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Abstract

An integrated furnace co-simulation methodology based on a
reduced order CFD approach

B.T.Rawlins
University of Cape Town

Department of Mechanical Engineering

An integrated thermofluid modelling methodology for pulverised fuel fired utility-scale
boilers that is computationally inexpensive, fast, and sufficiently accurate would be valu-
able in an industrial setting. Such a model would enable boiler operators to investigate
a range of off-design operating conditions, which includes flexible operation. The aims of
this study was: to develop a reduced order computational fluid dynamics (CFD) model of
the furnace and radiative heat exchangers that captures all the important particulate ef-
fects while using a Eulerian-Eulerian (EE) approach; using the reduced order CFD model
to generate a database of results that covers a wide range of operating conditions; to de-
velop a data-driven surrogate model using machine learning techniques; to integrate the
surrogate model with a 1-D process model of the complete boiler; and finally to demon-
strate the use of the integrated model to investigate flexible operation and off-design
operating conditions. The validity of the CFD modelling approach was demonstrated via
application to a 2.165 [MWth] lab-scale swirl pulverised fuel burner, as well as to a 620
[MWe] utility-scale subcritical two-pass boiler, both operating at various loads. The re-
sults were compared to measured data and a detailed CFD model using the conventional
Eulerian-Lagrangian (EL) approach. A computational speed enhancement of 30% was
achieved. The data-driven surrogate model uses a mixture density network (MDN) to
predict the heat transfer in the furnace and radiative heat exchangers, together with the
uncertainty in the predicted values. The integrated model was validated against appli-
cable measured data and then applied to a utility-scale case study boiler to investigate
the optimal burner firing positions for low-load operation, as well as to investigate the
effects of fuel quality on the overall boiler performance. It was shown that the integrated
data-driven surrogate model and 1-D process model can predict the overall thermofluid
response of the boiler and the uncertainties associated with it with good accuracy, whilst
maintaining a low computational effort when compared to a conventional CFD model
coupled to 1-D process model.

Key words: Computational fluid dynamics, Coupled simulation, Machine learning, Sur-
rogate modelling, Utility-scale boiler
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Chapter 1

Introduction

1.1 Background

Conventional thermal power plants, such as coal-fired power plants (CFPP’s), nu-
clear power plants and biomass power plants, typically use steam as the working fluid
which expands through a series of turbines connected to a generator, to produce electrical
energy. The Rankine cycle, developed by the Scottish engineer William J.M. Rankine [1],
is considered the ideal cycle for conventional thermal power plants. A basic schematic
and temperature versus entropy (T-s) diagram illustrating the ideal reheat Rankine cycle
is given in Figure 1.1.

Figure 1.1: Ideal reheat Rankine cycle schematic and temperature versus entropy diagram.

The cycle comprises of an isentropic compression (process 1-2), a constant pressure
heat addition (process 2-3), isentropic expansion in the high-pressure turbine (process 3-
4), constant heat addition (process 4-5), isentropic expansion in the low-pressure turbine
(process 5-6), and constant pressure heat rejection (process 6-1).
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Chapter 1. Introduction

Utility-scale thermal power plants, such as large solid fuel boilers, are typically de-
signed to operate as base load units, meaning they would operate for extended periods
of time at near full load. Therefore, they are not designed for major shifts in operational
outputs [2]. The South African energy sector, at present, is highly dependent on the use
of CFPP’s to generate electricity, with 70% of the country’s primary energy needs being
provided by CFPP’s [3]. The current global trend in environmental policies are mainly
focused on reducing the effects of climate change with the focal drive for renewable energy
implementation [4]. However, the main contributors to renewable sources, namely solar
and wind, are highly variable in nature, which results in an intermittent supply of energy
for power generation.

What this means for the future operation of CFPP’s, in the South African context,
is the switch from a base load to a mid-merit/flexible operational protocol. A mid-merit
plant is classified as a power plant that can adjust its output as the demand fluctuates
throughout the day [5]. Since CFPP’s are primarily designed as base-load plants, research
into flexible/mid-merit operation is required to better understand the flexible operation
and subsequent operating limits arising from these off-design conditions. Operating at
low-loads for continuous periods of time could result in insufficient heat being extracted
by the working fluid present in the heat exchanger tubes. This can lead to elevated
metal temperatures that are higher than the design temperatures. Researchers such as
Modlinski et al. [6] as well as Laubscher and Rousseau [7] show that the most suscep-
tible component to this phenomenon is that of the radiant superheaters, especially the
reheaters.

Physical experimentation is not a feasible option to investigate the thermal operating
limits of the heat exchanger materials due to the scale of the plants and the associated
risks and costs. Thus, numerical simulation is the only practical solution that can be used
to obtain further insight into various dynamic operating scenarios, such as start-up, load
following and low-load ramp down.

1.2 Motivation

Numerical simulation of CFPP’s has been done successfully using a variety of simu-
lation approaches. Computational fluid dynamics (CFD) simulation of CFPP’s offers the
most accurate and information rich approach for determining the combustion character-
istics, the radiative and convective heat transfer as well as the gas-solid flow interactions
[8]. These simulations are usually conducted for separate steady-state load cases due
to the computational demand of the simulations. Therefore, using CFD to study plant
dynamics or the integrated operation of the flue gas- and water-sides is not currently
computationally feasible.

A model that is computationally inexpensive, fast, and relatively accurate would be
advantageous in an industrial setting. Such a model would enable boiler operators and
engineers to investigate off-design operating conditions, which include the control proto-
cols needed when considering flexible load operations and unexpected natural phenomena
affecting operations (e.g., a change in the weather conditions or a drop in fuel quality).
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Furthermore, such a model can provide a fast and efficient way for recommendations
to be made on a variety of what-if scenarios in near real-time, such as the best proto-
cols to mitigate burner mill failure and to counter overheating of critical heat exchanging
components.

Recent developments in data-driven techniques to reduce the inference time of high-
fidelity computational models have proven to be a useful tool. This shift in simulation
complexity has led to the development of rudimentary digital twins, that can be used for
real-time process monitoring applications. The digitalisation and the use of digital twins,
along with reduced order modelling techniques, can bring new possibilities for energy-
intensive industries. One potential scenario is the use of digital twins to optimise the
performance. For example, by creating a digital twin of an industrial plant or a process,
it’s possible to simulate the performance of the system under different conditions, such
as varying process parameters, loads, or environmental conditions. This can be used to
identify the optimal operating conditions for the system, which can lead to improved en-
ergy efficiency and reduced energy costs. Such a model would be highly beneficial in the
operation of CFPPs in the context of reducing the computational requirements of the flue
gas side heat transfer calculations, especially during flexible operation. Currently no such
model exists for a subcritical CFPP that incorporates data-driven techniques to reduce
the computational burden of the flue gas side spatial and heat transfer effects.

The use of 1-D process models can efficiently and accurately capture the steam side
flow phenomena, heat transfer and phase change characteristics [9, 10]. The coupling
of 3-D CFD models and 1-D process models is a promising development in the field of
simulation techniques. However, the main limitation is the simulation time required for
the CFD component. Replacing the conventional CFD model with a data-driven model
of the furnace and other radiation-dominated heat exchangers can therefore lead to a
promising integrated model that is both fast and suitably accurate for the application in
condition monitoring and what-if analysis. The development of a co-simulation modelling
methodology that employs a data-driven reduced order CFD surrogate for a CFPP furnace
is, therefore, seen as a necessary step to create a computationally efficient integrated
model that can be used to investigate power plant flexibility, while capturing the 3-D
spatial effects of combustion, fluid flow and heat transfer.
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1.3 Research statement

The mid-merit operation of CFPP’s, needed to compensate for the intermittent
power generated by renewable sources, requires research into the operational limits and
procedures that would reduce the risk damage to existing infrastructure. This require-
ment highlights the need for a better understanding of the dynamic response of such
plants. Numerical modelling techniques are proven to be more feasible and better suited
for flexibility studies than costly experiments, due to the size of these plants and the
associated risks and costs.

The traditional dynamic modelling of CFPP furnaces, using a 1-D network modelling
approach, rely on semi-empirical relations that were developed from tests carried out on
pilot and utility boilers. These empirical relations are not always accurate in determining
the temperature profiles and wall heat fluxes of boiler furnace components. This is due
to the spatial nature of combustion and radiation heat transfer, which empirical models
fail to capture adequately. The use of CFD modelling can capture these effects with a
greater degree of accuracy. However, it remains a computationally expensive approach,
especially for dynamic simulations.

The current development of coupled simulation models combines the benefits of both
modelling approaches. One such approach are quasi transient simulations that utilise a
steady-state CFD and 1-D process model to study the phenomena that change slowly
when compared to the time step. An example would be the thermal response of the wa-
ter/steam side components of a typical subcritical CFPP boiler when the fuel flow rate is
increased, since the residence time of the fuel combustion products and subsequent traver-
sal through the system is very small. However, these approaches remain computationally
expensive since the coupled models solve independently and transfer data between itera-
tions. The use of data-driven surrogate models, based off a CFD simulated database, have
been shown to lessen the computational burden whilst maintaining an adequate degree of
accuracy [11].

Therefore, a need exists for a co-simulation methodology that combines the use of
a data-driven surrogate and a 1-D process model to investigate the flexible and low-load
operating conditions of a subcritical CFPP boiler.

1.4 Hypothesis

The hypothesis for the current research is that an efficient and fast integrated boiler
co-simulation model can be developed based on a data-driven reduced order CFD sur-
rogate model of a CFPP furnace to investigate power plant flexibility, while adequately
capturing the 3-D spatial effects of combustion, fluid flow and heat transfer.
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1.5 Research aim and objectives

The primary aim for the current project is to develop a co-simulation modelling
methodology to study the thermofluid behaviour of a CFPP furnace and radiant super-
heater over a range of operating conditions, using a reduced order CFD approach. The
overall aim will be fulfilled through several specific objectives stated below:

1. Investigate the level of complexity reduction that can be achieved via a Eulerian-
Eulerian (EE) CFD approach which does not rely on discrete phase modelling
(DPM) of the fuel particles. Such a CFD model will reduce the computational
requirements for machine learning purposes.

2. Validate the EE approach against experimental results in the form of case studies,
which include a lab-scale burner and a utility-scale boiler.

3. Using the developed reduced order CFD generate a database of simulation results
for a pulverised fuel furnace.

4. Using the simulated database, develop a data-driven surrogate model for the furnace
that can produce the necessary heat fluxes and temperature profiles based on boiler
load inputs.

5. Integrate the surrogate model with a 1-D process model, using open-source software,
to investigate the effects of continuous low-load operation and fuel quality variations.

1.6 Thesis structure

The thesis is made up of two parts. The first part focusses on the development of
a reduced order numerical model. The second part incorporates the development of an
integrated model that combines a 1-D process model and a data-driven surrogate model of
a utility-scale boiler that is developed using machine learning techniques. The surrogate
model utilises the reduced order numerical model of Part I in the generation of a suitable
training dataset. Figure 1.2 provides a schematic of the thesis structure accordingly.

Chapter 2 provides a discussion of the available literature pertaining to physics-based
modelling approaches and machine learning based modelling of thermofluid systems.

Part I begins with Chapter 3 and provides the theoretical background of 3-D CFD
modelling techniques used in simulating thermofluid systems and the theory behind 1-D
process modelling techniques. Attention is centred on the discussion of the numerical
modelling of the conservation equations, combustion, and heat transfer. The traditional
method of particle modelling in a Lagrangian framework is also discussed with emphasis
provided on the interactions with the continuous phase.
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Figure 1.2: Schematic of the thesis structure

The EE numerical model development is examined in Chapter 4. The similarities
and differences between the conventional modelling techniques of solid fuel systems are
evaluated. Validation and verification of the EE model is provided in the context of a case
study conducted on the well-documented international flame and research foundation’s
(IFRF) Furnace No. 1 burner.
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The developed modelling methodology of Chapter 4 is applied in the form of case
studies which are discussed in Chapter 5. The validated model is subsequently used in
the modelling of a full-scale utility boiler. Validation results for the full-scale utility boiler
are provided for multiple loads against numerical and measured data. A further low-load
case study was conducted to establish the optimum firing configuration.

Part II starts with Chapter 6, which provides the theoretical background of the
machine learning theory. The most common and applicable machine learning approaches
are discussed, with emphasis on linear regression, deep learning, and mixture density net-
works (MDNs).

Chapter 7 provides a summary of the data generation process. A design of experi-
ments (DOE) is discussed in terms of the inputs and generated outputs. Furthermore, an
exploratory data analysis is performed to investigate the distributions and common trends
of the output data. Subsequently, Chapter 8 considers the surrogate model development
in terms of establishing the best machine learning modelling approach. The final archi-
tecture and best performing machine learning model were selected based on the results
of a hyperparameter search using both training and testing data. The surrogate model
integration and application are discussed in Chapter 9. The model was validated for
various operational loads. Using the integrated surrogate model, a case study exploring
the importance of fuel quality was conducted illustrating the model’s robust and efficient
solving times.

A summary and conclusion of the findings are provided in Chapter 10 and includes
recommendations for future work. In addition, three appendices have been provided that
present the relevant derivations, sample calculations and fluid property polynomials used
throughout the work.
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Chapter 2

Literature study

This section will present literature pertaining to the use and application of physics-
based modelling approaches and machine learning techniques. Physics-based modelling
includes discussing 3-D CFD techniques in relation to the complexity of modelling CFPPs
and solid fuel combustion. In addition, advances in process modelling and coupled simula-
tions are explored. Finally, the conventional machine learning applications are examined,
culminating with a review of data-driven approaches applicable to thermofluid systems.

2.1 Physics-based modelling of CFPPs

2.1.1 3-D modelling of CFPPs

CFPPs are considered complex chemical reactors comprised of many interrelated
processes such as the three modes of heat transfer, turbulent flow regimes, non-premixed
combustion, and two-phase flow, which occur simultaneously [12]. While full-scale testing
or experimentation on CFPPs are deemed too expensive to pursue, mathematical models
can accurately capture the thermal response of boilers at varying loads and can be used
to determine the safe and efficient operating limits [7]. CFD allows for the steady-state
resolution of full-scale CFPP boilers, provided sufficient boundary conditions, and com-
putational resources are available. CFD simulations have been successfully used to model
a variety of CFPP boiler types [13, 14] and cover various operational aspects such as
pollution control [15–17], gas-solid flow effects [18] and boiler retrofitting [14, 19].

The conventional CFD approach for modelling solid fuel combustion systems is ac-
knowledged as the Eulerian-Lagrangian (EL) approach [12]. This approach uses an Eule-
rian description of the gaseous phase, with the governing equations being derived using a
finite volume approach in a stationary frame of reference [20]. The solid fuel particles are
modelled using a Lagrangian frame of reference by tracking the trajectories of the particle
parcels as it moves through the domain. The source terms are calculated by averaging
over a multitude of particle trajectories (discussed in [21]), typically leading to instability
of the continuous phase source terms. This requires significant under-relaxation of the
solid-phase source terms in the continuous phase equations, resulting in extended compu-
tation times.
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The use of ANSYS Fluent® by Wang et al. [22] aided the researchers in developing a
set of 3-D heat transfer calculation methods that incorporates the essential physics of the
combustion and heat transfer processes in a CFPP boiler furnace. Since the furnace walls
directly affect the overall furnace temperature level, subsequently affecting the combus-
tion and emission formation characteristics, analysing the furnace thermal performance
forms a crucial part of condition monitoring. The methods used by the aforementioned
researchers were validated on a 330 [MWe] tangentially fired boiler. The study also shows
the highly non-uniform nature of the furnace wall heat and temperature distribution.
Using similar modelling approaches Dugum and Hanjalić [23] investigated the believed
cause of high-temperature corrosion in the membrane walls of a 230 [MWe] utility boiler
furnace. The numerical analysis used ANSYS Fluent® to examine the inflow conditions
for sub-optimal coal combustion. The study found that the burner exits near field con-
centrations of CO and O2 were in the region that can lead to high-temperature corrosion.

As alluded to, the furnace of a CFPP is a critical component in its design and op-
eration since all furnaces must provide sufficient residence time for the coal particles to
completely burn and allow the fly-ash to cool below the softening temperature [24]. This
is to limit ash deposition on downstream components. Ash plays a significant part in the
attenuation radiative heat transfer of solid fuel fired systems, especially in furnaces and
radiative heat exchangers [8].

Rousseau and Laubscher [25] investigated the heat transfer characteristics using a
co-simulation of a subcritical boiler firing coal with a significant increase in ash content.
The work used 3-D CFD and 1-D process modelling to capture the flue gas and ther-
mofluid effects, respectively. The numerical CFD study considered two case studies, one
with the design ash content and the other with higher ash content. It was concluded
that the increase in the fuel’s ash content results in a lower heat uptake from the furnace
and the radiant SHs, an increase in particle impaction, and heat exchanger hot spot loca-
tions. The conversion-dependent models for the particle emissivity and scattering factors
from the works of Lockwood et al. [26] and Yin et al. [27, 28] were utilised, as opposed
to the constant values of 0.9 and 0.6, suggested by Ranade and Gupta [12]. Using the
conversion-dependent models allows for accurate capturing of the particles’ radiative be-
haviour which was illustrated in previous work conducted by the same authors [29], were
the two approaches were compared. It was found that the conversion-dependent model
corresponded better to experimental data and was able to predict the steam generation
and exit steam temperatures better in relation to measured values. This is an important
consideration for the current study, since the South African CFPP fleet uses coal with an
ash content ranging from 21% to 40% by weight [30].

Recent CFD studies investigating the low-load operation of CFPP boilers have fo-
cused on the combustion stability, harmful emissions, and the gas flow-solid flow interac-
tions [31]. Belosevic et al. [32] found that the low-load operation of boilers considerably
affects the flow and temperature fields, the flame geometry, chemical reactions and con-
centrations of combustion products.
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Hernik et al. [33] investigated the effects of using different mill system configura-
tions at a minimum boiler load of 40%. The most favourable mill system configuration
was selected based on the case that exhibited suitable combustion stability, defined for
the study as the effective mixing of the fuel and oxidiser as well as maintaining sufficient
temperature distributions. In addition, having a reduction in harmful emissions, such as
CO and NOx concentrations, was a beneficial attribute for the final mill configuration.
Similarly, Chang et al. [34] investigated the various firing arrangements of a 630 [MWe]
tangentially fired boiler. A downward burner angle of 15◦ was determined as the optimal
arrangement resulting in the best compromise between combustion stability and lower
emissions.

Another CFD approach that pre-dates the conventional EL is the Eulerian multi-
fluid or multiphase modelling approach. The Eulerian-Eulerian (EE) modelling approach
is not a new concept; before the increase in fast and efficient computing power, the EE
model was utilised due to its economy. This approach models the gas and solid phase
using an Eulerian reference frame. Researchers such as Knaus et al. [35] and Benim et
al. [36] compared the EE and EL approaches for coal-fired utility boiler simulations. The
predicted combustion products calculated using the two approaches showed only minor
differences, with carbon monoxide being more accurately predicted when using the EL
approach. The computational effort of the EE approach proved to be less so with faster
convergence times being recorded. It should be stated that these studies were conducted
using in-house CFD codes, which is difficult to apply by engineers and scientists outside
the mentioned authors’ respective research groups. Cai et al. [37] used a multi-fluid EE
model, similar to the two-fluid approach of Zhou et al. [38], to resolve the particle size
distributions and size-dependent heterogeneous reaction rates for a coal ignition flame.
Using a new radiation formulation that can account for the non-gray gas-solid mixtures,
it was found that radiation effects can lead to a 500 [K] difference in the solid phases.
This highlights the critical need to consider radiation to improve temperature and the
CO2 volume concentration predictions. However, using an in-house source code limits
the application of the methodology for industrial applications. Also, tracking additional
particle size bins increases the number of solved transport equations and the required
computational resources.

Limitations of the published EE approaches is the assumption of mechanical and
thermal equilibrium between the particle and gas-phases. The assumption of thermal non-
equilibrium between the gas and particles has a pronounced effect on the estimation of
the various combustion processes such as moisture evaporation, devolatilisation and char
combustion, because these processes depend on the particle temperatures, as described
in depth in the works of Sankar et al. [8]. Therefore, the convective and radiative heat
transfer to and from the solid phase should be accounted for while explicitly accounting
for the particulate matter thermal mass. Therefore, accurately capturing the particle
temperatures becomes even more critical when studying high throughput fuel flow and
combustion stability, as is the case in the present work where the goal is to analyse
low-load operation of high-ash coals.
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2.1.2 1-D process modelling of CFPPs

The use of 1-D process modelling techniques for capturing the steady-state and dy-
namic response of CFPPs has been highlighted in the work of Alobaid et al. [10]. There
have been many developments of simulation codes over the past decades, with the ad-
vanced process simulation software (APROS) [39] being the most popular for CFPPs.
Due to their efficient use of computational resources, process modelling techniques have
been extensively used to investigate dynamic applications such as start-up procedures,
flexible operation, and the oxy-fuel concept.

Starkloff et al. [40] provided a sufficiently accurate dynamic model of a large once-
through boiler located in Germany. The proposed model was validated using operational
data for a load change from 100% to 27.5% maximum continuous rating (MCR). Uncer-
tainties proved to be a significant problem for the study, which included the exact coal
composition used at the station and the slagging and fouling levels present in the furnace
and downstream heat exchanger. Nonetheless, the results showed good agreement, and
the validated model is to be used for further investigations for flexible operation. Simi-
larly, a 500 [MWe] subcritical boiler model was developed by Oko and Wang [9] and was
validated for 70%, 80%, 94,4% and 100% steady-state operating conditions. However this
study fails to determine how well the model reacts to the transient conditions of the actual
plant. Another study conducted by Kuronen et al. [41] on a 750 [MWe] plant presented
accurate simulated results for an 87% to 100% load change of the plant. The results were
validated for both steady and transient applications using the measured site data. Based
on a lumped variable model, the boiler furnace flue gas side was modelled and empirically
tuned. The focus of the study was to develop a model for testing and design purposes for
flexible operation.

The furnaces of CFPP boilers are comprised of a multitude of complex and in-
teracting phenomena, such as the combustion dynamics, the gas-solid interactions, fluid
dynamics, and radiation heat transfer. As a result, the heat transfer in CFPP furnaces in-
corporate many non-uniformities, thus, making 1-D process models of furnaces unable to
resolve the fire-side interactions with sufficient accuracy. This results in many researchers
[9, 40, 41] using a lumped parameter analysis when dealing with the furnace section of
a CFPP boiler, which is primarily based on the Gurvich/Blokh method [42]. However,
process modelling can adequately resolve the water-side energy and momentum transport
in a computationally inexpensive manner. Deng et al. [43] developed a process model
of the start-up system of an existing 600 [MWe] supercritical once-through boiler. The
model incorporated the two-phase homogeneous flow model to resolve the water/steam
networks. The simulation software APROS was used to build the entire model, including
the fire-side which assumed complete combustion with a stable flame. The model was
able to provide sufficient resolution of the steam characteristics during start-up with a
2.29% relative error between the design and simulated steam exit temperatures and flow
rate.
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Researchers Hajebzadeh et al. [44] utilised a 1-D process modelling approach to
investigate six different loads of a 320 [MWe] tangentially fired boiler. The results were
validated for both the flue gas and water/steam working fluids using measured plant
data. The fire-side components were modelled using the Gurvich/Blokh method [42].
The developed models water/steam calculated values displayed absolute relative errors in
the range of 0.1% to 7.3% between the measured data.

2.1.3 Co-simulation of CFPP heat transfer processes

The use of coupled simulations has proven to solve the deficiencies of a full 1-D
process model by coupling the fire-side CFD results to a 1-D water-side process model.
Many coupled simulations can be classified as fully separated models, as coined by Fil-
imonov et al. [45], whereby the 2-D/3-D (CFD) and the network models are calculated
separately, and the data obtained from one model would form the input parameters of
the other. Laubscher and Rousseau [25] used the above-mentioned coupling approach to
investigate the effects coal quality have on the heat transfer distribution to the furnace
water walls and radiant superheaters. The results showed that it was possible to iden-
tify a range of effects that the various high-ash coals have on the furnace heat uptake,
the steam generation rates and the superheater wall temperatures. ANSYS Fluent® and
Flownex SE® were used in modelling the gas- and water-side components, respectively.
Similarly, the same researchers used the coupled modelling approach in investigating the
impact of using a variable particle emissivity and scattering efficiency on the evaporator
and radiant superheater process conditions, including the furnace steam generation rate
and final steam temperature [29]. The study highlighted the importance of incorporating
the conversion-dependent particle emissivity and scattering models in investigating high-
ash content coal combustion systems, which had a 0.7% error in predicting the furnace
heat load and exit steam temperature, while the constant property models resulted in a
6.5% error.

Schuhbauer et al. [46] showcased the use of a co-simulation methodology for a 550
[MWe] supercritical boiler. The paper aimed to provide detailed information on how to
couple the fire and steam side using commercial software, specifically ANSYS Fluent® and
APROS. The results show a good correlation to that of the design data with a maximum
6% deviation. However, the use of porous media for the superheater banks resulted in the
lack of radiation participation in these areas. The use of uncharacteristic source terms
was needed to correct this. Similarly, Park et al. [47] considered the effects of burner
settings and coal blending compositions on boiler efficiency. An 800 [MWe] tangentially
fired boiler located in South Korea was the boiler of interest. The coupled models, con-
sisting of ANSYS CFX® and the 1-D process modelling software PROATES, exchanged
temperature and wall flux values of the furnace and heat exchangers for each calculation
iteration. The model was validated against plant data and was in good agreement. Fur-
thermore, plant engineers successfully used the model to optimise burner settings.
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Yu et al. [48] used a coupled simulation methodology to estimate the superheater
(SH) metal temperatures of a 660 [MWe] tangentially-fired coal boiler. Using ANSYS
Fluent® v14.5 and MATLAB, the study found that using a positive 20◦ for the separated
over-fire air kept the surface temperatures below the allowable temperature of the heat
exchanger material. Hovi et al. [49] demonstrated the transient simulation of a bubbling
fluidised bed boiler furnace using a coupled approach. A fast load change was modelled
with the process behaviour being analysed based on the control protocol. It was found
that the coupled transient simulation was reasonably slow and best suited for the evalu-
ation of significant changes in the control and process design.

The coupling of steady-state CFD and dynamic process models is a promising de-
velopment in simulation techniques. However, the main limitation is the simulation time
required for the CFD component. Replacing the traditional CFD model with a data-driven
model of the furnace can lead to a promising integrated model that is both efficient and
fast.

2.2 Application of machine learning in energy sciences

Machine learning techniques have found many uses in industry, covering many fields,
such as neuroscience [50, 51], geology [52, 53], finance [54, 55] and agricultural applica-
tions [56, 57]. The application of machine learning techniques in the energy sciences have
seen a recent surge. Kalogirou [58] highlighted the uses of machine learning in resolving
the modelling and control of thermal energy systems for a broad range of applications.
Muller and Keller [59] used an artificial neural network (ANN) to model the combustion
process for waste incineration plants, with the aim being to reduce toxic emissions. The
model effectively simulated various process parameters and used optimisation algorithms
along with the reduced models to lower the plants emissions. Recently various authors
have applied machine learning techniques to develop regression models of different energy
system components with training data generated using real world processes. Fei et al. [60]
used a fast set of reduced order models (ROMs), using the Kriging method, based on CFD
data to investigate the retrofitting of a coal-fired power plant under oxy-fuel conditions.
Using an integrated ROM and a whole plant process model, a range of air-coal ratios were
investigated, with the model illustrating sufficiently accurate results. However, no oper-
ational uncertainty was incorporated into the input parameters to account for real-world
operational effects such as plant disturbances and varying local atmospheric conditions.

Raidoo and Laubscher [61] compared both a deterministic and a probabilistic model
to predict the backpressure of a utility-scale air-cooled condenser using a mixture density
network (MDN) model and recurrent neural networks (RNNs). The probabilistic model
was found to predict air-cooled condenser backpressure with a mean absolute accuracy
of 82%. Another dynamic application saw Laubscher [62] use an RNN the predict the
reheater metal temperatures 5 minutes into the future with sufficient accuracy. In the
modelling of thermal power plants, feed-forward models offer a simple and robust ap-
proach. Liu et al. [63] demonstrated the efficiency in modelling the turbo-generator unit
for a 1000 [MWe] coal-fired boiler using an ANN compared to a linear model.
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In the absence of sufficient measurable data, simulated datasets based on validated
computational models can be used as an alternative source of data for training and testing
of machine learning models. Haffejee and Laubscher [64] used simulation data from a 1-D
process model to develop a condition monitoring platform capable of predicting backpres-
sures for the dry cooling component of a thermal power plant using deep neural networks.
Singh and Abbassi [65] incorporated the use of an ANN and CFD model to investigate the
transient thermal modelling of an off-highway machinery cabin. The ANN training data
was obtained from a 1-D process model for the refrigeration cycle. The methodology suc-
cessfully integrated the ANN capabilities with a 3-D CFD simulation model, negating the
need for a coupled simulation procedure. Similarly, Warey et al. [66] used CFD solution
data, for a wide range of climatic conditions, to develop a machine learning model that
can predict the thermal comfort of a vehicle cabin based on the equivalent temperature
for each passenger and the volume-averaged cabin temperature. The developed model
enabled predictions for a wide range of boundary conditions in real-time without the need
for CFD simulations.

Predicting and recognising system/load uncertainties in conventional coal-fired power
plants are paramount for the safe operation and maintenance of these plants [67]. The
uncertainty associated with the operational parameters of a thermal power plant, such
as fuel quality, combustion processes, and burner biasing, can significantly change the
thermal-hydraulic response [68]. The design space load uncertainty of a combined cool-
ing, heating and power system was investigated by Lu et al. [69]. Using a multi-objective
optimisation model, factors such as pollutant emission, economy and system reliability
were incorporated to improve the operational performance.

It is noted that CFD cannot meet the real-time requirement for online performance
monitoring due to the complex solving mechanisms and time-consuming calculations.
However, a feasible alternative is to generate training and testing datasets for ANN im-
plementation. Furthermore, using CFD does not interfere with the regular operation of
the plant, and it can capture the radiative and fluid flow characteristics with sufficient
accuracy. In addition to this, a more comprehensive range of appropriate operating con-
ditions can be simulated. Thus, data-driven machine learning models based on CFD
simulation data combined with a 1-D thermofluid model can provide insights into flexible
operation and off-design conditions of utility-scale boilers
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Chapter 3

Numerical modelling theory

This chapter discusses the theory used in this study, emphasising the following:

• The governing equations for basic fluid flow, species transport, energy transport,
momentum transport, and turbulence closure.

• Conventional particle transport modelling.

• Solid fuel combustion theory and modelling.

• Radiative heat transfer theory and modelling.

• The governing equations and solution strategy, specifically for 1-D boiler heat ex-
changer gas- and water-side modelling.

Figure 3.1 highlights the content that is discussed and indicates the research objec-
tive addressed in this chapter for the readers convenience.

Figure 3.1: Content overview and research objective addressed in Chapter 3

The theory sets the foundation for subsequent discussions of the CFD modelling
methodologies and co-simulation techniques utilised to develop a fast thermal non-equilibrium
Eulerian-Eulerian model for surrogate model development, and the integration of the
model into a full-scale system model. The specific model parameters will be discussed in
the model development section of the current work.
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3.1 Governing transport equations

3.1.1 Global continuity equation

The conservation of mass principle states that the net mass transfer to/from a
control volume equals the net change in mass within the control volume over time. Thus,
the differential continuity equation can be written as:

∂ρg
∂t

+
∂

∂x
(ρgux) +

∂

∂y
(ρguy) +

∂

∂z
(ρguz) = Scon (3.1)

where Scon [kg/m3s] is the continuity source term which can account for mass additions
stemming from combustion related processes (such as moisture evaporation and devolatili-
sation) or user-defined sources, and ui [m/s] is the velocity vector in Cartesian coordinates.

