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Abstract 

The mechanical properties of biological materials need to be measured for various applications. 

A means of inducing biaxial tensions in samples like these is with an inflation or bulge test. 

Normally the material under test would be measured with displacement gauges, however, under 

these conditions, where the specimen is soft and further, where the measurement cycle cannot 

be reliably paused, a contactless real-time measurement system is necessary to obtain reliable 

deformation data.  

Digital Image Correlation (DIC) is one such method. Pioneered in the 1980s the field has 

developed from basic 2D displacement measurements to very sophisticated full field 3D 

displacement measurement systems. 

The question becomes can the current state of the field, as well as the advances in modern 

technology, be leveraged to create a useable 3D DIC measurement system that is: 

• Useable in a real-time context. 

• Portable enough to be able to run these experiments wherever the experiment apparatus 

is located. 

• Cost effective enough to reduce the barrier to entry that the current commercial options 

present. 

To this end off-the-shelf components were acquired to form the technology base of the system. 

The open-source DICe framework, which enabled the necessary level of access to the 

underlying code base, was implemented on an NVIDIA Jetson Nano single board computer. 

Synchronised, stereo image acquisition was implemented via an Arducam 12 MP camera 

system. A stepper motor controlled linear drive was used to experimentally investigate 

accuracy and speed of the DIC system, for both rigid body motion and deforming targets.  

A thorough review of the concepts involved in DIC is undertaken followed by a detailed 

description of the design and build of the system. 

Ultimately a set of experiments are executed that show that, within a set of important 

constraints, it is indeed possible to run 3D DIC in real-time with off the shelf, cost effective 

components. 
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1. Introduction 

The mechanical properties of biological materials need to be measured for various applications. 

For biological membrane tissues, a popular method of testing is the inflation or bulge test [1] 

as shown in Figure 1. Given the nature of these materials (i.e., they are generally soft and 

fragile) and that testing in interrupted steps (i.e., deform, pause, measure, continue) is 

undesirable, a contactless real-time measurement system would be ideal to obtain this 

deformation data. Real-time data can also be extremely beneficial since the tests can be 

interrupted prior to significant specimen damage, facilitating post-mortem microscopy studies. 

This project attempts to understand the implications, constraints, and difficulties in creating 

such a system. 

 

Figure 1: Typical Bulge Test Setup. 

Historically many methods were accepted as standard for the optical contactless measurement 

of displacement and strain in experimental stress analysis. These include holography, speckle 

interferometry, speckle photography and white light speckle [2]. Many of these optical 

measurement techniques suffer from issues of stability and complexity of calculation. In the 

early 1980s, with the wider acceptance of computer technology, the concept of Digital Image 

Correlation (DIC) started being applied to the problem of contactless displacement and strain 

measurements [3].  

Sutton et al. [3] defined the basic premise of DIC in the one of the first papers to cover the 

field. In this paper they claim: 

“It has been stated many times that the computer will alter the way we live. Without question, 

this simple statement continues to be proven true every day. However, the full potential of the 

computer has not been realized in many areas. In particular, those people who wish to 

contribute to a better understanding of our world through innovative measurements have seen 

little change.”  

The basic premise of DIC was defined in the paper above. Even though this statement was 

made in the early 1980s, when computers were just coming into common use, it remains oddly 

applicable today. 



11 

 

Following Sutton’s early contribution, many improvements were developed, specifically with 

regards to accuracy and speed. These have mainly been attributed to improved mathematical 

approaches [4],[5],[6], optimised correlation criteria [7] and better experimental constraints 

[8],[9]. The discussion around advances in the computer hardware used for these experiments, 

the huge change seen in the software landscape, and the influence it can have on the way DIC 

is done, has not been explored in any depth. 

The first experiments were done in the early 1980s using a PDP-8/E, shown in Figure 2, and 

VAX minicomputers. It is worth noting this “minicomputer” was a full cabinet and sometimes 

more depending on the degree of data storage. The PDP-8 series of computers had a processing 

speed of about 1MHz contrasted against a basic contemporary smartphone currently running 

at a speed of 2Ghz.  

 

Figure 2: PDP-8/E. 

Specifically, due to the requirements of the self-driving car industry, standalone, incredibly 

powerful computers now come in very portable packages [10]. This industry has demanded the 

availability of computers that are compact (since they must fit into the current concept of a car) 

but powerful enough to run image recognition and artificial intelligence algorithms.   

The recent surge in the open-source community also means that high quality software is now 

available with GPL, MIT or other permissive licenses [11]. In the last 10 years the open-source 

community has seen an uptick in the number of high-quality products available. These include 

RabbitMQ (a message queueing system), Python, Golang and Kubernetes to name a few. The 

space of image processing has not been neglected with OpenCV becoming the ubiquitous 

image processing code base. Digital image correlation has also benefitted, and a few high-

quality code bases are now available. These options will be elaborated on in later chapters. 

With all this in mind, the questions then becomes whether these improvements in software 

algorithms and hardware processing power have made real-time, 3D DIC deformation 

measurements possible and whether this can be performed in a cost-effective way? 

The process of DIC has changed little from those initial papers introduced in the early 1980s. 

A specimen is deformed with the desired loads and boundary conditions, while cameras record 

the process. This sequence of images is then fed into a computer. The areas of interest are 

defined and the computer analyses the data and produces a set of data that represents the 

displacement and strain of the system. The cameras are usually using specialised lighting. The 
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computer is usually a robust machine, which including commercial DIC software, comes in at 

a non-trivial cost [12]. 

This project originated from an application where 3D deformation is unavoidable and not 

negligible, rather than the simpler case of planar, 2D deformation. Running these algorithms 

in a 3D context involves running the 2D algorithms on two cameras looking at the same target 

(as shown in Figure 3), after first determining the orientation of the two cameras to each other 

in space, using a calibration target. The difference in perspective of the two cameras allows for 

a 3D representation of the data [13]. This poses more challenges computationally. 

 

Figure 3: 3D DIC Setup [14]. 

There is very little doubt that the desire for near real-time processing will yield results which 

are not as accurate as the usual DIC algorithms that are post-processed with little consideration 

for speed. The primary research questions are: 

• Given a specified image resolution and frame rate, can a 3D DIC system yield 

acceptable accuracy of deformation measurements when running in near real-time? 

• What implications arise from the constraint that widely available and cost-effective 

hardware and software be used? 

The objectives of the project are: 

• Develop software to run 3D DIC using open-source software, tools and libraries. 

• Run this software using commercially available, off-the-shelf cameras and components. 

• Port this software so that it is running on a commercially available, portable, single-

board computer. 

• Create an experimental setup to test the efficacy of this system with regards to speed 

and accuracy.1 

The first part of this project will review the current state of the field highlighting the efficiencies 

introduced in the mathematics and processes. The process of the development of the code base, 

the open-source code used and the porting to the single-board computer will then follow. 

 
1 Initially testing would have been carried out in the UCT laboratories, using tensile test machines of known 

accuracy but due to the unique restrictions of the COVID19 pandemic these labs were inaccessible. A standalone 

test rig was therefore created for testing. 
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Finally, a description of the experimental setup and a study of the results achieved using this 

platform will be presented.  
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2. Literature Review 

2.1. Introduction 

DIC is not an overly complicated process from a mathematical perspective, but to someone 

unfamiliar with the fundamentals, the concepts can seem counterintuitive and inaccessible. In 

the following few sections, the principles involved in DIC have been described with the 

intention of removing the veneer of complexity. 

The theoretical basis for the 2D DIC algorithm is covered first. This initial discussion will 

cover the basic principle and then attempt to extend this first principles discussion to cover the 

actual theoretical implementation of the concept and its optimisation. Following this a 

chronological presentation of major achievements in the field of DIC is covered. Once the 

concept of 2D DIC is understood this can be extended to two cameras and 3D DIC can then be 

covered in some detail. Since 3D DIC uses two cameras, a discussion on camera calibration 

theory is covered before an elaboration on the actual 3D DIC process. 

In the development of DIC many improvements have been made to the technology. These are 

too numerous to exhaustively cover but since they will be key to understanding the limits of 

real-time DIC measurement, an attempt is made to cover those efficiency improvements that 

are relevant to this project. The efficiency improvements covered will be research into the 

environment of the experiment (e.g., lighting and target preparation) as well as algorithmic 

improvements. The chapter will finally cover the current state of real-time DIC. 

2.2. Theoretical Basis 

2.2.1. Basic Principle 

DIC works by comparing images of a specimen at various stages of deformation. Within the 

reference (un-deformed) image a region of interest (ROI) is chosen, and that ROI is then split 

into equally sized subsets. These subsets are then tracked through stages of the deformation 

and from this, 2D or 3D deformation vector fields and strain maps can be measured [15]. 
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The basic steps are highlighted in Figure 4 [16]. 

 

Figure 4: Logical Flow of DIC Process. 

To understand this process at its most fundamental level, let us assume that we have a surface 

with a prominent feature painted onto it. Now let us assume that this surface was deformed or 

(as in Figure 5 below) translated in the plane of the surface. DIC attempts, with a camera and 

an algorithm running on a computer (usually), to tell us how much this prominent feature has 

moved.  

In Figure 5, the camera is stationary, and the positions change such that X and X’ are two frames 

taken before and after the movement of the feature.  
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Figure 5: Displacement Measurement Example. 

From X, the aim would be to identify the intensity level of the pixels around the feature and 

find the same set of intensity levels of pixels in X’. Once these are identified in X’, the 

displacement in both directions can be determined. The area of interest around the feature is 

referred to as a subset [12]. It is worth noting that this is a very fundamental example. For DIC, 

as explained in section 2.2.2, the target is speckled and broken into adjacent subsets. These 

subsets are all individually tracked in this way and as such we can get a full-field measurement 

of the displacement.  

To determine the matching intensity levels in X and X’, a correlation coefficient is used. An 

example is given below: 

𝐶(𝑥, 𝑦, 𝑥∗, 𝑦∗) =
∑ 𝐹(𝑥,𝑦)𝐺(𝑥∗,𝑦∗)

√∑ 𝐹(𝑥,𝑦)2 ∑ 𝐺(𝑥∗,𝑦∗)2
, 

Equation 1: Generic Correlation Function. 

where 𝐹(𝑥, 𝑦) denotes the pixel intensity level in X and 𝐺(𝑥∗, 𝑦∗) denotes the pixel intensity 

level in X’. The values are summed across the subset and a maximum value (or minimum value 

depending on the criteria used) for C is obtained when the intensities inside the subsets are 

closest. The displacements are determined when the correlation coefficient is at an extremum. 

Equation 1 represents an option for the cross-correlation criteria. There are a few options that 

have been considered in the literature and these are discussed in more detail in Section 2.2.2. 

What follows is a trivial example that covers the concept of matching a subset via cross 

correlation. 
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If we assume a greyscale image of a single row of pixels:  

 

Figure 6: Undeformed Image. 

We now translate this image by 3 pixels: 

 

Figure 7: Deformed Image. 

The graphical representation of these grey scale values is as follows: 

  

Figure 8: Pixel Intensity Levels. 

It is trivial, looking at the values, to see that the entire pattern has shifted by three pixels to the 

right. Let us choose a subset which will include the first six pixels in the original image. Using 

Equation 1 we will determine the correlation co-efficient in a moving window across the 

deformed image. The results are represented by the following graph: 

 

Figure 9: Correlation Values. 

The graph peaks at position four – which means that the sample window (subset) correlates 

most at this point. The image has therefore been displaced by 3 pixels. The detailed calculations 
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can be seen in Appendix 1. While this example is somewhat contrived and simplistic, it 

highlights the process in a way that is (hopefully) understandable. 

In DIC the target tracked is usually some sort of a speckle pattern. This speckle pattern has to 

create a target that is both extractable (i.e., it must be able to be seen by the camera) but also 

be random enough to not create correlation confusion. An example of a speckle pattern is 

shown in Figure 10. 

 

Figure 10: Example Speckle Pattern. 

The method described thus far relies on comparing data at discrete pixel points. This level of 

accuracy is not sufficient since displacements do not coincide with integer pixels [12]. To 

overcome this limitation, methods have been developed to obtain sub-pixel accuracy. The 

principle is to apply an algorithm across the pixels such that the correlation co-efficient surface 

(at any given point) is described by a function. Finding the maximum of the correlation co-

efficient surface allows one to infer displacement to sub-pixel values. 

 

Figure 11: Pixelated and Linear Interpolated. 

There are various ways to interpolate between pixels. The example given in Figure 11 uses a 

linear interpolation between pixels.  
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Figure 12: Cubic Interpolation Between Pixels. 

As shown in Figure 12, a cubic interpolation gives a different surface on which to maximise 

the correlation. The choice of which interpolation to use is based on the data presented as well 

as factors such as the computational availability. A higher-order interpolation scheme has been 

shown to reduce errors but does increase processing time. Moving from simple linear 

interpolation to cubic results in large gains in accuracy with diminishing returns for quintic 

interpolation and higher-order functions [17]. 

Since the space between pixels is now described by a function the question becomes how to 

find the position that describes the displacement precisely. One could search the entire space 

for an extremum, but this seems computationally expensive. The various options and trade-offs 

are discussed in section 2.2.3. 
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2.2.2. Cross Correlation Criteria 

The cross correlation is executed by running a smaller sub-image of (2N+1)2 pixels, taken from 

a reference time point, across the larger sub-image of (2M+1)2 pixels, taken at a later time point 

when the target has moved or deformed. This results in a value that denotes the degree of 

similarity at each point. This correlation coefficient distribution map is analysed and the point 

at which it is at an extremum is that point at which they are the “same” [18]. In Figure 13 the 

subset chosen is run across the image using a standard cross correlation algorithm. This results 

in the graph shown in Figure 14. 

 

Figure 13: Cross Correlation Process on an Image. 

 

Figure 14: Output of Cross Correlation Process. 

There is a clear peak at the point at which the two images correlate. This is where the reference 

sub-image has been displaced to in the subsequent larger image. 
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The description up to now has described the tracking of a reference image across a subsequent 

image to find the area of the highest correlation. In DIC a region of interest (ROI) is chosen on 

a sample, which is the area where the deformation is going to be monitored. This ROI is then 

broken into many subsets or facets that will be tracked between consecutive images. In Figure 

15 the ROI is given by the large yellow block. The breakdown of this block is the subset/facet 

allocation. In some applications the subsets may also overlap as long as this still creates the 

uniqueness per subset. 

    

Figure 15: Region of Interest and Subset Allocation. 

Each of these subsets is then correlated and tracked in each image of the DIC set. In this way, 

the deformation of the ROI may be monitored with high spatial resolution, throughout the 

experiment. 

There are many definitions of the matching functions, each slightly more applicable or useful 

in certain scenarios [19]. The types of correlation criteria can be broken into four main 

categories namely: Cross Correlation (CC), Sum of Absolute Differences (SAD), Sum of 

Squared Differences (SSD) and Parametric Sum of Squared Differences (PSSD). The output 

of most of these criteria can be shown to offer similar mathematical efficacy, but some offer 

performance benefits, while others show better performance when the intensity level of the 

pixels change. A robust comparison of all of these was carried out by Pan et al. [7]. 
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Table 1 contains the most common cross correlation equations in the literature [19]. 

Algorithm Equation 

Cross Correlation 

(CC) 
𝐶(𝑥, 𝑦, 𝑥∗, 𝑦∗) = ∑ 𝐹(𝑥, 𝑦)𝐺(𝑥∗, 𝑦∗) 

Normalised Cross 

Correlation 

(NCC) 

𝐶(𝑥, 𝑦, 𝑥∗, 𝑦∗) =
∑ 𝐹(𝑥, 𝑦)𝐺(𝑥∗, 𝑦∗)

√∑ 𝐹(𝑥, 𝑦)2 ∑ 𝐺(𝑥∗, 𝑦∗)2
 

Zero Normalised Cross 

Correlation 

(ZNCC) 

𝐶(𝑥, 𝑦, 𝑥∗, 𝑦∗) =
∑[𝐹(𝑥, 𝑦) − 𝐹𝑚] × [𝐺(𝑥∗, 𝑦∗) − 𝐺𝑚]

√∑[𝐹(𝑥, 𝑦) − 𝐹𝑚]2 ∑[𝐺(𝑥∗, 𝑦∗) − 𝐺𝑚]2
 

Sum of Squared Differences 

(SSD) 
𝐶(𝑥, 𝑦, 𝑥∗, 𝑦∗) = ∑[𝐹(𝑥, 𝑦) − 𝐺(𝑥∗, 𝑦∗)]2 

Normalised Sum of Squared 

Differences 

(NSSD) 

𝐶(𝑥, 𝑦, 𝑥∗, 𝑦∗) = ∑[
𝐹(𝑥, 𝑦)

∑ 𝐹(𝑥, 𝑦)2
−

𝐺(𝑥∗, 𝑦∗)

∑ 𝐺(𝑥∗, 𝑦∗)2
]2 

Zero Normalised Sum of 

Squared Differences 

(ZNSSD) 

𝐶(𝑥, 𝑦, 𝑥∗, 𝑦∗) = ∑[
𝐹(𝑥, 𝑦) − 𝐹𝑚

∑[𝐹(𝑥, 𝑦) − 𝐹𝑚]2

−
𝐺(𝑥∗, 𝑦∗) − 𝐺𝑚

∑[𝐺(𝑥∗, 𝑦∗) − 𝐺𝑚]2
]2 

Table 1: Correlation Equations. 

