
University of Cape Town

Full dissertation presented for the degree of Master

of Science

Department of Mathematics

Deep Adaptive Anomaly Detection
using an Active Learning Framework

Author:
Emmanuel Sekyi (SKYEMM001)

Supervisor:
Prof. Bruce Bassett

October 6, 2022

Univ
ers

ity
 of

 C
ap

e T
ow

n



The copyright of this thesis vests in the author. No 
quotation from it or information derived from it is to be 
published without full acknowledgement of the source. 
The thesis is to be used for private study or non-
commercial research purposes only. 

Published by the University of Cape Town (UCT) in terms 
of the non-exclusive license granted to UCT by the author. 

Univ
ers

ity
 of

 C
ap

e T
ow

n



Declaration

I, Emmanuel Kwame Sekyi, hereby declare that:

1. I am presenting this dissertation in full fulfilment of the requirements for my

degree.

2. I know the meaning of plagiarism and declare that all of the work in the disser-

tation, except where acknowledgements indicate otherwise, is my own.

3. I grant the University of Cape Town free licence to reproduce for the purpose

of research either the whole or any portion of the contents in any manner what-

soever of the above dissertation.

Signed: Date:

i



Abstract
University of Cape Town

Faculty of Science, Department of Mathematics

by Emmanuel Kwame Sekyi

October 6, 2022

Anomaly detection is the process of finding unusual events in a given dataset. Anomaly

detection is often performed on datasets with a fixed set of predefined features.

As a result of this, if the normal features bear a close resemblance to the anoma-

lous features, most anomaly detection algorithms exhibit poor performance. This

work seeks to answer the question, can we deform these features so as to make the

anomalies standout and hence improve the anomaly detection outcome? We employ

a Deep Learning and an Active Learning framework to learn features for anomaly

detection. In Active Learning, an Oracle (usually a domain expert) labels a small

amount of data over a series of training rounds. The deep neural network is trained

after each round to incorporate the feedback from the Oracle into the model. Re-

sults on the MNIST, CIFAR-10 and Galaxy Zoo datasets show that our algorithm,

Ahunt, significantly outperforms other anomaly detection algorithms used on a

fixed, static, set of features. Ahunt can therefore overcome a poor choice of features

that happen to be suboptimal for detecting anomalies in the data, learning more ap-

propriate features. We also explore the role of the loss function and Active Learning

query strategy, showing these are important, especially when there is a significant

variation in the anomalies.
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1 | Introduction

1.1 Motivation

Anomaly detection aims at mining datasets for patterns which do not conform to

some defined notion of normality (Chandola et al., 2009). Techniques in anomaly

detection span several research areas including, but not limited to, medical research

(Churová et al., 2021), fault detection (Li et al., 2010), Astronomy (Lochner and Bassett,

2021) and cyber-security (Evangelou and Adams, 2020).

The goal of anomaly detection varies widely with the application domain. For

example, anomaly detection when applied to the medical domain may lead to the

detection of an early onset of a disease (Fernando et al., 2020) which is in contrast to

financial data where the goal might be to detect fraudulent activities.

In most anomaly detection setups, it is often important to choose features which

make the anomalies stand out. For example, if one’s aim is to discover new types of

animals, using the number of legs or eyes might not help if the new class of animal

has two eyes and four legs but also has wings and breathes fire.

Feature extractors are often used to deform the features in the raw data into suitable

representations for anomaly detection. However, most feature extractors are often

generic or fitted to describe the "normal" data (Tailanián et al., 2021). This is evident

in Lochner and Bassett (2021) and Chenguang et al. (2020) where the authors use ellipse

fitting as a feature extractor for galaxies and body parts (head and torso)

respectively.
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Anomalies which do not stand out in the chosen set of features might escape

detection even with the most sensitive anomaly detection algorithms. Addressing

this difficulty is the main motivation of this thesis.

1.2 Aims and Objectives of Study

The aim of this thesis is to explore dynamically learned features that allow for

improved anomaly detection in images.

We do this by using Active Learning. In Active Learning, an Oracle (typically an

expert human) labels a small number of examples for training a model. In the

context of this work, the Oracle labels a small subset of images for training a neural

network.

This aim is reduced to 2 main objectives:

1. To use deep Convolutional Neural Networks (CNN) to learn features that

make anomalies stand out.

2. To employ Active Learning to provide direct human feedback to the model

about interesting features that might help detect anomalies.

1.3 Related Work

Feature extraction for anomaly detection is a longstanding research problem

(Nguyen and Gopalkrishnan, 2010). Techniques such as Principal Component Analysis

(PCA) and Subspace learning have been explored for feature extraction (Thudumu

et al., 2020). Sadr et al. (2019) proposed a 3 stage framework for anomaly detection in

high dimensions. In the first stage, approaches such as PCA (Jolliffe and

Springer-Verlag, 2002), autoencoders (Hinton and Zemel, 1993) and variational

autoencoders (Kingma and Welling, 2014) are employed for dimensionality reduction.

These features are then clustered in the second stage. In the final stage, the distance
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between the cluster centres and the test set is computed to find the relevant

anomalies. This framework exhibited competitive performance on high dimensional

datasets.

In an attempt to introduce human feedback into the anomaly detection setup,

Lochner and Bassett (2021) introduced an active learning approach to rank interesting

anomalies in astronomical data. Their algorithm doubled the number of relevant

anomalies found in the first 100 data points shown to the user. However, in their

approach, the features are always static and unchanging. This makes it susceptible

to poor performance if the chosen features were inappropriate.

With the advent of deep learning, there has been a movement to automatically learn

representational features for anomaly detection. Andrews et al. (2016) employed both

a pretrained network and a CNN trained from scratch to extract features from

different image datasets for anomaly detection. They noticed that, although using a

pretrained network is a good baseline for extracting features, it is important for

dataset to be semantically similar to the one on which the pretrained network was

originally trained.

However, most deep learning approaches require huge amount of data to learn

meaningful representations of the features. Various Approaches in Zero and

One-Shot learning have been adopted to help tackle the data scarcity in anomaly

detection (O’ Mahony et al., 2019; Xian et al., 2017).
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1.4 Thesis Organisation

This thesis is organized into 5 main sections. Chapter 1 introduces the topic of

anomaly detection. We discuss the aims, objectives and previously published work

that is closely related to this thesis. We also discuss some applications and

challenges faced in anomaly detection.

Chapter 2 gives a walk through of some classical anomaly detection algorithms. We

explore approaches such as Isolation Forests, Local Outlier Factors and One-Class

Support Vector Machines. This chapter also discusses some commonly used

evaluation metrics in classification and anomaly detection. To conclude the chapter,

we introduce Active Learning, discuss various query strategies and how Active

Learning is used in anomaly detection.

Deep Learning is at the core of this thesis hence we dedicate Chapter 3 to discussing

them. Even before discussing the history of neural networks, we introduce different

machine learning paradigms. We proceed to discuss the commonly used loss and

activation functions used in training deep learning. This chapter also examines

different Neural Network architectures especially those used in anomaly detection.

We conclude the chapter by unifying how the different networks and learning

paradigms are used in anomaly detection.

Chapter 4 discusses We start by giving a brief overview of Ahunt along with our

methodology and comparison algorithms. We discuss the datasets used in our

experiments as well as the nitty gritties of the experiments. Chapter 4 also discusses

our results. In Chapter 5, we conclude our work and suggest future research

directions.
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1.5 Introduction to Anomaly Detection

The term "anomaly" has its origin in the Greek word anomolia which means uneven

or irregular (Madhuri and Usha Rani, 2020). Anomalies can be broadly defined as

unusual or inconsistent observations in a given dataset. These observations are also

referred to as outliers, abnormalities or rare events.

Figure 1.1: Diagram illustrating two classes of normal objects (class A and B). Similar
objects have close proximity, forming two different clusters. The anomaly, indicated
in the red dot, is completely separated from the two clusters. Contextually, this might
indicate that the observation shown in red does not share similar characteristics as
those in class A or class B.

In Figure 1.1 it is assumed that normal instances are those that form clearly defined

clusters as seen in class A and B. The anomalies therefore are the points which do

no share any similarity with any of the normal clusters.

The clear separation of the anomalies from the normal classes is dependent on the

choice of features. A different choice of features in Figure 1.1 might bring the

anomaly closer to the big clusters and hence make it difficult to detect. This thesis

seeks to address this challenge.
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1.5.1 Types of Anomalies

Anomalies can be classified based on their nature. Most anomalies fall in 3 broad

categories:

1. Point Anomalies: A data point is considered a point anomaly if it deviates

from other data points in a given dataset. It is the simplest type of anomaly.

An example of a point anomaly is seen in fraudulent bank transactions. If a

transaction is significantly larger than the normal range from historical data,

this amount can be categorised as a point anomaly. The anomaly in Figure 1.1

is an illustration of a point anomaly.

2. Contextual Anomalies: These are data instances that are considered anomalies

with respect to a specific context. They are also called conditional anomalies

(Song et al., 2007). The anomalies are specified with using the attributes of the

data with respect to a certain context. This means that, the same data instance

in another context might be considered normal. An example is seen in

temperature data. Temperatures of −20◦C in the summer might be considered

abnormal but the same temperature in the winter will be considered normal.

The context as specified in this example is the season in which the temperature

was recorded.

3. Collective Anomalies: Collective anomalies refers to data instances considered

anomalous when they occur together. The data points in the group might not

be considered anomalous individually but their occurrence together forms an

anomaly. Collective anomalies usually occur in data instances which are

related. A single neighbour moving out of their house on a particular day may

not be considered abnormal behavior but if all the neighbours move out on the

same day, that might be considered abnormal.
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1.6 Challenges in Anomaly Detection

The nature of anomalies introduce unique complexities in their detection. Some of

these challenges include:

1. Anomalies are often unknown prior to their occurrence. This makes it difficult

to anticipate their nature and subsequently detect them. This is the case in

cyber-security where hackers use zero-day exploits to identify vulnerabilities

before developers become aware of the existence of such vulnerabilities.

2. Most anomaly detection problems lack labelled data. This makes it difficult to

apply supervised machine learning algorithms to learn the anomalous

patterns in the data.

3. Anomalies are often rare events. This means that, when compared to normal

events, anomalies will likely be under-represented in a given dataset. Their

under-representation might lead to a class imbalance problem which

subsequently makes it difficult to detect anomalies.

4. Anomalies are often heterogeneous. For example, in video surveillance, actors

might be involved in fights, burglary or robbery. Although all these things

might be labelled as anomalies, they differ in how they manifest.

5. In some datasets, noise and artefacts appear to be highly anomalous but not

interesting. Distinguishing them is often challenging. This might affect the

outcome of detecting anomalies.

6. Anomalies often evolve. In cases such as fraud detection, where malicious

actors are involved, they constantly adapt their attacks to escape detection.

7. Anomaly detection in high dimensions is challenging. Most anomaly detection

techniques try to reduce the dimensionality of the dataset. This introduces

further problems since there is no guarantee that the anomalous features are

preserved.
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Due to these and many more challenges, most of the existing anomaly detection

techniques try to solve a specific formulation of the problem. The formulation is

often influenced by the type of anomaly, the nature of the data, the availability of

labelled instances and the application domain.

1.7 Applications of Anomaly Detection

Anomaly detection can be applied to almost any domain. In some cases, it is used

as a preprocessing step to remove outliers. In this section, we examine some of the

widely known applications of anomaly detection.

1. Fraud Detection: Fraud detection refers to the detection of illegal activities in

commercial settings such as banks, insurance companies, the stock market,

telecommunication companies and credit card companies. The attackers might

be existing users of the system or outsiders posing as existing users. Their

activities are labelled fraudulent when they access or use resources without

authorization. A common attack is seen in credit card systems. Malicious

actors steal the identity of an existing user and go on to make unauthorized

transactions. In such scenarios, an anomaly detection system is expected to

flag the transaction as soon as it occurs (Lucas, 2020).

Bypass fraud (SIMboxing) is also a major concern in the telecommunications

industry (Sallehuddin et al., 2015). SIMboxing is the illegal setting up of

low-cost local Subscriber Identity/Identification Module cards such that callers

pay local rates instead of the expected international rates. This leads to a huge

loss of revenue on the part of telecommunication companies. Elmi et al. (2013)

used a Multi Layer Perceptron on carefully curated features to build a classifier

to mitigate SIMboxing.

2. Intrusion Detection: Intrusion detection is the ability to monitor malicious

activities (break-ins, penetrations, and other forms of computer abuse) in

computer systems (Phoha, 2002). An intrusion is different from the normal
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functioning of the computer system hence the problem can be formulated as

an anomaly detection task. Data from intrusion detection systems (IDS) comes

in large volumes. The requires the anomaly detection problem in IDS to be

computationally efficient in order to handle such large streams of data. As a

result of the large volume of input data, anomaly detection tasks in IDS are

likely to have a high false alarm rate. Also, malicious actors in this domain

adapt their attacks to evade detection by most anomaly detection techniques.

This adds an extra layer of complexity to the anomaly detection process in this

domain.

3. Healthcare: In the healthcare domain, a variety of patient data points are

collected. The data could come from X-rays, Magnetic Resonance Imaging or

Computed Tomography scans. Anomalies in these datasets may be indicative

of a health condition. Identifying anomalies in medical data enables

practitioners to diagnose and provide early treatments for a variety of medical

conditions.

The fields of genetics, metabolomics and proteomics use anomaly detection

algorithms to find unusual mutations that may signal specific diseases.

Furthermore, anomaly detection algorithms are applied to identify points in

time at which an effective treatment for a disease ceases to be potent. This

signifies the emergence of a drug-resistant mutation of the responsible

pathogen (Caroprese et al., 2009).

Detecting anomalies in the medical domain can be challenging. This is because

the cost of false negatives is often detrimental to patient outcomes. This makes

it difficult to use black-box models such as deep learning in this domain even

though they exhibit superior performance (Fernando et al., 2020). In recent

times, interpretable models have been developed to help mitigate this issue

(Margeloiu et al., 2020; Schutte et al., 2021).

4. Manufacturing and Industry: Mechanical systems in industries are prone to
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wear and tear. This could lead to sub-optimal performance in their usage.

