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SYNOPSIS 

A finite element computer program which uses the conical, frustrum 

element is presented for the Linear elastic, static analysis of variable 

thickness, branched, thin shells of revolution, composed of straight 

sections and subject to general, axisymmetric mechanical, 1,oading. The thin 

she1,1, theory and finite element theory forming the basis of the analysis 

are described, with particular attention being given to the closing of the 

she l, 1, at the axis of symmetry, and shell branching. Numerous problems 

embodying al,1, relevant features of the program are analysed, and their 

solutions are discussed. A user's manual, for the program is appended, and 

guidelines for the efficient use of the program are given. 
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CHAPTER 1 

INTRODUCTION 

There is a wide variety of structures that may be cl,assified as axi

symmetric thin shells of revolution, ranging from the parabolic cooling tower 

to the simple circular water reservoir . .An important sub-calss of these 

shells, and the one most often encountered in practice, consists of those 

shells made up of cylinders conical frustra and circular plates, whose 

primary function is the storage of some liquid (Fig. 1. 1). We win be con

cerned in the present work with this sub-class of shells. 

The 

suffered 

of these 

structural analysis of thin shells of revolution has by no means 
[24, 25, 26, 27] Th t , · from lack of investigation . e compu er anavysis 

shells was first performed by Galletly[2B] in 1960. This was 

followed by attempts to analyse arbitrary shaped shells of revolution using 

flat triangular and quadrilateral elements[ 29 , 3o] which met with little 

success. 

In 1963 Grafton and Strome[i?] made the first use of the direct stiffness 

finite element method. This marked the beginning of a period of intensive 

research into the analysis of shells of revolution using the conical frustrum 

element[ 16 , 34 , 32 ]. Shortly thereafter the curved meridional element was 

introduced to provide a more efficient analysis of meridionally curved shells 

of revolution[ 33 , 34 ]_ In 1967 the final stage of element sophistication 

was reached with the development of the doubly curved quadrilateral 

element[ 35 , 36 , 37 ]_ Since then research has been directed mainly towards 

the refinement of existing elements for purposes such as el,astic-plastic 

analysis[ 3s] and analysis of orthotropic shells[ 39 J_ 

Notwithstanding the fact that the solution to the axisymmetric thin shell 

problem is within the state of art, there remains the need for readily 

ava.i lab le computer programs, in particular programs which are capable of 

taking into account the branching which often occurs in this class of sheU,-'.' 

The present work is concerned with the development of such a program. 

➔~ pertinent assessment of the current capabilities for computer analysis 
of shells is given by Hartung [42]. It is surprising that neither of the 
two more widely used general structural analysis programs, viz. STRUDL (V2, 
M1) [40] and GENESYS [41] contain facilities for the analysis of shells of 
revo lu ti on. 
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The fundamental scope of the program was decided upon after consultation 

with engineers who ere actively engaged in the design and construction of a 

number of water towers and sludge digester tanks. In particular it was felt 

that considerable simplification could be achieved, with no intrinsic loss 

of generality, by making use of: 

(i) the axial symmetry of both the structure and the principal loading 

viz., the liquid contained in the structure and the self-weight of 

the structure itself, and 

(ii) the fact that the large majority of the structures are made up of 

straight sections, viz., cylinders, conical frustra and circular 

plates. 

In view of this, therefore, the conical frustrum element was chosen as the 

basic analysis tool. 

The present work therefore concerns the development, testing and docu

mentation of a finite element computer program CONFRU (CONical FRUstrum) 

designed for the linear elastic, static analysis of variable thickness, 

branched, axisymmetric thin shells of revolution under general axisymmetric 

mechanical loading. Chapter 2 deals with the thin shell theory leading to 

the approximate strain-displacement and stress-strain relations for a conical 

frustrum. The discrete element formulation as well as the assembly and 

solution of the system stiffness equations are discussed in Chapter 3. In 

Chapter 4 a large variety of solutions obtained from the program are pre

sented and discussed, together with an analysis of problem solution times 

and costs. The program and its associated plotting routines are documented 

in Appendix A, and full listings of all programs are given. The complete 

data input and printed output for a sample problem are also included. 
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CHAPTER 2 

THIN SHELL 'T'HEORY 

Of f,mdamental importance jn the derivat:ion of a finite element stiffness 

matrix are the strain-displacement and stress-strain relationships which 

describe the mechanical behaviour of the element. These relationships are 

derived here for an isotropic conical frustrum, subject to axisymmetric 

ef tion , with both memorane ,rnd bending stresses being taken into 

account. 

2. 1 Assumptions and Defini b.ons 

We consider here on those conical frustra which can be defined as thin 

shells of revolution, whose meridians are straight Lines inclined at an angle 

~ to the axis of (Fig, ?. 1 ). The middle surface is the surface 

which lies midway between the two faces of the frustrum. 

Fig. ?.1 

Since the shell is assumed to axisymmetric deformations onLy, the 

displacement in the circumfenmtial direction is zero. Hence only two dis

placements are necessary to describe the kinematic behaviour of the middle 

surface of an eloment of 

u, and the norrna l di 

these are the meridional displacement 

em 0:,nt w. rrhe position of the element may be des-

cribed either by its distanc,? s from an arbitrary datum point, (usually 

taken as the upper edge of the frustrum), or by its radius r. The shell has 

thicknes::, t which may vary as a furi_ction of s. 



ds + du 
ds 

du u + - ds 
ds 

(a) Meridian 

tr 

(b) Parallel Circle 

Fig. 2.2: Middle surface of the line element 

before and after deformation 
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The thin shell theory- developed here is based on the following assumptions: 

( i) Points on normal to the middle surface before deformation 

rt:rnai.n the normaL after deformation. This assumption allows 

defurrnatic)r1 d to transverse shear forces to be neglected. 

The distance of an arbitrary nt from the middle surface remains 

the same before and after deformation. This assumption allows the 

,Ttresse,:i and strains in the direction normal to the middle surface 

to be 

(iii) All di ements are mnall compared with the radilis of curvature 

of the middle surface, and the slopes are negligible compared with 

unity. This assmnption maintains the linearity of equations. 

l~urthermore, we assume that the shell material is elastic according to 

Hooke I s law. 

'l'hese assumptions may now be used to establish the kinematic reLationships 

for the conica·L fru,:1trurn. 

2.2 Deformations 

We begin by considering the deformation of the middle surface of a small 

line element of ds (Fig. 2.2). 

'The ends of the element meridional displacements u 
du 

u + -.-· dn respectively; hence the elongation of the element is 
ds 

and 
du 
ds.ds. 

Since the element remains straight in the deformed position, normal displace-

meridional c;train in the rnidd le surface by 

8 
ds ( 2. 1 ) 

The circumferential strain arjses a result of an increase in the arc 

length 

arc 

,')fan ,,1,e 0.r,0nfv· "f" ··1 p 0 ,..,,1·t··L".l nJ·rc 7 e (c1i·g 2 2b) _ ••. H • U C . c,,.,. (.. C, , <, _ {,, . , .J: • 0 , , 

lG 

1 :r + tr, 
,----; d 

r 

6r in the radius 

The increase in 

r, given by, 

~~ This chapter has its origin in the thin shell theory of Flugge [ 1 J 
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From the geometry of Fig. 2.2(a), 

6r = u sin¢+ w cos¢ (2.2a) 

Hence, the circumferential strain in the middle surface is, 

t.r e = 
8 r 

u sin ¢ + w cos ¢ 
= r (2.2b) 

To take account of bending stresses it is necessary to describe the 

deformation of the shell in terms of the displacements of an arbitrary point 

A, a distance z from the middle surface (Fig. 2.3). The point A has 

components of displacement uA in the meridional direction, and wA in the 

direction normal to the middle surface. These displacements are associated 

with the displacements 

middle surface. 

u and w of the corresponding point 

z cos¢ 
r 

Fig. 2. 3 

A 
0 

in the 

From assumption (ii) the distance z between the points A and A in 
0 

the original position remains unchanged in the deformed position. Hence, if 

the slope dw/ds is small, we may write, 

dw 
ds = w' = 
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or, = u - zw' (2.3) 

Again, if the s1ope w' is small, the normal displacements w and 

are almost equal and we may take 

:= w (2.4) 

We may now write down expressions for the strains which describe the 

deformation of a small element of a conical frustrum passing through A. 

Making use of Eqs. (2.1) and (2.2b) we have, 

➔f- duA 
E: := 

ds s (2.5) 
UA sin ¢+WA cos ¢ 

➔!-
E: := ¢ e r + z cos 

where the radius r is replaced by the radius r + z cos¢ of the point A. 

Introducing Eqs. (2.3) and (2.4), the above expressions may be rewritten in 

terms of the displacements u 

➔~ du d2w 
E: := z--
s ds ds2 
➔f- u sin ¢ + w 

E: := 

8 r 

and w 

cos (i -
¢ + z cos 

of the point 

zw' sin @'. 

A 
0 

in the middle surface: 

( 2. 6) 

Eqs. (2.6) give the in-plane strains at the arbitrary point A in terms of 

the displacements of the point 

2.3 Stress Resultants 

A 
0 

in the middle surface. 

➔f- ➔~ 
Associated with the in-plane strains E: and E: are two normal stresses, 

➔~ s 8 ➔~ 
the meridional stress os, and the circumferential stress 08 • For a linear 

elastic material the relationship between these stresses and strains is ex-

pressed by Hooke's law as, 

'< E [/~ E: {f J -,, 
0 -- 2 + V 
s 

1 
s 8 - V 

(2.7) 
~t E [/~ /~J 

08 = 2 
+ V 

1 8 s - V 

where Young's modulus E and Poisson's ratio v are constants of the shell 

material. Since tensile strains are considered to be positive it follows 

that the stresses are positive if they cause tension in a small element of 

the frustrum as shown in Fig. 2.4(a). 



-~~ 
08' NO ----------- . ~ . 

Pig. 2.4(a) ~ 1 

Fig. 2.fil) 
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The 

lengths 

stresses 

stresses a 
➔~ 

and 
s 

dsg and ds of 
s 

are non•-uniform l,y 

clearly have resultants which depend on the 

the elemental sections. Furthermore, if the 

distributed over these sections they will have 

moments with respect to the centres tie sections. In view of this we 

introduce the stress resul, tan ts 1'J , and N and N are 
S s H 

the resultant normal, forces per unit length in the meridional and circum-

ferential, directions respectively, and 

moment.s per unit length. 

M 
s 

and M e are the corresponding 

The stress resultants are found by integrating the stresses acting on 

the elemental sections. In the following derivation of these integrals it 

wil,L be useful, to introduce the notation, 

D = Et 

1 -

for the extensional, rigidity, and 

K = 2 12(1-v) 

for the fLexura l, rigidity of the conical, frustrum. 

(2.8a) 

(2.8b) 

Consider the circumferentia L section perpendicular to the midd Le surface, 

of length ds P·, and having· a radius of curvature r 8 (Fig. 2. 4a). The 

total force acting on this section is 

s 
ds 

A 

The shaded element of this section has a Length 

r + z 
( 0 ) d 

r 
(--:: 

and hence the total force ac on the shaded element is 

" 
r 

" 
+ /, .. \"' 

( ) a ds . dz 
s re 8 

Equating expressions (2.9a,b) for the whole section and noting from F' 

that 

r r 
8 cos¢ 

2.4(b) 
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we have, 

t/2 

J c* (r + z cos¢) dz 
s r 

(2.10a) 

-t/2 

Similar reasoning leads to the following expressions for the remaining stress 

resultants: 

t/2 

J o; dz 

-t/2 

t/2 
¢) I ·H .. (r + Z, COS 

C z . dz 
s r 

-t/2 

t/2 

r ➔f-

08 z dz 
J 
-t/2 

The expressions for the stress resultants 

the radius of curvature r 
s 

lim r + z 
( s ) r -- cc s r 

s 

of the meridian, since 

= 1 

and 

r 
s 

It wil,l, be noticed that even when the normal, stress 

(2.10b) 

(2.10c) 

( 2. 10d) 

do not contain 

= oo and 

~~ 

distributed over the section, i.e., 

* 

c is uniformly 
s 

o* = constant, there wil,l, still be a 
s 

because the section is trapezoidal, in shape and as such, moment M. This is 
s 

its centroid does not coincide with the middle surface. 

The actual, integration of Eqs. (2.10) is a lengthy procedure involving, 

in the case of N; and M;, the Taylor's series expansion of log functions. 
~~ 

The detaiLed integration of the expression for N is given in Appendix B e 
by way of il,l,ustration, and only the results of the integration are presented 

here. 

The exact expressions for the stress resultants are then as follows:-

= 

➔~ D[u sin ¢ + w cos¢ du] N + v-
8 r ds-

2 ¢ sin ¢ ¢ + rw' ¢)] + K[cos (u + w cos sin 
2 r (2. irb) 

r 
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➔t- K[- d2w w' sin ¢ cos 0'. du] (2.11c) M = V 
s ds2 

r r ds 

~f K[- w' sin ¢ d2w cos 0 ( sin ¢ + w cos<})] (2.11d) MG = - \) u 
r 2 2 

ds r 

Eqs. (2.11) form the basis of the bending theory for a thin conical 

fru.strum shell; when K = 0 the expressions for and which remain 

constitute the membrane theory of a conical shell. However, certain of the 

terms in these equations are clearl,y of the second order of magnitude, for 

example, the third term in Eq. (2.1id). Such terms are unlikely to be of 

significance in practice, and it would thus appear worthwhile to investigate 

the possibility of deriving an approximate bending theory. 

2. 4 Approximate FJxpressions for the Stress Resultants 

There are two sources from which the second order terms in Eqs. (2.11) 

arise, both of which derive from the fact that the elemental section 

s = constant (Fig. 2.4) is trapezoidal in shape. Due to this the hoop fibres 

vary in length across the section, as expressed by Eq. (2.6) for the circum

ferential strain, 

~~ u sin ¢ + w cos 0'. zw' sin 0'. E: = ¢ 0 r + z cos 

If the shell is thin enough we may neglect the rlistance z cos cj in comparison 

to r and so write an approximate expression for the circumferential strain 

as, 

u sin 0 + w cos 0 - zw' sin 0 
r (2.12a) 

The second source of second order terms derives specifically from the 

expression for the area of the trapezoidal section, as contained in Eq. 

(2.9b), viz., 

Elemental area 
r +-

( A 
r e 

z 
) ds8 . dz 

Again, for a sufficiently thin shell, the distance z is small compared with 

the radius of curvature 

r + z 
r + z cos¢ 

r 

and we may take 

i ( 2. 12b) 

The above approximations are incorporated into the original Eqs. (2.10) 



u sin¢+ w cos¢ 

deformed 

r' e 

Fig. 2.5(b): Change in circumferential., 

curvature 

deformed 

+ ive r 
s 

original 

= ro 

Fig. 2.5(a): Positive meridional 

curvature 

original., 

r 
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for the stress resuttants; integration of the revised equations then yietds 

the fottowing approximate expressions for the stress resuttants:-

N 
s 

M 
s 

Me 

t/2 

= I 
-t/2 

-a dz 
s 

= D [du+ v (u sin¢+ w cos 0)] 
ds r 

t/2 

I ae dz 
-t/2 

= D [ u sin¢+ w cos¢+ v du] 
r ds 

t/2 

= J 
-t/2 

a 
s 

2 
= K [- d w 

al 
t/2 

-

z dz 

- V 

= r a z dz 

:::.t/2 
p 

sin 0' dw [-= r ds 

sin¢ dw J 
r ds 

2 
d w ] v--
ds2 

( 2.13a) 

(2.13b) 

( 2. 13c) 

(2.13d) 

Each of the terms in Eqs. (2.13) has a ctear physicat interpretation, 

connected with the deformation of the conicat frustrum. We immediately 

recognise the in-ptane strains (Eqs. 2.1 and 2.2b), 

du 
€ = ds s 

and u sin (i + w cos (i 
(2.14a,b) € = e r 

The term d2w/ds2 is ctearty the change of curvature in the meridionat 

direction, (the originat meridionat curvature is zero), which we witl denote 

by, 

= 
_1 

= re (2.14c) 

The minus sign is necessary since a positive meridionat radius of curvabre, 

as indicated in Fig. 2.5(a), has associated with it a negative vatue d2w/ds2 . 



The physicaL meaning of the term (sin ¢.w'/r) however, requires more 

detaiLed expLanation. 

11. 

Consider the originaL and deformed positions of a smaLL eLement in the 

middle surface, as shown in Fig. 2.5(b). The circumferential radii of 

curvature in these two positions are 

geometry of the figure, 

and r' 
8 

r 
cos¢ 

r + u sin~+ w cos 0 
cos ( + ex) 

and r' 
8 

where cos(¢ + ex) = cos¢ cos ex - sin¢ sin ex. 

If o: is small, 

cos ex ;: 1 

and sin ex tan ex w' 

Hence, cos(¢+ ex) ;: cos¢ - sin¢. w'. 

Making use of this approximation we may write, 

1 1 cos 0 - sin 0. w' cos ¢ :::: 

sin ¢ + w cos ¢ -r' re r + u r e 

respectively. From the 

If the dispLacements u and w are small, we may neglect the terms u sin¢ 

and w cos¢; we then have 

1 1 
r' 

8 

sin 0. w' 
r 

The above expression is clearly the change in circumferential curvature which 

we wi11 denote by 

sin 0. w' 
r (2.14d) 

The stress resultants may now be written in terms of the strains and 

changes of curvature in the middte surface. Combining Eqs. (2.13) and (~.14) 

we have, 
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N = D [e + \) e J 
s s e 

= D [e + \) € J s Ne e 
(2.15a,b,c,d) 

M = K [xs + \) Xe] s 

M8 = K [x + v X ] e s 

The positive sense of the moment stress resultants 

Fig. 2.4(a). 

M 
s 

are shown in 

Eqs. (2.14) and (2.15) will be used to define the mechanical behaviour 

of the conical frustrum element. 

2. 5 A S pecia 1 Remark 

We have derived the thin shell bending theory for a conical frustrum, 

and it is clear that the theory is equally applicable to the special cases of 

the circular cylinder and the annular plate or disc. 

In the chapter following, however, we will come across a particu1,ar 

application of the circular disc, viz., as a closure element, which will 

require an investigation of equilibrium conditions in a circular disc in 

pure bending and axial tension. Since the study of equilibrium condition~ is 

required only in a special case, it has been given in Appendix F. 

One of the examples used in Chapter 4 to test the program is the 

cylindrical water tank with a circular disc roof. The theoretical, solution 

of Flugge used for comparison has been rewritten for a different coordinate 

system, and the revised cylindrical, water tank theory is given in Appendix G. 
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Fig. 3.i(a): The Conical Frustrum Element 

u 

u 

Fig. 3 . i ( b ) : Arbitrary Rigid Body Displa.cement 



CHAPTER 3 

FINITE ELEMENT THEORY 

The finite element method provides the structural, analyst with 

mathematical, bui Ming blocks in the form of discrete structural, elements. In 

the direct stiffness formul-ation, the mechanical, behaviour of these el,ements 

is compl,etel,y described by a set of stiffness equations relating the known 

forces acting on the element to the unknown displacements at pre-selected 

nodes on the element. Once the mechanical, behaviour of a typical, el,ement is 

defined, a number of elements can be combined to idealise, and hence anal,yse, a 

complete structure. 

The first part of this chapter deal.,s with the description of the two 

el.,ements required for the present analysis. These are the conical, frustrum 

element and the circular disc closure element. The tatter part of this chapter 

then deals with the assembly of these elements to form a complete structure, 

and a description of the general solution procedure. 

3. 1 The Conical, Frustrum Element 

3.1.1 The element stiffness equations 

The shell which is to be anal,ysed is divided along nodal, lines into a 

series of conical., frustra. Due to axial, symmetry the displacements at any 

point on a nodal., line are uniquely described by the displacements at any one 

node on this line. The element is thus effectively one-dimensional, (Fig. 3.1a). 

Since both bending and membrane forces are admissibl,e, three degrees of 

freedom (or nodal, displacements) are requj_red at each node. At node 1 these 

are the transl,ations u 1 and. w1 (in the global, coordinate system), and the 

rotation f:l 1. The displacement of an arbitrary point in the middle surface 

is described by the l.,oca 1, displacement components u' and w'. The position 

of such a point is given by its radius r or its distance s from node 1. 

The frustrum is inclined at an angle ¢ to the axis of symmetry, the direction 

of positive increase being clockwise, as shown in the figure. 

The displacement functions: The displacement functions suggested by 

Zienkiewicz [4] are, 
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u' = 0'.1 + 0'.2S 
2 3 ( 3. 1) w' = 0'.3 + 0'.4S + a s + cx6s 

5 
dw' 2 
ds = 0'.4 + 2cx5s + 3a6s 

where the six arbitrary constants 

placements of the element. 

a. 
l 

are functions of the six nodal dis-

Substituting the nodal coordinates s = 0 and s = L into the dis

placement functions we have 

u' = a:1 u' = ex, + a:21 1 2 I 

(Xi 
2 

w' = (X3 w' = 0'.3 + + 0'.51 + 0'.61 1 2 

dw' (dw') 0'.4 + 2o:51 + 3cx6L2 (~)1 = 0:4 = ds ·2 

Eqs. (3.2a) can be written concisely in matrix notation as, 

(q I} 
e 

= [A] (cc} 
(6x6) 

3 (3.2a) 

(3.2b) 

where fq'} is a column vector of the six element nodal displacements in the 
e 

local coordinate directions. The constants cc. are found by inverting 
l 

Eq. (3.2b). These values are then substituted back into Eqs. (3.1) to give 

the displacements at any point within the element in terms of the nodal 

displacements. We then have, 

w' w' ( 1 
1 

(3.3a) 

where s' = s/L is the dimensionless distance measured from node 1. In 

matrix notation, 

[u} [NI J fq' } 
(2x6) 8 

(3.3b) 

The displacement functions given in Eqs. (3.1) satisfy both the con

ditions of continuity within the element and compatibility between adjacent 

elements, the latter point being trivial for one-dimensional elements. The 

conical frustrum element is therefore a conforming one. 
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The expression for the axial strain in terms of the nodal displacement 

is 

E: 
s 

du' 
ds 

u 1 - u' 
2 1 

1 
(3.4a) 

The axial strain is clearly constant throughout the element; moreover, in the 

case of a rigid body movement given by u~ = u~, the axial strain vanishes. 

On the other hand, any local, translation or rotation of the element, whether 

as a rigid body or not, must give rise to circumferential strains. If the 

element is given an arbitrary rigid body movement (Fig. 3.1b) defined by. 

u' 
1 

w' 
2 

( dw') 
ds 2 

u' 
2 

then the circumferential strain is, 

u' sin ¢ + w' cos¢ 
E: 
8 r 

u' 
-1 

sin ¢ + lw' ' 1 + 
dw' 

s(~)1} 

r 

cos¢ 
(3.4b) 

For a local rigid body movement then, the circumferential strain does not 
( dw') vanish. In fact, if the element rotates as a rigid body by an amount ds 1 

the strain is not even constant, as indicated by the term ins. However, 

if the conical frustrum undergoes a global rigid body movement as shown in the 

right hand side of Fig. 3.1(b), and defined by, 

u' 
1 

u cos ¢ 

w' 
i 

u sin ¢ 

and ( 9:1'.L.) 
ds 

0 

then the circumferential strain e9 given by Eq. (3.4b) does in fact vanish. 

The axial strain e clearly also vanishes. Hence, since this is the only 
s 

rigid body movement of the frustrum as a whole, possible within the Limitations 

of axially symmetric deformations, the conical frustrum element is complete. 
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Transformation and the shape function: The relationship between the local 

and global displacements at the nth node is, 

u' cos¢ sin¢ 0 
n 

w' = sin¢ cos¢ 0 
n 

dw' 
C-a;-)n 0 0 1 

which may be written as, 

(q I} = [T J 
n n 

For the element as a whole we therefore have, 

[ q I} = [T] • fqe} e 

where [T] = [=~-l~-j 0 I T 
I n 
I 

Eq. ( 3. 3b) may therefore be rewritten as, 

fu} = [N'] [T] fq} e 

= [N] fqe} 
(2x6) 

u n 

w 
n 

(3.5a) 

(3.5b) 

(3.5c) 

(3.6a) 

The matrix [N] is called the shape function of the element and is given by, 

[N] 

The strain-displacement relationships: The relationship between the strains, 

curvatures, and displacements of a point in the middle surface is, from Eqs. 

(2.14), 
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du' 
e ds s 

u' sin ¢ + w' cos ¢ 
r ee 

fe} = = d2w1 
(3.7a) 

Xs 
ds2 
sin 0 dw' 

Xe r ds 

We now require a retationship between the strain components and the six 

nodat disptacements of the etement, of the form, 

= [B] . [q } 
( 4x6) e 

( 3. 7b) 

The matrix [B] can be derived in expticit form by differentiation of the 

shape function [N]. 

The stress-strain retationship: Four stress resuttants are required to 

comptetety define a state of axisymmetric stress in a conicat frustrum. These 

are shown acting on a smatt etement of the frustrum in Fig. 3.2. 

Fig. 3. 2 

Under certain conditions, for exampte, changes in temperature, the 

etement may be subject to initiat strains fe }. In such cases the actuat 
0 

stresses are caused by the difference between the actuat and initiat strains, 

the retationship being of the form, 
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N 
s 

N 
{o} = e [D] ( [ e} - [ E: } ) --

M 
0 

(3.8) 

s 

M e 

where [D] is the elasticity matrix given by, 

t vt 0 0 

vt t 0 0 

[D] E 
= 2 t3 vt3 1 - \) 0 0 12 12 

0 0 
vt3 t3 
12 12 

Eq. ( 3. 9a) can be written more concisely in the form, 

[D] E [D-i~] = 2 
1 - \) 

( 3. 9b) 

The element stiffness matrix and load vector: The element stiffness matrix, 

which expresses the fundamental, rel.,ationshi:p between the nodal., displacements 

and forces, will, be derived here by direct application of the Principle of 
➔~ 

Minimum Total., Potential Energy. 

Let U denote the e1astic strain energy density of the element, and let 

lx} and [¢} be vectors containing components of the body and surface forces 

respectively, acting on the element. Then the total potential energy U of 

the element is, 

u JU dV + J {u}t [X} dV + J {u}t [¢} dS ( 3. 10) 

V V S 

where integration is over the volume or surface of the element as required. 

The elastic strain energy density is given by, 

;~ 
Supplementary notes on the Principle, including the derivation of Eq. (3.11), 
may be found in Appendix C. 
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Substituting for the strains {€} from Eq. (3.7b) and for the dosplace

ments [u} from Eq. (3.6a), the total potential, energy may be rewritten in 

the form, 

U ½ J lqeJt [B]t [DJ [B] [qe} dV 

V 

-J [qe}t [B]t [DJ {s0 } dV 

V 

+--} r [e}t[DJ {s} dV 
" 

0 
V 

-J [ qe} t [N ]t {X} dV 

V 

- I {qe}t [Nf {¢} dS (3.12) 

s 
Taking the first variation of U with respect to the nodal, displacements 

lq8 } and setting it equal to zero we have, 

i5 U - 0 = [ J [ B ] t [ D ] [BJ {qe } d V 

V 

-J [B]t [D] {s0 } dV 

V 

- I [N]t {X1 dV 

V 

- r· [N]t [¢} dS J 5 {qe} ., 
s 

( 3. 13) 

The variation 6 {qe} is arbitrary, from which it follows that the 

expression in the square brackets must vanish. We therefore have that, 

r [BJt[D][B] dV. {q 1 
,' e-

- J c B J t c D J r € 0 1 d v + J c NJ t rx 1 d v + r c N J t r01 d s 
• 

V V V S 
( 3. 14) 

The right hand side of Eq. (3.14) contains expressions for the equivalent 

nodal loads due to initial, strains, body forces and surface forces acting on 

the element. Hence the equation may be written in the form 

{Pe} ( 3. 15) 

where [k] is the element stiffness matrix relating the nodal load vector 

{P } 
e 

to the corresponding nodal displacement vector 
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polynomials of degree 2n - 1, e.g., the formula for n = 4 is exact for 

seventh degree polynomials. However, in the present application the use of 

Gaussian formulae is limited for the following reasons:-

(i) The standard formulae are derived for the interval [- 1,1]. 

In our case we require to integrate over the interval [0,1]. 

Hence we must use half-interval formulae which can be derived 

only from the formulae for which n is even. 

(ii) We have no quantitative information on the errors involved in 

using half-interval formulae, i.e. whether the half-interval 

formulae are capable of the same accuracy as the full interval 

formulae. 

(iii) Due to the complexity of the derivation of Gaussian formulae 

we have no composite formulae available. For example, the 

half-interval., formula for n = 4 has 3 sub-intervals ( or 2 

abscissae), but the number of sub-intervals cannot be increased 

except by using higher order formulae (n = 6, 8, etc.); in 

other words, alL the half-interval., formulae are limited to n/2 

abscissae. 

There appears, therefore,to be only one way of determining the accuracy 

of the Gaussian formulae under the present limitations, and that is to use 

them in an actual., analysis. Our intention is therefore to compare results 

obtained from the Gaussian half-formulae for n 4, 6, 8 and 10, as well as 

the Simpson's formulae for 5 and 7 points, with a view to determining which is 

the most efficient. 

We must now illustrate the precise method by which the stiffness matrix 

is evaluated using the 5-point Simpson's rule. Returning to Eq. (3.17) we 

let 

(3.18) 

where the subscript :L indicates that the matrices have been evaluated at 

the point (s!, r.) on the element. In the present illustration the matrix 
l l 

[z]. is evaluated at the following points:
i 
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3.1.2 Numerical integration of the element stiffness matrix 

The general form of the element stiffness matrix is, from Eq. (3.14), 

[ k] = [. [ B ] t [ D ] [ B] d V (3.16) 
., 
V 

The thickness t of the element has already beeYJ_ included in the elasticity 

matrix [D], which has the effect of reducing the volume integration to inte

gration over the surface area of the element. Writing the element surface 

area in the form 

dA 2rcrds 2rrr1ds' 

and making use of the alternate form of the elasticity matrix [D ➔~J (Eq. 3,9b), 

the expression for the element stiffness matrix becomes, 

1 

[k] r· [B ]t [D ➔~] r ds' (3.17) 
t; 

The integration involved is not simple enough to warrant an explicit 

formulation of the stiffness matrix. Hence, recourse must be had to numerical 

methods. 

We have a choice of two methods of numerica1, integration, viz., the Gauss 

quadrature and Newton-Cotes quadrature formulae~~ From the computer programming 

point both methods are equally simple to apply; hence the choice of method to 

be used will depend on the expected accuracy of results in relation to the 

number of abscissae or sub-intervals required to achieve it. 

A study of the [B] and [D%] matrices in Eq. (3.17) suggests that 

we will need to integrate a sixth degree polynomial in s'. Simpson's rule, 

which is the Newton-Cotes formula for n = 2, is capable of exactly 

integrating a third degree po 1,ynomia l. For higher order polynomials the 

approximation, although not exact, may be maintained at a suitable level of 

accuracy by using a larger number of sub-intervals than the basic two. Thus we 

have Simpson's formulae for 4 sub-intervals (5 abscissae, or 5 points), 6 sub

intervals (7 abscissae, or 7 points), and so on. 

The Gaussian quadrature formulae are capable of exactly integrating 

➔~ 
A discussion of quadrature theory is given in Appendix D. 



[z J 1 : (o, r1) 

[z ]2: (0.25, r2) 

[z]3: (0,50, r3) 

[z J4: (0,75, r 4) 

[z]5: ( 1. 00, r5) 

Appl,ying Simpson's 5-point formul,a we have, 

[k] 2nEL 
2 • 

1 - V 

0 - 25 l[z] + 4[z-1 + 2[z] + 4[z]4 + [zJ5l 3 L 1 ~2 3 J 
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The final resul,t of the matrix manipul,ation is a symmetrical, (6 X 6) 

element stiffness matrix of the form, 

UA I 
! I i _i 

w1 k11 I k12 

J\111 I 
[k]. = ----1---- (3.19b) 

l 
u2 I 

i I i 
w2 k21 

I 
k22 

M2 I 
I 

Eq. (3.19b) defines the notation to be used subsequentl,y when referring to 

the stiffness matrix for the i th el,ement. 

3.1.3 Derivation of the element load vector 

During the initial formulation of the element stiffness equations, 

allowance was made for three distinct types of loading, viz., loading due to 

initial strains, loading due to forces distributed over the surface of the 

element, and loading due to forces distributed over the volume of the el,ement. 

Each of these types of loading is represented by an integral in Eq. (3.14), 

from which six equivalent nodal loads (corresponding to the three global 

degrees of freedom at each node), can be evaluated. 

The equivalent nodal loads will be derived here for each of the types of 

1oading in turn. 
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The initial strain Load vector: We will consider only the initial, strains 

caused by uniform changes in temperature. If the element undergoes a relative 

change in temperature of e degrees, then the initial strain vector is given 

by, 

ex e 
a: e 

0 

0 

(3.20) 

where ex is the coefficient of therma 1, expansion of the element material. 

The two non-zero components are the in-p1ane axial, and circumferential strains, 

and there are no initial changes of curvature. The equiva1ent nodal, load 

vector for the element is, 

fF } . e l 

i 

2nLE 
2 

1 - V 

dV 

(3.21) 

The integral in the above equation is very simi1ar to the integral for the 

element stiffness matrix [k] (Eq. 3.17), so that in both cases precise1y the 

same method of evaluation may be used. 

The surface force load vector: The most common type of distributed Load is 

one which acts normal, to the surface of the element, and whose magnitude 

varies linearly from one end of the e Lement to the other (Fig. 3. 3). 

The positive directions of the six equivalent nodal loads are shown in 

the figure and their values are given by, 
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u1 

w1 

[Fe} 
M1 

J [N ]t [¢} dA (3.22) = = 

s u2 A 

W,..., 
c:_ 

M2 
s 

u1 i M1 

L r1 

Fig. 3.3 

The vector [¢} contains the components, in the local coordinate directions, 

of the distributed load p, considered positive if acting in the direction of 

the positive normal to the element w' 
' 

i.e. 

Explicit evaluation of the surface load vector {F } is a straight
e s 

forward procedure and the expressions for the components of this vector are 

given in Appendix E. 

The body force load vector: The self-weight of the structure is the only body 

force likely to occur in a shell structure. The equivalent nodal loads for 

the self-weight of the structure are, 
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ui 

w 
1 

fF e }b 
M1 J [Ni [X} dV ( 3. 24) = = 
u2 V 

w2 

M2 
b 

The vector fX} contaimi the components of the self-weight of the el,ement, 

given by, 

[X} 1 "' cos 0] C y sin ¢ 
(3.25a) 

where y is the unit weight of the s true tura l, ma teria 1,. The minus sign is 

due to the fact the self-weight acts in a direction opposite to the positive 

normal, to the element. 

Again, explicit eva 1uation of fF } is a straightforward procedure, 
e b 

and expressions for the components of this vector are given in Appendix E. 

CLearLy, since the shel,l, is thin the body forces may be rep1,aced by 

equival,ent surface forces and vice versa. Hence, the Load vector [Fe}b 

amounts to the equivalent nodal loads due to a uniforml,y distributed vertical 

Load, say p . 
V 

Distributed vertical, loading may therefore be inc l,uded in 

the ana1,yses by making the substitution 

y (3.25b) 

Although it is not absolutely necessary, there is an advantage in retaining 

the concept of a body force Load vector. If the form of the surface 1,oad 

components (Eq. 3.23) was restricted so as to take account of the self-weight 

of the structure as an equivalent pressure, then the pressure at each node of 

the structure would have to be calculated prior to the actual, assembly of the 

load vector (Eq. 3.22). By specifying the self-weight in the form of Eq. 

(:3.25a) however, only the pA.rameter y is required and no equiva1,ent nodal 

pressures are calcul,ated. This amounts to a considerable saving in computation 

as well as data input preparation. 
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To summarise, the structure may be subject to three different types of 

Loading: Loads due to change in temperature, surface Loads, and body Loads. 

In addition to these Loads, there may be discrete point Loads (in actual fact, 

1,ine 1,oads) applied at the nodes of an element, given by, 

[F } = e 1, 
( 3. 26) 

1, 

These point Loads are simply added in as such, so that the total equivalent 

nodal 1,oad vector for a particular element is the sum of the individual Load 

vectors, i.e. , 

(3.27) 

Care should however be taken not to add point Loads to the load vectors of 

both the elements adjacent to the node at which the point loads are applied; 

this would be equivalent to adding in twice the actual point Loads, since, 

when the system load vector is assembled, the element load vectors overlap 

at each node. 

3.2 The Circular Plate Closure Element 

It has already been mentioned that when an element closes on the axis 

of symmetry the stiffness of the element becomes infinite. This is because 

the stiffness matrix of the conical frustrum element contains terms of the 

form, 

k' 

1 

J r 1 + s~ sin¢· ds 
0 

(3.28a) 

where is the radius at the first node of the e1,ement, and m is a 

constant depending on the geometry of the e1,ement. Integration of Eq. (3.28a) 

yields, 

k' [m 1,og (r1 + s' 
1 

sin ¢)] 
0 

which is indeterminate when the 1,imits r 1 = 0 and s' 

(3.28b) 

0 are substituted. 
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The conical frustrum element may therefore never be allowed to touch the axis 

of symmetry. 

displacement 

denominator. 

based on the 

The singularity at the axis of symmetry arises from the strain

relationships (Eq. 2.14), which contain the radius r in the 

Greenbaum[ 11 J has advanced an alternative set of relationships, 

shell theory of Novozhilo) 12 J, which do not contain the radius 

r in the denominator, and hence effectively overcome the singularity problem. 

These strain-displacement relationships have been used successfully by Percy 

et al[ nJ. 

An alternative and simpler method of overcoming the singularity problem 

is to derive a special element having only one node. A circular plate element 

was chosen since it is mathematically easy to work with and is for practical 
➔f- ➔~-

purpo se s the most generally applicable closure shape. 

3.2.1 Derivation of the closure element stiffness matrix and load vector 

➔~➔}-)~ 

Consider a circular plate element of radius a and having three degrees 

of freedom, or global displacements, u 1 , w1 and r 1 at its single node. 

The local coordinate directions are defined by u' and w' (Fig. 3.4). 

w' 

w' 
1 r 

u' 

t 
' u1' w1 

G) 

. u1 
a 

Fig 3.4: The circula~ disc closure element 

If the element is turned 'upside down' so that r 1 becomes the outer radius 
(! 0), sin¢ becomes negative and the same situation exists, since we 
then have r 1 = - s' sin¢. 

Pardoen and Hagen[ 14J appear to be the only authors who describe the use 
of a circular disc as a closure element. The present work is independent 
of theirs. 

In the present derivation we make use of the fact that the circular plate 
is a special case of the conical frustrum when ¢ = 90°. 
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The fottowing disptacement functions are assumed: 

(r 
2 2 

w' = 0'.1 + 0'.2 - a ) 

u' = a:3r (3.29a) 

dw' 2a:2r = dr 

The reason for such a choice witt become apparent as the derivation progresses. 

Substituting the nodal coordinate r = a into the above functions, we have 

w' = 0'.1 1 
(3.29b) 

u' = a:3a 1 
dw' 

(dr )1 = 131 = 2a:2a 

from which the generalised disptacements a:. are solved for in terms of the 
1 

tocal nodal displacements. Substituting these vatues back into Eq. (3.29a) 

we have, 

l3 1 2 - a2) w' = w' + -. (r 1 2a 
(3.29c) 

u' = u' .!: 
1 a 

Transformation from the local coordinate system to the gtobal system is 

accomplished by means of the transformation matrix Eq. (3.5b) with ¢ = 90°, 

i. e, , 

u' 1 0 1 0 u1 

w' = -1 0 0 w1 (3,30) 1 
dw' 

( dr ) 1 0 0 1 ~1 

Making use of this transformation we may rewrite Eq. (3,31a) as, 

r 

0 J a u1 
2 2 

0 r - a 
2a w1 

l31 

( 3. 31) 
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where [N] is the shape function for the c 1,o sure e 1,emen t. The strain-

displ,acement relationships (Eq. 3,7a) for the cl,osure el,ement are, 

du' 
0 

1 
0 € dr u1 r a 

u' 0 
1 

0 w1 € 
8 r a 

== = (3.32a) 
2 

d w' 
0 0 f3 1 X 

d/ 
a r 

dw' 1 1 

X8 --- 0 0 
dr . a r 

or fs} -- [B] fqe} (3.32b) 

Cl,early the choice of displacement functions ensures that the in-plane 

strains are constant and equal to each other; the same hol,ds for the changes 

of curvature. Furthermore, the in-plane strains depend onl,y on the radial, 

displacement w1 , and the changes of curvature onl,y on the rotation ~1• 

The stress-strain relationships are identical, to those of the conical 

frustrum (Eq. 3.8) except that initial, strains are not taken into account. 

The rel,ationship we recall is, 

E 

1 -

The formulation of the element stiffness matrix is again identical, to 

that of the conical frustrum (Eq. 3. n), except that the area dA is taken 

simply as dA = 2,rrdr; hence we may write, 

1 

[k] 2JIE J [B]t [ '~7 [B] r dr (3.33) = 
2) 

D J 
C 

( 1 - V 
0 

The closure element stiffness matrix has only two non-zero elements, an axial 

stiffness and a bending stiffness, given respectively by, 

2rrEt a 
2(1 v) I + 

k22 
:=: r dr 2 2 

1 - V 0 
a 

2nEt 
( 3. 34a) = 2 

1 - V 
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a 2 
and k33 

2ZJ;Et I 2t ~ 1 + \) 2 r dr == 2 12a2 1 - V 0 

== 
2ZIEt 3 

12(1 - \)) 
(3.34b) 

The complete closure element stiffness matrix may therefore be written as, 

u1 w1 ~1 

u1 0 0 0 

[k] = w1 0 k22 0 (3.34c) 
C 

M1 0 0 k33 

It is interesting to note the following points in connection with the 

closure element stiffness matrix:-

(i) The element has no lateral shear stiffness, (i.e., k11 = 0) due 

to the fact that it has only a single node. The application of 

a lateral force to this node causes the element to move as a 

rigid body. 

(ii) The stiffness k22 and k33 in Eqs. (3.34) are independent of 

the length(= radius) of the element. This is because these 

stiffnesses are the relationship between total force or moment 

at the circumference of the element, and the corresponding dis

placements. It is however more meaningful to write the closure 

element stiffnesses in terms of forces and moments per unit of 

circumference. Thus, if M 

ference such that 

is the total moment at the circum-

(3.35a) 

where M is the moment per unit of circumference, then we may 

write for the bending stiffness per unit of circumference, 

(3.35b) 

The bending stiffness therefore clearly depends on the size of the 

element 1 becoming larger as the length a of the element decreases. 

A similar argument exists for the axial stiffness. 
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(iii) The expressions derived above for k22 and k33 are identical 

to those derived from the differential equations of equilibrium 

of a circu1~r plate in pure bending and pure axial tension. The 

latter results are derived in Appendix F. 

The equivalent nodal loads: The equivalent nodal loads at the single node 

due to a uniformly distributed pressure p acting on the closure element may 

be derived from Eq. (3.22), using the surface load vector, 

{¢} = [:] (3.36a) 

The equivalent nodal loads are then, 

~J 
a 

[:] r dr == 2rr; I [N]t 

0 

l?.§.. 
2 

== 2n;a 0 

2 
~ 

8 

The components of the load vector given above are identical to the 

fixed-end forces and moments in a circular plate subject to a uniformly dis

tributed pressure p. These results are also derived in Appendix F. 

3,2.2 The application of the closure element 

The closure element is used to close a shell by forming a special link 

between the standard conical frustrum elements approaching the axis of symmetry, 

and the axis itself (Fig. 3,5a). 

Part of the system stiffness matrix corresponding to this assemblage of 

elements is shown in Fig. 3.5(b). Since the closure element has only a single 

node, and since this node is also common to the first standard element, the 

only change in the system stiffness matrix is the addition to it of the 

closure element stiffness matrix [k] as follows: 
C 



32. 

This amounts to an increase in the diagonal stiffness shown shaded in the 

figure. 

If the closure element has a distributed load p acting on it, then the 

components u1 , w1 and M1 of the system wad vector (also shown shaded in 

the figure) are augmented by the amounts given in Eq. (3.36b). In this case 

the positive direction of the load p depends on the order in which the 

adjoining standard elements are numbered, since the positive direction of the 

normal to an element depends on whether the element is numbered from its 
-l:· 

lower to its upper edge or vice versa. It will be noticed however that no 

such rule applies to the addition of the closure element stiffnesses, since 

they are independent of element numbering order or orientation. 

Once the displacements at the nodes have been obtained it is possible to 

calculate the displacements at the axis o~ symmetry by making use of the 

closure element displacement functions, in the form given in Eq. (3.31). 

Substituting r = 0 at the axis of symmetry we have, 

u.1 = 0 
0 

WI 
0 

~ = 0 
0 

( 3. 38) 

which give the displacements at the axis of symmetry in the local coordinate 

directions in terms of the g1obal displacements at node 1. It is clear from 

these results that at the axis of symmetry the structure may undergo dis

placement only in the direction of the axis itself. 

It has already been shown that the in-plane strains € 
r 

and E: , and e 
Hence the the changes of curvature 

stress resultants 

N, given by, 
s 

N = s 

= 

1 

1 

N 
s 

Et 

- v2 

Et 
- V 

are constant and equal. 

are constant and equal, and in the case of 

[e ee] + V s 

u' 
_1 = N ( 3. 39a) a 8 

Similarly, the stress resultants M 
s 

and are constant and equal, 

* See Section 3.3.5, Fig. 3.19. 
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and in the case of M2, given by, 

Et3 2 
d w' v dw' J 

M = 
v2) 

[-+--
s 12( 1 dr2 r dr 

Et3 \3 1 
M (3.39b) = 12(1 v\ = - I a e 

A point worth considering before one makes use of the cl,osure el,ement is 

whether in fact it is worth using at al,1,; in other words, wil,1, an anal,ysis 

which uses the closure el,ement yiel,d results which are significantly different 
{} 

from one in which a smal,l, hol,e is l,eft at the axis of symmetry . Cl,ea;:•l,y if 

the cl,osure el,ement is smal,l, its contribution to the system toad vector wil,1, 

be insignificant. 

The cl,osure e1,ement's contribution to the system stiffness matrix is, as 

we have shown, constant, i.e., independent of the radius a of the el.ement. 

However, as the radius of the closure element changes, so the val,ue of r 1 in 

Eq. (3.28b) for the adjacent element changes; hence the stiffness matrix 

[k~ 1J in Eq. (3.37) changes. Thus the radius of the cl,osure element, white 

not affecting its own contribution to the system stiffness matrix, nevertheless 

has an effect on the system stiffness matrix via the stiffness of the adjacent 

e 1,ement. 

A quantitative evaluation of the effect of the size of the closure element 

is not possibl,e here since we have no expl.icit version of the conical, frustrum 

el,ement stiffness matrix. We therefore defer further discussion until, some 

numerical, results have been examined. 

