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SYNOPSIS

A finite element computer program which uses the conical frustrum
element is presented for the linear elastic, static analysis of variable
thickness, branched, thin shells of revolution, composed of straight
sections and subject to general axisymmetric mechanical loading. The thin
shell theory and finite element theory forming the basis of the analysis
are described, with particular attention being given to the closing of the
shell at the axis of symmetry, and shell branching. Numerous problems
embodying all relevant features of the program are analysed, and their
solutions are discussed. A user's manual for the program is appended, and

guidelines for the efficient use of the program are given.
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CHAPTER 1

INTRODUCTION

There is a wide variety of structures that may be classified as axi-
symmetric thin shells of revolution, ranging from the parabolic cooling tower
to the simple circular water reservoir. An important sub-calss of these
shells, and the one most often encountered in practice, consists of those
shells made up of cylinders conical frustra and circular plates, whose
primary function is the storage of some liguid (Fig. 1.1). We will be con-

cerned in the present work with this sub-class of shells.

The structural analysis of thin shells of revolution has by no means

”
(24, 25, 26, ‘7]. The computer analysis

suffered from lack of investigation
of these shells was first performed by GaLLetLy[zgj in 1960. This was
followed by attempts to analyse arbitrary shaped shells of revolution using
flat triangular and quadrilateral eLements[gg’ 30] which met with little

success.

[17]

finite element method. This marked the beginning of a period of intensive

In 1963% Grafton and Strome made the first use of the direct stiffness

research into the analysis of shells of revolution using the conical frustrum

(16, 31, 32]

element Shortly thereafter the curved meridional element was

introduced to provide a more efficient analysis of meridionally curved shells

[33, 341

of revolution In 1967 the final stage of element sophistication

was reached with the development of the doubly curved quadrilateral

[35, 36, 371

element Since then research has been directed mainly towards

the refinement of existing elements for purposes such as elastic-~plastic

[38] [391

analysis and analysis of orthotropic shells
Notwithstanding the fact that the solution to the axisymmetric thin shell
problem is within the state of art, there remains the need for readily
available computer programs, in particular programs which are capable of
taking into account the branching which often occurs in this class of sheLLf

The present work is concerned with the development of such a programn.

AL

"A pertinent assessment of the current capabilities for computer analysis
of shells is given by Hartung [42]. It is surprising that neither of the
two more widely used general structural analysis programs, viz. STRUDL (V2,
M1) [40] and GENESYS [41] contain facilities for the analysis of shells of
revolution.



The fundamental scope of the program was decided upon after consultation
with engineers who ere actively engaged in the design and construction of a
number of water towers and sludge digester tanks. In particular it was felt
that considerable simplification could be achieved, with no intrinsic loss

of generality, by making use of:

(i)  the axial symmetry of both the structure and the principal loading
viz., the liquid contained in the structure and the self-weight of

the structure itself, and

(ii) the fact that the large majority of the structures are made up of

straight sections, viz., cylinders, conical frustra and circular

plates.

In view of this, therefore, the conical frustrum element was chosen as the

basic analysis tool.

The present work therefore concerns the development, testing and docu-
mentation of a finite element computer program CONFRU (CONical FRUstrum)
designed for the linear elastic, static analysis of variable thickness,
branched, axisymmetric thin shells of revolution under general axisymmetric
mechanical loading. Chapter 2 deals with the thin shell theory leading to
the approximate strain-displacement and stress-strain relations for a conical
frustrum. The discrete element formulation as well as the assembly and
solution of the system stiffness equations are discussed in Chapter 3. 1In
Chapter 4 a large variety of solutions obtained from the program are pre-
sented and discussed, together with an analysis of problem solution times
and costs. The program and its associated plotting routines are documented
in Appendix A, and full listings of all programs are given. The complete

data input and printed output for a sample problem are also included.



CHAPTER 2

THIN SHELL THEORY

0Of fundamental importance in the derivation of a finite element stiffness
matrix are the strain-displacement and stress-strain relationships which
describe the mechanical behaviour of the element. These relationships are
derived here for an isotropic conical frustrum, subject to axisymmetric
deformation only, with both membrane and bending stresses being taken into

account,

2.7 Assumptions and Definitions

We consider here only those conical frustra which can be defined as thin
shells of revolution, whose meridians are straight lines inclined at an angle
¢ to the axis of symmetry (Fig. 2.1). The middle surface is the surface

which lies midway between the two faces of the frustrum.

AN

Fig., 2.1

Since the shell is assumed to undergo axisymmetric deformations only, the
displacement in the circumferential direction is zero. Hence only two dis~
placements are necessary to describe the kinematic behaviour of the middle
surface of an element of length ds; these are the meridional displacement
u, and the normal displacement w. The position of the element may be des-
cribed either by its distance s from an arbitrary datum point, (usually
taken as the upper edge of the frustrum), or by its radius r. The shell has

thickness t which may vary as a function of s,



(a) Meridian

(b) Parallel Circle

Fig, 2.2: Middle surface of the line element

before and after deformation




4.

y)

The thin shell theory developed here is based on the following assumptions:

normal to the midd le surface before deformation

4+
DO

(i)  Points lying on
remain on the normal after deformation. This assumption allows

ion due to transverse shear forces to be neglected.

[ = g J
deformat

(1) The distance of an arbitrary point from the middle surface remains
the same before and after deformation. This assumption allows the
stregses and straing in the direction normal to the middle surface
to be neglected,

(iii) ALl displacements are small compared with the radiuys of curvature

of the middle surface, and the slopes are negligible compared with

unity. This assumption maintains the linearity of equations.

Furthermore, we assume that the shell material is elastic according to

@

These assumptions may now be used to establish the kinematic relationships

for the conical frustrum.

2.2 Deformations

We begin by considering the deformation of the middle surface of a small
line element of length ds (Fig. 2.2).

The ends of the element undergo meridional displacements u and
u -+ %% ds respectively; hence the elongation of the element is %g.dsg
Since the element remainsg straight in the deformed position, normal displace-
ments do not cause additional elongation of the element, and we define the

meridional strain in the middle surface by

du
ES oz g‘g (2.)'[)

The circumferential strain arises as a result of an increase in the arc

length ds. of an element of a parallel circle (Fig. 2.2b). The increase in
]
sth Ads@ ig caused by an increase Ar in the radius r, given by,

+ Ar, ]
A [ ( L ot AS A~ =~ i
ds9 S d g qse
== *L',E'I:‘ d R
r 0

i
K

This chapter has its origin in the thin shell theory of Flugge [1]



From the geometry of Fig. 2.2(&),
Ar = u sin ¢ + W cos ﬁ (2.2a)

Hence, the circumferential strain in the middle surface is,

Ar
e - Lr
) T

.u sin ﬁ + W COS ¢ (2 2b)
T .

To take account of bending stresses it is necessary to describe the
deformation of the shell in terms of the displacements of an arbitrary point
A, a distance =z from the middle surface (Fig. 2.3). The point A has
components of displacement u, in the meridional direction, and Wy in the
direction normal to the middle surface. These displacements are associated
with the displacements u and w of the corresponding point AO in the

middle surface.

From assumption (ii) the distance 2z between the points AO and A in
the original position remains unchanged in the deformed position. Hence, if

the slope dW/ds is small, we may write,

aw o _ o, 2T
ds Z



or, u, = u - zw! (2.3)

Again, if the slope w' is small, the normal displacements w and Wy

are almost equal and we may take
W, = W (2.4)

We may now write down expressions for the strains which describe the
deformation of a small element of a conical frustrum passing through A.

Making use of Egs. (2.1) and (2.2b) we have,
duA

8 ds (2 5)
uA sin ¢ + WA cos ¢

0 r + zcos @

where the radius r 1is replaced by the radius r + z cos ¢ of the point A.
Introducing Egs. (2.3) and (2.4), the above expressions may be rewritten in

terms of the displacements u and w of the point AO in the middle surface:

e-X- _ du _ ” d2W

S ds as° (2.6)
¥ _ usin §+ wecosg ~ zu'sin ¢

o r + z cos

Bgs. (2.6) give the in-plane strains at the arbitrary point A in terms of

the displacements of the point AO in the middle surface.

2.% Stress Resultants

B
W

. . . . 3
Associated with the in-plane strains es and €9 are two normal stresses,
* *

the meridional stress OS, and the circumferential stress o¢.. For a linear

e

elastic material the relationship between these stresses and étrains is ex-

pressed by Hooke's law as,

U3
=
%

o, = Y [es + Vv ee]
(2.7)
3 E 3 3
o, = ——— e +v e ]
© 1 - v2 o S

where Young's modulus E and Poisson's ratio v are constants of the shell
material. Since tensile strains are considered to be positive it follows
that the stresses are positive i1f they cause tension in a small element of

the frustrum as shown in Fig. 2.4(a).






7.
The stresses o: and of clearly have resultants which depend on the
lengths dsQ and dsS of the elemental sections. Furthermore, if the
stresses aré non-uniformly distributed over these sections they will have
moments with respect to the centres c¢if the sections. In view of this we
introduce the stress resultants NS, ﬁe, Mg and Me; NS and Np are
the resultant normal forces per unit length in the meridional and circum-

ferential directions respectively, and Ms and Me are the corresponding

moments per unit length,

The stress resultants are found by integrating the stresses acting on
the elemental sections. In the following derivation of these integrals it

will be useful to introduce the notation
b

for the extensional rigidity, and

3
K = —B (2.8b)

12(1 - v2)

for the flexural rigidity of the conical frustrum.

Consider the circumferential section perpendicular to the middle surface,

of length dsp, and having a radius of curvature rg (Fig. 2.4a). The

total force acting on this section is

The shaded element of this section has a length

r + .z
) a

ja)

o

@
and hence the total force acting on the chaded element is

. T + 7
< (*E;;~') ds9 . dz (2.90)

Equating expressions (2.9a,b) for the whole section and noting from Fig, 2.

that

T

s T Cos &



we have,
t/2
N-x- :J'
-t/2

Similar reasoning leads to the following expressions for the remaining stress

of (itzcosdy g, (2.10a)
S r

O]

resultants:

N f o dz (2.10b)
-t/2

t/2

3% ¥ ,r + 7 COS

wo= [ o (————»—Qr ) z . dz | (2.10¢)

-t/2

t/2

M= f NERE (2.104)
~t/2

st

The expressions for the stress resultants Né and M do not contain

3
S]

the radius of curvature r of the meridian, since r, = @ and

lim r + z
r,o—— o (‘EE?-—~) = 1
S

It will be noticed that even when the normal stress o; is uniformly
distributed over the section, i.e., o; = constant, there will still be a
#*
moment MS. This is because the section is trapezoidal in shape and as such,

its centroid does not coincide with the middle surface.

The actual integration of Egs. (2.10) is a lengthy procedure invo lving,

in the case of Ng and M the Taylor's series expansion of log functions.

e’ "
The detailed integration of the expression for N9 is given in Appendix B
by way of illustration, and only the results of the integration are presented

here.

The exact expressions for the stress resultants are then as follows:-

s : 2
7 - ot ety g sl dy Gy
ds®

* u sin ﬁ + W CO3 ¢ du
5 D[ " + v ds]

=
|

2 . v oas
cos ﬁ (u sin ¢ + W _cos ¢ + rw' sin ﬁ)]

2 r
r

+ K[



2 .
M; _ K[— d qu v w! iln_ﬂ _ Coi ¢ %lé] (2,110)
ds
. 2
u = K[~ w' sin ¢ _y 4w _cos g (usin g + w cos §) ] (2.114)
e r ds2 r2

Egs. (2.11) form the basis of the bending theory for a thin conical
frustrum shell; when K = O the expressions for N: and N; which remain
constitute the membrane theory of a conical shell. However, certain of the
terms in these equations are clearly of the second order of magnitude, for
example, the third term in Eq. (2.114). Such terms are unlikely to be of
significance in practice, and it would thus appear worthwhile to investigate

the possibility of deriving an approximate bending theory.

2.4 Approximate Bxpressions for the Stress Resultants

There are two sources from which the second order terms in Egs. (2.11)
arise, both of which derive from the fact that the elemental section
s = constant (Fig. 2.4) is trapezoidal in shape. Due to this the hoop fibres
vary in length across the section, as expressed by Eq. (2.6) for the circum-
ferential strain,
5 u sin ¢ + W cos4¢ - zw' sin ¢

[ fed
8 r + z Ccos

If the shell is thin enough we may neglect the distance 2z cos ¢ in comparison
to r and so write an approximate expression for the circumferential strain
as,

u sin ¢ + W Ccos ¢ - zw' sin ¢

E@ = - (2.12a)

The second source of second order terms derives specifically from the
expression for the area of the trapezoidal section, as contained in Eq.
(2.9b), viz., '

Elemental area =

Again, for a sufficiently thin shell, the distance =z is small compared with

the radius of curvature rg, and we may take

Ty * 2 r + 7 COS ﬁ
= S = (2.12b)
r r

6

The above approximations are incorporated into the original Egs. (2.10)



u sin ¢ + W cos ¢

[ original

deformed

Fig. 2.5(b): Change in circumferential

curvature b

deformed

original

Fig. 2.5(a): Positive meridional

curvature
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for the stress resultants; integration of the revised equations then yields
the following approximate expressions for the stress resultants:-
t/2
N = J o dz
S
-t/2
du (u sin ¢ + W COS ¢)] (2.13a)

= DLgg+V r

t/2

N9 = j 68 dz
-t/2
_ prusind +3.c08 g, du (2.13v)

d w - sin ¢ dw ] (2.130)

i
™
—
I

2
i d d
- [- ﬁig_g.ag _v Ly (2.134)
ds

Each of the terms in Egs. (2.13) has a clear physical interpretation,
connected with the deformation of the conical frustrum. We immediately

recognise the in-plane strains (Egs. 2.1 and 2.2b),

. .
s  ds

and & = u_sin ¢ ; w cos ¢ (2.14a,b)

2 2
The term d w/ds” is clearly the change of curvature in the meridional

direction, (the original meridional curvature is zero), which we will denote
by,

2
d
Xg = fﬁ' = - ““g (2.14c)
ol ds

The minus sign is necessary since a positive meridional radius of curvature,

as indicated in Fig. 2.5(&), has associated with it a negative value dzw/ds2.



.

The physical meaning of the term (sin ﬁ.w'/r) however, requires more

detailed explanation.

Consider the original and deformed positions of a small element in the
middle surface, as shown in Fig. 2.5(b). The circumferential radii of
curvature in these two positions are r6 and ré respectively. From the

geometry of the figure,

T
r =
o cos
y, _ r +usin ¢ + W _cos ¢
and r@ - cos (¢ + o)
where cos(¢ + a) = cos ¢ cos o - sin @ sin a.

If o is small,
cos o = 1

and gin o = tan o = w!'

Hence, cos(f + «) cos ¥ - sin g . w'.

Making use of this approximation we may write,

1 1 cos @ ~sind . w cos @

r! r r +u sin ¢ + W cos d r

If the displacements u and w are small, we may neglect the terms u sin ¢
and w cos §; we then have
rl

The above expression is clearly the change in circumferential curvature which

we will denote by

Xg T o (2.143)

The stress resultants may now be written in terms of the strains and
changes of curvature in the middle surface. Combining Egs. (2.13) and (2.14)

we have,



12,

N, =D [es + Vv ee]
Ne = D [ee + v eS]
(2.15a,b,c,d)
MS = K [XS + vV Xe:l
n, = K Lxe + v x,]

The positive sense of the moment stress resultants MS and M are shown in

8
Fig. 2.4(a).

Egs. (2.14) and (2.15) will be used to define the mechanical behaviour

of the conical frustrum element.

2.5 A Special Remark

We have derived the thin shell bending theory for a conical frustrum,
and it is clear that the theory is equally applicable to the special cases of

the circular cylinder and the annular plate or disc.

In the chapter following, however, we will come across a particular
application of the circular disc, viz., as a closure element, which will
require an investigation of equilibrium conditions in a circular disc in
pure bending and axial tension, Since the study of equilibrium conditions is

required only in a special case, it has been given in Appendix F.

One of the examples used in Chapter 4 to test the program is the
cylindrical water tank with a circular disc roof. The theoretical solution
of Flﬁgge used for comparison has been rewritten for a different coordinate

system, and the revised cylindrical water tank theory is given in Appendix G.



1
. 81
Nodal line

Fig. 3.41(a): The Conical Frustrum Element

Fig., 3.1(@)} Arbitrary Rigid Body Displacement
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CHAPTER 3

FINITE ELEMENT THEORY

The finite element method provides the structural analyst with
mathematical building blocks in the form of discrete structural elements. In
the direct stiffness formulation, the mechanical behaviour of these elements
is completely described by a set of stiffness equations relating the known
forces acting on the element to the unknown displacements at pre-selected
nodes on the element. Once the mechanical behaviour of a typical element is
defined, a number of elements can be combined to idealise, and hence analyse, a

complete structure.

The first part of this chapter deals with the description of the two
elements required for the present analysis. These are the conical frustrum
element and the circular disc closure element., The latter part of this chapter
then deals with the assembly of these elements to form a complete structure,

and a description of the general solution procedure.

3.1 The Conical Frustrum Element

%.1.71 The element stiffness equations

The shell which is to be analysed is divided along nodal lines into a
series of conical frustra. Due to axial symmetry the displacements at any
point on a nodal line are uniquely described by the displacements at any one

node on this line. The element is thus effectively one-dimensional (Fig. 3.1a).

Since both bending and membrane forces are admissible, three degrees of
freedom (or nodal dispLaCements) are required at each node. At node 1 these
are the translations u, and v, (in the global coordinate system), and the
rotation Bq‘ The displacement of an arbitrary point in the middle surface
is described by the local displacement components u' and w'. The position
of such a point is given by its radius r or its distance s from node 1.

The frustrum is inclined at an angle ¢ to the axis of symmetry, the direction

of positive increase being clockwise, as shown in the figure.

The displacement functions: The displacement functions suggested by

Zienkiewicz [4 ] are,
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u' = a1 + a2s
2 3
w' = a3 + a4s + ass + a6s (3.1)
%gl = a4 + 2a5s + 3a6s

where the six arbitrary constants o, are functions of the six nodal dis-

placements of the element.

Substituting the nodal coordinates s =0 and s =1L into the dis-

placement functions we have

u% = o, ué = a, + a2L
: > 3
- = .2
W, a3 wé a3 + a4L + a5L + a6L (3 a)
dw' _ dw' _ 2
<ds )1 = % (ds )2 = % * 2a5L * 30C6L-

Egs. (3.2a) can be written concisely in matrix notation as,

{qt} = [a] {«} (3.2D)
e (6x6)

where {q'} is a column vector of the six element nodal displacements in the
local coordinate directions. The constants a, are found by inverting

(3.2b). ~These values are then substituted back into Egs. (3.1) to give
the displacements at any point within the element in terms of the nodal

displacements. We then have,

1 1 | I |
u' = u1 + s (u2 u1)
w = w1 - 3s 23'3) + wé(33‘2 - 28'3) (B.Ba)
1 zZ 1 .
+ (), 1lst - 207 4 97 + (F)) 1= 0% 4 517]
where s' = s/L is the dimensionless distance measured from node 1. In

matrix notation,

{ } [ ]{q} (3.3b)

(2x6)

The displacement functions given in Egs. (3.1) satisfy both the con-
ditions of continuity within the element and compatibility between adjacent
elements, the latter point being trivial for one-dimensional elements. The

conical frustrum element is therefore a conforming one.
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The expression for the axial strain in terms of the nodal displacement
is

u! - u!
/l

du' 2 4
) = T = T .4a
‘s ds L (3.4a)
The axial strain is clearly constant throughout the element; moreover, in the
case of a rigid body movement given by u% = ué, the axial strain vanishes.
On the other hand, any local translation or rotation of the element, whether

as a rigid body or not, must give rise to circumferential strains. If the

element is given an arbitrary rigid body movement (Fig. 3.1b) defined by.

u' = u

1 2
dw'
_ ] —
wy = wh o+ L35,
dw' dw!
(ds )2 - (ds )1

then the circumferential strain is,

_u' sin ¢ + w' cos ¢
8 r

u! sin w! s(éﬂl cos
_ W P+ g+ sl 4 (3. 4v)

r

For a local rigid body movement then, the circumferential strain does not

(£5)
ds 1
the strain is not even constant, as indicated by the term in s. However,

vanish. In fact, if the element rotates as a rigid body by an amount

if the conical frustrum undergoes a global rigid body movement as shown in the

right hand side of Fig. 3.71(b), and defined by,

u% = u cos ¢
- w% = u sin ﬁ
dw!
and (55 = 0

then the circumferential strain €9 given by EKg. (3.4b) does in fact vanish.
The axial strain eS clearly also vanishes. Hence, since this is the only
rigid body movement of the frustrum as a whole, possible within the limitations

of axially symmetric deformations, the conical frustrum element is complete.
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Transformation and the shape function: The relationship between the local

and global displacements at the nth node is,

B uﬁ ] B cos ¢ sin ¢ 0 u,
w£ = |- sin ¢ cos ¢ 0 . W (3.5a)
dw!
- 1
(ds n 0 0 Bn
W - — L.... —

which may be written as,
1 = .5b
{a}} (r 1. {a} (3.5v)

For the element as a whole we therefore have,

fa'3 = [7]. {a} (3.5¢)

—
3
—
il
s

where

BEq. (3.3b) may therefore be rewritten as,

il

() = 0] 0] (o)

[ .ba
(2§g) {a ] (3.6a)

Il

The matrix [N] is called the shape function of the element and is given by,

The strain-displacement relationships: The relationship between the strains,

curvatures, and displacements of a point in the middle surface is, from Egs.

(2.14),
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T T aw
S ds

u' sin ¢ + w' cos ¢

6 r
{e} = = dZW, (3.73)
X - —
S d32
_ sBin g dw'
Xg r ds

p—

. e L

We now require a relationship between the strain components and the six

nodal displacements of the element, of the form,

{e} = [B]. {a.} (3.7b)
(4x6)

The matrix [B] can be derived in explicit form by differentiation of the

shape function [N ].

The stress-strain relationship: Four stress resultants are required to

completely define a state of axisymmetric stress in a conical frustrum. These

are shown acting on a small element of the frustrum in Fig. 3.2.

Under certain conditions, for example, changes in temperature, the
element may be subject to initial strains {eo}. In such cases the actual
stresses are caused by the difference between the actual and initial strains,

the relationship being of the form,



18.

oy = | O] = ] ({e} - {e,]) (3.8)

where [D] is the elasticity matrix given by,

[+ vt 0 0
vt % 0 0 _
[D] = "‘"ﬁ'_é' 3 3 (3-98.)
Y 0 0 L ﬂ
12 2
0 o W ¥
2 0

] = —&5 ] (3.90)
1 =V

The element stiffness matrix and load vector: The element stiffness matrix,

which expresses the fundamental relationship between the nodal displacements
and forces, will be derived here by direct application of the Principle of

Minimum Total Potential Energy.%

Let U denote the elastic strain energy density of the element, and let
{x} and {¢} be vectors containing components of the body and surface forces
respectively, acting on the element. Then the total potential energy U of

the element is,

U = Jﬁ av + f fa1” (X} av + J w}® {41 as - (3.10)
v v 5

where integration is over the volume or surface of the element as required.

The elastic strain energy density is given by,

T = Hel' [p] {e1 - {e}" (0] {e } + +e 3" [D] {e,) (3.11)

1‘SuppLemerltary notes on the Principle, including the derivation of Eq. (3.711),
may be found in Appendix C.
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Substituting for the strains {e} from Eq. (3.7v) and for the dosplace-

ments {u} from Eq. (3.6a), the total potential energy may be rewritten in

the form,
o }° [81° [0] [®] (o} av

(o )" [81° D] {e 3 av

e ey

4
rof—

[ 1e1*0] fe,3 av

v
- [ 10 7" W° fxy av
v

[ e 1" 1" g3 as (5.12)
S

Taking the first variation of U with respect to the nodal displacements

{qe} and setting it equal to zero we have,

[81° [D] [B] {q} av

[N]t {x} av
g t .
- wres | s go,) (3.13)
S
The variation § {qe} is arbitrary, from which it follows that the

expression in the square brackets must vanish. We therefore have that,

[T o)) av. o} = [[BT°[D]{e ) av + [ [w]'(x} av + [ 1% g} as

T

v v v S
(3.14)

The right hand side of Eqg. (3.14) contains expressions for the equivalent
nodal loads due to initial strains, body forces and surface forceg acting on

the element. Hence the equation may be written in the form

k] {a .} = 7)) (3.15)

where [k] is the element stiffness matrix relating the nodal load vector

{Fe} to the corresponding nodal displacement vector {qe}.
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polynomials of degree 2n - 1, e.g., the formula for n =4 is exact for
seventh degree polynomials. However, in the present application the use of

Gaussian formulae is limited for the following reasons:-

(i) The standard formulae are derived for the interval [— 1,1].
In our case we require to integrate over the interval [0,1].
Hence we must use half-interval formulae which can be derived

only from the formulae for which n is even.

(ii) We have no quantitative information on the errors involved in
using half-interval formulae, i.e. whether the half-interval
formulae are capable of the same accuracy as the full interval

formulae.

(iii) Due to the complexity of the derivation of Gaussian formulae
we have no composite formulae available. For example, the
half-interval formula for n = 4 has 3 sub-intervals (or 2
abscissae), but the number of sub-intervals cannot be increased
except by using higher order formulae (n = 6, 8, etc.); in
other words, all the half-interval formulae are limited to n/2

abscissae.

There appears, therefore,to be only one way of determining the accuracy
of the Gaussian formulae under the present limitations, and that is to use
them in an actual analysis. Our intention is therefore to compare results
obtained from the Gaussian half-formulae for n = 4, 6, 8 and 10, as well as
the Simpson's formulae for 5 and 7 points, with a view to determining which is

the most efficient.

We must now illustrate the precise method by which the gtiffness matrix
is evaluated using the 5-pcint Simpson's rule. Returning to Eq. (%.17) we

let
(2], = [[B]t (0" [8] » ] ) (3.18)

where the subscript 1 indicates that the matrices have been evaluated at
the point (si, ri) on the element. In the present illustration the matrix

[Z]i is evaluated at the following points:-
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3,41.2 Numerical integration of the element stiffness matrix

The general form of the element stiffness matrix is, from Eq. (3.14),

k] = [[8]° [p] [B] av (3.16)
v
The thickness t of the element has already been included in the elasticity
matrix [D], which has the effect of reducing the volume integration to inte-
gration over the surface area of the element. Writing the element surface
area in the form

dA 2rrds = 2qxrlds!

I

and making use of the alternate form of the elasticity matrix [Dw] (Eq. 3.9b),
the expression for the element stiffness matrix becomes,
1

(k] = (-2—@-—5) [ (81" 0] r as' (3.17)
1= VT)

The integration involved is not simple enough to warrant an explicit
formulation of the stiffness matrix. Hence, recourse must be had to numerical

methods.

We have a choice of two methods of numerical integration, viz., the Gauss
quadrature and Newton-Cotes quadrature formuLae% From the computer programming
point both methods are equally simple to apply; hence the choice of method to
be used will depend on the expected accuracy of results in relation to the

number of abscissae or sub-intervals required to achieve it.

A study of the [B] and [D*] matrices in Eq. (3.17) suggests that
we will need to integrate a sixth degree polynomial in s'. Simpson's rule,
which is the Newton-Cotes formula for n = 2, is capable of exachy
integrating a third degree polynomial. For higher order polynomials the
approximation, although not exact, may be maintained at a suitable level of
accuracy by using a larger number of sub-intervals than the basic two. Thus we
have Simpson's formulae for 4 sub-intervals (5 abscissae, or 5 points), 6 sub-

intervals (7 abscissae, or 7 points), and so on.

The Gaussian quadrature formulae are capable of exactly integrating

ot

‘A discussion of quadrature theory is given in Appendix D,
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[z],: (o, r
[2],: (
[z (
[z]4: (0,75, r
[2]5:

Applying Simpson's 5-point formula we have,

(€] = SEL 02 [[ZL +afz], + 2[2]; + 4[2], + LzJJ (3.19a)

1 - v

The final result of the matrix manipulation is a symmetrical (6 x 6)

element stiffness matrix of the form,

i i

W, K | Ky

i, I

k), = L |—— — — — (3.19b)
. U
2 |

i | i

W, ko4 | koo

Yol 3 _

Eq. (3.19b) defines the notation to be used subsequently when referring to

the stiffness matrix for the 1 th element.

%.,1.% Derivation of the element load vector

During the initial formulation of the element stiffness equations,
allowance was made for three distinct *types of loading, viz., Loading due to
initial strains, loading due to forces distributed over the surface of the
element, and loading due to forces distributed over the volume of the element.
Each of these types of loading is represented by an integral in Eqg. (3.14),
from which six equivalent nodal loads (corresponding to the three global

degrees of freedom at each node), can be evaluated,

The equivalent nodal loads will be derived here for each of the types of

loading in turn.
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The initial strain lcad vector: We will consider only the initial strains

caused by uniform changes in temperature. If the element undergoes a relative

change in temperature of @ degrees, then the initial strain vector is given

by,

(3.20)

where o is the coefficient of thermal expansion of the element material.
The two non-zerc components are the in-plane axial and circumferential strains,
and there are no initial changes of curvature. The equivalent nodal load

vector for the element is,

~U1~
kP
M, .
r ). = U‘ - I [8]" [p] {e } av
2 v
My
MZ__].
. Y 5
- ?ﬁﬂégg [[81%0"] {e,} r as' (3.21)
-V g

The integral in the above equation is very similar to the integral for the
element stiffness matrix [k] (Eq. 3.17), so that in both cases precisely the

same method of evaluation may be used.

The surface force load vector: The most common type of distributed load is

one which acts normal to the surface of the element, and whose magnitude

varies linearly from one end of the element to the other (Fig. 3.3).

The positive directions of the six equivalent nodal loads are shown in

the figure and their values are given by,
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w3 = | | = [ gy (3.22)

The vector {ﬁ} contains the components, in the local coordinate directions,
of the distributed load p, considered positive if acting in the direction of

the positive normal to the element w', i.e.

0

g = (3.23)

!‘ —
p, +s'(p, - p,)

Explicit evaluation of the surface load vector {Fe}s is a straight-
forward procedure and the expressions for the components of this vector are

given in Appendix E.

The body force load vector: The self-weight of the structure is the only body

force likely to occur in a shell structure. The equivalent nodal loads for

the self-weight of the structure are,
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mo= | ] = j[NJt X} av (3.24)
2 v

The vector {X} containg the components of the self-weight of the element,

given by,

Y sian

x1 = Ev cos ¢ (3.25a)

where 7y 1is the unit weight of the structural material. The minus sign is
due to the fact the self-weight acts in a direction opposite to the positive

normal to the element.

Again, explicit evaluation of {Fe}b is a straightforward procedure,

and expressions for the components of this vector are given in Appendix E.

Clearly, since the shell is thin the body forces may be replaced by
equivalent surface forces and vice versa. Hence, the load vector {Fe}b
amounts to the equivalent nodal loads due to a uniformly distributed vertical
load, say P, - Distributed vertical loading may therefore be included in

the analyses by making the substitution
y = <X (3.25Db)

Although it is not absolutely necessary, there is an advantage in retaining

the concept of a body force load vector. If the form of the surface load
components (Eq. 3.23) was restricted so as to take account of the self-weight
of the structure as an equivalent pressure, then the pressure at each node of
the structure would have to be calculated prior to the actual assembly of the
load vector (Eq. 3.22). By specifying the self-weight in the form of Eq.
(3.25a) however, only the parameter vy is required and no equivalent nodal
pressures are calculated. This amounts to a considerable saving in computation

as well as data input preparation.
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To summarise, the structure may be subject to three different types of
lLoading: loads due to change in temperature, surface loads, and body loads.
In addition to these loads, there may be discrete point loads (in actual fact,

line Loads) applied at the nodes of an element, given by,

F ), = ) (3.26)

These point loads are simply added in as such, so that the total equivalent
nodal load vector for a particular element is the sum of the individual load

vectors, i.e.,

{Fe} = {Fe}i * {Fe}s * {Fe}b + {Fe}L (3'27)

Care should however be taken not to add point loads to the load vectors of
both the elements adjacent to the node at which the point loads are applied;
this would be equivalent to adding in twice the actual point loads, since,
when the system load vector is assembled, the element load vectors overlap

at each node.

3.2 The Circular Plate Closure Element

It has already been mentioned that when an element closes on the axis
of symmetry the stiffness of the element becomes infinite. This is because
the stiffness matrix of the conical frustrum element contains terms of the

form,

-1 —_ m
Kt = j o - e (5.28a)
1
0
where r, ig the radius at the first node of the element, and m is a
constant depending on the geometry of the element. Integration of Eq. (3.28a)

yields,
1
k' = [m log (r1 + s' sin ¢)] (%.28b)
0

which is indeterminate when the limits r1 =0 and s' =0 are substituted.
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The conical frustrum element may therefore never be allowed to touch the axis

)

of symmetry.m The singularity at the axis of symmetry arises from the strain-

displacement relationships (Bq. 2.44), which contain the radius r in the

denominator. Greenbaum T has advanced an alternative set of relationships,

based on the shell theory of Novozhilov
in the denominator, and hence effectively overcome the singularity problem.

[12], which do not contain the radius

r
These strain-displacement relationships have been used successfully by Percy

et aL[13].

An alternative and simpler method of overcoming the singularity problem
is to derive a special element having only one node. A circular plate element
was chosen since it is mathematically easy to work with and is for practical

3¢
purposes the most generally applicable closure shape.

3.2.71 Derivation of the closure element stiffness matrix and load vector

Consider a circular plate element  of radius a and having three degrees
of freedom, or global displacements, Uy s w1 and 31 at its single node.

The local coordinate directions are defined by u' and w' (Fig. 3.4).

H

t

S—

ke
[31 l u
17 M
l@ !
'y
.

Fig 3.4: The circular disc closure element

If the element is turned ‘'upside down' so that rq becomes the outer radius
(# O), sin ﬁ becomes negative and the same situation exists, since we
then have r, = - s' sin ¢.

= L [14]
Pardoen and Hagen appear to be the only authors who describe the use
of a circular disc as a closure element. The present work is independent

of theirs.

e
b

ALAL AL
WA

In the present derivation we make use of the fact that the circular plate
is a special case of the conical frustrum when ¢ = 90°,
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The following displacement functions are assumed:

2 2
1 oo -
w = a1 + a2 (r a )
ulo= agr (3.29a)
dw'
ar - 2opT

The reason for such a choice will become apparent as the derivation progresses.

Substituting the nodal coordinate r = a 1into the above functions, we have

w! = «
! ! (3.29b)
u% = aBa
dw! o _
(&)= By = 2w

from which the generalised displacements oy are solved for in terms of the
local nodal displacements. Substituting these values back into Eq. (3.29a)

we have,

1 2 2
w' o= w! 4+ (r® - a%)
(3.29¢)

r
qt = u' -
a

Transformation from the local coordinate system to the global system is

accomplished by means of the transformation matrix Eq. (3.5b) with ﬁ = 900,

i.e.,
— — —_ —_ — —
1
u’ 0 1 0 u,
w) = -1 0 0 W, (3.30)
dw'
(dr )1 0 0 L B1
. - — po— —_—
Making use of this transformation we may rewrite Eq. (3.31&) as,
u’ 0 = 0 u
- a
\ _ -
w 1 0 5 W
Bﬁ
= [¥] {q_} (3.31)
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where [N] is the shape function for the closure element. The strain-

displacement relationships (Eq. 3.7a> for the closure element are,

e R e Y S T I
—_— - u
er dr O a 0 1
u' A
69 r © a 0 "
= 5 = (3.%2a)
d w! 0 0 i 3
X a P
r dr2 L J
dw'! 1 1
X e 0 0 -
dr a
L Qq _.l r_J L. _J
or fe} = (B] {qe} (3.32b)

Clearly the choice of displacement functions ensures that the in-plane
strains are constant and equal to each other; the same holds for the changes
of curvature., Furthermore, the in-plane strains depend only on the radial

displacement w and the changes of curvature only on the rotation Bq.

1’
The stress-strain relationships are identical to those of the conical
frustrum (Eq. 3.8) except that initial strains are not taken into account.

The relationship we recall is,

B 3%
fory = — [p] {e}
’ 1 - v
The formulation of the element stiffness matrix is again identical to
that of the conical frustrum (Eq. 3.17), except that the area dA 1is taken

simply as dA = 2grdr; hence we may write,

[k, = ———l!——— j[B] "1 [B] r dr (3.33)
(1 - v°
The closure element stiffness matrix has only two non-zero elements, an axial

stiffness and a bending stiffness, given respectively by,

2Bt

_ 2( + V)
k22 = 2 I r dr

= p) (3.34a)



20.

&2
_ 27;Et2 I 2t (1 +v) g

33 1 12a2

and k T

- O

3

- —E—M%ff - (%.34b)

The complete closure element stiffness matrix may therefore be written as,

u,{ 0o o o
[x], = W, 0 Xk, O | (3.34c)
M, B 0 0 Xy

It is interesting to note the following points in connection with the

closure element stiffness matrix:-

(1) The element has no lateral shear stiffness, (i.e., k11 =0) due

to the fact that it has only a single node. The application of
a lateral force to this node causes the element to move as a

rigid body.

k22 and k33 in Egs. (%.34) are independent of

the length (= radius) of the element. This is because these

(ii) The stiffness

stiffnesses are the relationship between total force or moment

at the circumference of the element, and the corresponding dis-
placements. It is however more meaningful to write the closure
element stiffnesses in terms of forces and moments per unit of
circumference. Thus, if M* is the total moment ~ at the circum-
ference such that

)
w5

M~ = 27a M (3.35a)

where M is the moment per unit of circumference, then we may

write for the bending stiffness per unit of circumference,

¥*

M M

k35 = 5 T Zma0

(3.35b)

The bending stiffness therefore clearly depends on the size of the
element, becoming larger as the length a of the element decreases.

A similar argument exists for the axial stiffness.
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(iii) The expressions derived above for k,, and k33 are identical
to those derived from the differential equations of equilibrium
of a circular plate in pure bending and pure axial tension. The

latter results are derived in Appendix F,

1

The equivalent nodal loads: The equivalent nodal loads at the single node

due to a uniformly distributed pressure p acting on the closure element may

be derived from Eq. (3.22), using the surface load vector,

0]
7 - J | (5.362)
1%

The equivalent nodal loads are then,

a 0
29 f [N]t r dr
0

Il

P

(3.36b)

= 27na

The components of the load vector given above are identical to the
fixed-end forces and moments in a circular plate subject to a uniformly dis-

tributed pressure p. These results are also derived in Appendix F.

%,2.2 The application of the closure element

The closure element is used to close a shell by forming a special link
between the standard conical frustrum elements approaching the axis of symmetry,

and the axis itself (Fig. 3.5a).

Part of the system stiffness matrix corresponding to this assemblage of
elements is shown in Fig. 3.5(b)= Since the closure element has only a single
node, and since this node is also common to the first standard element, the
only change in the system stiffness matrix is the addition to it of the

closure element stiffness matrix [k]c as follows:

k,,] = 0,7+ [, )
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This amounts to an increase in the diagonal stiffness shown shaded in the

figure,

If the closure element has a distributed load p acting on it, then the

1 W,| and M1 of the system load vector (also shown shaded in

the figure) are augmented by the amounts given in Eq. (3.36b). In this case

components U

the positive direction of the load p depends on the order in which the
adjoining standard elements are numbered, since the positive direction of the

normal to an element depends on whether the element is numbered from its

(V)

lower to its upper edge or vice versa. It will be noticed however that no
such rule applies to the addition of the closure element stiffnesses, since

they are independent of element numbering order or orientation.

Once the displacements at the nodes have been obtained it is nossible to
calculate the displacements at the axis of symmetry by making use of the
closure element displacement functions, in the form given in Eq. (3.31).

Substituting r =0 at the axis of symmetry we have,

u' = 0
0
y &
wé = -u, =B, (3.38)
= 0
o

which give the displacements at the axis of symmetry in the local coordinate
directions in terms of the global displacements at node 1. It is clear from
these results that at the axis of symmetry the structure may undergo dis-
placement only in the direction of the axis itself.

It has already been shown that the in-plane strains er and € and

e}
the changes of curvature Xy and X@ are constant and equal. Hence the
stress resultants Ns and Ne are constant and equal, and in the case of

Ns’ given by,

u
T - v-a ~ N (%.39a)

Similarly, the stress resultants Ms and Me are constant and equal,

3
See Section 3.3.5, Fig. 3.109.
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and in the case of M2’ given by,

BtD  dw! v d
ny = o v
12(1 = v9) dr- -

Bt B,

T cin a8 (3.39b)

A point worth considering before one makes use of the closure element is

whether in fact it is worth using at all; 1in other words, will an analysis
which uses the closure element yield results which are significantly different
from one in which a small hole is left at the axis of symmetryw. Clearly if

the closure element is small its contribution to the system load vector will

be insignificant.

