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Abstract

Ductile fracture modelling is extensively used in the automotive, aerospace, aluminium

and steel industries. However, these models are often only validated in a limited

region of stress states, for example tensile failure by void growth but not shear. In

addition, the predictions generally do not include strain rate or temperature effects.

Quasistatic tests are often used in calibration, even though many applications such

as automotive accidents and ballistic impact operate in the dynamic range.

Thus the aims of this thesis were to develop a system to test the damage properties

of materials at both quasistatic (≈ 1 s−1) and dynamic (> 1×103 s−1) strain rates,

and then to determine the influence of strain rate to ductile fracture.

From the literature the Bai-Wierzbicki damage model was identified as being

applicable to the widest range of loading conditions. Thus tests to calibrate this

failure locus were conducted on sheet specimens with notches cut into each to

introduce non-axial stresses, resulting in a range of loading conditions. This testing

procedure involved experimental testing combined with finite element analysis

(FEA) to determine the stress and strain state at the position of fracture initiation.

All specimens used material from the same sheet of mild steel.

To break the dynamic specimens a tensile split Hopkinson pressure bar, or TSHB,

was optimized and built. Hopkinson bars are the standard method of conducting

high strain rate characterisation tests, however, there is no universal design to

examine tensile deformation. The apparatus built used a tubular striker and

produced a square input pulse with low noise as desired. Sheet specimens were

glued into slotted sections of threaded bar, which in turn screwed into the split

Hopkinson bars. This method was successful as in every case the specimens broke

before the epoxy.
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FEA modelling techniques were optimized to minimize computation time. The

most important was the use of infinite elements to simulate the bars which, when

calibrated, were found to be the ideal method of modelling split Hopkinson bars.

Ultimately it was found that strain rate does influence ductile damage. The

dynamic specimens failed at a lower strain than the quasistatic equivalents. This

indicates that, at high strain rates, fracture strain decreases with strain rate. In

contrast, in the quasistatic range strain rate tends to decrease displacement to

fracture and thus it is proposed that at quasistatic strain rates, fracture strain

increases with strain rate. It is speculated that the degree that strain rate influences

ductile fracture is related to the Lode angle, which is a measure of the third

deviatoric stress invariant.

iv



Acknowledgements

It is a pleasure to recognize those who made this thesis possible.

First and foremost I would like to thank my supervisor, Trevor Cloete, for his

support, advice, funding and encouragement. We both manage to distract each

other far too easily, but have made a good team.

My sincere thanks go to Professor Gerald Nurick for his help in organising funding,

for his advice, and especially for his role in making BISRU a great place to work.

For their help in the experimental and modelling work I am incredibly grateful

to the support crew of Reuben Govender, Vic Balden, Matt Theobald and Steve

Chung.

My thanks go to the Mechanical Engineering workshop staff especially Glen Newins,

Charles Nicholas, Horst Emrich and Len Watkins for manufacturing the apparatus

and specimens. Their patience, advice and good humour are almost unlimited.

Finally to my office mates Carlo Geretto, Yolande Iyer and Patrick Smith for

providing distractions when I needed them and when I didn’t. The group provided

the perfect environment for discussions and encouragement which helped me tremendously.

v



Contents

Declaration ii

Abstract iii

Acknowledgements v

Contents vi

List of Figures ix

List of Tables xiv

Nomenclature xv

1 Introduction 2

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Objectives and Method . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Outline of the Report . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Literature Review 6

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Damage Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Split Hopkinson Pressure Bar . . . . . . . . . . . . . . . . . . . . . 38

2.4 Tensile Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.5 Specimen Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.6 Numerical Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3 Apparatus Design 60

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

vi



3.2 Tensile Split Hopkinson Bar . . . . . . . . . . . . . . . . . . . . . . 60

3.3 Specimen Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.4 Gluing Jig . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4 Simulation Procedure 84

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.2 Plasticity Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.3 Damage Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.4 SHB Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.5 Quasistatic Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5 Experimental Tests 118

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.2 Dynamic Test Procedures . . . . . . . . . . . . . . . . . . . . . . . 119

5.3 Quasistatic Test Procedures . . . . . . . . . . . . . . . . . . . . . . 126

5.4 Straight Specimens . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.5 Notched Specimens . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.6 Grooved Specimens . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6 Numerical Simulation 158

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

6.2 Mesh and Readings . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

6.3 Calibrating the Plasticity Model . . . . . . . . . . . . . . . . . . . . 161

6.4 Damage Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

6.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

7 Discussion 182

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

7.2 TSHB Effectiveness . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

7.3 Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

7.4 Specimen Deformation . . . . . . . . . . . . . . . . . . . . . . . . . 185

7.5 Strain Rate Effect on Ductile Fracture . . . . . . . . . . . . . . . . 186

7.6 Damage Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

8 Conclusions 192

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

vii



8.2 Testing Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

8.3 Strain Rate Effect to Ductile Damage . . . . . . . . . . . . . . . . . 194

9 Recommendations 196

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

9.2 TSHB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

9.3 Specimen design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

9.4 Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

References 202

Appendices 210

A Split Hopkinson bar theory A.1

B Abaqus User Files B.1

C Drawings C.1

viii



List of Figures

2.1 SEM pictures of fracture zones in a tensile and upsetting test. . . . 8

2.2 Cell used by McClintock to study the growth of voids. . . . . . . . . 9

2.3 Johnson-Cook fracture model for 4340 Steel . . . . . . . . . . . . . 15

2.4 SEM pictures showing the fracture zones in a tensile and upsetting 20

2.5 Fracture locus based on triaxiality proposed by Bao and Wierzbicki 21

2.6 Bridgman data showing the average triaxiality for each specimen . . 23

2.7 Stress triaxiality versus strain on aluminium . . . . . . . . . . . . . 24

2.8 Xue-Wierzbicki fracture locus. . . . . . . . . . . . . . . . . . . . . . 26

2.9 Ductility change between θ̄ = −1 and 1 . . . . . . . . . . . . . . . . 27

2.10 Fracture locus for the Bai-Wierzbicki damage model . . . . . . . . . 28

2.11 Calibrated Wierzbicki-Xue model. . . . . . . . . . . . . . . . . . . . 30

2.12 Perforation test showing a cylindrical projectile and plate . . . . . . 33

2.13 Perforation simulation results found by Teng and Wierzbicki. . . . . 34

2.14 Tube and Yoke TSHB . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.15 ‘Hat’ shaped specimen proposed by Lindholm and Yeakley . . . . . 40

2.16 Modified compression bar as used by Nicholas . . . . . . . . . . . . 41

2.17 Direct tension apparatus using a stored tensile pulse . . . . . . . . . 43

2.18 Direct tension apparatus using a flanged incident bar . . . . . . . . 43

2.19 Tensile SHB designed by Cloete . . . . . . . . . . . . . . . . . . . . 43

2.20 Load displacement graph for a typical tension test. . . . . . . . . . 47

2.21 Neck dimensions used for the Bridgeman correction factor. . . . . . 47

2.22 Tensile neck formation. . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.23 Calibration tests plotted relative to triaxiality and Lode angle. . . . 50

2.24 Specimens used to calibrate the Bai-Wierzbicki model . . . . . . . . 51

2.25 Tensile specimen used by Downey . . . . . . . . . . . . . . . . . . . 55

2.26 Tensile sheet specimen design used by Verleysen and Degrieck . . . 55

ix



3.1 Schematic of the tensile split Hopkinson . . . . . . . . . . . . . . . 61

3.2 Striker interaction with impact bar. . . . . . . . . . . . . . . . . . . 62

3.3 Final TSHB design. . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.4 Photographs of the TSHB apparatus. . . . . . . . . . . . . . . . . . 63

3.5 Stress wave propagation through the input bar . . . . . . . . . . . . 65

3.6 Effect of striker length on the incident pulse . . . . . . . . . . . . . 66

3.7 Photographs of the striker Components. . . . . . . . . . . . . . . . 69

3.8 Basic specimen geometries used in the dynamic and quasistatic tests. 71

3.9 Approximate initial specimen states. . . . . . . . . . . . . . . . . . 73

3.10 Photograph of all the different types of specimen tested. . . . . . . 73

3.11 Sheet specimen glued into two sections of threaded bar. . . . . . . . 74

3.12 Photograph of a dynamic specimen being screwed to the TSHB. . . 75

3.13 Glue Test set 1 results . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.14 Glue Test set 2 results . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.15 Post test results of glue test specimens . . . . . . . . . . . . . . . . 79

3.16 Final glue jig design. . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.17 Photograph of the specimen positioned in the lower clamp. . . . . . 81

