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ABSTRACT 

The concept of quasifibration was introduced by Dold and Thom in their work on infinite 

symmetric product spaces. Among other things, they prove a theorem [DT; Satz 2.2J, 

which has since been applied widely in the literature. 

This thesis presents a study of the notion of n-equivalences and related types of maps. The 

first of our two main goals is to prove a result, Theorem 5.1, which generalizes a 

fundamental theorem of Dold and Thom on globalization of quasifibrations. Secondly we 

show that by means of adjunction or clutching constructions, this theorem enables us to 

retrieve the famous results [J2; Theorem 1.2 and Theorem 1.3J of James in his work on sus

pension of spheres. The results of James appear in the thesis as Theorem 13.8. 

For some of the applications we require a generalized version of n-equivalence. This 

generalization entails replacing, in the definition of n-equivalence, the isomorphisms by iso

morphisms modulo a suitable Serre class [Se] of abelian groups. Although quasifibrations 

are often applied in the generalized context in the literature, there is a lack of a formal 

theorem covering such applications. We fill this gap by proving a generalized version, 

Theorem 8.5, of a result (M2; Theorem 1.2] of May, __ on n--equivalences and cotriads. 

In the process of pursuing the theorems of James, we discover new results as well as new 

alternative proofs of well-known results. The most prominent example of the latter type of 

work, is the proof of the homotopy excision due to Blakers and Massey [BM 1]. The 

homotopy excision theorem appears as Theorem 7.1. Among the original results, the most 

prominent ones are the Theorems 11.1 and Theorem 12.1. The latter result describes how, 

under suitable conditions, a relative homeomorphism can be extended to give isomorphisms 

of the relevant homotopy groups in dimensions beyond those of Theorem 7.1. Theorem 

11.1 gives sufficient conditions for a map of pairs of finite dimensional CW-complexes to 

be a n-equivalence. ■ 
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0. GENERAL BACKGROUND AND OUTLINE 

The concept of quasifibration was invented by Dold and Thom (DT]. May (M2] approached 

quasifibrations from a new angle, making use of n-equivalences. This dissertation presents 

a study of the notion of n-equivalences and related types of maps. The first of our two 

main goals is to prove a result, Theorem 5.1, which generalizes the fundamental theorem 

(DT; Satz 2.2] by Dold and Thom on globalization of quasifibrations. Secondly we show 

that by means of adjunction or clutching constructions, this theorem enables us to retrieve 

the famous results of James (J2; Theorem 1.2 and Theorem 1.3] in his work on suspension 

of spheres. The results of James appear in the thesis as Theorem 13.8. 

For some of the applications we need a generalized version of n-equivalence. This general

ization entails replacing, in the definition of n-equivalence, the isomorphisms by isomorph

isms modulo a suitable Serre class [Se] of abelian groups. For the sake of having the thesis 

self-contained, we include a formal discussion of localization of 1-connected spaces and 

Serre classes of abelian groups. This summarizes the scope of the thesis. More detail on 

the content of the thesis will be given after we have sketched a historical perspective on 

quasifibrations. 

The homotopy lifting property is defined in Section 1 of this thesis. A map that has the 

homotopy lifting property is called a fibration. It is known that for a product of topo

logical spaces, the projection map onto one of the factors is a fibration. The simple manner 

in which a homotopy can be lifted over a projection map, resulted in such maps being 

called trivial fibrations. The concept of locally trivial fibration (see Section 2) has its roots 

in the work of Whitney [Wy]. Steenrod (Sd1] proved that if the base of a Whitney fibre 

space is compact, then the projection is a fibration. This implies that any locally trivial fi

bration is a Serre fibration, that is to say, the map has the homotopy lifting property with 

respect to compact polyhedra. 
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Using the homotopy lifting property, it can be shown that for a Serre fibration p : E-+ B 

and a point b E B with F = p-1(b) f. <P , the induced function on homotopy sets : 

(1) p*: ?rn (E,F)-+ ?rn (B,b) 

is bijective for each n E IN. In order. to pursue this property, the concept of quasifibration 

was introduced by Dold and Thom in their pioneering work [DT]. In [DT], quasifibrations 

are used extensively to study infinite symmetric product spaces and related constructions. 

The authors prove that the inclusion of a space into its infinite symmetric product space, 

realizes the Hurewicz homomorphism. In particular, the singular integral homology of the 

space is naturally isomorphic to the homotopy of the infinite symmetric product of the 

space. A key technical result in [DT] is Satz 2.2 which gives sufficient conditions for a map 

which is locally a quasifibration, to be in fact a quasifibration. 

This globalization theorem was applied for identification of quasifibrations in numerous 

papers and in a variety of fields. We can mention among others, the fields of equivariant 

topology for example [Wa] and [CW], and shape theory for example [Ed] and [Fe]. In a 

number of cases, the adjunction theorem [Ha; Theorem 0.2] due to Hardie is used. When 

appropriate, this adjunction theorem is simpler to apply than than the original theorem 

and lemmas of [DT]. In what follows, we look at some of the applications which are more 

relevant to this thesis. The papers cited are only examples and the list is certainly not 

complete. 

Almost· immediately after the invention of the notion of quasifibration, Dold and Lashof 

[DL] reported their construction of a universal qu.asifibration for an associative H-space. 

The universal quasifibration is comparable with the universal principal bundle for a group 

[Sd2]. Stasheff gave further generalizations of this universal bundle type of construction. 

In [S£1] it is shown that for every finite CW-complex F, there exists a fibration that classi

fies all quasifibrations which have quasifibres of the homotopy type of F and base a 

CW-complex. 
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Quasifibration theory was used further in the study of associativity in H-spaces, by among 

others, Hubbuck and Mimura [HM] and Stasheff [Sf2]. The closer an H--space is to being as

sociative, the further one can carry on with the iterative construction towards the 

Dold-Lashof universal quasifibration. In these papers, the spaces are generally considered 

to be localized with respect to a specified subset of prime numbers. This idea is also com

mon in many of the other applications we are going to mention. 

In the study of geometric realizations of semisimplicial sets, in particular, the nerve of a 

category, the theory was also valuable .. As examples here we have among others, publica

tions by Anderson [An], May [M 1], McCord [Mc], Meyer [Me] and Quillen [Q1 and Q2]

McCord shows in particular that every finite space is weakly equivalent to a compact poly

hedron. It is interesting to note how Quillen applies the theory of quasifibrations to pro

blems of abstract algebra. The book [Ss] includes a brief treatment of the basics of quasifi

brations, to enlighten the applications to algebraic K-theory as in the work [Q1] of Quillen. 

In a recent paper, Weidner and Welker [WW] did work on abstract group theory related to 

that in [Q2]. In both of the latter two _papers, quasifibration methods were used. 

The techniques of quasifibrations have also impacted on homotopy theory. Baues [Ba] ob

tains a result of the nature of the Hilton-Milnor theorem. In [G2] Gray establishes the 

weak homotopy equivalence between the loop space of the suspension of a space and the 

James reduced product by these means. This result is originally due to James [J 1] by dif

ferent methods. In [ G3], Gray investigates for topological group structure on the homotopy 

fibres of iterated suspension maps. Recently, Wong [Wong] has also used quasifibrations to 

study the homotopy fibres of these maps. Hardie and Porter [HP] obtain by means of ad

junction of quasifibrations, maps due to James [J2] of reduced product space skeleta. This 

construction will be pursued by similar methods in this thesis. In this dissertation we fur

ther extend this list of applications, viewed in the setting of n-equivalences. 
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We give a description of the sequencing of the topics and the contents of chapters. The 

essence of the thesis is contained in the first three chapters, or more precisely, Chapters II 

and III. Chapters IV and V contain detailed expositions of work of a more elementary 

level, required for Chapters II and III. 

In Chapter I we continue by discussing the essential preliminaries, such as double mapping 

cylinder, mapping path fibration and many more. For motivational purposes we include a 

treatment of locally trivial fibrations. The definitions of the concepts of n-equivalence and 

quasifibration follow. A number of examples are included, some of which will be revisited 

· at a later stage in the thesis. 

In the first part of Chapter II we treat the new globalization theorem for n-equivalences, 

Theorem 5.1, and deduce the one by Dold and Thom for quasifibrations. This is followed 

by some adjunction theorems. Among the latter, at least the first one, Theorem 6.1, is a 

new contribution. Furthermore we prove the homotopy excision theorem of Blakers and 

Massey (BM1] by an original method, using adjunction of n-equivalences. This result is 

labeled Theorem 7.1. 

For most of the further applications, we require a· generalized version of n-equivalence. 

This generalization involves the concept of Serre classes of abelian groups. In the first part· 

of Chapter III we introduce the essentialities regarding this generalization. We also discuss 

more preliminaries required for further applications. Theorem 11.1 gives sufficient condi

tions for a map of pairs of finite CW-complexes, to be a weak equivalence. This is also a 

new contribution to our subject, and has applications comparable to those of the Serre 

spectral sequence of a fibration. The applications in the latter part of Chapter III to maps 

involving spheres, include new proofs of famous results as well as results that seem to be 

new. Among the original results, the most prominent ones are the theorems 11.1 and 12.1. 

The latter result describes how, under suitable conditions, a relative homeomorphism can 

be extended to give isomorphisms of the relevant homotopy groups in dimensions 
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beyond those of Theorem 7.1. Theorem 11.1 gives sufficient conditions for a map of pairs 

of finite dimensional CW-complexes to be a n-€quivalence. The known theorems for which 

we obtain new proofs include the results [J2; 1.2 and 1.3] of James, Theorem 13.8 men

tioned in the introductory paragraph. (With a little more effort, besides using adjunction, 

we retrieve the generalization [T; Theorem 2.11] by Toda of James's results. The latter 

result is presented as Theorem A.I in the appendix.) The main objectives of this disser

tation can be considered to have been fulfilled at this stage. 

The foundations of n-€quivalences is treated in Chapter IV. For completeness we include a 

discussion of the five-lemma. We treat in detail the action of the group 1r1 (A) on the set 

1r1 (X,A). This action does not seem to have been studied in detail before, and certainly 

has not been given its rightful place in the study of maps of pairs. Hereafter we study 

maps of pairs and triples. Furthermore we present a detailed proof of a key result, Lemma 

5.5, required for the proof of Theorem 5.1. Lemma 5.5 is modeled partly on [DT; Hilfssatz 

2.6] in the presentation of Dold and Thom, and partly on (M 2; Lemma 3.3] of in May's 

treatment of n--€quivalences (which is attributed to Sugawara [Sa]). Logically, this chapter 

precedes Chapter II, but since the proof of Lemma 5.5 is lengthy and the other material of 

Chapter IV is fairly elementary, it has been shifted away from the main development of the 

dissertation. 

Chapter V is included for the sake of making the thesis self-contained as was mentioned 

formerly. Where references are not provided, the theory is regarded as well-known. We 

give an account of the relevant facts regarding Serre classes of abelian groups. This is fol

lowed by a discussion of localization, with respect to a given set of primes, of abelian 

groups and of I-connected spaces. Finally we generalize the concept of n--€quivalence, and 

prove adjunction theorems for such maps. A summary of this work appears in Section 8 for 

application in Chapter III. 
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A characteristic feature of this thesis is the geometric methods. The description by Toda 

[T; Section 5] of the attaching maps of the cells of sk is crucial for the geometric proof of 
m 

Theorem 12.1 (an intermediate step towards James's results [J2; 1.2 and 1.3]). Nowhere in 

the thesis, except in the proof of Theorem A.l, due to Toda [T; 2.11], do we make use of 

the cohomology or homology of specific spaces. Also in the proof of Theorem A.l, we do 

make use of cohomology and of Wangis cohomology sequence. Nevertheless, the Wang 

sequence, and consequently the cohomology ring of n sn, is obtainable by elementary 

means as we shall point out. Further, the thesis abounds with elementary counter-ex-

. amples supporting the results and pin-pointing difficulties. 

The end of the proof of a result is denoted by the symbol I. The symbol ■ is used when it 

is considered necessary to clearly mark the end of any other type of discussion, for instance 

a remark or a definition. We label the ideas or paragraphs in bold print, for example, 5.1 

refers to the first (citable) item in Section 5. The chapters only serve to group together the 

sections belonging to the same theme. Wherever practical, the main result of a given 

section appears as *·1 . 
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Chapter I: INTRODUCTION AND MOTIVATION 

In the first section we discuss preliminaries and establish notation and conventions to be 

used throughout the dissertation. 

The constructions with locally trivial fibrations in Section 2 serves as motivation for the 

study of quasifibrations and n-equivalences. 

In Section 3 we introduce the concepts mentioned in its title. Numerous examples are 

given in order to illustrate the concepts and to support the results. Some of these are 

revisited in later chapters. 

Section 1. Preliminaries and notation 

Section 2. Adjunction of locally trivial fibrations 

Section 3. n-Equivalence and quasifibration. 
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1. PRELIMINARIES AND NOTATION. 

We devote this section to the discussion of preliminaries such as the homotopy lifting and 

extension properties and elementary facts and terminology about the category Top2 . The 

notation for double mapping cylinder, push-out and mapping path fibration established here, 

will be used throughout the thesis. The notion of mapping cylinder was invented by J. H. 

C. Whitehead (W 1] and pursued by Fox (FoJ. The adjunction space concept is also attribu-

. ted to J. H. C. Whitehead (W 2}. The mapping path fibration construction is due to Cartan 

and Serre [CS]. Steenrod's NDR-pairs [Sd3] provide us with an elegant approach to the 

homotopy extension problem. For many of the concepts in this section though, the history 

is hard to trace and we shall not aspire to provide a complete set of references. 

1.1 The categories Top and Top2 

The term map means continuous function between topological spaces. A neighbourhood of 

a point in a (topological) space will be assumed to be open. The category of spaces and 

maps is denoted by Top . When working with a pair of spaces (X,A), it is assumed that 

A:/: <ft. At times, with due notice, we shall use the same symbol to denote the category of 

pointed spaces and base point-preserving maps. There is no chance of ambiguity since in a 

given section we will work consistently in only one of these categories. Top2 is the cate

gory of which the objects are the morphisms of Top , and a morphism in the category 

Top2 from the object a : A - A' to the object fJ : B - B' is a pair (µ,µ') of maps 

µ : A - B and µ' : A 1 

- B
I such that /j o µ = µ' o a . 
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1.2 Definition 

A homotopy from a map ho: X-+ B to a map h1 : X-+ B is a map h: Xx I-+ B 

such that h(x,O) = h0(x) and h(x,1) = h1(x) for every x E X. If such a homotopy ex

ists, then we say that ho is homotopic to h1• 

A homotopy equivalence is a map h : X -+ B such that there exist a map g : B -+ X, 

called a homotopy inverse of h, with go h. homotopic to the identity map of X and ho g 

homotopic to the identity map of B. 

1.3 Definition 

Let i0 : X-+ X x I be the obvious homeomorphism of X onto the subspace X x {O} of 

X x I. A map p : E -+ B is said to have the homotopy lifting property with respect to 

the space X if, for maps h : X x I -+ B and Ho : X -+ E such that h o i0 = p o Ho, 

there exists H: Xx I-+ E such that po H = h and Ho i0 = H0• That is to say, given 

a commutative square such as the one formed by the unbroken arrows in diagram A, there 

exists an arrow H such that the diagram is commutative. 

X Ho E 

/ 
-A- i 0 H/ p 

/ 
/ 

/ 

X x I B 
h 

1.4 Definition. A map which has the homotopy lifting with respect to all spaces is called 

a fibration, or more precisely, a Hurewicz fibration. 
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1.5 Examples 

(a.) Obviously every homeomorphism is a fibration because given the commutative square 

of unbroken arrows in diagram A1 and assuming that p is a homeomorphism, we choose 

(b) Let E = F x B for some space F I and let p : F x B - B be the projection. Then, 

given the square of unbroken arrows in diagram A above, we define H: X x I - E by the 

formula: 

H(x,t) == ( q o H0(x), h(x,t) ), 

where q: F x B - F is the projection map. Then by [Ms; Theorem 7.4 on p109], H is 

a continuous function. This map H makes diagram A commutative. It can thus be seen 

that p is a fibration. 

(c) Every map J: E - B can be decomposed /= f" o 1- as a homotopy equivalence 

followed by a fibration. This construction, see 1.6 below, is known as the Cartan-Serre 

construction [CS]. The fibration /" is called the mapping path fibration of /. 

1.6 Mapping path fibration 

For any map f: E- B, we define /": E" - B as follows. Let P(B) denote the 

space of all paths A : [0,1]-. B in B, with the compact-open topology. Let 

E" = { (x,A) EE x P(B): /(x) = A(O)} and let /" (x,A) = A(l). 

When there is a chance of confusion we write E"(J) instead of E... For any x EE, de

note by x the stationary path in B at /(x). Then we have a map 1- : E - E"' given 

by the formula f-(x) = (x,x) . 
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1.7 Proposition. With notation as in 1.6 we have the following: 

(a) f A O 1- = f 

(b) f A is a fibration 

(c) 1- is a homotopy equivalence and J-(E) is a deformation retract of EA. 

The proof is routine and we omit it. It is discussed in for example [Wd]. ■ 

1.8 Remark 

For maps Ji: Ei-+ Bi, i = 1; 2, and a Top2 -morphism (g,h) : f1 -+ h, we define a 

function EA(g,h) : EA(J1)-+ EA(h) by mapping an element (x,,\) of EA(J1) onto the ele

ment (g(x), ho ..\) in EA(f2). Then we have a functor EA : Top2-+ Top2 . 

Taking 11(!) to be the pair (f-,1), with 1 denoting the identity map of the space B, 

we find that 1/ is a natural transformation from the identity functor on Top2, to EA. ■ 

The following definition is due to Steenrod [Sd3]. We do not restrict ourselves to compact

ly generated Hausdorff spaces. 

1.9 Definition 

Given a space X and subspace A, the pair (X,A) is called an NDR-pair if there exists 

maps u : X -+ I and h : X x I -+ X such that : 

A= u-1 (0), 

h(x,O) = x for all x E X, 

h(x,t) = x for all (x,t) EA x I, and 

h(x,1) E A whenever u(x) < 1. 

A cofibration is an embedding i: A-+ X such that ( X,i(A) ) is an NDR-pair. ■ 
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The term cofibration used to be defined in terms of homotopy extension, but in (Sd3] it is 

shown that ( at least for compactly generated Hausdorff spaces) the given definition is equi

valent to the original one. 

1.10 Definition. 

The mapping cylinder Z(f) of the map f: E-+ B is the space obtained from E x I+ B 

by making the identifications (x,1) = I (x). For a map lo: Ea-+ Bo and a Top2.. 

. morphism (g,h) : I-+ lo we define a function Z(g,h) : Z(J)-+ Z(/0) to be the one 

induced from the map: 

g x 1 + h : E x I + B ---+ Ea x I + Bo . 

Then Z(g,h) is continuous and so we have a functor Z : Top2-+ Top . There is a projec-

tion Z(J)-+ B, determined by the obvious map Ex I+ B-+ B. This is a natural 

transformation from Z to the codomain functor Top2-+ Top . Similarly there is a 

natural inclusion E-+ Z(J). This inclusion is a cofibration. Note that the projection 

has a right inverse and is a homotopy equivalence as well as a cofibration. 

1.11 Push-out 

We explain the push-out, B = G(h1, h2) of a cotriad (1) below, in the category Top . 

(1) B1 hi Bo h2 B2 

A relation Ro is defined on B1 +Bo+ B2 by the rule given in (2) below. Let R be the 

equivalence relation generated by R0. 

{b,b') E Ro {::::} b E Bo and b' E {h1(b), h2(b)}. 
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Let B = (B 1 + B2)/R, and for each j = 1; 2, let hj : Bj-. B be the restriction of the 

quotient map 0: ( B1 +Bo+ B2 ) -. B. Then diagram Bis a push-out square. 

-B-

h2 
Bo----+ 

B1 ---➔ B 

For a commutative diagram such as C, there is an obvious induced function of push-out 

spaces, f: G(gi, g2) -+ G( hi, h2), and this function is continuous by the properties of quo-

tient spaces. 

-C- -D-

91 92 (g2, h 2) E1 +--- Eo ----+ E2 Jo •h 

111 110 l h (91,h1) I I (91,h 1) 

B1 +--- Bo ----+ B2 !1 
(~2,h2) •! 

The map f above is such that the square of diagram D is a push-out in Top2. During the 

push-out construction as in diagram B, the map h1 will often be required to be a cofibra

tion. In this case, the space obtained is called an adju,nction space ,[W 2]. 

1.12 Double mapping cylinder 

Consider again the cotriad B1 ~Bo~ B2 in the category Top . The double map

ping cylinder D{h1,h2) of the cotriad is the quotient space obtained from the disjoint 

union Bs = B 1 + B0 x I + B2, by making the identifications as shown in (3) below, and 

let 1J: Bs-. D(h1,h2) be the quotient map. 

(x,O) = h1 (x) and (x,1) = h2 (x). 
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This quotient map embeds the subspaces Bi, B2 and Bo x (0,1) in D(h1,h2). In what 

follows we abbreviate D(h1,h 2) to B' and D(g1,92) to E'. For the commutative 

diagram C, there is a map f ' : E' -+ B' . 

1.13 Remarks 

In diagram Ewe have quotient maps 1J and 0, and q is the projection Bo x I--+ Bo. 

-E-

-------➔ B 

There exists a natural map f3: B' --+ B, the broken arrow in diagram E, such that the 

square is commutative. 

1.14 Proposition 

The map f3: B' --+ B of 1.13 is a homotopy equivalence if h1 is a cofibration. 

An even stronger result is proved in the book [Br; 7.5.4 p275] of Brown. ■ 

1.15 Definition 

Let a, {3, µ and µ' be as in 1.1 above. Then (µ,µ') is said to be: 

(a) a homeomorphism of fibres if for each a EA', the induced map a-1(a)--+ {J-1(µ'(a)) 

is a homeomorphism. 

(b) a weak equivalence of fibres if for every a EA' the induced map a-1(a)--+ {J-1(µ'(a)) 

induces bijections of homotopy sets in all dimensions. 

(c) a weak equivalence of homotopy fibres if EA(µ,µ') is a weak homotopy equivalence of 

fibres. EA is as in 1.8. ■ 
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2. ADJUNCTION OF LOCALLY TRIVIAL FIBRATIONS 

Adjunction of maps is the most prominent of the techniques in this thesis. In a nut shell, 

an adjunction is a push-out in the category Top2, as explained in the latter part of 1.11. 

The idea is to input three maps of a given type in a suitable manner, and obtain a similar 

map in the push-out. Theorem 2.4 in this section gives sufficient conditions on a Top 2
-

cotriad ( of locally trivial fibrations) to ensure that the push-out is a locally trivial fibra

tion. As an illustration, we shall view the well known Hopf fibrations in the light of this 

theorem. The construction described in 2.4 is analogous to that of Dold and Lashof [DLJ 

and Hardie [Ha] for quasifibrations. 

The concept of locally trivial fibration is due to Whitney [Wy]. A locally trivial fibration 

over a paracompact space has been proved by Huebsch [Hh] and Hurewicz [Hz] to have the 

homotopy lifting property, i.e. to be a Hurewicz fibration. A simple proof of the fact that 

every locally trivial fibration has the homotopy lifting property with respect to compact 

Hausdorff spaces can be found in (Gt). This implies that the condition (1) in Section O is in 

fact satisfied, and is the motivation for investigating the property more generally, as was 

done originally by Dold and Thom [DTJ. 

2.1 Definition 

Let F be any topological space. A map p: E-+ B is a locally trivial fibration with fibre 

F, if there is an open cover l1 of B satisfying the following condition. For every U E l1 

there exists a homeomorphism ip: U x F-+ p-1(U) such that p <p(x,a) = x for every 

(x,a) E U >< F. 
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For a map p : E - B, and a subset U of B, U is said to be p-projected if there exists a 

space G and a homeomorphism <.p: U x G - p-1(U) such that for every (x,g) E U x G, 

p <.p(x,g) = x. We refer to <.p as a trivialization of p over U. ■ 

We immediately note that if p is a locally trivial fibration with fibre F, then for every 

p-projected subset U of B, the space G must be homeomorphic to F. 

2.2 Examples. (a) Let E be a topological group, and F a topologically closed normal 

subgroup of E. Then the canonical epimorphism p: E - E/F is a locally trivial fibration 

with fibre F, provided that p has a local cross-section. 

(b) Every covering projection over a connected base space is a locally trivial fibration. 

2.3 Proposition 

The diagram A below, of maps of topological spaces, is considered to be commutative. 

90 

-A-
Eo ----

Po l 
Bo----

9 

E 

l p 

B 

(a) If B is p-projected and the square is a pull.:.back, then B0 is p0-projected. 

(b) If p is a locally trivial fibration with fibre F and the square is a pull-back, then po 

is a locally trivial fibration with fibre F. 

( c) Suppose that po and p- are locally trivial fibrations with fibre F, for some locally 

compact Hausdorff space F. Suppose further that _the group h(F) of self-

homeomorphisms of F is a topological group when equipped with the compact-open 

topology. 

If the TopLmorphism (g0,g) : p0 - p is a homeomorphism of fibres (see 1.15), then the 

square is a pull-back. 
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Proof (a) If B is p-projected, then as in diagram B, the projection map q factorizes 

through p. In diagram B the projection q' is the pull-back of q over g. By pull-back 

properties, we obtain the map h0• This map ho is a homeomorphism since h is one and 

the two squares between which they operate are pull-backs. Thus our claim follows. 

Bo x F !l. t I BX F 
ho / I q' 

y 
-B-

✓ 

Eo go •E q 

Po"" j ~ 
Bo B 

g 

(b) For every p-projected open subset U of B, the set U O = g-1(U) is obviously open, 

but is also p0-projected by (a). Th us (b) follows. 

( c) A proof is given in the book (Po] of Porter. I 

For a compact Hausdorff space F, h(F) is known (Sd2; p20] to be a topological group. 

When formulating the adjunction theorem, 2.4 below, we refer to the following diagram, C. 

-C-

2.4 Theorem 

E1 

1 Pt 

B1 

) 

) 

Eo 

1 Po 

Bo 

g 

I 

Suppose that p1 : E 1 --+ B 1 is a locally trivial fibration with fibre F, and for some 

Bo C B 1, p0 : E 0 --+ Bo is the pull-back of p1 over the inclusion Bo c B 1- Further, let us 

suppose that the following conditions hold. 
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(1) (E1,Eo) and (Bt,Bo) are NDR-pairs represented by maps u: Et-+ I, h: Et x I~ Et 

and, respectively, v: Bt-+ I, k: Bt x I-+ Bt as in 1.9. 

