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ABSTRACT

It is widely accepted that the finite size of the hadrons must be taken
into account in a thermodynamic description of the hadron gas near the
phase transition to quark gluon plasma. Existing thermodynamic models
introducing a -correction due to the finite size of the particles are
reviewed and discussed. A new model to describe dense nuclear matter is
developed. The model takes into account the different quantum statisti-
cal distributions of the hadrons. The grand canonical pressure partition
function is used.to obtain the thermodynamic Timit. The grand canonical
partition function is restricted so that only those states where the
extended particles fit into the volume of the system, are counted. The
configuration space is reduced accordingly. The hadrons are described as
MIT bags. The size of the particles depends on the pressure in the
system. The pressure in the system compresses the hadrons which leads to
an increase of the mass of the hadrons according to the MIT bag
equation. The size of the particles is determined by the minimum of the
grand canonical potential. A consistent thermodynamic theory is
obtained. The equation of state for hadronic matter is discussed for the
special cases, zero temperature and zero chemical potential, before the
genera]icase of finite temperature and finite chemical potential is used
to construct a first order phase transition from hadron gas to quark
gluon plasma. At high densities the influence of the description of the
hadrons as MIT bags becomes significant. It is found that the phase
transition is strongly dependent on the value chosen for the bag con-
stant and the app]ication of @ corrections. Therefore a reliable value
of the bag constant and a generally accepted theory for a corrections
are essential to. obtain a good thermodynamic description of the phase
transition from hadron gas to quark gluon plasma.



NOTATIONS
Abbreviations used throughout this thesis:

In equations:

B = r=el =P g-pp

—|—

If there is a double sign + or ¥ the upper sign refers to Fermi-Dirac
statistics and the lower sign to Bose-Einstein statistics.

The size of the particles (hadrons) is described by the small letters
"r" and "v". This notation is different form the definitions used in the
bag models where capital letters are assigned. The change is necessary
because in the thermodynamic description "V" is the size of the whole

system.
In the text:
QGP = Quark gluon plasma HG = Hadron gas
EOS = Equation of state - QCD = Quantum chromodynamics

- "e-correction” 1is used as a abbreviation for the proper volume correc-
tion used in [34-37] (see also note at end of Ch.(2.3)).

When talking about the pressure ensemble the grand canonical pressure
ensemble is meant throughout.

Thermodynamic mean values are in general not specially marked.
The units are chosen so that: /% =c =k =1

Useful constants to convert the units are:

hc = 197.33 MeV fm
- 2.997 10°° fm/s
- 6.58 107" MeV s
kg= 8.617 107" Mev/K

Vo= 0.16 1/fm’
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1. INTRODUCTION

Collision experiments in nuclear physics are done at increasing energies
and with heavier projectile nuclei [1-6]. During the collision an area
with a high density, compared to normal nuclear density, is created. In
this dense region (called a "fireball"), particles and antiparticles are
created in pair production processes from part of the kinetic energy
brought into the system. A new state of matter, "quark gluon plasma"
(QGP), is expected to form if the energy density is high enough. The new
phase is a prediction of quantum chromodynamics (QCD). In normal nuclear
matter, quarks and gluons are confined inside the hadrons. In the QGP
the hadrons dissolve. The movement of the quarks is no longer restricted
to the inside of the hadrons.

It is also expected to find the QGP in the center of cold neutron
stars [7-9]. For the description of such stellar objects it is essential
to know the equation of state of nuclear matter for high densities and
the conditions which lead to the phase transition. The observed mass and
radius of neutron stars cannot be explained by an ideal gas model.
Taking into account the finite size of the particles [10] or repulsion
between them [9,11] Teads to an improved description.

Another application of the EOS for dense hadronic matter is in the

evolution of the early universe [12-14]. The early universe was very hot
and dense. Initially it was a QGP. During the expansion the temperature
dropped. A phase transition to dense hadronic matter occured. The tran-
sition time and the further evolution of the universe are strongly
dependent on the equation of state of nuclear matter.
Thermodynamics is a well established theory dealing with many-particle
systems [15-20]. Instead of an equation of motion for every particle we
have an equation of state (EOS) which describes the behaviour of the
whole system. The features of the components (for example: mass, volume,
charge, magnetic moment, interactions) are still important, but not the
path and momentum of every single particle. A good thermodynamic
description is obtained'if the system has so many possible states that
one configuration exists which has a very high probability compared to
all other possible configurations. In addition the system must be in
local thermal, chemical and mechanical equilibrium which means that it
is possible to define a Tocal temperature T and a chemical potential pu.



The main subject of this work is the EQOS of dense hadronic matter and
the influence of the volume of the constituents (hadrons) on the EOS.
The finite size of the hadrons is expected to be of major importance at
high densities [21-24].

An illustration df the thermodynamic picture used is shown in fig,(l.l).

I The system is imbedded in a tem-
" \ perature and particle bath which
T 0@ @@@@ @l has the pressure P. The particles
® p®®®®® @© of the "gas", i.e. the hadrons, are
9 @ ®[V(N)@ ®@®@ MIT bags with a volume v. The
@ ®@® hadrons can be baryons and mesons
C)éagig)ESESYS;:BC)(D as well as their antiparticles. A
0o®o®® 0e°® 0 0 grand canonical description is

chosen to allow for particle crea-

Fig. 1.1: Thermodynamic picture of

dense hadronic matter used tion and annihilation.

I will start with the ideal gas description to introduce the ther-
modynamic notation used throughout the thesis. This is followed by a
review of the most important volume corrections found in the literature.
Most of these models are restricted to special conditions like a single-
component system or a gas obeying Boltzmann statistics. The ."excluded
volume correction" 1is applicable to nuclear matter. The problem of the
maximum number of finite size particles in a given volume does not occur
because a special boundary condition ("unusual boundary condition") is
introduced. In the new model this problem is solved without the unusual
boundary condition. The new model is applicable to multi-component sys-
tems and accounts for the different quantum statistical distributions of
the components. The grand canonical pressure partition function is used
to obtain all thermodynamic quantities in the thermodynamic limit.

The special cases of a hadron gas at T=0 and p=0 are discussed
before the most general problem of a gas at finite T and g is tackled.
With the general EOS of hadronic matter a first order phase transition
HG-QGP is constructed. The dependence of the phase transition on the
mass of the strange quark, the bag constant and on first order @, cor-
rections is discussed. The main results are highlighted in the
conclusions and suggestions for further improvements are made.



2 LITERATURE REVIEW

2.1 The ideal gas

An ideal gas is a gas of pointlike non-interacting particles. Under
these conditions the quantum mechanical problem to determine the energy
levels En of the gas simplifies to determine the energy levels sj of a
single particle. All possible sums of energies of the various particles
lead to the ehergy levels En of the gas. For comparison, I will review
the derivation .of the grand potential for fermions and bosons starting
from the grand canonical partition function Z of a gas consisting of one

kind of particle.
(2.1)

where X = eu/T is the fugacity and ZN is the N-particle partition func-
tion, or the canonical partition function.

-BE{n.}
ZN = 2 e J
{"j}

(2.2)

with B8

1

T .

The Kronecker-delta, Si j? restricts the sum over all configurations
b

(nj} so that only configurations with N particles are counted
Y ,
N= 3 n, . _ (2.3)

A configuration is described by the number of partic]és in each energy
level, e.g. (0, 1, 0, 1, 0 ... 0} describes a configuration with two
particles, one in the second excited state, n,=1, with the energy ¢, and
one in the fourth excited state, n,=1, with the energy ¢,. A1l other n.

J
are unoccupied.

The energy of one configuration is:

10
E = 3 n, e, (2.4)
(nj} je1 d 4
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Inserting eq.(2.4) in eq.(2.2), then eq.(2.2) in eq.(2.1) and using
eq.(2.3) to substitute the particle number N in eq.(2.1), one gets,
after rearranging the terms,

«©

© ‘B JE] nj (Ej'ﬂ) ©
Z=3 3 e I (2.5)
' N=0 {nj} ! =

Because the sum over {nj} is independent of the particle number N, the
Kronecker-delta yields

—B z no (£ '_I‘)
j=1 J °J
= 2 e . (2.6)
{nj}

Writing out the sums gives

K -Bn, (€,-1) X -Bny(€,-1) K -Bn.(£;-p)
= 3 e - I e . e I
n1= n2= n =0 !
K -Bn.(e.-u)
) n[ s e 44 ] (2.7)
j l"lj=0

For Fermi particles k=1 because only one particle is allowed in each
energy level (if the energy levels are not degenerate). This leads to

I . = n[ S e ]
Fermi j n.=0
J
° .
2 1In [ 1+ e Blegm)
‘B(Cj'ﬂ) j=1
=11 [ 1+e ] = e . (2.8a)

J

For Bose particles there is no restriction as to the number of particles
per energy level. Therefore x+~ and the sum in the brackets in eq.(2.7)
is a geometric progression (provided u < 0).

o -Bn(c.n)
; =n[ s e 93 ]
ose s

J nj=0



©
-2

[ e ]_1= ; n { 1 - e-BlesH)

1

. (2.8b)

D

In order to relate the independent sums eq.(2.8) to c]éssica] energies
E, the sum over all possible states becomes an integral over all phase

space.
S |
3 = vg|-Lh | (2.9)
j (21)

where g is the degeneracy factor. The grand canonical partition function
reads: '

e
Vg —Q—Eg In [ 1+ ¢ B(E-R) ]

(2m)

IOV, T W) pops = € (2.10a)

i 3
Vg | 4By [ ] - o B(E-n) ]

(2m)

Z(V,Toi)gose = © (2.10b)

If the gas consists of different kinds of particles, the partition func-
tion Z of the whole system is the product of the partition functions Zk
for each component. 1

Z(V’T’l‘) = I Zk (V’T’l‘)
k

-+

e BLE Ay ]

d Py
vV g, 3 In [ 1
e (2n)

k

-+

d
V3 tg, J Pk 1 [ 1+ e BECH) ]
o K (27) (2.11)

where the upper sign refers to fermions and the lower sign to bosons.
The grand canonical potential 1 is defined as

Q(V,T,p) = - T 1n Z(V,T,n) . | | (2.12)



For the ideal gas, f is
3
d Py , ’B(Ek'ﬂk)
Q(V,T,u) = V T 3 7g, = In [ 1te ] . (2.13)
k (2n) -

The pressure P, number of particles N, entropy S and the energy E of the
gas can be obtained from @ by partial derivatives (strictly the mean
values).

_ a0
aT|V,u

on
avViT,u

_
au|v,T

| N

N = BIV,u

(2.14)
To arrive at a description which is independent of surface effects one
calculates these physical properties in the so-called thermodynamic
limit, viz. N+o , Voo while the particle density n = N/V stays finite at
a pre-assigned value. In this 1imit the extensive properties of the
system are directiy proportional to the size of the system V, while the
intensive properties become independent thereof. In the grand canonical
description it is sufficient to find the pressure P in the thermodynamic
1imit which can be obtained by

P =

= 1
v
n

(-]

m [ %] = Tim Lps (2.15)
© vV -
n = const

i
= const
A1l the other intensive properties are obtained by the:partial deriva-
tives of P = -fI/V in the thermodynamic 1imit. The particle density n,
~ the energy density ¢ and the entropy density s are

aP a\P _ a8

n = a_ulv,T = A ﬁ|v,T €= "58lv,u s =

o
] B2

. (2.16)

[~

V,u
. - v
Taking the thermodynamic limit for the jdeal gas is trivial because the
volume dependence cancels if we insert Z from eq.(2.11) in eq.(2.15).
This is not generally true as will become evident jn the following

chapters.
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2.2 The "excluded volume" correction

The so-called "excluded volume" correction is often used in the litera-

ture [21,24,25] because the resulting equations are easy to implement.

The basic assumption, called the "unusual boundary condition", is that

the available volume A (the volume which is accessible to the particles
with size v) is kept constant

A=V -SN v = V(-2 v N (2.172)
k- k
Ny |
or V=A+EMVK=M1+ETVH . (2.17b)

In this formulation all derivatives of A vanish and the volume V is
never entire]y‘fi1]ed'with particles because the total volume V changes
if more particles are added to the system. For the available volume A
everything 1is calculated as an ideal gas and the volume occupied by the
particles is added to obtain the volume V of the system. The grand
canonical potential Qex with the excluded volume correction is the same
as the potential Qid of the ideal gas, eq.(2.13) where V is substituted
by A

3 v
d Py °B(Ek'“k)‘
Q(A,T,p)eX =ATZ 9, J 3 In [1 te ] (2.18)
k (27)
Taking the derivatives with respect to B and By we obtain
a0 _
= . —&X - A -
Eo=- 38 |a,p=VEid =2%gq ~(2.19)
aﬂ i
- . _&X _ A - A.
M= T 18,77V Meid T A i (2.20)

Inserting the 1last : equation (2.20) in eq.(2.17b) we can rewrite the
unusual boundary condition, eq.(2.17b), as

V=A(1+ E nk,id vk) . : (2.21)

The pressure in the thermodyhamic limit is then obtained by A+ using
the unusual boundary condition eq.(2.21)



0 P,
P= Tlim B> U Ap = 1im id
A > o v A o V 'id Ao w 1+ E nk,id Vi
n = const n = const n = const
P.
id
= (2.22)
1+ E.."k,id Yk

The unusual boundary condition, eq.(2.21), used to calculate the energy
and particle density leads to very similar equations for these

quantities.
E £id
e=L& - (2.23)
v 1+ E nk,id vk
N n, .
k k,id
n =g = 2 (2.24)
k™ Vv 1+ E nk,id Vi

Note that the corrections to the ideal gas equation of state in
- eqs.(2.22-2.24) are the same. If we take ratios of these quantities, the
correction cancels and we get the same results as in the case of the
ideal gas, i.e. P/e¢ , ¢/n = E/N and also ni/nk are not changed in this
model .

2.3 Volume correction in the bootstrap model

A very interesting way of showing the existence of a phase transition
between HG to QGP is done by using the statistical bootstrap model.
Because I do not explicitly use this model, I only give a brief overview
with the basic assumptions, results and remarks relevant to my work. The
details can be found in refs. [26-32].

The basic assumption is that the complicated and as yet unknown interac-
tion (potential) between the particles is represented by the mass
spectrum T(mz,b), which describes the number of hadrons of baryon number
b in a mass interval dmz. Our current knowledge of this mass spectrum is
restricted to a few known hadrons and their resonances. If the mass
spectrum is known, the grand microcanonical level density in the
Boltzmann Timit is given by an invariant phase space integral.



@ | N N N 28 pf
o(p,V,b) = 3 s [p- 5 p.] s sK[b 5 bi] I L r(p;,b, )d ps
N-1 ! (03 “U 421 1 4=l (am)

(2.25)

where the particles can move in the "available volume" AR
K K N K
A" =V - 3 v, . ) - (2.26)

This volume A is kept fixed. This is nothing more than the "unusual
boundary condition" as presented in Ch.(2.2) written in a Lorentz in-
variant form. The grand partition function can be obtained from the
level density by

(]

2(8,V,) = 3 AD I -Bp (p,V;b) da'p . (2.27)

with X = exp(g/T) in the rest frame.

