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Abstract  

The South African tuberculosis (TB) epidemic is driven mainly by HIV, and the TB disease 

burden is greater in males than females. Additional factors that drive the epidemic include 

undiagnosed and untreated TB, contributing to transmission; and highly prevalent TB risk 

factors such as alcohol misuse, smoking, diabetes, and undernutrition, which increase the risk 

of progression to TB disease. These factors are distributed differently by sex and likely 

explain the observed sex disparities in TB. The South African TB control programme has 

implemented multiple interventions, including directly observed therapy strategy (DOTS), 

antiretroviral therapy (ART), intensified screening activities, the provision of isoniazid 

preventative therapy (IPT) and the implementation of Xpert MTB/RIF as a first-line 

diagnostic tool. However, few analyses have quantified the historical impact of HIV and the 

combined impact of TB interventions on the South African TB epidemic at a national level. 

In addition, factors that influence sex disparities in the South African TB burden have not 

been explored thoroughly. Also, it remains uncertain whether, with existing interventions, it 

would be feasible for South Africa to meet the End TB targets to reduce TB incidence and 

mortality by 80% and 90% respectively (relative to 2015 levels) by 2030. 

This thesis aims to address the abovementioned gaps in knowledge and provide insights into 

understanding the population-level TB dynamics, using a mathematical model. The first 

objective is to quantify TB incidence and mortality due to HIV and assess the impact of 

interventions mentioned above on TB incidence and mortality between 1990 and 2019. The 

second objective is to explore the extent to which the following factors contribute to sex 

differences in TB:  HIV, ART uptake, smoking, alcohol abuse, undernutrition, diabetes, 

health-seeking patterns, social contact rates and TB treatment discontinuation. The third 

objective is to project the future impact of increasing screening, improving linkage to TB care 

and retention, increasing preventative therapy, and reducing ART interruptions.  

An age- and sex-stratified dynamic tuberculosis transmission model for South Africa was 

developed. To dynamically model the effect of HIV and ART on TB incidence and mortality, 

the TB model was integrated into the Thembisa model, a previously-developed HIV and 

demographic model. In addition, age- and sex-specific relative risks were applied to rates of 

progression to TB disease to capture age and sex differences in tuberculosis incidence. The 

model also included a diagnostic pathway representing health-seeking patterns and the 

sensitivity and specificity of the diagnostic algorithm. A Bayesian approach was used to 
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calibrate the model to the numbers of people starting treatment from the electronic 

tuberculosis register, deaths from the vital register, microbiological tests, and the national 

tuberculosis prevalence survey.  

The model estimated rapid increases in TB incidence and mortality in the mid-to-late 1990s, 

influenced by HIV. Between 1990 and 2019, approximately eight million people developed 

tuberculosis, and two million died from TB; HIV accounted for at least half and two-thirds of 

the TB incidence and mortality, respectively. The TB epidemic peaked in the mid-to-late 

2000s, followed by declines until 2019. The ART program and TB screening efforts, which 

were expanded in the mid-2000s, contributed the most to reductions in TB incidence and 

mortality, while other interventions had minor impacts. Due to the heavier HIV burden in 

women than men, women experienced greater HIV-associated TB incidence and mortality 

than men. However, because of the higher ART uptake among women than men, women 

experienced greater relative reductions in TB incidence and mortality over the period 2005–

2019. Consequently, the higher TB burden among men has been sustained; the estimated 

male-to-female ratios of TB incidence and mortality in 2019 were 1.7 and 1.65, respectively. 

Additional factors explaining the excess TB in men are smoking, alcohol abuse and delays in 

health-seeking patterns. Sex differences in undernutrition, social contact patterns, and 

treatment discontinuation had minimal effect on TB sex disparities.  

Projections of the model to 2030, considering the effects of COVID-19-related disruptions to 

TB care, suggest that increasing TB screening would be the most impactful among all 

interventions explored. However, the model also suggests that the 2030 End TB milestone is 

unlikely to be met by scaling up existing interventions. Other interventions that need to be 

explored include targeted universal TB testing and other diagnostic tests such as digital chest 

x-rays, urine Lipoarabinomannan, and biomarkers to identify individuals at risk of TB 

disease.  

Accelerating progress toward TB incidence and mortality reductions will require developing 

affordable and efficient rapid diagnostic tools to identify potential and active TB cases. 

Research and innovation efforts towards finding a vaccine effective in preventing TB disease 

are also critical. In addition, it is essential to improve the uptake of TB preventative therapy 

in HIV-positive individuals and perhaps further expand provision to other TB risk groups. 

The higher burden of TB in males highlights the need for men to be targeted for routine 

screening to ensure earlier diagnosis and improved management and retention in TB and HIV 
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care. Additionally, broader interventions are needed to reduce TB risk factors such as alcohol 

consumption and tobacco smoking. 
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Chapter 1. Introduction 

1.1. Global burden of tuberculosis 

Tuberculosis (TB), caused by Mycobacterium tuberculosis (M.tb), contributes significantly to 

the global disease burden (1). According to the World Health Organisation (WHO), in 2020, 

approximately 9.9 million (range: 8.9–11.1 million) people developed TB disease, and 1.3 

million (range:1.2–2.5 million) died due to TB (1). The burden of TB is distributed 

differently by age and sex, and adult males (aged ≥ 15 years) carry a heavier burden (56%), 

while adult females carry approximately 33%, and children (aged <15 years) almost 11% of 

the burden of TB (1). The pooled estimate of the male-to-female (M:F) ratio for TB 

prevalence based on 56 prevalence surveys conducted in 24 countries is 2.2 (95% confidence 

interval (CI) 1.9–2.5) (2); and the surveys further show that compared to females, males have 

greater delays in TB diagnosis and treatment initiation (2).  

The burden of TB also varies significantly across the six WHO geographic regions. The 

region with the highest number of new people falling ill with TB disease is South East Asia 

(43%), followed by the African (25%) and the Western Pacific (18%) regions (1). Drug-

resistant TB is also remains a health challenge; the prevalence of drug-resistance is around 3–

4% in newly treated TB cases and 18–21% in previously-treated TB case (3). Countries that 

carry the most significant burden of resistant TB globally are India (27%), China (14%) and 

the Russian Federation (9%) (3). 

Multiple factors contribute to the high burden of TB. Human immunodeficiency virus (HIV) 

is the strongest individual-level and population-level TB risk factor, increasing the risk of 

developing TB disease and worsening treatment outcomes (4–6). In southern Africa, HIV is 

the primary driver of TB, with at least half of the people with TB disease are HIV-positive 

(3). Other important determinants of TB that contribute significantly to the global burden of 

TB include undernutrition, alcohol abuse, tobacco smoking and diabetes (3,7). The WHO 

estimated the population attributable fractions (PAF) of the abovementioned risk factors to be 

8.1% for alcohol abuse, 3.1% for diabetes, 7.6% for HIV, 7.1% for smoking, and 19% for 

undernutrition (1). Furthermore, these risk factors are distributed differently by sex and likely 

drive the existing sex differences in the burden of TB. The Global Burden of Disease Study 

(2019) estimated the fraction of global tuberculosis deaths due to alcohol abuse, smoking, 
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and diabetes to be 4.3, 6.2, and 1.2 times higher among males than among females, 

respectively (7). 

Global efforts against TB have included the establishment of strategies such as the WHO End 

TB Strategy (8) and high-level meetings (9) where TB policy leaders commit to implement and 

invest in measures required to meet targets to reduce the TB burden and mortality substantially. 

Since the discovery of effective anti-TB drugs, TB control efforts have been mainly 

biomedical, focusing on developing novel regimens and diagnostic technologies (10). 

Although these control efforts have led to substantial reductions in the burden of TB, these 

declines have been slow. Between 2015 and 2020, the number of people with TB and TB deaths 

dropped by 11% and 9.2%, respectively (1). These reductions were short of the WHO End TB 

Strategy 2020 milestones which aimed to reduce TB incidence and mortality by 20% and 35% 

over 2015-2020  (1,11).  

The emergence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), which 

causes COVID-19, has brought more challenges and caused global TB control efforts to 

regress (1,12). Worldwide, the COVID-19 pandemic led to over-burdened health care 

systems, and COVID-19-related interventions restricting people's movement have caused 

disruptions to TB care-seeking patterns (3,13). Data from many settings showed that people’s 

health facility attendance rates dropped in the first four months of the pandemic compared to 

attendance patterns for the same period in previous years (14,15). Consequently, globally TB 

notifications dropped by approximately 18% between 2019 and 2020 (1). Altogether, these 

COVID-19-related disruptions slowed down the declines in TB incidence and caused  

mortality rates to increase by 5.6% between 2019 and 2020 (1,16).  

The End TB Strategy 2030 milestones aim to reduce the global TB incidence by 80% and 

global TB mortality by 90% by 2030 in comparison to 2015 levels (11). Given the existing 

challenges in TB control, it remains uncertain whether the targets will be met.  

1.2. South African burden of tuberculosis 

In 2020, the WHO estimated that approximately 328 000 (range: 230 000–444 000) South 

Africans developed TB disease and of these, 71% were HIV-positive (1). The prevalence of 

TB in South Africa is also higher in males than females, with an estimated M:F TB 

prevalence ratio of 1.62, and a much higher TB prevalence in the 35-44 years and 65+ age 
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groups (17). The number of TB deaths in 2020 were estimated at 61 000 (range: 49 000–82 

000) (1); and more males die of TB than females (18). 

South Africa has the largest HIV epidemic globally, with approximately 8 million people 

living with HIV  (19) – the main driver of TB in the country. In addition to HIV, another 

major factor which increases the burden of TB is under-diagnosis of individuals with TB 

disease, which drives TB transmission and mortality (2,20). Recurrence of TB disease is also 

a problem among individuals with a history of previous TB treatment (21,22). Additionally, 

there are other highly prevalent TB risk factors such as undernutrition, alcohol misuse, 

tobacco smoking, and diabetes (3,7). The 2019 GBD study estimated that in HIV-negative 

individuals, compared to females, males have higher TB mortality PAFs for smoking (21% 

vs 5%) and alcohol (41% vs 16%); however the TB mortality PAFs for diabetes were higher 

in females (11%) than males (10%) (7). 

South Africa has made strides to control the TB epidemic. Some of the major TB control 

efforts include intensified case finding and infection control (23), implementing new 

diagnostic tools such as Gene Xpert MTB/RIF and Xpert Ultra as first line diagnostic tools, 

the provision of TB preventive therapy, and antiretroviral therapy (ART) for HIV-positive 

individuals (23,24). However, despite observing falling TB trends due to some of these 

interventions, South Africa is still ranked among the 20 high TB burden countries (25). 

Additionally, like most countries, South Africa's TB control also experienced significant 

setbacks due to the COVID-19 pandemic, and it is uncertain whether the End TB targets 

remain feasible (26,27). 

1.3. Problem statement and rationale 

Tuberculosis remains a significant public health challenge in South Africa, and its main 

determinants are well documented. However, very few analyses that capture South African 

demographic details (i.e., age and sex) have quantified the contribution of these factors that 

drive the TB epidemic. In addition, while multiple TB interventions have been implemented, 

there have not been any systematic analyses to quantify how these interventions have 

contributed to reducing TB incidence and mortality at a national level. Dynamic 

mathematical models are valuable tools that can be used to understand the population-level 

dynamics of TB and assess the past and future impact of interventions. There is, therefore, a 

need for national-level mathematical models that are calibrated to South African data that can 
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be used to systematically evaluate the impact of risk factors and interventions on TB 

incidence and mortality.  

1.4. Aim and objectives 

The aim of this PhD is to develop a dynamic transmission model of TB and HIV for South 

African adults (15 years and older). The model will be used to address the three specific 

objectives of this PhD:  

1. To describe the South African TB epidemic trends between 1990 and 2019,  

quantify TB incidence and mortality due to HIV, and assess the impact of 

programmatic interventions – increased screening, directly observed therapy, Xpert 

MTB/RIF, isoniazid preventative therapy and ART – on TB incidence and mortality 

between 1990 and 2019 

2. To explore the extent to which the following factors contribute to sex differences in 

TB incidence and mortality:  HIV, ART uptake, smoking, alcohol abuse, 

undernutrition, diabetes, health-seeking patterns, social contact rates and TB treatment 

discontinuation. 

3. To estimate the future impact on TB incidence and mortality, of increasing screening, 

improving linkage to TB care and retention, increasing preventative therapy, and 

reducing ART interruptions. 

1.5. Data sources 

This study relied on publicly available data, which were obtained from published reports, 

epidemiological studies, or extracted from registers. Below is a summary of data that were 

used to calibrate the model and their sources (Table 1-1). The full description of how these 

data were obtained and cleaned, and how they were used, is provided in Chapter 3. 
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Table 1-1: Summary of calibration data and their sources 

Data description  Strata Sources 

National tuberculosis prevalence data  Age, sex, year: 2018 South African Department of Health  

Number of people screened and positive diagnoses  Years: 2004–2019 National Institute for communicable diseases; 

Nanoo et al. (24) 

Number of people who initiate treatment and treatment 

outcomes  

Age, sex, years: 2004–

2016, HIV status  

Electronic tuberculosis register (28) 

Number of tuberculosis deaths  Age, sex, years: 1997–

2016 

Statistics South Africa vital register 

1.6. Organisation of thesis   

This first Chapter 1 has described the status of the global and South African tuberculosis 

epidemics; it has also described the thesis rationale, aims and objectives. Chapter 2 is a 

literature review that provides a broad context for this thesis by summarising literature on 

TB, the simplified natural history of TB, the commonly described TB determinants, and an 

overview of TB HIV mathematical models. The review also describes the evolution of the 

global and South African TB control strategies. Chapter 3 provides a detailed description of 

the methodological approach, and the data sources and assumptions that were used to develop 

the TB-HIV model which forms part of this PhD. This thesis also presents our model 

estimates for the ‘baseline’ scenario and compares these to estimates from WHO and Institute 

for Health Metrics and Evaluation (IHME). 

 

Chapter 4 describes the South African TB epidemiological trends between 1990–2019; 

assesses TB incidence and mortality attributable to the HIV epidemic; and assesses the 

impact of various interventions on TB incidence and mortality. Given the observed sex 

disparities in the burden of TB, Chapter 5 explores how sex differences in TB could be 

explained by social mixing patterns, diabetes, tobacco smoking, alcohol misuse, 

undernutrition, health-seeking and poor retention in TB care. Lastly, Chapter 6 evaluates the 

potential impact of scaling up existing interventions, focusing on 1) improving steps in the 

care cascade (increasing microbiological testing rates, reducing pre-treatment loss to follow-

up, improving TB treatment outcomes); 2) improved provision of ART and IPT for people 

living with HIV, and 3) the provision of preventative therapy for previously treated 

individuals. This chapter also assesses the potential for South Africa to meet the End TB 
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goals. Finally, Chapter 7 summarises and discusses the results of the analyses of this thesis, 

and outlines areas for further research. 
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Chapter 2. Literature review  

This chapter aims to review and discuss the existing literature on the development of TB and 

its determinants, control policies, and TB-HIV mathematical models. The chapter is in two 

parts. The first part (A) gives an overview of the simplified TB natural history; it describes 

the evolution of TB control strategies, the distribution of TB by age and sex, and the effects 

of selected risk factors. The second part (B) gives an overview of existing TB-HIV 

mathematical models and methodological approaches used. In each section, some of the 

research gaps identified are discussed.  

2.1. Part A: The natural history and control of tuberculosis 

The four main aspects that are described in this first of the literature review are: 1) the 

development stages of TB, 2) the evolution of TB control strategies; 3) the distribution of TB 

by age and sex; and lastly, 4) the role of selected TB risk factors namely diabetes, 

undernutrition, tobacco smoking and alcohol abuse. 

2.1.1. The transmission and development of tuberculosis 

The primary mode of TB transmission is by the release of bacilli into the air through talking, 

or coughing, or sneezing by an infectious individual, or by breathing (29). The classic 

symptoms of pulmonary TB include fever, night sweats, coughing for a long period, and 

excessive unintentional weight loss (30,31). Tuberculosis commonly affects the lungs 

(pulmonary TB); however, it can also affect other parts of the body (extrapulmonary TB).  

The natural history of TB is complex, and it is not a discrete process with distinct states as 

classically described (32). However, for simplicity and for the sake of laying the foundation 

to describe the disease, its determinants, and measures to control it, we can look at its 

development in three discrete stages. These stages are i) exposure to M.tb bacilli in the air, ii) 

latent TB infection (LTBI) following inhalation of aerosols containing bacilli, and iii) 

development of active TB disease. These three states will be expanded further later in 

Chapter 3 when describing the TB natural history structure for the compartmental 

mathematical model developed in this thesis.  
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 Exposure  

The degree of exposure to M.tb can be measured in terms of duration and proximity to 

aerosols containing bacilli. Exposure risk depends on the frequency of contacts between 

susceptible and infectious individuals with active TB disease over a given period (i.e. contact 

rate) (33). Environmental conditions that can increase the likelihood of exposure to M.tb 

include overcrowded living conditions and inadequate ventilation (34,35). Household studies 

have shown a positive association between the risk of infection with M.tb and household 

density or crowding (36,37). The exposure risk is increased through limited airflow, sharing 

breathed air, and increased contact with infectious individuals. Additionally, social 

behaviours such as alcohol drinking are associated with close contacts between individuals 

(38,39); thus, this may contribute to TB transmission. 

Undiagnosed and untreated active TB in the population is another factor contributing to TB 

transmission through increasing exposure to M.tb. Many resource-limited settings have a high 

prevalence of undiagnosed and untreated active TB (40–42). Studies from these settings also 

show that there are usually delays between the onset of TB symptoms and those detected and 

eventually treated (43–46). Reasons for high undiagnosed and untreated TB include 

socioeconomic factors such as low education and poor access (geographical or 

sociopsychological barriers) (47). Another important source of undiagnosed and untreated TB 

are asymptomatic TB (48,49).Other reasons are the inadequate capacity of health systems to 

detect TB early, to treat and manage TB patients until they are cured (43–46). As a result, 

poor diagnosis and treatment of TB may explain a large proportion of transmission in these 

resource-limited settings.  

The primary mode of acquiring TB infection is through the inhalation of aerosol containing 

M.tb from an infectious individual with pulmonary TB, usually released through coughing, 

shouting or sneezing (34). These M.tb-containing particles can remain suspended in the air 

for minutes to hours (50). Successful infection depends on the infectiousness of the source 

individual with active TB; and infectiousness can be measured by the number of bacilli 

contained in the droplets released into the air and the virulence of the bacteria. Several 

empirical studies and literature reviews (33,51,52) have suggested that smear-positive 

pulmonary TB individuals are more infectious than smear-negative individuals. For example, 

a study using DNA fingerprints assessed the link between recently infected individuals and 

the sources of infection. This analysis showed that smear-negative individuals were 0.22 
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(95% CI 0.16-0.32) times as likely to transmit TB as smear-positive patients (53). The 

immune status of the infectious individual also determines their infectiousness. For example, 

immune-suppressive conditions such as HIV infection are associated with reduced 

infectiousness, decreased bacillary load and reduced cavitary disease (54).   

 Latent tuberculosis infection  

Following inhalation of aerosols containing bacilli, for simplicity, two scenarios are possible. 

In the first case, bacteria may be cleared before infection occurs through innate immune 

mechanisms. These mechanisms involve mucociliary clearance in the upper respiratory tract, 

and the individual may not have immunological signatures of infection (34,55). In the second 

case, successful M.tb infection results and through a combination of innate and adaptive 

immune responses to M.tb, it is then detectable by immunoreactivity to TB tests (34,55). In 

this second case, the individual is considered to have acquired a latent TB infection (LTBI) 

unless or until clinical symptoms are detected (55,56).  

The main tests used to identify LTBI are the tuberculin skin test (TST) and interferon-gamma 

assays (IGRA), which mainly indicate immunoreactivity to TB (57). As a result, if a person 

tests positive, their positive result does not reflect their risk of developing TB disease but 

rather indicates that they have, at some point in time been exposed to M.tb (58).  Some 

limitations with these tests include low specificity of the TST, and it is often unable to 

differentiate actual infection from Bacillus Calmette Guérin (BCG) vaccination (54). As a 

result, using this test may lead to false-positive TST results and hence overestimate LTBI 

prevalence in settings with high BCG coverage. The IGRA test overcomes the limitation of 

low specificity in BCG vaccinated individuals (54). However, both the IGRA and TST tests 

have limited sensitivity in immune-suppressed individuals (i.e., people living with HIV) (54).  

Using a mathematical model and assumptions based on TST, Houben and colleagues 

estimated the global prevalence of LTBI to be 23.0% (95% uncertainty interval: 20.4%–

26.4%) (59). Cohen et al. also estimated the global LTBI prevalence by using a meta-analysis 

of LTBI prevalence studies from varying geographical settings and specified the use of IGRA 

and TST (60). The estimated LTBI prevalence was 24.8% (95% CI: 19.7–30.0%) based on 

IGRA and 21.2% (95% CI: 17.9–24.4%) based on TST (60). Altogether, scientific evidence 

suggests that one-fourth or 1.7 billion people of the global population is estimated to have 

LTBI (59,60).  
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The presence of LTBI is thought to confer partial immunity against reinfection; however, the 

extent of this protection is contentious. A meta-analysis of studies, most of which used 

historical data before large-scale TB preventative therapy, estimated that individuals with 

LTBI had a 0.79 (95% CI 0.70–0.86; I-squared=0.7) reduction in the risk of fast progressive 

TB after reinfection than those without LTBI (61). The effect of HIV and how ART modifies 

this partial immunity is not well-understood. 

 Development of active tuberculosis disease  

Following infection, individuals develop active or clinically detectable TB disease, generally 

in two ways. In the first case, approximately 5% of immunocompetent individuals develop 

active TB within two years of becoming infected, commonly referred to as fast or rapid 

progression to TB disease  (62,63). In the second case, the onset of clinical symptoms occurs 

much later, sometimes even a couple of decades later; this is commonly referred to as 

endogenous reactivation (64,65). For individuals with LTBI, the risk of developing active TB 

disease (reactivation) varies with time since exposure to infection, on average it is estimated 

at 10–20 per 100 000 individuals per year (63,66). 

Although the risk of reactivation is low, multiple risk factors can increase the risk of 

developing TB disease through immune suppression. These risk factors include smoking, 

alcohol abuse (67–69) and clinical conditions such as HIV, diabetes (70,71), silicosis (35,72), 

immune-compromising treatments, malignancies (34), and undernutrition (73). The relative 

importance of these risk factors and their contribution to the burden of TB depends on their 

prevalence in the respective populations.  

The standard modes to detect active pulmonary TB disease, particularly before 2011, were 

sputum smear microscopy and sputum culture. Smear microscopy is convenient but limited 

by its low sensitivity. While sputum culture is the gold standard diagnostic tool for TB, it is 

associated with a long turnaround period (about 2-6 weeks) (34). In recent years (from 2011), 

Xpert MTB/RIF test is the recommended diagnostic used globally and in South Africa. This 

test provides rapid detection of TB and can also determine if TB is resistant to rifampicin, 

one of the most commonly used TB drugs (34).  

Detection of extrapulmonary TB is usually performed at secondary or tertiary hospitals using 

TB blood culture, tissue cultures, histological or cytological examination. Individuals with 

extrapulmonary TB are usually less infectious unless the site of disease is on their respiratory 
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tracks, or if in addition to extrapulmonary TB, they also have pulmonary TB disease (74). 

The symptoms for extrapulmonary TB, although non-specific, may include unintended 

weight loss, nights sweats and fever; other symptoms depend on the extrapulmonary TB body 

site affected or type (75). The common types of sites of extrapulmonary TB include the 

larynx, pleura, kidneys, bones and joints, lymph nodes or brain (74). Extrapulmonary TB is 

estimated to represent 16% of incident individuals globally; this proportion ranges 8% 

between 24% (3,74). 

Besides recovery due to treatment, studies from the pre-antibiotic era have suggested that a 

certain proportion of active TB patients recovered naturally without treatment (also called 

spontaneous recovery) (76). Tiemersma et al.'s review of studies conducted during the pre-

chemotherapy era estimated case fatality rates of 0.7 and 0.2 among untreated smear-positive 

and smear-negative active TB individuals, respectively, and the estimated mean duration of 

untreated TB disease was 3.33 years (76). Based on this meta-analysis, it could be shown that 

the average natural recovery rates are 0.212 and 0.091 per annum for untreated smear-

positive and smear-negative active TB individuals, respectively (76). 

2.1.2. Tuberculosis by age and sex  

Age and sex are the most basic demographic characteristics and individual-level determinants 

of health. Thus, like other diseases, the burden of TB and mortality have age and sex patterns 

that are essential to understanding the TB epidemiology.  

 Age 

The age patterns from TB notification rates data show a peak in children aged 0–4 years, 

followed by lower TB rates in the 5–10 years age group. However, during the adolescent age 

groups (15–19 years), there is an increase leading to a second peak in the 20–24 years age 

group, and then sometimes a third peak in the 45–49 years age categories (77–80). These 

observed age differences, particularly the TB rates in individual between ages of 5 and 14 

years, are not well understood (81,82).  

Plausible explanations for the age differences in TB include differences in immune response 

to infection and exposure to TB risk factors. Childhood (<15 years) TB infections are most 

likely due to exposure of susceptible children to adults with active TB (83), and the increased 
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risk of TB disease is suggested to be due to fast progression in children (80,84). Among 

young adults (20–24 years) and the middle age groups (45–49 years), the pattern can be 

explained by a combination of factors, including reactivation of LTBI, reinfection and rapid 

progression to TB disease due to the presence of immune-suppressive chronic conditions 

such as HIV and diabetes; or exposure to TB risk factors such as alcohol abuse and tobacco 

smoking. It could also be due to the high prevalence of untreated active TB individuals and 

social mixing between these age groups (83,85).  

 Sex  

With respect to sex, males carry a higher TB burden than females. The estimated male-to-

female ratio of incident TB by WHO regions ranges between 1.3 in the Eastern 

Mediterranean Region and 2.1 in the European and West Pacific regions (3). Sex disparities 

in TB may be due to genuine sex-related epidemiological differences or systematic 

differences in reporting between males and females (2). However, TB prevalence surveys, 

which are meant to reflect the actual TB burden and reduce biases that may arise due to 

differences in reporting or healthcare-seeking behaviours, have confirmed this pattern of a 

higher TB prevalence in males (2).  

There is substantial evidence showing that sex disparities are due to epidemiological 

differences, which may be biological, socio-behavioural, and socioeconomic risk factors 

(35,86,87). The mechanism by which these factors increase the burden of TB is through 

directly or indirectly influencing the risk of a) exposure to M.tb, b) acquiring LTBI or c) 

developing active disease. Biological hypotheses suggest that certain female sex hormones 

may play a role in providing protection against the susceptibility to infection and the 

development of TB disease (86,87). It has also been observed that males and females have 

different behaviours that may expose them to TB. For instance, compared to females, males 

tend to be more likely to smoke tobacco and drink alcohol excessively (88,89). These risk 

factors increase the risk of developing TB by suppressing cell-mediated immunity (90,91) 

and explain a considerable amount of the TB burden at the population level (92,93).  

Furthermore, smoking and alcohol drinking are associated with social mixing patterns that 

facilitate TB transmission (69). Social contact patterns tend to be age- and sex-assortative; 

compared to women, men have more social contacts with other men, which increases their 

risk of TB acquisition (83,85). Undiagnosed and untreated TB also contributes to the burden 
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of TB by increasing exposure to Mtb and driving TB transmission. Horton et al. estimated the 

M:F ratio of prevalence-to-notification ratio (P:N) at 1.55 (95% CI 1.25–1.91) (2), suggesting 

that females may access TB care earlier than males. It could also be that males are not well-

served by health care facilities, and as a result, leads to the higher burden of undiagnosed TB 

than in females.  

Additionally, compared with women, men who eventually access TB care are more likely to 

be lost to follow-up and experience poor outcomes, including treatment failure and death 

(38,93). Socioeconomic reasons that may explain these include higher rates of employment in 

men and associated difficulties in adhering to treatment (particularly in the context of directly 

observed treatment). Men are also more likely to take on occupations such as mining which is 

are associated with exposure to silica and other industrial pollutants, which increase the risk 

of developing TB (72).  

2.1.3. Tuberculosis risk factors – HIV, diabetes, smoking, undernutrition, and alcohol  

Multiple TB risk factors exist; their significance to TB morbidity and mortality depends on 

the strength of their relative effect on TB disease or mortality and their prevalence in the 

population. For this PhD thesis, in addition to HIV, focus is on four TB risk factors that are 

potentially contributing significantly to increasing the population-level risk of TB globally 

and in the South African context. These risk factors include diabetes (indicated by glycated 

haemoglobin levels (HbA1c) >6.5%), undernutrition (or body mass index (BMI) <18 kg/m²), 

tobacco smoking and alcohol abuse (defined as drinking at least 40g alcohol per day).   

 HIV  

Strong evidence suggests that HIV has an effect on increasing progression to TB disease 

following recent infection (or reinfection). Studies conducted among prisoners and patients in 

hospitals have shown that a higher proportion of HIV-positive individuals were more likely 

to have incident TB due to recent transmission (94,95). Among HIV-positive individuals, TB 

disease risk following infection is much higher among those with low CD4 counts (i.e. 17.5 

per 100 patient-years for CD4 <200 cells/μl compared to 3.6 per 100 patient-years for CD4 

>350 cells/μl) (96).  

Antiretroviral therapy modifies the effect of HIV on TB and is an important factor in the 

epidemiology of TB in this current large-scale ART era. The benefits of ART include 
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restoration of immunity, increases in CD4 count and reduction in the risk of developing 

active TB (4,97). A meta-analysis comparing individuals on ART and those not on ART 

showed that ART reduces TB incidence and further highlighted that initiating ART at higher 

CD4 counts has additional benefits (97). Another meta-analysis showed that an increase in 

100 cells/μl of CD4 count is associated with a 30% reduction in TB risk (incidence rate ratio 

(IRR) 0.70, 95% CI 0.53–0.86) (98).  

HIV also increases the risk of TB mortality (99,100), and CD4 count is an independent 

predictor of TB mortality before and during ART (99,101–103). The study by Kaplan et al. 

showed that a 50 cells/ml increase in CD4 count was protective against TB mortality 

(adjusted hazard ratio (HR) 0.82, 95% CI 0.35–0.42) (103). Several other studies have shown 

the protective effect of ART against TB mortality (104,105). 

In South Africa, the adult HIV prevalence was 10.8% (95% CI 9.9–11.8%) and 14.0% (95% 

CI 13.1–15.0%) in 2002 and 2017, respectively. A higher prevalence was found among 

women (17%) than men (10.6%) in 2017. The estimated number of people on ART in 2017 

was 4 401 872 (62.3%, 95% CI 59.2–65.2%) (19). ART became widely available in the 

public sector from 2004 (106), and its impact on mortality became evident after 2005 

(107,108). 

 Poorly controlled diabetes (HbA1c > 6.5%) 

Diabetes is an immune suppressive condition that increases susceptibility to developing TB 

disease (RR3.59, 95% CI 2.25–5.73) (70). Diabetes is also associated with adverse TB 

outcomes such as death and treatment failure and relapse (reactivation) of disease after 

treatment (109). On average, females have a higher prevalence of diabetes; however, they are 

less likely to be undiagnosed than men (110). Therefore, men might be more likely to have 

poorly controlled diabetes. In 2016, the South African Demographic Health Survey (SADHS) 

reported the prevalence of diabetes (HbA1c >6.5%) in adults? at 13% for females and 8% for 

males (89).  

 Undernutrition  

Undernutrition, commonly defined by low BMI (<18 kg/m²), is associated with an increased 

risk of developing TB disease due to micro-and macro-nutrient deficiencies, which negatively 

impact immunity (111). Lönnroth et al.'s meta-analysis demonstrated an inverse relationship 
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between BMI and TB incidence within the range: 18 kg/m²–30.0 kg/m² range (73). The study 

showed that the risk of TB increased by 13.8% (95% CI 13.4–14.2) for each unit decrease in 

body mass index (73). Undernutrition in adults is common, particularly among men (73). In 

South Africa, the prevalence of underweight in males and females is 13.1% and 4%, 

respectively (112).   

 Tobacco smoking 

Tobacco smoking is associated with a wide range of diseases, including TB. Various 

epidemiological studies have shown the effect of tobacco smoking on developing active TB 

and TB death (113–115). In addition, chronic exposure to tobacco and smoke impairs 

pulmonary macrophages, which play an essential early defence mechanism against TB (116). 

It has, however, been shown that the adverse effect of smoking on the immune system 

reduces when an individual ceases to smoke (116). This suggests that the effect of smoking 

depends on whether an individual is currently exposed to smoking. There is also a dose-

response pattern in exposure to smoking and TB risk – the risk of developing active TB 

increases with an increase in a daily dose of cigarettes and an increased duration of smoking 

(114). In South Africa, tobacco smoking is more common among males (37%) than females 

(8%) (89). 

 Alcohol abuse 

Heavy alcohol drinking impairs the immune system and increases an individual's 

susceptibility to active TB infection and the reactivation of latent disease (68). The amount of 

pure alcohol in a single drink of alcohol is usually estimated at 10ml or 8g (though definitions 

of a ‘standard drink’ differ across settings). Risky alcohol consumption or alcohol use 

disorder is usually defined as drinking at least 40g of alcohol per day / or on one occasion 

(117). This can also be defined as consuming at least five alcoholic drinks on one occasion.  

Lönnroth et al.'s meta-analysis estimated pooled relative risk across all studies that used a 

cut-off exposure level set at 40 g; the pooled relative risk was 2.94 (95% CI: 1.89–4.59) (69). 

In this study, alcohol abuse was defined as drinking at least 40g of alcohol per day (69). A 

more recent meta-analysis estimated a 35% increased relative risk of tuberculosis for alcohol 

users than non-alcohol users (RR1.35, 95% CI: 1.09–1.68) (118). In the 2016 SADHS, risky 

alcohol drinking was defined as consuming at least five drinks on at least one occasion in the 

past 30 days. From this survey, 28% of males and 5% of females reported risky drinking (89). 
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These risk factors (i.–v.) above have established effects on increasing the progression to 

active TB disease and given their high prevalence in South Africa; they potentially contribute 

to active TB incidence. 

2.1.4. The evolution of global tuberculosis control efforts, progress, and challenges   

This section describes the evolution of global and South African TB control strategies. 

Knowledge of the changes in TB control strategies is important in understanding and 

explaining some of the observed trends in the TB epidemic and predicting the future course 

of the epidemic.  

 Earlier tuberculosis control policies: 1800–1981 

Although the discovery of the bacillus tubercle, the causative agent for Mtb, was made in 

1882 by Robert Kock, TB existed long before (119). Additionally, evidence suggests that 

even before the availability of a TB vaccine and effective chemotherapy, TB notification 

rates were already declining during the 19th century (120). These declining trends were 

observed in industrialised countries; for example, in Europe, there was a constant decline in 

TB notifications from the 19th century until the mid-1980s (121).  

There are varying hypotheses regarding what may have led to the declining TB trends even 

before effective chemotherapy. Some scientists hypothesised that the declining TB trends 

were due to reduced virulence of Mtb over time and possibly natural selection towards 

resisting TB disease in humans (120). There was insufficient evidence to prove this 

hypothesis, however. Other hypotheses were that the decline was due to economic 

development and sanatoria to isolate infectious patients in communities (33,120). This 

hypothesis was supported by the observed relationship between improved socioeconomic 

conditions and reduced TB disease. For instance, economic development is associated with 

improved nutrition, which reduces susceptibility to developing TB disease (33,120). 

Furthermore, improved socioeconomic status is associated with better housing and living 

conditions (i.e., lower density), leading to reduced risk of exposure and infection. Also, the 

isolation of infectious individuals in sanatoria broke the transmission chain in communities, 

possibly contributed to reducing TB infection rates (33,120). 

Tuberculosis control efforts advanced from the 1920s to the 1980s, starting with the 

development of the Mycobacterium Bovis Bacillus Calmette-Guérin (BCG) vaccine and its 
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first administration in humans (Figure 2-1) (122). Today BCG remains the only licenced TB 

vaccine; its efficacy is highly variable across geographic regions, but it is most effective 

against severe forms of TB in children (122). 

Figure 2-1: Early TB control policies: 1800–1981 

BCG = Bacillus Calmette–Guérin. TB = Tuberculosis. 

Another significant advancement in TB control was the development of anti-TB drugs. 

Rifampicin was one of the first effective TB treatment drugs developed in 1944 (122). 

Subsequently, other anti-TB drugs – isoniazid, ethambutol, and pyrazinamide – were 

developed. The approach of multi-drug combination treatment began during this period, and 

the treatment duration was 24 months. In 1980, a shorter treatment course of 6-8 months was 

established with the combination of drugs being isoniazid, rifampicin, ethambutol and 

pyrazinamide (122). Most of these drugs are still at the core of the present day TB curative 

programs globally.  

Altogether, the preventative effect of BCG and TB chemotherapy probably contributed 

substantially to TB control efforts and the decline in notified TB rates and mortality until the 

late 1980s.  

 The emergence of HIV and the spike in TB notifications (1980s–2000s) 

Although HIV existed before the 1980s, it was between 1983 and 1984 that it was discovered 

as the causative agent for AIDS (Figure 2-2) (123). A breakthrough in antiretroviral therapy 

drug discovery occurred between 1995-1996 when triple-drug therapy was developed (123). 

The late 1980s and 1990s were marked by an increase in TB incidence, with a tremendous 
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increase observed in sub-Saharan Africa. For example, it was reported that between 1985 and 

1991, the annual incidence of TB individuals increased by three-fold in Zambia and two-fold 

in Malawi (124). HIV/AIDS, which emerged around this period, and inadequate health 

systems to promptly detect and treat TB individuals were suggested to explain this rise in TB 

morbidity (120,124). As a result, these sharp increases in TB and HIV globally drew interest 

from organised global bodies to respond to these epidemics. 

Figure 2-2: Some of the significant shifts in global tuberculosis control strategies: 1990 – 

present  

 

DOTS = Directly observed treatment short course; MDG = Millennium Development goals; TB = Tuberculosis; 

SDG = Sustainable Development Goals.  

 

 Directly Observed Therapy Strategy Era (1994–2000)  

In 1991, the World Health Assembly recognised TB as a significant public health problem 

(125). Later in 1994, the Directly Observed Treatment Short Course (DOTS) strategy was 

launched (125). The main aim of the DOTS strategy was to ensure effective TB control by 

detecting infected individuals and treating them to reduce transmission (125). In addition, two 

global targets were set for 2000. First, the target was to detect at least 70% of infectious TB 

individuals; second, it was to cure 85% of those individuals (125). Under this DOTS strategy, 

there was an emphasis for healthcare workers to directly monitor patients to ensure that they 

swallow the TB drugs over the 6-8 months treatment course (125,126). In contrast, under 

self-administration treatment (SAT), patients would be administered prescribed TB treatment 

drugs without direct supervision by healthcare workers (126). 
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Detection of patients during the DOTS era was mainly passive, and the first-line diagnostic 

tool used was smear-microscopy (125). In most resource-limited settings, detection and 

treatment were prioritised for smear-positive patients for efficiency and cost-effectiveness 

(125). The strategy also recommended that countries have monitoring and evaluation of 

programme activities (125). Alongside the DOTS strategy, vaccination with BCG was still 

recommended, mainly to prevent severe forms of TB in children (125).  

Despite the broad implementation of DOTS, its limitations were evident in resource-limited 

settings. Not all countries had the capacity to expand their DOTS strategy; there were also 

inadequate TB surveillance and monitoring systems in place (127). As a result, it was 

impossible to evaluate progress towards these targets in these settings. Furthermore, although 

DOT reduces default rates, it had no major effect on reducing other treatment outcomes such 

as relapse, treatment failure, or acquiring drug resistance compared to SAT (128). In addition 

to these limiting factors, there were other arising public health challenges, including the rapid 

growth of the HIV epidemic and the emergence of multidrug-resistant (MDR) TB (127). 

 Stop TB Strategy and the Millennium Development Goals era (2001–2015)  

First Global Plan to Stop TB (2001–2005): In 2001, the DOTS strategy was revised and 

integrated into the "Stop TB Strategy". This revised strategy aimed to expand DOTS further 

and address the rising TB associated with HIV and MDR-TB (127). The Stop TB Strategy 

also sought to support health systems and highlighted the importance of enhancing research 

and development of new TB diagnostics, drugs and vaccines (127). In addition, issues 

resulting from TB associated with HIV were addressed by integrating TB and HIV care 

services. For instance, patients with TB were offered HIV testing and antiretroviral treatment 

(if HIV-positive and eligible according to the guidelines then) (127). Also, HIV-positive 

patients were prioritised for intensive TB screening, and early TB detection and TB 

preventative therapy was recommended (if eligible) (127).  

Second Global Plan to Stop TB (2006–2015): The Global Plan to Stop TB was modified 

again and launched as the second Stop TB Strategy to accelerate progress to meet the TB-

related Millennium Development Goals (MDGs) (127). The specific TB-related MDG targets 

were to detect >70% of new sputum smear-positive TB individuals and cure > 85% of these 

individuals; to achieve declining trends for TB incidence by 2015, and to halve active TB 
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prevalence and death rates by 2015 compared with their levels in 1990 (127). The ultimate 

goal was to reduce TB incidence to less than one new case per million by 2050 (127).  

In this revised strategy, the prevention and treatment of TB in HIV-positive individuals were 

prioritised. The WHO recommended the implementation of “the Three Is” – Isoniazid 

preventive treatment, intensified case finding for active TB, and TB Infection Control – for 

HIV-positive individuals (129). Over time, guidelines for providing antiretroviral treatment 

(ART) to TB patients living with HIV evolved, with early ART initiation being emphasised 

(129).  

Efforts to improve the detection of individuals with TB were made by expanding access and 

use of diagnostic tools, including smear microscopy and culture testing. From 2010, the use 

of GeneXpert MTB/RIF and the Genotype MTBDR Line Probe Assays were recommended 

(130). Compared to smear microscopy, GeneXpert MTB/RIF was particularly an 

improvement as it provided improved sensitivity and specificity, allowed the detection of 

Rifampicin resistance, and had a quicker processing time for results (~two hours compared to 

~48 hours for smear microscopy) (75,130). The detection and effective treatment of active 

TB individuals through these efforts was estimated to have saved approximately 43 million 

lives between 2000 and 2014 (131). 

The year 2015 marked the end of the MDG era (2000–2015) and a transition to the 

Sustainable Development Goals (SDG) era. The MDG target to reverse active TB incidence 

was achieved by all the six WHO regions (131). The estimated decline in TB incidence from 

the year 2000 was 1.5% per annum on average. However, the target for halving TB mortality 

rates by 2015 relative to 1990 was only achieved by four of the six WHO Regions 

(exceptions being the European and African regions) (131). Similarly, the target to halve 

active TB prevalence rates was not attained by all WHO regions (exceptions being the 

European, African, and Eastern Mediterranean regions).  

 Moving from the Millennium Development Goals to the Sustainable Development 

Goals and End TB strategy (2016–2050) 

From 2016, the Stop TB Strategy transitioned to the End TB Strategy. The aim of the End TB 

strategy shifted focus from TB control to elimination (11). Elimination, in this context, is 

defined as less than one TB case per million population, and the elimination target has been 

set for 2050 (11). The intermediate targets for the 2050 elimination goal were specified in 
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alignment with the SDGs and were set to be reached by 2035. The three main intermediate 

targets are 1) to reduce TB deaths by 95% compared to 2015 levels; 2) to reduce the TB 

incidence rate by 90% (<10 TB individuals per 100000 population), and 3) to also ensure that 

no families of active TB patients would suffer financially due to the costs of TB care (11). 

The End TB strategy also highlights the necessity of a multisectoral approach and addresses 

broader TB determinants. The strategy furthermore encourages political commitment and 

securing funding for TB programs. As a result, more commitments to accelerate progress 

towards attaining the SDG were made at the first United Nations High-Level Meeting on TB 

in 2018 (9). Some of the special considerations include prioritising LTBI detection and 

treatment with preventative therapy. Another consideration is recognising that people 

exposed to TB risk factors such as diabetes, undernutrition and alcohol disorders; people 

living in informal settlements; and miners as key and vulnerable populations need to be 

targeted for TB interventions (i.e., detection and management) (132).  

As far as diagnostics are concerned, the post-2015 strategy highlighted the importance of 

laboratory strengthening for countries to perform large scale rapid and accurate drug 

sensitive/resistant TB testing. As a result, Gene Xpert MTB/RIF was expanded in most 

countries as a first-line diagnostic. However, the sensitivity Gene Xpert MTB/RIF was still 

suboptimal in immunosuppressed individuals such as HIV-positive individuals (3). 

Subsequently, newer assays such as Xpert MTB/RIF Ultra, offering improved sensitivity in 

these populations, were developed (3). In 2018 the WHO further recommended the use of the 

urine lateral flow lipoarabinomannan (LAM) for HIV-positive individuals who have very low 

CD4 counts and are severely ill (131). Although the sensitivity of this test is still low (~42%), 

it is beneficial for the patients who cannot produce sputum samples to be tested (133).  

While BCG is currently the only licenced vaccine, there are about nine registered vaccines in 

Phase IIb and Phase III clinical trials (3). The M72/AS01E vaccine (134), revaccination with 

BCG in adolescents (135) and the MTBVAC which uses a live attenuated mycobacterium 

(136), are some of the promising candidate vaccines on the development pipeline. For 

instance, the M72/AS01E was shown to have 50% (90% CI 12.0–71.0%)-efficacy against 

Mtb. infection over a three-year follow-up, and is yet to be tested for effectiveness in broader 

population groups (134). 
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 Tuberculosis control efforts in South Africa 

The DOTS strategy was adopted in 1996 through the South African TB treatment programme 

and became widely implemented in 2002 (125). BCG had been part of the country's 

immunisation programme at relatively high coverage (~84%) (137). In 2002, the WHO’s 

“3Is” policy of IPT intensified case finding, and infection control was adopted (23). 

Additionally, the electronic tuberculosis register (ETR.Net) was launched in 2004 to ensure 

quality monitoring of the epidemic (125). This system provides surveillance data on notified 

drug-susceptible TB individuals who have initiated treatment and is a valuable data source 

for tracking the epidemic.  

Figure 2-3: Some of the significant events in controlling the tuberculosis epidemic in 

South Africa

DOTS = Directly observed treatment short course; HIV = human immunodeficiency virus; ART = 

Antiretroviral therapy; AIDS = acquired immunodeficiency syndrome; ETR = electronic tuberculosis 

register; IPT = isoniazid preventative therapy; NSP = national strategic plan. 

The emergence and subsequent rapid growth of the HIV epidemic during the early 1990s 

impeded TB control efforts and drove the rapid increase of TB notifications rates in South 

Africa (4–6). From the mid-2000s, more efforts were made to integrate TB and HIV care 

services, emphasising preventing and detecting TB in HIV-positive individuals. To ensure 

more national response to HIV, TB and other public health issues, in 2007 South Africa 

launched the National Strategic Plan (NSP) for HIV, TB, and Sexually transmitted infections 

which details a five-year plan to achieve specific targets and track the progress towards 

tackling these persisting public health problems (138).  Antiretroviral therapy was made 

widely available in the public sector from 2004 (106). Over time ART guidelines have also 

evolved, allowing patients to start treatment earlier in the course of their infection, and a 
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significant shift was the adoption of a policy of universal ART eligibility (in 2016), which 

allows the provision of ART to all HIV-positive individuals. 

Although IPT had always been recommended for high-risk populations (i.e., HIV-positive 

individuals), there had been ambiguity around TST requirements and concerns about IPT 

leading to drug resistance. In 2010, the guidelines were made less strict, recommending IPT 

for all eligible individuals irrespective of their TST test result (139). In 2011, the country 

introduced GeneXpert MTB/RIF to replace smear microscopy (23) to improve TB detection.  

Overall, the control efforts by the South African TB program contributed to declining TB 

incidence rates indicated by an analysis showing a decline in microbiological confirmed TB 

notifications from 848 (95% CI 845–850) per 100 000 population in 2008 to 774 (95% CI 

771–776) per 100 000 population in 2012 (24). Tuberculosis mortality has also been on a 

declining trend (18). However, despite these improvements, South Africa still has high TB 

mortality and morbidity. The country did not meet the 2015 MDG goals to halve TB 

mortality and prevalence relative to 1990. The major reason for South Africa not meeting the 

MDG target may be the emergence of the HIV epidemic in the 1990s and the delays in the 

rollout of ART during the 2000s (140). As noted, other TB risk factors potentially contribute 

to the population-level TB risk. To meet the end TB goals, more impactful interventions that 

address these problems are required. 

The latest South African NSP (2017–2022) has adopted the 90-90-90 targets of the Stop TB 

Partnership Global Plan to end TB (138). These targets aim to ensure that: 90% of all people 

who need TB treatment are diagnosed and receive appropriate therapy as required; 90% of 

people in vulnerable populations are diagnosed and receive appropriate therapy, and that 

treatment success is attained for at least 90% of all people diagnosed with TB (132,138). In 

this context, vulnerable populations for TB include people who are HIV-positive, household 

contacts of patients with active TB, health care workers, prisoners, pregnant women, children 

≤ 5 years, people who have diabetes, people living in informal settlements and miners (138). 

The NSP aims to ensure that these populations are targeted for interventions and given social 

and economic support (138). 
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2.1.5. Summary of the literature review (Part A) 

In summary, multifactorial determinants of TB exist and primarily increase the risks of 

exposure to M.tb, acquiring LTBI, and progressing to active TB disease. Tuberculosis control 

strategies have evolved over time with earlier strategies focusing on finding infectious TB 

individuals, isolating them, and providing them with curative treatment. There have also been 

advances in technologies to improve diagnosis. However, with the emergence of HIV and 

drug-resistant TB, it has become clear that biomedical and curative approaches alone are 

insufficient to control TB.  

South Africa has also made notable improvements and achieved some milestones in 

controlling TB. However, undiagnosed, and untreated TB contributes to transmission, and TB 

risk factors – HIV, diabetes, undernutrition, alcohol abuse and tobacco smoking – contribute 

to high TB incidence. Furthermore, there are apparent differences in the distribution of these 

risk factors by sex, and they may thus explain the higher TB burden in males than females. 

This review gave an overview of the broad development stages of TB, global and South 

African TB control strategies. These aspects of the TB natural history and controls strategies 

will be reflected in mathematical models reviewed in Part B. 

2.2. Part B: Mathematical models of tuberculosis 

Part B of the literature review aims to provide a context of existing TB dynamic transmission 

mathematical models which also include HIV effects. More specifically, the main aspects 

discussed are: 

i.) Modelling the tuberculosis natural history and the effects of human 

immunodeficiency virus and antiretroviral therapy.  

ii.) Modelling tuberculosis treatment and treatment outcomes. 

iii.) Modelling tuberculosis transmission.  

iv.) Modelling the impact of additional tuberculosis controls strategies:  

• Diagnostic strategies  

• Tuberculosis treatment-related strategies  

• Antiretroviral therapy 

• Isoniazid preventative therapy 
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• Vaccines  

v.) Comparisons of independent mathematical TB-HIV models.  

vi.) Calibration approaches. 

vii.) South African-specific tuberculosis modelling studies. 

viii.) Summary of literature and gaps. 

This literature review seeks to search and identify modelling studies most relevant to this 

PhD's research question. It must be noted that this was not a systematic review of TB 

modelling studies. A search was conducted in PubMed using the following terms: ((dynamic 

OR transmission) AND (mathematical model)) AND (tuberculosis OR TB)) AND ((human 

immunodeficiency virus OR HIV)). The literature search was restricted to studies written in 

English, those conducted in humans, no start date restriction, but included those published by 

31 April 2022. The PubMed search resulted in 398 articles. Additionally, reference lists of 

published literature reviews (141,142) were used to identify studies. When screening the 

articles, only studies based on dynamic transmission models were included – that is, 

mathematical modelling studies that explicitly modelled the risk of TB infection such that it 

depends on prevalent TB in the population (i.e., changes over time). Furthermore, the search 

was restricted to studies that included HIV and its effect on TB. After exclusions, 54 

dynamical TB-HIV mathematical modelling studies were included in this literature review.  

2.2.1. Overview of reviewed mathematical modelling studies  

Table 2-1 summarises the dynamical TB-HIV models in the review. The summary includes 

the authors, the year in which the studies were published, the modelled countries, the main 

research questions addressed, the modelling frameworks used, and the interventions 

implemented. The summary also shows whether the models have been calibrated and the data 

sources used in calibration. Lastly, the table summarises the various modelling studies' 

structures: TB natural history, HIV-related structures (i.e., CD4 count, ART status, duration 

on ART) and the demographic characteristics considered (i.e., age and sex). 

 Settings/countries modelled  

Most studies modelled Sub-Saharan African countries, including South Africa, Zimbabwe, 

Kenya, Uganda, Botswana, Gabon, Ghana, Tanzania, Botswana, Lesotho, Malawi, 

Swaziland, and Zambia. A few other studies modelled selected populations in the United 
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States of America (143,144) and Asian populations (145,146), and some were not intended to 

represent specific populations (147,148). While the Southeast Asian and Sub-Saharan African 

regions carry the highest burden of TB globally (3), their TB epidemics are driven by 

different factors. As a result, the predominant representation of Sub-Saharan African 

countries in most of these TB-HIV modelling studies reviewed here most likely reflects the 

high burden of TB-HIV in the region compared to other regions (149). 
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 Table 2-1:  Summary of transmission dynamic mathematical modelling studies of TB and HIV 
# First Author. 

Year  

Country    Research question addressed  Modelling 

framework 

Interventions Calibration or 

fitting to data or 

validation  

Age and sex 

structure 

Any other additional TB 

and HIV structures included 

1 Massad E 

(150); 

1993 

South Africa To give a theoretical 

framework for studying the 

interaction between TB and 

HIV. 

Compartmental, 

deterministic 

NA NA NA TB  

HIV 

2 Dye C (151);  

1998 

WHO regions: 

Sub-Saharan 

Africa, Americas, 

Eastern 

The 

Mediterranean, 

Europe (Eastern 

and Western), 

Southeast 

Asia, Western 

Pacific). 

To explore the potential 

impact of the DOTS strategy  

Compartmental, 

deterministic 

Improved case finding 

and cure  

Validated using 

WHO TB 

incidence and 

mortality data; 

UNAIDS HIV 

prevalence data  

Age structured: 

Children (<15 

years old) and 

adult population 

(>15 years old). 

TB: sputum-smear positive, 

sputum-smear negative or 

extrapulmonary. 

HIV 

3 Porco T (152) 

;  

2001 

United States of 

America 

To project the impact of HIV 

on increasing the likelihood 

and the expected severity of 

TB outbreaks. 

Compartmental. 

Stochastic / 

Markov  

NA   NA NA TB 

HIV 

4 Murray M 

(144); 

2002 

Sudan, United 

States of America, 

Algeria, 

Netherlands 

To investigate social and 

demographic determinants of 

TB cluster distributions. 

Individual-based 

model. Stochastic 

BCG vaccination, 

case finding, standard 

treatment, Isoniazid 

preventative therapy. 

Calibrated to 

LTBI prevalence 

and TB incidence 

data from WHO.  

Age structured: 

3 age 

categories: 0-

10; 11-20; >20 

years  

TB, HIV 

5 Raimundo 

SM (153); 

2002 

Brazil, Sao Paulo 

State. Prisons. 

To describe TB transmission 

dynamics of AIDS and TB in 

a closed population (prisons) 

to see how the diseases 

impact each other.  

Compartmental, 

deterministic  

NA  Fitted to Sao 

Paulo female 

prisons TB and 

HIV data 

NA TB, HIV 
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# First Author. 

Year  

Country    Research question addressed  Modelling 

framework 

Interventions Calibration or 

fitting to data or 

validation  

Age and sex 

structure 

Any other additional TB 

and HIV structures included 

6 Currie C 

(154); 

2003 

South Africa, 

Kenya, Uganda 

To assess and compare the 

health benefits of TB 

treatment versus TB 

prevention and HIV treatment  

Compartmental, 

deterministic. 

HIV modelled 

statically. 

HAART, IPT, 

improving TB 

treatment (improved 

cure rates).   

Bayesian 

approach. Used 

TB and HIV data 

from WHO.  

Adult 

population: 15-

49 years  

TB, HIV  

7 Schinazi RB 

(145); 

2003 

Theoretical. 

Suggested for 

South-East Asia 

To explore whether HIV can 

invade a population that 

already has high levels of TB.  

Compartmental, 

deterministic  

NA NA NA TB: smear-positive or 

smear-negative. 

HIV 

8 Guwatudde D 

(155); 

2004 

Uganda To assess the impact of 

isoniazid preventative therapy 

on the prevalence of TB and 

TB-associated mortality. 

Compartmental, 

deterministic. 

HIV infection at a 

constant rate. 

Preventative therapy 

for HIV-positive 

individuals with 

LTBI. 

NA  NA TB, HIV  

9 Williams B 

(146); 

2005 

India To evaluate the impact of the 

HIV epidemic and the 

Revised National TB Control 

Program on TB in India, 

1990-2015. 

Compartmental, 

deterministic  

DOTS Fitted to ANC 

data using 

maximum 

likelihood. 

Adult 

population: > 15 

years 

TB: smear-positive or 

smear-negative. 

HIV: ART; CD4   

10 Naresh R 

(156); 

2005 

Theoretical. No 

specific country  

To study parameters involved 

in the spread of TB. 

Compartmental, 

deterministic  

NA NA NA TB, HIV  

11 Cohen T 

(157); 

2006 

Sub-Saharan 

Africa. High TB 

and HIV burden 

settings  

To demonstrate the impact of 

various IPT policies targeted 

at HIV-positive individuals 

with TB disease, in settings 

with increasing TB and HIV 

epidemics, and their effect on 

the emergence of drug-

resistant TB. 

Compartmental, 

deterministic  

IPT for LTBI in HIV–

TB coinfected and 

ART 

Calibrated to 

UNAIDS and 

WHO TB data for 

high TB and HIV 

burden settings.  

NA TB, MDR 

HIV, ART 
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# First Author. 

Year  

Country    Research question addressed  Modelling 

framework 

Interventions Calibration or 

fitting to data or 

validation  

Age and sex 

structure 

Any other additional TB 

and HIV structures included 

12 Dowdy D 

(158); 

2006 

Hypothetical 

population, high 

HIV setting   

To assess the impact of 

improved TB diagnostic 

approaches for TB control in 

populations with a HIV high 

prevalence 

Compartmental, 

deterministic  

Molecular testing, 

mycobacterial culture 

testing, targeting 

active case finding to 

HIV-positive 

individuals; HAART 

NA Adult 

population 

TB: smear-positive or 

smear-negative. 

HIV, ART 

  

13 Hughes G 

(159);  

2006 

Zimbabwe To explore strategies for 

controlling TB transmission 

by more efficient TB case 

detection. 

Individual-based 

model, Stochastic. 

HIV modelled 

statically 

Active case finding  Calibrated to 

household survey 

data. Validated by 

comparing model 

outputs with 

Zimbabwe TB 

incidence data.   

Age structured: 

Age (children 

and adults). 

Sex structured. 

TB: infectious and non-

infectious 

HIV  

14 Salomon JA; 

(160) 

2006 

South-East Asia 

region: India, 

Indonesia, 

Bangladesh, 

Myanmar, 

Thailand 

To assess the potential health 

benefits of reducing the TB 

treatment duration  

Compartmental, 

deterministic. 

DOTS scale up 

(higher detection rates 

and cure rates), 

reducing treatment 

duration to two 

months.  

WHO TB 

incidence and 

mortality data 

NA TB: smear-positive or 

smear-negative. 

HIV 

15 Bacaer N 

(142); 

2008 

Masiphumelele, 

Cape Town, 

South Africa 

To assess the impact of HIV 

and TB control measures on 

TB in the Masiphumelele 

community.  

Compartmental, 

deterministic  

Condom promotion, 

increased TB 

detection, isoniazid 

preventive therapy, 

ART 

Fitted to TB 

prevalence and 

HIV prevalence 

data. 

NA TB,  

HIV  

16 Dowdy D 

(161); 

 2008 

South Africa To evaluate the potential 

impact of improved TB 

diagnosis (expanded culture 

and drug sensitivity testing). 

Compartmental, 

deterministic  

Increasing access to 

culture and drug 

susceptibility testing  

WHO TB 

incidence, 

prevalence, and 

mortality 

estimates  

NA TB 

HIV, ART 
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# First Author. 

Year  

Country    Research question addressed  Modelling 

framework 

Interventions Calibration or 

fitting to data or 

validation  

Age and sex 

structure 

Any other additional TB 

and HIV structures included 

17 Sánchez MS 

(162);   

2008 

Kenya To determine the impact on 

the TB burden, of shortening 

TB treatment course alone, or 

combined with improved 

detection and cure of 

individuals with active TB. 

Compartmental, 

deterministic  

Shortened treatment 

duration (2 months) 

alone or in 

combination with 

advanced detection 

and DOTS treatment 

WHO TB 

incidence and 

mortality (1980-

2004) 

NA TB 

HIV 

18 Basu S (163) ;  

2009 

Botswana To evaluate the benefits and 

risks of IPT delivered through 

ART clinics. 

Compartmental, 

deterministic  

IPT and ART Mentioned “face 

validity”: 

compared model 

TB and HIV 

incidence; INH-

resistant TB 

prevalence data  

NA TB 

INH-resistant TB 

HIV, ART  

19 Dowdy D 

(164);  

2009 

Hypothetical, 

representative of 

WHO African 

Region 

To assess whether keeping 

high rates of TB detection 

could sustain annual declines 

of 5–10% in TB incidence 

over long periods. 

Compartmental, 

deterministic  

Expansion (rapid and 

gradual) of annual 

case detection rates. 

Validation by 

comparing model 

estimates to 2005 

WHO TB 

incidence and 

mortality data  

NA TB: smear-positive or 

smear-negative 

HIV 

20 Naresh R 

(148); 

2009 

NA To assess how TB affects the 

spread of HIV in a population 

that is growing. 

Compartmental, 

deterministic  

NA NA NA TB 

HIV 

21 Sánchez MS 

(165); 2009 

Kenya To determine what explains 

the discrepant TB and HIV 

trends in Kenya  

Compartmental, 

deterministic  

NA Calibrated to TB 

and HIV data 

(1980-2004) 

NA  TB 

HIV 
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# First Author. 

Year  

Country    Research question addressed  Modelling 

framework 

Interventions Calibration or 

fitting to data or 

validation  

Age and sex 

structure 

Any other additional TB 

and HIV structures included 

22 Williams BG 

(166); 

2010 

Gabon, Ghana, 

Tanzania, 

Botswana, 

Lesotho, Malawi, 

South Africa, 

Swaziland, 

Zambia 

To investigate ART's short-

term and long-term impacts 

on TB incidence, if HIV 

testing occurs regularly 

(yearly). 

Compartmental, 

deterministic  

ART Fitted model to 

WHO TB 

incidence and 

UNAIDS HIV 

prevalence data 

(1980-1997) 

NA TB  

 HIV: HIV, ART, CD4 

23 Basu S (147); 

2011  

No specific 

population/countr

y was modelled. 

Theoretical.  

Tested the hypothesis that 

institutional amplifiers (i.e., 

prisons, hospitals, mines) 

increase the transmission rate. 

Compartmental, 

deterministic  

 Reducing the per-

person duration of 

exposure to an 

institutional amplifier, 

the number of persons 

exposed, and the at-

risk group's case 

detection and 

treatment rates. 

 NA NA  TB, HIV 

24 Mellor GR 

(167); 

2011 

Zimbabwe To assess the effectiveness of 

targeted case-finding 

strategies for TB in a high 

HIV prevalence setting.   

Individual-based 

model, Stochastic. 

HIV modelled 

statically.  

Contact-tracing 

strategies with case-

finding targeted at 

high-risk groups.   

Used WHO TB 

incidence and 

UNAIDS HIV 

prevalence data. 

Age structured, 

assigned 

individual age. 

TB: active TB (infectious / 

non-infectious)  

HIV 

25 Mills LH 

(168);  

2011 

Modelled to 

approximate 

Botswana in 1990 

Assess how clustering of 

contacts in communities with 

high TB incidence may affect 

the rates of reinfection with 

TB and how clustering 

modifies the impact of IPT. 

Individual-based 

model, Stochastic 

IPT *Not described 

clearly.  

NA TB: fast and slow LTBI. 

HIV. 
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# First Author. 

Year  

Country    Research question addressed  Modelling 

framework 

Interventions Calibration or 

fitting to data or 

validation  

Age and sex 

structure 

Any other additional TB 

and HIV structures included 

26 Menzies NA 

(169);  

2012 

Botswana, 

Lesotho, Namibia, 

South Africa, 

Swaziland 

To estimate the potential 

health and economic 

consequences of MTB/RIF 

Xpert implementation. 

Compartmental, 

deterministic an 

economic 

evaluation 

The rollout of Xpert 

as a first-line 

diagnostic. DOTS 

treatment and ART 

Bayesian 

approach. Used 

WHO TB 

incidence and 

prevalence data 

and UNAIDS 

HIV prevalence 

data. 

Adults, 15+ 

years 

 TB: smear-positive or 

smear-negative; DOTS and 

non-DOTS treatment. 

Treatment history: 

treatment naïve and 

treatment-experienced.  

MDR/XDR 

HIV; CD4 count; ART 

27 Houben  M. 

G. J (170); 

2014 

HIV-positive, 

TST-positive 

participants from 

three clinical trials 

were conducted in 

Kenya, Uganda, 

and South Africa.     

To show that IPT does not 

cure Mtb infection in most 

HIV-positive individuals. 

Compartmental, 

deterministic 

IPT  Least squares. 

Fitted to 

controlled trial 

Nairobi (Kenya) 

and Kampala 

(Uganda); non-

placebo-

controlled trial 

Soweto (South 

Africa). 

NA TB. 

HIV; CD4 count; ART 

28 Pretorius C 

(171); 

2014 

South Africa To quantify the impact of 

expanding access to ART on 

TB. 

Comparison of 

three independent 

models:  

Individual-based, 

deterministic and 

a multivariate 

regression (noting 

that this is not a 

dynamical model) 

Improving the 

provision of pre-ART 

and ART services, 

and increasing the 

threshold CD4 for 

ART initiation 

Three models 

calibrated to 

South African 

HIV–TB data: 

WHO data for TB 

incidence and 

mortality 

estimates and the 

UNAIDS for HIV 

prevalence. 

Adults, 15+ 

years   

TB.  

HIV, CD4 counts, ART  
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# First Author. 

Year  

Country    Research question addressed  Modelling 

framework 

Interventions Calibration or 

fitting to data or 

validation  

Age and sex 

structure 

Any other additional TB 

and HIV structures included 

29 Chindelevitch 

L (172);  

2015 

South Africa To assess the impact of 

improving TB programmes: 

coverage, diagnosis, and 

treatment effectiveness and 

expanded ART use through 

broadened eligibility. 

Compartmental, 

deterministic  

TB programme 

coverage, diagnosis 

(Xpert) and treatment 

effectiveness 

broadened ART 

eligibility. 

Bayesian 

calibration 

approach. WHO 

TB incidence 

data.  

NA  TB. smear-positive or 

smear-negative; DOTS and 

non-DOTS treatment. 

28Treatment history: 

treatment naïve and 

treatment-experienced. 