Anomaly detection is leveraged to detect and mitigate these problems. One

main challenge with this is the lack of labelled data. In most cases, the only

data available is the normal data of the machine parts. It is often difficult to

find data on damaged machine parts. Michau et al. (2018) explored learning

features from healthy or normal machine conditions to detect faults.

Anomaly detection can also be applied to understand customer behaviour. The

behaviour of customers is learned from previous transactions. Anomaly

detection algorithms help to identify deviations for further investigation.

Chemical processing industries also use anomaly detection techniques to

detect discrepancies in chemical processes. These discrepancies might range

from sudden unexpected chemical reactions to a decrease in expected yield.

The main challenge with this task is the varying nature of the anomalies. Data

collected on one type of failure might not necessarily generalize to other types

of failures. Chen (2018) explored the use of neural networks to detect process

abnormalities in the Petrochemical industry.

5. Defense and Internal Security: Anomaly detection is applied in the detection

of unusual behaviour of people in public spaces. This is done via video

surveillance. Based on the regular behaviour of people in such spaces, we can

identify patterns that deviate from this behaviour (Bhakat and Ramakrishnan,

2019).

6. Astronomy: Astronomical observations produce massive amounts of data. For

example, the Sloan Digital Sky Survey has produced images and spectroscopic

measurements containing about 230 million celestial objects. The Square

Kilometer Array is also projected to produce exabyte-scale datasets. This

amount of data is too large for researchers to manually explore and find

interesting astronomical phenomena. Anomaly detection techniques are

explored to find interesting astronomical phenomena. Lochner and Bassett
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(2021) introduced a general framework using active learning for detecting

interesting anomalies.

1.8 Summary

In this chapter, we introduced the anomaly detection landscape. We also discussed

our problem of interest along with the aims and objectives of this thesis. We proceed

to Chapter 2 where we discuss some classical anomaly detection algorithms,

evaluation metrics and how active learning is used in anomaly detection.
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2 | Algorithms for Anomaly Detection

2.1 Chapter Introduction

In Chapter 1, we introduced the broad subject of anomaly detection, its applications

and some of the challenges encountered in anomaly detection. At the core of the

anomaly detection problem are anomaly detection algorithms. This chapter presents

some of the commonly used algorithms in anomaly detection. We divide the

algorithms into 3 categories namely:

1. Proximity-based approaches: This category of algorithms explore the distances

and densities between features to detect likely anomalies.

2. Machine Learning-based approaches: This category uses machine learning

techniques for anomaly detection. We will focus on the case where the

anomaly detection problem is framed as a classification problem. This requires

some labelled data of either the normal class, the anomaly class or both.

Typically, the labels for the normal classes will be readily available and hence

the problem is framed as a one-class classification problem.

3. Statistical approaches: This approach explores the statistical properties of the

data to detect anomalies. A probability distribution model is often built for the

given dataset. The assumption here is that, anomalies have a low probability

with respect to this model.

Another central theme of the anomaly detection setup is the evaluation metric.
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Given that our proposed approach frames the problem as a special case of

classification, we discuss some evaluation metrics used in classification.

Finally, we examine Active Learning and how it is applied in anomaly

detection.

2.2 Proximity-based Methods

Proximity-based approaches define a point as anomalous if its locality is sparsely

populated (Aggarwal, 2017). Proximity-based approaches can be classified into

distance and density based approaches.

In distance-based approaches, a data point is considered anomalous if its distance to

the other data points is beyond a defined threshold whereas in density-based

approaches the relative density of a point is compared with that of its neighbours.

In density-based approaches, it is assumed that the density around a normal data

point is similar to the density around its neighbours and the density around an

anomaly is significantly different to that of its neighbours.

Examples of proximity-based algorithms include Isolation Forests and Local Outlier

Factor. In the sub-sections below, we discuss some of the commonly used

proximity-based anomaly detection algorithms.

2.2.1 Isolation Forests

Isolation forest (iForests) consist of decision trees known as Isolation trees (Liu et al.,

2008). Each tree is represented as a proper binary tree. In a proper binary tree, every

node consists of either 0 or 2 children nodes. Isolation forest builds an ensemble of

these isolation trees to isolate instances of anomalies. iForests do this by taking

advantage of two properties of anomalies:

1. they are in the minority of the data sample

2. they have attribute values that are very different from that of the normal
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instances.

The trees recursively partition the data by random sub-sampling until all instances

are isolated as shown in Figure 2.1. The anomalies are the instances with shorter

average path length (the path from the root node to the terminating node). The

number of partitions required to isolate a point is equivalent to the path from the

root node to the terminating node. To estimate whether an instance is an anomaly,

the path lengths of individual trees is averaged.

Figure 2.1: A diagram indicating the number of partitions required to isolate an
anomaly vs a normal point using Isolation Forest. The figure on the left indicates the
number of partitions required to separate an anomaly (which is indicated in the red
dot). It took 3 partitions to isolate the anomaly. The figure on the right required 9

partitions to isolate a randomly chosen normal point. This goes to assert the claim
that, in Isolation Forests, the anomalies are the instances with the shortest average
path length Hariri et al. (2018).

2.2.1.1 Estimating the Anomaly Score

As discussed in section 2.2.1, anomalies in the context of iForests are data instances

with shorter average path length. For a data point x, its path length (h(x)) is the

number of edges it traverses from the root node to the terminating node.
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The average path length, c(n), of an iForests is the same as an unsuccessful search in

a Binary Search Trees (BST). For a dataset with n instances, the average path length

of an unsuccessful search in a BST is given by the equation:

c(n) = 2H(n− 1) −
(2(n− 1)

n

)
(2.1)

where H(n) is the harmonic number and it can be estimated as ln(n) + 0.5772156649

(Euler’s constant).

The path length (h(x)) of a data instance x is normalized using the average path

length of all the instances in the dataset, c(n). The anomaly score of x is defined

as:

s(x,n) = 2−
E(h(x))
c(n) (2.2)

where E(h(x)) is the average of the path lengths (h(x)) from a collection of isolation

trees. If the anomaly score (s) of a data instance x is very close to 1, then x is an

anomaly. If s is significantly smaller than 0.5, then x is a normal instance.

2.2.1.2 Advantages of Isolation Forests

1. It works well with small sample sizes. This helps to reduce the effects of

masking1 and swamping2 .

2. It is computationally efficient. iForests utilize no distance or density measures

to calculate anomalies removing the need for high computational cost. The

algorithm runs in linear time.

3. It scales to handle large data sizes and high-dimensional problems.

1Masking is the existence of too many anomalies therefore concealing their presence
2Swamping refers to wrongly identifying normal instances as anomalies. This can occur when the

normal instances and anomalies are too close hence the number of partitions required to isolate the
anomalies becomes approximately equal to that of the normal instances
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2.2.2 Local Outlier Factor

The Local Outlier Factor (LOF) algorithm compares the local density of a point to

the local density of k of its neighbours (Breunig et al., 2000). The points which have a

lower density than their neighbours are considered outliers. LOF is said to be local

because only a restricted neighbourhood of each data point is taken into account

when estimating the outlier score. The local outlier factor is estimated in the 4 steps

discussed below.

2.2.2.1 K-Distance and K-Neighbors

K-distance is the distance between a point and its kth nearest neighbour. The

K-neighbours of point A, Nk(A), consists of a set of points that lie within a circle of

radius K-distance as shown in Figure 2.2.

Figure 2.2: The diagram shows the K-distance of point A. In this case, K = 2 making
C, B and D the K-neighbours of A (Jayaswal, 2020).
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Specifying a small value of K makes the algorithm sensitive to noise and a large

value may skip anomalies. Hence the choice of an optimal K is done carefully based

on the nature of the data.

2.2.2.2 Reachability Distance

The reachability distance (RD) of an object Xj with respect to Xi is defined as

RDk(Xj ,Xi) = max(K−distance(Xi), d(Xj ,Xi)) (2.3)

where d is a normal distance measure betweeen Xj and Xi as indicated in the orange

line in Figure 2.3. It can be either Euclidean, Manhattan, Minkowski or other

distance measures depending on the problem.

Figure 2.3: This diagram shows points lying in a red circle with a K-distance of 2.
The points are the K-neighbours of Xj, that is, they are within the circle, will have
a reachability distance equal to the K-distance which is indicated with the blue line.
For points outside the K-neighbours, such as Xi, the reachability distance will be the
distance between Xi and Xj as indicated in the orange line.

17



2.2.2.3 Local Reachability Density

The Local Reachability Density (LRD) estimates how far a point is from a cluster of

points. It is calculated as the inverse of the average reachability distance of a point

from its neighbours. A low LRD implies that a cluster is far from the point under

consideration. The LRD of a point A is estimated as:

LRDk(A) =
1∑

Xj∈Nk(A)
RDk(A,Xj)
||Nk(A)||

(2.4)

where Nk(A) represents the K-neighbours of point A and ||Nk(A)|| represents the

number of points within that neighbourhood.

2.2.2.4 The Local Outlier Factor

The Local Outlier Factor (LOF) of A is the ratio of the average LRD of the

K-neighbors of A to the LRD of A.

LOFk(A) =

∑
Xj∈Nk(A)

LRDk(Xj)

||Nk(A)||
× 1

LRDk(A)
(2.5)

The LOF is calculated for each data point. The data points are ranked by their LOF

to find the most likely outliers. If a point is an inlier, the ratio of the average LRD of

its neighbours is approximately equal to its LRD (they are part of the same cluster)

making its LOF approximately 1. However, for an outlier, its LRD will be less than

the average LRD of its neighbours hence it’ll have a high LOF.

2.3 Machine Learning-based Methods

2.3.1 Learning Paradigms

The goal of machine learning is to learn underlying patterns from a set of

observations. The learning of these patterns can be captured in 3 main learning
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paradigms. The different paradigms are examined in subsequent sections.

2.3.1.1 Supervised Learning

In supervised learning, the model is presented with labelled instances of the

observation. The process is described as supervised in the sense that, a ’supervisor’

has labelled each input. Supervised learning is the most commonly used paradigm.

It is also the most studied and mature paradigm in machine learning. Supervised

learning can be broadly classified into two categories: classification and regression.

These categories vary depending on the nature of their labels. In classification, the

labels are discrete values. An example is the classification of handwritten digits,

MNIST (LeCun et al., 2010). Regression problems have continuous value labels. An

example is the prediction of sales in a retail store.

2.3.1.2 Unsupervised Learning

In unsupervised learning, the observations do not have labels. It can be viewed as a

way of creating a higher level of representation of the data.

An example of unsupervised learning is clustering. In clustering, the algorithm

learns some underlying patterns from unlabelled data and groups them by some

similarity metric.

2.3.1.3 Reinforcement Learning

In reinforcement learning, data is not explicitly fed to the algorithm. The algorithm

learns by interacting with its environment. This paradigm is concerned with how an

agent can take actions in an environment so as to maximize some results. It is

applied in settings such as robot control and games (Silver et al., 2016).

2.3.1.4 Other Learning Paradigms

There are other paradigms some of which are amalgamations of the 3 main

paradigms described above. Training data often comes in different formulations. An
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example is when there are huge number of unlabelled data but few labelled

instances. Semi-supervised learning is applied in such scenarios (Sambasivam and

Opiyo, 2021).

Data with noisy labels can also be used for training. This approach is called weakly

supervised learning (Zhou, 2017). It is used in scenarios where labelled data can be

expensive to obtain.

Another type of learning which has received a lot of attention in recent years is

Self-Supervised Learning (SSL). In Self-Supervised learning, the unlabelled training

data derives supervisory signal from itself. It does this by solving an automatically

generated task called a pretext task. The key assumption here is that, the model

learns useful semantic representations in the process of solving the pretext task.

Examples of pretext tasks include Inpainting (Pathak et al., 2016), Patch prediction

(Doersch et al., 2015) and solving jigsaw puzzles (Noroozi and Favaro, 2016).

Classification-based approaches frame the anomaly detection problem as a

classification task. The One-Class Support Vector Machine is one of the most

commonly used algorithms in this category.

2.3.2 Support Vector Machines

A Support Vector Machine (SVMs) is a commonly used algorithm for classification

and regression tasks. Consider a binary classification problem where the classes are

well separated as shown in Figure 2.4, an SVM finds a hyperplane with the largest

margin between the classes. SVMs were first proposed by Vapnik and Lerner

(1963).

SVMs find a separating hyperplane that depend on the points that lie on the

margin, called support vectors.

While traditional SVMs are useful for binary and multi-class classification, they are

not well-suited for domains where there is only one class as typically seen in some
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Figure 2.4: Diagram illustrating a separation margin obtained from fitting an SVM to
a binary classification problem. The two classes indicated in the purple and orange
dots are separated by the largest margin indicated by the two dashed lines. Adapted
from code in Vanderplas (2017).

anomaly detection problems. In such domains, we’re presented with a problem

where there is abundance of labels for the normal class but little to no label for the

anomalous class. The One-class Support Vector Machine (OCSVMs) was created to

address this problem (Muñoz and Moguerza, 2004). OCSVMs build a model of the

normal instances and identifies points which deviate from this model. It does this

by minimizing a hypersphere enclosing the normal class. The hypersphere is

characterized by a center c and a radius R > 0 as distance from the center to the

support vectors on the boundary. A data point is considered normal when its

distance to the center is smaller than or equal to R while anomalous points exist

outside the hypersphere hence their distance to the center exceeds R.
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2.4 Statistical Models for Anomaly Detection

2.4.1 Kernel Density Estimator

A density estimator is an algorithm that models the underlying probability

distribution of a given dataset. Given a one dimensional dataset, a histogram is a

simple way of doing this estimation. The histogram divides the data into discrete

bins and counts the number points in each bin. However, depending on the choice

and location of the bin, our interpretation of the distribution might vary.

Kernel density estimators (KDE) improve on histograms by avoiding the loss of

information due to binning. It also gives a smooth curve defined at all points, which

is often more useful for practical applications. KDE places a smooth bump of each

data point and sums them to obtain the final density estimate.