The "bootstrap postulate" is now used in order to obtain a self-
consistent mass spectrum 7. When a system of many clusters is compressed
until the volume is completey occupied by clusters, or when clusters are
added to a system of a fixed size until the volume is cohp]ete]y filled,
it is in itself an "elementary cluster". This leads to

o Vb |y, = H (D) | | (2.28)
1 .

where H 1is the "bootstrap constant". It also leads to the "bootstrap
equation" -;

N N
HT(p yb) = Hgb So(p -m ) + 2 6 (p- 21 P ) {E }6 (b 'El b.)
= 1=
N 2 4
.'Hl HT(pi’bi) d p;- (2.29)
1=

my and gy, are the mass and multiplicity of the lowest one-particle con-
tribution to the mass spectrum. Solving eq.(2.29) and interpreting the
clusters as Quark-Gluon bags with

v, = ﬁ% "(2.30)



leads to:

P v ‘
p-—B - -f§3~ ; ov=—2b (2.31)
-pt -pt pt
1+ 1+ 48 1+ 48

for pressure, energy and baryon density. Ppt , spt , th are given by

a4

Pt = - o 35 680
’ 2

: 2_ 9 4(8,2)

Pt (2m)’H a8

ot -Eﬁﬁx%%¢mn (2.32)

<
]

The function ¢(B,\) is defined as:

-8 p“q)
$(B,)): = J e B 3z b

b=-w

2 4
HT(pi’bi) dp (2.33)

and has to satisfy the implicit equation
0(B,)) = 2 ¢(8,)) - P(BsA) L - (2.34)

where ¢(B,)\) is defined as

@

r “B,p=
M&M=Je By b b
b=-w

2 2 4 ©
Hgbso(p - mb)d p=2aHT Z A

=-0

m
b
gbmbKILTJ
(2.35)

Solving eq.(2.34) Teads to a singular behaviour of ¢ along a curve in
the T-p plane. It is interpreted as the phase boundary of HG to QGP
because on the critical line:

£e+4 ; P-0 ; A-=0 (2.36)

i.e. the hadronic matter has formed one big cluster with the energy
density 4B.

Because the "volume correction" due to the finite size of the particles
is done in the same way as in the "excluded volume correction" Ch.(2.2),
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it is not surprising that again P/.E , E/V , ni/n are the same as for an
k

ideal gas.

The bootstrap model is formulated in the Boltzmann 1imit. To generalise
it to Fermi-Dirac and Bose-Einstein statistics is, in principle, pos-
sible but difficult and tedious. '

Equations (2.31) where Ppt’ spt, th is replaced by the expressions for
an ideal gas as described in Ch.(2.1) have been used in [33-37]. I will
do the same later, but only in order to compare the result and methods
in the mentioned articles. Because there 1is no motivation to use
eqs.(2.31) in a different context other than the statistical bootstrap,
I am very sceptical about doing so.

2.4 Ciuster Expansions

The method of the cluster expansion was developed by Mayer and his col-
laborators [38-40] (1937) and extended by Kahn and Uhlenbeck [41] and
later by Lee and Yang [42-52] (1959). Again, I will briefly outline the
method in order to properly discuss volume corrections to the EOS. I
will restrict myself to the grand canonical description of a classical,
single component gas obeying Boltzmann statistics. The extension to the
quantum mechanical system is already too complicated to show but is well
described in the literature mentioned above (see also [17,18,53]).

Under the assumption that the potential ‘energy is given by a two-
particle interaction u, the Hamiltonian of a classical system is

j’
=3 [—l pz] 03 ue. (i, =1,2 N) (2.37)
i 2m ] i<j 1J , ’ ’ o s @ , .

Inserting this Hamiltonian into the definition of the grand canonical
“partition function in the Boltzmann 1limit leads to

. © N .
N=0 " (27) :
© N _ '

- 3 & — f eXp{-Bz [%ﬁ p:]-B s ui.} aNp 3N . (2.38)
N=0 ™" (2n) i i<g Y ,
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For central forces between the particles, the potential u;

j only depends
on the relative distance i3 between them. ~
Standard choices for the potential u(r) are:

1. The hard core potential:

u(r) =+ o for r < o

u(r) =0 . for r > o ro = particle diameter (2.39)
2. The semi-empirical (6,12)-Lennard-Jones potential [54]

utry = 4e [ (@' - (©° ] | (2.40)

where ¢ and o are free parameters. This function has a minimum at

1/6

r.o =2 ) = -¢ . (2.41)

min o and u(r

min

where ¢ 1is interpreted as binding energy and Ymin 3 the particle

n
diameter.

In the simplifying case of central forces the integration over the
momenta of the particles in eq.(2.38) can be carried out and leads to

N 3 -B 2 u;.

. © =N R :
Z(V,Tow) = 5 [%%]2 J e 1077 3N, ) (2.42)

The main problem above 1is to solve the "configuration integrals" CN
defined as

-B 2 u.,. 8

S B -
Cy(V,T) = J e <7 BN (e

U. .
13y 3N (2.43)
i<j :

For non-interacting particles CN = J d3Nr = VN. In order to solve CN for

interacting particles the idea of the cluster expansion is to substitute
Uy by fij which is defined as

f.=e W_.j1 . (2.44)
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The function Fij is zero in the absence of interactions and equal to
minus one for an infinitely strong repulsion. Inserting fij and rear-

ranging the terms in eq.(2.43) yields

3

o 3
Cy(V,T) = | I (1+f, ) dry ... d7ry

i<J
[+ sf.+8f. fat..]dr ..y . (2.45)
_iJ ij k'l o o 0 1 e o 0 N . .
The 1ntegrals are interpreted as £ particle clusters. The integré]
f f d ry d rJ, for example, is a two-particle cluster (£=2) and
f f]J ik d ry d r d ry 3 three-particle cluster (£€=3) with an interac-
tion between part1c1e i and j and between j and k but not between i and
3 3 3 . )

f fij fik fjk d ry d rj d re is another three-particle cluster (£=3)
but here there is an interaction between particle i and k.

Rearranging the terms in eq.(2.45) according to the number of
| particles connected by an interaction i.e. according to £ and inserting
this into eq.(2.43) finally leads to the cluster expansion of the grand
canonical partition function ;

bt a2
IV, T,u) = T e &y [5—] (2.46)
2=1 n
with the "cluster integrals" bB defined by
1 (mr)2t¢-Y) |
be(V T) = fTV [Eﬁ] +(sum over all possible £ c]usters). (2.47)

For dilute systems it is assumed to be sufficient to také only the first
terms of the cluster expansion, i.e. to neglect the interaction between
many particles and to avoid the complicated multi-dimensional integrals.

The cluster integrals b2 can be related to the viria]-éxpansion of the
equation of state [55]

PNt [ 1+88m+ MHiem+ ... ] ; (2.48)

where B(T), C(T), ... are called second, third, ... virial cdefficient.
The second and third virial coefficients, for example, are



14

B(T)‘ -b

2

2

C(T) =4by-2b

3 (2.49)
Moreover it 1is possible, with further assumptions, to obtain a Van der
Waal’s type equation of state [56-58] '

2 .
(P+a 57) (V-bN) =NT f (2.50)

which is a frequently used interpolation formula to describe a two-phase
system. The parameters a and b have to be fitted to experimental data. A
simple equation of state can be obtained if the temperature dependence
of a and b is neglected. The interpretation of b as fou; times the par-
ticle volume can be used as an estimate of the order of b, but not to
determine its actual value (see note in Landau iand Lifschitz,
Statistical Physics, Pergamon Press, 3rd Edition, Part 1, Page 234).



15
3 THE MODEL

3.1 Motivation

Having reviewed the most common volume corrections found in the litera-
ture (Ch.(2)) their application to dense hadronic matter is discqssed.

The van der Waals equation of state (eq.(2.50)) derives its utility from
fits to experimental measurements. It is already constructed to describe
.a phase transition. With only two free parameters {t describes two
phases of a system of one species. However, the quantitative results of
the van der Waals equation are generally not very satisfactory and all
attempts to improve the equation were finally unsuccessful, mainly be-
cause they lacked a theoretical foundation (A. Miinster [16] page 492 and
references therein). For the purpose of describing dense nuclear matter
the van der Waals equation of state cannot be applied because there is
no reliable measurement of the equation of state to fit the free
parameters, neither do we expect a gas of one species only. The expected
density 1is too high to talk about a dilute system. The expansion in
virial coefficients and the cluster expansion are not valid for dense
systems. One of the main problems in these theories is to find the
proper interaction energy Uij between two particles and the non-additive
multi-particle interaction energy i.e. Uijk # Uij + Uik + Ujk‘ The ex-
tension to systems containing different particle species is complicated
because each particie species will have a different size. It is neces-
sary to distinguish between the interactions of the same type of
particle and all possible mixed combinations. Until now no attempt has
been made to tackle this problem because there are still other reasons
to question the results even if it were possible to calculate a suffi-
cient number of terms of the expansions. When calculating the grand
canonical partition function eq.(2.38) the sum over the, particle number
is not restricted. For finite size particles the sum should, however,
have an wupper limit so that states where the volume is overfilled with
particles are not counted. In the extended volume correction and in the
application of the bootstrap model to hadronic matter such a restriction
is avoided by wusing the unusual boundary condition.eq.(2.2) and by
changing the Tlimiting procedure to obtain the thermodynamic Timit
(eq.(2.22)). The unusual boundary condition together with this limiting
procedure is essential for the bootstrap model to find a singularity
which is interpreted as a phase transition QGP-HG [32]. To improve the
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model it seems necessary to give up the unusual boundary condition be-
cause there is no reason why reality should obey the unusual boundary
condition and use the wusual limiting procedure for the thermodynamic
limit (eq.(2.15)).

In this thesis I will develop a more involved model; than the simple
excluded volume approximation and will show that it is possible to take
the wusual thermodynamic 1imit, even with a restriction to the sum over
the particle number. The general problem remains i.e. the difficulty of
handling the restriction over the particle number N in the upper limit
of the sum, which results from the dependence of the total volume in the
upper Tlimit. With no restriction the sum can be written as a geometric
series and the thermodynamic potential Q can be split into a product of
the volume and a function independent of the volume Q = V.f(T,z). With
the restriction, the volume cannot be separated and taking the ther-
modynamic Timit (eq.(2.15)) is no longer trivial.

3.2 The pressure ensemble

Before applying the concept of the pressure ensemble to extended par-
ticles, I will outline the general concept. v

Starting from the microcanonical partition functiQn Z(V,E,N) other
partition functions are subsequently obtained by Laplace
transformations. Each Laplace transformation replaces an extensive vari-
able by its conjugated intensive variable (E -+ T; N u; V= P). The
different possible combinations were formally introduced by Guggenheim
[59] in 1939.

Any partition function depending on P is referred to as a pressure
ensemble. In this work I will use the grand canonical pressure partition
function «(P,T,u) where all extensive variables are replaced by inten-
sive variables. Prigogine [60] found that this partition function has a
singularity. The corresponding thermodynamic potential Q(P,T,n) is O.
This reflects the fact that the actual physical size of the system is
not specified by the . parameters. These conditions are illustrated in
fig.(3.1).
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Fig. 3.1: IMlustration of the grand canonical pressure ensemble.

The system 1is immersed in a "temperature", "particle" and "pressure"
bath. The piston can be in any position. A closer examination of the
singularity of the grand canonical pressure partition function shows
that the singularity is a representation of the thermodynamic limit.
This is easy to show:

The grand canonical pressure partition function can conveniently be
obtained from the grand canonical partition function Z(V,T,u) by

o PV
A(P,T,n) = f e T Z(v,T,p) dv . (3.1)
0
This can be written as
o f e |
n(P,T,u) = I e dv . . (3.2)
0

Looking at m as a function of the pressure P, n has a pole for

p-L1InZ " (3.3)

The right hand side is equal to the pressure P in the thermodynamic
1imit only

P=1im[-%]=1im Linz (3.4)
V4o V-+ o
n = const n = const

Consequently the pole of the grand canonical pressure partition function
represents the pressure in the thermodynamic limit. In my applications
there will always be only one pole of first order. The grand canonical
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pressure partition function can therefore be used as a mathematical tool
to find the pressure in the thermodynamic 1imit, when it is too dif-
ficult to obtain the pressure directly from Z(V,T,u) by the limiting
procedure in eq.(3.4).

Before going on I have to mention some difficulties arising from the
definition of the grand canonical pressure partition function eq.(3.1).
The same definition is used by A. Miinster ([16] page 177) and Hagedorn
[32,61]. A partition function should be dimensionsless. Obviously
eq.(3.1) leads to a partition function with the unit of a volume and is
strictly speaking, not a partition function. A poséib]e constant factor
(normalisation factor) in the definition of the grand canonical pressure
partition function 1is of no relevance for the following calculations
since I am not interested in obtaining the grand canonical pressure
potential (Massieu-Planck function). The grand canonical pressure parti-
tion function will only be used as a mathematical tool to identify the
thermodynamic 1limit. In any case, the physical interpretation of the
transformation V-+P or V-P/T within the concept of the generalized en-
sembles 1is distinguished from all other transformations because the
volume does not represent an eigenvalue of a quantum mechanical
operator. Other definitions and a more general discussion can be found
in [62,63]. Even if the definition of the grand canonical pressure par-
tition function can be done more consistently with the. general concept
of thermodynamic ensembles, it is more convenient to use the definition
eq.(3.1).

Introducing the short notation

= BP | (3.5)

—i-o

¢ =

the mean values of E,N,V aré "in principle" defined by

T -ev 3

[N BT 2T v 5

0 .

E(P,T,8) = - —— st

[ e v, dv x
0

T -V 3

[ NVT0) 2T &V G

0 £ lp,1

N(P,T,u) = - . 22 ipT
{ o€V Z(V,T,p) dV n
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| Fe® v zv,mm dv a
V(P T, = - — - —&L 3.9

I eV z2v,T, ) dv n

with the grand canonical mean values E(V,T,u) and N(V,T,n) as already
defined in eq.(2.4). ‘

"In principle" because in the thermodynamic 1imit m has a pole and only
the'energy-density e=E/V and the particle density n=N/V are determined

an
E a8 |
eP,T ) = — = groh (3.72)
v 5'6' ’
i, T
an ) o1
au oA
N et P,T
L - : | (3.7b)
&yt % 1yt

Singu]ar' expressions still left in nominatof and denominator always
cancel. With the two eqgs.(3.7) and the pressure in the thermodynamic
1limit (the pressure to the singularity of the grand canonical pressure
partion function =) the EOS is completely determined..The entropy den-
sity s can be obtained using the first law of thermodynamics

E=-PV+TS +3 “iNi €=-P+Ts +3 pin, E (3.8)
i i )

e+ P -2 Bin;

—_— s = 1 - (3‘9)
T _

This is easier than to calculate

S(P’T’I‘) == a_,’l,—|'iLM . (3.10)
| % Iy | |

Both are, of course, identical and lead to the same result.