MDR/XDR 

HIV; CD4 count; ART 

30 Knight GM 

(173); 

2015 

South Africa To assess the impact of a 

hypothetical shortened TB 

regimen. 

Individual-based 

model and 

Economic 

evaluation   

Shortening treatment; 

4-month regimen 

Nelder-Mead 

simplex 

algorithm. WHO 

TB prevalence 

and incidence 

data; UNAIDS 

HIV prevalence 

and ART 

coverage data.  

Age structured 

adult 

population. 

 TB. smear-positive or 

smear-negative; DOTS and 

non-DOTS treatment. 

MDR/XDR 

HIV; CD4 count; ART 

31 Knight GM 

(174); 

2015 

South Africa To assess if the NSP targets 

could be met if scale-up of 

control strategies was 

implemented in 2014. 

Individual-based 

model, Stochastic 

Increasing ART 

eligibility, providing 

IPT, Improved TB 

case finding and case 

management. 

Nelder-Mead 

simplex 

algorithm. WHO 

TB prevalence 

and incidence; 

UNAIDS HIV 

prevalence and 

ART coverage 

data.   

Age structured 

adult 

population. 

 TB. smear-positive or 

smear-negative; DOTS and 

non-DOTS treatment. 

MDR/XDR 

HIV; CD4 count; ART 
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# First Author. 

Year  

Country    Research question addressed  Modelling 

framework 

Interventions Calibration or 

fitting to data or 

validation  

Age and sex 

structure 

Any other additional TB 

and HIV structures included 

32 Vynnycky E 

(175);  

2015 

South Africa 

miner population 

Exploring factors that 

contribute to the lack of 

population-level impact of 

IPT. 

Compartmental, 

deterministic  

1) reduced initial loss 

to follow-up and 

treatment delay, 2) 

Xpert used as the 

initial test for new 

miners, 3) increased 

ART coverage (80%) 

for all HIV-positive 

miners and 4) IPT 

provision for all ART 

recipients. 

Bayesian melding 

to Thibela TB 

randomised 

clinical trial data  

Age structured: 

4 age strata: 

<30, 30–39, 40–

49, and ≥50 

years  

 TB: smear-positive or 

smear-negative. 

LTBI not on IPT/ on IPT; 

Reinfected not on IPT/ on 

IPT.  

HIV 

33 Gilbert JA 

(176);  

2015 

South African, 

rural KwaZulu-

Natal 

To assess the effectiveness of 

combining TB and HIV 

interventions in rural South 

Africa for more than ten 

years. 

Compartmental, 

deterministic  

1) GeneXpert 

screening test for 

MDR-TB; 2) 

treatment 

decentralization; 3) 

improved first-line 

TB treatment cure 

rate; 4) IPT, 5) ART 

expansion, 6) 

community-based 

integrated TB/HIV 

intensified case 

finding. 

Calibrated to 

WHO TB 

prevalence and 

incidence data; 

HIV prevalence 

from the Actuarial 

Society of South 

Africa. 

NA TB: smear-positive or 

smear-negative. 

Slow and fast LTBI. 

MDR/XDR 

HIV; CD4 count; ART 
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# First Author. 

Year  

Country    Research question addressed  Modelling 

framework 

Interventions Calibration or 

fitting to data or 

validation  

Age and sex 

structure 

Any other additional TB 

and HIV structures included 

34 Houben 

RMGJ (177); 

2016 

South Africa, 

Ghana 

An accessible TB model that 

can produce country-specific 

TB burden estimates and 

allows policymakers in 

various countries to use the 

model decision making.  

Deterministic 

compartmental 

Increased Case 

Detection (non-

MDR), improved 

treatment success, 

detection, linkage to 

care, provision of IPT 

to HIV-positive and 

HIV-negative 

persons, increased 

ART coverage, HIV 

testing, active case 

finding among 

household members 

and IPT for child 

household contacts. 

Manually fitted to 

WHO TB 

notification data. 

Age structured: 

Children (<15 

years old) and 

adult population 

(>15 years old). 

TB. smear-positive or 

smear-negative. 

Treatment history: 

treatment naïve and 

treatment-experienced. 

MDR/XDR 

HIV; CD4 count; ART 

35 Blaser N (77); 

2016 

South Africa, 

Cape Town 

community  

To study factors that drive 

age patterns of TB incidence 

Individual-based 

model 

NA Fitted to Cape 

Town TB 

notification data  

Age structured: 

5-year age 

categories.  

 TB; HIV; ART 
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# First Author. 

Year  

Country    Research question addressed  Modelling 

framework 

Interventions Calibration or 

fitting to data or 

validation  

Age and sex 

structure 

Any other additional TB 

and HIV structures included 

36 Gilbert JA 

(178);  

2016 

South Africa, 

rural Kwa Zulu 

Natal  

Evaluate the costs and health 

benefits of implementing 

interventions to improve TB 

and HIV screening and 

linking to care. 

Compartmental, 

deterministic with 

an economic 

evaluation 

TB & HIV detection. 

GeneXpert screening 

test for MDR-TB, 

MDR-TB treatment 

decentralisation, 

improved drug 

sensitive TB 

treatment cure rates, 

IPT, ART expansion, 

and community-based 

integrated case-

finding  

Calibrated to 

WHO TB 

prevalence and 

incidence data; 

HIV prevalence 

from the Actuarial 

Society of South 

Africa. 

Adult 

population: 15-

64 years 

 TB: smear-positive or 

smear-negative. 

Slow and fast LTBI. 

MDR/XDR 

HIV; CD4 count; ART 

37 Sumner T 

(179); 

2016 

South Africa, 

Khayelitsha   

To determine the risk of 

infection and proportion of 

individuals cured by IPT. 

Compartmental, 

deterministic  

IPT combined with 

ART  

Bayesian 

approach. Fitted 

to trial data and 

LTBI prevalence 

from Wood et al. 

study  

Adult 

population   

TB: smear-positive or 

smear-negative. 

MDR/XDR 

HIV; CD4 count; ART 

38 Houben 

RMGJ (180); 

2016 

China, India, 

South Africa 

To evaluate if the post-2015 

End TB goals can be met in 

high TB burden countries. 

Comparison of 11 

TB transmission 

models: 2 

Individual-based 

models and nine 

compartmental  

Improving prevention, 

case finding and 

diagnosis, and 

treatment 

All models were 

calibrated to 

country-specific 

TB and HIV data. 

Varying. <15 

and 15+ years. 

Only one study 

included sex 

stratification.  

Varying across models: 

late/early LTBI; access to 

TB care; TB treatment 

history; MDR. 

HIV: ART; CD4 
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# First Author. 

Year  

Country    Research question addressed  Modelling 

framework 

Interventions Calibration or 

fitting to data or 

validation  

Age and sex 

structure 

Any other additional TB 

and HIV structures included 

39 Menzies NA 

(181);  

2016 

China, India, 

South Africa 

To evaluate resource 

requirements and cost-

effectiveness of control 

policies to attain the post-

2015 End TB strategy goals. 

Comparison of 11 

TB transmission 

models: 2 

Individual-based 

models and nine 

compartmental  

Improving prevention, 

case finding and 

diagnosis, and 

treatment 

All models were 

calibrated to 

country-specific 

TB and HIV data. 

Varying. <15 

and 15+ years. 

Only one study 

included sex 

stratification.  

Varying across models: 

late/early LTBI; access to 

TB care; TB treatment 

history; MDR. 

HIV: ART; CD4 

40 Williams BG 

(182); 

2017 

South Africa To assess the potential impact 

and associated costs of 

universal ART and HIV 

expanded prevention.  

Compartmental, 

deterministic and 

an economic 

evaluation  

ART to every HIV-

positive individual 

irrespective of their 

CD4 cell count 

Fitted to the 

prevalence of HIV 

and ART from 

UNAIDS and 

WHO 

tuberculosis 

notification rates  

Adult 

population: 15+ 

years  

 TB  

 HIV: HIV, ART, CD4 

41 Shrestha S 

(183); 

2017 

South Africa, 

mining population  

To quantify the likely impact 

of targeting miners with 

vaccines. 

Individual-based, 

transmission 

model 

Two vaccination 

campaigns in 20 years 

to miners and labour-

sending communities.  

Age- and sex-

specific HIV 

prevalence and 

ART coverage 

data.   

Age and sex 

structured  

TB: Vaccinated  

HIV: HIV, ART, CD4 
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# First Author. 

Year  

Country    Research question addressed  Modelling 

framework 

Interventions Calibration or 

fitting to data or 

validation  

Age and sex 

structure 

Any other additional TB 

and HIV structures included 

42 Marx F (184);  

2018 

South Africa, 

Cape Town 

community  

To estimate the potential 

population-level effect of 

interventions targeted to 

individuals with a history TB 

treatment completion. 

Compartmental, 

stochastic 

Yearly targeted active 

case finding in 

persons with a history 

of TB treatment 

completion, and 

lifelong secondary 

IPT. 

Bayesian 

calibration 

approach. Data: 

TB treatment 

registers; Western 

Cape data on HIV 

prevalence 

Age structured: 

two categories 

for children (0-

14 years); adults 

+15 years  

TB: complete and 

incomplete; TB treatment 

naïve and treatment-

experienced.   

HIV, ART, 

CD4 

43 McCreesh N 

(185);  

2018 

South Africa, 

Cape Town 

To assess the contribution of 

different social contact 

patterns: 1) household; 2) 

individuals outside the 

household repeatedly 

contacted with daily-monthly 

frequency; 3) non-repeated) 

to TB transmission.  

Individual-based, 

transmission 

model 

NA Used WHO TB 

incidence and 

mortality data, 

electronic TB 

treatment register, 

and UNAIDS 

HIV prevalence 

data. 

Age structured: 

two categories 

for children (0-

14 years); adults 

+15 years 

TB: smear-positive or 

smear-negative. 

HIV; CD4 count; ART 

44 Rhines AS 

(186); 

2018 

South Africa To evaluate the impact of IPT 

in adolescents. 

Compartmental, 

deterministic  

IPT targeted at 

adolescents 

To WHO TB 

incidence, 

prevalence, and 

mortality data and 

UNAIDS HIV 

prevalence data  

Age-structured: 

children, 

adolescents, and 

adults 

 LTBI not treated with IPT; 

LTBI treated with IPT; 

active TB (false negative).  

HIV; CD4 count; ART 
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# First Author. 

Year  

Country    Research question addressed  Modelling 

framework 

Interventions Calibration or 

fitting to data or 

validation  

Age and sex 

structure 

Any other additional TB 

and HIV structures included 

45 Kendall EA 

(187); 

2019 

South Africa, 

Cape Town 

To determine the population-

level impact of the provision 

of the 12-month IPT regimen 

to HIV-positive individuals 

on ART.  

Compartmental, 

deterministic  

12-month IPT and 

ART 

Bayesian 

approach. To TB-

HIV epidemic 

data in 

Khayelitsha: TB 

notifications, TB 

prevalence, TB-

associated 

mortality, MDR 

prevalence, HIV 

prevalence, 

proportion 

initiating ART. 

NA LTBI (remote and recent).  

HIV; CD4 count; ART 

46 Sumner T 

(188);  

2019 

South Africa To assess the impact of case-

finding interventions on TB 

incidence, taking into account 

resource constraints. 

Compartmental, 

deterministic  

Xpert as a first-line 

test, adherence to 

Xpert-negative 

guidelines, cough-

based screening, and 

symptom screening 

Bayesian 

Calibration. To 

WHO TB 

notification, 

incidence, and 

mortality data; the 

number of TB 

screens from 

NDOH reports.  

Age structured: 

5-year age 

categories 

TB. smear-positive or 

smear-negative. 

HIV; CD4 count; ART 

47 Sumner T 

(189);  

2019 

South Africa To estimate the potential 

impact of using the mRNA 

expression signature (COR) 

to target preventative therapy 

among HIV-negative 

individuals. 

Compartmental, 

deterministic  

mRNA expression 

signature COR-

targeted preventative 

therapy for HIV-

negative individuals, 

compared to IGRA 

Bayesian 

Calibration 

Approach. Used 

WHO notification 

data  

Age structured: 

5-year age 

categories. 

TB. Smear +/- 

Post-3HP (those treated 

with 3HP). 

HIV; 
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# First Author. 

Year  

Country    Research question addressed  Modelling 

framework 

Interventions Calibration or 

fitting to data or 

validation  

Age and sex 

structure 

Any other additional TB 

and HIV structures included 

48 Hippner P 

(190);  

2019 

South Africa. 3 

provinces: 

Limpopo, 

KwaZulu-Natal, 

Western Cape  

To project the impact of 

meeting the 90-90-90 targets 

of the Stop TB Partnership 

Global Plan on the TB 

burden. 

Compartmental, 

deterministic  

Screening, linking to 

care, improving 

treatment success  

Manually fitted to 

TB notifications 

(ETR), TB 

incidence (WHO), 

and screening 

data. 

Age structured: 

Children (<15 

years old) and 

adult population 

(>15 years old). 

 TB. Smear +/- 

Treatment history: 

treatment naïve and 

treatment-experienced. 

MDR/XDR 

HIV; CD4 count; ART 

49 Ricks S (191); 

2020 

South Africa  To assess the potential impact 

on TB incidence and 

mortality of 1) LAM tests 

amongst those receiving HIV 

care, and 2) using LAM tests 

in patients irrespective of HIV 

status.  

Compartmental, 

deterministic  

LAM testing Adaptive 

Bayesian Markov 

Chain Monte 

Carlo. To WHO 

data for estimates 

of TB incidence 

and mortality. 

Thembisa model 

and UNAIDS for 

HIV prevalence.  

Adults, 15+ 

years   

TB.  

 HIV status, CD4 counts, 

ART. 

Further distinguished HIV-

infected individuals by 

whether they are hospital 

inpatients or outpatients or 

if in routine care. 

50 Marx F (192); 

2020 

South Africa, 

Cape Town 

community. 

To evaluate the cost and 

health implications of post-

treatment follow-up and 

secondary IPT. 

Compartmental 

and an economic 

evaluation 

Yearly active case 

finding in all 

individuals with a 

history of TB and 

who had completed 

TB treatment, and 

lifelong secondary 

IPT 

Bayesian 

calibration 

approach. Data: 

Tuberculosis 

treatment register 

database; Western 

Cape data on HIV 

prevalence 

Age: children 

(0-14 years); 

adults +15 years  

TB: complete and 

incomplete; TB treatment 

naïve and treatment-

experienced.   

HIV, ART, CD4 
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# First Author. 

Year  

Country    Research question addressed  Modelling 

framework 

Interventions Calibration or 

fitting to data or 

validation  

Age and sex 

structure 

Any other additional TB 

and HIV structures included 

51 Harris R 

(193); 2020 

South Africa, 

India, China. 

To estimate the long-term 

impact of hypothetical TB 

vaccines with different 

features (prevent 

infection/disease) in South 

Africa, India and China. 

Compartmental, 

deterministic 

Regular early 

adolescent 

vaccination; ten-

yearly large-scale 

campaigns to adults 

over between 2025 

and 2050. 

Bayesian 

approach. Used 

WHO TB 

incidence, 

prevalence, and 

mortality data. 

Age structured: 

0-14; 15-65; 

65+ 

For South Africa, included 

HIV strata: HIV+ and HIV- 

Vaccinated; unvaccinated  

52 Sumner T 

(194); 2021 

CORTIS-HR 

study population – 

South Africa. 

To project the future impact 

of using a blood 

transcriptomic biomarker 

(RISK11) to target preventive 

therapy to HIV-positive 

individuals. 

Compartmental, 

deterministic  

3HP  Bayesian 

calibration 

approach. Fitted 

to the incidence of 

TB infection in 

CORTIS-HR 

cohort 

NA On ART, no IPT; ART 

naïve, no IPT. 

 

53   Jo Y (195); 

2021  

California, 

Florida, New 

York, Texas 

To assess the cost and health 

benefits of testing and 

treatment of LTBI targeted at 

individuals who are: non–US 

natives, have diabetes, HIV-

positive, homeless, or 

imprisoned. 

Individual-based 

model (Shrestha  

et al. (183) 

3HP under various 

TTT scenarios. 

Fitted age- and 

sex-specific 

prevalence of HIV 

and ART 

coverage (2011) 

to the HIV model.  

Age and sex 

structured  

 HIV, ART, CD4 

54 Harris R 

(196) ; 2022 

South Africa, 

India 

To estimate the potential 

health impact and cost-

effectiveness of routine 

adolescent M72/AS01E-like 

vaccine in South Africa and 

India. 

Compartmental, 

deterministic 

(193) and cost-

effectiveness. 

M72/AS01E-like 

vaccine (to prevent 

TB disease; before or 

after infection with 

Mtb) to different age 

groups: 50% to 18 

year-olds, 80% to15 

year-olds, and 80% to 

10 year-olds.  

Bayesian 

approach. Used 

WHO TB 

incidence, 

prevalence, and 

mortality data. 

Age structured: 

0-14; 15-65; 

65+ 

For South Africa, included 

HIV strata: HIV+ and HIV- 

Vaccinated; unvaccinated 

AIDS = acquired immunodeficiency syndrome; Antenatal Care = ANC; ART = antiretroviral therapy; CORTIS-HR = Correlates of Risk of TB Disease in High-Risk Populations. DOTS = 

directly observed short course; HAART = highly active antiretroviral therapy; HIV = human immunodeficiency virus; 3HP = rifapentine plus isoniazid for three months; IPT = isoniazid 

preventative therapy; LAM = Lipoarabinomannan; LTBI = latent tuberculosis infection; NA = not applied; NDOH = National Department of Health; NSP = National Strategic Plan; TB = 

Tuberculosis; TTT = Targeted testing and treatment. Smear +/- = smear positive and smear negative; WHO = World Health Organization; MDR=multidrug-resistant. UNAIDS = Joint United 

Nations Programme on HIV and AIDS.  * Mentioned parameters being obtained from fitted to HIV and TB epidemic data but not described. Mills 2011. 
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 Research questions addressed by modelling studies 

The questions addressed by the different TB and HIV modelling studies can be put broadly 

into four categories. First were studies that sought to understand various disease dynamics 

such as HIV and TB coinfection (150,153); or to explore environmental factors (i.e. 

prisons/health care facilities) (147,197) and host-related characteristics that drive 

transmission (185). Others explored factors that explain observed age patterns in the 

distribution of TB incidence (77). Some used molecular epidemiology to explore clusters of 

Mtb strains that drive transmission in the population (144). Second were studies that sought 

to evaluate various interventions and predict their impact. Interventions in these studies 

included TB treatment-related improvements such as shortening treatment duration and 

increasing coverage of DOTS (146,198); a combination of interventions such as the provision 

of ART and IPT (142,155,157,163,174,179,199,200); improving detection and diagnostic 

tools; other specific interventions for selected groups other than HIV-positive individuals 

targeted adolescents, individuals with a previous history of TB treatment (184), miners and 

prisoners, and individuals at risk of developing TB disease identified by biomarkers 

(189,194).  

Third, other studies explored the potential impact of the existing candidate and hypothetical 

TB vaccines (183,193,196). Fourth were studies that sought to compare independent 

mathematical models to explore what might explain the differences in conclusions for models 

that address the same questions (171,180). Fifth, were modelling studies which included 

economic evaluations to link the health benefits of implementing various interventions with 

costs and cost-effectiveness (169,178,181,182,192,195,201). 

 Modelling frameworks  

The main distinguishing characteristics of TB models (and infectious disease models in 

general) are the modelled population's aggregation level. These models can first be classified 

as individual-based or compartmental models. Second, the models can either be classified as 

stochastic or deterministic, depending on whether they include or exclude random variation 

in the outcomes. In individual-based models, individuals in the population are simulated as 

separate units and assigned characteristics, allowing for heterogeneity. In compartmental 

models, individuals with the same characteristics are grouped, and events are calculated at an 

aggregate level (across groups) rather than individually. Stochastic models allow for random 

chance, such that for each simulation, there is variation in outcomes. On the other hand, with 
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deterministic models, there is a fixed relationship between input parameters and expected 

outputs calculated – i.e. for the same input parameters and initial conditions, we would expect 

the same outcome (202). 

Among the reviewed studies here, 41/54 used a compartmental modelling approach; and 

10/54 used an individual-based model. Three studies included in this review used and 

compared multiple independent mathematical models (using different frameworks) to answer 

the same research questions (171,180,181).  

Earlier TB and HIV models used simple compartmental model structures to understand 

disease dynamics and the impact of interventions (145,156). However, compartmental 

models have been extended to include more complexity in recent years. For example, in 

addition to the common TB structures, some models have included age strata (177,184) and 

included more details in HIV progression states such as CD4 count and ART status 

(166,169,177,188). These compartmental models have been beneficial in answering multiple 

TB research and policy questions.  

On the other hand, individual-based models allow the representation of individual 

characteristics important in determining TB disease. For example, they can make it easier to 

include demographic variables such as age and sex and model household or social contacts 

that drive transmission in the community (77,144,174,183). Individual-based models have 

also been implemented in studies that use molecular epidemiology. In these studies, various 

molecular techniques estimate the fraction of new active TB cases due to recent transmission, 

exogenous reinfection or endogenous reactivation (203–208).  

Although additional details (i.e., more compartments and demographic structures) may make 

models more realistic, its challenges include computational intensity and insufficient data to 

parameterise such complex models. Thus, some of the factors determining the choice of a 

modelling framework include the research questions modellers wish to address, the level of 

detail in the available data to parameterise such models, and computational capacity.   

 Demographic factors modelled – sex and age 

Age is a basic individual-level determinant of health. Models including age categories can 

help explain the age distribution of TB disease. Among the reviewed studies, 18 explicitly 

stated to have included age structures (77,144,151,159,167,173–175,183). Of these studies 
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that included age structures, eight were individual-based models, and the others were 

compartmental models (175,177,184,186,189,190,192,209). It was unclear how or what age-

specific assumptions were in some studies; however, several studies specified the age-

specific assumptions. Few studies assigned individual ages (159,167,183); others included 

two broad age categories for children (<15 years old) and adult population (>15 years old) 

(151,159,177,184,185,190,192); and several other studies included more than three age 

categories (i.e. 5-year age categories among adults; 0-10; 11-20; >20 etc) 

(77,144,175,189,209). 

Several studies assumed age-specific parameters for fast progression to TB disease following 

initial infection and reactivation. In most of these studies, children and adolescents are 

generally assumed to have a greater likelihood of progression to TB disease compared to 

adults (77,144,151,154,167,173,174,177,183,188,189). More specifically, Blaser et al. used 

an individual-based model to extend the work of Vynnycky and Fine (80) to determine the 

main factors driving the age patterns of developing TB disease in a context of high HIV (77). 

In the study, TB disease progression rates, TB treatment outcomes (i.e., failure), background 

population mortality rates, and HIV incidence rates were parameterised by age strata (77). 

The study also incorporated age-structured social mixing patterns for transmission (210). 

Their results suggested that partial immunity (due to initial latent TB infection) against 

subsequent infections and fast progression of TB in previously treated TB patients explain the 

observed TB age distribution (77). 

Despite substantial evidence showing sex disparities in TB (a higher burden in men (2)), few 

modelling analyses include sex stratification; furthermore, limited studies explore factors that 

drive these observed sex differences. Of the few models that included sex structures in this 

review, no specific hypotheses regarding the drivers of sex differences in TB epidemiology 

were tested (167,183). Using an individual-based model, Shrestha et al. included age- and 

sex-specific rates of rapid progression to active TB and reactivation to capture differences in 

TB incidence (183). The age- and sex-specific rates were estimated by fitting the model to 

data. However, the factors responsible for these age and sex differences in progression to 

active TB were not explored.  
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2.2.2. Modelling the tuberculosis natural history, HIV and ART effects 

Due to the limited data and difficulty identifying LTBI in HIV-positive individuals, most TB-

HIV models do not make explicit assumptions regarding how HIV influences the likelihood 

of acquiring LTBI. Instead, most of the reviewed modelling studies apply the individual-level 

relative effects of HIV to rates of progression to TB disease, as suggested by empirical data 

(95,96,211).  

 Progression to active tuberculosis – fast progression and reactivation  

The rates of LTBI fast progression and reactivation to active TB disease are commonly based 

on historical studies. Most mathematical models assume the rate of progression to be a 

decreasing function of time since infection. Higher risks of progression are assumed usually 

within the first two years of infection, representing fast progression. The common assumption 

is that a particular proportion, usually between 0.005 and 0.25, would progress to TB disease 

within two years of TB infection (65). After that, the annual reactivation rates are commonly 

allowed to vary between 0.000848 and 0.0134 (65). Most of these modelling studies 

(151,161,169,177,184,188–190,192) base their assumptions about fast progression and 

reactivation on previous modelling studies, particularly those by Vynnycky and Fine (1997) 

and Dye et al. (80,151).  

From the dynamical TB transmission models reviewed, HIV was incorporated in two ways. 

In the first and most common approach, HIV incidence is assumed to be constant in some 

studies; in the second approach, HIV incidence is based on external data sources (i.e. 

UNAIDS estimates) (154,155,160,163). In addition to modelling TB progression dynamically 

in all other studies, these models also represent HIV progression at varying degrees of 

complexity. Some models were simplified and only included HIV-positive and HIV-negative 

states; others added ART status if considered in the model. In more recent models 

(151,164,169,184–187,192), the HIV-positive states are further divided into different CD4 

count categories and duration since ART initiation (166,177,209,212) (shown in the last 

column of Table 2-1).  

Evidence shows that the effect of HIV on developing TB disease or mortality depends on the 

level of immune suppression (95,96,211). Modelling studies commonly use CD4 count as a 

marker of immune competency or suppression. For instance, most studies use the category of 
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low CD4 counts (i.e., <200 cells/mm3) to represent the most immune-suppressed individuals, 

who have an elevated risk of TB disease and death; high CD4 count (i.e., 699–1244 

cells/mm3) marks healthy individuals (213). As ART restores immunity, CD4 count as model 

variable can also be used to indicate the effect of ART on developing TB disease or 

mortality. Additionally, including CD4 count as a parameter has been helpful for models to 

incorporate the ART initiation guidelines based on specified CD4 count threshold (214). The 

inclusion of CD4 count also allows models to explore the likely impact of ART policies 

based on different CD4 thresholds. However, it is noted that currently, the WHO guidelines 

recommend for HIV-positive individuals to initiate ART regardless of CD4 count (76).  

 Partial immunity due to latent tuberculosis infection  

Evidence suggests that the presence of LTBI confers partial immunity against reinfection 

(61). It is, however, not clear if this protection is against reinfection or progression after 

reinfection. An earlier modelling study by Sutherland et al. estimated the protection due to 

LTBI infection to be 63% among males and 81% among females (84). Another modelling 

study by Vynnycky and Fine estimated this partial protection to be 0.16 for adolescents (15 

years of age) and 0.41 for adults (>20 years of age) (80).  Another a study, a meta-analysis 

comparing TB incidence among paired cohorts of individuals with and without LTBI 

estimated the pooled protection due to LTBI to be 79% (61). All these studies (61,80,84) did 

not incorporate the effects of HIV. 

To set assumptions regarding this protection due to LTBI in HIV-negative individuals, most 

existing TB modelling studies (151,161,169,177,184,188–190,192,193) assume values 

between 25% and 81%. In most modelling studies, this protection is defined as a reduction in 

the risk of developing TB disease following infection in those with prior infection compared 

to those without prior infection (80). Then the assumed protection is then applied to the rates 

of progression to TB disease following reinfection; and the studies mentioned earlier are 

commonly cited (61,80,84).  

Given the limited empirical data on the effect of HIV on partial protection due to prior 

infection, most modelling studies assume low or no protection for HIV-positive individuals. 

For example, Menzies et al. in their study, assumed a 25% (range: 14–39%) protection 

against developing TB disease among HIV-positive individuals with CD4 counts ≤350 

cells/mm3(169).  
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 Infectiousness 

To capture the level of infectiousness individuals have, some TB models use smear status, 

whereas active TB individuals are classified as smear-positive and smear-negative 

(164,169,177,188). In these studies, it is assumed that smear-negative individuals are 0.22 

times as likely to transmit compared to smear-positive individuals estimated by Behr et al. 

(1999) (53). The literature suggests that HIV-positive individuals have a lower likelihood of 

smear-positivity (215–217); most modelling studies assume the proportion of smear-positive 

to be 20–40% among HIV-positive and 30–60% among HIV-negative individuals 

(164,169,177,188). 

 

 Natural recovery 

Most TB models use meta-analytic estimates of untreated TB mortality and disease duration 

to approximate the average natural recovery rates at 0.091 and 0.242 per annum for untreated 

smear-positive and smear-negative active TB cases, respectively (76). However, there is 

uncertainty around the effect of HIV and ART on these parameters, and most mathematical 

modelling studies make arbitrary assumptions about these effects. For instance, some 

modelling studies have assumed annual natural recovery rates of 0.2  for HIV-negative 

persons, and 0.1 for HIV-positive persons not on ART, with CD4 counts >350 cells/mm3; and 

assume that there would be no natural recovery for those with CD4 counts less than 350 

cells/mm3 (169,184,186,199).  

 Tuberculosis mortality  

Most modelling studies use estimates from the meta-analysis of studies on untreated TB 

mortality for untreated TB mortality (83). The rates of untreated TB mortality were 0.212 and 

0.061 per annum for smear-positive and smear-negative active TB individuals, respectively 

(76). There is a lack of data on the effect of some important variables such as sex, age, HIV, 

ART in untreated TB; as such, most TB modelling studies rely on empirical studies 

conducted on treated TB individuals. The effect of HIV and ART in most studies is assumed 

by allowing different rates of mortality which depend on ART status and CD4 count 

categories (151,164,169,184–187,192). Most of these modelling studies cite the empirical 

studies that have evaluated HIV-positive individuals' survival during ART (99,102,105,218).  
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 Post-tuberculosis treatment completion and tuberculosis recurrence 

In most modelling studies, once individuals complete their treatment, they are returned to the 

latent TB state and remain at risk of reinfection or relapse (implicitly assumed to be the same 

as reactivation in treatment naïve patients). However, in other studies 

(164,169,177,184,190,192), there is an additional compartment to distinguish between 

treatment naïve and treatment-experienced individuals. The reasons for distinguishing the 

states include capturing the differential risks of recurrent TB disease (164,184,192), 

modelling the likelihood of developing MDR TB (177,190), and allowing diagnostics 

algorithms that require confirmatory tests depending on individuals’ TB treatment history 

(169). In these studies, the effect of HIV on TB recurrence was not explicitly modelled 

(164,184,192). 

2.2.3. Modelling tuberculosis transmission dynamics  

The transmission process involves a set of parameters, including an individual's 

susceptibility, the infectiousness of the person with active TB disease, and the degree of 

exposure, usually measured in terms of proximity, frequency, and duration of exposure (33).  

There is variation in how different modelling studies simulate this process of transmission. 

Some studies simplified the process, including a single transmission parameter, to represent 

the probability of transmission if an individual comes into contact with an infectious 

individual (169,177,186,199,209). Other details included age- and sex-stratified social mixing 

and contact rates (77,174,185,193). Because the transmission parameter is difficult to 

measure empirically, most studies estimate the parameter by calibrating the model to 

observed TB data.  

A few models have been implemented to explore the contribution of social contacts (185) and 

environmental settings (79,147,219) to transmission. For example, McCreesh et al. studied 

various social contact patterns and Mtb transmission using an individual-based model (185). 

These social contacts were 1) household; 2) repeated, defined as individuals outside the 

household repeatedly contacted with daily-monthly frequency; and 3) non-repeated (185). In 

addition, several other modelling studies have been used to assess transmission in various 

settings where the risk of TB infection is increased. These high-transmission settings are also 

referred to as institutional amplifiers (79,147,219) - which are spaces such as prisons, hospital 
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wards and mines. For example, Basu and colleagues conducted an analysis that showed that 

having a large population exposed to or having a high duration of exposure to institutional 

amplifiers worsened TB incidence even if detection and treatment rates were high (147).  

Overall, these studies suggest that most TB transmission occurs in communal/congregate 

settings, from a small proportion of individuals who are likely highly infectious to a wide 

range of people they come into contact with (185,205). They also highlight that identifying 

and treating cases earlier in environmental conditions conducive to TB transmission is 

essential. 

2.2.4. Modelling tuberculosis control strategies   

 Diagnostic strategies   

One of the goals of diagnostic strategies and tools is to detect active TB cases early and 

initiate treatment to reduce the pool of undiagnosed and untreated TB in the population that 

contributes to transmission. Lin et al. illustrated a framework that captures the complex 

feedback between diagnostic strategies, demands on the health system and the impact on the 

TB transmission dynamics (220). Modelling a detailed diagnostic pathway is advantageous as 

it may allow models to capture the effect of untreated TB cases on TB transmission and 

estimate the number of true and false positives. More importantly, this would allow a better 

reflection of TB case-finding activities and the implementation of new diagnostic tools on TB 

incidence and mortality. However, these models may be complex, and often there is limited 

data to parameterise every step of the diagnostic pathway.  

Most of the earlier models have used a simplified approach with the transitions between 

active TB and recovery represented by a single parameter for detection (142,151,221). In 

contrast, others have considered capturing the complexity of the diagnostic process 

(164,169,177,188,190). For instance, Menzies et al. and Sumner et al. incorporated a 

relatively detailed diagnostic algorithm by including the sensitivity and specificity of their 

assumed diagnostic algorithm, as well as follow-up tests (169,188). In their study, Sumner et 

al. incorporated resource constraints. The various interventions included Xpert MTB/RIF, 

adherence to Xpert MTB/RIF-negative guidelines, cough-based screening and symptom 

screening (209). This analysis suggested that for symptom screening to be impactful in 

reducing TB incidence, significant increases in resources are required (209). This study also 
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highlighted that it is essential for models to consider resource constraints when modelling the 

case-finding activities.  

Including a detailed diagnostic process can also allow models to compare and assess the 

impact of implementing different diagnostic tools. In most countries, Xpert MTB/RIF was 

implemented from 2011 onward following WHO recommendations; before 2011, smear 

microscopy and culture testing were commonly used (131). Models can compare, under the 

implementation of smear microscopy and Xpert MTB/RIF, their ability to detect drug 

susceptibility; the numbers of microbiological diagnoses and their ability to detect actual 

active TB disease and true negative in the population; the level of loss to follow-up before 

treatment initiation and the level of empirical diagnosis. The importance of accounting for 

empirical treatment has been highlighted, and it is suggested that without considering the 

levels of empirical treatment, modelling studies are more likely to overestimate the effect of 

Xpert MTB/RIF on TB outcomes (169,222–224). 

Several mathematical modelling studies have been conducted to estimate the anticipated 

benefits of employing Xpert MTB/RIF and replacing smear microscopy (169,188,190,225). 

Compared to microscopy, most studies anticipated substantial health benefits from 

GeneXpert implementation (169,226). Although in the initial analysis, Menzies et al. (169) 

did not account for the effect of the diagnostic tools on the levels of empirical treatment. 

They subsequently conducted a re-analysis and accounted for empirical treatment and the 

sensitivity and specificity of diagnostic algorithms (227). The revised analysis found a 

reduction in the benefits – 70% less disability-adjusted life years averted due to the use of 

Xpert MTB/RIF (227). 

Modelling studies assessing the impact of active case finding have been implemented to 

target specific groups and use specific diagnostic tools. For example, other studies looked at 

the potential impact of improving diagnostic sensitivity (158) and providing expanded culture 

and drug sensitivity testing (161), combining TB and HIV interventions with community-

based integrated intensified case finding (178). Others used individual-based models to assess 

the impact of intensive case finding by targeting household members of TB patients to be 

tested for TB (159,167). These studies suggest that active case-finding is particularly efficient 

at when targeted at HIV-positive individuals.   
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There have been innovations in diagnostic tools in recent years, and some modelling studies 

have sought to evaluate their potential impact on TB incidence or mortality. For example, 

Rick et al. modelled the impact of urine lipoarabinomannan flow (LAM) in HIV-positive 

individuals as per 2019 WHO guidelines (191). Their results suggested that LAM tests could 

substantially reduce TB deaths amongst people living with HIV who are severely ill (191). 

However, cost-effectiveness studies must assess the affordability and feasibility of 

implementing such an intervention in the broader population (191).  

Sumner and colleagues have explored the impact of implementing biomarkers-targeted 

preventative therapy (189,194). In the first study, they estimated the potential impact on the 

South African TB incidence, of the mRNA expression signature (Correlate of Risk (COR)) – 

with improved specificity – to target preventative therapy to HIV-negative adults at risk of 

TB (189). This biomarker was compared to the interferon-gamma release assay (IGRA). The 

study suggested that targeting preventative therapy through tests such as COR may be more 

efficient than IGRA, and could lead to more reductions in TB incidence in HIV-negative 

individuals (189). The other analysis estimated the effect of repeat transcriptomic screening 

followed by the three months isoniazid-rifapentine (3HP) preventive therapy course in 

comparison to universal preventive therapy provided to HIV-positive individuals (188). The 

study showed that biomarker-targeted preventive therapy might be more effective than 

universal preventative treatment in HIV-positive individuals, although it would require repeat 

screening (188). These studies show that biomarkers may be beneficial and efficient 

alternatives for identifying individuals at risk of TB disease and targeting them with 

preventative interventions.  

 Tuberculosis treatment-related strategies   

Most mathematical models in the early 2000s modelled the DOTS strategies, reflecting the 

recommended global strategies. In these studies, DOTS was commonly operationalised by 

increasing case rates of detection and successful treatment (146,151). For example, Williams 

et al. assessed the impact of the Revised National TB Control Program DOTS (an expansion 

of the DOTS program) on TB in India (146). Other studies focus on the impact of shortening  

TB treatment duration (162,173). Overall, these studies suggested that improving the quality 

of TB treatment (i.e. high success rates) and reducing treatment duration can lead to 

enormous benefits; however, they also highlighted that HIV would undermine the impacts 
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(146,151,162,173). Another important suggestion was that shortening treatment would reduce 

costs incurred by patients (173) 

 Antiretroviral therapy  

The provision of ART for the HIV-positive population has become a critical intervention for 

TB care and prevention. As such, mathematical models have increasingly been used to assess 

the population-level impact of ART on TB incidence and mortality. For example, Williams et 

al.  studied ART's short- and long-term impacts on TB incidence in nine African countries: 

Gabon, Ghana, Tanzania, Botswana, Lesotho, Malawi, South Africa, Swaziland, and Zambia 

(166). Other studies that modelled ART's potential impact on TB showed that ART, 

particularly when initiated earlier, would lead to substantial declines in TB incidence and 

mortality (166,212).  

From the mid-2000s, global control strategies recommended that TB control strategies be 

integrated with HIV control efforts (i.e., TB screening and the provision of ART and IPT for 

HIV-positive individuals). As a result, increasingly, other modelling studies assessed 

intervention combinations, where ART was included as a component of the policy strategies, 

along with others (142,154,157,158,169,171,172,174,176–178,180). An earlier modelling 

study by Currie et al. assessed the impact of combined interventions (applied to South Africa, 

Kenya, and Uganda). The study concluded that improving TB detection and cure effectively 

reduces TB incidence and that ART would have a more substantial impact only when there is 

high coverage and adherence (154). Chindelevitch et al. examined the epidemiological 

impact of improving the TB-specific interventions in South Africa by increasing their 

coverage, detection, and treatment success, and the impact of increased ART access through 

broadening eligibility (172). The study suggested that TB-specific interventions would lead to 

most TB incidence and mortality reductions. However, with ART expansion, there would be 

even more significant reductions. These studies have been critical in providing evidence to 

support and advocate for integrated TB and HIV control efforts and early ART initiation.  

 Isoniazid preventive therapy 

Following the recommendations to combine IPT and ART to reduce TB risk in people living 

with HIV, more modelling studies have projected the likely impact of ART and IPT 

combined (142,155,157,163,174,179,199,200). An earlier modelling study by Guwatudde et 

al. suggested that IPT provision for the HIV-positive population will have a small impact in 
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Sub-Saharan Africa (155). Another study on IPT in HIV-positive individuals concluded that 

although IPT may reduce mortality, there was a potential to increase drug-resistant TB (157). 

However, a Bostwana-based study suggested that the contribution of IPT to increases in 

resistant TB was unlikely to surpass its overall impact on reducing the burden of TB (163).  

Another analysis by Knight et al. assessed the potential impact of different intervention 

portfolios; one portfolio included long-duration  IPT and ART for all people living with HIV 

regardless of CD4 count (174). In this study (34), they assumed a 36-months duration of IPT; 

they assumed those on IPT had a 63% reduction in the risk of developing TB disease through 

reactivation or reinfection. The coverage of IPT was assumed to be 10% at baseline (174). 

Kendall et al. explored the broader, community-level benefits of providing IPT for 12 months 

to 85% of patients initiating ART in Khayelitsha (199). The model was specifically designed 

to represent the Khayelitsha setting and a clinical trial study (228). The effect of IPT  was 

estimated in the model as the relative rates of developing TB for those receiving IPT 

compared to those not receiving IPT; and were estimated at 0.54 during IPT and 0.76 after 

IPT (228). Overall, these studies suggested that IPT combined with ART reduces TB 

incidence and has an additional benefit on reducing TB transmission. 

Other modelling studies have focused on targeting IPT to various population groups. These 

groups include previously treated TB cases (184,192), adolescents (186) and miners (175). 

For example, Rhines et al. suggested that providing IPT to adolescents could substantially 

benefit adolescents and have spillover benefits for the adult population (186). In this study, 

they assumed latently infected individuals would recover due to IPT at a rate of 0.47 per 

annum (229). In addition, IPT was assumed to reduce the reactivation rate of LTBI. For both 

HIV-positive and HIV-negative individuals, the rate of reactivation was assumed to be 

0.0001 per annum (for individuals not on IPT, the reactivation rate is assumed to be 0.005 in 

HIV-negative individuals). Another IPT-related parameter included coverage and was 

implemented in sensitivity analysis scenarios set at 5%, 50% and 90%. Similarly, the rates of 

dropping out of IPT treatment and stopping IPT treatment were tested under sensitivity 

analysis (not based on empirical studies) (186).  

Marx et al. showed that active case finding and targeting IPT to individuals who have 

completed TB treatment has potential to reduce TB morbidity and mortality (184). The 

authors (184) assumed IPT to reduce the risk of reactivation and the risk of progression to 

disease following reinfection (230,231). Vynnycky et al. explored factors that contributed to 
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the lack of the population-level impact of IPT in mineworkers (175). Their findings suggested 

it was because IPT only cured a small proportion of LTBI, especially in those who were also 

HIV-positive (175). Another modelling analysis also suggested that IPT is unlikely to cure 

LTBI in TST positive and HIV-positive individuals who are not on ART (232).  

Overall, the studies on IPT highlight that targeting specific high-risk populations may be 

more feasible. However, despite its effectiveness in preventing TB disease and advocacy 

efforts, IPT coverage remains very low (107,108). In addition, there are limited empirical 

data regarding the levels of uptake (233,234), duration and completion of IPT. As a result, 

most modelling studies set hypothetical levels of IPT coverage, IPT initiation, and 

completion parameters; and most of these parameters are varied in sensitivity analyses.   

 Vaccines  

In light of recent vaccine developments such as the BCG revaccination (the H4:IC31 vaccine) 

against M.tb infection (135) and M72/AS01E against bacteriologically-confirmed TB disease 

(134), a few models explored the potential impact of vaccines in different target populations. 

Harries et al estimated the impact of a vaccine that had 70% efficacy against TB disease over 

ten years, and compared it to a scenario with no vaccine in China, South Africa, and India 

(193). The study suggested that vaccines that prevent TB disease in M.tb infected individuals 

would yield the most significant impact (193). In another analysis, Harries et al suggested 

that implementing a M72/AS01E-like vaccine to 50% of 18 year-olds may be more cost-

effective than vaccinating 80% of 10 year-olds (196). 

Shrestha et al. evaluated the impact of a hypothetical vaccine which had 60% efficacy over a 

period of ten years (183). In the study, they also compared the impact of a vaccine strategy 

targeted at miners and another strategy which targets all peopleresiding in a mining 

community (183). The study suggested that targeting high-risk demographics (miners) would 

enhances the feasibility of implementing potential vaccines strategies and impact on 

transmission (183). 

2.2.5. Comparisons of independent mathematical TB-HIV models  

Although different modelling studies usually agree with the general results suggesting that 

ART expansion would reduce TB incidence, there is sometimes variation in the extent to 
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which these declines occur. To understand some of these model differences, Pretorius et al. 

(171) and Houben et al. (180) conducted analyses to compare independent models addressing 

the same question. Pretorius et al. have compared three models – individual-based 

(PopART), deterministic (Menzies, 2014) and multivariate regression (Goals) – to assess the 

impact of broadening ART on TB outcomes in South Africa (171). Houben et al.'s analysis 

compared 11 models applied to India, China, and South Africa. The models were used to 

project the impact of a combination of interventions and assess the post-2015 End TB 

strategy (180). The modelled interventions were mainly focused on improving TB 

prevention, case finding and diagnosis and treatment (180). 

In all these comparative analysis studies, all models agreed that ART expansion (171) or 

implementing combinations of interventions (180) would substantially reduce TB incidence 

and mortality. However, in the Pretorius et al. analysis, there were slight differences 

regarding the extent of reductions and what caused them. For example, one model (Menzies) 

showed a significant reduction in TB incidence (compared to Goals and PopART) and 

attributed it to CD4 eligibility expansion (171). Conversely, the other models (Goals and 

PopART) attributed most of the reduced TB incidence to increased ART coverage rather than 

CD4 eligibility (171). In the analysis by Houben et al., the models projected that the post-

2015 End TB strategy milestones of 50% reduction in TB incidence and 75% reduction in TB 

mortality seemed feasible for South Africa. However, for China and India, the milestones 

were projected not to be achievable (180). These differences were due to varying 

epidemiological contexts and the interventions implemented by national TB programmes 

(180).  

Altogether, these two studies (171,180) above highlight the critical drivers of model 

differences: the country contexts and the underlying assumptions regarding the interventions 

implemented. Therefore, such comparative modelling studies are essential and can increase 

the robustness of mathematical model findings. 

2.2.6. Calibration approaches 

Calibration of mathematical models is mainly performed to ensure that model outputs are 

consistent with observed data and estimate uncertainty around specific input parameters and 

model outputs. Estimating the uncertainty around model outputs is helpful because it gives 

policymakers and scientists an idea of the credibility of conclusions based on the model 
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results  (235). The calibration process involves the use of observed data (also referred to as 

target statistics) such as prevalence and mortality, algorithms to identify the best-fitting 

parameters, and measurement to determine how well the model fits the observed data 

(goodness of fit of the model) (236).  

The goodness of fit values can measure the consistency of model estimates with real-world 

data. In the modelling studies that described their calibration process, some used the least 

squared difference between observed data and model outputs to measure the goodness of fit 

(232). Other studies, particularly those that implemented a Bayesian calibration approach, 

used the likelihood function to measure the goodness of fit (154,169,172,179,184,199,237). 

The likelihood function, in this case, represents the likelihood of observing a particular target 

statistic, assuming it follows a specified distribution.  

A lot is still unknown regarding various TB natural history parameters, such as rates of 

transmission, natural recovery and partial immunity due to latent TB infection, and the effect 

of HIV on these parameters. Most models, therefore, estimate these parameters in the 

calibration process. In addition, the best-fitting parameters are often estimated by various 

calibration algorithms that help identify the set of parameter combinations that would yield 

the best-fitting likelihood. For models which have specified these algorithms, the methods 

used include Nelder-Mead (174,175), sampling importance sampling resampling 

(154,169,172,183) and Latin Hypercube Sampling (163,183). Finally, other studies calibrated 

manually by adjusting the input parameter values, running the model, and visually assessing 

how well the model estimates are close to the observed data (190,225).  

The formal calibration process is complex and computationally intensive, especially when 

many model compartments, parameters, and target statistics are involved. However, when 

described systematically and good model fits are shown, it may ensure model credibility and 

reproducibility (238). On the other hand, a manual calibration may be more straightforward 

and allow modellers to understand critical parameters in their models. However, this manual 

calibration process may not be as efficient when the model is complex. 

Most modelling studies have relied on the WHO TB and the UNAIDS HIV burden estimates 

as calibration targets statistics rather than actual data from surveys, TB notification systems 

or vital registers. While the estimates from the WHO and UNAIDS may be credible, it should 

be noted that they are themselves model outputs with some level of uncertainty around them 
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(239). As a result, this may lead to models implicitly using other models' assumptions, so 

results need to be interpreted carefully. 

2.2.7. South African-specific tuberculosis modelling studies 

Of the studies included in this review, at least 60% (33/54) represented the South African 

population and the TB epidemic. Among these South African based studies, most focused on 

modelling the epidemic at a national level (161,166,169–

173,177,179,181,182,186,188,193,196,198). The majority of these national-level models 

were compartmental. Also, only a few of them included detailed demographic structures such 

as age ( i.e., children (<15 years old) and adult population (15+ years old)) (177,188–190), 

and few (183) included sex stratification.  

Most of the national-level models were interventional and developed to project the impact of 

proposed policy strategies. For instance, Knight et al. assessed whether South Africa would 

meet targets set in the South African 2012–2016 NSP by scaling up existing TB control 

interventions at the time (174), and Houben et al. assessed the potential for South Africa to 

attain the post-2015 End TB Strategy targets (180). The interventions modelled in these 

studies included ART, IPT, and improved TB case management. The consensus from these 

studies was that the aggressive scale-up of any single intervention would reduce TB 

incidence and mortality; however, it would not be sufficient to achieve the 2012–2016 NSP 

or post-2015 End TB strategy targets in South Africa (174,180).  

Other South African modelling studies have focused on smaller peri-urban communities in 

the Western Cape (77,142,179,184,185,192,199), rural communities in KwaZulu Natal 

(176,178) and mining communities (175,183). These studies assessed the impact of 

combinations of interventions (TB case-finding, ART and IPT). However, only one study 

analysed the impact on TB incidence and mortality of achieving the 90-90-90 TB targets in 

three South African provinces – KwaZulu Natal, Western Cape, and Limpopo (190). The 

authors suggested that the impacts of interventions (active case finding, linkage to care, 

treatment success) varied mainly due to differences in the coverage levels of the interventions 

in the different provinces (190). For instance, the study suggested that to achieve the 90% 

target of screening in Limpopo, an increase of 29% in screening coverage levels would be 

needed, whereas for the Western Cape TB screening would need to increase nine by times 

(190).   
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Although much TB modelling work has been done for South Africa, most were led by 

technical experts or modellers from institutions outside South Africa (i.e., predominantly the 

United Kingdom and the United States of America). For example, in the comparative analysis 

of 11 models, by Houben et al., all modelling groups were from institutions outside of South 

Africa (180). This lack of locally developed and locally-led TB models may be due to a lack 

of capacity (240), resources or incentives for conducting such projects at a national level.   

While most studies rely on the WHO TB incidence and mortality estimates for setting 

calibration targets, some have used South African-specific data, such as the electronic TB 

treatment register and the number of microbiological tests performed 

(77,177,184,190,192,209). The vital registry TB mortality data is also available but very few 

studies have relied on it. The challenges with using the vital registry data may be incomplete 

reporting or misclassification of causes of death; however, South Africa’s system has 

improved and has relatively high levels of completeness (241).  

2.2.8. Summary of the literature review (Part B) 

The literature review showed that while many transmission dynamic modelling studies have 

focused on projecting the future impact of various interventions, none have retrospectively 

evaluated how the different evolving TB control policies have impacted TB incidence and 

mortality. Also, although the individual-level effect of HIV on TB incidence and mortality is 

established, the population-level impact HIV has had on TB and mortality has not been 

quantified. Furthermore, most of the reviewed modelling studies lacked demographic detail 

such as age and sex and the assessment of factors that drive age or sex disparities in TB. 

Additionally, most existing South African TB did not use South African-specific data for 

calibration, relying instead on WHO estimates. Another gap with existing models was the 

lack of locally developed models and the lack of long-term model involvement in policy 

formulation and evaluation.  

This literature review was limited in that it was not exhaustive and systematic. In addition, 

the choice of restricting reviewed studies to those that explicitly modelled TB and HIV was 

limiting as there are other important modelling studies which focusses on non-HIV factors 

such as  age, sex, environmental drivers of transmission, TB risk factors.  
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Chapter 3 describes a mathematical model South Africa which addresses some of these gaps 

in the literature. In Chapter 4 the model will be used to evaluate the past impact of HIV and 

interventions on TB incidence and mortality. Chapter 5 will explore factors that drive the sex 

disparities in the burden of TB. Lastly, Chapter 6 will estimates the future impact of scaling 

up existing interventions on the South African TB incidence and mortality and assesses the 

potential to attain the 2030 End TB milestones.  
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Chapter 3. Model development and calibration results 

This chapter aims to describe the methodological approach used to develop and parameterise 

the TB-HIV model for this PhD and presents the results of the model calibration.  

Contributions: Leigh F Johnson and Mmamapudi Kubjane wrote the code for the 

mathematical model, implemented in C++. 

3.1. Overview  

We developed an age- and sex-structured deterministic compartmental model of the TB and 

HIV epidemics for the South African adult population (ages 15 years and older). The core TB 

states were modelled following conventions used by previous modelling studies 

(80,242,243). We considered the following epidemiological states: susceptible, latent 

tuberculosis infection (LTBI), active TB smear-positive, active TB smear-negative, receiving 

treatment, and two post-TB treatment states – recent (six months after treatment) and long-

term (more than six months after treatment), as shown in Figure 3-1. 

Figure 3-1: The tuberculosis natural history model structure 

 

TB = tuberculosis. Rx = treatment. Sm+ = smear-positive. Sm- = smear negative. Non-TB 

mortality transitions are not shown in the figure, but are the same for all states. 
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Although the model produces estimates for individuals with 15 years and older, it simulates 

TB transmission and the natural history from age 10 years. We assume a fixed proportion of 

children are latently infected with TB on reaching age 10. The prevalence of LTBI is based 

on an age-dependent function described in section 3.2, and the LTBI prevalence at the age of 

ten years is 𝐹𝑙𝑡𝑏𝑖(10) = 0.47, which is where we then start simulating the potential for 

disease progression and transmission.  

The TB transmission process and associated parameters are described in section 3.4. 

Following infection, individuals progress to TB disease through fast progression or remain 

infected with latent TB and may develop TB disease through reactivation or reinfection 

(described in section 3.5). Individuals with LTBI have partial immunity, which affords them 

a reduced risk of fast progression to TB disease following reinfection. Individuals with TB 

disease were further categorised by smear status – smear-positive or smear-negative. In these 

TB disease states, individuals may die or recover naturally and return to the LTBI state.  

Active TB individuals can also be linked to TB care, which depends on attending a health 

facility, being screened, being diagnosed (empirically or microbiologically), and ultimately 

initiating treatment; the TB diagnosis and treatment initiation process are explained in section 

3.6. Complete treatment is assumed to last an average of six months. Those on treatment can 

experience the following outcomes: a) cure; b) failure, after which they will return to the 

active TB states; c) discontinuation of treatment, of which a proportion will return to TB 

disease state and the remainder to the recovered state; and d) death. These treatment 

outcomes are further described in section 3.7. Following treatment completion, we consider 

two post-TB treatment states that depend on the time since treatment cure/completion, which 

account for recurrent TB episodes through reinfection and relapse (described in section 3.8). 

To incorporate the effect of HIV and ART, the TB model was integrated into the Thembisa 

HIV model (244). The Thembisa HIV model is both a demographic and epidemiological 

model which simulates the South African population profile, as well as the burden of HIV 

dynamically from 1985. The demographic model assumptions in Thembisa, including 

population profiles, fertility, non-HIV mortality and migration are set the same as those in the 

Actuarial Society of South Africa (ASSA) 2008 model and are consistent with South African 

Census (245), vital registration data (246) and the National burden of disease study (247). A 

Bayesian approach was used to calibrate the Thembisa HIV model to several data sources 

including the HIV prevalence levels in national antenatal clinic surveys and national 
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household surveys, recorded numbers of deaths, reported numbers of ART patients, numbers 

of HIV tests performed; HIV prevalence in individuals tested for HIV; proportions of adults 

ever tested for HIV (from the Human Sciences Research Council surveys in 2005, 2008, 2012 

and 2017 and the 2016 Demographic and Health Survey (DHS)) (244).  

The TB model is nested within the HIV model. The HIV model makes assumptions about 

non-HIV mortality rates (in the HIV-negative population) and excess mortality in the HIV-

positive population (which varies in relation to HIV disease stage, age, sex and treatment 

status). These mortality rates implicitly include TB mortality, and are used to adjust the 

population size by age and sex. In the TB sub-model we do not attempt to change the 

population size but rather calculate the number of deaths that would be due to TB if TB was 

the only cause of death. This means the change in population size is determined only by the 

HIV and non-HIV mortality assumptions, and not by the TB mortality assumptions. 

Both the TB model and the HIV models are dynamic. However, the models are not calibrated 

at the same time. For the purpose of calibrating the TB model, the HIV parameters are held 

constant at the posterior means estimated in the previous calibration; this is reasonable given 

that the margins of uncertainty around the HIV estimates are relatively narrow. The estimates 

of TB deaths include HIV as a contributing or underlying cause of death (i.e., HIV underlying 

cause AND TB is either first, second, third, or fourth contributing cause of death). 

In the model, the simulated South African population is updated every month and the sum of 

all the populations in the modelled TB states sum to the South African adult population that 

year. Additionally, at the end of each month the TB populations are summed up and ensured 

that they match the South African HIV-positive and HIV-negative population.  

The structure of the HIV model is given in  Figure 3-2, and a detailed description of the HIV 

model (Thembisa 4.3) has been published (248). Briefly, in this model, HIV-positive sub-

populations are stratified by HIV testing history, CD4 count and antiretroviral treatment 

duration. For those diagnosed with HIV, there is an indicator for ART initiation, and the CD4 

count levels are used to represent the HIV stage or baseline CD4 at which individuals 

initiated ART. For those not on ART yet, the CD4 compartment represents their CD4 count 

at that given point (current CD4). For those on ART, the duration that they have been on 

ART treatment is also tracked, and for each duration compartment an average CD4 count is 

calculated, which depends on the baseline CD4 count (248). The descriptions of how HIV 
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and ART affect the TB natural history (section 3.5); and health-seeking patterns (section 3.6) 

are provided in the respective sections. 

Additionally, in the model, we have incorporated the effect of isoniazid preventative therapy 

(described in section 3.9). We have also explored the effect of selected TB risk factors on TB 

incidence in section 3.10, as these are particularly relevant in representing sex differences in 

TB incidence. Section 3.11 describes the approach and data sources we used to calibrate the 

model. In section 3.12, the model calibration results are presented. Lastly, section 3.13 

compares the Thembisa TB/HIV model estimates to those produced by the World Health 

Organisation (WHO) and the Institute for Health Metrics and Evaluation (IHME).  

Figure 3-2: The Thembisa HIV model structure 

 

Figure from Johnson & Dorrington  (248) 

 

In the Thembisa HIV model, an average CD4 count in HIV-positive individuals who are not 

on ART is assumed for each of four CD4 stages, and is given in the first column in Table 3-1 

below. CD4 counts in HIV-positive individuals receiving ART are dependent on the baseline 

CD4 count when they initiated ART and the number of years they have been receiving ART. 

These are shown in Table 3-1 below, and have been described and derived previously (249). 
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For the purpose of setting later assumptions about the effect of HIV on TB, it is necessary to 

assume an average CD4 count in the HIV-negative population. We set the average CD4 count 

in the HIV-negative population at 1000 cells/μl, based on Williams et al., who reported a 

range of CD4 levels between 699 and 1244 cells/μl (213). We assumed CD4 counts in 

patients on ART do not rise above 1000.  

Table 3-1: Changes in average CD4 count after ART initiation  

Years since ART initiation 

 Not on ART 1 2 3 4 +5 

Baseline CD4 <200  100 297 383 426 486 512 

Baseline CD4 200-349  275 450 539 600 703 770 

Baseline CD4 350-499  425 564 658 738 882 987 

Baseline CD4 500+  610 705 805 909 1000 1000 

Source: Johnson & Dorrington (249) 

3.2. Initial conditions  

This section describes the assumptions we made about the proportion of the population with 

LTBI and active TB at the start of the simulation in 1985. All these initial assumptions are 

made for an HIV-negative population because HIV prevalence was very low in 1985. 

3.2.1. Latent tuberculosis infection   

In the model, we set the initial LTBI prevalence in the HIV-negative population using data 

from the CORTIS study (250). In this study, the QuantiFERON-TB Gold Interferon Gamma 

Release Assay (IGRA) assays were used to detect LTBI (Table 3-2) (250). However, we note 

that the relatively low sensitivity of IGRAs implies a high likelihood of missing true LTBI. 

Therefore, to approximate the proportion of true LTBI individuals given these imperfect 

diagnostic tools and the lack of a standard gold test for latent infection, we adjust the given 

prevalence using the sensitivity and specificity of QuantiFERON-TB Gold.   

Table 3-2: Latent tuberculosis prevalence in HIV-negative individuals  

Age Group N 

Unadjusted IGRA+ prevalence 

𝒑𝟏  

Adjusted prevalence 

𝒑𝟐  

15-24 1249 703 (56.3) 70.7 

25-34 1062 748 (70.4) 89.7 

35-44 379 271 (71.5) 91.2 

45+ 223 164 (73.5) 93.9 

Total 2913 1886 (64.7) 86.4 

Source: CORTIS study (250). https://www.clinicaltrials.gov/ct2/show/NCT02735590 

https://www.clinicaltrials.gov/ct2/show/NCT02735590
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We suppose the unadjusted LTBI prevalence, as measured by IGRA (Table 3-2), can be 

expressed as  

𝑝1 = 𝑝2𝑆𝑒 + (1 −  𝑝2)(1 − 𝑆𝑝), 

where 𝑝2 is the adjusted (true) LTBI prevalence, and 𝑆𝑒 and 𝑆𝑝 are the sensitivity and 

specificity of QuantiFERON-TB Gold, respectively. The assumed sensitivity and specificity 

of QuantiFERON-TB Gold were 0.78 and 0.96  respectively (251). Then we have 

𝑝2 = (𝑝1 − (1 − 𝑆𝑝))/(𝑆𝑒 + 𝑆𝑝 – 1). 

We fitted an exponential function to the adjusted prevalence 𝑝2, and thus the prevalence of 

LTBI can be given by the expression dependent on age: 𝐹𝑙𝑡𝑏𝑖(𝑎𝑔𝑒) = 0.98(1 − 𝑒−0.066𝑎𝑔𝑒).  

Limitations associated with using these IGRA-based data include a greater likelihood to 

underestimate the proportion of true IGRA-positives because of the low sensitivity of the 

tool. Another limitation of using these IGRA-based data to initiate the LTBI profiles in the 

model is that these are recent data and are possibly not a true reflection of LTBI prevalence in 

1985. Nonetheless, we justify this with the fact that the proportions were from an HIV-

negative population (and hence may represent the era where HIV prevalence was very low in 

South Africa) (250). Also, the study was conducted across multiple sites in South Africa and 

thus giving a better representation of the country’s LTBI prevalence. In comparison, other 

existing earlier data on LTBI prevalence were conducted in smaller and specific population 

group (i.e., adolescents, gold miners, health care workers) (252–256) making them less 

representative nationally. Additionally, most of these earlier studies relied on TST, which has 

poor specificity, especially given the fact that South Africa is a country with high BCG 

vaccination coverage.  

3.2.2. Initial active tuberculosis profiles  

There are also limited data on the prevalence of active TB earlier than 1990. The available 

TB burden data from reports only dates from the early 2000s. We used WHO estimates to 

initialise the prevalence of TB in our model. The TB prevalence in 1990 was estimated to be 

490 per 100 000 (257). The initial TB prevalence was set in 1985 in an HIV-negative 

population. We used a Cape Town-based population-based study that assessed the 2009 age-
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specific TB notification rates (TB incidence) stratified by HIV status (78) to set the assumed 

relative levels of TB prevalence by age.  

As with most routinely collected data, the notification data used to estimate the proportion of 

active TB cases are likely to be incomplete or affected by misclassification of TB status or 

duplication of individuals. Also, these data only represent one geographical setting - Western 

Cape. However, to initiate the model, we do not expect these initial assumptions to affect 

model outputs significantly.  

As the literature suggests, males carry a higher burden of TB compared to females. The male 

to female ratio of the TB burden ranges between 1.5 and 2.1 across different geographical 

regions (2,25,86). In the model, we set the initial prevalence of TB by age and sex, 

represented by the proportions in Table 3-3.  

These were computed using the following data: 1) the estimated 1990 South African TB 

prevalence by the WHO (257), 2) the Cape Town TB prevalence in an HIV-negative 

population (78) and 3) the ratio of male to female TB prevalence (258). For the age groups 

15–75 years, we assume the prevalence (%) of active TB in males to be 50% higher than that 

in females (258). We assume that the overall prevalence p̅ = 0.5 (𝑝0 + 𝑝1), where 𝑝0 is the 

prevalence in males and 𝑝1 is the prevalence in females. We then have 𝑝0 =  1.5 × p̅/(0.5 ×

 (1 +  1.5)) and 𝑝1 = p̅/(0.5 × (1 +  1.5)).  

Table 3-3: Initial prevalence of tuberculosis by age and sex in an HIV-negative 

population   
Age 

 

HIV negative 

Population, a) 

Number of active TB 

cases, b) 

The proportion of 

active TB, c) 

Proportion of TB 

in males, p0 

Proportion of TB in 

females, p1 

 

15–19 301447 988 0.004 0.005 0.003  

20–24 306210 1693 0.007 0.008 0.006  

25–29 287160 1381 0.006 0.007 0.005  

30–34 251725 1015 0.005 0.006 0.004  

35–39 224038 1042 0.006 0.007 0.005  

40–45 179524 1053 0.007 0.009 0.006  

45–49 171395 1076 0.008 0.009 0.006  

50–54 156238 829 0.007 0.008 0.005  

55–59 126738 571 0.006 0.007 0.005  

60–64 104718 315 0.004 0.005 0.003  

65–69 77231 195 0.003 0.004 0.003  

70–74 52120 72 0.002 0.002 0.001  

75+ 62485 97 0.002 0.002 0.002  

Total 3241508 12508  0.005 0.006 0.004  

a) and b) are based on the Wood et al. study (78).   
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c = b/a × (0.0049÷0.0039)=p̅; 0.0049 is the 1990 WHO prevalence of TB (257); and 0.0039 (= 12508/32 241 

508) is the average TB prevalence from the Wood et al., study (78).  𝑝0 =
3p̅

2.5
 , 𝑝1 =

2p̅

2.5
.  
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3.2.3. The initial proportion of individuals previously treated for active tuberculosis 

The initial proportions of individuals previously treated for active TB were based on self-

reported data on prior TB diagnosis from the South African Demographic and Health Survey 

1998 (SADHS) (259). The initial prevalence is specified by age and sex as reported in the 

SADHS (Table 3-4). 

Table 3-4: Initial prevalence (%) of previous tuberculosis 

Age category  Males Females 

15-25 0.8 1.1 

25-34 2.1 1.8 

35-44 4.1 2.0 

45-54 5.2 2.6 

55-64 4.1 2.2 

65 and older 4.4 3.1 

Overall 2.9 2.0 

 

3.3. Estimating the proportion of new active tuberculosis cases that are smear-

positive 

Our model requires assumptions about the proportion of incident TB cases that are smear-

positive, but most studies report the proportion of newly diagnosed/treated TB cases that are 

smear-positive. We expect the proportion of treated active TB cases that are smear-positive to 

be higher than the proportion of incident TB cases that are smear-positive due to the delays in 

TB diagnosis being greater for smear-negative TB than for smear-positive TB.  