(2) Eo = Pt-t(Bo), v o Pt= u and Pt h (x,1) = k (Pt(x),1) for each x E Eo. 

( 3) For every x e v-t[o,1), the map O defined by the formula below, is a homeomorphism. 

0: Pt-t(x)-+ Pt-t k(x,1), 0(e) = h(e,1). 

(4) F is a locally compact Hausdorff space for which h(F) is a topological group . 

. Suppose further that p2 : E2-+ B2 is a locally trivial fibration with fibre F and that the 

Top2-morphism (g,J) from p0 to P2 is a homeomorphism of fibres (see 1.15). 

Then the push-out p: E-+ B of diagram C is a locally trivial fibration with fibre F . 

Proof Let z be any point of B. We shall show that z has a p-projected neighbourhood 

W in B. Let r,: B1 +Bo+ B2-+ B be the quotient map. 

Suppose that z E B \ r,(B2). Let y E Bt \ Bo be such that r,(y) = z. Bo is closed in B1 

due to the cofibration, and so B1 \ Bo is open in B1. Thus Bt \ Bo contains a Pr:-pro

jected neighbourhood Z of y. Since the quotient maps embeds E 1 \ E0 into E and 

B1 \ Bo into B, the image of Z in B is an open p-projected subset of B and is our 

choice for W. 

We now show that for an arbitrary point z E r,(B 2), z has a p-projected (open) neighbour

hood W. We shall find open subsets Wi c Bi such that Wt+ W 0 + W2 is saturated 

with respect to T/, and r,(W 1 + W o + W 2) is p-projected. Then we can choose W to be 

the set r,(W1 + Wo + W2). 
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Let ye B2 be any point such that z = 17(y) and let W2 be a prprojected neighbourhood 

of y. We choose W o to be the open subset W o = 1-1(W 2) of B 0• Let W 1 be the set 

W = {x e v-1(0,1) : k(x,1) e W 0}. Then W 1 n Bo= WO since k (x,1) = x for every 

x e Bo- Thus W 1 is open in B 1 and W 1 + WO + W 2 is saturated with respect to 17. 

There is a map s: W 1 -+ W 0 defined by the formula s(x) = k(x,1). In fact, W 0 c W 1 

h( x, 1) e VO}. Also, VO c V 1 and there is a retraction r : V 1 -+ VO defined by the for

mula r(x) = h(x,l). In diagram D the vertical arrows are pull-backs of the maps Pi (by 

2.3(b), such maps are locally trivial fibrations), and r and s are induced by g and / 

respectively. The squares are commutative. In the first square, commutativity is due to 

condition 2.4(2). 
r 

V1 ----. 

-D- l l1 
s 

W1 ----+ 

Vo 

l lo 

Wo 

'Y 
Vo 

l lo 
cp 

Wo ----

Each Top2-morphism (r,s) and ( ,,cp) is a homeomorphism of fibres, in the case of (r,s) 

this is due to 2.4(3). Hence by 2.3(c), each of these squares is a pull-back square. Thus for 

a trivialization ( 2 of p2 over W 2, we obtain as in 2.3(a), a trivialization ( 0 of po over 

W o and a trivialization ( 1 of p1 over W 1. Since r and s are retractions, in view of 

2.4(2) we obtain the commutative diagram E. The maps qi : W i x F -+ W i are project

ions and j is an inclusion. The space F is locally compact Hausdorff and thus by [ AP; 

Problem 25 on p33O], whenever >. : A -+ B is a quotient map, then the map of product 

spaces >. x 1 : A x F -+ B x F is a quotient map ( 1 is the identity map of F). 



20 

W1 x F • 
jx F Wo x F I£. X F • W2 x F 

(1/ I q1 
(✓ ,q, (✓ q2 

-E- ) 
V1 Vo V2 

lo~ l lo~ l l2~ 
W1 

J 
Wo 

({) 
W2 

Thus the push-out of the qi -cotriad is precisely the projection map q : W x F -+ W. The 

push-out ( of the cotriad formed by the maps (i, is a trivialization of p over W, so W 

is p-projected. This completes the proof. I 

Let us demonstrate this process by analysing the construction of the Hopf fibrations as in 

[Wd]. We denote the (unreduced) cone of a space X by CX. CX is the quotient space 

obtained from I x X by identifying the points (O,x). The image of a point ( t,x) under 

this quotient map is denoted by t A x. We regard X as a subspace of CX via the em

bedding that maps a point x of X to the point 1 A x, and then the pair ( CX,X) has a 

natural (although not unique) representation as an NDR-pair. The suspension ~X of X 

is the quotient space of CX obtained by collapsing the subspace X. For a point t A x of 

CX, we ambiguously denote its image in ~X by the same symbol. The join X * Y of 

spaces X and Y, is the subspace ex X y u XX CY of ex X CY. 

2.5 illustration: The Hopf fibrations 

We show that for each n = 1; 3; 7, there is a map p: s2n•1 -+ sn•1, which is a locally 

trivial fibration with fibre sn. For each of the given values of n, the sphere sn admits a 

continuous multiplication with a unit element such that each element has a unique inverse. 

Furthermore, inversion is a continuous map, and the following condition is satisfied: 

For every x,y E sn, (xy)y-1 = X. 
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The Hopf construction on this multiplication sn x sn-+ sn, see [Wd; p502), yields a map 

p : sn * sn -+ ESn , given by the formulae: 

p (t Ax, y) = ½ A xy, and p (x, t A y) = ½1 A xy. 

Note that sn * sn and (resp.) Esn are homeomorphic to s 2n+l and, respectively, sn+l_ 

We shall show that the map p is a locally trivial fibration with fibre sn. Let us denote 

by T _ , T O and T + respectively, the following subspaces of Esn : 

{tAx:t~½ and xESn}, {tAx:t=½ and xESn} and {tAx:t~f and xESn}. 

Then p can be seen to be the push-out of the Top2-eotriad in diagram F. Each vertical 

arrow is a pull-back of p. 

) 

csn X sn +--- sn X sn ___,. sn X csn 

-F- P- l Po l l P+ 
) 

T_ To T+ 

Each of the vertical arrows in diagram Fis a locally trivial fibration with fibre sn. We 

prove this for P-. For the other arrows the argument is similar. 

Let h: T _ X sn-+ csn X sn be defined by the formula h (t Ax, y) = (2t A xy, y-1). 

Then P- o h coincides with the projection T _ x sn-+ T _ and h is a homeomorphism. 

The property ( 1) of the multiplication is important in this regard. So T _ is in fact 'Jr 

projected. The pairs (T-,To) and (csn X sn, sn X sn) can be represented as NDR-pairs 

in an obvious manner, determined by the NDR-representation of a pair (CX,X), even in 

such a way as to comply to conditions (2) and (3) of Theorem 2.4. Furthermore, the fibres 

of our maps are homeomorphic to sn which is a compact Hausdorff space. Thus by 

Theorem 2.4, p is a locally trivial fibration with fibre sn. ■ 
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In [Wd; Example 1, p503] it is shown that these maps p are (up to homotopy) the Hopf 

fibrations. 

Note that the case n = 1 in 2.5 is an instance of Example 2.2(b ). For n = 1; 2, an alter

native approach is possible, see for example [G 1; Example 4, p78]. The case n = 7 is 

more complicated sinc·e the space lack group structure. In fact, S7 does not admit even a 

homotopy associative multiplication [Sf2]. 
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3. n-EQUIVALENCE AND QUASIFIBRATION 

The concept of quasifibration was invented by Dold and Thom [DT) while working on infi

nite symmetric product spaces. May [M 2) gives a new perspective on quasifibrations with 

bis notion of n-equivalences. In this section we introduce these concepts. Many of the 

examples quoted here will be treated more extensively in further chapters. Our in-depth 

study of the elementary properties of these maps appears in Section 15 and Section 16. 

Spaces will be assumed to be free, not pointed. Base points are chosen explicitly whenever 

we require them. 

3.1 Definition 

Let f: X--+ Y be a map of topological spaces. Then / is a a-equivalence if it induces a 

surjection of the sets of path components, 7ro (X) --+ 7ro (Y). 

For an integer n ~ 1, / is said to be a n-el}'Uivalence if A : 7ro (X) --+ 7ro (Y) is bijective, 

and for every x E X, /* : 7rr (X,x)--+ 7rr (Y,Jx) is bijective for every O < r < n and sur

jective for r = n. 

The map / is said to be a weak el}'Uivalence if it is a n-equivalence for every n ~ 0. 

This definition is as in Gray (G 1), and Spanier (Sr). May (M 2) relativized these notions as 

follows. 

3.2 Definition 

A map /: (X,A)--+ (Y,B) of pairs is said to be a 0-el}'Uivalence if the condition (2) below 

holds. For a positive integer n, /: (X,A)--+ (Y,B) is said to bean-equivalence if condi

tions ( 1) and (2) hold. 
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( 1) For every a e A and b = J(a), the function A: 7rr (X,A,a)--+ ?rr (Y,B,b) is 

bijective for 1 ~ r < n and surjective for r = n. 

(2) J* -1 Im (1ro(B)--+ 1ro(Y)] = Im (1ro(A)--+ 1ro(X)]. 

If for every positive integer n, f is a n-equivalence, then f is said to be a weak 

equivalence. 

3.3 Remarks 

. (a) If in 3.2 we have A = J-1(B), then condition 3.2(2) holds. In fact, the condition is 

equivalent to the requirement that the following diagram is a weak pull-back square in the 

category of sets. 

1ro (A) 1ro (X) 

l l 
1ro (B) 1ro (Y) 

(b) The composition of two n-equivalences is again a n-equivalence. 

(c) A map f: {X,A)--+ {Y,B) is an-equivalence if and only if for every path component 

Z of Y such that B n Z :/: ¢, with Z' = J-1{Z), the pull-back (Z' ,An Z')--+ (Z,B n Z) 

of J is a n-equivalence. 

The proof of the following proposition is obtained by juggling path components and making 

use of 3.3( c ). 

3.4 Proposition 

A map f: {X,A)--+ {Y,B) is an-equivalence if and only if whenever Z is a union of path 

components of Y with B n Z :/: ¢, then the pull-back {Z' ,A n Z') --+ {Z,B n Z) of J, 

with Z' = 1-1(Z), is a n-equivalence. ■ 
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3.5 Examples 

(a) For any Hurewicz fibration /: X-+ Y and any subset B of Y with /-1(B) j ¢, 

the induced map (X, 1-1 B)-+ (Y,B) is a weak equivalence. This follows by homotopy 

lifting, and by 3.3(a). 

(b) The projection of a wedge of spheres (Sn V sm, sm)-+ (Sn,*) onto the first summand, 

fl 

is a (n+m-1)-equivalence. This can be proved using the Kunneth formula and the 

Whitehead theorem. However, we prove it in Chapter II by adjunction methods. 

(c) For a n-connected space X, Le. a path connected space X with 'Irr (X) = 0 when

ever 1 ~ r ~ n, the suspension map X-+ ntx is a (2n+l)-equivalence. This is an easy 

consequence of the homotopy excision theorem [BM1]. In Chapter II we give a proof of the 

homotopy excision theorem using our adjunction theory. In fact it is this result, Theorem 

7.1 that implies 3.5(b) above. 

{d) For any pointed space X, we shall denote the James reduced product space [J1] by 

X . This is the free topological monoid generated by X, with the base point * as unit 
(D 

element. By Xr we denote the subspace of words of length at most r. Let n be any 

odd positive integer, let f: (sn ,Sn)-+ (S 2n ,*), be any map between reduced products as 
(D (D 

in [J 1] of spheres, which extends the following map, J1 : 

The map J1 is the composition of a pinching map, a homeomorphism and an inclusion. 

James [J2] proved that the map of pairs f is a weak equivalence. An alternative, entirely 

geometric argument will be given in Chapter III (Theorem 13.8). ■ 
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The next definition is as in the paper [M2] of May. The concept has its origin in (DT] by 

Dold and Thom. 

3.6 Definition. For topological spaces X and Y, a map q: X _. Y is called a quasi

ftbration if it is surjective and for every y E Y, the map (X, q-1 y)-. (Y,y) of pairs 

induced by q, is a weak equivalence. 

3. 7 Examples 

(a) Hurewicz fibrations, locally trivial fibrations and Serre fibrations which are surjective, 

are quasifibrations. 

(b} In the fundamental paper [DT], Dold and Thom constructs several quasifibrations .. 

For a cofibration i : A _. X, application of the infinite symmetric product functor to the 

quotient map X _. X/ A yields a quasifibration SP(X) _. SP(X/ A) with quasifibres 

weakly equivalent to SP(A). 

(c) Dold and Lashof [DL] shows how to construct, for an associative H-space G, a quasifi

bration E _. B, with E weakly contractible and the quasifibres weakly equivalent to G. 

(d} Gray [G2] constructs a quasifibration (X,A) _. X/A with quasifibres weakly homo-
m 

topy equivalent to Am . Here, the space (X,A)m is the subspace of all words in Xm of 

which all letters except perhaps the first, belong to the subspace A. He applies this result 

to recover the weak equivalence X _. O~X originally proved by James (J 1]. ■ 
(D 

3.8 Remark. An important difference between Hurewicz fibrations and quasifibrations is 

that quasifibration is not preserved under pull-back. An example demonstrating this fact 

can be found in the paper [MP] by Morgan and Piccininni. 
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Chapter II : GLOBALIZATION OF n-EQUIV ALENCES 

We present a fundamental theorem, Theorem 5.1, on n-equivalences. This result general

izes the Dold-Thom theorem on quasifibrations, and the theorem on n-equivalences due to 

May. From 5.1 we deduce several other globalization and adjunction theorems. We obtain 

a new proof of the homotopy excision theorem of Blakers and Massey. 

We make use of some results which appear in Chapter IV. These are fairly elementary, 

related to the five-lemma. The detailed proof of a key lemma for the proof of 5.1, is also 

deferred to Chapter IV, due to its length. 

Section 4. Local n-equivalence 

Section 5. The globalization theorems 

Section 6. Adjunction of n-equivalences and quasifibrations 

Section 7. Relative homeomorphisms. 

- I 
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4. LOCAL n-EQUIV ALENCE 

The concept of local n-equivalence is introduced in this section. It is in this setting that we 

shall prove the fundamental globalization theorem for quasifibrations of Dold and Thom 

[DT} in Section 5. Spaces will not be considered to have fixed base points. Whenever re

quired, base points will be specified explicitly. 

Definition 4.l(a) is the concept of ausgezeichnete Menge in [DT]. We generalize the con

cept in 4.l(b ). 

4.1 Definition 

Let p: E-+ B be a map of topological spaces, and for a subspace U of B, let us denote· 

p-1(U) by u,. 

(a) A subset U of B is said to be distinguished with respect to p if the map U' -+ U 

induced by p, is a quasifibration. 

(b) Suppose that V c Uc B. Then for a non-negative integer m, the pair (U,V) is said 

tobem-distinguishedwithrespectto p ifthemap (U',V')-+(U,V) induced by p, isa 

m-equivalence. The pair (U,V) is said to be distinguished with respect to p if it is m

distinguished for all m ~ 0. 

4.2 Definition 

Let p : E -+ B be a map and m a non-negative integer. Suppose there is an open cover 

11 of B satisfying the following conditions for arbitrary U, VE 11: 

(1) Whenever V c U, then the pair (U,V) ism-distinguished with respect to p. 

(2) Whenever x EU n V, there exists WE 11 such that x E W and W c Un V. 
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Then the pair (p,11) is said to be a local m-equivalence. The pair (p,11) is said to be a 

local weak equivalence if for every positive integer k it is a local k-equivalence. ■ 

We fix the following notation throughout this section, and in Section 5. 

4.3 Notation 

If A is a topological manifold with boundary, we denote its boundary by BA . We fix an 

integer n ~ 2 and then define the following sets : 

I is the unit interval (0,1] ; 

K is the unit n-cube rn, and then we have the following subsets of K : 

I 1 = rn-t x 1 and J is the closure of 8K \ I1. 

For paths µ and LI (maps I-+ X) in a space X with µ(1) = Ll(O) we define the path 

µ + LI in X by the formula : 

µ(2t) 
(µ + Ll)(t) = { 

Ll(2t - 1) 

O~t~½ 

½~t~l. 

The path µ- is defined by the formula µ- (t) = µ (l -t). ■ 

4.4 Proposition 

Let J be the space as defined in 4.3, corresponding to n = 2. Let q: (X,Y)-+ (U,V) 

be a 1-equivalence, let e E X be any point, and let A and d be paths in U with 

A(O) = d(O), q(e) = d(l) and A(l) EV. Then there is a path ( in X with ((0) = e 

and ((1) E Y, such that the map h: J-+ U defined below, can be extended to a map 

H: (Ix I, 1 x I)-+ (U,V) . 
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{ 

q o ( (s) t = 1 

h(s,t)= d(t) s=0 

.X(s) t=0. 

Proof Let X _![_. UA _![__. U be the mapping path fibration factorization of q. We 

shall regard q- as an inclusion map. Let K- be the path in U defined by K- = a+ .X. 

By the homotopy lifting property there is a path µ in UA with µ(0) = e such that 

{oµ=K-. By 16.5, q- gives a surjective function, 1r0 (Y)-+ 1r0 (VA) where 

VA = { -1(V), since q: (X,Y)-+ (U,V) is a 1-equivalence. Thus we can find a path 11 

in VA from the point µ(1) to a point in Y. There is a natural retraction r: UA -+ X. 

We choose ( = r o (µ + 11), which is a path in ·x with ((0) = e and ((1) e Y. Note 

that q o ( (0) = q o r o µ (0) = q o µ (0) = q (e), thus d(l) = q o ((0), and therefore 

there is a path .x- + d + (q o () in U. 

The proof is completed by showing that .x- + d + ( q o () is path homotopic to ( ~P ) a 

path in V. To this end we note that q o r is homotopic to { (rel. X). Since the end

points of µ + 11 is in X, it therefore follows that 

q O ( = q O r O (µ + 11) ~p qA O (µ + 11). 

Finally, we have the following routine computation: 

A-+ d+ (qo () ~p A-+ d+ [qA o (µ + 11)] 

~p .x- + d + (qA O µ) + ({ 0 11) 

~P .x- + d + K- + ( { o 11) 

and the assertion can be seen to follow. I 
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4.5 Lemma 

If (p,11) is a local I-equivalence, then for every C E 11, the pair (B,C) is I-distinguished. 

Proof (B,C) is I-distinguished if and only if for any map g: (I,81,0)-+ ( B,C,p(e) ), 

there exists a map F: (I,81,0)-+ (E,p-1(C),e) and a homotopy Dt from g to po F, 

fixing O on p(e) and sending 1 into C. We note that we work with complete inverse 

images and thus by 3.3(a), the path component condition 3.2(2) is satisfied., 

Let g be as above. The open cover {g-1(U) : U E 11} of the compact metric space I has 

a Lebesgue number. Thus there exists an integer k, such that for every r E 1H with r ~ k, 

the interval [ Y, f] is mapped by g into one of. the members of 11. For each such 

I ~ r ~ k, one can choose Ur E 11 such that g [ Y, f] c Ur, Hereafter we choose, for 

each positive integer r < k, a set Yr E 11 with g( f) E Yr C Urn Ur+1, and a subset Yk 

of Uk n C such that g(I). E Yk and Yk E 11. We can make our choice such that U 1 = C 

by choosing k sufficiently big. 

Let Xr = p-1(Ur) and Yr= p-1(Yr), We shall inductively apply 4.4 to the map 

(Xr,Yr)-+ (Ur,Yr), For r = I we choose, as in 4.4, >.1 to be the path in U 1 defined by 

the formula >. 1(t) = g( ¼) and d1(t) = p(e) the constant path in U1. Then there exists, 

as in 4.4, a path (1 in X1 and a map H1: Ix I-+ U1. 

We repeat this process of constructing similar (r's and Hr's for r = 2; 3; ... ; k. Having 

obtained the maps for a given stage r -1, we choose dr(t) = Hr-l (t,1), >.r(t) = g( 1r1) 

and er= 5r-1(I). 
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The (/s and respectively the Hr's can be merged together to form the required path F 

and the homotopy Dt. More precisely, we obtain them by the formulae : 

F (s) = (r (ks-r+l) for Y ~ s ~ f, 

Dt (s) = Hr (ks-r+l, t) for Y ~ s ~ i. I 
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5. THE GLOBALIZATION THEOREMS 

The globalization theorems for n-equivalences, 5.1, and quasifibrations, 5.2, can now be 

proved. Similar globalizations have been studied by Huebsch [Hh] and Hurewicz [Hz] for 

locally trivial fibrations, and by Dyer and Eilenberg [DE] for fibrations. As presented here 

for n-equivalences, Theorem 5.1 is the most general result in this context. It is this one 

that we actually prove, and thereafter we derive the theorem [DT; Satz 2.2] of Dold and 

Thom. May [M2] gave a similar treatment of the Dold-Thom theorem through n

equivalences. The proof of Theorem 5.1 entails the solution of some homotopy lifting 

problem, see 5.5, that is solvable locally. We use induction, the first step of which is 

covered by 4.5. 

Base points for spaces will be specified whenever they are required. The main theorems are 

formulated now. Their proofs will be given at the end of the section. 

5.1 Theorem 

Let p : E - B be a map and 11 an open cover of B. If (p,11) is a local n-equivalence, 

then for every C E 11, (B,C) is an-distinguished pair. 

5.2 Theorem [Satz 2.2 of DT] 

Let p : E - B be a map and 11 an open cover of B, of subsets which are distinguished 

with respect to p. Suppose further that for every U,V E 11, and arbitrary x in Un V, 

there exists W E 11 such that x E W and W c Un V. Then p is a quasifibration. 

5.3 An indexing of a finite collection of subsets of a set 

Let 11 be any finite non-empty collection of subsets of a given set X. Let V be the col-

lection of all non-empty subsets of X which are intersections of subcollections of 11. 
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Then V is finite and we can index the members of V : V 1, V 2, V 31 ... , V q in such a way 

that for l~i<j~q wehaveeither VinVj=Vr for some r~i or VinVj=c/J. 

5.4 Remark 

Suppose that (p,ll) is a local n--equivalence. Let Bo be a subspace of B which is the 

intersection of finitely many members of ll. Let p0 : E0 --+ B0 be the pull-back of p 

over the inclusion map Bo c B, and let V be the subclass of l1 consisting of all those 

members lying entirely inside B0• It follows from the definition that (p 0,V) is a local 

n--equivalence. ■ 

The notation of 4.3 will be used in the remainder of the section. Lemma 5.5 on homotopy 

lifting is required for the proof of the fundamental globalization theorem, 5.1. Its proof 

appears in Section 17. 
I 

5.5 Lemma 

Let p: (X,U)--+ (Y,V) be a map of pairs. Then the following three conditions are 

equivalent (for n ~ 2) : 

(a.) Given maps f: (J,8J)--+ (X,U) and g: (K,11)--+ (Y,V) together with a homotopy 

dt: J--+ Y from po f to the restriction gl J of g to J, such that dt ( 8J) C V for all 

t EI, there exists an extension F: (K,1 1)--+ (X,U) of /, and a homotopy Dt: K--+ Y 

from po F to g, extending dt such that Dt (1 1) CV for all t E I. 

(b) Given maps cp: ( J, 8J)--+ (X,U) and , : (K,11)--+ (Y,V) with po cp = ,IJ, then 

there exists an extension t : (K,1 1)--+ (X,U) of cp, and a homotopy 6-t: K--+ Y from 

po ! to ,, such that 6-t is stationary on J and 6-t (1 1) c V for all t EI. 
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(c) For every e EU and b = p(e), the function p*: 7rr (X,U,e)-+ 7rr (Y,V,b) is inject-

ive for r = n - 1 and surjective for r = n. 
■ 

5.6 Proof of Theorem 5.I 

The proof is by induction. We inductively prove the statements Sq, q ~ 0. 

Sq: If (p,ll) is a local q-equivalence, then for every C Ell, (B,C) is a q-distinguished pair. 

Since we work with complete inverse images, So follows by 3.3(a). The statement S1 is 

exactly the result 4.5. Now assume that for some integer n bigger than 1, Sq is true for 

all q E {1, 2, 3, ... , n - 1 }, and suppose that (p,ll) is a local n-equivalence and C Ell. 

We shall prove Sn by showing that, for C' = p-1(C), the map (E,C')-+ (B,C) is a n

equivalence. We already know this map of pairs to be a (n-1)-equivalence by the induc-

tion assumption, and it suffices to show that: 

( 0) p*: 7rr {E,C' ,e)-+ 7rr (B,C,b) is injective for r = n -1 and surjective for r = n, 

for every e E C' and b E p(e). 

This statement (0) is in the same form as condition 5.5(c). We prove the equivalent condi

tion 5.5(b), or more precisely, the version of 5.5(b) in terms of our symbols. 

So suppose that we have maps f: (J,oJ)-+ ( E,C') and g: (K,1 1)-+ (B,C), and that 

dt: J-+ B is a stationary homotopy from po f to glJ. We shall show how f and dt 

can be extended systematically over the subsets Tu of K, 

T - J u cin-1 x [o UJ) u- ,Jc", 

by induction on u, u = 1; 2; ... ; k. For a given r, 2 ~ r ~ k, the obtained extensions of 

J and dt over T r-t are further extended over Tr· 
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The compact subset g (K) of B can be covered by a finite subcollection /11 of ll. We 

can assume that C E /11 . The open cover {g·1 (U) : U E /1 i} of the compact metric space 

K has a Lebesgue number. Therefore there exists an integer k such that for every sub

cube cp of K with side lengths not exceeding ¼, cp lies entirely in one of the sets in 

{g·1 (U) : U E /11}. Let V be the collection of all non-empty proper subsets of B which 

can be obtained as intersections of subcollections of /11. Then V is finite and /11 c V. 

Label the members of V as in 5.3, V = {V 1, V 2, ••. , V d}-

In order to extend f and dt we shall make use of the facts (1) and (2) which shall be 

proved further on. 

(1) For any Y, VE V with V c Y, (Y,V) is (n - !)-distinguished. 

( 2) For any YE /1 and V E V with V c Y, (Y,V) is n-distinguished. 

