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Abstract 

This study aims to establish if a relationship between the investor sentiment generated from social 

media posts, such as Tweets, and the return on securities exists. If a relationship exists, one would be 

able to obtain an informational advantage from public information and outperform the market on a 

risk-adjusted basis. This would give the “outsider” information processed the predictive power of 

insider information, hence the title of the paper. The study makes use of Bloomberg’s social activity 

data, which through natural language processing, allows for investor sentiment to be obtained by 

analysing a combination of Twitter and StockTwits posts. This paper makes use of a three-prong 

approach, firstly examining if investor sentiment is a predictor of next-day returns. Next, an event 

study methodology is used to examine the optimal holding period, which can further be expanded to 

test market efficiency. Lastly, this paper considers the asymmetric risk aversion as outlined by 

Kahneman and Tversky (1979). Results show that there is little to no correlation between sentiment 

and next day returns. There is evidence for a multi-day holding period being optimal but statistically 

insignificant and there is no evidence found for asymmetric risk aversion. 
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1. Introduction  

This paper examines the relationship between Twitter sentiment and next day returns, exploring if 

trading on Twitter sentiment, which is obtained by making use of Bloomberg’s Social Activity Data, 

can produce returns that significantly outperform the benchmark on a risk-adjusted basis. This was 

examined in three parts.  

The first, can Twitter sentiment-driven trades with a 1-day holding period outperform the benchmark 

on a risk-adjusted basis. Three portfolios were constructed to test for this, with the same construction 

used to compile three additional portfolios that made use of news sentiment as their basis for 

construction. From these portfolios, it was seen that there were some significant results, but due to 

the small effect size, it can reasonably be expected that the introduction of transaction and short 

selling costs would result in these returns being either insignificant or negative. Part one concludes 

that Twitter sentiment is not a predictor of next-day returns and acts rather as a trailing indicator.  

Part 2 of the results examine optimal holding periods by making use of both an event study and Cohen 

& Frazzini’s (2008) underreaction coefficient (URC). The event study shows that much of the 

information pertaining to the sentiment scores is priced in before the sentiment is registered on 

Twitter. This further provides evidence that Twitter sentiment is a trailing indicator. However, the 

event study and the URC provide evidence for a 5-day holding period. The multi-day holding period 

outperforms the 1-day holding period and the benchmark but not at a significant level.  

Lastly, the asymmetric risk aversion of investors as explained by Kahneman & Tversky’s Prospect 

Theory (1979) is examined. Making use of the trades driven by positive and negative sentiment and 

comparing the returns. It was seen that the trades driven by negative sentiment earned greater 

returns, and had greater volatility, this outperformance was not significant and thus it is concluded 

that there was no difference in reactions to positive or negative Twitter sentiment.   

This paper is then broken up into seven sections, section 1 provides context, section 2 conducts a 

review of literature, section 3 outlines the research question, section 4 shows an overview of data, 

section 5 presents the results, section 6 concludes and section 7 outlines limitations and extensions 

to future studies.  
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1.1. Context  

1.1.1. What is Investor Sentiment and how is it Quantified?  

It has long been observed that valuations and the market price of an asset differ, often by a substantial 

margin. This has left investors unsure about how to adequately account for this price discrepancy. This 

phenomenon has been called noise or sentiment (De long et al. 1990a).  

Investor sentiment has been defined in a 1990 paper (Morck et al.) as the beliefs that investors hold 

about the valuation of an asset that cannot be explained by the facts at hand. 

When the concept of sentiment was initially conceptualised, it was done with no theoretical basis and 

the role of sentiment was left to be implicit in the studies that observed it. This was likely due to the 

difficulty in distinguishing between the random walk of the market and market mispricing (Baker & 

Wurgler, 2007). 

Sentiment has been thought to be largely unmeasurable as, in the past, there has been no way to 

measure what the feelings or sentiment of market participants are. In the past proxies for sentiment 

have been used. These include things such as surveying investors, looking at trading volumes and retail 

investor trades amongst other things which have been outlined by Baker & Wurgler (2007). 

Social media has become a central part of the way in which humanity communicates. This has resulted 

in a massive amount of data being generated, and data that is now useful as a result of breakthroughs 

in machine learning. While users cannot necessarily be linked to their trades when considering the 

aggregated data, the assets being discussed can be identified and the sentiment of the market with 

regards to those assets can be obtained (Deng et al., 2018). 

Sentiment can be categorized as positive, negative or neutral. Positive sentiment has been defined as 

an expectation that the market will improve in the coming period, this could be interpreted as a buy 

signal, a negative sentiment shows an expectation that the markets will decline in the coming period, 

this could be interpreted as a sell signal, and neutral sentiment is the expectation that markets will 

remain fairly constant, which could be seen as a signal to hold. 

1.1.2. What is Sentiment Analysis and how is it Conducted?  

Sentiment analysis is a language processing technique that is used to identify if a text expresses a 

positive, negative or neutral emotion towards a subject (Gupta, 2018). The increased prevalence of 

microblogging sites has allowed for people to rapidly share their thoughts on views on a subject. This 

has increased the amount of data available to be analysed. Analysis of text data has evolved from a 
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basic lexicon approach, which used a list of pre-specified words and rules to conduct an analysis, to 

more complex machine learning techniques (Lee, 2021). 

These processes can examine the text for content and context and are able to output the sentiment 

of the text and what the sentiment is referring to. The lexicon approach is more basic and is 

outperformed by the machine learning algorithms (Xing et al. 2020), thus this paper will make use of 

Bloomberg’s social activity data that is collected using a machine learning technique known as a 

support vector machine1 (SVM) model (Cui, Lam & Verma, 2016). This supervised machine learning 

algorithm is used to determine the sentiment of each Tweet from a long investor’s perspective. 

Bloomberg then makes use of a proprietary method to aggregate all the Tweets for a specific company 

in order to output a sentiment score between -1 (extreme negative) and +1 (extreme positive) and 

this is updated every minute for all public companies that are mentioned in either a Tweet or a news 

article. Data is pulled from both Twitter and StockTwits to compute these sentiment figures 

(Bloomberg, 2022).  

If the sentiment is able to be ascertained it may allow for them to have the upper hand and make 

trades before the market does which would, in turn, result in market outperformance. This assumes 

that the sentiment is an adequate measure of future returns or losses and that trades can be made 

before the market moves. The need for speed of the trades may suggest a need for an algorithmic-

based trading system as humans may be too slow to fully take advantage of this profitable 

opportunity. 

1.1.3.  Natural Language Processing (NLP) 

NLP is a machine learning process by which large amounts of text can be sorted and examined for 

content and tone. NLP is an intersection between computational linguistics and machine learning 

(IBM, 2020).  

NLP is an important development for big data as much of the data generated by humans through 

things such as social media is unstructured and is unusable unless processed. NLP allows the 

processing of this data and outputs meaningful metrics which can be used to make more informed 

decisions. The speed at which data is generated in the modern world requires the automation of the 

process. This speed of data and effective automation allows for more timely data to be available to 

aid decision making (MonkeyLearn, 2021). 

 

 
1 See Appendix 1 for further explanation of SVM models.  
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1.1.4. Long/ Short Portfolios and Measures of Performance  

Long/ short portfolios are an investment style that allows an investor to make active bets on both the 

up and downside and allows investors to not be limited by the holdings of the benchmark. Long/ Short 

portfolios also allow for investors to fund their long positions with their short positions, reducing the 

initial investment needed while not drastically increasing risk as the longs should balance out the 

shorts resulting in a market-neutral portfolio (Grinold & Kahn, 1999). 

The simple existence of positive returns does not signify skill or value-added. Thus, a way must be 

found to measure the returns of our strategy and be able to attach some level of statistical significance 

to those returns so that we may rule out luck being the driver of returns and instead attribute the 

returns to a superior strategy. 

1.1.4.1. Sharpe Ratio 

The Sharpe Ratio (Sharpe, 1966) is defined as the excess return earned over the amount of risk taken 

to earn that return. 

  

𝑆𝑅𝑝 =  
𝐸(𝑅𝑝 − 𝑅𝑓)

𝜎𝑝
 

There is an approximate significant t-stat at a 95% or greater level, if the difference in Sharpe ratio is 

greater than two times the square root of two divided by the number of time periods (Grinold & Kahn, 

1999).  

(
�̅�𝑝

𝜎𝑝
−

�̅�𝑏

𝜎𝑏
) > 2 ∗ √

2

𝑁
 

Where �̅�𝑝 is the return of the portfolio less the risk-free rate, 𝜎𝑝 is the standard deviation of the returns 

of the portfolio, �̅�𝑏 is the return on the benchmark less the risk-free rate, and 𝜎𝑏 is the standard 

deviation of the returns of the benchmark and 𝑁 is the number of periods examined. 

A study done by Dybvig & Ross (1985) has found that a positive alpha value does not imply a positive 

Share ratio, but a positive Sharpe ratio will result in a positive alpha. Thus, a Sharpe ratio approach 

will be used, with Jensen’s alpha (Jensen, 1968) used as an explanatory tool, as it will allow us to 

further expand our analysis by making use of the information ratio, as discussed below. 
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1.1.4.2. Alphas with significant t-stats  

In this paper, alpha will be calculated as the amount by which the portfolio outperforms the 

benchmark, with the S&P 500 being used as the benchmark. This will be calculated as the return of 

the portfolio over and above the risk-free rate less the beta of the portfolio multiplied by the 

benchmark return.  

𝛼𝑝 = 𝑅𝑝 − 𝛽𝑝𝑅𝑏 

Alpha is defined as the average of the realised residual returns when looking backwards. Alpha is a 

useful metric to use as it accounts for excess returns but also attaches a t-stat to these returns to 

identify the significance of the result achieved (Grinold & Kahn, 1999). 

The t-stat for alpha is approximately equal to the alpha of the portfolio divided by the risk of the 

portfolio multiplied by the square root of the number of periods examined:  

𝑡𝑝 =  (
𝛼𝑝

𝜔𝑝
) ∗ √𝑇 

This t-stat will identify if alpha differs significantly from zero.  

1.1.4.3. Information ratio 

The Information ratio (IR) measures achievement ex-post and implies opportunity ex-ante. The IR of 

a portfolio (𝐼𝑅𝑝) is the ratio of annualised residual return (𝛼𝑝) to annualised residual risk (𝜔𝑝). A high 

information ratio implies that a manager efficiently makes use of information. 

𝐼𝑅𝑝 =  
𝛼𝑝

𝜔𝑝
 

Information ratios are presented as an annualised figure. Thus, when looking at shorter periods the 

numbers need to be scaled. The alphas will be additive while the residual risk values will be scaled by 

the square root of the difference in time period, as risks do not add.  

When comparing an active portfolio to the benchmark we will always see that the benchmark has no 

residual risk or residual return.  

𝛼𝐵𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘 , 𝜔𝐵𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘 = 0 

Making use of the IR we can then go on to calculate the information coefficient (IC). The IC is the 

correlation of each forecast with actual outcomes and is generally used as a measure of skill for an 
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active manager but in this case, it will be used as a proxy for the value of the information obtained 

from microblogs.  

The IC can also be calculated as the correlation between the signal, in this case, the sentiment, and 

the next day returns.  

𝐼𝐶 = 𝑐𝑜𝑟𝑟(𝑆𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡, 𝑁𝑒𝑥𝑡 𝐷𝑎𝑦 𝑅𝑒𝑡𝑢𝑟𝑛𝑠) 

The IR can be calculated by dividing the average IC, 𝜇(𝐼𝐶), by the standard deviation of IC, 𝜎(𝐼𝐶).   

𝐼𝑅 =  
𝜇(𝐼𝐶)

𝜎(𝐼𝐶)
 

1.1.5. What is an Event Study and Why is it Being Used? 

An event study is a method of data analysis, that allows for the examination of the market’s reaction 

to an information shock. It allows for the examination of how prices and returns act leading up to an 

event, on the day of the event and in the days after the event. It can be a useful tool for analysing 

whether an event or set of events had a marked effect on the returns of a security or a portfolio.  And 

this allows the inference of how similar securities or portfolios will react to a similar event in future 

(Hayes, 2020).  

This paper will make use of an event study as it will allow for the easy identification of the optimal 

portfolio holding time. While part 1 deals with portfolios that are rebalanced daily, information may 

not be fully priced in by the end of day 1. Making use of an event study will allow the determination 

of this.  

1.1.6. Why Twitter and US Equities?  

Making use of Twitter as our platform to analyse has been done for a number of reasons. Firstly, the 

data is readily available from Bloomberg so there is a large element of ease of use. However, we see 

that websites gain more value when they have more users (Ullrich et al., 2008). Twitter is currently 

the most widely used microblogging site in the world, with over 300 million users and more than 200 

million users using the site daily (Statista, 2021).  

The decision to make use of US equities lies in the United States of America having the most Twitter 

users (Statista, 2021), the depth and breadth of the US market, the prolific nature of indices such as 

the S&P 500 to be globally traded and a large amount of data available. 
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1.2. Why is Sentiment Analysis Relevant?  

