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Abstract

Traffic classification is an important aspect of network management. This aspect im-

proves the quality of service, traffic engineering, bandwidth management and internet

security. Traffic classification methods continue to evolve due to the ever-changing dy-

namics of modern computer networks and the traffic they generate. Numerous studies on

traffic classification make use of the Machine Learning (ML) and single Deep Learning

(DL) models. ML classification models are effective to a certain degree. However, studies

have shown they record low prediction and accuracy scores. In contrast, the proliferation

of various deep learning techniques has recorded higher accuracy in traffic classification.

The Deep Learning models have been successful in identifying encrypted network traffic.

Furthermore, DL learns new features without the need to do much feature engineering

compared to ML or Traditional methods. Traditional methods are inefficient in meeting

the demands of ever-changing requirements of networks and network applications. Tra-

ditional methods are unfeasible and costly to maintain as they need constant updates to

maintain their accuracy. In this study, we carry out a comparative analysis by adopting

an ML model (Support Vector Machine) against the DL Models (Convolutional Neural

Networks (CNN), Gated Recurrent Unit (GRU) and a hybrid model: CNNGRU to clas-

sify encrypted internet traffic collected from a community network. In this study, we

performed a comparative analysis by adopting an ML model (Support vector machine)

Machine against DL models (Convolutional Neural networks (CNN), Gated Recurrent

Unit (GRU) and a hybrid model: CNNGRU) and to classify encrypted internet traffic

that was collected from a community network. The results show that DL models tend

to generalise better with the dataset in comparison to ML. Among the Deep Learning

models, the hybrid model peform better than the other models in terms of accuracy score.

However, the model that had the best accuracy rate was not necessarily the one that took

the shortest time when it came to prediction speed considering that it was more complex.

Support vector machines outperformed the deep learning models in terms of prediction

speed.
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Chapter 1

Introduction

Community networks are low-resourced networks built as a technological revolution that

is a solution for providing access to the internet in rural areas/townships [6], [7]. For

instance, resources such as bandwidth are usually significantly lower compared to tra-

ditional networks because they are established by individuals coming together in their

local community to establish a network infrastructure by deploying an access point to

link their network to the wider internet[8], [9]. The Ocean View community network

runs on a 10Mbps link. Therefore, implementing a traffic classifier that can cater for the

low amount of traffic volumes influenced by the bandwidth size is an important compo-

nent of network capacity management. Additionally, knowing which applications network

packets in a traffic flow belong to, will help in the prioritisation of the correct traffic [6].

For instance, transferring video and audio content requires high bandwidth for it to be

transported across the network efficiently. Therefore, video and audio traffic require rapid

packet transfer unlike text and email traffic, in which a low-resource network such as a

community network will benefit from such an implementation.

Traffic classification is a technique considered important in network systems. Through

this technique, Internet Service Providers (ISP) can manage the overall performance

of a network system by implementing a mechanism that differentiates network traffic

data according to application types. Different application types have different Quality of

Service requirements such as bandwidth, loss, jitter, delay and best-effort options [10].

Therefore, network systems require adequate analysis, administration, and monitoring

to meet different application demands and requirements. In computer networks, traffic

classification is defined as associating an application to a traffic flow based on features

extracted from a network flow [11]. It is an automated process that divides network

traffic into flows that belong to respective application classes based on the characteristics

1
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of each application. Therefore, the fundamentals of classification known as fine-grained

classification or application identification are based on user-centric/end-host applications.

The evolution of computer networks has necessitated the development of newer and more

effective ways for analysing how network systems operate along with the huge amounts

of internet traffic data packets flowing through them. Therefore, mechanisms includ-

ing traffic analysis and traffic classification amongst others assist in achieving network

administration functions such as Quality of Service(QoS), Traffic Engineering (TE), se-

curity and billing [10]. However, it is a difficult undertaking considering how current

encryption techniques obfuscate the process [12]. Secondly, many network applications

are continuously deployed on the network, and traditional methods are insufficient in

identifying applications because of their low prediction and accuracy[13], [14]. As a re-

sult, deep-learning techniques are a viable method for automating traffic classification.

Deep learning is a cutting-edge approach utilised in fields such as pattern recognition,

natural language processing, and network security [14]. As computer networks evolve

along with network transmission mechanisms used to transport network traffic data, it

calls for advanced and effective traffic classification methods to overcome limitations of

former methods (port-based, deep-packet inspection and statistical methods) of traffic

classification. Accordingly, different traffic classification approaches have been proposed.

Recent studies on traffic classification implemented by, [15], [16], [17], [18], amongst

others, implemented ways to automate the classification of network traffic using deep

learning. The popular techniques used in these studies are Artificial Neural Networks

(ANN), Recurrent Neural Networks (RNN) and Convolutional Neural Networks (CNN).

Recently, researchers have implemented hybrid models such as CNNLSTM and CNNGRU

[13]. The hybrid model combines CNN for determining local characteristics and GRU ar-

chitecture for capturing local features from both old and new data. Currently, hybrid

models show potential in attaining high accuracy and prediction in classifications tasks.

Hassan et al. [19] and Sarhangian et al.[13] have shown the benefits of using hybrid mod-

els in comparison to single models for a real world dataset collected from the Installation

Support Centre of Expertise (ISCX) [20]. Hybrid models are more robust and achieve

better predictive performance than a single model. CNNs are well-known for their ex-

cellent feature extraction capabilities [2], whereas RNNs are well-known for their ability

to capture long-term dependencies [2], which can be useful when dealing with sequential

data like network traffic.
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1.1 Problem Description and Motivation of Study

Traditional classification methods namely: port-based, deep-packet inspection, and statis-

tical methods implemented in the past have proven to work: however, they are inefficient

and ineffective to identify encrypted network traffic data and also make it difficult for

networks to apply class-based Quality of Service (QoS) and Traffic Engineering (TE)

guarantees [10], [21]. Nowadays, with the trend that a variety of applications are devel-

oped, and also that the network is more complex and secure, internet traffic is primarily

encrypted to ensure the safe delivery of network packets. It is vital to enhance methods

of traffic classification to meet modern-day requirements of networks. When achieved

successfully, it becomes easy to shape and manage a network, according to which net-

work class requires a certain quality or fast delivery [22]. For instance, it is easier to treat

a network and allocate resources based on individual network application requirements.

When this is achieved, it enables a foundation of both traffic engineering and quality of

service.

Network functions such as QoS and TE are reliant on a good automated classification

process which is difficult to achieve with traditional methods[10]. Establishing consistent

and efficient network traffic classifiers to provide real-time traffic identification is a critical

unresolved topic, since the internet imposes stringent accuracy, latency, and classification

speed requirements. Moreover, traditional methods require an expert to select features

that distinguish applications[17]. That selection process is cumbersome and can result in

human error.

In an attempt to address the classification task for QoS and TE, we implemented a packet-

based classification approach considering that it would be faster to identify packets that

belong to a flow in comparison to considering an entire flow. We chose to focus on

packet-based network traffic classification, which requires that traffic gets classified using

individual packets in near real-time. Our choice was considered from the perspective of

emulating a real-time environment. Moreover, to achieve Quality of Service in a network

gateway, it is more beneficial for a traffic classifier to be configured to classify individual

packets into their respective application classes [16], [15].

However, considering accuracy alone was not sufficient for a low-resource environment

such as a community network. In this study, we assess the performance of the three

suggested deep-learning models (CNN, GRU, and CNNGRU) in terms of accuracy and

prediction speed to see which one is best for the prediction task. We also took into
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account how much resources each application requires which is essential for rendering

good quality of service for community network users. .

In addition, classification of network traffic is a useful tool for enhancing QoS and classi-

fication of network traffic is an integral and vital procedure for the community network,

which has driven for the following: selecting the best suitable optimum deep learning tech-

nique that complements a community network’s environment and has a good trade-off

between accuracy, computational complexity, and prediction.

1.2 Aim

The study aimed to evaluate a packet-based classification framework, where we compara-

tively evaluated machine learning against deep learning techniques to classify community

network traffic according to end-host applications. In this study, the goal was to de-

velop a granular (fine-grained) classification task that can handle both encrypted and

non-encrypted traffic data. This research further assessed the prediction rate in terms of

packets per second together with varying packet sizes for each deep learning technique

using packet features for classifying internet traffic applications generated in a commu-

nity network. Furthermore, selecting the suitable model is highly reliant on the model’s

ability to correctly classify applications. Careful consideration was also required to find a

model with minimal complexity and predicts more packets, while having a high accuracy

score. This was in consideration of how community networks are low resourced. Each

model’s capacity to function efficiently in a community network with limited resources

has yet to be determined.

1.3 Research Objectives

The following sub-objectives were formulated in order to address the main aim:

1. Investigate the effectiveness of existing deep learning models (CNN, GRU and CN-

NGRU) against an existing machine learning model (Support Vector Machines)

using a packet-based classification approach for accurately classifying network traf-

fic collected from a community network.

2. Test to what extent would varying different packet sizes would impact on the clas-

sification accuracy score of the deep learning models.



3. Investigate the effect of the deep learning model’s performance in terms of prediction

rate (packets predicted per second (pps)) for classifying network traffic.

1.4 Contribution

Although different techniques have evolved and have been applied on classification tasks,

many studies on classification are based on private datasets, and there is no single agreed-

upon solution to solve the classification problem. Currently, little has been done in evalu-

ating the suitability of a hybrid or single DL model for automated classification that suits

low-resourced environments like community networks. This study aims to fill this gap

by adopting a packet-based classification method that employs deep learning to classify

encrypted traffic using raw community network traffic. This demonstrated the value of

a DL network traffic classification model that could be used as an automated system for

class-based predictions in a community network environment. The DL model could be

extended to predict network applications in real-time, thus a potential contribution to en-

suring efficient traffic engineering and quality of service. Another important aspect of the

proposed study is the investigation and insight into which of the present DL approaches is

best for the classification study. The result shows how well the DL approaches described

in section 1.3 may be used to make classification predictions using a dataset provided

by the researcher. This research also looks at how Gridsearch may be used to improve

model performance as a parameter-tweaking tool. It also provides a better understanding

of how the amount of data needed to train a deep learning model affects its performance.

5
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This section outlines the structure of the rest of the thesis
and provides a brief introduction to the content of each

chapter. The structure is as follows:

Chapter 2: Literature Review
Background theory that outlines some of the theories needed
to gain a better understanding of the network traffic domain.

In addition, we review experimental work done by other
researchers which outlines the theoretical foundation from

which we constructed a solution to the posed task.

Chapter 3: Methodology
Methodology which has the explanation on the Dataset
which describes how the dataset came to be, as well as

describes some of the tools and practices behind the
generation of the dataset, coupled with Experiments which
describes the different Experiments, describing the different

experiments made in the process of classifying network
traffic, as well as interpreting network decisions.

Chapter 4: Analysis of Results
Analysis reflects on explaining the detailed findings from the

experiments done in Chapter 3.

Chapter 5: Discussion
Discussion reflects on some of the findings and decisions

made along the way. It was based on evaluating and
explaining the results we found plus how it was related to

the literature and research questions.

Chapter 6: Conclusions and Recommendations
Conclusion outlines the key findings as well as providing an

overall conclusion to the project and suggests some
interesting directions for further work.



Chapter 2

Literature Review

This chapter gives a detailed account of the state of the art comparative analysis, open

problems and justification of this research in the classification of network traffic. We

present detailed information regarding the types of classification, and the criteria used

in the different types of classification. Experimental tasks are pivotal in helping us de-

termine which features are important in network traffic classification as every dataset is

distinct. We also look into studies with similar methodologies for network traffic class-

fification. While this chapter looks at the classification techniques, Chapters 3 and 4

provides methodology and experimental results respectively through data analysis and

modelling.

2.1 Background

Classification of network traffic is divided into two sub-classes. These are coarse-grained

classification and fine-grained classification, [11]. The coarse-grained classification also

termed traffic characterisation identifies or clusters traffic flows into several classes based

on a protocol family or rough traffic type or based on groups that have similar patterns

such as attack (worm and virus attacks), P2P (e.g. BitTorrent, Kazaa), bulk transfer

(e.g File Transfer Protocol-FTP), Voice-Over IP (e.g. Skype), and so on. Fine-grained

classification, also termed ’application identification’, is focused on finer details such as

identifying the exact application or service name traversing in a network (e.g. Spotify,

Hangouts, e.t.c.). In the case of a community network, focusing on fine-grained classifi-

cation is important as the fundamentals of traffic classification are based on user-centric

applications, which give a more convenient management of a community network.

7



MSc Dissertation 8

The development of a network traffic classifier, is dependent on the classification goal

and also on the network traffic dataset. For example, quality of service provisioning,

billing system customisation, resource usage planning, traffic engineering, intrusion de-

tection, and malware detection can be some of the ultimate goals for classification. For

community networks, network traffic classification is critical for traffic engineering (TE)

and providing quality of service. For example, QoS in a community network will pri-

oritise certain applications over others to guarantee a certain level of performance and

will ensure resource prioritisation mechanisms for the prioritised applications. The aim

is therefore to mark each traffic class with a traffic flow or session. Within a flow is the

message carried in the form of packets.