For some identically distributed independent samples, (x1, x2, . . . , xn), drawn from

an unknown univariate distribution, f, at any given point x, its kernel density

estimator is given by

f̂(x) =
1

nh

n∑
i=1

K

(
x− xi
h

)
, (2.6)

where K is called the kernel function that is generally a smooth, symmetric function

such as a Gaussian kernel. There are several kernels to choose from as illustrated in

Figure 2.5.
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Figure 2.5: Diagram of available Kernel functions for KDE in the sklearn library.
Different kernel shapes might affect smoothness of the resulting distribution and
hence the interpretation of the underlying data.

h > 0 is called the smoothing bandwidth that controls how peaked or spread out the

KDE is around each data point as shown in Figure 2.6. When h is too small, it

results in under-smoothing but when h is too big, it results in over-smoothing.
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Figure 2.6: This figure illustrates how the bandwidth affects how smooth the resulting
curve is. Using the same kernel (Gaussian), we plot the resulting curve from the KDE
using bandwidth values of 0.1, 0.5 and 1. If we have a small bandwidth, we end up
with a highly multimodal distribution.

As illustrated in Figure 2.6, the choice of a bandwidth is crucial to the performance

of KDE. A narrow bandwidth can lead to over-fitting while a wide bandwidth

might lead to under-fitting. Bandwidth selection is therefore an active area of

research in statistics as reviewed in Heidenreich et al. (2013). The machine learning

community however adopts a more empirical approach such as cross validation for

finding the bandwidth. In cross validation, the data is divided into n mutually

exclusive partitions of approximately equal size. The KDE is fitted to the points in

n− 1 partitions and tested on the remaining partition. The process is repeated n

times and each time choosing a different partition for testing. The bandwidth is

varied over a specified range and the bandwidth that produced the best fit is

consequently chosen as the most suitable for the entire data.
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2.4.1.1 Kernel Density Estimator for Anomaly Detection

To illustrate the use of KDE for anomaly detection, let’s take some randomly

generated data containing 3 clusters as shown in Figure 2.7.

The first step is to fit the KDE algorithm to the data points and return the

log-likelihood of each sample under the model Pedregosa et al. (2011). All the points

are ranked from the lowest log-likelihood and then a threshold is chosen for

identifying outliers. The choice of threshold score is an active area of research (Gao

et al., 2011; Latecki et al., 2007b,a; Schubert et al., 2014) and more recently Li et al.

(2021).

However, for this illustration, we assume that samples with log-likelihood score

above the 95 percentile are outliers. Figure 2.7 shows a plot of sample outliers.

Figure 2.7: The outliers from our example are the data samples which are farthest
from the center of the closest cluster. They are illustrated in the deep blue dots. The
estimator assigns a higher likelihood to the clustered data points.
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An even more interesting approach will be to vary the threshold to select the most

interesting boundary for detecting anomalies. In many application domains, the

choice of threshold is based on some domain knowledge about the task at

hand.

2.4.2 Gaussian Mixture Model

In modelling the underlying distribution of observations, we often make simple

assumptions such as all observations come from one distribution. From this

assumption, we proceed to estimate the parameters (such as mean and variance) of

this distribution. However, data in the real world is often more complex and might

not hold for this assumption. For example, the data might be multi-modal. In such a

scenario we might model the data as a mixture of several components (such as a

Gaussian or a Poisson distribution). Here, we assume each observation belongs to

several components and then proceed to infer which component it belongs to. A

Gaussian Mixture Model (GMM) is the case where each component is modelled as a

Gaussian distribution.

Formally, a distribution f is a mixture of K−Component distributions f1, f2...fk

if

f(x) =

K∑
k=1

πkfk(x) (2.7)

where πk is the mixture weight representing the probability that an observation x

belongs to a K−mixture component.

Unlike the KDE which puts a kernel on each point, a GMM fits a mixture of global

kernels on the whole dataset. The parameters of the model are estimated using the

Expectation Maximization (EM) technique. The EM technique consist of the

expectation and maximization steps. The expectation step estimates the weights

which describe the probability of each data point belonging to each of the clusters
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while the maximization step updates the parameters of each cluster based on all the

data points. The expectation and maximization steps are repeated until the model

converges, giving a maximum likelihood estimate of the data.

A data instance that exists in a "low-density" region is considered an anomaly. A

region is considered low-density if it falls below a user-defined density

threshold.

2.4.2.1 Applications of Gaussian Mixture Models for Anomaly Detection

Reddy et al. (2017) proposed a two-stage process for detecting anomalies in traffic

networks using GMM. In the first step, a GMM is fitted to the training data.

Anomalies are removed by examining the probability associated with each data

point. In the second stage, the GMM is re-computed on the remaining historical data

without the outliers. This model is used for detecting outliers on the test data.

Roberts and Tarassenko (1994) improved on choosing more robust threshold for

novelty detection using a Gaussian mixture model. They achieved this by learning a

representation of normality from the dataset using a GMM. When new data is

presented, the previous threshold from training is used to define a novelty decision

boundary. In an attempt to make the predictions of neural networks more robust,

Bishop (1994) also used a GMM to estimate a novelty threshold for the trained model.

At test time, any data that falls below this threshold is classified as a novelty.

2.5 Evaluation Metrics

Supervised anomaly detection can be viewed as a special case of classification. Due

to this, it adopts classification based metrics for its evaluation. In this sub-section,

we examine some of the commonly used metrics in classification. We also explain

why certain metrics might not be suitable for anomaly detection.

In a supervised learning, the labelled data is divided into training and testing sets.

A model is trained on the training set and then evaluated on the test set. The model
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predicts the labels of the test data. The predicted labels is compared to the known

labels (ground-truth labels). This comparison is summarized in a confusion

matrix.

2.5.1 The Confusion Matrix

The confusion matrix is a table that provides insights into the predictions of a

model.

Figure 2.8: Illustrations of how various predictions are represented in a confusion
matrix. The confusion matrix consists of 2 rows and 2 columns. The rows represent
the actual class instances and the columns represents the model predicted classes.

To explain the various parts of Figure 2.8, it can be assumed we have a binary

classification problem involving the detection of anomalies. We can deduce the

following:

1. Negative (N): A data instance is normal.

2. Positive (P): A data instance is an anomaly.

3. True positive (TP): With respect to the preamble above, it means that the

model correctly predicted a data instance to be an anomaly.

4. True negative (TN): The model correctly predicted that a data instance is
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normal.

5. False negative (FN): The model incorrectly predicted an anomaly data

instance to be normal.

6. False positive (FP): The model incorrectly predicted a normal data instance to

be an anomaly.

Depending on the use-case, different metrics can be deduced from the confusion

matrix.

2.5.1.1 Accuracy

The most straightforward metric to deduce from the confusion matrix is the

accuracy. The accuracy is defined as the number correctly predicted data instances

divided by the total number of predicted instances. It is expressed as:

Accuracy =
TP+ TN

TP+ TN+ FP+ FN
(2.8)

Accuracy does not account for False Positives and the False Negatives. It also

assigns equal cost to the True Negatives and the True Positives. In scenarios where

the data is imbalanced, a classifier predicting every data instance to be in the

majority class will have a very good accuracy score. This is however not optimal

since it misses all the data instances in the minority class.

2.5.1.2 Recall

Recall is the fraction of True Positives divided by the total number of data instances

predicted to be positive.

Recall =
TP

TP+ FN
(2.9)

The recall score reveals the ability of the classifier to find all the positive

samples.

29



2.5.1.3 Precision

It is the number of true positives and the false positives.

Precision =
TP

TP+ FP
(2.10)

The precision score indicates the ability of the classifier not to label as positive a

sample that is negative.

2.5.1.4 Matthews Correlation Coefficient

The Matthews Correlation Coefficient (MCC) offers a balanced measure by taking

into account all the quadrants of the confusion matrix. It ranges from −1 and 1.

MCC =
TP× TN − FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(2.11)

An MCC of 1 indicates a perfect prediction, 0 an average random prediction and −1

indicates total disagreement between the predicted labels and the true labels.

2.6 Active Learning

2.6.1 Introduction

This thesis explores the use of active anomaly detection in detail hence we will give

a brief overview of the topic. We will discuss various Active Leaning Scenarios and

query strategies..

In a supervised learning setup, labelled data is required to train a model.

Sometimes, these labels might be expensive to obtain. Most real world data however

comes unlabelled. Active learning seeks to address this challenge. It works on the

assumption that learning algorithms will perform better if they are allowed to

choose the data from which they learn.
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Figure 2.9: Flow process describing how Active Learning integrates with machine
learning. A machine learning model is trained with a small number of labelled
instances. The model is used to predict the labels of some unlabelled data. An Active
Learning query strategy is used to select the most informative predicted instances
to be shown to the Oracle for classification.The instances labelled by the Oracle are
then added back to the original training set. The setup proceeds to train the machine
learning model in the standard supervised way. The process is repeated over several
rounds (Zhao, 2020).

In Active Learning systems, Oracles are presented with queries for annotation over

several rounds of training. These queries often come in the form of unlabelled data

instances as shown in Figure 2.9. Active Learning algorithms are evaluated by

plotting some evaluation metric of interest (e.g., accuracy) as a function of the

number of new queries that are labelled and added to the training data. This curve

is compared to a random baseline such as a traditional passive supervised learning

model.

2.6.2 Active Learning Scenarios

In Active Learning the algorithm tries to select a small amount of data for the Oracle

to label that are likely to give the biggest improvement in the machine learning

model. Active Learning Scenarios describe the way in which the data is selected to
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be shown to the Oracle. In all these Scenarios, it is assumed that the queries take the

form of unlabelled instances to be labelled by the Oracle. There are 3 main Active

Learning Scenarios namely (Settles et al., 2008):

1. Membership Query Synthesis: This describes a scenario in which the learner

generates its own query instances from an underlying distribution. It was first

introduced in Angluin (1988). This is often used when there is a scarcity of

unlabelled instances (Wang et al., 2015).

One drawback with this approach is that, the generated instances might not

contain any semantic information. This might increase the time it takes for the

Oracle to identify informative instances (Lang and Baum, 1992; Zhu and Bento,

2017; Huijser and van Gemert, 2017);.

2. Stream-Based Selective Sampling: In this scenario, the data instances are

examined one at a time. The model selects which instances to display based on

some “informativeness measure” or “query strategy”. The Oracle assigns a

label to the chosen instance.

3. Pool-Based Sampling: In this scenario, queries are drawn from a pool of

unlabelled data based on some “informativeness measure”. Unlike the

stream-based sampling which scans the data sequentially and makes

individual query decisions, pool-based sampling ranks the available

unlabelled data before making a query decision.

2.6.3 Query Strategies

Query strategies in Active Learning describe ways in which the informativeness of

unlabelled instances are evaluated. Several query strategies have been extensively

studied. We examine a non-exhaustive list of some of these strategies below:

1. Uncertainty Sampling: Uncertainty sampling was first introduced in (Lewis

and Gale, 1994). In this approach, the model queries instances which it is least
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certain about.

2. Expected Model Change: The model selects the instance that will impact the

greatest change to the model if its label was known. An example query

strategy that uses this approach is the “expected gradient length” (EGL)

(Settles et al., 2008). EGL queries a data instance which when added to the

training set, will result in the largest magnitude of the training gradient of the

parameters of the model. EGL can be applied to any model trained using

gradient based techniques. Intuitively, this approach queries a data instance

that is likely to have the greatest impact on the parameters of the model.

3. Query By Committee: Query by committee strategy trains different models on

the currently available data (Seung et al., 1992). The different models represent

competing hypotheses. The instances on which they most disagree the most

are selected for the Oracle to classify.

2.6.4 Active Anomaly Detection

Active Learning has seen many different applications in anomaly detection. It is

commonly used in domains where the percentage of anomalies in the dataset is

extremely rare (rare-category detection) or in situations where anomalies are

difficult to distinguish from the normal class.

One of the earliest application was by (Pelleg and Moore, 2004). They applied Active

Learning to rare category detection in Astronomy and reported significant

improvements over other methods. Pimentel et al. (2020) also introduced an Active

Learning layer in unsupervised anomaly detection.

More recently, Lochner and Bassett (2021) also applied Active Learning for detecting

rare or unknown astrophysical phenomena. They tested their framework on the

Galaxy zoo dataset (Willett et al., 2013) and reported that it doubles the number of

interesting anomalies shown to the Oracle.
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Generally, most Active Learning approaches follow algorithm 1 as shown in Lochner

and Bassett (2021) and (Pelleg and Moore, 2004):

Algorithm 1 Active anomaly detection algorithm
Input:
epochs← number of epochs for training model
Dtraining ← labelled training data
Dunlabelled ← unlabelled pool of data
labels← Labels of training data
Oracle← A domain expert
n← number of examples chosen to be shown to the Oracle per round
rounds← number of rounds to go through the unlabelled dataset
procedure ActiveAnomalyDetection(epochs, Dtraining,Dunlabelled, labels,Oracle,n, rounds)
while i < rounds do

model.train(epochs,Dtraining, labels)
topAnomalies← model.getTopAnomalies(Dunlabelled,n)
oraclesSelection← Oracle.select(topAnomalies)
Dtraining ← Dtraining

⋃
oraclesSelection

i← i+ 1

end while

2.7 Summary

In this chapter, we examined various traditional anomaly detection algorithms and

some evaluation metrics applied in classification. We also explored Active Learning

and how it is applied to anomaly detection.

Deep Learning has shown state-of-the-art performance in many Computer Vision

and Natural Language tasks. Their ability to learn relevant information from data

without handcrafted features makes it a technique worth exploring for our

use-case.

The next chapter will focus on deep learning and their application in anomaly

detection.
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3 | Deep Learning for Anomaly De-

tection

3.1 Chapter Introduction

In the last chapter, we discussed various classical anomaly detection algorithms.

This chapter discusses deep learning and its application to anomaly detection.

Deep learning has shown impressive results in several application domains.

Architectures such as Convolution Neural Networks (CNNs) and Transformers

(Vaswani et al., 2017) have achieved state-of-the-art results in computer vision (He

et al., 2015a) and Natural Language Processing tasks respectively.

Our proposed algorithm, Ahunt, uses CNNs to deform the raw image features for

anomaly detection hence we dedicate a subsection of this chapter to discuss

CNNs.

