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Abstract

Recently, the field of geophysics has seen increasing recognition of the unique character of deformation and
seismicity in stable continental regions (SCRs). However several important questions remain understudied.
What controls the locations of earthquakes in SCRs? How well do observations, in SCRs, of elastic strain
accumulation and release correlate with each other? How well do they correlate with stresses and geological
proxies for rheological variation?

The ultimate goal of this study was to better understand stable continental regions like southern Africa,
where large earthquakes occur despite not being near plate boundaries, for example the 2017 Mw 6.5
earthquake in Moiyabana, Botswana. One way of studying the stress and strain in stable continental regions
is by understanding the surface deformation of the region. This deformation is easily studied using global
navigation satellite system (GNSS) velocity data. One of the biggest difficulties when it comes to GNSS data
is that it isn’t collected on a regular grid, but rather as irregular data points that need to be interpolated.
This research investigated multiple interpolation methods and recommended two methods that best replicate
the original velocity field (using a well populated dataset from Southeast Asia). These interpolated GNSS
data can then be used to determine deviatoric strain in a region, which can in turn be fed into numerical
stress models.

However, limited GNSS data exist across southern Africa, and therefore topographic data was used to
calculate the gravitational potential energy, and in turn the body stress and deviatoric stress for the region.
This study also investigated how this deviatoric stress (or deviatoric strain) can be more accurately calculated
on a spherical rather than a flat surface, which is particularly important over large study areas. Across
southern Africa, data show that deviatoric stress lined up with stress data within mobile belts. This suggests
that in these weaker mobile belt crust (such as the Namaqua-Natal and Damara-Chobe belts), gravitational
collapse is the dominant driver of deformation, which is in line with conclusions that have been made in
previous literature. In other regions, deviatoric stress vectors and stress data do not coincide and therefore
there are other forces at play. These observations are obviously restricted by limited data coverage; it remains
an open question if areas that have increased deviatoric stress due to gravitational collapse, which are also
aligned with the orientation of weak zones, will have elevated strain in the long term.
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1 Introduction
1.1 Continental tectonics

Although the theory of continental drift was famously ridiculed for decades, it started to become accepted
in the mid-20th century, supported by evidence from paleomagnetic observations (Runcorn, 1965), oceanic
geology and mid-ocean ridge spread (Heezen, 1960), and volcanic island arcs (Coats, 1950). The theory was
refined into what is now called plate tectonics and has become widely accepted (McKenzie, 1966; McKenzie &
Parker, 1967). It has done a remarkable job of explaining the behaviour of this aspect of the earth’s dynamics,
with extraordinary predictive power. In this formulation, most of the earth’s outermost layers are rigid, and
deformation is taken up within a few tens of kilometers of plate boundaries.

However, this mostly-rigid plate model in which there is relative motion of large (or several smaller) plates
cannot adequately explain observations in continental regions (McKenzie, 1972, 1976; Molnar & Tapponnier,
1975). It is now widely accepted that zones of continental collision can undergo rapid, distributed lithospheric
deformation (e.g. Toussaint, Burov and Avouac, 2004). Modelling the relationship between stress, rheology,
and strain in such areas is of interest as these are some of the most rapidly deforming places on Earth,
providing a window into past and future continental evolution. They are also important from a seismic hazard
perspective, since these regions are notorious for frequent (and often unexpected) earthquakes (Figure 1.1),
which can cause significant loss of human life and inflict enormous damage to property and infrastructure
(England & Jackson, 2011).

The distributed deformation in these zones have been successfully modelled by considering the expected
strain within a homogeneous viscous fluid acted on by stresses from plate boundaries, as well as body
forces arising from the distribution of gravitational potential energy within the deforming region (England,
Houseman & Nocquet, 2016; Walters, England & Houseman, 2017). Such studies typically model the stresses
by assuming that the lithosphere acts as a thin sheet (i.e. that vertical gradients of horizontal velocity are
negligible) and that variations in surface topography are isostatically compensated at depth (England &
Houseman, 1986). The distribution and orientation of the strain field calculated from the stresses can then be
compared to observations of strain from, for example, long-term Global Navigation Satellite System (GNSS)
velocity measurements (e.g. Zhang et al., 2004), the distribution of earthquake moment release (e.g. Heidbach
et al., 2010; Selvaggi, 1998; Zarifi, Nilfouroushan and Raeesi, 2014), and even geological estimates of long-term
fault slip rates (e.g. Khodaverdian, Zafarani and Rahimian, 2015). Details of some of these methods are
discussed in Section 1.2, and this approach has been found to result in a good match with the observed strain
patterns in regions such as Tibet (England & Houseman, 1986; Houseman & England, 1986; Zhao et al.,
2015), Anatolia (England, Houseman & Nocquet, 2016; Khodaverdian, Zafarani & Rahimian, 2015), and New
Zealand (Beanland & Haines, 1998; Hirschberg, Lamb & Savage, 2019; Lamb, 2015). These studies have
generally found that the observed strain pattern can be successfully recreated with surprisingly homogeneous
rheology within a particular area of distributed deformation, often with the addition of rigid microplates
embedded into the weaker region (England & Houseman, 1986).

1.2 Finite-element crustal deformation modelling

First introduced by Tapponnier and Molnar (1976, 1977), an early approach to modelling the problem of
lithospheric deformation involved assuming plane horizontal stress, and treating continental collision as the
encroachment of a rigid indenter into a plastic deforming medium. Slip-lines are computed from boundary
conditions, and it was postulated that the orientations of the slip-lines would predict the orientation of
strike-slip faults in the collision zone. While this model saw limited qualitative success, the authors themselves
recognised it had significant limitations: (1) slip-lines are instantaneous while strike-slip faults may have
accommodated hundreds of kilometers movement over thousands of years, and (2) the assumption of plane
horizontal stress is inappropriate when the crust has been significantly thinned or thickened.

A model pioneered by England and McKenzie (1982) and later improved upon by Houseman and England
(1986) tackled both of these issues. By modelling the lithosphere as a thin sheet of, ultra-viscous, non-
Newtonian fluid, time-dependant deformation can be computed by solving the Navier-Stokes equations of
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Figure 1.1: The ISC-GEM earthquake catalogue of events larger than Mw 5, from 1904–2014 (Bondár et al.,
2015). While seismicity (and associated strain) is concentrated on plat boundaries, there is still significant
intraplate seismicity.

fluid dynamics using finite-element methods. Additionally, body stresses are incorporated into the model
which allow it to account for lateral variations in crustal thickness. The body stresses are the gradient of
the gravitational potential energy of the crust, which is assumed to be in isostatic equilibrium. Despite the
improvements made over previous models, this approach still had significant problems when applied to real
geology (see, for example, the work of England and Houseman (1986)).

Firstly, a rheology had to be assumed, because at the time GNSS was not yet available for civilian
use, and so no GNSS velocity networks existed with which strain rates and boundary conditions could be
calculated. Therefore, the rheology of the model was constrained mainly by laboratory experiments. In
recent years, modelling systems of intraplate deformation has improved significantly, most notably with large,
dense networks of GNSS stations which measure velocities of continental plates. From these GNSS velocities,
deviatoric strain rates can be calculated, which can then be compared to the deviatoric stresses produced by
modelling the lithosphere as a fluid. Such measurements allow tight enough constraints on real systems that
models can actually be solved for the rheology of the area (England, Houseman & Nocquet, 2016; Walters,
England & Houseman, 2017), albeit a uniform rheology where deviations from the strain rate are treated as
areas where the rheology differs from normal rather than a failing of the modelling technique itself.

Secondly, the earth is not flat (Pigafetta, 1536). For study areas which have a large latitudinal range,
the simplification of flat geometry can lead to significant distortions between the model and reality. Recent
studies have carried out some parts of the calculation on the surface of the sphere instead of approximating a
flat earth, however in other parts of the calculation the flat earth simplification is still used.

1.3 Stable continental regions

Until relatively recently, the prevailing wisdom held that stable continental regions (SCRs) experienced little
to no deformation, despite evidence of large seismic events within continental regions dating back centuries.
One famous example is the New Madrid earthquakes of 1811–1812, which may have been as large as Mw 7.5,
and their associated aftershocks (Hough et al., 2000). Over the past 50 years, recognition of such events has
increased, due to the introduction and subsequent improvement of the global seismograph network; a recent
notable example is the Mw 7.6 Bhuj earthquake in India on 26th January 2001 (Bodin & Horton, 2004). In
geodynamic modelling, India is usually regarded as a rigid body indenting on Eurasia (England & Houseman,
1986), which makes this earthquake particularly noteworthy. Although far less studied, southern Africa has
a similar history of relatively high magnitude seismic events. Examples include: 2017 Mw 6.5, Moiyabana,
Botswana (Kolawole et al., 2017); 1969 Mw 6.3, Ceres-Tulbagh, South Africa (Green & Bloch, 1971); 1912
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Figure 1.2: The ISC-GEM catalogue of seismicity in southern Africa from 1904–2014 (Bondár et al., 2015).
Marked with stars are the locations of especially notable events.

Mw 6.2, Koffiefontein, South Africa (Strasser et al., 2015); 1976 Mw 5.8, Koffiefontein, South Africa (Strasser
et al., 2015); 1809 Mw 5.0 to 5.9, Milnerton, South Africa (Von Buchenröder, 1830); and geologically recent
reactivation of the Hebron fault, Namibia (White et al., 2009). The locations of these events are shown in
Figure 1.2. Since earthquakes are events in which stress is released and converted into strain, this shows that
there is indeed deformation in SCRs.

Deformation of tectonic plates is ultimately caused by forces acting upon them. The main sources of these
forces are lateral variations in gravitational potential energy (Ghosh, Holt & Flesch, 2009; Rey, Vanderhaeghe
& Teyssier, 2001), mantle traction (Morgan, 1972; Runcorn, 1962; Turcotte & Oxburgh, 1972), ridge push
(Artyushkov, 1973; Hales, 1969; Jacoby, 1970; Lliboutry, 1969; Orowan, 1964), slab pull (Elsasser, 1971;
Royden, 1993; Spence, 1987), and bending stresses within the plate (Craig, Copley & Jackson, 2014; Stauder,
1968). However, these are not the only factors that control the expression of strain; the rheology of the
deforming rocks is also very important. For example, weakened zones in stable continental regions have
significantly higher seismicity than continental cratons (Craig et al., 2011; Mooney, Ritsema & Hwang, 2012;
Morley, 2010).

1.4 New contributions

This work aims to contribute towards some important questions regarding deformation in SCRs:

1. What controls the locations of earthquakes in SCRs?

2. How well do observations, in SCRs, of elastic strain accumulation (GNSS velocity data) and release
(earthquakes) correlate with each other?
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Figure 1.3: The Eurasian study area and GNSS velocities (Zhao et al., 2015). The cause of deformation in
this region is the largely rigid Indian plate moving northwards into the Eurasian lithosphere. Coordinates
are degrees latitude and longitude, and velocities are relative to stable Eurasia.

3. How well do the items above correlate with stresses and geological proxies for rheological variation?

Three bodies of work are presented in this dissertation which each contribute towards answering these
questions by providing a basis for a future comparison of stresses and strain in SCR regions which is beyond
the scope of this thesis.

1.4.1 Quantitative comparison of the effectiveness of common interpolation
methods

The first contribution is a quantitative comparison of commonly used interpolation methods for the interpola-
tion of GNSS data onto a regular grid. This is a necessary stage in converting such strain constraints into a
format that can be used to compare to the thin-sheet modelling discussed in Section 1.2, and also has other
applications such as identifying high strain rate regions for the purposes of seismic hazard investigations.
Previous papers have introduced and used interpolation methods which combine weightings for data points
dependent on a combination of their distance from the point to be interpolated to and their orientation in
two-dimensional space (England, Houseman & Nocquet, 2016; Walters, England & Houseman, 2017; Zhao
et al., 2015). Zhao et al. (2015) introduce two distance weighting schemes and two 2D orientation weighting
schemes. For the distance weighting, they propose a weighting that has the functional form of a Gaussian
curve and one with the functional form of an inverse square with respect to distance. For the 2D orientation,
two more methods are proposed. The first method finds the Voronoi tessellation of the data points in
Euclidean space, and then increases their weighting according to their Voronoi cell area (see Section 2.1.1).
The second method calculates what proportion of 360° is taken up by each data point from the perspective of
each interpolation point (see Section 2.1.2).

However, these authors only provide a qualitative justification for their choice of interpolation method.
In this work a quantitative comparison is carried out of the six permutations of interpolation strategies:
Gaussian-Voronoi, Gaussian-azimuthal, Gaussian only, inverse square-Voronoi, inverse square-azimuthal, and
inverse square only. GNSS velocities from the India-Eurasia collision zone (Figure 1.3) will be used as the



data set with which these interpolation methods will be tested. The India-Eurasian collision zone is an
example of rapidly deforming continental lithosphere, with relative velocities exceeding 20 mm/yr in some
areas. This rapid deformation is driven by the Indian plate moving northwards into Eurasia, and is primarily
expressed through numerous and large earthquakes (Dal Zilio et al., 2018). As with most large-scale GNSS
data sets, the distribution of the receiving stations of this network is distinctly non-uniform; geodesists tend
to put stations where it easy to physically get to. This presents a problem when trying to use the data for
modelling, as modelling is vastly simplified if the data to which the model is compared is spaced evenly.
Additionally, in this study the Voronoi tesselation and azimuthal weight determination will both be improved
to be carried out on the surface of the sphere instead of computing them with a Euclidean geometry.

1.4.2 A method to calculate 2D deviatoric tensor fields under a spherical geo-
metry

The second contribution extends the spherical earth model to the calculation of horizontal deviatoric stress
or strain fields (Section 2.2), and comparing simple deviatoric tensor fields calculated with a Euclidean and
spherical geometry (Section 3.2). This requires invoking the mathematical field of differential geometry, which
is concerned with the study of smooth surfaces using (in this case) differential calculus. The proof of the
techniques used to perform the necessary calculations will not be included in this work due to their length
(and would ultimately be a rephrasing of textbooks such as Spivak (1999) which explain it more thoroughly).
The use of these techniques in order to derive the results for the specific application of calculating deviatoric
tensor fields on the surface of a sphere will be provided. Unlike the Universal Transverse Mercator (UTM)
coordinate system, this method does not model the earth as an oblate spheroid, but instead as a perfect
sphere. However, the effect of this is expected to be small relative to the distortion caused by moving too far
away from the centre of a UTM zone over very large study areas, and in principle this technique could be
extended to an oblate spheroid.

1.4.3 Tectonic stresses in southern Africa due to gravitational collapse

The third contribution is an analysis of the contribution of gravitational collapse to strain in southern Africa.
In contrast to rapidly deforming continental regions (for example the east Asian region in Figure 1.3), southern
Africa has relative velocities of less than 1.0 mm/yr (Hackl et al., 2011; Saria et al., 2013), and is considered
an SCR (Calais et al., 2016), except for the East African Rift (EAR) system, which is viewed as a developing
plate boundary (albeit a relatively slowly deforming one at its southern end, Saria et al., 2013).

Seismicity in SCRs have often been assumed to follow similar patterns to more active regions, where
there is much greater data coverage due to thousands of recorded events per year, dense seismographic
networks, and strain rates derived from high quality GNSS measurements. In these more active areas, strain
is localised on long-lived active faults which builds up until a failure threshold is reached, and is then released
in an earthquake. Active faults can therefore be identified through the analysis of instrumental and historic
seismic catalogues, and even by directly measuring interseismic strain accumulation with GNSS sensors
or satellite-based Interferometric Synthetic Aperture Radar (InSAR) sensors (Cavalié et al., 2008; Ruegg
et al., 2009; Wright, Parsons & Fielding, 2001). Furthermore, southern Africa does not have a clear, singly
predominant cause of stress (Figure 1.4). One candidate for a major cause of stress is the pair of rapidly
diverging plate boundaries of the Mid-Atlantic Ridge to the east and the African-Antarctic ridge to the
south west. Alone, these divergent boundaries would cause a compressive ridge-push stress (Forsyth &
Uyeda, 1975). However several key observations do not fit with the simple picture of compressive stress
from plate boundaries controlling strain. Most importantly, the majority of earthquakes and faults in the
region record normal faulting, which implies horizontal extension and vertical shortening. Measurements
from deformation of boreholes have been noted by Bird et al. (2006) to also not align with the strain that
would be expected were deformation primarily driven by tectonic rifting, and has been called the Wegener
stress anomaly. Southern Africa is unusually elevated compared to other stable continental regions, so it is
possible that gravitational collapse is a driving stress of the observed extensional deformation.

There may also be significant differences in the character of seismicity between active regions and SCRs
(Calais et al., 2016). In the rapidly deforming regions from which this model of seismicity is derived, the
recurrence interval of earthquakes on these active faults is usually geologically short—tens of years to thousands



Figure 1.4: The divergent plate boundary system surrounding southern Africa, and southern African to-
pography. White arrows show the general direction of stresses arising from the plate boundaries and from
gravitational collapse due to the unusually high topography in the region (' 1000 m above sea level).

of years. This is not true of large earthquakes in SCRs, where many of the faults associated with higher
magnitude earthquakes show no evidence for past events within the last few million years (Calais et al., 2016,
2010; Craig et al., 2016). Indeed, recent seismological studies in SCRs support the idea that the paradigm for
earthquake mechanics may need to be reconsidered for continental interiors, challenging the conventional
understanding of recurrence intervals (Calais et al., 2016; Liu & Stein, 2016). These works suggest that
existing faults are critically stressed through very long term elastic strain accumulation throughout the entire
region, and that these faults are then often triggered by small stress perturbations associated with other
regional earthquakes, and even anthropogenic factors such as deep mining or hydrological changes. This
model suggests that it may not be possible to identify the location of future events in SCR regions, as they
are likely to be triggered by small stress changes, and are not especially likely to reoccur in regions which
have been previously seismically active as the long-term strain reservoir may have been depleted there.

A starting point for considering which paradigms may be more useful for understanding the stress patterns
and seismic hazard of southern Africa is to compare the geodetic constraints on internal strain within the
stable plate, the moment release of instrumental earthquakes in the region, and the variation in stress expected
from the topography of the region. While GNSS velocity measurements could be considered the premier
method by which to assess deformation, not every region of interest has a high resolution GNSS network. In
such areas (like southern Africa), it is especially important not to neglect other methods of analysing strain.
Boreholes offer one alternative method of gaining insight into stress that occurs over (geologically) short
periods of time. By measuring the change in shape over time of the cross section of a borehole, the principle
horizontal stress axes can be determined. However, they have some drawbacks:

1. They contain no information about the magnitude of deformation, which is obviously a necessity to
estimate strain rates and use them to calculate slip rates or to model the dynamics of deformation.

2. The time resolution of these purely directional strain measurements is limited by the frequency with
which the boreholes are observed.

3. While the rock in which the borehole is drilled is comparatively isotropic (and so reflects the principle
stress ellipsoid), on the crustal scale one would expect strain to be significantly modulated by the



orientation of preexisting weak zones.