We used the Gupta et al. study to set the proportions of incident TB cases that are smear-

positive, by HIV status (260). The study assessed how HIV and CD4 count affected TB 

disease site, smear status and overall laboratory confirmation of TB cases. The study was 

based on the 2009 electronic TB register for Cape Town. From this study, the proportion of 

HIV-negative individuals with known smear status who were smear-positive was 0.523; 

among HIV-positive individuals, the proportion was 0.326. The proportion of HIV-negative 

individuals with no laboratory confirmation for TB diagnosis was 0.374 (260). Given these 

data, we set the prior mean for the proportion of smear-positive individuals at 0.52. We 

further supposed an upper limit of 0.84 (=0.523/(1 – 0.374)), where 0.374 is the proportion of 

those with unconfirmed smear status. This upper limit was based on assuming that the smear-

positive proportion in those with missing smear results is the same as that in those with 
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recorded smear results. As such, we assigned a Beta (12.46;11.50) prior distribution, with a 

mean of 0.52 and standard deviation of 0.1, for this parameter. Lastly, we set the proportion 

of smear-positives in HIV-positive patients to be 0.62 times that in HIV-negative individuals 

(0.326/0.523) (260).  

 

3.4. Modelling tuberculosis transmission 

We define the force of infection (𝜆𝑙𝑦) as the daily rate at which a susceptible individual of sex 

𝑙 in age group 𝑦 gets infected; new infections are updated at monthly. The number of 

susceptible individuals who get infected in each time step is represented by the expression 

below: 

𝜆𝑙𝑦 = ∑  

𝑔

∑ 𝑐𝑔𝑥𝜌𝑔𝑥𝑙𝑦

𝑥

∑
𝐼𝑖

𝑁𝑙𝑦
𝑖𝜖{Ω𝑔𝑥}

𝛽  

Where 𝑐𝑔𝑥 is the frequency of contacts per day (daily rate) that individuals of sex 𝑔 and age 

group 𝑥 have with other individuals (Table 3-5). This crude contact rate is obtained directly 

from data on the frequency of close contacts in a South African study (261). Also obtained 

directly from social mixing pattern data, 𝜌𝑔𝑥𝑙𝑦 represents the proportion of contacts between 

an individual of sex 𝑔 and age 𝑥, with individuals of sex l and age y (Table 3-5). Next, 

𝐼𝑖 represents the relative infectiousness of individual 𝑖, which depends on smear positivity; 

Ω𝑔𝑥 is the subset of the active TB population with age group x and sex 𝑔. Then 𝑁𝑙𝑦 is the 

number of individuals of sex l and age y. Lastly, 𝛽 represents the probability of transmission 

per contact if a smear-positive individual has contact with a susceptible individual.  

Table 3-5: Age- and sex-stratified proportions of social contacts in different age and sex 

groups and total mean contact rates (last column) 

  Female contacts Male contacts  

  Age  0-4 5-12 13-25 26-45 >45 0-4 5-12 13-25 26-45 >45 

Total 

Mean  

Female 

10-17 0.016 0.042 0.494 0.124 0.021 0.015 0.027 0.169 0.081 0.012 6.84 

18-25 0.052 0.073 0.269 0.168 0.09 0.049 0.046 0.092 0.11 0.05 5.70 

26-45 0.058 0.083 0.155 0.238 0.07 0.051 0.058 0.089 0.145 0.05 5.40 

>45 0.029 0.066 0.162 0.194 0.1 0.046 0.062 0.13 0.117 0.09 5.30 

Male 

10-17 0.016 0.029 0.225 0.091 0.017 0.015 0.040 0.438 0.115 0.015 6.60 

18-25 0.024 0.032 0.155 0.119 0.08 0.022 0.045 0.302 0.15 0.07 5.50 

26-45 0.026 0.042 0.123 0.166 0.07 0.029 0.04 0.124 0.294 0.09 4.70 

>45 0.037 0.047 0.117 0.144 0.12 0.03 0.058 0.13 0.184 0.13 4.70 
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3.4.1. The transmission probability per daily contact 

We allow for the transmissibility of smear-positive TB to change over time, because as 

treatment delays reduce, we would expect fewer TB patients to progress to the more 

advanced (and more infectious) disease stages prior to treatment. We note that the assumption 

for a declining trend in smear-positive infectivity overtime may lead to more optimistic 

predictions of the impact of improved case detection and treatment initiations. To model 

transmission, we define 𝛽(𝑡) to be the transmission probability per daily contact between a 

smear-positive TB case and a susceptible individual in year 𝑡, and 𝛽(0) is the corresponding 

average transmission probability in the period before 2000. The prior distribution assigned to 

represent the uncertainty in this transmission parameter 𝛽(0) is a Gamma (1; 400) 

distribution with mean = 0.0025 and standard deviation = 0.0025. Although this parameter 

value is set arbitrarily, it was chosen based on whether the chosen value yielded reasonable 

transmission rates. In the initial model fitting, the parameter value was set at 0.02, however it 

yielded implausibly high rates of transmission, and so we selected a prior distribution with a 

lower mean but high variance. 

We define 𝑟𝑖 as the ratio of the minimum infectivity (when the treatment delay is zero) to the 

baseline infectivity (given the treatment delay in the period before 2000). 𝑆(𝑡) represents the 

average smear-positive treatment delay, approximated as 𝑈(𝑡)/𝑅(𝑡), where 𝑈(𝑡) is the 

number of untreated smear-positive TB cases at the start of year t and 𝑅(𝑡) is the number of 

smear-positive TB patients who are treated in year 𝑡. 𝑆(0) represents the average smear-

positive treatment delay before 2000. 

Because we lack data on smear grade distributions in South Africa before 2000, we 

conservatively estimated 𝑟𝑖 based on the smear grade distribution observed by Singla et al. 

(262) in an Indian population with poor treatment access. In this study, the distribution of 

smear-grades in TB patients were 27% for smear-grade <2+; 25% for smear-grade 2+ and 

48% for smear-grade 3+ (262). We assumed the same relative levels of infectiousness by 

smear grade as measured by Acuña-Villaorduña et al., who estimated that infectivity 

increased by 1.45 times and 4.25 times in patients with smear grades 2+ and smear grades 3+ 

respectively, compared to TB patients with smear grade 1+ (263). Then we have 𝑟𝑖  =
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 1/(0.27 +  0.25 ×  1.45 +  0.48 ×  4.25)  =  0.37, on the assumption that if there was no 

treatment delay all smear-positive TB cases would have smear-grade <2+. 

To allow this transmission probability to change with disease severity (indicated by smear-

grade distributions), we assume that for 𝑡 ≥  2000,  

𝛽(𝑡) = 𝛽(0)(1 − (1 − 𝑟𝑖)[1 − 𝑆(𝑡 − 1)/𝑆(0)]). 

3.4.2. Infectiousness in smear-positive and smear-negative active TB  

We rely on evidence from Andrews et al., who estimated the relative infectivity of smear-

negative compared with smear-positive individuals to be 0.22 (95% CI 0.16-0.32) (52). We 

define 𝐼𝑖 as the relative infectiousness of individual 𝑖 and specified a Beta (41.73; 147.9) prior 

distribution for the uncertainty around the relative infectiousness of smear-negative TB, with 

a mean of 0.22 and standard deviation of 0.03 (52).  

3.4.3. Social mixing patterns  

The primary data source for the social mixing parameters in the model is the Dodd et al. 

study (83). The data from this study were based on a social contact survey conducted in eight 

communities in the Western Cape. In the study, interviewees reported contacts that occurred 

approximately 24 hours before the interviews. We chose these data because they provide both 

an age and gender stratification. However, the data are limited to age groups >18 years (264). 

Therefore, for ages 10-18 years, we use data from Johnstone-Robertson et al. (210). This 

Johnstone-Robertson study was also conducted in the Western Cape, although the setting was 

limited to one township and the data were not differentiated by sex. Based on several social 

mixing studies, the majority of close contacts in this age group occur in school settings 

among children of similar age groups (210,265,266). For simplicity, we assumed the sex 

structure in the age groups 10-18 years (Johnstone-Robertson et al. data (210)) would be 

similar to that observed in the 19-25-year age group (Dodd et al. data (83)).  

The average contact rates across the age groups in the Johnstone-Robertson et al. study (210) 

were higher than those observed in Dodd et al. (83) study. This may be due to differences in 

study settings and definitions of "close contacts". In the Dodd et al. study, close contacts 

were defined as contacts involving a face-to-face conversation longer than a greeting and 
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within an arm's reach (83).  In Johnstone-Robertson et al. study, they were defined as 

contacts involving physical touch or those that involved a two-people conversation with three 

or more words in the physical presence of another person without physical touch (210). The 

former definition is more restrictive than the latter, hence limiting the number of contacts 

recorded. 

In order to have consistency in the mixing patterns in our assumptions (which are based on 

the Dodd et al. study (83)) and those observed in Johnstone-Robertson et al. study, we 

applied the ratio of mean contacts for 10-17-year-olds to 18-25 year- olds in the Johnstone-

Robertson et al. study to the 18-25-year-old group in Dodd et al. (210). That is, the ratio 19.0 

/15.9 = 1.2 multiplied by our study's average contact rate for the 18-25 years age group. The 

resulting contact rates and social mixing proportions are in Table 3-5.  

3.5. Modelling the tuberculosis natural history and the effects of human 

immunodeficiency virus and antiretroviral therapy  

3.5.1. Progression to active tuberculosis disease: fast progression and reactivation  

Following infection with LTBI, a proportion of individuals progress directly to active TB 

disease (‘fast progression’). We specified the value of this proportion of fast progressors at 

0.1 to be consistent with previous modelling studies (142,169,177). The remainder of 

individuals are assumed to stay latently infected and may develop active TB disease at an 

annual rate through reactivation. This rate might be estimated as 0.0024, based on assuming 

0.0866 as the rate of fast progression in the first year after infection and 0.028 as the relative 

risk of progression in the fifth year, as estimated by Vynnycky & Fine (0.0024 =

0.0866 × 0.028) (80). A prior distribution to represent the uncertainty around this 

reactivation rate parameter was specified as a Gamma (4; 1666.7) distribution. The 

corresponding mean and standard deviation were 0.0024 and 0.0012 respectively. 

To model the effect of HIV on progression to TB disease, we consider the following 

parameters: 1) 𝜃, the relative rate of TB incidence per 100 cells/μl increase in CD4 count; and 

2) 𝜋 relative rate of TB incidence on ART after controlling for CD4 count.  

To set the effect of CD4 count on TB disease risk (𝜃), we use the meta-analysis by Ellis et 

al., which estimated that an increase in 100 CD4 cells/μl was associated with a 30% 
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reduction in TB risk (IRR 0.70, 95% CI 0.53 – 0.86) (98). As such, we set a Beta (19.52; 

7.97) prior distribution to represent the uncertainty around this 𝜃 parameter. 

Secondly, we assume HIV viraemia has an effect on developing TB disease, independent of 

CD4 count. That is, a person with untreated HIV might be at increased risk of TB disease 

when compared to an HIV-negative person with the same CD4. Because we cannot measure 

this parameter directly, we use, as a proxy, the effect of ART on TB disease (independent of 

CD4) since ART generally suppresses viraemia (5,267). We set the relative rate of TB 

incidence while on ART, controlling for CD4 count (𝜋), based on Fenner et al.’s study which 

estimated that unsuppressed viral load (1000-9999 compared to <1000) was associated with 

an increased risk of TB disease (adjusted RR 1.23, 95% CI 1.08 – 1.41) (5). Using this study 

(Fenner et al.), the assumed protective effect of ART is 𝜋 = 1/1.23 = 0.81, and a Beta 

(49.05; 11.51) prior distribution is specified for the uncertainty around this parameter.  

In the model, the relative effect of HIV on TB incidence in HIV-positive individuals who are 

not on ART is represented by:  

𝐻(𝑠) = 𝜋−1𝜃(𝑎−𝑠)/100,  

𝐻(𝑠) is used as rate ratios applied to rates of slow and fast progression to TB. 

The relative effect of HIV on TB incidence in HIV-positive individuals on ART is 

represented by:  

𝐴(𝑠, 𝑑) = 𝜃(𝑎 − 𝑠𝑑)/100, 

Where 𝐴(𝑠, 𝑑) is used as rate ratios applied to rates of slow and fast progression to TB, 

𝑎: average CD4 count in HIV-negative individuals  

𝑠: average CD4 count in HIV-positive individuals not on ART (for a given CD4 

compartment) 

𝑠𝑑: CD4 count for those on ART at the treatment duration 𝑑  

θ: relative rate of TB incidence per 100-cell increases in CD4 count 

𝜋: Relative rate of TB incidence on ART (controlling for CD4). 
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3.5.2. Partial immunity 

In the model, we assume that individuals with LTBI have partial immunity and that the 

relative risk of developing TB is 0.21 if they are re-infected. This relative risk of developing 

TB is based on Andrews et al., who showed that individuals with LTBI had a 79% reduced 

risk of developing TB disease (95% CI 70–86%) (61). Therefore, we fixed this parameter for 

partial immunity in HIV-negative individuals (represented by parameter 𝑦) at a mean of 0.79.  

There is a lack of data regarding partial immunity in HIV-positive individuals and the effect 

of ART. We extrapolate from assumptions made in the modelling study by Menzies et al. 

who assumed a 0.25 (range: 0.14–0.39) reduction in the risk of developing TB disease among 

HIV-positive individuals with CD4 counts > 350 cells/μl, and no partial immunity for the 

those with CD4 count < 350 cells/μl (169). In our model, the effect of HIV on partial 

immunity is modelled as a function of CD4 count. We set 𝑝, the relative rate of partial 

immunity against TB disease per 100-cell increase in CD4 for HIV-positive individuals at 

1.1. This relative rate is applied to the parameter (𝑦) representing the reduction in TB 

incidence in previously infected HIV-negative individuals in the model. 

This partial immunity effect for HIV-positive individuals is 

𝐼(𝑠) = 𝑦𝑝(𝑠− 𝑎)/100 , 

where  

𝑎: average CD4 count in HIV-negative individuals. 

𝑠: the current CD4 count in HIV-positive individuals 

𝑝: relative rate of partial immunity against TB per 100-cell increase in CD4 count, for 

HIV-positive individuals 

𝑦: the reduction in TB incidence in latently infected individuals who are HIV-

negative. 
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3.5.3. Natural recovery (untreated tuberculosis)   

Studies from the pre-antibiotic era have shown that a certain proportion of patients do not die 

in the absence of treatment and presumably recover naturally without treatment (76). Based 

on Tiemersma et al.'s review of studies conducted during the pre-chemotherapy era, case 

fatality rates among untreated TB cases were estimated to be 0.7 among smear-positive and 

0.2 among smear-negative individuals; the duration of active TB disease was estimated at 3.3 

years (76). As these case fatality rates represent cumulative mortality risks, we convert them 

into annual mortality rates in the model. For the annual mortality rate in smear-negative 

(𝜇𝑠𝑚𝑛) and smear-positive (𝜇𝑠𝑚𝑝) individuals, and for the annual natural recovery rate in 

smear-negative (𝑛𝑠𝑚𝑛) and smear-positive individuals (𝑛𝑠𝑚𝑝), we have the following 

relationships: duration of smear-positive TB disease is 1/( 𝜇𝑠𝑚𝑝 +  𝑛𝑠𝑚𝑝) = 3.3, and the 

same duration is assumed for smear-negative TB. Similarly the case fatality ratio for smear-

positive TB is 𝜇𝑠𝑚𝑝 / (𝜇𝑠𝑚𝑝 +  𝑛𝑠𝑚𝑝) = 0.7  and 𝜇𝑠𝑚𝑛 / (𝜇𝑠𝑚𝑛 +  𝑛𝑠𝑚𝑛) = 0.2. Given these 

expressions, for smear-positive individuals, we get 𝜇𝑠𝑚𝑝 = 0.212 and 𝑛𝑠𝑚𝑝 = 0.091; for 

smear-negative individuals, we have  𝜇𝑠𝑚𝑛 = 0.061 and 𝑛𝑠𝑚𝑛 = 0.242 (76). 

For HIV-negative individuals, we specified a Gamma (20.25; 225) prior distribution with 

mean of 0.09 and standard deviation of 0.02 for the uncertainty around the rates of natural 

recovery among smear-positive (𝑛𝑠𝑚𝑝). For natural recovery among smear-negative, we 

specified a Gamma (23.04; 96) prior distribution with mean 0.24 and standard deviation of 

0.05 (𝑛𝑠𝑚𝑛). 

There is limited evidence on how HIV and ART affect natural recovery. As with partial 

immunity, we specified the relative rate of natural recovery dependent on CD4 count, 

extrapolating from a previous modelling study by Menzies et al. who assumed an annual rate 

of recovery of 0.2 (range: 0.15–0.025) in those who were HIV-negative, 0.1 (range: 0.06–

0.16) in those with CD4 counts > 350 (169), and zero in those with a CD4 count of 350 and 

less.  

In the model, the rate of natural recovery is modelled as follows: 

𝑅(𝑠, 𝑑) = 𝑛𝑣(𝑠− 𝑎)/100 
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𝑣: relative rate of natural recovery per 100-cell increase in CD4 for HIV-positive individuals. 

We set 𝑣 = 1.2 to be roughly consistent with Menzies et al (169). 

𝑛: natural recovery rates in smear-positive (𝑛𝑠𝑚𝑝) or smear-negative (𝑛𝑠𝑚𝑛) individuals who 

are HIV-negative. 

𝑠: the current CD4 count in HIV-positive individuals. 

3.5.4. Untreated active tuberculosis mortality  

As described in the section on Natural recovery, the untreated annual mortality rates in HIV-

negative individuals with TB can be estimated as 𝜇𝑠𝑚𝑝 = 0.212 and 𝜇𝑠𝑚𝑛 = 0.061 for 

smear-positive and smear-negative TB respectively (268). We specified a prior distribution 

for smear-positive mortality that was Gamma (25; 117.9) with mean 0.212 and standard 

deviation of 0.042. For smear-negative mortality, we similarly specified a prior distribution 

that was Gamma (25; 409.8), with a mean of 0.061 and standard deviation of 0.012. (these 

rates relate to HIV-negative individuals aged 55+). The effects of HIV, ART, and age on TB 

mortality are explained in section 3.7.3 (due to the lack of data on the effect of these 

covariates in untreated TB, we make the same assumption about these factors for treated and 

untreated TB mortality). 

3.6. Modelling the tuberculosis diagnostic pathway 

The path to TB diagnosis and care involves multiple steps; in the model, we consider the 

following: 

• health-seeking rates, which vary by symptoms, smear status, HIV status and sex 

• the proportion of sputum samples submitted for microbiological testing 

• sensitivity and specificity of diagnostic algorithms 

• treatment initiation and initial loss to follow-up (before treatment initiation) following 

a microbiological confirmation 

• empirical treatment.  

Treatment outcomes are further described in section 3.7. 
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Figure 3-3 summarises these steps above. At the entry point into the care cascade and 

treatment pathway, we consider health-seeking behaviours in people with active TB disease 

as well as health seeking unrelated to TB in the general population. We define 𝛾𝑚(𝑎, 𝑔, 𝑠, 𝑡) 

as the rate of health-seeking for individuals of smear status 𝑎 (0 = smear-negative, 1 = smear-

positive), of sex 𝑔 (0=male, 1=female) and HIV stage 𝑠 (as defined in Thembisa 4.1) at any 

time 𝑡. Here 𝑚 = 1 represents active TB individuals seeking treatment for TB symptoms, 

𝑚 = 2 represents individuals in the general population who are seeking treatment for other 

conditions and 𝑚 = 3 represents individuals in the general population seeking treatment for 

TB- like symptoms. The health-seeking rates are defined such that for any 𝑡, 𝛾1(𝑎, 𝑔, 𝑠, 𝑡), 

𝛾2(𝑔, 𝑠, 𝑡) and 𝛾3(𝑔, 𝑠, 𝑡) depend on smear status, sex, and HIV status.  

Figure 3-3: Illustration of the modelled tuberculosis diagnostic pathway 

 

We also assume some prevalence (𝑣𝐴(𝑎)) of TB symptoms in the active TB population 

seeking care for other conditions, for smear status 𝑎 and we assume 𝑣𝐺  to be the prevalence 

of respiratory symptoms in the general (non-active TB) population. Following interaction 

with health facility workers, some individuals will be requested to submit their sputum 

samples for testing. Thus, we let 𝑝1(𝑡) represent the proportion of individuals with active TB 

disease, seeking treatment for their TB symptoms, who submit their samples to be tested 

microbiologically; and 𝑝2(𝑡) the proportion of individuals with TB-like respiratory 

symptoms, seeking treatment for other conditions, who get microbiologically tested. 

We allow the diagnosis of TB to depend on the sensitivity (𝑆𝑒(𝑎, 𝑠, 𝑡)) and specificity 

(𝑆𝑝(𝑡)) of the diagnostic algorithm for smear status 𝑎 and HIV state 𝑠, at time 𝑡. We consider 
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the sensitivity and specificity of the first line microbiological diagnostic tests – GeneXpert 

MTB/RIF and smear microscopy – as well as culture (assumed to be 100%). The diagnostic 

algorithm is given by:  

Equation 1: Diagnostic algorithm sensitivity  

𝑆𝑒(𝑎, 𝑡, 𝑠) = 𝑀(𝑡)[𝑆𝑒𝑀(𝑎) + (1 − 𝑆𝑒𝑀(𝑎))𝐶𝑀(𝑠, 𝑡)] 

+ (1 − 𝑀(𝑡))[𝑆𝑒𝐺(𝑎)  + (1 − 𝑆𝑒𝐺(𝑎))𝐶𝐺(𝑎, 𝑠, 𝑡)] 

And 

Equation 2: Diagnostic algorithm specificity  

𝑆𝑝(𝑡) = 𝑀(𝑡)𝑆𝑝𝑀 + (1 − 𝑀(𝑡))𝑆𝑝𝐺  

where 𝑆𝑒𝑀(𝑎) and 𝑆𝑒𝐺(𝑎) represent the sensitivity of smear microscopy and GeneXpert 

MTB/RIF in active TB patients, respectively; 𝑆𝑝𝑀 and 𝑆𝑝𝐺 represent the specificity of smear 

microscopy and GeneXpert MTB/RIF, respectively. Given the recommendations that 

negative test results after an initial test require follow-up testing (particularly in the case of 

previously treated and HIV-positive cases (75,269)), we allow individuals to be followed up 

for a second test.  

To represent the national-level implementation of the specific diagnostic tools, we define 

𝑀(𝑡) to be the proportion of TB suspects who are initially tested by smear microscopy in 

year t and the remainder (1 − 𝑀(𝑡)) are tested by GeneXpert MTB/RIF initially. We then 

define 𝐶𝐺(𝑎, 𝑠, 𝑡) to represent the proportion of active TB cases followed-up for further 

culture testing after an initial negative GeneXpert MTB/RIF test; 𝐶𝑀(𝑠, 𝑡) is the proportion of 

active smear-negative TB cases who have further culture testing done after initial negative 

microscopy tests. 

The estimated number of microbiological tests performed yearly 𝑇(𝑡) is given by 

Equation 3: Number of microbiological tests 

𝑇(𝑡)= ∑ ∑ 𝑁(𝑔, 𝑠, 𝑡)(𝛾2(𝑔, 𝑠, 𝑡)𝑣𝐺𝑝2(𝑡) + 𝛾3(𝑔, 𝑠, 𝑡)𝑝1(𝑡)) +𝑠𝑔

              ∑ ∑ ∑ 𝐴(𝑎, 𝑔, 𝑠, 𝑡)(𝛾2(𝑔, 𝑠, 𝑡)𝑣𝐴(𝑎)𝑝2(𝑡) + 𝛾1(𝑎, 𝑔, 𝑠, 𝑡)𝑝1(𝑡))𝑠𝑔𝑎  
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where 𝑁(𝑔, 𝑠, 𝑡) is the number of adults in the general population (not having active TB) and 

𝐴(𝑎, 𝑔, 𝑠, 𝑡) is the number of active TB cases at time 𝑡.  

Following a positive diagnosis, some patients get lost before treatment initiation. Therefore, 

we let 𝐿(𝑡) be the proportion of individuals lost to initial follow-up. The number of people 

with a positive laboratory diagnosis is represented by 𝑅1(𝑡) in Equation 4 and the number of 

people with a positive diagnosis who initiate treatment is estimated as 𝑅1(𝑡)(1 − 𝐿(𝑡)).  

Equation 4: Number of positive diagnoses  

𝑅1(𝑡) = ∑ ∑ 𝑁(𝑔, 𝑠, 𝑡)(𝛾2(𝑔, 𝑠, 𝑡)𝑣𝐺𝑝2(𝑡) + 𝛾3(𝑔, 𝑠, 𝑡)𝑝1(𝑡))(1 − 𝑆𝑝(𝑡)) +𝑠𝑔

             ∑ ∑ ∑ 𝐴(𝑎, 𝑔, 𝑠, 𝑡)(𝛾2(𝑔, 𝑠, 𝑡)𝑣𝐴(𝑎)𝑝2(𝑡) + 𝛾1(𝑎, 𝑔, 𝑠, 𝑡)𝑝1(𝑡))𝑆𝑒(𝑎, 𝑡, 𝑠)𝑠𝑔𝑎   

3.6.1. Modelling tuberculosis health-seeking patterns  

 The prevalence of tuberculosis symptoms by smear status 

We set the prevalence of TB-related respiratory symptoms based on studies that report TB 

symptoms for the active or non-active TB populations (where the studied populations are at 

least generalisable). Based on the review by Onozaki et al. (270) of TB prevalence surveys in 

Asian populations, the average prevalence of TB symptoms in bacteriologically confirmed 

TB cases was 43% (270). A positive symptom screen was defined as a cough of more than 

two to three weeks or blood in sputum. A Zambia/South Africa TB and AIDS Reduction 

(ZAMSTAR) study also surveyed respiratory symptoms (31). Among individuals with TB, 

the proportion of people experiencing persistent cough for more than two weeks was 20.5%, 

compared to 5.2% among those without TB (31). Den Boon et al. in a Cape Town based 

study conducted in 2002, estimated the prevalence of TB symptoms to be 48% in patients 

with active TB (60% among smear-positive active TB patients and 22% among smear-

negative individuals) (271). 

We consider the prevalence observed in the ZAMSTAR (31) and the Den Boon et al. (271) 

studies to be likely over-estimates of the prevalence of symptoms in smear-negative TB 

(𝑣𝐴(0)) because smear-negative TB is less symptomatic than smear-positive TB. To represent 

the uncertainty around this parameter we specified a Beta (3;12) prior with mean of 0.2 and 

standard deviation of 0.1. Then we set 𝑣𝐺  the prevalence of respiratory symptoms in the 

general non-active TB population at 5.2% based on the ZAMSTAR study (31). 
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We use the review of prevalence surveys conducted in Asia between 1990–2012 by Onozaki 

et al., to estimate the ratio of the prevalence of TB symptoms in smear-positive individuals 

compared to smear-negative individuals with TB  (270). From this review, the prevalence 

ratio of TB symptoms in smear-positive individuals compared to smear-negative individuals 

differed between countries and ranged between 1.0 and 2.72; the average was 1.62 (270).  

From the countries in which more than one survey was included (Cambodia, Philippines, 

Korea), the ratio declined over time, suggesting that the ratios might be lower as screening 

and treatment services improve. In the Den Boon et al. study, this ratio was at 2.7 (270,271).  

In the model, we define 𝑓 to be the ratio of symptoms in smear-positive compared to smear-

negative individuals. To represent the uncertainty around 𝑓 we specified a Gamma (19.36; 

8.8) prior with mean 2.2 and standard deviation of 0.5.  

 Health-seeking patterns by sex  

To model the effect of sex, we define 𝑧  to be the relative rate of health-seeking in females 

compared to males. We use the male-to-female ratio for prevalence-to-notification ratio 

estimated in the systematic review and meta-analysis by Horton et al. (2) to estimate sex 

differences on the pathway to TB care and TB testing. This ratio was estimated at 1.55 (2). 

To represent the uncertainty around this parameter 𝑧, we assign a Gamma (83.13; 53.63) 

prior distribution with a mean of 1.55 and a standard deviation of 0.17. We acknowledge the 

limitation that we did not allow the health-seeking parameters to be age dependent whereas it 

is possible that older people are more likely to be attending health facilities for conditions 

unrelated to TB than younger adults.  

 Health-seeking patterns by HIV status 

We assume that the attendance rate for HIV-positive individuals will be higher compared to 

that of HIV-negative individuals as HIV-positive individuals are more likely to be engaged 

with health care facilities and possibly because, in individuals with active TB, the 

development of symptoms may be more rapid than in HIV-negative individuals (272). In 

addition, HIV-positive individuals who are on ART would also be more likely to attend 

health care facilities as they engaged in care. We relied on Corbett et al and the South African 

National prevalence survey which suggested higher health-seeking in HIV-positive 

individuals than HIV-negative individuals (17,272).   
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We define ℎ to be the relative rate of health seeking in HIV-positive individuals (compared to 

HIV-negative individuals). We expect h>1. To represent the uncertainty around this 

parameter h, assign a Gamma (9; 3) prior distribution with a mean of 3.0 and a standard 

deviation of 1 (17,272). 

i. Setting overall health-seeking rates  

For any time 𝑡, we define the health-seeking rates such that they depend on the variables: 

• sex (𝑔): male sex is represented by 𝑔 = 0; female 𝑔 = 1 . 

• HIV status (𝑠): HIV-negative status is represented by 𝑠 =  0; HIV-positive by 𝑠 > 0. 

• smear status (𝑎): smear-negative TB represented by 𝑎 = 0; smear-positive by 𝑎 = 1. 

The definitions of the health-seeking rates are below (a–c), and as defined earlier: 

• 𝑓 is the ratio of symptoms in smear-positive compared to in smear-negative 

individuals; 

• 𝑧  is the relative rate of health-seeking in females compared to males; 

• ℎ is the relative rate of health seeking in HIV-positive individuals (compared to HIV-

negative individuals). 

 

a. Health-seeking rate for active TB population seeking treatment for TB symptoms 

(𝜸𝟏(𝒂, 𝒈, 𝒔, 𝒕)) 

We let 𝛾1 represent the rate of health-seeking for HIV-negative men with smear-negative 

active TB, seeking treatment for TB symptoms, and define 𝛾1(𝑎, 𝑔, 𝑠, 𝑡), the health-seeking 

rate for adults with active TB as below. 

For smear-negative individuals (𝑎 = 0), 

𝛾1(𝑎, 𝑔, 𝑠, 𝑡) = {

𝛾1 for 𝑔 = 0 and 𝑠 = 0, ∀𝑡
𝛾1𝑧 for 𝑔 = 1 and 𝑠 = 0, ∀𝑡
𝛾1ℎ for 𝑔 = 0 and 𝑠 > 0, ∀𝑡

𝛾1𝑧ℎ for 𝑔 = 1 and 𝑠 > 0, ∀𝑡

 

For smear-positive individuals (𝑎 = 1), 
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𝛾1(𝑎, 𝑔, 𝑠, 𝑡) = {

𝛾1𝑓 for 𝑔 = 0 and 𝑠 = 0, ∀𝑡
𝛾1𝑧𝑓 for 𝑔 = 1 and 𝑠 = 0, ∀𝑡
𝛾1ℎ𝑓 for 𝑔 = 0 and 𝑠 > 0, ∀𝑡

𝛾1𝑧ℎ𝑓 for 𝑔 = 1 and 𝑠 > 0, ∀𝑡

 

Based on the interquartile range of 1.3–3.4 prevalent infections per notification in men, from 

the review by Horton et al. (2), we have annual notification rates of between 0.29 (= 1/3.4) 

and 0.77 (= 1/1.3). Because many TB cases who seek treatment do not get screened, we 

estimate the rate of health-seeking by dividing the notification rate by the % screening, which 

ranges between 3% and 49% in South African studies (273–275). By taking the median of the 

South African studies estimates as 24%, we get the resulting range in the rates of health-

seeking: 1.21 (=0.29/0.24) to 3.08 (=0.77/0.24). We specify a Gamma (19,07;8.91), prior 

distribution with mean = 2.14 and standard deviation = 0.49 per annum to represent the 

uncertainty around 𝛾1.  

b. Health-seeking rate for the general population seeking treatment for other 

conditions (𝜸𝟐(𝒈, 𝒔, 𝒕)) 

Second, we define the health-seeking rate for adults in the general population as  

𝛾2(𝑔, 𝑠, 𝑡) = {

𝛾2 for 𝑔 = 0 and 𝑠 = 0, ∀𝑡
𝛾2𝑧 for 𝑔 = 1 and 𝑠 = 0, ∀𝑡
𝛾2ℎ for 𝑔 = 0 and 𝑠 > 0, ∀𝑡

𝛾2𝑧ℎ for 𝑔 = 1 and 𝑠 > 0, ∀𝑡

 

where 𝛾2 represents the rate of health seeking in HIV-negative men in the general population. 

We estimate this based on the average public health facilities attendance from the SADHS 

(259,276). This represents individuals who attend health facilities for other health conditions. 

The average attendance rates from the 1998 and 2003 SADHS reports were 0.186 and 0.2 per 

month, respectively. We take the average of these and get 0.193 per month, which gives an 

annual rate of 2.3 (= 0.193 × 12). We set this as an upper bound so 𝛾2 <  2.3 because of 

telescoping bias – when surveyed, people tend to report things as happening more recently 

than they actually happened. Also, we would expect this to be an upper bound because the 

base rate (𝛾2) applies to men who are HIV-negative, and we expect HIV-negative men to 

have lower rates of health seeking (generally) than women and people living with HIV. We 

specify a Gamma (5.29;4.6) prior distribution with mean = 1.15 and standard deviation = 0.5 

to represent the uncertainty in 𝛾2.  
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c. Health-seeking rate for the general population (no TB) seeking treatment for TB-

like symptoms 𝜸𝟑(𝒈, 𝒔, 𝒕) 

Third, we define the health-seeking rate for the general population without TB, seeking 

treatment for TB-like symptoms as  

𝛾3(𝑔, 𝑠, 𝑡) = {

𝛾3 for 𝑔 = 0 and 𝑠 = 0, ∀𝑡
𝛾3𝑧 for 𝑔 = 1 and 𝑠 = 0, ∀𝑡
𝛾3ℎ for 𝑔 = 0 and 𝑠 > 0, ∀𝑡

𝛾3𝑧ℎ for 𝑔 = 1 and 𝑠 > 0, ∀𝑡

 

where 𝛾3 represents the rate at which HIV-negative men in the general population seek 

treatment for TB-like symptoms that are not due to TB. There are limited studies that show 

the proportions of individuals from the general population who attend health facilities due to 

TB-like symptoms only. We expect 𝛾2 > 𝛾3 – that is, the rate of health facility attendance 

(𝛾2) will be greater than that for TB-like symptoms (𝛾3).  Based on the South African 

General Household Survey in 2011 (277) on use of health facilities, 9.6% of South Africans 

reported being ill or injured in the previous month, and 77.5% of these reported consulting a 

health worker. This suggests an annual health-seeking rate of approximately 0.89 (= 0.096 × 

0.775 × 12) (277). Of the people who were ill or injured in the month before the survey, 

63.7% reported having flu or acute respiratory tract infections; and 2.9% reported having 

suffered from TB or severe cough with blood. From this, we approximate a lower bound of 

0.0258 (= 0.029 × 0.89) and an upper bound of 0.593 (= (0.637 + 0.029) × 0.89), recognising 

that there is substantial overlap between TB symptoms and flu/acute respiratory symptoms 

(although it is unlikely that all flu/respiratory symptoms would be attributable to TB). We 

specify a Gamma (2.15;9.78) prior distribution with mean = 0.22 and standard deviation = 

0.15 to represent the certainty around 𝛾3. 

3.6.2. Specimens submitted for microbiological testing  

To estimate the proportions of individuals seeking treatment who are screened and have their 

sputum samples collected by health care workers for microbiological testing, we use 

estimates of the proportions reported in the few available empirical studies from South Africa 

(273–275). We allow these proportions to depend on patients’ reasons for attending the health 

facility, i.e., TB symptoms or other health conditions reported by patients (Table 3-6). 

Although all these studies rely heavily on patients' recall and may lead to biased assumptions, 
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they give an idea of what happens at the health facility level. The Kweza et al. study was 

conducted across Eastern Cape district facilities, whereas the Claassens et al. study was 

limited to two primary health care facilities in one sub-district in the Western Cape. The 

Claassens et al. study also had a low response rate, suggesting it is less generalisable (278). 

The Chihota et al. study was a pragmatic cluster randomised trial assessing whether health 

care worker practice in examining people with TB symptoms changed when the initial test for 

TB switched from smear microscopy to GeneXpert MTB/RIF, so the results were presented 

separately for the two trial arms.  
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Table 3-6: Proportions of patients with TB symptoms who are screened and submit 

sputum specimens  

 Reason for attending a health facility  

Study  

TB symptoms 

𝒑𝟏(𝒕) 

Other reasons 

𝒑𝟐(𝒕) 

Ratio 

𝒓 = 𝒑𝟏(𝒕)/𝒑𝟐(𝒕)  

Claassens et al. (2013) (278) 0.028 0.003 10.750 

Chihota et al. (2015) (275) 

GeneXpert MTB/RIF 0.491 0.154 3.94 

Microscopy 0.299 0.136 2.195 

Kweza et al. (2018)  (273) 0.181 0.037 4.893 

 

In these three studies (273–275), individuals were classified as attending health facilities due 

to TB-related (respiratory) symptoms if they reported having any symptoms, including 

cough, loss of weight, fever, and night sweats. This is a less specific definition than we 

considered in defining symptomatic TB for the prevalence of TB symptoms (𝑣𝐴, 𝑣𝐺). As 

such, we note that the TB symptoms prevalence we use is an under-estimate of the true 

proportion of cases that could be screened.  

We defined 𝑟(𝑡) =  𝑝1(t)/𝑝2(𝑡) to be the ratio of microbiological testing in symptomatic 

individuals seeking treatment for TB symptoms compared to those seeking treatment for 

other reasons (who coincidentally have TB-like symptoms) in year t. We let 𝑝1(𝑡) represent 

the proportion of individuals with active TB seeking treatment for their TB symptoms who 

get tested microbiologically, and 𝑝2(𝑡) the proportion of individuals with TB-like respiratory 

symptoms seeking treatment for other conditions who get microbiologically tested.  

There is limited data and evidence to show how 𝑟(𝑡) has changed over time. However, the 

𝑟(𝑡) estimates in Table 3-6 are highest when screening rates are lowest, suggesting that 𝑟(𝑡) 

has declined as the intensity of screening has increased. We used a piecewise-linear function 

to represent the change in 𝑟(𝑡) over time. First, we assume a constant ratio up to 2005. For 

this period, the ratio 𝑟(𝑡) was estimated by a fitting function (exp(2.04 – 10.84 × 𝑝2(t)) +

1) for the relationship between the ratio and the screening rates in Table 3-6, which gives 

8.71 when 𝑝2(t) = 0. We assigned a Gamma (12.14; 1.394) prior distribution with a mean of 

8.71 and a standard deviation of 2.5 for 𝑟(𝑡) in the period up to 2005 (i.e., assuming 

screening rates were close to zero in the period before 2005). We then linearly interpolated 

between the 2006 and 2011 ratios for the intervening years; and assigned 𝑟(𝑡) a Gamma 

(11.11; 2.78) prior distribution with a mean of 4 and a standard deviation of 1.2 for the period 
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from 2012. The latter prior distribution is based on the studies summarized in Table 3-6, 

which were mostly conducted in the period after 2011. 

Then 𝑝1(𝑡) will be estimated from 𝑅1(𝑡), the total number of positive tests in year 𝑡, by 

rearranging the terms in Equation 4. We relied on the National Institute for Communicable 

Diseases data (2004-2019) for the numbers of microbiological diagnoses (24). Then, 𝑝1(𝑡) 

was estimated as in Equation 5. We relied on the National Institute for Communicable 

Diseases data (2004-2019) for the numbers of microbiological diagnoses shown in Table 3-7 

(24). We assumed the testing rates in 1985 (when the model was initiated) were half of the 

2004 testing rates; and assumed that for the period 1985-2004, the screening rates increased 

linearly.   

Equation 5: proportion of individuals with active TB who seek treatment for their TB 

symptoms who get tested microbiologically 

𝑝1(𝑡) =  𝑅1(𝑡) (∑ ∑ 𝑁(𝑔, 𝑠, 𝑡)(𝛾2(𝑔, 𝑠, 𝑡)𝑣𝐺𝑟(𝑡)−1 + 𝛾3(𝑔, 𝑠, 𝑡))(1 − 𝑆𝑝(𝑡))

𝑠𝑔

+            ∑ ∑ ∑ 𝐴(𝑎, 𝑔, 𝑠, 𝑡)(𝛾2(𝑔, 𝑠, 𝑡)𝑣𝐴(𝑎)𝑟(𝑡)−1

𝑠𝑔𝑎

+ 𝛾1(𝑎, 𝑔, 𝑠, 𝑡))𝑆𝑒(𝑎, 𝑡, 𝑠))

−1

 



87 

 

Table 3-7:  Recorded numbers of laboratory confirmed tuberculosis cases by year 

Year  

Estimated number of 

microbiologically confirmed TB 

cases 

2004 307385 

2005 345694 

2006 385496 

2007 395907 

2008 422134 

2009 321558 

2010 320125 

2011 348400 

2012 321206 

2013 313013 

2014 298389 

2015 289136 

2016 262454 

2017 249090 

2018 261743 

2019 232483 

Sources: Data for years 2004-2008 obtained from Nanoo et al. (24) and adjusted for 10%  probable 

overcounting. Data for years 2009-2019 obtained from the National Institute for Communicable Diseases 

(NICD) dashboard: 

https://mstrweb.nicd.ac.za/MicroStrategy/asp/Main.aspx?Server=NICDSANDMSTRI01&Project=Surveillance

&Port=0&evt=2048001&src=Main.aspx.2048001&documentID=4236FF364F683E2F257DA5AC647F5BA6&

currentViewMedia=1&visMode  

3.6.3. Sensitivity and specificity of diagnostic algorithms  

In the model, we assumed sputum smear microscopy was the first-line diagnostic test before 

2010. From 2011, we assume a gradual phase-in of GeneXpert MTB/RIF as the 

recommended first-line test (279). We let 𝑀(𝑡) be the proportion of individuals tested 

microbiologically by smear microscopy in year t. The remainder (1 − 𝑀(𝑡)) is the fraction 

who have an initial test by GeneXpert MTB/RIF. Thus 𝑀(𝑡) varies with time depending on 

GeneXpert MTB/RIF utilisation as the first-line tool for diagnosing TB in South Africa. For 

2010 and years before, we assume the level of GeneXpert MTB/RIF utilisation was 0% and 

gradually phased in over time. These proportions were set to be the same as those assumed by 

Sumner et al. and Hippner et al. based on expert opinion (188,190) (Table 3-8). 

 

 

 

https://mstrweb.nicd.ac.za/MicroStrategy/asp/Main.aspx?Server=NICDSANDMSTRI01&Project=Surveillance&Port=0&evt=2048001&src=Main.aspx.2048001&documentID=4236FF364F683E2F257DA5AC647F5BA6&currentViewMedia=1&visMode
https://mstrweb.nicd.ac.za/MicroStrategy/asp/Main.aspx?Server=NICDSANDMSTRI01&Project=Surveillance&Port=0&evt=2048001&src=Main.aspx.2048001&documentID=4236FF364F683E2F257DA5AC647F5BA6&currentViewMedia=1&visMode
https://mstrweb.nicd.ac.za/MicroStrategy/asp/Main.aspx?Server=NICDSANDMSTRI01&Project=Surveillance&Port=0&evt=2048001&src=Main.aspx.2048001&documentID=4236FF364F683E2F257DA5AC647F5BA6&currentViewMedia=1&visMode
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Table 3-8: Utilisation of GeneXpert MTB/RIF as a first-line diagnostic test in South 

Africa 

Year % GeneXpert MTB/RIF used (𝟏 − 𝑴(𝒕)) 

2010 and before 0 

2011 22 

2012 43 

2013 65 

2014 73 

2015 80 

2016 and onwards 80 

 

Figure 3-4: Simplified diagnostic algorithm considered in the model 

 

Note: second tests by culture mostly apply to HIV-positive individuals who are suspected to have TB disease 

and those with a history of TB treatment, but who test negative at the initial test. 

As per the national TB guidelines (2008, 2009 and 2014), following a negative test result, it 

is recommended that some patients (i.e., HIV-positive individuals who are suspected to have 

TB disease and those with a history of TB treatment) be followed up for second tests by 

culture (30,269,279). In the model, we let the proportion of active TB cases of any smear 

status 𝑎, who have further culture tests performed after an initial negative GeneXpert 

MTB/RIF test, be represented by 𝐶𝐺(𝑎, 𝑠, 𝑡). 𝐶𝑀(𝑠, 𝑡) represents the proportion of smear-

negative active TB cases with further culture testing after an initial negative smear 

microscopy test. These proportions of individuals followed up for second tests are based on 

studies which have evaluated follow-up tests by culture (Table 3-9) (280–282). 
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Table 3-9: Assumptions on follow-up tests by culture  
Initial test  HIV status  Data sources description  Parameter value  

Smear negative  HIV-negative  Based on the ~30% fraction of retreatment cases from 

various studies conducted in the Western Cape, and a 

roughly 80% rate of culture testing in retreatment 

cases who are smear-negative and HIV-negative 

(281,282). 

𝐶𝑀(𝑠 = 0, 𝑡) = 0.24  

 HIV-positive  Based on the average of the low rate (28%) in the 

McCarthy et al. study (281) and the high rate (80%) 

in the Naidoo et al. study (282). 

𝐶𝑀(𝑠 > 0, 𝑡):   

Before 2006:  = 0.24. 

In 2006:          = 0.4.  

After 2007:     = 0.55. 

GeneXpert 

MTB/RIF 

negative  

HIV-negative  Based on the ~30% fraction of retreatment cases and 

~50% rate of culture testing in retreatment cases who 

are smear-negative and HIV-negative (282). 

𝐶𝐺(𝑎, 𝑠 = 0, 𝑡) = 0.15 

 HIV-positive  The average of the low rate (11%) in the McCarthy et 

al. (281) study and the high rate (50%) in the Naidoo 

et al. study (282). 

𝐶𝐺(𝑎, 𝑠 > 0, 𝑡) = 0.3 

 

We further let a TB diagnosis depend on the sensitivity (𝑆𝑒(𝑎, 𝑡, 𝑠)) and specificity (𝑆𝑝(𝑡)) of 

the diagnostic algorithm for smear status 𝑎, at time 𝑡 and HIV status 𝑠 (as defined in 

equations 1 and 2). 𝑆𝑒𝑀(𝑎) and 𝑆𝑒𝐺(𝑎) represent the sensitivity of smear microscopy and 

GeneXpert MTB/RIF in active TB patients, respectively; 𝑆𝑝𝑀 and 𝑆𝑝𝐺 represent the 

specificity of smear microscopy and GeneXpert MTB/RIF, respectively. The culture test is 

assumed to be 100% sensitive and 100% specific. The assumed values for the other tests are 

shown in Table 3-10 (283–286).  

Table 3-10: Assumed sensitivity and specificity of diagnostic tests by smear-status 

 Value  Source 

Sensitivity of GeneXpert MTB/RIF (𝑆𝑒𝐺(𝑎))   

Smear-positive (𝑆𝑒𝐺(1)) 0.98  Horne 2019 (286) 

Smear-negative (𝑆𝑒𝐺(0)) 0.67  Horne 2019 (286) 

Sensitivity of smear microscopy (𝑆𝑒𝑀(𝑎))   

Smear-positive (𝑆𝑒𝑀(1)) 1 Assumed 

Smear-negative (𝑆𝑒𝑀(0)) 0 Assumed 

Specificity of tests   

GeneXpert MTB/RIF (𝑆𝑝𝐺) 0.995 Horne 2019; Parker 2019 (286,287)  

Microscopy (𝑆𝑝𝑀) 0.98 Steingart 2006 (288) 
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3.6.4. Treatment initiation and initial loss to follow-up 

Following a positive diagnosis, some individuals are lost to follow-up before initiating 

treatment – this is referred to as initial loss to follow-up (ILTFU). The definition of ILTFU 

depends on the follow-up period at which individuals would be regarded as lost to follow-up. 

In most studies (289,290), individuals are classified as lost to initial follow-up if they do not 

initiate treatment one to six months after receiving a positive diagnosis and do not get 

recorded in the TB treatment registers maintained at health facilities.   

A systematic review of 16 South African studies reported a pooled estimate of 19.4% (95% 

CI 14.4–24.3%) of ILTFU (289). However, there was high variation among the studies 

included in this review (I2 = 95.85%). Factors associated with initial loss to follow-up include 

diagnostic tools – the longer the turnaround to test results, the more likely it is to lose patients 

on the treatment pathway. Because GeneXpert MTB/RIF is a point of care test with a quicker 

turnaround, a lower ILTFU is generally observed with its use. The average proportion of 

initial loss to follow-up in studies where GeneXpert MTB/RIF was used was 14.2%. In study 

settings where smear microscopy was used, the average proportion of initial loss to follow-up 

was 21.6% (289).  

In another earlier review, Macpherson et al. (2014) estimated an initial loss to follow up of 

18.0% (95% CI 13.0–22.0%) based on studies from African countries (290). Only one study 

in this review (Botha et al. 2008 (291)) traced patients who were initially lost to follow-up. In 

this study, 58 bacteriologically confirmed TB cases were initially classified LTFU. Upon 

follow-up of these individuals, 24.1% (n=14) had died, 44.8% (n=26) could not be traced and 

31.0% (n=18) were traced (291). Of these 18 that were traced, 11 were found to have started 

treatment late, and seven were traced but had not started treatment for various reasons. This 

study showed that based on the definition used by various studies, particularly those with a 

short follow-up period, there is a chance of misclassifying a certain proportion of individuals 

who initiate treatment as lost to follow-up. That is, the proportion of initial loss to follow-up 

may be overestimated. 

In the model, we set 𝐿(𝑡), the proportion of initial loss to follow-up in year t, based on the 

systematic review of South African studies, adjusted for the likely over-estimation identified 

by Botha et al. We adjust by the fraction of ILTFU cases that eventually get back into the 

health system and on treatment. Based on the Botha et al. study still, and assuming that those 
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who were not traced were as likely to be on treatment as those who were traced (non-

differential with respect to initiating treatment), we can assume the actual initial loss to 

follow-up is (14+7) / (58–26) = 66%. We apply this factor of 0.66 to the assumed initial loss 

to follow-up. So, when Xpert is used, 𝐿(𝑡) = 0.142 × 0.66 =  0.094 and when smear 

microscopy was used, 𝐿(𝑡) = 0.216 × 0.66 = 0.143. The number of individuals who start 

treatment after a diagnosis is a shown in Equation 4. 

3.6.5. Modelling empirical treatment  

Empirical TB treatment – the administration of TB treatment to individuals being assessed 

for TB disease who do not have laboratory confirmation of TB – is recommended by WHO 

guidelines in resource-limited settings when ambulant HIV- radiography findings compatible 

with TB do not respond to broad-spectrum antimicrobial therapy (292). In South Africa, 

clinicians are recommended to initiate HIV-positive individuals on TB treatment when two 

sputum smear microscopy tests or a single sputum GeneXpert MTB/RIF is negative for TB, 

chest radiograph findings are compatible with TB, and symptoms do not respond to 

antibiotics (30). Empirical treatment is more beneficial in situations where the probability of 

active TB before a test is high, and when the diagnostic test used is less sensitive (30). As 

such, in some situations, even when the guidelines recommend a laboratory-confirmed test 

before TB initiation, clinicians initiate patients on TB treatment without testing first. 

Additionally, in some cases, empirical treatment can happen when bacteriological tests have 

been performed, but not yet confirmed. This may happen in cases where clinicians believe a 

patient likely has TB disease and further delay in treatment initiation may pose the risk of 

transmission. 

In our model, we account for individuals who initiated treatment on an empirical basis 

through the calibration process among the people who initiated treatment. In modelling 

empirical treatment, we make an implicit allowance for extrapulmonary TB (as it is difficult 

to diagnose and the majority of extrapulmonary TB cases are not diagnosed based on 

microbiological investigation (293)). 

First, we define 𝑌 as the proportion of active TB cases seeking treatment for TB symptoms 

who get treated empirically before any microbiological test is conducted. This proportion is 

based on two studies. The first study is by Pepper et al., which found the proportion to be 

13% in Khayelitsha (based on a large sample in 2007-9 before GeneXpert MTB/RIF was 
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introduced) (104). The second is by Pronyk et al., estimating a much higher rate (38%) in 

Agincourt, based on a relatively small number of cases (43). However, these studies may 

overestimate the true proportion. For example, if TB cases that come to the clinic with 

symptoms but never get screened are included in the denominator, the proportion will be 

lower. This bias would be more likely when there are lower treatment rates (i.e., as in the 

Pronyk et al. study conducted in a rural area before the rollout of major TB programmes)1. 

Therefore, the average of these two studies (25%) is assumed as the upper bound. We then 

specify a Uniform (0;0.25) prior distribution for Y, with a mean of 0.125 and standard 

deviation of 0.144.  

Second, we let 𝑍 represent the proportion of smear-negative active TB cases seeking 

treatment for TB symptoms, treated empirically after an initial negative smear. In the period 

before GeneXpert MTB/RIF (i.e., before 2011), the proportion of all treated TB cases treated 

empirically was between 30% and 45% (224,294,295). It is nonetheless difficult to quantify 

the parameter based on the available data, and therefore we assign a non-informative prior, U 

(0; 0.667) to represent the uncertainty in Z, with a mean of 0.33 and standard deviation of 

0.236.  

Thirdly, we let 𝑅 be the relative rate of empirical treatment in people with respiratory 

symptoms that are not due to TB, compared to people who do have TB. This 𝑅 parameter is 

difficult to estimate from published studies due to a lack of evidence. However, we expect it 

to be < 1 since chest radiography is often used to exclude patients who do not have TB, and 

many empirically treated patients are only started on treatment if they fail to respond to an 

initial short course of broad-spectrum antibiotics. Based on van ‘t Hoog et al.'s meta-analysis, 

the sensitivity of chest X-rays in detecting TB was 95% based on the studies that evaluated 

chest X-rays in patients who had symptoms; the specificity was 55% (296). This suggests that 

if chest X-rays tested everyone with symptoms, the value of 𝑅 would be 0.47 (= (1 – 

0.55)/0.95). However, this might be an overestimate because not everyone is examined with 

chest X-rays; therefore, we specified a non-informative prior Uniform (0,1), (mean=0.5; 

standard deviation=0.236) to be conservative.  

 
1Suppose A is the number of TB cases who are tested microbiologically, B is the number who are treated empirically (without microbiological 

testing) and C are the number of symptomatic TB cases that don’t get treated. We define Y as B/(B+C), however, the Pepper and Pronyk 
studies report B/(A+B). If C > A, as one might expect, given the low rates of screening historically, then the Pronyk and Pepper studies are 

over-estimating the proportions we are interested in. 
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Fourthly, we define 𝐻 as the relative rate of empirical treatment in patients who have TB 

symptoms (but came to the clinic for other reasons) relative to patients who came to the clinic 

because of TB-like symptoms. This parameter is also difficult to estimate from the literature. 

We expect that people who came to the clinic for other reasons would, on average, have less 

severe disease than those who came because of TB-like symptoms. As such, we assume 

health workers would perhaps be more cautious about putting them on treatment without 

microbiological confirmation. Therefore, we would expect 𝐻 to be < 1 and again we 

assigned a non-informative prior (Uniform (0, 1), (mean=0.5; standard deviation=0.236) to be 

conservative. 

Lastly, we define 𝐺 to be the extent to which the introduction of GeneXpert MTB/RIF 

reduces empirical treatment after an initial negative test result. (We assume that the 

introduction of GeneXpert MTB/RIF does not cause any change in the rate of empirical 

treatment in people who have never been tested, i.e., it modifies Z but not Y). Hermans et al. 

showed that the proportion of patients empirically treated dropped from 32% in 2010 (before 

the introduction of GeneXpert MTB/RIF) to 18% in 2014 (224). Rees et al. observed a more 

modest reduction in empirical treatment from 37.5% in 2012 to 29.4% in 2015 (297).  We 

thus set 𝐺, the reduction in empirical treatment after a negative screen due to GeneXpert 

MTB/RIF at 0.5 based on these studies. 

These 𝑌, 𝑍, 𝑅 and H parameters will be estimated by calibrating the model to the number of 

active TB cases that are initiating treatment as recorded in the ETR and the numbers of 

microbiological diagnoses. Although the difference between the two gives a crude measure of 

the extent of empirical treatment, a limitation is that there is limited empirical data to 

calibrate the model.  

 

3.7. Modelling tuberculosis treatment and treatment outcomes  

In South Africa, the standard TB treatment for drug susceptible TB lasts for six months, 

consisting of two phases. The first (intense) phase lasts two months, and the second 

(continuation) phase lasts four months (269). The commonly reported treatment outcomes 

include default, success (cure and completion), failure and death. The definitions are as in 

Table 3-11. These outcomes are reported as percentages in the District Health Barometer, and 

the primary data source is the ETR. 
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Table 3-11: Definitions of data used for treatment outcomes as per the electronic 

tuberculosis register 

Symbol Description  Source 

𝑚 Treatment completion: Proportion of patients whose smear (or culture) was positive at 

the beginning of treatment and have completed treatment but does not have negative 

smear /culture in the last month of treatment and on at least one previous occasion 

more than 30 days before. The numerator is the number of patients who have 

completed treatment as per definition, and the denominator is the total number of TB 

patients on treatment that year (75). 

 

 

 

 

 

 

 

Electronic 

tuberculosis 

register 

(75,269). 

𝑐 Cured: Proportion of patients whose smear (or culture) was positive at treatment 

initiation and is smear/ culture-negative in the last month of treatment and on at least 

one previous occasion more than 30 days before. The numerator is the number of 

patients who are cured as per definition, and the denominator is the total number of 

TB patients on treatment that year (75). 

𝑓 Treatment failure: Proportion of patients whose baseline smear (or culture) was 

positive and remained or becomes positive again at five months or later during 

treatment. This also includes patients with no significant clinical improvement and no 

significant weight gain after 4-5 months of treatment. A clinician establishes the 

diagnosis of the failure. The numerator is the number of patients who have failed 

treatment as defined, and the denominator is the total number of TB patients on 

treatment that year (75). 

𝑑1 Death: Proportion of patients who die for any reason during TB treatment. The 

numerator is the number of patients who die on treatment as defined, and the 

denominator is the total number of TB patients on treatment that year.  

𝑑2 Treatment discontinuation/default: Proportion of patient whose treatment was 

interrupted for two consecutive months or more during the treatment course. The 

numerator is the number of patients who have treatment interruption as per definition, 

and the denominator is the total number of TB patients on treatment that year (75). 

Note: definitions do not explicitly describe how people get classified if they start treatment without a positive 

microbiological test. 

We model four possible outcomes: cure (𝜅) and treatment failure (𝛾) after treatment 

completion, treatment discontinuation (𝛿) and death on treatment (𝜇). These outcomes are 

estimated from the annual percentages reported by the ETR (Table 3-12). The ETR outcomes 

are defined differently from our model, as in the ETR treatment success is defined as a 

combination of cure and completion of the treatment course, whereas we consider 'cure after 

treatment completion’ and also allow for cure in some patients who discontinue treatment. 
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Based on the six-month treatment duration, we convert the percentages (Table 3-12) from the 

ETR into annual rates that correspond to model parameters shown in Table 3-13. 

Patients classified as cured in ETR (with bacteriological confirmation) would have completed 

the 6-months treatment course. For those classified as ‘completed treatment’, it is uncertain 

whether they have been cured. Using the ETR proportions, we estimate rates to represent 

transitions out of the 6-months treatment state. From the proportion of treatment success, we 

use the proportion of those cured (𝑐) to estimate a cure rate (𝜅). This 𝜅 represents a transition 

to the recovered state after 6-months of treatment. Following treatment failure (𝛾), 

individuals are assumed to move back to active TB states, assuming the same distribution of 

smear status as for new active TB cases.  

Among those who experience treatment discontinuation, at annual rate 𝛿, we assume a 

proportion (1 − 𝜙) will move back to the active TB states and that 𝜙 move to the recently 

treated recovered state (post-treatment short term). Here 𝜙 represents the efficacy of 

partial/incomplete treatment, and we set this based on previous studies. Based on what was 

observed in a retrospective cohort study assessing treatment outcomes (298), among those 

who defaulted during TB treatment, ~35% developed TB disease within two years. Using 

these results, we assume that of those discontinue TB treatment, 65% would be cured and 

move to the recovered state (298).  

Lastly, patients on treatment die at a rate of 𝜇. One of the problems with TB deaths on 

treatment is under-reporting which is usually due to deaths being classified as treatment 

discontinuation (a loss to follow-up/default) (299).  In the context of HIV and ART, under-

ascertainment of deaths in HIV-positive individuals due to loss to follow-up has been 

corrected using factors ranging between 1.64 and 2.19 (300). In South Africa, it has been 

shown that only 35% (95% CI 34.2–35.8%) of ART patient deaths recorded in the vital 

registration system were also captured in patient records at health facilities (241), although 

higher rates of ascertainment might be expected in the case of TB given the DOTS 

requirements for regular patient contact. Given the similar challenges of under-reporting of 

TB deaths in patients on treatment, we use this observation to adjust for TB deaths. As such, 

we assume the true mortality rate is double the reported mortality rate. More details on how 

these parameters are set and adjusted follow in the next sub-sections below. 

 



96 

 

Table 3-12: Electronic Tuberculosis Register Treatment outcomes by year (2004–2016) sex and HIV-status expressed as proportions 
    HIV-positive HIV-negative HIV-unknown 

Sex Year Completed  Cured Died Discontinued  Failed Completed  Cured Died Discontinued  Failed Completed  Cured Died Discontinued  Failed 

 
  

  

𝑚 

  

𝑐 

  

𝑑1 

  

𝑑2 

  

𝑓 

  

𝑚 

  

𝑐 

  

𝑑1 

  

𝑑2 

  

𝑓 

  

𝑚 

  

𝑐 

  

𝑑1 

  

𝑑2 

  

𝑓 

Female 

2004 0.468 0.245 0.060 0.220 0.008 0.396 0.445 0.022 0.128 0.009 0.452 0.202 0.085 0.256 0.006 

2005 0.454 0.259 0.086 0.192 0.008 0.314 0.538 0.021 0.117 0.010 0.458 0.220 0.093 0.222 0.007 

2006 0.455 0.266 0.092 0.176 0.010 0.325 0.522 0.025 0.117 0.011 0.475 0.225 0.098 0.196 0.007 

2007 0.458 0.248 0.105 0.179 0.009 0.372 0.455 0.031 0.129 0.013 0.466 0.234 0.100 0.192 0.007 

2008 0.465 0.237 0.116 0.174 0.009 0.433 0.380 0.041 0.137 0.009 0.477 0.221 0.098 0.197 0.007 

2009 0.472 0.243 0.109 0.167 0.009 0.463 0.359 0.040 0.129 0.009 0.500 0.228 0.095 0.171 0.006 

2010 0.472 0.235 0.100 0.185 0.008 0.465 0.338 0.040 0.149 0.008 0.477 0.227 0.093 0.195 0.007 

2011 0.482 0.264 0.095 0.149 0.010 0.477 0.351 0.040 0.123 0.009 0.505 0.232 0.087 0.168 0.007 

2012 0.479 0.275 0.095 0.140 0.011 0.485 0.351 0.043 0.113 0.008 0.499 0.248 0.080 0.167 0.007 

2013 0.510 0.262 0.086 0.134 0.008 0.532 0.315 0.040 0.107 0.006 0.502 0.227 0.080 0.185 0.006 

2014 0.594 0.153 0.073 0.170 0.009 0.603 0.210 0.038 0.143 0.006 0.522 0.117 0.083 0.264 0.015 

2015 0.685 0.121 0.079 0.107 0.007 0.695 0.175 0.037 0.088 0.005 0.639 0.086 0.081 0.178 0.017 

2016 0.641 0.161 0.078 0.114 0.006 0.630 0.237 0.037 0.090 0.006 0.627 0.114 0.073 0.180 0.006 

Male 

2004 0.415 0.238 0.074 0.258 0.014 0.342 0.487 0.019 0.134 0.019 0.410 0.218 0.079 0.285 0.008 

2005 0.417 0.264 0.093 0.213 0.012 0.271 0.530 0.027 0.161 0.011 0.422 0.230 0.089 0.251 0.009 

2006 0.390 0.285 0.102 0.214 0.010 0.275 0.500 0.032 0.178 0.015 0.435 0.236 0.095 0.225 0.009 

2007 0.422 0.249 0.110 0.208 0.012 0.321 0.444 0.042 0.178 0.015 0.428 0.240 0.100 0.223 0.009 

2008 0.429 0.238 0.124 0.200 0.010 0.381 0.384 0.051 0.172 0.012 0.433 0.232 0.100 0.227 0.008 

2009 0.439 0.240 0.121 0.190 0.009 0.407 0.373 0.051 0.158 0.012 0.442 0.243 0.097 0.209 0.008 

2010 0.436 0.236 0.111 0.208 0.009 0.408 0.352 0.051 0.179 0.011 0.420 0.250 0.094 0.227 0.008 

2011 0.444 0.259 0.111 0.175 0.011 0.417 0.363 0.052 0.157 0.010 0.443 0.253 0.089 0.208 0.008 

2012 0.447 0.275 0.108 0.160 0.011 0.422 0.370 0.054 0.145 0.010 0.425 0.282 0.087 0.198 0.008 

2013 0.478 0.267 0.094 0.152 0.009 0.463 0.342 0.049 0.136 0.009 0.440 0.266 0.077 0.207 0.009 

2014 0.562 0.161 0.082 0.185 0.010 0.547 0.230 0.047 0.167 0.009 0.480 0.149 0.077 0.278 0.015 

2015 0.655 0.130 0.083 0.124 0.008 0.626 0.202 0.047 0.118 0.008 0.579 0.123 0.087 0.197 0.013 

2016 0.611 0.176 0.080 0.125 0.008 0.566 0.263 0.046 0.117 0.008 0.569 0.158 0.069 0.198 0.007 
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Table 3-13: Electronic Tuberculosis Register Treatment outcomes by year (2004 – 2016), sex and HIV-status expressed as rates* 

  
HIV-positive  

 
HIV-negative 

 
HIV-unknown  

Sex Year  

Failed  

(𝜸) 

Cure 

(𝜿) Discontinuation (𝜹)  

Death 

(𝝁) 
 

Failed 

 (𝜸) 

Cure 

(𝜿) Discontinuation (𝜹) 

Death 

(𝝁) 
 

Failed  

(𝜸) 

Cure 

(𝜿)  Discontinuation (𝜹) 

Death 

(𝝁) 

Female 

2004 0.066 1.934 0.444 0.331 
 

0.039 1.961 0.249 0.104 
 

0.054 1.946 0.518 0.513 

2005 0.062 1.938 0.294 0.476 
 

0.037 1.963 0.223 0.097 
 

0.061 1.939 0.378 0.541 

2006 0.075 1.925 0.228 0.505 
 

0.043 1.957 0.215 0.116 
 

0.059 1.941 0.278 0.552 

2007 0.072 1.928 0.207 0.586 
 

0.055 1.945 0.233 0.149 
 

0.061 1.939 0.262 0.563 

2008 0.070 1.930 0.164 0.651 
 

0.046 1.954 0.235 0.199 
 

0.057 1.943 0.279 0.558 

2009 0.068 1.932 0.159 0.604 
 

0.051 1.949 0.213 0.194 
 

0.054 1.946 0.206 0.518 

2010 0.069 1.931 0.237 0.562 
 

0.046 1.954 0.269 0.198 
 

0.058 1.942 0.287 0.523 

2011 0.072 1.928 0.144 0.504 
 

0.050 1.950 0.199 0.189 
 

0.060 1.940 0.216 0.469 

2012 0.074 1.926 0.116 0.499 
 

0.043 1.957 0.167 0.203 
 

0.052 1.948 0.231 0.424 

2013 0.062 1.938 0.123 0.440 
 

0.040 1.960 0.157 0.188 
 

0.054 1.946 0.284 0.437 

2014 0.107 1.893 0.256 0.389 
 

0.059 1.941 0.256 0.184 
 

0.224 1.776 0.553 0.508 

2015 0.114 1.886 0.068 0.391 
 

0.060 1.940 0.115 0.171 
 

0.336 1.664 0.263 0.435 

2016 0.070 1.930 0.090 0.386 
 

0.047 1.953 0.121 0.170 
 

0.096 1.904 0.287 0.392 

Male 

2004 0.112 1.888 0.549 0.445 
 

0.074 1.926 0.271 0.088 
 

0.073 1.927 0.647 0.498 

2005 0.090 1.910 0.346 0.539 
 

0.042 1.958 0.328 0.134 
 

0.076 1.924 0.493 0.536 

2006 0.065 1.935 0.330 0.594 
 

0.057 1.943 0.371 0.162 
 

0.070 1.930 0.383 0.559 

2007 0.093 1.907 0.287 0.644 
 

0.065 1.935 0.350 0.214 
 

0.073 1.927 0.363 0.590 

2008 0.080 1.920 0.225 0.731 
 

0.062 1.938 0.310 0.263 
 

0.069 1.931 0.378 0.594 

2009 0.076 1.924 0.202 0.699 
 

0.061 1.939 0.271 0.257 
 

0.066 1.934 0.323 0.560 

2010 0.074 1.926 0.286 0.650 
 

0.058 1.942 0.334 0.263 
 

0.059 1.941 0.392 0.557 

2011 0.081 1.919 0.179 0.622 
 

0.055 1.945 0.266 0.265 
 

0.062 1.938 0.339 0.504 

2012 0.076 1.924 0.142 0.587 
 

0.053 1.947 0.228 0.268 
 

0.056 1.944 0.311 0.486 

2013 0.067 1.933 0.153 0.500 
 

0.052 1.948 0.215 0.239 
 

0.069 1.931 0.364 0.433 

2014 0.118 1.882 0.281 0.449 
 

0.071 1.929 0.306 0.240 
 

0.185 1.815 0.625 0.480 

2015 0.112 1.888 0.102 0.421 
 

0.078 1.922 0.171 0.223 
 

0.198 1.802 0.307 0.489 

2016 0.083 1.917 0.114 0.400 
 

0.059 1.941 0.169 0.219 
 

0.081 1.919 0.351 0.374 

*Adjustment: Applied a factor of 2 to the ETR TB deaths and assume that unrecorded deaths are incorrectly classified as a loss to follow-up. We then subtracted from the proportion of those 

lost-to-follow-up for the fraction that gets added to deaths
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3.7.1. Modelling cure and failure  

To estimate cure and failure rates, we assume that the ratio of failures to cures is the same in 

the treatment completers with missing outcomes as in those with recorded cure or failure 

outcomes.  