This chapter also introduces other commonly used architectures in anomaly

detection such as Recurrent Neural Networks, Autoencoders and Generative

Adversarial Networks.

Finally, we explore the specific application of these architectures in anomaly

detection.
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3.2 Introduction to Neural Networks

3.2.1 A brief history of Neural Networks: from McCulloch-Pitts to

ImageNet

Warren McCulloch and Walter Pitts developed the first mathematical model of an

artificial neuron. In their paper, ’A Logical Calculus of the Ideas Immanent in

Nervous Activity’ (Mcculloch and Pitts, 1943), they stipulated that a biological

neuron can be represented computationally by the addition and thresholding of

input signals as shown in Figure 3.1.

Figure 3.1: Diagram of a biological neuron (left) and a its mathematical representation
(right). The dendrites receive signals which is comparable to how the input neurons
in the mathematical cells also input data. Adapted from Howard and Gugger (2020).

Frank Rosenblatt built the Mark I perceptron in 1958. The device was based on

principles developed by Warren and Pitts in Mcculloch and Pitts (1943). The Mark I

perceptron, in Rosenblatt’s words was supposed to be "a machine capable of

perceiving, recognizing and identifying its surroundings without any human
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training or control" (Frank Rosenblatt et al., 1956). Even though the device did not live

up to this goal, it had the ability to recognize simple shapes. During this period,

Marvin Minsky and Frank Rosenblatt publicly debated the merits of Rosenblatts

goals with the Mark I perceptron. Marvin Minsky argued that the functions based

on which the device was built was too simplistic for the rather grandiose goal set

out by Rosenblatt.

In 1969, Marvin Minsky and Seymour Papert wrote their seminal book

"Perceptrons: An Introduction to Computational Geometry" (Minsky and Papert,

1969). They proved that a single layer of a Perceptron does not learn simple

mathematical functions such as the XOR function. This led them to conclude that,

although Perceptrons and their extensions were interesting, research in that

direction was generally an effort in futility.

The conclusions from Minsky and Papert (1969) slowed down research into

Perceptrons until 1986 when the Parallel Distributed Processing research group

introduced a computational framework for modelling cognitive processes (Rumelhart

et al., 1986b). Instead of modelling cognition as logic gates as seen earlier from

Mcculloch and Pitts (1943) to Minsky and Papert (1969), they suggested a more

nuanced approach which can be summarized as follows Rumelhart et al.

(1986b):

• A set of processing units with an output function for each unit and a pattern

of connectivity among units.

• A set of learning and propagation rules for learning patterns by experience

and propagating patterns of activities through the network, respectively.

• A defined system with which the learning occurs. We can refer to this as the

environment.

• A state of activation.

Rumelhart et al. (1986b) also introduced the use of the backpropagation algorithm for

37



training neural networks. The backpropagation algorithm calculates the gradient of

the network’s error with respect to the parameters of the network. Conceptually, it

finds how the parameters should be tweaked so as to reduce the error. We discuss

the algorithm in further details in subsection 3.2.5. Even though backpropagation

was useful in training neural networks (LeCun et al., 1989), it was computationally

expensive to compute the gradients of the layers in the network. This meant that it

didn’t scale with respect to the available computational resources at the time. Most

researchers therefore abandoned the neural network approach for algorithms such

as Support Vector Machines (Boser et al., 1992) which had lower computational

requirements.

The early 2000s gave rise to the adoption of Graphical Processing Units (GPUs) for

general purpose computing with researchers in Stanford university discussing the

use of GPUs in machine learning applications (Raina et al., 2009). This coalesced

with large volumes of data in domains such as computer vision (Deng et al., 2009)

rejuvenated interest in deep learning research.

The recent widespread adoption of deep learning happened after Alex Krizhevsky

(Krizhevsky et al., 2012) won the ImageNet (Deng et al., 2009) in 2012. Their model

achieved an error rate of 16% as compared to the previous year’s 28%. Since then,

several variations of deep learning architectures have shown impressive

performance in domains such as Computer Vision and Natural Language

Processing.

3.2.2 Feedforward Neural Networks

A feedforward neural network approximates a function, f that maps input data to

some defined outputs. Using classification as an example, assuming we want to find

a function y = f(x) that maps x to a corresponding label y, a feedforward neural

networks defines the mapping from x to the label y = f(x : w) by learning the value

of the parameter w that best approximates the function.
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Figure 3.2: Diagram of a feedforward neural network showing the neurons (the col-
ored circles). The neurons are organized into layers with the red circles representing
the input layer, the blue representing the hidden layer and the green representing
the output layer. This particular illustration is consists of a fully connected layer. It
is referred to as fully connected because each neuron in the input layer is connected
to every neuron in the hidden layer and each neuron in the hidden layer is also
connected to all the neurons in the output layer (Chodey and Shariff , 2021).

A feedforward neural network is the first type of neural network (Schmidhuber,

2014). It consists of basic neuron-like processing units which are often called nodes.

It receives data via the input nodes as shown in Figure 3.2, passes it through the

hidden layers and finally to the output layer. The dimensionality of the hidden layer

determines the width of the network while the number of hidden layers determines

its depth.

Each neuron, as shown in Fig. 3.3, performs a weighted summation of its input and

passes the value to an activation function. Activation functions are usually

non-linear continuously differentiable functions. In theory (Hornik et al., 1989), a

two-layer neural network with a non-linear activation function can approximate any

function given a sufficient number of units in the hidden layer.
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Figure 3.3: A Single Neuron showing some input features (x1, x2 and x3) with their
respective weights. The weighted sum of these inputs is passed to an activation
function as indicated in the diagram.

Feedforward neural networks, just like other types of neural networks, learn by

iteratively updating the weights by minimizing a loss function L(y, ŷ). Using

backpropagation (Rumelhart et al., 1986a), the gradient of each parameter, θ, with

respect to the loss function is computed using the chain rule.

Feedforward neural networks are limited in their ability to capture interactions in

data points which are related in time, eg. video data. This is addressed using

recurrent neural networks. We will examine this in a later section.

3.2.3 Activation Functions

A neural network is composed of functions from different layers where the output

of a previous layer is used as input in the next layer. As discussed in 3.2.2, each

neuron performs a weighted sum of its inputs before passing it to an activation

function. Activation functions introduce non-linearity into the neural network.

Without the activation function, the network will be a linear function with a linear

decision boundary. This is undesirable since most problems have complex decision

boundaries.

While there isn’t a general consensus on what makes an activation function

desirable for deep learning, most activation functions used have the following

properties:
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1. They need to be non-linear. The universal approximation theorem states that,

in theory, given a sufficient number of units in the hidden layer, a neural

network can approximate any function (Hornik et al., 1989).

2. They should be continuously differentiable. This property allows

backpropagation and other gradient-based methods to find the optimal

weights that minimizes the loss function. Gradient-based methods achieve a

stable performance making them desirable in deep learning. It is important to

note that, not all activation functions used in deep learning are continuously

differentiable. A typical example is ReLU which is differentiable at all points

except at 0.

The following section examines some commonly used activation functions.

3.2.3.1 Softmax

The softmax activation function, is typically used in the output layer of the neural

network in a multi-class classification setting. It normalizes a vector with K elements

into a probability distribution over the elements. Its output therefore can be

interpreted as the probability of each class.

The softmax activation function is given by:

Softmax(xi) =
exi∑
j e
xj

(3.1)

3.2.3.2 Sigmoid

The sigmoid activation function has an "S" shape as shown in Figure 3.4. It returns

values between 0 and 1 for each class label. This makes it suitable for multi-label

classification problems where the labels are not mutually exclusive.

The function is expressed as:

f(x) =
1

1+ exp(x)
(3.2)
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Figure 3.4: The Sigmoid Activation Function is S shaped with output values ranging
from 0 to 1.

3.2.3.3 Rectified Linear Unit

Rectified linear unit (ReLU) is one of the most widely used activation functions. It is

more computationally efficient than the Sigmoid and the Softmax activation

functions. Its computational efficiency stems from the ease of computing its

derivatives. This property helps the network train faster. The ReLU is

mathematically expressed as:

f(x) = max(0, x) (3.3)

As seen in Figure 3.5, for activations in the negative region of the ReLU, the

gradient will be zero. This means that gradient descent will not alter the weights in

this region hence there will be no learning. This phenomena is called the dying

ReLU problem. The dying ReLU problem broadly relates to the vanishing gradient

problem which occurs when gradients get smaller as the algorithm approaches the

earlier layers (layers closer to the input layer). As a result, the weight update in the

early layers stall, preventing the model from converging to an optimal solution.
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Figure 3.5: Illustration of the shape of the ReLU Activation Function. For activations
in the negative region, the gradient will be zero. This leads to the dying ReLU
problem.

3.2.3.4 Leaky ReLU

The leaky ReLU (Maas et al., 2013) addresses the dying ReLU problem by adding a

slight slope in the negative region as indicated in Fig. 3.6.

Figure 3.6: The small negative slope in the Leaky ReLU helps prevent the dying ReLU
problem.
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It is defined as :

f(x) =


x if x > 0,

0.01x otherwise.
(3.4)

Although leaky ReLU is shown to theoritically solve the dying ReLU problem,

results from Pedamonti (2018) shows that, its performance is similar to that of ReLU

on the MNIST dataset. Other ReLU activation functions such as the Parametric

ReLU and the Exponential ReLU can also be used to mitigate the dying ReLU

problem.

3.2.3.5 Hyperbolic Tangent

The hyperbolic function is also known as tanh. It takes any real-valued input and

returns values between (-1,1) range. As shown in Fig.3.7, it is very similar to the

Sigmoid function.

Figure 3.7: The hyperbolic tangent is very similar to the Sigmoid except that its
middle is more sharply defined.

The hyperbolic tangent is mathematically expressed as:

f(x) =
ex − e−x

ex + e−x
(3.5)
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3.2.4 Loss Functions

Loss functions help to estimate errors after a forward pass. It does this by comparing

the predictions from the forward pass with the actual ground truth targets. In this

section, we examine various loss functions applied in machine learning.

3.2.4.1 Mean Absolute Error

The Mean Absolute Error (MAE) calculates the average of absolute distance between

the predicted and the true value. It is also referred to as the L1 loss. It is expressed

as:

MAE =

∑N
i=1 |yi − ŷi|

N
(3.6)

where N is the number of samples in the dataset, ŷi is the predicted value and yi is

the true value.

The MAE is often used in regression problems. MAE is less sensitive to outliers

when compared to the Mean square error (MSE). This is because it does not square

the errors as done by the MSE.

3.2.4.2 Mean Square Error

The Mean square error (MSE) calculates the square of the difference between the

predicted values and the ground truth outputs. It is also called the L2 loss. It is

sensitive to outliers given that it squares the errors. The MSE is also commonly used

in regression problems. It is expressed as:

MSE =
1

N

N∑
i=1

(yi − ŷi)
2 (3.7)

where N is the number of samples in the dataset, ŷi is the predicted value and yi is

the true value.
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3.2.4.3 Root Mean Square Error

The Root Mean Squared Error (RMSE) is the square root of the Mean Squared Error.

It is expressed as:

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)2 (3.8)

Just like the MSE and the MAE, it is also used in regression problems. The root

mean squared error offers better interpretation of the errors. It is the average

distance of a point from a fitted line along the vertical axis.

3.2.4.4 Cross Entropy Loss

Cross-entropy loss is mostly used in binary classification problems. Its output is

between 0 and 1. The cross-entropy is given as:

L(ŷi,yi) = −

N∑
i=1

yi ln ŷi + (1− yi) ln (1− ŷi) (3.9)

where N is the number of samples in the dataset, ŷi is the predicted value and yi is

the true value.

A variant of the cross entropy can also be used for multi-class classification. It is

called the multi-class cross entropy loss. It is represented as:

−
∑
i

yi ln ŷi (3.10)

3.2.5 Backpropagation and Gradient Descent

Backpropagation was invented in the 1970s but was popularized by Rumelhart,

Hinton and Williams in their paper, "Learning representations by back-propagating

errors" (Rumelhart et al., 1986a).
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It uses the chain rule to calculate the gradient of the loss function with respect to the

parameters of the network. This tells us how a small change in the parameters will

affect the total loss of the network. From this, the parameters are then adjusted

using gradient descent.

The loss surface of most deep neural networks have multiple local minima. The

network might therefore get trapped in one of its many local minima and hence

negatively affect its ability to generalize to unseen training examples. This is

counter-intuitive to the surprisingly superior performance of networks trained with

gradient descent. Dauphin et al. (2014) argued that the local minima is less of a

problem than the saddle points and that gradient descent finds it difficult to

efficiently escape the saddle points. Jin et al. (2017) proved that gradient descent

augmented with suitable perturbations escapes saddle points efficiently.

Gradient descent is a common approach used in optimizing neural networks. There

are three main variants of gradient descent used in training neural networks. The

variation comes from how much data is use to compute the gradient of the loss

function. In most cases, there is a trade-off between the accuracy of the parameter

update and the time it takes to perform the update. The three variants of gradient

descent include:

1. Batch Gradient Descent: This is the original gradient descent algorithm

otherwise known as the vanilla gradient descent. For an objective function

J(θ), with model parameters θ ∈ Rd, the batch gradient descent computes the

gradients with respect to the entire dataset:

θ = θ− η · ∇θJ(θ) (3.11)

The need to compute the gradient of the entire dataset in each update makes

batch gradient descent very slow. Given the large size of most datasets used in

deep learning, this method requires large amounts of memory to be feasible.

These two problems makes the batch gradient descent a non-viable option in
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many practical settings

2. Stochastic Gradient Descent: Stochastic Gradient Descent (SGD) computes

the gradient and updates the parameters with respect to each training example

xi and label yi:

θ = θ− η · ∇θJ(θ; xi,yi) (3.12)

This makes it more computationally efficient. However, the updates become

more frequent with a high variance causing the objective function to fluctuate

heavily. Given the frequency of the updates, SDG is more likely to overshoot

an update hence might not converge at an exact minima. This problem can be

mitigated by slowly reducing the learning rate over time.