In reactive flows, the density of the gas mixture, ρ [kg/m3], depends on the mixture
temperature, pressure, and species concentration [20]. The gas density is calculated from
an equation of state, namely the ideal gas law, which is given as:

P =
ρgRuTg
M̄

(3.2)

where P [Pa] is the absolute pressure, Ru [J/kmolK] is the universal gas constant, Tg [K]
is the cell gas temperature, and M̄ [kg/kmol] is the mean molecular weight of the mixture
calculated using the following expression

M̄ =

(
N∑
k=1

Yk
Mk

)−1

(3.3)

where Yk [kg/kg] is the mass fraction for species k and Mk is the molecular weight of
species k.

For this work, the variation of the gas density due to pressure variations are negligible
compared to the variation induced due to temperature changes, thus the pressure can be
assumed constant in the state Equation (3.2). However, the flow being modelled is highly
turbulent, and therefore the Reynolds/Favre averaged form of the Navier-Stokes (RANS)
governing equations were used. The quasi steady-state form of Equation (3.1) is written
as:

∂

∂xi
(ρgūi) = Scon (3.4)

Subsequent formulations of the governing equations are written using the Reynolds
averaged form, with the time-dependent term and overbar on the mean fluid variables
(e.g. ūi) are dropped for the sake of simplification.
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3.1.2 Species transport

To correctly account for the transport of reactant and product species throughout
the boiler gas domain the species transport approach was applied. The species transport
conservation equation resolves all the species mass fraction distributions. The transport
equation takes the following form for a species mass fraction Yk:

∂

∂xi
(ρgujYk) = − ∂

∂xj
( ~Jk) + ω̇k + Sk

k = 1, 2, 3...N

(3.5)

where ω̇k [kg/m3s] represents the net rate of production or destruction of species k due to
chemical reactions, and Sk is the source term of species k due to mass transport between
the gas and solid phases. The ~Jk term is the mass diffusion flux, and for turbulent flows,
it can be written as:

~Jk = −
(
ρg ~Dk

) ∂Yk
∂xj

+ ρgu
′
jY
′
k (3.6)

where ~Dk [m2/s] is the binary diffusion coefficient, which is assumed constant for all the
species [20]. This is a reasonable assumption since the turbulent flux of the species, oc-
curring due to turbulent fluctuations, dominates. The resolution of the species turbulent
flux (ρgu

′
jY
′
k ) is provided in Section 3.1.5.

The species properties, such as the specific heat at constant pressure, thermal con-
ductivity, and viscosity, are calculated using polynomials extracted from the National
Institute of Standards and Technology (NIST) database [70]. The full list of polynomi-
als used in this study are provided in Appendix C. All the gas mixture properties are
subsequently calculated using the mass-weighted mixture approach.

3.1.3 Energy equation

The conservation of energy principle, or the first law of thermodynamics, states that
energy can neither be destroyed nor created during a process: it can only change form [1].
Energy entering/leaving a system comes in various forms, such as microscopic, kinetic,
and gravitational energies. The steady-state energy equation is written as:

∂

∂xi
(ui[ρgE + P ]) =

∂

∂xj

[
λl
∂Tg
∂xj

+ ρgu
′
jE
′ + uiτeff

]
+ Sh (3.7)

where E [J/kg] is the total energy of the fluid, λl [W/mK] is the laminar thermal con-

ductivity, ρgu
′
jE
′ is the turbulent energy flux, further defined in Section 3.1.5, τeff is the

viscous dissipation term, and Sh is the energy source term used to account for radiation,
chemical reactions, and user-defined energy sources/sinks [21].

The total energy term is a function of the internal and kinetic energy [1], which is
given below for compressible flows as:

E = h− P

ρg
+
u2

2
(3.8)
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The sensible enthalpy h [J/kg] for an ideal gas mixture is defined below as:

h =
N∑
k=1

Ykhk (3.9)

where the individual species enthalpies are calculated using the expression for specific
heat at constant pressure, determined as:

cpk =

(
∂hk
∂T

)
P

hk =

∫ T

Tref

cpkdT

(3.10)

The energy source term, Sh, of Equation (3.7) includes a chemical reaction compo-
nent calculated as:

Sh,reaction = −
N∑
k=1

h0
k

Mk

ω̇k (3.11)

where h0
k [J/kmolK] is the enthalpy of formation of species k, and ω̇k is the net volumetric

generation term for species k.

3.1.4 Momentum equation

Newton’s second law states that the rate of change of momentum of a fluid equals the
net force acting on the fluid body [20]. Two types of forces acting on an arbitrary control
volume can be distinguished: body forces (e.g. electromagnetic and gravitational) and
surface forces (e.g. pressure and viscous). It is common practice to use the contributions
due to surface forces as separate terms and to include the effects of body forces as source
terms [20]. The RANS form of the momentum equation is given as:

∂

∂xi
(ρguiuj) +

∂P̄

∂xj
=

∂

∂xi

[
µl

{
∂uj
∂xi

+
∂ui
∂xj
− 2

3
δij
∂ui
∂xi

}]
+

∂

∂xi
(−ρgu

′
iu
′
j) + Smom (3.12)

where the Reynolds stress term (−ρu′iu
′
j), due to turbulence fluctuations, is related to

the mean velocity gradient using the Boussinesq hypothesis, discussed in the subsequent
section.
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3.1.5 Turbulence closure

Turbulence can be described as the chaotic and random state of motion where the
velocity and other flow properties change continuously with time [20]. There are three
computational approaches that can be used to model turbulent flow regimes in combustion
systems, namely the RANS approach, Large Eddy Simulation (LES) approach and Direct
Numerical Simulation (DNS) approach [71]. However, the latter models are computation-
ally expensive and are unsuitable for industrial applications and the current work. Thus,
the present research employs the RANS method using the two-equation approaches to re-
solve the turbulence field. The k− ε and the realizable k− ε models are the most suitable
approaches used in modelling reactive flows (refer to [13], [23] and [72]), where the kinetic
energy and dissipation rate are solved in parallel with the conservation equations.

The standard k − ε model performs well for confined boundary layer flows [20] but
does not perform well for flows with high mean shear rates or large separation zones [73],
which is the case for swirling jet flows. Thus, the realizable k − ε model performs better
when the flow has a strong streamline curvature, vortices, and jets [73], which are all
present within a utility-scale pulverised fuel boiler. The inaccuracies of the standard k−ε
model are due to the poor prediction of the spreading rate for antisymmetric jets due to
the dissipation rates model formulation.

The realizable k − ε model, as developed by Shih et al. [73], makes use of a new
formulation of the turbulent viscosity (µt). The formulation uses a variable Cµ and a new
dissipation rate model based on the mean-square vorticity fluctuations. The resultant
steady-state realizable k − ε transport equations for the kinetic energy and dissipation
rate are written as:

∂

∂xj
(ρgkuj) =

∂

∂xi

{(
µl +

µt
σk

)
∂k

∂xj

}
+GkGb − ρgε− YM (3.13)

∂

∂xj
(ρgεuj) =

∂

∂xi

{(
µl +

µt
σε

)
∂ε

∂xj

}
+ ρgSC1ε+ ρgC2

ε2

k +
√
ϑε
− C1ε

ε

k
C3εGb

C1 = max

(
0.43,

η

η + 5

)
, η = S

k

ε
, S =

√
2SijSij

(3.14)

where Gb, Gk and YM in Equations (3.13) and (3.14) are the turbulence production term
due to buoyancy forces, the turbulence production term due to velocity gradients and the
term that accounts for the fluctuating dilatation of compressible turbulent flows, respec-
tively. At the same time, the model constants C2, C1ε , σk, and σε have set values of 1.9,
1.44, 1.0, and 1.2, respectively.
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As with the standard k−ε model, the realizable k−ε model makes use of a turbulent
viscosity expressed as a function of k and ε, written as:

µt = ρgCµ
k2

ε
(3.15)

where the difference lies in the non-constant formulation of the variable Cµ employed by
the realizable k − ε model. The variable Cµ is calculated as follows:

Cµ =
1

A0 + As
kU∗

ε

A0 = 4.04, As =
√

6cosφ, φ =
1

6
cos−1

(√
6W
)
,W =

SijSjkSki

S̃3
, S̃ =

√
SijSij

U∗ =

√
SijSij + Ω̃ijΩ̃ij, Ω̃ij = Ωij − 2εijkωK , Ωij = Ω̄ij − εijkωK

(3.16)

where Ω̃ij is the mean rate of rotation tensor in a moving reference frame with an angular
velocity ωK [rad/s]. The Boussinesq hypothesis is typically employed along with a two-
equation turbulence model, which relates the Reynolds stresses to mean velocity gradients
and the kinetic/dissipation energy in the flow field [74] and is written as:

−ρgu
′
iu
′
j = µt

(
∂ui
∂xj

+
∂uj
∂xi

)
− 2

3
δij

(
ρgk + µt

∂uk
∂xk

)
(3.17)

Using the turbulent dynamic viscosity, along with the realizable k − ε model, the
turbulent flux terms, as seen in the conservation Equations (3.5), (3.8) and (3.12), can
be closed off. Furthermore, the Reynolds stress term of Equation (3.12) is closed by
substituting in Equation (3.17), allowing for the turbulent velocity field to be resolved
on the computational domain. The turbulent energy flux from Equation (3.7) can be
modelled using the gradient assumption as shown by [71]:

ρgu
′
jE
′ =

cpµt
Prt

∂Tg
∂xj

(3.18)

with the default turbulent Prandtl number Prt of 0.85 used by Fluent ® v19.5. From
this, the turbulent thermal conductivity (as a function of the turbulent viscosity) can be
defined as:

λt =
cpµt
Prt

(3.19)

Utilising Equation (3.19) an effective thermal conductivity can be obtained for the
energy conservation Equation (3.7) as:

λeff = λl + λt (3.20)

Similarly, the turbulent species flux, found in Equation (3.6), can be equated to the
gradient of the species mass fractions multiplied by a proportional value as a function of
the turbulent viscosity, which is given as:

ρgu
′
jY
′
k =

µt
Sct

∂Yk
∂xj

(3.21)

where Sct is the turbulent Schmidt number. Fluent® v19.5 uses a default Schmidt number
of 0.7 [21]. Generally, in turbulent combustion, the turbulent diffusion overwhelms the
laminar diffusion, and the effect of laminar diffusion is almost negligible.
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3.2 Discrete phase modelling

The conventional procedure for modelling particle dispersion and solid phase com-
bustion using CFD is via using the discrete phase modelling (DPM) approach. The
approach tracks the individually dispersed solid fuel particles in a Lagrangian framework,
with the continuous gas-phase being resolved in a Eulerian reference frame. ANSYS
Fluent® does offer Eulerian multiphase approaches to model particle dispersion, called
the mixture model and Eulerian model. However, these models are incompatible with
non-premixed, partially premixed, and premixed combustion models [21]. This section
discusses the DPM approach in relation to the governing equations of motion and the
turbulence interactions that the solid particles would experience.

3.2.1 Equations of motion

A discrete phase particle trajectory is calculated by considering a force balance
using Newton’s second law. The force balance considers the particle inertial effects and
the forces, such as drag and gravity, acting on the particle. Thus, the equation of motion
for a dispersed particle is given in Equation (3.22) as:

mp
d~up
dt

= FD(~up − ~ug) +
~g(ρp − ρg)
ρ+ g

+ SPF (3.22)

where mp, ~up, ~ug, FD, ρp and SPF are the particle mass, particle velocity, gas/fluid phase
velocity, drag force factor, particle density and additional forces acting on the particle,
respectively. The drag force factor is defined using the particle relaxation time, from the
works of Gosman and Ioannides [75], as:

FD =
3µ

ρpd2
p

CdRed
4

(3.23)

where dp, Cd, and Red is the particle diameter, drag force coefficient and the relative
Reynolds number based on the diameter of the particle. The relative Reynolds number is
defined as follows:

Red =
ρdp|~up − ~ug|

µeff
(3.24)

The particles in pulverised fuel systems are typically modelled as smooth spherical
particles. Thus, the drag force coefficient can be defined using the correlation of Morsi
and Alexander [76] as:

CD = a1 +
a2

Red
+

a3

Re2
d

(3.25)

where constant a1, a2, and a3 are varying constants applicable over several ranges of the
relative Reynolds number.
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3.3 Combustion modelling

There are fundamentally three criteria needed for a combustion process to com-
mence namely a sufficiently high temperature (needed to activate chemical reactions),
turbulence (adequate mixing of reactants and oxidiser), and residence time (to ensure
complete combustion). A combustion process can usually be described as either being
temperature limited, mixing limited, or product mixing limited.

The modelling of solid fuel combustion includes the modelling of both heterogeneous
and gas-phase homogeneous reaction rates. Heterogeneous reactions form the basis of
solid fuel processes and produce the oxidising reactants for the gas-phase homogeneous
reactions to commence. The subsequent subsections discuss these methodologies.

3.3.1 Heterogeneous reactions

The solid fuel combustion process comprises four sequential steps: heating, evapo-
ration/boiling, devolatilisation and char oxidation. The process is shown graphically in
Figure 3.2 and includes the homogeneous gas reactions that occur in parallel depending
on the availability of reactants and oxidiser.

Figure 3.2: Total combustion process schematic
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The solid fuel combustion steps are assumed to occur sequentially, meaning that
for the devolatilisation step to occur, all the moisture must be driven out of the particle.
The combustion process starts with the particles’ initial heating, attributed to the phe-
nomena of convection and radiation to/from the particle. Next, the particles are heated
to a temperature of 373 [K], at which point the moisture present in the particles begin
to evaporate at constant temperature, adding mass to the surrounding gas-phase. The
evaporation/boiling rate can be defined using a simple heat balance of the convective
(Q̇conv) and radiative (Q̇rad) heat transfer to the particle, which is expressed in Equation
(3.26) as:

dmevap

dt
=
Q̇conv + Q̇rad

hfg
(3.26)

where hfg is the latent heat of vaporisation.

The devolatilisation process follows with the ’volatiles’ present in the fuel being lib-
erated. The initialisation temperature of the devolatilisation process was found to vary
between 553−800 [K] for various coals by Ranade and Gupta [12]. Thus, particle heating
needs to ensue after the moisture evaporation to bring the particles to the initialisation
temperature.

The case studies of Sections 4.2 and 5.1 use devolatilisation temperatures of 773 [K]
and 553 [K], respectively, since vastly different coals are combusted for each study. The
works of Sankar et al. [8] discuss the two main types of devolatilisation models, namely
Arrhenius and phenomenological type models. The phenomenological models exhibit the
following advantages: predicting the tar and gas yields, nitrogen species yield and sec-
ondary pyrolysis reactions. However, the single-rate Arrhenius based models are generally
easier to implement and computationally inexpensive, as shown by Farokhi and Birouk
[77]. In the present work, the change in volatile mass of the fuel particles is calculated as
follows using an Arrhenius type model:

dmvol

dt
= Rvol(m0,vol −mvol) (3.27)

where Rvol [1/s], m0,vol [kg0,vol] and mvol [kgvol] are the Arrhenius rate, the initial volatile
mass of the particle before combustion, and the mass of volatiles released from the particle
during combustion, respectively. Rvol, is expressed in terms of the activation energy
(Ea,vol [J/kmol]) and pre-exponential factor (Avol [1/s]) specific to every coal and is
expressed as:

Rvol = Avolexp

(
−Ea,vol
RuTp

)
(3.28)

where Tp [K] is the particle temperature.
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A constant devolatilisation rate Rvol,cnst [1/s] can also be implemented when the
coal kinetic parameters are unknown; thus, a constant rate can be employed with the
change of volatile mass being formulated as [21]:

dmvol

dt
= Rvol,cnst(f0,volm0,vol) (3.29)

where f0,vol is the fraction of volatile matter initially present in the particle [21]. During
the devolatilisation process the particles tend to undergo swelling, which is caused by the
release of pressure due to the trapped volatile matter. To capture this phenomenon the
relationship defined in the ANSYS Fluent ® v19.5 theory guide [21] was employed using
a swelling coefficient of 1.4 for the case studies of Sections 4.2 and 5.1.

Char oxidation can commence following the complete release of volatiles from the
solid phase to the gas-phase. The diffusion-kinetics limited model of Baum and Street
[78] was used to model the surface combustion of the char. The model assumes that char
oxidation is influenced by the diffusion and kinetic rate of the oxidation process. The rate
of char oxidation rate can be expressed as follows:

dmc

dt
= −Ap

RcRdiff

Rc +Rdiff

P̃O2 (3.30)

where Ap [m2] and P̃O2 [Pa] are the particle surface area and partial pressure of the
oxygen surrounding the particle. The diffusion rate coefficient, Rdiff , is calculated as:

Rdiff =
5× 10−12

d̄p

(
Tp + Tg

2

)0.75

(3.31)

Furthermore, the chemical rate coefficient, Rc, is expressed in terms of an Arrhenius rate
as:

Rc = Acexp

(
−Ea,c
RuTp

)
(3.32)

The char oxidation model can be configured to produce either species CO2 or CO.
Boyd et al. [79] show that for a product species of CO2, the heat absorbed by the particle
near the particle’s surface, due to the oxidation of char to CO, comes to a value of 30%.
On the other hand, using a product species of CO, the heat absorbed by the particle near
the particle surface comes to a value of 100%. The oxidation reaction is thus written as:

C(s) + 0.5O2(g) → CO(g) (3.33)

where the heat of reaction for the char burnout of Equation (3.33) is set to 1.01×107 J/kg
[1]. The volatiles from the devolatilisation and the CO produced from the char oxidation
reaction are released into the gaseous phase. Provided there is an oxidiser, a sufficiently
high temperature, and adequate mixing; these species will react and release heat into the
domain.
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3.3.2 Homogeneous reactions

Homogeneous gas reactions account for most of the heat released into the domain for
solid fuel combustion processes [8]. The gaseous species released from the heterogeneous
reactions described previously are given in Equation (3.34).

CxHyOzNmSn + iO2 → xCO +
y

2
H2O + nSO2 +

m

2
N2

i =
x

2
+
y

4
+ n− z

CO + 0.5O2 → CO2

(3.34)

where CxHyOzNmSn is the pseudo volatile species released into the domain. The rate of
gas-phase reactions is a function of the Arrhenius rates of the chemical reactions and the
turbulent-chemistry interactions.

Two main approaches are used to model the gas-phase reactions in solid fuel sys-
tems [8]: fast reaction assumption models and the detailed chemical kinetic models. The
Eddy-dissipation concept (EDC), as proposed by Magnussen [80], forms part of the de-
tailed kinetic model and solves the chemical kinetic differential equations in the fine cell
structure regions of each cell, making the EDC model very computationally expensive.
The EDC model has been successfully used in predicting the pollutant emissions such as
CO and NOx for both biomass and CFPP boilers ([81],[82]).

According to Sankar et al. [8], the turbulent mixing time scales found in CFPP
furnaces are typically much larger than the chemical kinetic time scales. In addition, the
chemical gas-phase reactions occur at a rapid rate. Thus, the use of the EDC model was
not utilised in modelling the homogeneous reactions. Furthermore, fast reaction models
have been used successfully in modelling the gas-phase reactions found in boilers since
the time scale of the chemical reactions are much smaller than the turbulent mixing time
scales ([13],[83]). Thus, the chemical kinetic rates can be neglected, and the fast reaction
chemistry can be assumed. The eddy dissipation model (EDM) proposed by Magnussen
et al. [84] is based on the consideration of the reaction rate to be dependent on the mean
species concentration instead of the species fluctuation as in the Eddy-break up (EBU)
model of Spalding [85].

ANSYS Fluent ® v19.5 provides the finite rate/eddy dissipation model (FR/EDM),
which is used in the current study. It calculates the turbulent chemical reaction rate
in relation to the dissipation/mixing time scales of the products and reactants, which in
turn is used to determine whether the combustion reaction is kinetically limited or mixing
limited. The FR/EDM model can predict the distributions of the average temperature
and major species reasonably well, which are necessary to adequately resolve the various
heat transfer phenomena experienced in a utility-scale boilers heat exchanging surfaces.
However, the predictions of pollutants such as CO and NOx are deemed unacceptable,
as indicated by Farokhi et al. [77].
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The FR/EDM model calculates three rates, namely the chemical Arrhenius rate of
the reaction (Rr), the rate of turbulent production eddies (Rk,r,P ) and the rate due to
the dissipation of reaction eddies (Rk,r,R). The smallest of the three is used as the net
production of species into the domain. The finite rate model is crucial as it acts as a kinetic
switch in combustion systems near fuel and oxidiser inlets [21]. However, in the absence
of fuel-specific kinetic characteristics, the EDM model has exhibited adequate resolution
of pulverised fuel combustion. The reaction rates are expressed below in Equations (3.35)
through (3.37):

Rr = Arexp

(
−Ea,r
RuTg

)[
ϑ
′

k,r − ϑk,r
]∏

L

[Cl,r]
m,r (3.35)

Rk,r,P = ϑk,rMw,kABρ
ε

k
min

( ∑
p Yp∑

j ϑj,rMw,j

)
(3.36)

Rk,r,R = ϑk,rMw,kAρ
ε

k
min

(
YR

εR,rMw,R

)
(3.37)

In Equation (3.35), ϑk,r is the stoichiometric coefficient of reactant k in reaction r,
[Cl,r]

m,r is the molar concentration of species l in reaction r with a rate exponent of m.
In Equations (3.36) and (3.37), Yp is the mass fraction of any product species, YR is the
mass fractions of any reactant species, A and B are model constants, while Mw,j is the
molecular weight of the jth species. According to Sankar et al. [8], the failings of the fast
chemistry assumption-based models is the drawback of only using a single or two-step
chemical reaction mechanism, making the model unsuitable for multi-step reactions. In
the present work, the focus is not on the formation of pollutants. Thus, the use of the
FR/EDM model was deemed acceptable.
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3.4 Radiative heat transfer modelling

Solid fuel combustion systems incorporate the three fundamental modes of heat
transfer, namely, radiation, convection, and conduction, which can all occur simultane-
ously [86]. In solid fuel furnaces, radiation heat transfer accounts for a large portion of heat
absorption by the combustion chamber walls [42]and thermal energy transport through
the gas-particulate dispersion volume. Therefore, modelling the gaseous and particle heat
transfer interactions due to radiation is an essential aspect of any solid fuel combustion
process to accurately represent reality. The radiation transport between the gas, particles
and heat exchanger surfaces is solved by applying the radiation transport equation (RTE),
which is shown in Equation (3.38) for a gray-participating gas and particle medium [87].

dI(r, ω)

ds︸ ︷︷ ︸
Radiation intensity

= αgIb︸︷︷︸
Gas emission

+ αpIb,p︸ ︷︷ ︸
Particle emission

− (αg + αp + σp)I(r, ω)︸ ︷︷ ︸
Absorption and scattering losses

+
σp
4π

∫
4π

I(r, ω)Φdω︸ ︷︷ ︸
Internal scattering

(3.38)

where dI(r, ω) [W/m2sr] is the radiation intensity at position r and in direction ω, Ib is
the intensity of radiation emitted by a black body, αg [1/m] is the overall gas absorption
coefficient, αp [1/m] is the particle absorption coefficient, and Φ is the phase function.
Assuming isotropic scattering the phase function tends to zero.

Figure 3.3: Radiative heat transfer attenuation contributions

Figure 3.3 graphically highlights the attenuation effects that the right-hand side
terms of Equation (3.38) have on a radiative beam passing through a gas and particle-
laden domain in the path length ds.
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3.4.1 Radiation numerical models

The exact solution of the RTE for radiative heat transfer in solid fuel combustion
systems is not available ([88] and [89]). The main approximate approaches include either
a statistical, zonal, or flux method. Statistical methods offer the most accurate method
for simulating radiation. However, it is computationally expensive compared to zonal
and flux methods. The Hottel zone method [90] uses multiple zones in the computational
domain with uniform temperature and radiation properties, with the radiation heat ex-
change being estimated based on direct exchange areas. Flux methods assume that the
radiation intensity is uniform over discrete intervals of the solid angle. This assumption
allows the transformation of the RTE (Equation (3.38)) from its integro-differential form
to that of a differential form. This differential form can easily be resolved in a CFD
framework making the flux methods the most popular approach when modelling solid
fuel combustion systems [8].

Approximate methods, such as the P-1 harmonics series and Discrete Ordinates
(DO) method (a flux model), have been widely used in modelling solid fuel combustion
furnaces. The DO method solves the RTE for a finite number of discrete solid angles, each
associated with a direction vector, and has been used by researchers to accurately resolve
the radiative field in utility-scale boilers [27, 91]. However, the added transport equations
increase the computational burden. The P-1 radiation model is the simplest approxima-
tion of the P-N model, which is based on expanding the local radiation intensity in terms
of orthogonal series of spherical harmonics [87]. The P-1 model is considered suitable for
systems with a large optical thickness and has been used successfully for modelling solid
fuel systems, as in the works of Asotani et al. [92], Blackreedy et al. [93] and Sazhin et
al. [94]. Both models are popular in pulverised fuel systems since the models can account
for particulate effects and conform to control volume formulations [12].

The present study makes use of the P-1 radiation model due to its computational effi-
ciency when compared to the DO method ([94] & [34]). Ranade and Gupta [12] illustrated
minimal differences between the two radiation models (P-1 and DO) for the resultant wall
heat transfer rate when modelling a 210 [MWe] CFPP boiler. The P-1 transport equation
for modelling gray radiation along with the particulate effects is written as follows:

∂

∂xi
(Γp

∂

∂xj
G) = (αg + αp)G− 4π

(
αg
σSBT

4
g

π
+ Ep

)
Γp =

1

3(αg + αp + σp)

(3.39)

where G [W/m2] is the incident radiation flux, σSB [W/m2K4] is the Stefan-Boltzmann
constant, and Ep [W/m3] is the equivalent emissive power of the particles. Scattering due
to the gas-phase (σg) is assumed negligible compared to particle scattering effects [95].
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3.4.2 Gas radiative effects

Using the gray gas assumption, the gaseous mixture absorption coefficient (αg) is
calculated using the domain-based weighted-sum-of-gray-gases-model (WSGGM). This
model captures the radiative effects of the tri-atomic gas species CO2, H2O, and SO2,
produced from the homogeneous gas reactions. The WSGGM assumes that total emis-
sivity can be evaluated as follows [88, 96]:

εg =
I∑
i=0

aε,i(Tg)
[
1− exp(−κiP̃mLmb)

]
(3.40)

where aε,i denotes the emissivity weighting factors for the i-th gray gas, κi 1/mPa is the
i-th gray gas absorption coefficient, P̃m is the partial pressure of the mixture, and Lmb [m]
is the mean beam length. The work of Smith et al. [96] is used to obtain the values for
aε,i and κi. The values of the emissivity weighting factors depend on the gas temperature
and can conveniently be written as a polynomial function of order (J−1), which is shown
in Equation (3.41).

aε,i ≈
J∑
j=1

bε,i,jT
j−1
g (3.41)

where bε,i,j are the polynomial emissivity coefficients. By calculating the emissivity using
Equation (3.40), the gaseous absorption coefficient can be estimated using the following
correlation.

αg ≈
ln(1− εg)
Lmb

(3.42)

where Lmb [m] is the mean beam length.

3.4.3 Particle radiative effects

The particle radiative effects are defined by the equivalent emission (Ep), absorption
coefficient (αp) and scattering coefficient (σp). These parameters, as described by Modest
[88], are subsequently defined in Equations (3.43) through (3.45) as:

Ep = lim
V→0

N∑
n=1

εp,nAproj,nσSBT
4
p

πV
(3.43)

αp = lim
V→0

N∑
n=1

εp,nAproj,n
V

(3.44)

σp = lim
V→0

N∑
n=1

(1− εp,n)(1− fp,n)
Aproj,n
V

(3.45)

where εp,n, Aproj,n [m2] and fp,n are the emissivity, projected area and scattering factor of
a particle n.
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The parameters εp,n, Aproj,n and fp,n are calculated using a Lagrangian approach,
where the summation of particles (N) present in a volume is computed during particle
tracking of the dispersed phase. However, this work uses a Eulerian approach to resolve
particle dispersion and radiation transport. The necessary Eulerian transformations will
be presented in the next chapter.

The particle emissivity and scattering factor values are typically set to constant
values of 0.9 and 0.6, respectively, as seen in the works of Yang et al. [97] and Guo
et al. [98]. However, conversion-dependent formulations, developed by Lockwood et al.
[26] and Yin et al. [27], have been successfully implemented by researchers Laubscher
and Rousseau [29]. Their findings highlighted the impact particle radiative properties
have in resolving wall heat fluxes and radiation transfer, with the particle properties
overwhelming gaseous radiation in pulverised fuel combustion systems. The formulations
for both emissivity and the particle scattering factor are defined in Equations (3.46) and
(3.47) as:

εp,n = 0.4UC + 0.6 (3.46)

fp,n = 0.9UVM,C + 0.6(1− UVM,C) (3.47)

where UC [kgC/kg] and UVM,C [kgVM,C/kg] are the fraction of unburned carbon and the
fraction of unburned combustibles (volatiles and carbon) present in the particle, respec-
tively.

One of the products of solid fuel combustion is ash, which is the solid inert residue
left over after the oxidation processes are completed. Ash is classified as either bottom
or fly ash. Bottom ash is collected in the hopper of a furnace and is characterised as
large and heavy particles, whereas fly ash are small particles carried along with the flue
gas through the boiler gas path. Typically, bottom ash makes up 10% to 20% ([8]), with
fly ash making up the difference. Fly ash plays an important role in radiation, for it
contributes to the radiative emission and impedes the transport of radiation to the wall
through scattering. Equations (3.46) and (3.47) aid in determining the radiative contri-
butions of fly ash particles in solid fuel combustion systems, as the fly ash particles will
contribute to the emission and scattering throughout the domain.

In addition, ash contributions can lead to slagging and fouling of heat exchanging
components. Both phenomena are essentially the same, with slagging referring to the
furnace section and fouling referring to the downstream heat exchanger components [42].
At a temperature above 1400-2000 [K] [24], ash particles tend to melt/soften, which lowers
the viscosity of the ash particles, which results in particles sticking to heat exchanger walls
and solidifying. This phenomenon creates an ash layer, which impedes heat transfer to
the working fluid. In addition, the ash layer also affects the surface emissivity, thereby
further degrading the radiative heat transfer to the walls [99]. Figure 3.4 illustrates the
heat transfer through an ash deposition layer found in most pulverised fuel furnaces and
heat exchanging components.
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Figure 3.4: Heat transfer through an ash layer wall

The modelling of a fouling/slagging layer is important to adequately resolve the heat
transferred to the walls of the heat exchanger components. Thermal resistance values in
the range of 0.0047− 0.015 [K/W ] are typically used when the thickness of the ash layer
is unknown [42]. Thus, the boundary conditions for a numerical study must include the
effects of an ash layer to account for the expected reduction in heat transfer to the walls.

3.5 Process modelling governing equations

Discretised, 1-D process models can capture the thermofluid response of a CFPPs
water/steam network consisting of multiple heat exchanger inner and outer fluid streams.
The inner fluid stream can consist of a two-phase mixture made up of water and steam,
whereas the outer fluid stream consists of a homogeneous mixture of combustion gases.
Thus, the modelling of the water-side and fire-side streams requires different formulations
of the governing equations, which are provided in the subsequent sections.
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1-D process models are computationally inexpensive and efficient [10] due to the
small number of solution variables and lower dimensional discretisation. Analysing these
thermal-fluid networks requires the numerical solution of the fluid dynamic and heat
transfer governing equations. The governing conservation equations are similar to those
discussed in Section 3.1; however, turbulence modelling is neglected and is rather included
by the use of turbulent friction factor correlations. Furthermore, a 1-D coordinate system
is used.