For the subset Q = {O; ¾; ¾; ¾; ... ; 1} of I, let qn-l be the product of n -1 copies of 

Q. Let ! the set of all subcubes of 1n-l with vertices in qn-l and volume in IRn-l equal 

to ( ¾ )n·l. Let tr be the set of all r-faces, r = O; 1; ... ; n-1, · of members of !. For 

cp E !r, we say that cp is of type (i,j) if i is the least among the integers q for which 

g ( cp x ¾) c V q, and j is the least integer r such that g ( cp x [ 0, ¼]) C V r• 

We now construct the extensions off and dt over T1. Put 

rr =JU ( !r x [ 0, t]) C T1. 

Applying ( 1) above and 4.4, we can extend f and dt over ro, obtaining F and Dt par

tially, such that for every type (i,j) face cp E t 0, the following conditions are satisfied. 
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F(cp x ¾) c p-1(Vi) and Dt (cp x ¾) c Vi, 

F ( cp x [ 0, ¾] ) c p-1(Vj) and Dt( cp x ( o, ¾] ) c Vj . 

We proceed with this construction over r 1, and then over r 2, ••• , rn-2 using the fact ( 1) 

above and the implication (c) ~ (a) of Lemma 5.5 (taking Vi= V and Vj = Y). At 

each of these stages, we do it for all cp E !r, in such a way that if cp is of type (i,j), then 

F and Dt satisfy the conditions (3) above. 

In order to do the extensions over r n-1, the observation (2) above is important, and we 

proceed as follows. Let cp e !n-l be a face of type (i,j). At this stage we no longer 

require the minimality of Vj. Instead we replace Vj (if necessary) by a set Ye 111, in 

order that by (2), (Y,Vi) is n-distinguished. By 5.5 ((c) ~ (a)], we can thus extend F 

and Dt over cp x (0, ¾] in such a way that : 

F(cp x ¼) c p-1(Vi) and Dt (cp x ¾) c Vi, 

F ( cp x (0, ¼] ) c p-1(Y) and Dt( cp x (0, ¼] ) c Y . 

For the purposes of Lemma 5.5 we use Vi= V and Y = Y. Note that we do not quite 

use the fact that dt, is stationary. The important fact is that for a type (i,j) face cp, dt 

keeps cp x (0, ¾] . inside Vj and cp x ¼ inside Vi• The extension of dt, does the same all 

along in the process. Thus our construction can be repeated over T 2, T 3, ••• , Tk and it 

yields the required extensions. The proof of 5.1 is complete except for the proofs of ( 1) and 

(2) which we supply now. 

Proof of (2): Let V E V and Ye 11 with V c Y. We construct a subset Z (not necess

arily in 11) of V such that (V,Z) is (n-1)-distinguished, (Y,Z) is n-distinguished, and 
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the inclusion Z c V is a bijection of path components. Then by 16.8 applied to the triple 

(Y,V,Z), our assertion (2) will follow, i.e (Y,V) is n-distinguished. So we proceed to 

construct the set Z. 

Let P be a subset of V containing precisely one element from every path component of 

V. For a subset A of Y and c E P, we use the symbol Ac to denote the path compo

nent of A which contains the point c. 

Now choose an arbitrary c E P. Since V is a finite intersection of members of U, by 

4.2(2), there exists W E U such that c E W c V ( and we make a fixed choice of such a 

subset W). By 5.4 and Sn-1, the pair (V,W) is (n-1)-distinguished. Since W,Y E U 

the pair (Y,W) is n-distinguished. From 15.2(d), (V,Wc) is (n-1)-distinguished and 

(Y, W c) is n-distinguished. We choose Z to be the union of all the subsets W c ( c E P). 

We note that the path components of Z are precisely the subsets W c• Thus by 15.2( d), 

the pair (V,Z) is (n-1)-distinguished and (Y,Z) is n-distinguished. This completes the 

proof of the assertion (2). 

The proof of (1) is similar to that of (2) and we shall not give the detail here. Finally the 

proof of Theorem 5.1 is complete. I 

5. 7 Proposition 

Let p: E-+ B be a map and lJ. an open cover of B, of subsets which are distinguished 

with respect to p. Suppose further that for every U,V E U, and arbitrary x in Un V, 

there exists WE U such that x E W and W c Un V. 

Then (p,li.) is a local weak equivalence. 
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This observation is similar to (2) in the proof of Theorem 5.1 above, and is required in 

order to deduce the proof of Theorem 5.2. 

Proof of 5.7 Let V, YE 11 with V c Y. Let Z be any subset of V containing precise

ly one point of every path component of V. Then for any c E Z, (V,c) and (Y,c) are 

distinguished pairs by assumption. Thus by 15.2(d), (V,Z) and (Y,Z) are distinguished. 

Moreover, the inclusion map Z c V is a surjective function on path components. By 16.8, 

(Y, V) is a distinguished pair. Condition 4.2(2) on local weak equivalences is easily seen 

to be satisfied, and our result is proved. I 

5.8 Proof of Theorem 5.2 

Let x be any point of B. We must prove that (B,x) is a distinguished pair. Now pick 

any C E 11 such that x E C (11 covers B). By 5. 7, (p,11) is a local weak equivalence and 

so by 5.1, (B,C) is distinguished. Thus by 16.9(b) it follows that (B,x) is a dis

tinguished pair. This comple~,~s the proof of 5.2. I 

The following result generalizes a theorem in Gray's book [G 1; 16,23 on p140], and [Mc; 

Theorem 6 on p467] of McCord. 

5.9 Theorem 

Let n be a non-negative integer. Let p: E __. B be a map and 11 an open cover of B 

such that for every U,V E 11 and any x EU n V, there exists WE 11 with W c Un V 

and x E W. Suppose further that for each U E 11 the induced map p-1(U) __. U is a n

equivalence. 

Then p : E --. B is a n--equivalence. 
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Proof For any pair U,V E l1 with U c V, by 16.2 it follows that the pair (U,V) is n

d.istinguished. Thus (p,ll) is a local n~quivalence. Thus by Theorem 5.1, for every U 

in 11, (B,U) is a n-<Ustinguished pair. Our res~t_follows by 16.1. I 



41 

6. ADJUNCTION OF n-EQUIVALENCES AND QUASIFIBRATIONS 

The first construction of push-outs of quasifibrations was made by Dold and Lashof [DL] 

while constructing the universal quasifibration of an associative H-space. After this 1 

several similar constructions follow. The technique is discussed in detail by Hardie [Ha]. 

This method will now be generalized to the case of n-equivalences. Towards this end1 

Theorem 5.1 or the special case [M2; Theorem 1.2] of it is fundamental. The new push-out 

theorems have many applications 1 especially 6.1, 6.3 and 6.8( c), as can be seen in the re

mainder of this chapter and in Chapter Ill. Theorem 6.2 is an affirmative answer to a 

question posed by J.-P. Meyer in a letter to K. A. Hardie. 

We work with free spaces, that is to say that spaces will not be assumed to have fixed base 

points. In order to formulate the theorems we recall the notation for double mapping cyl

inder and push-out from Section 1. 

6.0 Notation The commutative diagram A can be considered to be a cotriad in the cate-

gory Top2 of pairs and pair maps. 

91 92 
E1 Eo E2 

-A- ! Pl ! Po ! P2 

B1 Bo B2 
Ji h 

We recall from Section 1, that a cotriad E1 --Eo-+ E2 has a push-out E and a double 

mapping cylinder E'. The Top 2 -cotriad determines a unique map p : E -+ B between 

push-outs and a unique map of double mapping cylinders, p' : E'-+ B'. 
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Let V 1 be the image in B' of B1 + Bo IC [0,1) under the canonical map 

rJ:B 1 +B 0 1Cl+B2--+ B'. 

Similarly, let V2- be the image in B' of Bo IC (0,1] + B2 under T/· Let VO= V 1 n V 2. 

Define similar subsets U i of E'. For each i e {O, 1, 2} there are retractions U i--+ Ei 

and Vi--+ Bi which are homotopy equivalences. ■ 

We now formulate the three main theorems that are proved in this section. For Theorem 

6.1 we have the following setup. 

X 
We fix a subspace Tc B0. For each x E T there are subsets F j c p(1(Jj x), j E {1, 2}, 

and Let us assume that for x, y E T, 

whenever jj(x) = jj(y). 

The double mapping cylinder of the cotriads Ji (T) +- T-+ h (T) is denoted by T', and 

for each z ET', Fz is the canonical image in p' -1(z) of F~ or Ff, according as z E Vo 

or z E Vj \Vo. 

6.1 Theorem 

Suppose that the inclusion map T c Bo is a surjective function on the sets of path compo

nents. Suppose further that the following conditions hold, for each x E T, j E {1, 2}. 

(1) Po : ( Eo,F~)--+ (Bo,x) is a n--equivalence. 

(2) Pj : ( Ej,FJ ) --+ ( Bj,fj(x) ) Pj is a (n+l)-equivalence. 

(3) The induced maps hj : F~--+ Fj are n--equivalences. · 

Then: (a) For the map p' : E'--+ B' of double mapping cylinders, (E' ,Fz)--+ (B' ,z) 

is a (n+l)--equivalence for each z E T'. 
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(b) If moreover, !1 and 91 are cofi brations and every F; --+ F~ is a homeomorphism, for 

the map p : E --+ B of push-outs, we have the following .. 

For each x E T, (E,G)--+ (B,y) is a (n+l)-equivalence, G being the homeomorphic 

image of F~ in E and y = p(G). 

6.2 Theorem 

Suppose that in diagram A every Pi is a quasifibration and each of the pair maps (9j,Jj) 

is a weak equivalence of fibres. 

(a) Then the map p' : E' --+ B' of double mapping cylinders is a quasifibration. 

{b) Suppose furthermore that 91 and f1 are cofibrations and that p0 is the pull-back of 

p1 over Ji. Then the map p : E --+ B of push-outs is a quasifibration. 

For the proofs of Theorems 6.1 and 6.2, we make use of Theorem 6.3 and Proposition 6.4 

below. The homotopy fibres approach as in 6.3, is similar to and supplements work done 

by V. Puppe [Pu]. 

6.3 Theorem 

Suppose that in diagram A, for each j e {1, 2}, the Top 2-morphism (9j,fj) is a n-equiva

lence of homotopy fibres. Then for every i E {O, 1, 2}, we have the following: 

(a) The Top 2 -morphism Pi--+ p' to the double mapping cylinder is a n-equivalence of 

homotopy fibres. (See 1.15 for this concept). 

(b) If moreover 91 and f1 are cofibrations, the Top2 -morphism Pi--+ p to the push-out 

is an-equivalence of homotopy fibres. 
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Proof ( of Theorem 6.3) 

(a) For each i E {O, 1, 2}, the map Ui--+ Yi induced by p', is homotopy equivalent to 

Pi• Thus by 16.5 and with our assumption on homotopy fibres, each pair (Vj,V 0) is 

( n + 1 )-distinguished with respect to p'. Also the sets Vi are open. Thus for l1 = {V 0, 

V 1, V 2}, the pair (p' ,ll) is a local n-equivalence. 

By Theorem 5.1 or alternately [M2; Theorem 1.2], it follows that each pair (B' ,Vi), 

i E {O, 1, 2}, is (n+l}-distinguished with respect to p'. By 16.5 we have that for each 

i E {O, 1, 2}, the Top2 -morphism from the object Ui--+ Vi to p' is an-equivalence of 

homotopy fibres. Since Pi is homotopy equivalent to U i--+ Vi, it follows that in fact 

Pi--+ p' is a n-equivalence of homotopy fibres. This completes the proof of (a). 

The statement (b) follows from (a) and 1.14. I 

6.4 Proposition 

Under the conditions of Theorem 6.1 we have that for each j E {1, 2}, the Top 2-morphism 

(gj,./j) : Po--+ Pj is an-equivalence of homotopy fibres. 

Proof Fix any x E T. In diagram B, a (respectively, Ctj) is the natural map into the 

homotopy fibre of p0 over x (resp. Pj over fj(x) ), and /3j is the natural induced map 

(see 1.8). The diagram is commutative. 

h· 
F~ 

J F~ 
J 

-B- a l l a· J 

H H· 
/3j 

J 

By 16.5, Condition 6.2( 1) ensures that a0 is a (n-1)-equivalence. 
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Similarly from Condition 6.1(2), Oj is a n-€quivalence. Due to 6.1(3), hj is a n-€quiva

lence and therefore Oj o hj is a n-€quivalence. Thus by 16.6(c), /3j is a n-€quivalence. 

Our result follows since every path component of B0 contains a point of T. I 

6.5 Proof of Theorem 6.1 

(a) By 6.4, each of the Top2-morphisms p0 -+ Pj, j E {1, 2}, is a n-€quivalence of homo

topy fibres. Consequently by Theorem 6.3, each of ihe Top2 -morphisms Pi-+ p' is an

equivalence of homotopy fibres, i = {O, 1, 2}. For a given x E T' let r be the constant 

X 
map F -+ x. Then the Top2-morphism r-+ p' is a n-€quivalence of homotopy fibres. 

By 16.5, the map (E' ,Fx)-+ (B' ,x) induced by p. is a (n + l)-€quivalence. Thus (a) 

follows. 

(b) The condition on fibres ensures that the quotient map F~-+ G is a weak equivalence. 

The result now follows from (a) and 1.14. I 

6.6 Proof of Theorem 6.2 

(a) From 6.l(a) it follows that for each z E TJ(Bo x I), 1J is as in 6.0, (B' ,z) is a dis

tinguished pair. Let C be the union of all the path components of B' that meet the set 

Im (Bo-.:.+ B '). Then by comparison with the mapping path fibration of p', it follows 

that C is a distinguished subset of B'. The subspace B' \ C is distinguished since it did 

not really participate in the adjunction process. This settles the proof of (a). 

(b) The pull-back condition ensures that the Top2 -morphism p' -+ p is a weak equiva

lence of fibres. The result now follows from (a) and 1.14. I 
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6. 7 Notation 

Now suppose that diagram A is homotopy commutative. Let k (-,t) and l (-,t) be homo

topies from /1 o po to Pt o 91, and from /2 o Po to P2 o 92 respectively. Then we can 

define a map q : E' --+ B' between the double mapping cylinders as follows : 

[P1(e), O] t = 0, e E E1 

[k(e, 1 - 4t), O] O<t~{, e E E 0 

q [e,t] = [Po( e) , 2t - ½] ¾~t~¾, e E Eo 

[l(e, 4t - 3), 1] {~t<l, e E E0 

[P2( e), 1] t = 1, e E E2 

Note that if e E E 0 then [P1(e),O] = [k(e,1),0] and [p2(e),l] = [~e,1),1]. So q is well-

defined. By using the pasting lemma, q is found to be continuous. · Section 1 can be con

sulted for more detail on the double mapping cylinder. 

6.8 Proposition 

Let n be a positive integer. If in diagram A, P1 and P2 are n-equivalences and Po is a 

(n-1)-equivalence, then we have the following results : 

(a) The map q defined in 6.7 is an-equivalence. 

(b) If diagram A is commutative with stationary homotopies, then p' is an-equivalence. 

( c) If diagram A is commutative with stationary homotopies, and /1 and g1 are cofibra-

tions, then p is a n-equivalence. 

Proof (a) We consider the following subsets of B': 
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The map r, is defined in 6.0. For each i E {O, 1, 2}, let Xi = q-1(W i) . Then· q is the 

push-out of the cotriad Top2-cotriad of diagram C. The horizontal arrows are inclusions 

and are cofibrations. The vertical arrows are the pull-backs of q over the inclusions 

-C- l l l 
----Wo 

For each i E {O, 1, 2}, qi is homotopy equivalent to Pi• Thus q0 is a (n - 1)-equiva

lence, and qj is an-equivalence for each j E {1, 2}. We obtain or result by application of 

X 
6.l(b ), taking any set T = WO and taking the spaces Fi to be one point sets. Theorem 

6.1 does not take care of the path components of B' which are disjoint from W 1, but 

such path components did not really take part in the process of formation of double map

ping cylinders. 

(b) In the case of strict commutativity of diagram A with stationary homotopies, p' is 

homotopic to q. 

(c) This follows by {b) and 1.14. I 

6.9 The reduced double mapping cylinder. 

Suppose that we have a cotriad such as the one below, and let B' be its double mapping 

!1 h 
cylinder. --Bo 

Let x be an abitrary element of B0• The reduced double mapping cylinder of the cotriad 

with respect the point x is the space Bx obtained from B' by collapsing the subspace 

TJ(X X I). 
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6.10 Proposition 

The quotient map f3x : B' -+ Bx is a weak equivalence. 

Proof There is a quotient map a= 1/ o f3x : B 1 + Ba )( I + B2-+ Bx . Let V 1 and V 2 

be, respectively, the images under a of the subsets B1 +Ba)( [0,1) and Ba)( (0,1] + B2, 

and let Va = V 1 n V 2- Note that each Vi is deformable onto a subset homeomorphic to 

Bi, so that the induced map /Jx -1(Vi) -+Vi is a weak equivalence. Furthermore, each 

Vi is an open subset. Thus our claim follows by Theorem 5.9 . I 

6.11 Remark 

There is a forgetful functor from the. category of pointed spaces and pointed maps to the 

category of free spaces and free maps. We define the concept n,-equivalence in the pointed 

category via this forgetful functor. Then 6.10 guarantees that the results in this section 

that hold for double mapping cylinders, are also valid for reduced double mapping cylinders 

when working in the pointed category. For the remainder of Chapter II and in Chapter III 

we shall work in the pointed category, taking advantage of this fact. 
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7. RELATIVE HOMEOMORPIDSMS 

In this section we prove a result, Theorem 7.1, on relative homeomorphisms, similar to the 

triad connectivity theorem of Blakers and Massey [BM2]. Subsequent to the work of 

Blakers and Massey, a number of essentially different treatments of triad connectivity has 

appeared, such as those of [Mo], [N], [DKP], [Sw], [G1] and [BH]. Theorem 7.1 is obtained 

by adjoining n..:equivalences, and its merit lies in its simplicity. 
'- . 

When forming quasifibrations via adjunction, then usually two of the vertical arrows are 

trivial fibrations. The following diagram is a typical one for such constructions. 

FxC----FxE----➔ 

l l 
C E 

Here C is the cone of E. The Dold-Lashof construction (DL] is, for example, a recursive 

formation of push-outs of diagrams of this form with E = E 1• The basic method of this 

section is to replace the trivial fibrations by their restrictions to the wedges F V C or 

F V E in the product spaces. 

We shall be working throughout this section with pointed spaces and maps, see 6.11. 

7.0 Definition 

For a map p: (X,A) - (Z,B), we have a commutative square as in diagram A. The 

map of pairs p is said to be a relative homeomorphism if diagram A is a push-out square. 



-A-

A 

Po l 
B 

so 

C X 

l p 

z 

Note how Z is uniquely determined from the other data if p is required to be a relative 

homeomorphism. The main theorem of this section follows. 

7.1 Theorem 

Suppose that po : A-+ B is a m-equivalence and (X,A) is a (n-1)-connected pair. Let 

us further assume that at least one of the following two conditions hold. 

( 1) (X,A) is an NDR-pair, 

( 2) A is an open subset of X and p0 (A) is an open subset of B. 

Then the relative homeomorphism p: (X,A)-+ (Z,B) is a (m+n-1)-equivalence. 

The proof of this theorem is finalized at the end of this section, and every result that 

follows is relevant to the ultimate proof. The more prominent of these are 7.2 and 7.6. 

7.2 Proposition 

Suppose G is a subspace of a space F such that the inclusion G c F is am-equivalence. 

Let Cn be the subset F X * u G X sn of F X sn. Then the inclusion Cn C F X sn is a 

(m+n)-equivalence. 

Proof We proceed by induction on n. For n = 0, as free spaces, C0 = F + G, a dis

joint union, and F x s0 = F + F. By assumption i: G-+ F is am-equivalence. Thus 

the inclusion Co C F x S0 is a (m + 0)-equivalence, and the case n = 0 is proved. Now 

let us assume that the statement is true for n = t - 1, where t ~ 1, and show that it also 

holds for n = t. 
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By assumption then, in the Top2-cotriad of diagram B, the inclusion map a is a (q+t-1)

equivalence. The map 1 is the identity map of F, {i is the inclusion, h is the 

projection and h' = ho a. Note that {i is (a homotopy equivalence and hence) a weak 

equivalence. 

(F x *) u ( a x Et) ._2_ (F x *) u ( a x st-1) 

-B- /i 1 a 1 
) F X st -1 

h' 

h 

F 

1 1 
F 

The push-out of the cotriad is a map F x * u G x st-+ F x st, and is a (q + t)-equiva

lence by 6.S(c). This proves the statement for n = t and thus completes the proof. I 

7 .3 Corollary 

For Cn as in 7.2 above, the map. µ: (Cn, F x *)-+(Sn,*) which is the restriction of the 

projection r: F x sn -+ sn onto the first factor, is a (n + m)-equivalence. 

Proof Condition 3.2 (2) on path components is easily checked to be true. The triangle in 

diagram C is commutative. The map , of pairs is a weak equivalence. 

a 
(Cn,F X *) ----- (F X sn,F X *) 

-C-

µ~ /, 

By 7.2 and the five-lemma applied to the homotopy ladder of the map of pairs a, a is a 

(m+n)-equivalence (of pairs) and so our result follows. I 
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7.4 Remark. Suppose that G is' a subspace of F such that the inclusion G c F is a 

m-equivalence. Let W n be a bouquet of n-spheres. A subspace Dn of F x W n is 

defined as Dn = F x * U G x W n• Then the following facts can be proved along the same 

route that we followed to prove 7.2 and 7.3 . 

(a) The inclusion D'n c F x W n is a (m + n)-equivalence. 

{b) The restriction of the projection F x Wn-+ Wn to Dn is a (m + n)-equivalence 

(Dn,F)-+ (W n,* ). ■ 

The notion of relative CW-complex that we use in 7.5 and beyond, is discussed in the book 

[Wd] of G. Whitehead. When working with a relative CW-complex, for brevity we shall 

use the term cell ambiguously to mean relative cell. 

7 .5 Proposition 

Suppose that p0 : A-+ B is am-equivalence and for some relative CW-complex (X,A), 

we have a relative homeomorphism p: (X,A)-+ (Z,B). 

Then p: X-+ Z is am-equivalence. 

Proof By inductive limit considerations it suffices to prove that for every non-negative 

integer r, the statement 'Pr below is true. 

The map of r-skeleta, Pr : Xr-+ Zr is a m-equivalence. 

We proceed by mathematical induction. The statement 'Po is obviously true. Now sup

pose that Sr is true for all r $ t - 1 for some integer t ~ n. 

In diagram D, the arrows pointing to the left are inclusions. The map g is the attaching 

maps of the t-cells of (X,A) and /=Pt-log. The left and centre vertical arrows are 
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___ J__ V S t-l _ ____.g.._ _ _., X t -1 

-D- l l l Pt-1 

___ J__ V S t-l _ ____.f.___, Z t -1 

identity maps. By the induction assumption 7't-1, the vertical arrow Pt-1 is a m-equi

valence. Thus the pushout of this cotriad is precisely our map Pr : Xt -+ Zt, and by 

6.8(c), this map is am-equivalence, and 'Pt follows. I 

7.6 Lemma 

Let p0 : A-+ B be a fibration with (m -1)-connected fibres, and let (X,A) be a relative 

CW-complex having only cells of dimension n. 

Then the relative homeomorphism p: (X,A) - (Z,B) is a (m+n-1)-equivalence. 

Proof In diagram E, the arrows pointing to the left are inclusions. C is a bouquet of n

dimensional balls and S is the corresponding bouquet of boundaries of the balls in C. 

The left and centre vertical arrows are relative homeomorphisms. The space F is the fibre 

of p 0 over the base point * . The map 9 is such that 91 S attaches the cells of (X,A) 

while 91 F is the obvious embedding. With f = p0 o 91 S, diagram Eis commutative. 

CVF ) SVF g 
I A 

-E- l 
C 

) 
l 
s 

l Po 

f I B 

The push-out of this cotriad is precisely our map p: X - Z. We show that: 

( 1) •.• each of the TQE_2-morphisms constituted by the horizontal arrows in diagram E, is a 

(m+n-2)-equivalence of homotopy fibres. 
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To prove ( 1), we make use of 6.4, and we must choose a subset T as in 6.0. For n = 1 

we let T = S, and for n > 1, we let T = { * }. Then our assertion ( 1) follows by 6.4. 

Thus by 6.3, the Top2-morphism Po - p is a (m+n-2)-equivalence of homotopy fibres. 

The lemma now follows by 16.5. I 

7.7 Lemma 

Let p0 : A - B be a m-equivalence, and let (X,A) be a relative CW-complex having 

only cells of dimension n. 

Then the relative homeomorphism p: (X,A) - (Z,B) is a (m+n-1)-equivalence. 

Proof The right hand side square of diagram Fis a mapping path fibration factorization 

and the arrows pointing to the left are inclusions. 

) 
X -----A 

-F- l l 
Z B 

s 

1 

A' 

l r 

B 

The fibres of r are (m-1)-connected. Thus by 7.6 the push-out p' : (X' ,A') - (Z,B) of 

the Top2-cotriad of diagram Fis a (m+n-1)-equivalence. The map s is a weak equiva

lence and by 7.5, q: X - X is a weak equivalence. Thus the relative homeomorphism 

q: (X,A)--+ (X' ,A'), is a weak equivalence Since p = p' o q, the result follows. I 

7.8 Proposition 

Let p0 : A --+ B be a m-equivalence, and let (X,A) be a relative CW-complex having 

only cells of dimension n and higher. 

Then the relative homeomorphism p: (X,A) - (Z,B) is a (m+n-1)-equivalence. 
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Proof Let Pr: Xr-+ Zr be the map of r-skeleta induced by p. By a direct limit argu

ment it suffices to prove that for every r ~ n, the following statement is true. 

Pr: (Xr,A)-+ (Zr,B) is a (m+n-1)-equivalence. 

We proceed by induction on r. The statement Sn is precisely Lemma 7.7. Now we assume 

that Sr is true for all r such that n ~ r < t for some t and we set out to prove St. By 

7.5, Xt-l-+ Zt-l is a m-equivalence. Thus by 7.7, (Xt,Xt-1)-+ (Zt,Zt-1) is a (m+t-1)

equivalence. Now St follows by application of 16.9(b) to the map of triples, 

(Xt,XH,A)-+ (Zt,Zt-1,B). 

This completes the induction process and hence the proof of the proposition. I 

7.9 Proposition 

Suppose X J A-+ B is a cotriad satisfying condition 7.1( 2). Let D be the double 

mapping cylinder and P the push-out of the cotriad. 

Then the natural map fJ: D-+ P is a weak equivalence. 

