AN INTELLIGENT MAGNETIC TAPE CONTROLLER

ALEXANDER DONALD MCGUFFOG

Submitted to the University of Cape Town in
partial fulfilment ‘of the requirements for the

degree of Master of Science in Engineering.

September 1986

The copyright of this thesis vests in the author. No
guotation from it or information derived from it is to be
published without full acknowledgement of the source.
The thesis is to be used for private study or non-
commercial research purposes only.

Published by the University of Cape Town (UCT) in terms
of the non-exclusive license granted to UCT by the author.

ACKNOWLEDGEMENTS

Tony Eva and Graham Jack, for assistance in the use of the
PDP-11.

Derek Sherlock, who assisted in several aspects of the
production of this thesis.

The CSIR, for their financial assistance.

ABSTRACT

This thesis describes a system to allow a mass storage device to
be installed in a position remote from the computer system which
controls 1it. This system is 1intended to allow undergraduate
students in the Electrical Engineering department at UCT to make
use of two nine channel tape drives installed in the
undergraduate laboratory for project work. The drives are
interfaced to the department's PDP-11/23 computer, and may be
accessed by standard operating system directives, as the

controller simulates a conventional computer peripheral.

The system consists of an SA-Bus based tape transport controller
which interfaces to the host computer system via a serial line.
The following hardware was designed and built specifically for

this system :

1. A CPU card based on the Intel 80188 microprocessor,
incorporating high speed DMA (direct memory access) channels

and two interrupt driven serial lines.

2. A timing and control module for the tape transports. This

consists of two SA-Bus cards.

Two sets of software were written for the system. These are the
following :

l. Software to operate the tape controller. This consists of

six modules written in Pascal-86 and 8086 assembler.

2. Software to allow the PDP-11/23 to control the the tape
drives. This is in the. form of an RSX-1ll device driver

written in PDP-11 assembler.

To allow the system to be easily upgraded in the future (in
particular to allow the system to be incorporated into UCT's
proposed local area network), the software was written in a

highly modular form.

In addition to being controlled by a host system in remote mode
the tape controller also has the ability to perform a variety of
operations in local mode. These include the ability to copy and
erase tapes, as well as a comprehensive set of diagnostic
functions. When in local operations mode the controller is menu
driven, making 1i1ts use by persons who are not familiar with it

quick and easy.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS

ABSTRACT

TABLE OF CONTENTS

. CHAPTER 1: INTRODUCTION

CHAPTER 2: THE TAPE TRANSPORTS

CHAPTER 3: THE 80188 CPU CARD

CHAPTER 4: THE TAPE INTERFACE MODULE

CHAPTER 5: THE RSX-11M OPERATING SYSTEM

CHAPTER 6: THE DEVICE DRIVER

CHAPTER 7:

CHAPTER 8:

REFERENCES

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

THE TAPE CONTROLLER SOFTWARE

CONCLUSION

USER GUIDE

CIRCUIT DIAGRAMS : CPU CARD

CIRCUIT DIAGRAMS : TAPE INTERFACE MODULE

DATA LINK FORMAT INFORMATION

SOFTWARE LISTINGS : PDP-11 DEVICE DRIVER

SOFTWARE LISTINGS : TAPE CONTROLLER SOFTWARE

SOFTWARE BUILD INFORMATION

PASCAL-86 V3 FAULTS

CHAPTER 1

INTRODUCTION

1.1. Requirements

This project arose out of the need of the University of Cape
Town's department of Electrical and Electronic Engineering for an
interface which will allow a mass storage device for the
department's PDP-11/23 minicomputer system to be installed in a

position remote from the central processing unit's position.

The PDP-11 is used for various purposes;, notably for
undergraduate teaching and postgraduate research. It is from its
role as undergraduate teaching tool that this requirement arose.
Undergraduate teaching 1is done mainly on the department's so
called SABUS kits. These are SABUS [8],[9] based microcomputer
systems designed by UCT specifically for the purpose of
undergraduate teaching. The kits are installed in a separate

undergraduate laboratory and are connected to the PDP-11 via

serial lines.

INTRODUCTION Page 1-2

The kits function as work stations. They are used for editing
source files for processing on the PDP-11, as well as for
assembly and execution of 8085 code, which forms a key part of
the current undergraduate programme. All long term file storage
is however done by the PDP-11 system, normally on fixed disks. It
is with this file storage that severe problems can arise. At
certain times of the year several courses, each with up to 80
students, make use of the kits, and hence the PDP-11 system for
file storage. This can result in severe storage space problems,
especially as RSX-11/M, the operating system used on the PDP-11,
maintains copies of each version of a disk file unless these are
explicitly deleted. Should space problems occur these cannot be
rectified by the students themselves, but only by the actions of
a user with a privileged account (normally a member of staff). At
times of peak demand the system must be available 24 hours a day.
A form of mass storage to relieve this congestion is a high

priority for the department.

1.1.1. In practice, two possible ways exist to reduce the space

problems :

1.1.1.1. Increase the available storage space. This approach
was rejected as firstly storage for PDP-11 systems 1is
extremely expensive compared to other forms of mass storage,
and secondly that a very large amount of such storage would
be required to ensure that the problems did not arise. The
exact amount of storage required is highly dependant on the
type of work being done, but for most multi-user systems is
estimated at several megabytes of storage per user. This
would imply a requirement of well in excess of 100 Mbytes of
disk storage, which would be difficult to justify as it is

only required at certain times of the academic year.

INTRODUCTION Page 1-3

1.1.1.2. Make some form of removable medium mass storage
available to the students. Using this system, each student
(or group of students) can be issued with their own storage
medium (magnetic tape or floppy disk for example). The
student's files will then not need to be stored on the
PDP-~11's disks.

1.1.2. For the university's purposes the second solution is far
better, for reasons of cost and simplicity. It should be noted
that the specific problem described above is only one example of
a more general problem facing the data processing industry.
Traditionally computer systems have consisted of a CPU (Central
Processing Unit) with its peripherals in close proximity to it
(normally in the same room). The only peripherals installed in
remote locations were terminals and occasionally line printers
and card readers. With the recent dramatic advances in integrated
circuit technology there has been a trend towards distributed
systems. Distributed systems are differ from the traditional
computer system architecture by having the intelligence in the
system spread throughout the entire computer system rather than
being concentrated in a single CPU. In practice these systems
normally consist of a number of work stations and a central file
server (concentration of mass storage devices). It has however
been found that it is desirable to have some form of mass storage

accessible to each user. This has the following advantages :

1.1.2.1. Each user can keep his own copies of important
files. The system manager no longer has to make frequent
back-ups of all files. This results in both lower overheads

and a greater feeling of security on the part of the user.

1.1.2.2. The user can easily remove files not in use from
the system. If the user has no easy way of rolling files

which are not immediately required out of the system the

INTRODUCTION Page 1-4

disk drives will quickly become cluttered up with unused

files.

1.1.2.3. It is simpler for the user to import files from
another similar system. This form of information interchange
is often important, especially in organizations which carry
out activities in which data from external sources plays a

large role (for example research establishments).

1.1.3. As a result of these considerations it was decided to
construct an interface which would allow a mass storage device
for the PDP-11 to be installed in the department's digital
undergraduate laboratory. The actual mass storage device chosen
was a pair of 800 BPI (Bits Per Inch) NRZ (Non Return to 2Zero)
nine channel magnetic tape drives. This was chosen for the

following reasons :

1.1.3.1. Two such tape transports were available from

scrapped equipment donated to the department.

1.1.3.2. The de facto industry standard for magnetic tapes
used for program transfer is 800 BPI. Although the
department has a tape transport attached to the PDP-11, this
is a 1600 BPI phase encoded drive which cannot read 800 BPI
tapes. As a result in the past tapes have had to be
converted from 800 BPI to 1600 BPI by UCT's computer center,
a process which is both time consuming and prone to problems
as a result of the wide variety of tape formats used on
PDP-11 systems. The ability to read 800 BPI tapes was thus a
further attraction of the project.

INTRODUCTION Page 1-5

1.2. Description of the Tape Transports

Both tape transports conform to the de facto industry standard

design. They have the following features in common :

1.2.1. Industry standard control bus. This consists of three
connectors, one for write data, one for read data and one
for <control lines. In practice this interface 1is not
completely standardized, and variations exist Dbetween
manufacturers, especially as regards methods of selecting

different units on a common bus.

1.2.2. The transports provide encoding and decoding of the

NRZI recording code, as well as clock recovery.

1.2.3. An interface is required, external to the unit, which

must provide the following functions :

1.2.3.1 All tape formatting. This consists of parity
information (one bit per character) and a 9 bit CRC

(Cyclic Redundancy Check) for error control.

1.2.3.2 All timing. All data is written in the form of
blocks. Recognition of these blocks by the controller
is by timing (for example a CRC 1is preceded by 3
character spaces). It 1is the responsibility of the
interface unit to provide all timing both for write and

read operations.

INTRODUCTION Page 1-6

1.3. The data link

The primary objective of this project is to design an interface
for industry standard magnetic tape drives which is suitable for
use with the PDP-1l1l and will allow the tape transports to be
located at a distance from the main computer system. For this
reason the choice of a data link is critical to the project.
Conventional mass storage devices are interfaced to the host
system via parallel data busses which are suitable only for
transmission over a maximum distance of only a few meters. For
this project a system 1is required which is <capable of
transmitting over a distance of several hundred meters. Two
techniques are in common use [15], and meet this requirement.

These are the following :

1.3.1.1. A LAN (Local Area Network) system. This is a system
which allows several devices to be connected on a single
high speed line (normally a twisted pair or co-axial cable).
This kind of system can reach data transfer rates of 10
Mbits/s.

1.3.1.2. Conventional serial lines. These are normally
RS-232, and operate at speeds of up to 9600 baud (Baud
refers to the number of changes per second on a line. For a
conventional 1line this 1is almost the same as bits per

second.), or in exceptional cases 19200 baud.

In this case it was decided to use serial RS-232 lines. This was

done for the following reasons :

1.3.2.1. The PDP-l1l system has serial lines available which
are not in use.

INTRODUCTION Page 1-7

1.3.2.2. Although UCT's proposed LAN system will interface
to the PDP-11 system, and operates at a far greater speed
than a conventional serial 1line, the hardware for this
system did not exist at the time. In addition the software
for the LAN has not been finalized to date. It was however
decided to design the tape interface in such a way as to

make an upgrade to operation on the LAN as easy as possible.

l1.4. PDP-11 software

The physical interface to the PDP-11 is via a serial line. The
software used on the PDP-1l1 in order to ©operate the tape
controller will now be discussed. The operating system used on

the PDP-11 system is RSX-11M. This has the following features :

1.4.1. It is multi-user. This means that several user can

use the system simultaneously.

1.4.2. It is multi-tasking. This means that several programs

can be run simultaneously, even by the same user.

1.4.3. It 1is hierarchical. From the first two points
mentioned above it is clear that strict control is necessary
over system resources, such as peripherals. A situation
could easily arise in which two or more programs wished to
use a peripheral at the same time. The hierarchical nature
of the RSX-11lM operating system allows it to keep strict
control over the various peripherals in the system. The
operating system may be viewed as a series of layers, with a
user's application program as the first layer, the various
parts of the operating system as the succeeding layers

culwinating 1in the layer which actually controls the

INTRODUCTION Page 1-8

peripheral. The components of this layer are known as device
drivers, and one exists for each type of device in the
system. The RSX-1l operating system makes special provision
for the user to include his own drivers at this level, and
so customize the system to his own requirements. As the
driver executes as part of the operating system strict rules
are associated with it in order to ensure the integrity of
the operating system. It is via this mechanism that the tape

transports are controlled.

1.5. Other Requirements

In addition to the requirements discussed above various other

features would be desirable :

1.5.1. The interface unit should be as easy as possible to
incorporate into the proposed LAN system. As LAN cards are
being designed for UCT's SABUS based systems the tape
controller interface should be SABUS based. This has the
additional advantage that card cages with built-in power

supplies are readily available, as are memory cards.

1.5.2. The interface unit should be as intelligent as
possible. The host computer should have to do the absolute
minimum of control. For example if an error is detected on a
read operation the controller should automatically retry the

operation.

1.5.3. The interface unit should be able to perform as many
operations as possible in local mode. If the operator can
perform certain operations, for example to copy a tape,

using only the controller then a great deal of time will be

INTRODUCTION Page 1-9

saved. It was therefore decided to incorporate a second
serial port into the controller to interface to a terminal.
This allows the interface to be directly controlled by the

user.

1.5.4. The interface should have as many diagnostics
functions as possible available. This not only simplifies
testing of the system, but also will make the system a great

deal easier to modify, if required, at a later date.

1.5.5. The interface should emulate a known tape
transport/controller combination. This has several

advantages :

1.5.5.1.1. The 1interface will be compatible with as
much DEC operating system software as possible. This is
an extremely important consideration. From the point of
the user of the PDP-11 the tape <controller should
appear to simply be a standard DEC peripheral.

1.5.5.1.2. Source code of the device drivers for these
devices 1is available. This simplifies the task of
ensuring that the tape controller subsystem is

compatible with the operating system.

1.5.5.1.3. The behavior of the controller can be

compared against known, documented equipment.

Although several of these are manufactured by DEC (Digital
Equipment Corp.(manufacturer of the PDP-11)) the TM1l1l

controller was chosen. This was for the following reasons :

INTRODUCTION Page 1-10

1.5.5.2.1. The TM1l is the standard controller for the

type of tape transports which are available.

1.5.5.2.2. The TM1l controller is the basis of the
entire DEC range of tape controllers. Although the
various controllers all have different capabilities
they all preserve TM1ll compatibility. Most DEC tape
software uses only TM1ll commands, and so ensures

compatibility with all tape available interfaces.

1.5.5.2.3. The tape 1interface in use to control the
department's 1600 BPI phase encoded drive is a hardware
emulation of the TM1ll controller. This means both that
direct comparisons can be done and that special purpose
software written at UCT specifically for this tape

drive will run without modification.

1.6. The Tape Controller Hardware

In order to meet the requirements set out above an SABUS based
tape controller interface was constructed. This consisted of the

following subsections :

1.6.1. Card cage and power supply. This is a conventional
19-inch rack mounting box and card cage with built-in power
supply identical to those used for various other UCT

systems.

1.6.2. CPU card. This card which was especially designed and

constructed for this project and has the following features

INTRODUCTION Page 1-11

1.6.2.1. 80188 CPU. This is an advanced INTEL
microprocessor with various peripherals integrated on
chip (for example timers and a DMA (Direct Memory
Access) controller). The instruction set of this
microprocessor «chip 1s a superset of the popular
8088/8086 processor. The advanced design of this
processor allowed a considerable reduction in size of
the hardware compared to other microprocessors while
allowing the use of 8088/8086 development equipment,
notably Pascal-86, a high level language used for much

of the controller software.

1.6.2.2. EPROM storage on board. Provision was made for
up to 128 Kbytes of long term program storage on the
CPU card.

1.6.2.3. Serial interface lines. Two serial lines were
included on the CPU card for the data 1link and
terminal. Provision was made for both to be interrupt
driven 1in order to allow the highest possible data

transfer rate.

1.6.3. Interface module. This module, also designed and
constructed especially for this project provides the
physical interface to the tape transports, as well as all
timing functions. It consists of two SABUS cards connected

via a ribbon cable. Data transfers are via DMA.

1.6.4. A memory module. This is a standard 128K dynamic RAM
card as used in UCT's SABUS kits. It has 64 Kbytes of memory
installed.

INTRODUCTION Page 1-12

1.7. System Software

Twe sets of software are required :

1.7.1. Controller software. This 1s the software which 1is
embedded in the controller. This consists of five modules;,
of which two are written 1in Pascal-86, and the rest 1in

assembler. These modules provide all controller functions.

1.7.2. PDP-11 software. The software for the PDP-1ll consists
simply of a device driver (known as MA drive) which emulates
a TM1l tape controller as discussed above. This is written

in MACRO-11, the PDP-11 assembler language.

CHAPTER 2

THE TAPE TRANSPORTS

2.1. Introduction

In chapter 1 the objectives of this project were discussed, and
it was stated that two nine channel tape drives were selected to
provide a remote mass storage system. These tape drives, and the
formats used to record data on them, will now be discussed. Both
tape transports are of industry standard design, although in
practice there are minor differences between them. The tape
transports are designed to read IBM compatible tapes, which are
the industry standard for data transfer. The requirements for IBM

compatibility are described below :

2.2. IBM Magnetic tape standard

2.2.1. IBM compatibility means that the tape is readable by
an IBM 2400 series tape transport and the converse. It

should however be noted that this this compatibility extends

THE TAPE TRANSPORTS Page 2~-2

only to the 1level of physical compatibility, that 1is
parameters such as number of tracks, track width, form of
check characters, length of inter block gaps, recognition of
file gaps etc. These parameters are designed only to ensure
that the hardware 1in a particular system 1is capable of
reading and writing standard tapes. Any other formatting,

for example at file and volume level, is not specified.

2.2.2. The IBM standard covers both 7 channel (6 bits of
data and one of parity) and 9 channel (8 bits of data and
one of parity). BAlthough the tape transports used for this
project support only 9 channel operation both formats will
be described as the tape controller is capable of supporting

both 7 and 9 channel operation.

2.2.3. The method used for recording is that of NRZ1l (non-
return-to-zero change at 1logic 1), also often simply
referred to as NRZ (non-return-to-zero). Recording using
this method of encoding is simple : Whenever a logical one
occurs in the bit stream for a particular track, the
direction of the head current, and hence the tape
magnetization, 1is changed. A special character called the
LRC (Longitudinal Redundancy Character) ensures that the
direction of magnetization is always the same in the inter-
record gaps. The use of this character will be discussed
further in section 2.2.5.3. NRZ has two advantages over
other recording techniques such as phase encoding or group

coded recording [24]:

2.2.3.1.1. Head current flows at all times. This makes
it possible to record over old data. In practice most
tape transports include an erase head to ensure tape

erasure in the inter-~track gaps. This significantly

THE TAPE TRANSPORTS Page 2-3

reduces problems caused by badly aligned heads and

hence improves reliability.

2.2.3.1.2. The electronics for reading and writing NRZ1

tapes are simpler than for other techniques [24].

2.2.3.2. A significant disadvantage is, however, that unlike
the two other techniques mentioned above, NRZ is not self-
clocking and 1is hence wuseful only where multiple track
recording 1is employed or limits are placed on the data
content. A further restriction is that in order to recover a
character c¢lock at 1least one channel must have a a one
recorded in it. This may be ensured by employing odd parity.
If odd parity is not employed then the all zeros character
must be declared invalid. 0dd parity is always employed on 9
channel tapes. Note that phase encoding and group coded
recording allow the use of phase lock 1loop type data
recovery circuits, allowing both higher tape density and the

recording of any data pattern.

2.2.3.3. Writing NRZ1l tapes. In order to record data on a
magnetic tape it 1is necessary to magnetize the tape
discreetly to indicate binary ones and zeros. In the NRZ1l
method current flows in the write head continually while the
transport is in the write mode. Binary ones are indicated by
a reversal in the direction of current flow, and hence of
the saturated magnetism on the tape. It is the
responsibility of the user to provide the data and the write
clock. Actual encoding is done by the tape transport

electronics.

2.2.3.4. Reading NRZ1l tapes. In order to recover data
written as described above the tape is passed over a read

head at <constant velocity. When the resulting playback

THE TAPE TRANSPORTS Page 2-4

signal is rectified a pulse is present for each one recorded
in the original wave form. If a zero was recorded no pulse
will be generated, and the clock to store the data must be

obtained from another channel.

2.2.4. The 1IBM standard also specifies various tape
parameters, such as skew between channels, gap scatter and
position of the tracks on the tape. As these specifications
are determined by factors such as head design which are the
concern only of the manufacturer of the tape transport they
will not be discussed here. Readers wishing for further

information should consult references [1] and [2].

2.2.5. Tape format. This refers to the methods used to
delimit blocks of data, the beginning and end of the tape
and the check codes used to ensure data integrity. Two
structures may be written to the tape. These are data
records f{(or blocks) which consist of data characters and
check characters, and file marks, which delimit sections of
data. The format of these structures will be described

later. The following factors define the tape format:

2.2.5.1. Tape markers. To avoid physical damage to the
recorded surface a portion of tape at the beginning and
end of the tape is reserved for threading and loading.
These sections are delimited by reflective markers on
the non-oxide side of the tape. The markers are
referred to as the BOT (Beginning Of Tape) and EOT (End
Of Tape) markers respectively. These gaps are at least
10 feet, and the tape is erased for at least 1.7 inches
before the trailing edge of the BOT tab. Note that it

is permissible to write over and beyond the EOT marker.

THE TAPE TRANSPORTS Page 2-5

2.2.5.2. Gaps. Reading and writing can take place
reliably only when the tape 1is moving at a constant
velocity. To allow the tape to start and stop, gaps
must be left between data records. The following gap

lengths are used :

2.2.5.2.1. Beginning of tape gap. An erased
section of tape 1is required surrounding the BOT
marker. This extends for at least 1.7 inches ahead
of the trailing edge of the marker and 0.5 inches

past it.

2.2.5.2.2. 1Inter record gaps. These gaps are
between data records, and have a minimum length of
0.75 inch for seven-track and 0.6 inch for nine-

track.

2.2.5.2.3. End of file gaps. This gap is a minimum
of 3.9 inches for seven-track and 3.75 inches for

nine-track.

2.2.5.3. Data record format. Data records consist of a
number of characters and a number of check characters.
A minimum of 14 characters and a maximum of 8192
characters may be written in a single block. For seven-
track tape a single check character is written. This is
the LRC (Longitudinal Redundancy Character), and is
spaced four <character spaces from the last data
character. For nine-track tape a CRCC (Cyclic
Redundancy Check Character) is written in addition to
the LRC, spaced four character spaces after the last
data character.The LRC is spaced four character spaces
after the CRCC. The check characters are obtained as

follows :

THE TAPE TRANSPORTS Page 2-6

2.2.5.3.1. The LRC. The polarity of each bit 1in
the LRC 1is such that the number of magnetic
transitions in each track is even. This ensures
that the direction of the magnetic saturation 1is

the same in all tape gaps.

2.2.5.3.2. The CRCC. A complete discussion of
cyclic codes 1is too lengthy to present in this
document. An introduction to the subject may be
found in references [3],[4] and [5], and only
information which is pertinent to the tape format
is given here. The following information 1is

specific to the code used in 9-track recording.

l. The parity of the CRCC is not fixed, but
is dependant on the number of characters in

the data record.

2. Because the parity of the CRCC is not
fixed neither the LRC or the CRCC need
necessarily be written, as if the CRCC has
even parity then so will the LRC. The
polynomial chosen for the CRC, however,
guarantees that at least one of the check

characters will always be written.

3. It 1is possible to correct, as well as
detect, certain errors. For this to be
possible certain conditions must be met,
notably that all errors must be confined to a
single track. In practice due to the severe
limitations on error correction wusing this
system (correction can only be guaranteed for

single bit errors) error correction is not

THE TAPE TRANSPORTS Page 2-7

often implemented. For more information on

this subject see reference [3].

2.2.5.4. EOF mark format. The file mark consists of
only two characters, a single character and its LRC.
The spacing 1is four character spaces for 7~track and
eight for 9-track. Note that for 9-track no CRCC 1is
written as would be the case for a data record. Note
also that as only one character is written the LRC is

identical to this character.

2.3. Physical Interface

The tape transports are of industry standard design. Space does
not allow all specifications to be described here, but the most
important features of the interface will be described. Further

information may be found in references [6] and [7].

2.3.1. All interface lines are TTL/DTL compatible and make
use of negative logic (a low represents the logical true
condition). Outputs are open collector and lines are
terminated at the receiving end by conventional 220/330 Ohm
terminations. In order to allow data transmission over a
distance of several meters each line also has associated
with it a ground line, allowing the interconnection to be

made in the form of a twisted pair.

2.3.2. The interface consists of three connectors :

2.3.2.1. Read data (RDO-RD7, RDP). This connector has
ten lines, eight data, one parity and one read strobe.

Data from the tape transport is latched on the trailing

THE TAPE TRANSPORTS Page 2-8

edge of this pulse by the tape controller. All lines on

this connector are inputs to the controller.

2.3.2.2. Write data. This connector consists of twelve

lines, all outputs from the controller :

2.3.2.2.1. Data lines (WDO-WD7, WDP). There are
eight data lines (six for seven-track units) and a

parity line.

2.3.2.2.2. Write data strobe (WDS). Data and
parity are written on leading edge of this strobe.
It has a minimum width of 1 uS and a maximum width
of 3 uS. Data must be valid for at least 0.5 uS

before and after the leading edge of this strobe.

2.3.2.2.3. Write amplifier reset (WARS). This
strobe automatically writes the LRC described
above. Note that writing the LRC resets the
transports NRZ1l encoding circuitry. This strobe is
identical to the write data strobe except that the
data on the transport's data lines is ignored, and

the internally generated LRC is written.

2.3.2.2.4. Read threshold (RTH). This line selects
a high read threshold when true. This is used only

for read-after-write data checks.

2.3.2.3. Control. This connector has both input and
outputs. The number of lines varies from manufacturer
to manufacturer. The following outputs from the

controller are common to all transports :

THE TAPE TRANSPORTS Page 2-9

2.3.2.3.1. Select (SLT). When this line is true
all drivers and receivers in the transport are
enabled. The wuse of this 1line allows several
transports to be connected to a common bus. Note
that this 1line cannot be commoned, and must be

wired separately to each tape transport.

2.3.2.3.2. Synchronous forward command (SFC). When
this line goes true, and the tape transport 1is
ready and on line, the tape ramps linearly up to
its rated speed in the forward direction. When
this line goes false the tape speed ramps down to

zero.

2.3.2.3.3. Synchronous reverse command (SRC). This
is the same as the synchronous forward command

except that the tape moves backward.

2.3.2.3.4. Rewind (RWD). A pulse on this 1line
(minimum width 20 uS) will cause the tape to

rewind to the BOT marker.

2.3.2.3.5. Set write status (SWS). For the
transport's write head to be enabled this line
must be active at the 1leading edge of the SFC
command, and must remain true for at least 10 uS.
Note that as magnetic tape is a sequential medium,

reverse write operations are not used.

2.3.2.3.6. Off line command (OFFC). A pulse on
this line will set the selected transport off
line. This is normally done to indicate that the

tape may be removed. The transport can only be put

THE TAPE TRANSPORTS Page 2-10

back on line by an operator using the transport's
front panel controls. The pulse must be at least 2

uS in length.

In addition to requiring the inputs described above all

transports provide certain status outputs

2.3.2.3.7. Transport ready (RDY). This 1line is
true if the transport is on line and a tape is

loaded and is not rewinding.

2.3.2.3.8. On line (ONL). This line is true if the
transport is on line. If the transport is on line
it is under the control of the controller, if not

it is under local front panel control.

2.3.2.3.9. File protect (FPT). This line is true
if a write enable ring is not mounted on the tape

loaded on the transport.

2.3.2.3.10. Load point (LDP). This line is true if
the tape is at BOT.

2.3.2.3.11. End of tape (EOT). This line is true
if the tape is past the EOT marker.

2.3.2.3.12. Rewinding (RWD). This line is true if

the transport is engaged in a rewind operation.

2.3.3. The following tape transports are in use

THE TAPE TRANSPORTS Page. 2-11

2.3.3.1. Pertec model 6860-25. This 1is a simple tape
transport which operates at 25 IPS and conforms closely to
the standard described above, It does however have the
ability to overwrite a specific block. This ability is not
in fact used in this application, as very few other tape
transports (or computers systems) make provision for such a

capability.

2.3.3.2. WANGCO Mod 10. This tape drive differs in several

respects from the Pertec unit described above.

2.3.3.2.1. It operates at 45 IPS.

2.3.3.2.2. The interface has been modified slightly

from the industry standard described above :

1. Provision has been made for four select lines
in order to allow several transports to be bussed
together without requiring special wiring for the

select line.

2. Provision has been made for DC power
connections (designed to power external terminator
modules) on certain lines previously used for

ground connections.

2.3.3.2.3. The transport has a dual gap head. This
means that the unit is capable of reading and writing
simultaneously. As the read gap is downstream of the
write gap a tape can be written and verified in one
pass, provided that the controller supports this

feature.

THE TAPE TRANSPORTS Page 2-12

2.4. Tape transport timing

It is the responsibility of the controller to generate the timing
of the control signals in such a way as to produce the data
format described above. These timing requirements will now be
discussed. Note that 45 IPS is the maximum speed available in
this type of tape transport. A controller capable of operating at
this speed will be compatible with all industry standard tape

transports.

2.4.1. Character timing.

2.4.1.1. Write operations. When writing data to the
tape transport the bit density is controlled by the
speed of the tape and the frequency of the write
strobes. The controller must generate write strobes at
the frequency required to produce the bit density
appropriate for the tape transport in use. In the case
of the transports discussed above, this is 800 BPI.
This means that a write strobe must be generated each
50 uS for the 25 IPS unit and each 27.78 uS for the 45
IPS unit. In order to conform to the IBM specification
an accuracy of 1% is required. Note also that this
means that the controller must be capable of delivering
nine bits of data each 27.78 us.

2.4.1.2. Read operations. During read operations data
from the tape transport is latched by the read strobe.
The average period of this strobe will be the same as
the write strobe discussed above but due to skew
between channels and bit crowding effects the minimum
time between consecutive read strobes may be
considerably shorter than this. Most manufactures state

that a guaranteed safe value is half of the average

THE TAPE TRANSPORTS Page 2-13

time between strobes. This means that when reading the
controller must be able to process nine bits of data in
less than 13.89 usS.

2.4.2. Block timing. There are two aspects to the timing

involved in reading blocks :

2.4.2.1. Gaps 1inside blocks. The check characters at
the end of a block are delimited by a space of several
bit intervals. The controller must be able to generate
these gaps when writing. 1In order to be able to
recognize the check characters, these gaps must also be

detected by the read circuits of the timing module.

2.4.2.2. Inter block gaps. Gaps must also be inserted
in between blocks. This is done by controlling the
delay between asserting the motion command (SFC) and
the first write strobe, as well as the delay between
the last strobe and deactivating the motion command.
These delays vary from approximately 2 m$S to 100 mS for
transports ranging in speed from 10 IPS to 45 1IPS.
These gaps are not critical, but should be controlled
to within 5%.

2.5. Hardware requirements

2.5.1.