3,3 The Assembl,ed Structure 

In turning our attention to the structure as a whol,e we may describe its 

behaviour in the same way as that of an el.ement of the structure, viz., by a 

set of stiffness equations of the form. 

[K] {q} = [F} ( 3. 40) 

where [K] is the system or structural, stiffness matrix, rel.ating the dis

pl.acements fq} of the nodes of the structure to the appl.ied loads [F} 

acting at these nodes. The sol,ution of a structural, probl,em rests therefore 

{} 

In one case, viz., that of a simpl,y supported circul,ar ptate with a central 
point load, the displ,acements are unaffected if a very small, hol,e is l,eft at 
the axis of symmetry. See Ref. [3], p 60. 
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on the setting up and solution of Eq. (3.40). The steps in the procedure are 

as follows: 

(i) Set up the matrix [K] as an assemblage of element stiffness 

matrices. 

(ii) Augment this matrix with the appropriate load vector fF}. 

(Hi) Modify the augmented matrix by appl,ying boundary conditions. 

(iv) Solve the resuUing set of stiffness equations for the unknown 

displacements fq}. 

(v) Calculate the stresses in the structure from these displacements. 

In the following sections each of these steps will be dealt wi.th in turn, with 

special emphasis being given to the problem of shell branching as it effects 

the setting up and solution of the system stiffness equations. 

3.3.1 The system stiffness matrix 

The shells of revolution which we will consider here are composed of a 

number of straight line sections (Fig. 3.6). Each section is idealised by a 

number of finite elements, (cylindrical,, conical, or annular disc), which are 

numbered consecutively from one end of the section to the other. At various 

points within the structure, such as A, B and C, the shell, branches, the 

branching being defined simply by the fact that three elements instead of two, 

meet at a single node. 

The stiffness matrix for such a structure consists of a basic diagonal 

band, 9 col,umns wide, part of which is shown in Fig. 3. 7. We will refer to 

such parts of the stiffness matrix as standard, being formed as follows: 

K35,36 
35 + k36 == k22 . 11 

36 ( 3. 41) 
K36,37 -- k21 

At those nodes where branching occurs the standard part of the stiffness matrix 

is supplemented by an off-diagonal sub-matrix, indicating that a third element 

(or third node) is joined to the branch node. At this stage then we must 

distinguish between the main shell, and a shell branch, since the off-diagonal, 
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sub-matrix must be associated with the shell branch. We therefore define the 

main shell at a branch as comprising the two sections over which the elements 

are numbered consecutively, and the remaining section as the shell branch. 

For example, if in Fig. 3.6 the elements are numbered consecutively over the 
➔} 

composite section DCE, then sections DC and CE together constitute the 

main shell at branch point C, and section BC the shell branch; the 

numbering of the elements in section BC need bear no relation to the 

numbering of the elements in the main shell. 

It is worthwhile emphasising the point that the concepts of main shell 

and shel,1, branch are relative and apply only with regard to a specific branch 

point. We cannot in general define an absolute main shel,l in a structure 

which is branched. For exampl,e, section BC may be a shel,l branch relative 

to branch point C, yet form part of the main shell relative to branch point 

B. 

There are two advantages to be gained by making use of this relative 

concept: 

(i) Any shel,l configuration may be analysed without the need to rigidly 

define a specific main shel,l with attendant branches; any number 

of branches may be nested within each other. 

(ii) There 
➔E-➔} 

is a good deal more leniency in the numbering of elements. 

Jumps in the sequence of element numbers may occur, (e.g., the 

elements of section CE may be numbered 20 through 60 and those 

of section AB numbered 61 through 95), and dummy el,ements may 

also be used to break the numbering sequence between sections. 

Within the framework thus established we are able to identify five 

specific cases of branching, each one giving rise to a slightly different 

variation in the manner in which the system stiffness matrix is set up. Each 

of these cases will now be illustrated by means of simple examples, 

➔} 

The word 'section' has l,imited meaning in the context of shell branching, and 
refers specificall,y to a single straight portion of the shell. 

➔~* 
A more detailed discussion of the rules for the numbering of elements is 
given in Appendix A, "Program data input". 
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Branch Type 1: 

The simplest type of branch occurs when the element numbering sequence 

jumps from one section to another section totally unconnected to the first 

(Fig. 3. 8a). 

The stiffness matrix associated with this type of branch remains 

essentiaUy standard, the principal change being K40 , 41 = K41 , 40 = O, 

indicating that node 40 is not joined to node 41 (Fig. 3. 8b). Before stating 

the second change however, it is necessary to introduce a fundamental 

assumption: that each element must follow its corresponding node, i.e. 

element i must always follow node i. 

As a consequence of this assumption it is clear that there can be no 

element 40. However, far from ignoring element 40, we retain it in name, 

assign zero geometric properties to it, and call it a dummy element. Since 

this dummy element has zero stiffness the setting up of the stiffness matrix 

remains compl,etely standard, the zero stiffness sub-matrices being auto

matically generated. Similarl,y, the second change referred to above will be 

automatically generated by the standard procedure as follows: 

K40 ,40 
k39 40 39 

22 + k11 k22 
( 3. 42) 

K41, 41 
k40 + k 41 _ 41 

= = ,, 
22 11 ,_ 11 

40 k40 0 since k11 = :::; 

22 

In view of the above definition of a dummy element, branch type 1, may 

be defined as occurring when two consecutively numbered nodes are not joined, 

and the element associated with one of the nodes is a dummy element. 

Branch Type 2: 

The second type of branch is that which occurs at node 5 in Fig. 3.9(a). 

It is defined by the fact that the main shell with respect to branch node 5 

is comprised of elements having lower numbers (3, 4, 5 and 6) than those of the 

shell branch (40, 41, .. , .•.. etc.), and the numbering of the elements in the 

shell branch is awav from the main shell. 

The changes to the system stiffness matrix a.re as follows: 
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(i) The stiffness of the main shel,1., at node 5 must be augmented by 

the stiffness of the shell branch, i.e. 

37. 

(3.43a) 

where k40 is the additional stiffness. 1 I 

(ii) The connection between nodes 5 and 41 must be effected by 

linking these two nodes in the system stiffness matrix. This 

is accomplished inserting the off-diagonal submatrix, 

(3.43b) 

as shown in Fig. 3.9(b). 

The insertion of this off-diagonal submatrix necessitates the generation 

of a significant of zero submatrices, lying between the off-diagonal sub-

matrix and the main diagonal.. Special methods are therefore required for the 

efficient storage and handling of the system stiffness matrix; these methods 

will be discussed in Section 3.3.4. 

It is clear from the definition above that branch type 2 is always 

accompanied by~ type 1 branch, and in fact the two types are treated as one 

composite branch type in the computer program. 

B;-•anch Type 3: 

The third type of branch is that which occurs at node 9 in Fig. 3.10(a). 

It is defined by the fact that the main shell with respect to branch node 9 is 

comprised of elements having lower numbers (7, 8, 9, .... ) than those of the 

she 11, branch ( .... , 39, 40), and by the fact that the numbering of the elements 

in the shell branch is towards the main shell. The L,atter point distinguishes 

branch type 3 from branch type 2. 

The changes to the system stiffness matrj_x, which are essentia lty the same 

as those for branch type 2, are: 

(i) The stiffness of the main shell at branch node 9 is augmented by 

the stiffness of the shell branch, i.e. 

(3.44a) 



where 40 
k~2 
~ 

is the additional, stiffness. 

(ii) The connection between nodes 9 and 40 is accomplished by the 

insertion of the off-diagonal matrix, 

38. 

(3.44b) 

as shown in Fig. 3.10(b). 

In the present case the absence of connection between nodes 40 and 41 

does not constitute a type 1 branch, si.nce element 40 is not a dummy element. 

The Lack of connection is effected by simply setting, 

0 

(3.44c) 
and :::: 

Branch Type 4: 

The fourth type of branch is that which occurs at node 44 in Fig. 3.11(a). 

It is defined by the fact that the main shell relative to branch node 44 

consists of elements having higher numbers (41, 42, 43, 44 .... ) than those 

of the sheLL branch( .... 39, 40). Due to a certain Limitation which wiLL be 

stated later, the numbering of the shell branch is always towards the branch 

node. 

The changes to be made to the system stiffness matrix are illustrated 

in Fig. 3.11(b), and are as fol,l,ows: 

( . \ 
l; 'rhe absence of a connecting element between nodes 40 and 41 is 

effected by setting 

K41,40 - 0 
(3.45a) 

and K41,41 
41 

:::: k11 

(ii) The connection between nodes 40 and 44 is accomplished by the 

insertion of the off-diagonal submatrix, 

40 
k21 (3.45b) 



(iii) The stiffness of the main shel.,l., at node 44 is augmented by the 

stiffness of the shel.,l., branch, 

39. 

( 3. 45c) 

where k40 
22 

Branch Type 5: 

is the additional., stiffness. 

The final., type of branch is that which occurs at node 9 in Fig. 3.12(a), 

and is a special., case of Branch Type 3. This type of branch is defined in the 

same way as Branch Type 3, with the additional., specification that the element 

connecting the shel.,l., branch to the :rp.ain shel.,l., at the branch node, is the last 

(or highest numbered) element in the structural., idealisation. 

This type of branch is classified as a specific branch type for two 

reasons: 

(i) It is the second of two possible ways in which the element 

idealisation may be terminated (the first way being for the 

element idealisation to terminate at a boundary), and as such 

requires special., consideration. 

(ii) From the computer programming point of view this type of element 

termination cannot be efficiently handled as a type 3 branch, 

and must be specifical.,l.,y programmed. 

The changes to be made to the system stiffness matrix in this case are 

precisely the same as those of the type 3 branch, with the exception of the 

submatrices which now 1.,ie outside the system. The changes can be seen more 

clearly by mental.,l.,y superimposing Figs. 3,10(b) and 3.12(b). 

An impor·i:;ant irregul.,ari ty exists in respect of the off-diagonal., submatrices 

of Branch Types 3 and 5, which bears emphasising. In both of these cases the 

of-diagona.l., submatrices are given by , 

K40,9 = [k 40 ]t = k40 
21 12 

(3.44b, bis) 

and not, as we might expect by, 

K40,9 = k40 
21 (3.44c) 
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The reason for this irregular use of the transposed submatrix 1,ies in the 

rel,ative numbering of the main shel,1, and shel,1, branch at the respective branch 

points. Further edification on this point may be gained by comparing the 

definitions of Branch Types 3, 4 and 5. 

We have already mentioned that there is a 1,imitation on the manner in 

which the el,ements may be numbered. This limitation is that al,1, cy1,indrica1, 

and conical, sections must have their elements numbered from top to bottom, and 

al,1, circul,ar disc sections must have their el,ements numbered from the axis of 

symmetry towards the periphery of the disc. This rul,e applies where branching 

is concerned, and was introduced in order to limit the number of possib1,e ways 

in which a branch could be described to the program. It does not in any 

way restrict the number or type of actual, branches which a structure may have. 

The concept of a 1 branch type 1 is thus not al,together a classification of 

the geometrical shapes which a branch may assume. In fa.ct, four of the five 

branch types described consist essentia1,1,y of a three-pronged intersection of 
;~ 

el,ements , and depending on the rel,a.tive numbering of the nodes at a branch 

point, it is possible for an actual, branch in a structure to have more than 

one branch type classification. The o·bject of this apparent dup1,ication of 

effort is to allow the ana1,yst the maximum amount of freedom in the choice of 

his e1,ement idea1,isation, consistent with the minimum number of ideal,isation 

rul,es. 

3.3.2 The system load vector 

The setting up of the system load vector is a relatively simple procedure, 

since explicit expressions are available for the equivalent nodal loads 

corresponding to both l,inearly distributed loading and dead load. 

'rhe system Load vector is made up of three equivalent nodal loads U, W 

and M for each node (Fig. 3.13b). Point loads, (or more correctly, line 

loads), which we will assume are applied only at nodes, are broken up into 

their global components, and placed directly into the appropriate row of the 

load vector. It should, however, be emphasised that the value used must be 

that of the tota1, load over the circumference of the shell at that node. 

➔~ 
In the interest of simplicity, ea.ch branch type has been shown as a right-
angled intersection, 'rlie relative angles of the elements at a branch point 
do not however affect the setting up of the system stiffness matrix. 
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The procedure to be fol,1,owed in the case of linearly distributed loads 

(Fig. 3.13a) is as follows: 

The total, equivalent nodal, loads at a typical node 2 are formed from the sum 

of the equivalent nodal loads from each of the elements adjacent to the node, 

i.e. ' 

u u1 2 
= + u1 2 2 

w2 w1 2 
(3.46) == + w~ 2 I 

~ M2 M2 -- JVI' + 2 1 

where j j and Mj the vertical, and horizontal loads, and moment U.' w.' are 
l l l 

respectively at node i of element j. Explicit expressions for the 

equivalent nodal, loads Uj, Wj and M~ at the first and second nodes of a 
i l l 

general element, subject to a Unearl,y distributed load, are given in Appendix 

E. The loads u2 , w2 and M2 are then inserted into the appropriate rows of 

the system load vector. 

The procedure in the case of dead load is precisely the same as that out

lined above; explicit expressions for the equivalent nodal, dead loads are 

also given in Appendix E. 

3,3.3 Nodal, boundary conditions 

By nodal boundary conditions is meant the imposition of kinematic 
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constraints at certain nodes on the structure. Kinematic constraints may in 

general be divided into two categories; 

(i) Zero-displacement boundary conditions. 

(iii) Elastic a 11y restrained boundaries. 

The first category is by far the most common type of boundary condition en

countered in practice, and is also the easier of the two to implement in a 

computer program. 

Zero displacement boundary conditions: 

'l'he system stiffness matrix represents a set of stiffness equations 

expressing the relationship between known forces and unknown displacements at 

the nodes. If a particular displacement is known to be zero then it does not 

contribute to the value of any equation in which it appears; hence, this dis

placement may be deleted from the system by removing from the system stiffness 

matrix the column associated with this displacement. Since the stiffness 

matrix must remain symmetrical, the corresponding row of the stiffness matrix 

must also be removed. 

In practice the row and column corresponding to the known zero-displacement 

are not removed, but are set to zero. Since this entails having a zero on the 

leading diagonal, special precautions must be taken when solving the final 

system of equations. These are discussed in the following section. 

Some typical, examples of zero-displacement boundary conditions are given 

in Fig. 3.14. In each example the row and column of the system stiffness 

matrix corresponding to the zero displacements are set to zero. 
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Elastically restrained boundaries; 

It is sometimes necessary to be able to specify an elastic support, for 

example when part of a structure such as the roof of a water tank is supported 

on rubber bearing pads. We will use this example to illustrate the procedure. 

The actual support and its structural idealisation are shown in Fig. 3.15. 

F 

~ 
(a) ( b) 

Fig. 3. 15 

w qJAi 
@) . 

(c) 

Assuming that the bearing pad is incompressible and allows rotation at its 

point of contact with the shell, its only effect will be to resist, elastically, 

the horizontal movement of the structure. We may reason intuitively then that 

the only change in the stiffness matrix will be an increase in the shear 

stiffness of element 3 at node 4 (Fig. 3.7c) 

To show this we insert a dummy element 4 which has only axial stiffness 

k given by 

(3.47a) 

When the dummy element is included in the structural idealisation the stiffness 

matrix is augmented as follows: 

u4 = u4 

w4 w4 (3.47b) 

M4 i3 4 

w5 w5 



SYMMETRICAL 

diagonal submatrix 

Legend: 

Notes: 

non-zero submatrices, required to be stored, 

initially-zero submatrices, required to be stored, 

zero submatrices, not required to be stored. 

(i) Each block represents a (3 x 3) submatrix. 

(ii) Although the diagonal submatrices are shown fully shaded (due to the 

size of the diagram), only the lower half of each, including the 

leading diagonal, need be stored. 
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However, the last row and column (shown shaded) are deleted, since the dis-

placement w5 O. Thus the net effect of the dummy element is to increase 

the horizontal (shear) stiffness of the structure at node 4, while still 

allowing the structure to move freely on the roller. 

The stiffness k is the shear stiffness of the rubber bearing pad. If 

the pad allows a displacement 6 under a shear force F, then its shear 

modulus G may be expressed by 

G (3.48a) 

where A is the area over which the force F acts. The stiffness k is then 

k 
F GA 

t (3.48b) 

➔~ 
Knowing the shear modulus of rubber, the contact area of the pad A, and its 

thickness t, the stiffness k can be calculated and inserted into the system 

stiffness matrix. 

3,3.4 Solution of the svstem stiffness equations 

The system stiffness matrix, the setting up of which is described in 

Section 3.3.1, consists of a narrow diagonal band, 9 columns wide, and a 

number, ( depending on the number of branch points), of irregularly placed 

off-diagonal submatrices (Fig. 3.16). Since the matrix is symmetrical only 

half of it need be stored, and in the present work we have chosen to store the 

lower half. 

The normal method of storing a matrix in a 2-dimensional array will lead 

in the present case to highly inefficient use of storage space, even if the 

matrix is stored diagonally, because of the 1.,arge blocks of unwanted zero sub

matrices lying above and below the off-diagonal submatrices. The only initially

zero submatrices required are those shown cross-hatched in the figure, and 

these are required in order to complete the equations containing elements of 

the off-diagonal submatrices. 

The only alternative is theref«1re to store the system stiffness matrix in 

a single-dimension array. The method of doing this is ill,ustrated in Fig. 3.17 

➔} 

The shear modulus of rubber is generally taken to be 0,450 MPa. 
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for part of the system stiffness matrix including an off-diagonal submatrix; 

the numbers refer to the subscripting of the single-dimension storage array. 

The method of manipulating a matrix stored in such a way is particularly 

21 22 23 24 

25 26 
diagonal 

27 28 29 

/ 
(3 X 3) 
submatrices 

30 31 32 33 34 35 

36 37 38 39 40 41 42 43 44 45 46 47 48 

49 50 51 52 53 54 55 56 57 58 59 60 61 62 

63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 

~off-diagonal 
78 79 80 81 

submatrix 82 83 84 85 86 

87 88 89 go 91 92 

Fig. 3.17 

difficult, since there is no relationship between the position of an element 

of the matrix within the array, (i.e., its subscript), and its position within 

the matrix itself, (i.e., its row and column number). Nevertheless, only one 

primary 'tracking' variable is required, and it is an array containing the 

number of the column in which each row begins. 

Having thus set up and stored the stiffness matrix (note that absolute 

storage efficiency is attained), we proceed to augment it with the load vector, 

and to solve the resulting system of equations. The Gauss-Jordan method[ 45 J 
is particularly well suited to the computer solution of sets of stiffness 

equations, and in the present work a slight variation of this method is used. 

The original matrix is first reduced to an upper diagonal matrix, (i.e., the 

* lower half of the matrix is reduced to zero), and in a second stage the upper 

diagonal matrix is reduced to a diagonal matrix, from which the solution 

follows immediately. 

A subroutine BANDO has been developed for the Gauss-Jordan reduction of 

a set of stiffness equations where only half the coefficient matrix, stored in 

* In the pure Gauss-Jordan method the reduction to a diagonal matrix is com-
pleted in one stage only. 
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a single-dimension array, is required. 

It was envisaged that, for Large branched structures requiring over 400 

finite elements for idealisation, the coefficient matrix would become so sparse 

as to cause significant deterioration in the accuracy of the solution. For 

this reason a special back-substitution subroutine BANBAC was developed in 

order to compare the origj_na l., wad vector with the one obtained through back

substi tution, and thereby assess the accuracy of the sol.,ution. The back

substitution (working in double precision arithmetic) was assumed to be 

accurate, since each row of the coefficient matrix contains at most only 15 

non-zero coefficients, and thus each back-substitution involves a maximum of 

15 mu1tipl,ications. The accuracy of the solution procedure may be gauged by 

the fact that in a 435 element analysis involving 3 branch points, correlation 

between the origina 1, and back-substituted l,oad vectors was to 6 significant 

figures. 

A discussion of the technique empl.,oyed in the subroutine BANOO is given 

in Appendix A. 

3.3.5 Calculation of stresses and moments 

The solution of the system stiffness equation yields values for the three 

gl.,obal, displacements u, w and ~ at each node. The stress resultants at 

any point within an element can then be ca ku 1a ted directly from the nodal 

displacements. Combining Eq. (3.7b) and (3.8) for a given element we have, 

[ 0} 

N 
s 

-III 
s 

-III 
G 

= [D] ( [B] {q } - { e 1) 
e- o 

( 3. 49) 

To give a concise idea of the parameters involved in the stress calculations 

we rewrite Eq. ( 3. 49) in the form 

u1 

w1 

[a} E [,* = f(t, j ~ f(s' ,0,r,j. 
~1 

- [D] { e } = = 2 0 
1 - 'J u2 

( 4x4) (4x6) 
w2 

~2 

(6x1) 
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= 

(3.50) 

The matrix is called the stress matrix for element i' and is a 

function of the parameters indicated in the equation. Of these parameters the 

values of the dimensionless distance s' 
' 

the radius r, and the thickness 

vary a Long the length of the e l,ement (Fig. 3. 18). Hence by specifying a 

ELement i · 

,,,.,/'.C~ 
/' 

Element (i+1) /~ 
/ . 

_,/ 

_....~i.+1 

'< 

Fig. 3. 18 

I 
r 

t 

particular value of s' (0 ~~ s'::::; 'i), together with the corresponding values 

of r and t, the stress resultants at any point within the element can be 

calculated from the displacements at the element nodes. In practice, however, 

where we are dealing with large numbers of elements of varying lengths, there 

is nothing to be gained from calcuLating the stress resultants at points 

within the element; the more systematic and meaningful procedure is to 

calculate the stress resultants at the element nodes. 

When two elements are connected by a particular node the stress resultants 

at this node may be calculated by applying F.;q, (3.50j to either of the adjacent 

elements. However, because of the fundamental numerical approximations 

involved, the two sets of stress resultants thus obtained will seldom be the 

same. Hence the best approximation to the stress resultants at a node is 

obtained by taking the mean of the stress resultants obtained for this node 
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from each of the adjacent el.ements. For example, if node 2 in Fig. 3.18 is 

assumed to link elements i and i + 1, then the stress resultants at node 2 

are given by, 

½[E - '.2 
1 - \I 

➔}/ 
SI =1 

Eq. (3.51) forms the basis of the stress cakul,ation procedure in the present 

work. 

There are however a number 

(e.g., where three elements meet 

occasions when Eq. (3.51) cannot used, 

, \ d th 1,-, i· t a noae;, an o er occasions ~,F e 

should not be used, (e.g., where t:here are abrupt or significant changes in 

the geometry of two adjacent e1,erncnts. A convenient method of retaining the 

general applicability of BJq. (3.51) is to divide the structure at such nodes 

into separate sections. 'l'hus, for the purpose of stress cal,cul,ations the 

dividing node is no longer the lirL~ between tow or more adjacent elements, but 

forms the boundary node of two or more sections of the structure. The stress 

resultants at boundary nodes are then calculated from the individual terms in 

Eq. (3.51). For exampl,e, if a boundary node forms the beginning of a section 

then the stress resultants are given by the second term in Eq. (3.51), without 

the factor ½. Simi V::irly, if a boundary node forms the end of a section, then 

the first term is used. 

Once the stress resultants have been calculated section by section, it 

is the prerogative of the analyst to decide whether or not it is meaningful, to 

average them at nodes common to two or more sections 

Once the stress resultants are known, the stresses at any point within the 

shel,l may be calculated from the following formulae: 

N 12 M . z 
f3 s 

Cl --- + ·z s t t.J 

JIJ i2 JV[ z 
(3.52a,b) 

Cl ....8. -r-
p t t3 

The first term in each formulae is the direct stress, and the second term the 

bending stress. In deriving the bending stress formulae the stresses are 

assumed to be linearly distributed over a rectangul,ar cross-section, where z 

is the distance from the neutral axis, positive if in the direction of the 

positive normal, to the element. 



( a) 0 :S ¢ :S 90 ( b ) 90 :S rj :S 1 80 

® 

( C) 180 O < rj < 270 O - -

Fig. 3.19 
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Sign convention: 

Eqs. (3.52) are based on a sign convention which was established in 

Chapter 2, and retained throughout the derivation of the finite element theory. 

We recall that, 

(i) 

(ii) 

positive N denotes meridional tension, and positive N 
s 8 

circumferentional tension, and 

positive 

the shell. 

M 
s 

and M 
8 

denote tension on the outer face of 

The convention given above for the moments M 
s 

and is in fact incomplete: 

a positive moment causes tension on the side of the positive normal to the 

element. This follows from the fact that both the curvatures Xs and Xp 

are functions of the derivatives of the norma1, disp1,acement w' (see Eq. 3.7a). 

The imp1,ication can be seen in Fig. 3.19. If the ang1,e c/ Hes between 

90° and 270° (a state obtained by numbering the e1,ement nodes from bottom to 

top), then the positive norma1, points towards the axis of symmetry, and a 

positive moment wil.,1, indicate tension on the inside face of the she1,1,. 

The interpretation of the moments therefore requires a know1,edge of the 

order in which the nodes are mu:nbered ( whether up the she-Vt, or down). This 

cou1,d cause confusion in cases where the moments are automatica1,1,y p1,otted by 
➔~ 

computer, since without a knowledge of the node numbering we cou1,d not tel1, 

whether a positive moment indicated tension on the inside or outside of the 

shell. It is thus not advisab1,e to number the nodes from bottom to top. This 

limitation amounts to no real 1,oss of genera1,ity since any shape of she1,1, can 

still be generated from the cases o0 S ¢ S 90° and 270° :5¢ S 360°. 

➔~ 

The program described in this work has comprehensive automatic plotting 
facilities. 
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CHAPTER 4 

EVALUATION AND DISCUSSION 

4. 1 Int-roduction and Definitions 

rrhe object of this chapter is to evaluate and df scuss the so Lutions to a 

number of examp1,es of axisynunetric shells of revolution, obtained using the 

computer program CONI<'RU. The examples have been choc:-;en for the purpose of 

the various featurec1 contained within the program, assessing the 

accuracy of the results obtained, and to indicate the general range of 

problems to which the program may be applied. The operation of the program 

is described in the User's Manual given in Appendix A. 

Many more prob Lems than are given here have been solved using CONFRU, 

inctuding water towers, s digester tanks and pressure ves;::~els which are 

at pr0,sent in service. As far as comparing results with independent solutions 

is concerned, only those problems for which exact theoretical solutions are 

avai lab Le have been used, ( except in the case of branched shells where other 

methods of checking the program have been devised). In such cases, the 

theoretical solutions themselves have been programmed so as to provide 

accurate, reliable and comprehensive sets of comparison results. (This we 

consider superior to comparison with the resuUs of other programs or methods 

of solution, and it will, be noticed that at no stage are such comparisons 

attempted.) 

The chapter is divided into five sections, each section containing 

exampLec3 of a more advanced nature than the previous section. An attempt 

has been made to introduce continuity between the sections by making use in 

each section of conclusions arrived at in the preceding ones. 

Among the features discussed are: 

( i) 
➔~ 

Methods of numerical integration. 

(ii) Choice of element aspect ratio, and the effects of changes 

in element aspect ratio between different sections of a shell. 

¥ 
The reason for devoting considerable attention to this aspect arose from 
the observation that program SABOR 4 ( c. f. Pian et al [20 ]) al lows up to 
29 points to be used in the Simpson 1 s formula. We considered it of interest 
to determine whether such high order integration formulae are really 
necessary. 



(iii) Circular plates closed at the axis of symmetry. 

(iv) Linearly distributed surface loads, loads due to self-weight 

of the shell, and line loads. 
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(v) The effect of Poisson's ratio v, particularly with regard to 

hoop stresses. 

(vi) Variable and/or discontinuous shell thickness. 

(vii) Shell junctions and sharp changes in shell geometry. 

(viii) The validity of a thin sheU analysis of a thick shell. 

(ix) The analysis of branched shells. 

More detailed descriptions of these features are given at the beginning of 

the relevant example. 

In the final section of the chapter an alanysis of the computer time and 

cost for some of the more important examples is given. 

Definitions 

(a) Element aspect ratio (or L/t ratio): 

The ratio of element length to its thickness, or in the case of variable 

thickness elements, its mean thickness. The element aspect ratio is used 

to define the degree of element subdivision over a given section of the 

shell. It will be noticed that wherever an existing subdivision is 

refined, the refined subdivision always contains the original subdivision. 

This is in fact a necessary condition for meaningful convergence testing 

(c.f. Ref. [23], p 164). 

(b) Percentage absolute error: 

Percentage absolute error a - b 
a 

a Theoretica L 

b 
Finite Element 

X 100 
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Note in this connection that: 

(i) The word absolute implies comparison with an exact theoretical 

solution. 

(ii) Percentage errors in general, give no indication as to whether the 

finite element solution is a lower or upper bound one. Hence, 

unless otherwise stated all finite element displacement solutions 

may be assumed to be Lower bound. 

(iii) Where the theoretical solution is very small or zero the percen

tage error is meaningless, so that wherever possible, comparisons 

in such regions have been avoided. 

It will be noticed that in the first two sections of the chapter the 

majority of comparisons have been given in terms of percentage absolute 

error diagrams. This has been necessary because of the high degree of 

accuracy of the finite element results obtained, making it impossible to 

compare the finite element and theoretical solutions directly in graphical 

form. The same is also often true of individual finite element results where 

differences in individual solutions are too smal1 for direct graphical com

parison. At the same time, however, the variation in accuracy from one 

section of a shell or plate to another has on occasion been so large that 

plotting to a Logarithmic scale has been necessary. 

4.2 Circular Cylinders and Plates: the Limiting Shapes of a Conical Frustrum 

In this section we will analyse a circular cylinder under edge loading, 

and a circular plate under a uniformly distributed load, the two types of 

loading constituting the most and least severe types of mechanical loads 

which are likely to occur. 

Because of their simple geometrical shapes these examples will be used 

to test some of the more basic aspects of the program. 

4.2.1 Example 1: An edge Loaded circula~ cylinder 

Objectives: 

(i) To investigate the accuracy and efficiency of various methods of 

numerical integration. 

(ii) To determine at what element aspect ratio the displacement solution 

converges, and to investigate the effects of changes in element 

aspect ratio from one section of the cylinder to another. 



J 0,254 

B 

0,889 0, 635 0,0762 

C 

0,508 

Loadings: 

U = 250,0 X 10 3 N/m 

W = 264,0 X ·10 3 N/m 

M = - 4,448 x 10 3 Nm/m. 

Analysis Quadrature 
I.D. No. Formula 

C/N/01 Simpson: n = 5 

C/N/02 " : n = 7 

c,/N/03 Gauss : n = 4 

C/N/04 " : n = 6 

C/N/05 " : n = 8 

C/N/06 " : n = 10 

c/c/01 Simpson: n = 5 

c/c/02 " 

c/c/03 " 
c/c/04 " 

TABLE 4. 1 

Global Coordinate 

Directions 

Material Properties: 

E = 1 ,O 

V = 0 

➔!-

Element Subdivision 

AB BC 

10@ 0,0254 ( 1/3) 5 @ 0, 127 
II II 

II II 

II II 

" " 

" " 
3@0,1016 (4/3) 5 @0,11684 

5 @ 0 ,0508 (2/3) 5 @ 0, 127 

10 @ 0 ,0254 ( 1/3) II 

20 @ 0,0127 ( 1/6) " 

( 5/3) 

( 1 , 53) 

( 5/3) 

➔~ I Aspect ratios (Lt) given in brackets. 



(iii) To determine the range of element aspect ratios which may be 

expected to yield reasonably accurate stress solutions. 

Description of the Analysis: 
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The data for the example are given in Table 4.1, together with a 

description of the element subdivisions and quadrature formulae used in each 

of the ten ar::.a lyses. 

This example, (without the axial load U), was originally analysed by 

Klein [ 16 J, and has also been used by many authors since[1?, 1S, 19 ] to test 

the performance of shell of revolution elements under edge loading. The axial 

load is required for when this example is used again as part of Example 6. 

The theoretical solutions used here for comparison are obtained from an 

independent computer program TIMCYL, which is based on the cylindrical shell 

equations of Timoshenko and Woinowsky-Kriege/~ 

Discussion of results 

Numerical integration: We choose the radial displacement w, being in 

general the most important displacement component, to assess the relative 

accuracy of the quadrature formulae given in Table 4.1 for analyses C/N/01 

through C/N/06. Each of these analyses is identical except for the method 

of numerical integration used. 

The percentage absolute error in w for the various quadrature formulae 

is shown in Fig. 4.1, where the region chosen for the comparison includes the 

edge of the cylinder and hence the maximum radial displacement:H~ 

The results shown are abundantly clear, and we conclude that: 

(i) Results obtained using either of the Simpson's formulae are far 

more accurate than any of the Gaussian formulae results. This is 

undoubtedly due to the fact that, for the limits of integration 

required here, only half-formulae can be used in the Gaussian 

process (c.f. Appendix D). 

* Ref. [3], p 469 

➔H~he results for the Gaussian formula, 
suspected error which we suggest must 
Ref. [4], p 147. 

n = 8, are not shown due to a 
arise in the source of information, 



Distance X from edge of cylinder 

,tj- IX) (\J '9 
I.fl 0 '° Cl.I l/) i-... 0 
0 C 0 
0 a' 0 0 

10 

1,oc---------------- n=4 

n=G Radial 
displacement 
w: 

0,1 
Percentage 
absolute 
error 
( log sea le) 

0,01 

0,001 

Fig. 4.1 
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(ii) There is little difference between the five and seven point 

Simpson's formulae results, so that further increase in the 

number of points used appears to be entirely unwarranted. More

over, even the five point Simpson's formula results are extremely 

accurate, yielding a maximum error at the loaded edge of only 

0,007 %-

Convergence study: 

We choose again the radial displacement w to investigate the general 

question of convergence as stated in objective (ii). 

For this purpose four analyses (each using the five-point Simpson's 

rule) have been carried out. Each of these analyses has a different element 

aspect ratio for the region x = 0 to x 0,2032 (region 1), but all have 

the same element aspect ratio (L/t = 5/3) for x > 0,2032 (region 2). 

The percentage absolute error in w for each analysis is given in 

Fig. 4. 2. 



1,0 

Radial 
displacement 
w: 

0,1 
Percentage 
absolute 
error 
( log sea le) 

0,01 

Distance X from edge 

co \.0 'q' 
0 - (\j 
ll') 0 I.I") o_ .... 
0 0 0 

---____ ___, ---

L/t variable 

Fig. 4. 2 

From these results it is clear that, 
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of cylinder 

N ~ 
C() 

Cf) "St' 
0 L() 0 
C\I (\J "1 

c5 0 0-

--- L/t = ¾ 

-··-Yt = 2/2 

-·-Yt"½ 

½=¼ 

L/t = 5/3 -1 

(i) Over region 1 each decrease in the L/t ratio gives rise to an 

improvement in accuracy, up to a point where convergence may be 

said to have occurred. 

(ii) Over region 2, where each analysis has the same element as pee t 

ratio, the percentage errors are identical. 

Of particular interest here is the fact that as region 2 is approached 

all results tend to the same percentage error, and the point at which this 

occurs is exactly on the border between the two regions. It appears, therefore 

that the relative change in the L/t ratio between the two rsgions does not 

affect the results for region 2. The effect on the results of region 1, 

however, is that the larger the relative change in the L/t ratio, the 

larger the relative percentage error change between the best result of 

region 1 and those of region 2; the larger this relative change is, the 

wider the transition region required to effect it. Moreover, it appears that 

the transition region may occur entirely within (the more important) region 1. 

We conclude, therefore, that: 



(i) Convergence of the displacement results occurs for an element 

aspect ratio of approximately 1/t = 1/6. 
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(ii) Where changes in the element aspect ratio from one section to 

another are deemed necessary, suitable transition regions should 

be a L lowed for. 

Accuracy of stresses and moments 

The stress and moment of most significance for design purposes are the 

hoop stress 0 8 and the meridional moment Ms. These quantities are cal

culated from the displacements according to Eq. 3.51, and in the case of a 

circular cylinder the expressions are, 

E [ w2 (u3 - u ) 7 1 
08 = v2 

;- + V L J 
1 -

( 4. 1a) 

Et3 [ 3(w1 - 2w2 + w ) (~ 1 - ~ ) 
] and M = 3 + 3 

s 12(1 ·- v2) -2 L 
lj 

(4.1b) 

where the numerical subscripts refer to the displacements at the general set 

of nodes shown in Fig. 4.3. 

~ <D 

w~ 

1 r 

® 

L 

® 

Fig. 4.,2 

The quantities defined by Eqs. (4.1) are clearly average stresses and 

moments whose accuracy depends on: 

(i) the accuracy of the displacement components, and 

(ii) the element length L. 

Hence, as a result of (ii) and the fact that both 0 8 and Ms depend on 

more than one displacement component, (e.g. , 0 8 depends on both w and u), 

there can be no direct correlation between the accuracy of the displacements 

(already investigated) and the accuracy of the stresses and moments. 
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The theoretical solution for M is shown in Fig. 4.4(a). At the 
s 

upper edge of the cylinder Ms is equal to the applied edge moment M, and 

at a short distance from the edge the meridional moment reaches a peak after 

which it dies out to practically zero at the base of the cylinder. 

Shown alongside the meridional moments are curves indicating the per

centage error in the finite element solution for four values of the L/t 

ratio. The three Lines correspond to three points in the vicinity of the 

loaded edge, and as it happens, are perfectly linear when plotted to a 

logarithmic scale. These three lines indicate clearly two rather trivial 

points, which we mention here for completeness: 

(i) as the L/t ratio is decreased, the percentage error decreases, 

(ii) as we move away from the loaded edge the accuracy of the solution 

improves. 

What we are particularly interested in, however, is the range of L/t 

ratios which can be expected to give solutions having errors < 1%,. From 

the diagram these ranges are: 

X 

X 

X 

0 

0, 1016 

0 ,2032 

( loaded edge) 

( peak moment) 

(normal conditions): 

1/t 

1/3 

2/3 

< 

< 

< 

1/6 

L/t 
T / • 

L/c 

< 

< 

Note that the radial displacement w at x = O, L/t = 1/6, had an error of 

only 0,007%, whereas the moment M, which depends partly on 
s 

the same point an error of just over 1~. 

w, has for 

The hoop stress distribution for the cylinder is shown in Fig. 4.4(b), 

and alongside, the percentage error in the finite element solution for four 

values of the element aspect ratio. The results shown are again for two 

points in the vicinity of the loaded edge, but far from being linear, ( as was 

the case with the corresponding M 
s 

results), the curves show a marked trend 

towards convergence. This is due to the fact that, because v = O, 0 8 

depends only on a single radial displacement component w2 , whose pattern of 

convergence has already been illustrated. For the same reason, the 0 8 

results are far more accurate than the corresponding M 
s 

results. 

Hence, 0 8 places no additional constraints on the choice of the range 

of L/t ratios which can be expected to yield reasonably accurate stress and 

moment solutions. 



TABLE 4. 2 

~,000 t 
X 

p 

t l l l l 

Loading: 

p - 100 N/m2 

Material Properties: 

E 

\J = 0,3 

Analysis Quadrature E Lement Subdivision ➔H< 

I.D. No. f o rrnu la ➔1-
Remarks 

Regions AB, CD Region BC 

D/2/01 s - 5 16 @o,rno (1/2) 6 @ 0, 300 (3/2) 

D/2/02 s '7 !I " - I 

D/2/03 G - 10 " II 

D/2/04 s - 5 8 (0 0, 200 ( 1 \ ii 
·) 

D/2/05 " 4@ 0,400 I ,, 1 
\ ,: J " 

D/2/06 It 2 @ 0 ,800 
/ \ 

1, 4) 

D/2/07 It 7@ 0,200 ( -1 ) " 
Ho Le at centre, 
of radius 0, 200 

I Hole at centre, 
D/2/08 I! 4 @ 0, 800 ( 4) 

ii 

ti 

of radius 0 ,800 

* S - 5: Simpson, 5 point. S - 7: Simpson, 7 point. G - 10: Gauss, n = 4~ 

➔H1-L/t ratios given in brackets. 
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We therefore concLude with the suggestion of a generaL range of element 

aspect ratios, viz., 

1/6 < L/t < 1 

where, in regions near to concentrated Loads or peak stresses, the Lower end 

of the range shouLd be used. Note, finaLly, that the suggestion does not 

necessariLy appLy to regions where the stresses or moments are negligible and 

where accuracy is thus of Little importance. 

4.2.2 Example 2: A uniformly loaded circular disc 

Ob.jectives 

(i) To investigate further the accuracy of various methods of 

numerical integration. 

(ii) To test the circular disc closure element. 

Description of the analysis 

The data for the example are given in Table 4.2 together with a descrip

tion of the element breakdown and the quadrature formulae used in each of the 

eight analyses. 

This example has been used by KLein [ 46 ] and Ahmad, Irons and 

Zienkiewicz[ 49 J to test the performance of shell elements in analysing 

circuLar plates. The theoretical solutions used here for comparison have 

been obtained from another independent computer program TIMDISC, which is 
-I} 

based on the circular plate equations of Timoshenko and Woinowsky-Krieger. 

For a uniformly distributed lateral load the in-plane stresses in a 

circular plate are zero, and of the two bending moments present, only the 

meridional moment is of importance. Since the meridional moment has peak 

values at the centre and edge of the plate, the latter two regions have finer 

element subdivisions than the middle region (BC in Table 4.2). The middle 

region has the same element subdivision for all the analyses. 

To limit the number of analyses required for testing the closure element, 

we have limited the choice of closure elements to those having the same length 

as the adjacent (standard) elements. Also, where holes have been left at the 

-I~ 
Ref. [3], p 55. 
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centre of the plate they too have a radius equal to the length of the adjacent 

etement. 

Discussion of results 

Numerical, integration: We choose the "Lateral displacement u to assess the 

retative accuracy of the three quadrature formutae given in Table 4.2 for 

anatyses D/2/01 through D/2/03. A comparison of the percentage absolute 

error in u for each formula is given in Fig. 4.5. 

I 1/t 1/2 
• I L/t = 3/2 

-1 · 
L/t = 1/2 ~1 I . 

I Distance x 

1,0 
5,0 4,0 3,0 2,0 1,0 0 

Displacement u: 

Percentage 
o, 1 absotute 

error Gauss, n = 10 
( tog scale) 

0,01 

0,003 

0,001 Simpson, { J n = ·- 7 

Fig. 4. 5 

The displacement sol.,utions obtained using the five and seven point 

Simpson's formulae are essentiall,y identical, yielding extremel.,y low errors 

of O,OOJ{o; the order of accuracy remains, moreover, constant along the entire 

radius of the plate. 

The Gaussian results on the other hand, although reasonabl.,y accurate at 

the centre of the pl,ate, show a marked increase in error towards the edge of 

the plate. 

We conclude therefore that 

(i) the Simpson's formu1.,ae yield far superior results than do the 

the Gaussian formulae; 
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(ii) there is nothing to be gained by increasing the number of points 

used in the Simpson's formula above five. 

The closure element: W8 begin our study of the closure element by inves

tigating the percentage absolute error in the lateral displacement u for 

three different values of the etement aspect ratio (Fig. 4.6). 

Distance x 

1,0 0,5 0 
0,01 

0,0068 

1/t 

L/t -- 2 

I 
0,0032 

9--=:::::.::: ___ -&-··-++---°'o..-8,,l-;9-@::,~,:h 0,002.9 

0,001 

.. L/ t aE, given . I 
Fir". 4. 6 

Displacement u: 

Percentage 
absolute error 
(log scale) 

From the fig11re the following results are apparent: 

(i) The increasing si~e of the closure element has no adverse effects 

on the accuracy of the displacements in the rest of the plate. 

(rrhis is rather strikingly illustrated by the results for L/t -- 2, 

and immediately dispels the intuitive notion that the closure 

e Lemont should a be as small as possible.) The fact, however, 

that the results for L/t = 2 are the most accurate of all defies 

logical explanation, particularly since, for x > 1,6 all the 

analyses exhibit the same percentage error. 

(ii) As the size of the closure element increases there is a general 

decline in the accuracy of the displacements at the axis of 

symmetry. 
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The Latter decline is due to the fact that the Lateral displacement 

at the axis of symmetry is calculated from the expression, 

u 
0 

u 
0 

(3.38, bis) 

where u 1 and ~i are the Lateral displacement and rotation at the closure 

element's single node, and a is the radius of the closure element. Even 

assuming that the accuracy of u 4 and ~i are unaffected by the size of the 

closure element (or alternatively, by the L/t ratio of the adjacent elements), 

the accuracy of u 
0 

is bound to decrease as the radius a increases, since 

Eq. (3.38) assumes a state of pure bending to exist in the closure element. 

It will be noticed, however, that the percentage error plotting scale is very 

much exaggerated, and that the error in u at the axis of symmetry for 
0 

L/t = 2 is only 0,006811'. The average error over the rest of the plate is 

only 0,003~, both errors being extremely small. 

The necessity for using a closure element is clearly demonstrated by the 

results shown in Fig. 4.7. Here the effect of Leaving a small hole at the 

centre of the plate is compared with that of closing the hole with a closure 

element. 

Distance x 

Hole at centre, r ~ 0,800 

Hole at centre, r - 0,200 

Closure element 

Fig. 4.7 

1,0 

0,01 

Displacement u: 

Percentage 
absolute error 
( Log sea le) 
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The two sets of results for holes at the centre indicate, as we would 

expect, that the larger the hole the worse the error in the displacement 

solution. Of more importance, however, is the very significant improvement 

in accuracy to be gained by using a closure element. 

The necessity for using a closure element is further demonstrated by the 

results for the meridional moment M , shown in Fig. 4.8. The results for 
s 

the plate with a hole at the centre, while not very accurate, do indicate a 

tendency to zero moment at the edge of the hole. Hence, in the region of 

the centre of the plate, the results for a plate with a hole at the centre 

will always be blatantly incorrect. However, there is a surprisingly rapid 

convergence of the two bending moment diagrams with the result that over that 

half of the plate nearest to the fixed end the hole at the centre does not 

affect the moments at all. 

300 

200 

100 

Meridional 
Moment M 

s 
[Nm/m] 

0 

-100 

-200 

Distance x 

4,0 

___ Closure element 

___ Hole at centre 

2,0 

Fig. 4. 8 

f,O 

r 
I 

J 
--....Jl\ -202,8 

When the closure element is used the meridional moment at the axis of 

symmetry is calculated from the expression, 



M 
0 12(1 - v) 

~ 
a 

(3. 39, bis) 

Again, because this expression assumes a state of pure bending in the closure 

element, the error in 

creases. 

M 
0 

can be expected to increase as the radius a in-

The extent of tbe increase in error is, however, negligible, as can be 

gauged from the fact that if the Ms solutions for L/t = ½ and L/t = 2 

were also plotted in Fig. 4. 8 they would coincide with the curve for L/t = 1 

already shown there. 

