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Optimal Control of the Cheetah During Rapid Manoeuvres

by Alexander KNEMEYER

Cheetahs are incredibly fast, manoeuvrable and highly dynamic, but relatively lit-
tle is understood about how this is achieved. Thus, understanding their abilities is
a subject of research for roboticists and biologists. Trajectory optimisation is a tool
often used to increase our understanding of cheetahs, but current approaches which
handle the full complexity of poorly understood manoeuvres are slow. The lack of
data means that there are no simulated models of cheetahs known to be representa-
tive of dynamic movements such as acceleration and turning.

In this project, a modelling change is investigated that decreases the time to find
trajectories for models involving long serial chains of rigid bodies. Leveraging this
development, a software library is created which facilitates the process of finding
trajectories of models of legged robots and animals. Using this library, a complex
model of a cheetah is developed, based on real data and some experimentation. Fi-
nally, the model is used to generate high speed dynamic manoeuvres which present
progress towards understanding the incredible abilities of cheetahs.
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Chapter 1

Introduction

FIGURE 1.1: The lightly built, streamlined, agile body of the cheetah
makes it an efficient sprinter.

Source: Malene Thyssen - Own work, CC BY-SA 3.0

1.1 Background

Manoeuvrability is critically important to hunting – both for predators and prey,
who have evolved in an arms race to each become as fast and dynamic as possible in
a bid to increase their chances of survival. As a result, studying animals often leads
to great insight in robot design and control. Lessons learned from what works (and
what does not) can be used as a starting point to recreate, and one day exceed, the
high performance observed in animals, in the robots we build.

For instance, guinea fowls have been investigated by researchers to understand how
they traverse uneven terrain [1] and lizards are studied to understand how their tails
are used for pitch control [2]. In a different vein, Greyhounds are analysed in part
because it is safe and relatively easy for humans to do so – they are domesticated. In
[3] researchers make observations on foot-force limits based on data of greyhounds
training on a racing track.

https://commons.wikimedia.org/w/index.php?curid=10119596
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FIGURE 1.2: A cheetah performing a high-speed turn. Image from [9].

Cheetahs (Acinonyx Jubatus) are often used as case studies for researchers wishing to
understand leg-based manoeuvrability. In addition to simply being the fastest land
animal (reaching speeds of up to 29 m s−1), they can accelerate from 0 to 80 km h−1

in three strides [4]. Cheetahs have been observed to hunt with lateral accelera-
tions exceeding 13 m s−2 at speeds less than 17 m s−1 [5, 6]. The exact mechanics by
which they achieve this are still not fully understood; the remainder of this section
summarises the existing literature surrounding research into the manoeuvrability of
cheetahs.

It it known that their athleticism is a result of evolutionary specialisation. As an
example, research shows that cheetahs have recently developed inner ear speciali-
sation which aids balance during high-speed hunting [7]. They also weigh less than
other large cats, typically totalling 23 to 56 kg on average [8].

Observations of hunting cheetahs indicate that there is a link between the cheetah’s
tail and its ability to decelerate and turn rapidly – the tail is clearly flicked during
turns and other manoeuvres involving acceleration and potential instability. How-
ever, the advantages of a tail on a cursorial animal (one that has specialized for run-
ning) are thought to be somewhat nuanced and complex, as the prey chased by chee-
tahs (whose chances of survival are improved when they too are fast and dynamic)
generally do not have long tails.

Types of turns

Cheetahs turn in a variety of ways, depending on their intentions and environment.
To limit scope, two broad categories of turns are considered in this project: steady-
state and turn initiation.

FIGURE 1.3: Rough approximations of the path a cheetah would take
during steady-state turning (A) and turn initiation (B) as viewed from

above.

Steady-state turns are what is observed when a cheetah or other quadruped gal-
lops around a round track, with a roughly constant yaw rate and generally periodic
movement. In contrast, turn initiation is far more dynamic, with a non constant yaw
rate. It is observed more often when cheetahs hunt prey which move sporadically:
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a straight gallop followed by a sudden change in yaw. A diagram of the turns, as
viewed from above, is shown in Figure 1.3.

Footfall patterns

Cheetahs do not use a fixed footfall pattern – instead, they typically switch between
rotary and transverse gallops, with rotary gallops resulting in faster locomotion [10].
Figure 1.4 shows an example of a rotary gallop footfall sequence, including timing,
for gallop speeds greater than than 14 m s−1.

FIGURE 1.4: “A representative example of stance timing during
strides at various speeds. Red bars represent the stance periods of
each limb of the cheetah and blue bars those of the greyhound during
a complete stride at different speeds. The dashed vertical lines repre-
sent the end of the stride. Both animals use a rotary gallop whereby
the non-lead forelimb (NLFL) contacts first followed by the lead fore-
limb (LFL). This is followed by the gathered aerial phase when the
feet are pulled together prior to the non-lead hindlimb (NLHL) con-
tact. Last to contact is the lead hind limb (LHL); this is followed by
the extended aerial phase where the feet are extended away from
the body before the stride cycle starts again”. Image and caption

from [10].

Physical measurements

In [11, 12] Hudson et al. describe and quantify the musculoskeletal anatomy of the
forelimb and hindlimb of eight captive cheetahs from the Anne van Dyk Cheetah
Centre and the research department of the National Zoological Gardens of South
Africa. The measurements are compared to those of ex-racing greyhounds.

In [4], 241 wild Namibian cheetahs were examined to “study morphology, sexual di-
morphism, growth rates, and physical condition and to investigate how these data
compared with those in previous studies”. They note that the data “differed due
to variations in collection methodology”. As will be seen in Chapter 5, no single
resource contains a complete description of all the parameters in a cheetah’s func-
tional anatomy. Instead, parameters from various studies are combined with the
knowledge that this approach has shortfalls.

Parameters relating to cheetah tails are stated in [13]. They state that “the cheetah
tail is commonly referred to as functioning as a rudder (used to change the heading
of body) or a counterweight (used for balance)”, but that their hypothesis is that “the
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long, furry tail generates aerodynamic forces that contribute to the angular impulse
(especially at high speeds), thereby assisting manoeuvrability.”

Wilson states a mean friction coefficient of 1.3 in [5], although there is a distribution
of values. Hudson estimates a maximum ground reaction force of 5 times the body
weight of the cheetah in [10].

In [14], West estimates that roughly 50 % of the body mass of cheetahs is available
for actuation, and that their power efficiency is 600 W kg−1.

1.1.1 Modelling and simulation

Despite these estimates, the data that can be used to understand cheetahs and other
fast animals is relatively sparse. Researchers have attached trackers to wild chee-
tahs to log whole-body position and acceleration data [5] and have analysed captive
cheetahs in similar ways [10] – unfortunately, either way, doing so is known to affect
the speed and motivation of the specimen being studied. In addition, cheetahs do
not typically manoeuvre to their full ability in a given hunt even without trackers.

Instead, researchers often create simulated models of animals to study dynamic ma-
noeuvres in detail. If the phenomenon itself is inherently complex (which some
believe the tail to be) then complex models (known as anchors) can be used until
simple models (known as templates) are found and proven to usefully represent the
important elements of the organism. An illustration of this hierarchy is shown in
Figure 1.5.

FIGURE 1.5: The core idea of the role of templates and anchors in
understanding biological systems. Image from [15].

An example of a simple model is the Spring Load Inverted Pendulum (SLIP) de-
scribed in [16]. An example can be seen in Figure 1.5. SLIP and its variations have
been extensively researched, and have resulted in progress towards understanding
and implementing walking robots.
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In contrast, cheetahs are physically complex creatures. Their manoeuvrability ap-
pears to be in some way related to its mass distribution, active spine, long, fluffy
tail, body shape, and possibly more. It is not known which of these features are
critical for high speed hunting, and which are not. Thus, we cannot (yet?) justify
sweeping simplifications in a modelling strategy. This eliminates the use of tem-
plate models like SLIP. It remains to be seen if a truly representative SLIP-like model
exists for, for instance, quadrupeds performing high-speed turns.

There are a myriad of ways that the simulation can actually be performed. Forward
simulation is the most common, with early methods of integration being used in
the 1700s [17]. In this approach, control inputs to the system (such as torques from
muscles) must be chosen by the researcher. For simple manoeuvres, choosing the
control inputs can be as simple as fully activating a given muscle. However, this
approach quickly becomes infeasible for trajectories which are poorly understood
and involve nuanced muscle activations.

Direct single shooting (and its extension, direct multiple shooting) is a tool which
uses forward integration to find the control inputs programatically. Forward sim-
ulations are performed repeatedly, with the inputs being adjusted by an optimiser
at each iteration. The optimiser uses derivative information (calculated either an-
alytically or numerically) to iteratively reduce a cost associated with the trajectory
(the notion of “cost” will discussed in greater detail shortly). Direct shooting meth-
ods are suited to problems with simple controls and few path constraints, such as
space flight. The advantages and drawbacks of shooting methods (among others)
are described in further detail in [18].

1.1.2 Trajectory optimisation

Trajectory optimisation formulated as an indirect method is one tool that can be used
to study the dynamics of animals in simulation. It is quite general, reflected by a def-
inition as “the process of designing a trajectory that minimizes or maximizes some
measure of performance within prescribed constraint boundaries” [19]. A trajectory
is not limited to a physical path (such as the path a rocket takes as it launches) - it
can be any quantity which changes over time, such as the temperature of water in a
kettle.

Roboticists and biologists use trajectory optimisation as a tool to investigate motion,
including planning whole-body manoeuvres [20–22], identifying efficient gaits that
exploit the body’s passive dynamics [23, 24], devising control policies for agile ma-
noeuvres [25], designing optimal robot morphologies [26–28], lower limb prosthesis
design [29] and exploring more conceptual questions about locomotion [30].

Some major applications of the technology include walking robots, quad-copters,
industrial processes, chemical plants and rocket landings. This project focusses on
its uses for any system which walks or runs.

Advantages

Some advantages of trajectory optimisation include the ability to,

• simultaneously solve the forward and inverse dynamics of the system,
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• modify any models used, by (for example) adding or removing a tail and modi-
fying masses and lengths, in order to make direct comparisons between similar
models,

• directly set the task that the model must perform (which is at times easier than
coaxing a real animal to do so),

• get perfect knowledge of all the states and forces in the model,

• discover trajectories which are more optimal than could be found by hand or
by using human intuition, and

• utilize existing domain knowledge and intuition in the form of variable initial-
isation and constraints.

A key idea is that it can be used to discover trajectories, as opposed to simply find-
ing torques to track known manoeuvres (as is commonly done in optimal control).
In addition, it excels when used to find trajectories which are partially known, as
domain knowledge (bio mechanics, rocketry, chemistry, and so on) can typically be
incorporated quite easily in the form of variable initialisation and constraints.

As an example, engineers at Boston Dynamics combined their robotics knowledge
with choreographies designed by professional dancers, to find trajectories that their
other control algorithms can track. This was showcased in their video “Do You Love
Me”, and described in an article titled “How Boston Dynamics Taught Its Robots to
Dance”.

Existing software

Various software packages exist to help model a problem, solve it using an opti-
miser and then analyse the results. Andreas Wächter developed one such optimiser,
IPOPT, in [31], suitable for large-scale nonlinear mathematical programming. IPOPT
is flexible enough to handle many types of problems, making it a useful tool to learn.
However, “No Free Lunch Theorems for Optimization” [32], states that, for “any algo-
rithm, any elevated performance over one class of problems is offset by performance
[decrease] over another class”. As a result, a multitude of algorithms exist which fo-
cus on a different niche or class of problem.

Some researchers are investigating whether the algorithm of an optimiser can be
automatically tuned for a particular application. One example is “Learning to learn
by gradient descent by gradient descent” [33], in which transfer learning is utilised to
achieve faster solve times on a number of small test problems.

IPOPT is typically interfaced with via C++ (a relatively low-level language, com-
pared to others like Python and Matlab) using sparse matrices and functions point-
ers. This approach is used by many other solving algorithms, but is tedious and
error-prone to work with as a researcher interested in bio-mechanics.

Others have built modelling software abstractions on top of IPOPT (and other opti-
misers) – a notable example is TOWR [34], a “light-weight and extensible C++ library for
trajectory optimization for legged robots”, released in 2018 by Alexander Winkler. TOWR
utilises reduced modelling and simulation accuracy, along with a fixed foot contact
order and timing, in order to achieve fast solve times. These accuracy relaxations can
be made, as discrepancies between the simulation and real world can be accounted
for using feedback control.

https://www.youtube.com/watch?v=fn3KWM1kuAw
https://www.youtube.com/watch?v=fn3KWM1kuAw
https://spectrum.ieee.org/automaton/robotics/humanoids/how-boston-dynamics-taught-its-robots-to-dance
https://spectrum.ieee.org/automaton/robotics/humanoids/how-boston-dynamics-taught-its-robots-to-dance
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As legged robotics is broadly a difficult, unsolved problem, software wrappers are
typically geared towards a specific subset of the problem domain. Based on online
searches, no existing software was found which satisfied the following niche soft-
ware requirements for this project:

• no simplifications to dynamics which are not valid at high speeds,

• no requirement to fix contact order and timing,

• accurate simulation (many algorithms support only Explicit or Implicit Euler
integration),

• possible to extend with new dynamics, and

• utilities to model mechanical systems of interest to this project.

For instance, C-FROST simplifies dynamics unacceptably [35], TOWR fixes con-
tact order and timing [34] and CasADI has no utilities for mechanical system mod-
elling [36]. CasADI is similar to Pyomo, in that it is a set of tools to convert symbolic
equations into optimisation problems.

Unfortunately, researching cheetahs using trajectory optimisation is not without its
drawbacks. For instance, the optimisation problem itself solves relatively slowly,
and can simply fail without clear or easily understandable reasons. It requires knowl-
edge and skill in multiple areas, with main domains being programming, mechan-
ics, biology and simulation. A more detailed discussion of relevant challenges to
this project is as follows:

Unclear parameters

A drawback related to modelling approaches in general, is that the literature on
specific cheetah parameters – muscle limits, degrees of freedom, magnitude of drag
forces, and so on – is sparse. All of these attributes have, or might have, some ef-
fect on the accuracy of a simulation. This presents a difficult situation: one cannot
simulate cheetahs without knowing their parameters, and the parameters are hard
to estimate without modelling and simulation. A suite of trajectories is useless if it
does not reflect reality.

Luckily, results found via trajectory optimisation can be compared and combined
with results from other independent approaches, to achieve certainty in the conclu-
sions. For example, if the trajectory from a solved optimisation problem is similar to
one found using camera capture and parameter fitting (which involved a different
set of assumptions about the problem) a stronger argument can be made that the
findings are to be trusted.