-
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It is interesting to see that the grand canonical pressure partition’
function leads to the EOS in the thermodynamic limit, i.e. in an in-
finite system, without considering a finite size subsystem (sample)
first. In all other ensembles the size of the system is given by at
least one extensive parameter and only after taking the thermodynamic
limit are, all effects connected with the finite size are eliminated.

3.3 Volume correction using the pressure ensemble

In this chapter I will develop an improved model for a proper volume
correction due to the finite size of the particle. In contrast to the
other models (Ch.(2)) the restriction in the summation over the particle
number for the grand canonical partition function is taken into account.
This prevents the counting of unphysical states where the total volume
is filled with more particles than will fit into it (i.e. these states
do not exist). With the help of the pressure ensemble, the usual ther-
modynamic Timit (eq(2.15)) is obtained. There is no restriction to small
temperatures because Fermi-Dirac and Bose-Einstein statistics are used,
respectively. Application and comparison to the prévibus]y introduced
models are covered in the next chapters. "

As for the ideal gas description (Ch.(2.1)) I will start with the grand
canonical partition function Z for one species (eq.(2.1)). For extended
particles of volume v, Z changes to '
®
z= 3 M

I, 8(V-KNv) ‘ (3.11)
N=0 . |

where A = e“/T = eB“ is again the fugacity and ZN the prarticle parti-
tion function (canonical partition function). The G-fuhction restricts
the sum over the particle number N. There is no contribution to the sum
when '

v
N>'ﬂ . o (3.12)
The factor k is introduced to assist taking into account the fact that
for hard spherical particles one is unable to fi11 the volume to more
than the closest packing (k=1.35). If it is possible to deform the par-
ticles the volume can be filled up completely (k=1).



21

The canonical partition function remains the same for the ideal gas
(eq.(2.2))

-BE{n.}
J o ) (3.13)

and again the Kronecker-delta, 8 i restricts the sum over all con-
figurations {n } so that only conf1gurat1ons with N particles are
counted. :

The total particle number N is again given by

=
1
WM 8

n. | - (3.14)
j=1

and the energy of one configuration is

[ ¢]
E = 3 n, . (3.15)
(s}~ 5o1 £

Inserting eq.(3.15) and eq.(3.14) into eq.(3.13) and the result into

eq.(3.11) leads to

[+ ¢} . 1
-3 3 e .6

« B(V-kNv) . (3.16)
N=0 (nj} ‘

[ o]
N,jEl nj
At this stage, without volume corrections, the argumeht under the sum
over N 1is independent of the particle number and the Kronecker-delta
breaks down the sum over the particle number. For extended particles the
particle number remains in the 8-function. In principle it is possible
to replace thelpartic1e number N by the sum over all occupation numbers
nj’, eq.(3.14), but then the argument of the 6-function becomes more
complicated. To proceed in a similar way as for pointlike particles I
use the integral representation of 8i

?

en 1( E n - N)a
b ; = ot I do . (3.17)
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] 1 21[ [ ] ] .
N# 2Zn, — 3= Icos[( Zn.-N )a] + i sin[( Zn.-N )a] =0
j=1 3 2m ! je1 9 j=1 9
so that eq.(3.17)1reads
o ia
2n -8 2 n, (e.-p-7
1 ; j=1 3 I T BT ing
= 5n e 8(V-kNv) da (3.18)
0 =

0 {n }

Now I write out the sum ovér J and split up the sum over the configura-
tions {nj} as it was done for the ideal gas (eq.(2.7))

21

_ 1 J o~ 1N
2
0 N=0

g Bm (51'ﬂ'%g)

=
I M 8

K -B nZ (Ez-ﬂ_%g)

2 e e e il 6(V-kNv) da
n,=0 n,=0 .
2n (e - ___
1.3 _-iNa K
= 31 2 e q Ze 0(V-kNv) da
0 N=0 J nj=0
' (3.19)

where I have used k to distinguish between particles obeying Fermi-Dirac
and Bose-Einstein statistics

K =1 Fermions
K- w Bosons.

Performing the sum in brackets in the case of Fermions yields



.27[ -B n, (c.-u-j—g
;oA 3 ey g, TP 8(V-kNv) de
Fermi 2n N=0 o
0o '\ J nj-O ,
ia
1 T oo -iNa B " (CJ' il
- 5 I D m)1+e 8(V-kNv) de
Tl oN=0 j
0 |
[ o] -B(c.-u_ig.
o . Zh(l+e I B
- = J 5. e iNe =l O(V-kNv) da  (3.20)
N=0 |
0

- For Bosons the summation in brackets is a geometric progression
ia
1[ r "B nj (Cj"u’B ) 3

1 2 [+ 4] -'N [+ 4]
Zgoce = 7o f s eMeg| 5. | 8(V-kNv) da
0 = =

r -B n, (e.-u-ig) 1.
S o-iNe IR R
e Ii{1l-e 8(V-kNv) da

]
1
= =
O by N
=
=

. ©
2n —.E In(l - e J

1 ot iN =1
-k J s e iNa g J= O(V-kNv) da  (3.21)
b N0 |

=

If we go over to the classical energy E, I will use the same assumption
as in the excluded volume correction, the bootstrap model [26-32] and
several other models [21-25,64-69] : replace the sum over all possible
states by an integral over all phase space but change the volume into
the available volume A = V-kNv. '

. 3
S — (V-kNv) g J dp_ (3.22)
J ' (2n)

This accounts for the fact that the finite particle volume reduces the
number of available states. Using eq.(3.22) yields
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-B(e .—u-ig-)

om -iNet(V-KNv) gJ 94D qp(ze BT
(27) C B(V-kNv) da

(3.23)
where the upper sign applies fo fermions and the lower sign to bosons.

The easiest wéy to find the thermodynamic limit is to insert Z into
eq.(3.1) to obtain the grand canonical pressure partition function

®

(P, T,u) = j e BV 7V, T,u) v

0
2n © @® ,
_ f% I 5 -1Na j -BPV e(V-kNv) F(T,u,ia) 8(V-kNv) dV da
0 N=0
(3.24)
with the abbreviation
_B(E_u-m) 3
F(T,,i0) = +g J n(l + e B zg—$3 . (3.25)
T

The 6-function can be used as a restriction on the limits of the in-
tegration if the volume v is substituted by

V=x+ kNv x =V - KkNv dx = dv : (3.26)

The boundaries of the integration change to

-kNv — 0

®

0 — X

-
L]

-<
[}

o — X

because 8(V-kNv) = 6(x) only allows positive x-values.

®

2n
n(P,T,u) = fl I ; e-1Na I -BP(x+kNv) X F(T,u,ia) dx da
0 =



25

T o
[ I o X(BP-F(k,T,10)) o ].[ : [ e-(Bka+ia)]N } .
] o U

(3.27)

The integration.over x is an analytic integral (provided BP > F(u,T,ia))
and the sum over n is a geometric progession

2n ] ' 1
(P,T,u) = =1 f da . (3.28)
n . .
Rz OBP - F(u,T,de) 1 - 71 e BPKV T
With the help of the complex variable
z=0® dz=izde de=osdz . (3.29)

the integral over a is transformed into a complex path integration over
a closed loop in the complex plane.

1 1
. 1 :
(P, T,p) = 5% - dz . (3.30)
Z"lef_l BP - F(u,T,2) z - e BPkv
Because there is only one pole of first order at z,= e-Bka inside the

integration circle the residuum theorem leads to

1 | 1

"(P’T’I‘)' = = 3
- BP - F(u,T,2=2,) ap - [ tg I ]n(lieB(E-u+P5v) _SLJQE)]
- (2n)
(3.31)

To find the pressure in the thermodynamic Timit one has to Took for the
pole of the grand pressure partition function 71 (see Ch.(3.2)), which is
obviously where the denominator has a root. This leads to an implicit
equation for the pressure which has to be solved numerically.

P= g T f In (12 e B(E-H+Pkv), ———9- : (3.32)
(ZW)

Note that for v-0 eq. (3 32) is not implicit any more and the expression
for the pressure P for pointlike noninteracting particles is reobtained
as expected. In the Boltzmann-limit where 1 >> e -B(E-p-Pkv) the
logarithmic function can be expanded Teading to

hY

-
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' . .3 .
p. ., =T eBlh-Pkv) I eBE dop_ | (3.33)

Boltz (2")3
This result was already obtained by R. Hagedorn [61].

Doing the same steps as before for i different particles yields to

-B(E.-p:+ Pkv,) 3
J"d J dop,;
—l (3.34)

]' B
P=T 3 tg. I n(1¢te .
=] 9 (2n)

J

It s interestihg to Took at the term kaj in the exponent which acts
like an additional potential. Through the pressure P it depends on all
particles in the system. Because of Vj it is more "difficult” to add a
big particle to the system, therefore small particles will be
"preferred”. In contrast to a description without volume correction and
in contrast to the volume corrections discussed earlier (Ch.(2.2) and
Ch.(2.3)), particles in a multi component system are not only suppressed
by their mass but also by their volume. The ratio between two species in
a system of different components will deviate from the ratio obtained
from an ideal gas description for the same temperature and the same
chemical potential. This is not unexpected. The - pressure ensemble
description seems more plausible.

The dependence of the additional term on the pressure is more
difficult to understand. P is determined by the implicit equation
(3.34). If P is changed, at least one of the other parameters ﬂi,T,mi,vi
has to change in order for the system to remain within the thermodynamic
1imit. The pressure in the exponent prevents the system from filling up
completely with particles. It becomes more and more d{fficult to add the
same type of particles if the pressure increases. In this model the
additional term kaj in eq.(3.34) acts as an "interaction" between the
different particles.

Once the pressure P in the thermodynamic 1imit is known by solving the
implicit equation (3.34) on a computer, energy dehsity and particle
density can by calculated from the grand canonical pressure partition
function eq.(3.31) using equation (3.7a) und (3.7b). It turns out that
the statement by Hagedorn [61] that the grand canonical -pressure parti-
tion function nearly always has the form

1 _
(P, T,u) = with &=P/T . (3.35)
f - F(M,T,f) : '
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is also true for the application of the pressure ensemble done here. For
a pressure partition function of this type the energy density and the
particle density can be written as ‘

an oF I
, aB aB
- ol _
C(P,T,ﬂ) - -a_z[ - ] - QE
O 1 6 1
an aF
Ay ta IP T
= - pt—m =
n(P,T,p) = o I—t—EE—IL—— . (3.36)
% T % T

Doing all the partial derivations of F(P,T,u) (see eq.(3.25)) leads to

© 2
g f Ep dp
2 s oB(E-p#PkV)

0
e(p,T,p) = — 421 >
1 k g p P
KV ol { | 1 oB(E-HHPKV)
© 2
d
ziz { - eg(E-p+ka)
n(P,T,n) = . z N
1+ kv L b_.ap
on’ 0 1 + oP(E-HtPkY) (3.37)

where the integration over the spherical angles of the momentum have
been carried out. For a gas of i different types of particles the energy
density and the particle density of species j are given by

© 2
9 [ By Py dp;
0

2” i e B(Ej'uj+Pij)
£ =
1 2
J 1+ k3v, - T Pi 9P,
1+ V., —3
i an b 1. B(Ei'“i+kai)
4t
o gy o PUEgTHPRY)
n =
i 2
J 1+ kv, T Pi 9P,
+ V.
. 1,2 B(E.-u.+Pkv,)
P gy T (3.38)
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The contribution of one component to the total energy density and total
particle density is dependent on all other types of particles in the
system due to the sum in the denominator and the pressure in the ex-

ponent of the distribution function . .

In the next chapter I will consider the special case T=0.in more detail.
In this case analytical solutions for the integrals in eq.(3.34) and
eq.(3.38) can be obtained.



4 RESULTS AND DISCUSSION

4.1 The equation of state at zero temperature

A gas at zero temperature consists of fermions only. All states up to
the fermi level Ef are occupied by particles. For ideal partic]es (v=0,
no interaction) the fermi level is at Ef,id= #. In the model using the
pressure ensemble I have obtained an additional factor in the exponent
of the distribution function (eq.(3.31)). For T=0 only pértic]es with an
energy lower than the fermi energy Ef occur. In other words, the energy
for which the exponent of the distribution function vanishes is

E - Pkvy . 3 (4.1)

£,i - H

Fig.(4.1) 1illustrates the fact that the volume correction reduces the
number of occupied states compared to the number of occupied states
without correction (E¢ = p). '

* T=0

1—-———- ——————— -

Probability ‘

.

E.,-m, E

.=u.-Pkv, CRB.=p. E
Sii £,i u1 i i’

Figure 4.1: Filled energy level for T=0

The finite volume of the particles acts like a rebé]]ing force. It
increases with the particle size and with the total number of states in
the whole system, because P is an increasing nonlinear function of the
number of states in the system.

Replacing the integrals over the distribution function with integrals
limited by the Fermi energy 1éads to analytic integrals. The implicit
equation for the pressure in the thermodynamic 1imit (eq.(3.34)) and the
explicit equations for the energy density and particle density of the
component j (eq.(3.36)) simplify:

4

P9y \ ,
P - 5 -l [ X, (x-1)% (2x5-5) + 3 1n [x.+(x.-1)%] ]
j=1 48 =« J'J J J J:
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4

m. g.
—l——% [ 2x.(x%-1)% - In [x.+(x%-l)%] ]
0 16 7 JVJ J " J
£ = 3 :

m, g,
1o+ kv, 4— (-1)Y2
i 67

0 67
n = 3 ’
‘ g.
1+ k3v, —3 (x:-1)¥2
|
i 671
ks - Pkv,
with x, = -l——d | (4.2)
J mj .

The superscript ¢ refers to the zero temperature case. The equation for
the pressure is still implicit and again has to be solved numerically
before calculating the energy and particle densities. For v1=v2=...=vi=0
the equations (4.2) reduce to the expressions for pointlike particles,
as expected:

0 m: 9: ¢ 2 1 2 2 1
= L3y (x.-1)% - +(x,-1)7
Pj,id " ﬂz L xJ(xJ 1) (2xJ 5) + 3 1In [xJ+(xJ_1) ] ]
'4
0 m: g: r 2 1 2 1
S R (x5-1)% - H(x;-1)7
EJ?1d ” ﬂz k 2xJ(xJ 1) In [xJ+(xJ 1)7%] ]
3
0 m. g,
SN N _1y3/2
"j,id 6 ﬂz (Xj & :
T
with x; = —d : (4.3)
J .

where P is now an explicit equation and ¢ and n are independent of the
pressure P. For m=0 or p>>m the equations change to ‘

i . o
Po,o _ 9J Xf . P?,o g] 4

; = Ty
j=1 24 1= 3 NFRCIRPYRSLIS
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g: 3 -
5 X
J .
n;’o - 61 ) n?’:d= - z “4
1 + k2Zv 7 X,
. i i
i 67
i
£t . B Dt = )
J ’ J,id g 27
i 3 L
1 + k2 ¥ 7 X;
i 6n ;
,A 0.0 (
with xj = uj- P kvj . (4.4)

The second ° in the superscript refers to m=0.