2.2 Network traffic Classification Approaches

Various approaches or methods have been employed to achieve classification of network

traffic. The need to better understand existing and new applications, as well as the

evaluation of the impact of these applications on peering agreements and/or return on

investment if a peer-to-peer project has been undertaken, are all reasons for changing

techniques [23]. Finally, application-based services should be considered, such as securing

multimedia service transmission.

2.2.1 Rule or Port-Based Method

The port-based technique consists of the study of the used communication ports in the

Transport Control Protocol (TCP) or User Datagram Protocol (UDP) header and its

connection with well-known TCP/UDP port numbers, which is then mapped to the as-

sociated application. The Internet Assigned Numbers Authority (IANA) is responsible

for allocating port numbers [24]. Port-based is the oldest and most common method

for traffic classification, which made it easy to identify applications or services[22], [25],

[26]. The method also yielded fast classification because port numbers are easy to access

[27]. However, internet or network communications advancements and the development

of applications are inevitable. Network operators are required to know application port

numbers or specific rules before implementation of a classification framework. With the

increasing variety of network applications which use random ports (port-obfuscation), the

port-based technique cannot identify all applications, and traffic encryption techniques
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caused this method to be unreliable. According to Moore et al. [28], only 30 -70% of ap-

plications are detectable using the port-matching method. In addition, the port-matching

method is inefficient in the classification of large traffic flows, such as the use of the same

port by web services [22], [29]. To address these issues, an extension of the port-based

method, termed deep-packet inspection (DPI) or payload-based, was invented. Table 2.1

shows examples of the common port numbers assigned by IANA

Table 2.1: Assigned port numbers by IANA [1].

Port Number Application

161 SNMP
123 NTP
110 POP3
80 HTTP
22 SSH
23 Telnet
21 FTP

2.2.2 Payload-based Method

Unlike port-based methods that rely fully on port numbers to identify applications, the

payload-based method classifies traffic data using the payload of a packet (the actual data

sent over the network) and compares the data to a known signature of protocols. DPI

can detect applications or services regardless of the port used by an application. With

the knowledge that every application has a unique signature that is associated with it,

this technique relies on searching for the known signature [30]. Therefore, DPI hinge on

the fact that it is rule-based and relies on hard-coded rules [31], [32]. In a study by Sen

et al. [31], DPI was heralded as a solution to traffic classification but it has its short-

comings. The shortcomings of using DPI as a traffic classification method is linked to its

computational complexity and high costs. Also, it essential to keep track of application

semantics, meaning manual checks are a mandatory requirement. This is, however, a

challenge, given that networks and network applications always evolve (meaning applica-

tions change frequently and hence application signatures are constantly updated). The

drawback of this method lies in privacy [33]. Network users’ data privacy ought to be

protected. The method is subject to delay as it requires a lot of processing power [30],

and it cannot access encrypted payloads [34]. For this reason, statistical methods which

rely on statistical features such as packet sizes and lengths, packet inter-arrival time etc
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circumvent these problems since they are based on payload-independent parameters. So-

lutions based on DPI are commercialised and in practical use, for instance, the tool nDPI

[35] and Paessler [36]. Table 2.2 below shows P2P applications that are known to use

camouflage techniques and use common port numbers to traverse the network.

Table 2.2: Assigned port numbers by IANA [5].

Transport Protocol String P2P Protocol

TCP ”Get hash:” SNMP
TCP ”GNUT” ”GIV” Gnutella
TCP ”0x13Bit”3 BitTorrent
TCP ”Get /.hash” FastTrack
TCP/UDP 0xe319010000 eDonkey

2.2.3 Correlation or Statistical Classification

This technique relies on highly correlated features such as those discussed in section 2.5.

In order, to fulfill the statistical requirements, several steps ought to be carried out to

extract useful feature information. After these steps, an ML model is then trained on the

extracted features. Packets are selected and grouped according to their similar statistical

characteristics, which mostly stem from a network flow. Because ML methods tend to rely

on human-engineered features, this tends to limit their generasibilty [37]. The approach

was found to be much faster than DPI. It often uses Machine learning (ML) algorithms

such as Support Vector Machines (SVM), Decision Trees (DT), Random Forests (RF),

etc. Features of traffic flow can be divided into two classes according to their observation

levels: flow-level features and packet-level features. The flow-level features are usually

calculated after the flow has completed, such as number of packets, flow duration, mean

packet size of a flow. On the contrary, the packet-level features can be obtained by early

stage of flow, such as packet length, inter-arrival time and the packet direction of first few

packets of flow. Low DPI scalability to high bandwidth is another point posed in favor

of statistical classification. However, a study done by Cascarano et al. [38], undermines

this belief. They reach a conclusion in their study that it is mostly on the traffic mixture

analysed through comparing Support Vector machines(SVM) and DPI.
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2.3 Packet vs Flow-based Classification

The domain of traffic classification simplifies classification by distinguishing network traf-

fic into either flows or packets. When dealing with the classification of network traffic,

researchers distinguish between flows and packets so that classification is more stream-

lined.

Flow-based classification is associated with the extraction of network data into traffic

flows or biflows (sessions). A flow is a unidirectional packet-stream from one source

to destination defined by a 5-tuple identifier (source IP, source port, destination IP,

destination port, and transport-level protocol), whereas, a biflow is a bidirectional packet-

stream from one source to destination that is also defined by a 5-tuple identifier. Several

studies have used flows for classification [21],[16], [39], [40], [14], [41]. To ensure successful

extraction of flows, several techniques are employed. The first technique method is to

extract raw data in the form of bytes from some of the flow’s packets [41]. In another

technique, raw byte data is collected from individual packets that belong to a flow [39].

Now data that flows in a network can be viewed as individual packets or individual flows.

The last two techniques are concerned with the statistics of either packet streams or flow

streams. The third technique is concerned with time series features such as packet sizes,

packet lengths, packet inter-arrival times, and so on [32]. The last technique deals with

flows statistics, requiring more packets that belong to a flow to avoid too much variance

[32]. Flow statistics include packet maximum and minimum inter-arrival times, mean,

standard deviation, etc. In a survey done by Velan et al. [42], many studies used flow-

based classification in comparison to packet packet-based because of the commonality of

ML.

Packet-based classification, on the other hand, is associated with further preprocessing

raw packets into granular entities of network traffic data known as packets. Studies such

as those done by Lim et al. [15], Lotfollahi et al. [17], Wang et al.[43] and Gupta et

al., [44], prove that packet-based classification is achievable, even though it is difficult to

implement. Algorithms such as Multi-Layer perceptrons, Convolutional Neural Networks

and Recurrent Neural Networks have been frequently implemented in packet-based clas-

sification and have achieved great results. Among the three, CNNs are commonly used

even though they are well-known for object detection and image recognition. Their pop-

ularity stems from their ability to learn spatial patterns within data. In addition, unlike

flow-based classification which has been the norm, few researchers have used packet-

based classification. Classification using flows is better suited for offline classification

because computing statistical features within the raw packets take considerable time.
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With the current trend of network operations relying on real-time operations which are

more ideal when the application classifier is deployed within the community network

gateway, classification using packets will yield better results given that recent studies

have shown classification to be possible with just a few packets. Detailed experimental

researches linked to packet-based classification are recorded in the Related Work section.

Flow-based classification is reliant on statistical information from packet flows whereas

packet-based classification relies on raw payload data in the form of bytes/packets. In

packet-based classification we only consider the payload which consists of the individual

packets. Excluding header information and time-series information is a good strategy

that helps retain only packet features of a flow. In this way, relevant comprehensive

byte/packet features can be learnt.

2.4 Internet traffic

The evolution of the internet over the years has led to the emergence of different network

applications. The internet/network is simply a connector to these applications. The

applications range from multimedia streaming, file-transfer services, remote login, elec-

tronic commerce, to early text-based services [45]. Therefore, the data flowing through

a network at a given point in time is internet or network data traffic. A packet is the

smallest unit of network traffic data carried over the internet. Below is a diagram that

shows what is contained within a packet.

The packet is split into a header, data or payload and the trailer, each with the char-

acteristics contained in it. It is where features for classification are obtained. However,

to ensure safe delivery of network traffic data requires techniques such as encryption

protocols because the internet is insecure and does not preserve integrity and confiden-

tiality. Encryption protocols are used to protect packets in transmission from source to

destination. It is a form of data encoding in such a way that requires reading or decod-

ing the encrypted data. Encryption is implemented at layer 4(transport layer) or layer

7(application layer). Layer 4 encryption protocols are Transport Layer Security (TLS)

and QUIC. TLS 1.3 is latest version after TLS 1.2 that has been adopted in common

browsers. Layer 7 encryption protocols include Secure Shell (SSH), Secure Sockets layer

(SSL), Hyper Text Protocol Secure (HTTPS), Message Security Protocol (MSP), and so

on [1]. The two types of encryption ensure that the payload is encrypted.



MSc Dissertation 13

Figure 2.1: The structure or format of a network packet. Source [1]

.

2.5 Features used in the classification of network traf-

fic data

As mentioned in the previous section, classification is reliant on suitable features to

output accurate results. A classification model or framework may use one or more selected

features for classification. In this section, we shall further expound on each feature and its

relevance to classification. The features present influence the choice of models. Studies

have used a combination of features to ensure accurate classification. For instance, a

majority of studies have implemented classification using statistical features. Several

studies have used a combination of payload and header features [14], [39],[17], [41]. The

studies also show that ML and MLP do not record satisfactory results in comparison to

LSTM and CNN. Studies done by Chen et al. [46] and Lopez et al. [40] use time series

and header features to classify network traffic using DL models. It requires a relatively

low complexity in comparison to using payload and header as it requires a minimum
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number of packets [40], [37] to ensure accurate classification. Using times series features

does not affect traffic datasets even for encrypted traffic [32].

2.5.1 Time Series

Time series or time-related features are dependent on bidirectional flows between source

and destination [32], [20]. A flow is defined by several features associated with a flow

based on packet/flow inter-arrival time, flow duration, flow bytes per second and so on.

The time series feature has been used [20] to distinguish VPN/non-VPN traffic, TCP

or UDP flows. In particular, to distinguish a UDP/TCP flow, it is important to note

that upon link teardown (FIN packet), TCP flows are typically terminated while UDP

flows are terminated by a flow time-out [20]. In the case of distinguishing VPN/non-

VPN traffic, the two classes can be distinguished with the flow time outs [20]. Using

time-series features is most suitable in a low-computational, offline setting since it results

in low computational overheads. It has been shown that these series features are useful

in achieving good accuracy [20], [40], [37].

2.5.2 Statistical Features

A dataset collected from network traffic has features in it and each feature is described

by a set of statistics and a class that defines the application. Numerous features can be

deduced from a flow of traffic such as minimum/maximum packet inter-arrival time for

all packets of the flow, the total number of packets sent between client and server, packet

lengths and sizes and many more [47]. Using statistical features to classify traffic is most

feasible if done offline as it can be limiting since it requires the entire flow. In addition,

statistical features for some packets may not be present, as applications that use different

protocols and OS platforms coupled with user behaviour can influence the output of these

features. For instance, TCP is a connection-oriented protocol and therefore, SYN, ACK

and SYNACK packets are sent between source and destination to establish a connection.

These packets are not present in a UDP connection. Therefore, these features available

in TCP which are useful for classification are not present in UDP data. Time-series

and statistical features are not limited as they can be used for both encrypted and non-

encrypted traffic [32], [21]. It can be easy to distinguish between encrypted and non-

encrypted traffic considering transmission times differs for both classes are different since

non-encrypted traffic takes less time to transmit over a network [20].
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2.5.3 Header Features

A network packet contains a header and within that header is useful information that is

relevant for the classification of traffic. A typical IPv4 packet has 20 bytes of data. Studies

done by domain experts have varied what they deemed important. In some studies, such

as that done by Lotfollahi et al. [17], the entire packet was used whereas in some studies

they just selected the protocol, packet length and protocol, which can be deduced from

header information.

2.5.4 Byte/Packet Features - Based on Payload Data

Payload is the data carried in transmission with a packet; the payload is the data exclud-

ing the header information. Network payload data is byte format, of which the standard

packet has 1480 bytes allowed for maximum transmission over a network, whereas with

the header included in a standard packet has a total of 1500 bytes. Recent studies by

Rezaei et al. [32] and Lim et al. [15], extract payload data as packets or bytes for

classification.

2.6 Machine Learning

Machine learning is a process that automatically learns from data through algorithm

training [48]. It is part of artificial intelligence. The genius behind machine learning is in

its ability to learn hidden patterns in data. It becomes accurate overtime without being

specifically tailored to do so. It is divided into supervised, semi-supervised, unsupervised

and reinforcement learning [2], [48]. Supervised ML requires labelled input data paired

with desired output, whereas unsupervised and reinforcement learning use unlabelled

data. Supervised is more commonly used for classification, regression and ensembling.