The increased use of social media has availed an entirely new data stream to us. We are now able to 

see people’s and communities’ thoughts on a topic and analyse this data to easily establish their 

feelings on a topic. This along with the increased ease of access for retail traders, through platforms 

such as Robinhood, have left markets subject to short, fast increases in volatility that can be profitable 

for traders if they can take advantage of these situations. 

The internet has allowed for the easy congregation and discussion of topics. This has evolved into 

groups such as r/wallstreetbets being able to manipulate the share prices of listed companies, pushing 

share prices to absurd levels. NLP has granted the ability to monitor these groups and establish which 

assets are being discussed and the sentiment attached to the asset. If an investor is able to know which 

asset price is about to spike before it does, this will allow them to earn large risk-adjusted returns, and 

the use of sentiment will also provide a time to exit the trade before the price normalises. If this is 

possible it will allow for large profits to be made. 

Trading on sentiment may also become more pertinent in the future as stat-arbitrage investors search 

for more ways to outperform the market. This will both result in the sentiment of microblogs carrying 

more weight, as posited by Tumarkin & Whitelaw (2001), and the profitable opportunities becoming 

more difficult to find. 
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2. Literature Review  

While sentiment analysis using NLP models is a relatively new advent as it relies heavily on big data, 

there is a wealth of research done on investor sentiment that predates the big data era. These studies 

have laid the groundwork for the approaches used and often correctly theorised the actual results 

that are found in more recent studies.   

The research methodologies used in this paper are based on the work of Oh & Sheng (2011) and Cui, 

Lam & Verma (2016). It must be noted that both of these papers have certain shortcomings. Oh & 

Sheng found significant results but the study made use of a relatively small number of data points (72 

221 microblog postings) over a short time period of three months, however, this may imply a large 

effect size. Cui, Lam & Verma (2016) found significant risk-adjusted returns can be earned by trading 

on microblog sentiment, but this is a professional report done for Bloomberg to show off the tradable 

opportunities that are available to people who sign up for their service. Thus, the results of both 

studies should not be taken at face value and should be examined further, as this paper will attempt 

to do. While there is a reliance on previous work done, the research methods are sound, the possibility 

of bias lies only within the results of the papers. 

2.1. Investor Sentiment  

The concept of sentiment has existed since Adam Smith’s “Wealth of Nations” (1776), where Smith 

states that the prevailing market price could be above, equal to, or below the actual intrinsic value of 

a good. Keynes (1937) also theorised sentiment, by making reference to the “animal spirits” that 

sometimes drive the market away from their true economic realities. Both indicate the ability of 

investor sentiment to drive prices away from fundamental values. 

Since then, sentiment has been mentioned throughout literature, but in the 1980’s it began to develop 

as its own area of research with papers such as the one written by Summers (1986) laying the 

foundations for our understanding of sentiment today. Summers theorised that speculators were 

driving the price away from its fundamental value as there was often no rational reason for the 

prevailing market price. Summers co-authored another paper (De Long et al., 1990a) expanding on 

this idea further introducing the concept of noise and noise traders. These traders were theorised to 

add volatility to the market, which would drive arbitrageurs out as they would not take on the 

additional risk or could not afford to hold their position which would often cause a further deviation 

of the market price from the fundamental value of the asset. This increased volatility often resulted 

in the noise traders outperforming those investing using fundamental valuations. Which goes against 

what the efficient market hypothesis would lead one to believe (Baker & Wurgler, 2006). 
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2.2. Sentiment Analysis  

While the focus of this paper is making use of microblog sentiment to predict returns, it is pertinent 

to see the effect that sentiment can have on consumer spending in other areas to establish a causal 

link between sentiment and changes in demand. 

Aggarwal et al (2012) have found that humans will express their emotions about a subject by making 

use of social media. This now allows companies and other individuals to see the public’s emotions that 

are being expressed towards companies and products. 

There have been many instances of studies exploiting this large amount of information to predict 

social and political activities. Studies such as Tumasjan et al. (2011) find a correlation between political 

party mentions and the outcome of the German federal election results. Tumasjan et al. (2011) found 

that this information was valuable as Twitter is used extensively for political debate and thus more 

debate on a subject may make the sentiment attached to that subject more valuable. Rui, Liu & 

Whinston (2013) found that positive Twitter sentiment is associated with improved movie sales. This 

study also found that more significant Twitter users, those with more followers, had a greater impact 

than smaller Twitter accounts. 

Now that research showing that Twitter sentiment holds some predictive ability, this paper examines 

literature to find evidence that this effect exists in the literature for stock returns. 

2.3. Microblogs Predicting Stock Returns  

Many studies have been conducted to establish if there is any predictive ability within online 

platforms. Tumarkin & Whitelaw (2001) stated that microblogs would be useful for predicting returns 

if they contained new information. Their study posited four ways in which microblogs may contain 

new information. First, it was theorised that the predictive ability of microblogs was due to insiders 

attempting to influence other market participants or those with private knowledge inadvertently 

sharing this when communicating their thoughts on the asset. Next, it was suggested that the 

microblogs themselves contain no new information but rather provide a good proxy for general 

market sentiment. The paper then considered the possibilities that a large number of investors follow 

buy or sell recommendations that they see regardless of the fundamentals of the company. Finally, 

Tumarkin & Whitelaw (2001) suggested that momentum traders may be attempting to front-run the 

flows of those making use of microblog sentiment to make trades, which would further fluctuate the 

price swings that microblogs can cause.  

Baker & Wurgler (2006, 2007) have also greatly added to the literature on this topic through two 

papers. They have noted that the effects of sentiment are far more pronounced on stocks that are 
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newer, smaller, more volatile, unprofitable, non-dividend paying or with extreme growth potential. 

Thus, it is seen that firms that are relatively difficult to value, and arbitrage, are more likely to be 

affected by sentiment. Thus, while the focus of this study lies in the S&P 500, it would be anticipated  

that the methods used would provide more significant results when applied to an index such as the 

Russel 2000 which has a larger inclusion of smaller cap stocks. 

Baker & Wurgler (2006) find that when sentiment is high, speculative and hard to arbitrage stocks 

have lower future returns than bond-like stocks. This is supported by Antweiler & Frank (2004b) who 

found that there is a negative relationship between stock returns and investor sentiment. However, 

they find that while this negative return is statistically significant, it is not economically significant, and 

the returns are often overshadowed by transactions costs.  

Many studies find a correlation between the number of mentions that a stock receives, and the 

volume traded (Antweiler & Frank, 2004a) which in turn results in greater volatility in the market but 

this can be difficult to take advantage of. However, an investor may be able to develop a strategy 

making use of options and a long Vega strategy to take advantage of the additional volatility in the 

market or specific assets. Antweiler & Frank (2002) observed that more messages are generally 

associated with a greater difference of opinion. This is seen in the data obtained, as often assets that 

have a large number of mentions on a given day will have sentiment scores that are close to zero, but 

high numbers of positive and negative Tweets.  

Oh & Sheng (2011) find that the inclusion of microblog sentiment can help better predict returns, 

while Cui, Lam & Verma (2016) found that trading on microblog sentiment alone can result in risk-

adjusted returns that outperform the market at both a daily and intra-daily frequency. Deng et al. 

(2018) found that trades based on sentiment resulted in returns that were statistically significant at 

an intra-daily frequency, but this statistical significance was not observed for trades conducted at a 

daily frequency. 

Deng et al. (2018) highlight the phenomenon that occurs in the markets where there is a causality 

loop. It is sometimes observed that microblog sentiment affects stock returns, while in other cases 

stock returns can affect microblog sentiment positing that the relationship may be bidirectional.  

2.4. Stock Returns predicting Sentiment  

De long et al. (1990b) state that investors are influenced by the returns of the market, this positions 

the argument that microblogs are in fact as a result of stock returns and thus may have no predictive 

ability themselves but rather serve as a trailing indicator. Thus, following this line of thinking it would 

be assumed that a positive return in share returns would result in positive sentiment about that stock. 
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This effect may be further exaggerated due to the wide range from which sentiment is drawn by 

making use of both Twitter and an investment-specific microblog such as StockTwits2.  

Roseman & Smith (2001) proposed the Appraisal Theory. This theory states that the emotions that 

people display are a result of their evaluations of events and circumstances. Under this theory, it 

would be appropriate to state that a stock that had generated significant positive returns would then 

elicit positive emotions in those who are talking about that stock. However, Appraisal Theory goes on 

to add that specific emotional responses to a specific event cannot be mapped. This is due to the 

nature of humans to respond to the same events with different emotions and for different events to 

cause the same emotions. This makes investor sentiment a particularly difficult thing to assess, as a 

stock generating positive returns will cause someone who is long on that stock to be positive about 

the performance while someone who has taken a short position that stock to be negative about the 

performance. This was further backed up by Mayew and Venkatachalam (2012) in that individuals will 

express the change in emotions that are experienced as a result of external stimuli.  

Lo et al. (2005) found that market participants have strong emotional responses to the returns of the 

market. Deng & Poole (2010) stated that the reaction of individuals is the result of the cognitive 

appraisal of events. Further Deng & Poole (2010) linked this external stimulus to the actions of 

investment professionals who are likely affected by stock returns. Otoo (1999) found a relationship 

between increases in stock returns and improvements in investor sentiment. Thus, it can be 

reasonably expected that social media sentiment may front run stock returns.  

2.5. Mean Reversion  

Keynes (1937) stated that if the price deviates from its fundamental value by a significant amount with 

no economic reasoning, then it can reasonably be expected that the price will return to its 

fundamental value. The extreme sentiment scores, being either the driver of stock values away from 

their fundamental value or an indication that values are significantly different to fundamental values 

may create a tradable opportunity to long or short, depending on the initial movement, during the 

price correction. Benjamin Graham (Graham, Dodd & Cottle, 1934) adds to this through his quote “In 

the short run, the market is a voting machine but in the long run, it is a weighing machine.” Where in 

the short run prices may drift away from fundamental values but in the long run will revert to the 

actual value of the company.  

  

 
2 StockTwits is a social media platform that has been specifically designed to share ideas amongst investors 
and traders (https://stocktwits.com/) 



Josh Stevens – STVJOS003 
FTX5003W Dissertation  

13 
 

2.6. Bearish Sentiment having Greater Predictive Ability than Bullish Sentiment  

Bearish sentiment having greater predictive ability than bullish sentiment is rooted in Kahneman & 

Tversky’s (1979) paper which presents Prospect Theory. Prospect Theory states that people are risk-

loving on the upside but are risk-averse on the downside. This in turn results in an asymmetric risk 

function3, and people take more drastic action in response to a negative shock than they would if they 

received a positive shock.  

This can be extended considering the risk-loving nature of individuals on the upside. People may 

overreact to a positive information shock which will result in large positive sentiment that may not 

translate into returns due to individuals being overly optimistic.  

Thus, it would be expected that negative sentiment, and the prospect of losses, to cause a larger 

reaction in investors than positive sentiment would cause. This is, however, opposed by De long et al. 

(1990b) as they believe that many noise traders, or those who may be particularly sensitive to 

sentiment, will sell when they see a negative shock but also buy when they see a positive shock as 

they attempt to chase trends. 

2.7. Under-reaction Hypothesis  

Cohen & Frazzini (2008) conducted a study to identify if investors’ attention was limited, meaning that 

they did not adequately account for information that was obviously available. Their paper stated that 

two conditions need to be met to test for investor limited attention, thus under reaction.  

First, any information that is overlooked by investors must be available to the investing public before 

the price evolves. In the case of microblogs, these are public platforms, so the first condition is met. 

Secondly, the information needs to be salient and an investor must be reasonably expected to gather 

this information. This second assumption is more questionable in the case of sentiment. The first 

hypothesis (as outlined below in 3.2) will examine if there is salient information in microblogs. But 

while sentiment can be obtained by anyone with the right tools, it is not a straightforward process and 

sources that contain an investor sentiment measure are often stuck behind paywalls. For the purposes 

of this study, this paper will move forward saying both assumptions are met but opposition to this is 

valid.   

The under-reaction hypothesis was theorised by Cohen & Frazzini (2008) as a proxy for the under-

reaction of the market. The under-reaction coefficient (URC) is defined as the fraction of total return 

from period t to period t + n that occurs in period t. 

 
3 See Appendix 2 for figure.  
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𝑈𝑅𝐶 =  
𝑅𝑒𝑡𝑢𝑟𝑛𝑡

𝑅𝑒𝑡𝑢𝑟𝑛𝑡 + 𝑅𝑒𝑡𝑢𝑟𝑛 𝑛
 

Under an efficient market, it would be expected to have a URC that is equal to or close to 1. Any 

statistically significant deviation below 1 is evidence of an under-reaction, while a deviation above 1 

is evidence of an overreaction. 

If the URC is not equal to one this is evidence against the EMH. However, a URC that is less than or 

greater than 1 may not be a signal that the EMH does not hold, as this may be due to the second 

requirement, that investors should reasonably be expected to gather the information, not being met. 

The EMH makes provision for information that is not obviously available, stating that only information 

that is obviously available will be priced in (Fama, 1970). Keane (1983) added to this by stating that 

“prices adjust rapidly and unbiasedly to new relevant price-sensitive information”.  If this is the case 

it provides a rare arbitrage opportunity within the bounds of the EMH. 