Earthquakes offer another method of gaining insight into strain rates, but naturally using them comes
with another unique set of challenges. While they offer both magnitude and direction information about
strain, they are instantaneous events, so transient stress events may distort the macroscopic picture, the most
notable example in southern Africa being mining (Brandt et al., 2005). Another challenge in southern Africa
is that seismograph networks are sparse in many places (good coverage in South Africa, but poor coverage
elsewhere). As previously mentioned, earthquakes in SCRs are sporadic and strongly controlled by rheology
(Craig et al., 2011; Mooney, Ritsema & Hwang, 2012; Morley, 2010), which adds additional difficulty when
using them to infer stress (McKenzie, 1969). It should be noted, however, that although the East African
Rift is not generally considered part of an SCR, it is still strongly controlled by the location and orientation
of the Proterozoic mobile belts (Craig et al., 2011). This means that the spatial distribution of strain will not
be easy to identify through the measurement of interseismic strain accumulation which is likely to be below
that detectable by GNSS surveys (Calais et al., 2010; Calais & Stein, 2009) and even instrumental, historic
and paleoseismic earthquake records may be a poor indicator of future activity.

The deviatoric stress due to gravitational collapse will be modelled assuming Airy isostasy (Airy, 1855),
using topography data from the ETOPO1 1 Arc-Minute Global Relief Model (Amante & Eakins, 2009).
As this is a preliminary study, only the body stresses (i.e. gravitational collapse) will be considered in the
stress model. The modelled body stresses will be compared to other data: quantitatively compared to the
World Stress Map (WSM) database (Heidbach et al., 2018) and earthquake moment release calculated from
the Bulletin of the International Seismological Centre (ISC) (Storchak et al., 2020, 2017); and qualitatively
compared to known zones of structural weakness (Corner & Durrheim, 2018).



2 Methods
2.1 Comparison of interpolation methods

GNSS velocity networks can offer a uniquely detailed source of data about both small scales (kilometers to
tens of kilometers), such as individual faulting events, and deformation of the earth’s lithosphere over length
scales of hundreds of kilometers (over which the lithosphere may be reasonably modelled as an ultra viscous
fluid). A particular advantage of this measurement method is the potential for very high temporal resolution
when operated continuously over many years. In the usual course of operation, a monument need only be
visited as often as its battery needs replacing. On the other hand, large-scale GNSS networks are usually
spaced irregularly, as the spatial locations of individual monuments is typically controlled by ease of access
(e.g. next to major roads). In order to use such data in finite-element models, it needs to be regularised onto
an evenly spaced grid using an interpolation method.

Formally, interpolation is a method of estimating intermediate values within the range of a set of discrete
existing data points, with the condition that the values of existing data points are preserved. This definition
is perfectly sufficient in one dimension where the range of a set of data is well defined; if X = {x1, . . . , xn}
is the set of positions of the data points, then their range is the interval [min(X),max(X)]. Interpolation
takes place within this range, and extrapolation takes place outside it. Now suppose the data points have
positions defined in two coordinates, x and y. A näıve generalisation from the previous one dimensional
example to this two dimensional system might stipulate that interpolation takes place in the interval
[(min(X),min(Y )), (max(X),max(Y ))], where Y is the corresponding set to X for the y coordinate.

Figure 2.1 reveals this generalisation to be unsatisfactory. Consider the black rectangular box drawn
around the data, which is the region of interpolation according to the definition given above. The area within
the turquoise polygon is obviously a region of interpolation, and the region outside the black rectangle is
obviously a region of extrapolation. However, the line between interpolation and extrapolation is blurred
the region within the red rectangle. Towards the bottom of the red rectangle, it could justifiably be called
interpolation, but towards the top of the rectangle, it is something closer to extrapolation. The turquoise
polygon is a concave hull of the data points, and using this as the definition for the region of interpolation is
tempting. Unfortunately, the concave hull of a set of points is poorly defined (Figueira, 2018), as its concavity
must be specified by a parameter which determines how aggressively the algorithm eliminates concave regions.
Choosing this parameter poorly could result in areas being excluded where, by eye, one might consider it
obvious interpolation, or vice versa. In order to avoid this ambiguity, the range of interpolation is defined
here as the convex hull of the data, but the shortfall of this definition should be kept in mind.

Commonly used interpolation methods—such as linear, polynomial, and spline interpolation—focus on
interpolating the data between the nearest few points. Indeed, in the strict mathematical sense, interpolation
methods force the generated function to pass precisely through every existing data point. This is problematic
for this study’s application for two reasons. First, current generation GNSS data can have high uncertainties
in the measured velocities—so high in some cases that the uncertainty is larger than the measurement itself.
Thus, allowing the generated function to vary from data is desired. Second, in some cases, only the long
wavelength behaviour of the velocity data is of interest. When modelling large-scale deformation, local
phenomena not supported by the lithosphere, such as slope instability, flexure due to hydrological loading,
thermal expansions, or post-seismic deformation, are not of interest as they do not contribute to the overall,
long-term, lithosphere-scale deformation.

An approach introduced by Shen et al. (2015), which has become popular in recent years (England,
Houseman & Nocquet, 2016; Walters, England & Houseman, 2017), is to simultaneously smooth and
interpolate the GNSS velocities. This smoothing consists of two parts; a proximity weighting, which down-
weights distant points, and a density weighting, which down-weights closely packed points. The motivation
for the former is straightforward: sources of stress are expressed as strain more strongly closer to the source
of stress, so distant points predict strain rates less well than those which are closer. The motivation for the
latter is the typically heterogeneous distribution of GNSS stations. As previously mentioned, GNSS stations
are often placed where it is easy to get to, which results in many stations close together, and a few stations
very isolated from the rest. In a case where an interpolation point is equidistant from an isolated data point
and a cluster of densely packed points, a distance weighting alone would be significantly biased towards the
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Figure 2.1: Possible definitions of interpolation for concave data sets. The area within the turquoise polygon
is clearly a region of interpolation, and the area outside the black rectangle is clearly a region of extrapolation.
The area within the red rectangle could be justifiably called either, highlighting the difficulty of defining
interpolation for concave data sets.

dense points (Figure 2.2). Since the velocity field varies in space, the isolated point contains more information
about the velocity field than an individual densely packed point, so the isolated point is up-weighted. It is
worth noting that this is not interpolation in the strict mathematical sense, but this is the terminology that
has become popular in the literature.

Unfortunately, this approach of combining a distance and a density weighting has been used in the
literature without justification for its use instead of simpler and more common methods (for example a
distance weighting alone). Furthermore, in their paper Shen et al. (2015) propose two methods by which to
perform the distance weighting, and two methods by which to perform the density weighting, but do not
provide more than a brief qualitative justification for why to choose one combination of methods over another.
This work will quantitatively analyse the relative performance of the 4 combinations of weighting methods,
as well as the two distance weightings on their own. First though, the implementation of these methods will
be described in detail.

In this work, the index i will always refer to the i-th data point and the index j will always refer to the j-th
interpolation point. For example, vi means the velocity of the i-th data point. The proposed interpolation
scheme is written as a sum over the values of the data vi multiplied by a weighting coefficient Gij

vj = v(xj) =

n∑
i=1

v(xi)G(xi,xj) = viGij , (2.1)

where xj are the coordinates of the point to be interpolated to, xi are the spatial locations of the data, and
n is the total number of data points. The weighting coefficient is comprised of two components; the distance
coefficient D which depends on the distance between the coordinates of the interpolation point and the data
point, and the density coefficient A which depends on the density of the data points.

The performance of these two distance weighting schemes and two density weighting schemes introduced
by Shen et al. (2015) will be examined. The two distance weighting schemes follow the form of a Gaussian
curve and an inverse square curve (Figure 2.3), and the formulae for them are given by

D(xi,yj) = exp

(
−
d 2
ij

S 2
j

)
, (2.2)

D(xi,yj) =

(
1 +

d 2
ij

S 2
j

)−1
. (2.3)

In both equations, xi is the coordinate of the i-th data point, yj is the coordinate of the j-th interpolation
point, dij is the great circle distance between the two, and Sj is the so-called smoothing parameter, which
controls how rapidly data points are down-weighted as their distance from the interpolation point increases.



(a) Even distribution. (b) Uneven distribution.

Figure 2.2: The resulting interpolated velocity vector (turquoise) of a linearly decreasing vector field which
arises when there is an even distribution of velocity measurements (2.2a) and an uneven distribution where
the greyed-out vectors have not been included in the interpolation (2.2b).
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Figure 2.3: The functional forms of the proposed distance weightings (S=1).



The great circle distance between two points is defined as the shortest path between them on the surface
of the sphere on which they lie. This may be calculated using the haversine formula, (Van Brummelen, 2013)

dij = 2r arcsin

(√(
1− cos(ϕj − ϕi)

2

)
+ sin(ϕi) sin(ϕj)

(
1− cos(λj − λi)

2

))
, (2.4)

which has been modified to use spherical coordinates (r, λ, ϕ) instead of latitude and longitude (ϕ differs by
π/2 between the two). By convention, the longitude is denoted by λ, which has been maintained to avoid
confusion with the azimuthal span θ.

The smoothing parameter Sj introduced in (2.2) and (2.3) requires special attention. The density weights
Aij are fixed by the geometry of the problem (i.e. the spatial locations of the data points and the interpolation
points), so the only degrees of freedom left in the problem are the Sj . Shen et al. (2015) suggest a method by
which a set of smoothing parameters S = {S1, S2, . . . , Sn} could be chosen. Let the dimensionless quantity
Wj be the sum of the weighting coefficients for an interpolation point such that

Wj =

n∑
i=1

Gij =

n∑
i=1

DijAij . (2.5)

Next, let W ′ be some fixed value. It is then possible to use a root finding algorithm at each interpolation
point to find the value S′j such that Wj = W ′. Note that by fixing W ′ and finding the appropriate set S′ to
match, an overall trend on the values of the S′j is induced. That is, when the distribution of data near the
j-th interpolation point is very dense, S′j will be smaller than when the data distribution is sparse. It should

be straightforward to see that as the chosen value for W ′ is increased, so does the median value S̄ of the
smoothing parameters.

Actually performing the root finding requires some care. The first problem is that the functions suggested
for Dij are not well-behaved at Sj = 0. Secondly, while W ′ may be arbitrarily small, it is not guaranteed
that there exists an S′j satisfies Wj = W ′, so the root-finding algorithm cannot be guaranteed to converge.
Additionally, there is no strict upper bound on Sj , but in practice choosing something several orders of
magnitude higher than the target value of S̄ is sufficient. Combined with an adequately small lower bound,
this allows the use of fast and stable bounded root-finding algorithms such as the classic Brent’s method
(Brent, 1973), which is chosen here. By this process, the problem of choosing n parameters (the S′j) has
been reduced to choosing just one parameter, namely W ′. For some applications, for example the kind of
lithosphere deformation modelling carried out by England, Houseman and Nocquet (2016), a larger value of
W ′ would be preferred. This would correspond to a larger smoothing distance. On the other hand, if one was
interested in short length-scale applications strain across an individual fault, a small value of W ′ would be
better. Nevertheless, a choice of an exact number for W ′ and corresponding value of the median value of
S still needs to be made. The approach of Shen et al. (2015) leaves the choice to the user (in other words,
eyeballing it). While it is possible in principle to run the finite-element deformation model multiple times
with various values of W ′ and minimise the error in the strain rate output, to the author’s knowledge this
has not been done in the literature, and is beyond the scope of this work.

The motivation for the density weighting is more subtle—the value of the information carried by a data
point increases as the density of data points in its local area decreases. To illustrate this, consider the two
cases in Figure 2.2, where the the vectors in black sample a velocity field of uniform direction and linearly
decreasing magnitude from South to North. In both cases, the vector coloured in turquoise is interpolated
from the vectors coloured in black using the Gaussian method described previously. In Figure 2.2a, the
interpolation method correctly predicts the vector field at the intermediate location. However in Figure 2.2b,
the magnitude of the interpolated vector is strongly biased towards the data points to the South.

Two schemes are proposed to account for this effect, the Voronoi method and the azimuthal method. The
weights in the former method scale depending on the local density of measurements (and are independent
of the interpolation point), while the weights of the latter depend only on the azimuthal coverage (in
two-dimensional (2D) polar coordinates) of each data point. This means that the two methods are essentially
2D and 1D in their calculation of the density weighting respectively.
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Figure 2.4: The Voronoi tessellation of 20 points on R2 (Euclidean metric). Solid lines
indicate finite length Voronoi edges. Dashed lines indicate infinitely long Voronoi edges,
which will never intersect with another Voronoi edge (e.g. the vertex a). Some finite-length
Voronoi edges are artificially shortened by the border around the figure, and will converge
at some point outside border (e.g. the vertex b).

2.1.1 Voronoi density weighting

A Voronoi tessellation (Figure 2.4) is a partitioning of a space into regions based on the distances from a
set of generators (points within the space). The set of all points which are closer to generator xi than any
other generator defines the generator’s Voronoi cell. The Voronoi tessellation of a set of points is dual to its
Delaunay triangulation (Weisstein, 2015b), a special triangulation such that none of the generating points is
inside the circumcircle of any triangle in the triangulation. Each data point is then weighted by the area of
its Voronoi cell. Previously, the Voronoi tessellation was carried out in a Euclidian geometry (Shen et al.,
2015), but in this work, it will instead be done on the surface of a sphere. Directly computing the Voronoi
tessellation on the surface of the sphere is challenging, but the Delaunay triangulation of points on the surface
of the sphere is equivalent to the (3D) convex hull, which is easily computed.

Unfortunately, there are two problems with Voronoi weighting. The first is that, while calculating
the Voronoi tessellation on Euclidean geometry is relatively straightforward, these methods cannot be
easily generalised to other surfaces in three-dimensional space. Fortunately the surface of the earth is well
approximated by a sphere, and the Voronoi tessellation on a sphere can be calculated in a fairly straightforward
way. First, the 3D convex hull of the generators is calculated—this is the same as their Delaunay triangulation
on the sphere (Caroli et al., 2010). This is converted into a 3D Delaunay tetrahedralisation by including
the centre of the sphere as a fourth vertex of each symplex of the convex hull. The circumcenters of all
tetrahedra in the system are calculated and projected to the surface of the sphere, producing the Voronoi
vertices. Neighbour information from the Delaunay tetrahedralisation is then used to order the Voronoi
regions’ vertices around each generator.

Since the Voronoi edges are great circles, the Voronoi cell surface areas ai can be computed by decomposing
them into spherical triangles, calculating the surface area of each, and adding them together. L’Huilier’s
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where E is the spherical excess, which is the surface area of a spherical triangle (Weisstein, 2015a). The
semiperimeter s is defined s = 1

2 (b+ c+ d) where b, c, and d are the side-lengths of the spherical triangle.
The density weighting Aij for the i-th data point is then

Aij =
nEi∑n
k=1Ek

, (2.7)

where n is the total number of data points. Note that the index j is only present for bookkeeping purposes—
the weighting does not actually depend on the positions of the interpolation points j, since the Voronoi cell
areas are fixed entirely by the spatial distribution of data points.

The second problem is that at the edge of the network of data points Voronoi cell areas are greatly
exaggerated. This is easier to understand with a flat coordinate system (Figure 2.4). Towards the edge of the
network, all the Voronoi cell borders eventually converge on dashed lines, and these dashed lines extend to
infinity (see the vertex labeled a). This is because there are no further generating points to interfere with the
line that is equidistant from these points on the exterior. In turn, this means the corresponding Voronoi
cell areas are infinite (see the cell labeled A). On the surface of the sphere, it is impossible for these lines to
extend to infinity (they would eventually converge at some point on the opposite side of the sphere), however
the Voronoi cell areas are still much larger than they would be if they were in the interior of the network.

There are several options of various complexity to solve this problem. One option is to draw a border
around the network and use it as the missing edge (or edges) of Voronoi cells. However the location of this
edge is entirely arbitrary, and not consistent between points on the edge of the network. Another option is to
disregard all the data points which have the pseudo-infinite edges as part of their Voronoi cell border, creating
a smaller network where every data point has a well defined Voronoi cell area. For data sets with only tens of
points removing the exterior data points could result in the network being cut in number by half or more.
Additionally, this still leaves some cells with unrealistically large areas, even if they are not pseudo-infinite
(see the cell labelled B). Shen et al. (2015) approximate the Voronoi cell area for these problematic data
points by calculating the area of a spherical cap with radius equal to half the median distance to neighbouring
points (for example the dashed circle around C in Figure 2.5).

However, some way to determine which points have an unreasonable Voronoi area is still needed. Shen
et al. (2015) suggest that Voronoi cells with an area exceeding twice the area of the spherical cap have their
area replaced by that of the spherical cap. This solution is unsatisfactory for the following reason: if the
spherical cap is a good approximation for what the Voronoi area would have been had the data point been
on the interior of the network, it does not make sense to replace the area only if it is twice as big as it is
estimated to be! Since this is an approximation, it is preferable that at the very least it usually underestimate
the weighting (i.e., err on the side of caution) rather than overestimate it by as much as a factor of two (see
the point D in Figure 2.5). Remember, the Voronoi cell area is itself only an estimator of the local density of
data points.

Unfortunately, simply altering the condition to be a limit equal to the spherical cap is insufficient, as this
incorrectly flags many points (> 50 %) which can be seen by eye to be on the interior of the network of data
points (see the point E in Figure 2.5). Instead, points which are on the edge of the network are manually
identified, and the spherical cap condition is only applied to these points. However, instead of replacement
when the Voronoi area exceeds twice the area of the spherical cap, the Voronoi area is replaced whenever it is
higher than one multiple of the area of the spherical cap. While it feels in some way less satisfactory than
a completely automated solution (and certainly more work), it avoids both the problem of over-weighting
exterior points and accidentally flagging interior points.

2.1.2 Azimuthal density weighting

The second density weighting method which will be investigated is the azimuthal span of the data. At the
j-th interpolation site, the azimuthal span of a data point θij for the i-th data point is

θij = arccos (r̂i+1,j · r̂i−1,j) , (2.8)
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Figure 2.5: The Voronoi tessellation of 20 points on R2 (Euclidean metric). Solid lines
indicate finite length Voronoi edges. Dashed lines indicate infinitely long Voronoi edges.
Points on the edge of a network with unrealistically large Voronoi cells should have their
area weightings replaced with a better estimate (for example, the point C). The point D
is an example of where the proposed method of Shen et al. (2015) for dealing with edge
points is unsatisfactory (the area of the Voronoi cell is unrealistically large, but the area of
the circle would not be used). The point E is an example of where changing the condition
would incorrectly replace a Voronoi area with the area of a circle.
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Figure 2.6: The azimuthal span can be used to quantify the spatial
density of data points. The azimuthal span (θij) of the i-th data point
for the j-th interpolation point. The angle used for the azimuthal
weighting of a data point is θij/2.

where r̂i,j is the unit vector pointing from the j-th interpolation point to the i-th data point. Note that the
data points are re-indexed for each interpolation point by increasing azimuthal angle. In other words, the
azimuthal span of xi is the angle between the data points which are azimuthally adjacent to it (Figure 2.6).
The azimuthal density weighting for a data point is then

Aij =
nθij
4π

. (2.9)

Note that in general the azimuthal density weight of a data point is not the same for different interpolation
points. Imagine standing at the interpolation point y1 in Figure 2.7, and that the data point x1 has an
azimuthal span of θx1y1

= 1° with x0 and x2. If you move 100 m Southeast to y2, your view of the relative
positions of the three data points will change, which in turn changes the angles between them, and thus the
azimuthal span will change. Indeed, if you move far enough, the azimuthal ordering of the data points will
change too. In contrast, the Voronoi density weightings are the same for every interpolation point, because
the Voronoi cell of a data point depends only absolute positions of all the data points.