The overall accuracy of the meridional moments as a function of various 

element aspect ratios is shown in Fig. 4.9. The moments at the axis of 

symmetry (x = 0) are, as we might expect, the least accurate. Nevertheless, 

there appears to be a fairly constant relationship between the accuracy of 

these moments and the accuracy of those in the rest of the plate (except over 

the region ½ ::S L/t ::S 1), thus indicating the size of the closure element has 

no special effect on the accuracy of the moments in the rest of the plate. 

Element aspect ratio L/t 

X = 0 
X = 0 ,4 
X = 0 ,8 
X 5,0 

4p 2,0 1,0 

Fig. 4.9 

0,5 
10,0 

1,0 

0,1 

0,01 

Meridional moment M : 

Percentage absolute 
error 
( log sea le) 

s 

It is also clear from Fig. 4.9 that the limits of the range of L/t ratios 

which may be expected to yield reasonably accurate moment solutions are far 

less stringent than those required for an edge loaded cylinder; the range 

itself may be taken as ½ ::5 L/t :S- 4 to give less than one percent error for 

all results. 
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4.2.3 Conclusions I 

In the preceding two examples we have drawn certain conclusions which 

will be made use of in all the remaining analyses. These conclusions may be 

summarised as follows:-

(a) Numerical integration: The Simpson's formulae are the most accurate at 

our disposal. Of these there is little improvement in accuracy to be 

gained by using the 7-point formula (or for that matter even greater 

numbers of points), so that in the interest of programming efficiency 

the 5-point Simpson's formula will be used. 

(b) Choice of element subdivision: It is clearly not possible to define 

rigidly the range of L/t ratios for which reasonably accurate results 

(having errors less than i'f) may be expected, since every shell bas 

different geometry, loading and boundary conditions, all of which 

affect the accuracy of the solution to a greater or lesser degree. 

Every shell should in principle be analysed a number of times, using 

successively more refined element subdivisions, to ensure that a 

reasonable degree of convergence has been attained. 

However, such a procedure is not always possible, either through lack of 

time or for economic reasons. We therefore present broad guidelines for 

the choice of element subdivision based on the analyses of an edge 

loaded cylinder (representing the class of shell for which more stringent 

conditions of refinement are required), and the uniformly loaded circular 

plate (for which the least stringent conditions of refinement are 

required). These guidelines are: 

Edge loaded cylinder: 

Uniformly loaded plate: 

1/6 < L/t < 1 

1/2 < L/t < 4 

These guidelines are discussed further in Example 3 (load case 2). 

(c) Closure element: 

(i) The logical choice for the size of closure element to use is to 

make it the same length as the adjacent element to which it is 

connected. Under these conditions the size of the closure element 
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itself has no adverse effects on the results in adjacent parts of 

the shell, the accuracy of the latter results being governed by 

the element aspect ratios used. In fact, even where the dis

placements and moments at the axis of symmetry are of importance, 

closure elements with aspect ratios as high as 2 may be used. 

(ii) Where a circular plate is closed at the axis of symmetry, the 

errors in the displacement and moment solutions resulting from a 

small hole at the centre of the plate are very significant, 

although highly localised, whereas the results obtained using a 

corresponding closure element are excellent. 



~ 
u 10,000 

4,00 

6,00 

Load Case 1: 

TABLE 4.3 

.. 
1 
.. ,

1

0,200 (ctosure element) 
.... I . ..::::2...,__, o:::..::oc..:::.o ....... .j..,I • ...:=.2.i.:, 80=-:::..0__,_~_ -~-. 

. . 

Material Properties: 

V -- 0,3 

E -- 20 x 109 N/m1 

Y - 24 x 103 N/m1 

5,000 

· I 
Hydrostatic pressure on cylinder wall: 100 X 103 N/m2 

Load Case 2: 

Uniformly distributed pressure p2 = 4,8 x 103 N/m2 on the roof 

(equivalent to the self-weight of the roof). 

1} 
( E le men t lengths in mm) 

Analysis 
Element Subdivision 

lf* 

I.D. No. 
Remarks 

AB BC CD DE 

3/1/01 14 @ 200 ( 1) 10 @ 200 ( 1) 16 @ 250 ( 1) 24 @ 250 ( 1 ) Load Case 1. 

3/1/02 " 20 @ 100 ( t) 32 @ 125 (t) fl " 

Open tank, 
3/2/01 - - 16 @ 250 ( 1 ) 24 @ 250 ( 1) no roof. 

Load Case I 
Dead load 

3/3/01 14@ 200 (1) 20 @ 100 (t) 32 @ 125 ( t) 24@ 250 (1) of entire 
structure. 

3/4/01 11 10 @ 200 ( 1) 16@ 250 ( 1) " Load Case 2 

3/4/02 II 20 @ 100 ( t) 32 @ 125 ( t) II " 

-1~ L/t ratios given in brackets. 

➔H} Unless otherwise stated, all analyses include the circular disc roof. 
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4.3 Cylinder-Plate and Cylinder-Cone Shells: The Problem of Shell Junctions 

The cylinder-plate and cylinder-cone shells are, unlike the previous 

examples, of considerable practical interest since the former forms the basis 

of the closed cylindrical water reservoir and the latter is the most common 

shape used for sludge digester tanks. The examples of this section therefore 

have practical dimensions and loading so that the accuracy of the results may 

be evaluated directly, as well as in terms of percentage errors. 

Broadly speaking, the objectives of this section are: 

(i) to investigate the general accuracy of results, particularly of 

the stresses and moments at shell junctions; 

(ii) to examine and enLarge upon various stress and moment solutions, 

and where some doubt as to the validity or interpretation exists, 

to give explanations and to compare with so Lutions in simi tar 

structures. 

4.3.1 Example 3: A closed cylindrical water tank 

Specific objective: 

To investigate the performance of the conical frustrum element in 

analysing the stresses and moments at a shell-plate junction. 

Description of the analysis: 

The data for this example are given in Table 4.3 together with a des

cription of the element subdivisions used in each of the six analyses. The 

theoretical solutions used here for comparison have been obtained from 

another independent program FLUTAN 1 which is based on the cylindrical water 

tank equations of Flugge :~ 

The author's solution for the closed tank is 

solution plus the effect of the redundant moment 

X 
h = 

I 
I 

Fig. 4.10 

made up of the open 

X1 (Fig. 4. 10). 

x17,)(9 

+ I 

tank 

➔~ A slightly modified version of Flugge' s theory is given in Appendix G. 
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Figures to the left 
refer to percenta~ 
error in finite 
element displacemen: 
solution. 

Fig. 4.11: Radial displacement w and hoop stress 0 8 
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The moment x1 is found by equating the rotations of the open tank and the 

circular disc roof at their point of junction. To simplify the procedure it 

is assumed that the cylinder is infinitely long, thus allowing the two boundary 

conditions at each end of the cylinder, viz., 

w( 0) 0 

dw(o) -== o 
dx 

w (h) 

JV[ (h) 
s 

0 
(4.2) 

to be usr,d independently to so Lve for the four arbitrary constants of inte

gration. The failing of this assumption is that unless h is large the 

moment at the upper edge of tho open tank is not zero; it follows therefore 

that the moment at the upper edge of the closed tank is not x1• Allowance 

has however been made for this in the theoretical solution used here. 

To simplify the programming of the theoretical solution it was considered 

worthwhile to reformulate .B7Lugge's derivation of the effect of X1 in terms 

of x measured from the base of the tank. (Flugge derives this particular 

case in terms of x measured from the upper edge of the tank.) While 

results obtained using the writer's formulation agree with those obtained 

directly from Flugge's equations there is no agreement on the specific 

results for the author's worked example~'.- We mention therefore, for fut"Gcre 

reference, that the author's results appear to be incorrect. 

Load cases 1 and 2 in the present exam:ple have each been analysed twice 

to assess the improvement in the results obtained by refining the element 

breakdown in the region of the shell-plate junction. The refinement resulted 

in insignificant improvements in the meridional morr_ent::,, cf ~he orr::c_, ,.f 

0,.003%, For these two load cases, therefore, the results quoted here will be 

for the analyses where the ratio L/t = 1 is constant throughout the 

structure. 

Discussion of results: 

Load Case 1: We begin by examining the radial displacement w in the 

cylinder as shown in Fig. 4.11. The theoretical and the finite element 

solutions coincide fur the entire height of the cylinder, as can be 

appreciated by observing the extremely small percentage errors in the finite 

element solution, given at metre intervals down the cylinder. 

The displacements in the upper half of the cylinder are perfectly linear 

* Ref. [1], p 276, Fig. 5.25. 
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and correspond to the function, 

w 
2 

.l'.lL (h - x) 
Et 
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(4.3) 

These are the displacements which would arise in the absence of kinematic 

constraints at the base of the tank. The function also satisfies the con

dition that w be zero at the upper edge of the tank; although no such 

constraint is imposed on the finite element solution the results show that 

it is, nevertheless, effectively satisfied. 

An interesting observation in this respect is that the circular disc 

roof is almost totally redundant as a means of restraining the radial de

flection of the upper edge of the cylinder. This we conclude by noting that 

the radial displacement of the open tank at its upper edge is also effectively 

zero. (In fact, the radial displacement curve for the open tank is identical 

to that of the closed tank except over a small region near the top of the 

cylinder where the open tank displacements are of the order 10-3 mm Larger.) 

i} 
We turn now to the meridional moment M shown in Fig. 4.12. The 

s 
theoretical and finite element solutions coincide, notwithstanding that the 

errors in the finite element solution (given in brackets at points along the 

curve), are in places greater than 1%. Again it is of interest to note that 

for the Lower half of the tank, the open tank solution corresponds exactly to 

the cLosed tank solution. 

What is of particular interest here, however, is the moment at the 

cylinder-disc junction. Although the moments at the junction are very small 

compared with those at the cylinder base (0,180 and 34,500 k:Nm/m respectively), 

the error at the junction is only 0,36~. Furthermore, the moments in the disc 

roof given by the finite element solution are constant and exactly equal to 

the value of the moment at the upper edge of the cylinder. The finite element 

solution therefore maintains perfect continuity of moments at the junction, 

which in turn indicates a very consistent displacement solution. 

The hoop stresses at the cylinder-disc junction are continuous only if 

Poisson's ratio v is zero. This can be seen by comparing the expressions 

for 0 8 is the disc, viz., 

1< Different scales have been used to plot the moments because of the vast 
difference in the magnitudes of moments in the upper and Lower halves of 
the cy Linder. 



and in the cylinder, viz., 

where the numeric subscripts refer to the nodes shown in Fig. 3.13. 

w L 

7 u 

a 

~--O____,· 

J 

Fig. 4. i3 

water pressure 

(4.4a) 

(4.4b) 

The deformed position of the structure in the region of the cylinder-disc 

junction is shown digrammatically in li'ig. 4.14a, and the corresponding hoop 

stress distribution in Fig. 4.14(b). Both the circumferential strain w2/a 

and the radial strain (w2 - w1)/L are positive (tensile) and very small 

since the radial displacement at node 2 is effectively zero. It follows that 

the hoop stress at the edge of the disc is tensile and small. 

(a) Displacements 

x 10-3 mm 

+ 0,98 

~ © 
0 - 1, 67 

Node Radial w Axial u ( b) Hoop Stress oe k:N/m2 

1 0, 16 134,2 

2 o, i7 125,0 

3 12,00 124,9 

4 24,00 124,6 

li'ig. 4.14 



However, the compressive axial strain at the top of the cylinder 

(u3 - u2 )/L is greater than the circumferential strain w2/a. Hence if 
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v > 0 the hoop stress at the upper edge of the cylinder is compressive. A 

short distance from the edge the circumferential strain becomes larger than 

the axial strain and the hoop stress again becomes tensile. 

The overall effect is a discontinuity in c~ at the cylinder - disc 
➔~ 

junction. This discontinuity is a misleading one since it is not caused, as 

we might expect, by a radial contraction of the cylinder, but by the Poisson 

contribution of the axial strain. 

For practical purposes, however, this compressive stress is negligible. 

Moreover, since the axial strains decrease towards the base of the cylinder 

while the radial strains increase, the Poisson effect soon becomes insignifi

cant. The hoop stresses are then given by Eq. (4.1) and may be read off from 

the radial displacement curve (Fig. 4.11). 

Load Case 2: Before entering the main discussion it is of interest to 

compare two finite element solutions: one (Case A) where the self-weight of 

the entire structure is included through the use of the body-force load vector 

(Eqs. 3.24, 3.25a), and the other where the roof is subjected to a uniform 

pressure equivalent to its own self-weight (Case B). 

The only difference between these two analyses is that in Case A the 

equivalent nodal loads due to the self-weight of the cylinder are included, 

whereas in Case B they are not; the load vectors for the disc roof are 

identical. We would therefore expect that the only difference in the solutions 

will be the larger axial strains in the cylinder of Case A. This is in fact 

what happens, as indicated diagrammatically in Fig. 4.15. 

The relative displacements of the tank roof are in both cases essentially 

identical, i.e., if axial strain in the cylinder were to be neglected, cases 

A and B would both yield the same displacements for the roof. However, even 

when the axial strains in the cylinder are allowed, the difference between 

the two displacement curves is so small as to have negligible effect on the 

hoop stresses and moments in the structure, i.e. cases A and B both yield 

essentially the same hoop stress and moment results for the entire structure. 

% Note from Eqs. (4.4) that the hoop stress as such is independent of the thick
ness of the shell. Hence, the change in thickness at the junction does not 
in itself give rise to discontinuity in c8 . 
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0,028 
undeformed position 

0,087 

B 
3,863 

Fig. 4. 15: Vertical Displacement of the tank 

The preceding comparison serves to clarify two points in connection with 

equivalent load vectors: 

(i) The body force and surface force load vectors are identical 

for thin shells. 

(ii) Where the self-weight of the structure is to be included in the 

analysis it is far easier to use the body force load vector since 

it requires only one item of data input for the entire structure, 

viz., the unit weight of the shell material. The surface load 

vector on the other hand requires the equivalent pressure to be 

calculated at each node on the structure; although trivial this 

is a time consuming calculation, particularly in the case of 

inc lined shell walls. 

We now turn our attention to the meridional moment M for a uniformly 
s 

distributed pressure on the tank roof. The moments are shown in Fig. 4.16 

where, for the plotting scale chosen, the theoretical and finite element 

solutions coincide. The moments in the lower six metres of the cylinder are 

effectively zero, so that this part of the diagram has been excluded. 

The percentage errors in the finite element solution are given in the 

accompanying table. From the table it can be seen that there are two retions 

where the error exceeds 1%. The first, between x' = 2,0 and x' = 4,0, is 
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due to the fact that the moments are relatively small, the high errors being 

thus of Little significance. 

The second of the high error regions occurs in the cylinder for x'? 5,5. 
Here again, part of the error is due to the fact that the moments are small. 

However, error ( if i. t can be ca l,1,ed this) is also likely to arise due to the 

form of the theoretical expression for (with which the finite element 

solution is compared) which i,3 

where 

IVi 
s 

- ~(h-x) ( ) x1 e cos~ h - x 

is the redundant moment at the junction, 

(4.5) 

f3 is a constant depen-

ding on the geometric and material properties of the cylinder, and x is the 

distance measured fr,,m the base of the cylinder. It is not unreasonable to 

expect a finite element solution to depart significantly from such an 

The finite element solutions for the two critical sections, viz., the 

centre of the roof and the cylinder-roof junction are, however, reasonably 

accurate, having errors of on 1,y O, 38P/c and O, 501 re spec ti ve ly. Our only con

cern here is that a further refinement of the element subdivision in the 

region of thE, Junction eel no improvement in accuracy. It appears there-

fore that the 0,501 error at the junction is the best finite element result 

possible. 

Referring back to 'Table 4,2 it will be noticed that the circular plate 

of Example 2 is rically identical to the roof in the present example. 

Furthermore, both plates are subject to a certain degree of rotational fixity 

at their 0-0.ter edges, ai.3 indicated by the moments ~ and X1 in the free 

body diagrams of Fig. 4.-J'l(a). The moment MF is a fixed-end moment due to 

rigid clamping of the plate, while x1 is the moment arising from the 

rotationa 1, stiffness of the cyhnder-disc junction. By replacing the value 

of the distrihu.ted load in Exampte 2 with that of Example 3, and multiplying 

all the stress results of Example 2 by the factor (48 x 103/100) = 48, it 

is possible to compare directly the M 
s 

distributions in each of the examples. 

The comparison is shown diagrammatica Uy in Fig. 4. "17( b) 

From these curves we observe the following points: 

➔~ Appendix G, Eq. (G-1f3). 
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Fig. 417( a): Free body diagrams for circular discs 
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X 

0 

5,0 

Example - 9,73 

---a\ - 10 , 61 

5,000 

Finite element solution for lVI in circul,ar p"Late 
s 

TABLE 4.4 

M % error in M 
s s 

Example 2 Example 3 Example 2 Example 3 

9,73 10, 61 0,17 0,38 

14, 99 14, 11 0,03 0,50 
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(i) The curves are 'parallel', i.e., a constant distance apart, the 

distance being equal to ~ - x1. The fact that the curves are 

very ctose together is trivial since it is clear that by increasing 

the flexural stiffness of the cylinder, x1 may be made equal to 

~- The curves would then coincide. We may verify this by taking 

the limit of X1 as the flexural stiffness of the cylinder, K 
* C tends to infinity. Making use of L'Hopital's rule, 

K lim 
➔ ro 

C 

2 
pa K X = Klim ➔ ro ______ c=-----

c 4[2K X + K (1 + v)J 
C S 

2 
= 12.§:_ 

8 
( 4. 6) 

In taking the limit, the flexural stiffness of the disc K has 
s 

been kept constant. In principle then, it is possible to increase 

the stiffness of the cylinder to such an extent that the cylinder 

acts as a fixed end to the circular plate roof. Furthermore, the 

results shown in Fig. 4.17(b) indicate that even in practice fixed 

end conditions can be very closely simulated. These results will 

be made use of again in Examples 6 and 7. 

(ii) The finite element solution for the clamped circular plate (Example 

2) is far more accurate than the finite element solution for the 

circular plate forming the roof of a cylindrical tank (Example 3). 

This can be seen by observing the percentage errors in the two 

solutions at the centre and edge of the plate, as shown in Table 

4.4. Both finite element solutions were obtained using an aspect 

ratio L/t = 1. 

The moments at a shell-plate junction are, as we would expect, not as 

accurately represented as those at a normal fixed end. (In fact, the error 

in the result for the shell-plate junction is more than 16 times greater than 

the error in the fixed-end result.) However, the point is that both the 

results for Example 3 given in Table 4.4 have errors less than 1%, (which may 

be classified as reasonably accurate), and were obtained using an element 

aspect ratio L/t = 1. Hence our guidelines for the choice of element aspect 
iH~ 

ratio appear to be valid for combinations of the basic shell shapes. 

-l~ The expression for x1 is given in Appendix G, Eq. (G-17); the expression 
for~ is given in Appendix F, Eq. (F-10). 

*➔~ See Section 4.2.3, conclusion (b). 
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The hoop stresses at the cylinder-disc junction are, even allowing for 

the Poisson effect, consistent with the radial displacements. The hoop stress 

does however exhibit a very rapid reversal of sign within a short distance 

from the upper edge of the cylinder. (Fig. 4.18b). The reason for this can be 

seen by observing the deformed position of the structure in the region of the 

cylinder-disc junction, as shown diagrammatically in Fig. 4.18(a). 

I 
I 
I 

............ 
.............. ...... 

( a) Deformed position 

- 73,89 

- 75,77 0 

(b) Hoop stress [kN/m2 ] 

Fig. 4.18 

'lhe finite element solution for the hoop stress at a rigidly fixed 

boundary is often misl,eading and requires further explanation. For example, 

at the base node of the cy1inder in the present example, the finite element 

solution for the hoop stress is 0 0 - - 14,43 kN/m2• Clearly this is the 
u 

average hoop stress over the base element of the cylinder, (derived from the 

Poisson contribution of the axial strain), since at the base node the radial 

displacement is zero and hence the hoop stress must be zero. 

Under certain conditions, for example in axiall,y 1.,oaded cylinders, the 

Poisson contribution of the axial strains to the hoop stresses may be very 

significant. In such cases the selection of a suitable Poisson ratio bears 

careful consideration. This point will be examined in more detail in con

nection with effluent tanks (section 4.6.1)" 

4.3.2 Example 4: An open sludge digester tank 

Description of the analvsi~: 

The data for tJns example are given in Table 4. 5 together with a des

cription of the e1,ement breakdown used in each of the four analyses. 



TABLE 4.5 

Material Properties: 

E 20 X 10 9 + 

V == 0 

Unit weight of water 

Loading: 

P == 500 ( self t of the cylinder) 

1248 pressure 

36,67 lb/ft2 (soil 

.P:..na lyDis i Eler:1ent Subdi vision➔s 

LD. lT1-:,,, r 
I BC 

I I 
121 f" ( 1 \ 94 (g 4" ( 1) 4;1/C1 ,2) 

4/1/c2 eO @ ( ¼) 188 @ 2" (}) 

-

➔,L/t ratios given in brackets 
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The thoeretical results used here for comparison have been taken from 
... ➔~ 

a worked example of Flugge. Due, however, to the fact that the general 

solution for a cone is written in terms of Thomson functions it has not been 

possible, as in the previous examples, to program the general solution" We 

are thus obliged to analyse the identical example which Flugge does; this 
\/\'-

accounts for the Imperial, uni ts-;"' and the fact that only the shape of the 

meridonal moment diagram and its value at the cylinder-cone junction are 

directly available for comparison. 

In determining the Loading on the tank Flugge makes the fol lowing assump

tions:-

(i) The water pressure acting on the conical bottom is transferred 

straight through the wall into the ground, and hence does not 

enter the problem. 

(ii) The weight of the cylinder is assumed to be P 

as a point load at the base of the cylinder. 

550 lb/ft acting 

(iii) The load P causes a vertical soil reaction on the conical 

bottom given by, 

P2 
5 50 ( 2 n H 20 2 

= 
n( 30 )2 

= 36,67 lb/ft2 

which is assumed to act perpendicular to the conical bottom. 

The first and third assumptions constitute what appears to be a gross 

simplification of the actual conditions in the tank bottom. However, as we 

shall see in the following paragraphs, there is little that can be done within 

the scope of the present work to improve these assumptions. 

If the slope of the tank bottom is small then the tank bottom may be 

treated in the manner of a circular plate resting on an elastic soil foundation, 

and subject to a uniformly distributed water pressure pw and a vertical force 

V (Fig. 4.19a). Such a procedure would be extremely complex to apply and it 

* Ref. [1], p 380 

➔HfThe program C0NFRU is dimensionless and thus independent of the particular 
uni ts used, provided they are consistent, e.g., N - m or lb - ft. 
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(a) Shallow bottom 
V 

I 

\ I 
\ I 

\ I ( 
\ 1 b) Steep bottom 

V' 

Fig. 4.19 

is doubtful whether the end results would justify the effort. 

➔~ 

When the slope of the tank bottom is steep the soil may be considered 

as supplying a reactive pressure pr on the tank bottom, not only proportional, 

as in the case of an elastic foundation, to the deflection of the tank bottom, 

but also statically connected in some way with the water pressure and 

the vertical load V (Fig. 4.19b). The axial component N may in this case 

be fairly substantial, and although part of this force may be transferred to 

the soil before it reaches the cone apex, it will nevertheless cause a resul

tant vertical reaction V' at the apex. 

The reaction V' suggests the inclusion of a footing at the apex of the 

conical bottom. With a footing present the conditions of rigid fixity are 

satisfied (for axisymmetric deformation the conditions of zero rotation and 

horizontal displacement at the cone apex are already satisfied), and the 

elastic kinematic boundary conditions may be replaced by a built-in condition 

at the apex. 

With the apex rigidly fixed it is easier to envisage the deflected shape 

of the tank bottom and to proportion pr along these lines. Furthermore, the 

➔~In practice the conical bottoms of sludge digesters have slopes of between 30° 
and 4o 0 • 



77 . 

. total reactive pressure need not necessarily equilibrate the water pressure 

pw plus the load P, since part of the latter two forces may be transferred 

directly to the apex footing. Clearly, however, the distribution of pr 

remains, in the absence of a detailed investigation, a more or less arbitrary 

choice. 

It is relevant to the discussion of the results to outl,ine briefly the 

theoretical method of solution employed by Flugge. Basically the solution 

consists of recognising two redundancies at the cylinder-cone junction, viz., 

a moment M and a horizontal force H (Fig. 4.20). Expressions for the 

H 

®'-rt 
p 

M 

H 

t7ig. 4. 20 

radial deflection w and the rotation X at J are then derived in terms 

of the known loading PW, pr and p (the self-weight of the cylinder), and 

the unknowns M and H, for the cylinder and cone separately. By equating 

the deflections and rotations at J two equations are obtained which may then 

be solved for M and H. 

It is interesting to note again that the solutions for M and H 

obtained by Flugge are incorrect. 'rhis we ascertained by working indepen

dently through the example. For all comparisons therefore the writer's own 

theoretical solutions will be used. Also, for the benefit of the reader who 

is more familiar with the S. I. uni ts the equivalent stresses in this sytem 

are given for all results. 

Discussion of results; Two analyses. the one using twice as many elements as 

the other, have been performed, for which the displacements and rotations at 

corresponding nodes are effectively identical, the two sets differing only in 

the sixth significant figure. Convergence of displacements has thus clearly 
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Flugge: 8,224 

Finite element: 8,317 

Fig_. 4.21: Meridional moment M 
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been obtained. 

The merjdional moments M given by both finite element solutions are 
s 

shown in Fig. 4.21 (the solutions coincide for the scale used here). The 

shape and proportions of this diagram are, in so far as can be judged from 

Flugge's diagram, identical to the Latter. The actual values at the cylinder

cone junction for the theoretical and finite element solutions are given in 

the following table. 

Table 4. 7: Meridional Moment M at the Shell Junction 
s 

Units Theoretical Finite Element Percentage Error 

L/t "~ 1/4 1/t = 1/2 L/t = 1/4 L/t == 1/2 

ft-lb/ft 1849 1870 1874 1, 14 1, 35 

kNm/m 8,224 8,317 8,335 11 " 

The finite element solutions differ only very slightly and the difference 

between the finite element and theoretical solutions ( 93 Nm/m) is clearly of 

no practical, sjgnificancP. The relatively high percentage errors are there

fore not a true reflection of the practical value of the results, which are 

from this point of view very good. 

It would be interesting to compare the moments in the cylinder of the 

present example with those in the water-filled tank of Example 3. However, 

such a comparison should be avo:ided since the moments at the base of the 

cylinder in the present example are very much affected by the point 1-oad at 

the edge of the cone. This edge load is the reason why the moments do not 

change abruptly at the base of the cylinder, as they do in Example 3. Hence 

the present results should not be taken as representative of the moments in 

a cylinder which is partia Uy restrained at its base. 

It should also be pointed out that although the moments given for the 

conical part of the tank are correct, they are not necessarily the true 

moments that would occur in practice, since very much simplified assumptions 

have been made for the loading. It seems unlikely, for instance, that there 

will be such a large moment causing tension on the inside of the cone when 
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there is a large water pressure bearing down on this section. 

The distribution of the hoop stress 0 8 is shown in Fig. 4.22. Since 

v c.cc O the hoop stres,3 in the cylinder is directly proportional to the 

radial displacement w (c.f. Eq. 4.1), so that the 0 8 diagram serves also 

as radial displacement diagram. (The same does not apply to the conical, 

bottom since the r1oo_p stresses there depend on both the radial, and vertical 

displacements). 

The noop stresses in the cylinder are much as we would expect, being 

linear over the upper part of the cylinder and terminating in a relatively 

Large value at the base, the latter result being due to the Large radial, 

displacement at this point. Tbe values over the linear portion, however, 

are slightly Larger tb.an those 
➔~ 

ven by the straight line distribution, 

(4.7) 

The large hoop stresses at the upper edge of the cone are again caused by the 

point Load acting at this Note that the marked similarity be tween the 

Ms and 0 8 distributiornc; in the conical bottom is of no particular sig-

nificar1ce since the meridional 

pendicular to each other. 

and hoop stresses act in planes per-

The axial stress distribution in the conical bottom is shown in Fig. 

4.23, the axial stresses in the cylinder being clearly zero. The axial 

stresses in the conical bottom may easily be explained by referring back to 

the free-body diagram shown in Fig. 4.20. The outward horizontal reaction 

H at the edge of the conical bottom is greater than the vertical load P. 

Hence the resultant of these two forces acts so as to cause tension at the 

edge of the conical bottom. However, as an edge disturbance, the effect 

quickly dies out and in the remainder of the conical bottom the horizontal 

component of the pressure pr causes axial compression. 

are clearly shown in the finite element solution. 

Both these effects 

In the present example the theoretical solution for the horizontal 

reaction is H = 890 lb/ft (13 kN/m). Summing the components of H and P 

in the direction of the conical bottom we find the theoretical solution for 

➔~ee Eq. (4.3) and retated discussion. 
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Junction values: 

Flugge: 49,4 kPa 

Finite element: 48,4 kPa 

Fig. 4.22: Axial stress 0 8 [kPa] 
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the axial stress at the edge of the conical bottom to be 1029 lb/ft2 

(49,4 kPa). The value obtained from the finite element solution is 

1010lb/ft2 (48,4 kPa). Considering the complex conditions existing at the 

cylinder-cone junction, the agreement is extremely good. 

4.3.3 Conclusions II 

A considerable part of the discussion of the preceding examples has 

been devoted to enlarging upon various stress and moment solutions. Some 

of the more common discrepancies which may occur in the results have been 

pointed out and exp1,a,ined in terms of the mechanical, behaviour of the shell.,, 

so as to make the general interpretation of the stresses and moments meaning-

Apart from this the fol,1.,owing specific concl.,usions have been arrived at: 

(a) From the practical point of view the results obtained for both 

examples are excel.,1.,ent. For instance, in Example 3, where the 

complete theoretical meridiona 1., moment solution is avai tab l.,e, 

the plots of the finite el.,ement and theoretical., sol.,utions are 

indistinguishable. In particular, the percentage errors at the 

shel.,l junctions are: 

cylinder-plate (1/t 

cylinder-cone (L/t 

1): error 0,50% 

½): error= 1,35% 

We conclude therefore that shel.,l junctions present no special., 

problem and that reasonably accurate resul.,ts can be obtained 

without excessive refinement of the element subdivision. 

Furthermore, results have shown that the finite el.,ement analyses 

are capable of maintaining an exceltent degree of continuity in 

meridional moments at the junction, and that there is an accurate 

transfer of force across the junction. 

(b) Although the surface force and body force load vectors are 

identical., for thin shells, there are distinct advantages to be 

gained by using the body force formulation where the self-weight 

of the structure is to be included. These advantages are: 

(i) data input is significantly reduced; 

(ii) the amount of computation within the program is reduced 

since the pressure distribution due to the self-weight 

is not required. 
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4.4 Example 5: The Thin Shell Analysis of a Thick Pressure Vessel: 

Comparison with Experimental Results 

Although the vessel is, as we shall see, a thick shell, this does not 

prevent us from analysing it as a thin shell in order to compare the results 

with those obtained from the elementary thin shell equation. 

It is also, however, of interest to compare the thin shell finite 

element results with the experimental results, as well as with the results 

obtained from elementary thick shell equations, and thereby determine to 

what extent the thin shell approximation of a thick shell is valid. 

The example is of particular relevance since the majority of pressure 

vessels are axisymmetric shells of revolution, many of which are, by defin

ition, bordering between thick and thin shells. 

Description of the analysis 

The pressure vessel shown in Fig. 4.24 forms part of a pilot plant for 

a wine distilling process. The upper part of the vessel consists of a very 

thick flange (A) which is bolted to a similar flange (not shown) containing 

a narrow inlet valve. A similar valve is welded into the end plate at the 

bottom of the cylinder (B). The vessel is made initially in two separate 

parts which are welded together at C before final machining takes place. 

The relevant technical data for the vessel are given in the following 

tab le: 

TABLE 4,8 

Material: Austenitic Stainless Steel 

Yield Stress: 207 MPa 

Young's Modulus: E = 188,9 GPa 

Poisson's Ratio: v = 0,3 

Test Pressure: p = 26,89 MPa 

The vessel is by definition a thick shell since the ratio of internal 

diameter to shell thickness is, 

i(-This vessel is one of four similar vessels which the Departments of Civil 
and Mechanical Engineering at the University of Cape Town co-operated in 
analysing during 1973. See Test Reports, Ref. [21]. 
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➔~ 
Nevertheless, a comparison of the elementary thick and thin shell., equations 

for the hoop stress in a cylinder (at a section remote from edge disturbances) 

shows that the hoop stress obtained from the thin shell equation using the 

mean diameter of the cylinder wall is very close to the maximum hoop stress 

at the inside face of the wall obtained from the thick shell equation. The 

calculations are as follows: 

The hoop stress at a section through a thick cylinder wall having a 

diameter d is given by, 

(D2 + d2) D~ - 0 l (4.8) ae = 
(D2 - D~) d2 

. p 

0 l 

where the parameters are defined in Fig. 4.25. 

D 
0 

D. 
l 

p p 
D. < d < D 

l 0 

D 

Fig. 4-. 25 

If we write D = D. + 2t and take D./t = 10,9, then for d = D. the 
0 l l l 

maximum hoop stress at the inside face of the cylinder is, 

-ae 5,992 p 

The hoop stress in a thin shell is assumed to be constant over the 

thickness and is given by, 

➔~The elementary thick shell equations used here are obtained from Ryder [22], 
p 270. 
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D = D. + t 
l 

08 = 5,950 p 

and taking D./t = 10,9 
l 

-which differs from 08 by a mere 0, 7oj). 
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( 4. 9) 

we obtain, 

The above result was of particular value since in the experimental work 

strain gauges could be fixed only to the outside of the cylinder and could 

thus only estimate the minimum hoop stresses. 

For the experimental analysis four 5 mm gauge Length electrical strain 

gauges were cemented to the cylinder in the positions shown in Fig. 4.24. 

Gauges 1, 2 and 3 measured the hoop strain and gauge 4 the axial strain 

when the vessel was filled with oil at the required test pressure. The 

stresses were then calculated from the measured strains using Eqs. (2.15a,b); 

in the calculations the axial strains were assumed to be constant throughout 

the length of the cylinder. 

For the finite element analysis the upper flange was considered as 

providing full fixity for the cylinder; the actual point of fixity was 

chosen more or less arbitrarily at a point 13 mm up from the bottom of 

flange neck. At the other end of the vessel a small hole was left in the 

end plate, its diameter being that of the internal diameter of the valve. 

Three analyses were carried out using different element L/t ratios and 

the results presented here are from what appears to be the convergent 

solution. The element subdivision for this analysis is: 

Cylinder: 123 elements@ 0,003 ; L/t = 0,54 

End plate: 5 elements@ 0,00645; L/t = 0,41 

Discussion of results 

We begin by considering the cylindrical part of the vessel as a thin 

shell, (this does not in fact seem to be an unreasonable assumption in so 

far as bending is concerned, since the cylinder wal1 is very thin), for 

which the free-body diagram is as shown in Fig. 4.26. 
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(Dimensions in mm) 

The meridional moments M1 and M2 arise from the rotational con

straints imposed by the rigid fixity at the upper end of the cylinder and 

the thick end plate at the tower end. According to thin shell theory these 

moments give rise to local edge disturbances which quickly die out. This is 

clearly shown in the finite element results for the meridional moment in the 

cylinder (Fig. 4.27); notice that the vertical scale is contracted and that 

over a length constituting 95% of the cylinder, the moments are effectively 

zero. 

10 
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element result is again almost identical to the thin shell theory result. The 

difference between the thick and thin shell results is due to the fact that 

for the thin shell calculation, we put D == D in Eq. (4.10); this is 
i 

equivalent to the incorrect assumption that the pressure on the end plate 

acts over the area contained with the mean diameter D. The experimental 

result Lies vonveniently between the thick and thin shell, results, and 

allowing for the fact that the finite element and experimental results do 

include the Poisson effect, the all round agreement of results is very good. 

13,9 

J<7 ini te element Oc. = 
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ExperimentaL oe = 
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Fig. 4. 28 

We return now to the regions i_o which the edge disturbances have a 

significant effc::ct, and examine the hoop stresses at gauge points 1 and 3. 

The finite element and experimental results are compared in Fig. 4.28, where 

the experimental results have been assumed to follow roughly the same dis

tribution as the finite element results. On the basis of this assumption it 

seems likely that the finite element results continue to give the maximum 

hoop stress in the cylinder. No adequate explanation can be found for the 

peaks (or 'humps') in the finite el,ement results at either end of the cylinder, 

but these peaks probably give rise to a general overestimation of the stresses 

at the very ends to the cylinder. 

We conclude therefore that: 



(i) over regions sufficiently remote from edge disturbances, the 

finite element solution may be used to predict accurately the 

maximum hoop stresses and average axial stresses in a thick 

she l L wall, and 

87. 

(ii) over regions affected by edge disturbances, the finite element 

results may be assumed to overestimate slightly the maximum hoop 

stresses. 

4. 5 Branched She Lls of Revo Lu tion 

[20] 
Pian et al have analysed a complicated branched shell of revolution 

using the well known SABOR 4 program, and conclude with the statement that, 

whi Le their results seem plausible, no reliable independent solution is available 

and so their results are merely provided for possible future comparison. Un

fortunately, the program CONFRU cannot be used to provide comparison results 

since the problem is beyond the reasonable scope of the program in its present 

state; furthermore, no other solutions for shells of revolution could be 

found. 

The absence of independent solutions for comparison is, however, of 

little consequence since there are more rigorous and reliable methods of 

showing that branched shell solutions given by CONFRU are correct. These 

methods are outlined in the following section, and are based on the following 

principle: 

If for a given structure a computer program is capable of correctly 

formulating the system stiffness matrix [K] and the system load vector 

/F} and if the inverse [KJ -1 
is calculated correctly, then it follows 

that the correct displacements {q1 must be obtained, since 

(4.11) 

It is assumed in this principle that fq} will always be unique. 

4.5.1 The Philosophy for testing the branched shell solution 

In the preceding five examples it has been shown that the program CONFRU 

➔f 
For the purposes of this section 'correct' will be taken to mean 'free from, 
or free of the effects of, logical error'. It is assumed that such solutions 
are capable of being improved through the process of convergence. 
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is capable of correctly analysing various single-wall shells of revolution 

comprising conical frustra, circular plates and circular cylinders, as well 

as simple combinations of these basic shapes. Closed shells and shell 

junctions have been found not to create any particular problems. 

It has also been shown which numerical factors influence the accuracy 

of the solution and its convergence, such as the method of numerical 

integration and the element aspect ratio, and what the general effect of 

these factors is. 

We are therefore saEE,fied that CONFRU is capable of formulating and 

solving any singLe-wall problem correctly. 

Now in the branching problem the system stiffness matrix undergoes 

various major modifications over and above those required in single-wall 

problems. These modifications have already been investigated and classified 

into five 'branch types', so that, given an arbitrarily branched shell of 

revolution, we know exactly what form the system stiffness matrix must assume. 

However, we cannot be sure that the computer has set up such a matrix 

correctly unless we know the actual values of the individual, stiffnesses 

beforehand. Since it is virtua 1., 1.,y impossible to ca 1,cu 1,ate these stiffnesses 

by hand (because of the lengthy numerical process involved), there is 

effectively no direct method of checking that the system stiffness matrix of 

a branched structure is being set up correctly by the computer. 

But suppose that we have analysed the two structures shown in Fig. 4.29(a,b) 

under som0 arbitrary loading, and that the solutions are known to be correct. 

Suppose also that during solution we obtain the actual numerical values of 

the individual stiffnesses in each of the stiffness matrices [K1 ] and [K2 ] 

for these structures. Clearly, if we combine these structures to form the 

branched structure shown in F 4.29(c), then the system stiffness matrix 

of the branched structure [K ➔t-J wi 1.,7., consist basically of a combination of 

the stiffness matrices for the two sub-structures. In fact, every single 

individual stiffness in [K':-J can always be obtained from the corresponding 

substructure stiffness matrices [K 1 ] and [K2 ]. 

Hence, knowing the form which [K ➔'J must assume, and the numerical 

values of [K1 ] and [K2 ], the nwnerical, values of [K ➔:-J can be checked 

exactly. 
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Fig. 4.29: Development of a oranched shell from two single-wall shells 

[ J [ J rK ➔}] Moreover, in so far as K1 and K2 are correct, !.. must also 

be correct. 

Precisely the same procedure may be used to check the load vector (F ➔~} 
of the branched structure. In this case, however, the process is even simpler 

since the numerical value of the load vector remains unchanged by any branching 

in the structure. 

There remains then to check that the equation solution subroutine 

functions correctly and efficiently when [K1~] contains off-diagonal sub

matrices (as can only occur when the shell is branched). This can be done 
➔} 

by substituting the solution back into the [K ] to obtain the original 
➔~ 

load vector, 

[K ➔~J ➔~ This process requires a duplicate copy of to be stored. Hence the 
back-substitution procedure is, for the sake of storage efficiency, not a 
standard feature of CONFRU. 
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[K➔~J Each row of _ contains a maximum of 15 non-zero elements so that 

the recovery of each value of the toad vector through back-substitution 

requires at most 15 multiplications and additions. Hence the rounding error 

in back-substituting is negligible (the more so because doubl,e precision 

arithmetic is used throughout), and any error which may occur in the back

substituted toad vector can be taken to indicate error in the original 

solution, (Difficulty may be encountered in determining whether such error 

in the original, solution is logical, or due to rounding.) 

In general, however, togical, and rounding errors shoul,d be clearly dis

tinguishable, so that back-substitution provides a reliable check on the 

validity of the equation solution procedure. 

A further general, check on the validity of the actual, solution fq} is 

to analyse the structure several, times, each time reordering the node 

numbering scheme. This has the effect of changing the form of the [K➔~J 
matrix, while obviously not affecting the solution. Hence, if for each such 

analysis identical, solutions are obtained, then this constitutes a necessary 

(but not sufficient) condition that the solution is correct. 

Once the correct displacement solution has been obtained it is a simple 

matter to check that the stresses and moments are being calcu1,ated correctly. 

This can be done by spot hand calculations since the stress and moment 

equations are reasonably simple. Checking of the stresses and moments shoul,d 

however be unnecessary since these calcul,ations are completely independent 

of any branching in the shell. 

A final, superficial check on the validity of the actual, stresses in the 

branched shell, can be made by constructing it in such a way that the stresses 

in the branched structure are very similar to those in the component sub

structures, when analysed independently. If such correlation is actuatty 

obtained it tends to lend plausibility to the results, Pl,ausibility however 

shoul,d never be taken as conclusive:~ 

Clearly it is both unfeasible and unnecessary to check every branched shel,l 

solution in the manner described in this section. However, since any 

branched shell can be built up of onl,y five branch types (in any combination 

➔~ 
During the initial testing of branched shell solutions, extremely ptausib~e 
results were often obtained, which later proved to be incorrect, 
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or number) it will suffice to check five arbitrary combinations of these five 

branch types in order to satisfy ourselves that the program is of general 

app licabi Li ty. 

In the following section then we will take two hypothetical branched 

structures which have already been analysed, and apply this method of testing 

to them. 

4.5.2 Example 6: The anal,ysis of a single-branch shell of revolution 

Specific objectives: 

(i) To confirm that the system stiffness matrix and load vector of 

the branched shell, are correctly formulated by comparing them 

with stiffness matrices and 1.,oad vectors of the component 

substructure. To confirm also that the equation solution 

procedure functions correctly and efficiently. 

(ii) To compare the meridional moments in the branched structure with 

the corresponding moments in the component substructures. 

Description of the analyses 

The first branched shel,l which we will analyse is shown in Tabel, 4.10. 

The upper cyl,inder and the edge loads U, W and M are identical to 

Example 1, and the circular plate and lower cylinder together (referred to 

as the 1.,ower substructure) are of the same form as Example 3. The dimensions 

of the lower substructure have been chosen so as to make it as stiff as 

possible relative to the upper cylinder, while maintaining a reasonable 

balance of proportions for the structure as a whole. 

We therefore have two simple substructures for which CONFRU is known 

to give correct solutions (and hence correct system stiffness matrices and 

load vectors), and which can therefore be used to test the branched shel,l, 

solution. 

Three analyses of the branched shell have been performed each having 

the same physical, element subdivision, but with different node numbering 

schemes, resulting in the use of three different branch types (2, 3 and 5). 

It will be noticed, however, that analyses 6/B1/1 and 6/B3/1, 
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Fig. 4.32: Analysis 6/B3/1 
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although having different node numbering schemes, have the same branch type 

classification. This apparent ambiguity can be explained by reference to the 

relevant branch type definitions, but is in all events of no concern to the 

program user, since use of the program requires no knowledge whatsoever of 

branch types. The rigid classification of branch types is of use only within 

the program itself to ensure that specific modifications are made to the 

system stiffness matrix. As far as the user is concerned, each branch is 

described essentially by the branch node number and the numbers of the ,~ 
elements meeting at it. 

Discussion of results 

The form of trw system stiffness matrices for the three branched shell 

analyses are shown in Figs. 4.30, 4.31 and 4.32, where each differs from the 

next according tc the mamier in which the nodes have been numbered. 

Each of the matrices is divided into two basic parts, each part essen

tially identical to the stiffness matrix of the corresponding substructure. 

This is best illustrated the stiffness matrix for analysis 6/B2/1 where 

the upper part, corresponding to nodes 1 to 70, is identical to the stiffness 

matrix for analysis c/c/04, whi Le the part corresponding to nodes 71 to 106 

is identical to the stiffness matrix for analysis 6/D/01, except for the 
7U diagonal subrnatrix at node 7H which is augmented with k22 . (The exact 

numerical values in the Latter submatrix can be obtained from analysis 

c/c/04.) The connection of the two substructures to form a branch at node 78 
-"-➔~ 

is effected by insertjng the off-diagonal submatrix;' 

➔: 

(4.12a) 

The tendency during the development CONFRU has been to generate as much 
data as possible automatically within tho program, thus reducing the amount 
of input data required. 

➔H~ 
It will be noticed that in the other two analyses the off-diagonal sub-
matrices are transposed as follows: 

6/B1/1: K106,8 
106 

k,12 

6/B3/1: K106,71 
k 106 

1? 
(4.12c) 
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Hence, with only two submatrices in the branched she1,1, stiffness matrix 

different from the stiffness matrices for the corresponding substructure it 

is a simple matter to check that the branched she1,1, stiffness matrix has 

been correctly set up by CONFRU. 

The same procedure may be used to check the numerical, values of the 

remaining two branched shell stiffness matrices. In each of the system 

stiffness matrices shown, modifications to individual submatrices are 

indicated by noting the new form of the submatrix alongside it. 

Needless to say, in all three analyses the system stiffness matrices 

are set up correctly by the computer. 

The load vectors for the branched shells have only three non-zero elements, 

corresponding to the three edge loads at the top of the upper cylinder. 