Local and global minima

When an optimiser minimizes an objective, it does not necessarily find the lowest
possible value (known as the global minimum). Instead, it may only find the lowest
value within some small part of the total solution space (known as a local minimum).
For convex optimisation problems, one can guarantee that the global minimum will
be found. However, the types of problems solved in legged robotics typically do
not guarantee globally optimum solutions due to their non-convexity [37]. In fact,
as complexity and non-linearity in the problem increases, so too does the chance of
finding only a local optimum.
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Speed improvements

Trajectory optimisation is known to be slow, although its performance is an area
which is actively being improved upon. While the time to set up an optimisation
problem can be non-negligible, the time to convergence is generally dominated by
the product of the iteration time and number of iterations in the optimiser used to
solve the problem [38].

The generation of accurate representations of poorly-specified, intricate tasks on de-
tailed models has been made feasible by innovations such as improved integration
methods [39], contact-invariant approaches [40] and warm-starts with simpler mod-
els [41].

Others have made the problem easier for the optimiser by, for example, neglecting
parts of the dynamics [35] (at the cost of solution accuracy), assuming the feet do not
slip and prescribing (fixing) the foot contact order and timing.

It is worth mentioning that an aspect of trajectory optimisation that has received
little attention regarding performance improvement is the kinematic formulation of
the model itself.

1.2 Problem statement

Trajectory optimisation is slow for complex models, and even slower when used to
investigate poorly specified manoeuvres involving contact with the ground. It can
be sped up by making sweeping simplifications (for example, by ignoring aspects
of the dynamics) but those approaches make assumptions that are not necessarily
valid at high speeds, and they do not capture complex behaviours, such as the effect
of a tail when turning.

We ask, can the solve speed of trajectory optimisation applied to complex models be sped up
without sacrificing accuracy for dynamic manoeuvres?

There is also uncertainty in terms of whether the resulting complex (but still not fully
accurate) model can be used to investigate high speed animal motion in a useful and
representative way. Researchers wish to understand the movement of the cheetah
as it manoeuvres to its limit, but they do not know what the equivalents of those
limits are in a simulated model (which might replace difficult-to-model muscles and
tendons with electrical motors).

We ask, can a useful and qualitatively realistic model of a cheetah be created when only some
of its parameters have been measured?

Finally, the literature on the role that the cheetah’s tail plays is extremely sparse.
Recordings clearly show that the cheetah flicks its tail as it accelerates and turns, but
it is unknown precisely how much the tail’s inertial and drag effects contribute to
stability during these manoeuvres. Whatever its role is, the tail must have a more
nuanced effect since it is notably missing from the prey, such as antelopes and im-
palas.

we ask, can the role of the cheetah’s tail be better understood via trajectory optimisation
applied to a large, complex model?



Chapter 1. Introduction 9

1.3 Project objectives

This project involves the following objectives:

• The investigation of a modelling change which makes trajectory optimisation
more tractable by speeding up solve times for complex models with contacts.

• The development of a software library that utilizes the modelling change, and
makes it easier to research, develop and manage complex models of robots and
animals involving contacts and miscellaneous forces (such as drag).

• The creation and parametrisation of a relatively complex model of a cheetah
that is accurate enough to be used to make claims about real cheetahs.

• An effort towards understanding the role of the cheetah’s tail during high
speed turns, and other manoeuvres involving large accelerations.

1.4 Project scope

The model will not be totally reflective of real cheetahs - for instance, simple torque
inputs will be used as a substitute for muscles and tendons, collocation will be
achieved via a somewhat course finite element method, and the parts of the cheetah
which can bend almost continuously (such as the tail) will be modelled using a small
number of rigid links. The aim is thus to achieve realistic and useful outcomes, not a
fully accurate simulation of cheetahs.

The resulting trajectories will be qualitatively compared to camera footage and re-
ports from studies not used to parametrise the model, but not combined with other
techniques for animal trajectory estimation and discovery. Similarly, online trajec-
tory planning will not be evaluated.

Finally, uses of tails that do not involve high speed manoeuvring (such as social
interaction between cheetahs) will not be investigated.

1.5 Project outline

Chapter 2 describes the methods used in subsequent chapters, including rigid body
dynamics, trajectory optimisation, cheetah modelling and any relevant software.

Chapter 3 describes the development of a modelling change to decrease solve time
for large models, which is implemented in a software library documented in Chap-
ter 4. The library is used in Chapter 5 to develop (and verify the accuracy of) a
complex model of a cheetah.

Chapter 6 uses that system to investigate a selection of manoeuvres, discussing any
pertinent observations. Finally, Chapter 7 concludes this report with a summary of
the project and thoughts on directions for future research.

A visual outline of the progression of this dissertation and the relation between the
chapters is shown in Figure 1.6.
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FIGURE 1.6: Dissertation progression and relationship between chap-
ters. The contributions of this project are in Chapters 3, 4, 5 and 6.

1.6 Project outcomes

Three main outcomes are desired for this project, which form the basis of further
research into related fields. These are,

• a modelling change which leads to faster trajectory optimisation, implemented
in an easily installable and extensible Python library,

• an accurate model of a cheetah, which can similarly be used to further investi-
gate movement and modified in other ways, and

• a method to find suites of predictive manoeuvres, which can be used to further
understand the manoeuvrability of cheetahs.

1.7 Research publications

A publication resulted from the research in this project: “Minor Change, Major
Gains: The Effect of Orientation Formulation on Solving Time for Multi-Body Trajec-
tory Optimization” [38]. It was published in IEEE Robotics and Automation Letters
(RA-L), one of the top journals for the field of robotics. The paper has been cited
once and has had 258 full text views.

RA-L has an Impact Factor of 3.608 and an Eigenfactor of 0.00949. According to
Google Scholar, the journal has an h5-index of 53 and h5-median of 79.

https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=7083369
https://scholar.google.com/citations?hl=en&view_op=search_venues&vq=IEEE+Robotics+and+Automation+Letters&btnG=
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Chapter 2

Method

The following chapter provides an overview of the methods used for rigid body
dynamics, trajectory optimisation and cheetah modelling. A list of the software used
in this project is also presented.

2.1 Rigid body dynamics

2.1.1 3D orientation

The orientation of a rigid body within a Cartesian coordinate system can be de-
scribed using three Euler angles [42], implemented via a sequence of chained rota-
tions:

Rt
f = RφRθ Rψ (2.1)

For example, the position of a point on a rigid body written in that body’s frame
f can be expressed in the inertial frame t by multiplication with Rt

f . The inverse
operation (conversion from inertial to body frame) can be achieved by multiplication

with the transpose of the rotation matrix,
(

Rt
f

)T
= R f

t .

A disadvantage of Euler rotations is the potential to create singularities. This can
be avoided by selecting a rotation order which results in the second rotation staying
less than 90°. In this project, Euler 321 was chosen for all joints, along with careful
selection of any tasks. This means that the orientation of a rigid body (1) in the iner-
tial frame (I) is found by multiplying its position in its body frame (b) by a rotation
about its Z-axis, then its Y-axis, and finally its X-axis:

xI
1

yI
1

zI
1

 =

1 0 0
0 cos φ sin φ
0 − sin φ cos φ

cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

 cos ψ 0 sin ψ
− sin ψ 0 cos ψ

0 0 1

xb
1

yb
1

zb
1

 (2.2)

2.1.2 The manipulator equation

The dynamics of a system comprised of multiple rigid bodies are often expressed in
the manipulator equation form, shown in

Mq̈ + Cq̈ + G = Bu + JT
L λ + Q (2.3)
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where q is the vector of generalized coordinates for the system, M represents the
mass matrix, C the Coriolis and centrifugal matrix, G the gravitational force, B the
control input mapping and u the generalized input. Interactions with objects and
the environment are captured by the contact Jacobian JL and the contact forces λ.
The superscript T refers to the matrix transpose, and the subscript L refers to the
symbol lambda. Any other non-conservative forces are accounted for by Q.

Later, n and p are used to represent the number of the input forces and contact points
respectively. An introduction to the topic can be found in [43].

General algorithms to find terms in the manipulator equation are as follows:

M =
∂2Ek

∂q̇∂q̇
(2.4)

Cq̇ = Ṁ− ∂Ek

∂q
(2.5)

G =
∂Ep

∂q
(2.6)

Note that the the algorithm calculates Cq̇ (as appears in the manipulator equation),
not C.

The kinetic and potential energy were in turn calculated using the following equa-
tions:

Ek =
num links

∑
i

(
1
2
(ṙI

i )
Tmi ṙI

i +
1
2

ωT
i Iiωi

)
(2.7)

Ep =
num links

∑
i

migzi (2.8)

where ṙi is the translational velocity of rigid body i and I is the inertia matrix. mi
and zi are the mass and height of body i, and g is the gravitational constant equal to
approximately 9.81 m s−2 on Earth.

The rotation rate ω can be translated between body and inertial coordinates using
the skew symmetric rotation matrix property.

2.1.3 Modelling drag

Aerodynamic drag acting on a fast-moving rigid body can be modelled using the
following equation: [44]

FD =
1
2

ρCD Au2 (2.9)

FD is the drag force vector directed opposite to the direction of translational motion
of the affected surface of the body. ρ is the mass density of the fluid in which the
body moves - for air, a value of 1.184 kg/m3 at a pressure of 1 atmosphere and a
temperature of 25 °C. CD is the drag coefficient, a dimensionless quantity which
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quantifies the resistance the object experiences, and is partly a function of the shape
of the object. It accounts for the effects of skin friction and form drag. A is the
reference area, often defined as the orthographic projection of the object onto a plane
perpendicular to the velocity. Finally, u is the speed of the object.

Drag acts continuously on a surface, but for computational efficiency purposes is
often simplified to act at a small number of points.

2.1.4 Modelling input torques

Input torques can mapped into the manipulator equation by first taking the dot
product of the torques acting on each body (τbody) with the angular velocity of that
body in its own frame (Ωbody), to find the instantaneous work being done on that
body:

∂W = τbody ·Ωbody (2.10)

Next, the Jacobian of the work with respect to the state velocity vector (q̇) is found,
resulting in a force input mapping suitable for the manipulator equation:

Qø =
∂W
∂q̇

(2.11)

Limits to input torques can be added in a variety of ways, depending on the desired
accuracy of the model. In this project, two types of limits were considered and used:

• Constant upper and lower bounds on individual torques, represented in the
form

τ− ≤ τ ≤ τ+ (2.12)

As an example, given a body weight of 10 N, (−1.5× 10, 3× 10) would allow
for −1.5 times the model’s body weight in negative torque or up to 3 times the
model’s body weight in positive torque.

• Torque-speed limits, as commonly used when modelling motors. This limits
both the “stall torque” (the maximum torque, when the relative velocity of
the joint is zero) and “no load speed” (the maximum relative velocity reached
when the input torque is zero). These constraints are implemented as simple
bounds on the torque and relatively velocity, along with a constraint which
linearly connects the two limits via the following equation,

τstall−

(
1 +

ω

ωno-load−

)
≤ τ ≤ τstall+

(
1− ω

ωno-load+

)
(2.13)

This models the trade-off between how much torque can be delivered, and
how fast the output can rotate as a result. A scatter plot of example input
torques can be seen in Figure 2.1.

These models of input torque are not particularly accurate. They were chosen for
reasons of computational efficiency and ease of implementation, due to the time con-
straints of the project. More complex models generally also require more parameters
to be found or estimated.
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FIGURE 2.1: A scatter plot of input torques vs relative joint velocities
in the hip of a monoped hopper model. Each dot represents a point
in time. Dashed lines are used to represent the torque-speed limits.

2.1.5 Modelling springs and dampers

Only torque springs and dampers were used in this project. They were modelled by
taking the Jacobian of their energies with respect to the position state of the system
(q).

For the spring, the energy is calculated as,

Es =
1
2

k(∆− ∆0)
2 (2.14)

where k is the spring coefficient, ∆ is the relative angle and ∆0 is the rest angle.

For the damper, the energy is calculated as,

Ed =
1
2

c∆̇2 (2.15)

where c is the damping coefficient and ∆̇ is the relative angular velocity.

The input force mapping Q was calculated using

Q = −∂E
∂q

(2.16)

in both cases.

2.2 Trajectory optimisation

Trajectory optimisation is implemented in a wide variety of ways, each with differ-
ing trade-offs, depending on the characteristics of the system and the goal of the op-
timisation. What follows is an overview of the general method used in this project,



Chapter 2. Method 15

but it is by no means the only way of studying movement. Others have found suc-
cess by simplifying models, kinematics, dynamics, collocation and by initialising
well-understood problems with extremely specific guesses. This method is a far cry
from both of those approaches. For a different and more detailed introduction to the
subject, the reader is referred to the tutorial in [18] and others by the same author.

In short, the general idea is to transcribe a continuous-valued problem with state
x(t), control input u(t) and various dynamics:

ẋ(t) = f (t, x(t), u(t)) Continuous dynamics
g (t0, tF, x(t0), x(tF)) ≤ 0 Boundary constraints

h (t, x(t), u(t)) ≤ 0 Path constraints
xl ≤ x(t) ≤ xu Bounds on state

ul ≤ u(t) ≤ uu Bounds on control
bl ≤ ak ≤ bu Bounds at specific points in time

Other constraints

which has a quantity to be minimized:

min J(t, x(t), u(t)) (2.17)

into a constrained parameter optimisation problem involving real-valued decision
variables and algebraic equations:

min
z

f (z)

subject to,
g(z) < 0
h(z) = 0
zlow ≤ z ≤ zhigh

An optimiser uses gradient descent methods to solve the problem by choosing con-
trol inputs, whilst minimizing a metric of cost.

It is worth mentioning that there are other optimisation algorithms which operate
under fairly different assumptions. For example, Bonmin explicitly handles prob-
lems involving integers using a specialized algorithm [45].

2.2.1 Modelling contact

Some of the models analysed in subsequent chapters incorporate unilateral contact
constraints to model foot-ground impacts. These are enforced through complemen-
tarity constraints, using the method described in [40] adapted to work with higher-
order collocation [39]. This models the contacts as inelastic collisions and incorpo-
rates sliding corresponding to a Coulomb coefficient of friction µ. A penalty method
is used to make the associated equality constraints more tractable for the solver [46].
This involves setting the jth such constraint at the ith collocation point equal to some

https://www.coin-or.org/Bonmin/
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penalty variable pij, and then minimizing the sum of these penalties (P) to below the
constraint tolerance as a term in the objective function. A tunable scalar P0 is used
to weight P to at least two orders of magnitude larger than the objective term.

The non-penalty terms sometimes result in the penalty not being satisfactorily solved
within the allotted time. This happens when the objective is decreased more by
holding the penalty terms constant (or even increasing them) while decreasing other
values. In such cases, all non-penalty terms in the objective are removed and the op-
timiser is given additional time to solve the problem. Anecdotally, the non-penalty
terms typically do not increase significantly during this stage, despite their absence
from the objective.

If the non-penalty terms were added to increase speed or efficiency, care must be
taken to ensure that the problem is already close to being solved and is near a
favourable minimum, else a desirable trajectory may be lost while the contact penalty
terms are solved.