The closure element's contribution to the system stiffness matrix is, as
we have shown, constant, i.e., independent of the radius a of the element.
However, as the radius of the closure element changes, so the value of r, in
Eq. (3.28b) for the adjacent element changes; hence the stiffness matrix
[k:1j in Eq. (3.37) changes. Thus the radius of the closure element, while
not affecting its own contribution to the system stiffness matrix, nevertheless
has an effect on the system stiffness matrix via the stiffness of the adjacent

element.

A quantitative evaluation of the effect of the size of the closure element
is not possible here since we have no explicit version of the conical frustrum
element stiffness matrix. We therefore defer further discussion until some

numerical results have been examined,

3,3 The Assembled Structure

In turning our attention to the structure as a whole we may describe its
behaviour in the same way as that of an element of the structure, viz., by a

set of stiffness equations of the form.
(€] {a} = &} (3.40)

where [K] is the system or structural stiffness matrix, relating the dis-
placements {q} of the nodes of the structure to the applied loads {F}

acting at these nodes. The solution of a structural problem rests therefore

2
b

In one case, viz., that of a simply supported circular plate with a central
point load, the displacements are unaffected if a very small hole is left at
the axis of symmetry. See Ref. [3], p 60.
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on the setting up and solution of Hg. (3.40). The steps in the procedure are

as follows:

(1) Set up the matrix [K] as an assemblage of element stiffness

matrices.
(ii) Augment this matrix with the appropriate load vector {F 1.
(iii) Modify the augmented matrix by applying boundary conditions.

(iv) Solve the resulting set of stiffness equations for the unknown

displacements {q}.
(v) Calculate the stresses in the structure from these displacements.
In the following sections each of these steps will be dealt with in turn, with
special emphasis being given to the problem of shell branching as it effects

the setting up and solution of the system stiffness equations.

%.%,71 The system stiffness matrix

The shells of revolution which we will consider here are composed of a
number of straight line sections (Fig. 3.6). Each section is idealised by a
number of finite elements, (cylindrical, conical or annular disc), which are
numbered consecutively from one end of the section to the other. At various
points within the structure, such as A, B and C, the shell branches, the
branching being defined simply by the fact that three elements instead of two,

meet at a single node.

The stiffness matrix for such a structure consists of a basic diagonal
band, 9 columns wide, part of which is shown in Fig. 3.7. We will refer to

such parts of the stiffness matrix as standard, being formed as follows:

_ .35 .36
Ks5 36 = %o Ty
- (3.41)
K = 100
36,37 21

At those nodes where branching occurs the standard part of the stiffness matrix
is supplemented by an off-disgonal sub-matrix, indicating that a third element
(or third node) is joined to the branch node. At this stage then we must

distinguish between the main shell and a shell branch, since the off-diagonal
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sub-matrix must be associated with the shell branch. We therefore define the
main shell at a branch as comprising the two sections over which the elements
are numbered consecutively, and the remaining section as the shell branch.
For example, if in Fig. 3.6 the elements are numbered consecutively over the
composite section% DCE, then sections DC and CE together constitute the
main shell at branch point C, and section BC the shell branch; the
numbering of the elements in section BC need bear no relation to the

numbering of the elements in the main shell.

It is worthwhile emphasising the point that the concepts of main shell
and shell branch are relative and appily only with regard to & specific branch
point. We cannot in general define an absolute main shell in a structure
which is branched. For example, section BC may be a shell branch relative
to branch point €, yet form part of the main shell relative to branch point
B.

There are two advantages to be gained by making use of this relative

concept:

(1) Any shell configuration may be analysed without the need to rigidly
define a specific main shell with attendant branches; any number
of branches may be nested within each other.

(1i) There is a good deal more leniency in the numbering of eLementsT%

Jumps in the sequence of element numbers may occur, (e.g., the

elements of section CE may be numbered 20 through 60 and those

of section AB numbered 61 through 95), and dummy elements may

also be used to break the numbering sequence between sections.

Within the framework thus established we are able to identify five
specific cases of branching, each one giving rise to a slightly different
variation in the manner in which the system stiffness matrix is set up. Each

of these cases will now be illustrated by means of simple examples.

“The word 'section' has limited meaning in the context of shell branching, and
refers specifically to a single straight portion of the shell.
3¢
A more detailed discussion of the rules for the numbering of elements is
given in Appendix A, "Program data input".
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Fig, 3.8: Branch Type 1
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Fig. 3.9: Branch Type 2

Notes on Figs. 3.8(b) through 3.12(b):

(i) Each 'block' represents a 3 X 3 submatrix.

(ii) Standard submatrices, defined by Egs. (3.441), are shown cross-hatched
non-standard sub-matrices are shaded; all other submatrices are zero

(iii) Row and column numbers refer to the relevant node.
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Branch Type 1:

The simplest type of branch occurs when the element numbering sequence

jumps from one section to another section totally unconnected to the first

(Fig. 3.8a).

The stiffness matrix associated with this type of branch remains
essentially standard, the principal change being K4O,41 = K41,4O =0,
indicating that node 40 is not joined to node 41 (Fig. 3.8b). Before stating
the second change however, it is necessary to introduce a fundamental
assumption: that each element must follow its corresponding node, i.e.

element 1 must always follow node 1i.

As a consequence of this assumption it is clear that there can be no
element 40. However, far from ignoring element 40, we retain it in name,
assign zero geometric properties to it, and call it a dummy element. Since
this dummy element has zero stiffness the setting up of the stiffness matrix
remains completely standard, the zerc stiffness sub-matrices being auto-
matically generated. Similarly, the second change referred to above will be

automatically generated by the standard procedure as follows:

39,40 _ 39

K40,40 = Koo TRy T K3
. (3.42)
40 1 44
Kpn g0 = Fop v Ry = Ky,
. 40 40
since k11 = k22 = 0

In view of the above definition of a dummy element, branch type 1, may
be defined as occurring when two consecutively numbered nodes are not joined,

and the element associated with one of the nodes is a dummy element.

Branch Type 2:

The second type of branch is that which occurs at node 5 in Fig. 3.9(a).
It is defined by the fact that the main shell with respect to branch node 5
is comprised of elements having lower numbers (3, 4, 5 and 6) than those of the
shell branch (40, 41, ....... etc.), and the numbering of the elements in the

shell branch is away from the main shell.

The changes to the system stiffness matrix are as follows:
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(i) The stiffness of the main shell at node 5 must be augmented by
the stiffness of the shell branch, i.e.
40

| 4 5
X = Ky, +k,, tk. (3.43a)

where kf? is the additional stiffness.

(ii) The connection between nodes 5 and 41 must be effected by
linking these two nodes in the system stiffness matrix, This

is accomplished by inserting the off-diagonal submatrix,

_ 4o

41,5 ~ 2ot (3.43p)

K
as shown in Fig. 3.9(b).

The insertion of this off-diagonal submatrix necessitates the generation
of a significant bedy of zero submatrices, lying between the off-diagonal sub-
matrix and the main diagonal. Special methods are therefore required for the
efficienl storage and handling of the system stiffness matrix; these methods

will be discussed in Section 3.3.4.
It is clear from the definition above that branch type 2 is always
accompanied by a type 1 branch, and in fact the two types are treated as one

composite branch type in the computer program.

Branch Type 3:

The third type of branch is that which occurs at node 9 in Fig. 3.10(a).
It is defined by the fact that the main shell with respect to branch node 9 is
comprised of elements having lower numbers (7, 8, 9, ....) than those of the
shell branch (...., 39, 40), and by the fact that the numbering of the elements
in the shell branch is towards the main shell. The latter point distinguishes

branch type 3 from branch type 2.

The changes to the system stiffness matrix, which are essentially the same

as those for branch type 2, are:

(i) The stiffness of the main shell at branch node 9 is augmented by

the stiffness of the shell branch, i.e.

B 8 9 40
K9’9 = k,, +k, + kg, (3.44a)
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where kgg is the additional stiffness.
(ii) The connection between nodes 9 and 40 is accomplished by the

insertion of the off-diagonal matrix,
(3.44b)
as shown in Fig. 3.10(b).

In the present case the absence of connection between nodes 40 and 41
does not constitute a type 1 branch, since element 40 is not a dummy element.

The lack of connection is effected by simply setting,

K44, 40

41 (3-44—C)

and  Kpy 40 = Ky

Branch Type 4:

The fourth type of branch is that which occurs at node 44 in Fig. 3.11(a).
It is defined by the fact that the main shell relative to branch node 44
consists of elements having higher numbers (41, 42, 43, 44 ....) than those
of the shell branch (.... 39, 40). Due to a certain limitation which will be
stated later, the numbering of the shell branch is always towards the branch

node,

The changes to be made to the system stiffness matrix are illustrated

in Pig. 3.11(b), and are as follows:

(i) The absence of a connecting element between nodes 40 and 41 is

effected by setting

It
(@]

K .
41,40 (3.453)

and Ky aq T Ky

(ii) The connection between nodes 40 and 44 is accomplished by the

insertion of the off-diagonal submatrix,

40
Kpa,00 = Foq (3.45b)
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(iii) The stiffness of the main shell at node 44 is augmented by the
stiffness of the shell branch,
43 44 40

Kpa a0 = ¥op Ty *kyp (3.45¢)

where kgg is the additional stiffness.

=

Branch Type D:

The final type of branch is that which occurs at node 9 in Fig. 3.12(a),
and is a special case of Branch Type 3. This type of branch is defined in the
same way as Branch Type 3, with the additional specification that the element
connecting the shell branch to the main shell at the branch node, is the last

(or highest numbered) element in the structural idealisation.

This type of branch is classified as a specific branch type for two

reasons:

(1) It is the second of two possible ways in which the element
idealisation may be terminated (the first way being for the
element idealisation to terminate at a boundary), and as such

requires special consideration.

(ii) From the computer programming point of view this type of element
termination cannot be efficiently handled as a type 3 branch,

and must be specifically programmed.

The changes to be made to the system stiffness matrix in this case are
precisely the same as those of the type 3 branch, with the exception of the
submatrices which ncow lie outside the system. The changes can be seen more

clearly by mentally superimposing Figs. 3,10(b) and 3.12(b).

An important irregularity exists in respect of the off-diagonal submatrices
of Branch Types 3 and 5, which bears emphasising. In both of these cases the

of-diagonal submatrices are given by ,

404t 40 .
K4O,9 = [k21] = k5 (3.44b, bis)
and not, as we might expect by,
K = 10 (5. 44c)

40,9 21
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The reason for this irregular use of the transposed submatrix lies in the
relative numbering of the main shell and shell branch at the respecfive branch
points. Further edification on this point may be gained by comparing the

definitions of Branch Types 3, 4 and 5.

We have already mentioned that there is a limitation on the manner in
which the elements may be numbered. This limitation is that all cylindrical
and conical sections must have their elements numbered from top to bottom, and
all circular disc sections must have their elements numbered from the axis of
symmetry towards the periphery of the disc., This rule applies where branching
is concerned, and was introduced in order to limit the number of possible ways
in which a branch type could be described to the program. It does not in any

way restrict the number or type of actual branches which a structure may have,

The concept of a 'branch type' is thus not altogether a classification of
the geometrical shapes which a branch may assume. In fact, four of the five
branch types described consist essentially of a three-pronged intersection of
eLements*, and depending on the relative numbering of the nodes at a branch
point, it is possible for an actual branch in a structure to have more than
one branch type classification. The object of this apparent duplication of
effort is to allow the analyst the maximum amount of freedom in the choice of
his element idealisation, consistent with the minimum number of idealisation

rules.

%.%.2 The system load vector

The setting up of the system load vector is a relatively simple procedure,
since explicit expressions are available for the equivalent nodal loads

corresponding tc both linearly distributed loading and dead load.

The system load vector is made up of three equivalent nodal loads U, W
and M for each node (Fig. 3.713b). Point loads, (or more correctly, line
loads), which we will assume are applied only at nodes, are broken up into
their global components, and placed directly into the appropriate row of the
load vector. It should, however, be emphasised that the value used must be

that of the total load over the circumference of the shell at that node.

* .

In the interest of simplicity, each branch type has been shown as a right-
angled intersection. The relative angles of the elements at a branch point
do not however affect the setting up of the system stiffness matrix.
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(a) (b)
Fig, 3.13

The procedure to be followed in the case of linearly distributed loads

(Fig. 3.1%a) is as follows:

The total equivalent nodal loads at a typical node 2 are formed from the sum
of the equivalent nodal loads from each of the elements adjacent to the node,

i.e.,

1 2

o

U, U, + U,
1 P

W, = w2+w1 (3.46)
1 P

M2 = M2 + M1

where Ui, wi, and Mi are the vertical and horizontal loads, and moment
respectively at node i of element Jj. Explicit expressions for the
equivalent nodal loads Ui, wi and Mi at the first and second nodes of a
general element, subject to a linearly distributed load, are given in Appendix
E. The loads U27 W and M2 are then inserted into the appropriate rows of

2
the system load vector,

The procedure in the case of dead load is precisely the same as that out-
lined above; explicit expressions for the equivalent nodal dead loads are

also given in Appendix E.

%.3.3 Nodal boundary conditions

By nodal boundary conditions is meant the imposition of kinematic
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constraints at certain nodes on the structure. Kinematic constraints may in

general be divided into two categories:

(i) Zero-displacement boundary conditions.

(iii) Elastically restrained boundaries.
The first category is by far the most common type of boundary condition en-
countered in practice, and is also the easier of the two to implement in a

computer program,

Zero displacement boundary conditions:

The system stiffness matrix represents a set of stiffness equations
expressing the relationship between known forces and unknown displacements at
the nodes. If a particular displacement is known to be gero then it does not
contribute to the value of any equation in which it appears; hence, this dis-
placement may be deleted from the system by removing from the system stiffness
matrix the column associated with this displacement. Since the stiffness
matrix must remain symmetrical, the corresponding row of the stiffness matrix

must also be removed.

In practice the row and column corresponding to the known zero-displacement
are not removed, but are set to zero. Since thiz entails having a zero on the
leading diagonal, special precautions must be taken when solving the final

system of equations. These are discussed in the following section.

Some typical examples of zero-displacement boundary conditions are given
in Fig. 3.14. 1In each example the row and column of the system stiffness

matrix corresponding to the zero displacements are set to zero.

®
®

@ eYe)
77777 . T
Clamped Clamped-pin roller-pin

@

O]

&
Q)

u1 = w7 = B7 =0 u7 = w7 =0 u7 =0



43,

Elastically restrained boundaries:

It is sometimes necessary to be able to specify an elastic support, for
example when part of a structure such as the roof of a water tank is supported

on rubber bearing pads. We will use this example to illustrate the procedure.

The actual support and its structural idealisation are shown in Fig. 3.15.

T .

Assuming that the bearing pad is incompressible and allows rotation at its

point of contact with the shell, its only effect will be to resist, elastically,
the horizontal movement of the structure. We may reason intuitively then that
the only change in the stiffness matrix will be an increase in the shear

stiffness of element 3 at node 4 (Fig. 3.7c)

To show this we insert a dummy element 4 which has only axial stiffness

k given by
W k ~k W
s . 4 (3.47a)
W5 -k k L?S

When the dummy element is included in the structural idealisation the stiffness

matrix is augmented as follows:

i | 1 ot '
: i :

Uyl = Uy
L
i, + Xk 7 W, (3.47b)
M, // B4
: /4 e
s k//ﬁ TR LY
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l}///—m—diagonaL submatrix
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off diagonal
submatrices

V0

non-zero submatrices, required to be stored,

// initially-zerc submatrices, required to be stored,

zero submatrices, not reguired to be stored.

Notes:

(i) Each block represents a {3 X 3) submatrix.
(ii) Although the diagonal submatrices are shown fully shaded (due to the
size of the diagram), only the lower half of each, including the

leading diagonal, need be stored.

Fig, 3.16: General Form of the System Stiffness Matrix
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However, the last row and column (shown shaded) are deleted, since the dis-
placement Wy = 0. Thus the net effect of the dummy element is to increase
the horizontal (shear) stiffness of the structure at node 4, while still

allowing the structure to move freely on the roller.

The stiffness k 1s the shear stiffness of the rubber bearing pad. If
the pad allows a displacement A under a shear force F, +then its shear
modulus G may be expressed by

F/A .
G = zé; (3.48a)
where A 1is the area over which the force F acts. The stiffness k is then
I
k = -E o= e (3.48b)
Knowing the shear modulus of rubber,w the contact area of the pad A, and its
thickness t, the stiffness k can be calculated and inserted into the system

stiffness matrix.

3.3.4 Solution of the system stiffness equations

The system stiffness matrix, the setting up of which is described in
Section 3.3.1, consists of a narrow diagonal band, 9 columns wide, and a
number, (depending on the number of branch points), of irregularly placed
off -diagonal submatrices (Fig. 3,16). Since the matrix is symmetrical only
half of it need be stored, and in the present work we have chosen to store the

lower half.

The normal method of storing a matrix in a 2-dimensional array will lead
in the present case to highly inefficient use of storage space, even if the
matrix is stored diagonally, because of the large blocks of unwanted zero sub-
matrices lying above and below the off-diagonal submatrices. The only initially-~
zero submatrices required are those shown cross-hatched in the figure, and
these are required in order to complete the equations containing elements of

the off-diagonal submatrices.

The only alternative is therefere to store the system stiffness matrix in

a single-dimension array. The method of doing this is illustrated in Fig. 3.17

The shear modulus of rubber is generally taken to be 0,450 MPa.
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for part of the system stiffness matrix including an off-diagonal submatrix;
the numbers refer to the subscripting of the single-dimension storage array.

The method of manipulating a matrix stored in such a way is particularly

diagonal
25 126 2712829 (%3 x %)

submatrices

30 131 321 33 34| 35

36 137 |38 | 39 | 40 {41142 | 43| 44 45| 46| 47| 48

4915015115253 |5455 56| 57158|59] 60} 61] 62

63|64 165 6616716869 70| 71| 72|73 74| 75| 76| 77

78179 80 |81
\\\\ﬂwpffmdiagonaL 7

submatrix 82 |83 84185 | 86

87 18889190 | 91|92

Fig., 3.17

difficult, since there is no relationship between the position of an element
of the matrix within the array, (i.e., its subscript), and its position within
the matrix itself, (i.e., its row and column number). Nevertheless, only one
primary 'tracking' variable is required, and it is an array containing the

number of the column in which each row begins.

Having thus set up and stored the stiffness matrix (note that absolute

storage efficiency is attained), we proceed to augment it with the load vector,

[15]

is particularly well suited to the computer solution of sets of stiffness

and to solve the resulting system of equations. The Gauss-Jordan method

equations, and in the present work a slight variation of this method is used.

The original matrix is first reduced to an upper diagonal matrix, (i.e., the

"
<

lower half of the matrix is reduced to zero), and in a second stage’ the upper
diagonal matrix is reduced to a diagonal matrix, from which the solution

follows immediately.

A subroutine BANDO has been developed for the Gauss-Jordan reduction of

a set of stiffness equations where only half the coefficient matrix, stored in

"In the pure Gauss-Jordan method the reduction to a diagonal matrix is com-
pleted in one stage only.
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a single-dimension array, is required.

It was envisaged that, for large branched structures requiring over 400
finite elements for idealisation, the coefficient matrix would become so sparse
as to cause significant deterioration in the accuracy of the solution. For
this reason a special back=-substitution subroutine BANBAC was developed in
order to compare the original load vector with the one obtained through back-
substitution, and thereby assess the accuracy of the solution. The back-
substitution (working in double precision arithmetic) was assumed to be
accurate, since each row of the coefficient matrix contains at most only 15
non~zero coefficients, and thus each back-substitution involves a maximum of
15 multiplications, The accuracy of the solution procedure may be gauged by
the fact that in a 435 element analysis involving 3 branch points, correlation
between the original and back-substituted load Vecfors was to 6 significant

figures.

A discussion of the technique employed in the subroutine BANDO 1is given

in Appendix A.

%.3.5 Calculation of stresses and moments

The solution of the system stiffness equation yields values for the three
global displacements u, w and @ at each node. The stress resultants at
any point within an element can then be calculated directly from the nodal

displacements. Combining Eq. (3.7b) and (3.8) for a given element we have,

o3 = | %1 = [I([B] {a ) - {e,1) (3.49)

To give a concise idea of the parameters involved in the stress calculations

we rewrite Bq. (3.49) in the form

{O} = — D :f(t,\)> . B=f(s'a¢7r7L) . - [D] {GO}
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—5 DI B] fa,) - 0] ()

b 3
—5 5] {a 1 - (D] {e] (3.50)
1 -V

The matrix [Sw] is called the stress matrix for element i, and is a
function of the parameters indicated in the equation. Of these parameters the
values of the dimensionless distance s', +the radius r, and the thickness t

vary along the length of the element (Fig. %.18). Hence by specifying a

Element i

Element (i+iz/,

'
\

particular value of s' (o;g s' 5;1), together with the corresponding values
of r and t, the stress resultants at any point within the element can be
calculated from the displacements at the element nodes. In practice, however,
where we are dealing with large numbers of elements of varying lengths, there
is nothing to be gained from calculating the stress resultants at points
within the element; the more systematic and meaningful procedure is to

calculate the stress resultants at the element nodes.

When two elements are connected by a particular node the stress resultants
at this node may be calculated by applying Eq. (3.50) to either of the adjacent
elements. However, because of the fundamental numerical approximations
involved, the two sets of stress resultants thus obtained will seldom be the
same. Hence the best approximation to the stress resultants at a node is

obtained by taking the mean of the stress resultants obtained for this node
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from each of the adjacent elements. For example, if node 2 in Fig. 3.18 is
assumed to link elements 1 and i +-1, then the stress resultants at node 2
are given by,

i [y NECE IR

B * *
{ol, = = 5 [57] + s [5"] (3.51)
1 - " st=1 | 2] 1 - st=0 |93

Eq. (3.51) forms the basis of the stress calculation procedure in the present

work,

There are however a number of occasions when Eq. (3.51) cannot = used,

(e.g., where three elements meet 2t a node), and other occasions whe e it

should not be used, (e.g., where there are abrupt or significant chauges in

the geometry of two adjacent elements. A convenient method of retaining the
general applicability of Bq. (3.51) is to divide the structure at such nodes
into separate sections. Thus, for the purpose of stress calculations the
dividing node is no longer the link between tow or more adjacent elements, but
forms the boundary ncde of two or more sections of the structure. The stress
resultants at boundary nodes are then calculated from the individual terms in
Eq. (3.51). For example, 1f a boundary ncde forms the beginning of a section
then the stress resultants are given by the second term in Eq. (%.51), without
the factor 4. Similarly, if a boundary node forms the end of a section, then

the first term is used.

Once the stress resultants have been calculated section by section, it
is the prerogative of the analyst to decide whether or nct it is meaningful to

average them at ncdes common to two or more sections

Once the stress resultants are known, the stresses at any point within the

shell may be calculated from the following formulae:

N 12 M .2
S

s t tB
. o (3.52a,b)
6 - £, 6
o) t t3

The first term in each formulae is the direct stress, and the second term the
bending stress. In deriving the bending stress formulae the stresses are
assumed to be linearly distributed over a rectangular cross-section, where =z
is the distance from the neutral axis, positive if in the direction of the

positive normal to the element.



(c) 180° < ¢ < 270°
O
(a) 270° < ¢ < 360°
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Sign convention:

Egs. (3.52) are based on a sign convention which was established in
Chapter 2, and retained throughout the derivation of the finite element theory.

We recall that,

(i) positive Ns denotes meridional tension, and positive N9
circumnferentional tension, and
(ii) positive Ms and MQ denote tension on the outer face of

the shell.

The convention given above for the moments MS and Me is in fact incomplete:
a positive moment causes tension on the side of the positive normal to the
element. This follows from the fact that both the curvatures Xg and Xa

are functions of the derivatives of the normal displacement w' (see Eq. 3.7a).

The implication can be seen in Fig. 3.19. If the angle ¢ lies between
90O and 270O (a state obtained by numbering the element nodes from bottom to
top), then the positive normal points towards the axis of symmetry, and a

positive moment will indicate tension on the inside face of the shell.

The interpretation of the moments therefore requires a knowledge of the
order in which the nodes are numbered (whether up the shell or down). This

could cause confusion in cases where the moments are automatically plotted by

A,
aw

computer, since without a knowledge of the node numbering we could not tell
whether a positive moment indicated tension on the inside or outside of the
shell. It is thus not advisable to number the nodes from bottom to top. This
limitation amounts to no real loss of generality since any shape of shell can

still be generated from the cases 0° < @ < 90O and 270° 5525 < 3600.

3*
The program described in this work has comprehensive automatic plotting
facilities.
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CHAPTER 4

EVALUATION AND DISCUSSION

4.1 Introduction and Definitions

The object of this chapter is to evaluate and discuss the solutions to a
number of examples of axisymmetric shells of revolution, obtained using the
computer program CONFRU, The examples have been chosen for the purpose of
checking the various features contained within the program, assessing the
accuracy of the results obtained, and to indicate the general range of
problems to which the program may be applied. The operation .of the program

is described in the User's Manual given in Appendix A.

Many more problems than are given here have been solved using CONFRU,
including water towers, sludge digester tanks and pressure vessels which are
at present in service. As far as comparing results with inde pendent solutions
is concerned, only those problems for which exact theoretical solutions are
available have been used, (except in the case of branched shells where other
methods of checking the program have been devised). In such cases, the
theoretical solutions themselves have been programmed so as to provide
accurate, reliable and comprehensive sets of comparison results. (This we
consider superior to comparison with the results of other programs or methods
of solution, and it will be noticed that at no stage are such comparisons

attempted.)

The chapter is divided into five sections, each section containing
examples of a more advanced nature than the previous section. An attempt
has been made to introduce continuity between the sections by making use in

each section of conclusions arrived at in the preceding ones.

Among the features discussed are:

¢ ot
S

(1) Methods of numerical integraticn

(ii) Choice of element aspect ratio, and the effects of changes

in element aspect ratio between different sections of a shell.

*The reason for devoting considerable attention to this aspect arose from

the observation that program SABOR 4 (c.f. Pian et al [20]) allows up to
29 points to be used in the Simpson's formula. We considered it of interest
to determine whether such high order integration formulae are really
necessary.
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(1ii) Circular plates closed at the axis of symmetry.

(iv) Linearly distributed surface loads, loads due to self-weight

of the shell, and line loads.

(v) The effect of Poisson's ratio V, particularly with regard to

hoop stresses.
(vi) Variable and/or discontinuous shell thickness.
(vii) Shell junctions and sharp changes in shell geometry.
(viii) The validity of a thin shell analysis of a thick shell.

(ix) The analysis of branched shells.

More detailed descriptions of these features are given at the beginning of

the relevant example.

In the final section of the chapter an alanysis of the computer time and

cost for some of the more important examples is given.

Definitions

(a) Element aspect ratio (or L/t ratio):

The ratio of element length to its thickness, or in the case of variable
thickness elements, its mean thickness. The element aspect ratio is used
to define the degree of element subdivision over a given section of the
shell. It will be noticed that wherever an existing subdivision is
refined, the refined subdivision always contains the original subdivision.
This is in fact a necessary condition for meaningful convergence testing

(c.f. Ref. [23], p 164).

(b) Percentage absolute error:

a Theoretical
/—'—'@h\____—"
Finite Element
Py b /
a—->b
Percentage absolute error = x 100
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Note in this connection that:

(1) The word absolute implies comparison with an exact theoretical

so lution.

(ii) Percentage errors in general give no indication as to whether the
finite element solution is a lower or upper bound one. Hence,
unless otherwise stated all finite element displacement solutions

may be assumed to be lower bound.

(iii) Where the theoretical solution is very small or zero the percen-
tage error is meaningless, so that wherever possible, compariscns

in such regions have been avoided.

It will be noticed that in the first two sections of the chapter the
majority of comparisons have been given in terms of percentage absolute
error diagrams. This has been necessary because of the high degree of
accuracy of the finite element results obtained, making it impossible to
compare the finite element and theoretical solutions directly in graphical
form. The same is also often true of individual finite element results where
differences in individual solutions are too small for direct graphical com-
parison. At the same time, however, the variation in accuracy from one
section of a shell or plate to another has on occasion been so large that

plotting to a logarithmic scale has been necessary.

4,2 Circular Cylinders and Plates: the Limiting Shapes of a Conical Frustrum

In this section we will analyse a circular cylinder under edge loading,
and a circular plate under a uniformly distributed load, the two types of
loading constituting the most and least severe types of mechanical loads

which are likely to occur.

Because of their simple geometrical shapes these examples will be used

to test some of the more basic aspects of the program.

4,2.1 Example 1: An edge loaded circular cylinder

Objectives:

(i) To investigate the accuracy and efficiency of various methods of

numerical integration.

(ii) To determine at what element aspect ratio the displacement solution

converges, and to investigate the effects of changes in element

aspect ratio from one section of the cylinder to another.



TABLE 4.1

T ’(’i\\\ /6’1\\\M ]
A
0,254
. B I I B
w

0o 0,635 0,0762 u

R Global Coordinate

Directions
C
L 0,508
[
Loadings: Material Properties:

U = 250,0 x 10° N/a E o= 1,0
W = 264,0 x 10° N/m vV o= 0
M = - 4,448 x 10° Nm/m.
Analysis Quadrature Element Subdivision%
I.D. No. Formula AR RC
C/N/01 | Simpson: mn = 5| 10 @ 0,0254 (1/%) 5@ 0,127 (5/3)
c/N/02 " : on= 7 " "
C/N/03 | Gauss : n = 4 " "
c/N/04 " ' n= 6 " "
c/N/05 " : n= 8 " "
c/N/06 " : n =10 " L
¢/c/01 | Simpson: n = 5| 3@ 0,1016 (4/3) 5 @0,11684 (1,53)
c/c/02 " 5 @ 0,0508 (2/3) 5@0,127 (5/3)
c/c/0% " 10 @ 0,0254 (1/3) "
c/c/04 " 20 @ 0,0127 (1/6) "

WAspect ratios (L/t) given in brackets.
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(iii) To determine the range of element aspect ratios which may be

expected to yield reasonably accurate stress solutions.

Degcription of the Analysis:

The data for the example are given in Table 4.1, together with a
description of the element subdivisions and gquadrature formulae used in each

of the ten analyses.

This example, (without the axial load U), was originally analysed by

Klein [16], and has also been used by many authors since[17’ 18, 19]

o test
the performance of shell of revolution elements under edge loading. The axial

load is required for when this example is used again as part of Example 6.
The theoretical solutions used here for comparison are obtained from an
independent computer program TIMCYL, which is based on the cylindrical shell

equations of Timoshenko and Woinowsky-Krieger.

Discussion of results

Numerical integration: We choose the radial displacement w, being in

general the most important displacement component, to assess the relative
accuracy of the quadrature formulae given in Table 4.1 for analyses C/N/O1
through C/N/O6. Each of these analyses is identical except for the method

of numerical integration used.

The percentage absolute error in w for the various quadrature formulae
is shown in Fig. 4.1, where the region chosen for the comparison includes the

edge of the cylinder and hence the maximum radial dispLacementTw
The results shown are abundantly clear, and we conclude that:

(i) Results obtained using either of the Simpson's formulae are far
more accurate than any of the Gaussian formulae results. This is
undoubtedly due to the fact that, for the limits of integration
required here, only half-formulae can be used in the Gaussian

process (c.f. Appendix D).

* Ref. [3], p 469

*#¥The results for the Gaussian formula, n = 8, are not shown due to a
suspected error which we suggest must arise in the source of information,

Ref. [4], p 147.
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Distance x from edge of cylinder
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(ii) There is little difference between the five and seven point
Simpson's formulae results, so that further increase in the
number of points used appears to be entirely unwarranted. More-
over, even the five point Simpson's formula results are extremely
accurate, yielding a maximum error at the loaded edge of only
0,007 ¢.

Convergence study:

We choose again the radial displacement w to investigate the general

question of convergence as stated in objective (ii).

For this purpose four analyses (each using the five-point Simpson's
rule) have been carried out. Each of these analyses has a different element
aspect ratio for the region x =0 to x =0,2032 (region 1), but all have
the same element aspect ratio (L/t = 5/3) for x> 0,2032 (region 2).

The percentage absolute error in w for each analysis is given in
Fig. 4.2,
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Distance x from edge of cylinder
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FProm these results it is clear that,

(i) Over region 1 each decrease in the L/t ratio gives rise to an
improvement in accuracy, up to a point where convergence may be

said to have occurred.

(ii) Over region 2, where each analysis has the same element aspect

ratio, the percentage errors are identical.

Of particular interest here is the fact that as region 2 is approached
all results tend to the same percentage error, and the point atiwhich this
occurs is exactly on the border between the two regions. It appears, therefore
that the relative change in the L/t ratio between the two regions does not
affect the results for region 2. The effect on the results of region 1,
however, is that the larger the relative change in the L/t ratio, the
larger the relative percentage error change between the best result of
region 1 and those of region 2; the larger this relative change is, the
wider the transition region required to effect it. Moreover, it appears that

the transition region may occur entirely within (the more important) region 1.

We conclude, therefore, that:
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(1) Convergence of the displacement results occurs for an element

aspect ratio of approximately L/t = 1/6.

(ii) Where changes in the element aspect ratio from one section to
another are deemed necessary, suitable transition regions should

be allowed for.

Accuracy of stresses and moments

The stress and moment of most significance for design purposes are the
hoop stress Og and the meridional moment MS. These guantities are cal-
culated from the displacements according to Bgq. 3.51, and in the case of a

circular cylinder the expressions are,

w (U. - u
s - —E [ 2 4y ":Li?“ll ] (4.12)

. Ve r

(4.1b)

Il

and M

s 2 L

a3 3wy 2wyt (B - By)
— J

+
12(1 - v2)

where the numerical subscripts refer to the displacements at the general set

of nodes shown in Fig. 4.3.

8 T OO
L r
w
J >C>
u L
166
Pig. 4.3

The quantities defined by Egs. (4.1) are clearly average stresses and

moments whose accuracy depends on:

(i) the accuracy of the displacement components, and

(ii) the element length L.

Hence, as a result of (ii) and the fact that both Og and Ms depend on
more than one displacement component, (e.g., Og depends on both w and u),

there can be no direct correlation between the accuracy of the displacements

(aLready investigated) and the accuracy of the stresses and moments.
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The theoretical solution for M_ is shown in Fig. 4.4(a). At the
upper edge of the cylinder Ms is equal to the applied edge moment M, and
at a short distance from the edge the meridional moment reaches a peak after

which it dies out to practically zero at the base of the cylinder.

Shown alongside the meridional moments are curves indicating the per-
centage error in the finite element solution for four values of the L/t
ratio. The three lines correspond to three points in the vicinity of the
loaded edge, and as it happens, are perfectly linear when plotted to a
logarithmic scale. These three lines indicate clearly two rather trivial

points, which we mention here for completeness:

(1) as the L/t ratio is decreased, the percentage error decreases,
(ii) as we move away from the loaded edge the accuracy of the solution

improves.

What we are particularly interested in, however, is the range of L/t
ratios which can be expected to give solutions having errors < 1%. From

the diagram these ranges are:

x = 0 (loaded edge) : L/t < 1/6
x = 0,1016 (peak moment) s 1/3 < L/t < 2/%
x = 0,20%2 (normal conditions): 2/% < L/t < 4/3.

Note that the radial displacement w at x =0, L/t = 1/6, had an error of
only 0,007%, whereas the moment MS, which depends partly on w, has for

the same point an error of just over 19,

The hoop stress distribution for the cylinder is shown in Fig. 4.4(b),
and alongside, the percentage error in the finite element solution for four
values of the element aspect ratio. The results shown are again for two
points in the vicinity of the loaded edge, but far from being linear, (as was
the case with the corresponding MS results), the curves show a marked trend
towards convergence. This is due to the fact that, because VvV = 0, O
depends only on a single radial displacement component W whose pattern of
convergence has already been illustrated. For the same reason, the Oe

results are far more accurate than the corresponding MS results.

Hence, Ge places no additional constraints on the choice of the range

of L/t ratios which can be expected to yield reasonably accurate stress and

moment solutions.



TABLE 4.2

L
5,000 g
w
D R ——
u b
' , i i i } IR 3 ] 3
0,200 Y 2
L B A 2
1,600 | 1,800 {-f,esoo_}
! I |
Loading:
p = 100 N/m2
Material Properties:
c
E = 20 x 100 N/u°
= 0,3
en i visionts
Analysis | Quadrature Element Subdivision#
I.D. No.| formula® | Remarks
U ) Regions AB, CD Region BC
D/2/01 S -5 16 @ 0,100 (1/2) | 6 @ 0,300 (3/2)
D/2/02 S -7 " "
D/2/0% G - 10 " "
D/2/04 S -5 8 @ 0,200 (1) n
D/2/05 " 4@ 0,400 (2) "
D/2/06 " 2 @ 0,800 (4)
3 Hole at centre
" \ { a3 n ’
D/2/07 7@0,200 (1) of radius 0,200
Hole at centre
" 1 @ \ " ’
D/2/08 1 ©0,800 (4) of radius 0,800
%S - 5: Simpson, 5 point. S -~ 7: Simpson, 7 point. G - 10: Gauss, n ="

**L/t ratios given in brackets.

)
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We therefore conclude with the suggestion of a general range of element
aspect ratios, viz.,
1/6 < L/t < 1
where, in regions near to concentrated loads or peak stresses, the lower end
of the range should be used. DNote, finally, that the suggestion does not

necessarily apply to regions where the stresses or moments are negligible and

where accuracy is thus of little importance.

4.2.2 Example 2: A uniformly loaded circular disc

Objectives

(i) To investigate further the accuracy of various methods of

numerical integration.

(ii) To test the circular disc closure element.

Description of the analysis

The data for the example are given in Table 4.2 together with a descrip-
tion of the element breakdown and the quadrature formulae used in each of the

eight analyses.

This example has been used by Klein [16] and Ahmad, Irons and

(19]

circular plates. The theoretical solutions used here for comparison have

Zienkiewicsz to test the performance of shell elements in analysing

been obtained from another independent computer program TIMDISC, which is

A,

based on the circular plate equations of Timoshenko and Woinowsky-Krieger.

For a uniformly distributed lateral load the in-plane stresses in a
circular plate are zero, and of the two bending moments present, only the
meridional moment is of importance. Since the meridional moment has peak
values at the centre and edge of the plate, the latter two regions have finer
element subdivisions than the middle region (BC in Table 4.2). The middle

region has the same element subdivision for all the analyses.

To limit the number of analyses required for testing the closure element,
we have limited the choice of closure elements to those having the same length

as the adjacent (standard) elements. Also, where holes have been left at the

3
Ref. [3], p 55.
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centre of the plate they too have a radius equal to the length of the adjacent

element.

Discussion of results

Numerical integration: We choose the lateral displacement u to assess the

relative accuracy of the three quadrature formulae given in Table 4.2 for
analyses D/2/01 through D/2/03. A comparison of the percentage absolute

error in u for each formula is given in Fig. 4.5.

L/t =1/2 | L/t =3/2 | L/t =1/e N

Distance x

50 40 Y 20 1,0 0
| ] i |

Displacement u:

Percentage
absolute 0,1
error

(Log scale)

0,01 |
99003
. B { 5
0,001 {_. Simpson, n = - ]
| I | |
Pig, 4.5

The displacement solutions obtained using the five and seven point
Simpson's formulae are essentially identical, yielding extremely low errors
of 0,00}%; the order of accuracy remains, moreover, constant aLbng the entire

radius of the plate.

The Gaussian results on the other hand, although reasonably accurate at
the centre of the plate, show a marked increase in error towards the edge of

the plate.

We conclude therefore that

(1) the Simpson's formulae yield far superior results than do the

the Gaussian formulae;
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(ii) there is nothing to be gained by increasing the number of points

used in the Simpson's formula above five.

The closure element: We begin our study of the closure element by inves-

tigating the percentage absolute error in the lateral displacement u for

three different values of the element aspect ratio (Fig. 4.6).

Distance x

2,0 1,5 1,0 0,5 0
l T z | 6,01
— ut =4
0,0068
—— L/t = 1 //
» ] Displacement u:
—_—— 1;/1} S, N
’ Percentage
absolute error

(log scaLe)

- ' h 0,0032
O o 74) 0,0029
e - :

| | I | 0,001

L/t = 5/2 i L/t as given

From the figure the following results are apparent:

(1) The increasing size of the closure element has no adverse effects
on the accuracy of the displacements in the rest of the plate.
(This is rather strikingly illustrated by the results for L/t = 2,
and immediately dispels the intuitive notion that the closure
element should always be as small as possibLe.) The fact, however,
that the results for L/t = 2 are the most accurate of all defies
logical explanation, particularly since, for x > 1,6 all the

analyses exhibit the same percentage error,

(ii) As the size of the closure element increases there is a general

decline in the accuracy of the displacements at the axis of

symmetry.



61.