The tape controller consists of a CPU card, memory card

and timing module. From the description given above several

requirements for the timing module hardware become apparent. The

most significant are summarized below :

THE TAPE TRANSPORTS Page 2-14

2.5.1.1. A character clock variable from 2 kHz (10 1IPS, 200
BPI) to 36 kHz (45 IPS, 800 BPI) must be generated to within

1% accuracy.

2.5.1.2. Variable Inter record gaps must be generated. These

range from 2 mS to 100 mS.

2.5.1.3. Gaps within blocks must be recognized. These range
from 100 uS (4 character spaces, 800 BPI, 45 IPS) to 4 mS
(8 character spaces, 200 BPI, 10 IPS).

2.5.1.4. The controller must be capable of processing nine
bits of data within 13.89 uS.

2.5.2. Of the above requirements it is the last that is by far
the most demanding. The first three requirements may be met
simply by the use of programmable timers and the appropriate
logic;, but in order to meet the last requirement a controller
architecture is required which is capable of reading 8 Kbytes of
data plus its parity into some form of memory. In order to meet
this requirement several techniques are in common use [24], [25],
[(26] :

2.5.2.1. Micro-programmed controller. Most commercial tape
controller modules are constructed using bit-slice devices.
These devices may be viewed as building blocks for central
processing units, and allow the user to effectively create a
computer with an architecture and instruction set optimized
for the particular application in question. In this case the
"computer" would have an instruction set composed of
instructions such as read block and write block, and would
be "programmed"” by the host processor in the controller.

These building block devices are known as bit slices because

THE TAPE TRANSPORTS Page 2-15

they are normally supplied in the form of 4 bit "slices"
which may be paralleled to achieve the required data width.
A timing module would typically consist of three devices in
parallel, giving a 12 bit word. This form of construction

has several significant advantages :

2.5.2.1.1. As these devices operate at very high clock
rates (30 MHz devices are not uncommon [27]) and may be
optimized for the required function a controller
designed 1in this way can normally perform all the
functions required (timing, check character generation
etc.) with both a minimum of hardware and a minimum of
host processor intervention. A timing module based on
this technology can easily meet the data transfer rate
requirement as data may be easily read into local
memory by program transfer (or, more accurately,

microprogram transfer).

2.5.2.1.2. Modifications may be made reasonably easily
as only a change to a PROM (Programmable Read Only

Memory) will normally be required.

2.5.2.1.3. As all functions are performed by the bit
slices and a few support chips the system can be made

physically small (typically two SABUS cards).

This system however also has severe disadvantages in this

particular application :

2.5.2.1.4. Development work 1is expensive. Changes
require new PROMs, as these cannot be reprogrammed as

can the EPROMs used for microprocessor work.

THE TAPE TRANSPORTS Page 2-16

2.5.2.1.5. UCT does not have development equipment

suitable for the design of such equipment.

2.5.2.2. A design composed of discrete logic elements in
which data is transferred to and from a local memory. In
this type of <controller all functions, including the
generation of the check characters, are done in hardware.
This is the classic design for a tape transport controller
and indeed the interface to the tape controller is optimized
for such a system. This technique has the advantages that no
problems occur with transfer speed as all operation are
done in hardware, and that no special purpose development
equipment 1is required. This technique does however also

suffer from certain disadvantages :

2,5.2.2.1. Such a module would be very large. A
preliminary estimate was that six SABUS cards would be

required.

2,5.2.2.2. The system would not be very versatile. As
all the required functions would be implemented 1in
hardware it would be very difficult to modify the
controller. For example, if error <correction was
desired as discussed in section 2.2.5.3.2. above, this
would have to designed in from the beginning. Further
complexity would arise as regards the possible use of
seven-track tape transports as, for example, these

units do not make use of a CRCC.

2.5.2,2.3. A controller based on this type of
technology would be very inefficient. Certain
operations, such as the generation of check characters,
are much better carried out in software, at a

considerable saving in hardware.

THE TAPE TRANSPORTS Page 2-17

2.5.2.3. The third possible controller design is a system in
which the minimum of hardware is used, and a CPU within the
controller performs as much as possible of each function in
software. The hardware performs only those parts of
functions requiring precision timing, and provides latches
and buffering of the signals to and from the tape

transports. This has the following advantages :

2.5.2.3.1. The timing module is physically small.

2.5.2.3.2. As most of each operations is carried out by
the software the controller will be very versatile. For
example error correction can be included without the
addition of any extra hardware, simply by writing

suitable software.

2.5.2.3.3. It is possible to provide more sophisticated
diagnostics functions, as the CPU has direct access to

most of the timing module's functions.

This organization, however, also has a disadvantage. In
order to meet the data transfer rate requirement without
memory which is local to the timing module, DMA (Direct
Memory Access) techniques must be used. This is significant
problem as SABUS based systems have in the past normally
made use only of programmed transfer techniques (that is,
transfers under the direct control of the CPU) to transfer
data. The occasional system which has made use of DMA has
been built as a dedicated system, and as a result no general
technique for the use of DMA on SABUS has been developed.
This disadvantage is however overshadowed by the advantages
of size and simplicity to be gained. The following chapter

will discuss the use of DMA on the SABUS system.

CHAPTER 3

THE 80188 CPU CARD

3.1. Introduction

The simplest way to design the the tape controller system is to
utilize DMA. This is somewhat problematic, since DMA has not yet
been satisfactorily implemented on SABUS. This chapter describes
the implementation of a central processor card which implements

DMA.

3.2. SABUS

SABUS is a bus system designed for the implementation of 8- and
16-bit microcomputer systems. The standard was first formulated
in 1978, but has been modified considerably since. For reasons of
space a only a brief description of the bus is included here.
Further information may be obtained from references [8] and [9].

The bus has the following features.

THE 80188 CPU CARD Page 3-2

3.2.1. All lines are TTL compatible, and 5 Vdc, 12 Vdc and -

12 Vdc power supply lines are included.

3.2.2. A 20 bit address bus (ABO-ABl9).

3.2.3. Either an 8-~ or 16-bit data bus (DBO-DBl5). Also
included is a BHE (Bus High Enable) line as used on Intel
16-bit CPUs. This allows the CPU to execute 8 bit operations

on a 16 bit memory device.

3.2.4. Conventional memory read (MR), memory write (MW), IO
read (IR) and IO write (OW) strobes.

3.2.5. Reset line (RESET). When this line is asserted all

devices on the bus are reset.

3.2.6. Wait line (WAIT). When this line is asserted, the CPU
card lengthens the active memory or IO access. This allows
the use of memory and IO devices which are slower than the

CPU card in use.

3.2.7. Clock (CLK). This line is driven by the CPU clock.

3.2.8. Hold (HOLD) and hold acknowledge (HOLDA). When hold
is asserted by a peripheral card, the CPU card deactivates
all its address, data and control lines, and then asserts
HOLDA. This allows the peripheral card to control the bus.

Note that not all cards support this line.

Various other lines also exist, notably a set of lines which are
intended to support both multiple daisy-chained interrupts and

multiple CPU cards. This has however never been implemented. It

THE 80188 CPU CARD Page 3-3

should be noted that the provisions of the SABUS "standard" have
on several occasions been modified by the control committee, and
have also been ‘"improved" or simply ignored by several
manufacturers. The result is a system in which the only the power
lines, address lines, data lines and read/write strobes are truly
standard as regards function. At no time have any generally

accepted timing specifications been published for SABUS.

3.3. Implementation of direct memory access

In light of the information given above, several possible

approaches to the problem of introducing DMA suggest themselves :

3.3.1. Provide some form of DMA on the timing module, for
example an 8237 DMA controller chip, or a special purpose
circuit constructed from discrete logic components. The CPU
card's execution would be suspended by the asserting the
HOLD line, and the address, data and control lines would be
driven by the timing module. This approach has the advantage
that it is conceptually simple and allows the use of any CPU
card which supports the HOLD/HOLDA lines. There are also

certain disadvantages :

3.3.1.1. SABUS cards are not standardized as regards
their use of the SABUS HOLD and HOLDA lines. These
lines are on the bus specifically to allow DMA
operations, but details of their operation and timing
have never been formalized. Indeed the only published
dataf[8] on the use of DMA on SABUS defines these lines
in such a way as to make them incompatible with any
chip other than the Intel 8257 DMA controller chip.

This device is now obsolete. It is also too slow for

THE 80188 CPU CARD Page 3-4

this application, and is incompatible with any CPU card

in use at UCT.

3.3.1.2. The local area network card mentioned in the
introduction requires the HOLD and HOLDA lines. As
SABUS does not make provision for the use of these
lines by more than one card, the use of these lines
would make it impossible to include the LAN card into
the tape controller at a later date. As discussed

earlier, this future capability is a major design goal.

3.3.1.3. If the DMA components were to be included on
the timing module this would increase its size
considerably. For example buffers to drive all the

SABUS address lines would have to be included.

3.3.2. An existing 8088/8086 card with DMA capability can be
used. The card in question has provision for the inclusion
of an Intel 8089 coprocessor. This is a device, designed
specifically for the 8088/8086 family of microprocessors,
which is designed to unload the CPU of as much IO activity
as possible. The 8089's instructions are optimized for IO
activity, and the device includes two DMA channels. The DMA
request and acknowledge lines are brought out on a connector
on the rear of the card as there is no provision for them on
the bus. The advantage of this approach is that it is an
existing card that has DMA capability. Several severe

problems, however, exist :

3.3.2.1. The card has never been tested in conjunction

with the 8089 coprocessor.

THE 80188 CPU CARD Page 3-5

3.3.2.2. The <card does not implement the SABUS
HOLD/HOLDA lines, and so cannot be used with the LAN

card.

3.3.2.3. No 8089 assembler is available at UCT.

3.3.2.4 The 8089 is relatively expensive (approx. R85)
and is not held in stock in this country due to low

demand.

3.3.3. A CPU card with built in DMA can be designed. This

has several advantages.

3.3.3.1.1. The card can be designed in such a way that
DMA channels are provided on card, and the card
supports the HOLD/HOLDA protocol. This means that the
card will support the UCT LAN card.

3.3.3.1.2. Provision can be made for interrupts. As
discussed earlier communication to the host computer
will be via a serial line. Although not vital, it would
be both far simpler and far more efficient if this
serial port were to be interrupt driven. No current

SABUS card makes provision for this.

3.3.3.1.3. Provision could possibly be made for having
EPROM on the CPU card. In the past SABUS systems have
always had separate cards for EPROM storage. In recent
years, however, the density of EPROMs has increased to
the point that very few applications require more than
one or two. A significant saving in in both size and
expense could be realized if the EPROM storage could be

integrated onto the CPU card.

THE 80188 CPU CARD Page 3-6

3.3.3.2. As a result of the advantages described above it
was decided to design and construct a CPU card which would
have as many of the features listed above as possible. For
this purpose the microprocessor chosen was the Intel 80188.

It was chosen for the following reasons :

3.3.3.2.1. It is an improved version of the popular
8088/8086 range of microprocessors. UCT has available
both an assembler and high 1level language for this
series of processors. The availability of a high level
language for this microprocessor 1is a considerable
advantage. This eases the task of writing the software,

and makes it easy to modify at a later date.

3.3.3.2.2. The device has, integrated on chip,
peripheral and memory select logic. This means that any
peripheral or memory devices (such as EPROMs) included
on the CPU card will require no additional address

decoding circuitry.

3.3.3.2.3. A two channel DMA controller is integrated

on chip.

3.3.3.2.4. Also integrated on chip is a programmable
wait state generator. This can be programmed to insert
wait states into any reference to a memory or IO port
location. This is an important consideration as it
allows the microprocessor to interface to a wide
variety of devices which do not have a sufficiently
fast response time to interface without slowing the CPU
down 1in some way. As SABUS has no formal timing
specifications, a CPU which has programmable timing 1is
a great advantage. Most other CPUs would require

complicated hardware to insert wait states. This also

THE 80188 CPU CARD Page 3-7

makes for great versatility. Almost any device can be
added to the system without requiring changes to the
hardware. As a further advantage, these programmed wait
states also apply to the DMA controller. In systems
which have a separate DMA controller the different
timing requirements of the CPU and DMA controller can

cause severe problems.

3.3.3.2.5. The microprocessor also has integrated on
chip an interrupt controller which can be wused to
control the data link as discussed above. The device
also contains programmable timers, which are useful for

providing a real time clock.

3.4. The 80188 Microprocessor

For the reasons described above it was decided to design an 80188
based CPU card. Before the design of this card is discussed a
brief description of the microprocessor will be given. This
cannot, for reasons of space, be a full description, but further
information may be found in references [10], [11] and [12]. The

device contains the following sections :

3.4.1. Clock Generator. The clock generator requires only
the addition of a crystal of twice the desired clock
frequency. Also included in this section are reset and wait

state generation circuitry.

3.4.2. Execution unit. The instruction set of the device is
compatible with the 8088/8086 microprocessors. Certain extra

instructions have been added, and most o0ld instructions

THE 80188 CPU CARD Page 3-8

execute significantly faster (typically 2 to 4 times as
fast).

3.4.3. Interrupt control unit. This section synchronizes
interrupt requests, priorotizes them and then passes control
to the appropriate section of code. The interrupt controller
has several modes of operation of which only the simplest is
di scussed here, Interrupts from several sources are
recognized. All these interrupt sources, except for the non
maskable interrupt, can be disabled and have a programmable

priority.

3.4.3.1. Non maskable interrupt. This 1is an external
interrupt, and cannot be disabled. It always has the

highest priority of all the interrupts.

3.4.3.2. External interrupts. These are four interrupt
lines which are brought out on pins of the 80188. They
can be programmed for level or edge operation as well

as priority and are driven by external peripherals.

3.4.3.3. DMA channel interrupts. Each DMA channel has

an interrupt which occurs on terminal count.

3.4.3.4. Timer interrupt. Each integrated timer can be
programmed to generate an interrupt on reaching 1its

maximum count value.

3.4.4. Programmable timers. The microprocessor contains

three programmable timers of two different types :

3.4.4.1. Two of the timers (TMRO, TMR1l) have external

input and output pins, and may be programmed to take

THE 80188 CPU CARD Page 3-9

their input signal either from these pins or from the
chip's internal clock. The high time and low time of

the output signal may be independently varied.

3.4.4.2. The third timer (TMR2) has no external
connections, and always takes its input from the CPU
clock. In common with timers O and 1 it can generate
interrupts, but has the additional ability to initiate

DMA cycles.

3.4.5. DMA wunit. The DMA controller consists of two
identical DMA channels. Each channel can be programmed to
transfer from an IQO port to memory, memory to IO port or
memory to memory. DMA operations may be eilther
unsynchronized, or synchronized by the source or
synchronized by the destination. In this particular
application only source synchronization (for reading tapes)
and destination synchronization (for writing tapes) are
used. The use of these DMA channels 1is critical to the
design of the tape controller, and will be further discussed
in the following chapter, which discusses the design of the

timing module.

3.4.6. Chip select unit. This unit provides chip selects for

various peripheral and memory devices :

3.4.6.1. Peripheral chip selects (PCS0O-PCS6). These are
7 chip select lines intended to select IO devices such
as serial ports. The seven chip selects are active for
seven contiguous areas of 128 bytes in either the
processor's memory or I/O space. The number of wait
states inserted into read or write cycles is

programmable.

THE 80188 CPU CARD Page 3~-10

3.4.6.2. Memory chip selects. Three sets of memory

select lines exist :

3.4.6.2.1. Upper chip select (UCS). This line
selects a block of memory up to 256K bytes long.
This block always ends at location OFFFFFH. This
is the only select line which 1is active at reset.
This section of memory must contain the boot code

for the processor.

3.4.6.2.2. Lower chip select (LCS). This 1line
selects a block of memory up to 256K bytes long.
This block always starts at location OH. It 1is

almost always RAM (Random Access Memory).

3.4.6.2.4. Mid-range chip selects (MCS0O-MCS3).
These are four chip select lines of up to 128K
bytes in length which form a contiguous block. The

start address of this block is programmable.

All of these lines may be programmed for the number of
wait states inserted, as well as whether the external

ready signal should be taken into account.

3.4.7. Bus interface unit. This section of the
processor generates the various control signals used by
the system. These include read/write strobes, status
lines, address and data lines as well as provision to
halt the CPU (HOLD/HOLDA).

THE 80188 CPU CARD Page 3-11

3.5. The CPU card design

From the discussion above it may be seen that several features

are desirable in the CPU card :

3.5.1.1. Local EPROM storage.

3.5.1.2. Provision for interrupt driven serial I/O. As no
existing serial interface cards make provision for this, it
was decided to place two serial ports on the CPU card. This

has the following advantages :

3.5.1.2.1. The USART (Universal Synchronous/
Asynchronous Receiver/Transmitter) chip 1is connected
directly to the 80188 external interrupt lines. Any
other organization would require an extra connector, as
SABUS does not make adequate provision for interrupt

lines.

3.5.1.2.2. The USART chip selects are driven from the
80188's PCS 1lines. This saves address decoding

circuitry.

3.5.1.2.3. The USARTS' baud rates are generated by the
80188's internal timers. This saves space and gives the
system two serial ports with independently programmable

baud rates.

3.5.2. As a result of the above considerations, and as a
result of the card size, the design shown in figure 3.1. was

decided on. This consists of the following sections :

THE 80188 CPU CARD Page 3-12

3.5.2.1. 80188 CPU, with a local and master bus. The
master bus is SABUS, and the USARTs and EPROMs reside
on the local bus. This saves on data bus buffers for
these devices, but also means that they cannot be
accessed from SABUS. It is however unlikely that this
will be required. An 1Intel 8288 bus controller was
chosen to control the master bus. Connection to the
CPU's two DMA request lines, one for each DMA channel,
are made via a connector on the rear of the card, as no
provision is made for such 1lines on the SABUS

connector.

3.5.2.2. Two 8251A USARTs and voltage level conversion
devices for RS-232 compatibility. Connection to these
two serial ports also is made via a connector on the
rear of the CPU card, as is the case for the DMA

request lines.

3.5.2.3. Four 28 pin bytewide device sockets. This
allows any available EPROM to be inserted, with only
software modification. These devices are selected by
the 80188's memory device chip selects. This allows up
to 128K bytes of memory using currently available

devices.

3.5.2.4. SABUS interface. The SABUS interface performs
the following functions :

3.5.2.4.1. Buffering. Buffers are provided for the
address, data and control lines. As discussed in
section 3.5.2.1., SABUS 1is CPU's master bus. Note
the buffering for the SABUS control lines 1is
provided by the 8288 discussed in section 3.5.2.1.

above, which also generates these signals.

PORT O

SERIAL

THE 80188 CPU CARD Page 3-13

3.5.2.4.2. Ready line synchronization. The 80188
CPU requires that transitions on its ready line
(used to extend bus cycles for memory or IO
devices for which a normal bus cycle is too fast)
are synchronous with the CPU clock. Circuitry is
provided to do this. This circuitry also lengthens
the first bus bus cycle after a hold condition is
releases, in order to ensure that the 80188 CPU's

timing requirements are met.

ADDRESS

|
128K x 8 /\ﬂj
EPROM
| N

SABUS

DMA REQUEST
LINES

INTERFACE

CPU

Figure 3.1.

THE 80188 CPU CARD Page 3-14

3.5.2.4.3. Clock 1line drive. The CPU clock 1is
divided down, and used to drive the SABUS clock

line.

3.5.2.4.4. Reset line drive. When the CPU card is
reset, or is powered up, the SABUS reset line is
pulled active by circuitry on the CPU card. This
ensures that all peripheral devices on SABUS are

reset.

3.6. Detailed design description

A detailed description and schematic diagram of the CPU card are

provided in appendix B.

3.7. Testing the CPU card

Testing of the CPU card was done in several steps :

3.7.1. Initial testing involved writing a program, resident
in the boot EPROM, which simply executed a continuous loop.
This allowed the verification of the basic operation of the
hardware, such as the <clock and addressing of the boot
EPROM.

3.7.2. The next step in testing involved writing a routine
to output a fixed character string to serial port 0. This
verified both the operation of the serial port and the CPU's

on chip timers.

THE 80188 CPU CARD Page 3-15

3.7.3. Once the operation of the serial ports had been
verified a program which required the use of RAM was
written. This was first tested with a static RAM card which
does not make use of the SABUS WAIT line, in order to test
the basic functioning of the SABUS interface. Once this was
verified the static RAM card was replaced by the dynamic RAM
card to be used in the final product. Use of this card
verified the correct operation of the wait synchronization

logic.

3.7.4. The final step in the process was to write a hex down
load program. This program accepts an Intel format hex file
on serial port O, loads this into RAM and then executes it.
This program was used to down load all later software, so
avoiding the need to <continually program, erase and

reprogram EPROMs,.

CHAPTER 4

THE TAPE INTERFACE MODULE

4.1. Introduction

The tape interface module consists of a pair of SABUS sized card
which provide the physical interface between the controller and
the tape transports, as well as certain timing and control
functions. In the previous chapters the basic principles on which
the design of the module is based were discussed. The module
consists only of enough hardware to provide the bare minimum of
functions, and makes use of DMA provided by the CPU card to
execute high speed data transfers. This chapter provides a
detailed description of the requirements and design of this

module.

4.2. Requirements

The requirements of the module are as follows :

THE TAPE INTERFACE MODULE Page 4-2

4.2.1. Electrical compatibility with the tape transports.
The specifications of the transports were described 1in
detail in a previous chapter, but may be summarized as

follows :

4.2.1.1. All outputs to the tape transport are open

collector, high power TTL lines.

4.2.1.2. All inputs to the interface module must be
terminated by 330/220 Ohm TTL terminations.

4.2.2. The interface module should provide all critical
timing. When designing microprocessor based equipment there
is always a temptation to use the microprocessor itself to
provide timing. This has the advantage of saving hardware,
but has certain disadvantages both in general and in this

specific case :

4.2.2.1. In general, use of a program to control timing
makes the program difficult to modify and difficult to

document.

4.2.2.2. The time taken to execute a section of a
program will not be constant. This is for the following

reasons =

4.2.2.2.1. Interrupts. The data link 1is interrupt
driven. Any interrupt activity makes the program
timing unpredictable. If the microprocessor 1is
providing the timing, then such activity cannot be
allowed while a tape operation is in progress. The
software could be so designed to ensure that this

is the case, but this is a restriction which 1is

THE TAPE INTERFACE MODULE Page 4-3

best avoided, especially as it would introduce
undesirable interaction between the data
communications and the tape operations sections of

the program.

4.2.2.2.2. DMA activity. The DMA controller acts
as a cycle stealing device. This means that the
program may be suspended at any time to allow DMA
activity. It may be expected that there will be
DMA activity exactly at the time at which the

timing of the tape operation is the most critical.

4.2.3. A study of the abilities required from the tape
controller by the PDP-11, and the abilities of commercially
available tape controllers shows that the controller should

be able to execute the following set of operations :

4.2.3.1. Read block. The controller must be able to

read blocks both forward and reverse.

4.2.3.2. Write block. Block writes must be done only in
the forward direction, and the inter-block gaps must be
programmable. The controller should produce gaps of the
same length regardless of what the last operation was

(for example, read or write).

4.2.3.3. Write tape mark. The same conditions as for

writing a block apply.

4.2.3.4. Space blocks. The controller should be able to
space blocks either forward or reverse. Block space
operations are always aborted on encountering a tape

mark.

THE TAPE INTERFACE MCDULE Page 4-4

4.2.3.5. Space files. This operation is required by the
PDP-11 operating system. It is not however generally
implemented in hardware as files are delimited in
different ways depending on tape format. For example in
the case of simple 'unformatted' (no format information
in data records) tapes, files are delimited by tape
marks, whereas in the case of ANSI format tapes, files
are delimited by special records. As a result, the

control of file space operations is left to software.

4.2.3.6. Rewind. The unit must, of course, allow rewind
operations. It should be noted that the controller may.
unlike for all other tape operations, assume the
success of lthis operation. This 1is done as rewind
operations can take a considerable amount of time, and
no error condition other than gross transport failure
can occur. As a result the controller should be able to
sense when the transport 1is executing a rewind, and

delay any subsequent operations until this is complete.

4.,2.3.7. Cff-line. The unit 1is set off-line when the

tape must be changed, or other operator action is
called for.

4.2.3.8. Status read. The status of a particular tape
drive may be read.

4.2.4. Various other capabilities are desirable :

4.2.4.1. The controller should be efficient. By this is
meant that a minimum of time should be taken for the

various operations. For example when spacing blocks the

THE TAPE INTERFACE MODULE Page 4-5

tape should not have to stop at each block, nor indeed

should any action on the part of the CPU be necessary.

4.2.4.2, The controller should be software intensive.
As many as possible of the various operations should be
performed by varying the software rather than the
hardware. For example a single general hardware write
operation should be capable of writing either a data
record or a tape mark, simply by varying the

programming of the controller hardware.

4.3. Design of the tape interface module

The various operations to be performed may be divided into four

sections :

4.3.1. Status operations. These are operations which require
little or no timing. These include status reads, rewind and
off-line operations. The only hardware required to support
are parallel I/0 lines and buffers. The timing required is
limited to providing minimum pulse widths on rewind and off-
line operations, which can easily be done in software

because the maximum pulse width is not critical.

4.3.2. Write operations. It may be seen from the diagrams in
chapter 2 that the various write operations c¢an all be
performed as a single general write. A write with long gap
only reguires modified timing, and a write tape mark is
simply a normal write block operation of only one character
and a CRCC of all zeros. Several aspects of the timing of

the write operation must be accurately controlled :

THE TAPE INTERFACE MODULE Page 4-6

4.3.2.1. Character clock. This 1is the basic rate at
which characters are written to the tape transport, and
must be generated by the tape interface module. It 1is
primarily used to generate write strobes, but is also
used as the basic reference to set gap lengths, as will
be explained later.The frequency of this clock 1is
proportional to the tape speed, and must be accurate to
1%. From the discussion in chapter 2 it can be seen
that it is necessary to change the gap between write
strobes for the check characters. This may be achieved
either by changing the division ratio of the character
clock generator, or simply disabling the strobe for a
number of character clocks. Of these two techniques the
second is to be preferred, as it may be achieved with a

minimal amount of extra hardware.

The design calls for nine bits of data to be
transferred for each character written, but the DMA
system transfers in bytes (eight bits). As a result,
two full bytes must be transferred for. each character
written. This means that seven extra bits are available
for control information. Two of these bits may be used
as strobe enables, one to enable write strobes, and one
to enable the WARS (write amplifier reset) strobe. The
use of DMA will be further described 1in a later

section.

Operation of this system is simple. In the case of nine

~track operation the sequence of events is as follows :

4.3.2.1.1. The data characters are transferred to
the interface module, all with the write strobe

enable bit set, so generating write strobes.

THE TAPE INTERFACE MODULE Page 4-7

4.3.2.1.2. Three dummy characters are transferred,
with no strobe enable bits set. This generates a

gap of four character spaces as required.

4.3.2.1.3. The CRCC 1is transferred with the write
strobe enable bit set. This writes the CRCC.

4.3.2.1.4. Three further dummy characters are
transferred as described above, generating the

second reqgquired gap.

4,3.2.1.5., Finally another dummy character 1is
transferred, but with it's WARS enable bit set.

This results in the LRC being written.

4.3.2.2. Inter-block gaps. In order to write tapes with
the correct inter-block gaps the following time periods

must be controlled :

4.3.2.2.1. Time delay between starting tape motion
(with SFC) and writing the first character. This,
in conjunction with the position of the head as a
result of the previous operation, sets the inter-

block gap.

4.3.2.2.2. Time delay between writing the LRC and
deactivating the motion command. This sets the

point at which the head will stop.

4.3.2.2.3. Also required, for obvious reasons, 1is
a counter for the number of characters to be

written.

THE TAPE INTERFACE MODULE Page 4-8

These times can be set by means of three counters in
sequence, the first counting the start gap, the second
the number of characters, and the third the stop gap.
The second counter must clearly be clocked by the
character clock, but in fact it is advantageous to have
all three counters clocked at this rate. The reason for
this is that most manufacturers of tape transports set
the start and stop times in such a way as to make them
inversely proportional to the tape velocity. This means
that if the counters which set the gaps are clocked
from the character —clock (proportional to tape
velocity) the counter setting remain constant,

regardless of tape velocity.

4.3.3. Read operations. Read block operations are in general
simply a matter of setting the tape in motion and waiting
for read strobes. As each character is clocked in it is
transferred to memory by DMA. The operation of the DMA
circuitry will be further described in a later section.
There are however three aspects of the timing of read

operation that deserve attention :

4.3.3.1. It is important that the position of the head
after a read operation is known precisely, so that a
possible subsequent write operation will have the
correct inter-block gap. This means that a counter is
required to set the delay from the end of the block to

removing the tape motion command.

4.3.3.2. From the above it can also be seen that it is
important to be able to detect the end of a block

accurately and repeatably.

THE TAPE INTERFACE MODULE Page 4-9

4.3.3.3. The controller should also have some way of
distinguishing the check characters from the data in a
block. This is not absolutely required for simply
reading a block and detecting errors, but is
convenient, and is mandatory if error correction is

contemplated.

All of the above requirements are inter-related, and will be
discussed once the requirements of space operations have

been described.

4.3.4. Space operations. Space operations are performed in
hardware only for blocks. Space operations must stop on
detecting a tape mark, and so it 1is necessary for the
hardware to be able to detect a tape mark without CPU
intervention. How this is accomplished will be discussed in
the next section. It should be noted that space operations
must also, as for read operations, stop with the head in a
known position relative to the 1last block or tape mark

passed.

4.4, Format recognition

4.4.1. In the sections above the requirements for the various
tape operations were discussed. From these it is obvious that the
timing module must be able to recognize certain elements of the

tape format. These are as follows :

4.4.1.1. Inter-block gaps. The timing module must recognize

inter-block gaps for two purposes :

THE TAPE INTERFACE MODULE Page 4-10

4.4.1.1.1. The inter-block gap terminates a read block

operation.

4.4.1.1.2. For space operations the blocks must be
counted. This means that no glitches or double
transitions can be tolerated, as these would be counted

as blocks.

4.4.1.2. End of file marks. The timing module must detect
tape marks both in order to inform the controlling program
that a tape mark was passed, as well as in order to

terminate a space blocks operation.

N

AN

/

%

[74]

s 4
=g
Ty OUTPUTS
Ea@ TO TAPE UNITS
O« ;

e

<

o

1

| INTERNAL TIMING
— N "8 Bus | GENERATION
<<
SABUS | B] —>
<X
1_—1 e -
S Z FORMAT DMA REQUEST
1 RECOGNITION | LNES TO CPU CARD
—_—
n |
x VL
LJ
l—h-)
Sk INPUTS FROM ;
@ TAPE UNITS |
=< N\V |
- [
S
e

Figure 4.1.