A variable time step is also used in all problems involving such constraints. For a
problem consisting of N elements, this is implemented by using a nominal time step
hn = T

N , where T is a reasonable approximation of the total time required for the
manoeuvre, and allowing the time step hi at each element to take on values within
some range (for example, 20 percent) of hn. Since the contact states can only change
from time step to time step, this eliminates some unnatural movements which might
otherwise arise.

2.2.2 Collocation

Direct collocation is used to formulate the dynamics constraints without the need
for forward integration as used by shooting methods, which have known disad-
vantages [18]. Three methods are used, depending on required accuracy: Implicit
Euler (described in [18]), and the two- and three-point formulations of the Radau
quadrature-based approach described in [39]. The Radau approaches have accura-
cies of order O

(
h2K−1) [47] where h is the duration of each time step and K is the

number of collocation points in each finite element.

To improve performance, a two-stage solving approach is sometimes followed: first,
a coarse solution is generated using a less accurate but faster approach (Implicit
Euler integration). Next, the values at each element are used to seed the values at all
collocation points of the corresponding element for the subsequent higher-accuracy
Radau stage.

The 3-point Radau collocation method and its relation to contact modelling is shown
in Figure 2.2.

2.2.3 Variable bounds

All variables are constrained to guide the optimiser towards a sensible solution
space, as suggested in [48]. For example, every link’s 6-DOF state is bounded to (-
100, 100), even though the explicit and implicit constraints of any particular manoeu-
vre already result in these bounds never being reached. The default limits (which
are sometimes modified for a given task) are shown in Table 2.1.

It is assumed that these default limits are sometimes not considered amidst the slew
of other parameters to keep in mind; as such, the principal of “easiest to debug” was
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FIGURE 2.2: The con-
cept of contact-implicit
optimisation using or-
thogonal collocation is
shown. The state tra-
jectory is expressed as
a series of high-order
polynomials on finite
elements. Contact mode
changes are enforced
to only occur at the
edges (mesh points)
of the finite elements,
ensuring smoothness and
accuracy of the transcrip-
tion. Image and caption

from [39].

TABLE 2.1: Default limits for variables. Tc is the vector of constraint
forces and torques, defined and used in Equation 3.1.

Variable Lower bound Upper bound Units

q -100 100 m, rad
q̇ -1000 1000 m s−1, rad s−1

q̈ -5000 5000 m s−2, rad s−2

Tc - 2 2 N/bodyweight
Foot penalties 0 1
GRFz, GRFxy 0 5 N/bodyweight

used when deciding on what variables to limit, and what default value they should
be limited to. For example, it seemed unlikely that limiting |q̈| ≤ 5000 would cause
an insidious bug, but defaulting the input torque limits to some “reasonable value”
could mask the fact that the torque limits were not consciously set, which are usually
highly dependant on the model under examination.

2.2.4 Initialization and task-specific constraints

Periodicity for a given movement is obtained by constraining the position and ve-
locity of the variables in the state to be equal, except for the variables which must
change as part of the task. A periodic gallop along the X-axis might have

q1 = qN for q ∈ q if q 6= x
q̇1 = q̇N for q̇ ∈ q̇



Chapter 2. Method 18

which constrains the first value of each variable at the first finite element (q1) to be
the same as its final element (qN).

Similarly, a periodic turn of 0.2 rad would have an offset on the yaw angle ψ, with a
constraint of ψi = ψN + 0.2. In general, periodic constraints must be set by inspection
for the specific task at hand.

One can guide the model towards a specific contact sequence (such as a rotary gal-
lop) by initializing the leg angles to sinusoids (or some other shape) with appropri-
ately offset phase angles. Another method is to fix the contact sequence via con-
straints, solve the problem, and then remove the constraints before solving again
in case there are other local solutions which further reduce the cost by altering the
contact times.

Additionally, constraints can be used to encourage solutions where the legs of a
model are straight at touchdown and lift-off (as is observed in many animals when
they run – see Figure 2.3). These can be easily added when the foot contact sequence
is fixed, and used as initialization in the same approach as the “fix, solve, unfix,
solve” method mentioned previously.

FIGURE 2.3: Images showing how cheetahs straighten a leg as it im-
pacts and leaves the ground.

Source: The Science of a Cheetah’s Speed | National Geographic

2.2.5 Solving

All experiments were written in the Python optimisation library Pyomo [49, 50]. The
NLP solver IPOPT [31] and linear solver MA86 [51] were used for all tests, with the
environment variable OMP_NUM_THREADS set to 8 to specify the number of threads for
the linear solver. Any stated solving times were observed on an AMD Ryzen 7 1700
Eight-Core Processor.

Large speed ups in iteration and total solve time were observed by changing IPOPT’s
Hessian approximation algorithm from exact to limited-memory, which utilizes the
L-BFGS algorithm.

Lastly, in IPOPT, “30 minutes of iteration time” will in general not equate to 30 min-
utes of time passing in the real world. Instead, it relates to a notion of “compute
time” as measured by the all of the threads used by IPOPT, but seemingly not the
linear solver.

2.2.6 Metrics used

Metrics such as “peak power” can be used as inputs to the optimisation (when mini-
mized in the cost function or added as a constraint) or as outputs which are observed
but not directly controlled by the user. Several metrics are used in this report. Note

https://www.youtube.com/watch?v=icFMTB0Pi0g
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that the foot contact penalty is its own class of metric, which should always be near
zero for a simulation to be accurate.

The first metric is time, calculated as the sum of the length of all finite elements.
Time can be minimized to find manoeuvres which complete more quickly:

Jt =
N

∑
i

∆ti (2.18)

The second metric is power efficiency. Depending on the goal, one of a few varieties
is used:

• If the stride length of a manoeuvre is unknown, Cost of Transport (CoT) [52]
can be used to find a trajectory which results in efficient movement across a
space. CoT is calculated as

JCoT =
1

pN

N

∑
i

p

∑
j

∆tiτ
2
ij (2.19)

where pN is the position at the final collocation point and τij is the input torque
from actuator j at element i. This and similar metrics assume an initial position
of pN = 0 for simplicity.

• If the stride length is known and fixed, one can simply minimize the energy by
discarding the 1

pN
term

• Given a torque-speed motor model, it can be useful to minimize work, calcu-
lated as the sum of the product of the input torque at each joint multiplied by
the joint’s relative rotational velocity, and integrated over time:

Jwork =
num torques

∑
j

N

∑
i

ωijτijhi (2.20)

• Another approach is to minimize the peak input torque or power. This too has
many varieties – one approach is to minimize the peak of the total input power
at each finite element, written as Jpeak = Pmax, where

Pmax =
N

max
i

p

∑
j

P2
ij (2.21)

Maximum power can also be directly constrained if the quantity is known, and
this line of thinking can be used for the prior quantities.

While all methods generally result in some notion of decreased energy requirements,
they each have subtly different effects on the resulting motions. For example, min-
imizing work will also decrease relative joint velocities (perhaps by modifying the
nature of any contacts which could cause increased velocities), and utilizing Cost of
Transport might result in slightly longer stride distances.

Another factor is whether the result is squared or not. Minimizing |τ| will result in
different behaviour to the minimization of τ2: in the latter case, the resulting torque



Chapter 2. Method 20

distribution would be expected to have a smaller variance as larger torque values
contribute significantly more to the cost function.

2.3 Software libraries

This project was made possible due to a number of freely available software pack-
ages. The following tools were used in a significant way:

• Pyomo: “a Python-based open-source software package that supports a di-
verse set of optimization capabilities for formulating and analysing optimiza-
tion models” [49, 50].

• SymPy: “a Python library for symbolic mathematics” [53].

• Matplotlib: “a comprehensive library for creating static, animated, and inter-
active visualizations in Python” [54].

• Jupyter Lab: “a web-based interactive development environment for Jupyter
notebooks, code, and data”.

• Visual Studio Code: a free source-code editor made by Microsoft for Windows,
Linux and macOS.

• IPOPT: “an open source software package for large-scale nonlinear optimiza-
tion” [31].

• HSL MA86: “sparse symmetric indefinite solver using OpenMP”. Free for aca-
demics.

https://github.com/Pyomo/pyomo
https://www.sympy.org/en/index.html
https://matplotlib.org/
https://jupyter.org/
https://code.visualstudio.com
https://coin-or.github.io/Ipopt/
http://www.hsl.rl.ac.uk/catalogue/hsl_ma86.html
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Chapter 3

Absolute Angle Coordinates

Complex models of animals and robots allow for research of behaviours and ma-
noeuvres in their entirety, and can be used to develop simple, more tractable mod-
els. This is especially useful for cases where data is difficult to come by. The main
disadvantage of using trajectory optimisation to study large models with potentially
long time horizons, is solving time.

This chapter describes an investigation into whether changing the orientation coor-
dinates of a multi-body system model from relative to absolute angles can reduce the
time required to solve the problem. The two approaches are tested on a variety of
two- and three-dimensional models, with and without unscheduled unilateral con-
tacts. Across all cases, the absolute formulation was found to be the faster and more
successful option. The performance improvements increased with the complexity of
the system and task, culminating in the challenging example of a 60-degree turn on
a 3D quadruped model, which was only able to converge in the allotted time when
absolute angles were used.

The reader should note that significant portions of this chapter were published in
[38], a paper co-written with two other authors.

3.1 Orientation formulations

Describing the orientation of rigid bodies in the model’s joint space has the advan-
tage of producing a minimal set of coordinate variables and ensuring that the links
in the system remain in a valid configuration without the need for explicit positional
constraints, but it produces complicated Coriolis terms when used to describe long
serial chains of links. While it has been observed that removing these problematic
terms can allow the model to solve faster [35], neglecting them becomes detrimental
to the accuracy of the simulation as the movement becomes more rapid and dy-
namic.

In contrast, formulations that reference positions and orientations to the inertial
frame (rather than relative to preceding links) result in significantly simpler expres-
sions for the equations of motion, at the cost of potentially many more coordinate
variables and explicit connection constraints. This is illustrated in Figure 3.1, which
shows how many operations make up the symbolic equations of motion for planar
pendulums of increasing numbers of successive links, using two different orienta-
tion formulations. When the angles are referenced to a world frame, each subsequent
link adds far fewer operations to the computational burden.
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FIGURE 3.1: Diagram of a 2D n-
link pendulum, contrasting the ab-
solute (A) and relative (R) an-
gle formulations. The plot com-
pares the number of operations in
the symbolic equations of motion
(EOM) as the number of links in-

creases.

In the remainder of this chapter, we compare the performance of trajectory optimi-
sation problems formulated using relative versus absolute orientation coordinates.
First, we discuss the differences between the approaches we considered and how
they might impact the tractability of the problem. The solving times are tested using
three models, each of which adds a new aspect to the challenge:

1. long serial chains,

2. unscheduled foot-ground contacts, and

3. 3D locomotion.

Finally, a complicated manoeuvre on a high degree-of-freedom system is used to
demonstrate that this seemingly-minor adjustment affects the performance enough
to make or break the successful convergence of demanding problems.

These experiments contribute to the trajectory optimisation literature by showing
that the choice of coordinates is a significant aspect of problem design, and guiding
readers towards approaches that are conducive to fast, reliable solving. While the
examples chosen are specific to legged robotics, the results are relevant to a broad
range of motion planning and optimal control problems.

3.2 Multi-body dynamics

Changing the orientation formulation of a model affects two aspects of the trajec-
tory optimisation problem setup: the equations of motion, and the joint constraints
necessary to restrict the movement of rigid bodies relative to each other.
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FIGURE 3.2: Sparsity of the Hessians of the Coriolis terms for each
link of a planar 4-link pendulum arising from relative and absolute

orientation formulations.

3.2.1 Equations of motion

Using an absolute orientation formulation makes the elements in these matrices eas-
ier for a nonlinear programming (NLP) solver to process in two ways: it simplifies
them - that is, reduces the number of operations required to calculate them (as shown
in Figure 3.1) - and improves their sparsity.

These improvements can be credited to changes in the expressions relating each rigid
body’s coordinates to the world frame. Consider the n-link pendulum in Figure 3.1:
when relative angles are used, the absolute orientation of the nth link must be calcu-
lated by adding the orientations of all previous links. This leads to a Jacobian where
the elements mapping joint angles to translational and rotational degrees of free-
dom depend on all preceding joint angles. This causes the equations of motion and
contact equations to have many more non-zero partial derivatives, which results in
worse performance for the solver.

When the orientation is already expressed in the world frame, the corresponding
Jacobian elements each depend on only one angular position, and therefore, one
non-zero partial derivative is created where there would otherwise have been n.
As an illustration of how these improvements carry over to the equations of motion,
Figure 3.2 compares the sparsity of each of the Coriolis terms (Cq̇) for a 4-link planar
pendulum.

Contact interactions typically occur at a robot’s extremities - thus, simplifying the
Jacobian also results in a more tractable contact model.

A

JL

R

 

A

Hess(zc)

R

 

FIGURE 3.3: Sparsity patterns for the contact Jacobian JL and Hes-
sian of the contact height zc for the 3D hopper using absolute (A) and

relative (R) orientation formulations.
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Figure 3.3 compares the sparsity patterns for the contact Jacobians, and the Hes-
sians of the foot height for the 3D monoped model described later in this chapter.
Depending on how the model is configured, the Jacobian itself will not necessarily
have fewer non-zero elements, but expressions defining the auxiliary contact vari-
ables will have sparser derivatives. A more favourable Hessian can have a notable
impact on the convergence of an optimal legged locomotion problem, as described
in [55].

3.2.2 Joint constraints

In two dimensions, changing the orientation representation to an absolute frame
does not require any further modification to the broader formulation: it is as sim-
ple as depicted in Figure 3.1. In 3D, however, angle constraints that are implicit in
the relative version must be included explicitly, together with the constraint torques
necessary to facilitate them [56]. These torques are added to the state vector at each
collocation point, and are chosen by the solver as needed to satisfy the constraints.
In the absence of added joint constraints, all connections behave as spherical “ball-
and-socket” joints.

This is no longer a minimal coordinate representation: a body connected to its pre-
decessor by a single-DOF rotary joint requires an additional two coordinates when
its orientation is expressed in world-frame terms. Redundant coordinates managed
by connection constraints and constraint forces are an aspect this approach shares
with the maximal coordinate representations used in areas such as computer graph-
ics [57] - a brief discussion of maximal coordinates is included at the end of this
chapter. Since the translational coordinates are still referenced recursively, the con-
nections between links remain implicit, and there is no need for the positional con-
straints and forces that would be required to keep the links joined in a fully global
formulation.

