demonstrating the implementation of a 

scalable and cost-effective virtual genotyped population cohort suitable for doing genomic 

research in under resourced settings. While similar cohorts have been set up elsewhere 

(Brumpton et al., 2022; Forgetta et al., 2022; Hewitt et al., 2016; Matimba et al., 2008; Nagai 

et al., 2017), the proposed virtual cohort differs in that it does not require complex 

infrastructure for biobanking large collections of study samples. This is because the tiered 

informed consent model used provides an option to recontact participants for future studies 

where more complex samples and data might be needed. Therefore, a participant only 

needs to give a DNA sample once and does not need to return for follow-up visits thus 

working to also reduce participant research fatigue.  

We demonstrated that the virtual cohort design is an inclusive model which can incorporate 

collaborators from different research environments if appropriate informed consent is in 

place.  We successfully piloted genotyping samples from different studies in the same batch 

and showed that samples from different sources and protocols can be combined and their 

routine health data used for immediate meta-analyses without having to go through a 

harmonisation process (Table 6.1 and 6.2). 

In this feasibility study the SNP and sample QC thresholds were adopted from a protocol 

using European ancestry data (Marees et al., 2018) and we acknowledge that the thresholds 

used may not have been optimal for data generated from the H3Africa chip (N. Mulder, 

2017). In particular instead of the proposed 5% MAF threshold (Marees et al., 2018) for SNP 

QC, we modified the protocol and used a MAF threshold of 1% in line with other studies 

conducting genotyping QC on African samples (Choudhury et al., 2022; May et al., 2013). As 

more samples get genotyped on the H3Africa chip we expect to be able to optimise suitable 

QC thresholds that will provide high quality data for African GWAS. 

It is well established that African ancestry populations including those in our genotyped 

cohort (Figure 6.1) are genetically diverse (Choudhury et al., 2018, 2021; Kamiza et al., 

2022; Petersen et al., 2013). While we had initially endeavoured to only include self-

identifying isiXhosa speaking individuals to keep the study population homogenous, the 

study was set in Western Cape Province which has a highly heterogenous population 

(Choudhury et al., 2021). This heterogeneity was observed in the population structure 

analysis which showed significant stratification and admixture (Figure 6.1). We were able to 

demonstrate (Figure 6.5 and 6.5) that genetic and genomic analyses done with this cohort 

can, with the appropriate analysis tools, accommodate the enormous genomic variety in the 
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population of the Western Cape, which has ancient and modern non-admixed and highly 

admixed African populations, as well as admixture from Europe and Asia (Chimusa et al., 

2013; Choudhury et al., 2021; de Wit et al., 2010; Petersen et al., 2013).  

While we did not have an adequate sample size for GWAS, we were able to demonstrate 

that the virtual genotyped cohort design can be used successfully for both hypotheses 

generating research and hypothesis testing research. In this study, we were able to 

successfully identify both African-specific novel SNPs (Figure 6.2 and 6.4) as well as known 

COVID-19 and T2DM aetiological variants (Table 6.3 and 6.4). We have also demonstrated 

how the whole cohort may be repurposed successfully for analysis of different diseases, by 

the design of nested case control studies that stratify the total sample by different disease 

criteria. This clearly demonstrates how the cohort may be used as a disease-agnostic 

resource that can address many different disease outcomes. This also means the cohort 

design is research-agile and can be very responsive to new health challenges that arise. 

This agility was also demonstrated by existing population cohorts during the current COVID-

19 pandemic (“Mapping the Human Genetic Architecture of COVID-19,” 2021) but this work 

was notable in its lack of African representation (Barmania et al., 2022). As it grows over 

time, the cohort we are building will be able to close this gap in the future. In addition, this 

virtual cohort model will be even faster than traditional cohorts and health and demographic 

surveillance systems (HDSS) because there is no need to collect new datasets as the 

existing ones can be rapidly updated from the routine health data. 

Through this analysis we have described how we conceptualised and implemented a 

genotyped virtual population cohort in a resource constrained environment. We have shown 

that routine health data can be effectively linked with genotyped data in a GWAS and while 

acknowledging the small sample size in this feasibility study, we have demonstrated that the 

H3Africa chip is fit for purpose and can highlight African specific variants. We are confident 

that this design and implementation are appropriate to scale up the cohort to a size where 

novel health discoveries can be made through nested case-control studies. 
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7. Chapter 7: Discussion and conclusion

7.1 Introduction 

The overarching aim of this research was to describe and pilot a pragmatic study design that 

would facilitate the implementation of a cost-effective scalable virtual African genotyped 

cohort that can be used to identify disease causing variants in African populations. This is 

because despite recent efforts to increase the amount of African genomic data being 

generated (Achidi et al., 2008; Choudhury et al., 2017; N. Mulder et al., 2018; N. J. Mulder et 

al., 2017), there is still a marked under-representation of African populations in genomic 

research (Campbell & Tishkoff, 2008; Popejoy & Fullerton, 2016) which is largely attributable 

to the prohibitive cost of doing human genomic research in Africa. In addressing the 

prohibitive cost of doing human genomic research in Africa, in this study, we have 

demonstrated that a virtual genotype cohort is an economically viable option for large scale 

genomic research in low resource settings.  

In the next sections, a synopsis of key findings, strengths and limitations of the study, and 

future work will be presented. 

7.2 Summary of key findings 

Setting up a robust informed consent process 

Creating a virtual genotyped cohort involves asking for sensitive genomic data and access to 

health records, therefore special attention should be given to interactions with the 

participants and the consent process, to ensure that any consent given is truly informed 

especially in genomic research where there is a privacy risk even with deidentified data 

(Tiffin, 2019). For the genotyped cohort we identified the tiered informed consent model as 

the most suitable for conducting human genomic research in African populations and 

optimised it as an electronic tiered informed consent (e-consent) framework based in 

REDCap (Frelich et al., 2015).  

We designed the framework as a modular template that can be downloaded from GitHub 

(https://github.com/CIDRI-Africa/e-Consent-framework) thus providing researchers who are 

setting up genomic research studies with a ready-to-use tool that can be easily adapted to 

their research needs. Additionally, because the e-consent is based in REDCap, it allows 

direct data capture without the need for transcription from paper to database addressing the 

issue of long-term storage of paper-based consent forms. This feature not only helps to 

improve efficiency in collecting and storing study data, but it also allows for ease of 

collaboration and ethical sharing of data and biospecimens. This is because the tiered 

https://github.com/CIDRI-Africa/e-Consent-framework
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consent model we proposed offers an option for re-contact where consenting participants 

can be contacted for future studies. This option for re-contact also works to reduce 

participant research burden because no follow-up visits are required. For the virtual 

genotyped cohort, this functionality will make it easy to grow and follow-up the cohort over 

time. 

Longitudinal routine health data in research 

Data collection in health research is a resource intensive process and secondary use of 

routine health data is a cost-effective alternative because they are a rich source of 

population level data that can be used to describe complex disease outcomes (Gavrielov-

Yusim & Friger, 2014; Grath-Lone et al., 2022; Mazzali & Duca, 2015; Yu et al., 2016). To 

harness this utility, we opted to use longitudinal routine health data from the PHDC for the 

genotyped cohort. The PHDC data contain patient demographics, laboratory results, 

prescribed medications and hospital encounters which are primarily collected for 

continuation of patient care (Boulle et al., 2019). In Chapters 3, 4 and 5 we demonstrate how 

we successfully re-purposed these data (Grath-Lone et al., 2022) for the virtual genotyped 

cohort. 

The primary aim of the epidemiologic analysis in chapter 3 was to use routine health data to 

describe the population from which the genotyped participants would be recruited. Using an 

HIV comorbidities cohort data set from the PHDC, we generated summary statistics from the 

demographic, laboratory and pharmacy data and used them describe the epidemiology of 

diabetes in a virtual cohort of 16979 PLWD who have a high burden of HIV and TB. Since 

the data were longitudinal, we described the relationship between previous TB, newly 

diagnosed TB disease and HIV infection on diabetes using HbA1c results as an outcome 

measure. Our findings showed that 13% of the study population had a history of active TB 

disease and 18% were HIV positive. The HIV positive group had diabetes ascertained at a 

significantly younger age corroborating similar findings reported by Osei-Yeboah and 

colleagues (Osei-Yeboah et al., 2021) and had significantly higher HbA1c values. There was 

no evidence of TB disease influencing the trajectory of glycaemic control in the long term, 

but diabetes patients who developed active TB had higher mortality than those without TB. 

The epidemiologic findings in this exploratory study demonstrated that routine health data 

are a valuable resource for understanding disease epidemiology in resource limited settings. 