Figure 3.5: 1-D cylindrical control volume

Figure 3.5 illustrates a cylindrical 1-D control volume over distance δs, the 1-D
assumption states that the variables will change only in the flow direction, with the value
at any given point considered the average value across the cross-sectional area (Ain) of
the control volume [100].

3.5.1 Water-side modelling

Modelling the water-side component of heat exchangers found in CFPPs requires
the use of the homogeneous two-phase mixture approach, since water and steam can exist
in parallel due to the phase change phenomenon. Heat exchangers that exhibit this phe-
nomena are primarily the furnace evaporator walls and the downstream superheaters and
reheaters. The modelling approach assumes that the liquid and gas-phases are distributed
evenly over the cross-sectional area of the flow path and that the pressure, temperature,
and velocity of the phases are equal [100]. The homogeneous two-phase mixture approach
uses the mixture void fraction (ψ) and mixture density (ρM) which can be defined using
the densities of the liquid (ρL) and gas (ρG) phases and the thermodynamic quality/gas
mass fraction (x). The correlations are expressed in Equations (3.48) and (3.49).

ψ =
ρLx

ρLx+ ρG(1− x)
(3.48)

ρM = (1− ψ)ρL + ψρG (3.49)
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Applying the mixture density, the steady-state governing equations, written for a
1-D coordinate system, can be defined for mass, momentum and energy.

Mass conversation:

∂

∂s
(ρMAu) = 0 (3.50)

Momentum conservation:

1

A

∂

∂s
(ρMAu

2) = −∂P
∂s
− τWp

A
− ρMg

∂z

∂s
(3.51)

where τW [N/m2] is the shear stress accounting for frictional forces and p [m] is the
perimeter of the control parameter. Finally, the energy conservation equation is written
as:

1

A

∂

∂s
(ρMAuhM) +

1

2A

∂

∂s
(ρMAu

3) =
Q̇w

V
− gρMu

∂z

∂s
(3.52)

where hM and Q̇w are the effective mixture enthalpy and control volume heat additions,
respectively. The effective mixture enthalpy is defined using the thermodynamic quality
and is shown in Equation (3.53).

hM = hL(1− x) + xhG (3.53)

Heat additions to the control volume would be transferred either by conduction,
convection, or radiation. The water-side network of an integrated/coupled model typ-
ically has a heat flux coming into the control volume, which incorporates the gas side
convective and radiative effects. Thus, conduction through the tube walls and internal
forced convection must be considered when the input fluxes are known. Components that
require external convection and radiation heat transfer are further discussed in Chapter
4. Conduction is a mode of heat transfer where no bulk fluid motion is present and is
commonly found in solid materials. The amount of heat conducted through a solid ma-
terial of thickness dx and a surface area As, can be defined in differential form as follows:

Q̇cond = −λAs
dT

dx
(3.54)

This formulation is known as Fourier’s law of heat conduction [86]. Convection heat
transfer, as with conduction, requires the presence of a material medium but differs in its
requirement of fluid motion to be present. Convection can be described as either forced
(external or internal) or natural, with the latter being neglected in this discussion. The
rate of heat transfer due to convection can be written using Newton’s law of cooling [86],
expressed as:

Q̇conv = h̃As(T − T∞) (3.55)

where h̃ [W/m2K] is the convective heat transfer coefficient. Convective heat transfer
correlations are derived using empirical data and non-dimensional analysis of the heat
transfer coefficient, with the Nusselt number being defined as:

Nu =
h̃convLc
λ

(3.56)
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where Lc is the characteristic length. The Nusselt number represents the enhancement of
heat transfer through a fluid layer as a result of convection relative to conduction across
the same layer [86].

The internal forced convection coefficient for a cylinder can be expressed either using
the popular Dittus-Boelter [101] equation or the more complex Gnielinski [102] equation.
The expressions are given in Equations (3.57) and (3.58), respectively.

The Dittus-Boelter correlation is written as follows:

h̃ =
NuDBλ

dh
=

λ

dh
0.023Re0.8Prn (3.57)

where for the heating of a fluid n=0.4 and cooling of a fluid n=0.3. The Gnielinski
expression is written as follows:

h̃ =
NuGλ

dh
=

λ

dh

0.125f̃(Re− 1000)Pr

1 + 12.7(0.125f̃)0.5(Pr0.666 − 1)
(3.58)

where dh [m] and f̃ are the hydraulic diameter and friction factor, respectively.

3.5.2 Fire-side modelling

The solution of the fire-side or flue gas path in a CFPP can be solved by means of
the single phase governing equations for 1-D flow regimes. Thus, the steady-state govern-
ing equations are written for the mass, momentum, and energy, with flue gas modelled as
an incompressible gas.

Mass conservation:

∂ρu

∂s
= 0. (3.59)

Momentum conservation:

∂Po
∂s

=
∂Po,M
∂s

− fρ|u|u
2dh

(3.60)

where Po [Pa] and Po,M [Pa] are the stagnation pressure and the pressure loss due to
machine work, respectively. Finally, the energy equation can be written as:

∂ρuho
∂s

+ ρgu
∂z

∂s
= Q̇− Ẇ (3.61)

where ho [J/kg] is the stagnation enthalpy of the flue gas mixture.
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In a CFPPs furnace, heat transfer to the waterwall is mainly comprised of radiation
with only about 5% of the total energy being transferred via convection [42, 103]. How-
ever, heat exchangers downstream of the furnace experience an increase in the convective
heat transfer the further away the heat exchanger is from the flame ball [104]. Convective
heat transfer to the external tube surfaces can be described using Equation (3.55), with
the heat transfer coefficient being defined for forced external flow. The downstream heat
exchangers are typically made up of tube banks which can either conform to an in-line or
staggered arrangement.

An in-line tube arrangement is usually preferred over a staggered tube arrangement
for solid fuel systems to minimise fly ash particles from fouling and impacting the down-
stream heat exchangers [103]. The current work makes use of the Zukauskas [105] Nusselt
number correlations for in-line tube arrangements. The correlations have the following
form:

h̃ =
NuZλ

dh
=

λ

dh
CRemDPr

n(
Pr

Prs
)0.25 (3.62)

where C, m, n are constants dependent on the Reynolds number. Prs is Prandtl num-
ber evaluated at the surface temperature. The Reynolds number ReD is based on the
maximum velocity, which for an in-line arrangement is written as:

umax =
ST

ST − d
u (3.63)

where ST [m], d [m] and u [m/s] are the transverse pitch, the pipe diameter, and the
approach velocity, respectively. The subsequent 1-D process components of the case stud-
ies, found in Chapters 5 and 9, used the correlations of Equations (3.58) and (3.62) for
determining the internal and external convective heat transfer coefficients, respectively.
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Chapter 4

Numerical model development

This section aims to describe in detail the developed numerical CFD model. The
CFD model uses a Eulerian representation for both the gas and particulate phases. The
discussion focuses on the key differences between the developed model in relation to
conventional CFD modelling. The key differences that will be elaborated on are listed as
follows:

• The pseudo-particulate (Eulerian solid phase) interactions with the fluid phase con-
cerning momentum transport.

• The resolution of the pseudo-particle transport through the domain.

• Combustion of the solid phase and the subsequent fluid phase interactions.

• Radiation modelling that includes the pseudo-particulate interactions.

Subsequently, a validation case study of a 2.165 [MWth] pulverised fuel swirl burner
utilising the developed CFD model is presented and discussed. This case study illustrates
the developed models’ performance in terms of the computational time, multiple load
validations and accuracy of key parameters. Figure 4.1 highlights the content that is
discussed and indicates the research objectives addressed in this chapter for the readers
convenience.

Figure 4.1: Content overview and research objectives addressed in Chapter 4
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4.1 Multiphase modelling

The proposed EE model employs a reference frame whereby the gas and solid phases
are assumed to be in an inter-penetrating continuum. The solid phase is best understood
as a pseudo-particle component of the gas mixture modelled using scalar transport fields.
Furthermore, the assumption of mechanical equilibrium is introduced, implying that the
local mean velocities of the gas-phase and pseudo-particles are assumed to be the same
(i.e. ūg ≈ ūp), except for the calculation of convective heat transfer to or from the gas
to the particulate phase. This will be elaborated on in Section 4.1.3. The simulation
procedure is greatly simplified by introducing the assumption of mechanical equilibrium,
with only a single set of momentum equations needing to be solved.

This assumption has been used by other researchers. Knaus et al. [35] and Schnell
[106] employed an EE approach for full-scale boilers and pulverised fuel burners with
adequate results being obtained. Benim et al. [36] further simplified the modelling ap-
proach by assuming thermal equilibrium with adequate results being obtained for the
various test cases. Custom code needed to be developed to implement the above in AN-
SYS Fluent® v19.5 for the scalar transport, combustion reactions, mass transfer and
heat transfer. The custom code interfaced with the commercial CFD solver through the
Fluent® User-Defined Function (UDF) interface.

4.1.1 Governing equations

The gaseous mixture is modelled using the species transport approach, where a
separate conservation equation is solved for each mixture component (i.e. H2O, CO2,
O2, SO2 and CO). The governing equations are approximated using the steady-state
Reynolds-averaged conservation equations for mass, species, energy, momentum and tur-
bulence closure equations, discussed in Chapter 3. However, the energy and momentum
equations have additional source terms that capture the pseudo particulate effects.

The fluid-solid mixture density is calculated using the ideal gas equation. However,
the formulation of the momentum transport equation an effective density (ρeff ) is used
that incorporates the pseudo-particle mass effects. Thus, the momentum conservation
equation solved for the gas-solid mixture is given in Equation (4.1).

∂

∂xi
(ρeffuiuj) +

∂P̄

∂xj
=

∂

∂xi

[
(µl + µt)

{
∂uj
∂xi

+
∂ui
∂xj
− 2

3
δij
∂ui
∂xi

}
− 2

3
ρgkδij

]
+ Smom (4.1)

The effective density is used to capture the translational inertial effects that would
arise due to the drag of the pseudo-particles on the fluid phase flow regime and is written
as:

ρeff =
ρρp(φmp + 1)

ρφmp + ρp
(4.2)

where ρp and φmp are the particle density and mass fraction of particles in a cell, respec-
tively.

38



Part I of II Chapter 4. Numerical model development

To achieve the corrected momentum expression of Equation (4.1), linearised source
terms of the form given in Equation (4.3), are implemented using user-defined sources for
each coordinate direction.

Smomx = (ρg − ρeff )(A+Bu)

A = 2u
∂u

∂x
+ v

∂u

∂y
+ u

∂v

∂y
+ w

∂u

∂z
+ u

∂w

∂z

B =
∂A

∂u
= 2

∂u

∂x
+
∂v

∂y
+
∂w

∂z

(4.3)

Complete derivations of the effective density and the linearised source terms for all
coordinate directions are provided in Appendix A.

4.1.2 Pseudo-particle transport

The pseudo-particles transported into the domain are modelled using a scalar field of
necessary quantities and distributed over the computational domain. The pseudo-particle
scalar fields define the fuel based on its proximate analysis composition. The proximate
analysis provides an estimate of the fuel sample’s moisture, volatile matter, fixed carbon
and ash contents. The diffusion terms are neglected since the scalar variables involve very
small Peclet numbers. In addition, the scalars can be seen as passive scalars since the
inertial effects have been accounted for [107]. Table 4.1 lists the scalar fields used in the
solution of the pseudo-particle phase along with the solved scalar transport equations.

Table 4.1: Pseudo-particle scalar fields per kilogram of the continuous phase

Scalar Description Unit Transport equation

φmp0 Original/initial mass of particles kgfuel/kg
∂
∂xi

(ρguiφmp0) = 0

φH2O Moisture present in particles kgH2O/kg
∂
∂xi

(ρguiφH2O) = 1
V

dmevap
dt

φVM Volatile matter present in particles kgVM/kg
∂
∂xi

(ρguiφVM) = 1
V
dmvol
dt

φFC Fixed carbon present in particles kgFC/kg
∂
∂xi

(ρguiφFC) = 1
V
dmc
dt

φASH Ash present in particles kgASH/kg
∂
∂xi

(ρguiφASH) = 0

φhp Enthalpy of particle J/kg Equation (4.4)

The particle concentration transport is captured via the scalar transport equations
of Table 4.1, whereby the summation of the scalar variables, namely the moisture, volatile
matter, fixed carbon and ash contents, allow for the resolution of the actual average mass/-
particle concentration throughout the domain.

The particles’ energy transport is accounted for with the scalar variable (φhp), rep-
resenting the enthalpy of the particles. The transport of (φhp) provides a mechanism for
resolving the particle temperature throughout the domain, allowing for the combustion
processes and the particulates’ radiative effects to be captured. The particulate phase
energy balance is given in Equation (4.4).
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∂

∂xi
(ρuiφhp) =

(
fheat

dmc

dt
hrxn + Q̇rad + Q̇conv −

dmevap

dt
hfg

)
1

V
(4.4)

where hrxn, hfg, Q̇rad and Q̇conv are the heat of reaction due to char oxidation, the latent
heat of evaporation, and the radiative and convective heat transfer to the particulate
matter, respectively. The fraction of heat absorbed by the particulate matter from the
char oxidation process is represented by the variable fheat, where the near-surface char
oxidation product species is CO, fheat = 1 [79].

The terms dmc
dt

and dmevap
dt

denote the rate of char oxidation mass loss and rate of
moisture evaporation driven out of the particle. These terms are essential in resolving the
combustion phenomena, subsequently discussed in Section 4.1.4. In addition, by tracking
the enthalpy of the particles, the pseudo-particle’s temperature can be resolved by using
the expression for specific heat at constant pressure given in Equation (3.10). Thus, the
pseudo-particle temperature can be defined as:

Tp =
φhp

φmpcpp
+ Tref (4.5)

where variables φmp, cpp, and Tref are the tracked particle mass in a cell, the particle spe-
cific heat, and the standard reference state temperature of 298.15 [K]. The importance
of knowing the particle temperature becomes apparent in Section 4.1.4 when determin-
ing the combustion procedure and moves the model away from the thermal equilibrium
assumption.

4.1.3 Turbulent dispersion of particles

The inclusion of particle dispersion due to local turbulence perturbations from the
fluid phase increases the effects of convective heat transfer to and from the pseudo-
particles. The local turbulent perturbations introduce a local slip factor between the
gas and the pseudo-particle. With the assumption of mechanical equilibrium and turbu-
lent flow, the turbulent dispersion of particles is either modelled as a stochastic or as a
’cloud’ representation of a group of particles about a mean trajectory. The turbulent dis-
persion of the pseudo-particles is modelled using a stochastic modelling approach, namely
the discrete random walk (DRW) model.

The DRW model includes the effect of turbulent velocity fluctuations using a Gaus-
sian distributed random velocity fluctuation (u′, v′ and w′). These values obey a Gaussian
probability distribution, such that the velocity fluctuation can be written as follows:

u′ = ζ
√
ū′

2
(4.6)

where ζ is a normally distributed random number, and the remainder of the right-hand
side is the local RMS value of the velocity fluctuation [21]. With the turbulent kinetic
energy, k, known at each point in the flow and assuming isotropy, the RMS fluctuating
components can be written as:√
ū′

2
=
√
v̄′

2
=
√
w̄′

2
=

√
2k

3
(4.7)
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The use of Equations (4.6) and (4.7) results in a slight deviation from the mechanical
equilibrium assumption, allowing the model to include the effects of velocity fluctuations
on convective heat transfer to the pseudo-particle. External convection occurs between
the particles and the continuous phase in solid fuel combustion systems. This convec-
tive heat transfer component contributes to the pseudo-particle’s inert heating/cooling
effects needed to initiate the combustion modelling sequence. A popular correlation for
determining the external convection heat transfer coefficient to a sphere was proposed by
Marshall and Ranz ([108],[109]) and is given in Equation (4.8) as:

NuMR =
h̃MRd̄p
λg

= 2.0 + 0.6Re
1
2
dPr

1
3 (4.8)

where h̃MR and Red is the external heat transfer coefficient, and the Reynolds number
is based on the area-weighted average particle diameter (d̄p) and the mean velocity. The
mean velocity (ū) is based on the dispersed turbulent velocity fluctuations (refer to Equa-
tions (4.6) and (4.7)) for a cell and is derived as:

ū =

√
2k

3
(ζ2
u + ζ2

v + ζ2
w) (4.9)

where ū and the ζi values is the mean velocity and the normally distributed random values
for each coordinate direction, respectively. Making use of Equations (4.8) and (4.9), the
convective heat transfer source term from gas to particle and vice versa is written as:

Q̇conv = h̃MRApNp(Tp − Tg) (4.10)

where Ap is the surface area of a spherical particle, and Np is the number of pseudo-
particles present in a cell, further discussed in Section 4.1.5. By considering the average
convective heat transfer coefficient, particle thermal conductivity, and the average par-
ticle’s characteristic length, the Biot number was calculated to be lower than the 0.1
threshold, making the proposed methodology suitable for lumped parameter analysis.

4.1.4 Combustion modelling

As discussed in Section 3.3.1, the modelling of solid fuel combustion, i.e. het-
erogeneous reactions, follows a sequential procedure. Figure 4.2 illustrates the general
combustion process from inert heating/cooling of the particles, moisture evaporation, de-
volatilisation and char oxidation. The volatiles and carbon monoxide products from the
devolatilisation and char oxidation processes would react in the gas-phase domain, as
discussed in Section 3.3.2.

The description of the overall combustion process is implemented by using the
pseudo-particle scalar fields of Section 4.1.2 and the pseudo-particle temperature. The
effect of moisture vaporisation is ignored due to the rapid heating of the particles once
the secondary air stream mixes with the fuel particles.
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Figure 4.2: Combustion schematic

The realisation of the boiling temperature would initiate moisture release based on
a boiling/evaporation rate, which can be derived from Equation (4.4) by assuming that
the particle temperature remains constant once boiling has been initiated and until all
the moisture is driven off, resulting in the formulation given in Equation (4.11).

dmevap

dt
hfg = Q̇rad + Q̇conv. (4.11)

Equation (4.11) shows that the boiling rate is determined by the radiation and
convection heat transfer rates to the particle. The convective heat transfer (Q̇conv) to the
particle matter present in a cell was given by Equation (4.10). The particle radiative heat
transfer is calculated using the following formulation:

Q̇rad = εpσSBAp

(
G

4σSB
− T 4

p

)
(4.12)

where εp and the term G
4σSB

are the particle emissivity and radiation temperature, respec-
tively.

The subsequent devolatilisation and char oxidation processes are determined using
Equations (3.27) and (3.30), respectively, provided the kinetic characteristics of the fuel
are known. The numerical implementation required the extensive use of user-defined
source terms and scalars to account for the energy, species, mass, and radiation interac-
tions due to the solid fuel combustion phenomena.
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4.1.5 Radiation modelling

Including the effects that the pseudo-particles have on the radiative field requires
manipulating the P-1 radiation transport equation and homogenised formulations of the
particles’ radiative properties. Thus, the following section aims to derive the radiative
source terms employed to incorporate the pseudo-particulate effects.

The energy conservation can be explicitly written to include the thermal radiation
source term −∂qr

∂xi
as follows:

∂

∂xi
(ui[ρE + P ]) =

∂

∂xj

[
λeff

∂Tg
∂xj

+ ρu
′
jE
′ + uiτeff

]
− ∂qr
∂xi

+ Sh (4.13)

The transport equation for the incident radiation flux (G) in the default P-1 model
utilised by ANSYS Fluent® v19.5 for the gaseous phase (excluding particles) is given by:

∂

∂xi
(Γg

∂

∂xj
G) = αgG− 4αgn

2σSBT
4
g + Srad

Γg =
1

3(αg + σg)
≈ 1

3αg

(4.14)

where Srad is the user-defined radiative source term, n is the refractive index of the
medium, σg is the gas-phase scattering coefficient, and C is the linear anisotropic phase
function coefficient. Assuming isotropic scattering (equally likely in all directions) the
linear anisotropic phase function coefficient tends to a value of zero (C → 0). The
coupling between the P-1 radiation model (Equation (4.14)) and the Eulerian gaseous
phase energy conservation equation (Equation (4.13)) (excluding particles) is given by:

−∂qr
∂xi

= αgG− 4αgn
2σSBT

4
g (4.15)

When implementing the homogenised Eulerian solid-phase model, the application of
these default models needs careful consideration. The effect of the particles on the incident
radiation field must be accounted for without actually having a separate dispersed phase
of particles present. When particles are present, ANSYS Fluent® v19.5 ignores scattering
in the gas-phase (i.e. σg ≈ 0) and solves the alternative transport equation for the incident
radiation as given in Equation (3.39) of Section 3.4.1. For the readers’ convenience, the
equations are rewritten below as:

∂

∂xi
(Γ

∂

∂xj
G) = (αg + αp)G− 4π

(
αg
σSBT

4
g

π
+ Ep

)
Γp =

1

3(αg + αp + σp)

(4.16)

The gaseous phase P-1 model (Equation (4.14)) can be manipulated using a user-
defined radiative source term to include the particle effects. The radiative source term
can be written as follows:

Srad =
∂

∂xi

(
αp + σp

3αg(αg + αp + σp)

∂G

∂xi

)
+ αpG− 4πEp. (4.17)
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Although this manipulation is valid, it leads to a non-trivial source term formulation
for the solution of the G field. Therefore, an alternative approach is followed in the
present model that leads to a more convenient source term formulation. In the alternative
approach, the value of αg is expanded to include the particle absorption and scattering
coefficients as follows:

αg = αg + αp + σp. (4.18)

Γg is therefore effectively redefined for a homogenised gaseous and particle-laden medium
(Γp) by the substitution of Equation (4.18)

Γp = Γg ≈
1

3αg
≈ 1

3(αg + αp + σp)
. (4.19)

This manipulation adds additional unwanted terms to the RHS of Equation (4.14). To
compensate for this the source term (Srad) can now be defined as,

Srad = 4(αg + σp)σSBT
4
g − σpG− 4πEp (4.20)

This convenient formulation of Srad implies that by solving the default P-1 incident
radiation field model for the gaseous phase in ANSYS Fluent® v19.5 (Equation (4.14)),
we are effectively solving the alternative transport equation (Equation (4.16)) that in-
cludes the effects of the particles.

However, this more convenient formulation of the source term formulation (Equation
(4.20)) leads to a new issue related to the coupling between the P-1 model and the
continuous phase energy equation. The expanded value of αg in Equation (4.18) implies
that the default coupling given by Equation (4.15) will now effectively lead to a radiation
source term in the energy equation that contains unwanted terms, namely:

−∂qr
∂xi

= (αg + αp + σp)G− 4(αg + αp + σp)n
2σSBT

4
g . (4.21)

Furthermore, we want to provide for thermal non-equilibrium with different gas
and particle temperatures. Therefore, the aim is to employ the continuous phase energy
equation to solve the gas temperatures only and then solve an additional separate en-
ergy equation for the particle temperatures with the interaction between the two phases
controlled via appropriate source terms. To cancel out the unwanted terms in Equation
(4.21) and to explicitly account for the convection heat transfer, of Equation (4.10), the
Sh source term of the energy equation shown in Equation (4.13) should be:

Sh =
[
4(αp + σp)n

2σSBT
4
g − σpG

]
−
[
Np

V
h̃MRAp(Tg − Tp)

]
. (4.22)

where Np is defined as the number of pseudo-particles in a cell and Ap is the surface area
of a particle.

Utilising the φmp0 scalar field, as described in Table 4.1, Np can be calculated based
on the average volume-weighted diameter (d̄pV ) of the particles as follows:

Np =
6ρgφmp0V

ρpπd̄3
pV

. (4.23)
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The gas density (ρg) and particle density (ρp) are needed for the closure of Equation
(4.23). It is noted that the use of the average volume-weighted diameter will subsequently
affect the calculation of the projected area of the pseudo-particles, which leads to an aver-
aging effect of pseudo-particle radiative properties. An increase in the effective radiative
heat transfer area is accounted for by considering the area-weighted average diameter of
the Rosin-Rammler particle distribution when calculating the pseudo-particles’ radiative
properties, namely Ep, αp and σp.

The equivalent Eulerian descriptions of the terms Ep, αp and σp, as first seen in
Equations (3.43)-(3.45) of Section 3.4.3, are given in Equations (4.24) through (4.26).

Ep = lim
V→0

N∑
n=1

εp,nAproj,nσSBT
4
p

πV
≈
εpAprojNpσSBT

4
p

πV
. (4.24)

αp = lim
V→0

N∑
n=1

εp,nAproj,n
V

≈ εp
AprojNp

V
. (4.25)

σp = lim
V→0

N∑
n=1

(1− εp,n)(1− fp,n)
Aproj
V
≈ (1− εp)(1− fp)

AprojNp

V
. (4.26)

where Aproj is the projected area of the pseudo-particles.

The Lagrangian configuration (the LHS of the ≈ sign in Equations (4.24)-(4.26)) is
the summation of the particles in a cell volume, whilst the Eulerian description (RHS)
makes use of the number of particles present in a cell, as discussed previously. By em-
ploying the Eulerian definitions of the particle radiation properties, it can be shown that
the Sh source term can conveniently be written as:

Sh = Srad −
Np

V
(Q̇rad + Q̇conv). (4.27)
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4.1.6 Numerical implementation

ANSYS Fluent® v19.5 was the CFD software package used to implement the de-
veloped simulation model. The source terms and scalar fields previously defined in this
chapter were implemented using user-defined functions (UDF) and user-defined scalars
(UDS). A UDF is a C function that is dynamically loaded with the ANSYS Fluent solver
to enhance the standard features [110]. Uses include adjusting computed values on a
per-iteration basis, initialising a solution and customising the source terms for either the
ANSYS Fluent transport equations or UDS transport equations. Figure 4.3 illustrates
the general iteration flow diagram for the pressure-based coupled solver utilised for all
CFD model simulations.

Figure 4.3: Pressure based coupled solver iteration flow diagram [110]

UDFs are defined using ’DEFINE’ macros provided by ANSYS Fluent. They are
coded using additional macros and functions and can access the ANSYS Fluent solver
data and perform other tasks [110].

The following support macros are used in solving the developed CFD methodol-
ogy, namely the ’DEFINE INIT’, ’DEFINE ADJUST’, and ’DEFINE SOURCE’. These
macros allow for the initialisation of any user-defined memory (UDM), variables and
scalars, the adjustment/modification of variables, and to specify custom source terms,
respectively. Note that the units of all source terms are of the form generation rate per
unit volume. For example, a source term for the continuity equation would have units of
[kg/m3] [110].
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4.2 Model validation & application

The following section emanates from the work presented by Rawlins et al. [111]. The
work presented the validation and application of the developed CFD methodology dis-
cussed in the previous sections, namely a fast thermal non-equilibrium Eulerian-Eulerian
(EE) multiphase model for a pulverised fuel combustor.

The International Flame Research Foundation’s (IFRF) 2.165 [MWth] lab-scale swirl
burner, burning pulverised coal, was the primary validation case study for the proposed
CFD modelling methodology. Detailed flame measurements were obtained from the works
of Peters and Weber [112], whose main objective was the implementation of a mathemat-
ical model for pulverised coal combustion. The measurements extracted from the paper
include the temperature, the chemical species concentrations, velocity measurements, the
heat uptake of the furnace and cooling coils, and the coal burnout at several locations in
the furnace.

The validation case study is for the lab-scale burner operating at 100% load. The
CFD model results are validated against experimental and numerical data. Using the
same modelling inputs, the numerical data results were also obtained from conventional
Eulerian-Lagrangian (EL) based CFD computations.

The application case study considers the low-load operation at 60% and 40%, which
are compared to EL simulation results illustrating the applicability of the model over
various load ranges. The following subsections describe the computational domain, model
inputs, the employed numerical strategy, and the results, both of the validation study and
the application case study.

Figure 4.4: IFRF Furnace No. 1 computational domain
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4.2.1 Computational domain

The geometric model is a quarter section representation of the IFRF burner and
comprises periodic boundary conditions located on the centre planes. Figure 4.4 illus-
trates the 3-D IFRF computational domain, highlighting the inlets, outlet, walls, and
periodic boundaries.

The final simulations were performed on a mesh consisting of 122,800 cells. To en-
sure mesh independence, simulations were also performed for meshes consisting of 84,300
and 280,000 cells. This was done for the developed CFD model and the EL modelling
approach. The wall fluxes, velocity and combustion characteristics were compared for
all three cases, and the 122,800-cell mesh was deemed acceptable for both modelling
approaches. Finally, a different mesh size of 650,000 cells was run to demonstrate the
developed CFD model speed-up capabilities compared to an EL modelling approach. To
ensure numerical stability, the aspect ratio was kept below 15, and mesh orthogonality
quality was kept above 0.15.

Figure 4.5: IFRF burner details alongside the axial and radial position schematic

Figure 4.5 shows the burner configuration and highlights the axial and radial probe
locations. These locations are measured from the plane that runs through the point (0,0),
known as the burner quarl exit plane.
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4.2.1.1 Model inputs & boundary conditions

The coal combusted in the furnace is a Saar coal, namely Gröttelborn hvBp, and is
fired with 22% excess air. The coal is injected into the primary air inlet of the burner,
with the secondary air being fed through the outer annulus. Figure 4.5 highlights the
secondary and primary air inlet annuli.

Table 4.2: Gröttelborn hvBp coal characteristics

Fuel constituent Fraction Unit
Ultimate analysis - (DAF) - -
Carbon 0.8036 kg/kgfuel
Hydrogen 0.0508 kg/kgfuel
Nitrogen 0.01445 kg/kgfuel
Oxygen 0.1217 kg/kgfuel
Sulphur 0.0094 kg/kgfuel
Proximate analysis - (Dry) - -
FC 0.543 kg/kgfuel
VM 0.374 kg/kgfuel
Ash 0.083 kg/kgfuel
Energy & coal kinetic characteristics Value
Net calorific value - (DAF) 32320 kJ/kgfuel
Devolatisation
Pre-exponential factor (Avol) [36] 1.5× 105 s−1

Activation energy (Ea,vol) [36] 7.4× 107 J/kmol
Char oxidation
Pre-exponential factor (Ac) [112] 0.002 kg/(m2sPa)
Activation energy (Ea,c) [112] 7.9× 107 J/kmol

The coal characteristics and the coal kinetic constants are shown in Table 4.2, with
the ultimate analysis and the net calorific value being determined on a dry-ash-free (DAF)
basis. The burner inlet boundary conditions for the 100%, 60% and 40% load cases are
shown in Table 4.3. Included are the inputs for the pseudo-particle transport Eulerian-
Eulerian models. An excess air value of 22% was used in the 100% case. Values of 32.5%
and 37.75% were calculated for the 60% and 40% load cases.