THE TAPE INTERFACE MODULE Page 4-11

4.4.1.3. Check characters. Check characters must be detected
in order to allow error correction. Note that even if error
detection is not contemplated, the availability of status
information indicting whether or not a character is a check
character not only simplifies programming, but also provides

an extra check on data validity.

4.4.2. In order to meet these requirements a state recognizer was
designed. This makes use of the timing signals from the tape
transport to synchronously track at which point in a block the
tape head is. This state information is read in together with
each input character, so allowing the program to determine
whether a particular character is a data or check character. In
addition this state information, when decoded and processed with
further timing information, provides signals denoting that the
tape head has passed over a file mark and that the tape head is
passing over an inter-block gap. A detailed description of this

circuit is given in section 4.6.

4.5, DMA Logic.

4.5.1. In previous sections of this chapter, reference was made
to the use of DMA for both write and read operations. In section
4.3.2.1. the need for to bytes of data to be transferred for
write operations was discussed. Similarly for read operations a
minimum of nine bits (eight data and one parity) must by
transferred for each character read from tape. As the data is
read/written from one port, and the parity and associated
information read/written from another port it is necessary to use

two DMA channels for both read and write operations.

DMA requests are generated by the tape interface card setting the
DMA request lines active. Note that these lines do not form a

part of SABUS, but are on an auxiliary connector on the back of

THE TAPE INTERFACE MODULE Page 4-12

both the CPU and tape interface card. Connection between these
two connectors is made by ribbon cable. It should further be
noted that as the CPU does not generate DMA acknowledge signals
these must be synthesized by the tape controller card from the
read and write strobes to the IO ports in question. The operation
of the DMA system will now be described individually for read and

write operations.

4.5.1.1. Write operations. For write operations the DMA
controller 1is set for destination synchronization. This
means that each DMA channel will transfer a single byte from
memory to an IO port on each occasion that the DMA channel
in gquestion's DMA request line 1is taken active. The
destination address of DMA channel O is set to the address
of the data output port of the tape interface module, while
the destination address of DMA channel 1 is set to the
address of the parity and strobe enable port. The source
addresses of the DMA channels are set respectively to the
address of a block of memory containing the data to be
written, and to the address of a block of memory containing
the parity and strobe information to be used. As soon as the
operation is initiated, the two DMA request flip-flops in
the tape interface module are set, taking the DMA request
lines active. The first character, its parity and its strobe
information 1is then transferred to the tape interface's
output latches/buffers. Each write operation resets the
appropriate DMA request flip-flop. The data stored in the
latches is written to tape by a write strobe generated by
the timing section. This strobe also sets both DMA request
flip-flops, resulting in the transfer of the next character
and its associated information. This process continues until
the write operation is complete. Note that as the timing of
the write strobes is set by the timing section, rather than

the DMA system, the only timing specification which the DMA

4.6.

THE TAPE INTERFACE MODULE Page 4-13

system must meet is that of maximum time from DMA request

line active to transfer completed.

4.5.1.2. Read operations. Operation of the DMA system for
read operations is very similar to that for write
operations, with certain exceptions. For read operations the
DMA controller is set for source synchronization. This means
that each DMA channel will read a single byte from an IO
port into memory on each occasion that the DMA channel in
question's DMA regquest 1line 1is taken active. The source
address of DMA channel 0O is set to the address of the data
input port of the tape interface module, while the source
address of DMA channel 1 is set to the address of the parity
input port. The destination addresses of the DMA channels
are set respectively to the address of a block of memory
into which the data must be read, and to the address of a
block of memory into which the parity information must be
read. Each read strobe sets two DMA request flip-flops, and
the character read in and its parity information is then
transferred to the tape controller memory. Each read
operation resets the appropriate DMA request flip-flop. This
process continues until the read operation is complete. As
is the ~case for write operations, the only timing
specification which the DMA system must meet is that of
maximum time from DMA request line active to transfer
completed. Note that the DMA channels remain active until
the DMA operation is aborted by the program, once the end of

the block being read has been reached.

Design Description

A block diagram of the timing module is shown in figure 4.1., and

appendix C contains a detailed circuit diagram and «circuit

THE TAPE INTERFACE MODULE Page 4-14

description. The module is composed of two SABUS cards. These
cards are connected via a 40 way ribbon cable of which two lines
are also connected to the CPU card. These are the DMA request
lines. Connection to SABUS is made only via the SABUS connector
on card 1, with the connector on card 2 being used only as a
mechanical connection. This allows both cards to be
simultaneously debugged with only one extender card. Card 1 also
has the write data and control connectors to the tape transports,
while card 2 contains the read data connector. The design will

now be described in terms of the blocks given in figure 4.1.

4.6.1. SABUS interface. The SABUS interface's function is to
provide address decoding, as well as buffering for the data
bus and control lines. The base address of the module is
wire-wrap selectable. All of the components related to the

SABUS interface are located on card 1.

4.6.2. Output buffers. The output buffer section of the
module provides both buffering and latching of signal to be
outputted to the tape transports. All of these devices
reside on card 1. This section may be further subdivided

into three subsections :

4.6.2.1. Data output latches. These latches latch the
output data and parity information to the tape drives,
as well as strobe enable information. The data and
parity bits are buffered and transmitted to the tape
transport, while the strobe enable bits are gated with
signals from the timing generator to provide write and
Wwrite-reset strobes to the transports. Data transfer to

these latches is always by DMA, as described in section
4.5.

THE TAPE INTERFACE MODULE Page 4-15

4.6.2.2. Configuration latch. This 8-bit latch sets the
configuration of the module. It has the following

outputs :

4.6.2.2.1. Drive select lines. Two bits are used

to select the tape transport.

4.6.2.2.2. Count select lines. These two lines are
fed to the timing section of the module, and will

be described in a later section.

4.6.2.2.3. Forward/reverse select line. This line

selects the direction of tape motion.

4.6.2.2.4. Read/write select line. This line
selects whether a read or a write operation is to

be performed.

4.6.2.3. Command output latch. It is the function of
the command output latch to provide signals to the
module which may be used to drive edge sensitive
inputs. In order to achieve this a bit addressable
latch is used, so as to allow only one bit at a time to
be updated without raising the possibility of unwanted
transitions on any other bit. This latch provides edge
sensitive signals, such as the tape motion command
lines, direct to the tape drive as well as a GO (start
operation) and a board reset signal to the rest of the
module. The outputs of the latch are reset to a logical
zero by the SABUS reset signal, which sets the board
reset active, and all other signals inactive. This
prevents the module from generating any unwanted signal

during power up.

THE TAPE INTERFACE MODULE Page 4-16

4.6.3. Input buffers. The input buffer and latch section

resides on card 2, and consists of two subsecticns :

4.6.3.1. Data input buffers and latches. These two 8-
bit latches latch data and parity from the tape
transports, as well as status information from the rest
of the module. These status bits include state
information from the format recognition section, and a
bit from the DMA section which indicates the occurrence
of a DMA error. This status information 1is stored for
each character which is read in. The latches are
clocked by the read strobe from the selected tape
transport. Transfer from both these buffers is always
by DMA, as is that of the latches used to output data

and parity information.

4.6.3.2. Status input buffer. This buffer buffers
several lines which are taken directly from the tape
transports, as well as two signals from the timing
module itself. These signal are a run signal, which
indicates whether the module 1s executing a command,
and an EOF signal, which indicates that a tape mark was
passed during the process of the last command. Note
that these signals are not latched, and represent the
status of the unit at the time of the read, rather than
at the time that the previous operation terminated, as

is the case for the other input lines.

4.6.4. Format recognition section. The function of this
section, which resides entirely on card 2, was described
above. It consists essentially of a state machine, timing
circuits and state decoding logic. The state machine
consists of three JK flip-flops and their associated gates.

The state machine is clocked by the read strobe from the

THE TAPE INTERFACE MODULE Page 4-17

tape transports, and has two inputs which indicate timing
information. These two input are SG (short gap) and LG (long
gap). SG is active when a strobe has not been detected for
two character clocks, and LG when a strobe has not been
detected for ten character clocks. Both of these signal are
generated by programmable timers, so allowing operation with
tape transport of various speeds. The state decoding logic
provides two signals, the first denoting that the head is
passing over a inter-block gap, and the second that an EOF

mark has been passed.

4.6.5. Timing generation section. This section generates
signals which require precision timing, such as the tape
motion signals and the write strobes. The timing section

consists of several sections :

4.6.5.1. Master clock. The master clock consists of a
Colpitts oscillator, which was chosen above logic gate
oscillators for 1its superior accuracy and start-up
performance [13]. This section generates a 5 MHz square

wave, which is used to derive all other module timing.

4.6.5.2. Character clock generation. The <character
clock is generated by dividing the master clock by a
programmable ratio. This signal is used to generate

write strobes, as well as for timing purposes.

4.6.5.3., Start counter. This counter sets the delay
from the start of an operation to the beginning of the
count phase of the operation. This only has real
significance in the case of write operations, when this
is when the first character is written. For all other

operations this counter, although still in the timing

THE TAPE INTERFACE MODULE Page 4-18

chain, is set to a small nominal value. This counter is

programmed in multiples of character clocks.

4.6.5.4. Main counter. This counter counts either write
strobes, read strobes or blocks, as defined by the
count select 1lines mentioned in section 4.6.2.2. The
time during which this counter is active 1is known as
the count phase, and this phase may be ended either by
the counter reaching zero or by a programmable end
condition. This end condition is programmed by the same
count select lines as the items to be counted. Three
combinations are valid for the count select 1lines.

These are as follows :

4.6.5.4.1. Count select of 00. This value selects
the «counting of write strobes, and no end
condition. This 1is used for write operations,
which always end only when all characters have

been written.

4.6.5.4.2. Count select of 0l1. This value selects
the counting of read strobes, and an end condition
of encountering a inter-record gap. This is used
for read block operations, when the operation is
normally terminated at the end of a block (e.i.
when an inter-record gap is encountered) or when
some maximum number of characters is exceeded.
This last condition is an error, and the operation

is ended to avoid buffer overflow.

4.6.5.4.3. Count select of 10. This value selects
the counting of inter-record gaps encountered, and
an end condition of passing a tape mark. This is

used for space operations, where a specified

THE TAPE INTERFACE MODULE Page 4-19

number of blocks must be spaced, and the operation

must be aborted on encountering a tape mark.

4.6.5.5. Stop counter. Once the end of an operation is
encountered (the last write strobe generated or read
strobe encountered), a delay must occur before the tape
motion command is deactivated, in order to ensure that
the tape head stops at the correct point relative to
the end of the 1last block or tape mark. This 1is
accomplished by the stop counter, which is programmed

in multiples of character clocks.

4.6.6. DMA request generation section. This section
generates two DMA request signals which are passed to the
CPU card. The operation of the DMA system was described
extensively in section 4.5. This section consists
essentially of six flip-flops. The first two are used to
generate DMA requests for write operations. The first flip
flop generates a request signal for the data latch's DMA
channel, and the second for the parity and strobe enable
latch's DMA channel. Both of these flip-flops are set by
either a write strobe (including dummy writes) or by the GO
signal. The GO signal locads the data for the the first write
into the latches. The flip-flops are reset by a write to
their respective latches. The next two flip-flops perform a
similar function for read operations, with the exception
that the flip-flops are set only by the read strobe. The
final two flip-flops are used to detect DMA overrun errors
which occur in the event of a DMA cycle being required

before the previous cycle is complete.

THE TAPE INTERFACE MODULE Page 4-20

4.6. Testing the timing module

Testing of the timing module proceeded in several steps :

4.6.1. As a first step the operation of the master

oscillator was checked.

4.6.2. Following this the operation of the SABUS interface
was checked. This involved ensuring that the module was
being addressed at the correct base address, and that all
ports were receiving strobes. For this purpose special

programs were written.

4.6.3. The next step in the testing process was to check the
timing generation section of the module. This step in fact
proceed in tandem with the software development, simplified
versions of the software being used to verify correct
hardware operation. This process culminated in the
verification (with a logic analyzer) that the timing module
produced the correct waveforms for a write block operation.
At this stage the operation of the DMA generation section

was also verified.

4.6.4. Once the operation of the timing section of the
module had been verified the operation of the format
recognition circuit was tested. This was done simply by
looping the interface back by connecting the WDS, WARS and
RDS lines. In this way the correct operation of the format

recognition circuit was checked on the logic analyzer.

4.6.5. Once the above were completed the module was tested
in conjunction with an actual tape transport. First it was

verified that the tape controller could read tapes that it

THE TAPE INTERFACE MODULE Page 4-21

has written, and then it was verified that the controller
could read tape written by other systems, and that the
controller could write in a format that is readable by other

systems.

CHAPTER 5

THE RSX-11M OPERATING SYSTEM

5.1. Introduction

RSX-11M is the operating system in use on UCT's PDPl1-23 computer
system. It 1is a multi-tasking, multi-user operating system,
written and supported by Digital Equipment Corporation, the
manufacturer of the PDP-11, and is designed to run on PDP-11
systems which support memory management. This chapter provides a
very brief introduction to this operating system and it's I/0
subsystem. More information may be found in references [16], [17]
and [18].

As PDP-1l systems are used mainly in industry and scientific
applications it is important that the operating system should be
both fast and versatile enough to allow the user to introduce his
own hardware 1into the system configuration. RSX-1lM has been
designed to provide a high 1level of performance in computer
systems which have relatively small memory spaces, and limited
processing power. As a result the operating system's design goals

have been to minimize code size, and to maximize processing

RSX-11M Page 5-2

speed. To meet these goals the RSX I/0 system attempts to
centralize as many as possible of the common I/0 functions, thus
eliminating repetitive code, as well as allowing this code to be
written as efficiently as possible. In order to achieve this
centralization, the system makes extensive use of data tables to
drive the centralized code, reducing substantially the the amount

of code required for individual devices.

5.2. I/0 system structure

The I/0 system 1is structured as a loose hierarchy. The term
'loose' here means that the hierarchy can be entered at any
level, not just at the highest level as in a 'tight' hierarchy.
Tight hierarchies exist primarily for reasons of security, but
can be inefficient, and are not very versatile. The upper level
of the hierarchy is split into two sections, privileged and non-
privileged. Non-privileged tasks are normal user programs, while
the privileged tasks are normally associated with the operating
system itself, and cannot be executed by a normal user. Typical
examples of privileged tasks include dismounting a disk or
obtaining exclusive use of a peripheral device. For simplicity
the discussion below will be limited to non-privileged tasks.
These tasks 1issue I/0 requests which are processed by the

following layers of the operating system :

5.2.1. FCS/RMS. The File Control Services (FCS) and Record
Management Services (RMS) are at the top of the 1I/0
hierarchy. These services provide device independent access
to I/O devices, in the form of file access and record access
respectively. The FCS/RMS system functions essentially by
converting high level (Get and Put) commands into QIOs

(Queued I/0 requests).

RSX-11M Page 5-3

5.2.2. QIO directive. The QIO directive is the lowest level
of I/O0 which a task can request. All QIO requests are
processed by the executive to prevent tasks from interfering

with each other.

5.2.3. Executive I/0 processing. Once the QIO has been
passed to the executive it it processed further by the

following subsections of the executive :

5.2.3.1. An Ancillary Control Processor (ACP). An ACP
is responsible for for maintaining file structure and
data integrity for devices which are file structured.
The ACP translates virtual QIOs (the block to be
processed is specified by position relative to the file
which contains it) to logical QIOs (block specified as
a physical block eg. sector 10, track 13 etc). An ACP
typically exists for each c¢lass of file structured
device in the system. It should be noted that the ACP

is a task, rather than part of the executive itself.

5.2.3.2. Executive I/O processing. This can be divided

into three areas :

5.2.3.2.1. QIO directive processing. This
subsection of the executive provides services such
as direction to the required device, multi-user

protection etc.

5.2.3.2.2. The I/0 driver (or device driver). The
I/0 driver provides the device dependant I/0 code.
Also associated with each device driver are data
tables, which provide information to the executive

relating to the status and abilities of the

RSX-~11M Page 5-4

device. Device drivers may be either resident
(always in the system) or loadable (only inserted
into the system if required). The driver's
function will be discussed in detail in a later

section.

5.2.3.2.3. I/0 related subroutines. As discussed
earlier, the executive provides a wide variety of
services to the driver. These centralized
subroutines provide services related to interrupt
processing, decoding of I/0 requests and the
buffering of data. Several individual routines are

discussed in a later section.

5.3. The role 9£ the device driver

The device driver provides several services, which may be most

easily described in terms of the driver's entry points.

5.3.1. I/0 initiator. The executive calls this entry point
to inform the driver that an I/O request is waiting to be
serviced. The device driver then makes use o©of the
appropriate executive routine to obtain information on what
the desired operation is, and then executes the appropriate

steps in hardware to complete the operation.

‘5.3.2. Cancel I/0. The executive calls the driver at this
entry point if it becomes necessary to abort the current I/0O

request.

5.3.3. Time-ocut. The device driver can establish a time-out

count. This 1s decremented by the executive at regular

Two

RSX-11M Page 5-5

intervals, and if it reaches zero a call to this entry point

is executed.

5.3.4. Power failure. The executive calls the the device

driver's power fail entry point under three conditions :

5.3.4.1. When power is restored and an I/O request 1is
in progress or, optionally, on all occasions that power

is restored.

5.3.4.2. When the system is bootstrapped. A power fail
recovery 1is simulated whenever the system 1is first
started, allowing the driver to carry out any required

initialization.

5.3.4.3. When a loadable device driver is loaded. This
is once more to allow initialization of the driver, and

is optional.

5.3.5. Device interrupt. An I/O device may optionally have
an interrupt (or two interrupts, for a full duplex device
such as a serial 1line) associated with it. The device
interrupt is entered when the I/0 device requires service
from the driver. This typically occurs when an previously

initiated 1/0 operation ends.

Data structures

sets of data structures are associated with the device

driver. These are firstly static data tables used to provide

information on the device to the executive, and secondly dynamic

RSX-11M Page 5-6

structures, created and deleted by the executive, containing

information specific to a particular I/O request.

5.4.1. Static data structures. These structures are created,
in code, at the time that the driver is assembled. Three
structures are used, all of which are inter-related. These
are the Device Control Block (DCB), the Unit Control Block
(UCB) and the Status Control Block (SCB). RSX-1ll recognizes
devices (a particular type of peripheral, for example a
specific disk drive), units (the individual peripherals) and
controllers (a particular controller can control more than
one unit). The device control block is used by the executive
to obtain information on the characteristics of the device,
the UCB to store information relating to each individual
unit in the system, and the SCB to store status information
for each device controller in the system. Strictly speaking,
another structure 1s used, the interrupt vector, but this
will be discussed when interrupt handling is discussed.
Space does not allow a discussion of all the fields in each
structure, so only the most important will be discussed

here.

5.4.1.1. The DCB. At least one (and normally only one)
DCB exists for each type of device in the system.
Almost all of the data in the DCB is established by the
assembly source code, and never modified. All the DCBs
in the system form a linked list, and each DCB also
contains a link to the driver code, as well as to the
UCBs associated with the device. The driver itself does
not normally use any of the information in the DCB,
which is provided mainly to inform the executive of the
characteristics of the device associated with it. The

most important fields in the DCB are the following :

RSX-11M Page 5-7

5.4.1.1.1. D.LNK. This is the 1link to the next
DCB.

5.4.1.1.2, D.UCB. Link to the first UCB associated

with the device.

5.4.1.1.3. D.DSP. Address of the driver dispatch
table. This is a table containing the addresses of
the driver entry points discussed above, and is

contained in the driver code.

5.4.1.1.4. D.NAM. This is the two character name
of the device eg. MT. All entry point names in the
device driver code begin with these two

characters.

5.4.1.1.5. Function masks. I/0 functions under
RSX-11 are encoded as an 8 bit code, so allowing
256 possible functions. For general 1/0
operations, of these only one, cancel 1/0, is
mandatory and only two, attach and detach unit,
have fixed interpretations if used. For operation
as a file device 1in conjunction with RSX-11,
however, the first 32 function codes (0-31) have
fixed meanings. In order to aid in the processing
of these 32 functions, four bit by bit masks
exist, each bit in the four masks corresponding to
a particular function code. Each mask represents a'
particular type of function, and so informs the
executive on the appropriate action to take for
that function. Before a function request is passed
to the device driver, the executive examines these
four masks to determine what action should be

taken. This process will be further described in

RSX~11M Page 5-8

section 5.8.3. A bit representing a function 1is
set in a particular mask if the function is of the
mask type. Each mask <contains 32 bits. The

following masks, and hence function types exist.

1. Legal function mask. If the function bit
in this mask is not set then the function 1is

rejected.

2. No-op function mask. If the bit is set in
this mask then no action on the part on the

driver is required to execute the function.

3. Control function mask. This is a "normal"
function. The I/O packet is created by simply
copying the DPB information. Any function not
represented in the function masks (not in the
32 most common functions) is assumed to be of

this type.

4. ACP function mask. Functions with the ACP
bit set are passed to an ACP for processing.
If the legal function bit is set for a
function, but neither the no-op, control or
ACP bit 1is set then the function 1is a
transfer function. Transfer functions are
function which require a data transfer, and
hence have a buffer address in the 1I/0

packet.

5.4.1.2. The UCB. One UCB exists for each device unit
in the system. Information in the UCB relates to each

individual unit, and although established initially in

RSX-11M Page 5-9

assembly source code is often modified by both the
executive and driver. The UCB also contains a pointer
to the SCB associated with it. The most important
fields in the UCB are the following : ‘

5.4.1.2.1. U.STS, U.ST2. These fields store the

unit status.

5.4.1.2.2. U.CTL. The wunit control flags. This
stores various status bits, including the UC.NPR
bit. If this bit is set then any buffer addresses
supplied to the driver are formatted for DMA
transfers, else the buffer addresses are formatted

for program transfers.

5.4.1.2.3. U.UNIT. This stores the unit number to
which the UCB refers.

5.4.1.2.4. U.CWl, U.CW2, U.CW3, U.CW4. These are

control words. Their meaning is device dependant.

5.4.1.2.5. U.SCB. Pointer to the SCB for this

unit.

5.4.1.2.6. U.BUF. Address of the data buffer for

the operation (if any).

5.4.1.2.7. U.CNT. Size of the data buffer in
bytes.

5.4.1.3. The SCB. One SCB exists for each device

controller in the system. The SCB relates essentially

RSX-11M Page 5-10

to the number of operations which can be performed
simultaneously. If there is only one controller for a
particular device in the system, only one operation can
be performed at a time regardless of the number of
units in the system. If on the other hand there are two
controllers in the system, then two units can be
operated on simulténeously, requiring two SCBs. Most
information in the SCB 1is dynamic, although the
structure itself is static. The most important fields

in the SCB are the following :

5.4.1.3.1. S.LHD. The listhead of the I/0 queue.

5.4.1.3.2. S.CTM, S.ITM. These are the initial and
actual time-out counts. The initial time-out count
(in seconds) is kept in S.ITM, and is copied to
S.CTM when an I/O operation is begun in hardware.

A time-out occurs when this reaches zero.

5.4.1.3.3. S.CON. Controller index.

5.4.1.3.4. S.STS. Controller status.

5.4.1.3.5. S.CSR. This is the base address of the
controller hardware. The use of this field gives
the device driver independence from the actual

address of the hardware that it controls.

In the particular case being considered here, a single DCB
is used to describe the characteristics of the tape units,
and two UCBs are used as two tape transports are to attached
to the PDP-11. As there is only a single controller, and

only a single serial link to it, a single SCB must be used.

RSX-11M Page 5-11

5.4.2. Dynamic data structures. These data structures are
created by the executive, and their operation is normally
transparent to the driver. It is, however, necessary to have
an understanding of them in order to fully understand the

role of the device driver.

5.4.2.1. The 1I/0 packet. The 1I/0 packet contains

information from two sources :

5.4.2.1.1. The QIO. Information on the requested
I/0 operation such as the function code and data
address are copied from the QIO DPB (Directive
Parameter Block) to the I/O packet.

5.4.2.1.2. The requesting task. Information on the
requesting task such as its priority and the
address of the task header are also contained in
the I/0 packet.

The I/0O driver does not normally access the I/0O packet
directly, but uses executive service subroutines to

extract information from it.

5.4.2.2. The I/0 queue. Once the I/O packet described
above has béen generated it is inserted into a device
specific I/0 queue. The I/0 queue is priority ordered,
and one such queue exists for each device controller in
the system. The SCB associated with the device stores
the queue's listhead. As in the case of the I/O packet,
the device driver does not normally manipulate the
queue directly, but makes use of the executive service

routines.

RSX-11M Page 5-12

5.4.2.3. The fork list. The fork list is a mechanism by
which RSX-11] synchronizes the access of interrupt
driven processes to shared data bases. This is will be
discussed further in the following section, which

discusses interrupt handling under RSX-11l in general.

5.5. Resident and loadable device drivers

Device drivers may be either resident or 1loadable. The
differences between these two types of driver will now be

di scussed.

5.5.1. A resident device driver is a permanent part of the
executive, and can only be changed at system generation
time. This means that if it is required to change the driver
source code or the data tables, the entire executive must be
rebuilt. As a result of this user written device drivers are

almost always loadable.

5.5.2. A loadable device driver can be inserted into or
removed from the system at any time. The use of loadable

drivers has the following advantages :

5.5.2.1. Debugging 1is much easier as it 1s not
necessary to rebuild the entire system (this takes, at

best, several hours).

5.5.2.2. The load task, which inserts drivers into the
system, does a variety of checks on the integrity of
the driver and its data tables before the driver is
loaded. This helps in detecting errors before they

cause problems in the system.

RSX-11M Page 5-13

The primary difference between resident and loadable device
drivers is in interrupt handling. This will be discussed in
the next section. It should be noted firstly that it is
possible to have resident data tables and loadable driver
code, and secondly that unloading a driver does not unload a
data base, even if the data base is loadable. To remove the

data base the system must be rebooted.

Interrupt handling under RSX-11M

As discussed earlier, each device controller can have associated

with it an interrupt or, in case of a full duplex device, two

interrupts, one for receive and one for transmit.

5.6.1. The interrupt vector. When an interrupt occurs in
hardware the LsSI-11 processor will acknowledge the
interrupt, at which point the interrupting device will
transfer the interrupt number to the processor. This
interrupt number forms an index to a two word interrupt
vector in memory. The address of the interrupt vector is
calculated by multiplying the interrupt number by four. The
first word of the interrupt vector is the address of the
service routine, while the second word is used to replace
the program status word in the LSI-11l processor. The status

word contains two important pieces of information :

5.6.1.1. The priority of the process. The LSI-11 CPU
can operate at one of eight priorities, 0 to 7. This
priority is encoded in three bits of the status word,
and when the status word is replaced a new priority is
set. This priority is always set to 7 in the interrupt

vector. As the CPU cannot be interrupted by a device

RSX-11M Page 5-14

with lesser or equal priority a priority of 7
correspond to all interrupts being disabled. This
allows the CPU to handle the interrupt without being

interrupted itself.

5.6.1.2. The condition code bits of the status word
(the lower four bits) are normally used to encode the
number of the controller to which the interrupt refers.
This immediately informs the device driver which
hardware controller it is servicing, and so also which
SCB it should obtain information from on the nature and

status of the I/0O operation in progress.

5.6.2. Establishing the interrupt vector. The interrupt
vector 1is established in different ways for resident and

loadable device drivers.

5.6.2.1. Resident drivers. For resident device drivers
the interrupt vector is established at bootstrap time
and cannot be altered later. The vector is coded in the
assembly source code, and is inserted into memory at

the the same time as the rest of the executive.

5.6.2.2. Loadable drivers. Loadable device drivers only
have their interrupt vectors set at the time that the
driver is loaded. The interrupt vector is calculated by
the RSX-11M load task from information in the data base
and in the driver task file, When a driver is unloaded
the interrupt vector is set to the system nonsense
interrupt. Note that a device driver can in fact only
be loaded if the interrupt vector which it must use 1is
set to this value. It should also be noted that because
of the memory mapping of the driver the interrupt must

be redirected via the executive for a loadable device

RSX-11M Page 5-~15

driver, and in fact this reguirement necessitates the
use of an executive service routine to handle

interrupts, as will be discussed below.

5.6.3. Programming protocol. When a device interrupts, the
device driver is entered at the interrupt entry point. At
this stage the CPU priority is seven, and no other process
can obtain CPU time. As this is a multi-user, multi-tasking
system it 1is of critical importance to minimize the time
spent in which other interrupts cannot be acknowledged. The
RSX-11M operating system in fact provides three distinct

levels of interrupt sensitivity.

5.6.3.1. Priority 7. This is the state described above.
By convention processing at this level is limited to a
maximum of 100 uS. If processing can be limited to this
time, then the driver can simply process the interrupt,
and return with minimum overhead. Normally however this
is not possible and it is necessary to drop to a lower

priority level.

5.6.3.2. The priority of the interrupting source. This
level disallows interrupts from the same device as
generated the interrupt, or any of lower or equal
priority, but allows interrupts from a source of higher
priority. Driver almost always make use of executive
service routines to drop to this level, as this both
simplifies coding and is in fact required by loadable
device drivers. The service routine also routinely
saves two of the CPU registers (R4 and R5). Processing

time at this level should not exceed 500 uS.

5.6.3.3. Fork 1level. Interrupt handlers often require

more time than is allowed by the level described above,

RSX-11M Page 5-16

or they require access to common data areas which might
be corrupted by unrestricted access. In general there
are two possible systems for controlling access to data

areas by interrupt driven software.

5.6.3.3.1. Interrupt lockout. This system simply
involves disabling all interrupts until ‘the
present interrupt has completed processing. This
system has the advantage of being simple, and is
the most efficient of the two systems, but is
incapable of meeting the response time requirement

of the system.

5.6.3.3.2. Priority gqueuing. This system involves
operating the interrupt driven software 1in the
uninterruptable mode for only as long as 1is
absolutely required by the nature of the device,
and then gqueuing the process to allow it to
complete processing at a later time. RSX-11M
provides a mechanism called a fork list implement

this system.

A process becomes a fork process by <calling the
executive routine SFORK. When this occurs the executive
stores a "snapshot" of the process, and qgqueues the
process in a first-in-first-out queue. Once the process
has worked its way to the head of the queue the process
is restored, and has unrestricted access to all common
data areas. The process exists in a state between that
of an interrupt process and that of a normal task. A
fork process is fully interruptable, but the process is
guaranteed sole access to the common data areas as all
other process which might wish to access such areas

must also make use of the fork list to obtain access.