It is adopted because of its accuracy however it can be time consuming to train ML

models and computationally expensive. Semi-supervised uses labelled and unlabelled

data. Reinforcement learning just like unsupervised learning does not require labelled

data. It uses an action-reward mechanism whereby, a reward is given when a goal is

accomplished through certain actions.Unsupervised learning is commonly adopted for

clustering, anomaly detection, association mining and dimensionality reduction.
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Random Forests, Support Vector Machines, K-Nearest Neighbours, Decision Trees, amongst

many others, are popular machine learning algorithms. In this study we adopted super-

vised ML and DL. SVM model is discussed in detail below.

2.6.1 Support Vector Machine

Support vector machines are supervised mathematical models. Studies such as those

done by Fan et al. [49], Cao et al. [50], Chen et al. [46] and Li et al. [51] used SVM’s.

They are commonly used models because of their ease of implementation and memory

efficiency. SVM’s can be used for regression, classification and outlier detection. When

used for classification, a hyperplane is used to separate data points. A hyperplane is

defined by the equation: w * x + b = 0. Though SVM’s were initially developed for

binary classification, they have also been popularly used in multi-classification. In multi-

classification, the same theory is applied as in binary classification. Numerous binary

classification examples, commonly referred to as one-vs-one or one-vs-many situations,

are used to break down the multi-classification. The Scikit-learn library has the multi-

classification option available with one-vs-may set as default. The fundamental essence of

classification with an SVM is most readily explained for the simple situation in which there

are two linearly separable groups in n-dimensional space. Using the training results, xi,

yi, i=1,. . . ..r, yi e1,-1, in the n-dimensional space, with the goal of developing a classifier

that generalises accurately. The goal is to find a hyperplane that connects data points to

their potential classes in an n-dimensional space. The hyperplane should be as far away

from the data points, nonetheless, data points adjacent to the hyperplane are referred to

as ”support vectors.” Support vector machines use a hyper-plane or a boundary between

two or more data classes that maximises the margin between the two or more classes.

Hyper-planes are decision boundaries. An SVM algorithm looks for a hyperplane in an

n-dimensional space with the amount of features to achieve classification.

2.7 Artificial Neural Networks and Deep Learning

Artificial Neural Networks (ANNs) are mathematical structures that are modelled after

the brain’s biological learning system [52], [2]. Several studies have shown that they are

among the most powerful algorithms for modelling dynamic real-world relationships [10],

[19] and [53]. Neural networks are made up of an input layer, a hidden layer and an

output layer. Within each layer are neurons and connections from one layer to another.
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Figure 2.2: SVM Architecture, showing classification outcome from training two
classes. Source [2]

Each neuron, has a parameter associated with it and after obtaining one or more inputs, it

generates an output. These outputs are then moved on to the next layer of neurons, which

use them as inputs to their own functions and generate further outputs. The outputs are

then transferred on to the next layer of neurons, and so on, until all of the neurons have

been considered and the terminal neurons have obtained their feedback. The model’s final

outcome is then output by those terminal neurons. Furthermore, because of their ability

to adapt, they can be used for clustering applications, classification models, and regression

models. Deep Learning (DL) is a subset of machine learning. However, the ease of this

technique relies on the ability of DL algorithms to automatically learn through training.

DL can also be categorised as supervised or unsupervised. With multiple applications,

and traffic encryption techniques evolving used to ensure safe transmission of data, DL

is more suitable and desirable in comparison to ML. It can process large amounts of data

and can quickly learn patterns within the data. DL algorithms try to learn multiple levels

of representations by using a hierarchy of multiple layers. ANNs learn in three fashions

which are supervised, unsupervised and reinforcement learning. Supervised learning is

the simplest of all as it requires labelled inputs. The labelled instances are then used to

extract generalisable rules that can be extended to situations that are not classified. In

unsupervised learning, the input data is unlabelled. The method instead infers rules and

functions from the provided data as well as the network’s performance. Deep Learning

models are an extension of artificial neural networks however, they are more complex as
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they more hidden layers. The structure of deeper models is such that it can compute

more data in comparison to a simple ANN and require less feature engineering.

2.7.1 Multi-Layer Perceptron

Multi-Layer perceptrons, have a wide range of application in the area of classification

regardless of their low accuracy because of their low complexity [32]. Multi-Layer per-

ceptrons can range from one hidden layer to several hidden layers, depending on the

complexity of design of the network, having an input layer, hidden layer(s) and an output

layer [54]. MLP’s have the most basic structure of a neural network. A dataset forms

the input to a network, with the output set to be the number of applications/services

intended to be predicted and each successive network node calculates its output by apply-

ing an activation function that multiplies the linked weight to the sum of the outputs of

the previous layer and adds its bias value [4]. The model implements backpropagation to

learn again through a process of several iterations. The model training usually requires

the network to learn by some version of the gradient descent optimisation algorithm,

using gradients determined by the weight parameter values of the backpropagation algo-

rithm that minimise a loss function that captures the discrepancies between the expected

output and the output of ground-truth. Categorical cross-entropy is used in the instance

of multi-classification. MLPs are common because of this and form the basis for all other

deep learning models.

2.7.2 Convolutional Neural Network

Convolutional Neural Networks (CNNs) are widely regarded as one of the most effective

methods for image processing and learning [52]. They have shown state-of-the-art results

on classification, segmentation, detection, and retrieval-related tasks [4], [3]. In classifica-

tion, CNNs process an input and generate a class or a probability that the input is that

class (’this input has a 45% chance of being class Google’). The CNN uses 2D convolu-

tional layers to combine learnt information with input data. As a result, a CNNetwork

is well suited in the analysis of 2D input. In this study, we used a 2D tensor input to

match the 2D layer structure of CNN. Although CNNs can still process data in the form

1D, or 3D inputs [3]. CNNs have a hierarchical feature extraction ability. Hierarchical

organisation of CNNs emulates how the neocortex of the human brain extracts features

from the underlying data. A typical CNN design consists of convolution and pooling

layers alternated with one or more fully linked layers at the end.
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Basic Building Blocks of a CNN

• Convolution Layer: is the first layer where features are extracted from an input

image. It is a mathematical operation that takes two inputs such as an image

matrix and a filter or kernel [4]. Decisions to consider when convolving are padding

and striding parameters. Convolution of an image with different filters can perform

operations such as edge detection, blurring, sharpening etc.

• Activation Function: This is a decision function that helps in learning a complex

pattern and is used to inculcate nonlinear combination of features. The process

of training can be accelerated by choosing the right function [4], [2]. Examples of

functions are sigmoid, tanh, maxout, ReLU. However, ReLU and its variants are

most preferred as it performs better in most cases.

• Pooling Layer: Pooling reduces the dimensionality of each feature map but re-

tains important information [2]. It also reduces the number of parameters and

computations in the network. Examples are max pooling, average pooling and sum

pooling.

• Fully Connected layer: The Fully Connected layer is a traditional Multi Layer

Perceptron. The term “Fully Connected” implies that every neuron in the previous

layer is connected to every neuron on the next layer. The purpose of the Fully

Connected layer is to use these output (high level features) from the previous layer

for classifying the input image into various classes based on the training dataset [3].

To improve CNN performance, several learning phases, as well as regulatory units such

as batch normalization, data augmentation, and dropout, are generally included.

2.7.3 Recurrent Neural Network

Artificial neural networks containing feedback connections are known as Recurrent Neural

Networks (RNNs) [55]. RNNs are used when analysing sequential data or time series data

[3]. RNNs are distinguished from ANN’s because of how they learn previous information

from the last hidden layer along with the time-stamp [2], [3]. RNNs include long-short

term memory (LSTM) and gated recurrent units (GRU). RNNs train differently from

CNNs with how they retain information during training. Information retention is done

through the use of gates. For instance, LSTMs use input gate (which determines which

data is kept in long-term memory), output gate (which generates new short term memory
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Figure 2.3: Structure of a Convolutional Neural Network with 2 layers. Source [2],
[3]

that will be sent on to the cell in the next time stamp) and forget gate (which decides

on what is information is to be retained or discarded) to retain information [2]. GRUs

similarly use an update gate (which calculates how much of the old data needs to be sent

through to the next state) and reset gates (which determine how much of the old data

needs to be cut-off) [2]. Sequential data is quite long, and training RNNs on sequential

data may result in the vanishing gradient problem. Memory cells are governed by gating

units, which control how the memory cell memorises, erases, and exposes information.

GRUs use gates, reset and update gates. The gates determine information that should

be passed to the output [3]. For instance, the update gate determines what information

should be passed into the next sequence whereas, the reset gates decides which information

from the past should be left out or forgotten [2].

RNNs’ ability to analyse sequential data makes them useful in the application of network

traffic classification because network data is sequential in nature.

2.8 Related Work

In this section, our explanation and analogy concentrates primarily on studies that focused

on classification using deep learning techniques.

The domain of network traffic classification has few public datasets and numerous frame-

works agreed upon as it is nearly impossible for a single dataset to cover all classes of
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Figure 2.4: Structure of a Recurrent Neural Network. Source [4]

traffic. As a result, most published research works use their own datasets. In addition,

there is no widely accepted method of data collection, which now leads to a disparity in

collection methods causing distinct distributions and data features.

2.8.1 Network Traffic Classification Studies using Machine Learn-

ing Algorithms

A number of experiments have been implemented using machine learning. Our work

used an ML algorithm as a baseline, hence we also looked into the literature of traffic

classification using ML models.

Zhon Fan and Ran Liu [49] experimented with traffic classification using a statistical

approach of bidirectional flow traffic with a real research facility dataset containing 248

statistical features extracted from the flow. The dataset with 10 classes: WWW, Mail,

Bulk, Services, P2P, Database, Multimedia, Attack,Interactive and Games. The dataset

was tested with Support vector machine (SVM) and K-means (KM) clustering. The

results of the experiment showed that SVM algorithm out-performed KM, and overall

classification results were attained with over 95% accuracy. The emphasis of their re-

search was to test the impact of classification in order to ensure application awareness

in Software Defined Networks. Application knowledge is important for features such as

virtual network resource slicing and rapid routing. The fact that the extraction process

used labelled data was more beneficial to SVM in comparison to KM, which is an un-

supervised learning approach. Secondly, the classification results showed the possibility
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of SVM outperforming KM, when subjected to small portion of data, as KM’s precision

results were poor for large amounts of data. The conclusion means SVM will do well

when implemented in an online scenario though KM will do well with new or unknown

data.

Another study [56] looks into building a robust network traffic classification (RTC) tool

that classifies zero-day applications (refers to new applications, and they are not present

in the training set) given that prior traffic classifiers struggle to correctly classify zero-

day applications or end up classifying thos applications as predefined classes. Their

framework RTC tool was tested against the four state of the art algorithms: one-class

SVM, random forest, correlation-based classification and semi-supervised clustering. The

RTC outperformed the aformentioned algorithms in classifying zero-day applications.

Numerous experiments have been carried out using several well-known machine learning

algorithms, such as Hoeffding adaptive trees, [57], and support vector machines, [58],

[50], [59]. Erman et al. [60] takes a distinguished approach by classifying network traffic

through using unidirectional statistical features. Some research has shown the possibility

of carrying out online classification through using supervised learning techniques by solely

using the first few packets, [61], [62], whereas, some researchers suggested classifying a

subflow captured at any given moment, considering the first few flow packets could be

skipped or disguised [63], [64].

Among most discussed machine-learning techniques, SVMs have drawn significant interest

because of their high precision. SVMs achieve an average accuracy of over 95 %, 2.3 %

higher than the best performance of other machine learning methods on the same data

sets, as shown by the experiments done by Este et al. [59].

2.8.2 Network Traffic Classification Studies implemented using

Deep Learning Algorithms

Throughout the recent years, early internet traffic classification has received attention

due to the fact that more and more network applications are encrypted. Deep learning,

a subset of machine learning, has the ability to extract features from raw encrypted data

by utilising neural networks as discussed earlier in section 2.7. Unlike machine learning,

which requires humans to extract the relevant features from data, then predict. Deep

learning is distinct because it skips manual feature extraction and uses a neural network

to do so. In this section, we discussed studies that utilise deep learning techniques

to achieve high traffic accuracy scores. We reviewed studies of interest based on the
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extraction mechanism, Deep learning algorithms used and the features extracted. We

used a table to summarise the discussion in this section.

In a paper by Lim et al.[15], they showed how a DL framework can classify network

traffic using a packet-based approach. Training is done using 2-Dimensional Convolutional

Neural networks (CNN) and Residual network (Resnets) with a 3 -Layer convolutional

group. Their work focuses on using payload data and application layer headers as the

features for modelling algorithms. So the dataset with 80000 entries which translates to

8 classes with 10000 random packets per class was converted into 4 pixel image datasets.

The dataset contained 8 classes of encrypted and non-encrypted traffic. They transformed

the network traffic data to image data in such a way that input totalled packet lengths

of size 36, 64, 256 and 1024. We drew insight of transforming network traffic to appear

as image pixels, thus our work applied the similar concept of using payload data and

using different payload sizes, aiming to classify packets using the first 36 packets of

payload data and finding the right payload size that does the best prediction. Precision

was measured using the F1-score. The CNN model initially had a better F1-score in

comparison to Resnets when fed with a small dataset; however, it was not the case when

the dataset grew exponentially. They demonstrated the effectiveness of the two models;

however, in our study the use of Resnets may be inapplicable considering how structurally

complex they are. Training our data on Resnet may be computationally expensive which

is infeasible for real-time classification.