3.18 Slotted threaded bar with thread tape . . . . . . . . . . . . . . . . 81

3.19 Clamped specimen and threaded bars with epoxy applied. . . . . . 82

3.20 Bar bonding to specimen in the jig . . . . . . . . . . . . . . . . . . 82

3.21 Photograph of the lower glue jig clamp . . . . . . . . . . . . . . . . 82

4.1 Predictor return algorithm . . . . . . . . . . . . . . . . . . . . . . . 89

4.2 Equivalent stress using the Johnson-Cook model at high strain rates. 95

4.3 Equivalent stress using the Johnson-Cook model at low strain rates. 96

4.4 Plastic strain versus time for the Johnson-Cook model. . . . . . . . 96

4.5 Strain rate using the Newton’s Method solver. . . . . . . . . . . . . 98

4.6 Strain rate using a Predictor Return algorithm . . . . . . . . . . . . 99

4.7 Strain rate using the Zhao Predictor Return algorithm at a rate of 1 100

4.8 Strain rate using the Zhao Predictor Return algorithm at ε̇ ≈ 0.2 . . 100

4.9 Strain rate using the Zhao Predictor Return algorithm at ε̇ ≈ 1000 . 101

4.10 Model to study effect of replacing the input bar with beam elements.104

4.11 Effect of using circular beam elements with a 1
4

symmetry bar . . . 105

4.12 Specimen stress versus strain from using velocity boundary conditions106

4.13 Model to study effect of infinite elements replacing the input bar. . 108

x



4.14 Incident pulse reflected against a boundary of ‘infinite elements’ . . 109

4.15 Stress obtained by applying a pressure between the infinite elements.110

4.16 Final model for simulation split Hopkinson bar experiments. . . . . 111

4.17 Specimen deformation using infinite elements with bar properties. . 112

4.18 Specimen deformation using infinite elements with optimized

properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.19 Dynamic model specimen geometry. . . . . . . . . . . . . . . . . . . 114

4.20 Quasistatic model specimen geometry. . . . . . . . . . . . . . . . . 116

5.1 Maximum stress calibration factor curve. . . . . . . . . . . . . . . . 123

5.2 Effect of the threaded connection on the stress pulse. . . . . . . . . 124

5.3 TSHB results for the 1.25mm radius grooved specimen 4 . . . . . . 125

5.4 High speed camera images showing the threaded bar move. . . . . . 125

5.5 TSHB results for the 2mm radius grooved specimen 2. . . . . . . . 126

5.6 Quasistatic reading with machine compliance and slip removed. . . 127

5.7 Straight specimen photographs. . . . . . . . . . . . . . . . . . . . . 130

5.8 Quasistatic results for the straight specimens. . . . . . . . . . . . . 131

5.9 TSHB results for the straight specimens. . . . . . . . . . . . . . . . 132

5.10 Strain gauge readings for specimen ‘Straight 1’. . . . . . . . . . . . 134

5.11 Transmitted gauge reading for specimen ‘Straight 1’. . . . . . . . . 134

5.12 Photographs of the 1mm radius notched specimens. . . . . . . . . . 136

5.13 Quasistatic results for the 1.25mm radius notched specimens. . . . . 137

5.14 Strain gauge readings for 1.25mm radius notched specimen 4. . . . . 137

5.15 TSHB results for the 1.25mm radius notched specimens. . . . . . . 138

5.16 Photographs of the 2mm radius notched specimens. . . . . . . . . . 140

5.17 Quasistatic results for the 2mm radius notched specimens. . . . . . 141

5.18 TSHB results for the 2mm radius notched specimens. . . . . . . . . 141

5.19 Strain gauge readings for 2mm radius notched specimen 1. . . . . . 142

5.20 Fracture surface of the 2mm radius notched specimens . . . . . . . 142

5.21 Profile of the 2mm radius notched specimens at failure. . . . . . . . 143

5.22 Photographs of the 5mm radius notched specimens. . . . . . . . . . 144

5.23 Quasistatic results for the 5mm radius notched specimens. . . . . . 145

5.24 TSHB results for the 5mm radius notched specimens. . . . . . . . . 145

5.25 Strain gauge readings for 5mm radius notched specimen 1. . . . . . 146

5.26 Photographs of the 1mm radius grooved specimens. . . . . . . . . . 147

xi



5.27 Quasistatic results for the 1.25mm radius grooved specimens. . . . . 148

5.28 TSHB results for the 1.25mm radius grooved specimens. . . . . . . 149

5.29 Strain gauge readings for 1.25mm radius grooved specimen 3. . . . . 149

5.30 Photographs of the 2mm radius grooved specimens. . . . . . . . . . 151

5.31 Quasistatic results for the 2mm radius grooved specimens. . . . . . 151

5.32 TSHB results for the 2mm radius grooved specimens. . . . . . . . . 152

5.33 Strain gauge readings for 2mm radius grooved specimen 3. . . . . . 152

5.34 Photographs of the 5mm radius grooved specimens. . . . . . . . . . 154

5.35 Fracture surface of the 5mm radius grooved specimens . . . . . . . 155

5.36 Quasistatic results for the 5mm radius grooved specimens. . . . . . 155

5.37 TSHB results for the 5mm radius grooved specimens. . . . . . . . . 156

5.38 Strain gauge readings for 5mm radius grooved specimen 2. . . . . . 156

6.1 Dynamic 2mm radius notched specimen mesh. . . . . . . . . . . . . 159

6.2 Quasistatic 5mm radius grooved specimen mesh. . . . . . . . . . . . 160

6.3 Comparison of the Zhao flow stress model at a strain of 0.1 . . . . . 161

6.4 Simulation of the 1.25mm radius notched specimen . . . . . . . . . 165

6.5 Mass-spring-damper system load response. . . . . . . . . . . . . . . 165

6.6 Simulation of the 2mm radius notched specimen . . . . . . . . . . . 166

6.7 Simulation of the 5mm radius notched specimen . . . . . . . . . . . 167

6.8 Simulation of the 1.25mm radius grooved specimen . . . . . . . . . 167

6.9 Simulation of the 2mm radius grooved specimen . . . . . . . . . . . 169

6.10 Simulation of the 5mm radius grooved specimen . . . . . . . . . . . 169

6.11 Final average Lode angle and triaxiality . . . . . . . . . . . . . . . 171

6.12 Initial and final strain rate. . . . . . . . . . . . . . . . . . . . . . . 171

6.13 Change in triaxiality for the notched specimens. . . . . . . . . . . . 173

6.14 Dynamic model before deformation and at fracture . . . . . . . . . 174

6.15 Quasistatic model before deformation and at fracture . . . . . . . . 175

6.16 Change in triaxiality for the grooved specimens. . . . . . . . . . . . 175

6.17 Fracture strain for all types of specimen. . . . . . . . . . . . . . . . 176

6.18 Failure strain versus average triaxiality for the notched specimens. . 177

6.19 Fracture locus generated using the dynamic results. . . . . . . . . . 178

6.20 5mm notched specimen damage simulation . . . . . . . . . . . . . . 179

6.21 Simulated specimen during fracture . . . . . . . . . . . . . . . . . . 179

7.1 Predicted strain rate effect to the Bai-Wierzbicki damage mode. . . 190

xii



A.1 Tensile split Hopkinson bar. . . . . . . . . . . . . . . . . . . . . . . A.2

A.2 Developing the one dimensional wave equation. . . . . . . . . . . . A.3

A.3 Impact of the striker and incident bars. . . . . . . . . . . . . . . . . A.7

A.4 Velocity and loads acting on the specimen-bar interface. . . . . . . . A.10

xiii



List of Tables

3.1 Specimen and threaded bar dimensions used to test glue strength . 76

5.1 TSHB properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.2 Final calculated and measured 5mm radius notch displacement. . . 128

5.3 Measured dimensions of the straight specimens. . . . . . . . . . . . 129

5.4 Measured dimensions of the 1.25mm radius notch specimens. . . . . 136

5.5 Measured dimensions of the 2mm radius notch specimens. . . . . . 140

5.6 Measured dimensions of the 5mm radius notch specimens. . . . . . 144

5.7 Measured dimensions of the 1.25mm radius groove specimens. . . . 147

5.8 Measured dimensions of the 2mm radius groove specimens. . . . . . 150

5.9 Measured dimensions of the 5mm radius groove specimens. . . . . . 154

6.1 Constants used for the final chosen plasticity model. . . . . . . . . . 163

6.2 Temperature constants used in the final model . . . . . . . . . . . . 163

6.3 Specimens analysed in the simulations. . . . . . . . . . . . . . . . . 164

xiv



Nomenclature

Roman

A cross-sectional area

A,B,C,D, k, n,m Zhao plasticity constants

c wave propagation speed

Cp specific heat

D1, . . . , D6 Bai-Wierzbicki failure locus constants

Eij strain tensor

G shear modulus

m mass

N averaging weight factor

Nij normal direction tensor

p pressure

q heat flux per unit volume

s yield surface

Sij deviatoric stress tensor

T temperature

t time

Tij Cauchy stress tensor

u displacement

V volume

E Young’s modulus

Greek

θ̄ normalized Lode angle

ε̇ equivalent strain rate

ε equivalent strain

η triaxiality

xv



η̂ plastic work to heat ratio

λ 1st Lamé parameter
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Chapter 1

Introduction

Damage is defined in this work as a discontinuous deformation and is evident

in the initiation and propagation of cracks in a crack free body. Simulations

trying to predict this phenomena are extensively used in the automotive, aerospace,

aluminium and steel industries [1]. However, little consensus exists as to which

fracture prediction method to use in general applications. In many situations

loading conditions vary significantly, but damage models are generally accurate

only for specific conditions [1].