3. Mini-batch Gradient Descent: Mini-batch gradient descent (MBGD) combines

the best of vanilla gradient descent and SDG. It performs an update for every

mini-batch in the training set. For n training examples, MBGD is given by:

θ = θ− η · ∇θJ(θ; xi:i+n,yi:i+n) (3.13)

where xi and yi represent the training data and its labels respectively.

Given that MBGD leverages the mini batches, its updates are less frequent

than SDG but more frequent than vanilla gradient descent. This reduces the

variance and provides a better trade-off on speed.

3.3 Architectures for Deep Learning

3.3.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are networks that utilize the convolution

operation in its layers. CNNs have its roots in the work of David Hubel and Torsten

Wiesel. In experiments extending over 25 years, they studied the impacts of vision

impairment in humans using kittens (Hubel, 1964). They discovered that humans
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use simple and complex cells for visual recognition. The simple cell recognizes

things such as vertical edges in an image and the complex cells recognizes more

complex shapes while showing spatial invariance. The complex cells achieve this by

summing the information from the simple cells. Inspired by this work, Fukushima

(1988) built the first artificial neural network that mimics the simple and complex

cell structure. He used this network for digit recognition. Lecun et al. (1998) was the

first to build a multilayered CNN. This network was used in the now famous image

recognition task, MNIST (LeCun et al., 2010).

CNNs shot to popularity when Alex Krizhevsky used a variant of it, (Krizhevsky

et al., 2012), to win the ImageNet competition (Deng et al., 2009) in 2012. Since then,

different variations of CNNs have produced exceptional performance on the

ImageNet competition as shown in Figure 3.8. CNNs achieve exceptional

performance by exploiting the spatial information in the data. This makes them

particularly useful in visual tasks such as object and video recognition.

Figure 3.8: Performance improvement of different variations of CNNs on the Ima-
geNet dataset over the past decade.The top 1 accuracy considers the model’s predic-
tion with the highest probability as the expected answer. This is the conventional
notion of accuracy. Generated from Papers with code.
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3.3.1.1 Convolution Operation

The convolution operation is the basic building block of the of CNNs. The

convolution (continuous) operation are expressed as:

s(t) =

∫
I(a)K(t− a)dt (3.14)

where I is the input and K is the kernel. However, in most CNNs, discrete

convolutions are used. A one-dimensional discrete operation is expressed as:

s(t) =
∑
a

I(a)g(t− a) (3.15)

where K is a kernel and I is the input. Convolving the input and the kernel results

in an output referred to as the feature map.

The convolution computes how similar a portion of an input is with the kernel. It

does this by systematically sliding the kernel over various parts of the input. The

parts of the input which is most similar to the kernel returns the highest value.

Conceptually, we can think of the kernel as searching for similar patterns at

different parts of the input.

3.3.1.2 Filters

Convolutional filters are use to extract features from the inputs. The name filters is

used interchangeably with kernels. They are a matrix of integers applied across the

entire image during the convolution operation. The width of the network is

determined by the size of the convolution kernel. From Krizhevsky et al. (2012) to He

et al. (2015a) in the ImageNet competition, there has been a general trend of stacking

smaller kernels to achieve deeper networks rather than using large kernel sizes

(bigger width of network).

As explained in Eldan and Shamir (2015), although wider networks learn the
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underlying features in the input data, they tend to overfit the data. This negatively

impacts their ability to generalize. However, deeper networks capture intermediate

features in different layers of the network. This gives rise to richer features which

improves performance on downstream tasks. It is important to note that, the

description above is specific to CNNs applied to vision problems.

3.3.1.3 Pooling Operation

The pooling operation involves down-sampling of the feature map. It reduces the

parameters of the model thereby reducing the risk of over-fitting. Conceptually,

pooling helps to extract the most useful information from localized sections of an

input. The pooling operation helps with the following:

1. It helps to reduce the dimension of the feature maps. This reduces the number

of parameters in the network, lessens the computational cost and reduces

over-fitting.

2. It summarizes the features in the local regions of the input.

The two most commonly used pooling operations are Max Pooling (Weng et al.,

1992) and Average Pooling (Lecun et al., 1998). As seen in Fig.3.9, the Max Pooling

operation selects the highest value from a localized region whereas the Average

Pooling operation finds the average of the values in each localized region. Max

Pooling therefore selects the prominent features whereas Average Pooling provides

a smoothing effect.

3.3.1.4 Stride

The stride is the number of unit pixel shifts by the kernel over the input. The default

stride in many applications is 1. Choosing larger strides may save computational

cost and also increase the generalization ability of the network. This however comes

at the cost of missing out on important features in the input data.
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Figure 3.9: This image shows a pooling operation with a stride of 2. The Max Pooling
operation selects the highest value in a region whereas the Average Pooling averages
all the values in the region.

3.3.2 Visualizing Convolutional Neural Networks

The core of this thesis uses CNNs to dynamically learn features for anomaly

detection. It is therefore prudent to understand how CNNs learn features for

different types of downstream tasks (classification, object detection, segmentation,

anomaly detection etc).

One commonly used method for visualizing CNNs is to cast the feature maps back

into their original input images (Zeiler and Fergus, 2013). This is done using a

deconvolutional network (Zeiler et al., 2011). A deconvolutional network performs

the same operations like pooling and filtering as CNNs but in reverse so instead of

mapping the input to a feature map, it maps the feature maps back to the input

space.
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Figure 3.10: Visualization of the first two layers of trained CNN model. In layer 1,
the models learns to identify simple lines and color gradients ranging from blue to
yellow in some cases an red to green in others. Using the feature map from layer 1,
layer 2 learns slightly more complicated shapes such as curves and circles (Zeiler and
Fergus, 2013).

To visualize the features learnt in each layer of a CNN, a deconvnet is attached to

each of the layers in the network. An input image is passed to the trained network

and the feature maps are computed for each layer. To examine a given activation in

a layer, all other activations in that layer is set to 0 and the feature map is passed to

the decovnet to reconstruct the input image (Zeiler and Fergus, 2013).

Figures 3.10 and 3.11 shows the increasingly complex representations learnt by

various layers in the CNN. This idea forms the foundations for reusing trained

models for other tasks different from what the model was originally trained on.

This process is called transfer learning. The assumption is that, since the simple

features learnt in the earlier layers are the similar for similar datasets, we can freeze

these layers and only train on the deeper layers which captures specific details about

the dataset under consideration. Here, it is important to note that, the original

dataset on which the model was trained must be semantically similar to the

subsequent dataset used in transfer learning. For example, a model trained on dogs

and cats might perform poorly when used on x-ray images.

This process of gradually learning semantically useful features for downstream
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Figure 3.11: Figure visualizing layer 4 and 5 of a CNN. It can be observed that the
network learns more complex features such as the face of dogs and round objects in
layer 4. By layer 5, it learns to identify human faces and sign posts. This is in contrast
to the simple line and contour representations learnt in layer 1 and 2 above (Zeiler
and Fergus, 2013).

tasks is of particular interest to us.

3.3.3 Recurrent Neural Networks

Feedforward networks like CNN fall short when applied to sequence data. This is

because, by design, they do not explicitly capture time dependencies in the data.

Recurrent neural networks (RNNs) mitigate this problem by capturing time

dependencies. They were first introduced by Hopfield in 1982 in his work to

understand associative memory in the human brain (Hopfield, 1982).

RNNs work with the assumption that, the preceding elements in a sequence are

relevant for making a decision about the current element, that is, for a sequence of

entities x1, x2, x3...xn, the value of xn depends on all entities from x1 to xn−1. This
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assumption is expressed by introducing hidden states which serve as memory of

previous elements in the sequence. The hidden states are updated via a feedback

loop as shown in Figure 3.12. These feedback loops allow information to persist

over time.

Figure 3.12: Diagram of a recurrent unit. Given some input vector xt, it computes the
hidden state ht which is passed on to the next state.

The hidden state is computed as:

ht = σ(Wxhxt + ht−1Whh + bh) (3.16)

where ht−1 is the previous state based on the previous timestamp, xt is the input at

time t, σ is the activation function, Wxh is the weight vector of the input, Whh is the

weight vector of the hidden state and bh is the bias of the hidden state.

The output of the unit is mathematically expressed as:

yt = htWhq + bq (3.17)

where ht is the hidden state, Whq is the weight of the output and bq is the bias of
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the output. It is important to note that, the same model parameters used in equation

3.16 and 3.17 are shared across the different timestamps. This is necessary to allow

variable length sequences and also reduce computational cost.

RNNs are prone to the vanishing and exploding gradient problem (Hochreiter, 1998).

This is due to how deep the network becomes during backpropagation. In the

backpropagation stage, the network is usually unrolled making it have more hidden

layers than a typical feedforward network. This increases the risk of the gradients

becoming very large (exploding) or very small (vanishing) during training.

Vanishing and exploding gradients are solved by rescaling the norm of the gradients

when they go over a predefined threshold. This process is called gradient

clipping.

Vanilla recurrent neural networks are prone to noise and have a tendency to overfit.

A variation of RNNs called the Long Short-Term Memory (LSTMs) (Hochreiter and

Schmidhuber, 1997) help address this issue. LSTMs consists of computational blocks

that control information flow.

3.3.4 Autoencoders

Autoencoders are neural networks used for compressing input data and then

constructing that data back into its original form while preserving the relevant

features in the data.

The autoencoder network consists of 2 parts as shown in Figure 3.13. The two parts

are connected via the bottleneck layer. This layer is also referred to as the

compression or the latent space representation.

The encoder network performs dimensionality reduction on the input data. The

decoder takes the reduced data as input and reconstructs the original input as

closely as possible. Although the decoder and encoder have different parameters,

they work together to output the reconstructed input.
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Figure 3.13: Diagram of an autoencoder. The encoder portion (on the left) is indicated
in the blue, the bottleneck (in the middle) in red and the decoder( to the right) in
yellow (Chauhan, 2021).

Given some input, x, and parameter, θ, the encoder of the network can be expressed

as:

z = fθ(x) (3.18)

Since the decoder takes the latent representation to reconstruct the output, we can

express it as:

x′ = gφ(z) (3.19)

Equation 3.18 and 3.19 can be combined to obtain

x′ = gφ(fθ(x)) (3.20)

Autoencoders have several application including but not limited dimensionality

reduction ,removing noise images and anomaly detection as discussed later in this

chapter.
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3.3.5 Generative Adversarial Networks

Most of the neural network architectures we have discussed so far are applied in the

context of either making a prediction about some data or reducing the dimensions

of the data. However, we sometimes want the ability to generate new data.

Generative Adversarial Networks (GANs) were created to address this issue.

GANs were first proposed by Ian Goodfellow in Goodfellow et al. (2014). It consists of

a Generator (G) and a Discriminator (D). The Generator attempts to generate new

images to fool the Discriminator. The Discriminator on the other hand tries to

distinguish between fake and real images as shown in Figure 3.14. The Generator

and Discriminator are trained simultaneously to minimize log (1−D(G(z))). Over

time, the network learns to generate more realistic looking images.

Figure 3.14: Illustration of the Discriminator and Generator of a GAN. The Generator
tries to produce realistic looking images and the Discriminator is a classifier that
distinguishes between the images from the Generator (fake images) and some real
images from a training set (Karim, 2018).
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3.4 Deep Anomaly Detection

In the previous section, we explored the details of popular deep learning

architectures used in anomaly detection. In this section, we will see how these

architectures are applied to the anomaly detection task.

Figure 3.15 is a three level hierarchical taxonomy introduced by Pang et al. (2020) to

classify how deep learning is used for anomaly detection.

Figure 3.15: Summary of proposed taxonomy for deep anomaly detection methods.

3.4.1 Deep Learning for Feature Extraction

This group of methods use deep learning to extract expressive lower dimensional

features from a higher dimensional input. These features are then applied to a

downstream anomaly detection task. This approach works with the assumption

that, deep neural nets preserve the discriminative features that distinguish

anomalies from normal instances.

The deep neural network in this approach can be conceptualized as a

dimensionality reduction technique. The resulting features obtained is passed to an

independent anomaly scoring function. In some cases, some of these features might

be passed to traditional algorithms such as Isolation forests, (Liu et al., 2008) and
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Local Outlier Factors, (Breunig et al., 2000). Even though methods such as the

principal component analysis can be used to achieve a similar purpose, deep neural

networks have been shown to extract more expressive semantic features from the

data (Bengio et al., 2013).

Pre-trained networks such as VGG (Simonyan and Zisserman, 2015), Resnet (He et al.,

2015a) are applied to extract features from image and video data for anomaly

detection. These pre-trained networks are originally trained on the Imagenet (Deng

et al., 2009) dataset.

3.4.1.1 Application of Deep Learning for Feature Extraction

This approach is mainly used in video and image anomaly detection (Ravanbakhsh

et al., 2016; Xu et al., 2015). Marsden et al. (2017) applied CNNs to extract anomalous

events in crowded places. This is contrary to previous approaches such as Mehran

et al. (2009) and Amraee et al. (2008) where the features used for anomaly detection

were handcrafted. Results from Nazaré et al. (2018) show that pre-trained networks

are able to extract better semantic features in video anomaly detection. In crowd

abnormality analysis, two approaches are employed:

1. Using a pre-trained network such as VGG (Simonyan and Zisserman, 2015) or

ResNet (He et al., 2015a) for extracting features

2. A convolutional neural network is trained from scratch on the dataset and

then at test time, each image is passed through the network to extract some

intermediate features

Another approach is to explicitly train a deep feature extractor for downstream

anomaly detection (Erfani et al., 2016) and (Ionescu et al., 2018). In (Ionescu et al.,

2018), the authors proposed a framework for abnormal event detection in

surveillance data. The framework is summarized as follows:

1. An unsupervised feature learning framework based on a Convolutional

Autoencoder. This framework is used in both motion and appearance data.
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2. Clustering the features extracted and using the cluster as data labels.

3. Training a classifier to distinguish between normal and abnormal events.

A similar approach is applied in graph anomaly detection. In (Yu et al., 2018),

features are extracted from the latent space of a deep Autoencoder to calculate the

abnormality of graph vertices and edges.