The canonical form of the manipulator equation, previously described using a joint-
space/minimal coordinate formulation in Subsection 2.1.2, can be modified to in-
clude these constraint torques as follows:

Mq̈ + Cq̇ + G = Bu + JT
L λ + JT

c Tc (3.1)

where Tc is a vector of constraint forces and torques mapped into the equations of
motion via the Jacobian of the angle constraints, Jc. Note that, although we use the
same symbols for the other matrices and vectors because they fulfil the same general
roles, the components in the modified manipulator equation are not the same as
those in Equation 2.3 - they are the generated using absolute referencing, and in
general have different elements and sparsity. Similarly, to preserve familiarity, we
use q to symbolize the vector of coordinates including the absolute angles, not the
joint-space coordinates.

The following examples describe the constraints that must be added for two kinds of
joint, shown in Figure 3.4 and used in models in this chapter and project. A rigorous
treatment with more joint types can be found in [58].
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FIGURE 3.4: Variables associated with two types of joint used in 3D
systems. The additional angular coordinates required in an absolute
formulation are noted in grey, and the constraint torque variables are

shown in red.

Rotary joint

A rotary joint (also known as a hinge or revolute joint) allows to bodies to rotate
about a common line x̂i = x̂j (using the example in Figure 3.4). This type of joint
might be used to remove two degrees of freedom from a knee in a biped. The con-
straints to enforce this are:

x̂i · ŷj = 0 x̂i · ẑj = 0 (3.2)

They are implemented by means of the constraint torques τcφ and τcψ that act on the
restricted degrees of freedom.

Hooke’s joint

A Hooke’s joint (also known as a universal joint) permits two successive rotations
between rigid bodies. A defining result is that lines ẑi and ẑj remain perpendicular.
This type of joint might be used to remove one degree of freedom from a hip in a
quadruped. The constraint to enforce this is calculated using,

ŷi · x̂i = 0 (3.3)

A constraint torque τc is required to make the constraint feasible.

Effect on the number of variables and constraints

The number of decision variables in the problem will be much larger when the
absolute formulation is used for systems that largely consist of single-DOF joints.
Considering positions, velocities and accelerations for each coordinate, the method
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change adds eight variables for each rotary joint: two angles, two velocities, two
accelerations and two constraint torques. It also potentially adds more constraints,
as range-of-motion restrictions that could be imposed with variable bounds in a rel-
ative formulation now require equations to specify. Depending on the NLP solving
algorithm used, this change from variable bounds to constraint equations could af-
fect the way these constraints are handled.

The possible advantage of absolute over relative coordinates hinges on one question:

Will the simplified and more sparse expression of the dynamics offset this many-fold increase
in problem size?

3.3 Experiments

3.3.1 Planar n-link pendulum swing-up

The first test system is a planar n-link pendulum, shown in Figure 3.1. There was no
actuator at the base joint, and the input torque at all other joints was limited to the
product of the weight and length of one link.

Experiment

The model performed a swing-up manoeuvre from rest, minimizing

J =
m

∑
j=2

N

∑
i=1

τ2
ji (3.4)

where τji is the torque acting at the top of the jth link at element i. The swing-up was
specified by having all links start at rest at zero radians, and end at rest at π radians
relative to the inertial frame. A fixed time of 3 seconds discretized into N = 50
elements was allocated for the motion.

Results

The results in Figure 3.5 show that the absolute angle formulation results in sig-
nificantly faster convergence times, and scales better with an increasing number of
links. It was observed that both formulations required around the same number of
algorithm iterations to solve, with each iteration for the absolute angle model com-
pleting much faster. This is further supported by the solver log files, which show an
average of 86% of the solving time for the relative-angle model being spent on NLP
function evaluations, compared to 52% for the absolute-angle model. This mirrors
the observation about the number of operations in the equations of motion, shown
in Figure 3.1.

3.3.2 Planar monoped hopper

The second test system is a planar monoped hopper with a two-link leg, shown in
Figure 3.6A. The three serial links in the system are similar to a 3-link pendulum
with an added unilateral foot-ground contact. This similarity is highlighted so that
any performance differences due to the addition of a contact model can be better
isolated.
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FIGURE 3.6: Models used in each experiment: (A) planar monoped,
(B) spatial monoped, (C) spatial quadruped, with its left side coloured
grey to differentiate from its right. The parameters of the models are

provided in Section 3.6.

Experiment

The model performed a 5 m missing the boat [30] sprint from rest (in which the model
must traverse a distance as fast as possible, with no other restrictions on the final
state), minimizing actuator effort according to

J =
N

∑
i=1

(
τ2

1i + τ2
2i
)
+ P0P, (3.5)

where τ1i and τ2i are the input joint torques at the ith element of the hip and knee
respectively, and P0P represents the scaled sum of contact penalties, described in
Subsection 2.2.1. A total time of T = 2 s, discretized into N = 100 elements, was
allocated to perform the manoeuvre. The initial and final poses were not specified
beyond the requirement that it start stationary at x = 0 m and finish with x = 5 m.

Results

The solving times for each angle configuration are shown in Figure 3.7. Again, the
absolute formulation performs better, but the more interesting aspect is how much
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FIGURE 3.7: Solving time for planar and spatial monoped models.
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spectively.

better: compared to the relatively minor difference in the case of similarly-sized
pendulum models, the improvement is greater. This indicates that the contact con-
straints specifically are made more tractable by the change. As with the pendulum,
a smaller portion of the solving time was spent on NLP function evaluations for
the absolute-angle model: it used an average of 20%, while the relative-angle model
used 46%.

3.3.3 3D monoped hopper

The third test is of a 3D monoped hopper, shown in Figure 3.6B. It is similar to the
planar model with an additional input torque at the hip for abduction. Put another
way, a Hooke’s joint was used for the hip while a rotary joint was used for the knee.
The floating base body of the hopper is exactly the same for both formulations: qb =
[x y z φ θ ψ]T where φ, θ and ψ are the roll, pitch and yaw in the 3D rotation Euler-
321 [42] and (x, y, z) is the absolute position in space.

The approaches differ significantly for the leg, however. The absolute angle model
was constrained using the equations described in Subsection 3.2.2. This resulted in 6
angles in the leg’s state vector, along with the definition of three additional constraint
forces. Each link is separated from the inertial frame by three successive rotations.

In contrast, the top link in the relative-coordinate model was expressed as two ro-
tations from the base, while the bottom link was a single further rotation from the
top link. This means that the position of the foot in this relatively simple model is
separated from the inertial frame by six successive rotations - three for the body, two
at the hip and one at the knee.

Experiment

The hopper was made to find a minimum-effort periodic gait with an average veloc-
ity of 5 m s−1. Periodicity was enforced by constraints specifying that the initial and
final position and velocity values were equal, except for the x-position. The initial
and final states were not specified otherwise. T = 7 s were allocated for the stride,
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discretized into N = 30 elements. The cost function was the same as for the planar
monoped and the implicit Euler method was used in the pre-solve stage.

Results

The results in Figure 3.7 show that the absolute angle formulation converges signifi-
cantly faster, often finding minimum-effort gaits in under 3 minutes. As in previous
tests, 65% of the solve time spent on NLP function evaluations for the absolute-angle
model was significantly less than the 83% spent by the relative-angle one.

3.3.4 3D quadruped

Besides the ability to find trajectories that minimize some cost, in many applications,
simply the ability to find trajectories at all is what makes optimisation such a useful
tool. By solving the forward and reverse kinematics problems simultaneously, it
allows feasible motions to be simulated when neither the actions nor the forces re-
quired to drive them are known beforehand. This is especially valuable when the
motions-of-interest are dangerous or difficult to coax out of human or animal sub-
jects.

One such example is dynamic quadrupedal turning. Several aspects make it an es-
pecially challenging trajectory optimisation problem:

• It cannot be reduced to a single plane of motion, so a 3D model with many
degrees of freedom is required.

• The optimal foot contact order is not known a priori.

• It potentially requires a time horizon equivalent to several gait cycles.

Previously, attempts were made to generate this motion using a model with a rela-
tive angle configuration, but it could not successfully converge even when allowed
12 hours to solve. Here, we demonstrate that the changes described in this chapter
have made it possible to find a trajectory for a 3D quadruped performing a dynamic
60 degree turn with an unscheduled contact order.

Each leg of the quadruped contains the same degrees of freedom as the monoped
leg. The body consists of four links connected by Hooke’s joints (two for the spine,
and two for the tail) modelled in the same way as the legs.

Experiment

Since the relative-angle model was not able to solve the turn in a reasonable time,
we selected a simple dropping motion to provide a performance comparison and
to show that both can converge. For this task, the initial state of the model is set
to rest in a fixed position a short distance above the ground, while the final state
is unspecified. The cost function was the same contact penalty as the 3D monoped
hopper, for all four legs. The relative-angle quadruped converged in an average of
1240 seconds, while the absolute-angle quadruped took an average of 47 seconds.
There was little variance in the solve time for both.

The quadruped turn proof-of-concept was solved in two stages: first, a straight-line
N = 50 element, 8 m s−1 periodic gallop was found using the same weighted contact
penalty with minimum torque effort cost as was used for the 3D monoped.
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FIGURE 3.8: Key-frames of a 3D quadruped performing a dynamic
60◦ turn to its left. The final stance on the right side at t = T was
constrained to be the same as the initial stance at t = 0, but rotated by

60 degrees about the vertical axis.

Next, the turn: the position and velocity data of a point sampled from the periodic
gait were used to fix the initial and final points, with the final position corresponding
to a 60 degree yaw rotation of the initial orientation. The final (x, y)-position was
unspecified as the amount of space required to perform the turn was not known. An
approximate version of the turn, created by concatenating 3 constant-speed gallops
(for a total of N = 150) and interpolating the rotation linearly over the course of the
trajectory, was used as an initial seed for the second stage. Random noise was added
and several such seeds were tried to reduce the chances of optimizing into a poor
local minimum, and the same cost function was used.

Results

The periodic gait for the absolute-referenced quadruped reliably converged in under
30 minutes, while the rapid turn converges in one to three hours (depending on the
initial seed). An image of key-frames from an optimal solution can be found in
Figure 3.8. A video can be on the IEEE Xplore website.

3.3.5 Summary

The results for all models and configurations are summarized in Table 3.1. It shows
that the absolute-angle formulation allows trajectories of equivalent quality to be
generated in less time.

3.4 Discussion

3.4.1 Build time

Table 3.2 gives the build time for each of the models. This is the time required to
generate the symbolic equations and construct the optimisation problem as an object
that can be passed to the solver.

For the 3D models, simplifying the symbolic EOM using the simplify and trigsimp

functions included in SymPy was found to improve performance significantly. This

https://ieeexplore.ieee.org/abstract/document/9134729/media
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TABLE 3.1: Average solve time and cost of all experiments. The 3D
quadruped’s cost for the drop test was purely comprised of the con-

tact penalty, which is why it could be zero.

Time [s] Cost

Absolute Relative Absolute Relative

pend. 2 0.437 0.441 1549 1247
pend. 4 6.31 37.8 1788 1504
pend. 6 16.5 194 1288 1213
pend. 8 40.7 1066 1314 1223
mono. 2D 125 500 2.25 2.21
mono. 3D 120 401 3.23 4.74
quad. 3D 1240 47 0 0

TABLE 3.2: Average build time for all experiments.

Absolute [s] Relative [s]

pend. 2 0.620 1.00
pend. 4 2.61 7.94
pend. 6 3.09 23.5
pend. 8 4.73 78.4
mono. 2D 3.93 1.00
mono. 3D 369 5913
quad. 3D 3360 23790

can be an extremely time-consuming process, however, which accounts for the large
increase in the stated build times for the 3D monoped over its 2D counterpart. With-
out simplification, the 3D monoped can be built in 140 seconds for the absolute-angle
model or 155 seconds for the relative-angle model.

For the quadruped, the relative-angle model could not be fully simplified within
12 hours, despite simplifying the equations in parallel on a 16-core computer. The
stated build time for the model corresponds to a version where all terms in the EOM
were simplified except the Coriolis term, which would have pushed the build time
far beyond 12 hours.

3.4.2 Maximal coordinates

If the idea that simpler equations leads to better solver performance is taken to its
logical conclusion, the next step would be to try a maximal coordinate [57] formula-
tion: representing each 3D body as an individual 6-DOF system (with 3-DOF for 2D
bodies) referenced to the world frame, connected by constraint forces included in the
state variable at each collocation point. This results in extremely simple equations of
motion, though many more variables and constraints are required to implement the
connections.

As an experiment, the same planar pendulum test was repeated with this configu-
ration but the results were not promising: the maximal model required much longer
times to solve than either the relative or absolute angle coordinate options, and was
far less robust, often failing to solve altogether. Further research is required to see
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whether the maximal formulation is beneficial in other cases, and whether there are
modifications that can be made to improve its performance.

3.4.3 Accuracy

There is no positional drift due to explicit enforcement of the system’s geometry at
the positional level. These constraints can be removed, at the cost of accuracy for
longer time-horizon manoeuvres where incremental errors may become significant.

3.4.4 Limitations of the study

Only the IPOPT algorithm was considered in this study. It is indeed possible that the
difference in performance between the two configurations might not be as notable
for a different solver. The pendulum swing-up comparison was repeated for 4-link
pendulums across a range of available linear solvers for IPOPT: MUMPS, MA57,
MA77, MA86 and MA97 [51]. Although there were differences in the overall per-
formance, the relative performance between the configurations did not significantly
change.

3.5 Conclusion

Trajectory optimisation is a useful tool, but its major drawback is its potentially slow
convergence times for large multi-body systems. Methods to decrease the time until
convergence often sacrifice accuracy, which may invalidate the generated trajecto-
ries if they differ too much from reality. Here, we have shown how a minor mod-
elling change - writing the orientation of every rigid body as a rotation from the
inertial frame, instead of as a relative rotation - more efficiently deals with the com-
plex Coriolis terms that arise from long serial changes. This formulation opens up
the possibility of applying trajectory optimisation to new, large, high-speed models
in both two and three dimensions.

This answers the research question, can the solve speed of trajectory optimisation applied
to complex models be sped up without sacrificing accuracy for dynamic manoeuvres?

3.6 Parameters

3.6.1 Pendulum

Each link of the pendulum is modelled as a infinitesimally thin rod with unit mass
and unit length.

3.6.2 Monopeds

The 2D monoped has a body segment of mass mb = 5 kg and length lb = 1 m. Both
leg segments have mass ml = 1 kg and length ll = 0.5 m. All segments are assumed
to be thin rods.

The parameters of the 3D monoped are the same, but the body is modelled as a cube
with a side length sb = 0.4 m, and the leg mass is reduced to ml = 0.5 kg.
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TABLE 3.3: Parameters for each link in the 3D quadruped model.

mass [kg] length [m] radius [m]

f r1, f l1 0.171 0.254 0.012
f r2, f l2 0.068 0.247 0.005
hr1, hl1 0.210 0.281 0.010
hr2, hl2 0.160 0.287 0.011

t1 0.400 0.380 0.005
t2 0.200 0.380 0.005

b1, b2 13.00 0.310 0.080

3.6.3 Quadruped

The parameters of the 3D quadruped share the subscripts associated with the coor-
dinates shown in Figure 3.6. All links are modelled as cylinders.