For the epidemiologic analysis in Chapter 4, we were able to demonstrate that routine health 

data are research-agile and can be used to describe new health challenges that arise. Using 

the data analysis pipelines from Chapter 3 we were able to describe the epidemiology of 

COVID-19 in PLWD in the Western Cape Province, using data from the first wave of the 
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pandemic. We showed that PLWD were significantly more likely to be admitted from COVID-

19 compared to those without the diabetes and that HIV infection, chronic kidney disease, 

current TB, male sex and increasing age were all significant risk factors for severe COVID-

19 in diabetes patient.  While CKD, male sex, HIV infection, previous TB and increasing age 

were also significant risk factors for death. Pre-infection use of insulin was associated with a 

significant increased risk for hospitalisation and mortality and metformin was associated with 

a reduced risk for hospitalisation and mortality. In addition, we optimise standardised 

methods for defining disease phenotypes from routine health data and for the genotyped 

cohort, these methods will be crucial in defining accurate reproducible phenotypes for 

genomic association studies. 

In Chapter 5 we demonstrated how routine health data can be used to identify complex 

phenotypes such as response to medication, long term outcomes and changes in health 

status. We used the pharmacy dispensing data the PHDC from to describe longitudinal 

persistence and adherence patterns to oral diabetes medication and determine predictors of 

longitudinal adherence in PLWD. Using a k-means clustering algorithm we were able to 

cluster individuals into four longitudinal medication adherence trajectories which described 

their medication use patters. These trajectories were We also investigated factors that 

determine long-term adherence in our study population which could be used for targeted 

interventions. Our results showed that PLWD on ART were more likely to have long term 

adherence. This might be because HIV infection in particular adherence to ART is well 

managed in South Africa  therefore, PLWHIV are accessing health care more (Osei-Yeboah 

et al., 2021) and are therefore likely to have better linkage to care for other comorbidities 

including diabetes. Given these observations, it might be worth modelling the level of care 

given to PLWHIV in South Africa to PLWD. 

Data integration 

Having developed a robust tiered informed process and optimised methods to generate 

accurate and reproducible disease phenotypes form routine health data, in Chapter 6 we 

conducted a feasibility study piloting the implementation of a virtual genotyped cohort. Our 

results showed that the cohort study design we have proposed is achievable in resource 

limited settings. This is because a DNA sample is only collected once from a participant to 

generate the genotype data meaning that there is no need to set up and maintain 

infrastructure such as biobanks (Brumpton et al., 2022; Matimba et al., 2008; Nagai et al., 

2017) for the storage of large sample collections. The tiered consent model we proposed in 

Chapter 2 (Tamuhla et al., 2022) also offers an option for re-contact where consenting 
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participants can be contacted for future studies which might need additional sample 

collection.  

Additionally, by having indefinite virtual follow-up through routine health data access, we 

have demonstrated that nested case-control studies can be done where consenting 

participants in the genotyped cohort can be cases or controls depending on the outcome 

being measured therefore making it possible to study multiple health conditions without the 

added cost of recruiting participants each time. Additionally, the continued update of routine 

health data over the life course means that in nested case control studies you can 

retrospectively correct for ascertainment bias as people who were designated as controls in 

initial studies may have later become cases as they develop specific phenotypes of interest. 

7.3. Strengths and limitations 

The WCGDH has one of the most mature health informatics environments in the region. This 

is also facilitated by having established a consistent unique health identifier from inception of 

digital health platforms in the province which has made it possible to collate data in a health 

exchange. Whilst other countries have nascent health informatics infrastructure and digital 

health records such as OpenMRS (Muhoza et al., 2019) in Rwanda and SmartCare 

(Kaumba, 2023) Zambia. The mature system in the WC has made it possible for the PHDC 

to be implemented and it is the first health information exchange of its kind in Africa. 

Through this research we have shown that a virtual genotyped cohort is a pragmatic model 

that works in resource limited settings. This is because it supports a virtuous cycle whereby 

investing in development of routine health care delivery electronic data platforms such as the 

PHDC can both improve patient outcomes through better continuity of care and through 

better evidence-based public health; whilst simultaneously supporting research to generate 

that evidence in an environment that does not over burden both the health system and study 

participants with parallel data and sample collection environments.  

In summary the strengths of this cohort design are: 

• There is no need for storage of large/complex sample collections in biobanks as

there is an option to recontact participants for future studies where more complex

samples and data might be needed.

• The virtual genotyped cohort design can be used successfully for both hypothesis

generating and hypothesis testing research.

• The virtual cohort can be used as a disease-agnostic resource that makes the study

of all health conditions possible.
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• The cohort design is research-agile and can be very responsive to new health

challenges that arise.

• The cohort can be grown over time and offers a collaborative participant recruitment

strategy where relevant consents are in place.

• The design offers indefinite follow up through routine health data access thus

creating an open ended longitudinal virtual cohort.

• Because we ask for permission to re-contact participants, we are also able to use the

cohort to design future detailed studies where we can pre-select consenting

participants based on their health and genomic data and invite them to participate in

future more targeted studies. As the size of cohort increases this will become feasible

even if substantial number of participants cannot be contacted with existing details of

decline to participate.

We have chosen to incorporate the questions together with the text in the informed consent 

process. We recognize that this may be a limitation in certain scenarios where IRBs may 

require the traditional format where questions are posed at the end of providing the 

information. This could be addressed in future versions by separating the elements 

containing the text and associated consent questions so that these can be arranged 

independently as required. 

The biggest limitation of this cohort design is that it is based on the availability of electronic 

routine health data platform such as the PHDC in the Western Cape Province. A major 

limitation of routine health data is that they are limited to administrative data and disease 

states can only be inferred from the available data. They also do not contain socio-economic 

data which are important confounding factors. Additionally, the data are mainly used for 

exploratory analysis and targeted studies are required to confirm the findings.  

7.4. Future work 

We have been able to create a virtual genotyped cohort of 343 individuals from the Western 

Cape Province, South Africa and we believe the results from this work provide a strong 

motivation for expanding such efforts and we intend to continue building this cohort in the 

future. As the cohort grows, we will do more complex statistical analysis like latent factor 

analysis and mendelian randomisation, longitudinal data analysis including regression 

discontinuity. In addition, while we are currently only looking at genotype data as they are 

cheaper to generate, we hope in the future as whole genome sequencing (WGS) costs drop 

and local capacity to perform WGS increases we will be able to do WGS on all or at least a 

subset of our data. Finally, as part of benefit sharing for participants in genomic research 
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where there is currently little to no benefit to participating in the research, in the future we 

plan on establishing a mechanism where clinically actionable results can be returned into the 

health system. 
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Appendix : Supplementary files 

Supplementary file 2.1 

Participant information and informed consent checklist for a new research study. 

1. Steps to create the tiered consent workflow using the REDCap template:

1.1. Set up research study database in REDCap 

1.2. Download tiered e-consent template codebook (ConsentFramework_Data_Dictionary) 

and supporting documents from GitHub repository 

1.3. Import tiered e-consent template codebook in REDCap 

1.4. Use the guidance documents provided to set up and enable e-consent module in 

REDCap 

1.5. Submit e-consent documents to relevant institutional review board for ethics approval  

1.6. Train research staff on administering tiered e-consent 

1.7. Implement use of e-consent in new research study participant recruitment 

2. Participant information and informed consent modules to include:

Type of consent ✓/ ×

Primary consent for collecting biospecimens and health data for specific disease in 

current study. 
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Consent for access to medical records 

Consent for return of individual results 

Consent for return of individual results that are actionable and/or treatable 

Consent for return of individual results that are NOT actionable and/or treatable 

Consent for inclusion of individual data in genetic summary data 

Consent for use of genetic and health data for future studies on specific disease 

Consent for use of genetic and health data for future studies on other health 

conditions or related health processes 

Consent to re-contact for future studies 

Consent for use of genetic and health data in international studies 

Consent for use of genetic data in population origins and ancestry studies  

Supplementary file 2.2 

Supplementary Table 2: List of the documents in the tiered e-consent framework Github 

repository. 

Name in GitHub Repository 
(including link to document) 

Document content Use of content 

ConsentFramework.xml  
https://github.com/CIDRI-Africa/e-
Consent-
framework/blob/main/ConsentFramew
ork_2021-09-29_1108.REDCap.xml 

XML file which contains the 
entire tiered e-consent 
project metadata 

This can be 
imported into 
REDCap to set up 
a clone of the 
project.  