The difficulty in studying damage is that unlike yield, ductile fracture is history

dependent [2]. Furthermore, yield in ductile materials is closely related to the

equivalent deviatoric stress, while recent work has shown that no single parameter

accurately predicts fracture [3].

Coupled with the difficulty in predicting damage in controlled conditions is the

limited understanding of the effect strain rate and temperature have on the process.

Indeed, many dynamic simulations are conducted using fracture models calibrated

using quasistatic data, see for example [4]. However, the application for dynamic

modelling is extensive and includes automotive accidents, ballistic impact and

explosives testing.
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Introduction 1.1. Motivation

1.1 Motivation

Research at the Blast Impact and Survivability Research Unit (BISRU) of the

University of Cape Town is focused on dynamic testing. This is primarily in

the form of blast impact loading, drop weight experiments and split Hopkinson

pressure bar characterisation. A damage model that covers a wide range of strain

rates is vital to simulate these events and hence the motivation for this thesis.

This work is a first stage in developing a damage model valid across a wide range

of strain rates, from quasistatic (≈ 1 × 10−3 s−1) to dynamic (> 1 × 103 s−1),

and loading conditions. To reduce the complexity, the scope is limited to tensile

testing of mild steel, a material which has high strain rate dependence in plastic

deformation. Ultimately the test program needs to be expanded to include shear

and compression and thus damage models implemented in this thesis need to be

valid within those regions.

1.2 Objectives and Method

The central aims of this study, together with the method to achieve each, can be

summarized as follows:

1. Develop a procedure to study failure across a wide range of strain rates.

(a) Analyse existing damage models and select the optimal method that is

accurate over a wide range of loading conditions.

(b) Optimize and build a tensile split Hopkinson pressure bar (TSHB)

apparatus for the dynamic experiments.

(c) Conduct quasistatic and dynamic experiments on specimens with differing

geometries to produce a range of stress states.

(d) Write a user defined plasticity and damage model to implement in the

Abaqus finite element package.

3



1.3. Outline of the Report Introduction

2. Determine trends in the influence of strain rate to fracture strain.

(a) Perform finite element analysis to determine the stress state and strain

at failure.

(b) Compare the failure strains at equivalent stress states for the specimens

deformed at different rates.

(c) Calibrate and implement a damage model in Abaqus.

1.3 Outline of the Report

This report begins with a literature review in chapter 2. Of prime importance is

an analysis of well-known failure models. This is followed by a review of the split

Hopkinson bar method and the adaptation that have been developed for tensile

testing. Various specimen designs used to analyse damage are then considered

followed by modelling techniques used to simulate tensile specimens and the TSHB.

Chapter 3 covers the design of both the TSHB and specimens. Also included is

an outline of the specimen assembling process and jig design.

The simulation procedure is developed in chapter 4, which begins by detailing the

theory behind the plasticity and damage model implementation. This is followed

by an analysis to assess and optimize model stability. Finally the modelling

techniques developed to simulate the experiments are detailed.

Chapter 5 shows the results from all the dynamic and quasistatic tests. The

simulations for these follow in chapter 6. The plasticity model is calibrated to

correspond closely to the experimental results and then the damage parameters

are found.

Chapter 7 discusses the effectiveness of the tensile split Hopkins bar apparatus

and the specimen attachment techniques as well as the methods used to model the

experiments. This is followed by a detailed analysis of the influence of strain rate

to damage.

Finally chapter 8 summarizes the significant conclusions, while the recommendations

in chapter 9 give an assessment of the improvements still required.
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Chapter 2

Literature Review

2.1 Introduction

This chapter provides a summary of the literature relating to failure modelling

and analysis.

The first section details the development of the common damage models with

emphasis placed on the more recent developments. Damage modelling is a relatively

young field with several models developed as recently as 2008 and thus the main

purpose is to assess which model is most applicable for this work.

The next section deals with the split Hopkinson bar (SHB) apparatus and methods

developed to adapt the conventional compressive test for tensile experiments. The

SHB is the most widely accepted method for material characterisation under

dynamic conditions[5].

A basic analysis of tensile testing is included, followed by a review of specimen

designs used in failure analysis as well as methods implemented to secure these to

the SHB. Finally, finite element modelling techniques are considered relating to

the SHB as well as specimen-bar interactions. Emphasis is placed on techniques

that reduce computation time, while maintaining accuracy.

6
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2.2 Damage Modelling

2.2.1 Fracture Definition

In this work fracture, or damage, is defined as a discontinuous description of

deformation and is evident as the initiation of cracks within a material. This

is distinct from material separation as under extreme conditions materials can

separate simply due to plastic deformation by necking to a point as found in the

classic work by Bridgman [6].

Ductile fracture refers to damage occurring after significant plastic deformation,

in contrast to brittle fracture. Two competing forms exist:

1. Fracture due to void nucleation and coalescence.

2. Fracture due to shear decohesion.

The former occurs after large tensile axial strains. In the case of a round tensile

specimen, the localization process of necking1 results in non-axial tensile stresses.

When these are large enough small holes form near the axis, referred to as void

nucleation. With further strain these voids expand and join with one another (void

coalescence) leaving only the outer perimeter remaining. However, as this region

is too small to withstand the load, cracks form and the material fractures.

Fracture due to void nucleation and coalescence results in the classic cup and cone

fracture shown in figure 2.1a. Note the distinction between the central region,

where void nucleation results in a pitted surface, and the smooth outer perimeter,

where the cracks propagate.

Figure 2.1 shows the extreme contrast between fracture due to void growth and

that formed by shear decohesion. For the latter failure occurs along the slip lines,

shearing the atomic bonds along one plane [8]. In a homogeneous material with

no impurities such as voids, this results in a smooth failure surface as the material

fractures along a plane parallel to the shear load applied.

1Detailed in section 2.4.
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(a) Void nucleation and coalescence. (b) Shear decohesion.

Figure 2.1: Scanning electron microscope pictures showing the fracture zones in a
tensile and upsetting test [7].

Two issues complicate damage analysis. Firstly as a finite amount of time is

required for voids to form and join together, fracture is history dependent. Secondly

failure may occur due to a combination of shear decohesion and void growth [3].

Thus if a model is to be accurate across a wide range of loading configurations

both of these phenomena need to be considered.

2.2.2 Bridgman High Pressure Testing

In 1944 Bridgman [6] conducted a series of tensile tests in an environment pressurized

up to 2.8 GPa. Bridgman found that specimens attained far greater strain before

fracture when high pressure was applied. He argued that the principal mechanism

for fracture in ductile tensile tests is hydrostatic tension on the axis as this promotes

void nucleation. Thus a high applied pressure tends to decrease the non-axial

tension and hence delay the onset of failure.

8
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2b

lb

z

a
b

Figure 2.2: Cell used by McClintock [2] to study the growth of voids.

2.2.3 McClintock Model

One of the earliest theoretical studies on void growth and nucleation was conducted

by McClintock [2] in 1968. McClintock knew that in contrast to plastic yield or

brittle fracture, which relies only on the current material state, the growth of holes

in ductile fracture depend on the entire history of stress, strain and rotation. This

makes ductile damage far harder to analyse and explains the lack of theoretical

work on the subject up until this point.

In McClintock’s analysis, the problem was simplified to include only situations in

which the principal stress components do not rotate relative to the material. Thus

failure due to shear decohesion was neglected and the effect of the deviatoric stress

components ignored[2].

The study considered the growth of cylindrical holes in a plastic deforming material.

Each cell contained three sets of perpendicular holes (one set is shown in figure 2.2)

with the criterion that failure would occur when the hole grew to the extent that

it touched a pair of edges on the cell boundary (void coalescence). Thus if a hole

stretched along the b direction as shown in the figure, failure would occur with a

growth factor of,

F f
zb =

1/2

b0/l0b
(2.1)

with b0 initial hole width in the b direction and, l0b initial separation.

The resulting failure locus is described as follows,

δηzb
δε

=
sinh[(1− n)(σa + σb)/(2σ/

√
3)]

(1− n) lnF f
zb

(2.2)

where ηzb is damage accumulation factor along plane z-b, σa and σb are the stresses
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in directions a and b and n is the material hardening constant. ε and σ refer to the

equivalent strain and stress respectively. The damage accumulation factor predicts

failure once unity is reached.