Before I consider some applications I want to point out an interesting
difference between an ideal gas description and the model developed here
with the pressure ensemble. In the ideal gas approximation as well as in
the approach using the excluded volume correction (Ch.(2.2)) a particle
of mass mj is found in the system when the chemical potential “j of the
particle exceeds its mass mj, i.e. a heavy particle cqnfalways be found

if the chemical potential is high enough and

“j > mj ' (ideal gas, excluded volume correction). (4.5)
With finite size particles in the pressure ensemble thg Fermi level Ef
is a function of the pressure in the system (eq.(4.1)). If an increase
of the chemical potential “j leads to a stronger increase of the pres-

sure i.e. : ;
P(I‘j) P(I‘j*'AI‘j) ¢ . ‘ : (4.6)
< or all p. - .
B uj+Auj J

i
or in other words: if the curvature of the pressure P as a function of
y is greater than 1, i.e. if '

2

Q—§_> 1 for all ay : - (4.7)

auj

then the condition
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to find particles of mass mj and volume vj will only bQ satisfied up to
a certain value of the pressure P. Certain particles may not appear at
all. An illustration of this behaviour is nuclear matter at zero tem-
perature, as described in the next chapter.

4.2 Nuclear Matter of "hard" particles at zero temperature

As a first example I will calculate the EOS of nuclear matter as an
ideal gas (v1=v2=...=vi=0) and compare to the EOS with the volume cor-
rection 1in the context of the pressure ensemble, the excluded volume
correction (Ch.(2.2)) and the correction used in [34-37] (see also end
of Ch.(2.3)) which will be referred to as "e-correction“, because of the
appearence of the energy density in the correction. For the calculation
I will use the following values for nucleon and delta:

rd

2.16 fm. —  ry= 0.80 fm

939 MeV N

]
1]

™ N

2.83 fn —  r,= 0.88 fm

1232 MeV

my vy A
where my (mA) is the average mass of proton and neutron (A',AO,A+,A++)
[78]. The size of the spherical particles N and A was obtained from a
MIT-bag - description (see Ch.(3.3.1)) for a bag constant of B%= 170 MeV.
To get an idea of where to expect a phase transition to the QGP the EOS
for massless quarks is also shown (see Ch.(4.4.1)). In‘order to compare
the ‘phases I will use the quark chemical potentia];nq. The chemical

potential of the nucleon and the delta can be obtained from
bq = 1/3 wy = 1/3 3 (4.9)

because a nucleon can be converted into a delta and vice versa and be-
cause at the phase boundary nucleon and delta dissolve into three quarks
each.

Fig.(4.2) shows the pressure as a function of uq. For the pressure en-
semble two curves are shown. For k=1 the entire volume can be filled
with particles. For k=1.35 the volume can only by'fi11ed up to the
densest packing of hard spheres.
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Figure 4.2: Pressure as a function of ”q for different models

- If the transition HG to QGP is of first order, the'bhase transition
occurs at - the chemical potential where the curve for the quark gas
crosses the model curve for our volume corrected HG. At ‘the first glance
one might be surprised to find a kink in some ”pf the curves at
uq; 1/3 my i.e. pp=my. This kink is readily explained. From this point
A-particles can be formed. For T=0 the degeneracy of.the system changes
discontinuously. For higher temperatures the kink smoothes out. The only
curves without a kink for T=0 are the curves calculated with the use of
the pressure ensemble. The curve marked "ideal gas" also has a kink at
Mq= 1/3 my but far outside the chosen range of the ordinate. In the
pressure ensemble description, the condition (eq.(4.8)) to find a A-
particle of mass my and volume Va is never fu]fi]]ed.:The pressure at
yq> 1/3 my is already so high that particles bigger and heavier than the
nucleon cannot be found in the system, even at very high chemical poten-
tials because P is an always strongly increasing function of p. It is
interesting to note that P~u4 for large u, with a propontiona]ity factor
different from the one of an ideal gas. Really unexpected is that the
pressure within the "excluded volume correction" and.the "e-correction”
show a temporary decrease of the pressure after the deltas appear. This
is an artefact of these models and is mainly due to the fact that the
cohposition is unchanged from that of an ideal gas description.
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, . \ |
Fig.(4.3) illustrates the strong increase of deltas in the system once
the chemical potential is high enough.
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Figure 4.3: Change of composition with uq for an ideal gas

Because of the bigger volume of the deltas compared to the nucleons, the
rise in the amount of the deltas leads in the case of the "excluded
volume correction”, to an increase of the volume correction which over-
compensates the increase of Pid with u (eq.(2.22)). Hence the pressure
drops. In the case of the "g-correction" the increase of the slope of
€id caused by the increasing fraction of A-particles causes the same
effect. This effect 1is also found if the particles are assumed to be
smaller i.e. larger bag constants. This was confirmed up to B%= 250 MeV
where the particles already seem unrealistically small. (see
Ch.(4.3.1)).

Before going on it is useful to look at the amount of space not filled
up with particles (Fig.(4.4)). The crosses indicate the position of the
first order phase transition to the QGP as constructed in fig.(4.2). The
dashed 1line shows where spherical particles will start to overlap
(densest packing). In general the figure shows why the volume correction
is expected to have a dominant influence on the EOS for nuclear matter
near the phase transition. In all cases shown, more than half of the
volume is filled up with particles when the phase transition sets in.
The increase of the free space in the case of the "e-correction" cannot
be motivated.
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Figure 4.5: Baryon density as a function of uq for various models
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A1l curves with a proper volume correction seem to appfoach a limiting
density. For k=1 this 1imit is the density where the space is filled up
completely with particles and for k=1.35 the 1imit is the density of
‘densest packing. For the "excluded volume correction” first the limit
for nucleons 1is approached and after the kink when the deltas start to
dominate, the limiting density for the deltas is approached. Because the
density before the kink is already higher than the limiting denﬁity for
a system containing only deltas, the density starts togdrop'at uq= 1/3
my where the first deltas appear. Careful examination shows that this
effect does not disappear for smaller particles. The reason is that for
smaller particles the volume correction is also smaller and it is easier
to fill up the space again. For our example with B%= 170 MeV the
problems connected with the kink seem unimportant bpcause the phase
transition to the QGP has already occurred. For smaller particles and a
larger bag constant however, the phase transition immediately moves to
higher chemical potentials while the position of the kink is unchanged.
There will be even more kinks because other particles and resonances
‘occur at higher,uq. Q

I would now like to move to a more realistic model. A model for nuclear
matter using hard particles will always lead to a phase_transition close
to the point where the volume starts to be filled up completely. For a
reasonable size of the nucleon [70] this leads to a density at the phase
transition of 1-2v, for T=0. Because there is still.no experimental
evidence  for a phase transition it is believed that the density for a
phase transition at T=0 will be higher. To have higher densities for the
phase. transition is definitely one of the reasons whyithe bag constant
is often chosen to be rather high (B% above 200 MeV) [33-37]. A high bag
constant also Tleads to a high critical temperature (phase transition
temperature for uq=0 as seen later in Ch.(4.4.5)). The. strongest argu-
ment against the description as "hard" particles is the sound velocity

ve

s (4.9a)

i
Q.)lQ:
™ |70

Fig.(4.6) shows P as a function of ¢ at zero temperature.
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Figure 4.6: P as function of ¢ at T=0 (slope is the sound velocity)

The slope of P(e) is the square of the sound ve]ocity because the
entropy S is zero for T=0. The two straight lines are P=1/3 ¢ and P=¢;
the slope are the square of the sound velocity of a re]agivistic gas and
the square of the velocity of light, respectively. In all the models
shown the sound velocity can exeed the sound velocity of a relativistic
gas. For my choice of the bag constant (B%= 170 MeV) the sound velocity
at the phase transition is almost as high as the ve]péity of light if
hard particles are described by the pressure ensemble. With the
"excluded volume correction" and the "e-correction” thé sound velocity
is still below the relativistic 1imit at the phase transition. Note that
if the bag constant is increased, the phase transition éccurs at higher
values of & where the sound velocity becomes unphysical. As before the
kinks are caused by the appearance of A-particles. A’better approach
would be to give up the concept of hard particles for nuclear matter. It
makes more sense if the particles themselves feel the pressure in the
system and reduce their size if the pressure increases. instead of using
a "soft potential” or describing the nuclear matter as a compressible
liquid [71,72] I will obtain an EOS for "soft" particles using the MIT-
bag model. The sound velocity of such a description (see~Ch.(4.3)) never
reaches the relativistic 1imit, as shown in fig.(4.6). '

Before I calculate the EOS for "soft" MIT-bag part1c]es I w11]
review the MIT-bag model in the next chapter.
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4.3 Nuc]eaf matter of MIT bags

4.3.1 The MIT baq model

The MIT-bag model was developed at the Massachusetts Institute of
Technology (MIT) [73-75] in order to describe the hadron mass spectrum
on the basis of QCD (quark and gluon fields). The fiefps are localized
to a certain area in space, the bag, which is interpeted as a hadron. It
is assumed that the region opened up in the vacuum to contain the fields
has a constant positive energy density called B, the bég constant. B is
also interpreted as the pressure that the vacuum exerts on the bag. It
is assumed that the bag 1is spherical and that the flux of the quark
fields through the surface of the bag vanishes, i.e. the number of
quarks and antiquarks inside the bag are conserved. The following ansatz
for the particle mass is used '

m(v) = Ev + E, + EQ + EM + EE (4.10)
with

Ev = Volume term of the zero point energy

E, = Zero point energy from the fluctuations of the fields

EQ Rest and kinetic energy of the quarks in the bag

Colour magnetic interaction energy

EE Colour electric interaction energy . ;

Other bag models [76,77] will not be discussed here.

Eq.(4.10) contains several free parameters in theggifferent energy
terms. For the explicit expressions of the complicated terms in
eq.(4.10) see ref [74,75]. The free parameters B, Eo, @, Mg (mq is
assumed to be 0) were fitted by applying the mass formula (4.10) to the
mass of N, A, w and Q@ so that the experimental ya]ues [78] of the mass
belong to the minimum of eq.(4.10). Examples for the volume dependence
are given in fig.(4.7b) and fig.(4.7d). The reason for fitting the par-
ticle masses to the minimum of eq.(4.10) with respect to v or r is that
at this point the pressure inside the bag balances the vacuum pressure
B. The presence of only one isolated hadron has been assumed. If other
particles are around there should be an additional pressure. Assuming
that the MIT bag equation is still valid, the vo]qme}of the particles
~decreases due to the additional pressure, as expected. At the same time
the mass (total energy) of the hadrons increases because more energy is
needed to confine the quark fields to a smaller vo]ume,;
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In a thermodynamic theory of "soft" particles it should be possible to
use the MIT bag equation to describe the mass of the particles (hadrons)
as a function of their volume. The volume varies according to the am-
bient conditions. Following up this idea leads to several problems. The
bag constant obtained from the MIT bag model (eq.(4.10)) is B%z 145 MeV
if massless 1light quarks are assumed. If one wants to use a ther-
modynamic theory to predict the phase transition from hadronic matter to
the quark gluon plasma (QGP) at T=0, B% must exceed 148.5 MeV unless ag
corrections are applied. For smaller values of B the pressure of the
quark phase 1is. always larger than the pressure of a nucleon gas at
uq= 1/3 my [21]. This means that the system will be in the quark phase
before nucleons can exist, independent of the particular model for the
hadron phase. This is in contradiction to reality. A bag constant of B%=
148.5 MeV leads to a phase transition at densities far below nuclear
density. The existence of nuclei at T=0 implies that the phase transi-
tion should occur at densities above v,. Therefore even higher bag
constants are required. The size of the particles obtained from the MIT-
bag model is another reason to prefer a higher bag constant. A radius of
=] fm for the nucleon seems very high because scattering experiments
indicate a smaller radius of =0.85 fm [70]. Another weak point espe-
cially for the application to the thermodynamic description of the phase
transition HG to QGP is that the pion mass obtained is nearly twice as
the experimental value of m”=139 MeV. As the lightest meson it will be
the dominant particle at high temperature and low chemical potential.
Therefore an incorrect pion mass will cause a huge error. To obtain the
right mass in the MIT bag model is difficult because,the low mass re-
quires that energy terms differing by a factor of ten in the MIT bag
eq.(4.10) have to cancel each other. In this case the result is not
trustworthy because the single energy terms are already only estimates.
Also the mass of the strange quark of about 300 MeV as calculated from
the bag model is believed to be rather high. Strange quark masses be-
tween 150-200 MeV are used more often [79,80]. In an attempt to improve
the situation I tried to fit the free parameters through a least squares
fit to all Tight hadrons by minimizing the relative difference between
theoretical and experimental mass to fit all masses to a similar rela-
tive error i.e. to the minimum of

m . - m . 12 ‘
XZ -5 [ thgoé1 exp,i | . (4.11)
i exp, i :
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The resu]fs are discouraging. Although the fit improves in general with
respect to equation (4.11) the abovementioned problems still occur.
Furthermore the mass obtained for the well known nucleon deviates con-
siderably from the experimental value even though the nucleon is
expected to be well described by the bag model. This problem remains
even if the fit is restricted to the relatively stable particles and if
a weight factor is introduced depending on the instabi]ity (width) of
the particles.

There is no doubt that it is possible to improve on some of the
points mentioned above when modifying (playing around with) the MIT bag
~equation and introducing some new phenomenological constants [81]. Even
then there is a 1limit in having more parameters as they will be
correlated. It is difficult to compare the fits because of the unequal
amount of degrees of freedom and the different conditions chosen (e.g.
fitting the stable particles only or including or excluding the pion
into the fit, introducing weight factors for unstable particles). Even
though I obtained a better fit (see appendix D) no physical reason could
be found why this special type of bag equation should lead to a better
fit than any that were tried. For the thermodynamic. model it should
suffice to use the "basic" form of the MIT bag equation:.

m,(v,) = $i + Bv, with v, = 3 T, (4.12)

it r; i 3 '

i
4

to be able to see the effect if the hadrons are not hard:any more.

