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Abstract

Recent literature in the field of quantitative finance has employed machine learning
methods to speed up typical numerical calculations including derivative pricing,
fitting Greek profiles, constructing volatility surfaces and modelling counterparty
credit risk, to name a few. This dissertation aims to investigate the accuracy and ef-
ficiency of Gaussian process regression (GPR) compared to traditional quantitative
pricing algorithms. The GPR algorithm is applied to pricing a down-and-out bar-
rier call option. Notably, Crépey and Dixon (2019) propose an alternative method
for computing the Gaussian process Greeks by directly differentiating the GPR op-
tion pricing model. Based on their approach, the GPR algorithm is further extended
to compute the delta and vega of the option. Numerical experiments display that
option pricing accuracy scores are within a tolerable range and demonstrate in-
creased speed of considerable magnitudes with speed-up factors in the 1 000s.
Computing the Greeks convey favourable computational properties; however, the
GPR model struggles to obtain accurate predictions for the delta and vega. The
trade-off between accuracy and speed is further investigated, where the inclusion
of additional GPR input parameters hinder performance metrics whilst a larger
training data set improves model accuracy.
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Chapter 1

Introduction

Calculations based on traditional methods in financial modelling are often compu-
tationally expensive. For example, though Monte Carlo (MC) simulations have the
advantage that the order of error is independent of dimension, MC estimates tend
to exhibit poor accuracy relative to other quantitative methods. This may be im-
proved by increasing the sample size; however, it comes at the expense of increased
computational burden and consequently requires variance reduction techniques.
In contrast, finite difference schemes are accurate but time consuming when the
dimension of the problem increases. Over time, pricing models and instruments
have also become more complex and may be nontrivial to evaluate. Thus, in prac-
tice, MC simulations are often relied upon.

Through recent advances, the application of machine learning (ML) has been
made possible across a broad spectrum of industries, not least the finance indus-
try. ML has become an actively researched field where literature suggests that its
implementation can address and improve the accuracy and efficiency of traditional
quantitative problems (De Spiegeleer et al. (2018)). More specifically, ML techniques
have been applied to computationally expensive and challenging problems such as
modelling counterparty credit risk, constructing implied volatility surfaces, fitting
sophisticated Greek profiles, as well as pricing derivatives (Dixon et al. (2020)).

The focus of this research paper is to investigate the efficacy of Gaussian process
regression (GPR) applied to option pricing and estimating sensitivity measures.
GPR, also referred to as ”kriging”, is a supervised non-parametric Bayesian ML
technique. Unlike most ML methods which parameterise exact model values, the
Bayesian approach infers a probability distribution over all possible values or func-
tions hence, the name non-parametric. Furthermore, these methods seek to best fit
a labelled training data set, known as supervised learning, by constructing a map-
ping or learning function whilst still maintaining its flexibility to enable the model
to generalise unseen data.
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Often, the motivation for implementing GPR, rather than frequentist ML meth-
ods, such as support vector machines or artificial neural networks, is that the re-
gression model provides probabilistic bounds so that uncertainty in the predic-
tions can be quantified. Additionally, GPR requires much less data for training
when compared to alternative deep learning techniques (Rasmussen and Williams
(2006)). Versatility in the selection of kernels also allows for effective hyperpa-
rameter optimisation. Like many ML algorithms, GPR can be efficiently imple-
mented using readily available support structures and open-source ML libraries
such as scikit-learn and GpyTorch (Dixon et al. (2020). Furthermore, markets are of-
ten modelled with a limited set of parameters; namely, volatility, dividend yields,
and interest rates. In the context of ML, this is ideal since one of the main factors
which hinders model efficiency are the number of input parameters. The training
time scales poorly as the dimension of the training set increases (De Spiegeleer et al.
(2018)).

The principal aim of this dissertation is to implement and evaluate the perfor-
mance of GPR applied to option pricing and Greek estimation, and compare its
results to classical quantitative methods namely, MC simulation. To demonstrate
the efficacy of the ML algorithm, we price a computationally expensive option,
specifically a down-and-out barrier call option, in the GPR framework. Tradition-
ally, barrier options may prove to be computationally heavy using standard pricing
algorithms such as MC simulation.

This dissertation begins with a brief overview of ML fundamentals. The Gaus-
sian process regression framework is thoroughly investigated before a review of
GPR as seen in recent literature is presented. To demonstrate and solidify its key
theoretical concepts, a preliminary example of GPR applied to a vanilla call option
in the Black-Scholes framework is discussed. The GPR pricing algorithm is investi-
gated in both the Black-Scholes and the Heston model, where the requisite mathe-
matical theory of computing option prices and estimating sensitivity measures are
considered in both frameworks. Given that barrier options are particularly sensi-
tive to volatility, pricing in a stochastic volatility model is more appropriate. Subse-
quently, to demonstrate the efficacy of the regression model, the results of a down-
and-out barrier call option are analysed under the GPR framework and compared
to traditional MC methods. Finally, concluding remarks are given.



Chapter 2

Gaussian Process Regression

This chapter aims to provide the necessary mathematical framework and theoreti-
cal background of GPR. First, to highlight it key concepts, a fundamental overview
of machine learning is presented. Thereafter, the theory of GPR is adapted from the
seminal book, Gaussian Processes for Machine Learning by Rasmussen and Williams
(2006). Finally, applications of GPR in quantitative finance as seen in recent liter-
ature are reviewed, accompanied by preliminary examples to illustrate the theory
presented in this chapter.

2.1 Machine Learning Fundamentals

Applications of ML have been employed across a range of industries, from typical
classification, regression, anomaly detection, and speech recognition problems, to
MRI registration and segmentation applications in the medical field.

ML algorithms typically require a training (in-sample) and a testing (out-of-
sample) data set. A model learns from the training data whilst the testing set serves
as a measure to validate the performance of the model. More specifically, the val-
idation process allows one to quantify a model’s ability to generalise new and un-
seen data. Broadly speaking, ML can be categorised into supervised and unsuper-
vised learning. Supervised learning algorithms involve applications in which the
training data set comprises an input feature matrix, X , along with corresponding
target outputs, y (Bishop (2006)). However, in unsupervised learning problems, the
training set is unlabelled, only containing the feature matrix, X .

The quality and quantity of data sets play an integral role in the performance
of ML algorithms. The model will not perform well if it learns from a poor quality
training set. Data which is non-representative, polluted with irrelevant features,
has insufficient sample points, or contains many outliers and errors will result in
an inadequate model (Géron (2019)).
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The manner in which ML models fit the testing data gives rise to two key con-
cepts namely, overfitting and underfitting. Overfitting refers to models which per-
form well on training data but cannot generalise unseen data, i.e. has a low training
error and a high generalisation error. One of the most common ways to reduce the
risk of overfitting is to ensure that the model trains on sufficient data. Additionally,
regularisation techniques may be implemented to alleviate the effects of overfitting.
Conversely, underfitting occurs when a model is too simple to learn the underlying
data structure. This is evident when the ML algorithm exhibits both a high training
and generalisation error (Géron (2019)). Figure 2.1 provides a simple example to
illustrate the concepts of underfitting and overfitting.

Fig. 2.1: Visual representation of an underfit, optimally fit and overfit ML model,
reproduced from Badillo et al. (2020).

The free parameters of the algorithm control the learning process and are tuned
to obtain an ideal set of hyperparameters. This is referred to as hyperparameter
optimisation, the process of minimising the loss function. Common approaches
include gradient descent, Bayesian optimisation and grid search algorithms. Con-
sidering the key points highlighted in this brief overview, the importance of data
structure, appropriate model selection and effective hyperparameter optimisation
cannot be overstated in developing a competent ML algorithm.