Agreeing with the earlier results of Bridgman [6], McClintock found that a high

transverse tensile stress reduces ductility. In contrast, at low tensile transverse

stresses the holes are required to remain open for the steady state damage rate to

be positive [2]. This has several implications, firstly due to hole growth fracture is

not predicted to occur in a conventional tensile test with straight specimens (i.e.

no notches cut into the surface) prior to necking as the non-axial tensile stress

through the region is minimal and thus no voids form. Secondly this mode of

fracture will not occur in loading states of pure torsion or uniaxial compression as

in these cases the holes would close.

A convenient measure of transverse stress is triaxiality, η, which is the hydrostatic

stress, σm normalized by the equivalent von Mises stress,

η =
σm
σ

(2.3)

This ratio is used extensively in the damage models considered in this review as

well as in the numerical analyses in chapter 6. Negative triaxialities occur in cases

of compression, pure shear results in a triaxiality of zero, while positive values

occur in tension.

2.2.4 Rice-Tracey Model

Rice and Tracey [9] extended the theoretical work by McClintock to cover the

growth of isolated spherical voids as these refer more closely to the physical voids

which occur in practice than the cylindrical holes used previously. The aim was

to determine the relationship between void growth and stress triaxiality.

Rice and Tracey found that hole growth rates increased with superimposed hydrostatic

tension, which corresponds to an increase in triaxiality. The parameter used to

explain the relationship was D, which describes the degree of deformation on the

void boundary to that of the surrounding material and is defined by D = Ṙ0/ε̇R0,

where Ṙ0 is the average radial velocity on the void boundary.

10
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An exponential relationship between the strain rate ratio and triaxiality was found,

which could be approximated as,

D = Ce
√

3
2
·η (2.4)

with η the triaxiality and C a constant.

However, as a continuum analysis was used, the calculations are independent of

void size and spacing, while dependent on the volume fraction. Thus the model

cannot apply to fracture at a crack tip where the void size has a significant effect[9].

It seems reasonable to suggest that the ratio D would have an inverse relationship

with strain to failure as a high D indicates that the material around the void is

deforming at a much greater rate than the remainder of the material. Thus to put

the relationship in a form used by the fracture loci in the subsequent models,

εf = Ae−Bη (2.5)

where εf refers to the equivalent strain to failure and A and B are material

constants.

2.2.5 Gurson Model

The final continuum mechanics based model considered here is that developed

by Gurson [10] in 1977 and modified by Needleman and Tvergaard [11] in 1984.

Gurson developed the model using a similar approach to McClintock and Rice-

Tracey by considering the growth of cylindrical and spherical voids.

It is described as a function equal to zero at failure,

Φ =

(
σ

σy

)2

+ 2q1f
∗ cosh

(
[Tii]

2σy

)
− 1− (q1f

∗)2 = 0 (2.6)

with q1 a material constant, σy the yield stress and Tii the trace of the Cauchy stress

tensor. f ∗ is a measure of the void volume fraction and needs to be determined

for each strain increment.

11
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An inherent advantage with the Gurson technique is that the model is based on

a physically plausible mechanism. However, it requires many tests to calibrate.

Furthermore, only one form of damage is considered, that of void growth and

coalescence, and is thus only valid for regions of tensile triaxiality.

2.2.6 Cockcroft-Latham Model

In contrast to the continuum approach used in the McClintock and Rice-Tracey

models, Cockcroft and Latham [12] developed a phenomenological prediction method.

It was proposed that the damage criterion should be a combination of both stress

and strain, as metals fail at different strains depending on the loading conditions.

A criteria that fitted this option was that of total plastic work, W , defined as,

W =

∫ εf

0

σdε (2.7)

Cockroft and Latham observed that the shape of the neck in a tensile test had a

major influence over the fracture strain. As the yield stress is not affected by the

neck shape, a normalized stress was suggested of the form,

σ∗ =
σ1

σ
(2.8)

with σ1 the maximum principal stress.

The final model is simply the product between that for plastic work and the

normalized principle stress. Fracture is predicted when the value C reaches a

calibrated value.

C =

∫ εf

0

σ
(σ1

σ

)
dε =

∫ εf

0

σ1dε (2.9)

The Cockcroft-Latham model has been commonly used in the metal bulk forming

processes [13]. Wierzbicki et al. [1] argued that the method is only applicable in the

range of small to negative triaxialities. However, it was developed by considering

tensile specimens that have mid to high positive triaxialities. Thus Cockcroft and

Latham’s intention was clearly for a far wider application.
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2.2.7 Johnson-Cook Model

In 1985, Johnson and Cook [14] introduced a damage model that takes into

account triaxiality as well as the effect of strain rate and temperature. It is

simple, experimentally based, and easy to implement numerically and thus has

been extensively used and is included in the commercial finite element packages

Abaqus, LS-DYNA and Autodyn [1].

The model is as follows,

εf = f(η) · f(ε̇) · f(T )

=
[
D1 +D2e

D3·η
]

[1 +D4 ln ε̇∗] [1 +D5T
∗] (2.10)

where D1 through D5 are material constants and,

ε̇∗ =
ε̇

ε̇0
T ∗ =

T − T0

Tmelt − T0

The terms ε̇0 and T0 refer to the reference quasistatic strain rate and transient

temperature respectively.

Johnson and Cook calibrated three materials to test the model; copper, Armco

iron and 4340 steel. For each of these, three sets of experiments were completed;

quasi-static tensile tests, Split-Hopkinson Bar tensile tests and quasistatic torsion

tests.

The triaxiality term, f(η), has the greatest influence, and describes an exponential

decrease in ductility with increasing pressure. This is similar to the early findings

by McClintock [2] and Rice and Tracey [9]. A major discrepancy was noted for

the steel torsion test, with the predicted strain to fracture being far lower than the

extrapolated curve from the tensile data would suggest. However, Johnson and

Cook argued that as the torsion data from the iron and copper specimens agreed

with the curve, the steel torsion data was an anomaly and could be ignored[14].

Later work by Bao and Wierzbicki [3] proposed that the low torsion data point was

correct and that errors are simply due to the invalid technique of extrapolating

data from regions where void growth failure dominates to that of shear decohesion2.

2This is covered in section 2.2.13 on page 18.
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Of lesser influence in this model, but of distinct importance for the work in

this thesis, is the strain rate function f(ε̇). This has the same form as used in

the Johnson-Cook plasticity model [15], and describes how an increase in strain

rate leads to an increase in fracture strain. Finally, the temperature term, f(T ),

increases ductility with an increase in temperature. This is opposite to its effect

on plastic yield in decreasing the strain required.

The combined effect of strain rate and temperature to increase fracture strain

reported by Johnson and Cook [14] is in direct contrast to the research in this

thesis. This work found that dynamic specimens fail at a lower strain than the

quasistatic equivalents. The strain rate analysis is dealt with in detail in chapter 7,

but needs consideration throughout the analysis.

Johnson and Cook calibrated the triaxiality constants, D1 toD3, using the quasistatic

tension and torsion tests. The torsion data had a low triaxiality of zero, compared

to that of the tensile from 0.7 upwards. The strain rate and temperature constants,

D4 and D5, were be found by comparing the data from Hopkinson Bar tests at

high strain rates conducted with specimens preheated to various temperatures to

that from the quasistatic experiments. The dynamic fracture strains had to be

estimated by measuring the final cross-sectional area of the fractured specimens.

An example of the fracture locus for 4340 steel is included in figure 2.3. Note

that the dynamic calibration tests were conducted at strain rates in the order of

500 s−1, while an extreme value of 105 s−1 is shown. Thus for 4340 steel, strain

rate clearly has only a very minor influence. Armco iron and copper had greater

strain rate dependence, however, the difference between a rate of 1 s−1 and 105 s−1

was still less than 20%.

Johnson and Cook used compressive impact tests on short cylinders to validate

the technique. Although damage was evident around the edges of each specimen,

the model failed to predict any failure with the strains in the model lower than

that required. It was suggested that the model may not extrapolate well into

the extreme regions of strain rate, temperature and pressure. This agrees with

the findings of Bao and Wierzbicki [3] in which separate equations were used to

describe the high, mid and low triaxiality ranges instead of extrapolating from

tensile data.
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Figure 2.3: Johnson-Cook fracture model for 4340 Steel[14].

2.2.8 Constant Fracture Strain Model

Possibly the simplest fracture model defines material failure to occur when a

specified equivalent strain is reached. The equivalent strain is defined simply by,

ε =

√
2

3
(ε21 + ε22 + ε23) (2.11)

where ε1 through ε3 are the principal strains.

This method was first suggested in the early 20th century[1] and is still commonly

used due to its ease in implementation. A further advantage is that possible

fracture locations can be found simply by analysing the resulting strains in a finite

element model. Thus the constant fracture strain criterion is found in almost all

nonlinear finite element codes [1].