Proof The canonical map from the disjoint union X + A + B onto P, . maps the 

subspaces X, A and B onto open subsets of P. Let us denote these subspaces of P by 

Ui, U2, and U3 respectively, and let 11 = {U1, U2, Ua}. Then for each i = 1, 2, 3, the 

map {J-1(U i) .:....+ U i is a weak equivalence. Thus our result follows by Theorem 5.9. I 

7.10 Proof of Theorem 7.1 

Let p : (X,A)-+ (Z,B) be as in the formulation of 7.1. There is CW-complex W having 

a subcomplex C such that the pair (W,C) has no cells of dimension less than n, and a 

map g: (W,C)-+ (X,A) such that each of the maps W-+ X and C-+ A is a weak 
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equivalence (a CW-resolution in the terminology of Gray [Gi] ). Then we form relative 

homeomorphisms p: (W,C)-+ (V,A) and a: (V,A)-+ (U,B). By the definition of 

push-out, there are maps , : V -+ X and cp : U -+ Z making diagram G commutative. 

w 

/ 
-G- C 

The map cp can be seen to be the push-out of the Top2-cotriad in diagram H. By 7.5, 

p: W-+ V is a weak equivalence. Since 'Ya p is a weak equivalence, it follows that 

also , is a weak equivalence. 

-H-
V 

'Y 1 
X 

J A 

1 
J -----A 

B 

1 
B 

By 6.8(b ), the map of double mapping cylinders of the Top2-cotriad is a weak equivalence 

' U' Z' cp : -+ . In diagram H each row is a ~otriad which satisfy a condition of the 

type ( 1) or ( 2) in the formulation of Theorem 7.1 . Under such a condition the natural 

map from double mapping cylinder to push-out is a weak equivalence (1.14 and 7.9 respect

ively). Thus cp: U-+ Z is a weak equivalence. Recall that also 'Y: V-+ X is a weak 

equivalence. So we obtain a commutative square, diagram I, in which the horizontal 

arrows are weak equivalences. 



-1-

{V,A) 

(J 1 
(Y,_B) 

57. 

'Y 

cp 

{X,A) 

1 p 

{Z,B) 

Note that via the relative homeomorphism p, {V,A) inherits a relative CW-structure 

with no cells of dimension less than. n. Consequently by 7.8, c, is a (m-t-n-1)

equivalence. Thus p is a (m+n-1)-equivalence. I 
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Chapter III : MAPS OF FINITE DIMENSIONAL CW-COMPLEXES 

In Section 8 we generalize the concept of n-equivalence in the setting of isomorphisms 

modulo a Serre class of abelian groups. We also formulate a number of theorems, the 

proofs of which are given in Chapter V. 

In Section 9 some results which are important for maps of finite dimensional spaces, are 

proved. These together with the clutching construction of Section 10 are applied in Section 

11. The basic result 11.1 gives sufficient conditions for a map of pairs to be a generalized 

n-equivalence. This result is used to study a specific class of maps in Section 12 and 

Section 13. 

Section 8. Generalized n-equivalences 

Section 9. Results related to the Hurewicz isomorphism theorem 

Section 10. The clutching construction to approximate a fibration 

Section 11. Fibrations of finite CW-complexes 

Section 12. Relative Whitehead products and adjunction 

Section 13. James's maps of reduced products of spheres. 
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8. GENERALIZED n-EQUIV ALENCES 

The idea of classes of abelian groups was invented and harnessed by Serre [Se]. A detailed 

discussion of Serre classes, and localization of abelian groups and 1-connected topological 

spaces appears in Chapter V. In the current section we shall only quote some key results 

required for the applications in the sections 9 to 13. 

Let us denote by P a fixed subset of primes, and let P' be the complementary set of 

primes. Torsion abelian groups can be studied effectively by separate consideration of the 

different primary components. The P-component is obtained as the tensor product as ll.

modules, of the torsion group with a suitable subring of the rationals Q. This subring is in 

fact the one generated by the subset {½ : p E P'} of Q and we denote it by 1.. Localization 

is discussed in Section 18. 

The concept of a Serre class of abelian groups (see Section 19 for a detailed discussion) is 

indispensible when studying phenomena such as torsion in abelian groups. This notion 

gives rise to a generalization of the concepts of monomorphism and epimorphism, and con

sequently we are in a position to generalize the concept of n-equivalence as defined in 

Section 3. In fact, once we have the correct definition, it is quite easy to verify a similarly 

generalized version of [M2; Theorem 1.,2]. Among other results, we formulate such a theo

rem after the necessary definitions have been made. The proofs appear in Chapter V. 

The class of all torsion abelian groups with vanishing p-component for every p E P, which 

we shall denote by C throughout this section, is a Serre class of abelian groups. Spaces are 

assumed to be pointed. 
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8.1 Definition 

Let J: (X,A)-+ (Y,B) be a map of pairs of spaces and n an integer, n ~ 1. Then J is 

said to be a (P ,n )-equivalence if : 

( 1) X, Y, A, B are 1-connected, 

(2) The homomorphism A: 7T'k (X,A)-+ 7T'k (Y,B) is a C-isomorphism for 2 ~ k ~ n-1, 

and C-epimorphism for k = n. 

The map f is said to be a (P,n)-*equivalence if it is a (P,n)-equivalence, and the homomor

phism A : 7rn (X,A)-+ 7rn (Y,B) is a C-isomorphism. 

A map g: X-+ Y of spaces is said to be a (P,n)-equivalence (respectively, a (P,n)-*equiva

lence] if for every x EX the map (X,x)-+ (Y,y) is a (P,n)-equivalence [respectively, a 

(P ,n)-"-*equivalence). 

A map which is a (P,n)-equivalence for all integers n is called a P-equ.ivalence. 

8.2 Remark 

(a) For a pair (X,A) of 1-connected spaces, it follows from the exact homotopy sequence 

of the pair that 1r1 (X,A) is a one-point set and 1r2 (X,A) is abelian. 

(b) Let f: X-+ Y be a fibration between 1-connected spaces and let B be a 1-connected 

subspace of Y, with A = 1-1(B). Then 1r1 (A) is abelian, although A may fail to be 

simply connected. 

( c) The class C is perfect and complete in the terminology of (Hu), or an acyclic ideal of 

abelian groups in the sense of [Sr]. Thus C admits a generalized Hurewicz isomorphism 

theorems and a generalized Whitehead theorem, see 20.5, 20.6, 20. 7. 
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(d) From change-of-base-points considerations (Sr; Lemma 2 on p380], it follows that an 

unpainted map g: X--+ Y is a (P,n)-equivalence if and only if for some x EX, the map 

(X,x) --+ (Y,y) with y = g(x), is a (P ,n)-equivalence of maps of pairs of spaces. ■ 

The results 8.3, 8.4 and 8.5 formulated below, are proved in Chapter V. 

8.3 Lemma 

Let G and H be abelian groups. Suppose that H is C-isomorphic to G and that 

G @ 1 is a finitely generated 'l-module. Let a : G --+ H be C-epimorphism. Then a is a 

C-isomorphism. (See 19.7 for the proof.) ■ 

We shall require the following generalization of the mapping path fibration factorization. 

8.4 Lemma 

Let p : E--+ B be any map between !-connected spaces such that p* : 71"2 (E)--+ 71"2 (B) is 

C-surjective. Then there is a fibration p1 : E1 --+ B and a P-equivalence Po : E--+ Eo 

such that p1 has P-local fibres and p1 o p0 = p. (See 20.4 for the proof.) • 

Theorem 8.5 which follows is precisely the generalization modulo the set of primes, of the 

theorem (M2; Theorem 1.2] of May. 

8.5 Theorem 

Let B be a space with open subsets V 1 and V 2 such that B = V 1 U V 2. Let VO be the 

set V1 n V2. Let p: E--+ B be a map, and for each i = {O, 1, 2}, let U1 = p1-1(V1)

Suppose that for each j E {1, 2}, (Uj,Uo)--+ (Vj,Vo) is a (P,n+l)-equivalence. 

Then for each i E {O, 1, 2} the map (E,U1)--+ (B,V1) is a (P,n+l)-equivalence. (See 

21.4 for proof.) ■ 
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From 8.5 the proof of the following theorem, Theorem 8.6, follows in exactly the same way 

that we obtained 6.1 from [M2; Theorem 1.2] and we skip the proof. 

8.6 Theorem 

Suppose that in the commutative diagram B of maps of pairs of topological spaces, the fol

lowing conditions hold. 

(1) Po is a (P,n)-equivalence. 

( 2) For each j E { 1, 2}, Pj is a (P ,n + 1 )-equivalence. 

(3) Each of the maps Ao-+ Aj is a (P ,n)-equivalence. 

( 4) 91 and /1 are cofibrations. 

(E1,A1) 
91 

(Eo,Ao) 
92 

(E2,A2) 

-B- l Pl l Po l P2 
/1 h 

(B 1, *) (Bo,*) (B2, *) 

Then the map of push-outs (E,A2)-+ (B,*) is a {P, n + 1)-equivalence. ■ 



63. 

9. RESULTS RELATED TO THE HUREWICZ ISOMORPHISM THEOREM. 

Some results required for further applications of n-equivalences, especially to maps of finite 

dimensional CW-complexes, are presented here. Such results are deduced from properties 

of commutative diagrams in the category Ab of abelian groups and homomorphisms. 

Spaces and maps are assumed to be pointed. We fix a set of primes P and use the symbol 

C to denote the Serre class of all torsion abelian groups for which the p-component vanishes 

for all p E P. 1. is the subring of~ generated by the subset {¾: n is a prime not belonging 

to P}. 

9.1 Proposition 

Suppose that in the commutative diagram A, which is a diagram in Ab , the rows are 

exact and K is a C-isomorphism. 

If /3 is a C-monomorphism, then /31 is a C-monomorphism. 

__ /3_, C 

-A- lµ 
/31 I C 1 

Proof Let us first prove the statement under for the special case that P is the full set of 

all primes. Then C is the zero class consisting of only the trivial group. In this case, K. 

is an isomorphism and a 1 = ,\ a K.-1. Since /3 is a monomorphism, a = O by exactness. 

But then also a1 = 0, and consequently /31 is a monomorphism. 

The general case follows from the special case by application of the exact functor - ® 1., in 

view of 19.3. I 
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9.2 Proposition 

Suppose that in diagram B, which is a diagram in Ab , the rows are exact. Furthermore, 

suppose that 0 is a C-isomorphism, T/ is a C-monomorphism and x is a C-epimorphism. 

Then ! is a C-epimorphism. 

z ( ,M 

-B- X l l e 
B @ , C '.Y ' D E 

I e 
M µ 'N 11 p 

Proof Let us first prove the statement under the assumption that (P is the full set of 

primes and consquently) C is the zero class. The proof is a diagram chase. 

Let c be an arbitrary element of C. Then, 

0 = 8, (c) = o 0 0-1 , (c) = T/ 11 0-1 , (c). 

Since T/ is a monomorphism, 11 0-1 , (c) = O. By exactness at N, 0-1 , (c) = µ (m) for 

some m EM. Now, 

, e (m) = 0 µ (m) = 0 [0-1,y (c)] = 'Y (c), 

and consequently C - e (m) E ker 'Y· Due to exactness at C, C - e (m) = fl (b) for some 

b EB. Since X is an epimorphism, b = x (z) for zome z E Z. Now 

e [( (z) + m] = e ( (z) + e (m) =,BX (z) + e (m) = ,B (b) + e (m) = c, 

and this proves surjectivity of e (in the special case). 

The general case follows from the special case by application of the exact functor - 0 l, in 

view of 19.3 . I 
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9.3 Proposi~ion 

Let m be an integer, m > 1. Suppose that we have 1-connected spaces, Y J D J G, 

such that the injection (D,G)--+ (Y,G) is a (P ,m)-*equivalence. 

Then Hk (D,G)--+ Hk (Y,G) is a C-isomorphism for every k ~ m. 

Proof In the commutative diagram C we have exact homotopy and homology sequences, 

and the vertical arrows are Hurewicz homomorphisms. 

?rm+1 (Y,D) ?rm (D,G) ?rm (Y,G) ?rm (Y,D) 

-C- 1 1 1 1 
Hm+l (Y,D) Hm (D,G) Hm (Y,G) Hm (Y,D) 

From the exact homotopy sequence of (Y,D,G) it follows that 7rk (Y,D) EC for every 

k S m. By the generalized relative Rurewicz theorem 20.6, Hk (Y,D) EC for each k S m, 

and ?rm+l (Y,D)--+ Hm+l (Y,D) is a C-:-isomorphism. By 9.1 applied to the right hand end 

of the displayed ladder, Hm (D,G)--+ Hm (Y,G) is a C-monomorphism. 

Since Hk (Y,D) E C for every k S m; it follows that Hk (D,G)--+ Hk (Y,G) is a C-iso

morphism for every k Sm -1, and Rm (D,G)--+ Rm (Y,G) is a C-epimorphism. I 

9.4 Lemma 

Let m be an integer, m > 1. Suppose that E: (D,G)--+ (Y,F) is a map of pairs of 

1-connected spaces such that : 

(1) f: (D,G)--+ (Y,F) is a (P,m)-*equivalence, and 

(2) G--+ F is a (P,m)-equivalence. 

Then €* : Hk (D,G)--+ Hk (Y,F) is a C-isomorphism for every k ~ m. 

If furthermore, Hm (G) EC, then Hk (D)--+ Rk (Y) is a C-isomorphism for every k Sm. 
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Proof We can assume that D c Y (replacing Y by the mapping cylinder of € if neces

sary) and G c F, and that € is inclusion. Then € can be factorized as: 

(D,G)-+ (Y,G)-+ (Y,F). 

From the homotopy ladder of the second map in (x) it follows by (2) and the generalized 

five-lemma that (Y,G)-+ (Y,F) is a (P,m)-*equivalence. This together with ( 1) implies 

that (D,G)-+ (Y,G) is a (P,m)-*equivalence. Thus by 9.3 we have 

Hk (D,G)-+ Hk (Y,G) is a C-isomorphism for every k ~ m. 

We apply the generalized Whitehead theorem 20.7 to the map G-+ F. Then from the 

homology ladder of the second map in (x), by the generalized five-lemma we obtain, 

Hk (Y,G)-+ Hk (Y,F) is a C-isomorphism for every k ~ m. 

Now the first part of the lemma follows by combining (y) and (z). 

Suppose further that Hm (G) EC. Then in the homology ladder of the map of pairs 

€: (D,G)-+ (Y,F) as shown in diagram D below, also Hm (F) EC. 

Hm (G) -- Hm(D) -- Hm (D,G) -- Hm-1 (G) ➔ 

-D- l l 1 l 
Hm(F) Hm (Y) -- Hm(Y,F) Hm-1 (F) ➔ 

Hence, and due to the first part of the lemma that we have proved, the second part of the 

lemma follows by the generalized five-lemma. I 

The main result of this section now follows. This technical lemma is a key tool towards the 

proof of the basic theorem, 11.1, on maps of pairs of finite dimensional CW-complexes. 
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9.5 Proposition Let q and m be integers with 1 < m < q. Suppose that we have 

maps € and p as shown below, for which the induced maps G--+ F coincide. 

(D,G) (Y,F) I p 

Suppose further that : 

( 1) E: (D,G)--+ (Y,F) is a (P,q)-equivalence, 

( 2) p : E--+ Y is a (P ,q)-equivalence, 

( 3) p: (E,G)--+ (Y,F) is a (P,m)-*equivalence, 

(.t) For each i > m, Hi (D), Hi (Y) EC, 

( 5) For each i ~ m, Hi (G) EC. 

Then p: (E,G)--+ (Y,F) is a (P,q)-equivalence. 

(E,G) 

Proof In diagram E, the upper square is part of the homotopy ladder of the map of pairs 

E, and the ladder in the bottom is part of the homotopy ladder of the map of pairs p. 

71"i+l (D,G) ---+ 7ri ( G) 

-E-
X l l ~i 

71"i+l (Y,F) ---+ ?ri (F) ---+ ?ri (Y) ---+ 7ri (Y,F) 

l ~i l <pi l ¢i 

7ri (G) ---+ ?ri (E) ---+ 1ri(E,G) 

Taking i = m, by 9.2 it follows that ~m is a C-epimorphism. Moreover, conditions (2) 

and ( 3) together implies that the map G--+ F induced by p is a (P ,m-1)-*equivalence. 

But then (each of the maps) G--+F is a (P,m)-equivalence. So by 9.4, 

Hk (D) --+ Hk (Y) is a C-isomorphism for every k ~ m. This and ( 4) ensures that by the 

generalized Whitehead theorem 20. 7, D --+ Y is a P-equivalence. 
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This together with ( 1) implies by the generalized five-lemma that G--+ F is a (P, q - 1)

equivalence. This fed into the homotopy ladder of p together with (2) yields our 

result. I 
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10. THE CLUTCHING CONSTRUCTION TO APPROXIMATE A FIBRATION 

We assume spaces to be pointed and maps to be base point preserving. We shall fix a set 

of primes P and use the symbol C to denote the Serre class of all torsion abelian groups 

for which the p-component vanishes for all p E P. 

The main result, 10.1, shows how a fibration over a finite dimensional CW-complex can be 

approximated by the push-out of some cotriad such as that in the Dold-Lashof 

construction. The other result puts a limit on the homology of the total space of a 

fibration. 

10.1 Proposition 

Suppose that B is a 0-connected CW-complex of dimension n ~ 1 and let C be its 

( n-1 )-skeleton. Let f: W -+ C be the attaching map of all the n-cells of B 

simultaneously. W is a bouquet of (n-1)-dimensional spheres. Let V be the bouquet of 

cones of the spheres in W .. Suppose that p: E-+ B is a fibration with fibre F = p-1( * ). 

The pull-back of p over the inclusion C c B is denoted by q1 : U 1 -+ C. Let 

q0 : F x W -+ W and q2 : F x V -+ V be the trivial fibrations. Then 

(a) there is a map g: F x W-+ U 1, resulting in a Top 2-morphism q0 -+ q1 which is a 

weak equivalence of fibres. 

(b) the push-out q: U-+ B of the Top2 -cotriad in diagram A, is a quasifibration which 

factorizes through p via a weak equivalence µ : U -+ E . 

-A-
FxV 

l q2 

V 

F X w 
l qo 

w 
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Proof The space B is obtained as the push-out of the cotriad : 

VJ W--+C. 

In diagram B, the square in the bottom is the push-out of (1). Each vertical face of the box 

is a pull-back square. The pull-backs via the different routes from W to B coincide. 

go ' U1 

-B-
q1 I " 

E 
l 

. c"-- Ip 
f 

B 

The fibration h2 is fibre homotopically trivial since V is contractible. So we have a 

weak equivalence c2: F x V-+ U2 such that h2 o c2 is coincides with the projection map 

q2 : F x V-+ V. Also there exists a map co: F x W-+ U O satisfying pull-back condi-

tions. Taking g = g0 o co, we settle (a). 

By 6.2 (b ), the push-out q: U -+ B of the Top 2-cotriad in diagram A is a quasifibration. 

From push-out properties, there is a map µ : U -+ E such that p o µ = q. Each quasi-.. 
fibre of q is mapped into the corresponding fibre of p by a weak equivalence. The 

inclusion map p-1
( *)-+ E induces a surjective function on path components since B is 

path-connected. By 19.1 applied to the maps of pairs ( U, q-1( *) ) -+ ( E,p-1( *) ) , it 

follows that µ : U -+ E is a weak equivalence. So {b) also follows. I 

Lemma 10.2 below, can be proved by using the Serre spectral sequence of a fibration. 

Nevertheless, Proposition 10.1 enables us to give a straightforward proof by induction. 
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10.2 Lemma 

Let B be a a-connected CW-complex of dimension d and E a space. Suppose that we 

have a fibration p: E-+ B with fibre F such that Hk (F) EC whenever k > m. 

Then Hk (E) E C whenever k > m + d. 

Proof We prove it by induction on d. It is obviously true for the case d = 0 . Suppose 

that the statement is true for d = O; l; 2; ... ; n - 1, and that B is an-dimensional CW

complex. 

We apply 10.1 and refer to the Top2-cotriad A. F x V is homotopy equivalent to F and 

by the induction assumption, Hk (F x W) EC for all k ~ m+n-1. From the exact homo

logy sequence of the pair ( F x V, F x W) , it follows that 

Hk (F x V, F x W) EC for all k > m+n-1. 

By the excision theorem, the map (F x V, F x W) -+ (U, U 1) delivers isomorphisms of 

relative homology groups in all dimensions. Thus Hk (U,U 1) EC for all k > m+n-1. 

From the induction hypothesis applied to the exact homology sequence of the pair (U,U 1), 

it follows that Hk (U) EC for all k > m+n. By the generalized Whitehead theorem, 

20.7, the homomorphisms /k+,. : Hk (U)-+ Hk (E) induced by µ, are C-isomorphisms for 

all k ~ 1. Thus,-Hk (E) EC for all k > m+n. I 
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11. FIBRATIONS OF FINITE CW-COMPLEXES. 

We work with pointed spaces and pointed maps. The base point, generally denoted by*, is 

suppressed most of the time. The category is denoted by Top. The main result, Theorem 

11.1 gives sufficient conditions for a map p : (E,F) - (B,* ), with all the spaces finite 

dimensional, to be a n--equivalence. This result seems to be a new contribution to the 

theory of fibrations. 

The theorem is given in the generalized setting of isomorphisms modulo a Serre class of 

abelian groups. By P we denote a fixed set of primes, while C denotes the Serre class of all 

torsion abelian groups with vanishing p-component for every prime p E P. The subring of 

Q, generated by the inverses of the primes in the complement P' of P, is denoted by 1. 

11.1 Theorem 

Let n, k and q be positive integers. Let G be a CW-complex of dimension less than n, 

such that the inclusion Gk c G, of the k-skeleton of G is a (P,q)--equivalence. Let B be 

an-dimensional CW-complex. Let E be a space with G c E, and p: (E,G)-+ (B,*) a 

map. Suppose further that the spaces B, E and G are !-connected, and: 

( 1) p: (E,G)-+ (B,*) is a (P, n + k)-*equivalence, and 

(2) Hi (E) E C for all i > n + k. 

Under these conditions we have the following: 

(a) If Gk= G, then p : (E,G) -+ (B,*) is a P--equivalence. 

(b) If B = S0
, then p: (E,G)-+ (S 0 ,*) is a (P, n + q)--equivalence. 

The proof of this theorem appears at the end of the section. 
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11.2 Proposition. Let n, k and q be integers, k < n. Suppose that Gk and B are 

CW-complexes of dimensions k and n respectively. We assume that B has no cells of 

dimension 1. Let G be a space containing Gk such that the inclusion Gk c G is a 

(P,q)-equivalence. Let r: Y-+ B be a fibration such that for the fibre F = r-1(*), there 

is a (P, n+k-1)- *equivalence, i: G-+ F. 

Then there is a space D containing G and a map t: (D,G)-+ (Y,F) for which the 

induced map G-+ F coincides with i such that: 

(a) If Gk= G, then t : (D,G)-+ (Y,F) is a P-€quivalence. 

(b) If B = sn, then t: (D,G)-+ (Y,F) is a (P, n+q)-€quivalence. 

Proof Let us denote the (a)-part of the proposition by Sn. We prove the statements Sn 

inductively. The inductive step is performed in such a way that the proof of the (b)-part 

is obtained as a by-product. For n = 1, we note that B is a one-point space. We 

choose f to be the map D = G -+ F = Y. Thus S 1 is true. 

Now let us suppose that Sn is true for all 1 ~ n < t. We now set out to prove the truth 

of St. Let us assume that B is t-dimensional, and let Bt-l be its ( t-1 )-skeleton. Let 

f: W _. Bt-1 be the attaching map of the t-cells of B, where W is a bouquet of (t-1)

dimensional spheres. [In the (b)-case, Bt-l = * and W is one sphere.] We apply 10.1 

to r and obtain the Top 2-cotriad with objects qi as in the lower part of diagram A below. 

GxV ) 
G X w 

1 02 
-A-

F XV ) 
1 60 

F xW g 
I U1 

1 q2 1 qo 1 ql 

V ) w Bt-1 
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The cotriad can be augmented as shown, 60 and 62 being of the form ix 1; such that A 

is commutative. By St-1 applied to the fibration qi, there exists a (P ,t-l+q)-

equivalence E1: (D1,G)-+ (U1,F). [In the (a)-case, q is considered to be m, and in the 

(b)-case, we take E1 = i.] Because the induced map G-+ F coincides with i which is a 

(P, t-1 +k)-equivalence, it follows by the five-lemma applied to the homotopy ladder of the 

map of pairs €1, that D 1-+ U 1 is a (P, t-l+k)-equivalence. The map E1 can be 

factorized, by 8.4, as a P-equivalence 'Y : D 1 -+ T followed by a fibration /3 : T -+ U 1 

with P-local fibres. Then f3 is a (t-l+k)-equivalence. Since Gk x W is a CW-complex 

· of dimension t-l+k,. 9 o (o0 1Gk x W) can be lifted over 01. Thus we obtain the 

commutative diagram B. 

-B-

G X w ) Gk X w 
l a o 

F X w 

91 
T 

9 
l /3 

Now let K be the subspace G .x * u Gk x W of G x W. Then 91 can be extended over 

K to give a commutative diagram C. 

-C-

G X w ) K 

l 80 

F X w 

T 

g 
l /3 

Let L = G x * U Gk x V. Let T' be the mapping cone of 92 and r: T' -+ T the 

retraction. Taking o1 = f3 o r, we obtain a Top 2-cotriad as in diagram D. 

) 

-D-
) 

K 

l oo 

F x W 

C T' 
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For each i E {O, 1, 2}, let qi o ai = Si- Then we obtain a Top 2-cotriad, 

In the cotriad, s2 : (L, G) -+ (V ,*) is a P-equivalence and by 7.4(b ), so : (K, G) -+ (W ,*) 

is a (P, t+q-1)-equivalence. For the subspace G of T', a simple computation (quite 

clear in the (b)-case, the (a)-case is treated at the end of this proof) reveals that 

(2) s1 : (T' ,G)-+ (Bt-1,*) is a P-equivalence. 

Thus by 8.6 the push-out s : (D,G)-+ (B,*) of the Top2-cotriad ( 1), is a (P, t+q)

equivalence. The map s factorizes through the push-out q of the qi-<Otriad of diagram 

A, and by 10.1, q factorizes through r. This provides us with the required map e. 

Since s: (D,G)-+ (B,*) is a (P, n+q)-equivalence and r: (Y,F)-+ (B,*) is a (P, n+q)

equivalence, e : (D,G)-+ (Y,F) turns out to be a (P, n+q)-equivalence. Certainly the 

map G -+ F induced by e coincides with i. This completes the induction [except for 

(2)] and thus the proof of the lemma. 