Oh & Sheng (2011) find that microblog sentiment takes a few days to be fully incorporated in the price 

and found significant market under-reaction to microblog sentiment, which would offer profitable 

trading opportunities. This also means that an intraday or one-day holding period as used by Cui, Lam 

& Verma (2016) would not capture all possible sentiment returns.  

2.8. Event Study  

The publishing of “Characteristics and Procedure of Common Stock Splits” by Dolley in 1933 is said to 

be the first event study conducted and this has set the groundwork for the event study space in 

finance. This was further expanded on by Fama et al. (1969) where a comprehensive outline of how 

to conduct an event study was laid out.  

Fama et al. (1969) made use of a market model, whereby they established a linear relationship 

between a share and the market and modelled the return of each security as a function of the market 

return. That paper also produced useful figures to visually model the reaction of the market to the 

specified events.  

MacKinlay (1997) outlined methodology to have multiple events and to effectively aggregate data 

across them. This paper also outlined how to conduct significance testing to allow the identification 

of statistically significant results through a t-stat and enable the calculation of a P-value to access the 

level of significance.  
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2.9. Prior Study methodology 

All the studies that did regression-based/ looked for lagged autocorrelations show little evidence, but 

the goal is to see if sentiment on microblogs can be used to outperform the market on a risk-adjusted 

basis thus a portfolio construction approach, making use of information ratios, Sharpe Ratios and t-

stats will be used as outlined below.  

2.9.1. Trading on Twitter Sentiment  

A study conducted by Bloomberg (Cui, Lam & Verma, 2016) outlines a methodology for calculating the 

effect of including sentiment into a pricing model. The study makes use of a long/ short portfolio 

construction which allows active bets to be made on both the up and downside. The use of long/short 

models is also supported by Cohen & Frazzini (2008). They used three portfolio constructions for 

calculating the returns of trades based on daily sentiment data. 

1. High-minus-Low (33%) (HML 33%) 

In this approach, the top third of stocks when ranked by sentiment is held long while the bottom third 

of stocks when ranked by sentiment is held short. Stocks in the long and short portfolios are equally 

weighted.  

2. High-minus-Low (5%) (HML 5%) 

The approach is the same as above expect only the top and bottom 5% would be held long and short. 

3. Proportional Portfolio  

Using this approach, all stocks with a sentiment score above the mean are held long and all stocks 

with a sentiment score below the mean are held short. The distance from the mean determines the 

level of over/ underweighting of a stock.  

2.9.2. Event studies and The Under-reaction hypothesis 

While Fama et al. (1969) outlined an approach to conducting an event study, MacKinlay (1997) 

provides a more comprehensive approach to event studies and allows for multiple events to occur. 

Thus, this paper will follow MacKinlay’s approach but will draw on some of the formulas used by Fama 

et al. (1969).  

Oh & Sheng (2011) made use of the URC which has been explained above and found the clear presence 

of an under-reaction in the market even after adjusting the market returns. The study found a clear 

example of a hump-shaped curve as described by Hong & Stein (1999). Oh & Sheng attribute this 
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under-reaction as one of the reasons that microblog sentiment has the predictive ability, as also found 

in their paper.  

Cohen & Frazzini (2008) looked at how price shocks in companies affected the share price of their 

suppliers. A simple formula was used, where the change in the price of the supplier would be equal to 

the change in the price of the customer company multiplied by the percentage of sales that the 

company made up for their supplier. This allowed for a defined change in price that the supplier was 

expected to experience. And allowed for a more accurate measurement of the URC than in Oh & Sheng 

(2011). 

2.9.3. Bearish sentiment having more predictive power than bullish sentiment  

Oh & Sheng (2011) and Deng et al. (2018) have laid out methodologies for examining possible differing 

effects of bullish and bearish sentiment. 

Oh & Sheng (2011) make use of a J48 classifier, “Being a decision tree classifier J48 uses a predictive 

machine-learning model which calculates the resultant value of a new sample based on various 

attribute values of the available data” (Alam & Pachauri, 2017) to conduct a weighted F-measure but 

found a statistically significant difference between bullish and bearish sentiment when using a class-1 

F measure. Oh & Sheng found that the class-1 F measure was appropriate due to its focus on correct 

predictions as bull labels have a high class-0 F measure due to predicting wrong predictions correctly.  

A class-1 F measure is a show of goodness of fit of a model, showing the accuracy that a machine 

learning model has, by indicating the number of true positives shown. Whereas a class-0 F measure 

shows the inaccuracy of the machine learning model by showing the number of false positives 

obtained (Zuccarelli, 2020).  

Deng et al. (2018) make use of a vector autoregression (VAR), in a method similar to that of Lütkepohl 

(2007). The VAR model has been used in other studies to examine the potential bidirectional returns 

between variables (Tetlock, 2007). The VAR model also has the added advantage of being able to 

address the shortcomings of alternative econometric models as the VAR model can account for biases 

such as endogeneity, autocorrelations, and causality loops (Luo, Zhang, Duan, 2013). 
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3. Problem Statement  

3.1. Research Question 

The primary research question: Can trading on Microblog sentiment result in significant 

outperformance of the S&P 500? This will be explored through three sub-questions: 

1. Do Twitter sentiment-driven trades with a 1-day holding period outperform a benchmark on 

a risk-adjusted basis? 

2. Does a multi-day holding period outperform a 1-day holding period? 

3. Does bearish sentiment hold greater predictive ability than bullish sentiment? 

3.2. Hypothesis  

This paper will adopt a similar approach as Oh & Sheng (2011) and will look at the 3-hypothesis 

approach to observing the predictive ability of microblogs.  

1. A portfolio with a sentiment-based style will outperform the market on a risk-adjusted basis. 

If this is true, the difference between the Sharpe Ratio of the portfolio (𝑆𝑅𝑝) and the Sharpe 

Ratio of the benchmark (𝑆𝑅𝑏) will be statistically different with the Sharpe Ratio of the 

portfolio being greater. From Dybvig & Ross (1985) it is seen that if there is a positive Sharpe 

Ratio, then there is a positive alpha. 

H0: 𝑆𝑅𝑝 = 𝑆𝑅𝑏 

H1: 𝑆𝑅𝑝 >  𝑆𝑅𝑏, Alpha is positive 

2. The under-reaction hypothesis. It takes a few days for the information to be fully incorporated 

into the price. If this is true it would be expected that the Sharpe Ratio of a multi-day 

(𝑆𝑅𝑀𝑢𝑙𝑡𝑖−𝑑𝑎𝑦) holding period would be greater than the Sharpe Ratio of a portfolio that has a 

one day (𝑆𝑅𝐷𝑎𝑖𝑙𝑦) holding period.  

H0:  𝑆𝑅𝑀𝑢𝑙𝑡𝑖−𝑑𝑎𝑦 =  𝑆𝑅𝐷𝑎𝑖𝑙𝑦 

H1: 𝑆𝑅𝑀𝑢𝑙𝑡𝑖−𝑑𝑎𝑦 >  𝑆𝑅𝐷𝑎𝑖𝑙𝑦 

3. The predictive power of bearish sentiment is higher than the predictive ability of bullish 

sentiment. Therefore, it would be expected that the Sharpe Ratio from bearish sentiment 

driven trades will be greater than the Sharpe Ratio from trading on bullish sentiment.  

H0: 𝑆𝑅𝐵𝑒𝑎𝑟 =  𝑆𝑅𝐵𝑢𝑙𝑙 

H1: 𝑆𝑅𝐵𝑒𝑎𝑟 >  𝑆𝑅𝐵𝑢𝑙𝑙 
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4. Data  

Data has been obtained from Bloomberg Terminal. Bloomberg makes available the sentiment of a 

stock, from both Twitter and traditional news outlets, the number of times a stock has been 

mentioned by a Tweet or news story. 

This study will consider the past two years of the S&P 500 at a daily frequency, beginning 02/01/2020 

and ending 31/12/2021. While this is not a long timeframe and it is a period of significant market 

turmoil due to Covid-19, a large amount of data available and the existence of a market crash in March 

of 2020 and the outstanding returns as the world recovers from the global pandemic provide a broad 

backdrop for this study. It will allow us to examine how a market reacts to sentiment during both a 

crash and a boom period, this paper will also have the opportunity to examine if sentiment predicted 

the large crash or large gain. 

The previous two years also provide us with almost 18 million Tweets and more than 23 million news 

articles and thus allowing increased confidence in our results obtained. The study is able to be scaled 

to any portfolio given the ability to acquire a sentiment measure.  

When obtaining sentiment Bloomberg makes use of an SVM model, which allows sentiment to be 

directly observable (Cui, Lam & Verma, 2016). While there are more complex models such as long 

short-term memory (LSTM) or Bidirectional Encoder Representations from Transformers (BERT), when 

conducting sentiment analysis on financial data SVM models perform approximately as well as the 

more complex aforementioned models (Xing et al., 2020). 
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5. Results  

The results section of this paper is broken into three parts. Part 1 examines the relationship between 

sentiment, obtained from both Twitter and news articles, and next day returns, making use of Pearson 

correlation, Sharpe Ratios, and alphas to explore this relationship. Part 2 looks to find an optimal 

holding period for the portfolio in order to maximise the returns generated. This is done by making 

use of an event study methodology and then is further unpacked using the URC from Cohen & Frazzini 

(2008). Part 3 will attempt to find an asymmetric relationship between positive and negative 

sentiment, as outlined by Kahneman & Tversky (1979). This is done by comparing Sharpe Ratios from 

trades driven by positive sentiment and trades driven by negative sentiment and examining for 

significance.  

5.1. Trading on Twitter Sentiment  

5.1.1. Correlations  

Before conducting any portfolio construction to establish the relationship between sentiment and 

returns, with both Twitter and news sentiment used, the information ratio (IR) of the signal can be 

obtained by dividing the mean information coefficient (𝜇𝐼𝐶) by the standard deviation of the IC (𝜎𝐼𝐶). 

The IC can be observed directly as the Pearson correlation between the previous day’s sentiment and 

the current day’s return (Grinold & Kahn, 1999).  

𝐼𝐶 = 𝐶𝑜𝑟𝑟(𝑃𝑟𝑒𝑣 𝑑𝑎𝑦 𝑠𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡, 𝑅𝑒𝑡𝑢𝑟𝑛) 

The IR of our data is: 

𝐼𝑅 =  
𝜇(𝐼𝐶)

𝜎(𝐼𝐶)
 

There is some dispute in the literature whether returns follow investor sentiment or if sentiment 

follows investor returns. Thus, a comparison between previous, current, and next day’s sentiment and 

current day’s return has been considered.  

The significance of the correlations can be calculated using the following formula:  

𝑡𝜌(𝑛−2) =  
𝜌

𝜎�̂�
 

Where 𝜌 is the correlation which significance is being ascertained, n is the number of time periods and 

𝜎�̂� is equal to:  
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𝜎�̂� =  √
1 − 𝜌2

𝑛 − 2
 

Table 1a: Correlation between Twitter sentiment and 1-day stock returns. This is the average 

correlation using daily data over the period 2020-01-02 to 2021-12-31.    

Twitter  𝝁(𝑰𝑪) 𝝈(𝑰𝑪) T-stat P-value IR 

Previous day 
Sentiment and 
Returns  

-0.002 0.060 -0.045 0.964 -0.034 

Current day 
Sentiment and 
Returns  

-0.004 0.067 -0.090 0.928 -0.061 

Next day 
Sentiment and 
Returns 

0.070 0.067 1.628 0.104 1.047 

 

Table 1b: Correlation between News sentiment and 1-day stock returns. This is the average 

correlation using daily data over the period 2020-01-02 to 2021-12-31.    

News Articles  𝝁(𝑰𝑪) 𝝈(𝑰𝑪) T-stat p-value IR 

Previous day Sentiment 
and Returns 

-0.001 0.073 -0.022 0.982 -0.013 

Current day Sentiment 
and Returns 

0.001 0.072 0.022 0.982 0.020 

Next day Sentiment and 
Returns 

0.082 0.119 1.845 0.066 0.687 

 

Considering both table 1a and table 1b, there seems to be almost no support for investor sentiment, 

obtained from news articles or Tweets, predicting next day returns. There, is evidence that the 

relationship between previous day investor sentiment and returns is negative. The information 

obtained so far would support the arguments raised by De long et al. (1990b), Deng et al. (2018) and 

Roseman & Smith’s (2001) Appraisal Theory that investor sentiment is driven by returns, over a short 

time horizon of one day thus leaving no profitable trading opportunity. 

Observing the significance of the correlations it is seen that statistical significance exists at a 10% level 

only for returns and next day news sentiment.  

However, this correlation test alone is not sufficient to negate the tradable opportunity that investor 

sentiment may present. The next section will attempt to construct a range of portfolios to capture the 

possible advantage presented by investor sentiment. 
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5.1.2. Sharpe Ratios  

This paper has examined 3 methods and applied them to both the sentiment obtained from Tweets, 

covered in 5.1.2.1 and the sentiment obtained from News articles, covered in 5.1.2.2. 