In Table 1 𝐹𝑚and 𝐺𝑚 have been referred to in various equations. These common functions are 

described by: 

𝐹𝑚 =
1

(2𝑀 + 1)2
∑ 𝐹(𝑥, 𝑦) 

𝐺𝑚 =
1

(2𝑀 + 1)2
∑ 𝐺(𝑥∗, 𝑦∗) 

Equation 2: Pixel Summation Formula. 

For the same information presented in Figure 14, the Normalised Cross Correlation would give 

an output represented by Figure 16. There is very little further information presented in this 

different approach, but the output is normalised which can be useful when trying to interpret 

the results. 
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Figure 16: Normalised Cross Correlation Results. 

2.2.3. Optimisation Algorithm 

Cross correlation is an excellent method for getting the displacement of a deformation to within 

a few pixels. The final position x*, y* relates to the initial x, y by the equations: 

𝑥∗ = 𝑥 + 𝑈𝑥  

𝑦∗ = 𝑦 + 𝑈𝑦  

Equation 3: Translation Without Deformation. 

where 𝑈𝑥  and 𝑈𝑦  are the translation of the sample in the 𝑥 and 𝑦 directions. 

For a sample that undergoes pure translation with no deformation, this method can get an 

answer to within one pixel. In general, however, this is not the case.  
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Consider the example including translation and deformation, shown in Figure 17. 

 

Figure 17: Subset deformation. 

The translation of the sample is denoted by Ux and Uy. Given this displacement the position of 

Q’ is now denoted by the equations [12] 

𝑥∗ = 𝑥 + 𝑈𝑥 +
𝜕𝑈𝑥

𝜕𝑥
∆𝑥 +

𝜕𝑈𝑥

𝜕𝑦
∆𝑦 

𝑦∗ = 𝑦 + 𝑈𝑦 +
𝜕𝑈𝑦

𝜕𝑥
∆𝑥 +

𝜕𝑈𝑦

𝜕𝑦
∆𝑦 

Equation 4: Translation with Deformation. 

where 𝑈𝑥 and 𝑈𝑦  denote the displacement at the centre of the subset, the partial derivatives 

(e.g. 
𝜕𝑈𝑥

𝜕𝑥
) denote the deformation and ∆𝑥 and ∆𝑦 denote the distance to an arbitrary point. The 

correlation metric, through whichever method is chosen, attempts to find the values for 𝑈𝑥, 𝑈𝑦 , 

𝜕𝑈𝑥 𝜕𝑥⁄ , 𝜕𝑈𝑥 𝜕𝑦⁄ , 𝜕𝑈𝑦 𝜕𝑥⁄ , 𝜕𝑈𝑦 𝜕𝑦⁄  such that an extremum is found. A coarse/fine method 

could be chosen, where a coarse search is carried out and subsequently the extremum is honed 

in on with a fine search, but this can prove to require a large number of calculations. 

Some methods have been suggested for improving the efficiency of calculation after the initial 

guess provided by coarse cross correlation. As mentioned in section 2.2.1, the surface made by 

the pixels is described by a curve which allows for subpixel registration. To use numerical 

methods to improve efficiencies this function becomes important. An example of bilinear 

interpolation is 

𝐺(𝑥∗, 𝑦∗)  =  𝑎00 + 𝑎10(𝑥′) + 𝑎01(𝑦′) + 𝑎11(𝑥′)(𝑦′), 

Equation 5: Bi-linear Interpolation Equation. 
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where: 

a00 = G(i,j)  

a10 = G(i + l,j) – a00  

a01 = G(i,j +1) – a00  

a11 = G(i + 1, j + 1) - a00 – a10 – a01 

with the following pixel map representing the input. 

G(i-1,j+2) G(i,j+2) G(i+1,j+2) G(i+2,j+2) 

G(i-1,j+1) G(i,j+1) G(i+1,j+1) G(i+2,j+1) 

G(i-1,j) G(i,j) G(i+1,j) G(i+2,j) 

G(i-1,j-1) G(i,j-1) G(i+1,j-1) G(i+2,j-1) 

Figure 18: Bilinear Interpolation Pixel Map. 

One could use the higher order interpolation schemes and the arithmetic would become more 

complicated as the orders increase, but the basic principle would remain the same. 

Since we now have a function defining an arbitrary position in our pixel field, we can use a 

numerical method to optimise the calculation process. The Newton-Raphson method, first 

suggested for use in DIC by Bruck et al [4], is the de-facto standard introduced in the literature 

and this will be covered here. 

The Newton-Raphson method is a means of finding successively better approximations to the 

roots of a function. To use Newton-Raphson we are trying to find the point at which the gradient 

of the correlation function is a minimum. From Equation 1, the gradient function is as follows: 

∇𝐶(u𝑥 , u𝑦, 𝜕𝑢𝑥 𝜕𝑥⁄ , 𝜕𝑢𝑥 𝜕𝑦⁄ , 𝜕𝑢𝑦 𝜕𝑥⁄ , 𝜕𝑢𝑦 𝜕𝑦⁄ ). 

Equation 6: Gradient of Correlation Function. 

When Newton Raphson is applied to Equation 6 we get 

𝛻𝛻𝐶(𝑈𝑘)(𝑈𝑘+1 − 𝑈𝑘) = −𝛻𝐶(𝑈𝑘), 

Equation 7: Newton-Raphson Correction Equation. 

where ∇C(𝑈𝑘) represents the Jacobian matrix (J) and  ∇∇C(𝑈𝑘) is the Hessian matrix(H) [4]: 

• Each term in the Jacobian matrix is the derivative of the correlation function at guess 

k. 

• Each of the terms in the Hessian matrix are the second derivatives of the correlation 

function at iteration k. 
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This equation is often represented in the literature as 

Uk+1 = Uk − ∇∇C(Uk)−1∇C(Uk) 

or 

𝑈𝑘+1 = 𝑈𝑘  −  𝐻−1(𝑈𝑘). 𝐽(𝑈𝑘). 

Equation 8: Rewriting of Newton-Raphson Equation. 

The partial corrections are added to the initial guess and the process will continue until 

convergence is obtained. The arithmetic associated with this maths can get bulky and as such 

has been left out of this section. All the arithmetic is covered in detail in many papers [12], [4], 

[19]. 

The process as described above is an iterative process of finding an optimised solution to a 

non-linear multivariate problem. There are various numerical analysis methodologies that have 

been tried in solving this problem. Vendroux and Knauss [20], for instance, introduced a further 

improvement by suggesting that the Hessian matrix could be adequately approximated for 

situations with sufficiently small out of plane displacements. 

Other proposals have included the Levenberg-Marquart algorithm [17] and the quasi Newton 

Raphson algorithm [21]. These have both been introduced as means of improving speed 

efficiencies in the DIC process. 

More recently Pan et al. adapted the Inverse Compositional Gauss-Newton method for use with 

DIC. This allows for a constant Hessian matrix which reduces calculations dramatically [22]. 

This method shows clear benefits and has become the standard algorithm to use.  
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2.3. Chronology of Developments 

The large number of papers published in this field over the last 40 years can be broken into a 

foundation-laying phase for the first half and an exploration phase for the second half. The 

foundation-laying phase defined the mathematical framework, hardware fundamentals, best 

practice, and accuracy trade-offs for the field. The second phase involved experimentation with 

varying ideas as well as broadening the field outside of solid mechanics to areas like biological 

specimens, geological structures, and others [13]. What follows is a brief chronology of the 

field and the papers that created the highlights in it. 

Year Main Paper  Summary of Content 

1982 Digital Imaging Techniques In 

Experimental Stress Analysis [23] 

  

Uses a laser speckle pattern and camera 

system to measure distortion and surface 

displacements. 

1983 Determination of displacements using 

an improved digital correlation 

method [3] 

  

Introduced the use of a painted speckle 

pattern over a laser speckle pattern. 

Use of least squares correlation. 

Use of iterative coarse fine algorithm. 

Use of bilinear interpolation. 

1985 Applications of digital-image-

correlation techniques to experimental 

mechanics [2] 

Uses normalised cross correlation. 

Uses polynomial interpolation instead of 

bilinear. 

Uses a "two parameter" iterative 

algorithm. 

1986 Application of an optimized digital 

correlation method to planar 

deformation analysis [5] 

Introduces the use of the Newton-Raphson 

algorithm. Results in a 20x increase in 

speed with the same accuracy. 

1989 Digital image correlation using 

Newton-Raphson method of partial 

differential correction [4] 

Expanded on Newton-Raphson method. 

Uses the bicubic spline interpolation for 

sub-pixel registration. 

1993 Accurate measurement of three-

dimensional deformations in 

deformable and rigid bodies using 

computer vision [24] 

First implementation of 3D DIC. 

1993 Digital speckle-displacement 

measurement using a complex 

spectrum method [25] 

Used FFT for speckle displacement 

measurement. Results are good but are 

shown to not deal well with large 

rotation/deformations.  
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1998 Submicron deformation field 

measurements: Part 2. Improved 

digital image correlation [20] 

Introduced an approximation for the 

Hessian Matrix that improved calculation 

complexity. This overcame a huge 

milestone for wide spread adoption of 

Newton-Raphson as an algorithm in this 

field. 

1999 DVC - three dimensional strain 

mapping using xray tomography [26] 

Introduction of Digital Volume 

Correlation. 

2001 Equivalence and efficiency of image 

alignment algorithms [27] 

Introduces Inverse-Compositional Gauss-

Newton method. 

2005 An Evaluation of Digital Image 

Correlation Criteria for Strain 

Mapping Applications [28] 

Compares various correlation criteria on 

worst case scenario images. 

2010 Equivalence of digital image 

correlation criteria for pattern 

matching [7] 

Compares correlation criteria: 

• ZNCC 

• ZNSSD 

• PSSD 

2012 Optimization of a three-dimensional 

digital image correlation system for 

deformation measurements in extreme 

environments [29] 

Introduced blue light sources as a means 

of getting accurate results in high 

temperature environments. 

2017 3D shape, deformation, and vibration 

measurements using infrared Kinect 

sensors and digital image correlation 

[30] 

Exhaustive technical discussion of 3D 

DIC. 

Uses IR light for measurements and 

compares these to standard DIC. 

Table 2: Chronology of DIC Developments. 
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2.4. 3D DIC Theory 

The discussion thus far has focussed on a single camera measuring deformation in a single 

plane. The goal of this project, however, is to measure deformation in three-dimensional space. 

Although various attempts have been made to achieve this with a single camera [31]–[33], the 

focus of this project will be the process of achieving this with two cameras.  

The setup for any experiment that involves 3D point location, aside from those single camera 

options mentioned, is as shown in Figure 19. 

 

Figure 19: 3D-DIC Experimental Setup. 

Retrieving the 3D information about the point p with relation to the points p1 and p2 in the setup 

above involves 2 steps: 

1. Calibrate the cameras to get the camera parameters (the geometry of the stereo vision 

system). 

2. Perform matching to find the same physical points in the two images [30]. 

2.4.1. Camera Calibration 

The goal of camera calibration is to express the point p1 (Figure 19) in relation to point p. This 

means we need to express an arbitrary point (x1,y1,z1) as a function of the real world point 

(x,y,z). The equation to achieve this is 

[

𝑥1

𝑦1

𝑧1

] =[
𝑅11 𝑅12 𝑅13 𝑇1

𝑅21 𝑅22 𝑅23 𝑇2

𝑅31 𝑅32 𝑅33 𝑇3

] [

𝑥
𝑦
𝑧
1

] = [𝑅 𝑇] [

𝑥
𝑦
𝑧
1

], 

Equation 9: Real World to Image Plane Conversion (Extrinsic Parameters). 
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where R and T indicate the rotation and translation from the real coordinates to the camera 

coordinate system, respectively. These are known as the extrinsic parameters of the camera. 

Extrinsic parameters are the parameters external to the camera. These parameters are the 

rotation and translation from the world frame used (i.e., the fixed coordinate system used in the 

“world”). 

The camera model is further calibrated by the extraction of the intrinsic parameters. The 

intrinsic parameters are those parameters internal to the camera/sensor (i.e., focal length, skew, 

geometric distortion etc.). The intrinsic parameters allow for a mapping of the camera reference 

frame to the pixel location: 

[
𝑢1

𝑣1

1
] =

1

𝑧1
[

α γ 𝑢0

0 β 𝑣0

0 0 1
] [

𝑥1

𝑦1

𝑧1

], 

Equation 10: Camera Co-ordinates to Pixel Co-ordinates (Intrinsic Parameters). 

where α and β are the focal length in pixel units, γ is a skew factor and (u0, v0) are the 

coordinates of the principal point. 

Ultimately the final translation from real world co-ordinates to pixel location is captured in the 

formula below [34]: 

[
𝑢1

𝑣1

1
] =

1

𝑧1
[
α γ 𝑢0

0 β 𝑣0

0 0 1
][

𝑅11 𝑅12 𝑅13 𝑇1

𝑅21 𝑅22 𝑅23 𝑇2

𝑅31 𝑅32 𝑅33 𝑇3

] [

𝑥
𝑦
𝑧
1

]. 

Equation 11: Real World to Pixel Location Formula. 

Equation 11 does not explicitly cater for lens distortion. The lens distortion can be 

accommodated by introducing coefficients for radial, prism and tangential distortion. In order 

to cater for the lens distortion, the output of Equation 9 needs to be adjusted to cater for the 

distortions mentioned: 

𝑥1̃ = (1 + 𝑘0𝑟2 + 𝑘1𝑟4 + 𝑘2𝑟6 + 𝑘3𝑟8 + 𝑘4𝑟10)𝑥1 + (𝑘5 + 𝑘7𝑟2)𝑟2 + (𝑘9 + 𝑘11𝑟2)(𝑟2

+ 2𝑥1
2) 

𝑦1̃ = (1 + 𝑘0𝑟2 + 𝑘1𝑟4 + 𝑘2𝑟6 + 𝑘3𝑟8 + 𝑘4𝑟10)𝑦1 + (𝑘6 + 𝑘8𝑟2)𝑟2 + (𝑘10 + 𝑘12𝑟2)(𝑟2

+ 2𝑦1
2) 

𝑟2 = 𝑥1
2 + 𝑦1

2. 

Equation 12: Lens Distortion Corrections. 

Here (k0,…k4) represents the radial distortions coefficients, (k5,…k8) the prism distortions 

coefficients and (k9,…k12) the tangential distortions coefficients. In this equation (𝑥1, 𝑦1) 

represents the distortion free pixel location and (𝑥1̃, 𝑦1̃) is the distorted point.  

To obtain all the parameters that calibrate the camera the following process needs to be 

followed [35], [36]: 
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• Let the cameras observe a planar pattern (usually a checkerboard, or grid of circles) at 

a few different orientations.  

• Detect the feature points of the planar image. 

• Estimate the 5 intrinsic parameters and all extrinsic parameters of the system. 

• Estimate the coefficients of the distortion model. 

• Refine all parameters by optimising until the calibration points are predicted. 

The mathematics of this process will not be covered here but has been covered extensively by 

Zhang [35] and Burger [36] amongst others [30], [34],[37]. 

2.4.2. 3D Calibration Specifics 

The specific case of calibration of a stereo vision system uses most of the logic outlined in 

section 2.4.1. Calibration in this context involves determining the intrinsic parameters of each 

camera and the relative position and orientation (extrinsic parameters) between them [38]. 

Referring again to Figure 19 the main outcome of 3D stereo calibration is to find a mapping 

between the two cameras such that p1 and stereo-correspondent p2 both represent the point 

p(X,Y,Z) in the real world. To reduce the search space associated with matching the same point 

in the two cameras an epipolar constraint can be used [39]. 

 

Figure 20: Epipolar Geometry Concept Diagram [40]. 

Referring to Figure 20, the centre point of each camera (OL and OR) projects onto the other at 

a distinct point, eL and eR respectively. These points are said to be epipolar points. The points 

OL, OR, eL and eR all lie on one 3D line. 

The camera with centre OR sees OL-X as a line. This corresponds to the line XR-eR on the image 

plane of the right camera, which is known as an epipolar line. 
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If the relative position of both cameras is known this leads to an important constraint for stereo 

vision: 

• For a given point in one camera view, the projection of a point on the camera plane 

must be contained within a known epipolar line in the other camera. This means it is 

possible to test if two points correspond to the same 3D point. 

• If the points XL and XR (in Figure 20) are known and it has been confirmed that they 

represent the same 3D point, this means that X can be calculated by triangulation. 

Epipolar geometry forms the basis for 3D stereo calibration where metric information is 

required [41]. 

2.4.3. 3D DIC Process 

The process for 3D DIC involves four main steps [42] 

• Stereo calibration (as described in section 2.4.1 and 2.4.2). 

• Stereo and temporal matching. 

• 3D shape reconstruction. 

• Displacement and strain field measurements. 

 

Figure 21: Schematic showing the principles of stereo-DIC [42]. 

As mentioned, step 1 of the process has been described in section 2.4.1. For a stereo camera 

system, the outcome of this process is that the intrinsic parameters of each camera as well as 

the relative position and orientation between them has been determined. 