Proof of (2)- Note that this only need to be proved in the (a)-case, thus we can assume q 

to be CD. In the commutative diagram E, r is the retraction of the mapping cylinder. 

We refer to maps as maps of pairs unless we explicitly indicate otherwise. 

-E-

(B t -1 , *) 
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By assumption, ft is a P-equivalence. By the fibration property 3.4(a), f3 is a P-equiva

lence. Thus 'Y is a P-equivalence. Since the map D1 -+ T is a P-equivalence, it follows 

that the map a~.:...... ,a-1(F) induced by 'Y is a P-equivalence. The latter map coincides 

with the map G-+ ,a-1(F) induced by r. Since the retraction T' -+ T is a homotopy 

equivalence, it thus follows that r is a P-equivalence. The 'fibration' q1 is a P

equivalence. Thus s1 is a P-equivalence. I 

11.3 Remark. For the case ( a) in the proof above, it follows by 10.2 that 

(3) Hi (D) EC for every i > n + k . 

By an argument similar to the proof of 10.2, it follows that (3) also holds for the (b)-case, 

provided that Hi ( G) E C for every i ~ n + k. 

11.4 Proof of Theorem 11.1 

Note that in case (a) with Gk= G, we consider the number q to be infinity. Then we 

can prove 11.l(a) and 11.l(b) simultaneously. Let E --2.... Y -I.+ B be the mapping path 

fibration factorization of p with F = r-1( * ). The map p is a weak equivalence. From 

21.3(a) it follows that the induced map i: G-+ F is a (P ,n+k-1)-*equivalence. By 11.2, 

there exists a (P ,n+q)-equivalence f : (D,G)-+ (Y,F). By application of 9.5 to the triad 

(D,G) f (Y,F) • P (E,G) , 

the map p: (E,G)-+ (Y,F) a (P ,n + q)-equivalence. Since r: (Y,F) -+ (B,*) is a weak 

equivalence, it follows that p: (E,G)-+ (B,*) is a (P, n+q)-equivalence. I 
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12. RELATIVE WIDTEHEAD PRODUCTS AND ADJUNCTION 

We now pursue our study of relative homeomorphisms in the special case of a collapse map 

c: (Fu en,F)--+ (Sn,*). The map is extended to some space E in such a way that we get 

isomorphisms ?rr (E,F) --+ 1fr (Sn,*) beyond the range of the relative homeomorphism 

theorem, 7.1. The author could not find results of this nature in the literature. The only 

ones entertained in the literature are those which lead to quasifibrations. Examples of such 

quasifibrations can be found in the work of Mimura [Mi], Hilton and Roitberg [HR], and 

Hardie and Porter [HP]. 

We also show that we obtain these isomorphisms irrespective of the manner in which we 

extend the map c. The adjunction technique that we use here is in-between that of Dold 

and Lashof (DL] or Hardie [Ha.] on one hand and that of Section 7 on the other hand. The 

main result, Theorem 12.1, is particularly useful when studying reduced products of spheres 

as we show in Section 13. In (HP] a map (S~,Sn) _,. (S
20

,*) is studied by quasifibration 

methods. Such methods are sharpened in this section. 

12.0 The basic construction. We work with pointed spaces and pointed maps. Let P be 

a fixed set of primes, and let C denote the class of all torsion abelian groups with torsion 

coprime to the elements of P. Let us fix integers n,k and q with n > 1 and 

q ~ k > 1. Also we assume that if n is even, then k-/= n-1 . This will ensure that : 

(1) 1fn+k {Sn) is a finite group. 

We fix a space F, which admits a (P ,q)~quivalence i: Sk _,. F, sk being the k-sphere. 
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Let us assume i is an inclusion. We can replace F by the mapping cylinder of i if 

necessary. Let g: sn-l-+ F be a map and a E 11"n-l (F) its homotopy class. G is the 

mapping cone of g and /3 E 11"n (G,F) is the homotopy class of the characteristic map of 

the pair (G,F). For a map (: sk x sn-1 -+ F we denote by E( () the push-out space of 

the cotriad: 

sk x En .,_2.._ sk x sn-l ___ (_, F . 

We can now formulate the main result of this section. 

12.1 Theorem 

Suppose we have a map (: sk x sn-l-+ F of type ( i,g). 

(a) There exists a (P ,q+n)-equivalence p: (E,F)-+ (Sn,*). 

{b) If moreover, Hr (F) = C for all r ~ k+n, then every extension q: (E,F) -+ (Sn,*) of 

the relative homeomorphism (G,F)-+ (Sn,*) is a (P ,q+n)-equivalence. 

The remainder of this section is devoted to proving this result. We recall some construc

tions made in Section 7. Let us reserve the symbol E1 to denote the subspace of F x En 

which can be obtained as the push-out of the following cotriad. 

C Fx* 

The restriction of the projection F x En-+ En to E 1 is denoted by p1, and the pull-back 

of p1 over the inclusion map sn-l c En is denoted by p0 : E 0 -+ sn-1• 

12.2 Remark 

(a) By a generalized version of 7.4, p0 : (E 0,F)-+ (sn-1,*) is a (P, n+q-1)-equivalence. 

{b) The map p1 : (E1,F)-+ (En,*) is a weak equivalence. 
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12.3 Proof of Theorem 12.l(a). We prepare a cotriad in order to apply 8.6. There is an 

obvious extension of ( to a map (' : Eo--+ F. Then we have a cotriad in Top2 as in B. 

E1 Eo (' • F 

-B- 1 P1 1 Po l P2: 

En sn -1 * 

E( () is precisely the space obtained as the push-out of the cotriad E 1 +2- E 0 _(. F x * in 

the upper row of diagram B. By 12.2, (E0,F)--+ (sn-1,*) is a (P, q+n-1)-equivalence 

and (Ei,F)--+ (En,*) is a weak equivalence. The horizontal arrows induce P-equivalences 

between the fibres over the base points. By 8.6, the push-out of the cotriad of diagram B 

is a (P ,q+n)-equivalence (E,F) --+ (Sn,*). I 

12.4 Proposition 

Suppose p : (E,F) --+ (Sn,*) is as above. Suppose we have a map q : (E,F) --+ (Sn,*) 

which coincides with p on G. Then q: (E,F)--+ (Sn,*) is a (P ,n+k)-*equivalence. 

Proof By Theorem 7.1, (G,F)--+ (Sn,*) is a (k+n-1)-equivalence. Thus the homomor

phism ?rn+k-1 (G,F)--+ ?rn+k-t (Sn,*) is surjective. By commutativity of the triangle in 

diagram C, it follows that ?rn+k-1 (E,F)--+ ?rn+k-t (Sn,*) is an epimomorphism. 

-C-

?rr (E,F) 

So q* of diagram C is an epimorphism between groups which are C-isomorphic due to the 

existence of the map p. Moreover these groups are finitely generated by condition 12.0(1). 
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Thus by 8.3, q* is an isomorphism in dimension n+k-1. For r = n+k we consider part 

of the exact homotopy sequence of the triple {E,G,F) as in diagram D . 

-D- 7rn+k {G,F) -+ 7rn+k {E,F) -+ 7rn+k {E,G) 

Here we have 7rn+k {E,G) ~ 71. Moreover, 7rn+k {E,F)-+ 7rn+k {Sn,*) is a C-isomorphism 

and therefore 7rn+k {E,F) is finite by assumption 12.0(1). Thus 7rn+k (G,F)-+ 7rn+k (E,F) 

is an epimorphism. By commutativity of the triangle in C, 7rn+k (G,F)-+ 7rn+k (Sn,*) is 

. C-surjective. It now follows, similarly as in the case of dimension n+k-1, that q* is a C

isomorphism in dimension n + k. I 

Theorem 12.l(b) now follows by 12.4 and Theorem 11.l(b). I 
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13. JAMES 1S MAPS OF REDUCED PRODUCTS OF SPHERES 

We now prove the result of James [J2] on maps of reduced product spaces of spheres, by 

means of adjunction of n-equivalences. A partial result in this direction has been obtained 

by Hardie and Porter (HP] by means of quasifibrations. For completeness and notation, 

we include a brief review of the work of Toda (T] on the CW-structure of sk and we recall 
ID 

the relative Whitehead product in [BM1]. 

13.0 Notation. We fix an integer k > 1 and make the convention of denoting the k

dimensional sphere by S and the 2k-sphere by T. For any r E 1H , the r-sphere is denoted 

The James reduced product of a space X is denoted by X . 
ID 

The subspace of 

words of length at most r is denoted by Xr. If r = 1 then X1 is written simply as X. 

Cons.ider the map k: S2--+ T which is the composition of a collapse map, a homeomor
lD 

phism and an inclusion : 

Let h: S --+ T be any extension of k. We shall assume that h is cellular with respect 
ID ID 

to the standard CW-structure on the spaces. Then h induces maps : 

h; {S2q+l, S) --+ (Tq,*) . 

Note the ambiguity of use of the symbol h. If k is odd, let Pq denote the set of all 

primes. If k is even, let P q denote the set consisting of the prime 2 together with all 

primes which are bigger than 2q+l. We state the main result of this section. 

13.1 Theorem 

For every non-negative integer q, h: (S 2q +t, S) --+ (Tq,*) is a P q-equivalence. 
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13.2 CW-structure of S1t. In line with Section 12, let F = S2q+1, let i: S--+ S2q+l be 

the inclusion, and a E 71"2kq+2k-l (S2q+1) the homotopy class of the attaching map of the cell 

(S2q+2, S2q+1). In diagram A, a and a, are boundary homomorphisms in the exact 

homotopy sequences of the triple (Sq+2,Sq+1,Sq) and, respectively, the pair (Sq+2,Sq+1). 

The homomorphism 1/J is an injection in the exact homotopy sequences of the pair 

-A- a, I /, 

Let a be a generator of 71"m (Sq+2,Sq+1) with m = k(q + 2) and let 1., E 7l"k (Sq+1) be the 

homotopy class of the inclusion map S--+ Sq+l· Then by Toda [T] we have the following 

description of the characteristic map of the pair (Sq+2,Sq+1). 

13.3 Proposition 

a(a) = r(1.,,a1] where a 1 is a generator of 71"m-k (Sq+1,Sq), m = (q + 2)k. The bracket 

denotes the relative Whitehead product as in (BM1]. Furthermore, r = q + 2 for even k, 

and r = 1 for both k and q odd. I 

13.4 Representation of Whitehead products 

Let C = Ek and D = E0 where n = 2k(q+l). Let B = 8(C x D) be the boundary of 

the topological manifold C x D. Then B is homeomorphic to the sphere of dimension 

'· 

(2q+3)k-1. We represent [n,a1] by some map /: (V,fJV)--+ (Sq+t, Sq) as described in 

[BM1]. Here V is the subspace ac x DU C x D+ of B with D. = {z ED: z1 ~ O}, Z1 

being the first c~rdinate of z. 
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Since 8( a) is in the image of '1/J, 'ifJ as in diagram A, the map J can be extended to a 

map Jo: B - Sq+l and in such a way that the complement B \ V of V is mapped into 

Sq. Let Q be the quotient space obtained from B by making the following identifica

tions. A point x of B c (C x D) can be represented in a unique way as x = (x 1,x2) 

with X1 E C and X2 E D. We identify two points X and y if x1; Y1 E ac and X2 = Y2· 

Then Q is homeomorphic to the space Q' = (S x sn-1) U ( * x En). By the definition of 

f, we notice that the map Jo can be factorized as 

B h . Q / h . Sq+l . 

Let (=hi S x sn-1, but consider ( to be a map into Sq. Then ( is of the type (r,g) 

where r is a self-map of S of degree r followed by the inclusion S c S·q, and g is a 

representative of a 1• The space obtained as the push-out of the cotriad : 

S x En+-- S x sn-1 - Sq, 

is homotopy equivalent to Sq+2 . In the notation of Section 12, Sq+2 is the space E( () . 

Thus by 12.1 we have : 

13.5 Theorem 

Let q: (Sq+2,Sq) - (Sqk+k,*) be any map which extends the relative homeomorphism 

(Sq+1,Sq) - (Sqk+k,*). Then q is a (R,t)-equivalence, where t = (q+3)k -1 and R is 

the set of all primes which are not factors of r, with r as in 13.3. I 

Note that in particular, when q is odd, then R contains Px where x = .9f!. The 

following result is the first step in the inductive proof of Theorem 13.1. A proof of this 

case by means of adjunction of quasifibrations can be found in [HP]. 
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13.6 Theorem. The map h: (S 3,S)-+ (T,*) is a P 1 -equivalence. 

Proof By 13.4, h1 is a ( Pi,4k-1)-equivalence. The theorem now follows by 11.l(a). I 

13. 7 Proof of Theorem 13.1 

Let us recall the statement of the theorem and denote it by r q +1 : 

For every non-negative integer q, the map hq+l: (S 2q+a,S)-+ (Tq+i,*) is a Pq+1-

equivalence. 

We prove the statements 1q+1 by induction. 1 1 is precisely the result 13.6. Now assume 

that r n is true for all positive integers n less than q + 1. 

Let l: (Tq+1,Tq)-+ (St,*) be the relative homeomorphism, where t = 2k(q + 1). By 7.1, 

l is a m 1-equivalence, with m 1 = 2k( q+2) - 1. Let TJ = lo h' as in diagram B, where h' 

is induced by h. Then TJ is a map (S2q+a,S2q+1)-+ (St,*) which by 13.5 is a 

(P q+i, m2)-equivalence with m2 = (2q + 4)k -1 = m1. By commutativity of the triangle 

B, it follows that h' is a (Pq+l, m1 - !)-*equivalence. 

(S2q+a,S2q+1) _21_.(st,*) 

-B- h' l /, 
(Tq+ 1 ,Tq) 

We now apply the generalized five-lemma to the homotopy ladder of the map of triples 

Note that Pq+l c Pq. Invoking the induction 

assumption, it follows that the map of pairs (S2q+3,S)-+ (Tq+1,*) is a (Pq+1,m2 -1)

equivalence. If k ~ 3, then m 1 - 1 > (2q + 3)k, and r q+1 follows by 11.l(a). 
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For the case k = 2 we still need to ascertain that the homomorphism, 

is Cq+l -injective before 11.l{a) is applicable. Consider the diagram C similar to B. 

T/ t 
(S2q+3, S2q+1) ~ (S ,*) 

-C-

(Tq+2 , Tq) 

By 13.5, the map r is a (Pq+1, 4q + 11)-equivalence. Furthermore, r, is a (Pq+1,4q + 7)

equivalence. Thus h- is a (P q+1, 4q + 7)-equivalence. In diagram D, the horizontal row 

represents the homotopy sequence of the triple (Tq+2, Tq+1, Tq), In view of 18.3 and ex

actness of the P q •1-localization functor, we can regard the groups as being P q +1-localized. 

Under this assumption we must prove that the homomorphism of (1) is injective. 

-D-

al ~ h; 

11'4q+s (Tq+2,Tq+1) -2.._. 11'4q+7 (Tq+1,Tq) ....!... 11'4q+7 (Tq+2,Tq) 

1r 4 q + 1 ( T q + 1) 

Since h; is an epimorphism and the sequence a i ·-·-· is exact, it follows that 

7r4q+7 (Tq+1,Tq) = Im a+ Im 8. By commutativity of the lower triangle in diagram D, 

Im 8 C Im u. Thus 11'4q+7 (Tq+1,Tq) = Im a+ Im u. Therefore in the homotopy 

sequence, in (2) below, of (Tq+1,Tq), we have r [11'4q+7 (Tq+1,Tq)] = r [Im a) . 

11'4q+7 (Tq+1) _!!__. 11'4q+7 (Tq+1,Tq) _I_. 11'4q+6 (Tq) 
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Thus we can modify the homotopy ladder of the map (S 2q+3,S2q+1,S)-+ (Tq+t,Tq,* ), and 

obtain an exact ladder, the first part of which is shown in diagram E. 

7r4q+7 (S2q+ 3 ,S2q+1) --+ 7r4q+6 (S2q+1,S) --+ 7r4q+6 (S2q+3,S) ➔ 

-E- a 1 
0

· 1 1 1/J 

Im a 7r4q+6 (Tq +t,*) -➔ 

The ladder is assumed to start with the arrow a going (dimensionally) downward. The 

arrow 7J is the restriction of the boundary homomorphism 8: (Tq+t,Tq)-+ (Tq,*). By 

the five-lemma applied to this diagram, it follows that 1fJ is injective. Again 1 q +t follows 

by 11.l(a). The induction is completed, and hence so is the proof of the Theorem 13.1. I 

The following conclusion follows from 13.1 by a simple direct limit argument. 

13.8 Theorem [J2; Theorem 1.2 and Theorem 1.3] 

The map h: (S ,S)--+ (T ,*) is a weak equivalence if k is odd, otherwise it is a {2}-
rn CD 

equivalence. I 
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Chapter IV: ELEMENTARY PROPERTIES OF n-EQUIVALENCES 

We prove the five-lemma and use it to derive some properties of maps of pairs and triples. 

In particular we make a study of the action of the group 1r1 (X) on the set pointed set 

1r2 (X,A), for a pair (X,A) of spaces. A key result, cited several times, is Theorem 16.5 

which compares a n-equivalence with its mapping path fibration. 

Section 17 contains a detailed proof of a lemma on homotopy lifting over a n-equivalence 

which is required for the proof of Theorem 5.1. 

Section 14. Exactness 

Section 15. The homotopy sequence of a pair of spaces 

Section 16. The five-lemma applied to maps of pairs and triples 

Section 17. Proof of Lemma 5.5. 
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14. EXACTNESS 

The contents of this section are well-known and we include it for completeness. The five

lemma is applied when studying exact ladders arising from a map of pairs or triples of 

spaces. We have to work in a category more general than groups since the lower homotopy 

sets are not groups functorially. One instance of such a study can be found in the work of 

Hardie and Kamps [HK] on Mayer-Vietoris-type phenomena. We prove the five-lemma in 

such a setting. A generalization, in the sense of Serre classes of abelian groups [Se], is 

proved in Chapter V. The category in which we shall work is pSet , pointed sets and 

base point-preserving functions. The base point will be denoted by u. The category of 

groups and group homomorphisms is denoted by Qp_. 

14.1 Definition 

A sequence of morphisms C -i n-1. E m pSet is said to be exact if j(C) = k-1(u). If 

the given sequence was part of a longer sequence in pSet , then the longer sequence is said 

to be exact at the object D if j (C) = k-1(u). A sequence is said to be exact if it is exact 

at every object except perhaps at the first or last object of the sequence, if such exist. 

14.2 Remark. Every group can be considered to be a pointed set, with the identity 

element as base point, and then group homomorphisms are pointed maps. 

14.3 Definition 

A sequence of morphisms C -i D-.!. E in pSet is said to be (E2)-exact, see [HK], if it is 

exact and C is a group with a left action v: C x D -+ D on D satisfying the identity : 

j (x) = v(x,u) . 
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For the results in this section we assume that we have the following situation. There is a 

commutative square, diagram A, in QE.. Suppose the diagram is embedded, via the for

getful functor, in the commutative diagrams B, and C in pSet . Suppose also that in 

these diagrams the rows are exact. 

B 1, C 

-A- ,a l l 1 

i1 W ---➔ X 

14.4 Proposition 

Suppose that in diagram B, we have (E2)-exactness at the object Y. Suppose ,B is surjec

tive and E-1(u) = {u}. Then, 

{b) 'Y is surjecti ve if o is surjecti ve. 

B 1, 
C j D I 

k 

-B- ,a l 'Y l a l 
w i1 X lt I y 

Proof (a) (E2)-exactness provides us with a group action 11: X x Y-+ Y. Suppose that 

x E X is such that j 1(x) E o (D). We must show that x e 'Y (C). 

There exists d ED such that 8 (d) = j 1(x). But then, 

E k(d) = k1 8(d) = kd1(x) = u e Z. 

Since E-
1(u) = {u} it follows that k(d) = u EE. By exactness at D, it follows that for 

some c E C, d = j ( c), and then, 

i1 -y(c) = o j (c) = o (d) = i1 (x). 



90 

Furthermore, j 1{ x-1-;(c)) = v ( x-1.,c, u ) 

= v(x-1,v( ;c, u)) 

= v ( x-1, j n( c) ) 

=v(x-1,ji(x)) 

= v( x-1,v(x,u) ) 

= v ( x-1-x,u ) = v(u,u) = u. 

Thus by exactness at X, there exists w E W such that x-1• ;( c) = i1 (w). Since {3 is 

surjective, w = {J(a) for some a E B. Then, 

and so, 

;( i(aY-1 ) = [ ;i(a) J-1 = [ iJJ(a) 1-1 = [ x-1• -;{c) J-1 = ;(cf1-x, 

. ;( c•i(aY-1) = ;(c)•;( i(aY-1) = -;{c)•-;{cf1•x = x. 

This. proves (a). The statement {b) follows immediately from (a). I 

14.5 Proposition 

Suppose that in diagram B, E-1(u) = { u} and /3 is surjective, and that we have (E2)

exactness at the object D. Then the induced function ,-1(u)-+ 5-1(u) is surjective. 

Proof Suppose that d E 5-1(u). Then Ek (d) = k1 o(d) = k1(u) = u. But E-1(u) = {u}, 

and so, k {d) = u. By exactness at D, there exists c EC such that .i(c) = d. 

Now i1 ;( c) = 6 j( c)' = 6( d) = u, and by exactness at X, ;( c) = i1(w) for some w E W. 

Furthermore w = /3(b) for some b EB, since {3 is surjective. But ;i(b) = ii/3(b) = ;(c). 

So taking x = [i(b)J-1 = i(b-1), then .i(x) = j i(b-1) = u, and ex E ker ;. 

Let µ: C >< D -+ D be the action due to {E2)-exactness. Then, 

.i(cx) = µ(cx,u) = µ[c, µ(x,u)] = µ[c, .i(x)] = µ [c,u] = .i(c) = d. 

Thus we have found an element ex of ker ; which is mapped by j onto d. I 
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14.6 Proposition. Suppose that in diagram A, f3 is an epimorphism and the other three 

arrows are monomorphisms (regard i and i1 as inclusion maps). 

Then the function cp: C/B -+ X/W between the sets of left cosets, is a monomorphism. 

Proof Our information fits diagram B if we take f to be a homomorphism between two 

trivial groups, and let o = cp. The functions j and j 1 are coset projections. So by 14.5, 

cp-1(W) = B (here B and W are regarded as the base points of C /B and X/W respec

tively). Now suppose we have elements gB, IB E C/B for which cp(gB) = cp(IB). Then 

-r(g)W = cp(gB) = cp(IB) = '}'(f)W. This implies that '}'(ff1,(g) E W. 

Now ,(£t1-;'(g) = '}'(f-1),(g) = -r(f-1g). Thus ,(f-1g)B = u. Since cp-1(W) = B, it 

follows that (f-1g)B = B, i.e. ·f-1g E B. This implies that gB = IB. Thus cp is 

injective. I 

14. 7 Proposition. Suppose that in diagram C, /3 and o are bijective, that a is 

surjective, and that t: is injective. Suppose further that at the objects D and Y, the 

exactness is of the type (E2). 

A h B i C j •D k E 

-C- al /3 1 ,1 01 fl 
V h1 w Z1 X 21 ► Y 

k1 z 

Then , is bijective. 

Proof This follows by 4.4(b) and 14.5. I 

Proposition 14. 7 is known as the five-lemma. The results of this section are applied so 

often that we shall at times use the term five-lemma ambiguously when refering to any of 

the results 14.4(b ), 14.5 or 14. 7, or a combination of these. 
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15. THE HOMOTOPY SEQUENCE OF A PAIR OF SP ACES 

Attention is given here to the exact homotopy sequence of a pair of spaces, especially in the 

lower dimensions. We obtain a number of results of the nature of the five-lemma as 

applied to maps of pairs of spaces. The lower homotopy sets are not groups functorially. 

However the homotopy sequence does live at least in the category pSet of pointed sets and 

base point-preserving functions. 

The action of the fundamental group on the higher homotopy groups were first studied by 

Eilenberg (Ei]. Hereafter the role of group actions in algebraic topology was recognized. A 

variety of actions are discussed in (Wd]. The basics of abstract group actions can be found 

in the textbook [Ro] by Rose. 

The action of the group ?r1 (X,b) on the set 71'"1 (X,A,b) yields a description of 71'"1 (X,A,b) 

in terms of other homotopy sets, similar to the result [JT; Theorem 1.2] of James and 

Thomas and [Ru; Theorem 1.3.1] of Rutter. This action does not seem to have been given 

sufficient attention in the study of quasifibrations or weak equivalences. We shall take 

advantage of this description, and circumvent long arguments with pointwise diagram 

chasing. Some counter-examples are included to support the results obtained. 

15.1 The homotopy sequence of a pair 

For a space X and b EA c X, there is for the pointed pair (X,A,b), an exact homotopy 

sequence in pSet (see [Wd] for example), 

?rr+1 (X,A,b) Br+l ?rr (A,b) .Jr... ?rr (X,b) ...Jr... ?rr (X,A,b) --24. 



93 

The sequence extends to the left indefinitely and on the right it terminates in the pointed 

set 1r0 (X,b) of path components of X, with the path component containing b as the 

base point. The part of the sequence to the left of and including _the object 1r1 (X,b) 

belongs to the category QE_ in fact, and except perhaps for the last three of these, the 

other groups are in fact abelian. Note that 8n; in; in are natural transformations, so that 

a map (X,A,b)-+ (Y,B,b') of pointed pairs, determines a commutative ladder: 

a i J 
➔ 1rn+1 (X,A,b) ---+ 1rn (A,b) --+ 1rn (X,b) --➔ 1rn (X,A,b) -+ 

l l l l 
➔ 1T"n+1 (Y,B,b') --+ 1rn (B,b') --➔ 1rn (Y,b') --+ 1rn (Y,B,b') ➔ 

_We shall refer to this diagram as the homotopy ladder of p. There is also a similar homo

logy ladder for a such a map p. The homology ladder does not have the same relevance to 

weak equivalences as does the homotopy ladder. Nevertheless it has a role to play in, for 

instance, Section 9. There are similar ladders for maps of triples of spaces. 