However, fracture strain is strongly dependent on the calibration test. For example,

a pure shear test will result in significantly different failure strain to a uniaxial

tension test. Thus the model is only valid if the loading used in the application

is closely related to that of the calibration tests. In cases where complex loading

occurs, in which the type of dominant loading changes, this approach is unsuitable.
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2.2.9 Fracture Forming Limit Diagram

An experimentally derived method applicable to plane stress applications involves

a combination of the principle strains adding to a damage constant in the form,

ε1 + ε2 = −ε3 = C (2.12)

where ε1 through ε3 are the principal strains at failure.

The advantage is that only one test is required to calibrate the model. However,

it is only used in the narrow loading range between uniaxial and biaxial tension.

The model was developed and is still used in the metal forming industry. [1].

2.2.10 Maximum Shear Stress Model

The maximum shear stress model is similar to the Tresca yield condition and

predicts that a material will fail when the equivalent deviatoric stress reaches a

critical value[13].

The model is commonly used in cases where shear decohesion failure is dominant,

such as in an upsetting test in which fracture occurs along a plane with the

maximum shear stress. A major application is brittle materials, for example in

soil and rock mechanics[1].

It can be expected that inaccuracies will occur in cases dominated by failure due

to ductile void growth as this is a different fracture mode to shear decohesion.

Wierzbicki et al. [1] conducted calibration tests for various fracture models on

aluminium 2024-T351 and compared the calibrated fracture locus generated by

each model with all the experimental data points. At high tensile triaxialities the

failure strain was severely overestimated. However, excellent correlation occurred

with the plane stress tests at low triaxialities, dominated by shear decohesion.

This makes the model an excellent choice if the application is within the shear and

compressive region as only one test is required for calibration.
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2.2.11 Wilkins Model

Wilkins et al. [16] in 1980 was the first to consider the effect of the deviatoric

stress invariants, J1, J2 and J3. Wilkins found that both hydrostatic tension

and asymmetric strain, which relates to the deviatoric invariants, enhanced strain

damage. This is reasonable as damage can occur due to a combination of void

growth, related to hydrostatic tension, and shear decohesion, related to deviatoric

stress.

The influence of each was described in separable terms as follows,

D =

∫
w1w2dε (2.13)

in which w1 relates to the hydrostatic pressure, and w2 relates to the deviatoric

stress.

w1 =

(
1

1 + aσm

)α
w2 = (2− As)β As = max

(
J2

J3

,
J2

J1

)
with a, α and β material constants.

The model has been widely used due to its simplicity and easy calibration. It is

included in the commercial codes PAM-CRASH and LS-DYNA[13]

The asymmetry parameter As relates closely to the Lode angle, used extensively

in this thesis. This is defined by,

θ =
1

3
arccos

( r
σ

)
(2.14)

where r relates to the determinant of the deviatoric stress tensor, Sij and to the

third deviatoric invariant through [17],

r =

[
27

2
det [Sij]

]1/3

= 3

(
J3

2

)1/3

In several models a normalized Lode angle is used. This is defined simply as,

θ̄ = 1− 6θ

π

with a range from -1 to 1.
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2.2.12 CrachFEM Model

A more recent criteria that takes both hydrostatic and a deviatoric effects into

account is the CrachFEM model. This was developed in combination by the

BMW R&D Centre and MATFEM Co. to be used in modelling thin sheet metal

and extrusions [1].

CrachFEM utilizes two competing failure criteria; ductile failure and shear decohesion

with failure being defined when either is reached. The ductile locus is only

dependent on triaxiality and is of the form,

ε ductilef = d0e
−3cη + d1e

3cη (2.15)

with three constants, d0, d1 and c.

The shear model includes both hydrostatic and deviatoric terms,

ε shearf = d2e
−fΘ + d3e

fΘ (2.16)

with Θ defined by

Θ =
σ

τmax
(1− 3ksη) (2.17)

The parameter τmax refers to the maximum shear stress. Note that Θ should not

be confused with the Lode angle θ.

The shear model introduces four new constants d2, d3, f and ks, leaving a large

total of 7 material constants to be found. However, by considering two separate

damage criteria it is claimed to be valid though a wide range of loading conditions.

2.2.13 Bao - Wierzbicki Damage Model

Triaxiality Locus

In 2004 Bao and Wierzbicki [7] conducted a comparative study on damage models.

These were evaluated by conducting quasistatic upsetting and tensile tests and

then using finite element analysis to simulate the experiments.
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Upsetting tests involve the uniaxial compression of short cylindrical specimens

with damage occurring due to the build up of tensile circumferential stresses near

the specimen equator [7]. As fracture initiation occurs on the outer surface, the

displacement to fracture was found by compressing cylinders to differing degrees

and visually inspecting for cracks.

Round specimens were used for the tensile tests. These involved both smooth

specimens and ones with circumferential notches cut out of the gauge section3. By

adding notches, Bao and Wierzbicki were able to increase the degree of hydrostatic

stress, or triaxiality, at the fracture locations. In the tensile tests, fracture initiation

occurs in the centre of the specimen and thus cannot be seen visually without

slicing the specimen. Instead, a sudden load drop in force-displacement response

occurs and this was taken to be the point of fracture.

All the damage models considered are of the form [7],

C =

∫ εf

0

fdε (2.18)

with C the material damage parameter and f a measure of damage accumulation.

By using finite element analysis to model each test Bao and Wierzbicki were able

to determine the stress state at each point in the deformation and thus evaluate

C for all the models with each configuration.

The study found that for each failure model, the damage parameters varied considerably

when calculated using specimens of differing geometries. For example using the

McClintock criterion [2], parameters four times lower are required for the upsetting

tests compared to the tensile. These upsetting tests correspond to an average

triaxiality of approximately η ≈ −0.25 compared to that for the tensile varying

from 0.4 to 0.95.

However, although not applicable in compression, the general Rice-Tracey model

[9] and the Hydrostatic stress model were found to use similar parameters for each

of the tensile tests, indicating that the prediction is adequate in the region. In

contrast the Cockcroft-Latham-Oh model calibrates significantly different parameters

for each of the tensile tests, but similar ones amongst the upsetting tests and is

thus acceptable within this region.

3Examples of these are included in section 2.5
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(a) Tensile Specimen (b) Upsetting Specimen

Figure 2.4: Scanning electron microscope pictures showing the fracture zones in a
tensile and upsetting test found by Bao and Wierzbicki [7].

Bao and Wierzbicki explained the large difference in constants between the upsetting

and tensile tests by considering the fracture mechanism occurring in both situations.

Failure due to void nucleation and coalescence results in a rough dimpled damage

surface, such as that in figure 2.4a. In contrast failure due to shear decohesion

results in a smooth surface. Thus to apply a method calibrated and developed

for only a limited range of loading conditions to a wider scenario is dubious.

The different failure mechanisms explain the good prediction the Rice-Tracey

and Hydrostatic stress models give for tensile tests as these are based on this

mechanism.

Bao and Wierzbicki noted that despite this fact Johnson and Cook [14], among

other authors, extrapolated the results from the Rice-Tracey model based on void

growth to low triaxialities in which nucleation and coalescence is not the prime

cause of fracture.

Bao and Wierzbicki proposed an alternative fracture locus in which three zones,

each described by a different equation, are used. This is explained in detail in [3]

and included here as figure 2.5. At low triaxialities of −1
3

shear fracture dominates,

while at high values of greater than 0.4 void nucleation occurs. In between a

transition zone exists where both contribute.

Damage is a time history dependent property and thus the triaxiality is described

in an average sense as, (σm
σ

)
av

=
1

εf

∫ εf

0

σm
σ
dε (2.19)
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Figure 2.5: Fracture locus based on stress triaxiality proposed by Bao and
Wierzbicki [7]. Note that although the diagram depicting shear fracture is shown
as tensile, negative triaxialities result from compressive experiments.

It was proposed that the local peak around the triaxiality of 0.4 would be greater

than that at zero for a material in which the strain to fracture is smaller in shear

than in void growth. However, it would be lower if the strain to fracture in shear

is larger [7].

This locus explains the discrepancy in the torsion data point in the development

of the Johnson-Cook model that was previously ignored4. The major advantage

is that it is calibrated through a wide range of loading conditions and thus is

intended to be used in cases where the stress state changes significantly. However,

in implementation three separate loci must be implemented.

4See section 2.2.7 on page 13
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Triaxiality Cut-off Value

An interesting aspect of the model is the negative cut-off value of ηav = −1
3
.

Bao and Wierzbicki released a paper in 2005 [18] which proposed that below this

value fracture initiation will never occur. Three approaches were followed, the first

considered classic experimental data reported by Bridgman [19], while the second

considered upsetting tests conducted by Bao and Wierzbicki in [3]. The third

used a finite element analysis approach to study the effect of hydrostatic pressure

to tensile tests, in effect using the same approach as Bridgman, but using only

simulations.

Bridgman conducted tensile tests on steel subjected to various constant hydrostatic

pressures. Thus his results were convenient to study the effect of triaxiality as the

parameter is a normalized measure of hydrostatic stress. Included in the data are

the applied pressure, the final strain and final stress as well as the neck profile.