ConsentFramework_Data_Dictionary 

https://github.com/CIDRI-Africa/e-
Consent-
framework/blob/main/ConsentFramew
ork_DataDictionary_2021-09-29.csv 

CSV file which contains all 

the tiered e-consent 
variables 

This is the 

codebook that can 
be used to set up 
a new instance of 
the e-consent 
framework 

ConsentFramework_All_Documents 
https://github.com/CIDRI-Africa/e-
Consent-
framework/blob/main/ConsentFramew
ork_Allforms_20210929.pdf 

PDF of example copies of 
the different documents 
generated used the tiered 
e-consent framework

Example output 

https://github.com/CIDRI-Africa/e-Consent-framework/blob/main/ConsentFramework_2021-09-29_1108.REDCap.xml
https://github.com/CIDRI-Africa/e-Consent-framework/blob/main/ConsentFramework_2021-09-29_1108.REDCap.xml
https://github.com/CIDRI-Africa/e-Consent-framework/blob/main/ConsentFramework_2021-09-29_1108.REDCap.xml
https://github.com/CIDRI-Africa/e-Consent-framework/blob/main/ConsentFramework_2021-09-29_1108.REDCap.xml
https://github.com/CIDRI-Africa/e-Consent-framework/blob/main/ConsentFramework_DataDictionary_2021-09-29.csv
https://github.com/CIDRI-Africa/e-Consent-framework/blob/main/ConsentFramework_DataDictionary_2021-09-29.csv
https://github.com/CIDRI-Africa/e-Consent-framework/blob/main/ConsentFramework_DataDictionary_2021-09-29.csv
https://github.com/CIDRI-Africa/e-Consent-framework/blob/main/ConsentFramework_DataDictionary_2021-09-29.csv
https://github.com/CIDRI-Africa/e-Consent-framework/blob/main/ConsentFramework_Allforms_20210929.pdf
https://github.com/CIDRI-Africa/e-Consent-framework/blob/main/ConsentFramework_Allforms_20210929.pdf
https://github.com/CIDRI-Africa/e-Consent-framework/blob/main/ConsentFramework_Allforms_20210929.pdf
https://github.com/CIDRI-Africa/e-Consent-framework/blob/main/ConsentFramework_Allforms_20210929.pdf
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Instrument index.xls 
https://github.com/CIDRI-Africa/e-
Consent-
framework/blob/main/Instrument%20i
ndex%2020210929.xlsx 

List of all data capture 
instruments available in the 
e-consent

Shows which 
instruments are 
essential and 
which are optional 
when 
implementing your 
own instance of 
the framework 

Set up guide.doc 
https://github.com/CIDRI-Africa/e-
Consent-framework/blob/main/Set-

up%20guide%2020200204.docx 

A word document Step by step guide 
on how to set up 
REDCap and use 

the tiered e-
consent feature 

Diabetes study example.pdf 
https://github.com/CIDRI-Africa/e-
Consent-
framework/blob/main/Diabetes_study_
example.pdf 

A PDF document An example of a 
tiered e-consent 
document showing 
the final output 
from the different 
data capture tools. 

Supplementary file 2.3 

Supplementary Table 1: Additional REDCap survey customisations that were used in the 

tiered e-consent documents 

Customisation Utility of customisation 

Set a Custom Record Label Allows another variable to the appended to the 
system generated record name to aid in ease of 

identification of individual participants records 

Designate a Secondary Unique Field A unique constraint value which cannot be 
duplicated and will be checked in real time to 
ensure that is not shared by another record e.g. 
participant study ID 

Require a reason when making changes to 
existing records 

Require users to enter a reason (200 character 
max) in a text box when making any data 
changes to an already existing record on a data 

collection instrument. The prompt is triggered 
when clicking the Save button on the page. Any 
'reasons' entered can then be viewed anytime 
afterward on the Logging page. his feature is 
only triggered when adding, editing, or deleting 
data for an instrument that contains previously-

collected data for one or more fields on the 
instrument. 

Display the Today/Now button for all date and 
time fields on forms/surveys? 

If enabled, a 'Today' button will be displayed to 
the right of all date fields, and a 'Now' button will 
be displayed to the right of all time, datetime, 

https://github.com/CIDRI-Africa/e-Consent-framework/blob/main/Instrument%20index%2020210929.xlsx
https://github.com/CIDRI-Africa/e-Consent-framework/blob/main/Instrument%20index%2020210929.xlsx
https://github.com/CIDRI-Africa/e-Consent-framework/blob/main/Instrument%20index%2020210929.xlsx
https://github.com/CIDRI-Africa/e-Consent-framework/blob/main/Instrument%20index%2020210929.xlsx
https://github.com/CIDRI-Africa/e-Consent-framework/blob/main/Set-up%20guide%2020200204.docx
https://github.com/CIDRI-Africa/e-Consent-framework/blob/main/Set-up%20guide%2020200204.docx
https://github.com/CIDRI-Africa/e-Consent-framework/blob/main/Set-up%20guide%2020200204.docx
https://github.com/CIDRI-Africa/e-Consent-framework/blob/main/Diabetes_study_example.pdf
https://github.com/CIDRI-Africa/e-Consent-framework/blob/main/Diabetes_study_example.pdf
https://github.com/CIDRI-Africa/e-Consent-framework/blob/main/Diabetes_study_example.pdf
https://github.com/CIDRI-Africa/e-Consent-framework/blob/main/Diabetes_study_example.pdf
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and datetime_seconds fields. Clicking the button 
will automatically set the field's value with the 
current date or time. 

Enable the File Version History for 'File Upload' 
fields? 

If a new version of a file needs to be uploaded 
for the field, instead of deleting the current file 
before adding the new one, you may simply 

upload a new file (via the 'Upload new version' 
link), in which all older versions will be kept and 
will be accessible for viewing/download in the 
Data History popup for the field. This features 
provides the convenience of accessing older 
versions of the file instead of having to delete 

them. (Note: Older versions of a file will not be 
accessible anywhere else in the project except 
the Data History popup. 

Enable the Data History popup for all data 
collection instruments? 

If enabled, an icon will appear next to every field 
on a data collection instrument. When the icon 
is clicked, the history of all data entered into that 
field for that record will be listed chronologically 

and will display all previous values, who 
changed the value at each instance, and the 
time it was changed. 

Enable the Field Comment Log or Data 
Resolution Workflow (Data Queries)? 

The Field Comment Log (enabled by default) 
allows users to leave comments for any given 
field on a data entry form by clicking the balloon 
icon next to the field. All comments can also be 

viewed, searched, and downloaded on the Field 
Comment Log page. 
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Supplementary file 2.4 
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Supplementary file 2.5 
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Supplementary file 2.6 
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Supplementary Table 3.1: Characteristics of the study population who are HIV positive and 

stratified by the ascertainment of the HIV in relation to diabetes ascertainment 

All 

N=2423a 

HIV before diabetes 

ascertainment 
N=1525 (63%) 

HIV after diabetes 

ascertainment 
N=898 (37%) 

p-

value 

Sex (Female) 1676 (69.2%) 1033 (67.8%) 643 (71.6%) 0.058 

Age at diabetes 

ascertainment (Years) 

46.0 

[39.0;52.0] 

45.0  [39.0;52.0] 47.0  [39.0;53.0] 0.029 

Baseline HbA1c (%) 8.4  [6.9;10.9] 8.0  [6.8;10.4] 9.4  [7.3;11.8] <0.001 

Last HbA1c (%) 12.2  [8.0;15.0] 12.5  [7.9;15.2] 11.6  [8.0;14.5] 0.005 

Patient outcome 

(Deceased) 

142 (5.9%) 69 (4.5%) 73 (8.1%) <0.001 

Diabetes duration 

(Years) 

4.0  [1.2;6.5] 2.9  [0.6;5.6] 5.8  [3.1;7.8] <0.001 

Ever started diabetes 

treatment 

2056 (84.9%) 1237 (81.1%) 819 (91.2%) <0.001 

Ever had Tuberculosis 786 (32.4%) 548 (35.9%) 238 (26.5%) <0.001 

TB-Diabetes 

comorbidity 

372 (47.8%) 164 (30.1%) 208 (88.5%) <0.001 

a. 85 (3%) individuals did not have enough data to classify when they were ascertained HIV relative to

diabetes ascertainment
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Supplementary Table 3.2: Characteristics of the whole study population, and stratified by 

history of active Tuberculosis disease 

ALL 

N=13771 

Never had 

Tuberculosis 

N=11932 

Ever had 

Tuberculosis 

N=1839 

p-

value 

Sex (Female) 9246 (67.2%) 8201 (68.8%) 1045 (56.9%) <0.001 

Age at diabetes 

ascertainment (Years) 

52.0  [44.0;59.0] 52.0  [44.0;60.0] 49.0  [41.0;56.0] <0.001 

Baseline HbA1c (%) 8.5  [7.0;11.1] 8.5  [7.0;11.0] 9.2  [7.1;11.8] <0.001 

Last HbA1c (%) 9.5  [7.2;12.7] 9.3  [7.1;12.5] 10.9  [7.6;14.1] <0.001 

Patient outcome (Deceased) 631 (4.6%) 448 (3.8%) 183 (10.0%) <0.001 

TB-Diabetes comorbidity 1008 (55.9%) 0 (.%) 1008 (55.9%) . 