The latter decline is due to the fact that the lateral displacement U

at the axis of symmetry is calculated from the expression,

W

(3.38, bis)

u::u+"—1
o 1 a

where uy and 61 are the lateral displacement and rotation at the closure
element's single node, and a 1is the radius of the closure element. Even
agssuming that the accuracy of u, and 81 are unaffected by the size of the
closure element (or alternatively, by the L/t ratio of the adjacent eLements),
the accuracy of v, is bound to decrease as the radius a increases, since
Eq. (3.38) assumes a state of pure bending to exist in the closure element.
It will be noticed, however, that the percentage error plotting scale is very
much exaggerated, and that the error in Uy at the axis of symmetry for

L/t =2 is only 0,0068%3 The average error over the rest of the plate is
only 0,003%, both errors being extremely small.

The necessity for using a closure element is clearly demonstrated by the
results shown in Fig. 4.7. Here the effect of leaving a small hole at the
centre of the plate is compared with that of closing the hole with a closure

element.

Distance x

2,0 1,5 10 0,5 0 10,0
B I !
110 )
B Displacement u:
: Percentage
Hole at centre, r = 0,200 absolute error
(log scale)
-— 101
- —{ 0,01
Closure element
o- o9
L | | 0,001
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The two sets of results for holes at the centre indicate, as we would
expect, that the larger the hole the worse the error in the displacement
solution. Of more importance, however, is the very significant improvement

in accuracy to be gained by using a closure element.

The necessity for using a closure element is further demonstrated by the
results for the meridional moment MS, shown in Fig. 4.8. The results for
the plate with a hole at the centre, while not very accurate, do indicate a
tendency to zero moment at the edge of the hole. Hence, in the region of
the centre of the plate, the results for a plate with a hole at the centre
will always be blatantly incorrect. However, there is a surprisingly rapid
convergence of the two bending moment diagrams with the result that over that
half of the plate nearest to the fixed end the hole at the centre does not

affect the moments at all.

300
200 éE
100
Meridional
M .
oment Ms Distance x
[/ ] 2,0 1,0
0 1 1
| ]
-100 | __ T
I
-200 | __ Closure element ) —202,8
—. — Hole at centre

Fig., 4.8

When the closure element is used the meridional moment at the axis of

symmetry is calculated from the expression,
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Bt B

Moo= o) E (3.39, bis)

Again, because this expression assumes a state of pure bending in the closure
element, the error in MO can be expected to increase as the radius a in-

creases.

The extent of the increase in error is, however, negligible, as can be
gauged from the fact that if the MS solutions for L/t =4 and L/t =2
were also plotted in Fig. 4.8 they would coincide with the curve for L/t =1

already shown there,

The overall accuracy of the meridional moments as a function of wvarious
element aspect ratios is shown in Fig. 4.9. The moments at the axis of
symmetry (x =0) are, as we might expect, the least accurate. Nevertheless,
there appears to be a fairly constant relationship between the accuracy of
these moments and the accuracy of those in the rest of the plate (except over
the region %- 51L/t 5;1), thus indicating the size of the closure element has

no special effect on the accuracy of the moments in the rest of the plate.

Element aspect ratio L/t

4,0 2,0 1,0 0,5
T 10,0

—

Meridional moment Ms:

~ Percentage absolute
10 error
(log scale)

0,1

MoMoM M
]l

] 1 | 0,01

It is also clear from Fig. 4.9 that the limits of the range of L/t ratios
which may be expected to yield reasonably accurate moment solutions are far
less stringent than those required for an edge loaded cylinder; the range
itself may be taken as 5 <L/t <4 to give less than one percent error for

all results.
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4.2.% Conclusions I

In the preceding two examples we have drawn certain conclusions which
will be made use of in all the remaining analyses. These conclusions may be

summarised as follows:-

(a) Numerical integration: The Simpson's formulae are the most accurate at
our disposal. Of these there is little improvement in accuracy to be
gained by using the 7-point formula (or for that matter even greater
numbers of points), so that in the interest of programming efficiency

the 5-point Simpson's formula will be used.

{b) Choice of element gubdivision: It is clearly not possible to define

rigidly the range of L/t ratios for which reasonably accurate results
(having errors less than 1%) may be expected, since every shell has
different geometry, loading and boundary conditions, all of which

affect the accuracy of the solution to a greater or lesser degree.

Every shell should in principle be analysed a number of times, using
successively more refined element subdivisions, to ensure that a

reasonable degree of convergence has been attained.

However, such a procedure is not always possible, either through lack of
time or for economic reasons. We therefore present broad guidelines for
the choice of element subdivision based on the analyses of an edge

loaded cylinder (representing the class of shell for which more stringent
conditions of refinement are required), and the uniformly loaded circular
plate (for which the least stringent conditions of refinement are

required). These guidelines are:

Edge loaded cylinder: 1/6 < L/t
Uniformly loaded plate: 1/2 < L/t < 4

IA

These guidelines are discussed further in Example 3 (Load case 2).

(C) Closure element:

(1) The logical choice for the size of closure element to use is to
make it the same length as the adjacent element to which it is

comnected. Under these conditions the size of the closure element
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itself has no adverse effects on the results in adjacent parts of
the shell, the accuracy of the latter results being governed by
the element aspect ratios used. In fact, even where the dis-
placements and moments at the axis of symmetry are of importance,

closure elements with aspect ratios as high as 2 may be used.

Where a circular plate is closed at the axis of symmetry, the
errors in the displacement and moment solutions resulting from a
small hole at the centre of the plate are very significant,
although highly localised, whereas the results obtained using a

corresponding closure element are excellent.



£ 4,000

=

u 10,000
6,000

2,000

TABLE 4.3
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A

Load Case 1:

Hydrostatic pressure cn cylinder wall:

Load Case 2:

\J1

Uniformly distributed pressure o,

Py

4,8 x 103 N/m2 on the

(equivaLent to the self-weight of the roof).

-

0,200 (closure element)

Material Properties:

\ =z 0,3
E = 20 x 107 nf
v o= 24 x 107 Ny

100 x 10° N/m2

roof

Analvsis Element Subdivision (Element lengths in mm) "
1.D yNo Remarks
e T AB BC CD DE
3/1/01 |14 @ 200 (1) | 10 @ 200 (1) | 16 @ 250 (1) |24 @ 250 (1) | Load Case
3/41/02 " 20 @ 100 (£) 132 @ 125 (%) " "
Open tank,
3/2/01 - - 16 @ 250 (1) | 24 @ 250 (1) | no roof.
Load Casel
Dead load
3/3/01 |14 @ 200 (1) | 20 @ 100 (&) | 32 @ 125 (¥) | 24 @ 250 (1) | of entire
structure.
3/4/01 " 10 @ 200 (1) ] 16 @ 250 (1) " Load Case /,
3/4/02 " 20 @ 100 () | 32 @ 125 (%) " "

K
3

L/t ratios given in brackets.

%% Unless otherwise stated, all analyses include the circular disc roof.
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4.3 Cylinder—Plate and Cylinder-Cone Shells: The Problem of SheLt Junctions

The cylinder-plate and cylinder-cone shells are, unlike the previous
examples, of considerable practical interest since the former forms the basis
of the closed cylindrical water reservoir and the latter is the most common
shape used for sludge digester tanks. The examples of this section therefore
have practical dimensions and loading so that the accuracy of the results may

be evaluated directly, as well as in terms of percentage errors.
Broadly speaking, the objectives of this section are:

(i) to investigate the general accuracy of results, pérticuLarLy of

the stresses and moments at shell junctions;

(ii) to examine and enlarge upon various stress and moment solutions,
and where some doubt as to the validity or interpretation exists,
to give explanations and to compare with solutions in similar

structures.

4,.3,1 Example 3: A closed cylindrical water tank

Specific objective:

To investigate the performance of the conical frustrum element in

analysing the stresses and moments at a shell-plate junction.

Description of the analysis:

The data for this example are given in Table 4.3 together with a des-~
cription of the element subdivisions used in each of the six analyses. The
theoretical solutions used here for comparison have been obtained from
another independent program FLUTAN, which is based on the cylindrical water

tank equations of FLﬁgge?

The author's solution for the closed tank is made up of the open tank

solution plus the effect of the redundant moment X1 (Fig. 4,10).

— - Xj‘_\(r:l:

h | — | 4_

Y 7 7

Fig, 4.70

* A slightly modified version of Flugge's theory is given in Appendix G.
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The moment X1 is found by equating the rotations of the open tank and the
circular disc roof at their point of Jjunction. To simplify the procedure it
is assumed that the cylinder is infinitely long, thus allowing the two boundary

conditions at each end of the cylinder, viz.,

w(0) = 0 w(h) = 0
du (4.2)
~;(o) = 0 M (nh) = X,

to be used independently to solve for the four arbitrary constants of inte-
gration. The failing of this assumption is that unless h 1is large the

moment at the upper edge of the open tank is not zero; it follows therefore
that the moment at the upper edge of the closed tank is not Xj. Allowance

has however been made for this in the theoretical solution used here.

To simplify the programming of the theoretical solution it was considered
worthwhile to reformulate Flugge's derivation of the effect of X1 in terms
of x measured from the base of the tank, (FLﬁgge derives this particular
case in terms of x measured from the upper edge of the tank.) While
results obtained using the writer's formulation agree with those obtained
directly from Flugge's equations there is no agreement on the specific
results for the author's worked example% We mention therefore, for futuvre

reference, that the author's results appear to be incorrect.

Load cases 1 and 2 in the present example have each been analysed twice
to assess the improvement in the results obtained by refining the element
breakdown in the region of the shell-plate junction, The refinement resulted
in insignificant improvements in the meridional morents, cf the ordes of
0.003%. For these two load cases, therefore, the results quoted here will be
for the analyses where the ratio L/t = 1 1ig constant throughout the

structure.

Discussion of results:

Load Case 1: We begin by examining the radial displacement w in the
cylinder as shown in Fig. 4.7171. The theoretical and the finite element
solutions coincide for the entire height of the cylinder, as can be
appreciated by observing the extremely small percentage errors in the finite

element solution, given at metre intervals down the cylinder.

The displacements in the upper half of the cylinder are perfectly linear

* Ref. [1], p 276, Fig. 5.25.
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and correspond to the function,

2
- Ya
w o= g (h-x) (4.3)
These are the displacements which would arise in the absence of kinematic
constraints at the base of the tank. The function also satisfies the con-
dition that w be zero at the upper edge of the tank; although no such
constraint is imposed on the finite element solution the results show that

it is, nevertheless, effectively satisfied.

An interesting observation in this respect is that the circular disc
roof is almost totally redundant as a means of restraining the radial de-
flection of the upper edge of the cylinder. This we conclude by noting that
the radial displacement of the open tank at its upper edge is also effectively
zero. (In fact, the radial displacement curve for the open tank is identical
to that of the closed tank except over a small region near the top of the

3

cylinder where the open tank displacements are of the order 10 ° mm Larger.)

We turn now to the meridional moment Ms shown in Fig. 4.12% The
theoretical and finite element solutions coincide, notwithstanding that the
errors in the finite element solution (given in brackets at points along the
curve), are in places greater than 1%. Again it is of interest to note that
for the lower half of the tank, the open tank solution corresponds exactly to
the closed tank solution.

What is of particular interest here, however, is the moment at the
cylinder-disc junction. Although the moments at the junction are very small
compared with those at the cylinder base (0,180 and 34,500 klNm/m respectively),
the error at the junction is only 0,%6%. Furthermore, the moments in the disc
roof given by the finite element solution are constant and exactly equal to
the value of the moment at the upper edge of the cylinder. The finite element
solution therefore maintains perfect continuity of moments at the junction,

which in turn indicates a very consistent displacement solution.

The hoop stresses at the cylinder-disc junction are continuous only if
Poisson's ratio vV is zero. This can be seen by comparing the expressions

for 9 is the disc, viz.,

* Different scales have been used to plot the moments because of the vast
difference in the magnitudes of moments in the upper and lower halves of
the cylinder.
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where the numeric subscripts refer to the nodes shown in Fig. 3.13.
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water pressure

The deformed position of the structure in the region of the cylinder-disc
junction is shown digrammatically in Fig. 4.14a, and the corresponding hoop
stress distribution in Fig. 4.14(b). Both the circumferential strain wz/a
and the radial strain (w2 - wj)/L are positive (tensiLe) and very small
since the radial displacement at node 2 is effectively zero. It follows that

the hoop stress at the edge of the disc is tensile and small.
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However, the compressive axial strain at the top of the cylinder
(u3 - uZ)/L is greater than the circumferential strain wz/a. Hence if
v > 0 the hoop stress at the upper edge of the cylinder is compressive. A
short distance from the edge the circumferential strain becomes larger than

the axial strain and the hoop stress again becomes tensile.

The overall effect is a discontinuity in OH at the cylinder - disc
3
junction. This discontinuity is a misleading one since it is not caused, as
we might expect, by a radial contraction of the cylinder, but by the Poisson

contribution of the axial strain.

For practical purposes, however, this compressive stress is negligible.
Moreover, since the axial strains decrease towards the base of the cylinder
while the radial strains increase, the Poisson effect soon becomes insignifi-
cant. The hoop stresses are then given by Eq. (4.71) and may be read off from
the radial displacement curve (Fig. 4.11).

Load Case 2: Before entering the main discussion it is of interest to
compare two finite element solutions: one (Case A) where the self-weight of
the entire structure is included through the use of the body-force load vector
(Bgs. 3.24, 3.25a), and the other where the roof is subjected to a uniform

pressure equivalent to its own self-weight (Case B).

The only difference between these two analyses is that in Case A the
equivalent nodal loads due to the self-weight of the cylinder are included,
whereas in Case B they are not; the load vectors for the disc roof are
identical. We would therefore expect that the only difference in the solutions
will be the larger axial strains in the cylinder of Case A. This is in fact

what happens, as indicated diagrammatically in Fig. 4.15.

The relative displacements of the tank roof are in both cases essentially
identical, i.e., if axial strain in the cylinder were to be neglected, cases
A and B would both yield the same displacements for the roof. However, even
when the axial strains in the cylinder are allowed, the difference between
the two displacement curves is so small as to have negligible effect on the
hoop stresses and moments in the structure, i.e. cases A and B both yield

essentially the same hoop stress and moment results for the entire structure.

* Note from Egs. (4.4) that the hoop stress as such is independent of the thick-
ness of the shell. Hence, the change in thickness at the junction does not
in itself give rise to discontinuity in g
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Fig, 4.15: Vertical Displacement of the tank roof (mm)

The preceding comparison serves to clarify two points in connection with

equivalent load vectors:

(1) The body force and surface force load vectors are identical

for thin shells.

(ii) Where the self-weight of the structure is to be included in the
analysis it is far easier to use the body force load vector since
it requires only one item of data input for the entire structure,
viz., the unit weight of the shell material. The surface load
vector on the other hand requires the equivalent pressure to be
calculated at each node on the structure; although trivial this
is a time consuming calculation, particularly in the case of

inclined shell walls.

We now turn our attention to the meridional moment MS for a uniformly
distributed pressure on the tank roof. The moments are shown in Fig. 4.16
where, for the plotting scale chosen, the theoretical and finite element
solutions coincide. The moments in the lower six metres of the cylinder are

effectively zero, so that this part of the diagram has been excluded.

The percentage errors in the finite element solution are given in the
accompanying table. From the table it can be seen that there are two retions

where the error exceeds 1%. The first, between x!' =2,0 and x' = 4,0, is
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due to the fact that the moments are relatively small, the high errors being

thus of little significance.

The second of the high error regions occurs in the cylinder for =x' >5,5.
Here again, part of the error is due to the fact that the moments are small.
However, error (if it can be called this) is also likely to arise due to the
form of the theoretical expression for ,MS (with which the finite element

A

solution is oompared) which is given by

W= x, o PlaX)
S 1

cos B(h - X) (4-5)

where X1 is the redundant moment at the junction, p is a constant depen-
ding on the geometric and material properties of the cylinder, and x is the
distance measured from the base of the cylinder. It is not unreasonable to
expect a finite element solution to depart significantly from such an

cxpression,

The finite element solutions for the two critical sections, viz., the
centre of the roof and the cylinder-roof junction are, however, reasonably
accurate, having errors of only 0,38% and 0,509 respectively. Our only con-
cern here is that a further refinement of the element subdivision in the
region of the junction produced nc improvement in accuracy. It appears there-
fore that the 0,50% errcr at the junction is the best finite element result

possible.

Referring back to Table 4,2 it will be noticed that the circular plate
of Example 2 is geometrically identical to the roof in the present example.
Furthermore, both plates are subject to a certain degree of rotational fixity
at their outer edges, as indicated by the moments MF and X1 in the free
body diagrams of Fig. 4.17(a). The moment WM is a fixed-end moment due to

rigid clamping of the plate, while X1 is thi moment arising from the
rotational stiffness of the cylinder-disc junction., By replacing the value

of the distributed load in Example 2 with that of Example 3, and multiplying
all the stress results of Example 2 by the factor (48 x 103/100) =48, it

is possible to compare directly the Mg distributions in each of the examples.

The comparison is shown diagrammatically in Fig. 4.17(v)

From these curves we observe the following points:

* Appendix G, Hq. (G~18).
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Finite element solution for Ms in circular plate

TABLE 4.4
Distance M_ % error in Ms
X :
Example 2 | Example 3 | Example 2 | Example 3
0 9,73 10,61 0,17 0,38
5,0 14,99 14,11 0,03 0,50
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(1) The curves are 'parallel', i.e., a constant distance apart, the
distance being equal to MF - X1. The fact that the curves are
very close together is trivial since it is clear that by increasing
the flexural stiffness of the cylinder, X1 may be made equal to
MF' The curves would then coincide. We may verify this by taking
the limit of X vas the flexural stiffness of the cylinder, KC

1 .
tends to infinity. Making use of L'Hépital's rule,

pa2 X x
lim X, 1 _ lim c
Ke 7 710 = K o 4[2KC X+ KS(1 + V) ]
2
p— a —
- Eg— = M (4.6)

In taking the limit, the flexural stiffness of the disc K has

been kept constant, In principle then, it is possible to increase
the stiffness of the cylinder to such an extent that the cylinder
acts as a fixed end to the circular plate roof. Furthermore, the
results shown in Fig, 4.17(b) indicate that even in practice fixed
end conditions can be very closely simulated. These results will

be made use of again in Examples 6 and 7.

(ii) The finite element solution for the clamped circular plate (Example
2) is far more accurate than the finite element solution for the
circular plate forming the roof of a cylindrical tank (Example 3).
This can be seen by observing the percentage errors in the two
solutions at the centre and edge of the plate, as shown in Table
4.4, Both finite element solutions were obtained using an aspect

ratio L/t = 1.

The moments at a shell-plate junction are, as we would expect, not as
accurately represented as those at a normal fixed end. (In fact, the error
in the result for the shell-plate junction is more than 16 times greater than
the error in the fixed-end result.) However, the point is that both the
results for Example 3 given in Table 4.4 have errors less than 1%, (which may
be classified as reasonably accurate), and were obtained using an element
aspect ratio L/t = 1. Hence our guidelines for the choice of element aspect

sh3t

ratio appear to be valid for combinations of the basic shell shapes.

* The expression for X, is given in Appendix G, Eq. (G=17); the expression
for MF is given in Appendix F, Eq. (F-10).

*¥* See Section 4.2.3, conclusion (b).
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The hoop stresses at the cylinder-disc junction are, even allowing for
the Poisson effect, consistent with the radial displacements. The hoop stress
does however exhibit a very rapid reversal of sign within a short distance
from the uvpper edge of the cylinder, (Fig. 4.18b). The reason for this can be
geen by observing the deformed position of the structure in the region of the

cylinder-disc junction, as shown diagrammatically in Fig. 4.18(a).

- 73989
Q
- 75,77 ©
G\\\Ql
7 >
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/
/
/
(a) Deformed position (b) Hoop stress [kN/mgj
Fig., 4.18

The finite element solution for the hoop stress at a rigidly fixed
boundary is often misleading and requires further explanation. TFor example,
at the base node of the cylinder in the present example, the finite element
solution for the hoop stress is O@ = - 14,43 kN/mz. Clearly this is the
average hoop stress over the base element of the cylinder, (derived from the
Poisson contribution of the axial strain), since at the base node the radial

displacement is zero and hence the hoop stress must be zero.

Under certain conditions, for example in axially laded cylinders, the
Poisson contribution of the axial strains to the hoop stresses may be very
significant. In such cases the selection of a suitable Poisson ratio bears
careful consideration. This point will be examined in more detail in con-

nection with effluent tanks (section 4.6.1).

4.%.2 Example 4: An open sludge digester tank

Degcription of the analysis:

The data for this example are given in Table 4.5 together with a des-—

cription of the element breakdown used in each of the four analyses.



TABLE 4.5

. ’50!m OH
|
A
. - -
20!_ OH
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Material Properties:
>
E = 20 x 109 Lh/ft™
Vv = 0
Unit weight of water = 62,4 Lu/ft3
Loading:
P = 500 b/ft (self weight of the cylinder)
. 2
p, = 1248 1p/ft° {water pressure
>
p, = 36,67 Lb/ftL (501l reaction)
Analysi Element Subdivision®
Y sis
I.D. FRIOIN AT BC
4/1/01 20 @ 6" (L) 54 @ 4" (L)
4/1/02 20 @ 3 (+) 188 @ 2" (&)

WL/t ratios given in brackets
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The thoeretical results used here for comparison have been taken from
a worked example of FLﬁgge? Due, however, to the fact that the general
solution for a cone is written in terms of Thomson functions it has not been
possible, as in the previous examples, to program the general solution. We
are thus obliged to analyse the identical example which Fligge does; this

and the fact that only the shape of the

QLaL

e3¢
s

accounts for the Imperial units
meridonal moment diagram and its value at the cylinder-cone junction are

directly available for comparison,

In determining the loading on the tank FLﬁgge makes the following assump-

tions:-

(i) The water pressure acting on the conical bottom is transferred
straight through the wall into the ground, and hence does not

enter the problem.

(ii) The weight of the cylinder is assumed to be P = 550 lb/ft acting

as a point load at the base of the cylinder.

(iii) The load P causes a vertical soil reaction on the conical

bottom given by,

550{( 27 ){ 30
(30)°

= 36,67 Lb/ft2
which is assumed to act perpendicular to the conical bottom.

The first and third assumptions constitute what appears to be a gross
simplification of the actual conditions in the tank bottom. However, as we
shall see in the following paragraphs, there is little that can be done within

the scope of the present work to improve these assumptions.

If the slope of the tank bottom is small then the tank bottom may be
treated in the manner of a circular plate resting on an elastic scil foundation,
and subject to a uniformly distributed water pressure P, and a vertical force

v (Fig. 4.19a). Such a procedure would be extremely complex to apply and it

* Ref, [1], p 380

**The program CONFRU is dimensionless and thus independent of the particular
units used, provided they are consistent, e.g., N -m or lb- ft,
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(a) Shallow bottom

(b) Steep bottom

Fig, 4.19

is doubtful whether the end results would justify the effort.

When the slope of the tank bottom is steep-y~ the soil may be considered
as supplying a reactive pressure p, on the tank bottom, not only proportional,
as in the case of an elastic foundation, to the deflection of the tank bottom,
but also statically connected in some way with the water pressure pw and
the vertical load V (Fig. 4.79b). The axial component N may in this case
be fairly substantial, and although part of this force may be transferred to
the scil before it reaches the cone apex, it will nevertheless cause a resul-

tant vertical reaction V' at the apex.

The reaction V' suggests the inclusion of a footing at the apex of the
conical bottom. With a footing present the conditions of rigid fixity are
satisfied (for axisymmetric deformation the conditions of zero rotation and
horizontal displacement at the cone apex are already satisfied), and the
elastic kinematic boundary conditions may be replaced by a built-in condition

- at the apex.

With the apex rigidly fixed it is easier to envisage the deflected shape

of the tank bottom and to proportion P along these lines. Furthermore, the

0
*In practice the conical bottoms of sludge digesters have slopes of between 30
and 40°,
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.total reactive pressure need not necessarily equilibrate the water pressure
P, plus the load P, since part of the latter two forces may be transferred
directly to the apex footing. Clearly, however, the distribution of P,
remains, in the absence of a detailed investigation, a more or less arbitrary

choice.

It is relevant to the discussion of the results to outline briefly the
theoretical method of solution employed by Flugge. Basically the solution
consists of recognising two redundancies at the cylinder-cone junction, viz.,

a moment M and a horizontal force H (Fig. 4.20). Expressions for the

radial deflection w and the rotation X at J are then derived in terms

of the known loading P, pr and P (the self-weight of the cyLinder), and
the unknowns M and H, for the cylinder and cone separately. By equating
the deflections and rotations at J two equations are obtained which may then

be solved for M and H.

It is interesting to note again that the zolutions for M and H
obtained by Flugge are incorrect. This we ascertained by working indepen-
dently through the example. TFor all comparisons therefore the writer's own
theoretical solutions will be used. Also, for the benefit of the reader who
is mere familiar with the S.I. units the equivalent stresses in this sytem

are given for all results.

Discussion of results: Two analyses. the one using twice as many elements as

the other, have been performed, for which the displacements and rotations at

corresponding nodes are effectively identical, the two sets differing only in

the sixth significant figure. Convergence of displacements has thus clearly
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been obtained.

The meridional moments Ms given by both finite element solutions are
shown in Fig. 4,21 (the solutions coincide for the scale used here), The
shape and proportions of this diagram are, in so far as can be judged from
Flugge's diagram, identical to the latter. The actual values at the cylinder-
cone Junction for the theoretical and finite element solutions are given in

the following table.

Table 4.7: Meridional Moment MS at the Shell Junction

Units Theoretical Finite Element Percentage Error

L/t = 1/4 L/t = 1/2 L/t = 1/4 | L/t = 1/2

ft-1b/f 4
kNm/m

—
[es}
=~
O

1870 1874 1,14 1,35
8,317 8,335 n 1

[e]
N
N
~

The finite element solutions differ only very slightly and the difference
between the finite e¢lement and theoretical solutions (93 Nm/m) is clearly of
no practical significance, The relatively high percentage errors are there-

L

fore not a true reflection of the practical value of the results, which are

from this point of view very good.

It would be interesting to compare the moments in the cylinder of the
present example with those in the water-filled tank of Example 3. However,
such a comparison should be avoided since the moments at the base of the
cylinder in the present example are very much affected by the point load at
the edge of the conc. This edge load is the reason why the moments do not
change abruptly at the base of the cylinder, as they do in Example 3. Hence
the present results should not be taken as representative of the moments in

a cylinder which is partially restrained at its base.

It should also be pointed out that although the moments given for the
conical part of the tank are correct, they are not necessarily the true
moments that would occur in practice, since very much simplified assumptions
have been made for the loading. It seems unlikely, for instance, that there

will be such a large moment causing tension on the inside of the cone when



2
a ,
—— w = & (n -y
C. = L2y g
e t
x
: h
1440 960 480
Juncticn value: 846 kPa o .

. 4.22: Hoop stress On [xPa]




79.

there is a large water pressure bearing down on this section.

The distribution of the hoop stress Oy 1s shown in Fig. 4.22, Since
v =0 the hoop stress in the cylinder is directly proportional to the
radial displacement w (c.f. Eq. 4.1), so that the 06 diagram serves also
as radial displacement diagram. (The same does not apply to the conical
bottom since the hoop stresses there depend on both the radial and vertical

dispLacements).

The hoop stresses in the cylinder are much as we would expect, being
linear over the upper part of the cylinder and terminating in a relatively
large value at the base, the latter result being due to the large radial

displacement at this point. The values over the linear portion, however,
3¢

are slightly larger than those miven by the straight line distribution,
= _ Y&
06 = 7 (nh - X) (4-7)

The large hoop stresses at the upper edge of the cone are again caused by the
point load acting at this edge. Note that the marked similarity between the

n distributions in the conical bottom is of no particular sig-

o

M and o©
S
nificance since the meridional bending and hoop stresses act in planes per-

pendicular to each other.

The axial stress disfribution in the conical bottom is shown in Fig.
4,23, the axial stresses in the cylinder being clearly zero. The axial
stresses in the conical bottom may easily be explained by referring back to
the free-body diagram shown in Fig. 4.20. The outward horizontal reaction
H at the edge of the conical bottom is greater than the vertical load P.
Hence the resultant of these two forces acts so as to cause tension at the
edge of the conical bottom. However, as an edge disturbance, the effect
quickly dies out and in the remainder of the conical bottom the horizontal
component of the pressure P, causes axial compression. Both these effects

are clearly shown in the finite element solution.

In the present example the theoretical solution for the horizontal
reaction is H = 890 lb/ft (13 K/m). Summing the components of H and P

in the direction of the conical bottom we find the theoretical solution for

*See Eq. (4.3) and related discussion.
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the axial stress at the edge of the conical bottom to be 1029 Lb/ft2
(49,4 kPa). The value obtained from the finite element solution is
2
4010 Lb/ft° (48,4 kPa). Considering the complex conditions existing at the

cylinder-cone junction, the agreement is extremely good.

4.3.% Conclusions II

A considerable part of the discussion of the preceding examples has
been devoted to enlarging upon various stress and moment solutions. Some
of the more common discrepancies which may occur in the results have been
pointed out and explained in terms of the mechanical behaviour of the shell,
so as to make the general interpretation of the stresses and moments meaning-

ful.
Apart from this the following specific conclusions have been arrived at:

(a) From the practical point of view the results obtained for both
examples are excellent. For instance, in Example 3, where the
complete thecoretical meridional moment solution is available,
the plots of the finite element and theoretical solutions are
indistinguishable. In particular, the percentage errors at the

shell junctions are:

i
1l

cylinder-plate (L/t = 1 0,509

): error
+):  error = 1,35%

il

cylinder-cone (L/t

We conclude therefore that shell junctions present no special
problem and that reasonably accurate results can be obtained
without excessive refinement of the element subdivision.
Furthermore, results have shown that the finite element analyses
are capable of maintaining an excellent degree of continuity in
meridional moments at the junction, and that there isban accurate

transfer of force across the junction.

(v) Although the surface force and body force load vectors are
identical for thin shells, there are distinct advantages to be
gained by using the body force formulation where the self-weight

of the structure is to be included. These advantages are:

(i) data input is significantly reduced;
(1i) the amount of computation within the program is reduced
since the pressure distribution due to the self-weight

is not required.
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4,4 Example 5: The Thin Shell Analysis of a Thick Pressure Vessel:

Comparison with Experimental Results

Although the vessel is, as we shall see, a thick shell, this does not
prevent us from analysing it as a thin shell in order to compare the results

with those obtained from the elementary thin shell equation.

It is also, however, of interest to compare the thin shell finite
element results with the experimental results, as well as with the results
obtained from elementary thick shell equations, and thereby determine to

what extent the thin shell approximation of a thick shell is valid.
The example is of particular relevance since the majority of pressure
vessels are axisymmetric shells of revolution, many of which are, by defin-

ition, bordering between thick and thin shells.

Description of the analysis

The pressure vessel shown in Fig. 4.24 forms part of a pilot plant for
a wine distilling process? The upper part of the vessel consists of a very
thick flange (A) which is bolted to a similar flange (not shown) containing
a narrow inlet valve. A similar valve is welded into the end plate at the
bottom of the cylinder (B). The vessel is made initially in two separate

parts which are welded together at C Dbefore final machining takes place.

The relevant technical data for the vessel are given in the following

table:

TABLE 4.8
Material: Austenitic Stainless Steel
Yield Stress: 207 MPa

Young's Modutus: E = 188,9 GPa
Poigsson's Ratio: VvV = 0,3

Test Pressure: p = 26,89 MPa

The vessel is by definition a thick shell since the ratio of internal

diameter to shell thickness is,

*¥This vessel is one of four similar vessels which the Departments of CiyiL
and Mechanical Engineering at the University of Cape Town co-operated in

analysing during 1973. See Test Reports, Ref. [21].
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D,
¥£ = 10,9 < 20

Nevertheless, a comparison of the elementary thick and thin shell equations*
for the hoop stress in a cylinder (at a section remote from edge disturbances)
shows that the hoop stress obtained from the thin shell equation using the
mean diameter of the cylinder wall is very close to the maximum hoop stress

at the inside face of the wall obtained from the thick shell equation. The

calculations are as follows:

The hoop stress at a section through a thick cylinder wall having a

diameter d 1is given by,

(Di + d2) Di
Oy = . P (4.8)
6 (Di - Di) a2

where the parameters are defined in Fig. 4.25,

D
0

D.
| 1 N
r 1

_ : ““-.~N
‘w@{Jt2 R

| D

“-u_____?______
|
)

Pig, 4.25

If we write DO = Di + 2t and take Di/t = 10,9, then for d = Di the

maximum hoop stress at the inside face of the cylinder is,

oe = 5,992 p

The hoop stress in a thin shell is assumed to be constant over the

thickness and is given by,

.

7bhe elementary thick shell equations used here are obtained from Ryder [22],
p 270.
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% ~ 5 (4.9)
Writing D =D. + t and taking Di/t = 10,9 we obtain,

o} = 5,950 p
which differs from 59 by a mere 0,7%.

The above result was of particular value since in the experimental work
strain gauges could be fixed only to the outside of the cylinder and could

thus only estimate the minimum hoop stresses.

For the experimental analysis four 5 mm gauge length electrical strain
gauges were cemented to the cylinder in the positions shown in Fig. 4.24.
Gauges 1, 2 and 3 measured the hoop strain and gauge 4 the axial strain
when the vessel was filled with oil at the required test pressure. The
stresses were then calculated from the measured strains using Egs. (2.15a,b);
in the calculations the axial strains were assumed to be constant throughout

the length of the cylinder.

For the finite element analysis the upper flange was considered as
providing full fixity for the cylinder; the actual point of fixity was
chosen more or less arbitrarily at a point 13 mm up from the bottom of
flange neck. At the other end of the vessel a small hole was left in the

end plate, its diameter being that of the internal diameter of the valve.

Three analyses were carried out using different element L/t ratiocs and
the results presented here are from what appears to be the convergent

solution. The element subdivision for this analysis is:

Cylinder: 12% elements @ 0,003 ; L/t = 0,54
End plate: 5 elements @ 0,00645; L/t = 0,41

Discussion of results

We begin by considering the cylindrical part of the vessel as a thin
shell, (this does not in fact seem to be an unreasonable assumption in so
far as bending is concerned, since the cylinder wall is very thin), for

which the free-body diagram is as shown in Fig. 4.26.
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sl

366,94 p

(Dimensions in mm)

Fig, 4.26

The meridional moments M1 and M2 arise from the rotational con-
straints imposed by the rigid fixity at the upper end of the cylinder and
the thick end plate at the lower end. According to +thin shell theory these
moments give rise to local edge disturbances which quickly die out. - This is
clearly shown in the finite element results for the meridional moment in the
cylinder (Fig. 4.27); notice that the vertical scale is contracted and that
over a length constituting 959 of the cylinder, the moments are effectively

zero,

10

359,94 (NTS)

10

Fig., 4.27: Ms in cylinder [kNm/m ]
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element result is again almost identical to the thin shell theory result. The
difference between the thick and thin shell resulis is due %to the fact that
for the thin shell calculation, we put Di =D in Eq. (4.10); this is
equivalent to the incorrect assumption that the pressure on the end plate

acts over the area contained with the mean diameter D. The experimental
result lies vonveniently between the thick and thin shell results, and
allowing for the fact that the finite element and experimental results do

include the Poisson effect, the all round agreement of results is very good.
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We return now to the regions in which the edge disturbances have a

significant effect, and examine the hoop stresses at gauge points 1 and 3.

The finite element and experimental results are compared in Fig. 4.28, where
the experimental results have been assumed to follow roughly the same dis-
tribution as the finite element results., On the basis of this assumption it
seems likely that the finite element results continue to give the maximum

hoop stress in the cylinder. No adequate explanation can be found for the
peaks (or 'humps') in the finite element results at either end of the cylinder,
but these peaks probably give rise to a general overestimation of the stresses

at the very ends to the cylinder.

We conclude therefore that:
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(i) over regions sufficiently remote from edge disturbances, the
finite element solution may be used to predict accurately the
maximum hoop stresses and average axial stresses in a thick
shell wall, and

(ii) over regions affected by edge disturbances, the finite element
results may be assumed to overestimate slightly the maximum hoop

stresses.

4.5 Branched Shells of Revolution

[20]

Pian et al have analysed a complicated branched shell of revolution

using the well known SABOR 4 program, and conclude with the statement that,
while their results seem plausible, no reliable independent solution is available
and so their results are merely provided for possible future comparison. Un-
fortunately, the program CONFRU cannot be used tc provide comparison results
since the problem is beyond the reasonable scope of the program in its present
state; furthermore, no other solutions for shells of revolution could be

found.

The absence of independent solutions for comparison is, however, of

little consequence since there are more rigorous and reliable methods of

J)'.

showing that branched shell solutions given by CONFRU are correct. These
methods are outlined in the following section, and are based on the following

principle:
If for a given structure a computer program is capable of correctly
formulating the system stiffness matrix [K] and the system load vector
{F1 and if the inverse [KT1 is calculated correctly, then it follows
that the correct displacements {q} must be obtained, since
-1
o} = X7 (/) (4.11)

It is assumed in this principle that {q} will always be unique.

4.5.1 The Philosophy for testing the branched shell solution

In the preceding five examples it has been shown that the program CONFRU

kY

"For the purposes of this section 'correct' will be taken to mean 'free from,
or free of the effects of, logical error'. It is assumed that such solutions
are capable of being improved through the process of convergence.
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is capable of correctly analysing various single-wall shells of revolution
comprising conical frustra, circular plates and circular cylinders, as well
as simple combinations of these basic shapes. Closed shells and shell

junctions have been found not to create any particular problems.

It has also been shown which numerical factors influence the accuracy
of the solution and its convergence, such as the method of numerical
integration and the element aspect ratio, and what the general effect of

these factors is.

We are therefore satisfied that CONFRU is capable of formulating and

solving any single-wall problem correctly.

Now in the branching problem the system stiffness matrix undergoes
variocus major modifications over and above those regquired in single-wall
problems. These modifications have already been investigated and classified
into five 'branch types', so that, given an arbitrarily branched shell of

revolution, we know exactly what form the system stiffness matrix must assume.

However, we cannot be sure that the computer has set up such a matrix
correctly unless we know the actual values of the individual stiffnesses
beforehand. Since it is virtually impossible to calculate these stiffnesses
by hand (because of the lengthy numerical process invoLved), there is
effectively no direct method of checking that the system stiffness matrix of

a branched structure is being set up correctly by the computer.

But suppose that we have analysed the two structures shown in Fig. 4.29(a,b)
under some arbitrary loading, and that the solutions are known to be correct.
Suppose also that during solution we obtain the actual numerical values of
the individual stiffnesses in each of the stiffness matrices [K1] and [K2]
for these structures. Clearly, if we combine these structures to form the
branched structure shown in Fig. 4.29(c), then the system stiffness matrix
of the branched structure [K*] will consist basically of a combination of
the stiffness matrices for the two sub-structures. In fact, every single
individual stiffness in [K*] can always be obtained from the corresponding

substructure stiffness matrices [K1] and [K?].

Hence, knowing the form which [Kw] must assume, and the numerical
values of [K1] and [KQJ, the numerical values of [Kw] can be checked

exactly.
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Fig., 4.29: Development of a tranched shell from two single-wall shells

. 3
Moreover, in so far as X 1 and [Kz] are correct, [K | must also

1
be correct.

Precisely the same procedure may be used to check the load vector {FW}
of the branched structure. In this case, however, the process is even simpler

since the numerical value of the load vector remains unchanged by any branching

in the structure.

There remains then to check that the equation scolution subroutine
functions correctly and efficiently when [KW] contains off-diagonal sub-
matrices (as can only occur when the shell is branched). This can be done

-3
by substituting the solution back into the K ] to obtain the original

¢

load vectort

* This process requires a duplicate copy of [Kw] to be stored. Hence the
back-substitution procedure is, for the sake of storage efficiency, not a

standard feature of CONFRU.
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Each row of [K*] contains a maximum of 15 non-zero elements so that
the recovery of each value of the load vector through back-substitution
requires at most 15 multiplications and additions. Hence the rounding error
in back-substituting is negligible (the more so because double precision
arithmetic is used throughout), and any error which may occur in the back-
substituted load vector can be taken to indicate error in the original
solution. (Difficulty may be encountered in determining whether such error

in the original solution is logical or due to rounding.)

In general, however, logical and rounding errors should be cleariy dis-
tinguishable, so that back-substitution provides a reliable check on the

validity of the equation solution procedure.

A further general check cn the validity of the actual solution {q} 1is
to analyse the structure several times, each time reordering the node
numbering scheme. This has the effect of changing the form of the [K*]
matrix, while obviously not affecting the solution. Hence, if for each such
analysis identical solutions are obtained, then this constitutes a necessary

(but not sufficient) condition that the solution is correct.

Once the correct displacement solution has been obtained it is a simple
matter to check that the siresses and moments are being calculated correctly.
This can be done by spot hand calculations since the stress and moment
equations are reasonably simple. Checking of the stresses and moments should
however be unnecessary since these calculations are completely independent

of any branching in the shell.