Checking of the load vector is trivial, (the load vector can be simply and 

accurately calculated on a desk calculator), and in each case it is set up 

correctly by CONFRU. 

When the displacement solutions were substituted back into the stiffness 

matrices the original load vectors were again obtained. The three non-zero 

elements were correct to the sixth significant figure, and the worst rounding 

error in the remaining zero elements was of the order of 10-8 . (Spot checks 

were also carried cut to ensure that the back-substitution procedure i tse1,f 

was functioning correctly.) 

With the system stiffness matrices and the 1,oad vectors set up correctl.y, 

and the equation so Lu ti.on procedure working efficiently, al, l, three ana 1,yses 

gave absolutely identical results for both the displacements ( to six sig

nificant figures) and the stress resultants (to four significant figures). 

The excellent agreement was in fact mildly surprising in view of the 

fact that the stiffness matrices for each of the analyses differ fairly 

widely in form. In particular, the storage requirements for each matrix, and 

hence the amount of arithmetic involved in solving the equations, vary 

significantly for each analysis. These requirements are given in the table 

below for the diagonal band (9 columns wide), and the off-diagonal, submatrix 

and associated zeros; for each analysis the storage efficiency remains 100%. 
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TABLE 4. 11 

Core Storage Requirements, in Double-Precision Words 

6/B1/4 6/B2/1 6/B3/1 

Diagonal 1581 1581 1581 

Off-diagonal 864 54 307 

·-------" 
To-r.;al 2445 1635 1888 

Discussion of the meridional moments 

With the lower substructure relatively stiff we can expect the upper 

cyLinder to behave as if rigidly fixed at its point of connection to the 

circular plate. Hence, noting from Example 1 that the meridional moment M 
s 

at the base is negligible, we anticipate no tranference of moments from the 

upper cylinder to the Lower substructure. 'rhe only force which will be 

transferred is the axial force U, which can be considered to act as a Line 

Load on the circular plate. Thus, for the purpose of comparison of meridional 

moments, the two substructures will be analysed as shown in Fig. 4.33. 

u 

i 

( a) Ana Ly sis C/C/04 

fig. 4._33 

TT u 

(b) Analysis 6/D/01 

The meridional moments in the branched shell are shown in Fig. 4.34 

vrhere they are compared with the corresponding moments in the substructures, 

analysed independently. The two sets of results are effectively identical, 

the only region uf discrepancy being, as we would expect, at the point where 

the upper cylinder joins the circular plate. At this point the moments in 

the cylinder, when analysed independently, are negligible, as compared to 



'l'ABLE 4. 12 

900 30 

Loading: 

u = 250 X 10 3 N/m 
w 264 X 10 3 N/rn 

M = 4,448 X 10 3 N 

Material Properties: 

E = 1 ,0 

V = 0 

Element Subdivision: 

E 

p 

p_l 

P,, 
('._ 

AC, BC, CD, DE as for Exa1nple 6. 

FG: 60 elements@ 0,015 rn; L/t 

GD: 90 ll @ 0,015 rn; 1/t 

Analysis I. D. No. Branch Types 

8,829 X 10 3 N/m2 

= 0,250 X 10 3 N/m2 

I = 2 

1 
== 2 

Remarks 

7/B1/1 1 ' 4, 5 For node numbering, see Fig. 
7/B2/1 1 ' 4, 5 II II II see Fig. 

' 7 /D/01 - Cone-cylinder substructure: 

1000 

_,, 

4.36 
I 

I 

4.37 
4.31 I see Fig. 
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the value 3,861 kNm/m when it is joined to the circular plate. The moments 

in the plate itself are discontinuous at the branch point; notice however 

that the finite element solution maintains very closely equilibrium of the 

moments at the branch point, as can be seen from the following addition 

(+=clockwise moment): 

30,23 + 3,861 - 33,81 = 0,28 ~ o. 

The moments in the circular plate when loaded with a line load are 

continuous, and at the joint are exactly equal to the mean of the discon

tinuous moments mentioned above (see inset, Fig. 4.34). 

The moments in the branched shell are therefore precisely as we might 

expect, and so provide us with a final (if superficial) confirmation that 

the correct solution has been obtained. 

4.5.3 Example 7: Analysis of a doubly branched shell of revolution 

Specific objectives: 

As for Example 6. 

Description of the analysis 

The second branched shell which we will analyse is shown in Table 4.12. 

As can be seen from the diagram it consists of the shell analysed in Example 

6 with an additional branch in the ::orm of a cone-cylinder (section DGF). 

The geometry of the cone-cylinder branch e.nd its loading are similar to 

Example 4. 

The complete shell therefore consists of three basic substructures, 

each of which may be analysed independently to provide the correct numerical 

values in the system stiffness matrix of the branched shell. For this purpose 

the cone-cylinder substructure was analysed as shown in Fig. 4.35. 

I< 1000 

l 
1000 

I 
I 

Fig. 4. 35 
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Closure element 

Notes: 

256 nodes 
256 elements: element 106 
is a dummy element. 
768 equations. 
Core storage: 4830 double 
precision words. 

Fig. 4.36: Node and element numbering scheme for analysis 7/B1/1 

CD 

';; -011 >».-),), 

Closure element 

Notes: 

256 nodes 
256 elements: element 171 
is a dummy element. 
768 equations. 
Core storage: 5391 doubk 
precision words. 

Fig. 4.37: Node and element numbering scheme for analysis 7/B2/1 
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Two analyses of the branched shell have been performed. each using the 

same element breakdown, but with different node numbering schemes. The node 

numbering schemes for the two analyses are shown in Figs. 4.36 and 4.37; the 

notation used here is the same as that of Example 6. 

Discussion of results 

Since the methods used in carrying out the objectives of this example 

are the same as were used in Example 6, it suffices simply to state the 

following results: 

(i) The system stiffness matrices and load vectors for the two 

analyses are correctly set up by the program. 

(ii) Both ana1,yses give absolutely identical results for both 

displacements and stresses. (Note the total core storage 

requirements for each system stiffness matrix given in the 

Figures). 

As far as the meridional moments M are concerned the cone-cylinder 
s 

branch has, due to its very small relative stiffness, negligible effect on 

the rest of the she L l. Hence the moments in those parts of the structure 

corresponding to Example 6 remain essentially unchanged. 

The moments in the cone-cylinder branch are shown in Fig. 4.38(a) where 

they are compared with those in the corresponding substructure (Fig. 4.35). 

When this branch is analysed independently (i.e. fixed at its bottom end) 

the moments in the lower part of the cone die out (c.f. Example 4, Fig. 4.21). 

However, when analysed as a branch, the moments have a peak at the branch 

junction; this is to be expected in view of the fact that the junction D 

is not infinitely stiff, and as such the equilibrium of moments at the 

junction must be maintained. Notice that the equilibrium of moments at 

the junction is very accurately maintained (the unbalanced moment being 

only 0,030 kN m/m), and that the moments in the conical branch are in fact 

negligible compared with those in the rest of the shell. 
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0,2~(_ 
n"= .34.01 

33,17 

(b) Moments at shell 

junction D 

(a) 

Branched shell results 
Substructure results 

20G,8 

in tte cone-cylinder 

brancr1 [Nm/m J 

Fig. 4.38 
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We c,rnclude, tlwrefore, tbat tho solution given by CONF'RU for the 

doubly branched shell is correct. 

4.6 An Example from Practice 

We have shown in the preceding two examples that the solution given by 

COJ'{FRU for a sing lo and a double branched she LL are correct (i.e. , free of 

logical Grrors, and }H,nce capab Le of being improved if necessary by refine

ment of the element ,rnbdivision), and although the full branching logic of 

the program has been tested only piGce by piece, we are nevertheless con

fident that any arbitrarily branched shell can be equally effectively 

handled. 

Up to now, however, we have avoided the question of the accuracy of the 



Section 
Number 

1 

2 

3 

4 

5 

6 

7 

8 

Lettering 

AB 

BC 

CD 

DE 

EH 

BF 

GF 

FE 

8 
C\I 
«> 

8 .., ___ _ 

8 
a) 
,.... 

0 

3838 300 4'3 

C B A 

125 

D 

G 

2~ 1400 

H 

Fig. 4.39: Elevation of elevated effluent tank 

Sea Le 1: 1000 Dimensions in mm 



branched shell solutions (due to the lack of independent solutions for 

comparison), and in the following example we will discuss this aspect in 

relation to practical design requirements. 

99. 

The example, which is analysed under both live and dead loads, serves 

also to illustrate the potential, of the program. 

4. 6.1 Example 8: The analysis of an elevated effluent tank 

The elevated effluent tank shown in Fig. 4.39 has a capacity of 450 m3 

and forms part of a sewage plant completed recently for the City of Durban. 

The tank and its supporting tower have an overall height of 2'1,690 m and the 

structure as a whole is very sLender; in fact the tower and the inner 

cylinder of the tan."!( are by definition thick shells, having D/t ratios of 

14 and 12 respectively. 

This structure, being made up entirely of a combination of cylinders, 

conical frustra and circular pLates, is the type of structure for which 

C0NFRU was specifica l Ly developed. 

Three analyses of the structure have been carried out, for which the 

data are given in table 4. 13. For each analysis the structure is 

assumed to be rjgidLy fixed at the base of the tower H, and a closure 

element is made use of at G where the tank is cl,osed. There are three 

branch points at B, E and F. 

The following objectives are dealt with in this section: 

( i) The automatic plotting facilities attached to C0NFRU are 

illustrated, and the interpretation of plotted output is 

discussed. 

(ii) 'rhe accuracy of the solution is assessed by investigating the 

improvement in results obtained by refinement of the element 

subdivision. 

(iii) The Live and dead load stress distributions are discussed. 

Analysis ST/1/1 is al,10 used as a sample analysis for future 

reference and the complete data input, as well as the displacement, stress 

and moment solutions are given in Appendix A. 



TABLE 4. 13 

Material Properties: 

Reinforced concrete: E 

'J = 0, 167 

y = 2tJ r X 10 3 N/m3 

Effluent: y -- iO X 103 N/m3 

Los.di.na·: 

Load Case i : Live load; tank completely filled with effluent. 

Load Case 2: Dead load; self-weight of the structure only. 

Analyses: 

ST/1/i: Load Case .. 
'' 211 elements 

ST/1/2: Load Case 1 ' 444 elements 

ST/2/1: Load Case 2, 2~ .. I I elements. 

1~ 
Element Subdivision 

Section ST/i/1 and ST/2/1 ST/1/2 

AB 3 (c 100 (0,4) 3 @ iOO (0,4) 

BC 19 (n 202 (0,8) 38@ 10 i ( 0, 4) 
--

CD 9@ 202 ( i , 0) rn@ 101 ( 0, 5) 

+ (();· 203 + 4f3 @ 1G 1 /5 

DE 7 (:, 205 (0,8) 14 @ 102, 5 (0,4) 

+ 1 :,) (c"?' 206 + 30 @ 10:3 

EF 4 ({ 1 ( 0, 5) 6 @ 106 (0,4) 

F'G 4 @ i 50 (o, 5) 7 @ 100 ( 0, 3) 

+ 1 100 

+ closure element + clo~:ure element 

BF (c :50 ( i , 2) ii2 @ 75 ( 0, 6) 

'10 @ 149 20 @ 74,5 

EH (ti) 200 ( 1 , 0) 118 @ 100 (0,5) 

~:-Element lengths in rmn; approximate L/t ratio in brackets 
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Discussion of Results 

Computer plotted output: A computer plot of the live and dead load stresses 

and moments in the shell structure is shown in Fig. 4.40. Plotted output, 

while always an advantage, is particularly useful where large numbers of 

elements have been used in an analysis, resulting in many pages of printed 

output, which are tedious to scan and assess. The plotting facilities 

available with CONFRU have the following additional advantages: 

(i) The pLutting is done e.utomaticaUy following the relevant 

analysis without any intervention on the part of the user, 

(other than to specify that the plotting option is to be 

made use of). 

(ii) The results of up to four analyses may be plotted on one system 

of axes to facilitate the comparison of different load cases, 

or the use of different element subdivisions. In such cases 

the Lengths of the axes and the sea les used are automatica l Ly 

chosen so as to effect the optimum accommodation of the most 

diverse ranges of results. 

In order to correlate points on the horizontal axis (axial distance) 

of the computer plots with the corresponding points on the actual structure, 

it is necessary to refer to the printed stress and moment results, which are 

set out in the following format: 

Node No. 

Section 1 

Section 2 

Cu!lluLative 
Distance 

0 
s 

0 
6 

JVI 
s 

The cumulative distance in this table is identical to the axial distance 

in the computer plots. It is the ac tua L distance measured a long the middle 

surface of the structure from the first to the last node. Hence, knowing 

the nodal numbering scheme used in the analysis (i.e., which node corresponds 

to which point on the structure), tho equivalent cumulative distance may be 

read off from the table of printed results, and correlation between nodes on 
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the s tru.c ture and points on the horizontal axis of the plots 

there obtained. 

In most cases it is :preferable to :plot results on a line diagram of the 

structure. This i::3 easiest done by making use of the computer plot in the 

following way: (the plot of the meridional moment results for analysis 

ST/1/-1, shown en in Fig. 4.41, will be used to illustrate the procedure). 

(J) From the nodal, numbering scheme used in the analysis the 

ci1mul.ative diL-itance to the beginning and end of each section 

is read off from the table of printed results. (The full set 

of res 1J.lis for this analysis is given in Appendix A; the 

,sectiCln rnunbers referred to are given in Fig. 4. 39). 

( . 
\ l 

(iii) The M 

of this information, the horizontal axis of the 

tis divided into sections (Fig. 4.41). 

afTO.ill I or each section is transferred to the line 

diagra.rn of tb.e structure. (Positive stresses denote tension; 

si moments denote tension on the side of the positive 

nc,rr1s L to the she l, L 1-m l, l: see 'Sign Convention' , .Section 

l.t o such a transference is shown in Fig. 4.42 where 

the meridioraL is ST/1/1 are shown plotted on the tension 

side of the shell walls. (For c tari the inner cylinder and circular base 

ed frcm the rest of the structure.) The same procedure 

appbe,s to the pLot~. 

the structure. 

of other stresses and moments on a Line diagram of 

Accuracv arnl vaLi::i}ty of refmlts: We begin by comparing the resu1ts of the 

two Live Lo ana tr~e two analyses have average 

element aspect ratios of approximate 1,0 I ) ' \211 elements and 0,5 l414 

elements) respective 

shown (Fig. 4. 42) it is clear that the 

rnomen.ts a:ce entrc:1t at the shell junctions. Hence 

it suffices to cun1-pare the moment results obtained from the above analyses 

at the tion poi.J:ts , as shown in the following table. 
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TABLE. 4. 14 

1~ 
[kN m/m] M Unbalanced 

s 
Moment at Junction 

Junction Section ST/1/1 S':I'/ 1/2 Difference ST/1/1 ST/1/2 

BA -- 2' 6 - 2,896 0 

B BC 7, 21 -1 7,266 0,055 0,061 0 ,040 

BF _, 4, - 4,410 0 ,034 
-

CB - ,'. 3,876 0,002 C j' 0,003 0 
CD - ·3, ffT~i - 3,876 0,001 

D 
DC - ,862 - 1 ' 0,003 0,024 0,006 
DE i, /'3.36 1,865 0,021 

ED '7•"_) 
' ,i ~-) 40 ,82 1,040 

E EF - 'IC), 30 -- 19, 0 ,040 0,800 0 ,240 

Eli - 2-1,2t:3 - 21, 0, 440 

G GF ; 0 0,722 0 c:; -1" - -I l ,-c 
' j IV 

H HE c· 5,736 0, 190 _) ' - -

From this table the fol results are apparent: 

(i) The refined elc,E,cnt ~;,J.cdivisicn (analysis S11'/1/2) has clearly 

( - - ) \ J_ l 

in results, as can be seen by 

compannp; the unbaL:rnced moments at each junction for the two 

analyses, 

veffion~ in individual results fer each section is, 

:1owever, very ,c;malL In fact, for all practical purposes the 

improvements are neg , meaning that either set of results 

would rise, instance, to the same steel reinforcement 

for tl1e str11ctu.re .. 

Hence, for aLl practical purpo::::es the moments may be~ said to have converged. 

Furthermore, there is no doubt that tJ-1ey are correct, and although we cannot 

state the degree of accuracy of the results, there does not, in view of (ii) 

above, appear to be any neecl for this. 
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~Chere are some further aspects of the 

comment: 

M 
s 

diagram which require 

( i) The surpric,inrsly large moments in the tank roof ( which is un

loaded) may be explained hy reference to the deformed shape of 

structure, as obtained from the displacement results. The 

displacements of tlrn points E and F are essentially identical. 

Hence, and becru1se there is no axial strain in cylinder BF, 

the di:::,placement of point B remains essentially zero relative 

to the tank base EG. The point D, on the other hand (and hence 

the point C, ignoring the aria l strain in CD), undergoes a 

fairly large vertical displacement due to bending in the conical 

section DE. The net result is that point C undergoes a 

significantly larger vertical displacement than point B. The 

ITJ)mF-mt diagram for the ro'.)f corresponds precisely to such a 

re1A1tive ,1ir.:ple,cement, and this in turn accounts for the large 

edge disturbances at the upper edges of the tank's cylindrical 

wal Lu. 

(ii) rl'he rrJ:irne:;nbc: in tJw circular plate, section 1<7 G, are almost 

exactly constant (as they should be) except for the single 

value, Rt Lhr) axis ()f' syinni8try. This error is due to the 

1: Lo ,=:ur8 c Len,ent. Notice, however, that a significant improve-

ment ~ obtained th t]w u::rn of a rPfi.ned element subdi vi:::; ~en, 

(iii) Thero are no mornontG in t~e cylindrical tower, besides obvious 

eel ge dic1 tru bane e:::;, r~inc c th8rc:: are no lateral Loads acting on 

'11he M diagram for the self-weight only of the structure is shown in 

Fig. 4. 4 3, and the c:n Ly parts of t:'-2 cliag.r·am requiring comment are the 

moments at junctions D a~~ E. At tion D the moments due to self-

weight of the structure are far higber than those due to water only in the 

tank, becaUEJe of the' fairly vertical load at D in the former case, 

and the zero vertical Load at Din the Latter. The reason for the 

difference between the Live and dead Load moments at junction E is due to 

the difference in the tude and distribution of loads on the conical 

section DE in each case. 
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The hoop stresses in the cylindrical and conical parts of the structure 

are shown in Fig. 4.44 for both the live and dead load cases. Since the 

axial strains in the upper cylindrical sections of the structure are 

negligible, the hoop stress diagrams for these sections may be read also 

as radial displacement diagrams. 

i.e. , 

The hoop stresses for the live load case are much as we would expect, 

(i) linearly increasing in the cylindrical sections, which are 

subject to hydrostatic pressure distributions; 

(ii) bulging significantly over most of the conical section, also 

due to hydrostatic pressure; 

(iii) zero in cylindrical tower, due to zero lateral forces. 

The hoop s Gresses in the inner cylindrical wall of the tank are far 

smaller than in the outer wall because of the restraining influence of the 

circular plate at its base which permits only very small radial displacement. 

The hoop stresses due to self-weight of the structure are everywhere 

smaller than the Live load hoop stresses. This is clearly due to the fact 

that al 7" self-weight Loading is vertical, a'J'.J t:.,,s ·not a primary cause of 

radial displacement. 

The axial stresses in the cylindrical and conical sections of the 

structure are shown in Fie;. 4.45 for both the live and dead load cases. 

Over each sec ti(m the a.xia l stress diagrams are linear ( this may be con

firmed by referring to the computer plot in Fig. 4.40), the axial stresses 

being caused by components in the direction of the shell meridian of the 

vertical loading. Hence, for the live load case th2 0:::ly axial stresses 

besides those in the tower are in the conical sectio~, increasing from ~ere 

at D rnaxirr:;}m at junction E. 

For the self-weight toad case the axial stresses begin at junctions 

B and C 
' 

the stresses at these points being due to the weight of the 

tank roof. The axial stresses increase line&rly d0wn the cylindrical and 

conical sectio~w du, to the linear cumulative increase in the weight of 

the cylinders and cones themselves. 
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The values given by C0NFRU for the axial. stresses at the base of the 

tower may be confirmed by the following simple calculations: 

Live Load: 

-3t 7 

Volume of effluent in tank -- 550 m) 

Weight of effluent in tank -- 550 m3 X 10 kN/m3 = 5500 kN 

. ·. Axial stress at tower base 5500 
2 n( 1 , 4) ( o , 2) 3125 kN/m2 

2 T'he corresvmch ng value by C0NFRU is 2950 :k_N/m . Although the 

difference (175 kN/m2 ) is fairly large, it is equivalent to a volume of 

effluent of only 30 Furthermore, it should be borne in mind that the 

effluent loading is input to the program as an equivalent hydrostatic 

pressure distribution, with the values at ,1unctions C, D, E, F and B 

only being given. The agreement is, therefore, very reasonable. 

Dead Load: 

Volume of material in structure 

Weight of material in structure 

3 105 m 

105 m3 x 24 kN/m3 = 2500 kN 

.·. Axial stress at base of tower 2500 2500 ; 2 
21crt - 2n;(1,4) (0,2) =143o kN m 

The corresponding value given by C0NFRU 

excellent. 

The agreement is 

The circumferential moments M8 , which up until now have not been 

mentioned, may in general be ignored, and are included in the program 

C0NFRU only for completeness. The reasons for ignoring these moments are: 

(i) The circumferential curvature, 

. ¢ dw - sin -_-
ds 

r 
( 2. 14d) 

reduces "ad absurdum" in the number and extent of the approxi

mations involved in its derivation (see Section 2.4). The 

quantity is therefore of doubtful physical significance. 

(ii) For cylinders (¢ = 0), M8 =--' O, and for circular plates 

(¢ = 90°), Me depends on the slope dw/ds and inversely on 

the radius r of the plate. Hence we find that where the slope 

dw/ds is large and the radius small, large values of M8 result. 

➔!This volume is ca lcu lated on the geometry of the middle surface of the tank, 
assuming the tank to be complete Ly fu l L 
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TABLE 4.15: Plotting Times and Costs 

Total No. Size of CPU Time Plotting Time 
of Nodes Plot [seconds] [minutes] 

211 Full 10 10 

211 Small 7 6 

414 Full 14 11 

414 Small 13 7 

Cost 
[Rands] 

Total Cost 
[rands J 

4-50 

3-85 

5-40 

4-05 
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This is well illustrated in the present example by the result for 

M8 at the point A, which is a free end and perhaps the most 

insignificant part of the structure; at this point M8 has its 

maximum value for the whole structure. 

4. 7 Computer Time-Cost Analysis 

For the prospective user of a computer program the run-times and costs 

involved in making use of the program are of paramount importance. The 

run-times also give a good indication of the overall efficiency of the 

program. 

Computer run-times for finite element analyses depend primarily on the 

number of elements used in the idealisation of the structure; for CONFRU 

the type of loading and the actual geometry of the structure have been found 

to have a rcegUgible effect on run-times. 

The actual CPU time for a number of analyses is shown in Fig. 4.46, 

plotted against the number of elements used in the analyses; the costs of 

the analyses, based on the CPU time, are also shown. The plotted points 

are seen to lie very close to a straight line, from which the maximum 

(extrapolated) cost of a 500 element analysis is approximately R20. 

The following points should be noted in connection with Fig. 4.46: 

(i) The cosb3 obtained from the curve should be augmented by a 

~ + d d d . t d sum OL - R2-00 to allow for cars rea an pages prin e. 

(ii) The CPU time depends on the computer system on which the 

program is run, which is in the present case, a UNIVAC 1106 with 

65 Kuser core. It is envisaged that a new 200 K dual processing 

system will soon be in operation, which is expected to reduce 

the CPU times given above by up to 30';i'. 

A representative summary of plotting times and costs is given in 

Table 4.15 and the following points should be noted: 

(i) The plotting time depends primarily on the number of points 

plotted, which is 4 x (total number of nodes). 
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(ii) The user has the choice of three sizes for the overa11 plot: 

Small,: 32 X 27~- cm: this size intended specifica11y for 
Fig. 4.40-

Medium: 38 X 38 cm: this size allows two sets of axes to an 
A4 page. 

Large: 57 X 46 cm: this size a11ows one set of axes to an 
A4 page ( see Fig. 4. 4-1). 

As can be sPcn1 from the table, plotting costs are Low and vary over a 

very narrow range. It wil,l, b8 noticed in particular that p1otting the 

results of wo or more analyses on the same system of axes increases the 

pl,otting ti1ae and cost by almost neg1igible amounts. 

To summarise then, the cost of using C0NFRU and its associated 

ptotting facih ties is extremely low. For examp1e, for a 250 e1ement 

anal,ysis with corresponding ful,l, size p1ot of stresses and moments, the user 

may expect to pay approximately R.17. 
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CHAPTER 5 

SU}lMARY AND CONCLUSIONS 

CONFRU is a computer program which uses the finite element method for 

the Linear elastic analysis of variable thickness branched axisymmetric thin 

shells of revolution, made up of any combination of cylinders, conical frustra 

or circular plates. The various features contained in the program have been 

tested, the accuracy of the solutions has been assessed and the potential of 

the program illustrated, Because the program is intended for commercial use 

by engineers (with perhaps limited finite element analysis experience), con

siderable emphasis has been placed on the correct interpretation of results, 

and on the conditions which should be fulfilled in order to obtain useful 

solutions from the program. In this respect the chapter of results serves 

also as a guide to prospective users of the program. 

A. 

The essential features and capabilities of the program are: 

Individual element properties 

(a) (i) Conical frustrum element: 2 nodes, 6 degrees of freedom; 

linear meridional, cubic normal displacement functions; 

compatible and complete. 

(ii) Closure element: single node, 3 degrees of freedom; linear 

displacement functions; compatible and complete. 

(b) Strain-displacement and stress-strain relationships: 

Approximate thin shell theory of Flugge. 

(c) Stiffness matrix: 

Derived by minimisation of total potential energy. 

(d) Equivalent nodal loads: 

Axisymmetric; derived through minimisation of total potential 

energy. 

(i) Concentrated line loads. 

(ii) Linearly distributed loads. 

(iii) Loads due to se l,f -weight of shell. 
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(e) Material properties: 

Linear elastic, isotropic, homogeneous. 

(f) Thickness may vary linearly along the length of the element. 

Properties of the structure 

(a) Axisymmetric thin shell of revolution, made up of any combination 

of cylinders, conical frustra and circular plates. 

(b) May be closed at the axis of symmetry, at any number of points. 

(c) May contain any system of branching. 

(d) Boundary conditions: 

(i) Clamped 

(ii) Pinned-clamped 

(iii) Pinned-sliding 

(iv) Clamped-sliding 

(v) Free. 

(e) Young's modulus E and Poisson's ratio v must be constant for the 

structure. 

Solution procedure 

(a) Numerical integration: 

5 or 7 point Simpson's quadrature. 

(b) Solution of equations: 

Gauss-Jordan; K matrix stored in single dimension array ensuring 

100% storage efficiency. Technique developed for symmetric, 

sparsely populated matrices. 

(c) Back-substitutions: (optional) 

Output 

(a) Printed output: (all optional) 

(i) Geometry of structure, 

(ii) Loading on structure, 

(iii) System stiffness matrix, 

(iv) Load vector. 

(v) Boundary conditions, 

(vi) Displacements and rotation at each node, 

(vii) Stresses and moments at each node, printed section by section. 



(b) Plotted outnut: (optional) 

Up to four sets of stress and moment results automatically 

plotted on a single system of axes; overall size of the plot is 

optional. 

Of the features mentioned above, the following constitute original 

work by the writer: 

(i) The development and implementation of a circular plate closure 

element. 

(ii) The development of a general algorithm for setting up the system 

stiffness matrix for an arbitraril,y branched shel,l, of revolution. 

It is interesting to note that since the conical frustrum element 

is one dimensional, this algorithm may also be used for symmetric 

plane frame analyses. 

(iii) The development of an algorithm for the sol,ution of sparsel,y 

populated symmetric systems of equations; the al,gorithm ensures 

1001 storage efficiency. 

The correctness of the solutions given by CONFRU for singl,e wall 

shells has been demonstrated by comparison with exact theoretical solutions. 

In the case of branched shells the solutions have been checked by making use 

of the method of substructures, the philosophy of which is outlined in 

Section 4.5.1. All solutions obtained were found to exhibit convergence as 

the element subdivision was refined; in particular, shell junctions, in-

c Luding the cylinder - circular plate junction, have no significantl,y adverse 

effects on either the convergence or the general accuracy of the solutions. 

In connection with the accuracy of the solutions we have found that: 

(i) For numerical, integration of the el,ement stiffness matrix the 

5 point Simpson's quadrature formul,a is both accurate and efficient, 

and there is very little to be gained in the way of accuracy by 

using 7 or more points. 

(ii) In Exampl,es 1 to 4, where quantitive accuracy assessment could be 

performed, convergent displacement sol,utions were obtained by 

using element aspect ratios within the general, range 

1/6 < 1/t < 1. 
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The maximum meridional moment error recorded was 1,65;. occurring 

in the wall of the hydrostatically loaded closed cylindrical tank. 

The errors in the moments at the shell junctions did not exceed 

this value. 

(iii) From Examples 6 and 7 it would appear that the branched shell 

solutions are of the same order of accuracy as the single wall 

shell solutions. Rounding errors were found to be negligible, 

and the choice of nodal numbering scheme had no effect on the 

solution. 

(iv) In Example 8, confirmation of solution convergence was obtained 

using two element subdivisions having aspect ratios within the 

range suggested above. It was pointed out that the solution 

obtained using an element aspect ratio of 1 was quite suitable 

for design purposes, although no quantitative measure of the 

accuracy could be given. 

(v) The program appears to operate equally efficiently when very 

large numbers of elements are used; significant improvements in 

accuracy (as gauged by the diminishing out of balance moments at 

shell junctions) have been obtained using over 400 elements. 

It has been shown in Example 5 that C0NFRU may be used to estimate 

the maximum hoop and axial stresses in thick wall shells, in those parts of 

the shell sufficiently remote from edge disturbances. This is particularly 

useful in the analyses of pressure vessels (which must often be classified 

as thick shells by definition), where analytical thick shell solutions are 

not available, or where the high cost of experimental analysis is probibitive. 

Throughout the development of C0NFRU one of the primary aims has been 

to make the program simple to use. This aim we feel has been realised. 

Data input is kept to a minimum by relying as far as possible on automatic 

data generation at execution time. The user need have only a rudimentary 

knowledge of finite element methods, and no technical knowledge of the 

program is required: for example, branch points are denoted by simply 

naming the branch node and the numbers of the elements meeting at it. In 

this way the possibility of technical errors in the data input is greatly 

reduced. 

Finally, computer run-times and associated costs are, even for large 

analyses, very low. 



CONFRU has certain limitations which provide scope for further improve

ment~ Among the items requiring further attention are: 

1~ 

(i) At present Young's modulus E, Poisson's ratio v and the unit 

weight of the structural material y are constant for the entire 

structure. :Modifications which would allow these properties to 

vary from section to section appear to be desirable (c.f. Pian et 

al. [21], p 119) 

(ii) The Loading conditiom3 applicable to a shell of revolution re .ting 

on a soil foundation require investigation. Until such time, the 

user shouLd bear in mind that the solutions obtained from CON:FRU, 

while correct, are valid only in so far as the assumptions made 

for the are valid. 

(iii) It has been shown that where sharp edges occur between two sections 

of a she l L high stress and moment concentrations arise:Hc In fact, 

the majority of shells of revolution are stiffened at these edges 

with ring beams designed to absorb these stress concentrations. 

In axisymmetric shells the ring beams are subject primarily to 

torsion (due to the meridional moment in the shell wall), and 

hoop stresses (due to radial displacement). In order to perform 

their function the beams are designed tu be very much stiffer 

than the adjacent shell, the stiffness being derived from the 

heavy steel reinforcement in them. It is this very large ~elative 

stiffness which precludes their indealisation as shell elements, 

even as an approximation, since the relative stiffness of the 

ring beam is not si.r:iply proportional to its linear dimensions, as 

is the case in a normal shell element idealisation. Clearly what 

is required is a special ring stiffner element having prescribed 

torsional and hoop stiffnesses which take into account the rein

forcement in the beam. The chief problem in developing such an 

element is tu make it compatible with the adjacent shell elements; 

(this problem is discussed by Jones and Strome [27], p 216). 

Hence, until such an element has been deve lopE;d for CONFRU there 

is no alternative but to ignore the effects of ring beams. 

We mention here only these improvements which fall within the stated scope 
of the program. 

"""see for example junctions D and E in :Fies. 4. 42 and 4. 43. A discussion 
of this phenomenon is also given by Fl;i_igge [ 4 ], p 350. 
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There remains a fina 1, detai 1, which whi 1,e uot a 1,imi tation of the pro

gram (since it does not fa1,1, within the stated scope) neverthe1,ess deserves 

attention. This is the question of the e1,astic boundary condition and the 

initia1, temperature strain faci1,ities, for which the fundamenta1, theory has 

been given. A1,though both these faci1,ities were at one stage avai1,ab1,e in 

CONFRU in a specia1,ised form, they have since been de1,eted from the system 
➔~ 

due to 1,ack of commercia1, interest. The theory, however, remains usefu1, 

for future possib1,e reference. 

➔~ d" t . 1 · In 1,iquid containing structures the temperature gra ien occurs mainvy across 
the thiclmess of the she1,1, wa1,1,. Sinc.e the initia1, strain vector (Eq. 3.20) 
takes no account of changes in curvature, the effects of temperature gradients 
across the she1,1, wa1,1, cannot be ana1,ysed. The formu1,ation given here is 
suitab1,e on1,y for uniform heating or coo1,ing of the she1,1, wa1,1, as a who1,e. 
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A.1 Introduction 

CONFRU is a finite element computer program capable of the linear 

elastic, static analysis of variable thickness branched axisymmetric thin 

she 11.,s of revo tub.on subject to any system of axisymmetric mechanical, loads. 

The shel,l, and finite element theory upon which the program is based has 

been given in Chapters 2 and 3, and numerous results obtained from the 

program are discussed in Chapter 4. 

A description of the internal, logic of CONFRU is given in section A.2, 

including descriptions of the individual subroutines. This information 

serves primarily to supplement the input data, a detailed description of 

which is given in section A.3. Included in this section are typical, run

streams showing the relationship between the analysis program CONFRU and 

the plotter program STRESSPLOT. 

Sample data in1mt and results for the analysis of Example 8 of Chapter 

4 are shown in section A.4, and complete listings of al-1 programs are given 

in section A. 5. 

CONFRU is written in F10RrrRAN V as implemented on the UNIVAC 1106 series 

computer. A complete deck of cards for the program is avail-able and the 

program is maintained permanently on both disc and magnetic tape at the 

University of Cape Tovm Computer Centre. COI\TFRU is therefore immediately 

available to any interested user. 

In the descriptions that follow ( except for the input of data), it is 

assumed that the user has a basic knowledge of FORTRAN V. 
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A.2 The Internal Logic of CONFRU and STRESSPLOT 

A.2.1 General Description: CONFRU main program 

CONFRU is structured in modular form, i.e., it consists of a m~in 

program and a series of independent subroutines. The functions of the 

main program are to coordinate the steps in the analysis by making decisions 

and calling the relevant subroutines, and to perform all input/output. The 

actual analysis is performed by the various subroutines acting either alone 

or in conjunction, each of which has a specific function. 

A macro flow chart for the main program (MAIN) showing the steps in 

the analysis and the fourteen subroutines called, is given in Fig. A.1; a 

description of each subroutine is given in section A.2.2. Among the general 

features of the program are the following: 

(a) All arithmetic is performed in double precision. 
➔~ 

(b) All real variable arrays are dynamically dimensioned. The 

advantages of this form of dimensioning are: 

(i) Compatibility of dimensions of variables in the main 

program and the corresponding variables in the sub

routines is ensured. 

(ii) The dimensions of all similarly dimensioned variables in 

both the main program and the subroutines may be changed 

by changing a single number which appears on the first 

card of the main program. 

(c) All printed output is optional. The user may select exactly 

which output is required. This is particularly useful in those 

cases where the program is executed from a remote terminal. 

(d) The modular form of the program allows subsidiary steps in the 

analysis to be ignored if not required. For example, if there 

are no concentrated line loads acting on the structure, the 

subroutine PTLOAD is ignored. 

(e) Stress and moment results are automatically written into a 

computer disc fi Le for future plotting. The actual plotting is 

performed by a separate program STRESSPLOT, descrj_bed in section 

A.2.3 

➔~ 
See also 'Maximum size of analysis possible", section A.3.3. 



PRINT: Loading 
data 

Figure 

START 

Initialise variable 
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Read options for printed output 

Print option 1-__.c...y_e_s __ ....., PRINT: Heading block 

no 

Read analysis data 

Initialise values of 
fixed constants according 

to data input. 

CALL PLGEOM 

Print option __ y_e_s __ "-1 PRINT: genera 1, information 
geometric data 

no 

Are there distributed __ y_e_s..._ CALL PLPRES 
pressure Loads 

no 
CALL SETBD 

yes Print option 
CALL GELSTF CALL 'rRANS. 

no 

CALL SYSTEM CALL PROD 

Are closure e 1,ements required yes CALL CLOSEL 

no 

Are there concentrated l.ine 1,oads yes 
CALL PTLOAD 

no 

Are there distributed pressure 
1,oads, or is the se Lf-weight yes CALL LOAD 

to be incl,uded 

no 

CALL BONCON 

A. 1 : Macro fl,ow chart for CONFRU main program 
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STOP 

Figure A.1: (Continued) 
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PRINT: System stiffness 
matrix and toad 
vector 

CALL BANBAC 

PRINT: displacement 
results 

yes PRINT: Stresses and 
moments 

Stresses and moments 
onto disc storage 
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A.2.2 Descri.otion of CONFRU subroutines 

There folLows a description of each of the subroutines used in CONFRU. 

In each subroutine, its function, input and output variables, and a brief 

description of its salient features are given. The subroutines are des

cribed in the order in which they appear in the macro fl,ow chart of Fig. 

A. 1. 

The information given here serves only as the first step towards a 

programmer's reference and is no intended to be complete. The descriptions 

should be viewed rather as augmenting the preparation and coding of input 

data, and to this end particular attention has been paid to the input and 

output variables associated with each subroutine 

In many cases the information given here is sufficient for compil,ing 

flow charts from the listings of the subroutines. Particular attention 

has been paid to describing the~ of SYSTEM and BANDO since these sub

routines are useful outside the context of CONFRU: 

Notation used for input and ouiJ?ut variables: 

(i) Variables beginning with the "Letters I, J, K, L, M and N 

are integers, with the exceptio11 of the length of e "Lemen t 

i L(I) which is real. 

(ii) Su1Jscripted variables are arrays having the number of dimensions 

indicated. All the other variables are constants. 

(iii) Variables preceded by a star(*) are transferred to or from the 

subroutine n COMMON statement. All other variables are 

transferred via the subroutine argument "List. 

(iv) When a variable which has already been defined is encountered in 

an input or output b.st the name of the subroutine in which it 

was defined is given in square brackets. 

Subroutine PLGEOM (NSEC, NELB, NELE, RB, RE, TB, TE, L, T, R1, R2) 

]'unction: 11 0 ca1cu1,ate the geometry of every element. 

Input variables: 

NSEC number of sections ( see definition, section A. 3. 1) 

NELB(I): number of the first element in section I 



NELE(I): number of 

RB(I) radius of 

RE(I) radius of 

TB( I) thickness 

TE(I) thickness 

L(J) length of 

Out1;ut variables: 

T(J,i) thickness 

T(J,2) thickness 

Ri ( J) radius of 

R2(J) radius f 

Descriptions; 

the 1.,ast el,ement in section 

the first node in section I 

the last node in section I 

of shell at start 

of shel,1,, at end of 

element J. 

of element J at 

of element J at 

element J at its 

e 1,emcmt T at its d 

element 
NELB(I) 

of section 

section I 

its start 

its end 

start 

end. 
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I 

I 

RB(I) 

R i (J) 

R2(J) 

RE(I) 

Given the radius and thickness of the shell at the ends of each section, 

and the length of each element, PIGEOM cal,culates the radius and thickness 

at the ends (nodes) of each etement. 

Subroutine PLPRES (NFS, NELP1, NELP2, PRi, PR2, L, Pi, PDA) 

Function: To calculate the value of the pressure loading at the beginx1ing 

of each element. 



Input variables: 

NPS 

J\fELP 1 ( I ) : 

NELP2( I): 

number of pressure sections (see definition, section A.3.1). 

the number of the first element in pressure section I. 

the number of the Last element in pressure section I. 
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PR1(I) the va 1,ue of the pressure at the beginning of pressure section 

I [N/m2 J. 
PR2(I) 

L(J) 

the value at the end of pressure section I. 

[PLGEOM] 

Output variables: 

P1 ( J) 

PDA(J) 

the value of the pressure at the beginning (first node) of 

element J. 

the pressure difference across element J. 

Description: /( 
y PR 1 (I) 

· element 
NELP1(I) 

PR2 (I) J 

element NELP2(I) 

Given the pressures and eLement numbers at the beginning and end of each 

pressure section. PLPRES calculates the pressure at the beginning of each 

element, as well as the pressure difference across each element within the 

pressure section. 

Subroutine SYSTEM (IID, L, R1, R2, T, NC, NN, NF, A) 

Function: To set up the system stiffness matrix in a form suitable for 

so Lu tion by subroutine BAlIDO. 
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Input variables: 

ND(K,JVI): branching information (see corresponding data input description 

section A.3.2, point 10). 

L(J) 

R 1 (J) 

R2(J) 

T( J, 1) 

T(J,2) 

➔tNBP 

[PLGEOM] 

nt,mber of bran. 1 poin tc 

total number o_( element:,. 

total number of stiffness equations. 

Output variables: 

NC, NM, NF: counters which describe the form of A. [BANDO] 

A(I) 

Description: 

an array which contains the coefficients of the system 

stiffness matrix. 7 
.J 

SYSTEM builds up the system stiffness matrix, beginning at node 1 

and working sequential thro e nodes. Each node has associated with 

jt 3 rows of the K matrix and between 1 and 3 elements. Hence, on finding 

i tse Lf at node I' sysrI'EIVI de te:c:n r • " 
TNllJ_Cn e Leme11_ts are joined to node I 

' 
CALLs for their indi vi.dual element stiffness matrices (which are set up by 

subroutine GELSTF), and inserta k matrices into their correct 

position in K. At san~e tirne 0·Ys 1rEr~. generates the counters NC, NM 

and NF which describe the f rm the K matrix is taking. 

'I'he program j ,.,, di viclecl nto five main parts: 

( :i ) a part which insert the k mat::::-ix for element 1 into K • , 

(ii) a foci 

mation 

part 1inich interprets the branching infor

se Lec ts which of the remaining parts of the 

program to go to; 

( iii) a part deals with all standard parts of K, i.e. those 

nodes which are not associated with branching; 

'K refers to the system stiffness matrix, and k to an element stiffness 
matrix. 



Enter decision-making process 
for current node I 

I M = i I 

IsND(M,1)==1 
AND ND(M., 2) == 0 

I 
~ no 

IsND\lVI,i) --l + 1 
AND ND(M,2) f 0 

no 

I M-M+i I 

yes I I L--------tl Is M < 10 

no 

Node I is 
Standard 

I 
I 

I 

F:Lg. A.2 

yes I Is ND ( M + 1 , 1) = ( I +1) 

yes no 

yes 

Node I is 
associated 
with a branch 

Node I is associated 
with a physica1, 
discontinuity 



(iv) a part which deals with an branching; 

(v) a part whtch deals with physical discontinuities associated 

with boundary conditions. 
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Part ( i), a it deals with a standard part of the K matrix, 

is necessary because the req_uired subscript notation for 

is not compatible with the logic of part (iii). 

A(I) (I = 1,6) 

Part (ii) uses the information in ND(K,M) to decide 

which of the remaining three parts of the program to go to •. A flow chart 

o:;:' the decision-nm.king process is shown in F'ig. A.2. Notice that the pro

cess is entered once for every node and that the entire set of branching 

information is scanned for every node. whether or not the information for 

a particular branc'1 nt has already been used. (The latter fact is 

clearly necessary since the information for one branch may affect more 

tlian one node). 

If the decision is to go to part (iv) then once this part is entered 

further decisions are made as to what type of branch is being dealt with. 

However, since all the branch types have certain features in common there 

is no neces::_;j for a special section for each branch type. 

be used to set up the system stiffness matrix for a 

symmetrica L :plane framr➔ when half the frame need be analysed. This is 

clear from the fact that U e axisymmetric shell, is idealised as a plane 

structure and is CG a one--dimensional element having three 

dC{],TCes of :'.:'reedom at each node ( two translations and one rotation). The 

on chan11;es 3y3r:rm,1 that would be rc,quired are as follwos: 

(i) the statement CALL GELSTF which sets up the element stiffness 

ma tr:i x i:J10uld be re 

sots 1..1.p c1 c 

(ii) the geometric 

by a CALL to another subroutine which 

plane frame element stiffness matrix; 

L, R1, R2 and T which are used to 

calculate the element stiffness matrix should be replaced by 

the corresponding p1,ane frame parameters ( length, depth and 

breadth of element), Note that SYSTEJVI itself is independent of 

tho 

only 

at parameters used, such parameters being required 

subroutine GELSTF. 
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The above changes necessitate the replacement of only 10 out of the 227 

cards of SYSTEM. 

For plane frames there is no problem with closing the structure at 

the axis of symmetry since the symmetric plane frame must have a node on 

tb.0 axis of' 

Once SYS11I:;1',1 has been used to r:set ·0.p a plane frame K, matrix BANDO 

set of stiffness equations. Hence the 

numerical, integration, a conical frustrum element 

stiffness matrix for the ith element. 

Input variables: 

L ;:· element 

rnrlius at start of element 

H2 radius at end of eLement 

element 1 at its start, 

its en.d, 

points be used. 

Q1,1 t put V 0. ri a r:,l.Q.: 

' \ o; e t stiffness matrix. 

J_c1tccrrk1t varLQ?_b~ (nmnb r•:c3 in brackeLs after each, refer to dimensions): 

B( 11,6) 

tho matrix 
J_ 

1 C 

J 

fflR 

6,6) matrix t 

SD the the start of the element to the jth integration 

T(J) the thickness f the: element at the jth integration point. 
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Description: 

GELSTF derives a (6 x 6) eLement stiffness matrix given by: 

k [1/J [B] r ds' 

0 

The program algorithm fol.Lows the procedure described in section 3.1.2, with 

the fol lowing addi tionat features: 

(i) numerical integrabon may be either 5 or 7 point Sirnpson 1 s 

quadrature, as selected by NGP; 

( .. \ l]_ ! the rr1atrices and 
r 1~~..., 
LD J are set up by subroutine SETBD; 

matrix tran tion is by subroutine TRANS; 

(iv) matrix products are ca1culated by subroutine PROD. 