The values of the parameters are provided in Table 3.3.
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Chapter 4

The physical_education Software
Library

A software library for trajectory optimisation of legged animals and robots was de-
veloped in parallel with the contributions outlined in Chapters 3, 5 and 6. This chap-
ter describes the features, code layout and general function of the library, named
physical_education. Basic knowledge of the Python programming language is as-
sumed.

4.1 Introduction

physical_education is a software library which can be used to model 3D systems,
derive their dynamics, convert the equations into an optimisation problem, specify
a task, solve it and then understand the results. Its source code is freely available
online at https://github.com/alknemeyer/physical_education.

The library can be seen as a wrapper around a few powerful software packages:

1. SymPy is used to symbolically model the system and derive the equations of
motion. Importantly, calculating Jacobians, Hessians and time derivatives is
made trivial.

2. Next, the symbolic equations are converted to Pyomo expressions and then
constraints and objective values. Other constraints are added without the
use of SymPy (such as collocation and ground reaction forces) using Pyomo’s
simple symbolic maths capabilities. Following this, problem is written to an
AMPL .dat file [59].

3. IPOPT is used to solve the optimisation problem.

4. The results are then read by Pyomo and converted into Numpy arrays. Simple
statistics can be calculated.

5. Finally, the data is plotted and animated by matplotlib.

physical_education (typically aliased as pe) facilitates all of these steps, and auto-
mates much of what would typically be lines of copy-pasted Matlab code. When
modelling a system, the library makes use of the modelling change described in
Chapter 3 to simplify system dynamics.

https://github.com/alknemeyer/physical_education
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4.2 Code example

In the following example, the 3D monoped shown in Figure 3.6B is modelled, a
task is solved using trajectory optimisation, and the results are visualised. This is
intended to showcase typical usage of the library.

To start, import the library and alias it to pe.

import physical_education as pe

Create the “base” link of the system, which defines xbase, ybase and zbase symbols for
its translational position. Link3D models a rigid cylinder. Given a mass, length and
radius, quantities such moments of inertia are calculated automatically.

Euler-321 is used for angle orientation by default, but the library does not assume
this and other rotation orders can be used. Only task-specific code written by the
user is affected by this choice.

base = pe.links.Link3D(

"base", "+x", base=True ,

mass=5., radius=0.4, length=0.4,

)

The second and third link are thought of as starting at start_I in inertial coordinates
(typically the top, middle or bottom of another link), and continuing along the x,
y or z axes in a positive or negative direction. This is a conceptual model which
maps well to how models are typically made from diagrams, but does not restrict
the bodies to point along those axes.

upper = pe.links.Link3D(

"upper", "-z", start_I=base.Pb_I ,

mass=.6, radius=0.01 , length=0.25 ,

)

lower = pe.links.Link3D(

"lower", "-z", start_I=upper.bottom_I ,

mass=.4, radius=0.01 , length=0.25 ,

)

We then add relationships between links. The base has two degrees of freedom with
respect to the thigh, like a human’s hip. The thigh has one degree of freedom with
respect to the calf, like a human’s knee. Both connections are fully actuated by input
torques, and have motor models defined by stall torque bounds and a no load speed.

base.add_hookes_joint(upper , about="xy")

pe.motor.add_torque(

base , upper , about="xy",

torque_bounds=(-2., 2.), no_load_speed=20,

)

upper.add_revolute_joint(lower , about="y")

pe.motor.add_torque(

upper , lower , about="y",

torque_bounds=(-2., 2.), no_load_speed=20,

)

Next, we add a foot with an 8-sided polygon and friction coefficient µ = 1. It is
termed “foot” because it models contact with a flat surface defined by z = 0, and is
not a general model for contact with an environment.
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pe.foot.add_foot(lower , at="bottom",

nsides=8, friction_coeff=1.)

The final step in the modelling phase is to combine the links into a robot named "3D
monoped". This also calculates the equations of motion of the robot symbolically
before converting the expressions into a regular Python function, which will later be
used by Pyomo. The usage of simp_func results in the dynamics and intermediate
vectors/matrices being simplified in parallel, using 8 cores of the computer and a
simplification function appropriate for the types of terms we expect in mechanical
systems.

robot = pe.system.System3D(

"3D monoped",

[base , upper , lower],

)

robot.calc_eom(

simp_func = lambda x: pe.utils.parsimp(x, nprocs=8),

)

A terse but not incomprehensible summary of the model can be displayed. It shows
the overall structure of the model, as well as the values of some important parame-
ters. An example for this model – reformatted slightly to fit the narrow margins of
this document – is shown below.

>>> print(robot)

System3D(name="3D monoped", [

Link3D(name="base", mass=5.0kg , length=0.4m, radius=0.4m , nodes=[

Motor3D(name="base_upper_torque", torque_bounds=(-2.0, 2.0))

TorqueSpeedLimit(torque_bounds=(-2.0, 2.0), no_load_speed=20 ,

axes=['x', 'y']))

]),

Link3D(name="upper", mass=0.6kg , length=0.25m , radius=0.01m , nodes=[

Motor3D(name="upper_lower_torque", torque_bounds=(-2.0, 2.0))

TorqueSpeedLimit(torque_bounds=(-2.0, 2.0), no_load_speed=20 ,

axes=['y']))

]),

Link3D(name="lower", mass=0.4kg , length=0.25m , radius=0.01m , nodes=[

Foot3D(name="lower_foot", nsides=8, friction_coeff=1.0)

]),

])

Next, we create a Pyomo model. We will discretize the problem into N = 50 finite
elements, use Implicit Euler for integration, and give a base total time of 1 s whilst
allowing individual finite elements to vary by ±20 %.

robot.make_pyomo_model(

nfe=50 , collocation="implicit_euler",

total_time=1.0, vary_timestep_within=(0.8, 1.2),

)

Let us start with a simple drop test. We will have to write some code, as the intention
is that this library gives you the tools and example code to complete a task. It does
not have all tasks built in - that’s what the user’s research is about. The library does
not do too much automatically, as implicit constraints might cause confusion when
attempting new tasks which weren’t anticipated at the time of writing this library.
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The initialisation and variable fixing code is commented line by line, and is standard
usage of Pyomo objects.

initial_height = 3.0 # meters

nfe = len(robot.m.fe)

ncp = len(robot.m.cp)

body = robot["base"]

# start at the origin

body["q"][1, ncp , "x"].fix(0)

body["q"][1, ncp , "y"].fix(0)

body["q"][1, ncp , "z"].fix(initial_height)

# fix initial angle

for link in robot.links:

for ang in ("phi", "theta", "psi"):

link["q"][1, ncp , ang].fix(0)

# start stationary

for link in robot.links:

for q in link.pyomo_sets["q_set"]:

link["dq"][1, ncp , q].fix(0)

# initialize to the y plane

for link in robot.links:

for ang in ("phi", "theta", "psi"):

link["q"][:, :, ang].value = 0

# knee slightly bent at the end

ang = 0.01

upper["q"][nfe , ncp , "theta"].setlb(ang)

lower["q"][nfe , ncp , "theta"].setub(-ang)

# but not properly fallen over

body["q"][nfe , ncp , "z"].setlb(0.2)

We will set the objective to the foot penalty and input torque.

from pyomo.environ import Objective

pen_cost = pe.foot.feet_penalty(robot)

torque_cost = pe.motor.torque_squared_penalty(robot)

robot.m.cost = Objective(expr=1000*pen_cost + torque_cost)

Finally, solve the problem! This assumes you have IPOPT installed, along with linear
solver HSL MA86. The default_solver function uses a set of “reasonable defaults”
for trajectory optimisation of large mechanical systems, but they can easily be mod-
ified. Any commands passed to the function are sent via Pyomo to IPOPT.

We will allow IPOPT 10 minutes to solve the problem, and use the L-BGFS algorithm
(specified by "limited-memory") which tends to be much faster for large models.

pe.utils.set_ipopt_path("~/ CoinIpopt/build/bin/ipopt")

pe.utils.default_solver(

max_mins=10 , solver="ma86",

OF_hessian_approximation="limited -memory",

).solve(robot.m, tee=True)



Chapter 4. The physical_education Software Library 38

Once the problem has been solved or time limit reached, we must check the final
penalty value of the robot. This issues a warning if the contact penalty is not near
zero, and displays the value of any other expressions in the objective.

robot.post_solve({"penalty": pen_cost , "torque -squared": torque_cost})

# ==> which displays text like ,

Total cost: 0.5045988455611943

-- penalty: 1.6931724474937957e-07

-- torque: 0.5044295283164449

Plotting all values in the robot (q, q̇, Tc, and so on) for debugging and analysing
purposes is done with one command. Figures 4.1, 4.2 and 4.3 show three of the plots
generated for this model.

robot.plot()
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FIGURE 4.1: Plot of time-step length vs finite element, for the example
monoped hopper.
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FIGURE 4.2: Plot of the state q in the body vs finite element, for the
example monoped hopper.
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FIGURE 4.3: Plot of the torque input in the knee vs finite element, for
the foot in the example monoped hopper.

Individual quantities can be plotted as well. In the code below, we plot the quantities
related to the foot: forces, height and penalty values. Figure 4.4 shows a single plot
generated by a Foot3D.plot() command.

foot = lower.nodes["lower_foot"]

foot.plot()
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FIGURE 4.4: Plot of foot height and vertical ground reaction forces vs
finite element, for the foot in the example monoped hopper.

Finally, we animate the result at 1/3 speed, and set the camera to view along an
elevation of -120° and an azimuth of 35°:

robot.animate(view_along=(35 , -120), camera=(0, 0, 1),

lim=1, t_scale=3)

We can create another animation, this time viewing along the X-axis while making
the camera track a link named "base". The animation function shows one frame
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every finite element by default, but one can specify that interpolation can be used to
get a constant time step by entering a value for dt.
robot.animate(view_along="x", track="base", dt=0.01)

For documents such as this, key-frames of the animation can be shown as a PDF
instead. The calling interface is similar to robot.animate(...).
robot.plot_keyframes(

keyframes=[1, 20, 25, 50],

view_along=(35, -120),

lims=[[-1, 1], [-1, 1], [0, 2]],

save_to='monoped -keyframes.pdf',

)
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FIGURE 4.5: Key-frames of the monoped landing from a drop. The
monoped is animated as a set of lines, and the contact force is shown

as a red vector.

This example is intended to show the tedious or complex work in trajectory opti-
misation is automated and otherwise abstracted away, while the task-specific and
interesting work is still present. The aim is to find a balance between doing enough
to be useful, but not so much that bugs creep in because each command implicitly
does too much.

4.3 General code layout

The library is spread over a number of files, which are documented as follows in
roughly the order that they might be used:



Chapter 4. The physical_education Software Library 41

1. system.py: defines System3D, which handles functionality related to the model
as a whole (such as the derivation of dynamics) and holds references to the
various components of a model (such as links, feet, and so on).

2. links.py: defines Link3D, used to model a rigid cylinder and contain refer-
ences to various “Nodes” (explained in Subsection 4.4.2).

3. motor.py, foot.py, drag.py, spring.py, damper.py: each file defines a Node

class (Motor3D, Foot3D, Drag3D, TorqueSpring3D, TorqueDamper3D) along with
relevant utilities.

4. visual.py: code for textual logging, plotting and animation.

5. collocation.py: implementations of Explicit Euler, Implicit Euler and 2- and
3-point Radau collocation. They are implemented in a way which allows users
to add more collocation methods without having to modify the library itself.

6. init_tools.py: functions which aid in initialisation for common tasks, such
as sin_around_touchdown(...), which initialises a leg angle to be sinusoidal
around a touchdown element.

7. sym_def.py: two functions which assist in the definition of symbolic variables
and their derivatives, optionally using LATEX.

8. constrain.py: utilities for tasks such as periodicity of states and straight legs
on touchdown.

9. variable_list.py: defines VariableList, a class which makes it easier to get
the state of the system at a given finite element and collocation point. This is
useful when adding constraints.

10. template.py: defines the Node Protocol, explained in Subsection 4.4.2.

11. utils.py: contains utilities which do not fit in any other file, are not long
enough to warrant their own file, or simply are awaiting re-factoring into an-
other class.

12. analysis.py: observe power values, make aggregates, and so on.

13. base.py: create a class which simple forces (such as springs) can inherit from
to reduce boilerplate code.

4.4 Features and details of operation

4.4.1 Automatic derivation of dynamics

After the links are created and added to a list in a system, System3D.calc_eom() is
called. The method gathers the following parts of each link:

1. the state (q, dq and ddq),

2. the translational position in inertial coordinates (Pb_I),

3. the rotation matrix from body to inertial coordinates (Rb_I),

4. the symbol for the mass (mass_sym), and

5. the inertia matrix (inertia).
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These are used to derive the kinetic and potential energy of the system (Ek and Ep

respectively) before calculating the M, C and G terms of the manipulator equation.

The system then calls Link3D.calc_eom(q, dq, ddq) on each link with the system
state as arguments. The force input mapping Q is returned, which models input
torques, constraint forces, contact forces, and so on.

All forces are scaled by an appropriate amount (the body weight of the model by de-
fault, but the user can specify any value) which provides desirable numerical prop-
erties for the optimisation stage.

The terms of the manipulator equation are then combined to form the symbolic dy-
namics of the system, which are converted into a Python function named eom_f.

4.4.2 Nodes

The Node interface ensures that each new component (spring force, drag, and so on)
can be implemented in its own file, without necessarily modifying the source code
of the library. A class is said to satisfy the interface if it has a name attribute of type
str, and three dictionaries (pyomo_params, pyomo_sets, pyomo_vars) mapping from
str values to Pyomo Param, Set and Var objects respectively. It must also implement
the following methods:

1. calc_eom(...): perform calculations for the equations of motion, and return
a Q force vector.

2. add_vars_to_pyomo_model(...): add variables, parameters and sets to the Py-
omo model.

3. add_equations_to_pyomo_model(...): add equations to the Pyomo model.

4. get_sympy_vars(...): get the Sympy variables of the object.

5. get_pyomo_vars(...): get the Pyomo variables of the object at a specific finite
element and collocation point. These must correspond to the Sympy variables
above.

6. save_data_to_dict(...): save the state of the object (including data from a
solved trajectory) to a dictionary.

7. init_from_dict_one_point(...): load the state of the object from a dictio-
nary at a specific finite element and collocation point. This can be called mul-
tiple times to fully reload a previously saved state.

Each has specific arguments and return values, which are documented in greater
detail in the Node class itself.

4.4.3 Plotting and animation

Each Node should implement a plot() method which can be called without argu-
ments to produce a diagnostic plot of the variables or equations contained by the
node. The method can contain optional arguments which are specified by the user
when the node is plotted on its own.