We estimate the annual rate at which treatment is completed in cured patients as: 

𝜅 = (
𝑐

𝑐 + 𝑓
 ) /0.5 

and the rate at which treatment is completed in patients who are failing as: 

𝛾 = (
𝑓

𝑐 + 𝑓
) /0.5  

We thus have 𝜅 + 𝛾 = 2, implying a treatment duration of half a year among those who 

complete treatment. Then we define 𝑑 = 𝑑1 + 𝑑2 as the proportion of patients who have died 

or have discontinued their treatment. From μ, the annual mortality rate on treatment, and δ, the 

annual treatment discontinuation rate, we define the rate 𝐷 = 𝜇 + 𝛿. From the above, we have 

𝑑1 + 𝑑2 =
𝜇+𝛿

𝜇+𝛿+ 𝜅+𝛾
  so 𝑑 =

𝐷

𝐷+2
. 𝐷 can then be expressed as 𝐷 =

2𝑑

1−𝑑
. In the absence of any 

correction for under-ascertainment of mortality, we would have μ and δ expressed as 𝜇 =
𝑑1𝐷

𝑑
 

and 𝛿 = (1 −
𝑑1

𝑑
) 𝐷. If we assume the true mortality rate is double the reported mortality rate, 

we have 𝜇 =
2𝑑1𝐷

𝑑
 and 𝛿 = (1 −

2𝑑1

𝑑
) 𝐷. We used the ETR data and set the cure rate at  𝜅 =

1.92, roughly the average across all years (Table 3-13) for those who complete the six months 

treatment course. 

3.7.2. Modelling treatment discontinuation 

In the model, we specify a fixed parameter for the annual rate of treatment discontinuation. 

Based on the ETR data, males have higher treatment discontinuation rates than females 

(Table 3-14). This treatment discontinuation parameter is calculated as the average 

discontinuation rates across years and HIV strata, and we set it at 0.309 in males and 0.237 

for females. Using the ETR data, the ratio of male to female average discontinuation rate 

aggregated across age and HIV strata is 1.307 (= 0.309/0.237). Berry et al.'s study using the 

ETR data for Gauteng Province (Ekurhuleni Metropolitan Municipality and the City of 
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Johannesburg), estimated a similar relative risk of treatment discontinuation for males 

compared to females, 1.299 (301). 

Table 3-14: Average treatment discontinuation and death rates by HIV status, based on 

the ETR  

 HIV-positive HIV-negative HIV-unknown Overall 

 discontinuation death discontinuation death discontinuation death discontinuation death 

Female  0.195 0.486 0.204 0.166 0.311 0.495 0.236 0.382 

Male  0.246 0.560 0.276 0.218 0.406 0.512 0.309 0.430 

Male: Female 

ratio 1.263 1.151 1.354 1.311 1.305 1.035 1.308 1.166 

 

3.7.3. Modelling tuberculosis deaths on treatment   

Based on the ETR data, we set the mortality rates on TB treatment to be at 0.192 (average for 

both males and females, Table 3-14), averaged across years in the HIV-negative strata. The 

subsequent sections describe the effects of disease severity, age, HIV and ART on TB 

mortality in treated individuals. 

 Modelling the effect of changes in tuberculosis disease severity on mortality 

We allow for treated TB mortality rates to change over time, since changes in delays between 

disease incidence and treatment should imply changes in the average severity of treated TB 

cases. Due to limited empirical evidence, it is difficult to assess how smear grades have 

changed over time as levels of diagnosis and treatment have improved. In the model we 

define (as in the earlier section: 3.4.1) the average smear-positive treatment delay in year 𝑡, 

𝑆(𝑡), as 𝑈(𝑡)/𝑅(𝑡), where 𝑈(𝑡) is the number of untreated smear-positive TB cases at the 

start of year t and 𝑅(𝑡) is the number of smear-positive TB patients who are treated in year 𝑡. 

As 𝑆(𝑡) declines towards zero, we assume a corresponding decline in mortality toward a 

theoretical minimum that might be expected if all smear-positive TB cases were graded 

scanty or 1+ at treatment initiation. To simplify, we assume that TB diagnosis and treatment 

levels in South Africa were low during the period before 2000 and that any improvements 

that occurred before 2000 were minor.  

We suppose 𝜇𝑔(𝑡) represents the mortality rate in smear-positive HIV-negative treated TB 

patients of sex 𝑔 in year 𝑡, and that 𝜇𝑔(0) represents the corresponding mortality rate in the 
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period before 2000. We also suppose that 𝑆(0) is the value of 𝑆(𝑡) in 1999, which we take to 

represent the period before 2000. We assume that for 𝑡 ≥  2000, 

𝜇𝑔(𝑡) =  𝜇𝑔(0) (1 – (1– 𝑟𝑚)[1 –  𝑆(𝑡 –  1)/𝑆(0)]),  

where 𝑟𝑚 is the ratio of the minimum mortality (when the treatment delay is zero) to the 

baseline mortality (given the treatment delay in the period before 2000). Thus, 𝜇𝑔(𝑡) will be 

close to 𝜇𝑔(0)  when the average treatment delay is close to that before 2000, while 𝜇𝑔(𝑡) 

will be close to 𝜇𝑔(0) 𝑟𝑚 when the treatment delay is close to zero. We use 𝑆(𝑡 − 1) rather 

than 𝑆(𝑡) in the above equation because 𝑆(𝑡) is only calculated at the end of year t. 

We estimated the 𝑟𝑚 parameter using random-effects meta-analysis results based on studies 

that reported the relative mortality levels in patients with different smear grades (262,302–

306) (Table 3-15). The resulting pooled odds ratio for smear-grade 2+ vs smear-grade <2+ 

was 1.30 (95% CI: 1.02-1.67) and the odds ratio for smear-grade 3+ vs smear-grade <2+ was 

1.68  (262,263,302–308). 

Table 3-15: Odds ratios for mortality in the 2+ and 3+ categories, relative to the <2+ 

category 

Study 

 

2+ versus <2+ 3+ versus <2+ 

(Odds ratio, 95% CI) (Odds ratio, 95% CI) 

Singla et al. (262) 1.28 (0.52-3.17) 1.97 (0.98-4.30) 

Vree et al. (302) 1.07 (0.58-1.89) 0.96 (0.43-1.94) 

Kayigamba et al.  (303) 2.04 (0.28-22.9) 4.35 (0.80-43.7) 

Osawa et al.  (304) 2.75 (0.97-7.61) 1.08 (0.38-2.96) 

Muttath et al. (305) 2.33 (0.03-186.4) 9.16 (1.18-408.6) 

Kolappan et a.l  (306) 1.27 (0.94-1.73) 1.81 (1.38-2.37) 

Meta-analysis 1.30 (1.02-1.67) 1.68 (1.26-2.23) 

We assumed a ‘baseline’ smear grade distribution corresponding to that observed by Singla et 

al. in India (262). In this study, the proportions of TB patients in different smear grades were 

0.27 for smear-grade <2+; 0.25 for smear-grade 2+ and 0.48 for smear-grade 3+ (262). We 

assume the Indian data would be most representative of what might be expected in a 

resource-limited setting, i.e., with limited screening. We then calculate  

𝑟𝑚 = 1/(0.27 +  0.25 ×  1.30 +  0.48 ×  1.68)  =  0.71, 

based on the assumption that if there was no treatment delay, all newly treated smear-positive 

TB cases would have a smear grade <2+. 
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 Modelling the effect of age on tuberculosis mortality  

Age is an independent predictor of TB mortality both in HIV-positive and HIV-negative 

individuals (103,104,309,310). The Cape Town-based study by Kaplan et al. reported that 

age is independently associated with TB mortality (adjusted HR 1.28, 95% CI 1.17–1.40, for 

every 10 year increase) (103). Pepper et al. reported similar relative hazards, of 

approximately 1.5 for every ten year increase of age (104). In most studies assessing TB 

mortality by age, the higher risk of death is in the 50+ years age categories (28,104,311). 

Based on these two studies, we specify a Gamma (196; 140) prior distribution to represent the 

uncertainty around 𝛼 the relative rate of an increase in mortality per 10-year increase in age. 

The corresponding mean and standard deviations are 1.4 and 0.1, respectively. Studies 

assessing the effect of age on TB mortality were conducted in patients on treatment, and due 

to the lack of similar studies in untreated TB patients we rely on these same studies in setting 

assumed age effects for untreated patients.  

 

 Modelling the effect of human immunodeficiency virus and the use of antiretroviral 

therapy on tuberculosis mortality 

Here we describe how we incorporated the effect of HIV on both treated and untreated TB 

mortality rates. There are limited studies on the natural history of TB in people living with 

HIV and most of the studies on TB mortality rates in people living with HIV have been 

conducted among patients receiving TB treatment. As such, for the purpose of setting the 

assumptions about the effect of HIV on untreated TB mortality we rely on the literature from 

treated TB patients. 

We first define the relative rate of TB mortality per 50 cell increase in CD4 count in HIV-

positive individuals, and estimate this parameter based on the findings from Kaplan et al. 

(103). The study sought to determine changes in TB treatment outcomes among HIV-positive 

TB individuals; and relied on data of adult TB patients newly registered on the electronic TB 

register in Cape Town (2009-2013). From this analysis, an increase in 50 CD4 cells/μl was 

associated with a decrease in mortality risk (HR 0.87, 95% C1 0.84–0.89). A Beta (38.49; 

5.75) prior was specified for the relative risk of death per 50 cell increase in CD4 count; and 

standard deviation of 0.05.  
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Secondly, we assume there is an effect of HIV viremia on TB mortality (312), which is 

independent of CD4 count. We estimate this effect of viremia by comparing ART patients to 

untreated patients, on the assumption that treated patients would mostly be virally suppressed. 

We define the relative rate of TB mortality if on ART, based on the average of estimates from 

two studies that reported the effect of ART on TB mortality, Kaplan et al. (RR 0.53, 95% CI 

0.46–0.60) and Pepper et al. (RR 0.60, 95% CI 0.50– 0.70)  (104,309). Both studies relied on 

the electronic tuberculosis treatment register data from the Western Cape, Pepper et al. using 

2007-2009 data and Kaplan et al. using 2010-2011 data (104,309). Taking the average of the 

estimates from these studies, we specify a Beta (20.72; 16.95) prior with a mean of 0.55 and 

standard deviation of 0.08. 

In the model, mortality for HIV-positive individuals who are not on ART is represented by 

𝑀(𝑥, 𝑠) = 𝜇𝛼(𝑥−55)/10𝛾−1𝜗(𝑠−𝑎)/50, 

and the mortality for those on ART is represented as by 

𝑀(𝑥, 𝑠, 𝑑) =  𝜇𝛼(𝑥−55)/10𝜗(𝑠𝑑−𝑎)/50 

where  

𝑥: age in years 

𝜇: the mortality rate in HIV-negative individuals 

𝛼: increase in TB mortality per 10-year increase in age 

𝜗: relative rate of TB death per 50 cell/μl CD4 increase  

𝛾: relative rate of TB mortality for those on ART vs not on ART  

𝑎: average CD4 count in HIV-negative individuals  

𝑠: CD4 count if untreated, or baseline CD4 count if treated,  

𝑑: duration on ART  

𝑠𝑑: current CD4 count for those on ART, with baseline CD4 count s, at a given year of 

treatment duration 𝑑. 
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3.8. Tuberculosis recurrence  

Recurrent TB is a TB episode that occurs after the previous TB episode has been considered 

cured. True relapse occurs when tuberculosis bacilli persist even though bacteriological tests 

suggested a cure at treatment completion (313). This relapse is viewed as endogenous 

reactivation of the previous TB strain (313). Factors that contribute to relapse include 

inadequate regimen and poor adherence. According to most studies, relapse is time-

dependent, and the highest risk is within the first 3–6 months following successful treatment 

(22,206,314).  

On the other hand, TB recurrence due to reinfection results from re-exposure to TB and 

occurs at a relatively constant risk over time (314). The risk of recurrent TB due to 

reinfection depends on ongoing TB transmission in the community and prevalent factors that 

increase the risk of fast progression to active TB disease. We note that reinfection in re-

treatment individuals is usually measured as the number of new active TB disease cases 

rather than latent TB infection, thus reflecting fast progression in those experiencing a second 

(or subsequent) episode of active TB disease (206,314).   

Korenromp et al. showed that recurrence rates decreased with an increase in follow-up time 

after treatment completion (314). Among HIV-positive individuals, there were 4.5 

recurrences (95% CI 3.2–5.8) per 100-person years, whereas there were 1.9 recurrences (95% 

CI 1.2–2.7) per 100-person years among HIV-negative individuals (314). The time trend in 

reinfection and relapse is more apparent among those without HIV than in those with HIV 

(314).  

3.8.1. Short-term post-treatment 

As evidence suggests that after treatment, the risk of relapse is highest within the first six 

months following treatment completion (22,207,313,314); for the model, we set the average 

time spent in the first post-treatment state to be six months. That is, cured and recovered 

individuals will move out of the state at a rate of 1/6 per month. We then assume that relapse 

occurs at an annual rate of 0.1 during the short-term post-treatment state, based on previous 

Korenromp et al. study (314). Due to limited data on the effect of HIV on relapse, we assume 

no differences in relapse rates between HIV-positive and HIV-negative individuals. 
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3.8.2. Long-term post-treatment  

We handle individuals in this long-term post-treatment state the same way as treatment naïve, 

latent TB individuals in that they are at risk of both reactivation and reinfection. However, we 

assume that due to prior TB episode, an individual has an elevated of TB. To allow the effect 

of treatment history, we apply an adjustment factor to the rate of TB incidence and estimate it 

through calibration. Based on epidemiological studies that have estimated the relative 

odds/risks of developing TB in treatment-experienced compared to treatment naïve 

individuals, as a start, we assume this factor is greater than 1.0 and likely to lie in the range 

1.8–5.9 (315,316). This is based on two studies: firstly Marx et al.'s study, which reported a 

TB prevalence of 3.81% and 2.13% in previously treated and treatment-naïve individuals, 

respectively, suggesting a relative risk of 1.8 (316). Secondly, Den Boon et al.'s study found 

the prevalence of TB was 10/338 (2.96%) in people who had previously been treated, 

compared to 16/3145 (0.51%) that do not have the previous TB, suggesting a relative risk of 

5.8 (315). We specified a Gamma (5.444; 1.556) prior distribution with a mean of 3.5 and a 

standard deviation of 1.5 for this effect of previous TB. 

For this long-term post-treatment state, the effect of HIV on reinfection in HIV-positive 

individuals is modelled in the same way as it is applied on fast progression to active TB. 

Similarly, for reactivation, we apply the HIV effects described earlier.  

3.9. Modelling the effect of isoniazid preventative therapy 

To incorporate the effect of IPT in the model, we define additional variables. We let 𝑘 

represent the following groups: 0 = uninfected individuals, 1 = latently infected individuals 

with no TB history, and 2 = previously treated individuals (we do not consider individuals 

with active TB as IPT would not be recommended for such individuals). We also define 

𝜆(𝑡, 𝑠, 𝑑, 𝑘) to represent the annual rate of IPT initiation in HIV-positive individuals with 

CD4 count s and ART duration d (0 if ART-naïve, 1 for duration <1 year, 2 for duration >1 

year), in year 𝑡. Lastly, define 𝑅(𝑘) as the relative rate of IPT initiation for individuals in TB 

state 𝑘 relative to latently infected individuals. The model assumptions on IPT duration and 

the associated guidelines are shown in Table 3-16. 
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Table 3-16: Isoniazid Preventative Therapy eligibility, requirement, and duration  

Year Isoniazid Preventative Therapy eligibility, 

requirement, and duration 

Model assumption  Guideline  

2010 – 

2012 

Eligibility: all HIV-positive individuals with no signs 

or symptoms suggestive of active TB 

TST requirement: TST no longer essential prior to IPT, 

IPT can be started at the first visit if the patient is 

asymptomatic. 

IPT duration: 6 months of continuous treatment (can be 

completed over 9 months). 

Duration: 6 months (0.5 years), the 

average IPT treatment completion 

rate = 1/0.5 years = 2 per year.  

2010, (139) 

2013 – 

present  

Eligibility: All people living with HIV with negative 

symptom-based TB screening. 

TST requirement: Use TST if available 

IPT duration  

• TST positive: 36 months (if pre-ART 

(CD4>350) / on ART) 

• TST negative: 6 months (if pre-ART) and 12 

months (if on ART) 

• No TST: 6 months (if pre-ART / on ART) 

Duration: 36 months (3 years), then 

average IPT treatment completion 

rate = 1/3 years = 0.33 per year. 

2013, (317) 

 

3.9.1. Isoniazid preventative therapy initiation by LTBI/TST status 

There are limited studies that show the rates of initiation of IPT by TST status among those 

eligible. Van Ginderdeuren et al. reported low rate of TST testing ranging between 0 – 5% at 

various health facilities (233). The relative rate of IPT initiation in uninfected individuals is 

highly uncertain. As a start, we set 𝑅(0) = 0.5. We set this assumption as a compromise 

between the highly optimistic assumption of 𝑅(0) = 0 (perfect screening, which accurately 

distinguishes between LTBI and no LTBI) and the highly pessimistic assumption of 𝑅(0) =

 1 (no screening or TST produces high rates of false positivity due to BCG exposure). For 

simplicity, we assume rates of IPT initiation are the same in individuals who have never been 

treated for TB and those who have previously been treated (i.e., 𝑅(1) = 𝑅(2) = 1). We also 

assume that there is no IPT initiation in individuals on TB treatment and individuals with 

active TB.  
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3.9.2. Isoniazid preventative therapy initiation by CD4 count 

The second parameter we define is 𝐻(𝑠), the relative rate of IPT initiation in CD4 category s, 

relative to that at CD4 counts <200 cells/μl. A study conducted in Gauteng found that rates of 

IPT initiation at CD4 counts ≥500 cells/μl were significantly lower than those at CD4 counts 

<500 cells (adjusted OR 0.46, 95% CI: 0.24–0.82) (233). Therefore, to be consistent with this 

study and the Thembisa HIV model assumptions on relative rates of ART initiation in 

different CD4 categories (244), we set the relative rates of IPT initiation to be 0.4 at CD4 

counts ≥500, 0.5 at CD4 counts 350–499 and 0.7 at CD4 counts 200–349 (in all cases, 

relative to CD4 <200 cells/μl).  

3.9.3. Isoniazid preventative therapy initiation by ART status 

The third parameter that we define is 𝑃(𝑑), the relative rate of IPT initiation at ART duration 

d when compared to ART-naïve individuals (by definition, 𝑃(0) = 1). The Gauteng study 

cited previously found that individuals on ART had a higher rate of IPT initiation (OR 2.03, 

95% CI: 0.88–5.87) and that approximately half of all IPT initiations after ART initiation 

occurred in the first year of ART (the median time between ART initiation and IPT initiation 

was 374 days) (233). The Thembisa model for Gauteng estimates that over the 2015-16 

period (the period when the study was conducted), approximately 14% of adult ART patients 

had started ART in the last year. The finding that 50% of IPT in ART patients was initiated in 

the first year of ART thus implies that 0.5 = 0.14 ×  P(1) / [0.14 ×  P(1) +

0.86 ×  P(2)]. Solving this equation, we get a P(1)/P(2) ratio of 0.16. The finding of an OR 

of 2.03, in turn, implies that 2.03 ≈ 0.14 × P(1) + 0.86 × P(2). Substituting the 𝑃(2)/𝑃(1)  

ratio into this equation, we get 𝑃(1) = 7.3 and 𝑃(2) = 1.2.  

 

Having defined the intermediate variables, we calculate 

𝜆(𝑡, 𝑠, 𝑑, 𝑘)  =  𝜆(𝑡) 𝐻(𝑠) 𝑃(𝑑) 𝑅(𝑘), 

where 𝜆(𝑡) is the rate of IPT initiation in year t in the ‘base’ category (i.e. ART-naïve, HIV 

diagnosed adults with latent TB infection). We estimate this base rate from the reported 

numbers of IPT initiations in year t, 𝑇(𝑡). If 𝑁(𝑡, 𝑠, 𝑑, 𝑘) is the model estimates of the number 

of HIV-diagnosed adults at the start of year t, in CD4 category s, with ART duration d, in TB 
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state k (excluding individuals with active TB and treated for TB, and excluding individuals 

who are already on IPT), then 

𝑇(𝑡) = 𝜆(𝑡) ∑ ∑ ∑ 𝑁(𝑡, 𝑠, 𝑑, 𝑘)𝐻(𝑠)𝑃(𝑑)𝑅(𝑘)

𝑘𝑑𝑠

 

𝜆(𝑡) is solved for, by rearranging the terms in this equation above. 𝑇(𝑡) values are taken from 

the District Health Information System (DHIS) (Table 3-17). Due to the frequent changes in 

guidelines and barriers to implementation of IPT policies at health care facilities, data on IPT 

uptake has been limited, and the quality may be affected as well, particularly in the earlier 

years (before 2010). A significant shift in the guidelines was made in 2010 where the strict 

requirement for a positive TST to be eligible to initiate IPT was removed (318). We assume 

zero IPT uptake before 2010, as the DHIS data suggest minimal IPT before 2010; these data 

were available until 2016-17. For years 2017 and beyond, IPT uptake in the baseline category 

(𝜆(𝑡)) was linearly interpolated between the 2016-17 rate and a rate of 1.2% in 2021. 

Table 3-17: Number of HIV-positive new eligible individuals initiated on isoniazid 

preventative therapy 
Year  2010-11 2011-12 2012-13 2013-14 2014-15 2015-16 2016-17 

Number of patients 

initiating IPT 

 

244888 379063 
 

385338 
 

427336 
 

422541 
 

385007 
 

396915 
 

Source: District Health Information System 

3.9.4. Isoniazid preventative therapy completion/drop-out 

Based on the Southern African studies assessing completion over six months of treatment and 

the reported completion proportions, IPT drop-out ranged between 6% - 37% (319–323).  By 

taking the median of the five studies, 13.2%, the drop-out rate over six months is roughly 

~0.024 per month. The recommendations for IPT eligibility have changed over time. For the 

years between 2010 and 2012, we assume six months; from 2013, we assume 36 months. 

Using the 0.024 dropout rate per month, the average net time on IPT is then 5.2 months = 

(1/(0.024  + 1/6)) in the period up to 2012. Similarly, after 2012 we assume the average time 

on IPT is 19.3 months (1/(0.024 + 1/36)).  
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3.9.5. Effectiveness of isoniazid preventative therapy 

We base the effectiveness of IPT at 52%, based on the estimated RR of 0.48 (95% CI 0.29–

0.82) among LTBI individuals (those with a positive TST) in the meta-analysis by Ayele et 

al. (324). However, among individuals with no LTBI (negative TST), the effect of IPT was 

inconclusive (RR 0.79, 95% CI 0.58–1.08) (324); as such, we assume 0% effectiveness for 

this group. In addition, we assume that when an individual stops taking IPT, there will be no 

effect of IPT, as shown by Churchyard et al. (231). In the model, the protective effect of IPT 

is implemented such that it reduces the risk of progressing to TB disease (this includes 

reactivation rate and the rate of fast progression due to reinfection) in individuals with latent 

TB infection and in people with a history of TB disease treatment by 52% (324). The 

protection is assumed to cease when an individual stops treatment or after completion. 

3.10. Modelling the effect of tuberculosis risk factors on tuberculosis incidence 

To explore factors that could be important in explaining age and sex differences in TB 

incidence, we considered the following risk factors: poorly controlled diabetes, 

undernutrition/underweight, tobacco smoking and alcohol abuse. These risk factors are 

selected based on their established effect of increasing the risk of developing TB disease and 

their relatively high prevalence in the South African population (Table 3-18). In computing 

the cumulative effect of these risk factors, we assume the effects are independent and 

multiplicative.  

Table 3-18: Age- and sex-specific prevalence (%) of risk factors: HbA1c > 6.5%, 

underweight, alcohol abuse and tobacco smoking  

  HbA1c > 6.5%  Underweight (BMI < 18.5 kg/m²)) Alcohol abuse Current smoking 

Age Males Females Males Females Males Females Males Females 

15-24 2.0 0.9 22.05 9.7 20.7 5.1 29.5 4.95 

25-34 3.4 4.5 6.4 3.3 36.1 6.1 43.50 7.80 

35-44 6.6 11.8 11.4 2.8 31.8 6.0 43.90 7.00 

45-54 11.7 20.8 8.2 2.1 27.8 4.4 45.00 11.0 

55-64 23.0 28.7 12.4 2.9 25.7 3.7 37.80 11.3 

65-90 21.1 30.1 6.0 3.7 20.9 2.0 24.90 7.80 

BMI=body mass index. HbA1c= Glycated hemoglobin.  Data sources. For underweight (BMI < 18.5) 

SANHANES-1 survey (112); For HbA1c > 6.5%, alcohol abuse, and current smoking: 2016 SADHS (89). 
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3.10.1. Poorly controlled diabetes (HbA1c > 6.5%) 

Individuals with diabetes have a 3.59-fold increased risk of TB disease compared to those 

without diabetes, as estimated by Al-Rifai et al. in a meta-analysis and systematic review 

(325). This estimate is based on studies which defined uncontrolled diabetes as HbA1c > 

6.5% or HbA1c > 7.0% or Fasting Blood Glucose > 120 mg/dl. We use the 2016 SADHS 

data for HbA1c > 6.5% prevalence to be relatively consistent with these definitions (89). In 

the model, we defined the effect of diabetes as an increase in TB incidence due to having 

diabetes (HbA1c > 6.5%), set at  𝜃𝑖=1= 2.59 for (risk factor 𝑖 = 1). We specified a Gamma 

(9.74; 3.76) prior distribution for the uncertainty around the parameter, with a mean of 2.59 

and a standard deviation of 0.83. Given the age- (𝑥) and sex- (𝑔) specific prevalence (𝑝1𝑔𝑥) 

of poorly controlled diabetes, the multiplicative increase in TB incidence due to diabetes in 

individuals of age x and sex g (relative to a hypothetical population in which there is no 

diabetes) is calculated as: 

𝑅𝑅1𝑔𝑥 = 1.0 + 𝑝1𝑔𝑥𝜃1 . 

3.10.2. Underweight (BMI <18.5 kg/m²) 

The meta-analysis of Lönnroth et al. (73) suggests that TB incidence declines steadily as 

BMI increases. We set the effect of low BMI on the risk of developing TB disease based on 

Leung et al., which was a cohort study of 42 116 individuals who were 65 years or older 

enrolled in health centres across Hong Kong, China (326). The relative risk for culture-

confirmed TB was 2.21 when not excluding other potential TB risk factors (this is likely to be 

an upper bound on the true effect of low BMI, due to confounding with smoking and other 

factors); and 1.39 when excluding TB risk factors (probably a lower bound because baseline 

is defined as normal BMI, not all BMI >18.5 kg/m²); 1.8 is the midpoint between these two 

(105). Although this study may have been conducted in a relatively older population, they 

adjusted for most confounders, including smoking, alcohol, diabetes, sex and age (unlike the 

Lönnroth et al. meta-analysis).  

Based on Leung et al. we specify the prior distribution for the increase in TB risk due to low 

BMI parameter (𝜃2) to be a Gamma (10.24;12.8) distribution with a mean of 0.8 and standard 

deviation of 0.25 (326). The age- (𝑥) and sex- (𝑔) specific prevalence (𝑝2𝑔𝑥) for underweight 
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is based on the SANHANES-1 survey (Table 3-18) (112). In the model, the age- and sex-

specific multiplicative increase in TB incidence due to underweight is calculated as 

𝑅𝑅2𝑔𝑥 = 1.0 + 𝑝2𝑔𝑥𝜃2. 

3.10.3. Tobacco smoking  

Given that the effect of tobacco smoking on the risk of developing active TB depends on 

current exposure and duration of smoking, we incorporate both effects (current exposure and 

duration) in the model. The effects were estimated from a case-control study in India (327). 

In the study, men aged 20-50 years with TB were randomly matched by age with non-TB 

controls. The estimated odds ratios of active TB for smokers with <10 years, 11–20 years, 

and >20 years of smoking were 1.72, 2.45, and 3.23, respectively, compared to non-smokers 

(327).  

Using this study by Kolappan and Gopi, we estimate the effect of current exposure to 

smoking (risk factor 𝑖 = 3) is a 1.47-fold increase in TB risk, and the TB risk increases by a 

factor of 1.38 per ten years of smoking. In the model, we set the prior distribution for the 

increase in TB risk if currently smoking to be a Gamma (1.45;3.09) distribution with a mean 

of 𝜃3,1= 0.47 and standard deviation of 0.39; and the increase in TB risk per 10-year increase 

in the duration of smoking to follow a Gamma (10.03;26.39) distribution with a mean of 

𝜃3,2 = 0.38 and standard deviation 0.12. The multiplicative increase in TB incidence due to 

smoking is calculated as follows:  

𝑅𝑅3𝑔𝑥 = (1.0 + 𝜃3,1𝑝3𝑔𝑥)(1 + 𝜃3,2)
𝑠𝑚𝑑(𝑔,𝑥)/10

 

𝑝3𝑔𝑥 is represents the current smoking prevalence and 𝑠𝑚𝑑(𝑔, 𝑥) is the average smoking 

duration calculated for each sex (𝑔) and age (𝑥). We used the age-specific prevalence of 

current smoking to generate the distribution of duration of smoking. We assumed there is no 

smoking before the age of 15 years. The 𝑠𝑚𝑑(𝑔, 𝑥) was calculated as follows: 

• First, note that current smoking prevalence (𝑝3𝑔𝑥) is given in age categories as 

obtained from the SADHS (Table 3-18) (89). 

• We assume that the prevalence of current smoking represents the prevalence at the 

median age of each category.  
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o e.g., for females aged 20-24 years, the prevalence of 5.8% represents current 

smoking for females aged 22 years.  

• Then we linearly interpolated between the mid-points in each age category to get 

prevalence estimates for the other ages. 

• The overall average smoking duration at each subsequent age is calculated as the 

cumulative smoking prevalence for all previous years to the age 15, e.g. 

𝑠𝑚𝑑(1,23)  =  ∑ 𝑝3,1,𝑥

22

𝑥=15

 

3.10.4. Alcohol abuse 

The estimated relative effect of alcohol abuse on developing TB disease is almost 3-fold 

(relative risk 2.94, 95% CI: 1.89–4.59) (69). In this meta-analysis, alcohol abuse was defined 

as consuming 40g or more, of alcohol per day, or as a clinical diagnosis of an alcohol use 

disorder (69). The prevalence of alcohol abuse (or risky alcohol consumption), based on the 

2016 South African DHS, was estimated at 28% males and 5% females reported risky 

drinking habits (Table 3-18) (89). In the survey, risky drinking habits was defined as drinking 

least 5 drinks on one occasion in past 30 days (68). 

We note that we are using different definitions of alcohol abuse from the meta-analysis for 

the effect of alcohol on developing TB disease (69) and for the prevalence of alcohol abuse 

from the survey (328). However, there is possibly some overlap between these definitions as 

it is suggested that one standard drink contains between 5-14g of pure alcohol (328), 

therefore, roughly, 5 drinks on one occasion contain between 25-70g of pure alcohol. These 

definitions both the meta-analysis and surveys do not specify the frequency of drinking 

occasions over a given period. For instance, it was not specified whether individuals were 

drinking at least 40g per day, on every day of the month/year or how often. Altogether these 

highlight the is uncertainty around the effect of alcohol.  

To represent the uncertainty around the effect of heavy alcohol consumption on TB 

incidence, we specify a Gamma (8.91; 4.59) prior distribution with a mean of  𝜃4 =1.94 and a 

standard deviation of 0.65 (69). This prior distribution is based on the estimated 95% 

confidence interval Lonroth et al.'s review (69).  In addition, we assume the age- (𝑥) and sex- 



112 

 

(𝑔) specific prevalence (𝑝4𝑔𝑥) of alcohol abuse (binge drinking) as presented in the SADHS 

Table 3-18 (89). The age- and sex-specific multiplicative increase in TB incidence due to 

alcohol abuse is calculated as: 

𝑅𝑅4𝑔𝑥 = 1.0 + 𝑝4𝑔𝑥𝜃4  

3.10.5. Combined effect of TB risk factors 

The overall adjustment in the model (relative to a hypothetical population in which there are 

no TB risk factors) is computed as the cumulative multiplicative effect of the risk factors (𝑖 =

1, … , 4) described above (𝑅𝑅𝑖𝑔𝑥):   

𝐹𝑔𝑥 = ∏ 𝑅𝑅𝑖𝑔𝑥

4

𝑖=1

 

𝐹𝑔𝑥 represents the relative risk of TB in people of sex g and age x due to diabetes, 

underweight, smoking, and alcohol abuse compared to individuals of the same age and sex 

with none of these risk factors. These 𝐹𝑔𝑥 are applied to the rate of progression from infection 

to active TB disease in the model. Table 3-19 shows examples of 𝐹𝑔𝑥 factors for select ages 

15 to 40 years, calculated from the means of the prior distributions specified previously. 
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Table 3-19: Cumulative age- and sex- effect of selected tuberculosis risk factors HbA1c 

> 6.5%, underweight, smoking and alcohol abuse 

  

HbA1c > 6.5 

(𝜽𝟏 = 𝟐. 𝟓𝟗) 

 
 

Underweight (BMI < 18.5)  

(𝜽𝟐 = 𝟎. 𝟖) 

 
 

Current smoking 

(𝜽𝟑,𝟏 = 𝟎. 𝟒𝟕  

𝜽𝟑,𝟐 = 𝟎. 𝟑𝟖) 

Alcohol abuse 

(𝜽𝟒 = 𝟏. 𝟗𝟒) 

 
 

Overall 

  

Age Male  Females  Male  Females  Male  Females  Male  Females  Male  Females  

15 1.052 1.023 1.479 1.281 1.031 1.007 1.229 1.031 1.970 1.361 

16 1.052 1.023 1.479 1.281 1.063 1.014 1.229 1.031 2.032 1.371 

17 1.052 1.023 1.479 1.281 1.098 1.022 1.229 1.031 2.100 1.382 

18 1.052 1.023 1.327 1.073 1.128 1.025 1.229 1.031 1.935 1.161 

19 1.052 1.023 1.327 1.073 1.160 1.028 1.229 1.031 1.989 1.164 

20 1.052 1.023 1.327 1.073 1.193 1.032 1.592 1.167 2.652 1.322 

21 1.052 1.023 1.327 1.073 1.230 1.035 1.592 1.167 2.732 1.326 

22 1.052 1.023 1.327 1.073 1.268 1.039 1.592 1.167 2.818 1.331 

23 1.052 1.023 1.327 1.073 1.287 1.042 1.592 1.167 2.860 1.335 

24 1.052 1.023 1.327 1.073 1.306 1.045 1.592 1.167 2.902 1.339 

25 1.088 1.117 1.117 1.060 1.326 1.048 1.700 1.118 2.740 1.388 

26 1.088 1.117 1.117 1.060 1.346 1.052 1.700 1.118 2.781 1.393 

27 1.088 1.117 1.117 1.060 1.366 1.056 1.700 1.118 2.823 1.398 

28 1.088 1.117 1.117 1.060 1.387 1.059 1.700 1.118 2.866 1.402 

29 1.088 1.117 1.117 1.060 1.408 1.063 1.700 1.118 2.910 1.407 

30 1.088 1.117 1.117 1.060 1.430 1.067 1.700 1.118 2.955 1.413 

31 1.088 1.117 1.117 1.060 1.450 1.069 1.700 1.118 2.997 1.416 

32 1.088 1.117 1.117 1.060 1.471 1.071 1.700 1.118 3.040 1.419 

33 1.088 1.117 1.117 1.060 1.492 1.074 1.700 1.118 3.084 1.421 

34 1.088 1.117 1.117 1.060 1.514 1.076 1.700 1.118 3.128 1.424 

35 1.171 1.306 1.208 1.051 1.535 1.078 1.617 1.116 3.247 1.652 

36 1.171 1.306 1.208 1.051 1.557 1.080 1.617 1.116 3.294 1.655 

37 1.171 1.306 1.208 1.051 1.580 1.082 1.617 1.116 3.341 1.658 

38 1.171 1.306 1.208 1.051 1.602 1.084 1.617 1.116 3.666 1.661 

39 1.171 1.306 1.208 1.051 1.625 1.086 1.617 1.116 3.719 1.665 

40 1.171 1.306 1.208 1.051 1.649 1.089 1.617 1.116 3.772 1.668 

BMI=body mass index. HbA1c= Glycated hemoglobin.  
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3.11. Calibration data sources and defining likelihoods 

We used a Bayesian approach to calibrate the model and estimate various parameters. 

Because our model is slow to run, and because the Bayesian calibration process is 

particularly slow to converge when there are many parameters being included in the 

uncertainty analysis, we proceed through a series of three calibration steps. Each step 

allowing for uncertainty in a different subset of the model parameters, and in each step fixing 

the parameters that are not included in the uncertainty analysis at the posterior means 

identified in previous calibration steps. The likelihood functions were kept the same in all 

three steps. In the first step (Chapter 3) we considered mainly the TB transmission and 

natural history parameters. In the second step (Chapter 4) we considered the parameters that 

determine the impact of TB interventions. In the third (Chapter 5) and final step we 

considered the parameters that are important in explaining the age and sex differences in TB 

incidence. The prior distributions, means and standard deviations have been specified 

previously but are summarized in Table 3-20, together with an indication of which 

parameters are varied in each of the three calibration steps. 

Table 3-20: Summary of model parameters with prior means and standard deviations, 

posterior means and 95% confidence intervals from the previous calibration analysis, 

and summary of those varied in this present analysis  
Parameter description  

Mean 
Standard 

deviation 
               Uncertainty analysis 

 
  

step 1 / 

chapter 3 

step 2 / 

chapter 4 

step 3 / 

chapter 5 

TB transmission probability per contact per day (if infectious 

individual is smear-positive) 
0.0025 0.0025 

✓ 
✓ ✓ 

The annual rate of reactivation in HIV-negative individuals 0.0024 0.0012 ✓   

Relative rate of TB incidence per 100 cell increase in CD4 0.71 0.085 ✓  
✓ 

Annual recovery rate in smear-positive TB, HIV-negative 

individuals 
0.09 0.02 

✓   

Annual recovery rate in smear-negative TB, HIV-negative 

individuals 
0.24 0.05 

✓   

Relative infectivity of smear-negative TB compared to smear-

positive individuals  
0.22 0.03 

✓   

Increase in TB risk if previously experienced TB 3.499 1.5 ✓   

Smear-negative TB mortality (untreated) 0.061 0.012 ✓   

Smear-positive TB mortality (untreated) 0.212 0.042 ✓   

The relative rate of TB mortality per 50 cell increase in CD4 

count if HIV+ 
0.87 0.05 

✓  
✓ 

Proportion of cough >2 weeks in individuals with smear-

negative TB 
0.2 0.1 

✓ 
  

The proportion of incident TB cases in HIV-negative adults that 

are smear-positive 
0.52 0.1 

✓ 
  

Relative ratio of symptoms in patients with smear-positive TB, 

compared to smear-negative TB 
2.2 0.5 

✓ 
  

Relative rate of TB incidence for those on ART (controlling for 

CD4) 
0.81 0.05  

✓ ✓ 

Relative rate of TB mortality if on ART 0.55 0.08  ✓ ✓ 
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Parameter description  
Mean 

Standard 

deviation 
              Uncertainty analysis 

 
  

step 1 / 

chapter 3 

step 2 / 

chapter 4 

step 3 / 

chapter 5 

The annual rate of health-seeking in males with smear-negative 

TB 
2.14 0.49  ✓ ✓ 

The annual rate of health-seeking in males in the general 

population 
1.15 0.5  ✓  

The annual rate of health-seeking in males due to TB-like 

symptoms 
0.22 0.15  ✓ 

 

The proportion of active TB cases seeking treatment who are 

treated empirically before any microbiological test is done 

0.125 0.144  ✓ 
 

The proportion of smear-negative TB cases which are treated 

empirically if they initially screened negative smear test   

0.33 0.236  ✓ 
 

Relative rate of empirical treatment if not seeking treatment 

because of TB symptoms 
0.5 0.289  ✓ 

 

Relative rate empirical treatment if symptoms are not due to TB 0.5 0.289  ✓  

Relative rate of health-seeking in women, compared to men 1.55 0.17  ✓ ✓ 

Relative rate of health-seeking in HIV-positive compared to 

HIV-negative individuals 
3 1  

✓ 
 

Relative rate of screening in TB patients seeking treatment for 

TB symptoms, compared to those seeking treatment for other 

conditions: initial 

8.71 2.5  

✓ 

 

Relative rate of screening in TB patients seeking treatment for 

TB symptoms, compared to those seeking treatment for other 

conditions: ultimate 

4 1.2  

✓ 

 

Increase in TB mortality rate per 10-year increase in age 1.4 0.1   ✓ 

Increase in TB incidence due to alcohol misuse 1.94 0.65   
✓ 

Increase in TB incidence due to diabetes (HbA1c > 6.5%) 2.59 0.83   
✓ 

Increase in TB risk if currently smoking 0.47 0.39   
✓ 

Increase in TB risk per 10-year increase in duration of smoking 0.38 0.12   
✓ 

Increase in TB risk due to low BMI 0.8 0.25   
✓ 

ART=antiretroviral therapy; BMI=body mass index. TB=tuberculosis. Ticks indicate the parameters which were 

varied in the respective steps.  

In this section we describe the likelihood functions to represent the goodness of fit to the 

calibration targets. The model calibration targets included the numbers of recorded TB 

deaths; numbers of TB cases initiated on TB treatment; the proportion of cases in the 

electronic TB register that are HIV-positive; the proportion patients dying during TB 

treatment recorded in the electronic TB register; the number of laboratory tuberculosis tests 

(24) and the prevalence of TB (17).  

3.11.1.  The likelihood for recorded number of tuberculosis deaths 

i. Cleaning the mortality data  

To get the number of recorded deaths on the South African vital register, we considered 

deaths where TB is the underlying cause of death. These TB deaths are broadly classified 

using the codes A15-19. We also included deaths for which HIV was recorded as the broad 
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underlying cause of death (codes B20-B24), and TB is listed as a contributing cause of death 

(i.e., HIV underlying cause AND TB is either first, second, third, or fourth contributing cause 

of death). For TB deaths with unknown/unspecified age and sex, we adjusted by 

proportionally distributing the unknown age and sex deaths to the age and sex categories in 

which TB deaths were recorded most frequently. 

We also adjusted for 1) incomplete reporting of deaths (the deaths that do not get 

documented) and 2) ill-defined causes of deaths. To adjust for the incompleteness of reported 

deaths, we applied age-specific completeness proportions previously computed by Johnson et 

al., which change over time (244). ICD codes R00-R99 represents missing and garbage 

codes. For each sex and 5-year age group, the total adjusted number of TB deaths was 

computed using the following expression: 

𝑇 + 𝐻

(1 −
𝑀
𝑁) 𝐶

 

where T is the number of deaths for which TB (A15-19) is the recorded underlying cause of 

death. H is the total number of deaths for which HIV (B20-B24) is recorded as the underlying 

cause of death and TB is recorded as a contributing cause of death (i.e. TB (A15-19) is Cause 

A or Cause B or Cause C or Cause D). N represents all the deaths recorded in the vital 

register. M represents the missing and garbage code. C represents completeness, which is the 

proportion of deaths that get recorded. This completeness ratio was computed as a ratio of the 

recorded SA deaths (N) and the total number of deaths produced by the Thembisa 4.1 model 

(O) (Table 3-21) (244). These adjustments are shown in Table 3-21, and the last column (Y) 

represents the total adjusted deaths.  
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Figure 3-5: Flow for cleaning mortality data from the vital register 

 

  

Overall adjustment 

𝑌 =
𝑇 + 𝐻

(1 −
𝑀

𝑁
) 𝐶

 

Extracted mortality data from Stats SA database 

http://nesstar.statssa.gov.za:8282/webview/ 

 

Variables extracted 

T: TB (ICD codes A15-A19) deaths, the main cause of death. 

H: HIV (ICD codes B20-B24) is the underlying cause of death, TB listed as 1st, 2nd, 3rd or 4th contributing cause.  

M: missing and garbage code (ICD codes R00-R99). 

Additional fields: age, sex, years: 1997 – 2016 

 

Proportional distribution of unspecified age 

and sex.  

 

Estimated completeness (C = N/O)  

N: total (annual) number of deaths recorded in the vital register 

O: estimated (annual) total number of deaths (Thembisa) 

 

http://nesstar.statssa.gov.za:8282/webview/
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Table 3-21: Number of tuberculosis deaths and adjusting for completeness of deaths 

recorded in the South African vital register  

Death 

year 

TB 

Underlying 

cause of 

death 

(T) 

HIV is the 

underlying cause, 

and TB 

contributing 

(H) 

Missing/garbag

e code (R00-

R99) 

(M) 

Total 

recorded 

deaths 

(N) 

Thembisa 

Total 

deaths 

output 

(O) 

Completeness: % 

total deaths that 

get recorded 

(C) 

Overall adjusted 

TB deaths 

(Y) 

 

1997 22152 1801 42399 323854 369395 0.88 31437 

1998 28656 2164 51165 374351 408861 0.95 38990 

1999 34377 2858 47436 394656 423352 0.93 45399 

2000 42581 2945 52334 429825 456393 0.94 55042 

2001 51444 2605 58221 470502 493844 0.95 64742 

2002 60715 3168 63448 516700 528490 0.98 74487 

2003 68251 3301 70762 573139 570371 1.00 81236 

2004 71034 3985 71547 594299 616324 0.96 88447 

2005 74767 4731 75078 613506 652376 0.94 96322 

2006 77775 5240 83818 628632 658129 0.96 100281 

2007 77292 4974 84855 620595 652047 0.95 100126 

2008 75542 5765 82084 613239 635166 0.97 97229 

2009 70226 7222 80675 598291 616844 0.97 92295 

2010 63668 7633 74955 566712 595311 0.95 86316 

2011 55489 7153 70690 531840 567092 0.94 77033 

2012 48825 8290 67285 509994 536539 0.95 69220 

2013 42041 10075 60746 492261 525201 0.94 63431 

2014 39695 9083 59117 492048 520086 0.95 58598 

2015 34042 7165 58289 487607 517478 0.94 49669 

2016 29513 6576 60335 468573 514123 0.91 45450 

C = N/O; Y= (T + H)/((1 – M/N)C). 

ii. The likelihood for recorded number of tuberculosis death 

We consider adult deaths at ages 15 years and older, disaggregated by sex. We assume the 

number of recorded TB deaths follows a Log-Normal distribution and specify the likelihood 

of observing the recorded number of deaths if the model represents the expected number of 

deaths. We assume the log-normal distribution as it is appropriate in modelling non-negative 

values, and the data may have large variance due to both random and systematic biases in the 

data reporting/handling.   

We let 𝐷𝑔,𝑡 represent the number of recorded deaths from the vital register (after adjustment, 

as described in the previous section), in individuals of sex 𝑔, each year 𝑡. Let M𝑔,𝑡(𝜙) 

represent the model estimates for the numbers of deaths for individuals with sex 𝑔 per year 𝑡. 

We let 𝝓 represent the set of input parameter values. 
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A review and meta-analysis assessing causes of deaths using autopsies, reported that TB 

accounted for 37.2% (95% CI 25.7–48.7%) of HIV-related deaths and that 45.8% (95% CI 

32.6–59.1%) of TB remains undiagnosed at the time of death. Among African studies, the 

pooled estimate was 43.2% (95% CI 38.0–48.3)  (329). In the model we introduced the 

parameter 𝛾 (a ratio of model the estimated (‘true’) TB deaths to the number of recorded 

deaths classified as TB) to correct for potential bias in the recorded TB death data. By this, 

we are assuming that the bias is relatively stable over time, and similar for males and females. 

We estimated 𝛾 as  

𝛾 =
 ∑ ∑ M𝑔,𝑡𝑡𝑔

∑ ∑ D𝑔,𝑡𝑡𝑔
 

Then we specify the likelihood function for TB deaths as 

𝐿(𝑫|𝜙) =  ∏ ∏
1

√2𝜋𝜎2
exp (− 

[ln(𝐷𝑔,𝑡𝛾) − ln(M𝑔,𝑡(𝜙)) )]
2

2𝜎2
)

2016

𝑡=1997𝑔

 

And the variance (𝜎2) was set at 0.01. 

3.11.2.  The likelihood for expected tuberculosis deaths in people living with HIV  

 Estimating the number of HIV deaths that are due to tuberculosis 

In the model, we approximate the expected number of HIV deaths due to TB using the 

proportion of 0.43 estimated by the Gupta et al. meta-analysis for African settings (329) 

(described in the previous section 11.1). Then, the proportion 0.43 is applied to the total 

AIDS deaths produced by the Thembisa 4.4 model (248). (The Thembisa model has been 

calibrated to all-cause mortality data, stratified by age and sex, and has been validated against 

estimates of AIDS deaths from the National Burden of Disease study (330), and these 

estimates of total AIDS deaths are produced independently of the TB model.) These expected 

numbers are shown in Table 3-22. 

 Definition of the likelihood for expected tuberculosis deaths in people living with HIV 

Let 𝐷𝑡 represent the number of TB deaths in adults living with HIV, in year 𝑡. These 𝐷𝑡 are 

not pure data obtained from a specific source; we approximated them by applying the 0.43 
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proportion of expected TB deaths in HIV individuals estimated by the Gupta et al. meta-

analysis (329) to the total AIDS deaths produced by the Thembisa 4.4 model (Table 3-22). 

We consider only deaths over the 1997-2010 period, (a) because Thembisa is not calibrated 

to vital registration data before 1997, and (b) because the meta-analysis of African studies 

only covers data collected up to 2010 and it is possible that the proportion of deaths in 

PLHIV that are due to TB might be different in the post-2010 period because of greater ART 

uptake. 

Then let E𝑡(𝜙) be model estimate of the number of TB deaths in adults who are HIV 

positive, where 𝜙 represents the set of model input parameters. Then we specify a Log-

Normal likelihood function as follows 

𝐿(𝑫|𝜙) = ∏
1

√2𝜋𝜎𝑡
2

exp (− 
[ln(𝐷𝑡) − ln(E𝑡(𝜙)) )]2

2𝜎𝑡
2 )

2010

𝑡=1997

 

The variance (𝜎𝑡
2) was estimated2 from the confidence intervals of AIDS deaths estimated in 

Thembisa 4.4 (248) and from the confidence intervals for the proportion of expected TB 

deaths in HIV individuals (0.43 (95% CI: 0.38 – 0.48)) (329), all converted to the log scale. 

  

 
2 standard error = ((upper limit–lower limit) / 3.92) 
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Table 3-22: Expected number of tuberculosis deaths in people living with HIV 

Year Thembisa 4.4 AIDS deaths TB deaths in HIV-

positive (𝑫𝒕) 

Standard errors*  

1997 52 149  22424 0.1733 

1998 71 563  30772 0.1725 

1999 94 202  40507 0.1714 

2000 119 458  51367 0.1710 

2001 143 624  61758 0.1704 

2002 168 832  72598 0.1701 

2003 193 813  83339 0.1698 

2004 220 214  94692 0.1696 

2005 228 122  98092 0.1697 

2006 215 892  92833 0.1705 

2007 192 528  82787 0.1718 

2008 172 663  74245 0.1719 

2009 157 785  67847 0.1711 

2010 142 992  61487 0.1706 

*On log scale, estimated from the upper and lower limits of the proportion of expected TB deaths (Gupta 

estimate) and Thembisa AIDS deaths. 

3.11.3.  The likelihood for recorded number of tuberculosis cases initiated on treatment  

We use the number of notified TB deaths from the ETR, accessed through and cleaned by the 

Desmond Tutu TB/HIV Centre (Table 3-23) (28). The database relies on data from TB Blue 

cards - the primary medical record for people who have been diagnosed with TB and have 

initiated treatment (331). This information gets transcribed into the TB register, and is then 

fed into the sub-district, district, provincial and national TB registers. Some of the challenges 

of the ETR include the under-reporting of TB cases, duplicates of patient data, and losses to 

follow-up due to deaths or transfers of patients to other facilities (331). 
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Table 3-23: Number of tuberculosis cases initiated on treatment by year, sex and HIV 

status  

Year  Sex HIV-positive  HIV-negative  Total 

2004 
Female 91 112 31 645 

280 611 
Male 99 295 58 559 

2005 
Female 93 769 43 727 

308 483 
Male 90 448 80 539 

2006 
Female 97 209 52 545 

328 756 
Male 94 345 84 657 

2007 
Female 114 842 46 414 

350 339 
Male 114 409 74 674 

2008 
Female 134 549 49 640 

392 695 
Male 130 061 78 445 

2009 
Female 142 000 51 989 

414 277 
Male 137 783 82 505 

2010 
Female 139 652 51 977 

408 213 
Male 135 793 80 791 

2011 
Female 131 416 54 730 

400 317 
Male 129 912 84 259 

2012 
Female 115 005 51 266 

366 730 
Male 119 516 80 943 

2013 
Female 102 440 51 371 

348 674 
Male 112 391 82 472 

2014 
Female 93 737 48 878 

332 352 
Male 108 452 81 285 

2015 
Female 81 389 44 769 

299 883 
Male 97 592 76 133 

2016 
Female 70 298 38 361 

265 917 
Male 88 696 68 562 

 

 Likelihood for tuberculosis cases recorded on the electronic tuberculosis treatment 

register 

We assume that the number of TB cases initiated on treatment follows a Log-Normal 

distribution. The analysis is restricted to the years 2004 to 2016 as we were granted access to 

the cleaned dataset (2004–2016). In recent years, the National Department of Health of South 

Africa has made a shift from using the ETR system to the district health information system 

(DHIS) (332). We calibrated only to sex-stratified data; although the data includes age, we 

did not calibrate to age-stratified recorded TB cases.  
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We let 𝐸𝑔,𝑡 represent the number of people initiated on TB treatment as recorded in the ETR, 

for individuals of sex g, and each year 𝑡 (Table 3-23). These ETR data are subject to biases. 

For instance, there may be under-reporting because in most cases the ETR does not include 

TB cases in tertiary care, and, the ETR only includes drug-sensitive TB (331,333). Also, the 

ETR does not include TB cases treated in the private sector; it is estimated that approximately 

8% of symptomatic TB cases who seek treatment, seek in the private sector (17). We 

therefore apply an adjustment factor (𝛾) defined as the ratio of the true number of TB cases 

receiving treatment to the number of TB cases recorded in the ETR. We let D𝑔,𝑡(𝜙) represent 

the model estimate for the numbers of people initiated on TB treatment for individuals with 

sex 𝑔, in year 𝑡; where 𝝓 represents the set of input parameters values. We then estimated 𝛾 

as follows 

𝛾 =  
∑ ∑ 𝐷𝑔,𝑡𝑡𝑔

∑ ∑ 𝐸𝑔,𝑡𝑡𝑔
 

We restricted the factor 𝛾 to range between 1.0 and 1.3 based on the studies which have 

attempted to estimate the ETR data bias (331,334). From the model, we estimated 𝛾 to be 

1.08 (95% CI 1.01 – 1.18). 

Then the likelihood function is given by 

𝐿(𝑬|𝜙) =  ∏ ∏
1

√2𝜋𝜎2
exp (− 

[ln(𝐸𝑔,𝑡𝛾) − ln(D𝑔,𝑡(𝜙) )]
2

2𝜎2
)

2016

𝑡=2004𝑔

 

and the variance (𝜎2) is set at 0.01.  

3.11.4.  The likelihood for tuberculosis deaths in the electronic tuberculosis treatment 

register 

We rely on the ETR to calibrate the model to the proportion of TB deaths while on treatment. 

We let 𝑅𝑔,𝑡 represent the proportion of TB deaths recorded in the ETR, for individuals of sex 

g in year 𝑡 (obtained from the outcomes data, deaths on treatment, Table 3-12). We define 

exp(γ) as the ratio of the true odds of death to the odds of a death recorded on ETR of deaths 

in TB patients get recorded on the treatment register (allowing for the possibility that the 

recorded number of deaths is less than the true number of deaths). The model produces 
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estimates of the proportion of deaths in TB patients on treatment of sex 𝑔 in year 𝑡, 𝐷𝑔,𝑡(𝜙), 

where 𝜙 is the set of input parameters. Then γ is estimated as: 

γ =
1

13 × 2
∑ ∑ logit(𝐷𝑔,𝑡) − logit(𝑅𝑔,𝑡)

1

𝑔=0

2016

𝑡=2004

 

We set a lower limit of zero (i.e., assuming deaths are not over-reported). 

Then, we also apply a logit transformation to the proportions (𝐷𝑔,𝑡 and 𝑅𝑔,𝑡) and specify the 

likelihood as follows: 

𝐿(𝑹|𝜙) =  ∏ ∏
1

√2𝜋𝜎2
exp ( 

[logit(𝑅𝑔,𝑡) − logit (𝐷𝑔,𝑡(𝜙)) − 𝛾]
2

2𝜎2
)

𝑡𝑔

 

𝜎2 is assumed to be at 0.01.  

3.11.5. The likelihood for HIV prevalence in the electronic tuberculosis register 

We let M𝑡(𝜙) be the estimated prevalence of HIV in people who are on TB treatment in the 

model, where 𝝓 represents the set of model input parameters values; and 𝐻𝑡 represent the 

prevalence of HIV in people recorded on the treatment register (based on the ETR data, Table 

3-23). We restricted the calibration to HIV prevalence between 2009-2016 because in earlier 

years, HIV status information was incomplete and there was a high proportion of 

unknown/unspecified HIV status. We have thus decided to include data from 2009 in which 

HIV testing coverage was at least 50% (335). 

We then define the likelihood as follows 

𝐿(𝑯|𝜙) = ∏
1

√2𝜋𝜎2
exp ( 

[logit(𝑀𝑡(𝜙)) − logit(𝐻𝑡)]2

2𝜎2
)

2016

𝑡=2009

 

The variance is set to be 0.01, equivalent to a 95% confidence interval of 55-64% if 

prevalence is 60%. 
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3.11.6.  The likelihood for the numbers of microbiological tuberculosis tests performed 

We also calibrated our model to the recorded number of microbiological tests performed by 

the South African National Health Laboratory Service (NHLS). We relied on the Nanoo et al. 

study for these data which were available for the years 2004 to 2011 (Table 3-24) (24). 

Although we requested more recent data from the NHLS, we were not able access the data. 

These data are based on the samples submitted to the NHLS for TB testing and have unique 

patient identifiers. In the absence of the unique patient identifiers, a probabilistic record-

linking process is used to match multiple specimen records to individual patients, which may 

be subject to bias (24). We apply a factor of 0.9 to these recorded number of laboratory tests 

to account for a 10% over-estimation in NHLS due to under-linking (informed by personal 

commutation with Harry Moultrie, National Institute for Communicable Diseases). 

We assume that the number of microbiological tests performed follows a Log-Normal 

distribution and specify a Log-Normal likelihood function for the years 2004 to 2011. We let 

𝐷𝑡 represent the recorded number of microbiological tests in year 𝑡 as reported by Nanoo et 

al. (Table 3-24). Then let M𝑡(𝜙) represents the model estimates for the number of tests 

performed in year 𝑡 where 𝜙 represents the set of input parameters. 

Table 3-24: Recorded numbers of microbiological tuberculosis test performed by year 

Year  Total microbiological tests (adjusted) 

2004 1259747 

2005 1571753 

2006 1844658 

2007 2214799 

2008 2555539 

2009 2713728 

2010 3061440 

2011 3175857 

Data source: Nanoo et al. (24).  

We then specify the likelihood as follows: 

𝐿(𝑫|𝜙) = ∏
1

√2𝜋𝜎2
exp (− 

[ln(𝐷𝑡𝛾) − ln(M𝑡(𝜙)) )]2

2𝜎2
)

2011

𝑡=2004

 

The variance is set to be 0.01 and 𝛾 = 0.9. 
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3.11.7.  The likelihood for the prevalence of bacteriologically confirmed active 

tuberculosis 

In the 2018 national TB prevalence survey, the prevalence of bacteriologically confirmed 

pulmonary TB in individuals who were 15 years and older was 1 094 (95% CI 835–1 352) 

per 100 000 and 675 (95% CI 494–855) per 100 000 for males and females, respectively (17).  

We let 𝑃𝑔 be the prevalence of bacteriologically confirmed TB for individuals of sex 𝑔, as 

reported for the 1st South African National Prevalence Survey (2018) (17). Then let 𝑀𝑔(𝜙) 

represent the model estimates of the prevalence of pulmonary TB, of sex 𝑔; where ϕ is the set 

of input parameter values.  

Based on the South African studies by Pepper et al. and Gupta et al., the estimated proportion 

of TB cases that are exclusively extra-pulmonary tuberculosis (EPTB) in HIV-negative 

individuals was 13.5% and 8.2%, respectively (104,260). The South African TB prevalence 

survey report assumed that the proportion of TB cases that were exclusively extra-pulmonary 

TB was 9.7% (17). In our model we assumed the proportion of TB cases that are exclusively 

EPTB (ps=0) for those with HIV-negative status (𝑠 = 0) to be 10%. Among HIV-positive 

individuals, the proportion of TB cases that are exclusively EPTB is slightly higher, 

estimated at 26.3% and 17.6% by Pepper et al. and Gupta et al., respectively (104,260). We 

therefore assumed 22%, the average from these two studies (104,260) to represent the 

proportion of TB cases that are exclusively EPTB in HIV-positive (s = 1) individuals (ps=1).  

Then, for 𝐻𝑔 the total number of active TB cases in HIV-positive individuals; 𝑁𝑔 the total 

number of active TB cases in HIV-negative individuals; and 𝑇𝑔 the total number of people in 

the population, for sex 𝑔, we estimated the prevalence of pulmonary TB as  

𝑀𝑔 = (𝑁𝑔(1.0 − p0) +  𝐻𝑔(1.0 − p1)) / 𝑇𝑔. 

We applied a logit transformation to these prevalence proportions from the prevalence survey 

(𝑃𝑔) and model (𝑀𝑔(𝜙)).  Then the likelihood is represented by: 

𝐿(𝑷|𝜙) =  ∏
1

√2𝜋𝜎𝑔
2

exp (− 
[logit(𝑃𝑔) − logit(𝑀𝑔(𝜙)) )]

2

2𝜎𝑔
2

)

𝑔
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and the variance is calculated as:  

𝜎𝑔
2 =  (

0.1𝑠𝑔

𝑃𝑔(1 − 𝑃𝑔)
)

2

 

where 𝑃𝑔 is the point prevalence and 𝑠𝑔 is the survey standard error estimated from the 

confidence intervals. We multiplied the survey standard error by a factor of 0.1 to ensure the 

model produced a better fit to the TB prevalence survey data (as the TB prevalence survey 

would otherwise get very little weight relative to other data sources and our initial attempts to 

fit the model did not give good fits to the survey prevalence without the 0.1 adjustment). 

3.11.8.  Generating posterior distributions  

The posterior distributions were simulated numerically by implementing the Incremental 

Mixture Importance Sampling (IMIS) algorithm (336) in the following steps: 

1.  𝑁0 = 10 000 input parameters were randomly drawn from the prior distributions in 

Table 3-20. Here 𝜙i, for 𝑖 = 1,   2,   3, … , 𝑁0, is the set of different parameter 

combinations. 

2.  For each parameter set 𝜙𝑖, a likelihood 𝐿𝑖 was calculated, by multiplying together the 

likelihood expressions in sections 11.1-11.7. 