The azimuthal span method has a significant drawback. At the edge of a data network, a large proportion
of the 360 deg view will be empty of data points (Figure 2.8). This means that two data points will have an
enormous azimuthal span compared to the rest of the data points, distorting the interpolation scheme. No
acknowledgement of this problem is given in the existing literature, so in this work the azimuthal span will
be tested as presented by Shen et al. (2015).

2.1.3 Cross-validation error

Three methods are used to assess the effectiveness of these interpolation schemes. The first is an adaptation
of the jackknife resampling method. For each combination of distance weighting and density weighting, the
velocity of each data point is predicted by using the rest of the data set, for a range of values of S̄. The
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Figure 2.7: Unlike the Voronoi method, with the azimuthal span
method the density weighting of a data point also depends on the posi-
tion of the interpolation point. Moving an interpolation point changes
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Figure 2.8: A drawback of the azimuthal span method is that for the
interpolation point y, the azimuthal span of the data points x0 and x1

are far larger than for the other data points, because the interpolation
point is outside the the convex hull of the data points.



predicted value and the measured value are compared by calculating the root mean square error (RMSE),

RMSE(v) =

√√√√ 1

n

n∑
i=1

(yi − xi)2, (2.10)

where xi is the i-th measured velocity and yi is the i-th interpolated velocity at the same spatial location as
xi. The RMSE is chosen as an estimator because of its familiarity, simplicity, and its sensitivity to large
outliers.

The jackknife approach has been used in other fields to analyse the performance of interpolation methods
(Hofstra et al., 2008), and it has the advantage of using samples from a real GNSS velocity field and a real
distribution of data points. On the other hand, it is not a perfect analogy to how interpolation methods would
be used in the real world; instead of interpolating the velocity field onto a regular grid, it is interpolating it
back onto the irregularly spaced original data set. This causes the jackknife approach to be more suited to
data with short-range correlation, as the interpolation scheme is attempting to use the data to predict the
data itself. This presumably makes it more suited to evaluating interpolation schemes for the purposes of
short wavelength geophysical modelling (for example, the strain rate across a single fault) rather than long
wavelength modelling (deformation over large subsections of tectonic plates).

2.1.4 Known-field error

To combat the aforementioned disadvantages, in the second analysis method an artificial velocity field is
created using a known equation that resembles a real velocity field (Figure 2.9a). These equations are chosen
due to their first-order similarity to the GNSS velocity data observed in India-Eurasia collision zone. It is
then sampled using a realistic distribution of data points taken from the spatial distribution of a data from
Zhao et al. (2015) (Figure 2.9b). The equations for this vector field are

vϕ = 60ϕ′ exp(−10ϕ′2) +
12

exp(ϕ′/3) + 1
− 2.2,

vλ = 8λ′ exp(−ϕ′/1.3) + 4 exp(1.5λ′ + 1.2ϕ′)
(
40ϕ′ exp(−40ϕ′)− 10ϕ′2 exp(−10ϕ2)

)
,

(2.11)

where ϕ′ ≡ ϕ− 7
4 and λ′ ≡ λ− 1. The particular form of this vector field has been chosen to vary smoothly

over the length scales of around a hundred kilometers, as would be expected for the results of thin sheet
modelling (discussed in Section 1.2). The artificial data points are then interpolated onto a regular grid using
each interpolation method, and compared to the value of the velocity field at each grid point by calculating
the RMSE over a range of values of S̄,

RMSE(v) =

√√√√ 1

n

n∑
i=1

(yi − xi)2, (2.12)

where xi is the velocity of the artificial vector field (2.11) at an interpolation point, and yi is the velocity
at the same point interpolated using the data in Figure 2.9b. The chosen interpolation points are a grid of
20× 10 evenly spaced points in the ϕλ-plane, with ϕ ∈ [1.40, 2.05] and λ ∈ [0.85, 1.15]. This corresponds to
a spacing between grid points of 234 km.

This approach has the advantage of much more closely approximating the process of interpolation as
would be used in a real modelling problem. However, it is obviously not derived from a real set of GNSS
velocity data. Furthermore, unlike real data, this artificial data is a perfect sampling of the underlying
velocity field, with no measurement error.

2.1.5 Noise sensitivity error

Finally, the third method introduces random Gaussian noise to the values of the known velocity field. This
is to test the sensitivity of the interpolation methods to source data which does not perfectly sample the
true velocity field. This should more closely model a real data set, while still being able to compare the
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(a) The known vector field defined by (2.11), sampled on a regular grid for visual-
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Figure 2.9: The known vector field and corresponding artificial data used for the known field and noise sensitivity
tests.



interpolation result to known velocity field. Of the three testing regimes in this work, this one has the fewest
drawbacks. While there is no guarantee a real data set has measurement error which follows a Gaussian
distribution, calculations of measurement error almost universally assume a Gaussian distribution, so this is
a reasonable assumption for this thesis.

The random noise is added to the velocities with a Gaussian distribution with standard deviation equal
to the mean standard error of the GNSS data from Zhao et al. (2015). The data is then interpolated to the
same regular grid as in the previous test, and compared to the true value of the artificial velocity field at
each grid point, again by calculating the RMSE over a range of values of S̄. This process is repeated 50 times
for each value of S̄, and the arithmetic mean of the RMSE at each value is taken as the final value.

2.2 Calculation of 2D deviatoric tensor fields on a spherical earth

Previous works (England, Houseman & Nocquet, 2016; Walters, England & Houseman, 2017) have assumed
a flat earth when calculating horizontal deviatoric stress and strain

·
εij =

1

2

(
∂fi
∂xj

+
∂fj
∂xi

)
, (2.13)

where i and j denote arbitrary basis vectors of a coordinate system (in this case the basis vectors to choose
from are eastings and northings), and ∂fi

∂xj means the derivative in the j-th direction of the i-th component
of a vector field f . However, in typical study areas, the true length of a degree of longitude can change
significantly. Consider the study area in Walters, England and Houseman (2017), which ranges from 26°N to
44°N and 40°E to 62°E. At 44°N, one degree of longitude has a length on the surface of the (spherical) earth
of 80 206.16 m, while at 26°N a degree of longitude has length 100 117.68 m, an increase of 24.8 %. Because
Earth is an oblate spheroid, the length of a degree of latitude also changes with latitude, however the change
is much smaller; 111 112.21 m at 44°N and 110 787.98 m at 26°N, an increase of just 0.29 %.

This provides strong motivation to account for the curvature of a spherical earth (which causes the change
in the length of a degree of longitude) in as many places as possible. The change caused by the earth being
an oblate spheroid is smaller by two orders of magnitude, and is beyond the scope of this thesis.

To calculate the equation for deviatoric stress on the surface of a sphere, basic differential geometry
techniques are required. Differential geometry is the branch of mathematics concerned with applying the
techniques of differential calculus (among others) to study curves, surfaces, and manifolds. However, in order
to follow the mathematics in the following section, a quick explanation of Einstein summation notation is
necessary. If there are matching indices on the same side of an equation, it indicates the presence of a sum
over that index,

aibi =
∑
i

aibi. (2.14)

If an index is free (that is, it appears only once on one side of the equation) it must also appear once (and
only once) on the other side of the equation. Free indices represent an entry in a tensor. This could be a
number in a matrix, or even another tensor.

As an aside, in this section, some indices in (2.14) are superscript and some subscript. In Einstein notation,
these are informally referred to as upper and lower indices, and represent contravariant and covariant vectors
respectively. In general, sums must be performed over one upper and one lower index.

First, the metric tensor g is introduced. The metric tensor is the generalisation of the Euclidean dot
product to vector spaces that are defined by non-flat geometries. Indeed, the metric tensor defines the
geometry of a space. The metric tensor is symmetric, which means it is invertible, which in turn means it can
be inserted, along with its inverse, to perform a sum over two upper or two lower indices. For 3-dimensional
Cartesian coordinates R3, the metric tensor is

gij =

1 0 0
0 1 0
0 0 1


ij

= Iij . (2.15)



The inverse of gij is gij = Iij . For the surface of the sphere S2, the metric and inverse metric tensors are

gij =

(
r2 0
0 r2 sin2 θ

)
ij

, gij =

(
1
r2 0
0 1

r2 sin2 θ

)ij
. (2.16)

Next the Christoffel symbols Γijk are introduced. Christoffel symbols make up an array of variables

that encode how coordinates change with respect to each other. In the case of S2 the surface of a sphere,
parameterised by colatitude and longitude, the length of one degree of colatitude depends on the colatitude
itself. Inspecting the metric tensor, this dependence is seen to be encoded in the bottom right entry
gφφ = r2 sin2 θ. From (5) in Chapter 4, Part D in Spivak (1999), the Christoffel symbols can be defined in
terms of the metric tensor

Γikj =
1

2
gih
(
∂ghk
∂xj

+
∂ghj
∂xk

− ∂gkj
∂xh

)
. (2.17)

Finally, the covariant derivative is introduced. The covariant derivative is the generalisation of the gradient
from scalar fields to vector (or tensor) fields. From (4.6.4) in (Weinberg, 1972), the covariant derivative of a
contravariant tensor f i is

f i;j =
∂f i

∂xj
+ fkΓikj . (2.18)

The conventional partial derivatives in (2.13) are now replaced with covariant derivatives (and then some
manipulation of Einstein notation) to obtain

ε̇jj =
1

2

(
f i;j + giβgjαf

α
;β

)
. (2.19)

Before tackling the deviatoric stress on the surface of the sphere, it should be confirmed that equation
(2.19) reduces to equation (2.13) by using the metric tensor g = I2 for R2. Since all the components of g for
R2 are constant, all the derivative terms in equation (2.17) will be 0, and so the Christoffel symbols for R2

are 0, and therefore the covariant derivative on R2 is the same as the conventional partial derivative.
Computing the Christoffel symbols for S2 is not difficult, but even with only two coordinates carrying out

the algebra is a lengthy process, and not worth including here. The eight Christoffel symbols are

Γθij =

(
0 0
0 − sin θ cos θ

)
ij

, Γφij =

(
0 cos θ

sin θ
cos θ
sin θ 0

)
ij

. (2.20)

Thus, the four components of the deviatoric stress tensor are given by

ε̇θθ =
∂fθ

∂xθ
,

ε̇φθ = ε̇θφ,

ε̇θφ =
1

2

(
∂fθ

∂xφ
− fφ cos θ sin θ +

∂fφ

∂xφ
+ fθ

cos θ

sin θ

)
,

ε̇φφ =
∂fφ

∂xφ
+ fθ

cosθ

sin θ
.

(2.21)

Once the equations in (2.21) have been calculated, little effort is needed to use them in place of (2.13).
The equations (2.21) expect values in units of radians, and so any values in terms of distance must first be
converted (for example a velocity field in mm/yr should be converted to rad s−1). The conversion to angular
units for northward vectors is

fθ =
fy

r
, (2.22)

and for eastward vectors

fφ =
fx

r sin(θ)
, (2.23)

where fy and fx are northings and southings, r is the radius of the earth, and θ is the angle between the
location of the vector and the north pole.

In order to determine any difference made, the deviatoric tensor field will be calculated for four simple
velocity fields (Figure 2.10) using the spherical correction and without the spherical correction. In a latitude-
longitude coordinate system, these vector fields represent pure compression in the latitudinal direction (Figure
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(d) Vector field of longitudinal shear.

Figure 2.10: Compression and shear vector fields in the latitudinal and longitudinal directions for which the
associated deviatoric tensor fields will be calculated with and without correction for spherical geometry. All
vector fields have a minimum value of 1 mm/yr and a maximum value of 2 mm/yr.

2.10a), pure shear in the latitudinal direction (Figure 2.10b), pure compression in the longitudinal direction
(Figure 2.10c), and pure shear in the longitudinal direction (Figure 2.10d). Due to the simplicity of these
vector fields, it should be straightforward to note the effect of spherical geometry on the calculation of
deviatoric tensor fields.

As a further test, the equations above will be applied to a more realistic situation. The deviatoric strain
from GPE is calculated using the set of equations (2.21) for a small test region of real topography replicated
at a latitude of 10°S and 35°S. These latitudes correspond to the North and South extents of the southern
African study region. The discrepancies in the deviatoric stress at each point are then compared between the
two latitudes, and then to the deviatoric stress calculated using equation (2.13). Since the distortion of the
geodetic coordinate system is greatest towards the poles, the discrepancy between the deviatoric stresses
calculated from equations (2.21) and (2.13) is expected to be largest at 35°S.
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Figure 2.11: It is possible to estimate the thickness of the crust by combining surface elevation data with
Pascal’s principle. Here, h is height above sea level, d is the depth below sea level of the crustal root, and
dcomp. is some depth that is deeper than any crustal root such that mantle is present. The subscript 0
denotes quantities for a reference column.

2.3 Tectonic stresses in southern Africa due to gravitational col-
lapse

In calculating the stresses due to body forces of the lithosphere, it is assumed that the lithosphere is in
isostatic equilibrium. Isostatic equilibrium is the state of balance between the upper layer of mantle material
and the less dense crust which sits above it. Pascal’s law states that the pressure at a given depth in a fluid
is the same. At some sufficient depth, the mantle is hot enough that it can deform fluidly, and so Pascal’s law
must hold in the absence of tractions applied to the base of the lithosphere due to mantle upwelling (often
referred to as dynamic uplift). The primary mechanism of isostatic compensation is a thicker crustal root
which counterbalances higher topography on the surface, which would otherwise subside due to insufficient
buoyancy, which is called Airy isostasy (Airy, 1855). Since the crust is less dense than the mantle, thicker
crust must be compensated by higher topography at the surface in order for the total mass in a column of
material above a point (and thus pressure at the point) to remain constant. If the lithosphere is in isostatic
balance via this mechanism, it is straightforward to calculate its gravitational potential energy at a given
latitude and longitude. Pratt isostasy can also be achieved by having layers of constant thickness, but with
lateral changes of density within the layers (Pratt, 1855). This is thought to contribute to topography
variation in regions with lateral changes in the geotherm (Hasterok & Chapman, 2007), but this thesis
assumes that Airy isostasy is the dominant mechanism in southern Africa.

The elevation of the surface can be used to estimate the thickness of the crust, and therefore the body
forces caused by gravity acting on differences in topography (Figure 2.11). Let dc be a constant depth which
is deeper than the crustal root for all latitudes and longitudes. Over geological timescales, the mantle deforms
like a fluid, and so at dc Pascal’s principle applies (it is therefore called the depth of isostatic compensation).
It states that in an interconnected fluid, the pressure at a given depth is constant. The pressure at the base
of a column of material is given by

p = gρ(h+ d) = gρS, (2.24)

where g is the gravitational constant, ρ is the density of the column of material, and h+d is its height (Pascal,
1663). If a column is made up of multiple materials layered on top of one another, they can be treated as
separate columns and their individual pressures summed to find the total pressure at the bottom. Given the
thickness and altitude of a reference column of crust, it is possible to estimate the thickness of any column of
crust, if its altitude is known. From (2.24), for the two columns of lithosphere in (Figure 2.11) the following



is true

ρc(h0 + d0) + ρm(dc − d0) =
p

g
= ρc(h+ d) + ρm(dc − d)

ρcS0 + ρm(dc − d0) = ρcS + ρm(dc − d)

ρc(S − S0) = ρm(dc − d0 − dc + d)

ρc(S − S0)− ρm(S − S0) = ρm(d− d0)− ρm(S − S0)

−(ρm − ρc)(S − S0) = ρm(d− d0)− ρm(S − S0)

S − S0 =
ρm

ρm − ρc
(h− h0), (2.25)

where S0 = h0 + d0 and S = h + d are the crustal thicknesses of the reference column and the column of
interest respectively (Haxby & Turcotte, 1978). For computations involving topography, a Digital Elevation
Model (DEM) is often used. In order to account for the added mass of water above oceanic crust, the
ETOPO1 1 Arc-Minute Global Relief Model was chosen, which is a 1 arc-minute DEM that incorporates
bathymetry as well as topography (Amante & Eakins, 2009).

The simplifying assumption is made that there are negligible vertical gradients in horizontal velocity.
Measurements of the deformation of the lithosphere can only be taken in the very upper layers of the crust,
which show elastic deformation. Bird and Piper (1980) and Houseman and England (1986) take the view
that this elastic deformation follows the ductile strain of the underlying lithosphere except during and shortly
after seismic events. The stress caused by the gravitational potential energy of the lithosphere is the negative
gradient of its gravitational potential energy EG at a point in the thin-sheet model, which in turn depends
on its thickness. The change in gravitational potential energy is

∆EG = gρc (h− h0)

(
S0 +

1

2
ρm

h− h0
ρm − ρc

)
, (2.26)

where g is 9.81 m s−2, the acceleration due to gravity at Earth’s surface; ρc is 2800 kg m−3, the assumed
density of the crust; ρm is 3300 kg m−3; and S0 is 35 km, the depth of the crust of the reference column. This
equation is obtained by integrating (2.25) with respect to elevation h after Haxby and Turcotte (1978).

The gradient of the weight of the lithosphere is calculated in spherical coordinates with r assumed to be
constant. In other words, the gradient is calculated in two coordinates which parameterise the surface of a
sphere

F = ∇EG =
1

r

∂EG

∂θ
θ̂ +

1

r sin θ

∂EG

∂φ
φ̂. (2.27)

The horizontal deviatoric stress due to GPE is then calculated using the set of equations derived in the
previous section:

ε̇θθ =
∂fθ

∂xθ
,

ε̇φθ = ε̇θφ,

ε̇θφ =
1

2

(
∂fθ

∂xφ
− fφ cos θ sin θ +

∂fφ

∂xφ
+ fθ

cos θ

sin θ

)
,

ε̇φφ =
∂fφ

∂xφ
+ fθ

cosθ

sin θ
.

(2.28)

With these results, qualitative and quantitative comparisons with deviatoric stress due to GPE will be made
to measurements from the WSM (Heidbach et al., 2018), and to total moment release in the seismic record
from 1976–2010 in the ISC Bulletin (Storchak et al., 2020, 2017). For the latter, the moment release will be
smoothed with a Gaussian distance weighting with a smoothing diameter of 100 km.



3 Results
3.1 Comparison of interpolation methods

All six permutations of interpolation method (Gaussian only, inverse square only, Gaussian-Voronoi, inverse
square-Voronoi, Gaussian-azimuthal, and inverse square-azimuthal) were successfully implemented and used
to plot interpolated velocity fields from the Tibetan GNSS velocity data, for W ′ ∈ {0.1, 1, 10, 100}, where W ′

is the sum of the weighting coefficients Dij and Aij . These values of W ′ correspond to different values of S̄
(the median smoothing parameter) for each interpolation method, and can be found in Table 3.1. Figures 3.1
to 3.4 show the interpolated fields for these values of W ′. As expected, the interpolated fields with larger
values of W ′ preserve short-wavelength behaviour less than those with small values for W ′.

A brief qualitative assessment shows that the Gaussian-Voronoi weighting and Gaussian only weighting
schemes look the most reasonable (even in regions of extrapolation), in particular because it reproduces
the curving and spreading of original velocity field around the border with Myanmar and Laos at around
25°N 95°E (red ellipse in Figure 3.5). On the other hand, the vector fields for the azimuthal weighting show
significant discontinuities in vector magnitude at the same location, with adjacent interpolation points not
smoothly transitioning and instead abruptly changing direction. This is because of the problem highlighted
earlier (Figure 2.8), where the directions of the vectors, even in regions of interpolation, are influenced heavily
by data points with overlarge density weightings when interpolating to a point close to the edge of the spatial
range of the data. Lastly, for the same value of W ′, the inverse square weighting smooths more aggressively
compared to the Gaussian weighting, regardless of density weighting.