With most researches relying on DL algorithms to use labelled data, Rezaei et al. [37],

however, prove how to use a 1D-CNN model trained with unlabelled data to train a

small labelled dataset. Their work is an example of using transfer learning, particularly

if training data is insufficient. Unlike in Lim at al.’s study [15], Reazaei et al. [37]

combines statistical features and time-series features to retrain a public traffic networks

datasets known as ISCX dataset [20], which produces 80% accuracy. Accuracy results

for their own dataset of the first 20 flows was 68%. The downside of using their method

was that it required substantial statistical and time-series features, which meant that

they overlooked the fact that data collection method is of paramount importance, as

it affects the features. Their work proved the possibility of using transfer learning to

achieve classification of traffic using an unlabelled dataset. With the knowledge that

DL trains relatively better on large datasets in comparison to small datasets, their work

show the significance of using transfer learning to make training of small datasets possible.

However, the only disadvantage is that such a setup requires initial and target problems

to be similar.
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Aceto et al. [14] show the use of Multi-layer perceptron (MLP), Convolutional Neural

Network (CNN) and Long short-term memory (LSTM). They confirm the successful

application of packet features as input to a model just like in Lim et al.’s [15] study test

traffic classification with mobile traffic data. They make their work distinct by adding

header features together with payload data. They use the first 784 bytes on payload data.

Their mobile traffic dataset is trained with MLP, 1D and 2D CNN, LSTM and SAE. The

experiments achieve good accuracy results.

Wang et al [21] point out the precision of Artificial neural network(ANN) and Stacked-

auto encoders (SAE) to identify traffic. Their work confirm the use of unlabelled data

just like, Rezaei et al. [37]. However, they test their dataset with a different set of

algorithms. They used a dataset collected from an internal enterprise network with 0.3

million records of 1000 bytes of flow sessions of network traffic, with 58 classes of protocols

after data cleaning. ANN merge information from layers below them and SAE’s do not

require labels for training and remove redundant information and reduce dimensionality

reduction. This experiment achieved good levels of accuracy among all application classes.

Precision results among the 25 classes showed over 90 % accuracy with some protocols

achieving 100% accuracy. The experiment proving to be successful, their work was left

to be tested with P2P applications.

In a study done by Vu et al. [65], they proposed handling imbalanced datasets in order to

classify network traffic data. They use a public dataset by [53]. Their research conducted

classifying SSH form non-SSH traffic through using 22 statistical features[66]. The flows

from the dataset had 35454 SSH flows and 678396 non-SSH flows. In order to balance

the dataset, AC-GANs was used to generate synthesized data to balance the dataset.

The original dataset with imbalanced classes was combined with the synthesized data to

produce a new augmented dataset. Six experimental tests are conducted with SVM, DT

and RF as baselines, then SVM and AC-GAN, DT and AC-GAN and RF and AC-GAN

on the augmented dataset. RF and AC-GAN produce overall higher results across three

metrics which are the accuracy, F1 score and Area under ROC curve. The results are

99.89%, 95.43% and 95.65% respectively. Experimental results show that the 3 supervised

learning algorithms (SVM, DT and RF) performed better on the synthesized dat produced

by AC-GANs than by a publication done by Vu et al. [67].

Sarhangian et al. [13], show the effectiveness of classifying real-world traffic data using

hybrid models. Their data is collected from Installation Support Center of Expertise

(ISCX) network, provided by [20]. Implementation is done using CNNLSTM and CN-

NGRU as hybrid models for binary and multi-classifcation. The results for binary classi-

fication is 99.23% and 93.23% respectively. The result for multi-classification was 67.16%.
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Their work shows a trade off between complexity and accuracy. Hybrid models are more

complex than single models but achieve high accuracy scores. Our work adapts their

CNNGRU hyrbid model because of how CNNs have the ability to learn local attributes

and GRU learn local features from former and new data.

In contrast, to using Deep Learning for classification. Some researchers have also focused

on using Deep Learning in detecting intrusions, in Software-Defined Networks and many

more. For instance, Wang et al. [39], [16] shows the effectiveness of using different Con-

volutional Neural Networks for malware detection. In their first study [39], they employ

2D-CNN to detect malware in network traffic. They prove that classification cannot only

be used to categorise traffic but can be used to detect intrusion in networks. They are

able to achieve classification with 20 different classes dataset. Because their study works

with a CNN which is an image based model they convert their packet data by transform-

ing the first 784 bytes into a 28x28 grey image, similar to the MNIST dataset. Their

architecture is similar to Le-Net [68]. The accuracy scores are high. Their experiments

are setup in two ways whereby in the first scenario, a binary classifier is used to classify

if traffic is malware or not followed by a two 10 class classifiers. In the second scenario,

a single 20 class classifier is setup, which classifies traffic at once. The same architecture

is shared amongst the three models except the number of classes 2, 10, 20 respectively

in output layer. Their setup achieves an accuracy higher than 99%. However Wang et al

[39], instead used a 1D-CNN algorithm. They follow the first setup of using the first 784

bytes of traffic data’s flow or session. To ensure an end-to-end encrypted model requires

raw features rather than flow features. They use a dataset by Draper et al. [20], which

is a class of 12(namely: six VPN and six non-VPN ISCX) dataset. The dataset contains

six classes of Email, Chat, Streaming, file-transfer, P2P, VoIP which are VPN and six

non-VPN of the same classes. Amounting to a total of twelve classes. Their work was

split into 4 experimental proofs namely: classifying VPN from non-VPN traffic, classi-

fying individual classes on non-VPN traffic, classifying individual classes of VPN traffic

and lastly classifying all classes belonging to the dataset. The precision of the first three

experiments is as follows: 99.9%, 85.8%, , 94.9% respectively. Something worth noting

in their work was that dataset imbalance contributes to the result disparity.

Hassan et al. [19], demonstrates the efficiency of a hybrid model termed a CNN-WDLSTM

learning model for intrusion detection. For feature extraction, a CNN algorithm is utilised,

and WDLSTM is used to identify relationships between those features. The hybrid model

outperforms standard singe models such as GRU, CNN, LSTM by reaching a 97% accu-

racy score. Network traffic classification studies are not only limited to identification of

applications alone but can be extended to intrusion detection and anomaly detection.



MSc Dissertation 26

Kim et al.[69], suggested merging CNN and LSTM models to detect anomalies on web

traffic data. This was initiated in order to obtain more complex features. The results

show an accuracy of 98.6% and a recall of 89.7%. However, the downside was that

identification of anomalies for real data was delayed because of how the pre-processed

data uses a sliding window.

In a different study by Lim et al. [18], they prove the effectiveness of a packet-based

classification framework for an SDN environment. Their work implements hybrid learning.

They test an LSTM model against CNNLSTM hybrid. The LSTM model recorded high

accuracy scores compared to CNNLSTM. The experiment used the same dataset and

concept from their previous study [15]. We followed the same proof of concept but chose

to use only packet data. RNNs have the ability to learn temporal patterns between

individual packets. The choice to use GRU was how GRUs learn long sequences just

like LSTMs but instead GRUs train better without the exploding or vanishing gradient

problem [3].

There are several deep learning algorithms used to classify network traffic that were dis-

cussed, including CNN, LSTM, MLP, among many others. The most commonly applied

algorithm is the CNN with the hybrid models showing high classification scores. This

application is extended in this study to employ a packet-based framework to achieve good

results. We conduct our research with similar models to demonstrate the effectiveness

of adopting single-DL vs hybrid-DL vs ML techniques. Although the use-case of traffic

classification in this thesis is using deep learning techniques compared to using SVM as

a machine learning technique baseline, it was important to show how different network

traffic features can be applied to deep learning techniques as presented in the scenarios

above.

The papers shown in the table summarise deep learning techniques in section 2.8.2 used in

different traffic classification studies. The above studies were of interest because different

setups used in the experiments resulted in successful outcomes. For instance, classification

studies employ different techniques because of the different datasets used and the features

utilised for each study. Note that in some of the studies the features were computed based

on statistical information for a traffic flow, or for a packet stream or using packet payload

information. In some instances, combining the features was found useful in achieving

high levels of classification accuracy. Using the payload as a feature for our study was of

interest because identifying correlations between succeeding bytes in a payload is critical

in identifying patterns in encrypted traffic. On the other hand, reviewing papers of

interest in the field of traffic classification was quite a challenge because of how two

studies relate primarily because of how they use similar models though use different
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Table 2.3: Summary of Papers using Deep learning to classify network traffic data.

Summary of Papers reviewed

CATEGORY ALGORITHM
TYPE

FEATURES AUTHORS

App identification CNN, Resnet Header + Payload Lim et al.[15]
App identification CNN, CNN + LSTM Payload Lim et al.[18]
App identification CNN and SAE Header + Payload Lotfollahi et al.[17]
Traffic identification ANN and SAE Header + Payload Wang et al.[21]
Intrusion detection CNN Header + Payload Wang et al.[16]
App classification CNN, LSTM

MLP and SAE
Header + Payload Aceto et al.[14]

Mixed-Type classifica-
tion

CNN and LSTM Header + Time-series Lopez et al.[40]

App identification CNN Time-series Rezaei et al.[37]
Traffic indentification AC-GAN Statistical Vu et al.[65]
App identification RKHS and CNN Time series Chen et al.[46]
Traffic identification Autoencoder Header+Statistical Hochst et al.[70]
Traffic identification CNNLSTM and CN-

NGRU
Statistical Sarhangian et al.[13]h

Anomaly detection CNNLSTM Time series and statis-
tical

Kim et al.[69]

Anomaly detection CNNWDLSTM Time series and statis-
tical

Hassan et al.[19]

datasets and feature extraction methods. Public datasets for network traffic classification

are substantially less developed than those for image processing-related projects, which

employ benchmark datasets like ImageNet [71] and Cifar10 [72] and have well-organised

training and testing data collections with pre-defined goals. In addition to the problem

of scant to non-existent dataset uniformity, the specific research objectives of practically

every study are distinctive. Even research work that choose to compare QoS-related goals

just in general have very varied definitions of the classes of relevance [73].

2.9 Conclusion

Researchers have contributed to the area of traffic classification using very different ap-

proaches. Classifying network traffic constitutes one of the most challenging research

topics. Over the years, the solutions for classifying traffic have become more complex, as

a proportional reaction to the evolution of the networks.



MSc Dissertation 28

In the studies reviewed, we noted that Sarhangian et al., [13], Raezai et al. [37] and

Lim et al. [15], [18] are the key researches we would like to focus on. We found that for

previous studies, experiments conducted using machine learning where limited mostly to

statistical information regarding network information and mostly flow data was useful in

achieving that goal. Secondly, to achieve classification flow statistics have to be collected

offline. the resultant dataset is feature engineered by experts to retrieve information

necessary for classification. Hence, such a method is limiting when implementing a live

classifier in a network.

With deep learning, raw features as input to our models is useful in gauging if the full pay-

load dataset is useful for training and classifying applications. Different studies focused

on using different payload sizes to test the ideal payload size for accurate application

prediction. Using packet features rather than flow features was a form of emulating a

real-time environment.



Chapter 3

Methodology

This chapter gives details of the steps we took from unstructured network traffic data

to refined structured data to efficiently train DL algorithms. We give a detailed expla-

nation of each of the refinement steps such as data collection, preprocessing, labelling

and cleaning. We also discuss each of the DL methods used and describe the process of

parameter-tuning using grid-search.

3.1 Data Collection

Network data can be accessed from the gateway, or from either the client or server side

of the network. The data used in our research was collected from a community network’s

gateway(router). The community network is situated in Ocean View, South Africa. Since

all network packets transit via the gateway before being sent to various destinations, we

captured real/live network packets at the gateway using wireshark. Wireshark is a popular

tool used to facilitate the smooth capturing of packets flowing through any network.

Wireshark is an open source tool commonly used for packet filtering. The collected

data was saved in Pcap format. Network traffic data in Pcap format is unidentifiable,

hence, tools such as nDPI are useful in reading the Pcap files. We accessed the data by

transferring the Pcap files to a data archive to University of Cape Town’s server. Pcap

is an abbreviation for packet capture and is an application programming interface for

capturing live network packet data from OSI model layer 2 to layer 7 [74]. It is also

known as libpcap on Unix systems or winpcap on Windows. Network analyzers such as

Wireshark or tcpdump are used to create a .pcapfile.

29
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3.2 Data Preprocessing

Preprocessing steps included data extraction, labelling, cleaning and exploratory analysis.

The details of each procedure is explained in the following sections. Below is a diagram

detailing the steps followed:

Figure 3.1: Traffic Classification Model Overview.