The step of stereo and temporal matching consists of either template matching or feature 

matching between images, and subsequently template matching temporally (as would be the 

case for 2D DIC) [38]. 
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The two cameras in the stereo vision system capture images of the same target. The problem 

now is to find the same points in each image. To minimise the search area, or to give a good 

initial guess of the location of a left camera subset in the right camera’s frame, various 

techniques can be used. One such technique is to use the epipolar constraint described in section 

2.4.2. This technique is commonly used since it requires no further implementation of 

algorithms. The basic premise of this approach is to use the epipolar constraint to define the 

line segment along which to search and to use the standard correlation criteria already 

implemented to find the stereo-correspondent point.  

Another way is to use feature matching algorithms from general computer vision. These 

include BFM (brute force matching), FLANN (fast library for approximate nearest neighbours) 

matching, SIFT (scale invariant feature transform) or SURF (speeded up robust features) 

amongst others [30],[43]. The work done in this project used a basic brute force matcher. The 

papers referenced suggest that SURF and SIFT would work well but given how these 

algorithms work their efficacy for the fine detail of a speckle pattern is questionable.  

Running these algorithms finds similar features in two images and matches them. This gives a 

good indication of how the two images differ from each other in space and as such gives a good 

idea of where, a given subset in one frame might be in the other. Once again, on finding a good 

initial guess, the standard correlation criteria are used to find the stereo-correspondent points. 

 

Figure 22: Feature matching between two frames. 

From this point the standard 2D DIC algorithms for correlation criteria and interpolation will 

apply. 

The output of this process is that (referring to Figure 19) we now know the positions of p1, p2 

and P within the co-ordinate system created by the calibration process. The 3D reconstruction 

step is therefore reduced to a triangulation problem. Conceptually, triangulation is simple, but 

implementing triangulation has complications. Principally, the complications are the effect of 

digital noise in the sampling of the data as well as the error introduced from compromises in 

accuracy. These issues make it such that the actual lines associated with our three points may 

not coincide but exist in a region of variance. How to handle this is beyond the scope of the 

discussion here but is covered in some detail by Hartley et al. [44].  
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This process is then carried out within each frame and between the two frames for each 

subsequent captured image in the deformation process. The result is a set of displacements in 

X, Y and Z. Differentiating these displacements will then result in the strain. 

 

2.5. Efficiency Improvements 

The fundamental concepts behind DIC are now almost 40 years old. As stated in the 

introduction, in that time computer power has changed enormously but the fundamental logic 

behind DIC has remained consistent. The last 40 years have introduced improvements in speed 

and accuracy which have involved areas of lighting, target preparation, hardware choices and 

algorithmic improvements amongst others. For the sake of brevity, only the highlights of these 

improvements will be covered here. The referenced papers cover these topics in more detail 

than is required by the scope of this project. 

Note that the area of camera calibration has been discussed above, but from a standard practice 

perspective. There is an entire area of research devoted to various methods of camera 

calibration and their effects on accuracy which are discussed in detail in [33]–[36]. 

2.5.1. Improvements in Methods, Preparation and Tools 

2.5.1.1. Target Preparation 

DIC relies on the target having a variation in intensity on the surface such that a given subset 

can be differentiated from the rest of the search space easily and after possible deformation in 

any direction. The characteristics of the speckle pattern are therefore critical to the accuracy of 

the result. 

There are four main characteristics of a good speckle pattern: 

• High contrast: the grey levels should vary with large gradients 

• Randomness: the pattern should be highly variable and non-periodic 

• Isotropic: the pattern should have no directionality 

• Stability: the pattern should adhere to the sample surface under deformation without 

undue change to shape or intensity level. 

In a set of papers, Reu discussed the various characteristics of speckle patterns and their 

fabrication [45]–[48]. These articles covered the size and density of speckles, aliasing and edge 

sharpness. 

A thorough review of speckle patterns and the various methods of application was undertaken 

by Dong and Pan [8]. This paper also lays out a method of assessment of the quality of a speckle 

pattern. 

Another means of speckle pattern evaluation has been developed by Crammond et al. [49]. 

This method relies on edge detection within the speckle pattern to determine the quality of the 

pattern. This approach has the added attraction of being implementable entirely within a 

machine vision context. 
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In stereo vision systems a very recent paper has suggested the use of an electronically generated 

speckle pattern on a tablet [42]. Since a stereo vision system’s accuracy is heavily dependent 

on the accuracy of the calibration, generating the pattern electronically offers the promise of 

significant accuracy improvements. 

2.5.1.2. Lighting 

Since the intensity of the grey level plays such a big part in the accuracy of DIC, it follows that 

the means of illumination would have a similar effect. The importance of illumination can be 

seen in the experiment done by Yoneyama et al. [50]. In this experiment the deflection of a 

bridge was measured by DIC. Since the experiment had to be done outside it was carried out 

at night to control the light source. Another means of controlling the light source was proposed 

by Pan et al. [51]. This proposes the use of monochromatic light to illuminate the target. A 

bandpass filter is then applied to the input to the camera. This controls the illumination of the 

target and completely removes the harmful effect that ambient light can have on measurements. 

Vanlanduit et al. also introduced the use of stroboscopic illumination to measure crack 

propagation [52]. They took advantage of the cyclic nature of the fatigue tests to subsample the 

data using a stroboscopic light. This allowed for the use of less high-end equipment but with 

very similar results.  

2.5.1.3. Single Camera Solutions (Stereo-DIC) 

As has been covered, stereo DIC uses two cameras. These cameras must be synchronised, 

which can be a complicated exercise. Furthermore, the requirement for two cameras puts a 

physical constraint on the experiment, which can sometimes cause problems. To this end some 

work has started appearing regarding the use of single-camera stereo DIC [31]. 

The basic premise is to expose the same sensor to the image of the sample from two different 

angles using a lens, diffraction grating [31], biprism [53], or some other form of light path 

manipulation. An example of the experimental setup is given in Figure 23 below. 
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Figure 23: Single Camera Stereo DIC Experimental Setup [54]. 

Although this method removes the need for camera synchronisation and reduces the 

requirements for expensive equipment it does come with its own complications. The optical 

design of such a system is non-trivial and the implications of this are that one loses the 

flexibility to place the camera/s anywhere, they now have to be at a very specific angle and 

focal distance from the optical device being employed. 

2.5.2. Algorithmic Improvements 

2.5.2.1. Correlation 

Many of the early improvements in correlation lead to its wide applicability today. This section 

will not cover the early improvements, since these have been covered already in sections 2.2.2 

and 2.3, but will focus on more recent developments in this area.  

As mentioned in section 2.2.3, the Newton Raphson method is used for accurate subset 

matching. This is computationally intensive. The work by Vendroux and Knauss [20] improved 

the calculations by allowing for the approximation of the Hessian, but this is only applicable 

in certain situations. In 2012 Pan et al. suggested an alternative, namely the inverse 

compositional Gauss-Newton (IC-GN) method with the ZNSSD correlation criteria (see Table 

1). The main attraction is that the Hessian matrix remains constant and can be calculated 

beforehand [22]. 

IC-GN was first introduced as an improvement to the Lucas-Kanade algorithm for image 

alignment but was quickly adapted to the DIC space [55]. The main benefits of using IC-GN 

is the reduced computation required, but a further benefit is an improved noise robustness [56]. 

Various attempts have been made to introduce frequency spectrum comparisons to the 

correlation space, but there have been challenges with this approach. Applying the Faster 
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Fourier Transform to Cross Correlation (FFT-CC) leverages the very efficient algorithms for 

FFTs, which is very attractive from a speed perspective. Figure 24 shows an FFT run on a 

speckle pattern. The centre of the magnitude spectrum represents low frequency components 

of the image and the outer edges the high frequencies. The FFT of the reference image is 

compared to the FFT of the subsequent images to estimate correlation. Since in the frequency 

space the frequency components that are noisy (i.e., do not represent the underlying structure 

of the image) can be removed, the comparison does not need some of the complex correlation 

calculations that have been explained previously. Further once these frequency components are 

matched the phase shift is used to calculate the actual displacement. All of this results in a 

comparably fast algorithm [57]. An example of this frequency space representation of a speckle 

pattern is given in Figure 24 below. The python code to generate the magnitude spectrum can 

be found in Appendix 5. 

 

Figure 24: Magnitude Spectrum of Speckle Pattern. 

 

The main drawback of FFT-CC is that it is only effective to samples that undergo translation. 

Large deformation in the sample means that the FFT of the deformed image would bear very 

little resemblance to the original FFT. It can however, handle very simple deformation and 

with further work this could become a very promising area.  

2.5.2.2. Interpolation 

In various papers bilinear interpolation, bicubic interpolation, bicubic B-spline interpolation, 

biquintic B-spline interpolation and bicubic spline interpolation are used. Schreier et al. suggest 

bicubic spline or biquintic spline interpolation [17],[58]. 

As one would expect, for pixel interpolation the higher the order of the interpolation the better. 

Running numerical studies on speckle patterns Schreier et al. quantified the error associated 

with the various types of interpolation. They proved that higher order interpolation is 
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preferable. Jumping from linear to cubic interpolation garnered the most dramatic 

improvements with diminishing returns with increasing order after that. 

2.5.3. Real Time DIC 

In the last few years some work has started emerging that, like this project, investigates the 

feasibility of real-time 3D DIC measurement. This research largely comes from the 

biomedical and civil engineering arenas, but there has been some general work into 

improving efficiencies with real-time operation in mind. 

In the biomedical sphere attempts are being made to use DIC as an aid to various procedures. 

In most of these applications real-time processing has been achieved mainly because sub-

pixel accuracy is not important or because only translation (not deformation) of the target 

needs to be measured [59] [60]. This is because in most medical measurements currently 

employing this technology, temporal resolution (i.e. timing) is more important than spatial 

accuracy. 

Other real-time work has focused on civil engineering and specifically the real-time monitoring 

of structures such as bridges. Once again, the real-time processing is achieved because only a 

few scattered subsets are monitored for accurate deformation [61], with subsets between these 

being ignored. 

To re-iterate, the general DIC process involves two main steps: 

• Find the integer pixel point of highest correlation.  

• Run a sub-pixel algorithm to find the sub-pixel accurate displacement. 

This second step has gone through a lot of optimisation, culminating in the work by Pan et al. 

that suggested the Hessian matrix could be calculated once and used as a constant [22]. It is 

currently suggested that the first step, i.e., finding the initial integer pixel displacement is the 

step taking up the most processing time. Improving this process has therefore become the focus 

of a lot of work in the real-time space [62]. 

Some of the suggested methods here include: 

• Fast Fourier Transform [25]. 

• Genetic Algorithms [63]. 

• Difference Evolution [64]. 

• Particle Swarm Optimisation [65]. 

An explanation of these algorithms is beyond this scope of this work, but these are very 

interesting avenues of research.  

It is also worth noting that the real-time work done so far, in most of the papers referenced, 

has concentrated on 2D DIC. This project attempts to understand the implications of running 

real-time 3D DIC. These updated concepts used in the 2D space will be implemented in the 

3D DIC space going forward and this will add to the efficiencies we discuss going forward. 
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3. Design Considerations 

As covered in the introduction the question being considered is whether real-time DIC can be 

effectively undertaken using off the shelf, cost effective components, and if so what the effects 

on accuracy and speed would be. To start investigating this properly it becomes apparent that 

one would need to build a DIC system in which one can pull the various levers required to test 

the concepts mentioned.  

The first step in this design process is to consider the various hardware platforms available. 

The single board computer landscape is growing at an exponential rate and choosing one 

requires navigating a cost benefit analysis across the space [66]. 

In addition, in order to evaluate the question under consideration a DIC software suite would 

be required. There are many commercial options available but for this application an insight 

into the code base and the ability to adjust it would be required. An open-source code base 

would therefore have to be found and evaluated.  

3.1. Hardware Design 

The investigation of the effect of the increase in computing power on the DIC landscape, is the 

fundamental concept under investigation. We set out to understand what is possible in real-

time 3D DIC given the vast improvement in computing power in the last 40 years. The other 

point of interest was whether this could be done in a cost-effective way. 

An option would be to run the chosen software on an extremely powerful desktop computer. 

This would answer the question in part, but the really interesting investigation is whether one 

could, given the advances in computing and specifically in single board computing, break the 

shackles of the traditional computer and effectively run real-time 3D DIC on a standalone piece 

of hardware.  

Large desktop computers are also less desirable given that the ultimate application of this 

investigation would be bulge tests. For bulge tests on biological materials, performing the test 

at the clinical site where the material is harvested is very desirable. As a result, portability is a 

highly desired requirement of the final hardware design.  

Laptops would partially satisfy the portability requirement but in most instances they do not 

allow for readily available peripheral support to capture multiple video streams simultaneously. 

The single board computer landscape does not (necessarily) limit the peripheral capture in this 

way.  

To answer this question the first stumbling block would be choosing from the huge number of 

single board computers available. A value system needed to be defined to choose the correct 

option for this application. 
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The main considerations within the value system were (in order of importance): 

• Operating system support – the ability to handle an operating system mainstream 

enough to compile and run the chosen software 

• Peripheral support 

• Processing power/available resources 

• Cost 

• Extensibility – the ability to consider various hardware options in the experiments. 

Various options were considered but for brevity’s sake only the short list is included in Table 

3. 

Device 

Estimated 

Price* 

(*mid 2021) 

All prices rounded 

to the closest R100 

Image 

Raspberry Pi (3/4)[67] 

✔Cheap, ubiquitous, well supported 
R1500 

 

Beagle Bone Black[68] 

✔Cheap, well supported 

✘Limited peripheral support onboard 

R1300 

 

Jetson AGX Xavier Developer Kit[69] 

✔Well supported, high powered processor, GPU 

(CUDA support), good peripheral options 

✘Very Expensive 

R17000 

 

Jetson Nano Developer Kit[70] 

✔Cheap, well supported, high powered processor, 

GPU (CUDA support) 

 

R1200 

 

Asus Tinker Board[71] 

✔Cheap, well supported 

✘Availability issues, chipset is new (concerns about 

library support) 

R1500 

 

Table 3: Single Board Computers Evaluated. 
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Ultimately the Jetson Nano Developer Kit was chosen. The Raspberry Pi (especially with the 

release of the Raspberry Pi 4 in 2019/2020 [72]) was very seriously considered but the Jetson 

Nano was eventually chosen since it includes the ability to run parallel processing functions 

across its CUDA2 cores. Since DIC is (in theory) an extremely parallelisable process, this 

feature has the potential to yield interesting results in the future. The use of CUDA cores is not 

without precedent which lends further credence to the idea of choosing this as the hardware 

platform [73]–[76]. 

The one drawback of the Jetson Nano over the Jetson Xavier is the fact that the Nano has only 

one MIPI CSI-2 DPHY lane. This means that only one CSI camera can be connected to the 

Nano3. Since two cameras are clearly needed it was decided initially to use matching USB 

webcams. Although this worked, USB webcams are (by design of the underlying USB 

infrastructure) unsynchronised cameras. Initially the idea was that this would have to be 

characterised however during the progress of this project a cost-effective module came to 

market that allowed for synchronised camera sampling on the Jetson Nano. The Arducam 

12MP Synchronised Stereo camera kit allows for synchronised sampling of two video streams 

to be delivered through the single CSI-2 DPHY lane on the Jetson Nano. This is discussed 

further in section 3.4.2.  

 
2 Compute Unified Device Architecture is a proprietary NVIDIA technology for efficient parallel computing. 
3 The new version of the Jetson Nano does have 2 MIPI CSI-2 DPHY lanes but at the time of purchase this was 

not the case. 
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3.2. Software Design 

The software design was the main part of the build for this project. The requirements for the 

software were tied into the main goals for the project. The high-level requirements are listed 

here: 

• The software shall be written to optimise speed of execution. 

• The software shall be able to, in real time, execute 3D DIC. 

• The software shall be able to report, in real time, aspects of the 3D DIC while it is 

executing. 

• The software shall generate data that can be used for post processing of the 3D DIC 

after the test is complete. 

• The software shall only use libraries for which the source code is available. 

• The software shall be portable across various hardware platforms. 

With these requirements in mind the following design decisions were made: 

• The software will be entirely written in C/C++: 

o Implementation in Matlab would not be possible on the chosen hardware. 

o Implementation in Python is, in general, a slower execution environment to 

C/C++. Although Python can encapsulate C++ layers, which can make it 

comparable speed-wise, the evaluation of whether the use of Python would be 

speed comparable was not a question that needed to be answered. 

o Using various languages for various parts of the process would not be speed 

efficient and would also cause issues due to the real-time nature of the 

experiment. 

• The chosen software libraries will need the least number of dependencies possible to 

reduce development complications. 

• The software will generate data (for postprocessing) that will be compatible with 

standard software packages used for this purpose (e.g. ParaView) 

• The software will use the CMake build platform for portability. 

3.2.1. Open-Source Software Choices 

There are many options available for DIC in the commercial, proprietary software space. Some 

examples are: 

• Dantec Dynamics. 

• GOM Correlate (a Zeiss company). 

• Vic-Software (an isi-sys product). 

• MatchID. 