The secondary air inlet only transports air into the combustion chamber; thus, the
pseudo-particle scalar transport inputs (φmp0, φH2O, φVM , φFC , φASH and φhp) were all set
to 0. The volume-weighted and area weighted diameters were calculated as 45.0×10−6 [m]
and 47.2 × 10−6 [m], respectively. Other necessary boundary conditions, such as wall
temperatures and emissivity values, are available in the work of Peters and Weber [112].
However, the wall boundary conditions are kept the same for the simulated lower loads.
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Table 4.3: Burner inlet boundary conditions for simulated load cases

Loads
Primary air & fuel inlet 100% 60% 40% Unit
Coal mass flow rate (Dry) 263 158 105 kg/hr
Temperature 343 343 343 K
Mean axial velocity 23.02 15.11 10.51 m/s
φmp0 0.631 0.577 0.555 kgmp0/kg
φH2O 6.31× 10−5 5.77× 10−5 5.54× 10−5 kgM/kg
φVM 0.236 0.216 0.208 kgVM/kg
φFC 0.343 0.314 0.302 kgFC/kg
φASH 0.052 0.047 0.045 kgASH/kg
φhp 31231 28581 27493 J/kg
Secondary air inlet
Temperature 573 573 573 K
Mean axial velocity 43.83 28.75 19.93 m/s
Mean tangential velocity 49.42 32.41 22.56 m/s

4.2.1.2 Grid independence study

Three numerical grids of increasing size were generated for the IFRF quarter domain.
This was done for both the EL and EE model to illustrate grid independence for both
models. The mesh independence study focussed on operating the lab-scale burner at
100% MCR. A representative cell size , xmesh [m], for a 3-D domain was calculated using
Equation (4.28) defined as [113, 114]:

xmesh =

(
1

N

N∑
i=1

Vi

)1/3

(4.28)

where N is the number of cells in the domain and Vi is the cell volume of the ith cell.
Table 4.4 highlights the mesh refinement characteristics including the number of cells and
the calculated representative cell size x for each grid refinement.

Table 4.4: Mesh refinement characteristics

Mesh Cell count (N) Representative grid size (xmesh)
Coarse - M1 52279 0.0374 [m]

Medium - M2 122797 0.0283 [m]
Fine - M3 282746 0.0213 [m]

The reported key parameters of the mesh study are the mass-weighted average exit
temperature, total heat transfer rate to the furnace walls and the mass-weighted volume
fractions of CO2 and O2 at the exit of the domain. Table 4.5 shows the percentage change
of the key variables for each mesh refinement stage for both the EL and EE model.
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Table 4.5: Mesh refinement error percentage data for key parameters

EL model error % EE model error %
Key Variable M1 to M2 M2 to M3 M1 to M2 M2 to M3
Exit temperature 1.21 % 1.05 % 0.43 % 0.34 %
Total wall heat load 4.52 % 1.81 % 2.32 % 1.21 %
XCO2 0.33 % 0.18 % 0.37 % 0.15 %
XO2 0.26 % 0.15 % 0.23 % 0.16%

The exit molar concentrations of XCO2 and XO2 , given in Table 4.5, show a compa-
rable percentage change for both models highlighting a minimal change in the combustion
characteristics for mesh refinement stages. A higher percentage change in the first refine-
ment stage (M1 to M2) is reported for the EL model for the exit temperatures and total
wall heat, while the EE model establishes a far lower percentage change for the same mesh
refinement and key parameters. A further refinement from M2 to M3 highlights a signifi-
cant reduction in the percentage error for the EL models’ key parameters, especially when
considering the total wall heat, indicating a finer mesh is needed to adequately resolve
the furnace heat uptake.

Figure 4.6: Absolute total wall heat for the representative grid size of the refined meshes
M1 to M3

Figure 4.6 considers the total heat uptake against the representative grid size for
meshes M1 to M3. By considering a linear relationship it can be shown that for an
infinitesimally large mesh (M∞ as xmesh → 0) the absolute values of total wall heat for
the EL and EE model tend to values of 1.76 [MW ] and 1.75 [MW ], respectively. From
the above analysis the medium mesh (M2) was used for both the EL and EE modelling
methodology simulations.
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4.2.1.3 Numerical solution strategy

The current simulations were performed using the ANSYS Fluent® v19.5 pressure-
based solver. Pressure-momentum coupling was set to the SIMPLE technique, with mo-
mentum, energy and species equations discretised using the second-order upwind method.
The pressure equation was discretised using PRESTO!. This setup holds for both the pro-
posed EE and the detailed EL models. The difference arises between using scalar fields
in the EE configuration and using the discrete phase modelling (DPM) approach in the
EL setup. Scalar field equations were all solved using the first-order upwind method.
The discrete phase equations were solved every 25 fluid phase iterations. The number
of particles injected into the domain was set to 3800 particles. A validation run using
6000 particle injections was also run, with the results being sufficiently accurate when
compared to the 3800 particle injections model. Therefore, 3800 particle injections were
used for further EL simulations. To ensure a stable converged solution, the spatial dis-
cretisation for all fields was initially set to first-order upwind and solved for 500 iterations
before the discretisation order was increased. Then, the solution was run for a further
30000 iterations. For all simulation cases, 72 Intel® Xeon® 2.6 GHz cores were made
available by the Centre of High-Performance Computing in South Africa. For all cases,
the maximum mass conservation imbalance was 0.0054 [kg/s] for a total gas mass flow
rate of 0.9264 [kg/s] and a heat imbalance of 0.025 [MW ] for a total heat input of 2.165
[MW ]. The remaining fields were all solved until convergence was reached.

4.2.2 Validation results

The results of the validation case are further discussed in terms of the following:
momentum transport, temperature distributions, combustion characteristics (CO2, O2

and COppm), wall heat flux distributions and radiative properties.

Table 4.6: Measured and numerical key parameter result comparison

Key parameters Measured EL model EE model Unit
Outlet temperature 1310 1338 1333 K
Outlet COppm 30 28 25 ppm, (dry)
Outlet CO2 15.6 15.47 15.43 vol%, (dry)
Outlet O2 3.0 3.14 3.15 vol%, (dry)
Total wall radiative heat load 1280.0 1273.5 1289.3 kW
Heat input 2165.0 2206.1 2180.5 kW
Computational time − 10176 4850 s

Table 4.6 highlights the key parameter comparison between the measured data, the
EL model and the EE model. The outlet COppm values highlight the highest absolute
errors (approximately 12%) between the measured and numerical results. The EL is
expected to perform better in predicting the COppm due to its higher accuracy in tracking
the particle evolution through the combustion stages. Overall, the EE and EL model
results are within an approximate 7% absolute error between the measured values taken
from the works of Peters and Weber [112], excluding the outlet COppm concentrations.
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(a)

(b) (c)

Figure 4.7: 100% load temperature plots. (a) Centreline axial plot, (b) radial plot at an
axial location of 0.25 [m] from point (0, 0) (c) radial plot at an axial location of 0.85 [m]
from point (0, 0)

The axial and radial temperature distribution plots are provided in Figure 4.7 (a) to
(c), which compares the measured data to the EL and EE model predictions. The centre-
line temperature plot of Figure 4.7 (a) shows that the EE model correlates well with the
measurements, with the EL model underpredicting the temperature in the burner quarl
zone (located left of point (0,0), refer to Figure 4.5). The EE models radial temperature
plots of Figures 4.7 (b) and (c) show similar trends to the EL model. The agreement with
the measured data is comparable in the upper radial sections of Figures 4.7 (b) and (c)
when considering the EE and EL models.
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(a)

(b)

Figure 4.8: 100% load temperature contour plots. (a) Gas temperature and (b) particle
temperature

The gas and particle temperature contour plots of Figures 4.8 (a) and (b) illustrate
that the EE model can sufficiently resolve the trends compared to that of the EL model.
However, the EE model predicts a higher temperature in the burner’s quarl in comparison
to the EL model. A noticeable difference between the EE and EL model results is seen in
the area inside the burner quarl. This is primarily due to pseudo-particles of the EE model
adhering to the streamlines of the flow field, whilst for the EL model, the heavier particles
entering the quarl would break away from the streamlines due to their momentum, which
is correctly accounted for by the Lagrangian formulation. The deeper penetration of the
larger particles would lead to a higher CO2 formation occurring further into the combus-
tion chamber, as seen in Figures 4.9 (b) and (e). This highlights the near burner effects,
observed by Knaus et al. [35], where larger particles were noted to break away from the
no-slip (particle and fluid) condition and homogeneous mixture assumption. Considering
that the furnace wall flux distributions are a key parameter of this study, the error was
seen as acceptable.
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(a) (b) (c)

(d) (e) (f)

Figure 4.9: 100% load radial plots of combustion products, XO2 , XCO2 and COppm at
axial locations of 0.25 [m] ((a)-(c)) and 0.85 [m] ((d)-(f)) from point (0, 0)

The combustion and major species characteristics are discussed by considering the
radial profiles of Figures 4.9 (a) to (f). Similar trends between the EE and EL models are
observed. At a location of 0.25 [m] along the axial axis (Figure 4.9 (a) to (c)), the EE
model tends to overpredict the O2 and and underpredict the CO2 molar concentrations
closer to the furnaces’ centreline. Similarly, at a location of 0.85 [m] along the axial axis
(Figure 4.9 (d) to (f)), the EE model provides similar trends to that of the state-of-the-art
EL model, with comparable results to that of the experimental data.
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The main discrepancies of both the EE and EL models are highlighted in the resolu-
tion of the COppm concentrations in Figure 4.9 (c) and (f), both models tend to overpredict
the COppm concentrations further into the furnace (Figure 4.9 (f)). However, both can re-
solve the COppm concentrations closer to the quarl exit with sufficient accuracy (Figure 4.9
(c)). Thus, the combustion modelling process and pseudo-particle tracking incorporated
in the EE modelling methodology can be adequately resolved for the species formation
and combustion characteristics in the domain.

(a) (b)

(c) (d)

Figure 4.10: 100% load axial plots of radiative properties of the incident radiation and
particle absorption coefficient at the centreline ((a) and (c)), and a radial position of 0.5
[m] ((b) and (d))

The radiative heat transfer properties are highlighted in the axial profile plots of
Figures 4.10 (a) to (d). By using the manipulation of the P-1 radiation equation to
incorporate the pseudo-particle effects for the EE model, as discussed in Section 4.1.5,
adequate resolution of the incident radiation field is highlighted in Figures 4.10 (a) and
(b), with a slight over-prediction at 1.5 [m] into the domain. The average particle diameter
used to determine the particles’ radiative properties resulted in a homogenising/smoothing
effect of EE models absorption coefficient, highlighted in Figures 4.10 (c) and (d). The EL
model displayed more jagged results, which arise from the discontinuities of the discrete
phase particle concentrations.
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(a)

(b)

(c)

Figure 4.11: Wall heat flux profiles for the (a) 100%, (b) 60% and (c) 40% load cases

The heat fluxes to the walls for the various loads are illustrated using contour plots
shown in Figures 4.11 (a) to (c). The EE model can adequately resolve the heat flux
distribution compared to the EL model for the various load cases. The heat flux distribu-
tions correspond well to the axial temperature and incident radiation profiles of Figure 4.8
(a) and Figures 4.10 (a) and (b), respectively. The EE model shows a higher temperature
flame closer to the burner outlet than the EL model’s prediction, with a higher incident
radiative flux.
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(a) (b)

Figure 4.12: Absolute error data between the EE and EL models solution data for key
parameters, XO2 and XCO2 (a) and the gas and particle temperature (b)

The histogram plots of Figures 4.12 (a) and (b) show the key parameter absolute
error between the EL and EE models, based on a per cell comparison. This highlights the
EE model’s sufficient resolution of the essential parameters compared to the EL model.
For example, the combustion products of Figure 4.12 (a) show that approximately 80%
of the EE solution data is below a 10% error band. Similarly, Figure 4.12 (b) illustrates
that approximately 85% of the EE solution data is below a 10% error band for the gas
temperature.

Figure 4.13: Relative time ratio versus mesh size increments for the EL and EE models

Figure 4.13 illustrates that the EE model has a substantial computational speed-
up of approximately 50% whilst maintaining a sufficiently accurate resolution of the key
parameters and heat flux profiles. The proposed modelling methodology speed-up is an
essential feature regarding the application of the approach to generate a CFD database
for surrogate modelling. The subsequent section highlights the developed CFD model’s
applicability at different loads.
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4.2.3 Low-load case study results

The current work aims to build data-driven surrogate models capable of simulations
at various loads. Therefore, the low-load cases investigated in this section are necessary
to demonstrate the model’s ability to resolve, with sufficient accuracy and in a com-
putationally efficient manner, the overall flow, combustion, radiation, and temperature
characteristics for a wide range of operational loads.

The results of the 60% and 40% load cases are given and discussed in the following
section. Due to the lack of measured data at low-load operation, detailed EL simulation
results are used to compare with the EE model results.

(a)

(b)

Figure 4.14: Low-load gas temperature contour plots. (a) 60% load and (b) 40% load

The gas temperature profiles of Figures 4.14 (a) and (b) demonstrate that adequate
results are achieved via the EE model, with similar profiles being obtained than that of
the numerical model. The total wall heat flux distributions are shown in Figures 4.11 (b)
and (c) illustrate an acceptable resolution between the EE and the EL model. However,
as discussed in Section 4.2.2, the EE model tends to overpredict the heat flux distribution
near the burner inlet wall, confirmed in both the 60% and 40% cases.
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(a)

(b) (c)

Figure 4.15: Low-load temperature plots. (a) Centreline axial plot, (b) radial plot at an
axial location of 0.25 [m] from point (0, 0) (c) radial plot at an axial location of 0.85 [m]
from point (0, 0)

Figures 4.15 (a) to (c) illustrate the axial and radial temperature distribution plots.
The EE model shows sufficient accuracy in resolving the temperature profiles for the
various loads. The 100% validation case study showed that the EE model predicted
a higher temperature in the burner quarl region, highlighted in the axial temperature
distribution plot of Figure 4.7 (a). The radial plots of Figures 4.15 (b) and (c) illustrate
the sufficient resolution of the EE models’ predicted temperature profiles for low-loads
compared to the detailed EL model.
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(a) (b) (c)

(d) (e) (f)

Figure 4.16: Low-load radial plots of combustion products, XO2 , XCO2 and COppm at
axial locations of 0.25 [m] ((a)-(c)) and 0.85 [m] ((d)-(f)) from point (0, 0)

Figures 4.16 (a) to (f) show the combustion characteristics and major species plots
for the 60% and 40% EE models. The results show that the EE model can resolve the
major species transport into the domain for the various loads when compared to the EL
model.
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(a)

(b)

(c)

Figure 4.17: Absolute temperature difference |Tp − Tg| for the EE model for (a) 100%,
(b) 60% and (c) 40% load cases

Figure 4.17 shows the absolute temperature difference between the pseudo-particles
and gas-phase, highlighting the importance of incorporating thermal non-equilibrium for
lower loads. By assuming thermal non-equilibrium, the radiative particle emission effects
can be adequately resolved. A thermal equilibrium solution would underpredict these
particulate effects, leading to incorrect combustion activation in the domain.
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The results provided in this section highlight the EE model’s suitability for various
load applications and the robustness of the incorporated combustion models. A speed-
up of approximately 50% was observed, with an approximate 5% absolute error between
important key parameters for the 60% and 40% load cases.

4.2.4 Summary of results

A thermal non-equilibrium Eulerian-Eulerian modelling methodology for CFD simu-
lations of pulverised coal combustors was presented and applied. The model was validated
against measured and numerical data for a 100% load case with relative errors ranging
from 0.2% to 5% for the wall heat flux distribution. In addition, further low-load simula-
tions were conducted, with validation data obtained from EL simulations.

The results show that the modelling methodology can resolve the combustor-level
flow, species, temperature profiles, and wall flux distributions in the combustor with suf-
ficient accuracy. Furthermore, the inclusion of particle effects in the radiation and energy
transport proved to be beneficial in implementing the combustion laws, thereby illustrat-
ing the importance of the thermal non-equilibrium assumption. The computational speed
enhancement between the traditional modelling methodology and the proposed model
showed a 50% speed-up. It therefore fulfils the need for a fast yet sufficiently accurate
three-dimensional CFD modelling methodology to generate databases of results for sur-
rogate model development.

The methodology was developed and implemented in the ANSYS Fluent® v19.5
commercial software package, as opposed to an in-house academic or proprietary code,
allowing it to be employed in industry to develop computationally inexpensive models for
pulverised fuel systems.
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Numerical model case studies

Any numerical model used to represent real-world phenomena requires validation
with a set of experimental results to ascertain the accuracy and reliability of the model.
Chapter 4 discussed the foundation of the developed CFD modelling methodology and
provided a validation case study for a 2.165 [MWth] lab-scale burner. In the current
chapter, the numerical methodology was incorporated to simulate an actual 620 [MWe]
utility boiler located in Southern Africa. The subsequent sections comprise of the follow-
ing validation and application studies using the previously discussed CFD and process
modelling methodologies, namely:

• A validation case study showcasing the implementation of the developed CFD model
of a 620 [MWe] utility boiler for various operational loads using site data.

• Coupled simulation techniques, utilising CFD and 1-D process modelling to capture
the steam-side performance of a utility-scale boiler.

• An application case study was conducted using the developed CFD modelling method-
ology in a co-simulation environment to investigate the optimal firing arrangement
for low-load operation (approximately 30% MCR) of the 620 [MWe] utility-scale
boiler.

Figure 5.1 highlights the content that is discussed and indicates the research objec-
tive addressed in this chapter for the readers convenience.

Figure 5.1: Content overview and research objective addressed in Chapter 5
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5.1 Validation case study

The following section emanates from the work presented at the 12th South African
Conference on Computational and Applied Mechanics (SACAM2020)[115]. The valida-
tion case study was conducted for 100%, 81%, and 60% maximum continuous rating
(MCR) loads, with the results being compared to actual plant measurements and numer-
ical results. As with Section 4.2, an Eulerian-Lagrangian (EL) based CFD computations
provide the necessary numerical data for the validation study.

5.1.1 Computational domain

The case study boiler is a two-pass subcritical power boiler with a furnace depth of
13.77 [m], a width of 14.01 [m], and a height of 64 [m]. The CFD geometric model (Figure
5.2) uses a symmetry plane at half the width of the furnace; this was done to reduce the
cell count of the numerical mesh. The platen (SH2) and final (SH3) superheaters are
modelled as discrete solid wall panels with transverse pitches of 1.143 [m] and 0.8 [m],
respectively. The boiler walls downstream from the superheaters are modelled as fully
insulated. The reason for including SH3 in the downstream ducting was to ensure that
no backflow profiles are created and the velocity profiles through the superheaters are
representative of the actual boiler. There are three levels of burners located on both the
front and rear walls at heights of 11.9 [m], 19.3 [m], and 26 [m], respectively.

Figure 5.2: Computational domain and layout [104].

Figure 5.2 illustrates the computational domain and layout for the modelled half of
the furnace, which includes the SH2, SH3, and the furnace boundary walls (front, rear,
and side), as well as the domains outlet, symmetry and inlet (i.e. burners) planes.
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The boiler furnace is fed by six mills, each supplying a pulverised fuel and primary air
(PA) mixture to a burner row consisting of six opposing wall-mounted swirl burners. This
study did not model the swirl vanes; instead, an axial and tangential velocity component
was used for the secondary air (SA) inlets. These values were obtained from a detailed
burner model supplied by the burner manufacturer, which included the vanes.

Figure 5.3: Burner layout and mesh details [104].

The fuel and PA mixture is injected through the inner annulus of the burner while the
SA is fed through the outer annulus, as seen in Figure 5.3. At 100% maximum continuous
rating (MCR), the PA annulus supplies the fuel and PA mixture at a temperature of 373
[K], with the SA entering at a temperature of 577 [K].

5.1.2 Model inputs & boundary conditions

The inlet mass flow rates and temperatures for MCR ratings of 100%, 81% and 60%
are listed in Table 5.1.

Table 5.1: Validation case study input boundary conditions

Load cases 100% 81% 60% Unit
Fuel mass flow rate (per burner) 3.15 2.52 1.67 kg/s
PA mass flow rate (per burner) 4.74 4.01 2.81 kg/s
SA mass flow rate (per burner) 14.31 12.04 8.43 kg/s
PA temperature 373 373 373 K
SA temperature 577 558 535 K
φmp0 0.657 0.628 0.594 kgmp0/kg
φH2O 0.036 0.035 0.032 kgM/kg
φVM 0.129 0.123 0.116 kgVM/kg
φFC 0.223 0.214 0.202 kgFC/kg
φASH 0.268 0.257 0.243 kgASH/kg
φhp 49657 47509 44929 J/kg

Appendix B provides sample calculations used to determine the fuel and air mass
flow rates needed for the CFD simulations inlet boundary conditions. Furthermore, the
specific heat, thermal conductivity, and viscosity, of the air and flue gas are resolved using
temperature-based polynomials which are provided in Appendix C.
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The plant is designed to operate at a 100% MCR with an excess air ratio of 15.5%.
As the plant is turned down from 100% MCR, the excess air ratio increases to ensure
sufficient air and fuel mixing. Based on the design schedule data, the excess ratios for
MCR ratings of 81% and 60% were calculated as 20.9% and 26.3%, respectively. The fuel
characteristics utilised in both the validation and low-load case studies of this chapter are
provided in Table 5.2.

Table 5.2: Utility boiler fuel constituents

Fuel constituent Fraction Unit
Ultimate analysis - (DAF) - -
Carbon 0.7754 kg/kgfuel
Hydrogen 0.041858 kg/kgfuel
Nitrogen 0.0182 kg/kgfuel
Oxygen 0.1474 kg/kgfuel
Sulphur 0.0175 kg/kgfuel
Proximate analysis - -
FC 0.340 kg/kgfuel
VM 0.196 kg/kgfuel
ASH 0.409 kg/kgfuel
H2O 0.055 kg/kgfuel
Energy content - (As-received) Value
Higher heating value (HHV) 15070 kJ/kgfuel
Devolatisation
Pre-exponential factor (Avol) 2.0× 105 s−1

Activation energy (Ea,vol) [116] 6.7× 107 J/kmol
Char oxidation
Pre-exponential factor (Ac) 0.0053 kg/(m2sPa)
Activation energy (Ea,c) [116] 8.37× 107 J/kmol

The CFD wall boundary conditions are modelled using ANSYS Fluent® v19.5’s
convection boundary condition, which requires the internal free stream temperature, the
internal heat transfer coefficient, wall thickness, and material conductivities. Being a
flux boundary condition, the wall heat flux (q̇wall) can be calculated using the following
equation:

q̇wall = Ui(Twall,i − Twater). (5.1)

The overall heat transfer coefficient (U) is subsequently determined using the fol-
lowing expression:

Ui =

(
1

h̃int
+
Lwall
λwall

+
Lash
λash

)−1

. (5.2)

In the present work, an effective thermal conductivity was derived to include the
ash and wall conductivities. Thus, Equation (5.2) can be written using a single boundary
thickness as:

Ui =

(
1

h̃int
+

Lwall
λeff.wall

)−1

. (5.3)

67



Part I of II Chapter 5. Numerical model case studies

The full derivation of the effective thermal conductivity (λeff.wall) is provided in
Appendix A. A 1-D process model was used to estimate the furnace, platen, and final
superheater internal heat transfer coefficients and internal temperatures for the low-load
case. For the validation case study, the measured site data was used to estimate the
mean water temperature in the heat exchangers, this value being close to the saturation
temperature of the water at the steam drum pressure.

5.1.3 Grid independence study

A mesh independence study was conducted for mesh sizes consisting of 4.2, 8.2, 6.2
and 10.2 million cells respectively. To ensure an accurate numerical solution, the mesh
aspect ratios were kept below 15 and the minimum orthogonal qualities were kept above
0.2. The utility-scale boiler was simulated for the 100% MCR load case utilising both
the conventional EL and the developed EE modelling methodologies to illustrate grid
independence of both models. Each simulation utilised the same numerical strategy as
stipulated in the subsequent section and were solved to convergence.

(a) (b)

(c)

Figure 5.4: Mesh refinement study for key parameters (a) total heat load to the evaporator
walls, (b) the total heat load to the SH2 walls and (c) the exit CO2 mass fraction.
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Figures 5.4 (a) to (c) illustrates the comparison between the calculated mean, min-
imum, and maximum values, and the simulation results of the mesh refinement study for
the heat loads to the evaporator (EV) and SH2 walls, as well as the exit CO2 mass frac-
tions. The calculated mean values were obtained from available measured data, except
for the CO2 mass fraction which was calculated using the assumptions of complete and
infinitely fast combustion. Appendix A provides the methods and sample calculations
employed to obtain the exit CO2 mass fraction using the stated assumptions. The exit
CO2 and subsequent O2 volume fractions are typically used as key indicators of near com-
plete combustion for CFD simulations and were used as a further convergence criterion
for the current CFD simulations.

A noticeable difference in the simulated results and the calculated mean value is
shown in Figure 5.4 (b) for the heat load to the SH2 walls. Both numerical simulations
tend to overpredict the heat loads, but are within the maximum limit of the calculated
values. However, for meshes sizes greater than 6.2 million cells, the models predict values
within 3% of the calculated mean value, which was deemed sufficiently accurate for the
current work. Considering the key parameters utilised in Figure 5.4 (a) to (c), by increas-
ing the mesh size above 6.2 million cells, the values of mesh sizes 8.2 and 10.2 million cells,
are within a 1% range of the 6.2 million cell results. In addition, the simulated values are
within a 5% range of the calculated mean values, which was deemed sufficiently accurate
for the current work. This indicates that a solution value that is independent of the mesh
size has been reached, and therefore the 6.2 million cell mesh was subsequently used for
both the EL and EE simulation runs.

5.1.4 Numerical solution strategy

The validation simulations were performed using the ANSYS Fluent® v19.5 pressure-
based solver. Pressure-momentum coupling was set to the SIMPLE technique, with mo-
mentum, energy and species equations being discretised using the second-order upwind
method. The pressure equation was discretised using PRESTO!. The difference arises
between using scalar fields in the EE configuration and using the discrete phase modelling
approach in the EL setup. The under-relaxation strategy, for all the EE and EL simu-
lations, utilised the same under-relaxation factors for the pressure, density, momentum,
energy, turbulence, species, and P-1 source terms. However, the EL simulations required
significant under-relaxation of the DPM sources to maintain stability of the coupled cal-
culations between the discrete and continuous phase, to a value of 0.15. The discrete
phase equations were solved once every 30 fluid phase iterations for the EL model. The
number of particles injected per burner was set to about 7800, totalling 140,000 particles
in the entire domain. The EE simulations achieved stable and computationally efficient
runtimes when an under-relaxation factor of 0.5 was utilised for all the scalar transport
variables. To ensure a stable converged solution, the spatial discretisation for all fields was
set to first-order upwind (except pressure) and solved for 1500 iterations before increasing
the discretisation order. The simulations were then run for a further 15,000 iterations for
both the EE and EL simulations. The maximum mass imbalance was 0.046 [kg/s] for a
total gas flow rate of 376 [kg/s] at 100% MCR conditions. The maximum heat imbalance
for the full load case was 2.45 [MW ] for a total heat input of 855 [MW ].
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5.1.5 Results & discussion

This section compares the results of the EL numerical model with the results of the
developed EE modelling approach for the 100%, 81% and 60% MCR load cases. Overall,
a 30% decrease in simulation time was observed across the simulated load cases. For
all simulation cases, 192 Intel® Xeon® 2.6 GHz cores were made available using the
Lengau® computing cluster provided by the Centre for High Performance Computing
(CHPC), South Africa. The graphs shown in Figure 5.5 illustrate the measured values
(calculated from measured plant data), EL and EE model results for the heat loads to
the EV, platen (SH2) and final superheater (SH3) walls.

(a) 100% MCR

(b) 81% MCR (c) 60% MCR

Figure 5.5: Overall heat load performance for (a) 100%, (b) 81% and (c) 60% MCR load
cases

The EE model sufficiently captures the overall heat loads compared to the measured
and EL model results. However, a notable difference is seen in the 60% load case of Figure
5.5 (c), where both the EL and EE numerical models underpredict the SH2 heat load.
The EE model predicts a value of 136 [MW ], an approximate 13% deviation from the
measured value, while the EL model predicted a value of 130 [MW ], an approximate 17%
deviation from the measured value.
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(a) (b)

Figure 5.6: Measured, EL predicted, and EE predicted COppm (a) and XO2 (b) concen-
trations

The EE CFD model was further validated by comparing the measured COppm and
XO2 levels near the furnace outlet to the EL predictions, which are presented in Figure 5.6.
The measurements were taken by experienced site personnel using a suction pyrometer.
The probe measurements were taken at a furnace height of 37.5 [m] near the centre of the
boiler during full load (100% MCR) operating conditions. The probe was inserted from
the side walls to a depth of 4.5 [m], and measurements were taken every 0.5 [m]. The
results show that the EE model can predict the COppm and XO2 concentrations at the
given probe location with acceptable accuracy, compared to both the measured and the
EL predictions.

Table 5.3: Relative percentage errors of key parameters between the EL and EE model

Load rating 100% 81% 60%
Furnace heat load 4.1% 8.2% 1.2%
Platen SH heat load 6.9% 7.4% 7.2%
Final SH heat load 2.8% 3.8% 4.2%
Furnace exit temperature 3.6% 4.8% 5.6%
Exit XCO2 fraction 2.1% 1.6% 0.9%
Exit XO2 fraction 1.9% 3.2% 2.8%

Table 5.3 highlights the relative errors obtained between the EL and EE numerical
models. A maximum error of 8.2% occurs at the platen superheater for the 100% load
case. The relative errors are deemed acceptable for the decrease in computational time
provided by the EE model.
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[m/s]

(a) 100% MCR (b) 81% MCR (c) 60% MCR

(d) 100% MCR (e) 81% MCR (f) 60% MCR

Figure 5.7: Gas velocity fields for the EL model ((a) to (c)) and the EE model ((d) to
(f)), at 100%, 81% and 60% MCR loads

Figure 5.7 compares the gas velocity fields for the EL and EE model. The results
are in good agreement. The EE model underpredicts the lower burner velocity transport
resulting in combustion occurring closer to the burner quarl and the lower furnace walls.
This effect is seen in the temperature contour plots of Figures 5.8 (d-f).
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[K]

(a) 100% MCR (b) 81% MCR (c) 60% MCR

(d) 100% MCR (e) 81% MCR (f) 60% MCR

Figure 5.8: Temperature fields for the EL model ((a) to (c)) and the EE model ((d) to
(f)), at 100%, 81% and 60% MCR loads

The temperature contour plots of Figures 5.8 (d) to (f) illustrate the EE model’s
ability to sufficiently resolve the temperature field compared to the EL model (Figures
5.8 (a) to (c)). The lower burners tend to initiate combustion closer to the burner leading
to high temperatures due to the lack of velocity of the gas-phase in this area. In general,
the temperature and velocity fields are deemed sufficiently accurate for surrogate model
development since the parameter of interest is the resolution of the wall flux field.
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[kg/m3]

(a) 100% MCR (b) 81% MCR (c) 60% MCR

(d) 100% MCR (e) 81% MCR (f) 60% MCR

Figure 5.9: Particle distributions for the EL model ((a) to (c)) and the EE model ((d) to
(f)), at 100%, 81% and 60% MCR loads

The spatial distribution of the particles (expressed in [kg/m3]) shown in Figures 5.9
(a-f) highlights the EE model’s ability to resolve the particle concentration throughout
the domain for the various load cases. Notably, the EL model (Figures 5.9 (a) to (c))
predicts high particle concentrations located in areas such as in the top left corner of the
furnace, above the boiler nose, and in the furnace hopper (refer to Figure 5.2). From
Figures 5.9 (d) to (f) the EE model is able resolve these high concentration pockets of
particles with sufficient resolution compared to the EL model, for a wide range of MCR
loads. This enables the EE model to incorporate the pseudo-particulate radiative and
fluid flow effects in these areas.
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The validation of a full scale 620 [MWe] boiler was conducted using a thermal non-
equilibrium Eulerian-Eulerian model for three load cases, namely a 100%, 81% and 60%
steady-state loads. The validation cases included a comparison with results obtained by
a numerical model using an EL approach and, where applicable measured site data. The
developed EE model demonstrated adequate performance in predicting the flow field, wall
heat fluxes and fluid property distributions. The relative accuracy of the EE model ranged
from 2 to 8% for key parameters used in the study. The computational speed-up, of 30%
is a beneficial attribute when considering the EE model’s intended use in the development
of a CFD data-driven surrogate model.