Extracting features using deep learning has some pros and cons. In the case where a

pre-trained model is used, there are several options available. Also, the

dimensionality reduction performed by deep learning captures better discriminative

features than its linear counterparts like principal component analysis. However,

using pre-trained might not be efficient if the features of the downstream task varies

widely from that of the data the model was trained on. The separation of feature

learning and anomaly scoring might also lead to sub-optimal anomaly detection

results.

3.4.2 Learning Feature Representations of Normality

These class of methods combine feature learning and anomaly scoring. This is

different from the previous approach where the learning of the features and the

anomaly scoring are decoupled. Popular deep learning architectures such as

Autoencoders and Generative Adverserial Networks are adapted to learn normal

features from the data.

3.4.2.1 Autoencoders

The Autoencoder based approach works on the assumption that normal instances

can be better reconstructed from the latent space than anomalies. Autoencoders

learn the low-dimensional representation on which the data instances can be

reconstructed. The lower dimensional features contain regularities of the data to

minimize reconstruction errors. The data instances with large reconstruction errors

are assumed to be anomalies.
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As discussed in section 3.3.4, Autoencoders consist of two parts: the encoder and

the decoder. The Encoder maps the input to a low-dimensional space. The Decoder

attempts to reconstruct the data back to a high dimensional space. The parameters

of the network are learnt via a reconstruction loss function. In order to minimize the

reconstruction error, the network must retain as much relevant information about

the normal class as possible. In this approach, the data reconstruction error can be

used as an anomaly score. Different types of Autoencoders are used to capture

different features of normality.

There are different types of Autoencoders used in anomaly detection. The sparse

Autoencoder (Makhzani and Frey, 2014) is used for anomaly detection (Zhao and

Karray, 2020). It introduces sparsity in its hidden layers by keeping the top-K

activation units. This makes it less prone to noise. The Denoising Autoencoder

(Vincent et al., 2010) also learns robust representations by learning to reconstruct

data from corrupted data instances. The Variational Autoencoder (Kingma and

Welling, 2014) encodes the input data using a prior distribution over the latent space.

This prevents overfitting and also aids the generation of new data instances from the

latent space.

Autoencoders have been applied to detect anomalies in sequence data (Lu et al.,

2017), graph data (Ding et al., 2019) and image/video data (Xu et al., 2015).

Autoencoders can be biased when the training data contains a significant number of

irregularities. In that case, the irregularities are treated as normal instances.

3.4.2.2 Generative Adverserial Networks

In section 3.4.2.2, we explored the GAN architecture.To use GANs for anomaly

detection, the network is trained on the normal data points. This helps the

Generator to learn a latent feature space that captures features of normality in the

dataset. When the network is presented with an input which is an anomaly, the

reconstruction error of input and generated data will be high. GANs have been

adapted in various ways for anomaly detection. Some of this adaptation is
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discussed below.

AnoGAN (Schlegl et al., 2017) was one of the earliest application of GANs to

anomaly detection. Given a data instance x, AnoGAN searches for an instance z in

the latent space such that the generated instance G(z) and x are as similar as possible

using the residual loss. If the instance x is an anomaly, it will less likely not have a

similar counterpart in the latent space. This is because, the generator learns the

underlying distribution of the normal instances. A common problem with AnoGAN

is its computational requirement, especially at test time. Given every new input,

AnoGAN performs a new search. This makes it computationally inefficient.

Efficient GAN-Based Anomaly Detection (Zenati et al., 2018) solves the

computational issues with AnoGAN. It uses a Bidirectional GAN (BiGAN) (Donahue

et al., 2016). In addition to the generator and the discriminator, a BiGAN trains an

encoder(E) to map x to z. This removes the need to iteratively search for z at test

time and hence improving the computational efficiency.

GANomaly, introduced in (Akcay et al., 2018), trains a generator on normal data

samples. It simultaneously trains an Autoencoder to encode the latent

representations more efficiently. Using the Autoencoder makes the network learn

faster since there’s no need for a noise prior.

Although GANs have proven to be successful in anomaly detection, they still

present some challenges during training. Some of these challenges include their

failure to converge and how they can easily be fooled to learn instances that are

outside of the manifold of normal data points. (Metz et al., 2016).

3.4.3 End-to-end Anomaly Score Learning

This approach learns anomaly scores in an end-to-end fashion. Unlike the approach

in section 3.4.2 which uses generic loss functions, this approach employs custom

loss functions to aid the learning of the anomaly scoring network.
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One approach is to do an end-to-end one-class classification. The approach works

on the assumption that normal instances can be summarized by a discriminative

model. It employs a GAN to learn a one-class classifier such that the normal

instances are separated from adverserially generated pseudo anomalies. This

approach varies from the GANs approach discussed in section 3.4.2.2 in the

following ways:

1. The approach in section 3.4.2.2 aims to learn the data distribution of the

training set. Since the normal class is in the majority, we expect the

distribution learnt to capture normality. On the other hand, the method in this

approach learns a classifier that separates normal instances from adversarial

generated instances.

2. While the GAN methods in section 3.4.2.2 use the residual between the real

instances and the fake instances (from the generator) as the anomaly scores,

the approaches in this method directly use the discriminator to classify

anomalies.

It is important to mention that there’s also no guarantee that the generated anomaly

samples will be similar to unknown anomalies.

3.5 Summary

In this Chapter, we discussed deep learning and various applications of deep

learning to anomaly detection. This discussion is a necessary precursor to our

problem of interest, that is, to use convolutional neural networks to evolve features

for anomaly detection.

We dedicated a part of this discussion to topics such as backpropagation, activation

and loss functions as they relate to training a deep neural network. We also

discussed other neural network architectures such as RNNs, GANs and

autoencoders as an antecedent to how different architectures are applied in anomaly
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detection.

A good part of this chapter was dedicated to CNNs as they are the architecture of

choice in our proposed algorithm. An important part of this discussion is

visualizing how CNNs learn features. We explained how CNNs learn increasingly

complex features as we go deeper in the network and how this gradual learning of

the features is an important foundation in our algorithm.

These discussions provide a good segue into the next Chapter. Our core algorithm,

Ahunt, discussed in the next chapter uses concepts discussed thus far to tackle our

research problem. Concepts such as neural network architecture and loss functions

and their effects in anomaly detection will be discussed in the next chapter.
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4 | Ahunt

4.1 Chapter Introduction

This chapter discusses our framework, Ahunt. The name Ahunt is derived from the

phrase "Hunting Anomalies". We start the chapter with a broad overview of the

framework and gradually narrow it down to how the individual components

work.

Section 4.3 discusses our methodology. We highlight the algorithms with which

Ahunt was compared. We also discuss the datasets as well as the data augmentation

techniques applied to our setup. Finally, we present a summary of the parameters

and hyper-parameters of the Deep Neural Network.

Section 4.4 presents our results and discussions. We discuss results from Ahunt

being applied to the MNIST, CIFAR-10 and Galaxy Zoo datasets. This is followed by

studying how both the loss functions and various active learning strategies affect

the performance of Ahunt.
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4.2 Overview of the Ahunt Algorithm

In Ahunt, we begin with some labelled instances of normal data which are fed to a

Neural Network for training. The network is made up of n normal classes and 1

other class reserved for anomalies.

Learning is done in rounds. In each round, the available pool of unlabelled data is

presented to the trained network to identify anomalies. For round 0, referred to as

the zeroth round henceforth, a Teacher (Oracle) labels a small number of examples

from a large pool of unlabelled data. The data is fed to a neural network which

learns the underlying features for a classification task.

Figure 4.1: In the Ahunt framework, we start by labelling instances of the normal
classes for training a deep neural network model. The pool of unlabelled data, con-
taining anomalies, is tested on the model to give a ranked list of the most likely
anomalies, according to the model. A subset of these anomalies are displayed to
the oracle for labelling on the most interesting anomalies. The Oracle’s feedback is
added back to the training pool for the next round of training. This follows the the
algorithm defined in Algorithm 1.

The resulting model is tested on the remaining unlabelled data. The goal is to

identify the most useful examples which could help improve the model in the next

round. Using some query strategy, the identified examples are shown to the Oracle
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for labelling. Any anomaly detected is assigned to the reserved class for the next

round of training.

Once an anomaly is detected and added to the reserved class, the reserved class is

up-sampled using data augmentation techniques in the next round of training.

Augmenting the reserved class (now the anomaly class) also helps the network to

learn good features to improve the anomaly detection outcome. Here, features refer

to output before the final layer in the network. The process is repeated over several

rounds of active learning.

4.3 Methodology

4.3.1 Overview of Experiments

We conduct experiments using the datasets described in section 4.3.2. We track the

performance of Ahunt over 30 rounds of Active Learning. The choice of the number

of rounds is dependent on the performance gain in each round. If the improvement

from round to round is minimal, then it makes sense to not perform any more

rounds of Active Learning. In our setup, 30 rounds is the optimal number of rounds

beyond which the performance gain is minimal. Each experiment involves training

a neural network on some labelled subset of the data. The resulting model is then

used to identify potential anomalies in a large pool of unlabelled data.

In the experiment involving MNIST, we use a basic CNN with two Convolutional

layers and some dropout layers. The choice of this architecture was influenced by

the relatively simple nature of the MNIST dataset. A similar architecture was used

for the CIFAR-10 dataset.

In the Galaxy Zoo dataset, we used a ResNet (He et al., 2015a) which was pretrained

on the ImageNet (Deng et al., 2009) dataset. We freeze all the layers except the fully

connected layer and fine-tuned the fully connected layer. We used a pretrained

ResNet because of the added complexity of images in the Galaxy Zoo dataset. The
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choice also helped to explore the performance of Ahunt in the context of pretrained

models, as well as models trained from scratch (as seen in the case of MNIST and

CIFAR-10).

Table 4.1 summarizes the datasets and parameters used in our experimental setup.

We benchmark Ahunt against some algorithms. We discuss these algorithms in

section 4.3.3.

4.3.2 Datasets

We use 3 datasets in our experiments. The datasets are chosen according to

increasing order of complexity. The term complexity here is loosely used to describe

the size as well as the number of channels in the dataset. In the subsequent sections,

we examine the 3 datasets with 4 considerations - their structure, shape, why they

were chosen and their preprocessing steps, if any.

4.3.2.1 MNIST

The MNIST (Modified National Institute of Standards and Technology) is a database

of handwritten digits ranging from 0− 9 as shown in Figure 4.2. It was created by

(LeCun et al., 2010) by remixing the original NIST dataset (Grother, 1995). The MNIST

database consists of 60000 training images and 10000 test images.

In our experiments, we arbitrarily choose 2 classes as normal and 1 class to

represent the anomaly class. We then add Gaussian noise to the images.
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Figure 4.2: Sample images from the MNIST dataset (Steppan, 2017). The dataset
consists of handwritten digits labelled from 0 to 9.

4.3.2.2 CIFAR-10

CIFAR-10 (Krizhevsky, 2009a) is a subset of the 80 million tiny images dataset

(Torralba et al., 2008) which consists of tiny images of size 32 x 32 pixels. CIFAR-10

consists of 10 classes with each class containing 6000 images.

There are two experiments in which the CIFAR-10 dataset is applied. In the first

experiment, we assume that there is only one sub-class of anomalies. We select 3

arbitrary classes: 2 classes representing the normal classes and 1 class representing

the anomaly class. In the second experiment, we form a heterogeneous anomaly

class by combining 8 classes. We choose 2 sub-classes as normal and combine the

remaining 8 classes into an anomaly class.

Images from the CIFAR-10 dataset represent various real world objects and hence

offer more diversity than MNIST which is a 2D representation of digits.
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Figure 4.3: Sample images along with their respective classes in the CIFAR-10 dataset
(Krizhevsky, 2009b).

Figure 4.4: A combined diagram of the questions asked (right) and the flowchart
(left) in the Galaxy Zoo survey. Adapted from Willett et al. (2013).

4.3.2.3 Galaxy Zoo

The Galaxy Zoo project is a citizen science project aimed at classifying different

patterns in galaxies drawn from the Sloan Digital Sky Survey (Willett et al., 2013).
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The dataset consists of 304122 galaxies grouped according to the decision tree shown

in Figure 4.4.

Figure 4.5: Random image samples from the Galaxy Zoo dataset Willett et al. (2013).

In this study, we select the odd galaxies as captured in the question "Is there

anything odd?" from the decision tree shown in Figure 4.4. This question provides a

good segue into identifying galaxies classified as odd or normal. For the galaxies

classified as odd, there are six sub-classes namely: ring, lens or arc, distributed,

irregular, other, merger and dust lane. These sub-classes result from the question:

"Is the odd feature a ring or is the galaxy distributed or irregular?". Our anomaly of

interest is the sub-class with a ring as the odd feature. We use this with the normal

class for the purposes of our study.

This dataset is interesting because of the following:

1. It contains galaxies classified by humans as odd. This is in contrast to MNIST

72



where we arbitrarily choose a sub-class to represent the anomaly class.

2. The images offer more diversity than MNIST. It also captures the nature of

real-world anomalies.

4.3.2.4 Summary of Data Configuration Used in the Experiments

As discussed in section 4.2, we train our model over 30 rounds of active learning. In

each round, the Oracle labels 6 examples as captured in the "Questions / Round"

row in table 4.1.

MNIST CIFAR-10 Galaxy Zoo

Normal Class 0,1 airplane, bird class6.2

Anomaly Class 2 dog class6.1

# 0-th Round 500, 700 800, 500 800

# Normal / Round 150, 140 140, 150 170

# Anomalies / Round 6 6 6

# Rounds 30 30 30

# Questions / Round 6 6 6

# Training time /hours 12 30 48

Table 4.1: The table provides details about the 3 datasets used in our experiments
- MNIST, CIFAR-10 and Galaxy Zoo. We state our choice of normal and anomaly
classes as well as the number of instances in each class for the 0th Round and any
subsequent round thereafter. The table also shows the number of anomalies and the
number of questions answered by an Oracle in each round. The number of questions
per round is selected based on what makes practical sense for an Oracle to examine.
For all 3 datasets, we run our experiments for 30 rounds.