We end this section with the following quote which encapsulates the essence of
what ML algorithms seek to achieve.

A computer program is said to learn from experience E with respect to some task T and
some performance measure P, if its performance on T, as measured by P, improves with ex-
perience E.

— Tom Mitchell, 1997
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2.2 Rudimentary GPR Framework

A Gaussian process (GP) is a stochastic process defined as a collection of random
variables, any finite number of which has a joint Gaussian distribution (Rasmussen
and Williams (2006)). It is completely defined by its mean function, m(x), and
covariance function, K(x, x′), and can be expressed as

f(x) ∼ GP
(
m(x),K(x, x′)

)
,

where the covariance function or kernel, K, is restricted to be any symmetric pos-
itive definite function 1. Unless otherwise specified, convention in literature is to
assume a zero mean function hence, f(x) ∼ N (0,K(x, x′)).

Consider a labelled training dataset {(X,y) = (xi, yi) | i = 1, . . . , n} where
n is the number of observations, xi is a d−dimensional input vector and yi is the
corresponding target output. GPR ultimately seeks to find the relation between the
inputs and outputs which is achieved by learning a model

yi = f(xi) + εi,

where f(x) is a GP. The term εi ∼ N (0, σ2n) represents additive i.i.d. Gaussian noise
since it is typical to assume some noise in the observations, with known variance
σ2n, to allow for more realistic modelling. Therefore, the idea of GPR is to induce
a posterior distribution over all latent functions in the function space without pa-
rameterising a map (Dixon et al. (2020)).

Now, consider a matrix of zero mean test inputs, X∗, and its corresponding test
outputs, f∗. The joint prior distribution of the training, y, and test, f∗, outputs are
Gaussian and are given by[

y

f∗

]
∼ N

(
0,

[
K(X,X) + σ2nI K(X,X∗)

K(X∗, X) K(X∗, X∗)

])
,

where K(X,X) is the matrix with (i, j)−entry k(xi, xj) etc. For completeness, note
that y = f when the observations are ’clean’, i.e. when the noise variance σ2n = 0

(De Spiegeleer et al. (2018)). Furthermore, K(X,X∗) is an n × n∗ matrix where
n∗ denotes the number of test points. Following the notation of Rasmussen and
Williams (2006), the predictive distribution is obtained by conditioning the joint
prior on the observations given by

f∗|X,y, X∗ ∼ N
(
E [f∗|X,y, X∗] ,Var [f∗|X,y, X∗]

)
, (2.1)

1 A function k(x, x′) is symmetric positive definite iff for any x1, . . . xn, the matrix (k(xi, xj))ij is
symmetric positive definite for any n.
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where

E [f∗|X,y, X∗] = K(X∗, X)
[
K(X,X) + σ2nI

]−1
y, (2.2)

Var [f∗|X,y, X∗] = K(X∗, X∗)−K(X∗, X)
[
K(X,X) + σ2nI

]−1
K(X,X∗). (2.3)

Equation (2.2) represents the predicted values of f∗ for inputs X∗ while equation
(2.3) quantifies the uncertainty in these predictions. Importantly, in the context of
this dissertation, equation (2.2) represents the GP regressed option prices. The func-
tion values f∗ can be sampled from the joint posterior distribution by evaluating
the above mean and covariance functions and generating multivariate Gaussian
samples (Rasmussen and Williams (2006)). Note that the posterior distribution is
given by the well-known Bayes’ Theorem

posterior =
likelihood× prior

marginal likelihood
.

2.2.1 The Kernel Function

At the core of obtaining an effective GPR model is finding a suitable kernel function
which models the covariance between distributed data points. A popular choice of
covariance function is the squared exponential (SE) kernel which is an example of
a radial basis function (RBF). In one dimension, the SE kernel is given by

K(x,x′) = σ2f exp

(
− 1

2l2
||x− x′||2

)
+ σ2nδxx′ , (2.4)

where δxx′ is the Kronecker delta. The free parameters of kernel function (2.4) are
the signal variance σ2f , noise variance σ2n and length-scale l. One may also combine
various kernels 2 to create hybrid kernel functions. In addition to providing more
realistic predictions, incorporating a strictly positive noise variance also ensures
that matrix K(X,X) + σ2nI is non-singular (De Spiegeleer et al. (2018)). It prevents
potential numerical issues during the learning process by ensuring that a positive
definite matrix is formed.

Figure 2.2 provides an illustrative example of five random functions drawn
from a GP prior and GP posterior. The prior distribution is conditioned on six
noise-free observations and a SE kernel function is used. In each plot, the shaded
regions correspond to a 97.5% confidence interval.

2 Refer to Rasmussen and Williams (2006) for additional choices of kernel functions which include
the Matérn, γ−Exponential and Rational Quadratic function.
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Fig. 2.2: Prior (left) and posterior (right) distributions.

2.2.2 Hyperparameter Tuning

Kernels such as the RBF are parameterised by varying the free parameters. Follow-
ing Rasmussen and Williams (2006), these parameters can be calibrated to fit the
data by optimising the log marginal likelihood of the data,

log p(y|X,θ) = −1

2
yT
(
K(θ, X,X)+σ2nI)−1

)
y−1

2
log det

(
K(θ, X,X) + σ2nI

)
−n

2
log 2π.

This expression is conditioned on the hyperparameters, θ, which is now explicitly
shown with respect to the kernel function. Note that the hyperparameters for a RBF
kernel are defined by θ = [σf , σn, l]. The first term, which contains the observed
targets y, can be interpreted as how well the model fits the data, the second as the
complexity penalty and the third as the normalisation constant (Rasmussen and
Williams (2006)). For simplicity, define K := K(X,X) + σ2nI . Recall that K is
the covariance matrix for noisy training targets y. To estimate the parameters, the
method of maximum likelihood estimation is used where the partial derivatives
with respect to the hyperparameters, θj , is given by

∂

∂θj
log p(y|X,θ) =

1

2
yTK−1

∂K

∂θj
K−1y − 1

2
tr

(
K−1

∂K

∂θj

)
, (2.5)

where tr is the trace of the square matrix. In practice, equation (2.5) is substituted
into a gradient descent algorithm to minimise the negative log marginal likelihood.
It is important to note that generally, log p(y|X,θ) is often a non-convex function
and may suffer from multiple local minima (Bishop (2006)).

2.2.3 Computational Properties

The training time required for maximising the marginal likelihood scales poorly
with the number of observations n since it requires the inversion of the n × n ma-
trix K (Crépey and Dixon (2019)). This is one of the main sources of inefficiency
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and computational complexity of GPR. As the number of observations increase,
the data becomes more informative; however, this comes at the expense of esca-
lated training time. Standard algorithms for inverting the n × n positive definite
covariance matrix incurs O(n3) complexity. However, once K−1 is known, real-
time predictions are faster and are performed in O(n2) (Rasmussen and Williams
(2006)). Even though the training process is time-demanding, the model need only
be trained once for a particular application. Thereafter, predictions for a new set of
inputs are computed much faster.

2.3 Literature Review of GPR in Derivative Pricing

2.3.1 Option Pricing and Greek Estimation

GPR applications are particularly useful for estimating exotic type options which
are computationally expensive and do not have analytical solutions. Additionally,
given that accurate and efficient Greek computations play a vital role in effective
risk management, GPR may also be applicable to estimating sensitivity measures.
As markets move, there is a constant need for model calibration, hedge positions
and risk metrics to be accurately and efficiently determined.