3.2.1 Extraction of Data

As previously explained in section 3.1, we collected raw network data from a community

network. The data collection was the first important step to establish a network dataset

that enabled further experimentation. Next on, extraction of data requires constructing

a robust preprocessing pipeline required preprocessing raw network packet data, then

organising into flows as discussed in Section 2.1 particularly by protocol (UDP and TCP

flows). The extraction process was pivotal in transforming raw network traffic in the

form of pcap files to quality data. This is so, because the structure of network traffic as
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discussed in section 2.4 is collected in its rawest format and contains a lot of information

which is irrelevant for machine learning training. Most DL models are used in pattern

recognition. In addition, the aim of only extracting payload data is to have the models fit

well with unseen network traffic packets. Excluding header information with a consistent

structure and values helps to enhance generalisation performance. Training a model

with a high degree of generalization can fit the entire data sample space well. Similarly,

an example of pattern recognition is the derived network traffic flows that encapsulate

payload data. We used a tool called pkt2flow, which streamlines pcap files into flows by

selecting the source and destination ip address and the source and destination port [12].

The tools extracted TCP, UDP, non UDP and non-TCP flows. The pcap files produced

by pkt2flow were stored in the respective folders to separate TCP from UDP and non

TCP/UDP flows.

3.2.2 Data Labelling

This step took the pkt2flow output as input and produced a file with a label for each

flow. To train a model, it is a requirement to convert the dataset into a workable format

suitable for modelling, such as a csv file. In that regard, we used a tool called nDPI [35].

The tool labelled all flows that belonged to an application/class/service in our dataset.

nDPI uses an engine that examines application-layer signatures within a packet stream

thereby identifying and labelling application classes. Even though it is an accurate reliable

tool, constantly learning up-to-date application signatures is a complex task, given that

applications are continuously updated.

3.2.3 Payload Extraction

A more fined-grained approach would be to classify individual packets. A number of

network traffic classification studies yield good results and is more plausible when solely

working with raw data [17], [43]. We therefore extracted the payload data and masked

the header features by using a python library called Scapy [75]. The size of the payload

extracted for experimentation was guided by [17]. A standard packet has 1500 bytes with

20 bytes belonging to the header, which means the 1480 bytes are solely payload. As the

packets come as a byte string, we decided to interpret the individual bytes as integers

in the range [0 - 255]. This way we got a vector of integers in the same length as the

original packet. The output csv files produced by nDPI and Scapy were concatenated, to

produce a unified csv file.
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3.2.4 Data Cleaning

The experiments were hinged on dealing with equal examples for each class in order to

predict results. Therefore, the data cleaning process was crucial in the delivery of a clean-

balanced dataset. In order to ensure we had a balanced dataset we randomly sampled a

given amount of packets from each class. In general we did not want to remove data, given

the quality was good, since the general consensus within machine learning tasks is more

data results in better results. So we chose 10000 packets per class as a benchmark. The

baseline was to work with 10 000 packets for each class. With 13 selected applications or

services. The choice to have 13 classes was to vary the dataset size,as previous studies

had worked with a maximum of 10 classes. Our main focus was to classify applications

and services, excluding protocols was part of the cleaning procedure. Working with 10

000 packets instances per class was necessary as deep learning models require a lot of

training examples. Secondly, neural networks are complex structures, a lot of training

data is needed to achieve good prediction scores.

3.2.5 Final Structure of Data

The nature of our final corpus/dataset contained rows and columns, where the rows were

the instances and the columns were the features. The last column which was the actual

label (class/application), is the feature that the models would predict.

3.3 Selected Classes for Experiment

The final dataset as aforementioned had 13 balanced classes. To achieve a balanced

dataset, we implemented under sampling [17], a method that gathers abundant packets

for the popular classes in order to equalise the classes in the dataset. We opted for this

method rather than training on an imbalanced dataset whereby some classes have an

uneven distribution of packets because experiments that use imbalanced datasets in the

past did not execute well [40]. The selected classes were constituting applications and

services that use encryption techniques to transmit data over the network. We chose to

include different services and applications because it was important to investigate whether

or not it was possible to distinguish between them. To obtain diversity within the data

we chose streaming services, text/messaging services, social media services, file-sharing
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applications and mobile background services. Below is the list of classes with the protocols

along with use over the networks:

• YouTube: Streaming data from YouTube will be labelled youtube. It is categorised

as a video application type. The stream is served via the QUIC 23 protocol over

UDP port 443 using QUIC crypto [76], but only if the user is using the Google

Chrome browser. If the user is using another browser such as Mozilla Firefox

YouTube will stream using HTTPS with TLS v1.2. YouTube use a HTML5 video

player to buffer and assemble fragments.

• Amazon: Identified as regular web traffic and so it uses HTTPS/TLS/SSL protocol

to encrypt traffic.

• GoogleServices: It is a background services application type, mostly because

of mobile users’ activities. Any data the user sends to the Google Front-End is

encrypted in transit with Transport Layer Security (TLS) or QUIC, or SSL.

[77]. The user’s request is sent as an HTTPS request.

• Instagram: It is messaging platform where mostly users send pictures. When

newtork users requests data with instagram it will use SSL/TLS over port 443

[24] to encrypt requests from Instagram servers and will send data over the same

encrypted data stream.

• WhatsApp: It is a commonly used chat service platform. Uses end-to-end encryp-

tion to secure transmission of packets. However, some users use WhatsApp Web,

of which any info sent over the web uses HTTPS.

• NetFlix: This class’s video streams are served using HTTPS and TLS v 1.2 as

encryption protocols [78].

• BitTorrent: A platform for peer-to-peer file sharing or messaging. Uses HTTP

protocol.

• Teamviewer: Teamviever is an application that can be used for various purposes

such as remote control, desktop sharing, online meetings, web conferencing and file

transfer between computer users. The application implements TLS protocol for all

standard connections [79]. However, it sometimes uses UDP as a way to connect.

• GMail: It is an a emailing or messaging service, that runs on TLS. Google workspace

supports TLS 1.0 through to 1.3.
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• PlayStore: Uses TLS as an encryption protocol. It is an application used on

mobile devices.

• Messenger:A messaging platform implemented by Facebook. Uses the same pro-

tocol as Facebook.

• Pinterest: It is an image-sharing and social media service. Uses SSL/TLS and

HTTPS.

• Ookla: It is a web-service for testing the internet’s speed. Implements HTTPS.

Below is an image analysis of the raw packet byte data extracted from the application

layer. The procedure transformed the aforementioned classes into images.DL algorithms

use images to perform classification, through analysing an image and converting it into

thematic maps. The images for all the 13 classes are shown below:

Figure 3.2: Images of classes extracted from raw packet data.

More detailed work on model implementation and grid-search parameter tuning used are

discussed in the following section.

3.4 Experimental Design

The payload can be either a TCP or UDP payload, and it can be encrypted using SS-

L/TLS or can be encrypted at the application layer. Hence, in order to find the most
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efficient machine learning algorithms in terms of accuracy and efficiency in classifying

network payloads, it was necessary to vary model parameters and using grid search in

determining the best values for accurate classification. Several factors can affect the

efficiency of each of the proposed ML algorithms, including:

1. Input data for the DL algorithms. In this study, we used varying tensors as

input to the models. This was so, considering the different requirements for each

model. Models such as SVM’s required single-dimensional (1D) tensor and the

CNN and Resnet required two-dimensional(2D) tensors. This was done in order

to balance the format of our input data. In particular, standard size contained

in a payload packet of 1480 bytes was taken as input of vector length of 1480,

whereas, the neural network models required data to be stored as 2D tensors. As

such, the same payload length of 1480 bytes was reshaped into a 2D tensor of 40

x 37. Reshaping of an image into a 2D tensor was advantageous as it allowed us

to keep the spatial meaning of our data. Reshaping was made possible through

scikit-learn’s open cv resize method.

2. Choice of parameters. A model’s parameter is a configuration variable that is

intrinsic to the model and whose value can be calculated based on the data provided.

When making predictions, the model needs them. Parameter values determine the

model’s ability to solve the problem. These values are based on data that has been

estimated or learned and therefore, saved as a component of the learned model.

Parameter values differ from the weight values of a model, to the learning rate, to

the epochs, batch size and so on. The specific details and values for each model’s

parameters are detailed in the following sections.

3. Amount of training, testing and validation data. Supervised learning al-

gorithms tend to approximate better when trained on large amounts of data and

variance of the models tend to decrease meaning we avoid overfitting. In the event,

that a model is trained on little training data, it produces a weak estimate. In this

research, the dataset was split in such a way that we had ample training samples,

into train, validation, test sets into 64, 16, 20 respectively. With 10 000 datapoints

for each application class, the dataset had a total of 130 000 datapoints. The split

resulted in 83 200 datapoints for the train set, 22 400 datapoints for the test set

and 33 600 datapoints for the test set.

4. Method of parameter tuning. We implemented the common approach to search-

ing for the ideal parameters which is known as the grid search [80]. We used a grid

search on a subspace of hyperparameters. Our choice to use grid search was to
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setup the experiments in such a way that we test every combination of parameter

values in comparison to using a random search that would test randomised values

from a statistical distribution. The scikit-Learn Grid Search CV module in Python

was used to tune the grid search parameters.

Numerical representation of data is the best format and the common way to train models

because machine learning models cannot directly work with categorical data, in order to

represent our data in the required format, our y-label, which represented the 14 categorical

classes in our dataset was represented in a more expressive way, through the process of

one-hot encoding.

3.4.1 Experimental Environment

Our work was made possible with software and tools such as scikit-learn, Tensorflow and

Keras. The work was implemented on two separate platforms to execute the preprocessing

of the network traffic data and the training of models. The preprocessing was done on

a Linux machine running Ubuntu 18.04 with 8GB of RAM and Intel processor. The

training of the models was done on Amazon Web services (AWS). The data was trained

using an NVIDIA GeForce GPU given that we were working with large volumes of data.

We used Tensorflow 2.4.1 and Keras 2.3.0 with Python 3.7.

3.5 Adopted models used for Experiments

The following section gives a detailed analysis of the models used for the experiments we

carried out. The experiments in this study were designed to determine the most effective

DL algorithm in terms of performance accuracy (proposed in section 1.3.) for predicting

network traffic classes with respect to a community network dataset.

3.5.1 SVM’s Architectural Implementation

The model was implemented in Python and using scikit-learn machine library. The choice

to use this library was based on its robustness as it provides a selection of efficient tools

for classification. The standard input was 1480 tensors as mentioned in the Experimental

design section. Unlike the other models, SVM’s architecture had constant parameters
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because of its constant features. An SVM with linear kernel was used for prediction. An

SVM with linear kernel usually have an important parameter such as C that influences

performance. Using C as a model parameter assisted in controlling the error, by avoiding

mis-classifying training examples. Given that our dataset had a lot of features, using a

linear kernel was sufficient because it only searches for the C parameter. For the kernel

function, we opted to use a linear kernel function in comparison to other non-linear kernel

options because of how they significantly cost more resources to train and offer little to

no improvement in predicting performance. To determine the optimal accuracy for the

different input packet sizes, grid search was used, see Table 3.1.

Table 3.1: Grid Search parameters for SVM Model.

Parameter boundaries for SVM

c 1
kernel Linear
Packet size 36, 64, 256, 576, 1024, 1480

3.6 CNN Architectural Implementation

In our study we built a 2D CNN model, which has 3 simple layers. The model has

3 convolutional layers, activation layers, maxpooling layer and a fully connected layer.

The input shape to the model was the a 40x37 image which is meant to suit the 2D

requirements of the CNN model. The convolution operation which is a mathematical

operation requires filters to be applied to the input array [39]. This is done so that the

input array’s features are identified. The convolution operation results in shrinkage of the

input array, though the most critical characteristics are retained. The result is a feature

map. The model was designed to learn features from raw traffic automatically. The

features are learnt layer by layer and high-level features are input to the softmax layer.

It directly learns from the non-linear relationship from raw traffic and outputs the label.

Features learnt are automatically classified through the softmax layer. The structure of

the layers of the 3-layer Convnet model is such that the first layer had 32 filters with

a filter size of 2 x 2. Rectified linear unit (Relu) was used as the activation function.

A maxpooling layer of size 2 x 2, that halves the image dimensions. Subsequently, we

stacked two additional layers. With the the second layer having 64 filters and the third

layer using 128. The activation layer is an extension of the convolution layer, and, after

every convolution operation, the feature maps were passed through non-linear activation

functions such as the (ReLU). CNN’s activation functions allow it to approximate nearly
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any nonlinear function. After activation functions have been applied, the output feature

maps were fed to the pooling layers. The pooling layers then combined the output feature

maps to create a final output feature map. Pooling layers are used to reduce the number

of parameters that need to be processed when visualising a feature map. Combining

similar features together allows layers to be pooled together semantically. After iterating

through multiple levels of convolution, activation, and aggregation, the final result is

computed at the fully connected layer of the network. The fully connected layer uses

these features to make predictions about the problem. CNNs are similar to most Neural

Networks in that they are trained using backpropagation and gradient descent. Our choice

to implement the max pooling as our pooling layer was inspired with the studies done by

[81], [82]. Their work demonstrated a great success. In addition, in order to implement

non-linearity, they used a Rectified Linear Unit (Relu) which influenced our choice of

Relu activation function. Adam is the commonly used optimizer as most datasets are

significantly large. It is known to reduce training time and has shown great success in a

lot of researches [83].