It l.S t to note that GELSTF ignores the factor 
2 

2rcE/(1 - V) 

since it is constant for the entire structure. 'l'his factor is applied only 

after the system stiffness equation::; have been solved by BANDO, whence the 

solution obtained from BANN) is multiplied by the inverse factor (1 - v2 )/21:-E 

to yield tlrn actual displacements. This muLtiplication is performed in the 

MAIN program direc tl,y after the CALL BANBAC statement. 

The form of the element stiffness matrix required by SYSTEM is the 

complete ( 6 x 6) matrix using standard subscript notation, e.g., KE(3,4) 

is the stiffnes(3 in the fourth column of the third row. 

Subroutine SETBD (RNU, L; R1, R2, SD, '11 , B, D) 

Function: To set up from their explicit formulae the matrices [B] and 

[D-::-J ( see suLroutine GEL~::TF·) for a given point a Long the length 

of a given element. 

Input variables: 

RNU Poisson's ratio \J 

(All other variab'Les in the argument list have the same meaning as 

r,-,-·· "'TJ"' \ given in subroutin(➔ sl'~l,~1 1 • 1 

* ' Chapter 3, section 3.1.2, Eq. (3,17 1 • 
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Description: 

The logic of the program is trivial except for one feature: if the 

angle of inclination of the element, as defined by 

,, 1" 

J 
.;.. ') ~ -1 

SINQ 
C,_ I 

sin 0 L 

( r 2 - ri 2 1 

and COSQ cos (/ [1 ) J2 - /J - L I 

is close to 0 (a cylinder) or 90° (a circular plate), then the l~miting 

values are assumed and sin ¢ and cos ¢ are given the values O or 1 as 

the case may be. 1.rhis is to cmmre that cylinders and circular plates have 

their exact sine and co,3ine values. 

Subroutine TRJilJS (NR 1 NC, B, B'I1 ) 

Function: To tranci tl1e matrix B having NR rows and NC columns. 

The transpose is contained in the matrix BT. 

Subroutine PROD (rmi. NC1, A, NR:2, NC2, B, C) 

Functi.on: 'ro rnultip Ly nmtr:Lcer:.1 A and Tl .u, and to insert the product 

int ':l matrix C. IJlatrix A has NR1 rows and NC1 col,urrms: 

columns. Clearly, for a 

valid o KC·: = NR2 whence matrix C has NR 1 rows and 

NC2 cohunns. 

Subroutine CLOSEL (ICLOSE, :\rF, GC, P1 1 R1, T, A, VEC) 

Function: To au~1en the system stiffness matrix and system load vector 

with the 

Im,ut vari,301ec3: 

ICLOSI~( I) : 

NR, A, VEC: 

P1, R1, T 

GC 

nc;de 

[LOAD] 

C('?d closure element stiffness matrices and load 

nu11ber of the i th closure element 
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Output variables: 

A, VEC: (augmented) 

Description: 

From the closure element node number the corresponding rows in system 

stiffness matrix are selected and the required stiffness coefficients 

(diagonal elements only) are augmented. The same applies to the augmen

tation of the system load vector. 

Explicit expressions for the closure element stiffnesses are given in 

section 3.2.1, together with the equivalent nodal loads for a uniformly 

distributed load acting on the closure element, and its self-weight. 

Subroutine LOAD (NELT, GC, L, R1, R2, T, P1, PDA, VEC) 

Function: To set up the system load vector for the self-weight of the 

structure and all distributed loads acting on the structure. 

Input variables: 

NELT 

GC 

tota1, number of elements used in the structural idealisation, 

the unit weight of the structural material, 

L, R1, R2, T, P1, PDA: [PLPRES] 

Output variable: 

VEC(I): the ith component of the system load vector. 

Internal variables: 

SQ, SINQ 

CQ, COSQ 

sin r}} h were 
cos¢ 

is the angle of inclination of the.element. 

Functions U1, W1, M1, U2, W2, M2: the explicit expressions for the 

equivalent nodal loads at nodes 1 and 2 of an element loaded 

with a linearly distributed "Load and/or its own self-weight. 

These expressions are given in Appendix E. 

Description: 

The program works through the entire structure, element by element, 

performing the following functions for each element I: 
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(i) if P1(I) > 0 element I has a linearly distributed load on 

it, whose shape is defined by PDA(I). The equivalent nodal 

loads are calculated and inserted into VEC. 

(ii) if GC > 0 the self-weight of the structure is to be included 

and the same procedure as above is followed. 

The procedure is described in more detail in section 3.3.2. 

Subroutine PTLOAD (NNPL, NPTL, R1, R2, L, UU, WW, MM, VEC) 

Function: To insert all concentrated line loads into the system load vector. 

Input variab Les: 

NNPL the number of nodes at which tine loads are applied, 

NPTL(I) the node number of the ith node at which line loads are applied, 

R1, R2, 1: [PLGEOM], 

the axial component of the line load at node NPTL(I) J 
the radia1, component of the line load at node NPTL(I) 

[N/m] 
UU(I) 

WW(I) 

MM(I) the appl,ied moment at node NPTL(I) [Nm/m] 

Output variable: 

VEC: [LOAD] 

De.scription: 

The input Line loads per unit of circumference are converted to total 

loads acting at the node and superimposed into the appropriate position in 

the system load vector. 

Subroutine BONCON ( NNBC, NBC, NC, NM, NF, UBC, WBC, MBC, A, VEC) 

Function: To apply the structural boundary condition. 

Input variables: 

NNBC 

NBC(I) 

UBC(I) 

number of nodes at which boundary conditions are to be applied, 

the node number of the ith node at which a boundary condition 

is to be applied 

'U' if the axial displacement at node NBC(I) 

= { 0 otherwise 

is zero 



{ 
'W' if the radial, disp1,acement at node NBC(I) 

WBC(I) 

MBC(I) 

0 otherwise 

{ 'M' if the rotation at node 

0 otherwise 

NC, NM, NF, A: [BRANDO] 

VEC [LOAD] 

Output variabl,e: 

A, VEC (augmented). 

Description: 

NBC(I) is zero 

132. 

is zero 

For every displ,acement component which is known to be zero the 

corresponding row and col,umn of the system stiffness matrix and 1.,oad vector 

are set to zero, incl,uding the diagonal, el,ement. The row and col,umn are 

not removed from the system since this woul,d require a partial, redefinition 

cf NC, NM and NF which wou 1.,d be both a time consuming and 1.,engthy pro

cess. The size and form of A remains unchanged. 

Subroutine BANDO (N, NC, A, VEC, NM, NF, NR, N'wR) 

BANJ)O is a subroutine for the solution of a system of linear 

simul,taneous equations, whose matrix of coefficients is symmetric. 

The subroutine is designed specifically for sparsely populated, 

irregul,arly formed matrices; for example, a matrix with a diagonal band 

and scattered elements away from the band. The normal, methods of storing 

such systems in two-dimensional arrays results in excessive waste of 

storage space since the storage of the scattered off-diagonal elements 

necessitates also the storage of large numbers of zeros which are not 

required for the solution. BANDO overcomes this problem by storing onl,y 

half the matrix of coefficients in a sing1,e di.mension array (i.e. a vector), 

in such a way that 100%· storage efficiency is always obtained. 

The basis of the solution procedure itself is the Gauss-Jordan method. 

However, although the solution procedure is straightforward, because the 

matrix of coefficients is stored in vector form a somewhat complex system 

of logic is required to put the method into practice. In particular, three 

counter variables NC, NF and NM must be generated with the matrix of 

coefficients to describe its exact form. 
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Input variables: 

A(J) the coefficients of the 1~wer diagonal half of the system 

stiffness matrix, stored row by row in a single dimension vector. 

Each row begins with the first non-zero element and ends with 

the diagonal element. 

NC(I) 

NF(I) 

NM(I) 

VEC(I) 

N 

NR, NWR 

the number of the column in which row I has its first non-zero 

element. 

the value of the subscript of the element of A which contains 

the first non-zero element of row I. 

I - NC(I) + 1; the total number of elements in row I between 

the first non-zero element and the diagonal, both inclusive. 

the element of the load vector corresponding to row I. 

the total number of equations. 

(these are internal variable arrays and are included in the Ust 

of arguments only so that they may be dynamically dimensioned to 

the same dimensions as NC, NM and NF.) 

Output variable: 

VEC(I) the solution of the system of equations is contained in the 

vector VEC(I). 

The above variables are illustrated in the figure below. The shaded area 

represents the part of the system stiffness matrix stored in the 

numerals refer to the subscript of A. Note that all the elements between 

the first non-zero element and the diagonal (both inclusive) must be stored. 

1 4 0 0 0 0 VEC(1) 

2 5 7 0 13 0 VEC(2) 

4 5 6 8 10 14 0 

8 9 11 1s 18 X = 
10 11 12 16 19 

14 15 16 17 20 VE ( 6) 

0 0 0 18 19 20 21 

I 
I 

I 
I I 
I I I 
I _J L _J L 
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Row I NC(I) NF(I) NM(I) 

1 1 1 1 

2 1 2 2 

3 1 4 3 

4 2 7 3 

5 3 10 3 

6 2 13 5 

Boundary conditions: 

In finite element applications where the boundary conditions result in 

complete rows and columns of the coefficient matrix being set to zero, these 

rows and columns must not be deleted from the system. If BANDO encounters 

a zero diagonal element (corresponding to a zero displacement boundary 

condition), it simply skips that row, and the corresponding displacement 

component remains zero. 

Description of logic: 

The logic used in BANDO depends primarily on the following fact: the 

process of reducing the elements of a column below the diagonal to zero 

(which is the basis of the Guass-Jordan method) leaves the matrix symmet

rical, except of course for those columns (and rows) which have a1,ready 

been reduced. The process may be illustrated as follows. 

Assume that colunn 1 of the matrix shown in the previous figure must 

be reduced to zero: 

Row 2 - Row 1: 

A'21 A21 
A21 

A11 ( = 0) 
A11 

A' 22 A22 
A21 

- A. A12 
11 

A' 23 A23 
A21 

• A13 = 
A11 

➔~ 
Standard double subscript notation is used here to avoid confusion between 
upper and lower diagonal halves of the matrix. 



= 
A21 

( VEC) 2 - - • ( VEC) 1 
A_11 
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Row 3 - Row 1: 

= 0) 

A7- 1 
A' 32 -- A32 -

_)_ 
A12 

A11 
. 

A'33 = A33 
~ 

A13 
A11 

. 

0 

A - 0 
36 

From the above illustration it is possible to make the following 

generalisation: 

(i) If A1 21 and A1 31 are not set to zero in practice, (i.e. if 

there zero values are taken as implied rather than real), the 

matrix remains symmetrical. 

(ii) Where the matrix is symmetrical., the subtraction of row n from 

row i is equivalent to the subtraction of column n from 

column i, but including only those elements of column n 

below (and including) its diagonal., element. The elements to the 

left of the diagonal (in the row n) or above the diagonal (in 

the column n) are not included in the subtraction since their 

values have already been obtained in the preceding row sub

tractions. For example, in the above illustration, for row 3 -

row 1 it is not necessary to eva1,uate A' 32 since its value has 

already been set in the preceding row subtraction, i.e. A1 32 = A1 23 
by symmetry. 

These generalisations al.,low a significant reduction in the amount of 
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arithmetic required; in fact a large proportion of the arithmetic is merely 

implied rather than actual, 1,y performed. For example, in the above i 1,1,us

tration A1 21 and A1 31 are not set to zero; the calculation is merely 

impl,ied. In this way the reduction of the lower diagonal matrix to zero is 

entirely implied and what in fact the lower diagonal matrix (the only part 

of which is actually stored and operated on) finally contains, is the trans

pose of the upper diagonal, matrix as it appears at the end of the reduction 

process. 

Hence, the upper diagonal, matrix is reduced to a diagonal matrix, 

beginning this time from the last element and working backwards. 

The final solution is then obtained by dividing each element of the 

reduced 1,oad vector by its corresponding diagonal, so that the original, load 

vector now contains the solution. 

Subroutine STRESS (NSEC, NODS, NOD1, NOD2 1 NEL1, NEL2, L, R1, R2, T, VEC) 

Function: To calculate from the displacements the stresses and bending 

moment at every node in the structure. 

Input variab Les: 

NSEC 

NOD1 (I) } 
NOD2(I) 

NEL1(I) } 
NE12(I) 

L, R 1, R2, T 

VEC(J) 

NODS 

Output variable: 

the number of sections into which the structure is divided 

(see section A.3.1), 

the node numbers of the first and last nodes in section i, 

the element nu,.11bers of the first and last elements in section i, 

[Pl,GJ:i";OM] 

the jth component of the system load vector, 

(an internal, variable included in the argument Hst so that 

it may be dynamically dimensioned). 

There are no output variables as such. Stresses and moments are written 

into a disc fi l,e for future plotting and printed on the line printed. 

Description: 

For the purposes of calculating stresses and moments, each section is 
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considered to be independent of any other. Hence the calculation of stresses 

and moments is comp1ete1y independent of any branching in the structure and 

Eq. (3.51) (section 3.3.5) may be applied at each node in turn to yield the 

stress resultants at that node. The hoop and circumferential stresses are 

then calculated from the corresponding stress resultants by dividing by the 

element thickness at the node. 

The advantage of calculating the stresses by section is that stresses 

and moments at abrupt cbanges in the geometry of the shell., are not given as 

the mean of the stresses on either side of the abrupt change; instead the 

stresses and moments on either side of the abrupt change are given separately. 

For example, at a shell junction (which must, by definition, constitute a 

division of the shell into separate sections), two moments are given for the 

junction node. These moments should be (but seldom are) equal, and a com

parison of these moments gives some idea of the accuracy of the solution. 

A.2.3 Plotter program STRESSPLOT 

STRESSPLOT is an independent plotter program developed specifically 

for the plotting of stress and moment results obtained from CONFRU. A 

description of the input data required when STRESSPLOT is used in con

junction with CONFRU is given in section A.3.3, and a description of the 

output, including sample plots, is given in section 4.6.L The internal 

logic of the progran will be briefly described here. 

Assume that we have the following general data input: 

[PLTS 

@ ADD 

@ ADD 

@ ADD 

@ ADD 

(g ADD 

(g ADD 

@ ADD 

({? ADD 

NLC SIZE} 

PLOT1. 

PLOT2. 

PLOT1. 

PLOT2. 

PLOT1. 

PLOT2. 

PLOT1. 

PLOT2. 

{TYPE NELT LC} 

X 0 
s 

M 
s 

The above input will plot 

system of axes. The plot 

the resutts of two separate analyses on the same 

files PLOT1. and PLOT2. ( the general contents of 

which are shown alongside), are set up automatically by CONFRU and contain 

vectors of the cumulative distance X and the stress results for the two 
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analyses. 

The basic part of the program consj_st::::, of a sequence of steps which is 

repeated fo,L' times, once for each of the stresG,es which is to be pl.,otted. 

Hence in the first sequence, a11 M cunres are pl,otted, j_n the second a 11., 

0 
s 

curves, etc. Tho proc0dure for one corrro lete sequence, say for o • is 
s' 

as fol lows: 

(i) 

(ii) 

Read X and 

va Lues of CJ 

0 

s 

s 
in 

from PLOT~. Pick out the maximum and minimum 

the set. Hence cal,cul.s,te the abnolute range 

of o values in the set. 
s 

Repeat for P10T2. 

Determine which set cf o he,s the maximum range. 
s 

define the variable arrays containing the sets of 

Hence re-

d 
s 

values 

that the set having the maximum range wjl,1, be plotted first. 

~~ 

so 

(iii) Determine the length l of the X axis: 

SIZE F 
' 

l 13 inches 

.:HZ'!'.: fT 1 10 inches 11, " 
SIZE C' l - 1 '.) inches. 0, C 

[Note: thj 8 step is perforrned onl,y once in the ·very first 

sequence so that a Lt four X o.xes ha7e the same length and scale]. 

(iv) Determine the starting va1,ue and scale of X axis. Starting 

val,ue j_,, clearly zero, and the sca1,e is given by (total meridional 

length of structure)/l. 

(v) 

(vi) 

(vii) 

Determine the starting value and sca1,e of the 0 axis~ The 
s 

+ +- . -, . "'.h 7 t -" +} , , -"' d . / . ) d th svar,,Jng vat,ue JS L __ e ✓or:res, Ot t,Je mJ_nJ_ma _1_01111 in ,i an _e 

sea 1,e is ca 1,cu fated from ( the highest of the maxima) - ( lowest 

of minima)+ 8, where 8 inches is the standard length of the 

stress axic-3. 

Draw the X and d axes. 
s 

Plot the curve for first analysis .. 

Ptot tl1e curve for second ana l,~ysis, etc. 

➔~ote that SIZE also affects the OV.£:.:l'.nl_l size of the plot. Hence the figures 
for l given here, are again modified df,pending on the scale factors applied 
to the overall plot. 'l'he user sho~, rw9_r in mind that the objective of 
SIZE is to fit the axes onto A4 pac;es (see :section 4.6.1). 
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The procedure above is repeated for the remaining three stresses. 

Finally, the heading box is drawn in the lower right hand corner 1 the l~ad 

case information is drawn in the centre of the four s<.Jts of axes~ and a 

box is drawn around the whole plot. 

A complete listing of STRESSPLOT follows the CONFRU listings in 

section A.5. 
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A.3 CONFRU Input Data 

C 

The analysis of an axisymmetric shell of revolution using CONFRU in

volves two essential steps: 

(i) preparation of input data, and 

(ii) coding of the input data in the accepted CONFRU format. 

Each of these step::, is described in detai 1 in what fol tows. Note in 

particular that throughout the description the left hand side of the 

structure is taken to be tho side being analysed. 

Units: 

CONFRU is dimensionless with respect to units and any consistent set 

of units may be used. For the purposes of printed headings and in des

cribing the dimensions of input data, Newtons and metres are used here. 

Sign convenb_on: 

Part of the data is input in global coordinates and part in kcal 

coordinates. Hence the relevant sign conventions are described where 

required. 

A.3.1 Preparation of input data 

The fol towing procedure i,3 suggested for the preparation of the input 

data: 

(a) From a study of a working drawing of the structure, divide the structure 

into sections; the concept of a section is of fundamental importance 

to the preparation of input data and is defined as a part of the 

structure whose middle surface is a straight line, and whose thickness 

is either constant or varies linearly from one end of the section to 

the other; furthermore, a section may not be joined to another section 

except at its end points. Examples of the subdivision of parts of a 

structure into sections are given below. 

t 

2 sections: AB 
and BC 2 sections: AB and 

BC 

3 sections: AB, BC and 
BD 
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(b) Determine the radius r and thickness t of the shell wall at the 

beginning and end of each section; determine the length of each 

section. 

(c) Define the loading acting on the structure: 

w 

(i) If self-weight cf the structure is to be included, the only 

preparation required is a choice of the unit weight of the 

material 

(ii) The positions at which concentrated line loads act must be 

defined, and where applicable they must be broken down into 

their global components, as shown in the following example: 

u 

p 

~u 

w1..'---llt,sf,r 

Line load P broken down into 
global components: 

Positive global components. u 
w :_;sing 

.L cos ,.,, 

(iii) The region over which a constant or linearly varying distributed 

load acts is called a pressure section. Pressure sections have 

the same characteristics as sections, with the additional con-

A 

straint that the distributed load over a pressure section must 

continuous. Thus, in the example below, AB constitutes one 

pressure section, BC a second, and DE a third. 

An i I p4 

B C D E 

Distributed loading may only act perpendicular to the middle 

surface of the shell (or plate) and is positive if it acts in 

the direction of the positive normal n to the middle surface 

be 
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(see 'Sign Convention', section 3.3.5). 

(d) Subdivide each section into a suitable number of elements, (without 

attempting to number them). The choice of subdivision should be per-

formed primari on the basis of element aspect ratio, taking into 

account the geometry of the section (whether it is cylindrical,, a 

conical frustrum or a circular plate), and the type of loading acting 

on the secb_on. The choice is also governed by the positions of con

centrated line loads and the beginnings and ends of pressure sections, 

since each of these must occur at a node. 

In general the element aspect ratios should lie within the range 

1/6 .::S L/t .::S -1, the lower va1,ues being used in the regions of shell 

junctions and concentrated loads. Large discontinuities in L/t 

ratios should be avoided and the user should aim at using fairly 

constant aspect ratios throughout a given section, and similar aspect 

ratios throughout the structure, even at the expense of using large 

numbers of e1,ements. Such a procedure greatly simplifies the preparation 

of input data. ( ThG user shoul<l in any case study a similar example 

from Chapter 4, as well as the relevant comments in the Summary and 

Conclusions). 

(e) Select the e1,ement and nodal numbering scheme to be used in the 

analysis. It is best to begin by choosing Node 1 at the top of the 

structure, as close to the axis of symmetry as the structural geometry 

allows. Thereafter, the numbering is subject to the following con

straints: 

(i) Element i must always follow node i, except at the start of 

a shell branch (see (v) below). 

0-'>--r 
/' 

-r'>J\10 ,,.,v::,8 

~~ . ol'.\ o.1-

ei +-1 

(ii) Nodes and elements in circular plates must be numbered radially 
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outward from the axis of symmetry. If the shell is branched it 

is advisable to number the nodes and etements in cylinders and 

conical frustra from top to bottom; this allows a greater degree 

of consistency in specifying the branching information. 

(iii) The numbering of nodes and elements within any section must be 

continuous. 

(iv) At a branch point (i.e. a node at which 3 sections meet), the 

numbering of the nodes and elements in any two of the sections 

must be continuous; these two sections constitute the main shell 

at the branch point. The nodes and elements of the third section 

may be numbered independently of the main shell; this section 

then constitutes the shell branch at that branch point. 

@ 

D 

Example: 

® @ ® ® (J) ® 
~ ~ ~8 ~ ~ ~ A 

~ 
@ 

~ 
@ 

Gi] 

C 
@ 

Main shell Sections AB and BC; numbering of nodes and 

elements is continuous over these two sections. 

Shell branch: Section ED; numbering of nodes and elements is 

independent of main shell numbering. 

(v) The only exception to rule (i) occurs at the start of a shell 

branch. The number of the first element in a shell branch is 

(n - 1) where n is the number of the first node within the 

shell branch. Hence in the example above n = 30 and the 

number of the first element in the shell branch BD is 29. 

(vi) When the nodes and elements have been numbered, the sections are 

numbered accordingly, i.e. in the order of increasing node 

(element) numbers so that the lowest numbered section contains 

element 1 and the highest numbered section contains the highest 

numbered element. 
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The above are the genera 1, rules for the numbering of elements and nodes. 

However, in practice the numbering process may be simplified by summarisi,ng 

it as fol lows: 

(i) Number all nodes first, maintaining continuity of numbering 

within each section, and as far as possible continuity of 

numtering between consecutive sections. In branched shells 

physical discontinuities in the numbering scheme may be necessary 

at ical cJisccntinuities in the sbell, e.g. where the end of 

a sec tic; l is a boundar:,,. 
continuity between consecutive 

Example: /4cct:ns ® 

CD 

/ ~ 
@) 

continuity 

@ within the 
section 

® 
~-

(ii) FiLL j_n "lie 1'rcL+,v2:nt Lcrient numbers according to the rules given, 

but subject to the fo special cases: 

Closure clemenb,: Ck,:Jure elemc:mts are not numbered. They are 

define6 ::en ter1:1s: of tfleir single r:ode and the adjacent element. 

Exampl,e: r ,f 
t! I 

e lsment 

. f -~ 

closure 

.1 
element 

The length CJf the ctostire element is equal to the radius of n0de 

26; its tbicJ:ner~s i.s assumed to be the same as adjacent element 

26. 

-:~Defined al terna ti ve Ly as a jump in the nodal numbering scheme from the end 
of one section to the beginning of another tota U,y unconnected section. 



TABLE A-1 

Sequence of input data for CONFRU 

ISYM IGEN IG IL IS IBON IV IB ID ISP 

LCASE HEAD(I) 

RNU E GC 

NSEC NFS NNBC NlTPL NBP 

{ NOD1(I) NEL1(I) NOD2(I) 

I = -1, NSEC 

NEL2(I) 

➔~ { NELP1(I) NELP2(I) PR1(I) PR2(I)} 

I = 1, NFS 

{ NBC (I) UBC (I) WBC (I) J'IIBC (I) 1 

I = 1 ,NNBC } 

➔~ { N PT L ( I ) UU ( I ) WW ( I ) MM ( I ) } 

I = 1, J:n-JPL 

➔~ {ND(I,1) ND(I ,2) ND(I, 3) 

{ L(I) NREPl 

J 

I = 1, NBP 

RS1(I) RS2(I) T1(I) T2(I)} 



Du.mmy elements 

Example: must be element 11 

7 0) 

i--- must be element 9 

When the above nodal numbering scheme is used there can be no 

element 10 since according to rule ( i) ( subsection ( e) above), 

element i must fol low node i. In such cases element 10 is 

referred to as a dummy element and is specified by assigning 

zero length to it. 

A.3.2 Coding of input data 
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The sequence of input data, given in terms of the corresponding variables 

used within CONFRU, is shown in Table A-1. The following general points 

augment the information in the table: 

(i) Each line corresponds to a single data card; where a set of 

variables is enclosed in chain brackets and is followed by 

I= 1, 'x', it means that a total number of 'x' cards con

taining the same~ of information is required. 

(ii) A star in front of the chain brackets means that the entire set 

of data is optional and may be ignored. (Note that blank cards 

are not required for optional data). 

(iii) Except in the first line (SYJ.vI, etc.) two blank columns are left 

between every data number. This greatly facilitates the checking 

of the data once it has been punched into cards. 

(iv) Three types of input format are used, viz., I foTinat for integers, 

E and F format for reals, and A format for alphanumeric data, 

e.g. headings). 'l'he format used for each particular variable is 

given where the variable is described, 

General description of input data 

In the description of data that foll.,ows chain brackets around a set of 
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variables have the same meaning as given above in (i) and (ii), except that 

where the brackets are not followed by I= 1, 'x', only one data card con

taining the variables within the brackets is required. 

1. Options for printed output: 

{ ISYM IGElJ IG IL IS IBON IV IB ISP } 

FORMAT ( 1011) 

If the value of any of the printed output options is set to zero the 

corr2spondF1g print-out is given. If set to any other positive value, the 

corresponding print-out is not given. The printed output corresponding to 

the above variables is: 

ISYM: program and analysis title blocks 

IGEN: general analysis information such as Young's modulus and Poisson's 

ratir; she U, branching inform:,, tion, which acts as a check on the 

validity of the corresponding data input (see 10. below). 

IG shell geometry, i.e. length, thickness and radii of each element. 

IL V:iading on tho structure, i.e. concentrated line loads, pressure at 

ev0ry node. 

IS contents of A as set up by subroutine SYSTEM. 

IBON: boundary conditions. 

IV syste~ load vector. 

IE back substituted load vector. 

ID displ~cements and roations at each node. 

ISP stresses and moments at each node. (Note: ISP> 0 does not prevent 

the wri of results to data files for future plotting; see 3. below.) 

Example: 

1 1 1 1 1 0 1 

Only the tit1,e blocks and the displacement results are printed. 

2. Heading irlJorma tion: 

{ LCASE 

FORMAT 

i 
HEAD(I) J 

(A6, 2X, 10.i\5) 



LCASE 
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the anatysis identification number, chosen by the user. It may be 

up to 6 a l,phanumeric characters in length. 

HEAD(I): a general heading chosen by the user for the analysis. It may be 

up to 50 a 1.,phanumeric characters in length and. is optiona1,. 

Example: 

ST/1/1 ji ji ANALYSIS OF AN ELEVA'rED EFFLUENT TANK 

3. Misce1,Laneous data: 

{ NPLOT NGP I CLOSE( 1) IC LO SE ( 2 ) • • . • • • • • . • • • . IC LO SE ( 5 ) } 

FORMAT (2 (I2, 2X), 5(I3, 2X)) 

NPLOT is an integer chosen by the user and used to identify the data 

file intc which the stresses and moments wi1,1 be written for 

future plotting. If no plotting is required the number 15 should 

be used. (See also Runstreams, section A.3.4). 

NGP the number of points to be used in the numerical, integration. 

Must be either 5 or 7. 

ICLOSE(I): the numbers of the closure element nodes. Up to five closure 

elements may be inc l,uded. 

Example: 

NPLOT = 15, NGP = 5, and there are two closure e l,ements at nodes 20 and 

100. 

4. Material, properties: 

RNU 

E 

GC 

{ RNU E GC } 

FORMA'l.1 ( 3 Ed. 3, 2X)) 

Poisson's +· raclO V 

Young's modulus E 1\ / 2 7 [_J / m _J 

Unit of structural materia 1, [N/m3]. 

If GC > o, the self-weight of the entire structure is included in 

the analysis (together with any other loading present). 



If GC = O, the seU-weight of the structure is ignored. 

Examp1,e: 

V = 0. 167, E = 20 X 109 
' 

5. Genera1, constants: 

{ NSEC 

FORMAT 

NPS NNBC 

(5 (I3,2X)) 

NNPL 

and GC = 24 X 10 3 

NBP} 
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NSEC the number of sections into which the she1,1, is divided (see section 

A.3.1(a)). 

NPS the number of pressure sections (see section A.3.1(c)(iii)) 

NNBC the number of nodes at which zero disp1,acement boundary conditions are 

to be appUed. 

NNPL the number of nodes at which concentrated 1,ine toads are to be app1,ied. 

NBP the number of data cards required to describe the branching information 

for the structure (see point 10. be1,ow). 

6. Sectional geometry: 

{ NOD(I) NEL1(I) NOD2(I) NEL2(I) RS1(I) RS2(I) T1(I) T2(I) } 

I = 1, NSEC 
FORMAT (4(I3, 2X), 4(E8.3, 2X)) 

Number of data cards required= NSEC; cards must be input in the order 

of increasing section number, i.e. the ith card refers to section i. 

Examp1,e: 

Section I 
r 

1 
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Data card for section I (see also subroutine PLGEOM, section A.2.2): 

NOD1(I) = 4 

NEL1 ( I) = NELB(I) = 20 

NOD2(I) = 24 

NEL2(I) = NELE(I) = 23 

RS1(I) = RB(I) = r1 
RS2(I) = RE(I) ·- r2 
T1(I) = TB(I) 

T2(I) TE(I 

Note that the total, number of elements used in the analysis is automati.cally 

given by NEL2(NSEC). 

If RS2(I) = RS1(I), RS2(I) may be left blank, in which case the value given 

for RS1(I) is assumed. 

If T2(I) - T~(I), T2(I) may be left bl,ank, in which case the value given for 

T1(I) is assumed. 

7. Distributed loading 

{ l'TELP1 (I) NELP2(I) PR 1 (I) PR2 (I) } I = 1 , NPS 

FORMAT (2 (I3, 2X), 2 (E8.3, 2X)) 

Number of data cards required ,= NFS; cards must be input in order of 

increasing pressure section number, i.e. the i th card refers to pressure 

section i. 

Example: 

pressure section I 

element 29 

Data card for pressure section i (see also subroutine PLPRES, section A.2.2): 

NELP1(I) 20 

NELP2(I) = 29 

PR1(I) = P1 
PR2(I) P2 
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8. Boundary conditions: 

j NBC(I) UBC(I) WBC(I) MBC ( I ) } I = 1 , NNBC 

FORMAT (I3, 2X. 3 (Ai, iX)) 

Number of data cards required= NNBC; cards input in order of increasing 

boundary node number. 

NBC(I) 

UBC(I) 

the number of the node at which the ith boundary condition occurs 

if UBC(I) = 'U' there is zero axial displacement at the specified 

node. 

WBC(I) if WBC(I) = 'W' there is zero radial displacement at the specified 

node. 

I1BC( I) if MBC(I) = 'M' there is zero rotation at the specified node. 

If UBC(I), WBC(I) or MBC(I) is left blank, the corresponding displace

ment or rotation remains unaffected, i.e. an unknown quantity to be solved 

for. 

Example: 

9. 

(263~~U~W~N 

( 24 U W 

Node 263 is rigidly fixed, and node'24 is a clamped-pin. 

Concentrated line Loads: 

{ NPTL(I) UU(I) WW(I) MM(I) } I = i, NNPL 

FORMAT (13, 3 (EB.3, 2X)) 

Number of data cards required= NNPL; cards input in order of 

increasing node numbers. 

pin 

NPTL( I) the number of the node at which the ith concentrated line load or 

moment is applied. 

UU(I) 

WW(I) 

MM(I) 

the axial component of the load 

the radial component of the load 

[N/m]. 

[N/m]. 

the value of the line moment applied at the node [Nm/m]. 



Example: 

At node 106 there is an axial load 
(j r / 1 W = 40 x -10 1}<T m,t and a moment 

10. Shell branching information: 

U = 20 X 10 6 [ N / rn] , 

M = 60 x 103 [Nm/m]. 

{ ND( I, 1) ND(I,2) ND(I,3) ND(I,4)} I = 1, NBP 

FORMAT (4 (I3, 2X)) 

a radial load 

The branching information required consj_sts of a specification of: 

(i) physical discontinuities in the node numbering scheme (see 

section A.3.1, summary of process, point (i)). 

(ii) shell branches (see section A.3.1, (e), (iv)). 
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It is suggested that these specifications be given in the order of the sections 

in which they occur. Hence, the user should begin at section 1, node 1, and 

work through the structure in the order of increasing section numbers (which 

corresponds to the order of increasing node and AlAmAnt numhArs), noting as 

he goes the physical discontinuities and shell branches. 

The specifications take the fol1~wing form: 

A. Physical discontinuity at node k: (where node k occurs at the end of a 
section). 

ND(I,1) = k 

ND(I,2) = ND(I,3) = ND(I ,4) = 0 

The physical interpretation of this information is: node k is not joined 

to node (k + 1), but node k is not a branch point. Note that node (k + 1), 

the other side of the discontinuity so to speak, is ignored (except, of course, 

if it constitutes the beginning of a shell branch). 

B. Shell branches: 

Shell branches take two distinct forms: 



(i) where the nodes of the shell branch are numbered away from the 

branch point node; 

main shell 

element (k - i 

ND(I,1) k, 

ND(I,2) 
J ' 

ND(I,3) = k 

ND(I,4) = j 

,k 

first node of 

direction of numbering 
in shell branch 

shell branch, 

branch point node, 

i ' first element of shell branch, 

(j < k always); 

(ii) where the nodes of the shell branch are numbered towards the 

branch point node; 

main 
shell 

In this case two specifications are required: 

(a) the shell branch generally constitutes a "physical 

discontinuity at node k" as previously described, and is 

always treated as Emch, except when k is the very last 

node in the idealisation. 

Hence the first specification is 

ND( I, i) 

ND(I,2) 

k 

ND(I,3) = ND(I,4) 0 

(b) the branch is specified as 

t ' if k > j} 
ND( I + i , i) = if k < j 

{~ ' 
if k > jl 

ND(I + 1,2) = if k < jJ 
' 

the higher of j and k 

the lower of j and k 
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ND(I + 1 , 3) = le, the first e 1,Pment of the she 1,1, branch 

0 
' 

if j >k 
ND(I + 1 , 4) -- t a +' < le j_J_ J 

There are two exceptions to the above rules, both of which deal, with 

the last node (i.e. the hj_ghest numbered node) in the element ideahsation. 

These exceptions arp: 

(i) If the lact noclP is a boundary it is not included in the 

branching information. 

( ii) If the Last node occ,1rs at a branch the II physical discontinuity 

of node k" specificatic,n is not required. 
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Note, finally, that closure element nodes are never specified as a "physical, 

discontinuity" because circular plate nodes must always be numbered away from 

the axis of symmetry, and hence closure element nodes always occur at the 

beginning of a section. 

Examp1,e: 

III 

II 
Section number I ~ \ 

IV~ closure element 

@) @) --- @. ---------
VIII VII 

Begin at node 1 • 
' 

proceed along the shell in the direction of increasing 

section numbering. 

Section I no discontinuity or shell branch 

Section II no discontinuity or shell branch 
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Section III: no discontinuity or shell branch 

Section IV no discontinuity or shell branch 

Section V end of section, discontinuity, node 137 not joined to node 

138; data card required is: 

{137 

Section VI 

(202 

beginning of section is a shell branch; data card 

required is: 

end of section is a shell branch; data cards required are: 

Section VII : no discontinuity or shell branch 

Section VIII: end of section is a shell branch; data card required is: 

In this example five data cards are required to describe the branching; 

thus NBP = 5. 

Note on the debugging of branching information input data 

When the branching information has been read in, CONFRU compiles and 

prints out a description of each discontinuity and branch exactly according to 

the information given. For example, for the fourth data card in the preceding 

example, the following description would be printed: 

NODE 208 IS CONNECTED TO NODE 202 THROUGH ELEMENT 202 

Hence, if this information is incorrect (or nonsensical) the user may infer 

that the corresponding input data is invalid, and the card must be corrected. 



11. E1ement 1engths: 

{ L(I) NREP } 

FORMAT (F7.0, 2X, I3) 

L(I) the 1ength of e1ement i [m]. 

NREP the total number of times the corresponding e1ement 1ength is re

peated in sequence. 

Example: 
40 e1ements @ 

0 ,700 I?, 600 .. 1~ 0,500 ~1 @ i l(_,0 
e"0-

-:ve<S> C) 

1\C)C) 
e \0 

C) ~ direction of e1ement 
numbering 

The element length for the above idealisation wou1d be specified as: 

( 0. 600 

( o. 700 If NREP = O, NREP is ignored. 

( 0.100 100 

i.e. L(I) through L(I + 39) 

L ( I + 40) = 0. 600 

L( I + 41) = 0. 700 

= 0.500 

L(I + 42) through L(I + 142) = 0.100 
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Note that if element i is a dummy e1ement, L(I) must be specified as zero. 

A.3.3 Maximum size of analysis 

The maximum size of ana1ysis is governed by the dimension 1imits of the 

variables used in the program. These dimensions are dynamica11y set by 4 

variables whose va1ues are in turn set by the user at the beginning of the 

main program. These variables, their current va1ues, and the ana1ysis variab1es 

which they govern are: 
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IX = IXX = 500; the maximum number of e1ements which may be used. 

IY = IYY = 15000; the maximum number of coefficients in ha1f the system 

stiffness matrix. 

IW = IWW = 

IZ = IZZ = 

1503; the maximum number of equations, which is equa1 to 

3 x (number of nodes+ 1). 

30; twice the maximum number of sections; the maximum 

number of pressure sections; the maximum number of 

concentrated 1ine loads. 

Certain other variables whose dimensions are always likely to be small are 

not dynamically dimensioned. These variables and their maximum limits are: 

maximum number of boundary conditions = 10 

maximum number of closure elements = 5 

maximum number of branch points = 10 

The above dimensions result in a total computer storage requirement of 

63526 words, which is just below the maximum core storage of 65 Kat present 

available on the UNIVAC 1106 system at U.C.T. 

A.3.4 Sample runstreams for the execution of C0NFRU and STRESSPLOT, 

including STRESSPL0'l' input data 

The execution of both C0NFRU and STRESSPLOT requires the use of the 

UNIVAC EXEC 8 Control System and it is assumed for the pruposes_of the 

following description that the user has some knowledge of this system. 

Preparation of necessary computer disc files 

(i) C0NFRU main program and subroutines, as wel1 as the plotter 

program STRESSPL0T, are stored as elements of a disc program fi1e 

C0NFRU. 

(ii) Executable versions of C0NFRU and STRESSPLOT a+e MAPped into 

absolute elements C0NFRU. C0NFRUABS and C0NFRU. C0NPLOTABS 

respectively. 

(iii) A sufficient number of disc data files are made available for 

storing stress results for plotting. These wil1 be denoted by 

PL0T1, PL0T2, etc. 
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A complete and up-to-date deck of cards is available for both CONFRU and 

STRESSPLOT. These decks contain all the control cards necessary for performing 

the above three steps. Hence, after inputing these decks the user should be 

in a position to use directly the sample runstreams given below. 

Srr'RESSPLOT input data: 

Besides the actual stress values that are to be plotted (which are 

automatically generated and stored by CONFRU), there is only one card of input 

data required for STRESSPLOT. This card is, 

{ PLTS NLC SIZE} 

FORMA'l' (A6, 2X, I 1, 2X, A1) 

PLTS a 6-clmracter alphanumeric word chosen by the user to identify the 

plot. 

NLC the number of sets of results which are to be plotted on this set 

of a:irns. 

SIZE the overa U of the plot ( see footnote p 138) 

F 

H 

s 
Half 

Small 

57 x 46 cm 

38 x 38 cm 

32 x 27½ cm 

The remaining data is given in the form of the ADDition of computer data 

files containing the points to be plotted. For each set of results (i.e. 

analysis), which is to be plotted, the corresponding data file is ADDed four 

times, once for each of the four stresses and moments. 

Sample runstreams: 

(a) A single analysis, no plotting required: 

@ RUN 

@ ASG, AX CONB1RU 

@ XQT CONFRU. CONFRUABS 

I CONFRU data 

@ FIN 
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(b) A single analysis, with plot: 

@ RUN 

@ ASG, .AX C0NFRU 

@ ASG, .AX PLOT1 

@ USE 16, PL0T1 

@ XQT C0NFRU. C0NFRUABS 

C0NFRU data: 

NPLOT = 16 

@ XQT CCNFRU. C0NPLOTABS 

I STRESSPLOT data 

@ ADD PLOT1. 

@ ADD PL0T1. 

@ ADD PLOT1. 

@ ADD PLOT1. 

@ FIN 

(o) Two analyses, with the results of both analyses plotted on the same set 
of axes: 

@ RUN 

@ ASG, AX C0NFRU 

@ ASG, AX PLOT1 

@ ASG, AX PLOT2 

@ USE 16, PL0T1 

@ USE 17, PL0T2 

@ XQT C0NFRU.C0NFRUABS 

CONFRU data for first ana-lysis 

NPLOT = 16 

@ XQT C0NFRU. C0NFRUABS 

C0NFRU data for second analysis 

NPL0T = 17 

@ XQT C0NFRU.C0NPL0TABS 

I STRESSPL0T data I 
@ ADD PL0T1. 

@ ADD PL0T2. 

@ ADD PLOT1. 

@ ADD PL0T2. 



0 UUUUl 
OUIJUtJ2 
IJIHJUlJ3 
OUUUl.li+ 
OOUUIJS 
0LJUUU6 
UUUOU7 
OOUUU8 
UlluUU9 
OOUUlO 
OUUUll 
OUOU12 
OOUOlj 
IJUUUl4 
0Ul!Ul5 
OCIOUlb 
UOUlJl7 
OUUUld 
OUUUl~ 
OUUU2U 
UUCIU21 
OUUU22 
UUUU2.:S 
OUULJ2q 
CJ1.JuU25 
OUUU26 
uOUU27 
OUUU28 
OOUU2~ 
Ot.JUIJjU 
uuuu.H 
0UUU32 
ouuu33 
uOUU.:S4 

TABLE A-2 

Data input for analysis ST/1/1 

OOOUOOOtlOO 
Sl/1/1 EX. a: ELEVATED EFFLUENT TANK FILLED WITH LIQUID 
lb b 2U3 
U.161EOLl 2u.OUEU9 

cl tf 1 
1 l 4 3 
4 

23 
56 
78 

'¼ 
2U3 
2U8 

23 
56 

137 
21.18 
l.:S 7 
137 
138 
;.:::u2 
2Uti 
211 
0 .. 100 
u.2l12 
u.2UJ 
u .. zus 
0.206 
u.2uo 
U .. 150 
u .. l'f9 
O., HJO 
u .. ltiD 

q 

23 
5b 
78 

137 
20..i 
208 

23 
!:-6 
18 

137 
208 
2W8 

78 

22 
55 
77 

136 
202 
20 7 
211 

77 U.GE:-9EU5 
202 
211 -.,989EU5 
U w M 

202 202 
78 211 78 

J 
21:l 
2~ 

1 
15 
5~ 
56 
lU 

4 
Ue 1591¼ i; 

5 
0.4525£0 
.7625[00 
'i.600EGO 

I¼ ,.E,OOEOO 
l .. 4WJE □ D 
.7625EOO 
.0625£00 
.7625EufJ 
0.669Eut 
.98'.JClEOti 
-.9d9E05 
- .. se3EG5 

.7625£00 
4.600£00 

l.4001:..0P 

.7625£00 
l.400EOO 

0.25Cli:00 
0.250EOD 
0.200EOO 
0.250EC.l0 
0.2C0£00 
0 .. 125EO □ 
O.JOOE □ O 
0.300ECO 



@ ADD PLOT·J. 

@ .ADD PLOT2. 

@ ATID PLO'C 1. 

@ ADD PLOT2. 

@ 1'1 IN 

A.4 A Complete Sample Analysis 

159. 

The input data and partial results for a complete analysis and plot are 

given in the fo1,l,cwing pages. The information given takes the following form: 

(a) Input data for analysis ST/1/1 

Input data for analysis ST/2/1 

(Example 8, Chapter 4); 

(Example 8, Chapter 4); 
Input data for the pl,otting on the same set of axes of the above two 

analyses. 

(b) The complete runstream for the above analyses and the corresponding plot 

is identical to rur1stream (c) of section A.3.4. 

(c) The plotted output for the two analyses is shown in Fig. 4.40 of Chapter 4. 

(d) A partial listing of the printed output for analysis ST/1/1 showing, 

(i) heading page, 

(ii) general inforrr:a tion, branching information, 

(iii) displacement results, 

(iv) stress results. 

A.4.1 Input data 

A complete listing of the data j_nput required for analysis ST/1/1 is 

shown in Table A-2. 

The input data for analysis S'l1/2/ 1 is indentica 1, to that for ana 1,ysis 

ST/1/1 excE:pt for the fol-lowing changes; (line numbers refer to the data 

listing given in Table A-2). 

Line 2: replace entire hne with: 

ST/2/1 EX.8: ELEVATED EFFLUENT TANK, SELF-WEIGHT ONLY 

Line 3: change NP LOT = 1 6 to NPLOT = 17 

Line 4: insert GC = 24.00E03. 



160. 

The input data required for STRESSPLOT consists of the following single 

line: 

i.e. plot identification is 'EX. 8', 

number of sets of results to be plotted= 2, 

size of plot is 'small'. 

A.4.2 Partial., 1,isting of results 

A partial., listing of the results for analysis ST/1/1 follows on the 

next page. 



conFRu * 
* FINITi ELEMENT AXISY~METRIC * 
* THI~ SHELL P~OGRAM * 
:I< * 
• T.6.GRlFFIN * 
• CEPT. Cf CIVI~ EN3INEERING * 
* UNIVEP~:rv OF CAPE TOWN * 
* * 

AUGUST 1974 

U~IVAC 1106 EXEC 3 

• LOAD ~ASE: ST/1/1 

* 
* LA 1 l..,, )1 .. 9~~;~ !~:4-

* 
* 
* 

161. 