In the context of option pricing, input parameters to the GPR model can either
be empirical market data (e.g. JSE/FTSE All Share Index) or standard quantita-
tive pricing algorithms (e.g. MC estimates) which are simulated under a specified
market model to obtain the target outputs. Each input parameter (e.g. strike, risk-
free rate, volatility etc.) in the feature matrix X is a vector with a specified range
of values. The vector y corresponds to target outputs which are obtained from
a particular combination of input parameters. Once the GPR model is trained,
E [f∗|X,y, X∗] in the predictive distribution expression (2.1) represents the GP re-
gressed option prices and Var [f∗|X,y, X∗] quantifies the uncertainty in these pre-
dictions (Dixon et al. (2020)).

A study presented by De Spiegeleer et al. (2018) applies GPR to fast derivative
pricing, fitting Greek profiles and summarising implied volatility surfaces. GPR
is implemented to price European, American and barrier options where numerical
experiments demonstrate speed-ups of several magnitudes relative to standard,
classical pricing methods. The GPR algorithm is further applied to Greek estima-
tion, in particular, fitting the gamma profile of a cliquet option under the Heston
model where accuracy losses are observed to be within a tolerable range.

Crépey and Dixon (2019) develop an application of GPR for computing sensitiv-
ity measures which involves differentiating the kernel function. Therefore, it does
not require any retraining of the algorithm as the GP Greeks are directly obtained
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through differentiation. In particular, the authors investigate first order Greeks for
a call option where the GP estimates are observed to closely track the Black-Scholes
estimates. The analytical form of the GP Greeks proposed by Crépey and Dixon
(2019) is expressed as

∂X∗E [f∗|X,y, X∗] = ∂X∗µX∗ + ∂X∗K(X∗, X)
[
K(X,X) + σ2nI

]−1
y, (2.6)

where the derivative is with respect to the test set variables. Recall that µX∗ is
usually set to zero therefore, ∂X∗µX∗ becomes null. Equation (2.6) can be differenti-
ated once more with respect toX∗ to obtain second order sensitivities. Importantly,
the squared exponential kernel function, denoted by equation (2.4), is infinitely
differentiable hence, its partial derivatives are easily computed. Regarding com-
putational complexity, Crépey and Dixon (2019) note that calculating the Greeks
imposes no significant additional computational burden since [K(X,X) + σ2nI

]−1
was already computed during the GPR option pricing learning process.

2.3.2 Further Applications in Quantitative Finance

Thus far, emphasis was placed on the applications of GPR in the context of general
option pricing and fitting Greek profiles. However, it is worth mentioning imple-
mentations of GPR in other areas of quantitative finance seen in recent literature.

In addition to pricing and Greeking, Crépey and Dixon (2019) consider a portfo-
lio risk valuation problem where GPR is applied to estimating counterparty credit
risk metrics, namely CVA. Modelling counterparty risk can be particularly chal-
lenging as it requires all trades associated with each counterparty to be simulta-
neously evaluated under both market and credit risk. The authors implement a
multi-Gaussian process (multi-GP) regression approach which advances the work
of De Spiegeleer et al. (2018) who limit their scope to single instrument pricing and
do not consider portfolio aspects. The multi-GPs approach infers derivative prices
in a portfolio of instruments. Numerical experiments demonstrate favourable ac-
curacy and convergence properties for CVA computations when compared to a
nested MC method.

Goudenège et al. (2019) employ GPR to price and compute the deltas for a Guar-
anteed Minimum Withdrawal Benefit (GMWB) Variable Annuity (VA) product un-
der the Heston Hull-White model, which considers both stochastic volatility and
stochastic interest rates. Numerical experiments indicate that GPR is effective for
computing both price and sensitivity estimates. Furthermore, the authors conclude
that even though their analysis was carried out for a GMWB VA, the methodology
can generalise other insurance products, particularly other types of VA contracts.
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Lastly, Goudenège et al. (2020) propose two techniques namely, GPR-Tree and
GPR Exact Integration (GPR-EI), to price American basket options under the multi-
dimensional Black-Scholes and rough Bergomi models. Option prices are com-
puted on the exercise dates and is the maximum between the exercise and contin-
uation values. The two GPR approaches are used to approximate the continuation
value. Both methods are upgrades from the GPR-Monte Carlo approach where
the MC based computations are replaced with a tree step and an exact integration
step respectively. Experiments demonstrate that accuracy scores are reliable and
computational efficiency is improved. The GPR-Tree method is efficient when the
dimension or the number of assets d ≤ 10 and is applicable for dimensions up to
d = 20. The GPR-EI technique is particularly flexible and displayed favourable
computational properties. Both methods address the issue of the curse of dimen-
sionality.

2.4 Preliminary Examples

To solidify the theory discussed in this chapter, we present preliminary examples of
GPR applied to pricing a simple European call (EC) option as well as the delta and
vega in the Black-Scholes framework. Standard vanilla options play an important
role in hedging and model calibration, and also form part of the building blocks in
constructing structured products.

The GPR option pricing model is trained using an RBF kernel. We consider a
two-dimensional case where the strike, K, and the volatility, σ, are the only input
parameters which constitute the training and test sets. We begin by creating 600

samples of Black-Scholes call option prices using the well-known equation (2.7)
given below

C = SΦ(d1)−Ke−rTΦ(d2), (2.7)

where

d1 =
log
(
S
K

)
+
(
r + 1

2σ
2
)
T

σ
√
T

,

d2 = d1 − σ
√
T .

The analytical formula for the Black-Scholes delta and vega are given by

∆ :=
∂C

∂S
= Φ(d1),

ν :=
∂C

∂σ
= Sφ(d1)

√
T ,

(2.8)
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where Φ(·) and φ(·) are the standard normal cumulative distribution and probabil-
ity density function respectively. The data set comprises 500 samples of training
data, which are uniformly sampled over a specified range, and 100 samples of test-
ing data. Table 2.1 summarises the model input parameters. Figure 2.3 displays
the corresponding results, accompanied by tables 2.2 and 2.3 which present the
performance metrics for both in-sample and out-of-sample predictions.

S 1 ntrain 500 Ktrain 60% −→ 160%

r 3.5% ntest 100 Ktest 70% −→ 150%

T 1 σtrain 10% −→ 60%

σtest 20% −→ 50%

Tab. 2.1: Summary of model input parameters.

The performance metrics summarised in table 2.2 and 2.3 quantify the mean ab-
solute error (MAE), average absolute error (AAE), root mean square error (RMSE)
and coefficient of determination (R2) for the GP option price, delta and vega. Defi-
nitions for the aforementioned metrics can be found in section 4.1. Figure 2.3 illus-
trates the GP model results and its accompanying error plots. The GP call out-of-
sample option prices display the most accurate results. The error term peaks when
the strike is approximately 115%. The GP delta and option price display similar
error profiles. Furthermore, they both demonstrate R2 scores of approximately 1

which indicates that regression predictions almost perfectly fit the data. The GP
vega exhibits the least accurate results, displaying that the error term peaks for
lower volatility values. Given the results, one should bear in mind that the train-
ing set was only two dimensional and quite small, as S, r and T were kept con-
stant. This was merely an illustrative example to demonstrate the mechanics of
GPR applied to option pricing and Greeking. We reiterate that the GP sensitivities
are computed directly from equation (2.6) and not by retraining the model on data
comprised of the BS Greeks.