15.2 The action of ~1 (X,b) on ~1 (X,A,b). 

Let (X,A,b) be a fixed pair of pointed spaces. The pointed set 1r1 (X,A,b) is defined as 

the set of all homotopy classes of maps (I,81,0) - (X,A,b), with 8I = {O, l}. We shall 

restrict our discussion to the case where X is path-connected. For a path g : I - X in 

X, we define a path i in X by the formula, i(t) = g(l - t). If f is another path in 

X and if f (0) = g (1), then we define the path g + f by setting 

g (2t) 
(g + !) (t) = { 

f (2t-1) 

O~t~t 

{~t~l. 

This composition gives rise to the fundamental group 1r1 (X,b) of a pointed space (X,b). 
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The detail hereof can be found in [Ma]. In a similar manner, the composition determines a 

left action (which we shall denote by juxtaposition) of 1r1 (X,b) on 1r1 (X,A,b). We shall 

om.it the verification of the axioms of group action since it is very similar to that for the 

fundamental group multiplication. From the definition, the action can be seen to be 

natural in the following sense. For a map p: (X,A,b)-+ (Y,B,b'), the action is 

compatible with the following functions induced by p. 

p*: 1r1 (X,b)-+ 1r1 ( Y,b') and p*: 1r1 (X,A,b}-+ 1r1 ( Y,B,b') 

More precisely, for a E 1r1 (X,b) and ( E 1r1 (X,A,b ), p* ( a() = (p* a)(p* (). 

In order to study the orbits of this action and the isotropy subgroups of elements, we fix 

the following terminology. Let {Ci: i EL} be the set ofall the (distinct) path compo-

nents of A. For each i E L, we fix an element Ci E Ci and a path Wi in X from b to 

Ci. Let Gi denote the subgroup Im [ 1r1 (Ci,Ci) -+ 1r1 (X,ci)] of 1r1 (X,ci). For each 

i E L, the subset of 1r1 (X,A,b) determined by the paths terminating in Ci, will be 

denoted by Fi. Then the collection {Fi: i EL} is a partition of 1r1 (X,A,b). 

It is easy to see that every subset Fi is closed under the action. We now show that : 
' 

( 1) Each Fi is an orbit of the action. 

Let w be any path in X from b to Ci (every member of Fi contains such a path). 

Let a be the member of 1r1 (X,b) represented by the loop w + Wi-- Then [ w] = a• [ Wil, 

and ( 1) follows [ the bracket denotes the homotopy class in 1r1 (X,A, b)]. 

We now determine the isotropy subgroup Fix [wi] of the element [wi]. Fix [wi] is 

defined as the subgroup of all elements of 1r1 (X,b) fixing [wi]. 
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Let 11 be any loop in X based at the point b, and let a E 1r1 (X,b) be its homotopy 

class. Suppose that a• [ Wi] = [ Wi]- Then there is a homotopy, 

H: (Ix I, 8I x I, 0 x I) ---+ (X,A,b), 

such that: 

H (s,O) = ( 11 + Wi)(s) for all s EI, 

H(s,1) = Wi (s) for all s EI, 

H(l,t) EA for all t EI, and 

H ( 0, t) = b for all t E I. 

The formula h (t) = H(l,t) defines a loop h in Ci based at Ci, From the properties of 

H, it follows that the loop 11 + Wi + h + Wi- represents the identity element of 1r1 (X,b). 

Let (3 be the element of the group Gi represented by the loop h-. Then a is the image 

of (3 under the change-of-base point function [Sr; Lemma 2 on p380], 

Wi: 1r1 (X,A,ci)-+ 1r1 (X,A,b), 

determined by the path Wi . Thus, whenever a E Fix [wil, then a E Wi (Gi)- In fact, 

our argument is reversible, and Fix [wi] is precisely the subgroup Wi (Gi) c 1r1 (X,b ). 

So, as a left 1r1 (X, b )-set, 1r1 (X,A,b) is equivalent to the disjoint union of the sets of left 

cosets 1r1 (X,b) / Wi (Gi). That is, 1r1 (X,A,b) can be written as: 

15.2 (a) 

It is interesting to note that we can have an isomorphism p*: 1r1 (X,A,a)-+ 1r1 (Y,B,b) 

although the 15.2(a)-descriptions for two sets may look completely different. The 

following example illustrate this phenomenon. 



15.2(b) Example. Let p: (1R,7l)-+ (S,1) be the exponential map where S is the set of 

complex numbers with unit modulus. The homomorphism 1r1 (1R,7l)-+ 1r1 (S,1) is an iso

morphism between infinite sets although 1r1 (IR) and 1r0 (S) are l-€lement sets. ■ 

Also, from the decomposition 15.2(a), the following result can be deduced immediately. 

15.2( c) Proposition 

Let p : X' -+ X be a map of path connected spaces, and let us denote for every A c X, 

the set p-1(A) by A'. Suppose that Y c X and {Yi}i EL is the collection of all path 

components of Y. Then the conditions (1) and (2) below are equivalent. 

( 1) The homomorphism p*: 1r1 (X' ,Y' ,x)-+ 1r1 (X,Y,px) is surjective (or bijective) for 

every x E Y'. 

( 2) For every i E L and for every x E Y', p*: 1r1 (X' ,Yi' ,x)-+ 1r1 (X,Yi,PX) is surjec

tive ( or bijective). ■ 

Since I is path connected we can drop the assumption of path connectedness in 15.2( c) 

and deduce the following more general result. 

15.2( d) Proposition 

Let p': X' -+ X be a map and let us denote for every Ac X, the set p-1(A) by A'. 

Suppose that Y c X and {Y i}i E L is the collection of all path components of Y. Then 

the conditions (1) and (2) below are equivalent. 

(1) p: (X' ,Y')-+ (X,Y) is a n-€quivalence. 

(2) p* : 1r1 (X', Yi') -+ 1r1 (X, Yi) is a n-€quivalence for all i E L. ■ 



97 

15.3 Lemma. Let p: (X,A)--+ (Y,B) be a map of pairs, with X and Y path 

connected, and b E A. 

(a) If 1r1 (X,b)--+ 1r1 (Y,pb) and 1r0 (A)--+. 1ro (B) are surjective, 

then 1r1 (X,A, b) -+ 1r1 (Y,B ,pb) is surjective. 

(b) If 1r1 (A,c)--+ 1r1 (B,pc) is surjective for all c EA, if 1r1 (X,b)--+ 1r1 (Y,pb) and 

1ro (A)--+ 1ro (B) are injective, 

then 1r1 (X,A, b) --+ 1r1 (Y,B ,pb) is injective. 

Proof (a) Since 1r0 (A)--+ 1r0 (B) is surjective, the induced function between the sets of 

orbits of the actions is surjective. The other assumption implies that a given orbit in 

1r1 (X,A,b) is mapped onto an orbit in 1r1 (Y,B,pb), and thus 1r1 (X,A,b)--+ 1r1 (Y,B,pb) 

is surjective. 

(b) Injectivity of 1r0 (A)-+ 1ro (B) implies that the set of 1r1 (X,b)-orbits of 1r1 (X,A,b) 

are mapped injectively into the set of 1r1 (Y,pb)-orbits of 1r1 (Y,B,pb). By 14.6, each 

1r1 (X,b)-orbit is also mapped injectively into the corresponding orbit of 1r1 (Y,pb). Thus 

1r1 (X,A, b) --+ 1r1 (Y ,B ,pb) is injective. I 

15.4 Lemma 

Let p: (X,A)--+ (Y,B) be a map of pairs, with X and Y path connected. Suppose 

b E A and b' = p(b). 

(a) If 1r1 (X,A,b)--+ 1r1 (Y,B,b') is surjective, then 1r0 (A)--+ 1r0 (B) is surjective. 

(b) If 1r1 (X,A,b)--+ 1r1 (Y,B,b') is injective and 1r1 (X,b)--+ 1r1 (Y,b') is surjective, 

then 1r0 (A)--+ 1r0 (B) is injective. 
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Proof (a) follows since the function 1r0 (A)-. 1r0 (B) represents the map on orbit spaces 

of the action. 

{b) If 1r1 (X,b)-. 1r1 (Y,b') is surjective, then any orbit of 1r1 (X,A,b) maps onto an 

orbit of 1r1 (Y,B,b'). Now if 1r0 (A)-. 1ro (B) fails to be injective, then there is an orbit 

of 1r1 (Y,B,b') which has more than one orbit of 1r1 (X,A,b) mapping onto it. Conse

quently then 1r1 (X,A,b)-. 1r1 (Y,B,b') fails to be injective. Thus 1r0 (A)-. 1r0 (B) is 

injective. I 

Example 15.2{b) shows that in 15.4{b), the second condition is necessary. 

15.5 Lemma 

Let p : (X,A)-. (Y,B) be a map of unpointed pairs and suppose that the following hold. 

( 1) For every b EA with b' = p(b), we have 1r1 (X,A,b)-. 1r1 (Y,B,b') is surjective; 

(2) 7ro (A)-. 1ro (B) is bijective; 

(3) 7ro (A)-. 7ro (X) is surjective. 

Then 1r0 (X) -. 1r0 (Y) is injective. 

Proof In view of 3.3{c), we can assume that Y is path connected. Suppose X1 is a 

path component of X. Let A1 = An X1. Then the injection 1r1 (X1,A1,c)-. 1r1 (X,A,c), 

for c E Ai, is bijective (since I is path connected) and 1ro (A1)-. 1r0 (A) is injective. 

Thus due to ( 1), 1r1 (X 1,A1,c) -. 1r1 (Y,B,p( d)) is surjective. By 15.4{a) then, we have a 

surjective function 1r0 (A1)-. 1r0 {B). So 1ro (A1)-. ?ro (B) is in fact bijective. Then 

by ( 2) and since X1 is path connected, A \ A1 = cp. Finally, {3) implies that 

X \ X 1 = ¢, and it follows that X is path connected. I 
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In conclusion we have two examples. The first example shows that, with regard to 15.4(a), 

we will have to be cautious when the spaces X and Y fail to be path connected. 

15.6 Example 

Let X = Y = [0,2) U [3,5) c IR. We take A= [0,1) and B = [0,1) U (3,4). Let p(x) = x 

for every x E X. 

I 
Then 7rn (X,b)-+ 7rn (Y,b') and 7rn+t (X,A,b)-+ 7rn+t (Y,B,b') are bijections for all 

n ~ 0 and for all b EA with b' = p(b). However 1r0 (A)-+ 1r0 (B) is not surjective. ■ 

The next example shows the necessity of condition (3) in 15.5. 

15. 7 Example 

Choose X = Y = [0,2) U [3,5) c IR and A= B = (0,1). Let p: (X,A)-+ (Y,B) be the 

map defined by the formula, p(x) = min {x, 2}. 

_I/ 
Then 7rn (A,b)-+ 7rn (B,b') and 7rn+t (X,A,b)-+ 7rn+t (Y,B, b') are bijections for all 

n ~ 0, all b EA with p(b) = b'. Yet 1r0 (X)-+ 1r0 {Y) is neither one-to-one nor 

onto. ■ 
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16. THE FIVE-LEMMA APPLIED TO MAPS OF PAIRS AND TRIPLES 

We prove a number of results in the spirit of the title of this section. Proposition 16.5 can 

be considered the most prominent result. The proposition compares an n-equivalence with 

its mapping path fibration. Further, it relates the concepts n-equivalence for a map of 

pairs of spaces, and (n-1)-equivalence of homotopy fibres for a Top 2-~orphism. 

16.1 Proposition 

Suppose that p : (X,A)-+ (Y,B) is a map, and for the pair (Y,B), 1r0 (B)--+ 1r0 (Y) is 

surjective. Let n be a non-negative integer. If (X,A)--+ (Y,B) and A--+ B are 

n-equivalences, then X --+ Y is a n-equivalence. 

Proof Surjectivity of 1ro (A)--+ 1ro (B) and 7ro (B)--+ 7ro (Y), together with 3.2(2), 

implies that 1r0 (X) --+ 1r0 (Y) is surjective. If n = 0 the proof ends here. 

So let us assume that n > 0. Then, by 15.5, 1r0 (X) --+ 1r0 (Y) is injective. So in fact, 

1r0 (X) --+ 1r0 (Y) is bijective. For the remaining part of the proof we can assume by 

3.3( c) that X and Y are path connected. 

Diagram A shows part of the ladder formed by the map p of pairs in homotopy. 

i i a 
7rr (A,b)--+ 1rr (X,b)--+ 7rr (X,A,b)-,-+ 7rr-1 (A,b)--+ 'lrr-1 (X,b) 

-A- l l l l l 
7rr (B,b')-+ 1rr (Y,b')-+ 7rr (Y,B,b')-+ 1rr-1 (B,b')-+ 'lrr-1 (Y,b') 

The result follows by successive application, for r = 1, 2, ... , n-1 of 14. 7 to diagram A, 

and then 14.5, taking r = n. The fact that we took a base point in A does not matter 

since our assumptions imply that 1r0 (A) --+ 1r0 (X) is surjective. I 
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16.2 Lemma. Let p: (X,A)--+ (Y,B) be a map and n a positive integer. If .the map 

X--+ Y is a (n+l)-equivalence and A--+ B is an-equivalence, then (X,A)--+ (Y,B) is a 

( n + 1 )-equivalence. 

Proof Since X--+ Y is a 1-equivalence, 'll'o (X)--+ 'll'o (Y) is a bijection. Condition 

3.2(2) can be seen to be satisfied, since 'll'o (A) --+ 'll'o (B) is surjective and 

71'o (X) --+ 71'o (Y) is injective. In view of 3.3( c) we can assume that X ( and hence Y) are 

path connected. By 15.3(a), 71"1 (X,A)--+ 71'1 (Y,B) is surjective. For n = 0 the proof 

ends here. 

For n > 0, the result follows by 15.3(b) and the five-lemmas, 14.7 and 14.5 applied (as in 

the proof of 16.1) to the homotopy ladder of p. I 

16.3 Lemma 

Let n be a non-negative integer. Suppose that p: (X,A)--+ (Y,B) is a map for which 

X-+ Y is an-equivalence and (X,A)--+ (Y,B) is a (n+l)-equivalence. 

Then A --+ B is a n-equivalence. 

Proof Let Y' be any path component of Y. Let B' = B n Y', X' = p-1(Y') and 

A' =An X'. Then from 3.3(c), the pull-back r: (X' ,A')--+ (Y' ,B') is a (n + 1)

equivalence. Now let C be any path component of X'. Due to path connectedness of 

the interval I, the function r* : 71'1 (C, C n A)--+ 71'1 (Y' ,B') is surjective. Thus by 

15.4(a), 71'o (C n A) --+ 71'o (B') is surjective. From this it follows that 71'o (A)--+ 'll'o (B) 

is surjecti ve. For n = 0 the proof stops here. 
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If n > 0 then by 15.4(b ), 7ro ( C n A) --+ 7ro (B') is injective. Moreover, X' is path 

connected, so that C = X' and C n A = A'. Thus it follows that 7ro (A') --+ 7ro (B ') 

is injective. Together with the bijectivity of · 7ro (X) --+ 7ro (Y), this implies that 

7ro (A)--+ 7ro (B) is injective. From here on we can assume that X and Y are path con

nected. The result now follows by application of the five-lemmas to diagram A. I 

16.4 Notation 

For a map p: X--+ Y, the mapping path fibration factorizations of X--+ Y will be 

denoted by X ....11..+ YA-LY. For Uc Y, we denote the inverse image of U with respect 

to f by UA. 

Suppose now that p is a map of pairs of spaces p: (X,A)--+ (Y,B). We recall from 

3.5(a) that f: (YA,BA)--+ (Y,B) is a weak equivalence. Since f: (YA,BA)--+ (Y,B) 

satisfies condition 3.2(2) and p =Jog, the map g: (X,A)--+ (YA,BA) satisfies 3.2(2) if 

and only if p: (X,A)--+ (Y,B) does. In fact, for a given integer k, g: (X,A)--+ (YA,BA) 

is a k-equivalence if and only if p: (X,A)--+ (Y,B) is a k-equivalence. 

Furthermore, we notice that the map g: X--+ XA is homotopy equivalence and hence a 

weak equivalence. ■ 

16.5 Theorem 

Given a non-negative integer n, the following three statements are equivalent for a map 

p: (X,A)--+ (Y,B) . 

( 1) p: (X,A)--+ (Y,B) is a (n+l)-equivalence. 

( 2) The map of A into the inverse image pA -1(B) = BA of B with respect to the 
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mapping path fibration pA of p, is an-equivalence. 

( 3) The Top2-morphism of inclusions from A --+ B to X --+ Y is a n-equivalence of 

homotopy fibres (in the terminology of 1.15). 

Proof In view of 3.4, condition ( 1) is equivalent to condition (0) stated below. 

( 0) The map p: (X' ,A)--+ (Y' ,B), where Y' is the union of all the path components C 

for which C n B :/: </J and X' = p-1(Y' ), is a (n+l)-equivalence. 

Furthermore it is clear that the conditions (2) and (3) above, does not involve the path 

components of Y for which Y n B = </J. Thus it suffices to prove Theorem 16.5 under 

the assumption that the inclusion B c Y is a surjective map of path components. We 

prove the equivalences (1) ¢:::} (2) and (2) ~ (3). 

( 1) ⇒ (2): From the observations of 16.4, condition ( 1) implies that g : (X,A) --+ (YA ,BA) 

is a (n+l)-equivalence. Since X--+ YA is a weak equivalence, the implication we want to 

prove now follows by 16.3. 

( 2) ⇒ (1): From the observations of 16.4, this implication follows by 16.2. 

The equivalence of (2) and (3) follows by comparison of the fibre homotopy sequences asso

ciated with the two maps. We give the detail. 

Let A -1. C -:P..... B be the mapping path fibration factorization of A--+ B. Then C 

can be considered a subspace of BA with '{J = Jo I C (with Jo : BA --+ B being the 

pull-back of J). Let b be any point in B with F = '{J-1(b) and G = J-1(b). Then 

from the observations in 16.4, applied to the commutative triangle below, it follows that 

(C,F)--+ (BA,G) is a weak equivalence. 
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C 
{C,F) -- {BA,G) 

rp ~ / lo 
(B,b) 

Since 'Y: A...,..... C is a weak equivalence, it follows that the condition (2), (which is that 

A...,..... BA is an-equivalence), is equivalent to the condition (4) below. 

(,) C...,..... BA is an-equivalence. 

Now note that condition (3) means precisely that (for an arbitrary point b of B) the fol

lowing condition holds. 

( 5) F ...,..... G is a n-equivalence. 

Now for the map (C,F)...,..... (BA,G), the implication (4) ~ (5) follows by 16.3 and the con

verse follows by 16.1. I 

The proof of the following result is a simple exercise on the level of the elementary theory 

of functions between sets, and we omit it. 

16.6 Proposition 

Suppose that diagram B below is a commutative triangle in the category Top . 

a 

-C-

C 

(a) If a and /3 are n-equivalences, then 'Y is an-equivalence. 

(b) If 'Y is an-equivalence and /3 is a (n+l)-equivalence, then a is an-equivalence. 

(c) If a is a n-equivalence and 'Y is a (n+l)-equivalence, then /3 is a (n+l)

equivalence. I 
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In what follows, we shall work with a map of triples p: (X,X1,A)--+ (Y,Y1,B). Such a 

map induces three different maps of pairs. For these maps of pairs we obtai_n results ana

logous to the first three results of this section. 

16. 7 Notation regarding maps of triples. 

Suppose that p : (X,X 1,A)--+ (Y,Y 1,B) is a map of triples. Let us denote the maps 

A--+ B, X1--+ Y 1 and X--+ Y induced by p, by the symbols Po, Pi and P2 respec

tively. Then set inclusion provides us with Top 2-morphisms A : Po--+ p1 µ: p1 --+ P2 and 

11: p0 --+ P2 such that µ o A = 11. So we have a commutative diagram C in the Top 2. 

A 
Po 

-C-
11~· 

P2 

This notation is used in the proofs of the following two lemmas, 16.8 and 16.9. ■ 

16.8 Lemma 

Let n > 0. Suppose that p is a map of triples, (X,X 1,A)--+ (Y,Y1,B), such that : 

( 1) (X,A)--+ (Y,B) is a (n+2)-equivalence; 

(2) (X1,A) --+ (Y 1,B) is a (n+l)-equivalence ; 

(3) 7ro (B)--+ 7ro (Y 1) is surjective. 

Then (X,X1) --+ (Y,Y 1) is a (n.+2)-equivalence. 

Proof By 16.5 [(1) ⇒ (3)], the Top 2-morphism A (in diagram C above) is an-equivalence 

of homotopy fibres and 11 is a (n + !)-equivalence of homotopy fibres. Thus by 16.6(c) 

and since 7ro (B)--+ 1ro (Y1) is surjective, it follows that µ is a (n + !)-equivalence of 

homotopy fibres. Our result follows by 16.5[(3) ⇒ (1)], applied to µ. I 
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16.9 Lemma. Suppose that p is a map of triples, {X,X1,A)--+ {Y,Y1,B). Then for a 

non-negative integer n we have : 

(a) If {X,A)--+ (Y,B) is a (n+l)-equivalence and {X,X1)--+ {Y,Y1) is a (n+2)

equivalence, then (X1,A)--+ {Yi,B) is a (n+l)-equivalence. 

(b) If {X1,A)--+ {Y1,B) and {X,X1)--+ {Y,Y1) are {n+l)-equivalences, then 

{X,A)--+ {Y,B) is a (n+l)-equivalence. 

Proof (a) By 16.5[(1) => (3)], the Top2-morphism 11 {diagram C in 16.7) is an-equivalence 

of homotopy fibres and µ is a (n + 1)-equivalence of homotopy fibres. Thus by 16.6(b) it 

follows that >. is an-equivalence of homotopy fibres. Our result follows by application of 

16.5 [(3) => (1)] applied to >.. 

(b) By 16.5, the morphisms >. and µ are n-equivalences of homotopy fibres. Thus by 

16.6(a), it follows that 11 is a n-equivalence of homotopy fibres. Our result follows by 

Theorem 16.5 applied to 11. I 

16.10 Example. 

We show how 16.8 fails in the absence of condition 16.8{3). Let X = Y = [0,5] c IR, 

X1 = [0,2], Y 1 = [0,2] U [3,5], A= B = [0,1], and p(x) = x for every x e X. Then 

1r1 {X,X1) has cardinality 1, while that of 1r1 {Y,Y1) is 2. Note that condition 3.2(2) 

holds for each pair map in this triple. 

1 
I 
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17. PROOF OF LEMMA 5.5 

An important result on homotopy lifting, Lemma 5.5, used in the proof of Theorem 5.1, the 

globalization theorem for n-equivalences, is proved in this section. [M2; Corollary 2.4]. 

Lemma 5.5 forms part of the treatment in Dold and Thom's paper [DT] and in a modified 

form in the work [M2] of May. The proof of the lemma given here is in detail, showing 

maps and homotopies explicitly. We rely on the pasting lemma [Ms; p 108 Theorem 7.3], 

without repeated reference to it, to ensure continuity of functions defined piecewise. 

Throughout this section, p : E -+ B will denote a map of topological spaces. For a sub

space U of B, p·1(U) will be denoted by U'. We work with base point-free spaces. 

When required, base points will be specifically mentioned. The following notation is used 

throughout this section. 

17.1 Notation 

The boundary of a topological manifold A is denoted by fJA. 

I is the unit interval [0,1]. 

We fix an integer n ~ 2 and denote the unit n--cube P by K. The following subsets of 

K are important: 

For r = O; 1, Ir= rn-1 x {r} 1 and J is the closure of fJK\I 1 i.e. J = Io U [ fJ(I 0) x I] . 

Denote by c the centre of the centre of I1 1 and by d the centre of I1 x I . 

C - ( 1. 1. 1. • 1. 1 ) - "2'1 "2'1 "2'1 ••• I "2'1 n co-ordinates, 

d - ( 1. 1. 1. • 1. 1· 1 ) - "2'1"2'1"2"1··· 1"2'1 1"2' n+l co-ordinates. ■ 
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17.2 Some homeomorphisms. For a point x e K\ { c}, we let x A be the point in J 

which is collinear with the pair of points {x, c}, and x- = II x-c 11·11 xA -c 11-1• If 

x = c, we define x- = 0. Then 0 ~ x- ~ 1. For i e {0; 1}, let Zi be the subspace 

K x {i} U J x I of K x I. We define homeomorphisms hi : K x {i} -+ Zi by the 

formulae: 

{ 

(2x - C, 0) 
ho (x,O) = 

(x~, 2x- - 1) 

0 ~ x- ~ ½ 
f ~ x- ~ 1 , 

0 ~ x- ~ t 
t ~ x- ~ 1 . 

Now let J 1 be the closure in K x I of the subspace a(K x I) \ (1 1 x I) . Then the follow-

ing formula defines a self-homeomorphism of J 1• 

z E K x {0} . 
z E Z 1 

Note that h2 maps 8J 1 homeomorphically onto itself. The resulting self-homeomorphism 

h3 of BJ 1 can be extended to a self-homeomorphism h4 of I 1 x I, the closed n-cell com

plementary to J 1 in 8(K x I). Pasted together, h2 and h4, regarded as maps into 

K x I, provide us with a self-homeomorphism h of 8(K x I). This in turn yields a self

homeomorphism H of K x I by regarding K x I as the cone on 8(K x I). ■ 

We repeat the formulation of Lemma 5.5 : 

Let p: (X,U)--+ (Y,V) be a map of pairs of spaces. Then the following three conditions 

are equivalent. 
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(a) Given maps f: (J,BJ)-+ (X,U) and g: (K,11)-+ (Y,V) together with a homotopy 

dt : J -+ Y from p o f to the restriction glJ of g to J, such that dt ( BJ) C V for all 

t E I, there exists an extension F: (K,1 1)-+ (X,U) of J, and a homotopy Dt: K-+ Y 

from p o F to g, extending dt such that Dt (1 1) C V for all t E I. 

(b) Given maps cp: ( J, BJ)-+ (X,U) and -y: (K,11)-+ (Y,V) with po cp = -ylJ, then 

there exists an extension t : (K,11)-+ (X,U) of cp, and a homotopy .6.t: K-+ Y from 

p o t to 'Y, such that .6.t is stationary on J and .6.t (1 1) C V for all t E I. 

(c) For every e EU and b = p(e), the function p*: 7rr (X,U,e)-+ 7rr (Y,V,b) is inject-

ive for r = n - 1 and surjective for r = n. 

Proof of Lemma 5.5 

We prove the sequence of implications (b) ⇒ (a) ⇒ (c) ⇒ (b). Firstly, (b) ⇒ (a). Let us 

assume (b), and suppose that J, g, dt are as in (a). We observe that dt and g jointly 

define a map G1: Z1-+ Y by the rule: 

{ 

dt (x) 
G1 (x,t) = 

g (x) 

(x,t) E J x I 

( x, t) E K x { 1} . . 