EX. 8: ELEVATED EFFLUENT TANK FILLED WITH LIQUID 
************************************************** 

POISSON RATIO: .167 
MODULUS OF ELASTICITY: .200+11 

UNIT w~lGHTS: STRUCTURE MATERIAL: .000 

162. 

NUMERICAL INTEGHATION: 5 POINT SIMPSON QUADRATURE. 

CHECK NODE AND fLEMlNT NUMBERS 
FOR SECT~ONS AND bRANCHES 

!:.£.CTIONS NODE (lllMENT)•••••CELEMENT> 
--------

l l 11 ( 3) 
2 4 ' 4) 22) 
3 23 2 .1) ( 55 ). 
4 !>o Sb) ( 77) 
b 7b ( 78) ( 136 > 
b 4 (137) (202) 
7 :iD3 C::'.tBl (207} 
8 2U8 (ZU8) ( 211) 

~LUSUR~ ELEMENTS 

NOD£ 

4 

23 
56 
78 

137 
208 
20ti 

78 

THERE ARE CLOSURE ELEMLNTS AT THE FOLLOWING NO~Es: 203 

t:H<ANCH POlNTS 

NIJIJE 1.n lS NOT (.;QNNt.CT£1J TO NOOE 138 

NULJE 1.;s IS CONN[ CTi:.O TO NOU£ 4 THROUGH ELEMENT 137 

NUCE ZD2 IS NOT CONN£CT£U TO NODE 203 

NUUE. 2 Lid 1S CONNlCTl:.O TO NODE 202 THROUGH ELEMENT 202 

NUO£ 211 l ,: .,_.:, CCNNt.CT£u TC NODE 78 THROUGH £LE Mt.NT 211 
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OlSPLACEKENJS AT EACH NOOE, IN GL08AL COORDINATES! 

NODE u w M 
l .l679(19-02 .285525-05 -.161572-03 
2 .lb95lJ8-02 .281828-05 -.159362-03 
3 .171113-02 .28 7001-05 -.162212-03 
4 .l727b3-iJ2 .297566-05 -.168131-03 
!:> .l765e'¼-02 •· 26 7391-05 -.207848-03' 
b • ltS 10dlJ-U2 .253785-05 -.235613-03 
7 ., lt:H,O'f6-02 • 24 9432-0~ -.25tf81J6-03 
8 .19133l-U2 .25077d-05 -.267ll69-03 
~ .. l9681!:>-u2 .25581:H:.l-05 - .• 27'1699-03 

ii.I .ZU2J98-02 .263587-05 -.277367-03 
11 . .,2U75~4-ti2 .273175-05 -.276078-03 
12 .213:i.2.8-02 .284165-05 - • 2 712 8 9- G 3 
l-' .ll89..13-Ui • i9623(1-05 -.263362-03 
11.f .221.4149-uZ .3091:ii+-OS -.252587-03 
l!:> .229120-02 a32271.J8-05 -.239203-03 
lb .233797-02 .336824-05 -.22Jq11-c3 
17 .2.:S81.H-Li2 .351386-05 -.205383-03' 
lt; .24201::sO-uZ .3663ld-05 -.185267-03 
l~ a2'¼56U3-Ui • .::S815bl-05 -.163191-03 
2U • 2 q, d 6 6 0- iJ 2 .J9706d-05 -.139269-03 
21 .251217-LJZ .q12ao1-os -.113602-03 
l.2 a.l!>32.39-U2 .42872:.:t-05 -.862798-04 
.::'.j .2546:12-02 .444820-05 -.57383lf-04 

'4 • z5q 7w 1-0 z -.187206-05 -.763729-05 
2 t, .254712-02 .'tl07f¼8-06 .280163-04 
2b .2s .. 11a-u2 .c:16218➔-05 .514413-G4 
27 .254717-liZ .21)5366-04 .651187-(14 
L ti • LS'!: 7U6-iJZ • .3 44 4!J 9-J4 .715997-04 
~ !:j a2546b5-02 .LJ9l340-04 .731822-04 
JU .L5'4653-U2 .6330Sd-04 .717533-C4 
.H • 2546 lu-lil • 780171-04 .687463-0L! 
3.c .25'+5:> 8-uz .~15451:>-04 .6S1673-G4 
Jj .2544~5-0L .104412-03 .616447-04 
J4 .2 5qqz J-uz .116604-03 .585633-C4 
.S5 .2s4342-u2 .12823(.J-03 .560845-04 
.Sb .25-4253-i.li .139417-03 .54235u-G4 
S7 .254155-02 • l5tl288-03 .529641-04 
.Hi • 2 5 q O 5 0- u 2 .160954-03 .521880-04 
3~ .253937-02 .171504-03 .518193-04 
'+U .2!>3816-iJZ .182015-0J .517855-04 
&& l .253688-02 .192549-03 .520383-G~ 
'Jl .253551-02 .203160-03 .5255112-04 
43 .253407-02 .21390J-03 .533289-04 
't'+ .2532t>5-02 .22t.i83i.J-OJ .543651-04 
4!> .253094-0Z •· 2359 93-03 • 5 ti6!A6-Cl'-I 
qb .252926-02 .2f.f7440-03 .571537-04 
q, 7 .2!:>2749-IJ~ .259204-03 .587533-04 
4b .252!.ibJ-02 .271287-ll.5 .G021-f46-C4 
q,9 • 252 3b8-Ci2 .283633-03 .E,12619-01:f 
t>U .252163-02 .296102-03 .613495-04 
51 .2519!:ill-02 • .:HJ842d-03 .597391-04 
b2 .2S17213-iJ2 .S2Ul82-03 .555510-G4 
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:t)j • 2514~H-02 .3 30736-03 .4 7 7 354-04 
54 .251260-t.JZ .339242-03 .351943-0lf 
55 .251011-0~ ,.,J446 .. L3-03 .169,688-04 
Sb .,25U772-U2 • .S457lLJ-0:S -.746399-05 
i::J7 • 251.134 8-(.JZ .345515-03 -.237052-G4 
:>8 .. 2't:i62b-li2 .~4318'1-03 -.423959-04 
5~ .2485tiJ-J2 .338524-03 -.616727-Ci4 
bU .21t7219-J2 .,33156(1-0j -.801662-04 
bl .24554 8-02 .J2256U-03 -.969710-u4 
b2 .. 24.sssa-u2 .Jl177b-03 -.111604-03 
b..S .2413S7-U2 .299583-03 -.123960-u3 
b4 .. 2.HS9b2-ti2 e2862b..S-03 -.13q319-03 
b5 • Z ,,H:d, 7--,.J"L. .272176-03 -.143163-C3 
bb ."2.$S5Li2"-tJ2 .2!:i 7526-0.3 -.151333-03 
o7 .ZJ!J4d5-iJ2 .24238U-U3 -. .15 9948-0 3 
bb .2c::'.7254-i..l2 .2i663U-03 -.170392-(;3 
b::l .22J7b7-IJ2 .2099qj-03 -.18428u-G3 
7LJ .2l::l9:;l.i-u2 .l~17b5-0.3 -.2t.J3352-03 
71 .215722-uZ .171254-03 -.229227-(;3 
72 • 2HJ9 6U-·02 .14 7381-0J -.262889-03 
7J • 2055::.iS-i:J;:: • l.19LH o-03 -.30368iJ-C3 
74 o1::l~4JU-02 • 851f3l8-04 -.347479-03 
7 t, .1:;2s1&-u2 .46696d-0'¼ -.383582-03 
7b • 185 .51:l3-u2 • !:i2 71.!G4-0S -.389631-03 
77 .17846:J-u~ -.31875S-04 -.323946-G.3 
7t:i .173::i71-i:i;-;: -.4~5751-01:t -.115193-(;3 
7':J .. 11UbL9-0Z -.484923-04 .915714-04 
ti l.l • lb ·rn l.f9·-L•2 - • ..:33768-04 .141267-03 
tjl • lb5CL;4-u2 .32037i:i-CJS .117697-03 
b2 .1621U4-u2 .224141-0'-I .. 738733-04 
i;Sj • lb':.Hb 8-w.i: .331601-04 .355612-(ir~ 
1:)4 .. 1~,b2 lS-U2 • .')75553-04 .107100-01.i 
6 ti .. 1.032::i 6-U2 .382776-04 -.172992-05 
ti b .15lJ2'.:H3-U2 .374176-04 -.5811537-05 
ti 7 .. 1'¾7342-UZ .362247-04 -.563656-CS 
ti8 .li+43e~-uL .352632-04 -.388028-0~ 
ci ~ .141438-i.12 .:.S4G74l-04 - • 20 7099-CS 
'.;jU .138fi88-ut: .J'¼3990-04 -.780771-06 
~l .l.:S55.58-iJ2 .. 34322d-04 -.67 9912- rH 
!;2 .1325i:Hi-G2 • 343 1LS 3-04 .217579-0E 
::IJ .12~6..Sd-OL .J43937-0l.f .259085-CG 
!::l't .12661::18-L!~ .:S4fiLJu2- □ 'l .197380-06 
:;!) .12 .j 7 3 d- UL .344714-04 .115632-CG 
!:lb .l2U71:lb-u2 • 3'!'-18H,-04 .507671-07 
'j 7 .. 117338-!J.2 • 3 44 935-04 .115036-(H 
~b ., 1148 tl8-I.J2 .. 34'&937-04 -.b537ffo-08 
'j '.-;j • 111 '.; .H3- i:J 2 .34£&917-04 -.113059-07 

1(;0 .1U89!:!8-J2 .344.8~6-(14 -.971317-08 
lUl .1uGGJa-u2 .. 344880-IH -.622604-CB 
luZ • l U .:HHH3 - LI 2 .344871-0it -.307127-08 
lU .S .1UOl37-u2 .jLJ48o7-ult - • 979325-G9 
ll.14 .~71B73-(d .:i41.t8&b-04 .. 926362-10 
lUb .~M2372-iJS • .:S4!f8o7-U4 .t¼60667-09 
li.Jb .~12810-U:1 .. 3'14 86 8-01:t .. 446292-0Y 
Hl/ .8tLS3b:l-U.:> .Ji.i48oa-ott .276247-C9 
1U8 .8!::d8b8-U::S • 3lf48o~-04 • 77tl28G-Hl 
llJ~ .c:!24367-Jj .3!llf8S';l-04 -.895393-10 
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llu • 794866-iJj • .5lf 1Hl6d-04 - .18 12 5 9- 0 9 
'111 • 7b53b4-·U3 .:Sti-4808-0'+ - •. 137531-09 
112 • 135 86 .:s- u -l • J 44 86 8-i.l'l .14013 □-09 
113 .706362-0.S • 34 lf 86 9-04 .773822-09 
114 .b.76861-u.3 .31.f487l-l.l4 .183833-08 
11!:> .b473btl-U., •. 3ti487b-04 .320723-08 
llb .617858-03 • .:Sl.fll884-04 .ff301'22-08 
117 .5ij83S7-i.L, •· 3'¼4892-01-f .379952-08 
lld .S:i8856-u..> .344897-lllt -.S99Lf36-C9 
119 .529355-UJ .344885-04 -.119381-07 
l2LJ .1f'.j9~ti3-0.S .34-4842-u'+ -.328475-C7 
lil .. 4 71J3::i,~-{jj .3447'¼8-()4 -.627403-07 
1l2 ... lf408!:>2-J,:, .31f1¾591-0q. -.9285ld-C7 
llS .,&tll3:il-UJ • 34 !t3, 9 2-04 -.~94614-C,7 
12'+ • 5813::i.2-iJ..:l • J 4 4 2 ..S 8- i'.l 4 _:.37646Zt-G7 
125 • :.152352-Ld .344330-0!t .158535-0E. 
126 .JZZ3!:il-u.3 • 34500~-~)4 .558737-06 
'127 .L<j33'18-u.:i .34672U-04 .118686-05 
le::: f3 • lb J1:U :3-ib .349836-04 .192'-178-05 
'li~ .. 2j'fJ21-u~ • 3!:>42:S:S-04 .236731-(15 
l..SlJ .L!J47~2-J.5 • .35855J-04 .166224-C.5 
'1.51 .ll!:>256-U.5 • 35 9211-04 -.156172-05 
ljL .14S 72 9-IJ 3 .3lJ95GS-Oi'.¼ -.897335-05 
ljJ .116247-iJj. ... 3197Ll-04 -.217055-04 
l.:S4 ., db 8 7u9-W4 .259827-04 -.3.::s5'¼51-Q4 
l jt; .b7b'l77-utf .l&b9bl.J-04 -.529472-(ll.J 
1.:Sb .2d73U2-iJ.:+ • 5 ~80 7 l-lJ5 - • '+ 9 2 7 8 3- C q 
1.H .. uuuouu • uOOO.l'.Hi .000000 
l.HI • 17 Z 71 3- UL - • l tJ 2 9 g g-O lt -.272680-04 
LS':1 .172681-lJZ -.977043-05 .229240-04 
lt+IJ .l72GY:3-u2 -.574260-05 .262135-Ci.l 
l'+l .172585-02 -.26042&-05 .149351-tLt 
i'-+2 .172S24-1c'J2 - • l 20642-05 .439071-05 
'l'f 3 .11246li-o::: - .. 1D4376-Cl5 -.143962-05 
1'+4 .1723::!6-02 -.ltflJb38-05 -.3LJ5'+42-G5 
l 't!:> .112:~ss-u~ -.1984b4-05 -.353714-05 
l't-b .11:a-,s-02 -.247997-l.15 - • .:HJ42.32-C5 
'14 7 .1'12216-L2 -.290062-05 -.259699-05 
L'+ ts .172159-02 -.326961-1.15 -.235594-GS 
14~ .1 ·12u1s-D2 -. 361549-05 -.227528-05 
lSU .1720141:1-i.12 -. J 95Gl4-u5 -.227410-05 
lt>l .1719':.i5-IJ2. - •. ~29883-05 -.229574-05 
l::>L • 17194 2-i'..JL -.Lt61.&471-Q5 -.231'+52- □ 5 
'1!:d .17189l-u2 -.499276-05 -.2324'18-05 
lSl.f. ., 11 ui 1+1.J-u2 -.534174-05 -.232770-05 
lb!:> .17l79l-u2 - .. 56909:5-05 -.232765-05 
l!:'>b .1?1743-U2 - ,. 61HOCl2-05 -.232671-05 
1!>7 .. 17169E-U2 - .. 638897-05 -.232592-05 
.l.~8 .171650-UZ -.67378-4-05 -.232551-05 
1:>~ .,1716Ub-Li2 -. 708Gb 7-05 -.232538-05 
lbU .171562-02 -.74354d-05 -.232539-GS 
'lbl .. l7l520-IJ2 -.7784jl-05 -.232543-05 
lbL • l 7 l L! 7 9-u 2 -.8l.331J-u5 -.232546-Ci5 
lbj, .. 171439-U.2: -.848197-0S -.2325'18-0!:, 
lb4 .. 1714.00-02 -.aa3oau-1J5 - • 2 3 2 5 if d- C 5 
lb!:i .. 171jb2-Lil -.917963-05 -.232548-0S 
lbb .171326-Ll2 -.9!:28'17-05 -.232543-05 
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l.1:,7 • 171290-02 -.987730-05 -.232548-05 

lbl:S • l 7lZ5G-02 -.'102261-04 -.232548-05 
lb9 .171223-02 -.105750-04 -.23254.S-CiS 
171.l .1111~1-02 -.109238-04 -.232548-05 
171 .171160-i.lZ -.112726-04 -.232548-CS 
172 .17113Ci-02 -.116215-04 -.2j2548-05 
173 .1111u2-02 -.l197UJ-04 -.232548-GS 
174 .171075-uZ -.123191-Ci'¼ -.2.S251.!8-05 
l.7b • 17104 8-02 -.126680-04 -.232543-CS 
17b .171023-tLZ -.130lb8-04 -.232548-05 
177 .17093'3-02 -.133656-ui+ -.2325!4&-C5 
l 71:1 .170576-02 -.1371&t5-Cll.t -.232548-05 
17~ • l7t:JSS 5-U2 -.l406J3-04 -.23.:.:5.!f8-C5 
1 !)(j .1709.34-02 -.l4'f-li::l-Cl4 -.23::5'l9-05 
lol .17u'.::ll::i-.J2 -.l476lU-CJ'+ --:.23 55u-C5 
l~L .11uB97-u:..: -.l5l09ti-04 -.232552-0!: 
l.~ .5 .11os1':::3-u2 -.154SlH-04 -.232551- □ 5 

'l ~'+ .17Lt664-Ul -.15 8075-04 -.232542-05 
18!:> • 17 U84 9-tlZ -.16156.:S-04 -.232521-GS 
lt)b .1706.S!)-(1.::: - .16 50!) 1-0~ -.2j2'-t85-05 
VH .l70323-u2 -.l68538-u4 - • 2 3 2 '¼ 5 5- C 5 
·urn .l70€J.l-u2 -.·11202.s-oi+ -.232487-0!:: 
18 :I .l7U8Ul-UL -.175513-i,)4 -.23269!.i-05 
l!::!U .l7CJ7::i2-G.::: -.179007-0lt -.2332H.l-05 
l::H • 17 UH,'l-02 -.182512-04 -.23'l0Lfu-C5 
1~2 .170777-fJ-.:. -.186028-()4 -.23'+ 724-u5 
l':;,j • 17 077 2-U2 - .18~546-04 -.2338!f5-C5 
l!::14 .170767-Gi - .1930U(J-04 -.228789-G5 
l::IS .17U7b'I-Li2 -.196328-0ll -.2165Sl-C5 
l':;b .171J"lb2-ll2 -.199417-01.t -.197253-05 
l'::17 • .!. 7lJ7bLl-02 -.20222L-!J4 -.ldl902-C5 
l ':; ts .17lJ7bll-0:::'. -. LU5iJl6-04 -.203471-05 
l!::!~ .l707bl-u2 -. 2us711-01t -.323213-05 
Z l!U .17U7b3-u2 -.215491-04 -.610601-05 
2Ul .170768-uL -.227814-!.)4 -.106017-04 
2Ul .l7tl77S-U2 -.246675-04 -.140983-04 
LU ..S .170~81,)-i.JL -.25980..:s-£)5 .750876-06 
£1.J'+ .17ll4cllf-u2 -.582178-05 -.133302-05 
lLJ~ .1705Lu-U.C: -. ll195S6-J4 -.336990-05 
2tlb .l7U!:Jjj4-U2 -.16 l'tB 3-04 -.522832-05 
207 .170676-IJ.2 -.213sog-04 -.703920-GS 
,Uts .11t:H~6-u2 -.265594-04 -.8ij3058-tl5 
.w~ .17tl3t.9-J2 - • .S23510-04 -.132728-C4 
,J.U .17lZl:l2-uL -. 381109-04 -.295436-04 
211 .171988-UZ - ... 38514-l.14 -.621486-Ci4 



NODAL ~THESSES (N/SQ.M> ANO MOMENTS (NM/M} 

NODE CUMiJLATIVE 
U.NGTH 

~!:.CTION l 

1 
2 
.) 

4 

4 
5 
b 
7 
b 

':1 

lU 
11 
12 
l.S 
14 
J. !:) 

lb 
17 
lb 
J. ':1 

2U 
Ll 

'- '
L .S 

.OlJO 

.luO 

.2ou 
• .sOG 

• .5UCI 
• ::> U2 
.7U'I 
• '.::106 

1.Hrn 
1. 310 
l.!:l12 
1. 711.f 
1. '.:115 
z.11a 
l. • .szo 
2.!:>22 
2..724 
2..~2E, 

3.128 
.s • .s .. rn 
j.5.S2 
.s .. 734 
.:i.~.ss 
'¼. l .38 

~l:.CTlON j 

4.l.Sb 
4.jq(; 

4.!:i'IZ 
Ii. 7q.4 
Lf.~45 
5.lLto 
5 • .S!:>C 
S.S52 
.:,.754 
s.~56 
6 .lo'.:! 
b.JbZ 
b. !:lb:> 
b.768 
b.'.:!71 
7.174 
7.377 

SIGMA-S 

.1361+(l5 

.187J+US 

.3Hl7+u5 

.3515+05 

-.1732+(.15 
- .. 1277+(]5 
-., 1b73+l14 

.4732+04 
.B77U+L4 
.11 1+8+05 
.,133':J+05 
.147::i+J5 
.158::i+05 
.1666+()::i 
.173Li+t:!:i 
.1782+0::i 
.. 1824+05 
.. 1853+US 
.. 11387+G~, 
.. l912+u:.i 
.1:'32+L::i 
,. .l.95U+Li:j 
.1956+05 
.. 1::J72+U:i 

.. 1255+05 
.,t;4':L3+!J4 
.,t1827+Ct,, 
.. :HU5+(lt,. 
.~J17+L4 
.. 9l¼6J+u4 
.,9:>66+(l4 

.. ~62J+d4 
.. ~oLfcj+[!4 

.,3E42+t'lli
.. ~647+(A 
.,'::!6Jj+L)4 
.~bli:HG'+ 
.95L12+d4 
.~58::i+L4 
.9577+04 
.~56o+GI.\ 

SIGMA-THETA 

.1257+(16 

.1033+05 

.9183+U5 

.8392+()5 

.751£.+lib 

.5332+1.lS 

.4323+05 
• .3725+05 
• 33 1H1+0~ 
.3073+05 
.289/4+(l5 
.. 2757+05 
.. 2654+0;; 
.257.1'.t+U:::i 
.2511+0!:. 
.2460+05 
.24l'J+lJ:.i 
.. 23.:35+05 
.. 2356+0S 
.23J2+0'5 
.. 2311+0;; 
.. 22:E+ll5 
.. 2278+(J:.:; 
.226.S+lJS 

.. 2lit•t+05 
-.6721+04 

• .:S26;J+04 
.39U1+05 
.::HJ&::i+U5 
.. 151S+ll6 
.21s~+tt6 
.. 2730+06 
.34Uo+Ut, 
.3995+05 
.45:.il,+(!5 
~5036+Do 
.55::ll+(ie 
.6(J78+G6 
.655u+05 
.7014+06 
.7473+u5 

MS 

.9675+02 

.1535+04 

.2363+04 

.2896+04 

.7211+(;4 

.5286+04 

.3939+04 
.2896+G4 
.20'+6+04 
.1327+C4 
.7027+03 
.1512+03 

-.3435+03 
-.7922+03 
-.1203+04 
-.1582+04 
-.1934+i:J4 
-.2263+04 
-.2571+04 
-.2a61+u4 
-.3135+0lf 
-.3395+Ci4 
- • 3543+[)£½ 
·-.3,378+04 

-.3875+Jtf 
- • 2a11 +,J 4 
-.1967+04 
-.1216+04 
- .. b42::i+03 
- .. 2330+03 

.. Z2'3b+02 

.1711+G3 

.2374+03 

.2439+("3 
.2273+Ci3 
.1892+03 
.14:iS+G3 
.Hl42:+D3 
.6753+02 
.3729+(,;2 
.1257+02 

167. 

MT HET A 

.9114+04 

.7634+04 

.6771+04 

.6226+04 

.6946+Ci4 

.6495+04 

.5918+04 

.5334+04 

.4777+04 

.ti2..S8+C4 

.3776+04 
.~329+C4 
.2 913+04 
.2526+04 
.216 3+:J4 
.1823+C4 
.1503+04 
.12Cl+Olf 
.9145+03 
.6429+C3 
.384~+03 
.1380+()3 

-.9743+02 
-.3228+C3 

-.6472+03 
-.4804+z:i3 
- .. 3284+(1:; 
-.2::J30+03 
-.1073+03 
-.397LJ+a2 

.3635+01 

.. 29::8+02 

.3964+02 

.4156+G2 

.. 379&+02 

.3160+[2 

.243£:+CZ 

.174G+C2 

.1129+02 

.6227+Cl 

.2098-tGl 



168 • 

'HJ 7 .5t:s0 .!:!560+(;4 • 7930+0& - .. 7996+Cl -.1335+01 
q1 7.7d3 .9553+0£¼ .8388+06 -.2617+02 -.4371+Dl 
-'t2 J,.j86 .~5t~7+(:;4 • B849+(Jb -.4357+ □ 2 -.7276+Cl 
.q.J 8.ld9 .g54u+U4 .9316+06 -.6116+02 -.1021+02 
li'l d.392 ,.9534+L'l- .. 979l+fJ6 - .. 7893+02 -.1318+02 
q !:) l:S.595 -.;J52d+U4 .1028+07 -.9539+i:2 -.1593+02 
'lb ts.798 .S52J+(.;lt 1'1077+(17 -.1073+03 -.1791+02 
.. 7 ~.ulJl .9523+□ 4 .1129+07 -.1090+.:iJ -.1820+C2 
If t$ ::;.zuq .953ll+u4 .1181+07 -.9261+02 -.151t7+02 
49 ::3. 407 .9547+04 .1235+07 -.4762+02 -.7953+01 
oU ~.610 .. 95 au+ u4 .1289+07 .3849+02 .6427+01 
t>l '::3. 813 .9633+04 .1343+07 .1792+03 .2993+D2 
!>2 lU.Ulo .9711+{.,4 .1394+(.)7 .3869+(;3 .6462+02 
t)j 1u.21g .Y8l7+01¾ .1440+07 .6696+03 .1118+03 
!) 4 lU.422 • 994 ::I+ (Jt.j .1477+07 .!0-26+04 .1713+03 
!:>b 1U.b25 .101u+05 .150J+!J7 .• 1L¼38+i)4 .24C2+03 
bb liJ.b23 .965<¼+(.;4 .150$+07 •. 1862+0'+ • 310 9+03 

SECTION 4 

----------
ob 10.~28 -.287u+C.S .. l496+U7 .1886+1J4 .2850+03 
!) 7 l1.L33 -.5022+(!5 .l543+U7 .2335+G4 .2919+03 
!) ti ll .. 2.38 -.10tJ3+06 .1575+07 .25 □ 2+04 .2367+03 
!) !:;j J.1.11'i3 -.1€?32+(.;6 .1598+U7 .2458+04 .1378+03 
bU ll.b4d -.221u+u6 .1612+07 .226G+u4 .1113+(2 
bl 1l.b53 -.295s.J+i:lb .1615+1.)7 .198Li+Ci4 -.1295+03 
b.:'. 12.usa -.3702+06 .1610+07 .1666+04 -.2727+03 
b.S 1L.2b3 -.'1-502+(.ib .1596+!17 .1.359+C.4 -.4098+03 
b4 12.46~ -.0364+06 .1575+07 .11!12+04 -.5351+03 
b!:I 12.675 - • b2 9 .3+ L6 .1548+07 .9369+ □ 3 - .. 6Lt40+03 
bb 1L.8dl -.72~..S+Oh .151'1+07 .8985+G3 - .. 7352+G3 
b7 i.S.U87 -.e37.S+CJL .l47:;+{J7 • 1.0 22+ oq -.8104+03 
b8 l.S.2'j.3 -.::154i.J+ub .1427+07 .13.38+04 -.87:0+.iJ3 
b!:I 1~. qg3 -.1uou+u7 .l363+l17 .1871+04 -.9393+03 ,u l.S.7Ll5 -.1217+0'/ .1292+07 .262.5+04 -.1021+04 
71 1.s.~11 -.1365+u7 .1188+(17 .3558+C4 -.1150+04 
1 2. 14.117 -.1s23+u7 .1042+U7 .4539+04 -.1371+0lt 
7J 14 • .SZ::. -.l6~1+L7 .8363+0b -~266+0'-i -.1748+04 
7.q. l"i-.529 -.1863+07 .55J2+t:fo .5140+04 -.2369+04 
7 t> lit .. 735 -.204Z+C:7 .. 1675+lib .3065+C4 -.333'1+04 
'lb l'l.941 -.221J+07 -.3072+06 -.2c34l+i:J4 -.4717+0!f 
11 lti.141 -.2375+C7 -.809(1+06 -.1559+G!; -.646t.J+O't 
7d 15.353 -.24ti4+U7 -.1120+07 -.3978+05 -.81.S9+C4 

'.:>l:.CT.£.ON b 

----------
78 l!:i • .S53 -.z~1¾3+07 - .. 1200+07 -.2128+G5 -.3553+0'¼ 
7':J lb• !:>53 -.29tiO+u7 -.1187+07 -.7130+04 -.1191+G'i 
dU ltl.753 - .~':J5d+ (H - •. 826 7+(!6 .28LJ6+G3 .4752+02 
IH l!:i.~53 - .294 7+1J 7 -.1.t4o4+06 .2960+04 .4943+03 
ts2 lb.l!:>:.S - • 2 9 1i 7 -t U 7 -.1719+06 .3074+04 .5134+03 
b.3 H,. 3!:>3 -.Z948+ll7 -.1852+05 .220l+C4 .3676+03 
b ct lb. 553 -.z94~+u1 .'¼408+05 .12i1+04 .203 9+03 
i,t, lb.753 -.2943+07 .5426+1.15 .4923+03 .8222+02 
tsb lb.9!>3 -. 29 5U+ L.7 .4189+US .7452+02 .1244+02 
rJ 7 17.1!:i3 - • 295J+07 .2481+(.15 -.1032+03 -.1723+02 
bt:J 17 • .S!:.3 -■ 2'.35U+ L 7 .1105+0!:i -.1386+C3 -.2315+C2 



169. 

t!~ 11.!;!:)J - • 2950+ (J 7 .265Z+liii -.1105+03 -.1846+02 
':l'U 17.753 -.29!:iiJ+07 -.1269+0'¼ -.6715+02 -.1121+02 
':l'l 1 7. ~53 -.,L951J+u7 - •. 2350+0'¼ -.31(,1+02 -.5178+01 
'::iZ lti.153 -.295iJ+[l7 -.2053+[14 -.8321+01 -.1390+01 
!jj J..8 .. 353 -.2:3:su+f.!7 -.133l+L!4 .2602+Cl • 4 34 5+0f.) 
jq l!:i.553 -.295iJ+07 -.6659+03 .5893+01 .S8'12+GG 
gt, l~.753 -.,295u+LI7 -.2200+03 .5363+Cl .8957+00 
':l'b l-:$.953 -.295U+07 .1150+02 .3569+01 .5960+00 
•:H 1g.15.3 -.2950+(.;7 •. 9424+(12 .1838+01 .3070+00 
·::n; l :I. 353 -.z9sn+u1 .9637+02 .6465+00 .1oso+nc 
gg l!1.!:l53 - .. 2951.l+l.;7 .69ll+LIZ .1035-Gl .1729-02 

lUU l::J.75..3 -.2950+07 .3816+!.12 -.2296+JO -.3834-01 
lUl l~.~i!>J -. 2:J51.l+ r.n .1528+(!2 -.250E.+Ei0 -.4185-01 
l U 2 2U.l53 -.2950+07 .2222+01 -.1838+00 -. 30 70-Gl 
11.J .s ZU.J5J -.:C95(!+(;7 - • .3281+01 -.1042+00 - .1 71~ 1-01 
lU'-¼ zu.553 -.2'35Cl+U7 -.4326+Lil -.14339-01 - • 72 45-C 2 
lllb zu.7!:i.3 -.2~5lJ·t-l.J7 -.3t10Z+Ol - .. 73C4-C2 -.1220-02 
lUb 2u.~5.3 - • Z9.5tl +O "/ -.2041'.t+Lll • 927 7-~J 2 .15 4 9-G2 
1U7 .:::l.l::d -.295U+li7 -.9923+0(; .1414-01 .2361-02 
lUd 21 • .35.3 -.29SiJ+U7 -.483S+D1J .1330-01 .2221-02 
lW':l' Zl.553 - .. Z::3SO+Li7 -.5213+00 .9640-02 .l61C-OZ 
llu Zl.753 -.295u+U7 -.93Jl+OO .2989-02 .49~2-03 
111 Z ! • ~53 -.29!:iU+li7 -.1433+01 -.9013-02 -.1505-02 
112 L.L..153 -.295iJ+07 -.150it+Ol -.2923-Jl -.4881-C2 
'11~ LL.3!>3 -.Z'.j5ll+L;7 -.,30l8+CILi -.580'-i-Gl -.9693-02 
114 LL.553 -.29b0+1J7 .3323+lll -.8855-Ql - .14 79-G l 
11!> .:::'t. .. 7b3 - .. 295ll+L:7 •. 10 5(i+02 -.9995-Gl -.1669- □ l 
llb 2.2..::!53 -.29::;;u+U7 .214.3+U2 -.5l!J8-0l -.8531-CZ 
117 ZJ.153 - • :C9 5 U+ u 7 .3365+L12 •. 1206+00 .2015-01 
11~ L..S,..S53 -.29SO+U7 .3957+(12 .4852+JO .alC3-Cl 
l 1~ 2J.ob:S -.L95t..i+l'7 .2380+02 .1076+01 .1797+00 
.L2Ll 2..S.75.3 -.2950+()7 -.37Gl+U2 .1803+Gl .30ll+GC 
1Ll LJ.9!>3 -.295lhL7 -.1725+LlJ .. 2313+01 .3863+00 
122 L.4.153 -.295\J+U7 -.3969+03 .1833+01 .30€l+wC 
12..S iii • .553 -. 2950+ w 7 -.5821+03 -.9238+00 -.15'+3+00 
1.:::4 Li+.!>53 -.2950+07 -.9027+03 -.7590+01 -.1268+01 
l.:::!:J 24.753 -.295U+l,7 -.7732+03 -.1943+02 -.3244+01 
lLb Li+.':153 -.29so+u1 .193ti:+03 -.3568+u2 -.59::9+01 
1~7 :C:::5.153 -.295U+L7 • 26 3~.+(J4 -.5081+02 -.8485+01 
lLd 2S • .S53 -.29~0+07 .70d7+G4 -.5□ 90+02 -.8483+01 
12~ .2:t>.55.:i -.2951J+C7 .. 1338+05 -.1012+02 -.1690+01 
l ju 2!:>.7':J3 -.295,,J+iJ7 .1957+05 .1u7.3+03 .179l+C2 
'l..H 25.g53 -. 295U+ L 7 .zoso+ □ s • 3368+ 03 .5E,24+02 
lj2 2b.lS3 -.2s49+u7 .6759+0tf .6339+iJ3 .1142+D3 
l .:> j Z6 • .s5~ - • Z 91; :l+ 0 7 -.3572+05 .1059+G4 .1786+03 
l->4 26.5ti3 -.294J+J7 - ,. l 213+0 6 .1249+04 .2086+(:3 
l .:> !> ib.7!:d - • 2 9 ti :l + Ci 7 -.254!1+0E, .7335+03 .l22S+C3 
l.Sb 2b.'.:t53 -.2952+J7 -.4!HS+iJ6 -.1239+04 -.2070+!:3 
l.:> 7 2 7 .1!:>3 -.295S+G7 -.4936+06 - •. 5,546+G4 -.9261+03 

~ECTION b 

----------
l.f L7.1~3 -."::Jl¼Llb+(t5 ,.6895+(:;.5 -.4375+04 -.7309+03 

'13b 27.:SU3 -.102!:i-f-C.6 - .. 28 73+()£ -.1899+04 -.3171+03 
1 j :1 ,O.t♦ ::>3 -.9r-t74+tlo - .. 2721+06 -.3Gao+u3 -.6145+02 
l'iU ..::-7.603 - •. 9l5.H(;5 - .. 1659+06 .2188+03 .365'¼+02 

l'+ l '<:."I. 1 ':;;j -.:HJ96+0S -.a3SD+05 .2899+03 .14s42+r:::2 



170. 

142 27.~03 -.9138+05 - .t+6::J(l+OS .l-i:!59+w3 .3105+C2 
l4j l ts .IJ!::13 -.::ll89+G5 -.4272+(!5 .7726+02 .1290+02 
lit'+ 28.L0.3 -.'::f221+ll:.i - .5331,4.+(lS ol373+G2 .2293+01 
l lf t> "ti•· j!:>3 -.~23 1HU5 -.b74U+Ll5 -.9966+01 -.l66t;. .... ;;,1 
14b .::d.!>UJ -.9236+0:5 -.a □ 47+0o -.1235+02 -.2CJE3+Cl 
147 ;.::~.b!,:5 -. 9234+Ci5 -.915t:l+05 -.77'13+01 -.1293+01 
llfti 2ij ■ tH)3 -.~2.$2+05 -.1012+06 -.3138+01 -.5241+00 
14::, "b.!:!!:;3 -.,'d23l+IJ5 -.1102+00 -.5ul.J&+oo -.8426-01 
.I. .'JU :.::9.11.l.S -.~23iJ+IJ5 -.11:32+()6 .4503+00 • 7519-C 1 
l:.>l i::i.~!:13 - .. ~2:10+Ci5 -.128Z+!Jb • 525 7+ 0(1 .8779-01 
L !:>2 .::~.4U3 -.92JJ+05 -.1372+U6 ■ 322l+DC • 5 3 79-0 l 
lo~ ;:::;.b:.d -.92Jl+Li5 -.1464+06 .127.:.+CO .2125-01 
lt>4 :.::~.Hl3 -.9231+(.l!i -.l555+rJ6 .1a1a-01 .3036-02 
l!:i!::i l~.t:J!>S -. gz:n+ ci~ -.16!f7+(Jb -.2020-01 -.337!;-02 
lob JU.lJU3 -.9231+05 -.1733+06 -.2234-~l - •. H30-C2 
lt, 7 ~u.l!:>.5 -.:;J2~l+ll5 - .18 ::rn+Ub -.1339-Cil -.2235-02 
l ::id .SIJ.JUJ - .. ~231+05 -.l92l+U6 -.515l-D2 -.86G2-Ci3 
lb~ .su.4!d -.92:H+u5 -.2013+(.16 -.6379-0J -.1(165-03 
lb!J .sU.bU.3 -.9231+05 -■ 21UG+U6 • 9iJ 12-0 3 • 15 C 5- C 3 
lbl .SU.7!.J -.92~l+(J!:, - .. 219&+06 .9476-iJ3 .1583-03 
lb, .rn.91J.3 -.:,2.H+CJ5 -.2287+()6 .5557-03 .9280-C4 
'lb.:> .S.l. .U:ij - • 9 2 :n ... tJ t', -.2379+06 .208l-C3 .3475-0'i 
lb'+ ,H.2L13 -.:;J2.H+D5 -.2,..7:J+Cl6 .2155-J4 • 35 99-G 5 
lb:> ~l.j:d -.':l2.H+L~ -.256Z+C\6 -.40(11-C:4 -.6682-05 
lbb .S.L. !:itJ3 -.:::12 .. H+u:i -.26SJ+U6 -.4020-04 -.6713-05 
lb/ .. H .• b!:.3 -.92:n+c..s -.274[,+(IE, -.2307-C.4 -.3852-05 
Lbd .ll.~03 -.92.H+Ob - • 2 8.Hi+U6 -.8344-05 -.13S4:-05 
lb~ .H.~!:i3 -.~2:n+u~~ -.2928+()6 -.47~3-06 -.8[13-07 
l 7 tJ ~i.lOJ -.~2.H+O~ -.3019+()6 .2251-05 • .3 7 ~ 9-C 6 
l.71 J,.2t..:.i -.92:Sl+C~ .. -.3111+06 .zq3l-G5 .4(160-06 
l 'l L .)i.403 -.':l23l+ub -.32U2+0b .1451-05 .2423-06 
l 7 j j~.~s::; -.~2Jl+L~ -.329't+llb -. 7585-06 -.1267- □ 6 
l 7 i+ ji::.71.JJ -.'::l2Jl+LE, -.33d5+06 -.5080-05 -.848.lf-CG 
l 7~ ,)~.!j53 -.92::.1+ti5 -.3477+{.lE, -■ 1lb8-G4 -.1950-05 
l7b .$.$.OLIJ -.':i2J1.+L15 -.35b8+06 -.1716-Jit -.2966-05 
.I. 7 7 .5_s.15;:; -.~2:::1 ♦ G5 - .. 3E.5lJ+Uo -.lu65-1J4 -.1779-05 
17d .SJ.JL)J - .. ~2...:Sl+llS -.3751+06 .2862-G4 • ff 7 79-0 5 
17::, Jj.LJo.3 -.Y23l+G5 -.:::i84J+05 ■ 1249-03 .2085-04 
11::HJ jj • blJJ -.:::12Jl+u5 -.393!.J+Ob .2776-03 • 46 35-04 
J..bl ~.:, • 7 53 -.~2:H+C5 -.402£.+0b .J986-C3 .6660-04 
l tsL .SJ.~0:.S -.:;231+us -.'+ll7+Ub .2233-~3 .3729-011 
Ud .)it.U!:>3 -.Y23l+C,t, -.420'.3+06 -.7423-G3 -.1240-03 
l t$ "+ .S'+ • LIJ.3 -.::.i23l+J5 -.43lE1+L16 - • 3053-C,2 -.5098-03 
l b!i Jlt.J5~ -.~2:Jl+(i5 -,.4392+Cb -.E.635-02 -.1108-02 
l t$ b j4.!:>l13 -.::1231+J5 -.44J3+Ub -.92'31-C:2 -.1552-02 
lb7 .)'t.b53 -.9231+0!:> - • 45 75 +1:6 -.t.t6CJ2-G2 -.7685-03 
l8d .s4.~U3 -.•:n .. si+u5 -.46tiG+Ll6 .1912-ul ■ 3193-02 

us~ ..S4. ~!:>3 -.~2:H+Ci5 -.➔ 758+[if, .7452-Cil .1245-0l 
l. :I ti .)::>. HJ3 -.'::j2:H+J5 - .4 s1+ :HO& .15t:34+00 .26li6-Cl 
l~l .)o.LS3 -.92:H+(,!;; -.494l+UE.. .21Go+ao .3608-Gl 
1~2 .)'!Jelf!.:13 -.::,231+0:.i -.5i13 1.J+U6 .9219-01 .15'10-Cl 
l ~.) .)!).~~.3 -.92::Sl+Gb -.512&+!.)6 - • 4 901 +00 -.8185-01 
l::i4 .H>.71.l2 -.::12.32+0:i -.52l6+0b -.1807+01 -.3 □ 17+0G 
l~!, .)!:>.d!:>l -.92j2+Ci5 -.530~+06 -.3753+01 -.6267+00 
l~b .)b.UIJO -.~23.S+05 -.5335+06 -.5Dll+Gl -.8368+00 
l::17 ~b.14:j -.9231+(;5 -.5458+ub -.1955+01 -.3266+00 
.L~ 8 .>b.298 -.922'4+0!:i -.55.31+06 .1177+02 .1965+ul 



199 .s&.447 -.9209+05 - .56.30+(J6 .4264+02 .7121+01 
2tJO 36.5~G -.~188+05 -.5806+06 .8791+02 .1468+02 
201 .Sb.745 -.917:3+05 -.6129+06 .1163+03 .19Li2+02 
2U2 .St>.894 -.9225+(J5, -.6624+06 .«.241+02 .7082+01 
20 8 .H.043 -.9627+05 -.7127+06 -.2846+:.)3 -.4753+02 

Sl:.CTION 7 

----------
2 U 3 .)7.043 -.8061+06 -.96G0+06 .1232+04 -.3349+03 
204 .:s1.1q.3 -.8071+06 -.8513+06 .7063+03 .4871+03 
2l.it> 37.293 - .. 828 7+ (JG -.8398+06 .6639+ □ 3 .5961+03 
ZUb .H ... 1143 -.8326+06 -.8373+06 .6499+ □ 3 .6172+03 
,i.J7 ~1.ti~3 -.8338+(J6 -.8364+0£ .64.36+03 .6246+03 
2U ts 37.7'¼3 -.83141+05 -.8359+06 .6403+03 .6281+C3 

St.CTlON ts 

----------
2U8 37.743 -.t:1672+06 -.81f-15+06 .1224+02 .5232+03 
20'::l .:SJ• 9LJ2 -.86bU+Ob -.8lfGS+tlb .2772+04 .1111+04 
21U .)b.062 -.8633+0& -.c:S491+06 .6999+04 .2398+04 
211 J8.221 -.8615+06 -.8508+06 .1254+us .l.f348+04 

1 I::, .H:S • .HSl -.8G09+u6 -.8521+06 .1930+05 .6925+04 
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A.5 Listing of Programs 

There follow complete listings of all the CONFRU programs, including the 

plotter program STRESSPLOT. The programs are listed in the following order: 

.., CONFRU MAIN program I • 

2. Subroutine PLGEOM 

3. Subroutine PLPRES 

4. Subroutine SYSTEM 

5. Subroutin.; ;;ELSTF 

6. Subroutine SETBD 

7. Subroutine TRANS 

8. Subroutine PROD 

9. Subroutine PTLOAD 

10. Subroutine LOAD 

11. Subroutine CLOSEL 

12. Subroutine BONCON 

n. Subroutine Bi\J\IDO 

14. Subroutine BANBAC 

15. Subroutine STRESS 

16. Plotter program STRESSPLOT 



C ** CO~FRU MAIN FRCGRAM ** 

PARANLTE~ rxx=SOO,IYY=l&COO,IZZ=3C,IWW=l503 
LOGlCAl PCS 
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DIMENSIO~ HEADtl □ J,NELl(lZZl,NEl2(IZZ),NOD1CIZZ),NOD2CIZZ) 
GIMENSION NPTL(IZZ),NELPl{IZZ>,NELP2(IZZ),NOCSCIXXl,NL(IZZ) 
LJIMENSlO~ NBCC10>,UBC{lO>,WBCLlrJ,MBC(lOl,ICLOSE(5) 
GI~t:t-.SION NC(IWWJ tND< 10,4) ,NF(H!I-D ,NiHIW'rJ) ,NR( lWW >,NWR(IWW) 
GOUBLE PRECISION ~CIXXl,RllIXXl,R2tIXX>,T<!XX,2J,TLCIXXJ 
U0UbLE PKECISICN h(IYY),VECtIW~> 
UOUBL~ PRECISION kSllIZZltRS2lIZZl,TlCIZZ),T2CIZZ> 
DOUBLi PRECISICN PlCIXX),PR1CiZZJ,PR2{IZZ>,PCA(IXX) 
uou~Ll PRlCI~lON ~U(IZZ),~W(IZZ},MM(IZZ) 
DUU8L~ PHECISIC~ HNU,E,GC,FAC 

C DOUbLl PRECI~ION ~AtIYY)tBVE:tIWh) 
co~rCN /8LKl/lX,IY,IZ,I~ 
COMMO~ /ULK2/NPLOT/BLK3/lBON/iLK4/NGP/BLK5/RNU,E/BLK6/NELT,N 
COM~CN /bLK7/NtiP/8LKd/lSF 

~ NOTL: IF £ACK SUB~TITLTlCN IS REQLIRiD 
C CHANGL: 1xx=2~u.1rv=75~0,I~W=/5f 
C ANO R~NOVE RELEVANT CCMMi~T C~R~~ 

C ----------
iX - 5uu -
.I y - 15uuiJ -
IL - .:5U -
HI - 15u.3 -

C ----------

C ****************** 
L ** KAI~ HEADER TITLE 
C ****************** 

RtAD(8,50~> lSYM,lGE~,IG,IL,IS,IBON,IV,IB,ID,ISP 
~lJO FuRMAT ( ll!ll) 

IF< lSYM), ,SCl 

P,RlNT 3Ul: 
~01 FOHMAl(lrllrb(/J,lrlO,j~X,jl('*'l,/, 

14uX,'* CONF;~t; *'t/, 
14UX,'* Fi~lTE ELE~£NT AXISYMM~TPIC *',/, 
240X,'* ThlN SHELL PRCGRAM *',/, 
.54rJX, '*'•2~X•'*',./, 
b4UX,'* T.B.GRlfFIN *'•/• 
740X,'* UEPT. OF CIVI~ ENGINELRIN6 *',/, 
240X•'* UNIWERSilY OF CAPE TC~N *',/, 
t>4llX, '* •,29X, '*',/, 
340X,'* AUGUST 1974 
340X,'*',L9X,'*',/, 
64uX,'* UNl~AC 1105 EXEC 8 
84ljX,J.lt '*') l 

C ********************* 
~ READ LN A~ALYSIS DATA 
C ********************* 



SLll CONTir-.Lt: 

REAJ{o.21J(i) LCASt.dH1::ADLU,l = 1,HH 
REAUlo,~Ul) NPLOT,~GP,tlCLCSltit,I - 1,5) 
REAC(H,2~2) RNLrl,GC 
R uu; t !:I. ~ Li j ) N '.:.LC? N PS , \.)Nb C' N Np L, tlB p 

UO 254 1 = l,NSEC 
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2 !:i 4 R !:. A G ! 8 , 2 U 4 ) N C Ll 1 LI i , N i l 1( U , N O C 2 ( I ) ., tE L 2 ( i ) , R S 1 <I ) , R S 2 (I ) , T 1f I ) , 
1T2 U) 

.ff (,~PS), 2:.6, 
DO ,:'.:,jt, l :: l,NPS 

255 REAUCt,2uBJ NELP1tl),NlLPZ(l),PPl(Il,PR2(I) 

2~6 ~U L~S I= 1,~~BC 
2~3 k£AU(d,2J5) N3C(lJ,U8C(I),W8CIIl,M8C(I) 

IF(NNPLJ,257, 
JU Zil i = l,~NP-

251 R~AU(~,2w7) ~PTL(l),UU(l) ,~w<:),MM(I) 

2':::>7 lfil\cPJt.::52, 
G U Z t;. 8 I ~-= 1 d,' .:i P 

2S8 RtAU(d,20~) NU(I~l),NC(I,ZJ,NG(I,3>,NC(I,4) 

2~2 N!:.Lf = NEl2(~SECJ 

i = 1 
tb3 RtAU(e,2u6} L(IJ,~REP 

..Lt=(/\Fit.F - ll Zbl,..'.El, 
N 1~ C: P 1 = NL L F - l 
00 262 J = l,N~EFl 

262 READlU,2~61 ~(ll 
Zbl 1 =I+ l 

IF(l-N~LT) 26J,26i 

2UG FORVAf{Ab,2X,1CA~I 
201 FUHHATC2Lli,2XJ,5(I3tLXll 
2U2 FUK~AT{8(E8.~1ZX)J 
2LI3 FC~MAT(bll3,~X)} 
zwq FUR~AT(4(1J,2X),q([8.3,2X)) 
2LJj FOR~AT(l~r2X,J(Al,1XJJ 
ZUE FGRKATtF7.U,2X,13J 
ZL7 FOkMATll~t2X,J(Ed.3,Z~lJ 
Zud FCR~Alt2,I3,2X),ZCE8.3,2X)J 

221 TL(l) = u. 
;_; U l S l = l, fit:. LT 

13 TL(l+l) = TL(lJ + LCIJ 
C **********•******~*********** 
C HEADING: A~ALYSIS l~F~~MATICN 
C ********~*******~************ 

IF l ISYM), ,502 

PRIJ\l .3d2,LCASi 



3U2 FORMAI(lH~15l/},lHJ,J9X,Jl(•••),/, 
340X,'• LOAG CASE: ',Ab,llX,•••,;, 
440X,••',29X,'•',/, 
b4~X,'• UATE •••••••••••••• ·,1ux,•••,1, 
6.'.tiJx,.,:;1, 1 ••;, 

C **************** 
C flXEC C~NSTANTS 
~ **************** 

5U2 NELTPl = ~ELT + 1 
I F C N S ~· ) 5 Li J • , b d S 

DO SG4 I= 1,liJ 
iJO Sui:+ J = 1, Lr 

51J4 NOll,J} :: U. 
:iU3 CO/HI!',UI:.. 