3. Weights 𝑤𝑖
0 were calculated as a ratio of the likelihood 𝐿𝑖 over the sum of all 

likelihoods. 

𝑤𝑖
0 =

𝐿𝑖

∑ 𝐿𝑗
𝑁0

𝑗=0

 

4. Importance sampling was then performed to concentrate sampling in regions of 

parameter spaces that yield the highest likelihood values. The following steps were 

repeated (k-times) until a stopping criterion was met. 

o The weights were sorted, and the maximum weight was found and set 

as the centre of the new sampling distribution 𝜙𝑖
(𝑘)

.  
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o Mahalanobis distances between the centre 𝜙𝑖
(𝑘)

 and other prior points 

𝜙𝑖 were calculated. These were sorted, and the smallest distances were 

recorded. Finally, the Mahalanobis distances were calculated with 

respect to the covariance of prior distributions. 

o B prior points 𝜙𝑖 with the smallest distance to 𝜙𝑖
(𝑘)

 were selected as a 

set. Then a weighted covariance of these points in B was calculated. 

o New inputs were sampled from a Gaussian distribution. (These points 

are those with the smallest distance from the max weight 𝜙𝑖
(𝑘)

). 

o Then a new likelihood was calculated using the new inputs. The new 

inputs were then combined with previous inputs from prior 

distributions and used to calculate new weights   

𝑤𝑖
𝑘 = 𝑐𝐿𝑖 ×

𝑝(𝜙𝑖)

𝑞(𝑘)(𝜙)
 

Where c is chosen so that the weights add to 1 and 𝑞(𝑘) is the mixture 

sampling distribution:  

𝑞(𝑘) =  
𝑁0

𝑁𝑘
𝑝 +

𝐵

𝑁𝑘
∑ 𝐻𝑠

(𝑘)

𝑠=1
 

And 𝑁𝑘 is the total number of inputs up to the k-th iteration. 

5. From the posterior sample, J = 1 000 parameter combinations were resampled. The 

posterior means for the model estimates were calculated as the average of all outputs 

generated over 1000 samples. 95% intervals were calculated by taking the 0.25th and 

the 0.975th percentiles of the outputs.  

The stopping criterion was set to be reached when the expected fraction of unique parameter 

combinations in the posterior sample is at least 0.4. The expected number of unique 

parameter combinations is calculated as 

1

𝑁𝑘
∑(1 − (1 − 𝑤𝑖)

𝐽)

𝑁𝑘

𝑖=1
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𝑁𝑘 is the total number of inputs up to the k-th iteration, and J is the number of resamples. 

3.12. Results from model calibration  

3.12.1. Comparison of prior and posterior distributions 

As indicated in Table 3-20, most of the TB natural history parameters were estimated in a 

separate analysis and fixed in this current analysis. Table 3-25 below shows the prior and 

posterior distributions for parameters varied in this current analysis. Most of the prior and 

posterior distributions means are similar and the 95% confidence intervals overlap. However, 

there were some differences with other parameters, in particular the parameters representing 

empirical treatment and relative rate of screening in TB patients seeking treatment for TB 

symptoms, compared to those seeking treatment for other conditions (in earlier years). This 

reflects the uncertainty associated with the parameter due to limited empirical evidence to 

inform the prior distributions.    

Table 3-25: Comparison of prior and posterior distributions for model parameters 

Parameter description 
Prior mean (95% 

confidence interval) 

Posterior mean (95% 

confidence interval) 

TB transmission probability per contact per day (if infectious individual is smear-

positive) 
0.005 (0.0 – 0.0148) 0.0030 (0.0026–0.0034) 

The annual rate of reactivation in HIV-negative individuals 0.0024 (0.0 – 0.005) 0.00148 (0.0014–0.00155) 

Relative rate of TB incidence per 100 cell increase in CD4 0.71 (0.054 – 0.877) 0.703 (0.693–0.712) 

Annual recovery rate in smear-positive TB, HIV-negative individuals 0.09 (0.051 – 0.129) 0.075 (0.067–0.081) 

Annual recovery rate in smear-negative TB, HIV-negative individuals 0.24 (0.142 – 0.338) 0.224 (0.198–0.247) 

Relative infectivity of smear-negative TB compared to smear-positive individuals  0.22 (0.161 – 0.279) 0.206 (0.196–0.218) 

Increase in TB risk if previously experienced TB 3.5 (0.56 – 6.440) 3.03 (2.55–3.53) 

Smear-negative TB mortality (untreated) 0.061 (0.037 – 0.085) 0.049 (0.046–0.052) 

Smear-positive TB mortality (untreated) 0.212 (0.129 – 0.295) 0.196 (0.174–0.221) 

The relative rate of TB mortality per 50 cell increase in CD4 count if HIV+ 0.87 (0.772 – 0.968) 0.949 (0.944–0.954) 

Proportion of cough >2 weeks in individuals with smear-negative TB 0.2 (0.004 – 0.396) 0.198 (0.149–0.263) 

The proportion of incident TB cases in HIV-negative adults that are smear-positive 0.52 (0.324 – 0.716) 0.51 (0.48–0.54) 

Relative ratio of symptoms in patients with smear-positive TB, compared to smear-

negative TB 
2.2 (1.22 – 3.18) 3.03 (2.74–3.23) 

ART = antiretroviral therapy; TB=tuberculosis. The ratio of model the estimated (‘true’) tuberculosis cases to 

the number of recorded deaths classified as TB (described in section 11.1)) was estimated at 1.26 (95% CI 1.22 

– 1.29). 

3.12.2. Calibration graphs  

The figures below show the comparison of model estimates and data sources data described 

in Figure 3-6 to Figure 3-12. In all figures, model estimates are represented by the solid black 
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lines and the dashed lines represent the 95% confidence intervals for model estimates. The 

data points are represented by the black dots. 

1. Figure 3-6 shows the model fit to adjusted recorded mortality data in males (a) and 

female (b). Overall, the model resulted in a good fit to the data; however, the model 

slightly over-estimated the number of TB deaths in 2016 onwards. This may be due to 

reporting delays in the death data (late recording) because when 2016 data were released, 

not all the 2016 deaths had been processed. The model slightly under-estimates male TB 

deaths over the 2008–2012 period. This is consistent with the Thembisa model slightly 

under-estimating all-cause mortality in men over the 2008–2012 period (337).  

Figure 3-6: Recorded number of tuberculosis deaths (adjusted) and model estimated 

deaths in adults (15+ years) 

  

 

2. Figure 3-7 shows the expected TB deaths in people living with HIV and model estimated 

tuberculosis deaths in HIV-positive individuals. The model was fairly consisted with the 

expected TB deaths in HIV-positive individuals but slightly overestimated the deaths 

from 2007 onwards.  
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Figure 3-7: Expected tuberculosis deaths in people living with HIV and model 

estimated tuberculosis deaths in HIV-positive adults (15+ years) 

 

 

3. Figure 3-8 shows the model fit to adjusted recorded ETR treatment initiations for male (a) 

and females (b) respectively. The model resulted in an earlier peak in treatment initiations 

than the ETR data suggest; this could be because the earlier ETR data were less complete. 

The model was also limited and did not perfectly capture the sex differences in treatment 

initiations. 

Figure 3-8: Recorded number of tuberculosis cases initiated on treatment (adjusted) 

and model estimated tuberculosis cases on treatment in adults (15+ 

years). 

  

 

4. Figure 3-9 shows the proportions of TB deaths recorded in the ETR for males (a) and 

females (b). The model did not match the observed data well. Although we adjusted for 

incomplete recording of deaths, we did so on the assumption that completeness levels 
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remained constant over time, which might be unrealistic. In ART programmes it has been 

noted that the recording of mortality in patient record systems has become significantly 

less complete over time (241), which might explain why we do not match the significant 

reduction in the recorded deaths in the more recent years.  

Figure 3-9: Proportion of tuberculosis deaths recorded in the electronic tuberculosis 

treatment register and model estimates for proportion of tuberculosis 

deaths on treatment for adults (15+ years) 

  

 

5. Figure 3-10 shows the model fit to the prevalence of HIV in individuals on treatment. The 

model did not to fit the ETR HIV prevalence well (underestimating the observed data) 

before 2014. This is possibly because over the period 2014-2016, 95% of people in the 

ETR were tested (had known HIV status), while testing was less complete in the earlier 

years (e.g., in 2009, only 53% people were tested). Thus, it is possible that the earlier 

(less complete) data overstated the true TB prevalence if HIV testing was biased towards 

people suspected of being at HIV risk, or if there was a bias due to people on ART being 

known HIV-positive cases. 
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Figure 3-10: HIV prevalence in the electronic tuberculosis register and model 

estimated HIV prevalence in adults (15+ years) on treatment  

 

 

6. Figure 3-11 shows the model fit to the number of microbiological TB tests performed. 

The model captured in the increasing trend for numbers of TB tests but slightly 

underestimated the reported data in recent years. 

Figure 3-11: The numbers of microbiological tuberculosis tests performed and model 

estimates for microbiological tests performed  

 

 

7. Figure 3-12 shows the model fit to the prevalence of TB for males (a) and females (b). 

Overall, the model resulted in a good fit for the observed prevalence data.  
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Figure 3-12: The prevalence of bacteriologically confirmed active tuberculosis and 

model estimated prevalence of tuberculosis adults (15+ years) 

   

3.13. Comparison with other model estimates  

The World Health Organization (WHO) (3) and the Institute for Health Metrics and 

Evaluation (IHME) (7) are two main agencies that produce global, regional, and national TB 

burden estimates, and South Africa relies on their reports for TB burden estimates. In this 

section, the TB burden estimates produced by our model (Thembisa TB/HIV) will be 

compared to the 2019 South African TB burden estimates produced by the WHO and IHME 

to assess the overall consistency between the models. 

Overall tuberculosis burden  

Overall, our model had major differences with the number of new TB cases estimated by the 

IMHE and WHO: WHO and IHME estimates were 32% and 55% higher respectively than 

Thembisa estimates (Table 3-26), but the models were closer in their estimates of total TB 

deaths. We note that the WHO and IMHE estimates include all ages whereas we only 

consider the adult (15+ years) population in our model. The proportion of TB of all forms in 

children (<15 years) is estimated at approximately 11% in South Africa (264). As such, we 

would expect our estimates to be relatively lower than both the WHO and IMHE estimates 

(Table 3-26). 
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Table 3-26: Comparison of 2019 tuberculosis disease burden estimates by the three 

models: Thembisa, IHME and WHO  
  Thembisa TB/HIV IMHE⁋ WHO*  

New tuberculosis cases       

HIV-positive  156 000 203 700 209 000 

HIV-negative  117 000 218 800 151 000 

% new TB in HIV-positive  57% 48% 58% 

Totals 273 000 422 500 360 000 

Tuberculosis deaths        

HIV-positive  34 000 40 100 36 000 

HIV-negative  18 000 19 820 22 000 

% TB deaths in HIV-positive 65% 67% 62% 

Totals 52 000 59 920 58 000 

Source: Author’s own estimates (Thembisa). Ledesma et al. (7); 2020 WHO TB report (3). Note: both WHO 

and IHME report for all ages, whereas for Thembisa, we report for adults only (15+ years). ⁋IMHE figures 

obtained from summing HIV-sex-disaggregated data. *WHO sex-specific data obtained from reading a graph so 

may not be the exact. 

Another apparent difference between our estimates and the IHMEs was that the IMHE 

estimated a relatively low proportion of TB incidence in HIV-positive individuals (48%). In 

contrast, the WHO and Thembisa TB/HIV estimated a higher proportion of TB cases in HIV-

positive individuals, with proportions of 58% and 57%, respectively. For mortality, all 

models estimated a similarly high proportion of TB deaths in HIV-positive individuals (62-

67%). 

Sex differences  

For 2019, the WHO and Thembisa TB/HIV model estimated a high proportion of TB cases in 

males with 59% and 60%, respectively, whereas the IMHE estimated a lower proportion of 

TB cases in males, 42% (Table 3-27). There was however some consistency between our 

model and the IHME’s estimates for mortality, with both models estimating a higher 

proportion of TB deaths in males than in females. The WHO did not report mortality by sex.  
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Table 3-27: Comparison of 2019 tuberculosis disease burden estimates by the three 

models, by sex: Thembisa, IHME and WHO  
  Thembisa TB/HIV IMHE⁋ WHO* 

New tuberculosis cases      

Males   164 000 179 500 214 000 

Females   109 000 243 000 146 000 

% of TB in males  60% 42% 59% 

Totals 273 000 422 500 360 000 

Tuberculosis mortality     

Males   31 000 32 800  

Females   21 500 27 120  

% of TB deaths in males  60% 54%  

Totals 52 000 59 920  

Sources: Ledesma et al. (7); 2020 WHO TB reported (3). ⁋IMHE figures obtained from summing HIV-sex-

disaggregated data. *WHO sex-specific data obtained from reading a graph so may not be the exact.  

The notable differences described above may be driven by differences in the methodological 

approaches for estimating the tuberculosis burden and the data sources used for inputs (Table 

3-28). The IMHE relies largely on mortality data and indirectly estimates incidence from case 

fatality ratios estimated from a regression model (7). The WHO on the other hand relied on 

the 2018 prevalence survey and assumptions about TB disease duration to estimate TB 

incidence (3). The WHO’s estimates of disease duration are based on literature reviews and a 

simple dynamic model of three compartments (susceptible, untreated TB, and treated TB) 

(239).  Prior to 2019 (i.e., before the release of the South African TB prevalence survey), to 

estimate incidence for South Africa, the WHO mainly relied on TB notification data 

combined with expert opinion about case detection gaps (239,338).  

We have used a dynamic transmission model which considers the tuberculosis natural history 

(i.e., disease progression, recovery), transmission dynamics, health-seeking behaviours and 

diagnostic algorithms, and intervention impacts, whereas the IHME estimates are not based 

on dynamic modelling. To simulate the effects of HIV on tuberculosis incidence and 

mortality in our model, we used available evidence to estimate relative risks (which varied by 

CD4 count and ART status) of TB incidence and mortality for HIV positive individuals. 

Additionally, we performed a formal Bayesian calibration process to ensure the estimates are 

consistent with epidemiological data, including the recorded mortality data, notified cases 

initiating treatment and the latest 2018 TB prevalence survey.  
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To estimate mortality in HIV-negative individuals the WHO uses the vital register data; 

however, the data were adjusted for TB/HIV miscoding (the WHO obtains these adjusted 

data from the IMHE) (239,338). For the HIV-positive population, the WHO  applies HIV-

specific case-fatality ratios to the estimated TB incidence (3). The IMHE uses a mixed-effects 

regression model to estimate the proportion of HIV-TB cases among all TB cases, then they 

estimate relative risks of TB deaths in HIV-positive individuals (7). Based on this, they 

estimate the proportions of TB deaths attributable to HIV (7).  

To further understand what influences the differences between these models, a systematic 

analysis involving a comparison of the methods and data sources would be required. Garcıa-

Basteiro et al., performed an analysis which compared the 2015 TB mortality estimates 

produced by the WHO and IHME, and explored the factors that drove the observed 

differences (339). Overall, it seems the differences in estimation approaches and data sources 

used led to these differences. The authors suggested that differences in the use of prevalence 

survey data and case detection rates may explain most of the observed differences in the 

mortality estimates produced by the WHO and IHME (339). 
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Table 3-28: General differences between Thembisa TB/HIV, the Institute for Health 

Metrics and Evaluation and the World Health Organization for 2019 TB burden 

estimates 
  Thembisa TB/HIV IMHE WHO 

Modelling and 

approach 

Dynamic transmission model 

Includes: TB natural history natural 

history (i.e., disease progression, 

recovery), transmission dynamics, 

health-seeking behaviours, and 

diagnostic algorithms, and impacts of 

interventions. 

Static model. 

Meta-regression approach 

including covariates such as 

smoking prevalence, diabetes, 

indoor air pollution, alcohol, 

and health system access. 

Simple dynamic model to 

estimate TB disease duration 

accounting the effect of HIV 

and ART.  

Use case fatality ratios 

estimated in the literature. 

 

Data sources  2018 national TB prevalence survey 

Recorded deaths from the vital registry 

cleaned and adjusted (1997-2016), 

electronic tuberculosis register (2004-

2019). Literature review on model 

parameters. 

Recorded deaths from the vital 

registry and verbal autopsies 

 

Recorded deaths – vital 

register, national TB 

prevalence survey. Case 

fatality ratios estimated in the 

literature 

Strata HIV, CD4 stage, ART, 

Sex, age  

HIV, sex, age HIV, sex, age 

Modelling TB 

incidence  

Depends on fast progression, 

reactivation, relapse. Incorporated the 

effect of HIV, ART and CD4 count. 

Used meta-regression to 

estimate mortality-to-incidence 

ratios. Then use mortality-to-

incidence ratios and cause-

specific mortality estimates to 

compute incidence.  

(Did not use the 2018 South 

African TB prevalence - based 

on communication with Hmwe 

Kyu) 

TB prevalence surveys 

combined with estimates of 

the duration of disease. 

 

Modelling TB 

mortality 

 

Assumed death rates for TB treated 

and untreated cases. Incorporated the 

effect of HIV, ART and CD4 count. 

 

 

 

Use vital registry and verbal 

autopsy data. Use mixed-effects 

regression models to estimate 

the proportion of HIV-TB cases 

among all TB cases. Estimated 

relative risks of TB deaths in 

HIV-positive individuals, then 

use a population attributable 

fraction approach to estimated 

deaths attributable to HIV.  

For HIV-negative individuals: 

used vital registry data 

cleaned and analyzed by the 

IHME.  

For HIV-positive individuals, 

apply case fatality ratios to 

TB incidence, accounting for 

antiretroviral treatment's 

protective effect. 

ART: antiretroviral therapy; IHME: Institute for Health Metrics and Evaluation; TB=Tuberculosis; WHO: 

World Health Organization 
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Chapter 4. The impact of HIV and tuberculosis interventions on South African adult 

tuberculosis trends, 1990-2019: A mathematical modelling analysis 

Kubjane M, Osman M, Boulle A, Johnson LF. The impact of HIV and tuberculosis 

interventions on South African adult tuberculosis trends, 1990-2019: A mathematical 

modelling analysis. Int. J. Infect. Dis. 2022; (doi.org/10.1016/j.ijid.2022.07.047). 

Publication status: Published; International Journal of Infectious Diseases. 

Relevance of this manuscript to the thesis: The analysis in this manuscript addresses the 

first objective of this thesis. 

Author contributions: MK, LJ, and AB contributed to the study conceptualization, analysis, 

and interpretation of the results. LJ and MK wrote the code for the mathematical model. LJ 

and AB were the study supervisors. MO curated the electronic tuberculosis register data and 

contributed to interpretation of results. MK wrote the first manuscript draft, and all authors 

critically reviewed versions of the manuscript and agreed on the final version to be submitted 

for publication. 

4.1. Abstract  

Objectives: To quantify the South African adult tuberculosis incidence and mortality 

attributable to HIV between 1990–2019; and to estimate the reduction in tuberculosis incidence 

due to directly observed therapy (DOTS), antiretroviral therapy (ART), isoniazid preventative 

therapy (IPT), increased tuberculosis screening, and Xpert MTB/RIF.  

Methods: We developed a dynamic tuberculosis transmission model for South Africa. A 

Bayesian approach was used to calibrate the model to South African-specific data sources. 

Counterfactual scenarios were simulated to estimate tuberculosis incidence and mortality 

attributable to HIV, and the impact of interventions on tuberculosis incidence.  

Results: Between 1990 and 2019, 8.8 million (95% confidence interval (CI) 8.3–9.3 million) 

people developed tuberculosis, and 2.1 million (95% CI 2.0–2.2 million) died from 

tuberculosis. 55% and 69% of the tuberculosis incidence and mortality were due to HIV, 

respectively. Overall, tuberculosis screening and ART substantially reduced tuberculosis 

incidence by 28.2% (95% CI 26.4–29.8%) and 20.0% (95% CI 19.2–20.7%) respectively, in 

2019; other interventions had minor impacts. 

https://doi.org/10.1016/j.ijid.2022.07.047
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Conclusion: HIV has dramatically increased tuberculosis incidence and mortality in South 

Africa. The provision of ART and intensification of tuberculosis screening explained most 

recent declines in tuberculosis incidence.  

 

4.2. Introduction 

South Africa is ranked among the World Health Organization top 20 high tuberculosis burden 

countries (25). The tuberculosis epidemic grew rapidly in the early 1990s, primarily driven 

by HIV (140). HIV infection is the strongest individual-level tuberculosis risk factor, 

increasing the risk of progression to tuberculosis disease and reactivation of latent 

tuberculosis infection (LTBI), worsening treatment outcomes and increasing mortality (4). 

Although the effect of HIV on tuberculosis has been established, very few studies have 

quantified its population-level effect on incidence and mortality over time. South Africa has 

implemented tuberculosis control interventions, including directly observed therapy (DOTS), 

which was scaled up in 1996 (125). This strategy had multiple components, including directly 

observed treatment, political commitment, improved microscopy services, surveillance and 

monitoring, and quality treatment (125). Other interventions which were scaled up in the 

mid-2000s included the provision of isoniazid preventive therapy (IPT) and antiretroviral 

therapy (ART) for HIV-positive individuals (23,340).  

Declines in tuberculosis notifications and mortality from 2008 have largely been attributed to 

ART, which was made widely available during the mid-2000s (18,341,342). This is 

supported by the established individual-level effectiveness of ART in reducing tuberculosis 

incidence and mortality (100,343). In addition, IPT also reduces the risk of developing 

tuberculosis in people living with HIV (324,343). However, few studies have shown the 

population-level effect of IPT. 

There has also been substantial effort invested in identifying tuberculosis cases in South 

Africa. Between 2004 and 2012, the annual number of microbiological tuberculosis tests 

performed doubled (24), and Xpert MTB/RIF was introduced in 2011 to replace smear 

microscopy (130,344). Although earlier modelling studies anticipated substantial health 

benefits from Xpert MTB/RIF implementation compared to microscopy (169), clinical trials 

have found minimal or no impact on tuberculosis mortality (130). To understand these 

dynamics better, modelling studies with detailed diagnostic algorithms that account for 

empirical treatment are required. 
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There have been no formal analyses to quantify the contribution of the abovementioned 

tuberculosis interventions on the declining tuberculosis trends. Such evaluations are essential 

in assessing which South African tuberculosis programme components are most critical to 

decreasing tuberculosis incidence. Therefore, we sought to 1) describe the South African 

tuberculosis epidemic trends between 1990 and 2019; 2) assess the burden of tuberculosis 

attributable to HIV; 3) and assess the impact of tuberculosis interventions including DOTS, 

increased tuberculosis screening, Xpert MTB/RIF as an additional first line diagnostic tool 

replacing smear microscopy, IPT, and ART on tuberculosis incidence. 

4.3.  Methods  

We developed an age- and sex-structured deterministic compartmental model of tuberculosis 

and HIV for the South African adult population (ages 15 years and older). The core 

tuberculosis states are modelled following conventions described by previous studies (169). 

Transitions between states include tuberculosis infection, progression to tuberculosis disease, 

natural recovery, diagnosis and treatment initiation, death, and treatment cure. Age- and sex-

specific relative risks were applied to rates of progression to tuberculosis disease to capture 

age and sex differences in tuberculosis risk factors. 

After cure by tuberculosis treatment, two post-treatment states dependent on time since cure 

are defined – short-term (within six months after cure) and long-term (six or more months 

after cure). In both states, individuals are at risk of reinfection, whereas in the short-term, 

individuals are assumed to have a high likelihood of relapse (315). The natural history 

parameters are described in Table 4-1. The model structure is shown in Figure 4-1. A detailed 

description of the model is provided in the supplementary material (Chapter 3). The risk of 

infection depends on the mean contact rates, age- and sex- mixing patterns (83), the 

probability of transmission per contact, and the prevalence of infectious tuberculosis.  
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Figure 4-1 Structure of the tuberculosis model 

 

TB = tuberculosis. Rx = treatment. Sm+ = smear-positive. Sm- = smear negative.  

 

The Thembisa HIV model forms the HIV component of the model (337). Thembisa is a 

compartmental model of the South African HIV epidemic designed to answer policy 

questions relating to HIV prevention and treatment. The model is age- and sex- structured, 

and the HIV epidemic is simulated dynamically from 1985. HIV-positive sub-populations are 

further stratified by HIV testing history, CD4 count, and duration since ART initiation. The 

model also captures changes in the ART guidelines over time (337) and is calibrated to South 

African data. HIV is assumed to affect the tuberculosis natural history parameters. These HIV 

effects are modelled as relative risks, which vary by CD4 count and duration since ART 

initiation (Table 4-1). 
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Table 4-1: Key model parameters 
Parameter description  Mean Standard 

deviation 

Varied / 

fixed 

Section 

described in 

supplementary 

material^ 

The proportion of incident TB cases in HIV-negative adults that are 

smear-positive 

0.51 
 

Fixed 3 

TB transmission probability per contact per day (if an infectious 

individual is smear-positive) 

0.0025 0.0025 Varied 4 

Relative rate of infectivity smear-negative compared to smear-

positive 

0.206  Fixed 4 

The annual rate of reactivation in HIV-negative individuals 0.00148 
 

Fixed 5 

The proportion of individuals experiencing fast progression 0.112 
 

Fixed 5 

Reduction in TB incidence in previously infected individuals if 

HIV-negative  

0.79 
 

Fixed 5 

Relative rate of immunity to TB per 100-cell increase in CD4 1.1 
 

Fixed 5 

Reduction in TB incidence per 100-cell increase in CD4$ 0.703 
 

Fixed 5 

Annual natural recovery rate in smear-positive TB, HIV-negative 

individuals 

0.075 
 

Fixed 5 

Annual natural recovery rate in smear-negative TB, HIV-negative 

individuals 

0.224 
 

Fixed 5 

Smear-negative TB mortality (untreated) 0.049 
 

Fixed 5 

Smear-positive TB mortality (untreated) 0.196 
 

Fixed 5 

Relative rate of TB incidence on ART (controlling for CD4) 0.81 0.05 Varied 5 

Prevalence of cough >2 weeks duration in individuals with smear-

negative TB 

0.198 
 

Fixed 6 

Ratio of symptoms in patients with smear-positive compared to 

smear-negative TB 

3.03 
 

Fixed 6 

The annual rate of health-seeking in males with smear-negative TB 2.14 0.49 Varied 6 

The annual rate of health-seeking in males in the general population 1.15 0.5 Varied 6 

The annual rate of health-seeking in males due to TB-like 

symptoms 

0.22 0.15 Varied 6 

The proportion of active TB cases seeking treatment who are 

treated empirically if no microbiological test is done 

0.125 0.144 Varied 6 

The proportion of smear-negative TB cases who are treated 

empirically if they initially screened negative on smear test   

0.333 0.236 Varied 6 

Relative rate of empirical treatment if not seeking treatment 

because of TB symptoms 

0.5 0.289 Varied 6 

Relative rate empirical treatment if symptoms are not due to TB 0.5 0.289 Varied 6 

Reduction in empiric treatment after a negative screen due to Xpert 

MTB/RIF 

0.5 0.18 Fixed 6 

Relative rate of health-seeking in women, compared to men 1.55 0.17 Varied 6 

Relative rate of health-seeking in HIV-positive compared to HIV-

negative individuals 

3 1 Varied 6 

Relative rate of screening in TB patients seeking treatment for TB 

symptoms, compared to those seeking treatment for other 

conditions: initial⁋ 

8.71 2.5 Varied 6 
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Parameter description  Mean Standard 

deviation 

Varied / 

fixed 

Section 

described in 

supplementary 

material^ 

Relative rate of screening in TB patients seeking treatment for TB 

symptoms, compared to those seeking treatment for other 

conditions: ultimate⁋ 

4 1.2 Varied 6 

Probability of cure if a patient dropped out before completing TB 

treatment 

0.65 
 

Fixed 7 

Increase in TB mortality rate per 10-year increase in age 1.4 
 

Fixed 7 

The annual mortality rate in HIV-negative individuals receiving TB 

treatment* 

0.192 
 

Fixed 7 

The relative rate of TB mortality per 50-cells increase in CD4 count 

if HIV+ 

0.95 
 

Fixed 7 

Relative rate of TB mortality if on ART 0.55 0.08 Varied 7 

Increase in TB risk if previously experienced TB 3.03 
 

Fixed 8 

Rate of relapse in short term post-treatment state 0.1 
 

Fixed 8 

Increase in TB incidence due to alcohol abuse 1.94† 
 

Fixed 10 

Increase in TB incidence due to diabetes (HbA1c > 6.5%) 2.59† 
 

Fixed 10 

Increase in TB risk if currently smoking 0.47† 
 

Fixed 10 

Increase in TB risk per 10-year increase in the duration of smoking 0.38† 
 

Fixed 10 

Increase in TB risk due to low BMI 0.8† 
 

Fixed 10 

ART=antiretroviral therapy; BMI=body mass index; HbA1c= Glycated hemoglobin. TB=tuberculosis. All rates 

are annual rates unless specified otherwise. $ TB incidence adjustments apply to both the reactivation rate and 

the fast-progression proportion. ^The supplementary material / Chapter 3 and the indicated sections provides 

further descriptions and references for the model parameters. ⁋This is a time-varying parameter. The initial rate 

applies up to 2005, the ultimate rate applies from 2012, with linear interpolation over the intervening years 

(2006-2011). *Applies when most people get treated in the very advanced stages of disease (i.e., when screening 

rates are close to zero). †A value of 1.94, for example, is equivalent to a relative risk of 2.94 when comparing 

individuals with the exposure to individuals in the baseline category supplementary material / Chapter 3.  

 

IPT is modelled for individuals with latent tuberculosis infection (LTBI) who are HIV-

positive and eligible as per guidelines (317). Uptake is dependent on CD4 count, duration on 

ART and latent tuberculosis status. IPT uptake started in 2010; the number of IPT initiators 

were obtained from the District Health Information System. Assumptions on IPT duration, 

completion, and efficacy are in Chapter 3.  

The assumed health-seeking patterns in the model are based on South African studies. We 

assume different health facility attendance rates for individuals: 1) with tuberculosis, 

attending health facilities due to tuberculosis-related symptoms; 2) without tuberculosis, 

attending due to other health conditions; 3) and without tuberculosis, attending due to 

tuberculosis-like symptoms. We assume females are more likely to seek care than males (2), 

HIV-positive individuals have higher health seeking rates than HIV-negative individuals 

(216), and smear-positive individuals experience more tuberculosis symptoms than smear-

negative individuals (270). We consider smear microscopy and Xpert MTB/RIF as the first-
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line diagnostic tools, accounting for the phased implementation of Xpert MTB/RIF from 

2011 onwards. To estimate the numbers of true and false-positive tuberculosis diagnoses, we 

specified the sensitivity and specificity of these tests. Following initial negative test results, 

we assume a proportion of individuals are followed up for a second test by culture. 

The model also allows for treatment initiation in a proportion of individuals who do not have 

laboratory-confirmed tuberculosis (empirical treatment). Health seeking parameters and rates 

of tuberculosis screening are estimated through calibration by fitting the model to the 

numbers of microbiological tests performed (24) and numbers of cases treated. Once 

individuals start the 6-month tuberculosis treatment course, the following outcomes are 

considered: cure, failure, discontinuation, and death (with the rates of cure and failure 

depending on treatment discontinuation rates). Treatment outcome assumptions are based on 

the electronic tuberculosis treatment register (ETR.net) data for drug susceptible tuberculosis 

and are shown in Chapter 3. 

4.3.1. Calibration targets and data sources 

A Bayesian approach was used to calibrate the model. Prior distributions were set to 

represent uncertainty in key model parameters (Table 4-1). Four main data sources were used 

for the calibration targets. First are the sex-stratified recorded numbers of tuberculosis deaths 

from the vital register for 1997-2016. These mortality data were adjusted for misclassification 

and under-reporting (Chapter 3). Second, we relied on ETR.net for the numbers of people 

initiating treatment (2004-2016), deaths on treatment (2004-2016), and HIV prevalence in 

people on treatment (2008-2016). Third, we relied on the National Institute for 

Communicable Diseases for numbers of microbiological tests performed (2004-2012) and 

positive tuberculosis diagnoses (2004-2019) (24). Lastly, we used the 2018 national 

tuberculosis prevalence survey to calibrate the prevalence of active tuberculosis disease (17). 

For the calibration process, likelihood functions were defined to represent the goodness of fit 

to each calibration target, allowing for possible under- or over-reporting in the vital register 

and the ETR.net data.  

We simulated posterior distributions numerically using Incremental Mixture Importance 

Sampling, i.e., using importance sampling to draw a sample of parameter combinations from 

regions of the parameter space that yield the highest likelihood values (336). The means for 

the model estimates were calculated over 1000 posterior samples, and 95% confidence 
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intervals were calculated by taking the 2.5th and the 97.5th percentiles of the posterior 

sample (Chapter 3).  

We performed a sensitivity analysis to assess how the model inputs varied in the calibration 

process were correlated with the estimated tuberculosis incidence and mortality for 2019. 

4.3.2. Model experiments to assess the impact of HIV and programmatic interventions 

over time  

To quantify the effects of HIV, DOTS, increased tuberculosis screening, Xpert MTB/RIF, 

ART, and IPT on tuberculosis incidence and mortality, we ran the scenarios A to H described 

in the Table 4-2 below. Each of the counterfactual scenarios B to H was compared to the 

baseline scenario A to assess the change in tuberculosis incidence and mortality attributable 

to the relevant factor. 

Table 4-2: Model experiments to assess the impact of HIV and programmatic 

interventions over time 

Scenario Model scenario descriptions Parameters used 

A The baseline scenario represents the interventions currently 

in place:  

DOTS was introduced in 1996,  

smear-microscopy as the dominant diagnostic tool before 

2011, with Xpert MTB/RIF gradually implemented from 

2011, 

public-sector ART scale-up from 2004, 

implementation of IPT from 2010. 

We assumed the relative rate of treatment discontinuation 

was 0.48 under DOTS (128) 

Xpert is assumed to be more sensitive than microscopy, but 

is associated with reduced empirical treatment. 

ART is assumed to reduce TB incidence and mortality, 

through both direct effects on viral load, and indirect 

effects on CD4 count (Table 4-1). 

IPT is assumed to reduce TB incidence by 52% in latently-

infected adults (Ayele 2015). 

B To assess the burden of tuberculosis attributable to HIV, we 

simulated a scenario with no HIV. 

HIV transmission probabilities were set to zero, so that 

there was no HIV epidemic. 

C To assess the impact of DOTS, we simulated a scenario 

without DOTS.  

Treatment discontinuation rates held constant (no reduction 

due to DOTS). 

D To assess the impact of IPT, we simulated a scenario where 

no IPT is implemented. 

The number of HIV-positive individuals initiated on 

isoniazid preventative therapy in each year was set to zero. 

E To assess the impact of ART, we simulated a scenario 

where there is no ART. 

Annual numbers of ART initiations are set to zero. 

F To assess the impact of scaling up tuberculosis screening, 

we simulated a scenario where testing rates after 2004 

remain the same as the 2004 rates. 

Screening rates calculated from numbers of 

microbiological TB tests performed in 2004 are assumed to 

apply in all subsequent years.  

G To assess the impact of the introduction of Xpert MTB/RIF, 

we simulated a scenario where Xpert MTB/RIF was not 

introduced. 

Numbers of microbiological TB tests performed by year 

are unchanged, but all testing is assumed to be based on 

microscopy. 

H To assess what would have happened without any 

programmatic changes, we simulated a scenario without any 

interventions in C) to G). 

Including all assumptions described in C-G 
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4.4. Results 

The estimated number of tuberculosis deaths for males and females were consistent with the 

recorded number of deaths. The estimated deaths rapidly increased from 1994, peaked in 

2006, followed by a decline to 31 000 (95% CI 30 000–33 000) and 21 000 (95% CI 21 000–

22 000) in 2019, in males and females respectively (Figure 4-2 a and b). The model estimates 

for the numbers of people starting treatment were slightly inconsistent with the data. Before 

2010, the model overestimated the number of females initiating treatment, and after 2008 the 

model underestimated the number of males initiating treatment (Figure 4-2 c and d). The 

estimated tuberculosis prevalence was reasonably close to the results of the 2018 tuberculosis 

prevalence survey; in 2019, the estimated tuberculosis prevalence was 1.02% (95% CI 0.97–

1.06%) and 0.6% (95% CI 0.52–0.57%) in males and females respectively (Figure 4-2 e and 

f).  
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Figure 4-2: Estimated adult tuberculosis trends and calibration data by sex, 1990-2019 

     

 

       
Grey solid lines represent model estimates, and dashed lines represent 95% confidence intervals. Black dots 

represent adjusted recorded mortality in a) and b); people initiating treatment recorded on the electronic 

tuberculosis treatment register in c) and d), and the national tuberculosis prevalence with 95% confidence 

intervals around point estimates in e) and f).  

In the counterfactual scenario, without HIV, the model estimated that tuberculosis incidence 

and mortality would have remained relatively low (Figure 4-3), although still high enough for 

South Africa to be classified a high tuberculosis burden country.  
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Figure 4-3 Impact of HIV on tuberculosis incidence and mortality, 1990-2019 

   

The solid grey line represents the counterfactual scenario where there is no HIV assumed in the model. The 

solid black line represents the baseline scenario where HIV is present. The dashed lines represent 95% 

confidence intervals. 

In the presence of HIV, the number of incident tuberculosis cases and deaths increased 

rapidly during the early 1990s and peaked in the mid-to-late 2000s, followed by declines until 

2019 (Figure 3). The model estimated 273 000 (95% CI 261 000–288 000) new cases and 52 

000 (95% CI 50 000–55 000) deaths in 2019. Over the ten-year period 2009-2019, the 

percentage reduction in new tuberculosis cases and deaths was 30.4% (95% CI 29.4–31.5%) 

and 47.7% (95% CI 46.2–49.1%), respectively.  

Cumulatively, between 1990 and 2019, there were 8 800 000 (95% CI 8 300 000–9 300 000) 

new tuberculosis cases and 2 100 000 (95% CI 2 000 000–2 200 000) tuberculosis deaths. 

Overall, 55.4% (95% CI 54.7–56.1%) of new tuberculosis cases and 68.5% (95% CI 67.0–

69.7%) of tuberculosis deaths are attributable to HIV over the 1990-2019 period. 57% of the 

new TB cases were in HIV-positive individuals, and 69% of TB deaths were in HIV-positive 

individuals. 

Reductions in tuberculosis incidence due to DOTS and IPT were small (<3%) in all years 

(Figure 4-4 a and b). On the other hand, the reduction in tuberculosis incidence due to ART 

was evident from 2006, and the impact of ART increased monotonically until 2019 with a 

reduction of 20.0% (95% CI 19.2–20.7%) in tuberculosis incidence (Figure 4-4 c). 
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Figure 4-4: The impact of programmatic interventions on tuberculosis incidence 

  

  

   
a) DOTS, b) IPT, c) ART, d) scaled-up tuberculosis screening, e) Xpert MTB/RIF, and f) all interventions 

combined. Solid lines represent the estimated mean reductions in tuberculosis incidence. All dashed lines 

represent the 95% confidence intervals. ART=antiretroviral therapy. DOTS=Directly Observed Therapy; 

IPT=isoniazid preventative therapy; TB=tuberculosis.  
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The reduction in tuberculosis incidence due to screening consistently increased from 2005 to 

2019, reaching a maximum of 28.2% (95% CI 26.4–29.8%) (Figure 4d). On the other hand, 

the reduction in tuberculosis incidence due to Xpert MTB/RIF was very low (<1.3%) for all 

years (Figure 4-4 e). However, between 2011 and 2019, Xpert MTB/RIF reduced the number 

of individuals without tuberculosis initiating tuberculosis treatment by 56% (counterfactual: 

52 000 vs baseline: 23 000). In addition, Xpert MTB/RIF also reduced the number of 

individuals starting treatment on an empirical basis by 28% (counterfactual: 65 000 vs 

baseline: 46 000). 

All interventions combined (DOTS, IPT, ART, scaled-up screening, and Xpert MTB/RIF) 

contributed to a 45.2% (95% CI 43.6–46.7%) reduction in tuberculosis incidence in 2019 

(Figure 4-4 f).    

Apart from DOTS and IPT, most interventions had a greater impact on tuberculosis mortality 

than on tuberculosis incidence (Appendix A Figure 1). For example, reductions in mortality 

in 2019 due to interventions were 37.6% (95% CI 35.8–39.5%) for ART, 37.9% (95% CI 

37.1–38.6%) for scaled-up tuberculosis screening, and 3.2% (95% CI 2.4–3.8%) for Xpert 

MTB/RIF. All interventions combined (DOTS, IPT, ART, scaled-up screening, and Xpert 

MTB/RIF) led to a to a 63.1% (95% CI 61.1–64.4%) reduction in tuberculosis mortality in 

2019.  

Most of the model input parameters had the expected relationships with the outcomes (shown 

by correlation coefficients and scatter plots), but because several parameters were varied 

simultaneously in the calibration process, some counter-intuitive associations need to be 

interpreted in terms of correlations between model parameters (for further discussion, see 

Appendix A, section 8.1.5). 

4.5. Discussion 

HIV has had a devastating impact on tuberculosis incidence and mortality. Between 1990 and 

2019, 8.8 million South Africans developed tuberculosis, and 2.1 million lives were lost. HIV 

caused 55% (4.8 million) of the tuberculosis cases and 69% (1.4 million) of the tuberculosis 

deaths. We also showed that interventions implemented by the South African tuberculosis 

and HIV programmes have led to notable reductions in tuberculosis incidence, with ART and 

increased screening contributing most of the decline. Our model also showed that the other 
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interventions – DOTS, IPT, and Xpert MTB/RIF – had modest impacts on tuberculosis 

incidence. For most of the interventions (increased screening, ART, and Xpert MTB/RIF), 

the impact on tuberculosis mortality was proportionately greater than the impact on 

tuberculosis incidence (Appendix Al). 

Although HIV is the strongest driver of the tuberculosis epidemic, our model estimated that 

even in the absence of HIV, tuberculosis incidence in South Africa would remain high. This 

was demonstrated in the no-HIV counterfactual scenario, in which there were an estimated 

235 cases per 100 000 population in 2019. This rate is much higher than the estimated 

tuberculosis incidence for industrialised regions such as Europe and the America (25). The 

high tuberculosis burden in the HIV-negative population indicates other underlying factors 

that drive the epidemic (i.e., low rates of diagnosis and risk factors that increase susceptibility 

to tuberculosis disease). 

The provision of ART substantially impacted tuberculosis incidence; in 2019, it led to a 20% 

reduction in the model. The benefits of ART on reducing incidence (24,341,342) depend on 

CD4 count and duration on ART (340) – HIV-positive individuals who initiate ART earlier at 

higher CD4 counts and stay on ART for longer experience the greatest benefits of ART. In 

the model, the effect of ART on reducing tuberculosis incidence increased during the mid-

2000s when access to ART expanded in South Africa. Over time, the CD4 count threshold at 

which individuals can start ART has increased (345), and average ART durations have 

increased, consequently contributing to the substantial reduction in the population-level 

tuberculosis incidence.  

Intensified tuberculosis screening also led to significant declines in tuberculosis incidence. 

Between 2005 and 2012, South Africa scaled-up efforts to identify tuberculosis cases and 

testing rates doubled (24). As a result, there were rapid reductions in tuberculosis incidence 

due to increased tuberculosis screening during this period. In 2019, increased screening led to 

an estimated 28% reduction in tuberculosis incidence.  

The reasons for DOTS having minimal impact on tuberculosis may include high ongoing Mtb 

transmission rates, high prevalence of substantial risk factors such as HIV, which increase 

progression to disease, and the emergence of resistant tuberculosis (346,347). Lastly, we have 

only considered one component of the DOTS strategy; considering other aspects may have 

led to a larger impact. Nonetheless, our findings of the minimal impact of DOTS align with 
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studies that suggested that DOTS would have minimal impact in settings with a high HIV 

burden (151,164). 

The small population-level impact of IPT on tuberculosis incidence in HIV-positive 

individuals is consistent with other epidemiological analyses, which attribute the limited 

impact to the low implementation of IPT in South Africa (342). However, other reasons may 

be because this HIV-positive population has a high risk of progression to disease or because 

IPT does not necessarily cure latent Mtb infection in HIV-positive individuals (232). In 

addition, there appears to be minimal protection from IPT after IPT discontinuation or 

completion, and thus the short duration of IPT protection might explain the relatively modest 

population-level impact in South Africa (231). Another possible reason may be that ART 

eligibility criteria have changed over time, and in recent years, more people have started ART 

at higher CD4 counts. Those starting ART at higher CD4 counts stand to benefit less from 

IPT.  

Our findings regarding the small effect of Xpert MTB/RIF on tuberculosis incidence are in 

line with studies that found no significant effect of Xpert MTB/RIF on tuberculosis mortality 

(130). It has been suggested that reductions in empirical treatment offset the positive effect of 

Xpert MTB/RIF (222). The introduction of Xpert MTB/RIF has increased the number of 

microbiologically confirmed diagnoses; however, this has not equated to more new diagnoses 

because many cases were diagnosed empirically prior to adopting Xpert MTB/RIF. In 

addition, there was more culture testing in those testing negative under microscopy than 

under Xpert MTB/RIF (281). Another modelling group, which had initially estimated a 

substantial positive impact of Xpert MTB/RIF on health outcomes, conducted a re-analysis 

accounting for empirical treatment and the sensitivity and specificity of diagnostic algorithms 

(227). The revised analysis found a reduction in the benefits, with 70% fewer disability-

adjusted life years averted due to Xpert MTB/RIF (227). 

We implemented a detailed diagnostic algorithm that estimated true and false positives from 

microbiological diagnoses. We also considered the proportions of individuals who initiate 

treatment empirically as informed by South African pragmatic trials and operational studies. 

As a result, we showed that Xpert MTB/RIF has indeed led to a reduction in the number of 

people without tuberculosis who start treatment (by 56%) and reduced the number of people 

who start treatment on an empirical basis (by 28%). Xpert MTB/RIF possibly has other 

benefits such as reducing the time to diagnosis and time to treatment initiation; we however 
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did not model the effect of Xpert MTB/RIF on these endpoints. Nonetheless, we assumed that 

loss to follow-up before treatment initiation was lower when Xpert MTB/RIF compared to 

smear microscopy testing was used (Chapter 3). We did not model other benefits of Xpert 

MTB/RIF such as the ability to detect drug-resistant tuberculosis (130) . 

This study was subject to several limitations. First, we only considered the adult population 

(15-year-olds and older). Second, due to the lack of data on the national roll-out of Xpert 

MTB/RIF, we relied on expert opinion regarding Xpert MTB/RIF implementation. Third, it 

was difficult to quantify the extent of empirical treatment prior to introducing Xpert 

MTB/RIF due to data lack of studies to inform our assumptions. Fourth, our model does not 

distinguish between symptomatic and asymptomatic tuberculosis, although we make 

assumptions about the prevalence of symptoms for the purpose of modelling screening 

algorithms. Fifth, our model did not fit the number of treatment initiations data very well, 

particularly in the earlier years of the ETR data, prior to 2010. The model estimates for 

treatment initiations peaked earlier than the ETR data, for both males and females, and it 

overestimated the treatment initiations in males. This may be because, in earlier years, there 

was greater under-reporting in the ETR data. Lastly, this analysis only focussed on the past 

impact of interventions implemented in South Africa. Thus, we did not explore the potential 

impact of new interventions or improvement to current interventions.  

To our knowledge, this is the first comprehensive retrospective assessment of the impact of 

HIV and multiple tuberculosis interventions on the South African tuberculosis burden at a 

national level. This study demonstrated the tremendous effect HIV has had on tuberculosis 

incidence and mortality; but even in the HIV-negative population, the tuberculosis incidence 

remains unacceptably high. The South African tuberculosis programme has made notable 

efforts that have led to a significant reduction in tuberculosis incidence and mortality. Further 

modelling studies are needed to identify the changes to current programmes that are required 

to accelerate these reductions in future.   
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Mmamapudi Kubjane, Morna Cornell, Muhammad Osman, Andrew Boulle, Leigh F 

Johnson. Drivers of sex differences in the South African adult tuberculosis incidence and 

mortality, 1990-2019.  

Publication status: Submitted to Scientific Reports; preprint link DOI:10.21203/rs.3.rs-

1908771/v1). 

Relevance of this manuscript to the thesis: The analysis in this manuscript addresses the 

second objective of this thesis.  

Author contributions: MK, LJ and AB contributed to the study conceptualisation, analysis 

and interpretation of the results.  LJ and MK wrote the code for the mathematical model.  MC 

contributed to the interpretation of results.  MO curated the electronic tuberculosis register 

data and contributed to interpretation of results.  MK wrote the first draft and all authors 

critically reviewed versions of the manuscript and agreed on the final version to be submitted 

for publication.   

5.1. Abstract  

Background: Males have higher tuberculosis incidence and mortality rates than females 

driven by multiple factors. The objectives of this study were to assess 1) the impact of the 

HIV epidemic and ART rollout on the sex distribution of tuberculosis incidence and 

mortality; 2) estimate sex-specific tuberculosis incidence population attributable fractions 

(PAFs) for smoking, alcohol abuse, undernutrition, diabetes, and HIV; and 3) determine the 

influence of sex differences in tuberculosis health seeking, HIV testing and ART initiation, 

social mixing patterns, and tuberculosis treatment retention on tuberculosis incidence and 

mortality rates.   

Methods: We developed an age-sex-stratified dynamic tuberculosis transmission model and 

calibrated it to South African data. We estimated male-to-female (M:F) tuberculosis 

incidence and mortality ratios, the effect of the abovementioned factors on the M:F ratios and 

PAFs for the tuberculosis risk factors.   

http://dx.doi.org/10.21203/rs.3.rs-1908771/v1
http://dx.doi.org/10.21203/rs.3.rs-1908771/v1
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Results: Between 1990 and 2019, M:F ratios for tuberculosis incidence and mortality 

remained above 1.0, reaching 1.70 and 1.65, respectively in 2019.  In 2019, HIV contributed 

to more significant increases in tuberculosis incidence among females than males (54.5% vs 

45.6%); however, females experienced more reductions due to ART than males (38.3% vs 

17.5%).  PAFs for tuberculosis incidence due to alcohol abuse, smoking, and undernutrition, 

in males, were 51.4%, 29.5%, and 16.1%, respectively, higher than in females (30.1%, 

15.4%, and 10.7%, respectively); the PAF due to diabetes was higher in females than males 

(22.9% vs 17.5%).  Lower health-seeking rates in males accounted for a 7% higher mortality 

rate in men.   

Conclusion: The higher burden of tuberculosis in men highlights the need to improve men’s 

access to routine screening and ensure earlier diagnosis.  Sustained efforts in providing ART 

is critical in reducing HIV-associated tuberculosis.  Additional interventions to reduce 

alcohol abuse and tobacco smoking are also needed.  

5.2. Introduction 

Globally, males experience higher tuberculosis incidence and mortality than females (3,7).  

The estimated male-to-female (M:F) tuberculosis incidence ratio varies by geographic region 

ranging between 1.1 and 2.5 (3).  A meta-analysis of 39 prevalence surveys conducted in 28 

countries estimated males to have 2.21 times higher tuberculosis prevalence than females (2).  

Sex disparities in the burden of tuberculosis are driven by multiple factors, including socio-

behavioural and biological differences that directly or indirectly affect the risk of exposure to 

Mycobacterium tuberculosis, acquiring latent infection, or developing active disease (33).  

Biological hypotheses are that female sex hormones may protect against susceptibility to 

infection and the development of tuberculosis disease (86).   

Males may be more exposed to additional risk factors for tuberculosis such as tobacco 

smoking and alcohol abuse (69,88,89).  Other conditions that increase susceptibility to 

tuberculosis disease include HIV, diabetes and undernutrition (325,326).  These risk factors 

increase the likelihood of developing tuberculosis by suppressing cell-mediated immunity 

(90,91) and explain a considerable amount of the global burden of tuberculosis at the 

population level (7). 

HIV, the most potent tuberculosis risk factor, is also distributed differently by sex, with a 

heavier burden among females than males (348).  However, compared to females, males are 
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less likely to get tested for HIV and have lower antiretroviral therapy (ART) initiation rates 

(349).  In addition, several studies have shown that the age-sex distribution of tuberculosis 

reflects that of the HIV epidemic (24,350–352).  However, limited studies have quantified the 

effect of the evolving HIV epidemic and the impact of the rollout of ART on the sex 

distribution of tuberculosis.  

Several analyses have explored explanations for the excess burden of tuberculosis in men.  

Horton et al. showed that in Vietnam and Malawi, men had higher rates of tuberculosis 

incidence and longer delays to treatment (353).  Other studies have suggested that the 

frequent social contacts men have with other men (85), combined with their higher rates of 

tuberculosis incidence (2), likely amplifies their burden of tuberculosis (83,354).  The Global 

Burden of Disease Study (GBD) 2019 demonstrated the contribution of smoking, alcohol, 

and diabetes to sex disparities in tuberculosis mortality, showing that eliminating these risk 

factors would reduce the global tuberculosis mortality M:F ratios from 1.97 to 1.28 (7).  

In South Africa, the male tuberculosis prevalence is approximately 1.6 times that in females 

(17).  However, limited analyses have evaluated how modifiable risk factors explain sex 

disparities at a population level.  Understanding the factors that drive sex disparities and the 

overall burden of tuberculosis is essential for identifying where tuberculosis control efforts 

need to focus.  The specific objectives of this study were to 1) quantify the effect of the 

evolving HIV epidemic and the impact of the rollout of ART on the sex distribution of 

tuberculosis incidence and mortality over the period 1990-2019; 2) estimate the sex-specific 

PAFs for undernutrition, smoking, alcohol, diabetes and HIV (2019); 3) to estimate the 

impact of sex differentials in a) tuberculosis health seeking b) HIV testing and ART 

initiation, c) social mixing patterns and d) tuberculosis treatment retention differentials.  

5.3. Methods 

5.3.1. The tuberculosis model structure 

We developed an age-sex-stratified deterministic compartmental model of the tuberculosis 

and HIV epidemics for the South African adult population (aged 15+ years).  The core 

tuberculosis states were modelled following conventions described by previous studies (353).  

The risk of infection depends on the mean contact rates, proportions of contacts in each age 

and sex group (219), the probability of transmission per contact, and the prevalence of 
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infectious tuberculosis.  Transitions between states include tuberculosis infection, progression 

to tuberculosis disease, natural recovery, diagnosis and treatment initiation, death, and 

treatment cure (Table 5-1).  Following cure by tuberculosis treatment, two post-treatment 

states are defined: short-term (within six months after cure) and long-term (six or more 

months after cure).  In both states, individuals are at risk of reinfection, whereas in the short-

term post-treatment state, individuals are at a greater risk of recurrent TB due to relapse 

(315). 

Table 5-1: Key model parameters 

Parameter description  Mean Standard 

deviation 

Varied / 

fixed 

Section 

described in 

supplementary^ 

The proportion of incident TB cases in HIV-negative adults that were 

smear-positive 

0.51   Fixed 3 

TB transmission probability per contact per day (if an infectious individual 

was smear-positive) 

0.0025  0.0025 Varied 4 

The annual rate of reactivation in HIV-negative individuals 0.00148   Fixed 5 

The proportion of individuals experiencing fast progression 0.112   Fixed 5 

Relative rate of TB incidence in previously infected individuals (HIV-

negative)  

0.79   Fixed 5 

Relative rate of immunity to TB per 100-cell increase in CD4 1.1   Fixed 5 

Relative rate TB incidence per 100-cell increase in CD4 0.703   Fixed 5 

Annual recovery rate in smear-positive TB, HIV-negative individuals 0.075   Fixed 5 

Annual recovery rate in smear-negative TB, HIV-negative individuals 0.224   Fixed 5 

Relative rate of infectivity: smear-negative compared to smear-positive 0.206   Fixed 5 

Annual Smear-negative TB mortality rate (untreated) 0.049   Fixed 5 

Annual Smear-positive TB mortality rate (untreated) 0.196   Fixed 5 

Relative rate of TB incidence on ART (controlling for CD4) 0.81 0.05 Varied 5 

Prevalence of cough >2 weeks duration in individuals with smear-negative 

TB 

0.198   Fixed 6 

Ratio of symptom prevalence in patients with smear-positive compared to 

smear-negative TB 

3.03   Fixed 6 

The annual rate of health-seeking in males with smear-negative TB 1.07   Fixed 6 

The annual rate of health-seeking in males in the general population 1.0   Fixed 6 

The annual rate of health-seeking in males due to TB-like symptoms 0.196   Fixed 6 

The proportion of active TB cases seeking treatment who are treated 

empirically before any microbiological test is done 

0.271   Fixed 6 

The proportion of smear-negative TB cases which ae treated empirically if 

they initially screened negative on a smear test   

0.423   Fixed 6 

Relative rate of empirical treatment if not seeking treatment because of TB 

symptoms 

0.031   Fixed 6 

Relative rate empirical treatment if symptoms are not due to TB 0.0014   Fixed 6 

Reduction in empiric treatment after a negative screen due to Xpert 

MTB/RIF 

0.50   Fixed 6 

Relative rate of health-seeking in women, compared to men 1.55 0.17 Varied 6 

Relative rate of health-seeking in HIV-positive compared to HIV-negative 

individuals 

4.27   Fixed 6 

Relative rate of screening in TB patients seeking treatment for TB 

symptoms, compared to those seeking treatment for other conditions: initial§ 

11.10   Fixed 6 
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Parameter description  Mean Standard 

deviation 

Varied / 

fixed 

Section 

described in 

supplementary^ 

Relative rate of screening in TB patients seeking treatment for TB 

symptoms, compared to those seeking treatment for other conditions: final§  

3.84   Fixed 6 

Probability of cure if a patient dropped out before completing TB treatment 0.65   Fixed 7 

Increase in TB mortality rate per 10-year increase in age 1.4 0.1 Varied 7 

The annual mortality rate in HIV-negative individuals receiving TB 

treatment⁋ 

0.192  Fixed 7 

The relative rate of TB mortality per 50 cell increases in CD4 count if HIV+ 0.87 0.05 Varied 7 

Relative rate of TB mortality if on ART 0.55 0.08 Varied 7 

Increase in TB risk if previously experienced TB 3.03   Fixed 8 

Annual rate of relapse in short term post-treatment state 0.1   Fixed 8 

Increase in TB incidence due to alcohol abuse 1.94† 0.65 Varied 10 

Increase in TB incidence due to diabetes (HbA1c > 6.5%) 2.59† 0.83 Varied 10 

Increase in TB risk if currently smoking 0.47† 0.39 Varied 10 

Increase in TB risk per 10-year increase in the duration of smoking 0.38† 0.12 Varied 10 

Increase in TB risk due to low BMI 0.8† 0.25 Varied 10 

ART=antiretroviral therapy; BMI=body mass index; HbA1c= Glycated haemoglobin; TB=tuberculosis. 

^Additional details and references on the parameter values are provided in the supplementary material / Chapter 

3. ⁋Applies to when most people get treated in the very advanced stages of disease (i.e., when screening rates 

are very low, close to zero). †A value of 2.59, for example, is equivalent to an RR of 3.59 when comparing 

individuals with the exposure to individuals in the baseline category.  Similarly, a value of 0.39 is equivalent to 

an RR of 1.39 when comparing individuals with the exposure to individuals in the baseline category.  §This is a 

time-varying parameter.  The initial rate applies up to 2005 (initial), then we estimate a rate that applies from 

2012 with linear interpolation over the intervening years (ultimate). 

 

The tuberculosis model was integrated within the Thembisa HIV model (337).  The model is 

also age-sex-stratified, and the HIV epidemic is simulated dynamically from 1985.  HIV-

positive sub-populations are further stratified by HIV testing history, CD4 count, and 

duration since ART initiation.  This model also captures changes in the ART guidelines over 

time and is calibrated to South African HIV data (337).  HIV is assumed to affect the 

tuberculosis natural history parameters.  These HIV effects are modelled as relative risks, 

depending on CD4 count and receipt of ART.  

To capture age and sex differences in tuberculosis incidence, we applied the cumulative 

multiplicative effect of selected risk factors (alcohol abuse, smoking, undernutrition, and 

poorly controlled diabetes) to rates of progression to tuberculosis disease.  We defined 

undernutrition as having a body mass index (BMI) <18.5kg/m² (112), smoking as those 

currently smoking tobacco products and accounted for the effects of current smoking and 

duration of smoking (327), alcohol abuse as consuming at least 40g of alcohol on a single day 

(69), and diabetes as having HbA1c >6.5% or Fasting Blood Glucose >120mg/dl (112). 
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These risk factors were selected based on evidence for their effect on developing tuberculosis 

disease and data reflecting their relatively high prevalence in South Africa (Chapter 3).  We 

obtained the age-sex-stratified prevalence of these risk factors from surveys (89,112).  

Estimates for the relative effect of these risk factors were obtained from published studies 

(69,90,325–327) and were varied in the calibration process to account for uncertainty around 

them. 

 

The assumed health-seeking patterns in the model were based on South African studies.  We 

assumed different health facility attendance rates for individuals: 1) with tuberculosis, 

attending health facilities due to tuberculosis-related symptoms; 2) without tuberculosis, 

attending due to other health conditions; and 3) without tuberculosis, attending due to 

tuberculosis-like symptoms.  In addition, we assumed that females were more likely to seek 

care than males (2), HIV-positive individuals had higher health-seeking rates than HIV-

negative individuals (216), and smear-positive individuals experienced more tuberculosis 

symptoms than smear-negative individuals (270).  We also modelled the specificity and 

sensitivity of the diagnostic algorithm implemented in the model.  

Once individuals start the six-month tuberculosis treatment course, the following outcomes 

were considered: cure, failure, discontinuation, and death. Males were assumed to have 

higher treatment discontinuation rates than females. Although the base rates of tuberculosis 

mortality on treatment were initially set the same in males and females, these base rates were 

adjusted to reflect sex differences in health-seeking patterns.  We based treatment outcome 

assumptions on the electronic tuberculosis treatment register (ETR.net) (Chapter 3) (28). 

5.3.2. Calibration  

We used a Bayesian approach to calibrate the model.  Prior distributions were set to represent 

uncertainty in key model parameters (Table 5-1), and other parameters were fixed at values 

estimated in earlier model calibrations (Chapter 3) (355).  The main data sources used as 

calibration targets included sex-stratified recorded numbers of tuberculosis deaths from the 

vital register for 1997–2016; the ETR for sex-stratified numbers of people initiating drug-

susceptible tuberculosis treatment (2004–2016), deaths on treatment (2004–2016), and HIV 

prevalence in treated tuberculosis patients (2008–2016).  We also relied on the National 

Institute for Communicable Diseases for the number of microbiological tests performed 

(2004–2012) (24).  Lastly, we also used the active tuberculosis prevalence data (2018) (17).  
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For the calibration process, likelihood functions were defined to represent the goodness of fit 

to these calibration targets, allowing for possible under- or over-reporting in the vital register 

and the ETR data.  We simulated posterior distributions numerically using Incremental 

Mixture Importance Sampling.  Importance sampling was used to draw a sample of parameter 

combinations from regions of the parameter space that yielded the highest likelihood values 

to generate posterior estimates (336).  The means for the model estimates were calculated 

from 1000 posterior samples, and 95% confidence intervals were calculated by taking the 

2.5th and 97.5th percentiles of the posterior sample (Chapter 3).  

5.3.3. Model experiments and outcomes 

We estimated M:F ratios for tuberculosis incidence and mortality using the model-estimated 

rates of new tuberculosis cases and deaths under the baseline scenario (A), representing the 

actual tuberculosis and HIV epidemic up to 2019, incorporating sex differences. To assess the 

effect of a specific factor on tuberculosis incidence and mortality and the M:F ratios, we ran 

individual counterfactual scenarios (B1-11) where each factor was excluded or set equal in 

males and females in the model, and then compared the model outputs to the outputs obtained 

in the baseline scenario (A) (Table 5-2). 

Table 5-2: Model scenarios to quantify the extent to which various factors contribute to 

sex differences in tuberculosis 

Model scenarios  Description  

Baseline scenario (A) Baseline scenario which represents the actual tuberculosis and HIV epidemic up to 2019, 

incorporating sex differences. 

Counterfactual scenarios (B)  

1. No HIV epidemic  HIV transmission probabilities were set to zero 

2. No ART Annual rates of ART initiations are set to zero 

3. Equal ART uptake Annual HIV testing and ART initiation rates in males and females to be the same 

4. No smoking Prevalence of smoking is zero 

5. No alcohol abuse  Prevalence of alcohol assumption is zero 

6. No undernutrition Prevalence of undernutrition is zero 

7. No diabetes  Prevalence of diabetes is zero 

8. Equal health seeking Health seeking rates for females are set the same as for males. 

9. Equal social mixing Contact rates and social mixing parameters are set as the average of the baseline male and 

female parameters 

10. Equal treatment 

discontinuation 

Treatment discontinuation in males set the same as for females. 

11. All effects equal Assume no HIV epidemic and all the other parameters for the factors above are set the 

same for males and females. 

ART=antiretroviral therapy; TB=tuberculosis. 
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We also calculated sex-stratified percentage increases in tuberculosis incidence and mortality 

due to HIV; percentage decreases in tuberculosis incidence and mortality due to ART; and 

tuberculosis incidence PAFs due to smoking, alcohol abuse, undernutrition, diabetes, and 

HIV.  Lastly, we calculated percentage changes in M:F ratios for tuberculosis incidence and 

mortality under the baseline compared to all counterfactual scenarios.  

5.4. Results 

Overall, the model estimates for tuberculosis prevalence and mortality were consistent with 

the sex-stratified observed data, with a higher burden in males than females (Figure 5-1 a-d).  

Tuberculosis prevalence and deaths rose rapidly during the early 1990s, peaked in the mid-

2000s to late-2000s, and subsequently declined until 2019.  The 2019 estimated tuberculosis 

prevalence in males was 1.06% (95% CI 1.0–1.12%) and 0.58% (95% CI 0.56–0.62%) in 

females. Tuberculosis deaths in 2019 were 32 000 (95% CI 29 000–35 000) in males and 

21 000 (95% CI 19 000–22 000) in females.  

Over the 1990–2019 period, the M:F ratios for tuberculosis mortality and incidence were 

consistently greater than 1.0.  The M:F ratios for tuberculosis incidence and deaths were the 

highest in the early 1990s (Figure 5-2 a and b, black); if HIV had not been present in South 

Africa, the M:F ratios would have remained consistently high (Figure 5-2 a and b, green).  As 

the HIV epidemic rapidly grew in the South African population, tuberculosis mortality and 

incidence for both sexes increased (1996–2002).  However, females had a more substantial 

increase in tuberculosis incidence and mortality due to HIV than males (Figure 5-2 e and f).  

Consequently, the M:F ratios for tuberculosis incidence and mortality declined and reached 

their lowest points in the mid-2000s to late-2000s (Figure 5-2 a and b, black).  
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Figure 5-1: Sex-specific tuberculosis prevalence and mortality in adults, 1990–2019 

  

   

Solid black lines in (a) and (b) represent model estimates for tuberculosis prevalence in males and females, 

respectively.  Black dots represent the 2018 TB prevalence with 95% confidence intervals.  Solid black lines in 

(c) and (d) represent model estimates for tuberculosis mortality in males and females, respectively.  Black dots 

represent recorded mortality, adjusted for the cause of death misclassification and missing fields.  All dashed 

lines represent 95% confidence intervals. 