As can be seen from these figures, qualitatively comparing the performance of the various combinations of
interpolation method is not an easy task. Crucially, there is no good way to compare them for the same
value of S̄ or W ′ because, as described earlier (Section 2.1.3), the meaning of S̄ (on which W ′ depends) is
not consistent between the functional forms of the Gaussian and inverse square distance weighting methods.
As another method of comparison, the results of the cross-validation, known field, and noise sensitivity tests
are presented.

Table 3.1: The values of S̄ for each value of W ′ for each interpolation method.

S̄ (km)
Density method Distance method W ′ = 0.1 W ′ = 1 W ′ = 10 W ′ = 100

Gaussian Voronoi 69.7 103.0 216.5 690.6
Gaussian Azimuthal 74.2 110.2 185.0 359.9
Gaussian None 82.2 136.5 306.9 813.5

Inverse square Voronoi 8.0 25.3 84.6 348.3
Inverse square Azimuthal 4.7 15.0 49.0 172.2
Inverse square None 9.6 30.8 102.4 391.3

25
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Figure 3.1: The interpolated vector field for each of the interpolation schemes for W ′ = 0.1. The region
highlighted in green is the convex hull of the data and the region of interpolation.
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Figure 3.2: The interpolated vector field for each of the interpolation schemes for W ′ = 1. The region
highlighted in green is the convex hull of the data and the region of interpolation.
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Figure 3.3: The interpolated vector field for each of the interpolation schemes for W ′ = 10. The region
highlighted in green is the convex hull of the data and the region of interpolation.
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Figure 3.4: The interpolated vector field for each of the interpolation schemes for W ′ = 100. The region
highlighted in green is the convex hull of the data and the region of interpolation.

3.1.1 Cross-validation error

Using a similar approach to that taken in other fields (Hofstra et al., 2008), the GNSS velocity data was
self-predicted by cross-validation at each data point with each of the six interpolation methods, and the misfit
quantified by the RMSE (see Section 2.1.3).

In general, the focal points of greatest mean absolute error for cross-validation were where a significant
change in the local density of observations was coupled with the local velocity field changing rapidly (see
for example Figure 3.6). It is also interesting that places with the highest measurement density do not, as
a rule, have the lowest root mean square error. This could be due to the fact that a high local density of
observations means that there is a greater chance of a very close data point dominating the interpolation
with a velocity which disagrees with the measured value at the cross-validation point.
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Figure 3.5: The GNSS velocities in the Eurasian study area (Zhao et al., 2015). Coordinates are degrees
latitude and longitude, and velocities are relative to stable Eurasia. The red ellipse highlights the curving
and spreading of the velocity field which should ideally be preserved by the interpolation methods.

Figure 3.7 shows the root mean square error in cross-validation for each interpolation method as S̄ varies.
None of the inverse square weighting schemes converge on a minimal value for RMSE(v), and have a much
higher misfit than their Gaussian counterparts. Of the methods with a Gaussian distance weighting, the
Gaussian-azimuthal method has by far the highest RMSE(v). The remaining two methods, Gaussian only
and Gaussian-Voronoi, perform comparably in this test. In the range 30 km < S̄ < 150 km the Gaussian only
method has a notably lower RMSE(v) than the Gaussian-Voronoi method. At very high and very low values
of S̄, the Gaussian-Voronoi method performs slightly better.

Table 3.2 shows the minimal total errors for the various interpolation schemes along with the values of W ′

and S̄ for which these minima occur. With a Gaussian distance weighting, the azimuthal interpolation scheme
had a significantly higher minimal root mean square error (1.627 mm/yr) compared to both the Voronoi
method (1.334 mm/yr) and no density method (1.281 mm/yr). The Voronoi scheme performed better, but
had a minimal mean absolute error that was still approximately 5 % worse than no density weighting at all.
In addition to the much higher mean absolute error for almost all values of S̄, the inverse square distance

Table 3.2: Optimised values for cross-validation. A dash for the values of W ′opt and S̄ indicates no optimal
value was found by the minimisation algorithm, in which case the listed value for RMSE(v) is the value to
which it tended as W ′, S̄ → 0.

Density method Distance method W ′opt S̄opt (km) RMSE(v) (mm/yr)

Voronoi Gaussian 1.100 57.24 1.334
Azimuthal Gaussian 0.273 23.23 1.627

None Gaussian 2.083 55.64 1.281
Voronoi Inverse square — — 3.157

Azimuthal Inverse square — — 1.951
None Inverse square — — 1.980



Table 3.3: Optimised values for known field error. A dash for the values of W ′opt and S̄ indicates no optimal
value was found by the minimisation algorithm, in which case the listed value for RMSE(v) is the value to
which it tended as W ′, S̄ → 0.

Density method Distance method W ′opt S̄ (km) vRMSE (mm/yr)

Voronoi Gaussian 0.015 23.5 0.50
Azimuthal Gaussian 0.010 23.6 0.47

None Gaussian 0.005 22.0 0.44
Voronoi Inverse square — — 3.09

Azimuthal Inverse square — — 2.98
None Inverse square — — 1.79

weightings were unable to reach convergence—the minimisation scheme simply approached S̄ = 0 until the
tolerance limit was hit. This is obviously problematic because the minimum error being at a smoothing
distance of 0 km implies that the method is unsuitable for interpolating long range behaviour.

3.1.2 Known-field error

When comparing the interpolated velocity field to the known field, the locations of the most major discrepancies
were wherever the interpolation methods had to do any extrapolation across concave regions where there
were no data points. This can be seen, for example, in the relatively high absolute error in the lower central
portion and the left hand side of Figure 3.8 (where there are no data points in Figure 2.9).

Figure 3.9 shows the mean absolute error in cross-validation for each interpolation method as S̄ varies.
For most values of S̄, the Gaussian only interpolation scheme has a lower root mean square error than the
Gaussian-Voronoi method. Between 55 to 100 km, the Gaussian-Voronoi method is slightly better than the
Gaussian only method. The minimum misfit for the Gaussian only method was 0.432 mm/yr at S̄ = 73.2 km.
The Gaussian-Voronoi method had a slightly worse minimum misfit of 0.453 mm/yr at S̄ = 65.7 km.

As with cross-validation, the inverse square methods perform significantly worse than their Gaussian
counterparts for all values of S̄, and they also fail to converge on a minimum misfit, approaching S̄ = 0 as the
misfit decreases. For very low values of S̄ the Gaussian-azimuthal performs similarly to the Gaussian-Voronoi
method. However for S̄ > 25 km, the Gaussian-azimuthal method performs even worse and more erratically
than in the cross-validation test.

Table 3.3 shows the minimum mean absolute error, and the values for the weighting threshold and average
smoothing distance at which they occur. As with the results from Section 3.1.1, the Gaussian-Voronoi method
had a worse minimum misfit value (0.50 mm/yr) than a pure Gaussian scheme (0.44 mm/yr). Also as with
cross-validation error, the azimuthal weighting scheme is far worse than either of its competitors (although it
has a similar minimum RMSE of 0.47 mm/yr). With this test, it can be seen more easily why the azimuthal
scheme performs more poorly for most values of S̄. Whenever the interpolation method has to perform any
sort of extrapolation, two data points will be given exceptionally high azimuthal weights (e.g. the lower
central portions of the velocity fields in Figure 3.2). As these may not necessarily be representative of the
velocity everywhere in the extrapolation region, the huge weights throw off the value significantly (explained
in Figure 2.8).

As with cross-validation error, all inverse square weighting schemes failed to converge. Figure A.5 shows
how the methods which have no minimal value perform notably worse for 0 < W ′ . 10. It also shows how
beyond W ′ ' 10, the error grows very rapidly. Extremely high values for W ′ have not been plotted, however
it should be relatively intuitive that the error would asymptotically approach some large value as W ′ →∞.
This is because at some point, the mean smoothing distance would be so large that all interpolated vectors
would be the same.

3.1.3 Noise sensitivity error

Figure 3.10 shows the mean relative error according to the noise sensitivity test for various values of S̄. As
before, the Gaussian only scheme has the lowest total misfit for most values of S̄, with the Gaussian-Voronoi
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Figure 3.6: The magnitude of the vector field of differences RMSE(vj) for the Gaussian-Voronoi interpola-
tion scheme according to the cross-validation testing method (W ′ = 1.100, S̄ = 57.24 km). The upper plot
uses a näıve interpolation method between points for ease of visualisation, while the lower plot shows the
true value of RMSE(vj) at each data point.
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Figure 3.7: The mean absolute error RMSE(v) as a function of S̄ for the various weighting schemes (for
cross-validation).
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Figure 3.9: The mean absolute error RMSE(v) as a function of S̄ for the various weighting schemes (for
known-field error).
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Figure 3.10: The mean over 20 runs of the mean absolute error RMSE(v) as a function of S̄ for the various
weighting schemes (for noise sensitivity). Shown are the 1σ error bars.



scheme being slightly better for a small range of values. In this test however, the Gaussian-Voronoi scheme
performed worse relative to the Gaussian only test, performing better over an even narrower range of values
than before (60 to 80 km).

Results for the other schemes are effectively identical to the known-field test. The Gaussian-azimuthal
scheme is just as erratic, with error rapidly increasing as S̄ increases, but being competitive (in terms of
misfit) at extremely low values of S̄. The inverse square methods again perform worse than their Gaussian
counterparts, and have no minimum misfit, with RMSE(v) decreasing as S̄ approaches 0. Next, the results
of the new method by which to calculate spherical 2D tensor fields will be presented.



3.2 Calculation of 2D deviatoric tensor fields on a spherical earth

The images in Figure 3.11 show the simple latitudinally (North-South) oriented vector fields and the associated
2D deviatoric tensor fields calculated for a flat geometry and spherical geometry. Figure 3.12 shows the same
for longitudinally (East-West) oriented vector fields. Calculating the 2D deviatoric tensor field with a flat
geometry reproduces the expected behaviour. Figure 3.11c is non-zero only in the latitudinal (North-South)
direction, and shows compression. Similarly, Figure 3.12c is non-zero only in the longitudinal (East-West)
direction, and again, is pure compression.

The explanation for the behaviour of the deviatoric tensor field calculated under a spherical geometry
requires careful attention. In one sense, the behaviour is entirely expected and completely predictable. On
the other hand, looking at latitude-longitude coordinate systems drawn on Euclidean axes is so normalised it
can be difficult to incorporate the inherently spherical nature into a mental conception of the situation. The
behaviour of the tensor field in Figure 3.11e is the easiest to understand. Imagine standing on the surface of
the earth at 68°N 0°E and facing South. The vector arrows in Figure 3.11a located at 68°N 8°E and 68°N
8°W are not actually parallel to the vector arrow at your feet, and in fact point slightly away from you.
As you walk South, the vector arrows on either side of you will become gradually more and more parallel,
and the rate at which this change occurs also decreases. This means that the vector field in Figure 3.11a
which superficially shows pure latitudinal compression actually hides an aspect of longitudinal (East-West)
compression, which grows larger towards the poles.

This effect of the gradual change in angle between longitude lines explains some aspects of the results for
the other simple vector fields as well. For example, in Figure 3.11f, the deviatoric tensors start out relatively
close to pure shear at 25°N, but become progressively more dominated by compression towards the poles
as lines of longitude become less parallel. However, longitudinally (East-West) oriented vector fields are
more complicated to dissect, because there is the additional effect of the length of a degree of longitude
shortening as latitude increases (see (2.23)). This effect is observable even in the calculations which use flat
geometry—Figures 3.12c and 3.12d show an increase in shearing in the deviatoric tensor field as latitude
increases. When the spherical equations are used instead (Figures 3.12e and 3.12f), this effect is of course
still present.

However, the longitudinal (East-West) component of the coordinate system has an analogous effect to the
deparallelisation of the latitudinal (North-South) component. Except at 0°N, lines of latitude are small circles
(circles where the plane of the circle does not pass through the centre of the sphere on whose surface they
lie). Straight lines on the surface of a sphere are, by definition, great circles ; this means that lines of latitude
(being small circles) are in fact curved, which induces a natural shear on the longitudinal (East-West) element
of the coordinate system. This can be seen in Figures 3.12e and 3.12f, where the amount of shear increases
faster as latitude increases than in comparison to their counterparts Figures 3.12c and 3.12d, respectively.
The causes of these effects of spherical geometry can be neatly summed up in a single sentence: lines of
longitude are straight lines which are not parallel to each other, while lines of latitude are parallel to each
other, but are curved. The use of this new calculation method with real data will be presented in the following
section, where the results are presented of the calculation of the 2D deviatoric stress due to body forces in
southern Africa.
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Figure 3.11: Compression and shear vector fields in the latitudinal direction and the associated deviatoric
tensor fields calculated with and without correction for spherical geometry. Red bars indicate the direction
and relative magnitude of greatest compression, blue bars indicate least compression.
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Figure 3.12: Compression and shear vector fields in the longitudinal direction and the associated deviatoric
tensor fields calculated with and without correction for spherical geometry.



3.3 Tectonic stresses in southern Africa due to gravitational col-
lapse

Figure 3.13a shows the topography of southern Africa according to the ETOPO1 1 Arc-Minute Global Relief
Model (Amante & Eakins, 2009). Figure 3.13b shows the topography after a Gaussian filter with radius
100 km has been applied. Small details such as ordinary river valleys have been lost, but large topographical
features in the region are still present, for example the mountain range running North-South near the
Namibian coast, and the very large Fish River Canyon. Figure 3.13c shows the gravitational potential energy
due to the thickness of the crust which is estimated from the smoothed topography in Figure 3.13b. Apart
from the change in colour scheme, the two are virtually identical as the GPE is directly proportional to
the crustal thickness, which is itself proportional to the topographic height (due to the assumption of Airy
isostasy). The vector field in Figure 3.13d shows the body stresses caused by the GPE.

Figure 3.14 shows the horizontal deviatoric stress due to the GPE of the crust in southern Africa using the
correction derived in Section 2.3 for coordinates on the surface of a sphere. Figure 3.15 shows orientation of
the maximum horizontal compression (black bars) of in situ stress measurements from the WSM compared to
the orientation of maximum horizontal compression (red bars) due to gravitational collapse. It is worth noting
that for an ideal pure Andersonian normal fault, the maximum horizontal compression will be the orientation
of σ2, and it will be parallel to the orientation of the fault strike (Anderson, 1905). In most places, there
is good alignment between high quality (A or B rated) measurements from the WSM and the orientation
of major shear zones. In general, there is fairly poor alignment between high quality WSM measurements
and the alignment of σ1,H from the GPE of the topography. However, in certain locations, there is very
good alignment between the orientation of all three: shear zones, WSM measurements, and deviatoric stress
due to GPE. Areas marked with stars in Figure 3.15 are examples where the match between the three is
excellent: the Hebron fault, at the intersection of the Namaqua-Natal Belt and the Damara-Chobe Belt; east
of the Congo Craton; northeastern Magondi-Gweta belt, southern-central Namaqua-Natal Belt; and central
Damara-Chobe Belt (Corner & Durrheim, 2018). The implications of these alignments (or lack thereof) will
be discussed below in Section 4.3.

Figure 3.16 shows the seismic moment release in southern Africa from the ISC Bulletin from 1976–2010.
This is then overlaid by the deviatoric stress due to gravitational collapse. Generally, the most seismically
active regions do not coincide with regions where there is high deviatoric stress, however the moment release in
these regions are often dominated by high-magnitude, low-frequency events (e.g. the 2017 Mw 6.5, Moiyabana
earthquake (Kolawole et al., 2017)). In western Namibia, there is both somewhat elevated seismicity and
high deviatoric strain due to gravitational collapse.
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(a) The topography of southern Africa from ETOPO1
(Amante & Eakins, 2009).
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(b) The topography smoothed with a 100 km Gaussian
filter.
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(c) The GPE inferred from smoothed topography.
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(d) The body stress due to inferred GPE.

Figure 3.13: The intermediate steps necessary to calculate the deviatoric stress caused by the gravitational potential
energy of the crust.



15°E 20°E 25°E 30°E 35°E

35°S

30°S

25°S

20°S

15°S

-2

-1

0

1

2

TN/m

Figure 3.14: The deviatoric stress caused by the gravitational potential energy of the crust. Calculated using
the curvature correction.
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Figure 3.15: The maximum horizontal deviatoric stress sampled at locations where the World Stress Map
(WSM) has in situ stress measurements (Heidbach et al., 2018). WSM measurements are black lines, with 1σ
confidence intervals shown by the blue wedges. The red lines show the deviatoric stress from GPE. Dashed
lines and initialisms show known shear zones and cratons, after Corner and Durrheim (2018): KVC Kaapvaal
Craton; DCB Damara-Chobe Belt; LT Limpopo Terrane; NNB Namaqua-Natal Belt; ZC Zimbabwe Craton;
CC Congo Craton; MGB Magondi-Gweta Belt. Stars mark select strain measurements which agree well with
the GPE-derived deviatoric stress and orientation of shear zones.
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Figure 3.16: Strain release in the ISC Bulletin earthquake record, smoothed with
a Gaussian filter over 100 km and overlaid by GPE-derived deviatoric stress. The
blue ellipse highlights an region of elevated topography in western Namibia where
there is high deviatoric stress due to body forces and there is also relatively high
strain release.



4 Discussion
4.1 Comparison of interpolation methods

Three tests (cross validation, comparison to a known field, and noise sensitivity) were used to evaluate the
performance of six weighting schemes for interpolation: Gaussian-Voronoi, Gaussian-azimuthal, Gaussian
only, inverse square-Voronoi, inverse square-azimuthal, and inverse square only. Across the three tests, only
the Gaussian-Voronoi and Gaussian methods had consistently low and stable root mean square errors. Figure
4.1 shows the results for these weighting schemes for the cross-validation and known field tests. For S̄ between
40 to 120 km in the cross-validation test, the Gaussian-Voronoi method performed slightly worse. For smaller
values of S̄ . 40 km, and values of S̄ & 120 km, the Gaussian-Voronoi scheme shows slight improvement over
the Gaussian only method. In the known field test, the methods are more closely comparable over the range
40 to 120 km, and for larger values of S̄, the Gaussian only method is significantly better.

The cross-validation test uses real-world data as both the source for interpolation and for the root mean
square misfit comparison. However this does not mean it is the most representative of real world conditions
of interpolation; in practice, it is unlikely that interpolation would need be done onto an irregular pattern of
interpolation points. Figure 4.2 shows how the distances from interpolation points to data points are skewed
towards smaller separations for the cross-validation test compared to the known field and noise sensitivity
tests. Note that cross-validation is probably less representative of the usual separation between data and
interpolation points, because in cross-validation the interpolation points are also the data points, which would
not be the case when carrying out interpolation for use in a model. A possible extension of this test would be
to use only a subsample (or subsamples) of the data points as interpolation points using a density threshold.
On the other hand, the velocity field used in the known field and noise sensitivity tests is artificial, and
created to represent a smooth velocity field representing long wavelength deformation. This means it does
not have discontinuous features incorporated in it that would be present in a real data set. Such features
would include large short wavelength changes in velocity due to the presence of a major fault, postseismic
or coseismic deformation, monument instability, hydrologically induced subsidence, etc. Thus, it is difficult
to make a case for either test being a solely appropriate evaluation method and the three tests should be
considered together.