N = (Ni::LT + l)•.3 
l F ( N D ( I~ 6 h 1 .I • l u • t,.; L L T } ~~ - N £ L T * 3 

:✓ S2 = N~t.C, *Z 
1'1 = a 

NLl2•J - 1) = ,\CCl{J) 
~ NL{2*J} = ~0Ll2(J) 

CC 6 h = l,NS2 
NT = r,L{K) 
UC 7 l ::: K,r~sz 
lf(~Lli+l).NL.NT) GO TO 7 
M = M + l 
GU TC o 

7 CGNT IrH.:E 
6 CCJNTlNUE 

80 15~ l = ltNlLT 
PUll = u. 

l!:iU PLA(IJ = L .• 

~ ************************* 
C GEOMETRIC ~ATA Gl~lRATION 
C ************************* 

C AL;_ f' L G l O fl ( r; S E C , ; J EL l , t <i £ L 2 , R S 1 , P S 2 , T 1 , T 2 , L , T , R l , R 2 J 

C ******•*•••••******************************** 
~ PHlNT GU1 GE~tRAL lNFOR~ATION, BRANCHING ETC. 
C ********************************************* 

IF CI G c.!J ) , , 4t1 u 

PklNT JGJ t (HlAU(ll,I = l,lCI 
3U~ FORMAT(lHl,SU('•'),/,lH ,lCAS,/,lH ,so<•••)\ 

PHINT jU~,R~U,l,GL 
JUJ FURMATClHO,'POlSSON RATlc: ',dX,FS.3,/, 

1' MULLLUS Cf LLASf~ClTY: ',l6.3,/, 
l'UUNIT ~llGHTi: SlriUCTUR~ MAT~~IAL: ',EB.3,/,J 
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IF CNGP.NE..5.ANU •. /JGP.;~L.7J PR:.:.,\T 318,riGP 
318 FURMAT(lHU,'NUMERICAL INTEGRATION: ',12, ' POINT GAUSS QUACRATURE 

1. • l 
IF(NGP.Eli!.5.CH.NGP.EJ.7) PRH.:T "319,NGP 



L: 

C 
C 

176. 

Jl9 FJkMATC•J~UMERlCAL I~lEC~ATlCN: ',IZ,' PCINT SlMP:CN QCACRATURE.•> 

PR l t, T 331 
Jjl FORMAT{lrlU,3t/J,lH ,~0('-•),;,• CHECK NOUE AN8 ELEME~T NUMEERS',/, 

1' fOR SECTIONS ANU BRANCH~S',l,JH ,3~t•-•>,l,1HO,'SECTIONS',3X,'NC 
2 (.; £ " , 2 X t • C t. L E 1.; L i'. T ) • , 5 ( • * • ) t ' ( L L t. t"' £. N T ) ' , 2 X , ' N O D E ' , / , 1 H , 8 C • - ' ) ) 

JO jJ2 J = ltkSEC 
PklNT SJJ,J,NO~l(~),~lLllJ),N~L:CJ),NOD2CJ) 

3~3 FURMAT(lrl ,3X,12,6X,IJ,bX,'<',I3,')',SX,'(',l3,') ~,13) 
3j2 CONlHJUl 

PklNT ltju 
4j0 FOR~ATtlH0,'CLCSU~i ELEMfNTS~,/,lH ,15('-')) 

IF(lCLvSL(lJ@l~.u, Pr.INT 4jl 
Qjl fOHMAT{lH ,'THE STRUCTURE HAS ~O CLOSURE ELEME-NTS'} 

lFCILLUSdl),.bT.L;J PiUt-iT 321,iCLOSc.(1) 
..321 FORMAT{'JTHER~ ARL CLGSURE E~tMENTS AT THE FOLLOWING NCOiS: ',13) 

:.:,o J;;:.:: V = Z,!., 
IFliCLOS~lJ).GT.Ol PR!hT 323,iCLOSE(J) 

3i3 FUR~AT(lH ,blX,I~J 
i.U CCl~TI.\i.;E.. 

PRir, T ..336 
!. j. 8 F (.Hrn AT C l hU , • Lil, M, Ct: F Cir; TS • , / , l H , 13 C ' - ' J l 

:F(Nd~.~J.J) P~l~T 435 
4.:,!: FUrW,Af(' THE STRL:[.,TUr·,c. HAS NO BPi:..NCH POH~TS') 

: F l ;\ f.l P ) 1 4 Cu , 
GO .L,j rt::. ltNbP 
~U2::. NU(M,l) + 1 
lFC~GtM,2J.GT.0) FRI~T 33b,NU(M,l),NDCM,~),ND(~,3) 
IFCN~(M,~).E~.G) FRINT 3J7,NC<M,1),ND2 

.S .Sb F UR I: AT ( ' W. 0 U t:. • , L:. , ' I S CO N N L LT U) T C N O CC • • I 3 • ' T HR OU G H E LEM EN T ' 
1, l..S J 

3 .n F U k ~•, k T ( ' u N (; 0 ::.. ' t I j , ' l S r, C T C ;_ N M E S T E G T O N OD [ ' , ~ 3 ) 
3 .5 5 CC rn H~ L. E. 

********~***•************** 
PRrtn cur Gt:CM~TRIC DATA 

*************************** 
4UlJ Ifll~J,,41:J2 

.. 3.:SL PR11\T .:.d4 
.:.U4 FURMµ,T(lril,l::>('-'),/t' Gl::..OMETkIC (.:ATA: 1 ,/,lH ,15('-'J,/, 

l ' d f..L t. !-1 E.l\ T • , 4 X , •Lt~. GT rl • t l.f X , ' R A 01 t.: S ( 1 } ' , l.f X , • RADIUS ( 2 ) ' , 5X , 
L'T lll • t 7}.., 'T( :CU•) 

LC JbU i = l,NELT 
3~U PRlNT ~DS,i,Ltl},Hlt:l,H2{I),1Cl,ll,T(I,2} 
JU5 F0R~AJ(lH ,2X,13,4X,F8.b,l.fX,Ft.?,7X,F6.3,5X,5(f8.E,3X)) 

Pk l N 1 !, U G , TU l·l E LT f l ) 
3U6 FCRMAT(lH ,ld('-'},/,lH ,•TCT,\L',2X,F9.6) 

C *****************•****** 
C Pkt.S.St.;RE DATA G[rH ... RATICN 

C ************************ 

4U2 CLN1ir·,Ul 

IFCNPS.Gl.D) CALL PL?RlSlNPS,NELP1,NELF2,PR1,PRZ,L,Pl,P8AJ 



C PRINT OUT ~OADING UATA 
L ********************** 

If<ILl•,401 

PklNT .307 
.. HJ7 fOkMAT<lHl,Ld'-'h/,• LCADINC DATA:',/,lH ,13('-')) 
jll lF(GC.GToUe) PRINT 314 

177. 

.Ht+ FUR!',AT( •L** THl s ... ;..F \\LIGHT OF THl STRUCTURE IS INCL:JDEC SEPARATEL 
lY IN THIS ANALYSl~ •••) 

PRINT .31!) 
315 fORMATtlh012X,'NODE',SX,'PRESS~RE',7X,•uu•,12x,'WW',12X,'MM'l 

J = l 
2.t.RO = U. 
80 351 I= l,NELT~l 
IF(NPTL(J}.E~.ll PRI~T jUb•l,Pl{l),UU(JJ,WW(JJ,MMCJl 
IFCf\FTLL; l.Nl:..U PRI~H 3u8tI,Pl<IJ ,ZER0,ZER0,ZER0 
lF {NPTL(Jl .U..-1) ..; = .J + 1 

JUB FURMAT(lh ,ZX,13,oX,£J.4,5X,4!E9.4,SX)) 
3~1 CO~d L,U E 

C ****************************** 
C ~ET UP SYSTEh STifFNLSS MATRl~ 
l *****************************• 

lf!Jl CONT H,Lt: 

C ******•******************************** 
C CLG'.:>Uh:i c.Lt.H: .. t,T :.T.1..FF~.E.S~, J LUAU VECTOR 
C *************************************** 

iFtlCLCSEClJ.GT.OICALL CLOSELtICLCSE,NF,GC,Pl,Rl,T,A,VECJ 

C ~YSlt.M LOAD VECTOR 
L ************************** 

PClS = .FALSt:. 
OU 4iU I= l,NELT 
lf(OA8S(Pl(l)).GT.J.) POS - .TRUE. 

410 Cvi'iliNJl 

:FlNNPL.GT.UJ CALL PTLOAUCNNPL,NPTL,Rl,R2,L,WUtWW,MM,VECJ 
lF(GC.GT.t.O.OR.P0SJ CALL LOAD(N[LT,GC,L,Rl,R2,T,Pl,PCA,VCC) 

L ******************* 
t; JOUN~AtlY CON!JITICiiS 

C ******************* 

CALL bCNCCt-.(!,;f-;BC,i'i8C,;~c,NM,NF,LBC,w90,M8C,A,VEC) 

C **************************************** 
C PRINT OUT SYSTLM STlFfNESS S LOAD VE~TOR 
C **************************************** 



IFCISl,,605 
PRINT 60.S 

6(13 FuRMAHlrll,•SYSH.t", STIFFr..ESS't/,lH ,lE,{'-'h/) 
NNN = M:.L T*l5 
PRlNT 6u4,(A(I),I = 1,NN~} 

6U4 FOR~AT(lH0,10£11.61 
505 IFU\'lttotib 

PtUNT i:iul 
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bUl FORMATClHl,15<'-'),/,' SYSTEM LOAD VECTOR',/,lH ,18('-'),/,lHO,'NO 
lUl ', 9X, • U • r 1:iX, 1 W •, 13X t • M •, /) 

.J = u 
0 0 4 2 l' l :: 1 , N t 3 

J = "' + 1 
PRINT 421,0,VEC(l),VlC(I+l),VLCtI+Z) 

421 FURMAT(lH ,I4,J(5X,E9.4)} 
420 COJ\:TlNUt. 

bUb COifllNUt. 

C JO b4~ l = 1,lYY 
C 645 8A(l) = A(l) 

C ******************************** 
C SULVE SY~TEM STIFFNESS E~UATIChS 
C ****~****~********************** 

C ***************** 
C 3ACK SUd~TlTLTlCN 
C ***************** 

C ---------------------------------------

FAC = {l. - RNU*R:,Jl/l6.28318:,:Si17•E) 
DO ~ l - 1'"-

8 VECtll = VEC(ll•FAC 

C ---------------------------------------
C ******************************* 
C PRINT OUT DISPLACEMENT RESULTS 
~ ******************************* 

IF(IC),,404 

PRl}, T S 
9 FOR~ATClHl,bLt'-'1,/,' UISPLACE~lNTS AT EACH NOOE, IN GLCBAL COORO 

lINATES:',/,lrl ,50('- 1 ),/,lHO,•~oDE',9X,'U',l3X,'W',l3X,'M') 
J = u 
fJO 11 I= l,N,J 
J = ..; + l 
PRINT lu ,J,VEC(Il,V£C(I+ll,VCC(I+2) 



10 FOR~AT(lH ,IJ,5X,El1.~,2(4X,Ell.G)) 
11 COJ\iTINUt: 

C ***************************** 
C PRINT CUT STRESS HEADINGS 
C ****************************** 

.IJ!.14 IF(ISPJ,q(J7, 
PK INT 41.ha NP LOT 

quG FCR~AT(•~R£SULTS TO PLCT FILE •,r2,• ONLY') 
GO TG !:el!:.i 

407 PHlt-.T SU 
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50 FCR~AT(lrll,4L<'-'),/,' NCCAL STRESSES {N/SQ.M) ANO MOMENTS (NM/M)' 
1,/,lH ,1+:2( '-' J 
l,/,'GNCOi',2X,•CUMULATlVE',4X,'SIGMA-S',4X,'SlBMA-THETA',7X,'MS' 
2,9X, •~;THLTA',/,lH ,8X,"Lt.NGTH',/) 

C ***************** 
C STR~SS RiSULTANTS 
C ***************** 

till5 Wr<llt.(l'-.PiLOT,~l) NFP,LLASL 
51 FORMAT(7X,IJ,2X,Ab) 

CALL STRiSS<~SEC,~ODS,NODl,N0~2,NELl,NEL2,L,Rl,R2,TtVEC} 

'.:; TOP 
L tJ u 



l 
2 
j 

4 
5 
E, 

7 
8 
9 

10 
ll 
12 
l.3 
l'f 
15 
lb 
17 
18 
l ':::1 

2(1 

21 
22 
2 j 
24 
25 
26 
27 
28 
2'::I 
jO 

.S l 
32 
33 
34 
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SUBROUTINE PLGEOM(NSEC,NELB,NELE,RS,RE,TB,TE,L,T,Rl,R2) 
CO~MON /dLKl/!X,IY,IZ,IW 
INTEGE.R t.Ll,£L2 
DUUbLl Pfi£CI~ION RBC1Z),RE(IZ>,TB(IZJ,TECIZ> 
UOU~LE PK£CISICN L{IXl,Rl(IXl,R2(IX),T(IX,2) 
UOU8Ll PH~CISION TL,SINA,DELT,SL 
DIM£~SION NEL8(IZ>,NELEtIZJ 
DG l M = l,NSf..C 
TL= U. 
ELl = i4EL8(M} 
EL2 = NL .. t.00 
ao 2 J = EL1,EL2 

2 TL= lL + L(..;) 
IF(REtM).EU.~.)RElM) = RB(M} 
SINA= (ki(M) - Rd(M))/TL 
Rlt!::.Ll) = RB(Ml 
DO J I = EL1,£.L2 
R2(Il = Ri(l} + L<Il*Sl~A 

3 Rl(l+lJ = R2llJ 

If(TElMJ.EQ.u.JTEtM) - T8(M) 
K = £L2 - Ell +1 
CELT= Ti(M) - TB<MJ 
SL= l!. 
T{£L1,l) = TBOO 
DU t.J I = l,K 
SL= SL+ L(ELl-1+1} 
T(~ll+l,lJ = (SL/TL)*UELT + TlELl,lJ 

4 T(ELl+I-1,2) = T(ELl+I,l) 

1 CONTlNl,;E 

Rt::TURN 
E.ND 



l 
2 
.3 
4 
5 
b 
7 
8 
g 

lO 
11 
12 
13 
14 
15 
lb 
17 
18 
l '::J 

2U 
21 
22 
2.5 
.::'. 14 
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SU~ROUTINE PLPRESlNPS,NELPl,NELP2,PR1,PR2,L,Fl,PDA) 
COMM0~ /blKl/lX,lY,IZ,Ik 
INT£Gt.R t:Ll,ELZ 
UIMlN~lGN NELPlllL),NlLPZCIZJ 
DOUBLE PRECISlCN PRl(IZ>,PR2(1Z),L(IXJ,Pl(IX>,PDA(lX) 
UOUbLl PHECISIGN TL,DELP 

CC 20D I= l,NPS 
t:Ll .= NELPltl) 
lL2 = ,'lU .. P~( ll 
DELP= PR2(IJ - PRl(l) 
TL= Ci. 
DO 210 J = ELl,ELZ 

210 TL= TL+ llJl 
PU£Ll) .= PRlll) 
DU 220 K = LL1,EL2 
P~AlK) = (L(K)/TLl*DELP 
lFtK - £U.l,~2U, 
Pl(K+l) = Pl(K) + PDA(K) 

220 CtH,Tn~uE. 

ZllO CONTlt,Ut.. 
93 RETU1'N 

uw 



SUBROUTINE SYSTEMCND,L,Rl,R2,T,NC,NM,NF,A) 
COMMON /bLKl/IX,IY,IZ,IW 
COM~ON /8LK4/NGP/dLK6/N£LT,N 
CCMMON /bLK7/N6P 
DIMENSION NC{l~J,NDClO,q),NM(IW>,NF(IW) 
UOUBLE P~ECISION A(IYl,KEC6,6),KAC6,6),KOC6,6) 
D0U~LE PRECISlCN LCIXl,RlCIXl,R2CIXJ,T(IX,2) 

UO 90 I= l,IY 
:tO A(Il :: Q., 

182. 

C ********************************************************************* 
C ELEMENT 1 STlfF~tSS MATrtIX 
C ********************************************************************* 

I :: 1 
J :: l 
Kl:: J 
K2 = J + 20 
CALL GLLSTF(L(IJ,Rl(ll,R2(I),Tll,1J,T(I,2J,KE1 
KJ - 1 
K4:: l 
DO '4U K:: Kl,K2 
ACK) :: A(K) + KECK3,KqJ 
IF(K3 - K4) 41,,41 
Kj :: td + 1 
K'4 = 1 
GO TO 40 

41 K4:: Kt++ 1 
40 COtH::i:t-.Ut: 

DO 42 .K5 - 1,6 
42 NClK5> :: l 

J - HI 
I :: l + l 

HO 00 bu M:: 1,10 
lf(NC(M,1J.EQ.l.ANJ.NJ(M,2J.EQ.0) GO TO 51 
GO TO 52 

~1 lf(NDlM+l,l).~G.(I+l}) GO TC 20 
GO TO bU 

52 If(ND(M,11.EU.(I+l).AND.ND(M,2).NE.O) GO TO 20 
!:,IJ CONTINUE 

C *************************************** 
C ALL STA~OARO ELEMENT STIFFNESS ~ATRICES 
C *************************************** 

LlO 82 MM:: l,10 
IflNu(NM,4) - IJ,33, 

b2 CONllNUE 
uo d5 KK - 1,6 
I.JO i;S JJ - 1,6 



85 K~(KK,JJ) = u. 
GO TC 84 

83 NEL = ~D(MM,JI 
Kj = If 
IF<NDlHMtl).GT.ND<MM,3)) K3 = l 
K4 = K.J 
CALL GELSTFl~<NELt,Rl(NEL),R2(NELJ,T(NEL,l},TtNEL,2),KB) 

8q CALL GCLSTftLlil,~l(I>,R2(I),Ttl,1),T(I,2)•KEJ 
A(JJ - AlJJ + KEll,l) + KB(K3,K4J 
A(v+¼J - AIJ+4J + KE<Z,lJ + K2(K3+1,K4) 
A(J+~) = A(J+5J + KE(2,2) + Kb(K3+1,K4+1) 
A(J+3l = AIJ+3J + KE(3,1J + K~{K3+2,K4) 
A(J+lUl = ACJ+lOl + KE(J,2) + KBlK3+2,K4+1) 
A{J+llJ = A(w+ll) + KE(3,~) + KB(K3+2,K4+2l 
Jl - J + 12 

+ 14 J2 - vl -
KJ - 4 -
K q - 1 -
CO 4j K = Jl,J2 
A{KJ = A(K) + ~ElKJ,Kq) 
IF{K4 - K5l 44tt44 

K.S = 1\J + l 
K4 .:. l 
GO TG !i5 

44 K4 = K4 + 1 
45 cor~TINUL 

NHC1~ = L,>J) + 1 
!~COL = (1-1)*.S + 1 

nb = NROW + 2 
U0 46 .-, = :iROW,Kb 

46 l,'...:(K} - NCCL 

I = I + l 
J = vl + J 
IF(l - l - NlLTI bU,71,80 

183. 

C ******************************************************************** 
C bRANCH FCI~T STIFF~ESS MATRICES 
C ********************************************************************** 

2 C t; Fi G w = ( I * 3 ) + l 
Ml': = r 
If(~C(N+l,1).EG.II+l)) KM= M + 1 
l.,C, Jb K = 1 ,d 

j8 NC(NRC~+K-1) = CNUl~M,2)-1J•3 + l 

Nl - ~ 

N2 - ~ + 1i 

1•;i:J - urncw-u - u.:c orno i..· J +2 > 
r,c, - ru + J 
N 7 - No.f + l\.8 + 3 
:-. ~ - t~ 7 + 4 
r~ e. - r,.; s + i'i s + 3 



NN l - 119 + E, 

NNZ - NNl + ._ 
Nlll3 - NNZ + !> 

NFLAG = LI 
IF(NOlM+l,l).EG.(1+1>> NFLAG - 1 
K 1 - ND t 1~• l , 2i ) 
K2 - NDOh3) 

KJ - 1 
IF(NDtM,J).E~.ND(~,21) K3 - q 
K4 = K:.:i 

184. 

IF(NFLAG.EQ.0) CALL GELSTF<L<I),Rl(I>,R2tI),TtI,l>,T<I,2>,KA) 

IFltlfl .. AG.£G.l) CALL GELSTF<LU<lJ ,Rl(Kl>,R2CK1),T(Kl,l),T(Kt,2),KB) 

IFlNFLAG.EQ.UJCALL GiLSTF(L(K2),~ltK2),R2CK2),TlK2,1),T(K2,2J,KB) 
lF(NFLAG - 1) 21,,21 
CC 22 Kl{= l,b 
DU 22 J,._i = l,b 

22 KA(KK,JJJ. = G. 
21 IF (1 - C Nl L T-1 > J t .:. 6, 

IFlNCtM-1,1) - (1+1)) JS,,35 
36 LC S4 Kl= ltb 

DO 34 k2 = l,o 
34 KE(Kl,K2J = u. 

GO TG 3.3 

35 CALL GELSTF(L(l+l),Rl(l+l),R2<I+l),T(I+l,1),TCI+l,2),KEJ 

J3 AINl) = A(hl) + KA(l,1) 
A{~2J = A(N2J + Khl2tl) 
A(h2+1) = A(~2+1} + KA<2,2) 

DO 23 Kl= 1,:S 
23 A(Nj + Kl - 1} - A(N3+Kl-1l + KA(3,Kl) 

24 

Kb= 4 
K6 = l 
I f UdJ ( Vi t '+ l • GT • Li • A f\f D • NC ( M , 1 l • E :; • N C ( M , 3 l J K 5 - l 
IflKS.EJ.1) Kb - 4 
00 24 Kl - l, ~~ -
A !N4 ♦ Kl l J - K8(K5,K6+Kl-1) -
A(N~ + ta l J - lt B ( K 5 + 1 , K 6 + I< 1- 1 ) -
A(Nb + v· l) - ;OH X5+2, KG+X 1-ll ,J. -
DO 29 Kl= 1,3 

29 A(N7+Kl-1l = KA(4,Kll 

DO .::it: Kl =- l,j 
30 A(N8+Kl-l} = KA(S,Kl) 

AtNB+J) - KA(S,~J + KEl2,1) + KB(K3+l,K4l 
A(N8+4) - KA(5,S) + KE(2,2) + KECK3+1,K4+1J 



DO 31 Kl = l, 3 
::a A(N'.HKl-ll = KA(6,K1J 

A(N~+lJ - KAtb,4) + KE<J,1) + KatK3+2,K4) 
A(~~+~} - KA(b,5} + KE(3,2} + K9(K3+2,K4+ll 
A(N9+il - KAl6,6} + KE(3,3l + KB(K3+2,K4+ZJ 

If { I - ( i-i EL T -1 l } t 7 Ci , 

NkOW = Cl+l)•S + ~ 

r,COL = (l.•3l + 1 
CO 2U Kl:.. 1,S 

28 NC(NRO~ + Kl - l) - NCOL 

00 25 Kl:: 1,1¾ 
ZS A(NNl+Kl-1) = KE(q,Kl> 

DO 26 Kl= l,t> 
2b A(NNZ+Kl-1) = KE(5,KiJ 

LO 27 Kl= 1,6 
27 A(NNJ+Kl-1} = KE<6,Kl) 

b9 ,J ::. }Wl + !., 
I = 1 + L 
CU TO dO 

b □ CALL bELSTFtLtI),Rl(I),R2(IJ,T(I,1J,T(I,2>,KE) 

AtJ) - A(J) + KE(l,1) 
A(0+4J - AlJ+q) + KE(l,ll 
A(J+5):: A(J+5) + KE(2,2) 
A{J+S) = A(J+9) + KEC~,1) 
A(J+lU) - A(J+lO) + KEt3,2J 
A{J+ll) = A(J+lll + Kl(3,3) 

LkO\..' = tl•2>l + 1 
NCOL = (l-l)*J + 1 
JO 61 K - ltc.j 

bl NClLkO~ + K - lJ - NCGL 
1 = 1 + 1 
J = J + .t.S 
GU TO oll 

70 CONTINUE. 

Nf(l} - l -
DO lu 1 - 1 ' i\ -
N~ ( I) - I - NC (I) + 1 -

lu t,F(l+ll - NF(l) + Nr' CI) -

185. 

~ ********************************************************************* 

Rl:.TURN 
C::ND 



SUBRGUTINE GELSTFtL,Rl,RZ,Tl,12,KE) 
OOUBLL PRECISION B(4,6),BTC6,q},D(4,4J,Z(G,4J,KE(6,6) 
JOUHLE PRECISICN TC10)~ABS(l0),H(l0),ZK(6,6) 
OOUbLt PRECISION RNU,L,Rl,R2,Tl,T2,SD,E 
COM~GN /BLKl/IX,IY,IZ,IW 
COMMON /BLKq/NGP/SLKS/RNU,E 

UlflNL RtR1,R2,SDJ = Rl + CSC•<R2 - Rl)l 

C ***************************************************** 
~ GAUSSIAN HALF-FOR~ULA COEFFICIENTS FOR N=4,6,8 ANO 10 
C ***************************************************** 

IFlNGP - 4) lnl 
AUS(lJ - 8.3J9981LJ~33d4856 
AdS(2} - 8.~bll36~115~4U~3 
H(l) = t1.6!J21'4515 1-Hi62:iLtb 
HC2) = U.347~~ij84~ljJ~~4 
GO TC 10 

1 IFtNGf - b} ~,,~ 
AdS(l) - u.238bl3186JB31~7 
AUS(21 - U.bbl2Q9j864b62b5 
Ad~lJJ - r.932Q69~14Z03152 
H(l) - 0.467913934572691 
H{Z) = □ .36 □ 76157~04dl39 
H(3) = L.171.5244'.:lZ.379171• 
GO TO HJ 

2 lFl~GP - 8) 3,,3 
AdS<lJ - D.183434b4243565U 
AbS(ZJ - Ll.52553240991632~ 
A~Sl3) - U.796666477413627 
ABS('+) - U.9bU289b55G::l7t).36 
Hll} - J.j62SSJ78JJ76362 
H<2> - C.3137~b&4~877bb7 
Hl3l - !.l8222.3blU:..;4<-iS..:;:::,74 
H!4J - [.1Gl2~85JL29G~7b 
GO TC lU 

3 IFl~GP - 18) 4,,q 
ABS(ll ·-· U.14d87..;..i38'.:!dl631 
ABS(i) - Ll.4~jJg5jS~ll9l47 
AciS{3J - □ .679q09S~8~jSQ24 

ABSl4J - U.8b5U63~66GB8~e5 
AdS(S) - U.973S0bjl8517172 
Hll) - ~.2~b~242Z471475J 
H(2) - U.269i5671S309596 
Hl3l - G.21~U8636~5159b2 
H(4) - U.14945134~1SJ581 
Ht5l - L.U66b7l3~43Udlo~ 

GO H, lC 

C ************************************ 
C SIMPSON'S COlFFICliNTS FOR N=t ANC 7 
~ ************************************ 

4 IF(NGP - 5) 5,,S 

186. 



s 

lli 

12 

ABStl} - ,-·,. - La~ t 

At:3S{2l - G.Zb -
ABS LS) - 0.5U -
AjjS(4) - 0.75 -
AbS(5i - 1.11 -
H(l} - 1 .. 112. -
ht 2 l -· 1.;3. -
HLH - 1.16. -
Hf4) - 1.13. -
H(5) - 1.112. -
GO TO Hi 
H CNGP - 7 llUnliJ 
AtlS(ll - ,J. -
At::iSt2} - 1.16. -
At::l S (..3) - 1.1::s. -
AbS{I-.} - 1./L. -
AoS(S) - 2 .I 3., -
At:;'.:)(6} ·- b., lb• -· 
A:::;S(7) - 1.iJ -
H { l i - 1.11e. -
H ( ._: ) -· 2.1~. -
H ( 3) - 1.19. -
Hp~) - 2.., 19. -
H ( .::i ) - l .19. -
H { b) - '2./9. -
H ( 7) .. 1./J.8 • -
,_; 0 12 l - 1,l> ... -
DO 12 J - 1,6 -
Kt.{l,..;} - u. -

DU 2 C: i~ P T = 1 t :·JG P 
SU = A3S(NPT> 
T ( !"! I--' T J = 11 + ( S G * { T 2-T 1) > 

CALL :SET00{R!,U,L,Kl, f-2,SU,TCNF--'T l ,B,Dl 

t,k - 4 

NC - b 

CALL PROO{NC,~R,ZtNR,NC,8,ZK) 

~Q 25 I - 1,5 
UO LS J ·- ld:; 

25 ZK<I,JJ - ZKCl,JJ *R(Rl,R2,S~l*H(NPTJ 

26 

00 26 l 
C(J Lb J 
Kdl,J) 

Rl TUR~{ 
END 

--
--
--

1,5 
l,b 
KE{l,J) + (ZK(l,J)*L} 

187. 



2 

1 

SUBROUTINE SETBD(RNU,L,Rl,R2,SD,T,B,0) 
DOUBLE PRECISION d(4,6),0{4,4),l,Rl,R2,SD,R,T,RNU,CCSQ,SINQ 
COSQ = OSQRT(OA8S(l.-tCCR2-Rl)**Zl/(L*L)))) 
SINQ = (R2-Rl)/L 
IF(U.~96.Ll.COSQ.AND.COSQ.LE.1.ll COSQ = 1. 
IF{OAUS(SINQ).LE. □ .ll SINQ = O. 
lFtOABS(CCSQI.LE.t.ll COSQ ~ L. 
IF<0.~96.LE.SING.A~D.SINJ.LE.1.1) SINQ - t. 
R = Rl + tSD•tRZ-Rl)l 

LO 2 
.. - 1,4 ... -

00 2 J - 1,6 -
b<I,Jl - L. -
dtl,l) - -(CCSQ/L) 
d(l,ZJ - -(SlN~/LJ 
lHl,.3} - l)., 

8{1,4) -· COS~/L 
8(195) - SIN\Jl/L 
8(1,0) - u. 

188. 

Bt2,l) - ((1.-SD>•SINQ•CUSQ/R) -((1.-(3.*SD•SDJ • (2.•CSC••3)l)•SI 
lNO•CCSG/R) 

bC2,2) = ( (1 .. -SOl•SHFHSINQ/RJ + <ll.-(3 .. •SD•S0) ·+ (2.•tSD••3ll hC 

tH2,3l --
tH2,4l --
8(2,!..l --
d ( 2 , b > --
8(.S,1} --
8 ( 3 , 2 ) ·--
B(J,::.;) -·· -
o<3,4J ---
bU,:;l •.. --

L•COSQ•CSD-[2.•SD•SDJ + (SD*•3))/R 
lSD*SlN~*COS~/R)-ll3.•SD•SD1-(2.•tSC**3)))•SINQ*CCSQ/R 
(SO•SINQ•SINC./Rl + {C3.*SD•SD)-(2.•<SD••3)) >•CCSQ•CCSQ/R 
L*CGS~•C-SD•SU + SD*•3)/R 
SIN&•l6~-12.•SDl/ll•Ll 
COSG•<-6. + 12.•SD)/lL*L) 
{-4. + G.*SC)/L 
-SI~~•(6. - 12.*SD)/IL•LJ 
cc~~•(6. - 12.~SD}/(L•L} 
(-2 .. + 6.•SDUL 

8(4,ll=-SINQ•SlNJ•t-G.•SJ+&.•SD•SCJ/(L•R} 
B(4,2)=SiNQ•COSQ•l-S.•SLl+6.•SJ•SDJ/(L*R) 
Bt4,3l=SlNG*<l.-4.•SJ+3.•SD•SLl/R 
d(4•4>=-SING•SlN~•t6.•S0-6.•SD•SGJ/(L*R> 
8t4,~)=SlNJ•COSQ•C6.•SL-6.•SD•SOl/CL*R) 
d(~,b}=SlNQ•C-2.•~u+J.•~D•SD)/R 

bLS,U --

DC 1 I - 1,4 -
uo l J - 1•4 -
J (1 ,J) - u .. -
U (1, 1 l - T -
Dll,2} - HNU-t;l -
0(2,1) - RNU*T -
0(2,2J - T -
{.) C .5, 3 l - (T**.51/12~ -
G(.3,4} - Rt~ U * ( T * * j l / 12 • -
0(1.l,3) - RNl:*(T••j l/12. -
Dt4,4J - <T•*j)/12. -
RLTURN 
ENO 



SUBROUTINE LOADtNlLT,GC,L,Rl,R2,T,Pl,PDA,VEC) 
COMMON /BLKl/IX,IY,IZ,IW 
DOUBLE PRECISION L(IX),RlCIXl,R2CIX!,Pl<:XJ,TCIX,2l,VECCIW) 
DOUBLE P~ECISIC~ SJ,C~,GC,PDE,FOA(IX) 

D~FINE COSG(SGJ = JSJ~TCJABS(l.-5Q•SJ)) 
DEFI:~L SlNG(LtR1,i2l = lRZ-:-,;l}/L 

190. 

UlflNl UllL,Rl,Pl,CQ,SJ,?8,GC,TJ = 6.283*L*((-Rl•Pl•SQ/~.) - ~.lC* 
l((Rl•PU•.:;G) + {PJ.•i..*S:;>1<S,..ll) - u~c*L*S'.:hS'J/15 .. )) + E.2~i3•GC•T•L•{('{ 
2112.l + L•SU•((C~*C-'.;/b.l + (3.*S..ii*SQ/20.J}) 

[Jlfl1\l ivllL,Hl,Pl,CC,:.;::.:,PU,GC,T}:: 5 .. 2d3*L*((f~l,*Pl•C0/2.} + c.1!:-•( 
l(fU•P;.;•CJ} + (Fl•L•S,U:•CQ)} + (PC*L•SQ•CQ/15.)) + (6.283•G·::•T•L•L•S 
z,:HCQ•St../6U. J 

UlFINl Kl(~,Rl,Pl,SU,PL,GC,TJ - 6.283*L•((Rl•Pl•L/12.) + c.o?:? 
l•<<Rl•PU•Ll+ IFl•~•L•~J)l + l~C•L•L•SJ/60.J) + 6.282•GC•T•L•L•<-<R 
~l*SQ/12.1 - lL•Su~su;~U.J) 

LiE.Flld: Ud!..,,-<1,Pl,CG,:::,Q,PD,GC,T J = f,.283•L•C-<Rl•Pl*SQ/2.) - r.3[• 
l((Rl•l-'J•:::,•.;) + (Pl*L*S-"*SJ)) - Pi.•PD•L•SJ•SQ/15.)) + 6.21:!J•GC*T*L* 
2 C ( H l / i • ; + L * S. Q * ( { CG * C:.:; /:, • ) + { fl • 3 5 * ::; Q * SQ ) ) ) 

U~FlNl ~2(L,Rl,Pl,C~,SLl,PC,GC,T) = f.283•L•(CRl•Pl•CGl2.) + G.Jr•( 
l(Hl•PJ•C~) + (Fl•~*S~•CJJ) + (4.•PJ•L•SJ•CG/15.)) - C5.:83•CC•T•L• 
3L•SG*~U*CJ/6L.) 

Li f:. F 1 ,\ L r, .. l ;_ , K l , f' l , S Q , P C , G C , T l - 5 • 2 8 3 * L * ( - ( R 1 * P 1 * L / l ;: • ) - 0 • \: S * 
lll~l*Pu•.._J + tf'l*L•;..•::;,_;)) - (t'C*L,.L•SQ/3•:J,,,l) + 5.283•GC•T•L•L•C(R1 
3•SO/li.} + (L•SJ•~~/20.JJ 

NC= (N[LT•lJ + l 
NN = {iiELT + l}•,j 
J = u 

D O Z I = 1 , ~. C , 3 
IF(..;),3, 
SU= SI~J(L(JJ,Rl(JJ,R2(J)l 
CG= CC'.:i~tSQl 
IFCDABS(CGJ.Ll. □ .ll CQ = O. 
lf(OAdS(SGJ.L~.J.lJ S~ = 0. 
IFlU.~9.Ll.SQ.ANC&SG.~£.1.l} ~Q - 1. 

PDE = PL't~{J} 
V£C(IJ = VE.:CU) 
VECtl+lJ - V[CCI+lJ 
VEC(I+Z) = VlClI+2} 

If{J-f~iLTh2t 

- 1. 

+ '.; 2 { L ( J ) , ;~ l ( J ) , P 1 ( J ) , C Q , SQ , PD£ , G C , T ( J , 1 ) } 
+ WZCL(JJ,Rl(J},Pl(JJ,CQ,SG,PDE,GC,T(J,1)) 

+ M2(L(JJ,R1(Jl,Pl(J),SQ,PDE,GC,T<J,l)) 



3 SQ= S1N~(L(J+l),Rl(J+l>,R2(J+l)l 
C~ = COS~(SQJ 
IftOABS(CG).LE.O.!) ca= o. 
IftDA~StSQJ.LE.O.ll SG = D. 
IFC0.99.LE.SQ.ANO.SG.LE.l.1) SG - l. 
IFt0.~9.LE.CQ.ANC.CG.LE.l.lf CQ - l. 
PUE= FOA(J+l) 

191. 

VECtIJ = VEC(Il +Ul(LCJ+l)~Rl(J+ll,Pl<J+ll,CG,SQ,PDE,GC,T(J+l,lJl 
VEC<I+l) = ViC(I+l) 

l+Wl(LtJ+l},RltJ+ll,Pl(J+l)1CQ,SQ,PDE,GC,T(J+l,l)) 
V£C(I+2) = V~CCI+21 

l+Ml(L{J+l),RllJ+lJtPl<J+ll,SQ,PDE,GC,TfJ+l,ll) 
J = V + l 

2 CONTINUE 

RETURN 
£ND 



SU8ROUTINE CLOSEL(ICLOSE,NF,GC,Pl,Rl,T,A,VEC) 
COXMON /LllKl/IX,IY ,IZ,IW 
CCMMGN /3LK5/H~U,L 
UIMU•;SIC;i, ICLOS[(b),NF(HJJ 
DOUdLt PRECISICN Pl(IX),Rl<IXJ,T(IX,2),AIIY>,VEC(IW) 
~DU~Ll PriECISION RNU,£,GC 

UG l l = 1,5 
lf(lCLOSC:(i) h 1, 
IC = ICLUSUl) 
NRGW = lCLC l(l)•S 
NCOlFl = NFCNROW} - l 
NCOEFZ = ~F(NRCW+l) - l 
A(NCClfll - A(NC0LF1} + TCIC,l}•(l.+RNU} 
AtNCOtF2J = A(~COEF2)+ (T(IC,lJ••Jl•(l.+RNU)/12. 

C ***************************************** 
C ****PRE~SUR( LCAJ 
C ***************************************** 

IF(Pl(IC).EG.O,OR.IC.EG.0) GO TO 2 

192. 

VlC(~ROWl = VlC(NkOWJ -<Pl(ICl•RlClC)•Rl(ICJ/S.l•6.283185•RlCIC) 
V~C<~RCW-2) = VEC{NRC~-2) -(Pl(IC>•Rl(IC)/2.)*6•283185•Rl(IC> 

C ********************* 
C ****UE.AD LUAJ 
C ********************* 

2 If(GC.iQ.a •• oR.IC.EG.il) G8 TO l 
FlllCJ = -CGC*T(lC,l)l 
VECINHCW-2) = VEClNRC~-ZJ -(Pl(IC)•Rl(IC)/2.>•E.283135•Rl(IC} 
V!:.C(hr-<UW)::. V!:.C{NHJWl -CFlCICl*RlCIC')•Rl(IC)/8.J•6.28318S•RUICJ 
Pl<ll:) = u. 

l CONT HH.,E. 

RLTURr, 
E:. ,JO 



SUBROUTINE B0NCON{NNBC,NbC,NC,NM,NF,UBC,WBC,M6C,A,VEC) 
COMMON /clLKl/IX,IY,IZ,IW 
COMMON /BLKj/l~ON 
COMMON /rlLK6/NELT,N 

193. 

UIMEhSION NC(lWt,NM(IWl,NFtIW>,NBC(lDl,U8Ctl0),WBCClC1,MBC(lOJ 
DUUdLt PR£CISLCN A(IY),V£CtIW> 

lFCluONh,7 

PlUf\T HJU 
lUO FOHMAT(lHl,37(•-•),/, 1 ZERO DlSPLACEMENT BOUNDARY CONCITIONS',/• 

llH ,J7(•-•>,J,•ONODE•) 
DO 10 I = 1,Nr~BC 

10 PRINT lUl,NBC(l),UBC{Il,wBC(Il,MBC(I) 
lUl FOHMAT(lHV,lX,13,2X,3(Al,3X)) 

7 UO 1 H = l,NN~C 
K - (NoC(~) - 1)•~ + l 
J = l 

5 I ::: u 
If(UBC(Ml.EG.•u•.A~O.J.E~.1} 
IF{WdC(M).EQ.•~•.AND.J.E~.2) 
IF(MbC(Nl.LQ.•M•.AND.J.E~.3) 

IFU},6, 

Vt.C<I) = O. 
K 1 - 1'.F U. > 
K 2 = NM ( .( l + !\F ( I ) - 1 
DO 1-J JJ = Kl,K2 

4 A(JJl = U. 
K3 = I + 1 
~O 2 .,;J = K3,N 
IF(l'!C[JJ).L£.I) G0 TO 3 
GO TC 2 

3 ~co= I - NC(JJ) + NF(JJ) 
A(NCCJ = n. 

2 CCNTHw£ 

6J:::J+l 
IF(J-j}5,~, 

1 CLJNTlNUE 
RE.TURN 
£.ND 

l - K -
l - K+l -
~- - K+2 -



l 
2 
3 
4 
5 
b 
1 
8 
~ 

10 
11 
12 
lJ 
li.f 
15 
16 
17 
113 
19 
21J 
21 
LZ 
LS 
24 
25 
2b 
27 
2 tj 

29 
.SU 
. .H 
.sz 

C 
C 
C 

SUBROUTINL BANUO(~,NC,A,VEC,NM,NF,NR,NWR) 
COMHCN /BLKl/lX,IY,IZ,IW 
DIMENSION NC(lW),NMCIW),NF(IW),NRCI~),NWR{IW) 
DOUclLE PR£ClSlCN AlIYJ,VEC(IW>,MULT,DIAG 

Nl = N - 1 

***************** 
FORWARD REDUCTION 
***************** 

00 2iJ I ;: l,Nl f, = NHl+l) - 1 
DlAi;:: AlK) 
IF<DIAGl,lu, 
NRC:: u 
1...=I+l 
DO 22 ..i = L,N 
lf(NCCJ).LE.I> NRC = NRC + 1 
IF(NCtJ>.LE.I) NR(NRCJ = NF(J> + I - NC(J) 
lF(NC(J)elEell NWRCNRC) = J 

22 CONTINUt: 
DO :Su JJ :: 1,NRC 
KK = NR(JJ) 
HULT= A{KK)/DIAG 
Kl= N~R(.JJ) 
V!:..C(Kl) = V[C(Kl) - NULT•VEC<l) 
KB= NRC-JJ + 1 
0 0 4 u :... L = 1, 1-<d 
K2 = l~R(JJ+L! .. -1) 

Mr= KZ + NWR(JJ} - I 
40 A(MM):: A(MP.) - MULT•A(K2> 

33 30 CONTINUE 
J4 ZC CONTINUE 
ss 
Jb C ***************** 
37 C REVERSE REOUCT10N 
Jd C ************•**** 
.S9 
-.u 
I.fl 
42 
43 
44 
4!.-
4b 
47 
48 
'+~ 
51J 
!:> l 
52 
!:)j 

54 
55 

:;:: = t,. 