 

0,0%

0,5%

1,0%

1,5%

2,0%

2,5%

3,0%

1
9

90

1
9

92

1
9

94

1
9

96

1
9

98

2
0

00

2
0

02

2
0

04

2
0

06

2
0

08

2
0

10

2
0

12

2
0

14

2
0

16

2
0

18

a) Tuberculosis prevalence in males aged 15+

0,0%

0,5%

1,0%

1,5%

2,0%

2,5%

3,0%

1
9

90

1
9

92

1
9

94

1
9

96

1
9

98

2
0

00

2
0

02

2
0

04

2
0

06

2
0

08

2
0

10

2
0

12

2
0

14

2
0

16

2
0

18

b) Tuberculosis prevalence in females aged 15+

0

10000

20000

30000

40000

50000

60000

70000

80000

1
9

90

1
9

92

1
9

94

1
9

96

1
9

98

2
0

00

2
0

02

2
0

04

2
0

06

2
0

08

2
0

10

2
0

12

2
0

14

2
0

16

2
0

18

c) Tuberculosis deaths in males aged 15+
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Figure 5-2: The effect of HIV and ART on male-to-female (M:F) ratios for tuberculosis 

incidence and mortality, 1990–2019 

  

  

First row: M:F ratios for tuberculosis incidence (a) and mortality (b) (1990–2019).  The solid black lines 

represent the baseline scenario where the effects of HIV and the rollout of ART from the year 2000 were present 

in the model.  The solid green lines represent the counterfactual scenario where HIV was absent from the model.  

The solid red lines represent the counterfactual scenario where HIV was present, but ART was not introduced.  

Second row: Percentage increase in tuberculosis incidence (c) and mortality (d) due to HIV.  The solid red lines 

represent female tuberculosis incidence and mortality, and the solid blue lines represent males.  Third bottom 

row: Percentage reduction in tuberculosis incidence (e) and mortality (f) due to ART.  All dashed lines represent 

95% confidence intervals.  ART=antiretroviral therapy; TB=tuberculosis. 

If ART had not been rolled out in South Africa, the M:F ratio for tuberculosis incidence and 

mortality would have continued to decline (Figure 5-2 a and b, red).  However, with the 
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expansion of ART from the mid-2000s, the M:F ratios increased, reaching 1.70 (95% CI 

1.65–1.73) for incidence and 1.65 (95% CI 1.59–1.70) for mortality in 2019.  

Over time, HIV led to a greater relative increase in tuberculosis incidence and mortality in 

females than males.  In 2019, HIV contributed to a 54.0% (95% CI 53.1–56.4%) and 62.9% 

(95% CI 60.9–66.0%) increase in female tuberculosis incidence and mortality, respectively 

(Figure 5-2 c and d, red). Among males, HIV led to a 45.6% (95% CI 44.5–46.1%) increase 

in tuberculosis incidence and a 57.4% (95% CI 55.8–60.7%) increase in tuberculosis 

mortality (Figure 5-2 c and d; blue).  However, females benefited more from ART than 

males.  In 2019, ART resulted in 38.3% (95% CI 37.1–39.5%) and 52.1% (95% CI 51.2–

53.1%) reductions in tuberculosis incidence and mortality among females, respectively in 

2019 (Figure 5-2 e and f, red).  For males, ART led to 17.5% (95% CI 15.8–19.1%) and 

28.8% (95% CI 27.3–30.3%) reductions in tuberculosis incidence and mortality, respectively, 

in 2019 (Figure 5-2 e and f, blue). 

The PAFs of tuberculosis incidence due to alcohol abuse, smoking, and undernutrition were 

higher in males than females, estimated at 51.4% (95% CI 48.4–54.4%), 29.5% (95% CI 

26.5–33.1%) and 16.1% (95% CI 14.1–18.3%) respectively among males in 2019 (Figure 

5-3); among females, the estimated PAFs were 30.1% (95% CI 28.0–32.2%), 15.4% (95% CI 

13.8–17.8%) and 10.7% (95% CI 9.3–12.2%) respectively. On the other hand, the PAFs of 

tuberculosis incidence due to diabetes and HIV were higher in females (22.9% (95% CI 20.6–

25.2%) and 54.5% (95% CI 53.1–56.4%) respectively) than in males (diabetes: 17.5% (95% 

CI 15.7–19.3%) and HIV: 45.6% (95% CI 44.5–46.9%). 

Figure 5-3: Population attributable fractions for tuberculosis incidence in 2019 due to 

alcohol abuse, smoking, undernutrition, diabetes, and HIV 

 

The red bars represent females, and the blue bars represent males. 
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In the counterfactual scenario where HIV was assumed absent, and all other factors' effects 

were set equal for males and females, the tuberculosis incidence M:F ratio reduced from 1.7 

to 1.01, relative to the baseline scenario (40.7% reduction); for mortality, the M:F ratio 

reduced from 1.65 to 0.93, (43.6% reduction) (Table 5-3).  In the counterfactual scenario 

where we assumed equal annual rates of HIV testing and ART initiation in males and 

females, the tuberculosis incidence and mortality M:F ratios reduced by 3.4% and 8.2%, 

respectively.  When we assumed no ART, the tuberculosis incidence and mortality M:F ratios 

reduced by 25.1% and 32.7%, respectively.  In the individual counterfactual scenarios where 

alcohol abuse, smoking and undernutrition were excluded, the tuberculosis incidence M:F 

ratios reduced by 30.5%, 16.8% and 6.1%, respectively.  On the other hand, excluding HIV 

and diabetes led to 19.6% and 7.0% increases in the M:F ratios, respectively. 

Table 5-3: Male-to-female ratios for TB incidence and mortality in the baseline and 

counterfactual scenarios, 2019 

 TB incidence M:F 

ratios 

(95% CI) 

% change in M:F ratio, 

counterfactual vs baseline 

(95% CI) 

TB mortality M:F 

ratios 

(95% CI) 

% change in M:F ratio, 

counterfactual vs baseline 

(95% CI) 

Baseline scenario 1.70 (1.65–1.73)  1.65 (1.59–1.66)  

Counterfactual scenarios     

1. No HIV epidemic  2.03 (1.20–2.10) ↑ 19.6 (17.5–21.8) 1.89 (1.83 - 1.97) ↑ 14.8 (12.3–17. 5) 

2. No ART 1.27 (1.23–1.30) ↓ 25.1 (24.4–26.1) 1.11 (1.06 - 1.14) ↓ 32.7 (31.5–34.1) 

3. Equal ART 

uptake 

1.64 (1.46–1.68) ↓ 3.4 (2.9 –3.9) 1.52 (1.46 - 1.56) ↓ 8.2 (7.6–8.7) 

4. No smoking 1.41 (1.37–1.45) ↓ 16.8 (14.7–18.6) 1.36 (1.31 - 1.40) ↓ 17.9 (15.9–20.0) 

5. No alcohol abuse  1.18 (1.14–1.22) ↓ 30.5 (28.2–32.7) 1.08 (1.04 - 1.11) ↓ 34.8 (32.7–36.8) 

6. No undernutrition 1.59 (1.55–1.63) ↓ 6.1 (5.3–7.0) 1.56 (1.52 - 1.61) ↓ 5.4 (4.6–6.2) 

7. No diabetes  1.81 (1.77–1.86) ↑ 7.0 (6.2–7.8) 1.80 (1.74 - 1.85) ↑ 8.9 (7.8–9.9) 

8. Equal health 

seeking 

1.75 (1.70–1.78) ↑ 2.9 (2.5–3.4) 1.52 (1.48 - 1.56) ↓ 7.7 (6.8–8.9) 

9. Equal social 

mixing 

1.75 (1.70 –1.79) ↑ 3.3 (3.02–3.6) 1.70 (1.64 - 1.75) ↑ 2.9 (2.7–3.2) 

10. Equal treatment 

discontinuation 

1.70 (1.65–1.73) ↑ 0.015 (0.004–0.026) 1.66 (1.60 - 1.70) ↑ 0.45 (0.42–0.48) 

11. All effects equal(a) 1.01 (1.00–1.01) ↓ 40.7 (39.1–42.0) 0.93 (0.92 - 0.94) ↓ 43.6 (41.7–45.2) 

ART=antiretroviral therapy.  CI=confidence interval.  M:F ratio=male-to-female ratio. ↓=decrease. ↑=increase.  

Under the baseline scenario, all factors were included in the model.  Individual counterfactual scenarios were 

simulated with the exclusion of specific factors (HIV, alcohol, smoking, undernutrition, and diabetes).  (3): 

equal ART scenario = annual rates of HIV testing and ART initiation in males and females are set the same; (8): 

health-seeking rates for females set the same as for males; (9): contact rates and social mixing parameters set to 

be the average of the baseline male and female contact rates; (10): rates of treatment discontinuation in males set 

to be the same as for females.  Under the counterfactual scenarios (11): ‘All effects equal’= HIV epidemic 

assumed absent and all the other parameters for the factors above were set the same for males and females, with 

no effects of alcohol, smoking, undernutrition, and diabetes on TB. 

 

The counterfactual scenario for health-seeking patterns (equal male and female rates) led to a 

7.7% decrease in the M:F ratio for TB mortality.  When social contact rates were the same in 

males and females, the M:F ratios for tuberculosis incidence and mortality slightly increased 
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by 3%.  Lastly, in the treatment discontinuation counterfactual scenario (male discontinuation 

rate set at the same value as female rate), there were minor changes in the M:F ratios for 

tuberculosis incidence and mortality.  

5.5. Discussion 

Our model suggests that despite variations in the M:F ratios for tuberculosis incidence and 

mortality over the 1990–2019 period, overall tuberculosis mortality and incidence were 

consistently higher in males than females.  The higher tuberculosis incidence in males may 

partly be explained by alcohol abuse and smoking, which are highly prevalent in males and 

increase the risk of developing tuberculosis through weakening cell-mediated immunity 

(90,91).  Low ART uptake among males compared to females also explains the excess burden 

of tuberculosis in males.  ART substantially reduced the contribution of HIV to tuberculosis 

incidence in both sexes; however, higher levels of HIV testing and ART initiation among 

females compared to males (356) led to females experiencing greater relative reductions in 

tuberculosis due to ART than males.  We also showed that health-seeking delays explain the 

higher mortality among males, while sex differences in social mixing patterns and treatment 

discontinuation had minor effects on sex disparities in tuberculosis. 

In our model, HIV increased tuberculosis incidence and mortality among females by more in 

than males due to the higher HIV prevalence in females (348).  Consequently, the M:F ratios 

for tuberculosis incidence and mortality declined during the mid-1990s to early 2000s as HIV 

rapidly increased.  However, the expansion of the ART program substantially reduced 

tuberculosis incidence and mortality, and the higher levels of ART coverage in women 

compared to men (356) have meant that male tuberculosis rates have not declined to the same 

extent as those in women.  These findings are consistent with other studies demonstrating that 

although HIV prevalence was higher among females, males still had a higher burden of 

tuberculosis than females (24,351).  Hermans and colleagues showed that HIV led to 

substantial relative increases in tuberculosis notification rates among females than males 

between 1993 and 2013; the scale-up of ART led to substantial declines in females' relative 

tuberculosis notification rates compared to males (351).  Altogether, the modelled HIV and 

ART effects on the sex distribution of tuberculosis support the hypothesis that if HIV 

removed the protection females have against tuberculosis disease (86), then ART restored 

this protection (351). 
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In contrast with our tuberculosis incidence estimates for 2019, the GBD study estimated 

higher tuberculosis incidence in females than males for South Africa (7).  This disparity was 

attributed to the higher burden of HIV in females than in males (7,348).  Differences in 

methodological approaches and data sources may explain these discrepancies between our 

estimates and those by the GBD.  For instance, the GBD used meta-regression models and 

relied on mortality data to estimate tuberculosis incidence from mortality-incidence ratios (7).  

In contrast, we used a dynamic transmission model which accounts for the tuberculosis 

natural history, impact of HIV and interventions.  

Nonetheless, our tuberculosis mortality estimates were consistent with the GBD estimates, 

with higher mortality in males than females.  The GBD suggested that the excess tuberculosis 

mortality in males was mainly due to alcohol abuse and smoking among HIV-negative 

individuals (7).  We also found alcohol and smoking to be important contributors to the 

overall tuberculosis incidence and sex differences.  Tuberculosis incidence PAFs due to 

smoking and alcohol abuse were higher in males than females, and we demonstrated that if 

smoking or alcohol abuse were removed individually, M:F ratios for tuberculosis incidence 

would reduce by approximately 17% or 30%, respectively.  This reflects the increased 

exposure males have to these risk factors, which are also likely to increase the progression to 

tuberculosis disease (90,91).  On the other hand, because HIV and diabetes are relatively 

more prevalent in females than males, females had higher PAFs for HIV and diabetes. 

In the counterfactual scenario where males' health-seeking rates were increased and set equal 

to female health-seeking rates, the overall tuberculosis incidence and mortality declined 

slightly.  This counterfactual scenario was associated with a 7% reduction in the M:F ratio for 

tuberculosis mortality, suggesting that delayed diagnosis and treatment in males may lead to 

tuberculosis disease severity and death (357).  Supporting these findings, other studies 

suggested that compared to females, males are older and sicker when they seek health care 

(2); they are more likely to be lost to follow-up and experience poor outcomes, including 

treatment failure and death (38,353,357).  The health-seeking delays in men may be 

explained by socioeconomic reasons such as the higher rates of employment in men and 

associated loss of income due to time lost while seeking tuberculosis health care (38). 

The assumed social mixing counterfactual scenario modestly influenced the tuberculosis 

incidence and mortality M:F ratios.  In this scenario, social mixing proportions and contact 

rates were the same in men and women.  The model estimated slight increases in tuberculosis 
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incidence and mortality in females and declines in males, and the M:F ratios increased 

moderately.  This is due to the higher contact rates in women that we assumed in the baseline 

scenario.  However, in other studies where the social mixing patterns were assumed to be 

highly sex-assortative, sex disparities in tuberculosis increased (85,354).  This was mainly 

due to men having higher rates of social contact with other men who carry a higher 

tuberculosis prevalence and therefore further increasing the risk of transmission and the 

burden of tuberculosis among men (85,354).  

Our model suggests that removing an individual risk factor or equalising males' and females' 

health-seeking patterns, social contacts, or treatment outcomes at the current levels is 

insufficient to eliminate sex disparities.  However, assuming the HIV epidemic was absent 

and all the other factors in males and females were the same, the tuberculosis incidence M:F 

ratios were reduced to 1.01.  For mortality, the M:F ratio reduced to 0.93 (i.e., higher 

mortality in females).  This is because females’ ‘background’ mortality (deaths not related to 

HIV and tuberculosis, e.g., due to violence) is much lower than in males (28,358); and 

therefore, more females survive to older ages than males.  In our model we assumed 

tuberculosis mortality rates increase with age (Table 5-1), people in older age groups (55+ 

years) contribute disproportionately to tuberculosis mortality, and the majority are likely 

females.  The lower female background mortality rates may also explain why in females 

compared to males, tuberculosis mortality may appear higher relative to background 

mortality (28), although their absolute tuberculosis mortality risk is low.  

Our analysis is strengthened by using a tuberculosis and HIV transmission model calibrated 

to several South African data sources.  This dynamic model allowed us to quantify how HIV 

and ART affected the sex distribution of tuberculosis incidence and mortality over the 1990–

2019 period.  However, our study has several limitations.  First, we did not include all the 

factors that may drive sex differences in tuberculosis, such as differences in biological 

susceptibility to tuberculosis disease (86), occupational exposures such as mining, or 

incarceration (72,359). Additionally, the results on assessing the effect of the multiple factors 

we explored on M:F ratios should not be taken as evidence that they fully explain changes in 

the magnitude of M:F ratios as they are dependent on the model assumption. Second, we did 

not dynamically model alcohol, smoking, undernutrition and diabetes; their effects depended 

on their prevalence in the population, with most of the prevalence estimates calculated from 

2016 data (89,112).  The prevalence of these risk factors may have changed over time.  
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Hence, the estimated PAFs (for 2019) may not accurately represent the historical effect of 

these risk factors on tuberculosis incidence.  For instance, the prevalence of smoking has 

been on a declining trend (360), and diabetes has risen over time (361). Lastly, it is unclear 

whether these risk factors affect tuberculosis transmission, the incidence of tuberculosis 

disease or mortality.  However, for simplicity, we have modelled only the effect of these risk 

factors on tuberculosis incidence.  

In summary, males have consistently had higher tuberculosis incidence and mortality than 

females.  The excess tuberculosis incidence and mortality in males highlights the need to 

make health services more accessible to males and address the structural barriers to their 

retention in tuberculosis and HIV care.  Additionally, there is a need for effective 

interventions that reduce excessive alcohol consumption and tobacco smoking. 
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Chapter 6. Estimating the impact of improving tuberculosis programmatic 

interventions in South Africa, 2023-2030 

Mmamapudi Kubjane, Erika Mohr-Holland, Andrew Boulle, Leigh F. Johnson. Estimating 

the impact of improving tuberculosis programmatic interventions in South Africa, 2023-2030.  

Publication status: In preparation. 

Relevance of this manuscript to the thesis: The analysis in this manuscript addresses the 

third objective of this thesis. 
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and interpretation of the results. LJ and MK wrote the code for the mathematical model. LJ 

and AB were the study supervisors. EM gave insights on implemented TB programmatic 

interventions and interpretation of the results. MK wrote the first draft, and all authors 

critically reviewed versions of the manuscript and agreed on the final version to be submitted 

for publication. 

6.1. Abstract  

Background: The Global End tuberculosis (TB) Strategy aims to achieve TB incidence and 

mortality reductions of 80% and 90%, respectively, by 2030 relative to 2015. This study 

sought to assess the impact of improving rates of health attendance and TB screening, 

improving linkage to TB care and retention, increasing preventative therapy uptake, and 

reducing antiretroviral therapy interruptions on TB incidence and mortality in South Africa.  

Methods: We used an age-sex-stratified dynamic TB transmission model to estimate the 

impact of implementing improvements to existing interventions on TB incidence and 

mortality between 2023 and 2030.  

Results: Between 2023 and 2030, we estimated that reductions in cumulative TB incidence 

and mortality due to all intervention improvements combined, compared to no changes in 

policy would be 21.7% (95% confidence interval (CI) 19.5–24.4%) and 33.1% (95% CI 

31.5–35.1%), respectively. Improving screening would lead to the greatest reductions. By 

2030 relative to 2015, combined interventions would reduce TB incidence by 43.5% (95% CI 

41.3–45.2%) and mortality by 55.7% (95% CI 51.8–58.4%). 
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Conclusion: Improving existing interventions can potentially reduce the burden of TB in 

South Africa, with increased screening likely being the most impactful. Without further 

innovations and improvements to the current TB management approaches, the 2030 End TB 

milestones are unlikely to be met.  

6.2. Background  

Tuberculosis (TB) remains an important health problem in South Africa. In 2019, 

approximately 273 000 (95% confidence interval (CI) 261 000–288 000) persons (15+ years) 

developed TB disease and 52 000 (95% CI 50 000–55 000) died due to TB (355). While HIV 

is the main TB driver in South Africa (4,6), other contributing factors include under-

diagnosis and incomplete treatment, which drive TB transmission and mortality (2,20). 

Recurrent TB is also a problem among individuals with a history of previous TB treatment 

(21,22). Additionally, risk factors such as undernutrition, alcohol misuse, tobacco smoking, 

and diabetes contribute substantially to the burden of TB (3,7).  

South Africa has made considerable efforts to manage the TB epidemic by adopting and 

implementing global TB strategies through the National Strategic Plan (NSP) for HIV, TB, 

and Sexually Transmitted Infections (138). The NSP for 2016-2022 has also adopted the End 

TB Strategy, which aims to reduce the global TB incidence by 80% and global TB mortality 

by 90% by 2030 (relative to 2015 levels) (11). Additionally, the NSP has adopted the 90-90-

90 targets of the Stop TB Partnership Global Plan to End TB (138). These targets aimed to 

ensure that by 2020 90% of all persons who need TB treatment or TB preventative therapy 

(TPT) are identified and provided with treatment as required; 90% of persons in high risk 

populations are diagnosed and initiated on the appropriate treatment; and lastly, that 

successful treatment is achieved for at least 90% of all persons diagnosed with TB (138). 

However, very few formal analyses have estimated and assessed South Africa’s progress 

towards meeting these 90-90-90 TB targets.  

In the context of HIV, the 90-90-90 targets aimed to ensure that by 2020, 90% of persons 

living with HIV (PLWHIV) were tested and knew their status; 90% of persons diagnosed 

with HIV received treatment; and that 90% of the individuals on treatment were virally 

suppressed (356). HIV epidemiological data and modelling analyses suggested that South 

Africa has met the first and third 90% targets but lags behind on the second target to ensure 

persons with HIV initiate and remain on antiretroviral therapy (ART) (356). These 90-90-90 
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HIV targets were recently updated to 95-95-95 by 2025 (362), and this progress in HIV care 

is also beneficial to the TB control programme. 

Existing TB programmatic interventions have led to reductions in the burden of TB in South 

Africa. These interventions include a standard six-month TB treatment course, scaled-up 

microbiological testing, Xpert MTB/RIF roll-out to replace smear microscopy, TPT, and 

ART for persons with HIV (23,24). However, TB incidence and mortality remain high in the 

country. Additionally, the COVID-19 pandemic and COVID-19-related interventions caused 

disruptions to TB care-seeking patterns (3,13). Previous modelling studies have suggested 

that scaling up existing interventions can substantially reduce TB incidence and mortality 

(141,172,174,180,237) and may be cost-effective (178,181). However, it remains uncertain 

whether South Africa will meet the End TB goal. 

Several reports, including the South African prevalence survey and our previous modelling 

analysis, have shown that men carry the greatest TB burden (17,363). Men are likely to have 

delayed diagnosis and treatment (2,353) and experience worse treatment outcomes than 

women (364). Additionally, men are tested for HIV and initiated on ART at a lower rate than 

women (349,356). Another group that experiences high TB morbidity and mortality is 

persons with a history of previous TB treatment (21,22). This group could be targeted for 

TPT, but the potential impact has not been assessed at a national level. Evaluating the impact 

of scaling up existing interventions and South Africa's potential to meet the End TB Strategy 

is vital for policymakers to decide where investment is required to achieve the greatest gains.  

This study aimed to evaluate the impact of scaling up existing interventions on South African 

TB incidence and mortality and the potential to attain the 2030 End TB goals (132). The 

interventions considered in this study included improving rates of health attendance and TB 

screening, reducing initial loss to follow-up (ILTFU), reducing treatment discontinuation, 

increasing TPT for PLWHIV and persons previously treated for TB, and meeting the HIV 90-

90-90 targets. Lastly, we aim to assess South Africa's progress towards the 90-90-90 TB 

targets.  
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6.3. Methods 

6.3.1. The baseline model 

We previously developed an age-sex-stratified compartmental model of TB and HIV for 

adults (15+ years) in South Africa. In the baseline model, we considered only interventions 

that were introduced up to 2018; these have been described previously (355). To this baseline 

model, we added the implementation of Xpert Ultra (from mid-2018) and the switch to a 

three-month isoniazid-rifapentine preventative therapy course (3HP) (from mid-2021). We 

also considered the effect of COVID-19-related disruptions on the rate of TB screening.  

We briefly describe the TB transmission model here; further descriptions of the model and 

key parameters are provided elsewhere (355). We modelled movement between states, 

including TB infection, progression to TB disease, natural recovery, diagnosis and treatment 

initiation, death, and treatment cure (355). Age and sex differences in TB risk factors were 

captured by applying age-sex-specific relative risks to rates of progression to TB disease. 

Following cure by TB treatment, individuals move to post-treatment states – first, to short-

term (≤ 6 months after cure); and then long-term (6+ months after cure) (355). In both states, 

individuals are at risk of reinfection, however, in the short-term state, individuals are also 

assumed to have a high chance of relapse (315). The risk of infection is a function of the 

mean contact rates, age-sex-mixing patterns (83), the probability of transmission per contact, 

and the prevalence of infectious TB.  

The Thembisa HIV model – a compartmental model of the South African HIV epidemic 

designed to answer policy questions relating to HIV prevention and treatment (337) – forms 

the HIV component of the model. The model is age-sex-stratified, and the HIV is simulated 

from 1985. HIV-positive cohorts are further divided into HIV testing history, CD4 count, and 

duration since ART initiation categories. The model also captures changes in the ART 

guidelines over time and was fitted to multiple South African data (337). The HIV effects on 

the TB natural history are modelled as relative risks, which depend on CD4 count and 

duration since ART initiation. 

We modelled the uptake of TPT for people with latent TB infection (LTBI) who are HIV-

positive and eligible as per the prevailing guidelines at the time (317). The uptake of TPT 

depended on CD4 count and ART duration. Between 2010 and 2021, we modelled isoniazid 
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preventative therapy (IPT) use (described previously); from mid-2021, we modelled the use 

of the three-month isoniazid-rifapentine preventative therapy course (3HP). For the use of 

3HP, we assume a treatment duration of 3 months and protection to last 12 months, (similar 

to the 12 month IPT) because there is no evidence suggesting that 3HP effectiveness is 

significantly different from IPT (365).  

We considered smear microscopy and Xpert MTB/RIF as the main tools for diagnosing TB, 

accounting for the phased implementation of Xpert MTB/RIF from 2011; from 2018 

onwards, we assumed the use of Xpert Ultra (287,366,367). For individuals on the 6-month 

TB treatment course, the possible outcomes include cure, failure, discontinuation, and death. 

These treatment outcome assumptions were based on the electronic TB treatment register 

(ETR) data for drug-susceptible TB, and have been described previously (28,355). 

South African data suggested that COVID-19-related interventions that restricted movements 

have decreased Xpert Ultra testing (26,27). Therefore, to account for the effects of COVID-

19-related disruptions on TB diagnosis, we assumed that between mid-2019 to mid-2020, 

screening rates dropped by 10%, and from mid-2020 to mid-2021, there was a 20% reduction 

in the rate of TB screening.  

6.3.2. Calibration  

The model was previously calibrated to South African data, including sex-stratified recorded 

numbers of TB deaths from the vital register, numbers of people initiating drug-susceptible 

TB treatment, deaths on treatment, HIV prevalence in persons treated for TB, the number of 

microbiological tests performed (24) and TB prevalence data (17). Since the calibration data 

related only to the period up to 2018, we did not re-calibrate the model in the current paper. 

To generate uncertainty ranges in this current analysis, we used the posterior distributions 

estimated in a previous calibration analysis (363). 

6.3.3. Intervention scenarios 

We focused on interventions that 1) increase the proportions of persons presumed to have TB 

who get screened at health facilities; 2) increase male TB health-seeking rates, HIV testing 

and ART initiation rates to be the same as those for females; 3) reduce ILTFU; 4) reduce 

treatment discontinuation; 5) increase the uptake of TPT in HIV-positive individuals, and 6) 
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provide TPT to previously treated persons with TB (Table 6-1). We also estimated the impact 

of meeting the 90-90-90 targets for HIV (scenario 7). Finally, in the last scenario (8), we 

included the combined effect of all interventions (1) to (7).  

Table 6-1: Summary of the interventions implemented between 2023 and 2030 

Interventions and targeted parameters Examples of interventions activities  

1)     Double screening  

Double the proportion of persons tested among those presenting with TB 

symptoms to 0.4.  

Screen all individuals visiting health care facilities; 

and encourage those with symptoms to be tested 

microbiologically (368). 

2)     Engage men in care 
 

Equalise male and female health facility attendance rates, HIV testing and 

ART initiation and ART interruptions rates. 

Distribute self-testing kits to men through their 

pregnant partners (369); mobile HIV testing 

campaigns (370); peer-delivered U=U messaging to 

encourage men to test for HIV (371); introduce male 

ART clinics (372). 

3)     Halve initial loss to follow-up  

Improved linkage to care after diagnosis by halving initial loss to follow-up 

when Xpert is used to 0.047. 

Trace or send reminders (i.e., via text messages) to 

persons who were screened and received a positive 

TB diagnosis to ensure treatment initiation (368,373)  

4)     Halve discontinuation 

Improved TB care and retention in care 

Halve annual treatment discontinuation rate in males to 0.151. 

Halve treatment discontinuation rate in females to 0.118. 

Provide patients with support and reminders by health 

care workers to adhere to and complete treatment as 

required (368,373,374). 

5)     Double TPT in HIV+ 

Double the monthly rates of preventative therapy initiation in eligible 

persons with HIV to 0.024. 

Nurse-centered interventions to promote TPT uptake 

to eligible patients attending health facilities and 

educate patients on TPT (375); give health facility 

managers leadership and management training to 

increase the uptake of up-to-date information and 

positive attitudes towards TPT, and improve health 

worker’s skills to enable TPT use (376). 

6)     TPT post treatment  

Provide preventative therapy to 80% of persons who completed treatment. 

7)     Reduce ART interruptions  

Meeting the HIV 90-90-90 targets in 2019. Targeting the second HIV 

indicator, as the first and third 90 are met (11): the annual rate of ART 

interruption (0.2318) is reduced by 80% to 0.046. 

Text message appointment reminders and peer 

support (377,378). 

8)     All interventions  

The combined impact of all interventions. 

 

ART=antiretroviral therapy. ILTFU=initial loss to follow-up.TPT=tuberculosis preventative therapy, which is 

3HP (isoniazid and rifapentine for three months). 

6.3.4. Outcomes  

The model estimated TB incidence and mortality rates for the baseline scenario (no changes 

to existing TB policy) and under each scenario (1 to 8). We then calculated the cumulative 

(2023-2030) TB incidence and mortality in each scenario and the percentage reductions by 

comparing the baseline and intervention scenarios (1 to 8). Lastly, we report on the progress 

towards meeting the TB 90-90-90 targets (8,379) as defined in Table 6-2: 90% of all persons 

who need TB treatment or TPT are identified and provided the treatment as required; 90% of 

persons in key populations are diagnosed and receive the appropriate treatment, and lastly, 

that there is treatment success for at least 90% of all persons diagnosed with TB (138). 
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Table 6-2: 90-90-90 TB target definitions 

The 90-90-90 TB targets (as per WHO (8,379)) Definition in the model 

Preventative therapy coverage 

90% of all eligible persons (PLWHIV and child contacts) 

provided preventative therapy. 

Ratio of the number of HIV-positive persons initiating preventative 

therapy to the number of PLWHIV starting ART and/or entering HIV 

care. 

Case detection (90% of persons with TB are notified and 

treated) 

Ratio of modelled persons newly treated for TB (excluding false positive 

TB) to estimated incident TB. 

TB treatment success rates  

90% of notified persons with TB are successfully treated 

(where treatment success is defined as a combination of cure 

and completion) 

Ratio of number of persons completing treatment (net of deaths during 

treatment) to those who have started treatment (excluding false positive).  

ART=antiretroviral therapy. LTBI=latent TB infection. People living with HIV=PLWHIV. TB=tuberculosis 

6.4. Results   

In the continuation of the baseline scenario (with no changes to current policy) (Figure 6-1, 

black), TB incidence and mortality rates are estimated to be on a gradual downward trend 

over 2015-2030, although with a slight reversal of the trend over 2020-2021 (due to COVID-

19- related interruptions). Over time, the TB incidence and mortality rates were higher in 

males than females.  
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Figure 6-1: Tuberculosis incidence and mortality rates, 2015-2030, by sex  

   

 

Black lines represent the continuation of the baseline scenario without any improvement to existing 

interventions. The grey lines represent the scenario with all intervention improvements combined. Dashed lines 

represent 95% confidence intervals.  

Under the scenario with all intervention improvements combined, between 2023 and 2030, 

the overall cumulative TB incidence would be reduced by 21.7% (95% CI 19.5–24.4%), with 

a 20.3% (95% CI 18.2–22.9%) reduction in males and a 23.8% (95% CI 21.4–26.4%) 

reduction in females (Figure 6-2 a). The impact of doubling the proportion of individuals 

screened was higher in females than males, with estimated reductions in the cumulative TB 

incidence between 2023 and 2030 of 14.7% (95% CI 12.7–17.6%) in males and 17.2% (95% 

CI 15.1–20.3%) in females. Improving male engagement in care would contribute to TB 

incidence reductions of 5.0% (95% CI 3.6–6.9%) in males and 6.5% (95% CI 5.0–8.5%) in 

females.  
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Figure 6-2: Projected percentage reduction in cumulative tuberculosis incidence and 

mortality rates between 2023 and 2030, compared to the baseline 

scenario, by sex and intervention 

 

 

Intervention improvements were assumed to be implemented from 2023 to 2030. The baseline represents a 

scenario where we assumed the continuation of the existing control programme interventions (with no 

improvements). Bars with grey shades represent females; unshaded bars represent males. ART=antiretroviral 

therapy. ILTFU=initial loss to follow-up.TPT=tuberculosis preventative therapy, which is 3HP (isoniazid and 

rifapentine for three months).  

Interventions to improve retention in HIV and TB care also had relatively small impacts and 

showed a slightly higher impact in females than males. Reducing ART interruptions in HIV-

positive individuals between 2023 and 2030 would reduce TB incidence by 1.06% (95% CI 

1.02–1.10) in males and 1.41% (95% CI 1.35–1.45%) in females. On the other hand, halving 

ILTFU would contribute to TB incidence reductions of 0.82% (95% CI 0.73–0.92%) in males 

and 0.98% (95% CI 0.89–1.08%) in females. Halving treatment discontinuation would reduce 

the cumulative TB incidence between 2023 and 2030 by 0.39% (95% CI 0.36–0.44%) in 

males and 0.44% (95% CI 0.39–0.48%) in females.  

Similarly, TPT would also have a slightly greater impact on females than males. Doubling the 

TPT provision to HIV-positive individuals with LTBI would contribute to TB incidence 

reductions of 0.93% (95% CI 0.9–0.96%) in males and 1.26% (95 CI 1.23–1.28%) in 
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females. Providing 80% of persons who have completed TB treatment with TPT would lead 

to TB incidence reductions of 0.75% (95 CI 0.72–0.77%) in males and 0.84% (95% CI 0.81–

0.88%) in females.   

Assuming improvements in all interventions combined would lead to overall TB mortality 

reductions of 33.1% (95% CI 31.5–35.1%) (35.8% (95% CI 34.3–37.6%) in males; 30.4% 

(95% CI 28.6–32.5%) in females). The higher impact in males is driven by improved male 

engagement in care (Figure 6-2 b). By itself, improved male engagement in care would lead 

to TB mortality reductions of 12.2% (95% CI 9.7–14.8%) in males and 2.8% (95% CI 0.4–

6.2%) in females. Doubling TB screening would lead to greater TB mortality reductions: 

25.0% (95% CI 23.8–26.7%) in males and 26.5% (95% CI 25.2–28.3%) in females. 

Similar to impacts on TB incidence, all other interventions would have relatively modest 

impacts on mortality, with estimated TB mortality reductions of <2%. Reducing ART 

interruptions would reduce TB mortality by 1.47% (95% CI 1.41–1.53%) in males and 1.75% 

(95% CI 1.69–1.81%) in females. Improving linkage to care by halving ILTFU would 

contribute to TB mortality reductions of 1.70% (95% CI 1.64–1.76%) in males and 1.79% 

(95% CI 1.72–1.85%) in females (Figure 6-2 b). However, halving treatment discontinuation 

showed no significant positive impact on mortality. Doubling TPT provision to HIV-positive 

persons with LTBI could contribute to TB mortality reductions of 0.89% (95% CI 0.85–

0.92%) in males and 1.16% (95% CI 1.13–1.19%) in females. Lastly, providing TPT to 80% 

of individuals who completed TB treatment would reduce TB mortality by 0.60% (95% CI 

0.56–0.62%) in males and 0.69% (95% CI 0.65–0.72%) in females.  

Between 2015 and 2020, the estimated reductions in TB incidence in males and females were 

9.8% (95% CI 8.8–10.7%) and 15.4% (95% CI 14.1–16.4%), respectively (Table 6-3). For 

mortality, the reductions were 13.7% (95% CI 12.2–15.0%) and 19.3% (95% CI 17.6–20.7%) 

in males and females, respectively. In the continuation of the baseline scenario (with no 

improvements in TB programmatic interventions), the model suggested that the reduction in 

TB incidence rates between 2015 and 2030 would be 21.8% (95% CI 14.9–26.0) and 26.5% 

(95% CI 19.2–31.2%), among males and females respectively.  
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 Table 6-3: Reductions in TB incidence and mortality rates compared to 2015 

 Baseline  

2020 vs 2015 

% (95% CI) 

Continuation of baseline 

2030 vs 2015 

% (95% CI) 

All intervention improvements 

 2030 vs 2015 

% (95% CI) 

Tuberculosis incidence     

Male  9.8 (8.8 – 10.7) 21.6 (14.6 – 25.8) 40.9 (38.7 – 42.5) 

Female  15.4 (14.1 – 16.4)  26.3 (18.9 – 31.31.0) 47.2 (44.9 – 48.9) 

Total  12.1 (11.1 – 13.1) 23.5 (16.4 – 27.9) 43.5 (41.3 – 45.2) 

Tuberculosis mortality      

Male  13.7 (12.2 – 15.0) 23.4 (12.3 – 30.0) 57.7 (54.1 – 60.2) 

Female 19.3 (17.6 – 20.7) 22.5 (10.7 – 30.0) 53.0 (48.6 – 56.0) 

Total 16.0 (14.4 – 17.4) 23.0 (11.6 – 30.0) 55.7 (51.8 – 58.4) 

CI=confidence interval 

For mortality, the reductions in 2030 relative to 2015 would be 24.0% (95% CI 13.0–30.5%) 

in males and 22.5 (95% CI 10.7–30.0%) in females. In the scenario with all intervention 

improvements combined, the reduction in TB incidence in 2030 relative to 2015 would be 

40.9% (95% CI 38.7–42.5%) in males and 47.2% (95% CI 44.9–48.9%) in females; the 

mortality reduction in 2030, relative to 2015, would be 57.7% (95% CI 54.1–60.2%) in males 

and 53.0% (95% CI 48.6–50.0%) in females.  

In 2022, the estimated TPT coverage was 0.31 (9% CI 0.31–0.32), the treatment coverage 

ratio was 0.86 (95% CI 0.82–0.91), and treatment success proportion was 0.79 (95% CI 78.9–

79.4) and (Table 6-4). Under the continuation of the baseline scenario, without any 

improvement of interventions, the indicators in 2030 would be similar to 2022. However, if 

all the interventions were introduced, the indicators would improve substantially, with TPT 

coverage ratio in eligible HIV-positive individuals at 0.59 (95% CI 0.58–0.61), treatment 

coverage at 1.22 (95% CI 1.12–1.32), and TB treatment success at 0.869 (95% CI 0.863–

0.872).  

Table 6-4: Progress towards the 90-90-90 TB targets 

The 90-90-90 TB targets  Baseline, 2022 

 (95% CI) 

Baseline, 2030 

 (95% CI) 

All interventions, 2030 

 (95% CI) 

Preventative therapy coverage (LTBI treatment 

coverage, HIV+ adults only) 

Ratio of new TPT to new entrants to HIV care 

 

0.31 (0.31 – 0.32) 

 

0.30 (0.29 – 0.31) 

 

0.59 (0.58 – 0.61) 

Case detection ratio 

Ratio of persons with TB on treatment to incident 

TB 

 

0.86 (0.82 – 0.91) 

 

0.85 (0.8 – 0.98) 

 

1.22 (1.12 – 1.32) 

TB treatment success rates  

TB treatment completion proportion  

 

0.792 (0.789–0.794) 

 

0.790 (0.786 – 0.793) 

 

0.869 (0.863 – 0.872) 

CI=confidence interval; LTBI=latent TB infection. 
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6.5. Discussion  

Our model suggests that improvements to the current TB programme would substantially 

reduce TB incidence and mortality by 2030. However, the estimated 44% incidence and 56% 

mortality reductions in 2030 relative to 2015 fall short of the End TB milestones to reduce 

TB incidence and mortality by 80% and 90%, respectively, by 2030 (1). Among the 

interventions we explored, increasing TB screening rates had the most potential to 

significantly reduce TB incidence and mortality, while all other interventions would have 

minimal impact. Our results further suggest that despite the higher burden of TB in men, 

most interventions would have a greater impact on females than males, highlighting the need 

for interventions to improve men’s engagement in care.  

Consistent with our results, previous modelling studies have also suggested that scaling up 

screening would be one of the most effective interventions in reducing the burden of TB in 

South Africa (174,180,190,237). Additionally, our earlier modelling analysis has shown that 

historically, increased microbiological testing, in addition to the provision of ART, explained 

most of the declines in the burden of TB in South Africa over the period 2005-2019 (355). 

Our results further suggest that increasing the proportion of persons screened may have a 

higher impact on females than males. These sex differences in impacts could be because we 

have assumed that females are more likely to seek TB care than their male counterparts (2). 

Thus, doubling the proportions of individuals screened further reduced transmission among 

women (due to assortative mixing) and led to more significant reductions in mortality among 

females.  

The model also suggests that doubling the provision of TPT to persons with HIV in care and 

reducing ART interruptions would have a higher impact in females than males. These 

findings may be explained by the observation that females are more likely to be tested for 

HIV and initiate ART than males (356). As a result, the persons who have entered HIV care 

services would be more likely to benefit from these interventions. In addition, our previous 

analysis has also shown that compared to males, females experienced more significant 

reductions in TB incidence and mortality due to ART (363). These observations highlight the 

need to address the sex differences in accessing and engaging in TB and HIV care services. 

We further implemented an intervention scenario where we assumed the TB health facility 

attendance rates, HIV testing rates and ART initiations for males and females were equal. 

This scenario would lead to greater reductions in mortality among males (12% in males and 
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3% in females), suggesting that addressing men’s barriers to care seeking would have a major 

impact on mortality.  

Although there is evidence to support the individual-level effectiveness of TPT in preventing 

TB disease (324), our model suggests TPT would have a small population-level impact. This 

small impact of TPT may be due to the short duration of protection (170,231). Also, in the 

model we did not consider all other high-risk groups recommended to be provided with TPT 

such as childhood household contacts, health care workers, prisoner and mineworkers.  

Additionally, the coverage of preventative therapy is low in South Africa, and there is 

therefore a need for more efforts to reduce barriers for the implementation of TPT 

(233,375,380). More research should evaluate the effectiveness of interventions to improve 

and promote TPT uptake.  

A previous modelling study projected that the provision of TPT combined with active case-

finding in previously treated individuals in a community with a high burden of TB in the 

Western Cape would avert approximately 40% of persons with incident TB and 41% of TB 

deaths between 2016 and 2025 (184). A plausible reason for the difference between our 

projected impact and that reported in the Marx et al. study, is that they assumed that the TPT 

intervention was lifelong and that on average, a person will be on TPT  for 6.6 years and 

remain protected over this period (184). We assumed that people on 3HP are only protected 

for approximately one year. In addition, Marx et al. considered the impact of increased active 

case finding as well as TPT but did not report the impact of TPT alone. 

Our results also suggest that halving the rates of treatment discontinuation would have 

minimal impact on TB incidence and mortality. In the model, we assumed that most 

unrecorded deaths are incorrectly classified as treatment discontinuations (299). To account 

for this misclassification, we doubled the proportions of the deaths recorded in the ETR 

(355). Therefore, we are potentially overstating mortality rates in treated TB patients, and this 

might explain why we do not predict substantial reductions in mortality if patients are 

retained in TB treatment. In addition, our model assumes that some patients who discontinue 

treatment are nevertheless cured (298). Studies that have assessed the effectiveness of the 

interventions to increase retention in TB care (i.e., supporting patients and sending them text 

messages as reminders) have had mixed successes in improving retention (368,381). There is 

also limited empirical evidence regarding the effect of these treatment retention interventions 

on mortality. Therefore there is a need for more empirical studies to evaluate the 
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effectiveness of treatment retention interventions (368,382) and their impact on other 

endpoint outcomes such as mortality.  

Similarly, we estimated that reducing ILTFU by 50% would lead to minimal (<2%) 

reductions in TB incidence and mortality. Law et al. reported that interventions such as 

tracing patients and sending reminders (i.e. via text messages) to patients attending an urban 

clinic in KwaZulu Natal could increase treatment initiations by approximately 10% (368). In 

our model, the baseline ILTFU was 9.4% and we assumed that in the intervention scenario 

ILTFU reduced to 4.7%, which translated to a 5.2% increase in the number of treatment 

initiations (slightly lower than the increases reported by Law et al. (368)). These increases in 

treatment initiations are nonetheless encouraging, and suggest investment in such 

interventions to improve linkage to care (368).  

The global and South African TB trends have been declining; however, these declines have 

not been fast enough to reach the End TB milestones. In addition, South Africa's progress 

towards the 90-90-90 TB care and prevention targets is still lagging, particularly in providing 

TPT. Even before the emergence of the COVID-19 pandemic, the slow progress towards 

attaining the specified milestones was apparent (174,383). However, COVID-19 may have 

further slowed the decline. There is still limited data to inform mathematical models on the 

effects that the COVID-19 pandemic had on other aspects of TB, such as transmission and 

the TB natural history, and a limitation of our model is that we have only considered the 

effect of COVID-19 on rates of TB screening. Nonetheless, available data suggested that 

COVID-19-related interventions have led to interruptions in TB care – specifically resulting 

in declines in the number of TB tests performed (26). Consistent with the WHO estimates, we 

estimated that these COVID-19-related interruptions led to relatively constant TB incidence 

rates and slightly increased TB mortality rates between 2019 and 2020 (1).  

There are several limitations to this analysis. First, we did not model any human or fiscal 

constraints associated with these intervention improvements; we note that the South African 

health system may be constrained to implement the highly optimistic intervention scenarios. 

For instance, increasing the proportion of individuals who get screened for TB or reducing 

ART interruptions would lead to increases in the numbers of Xpert Ultra tests performed or 

increase ART coverage (i.e., require more resources) (Appendix C).  Also, previous studies 

have shown that increased screening interventions require intensive human resources (209). 

Also, we did not model other interventions such as active case finding, TPT for other high-
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risk populations such as household contacts, targeted universal testing for TB, urine 

lipoarabinomannan test, or potential TB vaccines. Another limitation is that we did not model 

any interventions to address other TB risk factors (i.e., diabetes, alcohol use, and smoking), 

which contribute significantly to TB incidence and mortality (3,7). Another limitation is that 

we projected the model using calibration data up to 2018; therefore, there is uncertainty 

regarding recent TB trends. Altogether, within the context of these limitations and specified 

model assumptions, these projections are not definitive but are indications of which aspects 

of the current TB programme require the most attention to achieve significant future TB 

reductions.  

Existing TB management interventions need to be complemented by innovative approaches 

to fast-track the progress towards ending TB. Some of the priorities needed to accelerate the 

progress would include the development of vaccines to reduce the risk of TB disease, new 

low-cost point-of-care diagnostic tools, and a shorter regimen for TB disease. In addition, it 

may also be worth addressing broader determinants of TB disease, such as diabetes, alcohol 

use and smoking; and socioeconomic barriers to better TB care and management such as lack 

of money and transport.  
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Chapter 7. Discussion  

7.1. Overview  

The research in this thesis focused on understanding the South African TB epidemiology 

using a mathematical model. This discussion chapter aims to highlight and discuss the 

methodological approach, key findings and their contribution to the body of research, 

implications for the policy and future research, and the strength and limitations. 

7.2. Thesis aims 

This research contributed to developing an age-sex-stratified TB transmission dynamic model 

to represent the South African TB epidemic at a population level. The model was used to 

address three specific objectives. The first objective (Chapter 4) was to quantify TB incidence 

and mortality attributable to HIV and to evaluate the past impact on TB incidence and 

mortality of programmatic interventions implemented in South Africa (DOTS, ART, 

intensified TB screening, IPT and the implementation of Xpert MTB/RIF as a first-line 

diagnostic tool). This first analysis was restricted to the years from 1990 to 2019.  

To understand the sex distribution of TB and factors that drive sex differences in South 

African TB incidence and mortality, the second objective (Chapter 5) was to quantify the 

extent to which various factors contribute to sex differences in TB incidence and mortality. 

These factors included HIV, ART uptake, smoking, alcohol abuse, undernutrition, diabetes, 

health-seeking patterns, social contact rates and TB treatment discontinuation. Similarly, this 

analysis was restricted to the years 1990-2019.  

Finally, the third objective (Chapter 6) was to estimate the future impact on TB incidence and 

mortality of interventions to increase TB screening, improve linkage to TB care and 

retention, increase preventative therapy, and reduce ART interruptions. The projection period 

for the study was from 2023, the assumed year of intervention implementation, to 2030, 

which marks the End TB milestone endpoint.  
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7.3. Methodological approach 

Chapter 3 described the methodological approach to developing the model with detailed 

descriptions of the model parameterisation and data sources. This methodological chapter 

supports the three primary analyses (Chapter 4 to Chapter 6). To briefly summarise, the 

developed model is a deterministic model with components including transmission dynamics, 

diagnostic pathway, and effects of HIV. To dynamically model the impact of HIV and ART 

on TB incidence and mortality, the TB model was combined with the Thembisa model, a 

previously-developed South African HIV and demographic model. To capture age and sex 

differences in TB incidence, age- and sex-specific relative risks were applied to rates of 

progression to TB disease. The model also incorporated a diagnostic pathway representing 

health-seeking patterns and the sensitivity and specificity of the diagnostic algorithm. A 

Bayesian approach was used to calibrate the model to the numbers of people starting 

treatment from the electronic TB register (2004-16), deaths from the vital register (1997-

2016), microbiological tests (2004-19), and the national TB prevalence survey (2018). This 

ensured that the model produced credible estimates representing the South African TB 

epidemic. The calibrated model addressed the three key study objectives in Chapter 4 to 

Chapter 6. The results of these three analyses are discussed in the following sections of this 

chapter. 

7.4. Discussion of findings  

7.4.1. South African tuberculosis incidence and mortality trends and the impact of 

HIV 

Model results from the first analysis showed that tuberculosis incidence and mortality 

increased rapidly during the 1990s, peaking in the mid-to-late 2000s, followed by declining 

trends until 2019. The peaks of the TB epidemic reflected the rapidly growing and maturing 

HIV epidemic. This research quantified the contribution of HIV to the estimated TB burden. 

Of the estimated eight million new cases that developed between 1990 and 2019, half were 

attributable to HIV; of the two million deaths that occurred, two-thirds were attributable to 

HIV. The contribution of this analysis was quantitatively and dynamically demonstrating how 

the HIV epidemic affected the TB trajectory. 
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In running the counterfactual model scenarios, it was possible to estimate what the TB 

trajectory could have been without HIV. The model suggested that even in the absence of 

HIV, the TB burden would have been unacceptably high in South Africa. In 2019, there 

would have been approximately 102 000 new TB cases and 19 700 TB deaths, still making 

South Africa a high-burden country (25). Consistent with these findings, results from the 

South African TB prevalence survey have shown a high prevalence of TB in the HIV-

negative population, with only 29% of TB patients with known HIV status being HIV-

positive (384). This high burden of TB in the HIV-negative population highlights the need 

also to consider this group for interventions such as intensified screening. In addition, there is 

a need to address other divers of the TB epidemic such as smoking, alcohol abuse, diabetes 

and undernutrition. These TB risk factors were explored in the second analysis (Chapter 5). 

7.4.2. Retrospective impact of South African TB programmes on tuberculosis 

incidence and mortality 

 Chapter 4 also gave a comprehensive assessment of the impact of the various interventions 

implemented by the South African TB programme from 1990 to 2019. The interventions 

explored in the analysis reflected the evolution of control strategies recommended by the 

global TB community and their respective implementation in the country. Among all these 

interventions examined (DOTS, IPT in eligible HIV-positive individuals, intensified TB 

screening, ART, Xpert MTB/RIF to replace smear microscopy), ART and intensified TB 

screening contributed the most to declines in TB incidence and mortality. Besides DOTS and 

IPT in HIV-positive individuals, all the other interventions had a more significant impact on 

TB mortality than on TB incidence. 

 Intensive TB screening, 2004-2019 

An important contribution of this was quantifying the effect of South Africa’s efforts in 

intensifying TB screening – with the observed doubling of the number of tests performed 

between 2004 and 2012 (24). Previous TB models for South Africa have not shown this past 

impact of intensified screening. Intensified screening activities are beneficial in reducing TB 

incidence and mortality because increased diagnosis is likely to lead to treatment initiations 

and a reduced transmission pool. In addition, prompt TB treatment initiation would reduce 

severe TB disease and death (357). In 2019, increased screening contributed to 28% and 38% 

reductions in incidence and mortality, respectively (355). These results affirm South Africa’s 
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efforts to intensify TB screening, mainly over 2004-2012 (24) and reaffirm that finding TB 

cases is a crucial TB control intervention.  

 Antiretroviral therapy, 2000-2019  

Since the scale-up of ART in the mid-2000s (23,340), ART has substantially impacted TB 

incidence and mortality; leading to a 20.0% reduction in TB incidence and a 37.6% reduction 

in TB mortality in 2019. The steady increase in population-level impact reflects 

improvements in ART coverage (partly due to progressive changes in HIV policy to increase 

the CD4 count threshold at which individuals can start ART (345)), as well as an increase in 

the average ART durations, with greater immune recovery at longer ART durations (24,340–

342). Given that HIV accounts for a substantial amount of the incidence of TB in South 

Africa, these findings highlight that the ART programme is essential to TB care and 

prevention. 

 Xpert MTB/RIF 2011-2019 

From the implementation of Xpert MTB/RIF in 2011 to 2019, the estimated reductions in 

incidence and mortality were low (1.1% and 3.2%, respectively, in 2019). This low impact is 

consistent with a meta-analysis of clinical trials which assessed the effect of Xpert MTB/RIF 

on mortality as an outcome and found an insignificant effect (small effect and the confidence 

interval was wide and included the null, see paper) (130). Some of the reasons for the 

estimated low impact on incidence and mortality were discussed (Chapter 4). In brief, they 

included that the effect of Xpert MTB/RIF may have been offset by empirical treatment (222) 

– providing patients with TB medication without microbiological confirmation of TB disease. 

Also, under Xpert MTB/RIF, there is less culture testing in people who test Xpert-negative 

than in people who test smear-negative (281). Although Xpert MTB/RIF has increased the 

number of microbiologically confirmed diagnoses, this did not necessarily lead to more new 

diagnoses and treatment initiations because many patients were diagnosed and treated 

empirically before adopting Xpert MTB/RIF.  

Our model incorporated a detailed diagnostic algorithm that estimated true and false positives 

from microbiological diagnoses; it also considered the proportions of individuals who initiate 

treatment empirically as informed by South African pragmatic trials (224,281). However, it 

was challenging to quantify the level of empirical treatment with a high degree of confidence; 

also, no specific counterfactual scenario was run to show the effect of no reduction in 
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empirical treatment. Therefore, there is uncertainty with the model estimates on the level of 

empirical treatment. Nevertheless, the model showed that although Xpert MTB/RIF did not 

lead to substantial declines in TB incidence and mortality, it nonetheless led to a 56% 

reduction in the number of people without TB who start treatment and a 28% reduction in the 

number of people who start TB therapy on an empirical basis.  

 Directly observed therapy short course, 1996-2019  

The low impact of DOTS on TB incidence and mortality (<2%) shows that curative 

interventions alone, particularly in a high TB prevalence setting with other prevalent TB risk 

factors, such as HIV, are not sufficient (346,347). Previous modelling studies have also 

projected that DOTS are less impactful in settings with high HIV burdens (151,164). 

 Isoniazid preventative therapy, 2010-2019  

IPT has been shown to protect against TB disease (324). However, in the model, these 

benefits did not translate to substantial reductions in the population-level TB incidence and 

mortality over time. For example, in 2019, the provision of IPT to HIV-positive individuals 

only led to 1.6% and 1.9% reductions in incidence and mortality, respectively. Some of the 

reasons explaining the low population impact of IPT in the HIV-positive population were 

discussed in chapter 4. Briefly, the possible reasons were: a) low coverage of IPT; b) there is 

already a high risk of progression to TB disease in HIV-positive individuals; c) the short 

duration of protection offered by IPT (170,231); and d) in recent years, as individuals start 

ART at higher CD4 counts (345), and remain on ART for longer durations, average CD4 

counts in ART patients have increased, which implies that there is less reduction in TB risk 

due to IPT (in absolute terms).  

7.4.3. The South African tuberculosis trends by sex, effects of HIV and ART 

Existing research and data show that the burden of TB is higher in males than in females, and 

several factors drive this skewed distribution (2,7,25). Our study provides additional insights 

regarding how HIV and the provision of ART influence the sex distribution of TB by 

conducting counterfactual experiments to show what the trajectory would have been without 

HIV and ART between 1990 and 2019.  

The model results showed that over this period, 1990-2019, females experienced more 

significant relative increases in TB incidence (54.0% vs 45.6% in 2019) and mortality (62.9% 
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vs 57.4% in 2019) due to the higher HIV prevalence in females than in males (348). 

Conversely, the results showed that females experienced more reductions in TB incidence 

(38.3% vs 17.5% in 2019) and mortality (52.1% vs 28.8% in 2019) due to ART. This is likely 

because females are more likely to be tested for HIV and initiate ART than males (356). Over 

the 1990-2019 period, TB incidence and mortality remained higher for males than females; 

the estimated M:F ratios of TB incidence and mortality in 2019 were 1.7 and 1.65, 

respectively. Altogether, the model results are consistent with other empirical studies (351) 

and support the hypothesis that if HIV removes the protection females have against TB 

disease (86), then ART restores this protection.  

7.4.4. Factors driving sex differences in the tuberculosis burden 

 Contribution of smoking, alcohol, diabetes and undernutrition to sex differences in TB  

The second analysis further quantified TB incidence attributable to smoking, alcohol abuse, 

diabetes and undernutrition, stratified by sex. The estimated PAFs of TB incidence due to 

alcohol abuse, smoking, and undernutrition were higher in males (51%, 30% and 16%, 

respectively) than in females (30.1%, 15.4%, and 10.7, respectively). These higher PAFs of 

TB incidence in males are explained by the high prevalence of alcohol abuse, smoking and 

undernutrition in males, and the role of these factors in developing TB by suppressing cell-

mediated immunity (90,91). On the other hand, the PAFs of diabetes were higher in females 

(22.9%) than in males (17.5%). In the analysis to quantify the extent to which these risk 

factors contribute to the higher TB incidence in males than females, the model suggests 

smoking and alcohol abuse contributed more. If smoking or alcohol abuse were eliminated, 

the M:F ratios for TB incidence would reduce by approximately 17% or 30%, respectively. 

The WHO Global TB report has also identified these risk factors (smoking, alcohol, diabetes 

and undernutrition) as important due to the considerable amount of TB incidence they 

contribute to and therefore need to be given attention (3). Furthermore, consistent with our 

findings, the Global Burden of disease study also showed that smoking and alcohol 

contributed significantly to TB mortality in men and explained the majority of the observed 

higher burden of TB in men (7). 

These results, therefore, highlight the need for the TB control programme to consider broader 

interventions addressing the high prevalence of alcohol abuse and smoking. For example, for 



192 

 

alcohol, interventions to reduce hazardous drinking include minimum unit pricing for alcohol 

(385), increased tax on alcoholic products, limiting alcohol marketing on media platforms 

and improved enforcement of existing alcohol-related regulations in South Africa (386). For 

smoking, interventions are needed to support smoking cessation, although evidence for their 

effectiveness is mixed (387), and price controls/taxation to increase the price of cigarettes 

may also be required (388,389). There is a need for more research to evaluate the 

effectiveness of these interventions and whether they are cost-effective. 

 Health seeking patterns 

Delays in health-seeking have a direct effect on TB mortality. This is because health-seeking 

delays often imply delays in diagnosis and treatment initiation. Delays in health-seeking also 

impact the likelihood of transmission and, therefore, TB incidence. This study suggested that 

if males' health-seeking rates were increased and set equal to female health-seeking rates, TB 

mortality would reduce and the M:F TB mortality ratios would reduce by 7%. Some possible 

reasons explaining delays in men’s health facility attendance include higher rates of 

employment in men and associated concern about the loss of income due to time lost while 

seeking tuberculosis health care (38). Another barrier may be that very few health care 

services are dedicated to men, and the common perceptions are that public health clinics are 

spaces for women, children and the elderly (38,390). Therefore, interventions need to address 

these socioeconomic barriers to attending health care facilities (i.e., mobile clinics at 

workplaces or places of leisure) and create male-friendly health services, i.e., male clinics 

(390).  

 Social mixing patterns 

Social mixing patterns did not have major effects on TB incidence and mortality M:F ratios. 

This was mainly because, in the baseline/default parameters, the model assumed slightly 

higher contact rates among women. Nonetheless, other studies have shown that males have 

higher rates of social contact with other males  (37,38), and because of the higher prevalence 

of TB among males, assortative mixing further increases the risk of TB transmission and the 

burden of TB among men; therefore, it further increases sex differences (85,354).  

This study suggested that removing a single risk factor or equalising males' and females' 

health-seeking patterns, social contacts, or treatment outcomes at the current levels would not 

completely remove all sex disparities TB. In this scenario, the TB incidence and mortality 
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M:F ratios were reduced to 1.01 and 0.93. These residual sex differences in mortality were 

probably because for females, deaths that are not due to HIV and TB, e.g., due to violence, 

are much lower than in males (28,358). Therefore, more females live longer to older ages 

than males. In our model, we assumed that mortality rates are higher in older TB patients than 

in younger TB patients, and therefore the older female age distribution implies a higher TB 

mortality rate on average. 

7.4.5. The impact of improving existing interventions 

The third analysis of this thesis went further to project the future impact of improving 

existing interventions between 2023 and 2030. This also involved modelling changes and 

events affecting South African TB control in recent years. These include shifting to shorter 

preventative therapy regimens, scaling up TB preventative therapy uptake, and shifting from 

Xpert MTB/RIF to Xpert Ultra (287,366,367). Another significant event incorporated in the 

model was the emergence of the COVID-19 pandemic, which substantially reduced TB 

testing rates (26,27). The specific interventions explored in this analysis were to:  

a) Improve case findings by doubling the proportion of individuals screened for TB. 

b) Improve men's engagement in care by equalising male and female health facility 

attendance rates, HIV testing and ART initiation and interruption rates. 

c) Improve linkage to care after diagnosis by halving rates of initial loss to follow-up. 

d) Improve TB care and retention in care by halving treatment discontinuation rates. 

e) Increase the uptake of preventative therapy in eligible HIV-positive individuals. 

f) Provide preventative therapy to 80% of individuals who completed TB treatment.  

g) Improve ART retention by reducing the rates of ART interruptions by 80%. 

The results of the second analysis (Chapter 5) demonstrated the factors that contributed to sex 

differences in TB and provided a strong motivation for reporting epidemiological estimates 

and the intervention impacts by sex to show if there would be any sex differences. To that 

end, in this third analysis, results and intervention impacts were also reported by sex. The 

findings of this analysis suggested that there would be sex differences in the impacts of 

interventions, with reductions in TB incidence and mortality generally proportionately greater 

in females than in males. The differences were particularly evident in the interventions 

related to TB health seeking and HIV care, i.e., a) improving case finding; and HIV care-
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related interventions, including e) doubling the provision of TPT to HIV-positive individuals 

in HIV care; and g) reducing ART interruptions. 

 Tuberculosis screening  

In this third analysis, the model estimated that over the 2023-2030 period, doubling the 

proportion of individuals screened would lead to the greatest reductions in TB incidence 

(20.3% in males, 23.8% in females) and mortality (25.0% in males, 26.5% in females) 

compared to the other interventions explored. These findings are consistent with the first 

analysis, which showed that intensified screening explained most of the declines in the 

burden of TB in South Africa over the period 2005-2019. In addition, previous modelling 

analyses have also suggested that scaling up TB screening can potentially be an effective 

intervention in reducing the burden of TB in South Africa (174,180,190,237).  

Furthermore, this third analysis suggests that females would experience more reductions than 

males. This is because females are more likely to seek TB care than their male counterparts 

(5). Therefore, doubling the proportions of individuals screened further reduces transmission 

among women (assuming females mix more with females) and leads to more significant 

reductions in TB incidence and mortality among females.  

 Tuberculosis preventative therapy (TPT) 

Similar to the low impact of TPT (IPT) estimated in the first analysis (Chapter 4), the model's 

projections also suggest a relatively low population-level impact of future improvements in 

TPT uptake. The possible reasons for the low impact of TPT have been discussed; the South 

African TB control programme needs to address these issues. In particular, there is a need to 

simplify the guidelines (375) for implementing TPT (60). Furthermore, to create 

environments that allow the implementation of existing TPT guidelines, leadership and 

management training of health facility managers may also be needed (61). While there is 

increasing support and advocacy to improve the implementation of the use of 3HP in South 

Africa, there is a need for enhanced data recording of both TPT uptake and completion 

through existing or new registries (i.e., the TB treatment registry) (376). Additionally, there is 

a need for more research and clinical trials to show the durability of protection against TB 

disease due to 3HP in settings such as South Africa.     
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 HIV-associated interventions: preventative therapy in HIV-positive individuals and 

ART interruptions 

HIV care-related interventions, including doubling the provision of TPT to HIV-positive 

individuals in HIV care and reducing ART interruptions, would have a higher impact on 

females than males. These findings are possibly explained by the observation that HIV is 

more prevalent in women than in men, and females are more likely to be tested for HIV and 

initiate ART than males (356). Women are thus more likely to benefit from these 

interventions because they are more likely to have entered HIV care.   

Given that South Africa has the largest HIV epidemic in the world, with approximately 8 

million people living with HIV, and at least 5 million of these are receiving ART (19) 

(19,391), ART will remain vital for preventing HIV-associated TB disease risk and deaths. 

The first analysis (Chapter 4) showed that ART was responsible for most TB incidence and 

mortality declines from 2000 to 2019. Moreover, it will be critical to retain individuals on 

ART.  

This analysis suggested that between 2023 and 2030, interventions to reduce ART 

interruptions would lead to minimal (<2%) TB incidence and mortality reductions for both 

males and females. However, despite this estimated low impact, it would be worth investing 

in interventions to improve ART retention (for example, by providing text message 

appointment reminders and peer support to HIV-positive individuals receiving ART 

(377,378)), perhaps in combination with other interventions to improve engagement in care. 

 Improving men’s engagement in care 

This third analysis went further to assess the potential impact of increasing males’ 

engagement in care by increasing and setting male TB health facility attendance rates, HIV 

testing rates and ART initiations to the same level as their female counterparts. The model 

suggested that this scenario would lead to more significant reductions in mortality among 

males (12% in males and 3% in females), suggesting that addressing men's barriers to care 

seeking would significantly impact mortality. These findings suggest that the TB programme 

should invest in interventions to increase men's engagement in TB and HIV care. These may 

include distributing HIV self-testing kits to men through their pregnant partners (369), mobile 

HIV testing campaigns (370), peer-delivered messaging to encourage men to test for HIV 

(371), and introducing health facilities that provide general health services to men (i.e., male 

clinics) (372).  
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7.4.6. The contribution of the COVID-19 pandemic to TB control challenges 

The COVID-19 pandemic has contributed to interruptions in TB care – specifically resulting 

in declines in the number of TB tests performed (26). However, there is still limited data to 

inform mathematical models on the effects that the COVID-19 pandemic had on other 

aspects of TB, such as transmission and the natural history of TB. As a result, the model only 

considered the effect of COVID-19 on rates of TB screening. The model suggested that 

between 2019 and 2020, TB incidence rates were relatively constant, and mortality slightly 

increased (Chapter 6). Also, we assumed that after 2020 South Africa had recovered to 

regular screening rates, but this may not be accurate. These estimates were consistent with the 

WHO (1). Therefore, to keep South Africa on track in controlling the burden of TB, there is a 

need for sustained implementation of the plans to recover the regressive effects of COVID-19 

(392,393). 