4.3.3 Comparison Algorithms

4.3.3.1 iforest-raw

We refer to the case where the Isolation Forest (iForest) algorithm is applied to the

raw pixel data as iforest-raw. Isolation forest is one of the traditional anomaly
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detection algorithms discussed in section 2.2.1. Isolation forest has been shown in

(Sadr et al., 2019) and (Carrasquilla, 2010) to achieve impressive results on most

anomaly detection datasets. While we could have chosen other algorithms such as

Local Outlier Factor (Breunig et al., 2000), we know from the "No Free Lunch"

theorem (Wolpert and Macready, 1997) that no algorithm is better than random when

averaged over all possible data.

In our comparison, we use the sklearn implementation of iForest. We obtain the

anomaly scores from the decision function of sklearn implementation. The

decision function returns the average anomaly score (from all the Isolation trees

in iForest) of each observation fed to the algorithm.

4.3.3.2 iforest on the Latent Space

A neural network can be conceptualized as consisting of two parts: a feature learner

and a projection/classification head, as shown in Figure 4.6.

Figure 4.6: Diagram of a neural network (a CNN) indicating the feature learning
part and the projection head. The feature learning part learns useful representations
which is fed to the classification head for making predictions (Patel and Pingel, 2017).

iForest on the latent space uses features from the output of the feature learner as

shown in Figure 4.6. The two types of features used in our setup are:

1. iforest_latent-static: This describes the case where the features are extracted

from the feature learner of a model trained on the zeroth round.
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2. iforest_latent-learning: This approach also involves feeding the features

extracted from the feature learner to the iForest algorithm. However, instead of

using a model trained on the zeroth round, we retrain the model for each of

the 30 rounds.

4.3.3.3 Random

Random represents a setup with a random Active Learning query strategy. This is

compared to other query strategies used in our Active Learning setup.
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4.3.4 Data Augmentation

4.3.4.1 Introduction

In most anomaly detection setups, there are significantly more labels for the normal

class than the anomaly class. This leads to a class imbalance problem. Machine

learning algorithms struggle to achieve optimal performance with imbalanced

classes. To mitigate this challenge, we apply data augmentation in 2 ways:

1. To upsample the minority class (the anomaly class).

2. To act as a regularizer and help reduce the risk of overfitting .

Data augmentation also slightly modifies the images leading to increased diversity

in the samples. An increased diversity in the data can be intuitively interpreted as

more data which helps improve the generalizability of the model. For our setup, we

employ two types of augmentation techniques. In choosing these techniques, we

ensure that the semantic information in the anomalies is not completely deformed.

For example, changing the color of a sunflower as a data augmentation technique

might alter the semantic meaning of what a sunflower is known to look like and

hence might confuse the network. In the subsequent sections we explore these

augmentation techniques.

4.3.4.2 Basic Data Augmentation

We apply affine transformation techniques such as rotation, translation, scaling and

shearing using the implementation in the Pytorch framework (Paszke et al.,

2019).

To upsample the minority class, we choose samples from the minority class and

randomly apply any combination of the above transformations to it. The goal here

is to generate as many images from the minority class that balances the total

number of images in the major class for each round of training. The random

selection of the transformation (augmentation) technique ensures that the final
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images are not uniformly sampled from the same augmentation.

4.3.4.3 Mixup

Mixup (Hongyi Zhang, 2018) is a data augmentation technique that combines

random images in a batch according to some predefined weights as shown in Figure

4.7.

Figure 4.7: Mixup with λ = 0.5 applied on an image of a dog and an image of a cat
(Khatua, 2020).

Given two images, (xi, xj) with labels (yi,yj), an augmented example is generated as

follows:

x̂ = λxi + (1− λ)xj (4.1)

ŷ = λyi + (1− λ)yj (4.2)

We applied mixup in our experiment to upsample the minority class.

77



4.3.5 Summary of Parameters

4.3.5.1 Summary of Experiment Parameters

Experimental Parameter Value

Number of Epochs 20

Optimizer Stochastic gradient descent

Batch size 64

Learning rate 0.01

Momentum 0.5

Loss Functions Categorical crossentropy, IsoMax∗, Focalloss∗

Table 4.2: Information in this table represents some training parameters and hyper-
parameters. All experiments unless explicity stated use the Categorical crossentropy
as loss functions. The loss functions in asterisks are studied to evaluate their effects
on our setup.

4.3.5.2 Summary of Model Architecture for Each Dataset

We choose our architecture based on the complexity of the dataset.

Dataset Architecture

MNIST Custom CNN (see Appendix A1.1.1)

CIFAR-10 Custom CNN (see Appendix A1.1.2)

Galaxy Zoo ResNet-18 (He et al., 2015a)

Table 4.3: In both MNIST and CIFAR-10, we use a custom architecture consisting
of convolutional layers for feature learning and Linear layers for prediction. This
choice is resonable given the relative size and complexity of both datasets. However,
in Galaxy Zoo, we use the default ResNet-18 architecture from Pytorch (Paszke et al.,
2019). We chose ResNet-18 instead other ResNet variants like ResNet-152 due to a
lack of computational resources.
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4.4 Results and Discussion

The results from our experiments show that Ahunt deforms the features space to

significantly improve anomaly detection. In Figure 4.8, we compare Ahunt to

Isolation Forest on the raw image (iforest-raw) and Isolation Forest on the latent

features from a neural network (iforest_latent-learning). We compare the

improvement of the MCC score over 30 Active Learning rounds. The MCC score

was chosen due to the highly unbalanced nature of the datasets given that the

anomalies were few in each case. The solid curves represent the mean of the MCC

over all the runs in each active learning round. In MNIST and CIFAR-10, the MCC

is computed for 20 randomised runs in each round while Galaxy Zoo is computed

for 10 randomised runs due to a lack computational resources. The error bars

represent 68% regions over these runs.

Even though all 3 algorithms start poorly, iforest_latent-learning and Ahunt

gradually improve with the feedback from the Oracle in each round. iforest-raw

does not improve throughout the 30 rounds.

It is interesting to note the performance improvement of iforest_latent-learning as

against iforest-raw - same algorithm but different features. The features used in

iforest_latent-learning are extracted from the learnt representations of a neural

network making them standout for anomaly detection.

In MNIST and CIFAR-10, we extract the features from the 64-dimensional layer of

the network (see Appendix A1.1.2 and A1.1.1). We observe that, in general, layers

with lower dimensions perform better than those with higher dimension.

Ahunt outperforms both algorithms on MNIST, CIFAR-10 and Galaxy Zoo as

shown in Figure 4.8. It learns the features in an end-to-end fashion along with the

anomaly score as described in Section 3.4.3. Ahunt rapidly learns to identify

anomalies in the case of MNIST and CIFAR-10 achieving an MCC score of 0.8 by

round 15 in both cases. In Galaxy Zoo, the learning is gradual. This can be
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Figure 4.8: Comparison of Isolation Forest and Ahunt across 3 datasets - MNIST,
CIFAR-10 and Galaxy Zoo. iforest-raw represents Isolation Forest trained on the
raw pixel data while iforest_latent-learning is Isolation Forest applied to features
extracted from a trained model at each round. The error bars in MNIST and CIFAR-
10 corresponds to 68% of regions computed for 20 randomised runs at each active
learning round while the solid curves represent the mean of the MCC for the 20 ran-
domised runs at each active learning round. Due to the computational requirements
needed to run the experiments on Galaxy Zoo, the regions (68%) were computed on
10 randomised runs for each round. In all cases, Ahunt outperforms both iforest-raw
and iforest_latent-learning. The performance boost is explained by the evolution of
the feature space from one round to the next in Ahunt. iforest_latent-learning is
similar to iforest-raw except that its features are evolved from one round to the next.
This explains its superior performance to iforest-raw and also shows the effectiveness
of evolving the features even while still using iForests.

attributed to the complex nature of the anomalies in the Galaxy Zoo dataset.

The performance of Ahunt and iforest_latent-learning shows that, deformation of

features in the latent space significantly improves the outcome of anomaly

detection. This is in line with our first research question where we seek to learn a

model of the dataset which makes anomalies standout and improve the anomaly

detection outcome.

Figure 4.8 shows that Ahunt massively outperforms iforest-raw. In a forthcoming

work (A. Vafaei-Sadr, B.Bassett, E.Sekyi, 2022, in preparation), we show that Ahunt

also significantly outperform a static active learning algorithm such as the one used

in Astronomaly Lochner and Bassett (2021). This observation emphasizes the value of

learning the features dynamically.
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Given the superior performance of Ahunt and iforest_latent-learning, it is

important to study the changes in the feature space that make this possible. In

section 4.4.0.1, we’ll examine how the latent space evolves with each round and how

this aids in anomaly detection.

4.4.0.1 Latent Space Evolution Over 30 Rounds

Using reductions from UMAP (McInnes et al., 2018), we visualize how the feature

space is deformed over the 30 rounds to improve anomaly detection.

Figure 4.9: Visualization of Ahunt’s dynamic latent space over 30 rounds of Active
Learning using UMAP reductions on the MNIST dataset. We visualize features from
round 1, 15 and 30. This diagram explains how deformation of the latent space grad-
ually lead to separation of anomalies from the normal class and thereby improving
the anomaly detection outcome.

In round 1, the anomalies, indicated in deep blue dots, are tightly coupled with the

two normal classes. By round 15, a cluster of anomalies begin to form with few

anomalies still coupled with the normal classes. Here, the feature space begins to

adapt to the nature of the anomalies.

As the network receives more feedback from the Oracle, the anomalies are

completely separated from the normal class 2 (indicated in beige ) as seen in Round

30 in Figure 4.9. The anomalies form an even larger cluster separated from the two

normal classes as shown in Appendix A1.2.
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Now that we have explored how Ahunt deforms the feature space to separate the

anomalies from the normal class, it is important to understand how different choice

of parameters and hyper-parameters affect the performance of Ahunt. Section 4.4.1

explores how different loss functions affects the performance of Ahunt.

4.4.1 Effects of Loss Function on Anomaly Detection

In this section, we explore how different loss functions affect the performance of

Ahunt . Different loss functions can lead to different amounts of tightness of

clustering of the known classes, which in turn can make anomaly detection easier or

more difficult. We compare 3 loss functions, namely:

1. the standard SoftMax (Liu et al., 2016). Please note that, this SoftMax is

different from the Softmax Activation function discussed earlier. The SoftMax

refers to a training setup where both the Softmax Activation function and the

cross-entropy loss are used.

2. the Focal loss (Lin et al., 2017).

3. the IsoMax loss (Macêdo et al., 2019).

The Focal loss function was designed to help deal with situations with large class

imbalance, as typically seen in anomaly detection. The focal loss adds a modulating

factor, (1− pt)γ, to the cross entropy loss. The resulting equation becomes:

F(pt) = −αt(1− pt)
γ log(pt) (4.3)

where pt is the predicted class probability of a data instance while γ is a tunable

hyper-parameter which adjusts the rate at which easy examples are down-weighted.

The α parameter assigns weights to the various classes with the minority class

receiving higher weights. Results from Lin et al. (2017) shows that a γ = 2 produced

the best results hence we use this in our experiments. We also assign α according to

the ratio of the normal vs the anomaly class per each round of active learning (see
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Table 4.1 for the exact values).

The IsoMax loss function was specifically designed for anomaly detection.

Intuitively it works by increasing the intra-class compactness and inter-class

separability of features in the latent space. The IsoMax loss is defined as:

LI(ŷ
(k)|x) = − log

(
exp(−d(fθ(x),pkφ))∑
j exp(−d(fθ(x),p

j
φ))

)
(4.4)

where fθ(x) represents the feature vector associated with some input data x, pjφ

represents a learnable prototype associated with a class j (which is the anomaly

class) and the function d represents a non-squared euclidean distance. In addition,

ŷ(k) represents the true class label of a normal class.

Figure 4.10: This figure compares 3 different types of loss functions; SoftMax, IsoMax
and Focal loss functions. The comparison is done for a case where there is only one
type of anomaly present (left) and a case where there are multiple groups of anoma-
lies in the dataset (right). The SoftMax slightly outperforms in the single anomaly
case but the IsoMax loss shows superior performance when there are multiple groups
of anomalies present. The error contours correspond to 68% of regions computed for
20 randomized runs at each active learning round. The solid and dashed curves (in
the case of Ahunt) represents the mean MCC score for all the runs in each round.

We explore the impact of the following loss functions in 2 scenarios on the

83



CIFAR-10:

1. the case where only one class of CIFAR-10 is chosen as the anomaly class, e.g.

the dog class.

2. the case where 8 different CIFAR-10 classes are lumped together to form a

heterogeneous anomaly class.

As illustrated in the Figure 4.10, there was no considerable difference between the

performance of the SoftMax and the IsoMax loss in the case where there is a single

class of anomalies.

However, in the heterogeneous case (where there are multiple anomaly sub-classes),

the IsoMax outperforms both the SoftMax and Focal loss functions. This is expected

since in this case, there will be several prototypes produced in the feature space and

the model’s ability to keep the learned features compact will influence the ease of

detecting anomalies. In other words, there will be less overlap between the different

sub-classes in the feature space due to the compactness introduced by the IsoMax

loss.

It is important to note the performance of the focal loss. In our setup, we balance

the anomaly class by rigorously up-sampling it using data augmentation

techniques. This helps get around the class imbalance problem and hence the full

effect of the focal loss isn’t shown. We expect the focal loss to exhibit better

performance in the absence any form of upsampling technique.
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CIFAR-10 Dataset Normal Classes Anomaly Class

1 Anomaly sub-class airplane, bird dog

8 Anomaly sub-classes airplane, bird (automobile, cat, deer, dog, frog, horse, ship, truck)

Table 4.4: This table contains information on the homogeneous (1 anomaly sub-class)
and heterogeneous (8 anomaly sub-classes) scenarios used in studying the loss func-
tions. In the homogeneous class, we choose the dog class to represent the anomalies.
The heterogeneous class consists of lumping 8 different classes into a single class
to represent the anomalies. This intuitively increases the difficulty of the anomaly
detection problem which is more representative of the problems encountered in the
real world.

4.4.2 Active Learning Strategies

Having shown that Active Learning significantly improves anomaly detection a

natural extension is to explore the effect of different active learning strategies on

performance. As discussed in Section 2.6.3, there are different Active Learning

Query strategies. The Query Strategies describe the ways in which the

informativeness of the unlabelled instances are evaluated. This is used to assess

which images are shown to the Oracle.