EC Option Price
In-sample Out-of-sample

MAE 1.777× 10−2 5.871× 10−3

AAE 2.873× 10−3 2.409× 10−3

RMSE 4.037× 10−3 2.910× 10−3

R2 0.9999 0.9982

Tab. 2.2: GPR model performance metrics for the EC option.



2.4 Preliminary Examples 12

∆ ν

MAE 1.305× 10−2 2.797× 10−2

AAE 6.399× 10−3 7.093× 10−3

RMSE 7.427× 10−3 1.025× 10−2

R2 0.9988 0.9882

Tab. 2.3: Performance metrics for the GP Greeks: delta & vega.

Fig. 2.3: GPR model out-of-sample results (left) and their accompanying error plots
(right) for a BS call option price, delta (∆) and vega (ν).



Chapter 3

Mathematical Preliminaries

3.1 The Models

The principal aim of this research is to implement and evaluate the performance of
GPR applied to option pricing and Greek estimation, and compare results to tra-
ditional quantitative methods. In particular, this dissertation aims to highlight the
efficacy of GPR when applied to computationally expensive quantitative finance
problems, such as pricing and hedging path-dependent options. To demonstrate
this, a down-and-out barrier call option (DOC) is priced in both the Black-Scholes
and Heston models. The Black-Scholes model will serve to provide benchmark re-
sults since a closed-form solution exists within this framework. Furthermore, given
that barrier options are particularly sensitive to volatility, pricing under a stochastic
volatility model, such as Heston, is more appropriate. A more detailed discussion
on barrier options is presented in section 3.2.1.

3.1.1 The Black-Scholes Model

In practice, the Black-Scholes model is the industry standard for option pricing.
However, it is well-known that the model presents certain limitations; namely,
the assumptions of constant volatility and constant short rate. Furthermore, stock
prices are assumed to follow geometric Brownian motion (GBM). The risk-neutral
dynamics are given by the stochastic differential equation (SDE)

dSt = rStdt+ σStdW
Q
t ,

where Wt is a standard Brownian motion under the risk-neutral measure Q. The
risk-free rate, r, and volatility, σ, are constants. The Black-Scholes framework is
widely used in practice since prices can be easily computed. These may serve as
a useful approximation to reality given that practitioners wholly understand the
limitations which the model presents.
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3.1.2 The Heston Model

To address the shortcomings presented by the Black-Scholes model, namely the un-
realistic assumption that the volatility is known and constant, the Heston stochastic
volatility model is used to describe the market. The risk-neutral dynamics of the
Heston (1993) model are given by the following SDEs

dSt = rStdt+
√
νtStdW

Q(1)
t ,

dνt = κ(θ − νt)dt+ σ
√
νtdW

Q(2)
t ,

(3.1)

where r is the risk-free rate, κ is the rate of mean-reversion of the variance to the
mean reversion level θ, σ is the volatility of the variance and W

Q(1)
t and W

Q(2)
t are

correlated Wiener processes with dW
Q(1)
t dW

Q(2)
t = ρdt. The variance process, νt,

mean reverts at a rate of κ > 0 to a mean reversion level θ > 0. The model has
an additional source of correlated randomness between the stock price process, St,
and the volatility, νt, to generate the volatility skew or smile that is observed in
practice (Heston (1993)).

3.2 Option Pricing

3.2.1 Analytical Solution of Barrier Options

Barrier options are a type of exotic path-dependent option, whose payoff depends
on whether the underlying crosses a boundary level before expiration. They offer
cheaper premiums than standard vanilla options, which contributes to their popu-
larity. This is apparent from the in-out parity relationship1 given by

down-and-in + down-and-out = vanilla option.

The four main types of single barrier options are down-and-in, down-and-out,
up-and-in and up-and-out, each with either a call or put feature. This dissertation
will focus on pricing DOC options which is a call option that becomes nullified if
the price of the underlying falls below a certain boundary level at anytime before
the expiry time T . The payoff of the option for some barrier L < K is given by

CDO
T = (ST −K)+I{inft≤T St>L}.

Merton (1973) derived an analytical solution for DOC options by risk-neutral val-
uation, from which the market for barrier options gained much traction. In the

1 This parity relationship is true for both call and put options as well as up-and-in/out barrier
options.
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Black-Scholes model, the closed-form solution may be expressed as

C = SΦ(d1)−Ke−rTΦ
(
d1 − σ

√
T
)
− SΦ(d2)

(
L

S

)2(µ+1)

+Ke−rTΦ
(
d2 − σ

√
T
)(L

S

)2µ

,

where

µ =
r − σ2/2

σ2
,

d1 =
log(S/K)

σ
√
T

+ (1 + µ)σ
√
T ,

d2 =
log
(
L2/(SK)

)
σ
√
T

+ (1 + µ)σ
√
T .

Importantly, barrier options are particularly sensitive to volatility; a higher volatil-
ity will decrease the price of knock-out options since the underlying is more likely
to dip below the boundary level. Conversely, an increase in volatility will result in
an increase in the value of knock-in options as it is more likely that the underlying
will reach the boundary level (Chiarella et al. (2012)). Therefore, it is more realistic
to model barrier options in the presence of stochastic volatility. Hence, the DOC
option will be priced in both the Heston model, to provide more realistic pricing
and the Black-Scholes model, given that an analytical solution exists.

3.2.2 Monte Carlo Pricing

In theory, Monte Carlo methods rely on risk-neutral valuation. First, n indepen-
dent random price paths of the underlying process {Xt}0≤t≤T are simulated. For
each sample path, the associated payoff of the option, f , is computed. Finally, the
discounted value of the risk-neutral expectation is calculated and the time t = 0

price of the option is given by

e−rTEQ [f (X)] ,

where X ∼ ω is a sample path and ω is a probability density function. Hence, the
MC estimate is computed as

Ŷ :=
1

n

n∑
i=1

f (Xi)
a.s.−−→ EQ [f (X)] as n −→∞,

where Xi, . . . , Xn are drawn from ω. The justification for the above estimator fol-
lows from the strong law of large numbers.

In the case where one is unable to directly simulate the process {Xt}0≤t≤T , an
approximation must be used. It is possible to apply Itô’s Lemma to directly solve
for St for the Black-Scholes SDE. However, in the Heston model, it is necessary
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to utilise a numerical approximation to obtain paths for the SDEs. Following the
methodology seen in Rouah (2013), this dissertation will focus on the Milstein dis-
cretisation scheme to approximate equation (3.1). Thus, the discretised stock pro-
cess, {St}0≤t≤T , and variance process, {νt}0≤t≤T , are given by

Si =

S0 if i = 0,

Si−1 exp
((
r − 1

2νi−1
)

∆t+
√
νi−1
√

∆tZs,i

)
if i > 0,

where

νi =

ν0 if i = 0,(
νi−1 + κ (θ − νi−1) ∆t+ σ

√
νi−1
√

∆tZν,i + 1
4σ

2
(
Z2
ν,i − 1

)
∆t
)+

if i > 0.

and Zs,i, Zν,i are standard normal random numbers with correlation ρ. The in-
terval [0, T ] is partitioned into N subintervals of length ∆t = T

N . Furthermore, a
truncation scheme is used to ensure positive variance.