Ever started TB treatment 1831 (13.3%) 0 (0.0%) 1831 (99.6%) 0.000 

Ever started diabetes 

treatment 

11745 (85.3%) 10141 (85.0%) 1604 (87.2%) 0.013 

Linkage to diabetes 

Treatment

10707 (91.2%) 9335 (92.1%) 1372 (85.5%) <0.001 

Linkage to HbA1c testing 9264 (67.3%) 8029 (67.3%) 1235 (67.2%) 0.896 
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Supplementary Table 3.3: Number of study participants recorded as being on the different 

combinations of Diabetes, TB, and HIV medications. 

Diabetes treatment Tuberculosis treatment HIV treatment Number of study participants 

1 0 0 10374 

1 0 1 1323 

1 1 0 1088 

1 1 1 743 
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Supplementary Table 3.4: Characteristics of the whole study population, and stratified by 

the sex of the participants 

 [ALL] 

N=13754 a 

Female 

N=9246 (67%) 

Male 

N=4508 (33%) p-value

Age at diabetes 

ascertainment (Years) 

52.0  [44.0;59.0] 52.0  [44.0;60.0] 51.0  [43.0;59.0] <0.001 

Age categories <0.001 

18-39 2108 (15.3%) 1348 (14.6%) 760 (16.9%) 

40-49 3711 (27.0%) 2476 (26.8%) 1235 (27.4%) 

50-59 4570 (33.2%) 3090 (33.4%) 1480 (32.8%) 

60-69 2356 (17.1%) 1597 (17.3%) 759 (16.8%) 

70-79 804 (5.8%) 569 (6.2%) 235 (5.2%) 

>=80 205 (1.5%) 166 (1.8%) 39 (0.9%) 

HIV Positive 2506 (18.2%) 1726 (18.7%) 780 (17.3%) 0.054 

Ever had Tuberculosis 1838 (13.4%) 1045 (11.3%) 793 (17.6%) <0.001 

Tuberculosis-Diabetes 

comorbidity 

1007 (55.9%) 581 (56.8%) 426 (54.8%) 0.415 

Baseline HbA1c (%) 8.5  [7.0;11.1] 8.6  [7.0;11.1] 8.5  [6.9;11.2] 0.441 

Baseline HbA1c < 7% 2816 (24.5%) 1867 (24.0%) 949 (25.5%) 0.089 

Last HbA1c (%) 9.4  [7.2;12.7] 9.5  [7.2;12.7] 9.3  [7.1;12.7] 0.038 

Last HbA1c < 7% 2927 (21.3%) 1886 (20.4%) 1041 (23.1%) <0.001 

Patient outcome 

(Deceased) 

631 (4.6%) 394 (4.3%) 237 (5.3%) 0.010 

Ever started TB treatment 1830 (13.3%) 1043 (11.3%) 787 (17.5%) <0.001 

Ever started diabetes 

treatment 

11729 (85.3%) 7802 (84.4%) 3927 (87.1%) <0.001 

Linkage to diabetes 

treatment 

10694 (91.2%) 7117 (91.2%) 3577 (91.1%) 0.838 

Linkage to HbA1c testing 9250 (67.3%) 6157 (66.6%) 3093 (68.6%) 0.021 
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Supplementary figure 3.1 

Supplementary Figure 3.2 
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Supplementary Table 4.1. Characteristics of the Western Cape public health sector 

patients with COVID-19 who have diabetes. The results have been grouped by the type of 

health facility they accessed to fill drug prescriptions 

HIV, Human immunodef iciency virus; TB, Tuberculosis; COPD, Chronic obstructive pulmonary disease; CKD, chronic kidney 

disease; ICU, intensive care unit 

ALL 

N=9305 

Computer based 

Pharmacy system 

N=5721 

No computer based 

pharmacy system 

N=3584 

Sex: 

Female 5645 (60.7%) 3598 (62.9%) 2047 (57.1%) 

Male 3657 (39.3%) 2121 (37.1%) 1536 (42.9%) 

age 55.0 [46.0;63.0] 57.0 [48.0;65.0] 52.0 [42.0;61.0] 

Age: 

0-18 19 (0.2%) 9 (0.2%) 10 (0.3%) 

18-39 1244 (13.4%) 539 (9.4%) 705 (19.7%) 

40-49 1852 (19.9%) 1033 (18.1%) 819 (22.9%) 

50-59 2886 (31.0%) 1819 (31.8%) 1067 (29.8%) 

60-69 2063 (22.2%) 1437 (25.1%) 626 (17.5%) 

70-79 950 (10.2%) 677 (11.8%) 273 (7.6%) 

>=80 291 (3.1%) 207 (3.6%) 84 (2.3%) 

Outcome: 

Active 1 (<0.1%) 0 (0.0%) 1 (<0.1%) 

Died 1434 (15.4%) 928 (16.3%) 506 (14.1%) 

Recovered 7856 (84.6%) 4780 (83.7%) 3076 (85.8%) 

HIV 911 (9.8%) 683 (11.9%) 228 (6.4%) 

TB current 112 (1.2%) 88 (1.5%) 24 (0.7%) 

TB previously 643 (6.9%) 457 (8.0%) 186 (5.2%) 

Asthma or COPD 1221 (13.1%) 951 (16.6%) 270 (7.5%) 

Hypertension 5161 (55.5%) 4005 (70.0%) 1156 (32.3%) 

CKD 852 (9.2%) 695 (12.1%) 157 (4.4%) 

Pregnant 85 (0.9%) 58 (1.0%) 27 (0.8%) 

Hospital admission 4181 (44.9%) 2474 (43.2%) 1707 (47.6%) 

Admitted to ICU 373 (4.0%) 152 (2.7%) 221 (6.2%) 

Ventilated 52 (0.6%) 15 (0.3%) 37 (1.0%) 

New diabetes 1053 (11.3%) 229 (4.0%) 824 (23.0%) 

Diabetes 9305 (100.0%) 5721 (100.0%) 3584 (100.0%) 
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Supplementary Table 4.2. Counts of diabetes medication recorded as dispensed to 

public health sector patients with COVID-19 who had a diabetes comorbidity who 

accessed facilities with a computer-based pharmacy system. The results have been 

grouped by COVID-19 status (Recovered or Died). 

ALL 

N=5708 

Died 

N=928 

Recovered 

N=4780 

Metformin 4084 (71.5%) 593 (63.9%) 3491 (73.0%) 

Insulin 2073 (36.3%) 412 (44.4%) 1661 (34.7%) 

Sulphonylurea 2110 (37.0%) 301 (32.4%) 1809 (37.8%) 

Hydrochlorothiazide 2756 (48.3%) 400 (43.1%) 2356 (49.3%) 

ACE inhibitor 2987 (52.3%) 486 (52.4%) 2501 (52.3%) 

ARB 643 (11.3%) 150 (16.2%) 493 (10.3%) 

Aspirin 1728 (30.3%) 373 (40.2%) 1355 (28.3%) 

Statin 3925 (68.8%) 685 (73.8%) 3240 (67.8%) 

Beta blocker 1363 (23.9%) 288 (31.0%) 1075 (22.5%) 

Steroids 261 (4.6%) 54 (5.8%) 207 (4.3%) 

Anti-retroviral therapy 583 (10.2%) 101 (10.9%) 482 (10.1%) 

TB drugs 68 (1.2%) 17 (1.8%) 51 (1.1%) 

ACE, Angiotensin converting enzyme; ARB, Angiotensin Receptor Blockers  
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Supplementary Table 4.3. Summary statistics of laboratory tests done on public 

health sector patients with COVID-19 and a diabetes comorbidity who were admitted 

into hospital. These results are the median (IQR) and proportions for tests done 2 days 

before and up to 5 days after the hospital admission for COVID-19. The results have 

been grouped by COVID-19 status (Recovered or Died). 