When considering a benchmark to use the SPX, the market-cap weighted index was the obvious 

choice. However, the SPW was also considered. The SPW is an equal-weighted index that is made up 

of all the constituents of the SPX where each security is held with an equal weight or with a 0.2% 

holding in each stock. This is rebalanced quarterly (Bloomberg, 2022). The SPW is also considered as 

it may outperforms the SPX when companies with a lower market capitalisation outperform. 

Considering both possible benchmarks it is seen that the SPX outperformed the SPW on both a return 

and a risk-adjusted basis, as we see the following results over the two-year period observed. 

Table 2: A comparison of the returns and Sharpe Ratios of possible benchmark portfolios. Examining 

the daily returns for the period 2020-01-02 to 2021-12-31. 

Index SPX SPW 

Total Return  46.29% 40.46% 

Annualised Return 23.15% 20.23% 

Annualised Return in excess of 
risk-free rate  

22.89% 19.89% 

Volatility 26.06% 28.47% 

Sharpe Ratio 0.88 0.70 

 

The total return is equal to the value at the end of the period minus 1, as the starting value of the 

portfolio is 1, or 100%. The annualised return is the total return divided by 2, as the period examined 

is two years long. The Annualised Return in excess of the risk-free rate is the annualised return less 

the risk-free rate, where the risk-free rate used in the Sharpe Ratio calculations done throughout this 

paper is equal to the 1-year T-bill rate of 0.34% (Bloomberg, 2022). The volatility is directly observed 

as the standard deviation of the daily returns. This figure is then scaled to an annual figure by 

multiplying it by √253 as there are 505 trading days in the period.  

It should be noted that this is above the long-term average volatility of the SPX, which normally sits 

around 15% 4(Bloomberg, 2022). This is due to the turmoil that the Covid-19 pandemic caused on 

global equities and will have a negative effect on our Sharpe Ratio. This negative effect should, 

however, be countered by the superior returns earned by the market over the past two years. These 

 
4 With a long-term average return of 11.88%, we see that the SPX has a Sharpe Ratio of about 0.8, thus making 
the observed periods Sharpe Ratio slightly above the long-term average. 
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abnormal figures should not affect our study as the figures used exist within the same period and thus 

will experience the same increased volatility and returns.  

The returns of each portfolio will be calculated using a geometric return formula, as this will provide 

for correct compounding, the daily return on each stock is calculated as:  

𝑅𝐿,𝑖𝑡 =  
𝑃𝐶𝑙𝑜𝑠𝑒,𝑖𝑡

𝑃𝑂𝑝𝑒𝑛,𝑖𝑡
, 𝑅𝑆,𝑖𝑡 =  

𝑃𝑂𝑝𝑒𝑛,𝑖𝑡

𝑃𝐶𝑙𝑜𝑠𝑒,𝑖𝑡
  

Where 𝑅𝐿,𝑖𝑡 is the return on stock i that has been held long for day t, 𝑅𝑆,𝑖𝑡 is the return on stock i that 

has been held short for day t, 𝑃𝑂𝑝𝑒𝑛,𝑖𝑡 is the opening price for stock i on a given day t and 𝑃𝐶𝑙𝑜𝑠𝑒,𝑖𝑡  is 

the closing price of stock i for a given day t. 

And the daily return of the portfolio is calculated using the following formula (Dyer et al, 2014):  

𝑅𝑝 =  [(∏ 𝑅𝐿,𝑖𝑡

𝑇

𝑡=1

)

1
𝑛𝐿𝑜𝑛𝑔

+  (∏ 𝑅𝑆,𝑖𝑡

𝑇

𝑡=1

)

1
𝑛𝑆ℎ𝑜𝑟𝑡

] ∗ 0.5 

Where 𝑅𝑝 is the daily return of the portfolio, 𝑅𝐿,𝑖𝑡 is the return of each stock i that has been held long 

on each day t, 𝑅𝑆,𝑖𝑡 is the return of each stock i that has been held short for each day t, 
1

𝑛𝐿𝑜𝑛𝑔
 accounts 

for an equal weight applied to each of the stocks held long and 
1

𝑛𝑆ℎ𝑜𝑟𝑡
 accounts for an equal weight in 

each of the stocks in which a short position has been taken. The sum has been divided by 2 as both 

the long and the short makes up 50% of the total portfolio. The total value of the portfolio (𝑉𝑝) is then 

calculated as the product of all daily returns:  

𝑉𝑝 = ∏ 𝑅𝑝

𝑇

𝑡=1

 

All portfolios are rebalanced daily and thus are rebalanced 505 times over the two years.  

A t-stat will be generated for each portfolio by making use of the following formula:  

𝑡𝑝 =  (
𝑅𝑝

𝜎𝑃
) ∗  √𝑇 

Where 𝑅𝑝 is the return of the portfolio, 𝜎𝑃 is the standard deviation of the portfolio and 𝑇 represents 

the time period over which the returns are examined. In this case, the t-stat will be considered at a 

daily level. This t-stat will then be used to obtain a P-value to show the significance of the returns.  
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5.1.2.1. Twitter Sentiment 

a) HML-33% 

The HML-33% portfolio was constructed by ranking all securities by their Twitter sentiment score each 

day and then taking an equal-weighted long position in the top 33%, and an equal-weighted short 

position in the bottom 33%. 

The initial results ignore both transaction and short selling costs and resulted in positive returns, and 

a greater risk-adjusted return than the benchmark, but a smaller absolute return. 

Table 3a: Exploring returns of HML-33% Twitter portfolio with a 1-day holding period. Examining the 

daily returns for the period 2020-01-02 to 2021-12-31. 

Component Annualised 
Return 

Annualised 
Volatility 

Sharpe Ratio T-stat P-value 

Long 0.73% 16.90% 0.02 0.061 0.951 

Short 8.90% 18.42% 0.46 0.683 0.495 

Overall HML-33% 
Portfolio 

6.33% 5.99% 1.60 1.493 0.136 

 

Table 3b: Average number of stocks in which a position is taken in HML-33% Twitter portfolio. 

Examining the daily average holding for the period 2020-01-02 to 2021-12-31.  

Component Average no. stocks held 

Long 155 

Short 136 

Overall HML-33% 
Portfolio 

291 

 

The total return of the portfolio has exceptionally low volatility, and this allows for a Sharpe Ratio that 

is above that of the benchmark even though the total return is less than that of the benchmark. There 

are also a lower number of average stocks in the short side of the portfolio, this may be due to a large 

amount of the negative sentiment being in relation to stocks that have been removed from the SPX, 

as the dataset used includes only the latest composition of the index. It is also seen that the returns 

earned by each component and the overall approach are not significant. The t-stat for the short side 

of the portfolio is much larger than that of the long side which may provide evidence for hypothesis 

three and will be further examined in section 5.3 below.  

Considering the market neutrality of the portfolio. To determine the market neutrality of the portfolio, 

the beta of each stock held was multiplied by the weighting of the stock held. This outputted a net 
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beta for each day, the average of each day’s beta was then taken to get the net market exposure of 

the portfolio over the period. 

Daily Beta: 

𝛽𝐷𝑎𝑖𝑙𝑦 =  ∑ 𝛽𝑖𝑡
𝐿𝑜𝑛𝑔

∗
1

𝑛𝐿𝑜𝑛𝑔

𝑇

𝑡 𝜖 𝐿𝑜𝑛𝑔

+  ∑ 𝛽𝑖𝑡
𝑆ℎ𝑜𝑟𝑡 ∗

1

𝑛𝑆ℎ𝑜𝑟𝑡

𝑇

𝑡 𝜖 𝑆ℎ𝑜𝑟𝑡

 

Where 𝛽𝑖
𝐿𝑜𝑛𝑔

 is the beta on each day t of each share i in the long side of the portfolio and 𝛽𝑖
𝑆ℎ𝑜𝑟𝑡 beta 

on each day t of each share i in the short side of the portfolio. 

And the overall portfolio Beta, 𝛽𝑛𝑒𝑡, is the average of the daily betas, 𝜇𝛽𝐷𝑎𝑖𝑙𝑦 : 

𝛽𝑛𝑒𝑡 =  𝜇𝛽𝐷𝑎𝑖𝑙𝑦 = 0.016 

Therefore, as expected the net beta of the portfolio is approximately zero, which results in limited 

market exposure for the HML-33% Twitter portfolio.  

b) HML-5%  

The HML-5% Twitter portfolio has been constructed similarly to that of the HML-33% Twitter portfolio, 

but this approach aims to capture the more extreme sentiment scores and overweight them in an 

attempt to earn greater profits. 

As with the HML-33% portfolio, the initial results ignore both transaction and short selling costs. The 

long side of the portfolio had a negative return, which is in line with the relationship found in the 

previous section. There were, however, positive returns for both the short-side and total portfolio. 

But both the total returns and the risk-adjusted returns of the total portfolio were less than that of 

the benchmark. It is also seen that the returns earned by each component and the overall approach 

are not significant at any level but again it is observed that the t-stat on the short side was much larger 

than that of the long side. 

Table 4a: Exploring returns of HML-5% Twitter portfolio with a 1-day holding period. Examining the 

daily returns for the period 2020-01-02 to 2021-12-31. 

Component Annualised 
Return 

Annualised 
Volatility  

Sharpe Ratio T-stat P-value 

Long -0.40 % 18.44% -0.23 -0.031 0.975 

Short 6.01% 19.05% 0.29 0.446 0.656 

Overall HML-
5% Portfolio 

2.48% 4.95% 0.43 0.708 0.479 
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Table 4b: Average number of stocks in which a position is taken in HML-5% Twitter portfolio. 

Examining the daily average holding for the period 2020-01-02 to 2021-12-31. 

Component Average no. stocks held 

Long 24 

Short 23 

Overall HML-5% 
Portfolio 

47 

The more concentrated holdings have resulted in higher volatility of the portfolio but have not 

resulted in a proportional increase in the returns and thus a lower Sharpe ratio is seen.  

Examining the net beta for market neutrality, it is seen that the HML-5% Twitter portfolio is too 

approximately market neutral with a net beta of 0.026. 

c) Proportional Portfolio 

The construction of the proportional portfolio is more complex, under this approach the goal is to 

short all shares that have a sentiment score that is below the sentiment mean and long all shares with 

a sentiment score that is above the mean. The portfolio then also grants greater weighting to those 

shares with a more extreme sentiment score.  

The weighting of each share will be calculated according to the following formula (Cui, Lam & Verma, 

2016):  

𝑤𝑖𝑡
𝐿𝑜𝑛𝑔

=  
𝑆𝑆𝑖𝑡

𝐿𝑜𝑛𝑔
−  𝜇𝑡

∑ (𝑆𝑆𝑖𝑡
𝐿𝑜𝑛𝑔

− 𝜇𝑡)𝑖∈𝐿𝑜𝑛𝑔𝑡

, 𝑤𝑖𝑡
𝑆ℎ𝑜𝑟𝑡 =

 𝜇𝑡 −  𝑆𝑆𝑖𝑡
𝑆ℎ𝑜𝑟𝑡

∑ (𝜇𝑡  − 𝑆𝑆𝑖𝑡
𝑆ℎ𝑜𝑟𝑡)𝑖∈𝑆ℎ𝑜𝑟𝑡𝑡

 

 Where 𝑤𝑖𝑡
𝐿𝑜𝑛𝑔

 is the weight of share i within the long portion of the portfolio on day t, 𝑤𝑖𝑡
𝑆ℎ𝑜𝑟𝑡 is the 

weight of share i that falls within the short-side of the portfolio on day t, 𝜇𝑡 is the mean sentiment 

score on any given day t, 𝑆𝑆𝑖𝑡
𝐿𝑜𝑛𝑔

 is the sentiment score of stock i in the long-side of the portfolio on 

any given day t and 𝑆𝑆𝑖𝑡
𝑆ℎ𝑜𝑟𝑡 is the sentiment score of stock i in the short-side of the portfolio on any 

given day t.  

The proportional portfolio underperforms the previous two approaches considered, on both an 

absolute and risk-adjusted basis. But positive returns are still observed.  

The proportional portfolio does not perform well. The long side of the portfolio only just earns a 

positive return, which is less than the annual risk-free rate of 0.34% which in turn results in a negative 

Sharpe Ratio for the long portion of the portfolio. The short side fares only marginally better, with the 

entire portfolio earning a lower return than the benchmark but having a greater Sharpe Ratio due to 

the lower volatility. Using the proportional portfolio, the overall portfolio returns are seen to be 
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significant at a 10% level. However, the nature of the t-stat calculation can result in a large observation 

size causing the t-stat to be significant. In this case, there is a small effect size, which would result in 

the returns being insignificant or even negative if the transaction and short selling costs were 

introduced into the calculation.  

Table 5a: Exploring returns of proportional Twitter portfolio with a 1-day holding period. Examining 

the daily returns for the period 2020-01-02 to 2021-12-31. 

Component Annualised 
Return 

Annualised 
Volatility  

Sharpe Ratio T-stat P-value 

Long 0.19% 18.39% -0.01 0.015 0.988 

Short 5.28% 17.45% 0.28 0.427 0.670 

Overall 
proportional 
Portfolio 

4.33% 3.63% 1.09 1.685 0.093 

 

Table 5b: Average number of stocks in which a position is taken in proportional Twitter portfolio. 