5.2 Coupled simulation methodology

The following section highlights the co-simulation techniques employed to account
for the steam-side performance of a 620 [MWe] utility-scale boiler. The model is sub-
sequently used in Section 5.3 to investigate the optimal firing arrangement for low-load
operation. Figure 5.10 provides a labelled schematic of the process model and highlights
the radiation and convective sections.

Figure 5.10: Labelled process model schematic for a 620 [MWe] utility-scale boiler
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Coupled simulation approaches can be implemented in several ways; Filmonov [45]
described the main implementations for simulating hydrodynamics and heat transfer in
multi-scale models as either fully-separated, a hydro-dynamically unified or a hydro-
dynamically disconnected model. The current work uses a fully-separated model, whereby
the spatial (3-D CFD flue gas domain) and network components (1-D process model) are
solved separately.

A 1-D discretised process model of the water/steam side piping network, which
includes the furnace evaporator (EV) walls, platen superheater (SH2) walls, final super-
heater (SH3) walls, and the subsequent downstream heat exchangers of the convective
section, was developed using Flownex® SE 2021. The convective section is comprised of
the secondary reheater (RH2), primary superheater (SH1), primary reheater (RH1) and
economiser (EC). In addition, the model includes all the relevant attemperators (ATT1,
ATT2, and ATT-RH), inlets, and outlets. The process model is used to determine the
required attemperation flow rates and water/steam side thermal response. The process
model simulates the internal convection heat transfer inside the tubes and the conduc-
tion through the tube walls. In addition, the model can incorporate the attemperation
flows and momentum transport through the steam/water circuit. The heat exchangers
are modelled using a homogeneous two-phase mixture approach, which assumes that the
fluid properties, phase velocities, and temperatures are uniform per cross-sectional area,
as discussed in Chapter 3, Section 3.5. The EV water walls are represented by a single
lumped pipe flow component that forms part of the natural circulation system which in-
cludes the downcomers and steam drum (SD). As with the EV walls, SH2 and SH3 are
similarly represented by a single lumped parameter pipe flow component, interconnected
with nodes that introduce the attemperation flows to the water/steam side.

The data transfer between the two models uses a one-way coupling approach, where
the CFD simulation data is transferred to the FlownexSE® process model when conver-
gence of each case is achieved. This coupling approach is valid since in the furnace and the
radiant superheaters (SH2 and SH3) radiation heat transfer dominates, resulting in flue
gas temperatures being much higher than the wall temperatures in these zones. Thus, a
one-way coupling between the two models can be utilised since the wall temperatures are
not that important in resolving the overall heat load to these components. Figure 5.11
shows the simplified flowchart for a fully connected coupled simulation.

The coupling interfaces between the simulation models are the selected heat-exchanger
external heat transfer areas, namely, the EV, SH2, and SH3 walls. The CFD heat loads
are used as energy sources for these components. The furnace heat load to the EV walls
determines the steam generation rate through the evaporator. The SD separates the gas
from the liquid. The liquid water is recirculated through the EV walls via the downcom-
ers, and the saturated vapour (steam) is sent through the main steam line for superheating.
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Figure 5.11: Coupled simulation flow chart

As mentioned, the heat transfer rates to the radiant superheaters (SH2 and SH3)
calculated using the CFD model are also transferred to the process model as heat sources.
Furthermore, the CFD flue gas results (i.e., composition, mass flow, and temperature) ex-
iting SH3 are used as boundary value inputs to the SH3 exit plane, as shown in Figure 5.10.
In addition to the flue gas values, the area weighted incident radiation (GCFD [W/m2])
at the convective plane is also used as a boundary value input. These inputs are used for
the downstream components of the convective section of the boiler. The boundary values
for the RH and EC inlets are fixed inlet mass flow rates and temperatures taken from
site data, while the high pressure (HP) and RH exits are set to fixed pressure boundary
values.

Figure 5.12 illustrates the heat-exchanger component process model. This compo-
nent is used for the heat exchangers downstream of SH3 (Figure 5.10). The component
accounts for the radiative (gas and direct), convective, and conduction heat transfer mech-
anisms to and from the flue gas-side and water-/ steam-side control volumes. The total
heat transferred (Q̇steam) to the water-/ steam-side control volume can be written as the
sum of the external heat transfer rates transmitted from the flue gas control volume,
namely the absorbed direct radiation (Q̇abs) and a combined heat transfer rate (Q̇cr),
which is shown in Equation (5.4).

Q̇steam = Q̇cr + Q̇abs (5.4)
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Figure 5.12: Heat exchanger component model used in modelling the convective section
consisting of RH2, SH1, RH1 and the EC

In addition, the total heat transfer rate can also be written in terms of the internal
components comprised of the water control volume, the tube wall layer, and the fouling
layer as given in Equation (5.5).

Q̇steam = ∆Tint

(
1

h̃intAint
+

ln(dout
din

)

2πLtubeλtube
+
Rash

Aext

)−1

(5.5)

where ∆Tint, h̃int, Aint, dout, din, Ltube, λtube, and Rash is the internal temperature differ-
ence between the fouling layer and the water control volume, the internal heat transfer
coefficient (calculated using the internal Gnieslinki method [102, 117]), the internal tube
surface area, the outer tube diameter, the inner tube diameter, the tube length, the
tubes thermal conductivity and the fouling ash layers thermal resistance. The combined
heat transfer rate is calculated using a combined external heat transfer coefficient, which
accounts for the flue gas control volumes convective and radiative heat transfer and is
expressed in Equation (5.6).
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Q̇cr = (h̃conv,fg + h̃rad,fg)Aext∆Text (5.6)

where Aext and ∆Text is the outer surface area and the temperature difference between
the flue gas and the wall, respectively. The external convective heat transfer coefficient
(h̃conv,fg), from the flue gas to the heat-exchanger walls, the external Gnielinski correlation
[102, 117] is utilised for in-line tube arrangements. The radiation heat transfer coefficient
(h̃rad,fg) is calculated using Equation (5.7).

h̃rad,fg =
εwall

αfg + εwall − αfgεwall
σSB

εfgT
4
fg − αfgT 4

wall

Tfg − Twall
(5.7)

where, Tfg, and Twall is the average flue gas temperature and the average wall temperature,
respectively. The external wall emissivity (εwall) is set to 0.8 [118], which is a value used
for solid-fuel fired boilers. The gas-particle mixture emissivity (εfg) is calculated using
the following correlations [95, 119].

εfg = (1− β)
1− exp(−Φemi)

1 + βexp(−Φemi

β =
γ − 1

γ + 1

γ = (1 +
2Q̄bsc

Q̄abs

)0.5

Φemi = (Q̄absAprojLp +Kemi)Smbγ

Kemi =
−ln(1− εg,fg)

Lmb

(5.8)

where Φemi, Q̄bsc, Q̄abs, Aproj, Lp, and εg,fg are the optical thickness, particulate backscat-
tering [119], particulate absorption [119], projected area of the particles [m2/kg], partic-
ulate loading [kg/m3], and the gas emissivity. The gas emissivity uses a weighted sum
of gray gas modelling approach which is evaluated at the average flue gas temperature.
Similarly, the gas-particle absorption coefficient (αg,fg) is calculated using the correlations
of Equation (5.8), however the wall temperature is utilised in resolving the gas absorption
coefficient (αg,fg ≈ εg,fg).

Figure 5.12 also incorporates the direct radiative interactions in each heat exchanger
[42]. The initial direct radiation component (Q̇rad,i) entering from the SH3 exit plane
(shown in Figure 5.10) is calculated using the area weighted incident radiation from
the CFD model (GCFD) and the area (ACI [m2]) of the SH3 exit plane (i.e. Q̇rad,i =
GCFDACI). Figure 5.12 shows that the portion of direct radiation from the preceding
heat exchanger that is not absorbed is joined by the bypass radiation (Q̇bypass) of the
flue gas control volume, which together make up the direct radiation passed on to the
downstream components [42].
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5.3 Low-load case study

Since continuous low-load operation of utility-scale coal boilers are becoming an
increasing imperative due to renewable energy penetration to the grid, the following study
sets out to highlight the capability of the developed model to study these off-design
conditions and how the model can be used to inform plant operators of system response.
Specifically, the study is aimed at investigating the effect of burner firing configuration on
the various process parameters, such as steam temperatures, spray water flow rates, and
metal temperatures at low-loads. This was conducted using the developed CFD model on
the gas side coupled with a comprehensive 1-D process model of the water/steam side. The
case study simulates a boiler operation at 32% MCR for six different firing configurations.
The best configuration is chosen based on flame stability, minimising the likelihood of
high-temperature corrosion, and overall boiler performance. The work mainly stems from
the recently published journal article in the ASME Journal of Thermal Sciences and
Engineering Applications [104]. The same computational domain, as described in Figure
5.2, was utilised for the study while using the same fuel characteristics given in Table 5.2.

5.3.1 Model inputs

For a boiler load of 32% MCR, the existing plant operational protocol prescribes
using the bottom front and rear burner rows to meet the low-load demand during start-up.
For this study, six cases were simulated using different burner firing arrangements. Figure
5.13 illustrates the various firing arrangements of the active and non-firing burners.

Figure 5.13: Active and non-firing burner arrangements for Cases 1 to 6
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Cases 1 and 4 have the same active burner firing arrangement, that being the bottom
front and rear wall mounted burners are active, but have a different non-firing secondary
air requirement. Similarly, Cases 2 and 5 have the same active burner firing arrangements
with different secondary air requirements. The same is observed for Cases 3 and 6 with
the same active burner arrangements but different secondary air requirements. Typically,
a secondary air (SA) flow rate of 5 [kg/s] is fed through the non-firing burners to ensure
sufficient cooling of the burner and mixing of fuel and air in the combustion chamber,
this SA flow rate was utilised in Cases 1,2 and 3. The result is a high air-fuel ratio in the
furnace, which leads to higher boiler dry gas loss. In an effort to lower this loss, this study
investigated the effect of reducing the air-fuel ratio by lowering the non-firing burner SA
flow rate from 5 to 2.5 [kg/s], which was implemented for Case 4, 5, and 6.

Table 5.4: Cases 1-6 model inputs on a per burner basis

Input variable Case 1-3 Case 4-6 Units
Active burners
Fuel flow rate 3.14 3.14 kg/s
Primary air flow rate 4.95 4.95 kg/s
Secondary air flow rate 14.85 14.85 kg/s
φmp0 0.634 0.634 kgmp0/kg
φH2O 0.035 0.035 kgM/kg
φVM 0.124 0.124 kgVM/kg
φFC 0.215 0.215 kgFC/kg
φASH 0.259 0.259 kgASH/kg
φhp 47939 47939 J/kg
Non-firing burners
Secondary air flow rate 5.00 2.50 kg/s
Inlet air temperatures
Primary air 373 373 K
Secondary air 520 510 K
Excess air coefficients 1.37 1.32 -

Table 5.4 shows the input conditions for Cases 1 to 6, with the data being obtained
via conventional boiler mass and energy balance calculations. A sample mass and energy
calculation is provided in Appendix B.

5.3.2 Numerical solution strategy

The same numerical mesh utilised in the validation study consisting of approxi-
mately 6 million cells, was used for the CFD simulations of this case study. The CFD
simulations were performed using ANSYS Fluent® v19.5 pressure-based solver. The pres-
sure–momentum coupling utilised the SIMPLE method. Second-order upwind discreti-
sation was used to discretise the momentum, energy, scalar field and species equations,
whereas PRESTO! was used to discretise the pressure equation.
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The spatial discretisation for all fields (except pressure) was set to first-order upwind
for the first 1000 iterations to ensure a stable solution, after which the discretisation order
was increased. For all cases, the maximum mass imbalance was 0.024 kg/s for a total gas
flow rate of 190 [kg/s] and a heat imbalance of 1.8 [MW ] for a total heat input of 283
[MW ]. The remaining fields were solved until convergence.

5.3.3 Results & discussion

The results presented below were obtained using the coupled CFD and 1-D process
model to study the effects of the burner configuration at a low boiler load of 32% MCR.
The best configuration was selected based on the boiler efficiency, the safe operation of the
heat exchanger components, and minimising the likelihood of high temperature corrosion
developing during operation. Using the process model of Figure 5.10 and the results of
the CFD simulations, the important process control parameters were determined.

Table 5.5: Process model control parameter results

Cases
Control parameter 1 2 3 4 5 6 Units
Main steam flow rate 175.8 172.9 180.5 180.2 179.1 184.1 kg/s
Main steam exit temp 535 535 535 535 535 535 ◦C
RH steam flow rate 158.2 155.6 162.5 162.2 161.2 165.6 kg/s
RH steam exit temp 524 527 531 512 510 520 ◦C
Boiler efficiency 85.3 84.1 88.9 87.2 85.9 89.1 %
ATT1 10.4 16.9 13.9 7.9 5.5 10.9 kg/s
ATT2 1.7 3.8 4.2 3.8 3.6 4.2 kg/s
ATT-RH 0.0 0.0 0.0 0.0 0.0 0.0 kg/s

Table 5.5 summarises the results with the highest boiler efficiencies observed for
Cases 3 and 6. With a lower SA flow rate, Cases 4–6 exhibit a higher boiler efficiency
due to the decrease in dry gas losses, when compared to the corresponding Cases 1–3. All
cases exhibit adequate control of the main steam exit temperature by using ATT1 and
ATT2. The exit temperature of the reheaters, for all cases, is determined to be within the
20 [◦C] tolerance for the intermediate turbine inlet conditions, as stipulated in the design
C-schedules for the plant. However, a sudden decrease in steam generation can lead to
RH overheating and possible RH failure due to the lack of ATT-RH control.

82



Part I of II Chapter 5. Numerical model case studies

[K]

(a) Case 1 (b) Case 2 (c) Case 3

(d) Case 4 (e) Case 5 (f) Case 6

Figure 5.14: Temperature fields for Cases 1 through 6 (a)-(f)

Considering the temperature profiles of Figures 5.14 (a) to (f), the bottom-firing
arrangements (Cases 1 and 4) results in a high-temperature zone located in the bottom
half of the burner, while the mixed firing arrangement (Cases 3 and 6) results in an
even distribution of high-temperature gases across the furnace domain. This leads to the
highest steam generation rate in the furnace and associated high boiler efficiency, as shown
in Table 5.5. However, considering the middle burner rows firing arrangements (Cases 2
and 5), a substantial cold region is formed in the lower half of the furnace, resulting in
the lowest heat uptake. This is further exacerbated when considering Table 5.5, where it
is illustrated that the mid-firing arrangements (Cases 2 and 5) produce the lowest steam
flow rates resulting in the lowest boiler efficiencies.
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[m/s]

(a) Case 1 (b) Case 2 (c) Case 3

(d) Case 4 (e) Case 5 (f) Case 6

Figure 5.15: Velocity fields for Cases 1 through 6 (a)-(f)

Figure 5.15 presents the velocity fields for Cases 1 to 6. It shows that for a lower
SA flow rate the general trend is that the hot gases and velocity profiles impinge on the
furnace walls, which can be seen in Cases 4–6 of Figures 5.14 (d)-(f) and 5.15 (d)-(f),
respectively.
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[W/m2]

(a) Case 1 (b) Case 2 (c) Case 3

(d) Case 4 (e) Case 5 (f) Case 6

Figure 5.16: Heat fluxes profiles for Cases 1 through 6 (a)-(f)

Figure 5.16 illustrates the heat flux profiles for the simulated cases. Both Cases
1 and 4 highlight high heat flux zones near the burner inlets, which can lead to high-
temperature corrosion in the presence of high temperatures and incomplete combustion
near these regions [23]. An even distribution of heat fluxes is seen in Cases 3 and 6, with
minimal localised heat flux concentrations being observed. Cases 2 and 5 show that most
of the heat is absorbed in the upper half of the boiler, with Case 5 showing a higher heat
flux on the rear wall. This could be due to a lower SA flow rate leading to higher velocity
profiles developing closer to the rear wall, as seen in Figure 5.15. With high-gas tempera-
tures and high-velocity impingement, Cases 4–6 (of Figure 5.16) experience concentrated
heat fluxes around the burner inlets compared to the corresponding Cases 1–3.
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[XCO]

(a) Case 1 (b) Case 2 (c) Case 3

(d) Case 4 (e) Case 5 (f) Case 6

Figure 5.17: CO molar fraction (XCO) concentrations for Cases 1 through 6 (a)-(f) on a
temperature iso-surface of 1600 [K]

Dugum and Hanjali [23] highlighted the issue of high-temperature corrosion caused
by significant levels of CO (XCO 0.01–0.1) and no-free O2 near regions of high wall tem-
peratures. For a low-load operation, this phenomenon becomes important to avoid since
combustion instability can lead to these non-ideal circumstances. Figure 5.17 shows the
CO molar concentration in the domain on an iso-surface set at 1600 [K]. The figures
generally highlight the location and distribution of the flame core for each case.
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[XO2 ]

(a) Case 1 (b) Case 2 (c) Case 3

(d) Case 4 (e) Case 5 (f) Case 6

Figure 5.18: O2 molar fraction (XO2) concentrations for Cases 1 through 6 (a)-(f) near
the furnace wall surfaces

By considering Figure 5.17 and the oxygen molar concentrations (XO2) near the
furnace wall surfaces shown in Figure 5.18 in conjunction, it can be concluded that Cases
1 and 4 illustrate the highest likelihood of high-temperature corrosion occurring near the
furnace hopper due to the region’s high XCO concentration, low XO2 concentrations near
the furnace walls, and high gas temperatures.
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(a) Symmetry probe (b) Offset probe

(c) Symmetry probe (d) Offset probe

Figure 5.19: COPPM [(a) and (b)] and XO2 [(c) and (d)] line plots on the symmetry and
offset vertical probe lines (refer to Figure 5.2)

Investigating the combustion stability for all the cases, the symmetry and offset
vertical probe plots (as highlighted in Figure 5.2) are given in Figure 5.19. Cases 2 and
5 illustrate the highest XO2 concentration in the lower half of the burner since minimal
combustion occurs.
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The unburnt carbon content and exit flue gas temperatures for each case are reported
in Table 5.6. Using the middle burners (Cases 2 and 5), the highest exit temperature and
unburnt carbon content are observed since the flame core is located in the furnace’s upper
half, leading to the least possibility of complete combustion due to the shorter residence
time. Cases 3 and 6 exhibit the best characteristics, with the least amount of observed
unburnt carbon content. It is important to note the effects a lower SA mass flow rate has
on the furnace exit conditions for non-firing burners, which generally lead to a hotter exit
gas temperature, as seen in Cases 4–6.

Table 5.6: Furnace exit conditions and SH wall temperatures

Cases
Variable 1 2 3 4 5 6 Units
Furnace exit
Exit temperature 1168 1230 1215 1208 1306 1298 K
Unburnt carbon 1.83 1.94 1.54 1.81 1.89 1.62 (×10−3) %
Platen SH
Max wall temperature 477 492 481 480 493 490 ◦C
Mean wall temperature 439 453 446 454 442 451 ◦C
Final SH
Max wall temperature 602 624 608 595 626 612 ◦C
Mean wall temperature 520 523 517 512 520 511 ◦C

The external tube metal temperatures, shown in Table 5.6, were calculated using
Equation (5.9), which considers the temperature drop due to the ash deposit present on
SH2 and SH3 walls. Fouling thermal resistances of 0.0067 and 0.015 [m2K/W ] were used
for SH2 and SH3, respectively:

Tmetal = Twall −
(
q̇SHtASH
λASH

)
(5.9)

The maximum surface temperature for the superheaters SH2 and SH3 is observed
for Cases 2 and 5. For comparison, at 100% MCR load, the maximum and mean tem-
peratures reported for the superheaters SH2 and SH3 are 500 & 446 [◦C] and 623 & 531
[◦C], respectively, with the SH3 superheater operating in the materials creep range [7].
Thus, continued operation using the firing arrangement of Cases 2 and 5 could lead to
SHs failure.
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Table 5.7 shows the radiative heat percentage of the total heat input into each
heat exchanger for Cases 3 and 6. It can be seen that heat transfer to the furnace and
radiant SHs are dominated by radiation, with approximately 10% being transferred via
convection at low-load. Considering the convective pass heat exchangers (RH2 through to
the EC, Figure 5.10), the convective heat transfer becomes more apparent, as seen with
the reduction in radiative heat transfer percentage. Case 6 involves less convective heat
transfer due to the SA flow rate for non-firing burners. This will reduce the total amount
of flue gas flowing through the boiler, thereby reducing the convective heat transfer.

Table 5.7: Radiative heat transfer percentage for Cases 3 and 6

Heat exchanger Case 3 Case 6
Furnace 89.2% 88.9%
Platen SH (SH2) 92.5% 93.4%
Final SH (SH3) 93.5% 94.0%
RH2 47.6% 52.2%
SH1 37.2% 40.7%
RH1 18.7% 21.5%
EC 5.4% 6.5%

The mixed firing arrangements of Cases 3 and 6 exhibit the best boiler utilisation
efficiencies. In addition, these Cases displayed the best XCO molar concentration distri-
butions with minimal XO2 molar concentrations near the wall surfaces, highlighting the
minimal likelihood of inducing fire-side corrosion in the furnace when utilising this firing
configuration. A 4.8% decrease in unburnt carbon percentage is observed when using
Case 3 compared to Case 6. The predicted reheater exit steam temperature of Case 3 is
substantially closer to the desired temperature of 535 [◦C], thus allowing for better con-
trol. Based on the analyses Case 3 was considered the best operational strategy at this
low-load for the boiler under investigation. In addition, this section aids in showcasing
the benefits of utilising coupled simulation techniques to resolve operational protocols for
low-loads.
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Chapter 6

Machine learning theory

Machine learning techniques have seen extensive use in various scientific fields [50–
57], with their application extending to thermal energy systems [62, 63, 65, 66]. The use of
machine learning techniques in this study forms part of the research objective to develop a
data-driven surrogate model for investigating the heat transfer inside a utility-scale boiler
furnace using high-level inputs. This chapter summarises the theory used in the develop-
ment of a data-driven surrogate model using machine learning techniques. In the following
chapters, multivariate linear regression, multilayer perceptron networks (MLP) and mix-
ture density neural networks (MDN) will be applied to develop the required surrogate
model. There are three broad categories used in defining data-driven learning methods:
supervised, unsupervised, and reinforcement learning [120]. The category used in the
present research is supervised learning. In supervised learning, the network is provided
with training sets (inputs and outputs) of the desired network behaviour. All the models
discussed herewith fundamentally provide a mapping of the inputs to output variables
with varying degrees of accuracy depending on the non-linearities of the training data.
Figure 6.1 highlights the content that is discussed and indicates the research objectives
addressed in this chapter for the readers convenience.

Figure 6.1: Content overview and research objectives addressed in Chapter 6
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6.1 Multivariate linear regression

The primary assumption of a multivariate linear regression model is that the out-
put/s can be calculated from a linear combination of the input variables. In other words,
a linear regression model aims to determine the quantitative linear relationship between
the dependent and independent variables [121]. The representation of the i-th dependent
variable (yi) can be written as follows for the m-number of independent variables (xmi);

yi = β0 + β1x1i + ...+ βmxmi

i = 1, 2, 3...n
(6.1)

where β0 is a constant term, βm is the m-th coefficient, and n is the total number of
observations.

The optimal solution can be estimated by minimising the cost function (J). A cost
function calculates the difference between the estimated and the desired values and is
reported as a single number. Multivariate linear regression problems typically utilise the
mean square error (MSE) between the desired (yi) and estimated (ŷi) values [122] to
calculate the cost function, which is given in Equation (6.2).

JMSE =
1

n

n∑
i=1

(yi − ŷi)2 (6.2)

The gradient descent algorithm is an iterative procedure used to find the local mini-
mum/maximum of a function, whereby the goal of the algorithm is to find model parame-
ters that minimise the error of the model on the training dataset [123]. Three approaches
can be used for configuring the gradient descent algorithm, namely batch, mini-batch and
stochastic. Batch gradient descent takes into consideration the entire training dataset and
performs model updates at the end of a training epoch. This approach typically results in
slow training of large datasets, since the approach requires the entire dataset to be stored
in memory. Stochastic gradient descent calculates the error and updates the model for
each example in the training dataset, resulting in a computationally expensive approach
with a higher variance of the gradient signal. The mini-batch approach splits the train-
ing dataset into smaller batches which are used to calculate the model error and update
the model coefficients [124]. Doing this results in a computationally efficient process,
since a reduction in memory requirements is achieved and the frequent model updates al-
lows for a more robust convergence in comparison to the batch and stochastic approaches.

The present work utilised the gradient descent algorithm [121] to minimise the cost
function of Equation (6.2). The gradient descent algorithm can be written as shown in
Equation (6.3) by considering the cost function as a function of the weight.

βm = βm − η
∂

∂βm
JMSE(βm) (6.3)

where η is the pre-set learning rate.
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In most cases, the relationship between the dependent and independent variables is
not linear. Special non-linear basis models, such as polynomial, sinusoidal, and radial, can
be used to optimise the training results [122]. For the current work, a multivariate linear
regression model was developed to provide a benchmark against which the subsequent
models of Sections 6.2 and 6.3 were tested. This was done to highlight the non-linear
nature of the relevant datasets and to emphasise the need to use higher order machine
learning techniques, which are discussed in the subsequent sections.

6.2 Multilayer perceptron networks

Artificial neural networks (ANN) are machine learning systems inspired by biological
neural activity [124]. There are many classifications of ANNs, with multilayer perceptron
networks (MLP) being the standard representation [125]. Typically, MLPs are adapted
for supervised learning problems where the input variables are mapped to labelled output
variables. The relationship between the input and output variables is learned by optimis-
ing the weights (w̄) and biases (b̄) to minimise a selected cost function, which in most
cases is the MSE given in Equation (6.2). In MLP networks, neurons are interconnected
through several layers, each comprised of multiple neurons. Figure 6.2, illustrates the
standard topology of an MLP, consisting of the input, hidden and output layers.

Figure 6.2: Traditional MLP schematic mapping the input X̄ output and Ȳ layers
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To calculate the output values (ŷi) the forward propagation algorithm is utilised,
which calculates the output for each layer and moves sequentially through the network
until the output is determined. Each network layer output is calculated using two steps:
the calculation of the summed signal (z̄l) and the use of an activation function to generate
the output signal (h̄l). A schematic of a single neuron is given in Figure 6.3, highlighting
the two-step process.

Figure 6.3: Schematic of a single neuron highlighting the two-step process

Equation (6.4) highlights the first step, where h̄l−1 is the output signal from the
previous layer.

z̄l = h̄l−1 · w̄l + b̄l (6.4)

The result of Equation (6.4) is subsequently passed to an activation function (h̄l =
σl(z̄l)). Various activation functions can be utilised, such as linear, ReLu, Elu, and the
hyperbolic tangent [125]. The final layer activation function is usually linear to enable
the scaling of the output signal to numeric values larger than unity. Figure 6.4 provides a
graphical representation of the hyperbolic tangent, linear and ReLu activation functions.

The current work uses ReLu activation functions for the hidden layers, since ReLu
functions are simple to implement and fast to compute [122], and a linear activation
function for the output layer/s. The hyperbolic tangent activation function is not utilised
since, like the sigmoid function, it is susceptible to the vanishing gradients problem [125].
The ReLu and linear activation functions are shown in Equations (6.5) and (6.6).

h̄l = σReLu(z̄l) =

{
h̄l−1 · w̄l + b̄l if z̄l > 0

0 if z̄l < 0
(6.5)

h̄l = σlinear(z̄l) = h̄l−1 · w̄l + b̄l (6.6)
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Figure 6.4: Graphical interpretation of various activation functions

When the forward propagation step is complete, the network weights and biases can
be updated to minimise the cost function (refer to Equation (6.2)). This step uses the
backward propagation method [125, 126] which applies forward- or reverse-mode auto-
matic differentiation to calculate the parameter gradients [122]. The methodology cal-
culates the gradient of the cost function with respect to the weights and biases for each
layer. The backward propagation is given in Equation (6.7).

Algorithm 1 (Backward propagation)

Compute the gradient of the output layer with respect to the target variable:

ḡ ← ∇ŷJMSE

Calculate the pre-activated gradient of the output layer L:

ḡ ← ∇z̄LJMSE = ḡ � f ′(z̄L)

Compute the gradients for the weights and biases in the output layer L

∇w̄LJMSE = ḡ · h̄TL−1

∇b̄LJMSE = ḡ

Loop through hidden layers and compute the gradients for

the weights and biases:

ḡ ← ∇h̄lJMSE = w̄Tl · ḡ
ḡ ← ∇z̄lJMSE = ḡ � f ′(z̄l)
∇w̄lJMSE = ḡ · h̄Tl−1

∇b̄lJMSE = ḡ

Repeat till the input layer is reached.

(6.7)
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Once the gradients have been calculated, the weights and biases are updated us-
ing the gradient descent algorithm. Following the gradient calculation steps forward- and
backward-propagation algorithms are applied iteratively until the cost function is reduced
to below the desired threshold.

The current work uses the adaptive moment estimation or Adam [127] alternative
to the gradient descent algorithm. The Adam optimiser is a momentum-based method
that computes adaptive learning rates for each parameter, which is achieved from the es-
timates of the first and second moments of the gradient [127]. Being a momentum-based
method allows the algorithm to accelerate gradient descent in the relevant direction and
dampen oscillations [128]. This is done via adding a fraction (β1) of the update vector of
the previous step to the current update vector.

The Adam optimiser has the advantage of having a faster computational time while
requiring fewer parameters for tuning compared to other optimisation algorithms [129–
131]. The Adam algorithm is illustrated in Equation (6.8).

Algorithm 2 (Adam)

m̄t ← β1m̄t−1 + (1− β1)∇θJMSE(θ̄t)

s̄t ← β1s̄t−1 + (1− β2)∇θJMSE(θ̄t)⊗ ∇θJMSE(θ̄t)

ˆ̄tm←
m̄t

1− βt1
ˆ̄ts←

s̄t
1− βt2

θ̄t ← θ̄t−1 − η ˆ̄tm⊗ (
√

ˆ̄ts+ ε)−1

(6.8)

The variable θ̄t in Equation (6.8) represents the model weights and biases of each
layer. The scaling (s̄t) and the momentum (m̄t) matrices are initialised to zero ate the
start of the training phase. The variable t is the iteration counter, while β1 and β2 are
the momentum and scaling decay hyperparameters set to 0.9 and 0.999, respectively.
Lastly, ε is a smoothing term set to 10−8. In the present work, various learning rates
(η) were investigated during the hyperparameter search for the MLP and MDN neural
architectures. A hyperparameter is a parameter used to control the training process in
machine learning applications. Commonly used hyperparameters include the training to
test data split, the number of hidden layers, the number of neurons per layer and the
mini-batch size.
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6.3 Mixture density networks

Many practical applications that require machine learning techniques typically in-
corporate datasets that are comprised of non-Gaussian or multi-modal distributions [123].
Being able to estimate the confidence level, or uncertainty, of a prediction aids in formu-
lating a decision management tool for real world applications. Mixture density models
(MDN) are typically developed to achieve this. MDNs use the assumption that any gen-
eral distribution can be broken down into a mixture of normal distributions

Fundamentally, MDNs are built from two components, a neural network, and a
mixture model. The neural network can be comprised of any valid architecture which
takes an input (X̄) and converts it to a set of learned features. Examples of neural
networks include a standard feed forward MLP or a recurrent neural network (RNN), with
RNNs being used in transient applications with at least one feedback loop [132]. Figure
6.5 illustrates the architecture of an MDN, highlighting the parameters of a Gaussian
distribution that the neural network would predict, allowing for multi-modal predictions
and the modelling of generic distribution functions [133].