For example, given a system with a node A, calling system.plot() will result in A.

plot() being called. However, A is free to implement an optional colour flag, which
can be specified when calling A.plot(colour="gray") directly.
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In addition, nodes should implement three animation methods. The first method,
animation_setup(...), gives the node an opportunity to get data, interpolate, make
calculations and so on before creating any animation objects.

Next, animation_update(...) is called multiple times to either update a plot object
or delete it and create a new one. Finally, the cleanup_animation(...) method is
called to allow the object to optionally clean up any remaining plot objects which
can otherwise cause issues with matplotlib.

4.4.4 Type hints

Python type hints, as outlined in PEP 484, have been used extensively in the library.
When used in combination with a static type checking tool like MyPy or Pylance,
they result in fewer bugs and clearer documentation, among other benefits. For
example, in the function below, it is immediately clear that the constraint to be re-
moved is specified by a str type, and not an instance of a Pyomo constraint.

def remove_constraint_if_exists(model: ConcreteModel , constraint: str):

...

Automated checks like these are important for research, where changing assump-
tions and research direction often result in large code changes, which heighten the
chance of introducing errors into a program.

It is worth mentioning that a static type checker can find type-related bugs in a mat-
ter of seconds. The alternative – verifying code accuracy by running the program –
can take prohibitively long if working with a large, complex model.

4.4.5 “Reasonable” defaults

IPOPT has many default values, and some of them are not suitable for the types of
problems analysed by this library. Where possible, appropriate default values are
used. An example is L-BFGS.

4.4.6 General code

The library provides the ability to write code which is not specific to any particular
model, and can be used by others. For instance, the work penalty code can be used
for all models.

4.4.7 Dummy and slack variables

Dummy and slack variables are automatically added and managed where appro-
priate. This can result in significant performance gains due to improved numerical
conditioning of the problem.

4.5 Discussion

The software library has been vital to this project. The 3D monoped modelled in
Chapter 3 was initially done so without the use of the library. Later, it was modelled
again using the library. The experience of developing each model was totally differ-
ent: physical_education made it faster and easier to model the system, successfully

https://www.python.org/dev/peps/pep-0484/
http://mypy-lang.org/
https://marketplace.visualstudio.com/items?itemName=ms-python.vscode-pylance
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optimise it, visualise the trajectory and analyse the results. What used to take days,
took less than an hour.

It is of course difficult to account for growing experience: the model created with-
out the use of the library was done at a time when I less experienced with Pyomo,
Sympy, dynamics and optimisation.
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Chapter 5

Modelling the Cheetah

In the following chapter, a spatial model of a cheetah is developed which can be
used to make predictions about high-speed manoeuvres, such as turns. Existing data
and literature is used where possible, both to set specific parameters (such as body
proportions and mass distributions) and to set tasks which can be used to estimate
other limits (such as stride frequency).

It’s worth bearing in mind that there is variety within and between cheetah popu-
lations which depends on factors such as diet, geography, random genetic variance,
and so on. As a result, there is no single “correct” model of a cheetah. In addition,
the literature is relatively sparse, with no complete collection of studies on a single
coalition of cheetahs. Instead, different studies investigate cheetahs from different
areas, leading to some level of uncertainty when these studies are combined to cre-
ate a single cheetah model. This sets a limit on how accurate the model can possibly
be without significantly more field work, which must be understood when reading
the remainder of this chapter, as a system with (for example) a highly representative
tail model is less impressive when the rest of the model is knowingly sub par.

5.1 Structure of the model

A relatively large and complex model of a cheetah was iteratively designed and
implemented. It involves much of what I hypothesize to be important to the accurate
simulation of highly dynamic cheetah manoeuvres, including:

• no simplifications to the dynamics (such as the removal of Centrifugal terms in
the dynamics [35]) enabled by the performance improvements from Chapter 3,

• a two-segment actuated spine,

• a two-segment actuated tail,

• three-segment hind legs,

• a contact model with with slip, described in 2.2.1,

• (optionally) higher order collocation, described in 2.2.2,

• realistic limits on the maximum power and rotation rate for the actuators,

• lengths and masses taken from measurements of real cheetahs,

• a simple drag model applied to the tail and body, and

• spring and damper forces in the spine.
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FIGURE 5.1: Diagram of the cheetah model.

These features have been added iteratively and as needed, instead of being planned
in an initial design stage and implemented all at once. This helped when debugging
implementations, and isolated any solve time and model performance changes due
to individual features.

5.1.1 The drag model

A simple model of aerodynamic drag was implemented and added to the model.
Drag forces models generally have force proportional to the square of velocity (Equa-
tion 2.9) and cheetahs move at high speeds, increasing the odds that drag will have
a non-negligible effect on the whole-body dynamics. I expected drag on the tail to
play a role during high speed turns and accelerations, and drag on the head and
body to partly counteract forward acceleration forces from the feet.

The trajectory optimisation implementation was not as simple as typing out Equa-
tion 2.9 – the first issue was due to the solution tolerance allowed to IPOPT, which
was set to ε = 10−6. This means that a constraint a > 0 can result in a = -1e-6.
When the square root of a is taken to normalize a vector (b = sqrt(a)), a domain
error can arise. This was fixed by adding a small offset +ε to expressions before
taking their square root, such as the norm function for vectors:

norm∗(a) =
√

aTa + 10−6

A star is used to differentiate it from the typical norm used for vectors.

Among other things, this function was used to define the following function to find
the angle between two vectors a and b:
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anglebetween(a, b) = arccos
(

aTb/norm∗(a)/norm∗(b)
)

The anglebetween function was used to get the angle between the translational ve-
locity (ṙ = (x, y, z)) and the vector normal to the surface causing the drag (sn):

γ = anglebetween (sn, ṙ)

A depiction of the relationship between γ, ṙ and the orientation of the cylinder can
be seen in Figure 5.2.

FIGURE 5.2: Diagram showing how drag on the side of a cylinder
was modelled. For drag on the top and bottom of the cylinder, γ was
measured relative to z1, the vector normal to the cylinder top’s area.

Next, the magnitude of the drag force could be calculated. For the side of the cylin-
der, this was:

|Fdrag| =
1
2

Cd ρ A sin (γ)2 ṙT ṙ (5.1)

For the top of the cylinder, this was:

|Fdrag| =
1
2

Cd ρ A (1− sin (γ))2 ṙT ṙ

In both of these equations, the constants described in Table 5.1 were used.

Cd Drag coefficient 0.82 for a long cylinder, 1.1 for cables
ρ Density of air 1.184 kg m−3 at S.T.P.
A Area normal to drag vector πr2 for head, l · 2r for tail

TABLE 5.1: Table of constants for the drag model.

Finally, the drag force vector was calculated as follows:

Fdrag = −|Fdrag|
ṙ

norm*(ṙ)
(5.2)
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FIGURE 5.3: Image of young chee-
tahs with curled tails. When
sprinting, their tails are often quite
straight, as shown in Figures 1.1

and 1.2.
Source: Steve Wilson - Own work,

CC BY 2.0

5.1.2 Modelling the tail

Real animal tails can bend almost continuously, and have variety in their width and
mass distribution. They are usually thicker at the base and thinner at the tip, repre-
senting a cone of sorts [13]. An example of this can be seen in Figure 5.3. Research
into bio-inspired robotic tails for quadrupeds indicates that simpler tail models are
dynamically equivalent to more complex models for bending motions, but fall short
for rolling motions [60].

Our model’s tail is composed of two rigid segments with a single bending point in
between. Each link is assumed to have a uniform distribution of fur and mass. There
are two degrees of freedom and two input torques each at the base and centre of the
tail. Drag forces (which act continuously across the surface of the tail) are approxi-
mated as acting at the centre of each segment, perpendicular to each segment’s long
axis.

5.1.3 Modelling the spine

Similarly, real cheetahs have an active spines which bend at each vertebra, and their
chest’s mass density is decidedly non-constant. Our model simplifies this to two
segments, each with an appropriate but constant mass, length and radius. The joint
between the two segments has three degrees of freedom (roll, pitch and yaw) and
three corresponding input torques. An illustration of this is shown in Figure 5.4.

The joint also has a torque spring and damper acting in parallel at each degree of
freedom. These are intended to approximate taught tendons in the cheetahs back.

5.1.4 Modelling the legs

The model uses three segments for the hind legs (a thigh, calf and hock), and two
segments for the front legs: a thigh, and a calf combined with a hock. The front
knees bend forward, while the hind knees bend backwards.

Other models use prismatic models of legs with the aim of capturing important dy-
namics whilst avoiding long serial chains of rigid bodies. However, I do not know
whether optimal (or even just common) trajectories for prismatic legs might be sig-
nificantly different to multi-segment legs, calling torque limit estimations (and other
predictions) into question.

https://commons.wikimedia.org/wiki/File:Cheetah_Twins_Playing_(10817164135).jpg
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FIGURE 5.4: Image of a cheetah with a bent spine, to show that the
two-segment simplification is valid.

Source: The Science of a Cheetah’s Speed | National Geographic

FIGURE 5.5: An annotated
image showing the three
main segments in a dog’s

leg. Image from [61].

5.1.5 Significant differences from real cheetah

Whilst work has been done to create a model realistic enough for predictive ma-
noeuvres, there are a number of known shortfalls which will affect the accuracy of
generated trajectories.

Beginning with the structure of the model: the assumed even distribution of mass
within a given rigid body is known to be incorrect. This cannot easily be fixed with-
out more meticulous measurements of real cheetahs, which are currently unavailable
in the literature. It is worth reiterating that there is significant variety within real
cheetah populations – for example, Namibian cheetahs are known to be smaller and
less muscular than many of those from South Africa [4], so precise measurements of
a number of cheetahs won’t necessarily reveal specific and useful parameters in any
case.

Another issue with the structure is that cheetahs have significantly more degrees of
freedom, as mentioned in subsections 5.1.2 and 5.1.3.

Finally, the cheetah model does not have a head, which would affect the dynamics
to some extent. It was assumed that the front portion of the torso can account for it.

https://www.youtube.com/watch?v=icFMTB0Pi0g
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FIGURE 5.6: Image of a cheetah with a partially transparent version
of the model overlaid, intended to highlight similarities and differ-
ences. Each line in the overlay represents a rigid body modelled as a

cylinder.
Source: cheetah.org for image without overlay.

The drag model is also inaccurate for a few reasons – the first is that it is approxi-
mated to act at a single point, while real drag acts continuously across the moving
surface. Another discrepancy is that the surface is approximated as smooth, even
though cheetah fur would likely have a slightly different interaction with moving
air. Other drag effects (such as turbulence from other parts of the body, and wind)
are not modelled at all.

Real cheetahs have three main sections to their legs - a thicker thigh, a thinner calf
and an elongated foot (also known as a hock). The hind legs in the model are repre-
sentative of this, but for fore legs are not.

The spring and damper forces realistically are more accurately modelled in series
with the input torques, as they represent springiness of the tendons connecting mus-
cle tissue to other parts of the body. This interaction was simplified due to time and
computational efficiency constraints.

The friction model assumes that static friction is equal to sliding friction, which is
known to be incorrect. However, developing a more accurate model is beyond the
scope of this project. In addition, the friction of the world outside varies signifi-
cantly due to difficult to model factors such as grass, loose rocks, and other debris.
Similarly, the terrain height is assumed to be constant.

These tie in to another un-modelled phenomenon – uncertainty. Trajectory optimi-
sation models have (in effect, and ignoring local minima) perfect knowledge of the
environment and the future. While methods exist to incorporate uncertainty [62],
they were beyond the scope of this project. It should be acknowledged that research

https://cheetah.org/cheetah-2019/wp-content/uploads/sites/5/2018/04/
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FIGURE 5.7: Diagram showing the muscles and tendons in a human’s
leg. The spring and damping effects are more accurately modelled as
being in series with the input torques, although more accurate models

exist.
Source: Manu5 - CC BY-SA 4.0.

indicates that these uncertainty models can significantly affect the resulting trajecto-
ries found.

Finally, as alluded to in the previous paragraph and discussed in Subsection 1.1.2,
trajectory optimisation for legged robotics is a highly non-convex optimisation prob-
lem. There are, therefore, no guarantees that a globally optimal trajectory can or will
be found for a given problem.

5.2 Parameter identification

Once the structure of the model was established, specific parameters needed to be
found and estimated before manoeuvres could be performed. The following subsec-
tions describe the sources used and experiments performed.

5.2.1 Dimensions and masses

The values of the dimensions and masses used in the model are provided in Ta-
ble 5.2, sourced from the tables in [4]. The fore and hind limb measurements are
based on the model of cheetah 6 from [11, 12].

5.2.2 Tail parameters and drag coefficients

The parameters which determine drag were set using the measurements in [13]. Us-
ing an average tail fur length of 10 mm and average tail diameter (excluding fur) of
31 mm, the effective tail radius (rt) was set to 31

2 + 10 = 25.5 mm = 0.0255 m.

5.2.3 Contact parameters

A friction coefficient of 1.3 is provided in [5]. The authors also estimate an average
stride frequency of 3 Hz, with around 4 Hz as an upper bound and 2 Hz as a lower
bound.

https://commons.wikimedia.org/w/index.php?curid=65278965
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TABLE 5.2: Parameters for each link, modelled as a cylinder, in the
cheetah model. Some parameters have up to three decimal points of
precision; this isn’t meant to imply a high confidence in the estimate
(the estimates are from multiple cheetahs, and do not necessarily rep-
resent any one cheetah with high accuracy). However, rounding the
estimates can only make them worse, so they are stated here as used

in the model.

Mass [kg] Radius [m] Length [m]

Front:
Spine 14. 0.114 0.5
Thigh 0.205 0.012 0.254
Calf 0.0816 0.005 0.247

Back:
Spine 28. 0.0945 0.3
Thigh 0.252 0.01 0.281
Calf 0.12 0.011 0.181

Hock 0.072 0.011 0.135

Tail:
Base 0.4 0.0255 0.38
Tip 0.2 0.0255 0.38

The maximum vertical ground reaction force limit was set to 5 times the body weight
of the cheetah, as estimated in [10].

5.2.4 Actuator angle limits

The relative angle limits of the legs, spine and tail were estimated by analysed videos
of cheetahs sprinting in slow motion. Extremes were mostly observed during rapid
stopping manoeuvres – this was taken to mean that the limits are likely relatively
unimportant during other manoeuvres, which meant that a rough “estimate by eye”
approach wasn’t likely to tarnish other results.

The limits were set to the values shown in Table 5.3.