As only the final true stress is given, the average triaxiality was estimated as,

ηav =
1

2
(ηi + ηf ) (2.20)

with ηi and ηf referring to the initial and final triaxiality respectively. This

would be far more efficient computationally than determining the average from

the integral of triaxiality and strain. However, no analysis was presented to show

the error in average triaxiality due to using this simplified method.

The initial value can be calculated from the applied pressure, while the final was

found using a modified Bridgman formula found using simulations,

ηf = − p
σ

+
1

3
+ 1.4 ln

(
1 +

a

2R

)
where a refers to the specimen diameter in the necked region and R refers to the

neck radius.

The average triaxiality for all tests is shown in figure 2.6. Bao and Wierzbicki

realized that no specimens with an average triaxiality of lower than approximately

-0.3 fractured.
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Figure 2.6: Bridgman experimental data showing the average triaxiality for each
specimen [18].

Similarly in the upsetting tests the fracture locus was found to be related to the

hoop and axial strains through,

Eθθ +
1

2
Ezz = C (2.21)

which, when written in terms of equivalent strain to failure and triaxiality, results

in an infinite strain for a triaxiality of −1
3
.

Finally, the numerical simulations on both aluminium and steel under constant

applied pressure showed the stress triaxiality would increase positively with strain

as the neck grew. The example for aluminium is shown in figure 2.7. In the

cases where the applied pressure was of sufficient magnitude, the triaxiality never

increased above −1
3

and no failure occurred, instead specimens necked to a point

before separating. However, in the remainder fracture is evident shortly after

increasing above the cut-off. Note that in this figure there is no mention of using

the average triaxiality and thus one must assume that the instantaneous value is

presented. As triaxiality is increasing for each specimen, the average value would

be lower that shown if the assumption is correct.
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Figure 2.7: Stress triaxiality versus equivalent strain found using finite element
analysis on aluminium found by Bao and Wierzbicki [18]. The triaxiality is
assumed to be instantaneous, not the average.

The fact that failure did not occur directly after passing the threshold indicates

the history dependence as the voids need a finite amount of time to nucleate, grow

and join. This gives credence to the method of using the average triaxiality, and

not the final value, at fracture.

2.2.14 Xue - Wierzbicki Model

In the same year, Wierzbicki and Xue [20] extended the Bao-Wierzbicki model to

include the effects of the deviatoric stress components. The additional components

were introduced in the form of the normalized third deviatoric stress invariant, ξ,

related to the Lode Angle, θ though,

ξ =
27

2

J3

σ3
= cos(3θ) (2.22)

where J3 is the third deviatoric invariant.

As damage is history dependent, the mean value of ξ was taken. This was

calculated as,

ξav =
1

εf

∫ εf

0

ξ(ε)dε (2.23)
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In his work on the fracture initiation of ductile solids, Xue [21] found that the

equivalent strain to fracture was bounded by a lower curve corresponding to plane

strain, ξ = 0 and an upper corresponding to axisymmetric stress, ξ = ±1. This is

indicated in figure 2.8a

Wierzbicki and Xue proposed to describe the two limiting curves with simple

exponential functions,

ε axif = C1e
−C2η ξ = 1 (2.24)

ε psf = C3e
−C4η ξ = 0; (2.25)

where ε axif is the strain to fail under a pure axisymmetric load and ε psf is that

under plane strain. In combination, four constants, C1 through C4 are required.

The deviatoric parameter was described by an ellipse, shown in figure 2.8b. Of the

form (
∆ε̄f

ε axif − ε psf

)1/m

+ ξ1/m = 1 (2.26)

m was chosen to be the closest even integer to 1/n, for n the plasticity hardening

exponent.

Note that the exponential functions are the same form as that used by Rice and

Tracey [9] and the locus reduces to the Rice and Tracey model if the deviatoric

stress effect is neglected.

By noting from figure 2.8b that ∆εf = ε axif − εf . Equations 2.24 and 2.25 were

substituted into eq. 2.26 resulting in

εf = C1e
−C2η − (C1e

−C2η − C3e
−C4η

) (
1− ξ1/n

)n
(2.27)

shown in figure 2.8c

For ξ = 1 the resulting form is equation 2.24, similarly ξ = 0 reduces to equation 2.25.

A negative value of ξ results in an imaginary value for strain. Thus one must

assume from the symmetric form of the locus that the magnitude of ξ should be

used.
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(a) Triaxiality (b) Lode angle

(c) Fracture Locus

Figure 2.8: Xue-Wierzbicki fracture locus with triaxiality and symmetric Lode
angle dependence [1].
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Figure 2.9: Ductility change between θ̄ = −1 and 1 [17].

Interestingly, the new form has no triaxiality cut-off value. However, the strain

required for fracture to occur at η = −1
3

is very high and unlikely to occur[1].

In total four damage constants are required and thus four separate calibration

experiments are used.

This new form agrees closely with the Bao-Wierzbicki model and is more general

as the previous model depends on the path chosen through the triaxiality-Lode

angle space. A further advantage over the Bao-Wierzbicki locus and indeed the

CrachFEM model is that one equation describes the entire fracture locus.

2.2.15 Bai - Wierzbicki Model

In studying upsetting tests, with a deviatoric parameter of ξ = −1, Bai and

Wierzbicki [17] noted the ductility was lower than that in tensile axisymmetric

tests with a value of ξ = 1 for the same triaxiality. This is shown in figure 2.9.

According to the Xue-Wierzbicki model, the locus should be symmetric about

ξ = 0 and thus should be the same in axial symmetry compression or tension.
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Figure 2.10: Fracture locus for the Bai-Wierzbicki damage model [17].

Thus the Bai-Wierzbicki model was proposed, a more general description than

the Xue-Wierzbicki model as symmetry is not imposed. The locus is shown in

figure 2.10. Note that in the figure, the normalized Lode Angle, θ̄ is used in place

of the normalized third deviatoric stress invariant. However, the Lode Angle is

also a measure of the third deviatoric stress invariant and has the same range from

-1 to 1. It is defined by

θ̄ = 1− 6θ

π
= 1− 2

π
arccos ξ (2.28)

Instead of the elliptic function, used previously to describe the Lode angle influence,

in this case a parabolic function is implemented based on the failure strain for

an experiment in axisymmetric tension, ε
(+)
f , axisymmetric compression, ε

(−)
f and

plane strain, ε
(o)
f .

The reason for Bai and Wierzbicki to change from an elliptical function to a

parabolic is not discussed. However, the implication is that in the case of the

ellipse the gradient
dεf
dθ̄

is infinite at θ̄ = ±1, but finite in the parabolic case.
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The locus is described by

εf =

[
1

2

(
ε

(+)
f + ε

(−)
f

)
− ε(o)f

]
θ̄2 +

1

2

(
ε

(+)
f − ε(−)

f

)
θ̄ + ε

(o)
f (2.29)

In the case of symmetry about the Lode Angle, the model reduces to a form very

similar to the Xue-Wierzbicki model. In the symmetric case, the actual normalized

Lode, not only the absolute, can be used.

εf =
[
ε

(axi)
f − ε(o)f

]
θ̄2 + ε

(o)
f (2.30)

The same exponential form as the Xue-Wierzbicki model describes the triaxiality

influence. Thus

ε
(+)
f = D1e

−D2η ξ = +1 (2.31)

ε
(o)
f = D3e

−D4η ξ = 0 (2.32)

ε
(−)
f = D5e

−D6η ξ = −1 (2.33)

Equations 2.31 to 2.33 can be substituted into eq 2.29 for the final form:

εf
(
η, θ̄
)

=

[
1

2

(
D1e

−D2η +D5e
−D6η

)−D3e
−D4η

]
θ̄2

+
1

2

(
D1e

−D2η −D5e
−D6η

)
θ̄

+D3e
−D4η (2.34)

2.2.16 Damage Model Comparisons

Quasistatic Calibration Tests

Recently, Wierzbicki, Bao, Lee and Bai[1] conducted a comparison of 7 commonly

used damage models. These were Constant Equivalent Strain, Fracture Forming

Limit Diagrams, Maximum Shear Stress, Johnson-Cook, Xue-Wierzbicki, Wilkins,

CrachFEM and finally Cockcroft-Latham.
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Figure 2.11: Calibrated Wierzbicki-Xue model plotted with all experimental test
points and compared against several different models [1]. The colours have been
added to differentiate between each.

The models were evaluated using specimens of aluminium 2024-T351, with three

tensile tests on notched and unnotched round bars used in calibration and then

evaluated against specimens loaded under plane stress conditions. The latter were

chosen as with plane stress it is trivial to convert from a locus in stress space to

that of strain. The resulting fracture loci plotted against the test failure points is

shown in figure 2.11.

The constant strain locus is shown as a straight line towards the bottom of the plot.