Now we define a map 'Y: K-+ Y as -y(x) = G1 a h1(x,1), and let cp = f. Then 

'Y(I1) C V and p o cp = 11 J. Applying (b) to the data cp, 'Y, we obtain + and .6.t, 

The formula .6. (x,t) = .6.t (~) defines a map .6.: K x I-+ Y. Let D = .6. o H. Let 

Go : Zo -+ X be the map defined by the following formula : 

{ 
f (x) 

Go (x,t) = 
t (x) 

(x,t) E J x I 

( x, t) E K x { 0} . 

We define a map F: K-+ X by the formula F (x) = G0 o ho (x,O). 
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Then F together with the homotopy Dt obtained from D, fulfill the requirements of 

(a). Thus we have proved (b) ⇒ (a). In retrospect we note that 1 absorbs, via h1, the 

information on dt,. This is released again after {b) has been exploited, by precomposition 

with H. This rectification of the homotopy calls for an adjustment of t to get the map 

F, which is in line with Dt . 

(a) ⇒ (c): Assume condition (a) holds. We shall first prove the injectivity part of (c). 

In the case n = 2 we note that for elements 11; ,2 E 1r1 (X,U,e), path composition (one of 

them traversed in the opposite sense) associates with these path classes, a third path class 

, E 1r1 (X,U,a) for some a E U. The association is such that , 1 = 12 if and only if 

'Y = 0. So even in this case of not having groups, the following two conditions are 

equivalent : 

(x) ?rn-l (X,U,e)-+ ?rn-t (Y,V,b) is injective for every e EU and b = p(e). 

{y) Given any e EU and a E ?rn-t (X,U,e), then a= 0 whenever Pi a) = 0. 

We use {y) to prove the injectivity. Let a E ?rn-l (X,U,e) be such that in ?rn-l (Y,V,b), 

p*(a)=0. We can represent a byamap f:(J,8J)-+(X,U). Since p*(a)=0, the 

map po f can be extended to a map g: (K,1 1)-+ (Y,V). We apply (a), taking dt, to be 

the constant homotopy. Existence of the map F guaranteed by (a), means that a= 0. 

So the injectivity follows. 

To prove surjectivity, let {3 e ?rn (Y,V,b) be an arbitrary element. We represent {3 by a 

map g: (K,aK,J)-+ (Y,V,b). Let f: J-+ X be the constant map onto the point e e U. 

Let dt : J-+ V be the constant (b-valued) homotopy between the maps gl J and po f 
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Now by (a), there exists F and Dt. The map F represents an element 'Y of 

7rn (X,U,e) and Dt ensures that in 7rn (Y,V,b), Pi,)= fl. So surjectivity of p* 

follows, and we have proved the implication (a)=> (c). 

Finally we prove the implication (c) => (b), and this will complete the proof of our result. 

Now suppose we are given maps cp: (J,8J) - (X,U) and , : (K,1 1) - (Y,V) such that 

po cp= ,IJ. 

Let s be the vertex (1; 1; ... ; 1) of K, let cp(s) = e and p(e) = b. Then in the group 

11"n-t (Y,V,b), [,IJ] = 0. Since p* is injective, in 11"n-t (X,U,e) we have [cp] = 0. So 

there exists an extension , 1 : (K,I) - (X,U) of cp. 

Let C = {x EK : Xi~½ for all 1 ~ i ~ n}. Let M be the closure (K \ Cf of K \ C in 

K, and let M 1 =Mn J. Let B be the union of all the (n-1)-faces of K which do not 

contain s. Given any point x EK\ {s}, let x5 be the (unique) point in B which is col

linear with the pair of points x; s. Define g: K - Y and F 1 : K - X as below. 

r (s) xEC 
g (x) = 

"( (2x - x5) XE M 

rt (s) XE C 
F1 (x) = 

! 1 (2x - Xs) XE M 

These functions can routinely be shown to be continuous. Note that glJ =po Fil J and 

that F1 (C) = {e}. Now we define G: (J1,8J 1) -(Y,V) by the formula below, with J1 

as in 17.2. 
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J1 = K x {0,1} U J x I C K x I. 

{

po Ft(x) 
G (x,t) = 

g(x) 

{x,t) EK x 0 

{ x, t) E J x I U K x 1 • 

Since the pair (J 1, 8J 1) is homeomorphic to {K,8K), G represents an element 

a E 7rn {Y,V,b). · By surjectivity in condition (c), there is an element {3 E ?rn {X,U,e) such 

that p(/3) = - a. Represent /3 by a map:, -F2: {K,8K,J)-+ {X,U,e). Now we define a 

map F: {K,8K)-+ {X,U) by: 

{ 

F2 {2x - s) 
F(x) = 

Fi (x) 

for x e c 

otherwise . 

Then F is continuous since F1 is continuous and F1 (C) = {e}. We obtain a homotopy 

Et as follows. Let r : (J 1,8J 1)-+ (Y,V) be defined by the formula: 

{

po F (x) 
r (x,t) = 

g(x) 

{x,t) E K x {O} 

{ x, t) E J x I U K x { 1} . 

Then [r], as an element of 7rn (Y,V), is zero by the choice of F2 and its incorporation in 

the definition of r via F. Therefore r can be extended to a map 

E: ( K x I , I1 x I)-+ ( Y,V) . 

We obtain the solution to the problem of {b) by the following quotient construction. Let 

A and As be the subsets of K x I given below. 

A= (J n C) x I u C x {l}; As= {s} x I 

Let r 0 : A-+ As be defined by the formula, for (x,t) EA CK x I, ro (x,t) = (s,t). 
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From 17.2 we recall that Z1 = K x {1} U J x I. Extend ro to a map r1: Z1 _. Z1 by 

mapping a point (x,t) E (Z1\Af (closure in K x I), onto the point (2x -xs, t). Extend 

r1 to a relative homeomorphism 

r2: (J1,Z1)-- (J1,Z1), 

and extend r2 to a relative homeomorphis~ 

r: (K x I, J1)--(K x I, J1). 

Since E r-1(y) is a one-point set for every y E K x I, it follows by a theorem on quotient 

maps, [Ms; p 139 Theorem 11.1], that there exists ~ : K x I -- Y such that ~ o r = E. 

From ~ we obtain a homotopy ~t in an obvious way. From r, we obtain an induced 

map r 3 : K x { 0} -- K x { 0}. 

Let q: K -- K be the obvious map determined by r3. Then there exists t : K -- X 

such that t o. q = F. The maps t and 6. comply to the specifications as in ( a). I 



114 

Chapter IV: LOCALIZATION OF ABELIAN GROUPS AND I-CONNECTED SPACES 

The main purpose of chapter is to prove results formulated in Section 8. The most 

·important one among these, is Theorem 8.5, which is a generalized version of the result 

[M2; Theorem 1.2] of May. Although quasifibrations have been applied in a generalized 

form, there seems to be no explicit formulation of results of this nature. Chapter V aims to 

fill this gap in the theory. 

Section 18. Localization of abelian groups 

Section 19. Serre class of abelian groups 

Section 20. Localization of I-connected spaces 

Section 21. Adjunction of generalized n-equivalences. 
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18. LOCALIZATION OF ABELIAN GROUPS 

When studying torsion abelian groups one can separate the different primary components. 

A particular component can be extracted by tensoring the group with the underlying 

abelian group of a suitable subring of ~- Here we have a discussion of a localization 

theory on the category Ab of abelian groups. Some of the results here are mentioned in 

(HMR). The cited book covers a more general theory namely the localization theory on 

the category of nilpotent groups (and of related topological spaces). The results we have. 

here are elementary, and are included for completeness. 

The group operation will be denoted by + (addition). By P we denote a fixed set of 

primes. The complementary set of primes is denoted by P'. The subring of Q generated 

by the set {n-1 : n E P'} is denoted by 1.. 

18.1 Definition. 

For a positive integer n, the n'th. multiple endomorphism of the abelian group G is the 

homomorphism µ : G ___. G defined by the rule : µ(g) = ng. An abelian group is said to 

to have n1 th roof.s if the n'th multiple endomorphism is ·an epimorphism. 

An abelian group is said to be P-local if for every . n E P ', the n'th multiple 

endomorphism is an automorphism. 

A morphism a: G ___. H of Ab is said to be a P-localizing homomorphism if H is 

P-local and for every P-local group K, the function a* : Ab(lI,K) ___. Ab(G,K), obtained 

by pre-composing with a, is a bijection. This means that, given any P-local 

abelian group K and a homomorphism {J : G ___. K, there exists a unique homomorphism 
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o : H -+ K1 such that diagram A commutes. 

G a H 

-A- /3~ /o 
K 

18.2 Remarks. (a) The additive group r of the ring 11 is P-local. The abelian group 

1• will also be denoted by the same symbol 1. 

{b) Let G be any abelian group, let G ® 1 be the tensor product of abelian groups, and 

· t( G) : G -+ G ® 1 the canonical homomorphism, t{g) = g ® 1. Then we have an 

endofunctor (-) ® 1 on Ab, and 1, is a natural transformation from the identity functor 

of Ab to the functor (-) ® 1. 

18.3 Proposition 

· (a) For any abelian group G1 the natural homomorphism 1,: G-+ G ® 1 is a P-localizing 

homomorphism. 

{b) An abelian group G is P-local if and only if·,,: G-+ G ® 1 is an isomorphism. 

Proof (a) We first show that G ® 1 is P-local. For any n e P', let µ be the n1th 

multiple endomorphism of G ® 1, and v the inverse of the n'th multiple endomorphism 

of 1. Then the endomorphism 1 ® v of G ® 1, is the inverse of µ. Thus µ is an 

isomorphism. 

We now show that 1, is a P-localizing homomorphism. Suppose that a : G -+ H is a 

morphism of Ab and H is a P-local group. Let m be any integer which is co-prime to 

the members of P. Then the m1th multiple endomorphism of H is an automorphism. 

Hence there is a well-defined function of sets G x 1-+ H, mapping g x iii onto i· a(rg). 
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This function is bilinear, and therefore determines a homomorphism a': G ® 1 -+ H, 

satisfying the condition a' o 1, = a. If {3 : G ® 1 -+ H is a homomorphism for which 

{3 o 1, = a, then {3 coincides with a' on t( G). Since t( G) is a generating set of G ® 1 

as an 1-module, it follows that {3 = a'. So 1, P-localizes. 

(b) If 1,: G-+ G ® 1 is an isomorphism, then since by (a) G ® 1 is P-local, it follows 

that G is a P-local group. 

Conversely, suppose that G is P-local. Then for 1 the identity function of G, since 1, 

P-localizes, there exists a left inverse K: G ® 1,--+ G to 1,. So 1, is injective. 

On the other hand, G0 = {x ® ½: x E G , ½ E 1} generates the group G ® 1 . Since - G 

has n'th roots, it follows that ¾•x E G. Thus f•x E G, and t{f•x) = (f•x) ® 1 = x ® f. 

Therefore 1, is surjective, and so 1, is a_n isomorphism. I 

18.4 Proposition 

For a homomorphism a : G -+ H between P-local abelian groups, 

(a) the kernel K is P-local 

(b) the cokernel C is P-local. 

Proof We have an exact sequence O-+ K-+ G-+ H-+ C-+ 0 in the category Ab. In 

diagram B, the vertical arrows are the canonical P-localizing homomorphisms as in 18.2(b). 

The diagram is commutative by naturality of 1,. Since the abelian group 1, is torsion free, 

the functor (-) ® 1, preserves exactness. Thus the bottom row of diagram Bis exact. 
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0 

-B- l 
o-K@'l -G@1. -H@'l -C@'l - 0 

Note that the ladder can be augmented to both the left and the right by using the trivial 

groups. Since G and H are P-local, it follows by 18.3(b) that 1,1 and 1,3 are isomor

phisms. Thus by 14.7, 1,1 and 1,4 are isomorphisms. Our results follow by 18.3(b). I 

The proof of the following two results are similar to the one we have just given, and we 

omit the proofs. 

18.5 Proposition 

Given a short exact sequence of abelian groups, with any two of the groups P-local, then 

the third group is also P-local. I 

18.6 Proposition 

For an exact sequence in Ab as shown below, C is P-local if the other four groups are P-

local. 

a A---+B (3 IC 1 1D-8-E. I 
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19. SERRE CLASS OF ABELIAN GROUPS 

The concept of a Serre class of abelian groups is indispensible when studying torsion pheno

mena in abelian groups. The pioneering work on this topic is found in the paper (Se] by the 

inventor. The textbooks [Hu], (Sp] and [HMR] also offer brief treatments of the topic. The 

notion of Serre class of abelian groups gives rise to a generalization of the concepts of 

monomorphism and epimorphism. This in turn calls for generalizations of concepts of ex

actness, and results such as the the fiv~lemma. We include a proof of the latter result. 

As in Section 18, we use the following notation. Ab denotes the category of abelian 

groups. The group operation will always be denoted by + (addition). P is a fixed set of 

primes. The complementary set of primes will be denoted by P'. The subring of Q 

generated by the set { n -1 : n E P'} is denoted by 1.. Ten.soring an abelian group G with 

1., regarded as an abelian group, annihilates every torsion element of G the order of which 

are relatively prime to the elements of _P. 

19.1 Definition. 

A class C of abelian groups is said to be a Serre class of abelian groups if the class is non

empty, is closed with respect to taking subgroups of members, and has the property that 

whenever two of the objects in a short exact sequence in Ab belong to C, then also the 

third object belongs to C. 

Let C be any Serre class of abelian groups. A homomorphism of abelian groups is said to 

be a C-monomorphism if its kernel belongs C, a C-epimorphism if its cokernel belongs to 

the class C, and a C-isomorphism if it is both a C-monomorphism and a C~pimorphism. ■ 
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19.2 Examples. (a) The class t of all finite abelian groups, and the class 'F of all 

finitely generated abelian groups are Serre classes. 

(b) The class of all torsion abelian groups with vanishing p-component for every p e P, 

which we shall denote by C(P}, is a Serre class of abelian groups. 

(c) For an integer n which is relatively prime to the members of P, the n'th multiple 

endomorphism on an abelian group is a C(P )-isomorphism. 

( d) The P-localizing homomorphism L : G -+ G ® 1 is a C(P )-isomorphism. Let us prove 

this statement : 

The kernel of 1, is the subgroup of. G, consisting of all torsion elements with order co

prime to the elements of P, and is thus a C(P)-group. Thus L is a C(P)-monomorphism. 

G is the surjective image, q: F-+ G, of a free abelian group F on a set S. Certainly 

then F ® 1 is a free l-module on S, and the localizing homomorphism Lt= 1,(F) is the 

inclusion of S. Lt F ® 1 - - - ➔ coker Lt 

l 
G ® 1, - - - ➔ coker 1, 

I, 

The cokernel of Lt is a direct sum of I SI copies of 1/'U.. Thus coker i1 E C(P). Since 

- ® 1. is an exact functor, r = q ® 1, is an epimorphism. Therefore the homomorphism, 

coker 1,1-+ coker 1,1 induced by the square of unbroken arrows, is surjective. Since C(P) 

is closed with respect to forming quotients, it follows that coker 1,1 e C(P). ■ 

19.3 Proposition 

Let h : H -+ G be a group homomorphism and h' = h ® 1. : H 4ll 1. -+ G 4ll 1. the homo

morphism assigned to it by the functor - ® 1.. Then we have the following. 
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(a) The only groups which are both P-local and in C(P) are the trivial groups. 

(b) h is a C(P )-monomorphism if and only if h' is a monomorphism. 

(c) h is a C(P)-epimorphism if and only if h1 

is an epimorphism. 

Proof. (a) Let G e C(P) and suppose that O f: x e G. Then x has finite order n and 

n is divisible by a prime p in the complement of P. Let z = i· x. Then z has order 

p and lies in the kernel of the p'th multiple endomorphism of G. Consequently, this 

endomorphism is not an isomorphism, and G fails to be P-local. So (a) is proved. 

By 19.2(d}, every 1,(G) is a C(P)-isomorphism. Therefore, h is a C(P)-epimorphism 

[C(P)-monomorphism] if and only if h' is a C(P)-epimorphism [C(P)-monomorphism]. In 

view of (a} above, (b) follows from 18.4( a), and ( c) from 18.4(b ). I 

19.4 Remark. 

We include the following concept for completeness. 
. k 

A sequence C -1+ D --+ E of 

morphisms in Ab is said to be C-exa~t if k j (C) e C and (Imj + Keri) / Imj e C . A 

longer sequence is said to be C-exact if every pair of consecutive arrows forms a C-exact 

sequence. ■ 

The sequences that we deal with, are exact and we shall prove a generalized five-lemma 

only for this special case. We have the following analogues of the results in Section 14. 

19.5 Proposition 

Let C be any Serre class of abelian groups. Suppose that in diagram B which is a 

commutative diagram in Ab , we have exact rows. Suppose further that a is C-surjective 

and 6 is C-injecti ve. 
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i J k 
A B C D 

-B - I a I p I 1 I 6 

V w X. y 
e f g 

(a) If 1 is C-surjective, then P is C-surjective. 

(b) If p is C-injective, then 1 is C-injective. 

Proof Given diagram B, we form the diagram C below, with homomorphisms as shown. 

ixV J1 k 
AxV B X V C D 

l a1 l P1 l 11 l 61 
-C-

V w XxD XxD 
e /1 gxD 

a1(a,v) = a(a) + v 

P1(b,v) = P(b) + e(v) 

11(c) = ( 1(c),k(c)) 

61(d) = ( 6(d),d) 

i1(b,v) = j(b) 

/1(w) = ( J (w),O ) . 

The diagram is commutative, the rows are exact, a 1 is an epimorphism and 61 is a mono-

morphism. 

(a) By i4.4(a), coker /j1-+ coker 11 is a monomorphism. The image of this homomor

phism is the subgroup (JW x O + 11C)/11C of coker 11-

(JW x o + 11C)/ 11c N (JW x o)/(f W x o n 11C) 

N /W/1ker k . 
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There is an isomorphism and an epimorphism, respectively, 

k"1(ker 6) /ker k -+ ker 6 and k"1(ker 6) /ker k -+ f W /, ker k . 

Thus / W /, ker k and hence coker {31 belong to the class C. 

We note that the inclusion a A c V is a C-isomorphism, thus so is e a A c e V . Since 

e a A = /3 i A c -{3 B, the subgroup {3 B + e V / {J B belongs to C. Now we have : 

coker {31 = W / {J 1 B 

W/({JB + eV) 

~ (W / {3B) / [ ( {3B + eV)/ {3 B ] . 

From this it follows that W / {3B E C. 

(b) Note that the image of ker {31 under the projection B x V-+ B, is precisely the 

subgroup {3"1( eV). Thus the image of the homomorphism ker {31 -+ ker , 1 is the same as 

the image of the subgroup (3·1( eV) of B under the homomorphism j. By 14.5, the 

induced homomorphism ker {31 -+ ker , 1 is an epimorphism. Thus {3"1( eV ) -+ ker , 1 is 

an epimorphism. The kernel of the latter homomorphism is the subgroup ker j = i A of 

B. Thus (3·1( eV) / i A ~ ker , 1• But since {3 is a C-monomorphism, {3"1( eV) / i A is 

C-isomorphic to eV / {3 i A . Also eV / {JiA = eV / eaA . This group is a quotient of 

V / aA E C. Thus ker , 1 EC. Moreover, (ker , + ker k)/ker k can be embedded into the 

group ker 6. This follows by the first isomorphism theorem. Thus (ker , + ker k)/ker k 

belongs to C. But, 

(ker , + ker k)/ker k ~ ker , /(ker , n ker k) N ker , /ker , 1 • 

So it follows that ker , E C. I 
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The following result simply merges the latter two, and is called the generalized five-lemma. 

19.6 Lemma 

Suppose that D is a commutative diagram in Ab the rows are exact . 

• ---+• ---+• ---+• ---+• 

-D-

. ---+ • ---+ • ---+ . ---+ • 

Suppose further that /j and 6 are C-isomorphisms, while a is a C-epimorphism and e is 

a C-monomorphism. Then 'Y is a C-isomorphism. I 

19. 7 We now turn to Lemma 8.3, which is the following. 

Let G and H be abelian groups such that G 0 'R and H 0 'R are isomorphic, and are 

finitely generated as 1-modules. Then any C(P)-epimorphism G--+ H is a C(P)-

isomorphism. 

For the proof of Lemma 8.3, we need the following result, 19.8{ d), which can be proved to 

. hold if the ring 'R is replaced by any principal ideal domain, but for brevity we will be con

tented with the given special case. An exposition of modules over a principal ideal domain 

can be found in [HH] . 

. 19.8 Proposition 

(a) Let A be any ring and P be a free A-module of finite rank. Then every surjective A

homomorphism of P onto itself is an A-isomorphism. 

(b) Let M be a cyclic 1-module. If M contains a non-zero 1-torsion element, then M 

is finite. 
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(c) Let M be a finitely generated 1-module. Then the torsion submodule T of M is 

finite and M/T is free of finite rank. 

( d) Let M be a finitely generated 1-module and let a : M -+ M be a surjective 1-endo

morphism. Then a is injective. 

Proof (a) is obvious. 

{b) Suppose that M = h., for some x E M, and that rx is 7-torsion, for some r E 1, 

but rx :/: 0. Then x itself is 1-torsion, and consequently x is ll-torsion. Thus there is a 

least positive integer m such that mx = O. We prove finiteness of M by showing that 

each element of M is of the form kx with k being a non-negative integer less than m. 

We first show that whenever e is a non-zero integer such that ¾ E 1, then e is relatively 

prime to m. Suppose now that the greatest common divisor of e and m is the positive 

integer c. Then m = nc and e = de for some n,d E 71. But now nx = .dmx = .d.Q = 0 e e , 

and due to minimality of m it follows !hat c = 1, and e is relatively prime to m. 

Now let s be an arbitrary element of 1. Then s can be written as a quotient of integers 

s = ¾ such that e is relatively prime to m. Thus there exists integers u, v such that 

eu + mv = 1. Thus s = au + ¾vm, and so sx = aux + ¾vmx, Since mx = 0, 

sx = aux. By the division algorithm au= qm + r, where q and r are integers with 

0 ~ r ~ m - 1. This yields sx = aux =rx and completes the proof of (b ). 

(c) We note that an element of M is 1-torsion if and only if it is 71-torsion. The finite

ness of T can now be proved by induction on the number of generators of M. If M is 

cyclic then by (b) above, T is finite. 
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Now let us assume that for an integer n, whenever a module is generated by a subset of 

fewer than n generators, then its torsion sub-module is a finite set. Suppose that M is 

generated by a subset S = { x1; x2; ... ; Xn }. Let M1 be the sub-module generated by 

{x1}. Then M/M1 is generated by n -1 elements. Thus M1 and M/M1 have finite 

torsion sub-modules T 1 and T 2 respectively. The rationalization functor is an exact 

functor. We obtain the commutative diagram below, in which the vertical arrows are the 

rationalizing homomorphisms. 

abelian groups. 

Thus the lower row is also a short exact sequence of 

M/M1 

l 1,3 

The kernel of a rationalizing homomorphism is precisely the torsion subgroup. Thus 1,1 

and 1,3 are t-monomorphisms, where t is the Serre class of finite abelian groups, see 

19.2(a). Thus, by 19.8, 1,2 is a t-monomorphism and consequently T is finite. This 

completes the induction and hence the proof of the finiteness of T for a finitely generated 

module M. 

The module M/T is torsion-free, and finitely generated since M is finitely generated. A 

proof that a finitely generated torsion-free module over a principal ideal domain is a free 

module ( of finite rank) can be found in [HH). 

(c) Let T be the torsion submodule of . M. Then aT c T, and a induces a 

homomorphism a 1 : T-+ T and an epimorphism a 2 : M/T-+ M/T. These fit into the 

exact ladder in diagram E below. 
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o-T -M -M/T-o 

-E- l l 
0 - T - M ---+ M/T - 0 

Since M/T is free of finite rank it follows by (a) that the epimorphism a2 is a 

monomorphism. By 14.4(b) it follows thus that a1 is an epimorphism. Since by (b), T 

is finite, it follows that a 1 is a monomorphism as well. By (a), a2 is an isomorphism. 

By the five-lemma it follows that a is an isomorphism. I 

Proof o/8.3. The lemma follows from 19.B(c).and by 19.3(b,c). I 
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20. LOCALIZATION OF I-CONNECTED SP ACES 

Phenomena in topology, related to classes of groups were discovered by Serre [Se]. The 

need for localizing maps for spaces, with respect to a given set of prime null!-bers, arose 

from the work [Se] of Serre. The first example of such a localizing map was exhibited by 

Sullivan [Su]. 

20.1 Notation 

Let us denote by P a fixed set of primes and by C the class of all torsion abelian groups 

with vanishing p-component for every p E P. In this section we use the P-localization 

theory 1-connected CW-complexes as presented in [HMR] to define a localization functor 

on the homotopy category hTop of pointed 1-connected spaces. 

Since we work with pointed spaces, constructions such as double mapping cylinders will be 

considered to be reduced. The compatibility of this approach with the adjunction theo

rems in Section 6, is attended to hi 6.9 - 6.11 . 

The P-localization endofunctor of the category H1 , of I-connected pointed spaces of the 

homotopy type of CW-complexes and pointed homotopy classes of maps, as discussed in 

[HMR; Chapter II] is denoted by £, and the natural transformation from the identity 

functor on H1 to £ is denoted by >.. The functor £ preserves P-torsion and anihillates 

P '-torsion. 

We show how £ and >. together with CW-approximation, gives rise to a functor Jl on 

hTop and a natural transformation µ from the identity functor of hTop to Jl, such that 

µ P-localizes homotopy groups. 
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20.2 The localization functor. For every I-connected space X we fix a CW-approxima

tion f X: X1--+ X and choose a representative g X: X1--+ X2 of >.(X). This provides 

us with a map i X : X--+ XA, where XA is the double mapping cylinder of the cotriad 

(J,g). The inclusion map i X is a cofibration. Given a map p: X--+ Y, we can choose 

a map P1 : X1--+ Y 1, unique up to homotopy, such that JY o p1 is homotopic to p o f X. 