Joint Relative angle limits [rad]

Spine roll, pitch, yaw [−π/4, π/4]
Tail-body pitch, yaw [−π/3, π/3]
Tail-tail pitch, yaw [−π/2, π/2]

Hip pitch [−π/2, π/2]
Hip abduction [−π/8, π/8]

Front knee pitch [0, π]
Hind knee pitch [−π, 0]

Hock pitch [0, π]

TABLE 5.3: Estimated relative angle limits for the joints in the
quadruped model.
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In order to estimate relative velocity limits, it was noted that the peak angular veloc-
ity of a leg moving through 180° at 3 Hz is,

dtheta = total_angle/2 ∗ stride_frequency ∗ 2 ∗ pi = 1697deg/sec

5.2.5 Power limits

The total theoretical peak power of a cheetah can be estimated using some basic
arithmetic. It was added as a simple and somewhat reliable metric relating to power,
largely as a bootstrapping method to estimate the actual torque limits of the individ-
ual actuators in the model.

The model has a total mass of 44.06 kg. It has been estimated that 50 % of the
body mass is available for actuation, and that cheetahs have a power efficiency of
600 W kg−1 [14]. This results in a peak total power output of,

power = mass ∗ actuation ∗ watts_per_kg = 13, 218W

5.2.6 Actuator torque limits

It is difficult to reconcile the following (opposing) factors: (1) muscles are likely
often pushed close to their limits (as they would contribute unnecessary weight oth-
erwise), but (2) it is not known which manoeuvres result in a given muscle being
pushed to its limit. For example, the subset of muscles functioning at their natural
limits may differ for acceleration, straight line gallops and turns.

I am also unsure about how arbitrary aspects of the optimisation problem and cost
function affect the type of local minima I get. For instance, could be optimal to spike
the model’s input torque far higher than the cheetah would for a moment, with
the benefit of lowering other torques – a “trick” which may not hold true for a real
cheetah.

Bearing this in mind, the following plan was devised and executed:

1. Set all other limits and parameters for the model, as described in the preceding
chapter.

2. Place limits on the actuators which are low enough to be subjectively “reason-
able”, but are never reached during any given manoeuvre.

3. Create a dataset of n manoeuvres, varying the following task parameters:

• average velocity (8 m s−1, 14 m s−1, 20 m s−1),

• cost function (torque squared, work), and

• task (steady-state gallop, turn initiation).

4. For each torque input, take the median of the maximum and minimum 10 data
points. These are the estimates for peak muscle inputs, with outliers excluded.
A plot of this is shown in Figure 5.8.

5. Finally, increase the estimated limits by 20% to account for the cheetah not
necessarily being at its peak in the dataset.
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A more detailed description of the manoeuvre setup and solve strategy is described
in Section 6.1, and will thus not be repeated here.

Bearing this methodology in mind, and the knowingly simplified muscle/tendon/-
motor model, I cannot claim to have estimated the cheetah’s actual muscle limits in
a precise way. However, these are useful limits on the muscles which prevent some
otherwise unnatural or even impossible movements from occurring.

5.3 Conclusion

In this chapter, data from multiple sources was used to create a complex model of
a cheetah. There are known shortcomings with the model, described in Subsec-
tion 5.1.5. There is also work to be done to prove the accuracy of the model.

However, the degree of detail (both in model structure and parameters) is rare, es-
pecially in trajectory optimisation for fast, dynamic maneuovres.

These preliminary results – the creation of a model which can be used to find qual-
itatively realistic manoeuvres and estimate unknown parameters – answer the re-
search question, can a useful and qualitatively realistic model of a cheetah be created when
only some of its parameters have been measured?
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FIGURE 5.8: Input torques in N m for each joint over 21 gallops,
scaled by the weight of the model. One colour is used per actual
torque input – for example, there are two colours for the pitch and
yaw torques in the tail joint. The horizontal lines represent the mean
of the peak 10 torques. The dashed lines represent the right side of

the model, with non-dashed lines being the centre and left side.
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Chapter 6

Manoeuvrability Investigations

In this final contributing chapter, the contributions in Chapter 3 (an orientation mod-
elling change), Chapter 4 (a software library) and Chapter 5 (an accurate cheetah
model) are combined to find trajectories for a number of high-speed dynamic ma-
noeuvres. These showcase the benefits of the earlier contributions, and the power of
trajectory optimisation in general.

It is worth reiterating why these trajectories are the start of something useful:

• As mentioned in Chapter 1, the data could be used to develop simpler mod-
els (templates) which allow researchers to develop a better understanding of
various kinds of movement. One might develop a model which captures the
important dynamics of turn initiation using a tail, by combining two SLIP-legs
with a weighted two-link tail.

• The software could be used to understand the use of tails as a stabilisation
method given uncertainty or environmental noise. The researcher would find
a periodic gallop, fix the model to an (unfavourable) point in its limit cycle, and
then change the constraints to force a turn. The intention would be to simulate
a cheetah chasing prey which suddenly turns when the cheetah didn’t expect
it to. The friction could also be changed at this point, to model loose dirt or
some other surprise.

• Another use case would be to generate paths to be tracked by robots. Boston
Dynamics has already used trajectory optimisation to make robots dance (as
mentioned in this article).

However, the focus of this chapter is the following:

1. Show that rapid manoeuvres can be found using the contributions from this
project.

2. Show that the manoeuvres qualitatively represent movements from real chee-
tahs.

3. The start of a comparison between three variations of the same quadruped
model, in order to quantify the effect of the tail.

This chapter also highlights that trajectory optimisation can be as much an art (based
on hard-to-backup hunches) as it is a science using methods must be proven and
built on top of sturdy foundations.

https://www.youtube.com/watch?v=fn3KWM1kuAw
https://spectrum.ieee.org/automaton/robotics/humanoids/how-boston-dynamics-taught-its-robots-to-dance
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How much noise should a variable be initialised with? What distribution of noise
should be used? These questions may have specific answers, worthy of further re-
search. These questions often cannot be researched without a complete (if not en-
tirely proven) model and methodology to work with – a “Catch 22” situation indeed.

6.1 Finding manoeuvres

In the following subsections, the manoeuvres could (in general) be found at a variety
of speeds, velocities, cost functions, angles, and more. In order to concretely write
about them, this subsection will focus on a single trajectory for each of them. It
should be noted that each problem could be solved despite variations in the set up,
and that, in general, it should not be assumed that the global optimum was found.

In each figure below, the red vectors represent drag and contact forces, and the light
yellow lines depict grass.

6.1.1 Steady-state gallop

I define a “steady-state gallop” as a movement in which the quadruped is periodic
in all states except for its x-position, which increments some amount to result in a
desired average speed (as outlined in Subsection 2.2.4). The gallops happen in a
straight line, and could be found using both rotary and transverse gallops; however,
rotary gallops were found more easily, hinting that they suit the model and speeds
better.

Gallops were used as seeds with great success for many other manoeuvres – in this
sense, they are the simplest but arguably most important trajectory to find.

Problem setup

First, the model was guided by constraining the yaw angle ψ for all links to be within
±10° of ψ0, the angle of the gallop. Each link’s pitch angle θ was initialised to small
random values. The body height z was initialised to 0.55 m (as it was seen to con-
verge to in previous gallops).

A local minimum was often found, wherein the model would arch its back too much
and ultimately not converge, or converge to a poor local minimum. This was fixed
by limiting the pitch of the two segments of the model’s spine to within ±45°.

Other times, the problem would solve slowly due to local minima wherein the body
was extremely close or far from the ground. This error was mitigated by limiting
the body height to the range 0.3 ≤ z ≤ 0.7. These limits weren’t touched during the
final converged trajectory, indicating that they simply served as guides for IPOPT
but didn’t otherwise affect the solution in a negative way.

The initial and final x-position was constrained to specific values (which, along with
a constrained total time, would result in a desired average velocity). It was initialised
to linearly interpolate between those two fixed points. The corresponding velocity
was initialised to a constant value.

The feet were constrained to make and break contact with the ground at specific
times, as mentioned in Subsection 1.1. The legs were constrained to be straight at
the time of touchdown.
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Collocation was done using Implicit Euler and 50 finite elements. More accurate ap-
proaches were tried – 2- and 3-point Radau, and higher number of finite elements –
but the slight improvement in accuracy was not deemed worth the significantly in-
creased solving time, especially as no large claims are being made using this dataset
as-is. In any case, a total manoeuvre time of 0.3 s results in 6 ms per element, which
is significantly higher than the 20 ms per element time often used in dynamics sim-
ulation.

Other constraints which relate to the physical model – such as the 13 kW total power
output constraint calculated in 5.2.5 – were used too.

The model was solved in three stages, using the parameters described in Subsec-
tion 2.2.5:

1. 30 minutes of iteration time with constraints outlined above, and Cost of Trans-
port (plus the scaled sum contact penalties) as the objective.

2. Another 20 minutes of iteration time with the constraints on foot timing and
straight legs removed. This was meant to accommodate for the possibility that
the given footfall timing may not be optimal, despite it being a good initialisa-
tion.

3. Finally, up to 90 minutes of iteration time without the inclusion of CoT in the
objective. This left only the contact penalties, resulting in a much faster solu-
tion which was not found to be significantly different from the solutions found
by leaving in CoT .

Results

Bearing in mind the iteration time caveat mentioned in Subsection 2.2.5, steady-state
gallops could often be found in their entirety in about 40 minutes of real-world time.
Key-frames of an example trajectory can be found in Figure 6.1.

X [m]−1 0 1 2 3 4 5 6

Y [m
]

−1.00−0.75−0.50−0.250.000.250.500.751.00

Z 
[m

]

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

FIGURE 6.1: Key-frames from a converged periodic gallop along the
Y-axis. The average velocity was 18 m s−1.
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As is the case in all experiments which were deemed to have “converged”, all con-
straints were satisfied and the contact penalty was near zero (on the order of 10−9).

6.1.2 Periodic velocity change gallop

For the purposes of this chapter, I define a “periodic velocity change gallop” as a
manoeuvre in which the model is constrained to start and end at points on the limit
cycles of two converged periodic gallop trajectories of different velocities. In this
subsection, I constrain the cheetah to begin at 14 m s−1 and end at 10 m s−1 – a move-
ment that would join two periodic gallops at different velocities. This also meant
that the initial and final stances were in general different, as they are fixed to two
different gallop solutions.

Problem setup

The variables for the first half of the movement were initialised to the data from the
gallop used to fix the initial point. The same was done for the second half of the
movement, using data from the trajectory corresponding to the final point.

The translational position and velocity was linearly interpolated between the initial
and final points to prevent a discontinuous “step” at the half way point. No other
variables were interpolated in this way.

To prevent a local minimum in which the model jumps up (from which the optimi-
sation does not converge), the body height was constrained to be at most 10 % more
than its initial value from the seeding gallops.

A variable time of 0.6 s was discretized into 100 finite elements - a time equal to two
periodic gallops as solved for previously.

Finally, a solve schedule was used that was similar to the one used for the periodic
gallop described previously.

Results

Velocity changes could often be found in less time than was needed for a periodic
gallop. This is likely because the initialisation, despite being quite simple, was also
relatively good. Key-frames of a sample solution can be found in Figure 6.2.
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FIGURE 6.2: Key-frames from a converged periodic gallop velocity
change (14 m s−1 to 10 m s−1) along the Y-axis.
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Variations in the problem setup would often cause the optimisation to not converge,
though. For example, a larger velocity change or less time allowed for the manoeu-
vre could cause it to fail. It is not yet clear whether this is because of the physical
limits of the model, or because of the unsophisticated initialisation procedure.

6.1.3 Constant-rate turn

The constant-rate turn was the first manoeuvre which explicitly involved the full
three dimensions of the model. Previous tasks resulted in smaller non-planar move-
ments due to torques from contact forces, and other effects. The task was defined as
a movement which results in the model turning, but with enforced state periodicity
(accounting for the desired yaw change) and a guide towards a rough constant yaw
rate.

Problem setup

Once again, a periodic gallop was used to initialise the state variables of the problem.
However, ψ (the yaw) was linearly interpolated from 0° to the desired turn angle
and given a small bound to guide turn. For example, given a 60° turn, the yaw at
the half-way point was bound to 0 ≤ ψ ≤ 60 and the yaw near the end was bound
to 30 ≤ ψ ≤ 90. The bounds were intentionally kept quite loose, in case it was
advantageous for the model to orient a itself in a creative way.

The model was also initialised to lean into the turn by incrementing its φ angle.
For example, given a left turn, the model would lower its left shoulder by 30°. The
initialised height of the model was also adjusted to compensate for this.

The initial and final translational velocity were constrained to the same magnitude,
and the (x, y)-position was initialised according to a segment of a circle that would
correspond to the given angle change.

As a guide, the gallop order was fixed for the initial solve, and then unfixed to allow
for adjustment. The footfall timing was based off the data presented in in [63].

Fifty finite elements and 0.3 s were given to perform the manoeuvre. Each element
was allowed to vary within 30 % of its initial value, as specified from the seeding
gallop.

A shorter solving schedule was used: 20 minutes of solving with work cost, followed
by 20 minutes of solving with the contact guide removed. If the contact penalty
remained, up to 90 minutes of solve time was allowed with the work cost removed.

Results

Three key-frames of a sample turn can be found in Figure 6.3.

6.1.4 Turn initiation

Turn initiation, outlined in Subsection 1.1, involves a sudden heading change from
a straight-line movement such as a periodic gallop. The final state of the model is
unspecified – if the cheetah performed this movement while hunting, it’s next stance
would presumably depend on its strategy to catch its (possibly erratically moving)
prey. In order to make the problem approachable, the final state was fixed to a point
on the limit cycle of a constant-rate turn.
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FIGURE 6.3: Key-frames from a converged constant yaw rate turn at
a velocity of 18 m s−1 turn. The black line at z = 0 m represents the

path taken.

It should be noted that there are a particularly large number of possible varieties
for this manoeuvre, depending on the hypothesis of the researcher. It is a highly dy-
namic manoeuvre, possibly involving a decrease in velocity and followed by a lunge
towards the prey. The cheetah may follow the turn with a different gait pattern, and
use its spine and tail in ways that cannot be achieved with our (still relatively simple)
model. It may also transition back into a periodic gallop and continue the chase.

Problem setup

A previously-found constant-rate turn was used initialise the problem, and to fix
the terminating stance of the manoeuvre. The initial stance was fixed to a periodic
gallop, again using previously found data.

Fifty finite elements, spread over a variable initial total time of 0.3 s, were provided
to complete the turn. Each element was allowed to vary within 30 % of its initial
value, as specified by the seeding gallop.

Again, the pitch angle of the spine had to be bounded in the absolute frame, to
prevent poor local minima from causing the optimisation to fail. Similarly, the height
of the body was constrained to remain within 0.2 ≤ z ≤ 0.8, else the model would
“jump” to unreasonable heights before failing to solve. This was considered to be an
issue with the non-linearity of the problem, rather than an efficient but unrealistic
strategy which presented itself as part of some quirk of the model.

Results

The key-frames from a sample turn can be seen in Figure 6.4.