With this in mind, the Gaussian only and Gaussian-Voronoi methods are by far the best performing of
the six interpolation methods tested. Of these two, there is a reasonable theoretical argument as to why one
might prefer the Gaussian-Voronoi method. In regions where there is a large gradient of data point density, it
is easy to see that, on paper, the inclusion of a density weighting should improve the quality of interpolation
(Figure 2.2). However this hypothesis is not borne out by the quantitative analysis in this work. In all three
tests, there was very little difference between the two methods, and for the lengths of median smoothing
parameter typically chosen in the literature, the Gaussian only method performed the same or slightly better
depending on the test. It is also important to recognise that each of these tests was performed with one
set of data only. The RMSE for the Gaussian only and Gaussian-Voronoi methods are very similar to each
other in all three tests (except for very large values of S̄), so it is quite likely that for different data sets the
precise shape of the error curves could change which method is better at a specific value of S̄. In other words,
these three tests probably did not reveal a statistically significant difference between the two best performing
methods (Gaussian-Voronoi and Gaussian only), but showed that the remaining methods are significantly
worse (Gaussian-Azimuthal, inverse square-Voronoi, inverse square only, and inverse square-azimuthal).

Previous works which use these interpolation methods to smooth GNSS data sets almost always choose
values for the smoothing parameter of S̄ = 100 km, with the justification that 100 km is the distance across
which the modelled deformation is expected to occur, because this is roughly the thickness of the isostatically
supported lithosphere (England, Houseman & Nocquet, 2016; Walters, England & Houseman, 2017). A larger
value of S̄ certainly increases the smoothness of the interpolated data. However, Figure 2.3 shows that, for
the same value of the smoothing parameter S̄, the choice of distance weighting function D(r) dramatically
changes how many data points at a specific distance will influence the value of interpolated data. While this
statement might seem trivial in retrospect, the consequence of this is that a choice of smoothing parameter of
S̄ = 100 km for an interpolation method does not in general correspond to the data being smoothed on the
100 km length scale. Whatever distance weighting method is chosen, a choice of S̄ still needs to be made. One
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Figure 4.1: The mean absolute error RMSE(v) as a function of S̄ for the best performing weighting schemes
(for the cross-validation and known field tests). The highlighted regions show appropriate ranges for S̄ when
doing crustal scale modelling (blue) and local hazard assessment (yellow).
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possibility is to use cross-validation minimisation to find a value of S̄ which is able to reproduce the original
velocity field with as little error as possible, but this may not result in appreciable smoothing and so would
only be appropriate for short wavelength modelling. For longer wavelength modelling, one might simply
apply the interpolation method to their data for a range of values of S̄ and choose one which qualitatively
smooths over the desired length scales.

The theoretical and quantitative analysis in this thesis suggests that, of the six interpolation methods
proposed by Shen et al. (2015), four can be easily discounted as unfit for purpose (Gaussian-Azimuthal,
inverse square-Voronoi, inverse square only, and inverse square-azimuthal). The remaining two methods
(Gaussian-Voronoi and Gaussian only) appear to perform similarly well according to this analysis, despite
the theoretical advantages of including a sophisticated density weighting. Additionally, future works may
wish to implement the extensions of these interpolation methods to a spherical geometry (see Section 2.1 and
Appendices B.1, B.3, and B.4).

4.1.1 Limitations and further study

The known field and noise sensitivity tests used a vector field which is not completely analogous to a real-world
velocity field for two main reasons. Firstly, and most obviously, it is simply artificially constructed, and
so even though the defining equations were chosen to closely represent a real tectonic deformation event,
there is no guarantee that real-world tectonics could produce a velocity field with the same long-wavelength
behaviour. Secondly, it does not include any short-wavelength behaviour, for example non-elastic deformation
caused by faulting. More generally, this work only explores three tests for the efficacy of the interpolation
methods, only uses one method to calculate the interpolation error, and only tests them with one spatial
distribution of data points.

Additionally, there is another commonly used interpolation and smoothing method in geoscience for
data on the surface of a sphere: spherical harmonic analysis. Essentially, this is a spherical extension of
Fourier analysis, and in just the same way can be used to smooth an irregular set of data by filtering higher
frequencies in spherical harmonic space (Muir & Tkalčić, 2015). It has previously been proposed as a method
to aid modelling global tectonic deformation (Grafarend, 1986), however resolving spatial scales of 100 km
would require using harmonics up to very high degree, and the computational expense of solving the resulting
system of equations would be prohibitive. This may be resolved by instead using Slepian functions, which are
a regional version of spherical harmonics. These are constructed from a linear combination of the normal
spherical harmonics in such a manner that they are very close to zero outside a region of interest (Plattner &
Simons, 2014; Simons, Dahlen & Wieczorek, 2006). Another similar method is wavelet frame analysis, which
may be more well suited to irregularly spaced data sets (Chambodut et al., 2005).

Further work could test these interpolation methods (including Slepian functions and wavelet analysis)
with many artificial velocity fields, sample the velocity field with multiple distributions of data points, and
implementing other error calculation methods (for example ones used by Hofstra et al., 2008). In particular,
these additional artificial velocity fields and data distributions could more directly test situations where the
more sophisticated interpolation methods are expected to improve the interpolation. This could be done by
considering areas (real or artificial) which have the characteristics of Figure 2.2b.

4.2 Spherical corrections to 2D deviatoric tensor fields

These results show that there are non-trivial inaccuracies when calculating tensor derivatives of vector fields
on the surface of the earth using a flat coordinate system. A flat coordinate system masks two systematic
errors which get larger with increasing latitude: 1. inherent compression in the latitudinal (north-south)
component of a deviatoric tensor field, and 2. inherent shear in the longitudinal (east-west) component of a
deviatoric tensor field. The cause of these errors is that, on the surface of a sphere, lines of longitude are
straight lines which are not parallel to each other, while lines of latitude are parallel to each other, but are
curved. Using a spherical surface coordinate system (i.e. latitude-longitude) when computing the derivatives
eliminates both of these errors.

Ultimately, the impact of the spherical correction to the calculation of deviatoric stress is highly dependant
on both the general latitude and the range of latitudes of the region of interest. Polar regions are more



distorted than equatorial ones for the same latitude span, because the size of this distortion also increases
with latitude. The absolute size in these effects can be large, even for equatorial regions or small latitude
spans, but the relative change over the latitude span can be very small (the relative change is somewhat
more important, as the absolute size of the effects is essentially a constant systematic error). For example,
a compressional 1 to 2 mm/yr south velocity field over the rough latitude range of South Africa (20°S to
35°S) has a longitudinal compression factor that is almost 20 % as large as the latitudinal component, but
the relative change across the region is only 0.7 %. Including the spherical correction is straightforward—it is
just a conversion of easting and northing velocities from meters per second to radians per second, and the
addition of an expression to each term of the deviatoric stress tensor.

Previous thin sheet modelling studies have aimed to allow a very broad comparison between stresses
and strain rates across large areas. They have made sweeping assumptions, often including very simplified
rheological models, and have aimed to demonstrate the broad congruence between expected viscous flow in
the mid-lower crust and upper mantle and the deformation of the elastic crust (England & Houseman, 1986),
or to estimate the average mantle rheology over large areas (England, Houseman & Nocquet, 2016; Walters,
England & Houseman, 2017). The comparatively small and gradual changes associated with the analysis
described here are very unlikely to make a meaningful difference at these resolutions. However, as the density
and quality of data grows further (e.g. GNSS measurements, seismometer networks, and thermal constraints
on variations in rheologically relevant parameters), and in turn there are more detailed models which aim to
discriminate variations in rheology, these improvements may become important. Since the coordinate system
of a single UTM zone is not necessarily ideal for the purpose of large scale modelling, and integrating multiple
UTM zones together requires significantly more effort than the solution presented here, this formulation may
be a viable alternative when modelling over areas significantly larger than a single UTM zone.

4.3 GPE contributions to southern African strain

The deviatoric stress data shown in Figure 3.14 make sense when compared to the topography from which
they are derived. In particular, the Great Escarpment (Truswell, 1977) is fairly well defined by a band of
increased horizontal extension, and the flat interior region by very low magnitude deviatoric stress. However,
it is clear from Figure 3.15 that in many regions of southern Africa, gravitational potential energy of the
crust is not the only controlling factor of the expression of strain. Figure 4.3 shows the distribution of angles
between deviatoric stress inferred from GPE and measurements from the WSM (Heidbach et al., 2018).
A large number of the WSM measurements which do not match the deviatoric stress from GPE have low
measurement quality rating (i.e., high uncertainty in the orientation of σ1).

In many places, high quality WSM measurements do not match well the orientations of stress derived
from GPE. Within the Kaapvaal Craton the agreement is very poor (for example the Koffiefontein earthquake
west of Lesotho), but many of these events may indicate the role of mining in modifying the local stress state
(Brandt et al., 2005). Agreement with the Ceres-Tulbagh earthquake (a strike-slip event rather than a normal
faulting event) is also poor—again, this event took place on a preexisting structure which likely formed during
the formation of the Cape Fold Belt (Smit et al., 2015). On the other hand, there are some places where the
match between orientation of GPE derived stress and the WSM is fairly good. One such place is the Hebron
fault in southwestern Namibia, where 2D-σ1 for the GPE derived deviatoric stress is aligned to within 5° of
2D-σ1 of the fault (Salomon et al., 2022; White et al., 2009). In the southwest branch of the East African
Rift (Daly et al., 2020) the agreement is good in places where the stresses also line up with the mobile belts,
but poor elsewhere. The location marked by a star at the southwest edge of the Kaapvaal Craton matches
well, but again agrees with the craton boundary.

Generally, there is good alignment between the orientation of WSM measurements and the orientation of
preexisting fabric throughout the region, which suggests that it is the fabric which is the dominant controlling
factor in most places, rather than small variations in the stress orientations due to gravitational collapse.
This result is perhaps to be expected, because in the more rapidly evolving main branch of the EAR, previous
studies have reached similar conclusions. That is, that while stress is predominantly caused by gravitational
collapse, the orientation of preexisting fabric strongly dominates the expression of stress (Craig et al., 2011;
Morley, 2010; Williams et al., 2019). Indeed, Morley (2010) finds that the orientation of stress itself is
modified by the weak zones in a similar manner to that which occurs near the San Andreas Fault (Sbar et al.,
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Figure 4.3: The distribution of the angles between in situ WSM measurements
and the principal stress axis due to GPE, with only high quality measurements
included (grades A, B, and C).

1979). This effect could plausibly explain much of the deviation between the orientation of the modelled
GPE derived stress and WSM measurements which was found in southern Africa.

In order to further investigate the relationship (or lack thereof) between topography, stress, and strain, the
earthquake record was examined. If there is a strong causal relationship between topography in a particular
area and the deformation present there, one might expect that earthquakes are concentrated where there are
sharp gradients in the topography (which in the simple model considered would coincide with gradients in
gravitational energy which must be supported by increased shear stresses). Figure 3.16 shows the distribution
of strain release present in the earthquake record in southern Africa overlain by the GPE derived deviatoric
stress. In western Namibia, there is a concentration of strain release that coincides with the high deviatoric
stress caused by the region of elevated topography that runs North-South (see the blue ellipse in Figure 3.16).
In many other places with high strain release there is relatively poor correlation. There are also many places
where there is a high magnitude of GPE derived deviatoric stress, and very little strain release. However
this latter fact does not mean it is unlikely that the topography is driving deformation. Southern Africa is
an SCR, and SCR faults have very long recurrence intervals (if such a concept even applies in this setting
(Calais et al., 2016)), and the earthquake record is simply not long enough to make up a significant portion
of the recurrence interval for an SCR. Figure 4.4 shows the magnitude-frequency relationship in southern
Africa in the ISC Bulletin from 1976–2010. There is clearly incompleteness in the record below Mw ' 3.
The Gutenberg–Richter law states that earthquake magnitudes are distributed exponentially, and it can be
used to characterise the completeness of the seismic record (Gutenberg & Richter, 1954). However, it is very
difficult to determine where (if anywhere) the relation holds. If it holds for 3 ≤ Mw ≤ 5, then it doesn’t
obviously hold for Mw > 5, and vice versa. These areas with high GPE derived stress may only accumulate
enough energy to cause an earthquake in many thousands of years time, especially if there are no preexisting
structural weaknesses to be reactivated.

Many of the hotspots in moment release coincide with either mining, especially in the central Kaapvaal
Craton near Pretoria (Brandt et al., 2005), or with large historical events such as the Moiyabana and
Koffiefontein earthquakes. This implies that aftershocks of geologically recent events (and those events
themselves) dominate the energy release budget, and so Figure 3.16 shows where earthquakes have happened
to occur within the last 50 years, rather the long term pattern of strain. Nevertheless, if the mining areas
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Figure 4.4: The magnitude-frequency relationship of the seismic record in south-
ern Africa from the ISC Bulletin (Storchak et al., 2020, 2017).

are ignored there is notably more activity in the coastal plains of Mozambique and the northeast-southwest
trending mobile belts in the north of Zimbabwe and Botswana than the interior of the Zimbabwe Craton,
suggesting that rheology may play a significant role.

Overall then, the evidence presented in this thesis suggests that stress due to gravitational collapse is
likely the driving source of stress in southern Africa, but that the orientation of preexisting weak zones is the
most important in controlling the orientation of strain, a conclusion which is supported by previous work in
the region (Craig et al., 2011; Morley, 2010; Williams et al., 2019). Bird et al. (2006) propose that stress in
the western area of southern Africa (the Wegener stress anomaly) arises from resistance to the motions of the
African and Somalian plates. The results from this analysis suggests that the cause is gravitational collapse,
however this stress source was not modelled by Bird et al. (2006), and thus it could still be a combination of
both factors.

4.3.1 Limitations and further study

There are several sources of stress which this analysis does not account for—most notably traction forces
at the base of the lithosphere, and ridge push from the surrounding plate boundaries, which have been
hypothesised as potential causes of southern African stress (Bird et al., 2006). A more thorough investigation
could account for these forces, but would require a far more advanced modelling approach. This work also
assumes Airy isostatic equilibrium. It is possible that, for example, thermal erosion of the lithosphere has
changed the regime in some places to include Pratt isostasy, or that dynamic uplift is occurring. Obviously, if
the topographic features of southern Africa are not supported by Airy isostasy, it will worsen the accuracy in
the calculation of the magnitude of the associated body stresses. It should however be noted that while the
magnitude of the gradients in gravitational energy would change if a different form of support were to be



assumed, the direction of the gradients should remain the same. So, for example, if dynamic support were to
be assumed, larger gradients (and so larger magnitude stresses) would be expected, but their orientation would
remain unchanged. This means the qualitative comparisons performed here would produce similar results.
Obviously a composite model including a range of different mechanisms of support would complicate this to
some extent. Other processes may also be important. For example, Jackson and McKenzie (2022) model the
relationship between gravity anomalies with no topographic expression and earthquakes in Australia, and a
similar modelling approach could be applied in southern Africa in the future.

4.4 Conclusions

The theoretical and quantitative analysis in this work suggests that, of the six interpolation methods proposed
by Shen et al. (2015), the Gaussian-Azimuthal, inverse square-Voronoi, inverse square only, and inverse
square-azimuthal methods can be easily discounted as unfit for purpose. The remaining two methods
(Gaussian-Voronoi and Gaussian only) perform well according to this analysis, but despite the theoretical
advantages of including a sophisticated density weighting, no significant differences in performance between
these two methods were found. Future works may consider implementing the extensions of these interpolation
methods to a spherical geometry which were presented in this thesis.

Previous thin sheet modelling studies have aimed to allow a very broad comparison between stresses
and strain rates across large areas. They have made sweeping assumptions, often including very simplified
rheological models, and have aimed to demonstrate the broad congruence between expected viscous flow
in the mid-lower crust and upper mantle and the deformation of the elastic crust (England & Houseman,
1986), or to estimate the average mantle rheology over large areas (England, Houseman & Nocquet, 2016;
Walters, England & Houseman, 2017). The comparatively small and gradual changes associated with using
the coordinate system of a single UTM zone over such large areas are very unlikely to make a meaningful
difference at these resolutions. However, as the density and quality of data grows further, and in turn there
are more detailed models which aim to discriminate variations in rheology, these improvements may become
more important. Since integrating multiple UTM zones together requires significantly more effort than using
the spherical method presented here, this formulation may be a viable alternative when modelling over areas
significantly larger than a single UTM zone.

The analysis presented in this work has found that in southern Africa there is very good alignment between
the orientation of WSM measurements and the orientation of ancient mobile belts, and that in a few key
locations these orientations also match the modelled orientation of stress due to gravitational collapse (Figure
3.15). Such places include the Hebron fault in southwestern Namibia, where 2D-σ1 for the GPE derived
deviatoric stress is aligned to within 5° of 2D-σ1 of the fault (Salomon et al., 2022; White et al., 2009); parts
of the southwest branch of the East African Rift (Daly et al., 2020); and the southwest edge of the Kaapvaal
Craton. It also appears that the seismic moment release in southern Africa (Figure 3.16) is dominated by
mining (Brandt et al., 2005), and a few key historical earthquakes: Mw 6.5 Moiyabana (Kolawole et al., 2017);
Mw 6.3 Ceres-Tulbagh (Green & Bloch, 1971); and Mw 5.8, Koffiefontein. When mining areas are excluded,
there is notably more activity in the coastal plains of Mozambique and the northeast-southwest trending
mobile belts in the north of Zimbabwe and Botswana than the interior of the Zimbabwe Craton.

Overall, this suggests that stress due to gravitational collapse is likely a driving source of stress in
southern Africa, but that the orientation of preexisting weak zones is the most important factor controlling
the orientation of strain, a conclusion which is supported by previous work in the region (Craig et al., 2011;
Morley, 2010; Williams et al., 2019). Bird et al. (2006) propose that stress in the western area of southern
Africa (the Wegener stress anomaly) arises from resistance to the motions of the African and Somalian plates.
The results from this analysis suggests that the cause is gravitational collapse, however this stress source
was not modelled by Bird et al. (2006), and thus it could still be a combination of both factors. It remains
an open question if areas that have increased GPE derived deviatoric stress which is also aligned with the
orientation of weak zones will have elevated strain in the long term.



References
Airy, G.B. (1855). III. On the computation of the effect of the attraction of mountain-masses, as disturbing

the apparent astronomical latitude of stations in geodetic surveys. Philosophical Transactions of the Royal
Society of London 145:101–104. doi: 10.1098/rstl.1855.0003.

Amante, C. & Eakins, B.W. (2009). ETOPO1 1 Arc-Minute Global Relief Model: Procedures, data sources
and analysis. NOAA Technical Memorandum NESDIS NGDC-24. National Geophysical Data Center,
NOAA. doi: 10.7289/V5C8276M. (Visited on 19/10/2018).

Anderson, E.M. (1905). The dynamics of faulting. Transactions of the Edinburgh Geological Society 8(3):387–
402. doi: 10.1144/transed.8.3.387.

Artyushkov, E.V. (1973). Stresses in the lithosphere caused by crustal thickness inhomogeneities. Journal of
Geophysical Research 78(32):7675–7708. doi: 10.1029/JB078i032p07675.