RSX-11M Page 5-17

This technique allows the interrupt process to spend a
minimum of time in the uninterrupable state, but still
get uninterrupted access to the system data areas. Note
that no normal tasks will be run until the fork gqueue
is empty. It should also be noted that this technique
assumes that all code in the system is well behaved,
and does not make accesses to system data tables unless
SFORk has been called.

5.7. Executive services available to device drivers

In the sections above mention was made on several occasions of
executive services available to the device driver. The most

important of these services will now be discussed briefly.

5.7.1. Get packet (SGTPKT). Once an I/O packet has been
queued, the executive calls the device driver. The driver
then calls SGTPKT to obtain work. If work is available the
executive dequeues the highest priority packet and sets the
controller to busy. Information on the I/0 request is also
copied to the UCB of the device for which the I/0O request is
intended. If no work is available SGTPKT returns an
indication of this, and the driver returns control to the
executive. Note that no distinction is made between no work
because the controller is busy, and no work because the I/O

qgueue is empty.

5.7.2. Get byte (SGTBYT) and put byte ($PTBYT). These two
routines respectively get and put a byte of data to and from
the specified data buffer. The address of the next byte is
stored in the UCB, and these routines update this for the

next operation.

RSX-11M Page 5-18

5.7.3. Interrupt save ($INTSV). This routine is called by
the driver in order to drop it's priority to that of the
interrupting device, and to save CPU registers 4 and 5. This
routine 1is normally called via the INTSV$S system macro,
which automatically adjusts the <call parameters to suit
either a resident or loadable device driver. The INTSVS
macro also sets the mapping of the LSI-11 memory management

unit.

5.7.4. Fork (SFORK). This inserts the calling process into
the fork queue, as discussed above 1in the section on
interrupts. The driver must have <called SINTSV before
calling S$FORK.

5.7.5. I/O0 done (SIODON). At the completion of an 1I/0
request the $IODON routine is called to inform the executive
that the I/0 request is complete. The driver returns two
words of status information, describing the results of the
I/0 operation, which are returned to the task which issued
the I/0 request. The routine also sets the SCB status to
idle. When SIODON completes, the driver executes a call to
SGTPKT to see if there is more work in the queue, and only
if the queue 1is empty does it return control to the

executive.

5.8. Flow of an I/O request

In order to describe how the various parts of the RSX-11M I/O
system fit together, the flow of a typical I/0 regquest will now
be described. For the purposes of this discussion it will be
assumed that this is the only current I/0 request, and that no

errors are encountered.

RSX-11M Page 5-19

5.8.1. The task issues an I/0 request. The executive checks
to see that the I/0 request has been directed to a valid
unit, and that no redirection is required. If redirection is
required the executive traces the redirection path until the
target device's UCB is located. Various other checks on the
validity of the I/0 request are then done, and the status

return area is cleared.

5.8.2. The I/O packet is created. The executive obtains an
area of dynamic storage, and creates the I/0 packet from the

I/0 request's DPB (Directive Parameter Block).

5.8.3. The executive validates the function. The requested
function is one of four types, as discussed in the section
describing the DCB. The DCB's function masks are used to
decide the function type, which is then processed further as

described below.

5.8.3.1. Control functions. These are simply queued to

the driver.

5.8.3.2. No-op. A function which is set as a no-op does
not require driver processing, and is hence simply

processed to completion by the executive.

5.8.3.3. ACP. ACP functions are gqueued to the
appropriate ACP, which then reissues the request as a
series of functions which can be performed by the

driver.

5.8.3.4. Transfer functions. Transfer functions are
checked for valid data bobuffer addressing, and then

queued to the driver.

RSX-11M Page 5-20

5.8.4. Driver processing. Once the above steps have been
accomplished the driver is called, which then calls S$GTPKT
to obtain work. Once the driver obtains this work it
initiates the required operation in hardware, and returns to
the caller to wait for an interrupt. Operations not
requiring interrupts continue directly from this point to

the I/0 done section (see 5.8.6.).

5.8.5. Interrupt processing. When the I1/0 process
interrupts, the interrupt causes a direct entry into the
interrupt code of the driver. The driver will then go
through the various levels of interrupt processing as
described above, and either continue to the next section, or
issue a further I/0 operation in hardware and continue to

wait for this to complete.

5.8.6. I/O0 done processing. When the 1I/0 operation 1is
complete the driver calls S$IODON as described above. The
executive returns the results of the I/0 operation to the
requesting task, and the driver is then ready for the next

I/0 request.

CHAPTER 6

THE DEVICE DRIVER

6.1. Introduction

This chapter discusses in detail the device driver written for
the tape transport controller. The previous chapter provided a
basic description of RSX-11M, and of the general requirements for
any device driver. This chapter will concentrate on the the
requirements of the particular driver required for the tape
transports, and will also lead in to the discussion of the

software imbedded in the actual tape transport controller.

6.2. Requirements for the driver

Several requirements for the device driver have been mentioned in

previous chapters. These are listed below, as are several other
features which would be desirable :

THE DEVICE DRIVER Page 6-2

6.2.1. The driver must, of course, meet the requirements for
device drivers under RSX-1lM as described in the previous

chapter.

6.2.2. The device driver must, as far as possible, emulate a
known tape transport/controller combination. The controller
chosen for this purpose was the TM-11 controller,
manufactured by DEC. This emulation can be summarized as

follows :

6.2.2.1. The device driver must execute the same set of

instructions as the original controller.

6.2.2.2. The device driver must provide the same status
returns as the TM=-ll controller. It is very important
that the driver should return both the same status
words and and should affect the tape units
characteristics bits in the same way, under both normal
and error conditions. In practice we can expect that
this goal will not be totally achievable as the TM-11
and the controller to be designed are physically very

different.

6.2.2.3. The device driver must appear identical to MT-
drive (the device driver used in conjunction with the
TM-11 controller) as far as the operating system 1is
concerned. As discussed in the previous chapter, the
executive obtains information on the characteristics of
the device from the drivers data tables. These tables
should obviously be the same as the TM-1ll's tables, or
at least as close as is possible, given the differences

between the devices.

THE DEVICE DRIVER Page 6-3

6.2.3. The device driver should be as compact as possible.
There are several reason for minimizing the drivers code

size :

6.2.3.1. Limited space is available for loadable device
drivers. All loadable device drivers under RSX-11lM are
mapped onto kernel APR5. As each memory mapping
register can access only B8K bytes of memory all
loadable device drivers in the system must have a total
size of less then 8 K bytes, or must modify the system
memory map when they execute. As altering the system's
memory map is both difficult and time consuming it is
desirable that the driver should take up a minimum of

storage space.

6.2.3.2. The device driver should use as little of the
PDP-11/23's CPU time as possible. Much of the drivers
code is executed with interrupts locked out, making it

important to minimize code size, and execution time.

6.2.3.3. It is also desirable to have a minimum of code
to debug. As driver code is always privileged, and
executes as part of the executive, any error will
almost inevitably cause a system crash. Another factor
to be considered is that because the driver executes as
part of the executive one runs the risk of introducing
subtle bugs into the system which can cause crashes

apparently unrelated to the driver.

6.2.4. The driver should be coded in such a way as to
maintain DEC's coding standards. There are two reasons for
this. Firstly although we have discussed only RSX-11M,
several other operating systems and versions of operating

systems exist to run on several different versions of the

THE DEVICE DRIVER Page 6-4

basic PDP-11 processor. Maintaining DEC's coding standard
eases the task of porting the device driver to another
system. A typical example of one of these considerations is
that of memory management. Conventionally device drivers do
not manipulate memory mapping registers, but leave this to
the system utilities described in last chapter. This ensures
that the device driver will not need to be rewritten to run
on a system which does not provide memory mapping. A second
reason for maintaining DEC's coding standard is to allow
future programmers to easily compare this device driver to
standard device drivers, and so ease the task of possible
updates at a later date. For this reason the same general
layout and form of commenting was used for the device driver

as is used in standard system drivers.

6.2.5. The driver must provide the protocol required to
ensure that the data 1link to the tape <controller is
reliable. The data link between the host computer and the
tape controller is a serial link. It is the responsibility
of the device driver to control this link. This aspect of
the device driver will be discussed 1in detail 1in the

following section.

6.3. The serial link

6.3.1. Objectives. The serial link must transfer blocks of data
between the PDP-~11/23 and the tape controller. A typical sequence
would involve the PDP sending a command block (for example read
block) and the tape controller responding with status information
and any data. A protocol must be devised which will allow this
block level transfer to take place. Ideally, this would simply
involve the host transmitting it's command block, and then

receiving the <controller's reply block. 1In practice several

THE DEVICE DRIVER Page 6-5

problems relating ta the characteristics of both the physical

line and the host computer must be overcome.

6.3.2. Characteristics of the serial link. The serial data 1link
between the host system (the PDP-11/23) and the tape controller
is an RS-232 link. The full RS-232 specification makes provision
for several lines, including several for flow control. 1In
practice most of these line are not used. The ground, received
data and transmitted data lines are the only lines implemented by
the serial interface in use on the PDP-11, as well as being the
only lines wired from room to room in the department's data
distribution system. The device driver must fulfill two

requirements as regard the serial lines :

6.3.2.1. Flow control. Any real computer system can only
accept a certain amount of data in a particular amount of
time. It is thus necessary to provide some form of control
over the flow of data from one device to another. In some
RS-232 links this is done by the hardware lines mentioned
above, but for most systems (including the PDP-11l) this done
by software. A typical system which is widely used is the so
called XON/XOFF protocol. This works essentially by having
the receiving device transmit an XOFF character to stop data

transfer, and an XON character to resume data transfer.

6.3.2.2. Error control. Under ideal conditions data could
simply be put onto a line, and would emerge at the other end
in exactly the same form. For real lines this is not so. For

the PDP-1l1l in particular two main problems exist :

6.3.2.2.1. Line noise. Any real data line is subject to
errors due to electrical noise, requiring some form of
error detection/correction. RS-232 lines are

unbalanced, and so especially sensitive to ground

THE DEVICE DRIVER Page 6-6

noise. Line noise normally will result in one or more
bits in a character being corrupted. This is normally
detected by a parity bit in each character, and most
USART chips can be programmed to include a parity bit
automatically. Parity bits can however only detect - a

single bit error per character.

6.3.2.2.2. Lost characters. In the case of the PDP-11
(and most multi-user systems) an additional problem
arises. All serial interfaces interrupt at the same
priority, and hence a new interrupt will not be
recognized until the device driver becomes fully
interruptable. As discussed in the previous chapter a
device driver is allowed to operate at the priority of
the interrupting device for 500 uS. A serial line
operating at 9600 baud delivers characters at
approximately 1 mS intervals. This means that at most
TWO serial devices can operate at full speed under
RSX-11M assuming that the device driver uses its full
allocation of time. As the PDP-11 currently has 24
serial lines attached it is obvious that if several
lines are operating at full speed (for example running
file transfer programs) characters will be lost.
Equally obviously error detection by character parity

will not help, as entire characters will be lost.

By far the most commonly used solution both to flow
controlling the link and to error control is to acknowledge
either each character, or each group of <characters.
Acknowledging each character has the advantage of simplicity
and a very high 1level of reliability, but is very
inefficient. This technique is in fact used by DEC for some
PDP-11 peripherals (such as DD-drive, a dual tape cassette

system) as it is very effective for dealing with the PDP's

THE DEVICE DRIVER Page 6-7

lost character problem as described above. Acknowledging
groups of characters (typically 64 to 256 per group) is far
more efficient, but requires more complex software. In this
case it was decided to use group acknowledgement, in order
to maximize link throughput. These groups are normally known
as frames and their related protocols are known as frame
protocols. As digital data transmission has grown in
importance so much research has gone into various forms of
frame protocol. It is not the purpose of this thesis to
become embroiled in an analysis of all the available
techniques, and so only the the technique to be used will be

discussed here.

6.3.3. Line protocol. Most modern digital data communication
systems distinguish between several levels or layers 1in the
system. The basis of this approach is to have the same layers in
both the receiver and transmitter. Communication can then be
modeled at each level as a 1link to the level 1in qguestion's
opposite number in the receiver. Layers below the level 1in
question are viewed as a virtual communications channel, the
characteristics of this channel depending on the layer under
discussion. This process culminates in the lowest level, known as
the physical layer, in which this 1link is in fact a physical
link. This technique has the significant advantage that layer can
be changed, as long as the layer to layer interface is constant.
This approach 1is also often used to aid 1in wunderstanding a
communication system, and indeed several standard representations
{such as the ISO model) [14] have been devised.

6.3.3.1 Layers. In this case it is useful to recognize four
layers, although our definitions will bear only superficial

resemblance to most generally used models :

THE DEVICE DRIVER Page 6-8

6.3.3.1.1. The physical layer. This layer is the actual
physical interface between the host and the controller.

At present this is the RS-232 link as described above.

6.3.3.1.2. The link layer. This layer is involved with
the transmission of frames. This is done by means of
the physical layer. The responsibilities of the 1link
layer include -error detection and flow <control.
Complete frames are passed to the next higher layer,
together with error information. Note that although the
frame may contain errors this will be signaled to the

block layer for appropriate action.

6.3.3.1.3. The block layer. This layer makes use of the
link layer in order to transmit and receive complete
blocks of data. Blocks consist of an arbitrary number
(limited only physical constraints of available memory)
of bytes of data. This layer passes complete error free
blocks to the application 1layer, and is roughly
equivalent to the transport layer in the ISO model
[15].

6.3.3.1.4. The application layer. This 1is the layer
which actually uses the data. In the case of the host
system this is the operating system, and in the case of
the controller this is the module which translates host

commands into tape motion.

The split as described above is not exactly in accordance
with the layers of the ISO model [14,15], but was designed
for maximum efficiency in this particular application.
Ideally each layer (except the physical layer) should be
implemented as a separate layer of software. 1In the

controller this is done, but in the device driver this would

THE DEVICE DRIVER Page 6-9

be futile as the device driver is already the lowest level

in the operating system, itself a layered system.

6.3.3.2. The link layer. The physical layer has already been
discussed in section 6.3.3.1., and it remains now only to
describe the link layer and the block layer. The link layer

has the following features :

6.3.3.2.1. Each block of data (in this case a command
to, or reply from the tape controller) is split into a
number of frames. In general these frames may be either
of fixed size, or of variable size. Fixed frames are
padded with dummy characters where necessary, and the
frame normally contains a field specifying how much of
it is "real" data. Variable length frames use some
predefined sequence of characters to denote the end of
the frame. In this case it was decided to use variable
length frames as the majority of the commands and
responses required are short (typically six bytes) and
the use of fixed length frames would result in the
transmission of a large amount of unused information.
Data transparency is achieved by character stuffing.
Each frame thus consists of control characters and from
zero to some maximum number of characters. An optimal
value for this number may be calculated, based on
factors such as the error rate of the channel and the
time taken to recognize that an error has occurred
(indeed this may be done adaptively) but in practice
some reasonable number is normally selected. In this
case a maximum frame size of 64 characters was chosen
firstly in order to minimize the size of the 1local
frame buffers in the device driver, and secondly to

minimize the time taken to recover from a line error.

THE DEVICE DRIVER Page 6-10

6.3.3.2.2. Operation of the 1link is identical at the
frame level regardless of whether the block to be
transmitted originates from the host or the tape
controller. The sequence of events for a frame transfer
is as follows. A data frame is transmitted by either
the host or the tape controller. When this is received
the receiving device transmits an acknowledge frame.
Acknowledge frames are special purpose frames which
carry no data but are used only to reply to data
frames. The acknowledge frame may be either a positive
or negative acknowledge depending on whether the data
frame contained any errors. If the transmitting device
receives a negative acknowledge frame the data frame
will be retransmitted. The transmitting device also
contains a timer, which is used to retransmit a frame
if no acknowledgement is received within some specified
time. If a positive acknowledge is received then the
next frame 1is sent, unless the previous frame was the
last in the block. This 1is known as an Automatic

Request Repeat Protocol.

6.3.3.2.3. Each data frame also <contains a frame
number. This is to prevent data from being duplicated
in the received block in the event of positive
acknowledge frame being lost or corrupted, resulting in
a retransmission of a frame which was correctly
received. This frame number is counted modulo two as
only one frame can be outstanding at any one time. Note
that each acknowledge frame contains the number of the

frame which it is acknowledging.

6.3.3.2.4. Errors are detected by a combination of

three techniques. These are as follows:

THE DEVICE DRIVER Page 6-11

1. Line error detection. This involves the
detection of errors such as overruns and framing
errors. These errors are detected by the hardware

used to send the data stream.

2. Invalid character sequences. As discussed
earlier the start and end of frames are signaled
by particular character sequences. Any invalid

sequence results in the frame being discarded.

3. CRC codes. Each frame has, as the last two
characters, a 16 bit CRC. The polynomial chosen is
CCITT-16, which detects all burst errors of less
than 16 bits, and more than 99.99% of all other

errors [15].

Further error detection capability could be added by
transmitting parity information with each character.
This was however not implemented as not only would
parity be of questionable value in light of the error
detecting capability of the CRC, but it would require
modification of internal jumpers in the PDP-11 system,
and so make the serial channel in question incompatible

with conventional terminals.

A complete description of the format of all frames may be

found in appendix D.

6.3.4. Block format. The 1link level protocol described above
allows the transfer of an arbitrary block of data to and from the
tape controller. Note that a block originating from the
controller will always be in response to a block from the host.

Note also that the format of command blocks (to the controller)

THE DEVICE DRIVER Page 6-12

and response blocks (from the controller) must be different, but
that this 1is, of course, transparent to the frame protocol.
Obviously it is necessary to decide on the format for command and
reply blocks. As discussed earlier, it was decided to do as much
as possible of the required processing in the controller in order
to unload the host system to as great an extent as possible. To
this end it was decided simply to transfer the contents of the
PDP-11 I/O packet to the tape <controller with as 1little
manipulation as possible. Similarly the reply block contains
status returns in a format as near as possible to that required
by the PDP-1l1l's I/O system. This results in block formats as

follows :

6.3.4.1. Command block. The command block consists of the

following fields :

6.3.4.1.1. Opcode. This is an 8 bit byte which contains
a 6 bit command code (such as read block, write block
etc.) as well as two bits which indicate whether
retries are suppressed, and whether or not the mounted
tape is ANSI formatted.

6.3.4.1.2. Unit number. This is a byte which indicates
the logical unit number of the tape transport to which

the command refers.

6.3.4.1.3. Tape status in. This word contains the
status byte of the tape unit in question. The contents

of this word are as described in appendix D.

6.3.4.1.4., Count 1in. This word <can <contain three
different pieces of information, depending on the

command. These are as follows :

THE DEVICE DRIVER Page 6-13

1. For read and write operations this field
contains the byte count for the operation. Note
that for read operations this is the expected
count value, and if the actual value 1is greater

than this an error must be reported.

2. For space operations this field contains the
number of files or blocks to be spaced in twos

complement form.

3. For status set operations this field contains
the new status value. Note that only certain bits
may be altered by the operating system. The
controller must for example prevent the operating
system from attempting to operate the tape drives

as seven channel units.

6.3.4.1.5. The next and last field contains data for
write operations. This may consist of up to 8192 bytes

of data. This field is not used for any other command.

6.3.4.2. Reply block. The reply block consists of the
following fields :

6.4.3.2.1. Tape status out. This word contains the
status byte of the tape unit in question. The contents

of this word are as described in appendix D.

6.4.3.2.2. Count out. This word can contain two
different pieces of information, depending on the

command. These are as follows :

THE DEVICE DRIVER Page 6-14

1. PFor read and write operations this field

contains the byte count for the operation.

2. PFor space operations this field contains the
number of files or blocks to be spaced in twos

complement form.

6.4.3.2.3. Return code. This field contains the return
code for the operation which is passed to the operating
system. The various possible returns are described in

appendix D.

6.4.3.2.4. The next and last field contains data for
read operations. This may consist of up to 8192 bytes

of data. This field is not used for any other command.

6.4. The device driver code

6.4.1. The device driver code consists of two distinct sections,
the first being the executable code (the driver itself) and
secondly the driver's associated data tables. These two sections
will now be described. The description below should be read in
conjunction with the listings in appendix E and the discussion of

the device driver's role in the previous chapter.

6.4.1.1. The executable code. The executable code may best
be described in terms of the various entry points as

described in the previous chapter.

The software is simple in concept. The sequence of events is

as follows, assuming that only one I/0 request is active,

THE DEVICE DRIVER Page 6-15

and that no errors occur. An I/0 request is generated and
the I/0 driver called. After initialization, the first frame
is transmitted. Once this is acknowledged the next frame 1is
sent. This process continues until the last frame in the
command block has been transmitted and acknowledged. The
device driver then waits for the first frame of the reply
block, and acknowledges this and any subsequent frames. Once
the last frame in the block has been received the driver
passes the contents of the reply block to the executive, and

waits for the next I/0 request.

The most important part of the device driver is that which
is responsible for the frame protocol. It has been shown
[15] that in general the most reliable and testable
technique with which to implement a communications protocol
is via a finite state machine. This has the advantage that
as the machine can only have a finite number of states,
testing is limited to ensuring that the machine responds
correctly to all possible input conditions in each state. A
further advantage of this approach is that only the code
directly concerned with any particular state is executed in
that state. This normally results in code which is close to
optimal in terms of execution speed and size, without the
programmer having to pay undue attention to these aspects in
the program design. This approach has been taken for both

frame transmission and reception.

A detailed description of the code will now be presented, in

terms of each entry point :

6.4.1.1.1. I/O initiator. This entry point, labeled
MAINI in the 1listing, 1is the point at which the
executive calls the the device driver. Processing

proceeds as follows :

THE DEVICE DRIVER Page 6-16

1. The device driver executes a call to S$GTPKT.
SGTPKT first checks to see if the requested device
is busy, and that there is work for it. It |1is
necessary to check for work as the driver executes
a jump to this entry point on completing an I/O

request to check for further work.

2. If there is work then the driver proceeds to
check the request for validity. The labeled tape
and retry suppress bits, which are transmitted to
the controller as part of the opcode field, are
first set up, and then the opcode 1is checked
against a table of valid opcodes. Assuming the
request to be valid for magtapes, the driver then
proceeds to check that the operation 1is not
invalid due to a previous power failure. If the
operation is a rewind then the power fail bit is
reset. The opcode is then added to the labeled
tape and retry suppress bits set up earlier, ready

for transmission.

3. The device driver then proceeds to set up to
transmit the block to the controller. The opcode,
tape status and count value are copied to the
frame buffer, and the code falls through to the

frame setup section.

4. The frame set up routine (at label NEXTFRM)
proceeds to set up the frame by filling the frame
buffer with data (if any), and setting the frame
start and stop characters. Note that NEXTFRM is
entered only once the previous frame has been

successfully transmitted.

THE DEVICE DRIVER Page 6-17

5. The frame send routine (at label SENDFRAME)
transmits the frame in the frame buffer. Note that
this routine is used for both data and acknowledge
frames. Executing this routine without setting up
a new frame results in the retransmission of the
previous frame. If the frame is a data frame then
the frame retry counter is checked to see that the
maximum retry limit for the frame in guestion has
not been reached. If this limit has been reached
then the driver will return an error code to the
executive. Note that this routine also sets up to
receive a reply frame, as well as setting up the
timeout count value described in section 5.4.1.3.
If a timeout occurs, then control is passed to the
timeout entry point described in section
6.4.1.1.7. Once this set up procedure has been
completed the routine <checks to see 1if the
transmitter is busy. If so the transmit interrupt
is enabled and the driver returns control to the
executive, and waits for an interrupt indicting
that the transmit data port is empty. If the
transmitter is not busy then the first character
of the new frame is placed in the transmit data
port, following which interrupts are enabled and
a return executed. In either <case further
processing is via the interrupt system. This will

be described in the next section.

6.4.1.1.2. The output interrupt. This interrupt occurs
on each occasion that the transmit data port becomes
empty, assuming that the the transmit interrupt is
enabled. When this interrupt occurs processing proceeds
as follows :

THE DEVICE DRIVER Page 6-18

1. The priority is immediately dropped to that of
the interrupting device. Once this is done, the
base address of the transmit data port is obtained
from the SCB. This is done to allow the device
driver code to be independent of the actual
hardware address, as well as to allow the driver
to operate several identical device controllers,
each of which will reside at a different hardware
address. Note that in this case no provision has
been made for ©operation with more than one
controller, although the device driver code could
easily be modified to provide this capability.
Note that this means that in order to change the
serial port used by the tape controller only the
data tables;, and not the driver code must be

modified.

2. The driver then executes an indirect jump via
the state table, indexed on the transmitter state.
This transmitter state wvalue is held in storage
local to the device driver, and is modified on
each pass through the device driver. This indexed
jump 1is exactly analogous to a high 1level

language's case statement as follows :

case transmit_state of

Execution then proceeds to the appropriate section
of code for the current state. These states are

discussed in appendix D.

The code specific to the state in question stores
the character to be transmitted on the stack, and

a jump is executed to the common exit code, which

THE DEVICE DRIVER Page 6-19

transmits the character in question, as well as
calculating the CRC wusing a logic operation
technique similar to that described by Perez [23].
This technique 1is used as it provides an optimal
combination of compact code and speed of

operation.

3. Once the entire frame has been transmitted two
possible courses of action are available to the

driver :

3.1. If a response 1is required from the
controller the driver will enable the receive

interrupt and wait for a response frame.

3.2. If the previous frame was the
acknowledge frame for the last frame in a
reply block then the driver will proceed to
its final processing routine. Only if this 1is
the case 1is a fork executed. This will be

described in a later section.

6.4.1.1.3. 1Input interrupt. This interrupt occurs on
each occasion that the receive data port becomes empty,
assuming that the the receive interrupt 1is enabled.
When this interrupt occurs processing proceeds as

follows :

l. The priority is immediately dropped to that of
the interrupting device. The base address of the
receive data port is obtained from the SCB, and
the received character is read in. This occurs

exactly as was the case for the transmit

THE DEVICE DRIVER Page 6-20

interrupt. The CRC 1is then calculated using the
same logic operation technigue used for the

transmit interrupt.

2. The driver then executes an indirect jump via
the state table, indexed on the receiver state.
Processing then proceeds in a similar fashion to
that for the transmit interrupt. The various

states are discussed in appendix D.

3. Once a complete frame has been received it is
examined to determine the appropriate action as

follows :

3.1. If the received frame 1is a negative
acknowledge then a branch to SENDFRAME 1is
executed 1in order to repeat the previous

frame.

3.2. If the received frame is a positive
acknowledge then a branch to NEXTFRM 1is
executed in order to transmit the next data
frame. If no further data is to be
transmitted then the the driver will wait for

the first frame of the reply block.

3.3. If the received frame is a data frame
then if there is an error in the frame a
negative acknowledge frame is set up and a
branch to SENDFRAME executed to send this. If
there was no error then a positive
acknowledge frame is set up, the data in the

frame copied to the appropriate place (the

THE DEVICE DRIVER Page 6-21

first three words of the first frame to
status storage, all other data to the block
buffer) and a branch to SENDFRAME executed.

6.4.1.1.4. Final processing. Once the acknowledge frame
for the last data frame in the reply block has been
transmitted, then the status information previously
stored is loaded into the appropriate registers, and a
call to the executive routine S$SIODON is made. This
informs the executive that processing of the current
I/0 request is complete, and returns the results of the
I/0 operation. A branch to MAINI is then executed to

check for further work, as described above.

6.4.1.1.5. Driver <cancel entry point. This function
(called at 1label MACAN) 1is Dbasically 1ignored by
magnetic tape drives. However if a a timeout occurs
after a call to the cancel entry point then the I/0
operation will be aborted. This allows the user to
abort an I/O operation more quickly than would be the
case 1f it was necessary to wait for a complete set of
retries to be attempted. The cancel entry point simply
sets a status bit which may be examined by the timeout

code.

6.4.1.1.6. Power fail entry point. On entry to this
routine the power fail status bit is set, but only if
this feature is supported by the executive. The code at
this entry point is only included if the global symbol
P$$RFL is defined. This symbol resides in the system
definition file, and indicates the executive

configuration.

THE DEVICE DRIVER Page 6-22

6.4.1.1.7. Timeout entry point. If the time out count
set up as described in section 6.4.1.1.1 reaches zero,
then the executive executes a call to this entry point.
The code at this entry point checks the status bit
referred to in section 6.4.1.1.5. to see if an abort
was requested as described above. If an abort was
requested, it aborts the operation, returning a status
code indicating this to the executive. If an abort is
not required then the previous frame is retried unless

the maximum number of retries have been exceeded.

6.4.1.2. The data tables. As discussed 1in the previous
chapter it is essential that the data tables for the device
driver should be as similar as possible to those for the MT-
DRV, as the executive obtains most of its information on the
characteristics of the device from these tables. In practice
it has been possible to make MADRV's data tables identical
to those of MTDRV, with one exception. This 1is in the
setting of the UC.NPR bit in the UCB. This bit indicates to
the executive in which of two formats the address of the
data buffer should be presented to the driver. If this bit
is set then the presentation is suitable for an NPR device
(that 1is a No Processor Request device, DEC's way of
referring to a device which transfers data by way of DMA),
and if it is not set then the presentation is suitable for a
device which will make use of the executive routines for
data transfer. As MTDRV makes use of DMA this bit is set in
its data tables. In the case of the driver under discussion
here, program transfer techniques are used and so the bit
must not be set.

6.4.2. Building the device driver. The device driver is assembled
and built as described in reference 16. A complete listing of the

commands used is supplied in appendix G.

THE DEVICE DRIVER Page 6-23

6.5. Testing the device driver

6.5.1. This section describes only the initial testing which
could be done without the use of the tape controller. Information
on the testing of the entire system will be presented in a later

chapter. The initial testing may be split into several steps :

6.5.1.1. Loading the device driver and it's associated data
tables. As discussed earlier, the processor used to load the
device driver executes a variety of checks on the validity

of the the driver and it's data base.

6.5.1.2. The wvalidity of the data tables were further
checked by displaying the status of the driver by the MCR
command DEV. This displays the status of the driver, and any
devices associated with it, based on the information £found
in the data tables.

6.5.1.3. The MCR was used to generate I/0 requests to the
driver, and the output on the serial line monitored on a
terminal. The basic operation of the transmitter routine was
verified in this way. Since no response was generated, the

operation of the timeout facility was also tested.