Died Recovered N 

N=1129 N=2535 

Creatinine 109.0 [76.0;172.0] 78.0 [60.0;106.0] 3459 

eGFR 52.5 [29.0;60.6] 60.6 [52.0;60.6] 3450 

eGFR: 3664 

Stage 2 CKD 464 (41.1%) 1636 (64.5%) 

Stage 3A CKD 152 (13.5%) 297 (11.7%) 

Stage 3B CKD 191 (16.9%) 218 (8.6%) 

Stage 4 CKD 135 (12.0%) 142 (5.6%) 

Stage 5 CKD 136 (12.0%) 79 (3.1%) 

Unknown 51 (4.5%) 163 (6.4%) 

White Cell Count 9.9 [7.3;13.5] 8.3 [6.3;11.2] 3375 

Lymphocyte count 1.1 [0.8;1.6] 1.4 [1.0;1.9] 2261 

Ferritin 1084.0 [668.0;1749.0] 552.0 [299.0;1152.0] 390 

Sodium 135.0 [131.0;139.0] 134.0 [131.0;137.0] 3119 

D-Dimer 1.1 [0.5;4.1] 0.5 [0.3;1.0] 1410 

D-Dimer 3664 

high 472 (41.8%) 735 (29.0%) 

normal 37 (3.3%) 166 (6.5%) 

Unknown 620 (54.9%) 1634 (64.5%) 

C-Reactive Protein 176.0 [102.8;277.2] 113.0 [57.0;199.0] 2188 

HbA1c 9.0 [7.1;11.6] 10.0 [7.3;12.6] 1761 

HbA1c: 3664 

<7% 119 (10.5%) 248 (9.8%) 

>9% 280 (24.8%) 731 (28.8%) 

7-9% 146 (12.9%) 237 (9.3%) 

Unknown 584 (51.7%) 1319 (52.0%) 
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Supplementary Table 5.1: Characteristics of the study population, and stratified by HIV 

status 

Whole study 
population 
N=10541 

HIV negative 
N=8969 

HIV positive 
N=1572 

P 
value 

Sex: Female 7053 (67.0%) 5999 (67.0%) 1054 (67.1%) 0.947 

Diabetes Ascertainment Age 
(Years): 

52.0 [44.0;59.0] 53.0 [45.0;61.0] 46.0 [39.0;52.0] <0.001 

Diabetes Treatment Initiation 
Age (Years): 

53.0 [45.0;60.0] 54.0 [46.0;62.0] 46.0 [40.0;53.0] <0.001 

Diabetes Treatment 
Formulation: 

0.107 

Metformin only 3525 (33.4%) 2982 (33.2%) 543 (34.5%) 

Metformin & Sulphonylurea 4417 (41.9%) 3796 (42.3%) 621 (39.5%) 

Metformin, Sulphonylurea 
& Insulin 

2599 (24.7%) 2191 (24.4%) 408 (26.0%) 

Diabetes Treatment Initiation: <0.001 

At diabetes ascertainment 5828 (55.3%) 4936 (55.0%) 892 (56.7%) 

Within 1 year of 
ascertainment 

2156 (20.5%) 1792 (20.0%) 364 (23.2%) 

More than 1 year after 
ascertainment 

2557 (24.3%) 2241 (25.0%) 316 (20.1%) 

HIV Antiretroviral Treatment: 1202 (11.4%) 0 (0.0%) 1202 (76.5%) 0.000 

Cluster: <0.001 

Adherent 1544 (14.6%) 1192 (13.3%) 352 (22.4%) 

Low adherence gradual 
decline 

4656 (44.2%) 4005 (44.7%) 651 (41.4%) 

High adherence rapid 
decline 

2716 (25.8%) 2380 (26.5%) 336 (21.4%) 

Low adherence gradual 
increase 

1625 (15.4%) 1392 (15.5%) 233 (14.8%) 

Hypertension: 6517 (61.8%) 5713 (63.7%) 804 (51.1%) <0.001 

Tuberculosis: 1385 (13.1%) 850 (9.5%) 535 (34.0%) <0.001 
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Supplementary Table 5.2: Median HbA1c values and proportion of study participants with 

HbA1c measures in the five years post diabetes ascertainment  

Adherent 

(D) 

N=1490 

Low adherence 

gradual decline 

(A) 

N=3740 

High adherence 

rapid decline (B) 

N=2591 

Low 

adherence 

gradual 

increase (C) 

N=1553 N 

Year one 

HbA1c (%) 

9.40 

[7.60;11.8] 

9.00 [7.20;11.4] 9.30 [7.40;11.7] 9.10 

[7.30;11.4] 

7676 

Participants with 

year one HbA1c 

1320 
(88.6%) 

2881 (77.0%) 2244 (86.6%) 1231 (79.3%) 9374 

Year two HbA1c 8.80 

[7.20;11.1] 

8.70 [7.10;11.1] 8.70 [7.10;11.0] 8.70 

[7.20;11.0] 

4430 

Participants with 

year two HbA1c 

806 
(54.1%) 

1431 (38.3%) 1319 (50.9%) 874 (56.3%) 9374 

Year three HbA1c 

(%) 

9.10 

[7.40;11.3] 

9.00 [7.30;11.4] 9.20 [7.30;11.4] 8.80 

[7.30;11.1] 

4001 

Participants with 

year three HbA1c 

679 
(45.6%) 

1451 (38.8%) 1170 (45.2%) 701 (45.1%) 9374 

Year four HbA1c 

(%) 

9.50 

[7.50;11.5] 

9.20 [7.30;11.4] 9.60 [7.70;11.9] 9.10 

[7.40;11.3] 

3765 

Participants with 

year four HbA1c 

585 

(39.3%) 

1420 (38.0%) 1115 (43.0%) 645 (41.5%) 9374 

Year five HbA1c 

(%) 

9.80 

[7.80;11.7] 

9.30 [7.50;11.3] 9.70 [7.80;11.7] 9.70 

[7.60;11.4] 

3250 

Participants with 

year five HbA1c 

445 

(29.9%) 

1304 (34.9%) 985 (38.0%) 516 (33.2%) 9374 

*N is the number of people in the study population who had an available HbA1c at the different time points.
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Supplementary Table 5.3: Counts (%) and median (IQR) health facility encounters for study 

participants in the six months before starting diabetes treatment, in the two-year observation 

window (in four-month sliding windows) and in the 6 months after the two-year study 

observation window. 

Adherent (D) 
N= 1544 

Low 
adherence 

gradual 

decline (A) 
N= 4655 

High adherence 
rapid decline 

(B) 
N= 2716 

Low 
adherence 

gradual 

increase (C) 
N= 1625 

Six months before 
diabetes 
treatment start (median, 
IQR) 

2.0 [1.0;4.0] 2.0 [0.0;4.0] 1.0 [0.0;3.0] 2.0 [1.0;4.0] 

Six months before 
diabetes 
treatment start (%) 

1172 (75.9%) 3309 (71.1%) 1848 (68.0%) 1248 (76.8% 

Four months after 
diabetes 

treatment start (median, 
IQR) 

5.0 [4.0;7.0] 3.0 [1.0;5.0] 4.0 [1.0;6.0] 4.0 [2.0;6.0] 

Four months after 
diabetes 
treatment start (%) 

1497 (97.0%) 4078 (87.6%) 2239 (82.4%) 1563 (96.2%) 

Eight months after 
diabetes 
treatment start (median, 
IQR) 

4.0 [2.0;5.0] 1.0 [0.0;3.0] 2.0 [1.0;4.0] 2.0 [1.0;4.0] 

Eight months after 

diabetes 
treatment start (%) 

1488 (96.4%) 2787 (59.9%) 2270 (83.6%) 1399 (86.1%) 

Twelve months after 
diabetes 
treatment start (median, 
IQR) 

4.0 [2.0;5.0] 1.0 [0.0;3.0] 2.0 [1.0;4.0] 2.0 [1.0;4.0] 

Twelve months after 
diabetes 
treatment start (%) 

1449 (93.8%) 2788 (59.9%) 2291 (84.4%) 1397 (86.0%) 

Sixteen months after 
diabetes 

treatment start (median, 
IQR) 

4.0 [2.0;5.0] 1.0 [0.0;3.0] 2.0 [1.0;4.0] 3.0 [1.0;4.0] 

Sixteen months after 
diabetes 
treatment start (%) 

1382 (89.5%) 2711 (58.2%) 2218 (81.7%) 1418 (87.3%) 

Twenty months after 
diabetes 
treatment start (median, 
IQR) 

3.0 [1.0;5.0] 1.0 [0.0;2.0] 2.0 [1.0;4.0] 3.0 [1.0;5.0] 
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Adherent (D) 
N= 1544 

Low 
adherence 

gradual 
decline (A) 

N= 4655 

High adherence 

rapid decline 
(B) 

N= 2716 

Low 
adherence 

gradual 
increase (C) 

N= 1625 

Twenty months after 
diabetes 
treatment start (%) 

1251 (81.0%) 2475 (53.2%) 2058 (75.8%) 1387 (85.4%) 

Twenty-four months after 
diabetes 
treatment start (median, 

IQR) 

3.0 [0.0;5.0] 1.0 [0.0;3.0] 2.0 [0.0;4.0] 3.0 [1.0;4.0] 

Twenty-four months after 

diabetes 
treatment start (%) 

1141 (73.9%) 2482 (53.3%) 1964 (72.3%) 1308 (80.5%) 

Six months after study 
observation 
window (median, IQR)  

4.0 [0.0;7.0] 2.0 [0.0;5.0] 4.0 [1.0;6.0] 4.0 [1.0;6.0] 

Six months after study 
observation 
window (%)  

1093 (70.8%) 2756 (59.2%) 2038 (75.0%) 1256 (77.3%) 

Supplementary figure 5.1 
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Supplementary figure 5.2 

Supplementary figure 6.1 
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Supplementary file 6.1 

PARTICIPANT INFORMATION 

Who are we? 