MatchID provides various prebuilt software kernels that one uses to develop a higher-level 

application. However, as the source code is not available, this is of limited usefulness in this 

application. The other examples provide no access to individual blocks of functionality and are 

geared towards traditional post-processing analysis. They are therefore unsuitable for this 

investigation. 
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A review of the open-source space showed that there are established DIC libraries available. 

This has meant that high quality software for use in these complicated algorithms has become 

available to the public with very permissible licenses [77]. In this space, three main contenders 

stood out: 

• NCORR:  http://www.ncorr.com/ 

o Developed at the Georgia Institute of Technology. 

o Developed as part of a master’s degree to gain a better understanding of the 

algorithms. 

o Developed in Matlab but has a C++ port. 

o Focuses on 2D DIC. 

• DICe:   http://dicengine.github.io/dice/ 

o Developed at Sandia National Laboratories. 

o Produced in the Center for Computing Research. 

o Developed completely in C++. 

o Allows for great flexibility. 

• pydic:  https://gitlab.com/damien.andre/pydic 

o Developed at the University of Limoges (France). 

o Written in Python. 

o Affiliation to the University is unclear. 

The last of these is immediately discounted due to the language of choice (Python) but it has 

been included here as a reference since in any other application this is an incredibly useful 

resource. 

NCORR and DICe are very similar in that the fundamental software core is written in C++, the 

software is widely accepted to work well, and the code is of good quality. Ultimately, DICe 

was chosen for this project, for the following reasons: 

• The fundamental structure of the code was easier to follow. 

• The dependencies required to compile the code were easier to resolve. 

• The software used libraries the researcher was more familiar with. 

• Flexibility of the correlation process without code changes. 

• Sandia National Laboratories has a recognised track record in this area. 

3.2.1.1. Digital Image Correlation Engine 

DICe is an open-source piece of software developed by Sandia National Laboratories [78]. It 

is capable of computing full field displacement and strains from a sequence of images or a 

video file. Since the engine is written in C++ the software is cross platform with some very 

good instructions for building on Linux. 

http://www.ncorr.com/
http://dicengine.github.io/dice/
https://gitlab.com/damien.andre/pydic
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The very high-level architecture of DICe is given below: 

 

Figure 25: DICe Software Architecture. 

Trilinos is an open-source project containing software packages for the execution of large scale, 

complex multi-physics and engineering problems. It contains structures to store data and allows 

for complex mathematical operations on that data such as linear and non-linear solvers. 

OpenCV is an open-source computer vision and machine learning software library. The 

software contains over 2000 algorithms including image correlation algorithms and feature 

extraction and matching algorithms.  

To allow for complete cross platform building the Trilinos and OpenCV packages need to be 

built on the required platform. DICe is then built on top of those. One can then link in the DICe 

libraries to create a custom application. This is the approach that has been taken here. 

The DICe GUI is an Electron application that calls pre-built binaries created during the DICe 

compile process. This frontend allows for the use of this library as a standalone tool for general 

digital image correlation requirements. 

  

https://trilinos.github.io/
https://opencv.org/
https://www.electronjs.org/


45 

 

3.3. Integration and Build 

As discussed, the design decisions so far have resulted in using the  

• Jetson Nano Developer Kit.  

• Digital Image Correlation Engine (DICe).  

• Arducam 12MP Synchronised Stereo camera kit. 

What follows is a description of the process of integrating these aspects into a useable platform 

to allow for the evaluation of the underlying question of this project.  

3.3.1. Code Development 

The instructions to build the DICe software are laid out in intricate detail with many helper 

scripts for the Linux distribution Ubuntu 16.04. To reduce the initial risk of unknowns the first 

pass at building the software framework for this project was conducted on this precise platform. 

Using Oracle VM Virtualbox, a virtual machine with the required operating system was 

created. The software was built in this environment and all the complications of building the 

software were discovered and handled during this process.  

Once the mechanics of building the framework on the recommended operating system were 

understood the challenge of building it on the Jetson Nano could be undertaken. The Jetson 

Nano comes with Ubuntu 18.04 as the operating system. The problems encountered here 

included: 

• the fact that system libraries have been updated, some removed, some renamed and 

later versions of build tools are standard.  

• the fact that the version of Trilinos supported did not cater for non amd64 based 

architecture (The Jetson Nano runs ARM architecture). 

The problem of the supported architecture was handled in a subsequent release of the Trilinos 

library. The official documentation suggests the use of version 12.4.2, however for the Jetson 

Nano version 12.14.1 had to be used. Thankfully the API was backwards compatible and no 

further changes needed to be made to the DICe code with this change. 

Ubuntu 18.04 also changed the location of the BLAS and LAPACK libraries and as such the 

CMake files had to be updated to reflect this. 

By far the most complicated problem to resolve was the fact that the linking of the library failed 

due to the order in which the libraries were included. This problem did not manifest in Ubuntu 

16.04 but became apparent in 18.04. The details are beyond the scope of this document, but 

this involved a low-level investigation into how the build of DICe happens. Once the error was 

identified, the author fed back the correction to the developers of DICe, who have now included 

this in the more recent official releases of DICe [79]. 

https://www.virtualbox.org/
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3.3.2. Experimental Platform 

To test the concepts discussed to this point an experimental setup was required that could do 

two main things. It needed to have a controlled motor and hence be able to create a known 

displacement in X, Y or Z and ultimately a known 3D deformation. It also needed to be able to 

do this at a speed that could be controlled.  

In the original project plan this test jig would have been provided, but due to the unique logistics 

around the coronavirus pandemic in 2020 this could not be achieved. To work around this a 

test jig was created as part of this project. 

The experimental setup was required to simply move in one axis. By placing the cameras in 

various positions one could then run experiments that track X, Y or Z displacement. The 

majority of the tests would measure 3D displacement in the Z axis but measuring displacement 

in the other axes should be possible. The proposed setups for these are shown in Figure 26. 

 

Figure 26: Camera Orientation for Different Axes Measurements. 
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3.3.2.1. Specimen Displacement Hardware 

Since this was not part of the original scope of the project, the simplest and most practical 

approach to develop the experimental jig in question, was chosen. Further experimental setups 

would be based on the same basic system. 

 

Figure 27: Experimental Design Setup. 

 The RepRap Arduino Mega Polulu Shield, or RAMPS, was created for the 3D printing space 

and allows for an interface between the Arduino Mega and the hardware required for 3D 

printing. The generally accepted motor for this application is a NEMA stepper motor (although 

others can be used). This collection of hardware substantially exceeded the requirements for 

the test regimen but was cost effective enough to justify its use. The Arduino language also 

provided a very simple and effective way of creating the sketch required to satisfy the 

requirements of the test jig. 

The basic requirements for the test jig were to have a resolution good enough to run the 

experimental verifications required and to allow for control over a serial interface. Since off 

the shelf components were used the resolution cannot be prescribed and would have to be 

confirmed by experiment. This was so that the developed DIC software platform could direct 

the motion of the test jig. This would allow for an experiment to be run in a repeatable fashion 

with slightly different experimental inputs.  

A 300mm lead screw was attached to the target with a brass nut. The lead screw was then 

attached to the NEMA motor with a flexible coupler shaft. Guide rails were created with 8mm 

round bar and linear bearings attached to the frame. To mount the guide rails to the platform 

mounting brackets were modelled and 3D printed. 

A frame was then created to hold a sample that would be deformed. This frame has an area to 

clamp a specimen for deformation.  

The ultimate objective of the experimental phase was to test whether this approach could be 

applied to a bulge test experiment. Due to the limitations of the available test infrastructure as 

well as the determinism this would provide, it was decided to use an indenter as opposed to an 

actual bulge test. The indenter has a known radius produced by CNC machining to a fine 
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tolerance. Hence the Z-displacement profile of the material in contact with the indenter would 

be known to a high accuracy without the need for an independent measurement.  

 

A piece of flexible material (i.e., latex) would be placed into the clamp and an indenter would 

be moved to deform the material. To ease the development, it was decided to move the frame 

over the indenter and not the other way around. This makes little difference except for the 

direction of the Z displacement. 

Figure 28 shows the final test jig with the indenter in place. 

 

Figure 28: Test Jig with Indenter. 

For the deformable surface a piece of latex was used. For ease of acquisition, a TheraBand® 

latex rubber band of thickness 0.15mm was used. This was speckled using spray paint. 

The application of the speckle pattern was challenging due to a lack of appropriate tools. 

Ultimately standard enamel spray paint was used for the speckle pattern and applied directly 

from the spray paint can. Techniques for applying an even speckle from a spray can, with small 

enough features to differentiate subsets was experimented with and although certain techniques 

worked this proved not adequate. It was decided to use multiple colours to further allow the 

feature algorithms to pick up differentiations.  

 

Figure 29: Grayscale Colour Separation 
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The algorithms for DIC use grayscale data to run the feature extraction. Values were chosen 

that were significantly separate in grayscale to allow for clear distinction in the algorithm. The 

base colour of the Theraband® was yellow. As a result, black was chosen as the best colour 

for the first layer. Red and green were chosen as further options that would then give second 

and third layer distinction to the grayscale algorithm.  

The final hardware setup is shown in Figure 30. 

 

Figure 30: Final Experimental Hardware Setup. 
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3.3.2.2. Frame Movement Software 

The flow diagram for the sketch running on the Arduino is given below. 

 

Figure 31: Test Jig Program Flow. 

The Arduino waits for a serial message telling it to move. The message tells the Arduino to 

move the motor forwards or backwards at a specific speed or a specific distance. 

From the main user interface, the plus and minus keyboard strokes will send the serial message 

to the Arduino to move forwards and backwards 1mm.  

In order to make the experiments repeatable and require little intervention from the user it 

became clear the ability to control the test platform from a script was important. This would 

give flexibility to conduct various types of tests without the need to recompile the code each 

time. Various options were briefly considered such as Duktape (a javascript engine) or Forth 

(a stack-based language that is fairly easy to implement). However, given the limited 

functionality required, it was decided the scripting did not need to be Turing complete and a 

basic command-based script structure was decided on. These scripts are loaded at start-up and 

can be run after the DIC algorithms are initiated. 

https://duktape.org/
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For convenience it was decided that the software needed to plot graphs of the results. Various 

options were again considered for this: 

• Sciplot 

• ROOT 

• Gnuplot. 

Sciplot was decided upon because of its very simple code base and ability to completely 

integrate at a source code level into the project.  

Note: ROOT is a piece of software developed at CERN, that in other applications is worth 

investigation. Its complexity and feature list made it inappropriate for this project, but the code 

base is well done and feature rich and is worthy of a mention. 

  

https://github.com/sciplot/sciplot
https://root.cern.ch/
http://www.gnuplot.info/


52 

 

3.4. Design Description 

The final architectural structure of the software is defined in Figure 32.  

 

Figure 32: Final Software Architecture. 

The core of the system would need to be the DIC algorithm which would be configured and 

run within the DICe software framework. The support elements required to enable the 

experiment are: 

• An image display and capturing system: OpenCV was chosen for this – this package is 

already a dependency of DICe so using other functions within it was a trivial decision. 

• A system for control of peripherals: The experimental setup will need to control stepper 

motors while running the experiments. 

• A scripting engine: The system will need a way to automated tests that will be of a 

repetitive nature. 

• A means of performance measurement: Since this project involves, in part, figuring out 

how efficient, timewise, these algorithms are, a means of accurately measuring the 

timing within the code is required. 

• Graph feedback: Although not crucial to the overall output, a graphical representation 

of the data is still important. This will feedback the results of the test in near real time. 

Figure 33 is a flow chart of the main execution paths of the code base, as developed.  There 

are four main modes that the system can executed. 

• Subset Creation (s) 

• Main DIC algorithm (i) 

• Calibration (c) 

• Run Script (r) 

It is worth noting that most 3D DIC systems will sample the images on a given sync clock, 

hence the sample rate is driven by the sync clock. In our case since the cameras are always 

sampled synchronously (by design) there is no external driver of the sample rate of the 

algorithm. As soon as the system can sample and analyse the next image it does. 
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The final code flow is as follows: 

 

Figure 33: Final Code Flow.
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3.4.1. DICe Interface Logic 

DICe is a very modular piece of code. Out of the box it can be used as is since it has a GUI that 

one can use, written in Electron. Under the hood though each functional block can be broken 

down to a function call that can be executed from anywhere. This was the feature used in this 

project. The section below is not an exhaustive list of all functionality used in the DICe code 

base. Instead, it focuses on the large (and important) functional blocks that were used in the 

package. It is important to note that each of these functions would require extensive data 

preparation and setting up in code before being used. To get the details of this please refer to 

the code base associated with this project. What follows is a brief description of the important 

steps in Figure 33. 

3.4.1.1. Step 2(i) 

The software allows for the use of 4 main files as input parameters for the DIC process: 

• A main input file detailing subset size, image locations, output folders and well as the 

location of other information. 

• A parameters file (location defined by the main input file) that describes thresholds and 

settings. 

• A calibration file (location defined by the main input file) that defines the calibration 

data for stereo camera systems. 

• A file defining the subsets being evaluated in the DIC process. 

All these files were used as is since there was no need to update their structure. The DICe 

libraries are then used to build the image sets, get their dimensions, load the calibration 

parameters, and set the output parameters.  

3.4.1.2. Step 3(i) 

The DICe libraries "execute_cross_correlation" and "save_cross_correlation_fields" are called 

to cross correlate subsets across the two images, using feature extraction algorithms, and 

ultimately save this field data.  

3.4.1.3. Step 4(i) 

Once these similar areas are found in both images the stereo set is triangulated to create the 3D 

model of the space.  

3.4.1.4. Step 7(i) and 8(i) 

After the initial correlation and triangulation is done to establish the 3D frame the system runs 

a 2D image correlation and triangulation to find the motion in each subsequent frame. 

3.4.1.5. Step 3(c) 

The calibrate function is called to try and calculate the parameters associated with the camera 

positions in space. The calibration logic is described in more detail in section 3.4.4. 
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Various other pieces of code that will not be mentioned here are used to write out results files, 

move large datasets around the code and extract required data from other datasets. 

The full source code is available on GitHub. Please see Appendix 4 for details. 

3.4.2. Image Capture 

Obviously, the basis of any DIC algorithm is the images of the target that are captured. The 

image capture process changed in the middle of this project as a piece of hardware became 

available that was a much better fit to the application.  

During initial development two 8MP USB camera modules were used to capture these images. 

Since DICe is based on OpenCV the capturing of images from webcams is trivial. On a Linux 

system, webcams come up as Video4Linux (v4l) devices and OpenCV can capture images from 

v4l devices with one function call. The image quality from webcams varies greatly and so for 

this initial development phase two matched webcams with external lenses were chosen to allow 

for greater control of the image quality. Fundamentally (especially for 3D stereo work) 

webcams will always suffer from the problem that in a standard hardware system (such as the 

one we are using) the webcams cannot be sampled at the same time; they would have to be 

sampled one after the other. This means that there is no guarantee that the 3D landscape the 

first sampled camera is looking at is exactly the same as the second. For this initial phase great 

care was taken to make sure that these cameras were sampled immediately after each other but, 

however negligible the concern, this is an inherently error prone system and will limit the 

deformation speed that can be accurately captured. 

In section 3.1 it was mentioned that during the development of this project a piece of hardware 

was found that would allow for synchronised images to be captured as well as being hardware 

that could make use of the MIPI CSI interface on the Jetson. 

 

Figure 34: Arducam 12MP Synchronized Stereo Camera. 
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The USB webcams were replaced with the Arducam 12MP synchronised stereo camera system 

shown in Figure 34. This was a cost-effective system (approximately $150) and its availability 

was good, but its interface was non-trivial. Unlike a webcam this device does not come up as 

a v4l device which means that integration into the DICe OpenCV data stream required some 

specific interface development. For integration the gstreamer open-source framework was used 

[80]. Gstreamer allows for arbitrary media pipeline development. As shown in Figure 35 the 

image data is sourced from somewhere. It can then be altered in format, size, orientation etc 

and then the output sunk to a variety of sources. 

 

Figure 35: Gstreamer pipeline development [81] 

The full gstreamer pipeline is noted for reference: 

nvarguscamerasrc ! video/x-raw(memory:NVMM), width=(int)4032, height=(int)3040, format=(string)NV12, 

framerate=(fraction)13/1 ! nvvidconv flip-method=2 ! video/x-raw, width=(int)2048, height=(int)1536, 

format=(string)BGRx ! videoconvert ! video/x-raw, format=(string)BGR ! appsink 

An extra step was needed when using the Arducam in that to sample two cameras 

simultaneously the hardware for the camera splices the two images together and provides them 

to the CSI bus as one camera image. As a result, once the image is in the DICe OpenCV data 

stream the images need to be split apart into the left and right camera views. 

An input parameter to the software was created so that the system can use either the webcam 

or Arducam interfaces transparently. 

A processing thread was created to read images out of the cameras and write the files to the 

system for use by DICe. This thread attempted to optimise the flow of the code by using 

semaphores to signal the completion of the process. This is encapsulated in steps 11(i) to 13(i) 

in Figure 33.  