Table 3.2: Grid Search parameters for CNN Model.

Parameter boundaries for CNN
Learning rate 0.01, 0.001 , 0.0005
Batch size 32, 64, 128
Epochs 50
Dropout 0.2, 0.3
Packet size 36, 64, 256, 576, 1024, 1480
Convolution layers 1, 2
Optimizer Adam
Activation function Relu

3.7 GRU Architectural Implementation

GRU was implemented with 3 dense layers, with 16 neurons for each layer. The final layer

in the structure of the model is connected to a fully connected layer, which multiplies

the outputs from the other layers and then adds a bias vector. The outcome is sent to

the softmax layer, which is normalises outputs into a probability distribution of the final

labels. The input shape for the model was designed to be a 1D tensor of 1480. The models

were built up to provide repeatable results, therefore all of the tests began with a fixed

random seed. To test the GRU model we chose the Adam optimizer, and Tanh activation

function since research has shown that they are very likely to provide positive outcomes.
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Kernel regularizer, L2 is applied to apply penalties on layer parameters or layer activity

and an early stopping rate with a patience of 2 was used to avoid overfitting. Other

parameters were selected with the grid search parameter tuner as shown in Table 3.3.

Table 3.3: Grid Search parameters for GRU Model.

Parameter boundaries for GRU

Learning rate 0.01, 0.001
Batch size 32, 64
Epochs 50
Packet size 36, 64, 256, 576, 1024, 1480
Dropout 0.2, 0.3
GRU layers 1, 2, 3
Optimizer Adam
Activation function Relu

3.8 CNNGRU Architectural Implementation

To obtain better predictive performance than could be obtained from any of the con-

stituent learning algorithms alone, we built a hybrid model which was a combination of

CNN and GRU. The ensemble model consists of 2 fully connected CNN layers, a flatten

operation before adding a final GRU layer. For each CNN layer contains a pooling oper-

ation and convolution operation. The CNN layers are used for spatial features extraction

from the features, and then fed into a GRU layer. But before, getting connected to the

final GRU layer, the convolution and pooling operation on the last CNN layer converts

the high-dimensional data to one-dimensional data which is connected to a fully con-

nected layer. Pooling layer is employed to model the acquired feature maps and convert

them into features to a more abstract form. GRUs use gated recurrent units which are

connected to the fully connected layer. We used a fixed pooling size for the CNN and

CNNGRU. The padding for the model was fixed to be the same for a small input shape of

36 otherwise it was set to valid. The models were set up to produce consistent results, so

a fixed seed was used [52]. We used the Adam optimizer and Tanh activation function for

all of our experiments because studies have shown them to be very likely to produce good

results. Other parameters were selected using the grid search parameter tuner. See Table

for more information. The grid search tuner found the best parameters for a specific

class, which were then used to make a classification prediction for that class. We used

the Adam optimizer and the Relu activation function in all experiments, as it is known to
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achieve accurate results in most hybrid model prediction studies [37]. Other parameters

were selected with the grid search parameter tuner.

Table 3.4: Grid Search parameters for CNNGRU Model.

Parameter boundaries for CNNGRU

Learning rate 0.01, 0.001
Batch size 32, 64, 128
Epochs 50
Packet size 36, 64, 256, 576, 1024, 1480
Dropout 0.5 ,0.7
Number of neurons 16, 16, 16
Convolution layers 2
GRU layers 1
Optimizer Adam
Activation function ReLU and Tanh

3.9 Experiment 1: Predicting the Best Model for

classifying the network applications

The first experiment compared how Support Vector Machines, CNN, GRU and CNNGRU

predicted network applications into respective classes. The three models were fed with

the standard input data of 1480 bytes, with 10 000 network packet samples represented

application class being the standard number. The specifications and details of the models

were discussed earlier in the previous sections. The experiments were carried out using

different input feature sizes. After pre-processing, there were 130 000 instances across all

1480 features available for training, validation and testing. This was divided in the ratio

64%:/16%:/20% for training, validation and testing respectively. Each algorithm was

trained and tested with a specific set of parameters. These parameters are specified in

the previous sections of architectural implementations for each model. Accuracy, precision

and recall are used as a performance metric.
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3.10 Experiment 2 Setup: Predicting how the rate

of change of data size affects the accuracy rate

The second experiment was implemented to evaluate how each model performed when

increasing the number of packet bytes used as features. We varied the payload feature

shapes across all the models to check their performance and recorded the accuracy. Ac-

cording to [15], they varied packet features to 36, 64, 576, 1024 and 1480. Along with the

different packet streams, with different parameters as a combination we used parameter

tuning to train the adopted algorithms. We evaluated outputs of the best parameters

based on a given performance metric. We used accuracy as the performance metric for

this study. The Grid search parameter tuning was implemented with the python Scikit-

Learn Grid Search CV package. The grid search tuning was implemented for each model.

The input data used for the grid search tuner was the standard sizes across all models

with the last column as the labelled output. See Table 3.1 -3.4 for the list of parameters

tuned for each model. SVMs were one of the ML algorithms that was proposed for this

study and are described in Chapter 2. Details are included in section 3.5.1 and Table 3.1

has parameter details used for gridsearch. SVM was implemented using scikit-learn. The

best parameters selected by the grid search tuner for different input sizes was selected.

CNNs, GRU and CNNGRU were also proposed for the study. All DL models were im-

plemented with the Keras Deep-Learning Library and TensorFlow backend. The models

were configured to make reproducible results, thus a fixed random seed was set for all

experiments. We used the Adam optimizer and activation functions (Tanh and ReLU)

for all our experiments because they have been known to achieve accurate results for

most CNN prediction studies [37]. Other parameters were selected with the grid search

parameter tuner. See Table 3.2 - 3.4 for more details. The best parameters selected by

the grid search tuner for a specific input shape or feature size. Before training, the data

pre-processing technique explained in section 3.2 was implemented.

3.11 Experiment 3 Setup:Predicting classification rate

when model parameters are varied

Including prediction speed and evaluating model complexity as part of the experiments

was fundamental to test the efficiency of this simulation if it where to be implemented

in a live setting. The calculation of the prediction speed in packets per second used the

formula below:
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Packetspersecond =
1

Averagetimetaken
(3.1)

To clearly assess the effect of the prediction performance, we evaluated the prediction

speed against the different packet sizes across the models. Moreover, the number of

parameters is an exponential scale that comprehensively covers a sample area. If you

increase the number of weights, neurons, or batch size, your model will be more complex

by having more parameters. The parameters are discrete or continuous values that can

be adjusted in order to obtain the optimum model performance. For each model with

a given number of parameters, we randomly vary some of those parameters in order to

find the best fit. To this end, the grid search involves tuning the learning rate specified

in the Tables 3.1 - 3.4 since learning rate is widely regarded as the most important

hyperparameter to tune for neural networks [52] as well as the dropout rate to identify

what level of dropout is desirable to reduce over-fitting for a particular configuration

[52]. When the highest validation score is attained, we select that model as the optimum.

All the models are trained using 50 epochs and with an early stopping rate to prevent

overfitting.

3.12 Evaluation Metrics

1. Accuracy: Firstly, an evaluation metric for indicating classification success of a given

model is needed. One of the most used metrics for evaluating classifiers is accuracy, which

measures the proportion of packets correctly identified to belong to a certain class to the

total packets predicted in an experiment. Therefore, Accuracy was a key metric used in

performance evaluation of the models.

Accuratepredictions =
numberofcorrectpredictions

Totalpredictions
(3.2)

The equation above can also be translated as:

Accuratepredictions =
TP + TN

TP + FP + TN + FN
(3.3)

• TP (True Positive) is expressed as a proportion of packets that were accurately

identified as being in a certain class.
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• TN (True Negative) is defined as the proportion of packets that were accurately

identified as not falling under a certain class.

• FP (False Positive) is calculated as a percentage of packets that were mistakenly

assigned to a certain class.

• FN (False Negative) is defined as the percentage of packets that are accurately

identified as belonging to a certain class but are actually classed as not belonging

to that class.

2. Confusion matrix A confusion matrix is a N x N matrix, where N is the number

of classes. In our study, we had a 13 x 13 matrix. We used a confusion matrix as a way

to assess how well the model predicted each individual class in our dataset. It is a way

of assessing the correct (actual) predictions versus the incorrect (predicted) outcomes.

Additionally, we can calculate the precision, recall and F1-score using the True positive,

True negative, False positive and False negative previously defined in equation (3.3).

Precision is calculated as the proportion of accurately identified traffic flows belonging to

a class out of all traffic flows identified as belonging to a class. Recall is calculated as a

percentage of all packet streams properly identified as being in a class out of all packet

streams in a class. The F1 Score is a harmonic mean of both precision and recall and

gives equal weighting to both precision and recall.

Precision =
TP

TP + FP
(3.4)

Recall =
TP

TP + FN
(3.5)

F1Score =
2 ∗ Precision ∗Recall

Precision + Recall
(3.6)

3. Packets classified per second: We also used time as a metric for evaluating classifi-

cation speed, this was done to find a means of assessing how models perform in the event

they are used in a real-time setup. For this purpose, we used time taken for prediction

done by a model. Equation 3.1 summarises this evaluation metric.
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Table 3.5: Overview of all Experiments.

Summarised experiment evaluation criteria

Experiment
Name

Experiment de-
scription

Method of Pa-
rameter Tuning

Parameters
Tuned

Research Ques-
tion answered

Experiment1 Classification
with full payload
size

Grid Search refer to Table 3.2
-3.5

refer to Chap-
ter1, Section1.4,
Que1

Experiment2 Classification
with different
payload sizes

Grid Search refer to Table 3.2
-3.5

refer to Chap-
ter1, Section1.4,
Que2

Experiment3 Prediction speed
comparison

Grid Search refer to Section
3.16

refer to Chap-
ter1, Section1.4,
Que3

3.13 Conclusion

In this study, we used one ML algorithms (SVM) and three DL algorithms(CNN, GRU

and CNNGRU) to classify community network traffic. The approach that was used to

design our models was similar to what have been done in previous traffic classification

studies for different networks with different traffic volumes and classes however, there

were some slight peculiarities. For instance, in designing our solution we considered

factoring in model predictive performance calculated as packets per second. We found

incorporating such a solution as a relevant way to evaluate the most efficient model that

can classify traffic within a low-bandwidth environment.



Chapter 4

Analysis of Results

This chapter presents the experiment outcomes from the preceding chapter’s experimental

setup. The sections below describe the key findings to determine the solutions to the

research questions in Chapter 1, Section 1.3. The results explained from section 4.1

to 4.3 used the final structured dataset with 83 200 instances for the train set, 26 000

instances for the test set and 20 800 instances for the validation set. The fact that we

worked on implementing a streamlined preprocessing pipeline that produced 130 000 rows

of structured data from the unstructured pcap data. The structured data could be used

as input for our models which was a good contributor for this project. Hence, building our

own dataset to see how it was possible to test literature on the possibilities of classifying

network traffic data, in such away that we could distinguish classes of traffic flows

4.1 Experiment 1: Maximum Accuracy prediction

and evaluation of the experimental study

Our first research objective from Chapter 1 in section 1.3 was to: Investigate the effec-

tiveness of existing deep-learning models (CNN, GRU and CNNGRU) against an existing

machine-learning model (Support Vector Machines) using a packet-based classification ap-

proach for accurately classifying network traffic collected from a community network. We

conducted an experiment that could test the accuracy prediction of Machine Learning

against deep learning. We adopted and tested ML and DL models. The effectiveness is

given by accuracy which is the number of correct predictions over the total class * 100

%. The results displayed are from the test set of 26 000 samples. The test set indicates

45
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the evaluation performance of the models and how it generalises well with new or unseen

data. From this experiment, we discovered that the best performing DL model amongst

them all was the hybrid model, CNNGRU, followed by GRU, then CNN. According to

Figure 4.1 shown, we can depict that Deep Learning models could generalise well with the

traffic data in comparison to SVM. The accuracy percentages were as follows: CNNGRU

had a value of 91%, with GRU following at 87%. CNN had an accuracy prediction of

85%. Lastly, SVM had an accuracy of 51%. The difference in accuracy values across all

deep learning models was marginal, with a 2% difference. However, the major difference

was between SVM and other Deep learning models.

Figure 4.1: SVM, CNN, GRU and CNNGRU test accuracy results

4.1.1 Confusion matrix results for SVM, CNN, GRU and CN-

NGRU

Following the results above in Figure 4.1, we further explored the confusion matrix results

for each of the models. Figure 4.2 -4.5 describes each of the outcomes. The results shown
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are for the best model for each model type. The matrix shows the correctly classified

packets/bytes belonging to a class against the total bytes belonging to each class. The

values of the correctly predicted classes is known as the true positive values and these are

represented by the high values in the diagonals, where a predicted application class on the

y-axis coincides with the same application class name on the x-axis, with a lighter blue

showing a low true positive value and the darker blue showing a high true positive value.