6.5.1.4. As the next step, reply frames were manually
generated on a terminal. Both correct and incorrect frames

were simulated, and the response of the driver verified.

6.5.1.5. Finally a program was written (in RTL2) which
allowed the generation of 1I/0O requests with arbitrary
function codes, as well as to display the drivers status

returns. This allowed the verification of the driver's

THE DEVICE DRIVER Page 6-24

ability to reject illegal commands, as well as checking the

status as returned by the driver for various I/0 operations.

CHAPTER 7

THE TAPE CONTROLLER SOFTWARE

7.1. Introduction

7.1.1. This chapter discusses the software which is imbedded in
the tape <controller. Previous chapters have described the
hardware which makes up the tape controller, as well as the
software used by the host system to communicate with the
controller. The description of the imbedded software has been
left until last as the software can be viewed as an interface
between the host software and the controller hardware. This view
is especially apt as, for reasons described in the previous
chapters, both the host software and the controller hardware were
designed to be as simple as possible, and the maximum number of

functions left to the controller software.

7.2. Requirements

The technical requirements for the imbedded software have in the

main been defined by the previous chapters, which described the

TAPE CONTROLLER SOFTWARE Page 7-2

hardware and the host software, and need not be repeated in
detail here. The main points are however worth repeating,

together with some new material.

7.2.1. Firstly, and obviously, the software must provide the

emulation of the tape transport discussed previously.

7.2.2. The controller must also provide diagnostics
functions. These should not only be included as a matter of
good engineering practice, but will be indispensable should

the controller ever be upgraded to operation on a LAN.

7.2.3. Facilities to allow the user to execute certain
operations on the tape under local control are desirable. A
major disadvantage of the serial data link used to connect
the controller to the host computer is speed. This problem
can be substantially reduced by allowing the user to access
the tape controller in local mode. For example, tapes can be
duplicated at far higher speed in 1local mode than if all
data first had to be transferred to the host and then back

to the controller.

7.2.4. The software written for the controller should follow
good software engineering practices. Since the introduction
of microprocessors the importance of software has increased
dramatically both from the point of reliability and cost. As
the number of products which incorporate microprocessors
have increased, so has the realization among project
managers that software has become both the most significant
reliability problem, as well as the worst controlled cost
factor. This has lead to a general desire to wuse the
principles of engineering to improve programming practice.

The next section will discuss this, among other issues.

TAPE CONTROLLER SOFTWARE Page 7-3

7.3. Software structure

7.3.1. Use of a high 1level 1language. It has been shown
conclusively [19] that programming effort, as well as the number
of bugs in the completed code are directly related to the number
of source lines in a program. Programming effort may in fact be

modeled as follows :

MM = Km(KDSI)X® (7.1)
where

MM = Effort in man-months.

Km = Multiplicative factor, the value of which depends
on the type of software and the model in use. For
advanced models this factor 1is the product of
several factors Kl"Kn’ where each Kn represents a
different factor (or driver, for example
programmer competence).

KDSI = Number of thousands of delivered source
instructions in the final product.

Ke = Exponential factor. This is also dependant on the

type of software and the model in use. Factors of
greater than one indicate a diseconomy of scale,
and factors of less than one indicate an economy

of scale.

Several models exist of this general form (at least 11 to the
author's knowledge), but the choice of variable names above above
is for a generalized version of COCOMO (Constructive Cost
Model)[19], of which several specific versions exist, each with
different coefficients. COCOMO is claimed (by its authors) to be

the most accurate of its type, and is backed up by a considerable

TAPE CONTROLLER SOFTWARE Page 7-~4

amount of statistical data. It should be noted that certain
restriction exist for this model, notably that is it not useful
for code sizes of less than approximately 2000 DSI. We will only
discuss the basic COCOMO model here. For this model three modes

of software development are recognized.

7.3.1.1.1. Organic mode. The major characteristics of the
organic mode are that the specifications of the project are
relatively flexible, and that the environment is relatively
stable. An example of this would be the reduction of
experimental data on a mainframe. For this mode Km = 2.4 and
Ke = 1.05,

7.3.1.1.2. Embedded mode. The major characteristic of the
embedded mode is that the specifications of the project are
very tight, normally defined by hardware or other
essentially unchangeable characteristics. An example of this
would be an aircraft collision avoidance system. For this

mode Km = 3.6 and Ke = 1.20.

7.3.1.1.2. Semidetached mode. This mode is a combination of
the first two modes, and is used where the project is a
combination of organic and embedded mode characteristics. An
example of this would be an operating system. For this mode
Km = 3.0 and Ke = 1.12. This project can probably best be
modeled in semidetatched mode, although the embedded mode
characteristics of the project predominate. Note that the
more advanced versions of COCOMO do not make the rather
artificial split into modes, making use of various drivers

to provide a single model which is continuous.

An examination of equation 7.1 leads directly to the use of a
high level language, in order to minimize the number of source

instructions. At the time that this project was begun the choice

TAPE CONTROLLER SOFTWARE Page 7-5

of languages was limited to one, Intel's Pascal-86. Fortunately
this language is very well suited to use in this role, as it
produces compact code, and makes special provision for producing
software which is modular. In practice the use of high 1level
languages for embedded software, and especially for systems in
which the the code 1is to reside in ROM, has not proved as
successful as might be hoped. This stems largely from the
difference between the use of these languages on a host system,

and their use on a target system.

Program development is normally done on some form of a host
system (in this case an Intellec development system) which runs
editors, compilers, linkers etc. Once the program has been
developed it is transferred to the target system (in this case
the tape controller). Very often it is possible to execute the
high level code on the host, either because the host contains the
same CPU as the target system (as the Intellec does) or by making
use of another similar compiler which generates code for the
host. Unfortunately there are certain problems related to the use
of high level 1languages in applications requiring imbedded

software :

7.3.1.2.1. High 1level languages can often not be used to
provide all required functions. For example Pascal-86 does
not allow access to the address of a variable, which 1is
required for programming DMA registers for the timing
module. Once a programmer is forced to write even a small
amount of code in assembler it is a great temptation to

write all the code in assembler.

7.3.1.2.2. Bad compiler documentation. Most high level
languages are used on a host system, and are hence written
for an environment where the entire program is in RAM, and

all IO is done via an operating system. This results in

TAPE CONTROLLER SOFTWARE Page 7-6

compilers which are not documented for use in any
environment other than the host, and testing is also often
perfunctory for applications in environments other than the
host. During the development of this project two versions of
Pascal-86 were used, both of which had serious flaws in
their documentation as regards use in a target system other
than the host, and one of which (the later version!)
contains a bug which renders code generated under a
particular memory model useless for programming into ROM.

The faults are described in detail in appendix H.

7.3.1.2.3. Many of a compiled 1language's advantages
disappear when used on a target system. In the past there
has seldom been any attempt to install the language's run-
time system on a target system, so seriously reducing the
high 1level 1language's usefulness. A language's run-time
system is responsible for all environment dependant features
of a language such I/0, error handling and memory
management. The ease of use of a high level language may to
a large extent be ascribed to three factors, each of which

requires the use of the language's run-time system :

1. Run time error messages. When using a compiler on a
host system the user may expect run time error messages
(divide by zero etc.) which aid considerably in fault
location, as these not only tell one what happened, but
also often contain information as to where the error
occurred (line number etc.). When a high level language
is used on a target system however an error normally

results in a system which simply ceases to respond.

2. Use of I/O0 library routines. When used on a host
system, I/O 1library routines are used to allow data

transfer. These library functions free the user from

TAPE CONTROLLER SOFTWARE Page 7-7

the task of format conversion, as well as making it
very simple to insert trace instructions to locate
bugs. When a high level language is used on a target
system not only must the user write format conversion
routines, but the inclusion of trace instruction can be

a major undertaking.

3. Standardization. When a high level language is used
on a host system the user can normally write a program
in a standard form, primarily by making use of the I/O

library discussed above. This has two advantages :

3.1. Familiarity. The programmer will be familiar
with the instructions used, and as discussed above
will be able to use standard instructions to

obtain trace information.

3.2. Modules may be tested on the host system. If
only standard instructions are used in a module
then the module may be tested on the host system,
without the requirement to transfer the software
to the target system. This is not only speeds up
program development, but allows the user to make
use of debugging tools on the host, which are not

normally available on the target system.

7.3.1.3. There is little to be done about the problems of
compiler suitability and documentation described above, but
a technique does exist to retain the advantages of
standardization and I/O library use discussed above. All of
Intel's compiled languages make use of a common run-tine
system, which may be replaced by the user. This allows the
user to effectively install the language on a target system,

and hence have access to all the language features which

TAPE CONTROLLER SOFTWARE Page 7-8

depend on the run-time system. The run time system for Intel
languages consists of three sections, arranged in a loose

hierarchy :

7.3.1.3.1. Run time 1library. This section, which 1is
always present, contains the all support code which 1is
required by the language under all circumstance, such
as the procedures used to support various language
features, for example set manipulation. This section is
language specific, and provides the interface between
the language and the other two sections, which are the

same regardless of language.

7.3.1.3.2. Logical Record System (LRS). This section
provides 1I/0, memory management and error handling
facilities to the language. Intel provide two LRS
modules for their languages. One is designed for use on
systems which contain an operating system, and provides
run—-time support by calls to the Universal Development
Interface (UDI) which will be described in the next
section. The second Intel supplied LRS is designed for
use on a bare machine, and provides no run-time
support. This is known as the null version, and simply
provides status returns indicating that run-time

facilities are not available.

7.3.1.3.3. Universal Development Interface (UDI). This
section of the run-time system provides similar
services to that of the LRS, with the addition of
functions which are specific to an environment which
contains an operating system, for example obtaining
parameters contained in the command line which invoked
the program. Note that although some form of LRS 1is

always present, even if it is only the null version,

TAPE CONTROLLER SOFTWARE Page 7-9

the UDI exists only 1in applications involving an
operating system. Intel supply a single UDI for use
with the ISIS operating system used on the Intellec
development system, in order to allow Pascal-86
programs to execute on the Intellec. If the target
system contains an operating system then the user will
write a new UDI, and make use of the Intel supplied LRS
referred to above. If however the target environment
does not include an operating system then it is usual
to replace the LRS rather than the UDI, so reducing the

run-time system to only two sections.

7.3.1.4. The user written LRS. As a result of the above
consideration it was decided to write a LRS to install the
Pascal-86 run—-time system on the SABUS kit to be used as the
tape controller. It was decided to give the LRS the

following characteristics :

7.3.1.4.1. I/0O devices. The use of a serial terminal as
I/O device for local-mode control of the tape
controller was discussed earlier. In order to implement
this, it was decided to install this terminal as the
default I/O device for the run-tine system. This means
that the terminal will behave precisely as would the
screen/keyboard combination on the host system, so
allowing program modules to be tested on the
development system very easily. It was decided not to
install either the tape drives or the data link to the
host as I/O devices both because the run time system
allows only a limited number of I/0O functions which
have fixed interpretations, and because both the data
link and the tape transports require relatively
sophisticated error recovery, to which the LRS

environment is poorly suited.

TAPE CONTROLLER SOFTWARE Page 7-10

7.3.1.4.2. Error messages. It was decided to route all
run-time error messages to the terminal, once more
increasing the similarity between development work on

the host system and on the target system.

7.3.2. Modularity. A study of the values which Ke takes on in the
COCOMO models given in equation 7.1 shows that the larger a
program, the larger the amount of effort required to produce a
single line of code. The larger the factor Ke in equation 7.1,
the more significant this diseconomy of scale becomes. Values of
Ke for other published models vary considerably (from 0.91
(economy of scale) to 1.81) but the majority of models (all

except for two) show similar diseconomys of scale.

This diseconomy of scale comes about for several reasons, the
most significant of which is that of interaction. Consider for
example an entity with N objects in it. Between these N objects
there are N(N-1)/2 possible paths of communication. Although
programs do not show anywhere near as great a level of
interaction as this it can be said that the more code there is,
the more interrelationships there are for the programmer to keep
track of, and hence the more difficult the program 1is to
understand and hence to write. This immediately suggests that by
minimizing interaction, we can "beat the system", and so minimize
programming effort. Consider for example the case of 8 objects in
one module (28 possible paths of communication) versus 8 objects
evenly split between two modules (12 internal paths of
communication plus a certain number of inter-module paths). This
can be achieved by programming in modular form, and by
application of the technique of information hiding[20].
Information hiding, an extremely important concept in modern
software engineering, can be described as the process of limiting
as much information as possible to the smallest number of modules

possible. This has two major advantages :

TAPE CONTROLLER SOFTWARE Page 7-11

7.3.2.1. The interface between mocdules will be as simple as
possible, and so the programmer will only need to know this
definition, and the contents of the module on which he is

working.

7.3.2.2. Information on the hardware can be limited to only
one module. If this is done then in the event of
modification to the hardware only one module will need to be

changed.

7.3.3. Structure. As may be expected the goal of information
hiding can come into conflict with the gocal of writing as much
as possible of the code in a high level language and the goal of
small module size. In this case it was decided toc keep all
information on the nature of each hardware subsystem in an
individual assembler module, and write all other modules in
Pascal-86. Further to this it was also decided to split the
various layers of the data communication protocol into separate
modules. This resulted in a system consisting of seven distinct
modules, structured in a loose hierarchy. Of these modules six
are user written, while one 1is the Pascal run-time library as
supplied by Intel. This structure is shown in figure 7.1., and

consists of the following modules :

7.3.3.1. Initialization module. This is by far the shortest
of the modules, consisting only of the code required to
initialize the 80188 CPU chip.

7.3.3.2. Main module. This module, written in Pascal, is the
main program. It has responsibility for implementing the
local operations mode and for the translation of command
blocks from the host system into low level tape motion

commands.

TAPE CONTROLLER SOFTWARE Page 7-12

7.3.3.3. Tape control module. This module, written in
assembler, translates the low level tape motion commands
generated by the main module into I/O interaction with the

timing module hardware.

INITTALIZATION |
MODULE [
MAIN
MODULE
BLOCK
COMMUNICATIONS
RUN [MODULE
TIME «—
LIBRARY J
TAPE
CONTROL FRAME
MODULE LOGICAL COMMUNICATIONS
T RECORD MODULE
SYSTEM

|
| 1 l

Figure 7.1.

7.3.3.4. Block communications module. This module, written
in Pascal, implements the block layer of the communications
protocol. It function by passing blocks to and from the main

module, and frames to and from the frame communications
module.

TAPE CONTROLLER SOFTWARE Page 7-13

7.3.3.5. Frame communications module. This module is the
lowest level in the data communications subsystem, and 1is
involved with the control of the physical layer (the serial

line). It is written in assembler.

7.3.3.6. Pascal run-time library. This is supplied by Intel,
and provides language specific run-time support. The
existence of this module 1is essentially transparent to the
user, and for most purposes it can simply be regarded as
part of the Pascal modules. Note however that this module
remains constant in size regardless of the size of the

Pascal modules which it serves.

7.3.3.7. The LRS. This module, written in assembler,
provides the run-time environment for Pascal-86, as

discussed above.

7.3.4. Memory Model. Pascal-86 allows programs to be compiled
under one of four different memory models, each of which are
suited to different environments. These are the small, medium,
compact and large models. The choice of memory models is highly
technical, and is significant only in that it defines the length
of pointers to data and whether short of long procedure calls are
used. It is only necessary to point out that in this case the
compact model was used, as it provides compact code, but
assembler modules used to interface to compact Pascal modules can
still be easily executed on the Intellec development system (this
is not the case for the small and medium models). Memory models

are extensively discussed in reference [21].

7.3.5. Use of software interrupts. In order to preserve the
hierarchical structure of the software, the only form of
communication allowed from a lower level to an upper level is a

software interrupt. This interrupt informs the higher level

TAPE CONTROLLER SOFTWARE Page 7-14

module that some significant event has occurred, and that a call

should be executed to the module which generated the interrupt.

7.4. Detailed software description

7.4.1. The initialization module.

The address decoding of the CPU card is configured by registers
internal to the 80188 microprocessor. As a result it is necessary
to initialize these registers before any other code is executed.
This module resides at the microprocessor's reset vector, and so
execution begins with this module whenever the tape controller is
powered up or is reset. The module simply consists of a string of
word output operations, followed by a jump to the start of the

main module.

7.4.2. The Logical Record System (LRS).

Only those features of the LRS which are actually used in this
application will be described here. Further information may be
obtained from reference [21], [22]. The LRS consists of several
procedures which are called by the run-time library, in addition
to a certain number of data tables. These procedures may be
divided into four sections. These are control procedures, 1/0
procedures, Exception handler procedures and memory management

procedures.

7.4.2.1. Control procedures. Control procedures, of which
there are three, are involved with the initialization and
orderly shut-down of the LRS. These procedures are the

following :

TAPE CONTROLLER SOFTWARE Page 7-15

7.4.2.1.1. TQINITIALIZE. This procedure is called in
order to initialize the LRS, as well as to set the
address of the default exception handler. In this case
all the data area status flags are set to indicate that
the data areas are unused, and the address of the
exception handler is set by a call to TQSETERH. Both
the function of the data areas and the exception

handler will be described in a later section.

7.4.2.1.2. TQGETPRECON. This procedure is called to set
connections between a name used in the program and a
physical file. As this 1is not required 1in this

application this procedure is not used.

7.4.2.1.3. TQEXIT. This procedure 1is called when a
Pascal program encounters an END statement. In this
case a message indicating that this has occurred 1is
sent to the terminal, followed by a jump to the reset
vector of the CPU.

7.4.2.2. Input/Output support. All Pascal-86 I/O operations
are directed to logical files, which may in fact be either
data files controlled by an operating system or a physical
I/0 device. I/0 support consists of a set of device driver
procedures for each file, procedures to connect logical
files to a set of device drivers and procedures to create
data structures used by the run-time system to control I/0O
operations. I/O support for the LRS 1is considerably
different to that used for most other systems in that rather
than a single device driver per device, Intel make use of a
set of device driver procedures. Each of these procedures
performs a specific I/0 operation. This set of device driver
procedures consists of twelve procedures of which one is

currently unused. Note that one set of device driver

TAPE CONTROLLER SOFTWARE Page 7-16

procedures can support more than one file. For each file
name encountered in a program, the run-time system expects
to be provided with a pointer to a table which contains the
addresses of these twelve procedures. The run-time system
hence maintains only a single pointer per file, and when
necessary executes an indirect call to the procedure which
executes the requires function. It is the responsibility of
the user to supply both the set of procedures and the table
of addresses of these procedures. These procedure form part
of the LRS. Note that a set of procedure must be supplied
for each file used by the program, but that the same set may

be used for many files.

7.4.2.2.1. Data structures. Two data structures are

used by the run time system :

1. File device descriptors. A block of memory
called a file descriptor 1is required to store
attributes of an active file. Each file descriptor
is 48 bytes 1long, of which the first 16 are
available for use by the device driver associated
with the file. This memory space is allocated by
the TQFILEDESCRIPTOR procedure to be described
later. It is in this space that the address of the
table of device driver procedures, among other
information, is stored. Note that no information
is inserted into the descriptor block by any user

supplied code.

2. Device driver tables. A device driver table is
an array of pointers to the entry points of the
twelve device driver procedures required for each
device supported by the run-time system. The

function of each individual device driver will be

TAPE CONTROLLER SOFTWARE Page 7-17

discussed in a later section. Note that unlike the
file descriptor block, the user must initialize
this table, which is only read by the run-time

system.

7.4.2.2.2. Connection procedures. Two procedures are
involved with the allocation of memory for file
descriptor and the connection of device drivers with

files :

l. TQFILEDESCRIPTOR. This procedure 1is called by
the run-time system before each file is opened to
supply space for a file descriptor, as described
in section 7.4.2.2.1. In the LRS written for the
tape controller this routine can supply only two
statically declared descriptors, as required for
the standard Pascal INPUT and OUTPUT files. Note
that both of these files in fact refer to one

device, the serial port.

2. TQDEVICE. This procedure determines which set
of device drives is to be used for a particular
file. The procedure has as parameter the name of
the file, and expects the address of the device
driver table for the file in question to be
returned. As in this case only one set of device
drivers exists, this routine always returns the
address of a table containing the address of the
device driver procedures associated with the
serial port. Note that this is an instance of two
distinct files (INPUT and OUTPUT) making use of

the same set of device driver procedures.

TAPE CONTROLLER SOFTWARE Page 7-18

7.4.2.2.3. The device driver procedures. The device
driver procedures consist of eleven procedures, each of
which perform a specific I/O operation. One set of
these drivers exists for each device in the system. In
this particular case only seven of the procedures
actually perform a useful function. Note that although
two files wexist, only one set of device driver

procedures are used to process all I/O operations.

The 1Intel run-time system operates on records and
files. Records and files may be delimited by whatever
form of separator 1is appropriate for the file or
device. In the case of text files the end of record
mark is normally a CR or CR-LF pair, as 1is the case
here. The LRS is also expected to maintain a file
pointer, which marks the character at which the next
I/0 operation will begin. This pointer does not
necessarily point to the beginning or end of a record.
In this case the LRS buffers a line until the CR key on
the terminal is pressed;, and also allows line editing
via the Backspace key. Note that as the only I/O device
used is a terminal, no end-of-file 1is defined, and
- hence the LRS will never return end-of-file status.
Each of the eleven device driver procedures will now be

discussed briefly :

1. OPEN. The run-time system calls OPEN before
performing any I/O operation of a file. In this
case the serial link is initialized, and the input
line buffer flushed.

2. CLOSE. This procedure 1is called to close a
file. This call is ignored by the LRS. Note that

this procedure is in fact called twice by the run-

TAPE CONTROLLER SOFTWARE Page 7-19

time system, as is OPEN. This occurs because the
same set of device driver procedures are used to
support two files (INPUT and OUTPUT), both of

which are opened and closed.

3. READ. This procedure reads a specific number of
bytes from a file. The procedure begins by
checking to see if there is data in the line
buffer. If not a call is done to 1local procedure
Get_line in order to obtain a line of input. The
specified number of characters are then passed to
the run-time system. If the end of the line is
encountered before the required number of
characters can be passed then a status return
indicating this is returned along with the number

of characters actually transferred.

4., WRITE. This procedure is called to write a
specific number of characters to the output file.
In this case these characters are simply outputted

via the local procedure Conout.

5. SEEK. This procedure is called to set the file
pointer for applications which make use of random

access files, and is not used in this case.

6. SKIP. This procedure is called to move the file
pointer to the beginning of the next record. 1In
this case the line buffer is emptied, and if it is

already empty then the next line is read in.

TAPE CONTROLLER SOFTWARE Page 7-20

7. END RECORD (E_o_r). This procedure is called to
write a record end sequence. A CR-LF pair 1is sent

to the terminal.

8. REWIND. This procedure is called to set the
file pointer to the beginning of the file, and is

not used in this application.

9. BACKSPACE. This procedure is called to set the
file pointer to the beginning of the previous

record, and is not supported.

10. END FILE (E_o_f). This procedure is called to

write an end-of-file mark. No action is taken.

11. GET FILE INFORMATION (File_info). This
procedure is called to obtain information on the
current file pointer position and the file length.
This is not required in this application and dummy

data is returned.

7.4.2.3. Exception handler procedures. The Pascal-86 run-
time system makes provision for the exception handler to be
varied during program execution. Two procedures in the LRS,
in addition to the actual exception handler, implement this

ability.

7.4.2.3.1. TQSETERH. This procedure 1is <called to
establish the new exception handler. The procedure's
only parameter is the address of the handler, which is
stored for use by TQGETERH. Note that the default
handler is set by a call from TQINITIALIZE, and that in

TAPE CONTROLLER SOFTWARE Page 7-21

this particular application it is in fact never

changed.

7.4.2.3.2. TQGETERH. This procedure is called by the
any procedure in the run-time system which has an error
to report. TQGETERH supplies the most recent handler
address as set by TQSETERH.

7.4.2.3.3. Exception handler. The exception handler
written for the LRS simply writes a message to the
local mode terminal containing the error code (these
are explained in reference [21]) and the address from
which the exception handler was called. Note that this
address is only valid if the error in question did not
corrupt the stack. The corresponding Pascal line number
may be found from this address by consulting the
locator map file. Note also that these error messages
should never appear during normal operation of the tape

controller.

7.4.2.4. Memory management procedures. Memory management
procedures are used for the Pascal-86 heap (A heap is the
standard Pascal dynamic memory area, which 1is used to
support the NEW and DISPOSE functions), as well as to obtain
memory for the run~time system (although this is not
documented, version 3 of the compiler requires it). Note
that Pascal-86 actually handles memory management for the
small memory model in a different fashion to the technique
described here, which is used for all other memory models.

Two memory management procedures are used :

7.4.2.4.1. TQALLOCATE. This procedure 1is called in

order to obtain a block of memory. The version written

TAPE CONTROLLER SOFTWARE Page 7-22

supplies a single block as required by the run-time

library, and then no further memory.

7.4.2.4.2. TQFREE. This procedure is called in order to
free a previously allocated block. No action is taken

in this case.

7.4.3. The Tape Control Module.

7.4.3.1. The tape control module consists of a number of
procedures which control the tape transport interface. These

procedures all have certain features in common :

7.4.3.1.1. All of the procedures are written to be Pascal
callable.

7.4.3.1.2. The operation of the procedures, and specifically
the choice of status flags, have been chosen to be as close
as possible to that of the DEC TM-11l tape controller.

7.4.3.1.3. None of the command procedures return status
information directly. Status returns for all operations are
obtained by calling procedure Cntrl_status, which returns

the status flags as set by the last operation performed.

7.4.3.1.4. Operations which result in data transfer make use
of two buffers. One of these, which contains the data, is
supplied by the calling program. The address of this buffer
is a parameter of all procedures which make use of data
transfer. The other buffer, which contains parity and strobe
information on write operations, and parity and state
information on read operations, is local to the tape control

module. The supplied buffer must always be 8 bytes longer

TAPE CONTROLLER SOFTWARE Page 7-23

than the actual data length, in order to allow for check
characters which are inserted into the buffer by the tape

control module.

7.4.3.2. The module may best be described in terms of the

procedures which it contains :

7.4.3.2.1. Procedure Init _tape. This procedure is called in
order to initialize the <controller module. It's main
function is to set the modes of the programmable timer chips
in the timing module, but it also checks that the module is
disabled. Init_tape is normally only called once only, prior

to other procedure.

7.4.3.2.2. Select. This procedure is called in order to set
the physical unit number of the tape transport to which
subsequent operations refer, as well as to set the timing
parameters for the tape transport in question. Once this has
been done the procedure need not be called until the user

wishes to operate on another unit.

7.4.3.2.3. Erase_tape. This procedure is called in order to
erase a tape from the present tape position to the EOT tab.
It operates simply by setting the timing module into write
mode, and then setting the tape in motion. Once the EOT tab
is detected then the motion command 1is removed. This
procedure is an exception among the procedures which cause
tape motion in that no data transfer takes place, and the

programmable timers play no part in the operation.

7.4.3.2.4. Read _block. This procedure is called to read a
block of data from tape. The procedure begins by calculating

the settings for the DMA registers, sets these, and then

TAPE CONTROLLER SOFTWARE Page 7-24

executes the operation. Once the operation completes, the
procedure checks for hardware errors, and then checks that
no greater than the requested number of characters were
transferred. If no errors are detected the procedure then
loops through all the characters read in, checking each one
for parity, and calculating the <check <characters. These
check characters are then compared to those read in, and the
appropriate status flags set. The procedure then resets the

timing module hardware and returns to the caller.

7.4.3.2.5. Write block. Procedure write block is called in
order to to write a block of data to tape. Firstly the
programmable timers are set up, and then the parity, strobe
enable and check characters are inserted into the buffers by
local procedure Fill. Following this a call is executed to

procedure Wr_prim, which actually executes the write.

7.4.3.2.6. Write with long gap. This procedure is called to
write a block with a 1long inter-record gap. Execution
proceeds exactly as for procedure Write block except that
the timer value for a long gap is used to set up the

programmable timer, rather than the normal setting.

7.4.3.2.7. Write EOF. This procedure is called in order to
write an EOF mark. A this procedure is very similar to
procedure Write block, except that dummy data is set up in a
local buffer, and no call is done to procedure Fill. The
basic Write operation is however still performed by local

procedure Wr_prim.

7.4.3.2.8. Space. procedure space is called in order to
space the tape by a certain number of blocks. Operation
proceeds essentially by setting up the counters, executing

the operation and then calculating the number of blocks

TAPE CONTROLLER SOFTWARE Page 7-25

actually spaced. This last step is necessary as the space
operation will be terminated on encountering either a tape
mark, the BOT tab or in the event of a time-out. Note that
space operations of only one block are treated as block
reads rather than space operations. This is necessary as the
counters used in the hardware <cannot count only one

transition.

7.4.3.2.9. Cntrl_status. Procedure Cntrl status is called in
order to obtain the most most recent tape controller status.
The procedure executes by simply checking the hardware
status, updating the status bits and returning the results
to the caller.

7.4.3.2.10. Off_line. This procedure is called to set the
selected tape transport off-line. This 1is achieved by

strobing the appropriate line on the interface.

7.4.3.2.11. Rewind_tape. This procedure is called in order
to rewind the tape on the selected unit. As in the previous
procedure, this is achieved by strobing the appropriate line
on the interface. Note that this is the only procedure which
causes tape motion but does not wait for this motion to

cease.

7.4.3.2.12. Set_ RTH high. This procedure is called in order
to set the selected tape transport's read threshold high,
for read-verify operations. The procedure simply sets the

interface line to it's active state.

7.4.3.2.13. Set_RTH low. This procedure is called to set the
read threshold to its normal value, and is almost identical

to the previous procedure.

TAPE CONTROLLER SOFTWARE Page 7-26

7.4.3.2.14. Diag. This procedure 1is <called 1in order to
supply diagnostics information about a particular character
in the read data buffer. Information supplied is the state
of the format recognizer at the time that the byte was read,
and whether or not the character contained a parity error.
Note that this information is only valid if the previous

operation was in fact a block read operation.

7.4.3.3. Local procedures. The tape control module contain three

local procedures which deserve further explanation :

7.4.3.3.1. Wait_for_end. This procedure is wused by all
procedures which wait for an operation to cease before
returning. This procedure 1loops until either the tape
transport reaches the BOT tab, the run bit in the timing
module goes inactive or no activity has been detected from
the tape transport for a predefined amount of time. Note
that the first and last conditions described are in fact

error conditions.