3.3 The Greeks

The ability to accurately and efficiently calculate the Greeks are arguably as im-
portant as option pricing given the key role it plays in effective risk management.
MC methods for estimating sensitivity measures include finite-difference approxi-
mations, pathwise derivatives and likelihood-ratio methods, each of which present
their own caveats. Though the pathwise method is an unbiased estimator, it re-
quires the following interchange between expectation and derivative to hold

∂

∂x
E [f(·)] = E

[
∂

∂x
f(·)

]
This interchange is only justified if the payoff function f(·) is Lipschitz continuous
(Glasserman (2013)). The payoff of barrier options are dependent on whether the
stock reaches a certain boundary level before maturity and are subject to knock-
in or knock-out conditions. Therefore, barrier options have discontinuous payoffs
and may first require its payoff to be approximated through a smoothing func-
tion before applying the pathwise method. Contrarily, likelihood-ratio methods
are unaffected by the form of the payoff function; however, the estimator generally
tends to display a higher variance than finite difference approximations (Glasser-
man (2013).

Therefore for ease of implementation, this dissertation will implement a finite-
difference approximation, particularly a central-difference scheme, for estimating
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the barrier option’s delta and vega. The central-difference approximation of f ′(x)

is given by

f ′(x) ≈ f(x+ h)− f(x− h)

2h
, (3.2)

where h represents a perturbation or ’bump’. Furthermore, to reduce variance in
the estimates, the method of common random numbers is employed. It should be
noted that central-difference estimators require simulation at two different points,
x + h and x − h, whereas forward-difference estimators only require simulation
at one point, x + h. Even though this poses additional computational overhead,
the central-difference scheme yields superior accuracy when compared to forward-
difference approximations (Glasserman (2013).

For completeness, we provide the definitions of delta and vega for a DOC op-
tion below

∆ =
∂DOC
∂S

, (3.3)

νBlack-Scholes =
∂DOC
∂σ

, (3.4)

νHeston =
∂DOC
∂ν0

. (3.5)

It is important to differentiate between the Black-Scholes and Heston model vega.
In the Black-Scholes framework, the vega is computed with respect to the implied
volatility, σ. Whereas the Heston model vega is computed with respect to the initial
variance, ν0. These are represented by equations (3.4) and (3.5) respectively.



Chapter 4

GPR Model Design

4.1 Option Pricing Implementation

Drawing from the theoretical concepts presented in Chapter 2, the GPR option pric-
ing model can now be defined. A brief note on the general implementation of the
model is outlined by the below steps. Note that Ybench refers to target outputs ob-
tained from standard quantitative finance pricing methods, whilst Ypredict refers to
the GP regressed outputs.

1. Create a training and testing data set by simulating option prices using stan-
dard pricing methods under a specified market model. In particular, data
sets are created by simulating option prices under both the Black-Scholes and
Heston models.

2. Fit the GPR model to the training set (in-sample data) and evaluate the model
performance on the testing set (out-of-sample data). Recall that GP regressed
prices and their associated uncertainty in predictions are given by equation
(2.1).

3. Analyse and compare performance metrics of standard option pricing meth-
ods with the GPR algorithm. Capturing and quantifying the quality of pre-
dictions are measured in terms of:

• Speed – speed-ups are obtained by comparing CPU runtimes. Given
that the GPR model need only be trained once, the CPU time of the GP
predictions are compared with the CPU time of the standard MC pricing
algorithm.

• Accuracy – accuracy scores are measured in terms of maximum absolute
error (MAE), average absolute error (AAE) and root mean square error
(RMSE) given respectively by
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MAE = max
{∣∣Ybench(i)− Ypredict(i)

∣∣} , (4.1)

AAE =
1

n

n∑
i=1

∣∣Ybench(i)− Ypredict(i)
∣∣ , (4.2)

RMSE =

√∑n
i=1

(
Ybench(i)− Ypredict(i)

)2
n

, (4.3)

where i = 1, ..., n is the number of observations. RMSE is a useful per-
formance metric since the error terms are squared before averaged. This
poses a higher penalty on larger errors. In addition to the above three
metrics, the R2 score, also known as the coefficient of determination, is
a statistical measure of fit which allows us to quantify the percentage of
variation. Scores can range from 0 to 1 where an R2 of 1 indicates that
the regression predictions perfectly fit the data. The formula is given by

R2 = 1− RSS

TSS
, (4.4)

where the residual sum of squares (RSS) and the total sum of squares
(TSS) are given respectively by

RSS =
n∑
i=1

(
Ybench(i)− Ypredict(i)

)2
,

TSS =
n∑
i=1

(
Ybench(i)− Ȳbench

)2
.

Note that Ȳbench = 1
n

∑n
i=1 Ybench(i) is the mean of the observed data.

Further expanding on Step 1 and following the notation used in Chapter 2,
the training and testing data sets are constructed as input and corresponding tar-
get output pairs denoted by (X,y) and (X∗,f∗) respectively. In the Black-Scholes
framework, the input matrix is given as

X = [K,T , r,σ,L] (4.5)

=


K1 T1 r1 σ1 L1

...
...

...
...

...
Kn Tn rn σn Ln

 .



4.2 Greek Implementation 20

Similarly, under the Heston model, the input matrix is given as

X = [K,T , r,σ,L,ν0,κ,θ,ρ] (4.6)

=


K1 T1 r1 σ1 L1 v01 κ1 θ1 ρ1

...
...

...
...

...
...

...
...

...
Kn Tn rn σn Ln v0n κn θn ρn

 .
Expressions (4.5) and (4.6) demonstrate that X has dimension n× d, where n is the
number of observations and d denotes the number of input parameters. Random
parameter combinations are sampled uniformly over a range for each input param-
eter. Every parameter combination has a corresponding target output (the option
price) which is computed using a standard pricing algorithm namely, MC simu-
lation as presented in Chapter 3. Given that GP predictions perform worse closer
to the boundaries, the parameter ranges in the test set are specified to be slightly
smaller relative to those in the training set (De Spiegeleer et al. (2018)). Note that
expressions (4.5) and (4.6) do not contain S0 as an input parameter, this is discussed
in more detail in the next section.

4.2 Greek Implementation

In this short note, we restate the key computations of the GP Greek implementation
highlighted in section 2.3. As previously mentioned, a popular choice of covariance
function is the RBF kernel given by

K(x, x′) = σ2f exp

(
− 1

2l2
(x− x′)2

)
+ σ2nδxx′ . (4.7)

An advantage of the RBF kernel is that it is infinitely differentiable. This allows for
the GP Greeks to be easily computed. Recall that predicted values for GP option
prices are given by

E [f∗|X,y, X∗] = µX∗ +K(X∗, X)
[
K(X,X) + σ2nI

]−1
y. (4.8)

By differentiating equation (4.8) with respect to X∗, we obtain a general analytical
form of the GP Greeks, as formulated in Crépey and Dixon (2019), given by

∂X∗E [f∗|X,y, X∗] = ∂X∗µX∗ + ∂X∗K(X∗, X)
[
K(X,X) + σ2nI

]−1
y. (4.9)

Substituting equation (4.7) into equation (4.9), assuming a zero mean in the test
data set, i.e. µX∗ = 0, and simplifying yields

∂X∗E [f∗|X,y, X∗] =
1

l2
(X −X∗)K(X∗, X)

[
K(X,X) + σ2nI

]−1
y. (4.10)
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We emphasise that the GP Greeks are obtained through equation (4.10) and not
by retraining the GPR model on sensitivity measure data. It is important to note
that [K(X,X) +σ2nI

]−1
y was already calculated during the option pricing training

process which significantly reduces the total computational overhead needed to
obtain the GP Greeks. Hence, the sensitivities of an option are directly obtained by
differentiating the Gaussian Process pricing model.