Figures 4.2 to 4.5 represent the outcome classification prediction of SVM, CNN, GRU

and CNNGRU respectively. We found that the general trend across all model prediction

was that certain classes were accurately classified in comparison to some classes. This

means that when a model predicted a class as X, the predicted outcome was truly class

X. The outcome for each class prediction is represented in the diagonal of the matrix.

The general trend observed over each confusion matrix outcome is such that BitTorrent,

Youtube, Teamviewer, WhatsApp, Ookla, Instagram and Netflix were the applications

with predictions recorded with over 1800 instances true positive values. Across all the

different DL models, BitTorrent was consistently classified with a high true positive rate.

The graphical representation of SVM in Figure 4.2, shows the true positive prediction

for each of the 13 application classes. BitTorrent, OOkla, PlayStore, Teamviewer, and

YouTube had high true positive predictions.The misclassified results are represented by

the values in the corresponding rows and the values in the corresponding columns. For

instance, the values in the corresponding row of Amazon are the False positives packet

instances of Amazon. The false positive values for a class are represented by the sum

of the values in the corresponding row. In the instance of Amazon the false negative

value summed up to 4 129 false positive instances of Amazon. There were 1412 total

false negatives instances misclassified instances of Amazon. The True negative values are

represented by all the values except the ones in the corresponding rows and columns.

Figure 4.3 shows the CNN confusion matrix shows the true positive prediction, false

positive, false negative and true negative for each of the 13 application classes. The

graphical representation of CNN shows the true positive prediction for each of the 13 ap-

plication classes. BitTorrent, GMail, Messenger, Netflix, Ookla, PlayStore, Teamviewer,

WhatsApp and YouTube had high true positive predictions.The misclassified results are

represented by the values in the corresponding rows and the values in the corresponding

columns. For instance, the values in the corresponding row of PInterest are the False

positive values of Interest. The false negative values for a class are represented by the

sum of the values in the corresponding column which summed up to 209 false positive

misclassified instances of Pinterest. There were 725 false negative instances misclassified
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Figure 4.2: Confusion matrix for SVM Algorithm.

instances of Amazon. The True negative values for PInterset are represented by all the

values except the ones in the corresponding rows, columns and the True positive value.

Figure 4.4 shows GRU confusion matrix has high true positive predictions for BitTor-

rent: 2000, GMail: 1792, Messenger: 1829, Instagram: 1604, Netflix: 1869, Ookla: 1983,

PlayStore: 1562, Teamviewer: 1981, WhatsApp: 1723 and YouTube: 1976 had high true

positive predictions. The misclassified results are represented by the values in the corre-

sponding rows and the values in the corresponding columns. For instance, the values in

the corresponding row of Instagram are the False negative values of Instagram. The sum

of false negatives are 1326 for lnstagram. There were 388 false positive instances misclas-

sified instances of Instagram. The True negative values for Instagram are represented by

all the values except the ones in the corresponding rows, columns and the True positive

value.

Figure 4.5 shows the graphical representation of CNNGRU, showing the true positive pre-

diction for each of the 13 application classes. BitTorrent: 2000, GMail: 1713, Instagram:

1892, Messenger: 1749, Netflix: 1948, Ookla: 1984, PlayStore: 1721, Teamviewer: 1699,

WhatsApp: 1840 and YouTube: 1991 had high true positive predictions.The misclassified

results are represented by the values in the corresponding rows and the values in the cor-

responding columns excluding the true positive value. For instance, Google Services had
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Figure 4.3: Confusion matrix for CNN Algorithm.

288 false negative misclassified instances of GoogleServices. There were 430 total false

positive instances misclassified instances of GoogleServices. The True negative values are

represented by all the values except the ones in the corresponding rows and columns.

4.1.2 Tradeoff of Precision, Recall and F1 Score for each Model

Following the results from Figure 4.2 to 4.5. We further inferred the precision, recall

and F1 Scores for each class. Table 4.1 shows precision, recall and F1 Scores results

that belong to SVM per for each of the 13 classes. The trend shows that the precision

scores were generally poor in comparison to the recall scores, meaning the SVM model

was efficient in identifying traffic classes as belonging to a class out of all packet streams

in a class.

Table 4.2 shows precision, recall and F1 Scores results that belong to the CNN per for

each of the 13 classes.

Table 4.3 shows precision, recall and F1 Scores results that belong to the GRU per for

each of the 13 classes.
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Figure 4.4: Confusion matrix for GRU Algorithm.

Table 4.1: Accuracy, Precision, Recall and F1 Score for SVM Model.

Class Precision(%) Recall (%) F1 Score (%)
Amazon 13.7 32.2 19.2
BitTorrent 91.2 100 95.4
Gmail 35.7 37.9 37.8
GoogleServices 20.2 24.8 22.3
Instagram 33 53.9 40.9
Messenger 38.6 38.1 38.3
NetFlix 82.2 53.5 64.8
Ookla 85 79.8 82.3
Pinterest 30.3 15.8 20.7
Playstore 71.1 67.2 68.6
Teamviewer 92.5 63.8 75.5
WhatsApp 27.1 5.6 9.3
YouTube 91.5 88.6 90

Table 4.4 shows precision, recall and F1 Scores results that belong to CNNGRU model

per for each of the 13 classes.
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Figure 4.5: Confusion matrix for CNNGRU Algorithm.

Table 4.2: Accuracy, Precision, Recall and F1 Score for CNN Model.

Class Precision(%) Recall(%) F1 Score(%)
Amazon 79 55.1 64.9
BitTorrent 99.8 100 99
Gmail 67.5 89.6 77
GoogleServices 69.5 72.3 70.9
Instagram 91.8 80.2 85.6
Messenger 60 91.5 72.5
NetFlix 98.19 93.5 92.3
Ookla 99.3 99.2 99.2
Pinterest 86 63.8 73.25
Playstore 97.7 78.1 86.8
Teamviewer 99.6 99.1 99.3
WhatsApp 86.6 86.2 86.4
YouTube 99 98.8 98.9
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Table 4.3: Accuracy, Precision, Recall and F1 Score for GRU Model.

Class Precision(%) Recall (%) F1 Score (%)
Amazon 39.1 65.4 48.9
BitTorrent 99.9 100 99.5
Gmail 76.7 89 82.4
GoogleServices 73.6 62.5 67.6
Instagram 92.3 91.7 92
Messenger 64.3 90.3 75.1
NetFlix 99.7 94.1 96.8
Ookla 100 99.1 99.5
Pinterest 86.8 73.1 79.4
Playstore 95.1 80.2 87
Teamviewer 98.6 99.7 99.1
WhatsApp 88.9 85.7 87.3
YouTube 99.5 99.2 99.3

Table 4.4: Accuracy, Precision, Recall and F1 Score for CNNGRU Model.

Class Precision(%) Recall (%) F1 Score (%)
Amazon 80.3 75.9 78
BitTorrent 99.9 100 99.9
Gmail 86.4 85.7 86
GoogleServices 84.1 78.5 81.2
Instagram 88.4 94.6 91.4
Messenger 79.2 87.5 83.1
NetFlix 97.4 97.4 97.4
Ookla 99.6 99.2 93.4
Pinterest 86.2 86.1 86.2
Playstore 91.5 85 88.1
Teamviewer 99.6 99.4 99.5
WhatsApp 88.7 92 90.3
YouTube 99.3 99.6 99.4

4.2 Experiment 2: Accuracy prediction across differ-

ent packet sizes

In order to answer the research question in Chapter 1, section 1.3 which states that:

Test to what extent would varying different packet sizes would have an affect on the

classification score of the deep learning models. We conducted a grid search experiment

across the different packet lengths/input shapes of 36, 64, 256, 576, 1024 and 1480. The

grid search tested the combinations of the hyperparameter values of interest regarding the



MSc Dissertation 53

input shapes. Comparing the results obtained, we observed that each model performed

differently across the range of input shapes, shown by the highest accuracy that each

model class attained for each input shape. Figures 4.6 and 4.7 show a barplot and

boxplot showing the classification accuracy’s for each of the input shapes. The boxplot

shows the accuracies attained per each packet size. For CNN, the accuracy values from

packet sizes: 256 to 1024 ranged from 82% to 84.23%. For GRU, the accuracy values

from packet sizes: 256 to 1024 ranged from 83% to 85.32%. For CNNGRU, the accuracy

values for packet sizes: 256 to 1024 ranged from 83% to 90.22%.The following values were

recorded for the different packet input sizes from 36, to 1480 for the SVM model was

42% to 51% respectively. For CNN, the accuracy values ranged from 75% to 85%. For

GRU, the accuracy values ranged from 77% to 87%. Lastly, CNNGRU ranged from 79.2

to 91%. Lastly, SVM had accuracy values from 42% to 51%.

Figure 4.6: SVM, CNN, GRU, CNNGRU highest percentage accuracy achieved for
different packet sizes.

Although in Figure 4.6, we represented the maximum accuracies achieved across the

different models, in Figure 4.7, we observe the distribution of the test accuracy for each

model is vastly different. SVM had the lowest test accuracy and the least distribution
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which is seen with the significantly low accuracy scores in comparison to the rest of

the models. The CNN model’s prediction is more dependable because there was less

variability across all packet sizes. The median accuracy values were close to 73% for

the first four input shapes. The median values drops for the packet size of 576 though

the maximum test accuracy is maintained. The GRU outcome can be seen to have a

fluctuating median value from as low as 54% to 83%. The test accuracy values are not

as evenly distributed across each packet size. The CNNGRU has evenly distributed test

accuracy scores for the first three packet sizes. The test accuracy scores for the last packet

sizes are unevenly distributed. Overall, the median scores across each packet size for the

different models is vastly different. With CNN and CNNGRU recording consistent test

accuracy values for the 25% highest accurate values.

Figure 4.7: Accuracy Distribution by each Model against Packet size.
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4.3 Experiment 3: Packet Prediction speed (in pack-

ets per second) against packet sizes.

Investigate the effect of the deep learning model’s performance in terms of prediction

rate (packets predicted per second (pps)) and complexity for classifying network traffic?

To predict the performance of the models, we used the concept of packets per second as

described in section 3.12 of Chapter 3. We measured the complexity of the models using

the trainable parameters of each model. In Figure 4.8, the general trend that can be

observed is that prediction speed of the models decreases as the packet sizes increases for

the 3 deep learning models. Determining the number of packets predicted is affected by

the number of parameters each model requires and the size of the input. As the model’s

input shape changes, the number of parameters that make up a model increases con-

tributing to the complexity of the model. The more complex a model becomes, the more

time it takes to predict. In addition to packet size, parameters such as batch size are

correlated with the performance of deep learning models. For instance, when predicting

classes, applying larger values for batch sizes translates to larger weight matrices associ-

ated with algorithm matrix multiplications. This matches our expectations. Moreover,

for the CNN and CNNGRU, filter sizes plays a role in increasing parameters and results

in more convolution operations. Though the models compete in their accuracy prediction.

The results of their prediction speeds were marginally different. This could be attributed

to the difference in the model architecture. CNN had the greatest number of packets per

second prediction with results ranging from 25 000 to the least one being 10 000. GRU

followed with packets predicted ranging from 12 000 to 2100. CNNGRU had the least

packets predicted per second ranging from 4 500 to 3 000.

4.3.1 Per Class Relationship between Prediction Rate, Train-

able Parameters and Test Accuracy

In Figure 4.9 - 4.11 we further analysed the relationship of the Prediction speed, trainable

parameters and Test Accuracy for each class. Information based on each class may be

useful for ensuring QoS for a low-resource environment. Figure 4.9 shows an inverse

relationship of the prediction speed represented by packets per second against the packet

size. However, there is no much variation across all the 13 classes. The prediction speed

drops significantly after the 200 packet size.
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Figure 4.8: Relationship displaying Packets Size for each model against Prediction
speed and Test Accuracy.

Figure 4.9: Relationship displaying Packets per Second for each class against packet
sizes with Test Accuracy of 70 %.

Figure 4.10 also shows an exponential relationship of the packet size and the trainable pa-

rameters. As we train across a higher number of packets, parameters increase, this shows

the relationship between accuracy being a function of increasing parameters. However, it

not simple to distinguish classes in this scenario, as they follows a similar trend.
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Figure 4.10: Relationship displaying Trainable Parameters for each class against
packet sizes.

4.4 Summary of Results

The information in this section provides a detailed account of all the experiments carried

out for this study. This information helped us to better understand our research goals.

The results from section 4.1 can be used to make an inference as to which of the three

DL models performs best with respect to the network traffic dataset collected from the

community network. The results in section 4.2 can be used to make deductions about the

influence of packet size on the performance of an ML model. The observations in section

4.3 can be used to infer the effect that the packet size has on prediction speed, and the

effect of packet size on class identification. The results of this study can help you choose

the best model type and packet size for accuracy.