Examining the daily average holding for the period 2020-01-02 to 2021-12-31. 

Component Average no. stocks held 

Long 72 

Short 400 

Overall proportional 
Portfolio 

472 

 

There is an odd situation where the formula used to calculate the weights applied to each stock 

favours underweighting shares, as seen with the large number of short positions taken relative to the 

number of long positions, as seen in the table 5b above. This may be due to more extreme positive 

sentiment values existing that increase the mean sentiment score, resulting in fewer shares being 

above the threshold to have a long position taken in them.  

Finally, observing the net beta of the proportional portfolio approach it is observed that the 

proportional portfolio is too approximately market neutral, with a net beta of 0.04. 

5.1.2.2. News Sentiment 

In this section of the paper the validity of the signal or the IR, that was calculated previously, will be 

examined. The purpose of this section of the paper is to explore if the information generated from 

news sentiment differs from that generated by Twitter sentiment. The process is functionally the 

same, the difference exists in the source of the sentiment used to construct the portfolios.  
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a) HML-33% 

Making use of the sentiment obtained from news articles, a positive return is observed for this 

approach, with the return generated from the short side being almost four times greater than that of 

the long side return. This has resulted in a total portfolio return that is less than that of the benchmark, 

but a Sharpe ratio that is above that of the benchmark, due to the low volatility of the earnings of the 

total portfolio. The higher Sharpe ratio relative to the HML-33% Twitter portfolio may show the 

greater predictive ability of news articles than that of Twitter. It is seen that the returns on the overall 

HML-33% News portfolio are significant at a 1% level. This provides further evidence that news articles 

provide more salient information than Twitter does.  

Table 6a: Exploring returns of HML-33% News portfolio with a 1-day holding period. Examining the 

daily returns for the period 2020-01-02 to 2021-12-31. 

Component Annualised Return Annualised 
Volatility  

Sharpe Ratio T-stat P-value 

Long 2.40% 16.40 % 0.13 0.207 0.836 

Short 8.56% 18.21 % 0.45 0.664 0.507 

Overall HML-
33% Portfolio 

7.00% 3.84 % 1.73 2.575 0.010 

 

Table 6b: Average number of stocks in which a position is taken in HML-33% Twitter portfolio. 

Examining the daily average holding for the period 2020-01-02 to 2021-12-31. 

Component Average no. stocks held 

Long 130 

Short 94 

Overall HML-33% 
Portfolio 

224 

 

There are a smaller average number of stocks where positions are taken relative to the HML-33% 

Twitter portfolio, this is likely due to an increased number of securities that have no news sentiment 

score attached to them. 

Considering market neutrality, the net beta of the HML-33% News approach is -0.03 and thus it is 

approximately market neutral.  

b) HML-5%  

This approach generates positive returns but is once again below that of the benchmark. The total 

portfolio does have a greater Sharpe ratio than that of the benchmark, again, due to the lower 
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volatility. Again, it is seen that the overall portfolio return is significant, however, this is less significant 

than in the HML-33% news portfolio as it is only significant at a 5% level.  

Table 7a: Exploring returns of HML-5% News portfolio with a 1-day holding period. Examining the 

daily returns for the period 2020-01-02 to 2021-12-31. 

Component Annualised 
Return 

Annualised 
Volatility  

Sharpe Ratio T-stat P-value 

Long 5.37% 17.60 % 0.29 0.431 0.667 

Short 8.43% 19.50 % 0.41 0.611 0.541 

Overall HML-5% 
Portfolio 

8.65% 6.22 % 1.34 1.965 0.050 

 

Table 7b: Average number of stocks in which a position is taken in HML-5% Twitter portfolio. 

Examining the daily average holding for the period 2020-01-02 to 2021-12-31. 

Component Average no. stocks held 

Long 22 

Short 24 

Overall HML-33% 
Portfolio 

46 

 

Considering the market neutrality of the portfolio, a net beta of -0.02 is observed meaning that the 

portfolio is approximately market neutral. 

c) Proportional Portfolio 

The same approach to constructing the proportional portfolio has been taken here as done previously. 

The aim is to take advantage of the more extreme sentiment scores, while still holding a position in 

the securities with less extreme sentiment scores.  

There is a similar situation in this proportional portfolio to the Twitter proportional portfolio, where a 

majority of securities form part of the short side of the portfolio. This results in the sentiment scores 

of the long-portfolio being more meaningful and thus breaking the trend of the HML portfolios and 

outperforming the short-side. Here it is observed that the overall portfolio returns are significant at a 

10% level.  
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Table 8a: Exploring returns of proportional News portfolio with a 1-day holding period. Examining 

the daily returns for the period 2020-01-02 to 2021-12-31. 

Component Annualised 
Return 

Annualised 
Volatility  

Sharpe Ratio T-stat P-value 

Long 3.68% 16.70% 0.20 0.311 0.756 

Short 4.65% 19.21% 0.22 0.342 0.732 

Overall Proportional 
Portfolio 

5.84% 4.49% 1.22 1.838 0.067 

 

Table 8b: Average number of stocks in which a position is taken in proportional News portfolio. 

Examining the daily average holding for the period 2020-01-02 to 2021-12-31. 

Component Average no. stocks held 

Long 431 

Short 43 

Overall Proportional 
Portfolio 

474 

 

Another interesting phenomenon exists where a large portion of the stocks’ sentiment score lies 

above that of the mean. This may be due to news articles taking extreme negative stances when a 

negative stance is taken which results in a low mean with only a few values sitting below the mean. 

This is seen in table 8b, with a larger number of stocks where a long position is taken, while only 43 

shares in which a short position is taken. 

5.1.3. Testing for Statistical Significance of Returns  

Testing for statistical significance of returns can be done in a number of ways, however, this paper will 

examine for outperformance on a risk-adjusted basis by comparing Sharpe Ratios, making use of the 

following formula (Grinold & Kahn, 1999): 

(
�̅�𝑝

𝜎𝑝
−

�̅�𝑏

𝜎𝑏
) > 2 ∗ √

2

𝑁
 

Where �̅�𝑝 is the return of a portfolio less the risk-free rate, �̅�𝑏 is the return of the benchmark less the 

risk-free rate, 𝜎𝑝 is the volatility of the portfolio, 𝜎𝑏 is the volatility of the benchmark and N is equal 

to the number of periods observed and since all the figures are annualised N will equal 1 in this case.  

The formula essentially states that if the difference between two Sharpe Ratios is greater than 2.83 

(as we are considering an annualised figure, N = 1) there is a statistically significant outperformance 

at a 95% level. 
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Table 9: Significance of returns with a 1-day holding period. Examining the outperformance of the 

sentiment portfolios constructed for the period 2020-01-02 to 2021-12-31. 

Portfolio  �̅�𝒑

𝝈𝒑
−

�̅�𝒃

𝝈𝒃
 

Significant 

outperformance  

Significant Under 

performance  

HML-33% Twitter 0.72 False False 

HML-5% Twitter -0.45 False False 

Proportional Twitter 0.21 False False 

HML-33% News 0.85 False False 

HML-5% News 0.46 False False 

Proportional News 0.34 False False 

 

While five out of six portfolios outperform the benchmark on a risk-adjusted basis, this 

outperformance is not significant so cannot be pointed to as a success of these portfolios. It should 

also be noted that these figures are ignoring transaction and short selling costs which, due to the low 

returns of each approach, will likely result in every portfolio earning a negative return.  

The HML-33% News portfolio showed the highest risk-adjusted returns. While this is not a statistically 

significant figure it is in line with the findings of section 1 of part 1 that showed that news sentiment 

provided the highest IR.  

5.1.4. Examining Alphas of the portfolios 

Expanding on both the Twitter and News portfolios making use of the HML-33% approach, as it 

produced the greatest risk-adjusted returns in both instances.  

For each stock for each day, the representative beta figure has been pulled. This beta figure has been 

calculated by Bloomberg Terminal. This allows the calculation of each stock’s alpha on each day, by 

making use of the following formula (Grinold & Khan, 1999): 

𝛼𝑖𝑡 = 𝑅𝑖𝑡 − 𝛽𝑖𝑡𝑅𝑏𝑡 

Where 𝛼𝑖𝑡 is the alpha on stock i on a given day t, 𝑅𝑖𝑡 is the actual return that stock i earned on day t, 

𝛽𝑖𝑡 is the beta of stock i on a given day t and 𝑅𝑏𝑡 is the return of the benchmark on a given day t.  

These individual alphas are then considered in the context of each of the portfolios, which adds all the 

alphas of all the stocks that the portfolio holds on each day using the following formula:  
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𝛼𝑑 =  ∑
𝛼𝑖𝑡

𝑛𝑡

𝑁

𝑖=1

 

Where 𝛼𝑑 is the weighted average alpha of each day, and 𝑛𝑡 is the number of stocks held during day 

t. Each day’s alpha is then summed and then divided by the number of trading days in order to give a 

daily average alpha of the portfolio, using the formula: 

𝛼𝑝 =  ( ∑ 𝛼𝑑

𝑇=505

𝑡=1

) ∗  
1

𝑇
 

Where 𝛼𝑝 is the daily average alpha of the portfolio, t represents the number of trading days, and this 

has been divided by 505 as there are 505 trading days observed. 

In order to calculate a t-stat to determine the significance of the alphas, the volatility of the portfolio 

must be calculated. This has been calculated as the tracking error of each portfolio (𝑅𝑝 − 𝛽𝑖𝑅𝑏).  

𝜔𝑝 =  𝜎(𝑅𝑝 − 𝛽𝑖𝑅𝑏) 

The t-stat for alpha is approximately equal to the alpha of the portfolio divided by the risk of the 

portfolio multiplied by the square root of the number of periods examined (Grinold & Kahn, 1999):  

𝑡𝑝 =  (
𝛼𝑝

𝜔𝑝
) ∗ √𝑇 

Where T is to account for time and is equal to 1 in this case as figures are considered at a daily level. 

Table 10: Significance of Alphas of 1-day holding period. Examining the average daily alpha for the 

period 2020-01-02 to 2021-12-31. 

Portfolio Alpha Tracking Error T-stat P-value 

HML-33% Twitter -0.07% 0.24% -0.31 0.76 

HML-33% News -0.07% 0.24% -0.29 0.77 

 

This results in negative average daily alphas for both portfolios this result was expected due to each 

portfolio earning lower returns than the benchmark. The high P-values however show that the returns 

of the portfolio do not significantly differ from the returns of the benchmark. Dybvig & Ross (1985) 

stated that a positive Sharpe Ratio implies a positive alpha. While, at face value, this result appears as 

a contradiction of this, the positive Sharpe Ratios obtained above were as outperformance of the risk-

free rate, whereas the negative alphas seen here are as underperformance of the benchmark. If the 

hurdle rate used for the calculation of Sharpe Ratios was the return of the benchmark, then the Sharpe 

Ratios would too be negative.  
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5.1.5. Conclusion to Section 5.1 Trading on Twitter Sentiment 

Part 1 of the results of this paper has examined the predictive power of the current day’s sentiment, 

obtained from both Twitter and news sources, on the next day’s returns. As initially outlined through 

the IR at the beginning of this section Twitter’s has little to no predictive ability on next day returns, 

which is counter what the studies of Oh & Sheng (2011) and Cui, Lam & Verma. (2016) found. This lack 

of correlation was shown through the use of t-stats which showed no significant correlations with the 

exception of share returns and next day news sentiment which was seen to be significant at a 10% 

level.  

The portfolio constructions used, improved returns, as the IR obtained in section 1 would result in the 

expectation that all returns would have been negative. The returns of the Twitter portfolios were 

statistically insignificant with the exception of the proportional Twitter portfolio where the returns 

earned were significant at a 10% level. The news portfolios produced better results with each portfolio 

earning significant results when looking at the overall return. The HML-33% news portfolio performed 

best having results that were significant at a 1% level, while the HML-5% news and proportional news 

portfolios were significant at a 5% and 10% level respectively.  

However, while these results were significant their effect sizes were notably small with the t-stat being 

inflated by the large number of days in the observation period. This would result in the returns not 

being significant and likely being negative once transaction and short selling costs are reintroduced.  

When considering alphas, it was also observed that even the most successful of the portfolios 

underperformed the benchmark. However, due to statistical insignificance, it can be stated that their 

alphas did not differ significantly from 0. 

The market neutrality of the portfolios allows for the value and the returns of the portfolio to be 

removed from that of the market. When graphing the value of the portfolios5, this is obvious as the 

portfolios were not affected by the large Covid-19 sell-off seen in March of 2020. Thus, making this 

approach favourable during extreme market downturns. However, this is not unique to just this 

approach, any market neutral approach would see the same benefits. 

These results are consistent with Deng et al. (2018) showing that significant earnings cannot be earned 

with daily trading. The results also provide support for Appraisal Theory (Roseman & Smith, 2001), 

which states that individuals’ emotions are in response to external events and stimuli. There is also 

evidence in line with Otoo (1999) that the returns of the market affect investor sentiment.  