This dissertation will particularly focus on the delta and vega of a DOC option.
The GP vega estimate is obtained by differentiating with respect to σ in the Black-
Scholes model and ν0 in the Heston model. Given that an option’s moneyness,
S/K, is of importance and expressions (4.5) and (4.6) do not consider S0 as an input
parameter, the GP delta can instead be computed in terms of the strike, K, and the
barrier level, L. To demonstrate this, first, consider a DOC option price in the Black-
Scholes framework given by

DOC(S0,K, L, T, r, σ).

This can be rewritten as

S0DOC(1,
K

S0
,
L

S0
, T, r, σ), (4.11)

which follows from the homogeneity property of log-type models described by
Joshi (2001), where the option price is an homogeneous function of S0, K and L.
The delta is computed by differentiating equation (4.11) with respect to S0. Given
thatK and L are in terms of S0, a combination of the product and chain rule is used
to obtain an expression for the delta. For readability, we suppress the down-and-
out option price: DOC(1, KS0

, LS0
, T, r, σ) = DOC. Therefore,

∆GP =
∂

∂S0

[
S0DOC(1,

K

S0
,
L

S0
, T, r, σ)

]
= DOC + S0

∂

∂S0
DOC

= DOC + S0
∂

∂K
DOC · −K

S2
0

+ S0
∂

∂L
DOC · − L

S2
0

= DOC − ∂

∂K
DOC · K

S0
− ∂

∂L
DOC · L

S0
(4.12)

The first term in expression (4.12) represents predicted GPR DOC option prices
whereas ∂

∂KDOC and ∂
∂LDOC denote the GP Greeks with respect to K and L. The

homogeneity property holds in the Heston model as it can also be described as a
log-type model (Joshi (2001)). Thus, the Heston GP delta may be obtained in the
same manner. Equation (4.12) allows the GP delta to be computed without having
S0 as an additional input parameter in the training set X . This is desirable as the
training time scales poorly as the number of model input parameters, d, increases.
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4.3 Software Implementation

The GPR algorithm is implemented in Python using open-source Scikit-Learn pack-
ages. All computations are performed on a Windows 10 operating system with
specifications of Intel i7-10610U quad core CPU processor at 1.8GHz−2.3GHz with
16GB RAM. Python code is implemented in Jupyter Notebook, an open-source,
web-based computing environment. Key libraries imported for this dissertation in-
clude numpy, scipy, matplotlib.pyplot, pandas and sklearn. In particular, the GPR
implementation follows from Scikit-learn: Machine learning in Python by Pedregosa
et al. (2011). This implementation is based on the algorithm from the seminal book,
Gaussian Processes for Machine Learning by Rasmussen and Williams (2006), as re-
viewed in Chapter 2. We briefly summarise the parameters for the GPR algorithm:

sklearn.gaussian_process.GaussianProcessRegressor(kernel,

alpha, optimizer, n_restarts_optimizer,

normalize_y, copy_X_train, random_state)

• kernel – Specified by the RBF kernel. It is important to note that the RBF
kernel implementation in Scikit-Learn is only parameterised by the length
scale, l. The signal variance, σ2f , can be represented by the ConstantKernel
which is combined with the RBF to obtain the desired form of the kernel func-
tion expressed in equation (4.7).

• alpha – Can be interpreted as a regularisation parameter or as the noise vari-
ance σ2n. It ensures that

[
K(X,X) + σ2nI

]
is a positive definite matrix and

prevents any numerical issues during the training process.

• optimizer – Optimises the kernel function’s hyperparameters by minimis-
ing the negative log marginal likelihood.

• n_restarts_optimizer – Specifies the number of random restarts of the
optimiser since the log marginal likelihood is often non-convex and may con-
tain multiple local optima.

• normalize_y – Boolean argument defaulted to False as the GPR algorithm
assumes that the data is normalised with zero mean.

• copy_X_train – Boolean argument defaulted to True where a persistent
copy of the training data set is stored.

• random_state – Argument defaulted to None and specified by an integer if
reproducible results are desired.



Chapter 5

Results and Analysis

5.1 Option Pricing

Training (in-sample) and testing (out-of-sample) data sets are created by uniformly
sampling combinations from model parameter ranges. Input parameter ranges for
the Black-Scholes and Heston models are displayed in table 5.1 and 5.2 respectively.

Parameter Range (Training Set) Range (Testing Set)
K 70% −→ 140% 80% −→ 130%

T 1M −→ 1Y 1M −→ 1Y

r 3% −→ 5% 3.5% −→ 4.5%

σ 15% −→ 40% 20% −→ 35%

L 30% −→ 100% 40% −→ 90%

Tab. 5.1: Black-Scholes model parameter ranges for training and testing data sets.

Parameter Range (Training Set) Range (Testing Set)
K 70% −→ 140% 80% −→ 130%

T 1M −→ 1Y 1M −→ 1Y

r 3% −→ 5% 3.5% −→ 4.5%

σ 15% −→ 40% 20% −→ 35%

ν0 0.01 −→ 0.1 0.02 −→ 0.09

κ 1.2 −→ 2 1.3 −→ 1.9

θ 0.1 −→ 0.8 0.2 −→ 0.7

ρ −0.9 −→ −0.5 −0.8 −→ −0.6

L 30% −→ 100% 40% −→ 90%

Tab. 5.2: Heston model parameter ranges for training and testing data sets.

Given that an analytical solution for a DOC option exists in the Black-Scholes
framework, we display GPR predictions vs. closed-form prices as a benchmark re-
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sult. Speed-ups are not applicable in this scenario as indeed, the analytical solution
will always yield the fastest results. An illustration of the GPR model results are
displayed in figure 5.1 with performance metrics shown in table 5.3. Importantly,
note that if GPR prices were perfect predictions of the analytical prices, all points
would lie on the line y = x.

Fig. 5.1: 1 000 out-of-sample GP regressed option prices (left) trained on 10 000

Black-Scholes analytical points with the accompanying error plot (right).

In-sample Out-of-sample (Test Range) Out-of-sample (Train Range)
MAE 4.421× 10−2 2.431× 10−2 4.842× 10−2

AAE 2.363× 10−3 2.226× 10−3 2.403× 10−3

RMSE 3.782× 10−3 3.213× 10−3 3.986× 10−3

R2 0.9981 0.9973 0.9971

Tab. 5.3: GPR model performance metrics displayed for analytical Black-Scholes
DOC option prices. Out-of-sample predictions correspond to 1 000 sam-
ple points.

In general, ML models display lower accuracy scores in the validation set com-
pared to the training set. We emphasise that the performance metrics are better
on a smaller test set which has been resized to exclude parameters closer to its
boundaries. When the ranges are the same, the metrics behave as expected. For
reference, we have provided out-of-sample predictions using a validation data set
constructed from both the training and testing input parameter ranges. Note that
in table 5.1 and 5.2, the test set, X∗, is constructed by sampling over smaller ranges
since GPR typically performs worse closer to the boundaries (De Spiegeleer et al.
(2018)). For this reason, the Out-of-sample (Test Range) predictions are more accurate
than the Out-of-sample (Train Range) results which is evident in table 5.3.
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Next, Black-Scholes MC option prices are obtained by simulating 50 000 paths
with 100 discrete time intervals. The training data set is varied in size to assess the
trade-off between model accuracy and speed. Figure 5.2 graphically displays the
performance and table 5.4 quantifies the accuracy scores and speed-ups. Similarly,
Milstein MC estimates in the Heston model are computed by simulating 50 000

paths with 100 updates over the time interval. Figure 5.3 displays the GP op-
tion pricing results as well as the accompanying error plots for varying training
set sizes. Performance metrics are summarised in table 5.5.