A final step in the process involves taking the output of the cameras and converting it to 

grayscale. The output of the cameras is standard RGB which needs to be converted as an input 

to the DICe algorithms. To do this the OpenCV colour conversion algorithms were used. These 

perform a standard colour conversion as shown below: 

𝐺𝑟𝑎𝑦 = 0.299 ∗ 𝑅𝑒𝑑 + 0.587 ∗ 𝐺𝑟𝑒𝑒𝑛 + 0.114 ∗ 𝐵𝑙𝑢𝑒 

Equation 13: Grayscale Conversion Equation 
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3.4.3. User Interface 

The first objective of this project was always to investigate the implications of producing a 

system that could do near real-time DIC. To leverage any benefit from a real time system the 

interface would be required to show some representation of the information being gathered in 

real time. Two approaches were decided on:  

• The system would display a heat map of the subsets being investigated, where the heat 

map would represent displacement (in a chosen axis) with varying colours (from blue 

to red). 

• The system would output the displacement, in all axes of a sample, of the subsets to 

show the progress of the measurements. 

The final system interface is shown in Figure 36. 

 

Figure 36: Final User Interface. 

The left and right images from the camera are shown in the top left and right respectively. This 

particular image was taken while an indenter was pushing on the latex surface. Below the 

images a sample of 5 subsets’ data is shown for all axes. Some other performance metrics are 

included under the subset data. This information encapsulates the speed of the algorithms. 

Between the two images is a heat map of the displacement. Red corresponds to larger 

displacements, with blue being smaller displacement.  Initially the idea was to display the 

subsets overlayed on the actual image. The principle was that in each subset (when displaying 

the image) the code would split the image data in the subsets into the red, green and blue 

components. The values of these three channels, on each pixel, would then be manipulated to 

overlay a representation of the displacement while retaining the image data underneath. The 

idea was sound, and the implementation did work, but it was found that the processing involved 

in splitting the image into channels, manipulating the data and then re-merging the channels to 

form an image was too time consuming to achieve any type of real time response. As a result, 
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a separate heat map was inserted between the two images. Since this requires only the drawing 

of the subsets with the correct colour for the displacement it proved much more palatable from 

the processing power perspective and did not significantly impact on the processing time per 

frame. 

The user interface is keyboard-press based. The following keyboard commands initiate the 

actions described in the application. 

Keyboard Press Action 

c Start the calibration process. 

q Quit the application. 

i Initiate the DIC process. 

r Run the script loaded at startup. 

The script is a file passed to the program at startup as a 

parameter. It must be defined. 

s Start the subset selection process 

This process requires the use of the mouse as well as it captures 

a rectangular area for the area under investigation. The 

rectangular area is marked by the mouse click and mouse release. 

x, y, z Tells the system which axis to show in the heat map and which 

axis to graph at the end of the test. 

m Create a movie – in captures stills – of the heat map as the test 

proceeds. 

+ Run the target forward 1mm. 

- Run the target back 1mm. 
Table 4: Keyboard Command Table. 

3.4.4. Calibration Logic 

There are many ways to calibrate stereo cameras. The easiest way (and the way that DICe has 

implemented it) is to take pictures of a known target in various poses and then to calculate the 

extrinsic and intrinsic values of the camera system as discussed in section 2.4.1 and 2.4.2. 

DICe allows for calibration with a dot pattern or a checkerboard pattern. Both were tried and 

ultimately the checkerboard pattern was chosen purely because it is easier to actually make the 

calibration target. 

To setup DICe for this an input file is passed to the calibration algorithm. In Figure 33 this is 

step 2(c). This file contains: 

• The folder that contains the calibration images. 

• The image range (how many images and how are they named). 

• The setup of the checkerboard (number of squares and their size). 

• Settings of the calibration (such as calculating extrinsic and intrinsic parameters and, 

fixing the principal point). 

Once the setup information has been passed to the algorithm the calibration images need to be 

captured. Initially the software captured 16 images in sequence with no feedback. This worked 

but resulted in a lot of wasted time. If the images were not good enough to resolve the corners 
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(in the case of the checkerboard) in every image the quality of the ultimate calibration was 

questionable.  

The final implementation of the calibration process tries to resolve the target corners on every 

image capture and displays a green circle indicator if successful. This lets the user know that 

the image captured is suitable for calibration purposes. This process takes a bit longer since 

parts of the algorithm need to run on every capture, but it ultimately gives the user a better 

perspective on whether the calibration will be successful and accurate. In Figure 37 the 

calibration image is shown during the process. Note that the corners have been marked as found 

by the green circle. This process gives the user confidence that the image is useful for the final 

calibration algorithm. 

The quality of the calibration is estimated using two metrics. The DICe engine uses the 

OpenCV stereo calibration algorithm to perform the calculation with two stereo cameras. This 

function returns the final value of the re-projection error. Ultimately this is an RMS value of 

all re-projection errors for a set of selected points. 

Further the DICe algorithm calculates the quality of the calibration internally by using the 

epipolar geometry constraint to calculate an epipolar error for a set of points. The value of this 

error is output to a stored file as part of the calibration process. All experimental data included 

in section  4 includes a file “cal_error.txt” which contains the epipolar error for a set of points. 
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Figure 37: Calibration capture process (showing analysis of corners). 
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4. Experimental Data 

With the system developed and test jig created the research questions proposed by this project 

may now be addressed. As a reminder, these questions are: 

• Given a specified image resolution and frame rate, can a 3D DIC system yield 

acceptable accuracy of deformation measurements when running in near real-time? 

• What implications arise from the constraint that widely available and cost-effective 

hardware and software be used? 

To answer these questions, the experimental plan described in Table 5 was followed. 

All of the experiments in this section have the mentioned data available for review online. The 

data is stored in a github repository and is available for download and review, at: 

https://github.com/haemishkyd/kydhae001_msc_results 

The data can be viewed online at the address above by clicking on the “*.ipynb” file in each 

folder.  

It is possible to analyse this data on any computer – please see Appendix 4 for details on how 

to do this. 

For these experiments the axes are as noted below: 

 

  

  

Figure 38: Frame of Reference for Experiment. 

Z 

X 

Y 

X 

https://github.com/haemishkyd/kydhae001_msc_results
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In the diagrams above the direction of the arrow denotes the positive direction. This is true for 

all experiments except in Section 4.4.4 where the axes are deliberately inverted to illustrate the 

ability of the system to change its frame of reference. 

The experimental roadmap is show in Figure 39. First a basic characterisation of the noise of 

the system will be completed. The varying effects of subset size and number will then be 

considered. Having established these basic principles, the accuracy and speed of the system 

will be determined in controlled experiments. 

Lastly, and finally answering the question posed by this project, a real-time experiment will be 

conducted characterising a bulge using the 3D DIC framework developed in this project. 

 

Figure 39: Experimental Roadmap. 
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Table 5 summarises the experiments executed to validate the research question. What follows 

is a description, basic procedure and results comparison for each of the experiments below. 

Experiment No. Experiment Set  Description 

1 
Noise Floor 

Experiment 

This experiment tries to understand the level of 

noise in the measurement of the displacement of 

the system. The outcome of this experiment tells us 

the highest level of accuracy we can (reliably) 

expect from the system. 

2 

Speed 

Experiment – 

Number of 

Subsets 

This experiment attempts to determine the effect of 

adding subsets to the test. How does the addition of 

more area being correlated affect the speed of the 

process? 

3 

Speed 

Experiment – 

Subset Size 

This experiment attempts to determine the effect of 

the size of the subsets on the speed of the process. 

4 
Motion 

(Accuracy) 

This experiment tries to understand the level of 

accuracy we can expect from the system with a 

target with precisely known movements. Can the 

system keep track of the displacement and within 

what tolerance? 

5 Motion (Speed) 

This experiment attempts to understand the highest 

frame rate that we can expect when attempting DIC 

in near real time. How fast can we move the target 

while maintaining the accuracy of the measurement 

within the tolerance expected? 

6 
Indentation 

Tests 

Spheres of known radius will be used to deform a 

flat, flexible surface to simulate a bulge test. This 

provides out of plane, varying displacements of a 

known profile for comparison with the DIC. 

Table 5: Experiment Plan.  
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4.1. Experiment 1 – Noise Floor Experiment 

4.1.1. Description 

The goal of this experiment was to understand the noise characteristics 

of the DIC process for our experimental setup. Given the noise that is 

inevitable in the image capture and the fact that correlation is a statistical 

process we need to understand what the practical tolerance around this 

measurement is. For this experiment the DIC process was started but the 

target was not moved. In an ideal setup the displacement in all axes 

would be zero. 

 

Data Set Description 

Noise/Noise_Floor_Sync_1 Run 1 of noise floor experiment 

Noise/Noise_Floor_Sync_2 Run 2 of noise floor experiment 
Table 6: Experiment 1 Data Sets. 

4.1.2. Procedure 

• Calibrate the stereo camera set. 

• Create a subset input file with three subset regions. 

• Run the DIC algorithm for no less than 60 seconds. 

• Extract the MODEL_DISPLACEMENT_Z results for each subset from the DICe 

solutions file. 

• Extract the MODEL_DISPLACEMENT_Y results for each subset from the DICe 

solutions file. 

• Extract the MODEL_DISPLACEMENT_X results for each subset from the DICe 

solutions file. 

• Clean the data for all data for each axis. 

o Remove any data points that are more than outside of µ ± 2σ 

• Find the RMS of the data for each axis. 

• Average the results across the data set for each axis. This is the noise floor for the given 

axis. 

Various lighting options were tried in various poses during this experiment to highlight which 

type of illumination and at what distance it is most effective. This included: 

• Incandescent bulbs. 

• Fluorescent bulbs. 

• LED bulbs. 

• Circular LED lamps (ring light). 

Ultimately the ring light gave the most consistent result and cast the most even lighting. The 

ring lights were placed on either side of the cameras and this distance was maintained for all 

experiments. The even casting of light is incredibly important since this experiment could 

eventually measure significant movement. If the light source is uneven, the target may move 

into less or more lighting which would compromise the measurement. 

The source of illumination will be the LED ring light for all experiments going forward. 
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For this test three random subsets were chosen across the image. These subsets were monitored, 

and the displacement results logged. The subsets are shown in Figure 40, marked by the blue 

squares. 

 

Figure 40: Illustration of subsets chosen for synchronised cameras (run 2). 

4.1.3. Results 

The motion of three subsets for each axis are given below. The experiment was run twice with 

different calibrations in different natural lighting conditions but the same artificial lighting. 

 

 

Figure 41: Graphs of motion of each subset in each axis (Run 1). 

The results from Run 1 showed a trend that suggested slight motion in the system over time 

even though the system was stationary. Although the velocity of the trend was small enough to 

be negligible (a maximum of 0.01mm over 2 minutes) it was clearly there. There are various 

reasons that could be hypothesised for this behaviour.  



66 

 

• Slight changes in environmental conditions. If the temperature changes during the 

experiment the frame would expand/contract while the experiment was underway. 

These changes in temperature could also be found in the equipment itself, as the 

equipment is used the lenses and camera sensors would heat up. This would show as 

slight changes in X, Y and Z values that would track the increase or decrease in 

temperature. Further any changes in lighting would contribute to  changes in 

displacement in unpredictable ways.  

• Correlation errors due to inherent structure in the speckle pattern. If the speckle pattern 

is too regular or lacks randomness the correlation engine would start creating false 

positives for matches which would manifest as movement in the result. The algorithm 

that searches for matching patterns would follow an algorithm which could conceivably 

see the error always being realised in a certain direction. 

• Experimental Error. It is conceivable that the target was indeed moving due to some or 

other very small motion in the experimental setup. 

As can be seen in run 2 of this experiment, this behaviour was not seen again and as a result 

these hypotheses could not be tested. The results have however been included since they 

demonstrate that this could happen and that the process of establishing a noise floor can also 

serve the function of making sure that the system is stable before running an experiment that 

needs to be very accurate. 

 

 

Figure 42: Graphs of motion of each subset in each axis (Run 2). 
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Run 1 Run 2 
Subset 1 RMS  : 0.00984 mm 

Subset 2 RMS  : 0.01765 mm 

Subset 3 RMS  : 0.02448 mm 

Avg Z Axis RMS: 0.01732 mm 

Subset 1 RMS  : 0.01734 mm 

Subset 2 RMS  : 0.01702 mm 

Subset 3 RMS  : 0.00736 mm 

Avg Z Axis RMS: 0.01391 mm 

Subset 1 RMS  : 0.00574 mm 

Subset 2 RMS  : 0.00699 mm 

Subset 3 RMS  : 0.00755 mm 

Avg Y Axis RMS: 0.00676 mm 

Subset 1 RMS  : 0.00316 mm 

Subset 2 RMS  : 0.00262 mm 

Subset 3 RMS  : 0.003 mm 

Avg Y Axis RMS: 0.00293 mm 

Subset 1 RMS  : 0.00295 mm 

Subset 2 RMS  : 0.00567 mm 

Subset 3 RMS  : 0.00946 mm 

Avg X Axis RMS: 0.00603 mm 

Subset 1 RMS  : 0.0005 mm 

Subset 2 RMS  : 0.00204 mm 

Subset 3 RMS  : 0.00158 mm 

Avg X Axis RMS: 0.00137 mm 

Table 7: RMS Noise Results. 

It is important to note that this result is a combination of all the factors currently in the system. 

This means that this result is only true for these lenses, in this light, with this length of cable 

between lenses and Jetson board.  

Other than lighting conditions the rest of the components would probably produce similar noise 

results, but this cannot be guaranteed. The light level, if changed, would have a large effect on 

the noise level.  

With the set of factors constant in this experimental setup, the results show that we can expect 

a measurement resolution for out-of-plane (Z) displacements of no better than ~0.015mm. The 

actual measurement resolution achieved may be worse given other factors in the experiment 

but from these results we can define an absolute best-case resolution of measurement. For the 

type of experiment (i.e., bulge tests) a measurement resolution of 0.015mm is more than 

adequate. If this was applied to any other type of DIC experiment the requirements of the 

experiment would need to be evaluated against this limit. 

Very expensive DIC systems would have less variability across experimental setups. The 

cameras would be more consistent, with cabling made for purpose with predictable responses. 

Since this project aims to see if 3D DIC can be run using off-the-shelf components the 

variability across components would need to be checked. This noise floor experiment is the 

easiest way to determine the inherent inaccuracies in the system. 
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4.2. Experiment 2 – Speed: Number of Subsets 

4.2.1. Description 

To understand the extent to which we have achieved the goal of 

creating a platform to perform real-time DIC it is necessary to 

understand how fast we can actually perform the process. We would 

also need to know how changing the inputs to the system change this 

real-time performance. The speed of processing is closely related to 

how much image data must be processed, which is the product of the 

number of subsets and their size in pixels. In this experiment, the subset 

size was kept constant (at 30 x 30 pixels) and the number of subsets 

increased, to vary the amount of image data for processing.  

This experiment tracks the speed of processing from 1 subset to 30 

subsets and analyses the change in processing speed. 

 

Data Set Description 

Timing/timing_1 Run with 1 subset 

Timing/timing_2 Run with 2 subset 

Timing/timing_3 Run with 4 subset 

Timing/timing_4 Run with 6 subset 

Timing/timing_5 Run with 8 subset 

Timing/timing_6 Run with 10 subset 

Timing/timing_7 Run with 12 subset 

Timing/timing_8 Run with 14 subset 

Timing/timing_9 Run with 16 subset 

Timing/timing_10 Run with 18 subset 

Timing/timing_11 Run with 20 subset 

Timing/timing_12 Run with 22 subset 

Timing/timing_13 Run with 24 subset 

Timing/timing_14 Run with 26 subset 

Timing/timing_15 Run with 28 subset 

Timing/timing_16 Run with 30 subset 
Table 8: Experiment 2 Data Sets. 

4.2.2. Procedure 

• Create a subset file with 1 subset defined. This subset can be randomly placed. 

• Run the DIC algorithm with this subset. 

• Store the timing.txt file created, for analysis. 

• Create a subset with 2 subsets defined. These can be randomly placed. 

• Run the DIC algorithm with this subset. 

• Store the timing.txt file created, for analysis. 

• Repeat with 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30 subsets and record all of 

the results. 
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4.2.3. Results 

The average amount of time to process for the varying numbers of subsets is given below: 

No. of Subsets Processing Time(s) Estimated Data 

1 0.5408 1.7KiB 

2 0.6626 3.4KiB 

4 0.6811 6.8KiB 

6 0.6446 10.2 KiB 

8 0.6877 13.6 KiB 

10 0.7208 17 KiB 

12 0.7748 20.4 KiB 

14 0.8056 23.8 KiB 

16 0.9201 27.2 KiB 

18 0.9315 30.6 KiB 

20 0.9415 34 KiB 

22 1.0662 37.4 KiB 

24 1.0737 40.8 KiB 

26 1.0770 44.2 KiB 

28 1.1184 47.6 KiB 

30 1.1700 51 KiB 
Table 9: Number of Subsets vs Processing Time. 

 

Figure 43: Processing Time for Varying Numbers of Subsets. 
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As would be expected, as the number of subsets increases the amount of time for the DIC 

algorithm to complete increases. In a single core system with a scheduler not subject to context 

switching, the graph would be fairly linear. In Figure 43 the trend is roughly linear, but has 

some noticeable deviations. There are two main reasons for this: 

• The operating system that this software runs on is subject to context switching (as 

would any system that was not a low level RTOS) 

• The processor here is a quad core device (ARM® Cortex® -A57 MPCore (Quad-Core) 

Processor). 