 
5 See Appendix 3 for Graph of Twitter portfolios’ value relative to the benchmark over period. 
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Part 1 has provided evidence that returns are not predicted by microblog sentiment, but that 

microblog sentiment is predicted by returns. In section 1, a large correlation between returns and next 

day investor sentiment is seen. This effect is more pronounced on Twitter than in news articles, this is 

likely due to the more casual nature and lower barriers to entry that social media platforms provide 

relative to that of traditional news sources. However, this is when positions are entered into at market 

open and exited at market close, Deng et al. (2018) and Cui, Lam & Verma (2016) have found evidence 

of profitable returns at a higher frequency. The high speed with which information is processed may 

have resulted in daily tradable opportunities no longer existing, but intra-daily trades still being 

profitable.  

The semi-strong form efficient market hypothesis (Fama, 1970) states that only obviously available 

public information is priced in efficiently. As NLP is still being developed and the data used in this study 

was obtained from Bloomberg Terminal, which has a high financial barrier to entry, a case could be 

made that Twitter sentiment is not obviously publicly available and thus this information may take 

multiple days to be fully priced in. All the portfolios considered in part had a one-day holding period, 

holding from open until close each day. However, this may not be an optimal holding period as 

investor sentiment may take multiple days to be fully priced in. Thus, in part 2 this paper will take the 

HML-33% Twitter portfolio, as it was the best performing portfolio that made use of Twitter sentiment 

and examines the returns obtained over a multi-day holding period. This will be done by making use 

of an event study model. 

5.2. Optimal Holding Period  

As a 1-day holding period does not produce significant results this paper will now examine if a multi-

day holding period outperforms a 1-day holding period. This will be done by first making use of an 

event study, and then looking for evidence that information takes a few days to be priced in using 

Cohen & Frazzini’s (2008) URC.  

5.2.1. Event Study 

Part two of this paper examines the most successful portfolio from part 1, the HML-33% Twitter 

portfolio, and makes use of an event study model to discern the optimal holding period. The event 

study package used ‘Eventstudy, Python Package’ relies heavily on MacKinlay’s paper (1997) detailing 

event studies.  

A market model approach has been used as it compares the returns of the portfolio against that of 

the market, which is what was done in part 1. The market model assumes a stable linear relationship 
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between the market return, which is the SPX in this case, and the return of the portfolios. The market 

model’s linear relationship with each portfolio follows the following formula (Fama et al., 1969):  

𝑅𝑖𝑡 =  𝛼𝑖 + 𝛽𝑖𝑅𝑏𝑡 + 𝜀𝑖𝑡  

Assuming that on average 𝜀𝑖𝑡 is zero and 𝑣𝑎𝑟(𝜀𝑖𝑡) =  𝜎𝜀𝑖
2 . Where 𝑅𝑖𝑡 are the returns on portfolio i for 

period t and 𝑅𝑏𝑡 is the return on the benchmark for period t.  

This package requires some prior data to fit a model to each of the shares examined. Given the 

turbulent times that the world has faced over the past two years, a shorter period was used as it better 

fits the higher volatility environment that global equity markets have been in. 18-months prior data 

has been used to fit adequate models for the event study, thus the estimation period for the event 

studies extends from 2018-06-01 until 2019-12-31. With the events event window lasting from 2020-

01-02 until 2021-12-31. 

In this paper, 2 separate event studies are conducted with 24 events for both the long and short side 

of the portfolio as it has been theorised that the different emotions attached to the positive and 

negative sentiment will result in different speeds of the information being priced in. These are then 

aggregated into the tables seen below. The event is defined as a stock having an extreme sentiment 

score, in this case falling with the top third or bottom third of shares when ranked by sentiment. The 

portfolios are then created, and the positions are entered into on the first business day of the month. 

The positions are then held for 3 weeks or 15 business days and the returns are analysed and observed 

for the significance of daily returns. Note the returns calculated in part 2 differ from that of part 1, as 

part 1’s return was intra-daily, between the opening and closing price on a given day. Whereas in part 

2 returns are calculated as the change from close to close. The returns in part 2 are calculated as:  

𝑅𝐿,𝑖𝑡 =  
𝑃𝐶𝑙𝑜𝑠𝑒,𝑖𝑡

𝑃𝐶𝑙𝑜𝑠𝑒,𝑖(𝑡−1)
− 1, 𝑅𝑆,𝑖𝑡 =  

𝑃𝐶𝑙𝑜𝑠𝑒,𝑖(𝑡−1)

𝑃𝐶𝑙𝑜𝑠𝑒,𝑖𝑡
− 1 

Where 𝑅𝐿,𝑖𝑡 is the return on stock i held long for period t, 𝑅𝑆,𝑖𝑡 is the return on stock i held short for 

period t and 𝑃𝑐𝑙𝑜𝑠𝑒𝑡 is the closing price of stock i on day t and 𝑃𝐶𝑙𝑜𝑠𝑒,𝑖(𝑡−1) is the closing price of stock 

i on day t.  

The abnormal return (𝐴𝑅𝑖𝑡) is the actual return earned by the security (𝑅𝑖𝑡) less the expected return 

if the event did not occur (�̂�𝑖 + �̂�𝑖𝑅𝑏𝑡) and is calculated for each stock using the formula (MacKinlay, 

1997): 

𝐴𝑅𝑖𝑡 =  𝑅𝑖𝑡 − (�̂�𝑖 + �̂�𝑖𝑅𝑏𝑡) 
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This paper is doing an event study where there are multiple events that are then accumulated and 

aggregated, and this results in the 𝐴𝑅𝑖𝑡 figure becoming an 𝐴𝐴𝑅𝑖𝑡 or average abnormal return. This 

aggregation exists for all calculations as seen below.  

𝐴𝐴𝑅𝑖𝑡 =  
∑ 𝐴𝑅𝑛𝑡

𝑛
𝑛=1

𝑁
 

𝜎2(AAR) is the variance of AAR, and is calculated as: 

𝜎2(𝐴𝑅𝑖𝑡) =  𝜎𝜀𝑖
2 +  

1

𝐿1
[1 +

(𝑅𝑏𝑡 − �̂�𝑏)2

�̂�𝑏
2 ] 

The variance of AAR has two components, the first is the distribution variance 𝜎𝜀𝑖
2  and the second is 

the variance that is a result of sampling error in �̂�𝑖 and �̂�𝑖. Where 𝐿1 is the length of the estimation 

window. Due to the nature of this formula, it is seen that the second part of the equation tends to 

zero as the event window increases in length.  �̂�𝑏
2 is the variance of the benchmark and �̂�𝑏 is the 

average cumulative returns of the benchmark over the period examined.  

The cumulative average abnormal return is calculated using the formula:  

𝐶𝐴𝑅𝑖(−5,+15) = ∑ 𝜀𝑖𝑡

15

𝑡= −5

 

Cumulative average abnormal returns (𝐶𝐴𝐴𝑅𝑖) for the sample of N portfolios in each time period t:  

𝐶𝐴𝐴𝑅𝑖(−5,+15) =  
∑ 𝐶𝐴𝑅𝑛𝑡

𝑛
𝑛=1

𝑁
 

𝜎2(CAAR) is the variance of CAAR. 

𝜎2(𝐶𝐴𝐴𝑅𝑖) =  𝐿2𝜎2(𝐴𝑅𝑖𝑡) 

Where 𝐿2 is the length of the event window.  

Conducting the event study results in the data having a student T-distribution, and this allows the 

calculation of a Patell T-test (1976) using the following a summarised formula stated in Corrado (2011):  

𝑡𝐶𝐴𝐴𝑅 =  
𝐶𝐴𝐴𝑅𝑖

𝜎𝐶𝐴𝐴𝑅
 

And from this T-stat, using a T-table a P-value can be obtained.  
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Table 11: Long side output of event study. Event study conducted with a -5, +15 window for each 

month within the two-year period. Day zero is the day immediately following extreme Twitter 

sentiment. With the significance levels denoted by the asterisks, where *** shows significance at a 

1% level, ** shows significance at a 5% level and * shows significance at a 10% level.  

  AAR T-stat P-value CAAR 𝝈(𝐂𝐀𝐀𝐑) T-stat P-value 

-5 0.001 0.93 0.353 0.001 0.00108 1.01 0.314 

-4 0 0.00 1 0.002 0.00152 1.02 0.307 

-3 0.002 * 1.85 0.066 0.004 * 0.00186 1.88 0.06 

-2 0.004 *** 3.70 0.0002 0.007 *** 0.00215 3.31 0.001 

-1 -0.002 * -1.85 0.066 0.005 ** 0.00241 2.09 0.037 

0 -0.001 -0.93 0.353 0.004 * 0.00264 1.65 0.098 

1 0.002 * 1.85 0.066 0.006 ** 0.00285 2.16 0.03 

2 0.001 0.93 0.353 0.007 ** 0.00304 2.32 0.021 

3 -0.001 -0.93 0.353 0.006 * 0.00323 1.77 0.077 

4 0 0.00 1 0.006 * 0.0034 1.68 0.094 

5 0.002 * 1.85 0.066 0.008 ** 0.00357 2.13 0.033 

6 0 0.00 1 0.008 ** 0.00373 2.02 0.043 

7 -0.002 * -1.85 0.066 0.005 0.00388 1.41 0.158 

8 0 0.00 1 0.005 0.00403 1.24 0.215 

9 0 0.00 1 0.005 0.00417 1.13 0.259 

10 0.001 0.93 0.353 0.006 0.00431 1.33 0.185 

11 0 0.00 1 0.006 0.00444 1.33 0.185 

12 -0.002 * -1.85 0.066 0.004 0.00457 0.83 0.407 

13 0.001 0.93 0.353 0.004 0.00469 0.94 0.345 

14 -0.001 -0.93 0.353 0.003 0.00481 0.7 0.487 

15 0 0.00 1 0.003 0.00493 0.63 0.525 

 

Figure 1: Graphing CAAR of the long side of the portfolio. Where day 0 is the day immediately 

following the day in which a stock has an extreme sentiment score and the blue line plots the CAAR as 

seen in table 11, the shaded areas represent the limits of a 90% confidence interval and the grey bars 

along the x-axis are the AAR’s for each day.  
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Considering both the table of returns and the graph above, it is seen that the positive sentiment is 

priced in two days before (day -2) the sentiment is registered on Twitter. While significant returns do 

present after the event date, the CAAR is either below that of day -2 or only slightly above (0.001) 

which is further evidence that the returns on securities are a predictor of microblog sentiment.  

Examining the AARs it is seen that the most significant return occurs on day -2. With the returns after 

the event date only showing significance and positive returns on days 1 and 5. With these returns only 

being significant at a 10% level.  

Interestingly an increase in returns is seen after the event date, this may be an aftershock effect as 

those who observe the positive sentiment that was caused by the initial price increase start to buy 

into the securities, causing the returns to increase from day 0 until day 5. This may be seen as a 

momentum effect. It is also noteworthy that shares that have a positive sentiment at day 0, have 

persistent abnormal returns throughout the observation period.  

Therefore, it can be stated that an optimal holding period for the long side of the portfolio would be 

five business days, as it is seen that the CAAR is positive and significant at a 5% level. 

Table 12: Short side output of event study. Event study conducted with a -5, +15 window for each 

month within the two-year period. Day zero is the day immediately following extreme Twitter 

sentiment. With the significance levels denoted by the asterisks, where *** shows significance at a 

1% level, ** shows significance at a 5% level and * shows significance at a 10% level. 

  AAR T-stat P-value CAAR 𝝈(𝐂𝐀𝐀𝐑) T-stat P-value 

-5 0.002 * 1.754386 0.080  0.002 0.00114 1.48 0.138 

-4 0.001 0.877193 0.381 0.003 * 0.00161 1.66 0.096 

-3 0.005 *** 4.385965 0  0.007 *** 0.00197 3.78 0 

-2 0.002 * 1.754386 0.080  0.009 *** 0.00227 4.09 0 

-1 0.002 * 1.754386 0.080  0.012 *** 0.00254 4.56 0 

0 0 0 1 0.011 *** 0.00278 4 0 

1 -0.001 -0.87719 0.381 0.01 *** 0.00301 3.47 0.001 

2 0.001 0.877193 0.381 0.011 *** 0.00321 3.45 0.001 

3 -0.002 * -1.75439 0.080  0.009 *** 0.00341 2.71 0.007 

4 -0.002 * -1.75439 0.080  0.007 ** 0.00359 2 0.046 

5 -0.001  -0.87719 0.381 0.006 0.00377 1.57 0.116 

6 0.003 *** 2.631579 0.009  0.009 ** 0.00394 2.25 0.025 

7 0.003 *** 2.631579 0.009  0.012 *** 0.0041 2.91 0.004 

8 -0.001 -0.87719 0.381 0.011 ** 0.00425 2.58 0.01 

9 0.001 0.877193 0.381 0.012 *** 0.0044 2.7 0.007 

10 0 0 1 0.012 ** 0.00454 2.57 0.01 

11 0.004 *** 3.508772 0.005  0.015 *** 0.00468 3.27 0.001 

12 -0.001 -0.87719 0.381 0.014 *** 0.00482 2.93 0.003 

13 -0.001 -0.87719 0.381 0.013 *** 0.00495 2.66 0.008 

14 -0.002 * -1.75439 0.080  0.011 ** 0.00508 2.19 0.028 
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15 -0.002 * -1.75439 0.080  0.009 * 0.00521 1.74 0.082 

 

Figure 2: Graphing CAAR of the short side of the portfolio. Where day 0 is the day immediately 

following the day in which a stock has an extreme sentiment score and the blue line plots the CAAR as 

seen in table 12, the shaded areas represent the limits of a 90% confidence interval and the grey bars 

along the x-axis are the AAR’s for each day.  