Figure 6.5: The output of a neural network parameterises a Gaussian mixture model for
k number of distributions [133]

MDNs are used to predict the parameters of a probability distribution (P (X̄ | Ȳ )),
allowing non-Gaussian distributions to be modelled, thus making MDNs a probabilistic
machine learning framework. MDNs estimate the conditional probability distribution as
a mixture of Gaussian distributions where the mixing coefficients (π̄k) and component
densities are flexible functions of the input data (X̄). Equation (6.9) illustrates the con-
ditional probability function, where it is assumed that the component densities can be
described by a mixture of normal distributions N.
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P (X̄ | Ȳ ) =
K∑
k=1

π̄k(X̄) · N(Ȳ | µ̄k(X̄), σ̄2
k(X̄)) (6.9)

where K represents the number of selected normal distributions,N is the normal distribu-
tion symbol with µ̄k and σ̄k being the predicted means and variances for each distribution
k given the input data X̄, respectively.

A schematic of a simple MDN network is given in Figure 6.6. In addition, the
activation functions of the various parameters are given. It is shown that modifications
are made to the output layer by splitting the network output into three parts to calculate
the π̄k, µ̄k and σ̄k for each k distribution. This enables the MDN network to learn the
conditional probability P (X̄ | Ȳ ).

Figure 6.6: Simplified MDN network with the corresponding output layers

Bishop [133] proposed restrictions for the mixing coefficients and variance compo-
nents of the MDN outputs. Since the mixing coefficients contain the discrete probabilities
of an output belonging to each K normal distribution for all observations, the mixing
coefficients must satisfy the constraints listed in Equation (6.10).

K∑
k=1

π̄nk = 1

0 ≤ π̄nk ≤ 1

(6.10)

These constraints are met by sending the output signal of the hidden layer (h̄π)
through a softmax function. The calculation of the mixing coefficient entry for the kth
distribution and n− th input observation (x̄n) is given in Equation (6.11).

π̄nk (x̄n) =
exp(h̄π,nk )∑K
k=1 exp(h̄

π,n
k )

(6.11)
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Similarly, a constraint is applied to the standard deviation values ensuring a positive
value, which is achieved using an exponential function applied to the standard deviation
leg of the MDN output layer, namely h̄σ,n. Equations (6.12) shows the imposed constraint
and exponential function used on the standard deviation leg.

(σ̄nk (x̄n))2 ≥ 0

σnk (x̄n) = exp(h̄σ,nk )
(6.12)

Finally, the mean values consist of real values, composed of all the output/target
features per observation and k distribution. Thus, they can be taken as the network
output layer (h̄µ,n) for the nth observation, which is represented in Equation (6.13).

µ̄nk(x̄n) = h̄nk (6.13)

The MDN weights and biases, represented by θ̄, are optimised by minimising the
error function defined by the negative log-likelihood for all observations (N). This is
shown in Equation (6.14).

JNLL(Ȳ , π̄, σ̄, µ̄) = −
N∑
n=1

ln

{
K∑
k=1

π̄k(X̄
n, θ̄) · N(Ȳ n | µ̄k(X̄n, θ̄), σ̄2

k(X̄
n, θ̄))

}
(6.14)

If the MDN predicts an output Ȳ having C features, and the mixture model consists
of M components, the total number of network outputs (Ȳtotal) is given by (C+2)M . This
is compared to the outputs of a standard MLP network, which consist of C outputs, which
are simply the conditional means of the target variables [123]. However, mathematically
the MDN layer with C standard deviations (σ̄) produces uniform variance around each
value of C for a given distribution M , which can be confining in the model training and
development. For the current work, a unique σ̄ is learned for each value of C, resulting
in the σ̄ MDN layer consisting of M × C components. The π̄ and µ̄ MDN layers would
remain with output sizes of M and M × C, respectively. Thus, the total number of
network outputs would be (2C + 1)M .
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Data generation procedures

The underlying objective of many machine learning algorithms is to estimate the
unknown mapping function of output variables (Ȳ ) for a given set off input variables
(X̄) [124]. The use of supervised learning techniques requires datasets of the input and
output variables to be established in order for learning algorithms to be implemented, as
discussed in Chapter 6.

In this chapter, the reduced order CFD simulation methodology described in Chap-
ter 4 is used to generate the simulated output datasets given a user specified set of inputs
needed for surrogate model development. The generation of the simulated dataset is re-
quired for the hyperparameter search, training and testing of the data-driven surrogate
model, which will be further dissected in Chapter 8. The proposed surrogate model will
effectively simulate and predict the required parameters associated with the flue gas side
of the furnace, SH2 and SH3 combined.

Figure 7.1 highlights the content that is discussed and indicates the research objec-
tive addressed in this chapter for the readers convenience.

Figure 7.1: Content overview and research objective addressed in Chapter 7
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7.1 Boiler model layout

The overall boiler layout is shown schematically in Figure 7.2. The boiler forms part
of a 620 [MWe] power plant, which is the same boiler used in the validation and applica-
tion case studies discussed in Chapter 5. It consists of the furnace section encompassing
the combustion chamber with a water wall evaporator (EV), a radiative pass comprising
of a platen superheater (SH2), final superheater (SH3), and a secondary reheater (RH2),
as well as a convective pass incorporating the primary superheater (SH1), the primary
reheater (RH1), and the economiser (EC).

In addition, it is shown that mills 1 to 3 provide the primary air and fuel mixture
for the front wall mounted burners in the bottom, middle and top rows, respectively.
Similarly, mills 4 to 6, provide the primary air and fuel mixture for the rear wall mounted
burners in the bottom, middle and top rows, respectively. Chapter 5, Section 5.1, provides
the numerical strategy and overall dimensions of the computational domain utilised for
all the subsequent numerical simulations discussed in this chapter.

Figure 7.2: Overall boiler layout
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7.2 Simulated data generation

The inputs to the surrogate model include the following: the combustin excess air
ratio, the mill flow rate for each of the six mills in operation, the average steam-side
temperatures of superheaters SH2 and SH3 respectively, the fouling resistance of super-
heaters SH2 and SH3 respectively, the mass fraction of ash and moisture in the fuel and
the higher heating value of the fuel (which is a function of the fuel composition). Thus,
the input field has a dimensionality of dinputs = 14.

A total of 24 output target values (dtargets = 24) were extracted from the results for
each CFD simulation case. The output simulation data includes: the heat loads to the
EV walls, the roof, SH2 and SH3, as well as the flue gas composition (consisting of the
CO2, H2O, O2, SO2, CO and unburnt carbon (UC) composition), the flue gas mass flow
rate, the flue gas temperature, and the incident radiation flux at the SH3 exit plane. The
EV walls were discretised into to ten wall sections to capture the non-uniformity of the
heat flux distributions commonly found in industrial furnaces [103]. In addition, the heat
loads to the SH2 and SH3 tube banks were each split into two legs consisting of five and
seven tube sheets, respectively.

To obtain a representative set of results for training the surrogate model, a design
of experiments (DOE) was conducted to generate the input data set of 180 simulation
cases. The various model input ranges used in the DOE are provided in Table 7.1. The
ranges were selected to cover a wide range of operational loads with the plant maximum
continuous ratings (MCR) between 100% and 30%. The DOE matrix was populated using
the Latin Hypercube Sampling (LHS) method provided in the Python pyDOE library
version 0.3.8.

Table 7.1: Design of experiments input variable ranges and means

Input variables Mean Min Max Units

Total fuel flow rate, (
∑6

i=1 ṁfuel,i) 68.9 39.5 120.2 kg/s
Fuel moisture content, (YH2O) 0.056 0.025 0.085 kg/kg
Fuel ash content, (Yash) 0.418 0.259 0.559 kg/kg
SH2 fouling resistance, (RSH2) 0.006 0.004 0.007 m2K/W
SH3 fouling resistance, (RSH3) 0.014 0.008 0.017 m2K/W
Higher heating value, (HHV ) 14.987 12.535 19.105 MJ/kg
Excess air, (γair) 1.145 1.101 1.272 %
SH2 steam temperature, (T̄SH2) 701 686 717 K
SH3 steam temperature, (T̄SH3) 781 768 796 K
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The total fuel flow rate input range, given in Table 7.1, was obtained from the design
and operational data of the plant. This was done to ensure that the mills and burners
were modelled realistically. The values for the moisture and ash content were sampled
using a normal distribution centred around the mean values with the standard deviations
being set to 10% of the mean values. In a similar manner, the fouling resistances of
superheaters SH2 and SH3 were generated. The HHV values were determined using
the Dulong correlation for estimating the higher heating value of solid fuels [134]. The
expression is given in Equation (7.1).

HHV = (33.8YC,ar + 144.3(YH,ar −
YO,ar

8
) + 9.4YS,ar) MJ/kg (7.1)

where YC,ar, YH,ar, YO,ar, and YS,ar are the carbon, hydrogen, oxygen, and sulphur con-
stituents of the solid fuel defined on an as-received basis, respectively.

The as-received basis is used to define a hydrocarbon fuel based on its five main
elemental constituents, typically carbon, hydrogen, oxygen, nitrogen, and sulphur, along
with the ash and moisture content [135]. For the current work, the dry-ash-free (DAF)
fuel constituents, as given in Chapter 5, Table 5.2, where kept constant for all the sim-
ulation cases. However as shown in Table 7.1, the ash and moisture contents will vary
between cases, thus the as-received contents will vary, which in turn affects the calculation
of the HHV values. The as-received constituents can be calculated using the following
relationship between the DAF and as-received bases.

Yi,DAF =
Yi,ar

1− YH2O − Yash
(7.2)

where Yi,DAF is the mass fraction of the ith constituent based on a DAF basis, and Yi,ar
is the ith constituent based on an as-received basis.

The excess air (γair) ratios were estimated by considering the air-to-fuel from op-
erational and design data using the theoretical/stoichiometric air required for each case.
Appendix B provides a sample calculation of determining the stoichiometric amount of
air required using the same fuel as given in Chapter 5. The SH2 and SH3 internal steam
temperatures were determined using a 1-D process model of the entire boiler, which calcu-
lated the heat transfer in the furnace and the estimated the furnace exit gas temperature
using the Gurvich approach [103].
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Figure 7.3 graphically illustrates the effects of the ash and moisture content on the
higher heating value of the fuel. It can be seen that a high-ash content negatively effects
the energy content of the fuel with lower HHV values being estimated.

Figure 7.3: The effects the ash and moisture content have on the estimated HHV value

During the post-processing of the total fuel flow rates for mills 1 to 6 and the excess
air percentage, a normally distributed noise component (ξ) was introduced to provide
realistic operational inputs where slight variations from the design values are expected.
Equation (7.3) illustrates the addition of a noise component for an input variable Zi.

Zi = Zi + f(ξ, µ, σ2)

f(ξ, µ, σ2) =
1√

2πσ2
e
−(ξ−µ)2

2σ2
(7.3)

The process of generating the data is described in the flowchart given in Figure 7.4.
The primary step is an initial transformation of the DOE inputs to the applicable CFD
input boundary conditions (e.g. mass flow rate to velocity values). Following this requires
the loading/updating of the boundary/input conditions to ANSYS Fluent® for case n.
Subsequently, using the pressure-based solver (Chapter 4, Section 4.1.6) and the Eulerian
multiphase modelling methodology (Chapter 4, Section 4.1), each simulation case n is
solved to convergence.
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Figure 7.4: Data generation flowchart

Once the CFD simulations have achieved convergence, each simulation case’s target
data (Ȳ ) is recorded. Figure 7.5 illustrates the output data reporting surfaces which
includes the ten discretised EV wall sections, the SH2 and SH3 tube bank split, the roof
section above SH2 and SH3 and the SH3 exit plane.

Figure 7.5: Output data reporting surfaces, including the ten discretised EV wall sections,
the SH2 and SH3 tube bank split and the SH3 exit plane.
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Due to the inherently unsteady nature of the CFD simulations, even when con-
vergence has been achieved, the output target values were constructed with the values
extracted after every 50 iterations for an additional 2500 iterations after convergence was
achieved. This results in each CFD simulation case having a solution data matrix size of
(Ȳ ∈ R(50× 24)).

7.3 Exploratory data analysis of the generated out-

put dataset

Exploratory data analysis (EDA) is a data analytical process used to analyse and
interpret datasets with the help of data visualisation methods [136]. The purpose of the
EDA is to summarise and identify common trends found in the CFD generated simula-
tion dataset, which was generated using the inputs discussed in the previous section. The
first step of the EDA investigation was to clean the dataset by removing unwanted values
(e.g. NaN ) and data irregularities, which prepares the dataset for analysis. The Python
library pandas version 1.2.4 was used in identifying and removing unwanted values and
irregularities, such as any out of range outputs suggesting unrealistic operations of the
boiler (e.g. a substantial exit gas temperature in excess of 2300 [K], critical level heat
loads to the SH2 and SH3 that can cause failure).

The current work made use of the Python library, seaborn version 0.11.2, to create
univariate visuals of the output variables. Included in the visuals are histogram plots
superimposed with a kernel density estimation (KDE) plot. The KDE is a method for
estimating the probability density function of a variable [137]. This combination allows
for a visual inspection of the estimated probability distribution and range of the output
data.

(a) (b) (c)

Figure 7.6: Total heat loads to the (a) EV walls, (b) SH2 walls and (c) SH3 walls

Figure 7.6 presents histogram plots illustrating the total heat loads to the EV,
SH2 and SH3 walls. It can be seen that a wide range of total heat loads are captured.
Considering the results of Chapter 5, Sections 5.1 and 5.3, the heat loads to the EV walls
are within the expected 32% to 100% MCR load range (approximately 200 to 580 [MW ]).
Similarly, the heat loads to SH2 and SH3 are also within the expected MCR load range.
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(a) (b)

(c) (d)

Figure 7.7: Superimposed histogram and KDE plots for output variables (a) Tfg,exit, (b)
ṁfg,exit, (c) YCO2 , and (d) YO2 at the SH3 exit plane

Figures 7.7 (a) to (d) highlight distributions of the flue gas temperature, mass flow
rate, CO2 content, and O2 content at the SH3 exit plane. The temperature of the flue
gas has an approximately normal distribution with a mean in the range of 1100 to 1200
[K], showing that for a wide range of loads the exit temperature at the SH3 exit plane is
fairly stable. Considering the flue gas mass flow rate of Figure 7.7 (b), an approximate
left skewed distribution can be seen with less information density available in the ranges
of 450 to 500 [kg/s] and higher load flow rates of 700 to 800 [kg/s]. Similarly, the YCO2

and YO2 mass fractions of Figures 7.7 (c) and (d) highlight a lack of information density
in the ranges of 0.155 to 0.16 [kg/kg] and 0.085 to 0.09 [kg/kg], respectively.
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Furthermore, the distribution shapes are very similar in comparison, showing that
an underlying relationship exists between the oxygen and carbon dioxide content at SH3
exit plane. This is further explored using a bivariate plot of the YCO2 and YO2 mass
fractions, given in Figure 7.8, which illustrates that an approximate linear relationship
exists between the two mass fractions. In addition, the largest lack of information density
is encircled which correlates to the ranges mentioned previously.

Figure 7.8: Bivariate plot of YCO2 and YO2 including an encircled region correlating to the
largest information density gap

A summary of the generated CFD dataset is provided in Table 7.2, where the mean,
standard deviation, minimum and maximum values for all 24 output variables are given.
From Table 7.2, the carbon monoxide mass fraction (YCO) values are several orders of
magnitude smaller than the rest of the flue gas composition at the SH3 exit plane. This
is an indicator of complete combustion in the furnace. However, these small values can
lead to substantial numerical errors when applied in a machine learning algorithm. Thus,
for the training and selection of the most suitable machine learning algorithm discussed
in the subsequent chapter, the YCO mass fraction was omitted from the output dataset,
making dtargets = 23.

Considering the distributions of the heat fluxes to the EV wall sections of Figures 7.9
(a) to (j), a wide range of heat fluxes are reported across the wall height. The heat fluxes
are below the design limit of 580 [kW/m2] [103], which is implemented to avoid excessive
heat absorption by any part of the boiler heating surface. Wall sections 1, 2, 3, 4, and 7
have areas encircled highlighting the ranges where there is a lack of information density.
Having a lack of information density in the dataset can lead to trained algorithms making
unreliable predictions in the ranges where the information density is low. However, the
MDN model discussed in Chapter 6 has the ability to also learn the uncertainty, which
comes from using a probabilistic model in the modelling approach and takes into account
the effect of information density in the training data.

The subsequent chapter uses the generated DOE high-level inputs and the CFD
simulated outputs to train and test a suitable machine learning algorithm.
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Table 7.2: Summary of the CFD generated output data

Output variables Mean Standard
deviation

Min Max Units

Heat loads
Wall - 1 30.76 25.85 1.01 98.12 MW
Wall - 2 21.56 7.68 0.84 43.24 MW
Wall - 3 20.85 8.03 1.17 38.37 MW
Wall - 4 29.17 8.82 5.20 46.99 MW
Wall - 5 22.77 8.61 4.70 43.24 MW
Wall - 6 30.97 10.19 4.95 52.99 MW
Wall - 7 39.92 14.26 10.98 84.82 MW
Wall - 8 38.70 11.06 13.66 67.89 MW
Wall - 9 30.62 8.22 11.78 52.06 MW
Wall - 10 78.06 20.70 30.04 148.02 MW
SH2 leg - 1 65.96 25.47 13.70 124.01 MW
SH2 leg - 2 78.98 26.13 15.56 132.30 MW
SH3 leg - 1 23.65 7.97 2.63 45.12 MW
SH3 leg - 2 24.46 7.58 3.80 43.75 MW
Roof 12.14 3.34 3.15 22.81 MW

Flue gas composition at the SH3 exit plane
YCO2 0.188 0.025 0.126 0.235 kg/kg
YH2O 0.041 0.005 0.031 0.051 kg/kg
YO2 0.062 0.020 0.023 0.117 kg/kg
YSO2 2.47× 10−3 3.2× 10−3 1.73× 10−3 3.02× 10−3 kg/kg
YCO 8.65×10−12 2.62×10−11 3.76×10−17 3.54×10−10 kg/kg
YUC 1.87× 10−4 3.17× 10−5 9.17× 10−5 2.96× 10−4 kg/kg

Flue gas conditions and the incident radiative flux at the SH3 exit plane
Temperature, (Tfg,exit) 1143 109 894 1417 K
Mass flow rate, (ṁfg,exit) 514.6 102.9 298.3 791.8 kg/s
Incident radiation, (Gexit) 399.0 126.5 126.7 750.8 kW/m2
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j)

Figure 7.9: Heat loads to the EV wall sections for walls 1 to 10
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Chapter 8

Surrogate model development,
training, and selection

Selecting the best machine learning model requires hyperparameter tuning, whereby
different combinations are tested to evaluate the best-performing model settings, resulting
in the lowest training and testing errors. Examples of hyperparameters are the optimisa-
tion learning rate, number of fitting coefficients (model parameters) and mini-batch sizes.

In this chapter the database generated using the reduced order CFD model is used
to train the surrogate model of the radiant heat exchanger section of a 620 [MWe] utility-
scale boiler. Both an MLP and an MDN were considered in the hyperparameter tuning
process, with the best model being selected based on the minimisation of the MAEs and
root mean square error (RMSE) values.

Figure 8.1: Content overview and research objective addressed in Chapter 8

Figure 8.1 highlights the content that is discussed and indicates the research objec-
tive addressed in this chapter for the readers convenience.
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8.1 Surrogate model configuration

The surrogate model aims to predict the heat load distributions to the EV walls, the
SH2 tubes, the SH3 tubes, as well as the flue gas composition and temperatures at the
exit of the radiative section (which is at the exit of SH3), using the 14 high-level inputs
(dinputs = 14) as given in Table 7.1. Recall that for each CFD simulation, the output
matrix size comes to (Ȳ ∈ R(50× dtargets)), with dtargets = 23, where the targets are the
predicted output variables mentioned previously.

The total CFD solution data matrix size (Ȳtot) will consist of 180 different simula-
tions, each with its own set of output data (Ȳ ); thus, Ȳtot ∈ R(180× Ȳ ) results, to provide
a total of 207,000 data points. During the training and testing phase of the various ma-
chine learning models, a combination of forward propagation, cost function calculation,
back propagation and parameter optimisation is used to train/test the network param-
eters to minimise the loss calculated from the cost function, as described in Chapter 6.
Using the total solution data matrix for training and testing would typically result in a
high memory consumption for very large datasets [125].

To negate the high memory consumption, mini-batches can be used to pass train-
ing/testing samples through the machine learning model network. Mini-batches train
significantly longer compared to full-batch training but requires less GPU memory. Addi-
tionally, mini-batch models have better generalisation because of the sequential feeding of
the data. The mini-batch size is a term used in machine learning that specifies the number
of training/testing examples utilised in one iteration [122]. Thus, for a data mini-batch
size, mb, the output tensor for the developed MLP model will be Ŷ ∈ R(mb × dtargets).
However, the output data for the developed MDN model will consist of three parts,
namely; the mixing coefficients tensor of shape π̄ ∈ R(mb × K), the output standard
deviation tensor of shape σ̄ ∈ R(K × mb × dtargets), and the predicted means of tensor
shape µ̄ ∈ R(K ×mb × dtargets), where K is the number of distributions. The input data
fed into both the MLP and MDN will have shape X̄ ∈ R(mb × dinputs).

8.2 Hyperparameter tuning & model selection

For the current study the following hyperparameter search spaces were considered
for the hyperparameter tuning process: the number of layers, the number of neurons per
layer, various learning rates, various mini-batch sizes, and where the MDN is concerned,
the number of distributions.

The training to testing split is an important pre-processing technique used to eval-
uate the performance of a machine learning algorithm [138]. The procedure involves
splitting the dataset into two subsets, namely a training data subset utilised to fit the
machine learning model and a testing data subset utilised to evaluate the fitted machined
learning model. The testing data subset is not used to train the model, instead the input
element of the dataset is fed to the trained model and the predictions are compared to
the expected output values of the testing data subset [138]. The current work employed
an 80% to 20% split of the training and testing data [11, 64].
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In addition, min-max scaling of the input and output parameters was done to ensure
that they were scaled between 0 and 1 [138]. The use of min-max scaling safeguards
against exploding or vanishing error gradients during back propagation when utilising
ReLu activation functions, which the current work employs in the hidden layer of both
the MLP and MDN neural network architectures. Min-max scaling for an input parameter
can be defined as follows [138]:

X̄std,i =
X̄i −Xmin

Xmax,i −Xmin,i

(8.1)

In Equation (8.1), X̄i is a vector of input samples for one input parameter, Xmin,i/max,i

is the minimum and maximum of the input sample and X̄std,i the scaled vector of input
samples for one input parameter. Similarly, the labelled output samples (Ȳ ) are also
scaled using a min-max scaler.

Figure 8.2: Overall model and hyperparameter tuning steps for the MDN model
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Figure 8.2 highlights the process of hyperparameter tuning in the overall model
selection procedure. In the present work, it was decided to perform a sequential hyper-
parameter tuning process where parameters are tuned to their best-performing values
sequentially before the next parameter is tuned. A more appropriate process would be to
use a formal optimiser to find the best-combination of hyperparameters. That being said,
the sequential process develops a better intuition of the effects of the various hyperparam-
eters on the developed model accuracy. Each sequential process in the process considers a
single/pair of hyperparameter/s and finds the best combination that minimises the MAE
and RMSE values. Then, with the best combination, the subsequent hyperparameter can
be set and varied until the best combination is found. The MLP model would follow a
similar process; however, only steps 1 to 3 must be considered.

Table 8.1: Hyperparameter search space for the MLP and MDN models

Parameter MLP search space MDN search space
Number of distributions - 1,2,3,4
Number of layers 2,3,4 3,4,5
Number of neurons per layer 10, 40, 80, 100 40, 80, 100, 120
Learning rates 1e-3, 1e-4, 1e-5, 1e-6 1e-4, 1e-5, 1e-6
Mini-batch sizes 32, 64, 128, 256 32, 64, 128

The hyperparameter search spaces for both the MLP and MDN models are illus-
trated in Table 8.1. In addition, the MDN has an added parameter, namely the number of
additional distributions that the MDN would need to fit the output data. The hyperpa-
rameter tuning of the MLP and MDN models used 1000 epochs; this was deemed adequate
to train and test the models for the various hyperparameter search spaces. The hyper-
parameter search was conducted sequentially, with the MAEs and RMSE being taken
as important performance indicators for each trained and validated case (as indicated in
Figure 8.2).

Figure 8.3: MLP hyperparameter tuning of the hidden layer architecture

Firstly, the hidden layer architecture of both models (MLP & MDN) was varied by
considering the number of hidden layers and neurons per layer. Figure 8.3 illustrates the
MLP model performance for the various hidden layer architectures.
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The neuron capacity reaches a minimum MAE at 80 neurons per layer for a four-
layer architecture. Further increasing the neuron capacity increases the MAE, possibly
overfitting the data.

Secondly, the learning rates were varied for the best-performing architecture of the
first hyperparameter tuning step, which was an MLP consisting of four hidden layers
with 80 neurons per layer. The learning rate hyperparameter generally controls the rate
or speed at which the model learns. Generally, a large learning rate allows the model to
learn faster, at the cost of arriving at a sub-optimal final set of weights. Conversely, a
smaller learning rate may allow the model to learn a more optimal or globally optimal set
of weights but may take significantly longer to train [138].

Figure 8.4: MLP hyperparameter tuning of the learning rate

Considering Figure 8.4, a decrease in the learning rate shows an improvement in the
MAE, with a learning rate of 1 × 10−5 being the best for the current epoch size. The
final step of the MLP hyperparameter tuning process required the mini-batch sizes to be
varied using an MLP with four hidden layers having 80 neurons per layer and a learning
rate of 1× 10−5. For comparative purposes, learning rates of 1× 10−5 and 1× 10−6 were
used. Figure 8.5 highlights the comparison for a fixed epoch, with a mini-batch size of 32
and a corresponding learning rate of 1× 10−5 showing the best MAE improvement.

Figure 8.5: MLP hyperparameter tuning of the mini-batch size
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The MDN hyperparameter tuning was conducted in a similar sequential manner as
demonstrated with the MLP model of Figures 8.3 to 8.5. Thus, the results of steps 1-3 of
Figure 8.2 are presented for the MDN model in Figures 8.6 (a) to (c).

(a)

(b)

(c)

Figure 8.6: MDN hyperparameter tuning of the (a) hidden layer architecture, (b) learning
rate and (c) mini-batch size

An additional step was required for the MDN hyperparameter optimisation process:
to consider the number of distributions the MDN would use to capture the probabilistic
characteristics.
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Figure 8.7 shows the MAE for the various distributions, with a distribution of one
representing the best MLP model. An increase in the number of distributions tends to
improve the MAE; however, it is evident that a threshold of three distributions results in
the best improvement.

Figure 8.7: MDN hyperparameter tuning of the number of distributions

The results of the hyperparameter search are given in Table 8.2. It is shown that
both the MLP and MDN produce the best results using a four-layered architecture having
80 neurons per layer, with the learning rate and mini-batch sizes set to 1× 10−5 and 32,
respectively. In addition, the MDN requires three distributions.

Table 8.2: Hyperparameter search results for the MLP and MDN models

Parameter MLP MDN
Number of distributions - 3
Number of layers 4 4
Number of neurons per layer 80 80
Learning rate 1e-5 1e-5
Mini-batch size 32 32
Errors
RMSE 0.0213 0.0211
MAE 0.0282 0.0263

Unlike the MLP, which can only produce a single set of predictions for an input,
the MDN can produce a distribution of predictions based on the most probable mixing
coefficient. This highlights one of the main advantages of using the MDN model, which
is its ability to learn the uncertainty that comes from using a probabilistic model that
enables the modelling approach to take into account the effect of information density in
the training/testing data [123].
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A sample of the error distributions of the flue gas composition and the heat load
distributions to the EV walls is provided in Figures 8.8 (a)-(d). In addition to an MLP and
MDN model a multivariate linear regression model was also established to serve as a base
model to demonstrate the effectiveness of using higher order machine learning models.
It can be seen that the error distributions of the flue gas composition (Figures 8.8 (a)
and (b)) show that approximately 96% of the data is within a 10% error band for all the
models (i.e. linear, MLP and MDN). Furthermore, the heat load error distributions of
Figures 8.8 (c) and (d) showcase that approximately 83% of the testing and training data
is within a 10% error band for both the MLP and MDN models, both outperforming the
linear regression model results.

(a) Flue gas composition - Training data (b) Flue gas composition - Testing data

(c) Heat loads to EV walls - Training data (d) Heat load to EV walls - Testing data

Figure 8.8: Key parameter error distributions for the selected MLP and MDN models,
(a)-(b) Flue gas composition training and testing results, (c)-(d) Heat load distributions
to the EV walls training and testing results

As indicated previously, the MDN model is able to learn the uncertainty, which is
illustrated by the confidence bands of Figures 8.8 and 8.9. Figures 8.9 (a) and (b) show-
case the overall error distribution of the models key parameters. For the MDN model,
it is seen that approximately 80-90% of the training data has mean absolute percentage
errors (MAPEs) below 10%, with the MLP model showing a similar trend. Both models
show considerable improvement in comparison to the linear regression model.
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(a) Overall error - Training data (b) Overall error - Testing data

Figure 8.9: Overall error distributions for the selected MLP and MDN model; (a) training
data and (b) testing data.

Based on the above analysis, the MDN model was selected as the best model to be
used for the surrogate model implementation. The benefit of using the MDN surrogate
model is the ability to provide the expected mean (most probable) value of each output
parameter and the associated standard deviation. Having the mean value of each of the
furnace and heat exchanger heat loads together with its uncertainty in the form of a
standard deviation allows the uncertainty to be propagated through the entire integrated
model. It is, therefore, possible to obtain the resultant mean values of the overall plant
performance parameters together with their uncertainties emanating from the surrogate
model prediction.
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Chapter 9

Surrogate model integration,
validation, and application

This chapter presents the validation and application case studies of the integrated
surrogate and network-based 1-D process model of a 620 [MWe] utility-scale boiler. A
summary of the chapter sections is listed below:

• The integration strategy of a data-driven surrogate model and a 1-D process model is
presented, demonstrating the data transfer coupling and the modelling procedures.

• Validation case studies are presented using the integrated surrogate and 1-D process
model, for MCR loads of 100%, 81% and 60%. The results are compared and
validated against measured site data.

• Application case studies are presented showing the effects that the fuel composi-
tion has on the thermodynamic response for the utility-scale boiler operating at
100% MCR. The results are compared to the validated 100% MCR load case of the
validation case study.

Figure 9.1 highlights the content that is discussed and indicates the research objec-
tive addressed in this chapter for the readers convenience.

Figure 9.1: Content overview and research objective addressed in Chapter 9
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9.1 Surrogate and 1-D process model integration

The results of Chapters 7 and 8 have led to the development of a data-driven surro-
gate model that can capture the fire-side response of the radiative section in a 620 [MWe]
utility-scale boiler. The integrated model is obtained by integrating the surrogate model
and a 1-D process model that includes both the flue gas flow elements and the water/steam
side flow network. The integration follows a similar methodology as discussed in Section
5.2 of Chapter 5. The 1-D process model is used to capture the thermodynamic response
of the flue gas side and the water/steam side of the boiler under investigation, with the
data-driven surrogate model providing predictions of the flue gas-side thermal characteris-
tics (i.e., combustion product species, temperature, and incident radiation fluxes) and the
heat-exchanger heat loads to the EV, SH2 and SH3 walls. Figure 9.1 provides a schematic
of the boiler layout, highlighting the radiative and convective sections, the water/steam
network layout and the SH3 exit plane. Figure 9.2 provides a schematic of the boiler lay-
out, highlighting the radiative and convective sections, the water/steam network layout
and the SH3 exit plane.