Beanland, S. & Haines, J. (1998). The kinematics of active deformation in the North Island, New Zealand,
determined from geological strain rates. New Zealand Journal of Geology and Geophysics 41(4):311–323.
doi: 10.1080/00288306.1998.9514813.

Bird, P., Ben-Avraham, Z., Schubert, G., Andreoli, M. & Viola, G. (2006). Patterns of stress and strain rate
in southern Africa. Journal of Geophysical Research: Solid Earth 111(B8). doi: 10.1029/2005JB003882.

Bird, P. & Piper, K. (1980). Plane-stress finite-element models of tectonic flow in southern California. Physics
of the earth and planetary interiors 21(2-3):158–175. doi: 10.1016/0031-9201(80)90067-9.

Bodin, P. & Horton, S. (2004). Source parameters and tectonic implications of aftershocks of the Mw 7.6
Bhuj earthquake of 26 January 2001. Bulletin of the Seismological Society of America 94(3):818–827. doi:
10.1785/0120030176.

Bondár, I., Engdahl, E.R., Villaseñor, A., Harris, J. & Storchak, D. (2015). ISC-GEM: Global Instrumental
Earthquake Catalogue (1900–2009), II. Location and seismicity patterns. Physics of the Earth and Plan-
etary Interiors 239:2–13. doi: 10.1016/j.pepi.2014.06.002.

Brandt, M.B.C., Bejaichund, B., Kgaswane, E.M., Hattingh, E. & Roblin, D.L. (2005). Seismic history of
southern Africa. Seismological series of the Council for Geoscience.

Brent, R.P. (1973). Algorithms for Minimization Without Derivatives. Prentice-Hall. Chap. Chapter 4: An
Algorithm with Guaranteed Convergence for Finding a Zero of a Function. doi: 10.1109/TAC.1974.11
00629.

Calais, E., Camelbeeck, T., Stein, S., Liu, M. & Craig, T.J. (2016). A new paradigm for large earthquakes
in stable continental plate interiors. Geophysical Research Letters 43(20):10–621. doi: 10.1002/2016GL0
70815.

Calais, E., Freed, A., Van Arsdale, R. & Stein, S. (2010). Triggering of New Madrid seismicity by late-
Pleistocene erosion. Nature 466(7306):608–611. doi: 10.1038/nature09258.

Calais, E. & Stein, S. (2009). Time-variable deformation in the New Madrid seismic zone. Science 323(5920):1442–
1442. doi: 10.1126/science.1168122.

Caroli, M., Castro, P.M.M. de, Loriot, S., Rouiller, O., Teillaud, M. & Wormser, C. (2010). Robust and
Efficient Delaunay Triangulations of Points on Or Close to a Sphere. In Experimental Algorithms. Ed. by
P. Festa. Berlin, Heidelberg: Springer Berlin Heidelberg, 462–473. doi: 10.1007/978-3-642-13193-6_39.
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Figure A.1: The mean error RMSE(v) as a function of W ′ for the various weighting schemes (for cross-
validation).
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Figure A.2: The change in the average smoothing parameter S̄ with respect to W ′ in the cross-validation
test.
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Figure A.3: The magnitude of the vector field of differences |∆vj | for the Gaussian-azimuthal interpolation
scheme according to the cross-validation testing method (W ′ = 0.492, S̄ = 28.9 km). The upper plot uses
a näıve interpolation method between points for ease of visualisation, while the lower plot shows the true
values of |∆vj | at each data point.
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Figure A.4: The magnitude of the vector field of differences |∆vj | for the Gaussian only interpolation scheme
according to the cross-validation testing method (W ′ = 2.159, S̄ = 64.3 km). The upper plot uses a näıve
interpolation method between points for ease of visualisation, while the lower plot shows the true values of
|∆vj | at each data point.
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Figure A.5: The mean absolute error RMSE(v) as a function of W ′ for the various weighting schemes (for
known-field error).
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Figure A.6: The change in the average smoothing parameter S̄ with respect to W ′ in the known-field test.
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Figure A.7: The magnitude of the vector field of differences |∆vj | for the Gaussian-azimuthal interpolation
scheme according to the known-field testing method (W ′ = 0.000014, S̄ = 7.84 km).
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Figure A.8: The magnitude of the vector field of differences |∆vj | for the Gaussian only interpolation scheme
according to the known-field testing method (W ′ = 0.353, S̄ = 22.0 km).
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weighting schemes (for noise sensitivity). Shown are the 1σ error bars.
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Figure A.10: The change in the average smoothing parameter S̄ with respect to W ′ in the noise sensitivity
test.
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B Python code
B.1 Voronoi cell weighting

# other people ’s stuff

import numpy as np

from scipy.spatial import SphericalVoronoi

from scipy.spatial.distance import pdist

import math

# my stuff

import Coordinates.coordinate_transforms as ct

import Distance.distance as dw

from .edges import Edge

from .edges import Edges

# stuff for graphs

import matplotlib.pyplot as plt

import seaborn as sns

from matplotlib import rc

from mpl_toolkits.mplot3d import Axes3D

from mpl_toolkits.mplot3d.art3d import Poly3DCollection

from mpl_toolkits.mplot3d import proj3d

from matplotlib import colors

def calculate_surface_area_of_spherical_cap(theta , sphere_radius):

# get area of spherical cap given angle between top of cap and base of

cap

return 2 * np.pi * sphere_radius **2 * (1 - np.cos(theta))

def calculate_angle_between_vectors(point_1 , point_2):

cos_theta = np.dot(point_1 , point_2) / (np.linalg.norm(point_1) * np.

linalg.norm(point_2))

return np.arccos(cos_theta)

def calculate_surface_area_of_a_spherical_Voronoi_polygon(

array_ordered_Voronoi_polygon_vertices ,sphere_radius):

’’’Calculate the surface area of a polygon on the surface of a sphere.

Based on equation provided here: http :// mathworld.wolfram.com/

LHuiliersTheorem.html

Decompose into triangles , calculate excess for each ’’’

#have to convert to unit sphere before applying the formula

spherical_coordinates = ct.convert_cartesian_array_to_spherical_array(

array_ordered_Voronoi_polygon_vertices)

spherical_coordinates [:,0] = 1.0

array_ordered_Voronoi_polygon_vertices = ct.

convert_spherical_array_to_cartesian_array(spherical_coordinates)

#handle nearly -degenerate vertices on the unit sphere by returning an

area close to 0 -- may be better options , but this is my current

solution to prevent crashes , etc.

#seems to be relatively rare in my own work , but sufficiently common

to cause crashes when iterating over large amounts of messy data

if pdist(array_ordered_Voronoi_polygon_vertices).min() < (10 ** -7):
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return 10 ** -8

else:

n = array_ordered_Voronoi_polygon_vertices.shape [0]

#point we start from

root_point = array_ordered_Voronoi_polygon_vertices [0]

totalexcess = 0

#loop from 1 to n-2, with point 2 to n-1 as other vertex of

triangle

# this could definitely be written more nicely

b_point = array_ordered_Voronoi_polygon_vertices [1]

root_b_dist = dw.

calculate_haversine_distances_between_cartesian_points(

root_point , b_point , 1.0)

for i in 1 + np.arange(n - 2):

a_point = b_point

b_point = array_ordered_Voronoi_polygon_vertices[i+1]

root_a_dist = root_b_dist

root_b_dist = dw.

calculate_haversine_distances_between_cartesian_points(

root_point , b_point , 1.0)

a_b_dist = dw.

calculate_haversine_distances_between_cartesian_points(

a_point , b_point , 1.0)

s = (root_a_dist + root_b_dist + a_b_dist) / 2

totalexcess += 4 * math.atan(math.sqrt( math.tan (0.5 * s) *

math.tan (0.5 * (s-root_a_dist)) * math.tan (0.5 * (s-

root_b_dist)) * math.tan (0.5 * (s-a_b_dist))))

return totalexcess * (sphere_radius ** 2)

def calculate_spherical_Voronoi_weighting(spherical_coord_array ,

edge_points , return_vertices_for_plotting=False):

’’’

Take shape (N,3) spherical_coord_array and calculates their spherical

voronoi weightings

Since points on the edge of the network have poorly defined Voronoi

cells , the area weighting is instead the area of the spherical cap

defined by the average distance to neighbouring points.

’’’

coord_array = np.copy(spherical_coord_array)

n = len(coord_array)

# print(coord_array.shape)

coord_array [:,0] = np.ones_like(coord_array [: ,0]) # put the

coordinates onto the unit sphere

# print(coord_array.shape)

opposite_point = -1 * ct.convert_spherical_array_to_cartesian_array(np

.mean(coord_array , axis =0)) # create a point on the opposite side

of the sphere

coord_array = ct.convert_spherical_array_to_cartesian_array(

coord_array) # from here on we’ll only need coord_array in

cartesian coordinates

coord_array = np.concatenate( (coord_array , opposite_point[None]) ) #

add the opposite point to the end of the array



point_ids = np.zeros(n) # make point id array

# print(coord_array.shape)

centre = np.array([0, 0, 0])

radius = 1.0

sv = SphericalVoronoi(coord_array , radius , centre)

sv.sort_vertices_of_regions ()

regions = np.copy(sv.regions)

areas = np.empty(n)

radii = np.zeros(n)

number_of_border_points = len(edge_points[edge_points == 1.0])

number_of_interior_points = len(edge_points[edge_points == 0.0])

number_of_cap_points = 0

coordinates_2D = spherical_coord_array [:,1:]

vertices_2D = ct.convert_cartesian_array_to_spherical_array(sv.

vertices)[: ,2:0: -1]

# check whether each voronoi cell is a border or interior point

for p, i in zip(regions , range(n)):

voronoi_area =

calculate_surface_area_of_a_spherical_Voronoi_polygon(sv.

vertices[p], sphere_radius =1.0)

p = Edges(vertices_2D[p]) # get the edges of the voronoi region

areas[i] = voronoi_area

# if the ith point is an edge point , determine if the spherical

cap area is necessary

if edge_points[i]:

# find the other data points which share an edge with this

data point and where the straight line joining the points

intersects the shared edge

shared_edge_indices = []

neighbours = []

for q, j in zip(regions , range(n)):

q = Edges(vertices_2D[q]) # get the edges of the jth

region

shared_edge = p.share_edge(q, return_edge=True) # check if

an edge is shared

shared_edge_indices.append(j)

if shared_edge:

# # if an edge is shared , check whether it intersects

the connecting line

# connecting_line = Edge.from_coordinates(

coordinates_2D[i][1], coordinates_2D[i][0],

coordinates_2D[j][1], coordinates_2D[j][0])

# if shared_edge.intersect(connecting_line):

# # if it intersects the connecting line , it is

considered a neighbour

# neighbours.append(j)

neighbours.append(j)



neighbour_angles = []

xy_distances = []

for j in neighbours:

neighbour_angles.append(calculate_angle_between_vectors(

coord_array[i], coord_array[j]))

xy_distances.append(np.linalg.norm(coordinates_2D[j] -

coordinates_2D[i]))

cap_area = calculate_surface_area_of_spherical_cap(np.median(

neighbour_angles)/2, sphere_radius =1.0)

if voronoi_area > cap_area:

areas[i] = cap_area

number_of_cap_points += 1

point_ids[i] = 1.0

radii[i] = np.sqrt(cap_area) / np.pi

print(’number of interior points:’, number_of_interior_points)

print(’number of border points:’, number_of_border_points)

print(’number of cap points:’, number_of_cap_points)

# areas = areas / np.sum(areas)

# print(np.sum(areas))

if return_vertices_for_plotting:

return areas , coord_array [:-1], sv.vertices , sv.regions , point_ids

, radii

return areas



B.2 Azimuthal weighting

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

from matplotlib import rc

from mpl_toolkits.mplot3d import Axes3D

from mpl_toolkits.mplot3d.art3d import Poly3DCollection

from mpl_toolkits.mplot3d import proj3d

from matplotlib import colors

def calculate_azimuthal_weights(interpolation_coordinate ,

data_location_coordinates):

’’’

Finds the azimuthal weight of data_location_coordinates with respect

to interpolation_coordinate

’’’

def translate_coords(transl_to , points):

’’’

Translates the (cartesian) coordinate system of all the points , to

be centred

at some point. Returns an array of the translated points.

’’’

points -= transl_to

return points

def rotate_coords(rotate_to , points):

’’’

Rotates the (cartesian) coordinate system of points , s.t. the z-

axis

lines up with the vector to be rotated to. Returns an array of the

rotated

points.

’’’

rotate_to_hat = rotate_to / np.linalg.norm(rotate_to)

z_hat = np.array ([0., 0., 1.])

omega_hat = np.cross(rotate_to_hat , z_hat)

theta = np.arccos(np.dot(z_hat , rotate_to_hat))

omega = omega_hat * theta

omega_hats = np.ones_like(points) * omega_hat

# need to check behaviour of numpy.cross with array of vectors

a = points * np.cos(theta)

b = np.cross(omega_hat , points) * np.sin(theta)

c = omega_hats * np.expand_dims(np.tensordot(omega_hat , points ,

axes =(0 ,1)) ,0).T * (1 - np.cos(theta))

rot_points = a + b + c



return rot_points

def sort_by_angle(points):

’’’

Projects points to the (x,y)-plane and sorts them by increasing

polar angle.

Returns a direct (the sorted angles) and indirect (indices) sort.

’’’

angles = np.arctan2(points [:,1], points [:,0])

sorting_indices = np.argsort(angles)

sorted_angles = angles[sorting_indices]

return sorted_angles , sorting_indices

def get_weights(sorted_angles):

’’’

Finds the azimuthal weighting of each point. Returns an array of

weights (in

radians).

’’’

sorted_angles_rolled = np.roll(sorted_angles , 1)

diffs = sorted_angles - sorted_angles_rolled

diffs [0] = sorted_angles [0] + (2*np.pi - sorted_angles [-1])

below_weights = diffs

above_weights = np.roll(below_weights , -1)

weights = (below_weights + above_weights) * len(sorted_angles) /

(4 * np.pi)

return weights

interpolation_coordinate = np.copy(interpolation_coordinate)

data_location_coordinates = np.copy(data_location_coordinates)

data_location_coordinates = translate_coords(interpolation_coordinate ,

data_location_coordinates)

data_location_coordinates = rotate_coords(interpolation_coordinate ,

data_location_coordinates)

sorted_data_angles , sorting_indices = sort_by_angle(

data_location_coordinates)

azimuthal_weights = get_weights(sorted_data_angles)

unsorting_indices = np.argsort(sorting_indices)

return azimuthal_weights[unsorting_indices]



B.3 Distance weighting

import numpy as np

import math

from scipy.optimize import newton , brentq

import Coordinates.coordinate_transforms as ct

import matplotlib.pyplot as plt

from matplotlib import cm

import seaborn as sns

# import shapely.geometry as geometry

# from descartes import PolygonPatch

from matplotlib import rc

def calculate_haversine_distance_between_spherical_points(

cartesian_array_1 , cartesian_array_2 , sphere_radius):

’’’

Calculate the haversine -based distance between two points on the

surface of a sphere. Should be more accurate than the arc cosine

strategy. See , for example: http ://en.wikipedia.org/wiki/

Haversine_formula

’’’

spherical_array_1 = ct.convert_cartesian_array_to_spherical_array(

cartesian_array_1)

spherical_array_2 = ct.convert_cartesian_array_to_spherical_array(

cartesian_array_2)

lambda_1 = spherical_array_1 [1]

lambda_2 = spherical_array_2 [1]

phi_1 = spherical_array_1 [2]

phi_2 = spherical_array_2 [2]

# we rewrite the standard Haversine slightly as long/lat is not the

same as spherical coordinates - phi differs by pi/4

spherical_distance = 2.0 * sphere_radius * math.asin(math.sqrt( ((1 -

math.cos(phi_2 -phi_1))/2.) + math.sin(phi_1) * math.sin(phi_2) * (

(1 - math.cos(lambda_2 -lambda_1))/2.) ))

return spherical_distance

def calculate_haversine_distances_between_spherical_points(

cartesian_array_1 , cartesian_array_2 , sphere_radius):

’’’

Calculate the haversine -based distance between two points on the

surface of a sphere. Should be more accurate than the arc cosine

strategy. See , for example: http ://en.wikipedia.org/wiki/

Haversine_formula

’’’

spherical_array_1 = ct.convert_cartesian_array_to_spherical_array(

cartesian_array_1)

spherical_array_2 = ct.convert_cartesian_array_to_spherical_array(

cartesian_array_2)

lambda_1 = spherical_array_1 [... ,1]



lambda_2 = spherical_array_2 [... ,1]

phi_1 = spherical_array_1 [... ,2]

phi_2 = spherical_array_2 [... ,2]

# we rewrite the standard Haversine slightly as long/lat is not the

same as spherical coordinates - phi differs by pi/4

spherical_distance = 2.0 * sphere_radius * np.arcsin(np.sqrt( ((1 - np

.cos(phi_2 -phi_1))/2.) + np.sin(phi_1) * np.sin(phi_2) * ( (1 - np.

cos(lambda_2 -lambda_1))/2.) ))

return spherical_distance

def gaussian_weighting(distance_array , S):

’’’

Take shape (N,) array of distances and returns their Gaussian

weighting with smoothing factor S

’’’

return np.exp(- distance_array **2 / S**2)

def inverse_weighting(distance_array , S):

’’’

Take shape (N,) array of distances and returns their inverse weighting

with smoothing factor S

’’’

return (1 + (( distance_array **2) / (S**2)))**( -1)

def calculate_optimal_distance_weights(data_coords , interp_coord ,

density_weights , distance_method , weighting_threshhold , return_S=False)

:

’’’

Calculates the distance weightings Gij for a set of data to an

interpolation point j.

Parameters

----------

data_coords : numpy.ndarray of shape (n,3)

The coordinates of the data that should be interpolated to the

location of ‘interp_coord ‘. Should be Cartesian coordinates on

the surface of a sphere.

interp_coord : numpy.ndarray of shape (3,)

The coordinates of the point that ‘data_coords ‘ should be

interpolated to. Should be Cartesian coordinates on the surface

of a sphere.

density_weights : numpy.ndarray of shape (n,)

The density weights of ‘data_coords ‘ for the given ‘interp_coord ‘.

distance_method : {’g’, ’i ’}

The fuctional form that should be used for distance weighting.

Options are a Gaussian or an inverse curve of the form 1/(x+1).

weighting_threshhold : float

The maximum value of the sum of the all the interpolation weights.



return_S : bool , optional

Whether or not to return the smoothing parameter S. Default False.

’’’

assert (distance_method in [’g’, ’i’]), ’Invalid distance weighting 

method specified. Must be \’g\’ or \’i\’.’

if distance_method == ’g’:

distance_weighting = gaussian_weighting

else:

distance_weighting = inverse_weighting

radius = ct.convert_cartesian_array_to_spherical_array(interp_coord)

[0]

def calculate_weights(smoothing_parameter):

distances = calculate_haversine_distances_between_spherical_points

(interp_coord , data_coords , sphere_radius=radius)

distance_weights = distance_weighting(distances ,

smoothing_parameter)

weights = density_weights * distance_weights

return weights

def calculate_total_weighting(smoothing_parameter):

’’’

Calculates Wj - Wt, the difference between the sum of the

weighting coefficients Gij and the weighting threshhold Wt, for

a given smoothing paramter Sj and deinsity weights Aij.