While the problem could be “solved” (constraints satisfied and contact penalty re-
duced to zero) the results were suboptimal. Given a left turn, the model would yaw
the back portion of its torso to the left and the front portion to the right.
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FIGURE 6.4: Key-frames from a converged turn initiation.

6.1.5 Discussion

A number of observations were made based on the manoeuvres found in this chap-
ter. We can speculate why certain behaviours arose, but there was not enough time
to prove our hunches.

Tail positioning

The tail of the cheetah was generally raised or lowered, and seldom horizontal. Real
cheetahs do raise their tails while hunting, but also keep their tails horizontal while
galloping in a straight line. It is not entirely clear why the model has an aversion
to keeping its tail horizontal, and the complexity of the model and optimisation
problem made investigation difficult.

I can speculate why this is the case:

It could be that keeping the tail horizontal requires more energy, as the torque mo-
ment is greatest. Real cheetahs have more complex muscle and tendon distribution,
which could reduce the amount of work required to keep the tail horizontal. This
springiness may not be modelled correctly. Similarly, the simple drag model on the
tail could play a role. Regardless, as input torque is minimized during the manoeu-
vre, the optimiser may find that raising or lowering the tail is beneficial.

The numerical “optimisation landscape” may be complex enough that the tail semi-
randomly is raised in the earlier stages of the solve, and falls into a local minima
wherein the tail cannot be moved into a more optimal position without temporarily
reducing its optimality.

This could be investigated by fixing the tail to be horizontal and comparing results,
or by removing the torque inputs in the tail from the energy penalty in the objective.
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Effect of initialisation

As researchers, we want to model systems using domain knowledge, but often wish
for optimal trajectories to organically “emerge”. For example, if the converged model
moves exactly as initialised, regardless of initialisation, we cannot be sure that there
are not more optimal movements waiting to be discovered. We would only be able
to compare movements we find, which would not necessarily be a useful argument.

It is difficult to quantify the effect of initialisation in these manoeuvrability exper-
iments. I know that the global optimum was generally not found: when made to
perform the exact same task multiple times but with different initialisation, differ-
ent resulting costs would be found. This can be observed in the distribution of final
energy usage, described in Subsection 6.2.2. Anecdotally, any two solutions to the
same task are more likely to be dissimilar than the same.

The model was observed to significantly alter its contact timing, time step length
and overall body stance. However, some behaviours (such as rolling the body into a
turn) emerged only when initialised to do so.

Fixing boundary conditions

There is a need to fix the initial and final positions of a movement to some extent.
This avoids undesirable behaviour which is “optimal” for the given task, such as
falling to the ground to reduce energy costs. However, it is far from clear what these
boundary conditions should be.

For instance, while a gallop may be periodic, there may be lower frequency compo-
nents to movement which repeat themselves over multiple gallops. Gallops may not
even be perfectly periodic.

Likewise, the dynamic nature of turn initiation may result in transient behaviour
which only settles during one of more of the strides that follow.

Boundaries were thus generally fixed for the following four reasons:

1. This behaviour has not been extensively studied, resulting in a lack of literature
to leverage off.

2. Optimisation over a longer stride time takes prohibitively long.

3. Fixing the boundaries values of a trajectory optimisation problem generally
results in improved solve times.

4. If the end of one trajectory is the same as the beginning of another, the data
from those trajectories can be combined into a single manoeuvre for further
research or visualisation purposes.

Spine behaviour

The spine behaviour during turn initiation could not be accounted for. While not
physically impossible or unrealistic (it appears to be a simple result of the law of
conservation of momentum) this “jack knife” movement is not observed in real
cheetahs. This result persisted despite different combinations of constraints being
attempted.

The bending may simply be due to a poor choice of relative angle limits for the joint
in the spine, or because of deficiencies in the model. Cheetahs can bend their spines,
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FIGURE 6.5: Snapshot of a point during turn initiation, showing the
unnatural spine behaviour.

but their core muscles and tendons become tense while being actively used. This
in turn could reduce the amount of rotation in their spine, and would do so as a
side effect of muscle contraction. In contrast, the model must expend energy to keep
its spine straight as the tendons may not be adequately modelled, introducing the
possibility that allowing bending is optimal in an energy sense.

In other words, given that the spine can bend, allowing it to do so may reduce the
amount of torque required. If the model were not able to bend its spine as much, a
less energy optimal but more realistic movement might arise.

Choice of point on a limit cycle

When initialising and fixing a task to begin using data from a previous trajectory,
one must choose a point on that trajectory’s limit cycle. This initial point was often
observed to determine whether the problem could be solved, indicating that some
initial positions were more favourable than others. Previous work on rapid stopping
for quadrupeds supports this idea [64].

6.2 Measuring the effect of the tail

The previous section showed that complex manoeuvres can be found using the soft-
ware library (which implements a more efficient modelling approach) in conjunction
with the cheetah model. This in itself is an achievement, and presents an advance-
ment in bio-mechanics/robotics technology. Previous research in the Mechatronics
Lab at the University of Cape Town required over 12 hours to find slower gallops
using a far simpler model – now, the same can be done in under an hour, using a
more realistic model specified by significantly fewer lines of code. To be clear, this is
a result of many smaller improvements, not just the modelling change described in
Chapter 3.

In this section, I investigate how the tool might be used to better our understanding
of the role of the cheetah’s tail during rapid manoeuvres. Three tasks are performed
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(periodic galloping, constant-rate turning, and turn initiation) at various velocities,
using variations of the same quadruped model:

1. the model as outlined in Chapter 5,

2. the same model but without drag forces on its tail, and,

3. the model without a tail.

This is intended to enable a direct measurement of the impact of drag on the tail,
and the tail itself. The tasks were all set up and solved using the same method as
in Section 6.1. Turn initiation was not used as a manoeuvre, due to the inexplicable
spine behaviour which differed from observations of real cheetahs.

Three attempts were made to find a trajectory for each combination of experiment
parameters, with most problems being solved on the first try. It should be high-
lighted in advance that, due to the small number of data points, the results should
not be taken as proof of anything. No serious claims should be made based on these
results – instead, they serve as a template for future research.

6.2.1 Tail activity

To begin, the activity A of the tail was quantified by finding the mean of the absolute
relative angular velocities in degrees per second, between the body and first link of
the tail, and between the two links of the tail. In other words:

A =
1
N

(
N

∑
i
|ωi−tail0-body|+

N

∑
i
|ωi−tail1-tail0|

)
(6.1)

The metric is only used to compare activity between the full model and the variant
without drag on its tail, as the value is not useful on its own.

First, a periodic gallop was found for each model at three different velocities. This
is a relatively simple manoeuvre, which could serve as a control experiment. The
results are shown in Table 6.1.

Average Velocity [m s−1] A, with drag A, without drag

10 62.5 17.1
14 46.8 16.0
18 29.6 52.6

TABLE 6.1: Comparison of tail activity between cheetahs models with
and without drag on the tail, performing a periodic gallop. The rows
represent average velocities, and each cell represents a data point of

tail activity.

Next, constant-rate turning was selected as a manoeuvre which might result in an
active tail, given a hypothesis that the tail is used for stabilisation during turning.
One trajectory was found for each model, at three different velocities. The results
are in Table 6.2.
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Average Velocity [m s−1] A, with drag A, without drag

10 46.9 84.1
14 106. 78.8
18 34.2 38.7

TABLE 6.2: Comparison of tail activity between cheetahs models with
and without drag on the tail, performing a constant-rate turn. The
rows represent average velocities, and each cell represents two data

points of tail activity.

6.2.2 Energy usage

Next, the energy usage of all three models was compared. Energy usage was mea-
sured in the form of squared work, described in Subsection 6.1. Once again, the
results are not intended to be taken as literal values, and units have been deliber-
ately removed.

The first experiment was a periodic gallop at three different velocities. The results
are shown in Table 6.3.

Velocity [m s−1] Full model Without drag Without tail

10 1.85 3.40 2.94
14 7.73 8.48 3.79
18 11.0 16.2 25.8

TABLE 6.3: Energy usage for three cheetah models, performing a pe-
riodic gallop.

Next, the models were made to perform a constant-rate turn, with results shown in
Table 6.4.

Velocity [m s−1] Full model Without drag Without tail

10 12.0 9.24 7.74
14 16.0 9.23 27.8
18 23.2 45.7

TABLE 6.4: Energy usage for three cheetah models, performing a
constant-rate turn. A blank cell represents a trajectory that could not

be found after three attempts using the same setup.

6.2.3 Discussion

The obvious shortcoming of this experiment was the lack of data points. Given that
the trajectories are in general not globally optimal, an argument can only be made
by gathering a large number of data points and analysing the statistical distribution
of data – i.e., the Monte Carlo method. In this sense, the main useful result of this
experiment is proof that more data is needed.

Having said that, the lack of data can also be valuable. For instance, the tail-less
model was unable to perform an 18 m s−1 constant-rate turn given three attempts, as
shown in Table 6.4.
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In addition, a more meaningful tail usage metric could be devised, along with tasks
which highlight moments when the tail could be used. A massless tail which in-
cludes drag could tested, to further compare the weight in the tail against the drag
on the tail.

If I assume that the tail helps with stability during periods of uncertainty, I could
begin a manoeuvre at a point of a limit cycle before changing the friction coefficient
of the ground. This would represent a hunter chasing prey: the prey can predict
and plan its movement, and make minor adjustments to its path as it anticipates a
turn. The hunter, wishing to follow its prey, would need to make rapid adjustments
from a possibly unfavourable stance. The hunter’s tail may be vital in this scenario.
Research indicates that risk also has an effect on the trajectories found by cursorial
specimens [65].

These ideas highlight a shortcoming of trajectory optimisation: despite advances
in performance, the time required to gather sufficient data across a wide number
experiment parametrisations can be prohibitive. It is not clear how intertwined the
attributes of cheetahs are, so performing experiments with fewer combinations of
parameters may not necessarily be valid.

As a simple example, given:

1. four models (full model, tail without drag, massless tail with drag, no tail),

2. two parametrisations of each model (masses, lengths and radii),

3. three tasks (a baseline, a turn, and a manoeuvre that investigates uncertainty),

4. three velocities (for example, 10, 18 and 26 m s−1), and

5. twenty data points for each parametrisation

a researcher would need to find 4× 2× 3× 3× 20 = 1440 trajectories. If it takes on
average one hour to find a trajectory and the researcher has 10 computers available
to perform the research (or fewer computers with more cores and RAM) they would
need 1440× 1/24/10 = 6 days to gather the data.

This parametrisation explosion is not true for all experiment types, though. Earlier
in this project, a small analysis of contact modelling techniques was performed using
a monoped hopper. Sufficient data could be gathered overnight on one computer,
and the results were used to choose the friction model in this project.

Finally, is possible that there are no correlations to be found using this metric, or
that another metric would produce correlated results using this small number of
datapoints. There was unfortunately not enough time to investigate other metrics in
detail.

This establishes progress towards answering the research question, can the role of the
cheetah’s tail be better understood via trajectory optimisation applied to a large, complex
model?
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Chapter 7

Conclusion

7.1 Discussion

The project began with an investigation into ways to improve the solve time of tra-
jectory optimisation for legged robots, without sacrificing qualities such as solution
accuracy or the ability to find dynamic, high-speed manoeuvres. After exploring a
few possibilities which didn’t show promise or were overly difficult to implement
(such as GPU acceleration, different contact solving methods and maximal coordi-
nates), changing to a relative-angle formulation and symbolically simplifying the
dynamics proved to provide a sufficient speed-up to make the discovery of complex
trajectories feasible in a reasonable time.

Following this, a complex model of a cheetah was developed and parametrised.
Complexity was added as needed, in an iterative design process. The model con-
tains known inaccuracies where the literature is sparse or computational capacity is
limiting, but qualitatively matches observations of real cheetahs in a useful way.

Using this model, incremental progress was made towards towards understanding
the manoeuvrability of the cheetah at high speeds, including an indication of the
role of the cheetah’s tail during high speed turns and other manoeuvres involving
large accelerations. A small suite of trajectories (including accelerations, forces and
torques) was found and saved. Further analysis of this data would be relatively
simple, as well as the implementation of other tasks.

Finally, in parallel to the preceding objectives, a software library was developed
which aids research into large models of animals and robots involving contacts and
other forces (such as drag). While the library of components is relatively small in its
current state, adding other things of interest (such as a model of a bird’s wing, or a
wheel) should be wholly possible and relatively simple. The library can be installed
with a single command:

python -m pip install physical_education

and a trajectory of a model performing a relatively complex task can be found in less
than a day by a non-expert.

Despite its limitations, trajectory optimisation has been an incredibly useful tool
throughout the project, with advantages outlined in Section 1.1. The ability to think
of a task and have early trajectories of it within a week is invaluable to research
where many ideas are tried due to an unclear path ahead.

To this end, the rapid prototyping and development allowed by Python and its sci-
ence ecosystem of libraries has been invaluable. SymPy, Pyomo, matplotlib and
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NumPy are all amazing packages; Jupyter Notebooks, type hints and Pylance are
similarly powerful tools.

7.2 Future work

Despite the progress made, there is much more work to be done.

The known inaccuracies of the cheetah model (outlined in Subsection 5.1.5) should
be reduced, either be extending the model or by proving that the inaccuracies are
insignificant.

The same experiments should be re-run with different cheetah models, with varia-
tion in both structure (for example, with one or three links in the spine, instead of
two) and parameters (masses, lengths, friction coefficients, and so on).

To improve the feasibility of these methods, the solve time could be reduced by
exploring (for example) alternate nonlinear optimisation solvers, increased paral-
lelisation or pre-solves with simpler dynamics. The numerical properties of typical
problems (such as the Hessian of the Lagrangian) could also be investigated and
improved by using or developing a more efficient linear solver.

Trajectories could be properly matched to the results found in unrelated studies,
such as the results of [9], to have further confidence in model and results. The ap-
proaches could be combined to estimate forces and parameters by fitting variables
based on real manoeuvres.

After some analysis, a researcher could make canonical SLIP-inspired models for
dynamic manoeuvres involving tails. These simpler models would ideally result
in trajectories which are easier to analyse being found faster, with less programmer
effort [27].

This data could also be used to kick-start a machine learning approach to cheetah
modelling and control. Prior examples of this idea include [66], where data from
trajectory optimisation is used to “learn” controllers for a variety of tasks, and [67],
in which trajectory optimisation and motion capture data are used to develop deep
reinforcement learning controllers for basketball dribbling skills.
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Appendix A

Code files

Two software packages were written as part of this project:

• The first is a toolbox written in Python for trajectory optimisation involving
mechanical systems. It is called physical_education and is available online at
github.com/alknemeyer/physical_education

• The second package is a collection of Python type hints which are useful when
developing software which utilize packages such as Pyomo and Matplotlib. It
is available online at github.com/alknemeyer/typesieve

https://github.com/alknemeyer/physical_education
https://github.com/alknemeyer/typesieve
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