The last point here is worth exploring a little further. The data does not support it outright, but 

there is evidence in the data (at 2 to 6 subsets, 16 to 20 subsets and 24 to 28 subsets) that the 

processing speed would go up in steps as the operating system passes the processing to the four 

cores available on this processor. Since this is a quad-core processor the graph highlights every 

four subsets (purple dashed line) to analyse if there is a correlation. There are places in the data 

where this stepped theory is not clear, but this could be due to various factors such as operating 

system interventions or peripheral interrupts. This is not the core question being asked here but 

it is an interesting point to consider going forward. 

The parallelisation questioning could be taken a bit further. The DICe engine used in this work 

handles the processing of the subsets as part of its internal operation, i.e., how and when each 

subset is processed forms part of the underlying function of the engine. If the engine were 

stripped down a bit more, the individual processing blocks for each subset would be exposed. 

This would allow for a lot more exploration of the parallelisation concept and ultimately may 

lend itself to using the very powerful CUDA cores available on the Jetson Nano. 
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4.3. Experiment 3 – Speed: Subset Size  

4.3.1. Description 

In the experiment in section 4.2 the number of subsets was evaluated for 

its effect on the speed of execution. If the region of interest (ROI) is 

constant and the subset size is increased, would this then make a 

difference? In essence the question is, is it purely the number of subsets 

or the ultimate size of the ROI (and hence the total volume of pixel data) 

that dictates the speed of execution? 

This experiment uses the same sized ROI while changing the size of the 

subsets within the ROI. The subset sizes chosen were 60, 30 15 and 7 

pixels. In this experiment the subsets do not overlap so the larger the 

subset size the fewer subsets will exist in the ROI. 

 

Data Set Description 

Subsets/subsets_1 Subset size of 60 pixels 

Subsets/subsets_2 Subset size of 30 pixels 

Subsets/subsets_3 Subset size of 15 pixels 

Subsets/subsets_4 Subset size of 7 pixels 
Table 10: Experiment 3 Data Sets. 

4.3.2. Procedure 

• A suitably speckled target was marked with start and stop points for ROI 

creation. These fixed corners for the ROI are shown with red circles in Figure 44. 
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Figure 44: Region of Interest Selector - the blue dots were used. 

• The input.xml file was updated to reference the new subset size. 

• The program was started, and the software placed into “Region of Interest” 

mode. See Figure 33. 

• The region of interest was marked for each subset size.  

• The frame was advanced 10mm at 1 mm/s, then retracted to its original position 

at the same speed, to test the subset tracking. 

4.3.3. Results 

The average amount of time to process for the varying subset sizes is given below: 

Subset Sizes (pixels) Number of Subsets Processing Time(s) 

60 20 1.3853 

30 70 1.3989 

15 280 1.6417 

7 1149 1.2187 
Table 11: Subset Size versus Processing Time. 
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Figure 45: Processing Time for Varying Subset Sizes. 

The results show if the size of the ROI is constant, the number (and by extension size) of the 

subsets for the given ROI has a negligible impact on the amount of time for the algorithm to 

execute.  

The temptation would then be to keep reducing the number of subsets since the finer the 

granularity the more information can be gleaned about the deforming surface. To test this, the 

actual tracking of the subsets was graphed and is shown in Figure 46. 
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Subset size 60 pixels Subset size 30 pixels 

 

Subset size 15 pixels 

 

Subset size 7 pixels 

Figure 46: Z Displacement Response with Varying Subset Sizes. 

This set of data shows that as the subsets get smaller the underlying speckle pattern stops being 

able to present a unique pattern to the algorithm in all instances. For a very small subset size 

the speckle pattern would need to be very dense and varied within that density. So it is fair to 

say that a smaller subset size comes with the complexity of implementing more and more 

intricate speckle patterns. 

For the speckle pattern used in this experiment (refer to Figure 44) the subset sizes of 60 and 

30 pixels worked well and allowed for tracking throughout the experiment. For subset sizes of 

15 pixels, some subsets lost correlation during the experiment and for subsets of size 7 pixels 

many subsets cannot be tracked from the outset, with even more subsets losing tracking as the 

experiment progresses. The heat maps during the tracking showed this clearly, as can be seen 

in Figure 47. For these heat maps the zero displacement was blue so the subsets that remain 

blue show subsets that were not tracked from the outset. 

 

Figure 47: Heat map for subset sizes 15 and 7 pixels. 

We have seen that subset size has a negligible effect on the processing speed of the algorithm. 

The same cannot be said of the total number of pixels. The amount of data being processed in 

each iteration of the algorithm is completely based on the pixel density of the camera. We are 

using 12MP cameras in this application which for DIC, given the distance to target and control 

of lighting normally associated with the experiments, is not necessary.  

Had they been available would 5MP cameras (for instance) been better from a speed 

perspective? The simple answer is yes, we showed that the data processed is correlated to the 
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speed of processing in Experiment 2, but the degree to which this would be true has not been 

measured.  

The region of interest is based on a physical object in the field of view, which means that for a 

given experiment a higher density of pixels would mean more data for the same region, i.e., 

more but smaller pixels. This means that for a lower density of pixels there would be less data 

to process (fewer and bigger pixels) which should result in faster processing speeds.  

In Figure 46 we showed that the subset size had a substantial effect on the ability to distinguish 

the speckle pattern during the experiment. The smaller the subsets the less pixels and hence 

less distinguishing ability, the subset had. The larger pixels of the lower density camera would 

mean that for the same sized subset, the ability to distinguish the unique pattern presented by 

the speckle may be compromised. Consider the exaggerated example in Figure 48 below: 

 

Actual Speckle. 

 

 

Speckle as seen from a high 

pixel density camera. 

 

Speckle as seen from a low 

pixel density camera. 

Figure 48: Pixel Density Comparison 

Since the larger pixels would sample a larger area of the subset, the tracking of a pixel from 

frame to frame could be less accurate and hence compromise the correlation co-efficient 

achieved in the DIC process.  

In short using a camera with a less dense pixel matrix would work to increase the speed of 

processing but there would be a point (depending on the target type) that the accuracy of the 

DIC tracking would start being compromised. This cost-benefit ratio would need to be gauged 

for each experiment. 
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4.4. Experiment 4 – Motion (Accuracy) 

4.4.1. Description 

Whereas the real-time speed achieved is an interesting result, the actual 

accuracy of the measurement needs to be assessed. A system that cannot 

measure the actual X, Y or Z displacement reliably (i.e., within an 

acceptable tolerance) is not useful. 

To this end great care was taken in the motion accuracy experiments to 

confirm accuracy of measurement with a few different test scenarios: 

• Confirm the motion of the test jig. 

• Confirm the measure of 2D displacement (in the Y axis). 

• Confirm the measurement of a saw tooth profile with steps. 

• Confirm the measurement of a slow continuous motion profile. 

 

Data Set Description 

Motion/motion_1 Y displacement measured – continuous slow motion 

Motion/motion_2 Saw tooth with frame of reference 

Motion/motion_3 Saw tooth with frame of reference from the other side 

Motion/motion_4 Z displacement measured – continuous slow motion 
Table 12: Experiment 4 Data Sets. 

4.4.2. Jig Motion Confirmation 

4.4.2.1. Procedure 

The accuracy of the measurement of the displacement will be determined with the test jig 

developed in Section 3.3.2.1. The test jig was built such that it would accept a command to 

move that would include the distance. The objective of this experiment was to make sure that 

when commanded to move a distance, the test jig accurately moves that distance within a 

tolerance.  

A script was created to run the frame forwards 10mm in 1mm steps (given in Appendix 3). 

This test was run 5 times from an arbitrary starting position. Thereafter a new start position 

was chosen, and the test was run another 5 times. This experiment also tested the repeatability 

of the test jig. After the script moved the frame forward 10mm the frame was manually moved 

back 10mm. It should end up at the position it started. 

The distance travelled by the frame was measured using a Vernier calliper and a fixed reference 

point on the base, for both the start and end positions.  
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4.4.2.2. Results 

The results of the tests are given in the Table 13 below (all measurements in millimetres). 

Start Position End Position Distance Moved Start Position Error 

195.41 185.85 9.56 - 

195.48 185.8 9.68 0.07 

195.41 185.72 9.69 0 

195.42 185.69 9.73 0.01 

195.33 185.66 9.67 0.08 

Start Position End Position Distance Moved Start Position Error 

191.49 181.94 9.55 - 

191.52 181.83 9.69 0.03 

191.5 181.82 9.68 0.01 

191.52 181.91 9.61 0.03 

191.48 181.9 9.58 0.01 
Table 13: Jig Motion Confirmation Results 

The average distance travelled with a 10mm command is 9.644mm. The test jig can therefore 

be assumed to be calibrated to within 0.366 of a millimetre. 

A point to consider in this result is that this test involved a stop/start motion: the frame would 

move 1mm, stop and then move 1mm again. This stop/start could cause small errors to 

accumulate, as on each step the frame had to overcome static friction in the linear bearings. 

The average error on returning to the start position is 0.03mm. Refining the accuracy of the jig 

movement would be useful in this context but as ultimately 3D deformation would be measured 

with the indenter tests, which were independent of jig movement accuracy, this was not 

necessary. 
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4.4.3. Two-Dimensional Displacement 

4.4.3.1. Procedure 

The test jig was configured with the cameras pointing downwards. The target was a static 

speckled image and was set up such that the frame pushed the target forwards and backwards. 

A script was run that moved the target 10mm at a slow speed. This motion was in the Y 

direction in the frame of reference used. 

Front View 

 

Top View 

 

Figure 49: Y Displacement Measurement Equipment Setup. 

For this experiment the displacement of 96 subsets were monitored. These subsets were 

distributed in a rectangle. 

4.4.3.2. Results 

The displacement as measured in the Y axis is displayed in Figure 50 below. The displacement 

measured was linear from 0 to 10mm. This is expected since the motion was constant. There 

are some small deviations to this linearity where the speed changed but that is expected for 

motors with finite torque. 
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Figure 50: Y displacement measured by 2D DIC 

The peak of the travel is at 24 seconds in the experiment. This peak was analysed for its 

accuracy to the 10mm displacement expected. The displacement at this peak is presented in 

Table 14 below: 

  
Subset X Average 

Error 1 2 3 4 5 6 7 8 

Su
b

se
t 

Y
 

1 9.9769 9.9664 9.9499 9.9371 9.9241 9.9095 9.8964 9.8766 

Target: 
10mm 

2 9.9871 9.9704 9.9591 9.9454 9.929 9.9129 9.8978 9.8899 
3 9.9835 9.9729 9.9592 9.9432 9.9322 9.9163 9.8999 9.886 
4 9.9865 9.9749 9.9635 9.9455 9.9353 9.9194 9.903 9.89 
5 9.9923 9.9807 9.9736 9.953 9.942 9.927 9.9127 9.8969 
6 9.9944 9.9827 9.9689 9.9533 9.942 9.9283 9.912 9.8927 
7 9.9997 9.9888 9.9699 9.9621 9.9465 9.9304 9.9199 9.8981 

Variation: 
0.0515 

8 10.004 9.9898 9.9777 9.962 9.9486 9.9363 9.925 9.9068 
9 10.002 9.9887 9.9766 9.9687 9.9496 9.9367 9.9226 9.9057 

10 10.01 9.9949 9.9849 9.9677 9.9543 9.9416 9.9278 9.9122 
11 10.014 9.9974 9.9845 9.971 9.9584 9.9464 9.9316 9.9129 
12 10.008 9.9967 9.9887 9.9741 9.9598 9.943 9.9294 9.9134 

Table 14: Peak Y Displacement for all Subsets 

These results show a very accurate readings but the variation in values is higher than what 

would be expected from the noise floor experiments conducted earlier. There must, therefore, 

be other factors that are affecting the accuracy of the reading.  

The main factors that would cause these discrepancies are mechanical tolerances. The ability 

of the test jig to reliably replicate a motion command is limited to an accuracy of (at worst) 

0.08mm (see Table 13). Furthermore, Table 14 has been presented in the orientation of the 

subsets. Notice that the bottom left subset is linearly higher than the top right. Plotting the 

bottom left, top right and middle subset from time point 0 to the peak results in  Figure 51. This 

clearly shows a trend that as the experiment advances the target starts tilting away from the 
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cameras. This is a result of the Y axis (as seen by the cameras) not being totally aligned with 

the motion of the target. 

 

Figure 51: Axis Alignment Analysis. 
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4.4.4. Three-Dimensional Displacement - Stepped Profile 

4.4.4.1. Procedure 

The test jig was configured to measure displacement in Z. The target was a static speckled 

image which was mounted in the frame. The cameras were then pointed at the frame. 

 

 

Figure 52: Displacement Measurement Equipment Setup 

A script was run that stepped forward 1mm for four steps. This experiment was run twice with 

two different frames of reference. The point here was to show that the frames of reference were 

implemented in the system and to show what effect they had. 

As part of this experiment a demonstration of the frames of reference built into DICe is also 

undertaken. Frames of reference can be important if the frame of reference for the measurement 

is not directly linked to either camera in the system. The frame of reference is stipulated with 

a file called best_fit_plane.dat. Here, the frames of reference chosen were: 

 

 

 

 

 

 

 

Z 

Y 

X 

Z 

Y 

X 

Figure 54: X/Y Negative Frame of 
Reference 

Figure 53: X/Y Positive Frame of 
Reference 
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4.4.4.2. Results 

After running the script the Z displacement was captured, as shown in Figure 55. 

 

Figure 55: Z Displacement with Stepped Motion 

The data at each step was sampled and analysed to extract how accurately this has been 

measured, with the detailed data in Appendix 2. 

The average error at each step is summarised in Table 15. 

Sample Error Standard Deviation 

1mm 0.0217 mm 0.012 

2mm 0.0127 mm 0.016 

3mm 0.0694 mm 0.021 

4mm 0.0658 mm 0.021 

3mm 0.0486 mm 0.021 

2mm 0.0191 mm 0.017 

1mm 0.0525 mm 0.012  
Table 15: Z Displacement Error Measurement. 
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Once again, the variation in reported displacement is higher than would be explained by simply 

the noise floor. This experiment relied on the test frame moving forward in small increments 

and then reversing the process. From the calibration of the test jig in Table 13 we determined 

that the test jig generally moves less than the requested command. When moving in small steps 

this command inaccuracy along with general backlash/play in the lead screw would explain the 

slight inaccuracies in the data reported vs the expectation.  

If the explanation of these inaccuracies is indeed mechanical concerns, all subsets should report 

roughly the same values and the standard deviation should be within the noise floor. Table 15 

includes the standard deviation of the measured values and in general the standard deviation is 

indeed close to the 0.017mm seen in the noise floor experiments. For the displacement at 3mm 

and 4mm the standard deviation is slightly higher, and this could be explained by axis 

misalignment with the axis of the cameras. One can see in Figure 55 the spread of the values 

increased as the displacement increases. 

In Figure 56 one can see that the displacement in Z is positive but for the two different frames 

of reference the X and Y displacements are measured differently. This shows how the frames 

of reference have an effect on the measurements taken within the system. 
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Negative Frame of Reference Positive Frame of Reference 

  

  

  

Figure 56: Positive and Negative Frame of Reference. 
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4.4.5. Three-Dimensional Displacement - Slow Continuous Profile 

4.4.5.1. Procedure 

The same script was run that was used in the experiment in Section 4.4.3. The cameras were 

now pointed forward as per the setup in the experiment in Section 4.4.4. 

For this experiment 95 subsets were monitored.  

4.4.5.2. Results 

After running the script, the Z displacement was captured, as shown in Figure 57. 

 

Figure 57: Z Displacement with continuous motion 

The peak of the travel is at 25 seconds in the experiment. This peak was analysed for its 

accuracy to the 10mm displacement expected. The displacement at this peak is presented in 

Table 16. 
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Subsets X Average 

Error 1 2 3 4 5 6 7 8 
Su

b
se

t 
Y

 

1 10.229 10.193 10.229 10.212 10.184 10.169 10.165 10.132 

Target: 
10mm 

2 10.245 10.184 10.231 10.188 10.188 10.173 10.159 10.256 
3 10.19 10.2 10.207 10.17 10.16 10.169 10.144 10.25 
4 10.194 10.22 10.205 10.162 10.161 10.203 10.15 10.246 
5 10.201 10.211 10.189 10.191 10.194 10.148 10.161 10.245 
6 10.187 10.203 10.199 10.188 10.186 10.193 10.155 10.236 
7 10.198 10.228 10.207 10.193 10.158 10.15 10.171 10.224 

Variance: 
0.18mm 

8 10.191 10.204 10.169 10.207 10.145 10.146 10.155 10.251 
9 10.214 10.221 10.189 10.194 10.155 10.16 10.173 10.252 

10 10.188 10.194 10.177 10.204 10.161 10.177 10.166 10.257 
11 10.192 10.208 10.173 10.222 10.174 10.17 10.165 10.248 
12 10.167 10.215 10.166 10.192 10.181 10.155 10.147 -0.01181 

Table 16: Z Displacement Error Measurement. 