My name is Tsaone Tamuhla and I am a PhD student in the Faculty of Health Sciences at the 

University of Cape Town (UCT), and I am the main researcher in this study. I am working under 

the supervision of Associate Professor Nicki Tiffin and Professor Nicola Mulder at the 

University. We are also working with Dr Peter Raubenheimer and Dr Joel Dave, who care for 

patients with diabetes at Groote Schuur Hospital. 

Why are we doing this study? 

We want to study something called “genes”. These “genes” are present in all of us and are 

the same in all parts of our bodies. “Genes” are sometimes also called DNA, which is the name 

of the material they are made from. Genes are responsible for why people in families are 

often more like each other, and different from other families. For example, some families are 

generally taller or shorter than others. This kind of information is passed from both the father 

and the mother to their children and on to their grandchildren, from one generation to the 

next. Some of these genes may prevent some people from getting certain illnesses. Other 

genes may be one of the reasons why some people get sick or have side effects from some 

medicines when others do not. We are still learning how genes might contribute to different 

diseases, and how they work together with our lifestyle and other factors - such as our 

environment or what we eat - to affect our health. We want to explore whether genes may 

affect type 2 diabetes in South African patients.  

You may not get any benefit directly from this study, but we hope that the information we 

get about your genes and your health may benefit others who have diabetes and many 

different kinds of illnesses, in the future. You do not have to take part in this study, it is your 

choice if you want to take part, or not. If you do not want to take part, it will NOT affect the 

health care you receive at Groote Schuur Hospital. 

We will also ask you if we can use your health and genetic information in other studies about 

diabetes, in the future; and if we can use your information in the future in other studies about 
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different health conditions. You can choose whether you agree to this or not, and your 

decision will not affect your health care at Groote Schuur Hospital or your involvement in this 

study.  

What results from this study will you receive? 

We will not give you any individual results from the study of the samples you give us. This is 

because it will probably take a long time for this project to result in specific health information 

that is useful to patients.   

If you agree for your information to be used in other studies in the future, it is possible that 

some new health information might be discovered in those studies. We will ask you if you 

would like to know any new information that might become available about your health.  

At the end of the study, we will put our general findings from the study in some pamphlets 

and posters at the clinics where people have joined this study.  There, you will be able to read 

how this study is contributing to our understanding of health and disease. When we describe 

the results of this study in this way, we will only show summary results or overall study results 

from the whole study, and there will be no information about the individual people who took 

part in the study.  

What will we ask for? 

We will ask you a few simple questions about your life and where you grew up. In order to 

better understand your health, we will ask you for permission to look at your health records 

that the Department of Health collects when you visit government health facilities like clinics 

or hospitals – such as any medical tests that have been done and any medication that you 

have been given at any government facility. We will also ask you to provide a swab or rinse of 

the inside of your mouth and we will use this to prepare a sample of your genes.  

The sample will be stored at Stellenbosch University until the study is over. The information 

from your sample will be very securely stored at the University of Cape Town.  
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Sometimes researchers combine the information from everyone in the study and provide a 

summary of genetic information for the whole group. This does not provide information 

about each individual, but can provide information about the whole group all together. We 

will ask you whether you would agree for your information to be included in  this kind of 

combined information.  

How will we protect your information? 

All your genes together make a special pattern in all of your body that only you have, and this 

is why no two people are exactly alike. Because each person has their own special pattern of 

genes, researchers are very careful to protect the genetic samples that are collected and the 

information from these samples, and these samples and information will only be used in the 

way you have agreed to.  

To make sure that your privacy is protected in this study, we will make sure that your 

information is used for this research without your name, or your date of birth, or any other 

identifying information attached to it. This way, no one working on this study will know who 

the information or the genetic sample come from. We also want to make sure that your health 

information and sample are protected and safely stored, because there is always some small 

risk that the special pattern of genes from your sample could be used to work out who you 

are and see your health information if other people were to get hold of this information. We 

will be very careful in making sure all this personal information is very secure so that this could 

not happen.  

The University of Cape Town will lock away any document with your name on it so that no-

one can identify you from it. We will make sure all computers used for the study are kept 

securely and are protected by passwords.  

What to do if you have questions or change your mind about being in the study. 

If you have any questions, you can contact The Human Research Ethics Committee Faculty 

of Health Sciences UCT and speak to Professor Marc Blockman on 021 406 6496. If you 

change your mind and you no longer want your information or sample to be included in this  
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study, or you have other questions you can also contact  Nicki Tiffin on 021 650 2506 with 

your questions, or to have your information removed from this study and to have your sample 

destroyed. 
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CONSENT FORM 

Name:  

Study ID number: 

Date of Birth: 

Height (cm): 

Weight (kg): 

What is your family origin? You can tick more than one box. 

Did you grow up in a town or a rural area? You can tick more than one box. 

1. Do you agree for us to collect this saliva sample and your health information from the

Department of Health for this study we have described about how genes might affect

diabetes?

2. Do you agree for us to use your genetic sample together with your health information

from the Department of Health for other studies in the future that want to study the effect

of genes on diabetes?

Xhosa Zulu Ndebele Swazi KhoiKhoi or San 

Basotho Bapedi Tsonga Tswana Mixed Ancestry (Coloured) 

Venda Afrikaans English Asian Other 

Town Rural 

YES NO 

YES NO 

Stick folder number sticker here Stick sample ID sticker here 
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3. Do you agree for us to use your genetic sample together with your health information for

other studies in the future to study the effect of genes on other health conditions (not

only diabetes) or biological functions?

4. (If 2. and/or 3. answered YES) Sometimes, what we find from our research might include

new information about your health. Would you like us to contact you again if we believe

we have new information that may directly affect your health:

If there is some kind of action or treatment that might be able to help you with the health

issue?  

If there is NO kind of action or treatment that might be able to help you with the health 

issue? 

5. Sometimes researchers combine the genetic information from everyone in the study and

provide a summary of genetic data for the whole group. Do you agree for us to use your

information when providing combined information about the whole research group (300

individuals in this study)?

6. Sometimes, what we find from a study like this might lead to new studies being done in

the future. Can we contact you in the future to invite you to take part in other research

studies like this one?

YES NO 

 YES  NO

YES NO 

YES NO 

YES NO 

SIGNED: DATE: 
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CONTACT DETAILS IF QUESTION NUMBER 4  and/or 6 IS ANSWERED ‘YES’: 

___________________________________________________________________________

_____ 

Consent process undertaken by: 

NAME: 

SIGNED: DATE: 
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Supplementary file 6.2 

Ulwazi lomthathi-nxaxheba 

Singoobani? 

NdinguTsaone Tamuhla umfundi wePhD kwiSebe lezeMpilo kwiYunivesithi yaseKapa kwaye 

ndingumphandi ophambili koluphando. Ndisebenza phantsi komhloli uAssociate Professor 

Nicki Tiffin noProfessor Nicola Mulder kwiyunivesithi. Sisebenza noGqirha Peter 

Raubenheimer noGqirha Joel Dave, abanakekela abantu abanesifo seswekile kwisibhedlele 

iGroote Schuur. 

Olu phando silwenzela ntoni? 

Sifuna ukuphanda into ekuthiwa “ngamadlala emfuza” (genes). La madlala emfuza akhona 

kuthi sonke kwaye ayafana kuwo onke amalungu emizimba yethu. Ngamanye amaxesha 

amadlala emfuza kuthiwa yiDNA, eli ligama lento enziwe ngayo. Amadlala emfuza ngawo 

abangela ukuba abantu abakusapho olunye bafane, bangafani nabanye bezinye intsapho. 