7.4.7. Progress towards the 2030 end TB milestone targets 

The third analysis (Chapter 6) also aimed to assess South Africa’s potential to achieve the 

2030 End TB milestones to reduce TB incidence and mortality by 80% and 90%, 

respectively, by 2030 (1) by scaling-up existing interventions. Concerning the progress 

toward TB prevention and care, South Africa is still behind on preventative therapy targets 

but doing well on the other targets. For 2022, the model estimated TPT coverage, calculated 

as the ratio of HIV-positive individuals initiating preventive therapy to the number of people 

with HIV starting ART and entering HIV care, was only 0.31. The case detection ratio, 

estimated as the ratio of modelled newly treated TB cases (excluding false positive TB) to 

estimated incident TB, was 0.86. Treatment success, defined as the ratio of the number of 

individuals completing treatment (net of deaths during treatment) to those who started 

treatment (excluding false positive), was 0.79.  

Altogether, the model suggested that improvements to the current TB programme, 

implemented between 2023 and 2030, would reduce TB incidence and mortality by 44% and 

56%, respectively, by 2030 compared to 2015 levels. However, these estimated reductions 

are insufficient to meet the 2030 End TB milestones to reduce TB incidence and mortality by 

80% and 90%, respectively, by 2030 relative to 2015 (1).  
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There is a clear and urgent need to implement additional innovative interventions to fast-track 

the progress towards the 2030 End TB milestones. Some of the priorities needed to accelerate 

the progress would include the development of vaccines to reduce the risk of TB disease, new 

low-cost point-of-care diagnostic tools, and a shorter regimen for TB treatment. In addition, it 

may also be worth addressing broader determinants of TB disease, such as diabetes, alcohol 

abuse and smoking. 

7.5. Strengths and limitations  

This thesis was strengthened by using a dynamic-transmission model calibrated to multiple 

South African-specific data sources. Using this dynamic model has allowed us to capture the 

evolutions of both the TB and HIV epidemics. Calibration to sex-stratified data has allowed 

the model to capture the sex distribution of TB in South Africa. As a result, it was also 

possible to assess, for the first time, the effect HIV and ART had on sex differences in the 

South African TB epidemic over the 1990–2019 period and to quantify the contribution of 

other risk factors to TB mortality. This approach also allowed the estimation of the future 

impact of interventions. 

 

Currently, South Africa mainly relies on the WHO (3) and IHME (7) as the leading agencies 

to produce TB incidence and mortality estimates. The work of this thesis has contributed to 

one of the few South African-led TB modelling initiatives (394,395). This model also has the 

potential to address ongoing TB policy questions and assess progress toward the evolving TB 

control targets.  

 

However, this study is subject to several limitations, and all interpretations results need to be 

contextualised in light of these limitations. First, although the model was age and sex-

stratified, calibration was only to sex-specific data and did not include the age-specific data. 

As such, it was not possible to gain more insights into the age distribution of TB or 

understand what factors account for the age distribution of TB incidence and mortality. Also, 

our model only focused on adults TB – 15 years and older. As a result, it was not possible to 

directly compare our model estimates with IHME and WHO. Additionally, we could not 

evaluate the impact of specific programmes on children, such as IPT for household TB 

contacts aged <5 years.  
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Third, the model did not include drug-resistant TB. As a result, it was not possible to produce 

estimates of the burden of drug-resistant TB and assess the impact of diagnostic tools to 

identify drug-resistant TB. Third, the model did not include data on TB patients treated in 

private health care facilities, although it is estimated that approximately 8% of symptomatic 

TB cases seeking TB care are in the private sector (17).  

Fourth, the model does not distinguish between symptomatic and asymptomatic TB, although 

assumptions were made about the prevalence of symptoms for modelling screening 

algorithms. Fifth, for this research, we did not consider additional interventions such as 

candidate TB vaccines (i.e., the M72/AS01E vaccine (134), BCG re-vaccination in 

adolescents (135), active case finding (i.e. screening household contacts) and other diagnostic 

tests such as digital chest x-rays, urine Lipoarabinomannan, and biomarkers to identify 

individuals at risk of TB disease. Future modelling analysis would need to explore the impact 

of these interventions.  

Also, the model did not incorporate the effects of the COVID-19 pandemic on TB 

transmission and the TB natural history, due to the lack of robust data regarding these effects. 

Also, the projections made in the last analysis (Chapter 6) were based on the previous model 

calibration, which relied only on data up to 2018. Thus, all the estimates need to be 

interpreted cautiously, and readers should bear in mind the uncertainty associated with the 

recent TB trends. 

Lastly, we acknowledge the limitations of our uncertainty analysis. First, we did not vary all 

parameters simultaneously because the calibration process would be very intensive 

computationally (i.e., due to many model compartments, populations stratifications and many 

parameters). Instead, we performed a three-stage calibration approach. In the first stage we 

varied parameters related to the TB natural history; in the second stage we varied parameters 

related to TB interventions; and in the third stage we varied those parameters related to sex 

differences in TB. The same calibration targets and respective likelihood function definitions 

were used in all these stages. We acknowledge that in the calibration process, our decisions 

on prior distributions are subjective, as are our likelihood definitions and the assumed 

standard deviations in the likelihood calculations. We also note that the data we use may have 

biases we cannot adjust, and in addition, we also acknowledged that it is possible that our 

model estimates may not be fully accurate. Given these limitations, our model results may 

have underestimated the uncertainty, and therefore our results need to be interpreted with 
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caution. Nonetheless, to improve the credibility of our model estimates, we have used 

multiple data sources (prevalence, testing data, mortality data and treatment initiations) to 

calibrate the model.   

There are other broader avenues which were not covered in this research and therefore need 

to be considered in the future. There is a need for subnational (district-level and provincial-

level) models to help understand variations in the burden of TB in South Africa and 

investigate the factors that account for the geographical variations in TB. Such models would 

help in identifying where gaps in the treatment cascade are the most significant, by province 

and district. There is also a need for more detailed models which help understand the level of 

TB transmission occurring in indoor spaces such as households, prisons, schools, and health 

care facilities. Furthermore, such studies would be beneficial in identifying where infection 

control interventions in health facilities and active case finding targeted at high-risk 

populations would yield the most benefits (396,397). 

In recent years increasing research has highlighted the long-term disability and the increased 

risk of death in individuals who have survived TB disease  (398–400). Menzies et al. 

estimated that about half of the TB disease burden is due to long-term complications after TB 

treatment (399). This suggests that future South African modelling studies would need to also 

account the post-TB health losses, quantify the morbidity and mortality, and inform TB 

control policies to invest in providing care to this previously treated population. 

7.6. Conclusion  

This thesis has demonstrated that HIV is responsible for a significant fraction of the South 

African TB incidence and mortality, and intensified TB screening and the provision of ART 

contributed substantially to the observed declining trends in TB trends in recent years. 

Therefore, to sustain the declining TB trends, finding active TB individuals, and ensuring that 

HIV-positive individuals are diagnosed, initiated on ART and retained in care will remain 

critical. In addition, the higher burden of TB in males than females highlights the need for 

males to be targeted for routine screening to ensure earlier diagnosis, improved management 

and retention in TB and HIV care.  

There is a need for additional innovative interventions to fast-track progress toward 

significant reductions in TB incidence and mortality. In addition, improving the provision of 
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TB preventative therapy in HIV-positive individuals and other TB risk groups would be 

essential. Furthermore, research and innovation toward finding a vaccine that effectively 

prevents TB disease are critical. Also, broader interventions are required to reduce exposure 

to additional TB risk factors such as alcohol abuse and smoking. Finally, there is a need for 

cost-effectiveness studies to assess the cost and health benefits of the interventions that the 

national TB programme plans to implement and to inform policy decisions. 

 



201 

 

References   

1. Global tuberculosis report 2021. Geneva: World Health Organization;  

2. Horton KC, Macpherson P, Houben RMGJ, White G, Corbett EL. Sex Differences in 

Tuberculosis Burden and Notifications in Low- and Middle-Income Countries : A 

Systematic Review and Meta-analysis. PLoS Med. 2016;21:1–23.  

3. World Health Organization. Global Tuberculosis Report, 2020. Geneva: World Health 

Organization; 2020; 2020.  

4. Lawn SD, Myer L, Edwards D, Bekker LG, Robin Wood. Short-term and long-term 

risk of tuberculosis associated with CD4 cell recovery during antiretroviral therapy in 

South Africa. AIDS. 2009;100(2):130–4.  

5. Fenner L, Atkinson A, Boulle A, Fox MP, Prozesky H, Zürcher K, et al. HIV viral 

load as an independent risk factor for tuberculosis in South Africa: collaborative 

analysis of cohort studies. J Int AIDS Soc. 2017;20(1):21327.  

6. Sonnenberg P, Glynn JR, Fielding K, Murray J, Godfrey-Faussett P, Shearer S. How 

soon after infection with HIV does the risk of tuberculosis start to increase? A 

retrospective cohort study in South African gold miners. Journal of Infectious 

Diseases. 2005;191(2):150–8.  

7. Ledesma JR, Ma J, Vongpradith A, Maddison ER, Novotney A, Biehl MH, et al. 

Global, regional, and national sex differences in the global burden of tuberculosis by 

HIV status, 1990–2019: results from the Global Burden of Disease Study 2019. Lancet 

Infect Dis. 2021;3099(21):1–20.  

8. Implementing The End TB Strategy: The Essentials. World Health Organization. 

Geneva; 2015.  

9. United Nations High-Level Political Declaration of the UN General Assembly High-

Level Meeting. New York: United Nations; 2018.  



202 

 

10. Murray M, Oxlade O, Lin HH. Modeling social, environmental and biological 

determinants of tuberculosis. International Union against Tuberculosis and Lung 

Disease. 2011;15 Suppl 2(6):S64–70.  

11. Lönnroth K, Migliori GB, Abubakar I, D’Ambrosio L, De Vries G, Diel R, et al. 

Towards tuberculosis elimination: An action framework for low-incidence countries. 

European Respiratory Journal. 2015;45(4):928–52.  

12. World Health Organization. WHO announces COVID-19 outbreak a pandemic. 12 

March 2020. [Internet]. [cited 2021 Apr 24]. Available from: 

https://www.euro.who.int/en/health-topics/health-emergencies/coronavirus-covid-

19/news/news/2020/3/who-announces-covid-19-outbreak-a-pandemic 

13. Cilloni L, Fu H, Vesga JF, Dowdy D, Pretorius C, Ahmedov S, et al. The potential 

impact of the COVID-19 pandemic on the tuberculosis epidemic a modelling analysis. 

EClinicalMedicine. 2020;28:100603.  

14. Migliori GB, Thong PM, Akkerman O, Alffenaar JW, Álvarez-Navascués F, Assao-

Neino MM, et al. Worldwide Effects of Coronavirus Disease Pandemic on 

Tuberculosis Services, January–April 2020. Emerg Infect Dis. 2020;26(11):2709–12.  

15. McQuaid CF, Vassall A, Cohen T, Fiekert K, White RG. The impact of COVID-19 on 

TB: A review of the data. International Journal of Tuberculosis and Lung Disease. 

2021;25(6):436–46.  

16. Glaziou P. Predicted impact of the COVID-19 pandemic on global tuberculosis deaths 

in 2020. medRxiv. 2021;66:2020.04.28.20079582.  

17. Department of Health. The First National TB Prevalence Survey, South Africa 2018: 

Short report. Pretoria, South Africa; 2021.  

18. Loveday M, Mzobe YN, Pillay Y, Barron P. Figures of the dead: A decade of 

tuberculosis mortality registrations in South Africa. S Afr Med J. 2019;109(10):728–

32.  



203 

 

19. Simbayi L, Zuma K, Zungu N, Moyo S, Marinda E, Jooste S, et al. South African 

National HIV Prevalence, Incidence, Behaviour and Communication Survey, 2017. 

Cape Town: HSRC Press; 2017.  

20. Naidoo P, Theron G, Rangaka MX, Chihota VN, Vaughan L, Brey ZO, et al. The 

South African Tuberculosis Care Cascade: Estimated Losses and Methodological 

Challenges. Journal of Infectious Diseases. 2017;216(Suppl 7):S702–13.  

21. Vega V, Rodríguez S, Van Der Stuyft P, Seas C, Otero L. Recurrent TB: A systematic 

review and meta-analysis of the incidence rates and the proportions of relapses and 

reinfections. Thorax. 2021;76(5):494–502.  

22. Marx FM, Dunbar R, Enarson DA, Williams BG, Warren RM, Van Der Spuy GD, et 

al. The temporal dynamics of relapse and reinfection tuberculosis after successful 

treatment: A retrospective cohort study. Clinical Infectious Diseases. 

2014;58(12):1676–83.  

23. Churchyard GJ, Mametja LD, Mvusi L, Ndjeka N, Hesseling a C, Reid A, et al. 

Tuberculosis control in South Africa: Successes, challenges and recommendations. 

South African Medical Journal. 2014 Jan 20;104(3):244.  

24. Nanoo A, Izu A, Ismail NA, Ihekweazu C, Abubakar I, Mametja D, et al. Nationwide 

and regional incidence of microbiologically confirmed pulmonary tuberculosis in 

South Africa, 2004-12: A time series analysis. Lancet Infect Dis. 2015;15(9):1066–76.  

25. WHO. Global tuberculosis report. Geneva: World Health Organization; 2019.  

26. Madhi SA, Gray GE, Ismail N, Izu A, Mendelson M, Cassim N, et al. COVID-19 

lockdowns in low- and middle-income countries: Success against COVID-19 at the 

price of greater costs. South African Medical Journal. 2020;110(8):724–6.  

27. Ismail N, Moultrie H. Impact of COVID-19 intervention on TB testing in South 

Africa. National Institute for Communicable Diseases; 2020.  

28. Osman M, van Schalkwyk C, Naidoo P, Seddon JA, Dunbar R, Dlamini SS, et al. 

Mortality during tuberculosis treatment in South Africa using an 8-year analysis of the 

national tuberculosis treatment register. Sci Rep. 2021;11(1):1–10.  



204 

 

29. Dinkele R, Gessner S, McKerry A, Leonard B, Leukes J, Seldon R, et al. 

Aerosolization of Mycobacterium tuberculosis by Tidal Breathing. Am J Respir Crit 

Care Med. 2022 Jul 15;206(2):206–16.  

30. Department of Health. National Tuberculosis Management Guidelines 2008. 

Department of Health, Republic of South Africa 2014; 2008.  

31. Claassens MM, Van Schalkwyk C, Floyd S, Ayles H, Beyers N. Symptom screening 

rules to identify active pulmonary tuberculosis: Findings from the Zambian South 

African Tuberculosis and HIV/AIDS Reduction (ZAMSTAR) trial prevalence surveys. 

PLoS One. 2017;12(3):1–12.  

32. Flynn J, Schnappinger D, Wilkinson RJ, Young D. The spectrum of latent 

tuberculosis: rethinking the goals of prophylaxis. Nat Rev Microbiol. 2009;7(12):845–

55.  

33. Christian Lienhardt. From exposure to disease: The role of environmental factors in 

susceptibility to and development of tuberculosis. Epidemiol Rev. 2001;23(2):288–

301.  

34. Dheda K, Barry CE, Maartens G. Tuberculosis. The Lancet. 2016;387(10024):1211–

26.  

35. Lönnroth K, Jaramillo E, Williams BG, Dye C, Raviglione M. Drivers of tuberculosis 

epidemics: The role of risk factors and social determinants. Soc Sci Med. 

2009;68(12):2240–6.  

36. Baker M, Das D, Venugopal K, Howden-Chapman P. Tuberculosis associated with 

household crowding in a developed country. J Epidemiol Community Health (1978). 

2008;62(8):715–21.  

37. Frost WH. Risk of persons in familial contact with pulmonary tuberculosis. Am J 

Public Health. 1933;23(5):426–32.  

38. Chikovore J, Pai M, Horton KC, Daftary A, Kumwenda MK, Hart G, et al. Missing 

men with tuberculosis : the need to address structural influences and implement 

targeted and multidimensional interventions. BMJ Glob Health. 2020;21(2255).  



205 

 

39. Classen CN, Warren R, Richardson M, Hauman JH, Gie RP, Ellis JHP, et al. Impact of 

social interactions in the community on the transmission of tuberculosis in a high 

incidence area. Thorax. 1999;54(2):136–40.  

40. Wood R, Middelkoop K, Myer L, Grant AD, Whitelaw A, Lawn SD, et al. 

Undiagnosed tuberculosis in a community with high HIV prevalence: Implications for 

tuberculosis control. Am J Respir Crit Care Med. 2007;175(1):87–93.  

41. Claassens M, van Schalkwyk C, den Haan L, Floyd S, Dunbar R, van Helden P, et al. 

High Prevalence of Tuberculosis and Insufficient Case Detection in Two Communities 

in the Western Cape, South Africa. PLoS One. 2013;8(4).  

42. Ayles H, Schaap A, Nota A, Sismanidis C, Tembwe R, De Haas P, et al. Prevalence of 

tuberculosis, HIV and respiratory symptoms in two Zambian communities: 

Implications for tuberculosis control in the era of HIV. PLoS One. 2009;4(5).  

43. Pronyk RM, Makhubele MB, Hargreaves JR, Tollman SM, Hausler HP. Assessing 

health seeking behaviour among tuberculosis patients in rural South Africa. The 

International Journal of Tuberculosis and Lung Disease. 2001;  

44. Otwombe KN, Variava E, Holmes CB, Chaisson RE, Martinson N. Predictors of delay 

in the diagnosis and treatment of suspected tuberculosis in HIV co-infected patients in 

South Africa. Int J Tuberc Lung Dis. 2013;17(9):1199–205.  

45. Christian C, Burger C, Claassens M, Bond V, Burger R. Patient predictors of health-

seeking behaviour for persons coughing for more than two weeks in high-burden 

tuberculosis communities: The case of the Western Cape, South Africa. BMC Health 

Serv Res. 2019;19(1):1–8.  

46. Meintjes G, Schoeman H, Morroni C, Wilson D, Maartens G. Patient and provider 

delay in tuberculosis suspects from communities with a high HIV prevalence in South 

Africa: A cross-sectional study. BMC Infect Dis. 2008;8:1–8.  

47. Storla DG, Yimer S, Bjune GA. A systematic review of delay in the diagnosis and 

treatment of tuberculosis. BMC Public Health. 2008;8:1–9.  



206 

 

48. Frascella B, Richards AS, Sossen B, Emery JC, Odone A, Law I, et al. Subclinical 

Tuberculosis Disease-A Review and Analysis of Prevalence Surveys to Inform 

Definitions, Burden, Associations, and Screening Methodology. In: Clinical Infectious 

Diseases. Oxford University Press; 2021. p. E830–41.  

49. Kendall EA, Shrestha S, Dowdy DW. The epidemiological importance of subclinical 

tuberculosis a critical reappraisal. Vol. 203, American Journal of Respiratory and 

Critical Care Medicine. American Thoracic Society; 2021. p. 168–74.  

50. Loudon R, Roberts R. Droplet expulsion from the respiratory tract. Am Rev Respir 

Dis. 1967;95:435–42.  

51. Shaw B, Wynn-Williams N. Infectivity of Pulmonary Tuberculosis in Relation to 

Sputum Status. Am Rev Tuberc. 1953;69(5):724–732.  

52. Behr MA, Warren SA, Salamon H, Hopewell PC, Ponce De Leon A, Daley CL, et al. 

Transmission of Mycobacterium tuberculosis from patients smear-negative for acid-

fast bacilli. Lancet. 1999;353(9151):444–9.  

53. Behr M A, Warren S A, Salamon H, Hopewell P C, Ponce de Leon A, Daley C L 

SPM. Transmission of Mycobacterium tuberculosis from patients smear-negative for 

acid-fast bacilli. The Lancet. 1999;353:444–9.  

54. Peters JS, Andrews JR, Hatherill M, Hermans S, Martinez L, Schurr E, et al. Advances 

in the understanding of Mycobacterium tuberculosis transmission in HIV-endemic 

settings. Lancet Infect Dis. 2019;19(3):e65–76.  

55. Flynn J, Schnappinger D, Wilkinson RJ, Young D. The spectrum of latent 

tuberculosis: rethinking the goals of prophylaxis. Nat Rev Microbiol. 2009;7(12):845–

55.  

56. Gideon HP, Flynn JL. Latent tuberculosis: What the host “sees”? Immunol Res. 

2011;50(2–3):202–12.  

57. Behr MA, Edelstein PH, Ramakrishnan L. Revisiting the timetable of tuberculosis. 

The BMJ. 2018;362(August):1–10.  



207 

 

58. Rangaka MX, Wilkinson KA, Glynn JR, Ling D, Menzies D, Mwansa-Kambafwile J, 

et al. Predictive value of interferon-γ release assays for incident active tuberculosis: A 

systematic review and meta-analysis. Lancet Infect Dis. 2012;12(1):45–55.  

59. Houben RMGJ, Dodd PJ. The Global Burden of Latent Tuberculosis Infection: A Re-

estimation Using Mathematical Modelling. PLoS Med. 2016;13(10):e1002152.  

60. Cohen A, Mathiasen VD, Schön T, Wejse C. The global prevalence of latent 

tuberculosis: A systematic review and meta-analysis. European Respiratory Journal. 

2019;54(3):1–14.  

61. Andrews JR, Noubary F, Walensky RP, Cerda R, Losina E, Horsburgh CR. Risk of 

progression to active tuberculosis following reinfection with Mycobacterium 

tuberculosis. Clinical Infectious Diseases. 2012;54(6):784–91.  

62. Ferebee SH. Controlled chemoprophylaxis trials in tuberculosis. a general review. 

Bibliotheca Tuberculosea. 1970.  

63. Menzies NA, Wolf E, Connors D, Bellerose M, Sbarra AN, Cohen T, et al. 

Progression from latent infection to active disease in dynamic tuberculosis 

transmission models: a systematic review of the validity of modelling assumptions. 

Lancet Infect Dis. 2018;3099(18).  

64. Ferebee SH. Controlled chemoprophylaxis trials in tuberculosis. A general review. 

Vol. 26, Bibliotheca tuberculosea. 1970. p. 28–106.  

65. Menzies NA, Wolf E, Connors D, Bellerose M, Sbarra AN, Cohen T, et al. 

Progression from latent infection to active disease in dynamic tuberculosis 

transmission models: a systematic review of the validity of modelling assumptions. 

Lancet Infect Dis. 2018;3099(18).  

66. Dale KD, Karmakar M, Snow KJ, Menzies D, Trauer JM, Denholm JT. Quantifying 

the rates of late reactivation tuberculosis: a systematic review. Lancet Infect Dis. 

2021;3099(20).  

67. Patra J, Jha P, Rehm J, Suraweera W. Tobacco smoking, alcohol drinking, diabetes, 

low body mass index and the risk of self-reported symptoms of active tuberculosis: 



208 

 

individual participant data (IPD) meta-analyses of 72,684 individuals in 14 high 

tuberculosis burden countries. PLoS One. 2014;9(5):e96433.  

68. Rehm J, Samokhvalov A V, Neuman MG, Room R, Parry C, Lönnroth K, et al. The 

association between alcohol use, alcohol use disorders and tuberculosis (TB). A 

systematic review. BMC Public Health. 2009;9:450.  

69. Lönnroth K, Williams BG, Stadlin S, Jaramillo E, Dye C. Alcohol use as a risk factor 

for tuberculosis – a systematic review. BMC Public Health. 2008;8(8):289.  

70. Jeon CY, Murray MB. Diabetes mellitus increases the risk of active tuberculosis: a 

systematic review of 13 observational studies. PLoS Med. 2008;5(7):e152.  

71. Baker MA, Harries AD, Jeon CY, Hart JE, Kapur A, Lönnroth K, et al. The impact of 

diabetes on tuberculosis treatment outcomes: A systematic review. BMC Med. 

2011;9:81.  

72. Barboza CEG, Winter DH, Seiscento M, Santos UDP, Terra Filho M. Tuberculosis 

and silicosis: Epidemiology, diagnosis and chemoprophylaxis. Jornal Brasileiro de 

Pneumologia. 2008;34(11):959–66.  

73. Lönnroth K, Williams BG, Cegielski P, Dye C. A consistent log-linear relationship 

between tuberculosis incidence and body mass index. Int J Epidemiol. 

2010;39(1):149–55.  

74. Houda Ben A, Makram K, Chakib M, Khaoula R, Fatma H, Fatma S, et al. 

Extrapulmonary Tuberculosis: Update on the Epidemiology, Risk Factors and 

Prevention Strategies. International Journal of Tropical Diseases. 2018;1(1):1–6.  

75. National Tuberculosis Management Guidelines. Department of Health. Pretoroia, 

South Africa; 2008.  

76. Tiemersma EW, van der Werf MJ, Borgdorff MW, Williams BG, Nagelkerke NJD. 

Natural history of tuberculosis: Duration and fatality of untreated pulmonary 

tuberculosis in HIV negative patients: A systematic review. PLoS One. 2011;6(4).  



209 

 

77. Blaser N, Zahnd C, Hermans S, Salazar-Vizcaya L, Estill J, Morrow C, et al. 

Tuberculosis in Cape Town: An age-structured transmission model. Epidemics. 

2016;14:54–61.  

78. Wood R, Lawn SD, Caldwell J, Kaplan R, Middelkoop K, Bekker LG. Burden of new 

and recurrent tuberculosis in a major South African city stratified by age and HIV-

status. PLoS One. 2011;6(10).  

79. Wood R, Johnstone-Robertson S, Uys P, Hargrove J, Middelkoop K, Lawn SD, et al. 

Tuberculosis transmission to young children in a South African community: modeling 

household and community infection risks. Clin Infect Dis. 2010;51(4):401–8.  

80. Vynnycky E, Fine PE. The natural history of tuberculosis: the implications of age-

dependent risks of disease and the role of reinfection. Epidemiol Infect. 

1997;119(2):183–201.  

81. Wood R, Johnstone-Robertson S, Uys P, Hargrove J, Middelkoop K, Lawn SD, et al. 

Tuberculosis transmission to young children in a South African community: modeling 

household and community infection risks. Clin Infect Dis. 2010;51(4):401–8.  

82. Feldmann H. Age and the epidemiology and pathogenesis of tuberculosis. 

2010;375:1852–4.  

83. Dodd PJ, Looker C, Plumb ID, Bond V, Schaap A, Shanaube K, et al. Age- and Sex-

Specific Social Contact Patterns and Incidence of Mycobacterium tuberculosis 

Infection. Am J Epidemiol. 2016;183(2):156–66.  

84. Sutherland I, Švandová E, Radhakrishna S. The development of clinical tuberculosis 

following infection with tubercle bacilli. 1. A theoretical model for the development of 

clinical tuberculosis following infection, linking from data on the risk of tuberculous 

infection and the incidence of clinic. Tubercle. 1982;  

85. Horton KC, Hoey AL, Béraud G, Corbett EL, White RG. Systematic review and meta-

analysis of sex differences in social contact patterns and implications for tuberculosis 

transmission and control. Emerg Infect Dis. 2020;26(5):910–9.  



210 

 

86. Nhamoyebonde S, Leslie A. Biological differences between the sexes and 

susceptibility to tuberculosis. Journal of Infectious Diseases. 2014;209(SUPPL. 3).  

87. Neyrolles O, Quintana-Murci L. Sexual inequality in tuberculosis. PLoS Med. 

2009;6(12).  

88. Watkins RE, Plant AJ. Does smoking explain sex differences in the global tuberculosis 

epidemic? Epidemiol Infect. 2006;134(2):333–9.  

89. South Africa Demographic and Health Survey 2016. Pretoria, South Africa; 2019.  

90. O’Leary SM, Coleman MM, Chew WM, Morrow C, McLaughlin AM, Gleeson LE, et 

al. Cigarette smoking impairs human pulmonary immunity to mycobacterium 

tuberculosis. Am J Respir Crit Care Med. 2014;190(12):1430–6.  

91. Rehm J, Baliunas D, Borges GLG, Graham K, Irving H, Kehoe T, et al. The relation 

between different dimensions of alcohol consumption and burden of disease: An 

overview. Addiction. 2010;105(5):817–43.  

92. Lönnroth K, Castro KG, Chakaya JM, Chauhan LS, Floyd K, Glaziou P, et al. 

Tuberculosis control and elimination 2010-50: cure, care, and social development. The 

Lancet. 2010;375(9728):1814–29.  

93. Kyu HH, Maddison ER, Henry NJ, Mumford JE, Barber R, Shields C, et al. The global 

burden of tuberculosis: results from the Global Burden of Disease Study 2015. Lancet 

Infect Dis. 2018;18(3):261–84.  

94. March F, Coll P, Guerrero RA, Busquets E, Caylà JA, Prats G, et al. Predictors of 

tuberculosis transmission in prisons: An analysis using conventional and molecular 

methods. AIDS. 2000;  

95. Daley CL, Small PM, Schecter GF, Schoolnik GK, McAdam RA, Jacobs WR HP. An 

outbreak of tuberculosis with accelerated progression among persons infected with the 

human immunodeficiency virus. An analysis using restriction-fragment-length 

polymorphisms. New England Journal of Medicine. 1992;326(4):231.  



211 

 

96. Badri M, Wilson D, Wood R. Effect of highly active antiretroviral therapy on 

incidence of tuberculosis in South Africa: A cohort study. Lancet. 

2002;359(9323):2059–64.  

97. Suthar AB, Lawn SD, del Amo J, Getahun H, Dye C, Sculier D, et al. Antiretroviral 

therapy for prevention of tuberculosis in adults with hiv: A systematic review and 

meta-analysis. PLoS Med. 2012;9(7).  

98. Ellis PK, Martin WJ, Dodd PJ. CD4 count and tuberculosis risk in HIV-positive adults 

not on ART: a systematic review and meta-analysis. PeerJ. 2017;5:e4165.  

99. Badri M, Lawn SD, Wood R. Short-term risk of AIDS or death in people infected with 

HIV-1 before antiretroviral therapy in South Africa: a longitudinal study. Lancet. 

2006;368(9543):1254–9.  

100. Lawn SD, Myer L., Bekker L.-G., Wood R. Burden of tuberculosis in an antiretroviral 

treatment programme in sub-Saharan Africa: Impact on treatment outcomes and 

implications for tuberculosis control. AIDS. 2006;20(12):1605–12.  

101. Anglaret X, Minga A, Gabillard D, Ouassa T, Messou E, Morris B, et al. AIDS and 

non-AIDS morbidity and mortality across the spectrum of CD4 cell counts in HIV-

infected adults before starting antiretroviral therapy in C??te d’Ivoire. Clinical 

Infectious Diseases. 2012;54(5):714–23.  

102. Manosuthi W, Tantanathip P, Chimsuntorn S, Eampokarap B, Thongyen S, 

Nilkamhang S, et al. Treatment outcomes of patients co-infected with HIV and 

tuberculosis who received a nevirapine-based antiretroviral regimen: A four-year 

prospective study. International Journal of Infectious Diseases. 2010;14(11):e1013–7.  

103. Kaplan R, Hermans S, Caldwell J, Jennings K, Bekker LG, Wood R. HIV and TB co-

infection in the ART era: CD4 count distributions and TB case fatality in Cape Town. 

BMC Infect Dis. 2018;18(1):1–9.  

104. Pepper DJ, Schomaker M, Wilkinson RJ, Azevedo V, Maartens G. Independent 

predictors of tuberculosis mortality in a high HIV prevalence setting: A retrospective 

cohort study. AIDS Res Ther. 2015;12(1):1–9.  



212 

 

105. Odone A, Amadasi S, White RG, Cohen T, Grant AD, Houben RMGJ. The impact of 

antiretroviral therapy on mortality in HIV positive people during tuberculosis 

treatment: A systematic review and meta-analysis. PLoS One. 2014;9(11).  

106. Johnson LF. Access to antiretroviral treatment in South Africa, 2004–2011. South 

African Medical Journal of HIV Medicine. 2012;22–7.  

107. Meyers T, Dramowski A, Schneider H, Gardiner N, Kuhn L, Moore D. Changes in 

paediatric HIV-related hospital admissions and mortality in Soweto, South Africa 

1996–2011: light at the end of the tunnel? J Acquir Immune Defic Syndr. 

2012;100(2):503–10.  

108. Eaton JW, Johnson LF, Salomon JA, Bärnighausen T, Bendavid E, Bershteyn A, et al. 

HIV treatment as prevention: Systematic comparison of mathematical models of the 

potential impact of antiretroviral therapy on HIV incidence in South Africa. PLoS 

Med. 2012;9(7).  

109. Baker M a, Harries AD, Jeon CY, Hart JE, Kapur A, Lönnroth K, et al. The impact of 

diabetes on tuberculosis treatment outcomes: A systematic review. BMC Med. 

2011;9(1):81.  

110. Stokes A, Berry KM, Mchiza Z, Parker W ah, Labadarios D, Chola L, et al. Prevalence 

and unmet need for diabetes care across the care continuum in a national sample of 

South African adults: Evidence from the SANHANES-1, 2011-2012. PLoS One. 

2017;12(10):e0184264.  

111. Sinha P, Lönnroth K, Bhargava A, Heysell SK, Sarkar S, Salgame P, et al. Food for 

thought: addressing undernutrition to end tuberculosis. Lancet Infect Dis. 

2021;43(20):1–8.  

112. Shisana O, Labadarios D, Rehle T, Simbayi L, Zuma K, Dhansay A, Reddy P, Parker 

W, Hoosain E, Naidoo P, Hogoro C, Mchiza Z, Steyn NP, Dwane N, Makoae M, 

Maluleke T, Ramlagan S, Zungu N, Evans MG, Jacobs L FM. The South African 

National health and Nutrition Examination Survey SANHANES-1. Cape Town: HSRC 

Press; 2013.  



213 

 

113. Burusie A, Enquesilassie F, Addissie A, Dessalegn B, Lamaro T. Effect of smoking on 

tuberculosis treatment outcomes: A systematic review and meta-analysis. PLoS One. 

2020;15(9 September):1–20.  

114. Lin HH, Ezzati M, Murray M. Tobacco smoke, indoor air pollution and tuberculosis: 

A systematic review and meta-analysis. PLoS Med. 2007;4(1):0173–89.  

115. Bates MN. Risk of Tuberculosis From Exposure to Tobacco Smoke. Arch Intern Med. 

2007;167(4):335.  

116. Arcavi L, Benowitz NL. Cigarette smoking and infection. Arch Intern Med. 

2004;164(20):2206–16.  

117. International Guide for Monitoring Alcohol Consumption and Harm. World Health 

Organization. Geneva, Switzerland; 2000.  

118. Imtiaz S, Shield KD, Roerecke M, Samokhvalov A v., Lönnroth K, Rehm J. Alcohol 

consumption as a risk factor for tuberculosis: Meta-analyses and burden of disease. 

European Respiratory Journal. 2017;50(1).  

119. Sakula A. Robert Koch: Centenary of the discovery of the tubercle bacillus, 1882. Bull 

Int Union Tuberc. 1982;57(2):111–6.  

120. Bloom B, Atun R, Cohen T, Dye C, Fraser H, Gomez G, et al. Chapter-11 

Tuberculosis. In: KK H, Bertozzi S BB, P J, editors. Major Infectious Disease. 3rd ed. 

Washington (DC): The International Bank for Reconstruction and Development / The 

World Bank; 2017. p. 233–313.  

121. Kass EH. Infectious diseases and social change. Journal of Infectious Diseases. 

1971;123(1):110–4.  

122. Lienhardt C, Glaziou P, Uplekar M, Lå ̈nnroth K, Getahun H, Raviglione M. Global 

tuberculosis control: Lessons learnt and future prospects. Nat Rev Microbiol. 

2012;10(6):407–16.  

123. Lange JMA, Ananworanich J. The discovery and development of antiretroviral agents. 

Antivir Ther. 2014;19:5–14.  



214 

 

124. Raviglione MC, Snider Jr DE, Kochi A. Global Epidemiology of Tuberculosis: 

Morbidity and Mortality of a Worldwide Epidemic. JAMA. 1995 Jan 18;273(3):220–6.  

125. World Health Organization Tuberculosis Programme Framework for Effective 

Tuberculsosis Control. World Health Organisation; Geneva; 1994.  

126. Revised international definitions in tuberculosis control. International Journal of 

Tuberculosis and Lung Disease. 2001;5(3):213–215.  

127. Global Plan To Stop TB 2006-2015: Progress Report 2006-2008. Geneva: World 

Health Organization.; 2009.  

128. Pasipanodya JG, Gumbo T. A meta-analysis of self-administered vs directly observed 

therapy effect on microbiologic failure, relapse, and acquired drug resistance in 

tuberculosis patients. Clinical Infectious Diseases. 2013;57(1):21–31.  

129. WHO Three I’s Meeting Intensified Case Finding (ICF), Isoniazid Preventive Therapy 

(IPT) and TB Infection Control (IC) for people living with HIV. World Health 

Organisation; Geneva; 2008.  

130. Luca G, Tanna D. Effect of Xpert MTB/RIF on clinical outcomes in routine care 

settings: individual patient data meta-analysis. Lancet Global Health. 2019;7(2):191–9.  

131. Global Tuberculosis Report 2015. World Health Organization. Geneva; Switzerland; 

2015.  

132. Stop TB Partnership. Global Plan to End TB 2018–2022: The Paradigm Shift.  

133. Bjerrum S, Schiller I, Dendukuri N, Kohli M, Nathavitharana, RR Zwerling A, 

Denkinger C, et al. Lateral flow urine lipoarabinomannan assay for detecting active 

tuberculosis in people living with HIV (Review). Cochrane Database of Systematic 

Reviews. 2019;(10).  

134. Tait DR, Hatherill M, Van Der Meeren O, Ginsberg AM, Van Brakel E, Salaun B, et 

al. Final Analysis of a Trial of M72/AS01 E Vaccine to Prevent Tuberculosis. New 

England Journal of Medicine. 2019;381(25):2429–39.  



215 

 

135. Nemes E, Geldenhuys H, Rozot V, Rutkowski KT, Ratangee F, Bilek N, et al. 

Prevention of M. tuberculosis Infection with H4:IC31 Vaccine or BCG Revaccination. 

New England Journal of Medicine. 2018;379(2):138–49.  

136. Tameris M, Mearns H, Penn-Nicholson A, Gregg Y, Bilek N, Mabwe S, et al. Live-

attenuated Mycobacterium tuberculosis vaccine MTBVAC versus BCG in adults and 

neonates: a randomised controlled, double-blind dose-escalation trial. Lancet Respir 

Med. 2019;7(9):757–70.  

137. South Africa: WHO and UNICEF estimates of immunization coverage South Africa. 

2019.  

138. South Africa’s National Strategic Plan on HIV/AIDS, TB and STI’s 2017-2022. 2017.  

139. National Department of Health. Guidelines for Tuberculosis Preventive Therapy 

among HIV Infected Individuals in South Africa. 2010.  

140. Abdool Karim SS, Churchyard GJ, Abdool Karim Q, Lawn SD. HIV infection and 

tuberculosis in South Africa: an urgent need to escalate the public health response. 

Lancet. 2009;374(9693):921–33.  

141. Houben RMGJ, Dowdy DW, Vassall A, Cohen T, Nicol MP, Granich RM, et al. How 

can mathematical models advance tuberculosis control in high HIV prevalence 

settings? International Journal of Tuberculosis and Lung Disease. 2014;18(5):509–14.  

142. Bacaër N, Ouifki R, Pretorius C, Wood R, Williams B. Modeling the joint epidemics 

of TB and HIV in a South African township. J Math Biol. 2008;57(4):557–93.  

143. Porco TC, Small PM, Blower SM. Amplification dynamics: predicting the effect of 

HIV on tuberculosis outbreaks. J Acquir Immune Defic Syndr. 2001;28(5):437–44.  

144. Murray M. Determinants of cluster distribution in the molecular epidemiology of 

tuberculosis. Proceedings of the National Academy of Sciences. 2002;99(3):1538–43.  

145. Schinazi RB. Can HIV invade a population which is already sick? Bulletin of the 

Brazilian Mathematical Society. 2003;34(3):479–88.  



216 

 

146. Williams BG, Granich R, Chauhan LS, Dharmshaktu NS, Dye C. The impact of 

HIV/AIDS on the control of tuberculosis in India. Proceedings of the National 

Academy of Sciences. 2005;102(27):9619–24.  

147. Basu S, Stuckler D, McKee M. Addressing institutional amplifiers in the dynamics and 

control of tuberculosis epidemics. American Journal of Tropical Medicine and 

Hygiene. 2011;84(1):30–7.  

148. Naresh R, Sharma D, Tripathi A. Modelling the effect of tuberculosis on the spread of 

HIV infection in a population with density-dependent birth and death rate. Vol. 50, 

Mathematical and Computer Modelling. 2009. p. 1154–66.  

149. Dolin PJ, Raviglione MC, Kochi A. Global tuberculosis incidence and mortality during 

1990-2000. Bull World Health Organ. 1994;72(2):213–20.  

150. Massad E, Burattini MN, Coutinho FAB, Yang HM, Raimundo SM. Modeling the 

interaction between aids and tuberculosis. Math Comput Model. 1993;17(9):7–21.  

151. Dye C, Garnett GP, Sleeman K, Williams BG. Prospects for worldwide tuberculosis 

control under the WHO DOTS strategy. Directly observed short-course therapy. 

Lancet. 1998;352(9144):1886–91.  

152. Porco TC, Small PM, Blower SM. Amplification dynamics: predicting the effect of 

HIV on tuberculosis outbreaks. J Acquir Immune Defic Syndr. 2001;28(5):437–44.  

153. Raimundo SM, Yang HM, Bassanezi RC, Ferreira ACM. The attracting basins and the 

assessment of the transmission coefficients for HIV and M. tuberculosis infections 

among women inmates. J Biol Syst. 2002;10(1):61–83.  

154. Currie CSM, Williams BG, Cheng RCH, Dye C. Tuberculosis epidemics driven by 

HIV: Is prevention better than cure? AIDS. 2003;17(17):2501–8.  

155. Guwatudde D, Debanne SM, Diaz M, King MD. A re-examination of the potential 

impact of preventive therapy on the public health problem of tuberculosis in 

contemporary sub-Saharan Africa. Prev Med. 2004;23(1):1–7.  

156. Naresh R, Tripathi A. Modelling and analysis of HIV-TB co-infection in a variable 

size population. Mathematical Modelling and Analysis. 2005;10(3):275–86.  



217 

 

157. Cohen T, Lipsitch M, Walensky RP, Murray M. Beneficial and perverse effects of 

isoniazid preventive therapy for latent tuberculosis infection in HIV-tuberculosis 

coinfected populations. Proceedings of the National Academy of Sciences. 

2006;103(18):7042–7.  

158. Dowdy DW, Chaisson RE, Moulton LH, Dorman SE. The potential impact of 

enhanced diagnostic techniques for tuberculosis driven by HIV: A mathematical 

model. AIDS. 2006;20(5):751–62.  

159. Hughes GR, Currie CSM, Corbett EL. Modeling tuberculosis in areas of high HIV 

prevalence. Proceedings of the 2006 Winter Simulation Conference. 2006;459–65.  

160. Salomon JA, Lloyd-Smith JO, Getz WM, Resch S, Sánchez MS, Porco TC, et al. 

Prospects for advancing tuberculosis control efforts through novel therapies. PLoS 

Med. 2006;3(8):1302–9.  

161. Dowdy DW, Chaisson RE, Maartens G, Corbett EL, Dorman SE. Impact of enhanced 

tuberculosis diagnosis in South Africa: A mathematical model of expanded culture and 

drug susceptibility testing. Proceedings of the National Academy of Sciences. 

2008;105(32):11293–8.  

162. Sánchez MS, Lloyd-Smith JO, Porco TC, Williams BG, Borgdorff MW, Mansoer J, et 

al. Impact of HIV on novel therapies for tuberculosis control. AIDS. 2008;22(8):963–

72.  

163. Basu S, Maru D, Poolman E, Galvani A. Primary and secondary tuberculosis 

preventive treatment in HIV clinics: Simulating alternative strategies. International 

Journal of Tuberculosis and Lung Disease. 2009;13(5):652–8.  

164. Dowdy DW, Chaisson RE. The persistence of tuberculosis in the age of DOTS: 

Reassessing the effect of case detection. Bull World Health Organ. 2009;87(4):296–

304.  

165. Sánchez MS, Lloyd-Smith JO, Williams BG, Porco TC, Ryan SJ, Borgdorff MW, et 

al. Incongruent HIV and tuberculosis co-dynamics in Kenya: Interacting epidemics 

monitor each other. Epidemics. 2009;1(1):14–20.  



218 

 

166. Williams BG, Granich R, De Cock KM, Glaziou P, Sharma A, Dye C. Antiretroviral 

therapy for tuberculosis control in nine African countries. Proceedings of the National 

Academy of Sciences. 2010;107(45):19485–9.  

167. Mellor GR, Currie CSM, Corbett EL. Incorporating household structure into a discrete 

event simulation model of tuberculosis and HIV. ACM Transactions on Modeling and 

Computer Simulation. 2011;21(4):1–17.  

168. Mills HL, Cohen T, Colijn C. Modelling the performance of isoniazid preventive 

therapy for reducing tuberculosis in HIV endemic settings: the effects of network 

structure. Journal of the Royal Society, Interface / the Royal Society. 

2011;8(63):1510–20.  

169. Menzies NA, Cohen T, Lin HH, Murray M, Salomon JA. Population Health Impact 

and Cost-Effectiveness of Tuberculosis Diagnosis with Xpert MTB/RIF: A Dynamic 

Simulation and Economic Evaluation. PLoS Med. 2012;9(11).  

170. Houben RMGJ, Sumner T, Grant AD, White RG. Ability of preventive therapy to cure 

latent Mycobacterium tuberculosis infection in HIV-infected individuals in high-

burden settings. Proc Natl Acad Sci U S A. 2014;111(14):5325–30.  

171. Pretorius C, Menzies N a, Chindelevitch L, Cohen T, Cori A, Eaton JW, et al. The 

potential effects of changing HIV treatment policy on tuberculosis outcomes in South 

Africa: results from three tuberculosis-HIV transmission models. AIDS. 2014;28 

Suppl 1:S25-34.  

172. Chindelevitch L, Menzies NA, Pretorius C, Stover J, Salomon JA, Cohen T. 

Evaluating the potential impact of enhancing HIV treatment and tuberculosis control 

programmes on the burden of tuberculosis. J R Soc Interface. 2015;12(106).  

173. Knight GM, Gomez GB, Dodd PJ, Dowdy D, Zwerling A, Wells WA, et al. The 

impact and cost-effectiveness of a four-month regimen for first-line treatment of active 

tuberculosis in South Africa. PLoS One. 2015;10(12):1–13.  

174. Knight GM, Dodd PJ, Grant AD, Fielding KL, Churchyard GJ, White RG. 

Tuberculosis prevention in South Africa. PLoS One. 2015;10(4):1–11.  



219 

 

175. Vynnycky E, Sumner T, Fielding KL, Lewis JJ, Cox a. P, Hayes RJ, et al. 

Tuberculosis Control in South African Gold Mines: Mathematical Modeling of a Trial 

of Community-Wide Isoniazid Preventive Therapy. Am J Epidemiol. 

2015;181(8):619–32.  

176. Gilbert JA, Long EF, Brooks RP, Friedland GH, Moll AP, Townsend JP, et al. 

Integrating community-based interventions to reverse the convergent TB/HIV 

epidemics in rural South Africa. PLoS One. 2015;10(5):1–22.  

177. Houben RMGJ, Lalli M, Sumner T, Hamilton M, Pedrazzoli D, Bonsu F, et al. TIME 

Impact - a new user-friendly tuberculosis (TB) model to inform TB policy decisions. 

BMC Med. 2016;14(1):56.  

178. Gilbert JA, Shenoi S V., Moll AP, Friedland GH, Paltiel AD, Galvani AP. Cost-

effectiveness of community-based TB/HIV screening and linkage to care in rural 

South Africa. PLoS One. 2016;11(12):1–19.  

179. Sumner T, Houben RMGJ, Rangaka MX, Maartens G, Boulle A, Wilkinson RJ, et al. 

Post-treatment effect of isoniazid preventive therapy on tuberculosis incidence in HIV-

infected individuals on antiretroviral therapy. AIDS. 2016;30(8):1279–86.  

180. Houben RMGJ, Menzies NA, Sumner T, Huynh GH, Arinaminpathy N, Goldhaber-

Fiebert JD, et al. Feasibility of achieving the 2025 WHO global tuberculosis targets in 

South Africa, China, and India: a combined analysis of 11 mathematical models. 

Lancet Glob Health. 2016;4(11):e806–15.  

181. Menzies NA, Gomez GB, Bozzani F, Chatterjee S, Foster N, Baena IG, et al. Cost-

effectiveness and resource implications of aggressive action on tuberculosis in China, 

India, and South Africa: a combined analysis of nine models. Lancet Glob Health. 

2016;4(11):e816–26.  

182. Williams BG, Gupta S, Wollmers M, Granich R. Progress and prospects for the control 

of HIV and tuberculosis in South Africa: a dynamical modelling study. Lancet Public 

Health. 2017;2(5):e223–30.  



220 

 

183. Shrestha S, Chihota V, White RG, Grant AD, Churchyard GJ, Dowdy DW. Impact of 

targeted tuberculosis vaccination among Amining population in South Africa: A 

model-based study. Am J Epidemiol. 2017;186(12):1362–9.  

184. Marx FM, Yaesoubi R, Menzies NA, Salomon JA, Bilinski A, Beyers N, et al. 

Tuberculosis control interventions targeted to previously treated people in a high-

incidence setting: a modelling study. Lancet Glob Health. 2018;6(4):e426–35.  

185. McCreesh N, White RG. An explanation for the low proportion of tuberculosis that 

results from transmission between household and known social contacts. Sci Rep. 

2018;8(1):1–9.  

186. Rhines AS, Feldman MW, Bendavid E. Modeling the implementation of population-

level isoniazid preventive therapy for tuberculosis control in a high HIV-prevalence 

setting. AIDS. 2018;32(15):2129–40.  

187. Kendall EA, Azman AS, Maartens G, Boulle A, Wilkinson RJ, Dowdy DW, et al. 

Projected population-wide impact of antiretroviral therapy-linked isoniazid preventive 

therapy in a high-burden setting. Vol. 33, AIDS. 2019. 525–536 p.  

188. Sumner T, Bozzani F, Mudzengi D, Hippner P, Houben RM, Cardenas V, et al. 

Estimating the Impact of Tuberculosis Case Detection in Constrained Health Systems: 

An Example of Case-Finding in South Africa. Am J Epidemiol. 2019;188(6):1155–64.  

189. Sumner T, Scriba TJ, Penn-Nicholson A, Hatherill M, White RG. Potential population 

level impact on tuberculosis incidence of using an mRNA expression signature 

correlate-of-risk test to target tuberculosis preventive therapy. Sci Rep. 

2019;9(1):11126.  

190. Hippner P, Sumner T, Houben RMGJ, Cardenas V, Vassall A, Bozzani F, et al. 

Application of provincial data in mathematical modelling to inform sub-national 

tuberculosis program decision-making in South Africa. PLoS One. 2019;14(1):1–11.  

191. Ricks S, Denkinger CM, Schumacher SG, Hallett TB, Arinaminpathy N. The potential 

impact of urine-LAM diagnostics on tuberculosis incidence and mortality: A 

modelling analysis. PLoS Med. 2020;17(12):1–20.  



221 

 

192. Marx FM, Cohen T, Menzies NA, Salomon JA, Theron G, Yaesoubi R. Cost-

effectiveness of post-treatment follow-up examinations and secondary prevention of 

tuberculosis in a high-incidence setting: a model-based analysis. Lancet Glob Health. 

2020;8(9):e1223–33.  

193. Harris R, Sumner T, Knight G, Zhang H, White R. Potential impact of tuberculosis 

vaccines in China, South Africa, and India. Sci Transl Med. 2020;12(July):1–23.  

194. Sumner T, Mendelsohn SC, Scriba TJ, Hatherill M, White RG. The impact of blood 

transcriptomic biomarker targeted tuberculosis preventive therapy in people living 

with HIV: a mathematical modelling study. BMC Med. 2021;19(1):1–11.  

195. Jo Y, Shrestha S, Gomes I, Marks S, Hill A, Asay G, et al. Model-based Cost-

effectiveness of State-level Latent Tuberculosis Interventions in California, Florida, 

New York, and Texas. Clinical Infectious Diseases. 2021;73(9):E3476–82.  

196. Harris RC, Quaife M, Weerasuriya C, Gomez GB, Sumner T, Bozzani F, et al. Cost-

effectiveness of routine adolescent vaccination with an M72/AS01E-like tuberculosis 

vaccine in South Africa and India. Nat Commun. 2022;13(1):1–8.  

197. Witbooi P, Vyambwera SM. A model of population dynamics of TB in a prison system 

and application to South Africa. BMC Res Notes. 2017;10(1):1–8.  

198. Fofana MO, Knight GM, Gomez GB, White RG, Dowdy DW. Population-Level 

Impact of Shorter-Course Regimens for Tuberculosis: A Model-Based Analysis. 

Chowell G, editor. PLoS One. 2014 May 9;9(5):e96389.  

199. Kendall EA, Azman AS, Maartens G, BOULLE A, Wilkinson RJ, Dowdy DW, et al. 

Projected population-wide impact of antiretroviral therapy-linked isoniazid preventive 

therapy in a high-burden setting. AIDS. 2019;0:1.  

200. Mills HL, Cohen T, Colijn C. Modelling the performance of isoniazid preventive 

therapy for reducing tuberculosis in HIV endemic settings: the effects of network 

structure. Journal of the Royal Society, Interface / the Royal Society. 

2011;8(63):1510–20.  



222 

 

201. Knight GM, Griffiths UK, Sumner T, Laurence Y V, Gheorghe A, Vassall A, et al. 

Impact and cost-effectiveness of new tuberculosis vaccines in low- and middle-income 

countries. Proc Natl Acad Sci U S A. 2014;111(43):15520–5.  

202. Mishra S, Fisman DN, Boily MC. The ABC of terms used in mathematical models of 

infectious diseases. J Epidemiol Community Health (1978). 2011;65(1):87–94.  

203. Houben RMGJ, Glynn PJR, Mallard K, Sichali L. HIV increases the risk of 

tuberculosis due to recent re-infection in individuals with latent infection. Int J Tuberc 

Lung Dis. 2012;14(7):909–15.  

204. Verver S, Warren RM, Beyers N, Richardson M, Van Der Spuy GD, Borgdorff MW, 

et al. Rate of reinfection tuberculosis after successful treatment is higher than rate of 

new tuberculosis. Am J Respir Crit Care Med. 2005;171(12):1430–5.  

205. Surie D, Fane O, Finlay A, Ogopotse M, Tobias JL, Click ES, et al. Molecular, Spatial, 

and Field Epidemiology Suggesting TB Transmission in Community, Not Hospital, 

Gaborone, Botswana. Emerg Infect Dis. 2017;23(3):487–90.  

206. Naidoo K, Dookie N. Insights into Recurrent Tuberculosis: Relapse Versus 

Reinfection and Related Risk Factors, Tuberculosis. IntechOpen. 2018;  

207. Sonnenberg P, Murray J, Glynn JR, Shearer S, Kambashi B, Godfrey-Faussett P. HIV-

1 and recurrence, relapse, and reinfection of tuberculosis after cure: A cohort study in 

South African mineworkers. Lancet. 2001;358(9294):1687–93.  

208. Middelkoop K, Bekker LG, Shashkina E, Kreiswirth B, Wood R. Retreatment TB in a 

South African community: the role of re-infection, HIV and antiretroviral treatment. 

Int J Tuberc Lung Dis. 2012;16(11).  

209. Sumner T, Bozzani F, Mudzengi D, Hippner P, Houben RM, Cardenas V, et al. 

Estimating the Impact of Tuberculosis Case Detection in Constrained Health Systems: 

An Example of Case-Finding in South Africa. Am J Epidemiol. 2019;188(6):1155–64.  

210. Johnstone-Robertson SP, Mark D, Morrow C, Middelkoop K, Chiswell M, Aquino 

LDH, et al. Social mixing patterns within a South African township community: 



223 

 

Implications for respiratory disease transmission and control. Am J Epidemiol. 

2011;174(11):1246–55.  

211. Lawn SD, Bekker LG, Middelkoop K, Myer L, Wood R. Impact of HIV infection on 

the epidemiology of tuberculosis in a peri-urban community in South Africa: the need 

for age-specific interventions. Clin Infect Dis. 2006;42(7):1040–7.  

212. Williams BG, Dye C. Antiretroviral drugs for tuberculosis control in the era of 

HIV/AIDS. Science. 2003;301(5639):1535–7.  

213. Williams BG, Korenromp EL, Gouws E, Schmid GP, Auvert B, Dye C. HIV Infection, 

Antiretroviral Therapy, and CD4 + Cell Count Distributions in African Populations. J 

Infect Dis. 2006;194(10):1450–8.  

214. Guideline on when to start antiretroviral therapy and on pre-exposure prophylaxis for 

HIV. Geneva: World Health Organization; 2015.  

215. Kunkel A, Abel zur Wiesch P, Nathavitharana RR, Marx FM, Jenkins HE, Cohen T. 

Smear positivity in paediatric and adult tuberculosis: Systematic review and meta-

analysis. BMC Infect Dis. 2016;16(1):1–9.  

216. Corbett EL, Watt CJ, Walker N, Maher D, Williams BG, Raviglione MC, et al. The 

Growing Burden of Tuberculosis: global trends and interactions with the HIV 

epidemic. Arch Intern Med. 2003;163(9):1009–21.  

217. Dye C, Scheele S, Dolin P, Pathania V, Raviglione MC. Global burden of tuberculosis: 

Estimated incidence, prevalence, and mortality by country. J Am Med Assoc. 

1999;282(7):677–86.  

218. van der Sande MA, Schim van der Loeff MF, Bennett RC, Dowling M, Aveika AA, 

Togun TO, et al. Incidence of tuberculosis and survival after its diagnosis in patients 

infected with HIV-1 and HIV-2. Aids. 2004;18(14):1933–41.  

219. Uys P, Marais BJ, Johnstone-Robertson S, Hargrove J, Wood R. Transmission 

elasticity in communities hyperendemic for tuberculosis. Clinical Infectious Diseases. 

2011;52(12):1399–404.  



224 

 

220. Lin HH, Langley I, Mwenda R, Doulla B, Egwaga S, Millington KA, et al. A 

modelling framework to support the selection and implementation of new tuberculosis 

diagnostic tools. International Journal of Tuberculosis and Lung Disease. 

2011;15(8):996–1004.  

221. Dye C, Williams BG. The population dynamics and control of tuberculosis. Science. 

2010;328(5980):856–61.  

222. Theron G, Peter J, Dowdy D, Langley I, Squire SB, Dheda K. Do high rates of 

empirical treatment undermine the potential effect of new diagnostic tests for 

tuberculosis in high-burden settings? Lancet Infect Dis. 2014;14(6):527–32.  

223. Dowdy DW, Davis JL, den Boon S, Walter ND, Katamba A, Cattamanchi A. 

Population-Level Impact of Same-Day Microscopy and Xpert MTB/RIF for 

Tuberculosis Diagnosis in Africa. PLoS One. 2013;8(8).  

224. Hermans S, Caldwell J, Kaplan R, Cobelens F, Wood R. The impact of the roll-out of 

rapid molecular diagnostic testing for tuberculosis on empirical treatment in Cape 

Town, South Africa. Bull World Health Organ. 2017;95(8):554–63.  

225. Pretorius C, Glaziou P, Dodd PJ, White R, Houben R. Using the TIME model in 

spectrum to estimate tuberculosis-HIV incidence and mortality. AIDS. 2014;28:S477–

87.  

226. Meyer-Rath G, Schnippel K, Long L, MacLeod W, Sanne I, Stevens W, et al. The 

impact and cost of scaling up genexpert MTB/RIF in South Africa. PLoS One. 

2012;7(5).  

227. Menzies NA, Cohen T, Murray M, Salomon JA. Effect of empirical treatment on 

outcomes of clinical trials of diagnostic assays for tuberculosis. Lancet Infect Dis. 

2015;15(1):16–7.  

228. Rangaka MX, Wilkinson RJ, Boulle A, Glynn JR, Fielding K, Van Cutsem G, et al. 

Isoniazid plus antiretroviral therapy to prevent tuberculosis: A randomised double-

blind, placebo-controlled trial. The Lancet. 2014;384(9944):682–90.  



225 

 

229. Zelner JL, Murray MB, Becerra MC, Galea J, Lecca L, Calderon R, et al. Bacillus 

Calmette-Guérin and isoniazid preventive therapy protect contacts of patients with 

tuberculosis. Am J Respir Crit Care Med. 2014;  

230. Fitzgerald DW, Desvarieux M, Severe P, Joseph P, Johnson WD, Pape JW. Effect of 

post-treatment isoniazid on prevention of recurrent tuberculosis in HIV-1-infected 

individuals: A randomised trial. Lancet. 2000;356(9240):1470–4.  

231. Churchyard GJ, Fielding KL, Lewis JJ, Coetzee L, Corbett EL, Godfrey-Faussett P, et 

al. A trial of mass isoniazid preventive therapy for tuberculosis control. N Engl J Med. 

2014;370(4):301–10.  

232. Houben RM, Sumner T, Grant AD, White RG. Ability of preventive therapy to cure 

latent Mycobacterium tuberculosis infection in HIV-infected individuals in high-

burden settings. Proc Natl Acad Sci U S A. 2014;111(14):5325–30.  

233. Van Ginderdeuren E, Bassett J, Hanrahan C, Mutunga L, Van Rie A. Health system 

barriers to implementation of TB preventive strategies in South African primary care 

facilities. PLoS One. 2019;14(2):1–12.  

234. Dye C, Williams BG. Tuberculosis decline in populations affected by HIV: a 

retrospective study of 12 countries in the WHO African Region. Bull World Health 

Organ. 2019;97(6):405–14.  

235. Eddy DM, Hollingworth W, Caro JJ, Tsevat J, McDonald KM, Wong JB. Model 

transparency and validation: A report of the ISPOR-SMDM modeling good research 

practices task force-7. Medical Decision Making. 2012;32(5):733–43.  

236. Stout NK, Knudsen AB, Kong CY, McMahon PM, Gazelle GS. Calibration methods 

used in cancer simulation models and suggested reporting guidelines. 

Pharmacoeconomics. 2009;27(7):533–45.  

237. Sumner T, Bozzani F, Mudzengi D, Hippner P, Houben RM, Cardenas V, et al. 

Estimating the Impact of Tuberculosis Case Detection in Constrained Health Systems: 

An Example of Case-Finding in South Africa. Am J Epidemiol. 2019;188(6):1155–64.  



226 

 

238. Fojo AT, Kendall EA, Kasaie P, Shrestha S, Louis TA, Dowdy DW. Mathematical 

Modeling of “Chronic” Infectious Diseases: Unpacking the Black Box. Open Forum 

Infect Dis. 2017;4(4):1–9.  

239. Glaziou P, Sismanidis C, Pretorius C, Timimi H, Floyd K. Global TB Report 2015 : 

Technical appendix on methods used to estimate the global burden of disease caused 

by TB. World Health Organisation. Geneva; 2015.  

240. Menzies NA, McQuaid CF, Gomez GB, Siroka A, Glaziou P, Floyd K, et al. 

Improving the quality of modelling evidence used for tuberculosis policy evaluation. 

International Journal of Tuberculosis and Lung Disease. 2019;23(4):387–95.  

241. Johnson LF, Dorrington RE, Laubscher R, Hoffmann CJ, Wood R, Fox MP, et al. A 

comparison of death recording by health centres and civil registration in South 

Africans receiving antiretroviral treatment. J Int AIDS Soc. 2015;18(1):1–7.  

242. Dye C, Floyd K. Chapter 16. Tuberculosis. In: In Disease Control Priorities in 

Developing Countries. 2006. p. 289–309.  

243. Kasaie P, Andrews JR, Kelton WD, Dowdy DW. Timing of tuberculosis transmission 

and the impact of household contact tracing: An agent-based model. Am J Respir Crit 

Care Med. 2014;189(7):845–52.  

244. Johnson L, Dorrington R. Thembisa version 4.1: A model for evaluating the impact of 

HIV/AIDS in South Africa. 2018.  

245. Ngyende A. Statistics South Africa. Census 2011: Census in brief . [Internet]. Pretoria; 

2011. Available from: www.statssa.gov.za 

246. Mortality and causes of death in South Africa, 2013: Findings from death notification. 

Statistics South Africa. Pretoria: Statistics South Africa, 2014 [Internet]. Statistical 

release. [cited 2016 Jul 6]. Available from: 

http://www.statssa.gov.za/Publications/P03093/P030932010.pdf\nhttp://www.statssa.g

ov.za/Publications/P03093/P030932009.pdf 

247. William M, Pillay-Van Wyk V, Rob E. Dorrington, Ian Neethling, Nadine Nannan, 

Pam Groenewald, et al. Second National Burden of Disease Study for South Africa: 



227 

 

cause of death profile South Africa, 1997-2010. Cape Town: Medical Research 

Council, Burden of Disease Research Unit; 2014.  

248. Johnson L, Dorrington R. Thembisa version 4.4: A model for evaluating the impact of 

HIV/AIDS in South Africa. 2021.  

249. Johnson L. THEMBISA version 1.0: A model for evaluating the impact of HIV / AIDS 

in South Africa. 2014.  

250. Scriba TJ, Fiore-Gartland A, Penn-Nicholson A, Mulenga H, Kimbung Mbandi S, 

Borate B, et al. Biomarker-guided tuberculosis preventive therapy (CORTIS): a 

randomised controlled trial. Lancet Infect Dis. 2021;21(3):354–65.  

251. Pai M, Zwerling A, Menzies D. Systematic review: T-cell-based assays for the 

diagnosis of latent tuberculosis infection: an update. Ann Intern Med. 

2008;149(3):177–84.  

252. Wood R, Liang H, Wu H, Middelkoop K, Oni T. Changing prevalence of TB infection 

with increasing age in high TB burden townships in South Africa. The International 

Journal of Tuberculosis and Lung Disease. 2010;14(4):406–12.  

253. Mahomed H, Hawkridge T, Verver S, Geiter L, Hatherill M, Abrahams DA, et al. 

Predictive factors for latent tuberculosis infection among adolescents in a high-burden 

area in South Africa. Int J Tuberc Lung Dis. 2011;15(3):331–6.  

254. Hanifa Y, Grant AD, Lewis J, Corbett EL, Fielding K, Churchyard G. Prevalence of 

latent tuberculosis infection among gold miners in South Africa. International Journal 

of Tuberculosis and Lung Disease. 2009;13(1):39–46.  

255. Ncayiyana JR, Bassett J, West N, Westreich D, Musenge E, Emch M, et al. Prevalence 

of latent tuberculosis infection and predictive factors in an urban informal settlement in 

Johannesburg, South Africa: a cross-sectional study. BMC Infect Dis. 2016;16(1):661.  