 

 

 

 

 

 

 

 

Examining the short-side event study an interesting phenomenon is observed, with the most 

significant return earned the day before the event occurs, or by day -1. This is an indication that the 

negative sentiment that is observed is a result of poor returns previously earned by the security, as 

the short side of the portfolio has positive returns when the value of the securities invested in 

decreases. The short side shows significant CAARs from day -2 through to day 4. However, there is a 

drop off in the returns earned after day -1, thus no tradable opportunity seems to exist if abnormal 

returns are considered.  

Considering the AARs, the most significant return is seen on day -3, with positive significant returns at 

a 1% level seen on days 6 and 7 which seem to be sharp mean reversion.  

However, it is noteworthy that holding from day 5 until day 11, where CAAR peaks with a 1% 

significance level. This may be the result of people ‘buying the dip’ ending after the poor performance 

between day -5 and day 5 and a continuation of the negative momentum that the security had been 

experiencing.  
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5.2.2. Underreaction of the Market  

The Underreaction coefficient (URC) was theorised by Cohen and Frazzini (2008) and shows the under 

or overreaction of the market to an information shock. The formula that their paper outlined divides 

the return of period 1 over the total return over the periods examined. This paper will modify this, in 

a similar manner as Oh & Sheng (2011) did, and examine the next day returns over the total returns 

over 10 days, using the following formula (Cohen & Frazzini, 2008):  

𝑈𝑅𝐶 =  
1 𝐷𝑎𝑦 𝑅𝑒𝑡𝑢𝑟𝑛

𝐶𝑅𝑑𝑎𝑦10
 

Where 𝐶𝑅𝑑𝑎𝑦10 is the Cumulative return earned from day 1 until day 10.  

An approach similar to that of the event study above will be used, with the returns of the first day of 

the month being used as the “Day 1 Return” etc., and this will be conducted for each month and then 

aggregated across all 24 months observed. This study will make use of a 10-day time period, as both 

the event study conducted prior and Oh & Sheng (2011) provide evidence for a 10-day period being 

adequate for a market to fully incorporate information.  

Table 13: Exploring the URC over a 10-day period. Where the URC is stated, and each days’ return is 

listed.  

 URC 1 2 3 4 5 6 7 8 9 10 𝑪𝑹𝒅𝒂𝒚𝟏𝟎 

Long 
side 

0.146 0.003 0.006 0.004 0.002 0.004 0.004 0.001 -0.004 -0.005 0.007 0.023 

Short 
side 

0.075 -0.001 -0.004 -0.004 -0.002 -0.005 -0.003 -0.001 0.006 0.009 -0.007 -0.012 

 

There is a large underreaction to the information, this is seen through the URC that is well below 1. If 

the information was priced in on day 1, and the market completely efficient, the URC would sit closer 

to 1.  

The long side returns experience an underreaction, as seen by the low URC of 0.146. This signals that 

the information generated from investor sentiment is not quickly priced into securities. Although this 

low URC may be due to much of the information being priced into the security before the extreme 

sentiment is seen, as figure 1 provides evidence for.  

Note, the short side returns have been calculated in a manner similar to that of the event study, with 

the daily return calculated as:  
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𝑅𝑆,𝑖𝑡 =  
𝑃𝐶𝑙𝑜𝑠𝑒,𝑖(𝑡−1)

𝑃𝐶𝑙𝑜𝑠𝑒,𝑖𝑡
− 1 

It is noteworthy that the cumulative average return of the short side of the portfolio over 10 days of 

all 24 months is negative. This, along with a negative average return on day 1 has allowed for a URC 

to be calculated within the range defined by Cohen and Frazzini (2008). However, negative returns 

may provide issues for the measure that they have created, as the figure only accounts for a figure 

between 0 and 1. This may bring into question the usefulness of this measure in this study.  

However, a URC of 0.075 shows an underreaction of the market, this is on the back of the shares within 

the portfolios examined falling into the bottom 33% of shares when ranked by sentiment. As outlined 

by the event study prior, much of the information seems to be priced in before the day in which the 

event occurs. Thus, what is observed here is the reversion to the mean, this consists of the shares 

within the short side of the portfolio appreciating in value in the wake of the negative information 

being processed by the market. This price appreciation results in the short side of the portfolio having 

negative returns over the 10 days examined. Note that the returns from part 1 for the HML-33% 

Twitter portfolio were positive for a 1-day holding period, this discrepancy exists as the returns of part 

1 were calculated from open to close on a given day whereas the returns calculated in part 2 are 

calculated close to close on consecutive trading days.  

It should be noted that following from section 5.1 the requirements for the URC as outlined by Cohen 

& Frazzini (2008) are not necessarily met, and thus the results from the URC may be questioned. While 

the investor sentiment is available, due to it being on public forums such as social media the discerning 

of the sentiment is not a straightforward process. And the sentiment obtained from Twitter has been 

shown to not be salient for a 1-day holding period. Thus, the URC will not be relied upon for making 

any statements but will be used to expand on other findings.  

5.2.3. Further Analysing Optimal Holding Periods 

After examining the graphs and tables from the event study it is seen that the long side of the portfolio 

has an optimal holding period of 5 days, while the short side of the portfolio has an optimal holding 

period of 11 days.  

The long return is calculated as: 

∑ ∑ 𝑅 𝐿,𝑖𝑡

𝑇=5

𝑡=1

𝑁

𝑖=1

 



Josh Stevens – STVJOS003 
FTX5003W Dissertation  

41 
 

Where 𝑅𝐿,𝑖𝑡, is the return of each stock i held long on each day t in the holding period, 𝑛 is the number 

of stocks held and t is the time period and is equal to 5 as this is the deemed optimal holding period.  

The short return is calculated as: 

∑ ∑ 𝑅𝑆,𝑖𝑡

𝑇=11

𝑡=1

𝑁

𝑖=1

 

Where 𝑅𝑆,𝑖𝑡 is the return of each stock i held short on each day t in the holding period, 𝑡 = 11 as this 

is the deemed optimal holding period.  

Each return is then converted to an annualised figure by dividing by 2, as the return is calculated over 

two years.  

The volatility of each approach is directly observable and is calculated as the standard deviation of the 

returns. This figure is then scaled to make it an annualised figure. The long side returns’ standard 

deviation is multiplied by √
253

5
, as there are 505 days observed and the portfolio holds each position 

for 5 days. The short side returns’ standard deviation is multiplied by √
253

11
, as there are 505 days 

observed and the portfolio holds each position for 11 days. 

After calculating the returns accounting for optimal holding periods, the following returns are 

obtained.  

Table 14: Returns of optimal holding periods of long and short sides of the portfolio. Observing the 

returns and Sharpe Ratios of optimal holding period returns, for the period 2020-01-02 to 2021-12-

31. 

 Annualised Return Annualised Volatility Sharpe Ratio 

Long: 5-day holding period 27.16% 25.97% 1.05 

Short: 11-day holding period -5.56% 40.47% -0.07 

Extreme negative sentiment 
shares held long for 5 days 

27.77% 29.32% 0.95 

 

Where “Long: 5-day holding period” is the portfolio created by longing shares that have a sentiment 

score in the top third of shares and then holding this for five days, “Short: 11-day holding period” is 

the portfolio created by shorting shares that fell within the bottom third of shares when ranked by 

sentiment and this is held for elven days and “Extreme negative sentiment shares held long for 5 days” 

is the portfolio where shares that have fallen in the bottom third of shares when ranked by sentiment 
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are held long and held for five days in order to take advantage of the mean-reversion effect that seems 

to be present.  

From table 14, it can be seen that the long side of the portfolio benefits from a multi-day holding 

period, whereas even the multi-day optimal holding period for the short side of the portfolio produces 

a negative return. Thus, it can be stated that the optimal holding period for the short side of the 

portfolio, is open to close on the day immediately after the extreme sentiment, and the optimal 

holding period for the long side of the portfolio is 5 days.  

Before testing for the significance of the long side return Figure 2, seems to display a tradable 

opportunity, if the stocks that had extreme negative sentiment are held long and held for 5 days. Thus, 

using the formula used to calculate the returns of the 5-day long portfolio will be reused to obtain the 

returns of a portfolio that has used the negative sentiment as a buy signal. 

Considering all three holdings, the 5-day holding period long portfolio produces the greatest risk-

adjusted returns, while the 5-day holding period portfolio that used the negative sentiment as a buy 

signal produced the highest annual return, but at higher volatility which resulted in a lower Sharpe 

Ratio.  

This return seems to be a mean reversion that the securities experience after a period of negative 

returns that drove the extreme negative sentiment. This mean reversion lasts for a few days before 

the negative momentum becomes the main driver of returns.  

Constructing a portfolio with a 5-day holding period, where 50% of the portfolio holds a long position 

in shares that have extreme positive sentiment, in an equal-weighted portfolio, and where 50% of the 

portfolio holds a long position in shares that have extreme negative sentiment, in an equal-weighted 

portfolio. This results in the following figures, with the benchmark and 1-day holding period figures 

from part 1 restated for the reader's convenience. 

Table 15: Returns of top performing 1-day and optimal holding period portfolios. Listing figures for 

a 1-day and multi-day portfolio return alongside the benchmark figures for the period 2020-01-02 to 

2021-12-31. 

 Annualised return Annualised 
Volatility 

Sharpe Ratio 

5-Day Holding Period Portfolio 30.13% 27.31% 1.09 

1-Day Holding Period Portfolio 6.33% 3.74% 1.60 

Benchmark 23.31% 26.01% 0.88 
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Table 16a: Testing for significance of returns of multi-day portfolio relative to 1-day holding period. 

Examining for significantly differing performance of a multi-day holding period and a 1-day holding 

period, for the period 2020-01-02 to 2021-12-31. Where �̅�𝑀, 𝜎𝑀 are the return less the risk-free rate 

and volatility of the multi-day holding period portfolio and �̅�𝑂 , 𝜎𝑂 are the return less the risk-free rate 

and volatility of the 1-day holding period portfolio. 

Portfolio  �̅�𝑴

𝝈𝑴
−

�̅�𝑶

𝝈𝑶
 

Significant outperformance  Significant Under performance  

5-day holding period 
portfolio 

-0.51 False False 

 

Table 16b: Testing for significance of returns of multi-day portfolio relative to 1-day holding period. 

Examining for significantly differing performance of a multi-day holding period and a 1-day holding 

period making use of a t-stat, for the period 2020-01-02 to 2021-12-31. 

Portfolio  t-stat p-value 

5-day holding period 
portfolio 

0.87 0.385 

 

Table 17a: Testing for significance of risk adjusted returns of multi-day portfolio relative to the 

benchmark. Examining for significantly differing performance of a multi-day holding period and the 

benchmark portfolio, for the period 2020-01-02 to 2021-12-31. 

Portfolio  �̅�𝒑

𝝈𝒑
−

�̅�𝒃

𝝈𝒃
 

Significant outperformance  Significant Under performance  

5-day holding period 
portfolio 

0.21 False False 

 

Table 17b: Testing for significance of returns of multi-day portfolio. Examining for significantly 

differing performance of a multi-day holding period and the benchmark portfolio making use of a t-

stat, for the period 2020-01-02 to 2021-12-31. 

Portfolio  T-stat p-value 

5-day holding period 
portfolio 

1.10 0.274 
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The 1-day holding period outperforms the 5-day holding period on a risk-adjusted basis due to the low 

annualised volatility figure but earns lower returns. However, this is not a significant outperformance. 

The multi-day holding period earned greater returns than the 1-day holding period but with a p-value 

of 0.385, it is seen that this outperformance is not significant.  

The 5-day holding period portfolio outperforms the benchmark both on a return basis and on a risk-

adjusted basis, however, this outperformance is not significant as seen in tables 17 a and b. There is 

the added benefit of reduced transaction costs making use of the 5-day holding period and as the 

portfolio only takes long positions there are no additional short selling costs incurred by the portfolio. 

However, this portfolio will now have a strong positive relationship to the returns of the market and 

thus has lost the market neutrality that the long-short portfolios of part 1 provided.  

5.2.4. Conclusion to Section 5.2. Optimal Holding Period  

Observing the long and short sides of the portfolio separately allows for the observation of how the 

different emotional triggers (positive and negative) cause those in the market to react. The differing 

reactions will be further unpacked in part 3, later in this paper.  