Train Set Size 1 000 5 000 10 000

Train Test Train Test Train Test
MAE 2.206× 10−2 1.864× 10−2 1.717× 10−2 1.351× 10−2 1.563× 10−2 1.267× 10−2

AAE 4.281× 10−3 3.427× 10−3 2.117× 10−3 1.591× 10−3 1.766× 10−3 1.448× 10−3

RMSE 5.533× 10−3 4.423× 10−3 2.950× 10−3 2.342× 10−3 2.538× 10−3 2.230× 10−3

R2 0.9965 0.9956 0.9990 0.9988 0.9993 0.9991

Speed-up × 927 × 892 × 459

Tab. 5.4: GPR model performance metrics quantified for varying training data set
sizes. Results correspond to Black-Scholes MC DOC option prices. All
out-of-sample (test) results consist of 1 000 points.

Train Set Size 1 000 5 000 10 000

Train Test Train Test Train Test
MAE 3.312× 10−2 3.072× 10−2 2.526× 10−2 2.289× 10−2 2.107× 10−2 2.121× 10−2

AAE 4.537× 10−3 4.376× 10−3 2.993× 10−3 2.710× 10−3 2.638× 10−3 2.348× 10−3

RMSE 6.542× 10−3 6.297× 10−3 4.300× 10−3 3.946× 10−3 3.751× 10−3 3.458× 10−3

R2 0.9955 0.9927 0.9981 0.9971 0.9985 0.9978

Speed-up × 5134 × 4808 × 2469

Tab. 5.5: GPR model performance metrics quantified for varying training data set
sizes. Results correspond to Heston MC DOC option prices. All out-of-
sample (test) results consist of 1 000 points.

We note that the accuracy scores namely, MAE, AAE and RMSE, of the out-
of-sample predictions exceed those of the training data set. Once again, this is
attributed to the testing set having a smaller range than the training set.
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5.1.1 GPR Option Pricing: Model Accuracy and Computational
Properties

Model accuracy and computational efficiency are the two key metrics used to eval-
uate the performance of the GPR model. Training the model on varying data set
sizes allows for the trade-off between model speed and accuracy to be quantified.
The GPR option pricing model demonstrates considerable speed-ups of several or-
ders of magnitude, particularly in the Heston model. This being said, it is impor-
tant to note that as the number of training samples doubles from 5 000 to 10 000

samples, the speed-up measure approximately halves, demonstrating the compro-
mise between speed and accuracy. The performance metrics convey that there are
two prominent factors which impact model accuracy:

1. The size of the data set. As the number of input parameters (dimension d)
increases, the lower the accuracy. This is apparent when we compare GPR
results in the Black-Scholes and Heston models. GP regressed option prices
trained on data simulated under the Heston model display lower accuracy
scores owing to the additional input parameters where d = 9. In the Black-
Scholes framework, however, d = 5 and the accuracy scores are higher. Fur-
thermore, the performance metrics in table 5.4 and 5.5 demonstrate that as
the number of training sample points (n) increase, the accuracy improves.

2. The width of the parameter ranges. Parameters sampled from smaller ranges
result in denser training sets and yield improved results. This is the principal
reason for constructing a test set where parameter ranges are sampled over a
smaller range. GPR tends to exhibit poorer accuracies closer to the boundaries
De Spiegeleer et al. (2018). Table 5.3 demonstrates this when we compare Out-
of-sample (Test Range) with Out-of-sample (Train Range) accuracy scores.

Graphically, it is evident from figure 5.2 and 5.3 that the error terms are ini-
tially sparse but gradually become more concentrated as the size of the training
set increases. This indicates that predicted GP regressed option prices deviate less
from their corresponding test labels. Note that in a perfect estimation scenario, we
would observe the predicted values to lie along the straight line, y = x, without
any deviation.

As discussed, a larger training data set yields more accurate GPR model pre-
dictions. However, this comes at the expense of increased training time. Recall,
the major source of inefficiency within the GPR framework is attributed to the
Cholesky decomposition of K :=

[
K(X,X) + σ2nI

]
. This incurs O(n3) complex-

ity, where n is the number of observations. Clearly, the training time does not scale
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well as the dimension of the training set, X , increases. Additionally, the computa-
tional complexity escalates when obtaining optimal hyperparameters through the
method of maximum likelihood estimation. Once again, if K−1 is known, the par-
tial derivative computations expressed in equation (2.5) are faster and require time
O(n2) per hyperparameter. Furthermore, given that the log-marginal-likelihood,
log p(y|X,θ), is often non-convex, it may suffer from multiple optima. Therefore,
the parameter n_restarts_optimizer is often set to a value> 1 which imposes
additional computational overhead. Considering all of the above factors, the GPR
training process can prove to be quite taxing. Fortunately, the model need only be
trained once. Thereafter, real-time GP predictions are efficiently computed and are
performed in O(n2) with a matrix-vector multiplication for each test point.
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Fig. 5.2: 1 000 out-of-sample predictions (left) with the accompanying error plots
(right) for a GPR model trained on 1 000, 5 000 and 10 000 Black-Scholes
MC DOC option price samples.
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Fig. 5.3: 1 000 out-of-sample predictions (left) with the accompanying error plots
(right) for a GPR model trained on 1 000, 5 000 and 10 000 Heston MC
DOC option price samples.
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5.2 The Greeks

The performance metrics for the GP Greeks are summarised in table 5.6 and figures
5.4 and 5.5 display the results. The GP Greeks are compared with Black-Scholes
and Heston Greeks, which are computed via MC central-difference approximation
using equation (3.2).

Black-Scholes Heston
∆ ν ∆ ν

MAE 0.110 4.671× 10−2 0.216 0.136

AAE 9.597× 10−3 8.502× 10−3 1.453× 10−2 1.685× 10−2

RMSE 1.674× 10−2 1.196× 10−2 2.741× 10−2 2.853× 10−2

R2 0.9958 0.9852 0.9855 0.7914

Speed-up × 3 × 7

Tab. 5.6: Performance metrics for the GP Greeks vs. MC central finite-difference
approximation.

Fig. 5.4: 1 000 GP delta and vega predictions (left) with the accompanying error
plots (right) for a GPR model trained on 10 000 Black-Scholes MC DOC
option price samples.
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Fig. 5.5: 1 000 GP delta and vega predictions (left) with the accompanying error
plots (right) for a GPR model trained on 10 000 Heston MC DOC option
price samples.

5.2.1 GP Delta and Vega: Model Accuracy and Computational
Properties

The performance metrics in table 5.6 convey that the Heston model displays less ac-
curate results than the Black-Scholes model. As per the GPR option pricing model,
a reason for this may be attributed to the Heston model having a larger input ma-
trix dimension where d = 9. In particular, the Heston GP vega displays the least
accurate R2 score of 0.7914, indicating a lower degree of correlation between the
regression model and the corresponding Heston MC samples.

Recall, the GP delta is computed via equation (4.12). In the context of ML, this
form is desirable since the train and test data sets (X and X∗) do not require the
initial stock price, S0, as an additional input parameter. Therefore, computations
are more efficient since the GP delta is computed in terms of the predicted option
price and the GP derivative ofK andL respectively. Fundamentally, equation (4.10)
describes the gradient of the GPR pricing model with respect to a particular param-
eter in X∗. It can be viewed as an analytical solution where predictions for the GP



5.3 Further GPR Model Analysis 32

Greeks are directly computed from equation (4.10) without the need to retrain the
initial GPR model. Once again, recall that

[
K(X,X) + σ2nI

]−1
y was already cal-

culated during the GPR option pricing training process and therefore, computing
the GP Greeks does not impose any significant computational overhead. Notably,
even though table 5.6 demonstrates speed-ups relative to a standard MC simula-
tion, they are not as significant when compared to the speed-ups seen in the GPR
option pricing framework.