Figure 9.2: Schematic of the 1-D process models water/steam network highlighting the
radiative and convective sections and the SH3 exit plane
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The 1-D process model was developed using the process modelling software Flownex
SE® 2021 [100]. The software makes it possible to add control elements to obtain a com-
plete integrated dynamic system simulation model of a plant, sub-system, or component
[139]. The 1-D process model employed a control strategy emulating the real operating
protocols which utilises the ATT1, ATT2 and ATT-RH attemperators to provide cool-
ing spray water to regulate the RH and HP exit temperatures during a simulation. In
addition, the feed water entering via the EC inlet was controlled to maintain the water
level in the steam drum. This was done to ensure a zero energy source in the steam drum
node. To capture the thermal response of heat exchangers RH2, SH1, RH1 and EC in the
convective section, the 1-D heat exchanger process model, as discussed in Section 5.2 of
Chapter 5, was utilised, which resolves both the water/steam and flue gas control volume
heat transfer and flow interactions.

Figure 9.3: Schematic of the data transfer of the surrogate model predictions (P̄r) to the
1-D process model components

A schematic of the data transfer between the surrogate and 1-D process model is
provided in Figure 9.3. The data-driven surrogate model accepts the high-level inputs
(X̄) for a MCR load case and generates a prediction dataset (P̄r). This dataset is com-
promised of the 23 output parameters (i.e. dtargets) discussed in Section 7.3 of Chapter
7. Included in the prediction dataset, are the heat load predictions to the EV, SH2, and
SH3 walls as well as the heat load to the roof section directly above SH2 and SH3. These
heat loads are applied to the corresponding 1-D process model components as inputs.
In addition, the flue gas temperature, composition, and the radiative incident flux form
part of the surrogate model prediction dataset and are transferred to the corresponding
process model boundary node.
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The water-/steam side flow and heat load interactions of the integrated model is as
follows: the evaporation rate in the waterwalls is driven by the heat loads applied to the
EV walls, the water/steam mixture that is generated flows to the steam drum component
where the steam is separated and sent to SH1, while the water (liquid fraction) flows from
the steam drum through the downcomers to be fed through the EV walls again (refer to
Figure 9.2). Heat is transferred from the flue gas to the steam-side of SH1. The steam
exiting SH1 is attemperated via ATT1, cooling the steam to a predefined control SH2
exit temperature. Further heat is added to the steam through the heat loads applied to
the SH2 walls. Secondary attemperation is applied via ATT2 before the steam enters
SH3, where the heat loads to SH3 are applied. The high pressure (HP) steam outlet flow
rate is calculated as the sum of the attemperation flow rates (ATT1 and ATT2) and the
evaporation flow rate. ATT1 and ATT2 are used to control the steam temperature at
the HP outlet, while ATT-RH is applied in a similar manner to control the RH outlet
steam temperature. The attemperators of a utility-scale boiler are an integral part of the
control systems put in place to ensure safe operating conditions and to minimise water
droplet formulation in the turbines [42]. The desired exit steam temperatures for both
the HP and RH is a temperature of 808 [K] for all MCR loads.

The wall sections of the EV, SH2, SH3 and roof are comprised of Flownex SE® flow
elements which incorporate pipe components interconnected with nodes. Nodes represent
the connection points between elements and can also be a physical reservoir or tank.

Figure 9.4: Schematic of a simple network highlighting the inlet and outlet nodes, a heat
transfer element, and a flow element

Figure 9.4 illustrates a schematic of a flow element where an external heat load is
applied to the heat accepting node of the heat transfer element which in turn transfers the
applied heat load to the flow element. The heat transfer element can incorporate multiple
layers by specifying each layer’s material properties (such as the thermal capacitance and
conductivity) and the thickness. This allows the 1-D model to capture the thermal inertia
associated with the fouling and the heat exchanger tube thicknesses. In the case of the
modelled SH2 and SH3 walls, two layers were needed, namely the fouling and tube wall
layers.
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Figure 9.5: Thermal resistance network incorporating the use of a heat transfer element
and a flow element for a simple pipe

A schematic of the thermal resistance network is provided in Figure 9.5. It is shown
that the heat transfer element represents the flow of heat from the external fouling sur-
face temperature (Text), exposed to the heat load, to the inner tube surface temperature
(Tint,tube), while the flow element represent the flow of heat to the water/steam. It was
assumed that the EV walls operate with negligible slagging, thus the effect of slagging
was neglected when modelling the EV walls.

In addition to capturing the various layers using the heat transfer element, the char-
acteristic dimensions are captured using the flow element. The dimensions include the
inner tube diameter (Dint,tube), the effective total length of a single pipe (Ltube), and the
amount of tubes that are in parallel (Ntube). Furthermore, losses resulting from the tubes
surface roughness and the piping layout (e.g. inlets, bends and outlet) are captured to
determine the pressure drop over a flow element. Thus, in the current work a single flow
element was used to represent each discretised EV wall section and each tube bank leg
section of SH2 and SH3 (refer to Figure 7.5).
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The flue gas exit state predictions are transferred to a boundary node in the 1-
D process model of the flue gas flow elements, which defines the boundary conditions
for the fire-side interactions of the convective section. Included is the flue gas mass
flow rate, the temperature, and the composition. The incident radiation flux is used to
calculate the direct radiation entering RH2, by making use of the SH3 exit plane area
(ASH3,plane). The direct radiation entering is coupled directly to the fire-side stream of
the heat exchanger process model for RH2. Figure 9.6 illustrates a schematic of the flue
gas state predictions (P̄r,fg) accepted by the boundary condition node and the general
setup of the heat exchanger process model used in the convective section.

Figure 9.6: Schematic of the RH2 heat exchanger process model illustrating the flue
gas and water-side flow streams, and the input flue gas state predictions (P̄r,fg) to the
boundary node

To transfer the surrogate model predictions to the various process modelling com-
ponents, a C# script was developed. The C# script was developed to utilise the Python
application programming interface (API) of Flownex SE® 2021, since the surrogate model
was primarily developed using Python code. The script is primarily utilised to send the
high-level inputs to the surrogate model and retrieve the predictions thereof.

9.2 Integrated model validation using experimental

data

The results of the integrated model were validated using available measured data for
the 100%, 80% and 60% MCR load cases. From the measured data, the mean and standard
deviations for the following operational parameters could be determined: the total heat
loads to heat exchangers (EV through to the EC), the steam generation rates for the HP
exit, the RH exit, and the EV walls (evaporation rate), as well as the attemperator flow
rates for ATT1, ATT2 and ATT-RH (refer to Figure 9.2). Table 9.1 provides a summary
of the operational parameters for the various load cases.
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Table 9.1: Measured operational parameters summary statistics

Loads
Operational 100% 81% 60% Units
parameter

Heat loads (mean, standard deviation)
EV (538.5, 8.171) (471.3, 5.332) (308.8, 13.6) MW
SH2 (196.4, 8.676) (168.7, 5.381) (154.7, 3.471) MW
SH3 (78.5, 5.940) (68.1, 4.027) (47.0, 1.672) MW
RH2 (140.8, 5.497) (79.3, 0.821) (85.7, 13.009) MW
SH1 (175.4, 3.484) (124.1, 3.445) (101.6, 2.353) MW
RH1 (107.7, 1.852) (112.5, 6.175) (56.7, 1.703) MW
EC (91.8, 4.837) (97.8, 4.352) (61.9, 3.547) MW

Steam generation rates (mean, standard deviation)
HP exit (472.1, 1.483) (386.5, 1.483) (305.9, 2.020) kg/s
RH exit (457.9, 1.438) (374.9, 1.601) (296.7, 1.960) kg/s
EV (430.1, 4.815) (354.6, 4.815) (228.9, 6.455) kg/s

Attemperator flow rates (mean, standard deviation)
ATT1 (38.9, 3.398) (29.5, 1.339) (38.9, 3.398) kg/s
ATT2 (3.1, 1.17) (2.3, 0.744) (3.1, 1.17) kg/s
ATT-RH (13.5, 0.536) (13.5, 0.556) (13.5, 0.536) kg/s

The predictions of the surrogate model (refer to Figure 9.3) can only be used to
estimate the mean and standard deviation values for the EV, SH2 and SH3 wall heat
loads. However, the Monte Carlo method was utilised to propagate the uncertainty of
the predictions and ascertain the summary statistics for the convective section heat ex-
changers (RH2, SH1, RH1 and EC), the steam generation rates and the attemperator flow
rates, the Monte Carlo method was utilised. The Monte Carlo method is a mathematical
technique used to estimate the outcome of a given stochastic process [140]. Using a prob-
ability distribution for any variable that has inherent uncertainty, such as the predictions
from the surrogate model, the Monte Carlo method builds a set of possible results by re-
calculating the results for a set number of iterations. Each iteration utilises a different set
of variables generated using random selections from a prescribed range and distribution.
Thus, the core concept behind the Monte Carlo method is the random sampling from a
given set of probability distributions. The current work made use of normal distributions
defined by the mean (µ̄) and standard deviation (σ̄) values that are predicted from the
surrogate model.

The Monte Carlo method can be divided into three basic steps: Firstly, to set up
the predictive model and identify both the dependent variables to be predicted and the
corresponding input variables. Secondly, to specify the distributions of the input vari-
ables. Finally, running multiple simulations using randomly sampled values of the input
variables [140].
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Flownex SE® 2021 provides a sensitivity analysis tool that utilises a built-in Monte
Carlo capability. It requires the mean and standard deviations to determine the range
(minimum and maximum) for each input variable [100]. Figure 9.7 provides a flow chart
of the Monte Carlo algorithm utilised in Flownex SE®.

Figure 9.7: Flowchart of the Monte Carlo algorithm utilised in FlownexSE®

The analysis begins with the independent variables being compiled with their cor-
responding nominal/mean, minimum and maximum values. For the current work, the
23 outputs of the surrogate model are selected as the independent variables with the
dependent variables being the operational parameters listed in the Table 9.1, excluding
the heat loads to the EV, SH2 and SH3 walls. Following this, each independent variable
undergoes a randomly calculated perturbation that complies with the selected probability
distribution. A list of perturbated inputs would then be loaded to the Flownex SE® 1-D
network and solved. With a converged solution the results are stored for each Monte
Carlo iteration until the iteration limit is met. For this study, I = 1000 simulations were
performed for each MCR load.
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The perturbation values (P̄per) are determined using the Box-Muller transformation
[141]. The Box-Muller transformed random numbers are calculated as follows:

BM =
√
−2lnζ1cos(2πζ2) (9.1)

where ζ1 and ζ2 are random numbers between 0 and 1. Thus, the perturbated values of
the independent variables are calculated as follows:

P̄per = µ̄+Rmin−max(
BM

4
) (9.2)

where µ̄ is the specified nominal/mean value, and Rmax−min is the range of the indepen-
dent variable, defined as the difference between the maximum and minimum limits of the
simulation variable.

Table 9.2 provides the input vectors (X̄) to the surrogate model for both the val-
idation and application case studies discussed in this chapter. The input vectors are
utilised by the surrogate model to produce the output set of 23 independent variables.
Utilising the predicted mean, and standard deviations to define the independent variables
normal distributions, the Monte Carlo method was run to produce a set of results that
incorporates the inherent uncertainty of the surrogate model predictions.

Table 9.2: MDN input vectors (X̄) for the validation and varied fuel case studies

Validation load cases Varied fuel load cases
Input variables 100% 81% 60% High-

ash
High-
moisture

Excess air content 1.155 1.209 1.263 1.155 1.155
YASH - [kg/kg] 0.409 0.409 0.409 0.501 0.409
YH2O - [kg/kg] 0.055 0.055 0.055 0.055 0.151
HHV - [MJ/kg] 15.07 15.07 15.07 13.21 13.21
RSH2 - [K/W ] 0.012 0.012 0.012 0.012 0.012
RSH3 - [K/W ] 0.0067 0.0067 0.0067 0.0067 0.0067
SH2 steam temperature - [K] 698 697 781 698 698
SH3 steam temperature - [K] 787 793 781 787 787

Mill flow rates - [kg/s]
MCR load Mill 1 Mill 2 Mill 3 Mill 4 Mill 5 Mill 6
100% 19.14 20.22 19.92 19.98 19.41 0.00
81% 18.23 19.72 19.02 17.82 18.02 0.00
60% 15.46 16.13 0.00 15.11 15.32 0.00

Comparative results of the measured data and the integrated model responses for
the three validation load cases are provided in the form of bar plots. Included on all the
plots are confidence bands that represent the range/spread of data for each variable. The
measured data’s confidence bands were determined using Table 9.1, while the confidence
bands of the model results were resolved utilising the Monte Carlo method.
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Figures 9.8 (a) to (c) show the integrated model’s response for the total heat loads
to the various heat exchangers for the 100%, 81% and 60% MCR loads.

(a) 100% MCR

(b) 81% MCR (c) 60% MCR

Figure 9.8: Load validation result comparison of the measured data and the integrated
model results for the various heat exchangers

For the 100% MCR load, the integrated model under predicts the mean results of
the heat loads in the radiative section (EV, SH2 and SH3) by a maximum of 4% (approx-
imately 8 [MW ] for a mean SH2 heat load of 196 [MW ]). Furthermore, the model over
predicts the mean heat loads to the convective section (RH2 through EC) with a maxi-
mum deviation of 7% (approximately 10 [MW ] for a mean SH1 heat load of 175 [MW ]).
A similar trend is realised for 81% and 60% MCR loads, with the former showing an over
prediction of 4% for the mean heat load to SH3. However, the associated uncertainty of
the integrated model overlaps with the measured data uncertainty with minimal outliers.
This implies that the model predictions are sufficiently accurate.
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(a) 100% MCR

(b) 81% MCR (c) 60% MCR

Figure 9.9: Load validation result comparison of the measured data and the integrated
model results for the steam exit and steam generation flow rates

Figures 9.9 (a) to (c) highlight the steam exit flow rates at the HP and RH exits
and the evaporation rate of steam in the EV walls. The integrated model is shown to
sufficiently capture the hydraulic response of the case study boiler for a wide range of
loads. The RH exit steam rates demonstrate the largest prediction errors for all three
cases. The 60% MCR load under predicts the mean RH exit steam flow rate by a maximum
error of 8% (approximately 28 [kg/s] for a mean measured RH exit rate of 299 [kg/s]).
In addition, the 100% MCR load over predicts the mean RH exit steam flow rate by a
maximum error of 4% (approximately 22 [kg/s] for a mean measured RH exit rate of
469[kg/s]). More uncertainty is associated with the integrated model, but this is deemed
acceptable since the response overlaps with the measured data in all but one case, namely
the 60% MCR cases HP and RH exit flow rates. The author believes this uncertainty can
further be minimised by increasing the simulation data runs used to train the surrogate
model.
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(a) 100% MCR

(b) 81% MCR (c) 60% MCR

Figure 9.10: Load validation result comparison of the measured data and the integrated
model results for the required attemperator flow rates to maintain operational integrity

Figure 9.10 (a-c) highlights the attemperator flow rates of ATT1, ATT2 and ATT-
RH, which are injected into the steam lines as illustrated in Figure 9.2. The results of
ATT1 show that the integrated model can capture the attemperator flow rate entering
between SH1 and SH2 with adequate accuracy. However, the 81% MCR load tends to
overpredict the mean ATT1 flow rate by 8%. Furthermore, the ATT1 flow rates demon-
strate the largest uncertainty of the integrated model results, which all overlap with the
measured data confidence bands. The attemperator ATT-RH, demonstrates sufficiently
accurate results across all validation MCR loads.
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Considering the results of ATT2, it is seen that for higher MCR loads (100% and
81%) the integrated model predicts a larger mean flow rate value, meaning the model
tends to use more spray water to control the HP exit steam temperature. This anomaly is
thought to arise from the thermal inertia of the SH3 pipe network due to the concentrated
heat load additions of the integrated model, resulting in a higher average HP exit steam
temperature. This anomaly was corrected by splitting ATT2 to feed spray water to feed
each SH3 tube bank leg, as utilised in the utility boiler. This modelling improvement was
incorporated for the entirety of the integrated model’s high pressure attemperator system
(SH1 through SH3, incorporating ATT1 and ATT2) of the 1-D process model. Figure
9.11 highlights the improved integrated model results for the 100% and 80% MCR loads.

(a) 100% MCR (b) 81% MCR

Figure 9.11: Improved integrated modelling procedure attemperator results for (a) 100%
and (b) 81% MCR loads

Using the improved integrated model, a reduction of the predicted mean values was
achieved, namely a maximum over prediction of 150% was reduced to an over prediction
of 10% as seen when comparing Figures 9.10 (b) and 9.11 (b). However, similar confi-
dence bands were reported when using the improved integrated model for all MCR loads,
highlighting the inherent uncertainty of the control systems utilising the attemperators.
It has been shown that the integrated model can resolve the thermal response based on
the predictions of the surrogate model for a wide range of loads with sufficient accuracy.
The heat loads are within a 5% tolerance of the measured mean values, while the steam
generation rates exhibit a maximum difference of 7%, which is seen in the 60% MCR load
case (refer to Figure 9.9 (c)). The attemperator flow rate results show the most prominent
uncertainty/confidence band of all the results (Figure 9.11). However, these overlap with
the measured values in all but one case.
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9.3 Off-design analysis using the integrated model

The following section demonstrates the application of the validated integrated model
by investigating the impact of fuel quality on the overall plant performance. The fuel qual-
ity parameters that are varied are the ash (YASH) and moisture (YH2O) contents. As shown
in Chapter 7, the energy content of the fuel (HHV) is a function of these fuel constituents,
thus will be altered depending on the concentrations. Two case studies are considered to
determine the impact that the varied fuel input parameters have on the boiler efficiency,
heat pick-up and thermal response. The input vectors for the two fuel cases are provided
in Table 9.2. All the inputs are the same as those of the 100% MCR load case except
the ash, moisture, and HHV values for the respective fuels. Furthermore, the same mill
biasing and fuel flow rate of the 100% MCR load were employed for the two off-design
cases, which requires the maximum number of mills to be in service. Therefore, the 100%
MCR reference case is used to show the effects that prolonged changes in the fuel quality
will have on the boiler performance during operation.

As with the validation case studies of Section 9.2, the Monte Carlo method was
employed to ascertain the mean and standard deviation (prediction uncertainty) values
predicted via the integrated model. The integrated model predictions for the 100% case
(refer to Figures 9.8 through 9.11 (a)) were used as the reference case for comparative
purposes. Figure 9.12 (a) highlights the effects of poor-quality fuel on the heat load to
the various heat exchangers, with a 20% drop observed on average, which can be expected
since the energy content of the fuel is lower than that of the base case.

To maintain 100% load capabilities using poor quality fuel would require an increase
in the fuel flow rate, which would provide more available energy content. For the high-ash
case, an approximate increase of 42% of the mass flow rate of fuel is required to meet the
steam generation energy needs. Similarly, the high-moisture case requires an approximate
increase of 43% of the fuel mass flow rate. However, operational capacities of the mills
are limited. Since operational protocol for the 100% load case uses five mills operating
30 of the 36 burners at full capacity, a standby mill and burner arrangement are placed
in reserve to help mitigate operational risks, such as maintenance schedules and load
changes. Using the standby mill would increase the fuel flow rate by a maximum of 17%.
However, this would decrease the operational integrity and increase the associated risks.
This situation would therefore imply an unwanted load loss.
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(a)

(b) (c)

Figure 9.12: Integrated base model, high-ash, and high-moisture case study comparison
for; (a) the various heat exchangers, (b) the steam exit and generation flow rates, and (c)
the required attemperator flow rates to maintain operational integrity at 100% MCR

Figure 9.12 (b-c) similarly illustrates a decrease in the water/steam flow rates for
the steam exit and attemperator conditions. The generation rates exhibit similar charac-
teristics to the 80% load case of Figure 9.9 (b), illustrating a significant decrease in the
operational capabilities when using a poor-quality fuel. The predicted flue gas tempera-
tures entering the convective pass are shown in Table 9.3. It is shown that for an increase
in the ash content of the fuel, the flue gas inlet temperature increases due to radiation
attenuation, which results in a higher radiative heat transfer percentage for the convective
pass components. This would lead to a higher attemperator flow rate as seen in Figure
9.12 (c). It is also interesting to note that a higher ash content results in the largest
uncertainties in predicting the HP and RH exit steam and steam generation flow rates.
The presence of more moisture in the fuel results in a lower inlet temperature, primarily
since the extra moisture requires a higher rate of evaporation, leading to lower radiative
heat transfer percentages.
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Table 9.3: Model results for poor quality fuel characteristics

Variable - Reference case High-ash High-moisture
mean (min,max )
Boiler efficiency [%] 88.2 (75.6, 91.2 ) 77.6 (73.4, 80.9 ) 75.9 (69.8, 78.3 )
SH3 exit plane flue gas
temperature [K]

1352 (1339, 1332 ) 1368 (1354, 1378 ) 1311 (1295, 1327 )

Radiative heat transfer percentage (Convective pass)
RH2 52.3 (50.1, 54.0 ) 56.2 (52.9, 58.5 ) 50.3 (47.8, 53.9 )
SH1 46.3 (43.0, 49.2 ) 49.8 (44.8, 52.3 ) 47.2 (43.2, 50.8 )
RH1 21.3 (16.1, 24.6 ) 26.7 (20.6, 30.1 ) 18.2 (13.7, 23.5 )
ECO 6.7 (5.1, 9.8 ) 8.3 (6.3, 12.6 ) 5.4 (2.8, 9.7 )

The boiler efficiency is the measure used to convey how well the combustion heat
is transferred to the working fluid and is defined as the ratio of the total amount of heat
absorbed by the heat exchangers (i.e. sum of the furnace, radiative and convective pass
heat loads) and the combustion energy released (mfuel × HHV ). A significant decrease
in the boiler efficiency is highlighted in Table 9.3 for both fuel cases, with the high-ash
fuel showing a slightly better result. The drastic drop in boiler efficiency is primarily due
to the drop in the HHV values used in the off-design fuel cases. The higher efficiency of
the high-ash fuel is attributed to the heat loads of various heat exchangers being higher
than that of the high-moisture fuel, which can be seen in Figure 9.12 (a).

9.4 Result summary for the validation and application

case studies

The present work establishes the basis for utilising an integrated data-driven sur-
rogate and 1-D process model to investigate the overall operational response for a 620
[MWe] utility-scale boiler. The data-driven surrogate modelling approach using CFD
simulations can predict the parameters needed to capture the combustion and heat trans-
fer characteristics. These include the heat loads to the furnace evaporator walls (EV)
and radiative superheaters (SH2 and SH3), as well as the flue gas characteristics entering
the convective pass (i.e., SH3 exit plane), which include the temperatures, species mass
fractions and radiation intensity flux.

A validation case study was performed using the integrated model for various op-
erational loads. The model results were compared to the measured thermal response for
all load cases. The resolution of the heat loads, steam flow rates and attemperator flow
rates resulted in a maximum difference of 8%. In addition, the uncertainties predicted
by the surrogate model were propagated through the integrated model using the Monte
Carlo method, adding valuable insight into the operational limits of the power plant and
the uncertainties associated with it. In addition, improvements to the 1-D process model
of the integrated model were incorporated to accurately model the utility boilers attem-
perator control system.
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The application case studies considered the impact of poor-quality fuels at 100%
MCR operation. The results highlight the drop in performance due to the fuel quality
resulting in a decrease of the boiler efficiency and the decrease in potential generation ca-
pability. Using a high-ash fuel can result in higher exit flue gas temperatures, resulting in
a marginal increase in the performance of the convective pass heat exchangers compared
to the high-moisture fuel. Although these trends are well-known and do not provide new
insights into boiler performance in general, it demonstrates the ability of the proposed
methodology to provide practical results. In addition, it shows that there is in greater
uncertainty in the predicted steam exit and generation flow rates and increases the like-
lihood of ash deposition due to the increased ash loading.

The current work has shown that it is possible to adequately resolve the thermofluid
response of a utility-scale boiler using a data-driven surrogate model trained on CFD
simulation results. Integrating the surrogate and 1-D process models is paramount in
modelling the thermal response and provides valuable operational insight for various load
cases, including the uncertainty in the predicted results. Furthermore, engineers and other
researchers can apply the methodology used in the present work to investigate various
effects on the whole boiler operation. In addition, the developed methodology laid out
in this thesis is not limited to subcritical boiler applications and can be used to model
supercritical and ultra-supercritical boilers, provided the CFD modelling is adapted for
supercritical applications. Since, the 1-D process modelling approach can handle a shift of
the steam properties to the supercritical region using the implemented two-phase mixture
approach.
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Chapter 10

Summary, conclusions, and
recommendations

The chapter presents a summary of the research as well as the conclusions and
recommendations for future work.

10.1 Summary and conclusions

The primary aim of the research project was the development of a co-simulation
methodology that combines the use of a data-driven surrogate model and a 1-D process
model to investigate the flexible and low-load operating conditions of a subcritical CFPP
boiler. The data-driven surrogate model was developed using machine learning techniques
which required the development of a reduced order CFD approach to establish a CFD
solution database. This database was subsequently used to train and test the data-driven
surrogate model.

The reduced order CFD modelling methodology was initially validated using a 2.165
[MWth] lab-scale swirl burner. Following this, was the validation and application of the
reduced order CFD model on a 620 [MWe] utility-scale boiler, which was used as the
primary boiler for further application when utilising the integrated model. The reduced
order CFD approach could adequately capture the 3-D spatial effects of combustion, fluid
flow and heat transfer in a computationally efficient manner when compared to conven-
tional CFD approaches. Part of the motivation behind the research was to address the
long simulation times and the computational burden associated with the use of CFD in
conventional coupled simulation approaches. The integration of the surrogate model and
a 1-D process model demonstrated and resulted in significantly faster simulation times
with a reduced computational burden when compared to conventional co-simulation mod-
elling approaches. The integrated model development and application illustrated that an
efficient and fast co-simulation modelling methodology can be developed to investigate
the thermofluid performance of a CFPP at low-load and off-design conditions.

The subsequent sections provide detailed summaries and findings pertaining to the
development of the reduced order CFD model, as well as the development of the integrated
model.
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Part I - Reduced order CFD model development

Part 1 of the thesis focussed on establishing the reduced order CFD modelling
methodology. A complete theoretical background was provided in Chapter 3, covering the
3-D CFD conservation equations, conventional particle transport modelling, an overview
of combustion modelling including both heterogeneous and homogeneous reactions, the
relevant radiative heat transfer approaches, and the fundamentals of the 1-D process mod-
elling techniques.

In Chapter 4, the numerical modelling techniques, assumptions, and the validation
of the approach were presented. The multiphase modelling technique required a novel
approach to establish a non-thermal equilibrium Eulerian-Eulerian modelling method-
ology. The developed methodology was able to adequately resolve the following phe-
nomena: the momentum interactions between the continuous and particulate phases, the
transport of particulate phase through the domain, the sequential particulate combustion
processes, and the resolution of the radiative transport in the computational domain.
User-defined functions were developed and linked into ANSYS Fluent® v19.5 to imple-
ment the multiphase approach in the CFD solver. Validation was conducted using a
well-documented 2.165 [MWth] lab-scale swirl burner. Detailed measurement data and
conventional Eulerian-Lagrangian CFD model results were used to showcase the accuracy
and computational efficiency of the developed CFD model. The geometry and flow simu-
lation setup were discussed, and the results were presented. The results of the validation
case study showed relative errors in the range of 0.2% to 5% for the key parameters identi-
fied in the study. Key parameters included the heat load distributions to the furnace wall,
the temperature fields, the radiative intensity distributions, and the flue gas composition
used to demonstrate the combustion modelling effectiveness.

In addition, low-load simulations were conducted, with validation data obtained
from Eulerian-Lagrangian simulations. The results showed that the modelling methodol-
ogy could resolve the burner-level flow, species, temperature profiles, and wall flux distri-
butions in the burner domain with sufficient accuracy. Furthermore, including particle ef-
fects in the radiation and energy transport proved beneficial in implementing the combus-
tion laws, thereby illustrating the importance of the thermal non-equilibrium assumption.
The computational speed enhancement between the traditional modelling methodology
and the developed reduced order CFD model showed a 50% speed-up.

The reduced order CFD model was further utilised in modelling the primary boiler
under investigation, namely a subcritical 620 [MWe] two-pass utility-scale power boiler
which was presented in Chapter 5. Validation of the developed CFD model included a
comparison of results obtained via a numerical model using the conventional Eulerian-
Lagrangian approach and, where applicable, measured site data. The relative errors of
the key parameters ranged from 2 to 8%, with a computational speed-up of 30%.
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Furthermore, a coupled CFD to 1-D process model, which utilised the reduced order
CFD model, was developed to investigate the burner firing arrangements of the 620 [MWe]
boiler operating at a load of 32% MCR load. Six cases were considered, with the best
arrangement resulting in the optimal flame ball position, the maximum boiler utilisation
efficiency, and a minimised carbon monoxide concentration distribution throughout the
domain, negating the risk of fire-side corrosion occurring at continuous low-load operation.

The findings of Part 1 aided in meeting the research objectives one and two discussed
in Chapter 1. Namely, to investigate the complexity reduction that can be achieved via
using a pseudo Lagrangian model (i.e. multiphase model) of the fuel particles and, sec-
ondly, to validate the developed model against experimental and measured data in the
form of case studies. Furthermore, the developed model showed a significant computa-
tional speed-up of the CFD simulation time with a reduction in the computational burden
while maintaining sufficient accuracy of the key parameters. Finally, the methodology was
developed and implemented using the ANSYS Fluent® v19.5 commercial software pack-
age, as opposed to an in-house academic or proprietary code, allowing it to be employed
in industry to develop similar computationally inexpensive models for pulverised fuel
systems.

Part II - Integrated model development

Using the validated reduced order CFD modelling methodology discussed in Chap-
ters 4 and 5, the development of the surrogate model could commence. The surrogate
model was developed to adequately capture the heat loads to the furnace evaporator walls,
the radiative superheater walls, and the thermodynamic state of the flue gas entering the
convective section.

The relevant theory pertaining to machine learning techniques used in the develop-
ment of the data-driven surrogate model was discussed in Chapter 6, which covered the
use of MLP and MDN machine learning approaches. Chapter 7 highlighted the gener-
ation of CFD solution data using random samples of the high-level inputs. In total, 14
high-level operational inputs were identified that can capture a wide range of operating
conditions. The random samples were used to create 180 unique CFD simulation cases,
which were solved to convergence. For each CFD simulation, 23 output parameters were
stored. Furthermore, an exploratory data analysis was conducted on the output data to
identify any data irregularities and investigate underlying data trends between the out-
put parameters. The generated high-level and output datasets were subsequently used to
train and test the various machine learning techniques.
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In Chapter 8, the optimal neural network architecture of the surrogate model was
selected by conducting a hyperparameter search. For this, multiple MLP and MDN ma-
chine learning models were created using a hyperparameter search space that considered
the following: the number of hidden layers, the number of neurons per layer, the learning
rate, the batch size, and specifically for the MDN model the number of distributions.
Increasing the number of hidden layers and neurons per layer improved the flexibility of
the model allowing for a better fit of the training and testing data. A threshold of four
hidden layers with 80 neurons per layer provided the optimal data fitting with minimal
MAE and RMSE values.