7.4.3.3.2., Fill. Procedure Fill is called in order to insert
parity, strobe enable and check character information into
both the supplied and local buffers. Operation proceeds by
simply looping through all the characters to be written,
inserting the parity and strobe enable information into the
local buffer and calculating the check characters. The check
characters are then inserted into the data buffer, together
with dummy characters for spaces and the appropriate strobe

enable information in the local buffer.

7.4.3.3.3. Wr_prim. This procedure executes a basic write
operation on a block of data which already has its strobe
and parity bits and check characters set up. Execution

proceeds by setting up the DMA registers and then executing

TAPE CONTROLLER SOFTWARE Page 7-27

the operation. Once the write is complete a check is done

for hardware errors and then a return is executed.

7.4.4. The frame communications module.

7.4.4.1. The frame communications module 1is responsible for
controlling the physical data 1link to the host computer. The
module receives and transmits data frames to the host system, and
is responsible for error detection. Note however that this module
is not responsible for error correction, which is handled by the
next layer of software (by means of frame retransmission). Both
the transmit and receive data functions are implemented by means
of interrupt driven routines. In addition to procedures for
receiving and transmitting frames this module also contain
certain other routines related to the control of the data link.
Routines are provided to set the baud rate of serial channels,
and to provide a time-out function for the next layer of
software. The module consists of five procedures which may be
called from higher 1layers of software, and three interrupt

handling procedures.

7.4.4.2. Interface procedures. The frame communication modules
interface to other modules is via five procedures. These will now

be described :

7.4.4.2.1. Init_coms. This procedure is called in order to
initialize the frame communications module. The interrupt
vectors are set, the serial link hardware initialized and
the receive buffer emptied. Following this the timer in the
80188 CPU used to generate clock tick interrupts for the
time-out counter is set up. Finally the interrupt controller

is initialized, and the interrupts enabled.

TAPE CONTROLLER SOFTWARE Page 7-28

7.4.4.2.2. Set baud. This procedure is called to set the
baud rate on either of the two serial channels. The divider
ratio to be loaded into the programmable timer used to
generate the baud rate is found from a look-up table, and

this value loaded into the timer.

7.4.4.2.3. R_frame. Procedure R_frame is called in order to
obtain a complete frame which has been assembled by the
receive interrupt handler. When a frame has been received
the interrupt handler generates a software interrupt to
inform the block communications module of this fact. The
block communication module then executes a call to this
procedure in order to obtain the frame. The procedure copies
the frame data and information as to the type of frame
received as well as an error flag to the calling module,
sets the frame buffer status to empty, reinitializes the
check character storage location and then returns to the

caller.

7.4.4.2.4. T frame. This procedure is called in order to
transmit a frame to the host system. A check is first done
to ascertain whether a frame is already being sent. If so
the procedure simply waits until this is complete. The frame
to be sent is then copied into local storage, the check
character calculation routine initialized and the transmit
interrupt enabled. Frame transmission is then completed by

the transmit interrupt handler routine.

7.4.4.2.5. Set_timer. The time-out value to be used is
simply loaded into 1local storage. This value will be
decremented by the timer interrupt routine to be described

later, and an interrupt generated if the count reaches zero.

TAPE CONTROLLER SOFTWARE Page 7-29

7.4.4.3. Interrupt handling procedures. The frame communications
module makes use of three interrupts, which are central to its

operation. These are the following :

7.4.4.3.1. Received character interrupt. This interrupt,
which is handled by procedure Rec_interrupt, occurs whenever
a character has been received by the serial port. The
character 1is <checked for transmission errors, and then
loaded into a circular buffer. A call to procedure Asm_frame
is then executed, unless Asm_frame is already busy in which
case the receive interrupt is enabled and a return executed.
Procedure Asm_frame assembles characters from the circular
buffer into frames. Operation of this procedure 1is very
similar to that of the receiver section of the PDP-11 device
driver described earlier with the exception that CRC
generation is done via a table look-up technique similar to
that described in [23]. The table look-up technique is used
in this case as memory usage 1is not as critical as is the
case in the PDP-11. Procedure Asm_frame signals the arrival
of a complete frame by a software interrupt which will
result in a call to procedure R _frame as described earlier.
Note that procedure Asm_frame will continue processing until

the circular buffer is empty.

7.4.4.3.2. Transmit interrupt. This interrupt occurs on each
occasion that the transmit buffer of the serial port is
empty, and 1is handled by procedure Tx_int. Processing is
very similar to the transmit interrupt section of the PDP-11
device driver previously discussed. Once processing 1is
complete the transmit interrupt is re-enabled and a return

executed.

7.4.4.3.3. Timer tick interrupt. This interrupt occurs on

each occasion that a timer tick interrupt occurs (this is

TAPE CONTROLLER SOFTWARE Page 7-30

set to 30 Hz by the initialization routine). The interrupt
is handled by procedure Time_int, which decrements the count
if it is positive. If the count reaches zero then a software
interrupt is generated to signal to the block communications
module that a time-out has occurred. The initial value of
the count is set by procedure Set_timer, and the timer may

be disabled by setting this count value to zero.

7.4.5. The block communications module.

7.4.5.1. The block communications module is responsible for the
transmission and reception of blocks of data. Blocks are split
into frames, and these are transmitted and received by the frame
communications module. Error control is the responsibility of
this module and is achieved by means of frame retransmission. The
module consists of three procedures which may be called from

higher layers of software, and two interrupt handling procedures.

7.4.5.2. Interface procedures. The block communications module

contains three procedures which may be called by other modules :

7.4.5.2.1. Init block_IO. This procedure is called in order
to initialize the module, as well as the frame
communications module. The procedure initializes the frame
module, zeros the frame numbers, and sets the interrupt

vectors for the two interrupt handler procedures.

7.4.5.2.2. Block_out. This procedure is called in order to
transmit a block of data. The block to be transmitted is
copied into local buffer space, the first frame obtained and
then sent. Further frames will be sent only once the current
frame is acknowledged. This is done by the frame received

interrupt handler, to be described later.

TAPE CONTROLLER SOFTWARE Page 7-31

7.4.5.2.3. Block in. Procedure Block_in is called in order
to obtain a received block, and is called in response to a
block received interrupt generated by the frame received
interrupt handler. The block is simply copied to the calling

module, and the block buffer reinitialized.

7.4.5.3. Interrupt handler procedures. The block communications
module contains two interrupt handling procedures. Both of these

interrupt are generated by the frame communications module.

7.4.5.3.1. Frame received interrupt. This interrupt 1is
generated by the frame module once a complete frame has been
received. The frame is fetched, and then the appropriate
actions 1is taken dependant on the frame type. If an ACK
frame is received and is correct the next frame is sent. If
the frame contains an error, or a NAK frame is received the
previous frame is repeated. If a data frame (START
character) is received then if it is correct it is added to
the block buffer and a ACK frame returned. If the data frame

contains an error a NAK frame is returned.

7.4.5.3.2. Time_out. This interrupt occurs when the timer
reaches zero as a result of the host not acknowedgeing a
frame. This simply results in the previous data frame being
repeated. Note that there is no limit on the number of times
that the frame may be repeated as the tape controller can

take no useful action in the event of link failure.

7.4.6. The Main Module.

7.4.6.1. The main module 1is the heart of the tape controller

software, and performs two distinct functions :

TAPE CONTROLLER SOFTWARE Page 7-32

7.4.6.1.1. Implementation of the local operations mode.

mode, which was described earlier, allows the user

This

to

perform various tape operation without host system

intervention. This is done by means of commands which

entered interactively at a local terminal. This mode

operation 1is entirely menu driven in order to make its
as simple as possible for the casual user. The operation
capabilities of the tape <controller in this mode

described in full in appendix A.

are

of
use
and

are

7.4.6.1.2. Operation in slave mode. The main module is also

responsible for decoding and executing command sent to

the

tape <controller by the host system. The procedure

responsible for this function is designed to emulate the

™-

11 tape controller, as was discussed earlier. This procedure

executes in response to a block received interrupt generated

by the block communications module.

7.6.2. The two functions described above were included into
same module because they share a number of data structures
procedures as well as having a number of features in common.
module can best be described in terms of the main program and

interrupt handler.

the
and
The
the

7.6.2.1. Main program. The main program begins execution

once the initialization module described in section 7.4.1.

has completed. The default timing parameters of the tape

drives are set up, as is the logical to physical unit number

correspondence. The address vector for the block received

interrupt is then set up and the various other modules

initialized. A message is then sent to the local terminal

informing the user that to enter local mode the enter key on

the terminal should be pressed. The main program then waits

for this to occur, or a block received interrupt to occur.

TAPE CONTROLLER SOFTWARE Page 7-33

Block received interrupt are handled by procedure Block_rec,

which will be described later.

If the user presses the enter key on the terminal then the
tape controller enters local operations mode. Interrupts are
first disabled to ensure that blocks from the host will not
disrupt the local operations. The user is then prompted with
a variety of menus as described in appendix A. Once the user
has completed his operations (choice 6 of the main menu) the
interrupt are re-enabled and the controller once more waits
for the user to request local mode or for a block received
interrupt. Space does not allow a complete description of
all the procedures used in this module, but several of the

most important deserve discussion. These are the following :

7.6.2.1.1. Menu. This procedure is called in order to
display a menu and obtain a valid response from the

user. Parameters for this procedure are the following :

l. A procedure which displays the menu. This
procedure is called by Menu in order to provide
the screen display and to inform Menu as to how

many valid menu choices exist.

2. A string which is displayed at the bottom of
the menu, an integer which is displayed after this
string and a flag to enable or disable the display
of the integer. The string is normally used to
display error information, or information relating
to the previous choice. Note that this string is
only displayed on the first occasion on which the
menu is displayed. If the menu must be repeated
because of an invalid choice on the part of the

user then an error message is displayed instead.

TAPE CONTROLLER SOFTWARE Page 7-34

Operation proceeds as follows. The parameter procedure
is called, and the string and integer displayed. The
users response is obtained by procedure
Get_int_in_range, which will be described later. If
this selection is valid then the procedure returns this
selection to the caller, and if not the process is

repeated until a valid response is obtained.

7.6.2.1.2. In_int. This procedure, which is the most
complex of all the procedures in the main module, 1is
used to read in an integer in a variety of formats.
Integers can be read in either hex, octal, binary,
decimal or in the form of a character literal.
Protection is provided against invalid characters and
overflows. All characters in the number are first read
in. If no characters are input then the the variable
will not be modified, so allowing the easy
implementation of default values. If the number 1is
input as a character literal then this is converted to
a number, and this value returned to the caller. If a
character literal is not input then the base of the
number input is found from the last character in the
string, and the number converted character by
character. This value is then returned to the caller.
This procedure forms the heart of several other

procedures, notably the following :

1. Get_int_in_range. This procedure 1is very
similar to Get_int, but takes extra parameters
indicting a wvalid range for the number, and
returns a flag indicating whether the number fell

into this range.

TAPE CONTROLLER SOFTWARE Page 7-35

2. Get_char_in_range. This procedure 1is very
similar to the previous procedure, but is designed

to input a character rather than an integer.

3. Get_value. This procedure is called in order to
obtain an integer in a specific range. It is very
similar to Get_int in range, but continues to

prompt the user until a valid integer is input.

7.6.2.1.3. Clr_screen. This procedure is called in
order to clear the terminal screen before data is sent
to it. Control codes for three of the most common
terminal types are provided. Provision is also made
for terminals which do not make use of control codes,

or make use of unsupported control codes.

7.6.2.1.4. Write_ver. This procedure is called in order
to execute a verified write operation on the selected
tape unit. A write operation is done, and the block 1is
then read back. If an error 1is detected then the
operation is retried for the maximum number of retries
set. If this is not successful then a gap of 3 inches

is left and the operation is again attempted.

7.6.2.1.5. Wipe_tape. This procedure is called in order
to completely erase a tape. The user is prompted to
mount the tape, it is rewound and then erased to the

EOT tab, and then rewound again.

7.6.2.1.6. Tape_copy. This procedure is called to copy
a tape from one unit to the other. The user is prompted
to mount both tapes, both tapes are rewound, and then a

copy is performed block by block. The copy ends when

7.6.

TAPE CONTROLLER SOFTWARE Page 7-36

either a a double tape mark 1is encountered for
unformatted tapes, and when a end-of-tape block 1is

encountered for an ANSI formatted tape.

7.6.2.2. Command block processor. The command block
processor 1is initiated by a block received interrupt from
the block communications module. The block is then obtained
from the block communications module and the command, unit
number and status bits extracted from it. The codes used for
this purpose are defined in appendix D. The unit in question
is then selected, and it's status is obtained. The requested
command is then executed by means of a case statement., Once
the command has been executed the resulting status and
return code is inserted into the output buffer and procedure
Block_out called in order to transfer the response block to
the host.

Software validation.

Software validation was approcached in a modular fashion, and will

be described module by module. For validation a bottom-up process

was followed.

7.6.1. The LRS. Validation of the LRS was achieved by
writing a variety of simple Pascal programs, each of which
exercised some aspect of the run-time system. As these
programs could also be linked with the normal Intel run-time
environment and run on the development system, the results
obtained on the tape controller hardware could be compared

to "known good" results.

7.6.2. Tape control module. Testing of the tape control

module proceeded in tandem with the local operation section

TAPE CONTROLLER SOFTWARE Page 7-37

of the main program as well as the final stages of the

hardware testing. Testing proceeded in several stages :

7.6.2.1. For the initial testing the basic operation of
the timing generation section of the program were
investigated. The resulting output waveforms were
checked on a logic analyzer. In this way it could be
verified that the controller produced write waveforms
that matched the tape transport manufacture's

recommendations.

7.6.2.2. The second step in the testing involved the
test of the format recognition module. For this purpose
the controller was looped back. It will be recalled
from earlier chapters that the outputs and inputs of
the timing module are designed for open collector
operation, and that the operation of the format
recognition module is dependant only on the read strobe
from the tape transports. It 1is hence possible to
jumper the write strobe outputs to the read strobe
input of the timing module, and simulate the operation
of a tape drive. In this way the operation of the
format recognition module could be tested under a wide

variety of simulated conditions.

7.6.2.3. Once the module had been tested under
simulated conditions the tape transports were connected
to the tape controller, and the controller's ability to
write and read back tapes was verified. The next step
involved tests to ensure that the <controller could in
fact read and write industry standard tapes. Once this
was verified the tape control module as well as the

hardware could be assumed to be functional.

TAPE CONTROLLER SOFTWARE Page 7-38

7.6.3. The communications system. The communications system,
which consists of the frames and block communications
modules, was tested in a very similar fashion to the PDP-11
device driver's communication functions. The frame module
was first tested (in conjunction with a dummy block module)
with frames generated on a terminal, as well as in loop=-
back. Once the basic operation of this module was verified
the block module was rested, once more by means of loop-~back
testing. Note that this testing was possible because of the
use of 1local storage for received and transmitted blocks,

and the interrupt driven nature of the software.

The final step in testing the communications system was to
write a dummy main module which simply returned fatal
hardware error codes, regardless of the contents of the
incoming block. With this module 1in place the tape
controller could be <connected to the PDP-11, and the

operation of the link verified.

7.6.4. Main module. Testing of the main module involved
testing both the 1local operations mode and the slave
controller mode. Testing of this module also involved

testing the system as a whole.

7.6.4.1. Testing the local operations mode. Most of the
user interface code (the menu software, numeric input
code etc.) was tested on the development system before
transfer to the controller. Once this software was
operating satisfactorily the tape controller module was
integrated into the system, and tested as described
above. Once this was complete the code concerned with

the local operations mode of operation had been totally
tested.

TAPE CONTROLLER SOFTWARE Page 7-39

7.6.4.2. Testing the system under host control. Once
the controller had been tested for local mode operation
the communications modules were integrated into the
system and the TM-11 emulation capabilities of the

software tested. This proceeded in several steps :

7.6.4.2.1. Initially the system was tested with
the RTL program described in the chapter on the
device driver. This allowed the the test of the
controller for all possible operations, and also
allowed the controller's responses to be compared
to that of the Cypher tape drive discussed
earlier. As this drive 1is a commercial hardware
emulation of the TM-11 tape system compatibility
with the TM-1l1l could be verified.

7.6.4.2.2. The next step in the process involved
the testing of the system in conjunction with the
PDP-11's operating system software. RSX-11l, the
operating system in question, allows tape drives
to be treated exactly as any other mass storage
device (such as a disk drive). In DEC's words the
TM-11 is "mountable as a Files-~l1ll device". This
means in essence that the normal operating system
commands used for file manipulation can be used on
the tape drive. The user can for example obtain a
directory by using a standard command, mount and
dismount a unit, assign a unit for use only by
himself or obtain status information from the
device. This is the most «c¢ritical area of
compatibility, as 1if the tape <controller is
compatible with the operating system then all
"well behaved" programs (programs which use the

I/0 hierarchy as discussed in an earlier chapter)

TAPE CONTROLLER SOFTWARE Page 7-40

will execute correctly. Testing this capability
involved executing the various operating system
commands which are legal for tape drives, and

verifying that the expected results occurred.

7.6.4.2.3. In addition the the operating system,
which has imbedded in it the commands discussed
above, DEC also supply certain utility programs.
Although these programs do not form a part of the
operating system, and often are designed for use
only with certain peripheral devices, the tape
controller should be able to operate in
conjunction with them. Three utility programs
supplied by DEC can operate in conjunction with

tape drives :

1. Peripheral Interchange Program (PIP). PIP
is supplied in order to allow the
manipulation of files on all Files-11
devices. The user may copy files from device
to device, rename files, delete files etc. As
this wutility is designed for use on all
Files~11l devices the tape controller should
be able to operate in c¢onjunction with 1it,
and indeed testing showed that this was the

case.

2. File Transfer Utility (FLX). FLX is design
to allow the transfer of Files-11l format
files to and from media which is not Files-11
formatted, and according to the manual
operates only in conjunction with certain
devices (including the TM-11l). Testing showed

that FLX rejected commands which referred any

TAPE CONTROLLER SOFTWARE Page 7-41

device not listed as compatible with it,
including MA-drive. Accordingly MA-drive was
modified to be called MM-drive, which is a
listed device but which is not used at UCT.
This functioned correctly, but was removed
from the system as this would be incompatible
with a system which included a true MM-drive,
and would be very bad practice, as it renders

a standard device unworkable.

3. Backup and Restore Utility (BRU). BRU 1is
provided to simplify the task of backing up
disks to tape. As is the case with FLX, BRU
is specified to operate only in conjunction
with certain devices. When tested BRU
accepted all commands, and apparently
executed them without error. However when a
verify pass was executed it was discovered
that incorrect data was written in certain
tape blocks. Although a considerable amount
of time was expended in investigating this
problem no solution could be found. The
problem was traced to BRU corrupting its own
data blocks on write operations, apparently
with data from subsequent blocks. This
corruption was not repeatable, and only
appeared after several data blocks had

already been written correctly.

The problem 1is apparently related to the
storage of the address of the data block, and
its manipulation by the device driver. It
will be recalled that an inherent difference

between the TM-11l controller and the device

TAPE CONTROLLER SOFTWARE Page 7-42

driver written was that the TM-11 makes use
of DMA, and that the storage of the block
address for DMA devices is different to that
for program transfer devices. Accordingly the
device driver was modified to accept
addresses in DMA device format, and then
convert them to a format wusable by the
executive get and put byte routines. This did
not solve the problem, although it reduced.
the frequency of corrupted blocks
considerably. The local agents for the
system, when approached on the problem,
stated that they were not aware of any such
problem on any DEC supported device, but that
"BRU is a mass of errors”". As operation 1in
conjunction with BRU is not necessary, nor
does the BRU manual suggest that this 1is
possible, the search for a solution was
abandoned. In all other respects however the

tape controller performed flawlessly.

CHAPTER 8

CONCLUSION

8.1. In conclusion we will first examine to what extent this
project has achieved its aims, and then discuss some of the more
interesting lessons to be learned from the execution of this

project.

8.2. Goals of the project

The goals of this project were defined in the first chapter, and
essentially amounted to the construction of a magnetic tape
controller suitable for use at a location remote from the host
system. This has been achieved. The controller as constructed
interfaces successfully to the PDP-1l system, and because of its
modular structure should be easy to modify for use 1in other
applications. The tape <controller can also be very easily
interfaced without modification to any computer system equipped
with a RS-232 port. For example, an IBM-PC could easily control
the tape drives, allowing tapes for machine control applications

to be written.

CONCLUSION Page 8-2

8.3. System Performance

As may be expected the performance of the tape controller units
in terms of speed is totally overshadowed by the transfer time of
the serial link. This transfers approximately 1000 characters per
second, a rate considerably below that of conventional mass
storage devices. As was explained in chapter 1, it 1is intended
that the controller should be modified to allow operation on a
local area network, which will increase this transfer rate by
several orders of magnitude. Special provision was made in both
hardware and software to ease this modification. Until the LAN is
implemented however the transfer rate of the controller
significantly reduces the wusefulness of the controller. Two
techniques were considered to improve the transfer rate of the

controller as it stands. These were the following :

8.3.1. Increase the baud rate of the serial channel from its
current 9600 to 19200 baud. This may be done relatively
simply, and doubles the transfer rate, but requires hardware
modification to the PDP-11 serial interface. A suggestion to
this effect was not greeted with enthusiasm by the system

manager, and hence this was not pursued.

8.3.2. Some form of data compression could be used on the
serial link. This was rejected, as a rough analysis of data
transferred on the 1link suggested that the increase in
transfer rate would be less than 5%, at the expense of a
considerable increase in the size and complexity of the

PDP-11 device driver.

CONCLUSION Page 8-3

8.4. Software Engineering Aspects

The structure of the tape controller software was chosen in the
previous chapter in order to minimize programming effort. This
was justified by reference to the basic COCOMO model, which
predicts programming effort in terms of lines of code. It 1is
instructive to now calculate the theoretical effort based on this
model. In this case the semidetatched model of software
development is most appropriate. In total the tape controller
software (note that this excludes the device driver) consists of
approximately 3200 1lines of software, implying a nominal
development time of 11 man-months. If the software is assumed to
be developed in embedded mode then this figure rises to 15 man-
months. The actual figure, as estimated by the author, was
approximately 4 man-months. In fact these figures are less
significant than may be though at first sight. Firstly, it 1is
difficult compare figures from a model developed for commercial
use to figures obtained for an academic project, and secondly the
basic model used to obtain these figures is not particularly
accurate. Considerably more accurate forms of the COCOMO model
exist, but are difficult to apply in this case, as they would
require the author to asses his own competence as a programmer, a
task the author declines. It can however be said that the effort
was at least certainly not greater than average, and probably
considerably 1less. In the author's opinion however a more
significant factor in this lower than average effort was the

installation of the Pascal run-time system in the target system.

8.5. Installation of the Pascal run-time system.

The installation of the Pascal run-time system was explained in
the previous chapter, and the advantages of this discussed at

length. Of necessity an evaluation of its usefulness must be

CONCLUSION Page 8-4

subjective, but a single example will serve to illustrate the
value of the run-time system. Approximately two thirds of the way
through this project a new version of the Pascal compiler was
installed on the Intellec development system. Needless to say,
the author's program immediately ceased to operate on the target
system. This was in fact as a result of two flaws in the Pascal-
86 aompiler. The first of these resulted 1in the compiler
generating invalid object records (this is described more fully
in appendix H) and was fairly easy to find as absolutely no code
functioned. This meant that the problem could be found from a
very simple program which did not make use of the Pascal library
(in fact a program consisting of a single instruction!). The
second problem could however have been considerable more complex,
and involved the program failing only when run-~time library
functions were used. The problem was in fact an undocumented call
to the memory allocation routines, which resulted in an immediate
error if no memory was available. In this case the cause of the
problem was immediately evident as the error handler provided an
error message with a status code signifying a memory allocation
error. If however no run-time error handling was available the
tape controller would simply have crashed, for no explicable
reason, immediately the program was run. The author would then
have been faced with a program which could run on the development
system, but simply failed without providing any output on the
target system. Although this is not a common fault, without the
installation of the run-~time system it would have <caused
considerable trouble. In the author's opinion the installation of
the LRS more than repaid the effort involved in it, considerably

aiding in the debugging of the tape controller software.

REFERENCES

1. IBM 2400-Series Magnetic Tape Units Origional Equipment

Manufacturers' Information, IBM Form 226862-4.

2. "USA Standard Recorded Magnetic Tape for Information
Interchange (800 CPI, NRZ1)", United States of America Standards

Institute.

3. Siewiorek, D.P. and Swarz, R.S.: "The Theory and Practice of

Reliable System Design", Digital Press, 1982.

4. Lin, S. and Costello, D.J. Jr: "Error Control Coding :

Fundamentals and Applications", Prentice-Hall, 1983.

5. Wiggert, D: "Error Control Coding and Applications”, Artech
House, 198l1.

6. "Mod 10 NRZI Magnetic Tape Transport : Operation and

Maintenance Manual", Wanco, Publication 200237 P, June 1976.
7. "Model 6X60 Synchronous Write Synchronous Read Tape
Transport", Operating and Service Manual No. 101133, Pertec,

1971.

8. "Recomended Microprocessor Bus Standard For South Africa",
National Electrical Engineering Research Institute, NERI/Ko/l1/78,
Issue 2, 7 May 1979.

9. "SABUS - the SA uP bus standard", Pulse October 1984.

10. "iAPX 188 High Intergration 8-bit Microprocessor", Intel Data
Sheet 210706-001, Intel Corporation, 1982.

11. "Introduction to the 80186", Intel Application Note,
contained in Microsystem Components Handbook, Intel Corporation,
1984.

12. "iAPX 86/88, 186/188 User's Manual", Vol.l Programmer's
Reference, Intel Corporation, May 1983.

13. Neubig, B: "Technical Information : Design of Crystal
Oscillator Circuits", Special 1Issue of VHF Communications,
Edition 3/1979 and 4/1979.

14. Zimmermann, H: "OSI Reference Model - The ISO Model for Open
Systems Interconnection", IEEE Trans. Commun., vol COM-28, April
1980.

15. Tanenbaum, A.S.: "Computer Networks", Prentice-Hall, 1981l.

16. "RSX-11lM Version 4 Executive Reference Manual", Digital

Equipment Corporation, 1980.

17. "IAS/RSX-11] 1I/0 Operations Reference Manual", Digital
Equipment Corporation, 1981.

18. "RSX-~11lM Guide to Writing an I/O Driver"”, Digital Equipment

Corporation.

19. Boehm, B.W.: "Software Engineering Economics", Prentice-Hall,
1981.

20. Parnas, D.L.: "Designing Software for Ease of Extension and

Contraction", IEEE Trans. Software Engineering, March 1979.

21. "Pascal-86 User's Guide", Intel Corporation, 1983.

22. "Run-Time Support Manual for iAPX 86,88 Applications", Intel
Corporation, 1982.

23. Perez, A.: "Byte-Wise CRC Calculations", IEEE Micro, V3 N3,
June 1983.

24. "Kennedy Model 9700 Magnetic Tape Unit Operating Manual",
Kennedy Corporation, Publication number 106-9701-700A.

25. "Argus 500 Computer System Hardware Technical Manual (Cover
3, Part 4)", Ferranti Limited, 1979.

26. "Magnetic Tape Coupler Model T04/C", Dataram Corporation,
Publication number 06133.

27. "MECL High Speed Integrated Circuits", Motorola inc., 1978.

APPENDIX A

TAPE CONTROLLER USER'S GUIDE

This appendix contains information required to operate the tape
controller both as a peripheral of the PDP-1l1l computer, and as a
stand~-alone device. The appendix consists of four sections, the
first of which contains general information on the controller,
and the second of which contains information reguired to load the
PDP-11 device driver onto the PDP-11. This information is only
required by the system operator. The third section contains
information on the use of the tape controller as a peripheral of
the PDP-11 for the general user. The fourth and 1last section
describes the operation of the controller as a stand-alone
device. Knowledge of this section is not required to operate the

controller as a PDP-11 peripheral.

NOTE. Information presented in this appendix is correct as at 23
June 1986.

User's guide Page A-2

1. General Information

l.1. The tape controller can operate in one of two modes: remote
mode (controlled by a host system) or local mode (controlled by
the user on a local terminal). Operation in these two mode 1is

mutually exclusive, in order to prevent access conflicts.

1.2. For both local and remote mode, logical unit numbers are
used. The upper unit in the rack is unit 0, and the lower unit is

unit 1.

1.3. For any tape operations to occur the unit in gquestion must
be loaded and on-line. Procedures for achieving this vary from
unit to unit. Consult the relevant operating manual for this and

other information specific to each individual tape transport.

l.4. As currently configured, the tape controller software is in
the form of a hex file which must be down loaded before any other
operation 1is performed. This may be most easily achieved by
making use of the PDP-11 serial channel used for data
communication. Note however that this is only possible before the
channel has been reconfigured to operate as a data link. The
physical connection to achieve this is exactly the same as for
the data 1link, and 1is described 1in section 2. Assuming this
connection to be in place, then the following command should be

used :

PIP TT2: = DL1:[100,34]admtcn.hex

User's guide Page A-3

2. Physical Interface

2.1. Interface to the tape transports. The following connectors

are used for interface to the tape transports :

Card 1 J4 Write data.
Card 1 J2 Control.
Card 2 J2 Read data.

Card 1 J3 is connected to card 2 J3.

2.2. Serial Interface channels. The serial interface channels

both come from the CPU card. They are connected as follows :

Channel O Data link to host system. In the
current configuration this goes to
TT2: on the PDP-11l. Note that
channel 0 is identified by a red
band on the ribbon cable leading to
the RS-232 connector.

Channel 1 This 1is connected to the 1local
terminal. Note that this connection
is not required for operation 1in

remote mode.

3. Loading the PDP-11 Device Driver

3.1. Note that if the tape <controller software 1is to be
downloaded via the PDP-11, then the down load must be performed

before the device driver is loaded.

User's guide Page A-4

3.2. The following example contains the complete load sequence,
as seen on the user's terminal (user inputs underlined). Note
that this must be performed from a privileged terminal. The (ESC)

shown below represents a single ESC character.

3.3. Example

Jope 350

000350 /117034 2744
000352 /000342 0
000354 /116760 2744
000356 /000342 0
000360 /117034 (ESC)
)loa ma:

)

3.4. Use of a different PDP-1ll serial 1line. As currently
configured the device driver can make use only of serial line
TT2. In order to use a different serial line on the PDP-11 the

following steps must be taken.

3.4.1. The device driver data table must be modified to
represent the the new base address of the serial port in
question, as well as it's associated interrupt vectors. This

information is stored in the SCB.