The script run for the slow continuous movement up to 10mm and back obviously explores 

different mechanical aspects of the system. From Table 16, it is obvious that the command for 

a single step of 10mm resulted in an overshoot of approximately 0.18mm. In comparison, the 

stop-start nature of the tests in Section 4.4.4 resulted in displacements slightly less than that 

commanded. This supports the hypothesis that the inaccuracies in frame motion were due to 

mechanical play.  

It is also clear that the subset at row 12 column 8 did not track. For the calculation of error 

variance this was excluded. 
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4.5. Experiment 5 – Motion (Speed) 

4.5.1. Description 

The most basic metric of a real time capture of data will always be the 

sample rate. There will always be a sample rate at which the actual 

meaning or the ability to reconstruct the fundamental data starts being 

lost. 

In digital systems the sample rate required to accurately reconstruct the 

signal is referred to as the Nyquist limit. In these experiments we are 

trying to understand what limitations exist in the system with regards to 

sample rate such that we can still reconstruct the displacement data in the 

experiment in sufficient detail. 

 

Data Set Description 

Speed/speed_1 0.8mm/sec data 

Speed/speed_2 1.4mm/sec data 

Speed/speed_3 5mm/sec data 

Speed/speed_4 10mm/sec data 
Table 17: Experiment 5 Data Sets. 

4.5.2. Procedure 

The same script was run that was used in the experiment in Section 4.4.3. Each time the script 

was run the speed of the motion was increased. In each case the system was allowed to freely 

sample the Z displacement (i.e., sampling was as fast as the system would allow). 

4.5.3. Results 

The free sampling approach used means that we need to extract the sample rate from the timing 

file generated with each experiment. For each of the tests below we expect the average sample 

rate to be roughly the same as the number and size of the subsets is constant. The only 

difference should be the speed of the motion. 

The sample rates of the experiments are given in Table 18. 

Experiment Sample Rate 

0.8mm/sec 1.44599585s 

1.4mm/sec 1.48940113s 

5mm/sec 1.41003483s 

10mm/sec 1.4147066s 
Table 18: Sample rates at varying speeds. 

As expected, the sample rate of the experiments was consistent across experiments. The 

variability of the sample frequency across the standard motion profile is now shown at various 

speeds. 
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Figure 58: Speed set at 0.8mm/s and 1.4mm/s. 

In Figure 58 the profile captured at 0.8mm/s reconstructs the profile of the motion accurately. 

The speed of 1.4mm/s also reconstructs the profile, but one can see that the sample rate is lower 

and we are in danger of losing details if there was some unexpected (non-linear behaviour) 

between samples. In Figure 59 the data for 5mm/s is shown. While the peak displacement is 

approximately correct, it is clear we have not captured the shape of the displacement history 

acceptably. We have no way to ascertain the profile except to linearly interpolate which could 

be very inaccurate.  

The results presented here are specific to this type of motion profile. Varying the motion profile 

will change what the Nyquist limit for the experiment is. In this case the maximum speed that 

that acceptably reconstructs the motion is 1.4mm/sec. At 5mm/sec it is clear that the motion is 

not captured – only the start and stop points are sampled.  

If the goal of the experiment is accuracy this would suggest that a speed of 1mm/s or less would 

be suggested. 
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Figure 59: Speed set at 5mm/s. 
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4.6. Experiment 6 – Bulge Test 

4.6.1. Description 

For this experiment the setup, as shown in Figure 28 was used. Two 

indenters were used: 

• a small, 25mm indenter  

• a larger 40mm version.  

The indenter is aluminium, and CNC machined to a known radius. It is 

effectively rigid in comparison to the latex sheets used in this experiment 

which means the latex will deform to this known radius where it contacts 

the indenter. These sizes were chosen since they represent the typical 

range of diameters in biological bulge test research done previously 

[82]. 

The frame was moved backwards over the indenter with the latex surface 

in place. This had the effect of causing the latex to bulge much as it 

would in a traditional bulge test experiment. 

 

  

 

4.6.2. Procedure 

• Calibrate the stereo camera set. 

• Install the 25mm/40mm diameter indenter into the system. See Figure 60. 

• Create a subset input file that covers the region that the indenter would bulge. The 

subset size for both experiments below was set to 30 x 30 pixels. 

• Position the frame such that the latex surface in the frame is touching the indenter but 

no physical indentation is happening. 

• Start the DIC algorithm. 

• Move the frame 10mm backwards at a very slow speed (a script was used for this).  

• Extract the MODEL_DISPLACEMENT_Z results for each subset from the DICe 

solutions file. 

• Extract the MODEL_DISPLACEMENT_Y results for each subset from the DICe 

solutions file. 

• Extract the MODEL_DISPLACEMENT_X results for each subset from the DICe 

solutions file. 

Data Set Description 

Bulge/indent_small 25mm indenter experiment 

Bulge/indent_big 40mm indenter experiment. 
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Figure 60: 25mm indenter installed into system. 

The indenter setup results in the latex surface bulging and following the profile of the indenter. 

Figure 61 shows the nominal end of experiment setup. 

 

 

Figure 61: Latex bulge due to indenter. 

In order to analyse the bulge for accuracy a least squares method was used. This method was 

used to numerically estimate the radius of the bulge. As shown in Figure 62, the subset chosen 

for tracking here does complicate this approach. If the red subset in Figure 62 was chosen, the 

estimated radius could lie anywhere between the red and green circles. Therefore, a smaller 

subset of data is needed for accurate radius estimation, but means fewer data points are 

available.  
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For analysis, a subset of the sampled data was extracted that best approximated where the latex 

followed the curve of the indenter. This was then numerically analysed to illustrate if the DIC 

method used could faithfully measure the bulge. 

 

 

Figure 62: Illustration of the Estimation of the Curve. 
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4.6.1. Results for larger indenter 

A sample of the real time heat map images are presented in Table 19.  

 

t = 1s 

 

t = 9s 

 

t = 10s 

 

t = 11s 

 

t = 12s 

 

t = 16s 

0 1 2 3 4 5 6 7 8 9 10 mm 

            
 

Table 19: Real time displacement images (large indenter). 

These images were displayed in real time as the test was being executed. As can be seen, certain 

subsets never moved from the original blue. This was due to those particular subsets not having 

enough features to track for the duration of the experiment. 

Since the latex sheet was moving back over the indenter the displacement was in a negative 

direction with regard to the cameras. Hence in the heat map, the bluer the subset the closer to 

the cameras and the greener/more orange the further the target is from the cameras.  
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As mentioned, there are some subsets that are not trackable since there were not enough 

features identified. This is the result of the density and feature profile of the speckle pattern in 

that area and not the DIC algorithm itself. 

In order to display the bulge effectively the non-trackable points have been excluded.  

An example of the raw versus filtered data is shown below to demonstrate that the 

representation of the data is still true. This filtering was carried out as a post process on the 

data. 

 

Non-filtered graph 

 

Filtered graph 

Figure 63: Example of the filtering algorithm. 

In Figure 64 the progression of the bulge test is illustrated with graphs plotted from the results 

files. One can clearly see the convex sphere of the indenter become apparent as the experiment 

continues.  
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t = 1s 

 

t = 9s 

 

t = 10s 

 

t = 11s 

 

t = 12s 

 

t = 16s 

Figure 64: Progression of Bulge Test. 
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A numerical method was used to extract the radius of the bulge as measured by the DIC 

algorithm [83]. 

First a set of the final data that represented the actual bulge impression was chosen. This is 

show in Figure 65.  

 
Figure 65: Extract of the data representing the bulge – large indenter. 

This set of data was used in the least squares algorithm to extract an approximation of the 

sphere that would have created this bulge. The data points for the sample used here was graphed 

and the approximate sphere was also plotted. The result is given in Figure 66.   

 
Figure 66: Bulge estimation – large indenter. 

For this data set a radius of 20.2mm was calculated from the data points. The indenter radius 

is CNC machined to 20.0mm, with an expected tolerance of 0.02mm. The 3D DIC 

deformation measurement was therefore accurate to within 1%. Although not officially 
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considered in these results, the thickness of the latex sheet could mean that the result is more 

accurate than this. Assuming the stretched latex sheet has a thickness of roughly 0.1mm it 

would mean the actual indenter is being measured at less than 20.2mm which would mean the 

system is accurate to less than a 1% tolerance. 
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4.6.2. Results for smaller indenter 

For the smaller indenter a sample of the real-time heat map images are presented in Table 20. 

 

t = 10s 

 

t = 12s 

 

t = 14s 

 

t = 18s 

 

t = 22s 

 

t = 26s 

0 1 2 3 4 5 6 7 8 9 10 mm 

            
 

Table 20: Real time displacement images (small indenter). 

These images were displayed in real time as the test was being executed.  For this experiment 

a smaller region of interest was chosen since the indenter was smaller.  
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t = 10s 

 

t = 12s 

 

t = 14s 

 

t = 18s 

 

t = 22s 

 

t = 26s 

Figure 67: Progression of Bulge Test. 
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Figure 67 represents the same data as Table 20 but extracted as part of the post processing. 

Using the same algorithm as used previously, the non-trackable subsets have been filtered 

out. 

As done previously, a set of the data was chosen that best represented the bulge, and this was 

run through a least squares algorithm to determine the radius. The subset chosen is shown in 

Figure 68. 

     

Figure 68: Extract of the data representing the bulge – small indenter. 

The radius was then estimated as shown in Figure 69. 

 

Figure 69: Bulge estimation – small indenter. 
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For this set of data, a radius of 15.5mm was calculated from the data points. The physical 

measured (and machined) radius is 12.5mm. This represents a much larger error than the 

previous experiment.  

This experiment highlights the degree to which the subset size needs to be considered in the 

execution of an experiment. With a larger sample (large indenter) the larger subset size had 

less of a negative effect on the accuracy. This is since the larger the sample the better the larger 

subsets can more accurately approximate the curve.  

With the smaller indenter the larger subsets cannot match the surface accurately which means 

that the estimate of the radius is exaggerated (much like the illustration in Figure 62).  

To test this the same experiment was run with subsets half the size. This results in a lot more 

points that cannot be tracked since the speckle pattern used did not have the granularity to allow 

for tracking at this subset size. The tracking inconsistencies can be seen in Figure 70. 

 

Figure 70: Smaller Subset Size Tracking 

In the interests of understanding if this would result in a more accurate representation of the 

sphere the data was filtered, and the radius of the sphere estimated using the same method 

above. After this processing the radius was shown to be 11.5mm. This can be seen in Figure 

71. Although this matches the expected radius much better the level of processing that was 

needed on the input data is not practical. For this subset size to be used a much better process 

for speckle pattern creation would need to be used. 
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Figure 71: Estimate of radius with smaller subsets used. 

For accurate measurements, therefore, a well-considered (and in most cases small) subset size 

would be required. A smaller subset size for the same region of interest would mean more 

subsets which we showed definitively in section  4.3 will not compromise the near real-time 

nature of the results.  

Smaller subsets sizes do however require a much finer pitch of speckles since each subset 

would need to present as a unique specimen in the correlation.  
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5. Concluding Discussion 

5.1. Feasibility Discussion 

5.1.1. Summary 

We set out to understand to what extent it was practical to run 3D DIC algorithms in real-time 

on a single board computer. The question arose from the following: 

• In bulge test experiments conducted with softer, fragile materials, a real time measure 

of deformation or strain is beneficial for interrupting experiments before rupture. 

• At this point DIC is generally run as a post processing activity on a standard computer 

– usually one with significant specifications. Given the advances in the size and power 

of single board computers the DIC algorithm could potentially run on a single board 

computer in real time. This would increase the portability of the DIC system. 

Based on the code bases’ open source status and its modular nature the DICe code base was 

chosen for the implementation of this project. The NVIDIA Jeston Nano single board computer 

was also chosen based on its availability, cost effectiveness and capabilities. 

The DICe code base then had to be compiled on the Jeston Nano single board computer and an 

application then had to be developed around this code base. 

With the application developed, a test environment was created to test the efficacy of the code 

base to answer the questions as mentioned at the start of this paragraph. 

5.1.2. Results Summary 

The noise floor experiments showed that the system produced has low noise characteristics. 

Any experiment where the measurement required needs a resolution ≥ 0.02mm will not be 

affected by the noise. It is important to note that this result does not mean that the system is 

accurate to this resolution, only that this is the noise floor of the system. Anything that tries to 

measure at an accuracy below this will, by definition, be inaccurate. 

The test jig’s motion was confirmed to be accurate to within 0.1mm. While it would be helpful 

to have a more accurate reference for motion, due to travel and laboratory restrictions 

associated with the COVID 19 pandemic, it was not possible to access a more accurate test 

frame within the timelines of this project.   

Since measuring the 3D displacement via DIC is based on measuring the 2D displacement in 

both cameras, accuracy of the 2D displacement measurement was checked first. This was found 

to be accurate to 0.1mm (on average). 

The 3D displacement measurement accuracy was measured using a stepped profile and a 

continuous profile. The final accuracy measured was (on average) 0.1mm. 

All of these results showed the system can execute the 3D DIC algorithm in real-time, while 

producing acceptable accuracy. Due to mechanical play in the test frame, it wasn't possible to 

confirm if the DIC was achieving better accuracy. In order to show the real-time possibilities 

of the system the speed at which the system can execute the algorithm needed to be tested. 
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The subsequent experiment determined the effect of the number of subsets on the speed of the 

execution. The rule of thumb was determined to be that ~0.04sec added to the processing time 

per subset added. This is however not a linear relationship. As shown in the experiment due to 

the nature of the processor used, the execution time plateaus at points where the multiple cores 

start getting used across multiple subsets. As the cores are fully loaded the execution time 

jumps to allow for the next set to be processed. 

The actual speed of execution was measured but the interpretation of the result is harder to 

contextualise.  What we were trying to do is determine what the profile of the displacement 

looked like as the sample was deformed. If only the start and stop positions of the sample were 

of interest, the actual speed of execution would be almost irrelevant since these could be 

sampled at any point. However, this is most likely to not be the case. For the experiment done, 

the processing speed achieved was roughly 0.8Hz. At this sample rate a speed of 0.5mm/s to 

1.5 mm/s created a useable reconstruction of the waveform. 

All of these experiments were done using a flat, rigid target. To prove that this method would 

(after all of these basic metrics were defined) be able to properly measure a bulge test this was 

simulated by deforming a flexible target, using two different radius indenters. Within the limits 

of the equipment available, the accuracy of the displacement profile measured for the larger 

indenter was shown to be accurate to < 1% of the actual radius. For the smaller indenter the 

interplay between speckle and subset size was a limiting factor. 

5.1.3. Comments on Feasibility 

The result of this set of experiments is that the concept of real-time 3D DIC on a portable, 

single board computer is feasible. This broad statement does however come with some caveats. 

The processing power of the Jetson Nano (specifically) limits the system to completely 

processing displacement for one frame every 1.4s. A lower number of subsets can improve this 

but for all practical purposes the sampling rate is a frame every second. This means that any 

experiment where sampling the displacement at a faster rate is important, will make this 

implementation unsuitable. 

The very high pixel density of the 12MP cameras used was unnecessary for this application. 

Faster sample rates could be achieved by using cameras with lower pixel density, but this would 

need to be carefully weighed up against the compromises in accuracy that would be inevitable. 

Due to this limitation on speed, larger subsets are preferable to smaller ones on the sample. 

This means that the results will be more granular the larger the sample is – if one is still trying 

to achieve the real-time functionality. A smaller sample is therefore preferable.  

In the process of executing these experiments, the importance of the target speckling quality 

became important. In regular DIC, where results are post-processed, a problem with speckling 

would be discovered after the experiment has concluded. The reason one might want a real-

time DIC process is often because the sample is fragile and hence re-executing the tests may 

not be possible. Processes for better speckling and feature creation on targets are outside the 
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scope of this discussion but their importance became very clear. For this real-time process to 

work well the method of speckling needs to be deterministic in distribution and speckle size.  

5.2. Potential Further Work 

There are two main areas where further work could be conducted: 

• Improving algorithm efficiency. 

• Improving sample preparation. 

In the area of algorithm efficiency there are various ways that improvements could be explored. 

The Jetson Nano is equipped with 128 NVIDIA CUDA cores. These allow for massive 

parallelisation of processes. The code as contained in the DICe library did not allow for easy 

translation to CUDA code, but this approach would offer significant performance benefits. 

Some work has been done on a CUDA code implementation of DIC algorithm but this would 

need to be translated to work with the DICe code base [73]–[76], [84]. 

There is also a possibility of improving efficiency in the DICe code base itself. The code base 

is optimised for standard DIC processes which are run as post-processes. For real-time 

applications some of the internals of the system could be improved/optimised. This was not 

explored but there is scope for this. 

The sample preparation process has some scope for improvement as well. In the process of 

running the experiments it was found that the requirements for the speckle pattern distribution 

and randomness was directly related to the subset size. The relationship was not explored but 

it is an area that needs to be investigated further. Some work does exist on speckles and how 

to use them but this was not explored in great detail in this project [25], [42], [45], [47]–[49], 

[85]. Along with this, the actual fabrication of speckles is something that needs to be more 

deterministic. A summary of the speckle pattern fabrication techniques does exist, but many of 

the suggestions for speckle pattern fabrication required special equipment [8]. These 

fabrication methods need to be explored in the context of this work. 