256. Samson M, Porter N, Orekoya O, Hebert JR, Adams SA, Bennett CL, et al. Incidence 

of occupational latent tuberculosis infection in South African healthcare workers. 

European Respiratory Journal. 2015;45(5):1364–73.  



228 

 

257. Global Tuberculosis Report 2014. World Health Organization. Geneva, Switzerland; 

2014.  

258. Austin JF, Dick JM, Zwarenstein M. Gender disparity amongst TB suspects and new 

TB patients according to data recorded at the South African Institute of Medical 

Research laboratory for the Western Cape Region of South Africa. Int J Tuberc Lung 

Dis. 2004;8(4):435–9.  

259. Department of Health. South African Demographic and Health Survey 1998. 

Department of Health. Pretoria, South Africa; 1998.  

260. Gupta RK, Lawn SD, Bekker LG, Caldwell J, Kaplan R, Wood R. Impact of HIV and 

CD4 count on tuberculosis diagnosis: analysis of city-wide data from Cape Town, 

South Africa. Int J Tuberc Lung Dis. 2013;17(8):1014–22.  

261. Icky, Looker C, Dodd PJ, Plumb ID, Shanaube K, Muyoyeta M, et al. Comparison of 

indoor contact time data in Zambia and Western Cape, South Africa suggests targeting 

of interventions to reduce Mycobacterium tuberculosis transmission should be 

informed by local data. BMC Infect Dis. 2016;16(1):71.  

262. Singla R, Singla N, Sarin R, Arora VK. Influence of pre-treatment bacillary load on 

treatment outcome of pulmonary tuberculosis patients receiving DOTS under revised 

national tuberculosis control programme. Indian J Chest Dis Allied Sci. 2005;47(1).  

263. Acuña-Villaorduña C, Ayakaka I, Schmidt-Castellani LG, Mumbowa F, Marques-

Rodrigues P, Gaeddert M, et al. Host determinants of infectiousness in smear-positive 

patients with pulmonary tuberculosis. Open Forum Infect Dis. 2019;6(6):1–9.  

264. Dodd PJ, Gardiner E, Coghlan R, Seddon JA. Burden of childhood tuberculosis in 22 

high-burden countries: A mathematical modelling study. Lancet Glob Health. 

2014;2(8).  

265. de WarouxO le P, Cohuet S, Ndazima D, Kucharski AJ, Juan-Giner AJ, Flasche S, et 

al. Characteristics of human encounters and social mixing patterns relevant to 

infectious diseases spread by close contact: A survey in Southwest Uganda. BMC 

Infect Dis. 2018;18(1):172.  



229 

 

266. Mossong J, Hens N, Jit M, Beutels P, Auranen K, Mikolajczyk R, et al. Social contacts 

and mixing patterns relevant to the spread of infectious diseases. PLoS Med. 

2008;5(3):0381–91.  

267. Van Rie A, Westreich D, Sanne I. Tuberculosis in patients receiving antiretroviral 

treatment: Incidence, risk factors, and prevention strategies. J Acquir Immune Defic 

Syndr (1988). 2011;56(4):349–55.  

268. Tiemersma EW, van der Werf MJ, Borgdorff MW, Williams BG, Nagelkerke NJD. 

Natural history of tuberculosis: Duration and fatality of untreated pulmonary 

tuberculosis in HIV negative patients: A systematic review. PLoS One. 2011;6(4).  

269. National Tuberculosis Management Guidelines 2014. Department of Health. Pretoria; 

2014.  

270. Onozaki I, Law I, Sismanidis C, Zignol M, Glaziou P, Floyd K. National tuberculosis 

prevalence surveys in Asia, 1990-2012: An overview of results and lessons learned. 

Tropical Medicine and International Health. 2015;  

271. Den Boon S, White NW, Van Lill SWP, Borgdorff MW, Verver S, Lombard CJ, et al. 

An evaluation of symptom and chest radiographic screening in tuberculosis prevalence 

surveys. International Journal of Tuberculosis and Lung Disease. 2006;10(8):876–82.  

272. Corbett EL, Charalambous S, Moloi VM, Fielding K, Grant AD, Dye C, et al. Human 

immunodeficiency virus and the prevalence of undiagnosed tuberculosis in African 

gold miners. Am J Respir Crit Care Med. 2004;170(6):673–9.  

273. Kweza PF, Van Schalkwyk C, Abraham N, Uys M, Claassens MM, Medina-Marino A. 

Estimating the magnitude of pulmonary tuberculosis patients missed by primary health 

care clinics in South Africa. International Journal of Tuberculosis and Lung Disease. 

2018;22(3):264–72.  

274. Claassens MM, Jacobs E, Cyster E, Jennings K, James A, Dunbar R, et al. 

Tuberculosis cases missed in primary health care facilities: Should we redefine case 

finding? International Journal of Tuberculosis and Lung Disease. 2013;17(5):608–14.  



230 

 

275. Chihota VN, Ginindza S, McCarthy K, Grant AD, Churchyard G, Fielding K. Missed 

opportunities for TB investigation in primary care clinics in South Africa: Experience 

from the XTEND trial. PLoS One. 2015;10(9):1–11.  

276. South Africa Demographic and Health Survey 2003. Department of Health Pretoria, 

South Africa; 2007.  

277. Use of health facilities and levels of selected health conditions in South Africa: 

Findings from the General Household Survey, 2011. Statistics South Africa. Pretoria, 

South Africa;  

278. Claassens MM, Jacobs E, Cyster E, Jennings K, James A, Dunbar R, et al. 

Tuberculosis cases missed in primary health care facilities: Should we redefine case 

finding? International Journal of Tuberculosis and Lung Disease. 2013;17(5):608–14.  

279. National Tuberculosis Management Guidelines. Department of Health. Pretoroia, 

South Africa; 2009.  

280. Vassall A, Siapka M, Foster N, Cunnama L, Ramma L, Fielding K, et al. Cost-

effectiveness of Xpert MTB/RIF for tuberculosis diagnosis in South Africa: a real-

world cost analysis and economic evaluation. Lancet Glob Health. 2017;5(7):e710–9.  

281. McCarthy KM, Grant AD, Chihota V, Ginindza S, Mvusi L, Churchyard GJ, et al. 

What happens after a negative test for tuberculosis? Evaluating adherence to TB 

diagnostic algorithms in South African primary health clinics. J Acquir Immune Defic 

Syndr (1988). 2016;71(5):e119–26.  

282. Naidoo P, Dunbar R, Lombard C, du Toit E, Caldwell J, Detjen A, et al. Comparing 

tuberculosis diagnostic yield in Smear/Culture and Xpert MTB/RIF-based algorithms 

using a non-randomised stepped-wedge design. PLoS One. 2016;11(3):1–13.  

283. Boehme CC, Nabeta P, Hillemann D, Nicol MP, Shenai S, Krapp F, et al. Rapid 

Molecular Detection of Tuberculosis and Rifampin Resistance. New England Journal 

of Medicine. 2010;225–37.  

284. Keflie TSS, Ameni G. Microscopic examination and smear negative pulmonary 

tuberculosis in ethiopia. Pan African Medical Journal. 2014;19:1–10.  



231 

 

285. Cattamanchi A, Dowdy DW, Davis JL, Worodria W, Yoo S, Joloba M, et al. 

Sensitivity of direct versus concentrated sputum smear microscopy in HIV-infected 

patients suspected of having pulmonary tuberculosis. BMC Infect Dis. 2009;9:1–8.  

286. Horne D, Kohli M, Zifodya J, Schiller I, Dendukuri N, Tollefson D, et al. Xpert 

MTB/RIF and Xpert MTB/RIF Ultra for pulmonary tuberculosis and rifampicin 

resistance in adults. Cochrane Database of Systematic Reviews. 2019;(6).  

287. Parker RA. Implications of tuberculosis sputum culture test sensitivity on accuracy of 

other diagnostic modalities. Am J Respir Crit Care Med. 2019;199(5):664.  

288. Steingart KR, Ng V, Henry M, Hopewell PC, Ramsay A, Cunningham J, et al. Sputum 

processing methods to improve the sensitivity of smear microscopy for tuberculosis: a 

systematic review. Lancet Infectious Diseases. 2006;6(10):664–74.  

289. Naidoo P, Theron G, Rangaka MX, Chihota VN, Vaughan L, Brey ZO, et al. The 

South African Tuberculosis Care Cascade: Estimated Losses and Methodological 

Challenges. Journal of Infectious Diseases. 2017;216(Suppl 7):S702–13.  

290. MacPherson P, Houben RM, Glynn JR, Corbett EL, Kranzer K. Pre-treatment loss to 

follow-up in tuberculosis patients in low- and lower-middle-income countries and 

high-burden countries: a systematic review and meta-analysis. Bull World Health 

Organ. 2014;92(2):126–38.  

291. Botha E, Den Boon S, Lawrence KA, Reuter H, Verver S, Lombard CJ, et al. From 

suspect to patient: Tuberculosis diagnosis and treatment initiation in health facilities in 

South Africa. International Journal of Tuberculosis and Lung Disease. 

2008;12(8):936–41.  

292. Improving the diagnosis and treatment of smear-negative pulmonary and extra-

pulmonary tuber- culosis among adults and adolescents: Recommendations for HIV-

prevalent and resource-constrained settings. Geneva, Switzerland; 2007.  

293. Purohit M, Mustafa T. Laboratory diagnosis of extra-pulmonary tuberculosis (EPTB) 

in resource-constrained setting: State of the art, challenges and the need. Journal of 

Clinical and Diagnostic Research. 2015;9(4):EE01–6.  



232 

 

294. Gupta A, Wood R, Kaplan R, Bekker L gail, Lawn SD. Tuberculosis Incidence Rates 

during 8 Years of Follow-Up of an Antiretroviral Treatment Cohort in South Africa : 

Comparison with Rates in the Community. PLoS One. 2012;7(3):1–10.  

295. Hanrahan CF, Selibas K, Deery CB, Dansey H, Clouse K, Bassett J, et al. Time to 

Treatment and Patient Outcomes among TB Suspects Screened by a Single Point-of-

Care Xpert MTB/RIF at a Primary Care Clinic in Johannesburg, South Africa. PLoS 

One. 2013;8(6).  

296. Van’t Hoog AH, Cobelens F, Vassall A, Van Kampen S, Dorman SE, Alland D, et al. 

Optimal triage test characteristics to improve the cost-effectiveness of the Xpert 

MTB/RIF assay for TB diagnosis: A decision analysis. PLoS One. 2013;8(12).  

297. Rees K, Muditambi N, Maswanganyi M, Railton J, McIntyre JA, Struthers HE, et al. 

The impact of implementing a Xpert MTB/RIF algorithm on drug-sensitive pulmonary 

tuberculosis: A retrospective analysis. Epidemiol Infect. 2018;146(2):246–55.  

298. Marx FM, Dunbar R, Enarson DA, Beyers N. The Rate of Sputum Smear-Positive 

Tuberculosis after Treatment Default in a High-Burden Setting: A Retrospective 

Cohort Study. PLoS One. 2012;7(9):1–9.  

299. Edginton ME, Wong ML, Phofa R, Mahlaba D, Hodkinson HJ. Tuberculosis at Chris 

Hani Baragwanath Hospital: Numbers of patients diagnosed and outcomes of referrals 

to district clinics. International Journal of Tuberculosis and Lung Disease. 

2005;9(4):398–402.  

300. Anderegg N, Johnson LF, Zaniewski E, Althoff KN, Balestre E, Law M, et al. All-

cause mortality in HIV-positive adults starting combination antiretroviral therapy: 

Correcting for loss to follow-up. Aids. 2017;31:S31–40.  

301. Berry KM, Rodriguez CA, Berhanu RH, Ismail N, Mvusi L, Long L, et al. Treatment 

outcomes among children, adolescents, and adults on treatment for tuberculosis in two 

metropolitan municipalities in Gauteng Province, South Africa. BMC Public Health. 

2019;19(1):1–17.  



233 

 

302. Vree M, Huong NT, Duong BD, Co N V., Sy DN, Cobelens FG, et al. High mortality 

during tuberculosis treatment does not indicate long diagnostic delays in Vietnam: A 

cohort study. BMC Public Health. 2007;7:1–7.  

303. Kayigamba FR, Bakker MI, Mugisha V, de Naeyer L, Gasana M, Cobelens F, et al. 

Adherence to Tuberculosis Treatment, Sputum Smear Conversion and Mortality: A 

Retrospective Cohort Study in 48 Rwandan Clinics. PLoS One. 2013;8(9):1–10.  

304. Osawa T, Watanabe M, Morimoto K, Okumura M, Yoshiyama T, Ogata H, et al. 

Serum procalcitonin levels predict mortality risk in patients with pulmonary 

tuberculosis: A single-center prospective observational study. Journal of Infectious 

Diseases. 2020;222(10):1651–4.  

305. Muttath R, Andrews M, Prabhu D. Treatment outcome in new smear positive 

pulmonary tuberculosis patients with and without immunosuppression on RNTCP 

regimen: a comparative observational study. Int J Res Med Sci. 2017;5(2):384.  

306. Kolappan C, Subramani R, Kumaraswami V, Santha T, Narayanan PR. Excess 

mortality and risk factors for mortality among a cohort of TB patients from rural south 

India. International Journal of Tuberculosis and Lung Disease. 2008;12(1):81–6.  

307. Lienhardt C, Manneh K, Bouchier V, Lahai G, Milligan PJM, McAdam KPWJ. 

Factors determining the outcome of treatment of adult smear-positive tuberculosis 

cases in The Gambia. Vol. 2, International Journal of Tuberculosis and Lung Disease. 

1998. p. 712–8.  

308. Saunders MJ, Wingfield T, Datta S, Montoya R, Ramos E, Baldwin MR, et al. A 

household-level score to predict the risk of tuberculosis among contacts of patients 

with tuberculosis: a derivation and external validation prospective cohort study. Lancet 

Infect Dis. 2020;20(1):110–22.  

309. Kaplan R, Caldwell J, Middelkoop K, Bekker LG, Wood R. Impact of ART on TB 

case fatality stratified by CD4 count for HIV-positive TB patients in Cape Town. 

South Africa (2009-2011). J Acquir Immune Defic Syndr. 2014;66(5):487–94.  

310. Van den Broek J, Mfinanga S, Moshiro C, O’Brien R, Mugomela A, Lefi M. Impact of 

human immunodeficiency virus infection on the outcome of treatment and survival of 



234 

 

tuberculosis patients in Mwanza, Tanzania. International Journal of Tuberculosis and 

Lung Disease. 1998;2(7):547–52.  

311. Heunis JC, Kigozi NG, Chikobvu P, Botha S, Van Rensburg HD. Risk factors for 

mortality in TB patients: A 10-year electronic record review in a South African 

province. BMC Public Health. 2017;17(1):1–7.  

312. Mugusi FM, Mehta S, Villamor E, Urassa W, Saathoff E, Bosch RJ, et al. Factors 

associated with mortality in HIV-infected and uninfected patients with pulmonary 

tuberculosis. BMC Public Health. 2009;9:1–8.  

313. Lambert ML, Hasker E, Van Deun A, Roberfroid D, Boelaert M, Van der Stuyft P. 

Recurrence in tuberculosis: Relapse or reinfection? Lancet Infectious Diseases. 

2003;3(5):282–7.  

314. Korenromp EL, Scano F, Williams BG, Dye C, Nunn P. Effects of Human 

Immunodeficiency Virus Infection on Recurrence of Tuberculosis after Rifampin-

Based Treatment: An Analytical Review. Clinical Infectious Diseases. 

2003;37(1):101–12.  

315. den Boon S, Bateman ED, Borgdorff MW, de Villiers C, Enarson D a, Irusen E, et al. 

High prevalence of tuberculosis in previously treated patients, Cape Town, South 

Africa. Emerg Infect Dis. 2007;13(8):1189–94.  

316. Marx FM, Floyd S, Ayles H, Godfrey-Faussett P, Beyers N, Cohen T. High burden of 

prevalent tuberculosis among previously treated people in Southern Africa suggests 

potential for targeted control interventions. European Respiratory Journal. 

2016;(48):1227–30.  

317. The South African Antiretroviral Treatment Guidelines 2013. Department of Health. 

Pretoria, South Africa; 2013.  

318. Wood R, Bekker LG. Isoniazid preventive therapy for tuberculosis in South Africa: An 

assessment of the local evidence base. South African Medical Journal. 

2014;104(3):174–7.  



235 

 

319. Maharaj B, Gengiah TN, Yende-Zuma N, Gengiah S, Naidoo A, Naidoo K. 

Implementing isoniazid preventive therapy in a tuberculosis treatment-experienced 

cohort on ART. International Journal of Tuberculosis and Lung Disease. 

2017;21(5):537–43.  

320. Takarinda KC, Choto RC, Harries AD, Mutasa-Apollo T, Chakanyuka-Musanhu. 

Routine implementation of isoniazid preventive therapy in HIV-infected patients in 

seven pilot sites in Zimbabwe. Public Health Action. 2017;7(1):55–60.  

321. Nyathi S, Dlodlo RA, Satyanarayana S, Takarinda KC, Tweya H, Hove S, et al. 

Isoniazid preventive therapy: Uptake, incidence of tuberculosis and survival among 

people living with HIV in Bulawayo, Zimbabwe. PLoS One. 2019;14(10):1–12.  

322. Okoli EI, Roets L. Health system challenges: An obstacle to the success of isoniazid 

preventive therapy. South African Medical Journal. 2016;106(11):1079–81.  

323. Dhungana GP, Thekkur P, Chinnakali P, Bhatta U, Pandey B, Zhang WH. Initiation 

and completion rates of isoniazid preventive therapy among people living with HIV in 

Far-Western Region of Nepal: A retrospective cohort study. BMJ Open. 2019;9(5):1–

9.  

324. Ayele HT, van Mourik MSM, Debray TPA, Bonten MJM. Isoniazid prophylactic 

therapy for the prevention of tuberculosis in HIV infected adults: A systematic review 

and meta-analysis of randomized trials. PLoS One. 2015;10(11):1–16.  

325. Al-Rifai RH, Pearson F, Critchley JA, Abu-Raddad LJ. Association between diabetes 

mellitus and active tuberculosis: A systematic review and meta-analysis. PLoS One. 

2017;12(11):1–26.  

326. Leung CC, Lam TH, Chan WM, Yew WW, Ho KS, Leung G, et al. Lower risk of 

tuberculosis in obesity. Arch Intern Med. 2007;167(12):1297–304.  

327. Kolappan C, Gopi P. Tobacco smoking and pulmonary tuberculosis. Thorax. 

2002;(57):964–6.  

328. International Guide for Monitoring Alcohol Consumption and Related Harm. Geneva, 

World Health Organization, 2000.  



236 

 

329. Gupta RK, Lucas SB, Fielding KL, Lawn SD. Prevalence of tuberculosis in post-

mortem studies of HIV-infected adults and children in resource-limited settings: A 

systematic review and meta-analysis. Aids. 2015;29(15):1987–2002.  

330. Johnson LF, May MT, Dorrington RE, Cornell M, Boulle A, Egger M, et al. 

Estimating the impact of antiretroviral treatment on adult mortality trends in South 

Africa : A mathematical modelling study. PLoS Med. 2017;1–17.  

331. Podewils LJ, Bantubani N, Bristow C, Bronner LE, Peters A, Pym A, et al. 

Completeness and Reliability of the Republic of South Africa National Tuberculosis 

(TB) Surveillance System. BMC Public Health. 2015;15(1):1–11.  

332. Myburgh H, Peters RPH, Hurter T, Grobbelaar CJ, Hoddinott G. Transition to an in-

facility electronic tuberculosis register: Lessons from a South African pilot project. 

South Afr J HIV Med. 2020;21(1):1–7.  

333. Mlotshwa M, Smit S, Williams S, Reddy C, Medina-Marino A. Evaluating the 

electronic tuberculosis register surveillance system in Eden District, Western Cape, 

South Africa, 2015. Glob Health Action. 2017;10(1).  

334. Dreyer AW, Mbambo D, Machaba M, Oliphant CEM, Claassens MM. Tuberculosis 

cure rates and the ETR.Net: Investigating the quality of reporting treatment outcomes 

from primary healthcare facilities in Mpumalanga province, South Africa. BMC 

Health Serv Res. 2017;17(1):1–6.  

335. Johnsona LF, Rehlea TM, Joosteb S, Bekkerc LG. Rates of HIV testing and diagnosis 

in South Africa: Successes and challenges. AIDS. 2015;29(11):1401–9.  

336. Raftery AE, Bao L. Estimating and Projecting Trends in HIV/AIDS Generalized 

Epidemics Using Incremental Mixture Importance Sampling. Biometrics. 

2010;66(4):1162–1173.  

337. Johnson LF, Dorrington RE. Thembisa version 4.3: A model for evaluating the impact 

of HIV/AIDS in South Africa. 2020.  

338. Philippe G, Dodd PJ, Dean A, Floyd K. Methods used by WHO to estimate the Global 

burden of TB disease. 2019.  



237 

 

339. Garcıa-Basteiro AL, Brew J, Williams B, Borgdorff M, Cobelens F. What is the true 

tuberculosis mortality burden? Differences in estimates by the World Health 

Organization and the Global Burden of Disease study. Int J Epidemiol. 

2018;47(5):1549–60.  

340. Lawn SD, Myer L, Edwards D, Bekker LG, Wood R. Short-term and long-term risk of 

tuberculosis associated with CD4 cell recovery during antiretroviral therapy in South 

Africa. AIDS. 2011;72(2):181–204.  

341. Surie D, Borgdorff MW, Cain KP, Click ES, DeCock KM, Yuen CM. Assessing the 

impact of antiretroviral therapy on tuberculosis notification rates among people with 

HIV: a descriptive analysis of 23 countries in sub-Saharan Africa, 2010-2015. BMC 

Infect Dis. 2018;18(1):481.  

342. Dye C, Williams BG. Tuberculosis decline in populations affected by HIV: a 

retrospective study of 12 countries in the WHO African Region. Bull World Health 

Organ. 2019;97(6):405–14.  

343. Ross JM, Badje A, Rangaka MX, Walker AS, Shapiro AE, Thomas KK, et al. 

Isoniazid preventive therapy plus antiretroviral therapy for the prevention of 

tuberculosis: a systematic review and meta-analysis of individual participant data. 

Lancet HIV. 2021;8(1):e8–15.  

344. Theron G, Zijenah L, Chanda D, Clowes P, Rachow A, Lesosky M, et al. Feasibility, 

accuracy, and clinical effect of point-of-care Xpert MTB/RIF testing for tuberculosis 

in primary-care settings in Africa: A multicentre, randomised, controlled trial. The 

Lancet. 2014;383(9915):424–35.  

345. Meintjes G, Moorhouse MA, Carmona S, Davies N, Dlamini S, Van Vuuren C, et al. 

Adult antiretroviral therapy guidelines 2017. South Afr J HIV Med. 2017;  

346. Wood R, Lawn SD, Johnstone-Robertson S, Bekker LG. Tuberculosis control has 

failed in South Africa - time to reappraise strategy. South African Medical Journal. 

2011;101(2):111–4.  



238 

 

347. De Cock KM, Chaisson RE. Will DOTS do it? A reappraisal of tuberculosis control in 

countries with high rates of HIV infection. International Journal of Tuberculosis and 

Lung Disease. 1999;3(6):457–65.  

348. Hegdahl HK, Fylkesnes KM, Sandøy IF. Sex differences in HIV prevalence persist 

over time: Evidence from 18 countries in Sub-Saharan Africa. PLoS One. 

2016;11(2):1–17.  

349. Osler M, Cornell M, Ford N, Hilderbrand K, Goemaere E, Boulle A. Population-wide 

differentials in HIV service access and outcomes in the Western Cape for men as 

compared to women, South Africa: 2008 to 2018: a cohort analysis. J Int AIDS Soc. 

2020;23(S2):5–14.  

350. Hermans S, Boulle A, Caldwell J, Pienaar D, Wood R. Temporal trends in TB 

notification rates during ART scale-up in Cape Town : an ecological analysis. J Acquir 

Immune Defic Syndr (1988). 2015;1–7.  

351. Hermans S, Cornell M, Middelkoop K, Wood R. The differential impact of HIV and 

antiretroviral therapy on gender-specific tuberculosis rates. Tropical Medicine and 

International Health. 2019;24(4):454–62.  

352. Zawedde-Muyanja S, Manabe YC, Musaazi J, Mugabe FR, Ross JM, Hermans S. 

Anti-retroviral therapy scale-up and its impact on sex-stratified tuberculosis 

notification trends in Uganda. J Int AIDS Soc. 2019;22(9):1–9.  

353. Horton KC, Sumner T, Houben RMGJ, Corbett EL, White RG. A Bayesian Approach 

to Understanding Sex Differences in Tuberculosis Disease Burden. Am J Epidemiol. 

2018;187(11):2431–8.  

354. Shaweno D, Horton KC, Hayes RJ, Dodd PJ. Assortative social mixing and sex 

disparities in tuberculosis burden. Sci Rep. 2021;11(1):1–10.  

355. Kubjane M, Osman M, Boulle A, Johnson LF. The impact of HIV and tuberculosis 

interventions on South African adult tuberculosis trends, 1990-2019: A mathematical 

modelling analysis. International Journal of Infectious Diseases. 2022;  



239 

 

356. Pillay Y, Johnson L. World AIDS day 2020: Reflections on global and South African 

progress and continuing challenges. South Afr J HIV Med. 2021;22(1):1–5.  

357. Virenfeldt J, Rudolf F, Camara C, Furtado A, Gomes V, Aaby P, et al. Treatment delay 

affects clinical severity of tuberculosis: A longitudinal cohort study. BMJ Open. 

2014;4(6):1–8.  

358. Mathews S, Martin LJ, Coetzee D, Scott C, Naidoo T, Brijmohun Y, et al. The South 

African child death review pilot: A multiagency approach to strengthen healthcare and 

protection for children. South African Medical Journal. 2016;106(9):895–9.  

359. Telisinghe L, Fielding KL, Malden JL, Hanifa Y, Churchyard GJ, Grant AD, et al. 

High tuberculosis prevalence in a South African prison: The need for routine 

tuberculosis screening. PLoS One. 2014;9(1).  

360. Janse van Rensburg C, Groenewald P, Awotiwon O, Nojilana B, Joubert J, Pillay van-

Wyk V, et al. Trends in smoking prevalence in South Africa for 1998 - 2014 - 

overcoming the challenge of multiple data sources. Tob Induc Dis. 2018;16(1).  

361. Sahadew N, Pillay S, Singaram V. Diabetes in the Western Cape: an eight-year profile. 

Journal of Endocrinology, Metabolism and Diabetes of South Africa. 2021;0(0):1–6.  

362. UNAIDS. Prevailing Against Pandemics by Putting People at the Centre [Internet]. 

2020 [cited 2022 Jun 20]. Available from: 

https://www.unaids.org/en/resources/documents/2020/prevailing-against-pandemics 

363. Kubjane M, Cornell M, Osman M, Boulle A, Johnson L. Drivers of sex differences in 

the South African adult tuberculosis incidence and mortality trends , 1990-2019. 

Preprint. 2022;1–15.  

364. Chidambaram V, Tun NL, Majella MG, Ruelas Castillo J, Ayeh SK, Kumar A, et al. 

Male sex is associated with worse microbiological and clinical outcomes following 

tuberculosis treatment: A retrospective cohort study, a systematic review of the 

literature, and meta-analysis. Clinical Infectious Diseases. 2021;73(9):1580–8.  



240 

 

365. Martinson NA, Barnes GL, Moulton LH, Msandiwa R, Hausler H, Ram M, et al. New 

Regimens to Prevent Tuberculosis in Adults with HIV Infection. New England Journal 

of Medicine. 2011;365(1):11–20.  

366. Dorman SE, Schumacher SG, Alland D, Nabeta P, Armstrong DT, King B, et al. Xpert 

MTB/RIF Ultra for detection of Mycobacterium tuberculosis and rifampicin 

resistance: a prospective multicentre diagnostic accuracy study. Lancet Infect Dis. 

2018;18(1):76–84.  

367. Zifodya JS, Kreniske JS, Schiller I, Kohli M, Dendukuri N, Schumacher SG, et al. 

Xpert Ultra versus Xpert MTB/RIF for pulmonary tuberculosis and rifampicin 

resistance in adults with presumptive pulmonary tuberculosis. Cochrane Database of 

Systematic Reviews. 2021;2021(2).  

368. Law S, Seepamore B, Oxlade O, Sikhakhane N, Dawood H, Chetty S, et al. 

Acceptability, feasibility, and impact of a pilot tuberculosis literacy and treatment 

counselling intervention: a mixed methods study. BMC Infect Dis. 2021;21(1):1–13.  

369. Masters SH, Agot K, Obonyo B, Napierala Mavedzenge S, Maman S, Thirumurthy H. 

Promoting Partner Testing and Couples Testing through Secondary Distribution of 

HIV Self-Tests: A Randomized Clinical Trial. PLoS Med. 2016;13(11):1–15.  

370. Hensen B, Taoka S, Lewis JJ, Weiss HA, Hargreaves J. Systematic review of 

strategies to increase men’s HIV-testing in sub-Saharan Africa. AIDS. 

2014;28(14):2133–45.  

371. Smith P, Buttenheim A, Schmucker L, Bekker LG, Thirumurthy H, Davey DLJ. 

Undetectable = Untransmittable (U = U) Messaging Increases Uptake of HIV Testing 

Among Men: Results from a Pilot Cluster Randomized Trial. AIDS Behav. 

2021;25(10):3128–36.  

372. Cassidy T, Cornell M, Runeyi P, Dutyulwa T, Kilani C, Duran LT, et al. Attrition from 

HIV care among youth initiating ART in youth-only clinics compared with general 

primary healthcare clinics in Khayelitsha, South Africa: a matched propensity score 

analysis. J Int AIDS Soc. 2022;25(1).  



241 

 

373. Ridho A, Alfian SD, van Boven J, Levita J, Aki Yalcin E, Le L, et al. Digital Health 

Technologies to Improve Medication Adherence and Treatment Outcomes in 

Tuberculosis Patients: A Systematic Review of Randomized Controlled Studies. J Med 

Internet Res. 2021;24:1–13.  

374. Wells C, Severn M. Incentives and Support Programs to Improve Adherence to 

Tuberculosis Treatment. Canadian Journal of Health Technologies. 2021;1(2):1–71.  

375. Jarrett BA, Woznica DM, Tilchin C, Mpungose N, Motlhaoleng K, Golub JE, et al. 

Promoting Tuberculosis Preventive Therapy for People Living with HIV in South 

Africa: Interventions Hindered by Complicated Clinical Guidelines and Imbalanced 

Patient-Provider Dynamics. AIDS Behav. 2020;24(4):1106–17.  

376. Kakande E, Christian C, Balzer LB, Owaraganise A, Nugent JR, Diieso W, et al. A 

mid-level health manager intervention to promote uptake of isoniazid preventive 

therapy among people with HIV in Uganda: a cluster randomised trial. The Lancet. 

2022;3018(22):1–10.  

377. Steward WT, Agnew E, de Kadt J, Ratlhagana MJ, Sumitani J, Gilmore HJ, et al. 

Impact of SMS and peer navigation on retention in HIV care among adults in South 

Africa: results of a three-arm cluster randomized controlled trial. J Int AIDS Soc. 

2021;24(8).  

378. Adeagbo OA, Seeley J, Gumede D, Xulu S, Dlamini N, Luthuli M, et al. Process 

evaluation of peer-to-peer delivery of HIV self-testing and sexual health information to 

support HIV prevention among youth in rural KwaZulu-Natal, South Africa: 

Qualitative analysis. BMJ Open. 2022;12(2):1–9.  

379. 90-(90)-90: The tuberculosis report for heads of state and governments. Global plan to 

end TB 2016-2020. Stop TB Partnership; 2017.  

380. Ahmed AA, Grammatico M, Moll AP, Malinga S, Makhunga P, Charalambous S, et 

al. Factors associated with low tuberculosis preventive therapy prescription rates 

among health care workers in rural South Africa. Glob Health Action. 2021;14(1).  

381. Gelmanova IY, Taran D V., Mishustin SP, Golubkov AA, Solovyova A V., Keshavjee 

S. “Sputnik”: A programmatic approach to improve tuberculosis treatment adherence 



242 

 

and outcome among defaulters. International Journal of Tuberculosis and Lung 

Disease. 2011;15(10):1373–9.  

382. Mohr E, Hughes J, Snyman L, Beko B, Harmans X, Caldwell J, et al. Healthcare 

delivery: Patient support interventions to improve adherence to drug-resistant 

tuberculosis treatment: A counselling toolkit. South African Medical Journal. 

2015;105(8):631–4.  

383. Dye C, Glaziou P, Floyd K, Raviglione M. Prospects for tuberculosis elimination. 

Annu Rev Public Health. 2013;34:271–86.  

384. Moyo S, Ismail F, Van der Walt M, Ismail N, Mkhondo N, Dlamini S, et al. 

Prevalence of bacteriologically confirmed pulmonary tuberculosis in South Africa, 

2017–19: a multistage, cluster-based, cross-sectional survey. Lancet Infect Dis. 

2022;22(8):1172–80.  

385. Gibbs N, Angus C, Dixon S, Parry C, Meier P. Effects of minimum unit pricing for 

alcohol in South Africa across different drinker groups and wealth quintiles: A 

modelling study. BMJ Open. 2021;11(8):1–9.  

386. Parry CDH. A review of policy-relevant strategies and interventions to address the 

burden of alcohol on individuals and society in South Africa. South African Psychiatry 

Review. 2005;8(1):20–4.  

387. Ayo-Yusuf OA, Omole OB. Smoking cessation advice and quit attempts in South 

Africa between 2007 and 2017: A cross-sectional study. Tob Induc Dis. 2021;19:1–10.  

388. Vellios N, Van Walbeek C. Determinants of regular smoking onset in South Africa 

using duration analysis. BMJ Open. 2016;6(7):1–10.  

389. Chaloupka FJ, Straif K, Leon ME. Effectiveness of tax and price policies in tobacco 

control. Tob Control. 2011;20(3):235–8.  

390. Banks I, Baker P. Men and primary care: improving access and outcomes. Trends in 

Urology & Men’s Health. 2013;4(5):39–41.  



243 

 

391. Johnson LF, Meyer-Rath G, Dorrington RE, Puren A, Seathlodi T, Zuma K, et al. The 

Effect of HIV Programs in South Africa on National HIV Incidence Trends, 2000-

2019. J Acquir Immune Defic Syndr. 2022;90(2):115–23.  

392. Zokufa N, Lebelo K, Hacking D, Tabo L, Runeyi P, Malabi N, et al. Community-

based TB testing as an essential part of TB recovery plans in the COVID-19 era. 

International Journal of Tuberculosis and Lung Disease. 2021;25(5):406–8.  

393. Loveday M, Cox H, Evans D, Furin J, Ndjeka N, Osman M, et al. Opportunities from a 

new disease for an old threat: Extending COVID-19 efforts to address tuberculosis in 

South Africa. South African Medical Journal. 2020;110(12):1160–7.  

394. Proceedings: 1st National Symposium on Mathematical Modelling Research to Guide 

Decision Making for Tuberculosis Control in South Africa. In Stellenbosch, South 

Africa; 2020.  

395. White RG, Charalambous S, Cardenas V, Hippner P, Sumner T, Bozzani F, et al. 

Evidence-informed policy making at country level: Lessons learned from the South 

African Tuberculosis Think Tank. International Journal of Tuberculosis and Lung 

Disease. 2018;22(6):606–13.  

396. Chimoyi LA, Lienhardt C, Moodley N, Shete P, Churchyard GJ, Charalambous S. 

Estimating the yield of tuberculosis from key populations to inform targeted 

interventions in South Africa: A scoping review. BMJ Glob Health. 2020;5(7):1–10.  

397. McCreesh N, Karat AS, Govender I, Baisley K, Diaconu K, Yates TA, et al. 

Estimating the contribution of transmission in primary healthcare clinics to 

community-wide TB disease incidence, and the impact of infection prevention and 

control interventions, in KwaZulu-Natal, South Africa. BMJ Glob Health. 

2022;7(4):1–7.  

398. Dodd PJ, Yuen CM, Jayasooriya SM, van der Zalm MM, Seddon JA. Quantifying the 

global number of tuberculosis survivors: a modelling study. Lancet Infect Dis. 

2021;21(7):984–92.  



244 

 

399. Menzies NA, Quaife M, Allwood BW, Byrne AL, Coussens AK, Harries AD, et al. 

Lifetime burden of disease due to incident tuberculosis: a global reappraisal including 

post-tuberculosis sequelae. Lancet Glob Health. 2021;9(12):e1679–87.  

400. Allwood BW, Maarman GJ, Kyriakakis CG, Doubell AF. Post-pulmonary tuberculosis 

complications in South Africa and a potential link with pulmonary hypertension: 

Premise for clinical and scientific investigations. South African Medical Journal. 

2018;108(7):529.  

  

 

 

 

 

 

 

 



245 

 

Chapter 8. Appendices  

There is a vast overlap between Chapter 3 (the model development and calibration chapter) 

and the supplementary material supporting Chapters 4 to 6. Therefore, in this appendix 

chapter are the additional tables and figures supporting the analyses in Chapters 4 to 6, but 

not included in Chapter 3. These include the posterior estimates for the parameters varied in 

the analysis for Chapters 4 and 5, and additional inputs and outputs for the all the respective 

analysis.  

8.1. Appendix A: Supplementary material for Chapter 4 

The full supplementary materials for Chapter 4 are also accessible with the publication: 

https://doi.org/10.1016/j.ijid.2022.07.047.  

8.1.1. Parameters varied in Chapter 4 

We used a Bayesian approach to calibrate the model and estimate various parameters. 

Because our model is slow to run, and because the Bayesian calibration process is 

particularly slow to converge when there are many parameters being included in the 

uncertainty analysis, we calibrated the model through a series of steps. We first (in a previous 

calibration analysis) estimated the TB transmission and natural history parameters that gave 

the best fit to South African TB data, using the same likelihood definitions as given below. In 

this present analysis, we considered the parameters that determine the impact of TB 

interventions. The prior means and standard deviations are summarized in Appendix A Table 

1, with the posterior means and 95% confidence intervals for the parameters varied and 

estimated in the previous calibration analysis. We also indicate the parameters varied in this 

present analysis. 
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Appendix A Table 1: Summary of model parameters with prior means and standard 

deviations, posterior means and 95% confidence intervals from the 

previous calibration analysis, and summary of those varied in this present 

analysis 

Parameter description 

Mean 
Standard 

deviation 

Posterior means (95% 

CI) from previous 

calibration 

Parameters varied 

in the current 

analysis 

TB transmission probability per contact per day (if infectious 

individual is smear-positive) 
0.0025 0.0025 0.0030 (0.0026–0.0034) ✓ 

The annual rate of reactivation in HIV-negative individuals 
0.0024 0.0012 

0.00148 (0.0014–

0.00155) 
 

Relative rate of TB incidence per 100 cell increase in CD4 0.71 0.085 0.703 (0.693–0.712)  

Annual recovery rate in smear-positive TB, HIV-negative 

individuals 
0.09 0.02 0.075 (0.067–0.081)  

Annual recovery rate in smear-negative TB, HIV-negative 

individuals 
0.24 0.05 0.224 (0.198–0.247)  

Relative infectivity of smear-negative TB compared to smear-

positive individuals  
0.22 0.03 0.206 (0.196–0.218)  

Increase in TB risk if previously experienced TB 3.50 1.5 3.03 (2.55–3.53)  

Smear-negative TB mortality (untreated) 0.061 0.012 0.049 (0.046–0.052)  

Smear-positive TB mortality (untreated) 0.212 0.042 0.196 (0.174–0.221)  

The relative rate of TB mortality per 50 cell increase in CD4 

count if HIV+ 
0.87 0.05 0.949 (0.944–0.954)  

Proportion with cough >2 weeks in individuals with smear-

negative TB 
0.2 0.1 0.198 (0.149–0.263)  

The proportion of incident TB cases in HIV-negative adults 

that are smear-positive 
0.52 0.1 0.51 (0.48–0.54)  

Relative ratio of symptoms in patients with smear-positive TB, 

compared to smear-negative TB 
2.2 0.5 3.03 (2.74–3.23)  

Relative rate of TB incidence for those on ART (controlling for 

CD4) 
0.81 0.05 

 
✓ 

Relative rate of TB mortality if on ART 0.55 0.08  ✓ 

The annual rate of health-seeking in males with smear-negative 

TB 
2.14 0.49 

 
✓ 

The annual rate of health-seeking in males in the general 

population 
1.15 0.5 

 
✓ 

The annual rate of health-seeking in males due to TB-like 

symptoms 
0.22 0.15 

 
✓ 

The proportion of active TB cases seeking treatment who are 

treated empirically before any microbiological test is done 

0.125 0.144  
✓ 

The proportion of smear-negative TB cases which are treated 

empirically if they initially screened negative on a smear test   

0.33 0.236  
✓ 

Relative rate of empirical treatment if not seeking treatment 

because of TB symptoms 
0.5 0.289 

 
✓ 

Relative rate of empirical treatment if symptoms are not due to 

TB 
0.5 0.289 

 
✓ 

Relative rate of health-seeking in women, compared to men 1.55 0.17  ✓ 

Relative rate of health-seeking in HIV-positive compared to 

HIV-negative individuals 
3 1 

 
✓ 

Relative rate of screening in TB patients seeking treatment for 

TB symptoms, compared to those seeking treatment for other 

conditions 

  

 
✓ 

   Initial (up to 2005) 8.71 2.5  ✓ 

   Ultimate (after 2012) 4 1.2  ✓ 

ART = antiretroviral therapy; TB=tuberculosis. Ticks indicate the parameters which were 

varied in the respective steps.  
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8.1.2. Comparison of prior and posterior distributions 

As indicated in Appendix A Table 1, most of the TB natural history parameters were 

estimated in a separate analysis and fixed in this current analysis. Appendix A Table 2 below 

shows the prior and posterior distributions for parameters varied in this current analysis. Most 

of the prior and posterior distributions means are similar and the 95% confidence intervals 

overlap. However, there were some differences with other parameters, in particular the 

parameters representing empirical treatment and relative rate of screening in TB patients 

seeking treatment for TB symptoms, compared to those seeking treatment for other 

conditions (in earlier years). This reflects the uncertainty associated with the parameter due to 

limited empirical evidence to inform the prior distributions.   

Appendix A Table 2: Comparison of prior and posterior distributions for model 

parameters 

Parameter description Prior mean (95% 

confidence interval) 

Posterior mean (95% 

confidence interval) 

TB transmission probability per contact per day (if infectious individual is 

smear-positive) 

0.0025 (0.00013 – 

0.0184) 

0.0034 (0.0031 - 0.0037) 

 

Relative rate of TB incidence for those on ART (controlling for CD4) 0.81 (0.703 - 0.898) 0.840 (0.822 - 0.862) 

Relative rate of TB mortality if on ART 0.55 (0.392 - 0.703) 0.498 (0.469 - 0.536) 

The annual rate of health-seeking in males with smear-negative TB 2.14 (1.29 - 3.202) 1.07 (0.903 - 1.212) 

The annual rate of health-seeking in males in the general population 1.15 (0.389 - 2.317) 1.0 (0.76 - 1.3) 

The annual rate of health-seeking in males due to TB-like symptoms 0.22 (0.030 - 0.596) 0.196 (0.163 - 0.224) 

The proportion of active TB cases seeking treatment who are treated 

empirically before any microbiological test is done 

0.125 (0.00625 - 0.244) 0.068 (0.046 - 0.092) 

The proportion of smear-negative TB cases which are treated empirically if 

they initially screened negative smear test   

0.33 (0.0168 - 0.653) 0.28 (0.222 - 0.353) 

Relative rate of empirical treatment if not seeking treatment because of TB 

symptoms  

0.5 (0.0 - 1.0)  

 

0.031 (0.017 - 0.051) 

Relative rate empirical treatment if symptoms are not due to TB 0.5 (0.0 - 1.0) 0.0014 (0.0005 - 0.0029) 

Relative rate of health-seeking in women, compared to men 1.55 (1.235 - 1.901) 1.376 (1.2884 - 1.475) 

Relative rate of health-seeking in HIV-positive compared to HIV-negative 

individuals 
3 (1.372 - 5.254) 4.27 (3.72 - 5.12) 

Relative rate of screening in TB patients seeking treatment for TB 

symptoms, compared to those seeking treatment for other conditions 
  

   Initial (up to 2005) 8.71 (4.520 - 14.248) 11.10 (9.73 - 12.47) 

   Ultimate (after 2012) 4 (2.005 - 6.671) 3.84 (3.27 - 4.52) 

ART = antiretroviral therapy; TB=tuberculosis. The ratio of model the estimated (‘true’) tuberculosis cases to 

the number of recorded deaths classified as TB (described in section 11.1)) was estimated at 1.26 (95% CI 1.22 

– 1.29). 
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Appendix A Figure 1: The impact of programmatic interventions on tuberculosis deaths. 

  

  

  
a) DOTS, b) IPT, c) ART, d) scaled-up screening, and e) Xpert MTB/RIF. Solid lines represent the estimated 

mean reductions in tuberculosis deaths. f) The impact of combined interventions on tuberculosis deaths. The 

black lines represent the estimated mean tuberculosis deaths in the baseline scenario with all existing 

interventions included, and the grey represents the counterfactual scenario with no intervention included. All 

dashed lines represent the 95% confidence intervals. 
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Appendix A Figure 2: The effect of Xpert MTB/RIF on laboratory diagnoses and 

treatment initiations 
 

False positive laboratory 

diagnoses in adults 

Adults without TB starting 

TB treatment 

Adults starting TB treatment without a 

positive lab diagnosis 

Baseline    

2011 41886 38317 89683 

2012 35361 32932 74313 

2013 27724 26436 63470 

2014 25376 24445 57424 

2015 22826 22240 52607 

2016 22418 21897 50578 

2017 22984 22440 48811 

2018 23390 22836 47130 

2019 23071 22568 46005 

Counterfactual, No Xpert MTB/RIF   

2011 50163 45113 97887 

2012 52179 46899 88527 

2013 54062 48577 82904 

2014 56024 50323 78265 

2015 57000 51206 73975 

2016 55979 50341 70929 

2017 57393 51603 68782 

2018 58408 52516 66597 

2019 57614 51844 64578 
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8.1.3. Sensitivity analysis for latent TB prevalence assumptions  

• There is substantial uncertainty around the initial LTBI prevalence in 1985, and 

using the CORTIS data to set the age-specific initial assumptions in 1985 might 

not be ideal. There are two important sources of bias in the CORTIS data. The 

first is that the data relate to 2016-2018 (250) whereas we are trying to set 

assumptions for the population in 1985. Although we use age-specific data to 

avoid problems with the sampled age distribution not matching the true age 

distribution in 1985, our model simulations suggest that the prevalence of LTBI 

has been declining over time (see Figure 19 pane d below), in line with 

international trends (59). This would suggest that the age-specific CORTIS data 

may understate the true LTBI prevalence estimates in 1985. 

 

• The second source of bias is that the CORTIS data are collected from five sites in 

low-income communities with high TB prevalence, and these are unlikely to give 

us a nationally-representative picture of LTBI prevalence. This would suggest the 

CORTIS data may overstate the true LTBI prevalence at a national level. It is 

likely that these two sources of bias offset one another to some extent, and in the 

absence of better data, the CORTIS data are probably a reasonable starting point 

when setting the initial LTBI prevalence in the model. 

 

• To assess the sensitivity of the model results to this parameter, we re-calibrated 

the model allowing for the uncertainty in the effect of age on the initial LTBI 

prevalence. (This parameter accounts for most of the variation in initial LTBI 

prevalence.) We assigned a gamma prior with a mean of 0.064 (the same as the 

value used in the original model calibration) and a standard deviation of 0.016. 

After refitting the model, the posterior mean for this parameter was 0.090 (95% 

CI: 0.082-0.099), i.e., substantially higher than the prior mean, and implying a 

much higher initial LTBI prevalence than previously estimated. Appendix A 

Figure 3 (panels a-d) below compares the model outputs in the original calibration 

(‘Fixed LTBI’) with the model outputs when we vary the LTBI age parameter in 

the calibration (‘Varied LTBI’). Although the higher initial LTBI prevalence 

estimate does not appear to have much impact on the modelled trends in TB 

prevalence and mortality (panels a and c), the modelled annual number of new TB 
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cases in adults are substantially lower when the initial LTBI prevalence is higher 

(panel b), and as expected, overall prevalence of LTBI prevalence is also higher 

(panel d). 

Appendix A Figure 3: Adult TB trends under different assumptions about the effect of 

age on initial LTBI prevalence 

 

 

In panel (d), the ‘crude’ CORTIS data are the prevalence estimates for South African adults (15+) after re-

weighting the age-specific prevalence estimates using the 2017 South African population age distribution. The 

‘adjusted’ CORTIS data are based on the same age standardization, but in addition we adjust for the sensitivity 

and specificity of the IGRA assay used in the CORTIS trial (assumed to be 0.78 and 0.96 respectively (251)). 

• There are a number of reasons to be suspicious of the results obtained in this 

sensitivity analysis, when allowing the age effect of the initial LTBI to vary in the 

calibration process. Firstly, the annual TB incidence in adults is implausibly low; 

in most of the posterior simulations, the modelled number of treated TB cases is 

less than the number of cases recorded in the ETR. (As discussed earlier, we would 
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expect the ETR to understate the true number of treated TB cases.) Secondly, the 

estimated LTBI prevalence estimates seem extremely high when compared against 

regional averages (59). We therefore do not consider these as an acceptable 

‘alternative’ set of model outputs, but present them here for the sake of 

understanding the sensitivity of the model outputs to the initial LTBI assumptions. 

8.1.4. TB incidence and mortality by different model experiments 

Appendix A Figure 4: TB incidence and mortality by different counterfactual scenarios 

   

• With the removal of the DOTS, Xpert MTB/RIF and IPT interventions, the TB 

incidence and mortality trends remain roughly the same as in the baseline scenario, so 

these trends in these scenarios are not shown here.  

• Without increased screening and ART, the TB incidence and mortality would have 

peaked much later, and would have declined much more slowly than in the baseline 

scenario.  

8.1.5. Sensitivity analysis – correlation coefficients for model input parameters and 

model outcomes 

We assessed the correlation between each parameter varied in the calibration process, and the 

model estimated new TB cases and deaths in 2019 (Appendix A Table 3); we also assessed 

the correlation between the input parameters (Appendix A Table 4). The model outputs (new 

TB cases and deaths) were generated for each of the 1000 parameter combinations in the 
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posterior sample. We then generated scatter plots to show the relationship between the model 

parameters and new TB cases and deaths for 2019 (Appendix A Figure 5 and 6, respectively). 

o As expected, the TB transmission probability was positively associated with 

incidence (r=0.82) and mortality (r=0.45).  

o The negative association (r=-0.43) between the relative rate of TB mortality on 

ART and TB mortality is unexpected. However, we also see that the parameter 

is negatively associated with other parameters that likely influence mortality 

(e.g., health-seeking rates in HIV-positive individuals (r=-0.34) and women 

(r=-0.19)). We also observed that the change in the relative rates of symptom 

screening between 2005 and 2012 were positively correlated with the relative 

rate of TB mortality on ART (r=-0.42 in 2005 and 0.30 in 2012). This may be 

because there is a trade-off in how much of the observed TB mortality 

reduction up to 2019 can be explained by ART versus increased TB screening. 

That is, if a lot of the reduction is due to ART (low relative rate of TB 

mortality on ART), then a relatively small amount of the change is attributable 

to changes in screening (i.e., low values of the change in the relative rate of 

symptom screening between 2005 and 2012). 

o If empirical treatment were beneficial, we would expect a negative correlation 

between the empirical treatment parameters and TB incidence and mortality. 

However, we observed a positive association between 1) the proportions of 

empirical treatment in active TB cases who are treated empirically before any 

microbiological test is done (r=0.76 for incidence; r=0.35 for mortality), and 

2) those treated empirically if they initially screened negative smear test 

(r=0.38 for incidence; r=0.22 for mortality). We fitted our model to the total 

number of people treated in the South African electronic treatment register 

(ETR) to estimate these parameters. The positive associations with the 

empirical treatment parameters suggest that more people were likely 

misdiagnosed (i.e., empirical treatment is not as impactful in reducing 

incidence and mortality due to treating false-positive individuals). 

o If a particular health-seeking parameter (rate) is beneficial, we expect a 

negative relationship between TB incidence and mortality outcomes. We 

observed a positive association between the outcomes and the relative rate of 
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health-seeking in HIV-positive individuals (r=0.55 for incidence; r=0.42 for 

mortality). This is possibly because as this parameter increases, the fraction of 

treated TB cases who are HIV-positive cases increases. As HIV-positive 

individuals are less infectious than HIV-negative individuals, increasing the 

proportion of treated active TB individuals who are HIV-positive increases the 

level of TB transmission. We also observed that the health-seeking relative 

rate in HIV-positive versus HIV-negative parameter is positively correlated 

with the transmission probability, r=0.41. 
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Appendix A Table 3: Correlation coefficients for model input parameters varied in the calibration process, and specified outcomes 

Model parameters TB incidence, 2019 TB mortality, 2019 

TB transmission probability per contact per day (if infectious individual is smear-positive) 0.82 0.45 

Relative rate of TB incidence for those on ART (controlling for CD4) 0.48 0.30 

Relative rate of TB mortality if on ART -0.28 -0.43 

The annual rate of health-seeking in males with smear-negative TB -0.13 -0.15 

The annual rate of health-seeking in males in the general population -0.07 -0.21 

The annual rate of health-seeking in males due to TB-like symptoms 0.11 0.10 

The proportion of active TB cases seeking treatment who are treated empirically before any microbiological test is done 0.76 0.35 

The proportion of smear-negative TB cases which are treated empirically if they initially screened negative smear test   0.38 0.22 

Relative rate of empirical treatment if not seeking treatment because of TB symptoms  -0.21 -0.27 

Relative rate empirical treatment if symptoms are not due to TB -0.17 -0.16 

Relative rate of health-seeking in women, compared to men 0.12 0.05 

Relative rate of health-seeking in HIV-positive compared to HIV-negative individuals 0.55 0.42 

Relative rate of screening in TB patients seeking treatment for TB symptoms, compared to those seeking treatment for other conditions*   

Initial (up to 2005) -0.20 0.09 

Ultimate (from 2012) -0.29 -0.26 

ART=antiretroviral therapy. TB=tuberculosis. *The initial rate applies up to 2005, the ultimate rate applies from 2012, with linear interpolation over the intervening years 

(2006-2011). 
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Appendix A Table 4: Pair-wise correlation coefficients between model parameters 

 

Transmission 
probability 

RR TB 
on ART 

RR TB 
mort on 

ART 

Health 
seeking 

active 

Health 
seeking 

general 

population 

Health 
seeking 

TB-like 

symptoms 

Empirical 
treatment, 

no screen 

Empirical 
treatment, 

negative 

screen 

RR 
empiric, 

no 

symptoms 

RR 
empiric, 

no TB 

RR health 
seeking in 

women 

RR 
health 

seeking 

in HIV+ 
vs HIV- 

RR 
screening 

symptomatic 

initial  

RR 
screening 

symptomatic 

ultimate 

Transmission probability  1.00 
             

RR TB on ART 0.52 1.00 
            

RR TB mort on ART -0.43 -0.24 1.00 
           

Health seeking active 0.08 -0.34 -0.19 1.00 
          

Health seeking general 

population 

0.01 -0.01 0.38 -0.32 1.00 
         

Health seeking TB-like 
symptoms 

0.10 -0.08 -0.06 0.76 -0.44 1.00 
        

Empirical treatment, no screen 0.88 0.53 -0.16 -0.32 0.21 -0.20 1.00 
       

Empirical treatment, negative 

screen 

0.25 0.29 0.18 -0.41 0.28 -0.15 0.31 1.00 
      

RR empiric, no symptoms -0.12 0.06 0.19 0.35 -0.41 0.24 -0.21 -0.38 1.00 
     

RR empiric, no TB -0.23 -0.02 0.31 -0.49 0.21 -0.40 0.04 0.13 -0.13 1.00 
    

RR health seeking in women 0.21 0.26 -0.19 -0.03 0.02 0.17 0.15 0.27 -0.15 0.16 1.00 
   

RR health seeking in HIV+ vs 
HIV- 

0.41 0.50 -0.34 -0.20 -0.39 0.10 0.37 0.30 -0.15 -0.12 0.21 1.00 
  

RR screening symptomatic 

initial  

-0.18 -0.33 -0.42 0.32 -0.32 0.29 -0.35 -0.21 -0.01 -0.11 0.06 -0.12 1.00 
 

RR screening symptomatic 
ultimate 

-0.30 0.04 0.30 -0.18 0.44 -0.26 -0.15 -0.20 -0.11 0.37 -0.43 -0.22 -0.16 1.00 

RR=relative rate. TB=tuberculosis.  
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Appendix A Figure 5: Scatter plots to show the relationship between estimated new TB cases and model parameters 
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Appendix A Figure 6: Scatter plots to show the relationship between estimated TB mortality and model parameters 
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The proportion of smear-negative TB cases which 
are treated empirically if they initially screened 
negative smear test  

48000

49000

50000

51000

52000

53000

54000

55000

56000

57000

0 0,05 0,1 0,15

TB
 m

o
rt

al
it

y,
 2

0
1

9

Relative rate of empirical treatment if not 
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compared to men
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seeking treatment for TB symptoms, compared to 
those seeking treatment for other conditions 
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8.2. Appendix B: Supplementary material for Chapter 5 

The full supplementary materials for Chapter 5 are also accessible with the pre-print: 

https://doi.org/10.21203/rs.3.rs-1908771/v1. 

8.2.1. Parameters varied in Chapter 5 

We used a Bayesian approach to calibrate the model and estimate various parameters. 

Because our model is slow to run, and because the Bayesian calibration process is 

particularly slow to converge when there are many parameters being included in the 

uncertainty analysis, we calibrated the model through a series of steps. We first (in a 

previous calibration analysis, step 1) considered TB transmission and natural history 

parameters (355). Then we considered the parameters (previous calibration analysis, step 

2) that determine the impact of TB interventions (355). In this present analysis, we focus 

on the parameters that are most influential in explaining the male-female differences in 

TB incidence. The prior means and standard deviations are summarized in (Appendix B 

Table 1), with the posterior means and 95% confidence intervals for the parameters 

varied and estimated in the previous calibration analysis. We also indicate the parameters 

varied in this present analysis. In each step we use the same likelihood definitions as 

given in this section below.  

https://doi.org/10.21203/rs.3.rs-1908771/v1
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Appendix B Table  1: Summary of model parameters (with prior means and standard deviations) that are varied and 

estimated through calibration 

Parameter description  
Mean 

Standard 

deviation 
Uncertainty analysis 

   Previous step 1 Previous step 2 Current step 3 

TB transmission probability per contact per day (if infectious individual is 
smear-positive) 

0.0025 0.0025 0.0030 (0.0026–0.0034) 0.0034 (0.0031 - 0.0037)  ✓ 

The annual rate of reactivation in HIV-negative individuals 0.0024 0.0012 0.00148 (0.0014–0.00155)   

Relative rate of TB incidence per 100 cell increase in CD4 0.71 0.085 0.703 (0.693–0.712)  
✓ 

Annual recovery rate in smear-positive TB, HIV-negative individuals 0.09 0.02 0.075 (0.067–0.081)   

Annual recovery rate in smear-negative TB, HIV-negative individuals 0.24 0.05 0.224 (0.198–0.247)   

Relative infectivity of smear-negative TB compared to smear-positive 
individuals  

0.22 0.03 0.206 (0.196–0.218)   

Increase in TB risk if previously experienced TB 3.499 1.5 3.03 (2.55–3.53)   

Smear-negative TB mortality (untreated) 0.061 0.012 0.049 (0.046–0.052)   

Smear-positive TB mortality (untreated) 0.212 0.042 0.196 (0.174–0.221)   

The relative rate of TB mortality per 50 cell increase in CD4 count if HIV+ 0.87 0.05 0.949 (0.944–0.954)  
✓ 

Proportion of cough >2 weeks in individuals with smear-negative TB 0.2 0.1 0.198 (0.149–0.263)   

The proportion of incident TB cases in HIV-negative adults that are smear-

positive 
0.52 0.1 0.51 (0.48–0.54)   

Relative ratio of symptoms in patients with smear-positive TB, compared to 

smear-negative TB 
2.2 0.5 3.03 (2.74–3.23)   

Relative rate of TB incidence for those on ART (controlling for CD4) 0.81 0.05  0.840 (0.822 - 0.862) ✓ 

Relative rate of TB mortality if on ART 0.55 0.08  0.498 (0.469 - 0.536) ✓ 

The annual rate of health-seeking in males with smear-negative TB 2.14 0.49  1.07 (0.903 - 1.212) ✓ 

The annual rate of health-seeking in males in the general population 1.15 0.5  1.0 (0.76 - 1.3)  

The annual rate of health-seeking in males due to TB-like symptoms 0.22 0.15  0.196 (0.163 - 0.224)  

The proportion of active TB cases seeking treatment who are treated 

empirically before any microbiological test is done 

0.125 0.144  0.068 (0.046 - 0.092) 
 

The proportion of smear-negative TB cases which are treated empirically if 

they initially screened negative smear test   

0.33 0.236  0.28 (0.222 - 0.353) 
 

Relative rate of empirical treatment if not seeking treatment because of TB 
symptoms 

0.5 0.289  0.031 (0.017 - 0.051) 
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Parameter description  
Mean 

Standard 

deviation 
Uncertainty analysis 

Parameter description  
Mean 

   Previous step 1   

Relative rate empirical treatment if symptoms are not due to TB 0.5 0.289  0.0014 (0.0005 - 0.0029)  

      

Relative rate of health-seeking in women, compared to men 1.55 0.17  1.376 (1.2884 - 1.475) ✓ 

Relative rate of health-seeking in HIV-positive compared to HIV-negative 

individuals 
3 1  4.27 (3.72 - 5.12)  

Relative rate of screening in TB patients seeking treatment for TB symptoms, 
compared to those seeking treatment for other conditions: initial 

8.71 2.5  11.10 (9.73 - 12.47)  

Relative rate of screening in TB patients seeking treatment for TB symptoms, 

compared to those seeking treatment for other conditions: ultimate 
4 1.2  3.84 (3.27 - 4.52)  

Increase in TB mortality rate per 10-year increase in age 1.4 0.1   ✓ 

Increase in TB incidence due to alcohol misuse 1.94 0.65   
✓ 

Increase in TB incidence due to diabetes (HbA1c > 6.5%) 2.59 0.83   
✓ 

Increase in TB risk if currently smoking 0.47 0.39   
✓ 

Increase in TB risk per 10-year increase in duration of smoking 0.38 0.12   
✓ 

Increase in TB risk due to low BMI 0.8 0.25   
✓ 

ART=antiretroviral therapy; BMI=body mass index. TB=tuberculosis. Ticks indicate the parameters which were varied in the respective steps 
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8.2.2. Comparison of prior and posterior distributions 

Appendix B Table 2 below shows the prior and posterior distributions for parameters 

varied in this current analysis. Most of the prior and posterior distributions means were 

similar and the 95% confidence intervals overlap. However, there were slight differences 

between the prior and posterior distributions for the parameters for effects of risk factors 

(alcohol abuse, diabetes, smoking, and low BMI). This reflects the uncertainty associated 

with the effects of these risk factors on developing tuberculosis disease.   

Appendix B Table  2: Comparison of prior and posterior distributions for model 

parameters 

Parameter description 
Prior mean (95% 

confidence interval) 

Posterior mean (95% 

confidence interval) 

TB transmission probability per contact per day (if infectious individual is smear-

positive) 
0.0025 (0.0001 – 0.0184) 0.003 (0.0027 - 0.0032) 

Reduction in TB incidence per 100 increases in CD4 0.71 (0.531 – 0.860) 0.72 (0.71 - 0.73) 

Relative rate of TB mortality per 50 cells increases in CD4 count, in HIV-positive 
adults  

0.87 (0.758 – 0.951) 0.92 (0.91 - 0.93)  

Relative rate of TB incidence on ART (controlling for CD4) 0.81 (0.758 - 0.951) 0.74 (0.71 - 0.77) 

Relative rate of TB mortality if on ART 0.55 (0.392 - 0.703) 0.71 (0.67 - 0.74) 

Increase in TB mortality rate per 10-year increase in age 1.4 (1.211 - 1.603) 1.39 (1.34 - 1.45) 

Annual rate of health seeking in males with smear-neg TB 2.14 (1.29 - 3.202) 1.04 (0.95 - 1.13) 

Relative rate of health seeking in females 1.55 (1.235 - 1.901) 1.47 (1.40 - 1.57) 

Increase in TB incidence due to alcohol misuse 1.94 (0.883 - 3.408)  2.56 (2.28 - 2.86) 

Increase in TB incidence due to diabetes 2.59 (1.228 - 4.453) 1.51 (1.32 - 1.69) 

Increase in TB risk if currently smoking 0.47 (0.031 - 1.482) 0.18 (0.14 - 0.27) 

Increase in TB risk per 10-year increase in duration of smoking 0.38 (0.182 - 0.649) 0.23 (0.2 - 0.26) 

Increase in TB risk if experiencing low BMI 0.8 (0.388 - 1.359) 1.18 (1.02 - 1.35) 

ART = antiretroviral therapy; TB=tuberculosis. 
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8.3. Appendix C: Supplementary material for Chapter 6 

Appendix C Table  1: Assumed sensitivity and specificity of Xpert Ultra tests by 

smear-status from mid-2017 

 Value  Source 

Sensitivity of Xpert Ultra (Se𝑈𝑙(a)) 

Smear-positive (Se𝑈𝑙(1)) 

 

0.99 

(286,367) 

Smear-negative (Se𝑈𝑙(0))  0.77  

Specificity of test   

Xpert Ultra (Sp𝑈𝑙) 0.99 (287,366) 

 

Appendix C Table  2: Changes in ART coverage when ART interruptions are 

reduced between 2023 and 2030 

  2023 2024 2025 2026 2027 2028 2029 2030 
          

Baseline          

ART coverage in males age 15+  0.692 0.704 0.714 0.722 0.729 0.734 0.738 0.741 

ART coverage in females age 15+  0.747 0.751 0.754 0.756 0.758 0.760 0.761 0.763 

Reduced ART interruptions         

ART coverage in males age 15+  0.692 0.841 0.858 0.872 0.883 0.892 0.899 0.905 

ART coverage in females age 15+  0.747 0.897 0.905 0.911 0.916 0.920 0.923 0.925 

 

Appendix C Table  3: Changes in the numbers of adults screened microbiologically 

when the proportion of screening is doubled 

  2023 2024 2025 2026 2027 2028 2029 2030 

Baseline          

  2906720 2945680 2981440 3016240 3050520 3083980 3116340 3146920 

Doubling screening         

  5813440 5711540 5789040 5857650 5924550 5989710 6052830 6112580 

 

Appendix C Table  4: Changes in the numbers of preventative therapy initiations 

when the rates of initiations are doubled 

 2023 2024 2025 2026 2027 2028 2029 2030 

Baseline 359817 356958 355429 354530 353902 353400 352893 352289 

Doubled TPT 

initiations 692631 674597 668816 666940 666185 665752 665266 664538 
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