Chapter 5

Discussion

This chapter provides a thorough discussion of the performance of each approach (SVM,

CNN, GRU and CNNGRU) in relation to the experiments in Chapter 4. We present a

detailed analysis of how each method performs in different scenarios elaborated in Chapter

4, section 4.1 to 4.3. Furthermore, we correlate this result with previous studies that used

Deep Learning (DL) and conventional ML techniques to classify network traffic, and show

their impact on the research goals in section 1.3.

5.1 Classification Performance of SVM against Deep

Learning Models

The findings presented in section 4.1 of Chapter 4 reveal that all three DL models (CNN,

GRU, and CNNGRU) are suitable for classifying community network data compared

to the baseline ML model (SVM). Therefore, this validates the assumption we had in

the first chapter in section 1.3, for research objective 1. DL models are more suitable

and effective for classifying network traffic data [14], [10]. The test accuracy represents

each model’s out-of-sample performance and, as a result, its ability to generalise to new

data. With SVM achieving an accuracy of only 51%, and the DL models achieving

accuracy’s of over 80%, with the hybrid model showing significant improvement and

attaining the highest accuracy of 91%. We can conclude that hybrid models are ideal

and suitable for multi-classification. This matches a previous study that hybrid models

generalise well compared to single models [13], [15]. The differences in accuracy results

could be attributed to the unique architecture designs. For instance, CNNs are useful in
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extracting spatial features, on the other hand, GRUs have a lot of gated units and are

efficient in learning long sequences through storing crucial information throughout the

training phase. Therefore, a hybrid architecture that combines the two results in the best

accuracy performance compared to single model architectures in all settings. Additionally,

the difference in results between the single CNN and GRU model architectures could

be that GRUs perform better due to the nature of network traffic dataset. Network

packet bytes are sequential in nature, meaning packets are arranged in consecutive order.

This implies that GRUs are more suitable to capture the long-range information than

CNNs. Transforming network data from the original 1D to 2D format could potentially

contribute to loss in spatial meaning of the network packets. A possible explanation for

poor performance of the SVM could be because of the small dimensional space of possible

parameters compared to the DL models.

5.1.1 Evaluation of the Confusion Matrix Outcome

To further address our first objective stated above (also in Chapter 1, section 1.3), our

Experiment explored confusion matrix results for each model to determine which of the

proposed DL techniques performed best given the network traffic dataset. The confusion

matrix results displayed in (section 4.1.1, Figure 4.2 -4.5) were a result of highest recorded

results after a grid-search was conducted accuracy score for each model done on a test

set of 26 000 instances. Using a confusion matrix gave us an in-depth summary of the

prediction results for the model performance. We could further infer the precision, recall

and F1 Score. Using F1 Score is the logical choice in this classification scenario because

it gave an equal weighting of both precision and accuracy. The F1 scores of the SVM

were much lower than the scores for the DL models. We observed that application classes

such as BitTorrent, Teamviewer, YouTube, NetFlix and WhatsApp had consistently sig-

nificantly high F1 scores. This could mean that there is more useful information for the

classes that have high scores.

5.2 Classification Performance of Deep Learning Mod-

els by varying byte data input shapes

To further investigate the performance of the different models, we modified the input

byte data and trained the models on the byte data stated in Chapter 4. This was due to

the fact, different classes or applications have different byte sequences. In order to assess
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which input size would be appropriate for each class it was important to train on different

input sizes. The results as explained and shown in Chapter 4 (Section 4.2). The trend on

the accuracy is such that as we move towards the higher input packet sizes the accuracy

value gradually increases. The accuracy increase is attributed to an increase in parameters

of the Deep Learning models. For instance, parameters such as batch size, filter size and

layers contribute to an increase in parameters thus contributing to model complexity.

The highest accuracy was achieved with the entire packet size of 1480 across all models,

showing that if accuracy is the main issue, the whole payload should be used. However,

the results in the section 5.3 demonstrated that taking into account fewer packet sizes

might result in faster prediction speed, suggesting that adopting a small packet size could

be useful in a community network context. The best accuracy possible for models with

input sizes ranging from 256 to 576 bytes does not appear to be significantly different,

implying that bytes 256 to 1024 do not add substantial information. The results were of

varying values particularly for the ensemble model. However, across the other 3 models,

CNN, GRU and CNNGRU, the results were consistent across all input shapes. We infer

that it maybe unnecessary to fit a full payload of 1480 packets. Although the full payload

attained the highest accuracy because that is where the useful features that distinguish

classes are positioned. We can infer that there is an inverse relationship between packet

size and accuracy. A full payload guarantees a high accuracy score, at the cost of low

prediction speed and compute resource. It is possible to design a robust classifier that

classifies network traffic data based on the first few packets.

5.3 Analysis of Prediction Performance of the Deep

Learning Models

Experiment 3 from Chapter 4, section 4.3 was carried out to assess the prediction speed

of each model, taking into account that considering classification accuracy alone was

not sufficient to select the ideal model but the speed at which the model could predict

the packets using the test set was critical to be considered for the community network.

Carrying out this experiment thoroughly answered the Third Research Question from

Chapter 1, section 1.3. The results shown in Figure 4.8 - 4.11, show a great disparity

in prediction speed across the four models. For instance, CNN has more packets/bytes

predicted per second in comparison to GRU, and CNNGRU. Although it is evident that

models with the full packet sizes have smaller packets per second values, though when

evaluating the accuracy, packets-size input, does not appear to contribute a substantial
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difference in the accuracy achieved. The higher packets per seconds scores achieved by

the 36-byte models could be attributed to the few computations needed because the

penultimate and last packets in the packet stream distinguishes one class for the other.

Therefore, models fully learn when fed with full packet sizes. Deducing results from

Figure 4.8, it is evident that hybrid models are more complex in comparison to single DL

models. However, there is a trade-off between accuracy and prediction speed. There is

a trade-off between prediction speed and accuracy. Choosing a solution that is suitable

for a low-resource environment is dependent on what matters, i.e. accuracy or prediction

speed. If accuracy alone were of importance, then choosing a more complex model such

as a CNNGRU is great fit, which means less complex models such as the CNN and GRU

are unsuitable in such a scenario. However, if prediction speed alone is of importance, a

less complex model such as a CNN is suitable, with the knowledge that the community

network has a bandwidth of 10Mbps which can be translated as the measure of network

traffic flow per second. Therefore, our gateway can process a threshold of 10 0000 packets

per second. Therefore, we can infer from the results in Section 4.3 that implementing a

CNN-classifier for a 10Mbps link could be ideal, considering that CNN model had the

fastest prediction speed.

5.3.1 Evaluating Class Performance

By analysing further the prediction speed and trainable parameters with respect to each

class, we could infer and distinguish application classes. The results displayed were for

classes over a threshold accuracy of 70%. This analysis was pertinent in evaluating predic-

tion speed and accuracy information distinct to each class. This information could present

itself is useful for resource planning and QoS provisioning. For example, we can traffic

engineer application classes across the community network based on the prediction speed

requirements, although, results for each application class was not clearly distinguishable.

5.4 Conclusion

In this study, our choice to differentiate these Deep Learning models was to assess the

suitability of the models on our dataset and environment. Therefore, we considered

Convolutional Neural Networks, Gated Recurrent Unites and CNNGRU as a hybrid. In

Chapter 3, we explained in detail the architectural implementations of the models. In all

scenarios, to clearly determine the fitting model, we used the same number of three fully
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connected layers across all models. In reference to section 2.8.2 of our Literature, CNNs

have been demonstrated to be outstanding contenders for the real-time packet-based

traffic classification task. Traffic classification using CNNs therefore has the potential

to provide meaningful benefits to a community network setting and make significant

contributions to bridging the digital divide through its application in QoS provisioning.



Chapter 6

Conclusion and Recommendations

In this study we outlined the effectiveness of ML vs single DL models vs a Hybrid DL

model in classifying community network traffic. Inspired by this, we transformed raw

packet data into an nxn tensor grey image. Because CNNs are popularly used in image

recognition, we transformed the raw packet data into a nxn tensor grey image. In the case

of the GRU and CNNGRU, we used the same concept as CNN, but the difference was that

the raw packet data was a 1-D nxn tensor whereas with the CNN, it was a 2D-tensor. The

GRU model requires sequential data which the raw packet features in our data resembled,

hence we did not see the need to transform the input. SVMs, on the other hand were used

because they are a conventional ML method. We adopted them in the study because of

how they are regarded for their ability to perform multi-classification. This motivated

the direction of our research to evaluate the effectiveness of these methods. Despite, the

capabilities of DL models to achieve high classification accuracy scores, accuracy alone

was not sufficient to form a basis for choosing the ideal model in this study’s context.

We used different evaluation criteria to assess the chosen DL models. Different important

parameters were taken into consideration in order to evaluate the suitable ML/DL model

for our environment. Our choice to evaluate different models with different architectures

was intended to ascertain the most suitable model for classification. Performance metrics

such as prediction time and prediction speed in the form of packets predicted per second

(pps), derived by calculating the time a model took to predict packets in a given sample.

Using this metric was a measure of determining the speed at which a model processes

packets.

Considering real-time classification is important to address QoS through network traffic

prioritisation. In addition, we used different packet feature sizes in order to assess the

model’s ability to correctly classify application classes when packet features were varied.
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For instance, training a model on a small number of packet sizes would likely guarantee

a good accuracy score. In addition, a model’s complexity, is critical given that imple-

menting a real-time classifier in a low-resourced network such as a community network

could affect speed and performance. A model’s trainable parameters were a determining

factor used to determine the complexity. Even though, DL models achieve high precision,

recall, F1-scores and accuracy scores they are comparatively more complex because of

the matrix calculations through the neural connections characterised by weights and bi-

ases. For that sake, we adopted a 3-layer architecture across all the DL models, in order

to have a fair basis of comparison. The complexity and performance of a DL model is

dependent on different hyper-parameter settings and values, therefore, instead of using

default hyper-parameter settings and values, a grid search was implemented. When all

four models are compared to one another, using a single hyper-parameter method may

decrease performance estimation bias. The motivation to use our very own dataset was

inspired by applying a solution that is unique to a low-resource environment such as a

community network.

Our study’s motivation followed a packet-based classification approach by Lim et. al [15],

as we tested the effectiveness of machine learning vs Deep Learning models. Secondly,

we implemented a comparative analysis of single DL models versus a DL hybrid model

approach for a community network dataset. We adopted 3-layer networks because we

endeavour to implement a light-weight solution that could necessitate a model that struck

a compromise. For instance, classification speed and timeliness on the one hand needs

to suit real-time classification, and computational efficiency in terms of memory resource

utilisation on the other, all while fulfilling acceptable accuracy performance standards.

Thus our approach to apply deep learning techniques to accomplish classification was

pivotal, to attain high accuracy scores.

6.1 Limitations and Challenges

We evaluated the performance of the DL model using a supervised learning approach.

The process required a data generation process demanding, which was a large part of the

problem. Several studies have demonstrated the suitability of deep learning techniques as

a viable solution in classifying encrypted traffic data in comparison to classical/traditional

approaches [8], [9], [84]. However, the challenge still lies in how computationally expensive

it is to implement Deep Learning. Therefore, careful consideration has to be done in order

to evaluate the applicability of the correct model in a live environment, the cost associated
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with maintaining such an implementation and evaluating how adding more application

classes affects performance and eventually, how it can be used in an actual community

network traffic classifier.

Deep Learning demonstrates to be a practical and beneficial approach to solving traffic

classification studies. Numerous ground-breaking algorithms have been presented recently

as a result of the field’s steady growth in research. However, by conducting a detailed

literature review of prior work, we evaluated that there exists different trends that put

into question the true rate of progress in the field of network traffic classification. Trends

such as the lack of one standard dataset to test the different hypotheses can be a major

drawback to the progress of a true evaluation procedure that is applicable in any setting.

Furthermore, the failure to adequately evaluate and compare novel classification methods

is another main issue since a particular problem is solved by a different classification

mechanisms.

6.2 Future Work

For Future work, the hardware aspect may need to be further researched in detail to suit

the community network environment. Therefore, this would mean deploying a classifier

on the community network gateway in a simulated live environment in order to assess

how often the classifier would classify new classes or applications: in addition, to assess

the feasibility of this work and how often the classifier requires retraining. A couple of

network operators and service providers in South Africa other than community networks

may be of benefit from such studies.

Exploring more application classes and testing this concept with different algorithms and

simulating the same set of experiments to gain a broad perspective of model performance,

prediction speed and accuracy.

A standardised performance evaluation for network traffic classifiers is of relevance such

that, if widely adopted, would greatly improve the validity and credibility of future re-

search, make replication and reproducibility easier, as well as improve the ability of the

field to accurately gauge the rate of progress over time by being able to make sound

comparisons across different works.

The findings of this study are promising, and there are a seemingly unlimited number of

opportunities for exploration in derivative works.



Appendix A

An Appendix

Figure A.1: Class Distribution.
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Figure A.2: Summary of Gridsearch of CNNGRU Algorithm.

Figure A.3: Summary of Gridsearch for GRU Algorithm.
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Figure A.4: Summary of Gridsearch for CNN Algorithm.

Figure A.5: Summary of Gridsearch for SVM Algorithm.
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