A final superficial check on the validity of the actual stresses in the
branched shell can be made by constructing it in such a way that the stresses
in the branched structure are very similar to those in the componént sub-
structures, when analysed independently. If such correlation is actually
obtained it tends to lend plausibility to the results, Plausibility however

should never be taken as conclusive.

Clearly it is both unfeasible and unnecessary to check every branched shell
solution in the manner described in this section. However, since any

branched shell can be built up of only five branch types (in any combination

* :
During the initial testing of branched shell solutions, extremely plausible

results were often obtained, which later proved to be incorrect.



TABLE 4.10

U
N f
W Ly
76,2 508
889
250 ‘
D C B
, - 300
1000
3
75%%&%' S
1000
Loading:
M- 4,448 x 107 /o
U = 25 x 10° ¥/
Wo= 264 x 10° N/m
Material Properties:
E = 1,0
v o= 0
Element Subdivision:
AC: 70 elements @ 0,0127 m; L/t = i/6
BC: 7 " @ 0,063% m; L/t = 1/5
cD: 8 " @ 0,0615 m; L/t = 1/5
DE: 20 " @ 0,0500 m; L/t = 1/5
Analysis 1.D. No. | Branch Types Remarks
6/B1/1 2 and 5 For node numbering see Fig. 4.30
6/82/1 3 oo " see Fig. 4.3%1
6/B3/1 2 and 5 nooom " see Fig. 4.3%2
6,/D/07 - Lower substructure, see Fig. 4.33
c/c/04 - Upper substructure, see Example 1
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or number) it will suffice to check five arbitrary combinations of these five

branch types in order to satisfy ourselves that the program is of general

applicability.

In the following section then we will take two hypothetical branched
structures which have already been analysed, and apply this method of testing

to them.

4,5.2 Example 6: The analysis of a single-branch shell of revolution

Specific objectives:

(i) To confirm that the system stiffness matrix and load vector of
the branched shell are correctly formulated by comparing them
with stiffness matrices and load vectors of the component
substructure. To confirm also that the equation solution

procedure functions correctly and efficiently.

(ii) To compare the meridional moments in the branched structure with

the corresponding moments in the component substructures.

Description of the analyses

The first branched shell which we will analyse is shown in Tabel 4.10.

The upper cylinder and the edge loads U, W and M are identical to
Example 1, and the circular plate and lower cylinder together (referred to
as the lower substructure) are of the same form as Example 3. The dimensions
of the lower substructure have been chosen so as to make it as stiff as
possible relative to the upper cylinder, while maintaining a reasonable

balance of proportions for the structure as a whole.

We therefore have two simple substructures for which CONFRU is known
to give correct solutions (and hence correct system stiffness matrices and
load vectors), and which can therefore be used to test the branched shell

solution.
Three analyses of the branched shell have been performed each having
the same physical element subdivision, but with different node numbering

schemes, resulting in the use of three different branch types (2, % and 5).

It will be noticed, however, that analyses 6/B1/1 and 6/B3/1,
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although having different node numbering schemes, have the same branch type
classification. This apparent ambiguity can be explained by reference to the
relevant branch type definitions, but is in all events of no concern to the
program user, since use of the program requires no knowledge whatsocever of
branch types. The rigid classification of branch types is of use only within
the program itself to ensure that specific modifications are made to the
system stiffness matrix. As far as the user is concerned, each branch is
described essentially by the branch node number and the numbers of the

3
elements meeting at it.

Discussion of results

The form of the system stiffness matrices for the three branched shell
analyses are shown in Figs., 4.30, 4.31 and 4.32, where each differs from the

next according tc the manner in which the nodes have been numbered.

Each of the matrices is divided into two basic parts, each part essen-
tially identical to the stiffness matrix of the corresponding substructure.

This is best illustrated by the stiffness matrix for analysis 6/B2/1 where

the upper part, corresponding to nodes 1 to 70, is identical to the stiffness
matrix for analysis C/C/04, while the part corresponding to nodes 71 to 106
is identical to the stilfness matrix for analysis 6/D/01, except for the

70 (The exact

22°
numerical values in the latter submatrix can be obtained from analysis

diagonal submatrix at node 78 which is augmented with k

C/C/O4.} The connection of the two substructures to form a branch at node 78
sti

is effected by inserting the off-diagonal submatrix,

(4,122)

AL

" The tendency during the development CONFRU has been to generate as much
data as possible automatically within the program, thus reducing the amount
of input data required.

A3

Tt will be noticed that in the other two analyses the off-diagonal sub-
matrices are transposed as follows:

106
/1. - .12b
6/B1/1: K06, L3 (4 )
106
. e .12
6/B3/11 Kio6,71 = K12 (4.12¢)
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Hence, with only two submatrices in the branched shell stiffness matrix
different from the stiffness matrices for the corresponding substructure it
is a simple matter to check that the branched shell stiffness matrix has

been correctly set up by CONFRU.

The same procedure may be used to check the numerical values of the
remaining two branched shell stiffness matrices. 1In each of the system
stiffnesas watrices shown, modifications to individual submatrices are

indicated by noting the new form of the submatrix alongside it.

Need less to say, in all three analyses the system stiffness matrices

are set up correctly by the computer.

The load vectors for the branched shells have only three non-zero elements,
corresponding to the three edge loads at the top of the upper cylinder.
Checking of the load vector is trivial, (the load vector can be simply and
accurately calculated on a desk caLcuLator), and in each case it is set up

correctly by CONFRU.

When the displacement solutions were substituted back into the stiffness
matrices the original load vectors were again obtained. The three non-zero
elements were correct tn the sixth significant figure, and the worst rounding
error in the remaining zero elements was of the order of 10—8. (Spot checks
were also carried cut to ensure that the back-substitution procedure itself

was functioning Correctly.)

With the system stiffness matrices and the load vectors set up correctly,
and the equation solution procedure working efficiently, all three analyses
gave absolutely identical results for both the displacements (to six sig—~

nificant figures) and the stress resultants (to four significant figures).

The excellent agreement was in fact mildly surprising in view of the
fact that the stiffness matrices for each of the analyses differ fairly
widely in form. In particular, the storage requirements for each matrix, and
hence the amount of arithmetic involved in solving the equations, vary
significantly for each analysis. These requirements are given in the table
below for the diagonal band (9 columns wide), and the off-diagonal submatrix

and associated zeros; for each analysis the storage efficiency remains 100%.
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TABLE 4,11

Core Storage Requirements, in Double-Precision Words

6/B1/1 6/B2/1 6/B3/1

Diagonal 1581 1581 1581
Off-diagonal 364 54 307
Total 2445 1635 1888

Discussion of the meridional moments

With the lower substructure relatively stiff we can expect the upper
cylinder to behave as if rigidly fixed at its point of connection to the
circular plate. Hence, noting from Example 1 that the meridional moment MS
at the base is negligible, we anticipate no tranference of moments from the
upper cylinder to the lower substructure. The only force which will be

transferred is the axial force U, which can be considered to act as a line

load on the circular plate. Thus, for the purpose of comparison of meridional

moments, the two substructures will be analysed as shown in Fig. 4.33.

“r T t 1

W I !

lepereeerrors STIITITTIIIIT
(a) Analysis C/C/04 (b) Analysis 6/D/01

The meridional moments in the branched shell are shown in Fig. 4.34
where they are compared with the corresponding moments in the substructures,
analysed independently. The two sets of results are effectively identical,
the only region of discrepancy being, as we would expect, at the point where
the upper cylinder joins the circular plate. At this point the moments in

the cylinder, when analysed independently, are negligible, as compared to
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W = 264 x 107 N/m p, = 8,829 x 10° N/m
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Material Properties:
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as for Example €.

FG: 60 elements @ 0,015 m; L/t = &+
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A_——-/

Analysis I.D. No. | Branch Types Remarks

e
7/B1/1 1, 4, 5 For node numbering, see Fig. 4.36 :
7/B2/1 1, 4, 5 " " " , see Fig. 4.37 J
7/D/01 - Cone-cylinler substructure: see Fi%;ﬁfj
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the value 3,861 kNm/m when it is joined to the circular plate. The moments
in the plate itself are discontinuous at the branch point; notice however
that the finite element solution maintains very closely equilibrium of the
moments at the branch point, as can be seen from the following addition

(+ = clockwise moment):

30,23 + 3,861 - 33,81 = 0,28 .~ 0.

The moments in the circular plate when loaded with a line load are
continuous, and at the joint are exactly equal to the mean of the discon-
tinuous moments mentioned above (see inset, Fig. 4,34),

The moments in the branched shell are therefore precisely as we might
expect, and so provide us with a final (if superficiaL) confirmation that

the correct solution has been obtained.

4,5.% Example 7: Analysis of a doubly branched shell of revolution

Specific objectives:

As for Example 6.

Description of the analysis

The second branched shell which we will analyse is shown in Table 4.12,
As can be seen from the diagram it consists of the shell analysed in Example
6 with an additional branch in the “orm of a cone-cylinder (section DGF).
The geometry of the cone-cylinder branch end its loading are similar to

Example 4.

The complete shell therefore consists of three basic substructures,
each of which may be analysed independently to provide the correct numerical
values in the system stiffness matrix of the branched shell. For this purpose

the cone-cylinder substructure was analysed as shown in Fig. 4,35,

| 1000 1000

=
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Two analyses of the branched shell have been performed. each using the
same element breakdown, but with different node numbering schemes. The node
numbering schemes for the two analyses are shown in Figs. 4.%6 and 4.37:  the

notation used here is the same as that of Example 6.

Digcussion of results

Since the methods used in carrying out the objectives of this example
are the same as were used in Example 6, it suffices simply to state the

following results:

(1) The system stiffness matrices and load vectors for the two

analyses are correctly set up by the program.

(ii) Both analyses give absolutely identical results for both
displacements and stresses. (Note the total core storage
requirements for each system stiffness matrix given in the

Figures).

As far as the meridional moments Ms are concerned the cone-cylinder

branch has, due to its very small relative stiffness, negligible effect on

@

the rest of the shell. Hence the moments in those parts of the structure

corresponding to Example 6 remain essentially unchanged.

The moments in the cone-cylinder branch are shown in Fig. 4.38(a) where
they are compared with those in the corresponding substructure (Fig. 4.35).
When this branch is analysed independently (i.e. fixed at its bottom end )
the moments in the lower part of the cone die out (c.f. Example 4, Fig. 4.21).
However, when analysed as a branch, the moments have a peak at the branch
junction; this is to be expected in view of the fact that the junction D
is not infinitely stiff, and as such the equilibrium of moments at the
junction must be maintained. Notice that the equilibrium of moments at
the junction is very accurately maintained (the unbalanced moment being
only 0,030 kN m/m), and that the moments in the conical branch are in fact

negligible compared with those in the rest of the shell.
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— Branched shell results
-—- — Substructure results
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(b) Moments at shell (a) M in the cone-cylinder
junction D [kNm/m] Lranch [Nm/m}
Fig. 4.38

We conclude, therefore, that the soluticn given by CONFRU for the

doubly branched shell is correct,

4.6 An Bxample from Practice

We have shown in the preceding two examples that the solution given by
CONFRU for a single and a double branched shell are correct (i.e., free of
logical errors, and hence capable of being improved if necessary by refine-—
ment of the element subdivision), and although the full branching logic of
the program has been tested only picce by piece, we are nevertheless con-
fident that any arbitrarily branched shell can be equally effectively
handled.

Up to now, however, we have avoided the question of the accuracy of the
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branched shell solutions (due to the lack of independent solutions for
comparison), and in the following example we will discuss this aspect in

relation to practical design requirements.

The example, which is analysed under both live and dead loads, serves

also to illustrate the potential of the progran.

4.6,1 Example 8: The analysis of an elevated effluent tank

The elevated effluent tank shown in Fig. 4.%9 has a capacity of 450 m3

and forms part of a sewage plant completed recently for the City of Durban.
The tank and its supporting tower have an overall height of'21,690 m and the
structure as a whole is very slender; in fact the tower and the inner
cylinder of the tank are by definition thick shells, having D/t ratios of
14 and 12 respectively.

This structure, being made up entirely of a combination of cylinders,
conical frustra and circular plates, is the type of structure for which

CONFRU was specifically developed.

Three analyses of the structure have been carried out, for which the
data are given in table 4,13, For each analysis the structure is
assumed to be rigidly fixed at the base of the tower H, and a closure
element is made use of at G where the tank is closed. There are three

branch points at B, E and F.
The following objectives are dealt with in this section:

(1) The automatic plotting facilities attached to CONFRU are
illustrated, and the interpretation of plotted output is

discussed.

(ii) The accuracy of the solution is assessed by investigating the
improvement in results obtained by refinement of the element

subdivision.

(1ii) The live and dead load stress distributions are discussed.

Analysis ST/1/1 is also used as a sample analysis for future
reference and the complete data input, as well as the displacement, stress

and moment solutions are given in Appendix A,



TABLE 4.13

Material Properties:

Reinforced concrete: E = 20 x 109 N/mg
vo= 0,167
y = 24 x 10° N/m°
Effluent: v = 10 x 10° N/m3
Loading:
Load Case 1: Live load; tank completely filled with effluent.
Leoad Case 2: Dead load; self-weight of the structure only.

Analyses:
ST/1/1:
ST/1/2:
ST/2/1:

211 elements

414 elements

Load Case 1,

Logd Case 1,

o)

Load Case 2, 211 elements,

Element Subdivision*
Section ST/1/41 and ST/2/1 sT/1/2
AB 3 @ 100 (0,4) 3 @ 100 (0,4)
BC 19 ¢ 202 (0,8) 78 @ 101 (0,4)
cD 9@ 202 (1,0) 18 @ 101 (0,5)
+ 24 & 203 + 48 @ 101,5
DE 7¢ 205 (0,8) 14 @ 102,5 (0,4)
+ 15 @ 206 + 30 @ 10%
EF 4 ¢ 159 (0,5) 6 @ 106 (0,4)
FG @ 150 (0,5) 7 @ 100 (0,3)
+ 1@ 100
+ closure element + closure element
BF 56 € 150 (1,2) 112 @ 75 (0,6)
10 @ 149 20 @ 74,5
EH 59 @ 200 (1,0) 118 @ 100 (0,5)

Blement lengths in mm; approximate L/t ratio in brackets
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Discussion of Results

Computer plotted output: A computer plot of the live and dead load stresses

and moments in the shell structure is shown in Fig. 4.40. Plotted output,
while always an advantage, is particularly useful where large numbers of
elements have been used in an analysis, resulting in many pages of printed
output, which are tedious to scan and assess. The plotting facilities

available with CONFRU have the following additional advantages:

(i) The plotting is done automatically following the relevant
analysis without any intervention on the part of the user,
(other than to specify that the plotting option is to be

made use of).

(ii) The results of up to four analyses may be plotted on one system
of axes to facilitate the comparison of different load cases,
or the use of different element subdivisions. In such cases
the lengths of the axes and the scales used are automatically
chosen so as to effect the optimum accommodation of the most
diverse ranges of results.

In order to correlate points on the horizontal axis (axial distance)

of the computer plots with the corresponding points on the actual structure,
it is necessary to refer to the printed stress and moment results, which are

set out in the following format:

Node No. Cumulative o] G M M

—— T s € S S]
Distance

Section 1

Section 2

esessss e
scass e
ses sesees
s oo

The cumulative distance in this table is identical to the axial distance
in the computer plots. It is the actual distance measured along the middle
surface of the structure from the first to the last node. Hence, knowing
the nodal numbering scheme used in the analysis (i.e., which node corresponds

to which point on the structure), the equivalent cumulative distance may be

read off from the table of printed results, and correlation between nodes on
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the structure and corresponding points on the horizontal axis of the plots
thereby obtained.

In most cases it is preferable to plot results on a line diagram of the
structure. This is easiest done by making use of the computer plot in the
following way: (the ptot of the meridional moment results for analysis

ST/1/1, shown enlarged in Fig. 4.41, will be used to illustrate the procedure).

~
[
S~

From the nodal numbering scheme used in the analysis the
cumulative distance to the beginning and end of each section
is read off from the table of printed results. (The full set
of results for this analysis is given in Appendix A; the

section numbers referred to are given in Fig. 4.39).

Making uvse of this information, the horizontal axis of the

computer plot is divided into sections (Fig. 4.41).

oo N P v - o . . -

(iii) The M diagram for cach section is transferred to the line
diagram of the structure. (Positive stresses denote tension;

pesitive moments denote tension on the side of the positive

normal to  the shell wall: see 'Sign Convention', Section

2w 2N
3.3.0).
The final result of such a transference is shown in Fig, 4.42 where
the meridicral moments for analysis ST/1/1 are shown plotted on the tension

side of the shell walls. (For clarity the inner cylinder and circular base
of the tank separated from the rest of the structure.) The same procedure
applies to the pintting of other sitresses and moments on a line diagram of

the structure.

Accuracy and validity ol results: We begin by comparing the results of the

2

: o [/ : " .
two live load analyses ST/1/1 and ST/ﬂ/z; the two analyses have average
o o . /. ‘
element aspect ratios of approximately 1,0 (211 elements) and 0,5 (4714
elements) respec

- , .. - 5 ’ 3 o v . .
Prom the M diagram already shown {Fig, 4.42) it is clear that the

~De

exclusively at the shell junctions. Hence

moments are cond:
it suffices to compare the moment results obtained from the above analyses

at the junction points cnly, as shown in the following table.
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TABLE 4.14

3¢
Mg (kN m/m] Unbalanced
Moment at Junction
Junction | Section| ST/1/1 ST/1/2 | Difference| ST/1/1 ST/1/2
BA - 2,89 (- 2,896 0
B BC 7,211 7,266 0,055 0,061 0,040
BF - 4,376 | - 4,470 0,034
CB - 3,878 876
c 2 5,81 0,002 0,00% 0
CD - 3,87% 1 - 3,876 0,007
DC - 1,862 - 1,85 13
o C .86 ,559 0,003 0,024 0,006
DE 1,886 1,865 0,021
ED 59,73 40,82 1,040
B | - 19,7%0 - 19,34 0,040 0,800 0,240
EH - 21,28 |- 21,72 0,440
G GF 1,27%2 0,722 0,510 - -
H HE 5,545 5,7%6 0,190 - -
*Positive momernt has clockwise senge.

From this

(ii)

are apparent:

The refined eloment subdivision (analysis ST/1/2) has clearly
given riue to an improvement in results, as can be seen b
b

comparing the unbalanced moments at each junction for the two

analyses.

The improvement in individual results for each section is,

however, very small. In fact, for all practical purposes the
improvements are negligible, meaning that either set of results
would give rise, for instance, to the same steel reinforcement

design for the structure.

Hence, for all practical purpozes the moments may be said to have converged.

Furthermore, there is no doubt that they are correct, and although we cannot

state the

degree of accuracy of the results, there does not, in view of (1i)

above, appear to be any need for this.
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There are some further aspects of the Ms diagram which require

comment:

(i) The surprisingly large moments in the tank roof (which is un-
loaded) may be explained by reference to the deformed shape of
structure, as obtained from the displacement results. The
displacements of the points E and F are essentially identical.
Hence, and because there is no axial strain in cylinder BF,
the displacement of point B remains essentially zero relative
to the tank base EG. The point D, on the other hand (and hence
the point C, ignoring the axial strain in CD), undergoes a
fairly large vertical displacement due to bending in the conical
section DE. The net result is that point C undergoes a
significantly larger vertical displacement than point B. The
moment diagram for the roof corresponds precisely to such a
relative displacement, and this in turn accounts for the large
edge disturbances at the upper edges of the tank's cylindrical

wallgo.

(ii) “The moments in the circular plate, section FG, are almost
exactly constant (as they should be) except for the single
value at the axis of symmetry. This error is due to the
closure element. Nohtice, however, that a significant improve-
ment i obtained through the use of a refined element subdivisicn,

A

A can he secn Trom the results for section GF in Tahle 4,74,

(i1i) There are no moments in the cylindrical tower, besides obvious
edge digstrubances, since there are no lateral loads acting on

the tower.

The M diagram for the self-weight only of the structure is shown in

o L

Fig. 4.43%, and the crnly parts of the diagram requiring comment are the

Bj

moments at junctions D and E. At junction D the moments due to self-
weight of the structure are far higher than those due to water only in the
tank, because of the fairly high vertical load at D in the former case,
and the zero vertical load at D in the latter. The reason for the
difference between the Live and dead load moments at junction E is due to
the difference in the magnitude and distribution of loads on the conical

section DE in each case.
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The hoop stresses in the cylindrical and conical parts of the structure
are shown in Fig. 4.44 for both the live and dead load cases. Since the
axial strains in the upper cylindrical sections of the structure are
negligible, the hoop stress diagrams for these sections may be read also

as radial displacement diagrams.

The hoop stresses for the live load case are much as we would expect,

(1) linearly increasing in the cylindrical sections, which are

subject to hydrostatic pressure distributions;

(ii) bulging significantly over most of the conical section, also

due to hydrostatic pressure;

(iii) zero in cylindrical tower, due to zero lateral forces.

The hoop stresses in the inner cylindrical wall of the tank are far
smaller than in the outer wall because of the restraining influence of the

circular plate at its base which permits only very small radial displacement.

The hoop stresses due to self-weight of the structure are everywhere
smaller than the live load hoop stresses. This is clearly due to the fact

that all self-weight loading is vertical, and tlus not a primary cause of

radial displacement.

The axial stresses in the cylindrical and conical secticns of the
structure are shown in Fig. 4.45 for both the live and dead load cases.
Over each seciicn the axial stress diagrams are linear (this may be con-
firmed by referring to the computer plot in Fig. 4.40), the axial stresses
being caused by components in the direction of the shell meridian of the
vertical loading. Hence, for the live load case the only axial stresses
besides those in the tower are in the conical section, increasing from 2erc
at junciicn T i = maxirum at junction E.

For the self-weight load case the axial stresses begin at junctions
B and (€, the stresses at these points being due to the weight of the
tank: roof. The axial stresses increase linearlszr down the cylindrical and
conical sections due to the linear cumulative increase in the weight of

the cylinders and cones themselves.



C B B
53 l 197
|
180 2464
e+ T
202 S
D
872
2950 116" )
Dead load
— —  Live load
Scales:
Shell wall: T em = 1T m 5
! Axial stress: 1 cm = 500 kN/m'
| A1l axial stresses shown are
/ compressive.
- D- H
2950 1429

Fig, 4,45: Dead and live load axial stresses




106.

The values given by CONFRU for the axial stresses at the base of the

tower may be confirmed by the following simple calculations:

Live Load:

Volume of effluent in tank% = 550 m3
Weight of effluent in tank = 550 no X 10 kN/m3 = 5500 kN
. . i ‘ _ b500 5500 _ . N /2
. Axial stress at tower base = St 2a(1.4) (0.2) " 3125 kN/m

The corresponding value given by CONFRU dis 2950 kN/m2. Although the
difference (175 kN/mg) is fairly large, it is equivalent to a volume of
effluent of only 30 mB. Furthermore, it should be borne in mind that the
eff luent loading is input to the program as an equivalent hydrostatic
pressure distribution, with the values at junctions C, D, E, F and B

only being given. The agreement is, therefore, very reasonable.

Dead Load:

z
Volume of material in structure = 105 m”
Weight of material in structure = 105 m3 x 24 kN/m3 = 2500 kN
2500 2500

". Axial stress at base of tower = =1430 kN/m2

2rrt 2q(1,4) (0,2)
e an O . .
The corresponding value given by CONFRU is 1429 klN/m . The agreement is

excellent.

The circumferential moments Me, which up until now have not been
mentioned, may in general be ignored, and are included in the program

CONFRU only for completeness. The reasons for ignoring these moments are:

(i)  The circumferential curvature,

: dw

- sin ¢ is
o ds 2.144
e r ( 4d)
reduces "ad absurdum" in the number and extent of the approxi-

mations involved in its derivation (see Section 2.4). The

quantity is therefore of doubtful physical significance.

(ii) For cylinders (¢ = 0), MP = 0, and for circular plates
(¢ = 900), M@ depends on the slope dw/ds and inversely on
the radius r of the plate. Hence we find that where the slope

dw/ds is large and the radius small, large values of Me resulft.

#This volume is calculated on the geometry of the middle surface of the tank,
assuming the tank to be completely full.
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Analysis | Total No. Size of | CPU. Time | Plotting Time | Total Cost
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This is well illustrated in the present example by the result for
Me at the point A, which is a free end and perhaps the most
insignificant part of the structure; at this point Me has its

maximum value for the whole structure.

4,7 Computer Time-Cost Analysis

For the prospective user of a computer program the run-times and costs
involved in making use of the program are of paramount importance. The
run-times also give a good indication of the overall efficiency of the

program.

Computer run-times for finite element analyses depend primarily on the
number of elements used in the idealisation of the structure; for CONFRU
the type of loading and the actual geometry of the structure have been found

to have a negligible effect on run-times.

The actual CPU time for a number of analyses is shown in Fig. 4.46,
plotted against the number of elements used in the analyses; the costs of
the analyses, based on the CPU +time, are also shown. The plotted points
are seen to lie very close to a straight line, from which the maximum

(extrapolated) cost of a 500 element analysis is approximately R20.
The following points should be noted in connection with Fig. 4.46:

(1) The costs obtained from the curve should be augmented by a

sum of : R2-00 to allow for cards read and pages printed.

(1i) The CPU +time depends on the computer system on which the
program is run, which is in the present case, a UNIVAC 1106 with
65 K user core. 1t is envisaged that a new 200 K dual processing
system will soon be in operation, which is expected to reduce

the CPU times given above by up to 30%.

A representative summary of plotting times and costs is given in

Table 4,15 and the following points should be noted:

(i) The plotting time depends primarily on the number of points

plotted, which is 4 X (total number of nodes).
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{(ii) The user has the choice of three sizes for the overall plot:

Smaltl: 32 x 274 cm: this size intended specifically for
Pieo, 4,40.
Pig. 4,

Medium: %8 > 38 cm: this size allows two sets of axes to an
Ad vpage.
Large: 57 x 46 cm: this size allows one set of axes to an

L4 page (see Fig. 4.41).

As can be seen from the table, plotiting costs are low and vary over a
very narrow range. It will be noticed in particular that pletiting the

results of "wo or more analyses on the same system of axes increas the

plotting time and cost by almost negligible amounts.

To summarise then, the cost of using CONFRU and its associated
plotting facilities is extremely low. For example, for a 250 element
analysis with corresponding full size plot of stresses and moments, the user

may expect to pay approximately R17.
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CHAPTER 5

SUMMARY AND CONCLUSIONS

CONFRU is a computer program which uses the finite element method for

the linear elastic analysis of variable thickness branched axisymmetric thin

shells of revolution, made up of any combination of cylinders, conical frustra

or circular plates. The various features contained in the program have been

tested, the accuracy of the solutions has been assessed and the potential of

the program illustrated. Because the program is intended for commercial use

by engineers (with perhaps limited finite element analysis experience), con-

siderable emphasis has been placed on the correct interpretation of results,

and on the conditions which should be fulfilled in order to obtain useful

solutions from the program. In this respect the chapter of results serves

also as a guide to prospective users of the program.

The essential features and capabilities of the program are:

A. Individual element properties

(a)

(b)

(c)

(1) Conical frustrum element: 2 nodes, 6 degrees of freedom;
linear meridional, cubic normal displacement functions;

compatible and complete.

(ii) Closure element: single node, 3 degrees of freedom; linear

displacement functions; compatible and complete.

Strain-displacement and stresgs-strain relationships:

Approximate thin shell theory of Flugge.

Stiffness matrix:

Derived by minimisation of total potential energy.

Eguivalent nodal loads:

Axisymmetric; derived through minimisation of total potential
energy.
(i) Concentrated line leoads.

(ii) Linearly distributed loads.
(iii) Loads due to self-weight of shell.



(e)

(f)
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Material properties:

Linear elastic, isotropic, homogeneous.

Thickness may vary linearly along the length of the element.

Properties of the structure

(e)

Axisymmetric thin shell of revolution, made up of any combination

of cylinders, conical frustra and circular plates.
May be closed at the axis of symmetry, at any number of points.
May contain any system of branching.

Boundary conditions:

i) Clamped

ii) Pinned-clamped

(
(
(iii) Pinned~-sliding
(iv) Clamped-sliding
(v) Free.

Young's modulus E and Poisson's ratio vV must be constant for the

structure.

Solution procedure

(a)

(b)

(c)

Numerical integration:

5 or 7 point Simpson's guadrature.

Solution of equations:

Gauss-Jordan; K matrix stored in single dimension array ensuring
1009 storage efficiency. Technique developed for symmetric,

sparsely populated matrices.

Back-substitutions: (optional)

Qutput

(a)

Printed output: (all optional)

(i) Geometry of structure,
(ii) Loading on structure,
(iii) System stiffness matrix,
(iv) Load vector.

(v) Boundary conditions,

(vi) Displacements and rotation at each node,

(vii) Stresses and moments at each node, printed section by section.



(b) Plotted output: (optional)

Up to four sets of stress and moment results automatically
plotted on a single system of axes; overall size of the plot is

optional,

Of the features mentioned above, the following constitute original

work by the writer:

(1) The development and implementation of a circular plate closure

element.

(ii) The development of a general algorithm for setting up the system
stiffness matrix for an arbitrarily branched shell of revolution.
It is interesting to note that since the conical frustrum element
is one dimensional, this algorithm may also be used for symmetric

plane frame analyses.

(iii) The development of an algorithm for the solution of sparsely
populated symmetric systems of equations; the algorithm ensures

1009 storage efficiency.

The correctness of the solutions given by CONFRU for single wall
shells has been demonstrated by comparison with exact theoretical solutions.
In the case of branched shells the solutions have been checked by making use
of the method of substructures, the philosophy of which is outlined in
Section 4.5.1. All solutions obtained were found to exhibit convergence as
the element subdivision was refined; in particular, shell junctions, in-
cluding the cylinder - circular plate Junction, have no significantly adverse

effects on either the convergence or the general accuracy of the solutions.
In connection with the accuracy of the solutions we have found that:

(i) For numerical integration of the element stiffness matrix the
5 point Simpson's quadrature formula is both accurate and efficient,
and there is very little to be gained in the way of accuracy by

using 7 or more points.

(ii) In Examples 1 to 4, where quantitive accuracy assessment could be
performed, convergent displacement solutions were obtained by

using element aspect ratios within the general range

1/6 < L/t < 1.



112.

The maximum meridional moment error recorded was 1,65 Z occurring
in the wall of the hydrostatically loaded closed cylindrical tank,
The errors in the moments at the shell junctions did not exceed

this value.

(iii) From Examples 6 and 7 it would appear that the branched shell
solutions are of the same order of accuracy as the single wall
shell solutions. Rounding errors were found to be negligible,
and the choice of nodal numbering scheme had no effect on the

sotution.

(iv) 1In Example 8, confirmation of solution convergence was obtained
using two element subdivisions having aspect ratios within the
range suggested above. It was pointed out that the solution
obtained using an element aspect ratio of 1 was quite suitable
for design purposes, although no quantitative measure of the

accuracy could be given.

(v) The program appears to operate equally efficiently when very
large numbers of elements are used; significant improvements in
accuracy (as gauged by the diminishing out of balance moments at
shell junctions) have been obtained using over 400 elements.

It has been shown in Example 5 that CONFRU may be used to estimate
the maximum hoop and axial stresses in thick wall shells, in those parts of
the shell sufficiently remote from edge disturbances. This is particularly
useful in the analyses of pressure vessels (which must often be classified
as thick shells by definition), where analytical thick shell solutions are

not available, or where the high cost of experimental analysis is probibitive.

Throughout the development of CONFRU one of the primary aims has been
to make the program simple to use. This aim we feel has been realised.
Data input is kept to a minimum by relying as far as possible on automatic
data generation at execution time. The user need have only a rudimentary
knowledge of finite element methods, and no technical knowledge of the
program is required: for example, branch points are denoted by simply
naming the branch node and the numbers of the elements meeting at it. 1In
this way the possibility of technical errors in the data input is greatly

reduced.

Finally, computer run-times and associated costs are, even for large

analyses, very Llow.
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CONFRU has certain limitations which provide scope for further improve-

ment. Among the items requiring further attention are:

(i)

(ii)

(iii)

At present Young's modulus K, DPoisson's ratio VvV and the unit
weight of the structural material Yy are constant for the entire
structure. Modifications which would allow these properties to
vary from section to section appear to be desirable (c.f. Pian et

al. [21], p 119)

The loading conditions applicable to a shell of revolution re=ting
on a soil foundation require investigation. Until such time, the

user should bear in mind that the solutions obtained from CONFRU,
while correct, are valid only in so far as the assumptions made

for the loading are valid.

It has been shown that where sharp edges occur between two sections
of a shell high stress and moment concentrations arise%% In fact,
the majority of shells of revolution are stiffened at these edges
with ring beams designed to absorb these stress concentrations.

In axisymmetric shells the ring beams are subject primarily to
torsion (due to the meridional moment in the shell wall), and

hoop stresses (due to radial displacement). In order to perform
their function the beams are desigined to be very much stiffer

than the adjacent shell, the stiffness being derived from the
heavy steel reinforcement in them. It is this very large relative
stiffness which precludes their indealisation as shell elements,
even as an approximation, since the relative stiffness of the

ring beam is not simply proportional to its linear dimensions, as
is the case in a normal shell element idealisation. Clearly what
is required is a special ring stiffner element having prescribed
torsional and hoop stiffnesses which take into account the rein-
forcement in the beam. The chief problem in developing such an
element is to make it compatible with the adjacent shell elements;
(this problem is discussed by Jones and Strome [27], p 216).
Hence, until such an element has been developed for CONFRU there

is no alternative but to ignore the effects of ring beams.

A

" We mention here only these improvements which fall within the stated scope

of the program.

A
W

See for example junctions D and E in Figs. 4.42 and 4.43. A discussion

of this phenomenon is also given by Flugge [1], p 350.
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There remains a final detail which while mnot a limitation of the pro-
gram (since it does not fall within the stated scope) nevertheless deserves
attention. This is the question of the elastic boundary condition and the
initial temperature strain facilities, for which the fundamental theory has
been given., Although both these facilities were at one stage available in
CONFRU in a specialised form, they have since been deleted from the system

due to lack of commercial interest. The theory, however, remains useful

for future possible reference.

In liquid containing structures the temperature gradient occurs mainly across
the thickness of the shell wall. Since the initial strain vector (Eq. 3.20)
takes no account of changes in curvature, the effects of temperature gradients
across the shell wall cannot be analysed. The formulation given here is
suitable only for uniform heating or cooling of the shell wall as a whole.
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A,71 Introduction

CONFRU is a finite element computer program capable of the linear
elastic, static analysis of variable thickness branched axisymmetric thin
shells of revoluticn subject to any system of axisymmetric mechanical loads.
The shell and finite element theory upon which the program is based has
been given in Chapters 2 and 3, and numerous results obtained from the

program are discussed in Chapter 4.

A description of the internal logic of CONFRU is given in section A.Z,
including descriptions of the individual subroutines. This information
serves primarily to supplement the input data, a detailed description of
which is given in section A.3%. Included in this section are typical run-
streams showing the relationship between the analysis program CONFRU and

the plotter program STRESSPLOT.

Sample data input and results for the analysis of Example 8 of Chapter
4 are shown in section A.4, and complete listings of all programs are given

in section A.5.

CONFRU is written in FORTRAN V as implemented on the UNIVAC 1106 series
computer. A complete deck of cards for the program is available and the
program is maintained permanently on both disc and magnetic tape at the
University of Cape Town Computer Centre. CONFRU is therefore immediately

available to any interested user.

In the descriptions that follow {(except for the input of data), it is

assumed that the user has a basic knowledge of FORTRAN V.
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A.2 The Internal Logic of CONFRU and STRESSPLQT

A.2.1 General Degcription: CONFRU main program

CONFRU is structured in modular form, i.e., it consists of a main
program and a series of independent subroutines. The functions of the
main program are to coordinate the steps in the analysis by making decisions
and calling the relevant subroutines, and to perform all input/output. The
actual analysis is performed by the various subroutines acting either alone

or in conjunction, each of which has a specific function.

A macro flow chart for the main program (MAIN) showing the steps in
the analysis and the fourteen subroutines called, is given in Fig., A.1; a
description of each subroutine is given in section A.2.2. Among the general

features of the program are the following:

(a) ALl arithmetic is performed in double precision.

(b) ALl real variable arrays are dynamically dimensioned.7 The

advantages of this form of dimensioning are:

(1) Compatibility of dimensiong of variables in the main
program and the corresponding variables in the sub-

routines is ensured.

(ii) The dimensions of all similarly dimensioned variables in
both the main program and the subroutines may be changed
by changing a single number which appears on the first

card of the main program.

\c) All printed output is optional. The user may select exactly
which cutput is reguired. This is particularly useful in those
cases where the program is executed from a remote terminal.

(d) The modular form of the program allows subsidiary steps in the
analysis to be ignored if not required. For example, if there
are no concentrated line loads acting on the structure, the
subroutine PTLOAD is ignored.

(e) Stress and moment results are automatically written into a

computer disc¢ file for future plotting. The actual plotting is

performed by a separate program STRESSPLOT, described in section

A2.3

% ) . '
See also 'Maximum size of analysis possible", section A.3.3.
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Figure A.1: Macro flow chart for CONFRU main program
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A,2,2 Descrivtion of CONFRU subroutines

There follows a description of each of the subroutines used in CONFRU,
In each subroutine, its function, input and output variables, and a brief
description of its salient features are given. The subroutines are des-
cribed in the order in which they appear in the macro flow chart of Fig.

AT,

The information given here serves only as the first step towards a
programmer's reference and is not intended to be complete. The descriptions
should be viewed rather as augmenting the preparation and coding of input
data, and to this end particular attention has been paid to the input and

output variables associated with each subroutine

In many cases the information given here is sufficient for compiling
flow charts from the listings of the subroutines. Particular attention
has been paid to describing the use of SYSTEM and BANDO since these sub-

routines are useful outside the context of CONFRU:

Notation used for input and output variables:

(1) Variables beginning with the letters I, J, X, L, M and N

are integers, with the exception of the leng

T

i L(I) which is real.
(ii) ©Subscripted variables are arrays having the number of dimensions

indicated. ALl the other variables are constants.

(iii) Variables preceded by a star (*) are transferred to or from the
subroutine through a COMMON statement. All other variables are

transferred via the subroutine argument list.

(iv) When a variable which has already been defined is encountered in
an input or output list the name of the subroutine in which it

was defined is given in square brackets.

Subroutine PLGEOM (NSEC, NELB, NELE, RB, RE, TB, TE, L, T, R1, R2)

Function: To calculate the geometry of every element.

Input variables:

NSEC . number of sections (see definition, section A.3.1>

NELB(I): number of the first element in section I



NELE(I):

number of

the last element in section I
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RB(I) radius of the first node in section I
RE(I) radius of the last node in section I
TB(I) : thickness of shell at start of section I
TE(I) : thickness of shell at end of section I

L(J) :  length of element J.

Qutput variables:

T(J,1) thickness of element J at its start
T(J,2) : thickness of element J at its end
R1(J) : radius of element J at its start

R2(J) : radius of element J at its end.

Degcripticons: TB(I)

element /
NELB(T) /S RB(1)

R1(J)

X

element J—7 b R2(J)

RE(I)

Given the radius and thickness of the shell at the ends of each section,
and the length of each element, PIGEOM calculates the radius and thickness

at the ends (nodes) of each element.

Subroutine PLPRES (NPS, NELP4, NELP2, PRY, PR2, L, P4, PDA)

Function: To calculate the value of the pressure loading at the beginning

of each element.



124,

Input variables:

NPS : number of pressure sections (see definition, section A.3.1).

NELP1(I): the number of the first element in pressure section I.

NELP2(I): the number of the last element in pressure section I.

PR1(I) : the value of the pressure at the beginning of pressure section
I [N/mgj,

PR2(I) :  the value at the end of pressure section I.

L(J) ¢ [PLGEOWM |

Qutput variables:

P1(J) :  the value of the pressure at the beginning (first node) of
element J

PDA(J) : the pressure difference across element J.

Degcription: <, PR1(I)

element
NELP1(I)

Given the pressures and element numbers at the beginning and end of each
pressure section, PLPRES calculates the pressure at the beginning of each
element, as well as the pressure difference across each element within the

presgure section.

Subroutine SYSTEM (ND, L, R1, R2, T, NC, NM, NF, A)

Function: To set up the system stiffness matrix in a form suitable for

solution by subroutine BANDO.
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Input variables:

ND(K,M): branching information (see corresponding data input description

section A.3.2, point 10).

L(J) : ]

R1(J)

R2(J) : > [PLGEOM |

T(J,1) :

(J,2) |

N BP ¢ number of bran: pointe

SNELT @ total number of elements.

#N : total number of stiffness equations.