Investigating the other hyperparameters resulted in a learning rate of 1× 10−5, and
a batch size of 32 was selected, which aided in lowering the training and testing data
generalisation error and improving stability. In addition, to capture the probabilistic
characteristics of the MDN model a set of three distributions was selected. The MDN
produced the best performing machine learning model when compared to a MLP network
of a similar architecture. Furthermore, the MDN has the added benefit of producing the
mean and associated standard deviation values for the output parameters, allowing for
the uncertainty of the predictions to be propagated through the entire integrated model.

Utilising the knowledge gained in creating a coupled CFD to 1-D process model
proved invaluable when integrating the surrogate model with a 1-D process model. Open-
source software, namely Python, was used to integrate the surrogate and 1-D process
model using an application programming interface, which was readily available in the 1-D
process modelling software Flownex SE®. In Chapter 9, the integrated model was used
to capture and investigate the thermofluid performance of the utility-scale boiler.

A validation case study was conducted for MCR loads of 100%, 81% and 60%. The
integrated model predicted heat loads within 5% of the measured mean values, and re-
solved the thermofluid performance based on the predictions of the MDN surrogate model
with sufficient accuracy. The steam generation rates exhibited a maximum error of 7%,
while the attemperator flow rate results showed the most prominent uncertainty. How-
ever, these overlapped with the measured values in all but one case. Furthermore, the
uncertainties predicted by the surrogate model were propagated through the integrated
model using the Monte Carlo technique, adding valuable insight into the operational lim-
its of the power plant and the uncertainties associated with it.

An application study was then conducted using the integrated model. It investigated
the effects of fuel quality on the boiler performance at 100% MCR load. The results high-
lighted a significant drop in performance due to the fuel quality, leading to a decrease in
the operational boiler efficiency. To increase the operational performance would require
an increase in the fuel flow rate, which would provide more available energy content.
However, the operational capacities of the mills are limited, which limits the ability of
the boiler to meet the 100% MCR load. This would therefore result in a load loss with
the boiler operating at a lower MCR load. Although the application case study did not
provide new insights into boiler performance in general, it demonstrated the ability of the
proposed methodology to provide practical results.
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The outcome of Part 2 assisted with meeting the final three research objectives high-
lighted in Chapter 1. Firstly, utilising the reduced order CFD model of Part 1 to generate
a CFD simulated database. Secondly, developing an optimal data-driven surrogate model
employing the CFD simulated database, that can report the necessary heat loads, tem-
perature profiles and the thermodynamic state of the flue gas for the primary utility-scale
boiler. Finally, an integrated model incorporating the data-driven surrogate model and a
1-D process model of the water/steam network was validated and utilised to investigate
the effects of fuel quality on the thermofluid performance of the boiler. Comparing the
computational benefits of using the integrated surrogate model to the coupled modelling
approach illustrated in Chapter 5, it was found that the integrated model significantly
reduced the computational time required.

10.2 Recommendations for future work

The modelling methodology developed in this study further adds to the research
focused on studying the flexibility of large, pulverised fuel power plants. The following
research could be further investigated:

• Utilising the final integrated model to develop a plant operator training tool. Such
a tool would be valuable for current plant operators to investigate, in a computa-
tionally efficient manner, the flexible operational limits, operational safety, and the
operating behaviour during malfunctions of the boiler.

• The final integrated model was validated for multiple steady-state MCR load cases.
The subsequent step is to incorporate the final integrated model in the application
to investigate transient events, such as start-up and shut-down procedures. The
integrated model would be suitable for these applications due to the fast simulation
times and the minimal operational inputs required to resolve the furnaces fire-side
interactions. The data-driven surrogate model would be used in a quasi steady state
manner while the 1-D process model can be fully transient. Having the ability to
investigate the boiler performance during start-up and shut-down procedures would
allow plant operators to put in place operational protocols that can ensure safe
operation.

• Further addition of components, such as the steam turbines and feedwater heaters
to the 1-D process model would prove beneficial in creating a complete power plant
model. This would enable the investigation of the effects load changes and malfunc-
tions have on other critical power plant components.
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Appendix A

Derivations

Derivations of the following variables will be discussed, namely, the effective density
(ρeff ) (Equation (4.2)), the linearisation of the momentum sources (Equation (4.3)), and
the effective thermal conductivity of the superheater walls (Equation (5.3)).

A.1 Effective density derivation

The effective density of a mixture, including solid and gas-phases, can be derived by
considering the volume and mass of a mixture. Assuming ideal gas relations, the density
of the gas-phase can be written as;

ρg =
Pg
RTg

where R =
Ru

M̄
(A.1)

The volume of a mixture (Vm) can be defined in this case as;

Vm = Vp + Vg

=
mp

ρp
+
mgRTg
Pg

(A.2)

where Vp, Vp, and mp are the particle or solid-phase volume, the gas volume and particle
mass present in a control volume. The mass of the particle in a control volume can be
expressed using the particle phase mass fraction (φmp), which indicates the amount of
particle/solid phase present in the gas-phase and has units of [kgp/kgg], where kgp is the
mass solid phase in a control volume and kgg is the mass of gas present in a control
volume. Thus, Equation (A.3) can be simplified as follows:

Vm =
φmpρgVg

ρp
+
ρgVgRTg

Pg

= ρgVg(
φmp
ρp

+
RTg
Pg

)

(A.3)
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The mass of the mixture (mm) can subsequently be defined as:

mm = mp +mg

= φmpρgVg + ρgVg

= ρgVg(φmp + 1)

(A.4)

Using the definition of density, the effective density can be written using Equations
(A.3) and (A.4) as,

ρeff =
mm

Vm

=
ρgVg(φmp + 1)

ρgVg(
φmp
ρp

+ RTg
Pg

)

=
ρgρp(φmp + 1)

(φmpρg + ρp)

(A.5)

A.2 Momentum sources derivation

The following derivation aids in determining the linearised momentum source terms
to include the translational inertia effects due to the presence of the pseudo-particles.
Typically, linearised sources terms (S∗) are written in the following form:

S∗ = S +
∂S

∂φ
φ (A.6)

where S, dS
dφ
φ and φ is the explicit part of the source term, the implicit part of the source

term and the dependent variable, respectively [21]. For momentum sources, the indepen-
dent variable is primarily the velocity component. For the x, y and z coordinate directions,
the dependent variables are u, v, and w. The derivation is composed of two parts, namely
derivations of the explicit and implicit forms of the source term. To transform Equation
(3.12) to Equation (4.1), the general form of the source term (Sm) for the x-direction is
given as follows:

Smomx =
∂

∂xi
(ρguiuj)−

∂

∂xi
(ρeffuiuj) (A.7)

Assuming the incompressible ideal gas formulation, the source term can be written
as:

Smomx = (ρg − ρeff )(
∂i
∂x

(uiuj)) (A.8)

Expanding the ( ∂
∂xi

(uiuj)) term, the following is derived:

∂

∂xi
(uiuj) = (

∂

∂x
î+

∂

∂y
ĵ +

∂

∂z
k̂) · (uuî+ vuĵ + wuk̂)

=
∂

∂x
uu+

∂

∂y
vu+

∂

∂z
wu

= 2u
∂u

∂x
+ v

∂u

∂y
+ u

∂v

∂y
+ w

∂u

∂z
+ u

∂w

∂z

(A.9)

156



Appendix A. Derivations

Thus, the x-direction explicit source term can be written as follows:

Smomx = (ρg − ρeff )(2u
∂u

∂x
+ v

∂u

∂y
+ u

∂v

∂y
+ w

∂u

∂z
+ u

∂w

∂z
) (A.10)

Similarly, the explicit source term components for the y and z coordinates are written
as follows:

Smomy = (ρg − ρeff )(u
∂v

∂x
+ v

∂u

∂x
+ 2v

∂v

∂y
+ w

∂v

∂z
+ v

∂w

∂z
)

Smomz = (ρg − ρeff )(u
∂w

∂x
+ w

∂u

∂x
+ v

∂w

∂y
+ w

∂v

∂y
+ 2w

∂w

∂z
)

(A.11)

The implicit component of the linearised source term requires the derivative of the
explicit component with respect to the dependent variable. Equation (A.12) illustrates
the process of determining the derivative for the x coordinate direction.

∂Smomx
∂u

= (ρg − ρeff )(2u
∂u

∂x
+ v

∂u

∂y
+ u

∂v

∂y
+ w

∂u

∂z
+ u

∂w

∂z
)
∂

∂u

= (ρg − ρeff )(2
∂u

∂x
+ 2u · 0 + 0 · ∂u

∂y
+ v · 0 +

∂v

∂y
+ u · 0 + 0 · ∂u

∂z
+ w · 0 +

∂w

∂z
+ u · 0)

= (ρg − ρeff )(2
∂u

∂x
+
∂v

∂y
+
∂w

∂z
)

(A.12)

Similarly, the y and z coordinates implicit components are written as follows:

∂Smomy
∂u

= (ρg − ρeff )(
∂u

∂x
+ 2

∂v

∂y
+
∂w

∂z
)

∂Smomz
∂u

= (ρg − ρeff )(
∂u

∂x
+
∂v

∂y
+ 2

∂w

∂z
)

(A.13)

Thus, the linearised source terms for all the coordinate directions are written using
Equation (A.7) as follows:

S∗momx = (ρg − ρeff )((2u
∂u

∂x
+ v

∂u

∂y
+ u

∂v

∂y
+ w

∂u

∂z
+ u

∂w

∂z
) + (

∂u

∂x
+ 2

∂v

∂y
+
∂w

∂z
)u)

S∗momy = (ρg − ρeff )((u
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+ v

∂u

∂x
+ 2v

∂v

∂y
+ w

∂v

∂z
+ v

∂w

∂z
) + (

∂u

∂x
+ 2

∂v

∂y
+
∂w

∂z
)v)

S∗momz = (ρg − ρeff )((u
∂w

∂x
+ w

∂u
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+ v

∂w

∂y
+ w
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) + (
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∂x
+
∂v

∂y
+ 2

∂w

∂z
)w)

(A.14)
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A.3 Effective wall thermal conductivity

The use of an effective wall thermal conductivity (λeff,wall) was derived since AN-
SYS Fluent® v19.5 does not allow for the modelling of multiple conduction layers when
UDFs are utilised in a simulation. A thermal resistance analysis of the superheaters was
conducted to incorporate the effects of fouling on the radiant superheaters. The transverse
pitch between tubes for the SH2 and SH3 superheaters’ tube banks results in a gap of 1
[mm]. Thus the tube banks can be modelled as flat plates. This assumption significantly
reduces the complexity of the analysis. Figure A.1 illustrates the conduction heat transfer
through a multi-layered material consisting of ash and steel.

Figure A.1: Conduction thermal resistance network through a multi-layered material
consisting of ash and steel.

The thermal resistance network of Figure A.1 allows for the total conduction heat
transfer (Q̇cond.total) to be written as follows:

Q̇cond.total =
(Tout − Tin)

Rtot

= λeff.wallA
(Tout − Tin)

L
(A.15)
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The total thermal conductive resistance can be written in terms of the ash and
steel walls’ thermal conductivities, surface areas and thickness. The derived expression is
shown in Equation (A.16).

Rtot = Rcond.ash +Rcond.wall

=
Lash

λashAash
+

Lwall
λwallAwall

=
λwallAwallLash + λashAashLwall

λashλwall

(A.16)

With the flat plate assumption, the ash and steel wall areas are essentially the
same, meaning Aash = Awall = A. The thickness of the ash layer is usually difficult
to determine. The superheater components’ fouling thermal resistance values typically
range from 0.0047− 0.015 [K/W ]. Making the thickness of the ash layer (Lash) equal to
the resistance value along with the ash conductivity (λash) being equated to a value of
1 [W/mK], the effect of an ash layer can be incorporated. Defining the ratio of the ash
and steel wall thickness (ηw = Lash/Lwall), the total resistance of Equation (A.16) can be
written in terms of steel wall thickness as follows:

Rtot =
Lwall
A

(
λwallηw + λash
λashλwall

)
(A.17)

Substituting Equation (A.17) into Equation (A.15), the effective conductivity can
be written as follows:

Q̇cond.total = λeff.wallA
(Tout − Tin)

Lwall
=

(
λashλwall

λwallηw + λash

)
A(Tout − Tin)

Lwall

∴ λeff.wall =
λashλwall

λwallηw + λash

(A.18)
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Appendix B

Analytical calculations

In this section the boundary values and sample calculations for the CFD case studies
discussed in chapter 5 are given. The results are used in conjunction with plant data as
a verification guide for the developed CFD model. This section is therefore comprised of
the following subsections:

1. Products of combustion calculations

2. Mass and energy balance calculations

B.1 Products of combustion

The following section illustrates the theoretical calculation procedure for determin-
ing the exit gas constituents for a solid fuel combustion reaction case. The procedure
assumes infinitesimally fast reaction rates and complete global reactions. The results
were used in the numerical case studies of chapter 6 to verify if complete combustion was
successful.

B.1.1 Methods

On an as-received basis the ultimate analysis of the coal burnt for both case study
configurations are given in Tables 4.2 and 5.2. These values are used in a stoichiometric
combustion analysis to determine the theoretical amount of air that is required and the
mass of the combustion products produced per kilogram of fuel burnt. A stoichiomet-
ric balanced global reaction consisting of reactants, oxidiser and product species can be
written on a mass basis as follows:

υRMR + υOXMOX → υPMP (B.1)

Where MR, MOX and MP are the molecular weights of the reactants, oxidiser and
product species, and υR,υOX and υP are the stoichiometric balance coefficients respec-
tively.
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Appendix B. Analytical calculations

The ratio of oxygen and product species to the reactants/combustible matter is
important to determine as it allows one to determine the mass of oxygen required and
products species produced based on the mass fraction of combustible species present in
the fuel. With combustible species being that of carbon C, hydrogen H and sulphur S
for most solid fuel reactions. The ratio of oxygen/products to the reactant is written as:

SOX/P =
υOX,PMOX,P

υRMR

(B.2)

The reactions and subsequent SOX/P values for the solid fuel combustible species of
carbon, hydrogen and sulphur are presented below:

C + SOXO2 → SPCO2, SOX = 2.664 kgO2/kgfuel SP = 3.664 kgCO2/kgfuel

H2 + 0.5SOXO2 → SPH2O, SOX = 7.936 kgO2/kgfuel SP = 8.936 kgH2O/kgfuel

S + SOXO2 → SPSO2, SOX = 0.998 kgO2/kgfuel SP = 1.998 kgSO2/kgfuel

(B.3)

The ratio of Equation (B.2) is used to determine the mass fraction, per kilogram
of fuel, of the required oxygen and products produced by making use of the following
expression:

mOX,P = SOX,PYcombustible (B.4)

From this the required amount of oxygen and products can be calculated. It follows
that the exit flue gas constituents mass fractions can be calculated by considering the
following definition:

Yi,fg =
mi,fg

mtot,fg

(B.5)

Where Yi,fg is the mass fraction of the ith species present in the flue gas and mi is
the mass, per kilogram of fuel, of the ith species present in the flue gas. With the mass
fraction known the mole fractions can be computed using the following expression:

Xi,fg =
M̄Yi,fg
Mi,fg

(B.6)

B.1.2 Sample calculation

A sample calculations for the utility boiler operating at 100% MCR are provided
below with a summary of the final results given in Tables B.1.
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Model inputs:

Air properties - (excess air ratio, specific humidity and air properties)

α = 1.155, ω = 0.0016 kgH2O/kgdry.air, YO2dry.air
= 0.232 kg/kg,

YN2dry.air
= 0.768 kg/kg

Fuel constituents based on an ’as received’ ultimate analysis basis

YC = 0.416 kg/kgfuel, YH = 0.022 kg/kgfuel, YN = 0.01 kg/kgfuel,

YS = 0.009 kg/kgfuel, YO = 0.079 kg/kgfuel, YH2O = 0.055 kg/kgfuel,

YASH = 0.409 kg/kgfuel, YUC = 0.045 kg/kgfuel

YC + YH + YN + YS + YO + YH2O + YASH + YUC = 1

Step 1: Global oxidation reactions

Carbon oxidation reaction (R1)

C + SOXO2 → SPCO2

mO2R1
= SOXYC =

MO2

MC
YC = 1.107 kg/kgfuel

mCO2 = SPYC =
MCO2

MC
YC = 1.523 kg/kgfuel

Hydrogen oxidation reaction (R2)

H2 + 0.5SOXO2 → SPH2O

mO2R2
= SOXYH = 0.5

MO2

MH2
YH = 0.177 kg/kgfuel

mH2O = SPYH =
MH2O

MH2
YH = 0.199 kg/kgfuel

Sulphur oxidation reaction (R3)

S + SOXO2 → SPSO2

mO2R3
= SOXYS =

MO2

MS
YS = 0.009 kg/kgfuel

mSO2 = SPYS =
MSO2

MS
YS = 0.019 kg/kgfuel

Step 2: Theoretical amount of air

Calculate the required air, based on the amount oxygen required for the reactions R1-R3.

mO2req
= mO2R1

+mO2R2
+mO2R3

− YO = 1.214 kg/kgfuel

mair.req =
mO2req

YO2dry.air

= 5.245 kg/kgfuel

mdry.air = αmair.req = 6.058 kg/kgfuel

mmoistair = ωmdry.air = 0.055 kg/kgfuel
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Appendix B. Analytical calculations

Step 3: Mass of products per kilogram of fuel

The mass of the products per kilogram of fuel for each combustion product is calculated
as:
mCO2fg

= mCO2 = 1.523 kg/kgfuel

mH2Ofg = mH2O + YH2O +mmoistair = 0.309 kg/kgfuel

mSO2fg
= mSO2 = 0.019 kg/kgfuel

mO2fg
= YO2dry.air

(mdry.air −mair.req) = 0.188 kg/kgfuel

mN2fg
= YN + YN2dry.air

(mdry.air) = 4.665 kg/kgfuel

Total mass of combustion products per kilogram of fuel:
mtotfg = mCO2fg

+mH2Ofg +mSO2fg
+mO2fg

+mN2fg
= 6.704 kg/kgfuel

Step 4: Mass fractions per kilogram gas of the combustion products

The mass fractions per kilogram gas can be calculated using Equation (B.5)

YCO2fg
=

mCO2fg

mtotfg
= 0.227 kg/kg

YH2Ofg =
mH2Ofg

mtotfg
= 0.046 kg/kg

YSO2fg
=

mSO2fg

mtotfg
= 0.003 kg/kg

YO2fg
=

mO2fg

mtotfg
= 0.028 kg/kg

YN2fg
=

mN2fg

mtotfg
= 0.696 kg/kg

YCO2fg
+ YH2Ofg + YSO2fg

+ YO2fg
+ YN2fg

= 1

Table B.1: Exit flue gas constituent mass fractions for the CFD case studies of Chapters
4 and 5

Load YCO2 YH2O YSO2 YO2 YN2

IFRF - 100% MCR 0.213 0.033 0.0012 0.038 0.0.713
IFRF - 60% MCR 0.197 0.031 0.0013 0.053 0.0.718
IFRF - 40% MCR 0.191 0.029 0.0011 0.059 0.720
Utility boiler - 100% MCR 0.227 0.046 0.0028 0.028 0.696
Utility boiler - 81% MCR 0.217 0.045 0.0027 0.036 0.699
Utility boiler - 60% MCR 0.209 0.043 0.0026 0.044 0.701
Utility boiler - 32% MCR 0.198 0.038 0.0024 0.052 0.712
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The calculated exit mass fractions for all the CFD simulation load cases are presented
in Table B.1. The exit mass fractions of YO2 and YCO2 were used as part of the convergence
strategy to ensure combustion has stabilised during the simulations. Usually the excess
air ratio is estimated from the XO2 and XCO2 molar concentration measurements.

B.2 Mass and energy balance calculations

Applying the principles of mass and energy conservation to the entire boiler, allows
an engineer to determine and keep track of the total energy input and output to the
boiler plant. Using an energy and mass balance the fuel and air mass flow rates can
be determined. The energy balance for a boiler can be determined using the following
equations:

Ein = Eout

Ein = Q̇fuel,sensible + Q̇fuel,combustion + Q̇air,combustion

Eout = Q̇steam + Q̇losses + Q̇fg,out

(B.7)

A schematic of a single control volume for the entire flue gas and water side of the
system is given in Figure B.1. This accounts for both the mass and energy coming in and
out of the boiler system.

Figure B.1: Mass and energy balance for entire boiler system
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B.2.1 Methods

The first step is to define all the energy components of Equation (B.7). The wa-
ter/steam side heat load (Q̇steam) which comprises of all the heat transferred from the flue
gas to generate steam at its final conditions can be calculated as:

Q̇steam = ṁHP (hHPout − hFWin
) +

N∑
i=1

ṁRH(hRHout − hRHin) + δblowdownṁHPhdrum (B.8)

The losses term (Q̇losses) of Equation (B.7) accounts for the radiation, unburned
carbon, bottom ash, sensible energy of the fly-ash and sensible unburned carbon losses.
The radiation losses accounts for the combination of the radiation and convective heat
losses on the external surfaces of the boiler. A loss fraction (Radloss) is calculated from
the ASME Power Test Code PTC 4.1-464 [142]. These losses are calculated as:

Q̇rad = ṁfuelHHVfuelRadloss (B.9)

Unburned carbon losses accounts for the carbon fraction not completely burnt in the
furnace. The higher heating value of carbon is taken as 33820000 [J/kg] with an assumed
fraction of 1% of the fuel being unburned carbon. The loss can be calculated as:

Q̇UC = ṁfuelHHVcarbonYUC (B.10)

Bottom ash losses is due to ash leaving the boiler through the hopper at elevated
temperatures compared to the fuel feed temperature. A fly-ash fraction of 93% is used
and a specific heat at constant pressure of 730 [J/kgK] at a reference temperature of
298.15 [K] [135]. The loss is calculated as:

Q̇ash,bottom = ṁfuelYASH(1− Yflyash)cpash,bottom(Tash,bottom − 298.15K)

hash,bottom = cpash,bottom(Tash,bottom − 298.15K)
(B.11)

The sensible ash exit loss accounts for the energy of the fly-ash exiting the boiler
system, and is determined as:

Q̇flyash,sensible = ṁfuelYASHYflyashcpflyash,out(Tflyash,out − 298.15K)

hflyash,out = cpflyash(Tflyash,exit − 298.15K)
(B.12)

Similarly energy of the unburned carbon exiting the system is calculated, using a
specific heat at constant pressure of 710 [J/kgK], as:

Q̇UC,sensible = ṁfuelYUCYflyashcpUC (TUC − 298.15K)

hUC,sensible = cpUC (TUC − 298.15K)
(B.13)

It is common practise to include an additional loss term for unaccounted losses
with typical loss fraction (Closs) values between 0.2-0.5%. The unaccounted losses are
incorporated into the energy balance as:

Q̇unaccounted = ṁfuelHHVfuelCloss (B.14)
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The energy losses due to the high temperature gases leaving the system (Q̇fg,out)
can be defined as follows:

Q̇fg,out = ṁfg,outhfg,out (B.15)

where the enthalpy of the flue gas is calculated using Equation (3.9) of Chapter 3.

The energy entering the system is made up of the fuels sensible energy, chemical
energy released and energy from combustion/transport air. The sensible energy of the
fuel is calculated by assuming a specific heat at constant pressure value of 710 [J/kgK].

Q̇fuel,sensible = ṁfuelcpfuel(Tfuel − 298.15K)

hfuel,sensible = cpfuel,sensible(Tfuel,sensible − 298.15K)
(B.16)

The chemical energy released into the system is the dominant input energy source
and requires the higher heating value of the fuel to be known which is obtained from
Table 5.2. The release of chemical energy is written as:

Q̇fuel,combustion = ṁfuelHHVfuel (B.17)

The energy from the combustion air fed into the boiler is determined using the inlet
air compositions enthalpy and the required mass flow of air. This is calculated as:

Q̇air,combustion = ṁairhair,in (B.18)

It is important to note that the mass flow rate of the flue gas exiting (ṁfg,out) and
the required combustion air (ṁair) can be written in terms of the fuel flow rate as:

ṁfg,out = ṁfuel((1− Yash − YUC) +mair)

ṁair = ṁfuelmair

(B.19)

where mair [kgair/kgfuel] is the total combustion air required which includes humidity
(mair = mair,dry +mair,moist). By substituting Equations (B.8) through (B.18) into Equa-
tion (B.7), the mass flow rate of fuel can be determined as follows:

ṁfuel =(Q̇steam)(HHVfuel + (mair,dry +mair,moist)hair,in + hfuel,sensible

−HHVcarbonYUC −HHVfuelRadloss − YASH(1− Yflyash)hash,bottom
−HHVfuelCloss − (1− YASH − YUC +mair,dry +mair,moist)hfg,out

− YASHYflyashhflyash,out − YUCYflyashhUC,sensible)−1

(B.20)

B.2.2 Sample calculations

A sample calculation for the utility boiler operating at 100% MCR was conducted
to determine the fuel and air mass flow rates. These form part of the CFD simulations
inlet boundary conditions. The calculation procedure follows the same procedure for the
other simulated loads.

166



Appendix B. Analytical calculations

Model inputs:

Air properties -
ω = 0.0016 kg/kg, YO2dry.air

= 0.232 kg/kg, YN2dry.air
= 0.763 kg/kg

Exit flue gas properties -

Utilise the flue gas mixture calculated in Section B.1.2, since calculation is based on a
boiler load of 100% MCR.

Operating conditions -

Tash,bottom = 800◦C, Tair,ambient = 38◦C, Tfg,out = 127◦C

Radloss ≈ 0.4%, Closs = 0.005

Yflyash = 0.95,

Fuel properties -

HHVfuel = 15.07MJ/kg

The same fuel is used as mentioned in Section B.1.2. Table B.2 lists the relevant
information needed to determine the steam heat load.

Table B.2: Utility boiler steam mass flow rates and enthalpy values at 100% MCR

Mass flow rate Value
ṁHPexit 475.0 kg/s
ṁRH1 446.2 kg/s
ṁRH2 460.7 kg/s
ṁattemperation ṁRH2 − ṁRH1

Enthalpy P T h(P,T)
hHPout 16.42MPa 810.5K 3399.9 kJ/kg
hFWin

17.35MPa 520.3K 1072.2 kJ/kg
hRH1in

3.74MPa 602.15K 3046.9 kJ/kg
hRH2out

3.71MPa 811.5K 3536.4 kJ/kg
hattemp 17.08MPa 431.1K 676.6 J/kg
hblowdown 17.08MPa Sat. vapour 1693.3 kJ/kg

Using the values given in Table B.2 and a blowdown percentage (δblowdown) of 1% of
the required steam flow rate the heat transferred to the reheaters and subsequently the
water/steam heat load are solved.
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Step 1: Determine the total steam heat load

Q̇RHtot = ṁRH1in
(hattemp − hRH1in

) + (ṁRH1in
+ ṁattemp)(hRH2out

− hattemp) = 259.6MW

Q̇steam = ṁHPout(hHPout − hFWin
) + Q̇RHtot + δblowdownṁHPouthblowdown = 1415.1MW

Step 2: Determine losses due to operating conditions

mair,dry = 6.058 kg/kgfuel Refer to Section B.1.2

mair,moist = 0.055 kg/kgfuel Refer to Section B.1.2

hair,in =
∑N

k=1 Ykhk = 12.77 kJ/kg

hfuel,sensible = 710J/kgK(311.15K − 298.15K) = 9.23 kJ/kg

hash,bottom = 730J/kgK(1073.15K − 298.15K) = 565.75 kJ/kg

hfg,out =
∑N

k=1 Ykhk = 209.51 kJ/kg

hflyash,out = 730J/kgK(400.15K − 298.15K) = 74.46 kJ/kg

hUC,sensible = 710J/kgK(400.15K − 298.15K) = 72.42 kJ/kg

Step 3: Solve for the mass flow rate of fuel

Substitute and solve for Equation (B.20)
ṁfuel = 112.1 kg/s

Step 4: Solve for the mass flow rate of air

Substitute and solve for Equation (B.19)

ṁair = 685.3 kg/s

Calculating the fuel and air mass flow rates provided all the CFD inlet boundary con-
ditions for the case studies of Chapter 5 if site measured site data was not provided. A
summary of the calculated results are provided in Table B.3.

Table B.3: Calculated total fuel, air and the flue gas flow rates required for the case
studies of Chapter 5

Load ṁfuel,tot ṁair,tot ṁfg,tot

Utility boiler - 100% MCR - [kg/s] 112.1 685.3 752.2
Utility boiler - 81% MCR - [kg/s] 90.7 577.8 630.6
Utility boiler - 60% MCR - [kg/s] 60.1 404.6 438.4
Utility boiler - 32% MCR - [kg/s] 37.2 305.3 328.1
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NIST polynomials for fluid
properties

All the fluid properties used in the CFD simulations utilised the National Institute
of Standards and Technology (NIST) database to determine the polynomial coefficients
a a function of temperature [70]. The properties of interest are the specific heat (cp),
thermal conductivity (λ) and viscosity (µ). The fluids of interest are the gases that make
up the flue gas composition, which are primarily CO2, N2, O2, CO, H2Og, and SO2. The
following equations can be used to calculate the mentioned fluid properties for the gases
for the temperature range of 200 [K] to 2200 [K].

cp(T ) = a0 + a1T + a2T
2 + a3T

3 + a4T
4

λg(T ) = a0 + a1T + a2T
2 + a3T

3 + a4T
4

µg(T ) = a0 + a1T + a2T
2 + a3T

3 + a4T
4

The coefficients for the equations can be found in Table C.1.
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Table C.1: NIST database polynomial coefficients

Species a0 a1 a2 a3 a4

Specific heat - [cp]
cpCO2

5.295× 102 1.349× 100 −8.963× 10−4 2.882× 10−7 −3.618× 10−11

cpN2
1.071× 103 −2.750× 10−1 6.814× 10−4 −3.826× 10−7 6.843× 10−11

cpO2
8.385× 102 2.732× 10−1 5.982× 10−5 −1.131× 10−7 2.859× 10−11

cpCO 1.047× 103 −1.568× 10−1 5.399× 10−4 −3.011× 10−7 5.050× 10−11

cpH2O
2.338× 103 −1.783× 100 2.900× 10−3 −1.401× 10−6 2.295× 10−10

cpSO2
5.798× 102 2.608× 10−1 6.609× 10−5 0.000 0.000

Thermal conductivity - [λg]
λCO2 −9.753× 10−3 1.022× 10−4 −3.876× 10−8 2.201× 10−11 −5.842× 10−15

λN2 −2.246× 10−3 1.170× 10−4 −9.070× 10−8 5.201× 10−11 −1.111× 10−14

λO2 −5.905× 10−3 1.289× 10−4 −9.779× 10−8 5.731× 10−11 −1.247× 10−14

λCO 5.971× 10−3 7.050× 10−5 −8.060× 10−9 3.609× 10−13 0.000
λH2O 9.227× 10−3 4.277× 10−5 1.249× 10−8 4.754× 10−11 −1.834× 10−14

λSO2 −3.371× 10−3 4.380× 10−5 3.123× 10−9 0.000 0.000
Viscosity - [µg]

µCO2 −1.686× 10−6 6.812× 10−8 −4.191× 10−11 2.084× 10−14 −4.357× 10−18

µN2 −1.038× 10−8 7.424× 10−8 −5.745× 10−11 3.094× 10−14 −6.361× 10−18

µO2 −9.671× 10−7 8.932× 10−8 −6.842× 10−11 3.644× 10−14 −7.468× 10−18

µCO 2.973× 10−6 5.589× 10−8 −2.514× 10−11 6.654× 10−15 0.000
µH2O 6.700× 10−6 1.069× 10−8 2.876× 10−11 −9.138× 10−15 −1.282× 10−20

µSO2 −1.357× 10−6 4.891× 10−8 −5.886× 10−12 0.000 0.000
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