5.3 Further GPR Model Analysis

5.3.1 Comparability of GPR with MC Prices

Though computing various accuracy metrics are useful in evaluating the perfor-
mance of the GPR model, it is also informative to quantify how GPR estimates
compare with MC prices. Given that GPR can ultimately be described as a an inter-
polation function, the accuracy of the model is largely dependent on the accuracy
of the MC estimates it trains on. Importantly, option prices obtained by MC simula-
tion are not necessarily ”ground truth”, since rerunning the MC will yield slightly
different results. Therefore, MC prices are approximations and the GPR algorithm
essentially smooths these. For this reason, we may simulate MC estimates for a
specific set of input parameters, obtain a distribution, compute a 95% confidence
interval and inspect whether the predicted GPR price lies within these bounds. This
allows us to quantify GPR price errors and compare these to its MC counterparts.
Table (5.7) summarises these findings.

Black-Scholes Heston
Number of MC simulations 100

Number of random parameter combinations 50

% GPR estimates within MC confidence interval 68% 64%

Tab. 5.7: % of GPR estimates which lie within a 95% confidence interval of the MC
prices. The confidence interval is computed based on 100 MC samples for
each of the 50 random combinations (i.e. this totals to 5 000 MC prices).
The input parameter combinations were sampled uniformly over the test
set range for the Black-Scholes and Heston models.

We note that more accurate results can be achieved by simulating an increased
number of MC sample paths, yielding MC prices which are much closer to its
”ground-truth” value. Additionally, training the GPR model on a larger data set
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size will increase model accuracy. Again, we note that this boils down to the trade-
off between model speed and accuracy.

5.3.2 Limitations of Computing the GP Greeks and Possible
Recommendations

The performance metrics discussed in section 5.2 convey that the GP Greeks, partic-
ularly the Heston GP vega, yield less accurate results than its Black-Scholes coun-
terpart. The GP Greeks, in general, also display poorer accuracies relative to the
GP option pricing model. This could be attributed to MC option prices exhibiting
”bouncy” behaviour causing the GP derivative function to not approximate well.
Furthermore, given that the Heston model has almost double the number of in-
put parameters, this may be a contributing factor as to why the model struggles to
compute the Greeks, displaying larger errors when compared with Black-Scholes
estimates. In this short note, we provide possible suggestions that can address
the shortcomings of the GP Greeks, with particular reference to the limitations ob-
served for the Heston GP vega.

As a first recommendation, one can follow a similar approach to the GPR op-
tion pricing process where the GPR model is directly trained on simulated vega es-
timates. Alternatively, a regularisation technique can be employed. Regularisation
involves imposing additional constraints on the optimisation function to achieve a
desired optimal result. In the context of GPR, we can incorporate the error terms of
∆ and ν in the likelihood function. Recall, the model aims to optimise this function.
In its most general form, the updated likelihood function can be expressed as

min
θ1,...,θn

f(X, θ1, . . . , θn) + α

n∑
i=1

(
Ybench∆

− Ypredict∆(X, θ1, . . . , θn)
)p

+ β

n∑
i=1

(
Ybenchν − Ypredictν (X, θ1, . . . , θn)

)q
, (5.1)

where α, β, p and q are tuning parameters which control the impact of variance and
bias in the regularisation technique. Roughly speaking, expression (5.1) ultimately
forces the outcomes of ∆ and ν to be closer to model predictions. However, this
technique introduces certain caveats. Given that the GPR model will now try to
optimise ∆ and ν in addition to option prices, one needs to consider the implication
of this on the regressed option prices. Though more reasonable GP vega estimates
may be attained, the accuracy of option prices will suffer.

The above were offered as suggestions to improve the accuracy of GP vega es-
timates. Having offered possible solutions, we note that they are not in the spirit of
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what this dissertation aims to demonstrate, particularly with respect to computing
the GP Greeks. By retraining the model on vega estimates, equation (4.10) is no
longer necessary. It will also require the training of additional, separate models to
obtain option price predictions and each of the GP Greeks, which will introduce sig-
nificant, additional computational overhead. These suggestions hinder the initial
desire to compute the GP Greeks via its analytical form as expressed in equation
(4.10) which provides an overall more efficient alternative for computing the GP
Greeks.



Chapter 6

Conclusion

This dissertation aimed to examine the efficacy of GPR, a supervised, non-parametric
Bayesian machine learning technique, applied to derivative pricing and hedging.
GPR model performance metrics were measured against traditional quantitative
pricing techniques, namely MC simulation, to evaluate relative speed-ups and ac-
curacy scores. Notably, barrier options are particularly computationally expensive
to compute via MC methods. Therefore, we investigated the accuracy and effi-
ciency of GPR applied to pricing a DOC option compared to a standard MC pricing
technique. The implementation of the GPR algorithm closely followed the method-
ology presented by De Spiegeleer et al. (2018) and Crépey and Dixon (2019). Results
were obtained and compared in both the Black-Scholes model and Heston stochas-
tic volatility model. Furthermore, the analytical Black-Scholes solution of the DOC
option was used as benchmark result. In addition to option pricing, the GP delta
and vega were computed following the implementation derived by Crépey and
Dixon (2019), where the GP Greeks are directly obtained by applying equation
(4.10).

Option price predictions indicate that accuracy scores are within a tolerable
range and demonstrate increased speeds of considerable magnitudes with speed-
up factors in the 1 000s. Therefore, GPR proves to be a viable solution for fast
derivative pricing when considering path-dependent, computationally expensive
options, even under advanced models beyond Black-Scholes such as the Heston
model. The Black-Scholes GP Greeks displayed more accurate results compared to
those computed in the Heston framework. In particular, the Heston GP vega pre-
sented limitations where the GPR model struggled to obtain accurate predictions.

As expected, the largest training data set, consisting of 10 000 samples, yielded
the most accurate results. Though the training procedure is time consuming, the
GPR model need only be trained once. Thereafter, the model can obtain signif-
icantly faster predictions. This is referred to as offline learning where after the
initial training phase is complete, the model does not change its approximation of
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the predictive function. In the context of obtaining an effective machine learning
model, the choice of an appropriate kernel function and effective hyperparameter
optimisation cannot be overstated. Importantly, the effective computation of the
GP Greeks was enabled by the property of the RBF kernel being infinitely differ-
entiable. Second order Greeks may be obtained by differentiating equation (4.10)
once more.

The trade-off between model accuracy and speed was investigated by varying
the number of training samples. Overall, experiments demonstrated that key fac-
tors which affected the accuracy and efficiency of the GPR pricing framework are
the number of training samples (n), the number of input model parameters (dimen-
sion d) and the width of the chosen parameter ranges.

Moreover, we quantified GPR price errors and discussed the comparability to its
MC counterparts. Importantly, it should be noted that MC prices are not necessarily
”ground truth” since simulating MC estimates multiple times will yield different
results. An alternate approach to obtain more accurate GPR estimates can be to
train the model on prices which are much closer to its ”ground truth” value by
simulating a larger number of MC sample paths. As a consequence, this will also
lead to substantial speed-ups.
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