Umzekelo, ezinye intsapho zinabantu abade ezinye abafutshane kunabanye. Lamadlala 

emfuza asuka kumama notata adlule aye kwabantwana nabazukulwana, nakwizizukulwana. 

Amanye amadlala emfuza enza ukuba abanye abantu bangazifumani izigulo ezithile. Amanye 

angunobangela okuba abantu bagule okanye babeneziphumo ezingalu lungelanga kumachiza 

bangakwazi ukusebenzisa amanye amayeza asetyenziswayo ngabanye abantu. Sisafunda 

ukuba amadlala emfuza enza igalelo elithini kwizigulo ezahlukeneyo kwaye zisebenza njani 

nendlela yethu yokuphila nezinye izinto – ezifana nezinto esizityayo okanye okusingqongileyo 

– ziyichaphazela njani impilo yethu. Sifuna ukufumanisa ukuba amadlala emfuza

ayasichpahazela na isifo seswekile seType2 kwizigulane zaseMzantsi Afrika. 

Unongazuzi ngqo wena koluphando, kodwa sinethemba lokuba ulwazi esilufumanayo 

ngamadlala emfuza akho kwilixa elizayo nempilo yakho lungayinzuzo kwabanye abanesifo 

seswekile nezinye izigulo ezahlukileyo. Awunyanzelekanga uthathe inxaxheba koluphando, 

sisigqibo sakho ukuba uyafuna okanye awufuni. Ukuba awufuni, oku akuzi kuchaphazela 

inkonzo zonyango olufumanayo kwisibhedlele iGroote Schuur. 
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Siza kucela imvume yakho ukuba sifuna ukusebenzisa iinkcukacha zakho zempilo kunye 

nezemfuza kolunye uphando lwesifo seswekile oluthe lwavela. Kwi xesha elizayo siza kucela 

imvume yakho kwakhona ukuba sifuna ukusebenzisa iinkcukacha zakho kuphando kolunye 

uphando lwezigulo oluthe lwavela. Ungakhetha ukuvuma okanye ukungavumi kwaye isigqibo 

sakho, nenxaxheba yakho koluphando, asizi kuchaphazela inkonzo zakho zonyango kwakho 

kwisibhedlele iGroote Schuur. 

Uza kufumana iziphumo ezithini koluphando? 

Asizi kukunika mntu iziphumo ezivele kwisampulu osinika yona. Le nto inje kuba kuza 

kuthatha ixesha elide ukuba olu phando lukhuphe iziphumo zempilo eziluncedo kwizigulane. 

Ukuba uyavuma ukuba iinkcukacha zakho zisetyenziswe kolunye uphando, kungenzeka ukuba 

ulwazi olutsha lwezempilo lufamaneke. Siza kukubuza ukuba uyafuna ukwazi ulwazi olutsha 

oluvelayo ngempilo yakho. 

Ekugqibeleni kophando, siza kufaka iziphumo zethu ngokubanzi kwiiphamflethi neepowusta 

kwiziko lempilo apho abantu bathathe inxaxheba koluphando. Apho uza kwazi ukufunda 

ngokuba olu phando lwenza ugalelo olungakanani ekuqondeni kwethu ngempilo nezifo 

nezigulo. Xa sichaza iziphumo zophando, siza kukhupha isishwankathelo seziphumo okanye 

iziphumo zizonke zophando; akuzi kubakho ziinkcukacha zabantu abathathe inxaxheba 

kuphando. 

Siza kucela okanye sikubuze ntoni? 

Siza kukubuza imibuzo embalwa, elula ngobomi bakho nokuba ukhulele phi. Ukuze sikwazi 

ukuqonda impilo yakho kakuhle, siza kucela imvume yakho ukuba sijonge iifayili zakho 

zempilo eziqokelelwa kwiSebe lezeMpilo xa usiya kwiiklinikhi nezibhedlele zikarhulumente – 

izinto ezifana namayeza owafumanayo novavanyo lwempilo olwenzayo kwisibhedlele okanye 

iklinikhi karhulumente. Siza kucela kwakhona ukuba usinike amathe akho ngokuthi 
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siwathathe ngento apha kuwe emlonyeni okanye usele amanzi uwathufele entweni; la mathe 

siza kuwasebenzisa ukwenza isampulu yakho yamadlala emfuza. 

Isampulu iza kugcinwa kwiYunivesithi iStellenbosch lude uphando luphele. Ulwazi 

olufunyenwe kwisampulu yakho luza kugcinwa ngokukhuselekileyo kwiYunivesithi yaseKapa. 

Ngamanye amaxesha abaphandi bayaludibanisa ulwazi olufunyenwe kubathathi-nxaxheba 

ukuze benze isishwankathelo solwazi lwamadlala emfuza oluquka bonke abathathi-nxaxheba. 

Oku akukhuphi lwazi ngomntu ngamnye kodwa likhupha ulwazi ngeqela lonke lidibene. Siza 

kubuza ukuba uyavuma na ukuba ulwazi olufumaneke kuwe lungasetyenziswa ngoluhlobo. 

Siza kuzikhusela njani iinkcukacha zakho? 

Xa ewonke, amadlala emfuza akho enza ufuzo emzimbeni wakho ongowakho wedwa, yiyo le 

nto kungekho bantu abafana ncakasana. Ngenxa yokuba umntu ngamnye enomfuziselo 

wakhe wamadlala emfuza, abaphandi benza ngocoselelo ukuzikhusela iisampulu 

ezithathiweyo neenkcukaha zempilo eziphuma kwezisampulu, kwaye ezi sampulu 

neenkcukacha ziza kusetyenziswa ngale ndlela uyivumeleyo kuphela. 

Ukuqinisekisa ukuba ukhuselekile koluphando, siza kuqinisekisa ukuba iinkcukacha zakho 

zisetyenziswa kolu phando ngaphandle kwegama lakho, umhla wakho wokuzalwa, naluphi na 

ulwazi olunokuveza ukuba ungubani na. Ngolu hlobo, abantu abasebenza kolu phando abazi 

kwazi ukuba nolwazi okanye isampulu yamadlala emfuza isuka kubani na. Sifuna 

nokuqinisekisa ukuba iinkcukacha zakho zempilo nesampulu yakho zikhuselekile kuba kukho 

umngcipheko omncincane wokuba umfuziselo wakho wamadlala emfuza ungasetyenziswa 

ukufumanisa ukuba ungubani, kubonwe iinkcukacha zakho zempilo. Siza kusebenza 

ngocoselelo ukuqinisekisa ukuba zonke iinkcukacha zakho eziyimfihlelo zikhuseleke ngeyona 

ndlela ukuze oku kungenzeki. 

IYunivesithi yaseKapa iza kuwatshixela onke amaphepha anamagama akho ukuze kungabikho 

mntu ukwaziyo ukukuchaza ngawo. Siza kuqinisekisa ukuba zonke iikhompyutha 

ezisetyenziswa kolu phando zigcinwa kwindawo ekhuselekileyo kwaye zikhuselwe 

ngeepasiwedi. 
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Ungenza ngani ukuba unemibuzo okanye utshintsha ingqondo ngokuthatha inxaxheba. 

Ukuba kunemibilizo onayo, ungafowunela iHuman Research Ethics Committee Faculty of 

Health Sciences UCT uthethe noProfesa Marc Blocknam ku021 406 6496. Ukuba utshintsha 

ingqondo yakho kwaye awusafuni ukuthatha inxaxheba kolu phando, okanye uneminye 

imibuzo ungafowunela uNicki Tiffin ku021 650 2506, ungacela nokuba iinkcukacha zakho 

zikhutshwe kolu phando kwaye nesampulu yakho. 
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IFOMU YEMVUME 

Igama: 

Inombolo yeStudy ID: 

Umhla wokuzalwa: 

Ubude (cm): 

Ubunzima (kg): 

Ithini imvelaphi yosapho lwakho? Ungakhetha iimpendulo eziliqela. 

Ukhulele edolophini okanye elalini? Ungakhetha iimpendulo eziliqela. 

7. Uyavuma ukuba sithathe le sampulu yamathe akho kwaye neenkcukacha zakho zempilo

kwiSebe lezeMpilo kolu phando siluchazileyo lokuba amadlala emfuza anegalelo elinjani

kwisifo seswekile?