The form of eq.(4.12) with c;yas a constant is the same as eq.(4.10) for
all hadrons not containing strange quarks. If strange quarks are present
and the l/ri dependence is taken out of the energy term, c, is still a
function of r. Neglecting this dependence leads to bigger particles.
Taking c; as a constant is regarded as a satisfactory fit here. With C;
as a constant eq.(4.12) has a minimum at ’

f

m, .=4Bv. . = = [ 4nc:B ]% . (4.13)

Because I want the hadrons to have their experimental measured mass at
the minimum because I want to use B as an external parameter, the con-

stants oF and Vi are ca]cu]ated_from eq.(4.13).

,min

i,min 4B

(3/4 mi)4 ]1/3 m
v

¢; = [———— - d.,min (4.14)
47B
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Eq.(4.12) togethgr with the value of C; obtained from eq.(4.14) is used
as the equation for mi(vi) for the "soft" particles throughout the rest
of this thesis. Fig.(4.7a) and fig.(4.7c) give an overview about the
pattic]e size at the minimum of eq.(4.14) as a function of the minimum
mass for different bag constants B. Fig.(4.7b) and fig.(4.7d) show how
eq.(4.12) depeﬁds on the choice of the bag constant and the mass of the
minimum. ‘

1500 T T T

L @ =c/r+ By

4]
= 150 Me¥ .
s et 8t ?60 ll(SV : 1400 } m=c/r+Bv c = const _
- o
L]
B%= 170 HeV
=T 8% 180 Mev 1300 M 939 He¥

n [MeV¥}

& L 3

- B%- 190 MeV
= 1200
a

>

1100 -
8%~ 200 Hev

8% 210 Mev
PUREE [NPURES WY I WA S D T 1

1000 =

900

.0 . 500 1000 1500 2000 0 1 2 3 ‘
]
a . "nin (Hev) b v {fm )
1.25 ] 2000 gy mr r
s‘- 150 He¥ m~c/r s+ By ¢« const
8%~ 160_MeV Pgns 1500 He
1.0 % 1500
1 8%. 170 Hev Bpin= 1250 Hev
- 8% 180 Hev n S
£ [ g% 190 Hev 3 ain?, 1000 Hey
- 0.75 |- £ 1000
3 [ v - ® in= 750 Hev
v N 8% 200 He¥ -
- 8% 210 Hev pin? 500 He¥
0.5 | 500 -
o . [ ] = 250 Mey !
. m=c/rs By c = const atn \ . -
A : . 8% 170 Mev. ]
0.25 NP BV S ] ol v vt e 4o s
0 500 1000 1500 2000 e \ 2 3 .
]
Patn {Hev} v {fm}

Figure 4.7: Illustration of the behaviour of eq.(4.12)

4.3.2 Nuclear matter of MIT bags at zero temperature

In the last chapter the MIT bag model for hadrons was reviewed. In this
chapter I will show that the basic form of the MIT bag equation

[g]

i 3v. 11/3
m.(v,) = — + Bv, for spherical particles withr, = | — (4.15)
ivi rs i | i an

is already sufficient to obtain an EOS for particles which are "soft" in
the sense that the spherical particles will change their volume and mass
according to eq.(4.15). Compared to the EOS obtained from the "hard"

particle model (Ch.(4.2)) a completely different behaviour at high den-
sities is obtained.
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For soft particles the volume and mass are not constants so the
question of how to determine one of them, arises. The other variable is
then given by the MIT bag eq.(4.15). Here the particle volume will be
regarded as the new independent parameter. The value of this new inde-
pendent parameter will be such that the system is in the state where the
thermodynamic potential has a minimum with respect to.the new variable
[82]. Using the grand canonical potential Q(V,T,u,v) the systém should
choose the value of v such that

2
an(v,T,u,v) _ a A(v,T,u,v)

This condition depends on the size V of the system. In the thermodynamic
1imit @ = -PV. Inserting this into eq.(4.16) leads to

2

ﬂ)_(%\:l_.‘bl)__ru___o and Mgﬂzbl)._ru<0. (4.17)
’ v )

i.e. in the thermodynamic 1imit the system chooses the state with the
maximum pressure. To see whether a maximum exists at all fig.(4.8) shows
the pressure obtained from the pressure ensemble description (eq.(4.2))
using eq.(4.15) for the particle mass as a function of the particle
volume. 2
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Figure 4.8: Pressure as a function of the particle volume
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As already discussed in Ch.(4.2) only nucleons are present at T=0 and
the pressure P’is only a function of one particle volume, vN The con-
stant N in eq.(4.15) is determined by eq.(4.14) with mN min= 939 MeV
and BY= 170 MeV. In fig.(4.8) & was chosen as Bg= 1/3 my= 1200 MeV. In
this example P develops a maximum at Pmax- 70 MeV/fm , vN max~ 1.45 fm
(mN,max= 962 MeV). The maximum appears because for both big gnd small
particle volumes the mass of the particles increases.according to the
MIT bag eq.(4.15) until the chemical potential reaches Pl 3uq and
no state to be occupied exists (P=0). The value for v or m at the maxi-
mum of P is different from the value obtained from the minimum of the
MIT bag equation. A look back at fig.(4.1) helps to explain the reason.
The system chooses the state with the maximum number of states. For T=0
all possible states are between mN(vN) and the Fermi Tlevel Ef,N= Iy

- kaN. If the particle volume N is reduced to below v (the volume

corresponding to the minimum mass of the MIT bag eqﬁ;?}gn) the Fermi
level rises and more states are possible because the pressure is not
increasing as fast as N is reduced. Close to the minimum of the MIT bag
equation a change in N leads to a very small increase in my SO that the
lower boundary for the number of states is nearly unchanged. The par-
ticles shrink until the increase of mN(vN) is faster than the increase
of the Fermi level Ef,N= by kaN. Calculating all physical properties
to the maximum pressure for different values of "q leads to the EOS of
the soft particles in the thermodynamic 1imit, i.e. the pressure is
always calculated by finding the pole of the grand canonical pressure
partition function (eq.(3.31)) or the root of the denominator of the
grand canonical pressure partition function for given p.and T. Fig.(4.9)
shows what happens to our soft nucleons if there is no phase transition
- HG»QGP. The HG would also exist at very high pressure i.e. large chemi-
cal potential. Volume and radius shrink with increasing densities. For
an infinite dilution, volume and radius would have their values accord-
ing to the minimum  of  the bag equat1on (eq.(4.14)), 1i.e.
N min= 2.16 fm » "N.min" 0.80 fm (for B‘- 170 MeV). In this case the
pressure is very sma]] and the EOS turns into the ]deal gas EOS, as
expected. For normal nuclear matter density V= 0.16gbaryons/fm3, the
nucleons are slightly smaller. Only at densities greater than Zvo do the
particles start to become really compressed. In the limit of infinite
density v+o or v,/v+0 they are reduced to point particles with an in-
finite mass. The amount of space still left between the particles,
called free spéce, reaches a finite limit for an infinitely dense system
(fig.(4.10)). '
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Figure 4.10: Free space as a function of the density

Even if k=1 the system stays away from the densest packing of hard
spheres. It seems as if the system itself knows that there is a limit
where we have the closest packing. This is not so. It is possible by
logical arguments to motivate the final volume left for the infinite
dense systems. The system will be in the state with the highest number
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of possible states per volume with respect to m,v,N. This is only pos-
sible because the system with the maximum pressure is considered. With
the correction to the phase space (eq.(3.22)) the number of states is
proportional to the 'free space. It is unfavourable for the system to
fill the space completely with particles. On the other Hand, the number
of states is proportional to the number of particles. It is good to have
as many small particles as possible (see eq.(3.11))} For small par-
ticles, the number of possible states is larger than for big particles
due to the restriction in the sum over the particle number. Because the
mass of the particles increases if the particles are compressed, the
number of states is again reduced by mass suppression. The free space is
determined by a balance between mass suppressién and "volume
suppression”. The 1limit of the densest packing for spherical particles
is never reached for a description using the pressure ensemble with
k=1.35. There is no reason why this 1imit should not be reached for very
high densities. Therefore I will use k=1 in all further discussions.
Fig.(4.11) again shows the free space as a function of the density, but
for different values of the bag constant B.
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Figure 4.11: Dependence of the free space on the chosen bag constant

For bigger bag constants the particles are smaller and for the same
density more space is free. This difference becomes'smaller for high
densities but does not vanish for infinitely high densities. It cannot
be expected that the same limit is reached because the different bag
constant changes the dependence of the particle mass from the partic]e
volume m(v) (see fig.(4.7a)). ;
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Fig.(4.12) shows several curves. Marked with (1) is the chemical poten-
tial for the nucleon By with (2) the energy per baryon E/b and with (3)
the nuc]eqn mass. my which changes with the density. The changing mass my
is the reason why I have to deviate from the usual form when drawing the
energy per baryon, i.e. the plot shows the total energy per baryon and
not the energy  minus the rest mass. The difference between the energy
per baryon and the changing rest mass, i.e. the mean kinetic eﬁergy of
the partic1es and also the difference between Iy and my is shown in the
inset of fig.(4.12).
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Figure 4.12: Density dependence of ”q’ my and E/b and their differences

Both differences increase as higher densities are reached. Curve (a)
shows that the rest mass can be neglected against the chemical
potential. Curve (b) shows that at high densities the kinetic energy
increases rapidly. This means that the gas should behave 1like a
relativistic Fermi gas because I have already shown in fig.(4.9) that
the volume of the particles, N reduces to "point]ike"'partiples. This
is confirmed by the fact that for high densities P/¢ approaches the
relativistic Fermi gas result, i.e. P/¢ = 1/3 (fig.(4.6)). In fig.(4.13)
the results for the energy per baryon obtained so far are compared to
each other and to the energy per baryon found in the Titerature.
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Figure 4.13: Comparison of E/b obtained from different models

The curve marked "e" is taken from [9]. Its calculation is based on a
soft-core nucleon potentiaT and a lowest order variational theory. The
‘curve marked "f" is taken from [83] and is their best choice with the
parameters m*/mN = 0.7 and k = 210 MeV (k = compressibility modulus, m*
= effective mass). The main difference from my calculation is that they
have a minimum for the energy per baryon (saturation) at'norma1 nuclear
density v, with.a binding energy of 16 MeV/baryon. Binding effects were
not included in the presented soft particle model with the pressure
ensemble because it is not yet known whether there is a binding effect
if nuclear matter consists of very many nucleons. The presence of many
particles is the basis for the thermodynamic calculation. The expected
phase transition to the quark gas for the soft particles would be from
v = 3.5 v, tov =4.3 Yo if a first order phase transition is assumed.
This is indicated in fig.(4.13)

Instead of keeping T constant at T=0 and increasing g, which immediately
leads to applications in the description of complex stellar objects 1ike
neutron stars [7,8,10,84], it is also interesting to fix p at p=0 and
increase the temperature. The results for this case are presented in the
following chapter. K
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4.3.3 Nucléar matter of MIT bags at zero chemical potential

The choice of the baryon chemical potential u=0 means that the total
baryon number Nb total is zero, i.e. the number of baryons Nb is always
" equal to the number of antibaryons NB

0 = Nb,tota] = Nb - NB' (4.18)
or 0=v-= vy - Vp ' (4.19)
where vy (vb) is the baryon (antibaryon) density
N N+
b b
Vp = Y Vg = Y (4.20)

The interest in the case p=0 results from some theoretical predictions
that for high energy collisions of heavy nuclei the central area will be
without any net baryon number and only a hot area in spéce is left once
the nuclei have passed through each other (Bjorken picture [85]).

For finite temperature, mesons 1like @, K, p ... and all hadron
resonances will be present. The total number of part1c1es and antipar-
ticles in the system is

N + N-+ N (4.21)

total = M+ Np + Mg

and the density
Protal = bt VBt P - | (4.22)

Assuming thermal equilibrium between the particles the calculation is
now much more involved than in the case of T=0 because all particles in
the hadron mass spectrum can be present. Each type of paftic]e will have
a different mass m, and size Vs Again we will use the basic form of the
MIT bag equation (eq.(4.12)) as a relation mi(vi). The pressure in the
system will be the maximum pressure with respect to all different par-
ticle volumes Vi (Appendix C explains the numerical procedure) because
the volume of each type of particle is a new independent variable (see
Ch.(4.3.2)) i.e. if there are i different types of particles in the
system the pressure will be so that
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ap i -0
v,
J T’Vl’""Vj-l’vj+1"f”vi
3°p |
and — <0 (4.23)
8vj T’Vl"°"vj-1’vj+1"‘"Vi
for each partic]e species j =1 ... i. The pressure P is calculated in

the thermodynamic limit according to the solution of the impTicft equa-
tion (3.34). Table (4.1) shows which particles were included in the
calculation. Volume and radius belong to the minimum of the basic MIT
bag equation (eq.(4.12)) and represent the size of the particles for
infinite dilution.

statis-

particle| mass |radius|volume|Quark content spin|iso- degen-
name [MeV] | [fm] [fms] qQ q s s spin| tics eracy
N 939.0 0.8 2.16 3 0 0 0 1/2 1/2 fD 4
N 939.0 0.8 2.16 0 3 0 0 1/2 1/2 FD 4
A 11156 0.85 2.57 2 0 1 0 1/2  FD 2
A 11156 0.85 2.57 0 2 0 1 1/2 FD 2
2 11940 0.87 2.75 2 0 1 o0 1/2  FD 6
2 1194.0 0.87 2.75 0 2 0 1 1 1/2 FD 6
£ 1318.0 0.90 3.03 1 0 2 0 1/2 1/2 FD 4
£ 13180 0.90 3.03 0 1 0 2 1/2 1/2  FD 4
A 1232.0 0.88 2.83 3 0 0 0 3/2 3/2 FD 16
A 1232.0 0.8 2.83 0 3 0 0 3/2 3/2 FD. 16
5 . 1385.0 091 3.19 2 0 1 0 1 3/2 FD 12
S5 1385.0 0.91 3.19 0 2 0 1 1 32 F) 12
T 139.0 0.42 0.32 1 1 0 o0 1 0 BE 3
n 547.6 0.67 1.26 1 1 0 0 0 0 BE 1
n’ 958.8 0.81 2.21 1 1 0 O ©0 0 BE 1
p 770.0 0.75 1.77 1 1 o0 o0 1 1  BE 9
) 782.6 0.76 1.80 1 1 0 0 o0 1 BE 3
K 495.8 0.65 1.14 1 0 0 1 1/2 0 BE 2
K 495.8 0.65 1.14 0 1 1 0 1/2 0 BE 2
K' 8921 079 206 1 0 o 1 12 1 B 6
K 8921 079 206 0 1 1 0 1/2 1 BE, 6
q = up or down quark FD = Fermi-Dirac statistics:
q = anti up or down quark BE = Bose-Einstein statistics
s = strange quark Bag constant used to determine r and v
s = anti strange quark B = 109 MeV/fm" or BY = 170. MeV

. i
Table 4.1: Hadrons included in the calculations
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F1g (4.14) shows the total part1c1e density Piotal of the soft particles
compared to the ideal gas description.
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Figure 4.14: Total particle density as a function of the'temperature