’’’

return np.sum(calculate_weights(smoothing_parameter)) -

weighting_threshhold

# Sjs = np.linspace (1e-8, 0.1)

# print(Sjs)

# for Sj in Sjs:

# print(calculate_total_weighting(Sj))

smoothing_parameter = brentq(calculate_total_weighting , 0.000001 ,

400750000)

if return_S:

return calculate_weights(smoothing_parameter), smoothing_parameter

return calculate_weights(smoothing_parameter)

if __name__ == ’__main__ ’:

sns.set_color_codes(palette=’muted’)

sns.set_style(’white’)

plt.rc(’text’, usetex = True)

plt.rcParams[’text.latex.preamble ’] = r’\usepackage{amssymb , amsmath , 



bm} \usepackage{siunitx} \usepackage[T1]{ fontenc} \usepackage{

sansmath} \sansmath ’

plt.rc(’legend ’, **{’fontsize ’:15})

plt.rc(’axes’, **{’labelsize ’:15})

plt.rc(’xtick’, **{’labelsize ’:12})

plt.rc(’ytick’, **{’labelsize ’:12})

colors = sns.cubehelix_palette (8, start=.5, rot =-.75)

fig , ax = plt.subplots(1, 1, figsize =(6 ,3))

x = np.linspace(0, 10, num =200)

gauss = gaussian_weighting(x, 1)

inverse = inverse_weighting(x, 1)

ax.plot(x, gauss , zorder=2, label=r’Gaussian ’, color=colors [1])

ax.plot(x, inverse , zorder=1, label=r’Inverse ’, color=colors [3],

linestyle=’--’)

ax.set_xlabel(r’$ r $’)
ax.set_ylabel(r’$ D $’)
ax.set_xlim ( -0.25 ,10.25)

ax.set_ylim ( -0.025 ,1.025)

ax.legend(loc=’upper right’)

fig.tight_layout ()

plt.savefig(’./ images/distance_curves.pdf’)

plt.close()



B.4 Exterior and interior points

import numpy as np

class Edge(object):

""" docstring for Edge."""

def __init__(self , v1 , v2):

# print(v1)

self.v1 = v1

self.v2 = v2

# self.xs = [v1[0], v2[0]]

# self.ys = [v1[1], v2[1]]

@classmethod

def from_list(cls , l):

l = np.array(l).flatten ().tolist ()

v1 = l[:2]

v2 = l[2:]

return cls(v1 , v2)

@classmethod

def from_coordinates(cls , v1x , v1y , v2x , v2y):

v1 = [v1x , v1y]

v2 = [v2x , v2y]

return cls(v1 , v2)

def __eq__(self , other):

if isinstance(other , self.__class__):

return ((( self.v1 == other.v1) and (self.v2 == other.v2)) or

((self.v1 == other.v2) and (self.v2 == other.v1)))

return NotImplemented

def __ne__(self , other):

if isinstance(other , self.__class__):

return not self.__eq__(other)

return NotImplemented

def __repr__(self):

return ’[{0}, {1}]’.format(self.v1 , self.v2)

def intersect(self , other):

"""

Fuction to check whether the edge ’other’ intersects with this

edge. For more details , see https :// www.geeksforgeeks.org/check

-if -two -given -line -segments -intersect /.

"""

# get the four vertices for readability

v1 , v2 = self.v1 , self.v2

w1 , w2 = other.v1 , other.v2

# find the 4 orientations required for the general and special

cases.



o1 = orientation(v1 , v2 , w1)

o2 = orientation(v1 , v2 , w2)

o3 = orientation(w1 , w2 , v1)

o4 = orientation(w1 , w2 , v2)

# general case

if ((o1 != o2) and (o3 != o4)):

return True

# special cases

# v1 , v2 , and w1 are colinear and w1 lies on v1v2

if ((o1 == 0) and on_segment(v1 , v2 , w1)):

return True

# v1 , v2 , and w2 are colinear and w2 lies on v1v2

if ((o2 == 0) and on_segment(v1 , v2 , w2)):

return True

# w1 , w2 , and v1 are colinear and v1 lies on w1w2

if ((o3 == 0) and on_segment(w1 , w2 , v1)):

return True

# w1 , w2 , and v2 are colinear and v2 lies on w1w2

if ((o4 == 0) and on_segment(w1 , w2 , v2)):

return True

# no intersection between self and other

return False

class Edges(object):

""" docstring for edge."""

def __init__(self , vertices):

# print(vertices)

vertices = vertices.tolist ()

self.edges = []

for i in range(len(vertices)):

if i == range(len(vertices))[-1]:

self.edges.append(Edge(vertices[i], vertices [0]))

break

self.edges.append(Edge(vertices[i], vertices[i+1]))

@classmethod

def from_edge_list(cls , l):

vertices = []

for edge in l:

vertices.append(edge.v1)

return cls(np.array(vertices))

def share_edge(self , other , return_edge=False):

if isinstance(other , self.__class__):

if self == other:

return False

matching_edge = False

edge = False

for my_edge in self.edges:

for its_edge in other.edges:

if return_edge and my_edge == its_edge:



edge = my_edge

matching_edge = (matching_edge or my_edge == its_edge)

if return_edge:

return edge

return matching_edge

return NotImplemented

def __eq__(self , other):

if isinstance(other , self.__class__):

return self.edges == other.edges

return NotImplemented

def __ne__(self , other):

if isinstance(other , self.__class__):

return not self.__eq__(other)

return NotImplemented

def __len__(self):

return len(self.edges)

def __repr__(self):

r = [[edge.v1 , edge.v2] for edge in self.edges]

return repr(r)

def on_segment(a, b, c):

"""

Fuction to check , for three colinear vertices a, b, c, if c lies on

the edge ab. Works for all c, a, b.

"""

if ((c[0] <= max(a[0], b[0])) and (c[0] >= min(a[0], b[0])) and (c[1]

<= max(a[1], b[1])) and (c[0] >= min(a[1], b[1]))):

return True

return False

def orientation(a, b, c):

"""

Function to find the orientation of an ordered triplet of points (a, b

, c).

Returns:

0: Colinear points

1: Clockwise points

-1: Anticlockwise points

See https ://www.geeksforgeeks.org/orientation -3-ordered -points/ for

details of below formula.

"""

val = ((b[1] - a[1]) * (c[0] - b[0])) - ((b[0] - a[0]) * (c[1] - b[1])

)

if (val > 0):

return 1 # clockwise

elif (val < 0):

return -1 # anticlockwise

else:

return 0 # colinear



if __name__ == "__main__":

ab = Edge.from_coordinates (0,0,1,0)

bc = Edge.from_coordinates (1,0,1,1)

cd = Edge.from_coordinates (1,1,0,1)

da = Edge.from_coordinates (0,1,0,0)

box1 = Edges.from_edge_list ([ab ,bc ,cd ,da])

be = Edge.from_coordinates (1,0,2,0)

ef = Edge.from_coordinates (2,0,2,1)

fc = Edge.from_coordinates (2,1,1,1)

cb = Edge.from_coordinates (1,1,1,0)

box2 = Edges.from_edge_list ([be ,ef ,fc ,cb])

fb = Edge.from_coordinates (2,1,1,0)

triangle = Edges.from_edge_list ([be,ef,fb])

connecting_line = Edge.from_coordinates (0.5 ,0.5 ,1.5 ,0.5)

shared_edge_box2 = box1.share_edge(box2 , return_edge=True)

print(shared_edge_box2)

print(box1.share_edge(triangle , return_edge=True))

print(shared_edge_box2.intersect(connecting_line))



B.5 2D deviatoric tensor fields

import gc

import numpy as np

from scipy.signal import fftconvolve

from scipy.ndimage import fourier_gaussian

from numpy import linalg as la

# for plotting

import matplotlib.pyplot as plt

import seaborn as sns

class Surface(object):

’’’

the surface class defines a surface on a segment of a spherical shell.

it

contains a numpy meshgrid of coordinates in theta and phi , and a

corresponding array of the surface values at each coordinate pair.

should passed as [rs , thetas , phis] (or equivalent ndarray)

’’’

def __init__(self , surface , longitudes , colatitudes , r, degs , lat , wc)

:

’’’Unused constructor.’’’

self.surface = np.copy(surface)

self.r = r

self.thetas = np.copy(longitudes)

self.phis = np.copy(colatitudes)

self.degs = degs

self.lat = lat

self.wc = wc

self.dtheta = longitudes [0, 1] - longitudes [0, 0]

self.dphi = colatitudes [1, 0] - colatitudes [0, 0]

self.colatitudes = np.degrees(colatitudes)

self.latitudes = 90 - np.degrees(colatitudes)

self.longitudes = np.degrees(longitudes)

@classmethod

def from_array(cls , data , r=6371000 , angle_measure=’degrees ’,

polar_coordinate=’latitude ’, water_corrected=False):

’’’

Creates an instance of Surface from an array of data and

coordinates.

’’’

surface = np.array(data [0])

longitudes = np.array(data [1])

polar_angles = np.array(data [2])



rads = [’rad’, ’rads’, ’radian ’, ’radians ’]

degs = [’deg’, ’degs’, ’degree ’, ’degrees ’]

if angle_measure in rads:

degs = False

elif angle_measure in degs:

longitudes = np.radians(longitudes)

polar_angles = np.radians(polar_angles)

degs = True

else:

print("angle must be ’radians ’ or ’degrees ’!")

quit()

lats = [’lat’, ’latitude ’]

colats = [’colat’, ’colatitude ’]

if polar_coordinate in lats:

polar_angles = np.pi/2 - polar_angles

lat = True

elif polar_coordinate in colats:

lat = False

else:

print("coords must be ’latitude ’ or ’colatitude ’!")

quit()

return cls(surface , longitudes , polar_angles , r, degs , lat ,

water_corrected)

def smooth_fft2(self , sigma =50000):

# get what size sigma*n_sigma translates to

## get the middle of the region

phi = self.phis[int(len(self.phis)//2), 0]

Delta_phi = sigma/self.r

m = np.ceil(Delta_phi/np.abs(self.dphi)).astype(’int’)

Delta_theta = sigma /(self.r*np.sin(phi))

n = np.ceil(Delta_theta/np.abs(self.dtheta)).astype(’int’)

surface_ = np.fft.fft2(self.surface)

result = fourier_gaussian(surface_ , sigma=(n, m))

result = np.fft.ifft2(result)

self.surface = result.real

return self.surface

def smooth_fft(self , sigma =50000 , n_sigma =4):

# get what size sigma*n_sigma translates to

## get the middle of the region

phi = self.phis[int(len(self.phis)//2), 0]

Delta_phi = sigma/self.r

m = np.ceil(Delta_phi/np.abs(self.dphi)).astype(’int’)

m_max = np.ceil(n_sigma*Delta_phi/np.abs(self.dphi)).astype(’int’)

Delta_theta = sigma /(self.r*np.sin(phi))



n = np.ceil(Delta_theta/np.abs(self.dtheta)).astype(’int’)

n_max = np.ceil(n_sigma*Delta_theta/np.abs(self.dtheta)).astype(’

int’)

# expand in_array to fit edge of kernel

pad_sizes = ((m_max , m_max), (n_max , n_max))

padded_array = np.pad(self.surface , pad_sizes , ’symmetric ’)

# build kernel

xs , ys = np.mgrid[-n_max:n_max + 1, -m_max:m_max + 1]

g = np.exp(-(xs**2 / n**2 + ys**2 / m**2) /2)

g = (g / g.sum()).astype(self.surface.dtype)

# do the Gaussian blur

self.surface = fftconvolve(padded_array , g, mode=’same’)[m_max:-

m_max , n_max:-n_max]

return self.surface

def compress_water(self , rho_water =1000 , rho_crust =2800):

’’’

Compresses the water that sits above the elevation from bathometry

data into a column of rock.

Parameters

----------

rho_water: The density of the water (in kg/m^3). Default values is

1000 kg/m^3.

rho_crust: The assumed density of the crust (in kg/m^3). Default

values is 2800 kg/m^3.

’’’

if not self.wc:

bathometry_data = self.surface[self.surface < 0]

compressed_water_depths = bathometry_data *(1 - rho_water/

rho_crust)

self.surface[self.surface < 0] = compressed_water_depths

self.wc = True

else:

print(’This surface has already been corrected for the 

presence of water. If you want to do it again for some 

reason , you can override this by manually setting Surface.

wc to False.’)

return self.surface

def calculate_gpe(self , h_0=100, S_0 =3.5e4 , rho_crust =2800 , rho_mantle

=3300, g=9.81):

’’’

Calculates the gravitational potential energy due to topography.

Parameters

----------

h_0: The height above sea -level of the reference column to which

GPE is calculated (in meters). Default value of 100 m.

S_0: The depth of the crust for the reference column (in meters).



Default value of 35 km.

rho_crust: The assumed density of the crust (in kg/m^3). Default

values is 2800 kg/m^3.

rho_mantle: The assumed density of the mantle (in kg/m^3). Default

values is 3300 kg/m^3.

’’’

# calculates the GPE relative to the reference column , see England

’s Iran paper for details

self.Delta_gpe = g*rho_crust *(self.surface - h_0)*(S_0 + 0.5*

rho_mantle *(self.surface - h_0)/( rho_mantle - rho_crust))

self.h_0 , self. S_0 , self.rc , self.rm , self.g = h_0 , S_0 ,

rho_crust , rho_mantle , g

self.gpe_calculated = True

return self.Delta_gpe

def calculate_gpe_stress(self , L=1e5):

’’’

Calculates the stress in spherical goordinates due to the

gravitational potential energy due to topography.

Parameters

L: The assumed thickness of the lithosphere (in meters). Default

value of 100 km.

’’’

if not self.gpe_calculated:

print(’GPE has not been calculated for this surface yet which 

is required to calculate the stress due to GPE. Doing that 

now.’)

self.calculate_gpe ()

self.L = L

# fairly self -explanatory: calculate the stress on the surface of

the sphere (see England ’s Iran paper for eqn)

dgpe_dphi , dgpe_dtheta = np.gradient(self.Delta_gpe , self.dtheta ,

self.dphi)

self.theta_stresses = dgpe_dtheta /(self.r*L*np.sin(self.phis))

self.phi_stresses = dgpe_dphi /(self.r*L)

return self.theta_stresses , self.phi_stresses

def calculate_deviatoric_vectors(self , geometry=’spherical ’):

’’’

Calculates the deviatoric stress or strain tensor on the surface

of the sphere of a vector field ,

then calculates the vectors which correspond to the maximum and

minimum compressive stresses/strains.

This entails calculating the Christoffel symbols from the metric

of the surface of a sphere ,

and using these to calculate the correction terms of the covariant

derivative which are zero



for Euclidian geometry.

’’’

assert (str(geometry).lower() in [’spherical ’, ’cartesian ’, ’

euclidian ’]), "Argument geometry must be \’spherical\’ or \’

euclidian \’."

print(self.thetas)

if geometry == "spherical":

# calculate the covariant derivative of stress on the surface

of the sphere

f11 = -np.gradient(self.theta_stresses , self.dtheta , axis =1)

f12 = -np.gradient(self.theta_stresses , self.dphi , axis =0) -

self.phi_stresses*np.cos(self.thetas)*np.sin(self.thetas)

f21 = -np.gradient(self.phi_stresses , self.dtheta , axis =1) +

self.phi_stresses*np.cos(self.thetas)/np.sin(self.thetas)

f22 = -np.gradient(self.phi_stresses , self.dphi , axis =0) +

self.theta_stresses*np.cos(self.thetas)/np.sin(self.thetas)

else:

# calculate the covariant derivative of stress on the surface

of a flat geometry

f11 = -np.gradient(self.theta_stresses , self.dtheta , axis =1)

f12 = -np.gradient(self.theta_stresses , self.dphi , axis =0)

f21 = -np.gradient(self.phi_stresses , self.dtheta , axis =1)

f22 = -np.gradient(self.phi_stresses , self.dphi , axis =0)

# calculate the deviatoric stress

epsilon_11s = np.copy(f11)

epsilon_12s = 0.5*( f12 + f21)

epsilon_21s = np.copy(epsilon_12s)

epsilon_22s = np.copy(f22)

# reformat the array so that it’s an n_theta by n_phi array of 2

by 2 tensors

epsilon_tensors = np.array ([ epsilon_11s , epsilon_12s , epsilon_21s ,

epsilon_22s ]).transpose (1,2,0)

epsilon_tensors = epsilon_tensors.reshape (( epsilon_tensors.shape

[0], epsilon_tensors.shape[1], 2, 2))

# diagonalising the epsilon tensors is fairly straightforward

using the eigenvalues

# but we can easily get principle stress axes from the

eigenvectors of the epsilon tensors

evals , evecs = la.eigh(epsilon_tensors)

e11s = evals[:,:,0,None]* evecs [:,:,:,0]

e22s = evals[:,:,1,None]* evecs [:,:,:,1]

# we want to separate the e_11s and e_22s into principle strain

axes

# sigma 1 should be the largest of the eigenvalues , so we get an

array that is True where ev_1 > ev_2

c = evals [:,:,0] > evals [:,:,1]

# we should be able to use numpy.where to extract first the vector



components for sigma_1 , and then for sigma_2

self.sigma1s = np.where(c[:,:,None], e11s , e22s)

self.sigma2s = np.where(c[:,:,None], e22s , e11s)

return self.sigma1s , self.sigma2s

def calculate_deviatoric_tensor_field(vector_field , geometry=’spherical ’):

’’’

Calculates the deviatoric tensor field of a vector field on the

surface of the sphere , then calculates the vectors which correspond

to the maximum and minimum compressive stresses/strains.

This entails calculating the Christoffel symbols from the metric of

the surface , and using these to calculate the correction terms of

the covariant derivative (which are zero for Euclidian geometry ,

and nonzero for the surface of a sphere).

Parameters

----------

vector_field : array_like of shape (n,m,4)

The vector field from which to calculate the tensor field. Should

be an array -like with shape (n,m,4) in spherical coordinates.

In other words , an array containing a numpy meshgrid of n theta

-coordinates and m phi -coordinates , where each position in the

meshgrid contains a quadruplet of (theta , phi , theta_velocity ,

phi_velocity).

geometry : {’spherical ’, ’euclidian ’}, default ’spherical ’

Whether to assume a spherical or Euclidian (flat) geometry when

calculating the deviatoric tensor field.