Let p2 : X2--+ Y 2 be a representative of the homotopy class £(p1). Then diagram A is 

commutative. This provides us, see 6. 7, with a map pA : X A --+ YA. The homotopy class 

of PA is uniquely determined by that of p. 

gX JX 
X2 X1 X 

-A- I P2 I Pl Ip 
gY JY 

Y2 Y1 y 

For the homotopy class [p) of p, we choose Jl [p) to be the homotopy class of pA, and 

µ (X) to be the homotopy class of i X-. Then we have a functor . Jl on hTop , and a nat

ural transformation µ from the identity functor of hTop to Jl. Note that for any maps 

P,1 and P2 making diagram A homotopy commutative, diagram B is strictly commutative. 

-B-

iX X ----➔ 

p I 
iY 

Y----➔ 

20.3 Proposition. The natural maps i localize homotopy groups. 

Proof Let Z1 and Z2 be the mapping cylinders of JX and gX respectively. The push

out of the Top2-cotriad of diagram C is the inclusion map h: Z2--+ XA. 
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) 1 
Xi ------+ Xi 

-C- 1 l 
) 

By 6.8(c), the map h is a weak equivalence. The inclusion j: Xi-+ Z2 is a P-localizing 

map and therefore so is ho j. Furthermore JX is a weak equivalence and i X a JX is 

homotopic to h a j. Thus i X is a P-localizing map. I 

20.4 We now prove Lemma 8.4, the formulation of which is the following: 

Given any map p: X-+ Y between 1-eonnected spaces, we can factorize p as the 

composition of a P--€quivalence qi: X-+ Z followed by a fibration q2 : Z-+ Y with P

local fibres. 

Proof Consider the commutative diagram B. We form the mapping path fibration fac

torization of pA,. XA ~ W .. -2.t. YA. 

By 18.6 applied to the fibre homotopy sequence of s2, it follows that the fibres of s2 are 

P-local. We choose q2 to be the pull-back of s2 over i Y : Y -+ YA. The unique map 

cp such that p = q2 a cp, as guaranteed by pull-back, is taken as qi. 

iX 
X 

-D- h 
---------+W 

Comparison of the fibre homotopy sequences of q2 and s2 via the generalized five-lemma 

shows that h: Z-+ W is a P--€quivalence since the Top 2-morphism (h, i Y) : q2 -+ s2 is a 

P--€quivalence of fibres. Thus qi is a P--€quivalence. I 
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We require generalizations of the Hurewicz isomorphisms theorem and of the Whitehead 

theorem. We quote the following results without giving proofs. 

20.5 The generalized absolute Hurewicz isomorphism theorem [Hu; Theorem 8.1 p305). 

Let X be a I-connected space and let m ~ 2 be an integer. Suppose that 11"i (X) EC for 

all 1 < i < m. Then Hi (X) EC for all 1 < i < m and the Hurewicz homomorphism 

7rm (X) -+ Hm (X) is a C-isomorphism while 7rm+l (X)-+ Hm+l (X) is a C-epimorphism. ■ 

The localization theory admits a version of the generalized relative Hurewicz isomorphism 

theorems, stronger than [Hu; Theorem 9.1 p306]. It is interesting to note that at the time 

of publication of [Hu), the localization theory for spaces was not known yet. 

20.6 The generalized relative Hurewicz isomorphism theorem 

Let (Y,X) be a pair of 1---<:onnected spaces and let m ~ 2 be an integer. Suppose that 

7ri (Y,X) E C for each i in the range 1 < i < m. Then Hi (Y,X) E C for all 1 < i < m, 

and the Hurewicz homomorphism 7rm (Y,X)-+ Hm (Y,X) is a C-isomorphism. ■ 

From 20.6 we can deduce the generalized Whitehead theorem 20.7 below, just like [Hu; 

Theorem 10.1 p307] is deduced from [Hu; Theorem 9.1 p306]. We omit the proof. 

20. 7 The generalized Whitehead theorem 

Let f: X-+ Y be a map of I-connected spaces and let m ~ 2 be an integer. Then the 

folowing two conditions are equivalent. 

( 1) The homomorphism A : 7ri (X) -+ 7ri (Y) is a C-isomorphism whenever 1 < i < m 

and a C-epimorphism for i = m. 
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( 2) The homomorphism f*: Hi (X)--+ Hi (Y) is a C-isomorphism whenever 1 < i < m 

and a C-epimorphism for i = m. ■ 
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21. ADJUNCTION OF GENERALIZED n-EQUIV ALENCES 

Let P be a fixed set of primes. Adjunction of P-equivalences are commonplace in the liter

ature. We can mention for example (Sf3], (HR] and (G3]. The purpose of this section is to 

prove Theorem 8.5. The latter result is a variation of Theorem 6.3, replacing n-equivalence 

by (P ,n)-equivalences (for definitions see Section 8). 

Let C be the class of all torsion abelian groups with vanishing p-component for every prime 

p E P. By 1 we denote the subring of the rationals generated by the set {i: p is a prime 

and p ¢ P}. 

21.1 Proposition 

Let K be any Serre class of abelian groups. Suppose that in diagram A, /1 and g1 are 

cofibrations. 

-A-

Suppose further that the maps Pi induces !-isomorphisms in homology of all dimensions. 

Then the same is true for the push-out q of the Top2-cotriad of diagram A . 

Proof The maps (E1,Eo)-+ (E,E2) and (B 1,Bo)-+ (B,B2) of NDR-pairs are excisions. 

Thus, for every positive integer r, the homomorphisms 

are isomorphisms. From the ladder consisting of the exact homology sequences of the 

pairs (E1,Eo) and (B 1,Bo), it follows by the generalized five-lemma and our assumptions, 
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that Hr (E1,Eo)-+ Hr (Bi,Bo) is a ,t'-isomorphism for every positive integer r. Via the 

excisions then, Hr (E,E2)-+ Hr (B,B2) is a X-isomorphism for all r. In the homology 

ladder of the map of pairs (E,E2) -+ (B,B2), it follows by the generalized five-lemma that 

Hr (E).-+ Hr (B) is a ,t'-isomorphism for every positive integer r. I 

21.2 Proposition 

Suppose that in diagram A, the maps Pi are all P-equivalences. Then, 

(a) the map of double mapping cylinders p' : E'-+ B' is a P-equivalence. 

{b) if moreover f1 and 91 are cofibrations, the push-out p: E-+ B is a P-equivalence. 

Proof We prove (b) first. By the generalized Whitehead theorem, 20.7, each Pi is a C-

isomorphism of homology groups in all dimensions. By 21.1, for every positive integer r, 

p* : Hr (E)-+ Hr (B) is a C-isomorphism. The spaces E and B are !-connected. 

Again from 20.7, it follows that E-+ B is a P-equivalence. This proves {b). 

(a) Let p3 : E3-+ B3 be the map between mapping cylinders arising from with the Top2-

morphism (91,!1) : Po-+ Pt shown in Diagram A. Let 93 : Eo-+ E3 and h : Bo-+ B3 

be the inclusion maps. Then 93 and h are cofibrations and the map p' coincides with 

the push-out of the Top2-cotriad shown below. 

(9a,h) (91,!1) 
P3 ---- Po Pt 

Thus from (b) it follows that p' is a P-equivalence. I 

21.3 Remark. (a) Having the localization theory of Section 20, we can easily prove analo

gous to 16.5, the equivalence of the following three conditions for a map 

p: (X,A)-+ (Y,B) of pairs of !-connected spaces, and a positive integer n : 
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( 1) The map p: (X,A)--+ (Y,B) of pairs is a (P,n+l)-equivalence. 

(2) For the map A--+ BA of A into the inverse image of B with respect to the mapping 

path fibration, the homomorphism 7rr (A)--+ 7rr (B) is a C-isomorphism for 1 ~ r ~ n - 1, 

and a C-isomorphism for r = n. 

( 3) The Top2-morphism of inclusions from A-+ B to X--+ Y. is a (P,n)-equivalence of 

homotopy· fibres. 

The latter concept means that for the induced map H--+ K of homotopy fibres, the homo

morphism 1rr(H)--+ 7rr (K) is C-isomorphic for r ~ n-1, and C-epimorphic for r = n. 

Note that H and K may fail to be simply connected, but their fundamental groups are 

abelian, see 8.2(b ). 

(b) Suppose we have a commutative square such as diagram B below. We assume all 

spaces to be I-connected. Then the localization theory of Section 20 provides us with a 

box, diagram C, of which all faces other than the front face, are commutative. The front 

face is homotopy commutative. a= iX. 

u X u X 

l l l "'i /3 
l~a 

U1 I Xo 

V"' l ~"' 11 V y 

- B - -C - V1 . y 1 

We can replace 'Y by its mapping fibration and adjust the other two maps, a and /3, 

involved here. This yields a diagram D as shown below. Since i is a cofibration and 'YA 

is a fibration, by the homotopy lifting extension theorem, see [Wd; Theorem 7.16 on p35], 
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u X I 

I ""i §' I"' a -D- U1 1 X1 

V"" I ! "" I 1· 

V1 Y1 

we can replace the map 13', which make the front face homotopy commutative, by a map 

13- such that the front face is commutative and 13- is homotopic to 13' relative to U. 

But then the resulting box is strictly commutative and the map a' is a P-equivalence. ■ 

We now prove Theorem 8.5, the C-generalization of [M2; Theorem 1.2]. 

21.4 We repeat the formulation of Theorem 8.5. Let B be a space with open subsets V 1 

and V2 such that B = V1 u V2. Let us denote the set V1 n V2 by V0• Let p: E-+ B 

be a map, and for each i = {0, 1, 2}, let Ui = p1-1(Vi). Suppose that for each j E {1, 2}, 

(Uj,U o)-+ (Vj,Vo) is a (P,n+l)-equivalence. 

Then for each i E {O, 1, 2} the map (E,U i)-+ (B,V i) is a (P ,n+l)-equivalence. 

Proof of Theorem 8.5. From 21.3(b), for each j E {i, 2} the Top2-morphism from the 

object U 0 -+ Vo to Uj-+ Vj is a (P,n)-equivalence of homotopy fibres. We make the 

P-localizing construction for a map of pairs as discussed in 21.3 (b ). The processes for the 

two maps (Uj,Uo)-+ (Vj,Vo) can be done simultaneously. This yields a commutative 

diagram E in Top . 

-E-
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Since each of the slanted arrows in Eis a P-equivalence, by the generalized five-lemma it 

follows that the Top2 -morphism- from WO --+ Z0 to Wj --+ Zj is a (P ,n)-equivalence of 

homotopy fibres. The homotopy fibres of the maps qi are P-local. Therefore the (P ,n)

equivalence of homotopy fibres is in fact a n-equivalence of homotopy fibres. We apply 

Theorem 6.3 to the maps qi. This asserts that for each i E {O, 1, 2}, the Top 2 -morphism 

qi --+ q' ( q' : W' --+ Z' being the map of double mapping cylinders), is a n-equi valence of 

homotopy fibres. 

Each of the maps of double mapping cylinders U' --+ W' and , V' --+ Z' of the Top2-

cotriads in the top and bottom are P-equivalences by 21.2(a). Thus the Top2-morphism 

from the map of double mapping cylinders p' to q' is a P-equivalence of homotopy 

fibres. Thus for each i E {O, 1, 2}, the morphism Pi--+ p' is a (P ,n)-equivalence of 

homotopy fibres. 

Finally, the natural maps U' --+ E and V' --+ B are weak equivalences by 5.9 since the 

subsets Vi and U i are open. Thus for each i E {0, 1, 2}, the Top2 -morphism Pi--+ p 

is a (P ,n)-equivalence of homotopy fibres. Our result now follows by 21.3(a). I 



138 

Appendix : Toda's maps of reduced products of spheres 

This section is devoted to proving the result [T; 2.11] of Toda. The proof of this result is 

slightly more complicated and we have to employ cohomology and the Wang cohomology 

sequence of a fibration. Otherwise, the proof follows along the same lines as that of 

James's results in Section 13. We shall quote verbatim from [Wd] the theorem of Wang's 

cohomology sequence, A.I. The proof of this theorem is omitted, but we note that the 

proof in the given source is by fairly elementary methods. 

Let us fix a prime p. For an even integer k we let S be the k-dimensional sphere, and 

T the pk-dimensional sphere. For an integer q we denote by P q the set of all primes 

bigger than p(q + 1) -1 together with p. Let 1q be the subring of· Q generated by the 

reciprocals of the integers which are relatively prime to the elements of P q· Spaces and 

maps are considered to be pointed. 

Consider the following map, which is the composition of a collapsing map followed by a 

homeomorphism : 

We shall denote the spaces Sqp+p-i, Sqp-i and Sqpk by X, Y and Z respectively. Let 

h: X-+ Z be any map extending the map in (1) above. 

A.l Theorem [Wd; Corollary 1.2 p317] 

If p: E-+ sm is a fibration with fibre F, then for any abelian group g there is an exact 

sequence as below, in which i* is an injection. 
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The next result A.2, also quoted without proof from (Wd], is required to compute the inte

gral cohomology ring of Sr. We describe the cohomology in A.3 without showing the com

putations. 

A.2 Theorem (Wd; Theorem 1.12 p319] 

If in A.l, g is the additive group of a commutative ring with unit, then (Jt- is a derivation 

of the graded ring H* (F;g). ■ 

A.3 The cohomology of Sr (W d; 324-326] 

The abelian group H* (Srn) is freely generated by a set {x0, xi, x 3, ••• }, Xi E Hki(Srn) 

with x0 = 1, and the cup product multiplication ( • ), satisfies the relations : 

Xq • Xm = ( q + m ) Xq +m • 
q 

In particular, we have : x 1q = q! xq. For a positive integer r, the cohomology algebra of 

Sr is the quotient algebra obtained from H* (S ) by mapping every element of gradation 
(II 

bigger than rk onto zero. Thus the abelian group H* (S ) is freely generated by a set : 
. (II 

, satisfying similar (truncated) cup product identities. ■ 

A.4 Proposition 

The map r, : (X, Y) ---+ (Z,*) induced by h is a (P qp, ( q+ 1 )pk - 1 )-equivalence. 

Proof We can assume that h is a fibration with fibre F over * and such that Y c F . 

From 13.4 we know that r, is a (Pq, pqk + k -1)-equivalence. From this it follows that 

the inclusion Y c F is an (P q, pqk + k - 2)-equivalence. By the generalized Whitehead 

theorem, it follows that Hr (F;lq) = 0 whenever p( q - 1 )k + 1 $ r $ (pq + 1 )k - 2 . 
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In particular, Hqpk-1 (F;'lq) = 0 = Hqpk (F;'lq)- Thus by the universal coefficient theorem 

it turns out that Hqpk (F;'lq) = 0 . So for the injection 

z.,.,_ · H* (X·'l ' ----+ H* (F·'l ) • I q/ I q l 

we have that z.,.,_ (xqp) = 0. But then for every O < r < p, we have that ( qp + rt1 E 'lq. 

In particular, 

Xqp+l = (qp + lt1 
Xqp • X1, 

Furthermore since z.,.,_ is a ring homomorphism, z.,.,_ (xqp+i) = 0. Similarly, by induction 

we obtain z.,.,_ (xqp+r) = 0 whenever O < r < p. This means that z.,.,_ is the zero homomor

phism in dimensions qpk - 1 up to ( q + 1 )pk - 1. So the cohomology Wang sequence 

yields short exact sequences, 

for qpk S t S ( q + 1 )pk - 1. Since the 'lq-modules Ht (X, 1q) are free, the seque~ces are 

split and result in isomorphisms, 

The modules Ht-qpk (F;'lq) and Ht (X;'lq) are isomorphic and are finitely generated. 

Thus Ht-1 (F;'lq) = 0. So in the Wang cohomology sequence we have that 

a* · Ht-qpk ( F· 1 ) -+ Ht ( X· 1 ) 
. ' q ' q 

is an isomorphism. By the universal coeffici.ent theorem, it follows that 

is an isomorphism. Thus Ht-l (F;'l) = 0. So, 

Ht (F;'l) = 0 for ( q - 1 )pk + 1 S t < ( q + 1 )pk - 2 . 
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Again by the generalized Whitehead theorem, it follows that the inclusion map Y c F is a 

(P q, qpk + pk - 2)-equivalence, and our result follows. I 

From here on, the proof of Toda's result follows almost verbatim as did James's. We made 

a special case of James's since the proof of the latter does not require the cohomology 

algebra or the Wang exact sequence. 

A.5 Proposition 

Let /q : (X,Sp-i) -+ (T q,*) be any map extending the following map 

Sp -+ Sp / Sp-1 = T c T q. 

Then f is a P q-equivalence. ■ 



142 

REFERENCES 

[Ag] Aguade, J. Fiberings of spheres by spheres mod p. Quart. J. Math. Oxford 

(2) 31 (1980) 129-137. 

[An] Anderson, D.W. Fibrations and geometric realization. Bull. Amer. Math. 

Soc. 85 (5) (1978) 765-788. 

[AP] Arkhangel'skii, A.V. and Ponomarev, V.I. Fundamentals of General 

Topology, Problefns and Exercises. D. Reidel Publishing Company; 

Dordrecht Holland 1984. 

[Ba] Baues, H.J. Relative Homotopiegruppen bei Abbildungskegeln. Compositio 

Mathematica 32 (2) (1976) 193-183. 

(Br] Brown, R. Topology: A Geometric Account of General Topology, Homotopy 

Types and The Fundamental Groupoid. Ellis Horwood Limited; Chichester 

West Sussex England 1988. 

[BH] Brown, R. and Higgins, P.J., Colimit theorems for relative homotopy groups. 

J. Pure Appl. Alg. 22 (1981) 11-41. 

[BM 1] Blakers, A.L. and Massey, W.S. The homotopy groups of a triad II. Ann. of 

Math. 55 (2) (1952) 192-201. 

(BM2] Blakers, A.L. and Massey, W.S. Products in homotopy theory. Ann. of 

Math. 58 (2) (1952) 295-324. 

(CS] Cartan, H. and Serre, J .-P. Esp aces fibres et group es d1 homotopie I. Con

structions generales. C. R. Acad. Sci. Paris 234 (1952) 288-290. 

[CW] Caruso, J. and Waner, S. An approximation to nnEnx. Trans. Amer. 

(DKP] 

Math. Soc. 265 (1) (1981) 147-162. 

tom Dieck, T., Kamps, K. H. and Puppe, V., Homotopietheorie, Lecture 

Notes in Mathematics 157, Springer-Verlag Berlin 1970. 



143 

[DL] Dold, A. and Lashof, R. Principal quasifibrations and fibre homotopy 

equivalence of bundles. Illinois J. Math. 3 (1959) 285-305. 

[DE] Dyer, E. and Eilenberg, S. Globalizing fibrations by schedules. Fund. Math. 

130 (1988) 125-136. 

(Ed] Edwards, D.A. The shape of a map. Fund. Math. 96 (3) (1977) 195-210. 

(Ei] Eilenberg, S. On the relation between the fundamental group of a space and 

the higher homotopy groups. Fund. Math. 32 (1939) 167-175. 

[Fe] Ferry, S.C. U?--equivalent compacta. Lecture Notes in Mathematics 1283 

(1987) 88-114. 

[Fo] Fox, R.H. On homotopy type and deformation retracts. Ann. of Math. 44 

(2) (1943) 40-50. 

[G 1] Gray, B. Homotopy theory: An Introduction to Algebraic Topology. 

Academic Press; New York 1975. 

[G2] Gray, B. On the homotopy groups of mapping cones. Proc. London Math. 

Soc. (3) 26 (1973) 497-520. 

(G3] Gray, B. On the iterated suspension. Topology 27 (3) (1988) 301-310. 

[Ha] Hardie, K.A. Quasifibration and adjunction. Pacific. J. Math. 35 (1970) 

389-397. 

[HK] Hardie, K.A. and Kamps, K.H. Exact sequence interlocking and free 

homotopy. Cahiers de Topologie et Geometrie Diffe~entielle Categoriques 

Vol XXVI-1 (1985) 3-31. 

[HP] Hardie, K.A. and Porter, G.H. The slash product homotopy operation. Proc. 

London Math. Soc., third series 11 (3) (1961) 588-600. 

[HR] Hartley, B. and Hawkes, T.O. Rings, Modules and Linear Algebra. Chap

man and Hall Mathematical Series, Chapman and Hall Ltd.; London 1970. 



[HMR] 

[HR] 

[Hu] 

[HM] 

[Bh] 

[Hz] 

[Hr] 

; 144 

Hilton, P., Mislin, G. and Roitberg, J. Localization of nilpotent groups and 

spaces. North-Holland; 1975. 

Hilton, P., and Roitberg,. J. Note on quasifibrations and fibre bundles. 

Illinois J. Math. 15 (1) (1971) 1-8. 

Hu, S.-T. Homotopy theory. Academic Press; New York 1959. 

Hubbuck, J.R. and Mimura, M. The number of mod p A{p)-spaces. lliinois 

J. Math. 33 (1) (1989) 162-169. 

Huebsch, W. On the covering homotopy theorem. Ann. of Math. 61 (1955) 

555-563. 

Hurewicz, W. On the concept of a fibre space. Proc. Nat. Acad. Sci. U.S.A. 

41 (1955) 956-961. 

Husemoller, D. Fibre bundles. Graduate Texts in Mathematics 20, Springer

Verlag; New York, Heidelberg, Berlin 1975. 

James, I.M. Reduced product spaces. Ann. of Math. 62 (1955) 170-197. 

James, I.M. The suspension triad of a sphere. Ann. of Math. 63 (1956) 

407-429. 

[JT] James, I.M. and Thomas, E. An approach to the enumeration problem for 

non-stable vector bundles. Journal of Mathematics and Mechanics 14 (3) 

(1965) 485-506. 

[Ma] Massey, W .S. Algebraic Topology, an Introduction, ( 4th corrected printing). 

Graduate Texts in Mathematics 70, Springer-Verlag; New York 1977. 

[Mt] May, J.P. Classifying spaces and fibrations. Memoirs. Amer. Math. Soc. 

155; Providence 1975. 

[M2] May, J.P. Weak equivalence and quasifibration, Piccinini, R. (ed.), Groups 

of Self-Homotopy Equivalences and Related Topics, Lecture Notes in 

Mathematics 1425, Springer-Verlag; Berlin 1990. 



145 

{Mc] McCord, M.C. Singular homology groups and homotopy groups of finite 

topological spaces. Duke Mathematical Journal 33 (1966) 465--474. 

{Me] Meyer, J.-P. Bar and cobar constructions II. Journal •Of Pure and Applied 

Algebra 43 (2) (1986) 179-210. 

{Mi] Mimura, M. On the mod p H-structures of spherical fibrations. Manifolds 

Tokyo 1973, edited by Akio Hattori, Tokyo University Press; 1973. 

{Mo] Moore, J.C., Some applications ofhomology theory to homotopy theory. Ann. 

of Math. 58 (1953) 325-350. 

[MP] Morgan, C. and Piccinninni, R. Fibrations. Expo. Math. 4 (1986) 217-242. 

(Ms] Munkres, J.R. Topology1 a first course. Prentice-Hall Inc.; Englewood Cliffs 

New Jersey 1975. 

(N] Namioka, I. Maps of pairs in homotopy theory. Proc. London Math. Soc. 12 

(3) (1962) 725-738. 

(Po] Porter, R.D. Introduction to Fibre Bundles. Lecture Notes in Pure and 

Applied Mathematics Vol 31, Marcel Dekker, Inc.; New York, Basel 1977. 

(Pu] Puppe, V. A remark on homotopy fibrations. Manuskripta Math. 12 (1974) 

113-130. 

(Q 1] Quillen, D.G. Higher algebraic K-theory I. Lecture Notes in Mathematics 

Vol. 341, Springer-Verlag; Berlin (1973) 85-147. 

[Q2] Quillen, D.G. Homotopy Properties of the Poset of nontrivial p-Subgroups of 

. a Group. Advances in Math. 28 (1978) 101-128. 

(Ro] Rose, J.S. A Course on Group Theory. Cambridge University Press; 

London 1978. 

(Ru] Rutter, J. W. A homotopy classification of maps into an induced fibre space. 

Topology 6 (1967) 379--403. 

(Se] Serre, J .-P. Groupes d 1homotopie et classes de group es abeliens. Ann. of 

Math. 58 (2) (1953) 258-294. 



146 

[Sr] Spanier, E.H. Algebraic topology. McGraw Hill Inc.; New York 1966. 

[Ss] Srinivas, V. Algebraic K-theory. Progress in Mathematics Volume 90, 

Birkhauser; Boston, Basel, Berlin 1991. 

[Sf1] Stasheff; J.D. A classification theorem for fibre spaces. Topology 2 (1963) 

239-246. 

[Sf2] Stasheff, J.D. Homotopy associativity of H-spaces I. Trans. Amer. Math. 

Soc. 108 (1963) 275-292. 

[Sd1] Steenrod; N.E. The classification of sphere bundles. Ann. of Math. 45 (1944) 

295-311. 

[Sd2] Steenrod, N.E. The topology of fibre bundles. Princeton Univ. Press; 

Princeton New Jersey 1951. 

[Sd3] Steenrod, N.E. A convenient category of topological spaces. Michigan Math. 

J. 14 (1967) 133-152. 

[Sa] Suga war a, M. On a condition that a space is an H-space. Math. J. 

Okayama Univ. 6 (1957) 109-129. 

[Sn] Sullivan, D. Geometric topology part I1 Localization1 Periodicity1 and Galois 

symmetry1 MIT (June 1970), (mimeographed notes) 

[Sw] Switzer, R.M, Algebraic Topology - Homotopy and Homology, Springer

Verlag, Berlin and New York 1975. 

[T] Toda, H. On the double suspension E2• J. Inst. Poly. Osaka City Univ. 7 

(1956) 103-145. 

[Wa] Waner, S. Equivariant classifying spaces and fibrations. Trans. Amer. Math. 

[WW] 

Soc. 258 (2) (1980) 385-405. 

Weidner, M. and Welker, V. The combinatorics and the homology of the 

poset of subgroups of p-power index. Journal of PUie and Applied Algebra 

90 (1993) 253-274. 



147 

{Wd] Whitehead, G.W. Elements of homotopy theory. Graduate Texts m 

Mathematics 61, Springer-Verlag; New York 1978. 

(W1] Whitehead, J.H.C. Simplicial spaces, nuclei and m-groups. Proc. London 

Math. Soc. 45 (2) (19~9) 243-327. 

[Wy]· 

[Wong] 

Whitehead, J.H.C. The Mathematical Works of J.H.C. Whitehead, vol II: 

Complexes and manifolds. Pergamon Press; London, New York 1962. 

Whitney, H. Sphere spaces. Proc. Nat. Acad. Sci. USA 21 (1935) 464-468. 

Wong, Shiu-chun. The fibre of the iterated Freudenthal suspension. Math. Z. 

215 (1994) 377-414. 


	Blank Page