At low temperatures the system is so dilute that the effects of the
particle volumes can be neglected. For higher temperatures the dif-
ference becomes significant because the space becomes filled with
particles. Fig.(4.15a) shows the free space left. Fig.(A.le) shows P/¢
to see if the gas behaves 1like a relativistic gés in which case
P/e = 1/3. |

% free space

100 T T T T 1/3 ¥ T — v T
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a b

Figure 4.15: Free space and P/¢ as a function of the temperature

The bump in the curves originates from a change in composition (see
fig.(4.16) below). The soft particle model presented here for the
nuclear matter reaches the Timit P/e=1/3 faster than the description of
an ideal gas. The vreason is that the energy in the system is divided
amongst fewer particles. As a consequence, the energy per particle

250
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rises. The particles become relativistic because the increase in the
rest mass due to the decreased particle volume becomes negligible for
higher temperatures. The behaviour found here for varying T at p=0
resembles the behaviour found for varying g at T=0 presented in the last
chapter. At T#0 not only the nucleons but all other hadrons in the mass
spectrum can oécbr. The most important particle is the pion as the
lightest and smallest hadron. The change of the composition of the sys-
tem with temperature is shown in fig.(4.16).
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Figure 4.16: Temperature dependence of the particle compdsition

In an ideal gas the amount of heavy particles with a high g-factor in-
creases markedly with increasing temperature. When 'the mass of the
particle becomes negligible the particle composition is governed by the
~g-factor, i.e. particles with high g-factors dominate. In the soft par-
ticle description the composition is always dominated by the pion
because it 1is the smallest particle. Bigger and heavier particles are
suppressed even at high temperatures because the system rejects the
particles due to their size. In contrast to the "excluded volume
correction”, the "g-correction” or the bootstrap model, the composition
differs from the composition obtained from an ideal gas description. A1l
ratios between different types of particles are shifted towards the side
of the smaller type of particle! This effect increases with higher
temperatures.
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Fig.(4.17) shows the pressure in the system. It also shows the pressure
of a QGP comprising non-interacting (as=0) quarks, antiquarks and gluons
at the same temperature for different strange quark masses.
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50 100 150 200 ¢ 950
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Figure 4.17: Pressure as a function of the temperature

A first order phase transition HG to QGP would be where the pressure
curve of the HG crosses the QGP curve. The temperatdre for the phase
transition at p=0, called critical temperature TC, is ne?r]y independent
of the choice of the strange quark mass. Even if the strange quarks are
totally neglected the critical temperature is about Tcz 115 MeV.
Compared to other calculations and predictions [27,86] this is a very
low value. The reason is not the model used here (see the comparison to
other models in Ch.(4.4.6)). For this critical temperature the descrip-
tion with the soft particles in the context of the preskure ensemble is
very close to the ideal gas description. A "strongér" correction always
leads to a Tower temperature. The main reason for the low critical tem-
perature is the choice of the bag constant B% = 170 MeV. The very strong
influence of the bag constant B on the critical temperature due to a
shift of the pressure curve describing the QGP is discussed in
Ch.(4.4.5). |

4.4 The hadron gas of MIT bag at T#0 and u#0 and the‘phase transition
hadron gas to_quark gluon plasma p

Since the internal structure of hadrons could be explained by the intro-
duction of quarks and gluons the question arose whether there could be a
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phase in which the quarks -and g]uons can move freely without being
"confined" into particles. QCD calculations indicate that for high den-
sities nuclear matter dissolves and forms a new phase called QGP. Since
then several approaches have been made, both theoretical and experimen-
tal to find the conditions and indications for this phase transition
from nuclear matter to QGP [1-6,79].

In order to calculate the conditions of the phase transition, two dif-
ferent approaches are generally used. The first method:is based on the
QCD interactions in conjunction with lattice calculations [86,87]. These
calculations are still restricted to very small values of the chemical
potential g, i.e. to baryon free systems.

The second approach is based on a thermodynamic description of
both phases. The: hadron side and the plasma side are calculated inde-
pendently. A first order phase transition is then copstructed based on

the assumption that for a given T and g the system will always be in the
~ state with the Tlowest value of the thermodynamic potential per volume
Q/V =-P or in the state with the largest pressure, fgspective]y. The
two phases co-exist if: .

= P (Mechanical equilibrium)

(Thermal equilibrium)

PHadron phase Plasma phase

THadron phase ~ TP]asma phase

(Chemical equilibrium) .
(4.24)

The constructed phase transition is of first order because, with equa-

tions (4.24), ¢

Fiadron phase = PPlasma phase

is in general different from ¢

Hadron phase Plasma phase’

It would be desirable to have one thermodynamic potential describing
both phases including the phase transition. Uﬁfortunate]y no such
potential has yet been constructed. |

In the next chaptefs I will first present the thermodynamic description
of the QGP and then construct the phase transition to the hadron phase
as described above. For the hadron phase I use the pressure ensemble
- description derived in Ch.(3.3). In contrast to the applications already
discussed in Ch.(4.3.2) and Ch.(4.3.3), both g and T will be different
from zero. :

B
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4.4.1 The equation of state for the quark qluon plasma

The EOS for the QGP wused in this thesis is derived from the grand
canonical thermodynamical potential QQGP [31,34,88,89] for massless
quarks

20
3y A 50 %
toap™ ~ Poep™ 3,2 {QQ[[IS"Q+ 30 (7T) ](1’"_—)+7("T) (1-21 m )]

4 15 “s
+ 4gg (nT) (1 - T i_)} + BV (4.25)

which contains the Tlowest order of @ perturbative corrections in the
strong coupling constant due to the quantum chromodynamic interactions
between quarks and g]uons [89]. g and gg are the degeneracy of the
quarks and gluons.

q

Partial derivatives of eq.(4.25) with respect to "q , T and B lead to
the quark density vq , the entropy density s and the energy density ¢

: g .M 2 2 2a ;
_ . . _ S & -
g = Pq g =t [ag + (] - ) (4.26)
2a
s = g0 (9o (15T (12470’ (189 2 )}
+4g_ (1)’ - 18 Eé)] o (4.27)
g 4 7 : )
€ = [(15 u'+30g 4 (aT) )(1-33—)+7 (7)* (150 25
12000 U a0 g u % e
+ag, (M)'(1 - 2 ;é)] +B . ’ (4.28)

Interpreting three quarks (three antiquarks) as a baryon (antibaryon)
. the baryon density is

1
V=3V, . - ; (4.29)

Because in this thesis I am only interested in showing the principle
behaviour of the EOS and the phase transition on the finite particle
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size of the hadrons, g correction will not be applied. To estimate the
influence one example is calculated where g is taken as a constant (see
Ch.(4.4.7)). Several approaches with running coupling constants have
been suggested [34,89,90] differing in dependence of g dn for example A
(A = QCD scale parameter),T,u,v,r and the stage at which they are
applied. Running coupling constants will not be used because up to now
it has been impossible to decide which is the best approximation to
reality. Eqs.(4.25-4.28) are only valid for massless quarks. In the case
of @, = 0 heavy quarks (the strange quarks) can be considered when their
contribution is calculated according to Ch.(2.1), i.e. they are regarded
as an independent ideal gas. This contribution is then added to the
expressions in eq.(4.25). An overview dealing with the broperties of the
QGP is found in [91].

4.4.2 The chemical potential of the different particles

The equations needed to describe the hadron gas have already been
derived in Ch.(3.3) (eq.(3.34) and eq.(3.38)). For T#0 and u#0 the addi-
tional problem arises how to determine the chemical potential By of each
particle species. This problem is generally solved by using the assump-
tion that at the phase boundary the particles dissolve into their quark
content. Assigning the Tight quarks (up and down quarks) the chemical
potential ”q and the heavy strange quarks the chemical pbtentia] [ the
chemical  potential for the particles in the hadron gas are related to
the chemical potentials p_ and b in the plasma phase by, e.qg.

q

N < qqq By = 3Mq
N < qaq By = g 7 - My
A — qqgs By = Zﬂq + o
1 — sss Bo = 3k

4—»_ = ."‘=0
meqq by = lq T lg ,
K «— gs By = ﬂq+ Ly ;
K < qgs u’K=ua+ﬂ§

: : ,' (4.30)
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Chemical equilibrium is then characterized by

Bq Hadron side = Hq Plasma side

Bs Hadron side = Ms Plasma side (4.31)
With these relations the phase transition is still a functioh of the
three variables T, uq and B It turns out that the phase transition is
very insensitive to the choice of By as was verified by calculating the
phase transition curve including and excluding all particles containing
strange quarks. Particles containing strange quarks are rare in the
system (see Ch.(4.3.3)). The dominant particles at the phase transition
are the pion for small uq and the nucleon for small T. Both pion and
nucleon do not contain strange quarks. For other values of T and g, pion
and nucleon are still the main constituents of the hadron gas. The most
important particle carrying strangeness is the kaon (K). The next most
abundant species of particle, p and A, does not contain any strange
quarks. The presence of a few particles containing strange quarks Teads
to a small increase of the energy density. This reflects the fact that
the pressure is mainly due to the light particles whereas all particles
contribute to the energy density. The insensitivity of the phase transi-
tion to particles containing strange quarks has also been found in
calculations using the "g-correction” [33]. In the following calculation
I will set us=0. This is justified because it is assumed that a QGP
created "in a high energy heavy ion collision will have no net strange-
ness, as normal matter contains no strange quarks and strange quarks are
always created as strange-antistrange pairs. For us=0 there will be no
net strangeness in the QGP. This exactly describes the conditions ex-
pected at the beginning of the phase transition QGP-HG or at the end of
a phase transition HG-QGP. For the hadron phase however, By must be
different from zero except for some special conditions [92], and for
T=0. This means that during the phase transition B has to change, lead-
ing to a separation of strangeness between the two phases during the
transition. Some interesting suggestions for the experimental detection
of the phase transition are based on this fact [36,37,92]. As discussed
above the influence of g on the phase transition is small. I have
therefore restricted my calculations to us=0.
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4.4.3 The calculation procedure

Ih order to ta]cu]ate the properties of the phase transition with the
pressure ensemble used to describe the hadron phase, the computer
program has to work at four levels. Starting from the lowest one they
are:

1. Calculation of the integrals in eq.(3.34) and eq.(3.38) for a given
set of variables P,T,u,v. This was done with a Gaugsian integration
routine or by interpolation of the before tabulated integral (see
appendix A).

2. Calculation of the pressure in the thermodynamic 1{mit (eq.2.15) by
finding the pole of the grand canonical pressure partition function
(eq.(3.31)) i.e. the zero of the denominator of thé grand canonical
partition function for given values of T,u,v (see appendix B).

3. Determination of the maximum of the pressure P as a function of v
(see appendix C) for given T,u i.e. the value of v which will be
chosen by the system.

4. Balancing the pressure in both phases. This is done. by either chang-
ing T for fixed ”q or changing ”q for fixed T. Doing the calculation
for different values of the fixed variable leads to the critical
curve- (pairs of T and p_ at the phase transition) in the T-uq plane.
The balance of the pressures was calculated numerically by searching

for the root of F = P (see Appendix B).

Plasma phase ~ PHadron phase
The numerical calculation of such a hierarchical probTem,is difficult.
For the balance of the pressure and the adjustment of T or u_ to a cer-
tain accuracy (level 4) the pressure in the thermodynamic 1limit of the
hadron phase obtained from 7level 3 has to be calculated to a higher
accuracy than requested on level 4. The accuracy has to increase again
from level 3 to 1level 2. The numerical solution of the integrals on
level 1 necessary to find the optimal particle size in Tevel 2 have to
be done .with the highest accuracy. If the accuracy change from one level
to the next level is too small, the program fails to satisfy all the
conditions. If the increase in accuracy is too high, the accuracy to
balance the pressure must be low. Otherwise the computer time necessary
to do the calculation is enormous because a calculation,of the integrals
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on level 1 to a higher accuracy 1leads to a rapid increase in CPU
(central processor unit) time. The calculation was only possible with a
rootfinding program (Appendix B) and a minimum search program {Appendix
C) specially written for this purpose.

For all calculations the particles listed in table 4.1 (Ch.4.3.3)
are taken into account as long as their contribution to the total par-
ticle density p exceeds 0.5% and if the partic]e‘species'does not
contribute to the volume occupied by all partit]es by 1é§s than 0.5%. It
was verified that this does not alter the presented results.

4.4.4 Phase transition curves for different strange quark mass

Fig.(4.18) shows the phase transition in the T-uq plane at B%= 170 MeV
for different values of the strange quark mass used to calculate the QGP
phase.
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Figure 4.18: Dependence of the phase transition on the choice of m

The effect of the strange quark mass is only significant for small uq.
The pressure of the strange quarks adds to the pressure of the Tight
quarks and gluons. For the same chemical potential, a higher pressure is
obtained if the strange quarks are included. The phase transition will
occur at a smaller temperature because a smaller temperature leads to a
stronger reduction of the pressure in the plasma phase than in the
hadron phase. An equilibrium of both phases can again be achieved. The
higher the mass of the strange quarks, the lower the, reduction of the
critical temperature as compared to the case where no strange quarks
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have ‘been taken into account in the plasma phase. This reduction is due
to the mass suppression. For increasing values of the 1ight quark chemi-
cal potential ”q’ the number of quarks in the plasma phase increases
while the amount of strange quarks with chemical potential uS—O
decreases due to the lower temperature of the phase tran51t10n point.

The fraction of strange quarks becomes negligible.

4.4.5 Dependence of the phase transition on the bag constant

The dependence of the phase transition on the bag cOnstént B is shown in
fig.(4.19).
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Figure 4.19: Phase transition HG-QGP for different bag constants

To demonstrate the influence of the volume correction on the phase tran-
sition, the phase transition resulting if the hadron side is described
as a gas of ideal particles, is also indicated (broken lines). For small
values of ”q the difference is very small. Under these conditions it
should be sufficient to describe the hadron gas as an ideal gas. The
free space at the phase transition (fig.(4.20)) confirms this
assumption. At T=0, more than 95% of the total volume is available to
the particles. For constant baryon density less volume is taken up by
the particles if the bag constant is dincreased. The particles are
smaller if a higher bag constant is chosen. ’
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Figure 4.20: Free space at the phase transition HG-QGP

Only for a baryon density close to zero, the higher temperature at the
phase transition for larger bag constant leads to a greater total number
of particles (particles + antiparticles), so that even though the par-
ticles are smaller, more space is filled up. The strong increase of the
critical temperature with the bag constant B is an effect not caused by
the volume correction.