3.4.2. The sequence shown above must be modified so as to
set the interrupt vector of the new serial 1link to the

nonsense vector. Thus the OPE 350 above must become OPE XXX,

User's guide Page A-5

where XXX 1is the interrupt vector of the serial port in

question.

4. Using the controller in remote mode

4.1. The device driver is known as MADRV, and the tape transports
are MAO: and MAl:.

4.2. Operation of the tape units once the above load sequence has
been completed is essentially identical to that of a conventional

tape drive. There are however two exception to this :

4.2.1. The utility programs BRU and FLX do not function in
conjunction with MADRV. This is discussed in detail in the

main text.

4.2.2. MADRV provides an additional error message. If the
data link is broken, or is not reliable enough to allow
error free transmission, then the error code IE.TMO will be
returned. Note however that certain utility programs may

also return a device-not-ready message, rather than IE.TMO.

4.3. Example. In the following example a blank tape 1is
initialized with a volume name of test, the tape is mounted as a
FILES-11 device, a file copied to tape and finally a directory of

the tape obtained. User inputs are underlined.

User's guide Page A-6

Jmou mal:test
)pip mal: = [100,34]Jclean.cmd

)dir mal:

Directory MAl:
20-JUN-86 14:28

CLEAN.CMD i1 1. 20-JUN-86 00:00

Total of 1./1. blocks in 1. file

4.4, Possible error messages.

The PDP-11 may return the following error messages (All

numeric values are in octal).

IE.FHE (305) The wunit was not ready, or a
catastrophic hardware error
occurred, so preventing the

operation from being attempted.

IE.BBE (310) A bad block was encountered, and

the error was not recoverable.

IE.ABO (361) Operation was aborted on the

request of the user.

IE.DAO (363) Data overrun. A block which was
read in was larger than the the

stated size.

IE.WLK (364) A write operation was attempted on

a unit which was either physically

User's guide Page A-~7

write-~locked, or had the write-lock

bit in the status word set.

IE.SPC (372) Illegal buffer size. A byte count
of less than 8 was specified for a
read operation, or a byte count of

less than 14 for a write operation.

IE.VER (374) Irrecoverable parity or CRC error.
IE.IFC (376) Illegal function request.
IE.TMO (241) Time out on request. This |is

returned 1in the event of a data

link failure.

5. Operation in local mode

5.1. Information common to all local mode operations :

5.1.1. Local operations mode is an interactive, menu driven
system which enables the user to examine, modify and copy
tapes without host intervention. Diagnostics information may
also be obtained, and various aspects of the operation of
the controller configured. Note that it is not necessary for
connection to be made to a host system for operation 1in

local mode .

5.1.2. Any numeric value may be entered in any one of five
formats :

5.1.2.1. Hexadecimal. Hexadecimal numbers are

terminated by an 'h' or 'H' character.

User's guide Page A-8

5.1.2.2. Octal. Octal numbers are denoted by
termination by one of the following characters : 'o',

lol, lql or IQI.

5.1.2.3. Binary. Binary numbers are denoted Dby

termination with either a 'b' or a 'B'.

5.1.2.4. Decimal. A decimal number 1is denoted by a
number with no special terminating character (the

number ends in a valid decimal digit).

5.1.2.5. Character literal. The ASCII value of a
character can be entered as a numeric parameter if it
is enclosed by double quotes eg. "t". Note that while
all other numeric input formats are 1insensitive to

case, character literal input will preserve case.

5.2. Entering local mode. Local mode is entered by transmitting a

carriage return character from the local terminal. The user 1is

then prompted by a series of menus. Each of these menus will now

be described.

5.3. Local mode main menu. The main menu displays immediately

that local mode is entered, and is shown below :

1.

2.

LOCAL MODE MENU

Copy an unformatted tape.

Copy an ANSI formatted tape.

User's guide Page A-9
3. Erase a tape.
4. System functions.
5. Enter local tape operations mode

6. Return to remote mode.

Input your selection (1..6):
These menu choices have the following functions :

5.3.1. Copy an unformatted tape. The user is prompted to
mount a source and destination tape, and then a block by
block copy operation is performed. Each block is verified
after it has been written. The copy operation halts on
encountering a double tape mark, and should be used for
tapes which are not ANSI formatted. Once the operation is
complete both tapes are rewound. Information as to the
number of blocks and tape marks copied are displayed while

the copy is in progress.

5.3.2. Copy a formatted tape. This option performs a very
similar function to the above option, but copies ANSI
formatted tapes rather than unformatted tapes. In this case
the copy operation terminates on encountering an tape mark
preceded by an EOV block. Note that as currently configured,
UCT's PDP-11 system produces ANSI formatted tapes.

5.3.3. Erase a tape. The user is prompted for the unit
number on which the tape is mounted. The tape 1is then

rewound, erased to the EOT tab, and then rewound again. Note

5.4.

below

1

2

3

User's guide Page A-10

that this destroys all information on a tape, and cannot be
used to erase from the current tape position to the end of

the tape.

5.3.4. System functions. This option allows the user to
configure certain aspects of the tape controller's
operation. The system functions menu is displayed. This is

discussed below.

5.3.5. Local tape operations. This option allows the user to
selectively modify the contents of a tape mounted on either
unit, as well as to obtain diagnostics information. The
local operations menu 1is displayed. Local operations are

discussed below.

5.3.6; Return to remote mode. Once this option has been
selected, the controller is once more under the control of
the host system. The controller can be returned to local
mode by pressing the carriage return key on the local

terminal.

System functions menu. The system functions menu is shown

SYSTEM FUNCTIONS MENU

. Set data link baud rate.

. Set terminal baud rate.

. Set terminal type.

User's guide Page A-11

4. Set tape unit characteristics.

5. Enable block diagnostics.

6. Disable block diagnostics.

7. Enable frame diagnostics.

8. Disable frame diagnostics.

9, Return to local mode menu.

Input your selection (1..9):

These menu choices have the following functions :

5.4.1. Set data link baud rate. If this option is selected,
a menu of baud rates is displayed. This option is provided
primarily in case the system is to be used in conjunction
with some other host computer, for example via a telephone

line.

5.4.2. Set terminal baud rate. This option functions
identically to the above option, but sets the terminal baud
rate. This is provided for terminals which cannot support
the default 9600 baud. This could for example be used to
interface to a printing terminal in order to provide hard

copy of tape contents.

5.4.3. Set terminal type. Before a menu is displayed the
terminal screen is cleared. This option selects the terminal

type in use in order select the appropriate control codes.

User's guide Page A-12

If the terminal in use is not listed in the displayed menu
then the final choice, 'Other', should be used. This outputs

no control codes. The default terminal type is Perkin Elmer.

5.4.4. Set tape unit characteristics. This option is
provided in order to modify the timing characteristics of a
tape transport connected to the controller. The following

values are prompted for.

NOTE. These values should be modified only after studying
the information pertinent to tape formats presented in the

main section of this document.

5.4.4.1. Master clock. This value sets the period of
the master character clock. The character clock is the
multiple of the tape bit density in bits per inch
(always 800) and the tape speed in inches per second.

This value is in units of 200 nS clock increments.

5.4.4.2. Short gap count. This value sets the counter
which detect the gap in read strobes which occurs
between the data characters and the check characters
when a block is read. The value chosen must be large
enough to prevent the detection of a gap in the event
of normal variations in bit density, but must be small
enough to always detect the gap in question. This is
normally set to two character spaces. This value is in

units of 200 nS clock increments.

5.4.4.3. Long gap count. This value sets the counter
which is used to detect a gap between read strobes long
enough to indicate that the present block (or tape

mark) is complete. This is normally set to a least 12

User's guide Page A-13

character spaces. This value 1is in wunits of 200 nS

clock increments.

5.4.4.4. Normal start gap length. This is used to set
the time delay from initiating tape motion to writing
the first character for write operations. This value is
in character clocks, and is obtained from the tape

transport's manufacturer.

5.4.4.5. Long start gap length. This is used to set the
time delay from initiating tape motion to writing the
first character for write-with-long-gap operations.
This value is in character clocks, and is obtained from

the tape transport's manufacturer,

5.4.4.6. EQF start gap length. This is used to set the
time delay from initiating tape motion to writing the
first character for write tape mark (EOF) operations.
This value is in character clocks, and is obtained from

the tape transport's manufacturer.

5.4.4.7. Read start gap length. This is used to set the
minimum gap from initiating tape motion to when read
characters may be expected. This value is not critical,
and is normally set to approximately a quarter of the

value used for write operations.

5.4.4.8. Stop gap length. This value sets the gap from
the last character to be written for write operations
or, in the case of read or space operations, from the
detection of the end of the block to the removal of the
tape motion command. This, in conjunction with the

start gap value, sets the inter-block gap length. This

5.5.

below

User's guide Page A-14

value 1is in character clocks, and is obtained from the

tape transport's manufacturer.

5.4.5. Enable block diagnostics. Selecting block diagnostics
results in the tape controller displaying the contents of
the various fields in each command block which it receives.
Note that the data field 1is not displayed, but that the
status of the tape unit after the operation has completed is
displayed. A description of the fields in command blocks may
be found in appendix D. This option is supplied to ease the
task of interfacing the tape controller to another host
system. Note that the tape controller must be returned to

remote mode before it will respond to any incoming blocks.

5.4.6. Disable block diagnostics. The block diagnostics

system described above is disabled.

5.4.7. Enable frame diagnostics. Selecting frame diagnostics
results in the tape controller displaying the contents of
the various fields (other than the data) in each frame which
it sends or receives. A description of all possible frame
types and fields may be found in appendix D. This option is
supplied to ease the task of interfacing the tape controller

to another host system.

5.4.8. Disable frame diagnostics. The frame diagnostics

system described above is disabled.

5.4.9. Return to local mode menu. The local mode main menu

is displayed.

Local operations menu. The local operations menu is shown

User's guide Page A-15

LOCAL OPERATIONS MENU

. Select a unit.
Read a block into the local buffer.

Write the local buffer to tape.

Write to tape with a long inter-record gap.
Write an EOF mark.

Space blocks forward.

Space blocks reverse.

Set the read threshold high
9. Set the read threshold low
10. Rewind.

11. Set unit off-line.

12. Display the local buffer.
13. Modify the local buffer.

R N 00 o W

14. Display local buffer diagnostics information.
15. Change the present buffer size.
16. Exit to the main menu.

Unit 0 status : On line, at BOT

Input your selection (1..16):

5.5.1. All local operations have several features in common :

5.5.1.1. A status line is displayed at the bottom of the
local operations menu. The information in this 1line 1is
updated after each menu selection. The following messages

can appear on this line :

5.5.1.1.1. Unit number.

User's guide Page A-16

5.5.1.1.2. Either On-line or Select error. If the unit
is not on-line, then the select error message will be

displayed.

5.5.1.1.3. At BOT. This message is displayed if the
selected unit is at the BOT tab.

5.5.1.1.4. Past EOT. If this message 1is displayed then
the unit is past the EOT tab. This is reset once the

unit has returned past the EOT tab.

5.5.1.1.5. Rewinding. The unit is rewinding. Note that
the next command can be entered while this message 1is
displayed. The command in gquestion will be delayed

until the rewind operation is complete.

5.5.1.1.6. Time error. This is a time-out condition. It
occurs on read or space operations when no read strobes

are detected for approximately 12 inches of tape.

5.5.1.1.7. Parity error. A parity error was detected on

a read operation.

5.5.1.1.8. CRC error. The CRC check on a block read in
failed.

5.5.1.1.9. Length error. The block to be read in was

too large.

5.5.1.1.10. DMA error. This is a hardware error, and
can result either from incorrect timing parameters, or

a corrupted tape block.

User's guide Page A-17

5.5.1.1.11. Write locked. The write enable ring is not

installed on the tape mounted on the selected unit.

5.5.1.2. All operation refer to the selected unit. A unit is

selected by option 1 in the menu, to be described later.

5.5.1.3. All operations involving data transfer refer to the
local buffer. This buffer also has associated with it a
length, which is normally set by the most recent read
operation, but may be manually changed. On initial entry
into the local operations menu the buffer is initialized to

contain a test message of length 16.

5.5.2. The following operations may be performed :

5.5.2.1. Select a unit., The user is prompted for a valid

unit number. All subsequent operation refer to this unit.

5.5.2.2. Read block. The next block of data on the selected
unit is read into the local buffer. Note that the buffer
size is set to maximum prior to the read. Note that reading

a tape mark will corrupt the contents of the local buffer.

5.5.2.3. Write block. The local buffer is written to tape.

5.5.2.4. Write block with 1long gap. The 1local buffer is

written to tape with a long inter-record gap.

5.5.2.5. Write EOF. A tape mark is written to tape.

5.5.2.6. Space blocks forward. The user is prompted for the

number of blocks to space. The operation is then executed.

User's guide Page A-18

Note that the space operation terminates on encountering a

tape mark.

5.5.2.7. Space blocks reverse. The same conditions as for

the above operation apply.

5.5.2.8. Set the read threshold high. The read threshold of
the selected tape transport may be set high in order to
verify a previously written block. Note that the normal

setting is low.

5.5.2.9. Set the read threshold low.

5.5.2.10. Rewind. The tape on the selected unit is rewound.

5.5.2.11. Set the unit off-line. The unit is set off-line.
No further operation can be performed until the tape

transport is set on-line by the operator.

5.5.2.12. Display the local buffer. The hex value of the
characters, as well as their ASCII representations are
displayed. Note that characters which are not printable are

denoted by a period ('.').

5.5.2.13. Modify the local buffer. The user is prompted for
the location of the first character to modify. Note :
Numbering starts at 0. The current value of the character is
displayed, and the user is prompted for the modified value.
This process then continues for the rest of the buffer, or
until the user inputs an invalid value. Note that a carriage
return causes the next character to be displayed without

changing the current character.

User's guide Page A-19

5.5.2.15. Display diagnostics information. This displays the
characters in the local buffer, together with the following

information :

5.5.2.14.1. Whether or not a parity error occurred when

the character in guestion was read in.

5.5.2.14.2. The state of the format recognition module
after the character was read in. This information is
important when setting the tape transport in gquestion's

timing parameters. The following state wvalues can occur

5.5.2.14.2.1. State 1. The first character in a
block, and no other, should have a state value of
l. This denotes that both the tape controller
detected both a long and short gap prior to the

character.

5.5.2.14.2.2. State 2. The rest of the data
characters should be of state 2, denoting that no

gap was detected prior to the character.

5.5.2.14.2.3. State 3. The first check character
should have a state value of 3. This denotes that
a short gap was detected prior to the character's
read strobe. If no error has occurred, then this
character 1is the first check character in the
block. Note that this check character is
automatically displayed as the final character in

the block when displaying diagnostics information.

User's guide Page A-20
State values other than these, or these state values at
invalid positions in the block, indicate either
incorrect timing parameters or a corrupted block. Note

that valid diagnostics information can only be obtained

directly after a read operation.

5.5.2.15. Change the local buffer size. This option is used
to change the length of the local buffer. This is typically
required in order to write a block which is either shorter
or longer than the current block block 1length, for

diagnostic purposes.

5.5.2.16. Return to main menu. This return to the main local

mode menu.

5.5.3. Example. The following example shows the first block on

unit 1 being read into local memory (user inputs underlined).

To return to local mode hit return

LOCAL MODE MENU

1. Copy an unformatted tape.

2. Copy an ANSI formatted tape.

3. Erase a tape.

4. System functions.

Input

O O 3 600 b W N+
L]

—
(@]

11.
12.
13.
14.
15.
ls6.

Unit 1

Input

User's guide

Enter local tape operations mode

Return to remote mode.

your selection (1..6):5

LOCAL OPERATIONS MENU

Select a unit.
Read a block into the local buffer.

Write
Write
Write
Space

Space

the local buffer to tape.

to tape with a long inter-record gap.

an EOF
blocks
blocks

Set the read
Set the read

Rewind.

mark.

forward.
reverse.
threshold high
threshold low

Set unit off-line.

Display the local buffer.
Modify the local buffer.

Display local buffer diagnostics

Change the present buffer size.

Exit to the main menu.

status

: On line, at BOT

your selection (1..16):2

LOCAL OPERATIONS MENU

Page

information.

1.
2.

4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.

Unit 1

Input

User's guide Page

Select a unit.

Read a block into the local buffer.

Write the local buffer to tape.

Write to tape with a long inter-record gap.
Write an EOF mark.

Space blocks forward.

Space blocks reverse.

Set the read threshold high

Set the read threshold low

Rewind.

Set unit off-line.

Display the local buffer.

Modify the local buffer.

Display local buffer diagnostics information.
Change the present buffer size.

Exit to the main menu.

status : On line
Read block size : 80

your selection (1..16):

A-22

APPENDIX B

CIRCUIT DIAGRAMS : CPU CARD
The CPU card consists of the following subsections

l. CPU. The CPU (U7) is an 80188-6. This is the 6 MHz version of
the device. Although an 8 MHz version of the device exists, and
would be better suited to this application, this was not
available at the time of purchase. The clock to the chip is
provided by a 12 MHz crystal and the device's internal
oscillator. Ull and its associated circuitry provide
synchronization of the ready line from SABUS, as well as ensuring
that timing margins are not violated when an external device

releases a bus hold.

2. SABUS interface. Ul, U2 and U4 latch the CPU address and drive
both the 1local and SABUS address lines. U8 provides control
signals to SABUS, and is disabled by UlO in the event of a local
bus access. U8's control lines are tristated in the event of a
bus hold. U5 drives the SABUS data lines, and is controlled by
U8's bus control 1lines. Ul3 divides the CPU clock down to a
frequency compatible with SABUS cards, and U6d provides drive to
the SABUS reset line.

CPU CARD Page B=-2

3. EPROM storage. Ul4, Ul5, Ul6 and Ul7 form the EPROM storage
for the card. Ul5, which contains the boot code, is enabled by
the CPU's UCS line. This UCS line is the only chip select 1line
which is active when the CPU is reset. All the other EPROMs are
selected by MCS lines.

4. Serial ports. Ul8 and U2l are the serial interface chips, and
Ul9, U20, U22 and U23 provide the RS-232 conversion function. UlS8
is selected by PCSO and U21 by PCSl. The baud rate for serial
port O is set by the TO output of the CPU and that of serial port
1 by the Tl output. The receive and transmit interrupts of both

ports are connected to individual interrupt inputs on the CPU.

-
w
wC
g -
“

Do ; 2 AQ
w7 ue - p— A
oXB0__ Haoo 2 MROC] L n';-g 30 3 ﬁ, o ul’%“— —- ¥Ry i-c1g
ol 13any ckour |28 K MWICp w o}D; o 4 Ao ol w2 1-A18
XD2 3 aMwrc pd— i 50 5 =0 J N1-C20
1253 AD2 & 19 3 1 oXD A 10w W
ol03 N ap3 sop3 SO IORC p¥———jay 0 { 3|50 6 A8° > J1-A20
X4 ¢ ‘st 2dst owc pil —— 10w, : 07 o
olp I sip i 3 Xb A7
g 0 ADS s2p S2 AIOWC P of a0 8 a
Y07 7]AD8 C wra bl .3
7Y 8]A07 ucspi | oPSse___ 3 —8daen n uh0 480, 5 10
o A8 Lcsp oLz 3 1 Al TAB
oXA9 4.0 MCSO MCSo PG 4 '8 pI/R 3 J1-C1o
s T T Y A 51 B - AR (FE
o AN ucs2P3z oy : 1o MELS o AB3S n-a12
o A12 MCS3p ! U2 AS AB5
XA|3 \ PCSO MCS2 — 288 Deg-—— ydN-ci2
o A3 PCSOP45S 519 oy 8 15373 A8 A
XAT4 D27 PCSI UCS1 i oh8 ____AB3Y 4 a3
Lot A4 PCSIP <5 0 oucsd A Al A AB?
XAl MS pcs2pag—FSS%a | oMCSO) o o} A82 a8 A8) 113
A10 Blata/se posip PCS3, nid 0 2 a oL 282 N-Al4
A7 = p o XA b 3 A0, oD ABYY G, ri4
o A17/55 +8v A " Al AD AB103
oXA18 [A18754 ARDY}33 J . 4 4 a L1~ » N-A1S
: R7 A A1 A ABI1
XA19 5 49 U1t n 50 S a o 32 1-C18
a © A19/S3 SRDY 330 nXAL 0 8 A3 oAl __Mi.g_éﬂ)‘n_”a
226F 59}, REserT 192, RES 'dor 30)8 i WAIT 3 h_ea oAl N0 7 Mia ofly-— Q8 n-cie
! usD of . 3@ e g0 8 fa ogig—pisl A7
i 12 1 pClk ‘D"m‘-) G OE ol $u-c17
c2 W = T o ;g“D SN =N IRg oAl 7
22pF 2lia 501’4 ol
5 3 T A
= L wio 43 NTO C3o e J Y,
INT7 |32 LI 20 60p> L
47 2 2
{rEsT T2 o 5174 u4
s w3 4 NI3 , L5373
" +5V o : 2 D1 Mea
3R CR1 wbEl X a8 ofd 20 2 aa?
2o 220 FiNds . R0 b8 XRD +av %330 O3AID - 195
¢ 22 100 $RS K 1 3 sol'?
dos +sv MR OUT 013y ToT 2 $ 330 ° 1
-2 10u $R2 —— 0 g :: ¥4
. $330 use - L 8 > N-A27
$Amar w0 51 s vI3A 14 v138 lto u3sc 3
TMR IN 1 HLDA i - F s #19 [} T
43-33 '8 so a
¢ D
¢ DROO HOLD D 74 l Ls74 o
W 19 {48, 3 o s | p cik 5 n-are
¢ DRQY Cr 9 [L4r E 1 uso
i 3 1
- T oRES ____ n§ V. RESETy 4 g
o
3 I
n-craeNd -
us N
otes Signature | Date
DO 2 8 00) D8O
+5V oD At BT 0 Q > h—A2 Dot
ol a2 B2 D14 ob! ggj%Jl—CZ 1. Olmentions b ihehes.
R4 U3 olD A3 83 2 oB2 0825, .3 Titte
3 4, 1" o2 #1742 B4 a Y 3a-C3 2. Toler Drewn 801 88
on HOLD . o XD as % a5 ia a DBA S a4 meem
Ja-coz¢HOD 13 T AS & B5{1 - 4 a3
o X0 A8 4 a6l 30 e pae) N-C4 e CPU CARD
ofD8 27 " a7l 2o e 2a3) n-AS o am e
HOLOA o X0 A8 B8 a ol 2Ly n-cs
N-A22 T DIR OEJ Anglos +- Ravision | Document Number
APPR.
oDIR . DEN, L
Scale - Sheat 1 of 3

HOMRICs N [

s

g
=]

T) >
pard

12

EE-E-X)

312> 12> (2

Y Py

Pl)?
00 10~ [ORI M | LA

o
>
(L rre®

i

ggon
13 1 {3 i
i

|

NN

L

nma 20
off0 224 ©
o0 19400
i; :12 TABLE 1
A3 [DEVICE_TABLE T
00, o ¥ R N :} polit X00 REFERENCE DEVICE POWER PINS 7]
XD1 AS 3 01 DESIGNATION TYPE GND [45V | 412V] =12V
xp2 ° oY A b1 X022
02, oA AB 02 o =
R °‘Ai 313 03 XD3 1 745373 Q 20
X04 ol 75 1,a D4 FOL DS 1537 0 g}
XD5 o) A9 47139 o3 X05 4537 7 1
3]
R e I Ll
o o) 3 Jan 07 L EAT] y
513 38 |12) 188-8 78, 6009, 3
T M Y (U8 208 0
o A4/PGM 0 FHRT 1 ;
[Tl 1S3] L
1] T4 5174
[7] HS7 1
] 764178 |11
MCS2 b :1' 145 2
o MCS2_
¥, 78
u1e 1 26
20 !&ﬁg 3 T Mg
o XRD nf, [U20 ;:5:‘\ y 14 1
o A0 104,0 7 MC1489A 7 |Z¥
a :q A X 14894 14
o A2
A
[A3
10, e BT [
x02 ° o A3 D1 X2 °
xof—o o ry A8 D2 %3 °
Bic o S B
XD? A 2 4 XD
Xo8 © 2510 21]*9 3 XD
3 o A1D 08 b
@ i AN D7 1q
ol 38 1A12
o A 3 37 A1)
o Al4/PGM
Notea Signature Date
Devigned

t.Omentlane h nehee. ¢ L

+ - e 80188
- - CPU CARD

Revision Document Number

1

Scale]Sheet 2 o1 3

Angloa ¢-

uisD

MC1489A U198 .
“'AL‘_‘DH“” — 2y i3 %T‘]L — “’“"’"’“—L—jDB
vz 2
= 15 INTO “:‘;“ McCia88
LK 20) 19C
ak _ Dok TXRDY Hg———0 0 RS0
j TE L4 I\ MC1489A u208
oLy ‘Hep 14 N 3 [N 6
oyrg———339CS RXRDY [t MC1488 uu?ﬁ» [_3D
By ———13dRD
L N [t o pid UIoA MC14806
X00__221p0 R1sp] DIRO
o 281, TR p2! 1) U314
¥D? o
o= D
; 8
oD D3 2314 uci4s
o308 C1489A
o s 703 3 Tt RDO
oXD¢ 08 RxD b ﬁﬂi——————————) 53-8
- o A B— vaza ! sav
RES 2 | |
S 18 ;

—3qmC SYNDET
a————{ 2dnic 1Y cTs0 I c4 l
——) B0 /
vaxc |? $:
MC1489A
4

DSRO
0y J3-11 +3v

5

\
e —5 o7 Lo L
£-13 .Lcu .Lcu J.cnlcﬂ ..Lcw c17 c18 c1e
J43-18 01 701 TT=04 "0 =04 =10 10
J3-28 [
U200 $
i3 (L B 1SS S
e uct1es H2V —12v
S T IR -, Tl
Al 12 TsE "‘IWD'————————L) 43-22 €20 ol C21
besi 11]C/P 14 NT3 Tlo 10
<qCS RxRDY p—————ao MC1488
XRD ,%ﬁ s . _
XWD
—a53 "R TxD P U20A
00 277 1S bl:‘
o X0! 0 H 2 DIRY, 1 20
ofB 7122 uCi4n8
o4 33 8251A
XD 14894
: o uc -
ol . Zloe RxD B%‘—f——-——w——w 1 3 BOVy 520
o X2 D07 CcT1s 7 vao |
RES) PSR
T svoer| 18 Mcuen Notes Signature | Dote
o——————f 253 Rl

T Designed
— 1314 3-24 1. Dimantiens I hehse.
u23c e Title

— = 80188
uct489A - : :: b — CPU CARD

B e e e =Y Y3 28
U2 |5 Aoglon +-

[~

Revisian Document Number

— |Sheet 3 of 3

APPENDIX C

CIRCUIT DIAGRAMS : TAPE INTERFACE MODULE

The module 1is composed of two SABUS cards. These cards are
connected via a 40 way ribbon cable of which two lines are also
connected to the CPU card. These are the DMA request lines.
Connection to SABUS is made only via the SABUS connector on card
1, with the connector on card 2 being used only as a mechanical
connection. This allows both cards to be simultaneously debugged
with only one extender card. Card 1 also has the write data and
control connectors to the tape transports, while card 2 contains
the read data connector. Note that in the description which
follows all components on card 1 have a number beginning with 1
(eg. Ul0l) and all components on card 2 have a number beginning
with 2 (eg. U201).

1. SABUS interface. The SABUS interface's function is to
provide address decoding, as well as buffering for the data
bus and control lines. Ul02, Ul03 and Ul04 decode the base
address of the module, while Ul07 and Ull8b provide enable
lines to each addressable device in the module. The base

address of the module is wire-wrap selectable. Ul0Ol is the

TAPE INTERFACE MODULE Page C-2

data bus buffer. All of the components related to the SABUS

interface are located on card 1.

2. Output buffers. The output buffer section of the module
provides both buffering and 1latching of signal to be
outputted to the tape transports. All of these devices
reside on card 1. This section may be further subdivided

into three subsections :

2.1. Data output latches. These latches, composed of
Ull3 and Ull9, latch the output data to the tape
drives. The eight data bits are latched by Ull9, and
the parity bit as well as the two strobe enable bits
(as described earlier) are latched by Ull3. The data
and parity bits are buffered and transmitted to the
tape transport, while the strobe enable bits are gated
with signals from the timing generator to provide write
and write-reset strobes to the transports. Data
transfer to these 1latches 1is by DMA, as described

earlier.

2.2. Configuration latch. This latch, Ull7, sets the
configuration of the module. It has the following

outputs :

2.2.1. Drive select lines. Two bits are used to
select the tape transport. These lines are decoded
by Ull8a, a two to four 1line decoder. The
resulting one of four select lines are buffered

and used to select the appropriate tape transport.

TAPE INTERFACE MODULE Page C-3

2.2.2. Count select lines. These two lines are fed
to the timing section of the module, and will be

described in a later section.

2.2.3. Forward/reverse select 1line. This 1line

selects the direction of tape motion.

2.2.4. Read/write select line. This line selects
whether a read or a write operation is to be

performed.

2.3. Command output latch. It is the function of the
command output latch to provide signals to the module
which may be used to drive edge sensitive inputs. In
order to achieve this a bit addressable latch is used,
so as to allow only one bit at a time to be updated
without raising the possibility of unwanted transitions
on any other bit. This latch, Ul08, provides four edge
sensitive signals (SWS, RWC, OFFC and RTH) direct to
the tape drive as well as a GO (start operation) and a
board reset signal to the rest of the module. The
output of the latch are reset to a logical zero by the
SABUS reset signal, which sets the board reset active,
and all other sighals inactive. This prevents the
module from generating any unwanted signal during power

up.

3. Input buffers. The input buffer and latch section resides

on card 2, and consists of two subsections :

3.1. Data input buffers and latches. U203 latches data
from the tape transports, while U204a latches the
parity bit. U201 buffers this bit onto the data bus, in

TAPE INTERFACE MODULE Page C-4

addition to several status bits. These status bits
include state information from the format recognition
section, and a bit from the DMA section which indicates
the occurrence of a DMA error. It should be noted that
these status bits are not latched by the RDS strobe, as
the state of the format recognition module after a
character is read in, rather than when it is read in,
is required for check character recognition. This
status information is stored for each character which
is read in. Transfer from both these buffers is always
by DMA, as is that of the output data latches.

3.2. Status input buffer. This buffer, U202, buffers
several lines which are taken directly from the tape
transports, as well as two signals from the timing
module itself. These signal are a run signal, which
indicates whether the module is executing a command,
and an EOF signal, which indicates that a tape mark was

passed during the process of the last command.