OQutput variables:

NC, NM, NF: counters which describe the form of A. [BANDO ]
A(T) : an array which contains the coefficients of the system

Lo : . i - 1
stiffness matrix. | BANDO |

s
b

Description:

SYSTEM builds up the system stiffness matrix, beginning at node 1
and working sequentiatly thrcugh the nodes. Each node has associated with
it 3 rows of the X matrix and hetween 1 and 3 elements. Hence, on finding
itself at node 1, SYSTEM determines which elements are Joined to node T,
CALLs for their individual element stiffness matrices (which are set up by

subroutine GELSTF), and iunserts these Lk matrices into their correct

=3

position in K. At ihe same time SYSTEM generates the counters NC, MM

and NF which describe the K matrix is taking.

The program is divided into five main parts:
(i) a part which inserts the k matrix for element 1 into K;

(ii) a decision-making part which interprets the branching infor-
mation and selecis which of the remaining parts of the
program toc go tog

(iii) a part which deals with all standard parts of K, i.e. those

nodes which are not associated with branching;

o
g

K refers to the system stiffness matrix, and k to an element stiffness
matrix.
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ves
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Node T dis associated
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i
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(iv) a part which deals with all branching;

(v) a part which deals with physical discontinuities associated

with boundary conditions,

Part (i), although it deals with a standard part of the X matrix,
is necessary because the required subscript notation for A(I) (I = 1,6)

is not compatible with the logic of part (iii).

Part (ii) wuses the branching information in ND(K,M) to decide
which of the remaining three parts of the program to go to. A flow chart
of the decision-~making process is shown in Fig. A.2. Notice that the pro-
cess is entered once for every node and that the entire set of branching
information is scanned for every node, whether or not the information for
a particular branch point has already been used. (The latter fact is
¢ learly necessary since the information for one branch may affect more

than one node).

If the decision is to go to part (iv) then once this part is entered
further decisions are made as to what type of branch is being dealt with.
However, since all the branch types have certain features in common there

is no necessity for having a special section for each branch type.

SYSTEM mev atso be used to set up the system stiffness matrix for a
gymmetrical plane frame when only half the frame need be analysed. This is
clear from the fact that the axisymmetric shell is idealised as a plane
structure and is analysed using a one-dimensional element having three
degrees of frecdom at each node (two translations and one rotation). The

only changes to SYSTEM that would be required are as follwos:

(i) the statement CALL GELSTI which sets up the element stiffness

=
O
—
H
b
>4
0w

should be replaced by a CALL to ancother subroutine which
¥ N

sets up a corrssponding plane frame element stiffness matrix;

(ii) the geometric arguments L, R1, R2 and T which are used to
calculate the element stiffness matrix should be replaced by
the corresponding plane frame parameters (length, depth and
breadth of element). WNote that SYSTEM itself is independent of

the smetrical parameters used, such parameters being required

an

only by subroutine GELSTFE.
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The above changes necessitate the replacement of only 10 out of the 227

cards of SYSTEM,

For plane frames there is no problem with closing the structure at

the axis of symmetry since the symmetric plane frame must have g

the axis of symmetry.

Once SYSTEM has been used

may be used to sclve the resulting set of

programming effort

is already available in CONFRU,

T4, T2, KB)

H : T QT { 54 kel
brouvine GELOTE (L, Ef, RZ,

the 1ith lement.

03]

matrix for

>lement 1,

element 1,

end of element i,
cf element 1 at its start,
of element 1 at 1ts end,

integration wvoints to

Cut varian

[
put

kB(1.J) : +the

Internal

B(4,6) : the matrix (B8],

D(4,4) : the matrix EDT17

BT(6,4) ¢ matrix [(B]

72(6,4) : matrix product EBEC {D%]f

ZK(6,6) : matrix product |B

ShH : the distance from the start of
point
T(J) ¢ the thickness of the element at the

to set up a plane frame

stiffness equations,

be used.

the element to

Jth

node on

K, matrix BANDO

Hence the

required for a symmetrical plane frame an:ulysis

Function: To derive, using numerical integration, a conical frustrum element

refer to dimensions):

the jth integration

integration point.



Description:

3

GELSTF derives a (6 x 6) element stiffness matrix given by,
1
o) ﬁJ 5 _kj -
k = ;ﬂ“&;; FLB}' (D] [B] r ds'
1 - v
o)

The program algorithm follows the procedure described in section 3.71.2, with

the following additional. features:
-l

(i) nunerical integration may be either 5 or 7 point Simpson's

guadrature, as selected by NGP;
(ii) the matrices [B] and [Dw] are set up by subroutine SETBD;

(iii) matrix transposition is performed by subroutine TRANS;

(iv) matrix products are calculated by subroutine PROD.

It is important to note that GELSTF ignores the factor ZWE/(1 - VZ)
since it is constant for the entire structure. Thig factor is applied only
after the system stiffrness equations have been solved by BANDO, whence the
solution obtained from BANDO is multiplied by the inverse factor (1 - V2)/2nE
to yield the actual displacements. This multiplication is performed in the

MAIN program directly after the CALL BANBAC statement.
The form of the element stiffness matrix required by SYSTEM is the
complete (6 x 6) matrix using standard subscript notation, e.g., KB(3,4)

ig the stiffness in the fourth column of the third row.

Subroutine SETBD (RNU, L, R1, R2, SD, T, B, D)

Function: To set up from their explicit formulae the matrices [B] and
(D | (see subroutine GELSTF) for a given point along the length

of a given elenent,

Input variables:

RNU : Poisson's ratio V.

(ALl other variables in the argument list have the same meaning as

given in subroutine GELSTF.)

#*
Chapter 3, section 3.1.2, Ea. (3.17).



Description:

The logic of the progranm

angle of inclination of the element, as

SINQ = sin @ =
and COSQ = cos ﬁ =

is close to O (a cylinder) o)
values are assumed and sin ¢

the case may be. This is
their exact sine and cosine val

129.

is trivial except for one feature: if the

defined by

r

.

T 900 (a circular pLate), then the limiting

g

and cos are given the values O or 1 as

to ensure that cylinders and circular plates have

nes.

Subroutine TRANS (NR, NG, B, BT)
Function: To transpose the matrix B having NR rows and NC columns.
The transpose is contained in the matrix BT,

. . , . . N\

Subroutine PROD {NR1, I A, NR2, NC2, B, C)

Function: To multiply two matrices A and 3B, and to insert the product
inte a matrix C. Matrix A has NR1 rows and NC1 columns;

matrix B3 has NRZ2 rows and NC2 columns. Clearly, for a

valid operation NC1 = NRZ2 whence matrix C has NR71 rows and
NC2  columns.

Subroutine CLOSEL (ICLOSE, NF, 4C, P41, R1, T, A, VEC)

Function: To augment t
with the required cl
vectors.

.
O s

Input variable

ICLOSE(I) : the node number of
NR, A, VEC: [BANDO]

P1, R1, T : [PLIRES]

GC : [ LOAD |

he system stiffness matrix and system load vector

osure element stiffness matrices and load

the i1th closure element
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Qutput variables:

A, VEC: (augmented)

Description:

From the closure element node number the corresponding rows in system
stiffness matrix are selected and the required stiffness coefficients
(diagonal elements only) are augmented. The same applies to the augmen-

tation of the system load vector.
Explicit expressions for the closure element stiffnesses are given in
gsection 3.2.1, together with the equivalent nodal loads for a uniformly

distributed load acting on the closure element, and its self-weight.

Subroutine I0AD (NELT, GC, L, R1, R2, T, P4, PDA, VEC)

Function: To set up the system load vector for the self-weight of the

structure and all distributed loads acting on the structure.

Input variables:

NELT : +total number of elements used in the structural idealisation,
GC : the unit weight of the structural material,

L, R1, R2, T, P41, PDA: [PLPRES ]

Qutput variable:

VEC(I): +the ith component of the system load vector.

Internal variables:

5Q, SINQ : si
CqQ, C0SQ : co
Functions U1, W1, M1, U2, W2, M2: the explicit expressions for the

o g} where ¢ is the angle of inclination of the element.
S

equivalent nodal loads at nodes 1 and 2 of an element loaded
with a linearly distributed load and/or its own self-weight.

These expressions are given in Appendix E.

Description:

The program works through the entire structure, element by element,

performing the following functions for each element I:
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(1) if P1(I) >0 element I has a linearly distributed load on
it, whose shape is defined by PDA(I). The equivalent nodal

loads are calculated and inserted into VEC.

(ii) if GC >0 the self-weight of the structure is to be included

and the same procedure as above is followed.
The procedure is described in more detail in section 3.3.2.

Subroutine PTLOAD (NNPL, NPTL, R1, R2, L, UU, WW, MM, VEC)

Function: To insert all concentrated line loads into the system load vector.

Input variables:

NNPL ¢ the number of nodes at which line loads are applied,

NPTL(I) : the node number of the ith node at which line loads are applied,
R1, R2, L: [PLGEOM ],

Uu(I1) : the axial component of the line load at node NPTL(I)
wWw(I) : the radial component of the line load at node NPTL(I)} [N/m]
MM(1) :  the applied moment at node NPTL(I) [Nm/m]

Qutput variable:

VEC: [LOAD ]

Description:

The input line loads per unit of circumference are converted to total
loads acting at the node and superimposed into the appropriate position in

the system load vector.

Subroutine BONGON (NWBC, NBC, NC, NM, NF, UBC, WBC, MBC, A, VEC)

Function: To apply the structural boundary condition.

Input variables:

NNBC . number of nodes at which boundary conditions are to be applied,
NBC(I) : +the node number of the ith node at which a boundary condition
is to be applied
Ut if the axial displacement at node NBC(I) is zero

UBC(I =
( ) 0 otherwice
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'"W' if the radial displacement at node NBC(I) is zero
WBG(T) = {

0 otherwise

'M' if the rotation at node NBC(I) is zero

li

MBC(I)
0 otherwise

NC, NM, NF, A: [BRANDO |
VEC : [LoAD ]

OQutput variable:

A, VEC : (augmented).

Description:

For every displacement component which is known to be zero the
corresponding row and column of the system stiffness matrix and load vector
are set to zmero, including the diagonal element. The row and column are
not removed from the system since this would require a partial redefinition
of NC, NM and NF which would be both a time consuming and lengthy pro-

cess. The size and form of A remains unchanged.

Subroutine BANDO (N, NG, A, VEC, NM, NF, NR, NWR)

BANDO ie a subroutine for the solution of a system of linear

simultaneous equations, whose matrix of coefficients is symmetric.

The subroutine is designed specifically for sparsely populated,
irregularly formed matrices; for example, a matrix with a diagonal band
and scattered elements away from the band. The normal methods of storing
such systems in two-dimensional arrays results in excessive waste of
storage space since the storage of the scattered off-diagonal elements
necessitates also the storage of large numbers of zeros which are not
required for the solution. BANDO overcomes this problem by storing only
half the matrix of coefficients in a single dimension array (i.e. a vector),

in such a way that 100% storage efficiency is always obtained.

The basis of the solution procedure itself is the Gauss-Jordan method.
However, although the solution procedure is straightforward, because the
‘matrix of coefficients is stored in vector form a somewhat complex system
of logic is required to put the method into practice. In particular, three
counter variables NC, NP and NM must be generated with the matrix of

coefficients to describe its exact form.



133.

Input variables:

A(T)

the coefficients of the lower diagonal half of the system
stiffness matrix, stored row by row in a single dimension vector.
Each row begins with the first non-zero element and ends with
the diagonal element.

the number of the column in which row I has its first non-zero
element.

the value of the subscript of the element of A which contains
the first non-zero element of row I.

I - NC(I) + 1; the total number of elements in row I between
the first non-zero element and the diagonal, botﬁ inclusive.

the element of the load vector corresponding to row I.

the total number of eguations.

(these are internal variable arrays and are included in the list
of arguments only so that fhey may be dynamically dimensioned to

the same dimensions as NC, NM and NF,)

Qutput variable:

VEC(I)

the solution of the system of equations is contained in the

vector VEC(I).

The above variables are illustrated in the figure below. The shaded area

represents the part of the system stiffness matrix stored in A; the

numerals refer to the subscript of A. Note that all the elements between

the first non-zero element and the diagonal (both inclusive) must be stored.

—

O O O Ofps N

-

> 4 0o 0o 0 0 (VEC(1) ]
‘ 3 [ 5 7 0 13 0 VEC(2)

5 6] 8 10 14 0

7 8 9l 11 15 18 D x =

0ol 10 11 1216 19

1% 14 15 16 17 | 20 VE (6)
0 o0 l 18 19 20 .7;T1

Lo~
-
Lo
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Row T Ne(1) NF(I) NM(I)

N W NN
-
N

N
W O 1
W W W

[T R % NV

\Ji

Boundary conditions:

In finite element applications where the boundary conditions result in
complete rows and columns of the coefficient matrix being set to zero, these
rows and columns must not be deleted from the system. If BANDO encounters
a zero diagonal element (corresponding to a zero displacement boundary
condition), it simply skips that row, and the corresponding displacement

compcnent remains zero.

Description of logic:

The logic used in BANDO depends primarily on the following fact: the
process of reducing the elements of a column beiow the diagonal to zero
(which is the basis of the Guass-Jordan method) leaves the matrix symmet-
rical, except of course for those columns (and rows) which have already
been reduced. The process may be illustrated as follows.

Assume that column 1 of the matrix shown in the previous figure must

be reduced to zero:

Row 2 - Row 1:

Aoy = By ‘j—ﬁ' Ly (=0)
Aoy = Ay '%% P

Ay = A23-—§—% Ay

Aloy = By =0

wStandard double subscript notation is used here to avoid confusion between
upper and lower diagonal halvesg of the matrix.
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' = —
Alog = By =0
A,
(VEC). = (VEC). - =+ . (VEC)
2 2 A, T
Row % - Row 1:
A,
' _ 21 _
Ay = Ag, A, Ay (= 0)
' Ay,
A 30 A32 YR
11
A
| _ _
Mz = A5t L s
By = ABL,L -0
1 — -
A 35 = A_j5 0
1 . — - C
A 36 A36 )
)\
! —- AanieD! __._51
(VEQ) 3 (JEV,3 i (VEC)1

From the above illustration it is possible to make the following

generalisation:

(i) If A'?1 and A'_,, are not set to zero in practice, (i.e. if
there zero values are taken as implied rather than real), the

matrix remains symmetrical.

(ii) Where the matrix is symmetrical the subtraction of row n from
row 1 1is equivalent to the subtraction of column n from
column 1, but including only those elements of column =n
below (and including) its diagonal element. The elements to the
left of the diagonal (in the row n) or above the diagonal (in
the column n) are not included in the subtraction since their
values have already been obtained in the preceding row sub-
tractions. TFor example, in the above illustration, for row 3 -

row 1 it is not necessary to evaluate since its value has

AY
32
already been set in the preceding row subtraction, i.e. A'32 = A'23

by symmetry.

These generalisations allow a significant reduction in the amount of
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arithmetic required; in fact a large proportion of the arithmetic is merely
implied rather than actually performed. For example, in the above illus-
tration A‘21 and A'31 are not set to zero; the calculation is merely
implied. In this way the reduction of the lower diagonal matrix to zero is
entirely implied and what in fact the lower diagonal matrix (the only part
of which is actually stored and operated on) finally contains, is the trans-
pose of the upper diagonal matrix as it appears at the end of the reduction

process.

Hence, the upper diagonal matrix is reduced to a diagonal matrix,

beginning this time from the last element and working backwards.

The final solution is then obtained by dividing each element of the
reduced load vector by its corresponding diagonal so that the original load

vector now contains the solution.

Subroutine STRESS (NSEC, NODS, NOD1, NOD2, NEL1, NEL2, L, R1, R2, T, VEC)

Function: To calculate from the displacements the stresses and bending

moment at every node in the structure.

Input variables:

NSEC :  the number of sections into which the structure is divided

(see section A.3.1),

N0D1(1) } ¢ the node numbers of the first and last nodes in section 1,
NoDp2(1)
NEL1(I) . .
} :  the element numbers of the first and last elements in section
NEL2(I)
L, R1, R2, T : [PLGEOM |
VEC(J) : the jth component of the system load vector,
NODS : (an internal variable included in the argument list so that

it may be dynamically dimensioned).

OQutput variable:

There are no output variables as such. Stresses and moments are written

into a disc file for future plotting and printed on the line printed.

Degcription:

For the purposes of calculating stresses and moments, each section is



considered to be independent of any other. Hence the calculation of stresses
and moments is completely independent of any branching in the structure and
Eq. (3.51) (section %.%.5) may be applied at each node in turn to yield the
stress resultants at that node. The hoop and circumferential stresses are
then calculated from the corresponding stress resultants by dividing by the

element thickness at the node,

The advantage of calculating the stresses by section is that stresses
and moments at abrupt changes in the geometry of the shell are not given as
the mean of the stresses on either side of the abrupt change; instead the
stresses and moments on either side of the abrupt change are given separately.
For example, at a shell junction (which must, by definition, constitute a
division of the shell into separate sections), two moments are given for the
junction node. These moments should be (but seldom are) equal, and a com-

parison of these moments gives some idea of the accuracy of the solution.

4.2.% Plotter program STRESSPLOT

STRESSPLOT is an independent plotter program developed specifically
for the plotting of stress and moment results obtained from CONFRU. A
description of the input data required when STRESSPIOT is used in con-
junction with CONFRU is given in section A.3.73, and a description of the
output, including sample plots, is given in section 4.6.71. The internal

logic of the program will be briefly described here,

Assume that we have the following general data input:

{PLTS NLC SIZE)

@ ADD PLOTI. {TYPE NELT 1C}

@ ADD PLOT2. - 70 A 1 r
@ ADD PLOT1.

@ ADD PLOT2. X o oo | M| | g
@ ADD PLOT1.

@ ADD PLOT2.

©@ ADD PLOT1. L L AL Jdb Ji 4

@ ADD PLOTZ2.
The above input will plot the results of two separate analyses on the same
system of axes. The plot files PLOT?1. and PLOT2. (the general contents of
which are shown alongside), are set up automatically by CONFRU and contain

vectors of the cumulative distance X and the stress results for the two
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analyses.

The basic part of the program consists of a sequence of steps which is
repeated four times, once for each of the stresses which is to be plotted.

Hence in the first sequence, all M curves are plotted, in the second all

)

0

o curves, etc. The procedure for one complete sequence, say for Os’ is

IS

as follows:
(1) Read X and Gg from PLOT1. Pick out the maximum and minimum
values of 0o_ 1in the set. Hence calculate the absolute range
(=l

of Os values in the set.

Repeat for PLOTZ2.

(ii) Determine which set of Gs has the maximum range. Hence re-
define the variasble arrays containing the sets of o values so

that the set having the maximum range will he plotted first.

-~

A

(iii) Determine the length 1 of the X axis:

SIZE = F, 1 = 13 inches
SIZE = H, 1L = 10 inches
SIZE = G, 1L = 12 inches.

[Note: this step is performed only once in the very first

i
sequence so that all four X sxes have the same length and scale].

(iv) Determine the starting value and scale of X axis. Starting

value is clearly zero, and the scale is given by (total meridional

Length of structure)/L.

(v) Determine the starting value and scale of the o axis. The
starting value is the lowest of the minima found in (i> and the
scale is caleculated from {(the highest of the maxima) - { Lowest
of minima) + 8, where 8 inches is the standard length of the

stress axis.
(vi) Draw the X and o, axes.

(vii) Plot the curve for fivst analysie.

h
he curve for second analysis, etc.

J

Plot

ot

K

Note that SIZE also affects the ove
for 1 given here are again modified
to the overall plot. The user shoulid
SIZE is to fit the axes onto A4 pages

LL si

depending on the scale factors applied
bear in mind that the objective of
(see section 4.6.1).

ze of the plot. Hence the figures



The procedure above is repeated for the remaining three stresses.
Finally, the heading bhox is drawn in the lower right hand corner, the load
case information is drawn in the centre of the four sots of axes, arnd a

box is drawn around the whole plot.

]

A complete listing of STRESSPLOT follows the CONFRU listings in

section A.5.
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A.3 CONFRU Input Data

The analysis of an axisymmetric shell of revolution using CONFRU in-

volves two essential steps:

(1)  preparation of input data, and

(ii) coding of the input data in the accepted CONFRU format.

Each of these steps is described in detail in what follows. DNote in
particular that throughout the description the left hand side of the

structure is taken to be the side being analysed.

Units:

CONFRU is dimensionless with respect to units and any consistent set
of units may be used. For the purposes of printed headings and in des-

cribing the dimensions of input data, Newtons and metres are used here.

Sign convention:

Part of the data is input in global coordinates and part in local
coordinates. Hence the relevant sign conventions are described where

required.

A.3.1 Preparation of input data

The following procedure is suggested for the preparation of the input

data:

(a) From a study of a working drawing of the structure, divide the structure
into sectiong; the concept of a gection is of fundamental importance
to the preparation of input data and is defined as a part of the
structure whose middle surface is a straight line, and whose thickness
is either constant or varies linearly from one end of the section to
the other; furthermore, a section may not be joined to another section
except at its end points. Examples of the subdivision of parts of a

structure into sections are given below.

B A g A 3& c B A
A‘, _‘cd:-
| ] ' T
5 D
C | {
o]
2 sections: AB | % sections: AB, BC and
and BC 2 sections: AB and BD
BC
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(b) Determine the radius r and thickness t of the shell wall at the
beginning and end of each section; determine the length of each

section.
(c) Define the loading acting on the structure:

(1) If self-weight of the structure is to be included, the only
preparation required is a choice of the unit weight of the

material

(ii) The positions at which concentrated line loads act must be

defined, and where applicable they must be broken down into

their global components, as shown in the following example:

P

U

. Line load P broken down into
S global components:

Positive global components. U = P sin
W =-P co

TV

O]

(iii) The region over which a constant or linearly varying distributed

load acts is called a pressure section. Pressure sections have

the same characteristics as gections, with the additional con-
straint that the distributed load over a pressure section must be
continuous. Thus, in the example below, AB constitutes one

pressure secticn, BC a second, and DE a third.

Distributed loading may only act perpendicular to the middle
surface of the shell (or pLate) and is positive if it acts in

the direction of the positive normal n to the middle surface
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(see 'Sign Convention', section 3.3.5).

Subdivide each section into a suitable number of elements, (without
attempting to number them). The choice of subdivision should be per-
formed primarily on the basis of element aspect ratio, taking into
account the geometry of the section (whether it is cylindrical, a
conical frustrum or a circular plate), and the type of loading acting
on the section. The choice is also governed by the positions of con-
centrated line loads and the beginnings and ends of pressure sections,

since each of these must occur at a node.

In general the element aspect ratics should lie within the range

1/6 E;L/t;g 1, the lower values being used in the regions of shell
Junctions and concentrated loads. Large discontinuities in L/t
ratios should be avoided and the user should aim at using fairly
constant aspect ratios throughout a given section, and similar aspect

ratios throughout the structure, even at the expense of using large

numbers of elements. Such a procedure greatly simplifies the preparation

of input data. (The user should in any case study a similar example
from Chapter 4, as well as the relevant comments in the Summary and

ConcLusions).

Select the element and nodal numbering scheme to be used in the
analysis. It is best to begin by choosing Node 1 at the top of the
structure, as close to the axis of symmetry as the structural geometry
allows. Thereafter, the numbering is subject to the following con-

straints:

(1) BElement 1 must always follow node i, except at the start of

a shell branch (see (v) beLow).

(ii) Nodes and elements in circular plates must be numbered radially



Example:
@ ©® ® ©®© ©® 0 ©
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outward from the axis of symmetry. If the shell is branched it
is advisable to number the nodes and elements in cylinders and
conical frustra from top to bottom; this allows a greater degree

of consistency in specifying the branching information.

The numbering of nodes and elements within any section must be

continuous.

At a branch point (i.e. a node at which 3 sections meet), the
numbering of the nodes and elements in any two of the sections
must be continuous; these two sections constitute the main shell
at the branch point. The nodes and elements of the third section
may be numbered independently of the main shell; this section

then constitutes the shell branch at that branch point.

(vi)

B el ] [  [e] A

1

® B @ [g]

q

Cc

Main shell : Sections AB and BC; numbering of nodes and
elements is continuous over these two sections.
Shell branch: Section BD; numbering of nodes and elements is

independent of main shell numbering.

The only exception to rule (i) occurs at the start of a shell
branch. The number of the first element in a shell branch is
(n - 1) where n 1is the number of the first node within the
shell branch. Hence in the example above n = 30 and the

number of the first element in the shell branch BD is 29.

When the nodes and elements have been numbered, the sections are
numbered accordingly, i.e. in the order of increasing node
(eLement) numbers so that the lowest numbered section contains

element 1 and the highest numbered section contains the highest

numbered element.
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The above are the general rules for the numbering of elements and nodes.
However, in practice the numbering process may be simplified by summarising

it as follows:

(1) Number all nodes first, maintaining continuity of numbering
within each section, and as far as possible continuity of

nunbering between consecutive sections. In branched shells

physical discontinuities in the numbering scheme may be necessary

at physical discontinuities in the shell, e.g. where the end of

a secticir is a boundary.
continuity hetween consecutive

“sections

®@_©® 9 e D ® ® @

@ \',;(‘J(%‘ / > (14,
®

~ i _continuity
RO within the
= /;7/ section
- @
ol e

(ii) Fill in the relevant element numbers according to the rules given,

but subject to the following special cases:

Closure elements: (losure elements are not numbered. They are

f their single node and the adjacent element.

S

i
L |

T .
!

defined in terms o

Example:

+
{ & o —
! . T
% : ) closgure ]
§ element ?oI element
r ]

The length of the closure element is equal to the radius of node

26; its thickness is assumed to be the same as adjacent element

26.

"Defined alternatively as
of one section to the beginning

a jump in the nodal numbering scheme from the end
of another totally unconnected section.
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TABLE A-1

input data for CONFRU

ISYM IGEN IG IL IS IBON
LCASE HEAD(I)

RNU E GC

IVBP

NSEC NPS NNBC NEPL

NOD1(I) NEL4(I) NOD2(I) N

{ :

= 1, NSEC
NELP1(I) NELP2(I) PRI(I)
) { I = 1, NPS
NBC(I) UBC(I) WBC(I) MBC(
{ I = 4,NNBC
NPTL(I) UU(I) ww(I) mMmM(I)
) { I = 1, NNPL
ND(I,1) ND(I,2) ND(I,3)
r { I = 1, NBP
L(I) NREP

{ j

ND(I,4)

IV IB ID ISP
BEL2(I) RS1(I) RS2(I)
PR2(I)

J

I)1
J

J
J

T1(I)

T2(1)

J
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Dummy elements ‘<:)
Example: b<——must be element 11
12
© e 6 ® 6 0 O
1®
o)
+—— must be element 9
77”;:7,55@777

When the above nodal numbering scheme is used there can be no
element 10 since according to rule (i) (subsection (e) above),
element 1 must follow node 1. In such cases element 10 is
referred to as a dummy element and is specified by assigning

zero length to it.

Coding of input data

The sequence of input data, given in terms of the corresponding variables

used within CONFRU, is shown in Table A-1. The following general points

augment the information in the table:

(1)

(ii)

(iii)

Each line corresponds to a single data card; where a set of
variables is enclosed in chain brackets and is followed by
I =1, 'x', it means that a total number of 'x' cards con-

taining the same type of information is required.

A star in front of the chain brackets means that the entire set
of data is optional and may be ignored. (Note that blank cards

are not required for optional data).

Except in the first line (SYM, etc.) two blank columns are left
between every data number. This greatly facilitates the checking

of the data once it has been punched into cards.

Three types of input format are used, viz., I format for integers,
E and F format for reals, and A format for alphanumeric data,
e.g. headings). The format used for each particular variable is

given where the variable is described,

General description of input data

In the description of data that follows chain brackets around a set of
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variables have the same meaning as given above in (i) and (ii), except that

where the brackets are not followed hy I =1, 'x', only one data card con-

taining the variables within the brackets is required.

1.

Options for printed output:

{ ISYM TIGEN IG¢ IL IS IBON IV IB ISP }

FORMAT (10I1)

If the value of any of the printed output options is set to zero the

corresponding print-out is given. If set to any other positive value, the

corresponding print-out is not given. The printed output corresponding to

the above variableg is:

ISYM: program and analysis title blocks

IGEN: general analysis information such as Young's modulus and Poisson's
ratin; shell branching information, which acts as a check on the
validity of the corresponding data input (see 10. below).

IG shell geometrv, i.e. length, thickness and radii of each element.

IL loading on the structure, i.e. concentrated line loads, pressure at
every node,.

IS contents of A as set up by subroutine SYSTEM.

IBON: Dboundary conditions.

v svstem load vector.

IB back substituted load vector.

ID displacements and roations at each node.

ISP stresses and moments at each node. (Note: ISP >0 does not prevent
the writing of results to data files for future plotting; see 3. be low. )

Example:

2.

Only the title blocks and the displacement results are printed.

Heading information:

.
{ LCASE HEAD(I) |

FORMAT (A6, 2X, 10A5)
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LCASE : +the analysis identification number, chosen by the user. It may be
up to 6 alphanumeric characters in length.
HEAD(I): a general heading chosen by *he user for the analysis. It may be

up to 50 alphanumeric characters in length and is optional.

Example:

(ST/1/1 ¥ ¥ ANALYSIS OF AN ELEVATED EFFLUENT TANK

2 Miscellaneous data:

{'NPLOT NGP  ICIOSE(1)  TCLOSE(2) .......... ... ICLOSE(5) }

FORMAT (2 (I2, 2X), 5(I3, 2X))

NPIOT : 1s an integer chosen by the user and used to identify the data
file into which the stresses and moments will be written for
future plotting. If no plotting is required the number 15 should
be used. {See also Runstreams, section A,%.4).

NGP :  the number of points to be used in the numerical integration.
Must be either 5 or 7.

ICLOSE(I): the numbers of the closure element nodes. Up to five closure

elements may be included.

Example:

(15K%%5%ﬁﬁ20%5100

NPLOT = 15, NGP = 5, and there are two closure elements at nodes 20 and

100.

4, Material properties:

{ RNU E GO }

\

FORMAT (3 (£3.3, 2X))
RNU : DPoisson's ratio V¥
2
E : Young's modulus E [N/m ]
GC : Unit of structural material [N/mzj.
If GC >0, the self-weight of the entire structure is included in

the analysis (together with any cther loading present).
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If GC =0, the self-weight of the structure is ignored.

Example:

(o.167Eooﬁﬁ20.00E09KK24.00E03

9 3

v =0.167, E =20 x 107, and GC =24 x 10

5. General constants:

{ NSEC NPS NNBC NNPL NBP }
FORMAT (5 (I3,2X))

NSEC : the number of sections into which the shell is divided (see section
A.3.1(a)).

NPS : the number of pressure sections (see section A.3.1(c)(iii))

NNBC : the number of nodes at which zerc displacement boundary conditions are

to be applied.
NNPL : +the number of nodes at which concentrated line loads are to be applied.
NBP : the number of data cards required to describe the branching information

for the structure {see pcint 10, below).

6. Sectional geometry:

{ NoD(I) NEL(I) wNop2(1) WMEL2(1) RS1(I) =®ms2(1) T1(I) T2(I) }

I = 1, NSEC
FORMAT (4(1I3, 2X), 4(E8.3, 2X))

Number of data cards required = NSEC; cards must be input in the order

of increasing section number, i.e, the ith card refers to section 1.

Example:

Section I _%_ rﬁ
7 @ m @ @ @E @EC
< A4 A4 4 7 A4
(24]

@¢
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Data card for section I (see also subroutine PLGEOM, section A.2.2):

NODI(I) = 4

NEL1(I) = NELB(I) = 20
NOD2(I) = 24

NEL2(I) = NELE(I) = 23
RS1(I) = RB(I) = r,
RS2(1) = RE(I) = T,
T1(I) = TB(I)

T2(I) = TE(L}

Note that the total number of elements used in the analysis is automatically
given by NEL2(NSEC).
If RS2(I) = RS1(I), RS2(I) may be left blank, in which case the value given

for RS1(I) is assumed.
If T2(I) = T4(I), T2(I) may be left blank, in which case the value given for

T1(I) is assumed.

7. Distributed loading

{ NELP1(I) NELP2(I) PRI(I) PR2(I) } I = 4, NPS

FORMAT (2 (I3, 2X), 2 (E8.3, 2X))
Number of data cards reguired = NPS; cards must be input in order of

increasing pressure section number, i.e. the ith card refers to pressure

section 1.

element 20

pressure section I

element 29

Data card for pressure section i (see also subroutine PLPRES, section A.2.2):

NELP1(I) = 20
NELP2(I) = 29
PR1(I) = b,
PR2(I) = D,
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8. Boundary conditions:

{ NBC(I) UBC(I) WBC(I) MBC(I) } I = 1, NNBC

FORMAT (I3, 2X. 3 (A1, 1X))

Number of data cards required = NNBC; cards input in order of increasing

boundary node number.

NBC(I) : +the number of the node at which the ith boundary condition occurs

UBC(I) : if UBC(I) = 'U' there is zero axial displacement at the specified
node.

WBC(I) : if WBC(I) = 'W' there is zero radial displacement at the specified
node.

MBC(I) : if MBC(I) there is zero rotation at the specified node.

i
=

If UBC(I), WBC(I) or MBC(I) is left blank, the corresponding displace-

ment or rotation remains unaffected, i.e. an unknown quantity to be solved

for.
Example:
pin
[ 2638 pUkupn L
Veeerscd Zeccria
263)
(24 U &)
Node 263% is rigidly fixed, and node ‘24 is a clamped-pin.
9. Concentrated line loads:
{ NPPL(I) UW(I) ww(I) MM(I) } I = 1, NNPL
FORMAT (I3, 3 (E8.3, 2X))
Number of data cards required = NNPL; cards input in order of
increasing node numbers.
NPTL(I) : the number of the node at which the ith concentrated line load or
moment is applied.
Uu(I) :  the axial component of the load (N/m].
wi(I) :  the radial component of the load [N/m].

MM(T) :  the value of the line moment applied at the node [Nm/m].
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{106£520.00E06%$4o.00E065%6O.OOE03

At node 106 there is an axial load U = 20 X 106 [N/m], a radial load
6 z
W =40 x 10 [N/m] and a moment M = 60 x 10~ (Nm/m].

10. Shell branching information:

{Iﬂxl,d) ND(I,2) ND(I,3) ND(I,4):} I = 1, NBP

FORMAT (4 (I3, 2X))
The branching information required consists of a specification of:

(i)  physical discontinuities in the node numbering scheme (see

section A.3.1, summary of process, point (i)).

\

(i1) ehell branches (see section A.3.1, (e), (iv)).

It is suggested that these specifications be given in the order of the sections
in which they occur. Hence, the user should begin at section 1, node 1, and
work through the structure in the order of increasing section numbers (which
corresponds to the order of increasing node and element numbers), noting as

he goes the physical discontinuities and shell branches.
The specifications take the following form:

A. Physical discontinuity at node k: (where node k occurs at the end of a
section).

ND(I,1) = k
ND(I,2) ND(I,3) = ND(I,4) = O

il

The physical interpretation of this information is: mnode k is not joined
to node (kx + 1), but node k is not a branch point. Note that node (k + 1),
the other side of the discontinuity so to speak, is ignored (except, of course,

if it constitutes the beginning of a shell branch).

B. Shell branches:

Shell branches take two distinct forms:



where the nodes of the shell branch are numbered away from the

branch point node;

main shell

- & o
element (k - 1
o direction of numbering
in shell branch

|
ND(I,1) = k, first ncde of shell branch,
ND(I,2) = j, branch point node,
ND(I,3) = k -1, first element of shell branch,
ND(I,4) = 3§ (3 <k always);

where the ncdes of the shell branch are numbered towards the

branch point node;

¢ element k
maln . (ymed & B
ghell| ¢ -
direction of
3 O® numbering in shell

branch

In this case two specifications are required:

(a) the shell branch generally constitutes a "physical
discontinuity at node k" as previously described, and is
always treated as such, except when k 1is the very last
node in the idealisation.

Hence the first specification is

ND(I,1) = k
ND(I,2) ND(I,3) = ND(I,4)

il
O

1!

(b)  the branch is specified as

, if > j

ND(I + 1,1) = {i itk <Ij} the higher of j and k
j o, 1if k>

ND(I + 1,2) = {k it k< j} the lower of j and k
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ND(I + 1,3) = k, the first element of the shell branch

0, if j>k

J 1,4 . . .
ND(I + 1,4) {J , if i<k

i

There are twe exceptions to the above rules, both of which deal with

the last node (i.e. the highest numbered node) in the element idealisation.

These exceptions are:

(i) If the last node is a boundary it is not included in the

branching infermation.

(ii) If the last node occurs at a branch the "physical discontinuity

of node k" specification is not required.

Note, finally, that closure element nodes are never specified as a "physical

discontinuity" because circular plate nodes must always be numbered away from

the axis of symmetry, and hence closure element nodes always occur at the

beginning of a section.

11 -l

—

Exanple: @ B, @
j' @ 137‘1]@ 3
¢
111 j‘E@
VT
56)¢
IT

-— Ee_c_t_igg number 17 <b
8 — 53)
) @

VIII VII

closure element

Begin at node 1; proceed along the shell in the direction of increasing

section numbering.

Section I : no discontinuity or shell branch

Section II : no discontinuity or shell branch
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Section IIT: no discontinuity or shell branch
Section IV : no discontinuity or shell branch
Section V. : end of section, discontinuity, node 137 not joined to node

138; data card required is:

(437

Section VI : Ybeginning of section is a shell branch; data card

required is:

rﬁBS%%ﬁ%4%K137%%%%4

end of section is a shell branch; data cards required are:

(502

(Eogﬁﬁzozﬁﬁzoz

Section VII : no discontinuity or shell branch

Section VIII: end of section is a shell branch; data card required is:

(211%%%78%%211%%%78

In this example five data cards are required to describe the branching;

thus NBP = 5,

Note on the debugging of branching information input data

When the branching information has been read in, CONFRU compiles and
prints out a description of each discontinuity and branch exactly according to
the information given. For example, for the fourth data card in the preceding

example, the following description would be printed:

5

NODE 208 IS CONNECTED TO NODE 202 THROUGH ELEMENT 202

Hence, if this information is incorrect (or nonsensical) the user may infer

that the corresponding input data is invalid, and the card must be corrected.
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11. Element lengths:

{ L(I) ©NREP }

FORMAT (F7.0, 2X, I3)

L(I) : the length of element i [m].
NREP : the total number of times the corresponding element length is re-

peated in sequence.

40 elements @
0,700 0,600, 0,500 |

I |

"direction of element
numbering

The element length for the above idealisation would be specified as:

( 0. S00BKp1EA0

( 0.700 Tf NREP = 0, NREP is ignored.

(>O.1OO 100

i.e. L(I) through L(I + 3%9) = 0.500
L(I +40) = 0.600
L(I +41) = 0.700

L(I + 42) through L(I + 142) 0.100

I

Note that if element i is a dummy element, L(I) must be specified as gzero.

A,%.3 Maximum size of analysig

The maximum size of analysis is governed by the dimension limits of the
variables used in the program. These dimensions are dynamically set by 4
variables whosge values are in turn set by the user at the beginning of the
main program. These variables, their current values, and the analysis variables

which they govern are:
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IX = IXX = 5003 the maximum number of elements which may be used.

IY = IYY = 15000; the maximum number of coefficients in half the system

stiffness matrix.

IW = 1IWW = 1503; the maximum number of equations which is equal to

3 x (number of nodes + 1).

1Z = 1272 = 30; twice the maximum number of sections; the maximum
number of pressure sections; the maximum number of

concentrated line loads.

Certain other variables whose dimensions are always likely to be small are

not dynamically dimensioned. These variables and their maximum limits are:

maximum number of boundary conditions = 10
maximum number of closure elements = 5
maximum number of branch points = 10

The above dimensions result in a total computer storage requirement of
63526 words, which is just below the maximum core storage of 65 K at present
available on the UNIVAC 1106 'system at U.C.T.

A.3.4 Sample runstreams for the execution of CONFRU and STRESSPLOT,

including STRESSPLOT input data

The execution of both CONFRU and STRESSPLOT requires the use of the
UNIVAC EXBC 8 Control System and it is assumed for the pruposes of the

following description that the user has some knowledge of this system.

Preparation of necessary computer disc files

(1) CONFRU main program and subroutines, as well as the plotter
progran STRESSPLOT, are stored as elements of a disc program file

CONFRU.

(ii) Bxecutable versions of CONFRU and STRESSPLOT are MAPped into
absolute elements CONFRU . CONFRUABS and CONFRU . CONPLOTABS

respectively.