Fig.(4.21) shows the pressure of both hadron gas and QGP at uq=0 for
increasing temperature to different values of the bag constant B.
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Figure 4.21: Pressure at p=0 as function of T to different bag constants
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The critical temperature moves to higher values mainly because the pres-
sure of the QGP is Tower for larger bag constants, i.e. interpreting the
bag constant as the vacuum pressure, the higher pressure of the vacuum
reduces the pressure of the quarks and gluons in the plasma when seen
from the hadron side (see eq.(4.25)). The behaviour of the phase transi-
t1on curve for increasing p is interesting. For bag constants Tower than
B‘ 170 MeV a phase transition for T=0 is found. For larger bag con-
stants there is no phase transition at T=0. Looking at the phase
transition curves where the hadron gas is calculated as an ideal gas, a
very steep increase of the phase transition temperature with increasing
g occurs after an initial drop. This is found for any value of the bag
constant (higher than B%= 148 MeV, for lower values there is no phase
transition at all, see Ch.(4.3.1) and [21]). With the volume correction
a phase transition 1is possible for much smaller vaiues of T. For bag
constants B%< 170 MeV the correction due to the particle size is so
strong that a phase transition is found for T=0. For larger bag con-
stants the hadrons described here with the basic MIT bag equation
(eq.(4.12)) are not only smaller (see fig.(4.7b) in Ch.(4.3.1)), they
are also "softer" in the sense that the same type of pértic]e will al-
ways have a lower mass when compressed to the same size (see fig.(4.7d)
in Ch.(4.3.1)). It is easier to compress them furtheh. I have already
shown that a soft particle system goes over into an ideal pointlike gas
at high densities (see Ch.(4.3.4) fig.(4.15b) showing P/e for p=0). If
the bag constant is higher the relativistic behaviour occurs at lower uq
because -the particles are smaller and lTighter if compressed to the same
size. P/e¢ for different values of B along the phase transition shown in
fig.(4.22) verifies this. For small uq we find the opposite. Low bag
constants 1lead to a larger value of P/¢. The general increase for small
uq arises from the change in composition. Pions dominate at Tow values
of uq. Compared to the nucleons which dominate at low temperature the
pions are more vrelativistic because they are lighter. Furthermore a
higher temperature at the phase transition Teads to a more relativistic
system. This explains the general increase of P/¢ for small values of
uq. Nevertheless the system with the highest bag constant and the
highest critical temperature is not the most relativistic system. This
is due to the fact that for h1gher temperature more particles with a
high mass are present For p=0 and B‘- 160 MeV, 22% of a]] particles are
not pions. For B‘— 190 MeV, 35% are not pions.
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Figure 4.22: P/¢ at the phase transition HG-QGP to different values of B

The increase in the amount of heavy particles causes the system to be
less relativistic for higher bag constants. As shown earlier, the par-
ticles are more pointlike if the bag constant is increas?d. Therefore it
is not surprising that the system calculated with a high bag constant
will take up the behaviour found for an ideal gas description, and that
from a certain value of p_ the phase transition temperature increases
for increasing uq. No phase transition for T=0 exists. The nucleons
(remember: for a calculation using the pressure ensemble, there are only
nucleons at T=0, see Ch.(4.3.2)) are too small and soft. The reduction
of the pressure due to the volume correction is too small. In addition
the pfessure of the QGP is Tower for higher bag constants B. Fig.(4.23a
and b) shows the pressure in both phases at T=0 for two different values
of the bag constant.
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Already for B*= 170 MeV a slight change in the slope of one of the pres-
sure curves has al strong effect on uq where the curves cross (phase
transition). For B%= 180 MeV the slopes of the pressure in both phases
is so similar that they will not cross. Because a phase transition is
generally expected to also take place at zero temperature my model
description leads to an upper limit of the bag constant. In gehera1 we
find that the phase transition depends on the volume correction only at
low temperatures (see the following paragraph). In my calculation
"compressible" particles (hadrons obeying the basic MIT bag equation)
were introduced. A change in the size of the particles and their
"intrinsic" behaviour must Tlead to a different result for small
temperatures. A change from B%= 160 MeV to B%= 180 MeV in this model
already means that the size of an isolated nucleon changes from 2.73 fm3
to 1.72 fma. It turns out that the basic form of the bag equation cannot
be used to do calculations for any bag constant. If the basic form of
the MIT bag equation is used, values for the bag constant close to the
value originally obtained (B%= 145 MeV) [73-75] should be chosen. For
too high bag constants the particles become too small in this descrip-
tion (a nucleon radius smaller than 0.5 fm is expected to be
unrealistic). It is also unrealistic that the particles, are "softer" if
we give them a smaller size. If the size of the particles used only
describes the "hard core" it should be hard to compress them. For the
basic MIT bag equation I found just the opposite behaviour. This be-
haviour -should change if a chiral bag model [93-95] is used; the
introduction of a pion cloud Teads to an additional contribution to the
mass proportional to l/ra. Inctuding this term will Tead to "harder"
EOS. It is interesting to see that more recent modifications of the
"basic" MIT bag equation predict nearly the same size for the particles
obtained here at a bag constant of B%= 170 MeV for much higher bag con-
stants (e.g. B%= 220 MeV) [90]. Independent of the volume correction
this also 1leads to higher phase transition temperatures at uq= 0
(critical temperature). Higher critical temperatures seem more realistic
thanl the values around TC= 120 MeV for B%= 170 MeV. For a bag constant
of B*= 220 MeV the critical temperature is around T~ 150 MeV.
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4.4.6 Comparison to the "excluded volume correction” and

 the “"e-correction”

the "excluded volume correction"” the bag constant and the particle
size can be used as independent parameters. In a description with the
pressure ensemble particle size and the bag constant are related through
the bag equatibn. In the "e-correction" the particle size does not ap-
pear at all. Because this model "priginates" from the bootstrép model
(Ch.(2.3)) the size of the particles was "substituted" by the energy
density because at the bootstrap singularity the entire space is filled
with matter of energy density 4BV (one huge cluster). Fig.(4.24) and
fig.(4.25) show the phase transition in the T—uq plane and the cor-
responding free space as a function of uq.

In
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Figure 4.24: Phase transition for different types of models
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Figure 4.25: Free space at the phase transition HG-QGP
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I have sHown the results of calculations with the pressure ensemble
assuming soft and hard bartié]es, the "extended volume correction" and
the "e-correction", using hard particles with a bag constant B%=
170 MeV. The particle size chosen for the hard particles is the volume
‘the particles will have at infinite dilution in the calculation using
the pressure ensemble for soft particles, i.e. the volume at the minimum

.of the MIT bag equation (see fig.(4.17a). As shown the volume is filled
to a great extent at low temperatures only. The free space for T=0 is

31.4 % (-----) soft particles pressure ensemble

28.0 % (16.7%) hard particles pressure ensemble

15.9 % (1.6 %) hard particles "excluded volume correction"
25.0 % (22.1%) hard particles "e-correction"

The values in brackets are the free space if a bag constant of B%= 235
MeV (B = 397 MeV/fm3) is used. Note that a free space of 26% belongs to
the densest packing of spheres. For lower values of the free space as
obtained with the "excluded volume correction" and the "e-correction”
the model is only consistent under the assumption that the particles are
deformed. The baryon density v for the hadron phase and the plasma phase
for the different models with B%= 170 MeV are shown in fig.(4.26).

5 L IR I R LA SRR IR B | T
4 |- a MIT bags 2 ]
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3 1 d "e- correction” a b
}ol
S~
a
2 -
B*= 170 Mev
1 me= 150 Mev
Vo= 0.16 1/fm’
0 ) l 1 1 I P | L
0 100 200 300 400 500

BqMeV]

Figure 4.26: Baryon density v at the phase transition HG-QGP

The QGP phase has always the higer density, as expected. The curves end
where T=0. At this point the jump in the baryon density is
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VHG/VO VQGP/VO _‘ mode]

3.5 (---)| 4.3 (----)| soft particles pressure ensemble

2.1 (8.8) 3.5 (20.0)| hard particles pressure ensemble

2.4 (8.4)] 3.0 ( 9.7)| hard particles "excluded volume correction"
2.2 (6.4) '3.0 ( 9.0)! hard particles "g-correction”

Again the brackets contain the values for v to a bag constant
L
B*= 235 MeV. Fig.(4.27) shows the energy density € in both phases.
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Figure 4.27: Energy density at the phase transition HG-QGP

The difference between the curves is the latent heat, For higher bag
constants the Tlatent heat increases. This is caused mainly because the
energy density of the vacuum B adds to the energy density of the quarks
and gluons (see Ch.(4.4.1)). A large value of the latent heat is consis-
tent with the assumption of a first order phase transition. This does
not exclude the possibility of a higher order phase transition. In
fig.(4.28) the entropy per baryon is shown as a function of the
temperature. The entropy per baryon at the phase transition for both
phases intersect. For values of S/b Smal]er_than S/b = 17 a reheating of
the system will occur if the phase transition QGP-HG is isentropic
[34,36,37,99]. For higher values of S/b the temperature in the system
has to decrease. Higher bag constants shift the intersection to higher
values of S/b and to higher temperatures.
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Figure 4.28: Entropy per baryon as function of the temperature at the
phase transition HG-QGP :

4.4.7 Dependence of the phase transition on @ corrections

a corrections are introduced to describe quantum chromodynamic interac-
tions between quarks and gluons. In both the plasma and the hadron
phase, this interaction should be accounted for. In the hadron phase @
corrections enter because quarks and gluons are the constituents of the
hadrons. Various approaches exist on the dependence of @, on A (QCD
scale parameter),ri,u,T [34,89,90]. In the following caIcu]ation I will
assume that the basic form of the MIT bag model includes the effect of
the g corrections. For the plasma phase I will use g as a constant to
demonstrate the influence of such a correction. Fig.(4.29) shows the
phase transition in the T-p plane calculated for .= 0 and .= 0.3. The
dependence of the phase transition on the value of as.results from the
reduction of the pressure in the plasma phase. A constant finite value
of @, can be interpreted as a reduction of the degeneracy of the QGP
(see eq.(4.25)). Because the pressure increases stronger in the QGP than
in the hadron phase if T (uq) is increased, a finite value of-aS leads
to a higher phase transition temperature (value of uq).@The higher tem-
perature leads to higher baryon and energy density in- the hadron phase
at the phase transition. i

¥
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Figure 4.29: Dependence of the phase transition HG-QGP on as

The same effect as for increasing the bag constant is séen. At low tem-
perature the particles become so compressed that fhey develop a
relativistic behaviour. No phase transition for T = 0 can be found if
a.= 0.3. This 1is analogous to the case of increasing fhe bag constant
(see Ch.(4.4.5). Once again m, ~1/r for small particle rad11 (compressed
particles) in the basic MIT bag equat1on leads to unrea11st1ca11y small
particles. The knowledge of the higher order term of 1/r is necessary
for a proper description at high densities when tﬁe particles are
compressed. These terms are normally negligible for noﬁcompressed par-
ticles (the exceptions are pion contributions to the parﬁic]e mass which
have been included in chiral bag models [93-95]). In contrast to an
increase of the bag constant which leads to a strong}increase of the
latent heat, the latent heat is near]y unchanged if o ‘corrections are
applied. For the example of u =0 and B‘— 170 MeV

I CQGP Latent Heatf

@.=0 | 33 MeV/fm' 450 MeV/fm 426 MeV/fm .
3 3 3.
as=0.3 76 Mev/fm 486 MeV/fm 410 MeV/fm .

Note that this effect and the increase of the critical temperature is
independent of the particular finite size correctiOn.;As in all other
cases the particles in the hadron phase occupy 1ess§than 10% of the
toté] volume at uq=0. g
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5_CONCLUDING REMARKS

The objective of this thesis is a quantitative assessment of the in-
fluence of the finite size of hadrons on the EOS of nuclear matter and
on the expected phase transition HG-QGP. Different ‘quantum statistical
approaches of finite size corrections found in the literature were
reviewed. An improved model was developed. In this model the theory of
the grand canonical pressure ensemble was successfully applied to a
system of different particles (hadrons) including their proper statis-
tics and corrections due to their finite size. The effects of the finite
size of the particles was discussed under several different conditions.
It was concluded that a description of the hadrons as "hard" particles
is not suitable to describe the properties of dense nuclear matter.
Instead the MIT bag equation was employed to obtain an EOS of "soft"”
particles; soft in the sense that the hadrons shrink due to the pressure
in the system. The MIT bag equation describes the hadron mass m. as a
function of the volume of the hadron, Vi |

For small temperatures the phase transition is strongly dependent
on the finite size of the particles. It was surprising to find that for
small “q the phase transition is nearly independent of the type of
volume correction. The critical temperature T depends strongly on the
choice of the bag constant B and the app11cat1on of ag correct1ons Even
though I have, with B‘— 170 MeV, chosen a much higher bag constant than
B%= 145 MeV obtained from the MIT bag model, the critical temperature of
T. = 120 MeV at @ =0 is rather Tow. The bag constant of B*= 170 MeV is
considered an upper limit in the chiral bag model (F.Myhrer in [94] page
360). Other bag models [96-98] use even higher bag constants (up to B%=
235 MeV, by fitting dibaryon states only). Higher bag constants lead to
higher critical temperatures and particle densities. With higher par-
ticle densities the volume correction also becomes important at u=0, and
will act by reducing the critical temperature, compared to that obtained
in an ideal gas description. This is independent of the specific model
used to do the volume correction. Higher critical temperatures and den-
sities are also achieved if g corrections are applied. Both B and g
are "input" to the thermodynamic calculation. The phase transition ob-
tained in a thermodynamic description is, as shown, sensitive to the
choice of these parameters. Prediciting power can only be achieved if
these inputs are accurately known. With the possible range of values for
B and a_ this is impossible. Therefore I had to restrict myself to

s
principle effects that occur when finite size corrections are applied. I
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conclude that a "hard" particle description for nuclear matter at high
densities is not reasonable. A description with the pressure ensemble
shows that the increase of P/¢ with higher densities leads to unphysical
sound velocities. Within the "excluded volume correcfion" or the "g-
correction” similar problems occur (see fig.(4.6). in Ch.(4.2)).
Therefore, it seems clear that the hadron should shrink due to the pres-
sure in the system. The new model using the MIT bag equation to describe
the "intrinsic" behaviour of the hadrons is promising. It leads to a
more consistent description. As expected a change in composition towards
the smaller particles is found which is in contrast to earlier models
("excluded volume correction" and "e-correction”). |

It is not surprising that the model developed in this thesis is
sensitive to the size and the "intrinsic" behaviour of the particles.
Therefore, the next step is to improve the model description of the
particles (hadrons). It is essential to know the properfies of the par-
ticles when confined to a small volume. I found that the basic form of
the MIT bag equation with a 1/r behaviour is insufficient because for
certain choices of B and @, no phase transition at T=0'can be found.