In our experiments, we explore 3 main query strategies namely:

1. Most Anomalous: This describes a case where we simply select the SoftMax

probability scores of the anomaly class, rank them in decreasing order and

select the top-n most anomalous scores. The top-n are shown to the Oracle for

feedback.

2. Most Uncertain: An uncertainty index is defined for the anomalies and the

top-n anomalies with the highest uncertainty index, pi, are selected to display

to the Oracle. The uncertainty index is given by:

pi = 1− 2|pc − 0.5| (4.5)

where pc is the Softmax probability of the anomaly (reserved) class. In an ideal
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case, if a model is uncertain about an input data point, we expect it to spread

the Softmax probabilities across all the known classes that is 0.5 to the

anomaly class and 0.5 to the normal class. If that happens, then we have a

perfectly uncertain prediction in which case pi is 1.

3. Random: The random query strategy chooses a random subset of the

unlabelled instances to show to the Oracle.

Figure 4.11: Plots showing the effects of Active Learning query strategies in a scenario
where there is one anomaly sub-class (indicated on the left) and the case where there
are multiple sub-classes of anomalies (indicated on the right). The random query
strategy was relatively poor in both scenarios, as expected. The Most Anomalous
exhibited better performance in the one anomaly sub-class setting but was outper-
formed by the Most Uncertain query strategy in the more complex scenario where
there were multiple sub-classes of anomalies.

In general, we expect the Random query strategy to be the least efficient. This is

consistent with results from the two scenarios shown in Figure 4.11. A more

interesting observation is the performance on the Anomalous and Uncertain query

strategies in the single sub-class anomaly case (left) and the multiple sub-class

anomaly case (right).

In the 1 Anomaly Sub-class, the Most Anomalous query strategy outperformed the
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Most Uncertain query strategy. This was in contrast to the case of the 8 Anomaly

sub-classes where the Most Uncertain exhibited better performance. Conceptually,

the Most Anomalous strategy captures the best prototypes of a particular class of

anomaly. This makes it suitable for identifying that specific group of anomaly as

seen in the case of the 1 Anomaly Sub-class.

The Most Uncertain query strategy helps the model by teaching it about the

examples it is most uncertain about. This related to how learning occurs in humans

where we give attention to the most challenging topics. Since the 8 Anomaly

sub-class scenario introduces a more heterogeneous dataset, the Most Uncertain

query strategy helps the Oracle to provide feedback about the examples it is most

uncertain about and hence showing a better performance over the Most Anomalous

query strategy.

Therefore in scenarios with a heterogeneous set of anomalies, the Most Uncertain

query strategy is likely to exhibit better performance than the Most Anomalous

query strategy. When the anomaly class is more homogeneous, the Most

Anomalous query strategy will likely offer the best performance.

4.5 Summary

In this chapter, we discuss the details of Ahunt - an algorithm to deform the

features of images to enhance anomaly detection.

Our experimental setup starts with a CNN which has n normal classes and 1 extra

class reserved for the detected anomalies. The goal is learn in rounds of active

learning on some labelled training set. The rounds of active learning can be broken

down into the following steps:

1. We train a model on some labelled data.

2. We test the resulting model on a pool of unlabelled dataset containing

anomalies.
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3. Using an active learning query strategy (see discussion in section 2.6.3), we

select a small subset from the the unlabelled pool to be shown to the Oracle (a

human Expert).

4. The Oracle labels few examples. The labelled examples are added to the

training set. Any anomalies found is assigned to the reserved class.

The experiment is repeated over 30 rounds of active learning.

We test Ahunt on 3 datasets - MNIST, CIFAR-10 and Galaxy Zoo. While MNIST is a

simpler dataset (a 2D representation of handwritten digits), CIFAR-10 and Galaxy

Zoo offer a wide range of diverse real world objects with the later containing

galaxies labelled as odd (likely anomalies). Ahunt is compared to two cases of

Isolation forests (iForest):

1. iforest-raw: Isolation forest applied to the raw pixel data

2. iforest_latent-learning: Isolation forest applied to features extracted from each

round of active learning.

Results from all the datasets show that, Ahunt consistently outperforms the two

cases of iForest. Another interesting observation is that iforest_latent-learning also

consistently outperforms iforest-raw. This can be attributed to the evolution of the

features across the active learning rounds in both Ahunt and iforest_latent-learning

unlike iforest-raw where the features are fixed across the rounds. This is explored

further by using UMAP reductions to visualize how the features in Ahunt evolve

over the 30 rounds. It was shown that, the classes were gradually separated across

the rounds and by round 30, there were 3 clear clusters: 2 representing the normal

classes and 1 for the anomaly class. This goes to assert the claim that, the evolution

of the features makes the anomalies stand out thereby improving anomaly

detection.

We proceed to explore how various loss functions affect the performance of Ahunt.

We consider two cases. In one case, we assume homogeneity in the anomaly class.
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This is achieved by selecting one class from the CIFAR-10 dataset as the anomaly

class. In the second case, we combine 8 CIFAR-10 classes into a single class to

assume a heterogenous anomaly class. In both cases, we still maintain 2 normal

classes chosen from the CIFAR-10 dataset. We test both cases across 3 loss functions

namely:

1. SoftMax loss

2. Focal loss

3. IsoMax loss

Our results show that, all three loss functions exhibited similar performance in the

homogeneous case but the SoftMax loss performed slightly better. However, in the

heterogenous case, the IsoMax exhibited superior performance.

Finally, having demonstrated the effectiveness of active learning, we proceed to

examine the impact of query strategies on our setup. We examine 3 query strategies

namely:

1. Most Anomalous: The samples the model classifies as the most anomalous is

shown to the Oracle to label.

2. Most Uncertain: We select the samples which the model is most uncertain of

for the Oracle to label.

3. Random: We randomly select samples for the Oracle to label.

We compare these query strategies for experiments run across the homogeneous

and heterogeneous cases described in the preceding paragraph. We observe that the

Random query strategy was outperformed by the other two query strategies.

However, the Most Anomalous query strategy exhibited superior performance in

the homogeneous case while the Most Uncertain performed better in the

heterogenous case.
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5 | Conclusion and Future Work

This Chapter summarizes the key findings in relation to our research aims and

objectives. We discuss both the contributions and limitations of this work. Finally,

we recommend research directions for future work.

The aim of this thesis was to test whether dynamically learning features that make

anomalies stand will improve anomaly detection. We learnt these features using a

convolutional neural network. In particular, we use an Active Learning framework

to provide useful feedback to help the DNN learn interesting features for anomaly

detection.

We chose the MNIST, CIFAR-10 and Galaxy Zoo datasets to test out the

performance of our algorithm, Ahunt. Ahunt outperformed all the comparison

algorithms on all three datasets.

Furthermore, we examined how the feature space deforms with each round of

training. Our visualizations using UMAP show that, the learned features of the

anomalies are gradually separated from the normal class as the number of rounds

of training increases. Intuitively, this makes it easy for anomaly detection algorithms

to identify the anomalies in the dataset.

To better understand why Ahunt works and its limitations we studied how

components like the loss functions affect its performance. We simulate two

scenarios to test this out. In the first scenario, we assume the presence of only one

type of anomaly. This can be viewed as a homogeneous case where all the

anomalies are semantically similar. In the second scenario, we assume the existence

90



of different types of anomalies. This can be viewed as a heterogenous case which

makes the detection of the anomalies more challenging. We tested out the SoftMax,

IsoMax and Focal loss functions in both scenarios. Results from our work show that,

if the anomaly detection setup is heterogenous, the IsoMax loss functions offers

better performance.

In line with our goal of using an Active Learning framework, we tested out 3

different query strategies - Anomalous, Uncertain and Random. These tests we

carried out using the two scenarios highlighted in the previous paragraph. Our

results show that, in complex anomaly detection setups with different types of

anomalies, the Uncertain query strategy offers superior performance.

Unlike in most anomaly detection setups, where a static feature extractor is used,

results from Ahunt show that, dynamically learnt features improve the outcome of

anomaly detection. Active Learning helps to incorporate useful expert feedback into

the model and the choice of Active Learning query strategy affects the performance

of the model and hence the result of anomaly detection.

5.1 Future Work

Despite the performance boost shown by Ahunt, we believe there are some

directions worthy of exploration. Some potential directions are as follows:

1. Better Data Augmentation Strategies: In Ahunt we use basic data

augmentation techniques such as rotation and zooming to upsample the

minority (anomaly) class. The limitation of this approach is that, the images

generated are semantically very similar. This could hinder the resulting

model’s ability to learn and detect new types of anomalies. A more nuanced

upsampling technique like using diffusion models and transformers to

generate new types of data samples might lead to a more diverse anomaly

class which in turn improves the quality of features learnt for anomaly

detection.
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2. Creative transfer learning techniques: Our current setup retrains the model

after each round. This allows the model from the previous round to

incorporate the Oracle’s feedback in the current round. Unfortunately, training

is computationally expensive especially in situations where both the

dimensions and the volume of data are huge. An interesting question to

explore is, can we apply transfer learning to such scenarios? Typically, transfer

learning approaches freeze the feature learning part (some of the hidden

layers) of the network and trains on the fully connected part to make

predictions. However, freezing the feature learning part is sub-optimal since

the goal here is to learn features that makes it easy to distinguish the

anomalies from the normal class. Approaches such as (Liu et al., 2021) offer an

interesting alternative to the traditional transfer learning approach.

AutoFreeze uses an adaptive approach to determine which part of the network

can be frozen. This makes room for training parts of the feature while

simultaneously freezing other parts which do not help improve the model.

This feature is desirable in the anomaly detection setup because it makes room

for the model to adjust the feature space to capture new types of anomalies

without necessarily re-train the whole network.
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A1 | Appendix

This Appendix covers extra details about our choice of architecture for training and

the full results of visualizing the feature space over 30 rounds of training.

A1.1 Custom Model Architectures for MNIST and CIFAR-

10

We use the Pytorch framework (Paszke et al., 2019) for defining our model

architecture in all experiments. The layers of the model are defined by inheriting

from the torch.nn module.

It is important to note that Pytorch initializes both the nn.Conv2d and nn.Linear

layer with the Kaiming initialization (He et al., 2015b).

A1.1.1 Model Architecture for MNIST

1

2 import torch.nn as nn

3

4 class NetMNIST(nn.Module):

5 def __init__(self):

6 super(NetMNIST , self).__init__ ()

7 self.conv1 = nn.Conv2d(1, 32, 3, 1)

8 self.conv2 = nn.Conv2d (32, 64, 3, 1)

9 self.dropout1 = nn.Dropout2d (0.25)

10 self.dropout2 = nn.Dropout2d (0.5)
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11 self.fc1 = nn.Linear (9216, 64)

12 self.fc2 = nn.Linear (64, 3)

13

14 def forward(self , x):

15 x = self.conv1(x)

16 x = F.relu(x)

17

18 x = self.conv2(x)

19 x = F.relu(x)

20

21 x = F.max_pool2d(x, 2)

22 x = self.dropout1(x)

23 x = x.view(x.size (0), -1)

24 x = self.fc1(x)

25 x = F.relu(x)

26 x = self.dropout2(x)

27 x = self.fc2(x)

28

29 output = F.log_softmax(x, dim=1)

30 return output

Listing A1.1: The model architecture for MNIST consists of 2 convolutional layers as

well as some dropout and Linear layers

A1.1.2 Model Architecture for CIFAR-10

1

2 import torch.nn as nn

3

4 class NetCifar(nn.Module):

5 def __init__(self):

6 super(NetCifar , self).__init__ ()

7 self.conv1 = nn.Conv2d(3, 6, 5)

8 self.pool = nn.MaxPool2d (2, 2)

9 self.conv2 = nn.Conv2d(6, 16, 5)
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10 self.fc1 = nn.Linear (16 * 5 * 5, 120)

11 self.fc2 = nn.Linear (120, 64)

12 self.fc3 = nn.Linear (64, 10)

13

14 def forward(self , x):

15 x = self.pool(F.relu(self.conv1(x)))

16 x = self.pool(F.relu(self.conv2(x)))

17 x = x.view(-1, 16 * 5 * 5)

18 x = F.relu(self.fc1(x))

19 x = F.relu(self.fc2(x))

20 x = self.fc3(x)

21

22 output = F.log_softmax(x, dim=1)

23 return output

Listing A1.2: This architecture is very similar to the one defined for MNIST except

for that fact it takes in a 3 channel input since the CIFAR-10 dataset consists of 3

channels.

A1.2 Visualization of Feature Space over 30 rounds

In Section 4.4.0.1, we discussed how the feature space evolves over 30 rounds.

Figure 4.9 is a visualization of a UMAP reduction for round 1, 15 and 30 based on

the CIFAR-10 dataset. This Appendix presents the full visualization from round 1 to

30.

Uniform Manifold Approximation and Projection (UMAP) (McInnes et al., 2018) is a

dimension reduction technique. It is similar to t-SNE (van der Maaten and Hinton,

2008) in that it can also be used for visualization.

The UMAP algorithm consists of two parts:

1. Learning the structure of the manifold in high dimensional space: In this step,

the algorithm finds the nearest neighbours using the
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Nearest-Neighbor-Descent algorithm (Dong et al., 2011). It then construct a

graph connecting the points to their nearest neighbours.

2. Finding a lower dimensional representation of this manifold: Here, the

algorithm allows the user to specify a minimum distance between the points

identified in step 1. This controls the spread of points in the lower dimensional

space.

In our experiment, we extract a 64 dimensional vector from the feature space in each

round of training. The vectors represent the learnt features from the input images.
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Figure A1.1: UMAP reductions for 30 rounds of training. In each round, there is
a gradual separation of the anomalies (indicated in the deep blue dots) from the
normal classes. This goes on until round 30 where the anomalies form a cluster
and are completely separated from one of the normal classes (indicated in beige). It
is also worth noting that, by round 30, there were fewer anomalies tightly coupled
with the light blue dots (the other normal). A greater separation of the classes in the
latent space indicates a separation of features which in turn helps with identifying
anomalies.
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