(iii) A sufficient number of disc data files are made available for
storing stress results for plotting. These will be denoted by
PLOT1, PLOTZ2, etc.
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A complete and up-to-date deck of cards is available fer both CONFRU and
STRESSPIOT. These decks contain all the control cards necessary for performing
the above three steps. Hence, after inputing these decks the user should be

in a position to use directly the sample runstreams given below,

STRESSPLOT input data:

Besides the actual stress values that are to be plotted (which are
automatically generated and stored by CONFRU), there is only one card of input
data required for STRESSPLOT. This card is,

{ PLTS NLC SIZBE

j
4

FORMAT (A6, 2X, I1, 2X, A1)

PLTS : a 6-character alphanumeric word chosen by the user to identify the

plot.
NLC : the number of sets of results which are to be plotted on this set
of arxes.
SIZE :  the overall of the plot (see footnote p 138)
M Full : 57 x 46 cm
= I : Half s 38 X 38 cnm

. ; v , 4
Small : 32 x 27+ cm

U2

The remaining data is given in the form of the ADDition of computer data
files containing the points to he plotted. For each set of results (i.e.
analysis), which is to be plotted, the corresponding data file is ADDed four

times, once for each of the four stresses and moments.

Sample runstreamg:

(a) A single analysis, no plotting reguired:

@ RUN
@ ASG, AX CONFRU
XQT  CONFRU,CONFRUABS

®

CONFRU data

@ PIN



(b)

(c)

A single analysis, with plot:

@ RUN

@ ASG, AX CONFRU

@ ASG, AX PIOTH

@ USE 16, PLOTA

@ XQT CONFRU.CONFRUABS
CONFRU data:
NPLOT = 16

@ XQT CCHFRU,CONPLOTABS
STRESSPLOT data

@ ADD PILOTA.

@ ADD PLOT1.

@ ADD PLOT1.

@ ADD PILOT1.

@ FIN
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Two analyses, with the regults of both analyses plotted on the same set

of axes:

S)

@

@
@

RUN

ASG, AX CONFRU

ASG, AX PLOTY

ASG, AX PLOTZ

USE 16, PLOTH

USE 17, PLOT2

XQT CONFRU.CONFRUABS

NPLOT = 16

CONFRU data for first analysis

XQT CONFRU.CONFRUARS

NPLOT = 17

CONFRU data for second analysis

XQT CONFRU.CONPLOTABS

STRESSPLOT date

ADD  PLOT1.
ADD PLOT2.
ADD PLOTH.
ADD PLOTZ2.



TABLE A-2

Data input for analysis ST/1/1

Ouuuul gaouoaoaLoo

dugdugz ST/71/71 EXe 832 ELEVATED EFFLUENT TANK FILLED WITH LIQUID
uuuuus it b 2U3

duuuus U« 16TEOU 2u.UGUEU9

uouuus 8 4 i 5

Uuouue 1 i 4 3 0.4625E0 7625600 0.2506200
vuouu? 4 4 23 22 «7625E00 4.600E00 O.250E00
uduuus 23 23 56 55 4,6U0EGR - J.200E0Q
vouLusg 56 5b 78 T7T 4.500ECU  1.400L00 Q.250E07
guuulu 78 78 137 136 1.4U0E00 0.2C0L£00
Guuull § 137 208 202 7625EU00 0.125€E40
vugulz 203 2uU3  <uU8 207 .0625EQ00 .7625E00 Q0.300E200
vouuls 2u8 208 8 211 7625EU0 1l.400£00 0.300ECO
Juuuly 23 5% 0.603E0E

ouuuld 56 77 U.bBYEUS +983UETS

Gldule 137 202 -« S33ELS

vuoul? 2U8 211 ~.98B9EUS —«SHE3ETE

uuuuls 137 U W

Gouuls L37

dauuzu 138 8§ 137 4

vuouzl 2y

QuuueZ 2u8  2u2 2uZ

guuuls <11 78 211 18

duuu2s U.100 3

uuuuzs Uezli2 2

Juuu2e Ue2U3 4

uouue’? Ue2Ub f

guuuls U.206 15

uttuuzs Le2U0 54

Ooduugsuy Us150 56

utiuuil LelHul iu

Quuuiz U100

QUUL33 UelbU 4

vobuusy UelbSy 4
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@ ADD PLOT1.
@ ADD PLOTZ2.
@ ADD PLOT?,

@ ADD PIOT2.
@ FIN

A.4 A Complete Sample Analysis

The input data and partial results for a complete analysis and plot are

given in the ITollowing pages. The information given takes the following form:

(a) Input data for analysis ST/1/1 (Example 8, Chapter 4);
Input data for analysis ©T7/2/1 (Example 8, Chapter 4);
Input data for the plotting on the same set of axes of the above two

analyses.

(b) The complete runstream for the above analyses and the corresponding plot

is identical to runstream (C) of section A.3.4.
(c) The plotted output for the two analyses is shown in Fig. 4.40 of Chapter 4.

(d) A partial listing of the printed output for analysis ST/1/1 showing,

(i) heading page,
(ii) general information, branching information,
iii) displacement results,

(iv) stress results.

A.4.71 Input data

A complete listing of the data input required for analysis ST/1/1 is

shown in Table A-2.

The input data for analysis ST/2/4 is indentical to that for analysis
ST/1/1 except for the following changes; (line numbers refer to the data

listing given in Table A=2).
Line 2: replace entire line with:
ST/2/1 EX.8: BELEVATED EFFLUENT TANK, SELF-WEIGHT ONLY

Line 3: change NPLOT = 16 to NPLOT = 17

Line 4: insert GC = 24.00E03.
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The input data required for STRESSPIOT consists of the following single

line:

( EX. ¥8¥EK21HS
i.e. plot identification is 'EX. 87,
number of sets of results to be plotted = 2,

size of plot is 'small',

A.4.2 Partial listing of results

A partial listing of the results for analysis ST/1/1 follows on the

next page.



AR P EERRERRE R ARG R KRR AT R KK XKk X K KK

* CONFRU *
* FINITL ELEMENT AXISYMMETRIC «
* THIN SHELL FROGRAM *
* x
* ToDaGF?.LFFIN *
#  DEPT. COF CIVIL ZNSINEERING =
* UNIVERSITY OF CAFPE TOWN *
* *
* AUGUST 1974 *
* *
* UNIVAC 110o EXEC & *
EAE R XK F R AKX KE AR R RK K AR AR K kkk Kk k % K&

EEKK TR E AR ER K ERRRRAR KR KRK KRR KK £ K

= LOCAD CASE. ST/171 *

E 3 x
7.

s LATE..J ] .C.J‘.‘ "f?t. .I?.4 x

LR EREEEE R RS EEE SRS SRR RS ERER RS
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[ EREEZE LIRS R E R EE RS R REEREREERERER R R R R R R R RS R R R R R R E R ]

EXe 8s

ELEVATED EFFLUENT TANK FILLED

WITH LIGUID

I EE SRS SRR R R E R R R R L R R R R E R RS R R R RS RS EE R R R R RN LR

FOLSSON RATIO:

MUDULU> CF ELASTICITY:

UNIT WEIGHTIS:

STRUCTURL

«167
=200+11

MATERIAL: OGO

NUMERICAL IRTEGRATION: 5 PCINT SIMPSGON GUALRATURE.

CHECK NODEL AND ELEMENT NUMBLERS

FOR SECTLUNS ANU BRANCHES

SECTIONS NODE (bLemenwTlessxe(EL EMENT) HNODE
1 1 ( 1) ( 3} 4
V4 4 {t 4) ( 22) 23
3 23 ( 23) { 55} 151
4 56 { 50) t 771} 78
b 18 ( 78) (136) 137
b 4 (137) (202) 208
7 <03 (23) (22Ut} 208
8 2U8 (2uUB) (211) 73

CLUSURE BLEMENTS

THERE ARE

BRANCH POINTS

157 i>
138
22Uz
2Le CONNLCTED

211

CLOSURE ELEMENTS AT THE

NOT CONNECTED T8

CONNECTED TO AGUE

NUT CONNECTED TO

10

CONNECTEDLD TC

NOBE 138

4 THRQOUGH

NOBE 203

NODE 202 THROUGH

NODE 78 THROUGH

FCLLOWING NOLLSS

202

ELEMENT 137

ELEMENT 202

ELEMENT 211
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v . W i Y - D oA UM W . — - ——- - A G e W S B, S Wn . O, W YA WY S v M il S AR - S— . AT o =

NUDE U W M
1 s 16730912 «285525-05 -e161572-03
2 0lb95i8-02 «281828-05 —+159362~-03
3 «171113-U2 « 28700105 ~-e¢162212-02
4 «172763-02 «297566-05 ~«168131~-C3
5 «176584-02 «267397-05 -+207848-02
b »18103U-02 +253785-05 ~2235613-C3
7 s 1HRG46-02 24 SH 208 -e2568846-02
8 s 191351-u2 +250774-35 —e2674693-0G3
= «l9681b~-112 «25588U-05 -e2746939-02
Ly s 202398-U2 «2063587-05 -«277367-C2
i1 «2UTSua-42 e 2T13175-05 -e276078-0U2
Lz s 21382 8-2 «2841565-05 ~22712895-03
1 e LlBY 43U «296230~-0sS ~e263362-02
Ly e 224149-42 231191 34-35 ~-252587~-C3
15 e 229120~Ul «3227UB-U5 -—e239203-02
lo 2£33797~U2 »336824-345 —«223411-03
17 e 2358131 ~ud e 351386-05 -e.205383-U2
1 28 2UB0-UZ «366318-05 -185267-C3
1y e ZUDBUI-UL «381561-05 -«16831391-03
Zu 24800 i—ul «397064-U5 -+139263~-(03
2l el51217-0Z «41280L1-05 ~ell3602-0UL3
22 02532392 «4287249-05 -+862738-04
3 «2586482-12 e 48482605 -«573834-04
Zu e 298 TUl~U2 «187206-0U5 -+763729-CS
Z5h e25UTF L2 -LL «4LLT7T58-0c «230163-04
Zb «254718-U2 «8€2184-15 «5184413-04
<t e 254717-0< « 2115366-04 «651187-0LU
28 o254 TUHE~ Y « 344453~y »715997-C4
<9 e 2blbbS-UZ « 491 340-Uk «732822-LY
3y e 25405 5-ul2 « 53305304 «717533-C4
51 e 25%01U-Uid « 78017104 «&637463-04
R ¥4 25455 8-u2 oleL}Sb"ﬂq 0651573*1:“
33 e 25U YBE (g «104412-0G3 «blblUf7-{it
34 25442242 «116604-035 «585633-04
35 e 2583482~ 02 «1282311-03 «560845-04
3b «2H4253-y2 »139817-03 «542350-04
317 e 25815502 « 154208803 «528641-U4
38 2 25405 0-UY «161954-03 «52188J-C4
39 e2535357~-02 «171504-03 «518183-04
4u +25331b~1¢ «182015-03 «517855-04
41 e2n3088~-U2 «192543-03 «5200382-0L4
4¢ e 25355 -z « 2033161103 «525542-04
43 e 2B 3GT~Ud e 2133503 «533282-04
4y e25 32552 «224830-105 «543651-C4
45 e 253094 -1s2Z «235893-03 « 55654604
46 2252920602 2 2U4TU4-03 «5T71537-C4
87 e 2B THI~UY «25920U4-0G3 « 5875330k
4y 2« 25250 %-U2 «2712387-085 «6024456-04%
49 e 25236802 «283633-U3 «612815~-04
buU e25216 312 «2361402-03 «6134395-04
51 e 25195U-02 e 31IBH28-03 «547391-U4
¥4 «251723-42 «320182-03 «555518-C4
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-<232455-C5
-.2352487-05
-+232634-05
-.233210-05
- .234040-C5
-e254724-0°
-e233845-05
-.228782-05
-.216551-C5
-+197253-US
-.141902-C5
-.203471-05
-4323213-05
-+610601-05
-.106017-C4
~e140383-04

«750876-C6

-e133302-05
- e3363930-05
~e522832-Ub
-« 7133920-C5
-« 882058-0%
-el32728-C4
-e295436-04
~«b621480-04%

166,
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NODAL STHESSES (N/SUelF) AND ¥

- T - — - ———_————— —— i —— - Yo (- o " P - Ve - Yo 7 -

NUDE CUMULATIVE

LENGTH
SECTICH 1
1 « U0
2 «1UU
K e 21U
4 e SUL

4 « SUO

5 «5112
(S « TUY

1 « 908

8 l.10U8

Y 1.310
10 lebl?Z
11 1714
iz2 LeYlso
ls 2118
14 Ze520
Lo 24522
1lb Zel24
17 Z2a926
is Sel28
1y Se335U
2u Sebd2
Z1 Sel 34
pys Jed30
3 $a138

- ———— -

Y 44138
24 4.340
Z5 E -1 4
Zb Hallil
21 444940
28 S5e143
£Y 5e3bl
I Dedb52
31 Selfbh
32 HYe95b
93 belbd
34 be3b2
35 bebbh
Jb belbd
37 be971
38 Tel7h

SIGMA~S

s 1361+ 15
« 21017405
«3513+05

«1732+0U5
« 1277405
e 16T 3+ UM
e 4T32+04
« BT TU+ LY
«1148+05
e l339+1US
e l473405
«1585+US
e L73Li+LiE
e 1782+Us
2 1358+U5
«1887+05
e 1l912+U3
e 1332405
e L35L+Ub
«1966+{5
«1972+U3

» S1UL L
e HSL LY
« G463+ 4
e Y56+ LG
e JEZJ+ilY
e YoLue G
cdEHZ 4N
« Yol T+ LG
e WE IS+ 14
«Bblo+ it
s BEUZHGH
e YHBY+ LG

5 (NM/M)

SIGMA-THETA

«l257+06
«1033+06
«3183+US
« 8332405

e 7516 +US
«5332+40U5
«4323+05
« 3725405
e 3340G+UEL
«3072+05
«28394+0UE
«2757+05
e 2654+ (i
«25783+Us
«2511+0%
«2450+05
«2819+0Y
«2335+05
«23250+0L
«2332+U5
e231L1HUL
+2233+05
«22T78+110
«2205+Ub

«d1l4G+[5
w6721+04
s SZb UL
«3301+05
e 3UBL+US
+1513+06
e 2152+ Ub
«2730+06
«IH LG +UL
«3935+Ub
<8550 40k
«5N3c+0o
e 5591 +lit
<617 3+{jb
«7014+Ub
o THTI+uUG

MS

e 3675+02
«1535+404
+2363+04
«283540H

« 7211404
«5286+(4
+2933+04
«2890+iu4
«2046+UG
«1327+04
« 7027403
«1512+&3
«e3425+(2
«7322+03
«1203+Uk
«1582+04
«1335+734
«2263+304
«Z25T1+U%
«2861+ul
«3135+04
«3395+04
e JEG3+(]4
«33738+04

«3875+4
22877+l
«1216+54
sB425+(3
a2330+33
«2296+U2
«1711+03
« 25T +(3
02“'*39"‘:!3
«2273+03
«1332+03
«1455+(3
14 2+03
«6762+02
«3725+02

«1257+0U2

167,

MTHETA

«»3114+04
«7634+04
«B6771+04
«E220¢0H

+6346+04h
«E4S5+0Y
«5916+04
«5334+04
4777404
«42E3+04
«3776+04
«23239+(4
«2913+34
«2526+0 4
«2163+34
«1823+04
«1503+004
«1201+C4
«3145+03
«64323+773
« 384 4+53
«1380+03

«97432+02

—e3228+C3

b 472+03
4304 +T3
«3284+03
22330+03
«1i73+05
«38T7H+32
«3635+01
«23E8+[2
«3964+02
«4126+02
«3796+02
«21E0+T2
eZB35+0L
«1740+C2
«1129+02
«6227+T1
«209E+0 1



4u
41
42
43
54
4b
4b
47
4y
49
SU
51
Y4
23
54
55
5b

SECTIGN

T1e580
14723
744806
B.188
6ed92
Bs. 798
YeJil
Y. lUk
Se4uU7
Je61U
J.813
1u.219
luet422
lUeb25
lu.u23

1

5b
51
by
oY
by
ol
bd
b
o4
bo
bb
b7
b8
by
1y
11
12
13
14
7%
b
11
18

SECTLON

lUe828
1l.L33
11.238
L1.843
1le.543
1i.853
12.ub8
12.263
12,469
12.67%
1Z2.8381%
ls.u87
135293
lo.6493
157U
15.911
144,117
L4523
l4.523
184735
14941
15.147
154353

15.553
154553
15753
1544953
loalby
1t 352
lee5bs
loe753
16,4953
17153
17.353

i

i

i

}

i

|

i

{

!

|

|

i

|

!

«Y9553+0y
e 954 7+ Lk
2354+l
e 90 34+ 10
29023 +U4
« 9D 25+ LY
0 9523+U4
0 353U+ ik
09547 +04
« 258U+ LY
e9035+04
« ST+ LG
«9817+04
e 8949+ 0Y
»1014+05
e 9654+ L4

2 28T7U+Lb
e BUZEFYUS
«10u435+06
e1B32+ ik
vl 2Tl+Llb
e 235 Uit
e 37Ui2+06
«USUZ2+ LIk
e3by+lb
6293+ ik
s 12935+db
B3T3+ 0L
u"JE"%U*-”LJb
elBu+ (7
« 1217407
e X305+U7
el5235+Li7
e 1691+ 0L7
e 1lB8BL+LIT
202+ (L7
«2213+07
« 2375+ 07
W 2BE5+(7

e 23L 3+ 17
22360 +uT
e 9B U+LT
e 2947+ 7
e 23T+ U7
22243 +U7
e 2t Y+ T
e2943+0L7
e 295U+ 0T
02953 +U7
e 235U+ i

« 7193 Li+0c
«83388+ib
2384 9+lit
+ 3316 +iib
«97391+10ib
«1023+07
e 1OGT7+07
«11238+07
«l181l+i17
«1235+047
«1289+0)7
+1343+057
e 1394+ 7
21440 +U7
1877407
«1533+07
<1508+ 07

« 1435447
~Ll543+U7
«1573+07
«1598+U7
+1B12+07
«1615+17
«1610+07
#1596 4057
«1575+137
«l842+(0:7
«1511u+07
s 14 FEFLT
S LU274057
«1363+07
«1232+07
«1188+(17
«1032+07
«8362+b
«55J2+yo
«lE7511ib
«3072+05
+80'Sti+ b
. 1120+07

e1200+U7
£1187+07
$826T7+01E
S UG+
«1713+06

- «1852+05

«4HT8+05
«SH2H+UD
«42183+05
« 2831 +0Ub
«1106+05

-e7596+C1
- 82617+132
- U3ST+[IZ
~+B6116+ij2
-~ 7893402
~e953S+2
~e1073+03
—21390+G3
-e8261+02
—e4T7B2+02

«3843+(2
«1732+03
«38639+03
«65636+303
« 1026 +04
«1438+14
«1862+u4

«1886+34
e 2335404
e 25N 2+ 4
e 2458+ (4
«2256+0Y4
e 1884+04
«lb666+14
«1359+(ik
«11NZ+2Y
«93E9+ 3
«8985+:33
«1UZ2Z2+UNG
«1332+44
«1871+{4%
«2625+04
e 2558+0H
«45339+34
eB2EB+ 04
«5140+0Y
e JUES+YL
2341+ 4
«1555+(L
.3978+§5

«2128+05
«7130+04%
e Z28UB+[Z
e 2360+
e J0TH+04
«2201+C4
«1221+04
e4323+03
o 1852407

-~e1TU32+ud3
~e 1386403

!

i

168,

«1335+01
s 4371+71
o 127€+[N%
«10121+072
«13186+02
«15893+02
«1721+02
e182Z0+32
154 T+12
«7953+721
6 427+01
«29283+02
«b462+02
«1118+4(02
«1713+03
«24C2+03
«3103+03

«2B8E50+03
«2919+03
«23E7T+02
«1378+03
»1113+C7Z
«1285+03
«2727+03
<4098+
«S53E1+4(3
«B44+0 3
«1352+53
«8104+03
«8750+353
«9353+03
«1321+04
«1158+04
e 1371414
«1748+014
«2389+C4
«3334+0k
«L4TL1T+04
obL4B U+
«81E9¢T¢

«3553+04
«1181+0%
«Y4TS2+02
«4343+02
«5134+(03
«3676+33
e2039+035
«8222+02
124 4+02
«1723+C2
«231S+02



8y 17.553

94 17.753%

91l 17.953

92 184153

93 18.353

Yy 184553

y4s l.753

Jb 18,9353

g7 19.153

98 19.353

Y4 149.553
iuu 19.752
lul 19.4953%
1U2 204153
lus ZU.353
luy 2Ue553
105 2Uelb3
lub 2U.4953
Lu7 2Lleibd
lug 214353
iuy £1e553
lliu 214753
111 ZheY53
i12 Z£2+4153
1l L26553
L1y 224553
115 22.753
lio 224953
117 £34153
11y 254353
11y 254553
LZu) £36153
1z1 £354853
122 £4elb3
1238 CHeS53
1z4 4 eH53
125 44753
1o C4953
127 254153
lz3 294353
129 £Des53
154U £beln3
151 25 e453
132 2belb3
153 2043553
FRRY 2oe553
135 Zoel53
136 Zbed953
157 27elb3

SECTION o

4 274153
38 27303
159 CTel453
140 Z7.6U3

141 I -

~. 2350+ 07
—«2350+07
~-e235U+ L7
«295d+07
« 2350+ U7
«235d+07
« 295U+ UT
«295d4+u7
—e 235U+ LT
«Z2950+U7
« 235U+ L7
o235} +07
- 235U+ L7
—~e295U+U7
e 295U+ LT
«2950+07
~e 295U+ LT
—~e2950+07
—e 235U+ LT
—e23850+U7
~e2950+UL7
~e23B0+U7
~eZ95U+ L7
~e295U0+U7
~e 235U+ L7
~e2350+U7
—e295U+Li7
~e2953+U7
~e 235U+ L7
—e2350+4U7
—eZ95u+ L7
~e2350+037
-+ 295U+ L7
~e2S5U+U7
- 295U+ L7
- e29353+07
-« 295U+ L7
—«2350+d7
‘0285U*h7
—e2350+07
~e 295U+ L7
~e23c+07
e ZBSU"’{J?
~e2843+37
-el3449+ 07
—e 2389+ L7
—+2952+07
~e2955+0L7

i

t

—eOHHB+U5
- 1li25+ L6
- 294 T4+0%
~e9l58+15
‘03035+ﬂ5

«2652+04
-+126S+04
-e2350+0Y
~«2053+114
-«1331+04
“06559+03
~«2200+03

«1150+02

«3424+02

»9637+02

«6911+02

«3816+0i2

»1528+(

02222+01
—«3281+01
-4 320+l
—-3“‘02"'01
'QZDQQ+U1
~«9923+00
=4 8335+00
-«5213+0C
—~«3331+40
-l 35+01
~«1534+01
«3018+0LU
«3323+U1
«1050+0¢
«2143+¢42
«3365+02
«3957+132
«2380+112
~e3T701+12
~el725+05
“039694’”3
«b821+02
«3027+03
«7732+073
«1934+03
2B 355+04
«70387T+4
«1338+1i5
+1957+05
«2056+05
«6753+0%
«3572+05%
«1222+06
« 25611400
-« 4TS+UB
<4338 +{l6

!

i

«6835+{5
—«2721+06
-«l6549+i6
—+33501+05

~e1105+53
—-«6715+02
-e3161+02
-e8321+01
«2602+1C1
«5833+¢
«5362+01
«3563+{1
«18%8+01
«E465+00
«1035-0i
- 22296+300
-« 2586+ 00
-el838+317
-~eluitt2+ (0
- e43233-01
- 7304k-C2
«3277-32
ell4-01
e1330~01
«3640-32
e29839-12
-«9013-02
-e2923-11
-~ 5604-01
~e8855~-J1
~e9995-01
-«51038-01
« 1206 +00
«4852+00
«1076+{1
«1803+01
e2313+01
«1333+0U1
-e9238+00
—«1530+01
~e1943+02
—-e3568+02
“-5&81*&2
- e5080+02
-e1012+02
«1073+403
e 2368+03
wEB833+53
«10639+04
«1ZUS+3Y
e 7335+03
-e1232+014
-« 5504C+0G

—U37B+014
“01889*64
-« 3630L+G3
«2188+03
«25899+U3

169.

—.18Q6+02
~-21121+C2
-e517£+01
-013SD+G1

4345400

«S8Y42+CT

«8S57+00G

«59c0+0C

«3070+00

«108N+0C

-1729'32
—-«3834-01
—e4185-0]11
-« 3070-%1
-e«1741-01
‘07245-52
-e1220C-02
.1549-52
«2361-02
«2221~-072
«161C0~-32
+48282-02
«1505-02
«8E92Z-02
e1l8473-71
«186S-01
«8531-02
02015'31
+31C3-C1
«1737+00
«2011+3C
«3863+00
«30€1+CT
«1543+00
»1268+01
«3244+01
«59£38+01
«8485+01
+8483+C1
«1680+21
e17S1+2
«5€824+02
«1142+303
«1786+05
«2086+03
«12253C3
«207C+L3
«9261+03

|

t

i

«7303S+03
- e3171+C3
“05146*82
«3654+02
«UBG2+TZ



142
143
144
145
146
147
148
14y
lou
151
152
155
loy
155
156
157
1938
15y
lou
icl
lb¢
P )
loy4
165
lob
lo7
Ny
Loy
i7u
171
172
175
174
175
176
177
174
175
sy
Lel
lue
163
lyy
1oy
Ldb
17
18y
ley
i9u
191
192
195
194
1498
1906
197
198

27903
28453
284203
284353
£8 45113
Z8e0653
2848103
2B e253
9,103
294253
£Y9.4U0U3
ZY9 553
29.7U3
294853
SuU.Uu3
SUelbs
JUe3U3
SUH453
SU«bU3
JU.T753
SU.394Y3
Slellby
$1e203
Slednd
3Lanl)3
SLebd3
Sledu3
SLeub3
32e1U3
S$Lelb
32403
32853
32703
SZa853
s3.0038
$3e153
53e3U3
S3.453
350003
334753
33e9U3
S4.Ub3
S4.2U3
S4 6353
344903
SYebD3
S443U3
She353
ShelU3
356253
3He413
354553
SbelUZ
395.851
SbsULE
Sc.l89
20298

e ‘3189*&5
~e9221+U5
-e 492 34+U5
~e9236+U5
~e9234+05
~eY9252+U5
- 9231+ 0U5
~e923U+U5
-e 92320+ 0US
~e3234+US
~e Y231+ L5
~e9231+U5
—e 8231+ 015
—~e3231+05
-e92%1+UE
-e3231+0%
~e9231+05
~e8231+05
-e9251+05
~e3251+0UB
-e9231+ 0Lk
«92351+U5
eB231+ U
«923L+Ub
«92351+05%
«92351+05
eY251+UL
«H231L+U%
« 9231405
e9231+uUb
~e22314+Lb
«9231+0U5
e 8251415
e 923514US
e Y2314 L5
+3231+U5
« Y231+ 05
«J3231+U5
e 921+ 0E
e923L+US
e Y231+ 05
«3231+35
e 4231405
ed4Z314d5
e3231+0CE
«92351+U5
«B251+ 05
e3231L+05
« 9251+ 05
«9231405%
e 92381+ L5
—eY232+05
-~eY232+0E
~e9235+05%
-e9252+0Lb
—e93224+05

|

i

i

i

!

[

i

f

}

- «4E30+05
- 4272405
~+23334+05
—ebTHE+05
—.8047+05%
~«3150+05
~»1012+U6
-«110d+Ub
-21132Z2+06
~el282+lb
—e1372+U6
'0146“"'0‘3
—-+1555+06
~«l687+Uc
—e1733+06
~«1830+U0
~el321+Usb
-«2013+06
—~«2104+Ub
~e2186+{C
~+2287+06
-e2379+liG
- e2873+00
~«2582+106
~e2653+016
".27“5""05
~e28356+U86
~«2928+06
~«3013¢016
~e3111+06
~e32UZ2+00b
-«3294400
—e3335+06
".3"77"U6
~ 356 8+{b
- «3E660+(ib
~e3751+06
-« 3884 35+006
~+3334+006
~4ZE+(6
~e41l7+Ub
-«4209+0b
- ot 302.]'506
-«4332+L¢E
—e#4d3+lb
-«4575+Lb
—.4bob+uibd
- .475\?""Ub
-4 84 3+iio
-«4941 +lib
~+50134+Uib
~«5120b+{ib
—«521b+lb
-«5304+Ub
~e5385+(b
"-5“58"‘[.-5
—-+5531+06

«1858+G3
« TT26+{C

«1373+42
-« 9900+ 01
«1235+02
«1743+01
«3138+041
«SUGB+00
<450 3+00
e 5257400
3221410
«1275+C0
«1818-G1
«2020-01
«2234-0G1
«133S-C1
«5151-3u2
«E379-03
«3012-04G3
«478-G2
«5557-13
«2(081-0C3
«2155-{4
~4320~04
«2307-0H
«47Y93-U6
«2251-15
e2431-{5
« 7585-(i6
-e1168-04
".1716'3‘1’
e LUBS-LiY
«2862-04%
»2776-33
«2986-03
e TH2Z-3
~+3053-u2
«E635~52
«9291-L2
-—eloliZ~G2
«1912-41
o FH5Z-01
«2160+00
«9213-01
«4301+G0
«1807+01
«3753+01
«5011+01
«1355+(01
«1177+52

!

i

§

]

170.

«3105+G2
«1230+02
«2293+801
~elbb&+ii]
-OZU€3+C1
-«1292+401
~e32414C0
~e842E-01
«715318-L1
«8775-01
«e5378-C1
«2125-01
«3036-C2
-e3374-02
—e3720-C2
-e2225-02
—.BSCZ-E3
-«106E-03
«15C5-C3
«1583-035
«3280-C4
«3875-04
«3583-55
-eb682-05
—eE713-C5
~e38£2-05
"013 SQ‘DS
-«8013-G7
«4Ce0-00
.2‘!23-36
-+1267-06
-.8U484-C6
’01950-05
‘-02856"05
-«1773-05
«47739-05
«2085-04
«4635-04
«6EE60-014
«3728-04
".12“0-33
~«50¢S8-D3
-«1108~02
-»1582-C2
-« 7685-03
«3183-02
«1245-01
«2646-C1
«3608-01
-+8185-01
~«3017+8C
-«6267+00
—«8368+00
~e3266+00
«1365+01



199
2Lb
201
zuz
208

SECTION

v - o o

Sbelt7
3bebY06
Jbe745
3b.8Y9%
37.043

37043
37143
374293
37443
37,5493
37.743

STel43
37.902
sbelb2
384221
SEes8l

-+9203+05
-e9188+05
~-23173+05
~-e9225+05
~29627+05%

-« 8061+06
—«8071+06
-.B287+06b
-«8326+06
-+ 8338+06
~-+8341+06

-« 86 72+06
—e866U+006
~e«B633+Ub
-+8E15+06
-+ 86119+ L6

-

I

-

«5630+06
«5806+06
+8123+06
«b624+0b

«7127+06

«36b0+{6
+8513+U06
«8338+U6b
«33735+06
«8364+0¢
«83353+06

«8415+06
«B8465+Ub
«8431+006
«35038+06
«8521+00b

«H264+02
«8791+02
»1163+53
«4241+02
«28486+53

«1232+U4
«7063+433
«6639+(03
«6493+33
e6436+03
«6403+0G3

«1228+002
«2772+04
«6933+74
«1254+035
«1930+05

171,

«7121+01
«146E+02
«1942+02
«7082+81

-« 4783402

~-e335S+03

+4871+03
«53961+03
«E172+(3
«6246+03
«E6281+C3

«5232+03
«1111+04
«2398+404
+4348+34
6425404



172,

A.5 Listing of Programs

There follow complete listings of all the CONFRU programs, including the

plotter program STRESSPLOT, The programs are listed in the following order:

1. -CONFRU MAIN program
2. Subroutine PLGEOM
3. Subroutine PLPRES
4 Subroutine SYSTEM
5. Subroutins GELSTFE
6 Subroutine SETBD

7 Subroutine TRANS

8 Subroutine PROD

9. Subroutine PTLOAD
10. Subroutine ILOAD
1. Subroutine CLOSEL
12. Subroutine BONCON
13, Subroutine BANDO
14, Subroutine BANBAC
15. Subroutine STRESS

16. Plotter program STRESSPLOT
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** CONFRU MAIN FRCGRAM =2x

PARAMETER IXX=5LLsIYYZLLUOUs I22 230 IWW=1503

LOG1CAL PCS

DIMENSION HEAC(LU) o MELT(LZZ I NELZ(IZZ) o NCOL(IZZ 3o NOD2(IZZ
DIMENSION NPTL(IZZ)onNELP1{IZZ) 9o NCLPZ(IZ7) NOCSIIXXIeNLLTZZ)
UIMERSLON NEBCULOY#UBCULID)sWBCL{Lr ) «+MEC(LI0)+ICLCSELS )
CIMENSION NCOIWW)oNDUOL1O94) oNFLTIUW) oNHT{IWW) o NRIIWW I NKRIIWU )
CouBht PRECISION LIIXX)eRLUIXX)¢R2LIXX)Y e TCIXXeZ ) e TLEIXX )
LOUBLE PRECISICN ATIYY) e VECU(IWRW)

LCOUBLE PRECISION RSL(IZZ)»RSZ(IZZY s TLLIZZ )Y TC2(IZZ)

SOUBLE PRECISIEON PLUIXX)YsPRL(LZZIoPRZUIZZ)+PLA(CIXX)

DOuUBLE PRECISLON WULIZZYsWHWZIZZYeMMEIZZ)

DOUBLE PRECISLON RNUeZsGCeFAC

LouBLt PRECISION zACLYY ) »BEVETEINW)

COMMCON ZULKL/LiXeiYelZovIW

COMMUN ZolK2/NPLOT/ELK3/ZIBON/LKG/NCF/BLAS/RNUSE/BLKE/NEL TN
COMVMIN /o lKT/NBP/EBELKS/LISF

NOTES IF EACK SUBSTITLTLION LS REGUIRCD
CHANGLE s iXXZZoUe IYYTT5UL»IWWZ /5T

ND REMOVE RELEVART COMMcNT CaARUS

LX = buu
Y = isduu
i = &u

1W = 1S5uU3

I EE R RS S R R E R ST T AR R R L L LR R R

EE R E EEE R ESE S EEEERES S

MAIN HEACER TITLE

Xk % K kKRB FRkOERKEAXXSF K

REAC{8 eSS0} LSYMelGENYIGeIL e I>eIBONsIVeIB»IDeISP
FORMAT(1ll)

IF(LSYMYe S0 1

PRINT 2ul
FORMAT(1Adleb (/) oitdr c89X e 310" %" )9/
l4uXe* = CONFRU *? 9/
L4UXy *x FINITE ELEMENT AXISYMMLITPIC %'4 /4
24UXs s Thih SHELL PRCGRAM x 2/
SHUIXe "% 928Xt %x%e/
b4iXe?* TelBoGRIFFIN *% 9/

THUXe Y% UEPT. OF CIVIL ENGINELRINE *'y /0
244X A UNIVERSITY OF CAPE TOWN *' 9/
HaUuXe %% 29 Xe "% /s

34UXe ' x AUGUST 1974 xV 9/
40Xy 2% 29X x99/ s
bYyXs®* UNIVAC 1106 EXEC 8 *% 49/

BUUXe 310 "%"))
ERERRRRRE B ERE AR KRR K KK
REAU LI ANALYSIS DATA

I RS R EEREES R EREEELEREIES
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5301 CONTInNLE

REAG (oo 20} LCASE{HIAG(L)Ys I = 1,13)
REAU(2e2Ul) NPFLOTeNGPe(LOLOSECIY I =
REAC(89202) RNUeELGT

KEAU LB 2U3) RSECeNPSeHNEUsNNFL e NBP

1¢5)

Ul 25% 1 o leANSEC
254 REAULBe2UYINCULILI) o NCLI{L o NCUZ2ZIIY o NEL2(Z) v RSLI(ID oRSZ2(TI) o TLII)
1T2¢1L1}

IFIHPS) v 2560
OC 255 1 = 19HFS
255 READ(LesZul) RELPLUI)oNELPZ2UI)sPRICIILPRZII)

296 LU s I = 1lenhBC
253 READL(c92:35) N3C(I11sUBC(I) o WEC{I)$MBCIT)

IFINNKFPL) 2579
U 221 1 = LlsikHPo
251 ReAL{zse2u7) NPTLLINoUULI)Y oW (D)o MM(I)

27 LF{NcHF)e 520
SU 2858 I 2 1eNEP
258 REAU(392d5) NU(Iel)eHTO({I92) e NC(TIe3)eND(Irt)

{

-~

voel)

o

252 NeLT = NEL

L =1
b3 REAU(®eZub ) LUI)eNWREP
AFINREF - 1) Z2B1leiEly

Iz I+

262 REAL(4s2U6) L(I)

21 1 = I + 1
IFCL-HELT) Zb3e263

2US FORMAT (AL +2X210AL)

201 FURMAT(Z2(IL 28X} el{L3e2X )}
202 FORNMATLE(EBaSy X))

2U8 FCRMATL(B(ISv2X) )

ZU4% FORMATIL(LZeZX)rtitEBe392X))
2U5 FORMAT{1oeZX s 3UAL-1X})

ZUE FORMATIFTledNe12)

ZUT FOURMAT(IOo22Xes{ECadrdN))
28 FURMATIZALIZwZX)e{EEL,392X))

221 TLULl) = U
et 13 I LofhetT
13 Toli+1l) = TL(L) + LI}
ARk Bk kRN NFR AR RNk ¥ AR KR A KRR
HEADLIWG: ANALYSIS INFURMATICON
xRk kKRR R RF R AR R F B R R LR KRR KA XAk
IFCLS5YM)e eolle

vt

PRINT 20U2+LCASC
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(@

c

U2 FORMAT{LIAC 51/ ) e LHT»39X031( %% )4/
SUUXy **x LOAL CASELD "rAceliXe®xty/,

B4NX e P 2% 929K "2 %9/
SUXe*®x UATEcoevessascnceosne
b4dX s Sl ({*x"))
¥ xok ok ok k kK Koy ok k k%
FIXES CUNSTANTS
LEESEEEE ST RS FEEE )

SU2 NELTFL = RELT + 1
IF(RSP)ISUIerous
CC bis I = 1e1d
LO 5u4 J T ley

SU4 NO(Led) = U

Su3 CONTINUL
W2 (NELT + L)=3
JFINUDGEFrl)eb@eii T v =

Wobel=xZ

Ia
(%)

5 hblcg®y) = poUZY
LU B K = leNSZ
NT = fic(K)
BC 7 1L = KeNS2Z
IFINLGL+Li) e RELNT) GG TC 7
M- M+ 1 -

Gu TC »o
7 CONTINUE

£ CUNTINUE

WPP = (l/2) 4+ Iy

O0 Ls0 1 T LeNELT
PLOL) = we

LU PCA(I}) = L
KA NER KKK XBRRE R R RE S KA K KX %
GEOMETRIC UATA GENLERATION
EX KR KX AR K ¥ AR KK AR K AR KR Kk Kk %

e lliXe "'%x"y/,

175.

CALL PLOEGH(NSECYHNELLINELZ9RSZ RS20 T19T29L9TeR1eRZ)

IR E RS TR RSEEEEERERERREEEEER R R R R R A R R R R R R R

PRINT QUT GE&NeRAL INFTORKMATICNS

BRANCHING ETC.