8. Uyavuma ukuba sisebenzise isampulu yakho kwaye neenkcukacha zakho ezivela kwiSebe

lezeMpilo kolunye uphando oluthe lwavela olufuna ukuphanda iimpembelelo zamadlala

mfuza kwisifo seswekile?

abaXhosa abaZulu abaNdebele abaSwazi abaKhoiKhoi/ San 

abeSuthu abaPedi abaTsonga abaTswana abantu beBala 

abaVenda amaBhulu abeLungu abaseAsiya Abanye 

Edolophini Ezilalini 

EWE HAYI 

EWE HAYI 

Stick folder number sticker here Stick sample ID sticker here 
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9. Uyavuma ukuba sisebenzise isampulu yakho neenkcukacha zakho ezivela kwiSebe

lezeMpilo kolunye uphando oluthe lwavela olujonga igalelo lamadlala emfuza kwezinye

izigulo (ngaphandle kwesifo seswekile) okanye ukusebenza kwendalo yomzimba?

10. (Ukuba uphendule “EWE” ku2 okanye ku3) Ngamanye

amaxesha sifumanisa ukuba uphando lwethu luveza ulwazi olutsha ngempilo yakho.

Ungathanda ukuba sikufowunele kwakhona ukuba sikholelwa ukuba sinolwazi olutsha

olunokuchaphazela impilo yakho:

Ukuba kukho unyango oluthile okanye into onokuyenza enokunceda isigulo sakho?

Ukuba akukho nyango olukhoyo okanye nto onokuyenza ukunceda isigulo sakho? 

11. Ngamanye amaxesha abaphandi bayaludibanisa ulwazi olufunyenwe kwabathathi-

nxaxheba bophando ukuze benze isishwankathelo lolwazi lwamadlala emfuza oluquka

bonke abathathi-nxaxheba. Uyavuma ukuba sisebenzise olufunyenwe ngawe ulwazi xa

sisenza isishwankathelo seqela lonke (kukho abathathi-nxaxheba abayi-300)?

12. Ngamanye amaxesha sifumanisa ukuba uphando olunje lungakhokhelela kuphando

olungolunye. Singakufowunela sikumeme uthathe inxaxheba kolunye uphando olunje

ngolu?

EWE HAYI 

EWE HAYI 

EWE HAYI 

EWE HAYI 

EWE HAYI 
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IINKCUKACHA ZAKHO ZONXIBELELWANO UKUBA UPHENDULE ‘EWE’ KUMBUZO 4 OKANYE 

UMBUZO 6. 

___________________________________________________________________________

_____ 

Inkqubo yemvume eyenziwa ngu (consent process undertaken by): 

ISAYINWE: UMHLA: 

IGAMA: 

ISAYINIWE: UMHLA: 
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Supplementary Table 6.1. Allelic counts of known COVID-19 variants in the feasibility study 

population. 

SNP Location# Allelic counts 
in cases (n= 
63) 

Allelic counts in 
controls (n= 280) 

Odd ratio P-value

rs9427097 Chr 1, 
154568683 

0 0 NA NA 

rs1801274 Chr 1, 
161479745 

58 282 0.8408 0.3803 

rs3766539 Chr 1, 

203193261 

0 0 NA NA 

rs1800896 Chr 1206946897 0 0 NA NA 

rs360102 Chr 1, 

226067862 

46 168 1.335 0.1617 

rs7595310 Chr 2, 
168810137 

50 153 1.75 0.006024 

rs10490770 Chr 3, 
45864732 

0 0 NA NA 

rs2282679 Chr 4, 
72608383 

0 0 NA NA 

rs1173773 Chr 5, 
32750983 

0 0 NA NA 

rs17448496 Chr 5, 
146015615 

16 44 1.706 0.08222 

rs155788 Chr 5, 

179260528 

0 0 NA NA 

rs17142392 Chr 6, 
6626983 

48 217 0.9727 0.8915 

rs1799945 Chr 6, 
26091179 

6 10 2.75 0.04551 

rs3131294 Chr 6, 
32180146 

1 7 0.632 0.6664 

rs2069837 Chr 7, 
22768027 

19 80 1.065 0.8188 

rs657152 Chr 9, 
136139265 

59 248 1.108 0.6045 

rs579459 Chr 9, 

136154168 

0 0 NA NA 

rs1800450 Chr 10, 
54531235 

0 0 NA NA 

rs2957707 Chr 11, 
10377258 

0 0 NA NA 

rs2923084 Chr 11, 
10388782 

51 234 0.9474 0.7875 

rs10774671 Chr 12, 
113357193 

54 289 0.7033 0.07593 

rs10735079 Chr 12, 
113380008 

40 128 1.555 0.04015 

rs7318817 Chr 13, 

28617708 

0 0 NA NA 

rs1048943 Chr 15, 
75012985 

0 0 NA NA 

rs13334749 Chr 16, 
4952194 

0 0 NA NA 
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SNP Location# Allelic counts 
in cases (n= 
63) 

Allelic counts in 
controls (n= 280) 

Odd ratio P-value

rs1024611 Chr 17, 
32579788 

28 86 1.575 0.06143 

rs1042542 Chr 17, 
76221428 

0 0 NA NA 

rs4800182 Chr 18, 

21812972 

39 209 0.7486 0.1703 

rs12979860 Chr 19, 
39738787 

0 0 NA NA 

rs1006111 Chr 19, 
52717232 

0 0 NA NA 

rs12329760 Chr 21, 42852497 0 0 NA NA 

#Location is the chromosome number and base pair of the SNP 

Supplementary Table 6.2. Allelic counts of known type 2 diabetes variants in the feasibility 

study population. 

SNP Location# Allelic count in 

cases (n= 93) 

Allelic count in 

controls (n= 250) 

Odds ratio P-value

rs880315 Chr 1, 
10796866 

0 0 NA NA 

rs1801133 Chr 1, 
11856378 

24 31 2.26 0.0037 

rs3480 Chr 1, 
33328165 

100 235 1.311 0.1152 

rs2495477 Chr 1, 
55518467 

83 160 1.712 0.002118 

rs12742393 Chr 1, 
162224586 

61 82 2.488 2.606e-06 

rs1260326 Chr 2, 

27730940 

0 0 NA NA 

rs2943641 Chr 2, 
227093745 

0 0 NA NA 

rs11708067 Chr 3, 
123065778 

24 66 0.9742 0.9185 

rs6444082 Chr 3, 
185536223 

0 0 NA NA 

rs3887925 Chr 3, 
186665645 

0 0 NA NA 

rs2282679 Chr 4, 
72608383 

0 0 NA NA 

rs1799883 Chr 4, 

120241902 

0 0 NA NA 

rs10033601 Chr 4, 
153252061 

103 214 1.658 0.003313 

rs2255137 Chr 4, 153309538 0 0 NA NA 

rs17080093 Chr 6, 
150997440 

0 0 NA NA 

rs622342 Chr 6, 
160572866 

44 97 1.287 0.2201 

rs16147 Chr 7, 
24323410 

0 0 NA NA 

rs3757840 Chr 7, 
44231216 

0 0 NA NA 

rs3808607 Chr 8, 0 0 NA NA 
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SNP Location# Allelic count in 
cases (n= 93) 

Allelic count in 
controls (n= 250) 

Odds ratio P-value

59412924 

rs13266634 Chr 8, 
118184783 

0 0 NA NA 

rs2466293 Chr 8, 
118185938 

52 65 2.597 3.653e-06 

rs7914287 Chr 10, 
69350563 

0 0 NA NA 

rs7079157 Chr 10, 
71119208 

0 0 NA NA 

rs2305198 Chr 10, 

71128875 

0 0 NA NA 

rs2637248 Chr 10, 
78273721 

57 152 1.012 0.9505 

rs7903146 Chr 10, 
114758349 

0 0 NA NA 

rs12255372 Chr 10, 
114808902 

0 0 NA NA 

rs1001179 Chr 11, 
34460231 

0 0 NA NA 

rs1695 Chr 11, 
67352689 

76 263 0.6226 0.006257 

rs2846707 Chr 11, 

102576358 

0 0 NA NA 

rs1044471 Chr 12, 
1896956 

0 0 NA NA 

rs1234032 Chr 12, 
42354629 

0 0 NA NA 

rs9581943 Chr 13, 
28493997 

49 40 4.113 2.064e-10 

rs2470893 Chr 15, 
75019449 

0 0 NA NA 

rs16948048 Chr 17, 
47440466 

51 130 1.075 0.7077 

rs8089787 Chr 18, 

19406601 

0 0 NA NA 

rs17782313 Chr 18, 
57851097 

0 0 NA NA 

rs1799817 Chr 19, 
7125297 

51 108 1.371 0.1083 

rs2059806 Chr 19, 
7166376 

0 0 NA NA 

rs895819 Chr 19, 
13947292 

0 0 NA NA 

rs13037490 Chr 20, 
23583725 

0 0 NA NA 

rs1042531 Chr 20, 

56140980 

0 0 NA NA 

rs2825115 
Chr 21, 
20156686 

0 0 NA NA 

#Location is the chromosome number and base pair of the SNP 
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