Conventionally unnotched bars are used to determine the failure strain. However,

as failure strain is low for high triaxialities this method vastly underestimates

failure strain for lower triaxialities. Wierzbicki et al. [1] proposed that a more

consistent option would be to use a test with a similar stress state to the application.

In this case the transverse plain strain test was used which corresponded closely

to two points, but resulted in large underestimation in failure strain for most of

the range.[1]
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The fracture forming limit diagram requires only one test to calibrate, but is

limited to plane stress situations between uniaxial and biaxial tension. In this

region it gives an acceptable approximation in the plane stress case. However, the

limit diagram cannot be used in complex loading situations in which the stress

state changes drastically.

Similarly, although not shown in the figure, the Cockcroft-Latham model provided

excellent approximation in the negative triaxial region, but significantly underestimated

failure strain elsewhere. Wierzbicki et al. [1] used an upsetting test to calibrate

resulting in accurate predictions of other upsetting tests in the region. However,

the model is based on tensile testing and thus, presumably, if a tensile test was

used to calibrate, it should be reasonable in the higher triaxial regions. Even in

this case it would still only apply to a narrow band of stress states.

In contrast, using the maximum shear criterion also requires only a single calibration

test, but results in reasonable correlation to the evaluation points. At high triaxialities

over 0.7 fracture due to void growth dominates and thus it is predictable that

the model vastly overestimates the failure strain within this region and would not

predict failure for axisymmetric cases. However, as long as the intended application

stays within the low to mid triaxialities it is an excellent model to use industrially

as the cost to test only one specimen is low[1].

Two loci were developed to evaluate the Johnson-Cook model. The first used

material constants from the literature[22] which resulted in the lower curve. The

second used the calibration data points from high triaxialities. There is a massive

difference between the resulting loci, which indicates that the Johnson-Cook model

is only applicable to a narrow range of stress states close to that used in calibration.

The Wilkins model takes both triaxiality and the deviatoric stress state into

account, but requires four calibration tests. Reasonable correlation is evident in

the negative to low triaxial range below 1
3
, but between 1

3
and 2

3
it under-predicts

fracture strain and in the high triaxial range greater than 2
3

failure is not predicted.

Wierzbicki et al. [1] argues that this is due to the separable form of the model which

results in good correlation in either low triaxialities or mid range triaxial stresses,

but never in both.
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The CrashFEM technique requires three tests to calibrate the shear dominated

region and three for the ductile failure locus. However, Wierzbicki et al. [1] used

only four in total as two were used to calibrate both loci. The correlation through

the ductile region is good, while the model marginally underestimates failure strain

through the shear locus region. This model is very promising as it provides a

reasonable prediction through different stress states.

Finally, the model developed by Xue and Wierzbicki resulted in impressive accuracy

for all stress states. Four tests are required to calibrate, which is three more than

using the maximum shear criterion. However, this cost is acceptable for complex

loading situations which require accuracy throughout the triaxiality and deviatoric

stress range. The testing cost is the same as that for the CrachFEM model, but

the correlation to the evaluation points is more precise. The more general Bai-

Wierzbicki model which does not assume symmetry about the triaxiality of zero

may improve this accuracy even further, but requires an extra two calibration

tests.

Applicability to High Strain Rate Testing

Teng and Wierzbicki [13] considered the application of six fracture models to

high strain rate testing. The paper was based on high velocity perforation tests

conducted by Børvik et al. [23, 24] in which cylindrical projectiles were shot using

a gas gun at 12mm Weldox 460 E steel plate.

Teng and Wierzbicki used the experimental data in a set of finite element simulations

to determine whether the damage models would follow the qualitative form of

damage occurring in the tests. This was quantified by determining the modelled

residual projectile velocity and comparing to that found in the experiments. A

typical experimental result is shown in figure 2.12, note that no spalling occurred

to the plug.

Perforation tests were chosen as these involve complex loading starting with compression

when the projectile hits, with a negative triaxiality and developing shear through

the thickness as the triaxiality increases to around zero. This is followed by bending

and finally axial strain as the triaxiality increases positively.
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Figure 2.12: Perforation test showing a cylindrical projectile and plate conducted
by Børvik et al. [23].

The simplest criterion for failure is using a constant fracture strain. This may be

sufficient for processes involving a narrow load band. However, problems could

be expected for complex loading scenarios as the fracture strain varies drastically

depending on the loading condition. The assumption was proved correct when

using a low fracture strain resulted in artificial erosion under compression within

the impact zone, shown in figure 2.13a.

The artificial erosion was corrected by using a higher fracture strain, but the

residual velocity of the projectile in the numerical results exceeded that of the

experimental. It was suggested that increasing the fracture strain to a high, but

false value would produce close correlation, but that would only be valid for that

specific case [13]. In a second attempt, artificial erosion was easily corrected by

imposing a cut-off value of η = −1
3

as found by Bao and Wierzbicki [18]. However,

this did not correct the errors in the residual velocities.

The maximum shear stress criterion was investigated due to its applicability in

modelling the cracks that form due to shear around the plug perimeter [13].

However, Teng and Wierzbicki found it difficult to determine the exact critical

shear stress with a value slightly too low resulting in premature failure and too

high in severely distorted elements but no damage. This difficulty in calibration

makes the technique unsuitable.
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(a) Constant Strain

(b) Wilkins

(c) Johnson-Cook

Figure 2.13: Perforation simulation results using the constant fracture strain,
Wilkins and Johnson-Cook damage models conducted by Teng and Wierzbicki
[13].
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The model by Wilkins includes both triaxiality and Lode angle effects. However,

in contrast to the experimental results, the model predicted severe spalling in the

impact zone. This was due to the compressive impact stress wave reflecting against

the free surface and returning as tensile. Damage due to the hydrostatic pressure

term tends to infinity as the pressure approaches a critical value. Thus at the

position the tensile stress wave meets the compressive, the high pressure difference

results in instant failure. The result is shown in figure 2.13b.

The modified Cockroft-Latham fracture criterion also suffered from calibration

problems. The complication came in using one damage parameter for the entire

model. This parameter can be calibrated for the shear decohesion zone of −1
3
<

η ≤ 0 and separately for high triaxialities however, over the whole range the curve

cannot be fitted adequately. This problem was identified by Bao and Wierzbicki

[18] leading to the development of a model consisting of three zones described by

different criteria.

In the simulations, two Cockroft-Latham damage values were chosen to test,

corresponding to low and high triaxiality respectively. Both are relevant as the

material experiences a full range of triaxial loading. The model had a fracture

pattern similar to the experiments with a solid plug of material being ejected for

both damage parameters. In addition no artificial erosion occurred as a positive

principal stress is required to add to the damage integral. However, there were large

errors in the residual velocity due to the damage parameter only being applicable

to a one region of pressure.

A vast improvement is evident when using the Johnson-Cook fracture model,

shown in 2.13c. In this case the form of failure is consistent with the experimental

results with the impacted zone forming a clean plug. Part of the success is due

to the calibration yielding a high fracture strain in uniaxial compression, similar

to the cut-off value of η = −1
3

found by Bao and Wierzbicki [18]. This prevents

elements being artificially eroded under the impact zone as evident in the constant

fracture strain model.
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This technique proved successful in modelling the perforation as the residual

velocities also compared well with the experimental results. However, a caution

when using Johnson-Cook, or indeed any model calibrated in the high triaxiality

tensile region, is that artificial erosion may occur if the calibrated failure strain in

uniaxial compression is low.

A second set of simulations were conducted based on material damage parameters

for aluminium 2024-T351 found by Wierzbicki et al. [1]. These results yielded

similar results for the models detailed above and in this case the Bao-Wierzbicki

damage criterion[3] could be evaluated. The model performed well resulting in a

very similar fracture pattern to that using the Johnson-Cook criterion. However,

as the model is separated into three distinct regions, the prediction should be

accurate throughout the triaxiality range. In contrast a Johnson-Cook model

calibrated for high triaxialities results in an excessive failure strain for low to

negative triaxialities.

It should be highlighted that although these simulations were based on a dynamic

experiment, the material properties were found using quasistatic tests. These

models, with the exception of Johnson-Cook do not take strain rate into account

which is the focus of this thesis.

2.2.17 Final Evaluation

The core of the research by the BISRU group is blast testing, involving complex

loading over a wide band of triaxiality and deviatoric stresses. Thus, one of the

priorities for this study is to evaluate or develop a damage model that could

characterize materials to be used in blasting.

For this reason the Cockcroft-Latham, fracture forming limit diagram and constant

strain models cannot be considered as these are only applicable to a narrow range

of triaxial loading.

The continuum based models of McClintock, Rice-Tracey and Gurson were developed

by studying the growth of voids and thus are only truly applicable to ductile

fracture. Further, the Gurson model, which is the latest iteration of the three, is

difficult to calibrate.
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The Johnson-Cook model, while simple to calibrate has been shown to exhibit

substantially different properties depending on which tests are used for calibration.