’’’

assert (str(geometry).lower() in [’spherical ’, ’cartesian ’, ’euclidian

’]), "Argument geometry must be \’spherical\’ or \’euclidian\’."

vector_field = np.copy(np.transpose(vector_field , axes =(2,0,1)))

# if not geometry == ’spherical ’: print(vector_field [0])

thetas = vector_field [0]

dtheta = thetas [1,0] - thetas [0,0]

theta_vectors = vector_field [2]

phis = vector_field [1]

dphi = phis [0,1] - phis [0,0]

phi_vectors = vector_field [3]

# print(theta_vectors)

# print(phi_vectors)

# calculate the covariant derivative of stress on the surface of the

sphere

if geometry == ’spherical ’:

f11 = -np.gradient(theta_vectors , dtheta , axis =0)

f12 = -np.gradient(theta_vectors , dphi , axis =1) - phi_vectors*np.

cos(thetas)*np.sin(thetas)

f21 = -np.gradient(phi_vectors , dtheta , axis =0) + phi_vectors*np.

cos(thetas)/np.sin(thetas)



f22 = -np.gradient(phi_vectors , dphi , axis =1) + theta_vectors*np.

cos(thetas)/np.sin(thetas)

else:

f11 = -np.gradient(theta_vectors , dtheta , axis =0)

f12 = -np.gradient(theta_vectors , dphi , axis =1)

f21 = -np.gradient(phi_vectors , dtheta , axis =0)

f22 = -np.gradient(phi_vectors , dphi , axis =1)

if geometry == ’spherical ’: print(f11)

if geometry == ’spherical ’: print(f12)

if geometry == ’spherical ’: print(f21)

if geometry == ’spherical ’: print(f22)

if geometry == ’spherical ’: print()

# calculate the deviatoric stress

epsilon_11s = np.copy(f11)

epsilon_12s = 0.5*( f12 + f21)

epsilon_21s = np.copy(epsilon_12s)

epsilon_22s = np.copy(f22)

# reformat the array so that it’s an n_theta by n_phi array of 2 by 2

arrays

epsilon_tensors = np.array ([ epsilon_11s , epsilon_12s , epsilon_21s ,

epsilon_22s ]).transpose (1,2,0)

epsilon_tensors = epsilon_tensors.reshape (( epsilon_tensors.shape [0],

epsilon_tensors.shape [1], 2, 2))

if geometry == ’spherical ’: print(epsilon_tensors [:,0])

if geometry == ’spherical ’: print()

# diagonalising the epsilon tensors is fairly straightforward using

the eigenvalues

# but we can easily get principle stress axes from the eigenvectors of

the epsilon tensors

evals , evecs = la.eigh(epsilon_tensors)

e11s = evals[:,:,0,None]* evecs [:,:,:,0]

e22s = evals[:,:,1,None]* evecs [:,:,:,1]

if geometry == ’spherical ’: print(evals [:,0])

if geometry == ’spherical ’: print()

if geometry == ’spherical ’: print(evecs [:,0])

if geometry == ’spherical ’: print()

# we want to separate the e_11s and e_22s into principle strain axes

# sigma 1 should be the largest of the eigenvalues , so we get an array

that is True where ev_1 > ev_2

c = evals [:,:,0] > evals [:,:,1]

# we should be able to use numpy.where to extract first the vector

components for sigma_1 , and then for sigma_2

sigma1s = np.where(c[:,:,None], e11s , e22s)

sigma2s = np.where(c[:,:,None], e22s , e11s)

if geometry == ’spherical ’: print(sigma1s [:,0])

if geometry == ’spherical ’: print()



if geometry == ’spherical ’: print(sigma2s [:,0])

if geometry == ’spherical ’: print()

# mags = la.norm(epsilon_tensors , axis =3)

# if geometry == ’spherical ’: print(mags [: ,0])

# if geometry == ’spherical ’: print ()

# c = mags [... ,0] > mags [... ,1]

# if geometry == ’spherical ’: print(c)

# if geometry == ’spherical ’: print ()

# sigma1s = np.where(c[:,:,None], epsilon_tensors [:,:,0],

epsilon_tensors [:,:,1])

# sigma2s = np.where(c[:,:,None], epsilon_tensors [:,:,1],

epsilon_tensors [:,:,0])

# if geometry == ’spherical ’: print(sigma1s [: ,0])

# if geometry == ’spherical ’: print ()

# if geometry == ’spherical ’: print(sigma2s [: ,0])

# if geometry == ’spherical ’: print ()

print()

return np.transpose ([sigma1s , sigma2s], axes =(1,2,0,3))

if __name__ == ’__main__ ’:

m, n = 3, 3

x, y = np.meshgrid(np.linspace (-15, 15, num=n), np.linspace (-15, 15,

num=m))

surface_1 = np.ones((m,n))

surface_1 [:,int(n/2):] = surface_1 [:,int(n/2):] * -1

test_data = np.array ([surface_1 , x, y])

print(test_data [0], end=’\n\n’)

test_surface = Surface.from_array(test_data , angle_measure=’deg’,

polar_coordinate=’lat’)

test_surface.compress_water ()

print(test_surface.surface)

test_surface.smooth_fft(sigma =50000)

print(test_surface.surface)

ax = sns.heatmap(test_surface.surface)

plt.show()



B.6 Simple test fields for 2D deviatoric tensor fields

import numpy as np

import os

from itertools import combinations

from scipy.interpolate import griddata

from scipy.optimize import minimize_scalar

from scipy.special import gamma

from sklearn.metrics import mean_squared_error

import Coordinates.coordinate_transforms as ct

import Distance.distance_weightings as dw

import CrossValidate.cross_validate as cv

import KnownField.known_field as kf

import surface as sf

import matplotlib.pyplot as plt

from matplotlib import cm

import seaborn as sns

from matplotlib import rc

import cartopy.crs as ccrs

import cartopy.feature as feature

import gdal

import matplotlib.pyplot as plt

import matplotlib.colors as mcolors

import matplotlib.ticker as mticker

from mpl_toolkits.axes_grid1 import make_axes_locatable

import seaborn as sns

from cartopy.io.shapereader import Reader

from cartopy.feature import ShapelyFeature

from matplotlib.patches import Wedge

friendly_colours = sns.diverging_palette (240, 10)

unfriendly_colours = ["#F05354", "#48 BEA1", "#52 C8EB"]

sns.set_color_codes(palette=’muted’)

sns.set_style(’white’)

plt.rc(’text’, usetex = True)

plt.rc(’legend ’, **{’fontsize ’:15})

cmap = sns.cubehelix_palette(start =0.5, rot=-.75, reverse=True , as_cmap=

True)

def dist_to_ang(velocities , r=6.371 e6):

# expects shape (n, 4) array where n is the number of coordinate

triplets to process , and 4 is theta , phi , theta vel , phi vel in

meters and meters per second respectively

velocities = np.copy(velocities)

velocities [... ,2] = velocities [... ,2] / r

velocities [... ,3] = velocities [... ,3] / (r * np.sin(velocities [... ,0])

)

return velocities



def theta_comp(spherical_coordinates , gridshape):

# expects shape (n, 3) array where n is the number of coordinate

triplets to process , and 3 is r, theta , phi

coords = np.copy(spherical_coordinates)

coords = np.transpose(coords) # transpose the data so it’s shorter to

work with all the phi/theta data at once

phi_vels = np.zeros_like(coords [2])

theta_vels = np.linspace(2, 1, num=gridshape [0])

theta_vels = np.tile(theta_vels , (gridshape [1], 1))

theta_vels = theta_vels.T.flatten ()

return np.array([ theta_vels , phi_vels ]).T

def phi_comp(spherical_coordinates , gridshape):

# expects shape (n, 3) array where n is the number of coordinate

triplets to process , and 3 is r, theta , phi

coords = np.copy(spherical_coordinates)

coords = np.transpose(coords) # transpose the data so it’s shorter to

work with all the phi/theta data at once

theta_vels = np.zeros_like(coords [1])

phi_vels = np.linspace(2, 1, num=gridshape [1])

phi_vels = np.tile(phi_vels , (gridshape [0], 1))

phi_vels = phi_vels.flatten ()

return np.array ([theta_vels , phi_vels ]).T

def theta_shear(spherical_coordinates , gridshape):

# expects shape (n, 3) array where n is the number of coordinate

triplets to process , and 3 is r, theta , phi

coords = np.copy(spherical_coordinates)

coords = np.transpose(coords) # transpose the data so it’s shorter to

work with all the phi/theta data at once

phi_vels = np.zeros_like(coords [2])

theta_vels = np.linspace(1, 2, num=gridshape [1])

theta_vels = np.tile(theta_vels , (gridshape [0], 1))

theta_vels = theta_vels.flatten ()

return np.array ([theta_vels , phi_vels ]).T

def phi_shear(spherical_coordinates , gridshape):



# expects shape (n, 3) array where n is the number of coordinate

triplets to process , and 3 is r, theta , phi

coords = np.copy(spherical_coordinates)

coords = np.transpose(coords) # transpose the data so it’s shorter to

work with all the phi/theta data at once

theta_vels = np.zeros_like(coords [1])

phi_vels = np.linspace(2, 1, num=gridshape [0])

phi_vels = np.tile(phi_vels , (gridshape [1], 1))

phi_vels = phi_vels.T.flatten ()

return np.array([ theta_vels , phi_vels ]).T

# make a grid for interpolation

thetas = np.linspace (11*np.pi/18, 25*np.pi/36, num =7)

phis = np.linspace (11*np.pi/18, 25*np.pi/36, num =7)

grid = np.meshgrid(thetas , phis)

grid.insert(0, np.ones_like(grid [0]) * 6.378e6) # add in the r coordinate

grid = np.array(grid)

grid = np.transpose(grid) # this makes it so that grid[i,j] returns the ij

-th coordinate triplet of (r,theta ,phi)

coordinates = np.reshape(grid , (grid.shape [0]* grid.shape [1], grid.shape

[2])) # flatten the "grid" part for compatibility with other functions

velocities , field_name = theta_comp(coordinates , grid.shape), "

theta_compression"

# velocities , field_name = theta_shear(coordinates , grid.shape), "

theta_shear"

# velocities , field_name = phi_comp(coordinates , grid.shape), "

phi_compression"

# velocities , field_name = phi_shear(coordinates , grid.shape), "phi_shear"

velocities = np.transpose(np.reshape(velocities , (grid.shape [0],grid.shape

[1] ,2))) # restore the "grid"

velocities = np.transpose ([*np.meshgrid(thetas , phis), *velocities ]) # add

the coordinates back

mps_vels = np.copy(velocities)

velocities = dist_to_ang(velocities) # convert meters per second to

radians per second

tensor_field = sf.calculate_deviatoric_tensor_field(velocities)

flat_tensor_field = sf.calculate_deviatoric_tensor_field(velocities ,

geometry=’euclidian ’)

latitudes = np.rad2deg(velocities [... ,1])

longitudes = 90 - np.rad2deg(velocities [... ,0])

fig , ax = plt.subplots(1, 1, subplot_kw ={’projection ’: ccrs.PlateCarree ()

})

gl = ax.gridlines(draw_labels=True)

gl.top_labels = False

gl.xlines = False

gl.right_labels = False



gl.ylines = False

ax.quiver(latitudes , longitudes , mps_vels [...,3], -mps_vels [... ,2])

plt.savefig(os.path.join(’figures ’, ’simple_field ’, field_name + ’.pdf’),

bbox_inches=’tight ’, pad_inches =0)

plt.close()

scale , width = 5e-7, 3e-1

fig , ax = plt.subplots(1, 1, subplot_kw ={’projection ’: ccrs.PlateCarree ()

})

gl = ax.gridlines(draw_labels=True)

gl.top_labels = False

gl.xlines = False

gl.right_labels = False

gl.ylines = False

ax.quiver(latitudes , longitudes , tensor_field [...,0,1], -tensor_field

[...,0,0],

units=’xy’, angles=’xy’, zorder=2, color=’r’, pivot="mid",

headaxislength =0, headlength =0, scale=scale , width=width)

ax.quiver(latitudes , longitudes , tensor_field [...,1,1], -tensor_field

[...,1,0],

units=’xy’, angles=’xy’, zorder=1, color=’b’, pivot="mid",

headaxislength =0, headlength =0, scale=scale , width=width)

plt.savefig(os.path.join(’figures ’, ’simple_field ’, field_name + "_dev_sph

" + ’.pdf’), bbox_inches=’tight ’, pad_inches =0)

plt.close()

fig , ax = plt.subplots(1, 1, subplot_kw ={’projection ’: ccrs.PlateCarree ()

})

gl = ax.gridlines(draw_labels=True)

gl.top_labels = False

gl.xlines = False

gl.right_labels = False

gl.ylines = False

ax.quiver(latitudes , longitudes , flat_tensor_field [...,0,1], -

flat_tensor_field [...,0,0],

units=’xy’, angles=’xy’, zorder=2, color=’r’, pivot="mid",

headaxislength =0, headlength =0, scale=scale , width=width)

ax.quiver(latitudes , longitudes , flat_tensor_field [...,1,1], -

flat_tensor_field [...,1,0],

units=’xy’, angles=’xy’, zorder=1, color=’b’, pivot="mid",

headaxislength =0, headlength =0, scale=scale , width=width)

plt.savefig(os.path.join(’figures ’, ’simple_field ’, field_name + "

_dev_flat" + ’.pdf’), bbox_inches=’tight ’, pad_inches =0)

plt.close()



B.7 Deviatoric stress due to gravitational collapse

import sys , getopt , json , copy , os

import numpy as np

from osgeo import ogr , osr , gdal

from surface import Surface

# for plotting

import cartopy.crs as ccrs

import cartopy.feature as feature

import matplotlib.pyplot as plt

import matplotlib.ticker as mticker

from mpl_toolkits.axes_grid1 import make_axes_locatable

import seaborn as sns

pal = sns.diverging_palette (240, 10, as_cmap=True)

np.seterr(all=’raise’)

’’’program to get geotiff (.tif) elevation data and convert it to

spherical

coordinates.

the first command line argument following the .py program should be the

source

file path , the second argument should be the target file path , e.g.:

$ python gtif2sph ./ source ./ target

if you want detailed information , insert verbose as an argument:

$ python gtif2sph ./ source ./ target verbose

to get full precision when printing verbose output , add precise as an

argument.

use the projection argument to show the projection when printing verbose

output.

use the tag r to get the radius from the centre of the earth instead of

height

above sea level.

tom new

20/08/2018 ’’’

def array_to_gtiff(data , save_path , transform , projection):

"""

Array > GTiff

Save a GeoTiff from a C order array.

"""

driver = gdal.GetDriverByName(’GTiff’)

rows , cols = data.shape

out_dataset = driver.Create(save_path , cols , rows , 1, gdal.GDT_Float32

)



out_dataset.SetGeoTransform(transform)

out_dataset.SetProjection(projection)

out_dataset.GetRasterBand (1).WriteArray(data)

out_dataset.FlushCache () # Write to disk.

# get command line aruments

args = copy.deepcopy(sys.argv)

opts , args = getopt.getopt(sys.argv [1:], "d:l:n:p:s:t:vc", ["dem=", "

limits=", "plot=", "precise", "projection", "save=", "ticks=", "verbose

", "cart"])

n, limit , plot , precise , projection , save , tick_spacing , verbose , c = 40,

False , False , False , False , False , False , False , ""

for opt , arg in opts:

if opt in ("-d", "--dem"):

dem_path = arg

elif opt in ("-l", "--limits"):

limit = True

limits = arg.strip("[]").split(",")

limits = np.array(limits , dtype=float)

elif opt == ’-n’:

n = int(arg)

elif opt in ("-p", "--plot"):

plot = True

plot_path = arg

elif opt == ’--precise ’:

precise = True

elif opt == ’--projection ’:

projection = True

elif opt in ("-s", "--save"):

save_path = arg

save = True

elif opt in ("-t", "--ticks"):

tick_spacing = float(arg)

elif opt in ("-v", "--verbose"):

verbose = True

elif opt in ("-c", "--cart"):

c = "_c"

# open the file

if verbose: print(’Reading file ...’)

dataset = gdal.Open(dem_path , gdal.GA_ReadOnly)

if verbose: print(’Done.’)

# show size and projection info

if verbose:

print("Driver: {}/{}".format(dataset.GetDriver ().ShortName ,

dataset.GetDriver ().LongName))

print("Size is {} x {} x {} (x by y by layers)".format(dataset.

RasterXSize ,

dataset.RasterYSize ,

dataset.RasterCount))

if projection: print("Projection is {}".format(dataset.GetProjection ()



))

projection = dataset.GetProjection ()

# get origin (top left) and step size

geotransform = dataset.GetGeoTransform ()

if verbose:

if geotransform:

if precise:

print("Origin: {} deg N, {} deg E".format(geotransform [3],

geotransform [0]))

print("Pixel Size: {} deg , {} deg".format(geotransform [5],

geotransform [1]))

else:

print("Origin: {:.3g} deg N, {:.3g} deg E".format(geotransform

[3], geotransform [0]))

print("Pixel Size: {:.3g} deg , {:.3g} deg".format(geotransform

[5], geotransform [1]))

origin = np.array ([ geotransform [0], geotransform [3]])

spacing = np.array([ geotransform [1], geotransform [5]])

# get elevation data

raster_band = dataset.GetRasterBand (1)

heights = raster_band.ReadAsArray ()

# create array of h (or r), theta , phi data

npixels = np.array([ dataset.RasterXSize , dataset.RasterYSize ])

longitudes = np.arange(1, dataset.RasterXSize + 1) * spacing [0] + origin

[0]

latitudes = np.arange(1, dataset.RasterYSize + 1) * spacing [1] + origin [1]

longitudes , latitudes = np.meshgrid(longitudes , latitudes)

data = np.array([heights , longitudes , latitudes ])

data = Surface.from_array(data , angle_measure=’deg’, polar_coordinate=’lat

’) # make it a Surface

original_topo = np.copy(data.surface)

data.compress_water () # compress water to rock

sigma = 50000

data.smooth_fft(sigma=sigma) # smooth it

data.calculate_gpe () # calculate GPE

data.calculate_gpe_stress () # calculate the stresses

if c:

data.calculate_deviatoric_vectors(geometry=’Cartesian ’)

else:

data.calculate_deviatoric_vectors ()

if not limit: limits = [longitudes [0,0], longitudes [0,-1], latitudes

[-1,0], latitudes [0,0]]

imlimits = [longitudes [0,0], longitudes [0,-1], latitudes [-1,0], latitudes

[0,0]]

if plot:

fig , ax = plt.subplots(1, 1, figsize =(6 ,7), subplot_kw ={’projection ’:



ccrs.PlateCarree ()})

gl = ax.gridlines(draw_labels=True)

gl.xlabels_top = False

gl.xlines = False

gl.ylabels_right = False

gl.ylines = False

ax.set_extent(limits , crs=ccrs.PlateCarree ())

if tick_spacing:

gl.xlocator = mticker.MultipleLocator(tick_spacing)

gl.ylocator = mticker.MultipleLocator(tick_spacing)

ax.add_feature(feature.COASTLINE , edgecolor=’tab:gray’, zorder =1)

ax.add_feature(feature.BORDERS , edgecolor=’tab:gray’, zorder =1)

im = ax.imshow(data.Delta_gpe / 1e12 , extent=imlimits , cmap=pal ,

interpolation=’none’, origin=’upper ’, zorder =0)

ax.quiver(data.longitudes[n:-n:n,n:-n:n], data.latitudes[n:-n:n,n:-n:n

],

data.theta_stresses[n:-n:n,n:-n:n], -data.phi_stresses[n:-n:n,

n:-n:n],

units=’xy’, angles=’xy’, scale =1.75e2, zorder =2)

divider = make_axes_locatable(ax)

cax = divider.new_horizontal(size="5%", pad=0.15 , axes_class=plt.Axes)

fig.add_axes(cax)

plt.colorbar(im , cax=cax)

cax.set_title(’TN/m’)

plt.savefig(plot_path)

plt.close()

if save:

if verbose: print(’Saving as NPY ...’)

np.savez(save_path + "_" + str(int(sigma /500)), longitudes=data.

longitudes , latitudes=data.latitudes , topography=original_topo ,

smooth_topo=data.surface , Delta_gpe=data.Delta_gpe , theta_stresses=

data.theta_stresses , phi_stresses=data.phi_stresses , sigma1s=data.

sigma1s , sigma2s=data.sigma2s)

if verbose: print(’Done.’)
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