Examining the event study, where the security having extreme sentiment was the defined event it is 

seen that the most significant returns are observed before the event date. While significant results 

are observed after the event date, these returns are both smaller and less significant than those 

observed before the event date and may only be as a result of the elevated CAAR seen in the days 

prior to the event. The returns observed after the event date seem to be a reaction to the returns 

earned before the event date, as is the sentiment that is obtained from Tweets. This phenomenon 

further adds to the argument that is prevailing in this paper that returns are a predictor of investor 

sentiment, as stated in the conclusion of Part 1. It should be noted that this paper holds some 

reservations about the optimal holding period due to the “cherry-picked” nature of the optimal 

holding periods.  

The optimal holding period was established as, being five days when using both positive and negative 

sentiment as a signal to establish long positions. In contrast to the initial approaches of this study, the 

best way to extract value out of negative sentiment was to long the shares rather than short them. 

This trade seems to take advantage of a mean reversion that occurs after a period of poor returns, a 

period which the negative sentiment seems to signal has ended. This results in the extreme negative 

sentiment presenting as a buy signal rather than as a sell signal as previously thought. The returns of 

the multi-day holding period outperform both the 1-day holding period and the benchmark, however, 

the returns are not significant and are likely as a result of a large beta exposure in an upward market.  
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The multi-day holding period being optimal for the returns of the portfolio provide evidence against 

the semi-strong form of market efficiency (Fama, 1970). However, to fully challenge the EMH this 

return would need to be significant and the signal to trade, the investor sentiment would have to be 

considered ‘’obviously publicly available” both of which do not hold.  

In part 3 this paper will explore if there is a differing response from investors to positive and negative 

sentiment. The results from the previous two sections, point to a low predictive ability of Twitter 

sentiment, and as a result, no difference in reaction is expected over a 1-day holding period, however, 

there is potential for a difference to exist when each side is held for their optimal holding period.  

5.3. Bullish vs Bearish Sentiment 

In part 3 this paper will examine the positive sentiment (bullish) and negative sentiment (bearish) 

returns from each of the six approaches and evaluate if there is significant outperformance of either 

portfolio. Kahneman and Tversky's (1979) asymmetric risk function would result in the expectation 

that the returns earned from the short side of the portfolios would outperform the returns earned 

from the long side. This is due to people being risk-loving on the upside, causing individuals to 

overinflate the possibilities of upside returns and having positive sentiment not translate into returns. 

And risk-averse on the downside, causing a much harsher reaction to the negative information, or 

sentiment in this case, which would lead to a more rapid decrease in the value of the security and thus 

a larger positive return in a short portfolio. 

Again, the comparison of returns will be conducted using the Sharpe Ratio comparison formula from 

part 1 but modified to compare returns earned from the reaction to negative and positive sentiment 

(Grinold & Kahn, 1999): 

(
𝑟−

𝜎−
−

𝑟+

𝜎+
) > 2 ∗ √

2

𝑁
 

Where 𝑟− is the annualised return on the trade made in accordance with the negative sentiment after 

subtracting the risk-free rate, 𝑟+ is the annualised return on the trade made in accordance with the 

positive sentiment after subtracting the risk-free rate, 𝜎− is the volatility of the negative sentiment 

trade’s returns and 𝜎+ is the volatility of the positive sentiment trade’s returns.  

As the figures have been annualised, N = 1. Therefore, it can be concluded that if the difference 

between Sharpe Ratios (or (
�̅�−

𝝈−
−

�̅�−

𝝈+
)) is greater than 2.83 then it can be concluded that there is 

significant outperformance of the short side of the portfolio at a 95% or greater level, and if the 
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difference between Sharpe Ratios is less than -2.83 then there is significant outperformance of the 

long side of the portfolio at a 95% or greater level.  

The significance of returns can also be seen by making use of a t-stat, which can be calculated using 

the following formula:  

𝑡𝑝(𝑁−1) =  
�̅�− − �̅�+

𝜎−
 

5.3.1. One-day Holding Period  

Table 18a: Examining for significant outperformance of negative sentiment driven trades over 

positive sentiment driven trades for all portfolios with a 1-day holding period on a risk-adjusted 

basis. Examining for a significantly different return of the long and short side of the portfolio, for the 

period 2020-01-02 to 2021-12-31. 

 
(

�̅�−

𝝈−
−

�̅�+

𝝈+
) 

Significant Outperformance 
of short side  

Significant Outperformance 
of long side 

HML-33% Twitter 0.46 False False 

HML-5% Twitter 0.29 False False 

Proportional Twitter 0.25 False False 

HML-33% News 0.45 False False 

HML-5% News 0.41 False False 

Proportional News  0.22 False False 

 

Table 18b: Examining for significant outperformance of negative sentiment driven trades over 

positive sentiment driven trades for all portfolios with a 1-day holding period on a return basis. 

Examining for a significantly different return of the long and short side of the portfolio making use of 

a t-stat, for the period 2020-01-02 to 2021-12-31. 

 T-stat p-value 

HML-33% Twitter 0.44 0.660 

HML-5% Twitter 0.34 0.734 

Proportional Twitter 0.29 0.772 

HML-33% News 0.34 0.734 

HML-5% News 0.16 0.873 

Proportional News  0.05 0.960 

 

Interestingly with a 1-day holding period, there the short side of the portfolio always outperformed 

on a risk-adjusted and a returns basis. However, as seen in tables 18 a and b this outperformance is 

not significant.  
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5.3.2. Optimal Holding Period 

The optimal holding period was established in part 2 of this paper, being five days when using both 

positive and negative sentiment as a signal to trade. The difference in reaction to different sentiment 

scores can be examined. The negative sentiment may now be considered as an overreaction to the 

previous performance of the shares, and thus a tradable opportunity exists if a long position is taken 

in these shares, where the trader will take advantage of a mean reversion effect. Making use of the 

same formula as above. 

Table 19a: Examining for significant outperformance of negative sentiment driven trades relative to 

positive sentiment driven trades over optimal holding period on a risk-adjusted basis. Examining for 

a significantly different return of the long and short side of the portfolio, for the period 2020-01-02 to 

2021-12-31. 

 
(

�̅�−

𝝈−
−

�̅�+

𝝈+
) 

Significant Outperformance 
of short side  

Significant Outperformance 
of long side 

5-Day Holding Period -0.1 False False 

 

Table 19b: Examining for significant outperformance of negative sentiment driven trades relative to 

positive sentiment driven trades over optimal holding period on a return basis. Examining for a 

significantly different return of the long and short side of the portfolio making use of a t-stat, for the 

period 2020-01-02 to 2021-12-31. 

 T-stat p-value 

5-Day Holding Period 0.04 0.968 

 

Using the optimal holding period, it is seen that the positive sentiment portfolio outperforms that of 

the negative sentiment portfolio on a risk-adjusted basis. The negative sentiment portfolio earns a 

higher return, however, this performance is not significant and thus it can be said that they performed 

in an equal manner.  

5.3.3. Conclusion of Section 5.3. Bullish vs Bearish Sentiment  

These results provide evidence against an asymmetric risk function as described by Kahneman & 

Tversky (1979), as there is an equal reaction seen to both positive and negative information shocks. 

But due to the low predictability of the Twitter sentiment and the likely mean-reversion nature of the 

results seen in the negative sentiment trade, this paper feels that these results are insufficient to 

provide any significant opposition to the findings of Kahneman & Tversky (1979). 
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6. Conclusion  

This study has examined the relationship between investor sentiment obtained from Tweets. This 

sentiment was obtained by making use of Bloomberg’s social activity tool. A three-part approach was 

used, the first explored the existence of a relationship between previous day Twitter sentiment and 

stock market returns. Multiple portfolios were constructed to identify this relationship, however, 

there was little to no evidence to support this. Some of the returns earned were significant at varying 

levels, however, the effect size was small, and the t-stats were inflated by the large number of days 

being considered. The small effect size would also likely result in insignificant and even negative results 

once transaction and short selling costs were reintroduced. In fact, part 1 generated evidence that 

stock market returns influence investor sentiment, which means that investor sentiment is a trailing 

indicator rather than a leading indicator as this paper initially theorised.  

Part 2 made use of an event study to identify the optimal holding period, to maximise the returns 

generated by the HML-33% portfolio. This portfolio was used as it was the most successful from part 

1. Optimal holding periods were established being a 5-day holding period, with the modification that 

both the positive and negative sentiment would be used as a buy signal. While this portfolio did 

outperform the benchmark, this outperformance was not significant on a risk-adjusted basis. When 

conducting the event study, the returns with the greatest significance were seen to occur before the 

event date, which provides further evidence that the sentiment seen in microblogs is a trailing 

indicator. 

Part 2 also examined the URC, which is a test of market efficiency, which identifies how quickly 

information is priced in. Large underreactions were found for both positive and negative sentiment 

when examining a 10-day window, as done by Oh & Sheng (2011). This is a challenge to the semi-

strong form of market efficiency (Fama, 1970), however, due to the low predictive ability of the 

sentiment, and the calculation of sentiment not being straightforward and thus the information not 

being obviously available, this paper cannot refute the semi-strong form market efficiency as outlined 

by Fama (1970).  

Part 3 explores an asymmetric risk aversion of investors. It would be expected that negative sentiment 

would result in a stronger signal with greater predictive ability as individuals are risk-loving on the 

upside but risk-averse on the downside (Kahneman & Tversky, 1979). While the returns deriving from 

the trades made in conjunction with negative sentiment from part 1 always outperformed those 

earned from the trades made in conjunction with the positive sentiment on both an absolute and risk-

adjusted basis, this outperformance was not significant and thus it cannot be stated with confidence 

that this is an effect that will always persist. And when considering the optimal holding period, it was 
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found that the trades made in conjunction with positive sentiment outperformed on both an absolute 

and a risk-adjusted basis.  

To conclude, this paper has found evidence that trading on microblog sentiment is not profitable at a 

daily level, Twitter sentiment-driven trades do not show significant outperformance of the benchmark 

on a risk-adjusted basis, a multi-day holding period does outperform a 1-day holding period but not 

significantly and there is no difference in the response of investors to positive or negative microblog 

sentiment. Thus microblog sentiment is not a leading indicator, but rather is a response to the previous 

returns of the market. 
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7. Limitations and Improvements for Future Studies  

It should be noted that there are a number of limitations and possible improvements to this study. 

Making use of a sentiment model from Bloomberg reduces the flexibility of the study as a user must 

accept their categorisation of the text data. The use of an SVM, while shown to perform well in 

literature, is possibly inferior to the results that a well-trained BERT model may output. Having a model 

that one has developed themselves would also allow them to data-mine more extensively and uncover 

one of the many idiosyncrasies of these online communities that may be a buy or sell signal.  

Bloomberg also only offers data on Twitter sentiment. Twitter is the most widely used microblog in 

the world, and thus the information gathered will be priced in faster reducing the profitable trading 

opportunities. Extending the study to other platforms such as StockTwits or Subreddits such as 

r/wallstreetbets or r/cryptocurrency may provide more valuable data. 

Conduction a test for normality, would further increase the confidence that one may derive from the 

T-stats obtained. Further nonparametric test such as a Mann-Whitney U-test (1947) could be used so 

that no assumption about the underlying data is needed.  

Another improvement that could be made would be to rank users and assign them specific weightings 

on their perceived credibility. The model used in this study assumes that all individuals or Twitter 

accounts carry the same influential ability which is factually false. A Tweet from an individual such as 

Elon Musk would have a far larger effect on the price of an asset than a Tweet from an account with 

a single follower as seen in Rui, Liu, Whinston (2013). Another extension may to be limiting one user 

one vote, as individuals may Tweet about the same thing multiple times a day which would overweight 

their voice relative to the crowd. 

It should also be noted that observing smaller time frames than this study used may also provide more 

significant useful results as found by Cui, Lam & Verma. (2016) and Deng et al (2018). 

Cryptocurrencies have not been considered by this study due to the lack of availability of sentiment 

data on these assets. However, Cryptocurrencies are high volatile assets that are almost entirely 

driven by market sentiment, therefore I believe that a study on Cryptocurrency would provide many 

interesting results. 
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9. Appendix  

Appendix 1. Further Explanation of Support Vector Machine (SVM) Models 

Bloomberg does not disclose the manner in which their SVM conducts sentiment analysis, thus this 

paper has included an overview of how SVM models work for the interest of the reader. SVM is a 

machine learning algorithm that is often employed for both classification and regression purposes. An 

SVM model will distinguish between categories, in the case of investor sentiment there are two 

categories, positive and negative, and plot all data points on a set of axes. The SVM will then attempt 

to plot a hyperplane between each category, a hyperplane is just a line that linearly separates the 

different categories of data, when dealing with two categories the hyperplane is just a line, but as 

more categories are introduced it will become a plane. The hyperplane is plotted in such a way to 

maximise the margin, where the margin is the distance between data points and the hyperplane, 

between each of the two categories considered. (Aylien, 2016). Which will then result in the best 

classification of positive or negative sentiment, see the visual example below. Bloomberg then 

conducts a proprietary method to attach a sentiment score between -1 and 1 to the data points that 

have been categorised as positive or negative.  

 

 

 

 

 

 

 

Source: Towardsdatascience.com 
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Appendix 2. Kahneman & Tversky (1979) Asymmetric Risk model  

 

 

 

 

 

 

 

Source: Kahneman & Tversky (1979) 

 

Appendix 3. Value of Twitter portfolios over time.  