EXEFR R B RN KA E R K R KRR AR R AR Rk Rk Rk ARk kAR KKKk kK &K

TF(IceEk)ee il

PRINT 303 o (HEAU(L)eL =
3109 FORMAT(LH1e8U("*" e/ 1H »
PRINT oUbsRNUsLeCLU
3U3 FORMAT(LIHO»"PCISSCN RATIC
1% MULGLUS CF ELASTLCITYS
2YUUNIT WELIGHTs: STRUCTURE
IF(NGP.NE.S&ANU.HDP.NE.7)
318 FOURMAT{1HUe "NUMERICAL IN
1.%)
IF(NGP et deTsURaNCPoaEWe7)

1910}
1CASs/21H 2500

e "18XetSe3e/
*eLE eI/

MATLRIALS "9E8430/ )

PRINT 218s0NCP
EGRATICN: "912»

PRINT 312.NGP

POINT GAUSS QUALCRATURE
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313 FORMAT(*JNUMERICAL INTEGRATICONS "9IZs% PCINT SIMPZCN QUADRATURE.M)

PRINT 331
351 FORMAT(ILAURE( /el el (®*~*)s/v* CHECK NOLULE AND ELZMENT NUMEERS® ¢ /s
1Y FOCR SECTIONS ANU ERANCHES®+/92H o300'=) 3/ 91HD ey *SECTIONS 93X e *NC
CUE o Xy "{ELEVENT) "5 (%% * o " (LLEMENT )Y *e2Xs *NOLE*9/ZelH +8('-%))
S0 33¢ Jd = 1enSEC
PRINT 333 dewQUL ) s RELLCIY o NCLIT(J) e NOD2ZCY)

3353 FORMAT(LA #3Xel296XeIl595Xa (" 9I2¢%) % 9CSXe " ("9I3") T I12)

332 CONTLINULE

PRINT G43u

430 FORMATILH e "CLCSURS CLEMENTS e /91H 2168(7-1))
IF(LCLuUsSEt L)Yl Gelil PRINT 431

431 FORMAT(LlA »*THE STRUCTURE HAS NC CLCSURE ELEMENTS?*)
IFCLLLOS (1) eGT el PRINT 3212iCLUSE(L)

321 FORMAT{'UTHERE ARY CLOSURE LLEMENTS AT THE FOLLOWING NCDES: '9#12
CQ 3282 U T 2eb
IFCICLCSe U)ebTad) PRINT 3229.CLCSE(Y)

523 FURMAT(LH e51Xeful

S22 CCRTINLL

PRINT 330

358 FOKMAT(LRU "DRANCE FCAKTS Y /e i o13(*=%) )
IF{NBFecWad) PrRINT 435

G35 FOUAMATLY THE STRULTURLD HAS NG BFANCH POINTS')
IF{NGP )Y 4 Cuy
LO Sa5 M = lekbP
NOZ 2 NC{#el) + 1
IF(NLIMe2) o GT ol FRINT 336 oNU(Me L)oo NDIMeZ Yo ND (M9 3)
IFCNLIMeZ)eEUel) FRINT 33TeNCU{Mel) aNS2

336 FORMATC'UNODE *ediss® IS CONNLCTED TO NCODL *3IZy* THRCUGH ELEMENT °
1,135

237 FORMATOCUNGOE "elae* IS NCT CUNMECTED TO NODE Y91I3)
233 CONTLINLE

ER AR KRR R AR KRR AR Rk kK Kk K R K Kk

FRIKNT CUT GECMETRIC DATA

FEEF AR KK EKR TS Ak K £k ¥k ¥k k%
U0 IF (L) e liiz

230 PRINT Su&k
AU FOURMATCLAL» 150 =" ) s/ 9" GLOMETKIC UATAZYe/91H #15(*-")s/
LS  EMENT "ol X *LENGTH s 4 X9 "RAUIUS L) " o4 X2 *RAOIUS(Z) Y9 EXy
ZPTLLY s TR "T (L))
LC 3buy L = 1aNELT

S50 FRINT shDoe o (L) eRICI)oR2CI)eT(TIo1)eT(Le2)
SUS FURMATILH o2X9 L3 04 XoF Babtd4XeFbe?eTX9FB6e395X95(FB80aEr2X))

PRINT JLGe TLIHELTHL)
306 FORMATI(LIH o18( ' ') e/91lH 2»*"TCTAL" 12X 9FSe0)

R K R R KRR K ARk KR R KRR KAk %
PRKESSURE DATA GENEZRATICN
XS AR E K AE R AT FERE AR R XA ¥ X

U2 CONTIRUE

IF(NFSeGTali) CALL PLPRES(NPS+NELP1sNELF29PR1+PR2sLsF19sPTA)
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AR KRR KRR R K A KK kK ok Kk ko

FRINT CQUT LOADING UATA
EXEKARERE KR IR R A FREE R KT

IF(ILYe el

PRINT 207
FORMATOLHL o130 " "2/ " LOCADING DATAI's/e1H »13(°-*)2
JELGCLCTole) PRINT Z14

FORFAT( YL THE SooF WELIGHT COF THE STRUCTU!

e}

€ IS INCLUDED SEPARATEL

-

1Y IN THIZ ANALYSIS *x°7)

PRIRT 315
FORMAT(IHD»2X e "NODE "2 LX s "PRESSURZ " o TX o "UU T 212X e "HH " 912X s "MM*)

J = 1

LERO T (e

U0 351 I = 1leNELTH1

IFINPTL( U eEWedl) FRINT SUSsIerl(I)eUUIJY WKW IJYs MM
IFINPTLLG)eNEoL) PRINT 202¢IsP1(I)92EROv2ERQsZERC
IFIRNPTLUUYebGel) o T U + 1

FORMATILR o2Xel3rcXohled49SX o4 (EC 445X ))

COMTInUE

ARFF R R KRR AR AR E KRR KRR R R Rk k k ok k k3

SET UP SYSTEM STIFFNISS MATRILX

AKX KXFFREFF R AR IR RL F Kk Rk kK & ¥ ¥ K x
CONT Lkt
CALL SYoTENINUeLoRLleRzes ToaNCoNNMaNFoA)

KRR R KR P AR KR F kK KRR KR E R KK KKK kR R Kk kKK kR KR KK
CLUSURZ cleMetT STLFFNESS & LUADR VECTO
KX KR AR BRK AR R KRR RS kKR Xk KR F Rk kkt KR KKKk K KX

SFLLCLCSE(L ) eCTLHUICALL CLOCSEL(ICLCSEsNFsGCoPLleRLsToAWPVES

* kK E Kk Kok kR kK Kk k Kok ok Xk Xk ok ok ok ¥k
SET U SYSTem LOAC VECTGR
XX R R FEERF R AR KK KRS KKK KK KX K

PUS = «FALSE.

OU 81u L = 1eNELT
IFLUABSIPLII))eGTede) PO = o TRUEZS
CUNTLNUE

TF{NNPLeGT ot} CALL PTLOAUINNFLINPTLeRIsR2sLeUUs KWeMMWVEC)
IFIGCeGT el ealhaPUS) CALL LOAD(MELToGCoLsR1I9R22TsP1sPCANVIC)

ITTEETETEREF R LY
JOUNCARY CONCDITICGHS
EREAAFARFFRFHR KRR F ¥

CALL BCNCON(NRECsHBCeHCsNMaNF+LBC»WECQsM3CsAsVEC)
AR KRR AR KR AR AR AR R R RS F AR R K E R KRR R K KAk kKK

PRINT QUT SYSTEM STIFEMESS & LOAD VECTOR

IR PR R E R SR SRS S R RS RS SRR R EE R R SRR R R R
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IF(IS s ebl5
PRINT 603
603 FORMAT(2HLs *SYSTENM STIFFNESS®s/91iH 216(*=*)e/)
NNN = NELT=®15
PRINT U4 (ALL) eI = L1eNNN}
U4 FORMAT(1HUs1lUE1leE)
UL IF(LV)sealb

PRINT Ul
601 FORMATIIHL1+18(*=")s/+* SYSTEM LOAD VECTOR'+/9s1H »18("=")s/+1HDs*'NO
IUE " s 9 Xe U v 13X "W el3Xe "M%/

J =T u
DO 42 1 = 1eNe 3
J T o + 1

PRINT 621ey s VEC(LI o VEC(IL+1) e VEC(I+2)
421 FUORMAT(LH »I4v35(5X9ESe4))
420 CONTLINUE
bUb CONTIWNUE
D0 o4b I = 1.1YY
bub5 BA(L) = ACLD)
AKEKRKKEERKKKERR RN AR KRR F KRR KRR A S %

SULVE SYSTEM STIFFNESS EQUATICNS

FEKRREAE R AR ERR KRR KR KB SRR R XA KB K Kk X
Call SBARNDOUIN'BCsAr VECINMeNF o NAo NWR)
AAEEAERRKKE K AR KKK X
SBACK SUSS>TITUTICN
AEEFEAKRE R KR KRR R R KK

IF(iBetueli) CALL SANLAC(NCoNMseNFoNC»VECPEAXBVEC)

o e - ——— e A - ——— T - — 2 - ;. ——

FAC = (le ~ RNU*RNUM/LBbZB31EL3TIT*E)
DO 8 L = 1N
8 VEC(L} = VEC(IL)=*FAC

—— ——_—— o ———— — ——— — —— ——— - o~ —~ . o —— - — -

ERKE R A B R E R R AKX ERRRR R R R KE R KK & 4 ¥
PRINT QUT DISPLACEMZHNT RESULTS

AREE XA SR RS KR X DR R AR ER R KR KX K% X K XK
IF(IU)» 404
PRINT S

9 FORMAT(LIHL+S0U™= "}/ 9 DISPLACEMENTS AT EACH NODEe IN GLCBAL COCRD
INATES S e/elr o507 ) e/ 91HD e " NOLEY 93X e U 213X s "W 213Xe" M)

J = U
DO 11 1L = LleNed
J T Jd + 1

PRINT 1d oJeVEULI) 2 VEC(I+1)oVEC(I+2)
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FORMATI(IH sI395Xs11e502(4Xs211e6))
CONTINUE

AERXFEF AR K AR ERKR KX AR R AR FA B E XK R X%
PRINT CUT STRESS HEADINGS
REEEEERKFAFERFFEKR XS XA XA KRR $
IF(LSP)240T

PRINT 4llosNPLCT

FORMAT(*UREZSULTS T0 PLCT FILE *9I29° ONLY")

GO TG aly

PRINT Lu

FORMAT(LALs42(*-%)e/v* NCODAL STRESSES (N/SQeM) AND MOMEMTS (NM/M)?

Le/vlH s4(7=1)
1o/ 0 "UNCULE 92Xy "CUNMULATIVE 94X s *SIGMA-S T 94X s *SIGMA-THETA 97X 9 ¥MSY
298Xy TRTHLTAYs/91H 28X *LENCTH"y /)

R B R KRR K KK R R Kk ¥k

STRESS RoZSULTANTS
A KKK R R OR K KA K KK KK ¥ A

WRITECNPLOT»21) KEPeLCASL
FORMAT(7X21392X9A0)

CALL STRESS(INSECOOCSeNCO1eNCLZeNELLeNELZ9L9sRLIRZ2+T9VEC)

>TOP
e ND
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1y

12
13
14
15
le
17
18
1y
2u
21
22
23
24
25
26
217
28
29
su
31
3z
33
34

SUBRCUTINE PLCEOMINSEC »NELBYNELEsREIREsTSeTE L »T
COUMMON /BLKL/LXeiYsIlelW

INTEGER EL1sELZ

ODUUBLE PRECISION RE(LZ)SsRE(IZ)IeTB(IZ)sTE(IZ)
DOU3LE PRECISICN LUIX) s RLUIX)IsR2(IX)»T(IXe2Z)
bougLt PRECISICN TLeSIMASDELT.SL

DIMENSION NELSUIZ)sMNELELLIZ)

UG 1 M = LeNsSEC

»
tLl = WELs(M)
ELZ = BNELE(M)
EU 2 o T ELlebll

TL = 1L+ Lty)
IF(RE(MYeEU«USIREIM) = RBEIM]
SINA = (Ro(M) - RS(M)I/TL
RLCELLY = RBUM)

EC 3 I = tLlrE02

Rz{I) = RL(I) + LA{Z)*SINA
Ri{I+1) = R2(I)

IF(TE(N) o EGaLaITEIM) = TB(M)
K = £ - ekl +1

CELT = TEM) — TBA4)

St = Lie
TELLL1) =
bu & I =1
SL = SL o+ L{ELL1-1+1)

TORLLI+Lel) T (SL/ZTLI*CELT + T(ELLIe1l)
TELLI+I-192) = TlEiLl+Isl)

TB (¢
s K

CONTINUE

RETURN
END

180'

sR1+R2)
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1 SUBROUTINE PLPRESINPSYyNELPLINELPZsPRLePRZLeF1.PCA)
2 COMMUN ZBLKL/ZIXelYeIlZeIW
3 INTEGER LL1sEL2
& UIMENSLION RELPLOLIZ)eRELPZ2(IZ)
5 DOUBLE PRECISICN PRICIZ)Y+PR2ULZY+L(IX)ePLIIX)ePDACIX)
b DOUBLE FRECISIGON TLDELF
7
8 0 260 I = 1eKPS
9 ELYl = NELPL(ID
10 btz = WELP<(L)
11 DELP = PRZ(I) - PRI(I)
12 TL = e
13 DO 210 4 = EL1eELLZ
1y 210 TL = TL + w(d)
15 PLlELL) = PRICI)
1o Ou 22ty K = ELleELY
17 PCALK)Y = (L(K)/TLI*DELP
18 IF(K = ELZ)vd2Uy
19 PLIK+1) = PlL{K) + PDALK)
21 220 COUNTINUE
21
VY4 200 CUORWTIRUE
23 99 RETURN

4 WD
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SUBROUTINE SYSTEMINDeLeRLeIRZ2ey ToNCoaNMeNFA)
COUMMON /8LKLI/IXeIYeIZeIW

COMMON /BLKY/NGP/3LKG/NELT#N

CCMEON /BLKT7/NBP

DIMENSION NC{L1IW)oMND{(1O0e8) o NMILIWY o NFLIW)

DOUBLE PRECISIGN A(IY)eKE(Esb e KA(G9E)1KB(BeEG)
DOUBLE PRECISACN LUIX)sRI(IX)IsRZIIX)I2TLIX2)

XA KRR R R AR R R A KRR R R B R KRR IR KR AR KA KA BRI A AR AR AR AR KA AR R A KR KR KA KK &
PO 20 I = 1.1Y
90 ALIY = Us

EEEXX KB KRR KA F A RKKAX BB ERRERF LR R R B IR KA B RS AH A R XA XA R KR R AR KB R KR R KKK KK KX kX &
ELEMENT 1 STIFFNESS MATRIX

EXBXX XXX FFXRKE XX B RAFFEXRE AR X AR XXX XIE XX XK EXEEAFEIRER R KRR X AR E R R KRR X ¥ K% X

Iz

J =1

Ki = u

Kz = g + 20

CALL GLLSTFLL(L)oRICLYsR2(EIeTCIv1)eTUI92) oKE)
Ks = 1

Ko = 1

CO 4J K = KleKZ

ALK) =T A(K) + KE(KSeKH)

IFLKE = K4) 4lase4l

Ki = K3 + 1

K4 = 1

L TG &L
41 K4 = K& + 1
40 CONTINUE

0O 42 K5 =
4z NCtK5}r = 1

v = 1u

1 = i+ 1

1+0o

IR R R R E R R R R R R R R R R R R RS RS RS 2R R R S S RS R E R R EE R R R R LR X

80 DG 5U M = 1410
IF(NCIMrLl)eEG.IaAND.ND(Ms2)EGal) GO TO 51
60 TG 52
51 IF(NCIM+1s1)at8a(I+1)) GO TC 20
6C TG bU
52 IFUNDI(MoL)aEUL(I+1)oANDSHND(My2)aNELO) GO TC 20
50 CORTINUE

EE RS E XX R F R E AR KRR KR A B XX BX R AR R B R R AR R KRR K

ALL STANDARO ELEMENT STIFFNcSS MATRICES

I EEEEZEREEEEIE SRR SRR EREESSEEEREERE RS R X RS R ]

DU 82 MM = 1+10

IFINC(MMel) — 1)9330
62 CUNTLINUL

U0 35 KK = 1loeb

LU 85 JJd = 16
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85 KB(KKrJJ) = U.

GO TL &4
83 NEL = wD(MMe3)

K3 = 4

IF(ND(MMeI ) aGTND(MMed)) K3 = 1

K = K3

CALL GELSTFUL(NELYeRLINELY»RZINEL)» TINEL#2) e TI(NELs2)s+KB)
84 CALL GELSTF(LUIIsRI{IN+R2(I}2T1lIel)2T(I+2)sKE)

AGdl = A(U) + KEGLel) + KBUKIsKY)

Afu+4) = A(J+4) + KE(Z2¢1) + K2{K3+1lsKY)
ACd+5) = A(J+s) + KE(Ze2) + KulKo+lellG+1)
AlJd+d9) = Alu+d) + KE{Z291) + Kz2{K3+42+K4)

ACJ+LUY = ACJ+30) + KE(3+2) + KB(KI+29KE+1)
A{u+ll) = AlL+11l) + KE(Z+2) + KBIK3I+Z22K4+2)
J1 = U + 12

g2 T ul + 14

K = 4

K4 = 1

CO 45 K = Jlede

ALK) = ALK) + KE(K3IeKY)
IF(KY = K3) 449964
K3 = K3 + 1

K = 1
GO TG 45
44 K4 K + 1

45 CONTINULE

NRCW = (ix3) + 1

WNCOL (1l-1)x35 + 1
Ko = HWROW + 2
LU Yo A& = WRUIOWeKbo

46 NU(K) = NUCL

i 1 - MELTY S5Je77981)

R e T S TS S E
BRAKCH FOLNT STIFFRESS MATHICES

LEEE R R RN EEE SRR EE R E SR E R EE S R EEE R RS SRR EE RS R R SRR R R R EE RS R R R SRR R R R R X

23 NEOW = (Ix3) + 1
MM OZOF
IF(NCINM+Lel)eESe{L+1)) MM = M + 1
LG 56 R = 193
38 NC(INRCa+K-1) = {(NuUiMM:2)—-1)%x3 + 1
NL = oo
NZ T J + 4
S = o + S
e = (NRUW-1) - (RCINRCWI+Z) ~ Z
K = N3 + 3
W7 = N4 + kB + 2
NS =T ONT + 4
N T ND O+ B O+ 2
N6 = N8 + 5
NY = No + B + 3
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NN1 = N3 + &

NNZ = NN1 + 4

N3 = WKL + 5

NFLAG = u

IF(NCIM+1y1) oEGe(1+1)3 NFLAG = 1
KL = NDCi+le3)

K2 = NDOD{M3)

K3 = 1
IF(ND(My3) e EGeND(MP2)) K3 = &
K4 = K3

IF(NFLAG.EGT) CALL CGELSTF(LUL)oRLICII oR2(IVoT(Isl)eT(IeZ)eKA)
IF{NFLACCEG L) CALL GELSTF(LEFKI) sRI(KLI)I2RZIKLII9T(KLeL) e T{K1eZ)rKB)

IFINFLAGLEQUICALL CoLSTFILUIKZ)sRI(K2)IRZIK2) e TIKZ21)e TLK292)eKB)
LEANFLAG = 1) Z21le021

CC 22 AK = Lo

00 22 Jdd = 1o

KALKKeJdd) = Lo

LF (L = (RELT-L))eubr

IFINDUM=292) = (I+1)) 359935

LC $4% K1 = 1k

50 34 K2 = 1o

KE(KLeKZ) = Ue
GO TC 33
CALL GELSTFLC(I+1) s RL(I+1L)sRICI+LI o T{I+1e1)eT{I+19Z)eKE)

ACNL) = AUNL)Y) + KA(l,1)
AlZ) = A(NZ) + KA(Z»1)
A(NZ+HL) = A(NZ+1) + KA(292)

30 23 K1 = 1935
AONS + Ki — 1) T AINI+KI-11 + KA(3sK1l)

Kb = 4
Ko = 1
TR0 r 4 o GTwU e ARDeHNC (MrLl)abieaNDIMe 3l KS = 1
IF(KSakdel) Kb = %

UG 24 K1 = L3

AING + K1 - 1) = KB8(KSesKo+KLl-1)

AINb + KL = 1) T KBIKD+1l:KE+KL-1)

Ale + KL - 1) = KB8{L5+2¢Kb+K1~1)

DO 28 K1 = 193
A(RNT+KL-3) = KA(L,KI1)

A(MT+3) = kAl } + AL(1e1) + KE(KIeKY)

£G sU KL = Loz
A(NB+K1-1) = KAL(5sK1)

A({NB+3) = KAt(S5s4) + KE(201) + K3(K3+1sKH4)
ALHE+4)Y = KA(SeS) + KE(Z292) + KE(KI+I1eK4+1)
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DC 31 K1 = 1+3
31 A(NIS+K1-1) = KA(E+K1)

ALNY+3) = KAloet) + KE(Sel) + KI(K3Z+42eKY4)
A(NS+4) = KA(b95) + KE(302) + KBIK3+22K4+1)
A(NY+5) T KALEebE) + KE(392) + KE(K3+ZsKH+2)

IF(I-(NELT-2) )70y
NROW = (1+1)%5 + %
KNCOL = (Lx3) + 1
LG 286 KL = 13
28 NC{NROW + K1 - 1) = &

<
[9p)
<
[ o

L0 25 K1 z le4

25 AUNNI+KI-1) = KE(4asKl)
D0 26 K1 = 15

26 A(NNZ+K1-1) = KE(ZeKil
DO 27 K1 = let

27 AINNI+K1-1) = KE(evK1l)

b3 J = NHl + 3
iz 1+ 2
Cu TU 3du

60 CALL GELSTFILAI)sRLCIIsR2(I) ¢T(Iv1)sT(Iv2)sKE)
AtJ) = A(J) + KE(1,1) '
ACu+d) = A(J+4) + KE(2¢1)
ALJ+5) = ALJ+5) + KE(242)
ALJ+5) = A(J+9) + KE(%x1)
ACG+LU) = A(J+i0) + KE(Z92)
ACJU+11) = A(J+11l) + KE(Ze3)

LRKOW = (ix5) + 1
NCOL = {(i-1)#*5 + 1
g0 bl A Z 1lea
bl NC{LROWw + K — 1) = NCOL

I I + 1
J =T J ¢ 45
6o TO sl

70 CONTINUL

NFCL) = 1

Do 2180 I = 1N

MM{I) = I - NC(I) + 1
10 NF(L+1) = WF{L) + NM(I}

I ERE RS S S E SN SRS EEE R R RESE SRR R R R R R IR RS R R X R R R R L R RS R RS R EE R LR SRS

RETURN
N
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SUBRCUTINE GELSTF(LIRLIRZ2eTLleT2¢KE)

bouBLt
JOUBLE
LCUBLE
COMMON
COMMON

ULFINE

PRECISION 2(asb)eBT(6s4)eD(Ue4)sZ(698)sKE(E26E)
PRECISICN T{10)+A8S{10)+sH(10) 2 2ZK(EsE)
PRECISION RNU#LeR1IeR22T1leT2eS0DE
/BLKL/IX9IYeIZslk

/BLK4/NGP/ZELKS/RNUE

R{R1sRZ2eSL) = RL + (SC*(RZ - R1)}

BB A RE R AR R EREE R R A LR AR R RN R BB XA R KRR R FEE TR SRR A AR R KK 2 4 &
GAUSSIAN HALF-FORNMULA CCEFFICLENTS FOR NZ4+6+8 AND 10
EEREBKE A AE KX R KB R KRS RBRE R TR RN AR KA AR S FRRRER R R F AR KKK R K K

IFINGP = &) 1iwel

ABS(1l) = 1a3359S81:i43584856
ABS(Z) T tieBollZ20511094UN3
H({1l) = iteebZlu451548620456
H(Z) = o34 T8o4BULLITHEY
60 TC 14

IF(NGF ~ &) Zee?

A3S(1) T Ue2323b139136J853137
ASSEZ) = UebblZ2lYiBERELZOS
ABS5{3) = 11e332405901H2103182
HI{1) = (a%o 7913824572891
H(Z) = De36UTolu7.C43133
H{3) = LelTli284482375170
GO TU 14

IFINGP - B) Sred

ABS(L)Y T UelB834340424435654]
ABS(Z) - Leb255324U9%1€32Y
ABS(3) = [j.739666E4774513827
ABS(U4 ) = [1a9E1i289c56497036
H(1l) = Q0.302¢83752575382
H(Z) = (e3137LbedLETICET
HU3) 2 1edd23810U58455274
Ht4) = CaliilZctSiuelllive
GO TC 1u

IFI(NGE ~ 1U)Y #eeh

ABS{1l) = 11,1438745538381631
ABS(UZ) = {le#53395534129247
ABS({3) = JeBT24U3T503235U2Y
ABS(4) = HeBLDUBIZStOOUBYES
ABS (D) = 1.973S08548517172
H{l) = elY55242247147535
H{Z2) = (Jea269:6E714930955S6
H{3) = Le.21l8UBb2bLolbuslZ
Hi{%) = U.15945134%15ub81
Ht5) = L.libbb7lib43iideny
Gu T4 LG

EXEERR AL E R R R T BN R KRB A AR R X A H KB F X K& KK K
SIMPSON'S COLFFICIaNTS FOR N=5 AND 7
KRB EREEAREE XS RR KK AR RARF KRB AR B BN R R KK ¥

1F (NGF

- 51 Hee5

186.



v

25

26

Z2U

ABS(L1) = Ue
ABS(2) = de25
ABS{3) = (.50
ABS{4) = .75
ABS(51 = 1.0
H{1) = 1l./712.
HEZ) = le/3e
H(3) = l./6.
HE4) = le/5e
H{5) = 1./12.

0 TO 10

LEAINGP - 7)liuesll
ABSI(Ll) = e
ABS(Z) T le/bo
ABS(3) = la/3.
ABSURY T le/le
ApS(35) = 2473,
ABS{B) = be/be
ASSIT) = la0
HE{l) = le/18e
HUZ) T Ze/Se
HEZY Z 1a/79.
H{4) = Ze/%s
H{o) = Le/%e
Hib) = 2./S.
HUT) 2 L1e/i8e
B0 1 1 = 1rb
00 12 ¢ = 116
KE(Led) = Lo

LF(MNGFoebUs4elReidGF «aE0eba0ReNGF4FEGeB8elRe

CU 20 WPT = 1lenGFR

ST AZSLNPTHY

TePTyry = 71 + (S0+(T2-T1)2)

CALL SETUUU(RNUs Ly leRZeSDeTINFT)YeBeD)
RO 4

NC = b

CALL TRANSIMRsNCe3e3T

CAi.. PROU(NC+HReBTosNRINRPD»2)

CALL PRODINCsMReZeMNReNKCoBeZK)

S0 25 1 = 1lei

e 25 Jd = 198

ZHEIeu) = 2KUZed) 2RIKLIR2+SSIXHINPT)
D0 26 I = 1rk

B0 b J = 1leb

KEa(Ied) = KE{LIed) + (ZK(Ied)xy)

{GPeEGs10)NGP

187,

NGP /2



1880

SUBRCUTINE SETBD(RNUsLsR1+R2+SDsT+Be0)

DOUBLE PRECISICN B(uU4sE)el(Usd)syLsRLIR2+SDsRsyT+RNUSCCSAeSING
CUSE = DSQRT(DABS(le-t((R2-RIL)}x*Z)/ (L2l ))}))}

SINGE = (RZ-R1)/L

IF(Ue4Sbe.

LE«COSQeANDCOSQRelEelal) COSQ = 1,

IFIDABS(SING)WaLEeTel) SING = U
IFCOALSE(COSGraLEaal)} CCSA = Lo

IF(d.936.

R = Rl +

GO 2 1
LU 2 J
BCLeJ}

o n

Btle1l)
31(1+2)
B(le3)
Blilet)
Btied)
Btled)
B(Z2s1l)

(R T I R RO R N

LEoSINGeANDeSINGelZalal) SING = 1.
(SC*(R2~-R1))

len
196
(e

~-(C05Q/L)
~(SING/L)

Ue

COSa/L

SING/L

[l'

((1e-SDI*SING*CUSA/R) =((1le=(3.#SD*SD} + (2.%(SC+#+3)))*SI

INU*CCSG/R)

B{2r) =

({1e-SOI*SINA*SING/R) + ((1e=(3.xSD*SD) 4+ (2.*(S0*x3))1+C

105u*CCSu/R)

Bl )
B(Z2e4)
B(2+11}
3(2st)
BE3el)
Bl3e2)
B{se )
B{3+4)
B{3:+5}

B(3s8) =

fro0 1 1t

oo b

it

L3COSO*(SO0-(2.xSD*SD) + (SD*xx3))}/R
[SD*SINI*COSG/RI- 11 Z2.xSO*S)~(2.%(SC*x3) ) ) xSINQA*CCSA/R
(SO*xSING*#SING/RY + {((3axS0aSD)~(2.2(SD*x%x3)))1*CCSA*CCSA/KR
L*CCSa*(—~SU*xSU + SD*x3) /R

SINu* (B e~1Z2*¥SU /(L2 ]

COSGE*x{—0a + 1Z24%5D)/7(L*L)

{~4be + LexSLC)/L

~SINA*(Se = 1Zex*SUY/{L=L)

CESu*(C e ~ LZe*3D)/ (L=l )}

{~2e + 0o*SUY/L

Byl ) Z-SING*SING*(-0%5U+0o*xSDxSC}/ (L3R}
Bl e 2)ZSING*CO0SA*(~GexSD+EB*x5U*S0) /(L %R)
Blus2 ) 2SING*(Lle—4 %LU+ 025050 )} /R

Bl )I-5SING*SING* (B *SU~0e*SU*SD )/ (L2*R)
BtyesS)ISSING*COSA* (0 e*SL—0exSU*SD/(L2R)
BlUsb)ZSING*(~Ze*¥50+3*¥30*5D)/R

De 1 1
Lo 1 J
Stledd
U1l
Ctle2
D(2: 1)
D(2+2)
D(303)
C(3e4)
D(49e3)
Ctl4s5)
RETURN
END

[ R T T T R A T B I B

le4

ieh

e

T

KNU T

RNU=T

T

(Tx*3)}/1Ze
RNUX(T*x5)/12.
RNUs{T*x51/12
(T**5)/12.
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SUBROUTINE LOAD(NELT+GCoLsRLeRZ2eTePlsPDAVEC)

COMMGON /BLK1/IXeLYsIZeIM

DOUEBLE PRECISION L (IX)eRICIXIsRZ(IXY¢PLOIN)oTUIXsZ e VEC(IUW)
COUZLE PRECISICN ¥desCTuesGl PRI FOALIX)

AT AR ERERRE R KA R D AR X R KK KRB R KA A R R KRR KRR kKK Rk R E kR KRR AR R AT R Ak kX RSk k%

DEFINE COSG(IE) = USAGRTISAESTIL.~58%53))

DEFINGE SINGELsR1eid) =T {RZ-R1LI/L

UCEFINE UL{LsRIPFPLsCOoS3rrleGlsT)Y T Gel83sLa({-R12FP1#35Q/7+) -~ T.1C%
LO(R1+PUx5C) + (PL*L*30%3d)) — (PUaLx50%38/1%.)) + EaZ82+GCxTaL2( (R
21/72e) + LS ({0L*xCa/La) + (GaxTG*SE/20e)]))

DEFLRNE WALLPRLePLeCCrS GePUrGCeT ) = L85 *x{(RL*F1xCQ/2e) + [falf*t
1(R12PU*CC) + {(Fl*_#S53*xCG)) + (PD*LxS3*xCQ/15e)) + (B o282+«CCxTxL slx7
2E*CaxS L/ bl )

ULFINE MLOLeRLePLeSQeFUe6CT) = Ee283xLa((RL*PL*L/12.) + DWIT37
L ((RL*PUL)+ (FPLlrleia38)) + (PO*L*x{*x53/0ile)) + 6.28ZxGT4TxL*L (-~ (R
21*5Q/1ce ) = 1L25Q*5U/ M ala))

DEFLiE Ul srRIoPLsCCrSGUePDeCleT) Z €4282#L*x(~(RL*P1*SQA/Ze) - To20%
LO{RLI4rU*xsG) + (Pl *5a%3d)) — (Uo*PD*L*53%53/15e)) + 5235*%CCsTxL
2UERL/72ed + LASQ*{{CG*CG/0e) + (Na25x50%54)))

UEFLINE Wl LeRIsPLyLLeSLePUeBleT) T Eoa2E3%L*{(R1L*PL*CG/2a) + [alExt
ZURL*PLU*Cu} + (PL* 2552 008)) + (L¢P *SU*C08/1%e)) ~ (34283 %«xCC*TxLx
SLASU*SUnCU/Che)

CEFLINL MElLeRIsFLeSQePUeBLeT )Y = Eel282%L (- (R1*P1*L/1C¢) =~ DalI#
LetRixPu* ) + {(FLlL# *35G)) — (PO*xi#Lx3T3/230.)) + 542823 xGC*TxLxLx((R1
3a50E/1de ) + (LxLixuw/ 10 ))

X E B KF F KKK k¥ ok ok Kok R F E kR Kk Kok Ak kK ¥ A ol ek ki ok ok bk ok & Rk ok ok ok Rk ok Rk Rk Kk kok % & ok kok ok ko Ok ok koK

NC = (NELT=®L} + L
NN D (NeL T + 1ixo
Jd = U

B8 kK ok ok M ok ok koA ok 3k de o o ok R ok k% ok % K K R ak ok ok ok Xk 8 koK ok k Rk ok ok ok ok Rk ko kR Rk kKK kK KR Kk

DO ¢ T = 1okl

IFCJ)e 3y

S = SIHG(LtJIeRIGJIeRZ U]
Ca = CChuildd)

IFtLABS(CGlalbEwlieX) Ly = e
IF(LASBS(5G)eltledel} S8 T fla
lF(U.BgnLEOSQQANDQSGOLPill-]‘] SG T Le
IF(Ue9Sei EalleANDLGaillleloal) €3 = 1o

PDE = PLACJ)

VEC(I) = vel i) + U21L0J)eR10J)9PL(U) 9 CAeSQePDELGC, T J1))
VECtI+1l) = VECII+L}) + WZLLEJIsRLCGJIIePLIIIwCQeSGePDESGCeyT(Jr1))
VEC(I+Z) = VEC(X+Z) + M2ULUU) s RI0J) oPLIJ) 9SQePDEeGLsTUUP 1))

IF(J-NELT)e2
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3 SO = SINGQILIJ+1)eR1I{J+1IPR21U+]L))
Cue = CQOSatsQq)
IFIDABS(LGE)elELDWaL) CQ = Co
IF(DABStSQlelEalel) SQ = O
IF{UeY9%% LEeSTeANDSGslEelel) SG = 1ls
IF((leY99eiEeCleANL«CGalEalel) CG = 1
POE = FUAtJ*1l)
VECLI) = VEC(I} +ULICLt(J+1)}eRItJ+1IsPLI(U+1eLQeSQePDEsGCesT(J+1el)])
VEC(I+1) = VEC(I+1)
14WICL CJ+1} e RICJ+1LIePLEU+1)eCQrSQePOEsGCeT{U+1s1))
VEC(I+2) = VEC(I+2)
L4MICLCJ+L)sRL(GU+L)IvPLIU+L ) e SAsPDEsGCyT(JU+191]))
J = ¢+ 1
2 CONTINUE

RETURN
END
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SUBROUTINE CLOSEL(ICLUSEYNF2GCoPLIR1sTeA,VEC)

COMMON Aol KL AIXelY oIZelW

COMMON F2LKS/RNUSE

BIMENSLON JTLGSE(E ) eNFLIN)

S0UZLE PRECISICN PLIIX)eRIUIX)IeT{IXe2)2ALIY)sVEC(INW)
UCUELE PRECISION RNUsEGC

C XXXk X2 RFIEREBEFEFLFFTB XX REEFBR B FRARENE XX RB K BRR PR R KRR RF kAR AR KR K R R R KR KK X ¥ &

LG 1 L = 15

IFCICLUSE(I) el

iC = LCLOSELL)

NROW = 1CLOsE(L)®s

NCCEFL = HMF{NROW) - 1

NCOEFZ = NFINRCW+1) - 1

ACNCOEFLY = ACNCCEFL) + TUICe1l)x(1le+RNU}
A(NCOEF2) = A(NCOLF2)+ {(T(ICe1)*x*3)s{1,+RNUI/12.

C IR S R SRR SR EEESE SR RER SRS SRR ERE R R R R AR R R ]

**x*x*xPRESSURE LCAL
C I PSR SS R ES R RS S S S ST EEFES R EEL RS S S R R R RREE R R FE

«

IF(PLIIC) «fWetl1sCRIC.E0eU) GO TO 2
VEC(NROW) = VEC(RRGW) —(PL(IC)*RI(ICH*RECIC)}/8a)#E5,283185%R1(IC)
VECIWNRUW=2) = VEC(HROW—2) —(PLIIC)I*RI(IC)/24)%64.283185*R1(IC)

KRR KKK XX KRR XD ERE K % KK
xx*x3UEAD LUAU
C Xk kk AKX FRXREEX K F AR X KKK X

oo

2 IF(CCefGndeelRoeICaEGoeld 6O TO 1
FLUIC) = —={GC»T(ICel))
VECINRCW-2) = VEC{HWROW—2) —tPLIIC)*RLI{IC)/2.)#€4282135«R1(IC)
VEC(RKOW) = VECUNROGW! ~(FI(IC)I*RI(ICI*RI(IC)/8e)#6.282Z1EE*R1LIC)
FL{LLY = ija

1 CONTIMNLE

RETURN
END
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SUBROUT INE BONCOW(NNSCoWSCeNCoNMeNFeUBCrWBCyMBCeAyVEC)

COMMCN /BLRKL/IXeIYeIZs1W

COMnon /BLKS/LB0H

COMMON /38LKB/NELT N

DIMENSIGN NCOLIW)IeMMUOIWIoNFAIWYe NECCLUY»USCCLIO) s WBC(LE e MBC(10D)
DuUzLe PRECISLCON ALIY)sVvZCUlIW)

IFCLSON) e 97

PRINT 144
I00 FORMAT(LHLI# 37(="}2e/ e ZERG CLSFLACEMENT BOUNCARY CONCITIONS® s/
T1H e37(°=")es/9 "ONCDE®)
DG 10 I = LennBC
10 PRINT 1L eNEC(I)oUBC(INeWwBCUI)eMBCLI)
1Ul FORMATULIHD e IXeX392Xe3{ALe3X)})

7 00 1 ® = leNNBC
K = (NSC(¥) - 1l)*x2 + 1
o = 1

5 I = 4
I!‘(UBC‘M).EG.'U'.AI\D.J.E—U.I) iz K
IFUW3C{M) eECe W 'aANbedebue2) I = K+1
IF(MEC(M)eEQe "Mt aAND edebEGe3) L = Ke2

IF(il)sty

veC(l) = (.
KL = NF{I)
Ke = NMUL) ¢ KNFLI)Y — 1
00 4 Ju T KlsKZ
4 ACJJ) = U
K3 = I + 1
c0 2 ou = K3 N
IFINCIJJ)LESL) GU TO 3
Go T¢C ¢
3 NCC = I = NC(JJ)Y + NFUJJ)
A(NCC) = i,
2 CCNTINUE
o 1
- s5e

L3
FlJd-351)5

o
P4
H

1 CONTLNUE
RETURN
END
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SUEBROUT Lt BANDO(AsNCeAs VECeNMeMF o+ NRINWR)
COMKMON /3LKL/ZIXeIYeIZo1IW

DINMERSICN KCCLWw)eMOIWY o NFUIWIeNRIIW) e NUHRIIW)
UOUSLE PRECISLICN ACIY)sVECIIW) +MULTeCIAGC

NL = N - 1
I EEREEERS R EREERE S

FORWARD REDUCTION
SIS TR EEE Y ¥

D¢ 2¢ & Z lenl
K = NEfi+1l) — 1
DIAs = A{K)
IF(CIAGYeZU Y
NRC = d

. = 1 + 1

BG 22 = N

F(JL(J).LE I) NRC = NRC + 1
IFINC(UlelEel) NR(NRC) = NF(J) # I - NC(J)
IF(NClU)ebEe L) NWHKINRCY = J
CONTINUCE
Lo S0 Jd = L»hrC
KK = nE(JJ)

ULT = A(KKI/DIAG
K1 = HwR{JJ
VEC(KLI)Y = VECIK1) - MULT»VECHLL)

KB = NRC-JJ + 1

LG B L = 19KS
K2 = NRUJG+L—1)
MX T K2 o+ NWROUJ)Y - 1

A(MM)Y) T AIMM) - MULT=A(K2)
CONTINULE
CONTINULE

FEEXERIER KK SR K KKK
REVERSE REDUCTIUON
FAXKERKERAAE DL HER

A
NFCID + NMEI) - 1

DIAG = A(K)

LFAULIAG) s T Uy

NRC = ANp(l) - 1

LU BU J = LrNRC

MULT = ALK=J)/ACK)

VEC(I-J)} = VEC(I-J) - MULT*VEC(I)
VEC(I) = VEC(L) /DIAG

I=1I-1

IF(L=21030+50

S
t il

=

VEC{1) = VEC(Lli/ALL)

RETURMN
ENU



[ AN 3

X

SUBROUTI
comMMin 7
LoUse e P

LIMENSIO
P HROWE

HE BANBACINCsNMeNFoeNMDeVECsSALBYEC)
BIK1/7IXeIY eIl IW/BLKG/NELTeN/BLKT/NEP
RECISION EACIY)eEBVEC(IR)2VEC{IUW)

N NCIIW)eNMOIWI o NFLIWI oMNOT10 04 e NSULIT) o NEBIIDILNOOWS(1ID)

1)

AE TR RREEKRF R A AKX AN KR SRR AT R R R XA AR AR RS A KRR F RN KK KA X &
*rx* STANCARD NODESLAST NODEs SIGGER NCOLCE UOF BRANCH.
LR I Y EI IR 3"

Tu

75

17

10

15

144

45

50

K = @

U0 LUl I
BVEC{L)
If{lstEQa
+Fllecle
FllaEGe
LEENSED)
GO TG 713
NEX = 5
IF(KabEGe
IF(Fabude
iF{KetEGe
K = K +
G0 TC 17

IFNMtI)
IF (MLl
IFIRECO

WFI = NF
NCI = RO
WYL MY

T 1N

= (e

{N—1)) HNEX = 1

(M=2)) Kix = 2
[N-1)eCRaZeEQa(N-2)) GG TO 77
«GTeo)l GC TC 70

L) NEX = 4

2) NEX = 3

2y K = 4

i

sfleoceUReaLaEUe3) NEX = 3
sLUeba0Raleb a2y NEX = &
efielelHalaEdal) NEX = 8

{1
(L}
(13

00 180 ¢ = lehMl

BYECILY = oVECUI) 4+ CA(NFI+J-1)xVECINCI+J-1)

DU 15 Jd = LlenkX

NFIJ = NEOI+0)

NMId = NHOIrJd)

BVEC(L)Y = BVEGII) + BA{NFIJ + NMIJU -1-J)*=VECINCI + NMI -1 + J)
CONTINUE

iFINSP )y

J =T o1

uo 4@ ¥
IF{ND (e
IF(HNU(Me
NS (J)
Ne(dJ)
GO0 TC
NS(J2
NBLJ)
KROWS (J)

oA

NROWB ()

U

ofis

= 1eils

FAREIER 14N

2y — nO{Mel) et
NDI{Me2)

MU He 1)

KO (Ml )
WECIMe2)

T O(NSCJ) - 1)x5 + 1
Z (ANB(J) — 1L)x3 + 1
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Jg T J o+ 1
40 CONTINUE

C EERERRA X KRR KR BE AR XA KRB R RS AR & KK %

C sxxk AUGMENT SMALLER NGCUEL AT BRANCH

C ARk KR BER N R kSRS RA KRR X E B KA E Kk Rk kK kok %
K = i

O 8d I = LleN
IFtL = NROWSCK))I8U Sl
NK = NROWBIKI
UDC 90 M = Led
U0 90 MM = 1.3
KFK = NFINK + MM - 1)
NCK = NC(ANK + MM - 1)
= HMUNK + UM - 11
BVEC(L14M~1) = LHVECII+N~1) + B8(NFK+M-1)*VECINCK+NMK~1)

30 CUNTINUE

K = K+ i

BU CONTINUL
60 RETURN
END
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SUBROUTINE STRESSINSECIMODSeNCCLeNODZoNELLTWNELZ2eLsR1eRZs T2 VEC)
COMMUN /BLKL/IX e XY IZeIW

COMMON /BLK2/NPLUT/BLXS/RNUE /UBLKE/ISP

UOURLE PRECISION SM(4+S)sDVEC(Se1)sB(496)sD(LsG)eCBlYUSE)
solUglLe PRECISICH LUIX)sRICIX)I2R2(IX)Y o TUIXe2)9VECIIW)eSTRIY)
VOVt PRECISION TLeANUsEsSDeSICNeAVTLN

DIMENSION NOUSUIXIoNCIOLIIZ)eNCC2(IZY e NELZ(IZ)eNELZ(TI2Z)

Nl = 4
NZ 2w
N: = 4
fvéd T 1
TL = Llie

CHREXERXERF XA R AE XX FREKE R E AR RER KRR KKK E R XA RE R AR AR KRR XK ERER R AR KRR F XK K K ¥k A

1a

DO 14y I = 1enSEC

Wi T NELZGI) - NELLI(L) + 2
JN T NN - 1

NCOSUL) = NOLLCI)

B0 LG JK = ZsJN

NCGLESCJUK)Y = NELLI(L1Y + UK - 1
NODS{MN) = NCD2(I)

J T NELLIC(I)

JL = NELI(I)

IFLISPYeeld

PRIMT 15e1L

FORMAT({L1AG» *SECTION YeI2¢/91H +130%-"))
CONTLIRUE

CHERRXRERKEXFERFERKREEE R RN RRRE R B R RE AN KR AR AR R KRR KE T A RE R R Rk kKK kK

<1

55

6

LO 5U K = lehN

Lo 2u M = 14
D0 20 MM = 1+
SMiMetitsl = Qo
DO 21 M = 18
UVEC(Medl) = U
IF(K—1)rols

SD = le

CALL SETBDIRENUeL (=13 +RLIGI~TIIRZUJI-1}eSDeTlUI-1911938eD)
CALIL PROUINLeN1+sUsN1eNZ293+DB) '

DG 55 MM = 14

D0 55 Jdd T leo

SMIMMsJJ) = DBIMMsJJ]

IF{K~-uNYIeEDy
SU = Ue

CALL SETODIRNUsL{UI+RI(JIeRZ2L) eS0Tl Je1)9B93)
CALL PROLU(NLeNLeDsNLo2eB9DB)
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&7

13

40

689

42

30

[ o1

32
31
55
34

56
33
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IFIK-1)998E5

DU bk MM = 14
Z leb

Lo be Jd
SMIMMeaud) = DB {MMeJdJi
CU TG 5B
UC 67 MM Z 1lsu
00 67 JJ = 499
-

SMMMeddl = SHEMMNeJJ) + DE(MMeJdJ-3)

IF(K=LY4Ur s 4T

NROW1 = (NUDSU(K) - 1)*3 + 1
NROWZ = (NOCS(K+1}) — 11%3 + 1
60 TC 4%

CCNTINUVE

NROWLI = (NODSU(K-1) - 1)s3 + 1

NRCW2 = (NOOSH(K) - 1)=x3 + 1

IF(KeivEofiN) NRUWI = (NODS(K+1) - 1)*3 + 1

DO 82 M = 1es

CVEC(Mel) = VECINROW1I + M - 1)
BVECEM+2v1) = VEC(GWROWZ + M ~ 1)
IF(KaEGelaCReXKaEQsINN) GC TC 42
uveC(pM+bel) = VECONROWS + M - 11
CONTINUL

CALL PRUOU(INLIwvN32SHsR3+NHsDVEC,STR)

AV = 2o

}.F(KctdaloORtKoEu-hh) AV = 1&

SIGN = 1.