4., Format recognition section. The function of this section,
which resides entirely on card 2, was described above. It
consists essentially of a state machine, timing circuits and
state decoding logic. The state machine consists of three JK
flip-flops (U211lb, U2l17a and U217b) and their associated
gates. The state machine is clocked by the RDS strobe from
the tape transports, and has two inputs which indicate
timing information. These two input are SG (short gap) and
LG (long gap). SG 1is active when a strobe has not been
detected for two character clocks, and LG when a strobe has
not been detected for ten character clocks. Both of these
signal are generated by programmable timers (counters 1 and
2 of Ull0), so allowing operation with tape transport of

various speeds. U218c and U219c decode a signal denoting

TAPE INTERFACE MODULE Page C-5

that the tape head is over an inter-record gap, while U2l8a

and U219a detect the passing of a tape mark.

5. Timing generation section. This section generates signals
which require precision timing, such as the tape motion
signals and the write strobes. The timing section consists

of several sections :

5.1. Master clock. The master clock consists of Ql and
its associated components, which form a highly stable
10 MHz oscillator. The circuit is a Colpitts
oscillator, which was chosen above logic gate
oscillators for its superior accuracy and start-up
performance [13]. Ull2A divides this signal down to a 5
MHz square wave, which is used to derive all other

module timing.

5.2. Character clock generation. The character clock is
generated by dividing the master clock by a
programmable ratio. This division is done by counter 0
of U110, and the pulse width of the resulting signal is
set to precisely 2 uS by Ulll. This signal is used to

generate write strobes, as well as for timing purposes.

5.3. Start counter. This counter (counter O of Ul05)
sets the delay from the start of an operation to the
beginning of the count phase of the operation. This
only has real significance in the <case of write
operations, when this is when the first character is
written. For all other operations this counter,
although still in the timing chain, is set to a small
nominal value. The start of this timing period also
sets the run flip-flop, Ull2b. When this flip-flop is

set, tape motion 1is enabled, setting either the

TAPE INTERFACE MODULE Page C-6

synchronous forward command line or the synchronous
reverse command line active, dependant on the setting
of the forward/reverse status line described above. The
output of this flip-flop is also available for reading
by the CPU, to ascertain whether or not the operation
is complete. Note that this bit goes inactive when the
tape motion commands go inactive, but that the tape

motion has not yet ceased at this point.

5.4. Main counter. This counter, counter 1 of U105,
counts either write strobes, read strobes or blocks, as
defined by the count select line. The time during which
this counter is active is known as the count phase, and
this phase may be ended either by the counter reaching
zero or by a programmable end condition. This end
condition is programmed by the same count select lines
as the items to be counted. Both the selection of the
count and the selection of an end condition are done by
U220, which is a dual four way multiplexer. Three
combinations are valid for the count select lines.

These are as follows :

5.4.1. Count select of 00. This value selects the
counting of write strobes, and no end condition.
This is used for write operations, which always

end only when all characters have been written.

5.4.2. Count select of Ol. This value selects the
counting of read strobes, and an end condition of
encountering a inter-record gap. This is used for
read block operations, when the operation 1is
normally terminated at the end of a block (e.i.
when an inter-record gap is encountered) or when

some maximum number of characters 1is exceeded.

TAPE INTERFACE MODULE Page C-7

This last condition is an error, and the operation

is ended to avoid buffer overflow.

5.4.3. Count select of 10. This value selects the
counting of inter-record gaps encountered, and an
end condition of passing a tape mark. This is used
for space operations, where a specified number of
blocks must be spaced, and the operation must be

aborted on encountering a tape mark.

5.5. Stop counter. Once the end of an operation 1is
encountered, a delay must occur before the tape motion
command 1is deactivated, in order to ensure that the
tape head stops at the correct point relative to the
end of the last block or tape mark. This 1is
accomplished by counter 2 of Ul05, which resets the run
flip-flop on completion of its count, thus taking the
motion command lines inactive and informing the CPU

that the operation is complete.

6. DMA request generation section. This section generates
two DMA request signals which are passed to the CPU card.
U210b and U207b are set to request DMA cycles for the data
output latch and the parity and strobe information latch
respectively. Both of these flip-flops are set by either a
write strobe (including dummy writes) or by the GO signal.
The GO signal loads the data for the the first write into
the latches. The flip-flops are reset by a write to their
respective latches. U2lla and U2l0a perform a similar
function for the read data, but in this case the flip-flops
are set only by the read strobe. U204b and U207a detect DMA
overrun errors which occur in the event of a DMA cycle being

required before the previous cycle is complete.

+5v
Ré
220
v
v
Y1044
n-c17 (AR} 12 "o
V104c
n-ar7 ¢ 4814 ‘M’:I%) 8]
11048
sa-cre MBI —3’» >6
AB12 |U|04u
J1-A18 ¢ A 3
U104
N-C15 (»«55—’—‘—~—~~—v~——%§) >1|]
! V103¢
N-a1s ¢80 »:%)) >a
V103
N-C14 (»—Agg—~——r—%)) >6 .
U103a
N-A14 ¢ABS 2‘)5)1 _
1024
N-cr3 ¢AB? ;g\E " _
U102¢
N-A13 ¢ABE “"o) >a ,
V1026
[v~
V1020
J-Al .
n_ct 1 2o
Ji-C30 H:Vﬂ
JI-C3t ¢————F=T 0
--A32

J1-C32 é— —

+5V

R7 v
% K2 _U106f +12v u
- _*EDOHQ_MQ R2 l‘o mH +5v
18K o 1 RS
I 1K2 U106c
Cd R4 uu CB SPSob 10 MHz
< —— 1 A
V107 .L o cz“ 0,01 WBKZ %F
N1-c12¢ABS . Yo SELO 27pF "= 390pF i
N-A12¢A82 2hh ¥ L 3N
Sa-en ¢ n o Y docs b]#m:
Vo YA 10MH2 *T™100pF ¢ 1K
\ ol ¥Sp t
G2A Y8
DEN -‘ﬁ 628 Yipl L7 v
LS138
TABLE 1
EVCE TABLE e
REFERENCE EVICE POWER PINS
10t DESIGNATION TYPE GND +5V] +12v | ~12V
080 2 X00 T 745243 i0]
—A2¢ 8 A 2 :
-2 081 82 A2 io 2 L z :
N1-A3EHS B3 A3 i o3 Satise 3 ; 1
N-C3 a8 F[Ba oAl : 8251 12)
Ji- a4 O3 BS S AS s : 834 !
-4 282 31ps Y a6 X034 D167 74513
n-as (oo B7 " A7 XD8 10 L5138
n-cs¢8l B8 A8 —X07 , L——g_g jusg%s
U L.
DIR OF I 254
74LS181A
FHLS112A
48373 0)
U174 74,527
U108e ut08b "4 $07 y 1
1aelR U, 10 It xi 7453 7 1 T
N-A18¢ > Y >0t R q ; 45374 i IR ;
JHS138 3 .
V1084 U108a 745373 0 20 RN
ow 9[~..8 P2 XOW U120 740504 4 ST B
.n—A2o(~——————{ >0> j'>0* a 21 FHNS3 p] L.
U A b B 3 Y 4
J. 3 74! ;! y 4
4 24183 4 —
125 74L.S)). 4
+5V
.[cs .]-67 .Lcu .Lcs cio]..cn o T
-[O" TO" To" I 01 To" I 0.1 Notes Signature Date
T *$ T Dﬂlpo-;‘—
1. Dimantions hches S - -
Title
1 Tolerences Orown
"V 12V X% e TAPE CONTROLLER
-L -L xR - PER. CARD 1
c20 JLc21 I
Tlo _']"lo Angee +- Revision | Document Number
e APPR. 1 .
; r_,qi.__.ﬂ [N S — _._.L,S;;;;; U VI —. ,,Vﬁ_._._;
] - Sheat 1 of 3

FoWa o)

000

- MWRST 5 y3-37

u108
_ Ut
— Ui12e l‘ %01 14 Go_ v121d
_ 1‘_ R oXb2 OQ?F - 12—~ 1 SWS
5 2 U120e oYy i] U;L — e 22y 218
poLK 15 M~ 10 NWRST o a2y -
Ls112a RCO, {>o WRST o 3
3 odip X00 at S
. ———cl p 16 NBRST g U120e
N B U109a UI15A a8 @E,_,,_ _ RWC,
Wen 1 aalld o 1 ar a7l'? 11 34214
3 h2 e -
1A 2l L5258 1216
8
510 4 8 OFFC
0 ——s T J2-20
uio
LS101A s-an (REET 23
U123c
] 9 8
ClK 0 p— oo . .RM -
GATE 0 3 @ 3 J4-10
ouT 0
8254
=
ok 1HS un?
GATE 1 8R0Sy 43-23 XDo DRVSELO
ouT 1 I ox01 40 25 ORVSEL 5
LGy | gy 3 o CNTSELO
a) J3-24 0% 30 3 PR ¥3-29
aK 2 oX03 D 4 13 03-30
] XD4 : FW/REV
GAIE 2 43 SGU Y03 30 5 o R/W
T 2 Uy 03-25 % 7160 60f »J3-22
. G’X—D< 70 70 19
o 8D 89
U105
X —_— COUNT ;3.28
ClK 0 e RUNy o
GATE 017} = ENDy 43 27 3 43-38
ouT 0
NSEN
8254 3 a-n 1210
E-
ok 1 H3 S e SFCy o
GATE 1|4 | 3 42-6
our 112 1
U2
b asv 10 U116d
NWRST UN5Hh 12208
K 2 R8 11 N Pr 9 EV N] 4 i3 ._.___,__._._i(;) J2-10
GATE 2 ; Ut1sa 220 @—*
T > 3 13]Ls1124
LZD ! " D Cik
L 12 7
K o 3
7
i _NBRST Notes Signature | Date
Derigned
1. Dimentions i hohes.
{ 3 Uti4b Title
-L -L -L J- 4 2. Tolereneex Orown
e C15 =16 2L 017 oo 18 L Clo X e TAPE CONTROLLER
2 ot Tor To T . _— CARD 1
Arges ¢= Revislon | Document Number
APPR.
1
Scale Sheet 2 of 3

U125Saq

1
[iDs—~ww°1+ J4-38

SNSEN g UllAc SYREN u'""l WS
B s W3y sa-2 g2-32 ¢
4 U'25ba NWRST 11 T J2-28 ¢
A | . WDB 434 J2:34 ¢
J2-26 ¢
U123 n-24 €
U125¢ WAREN 4 8 WARS J2-22 2
9 a wos e 3 P2 —M4895 hes
‘@——~~9 J-32
U123d Uttda UNBb
12 60 | 1 4
g pt—— ¥ -0 “ 23 e WOMAS s vg
U124a
1 3 W03y j4-28
u115d
Juze ol 1) 13 Ny 0y
T "0 QXD X00, 1 g
0] XD1
afes—— o) J3-8
Umca u118h olD2_ 023437
WOy 44-24 L8 2 2vopid 2Ny 344 ol 5T S Y S
28 2vips N oX03 %é) J3-10
‘2U124d 18dc ;‘g go 43-18 “‘;’6%’“" 1039 J3-11
1 " M0,y 1423 °] OIS 3312
Ls139 sy
WIEN;)3 18 tj‘j) 3-3
=) J3-18
U113 Priag " WDP =3 J3-20
L5373 13 J4-20 —«—:)) jg—i
oX00 _—Hiop 19 WREN
oX Ho 2 L]
X03 WAREN 4]
[Xa-2g 3D 3 a
XD3 LT
o 4 408
XD4 : 12
O D3 0 595
LR 76D 6Q
o X0 7 70:3 ulse g Ul18e
e
o0 Rt oNBRST 10 -_[j Pl NBRST, ;3 p¢
G_OE
R viose |1 T‘ .
[4 W2E —
osie ‘____Di $ 2EN y 5317
"“”"2 V122a |
>0 SO & { RN Y
0 2 U118a) 1206 2z Notes Signature | Date
DRVSEL
YELD 2 A 1vop Devigned
;.EEYHSEL' 3] 13 'mbi“——_—__—lbo‘——mﬁDl’ SLTVy 4y 38 1. Dimentione b tnohes. e F——Tﬁr—-—-»—f—-~~—»-—~———~—»——~———~
1Y2p3 e
1
—d1G 1Y3 U120c 1. Tdwrenven Orown
o s ‘"me an e TAPE CONTROLLER
[>ob . 8 .
! 12-3 XX b APPR. CARD 1
u120d R -
9 8 U122d” Andios 4= - Revision Document Number
B — L 4‘;__11‘;_) J2-40 APPR. 1
S ORI U ROV IS [P U —
=
Scale - Sheet 3 of 3
I . b e b T T

220 U205
1312

S L -

9 U208c

BRDS 5V

R3
220

J— R - — ey
w v
wr | 1 ,,_A'f . U204 u20% 1o
o 1 u[,Frge
>0t d
13 LS112A
“———2cb Ok
12 o 7
U204
U208¢ oNBRST

9 U208
S e

e -0RAY, g3y

P17 VN]
| ——BRALy 439
R/,
V208 Vo w

3-22 ER!W] 1 10 ____NR[!G A‘ 4 V2050 VI4

oB/W L3[,Pr oRW_ 31, Pr 8 1502 3, Prjs

BRDS 3 JLS112A LS112A LS112A
o —GPC& ._.“_._105 —«——'qu
R . a° R q° 2 .
15 18
U203¢ U2 U210q 1 U2070
4313 ¢RIEN >0 NRIEN .
314 (>R2EN - _ _ﬂgﬁg
1 2080 Notes Signature | Date
J1-A1 .
A-C 11__:*1‘%4: 1 I. Otmentions b hehes Beshned
Toeay 3PS Title
N-A32 & 1 Teerencem Prown
n-caz ¢} v o TAPE CONTROLLER
v P . CARD 2
Anges o= Revision Document Number
APPR.
1
Scale _ “I Sheet 1 of 4

NLG
[? NG u2iec 3 U218p 3 L2180
Qi 3 (]
u208d u208¢ oligl 1 D,L_t{D v
T e D L] T U213a L
3 nlyege_ 0z,
NSG LS112A
oNROS 1350
U209h U209q : U218c “l’,-,lLK 7 NQ2_
325 (S ot L o2 s6, ongi 1) C or
NG2 1 Junm U219c AP
8 (]
weH Pl NBRST
u220
CSELD 14
D29 A
B30 e B
wasT
L-37 ¥ 10
.}492- o U212a l 11 Y1 L—m—w~~ e —«vwﬂ«cgu—“!) J3-28
- T 12 LBROS
o

4218a u219q
NSG U2 u213a o2 12 3
¢ 713,9_:115 12 L

w
S6 8 U212¢
i] 10
oNez [L M[Pr e o,
LS112A
alROS 1348 -
12 ? NQo,,
ar 3
u213c "UZIib
L] 8
— BRST
NBRST U219d u221d

Q0) U213
abLG B} —_
oliS6 U215
4 8 v
oNa2 A R
3f,Prgs R, Nates Signature Dote
L5112A
! 1 U140 O3 1ab cii 1. Dimentions b hohes. “ E—
ola2 . 12 2 gl NG, Title
o (N | U216 ar 1 Tderees Drewn
e i o e TAPE CONTROLLER
13 T A e AP CARD 2
AN, | —HeRST, oo +- S T ——
2 1 S B SN S Revision Document Number
e T | APPR.
1
Sedle — lgheet 2 of 4

+5vV

RE
220 o k00 XDO
- KDOy)35
asse® Vo TR T
R7 03 —)-(—033 JJ—;
ofDd__ XD3j .3
. 330 ofbd X01553-9
RS ofD3 5033 13-10
220 n§57 - 5083 4311
v2-33 ¢R08 -1 of0l ML 53-12
Ro U203 sy
330 gy o 1 9 —393-38
R10 3 g 2 ——3 J3-40
s w | 5 3 3
J2-29 ¢(RO3 , — -
%0 ¢ —— J3-3
0 g Z t——3 -4
+5v aAlo
X OF
£ % v
1227 (RO4 i, oNROS |
R13
330 5y oNRIEN
R4
220
s2-17 ¢8O ,
15
5V 330 u201
A18 81 Al 00
220 : ig :3 a
s2-1s ¢RO2 - . :; 9 AE D
R17 30 M
.
R16 Bs asll —_X07,
o 220 DiR_OE
7 1.] O —
R19
+5v 330
2
R20 ofZEN___
' 220
p-sef0],
R21 T T T
330 sy w Notes Signature | Date
R22
220 L‘ I. Olmentions W inches. Sustgned S
s2-1 (RO ' afjergs | Title
R23 ROS 1 LS112A 2. Teleranoes Orewn
330 2054 L . TAPE CONTROLLER
] 8 2 56 AR $— APPR, CARD 2
ai"-" ingen - Revisi D .
U2040 ey evision ocument Number
w 1
S
cole - Sheet 3 of 4

+5V
R24
fno
B-n —
R25
5V 130
%Ru
220
ON-LINE
J3-38 ¢ U202
3% 0 Al 0
+3v 82 A2
R28 83 A)
T =
Lop
J3-32 ¢ — 3 gg :3 o
R20 FOF 8 7"
+3v 10 of B8 AB ‘o
R30 DIR _OE
220
43-33 ¢E9T TABLE 1
/A3 DEVICE TABLE o
330 4y By (REN_ DEVICE ~POWER
| DESIGNATION TVPE TGND | 43V | #12V [12V
R32
220 & %
FPT) 74
e i
R33 I 12A
+8V 330 (U2 LS04
{ 1502]
R34 I TALSUA |
220 | 527]
0-35 (RWD__ { 4§30
R3S 51 [
330 TS
431 4
[3 [[
. .
a3
RUN T84S y
J3-38 ¢ THSI19A
It v
4.
(U220 4.§153 [
48V Fiil 4
.
= =5 J'S‘, -I-gz -Lgﬁ -Lg': P [
12V 12y) ' T ’ T 'W_T_f T)) F) Notes Signature | Date
cho .cht é 1. Dimentlens hehen Sevlgned ——
[T" Title
+8V 2 Telormosm Drewn
1 X am TAPE CONTROLLER
N B | CARD 2
_Lgtz ..Lgtis .Lgu .Lg“s _Lgv‘a .]_gn . f,',' lﬁ;o XA APPR.]]
1 1 "M Anglos 4~
‘ * ' b ‘ ' 1 t Numb
-E, 1 ,;I-,_,T. 71“_-[.“ __,[..“_T i Revl; on Documen umber
Scale - Sheet 4 of 4

APPENDIX D

DATA LINK FORMAT INFORMATION

Communication on the RS-232 data link between the host system and
the tape controller takes place in frames and blocks. The host
transmits a command block to the controller, to which the
controller replies with a response block. To ensure the error
free transmission of these blocks a frame protocol is used. This

appendix describes the formats of the blocks and frames used.

1. Data protocol

The link makes use of a character orientated frame protocol of
the PAR (Positive Acknowledgement with Retransmission} type. The

protocol is designed to allow the error-free transmission of an

arbitrary number of 8-bit bytes.

2. Frame format

Data link format Page D-2

2.1. Character format. Each character 1is transmitted in
conventional 8-bit/no parity serial format. Baud rate 1is not

specified, but is normally 9600.

2.2. Special characters. Certain characters have special meaning
in frames. Their use will be described later. These characters

are the following (numeric values in octal).

DLE : 20
ACK : 6
NAK : 25
START : 2
CONT : 3
END : 4

2.3. Frame format. All frames have a common format :

DLE The first character in a frame 1is
always a DLE character. This
character, together with the lead
character, allows easy recognition

of the start of a frame.

Lead character The lead character identifies the
type of frame. Possible values are

descripbed below.

Frame number The Frame number is always either O
or 1. In the case of data frames

this alternates sequentially, and

Data link format Page D-3

Data

DLE

Terminating character

CRC low byte

CRC high byte

in the case of Ack and Nak frames
this refers to the frame being

acknowledged.

A variable number of data
characters, up to a maximum of 64,
may be transmitted. Character
stuffing of DLE characters is

performed.

This single DLE character indicates
the end of the data section of the

frame, and is always present.

The terminating character serves to
distinguish the frame end from the
frame beginning, as well as to
indicate whether or not this frame
is the last in the block. The valid
terminating characters are

described below.

In order to provide error detection
for the frame a CRC 1is appended.
The CRC is CCITT-16 standard. This
CRC is performed on all characters
in the frame, and starts from an
initial value of FFFF hex. The CRC
is transmitted as two characters,
the least significant byte being

transmitted first.

This is the second part of the CRC
described above.

Data link format Page D-4

2.3.1. Three types of frames exist, and the frame type 1is

indicated by the lead character. These are the following :

2.4.

2.3.1.1. Data frames. Data frames are indicated by a START
character in the lead position. Data frames carry a variable
number of data characters, and are terminated by either a
CONT or an END character. If terminated by a CONT character
then the next frame is a continuation of the current block,
and if terminated by an END character then the frame is the

last frame in the current block.

2.3.1.2. Ack frames. Ack frames are indicated by an ACK
character in the lead position, and are transmitted to
indicate the the frame whose number is in the frame number
field was received correctly. Ack frames never contain data,

and are terminated by an END character.

2.3.1.3. Nak frames. Nak frames are indicated by an NAK
character in the lead position, and are transmitted to
indicate the the frame whose number is in the frame number
field contained an error. Nak frames never contain data, and

are terminated by an END character.

State values. The use of state driven software for both the

transmission and reception of frames was discussed in the main

text.

The following states are used in both the PDP-11 and tape

controller software :

2.4.1. Transmit states. These states are defined by the
character which will be transmitted as soon as the transmit

data port becomes empty.

Data link format Page D-5

2.4.1.1. State 0. Start condition. A DLE 1is to be

transmitted. Next state is state 1.

2.4.1.2. State 1. Transmit the 1lead character. Next

state is state 2.

2.4.1.3. State 2. Transmit the frame number. Next state

is state 3 if there is data to transmit, else state 5.

2.4.1.4. State 3. Transmit a data character. Next state
is state 4 if the character was a DLE, else state 5 if
the character was the last data character in the frame,

or else the state remains at 3.

2.4.1.5. State 4. Transmit a DLE. Next state is state 5

if the no data is left to transmit, or else state 3.

2.4.1.6. State 5. A DLE is to be transmitted. Next

state is state 6.

2.4.1.7. State 6. The terminating character is to be

transmitted. Next state is state 7.

2.4.1.8. State 7. The 1low byte of the CRC is to be

transmitted. Next state is state 8.

2.4.1.9. State 8. The high byte of the CRC is to be
transmitted. Next state is state O, ready for the next

frame.

2.4.2. Receive states. These states are defined by the

character which the device expects to receive next.

Data link format Page D-6

2.4.2.1. State 0. Start condition. A DLE 1is to be
received. Next state 1is state 1 but only 1if the

character was a DLE, else the state remains at O.

2.4.2.2. State 1. Receive the 1lead character. Next
state is state 2, 1if the character was a valid lead
character. If the character was not valid, then the

state reverts to O.

2.4.2.3. State 2. Receive the frame number. Next state

is state 3.

2.4.2.4. State 3. Receive a data character. Next state
is state 4 if the character is a DLE, or else the state

remains at 3.

2.4.2.5. State 4. Receive either a DLE or a terminating
character. Next state is state 3 if the character was a
DLE, or else state 5.

2.4.2.6, State 5. The low byte of the CRC is to be

received. Next state is state 6.

2.4.2.7. State 6. The high byte of the CRC is to be
received. Next state is state 0, ready for the next

frame.

3. Block format

Two block formats exist; one for command blocks and one for

response blocks.

Data link format Page D-7

3.1. Command blocks. Command blocks contain five fields. These

are the following :

Opcode This field is one byte long, and
contains the operation to be
executed, as well as certain other
information. A detailed description

of this field is given below.

Unit number This field, which is one byte long,
contains the logical unit number to

which the command block refers.

Status in This 1is a 16 bit field which
contains status information. The
definition of each bit 1is given

below.

Count in This is a 16 bit field which
normally contains a count value,
but contains a status value for
certain operations. This is

discussed below.

Data This field, which is from 0 to 8192
bytes long, contains data for write
operations. For all other

operations it is empty.

3.1.1. Opcode. This field is one byte long, and contains the

following information.

3.1.1.1. Bits O0-5. The command to be executed 1is
encoded 1into the 1lower 6 bits of the opcode. Ten
command are supported. These are the following (numeric

codes in decimal) :

Data link format Page D-8

3.1.1.1.1. RLB (l). Read logical block. The next
block is read in, and transmitted to the host. The
count field <contain the maximum number of
characters to be read in. If a greater number is
read in then an error occurs and no data is

returned to the host.

3.1.1.1.2. WLB (2). Write 1logical block. The
transmitted block of data is written to tape. The

number of data bytes is contained in the count
field.

3.1.1.1.3. EOF (3). write end-of-file mark. A tape

mark is written. The count field is not used.

3.1.1.1.4. RWD (4). Rewind. The tape on the unit
in question is rewound. The count field is not

used.

3.1.1.1.5. RWU (5). Rewind and off-line. The unit
is rewound and set off-line. The count field is

not used.

3.1.1.1.6. SPB (6). Space blocks. The tape 1is
spaced by the selected number of blocks. The count
field contains the two-compliment value of the
number of blocks to space. The space operation is

terminated on encountering a tape mark.

3.1.1.1.7. SPF (7). Space files. The tape is
spaced by the selected number of files. The count
field contains the two-compliment value of the

number of files to space. ANSI formatted tapes

Data link format Page D-9

files are delimited by end-of-file records, but
unformatted tapes are delimited by tape marks. The
end of data on a tape is known as the logical end
of volume. This is denoted by a double tape mark
for unformatted tapes, and an EOV record followed
by a double tape mark for ANSI tapes. Note that
the end of volume condition is not detected for
ANSI tapes. Space file operations are terminated
on encountering the logical end of volume

condition in the case of unformatted tapes.

3.1.1.1.8. STC (8). Set tape characteristics. This
is used in order to set bits in the status word.
See below for a description of which bits are
affected. The count field contains the bit pattern
to be inserted into the status word. Note that
this function must be carried ocut by the tape
controller because although the status word 1is
stored in the host, the controller must check that
the host does not attempt to operate the tape
units in unsupported modes (eg at the wrong bit

density).

3.1.1.1.9. SEC (9). Sense tape characteristics.
This reads the status word. See below for a
discussion of the return value. The count field is

not used.

3.1.1.1.10 SMO (10). Mount and set tape
characteristics. This is identical to STC, except
that if the unit is not ready and at the BOT tab,
then an error results. The count field contains
the bit pattern to be inserted into the status

word.

Data link format Page D-10

3.1.1.2. Bit 6. Bit 6 is set if the mounted tape 1is
ANSI formatted, and cleared otherwise. This information
is necessary to determine file delimiters, as discussed

above.

3.1.1.3. Bit 7. Bit 7 is set if retrys for operations
which failed are disallowed. If this bit is not set
then the tape controller will normally retry a failed

operation up to 10 times.

3.1.2. Status field. This is a 16 bit word, which contains
status information relation both to the characteristics of
the tape transports, and the current status of the
transport. The characteristics bits can be set by the STC
and SMO commands described above. A description of each bit
will now be given. Note that the description provided below
only describes bits which are relevant to the tape
controller. The PDP-11 assigns meaning to all of these bits,
but only some are used by the tape controller. Only bits 6
and 7 can be set by STC and SMO, and have meaning to the
controller. Note however that bits 0,1,3 and 1l can also be
set and reset, but are ignored by the controller. This is

done for reasons of compatibility with the TM-11.

Bit Meaning when set
0 Not used.
1 Not used.
2 Not used.
3 Not used.

4 Tape is past the EQOT tab.

10

11

12

13

14

15

3.2. Response blocks.

These are the following

Status

Data link format Page D-11

Last tape command encountered an
EOF (tape mark).

Writing is prohibited.

Writing with an extended inter-
record gap 1is prohibited. This
means that no error recovery will

be attempted on write operations.
Select error.

Unit is rewinding.

Tape is physically write-locked.
Not used.

Not used.

Tape is at BOT.

Tape is at the end of volume. Note
that this condition 1is detected
only for unformatted tapes, and
that the head is positioned between

the tape marks which denote it.

Not used.

Response blocks consist of four fields.

This is a 16 bit field, and
contains the same information as
the incoming status in the command

field, as described above.

Data link format Page D-12

Count This normally contains an integer
field, but occasionally contains
status information. This is further

discussed below.

Return code This is a 16 bit word which
contains a numeric code. This
indicates the result of the
operation. Possible values are

given below.

Data This field varies from O to 8192
bytes. It only exists in response
to read commands. Note that if the
transport encounters a EOF mark
then two bytes are returned, each
of which are the numeric value of
the character used in a tape mark.
This is done for TM-11

compatibility purposes.

3.2.1. Count value. The meaning of the value in the count
field is described for the various operations. Note that
operations not listed here do not make use of this field.
The meaning of the mnemonics are described above. Numeric

values are in two's compliment form.

RLB Number of bytes transferred.
WLB Number of bytes transferred.
SPB Number of blocks spaced over.
SPF Number of files spaced over.

SEC Status word as described above.

Data link format Page D-13

3.2.2. Return code. The various possible return codes are

described below. All numeric values are in octal.

IS.SuC (1) The command was successfully
completed.
IE.EOT (302) The tape 1s past the EOT tab. Note

that this means that the operation

was successfully completed.

IE.FHE (305) The wunit was not ready, or a
catastrophic hardware error
occurred, S0 preventing the

operation from being attempted.

IE.BBE (310) A bad block was encountered, and

the error was not recoverable.

IE.DAO (363) Data overrun. A block which was
read in was larger than the the

stated size.

IE.WLK (364) A write operation was attempted on
a unit which was either physically
write-locked, or had the write-lock

bit in the status word set.
IE.EQOF (366) An EOF (tape mark) was encountered.

IE.SPC (372) Illegal buffer size. A byte count
of less than 8 was specified for a
read operation, or a byte count of

less than 14 for a write operation.
IE.VER (374) Irrecoverable parity or CRC error.

IE.IFC (376) Illegal function request.

APPENDIX E

SOFTWARE LISTINGS : PDP-11 DEVICE DRIVER

Module PAGE

Device driver E-2

Device tables E-19

[y]

Li

.

]

3

=1

M

m

T

o

sC

&3

n

Li

LRF

ats

19§

W

Fac

'138

I

-3

A e T

T

'--|'."a’:

B

age

208

1t

-1

cal

6E

138

Fir
[S

RN

3

ol

L

18 by

is

the

tl.