One of the most difficult questions is: What are the relevant
radii of the particles? Quark core? rms? ...?. These questions go even
further. Is the size of the particles so small that the particles should
be described by wave functions? How to incorporate the finite size of
the particles in a completely quantum mechanical description is still an
open question. Even if an ansatz is found the question arises whether
the problem can be solved, or not. There is no hope of an analytical
solution. For the model developed the numerical work was very time-
consuming. The FORTRAN programs written to obtain the pfesented results
are about ~10 000 Tlines altogether (a print-out is available on
request).

I would 1like to close with some critical remarks on the expected phase
transition HG-QGP:

If the critical temperature is high (>200 MeV) the volume of the hadrons
will be important at the phase transition for any value of p. A big
fraction of the total volume will be taken up by the particles. I cannot
exclude the possibility that there is a continuous phase transformation
rather than a phase transition. Bigger clusters, i.e. multi-hadrons, not
taken into account'in the present calculation, could be, formed and fill
up more and more of the total space. The EOS inside these big "bubbles”
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could go over continuously into the EOS of the QGP asithe "bubble" in-
creases by having more and more quarks, antiquarks and gluons inside.
Up to now no description for such "bubbles" (quark matter droplets)
exists, i.e. there is no EOS for a finite size system of N particles. -
Even without the possibility of "bubbles" the calculation presented here
indicates that the latent heat decreases when the volume correction
becomes important (see Fig.(4.27) in Ch.4.4.6)).

If the properties of the QGP are calculated and the points with equal
energy density .are drawn in the T-u plane a curve is obtained which
looks 1like the phase transition curve expected. There ﬁay be a physical
explanation that the QGP cannot exist for an energy density lTower than a
critical value nearly independent of T and pu.

In this thesis the corrections to the EOS for nuclear matter due to the
finite size of the hadrons, was improved by introducing a new model. In
contrast to the other volume corrections discussed, all thermodynamic
properties are calculated in the usual thermodynamic Timit. It was found
that the phase transition HG-QGP is strongly dependent on the value of
the bag constant, the application of @ corrections and the model
describing the properties of the hadrons. Before being able to further
improve on the calculations it is essential that a reliable value for
the bag constant is established and a better description of the @, cor-
rections and the hadrons is developed.



72

Acknowledgements

- T would 1like to.thank:

- Professor Jan Rafelski who was my supervisor for as long as he was
Professor of ‘Physics at the University of Cape Town. Due to his
dynamic personality, a strong theoretical group was formed and
workstation computers were purchased which made the calculations for
this thesis possible.

- Professor Raoul Viollier, for taking over as supervisor when Professor
Rafelski left Cape Town. |

- Detlof von Oertzen and Hans Eggers with whom I worked closely over a
Tong period of time. I hope that our friendship built around Tengthy
and often difficult discussions will continue to be of help to us in
the future.

- R. Hagedorn who, even though he has been retired for several years,
has not lost his interest in Physics and who replied to my letters and
questions and was available for fruitful discussions when I visited
the European Research Centre CERN.

- A11 other members and former members of the Institute of Theoretical

| Physics for their contribution in helping me to undekstand Physics. 1

especially have to name Jean Cleymans, Petr Zimak, Peter Hess, Mike

0’Connor, and Rudolph Tegen for his patience in carefully reading
through my manuscript and for his critical comment. |

- Thanks also to Joan Parsons for typing parts of tﬁisvwbrk.

- - The FRD, CSIR and CERN for their financial support. .

- Special thanks go to Ulrike Kramer for her invaluable help.



73

APPENDIX A: Numerical Solution of the Integrals

The integrals in this work are of the type
Q2 ) 2 2.1 ,
[ p" f(E) dp with E=(p +m-)% . « : . (A1)
3 .

They appear in connection with the calculation of préssure P, energy
density ¢ and particle density n. These integrals were all solved by the
same procedure outlined below for the general form ofial] these equa-
tions (Al). At the end the three different functions f(E) appearing in
the expressions for P,n and ¢ in the pressure ensemble as the most com-
plicated case are given. It is easy to extract all other cases from
these three examples by simple manipulations. |

For the numerical solution of the integral of type (Al) it is advan-
tageous to first do some mathematical manipulations to change the
infinite integration limits of the integral to finite values. There are
two reasons for doing so:

1. The construction of the digital computers leads to a biggest, lowest
(negative) and smallest (i.e near 0) number due to the finite resolution
of the numbers. Trying to solve (Al) in the given form with any numeri-
cal integration routine available will fail when pushing the upper
integration boundary to the biggest number available. The contribution
to the integral of the infinite tail of the function in;the argument is
finite. This means that the function decreases with increasing momentum
or energy (in all our cases like e'E/T ) and will fall into the "gap"
around 0. Random numbers will be integrated long before the upper bound-
ary reaches the biggest possible number. On the other hand the step size
for the integration has to be reduced to a very small value in order to
resolve the main contribution at the Tower integration limit. This leads
to a very long calculation time.

2. When the problems mentioned under 1. are avoided by a realistic
finite upper integration 1limit there is no way to ensure that the in-
tegral calculated is accurate to the required number of digits. It is
impossible to say how far one can push the upper integration limit
before the 1imit of the computer is reached. One also does not know how
far one must integrate to obtain a sufficiently accurate. result.

)
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A better way to solve the integral numerically is to change the vari-
ables from p to E

I o° F(E) dp = [ E (E-n")¥ F(E) dE (A2)
| m

-E/T

and substitute the high energy behaviour x=e which 1eads to

Bm 2 2 1
In x (In x - (Bm).)?
X

TE (E-n) £(E) dE = -T° E £(E) dx
- ,

With E=-T1Tnx . | | (A3)

The infinite upper integration 1limit is thus converted into a finite
value. However the argument now has a singularity at x=0 (In 0). The
substitution "squeezes" the infinite tail into this singularity. Because
the contribution of the singularity is finite (improper'integra1) and is
located at the boundary of the integration it is possible to use a
Gaussian 1integration routine or any other method which does not use the
function value at the boundary. Only routines which split the given
interval in more and more subdivisions until the required accuracy is
reached must be used. This ensures that an error will occur during the
computing if the contribution of the singularity is not finite and the
integral 1is not an improper integral. In this case the interval next to
the singularity will be split until the function is requested so close
to the singularity that an overflow occurs. It was verified with some
analytical improper integrals, that the accuracy given to the Gauss
routine used here (CERN computer library D109 DGAUSS) is really reached
if the upper boundary in eq.(A3) is not too small i.e. temperatures
should be >20 MeV.

Three different functions f(E) appear in connection with the pressure
ensemble. Inserting them into the equation above leads to

o , -B(E,- p.+ Pkv.)
t [ o NI J _
a) t { p;In(1te ) dp;
- 13 aj n X X 2 2 %E
=37 | o In( 1 £3-) (In'x - In"a;)? dx (A4)
0 j J
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[ o]
1
b) £ [p - dp
5 ' J - eB(Ej uj+kaj)
5T }j X (In'x - n’a, )’i dx (A5)
0 J ‘
;
c) t]p d
J B(E.-pu.+Pkv.)
’ 1te Y9 J
4 a, 2 .
- J 1In ]
=t T { x+bJ (1n X - 1n’a, 5)% dx (A6)

where I have used the abbreviations

-Bm, ' uj+kaj

It turned out that for finding the pressure in the thermodynamic limit
the integral eq.(A4) had to be calculated frequently and caused a very
long running time on the computer. The program was much faster after
tabulating the integral as a function of the two parameters a and b for
the most important areas of the two parameters. The value of the in-
tegral was then interpolated (when the parameters were inside the table
area) by the six point bivariate interpolation formula [100]:

F(xg#ph,Yo+ak) = 3 [ P(p-1) f_y o + ala-1) fy )

y A, (Xg+Ph, Yo +ak) + p(p-2q+1) f1,0 + q(q-2p+1) fO,l ]

1
- 2 2
T x + (1+pg-p -q ) fy o+ pa fy 4

(xg,¥0)

=
bad

with f; = f(xo+ih,yo+ih).
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APPENDIX B : Numerical search for the pressure in the thermodynamic
limit ‘

2

In a description using the pressure ensemble, the thermddynamic lTimit is
obtained by finding the pole of the grand canonical pressure partition
function (see Ch.(3.2)). A numerical search for a pole is difficult.
With eq.(3.34) the problem is converted to the problem of fihding the
root of the denominator of the grand canonical pressure partition
function. Library functions exist for this purpose . Because the library
program available, CERN program 1ibrary C205 RZERO, is written in single
precision and sometimes has returned a wrong value (this problem seems
to be solved now) a new root finding program for a function f(x) in
. double precisipn was written, taking care not to calculate the function
at points too close to each other. This avoids errors resulting from the
finite accuracy of f(x). (The integrals necessary to calculate f(x) are
calculated only to a certain accuracy by a Gaussian integration method).
Because this program is frequently used, care was taken to make it fast
and to protect it égainst all possible errors.
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APPENDIX C: Numerical search for the size of the soft particles

The size of the particles is determined by the maximum of the pressure P
with respect to all particle volumes (eq.(4.23)). To obtain this point
it is necessary to calculate a maximum in n dimensions. This was done
numerically. Library programs are always written to find a minimum in n
dimensions because the problem of the search for a maximum can be con-
verted to a minimum search by changing the sign of the function; in my
case, to a search of the minimum of -P. Initially the CERNLIB program
package MINUIT D506 was used. It was possible to locate the minimum, but
it was almost impossible to improve the minimum to an accuracy of more
than 3%. Close to the minimum, the change in the function is very small.
If the function is calculated at points close to each other in an area
near the minimum, the difference in the function value is very inac-
curate because the function itself is calculated to a certain accuracy
only. In this case the point calculated for the improved location of the
minimum can be completely wrong. To solve the problem of finding the
optimal volumes of the particles, a new minimizing program was written,
using the fact that the particle volumes of the different particles are
not significantly correlated (as seen from the correlation coefficients
calculated by MINUIT). For uncorrelated parameters it is possible to
improve one parameter at a time without affecting the minimum with
respect to the other parameters. The new program improves all parameters
(i.e. all particle volumes), one at a time. At first the parameter with
the largest error is improved. |

Fmin. ////////
! F
max.
i

opt

True Minimum
%,

o
\ o

Vmini Vopti Vmaxi Vi
Dy D,
The error is defined as the maximum of and y . In the begin-
: opti : opti .
ning Vmin * Ymax ° vOpt are set to the values given to the function when

it is called. If one parameter is improved so far that the error of
another parameter becomes significantly larger, i.e. if the error of the
improved parameter drops below 1/5 of the next largest error, this
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parameter 1is improved next. The procedure 1is continued ~until all
parameters are adjusted to better than the required accuracy. Finally it
is checked again if the function really has a minimum between the error
limits of each parameter. As mentioned, this procedure can only be ap-
"~ plied if the parameters are not significantly correlated. Otherwise the
minimum will be lost. This is reported by the program. To avoid the
problem with the finite accuracy of the function as muchfas possib]e, an
improved value for a parameter was shifted to 1/4 of the required ac-
curacy if the new point was closer than that to the previous best value
of this parameter. For the calculations done in this thesis the program
worked well as long as the contribution of one kind of particle to the
pressure was high enough, i.e. as long as the pressure'is sensitive to
this type of particle. A species of particles was excluded from the
calculation when their total density and the volume occupied was Tless
than 0.5% and decreasing.



79

APPENDIX D: Alternative least squares fit to the hadron mass spectrum

A fit of the MIT bag equation (eq(4.10)) to the hadron spectrum is al-
ways problematic because we will only accept a fit where the mass
obtained for the nucleon is close to the well known experimentally
determined va]de. This is not normally achieved in a least squares fit
to all 1light hadrons. The fitted mass of the unstable particles tends to
be too high. It turns out that a better fit can be obtained if the un-
stable particles are excluded. Even then the MIT bag eqpation yields an
unacceptable high value for the nucleon mass. |

An acceptable least square fit was found by modifying the MIT bag equa-
tion and introducing additional free parameters [81]. Instead of the
four free parametérs of the MIT bag equation, eight parameters are
fitted. This equation cannot be extended further because it turns out
that the free parameters are significantly correlated.

Based on the MIT bag equation and the fit mentioned above, I found that
an improved fit can be obtained using the following ansatz:

m(v) = E, + Eg + Eq+ E¢ , (D1)

where Ev, Eo and EQ are taken from the MIT bag formulation [74,75] and
Ec from [81]. Ec is the colour interaction and accounts for both Em and
‘EE of the MIT bag model. Ec distinguishes between the interactions q-q,

g-s, and s-s by the introduction of three parameters hqq’ h__. and hss‘

qs
Instead of the four parameters B, Zo’ mg and o, in the MIT bag equation
(4.10), I have the six free parameters B, Zo’ mgs hqq’ hqs and hss' In
order to fit all masses with the same relative error, I decided to mini-
mize the relative error (see eq.(4.11)). This ensures that all masses

are accurate to the same number of digits.

It turns out that by using eq.(Dl), no significant correlations between
the parameters are found (it is worth mentioning that even with the MIT
bag equation, significant correlations occur).

The results obtained for a fit to the most stable particles including
and excluding the pion are shown in Table DI.
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TABLE D1 : Results obtained by a fit to eq.(D1)

The particles included into the fit are marked with "+". The mass of the
light quarks has been set to mq=0.

fit excluding the pion - fit including the pion

mexp Mecale "min Vmin mexp Mecale "min Vmin

[MeV] [MeV] [fm] [fm3] [MeV] [MeV] [fm] [fm?]

+ N 939 940 0.87 2.79 ¥ N 939 939 0.87 2.75

A 1232 1291 0.97 3.82 A 1232 1293 0.97 3.79

v 783 783 0.82 2.32 Fow 783 783 0.82 2.30

v K 496 496 0.60 0.92 K 496 496 0.60 0.91

K* 892 913 0.80 2.12 K* 892 911 0.79 2.10

+ ¢ 1020 1017 0.76 1.86 + ¢ 1020 1016 0.76 1.84

+ 3 1193 1191 0.89 2.93 + % 1193 1193 0.89 2.91

+ A 1116 1114 0.87 2.71 + A 1116 1113 0.86 2.68

5* 1385 1432 0.95 3.64 5° 1385 1432 0.95 3.60

+ 1318 1316 0.87 2.72 + E 1318 1317 0.86 2.69

=° 1533 1562 0.94 3.42 =¥ 1533 1562 0.93 3.39

+ 0 1672 1681 0.91 3.18 + 0 1672 1682 0.91 3.15

p 769 783 0.82 2.32 p 769 783 0.82 2.30

n 137 145 0.47 0.43 v on 137 137 0.46 0.40
B% 160 MeV Z,= 2.20 m_= 302 MeV | B'= 160 MeV Z,= 2.20 m_= 301 MeV
Ngq™ 0-273 hgg= 0.187 h = 0.0540 | hyo= 0.275 hyo= 0.186 h = 0.0561

The success of eq.(D1) indicates that in future theoretical bag models
the colour interaction term should be reviewed and maybe improved.
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