5.3. Concluding Remarks 

In the introduction it was discussed that the vast improvement in computing power and 

availability of off the shelf components was the instigator of the question posed in this project. 

Ultimately, we proved that it is feasible, within certain constraints, to perform real-time 3D 

DIC with off the shelf components.  

As technologies improve this will continue to be the case. During the course of this project, an 

updated Jetson Nano was released with 2 MIPI CSI-2 camera interfaces - meaning potential 

for a faster system is already available. 

Ultimately improvements in camera technology, processor efficiency, calibration processes 

and speckle pattern application will make the entire exercise of 3D DIC very “plug and play”. 

The hope is that this project provides a useful step in that process. 
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7. Appendices 

7.1. Appendix 1 

 

Deformed 

Image 79840 109175 83682 128331 76459 90863 78595 65687 65087

0 23 217 4991 0 0 0 0 0 0 0 0

1 146 89 217 12994 31682 0 0 0 0 0 0 0

2 57 170 89 217 9690 5073 12369 0 0 0 0 0 0

3 217 64 170 89 217 13888 36890 19313 47089 0 0 0 0 0

4 89 113 64 170 89 217 10057 5696 15130 7921 19313 0 0 0 0

5 170 166 113 64 170 89 217 28220 19210 10880 28900 15130 36890 0 0 0

6 64 166 113 64 170 89 217 0 10624 7232 4096 10880 5696 13888 0 0

7 113 166 113 64 170 89 217 0 0 18758 12769 7232 19210 10057 24521 0

8 166 166 113 64 170 89 217 0 0 0 27556 18758 10624 28220 14774 36022

9 31 166 113 64 170 89 0 0 0 0 5146 3503 1984 5270 2759

10 90 166 113 64 170 0 0 0 0 0 14940 10170 5760 15300

11 86 166 113 64 0 0 0 0 0 0 14276 9718 5504

12 34 166 113 0 0 0 0 0 0 0 5644 3842

13 10 166 0 0 0 0 0 0 0 0 1660

0.138867 0.18989 0.14555 0.223208 0.132987 0.15804 0.171453 0.17328 0.194783

Moving Window
∑ 𝐹(𝑥, 𝑦)𝐺(𝑥∗, 𝑦∗) 

∑ 𝐹(𝑥, 𝑦)𝐺(𝑥∗, 𝑦∗)

√∑ 𝐹(𝑥, 𝑦)2 ∑ 𝐺(𝑥∗, 𝑦∗)2
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7.2. Appendix 2 

  
Subsets X Average 

Error 1 2 3 4 5 6 7 8 

Su
b

se
ts

 Y
 

1 0.97438 1.0035 0.96472 1.0034 0.98407 0.97446 0.9898 0.99226 

Target: 
1mm 

2 0.98161 0.97006 0.97247 0.97295 0.96438 0.98941 0.96163 0.9795 
3 0.96425 0.98177 0.96715 0.97115 0.96964 0.94984 0.97497 0.99294 
4 0.94249 0.97094 0.9677 0.96252 0.98178 0.97816 0.97128 0.9686 
5 0.9558 0.96964 0.9527 0.99609 0.98348 0.97839 0.99578 0.98914 
6 0.97416 0.97175 0.97899 0.99343 0.994 0.98131 0.96771 0.99047 
7 0.97795 0.99079 0.98533 0.97045 1.0073 0.9677 0.96015 0.97818 
8 0.96888 0.99268 0.98744 0.97014 0.97671 0.96151 0.96386 1.0063 

Error: 
0.0217 

9 0.97397 0.98329 0.96895 0.986 0.9852 0.96418 0.98179 0.99424 
10 0.98202 0.99749 0.97821 0.99204 0.98792 0.98528 0.97753 0.98023 
11 0.95777 0.97638 0.9743 0.9788 0.98062 0.98175 0.98583 0.98674 
12 0.98543 0.97592 0.98581 0.97614 0.98283 0.97828 0.9801 0.96455 
13 0.96618 0.99184 0.99462 0.98198 0.97492 0.9871 0.99094 0.97044 
14 0.95894 0.9723 0.97706 0.97355 0.97395 0.97865 0.97592 0.97709 
15 0.98839 0.99739 0.98065 1.0047 0.96796 0.99412 0.98156 0.98449 

  1 2 3 4 5 6 7 8   

Su
b

se
ts

 Y
 

1 2.0195 2.0328 1.9988 2.0178 2.007 2.0047 1.9888 2.0076 

Target: 
2mm 

2 1.994 1.9979 2.0088 2.0182 1.9919 2.0195 1.9565 1.9976 
3 1.9765 1.9996 1.9913 1.9989 1.9927 2.013 1.9957 2.007 
4 1.9595 1.975 1.9775 1.9813 2.0099 1.9936 2.0005 1.9994 
5 1.9845 1.9816 1.9687 1.988 1.9978 1.9942 2.017 2.0112 
6 2.0245 1.9988 2.0055 2.0223 2.0136 1.9837 2.0037 2.0024 
7 2.0126 2.0147 1.9981 1.9876 2.0109 1.9834 1.9711 1.991 
8 1.9694 1.9969 2.0149 1.9801 2.001 1.9869 2.0096 2.0209 

Error: 
0.0127 

9 2.0014 1.9921 1.965 1.9874 2.0028 1.9962 2.0004 2.0566 
10 2.0133 2.0367 1.985 1.9827 1.9852 2.0179 2.0082 2.002 
11 1.9994 2.0007 2.0106 2.0176 1.9896 1.9854 1.99 2.0073 
12 1.9914 2.0031 1.9869 2.0022 1.9975 2.0031 1.9801 1.9818 
13 1.9668 1.9956 2.0101 1.994 1.9857 1.9865 2.0012 2.0146 
14 1.9807 2.0108 1.9765 1.9633 2 2.0073 1.9974 2.0019 
15 2.0268 2.0188 1.9965 2.0156 1.9732 2.0182 2.0017 2.0046 

  1 2 3 4 5 6 7 8   

Su
b

se
ts

 Y
 

1 2.9096 2.9578 2.916 2.9712 2.9329 2.9428 2.9167 2.9549 

Target: 
3mm 

2 2.9469 2.9439 2.9036 2.9236 2.938 2.9678 2.8977 2.9305 
3 2.9015 2.9328 2.9203 2.9297 2.8803 2.9088 2.9214 2.9483 
4 2.8961 2.9208 2.911 2.9237 2.955 2.9339 2.8981 2.944 
5 2.8852 2.9332 2.9174 2.9324 2.9314 2.949 2.9591 2.9407 
6 2.9099 2.9172 2.9316 2.9453 2.9472 2.932 2.9421 2.9491 
7 2.9597 2.939 2.9141 2.8942 2.9527 2.9303 2.9043 2.9308 
8 2.924 2.9419 2.979 2.919 2.9079 2.8803 2.946 2.9497 

Error: 
0.0694 

9 2.9366 2.9368 2.8964 2.9274 2.9438 2.9309 2.9183 2.9477 
10 2.9336 2.9631 2.9239 2.9118 2.918 2.9454 2.9646 2.9423 
11 2.8796 2.927 2.9348 2.9433 2.934 2.934 2.9241 2.9571 
12 2.9347 2.9401 2.9098 2.9276 2.9199 2.9236 2.9348 2.9223 
13 2.9031 2.941 2.9482 2.9171 2.9031 2.8982 2.9265 2.9726 
14 2.9495 2.9605 2.9106 2.9064 2.9485 2.94 2.9043 2.9253 
15 2.9574 2.9613 2.9449 2.9403 2.9083 2.9528 2.9502 2.9376 

  1 2 3 4 5 6 7 8   

Su
b

se
ts

 Y
 

1 3.944 3.9552 3.9185 3.96 3.9394 3.9359 3.9476 3.9512 

Target: 
4mm 

2 3.9482 3.9473 3.9299 3.9595 3.9241 3.9589 3.9061 3.9306 
3 3.9202 3.9388 3.932 3.9136 3.9049 3.9226 3.9153 3.9385 
4 3.8893 3.9113 3.9381 3.9316 3.9624 3.9151 3.9153 3.9703 
5 3.8718 3.9328 3.9178 3.9319 3.9445 3.9667 3.9588 3.9281 
6 3.9233 3.9287 3.9095 3.9585 3.9544 3.9272 3.9538 3.968 
7 3.9707 3.9104 3.9032 3.9315 3.9297 3.9312 3.9126 3.9208 
8 3.9228 3.9576 3.9681 3.9242 3.9138 3.8913 3.9305 3.9587 

Error: 
0.0658 

9 3.9446 3.9399 3.9307 3.9396 3.9546 3.9208 3.922 3.9538 
10 3.9156 3.9752 3.9255 3.9001 3.9332 3.9386 3.9736 3.9216 
11 3.9052 3.9212 3.9123 3.9195 3.9595 3.9283 3.9292 3.9803 
12 3.9489 3.9264 3.9414 3.9284 3.8983 3.9317 3.9292 3.9213 
13 3.957 3.9542 3.974 3.9182 3.8988 3.9303 3.9195 3.9481 
14 3.9436 3.942 3.9206 3.9051 3.9809 3.9326 3.9177 3.9341 
15 3.9537 3.9534 3.9348 3.9379 3.8999 3.9767 3.9359 3.9326 
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  1 2 3 4 5 6 7 8   
Su

b
se

ts
 Y

 
1 2.929 2.9843 2.944 2.9986 2.9592 2.9617 2.9355 2.9711 

Target: 
3mm 

2 2.9608 2.9615 2.9265 2.9484 2.9573 2.9947 2.9101 2.9596 
3 2.9181 2.9546 2.9381 2.9375 2.9092 2.9416 2.9472 2.9737 
4 2.9139 2.9381 2.9317 2.9444 2.9701 2.946 2.9306 2.9736 
5 2.9136 2.9516 2.9402 2.9553 2.9471 2.977 2.9742 2.9541 
6 2.9361 2.9422 2.9542 2.9754 2.9629 2.9547 2.9632 2.9739 
7 2.9708 2.9522 2.9403 2.9205 2.9788 2.9596 2.9298 2.9487 
8 2.9379 2.9574 2.9881 2.9383 2.9319 2.9064 2.9681 2.9662 

Error: 
0.0486 

9 2.9594 2.957 2.9163 2.9318 2.9614 2.9386 2.9411 2.971 
10 2.9597 2.9919 2.9475 2.9245 2.9371 2.9627 2.9789 2.95 
11 2.9099 2.9555 2.9646 2.968 2.9596 2.9517 2.9468 2.9796 
12 2.9488 2.9497 2.933 2.9513 2.9442 2.9514 2.9506 2.9386 
13 2.9184 2.9641 2.9641 2.9299 2.9216 2.9196 2.9512 2.9913 
14 2.9698 2.9809 2.9286 2.9241 2.9608 2.9554 2.9308 2.9426 
15 2.9836 2.9883 2.9637 2.9617 2.926 2.9799 2.9681 2.9584 

  1 2 3 4 5 6 7 8   

Su
b

se
ts

 Y
 

1 2.0449 2.0566 2.0204 2.0448 2.0287 2.0216 2.0086 2.0249 

Target: 
2mm 

2 2.0137 2.0119 2.0303 2.0357 2.0093 2.0398 1.9719 2.0164 
3 1.9907 2.017 2.0067 2.0083 2.0132 2.0288 2.0188 2.0267 
4 1.9813 1.9914 1.9897 1.9996 2.0234 2.0136 2.0188 2.0282 
5 2.0105 1.9991 1.9919 2.0107 2.0132 2.0183 2.0344 2.0295 
6 2.0428 2.0191 2.0268 2.0414 2.0292 2.0082 2.0286 2.0163 
7 2.0339 2.0328 2.0157 2.005 2.0282 2.0029 1.9929 2.0108 
8 1.9938 2.0091 2.0311 1.999 2.0219 2.0039 2.0291 2.0347 

Error: 
0.0191 

9 2.017 2.0096 1.982 1.9997 2.0161 2.0113 2.0187 2.0743 
10 2.0288 2.055 1.9993 1.9993 1.9993 2.0274 2.0259 2.0181 
11 2.0141 2.02 2.0295 2.0402 2.0121 1.9979 2.0056 2.0289 
12 2.0121 2.0192 2.0049 2.0205 2.0177 2.0092 2.0017 2.0004 
13 1.9843 2.0085 2.0221 2.0066 2 2.0083 2.0184 2.0362 
14 2.0007 2.0324 1.9915 1.9845 2.0108 2.0145 2.0181 2.0227 
15 2.047 2.0415 2.0112 2.033 1.9897 2.0314 2.0138 2.0174 

  1 2 3 4 5 6 7 8   

Su
b

se
ts

 Y
 

1 1.054 1.0753 1.0426 1.0872 1.0515 1.0534 1.0627 1.0656 

Target: 
1mm 

2 1.055 1.0419 1.0551 1.0636 1.0455 1.0606 1.0194 1.0503 
3 1.037 1.0595 1.041 1.0471 1.0428 1.0487 1.047 1.0668 
4 1.02 1.0419 1.044 1.035 1.048 1.0503 1.0638 1.0416 
5 1.0392 1.0406 1.0274 1.0668 1.0547 1.0598 1.071 1.069 
6 1.054 1.0546 1.0499 1.0747 1.0678 1.0552 1.0249 1.0643 
7 1.0456 1.062 1.0557 1.0514 1.0815 1.0468 1.0329 1.0518 
8 1.0421 1.0616 1.0573 1.0544 1.0488 1.0504 1.0531 1.0749 

Error: 
0.0525 

9 1.0403 1.0576 1.0298 1.0529 1.0572 1.0523 1.0694 1.0799 
10 1.0527 1.0714 1.039 1.0533 1.051 1.063 1.0459 1.0591 
11 1.0352 1.0464 1.0452 1.061 1.0469 1.0546 1.0623 1.0624 
12 1.0445 1.0454 1.0699 1.0535 1.0432 1.0534 1.0453 1.0398 
13 1.0357 1.0618 1.0572 1.0592 1.0482 1.0576 1.0647 1.045 
14 1.0244 1.0533 1.0449 1.0293 1.0444 1.0528 1.0584 1.048 
15 1.053 1.0725 1.0599 1.0601 1.0439 1.0674 1.0675 1.0554 
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7.3. Appendix 3 
S,05  //Set the sample period 
F,01  //Move forward 1mm 
W,01  //Wait 1 second  
F,01 
W,01 
F,01 
W,01 
F,01 
W,01 
F,01 
W,01 
F,01 
W,01 
F,01 
W,01 
F,01 
W,01 
F,01 
W,01 
F,01 
W,10  //Wait 10 seconds 
END  //End the script 

 

7.4. Appendix 4 

The results repository can be cloned to your local machine. If cloned to your local machine, 

please note that you will need the following installed on your machine to view the analysis 

files: 

• Git – to clone the repositories 

o git clone https://github.com/haemishkyd/kydhae001_msc_results.git 

• Python 3.6 or newer with the following packages installed: 

o Pandas 

o Matplotlib 

o Numpy 

• Jupyter Notebooks 

The source code can be cloned to your local machine. You will need the following on your 

machine to view the code: 

• Git – to clone the repositories 

o git clone https://github.com/haemishkyd/kydhae001_msc_code.git 

Please note: In order to actually build this code to an executable will require significant effort.  

o A machine with the correct operating system will need to be obtained. 

o The DICe, Trilinos and OpenCV code bases will need to be built. 

o The Cmake files will need to be updated to reflect the location of these built code bases. 

The explanation of how to build this is not provided in any detail here, but if this is something 

that is required the author can be contacted. 

https://github.com/haemishkyd/kydhae001_msc_code.git
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7.5. Appendix 5 

import cv2 

import numpy as np 

from matplotlib import pyplot as plt 

 

img = cv2.imread('ref.tif', 0) 

f = np.fft.fft2(img) 

fshift = np.fft.fftshift(f) 

magnitude_spectrum = 20*np.log(np.abs(fshift)) 

 

plt.subplot(121), plt.imshow(img, cmap='gray') 

plt.title('Input Image'), plt.xticks([]), plt.yticks([]) 

plt.subplot(122), plt.imshow(magnitude_spectrum, cmap='gray') 

plt.title('Magnitude Spectrum'), plt.xticks([]), plt.yticks([]) 

plt.show() 

 

rows, cols = img.shape 

crow, ccol = rows/2, cols/2 

window_size = 60 

fshift[int(crow-(window_size/2)):int(crow+(window_size/2)), int(ccol-

(window_size/2)):int(ccol+(window_size/2))] = 0 

f_ishift = np.fft.ifftshift(fshift) 

img_back = np.fft.ifft2(f_ishift) 

img_back = np.abs(img_back) 

 

plt.subplot(121), plt.imshow(img, cmap='gray') 

plt.title('Input Image'), plt.xticks([]), plt.yticks([]) 

plt.subplot(122), plt.imshow(img_back, cmap='gray') 

plt.title('Image after HPF'), plt.xticks([]), plt.yticks([]) 

 

plt.show() 

 