DO 3u M = 14

lFtMatG-i-OR-M-EG.“’ SJ..GN = "'l.

STREMY T (STRUIMI*E*SICHI/ZtEle = RNUARNU) %AV)

A RARREEEREE R RE R K RERE XX R AR KRR R RARRKKSE
SIGMA STRESSLS FRCM STRESS RESULTANTS
EREKXFFREER P FAKR RS E R AR X KRR KKK RRK KK KK KK S

IF(K=-1) 3lse3l

DO 32 M = 1rvc
STREM) = STRIMI/T(Je1)
Gu To 33

IFLK-NN)S 4y e 54

Ul 35 M = leZ

STRIM) = STRUMI/TUI-1e2)

G0 TG 328

00 36 M = 192

STREHM)Y = STRIMIZUAT(Ir1) + T(U=T792))/726)
CONTINUE

IFCLSPIe s 70
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70
81

53

100

PRINT BCeNCOSIKIvTLr {STRIM) ¢M

= 1lvk)

FORMATILH oI395X9F 5395 Xe4(ELJale3X))

WRITES{NPLOTo8L) TLe(STRIM) oM
FCRMAT(FoecedXoG{LLlilatie2X)}
TN = TL

TL = T ¢ pLt{JdL+K-1)

J T J + 1

CONTINUE
TL = TLN
CONTINUE

RETURN
END

Z 1.4)

199.
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$SFPFSPITSFTITTFTETEICDI359953%¢
*«STRESSPLOT PLCTTER PROGRAMx*«x
PIIEIISEPESPITTIISTTISTINISESES3S S

DATA LCDUM/® v/

DIMENSIUN XT(3e50u)oYT(39500) e XTI300)sY (ST eXX(39STAC)eYY (39500 )
LRANGE(S) e UPPL3) 2 LLCT(3)eLCL3)»FOR(20IeNNI3)

DIMENSION LOW(S)e5CALITLY)

UDIMENSION BUFF(20LU)

- -t - o e = o T - — T — - — - o ———

%k PLCT IDENRTIFICATICN

- —————— i —— — T ——-— — A T G — - . —— . Do S

CALL PLGTS(BUFFs2LO0TS1T)

CAlLL SYMBCL{U«vJavDe2594HGRAF2»0aJ04)
CALL PLOT(LaZeBe322)

CALL PLOT(-DelsUeZs2)

CALL PLOT(LeZ2elelle2)

——————— —— —— —— o —— —— .~ - - e o - m—

- e — _————— — —— O . — ———— . Y — o o - Vo

READ(Bel) PLTSeNLCeSIZE
1 FORMAT(AoyZ2XelleiXeAl)

——— S - —— o A - i3 -~ ———

o —t Gn " v — i 7 ——_—— ————

CALL PLOT(U.!“.D"‘3’
IF(SIZE.EQe*S"} CALL FACTOR(G.U4E)
IF(SIZELEG."H") CALL FACTOR1J.,E25)
JF(SIZE«LQe"F*) CALL FACTOR(O.750)

- ——— ——— - —— - {— - — d— -~ . ——. — ——— - —— o~ —-— - - e G G = -

————— ——— " = 7" e A e O Y e T o - — —— T " T — " i W o "

DG 20 NST = 1.4

NSP = 38

IF(NST.EQ. 1) NSP = 26
IF(NST.EQ.2) NSP = 2
IF(NSTeEGe3) NSP = 14
XR = 3l

YR = 4.0

IFINST.EQ@s2) XK = Do
IF(NSTeEGeZ2) YR = 1l
IFINSTEQGe3) YR = Ue
IF(NSTetGe k) XR = Ue
IFINST.EQe%) YR = -1l.
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Cc o

4

v -~~~ — o T — — > —— T - - W T W S U A e A S D

- i " T~ A — (S D S . S O S S o A A~ ———" o e A~ -

FORMAT{"{FBe39TeIlZs "X»E1043°)
ENCORLECUH«FOR) NSF

DO 50 J = 1leNLC

READtLBs2) TYPEeNELTLC(U)
FORMAT(ADs2X91392XeAb)

NRGJY = NELT

NJ = NN(J)

READUBsFOR) (XTUJeIdeYT(Jel)el = 1eNJ)

. o - ——— ———— — G - - T —— e T W e - - - . M S - ——— - =

xex% FIND WHICH DATA HAS THE MAXIMUM RANGE

51

50

57

52

e — o ——— —— — - ]~ — —— " . [ ——— = — - —_———" "~ -k —~ - ——— A ‘v -

DC 51 K = 1eind

Y{K) = YT{JsKk)

CALL SCALE(YeBalieiNde+l})

LOWTJ) = YUANC + 1)

UPP(J) T Y(INJ+1) + B UxY{NJI+Z}
RANGE(J) = ABSI{Y(NJ+1) - UPPILJ))

L =0

DO 57 M = 1sNLC

SCAL(L + M) = LOWIM)
SCAL{L + M + 1) = UPP(M)
L= L +1

UB = RANGE(1)

NLCMLI = WLC - 1

D0 52 o = 1leNLCML
IF(RANGEECU+1)«GTUB)Y JMAX = J + 1
IFURANGELJ+1)eCTeUB) UB = RANGE(J+])
CONTINUE

————————————————_—— —— W — " 4—— —— G M . W G- - - S W - e W T - G g

e
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sxxx  REARRANGE DATA 30 THAT MAX RANGE DATA IS PLCTTED FIRST

55

56

DO 53 J = irehLC
IF(JHAX J)S“vvﬁﬂ
NNJUMAX = NN(UMAX]

CO 55 L = 1leshNNOMAX
YY(lel) = YTCJMAX L)
XX{1lsL) = XTUJMAXAL)
LCT(1) = LC{UMAX)
NN{1) = NN{JMAX)

GO TG 53

K = J

IF{JelLTedJdMAX) K = J+1
NJ = NN(J)

DO 56 L = Lend
YY{KeL) = YTUJ2L)
XX{el) = XTCUel}

LCT(K) = LCLJ)
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NNIKDY = NNGJ)
53 CCONTLIKRUEL

. o T O xS S e S e WA e e W - — A S ——— o W - - — —— -

> o — . T na Cme wlr. o WD Wa M . e fon G - . - — S oa . he W Gwe -

0G 35U WNLGAD = LeNLC
IF(LCTINLOAD) SEQLLC (L)) MARK = 11
IF(LCTONLUAD) ZEG.LCL21) MARK = &
I =

(LCT{NLCAUV)EQeLC13)) MARK
N T WREHLUAL)
Lo 85 I = 1lsNn
X{L) = XXUNLOAU eI}
35 Y(I) = YY(NLCASeI)
IFINST=1) 1uerlD

IFUSIZt«LGa'S") XL = 1Ze
IF(SIZELUa"") XL = 10
IF(SIZE-C8e"FY) XL = 13,

LTYPZ = HW/IFLIXIXL)
U IF(NSTeELded) X = XL + 1.5
IFINLOAO~-1)sc 1y

X{N+1) = SX1
X{N+Z) = SXZ
Y{N+1) = SY1
Y{N+2) = SY2
Gu TC 22

21 CALlL PLUTIXReYRe—3)
CRLL SCaALElXexLsNe+l)
NLCZ = Z&AL
CALL SCALE(SCALsC el C2Ze+1)
{N+1) = SCALINLCZ+1)
YEN+Z) T SCALUINLCZ+2Z)
YUR = C.
XOR = U
IF{Y(N+4Ll) eLTelle) YOR = —YIN+1)/Y{(N+2})
IF(x(N+1)elTelle) AR = —=XIN+LI/Y(N+2)
IFINSTeEdel) CALL AXISIXCRsOe s 28HMERIDIONAL MOMENT (NM/M)e+2U4sr8e00
IS0t YL s Y(N+2) )
IFINST e ua2) CALL AXISH{YORID4»22HAXIAL STRESS (N/SGe M)e+422984C0
L9 p Y (+L) s YIN+2Z))
IFINSTatbded) CALL AXISUXCOReTUep21HHOOP STRESS (N/SQe M)oe42108.00
LYLes Y (ALY e YI(NRE2Z))
IFINST.E3.49) CALL AXIS(XCR#Da918HHOOP MOMENT (NM/M)9e+18¢8420
19U r Y {N+L) oY IR+ 2} ]
CALL AXI5tUerYIRsLUHAXIAL CISTANCE s=14eXLoTetX(N+1L)eX(N+2))
22 CALL LINEU(XeYeiNsleoLTYFEsMARK)

SX1 = X{u+li)
SX2 =T K(N¢Z)
SYL = Y({n+1l)
SYZ2 = Y(ti+c)

30 CONTINGE
20 CUNTINUL

o ————— —— . S T —— . — S o W — -
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XP Z XL = boe
= "005
CALL PLOTIXPe+YPe—3)
CALL PLOTt7eurdar2)
CALL SYMIOL{1leDo=11ea3l90421¢23HUNIVERSITY OF CAPE TOWNeDe923)
CALL SYMBUIL{UeLHs~lacdrUeZly SITHCCZPARTMENT OF CIVIL ENGIMEERINGe Doy

CALL PLOT(Jes~Ue7202)

CALL PLOT{(Tetlo=a7222)

CALL SYMBOL(UeZSr—1leallirle 28 23 HF;NITL ELEMENT ANALYSISeler231)
CALL SYMBOLI(3 e 1143902281 2HCFeTae2

CaLL SYNSGL(l.Uv—lmﬁﬁrG.ZSvlSHAXISYMMETRIC SHELLsNer18)

CALL PLOT(HQ""l.BbO3) ‘

CAL FLOT(T7eler—~1lelbrl)

CALL SYMUOLICeZr—Z2e290eibs1dHANALYSIS: ¢e21D)

CALL SYNBOL(Y9S 159 a1 Ll s TYPEvTerE}

CA_LL PLOT(3eds—1ledbrd)

CALL FPiLOTt3elir—Zale2)

CALL SYMUBCOLI12.259-22U09Uelle L2HPLOT SERIES: #Derld)

CALL SYMoQil392e939% e UellbsPLTS 1069 )

CALL PLCT(Jdss—Z2a303)

CALL PLUT(TUr=2elturd)

CALL SYMOBUL(LeZ2r=2eS5%92UelY49e23HHCRIZONTAL AXIS? METERSy a2}
CALL thdGL(u-uv-ﬁabﬁcU.ch5HbATE:10-15)

CALL SYMUOL(UaZ2r—247300e1l893UHVERTICAL AXIS? NEWTONSe METERSsDer

CALL i CTi4aSHe~2uilin3)

CALL PLJT e Ilis—Ze5Be2)

CALL PLCTlides—2e35393)

CALL PLOT{(7sls—-2et322)

CALL SYMBCL(UeZ2e— 5121014 932HANALYSIS ANC PLOT BY TeBeCRIFFIN2Dao

CALL SYM3CL{Le2v~2oltieUoly»1SHPROGRAM: STRESSPLOTCes20)

CALL PLOCT{Uwasllae3)
CALL PLOT(G- ?’505'&)
CALL PLOT{(7.l9~36D0~3)
XP = (Za3XL) + &o

YP = 24,

CALL PLCOT(-XPsUsrci
CALL PLOT{-XPeYPs2)
CALL PLOT(UesYPreZ)
CALL PLOT(Oe2Uarl)

— o — o — o i Tt T o A i S s s S St e e e SN T o oo T

LCl = LCt1)
LCZ = LCL2}
LC3 = LC( 3
LC4 = LCUUNM

IF{L C(Z).hu.U) LC2 = LChuM
IF(LC(3)eEUO) LCE = LCOUM
XLC = -XL + b
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PLOTIXLC:12420~3)

SYMBOL =5 e2301e39e2¢12000e=~1)

Y0l ~TeblsladrUeldolLllelarb)
PLUT{=TadoTled93)

FLOTU~8.5¢ 0084921}
SYMBCLI~Ye3rtiedsUeleTrsTsr—~1)
SYMBOL -~ 7TeBLlrlialtbs el CIederB ]}
PLOT i~ TetiodaT3e35)

FLOT {~EeSelie fLe

DYMACLE-2s39110o 3800095 0sdes~1)
SYPFRoGul-~TebbtliecboliallbslliZ15erE}
PLCy(”7odF10127S)
PLQE(“ﬁaBIIQLZ'Zl
SYNMSCL{-8aed3rlel2tleltelisles—1)
SYHBOL{-Telbsleddileltdsllleflierb
PLOT(~Tetdrledbs3)
PLOTl~debslelsr}
SYHMSCL{~2a30Lea300llelesHLCAD CASEeDer9)
PLCTl~7edrlac? el
PLOCT(—8eb9lab8Tes)
FLiT(~8ebrtierl)

}"LC} l*‘é.‘,ﬁrl.“;ﬁvs}
FLOTI~Betislarl)

PLGT{~7Tetioiler 3}

PLCT(=8enellar 3}

PLOT (- Tetlvder )
PLOT(-TetivlenTedl

FLOT(Larliar985)
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APPENDIX B

Integration of Eq. (2.10b) for the Stress Resultant N

t/2

N% _ * 4,
8 J % ¢*
~t/2

Substituting for o. from Egs, (2.6) and (2.7),

s
<

e
t/2 5
N* - r {u gin ﬁ + w cos ﬁ - zw' sin ﬁ Y du _ vy d w} i
6 v r +z cos § ds d~2
~t/2 :
t/2 . tan
u_tan @ W . T oos
= D J { " + = - w' tan ﬁ + =
«T/Q Ccos @ tz Cos @ Tz cCos 5 T

cos ¢
: g 2 42 .t/5
, sin . T du o z_dw _
+orw 5, Wwe (FOS v2) t vz is 2T T2 JL (3-1)
cos ¢ ds —u/2
To begin with we will consider the log function alone:
t/2
r T t T t
O ——— 7, ~ = . -+ - — — —‘)
REE (cos i * >1t/¢ Log (cos 7 4) log (COS g 2
( t cosg @
. o 2r )
= e (1 - t cos Q)
' 2r
Expanding the log functions in Taylor's series we have,
2 2 % %
log (1 + t cos Q) t cos ¢ t~ cos ¢ N t7 cos ﬂ
- = By hd ~ T ee e s
ex o 8r° 24r3
2 2
Log (1 t cos f) L t cos ¢ _ t7 cos ﬁ B t3 cos3 ﬁ _
er er 8r4 24r3

Subtracting the second series from the first, and neglecting terms of order

higher than cubic gives,
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(»] +t_CO_S_.Q.) 3 3
Log 2r _ (t cos ¢ + t~ cos ¢>
(4 _-J-C—%’%g) r 12r°7

Making use of this result in equation (B-1) and gimplifying, we have,

2

* i d

NG = D[u sin ¢ I w_cos + vV E%] + K[Egﬁgg(u sin ¢ + W cos ¢ + rw' sin ¢)]
r
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APPENDIX C

Notes on the Principle of Minimum Total Potential Energy

Statement of the Principle: Proof of the Principle is adequately covered in

the texts[5’6], and it is sufficient for the present purpose to state it as

follows:

0f all the admissible displacement functions, the actual displacements

make the total potential energy a minimum.

The elastic strain energy density: In physical terms the elastic strain energy
density U 4is the area under the stress-—strain curve for a particular material

(Pig. C=1).

stress
A
G+ —_—
O-I\-
¢}
© »— strain
Fig. C-1

Let e = actual (total) strain,
and €, = dinitial strain
so that (e - € ) = strain due to applied loads.

(@]
Then for a linear elastic material having an elastic constart D,

Y)

The elastic strain energy density can ncow be written as ,

€ - € £
T = [o de = [De ae - De, de (c-2)
2 € €
(6] 6] (6]

“See Reference [7]1, Secticn 3, Eq. (17).
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Let e = ¢ +A(e - ¢)
0 (0]

and de = (e - eo) an (6-3)

where A 1is some constant.

Substituting for € in Eq. (¢-2) the strain energy density can be written as,

1 1
5 - [1 e - _ j _
U = i D [eo + A (e oo)]<€ €o> ax D e (e eo) an
0 o
¢ t t .
= e De-e¢ De + 3 c D e (c-4)

In performing the integration of Eg. (C=4) the guantities concerned have been

assumed to be matrices and vectors.

The first variation of an energy functional: A necessary condition for a

functional to attain a stationary value is that the first variation of the

functional vanishes indenticaLLy.“ The procedure in taking the first variation

of a functional is illustrated here for the elastic strain energy, Eq. 3.12,

d t t oo
vo = 3 a1 B 0] (5] qq) av (c-5)
v
If we let [B]t (D] [B] = [4], Eq. (6—5) may be written more concisely as,
U, = % f fo ) ] {a ) av (c-6)
v

The partial derivative of U_ with respect to the displacements {qe} is,

H] fo v av (c-7)

U
8 Ue = Bize} .8 {qej (c-8)
= [ 1) o1 av]s fa,) (¢-9)

v

The conditions under which U  will attain a stationary value are given by

taking

§ U = 0

>

3* v . .
The conditions under which a functional attains a stationary value is the
fundamental problem of the calculus of variations. See Courant and Hilbert
[8], p 164.
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Since the variation of displacement § {qe] is arbitrary, this condition
is satisfied only if the expression within the square brackets of Eq. (C-9)
vanishes identically. The vanishing of this expression then provides us with
a set of equations; if the total potential energy has been minimised they will

be stiffness equations.
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APPENDIX D

Numerical Integration Technigues

The two most common methods of numerical integration are Gauss quadrature
and Newton-Cotes quadrature, the latter method embodying the elementary
trapezoidal and Simpson's rules. The following is a brief summary of each

method.w

Suppose we are required to evaluate the integral
f f(x) dx (D-1)

This integral may be written in the general form,

-

I = HJ. f(aj) + B (D-2)
J=1

'\

where a!j are called the 'abscissae'! and Hj the corresponding 'weights'.

E 1dis the error involved in the numerical appreximation.

The Newton-Cotes guadrature formulae: 1In this method the abscissae, of which

there are n + 1, are constrained to be equally spaced. If we further restrict
the discussion to closed formulae (where the end points of the interval [a,b]

are abscissae), then equation (D-2) becomes,

H fla + hj) + E (D-3)

where h =

With the abscissae already chosen, we are left with (n + 1)  unknown values

of H. to find. We can expect then to make the integral I exact for poly-
J

nomials of degree n or less; in fact when n is even, we get exact results

for polynomials of degree (n + 1) or less.

The actual values of Hj for a given value of n are found from
Langrangian interpolation formulae. For n = 1 we have the trapezoidal rule,
which is exact for first-order polynomials. For n = 2 we have Simpson's

[10]

rule which is, contrary to expectation, exact for third-order polynomials.

RIS
<

Reference [9], p 85.
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Simpson's rule for the closed interval [a,b] (Fig. D-1) is given by,

d
I = 59 [f(a) + 4£(0) + £(b)] (D-4)

where d =
o}

(a,b]

a,c] + [c,b]

£ (b)
= £

The accuracy of the formulae may however be improved by subdividing the
original interval and applying the rule to each of the sub-intervals. By
summing the results for each sub-interval a more accurate overall result is
obtained. Such a procedure results in a composite quadrature formula. In
general, if the interval [a,b] is subdivided into m sub-intervals (m even)

and each sub-interval has length 2d, then Simpson's rule may be written as,

d -
I = 3[1‘1 + 4f2 + 2f3 + 4f4 F e +fy ] (D-5)

The Gaussian quadrature formulae: In deriving the Gaussian formulae no con-

straints are imposed on the abscissae or the weights, with the result that we
have 2n unknown constants a; and Hj to solve for. When the abscissae
are chosen as the zeros of the Legendre polynomial of degree n, then the
error term E in Eq. (D-2) is zero if f(x) is a polynomial of degree

(2n - 1) or less.

To find the values of the constants aj and Hj for a general closed
interval [a,b] involves the solution of higher order simultaneous equations
in a and b. DMost texts simplify the problem by giving values of aj and
Hj only for integration over the interval [- 1,1]. However, the lack of a
general formula incorporating arbitrary end points a and b makes it
impossible to derive composite formulae involving further sub-intervals of
[a,b]. The derivation of the necessary general formula was considered to be

beyond the scope of the present work.
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We are thus limited essentially to integration over the interval [— 1,1],
using the same number of abscissae as the order n of the particular Gaussian

formula being used. For example, the formula for n =4 is, (Fig. D-2),

1
j f(x)dx = 0,347[£(0,861) + £(~ 0,861)] + 0,652[£(0,339) + f(- 0,339) ]

-1 (D-6)

-1 -0,861 -0.7339 0 0,339 0,861 1

Fig. D-2

However, for intervals having arbitrary end points we can always make a
suitable substitution whereby the integral over the original interval is con-
verted to an equivalent integral over the interval [~ 1, 1]. For example,

the integral

is equivalent to the integral

1
It = [) (y + 2) ay
-1
when the substitution x =y + 2 is made. Such a procedure is, however,

only practical in the case of reasonably simple integrals.

Alternatively, in the case of integration over the interval [0,1] or
[—1,0] we can make use of the symmetry of the even Gaussian formulae in the

following manner. For n = 4 the formula for the interval [0,1] is,
j'f(x)dx = 0,347 x £(0,861) + 0,652 x £(0,339) (D-7)

i.e., the terms in Eq. (D—6) corresponding to the abscissae within the inter-
val [0,1]. Similar half-interval formulae can be written for n = 6,8 and 10.

The actual values of the abscissae and weights for these formulae are given in

the description of subroutine GELSTF in Appendix A.
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APPENDIX E

Explicit Expressions for the Equivalent Nodal Surface and Body Forces

The derivation of the element load vector has been discussed in Section
3.1.3, where the interpretation of the equivalent nodal loads and their sign
convention has been given. The following expression may be used directly to

calculate the equivalent nodal loads for the types of loading mentioned.

The eguivalent nodal surface forces: The integration of Eq. (3.22) yields the

following expressions for the equivalent nodal surface forces:

-r,p, sin ¢ . 2
171 3 . .2 p'Lsin” ¢
U1 = 2%L [ 5 - 2O(r1p' sin ¢ + p1L sin ¢) - 1; ]
(E—1a)
r,p, cos ¢
11 3 .
W1 = 2L [;————E*——— + 2O(rqp‘ cos ¢ + pqL sin g cos )
N n'l si?5¢ cos ¢ J (E-1b)

r, p,L 2 .
_ 171 1 , 2 . p'L" sin ¢ ]
M, = 2L [: > +—-30(r1p L + p,L° sin #) + (E-1c)

60

- r,p, sin ﬁ ) . 2 ﬁ
U. = 2qL [ ! 12 Z--(rqp' sin § + p,L sin2 6) - 4p'L sin ]

2 ~ 20 15
(E—2a)
r,p, cos ) 7
— rr——————————————— L, 1 .
W2 = 2qL [ 5 + 2O(r1p cos @ + p,L sin ¢ cos ¢)
1 : -
4 4p'L s1?5¢ cos @71 (E-2b)
- r pL 2 .
_ R , 2 . p'L” sin Q] _
M, = 27l [—12 25(r,p'L + p,1° sin §) - = (B-2¢)

The equivalent nodal body ferces: The integration of Eq. (3.24) yields the

following expressions for the equivalent nodal body forces:

r1 . cos2 ¢ b sin2 ¢ -

U1 = 2qtLy [5* + L sin ¢ ( e + 50 )J (E—Ba)
(L sin2 ¢ cos ¢

W= 2ntLyl_ = (E~3Db)
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—-r, sing . .2
2ntL2Y [ L sin ¢

]
12 S (B-3c)
T, 2 .2
2ntL Ei + L sin ¢ (0083g ¢ L S;g ¢)] (E-4a)
. 2
2t ¥ [- L s1n60¢ cosjﬁ] (E-4p)
2 ”r1 sin ¢ L sin24Q
2n’cLyL = + 22 ] (E-4c)
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APPENDIX F

Circular Plate Theory

The circular plate is clearly a special case of the conical frustrum
when ¢ = 900 (Fig. 2.1). As such the strain-displacement and curvature-
displacement relationships for a circular pLate'c can be obtained directly

from Egs. (2.14) by substituting sin g =1 and cos ¢ =0.

Of specific interest here are the differential equations of equilibrium
for a circular plate in pure bending, and in a state of plane stress. The
solutions of these equations will be used to derive the bending and in-plane

stiffnesses of a circular plate.

The bending stiffness of a circular plate: Consider a circular plate of

radius a subject to a uniformly distributed moment M per unit of circum-

ference (Fig. F—1).

4

When there is no distributed loading on the plate the governing
34
differential equation of eguilibrium is,

i) = o (5-1)

14 (. 4w

el e ¢ (a)

C

dw r 2
= = 4 —= b
dr C1 2 + T ( )
r2 r ( )
= — - (¢]

W CJ| 1 + 02 log (a) + C3

a2

" The expressions for the in-plane strains in a circular plate are given by
Timoshenko and Goodier [2], p 76, and those for the curvatures by Timoshenko

and Woinowsky-Krieger [3], p 51,

s .
eTimoshenko and Woinowsky—Krieger [3], p 53.



216.

Differentiating Eqg. (b) with respect to r we have

v _ 5 % (a)
> - )
dr r

The expression for the meridional moment Mr is then,

=
il
+
!
|

2 2 r dr

- Et3 d2w v dwj
12(1 = v° “ar

i

ﬁ L, c c. -
e e ol 2y )] (e)

The three arbitrary constants C C, and C are found by applying the
«

1’ 3

following boundary conditions:

dw
at r =0, ir = 0
at r =a, MU = M
r
at r = a, w = 0,

Solving for the arbitrary constants, and substituting back into equations (b)

and (c) we find the following expressions for the displacement w and slope €:

M ;2 2
w = Eﬁzq*lf:j (a -1 ) (F—2)
L odw Iy :
© dr T D(1 4+ V) (r-3)
Bt
D = >
12(1 =v©)

If we let M be the total moment at the edge r = a, such that

M~ = 2qr M

then the bending stiffness of the plate at this edge is,

YR
kS

W
1
oh=

2 D (1 4+v)

il

_ ep B (P-4)
12(1 =)
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The radial stiffness of a circular plate: Consider a circular plate of

radius a subject to a uniform axial force P per unit of the circumference

(Fig. F-2).
2 % r(u)

Pt

The plate is in a state of plane stress for which two equations of
3
equilibrium may be written. If we neglect shear stresses and body forces,

the equation for equilibrium in the radial direction is,

I
Ly L =~ = 0 (F-5)

(0%
M
ks

Substituting for o and oy in Eq. (F-5),

5 = — du , v 1
r ) v2 “dr
(F~6)
E u du
and  0n = 7 [T+

and differentiating with respect to r, Eq. (F—5) can be written in the form,
- i*'u = 0 (F-7)
2

The second equation for equilibrium in the tangential direction is trivial

when the shear stresses are neglected.

Integrating Eq. (F-7) twice with respect to r we obtain,

du u
ir 1t 01 (2)
r2
= C - b
and ur C, 2 + 02 (b)

The constants C1 and 02 are found by applying the following boundary

¥See Timoshenko and Goodier [27], p 66, Egs. (37).
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conditions:

at r =0, u o=

at r=a, 0 t = P

Solving for C and C and substituting back into Egq. (b) we have,

1 2
_ Pr {1 -v)
u = =T (r-8)

If we let P be the total axial force at the edge r = a, such that
P = 2na P

then the axial stiffrness of the plate at this edge is,

2.

®
g 1

N
=

=
o+

= = (F-9)

—_
|
<

Pixed-end moments and forces for a circular plate under a U.D.L.: Consider

a circular plate of radius a, clamped at the outer edge and carrying a

U.D.L. p (Fig. F-3).

L a r(u) |
] ; !
:)Mr = a
‘ | % Ft
Qr 2 (w) Qr
Fig, F-3

The meridional moment Mr per unit of circumference at a section of

radius r 1is given by,

M = 7%'[_ 32(1 + V) + r2(3 + v)]

r

from which the fixed-end moment per unit of circumference at the edge r = a

is,

*Rer. [3], p 55.
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2
M = % (F_qo)

The total load on the circular plate is nazp. Hence the fixed-end force
per unit of circumference is,

2
Q, — M — Pé (F_']'])

r 27{8, 2
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APPENDIX G

The Theory of Cylindrical Water Tanks

The circular cylinder is a special case of the conical frustrum. Hence

by taking ¢ =0 in Eqs. (2.413) we may immediately write down the equations

3t

for the stress resultants in a cylindrical water tank. These are,

N = D[¥ + v gﬁ
6 "a dx
du W
— ey \)_
NX D[dx + ]
2 (G-1>
Me = K v i~%
dx
2
M o= x4
X ax”

In the above expressicns a 1is the radius of the tank and x denotes

meridional distance along the tank.

In the case of water tanks we take the axial stress resultant Nx to be

zero. Hence

du _ _ ¥
dx a

Substituting this result into the expression for NP’ the hoop stress in a

cylindrical water tank is

Ny = D (1 - Vo) ¥ (G-2)

The circumferential moment M@ is usually ignored and in the following sections

expressions for the meridional moment Mx in open and closed tanks are derived.

The open cylindrical water tank: The governing differential equation of a

water filled, uniform thickness cylindrical tank of radius a 1is,

v

4
k& ip (1 -V = (6-3)

dx a

where w 1is the radial displacement and p = f(x) is the hydrostatic water

ﬁFLﬁgge [1], pp 269-276.
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pressure in the tank (Fig. G-1). The complete solution of Eq. (G-3) is made
up of the sum of the complementary function (when p=0),
w1 = eﬂ3X(A

cos fx + A, sin BX) +

1 2

eﬂ3(h~x) (B1 cos (h - x) + B2 sin g(h - x)) (G-4)

and any particular integral of the governing differential equation. We choose

the particular integral

2
W, = ~—x~§—§— (h-x) (G=5)
D(1 - v°)

where Y is the unit weight of the water in the tank.

%

— -
= ‘2

|

7 VL AN

i3
T
]

The constants A,, AZ’ B1 and 82 are found from the boundary conditions
at the top (x = h) and bottom (x = 0) of the tank. If h is sufficiently
large, the terms containing B1 and B2 have negligible affect at the base
of the tank. Since in an open tank we are concerned more with the boundary

conditions at the base of the tank we may drop the terms containing B1 and

B2' The complete expression for the displacement w then becomes
a2 - Bx
W= —-—1“——5” (h - x) +e B (A1 cos Bx + A, sin Bx) (G=6)
D(1 - Vo) 2

Differentiating with respect to x we have for the slope,

2
dw _ _-ya - Bx - ]
dx D(1 - v2) - Be [(A1 - A2) cos Bx + (A1 + A2) sin Bx] (@ 7)

The boundary conditions at the base (x =0) are

w =20 and dw = 0
dx
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from which expressions for the constants A1 and A2 are derived. These are

2
A — __:‘___'X_ﬁ__&_
! D(1 - v2)
a2
—_ Ya
and A = (a - xh)
2 x D(1 - v2)

Substituting for A1 and A2 in Bq. (G-6) we have,

2
W= %% [(h - x) - he” P* cos X + Cé - n) e P¥ sin Bx] (¢-8)

Differentiating Eq. (G-8) twice with respect to x yields the expression for
the curvature, which when multiplied by the elastic constant K yields the
equation for the meridional moment Mx’ i.e.,

2

M:Ki—g
X ax

: 2 2
K B2 ¢~ BX E:_%%g_ (% - h) cos Bx - 2yah sin Bx]

Et
3 2 2 2 -
- 2 -

= Bt > &5 [— 2%%‘ (% - h) e px cos Bfx - -x%zh e Bx sin BXJ
12(1 - v7) ’
=

Finally substituting X _ Et_a we have
2K
- 3 . - - n
— L(é - h) e px cos Bx 4 he Bx sin BXJ (G-9)
Mo = 5 X
X 12(1 =v©)

Notice that if the height h of the tank is large, both the displacement w
and the moment Mx are effectively zero at the top of the tank.

The closed cylindrical water tank: When the water tank is monolithically

joined to a circular disc (which acts as a roof to the tank), it is important
to determine the effect which the disc has on the stress distribution in the
tank. We therefore replace the disc by equivalent forces and moments acting

at the upper edge of the tank (Fig. G-2).
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X, <E E)X1
43\ !

Pig., G=2

Transverse forces from the disc give rise to a state of plane stress in
the tank which is not of significance in the present discussion. The basic
problem is therefore essentially that of an open tank with an unknown applied
moment X, at its upper edge. In this case however we have two additional

1
boundary conditions at the edge x = h, viz.,

If h 4is sufficiently large the terms in A1 and A2 (Eq. G-4) have
negligible affect at the edge x = h. We may thus drop these terms and apply

the above boundary conditions to find B1 and B2. The eguation for the radial

displacement is then,

2
—re (n - X) + e B(h—x) [B1 cos B(h - x) + B2 sin B(h - X)J

v (1 - v2)

(G-10)

From the first boundary condition at the edge x = h we have,

The equation for the moment MX is then,

P
M = K 9—%
X dx

K 32 e~ B (n-x) [- 2B, cos g(h - x) + 2B, sin g(h - x)] (G=11)
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The second boundary condition at this edge is,

2
fod = -— 2K —,
M X, B°. B,
- X
1
. B =
2 0% g2

Substituting the expression for B1 and B2 back into the original equations

yields the following expression for the slope of the tank at the edge x = h:

2 X a
w _ -—ya | 1 (G=12)
dx Bt = 2K X

Clearly the slopes of the tank and the circular disc must be compatible at
the edge x = h. The slope of the disc at this edge is given byw,

dw a X1
(), (G-13)
dx J KC(1 + V)
Etg
where K. = 5
12(1 = v9)

is the flexural rigidity of the circular disc, Hence, for compatibility of

the slopes we have

a X 2 a X
1 oyat 1
2K x ~ Et Kd(1 + V)

from which the value of redundant moment is

1
X1 - %% a P (G-14)

K x K (1 + )

The complete expression for the curvature of the closed tank is then
obtained by summing the curvature of the open tank and the curvature due to
redundant moment X,. The expression for the moment Mx at any point in the

1
closed tank is then,

N _ - Yat L(

x [12(1 - véf

-n) o B¥ cos px + he” P¥ sin BXJ

bad [0

+ X1 e p(h-x) cos B(h - x) (G=15)

*Timoshenko and Woinowsky-Krieger [3], p 58.



225,

It will be noticed that the first part of Eq. (G-15) is identical to Eq. (G-9)
for the moment in an open tank. The solution of the closed tank problem is
thus made up of the open tank solution plus a term expressing the clamping
effect of the circular disc. The approximate method used to derive these
equations is apparent from the fact that for sufficiently large h, the
clamping moment X1 is effective only near the top of the tank and the water

pressure only near the base.

The preceding solution may be modified to take account of a U.D.L. on
the tank roof. In this case the same procedure as before is followed except
that Eq. (G—13) is replaced by the expression for the slope of a circular

3*
disc under a uniformly distributed load p, viz.,

3

dw a
ax ~ BE(T + ®) (G-16)

By equating the expressions for the slope in the tank (Eq. G-12) and the slope
in the disc (Eq. G-16) a new expression for X1 is obtained in terms of the

load p, vigz.,

2
_ pa K X
1 42K x +Kg(1 + V)]

(6=17)

This expression may then be used directly in Eq. (6=15) for the moment Mx'
Since the water pressure is no longer included, the equation for MX reduces
to,

M = X e pla-x) g(nh - x) (G-18)

X 1

*Ipid., p 56.
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