50 K = ~F(l} + ~MCI) - 1 
DIAu = APO 
1F(UlAGh71J, 
NRC:: Ni",(l) - 1 
00 6(:i J :.: l,t..RC 
MULT = A(K-J)/A(K} 

bO VLC(~-J) = V[ClI-Jl - MULT•VEC(I) 
VEC(I) = V£C(I) /JIAG 

70 I = I - l 

VLC(l) = VEC(ll/A(l) 

f<ETURN 
ENu 

194. 



C 

C 

SUBROUTI~E BANBACCNC,NM,NF,ND,VEC,BA,BVEC) 
COKrCN /8LKl/IX,IY,IZ,IW/8LK6/NELT,N/BLK7/NBP 
LlOUJLt PRECISION SA(IYl,BVEC(IW)tVEC(IWl 

195. 

LllM~NSlON NC(IW),NMCIWJ,NF(IWJ,N~(lC,4J,NSC1Cl,N8(1C)rN~CWS{lD> 
1 ,tH~0W8(1[) 

**************************************************** 
**** STANJARD NJDES,~AST NODE, dIGGER NOCE OF BRANCH. 
*****••~•******************************************* 

K = c; 
DJ J.tW I = l,N 
8VE.CU) = O. 
i.F{l.EJ .• (N-1)} NE.X = l 
~Ftl.~U.(N-Z)J NLX = 2 
.:F(l.EG.{l\'-U.CR.l.EQ.(N-2)) GO TO 77 
iFlNXlIJ.GT.6) GO TO 70 
GO TO 75 

7U M:.X =- 5 
IF(K,.t:::<».1) 
IF0~ .. 1::...;1.,;n 
:i:F(K.t:G.2) 

K = K + 1 
G 'J TC Tl 

m .. x 
NE.X 
K --

- /~ -
- 3 -
:J 

75 If ( NMl I} 
" E J • o,. OR.J.EQ.3) 

IF ( W1 Cl ) l " , ...... yg.:, .. OH. l • £. Q. 2 } 

.iF ( NM( i ) • i:. ::. • ;4 • G~1.l..EG!., l) 

17 ,~f I - !\F ( 1} -
~~c: ·- NC(I } -
r ·~ ,- - i\ ;'. ( I J ; . .... -

D U 1 iJ J - l , t, r1 I 

NEX - 3 -
NEX - 4 -
NEX - 5 -

10 BVLC(lt - clVlClIJ + CA(NFI+J-l)*VECtNCI+J-1) 

D U 1 !:, J - 1 , 2~ l X 
NF l J = :ff ( l + ..: ) 
l'-U~I J = t./ ;q l-t• J ) 

lS ~V[C{i) = DVLC(i) + BACNFIJ + ~MIJ -1-J)*VEC(NCI + NMI -1 + J) 

lUU CUNTlNt.;E 

J = l 
UO tfCI M = ltlf: 
IF(ND(Mt2JJqJ,4U, 
IFlNJ(M,2) - ~UIM,lJlt,45 
NS(..:> = N!J(M,2) 
N i:l ( J ) = r~u ( M' l ) 
GO TC 50 

45 NS(J) = ~C(M,1) 
Ni:5(J) = NOlM,2J 

~O NROWS(J) - <NSlJ) 
NROWi3{J) = (t,,t:l(J) -



J = J + l 
qo cot, TI Nu E. 

~ ******************************** 
C **** AUGM£NT SMALLER NCOE AT BRA~CH 
C ******************************** 

K = l 
JO du 1:: 1,N 
1 f ( 1 - N i< J W S < K > J 8 (y , , o l1 
NK = NMOWl:HKl 
l.JG ~ll M ::. l,.S 
i.JU ~LJ MJ-1 = 1,.3 
~FK - Nf(NK + MM ll 
NCK:: NC(~K + MM l) 
i'il''.K = mHtd'\ + ;rn - 1) 
~VlC(l+~-1) - bVEC(I+~-lJ + SA(NFK+M-l>•VEC(NCK+NMK-1) 

90 cut~TlNUt. 
K=rc+l 

oli CONTlt,Ut. 

b O RE TU "r' 
LNG 

196. 



1<)7. 

SUBHOUTINE STRESSCNSEC,NODS,NCC1,N002,NEL1,NEL2,L,Rl,R2,T,VECJ 
COMMON /BLKl/IX,IY,IZ,IW 
CUMMCN /~LK2/NPLOT/BLKS/RNU,E /BLKS/lSP 
DOUBLL PRECISION SM(~r9)tUVECC9,1),8{4,6l,D(4,4l,D8(4,E) 
LOUdL~ P~~CISICN L(IX>,Rl(IX),R2(IX),T(IX,2),VEC(IWJ,ST?(4) 
DUUc~~ P~ECISlON T~,R~U,E,SD,~ICN,AV,TL~ 
O IM E J ~ S l O fJ N C G S U X ) , NG S 1 ( I Z ) , N SC 2 ( I Z ) , NE L 1 C I Z ) , NE L 2 C I Z l 

Nl - 4 -
l\.2: - & -
N3 - :l -
r, 4 - 1 -
Tl - u .. -

DO lOu I= 1,~SEC 

NN = NlL2(1) - NELl(l) + 2 
JN = W-1 - 1 
NOCS(ll = NOGllIJ 
DO 10 ..:K - 2,JI\ 

10 NCCS(JKt = NELl(l) + JK - 1 
NODSU,J.N} = NG'.J2(:;:) 

J = i11E.Ll<Il 
JL = NELl{I) 

IF (ISP),, 1.3 
PRINT 15,I 

15 FO~rATClriD,'SiCTlON •,12,/,lH ,l □ ('-~)l 

13 CO[\ TI tW £. 

C*****************•************************************************** 

20 

21 

uo 5ll K - 1, M~ -

DU 2L• M - 1,4 -
DO 2G MM - 1 'j -
S 1'~ ( M, ~,M) - u. -
DO 21 M - 1,9 -
LlVt:C{!",lJ - u .. -
If ( K--1),6;.J, 

SD= l. 
CALL SETBO(RNU,LlJ-ll,Rl(J-1),R2CJ-11,SD,T(J-1,ll,B,D) 
CALL PROJtNl,Nl1C,Nl,N2,3,08) 
UO S5 1"1t< = 1,tf 
DOSS ..iJ = 1,6 

~5 S~{rM,JJ) = DblMr,JJ} 

bf.1 SU= U. 
CALL S,£ TB O { R i-. U , L { .J ) , R 1 ( J) , R 2 ( J ) , SD , T ( J, l) , 8, D ) 
CALL PROClNl,Nl,D,Nl,~2,B,DBl 



.IF[K-1),,65 

Dll 66 MM= l,'4 
DO bb JJ = ltb 

66 SM(MM,~JJ = □ tilMM~JJJ 
GO TC 5E, 

b5 JO b7 M~ = 1,4 
DO 67 JJ = 4,9 

b 7 SM ( MM , J J } = S r1 um , J J l + 0 8 { MM , J J- 3 l 

~6 IF lK-.U -+L!, ,40 
NHOWl = (NODS(K) - 1)*3 + l 
NROW2 = lNOCS(K+l) - 11*3 + l 
GO TC 49 

40 CCNTlNliE 
NROWl = <NODS<K-l} - 1)*3 + 1 
NRCW2 = (NO □ S(K) - l)*l + 1 
!f(K.~E.NNJ NRUW3 = lNOUS(K+l) - 1)•3 + 1 

4::l DU 42 M = 1,~ 
OV£CC1,ll = VlC(NHOWl + M - 1) 
UV~Ctr+3,1l = VEG!~k0~2 + M - l) 
iFCK.EG.l.OR.X.EG.NN) GO TC 4~ 
OVt.C(!"+brll = VE.C(i.RC~.l3 + M - lt 

t+2 CONTINlii::: 

CALL PRUU(Nl,N3,SM,N3.~4,DVEC,STRJ 

AV = 2. • 
lflK.LU.1.0R.K.Ew.h~l AV - 1. 
SIGN= 1. 
OU 3l.J M = l,4 
IF(M.~G.J.OR.M.E~.4) SIGN= -1. 

JO STRlK) = (STR<M)*E*SICN)/t(l. - RNU*RNU)•AVJ 

~ ************************************** 
C SIGMA ST~ESSlS FROM STRESS RESULTA~TS 
t ************************************** 

If(K-U 3ln31 
DO 32 M ::: lt.:'. 

32 STRCM) = STRlM)/TlJ,lJ 
GU TO 33 

Jl IF(K-N~)34,,J4 
LiO 35 M = I,2 

35 ~T~lM) = STRC~l/TtJ-1t2J 
G-0 TG J.5 

34 DO .36 M = 1,2 
Jb STR(MJ = STR{M)/(tT{J,ll + T(J-1,2))/2.) 
J3 cor-.TINUE 

IF{ISPJ,,70 

198 • 



PklNT 80,NCDSCK),TL,(STH(M),M = l,4J 
HU FURMAT(lH ,IJ,5X,F6.3,SX,q(f1J.4,3X)J 

70 WRITE(hPLOT,dl) TL,(STR(Ml,M = 1,4) 
81 FCRMAl(Fb.~,2X,4(~1U.~t2X)} 

TLN = TL 
TL= TL+ LtJL+K-1) 
J = J + 1 

b □ CONTINUE 

TL= TLN 

lUD CONTINUE 

RETURN 
lNO 

199. 



200. 

C $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 

C *•STRESSPLOT PLCTTER PROGRA~** 
C $$$$$$5$$$$$$$$$$5$$$15$$$$$5$$$ 

DATA LCDUM/' 'I 
DIMENSION XT(J,SDJ>,YT(3,500J,Xl500),Y(SDO>,XXC3,50CJ,YY(3,500), 

1RANGECJJ,UPPC3l,LCT(3),LC(3J,FOR(20),NNC3) 

C 
C 
C 

DIMENSION LOW(SJ,SCALl10) 
UIMENSION BUFFC2CUO) 

**** PLCT IDENTIFICATION 

CALL PLOTS(BUFF,2U00,17) 
CALL SYMdCL(U.,0.,0.26,4HGRAF,O.J,q) 
CALL PLOTtl.2tU.,3} 
CALL PLOT(l.2,u.J,2) 
CALL PLOT(-u.1,0.s,z> 
CALL PLOT(-0.1,0.,2) 
CALL PLOl(l.2,u.LI,2) 

C ------------------------------
C **** READ I~ HAI~ ~ATA 
C ------------------------------

R£AD(b,l} PLTS,NLC,SIZE 
l FORMAT(A6,2X,11,2X,AlJ 

C ------------------------------
C PLOT SCALE LOWN 
C ------------------------------

CALL PLOT{0.,4.0,-3) 
IFCSIZE.EQ.'S'l CALL FACTORC0.45) 
IF(SIZE.EQ.'H'J CALL FACTORl0.625) 
IftSilE.lG.'f•) CALL FACTORl0.750) 

C --------------------------------------------
C -----------------------·------ ---------------

DO 20 NST - 1,4 -
NSP - 38 -
IFtNST.£.ii!.U NSP - 26 -
If(NST.EQ.2) NSP - 2 -
IF<NST.£Q.3) NSP - 14 -
XR - J.O -
YR - 4.0 -
IFlNST.EQ.2) XR - o. -
IFCNST •. £Q.2l YR - 11. -
IF(NST.EG.3) YR - o. -
IF(NST.U~.4} XR - CJ. -
IF(N~T.EQ.4) YR - -11. -



C ------------------------------------------
L **** READ IN ALL DATA RELEVANT TO ONE STRESS 
C ------------------------------------------

C 
C 
{; 

4 FORMAT(•tf6.3,',I2,'X,ElO.q)') 
lNCODEC4,FOR) NSP 
DO bO J = l,f\lLC 
READt8,2l TYPE,NELT,LCCJJ 

2 FORMAT(A~,2X,l3,2X,AbJ 
NN(Jl = NELT 
NJ= NN(J) 
RlADl8,FORl (XT(J,Il,YTCJ,IJ,I = l,NJJ 

**** FIND WHICH DATA HAS THE MAXIMUM RANGE 

DO 51 K = l,NJ 
51 Y(K) = YT(J,K) 

CALL SCALt(Y,B.U,NJ,+lJ 
LOWtJ) = Y(NJ + 1) 
UPP(J) = Y(NJ+l) + 8.0•Y(NJ+2} 

50 RANG£tJ) = ABStY{NJ+l) - UPPtJ)) 

L = 0 
DO 57 M = lrNlC 
SCAL(L + M) = LOwtMJ 
SCAL(L + H + 1) = UPP(M) 

57 L-:: L + l 

UB = HAN GU 1J 
NLCMl = NLC - l 
DO 52 ~ = lrNLCMl 
IF(RANGElJ+ll.GT.UB) JMAX = J + l 
lFtRANGE{J+lJ.GT.UB) UB = RANGEfJ+l) 

o2 CONTINUE 

C ---------------------------------------------------------

201. 

C **** REARRANGE OATA SO THAT MAX RANGE OATA IS PLCTTEO·FIRST 
C ---------------------------------------------------------

lJO 53 J = l,NLC 
IF(JMAX-J}54,,54 
NNJMAX = NN(0MAXl 
DO 55 L - l,NN~MAX 
YYll,Ll = YT(JMAX,L) 

55 XX{l,L) = XTtJMAX,L) 
LCT(l} = LC(JHAX) 
NN(lJ = NN(JMA.X) 
GO TO 53 

54 K = J 
lFtJ.LT.JMAXJ K - J+l 
NJ= NN(J) 
DO 56 L - lrt~J 
YY(K,L) = YTtJ,L) 

56 XX(K,Ll = XT(J,Ll 
LCT<K) = LC(..,) 



NN(K) .:: NN(J) 

b3 CONTif\UE 

C ---------------------------------------
~ **** PLOT ALL CURVES FOR ONE STRESS 
L ---------------------------------------

00 30 NLGAD = l,NLC 
IF(LCT(NLOAD).EQ.LC(L)J MARK - 11 
IF(LCT(NLOAO).£Q.LC(2)) MARK - 5 
IF(LCT{N~OAUJ.EJ.LCt3)J MARK - 0 
N = i-HdNLOAU) 
00 .l5 l = 1,N 
X(l} = XX(hLOAU,l) 

35 Y(l) = YY(NLCAJ,I} 
If(NST-1) lU,,10 
IF(SILE.EQ.'S'J XL - 12. 
If(SILE.lu.•h•) XL - 10. 

LTYPE = iJ/lFlXCXLl 
lU IF(NSl.[j.3) XR =XL+ 1.5 

l.F { NL:JA(J-1} ,21, 
X(N+ll - ~Xl 
X(N+2) - SX2 
YCN ... l} - SYl 
Y CN+Z) - SY2 
GU TC 22 

ll CALL P~01{XR,YR,-3) 
CALL ~CALE(X,XL,~t+ll 
NL C 2 = 2 * i\L C 
CA~L SCALECSCALt8.G,NLC2,+lJ 
Y(N+l) = SCAL<NLC2+1J 
Y{N+2) = SCAL(NLC2+2) 
YOR = C. 
XOR :: u. 
IFf'f!N+lJ.LT.u.J YOR.:: -Y(N+l)/Y(N+2r 
IF(Xl~+l}.LT.U.) XOR= -X(N+l)/X(N+2} 

202. 

If(NST.EJ.l) CALL AXlS(XCR,D.,24HMERIOIONAL ~OMENT (NM/M),+2q,a.o, 
19 U •, Y ( N + l} , Y l N+ 2} ) 
lF(NST.[~.2, CALL AXISlXOR,0.,22HAXIAL STRESS (N/SG. M>,+22,e.o, 

19 l 1 • , Y ( N + l.} , Y ( N+ 2 J l 
lftNST.E~.3) CALL AXlS(XGR,D.,21HHOO~ STRESS tN/SG. M},+21,8.0, 

1 ~I.!. t Y ( N + 1} , Y ( N+ 2) J 
If(NST.EJ.4) CALL AXIS<XOR,O.,l8HHOO? MOMENT (~M/M),+18,8.0, 

l !:HJ. , Y C N + lJ t Y ( r1+ 2 l J 
CALL AXI~lO.,YOR,14HAXIAL OISTANCE,-14,XL,O.,X(N+l),X(N+2J) 

22 CALL L!NltX,Y,N,l,LTYPE,MARKl 
SXl - X(N+ll 
SX2 - XCN+2l 
SYl - Y(r-.+l) 
SY2 - YOJ+Z} 

30 CGNTlN~E 
20 CUNTINUl 

C ------------------------------
C **** PLOT HEADlNG aox 



C ------------------------------

XP = XL - 6. 
YI-'= -0.!l 
CALL PLOT<XP,YP,-3) 
CALL PLOT(7.o,0.,2} 

203. 

CALL ~YHdULt1.t,-0.31,0.21,23HUNIVERSITY OF CAPE TOWN,0.,23) 
CALL ~YMbOL(U.25,-0.b2,U.21,31HDEPARTMENT OF CIVIL ENGI~EERING,C., 

131) 
CALL PLOT(0.,-0.7Z,3) 
CALL PLOT<7.u,-.72,2) 
CALL SYMtiOL(0.25,-1.lL,U.28,ZJHFINITE ELEMENT ANALYSIS,:.,23) 
CALL SYM3CLt3.~,-l.43,0.28,2HCF,0.,2) 
CALL SYMBOL<l.U,-1.86,0.28,18HAXISYMMETRIC SHELL,0.,18) 
CALL PLOT( □ .,-l.Yb,3) 

CALL PLOTC7.U,-l.~6,2) 
CALL SYM30Lt0.2,-2.20,Q.lq,lJHANALYSIS! ,0.•10) 
CALL SY~dOL(~~S.,999.,0.14,TYPE,0.,6) 
CA~L PLOT{3.0,-1.~G,3) 
CALL PLOl(J.~,-2.t,2) 
CALL SYMdCL(3.25,-2.2u,o.1q,13HPLOT SERIES: ,0.,13) 
CALL ~YM~O~l99~.,~99.,0.14,PLTS ,C.,G) 
CALL PLCT(J,,-2.3U,3) 
CALL PLUTC7.U,-2.~G,Z) 
CALL SYMdOL(C.2,-~.54,0.1q,2lHHCRIZONTAL AXIS: METERS, 0.,23) 
CALL SYMdOL(5.Ll,-i.54,0.i4,5H0ATE:,0.,5} 
CALL SYMJOL(U.2,-2.73,0.14,30HVERTICAL AXIS: NEWTC~S, METERS,O., 

130) 
CALL P~CT(4.9U,-2.3C,J) 
CALL PLOTl~.~U,-Z.b8,2J 
CALL PLOT(U.,-2.8d,3) 
CALL PL01C7.U,-Z.b8,2) 
CALL SYMSCL(U.2,-3.12,Q.1q,3z~ANALYSIS AND PLOT BY T.B.GRIFFIN,o., 

132} 
CALL SYM30L(~.2,-3.40,0.14,19HPROGRAM! STRESSPLOT,Q.,20) 

CALL PLOT(U.,U.,3) 
CALL PLOT(O.,-J.b,2) 
CALL PLOT(7.U,-3.5,-3) 
XP = CZ. *XL) + 4. 
YP = 24. 
CALL PLOTt-XPtU.,21 
CALL PLOT(-XP,YP,Z) 
CALL PLOT(U.,YP,2) 
CALL PLOTtO.,u.,2) 

C -------------------------------
~ •••• WRITE OUT THE LOAD CASE DATA 
C -----------·--------------------

LCl - LC(l) 
LC2 - LC{2) 
LC3 - 1.C(3) 
LC4 - LCUUM 
IF(LCt2).E~.U> LC2 - LCDUM 
IF(LCl3).EU.Ol LC3 - LCDUM 
XLC.:: -XL+ 6. 



CALL PLOT(XLC,12.5,-3) 

CAL~ ~YMbCLI- ~3, .J,G.2,12tD.,-l) 
CALL i dOLl-1.65,0.2,0.14,LCG,r.,6) 
l~ M ... L P L U "' { - 7 " Ll , Q ., ,., li ,3 } 

ChLL PLDr(-8e5,0.½¼,21 
CA_~ SYMdCLC-~.3,U.64,U.2,0,0.t-l) 
LALL SYMbOLC-7.8~,LJ.54,8.14,LC3,0.,6J 
C,ll.LL PL!JlC--7.U,D .. 73,::i) 
CALL. ~~GT(-~.5,0.76,2) 
CALL SYMJCLl-d.3,Ll.33,U.2,5,J.,-1> 
C/1,LL SYh c;..(-7.b5,U .. cl8,U.14,Li...2,J.,6} 
CALL PLUT(-7.J,1.12,51 
CALL PLO 1-8.5,1.lZ,ZJ 
CALL S Y M :30 L { - d • 3 , l • 3 2 , U • .::'. U , 11 , 0 .. t - U 
CALL sn:uOL(-7 .. 8:..,l.ZZ,t1.11.¼,L:1,G.,6l 
CALL PLOT(-7.~,1.46,SJ 
CALL PLOT(-8.Stl.46,2) 
CALL SYH~C~l-~.3,:.36,U.l4,9HLOAD CASE,0.,9) 
CA~L PLGTl-7.u,l.J7t3J 
C ;1 : .. L PL U l [ - 8 .. b , 1 • ti 7 , 2 J 
CALL P~C1(-8.S,U.,2J 
C t\ L L FL C l ( - d .. <J , 1 • 11 6 , 3 l 
CALL !-LGTi-·b.,,:,[J.,,2) 
CALL r>;_QT(--1.iJ,U.,,3) 
CALL PLOTC-8.~,U.,3) 
CALL PLOT {-1 .. cJ1IJ., ,2) 
CALL PLOTC-7.~,l.o7,2! 

CALL PLOT(G.,0.,939J 
STOP 
!:.NL 



205. 

APPENDIX B 

Integration of Eq. (2.1Ob) for the Stress Resultant 

Substituting for 

-::: 

t/2 

I 
-t/2 

➔ f-
a dz e 

➔~ 
a from Eqs. (2.6) and (2.7), 

8 

t/2 
D r (u,;;.;;__;;;..s;;;;;.i;;;.:;n_c:..0--'-+_w.:..:...,_.;;;.c.;;;.o.::;s....,:;,.¢_---=z.;.:.w_'--=s.;;:;i.;;.;n:.....;;..¢ + v ddus _ Vz d2v2v} ;L;; 

I i r + z cos nl ~ l ~ ds 
-t/2 

t/2 

D I Gl t':1I1 0 + r r 
-t/2 

+ z 
cos cos 

du 
2 

+ \) - - vz d ;} dz ds ds 

D f tan ¢ 1.,og ( r u ¢ L cos 

w 

y1 + z 

\ 

+ z) 

rw' 
tan 

- w' tan¢+ --~c~o~s~ 
r 

cos 0 + z 

log (co: z) w'z + w ¢ + -
C) ? t/2 
c.. 

tan ¢ 

sin ¢ du d~w 

l12 rw' log ( . r 
z) 

z 
( B-1) + 0 + + ')Z - \) ---

cos ds 2 
co ¢ 

To begin with we wiLl consider the log function alone: 

r t) ( r _ 1) l,o g ( r1. + - - log --cos~ 2 , cos¢ 2" 

( 1 
t cos ¢) + 2r 

= Log 0) ( 1 
t cos - 2r 

Expanding the log functions in Taylor's series we have, 

t ¢\ t ¢ t2 2 0 3 cos3 ¢ log ( 1 
cos cos cos t 

+ 2r J 2r 2 + 
24r3 Br 

t 0.) t ¢ t2 2 ¢ t3 cos 3 ~ log ( 1 
cos cos cos 

- 2r ·- 2r 2 
24r3 Br 

Subtracting the second series from the first, and. neglecting terms of order 

higher than cubic gives, 



( 1 +tcos0) 
2r log ---t---'=---,d,_ 

( cos 'I)) 
1 - 2r 
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Making use of this result in equation (B-1) and simplifying, we have, 

== D[u sin 0 + w cos~+ v du]+ K[cos~0(u sin¢+ w cos¢+ rw' sin¢)] 
r ds 

r 
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APPENDIX C 

Notes on the Principle of Minimum Total., Potential Energy 

Statement of the Principle: Proof of the Principle is adequately covered in 
[5 6] 

the texts ' , and it is sufficient for the present purpose to state it as 

follows: 

Of all the admissible displacement functions, the actual., displacements 

make the total., potential, energy a minimum. 

The elastic strain energy density: In physical., terms the elastic strain energy 

density U is the area under the stress-strain curve for a particular material., 

(Fig. C-1). 
stress 

C, 

u 
C, 

C, 
0-.-------"-'-'-'-'-' ................. ........, .... -=="""""':.:.,..,."""'"''---t- strain 

Let 

and 

so that (E: 

E: 

E: 
·0 

Fie:. C-1 

E: 

actual (total) strain, 

E: 0 = initial strain 

E: ) strain due to applied loads. 
0 

E:_ 

Then for a linear elastic material having an elastic constar.t D, 

0 D( E: - E: ) 
" 0 i\ 

Ds 

➔~ 

The elastic strain energy density can new be written as , 

( SC 

€ E: 
ij = C, ds -- I De de - r· DE: de 

.., ,; ,, 0 

€ E: € 
0 0 0 

~~ 

See Reference [7], Section 3, Eq. (17). 

(c-1) 

( C-2) 
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Let E: E: + ;\,(E: - E: ) 
0 0 ( C-3) 

and de = ( E: E: ) d;\, 
0 

where ;\, is some constant. 

Substituting for E: in Eq. (C-2) the strain energy density can be written as, 

r\ 1 
D = [e + ;\, ( E: E: ) ]( € - E: ) d;\, - JD E: ( E: - € ) d;\, 

' 
0 0 () 0 0 

() () 

t "- t 1 D 
L 

D + + D ( C-4) 2 E: € .. e E: € E: 
0 0 0 

In performing the integration of Eq. (C-4) the quantities concerned have been 

assumed to be matrices and vectors. 

The first variation of an energy functional: A necessary condition for a 

fun~tional to attain a stationary value is that the first variation of the 

f,mc tiona l vanishes ind en tic ally. The procedure in taking the first variation 

of a functional i::_, illustrated here for the elastic strain energy, Eq. 3.12, 

u 
e 

If we let 

u 
e 

=-

➔ J [qe_lt [B]t [D] [B] {_qe} dV (C-5) 

V 

[B]t [D] [BJ [H], Eq. (C-5) may be written more concisely as, 

1 r { ·x } dV (C-6) 
' V 

Tne partial derivativ f u ~ith respect to the displacements {q J is, 
e 

f [I(] {q 1 dV .l - e 
V 

Hence, the first variation 01· the elastic strain energy is, 

& u 
e 

I J [H] [qe} dV Jo {qe} 

V 

(C-7) 

(C-8) 

( C-9) 

The conditions under which U will attain a stationary value are given by 
e 

taking 

5 U 0 
e 

➔~ 
The conditions under which a functional attains a stationary value is the 
fundamental problem of the calculus of variations. See Courant and Hilbert 

[s], p 164. 
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Since the variation of displacement 6 {qe} is arbitrary, this condition 

is satisfied only if the expression within the square brackets of Eq. (C-9) 

vanishes identically. The vanishing of this expression then provides us with 

a set of equations; if the total potential energy has been minimised they will 

be stiffness equations. 
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APPENDIX D 

Numerical Integration Techniques 

The two most common methods of numerical integration are Gauss quadrature 

and Newton-Cotes quadrature, the latter method embodying the elementary 

trapezoidal and Simpson's rules. The following is a brief summary of each 
1: 

method. 

Suppose we are required to evaluate the integral 

I 
b 
I f(x) dx 
I .., 

a 

This integral may be written in the general form, 

I 

n 

' L' H. f(aj) +E 
. J 

j=i 

(D-1) 

(D-2) 

where a. are called the 'abscissae' and H. the corresponding 'weights'. 
J J 

E is the error involved in the numerical approximation. 

The Newton-Cotes quadrature formulae: In this method the abscissae, of which 

there are n + 1, are constrained to be equally spaced. If we further restrict 

the discussion to closed formulae (where the end points of the interval [a,b] 

are abscissae), then equation (D-2) becomes, 

where h = 

I 

b - a 
n 

f(a+h.)+E 
J 

(D-3) 

With the abscissae already chosen, we are left with (n + 1) unknown values 

of H. to find. We can expect then to make the integral I exact for poly
J 

nomials of degree n or less; in fact when n is even, we get exact results 

for polynomials of degree (n + 1) or less. 

The actual values of H. for a given value of n are found from 
J 

Langrangian interpolation formulae. For n = 1 we have the trapezoidal rule, 

which is exact for first-order polynomials. For n = 2 we have Simpson's 
. . . [ 10] 

rule which is, contrary to expectation, exact for third-order polynomials. 

➔~Reference [9], p 85. 
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Simpson's rule for the closed interval [a,b] (Fig. D-1) is given by, 

where d 
0 

I 

= 

d 

3° [f(a) + 4f(O) + f(b)] 

(b - a) 
2 

ill = :~ :I: ·1~0 ill ::: 

d d d 

f(a) f(c) 
= f~ . = f 

I 3 

a C 

Fig. D-1 

(D-4) 

-1~0 
d 

~a,b] 

:[a,c] + [c,b] 

. ( b) 

.f4 f5 

b 

The accuracy of the formulae may however be improved by subdiyiding the 

original interval and applying the rule to each of the sub-intervals. By 

summing the results for each sub-interval a more accurate overall result is 

obtained. Such a procedure results in a composite quadrature formula. In 

general, if the interval [a,b] is subdivided into m sub-intervals (m even) 

and each sub-interval has length 2d, then Simpson's rule may be written as, 

I (D-5) 

The Gaussian quadrature formulae: In deriving the Gaussian formulae no con

straints are imposed on the abscissae or the weights, with the result that we 

have 2n unknown constants a. and H. to solve for. When the abscissae 
J J 

are chosen as the zeros of the Legendre polynomial of degree n, then the 

error term E in Eq. (D-2) is zero if f(x) is a polynomial of degree 

(2n - 1) or less. 

To find the values of the constants a. and H. for a general closed 
J J 

interval [a,b] involves the solution of higher order simultaneous equations 

in a and b. Most texts simplify the problem by giving values of a. and 
J 

H. 
J 

only for integration over the interval [- 1,1]. However, the lack of a 

general formula incorporating arbitrary end points a and b makes it 

impossible to derive composite formulae involving further sub-intervals of 

[a,b]. The derivation of the necessary general formula was considered to be 

beyond the scope of the present work. 
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We are thus limited essentially to integration over the interval [- 1,1], 

using the same number of abscissae as the order n of the particular Gaussian 

formula being used. For example, the formula for n = 4 is, (Fig. D-2), 

1 J f(x)dx 

-1 

= 0,347[f(0,861) + f(- 0,861)] + 0,652[f(0,339) + f(- 0,339)] 

(D-6) 

f(x) 

( ,861) f(- ,339) f( ,339) f(Ort 

-1 -0,861 -0.339 0 0, 339 0,861 1 

Fig. D-2 

However, for intervals having arbitrary end points we can always make a 

suitable substitution whereby the integral over the original interval is con

verted to an equivalent integral over the interval [- 1, 1]. For example, 

the integral 

I = j X dx 

is equivalent to the integral 

I' = 
r 1 
I (y + 2) dy 
I 

CJ 

-1 

when the substitution x = y + 2 is made. Such a procedure is, however, 

only practical in the case of reasonably simple integrals. 

Alternatively, in the case of integration over the interval [0,1] or 

[-1,0] we can make use of the symmetry of the~ Gaussian formulae in the 

following manner. For n = 4 the formula for the interval [0,1] is, 

1 J f(x)dx = 0,347 x f(0,861) + o,652 x f(0,339) (D-7) 
0 

i.e., the terms in Eq. (D-6) corresponding to the abscissae within the inter

val [0,1]. Similar half-interval formulae can be written for n = 6,8 and 10. 

The actual values of the abscissae and weights for these formulae are given_ in 

the description of subroutine GELSTF in Appendix A. 
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APPENDIX E 

Explicit Expressions for the Equivalent Nodal Surface and Body Forces 

The derivation of the element load vector has been discussed in Section 

3.1.3, where the interpretation of the equivalent nodal loads and their sign 

convention has been given. The following expression may be used directly to 

calculate the equivalent nodal loads for the types of loading mentioned. 

The equivalent nodal surface forces: The integration of Eq. (3.22) yields the 

following expressions for the equivalent nodal surface forces: 

[
- r,p, sin¢ ~ 2 , 1 . 2 rl] 

2 L --'-' -- ~( , . r1, 1 . rl.) p sin YJ = 7t 2 - 20 r 1p sin y; + p1 sin y.; - 15 

( E-1a) 

:::: sin¢ cos¢) 

p'l sin 0 cos 0] 
+ 15 (E-1b) 

(E-1c) 

2n1 

(E-2a) 

4p'L sin¢ cos ¢J-I 
+ 15 (E-2b) 

= I I -'-' I . p sin [
- r,p,L a 2 '12 . ¢J 

2n1 12 - 20 ~r1p L + p1L sin~) - 30 (E-2c) 

The equivalent nodal body forces: The integration of Eq. (3.24) yields the 

following expressions for the equivalent nodal body forces: 

[r1 
2 

¢ + 3 sin 2 
¢)] u1 = 2nt1y 2 + L sin¢ (cos 

20 (E-3a) 6 

1 sin 2 ¢ ¢J w1 2n;t1y L cos (E-3b) = 60 
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lYI 1 = 
2 

2ntL y 
[- r1 sin¢ - L sin2 ¢J 

12 30 
(E-3c) 

r1 2 ri + 7 sin 
2 

¢)] u2 2ntL y [2 + L sin¢ (cos3 20 
(E-4a) 

w2 = 2-n:tL y [- 1 sin~0¢ cos ¢J (E-4b) 

M:2 = 2n;t12)' 
_r1 sin~ L sin2 ¢J l 12 + 20 

(E-4c) 
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APPENDIX F 

Circular Plate Theory 

The circular plate is clearly a special case of the conical frustrum 

when 0 = 90° (Fig. 2.1). As such the strain-displacement and curvature
;~ 

displacement relationships for a circular plate can be obtained directly 

from Eqs. (2.14) by substituting sin¢= 1 and cos¢= 0. 

Of specific interest here are the differential equations of equilibrium 

for a circular plate in pure bending, and in a state of plane stress. The 

solutions of these equations will be used to derive the bending and in-plane 

stiffnesses of a circular plate. 

The bending stiffness of a circular plate: Consider a circular plate of 

radius a subject to a uniformly distributed moment M per unit of circum

ference (Fig. F-1). 

1- a 

-+ r 
~ 

M (Mr ) (g !' I l 
+z( w) 

Fig. F-1 

When there is no distributed loading on the plate the governing 
iH~ 

differential equation of equilibrium is, 

Integrating this equation three times we obtain, 

1 _cl_ (r dw) 
r dr dr 

dw 
c1 

r c2 
= 2 

+-
dr r 

2 

c1 
r 

+ c2 1,og (12) + c3 w = 4 a 

(F-1) 

(a) 

( b) 

( C) 

-:~ The expressions for the in-plane strains in a circular plate are given by 
Timoshenko and Goodier [2], p 76, and those for the curvatures by Timoshenko 
and Woinowsky-Krieger [3], p 51. 

iH~·Timoshenko and Woinowsky-Krieger [3], P 53. 



Differentiating Eq. (b) with respect to r we have 

The expression for the meridional moment 

M = r 

M 
r 

is then, 
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( d) 

( e) 

The three arbitrary constants c1 , c2 and c3 are found by applying the 

following boundary conditions: 

at r = O, 

at r = a, 

at r = a, 

dw 
dr 

M 
r 

= 0 

= M 

w = o. 

Solving for the arbitrary constants, and substituting back into equations (b) 

and (c) we find the following expressions for the displacement w and slope 8: 

M (a 2 2) w = 2D( 1 + V) - r (F-2) 

6 dw Mr 
= = -

D( 1 + V) dr (F-3) 

where D = 

➔r 
If we let M be the total moment at the edge r = a, such that 

then the bending stiffness of the plate at this edge is, 

= 27t D ( 1 + v) 

= 2n: Et 3 

12(1 -v) 
(F-4) 
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The radial stiffness of a circu1ar plate: Consider a circu1ar plate of 

radius a subject to a uniform axial for9e P per unit of the circumference 

(Fig. F-2). 

I 
a ~ ,. r(u) 

: t 
I 

p .. Li E .. p 

l z( w) 

Fig. F-2 

The plate is in a state of plane stress for which two equations of 

equilibrium may be written. If we neglect shear stresses and body forces, 

the equation for equilibrium in the radial direction is, 

00 Cl - 08 r r 
0 + = er Y' 

~ 

(F-5) 

Subs ti tu ting for 0 and Cl in Eq. (F-5), r G 

E 1du + v £J 0 = 2 r 
1 

Ldr r - \) 
(F-6) 

and E [u du] 08 --
2 

- + \) -
1 

-r dr - \) 

and differentiating with respect to r, Eq. (F-5) can be written in the form, 

2 d u 1 du 1 +----u = 0 
dr2 r dr r2 

(F-7) 

The second equation for equilibrium in the tangential direction is trivial 

when the shear stresses are neglected. 

Integrating Eq. (F-7) twice with respect to r we obtain, 

du u 
c1 +- = dr r 

( a) 

2 
and c1 

r 
+ c2 ur = 2 

(b) 

The constants c1 and c2 are found by applying the following boundary 

➔~See Timoshenko and Goodier [2], p 66, Eqs. (37). 
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conditions: 

at r = o, u - 0 

at r = a, 0 t = p 
r 

Solving for c, and c2 and substituting back into Eq. (b) we have, 

Pr ~ ' - v} 
u = Et (F-8) 

➔~ 

If we let P be the total axial force at the edge r = a, such that 

2n;a P 

then the axial stiffness of the plate at this edge is, 

k = a 

~~ 
p 

u 

2n Et 
I - V 

(F-9) 

Fixed-end moments and forces for a circular plate uncler a U.D.L.: Consider 

a circular plate of radius a, clamped at the outer edge and carrying a 

U.D.L. p (Fig. F-3). 

a r 

The meridional moment 

radius r is given b/,(-

M 
r 

-I r(u) 
-1 

Fig. F-3. 

per unit of circumference at a section of 

M -L[-a2(, +v)+/(3+v)] 
r 16 

from which the fixed-end moment per unit of circumference at the edge r -- a 

is, 

➔~ 
Ref. [3 ] , p 5 5 . 



2 
JI.II = .lliL 

r=a 8 

The total load on the circular plate is 

per unit of circumference is, 

2 
= .TI§....E = J?.§!:. 

2na 2 

2 
na p. 
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(F-10) 

Hence the fixed-end force 

(F-11) 
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APPENDIX G 

The Theory of Cylindrical Water Tanks 

The circular cylinder is a special case of the conical frustrum. Hence 

by taking ¢ = 0 in Eqs. (2.13) we may immediately write down the equations 
➔~ 

for the stress resultants in a cylindrical water tank. These are, 

N 
X 

M 
X 

D[!i: + v du] 
a dx 

D[du + V !!.] 
dx a 

d 2w 
K v --

dx2 

(G-1) 

In the above expressions a is the radius of the tank and x denotes 

meridional distance along the tank. 

In the case of water tanks we take the axial stress resultant N to be 
X 

zero. Hence 

du 
dx 

w 
\) -

a 

Substituting this result into the expression for N8 , the hoop stress in a 

cylindrical water tank is 

= D(1-})w 
a 

(G-2) 

The circumferential moment M8 is usually ignored and in the following sections 

expressions for the meridional moment M 
X 

in open and closed tanks are derived. 

The open cylindrical water tank: The governing differential, equation of a 

water filled, uniform thickness cylindrical tank of radius a is, 

4 
K d w + D ( 1 - v2) L 

4 2 dx a 
p (G-3) 

where w is the radial displacement and p - f(x) is the hydrostatic water 

" ~°Flugge [1], pp 269-276. 
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pressure in the tank (Fig. G-1). The complete solution of Eq. (G-3) is made 

up of the sum of the complementary function (when p = o), 

w1 = e -(3x(A1 cos ~x + A2 sin ~x) + 

e-(3(h~x) (B1 cos ~(h - x) + B2 sin ~(h - x)) (G-4) 

and any particular integral of the governing differential equation. We choose 

the particular integral 

2 y a 
( h - x) 

where y is the unit weight of the water in the tank. 

h 
"'.C=- -=. -< 

h 
X 

/ '//U, I '//'/////// 

~t~ I 
a I 

Fig. G-1 

(G-5) 

The constants A1 , A2 , B1 and B2 are found from the boundary conditions 

at the top (x = h) and bottom (x = 0) of the tank. If h is sufficiently 

large, the terms containing B1 and B2 have negligible affect at the base 

of the tank. Since in an open tank we are concerned more with the boundary 

conditions at the base of the tank we may drop the terms containing B1 and 

B2 • The complete expression for the displacement w then becomes 

2 
w = Y a 2 (h - x) + e - ~x (A1 cos ~x + A2 sin ~x) 

D( 1 - V ) 

Differentiating with respect to x we have for the slope, 

dw 
dx 

The boundary conditions at the base (x = 0) are 

and 
dw 
dx = 0 

(G-6) 

(G-7) 



from which expressions for the constants A1 

2 
- ya h 

2 
D( 1 - v ) 

2 
and = ya (a - Xh) 

X D( 1 - v 2 ) 

and are derived. 

Substituting for A1 and A2 in Eq. (G-6) we have, 

2 
ll [( ) - px (.1 ) - r.lx J w = Et h - X - he COS p X + p - h e I-' Sin p X 
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These are 

(G-8) 

Differentiating Eq. (G-8) twice with respect to x yields the expression for 

the curvature, which when multiplied by the elastic constant K yields the 

equation for the meridional moment 

M 
X 

2 
= K d w 

2 
dx 

M ' X 
i.e. ' 

3 2 2 2 
Et L [- 2va (-a _ h) r.lx 2ya h r.lx ] ~ e - 1J co s r.l x - Et e - 1J sin r.l x 2 . 2 Et X I-' IJ 

12(1 -V) a 

2 
Finally substituting X 

,[Et a 

2 \!K 
we have 

M 
X 

- yat [-(_Xa _ h) e- px - px -1 -~---_-_ .... _-_-_-_-_-_- cos px + he sin px J 
= J 12( 1 - v 2) 

(G-9) 

Notice that if the height h of the tank is large, both the displacement w 

and the moment M are effectively zero at the top of the tank. 
X 

The closed cylindrical water tank: When the water tank is monolithically 

joined to a circular disc (which acts as a roof to the tank), it is important 

to determine the effect which the disc has on the stress distJ:>ibution in the 

tank. We therefore replace the disc by equivalent forces and moments acting 

at the upper edge of the tank (Fig. G-2). 
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h 

Fig. G-2 

Transverse forces from the disc give rise to a state of pl,ane stress in 

the tank which is not of significance in the present discussion. The basic 

problem is therefore essentially that of an open tank with an unknown applied 

moment x1 at its upper edge. In this case however we have two additional 

boundary conditions at the edge x = h, viz., 

If h is sufficiently large the terms in A1 and A2 (Eq. G-4) have 

negligible affect at the edge x = h. We may thus drop these terms and apply 

the above boundary conditions to find B1 and B2 • The equation for the radial 

displacement is then, 

w 

From the first boundary condition at the edge x = h we have, 

w = 0 = B 
1 

The equation for the moment M 
X 

is then, 

( G-10) 

= K 13 2 e- !3(h-x) [- 2B2 cos !3(h - x) + 2B1 sin !3(h - x)] (G-11) 
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The second boundary condition at this edge is, 

M x1 - 2K 
2 

B2 = = ~ . 
X 

- X 

B2 
1 

= 
2K ~2 

Substituting the expression for B1 and B2 back into the original equations 

yields the following expression for the slope of the tank at the edge x = h: 

dw 
dx 

- ya 
Et 

2 x1 a 
t 2K X (G-12) 

Clearly the slopes of the tank ancl the circular disc must be compatible at 

the edge x 

where 

➔~ 
h. The slope of the disc at this edge is given by, 

a x 1 
= K (1 + v) 

C 

Et3 
d 

2 
12(1-v) 

(G-13) 

is the flexural rigidity of the circular disc. Hence, for compatibility of 

the slopes we have 

2 
)'._§, 
Et 

from which the value of redundant moment is 

X 
i 

( G-14) 

The complete expression for the curvature of the closed tank is then 

obtained by summing the curvature of the open tank and the curvature due to 

redundant moment 

closed tank is then, 

JVl 
X 

The expression for the moment 

*Timoshenko and Woinowsky-Krieger [3], p 58. 

M 
X 

at any point in the 

(G-15) 



225. 

It will be noticed that the first part of Eq. (G-15) is identical to Eq. (G-9) 

for the moment in an open tank. The solution of the closed tank problem is 

thus made up of the open tank solution plus a term expressing the clamping 

effect of the circular disc. The approximate illethod used to derive these 

equations is apparent from the fact that for sufficiently large h, the 

clamping moment x1 is effective only near the top of the tank and the water 

pressure only near the base. 

The preceding solution may be modified to take account of a U.D.L. on 

the tank roof. In this case the same procedure as before is followed c:ixcept 

that Eq. (G-13) is replaced by the expression for the slope of a circular 
➔~ 

disc under a uniformly distributed load p, viz., 

( G-16) 

By equating the expressions for the slope in the tank (Eq. G-12) and the slope 

in the disc (Eq. G-16) a new expression for x1 is obtained in terms of the 

load p, viz., 

X 
1 

2 
_ pa K X 
- 4[2K X + Kd(1 + v)] (G-17) 

This expression may then be used directly in Eq, (G-15) for the moment M • 
X 

Since the water pressure is no longer included, the equation for 

to, 

➔~ 

M 
X 

X e- B(h-x) cos j3(h - x) 
1 

Ibid. , p 56. 

M 
X 

reduces 

(G-18) 
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