This results in it only being applicable to a small range of triaxialities despite its

success in the perforation tests.

The Wilkins model was shown to correspond reasonably closely to test points, but

in high strain rate testing it resulted in false forms of damage developing. Similarly,

although the maximum shear model followed its evaluation points closely, it failed

under the dynamic loading in the perforation tests.

Thus the two applicable models are the CrachFEM and that developed by Wierzbicki

et al. In the evaluation point comparison, the CrachFEM model had marginally

worse accuracy than the Wierzbicki-Xue and in application two different fracture

loci need to be evaluated at each strain iteration. Thus the Wierzbicki set of models

was chosen. These are based on experimental observations and are designed to be

relatively easy to calibrate. It was shown to be accurate through all stress states

and applicable to high strain rate testing.

The latest iteration, the Bai-Wierzbicki locus is the most general as in contrast to

the Wierzbicki-Xue model, symmetry about a triaxiality of zero is not assumed.

However, in this case six tests are required for evaluation as opposed to the four

used in the symmetry case. As the tests used in this thesis are all of positive

triaxiality, the symmetric model is applicable. An additional consideration is

whether to use a parabola to model the Lode effect such as used in the Bai-

Wierzbicki locus, or to rather use the ellipse implemented in the Wierzbicki-Xue

technique. Ultimately the symmetric version of the Bai-Wierzbicki model, with the

parabolic function, is implemented as can readily be converted to an asymmetric

form if desired.
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2.3 Split Hopkinson Pressure Bar

Split Hopkinson pressure bars are used to test material behaviour under high

loading rates of between 100 and 10 000 s−1 [25]. Certain materials, such as steel,

have properties that vary considerably for differing strain rates. These properties

cannot be obtained from standard quasistatic tests that typically have strain rates

in the order of 10−3 s−1. Thus, experimental data is vital in order to properly

understand material response under dynamic loading. The split Hopkinson pressure

bar has emerged as the standard experimental technique due to its ability to

maintain relatively constant strain rates of the order of 1000 s−1 [5].

The apparatus development began with Hopkinson [26] in 1914 who developed

a method to measure the peak pressure and duration of a stress wave travelling

through a long metal rod. The bar was impacted with a projectile and short bars

placed at the end to capture momentum. Forty years later Davies [27] improved

this technique by replacing the additional short bars with capacitors.

In 1949 Kolsky [28] modified the Hopkinson bar to study the effect of high strain

rates on material properties. The design split the Hopkinson bar into two lengths:

the ‘input bar’, onto which the stress wave was applied using a striker, and the

‘output bar’. Kolsky placed capacitors around the side of the input bar as well

as at the end of the output bar and sandwiched cylindrical specimens between

the two. In this way he was able to determine the changes in the stress wave

as it passed through the specimen and thus deduce specimen deformation. This

apparatus is referred to as the ‘Kolsky bar’ in some work but, as labelled by Kolsky

himself, it is called the ‘split Hopkinson pressure bar’, or SHB, in this thesis.

This technique has since been refined. High-precision strain gauges have replaced

the capacitors and loading is achieved with the use of gas-guns as opposed to

detonators. Further, advances in electronics have allowed the use of high-speed

digital oscilloscopes and signal conditioners all of which increase the precision of

the measurements. However, in essence the compressive split Hopkinson bar as

developed by Kolsky remains the same.

38



Literature Review 2.3. Split Hopkinson Pressure Bar

2.3.1 Compressive Pulse to Generate Tensile Deformation

Several methods have been developed to create a tensile split Hopkinson pressure

bar, or TSHB. The early attempts used a striker to generate a compressive pulse

within the input bar. This compressive pulse was then used to create tensile

deformation within the specimen.

Tube and Yoke Apparatus

In an initial apparatus designed by Harding, Wood and Campbell [29] in 1960, the

input bar was designed as a hollow tube with the specimen attached to the tube

via a yoke. A striker was fired at the far end of the tube creating a compressive

wave that travelled through the bar. The yoke converted this compressive wave

into a tensile wave that travelled through the specimen.

The configuration, shown in figure 2.14, is compact, but at the time two tests

were required for each experiment: one to capture the input wave and a second

to deform the specimen. Today, with the correct application of strain gauges only

one test should be required. However, this complication together with the complex

geometry required has led to the development of subsequent techniques.

Figure 2.14: Tube and Yoke TSHB designed by Harding et al. [29]. The load is
applied to the free end of the input bar, or tube, on the right.
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Figure 2.15: ‘Hat’ shaped specimen proposed by Lindholm and Yeakley [31].

Hat Specimens

Several methods have been developed that are able to use the same striker/gas

gun configurations as used in compression tests. However, this has often come at

the disadvantage of specimens with complicated geometries that are expensive to

machine and introduce additional sources of error [30].

An example is the ‘hat’ shaped specimens introduced by Lindholm and Yeakley

[31]. The setup used is shown in figure 2.15, with the geometry chosen so that the

major deformation occurs within the gauge section tube. Complications include

the stress concentration zones that form at the fillets as well as friction effects

between the specimen gauge section and bars. Although the striker and incident

bar can be used in both tension and compression tests, the tension test requires a

hollow transmitted bar.

Modified Compression-Collar Bar

Nicholas [32] and Ellwood [33] independently developed a system that utilized

the fact that when a compressive wave is reflected at the end of a bar, it returns

as a tensile pulse. In the original apparatus the specimen was threaded into the

bars, a collar was then fitted around the specimen against both bars as shown in

figure 2.16.

When the striker hits the first bar, a compressive wave forms. This wave travels

through the collar and specimen, with the collar ensuring that the specimen only

strains elastically. The wave then travels through the second bar, reflecting off the
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Figure 2.16: Modified compression bar as used by Nicholas [32].

end and returning as a tensile pulse. The specimen is thus subjected to the tensile

pulse and strained. Note that the collar is not rigidly connected to the bars and

hence cannot support a tensile load.

Ellwood noted that problems with the technique include aligning the collar with

the bars and ensuring there is no slack in the threading as errors here create

additional oscillations in the reflected pulse [33]. Incorrect alignment may also

lead to permanent specimen deformation in compression. These complications

make the technique difficult to implement. There is a lack of recent publications

using the collar method and thus it is assumed that it is not implemented any

more.

2.3.2 Generating a Tensile Pulse Directly

In recent work, the direct tensile bar is the most common approach for TSHB

experiments [5]. With this technique a tensile pulse is applied to the input bar

and interacts with the specimen in a similar way to that in the compression test.

Stored Energy

One implementation of the direct tensile bar approach is to release a tensile pulse

stored in the input bar my means of a clamp as used by Staab and Gilat [34]. In

this method, the tensile pulse is steadily generated in a section of the bar by using

a hydraulic actuator. Once the stress in the bar reaches a predefined level a bolt

breaks releasing the clamp and the tensile stress propagates towards the specimen.
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This apparatus was used in the study by Li and Ramesh [35] whose setup is shown

in figure 2.17.

An advantage of the design is the constant amplitude of the input pulse. This

is relatively free from oscillations as the pulse is ‘ramped’ over a region of 30

to 40µs. Oscillations are generated due to wave dispersion and this occurs to a

greater degree with low rise times5. However, as the clamp bolt breaks during each

experiment, these have to be replaced.

Tubular Striker with Parallel Gas Gun

An alternative approach to the clamp technique generates the tensile pulse by

impacting a flange at the end of the incident bar with a hollow striker. The

complication inherent in this method is designing the gas gun/striker combination

so that it does not interfere with the incident bar.

A possible configuration was used in the experimental work by Verleysen and

Diegrieck [36]. This is referred to as the ‘parallel gas gun’ technique as the gas gun

is placed alongside the input bar, facing in the direction of the flange as shown in

figure 2.18. Only the specimens are deformed and thus no parts need replacing.

However, the gas gun is placed in parallel with the input bar and not in line

as used in compression tests. Hence a major adjustment is required to change

between compressive and tensile testing and thus a dedicated tensile SHB station

may be required.

Tubular Striker with Reversed Gas Gun

In 2007, Cloete and Downey [37] designed a SHB for the testing of round tensile

specimens, depicted in figure 2.19. The novelty of the design lies in its simplicity

and compatibility with the gas gun firing rigs of conventional compressive hopkinson

bars.

A tensile experiment is run by pressurizing a tubular striker with the gas gun. The

pressure is maintained by a plug at the far end of the barrel, inside the striker,

and a seal attached to the striker. As the barrel plug is fixed, the pressure acting

on the striker forces it to accelerate back towards the gun.

5Detailed in section 2.3.3 on page 44.
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INPUT BAR OUTPUT BARSPECIMENCLAMPAXIAL ACTUATOR
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1 3
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Figure 2.17: Direct tension apparatus using a stored tensile pulse [35].

Figure 2.18: Direct tension apparatus using a flanged incident bar [36].

Figure 2.19: Tensile Split Hopkinson Bar designed by Cloete and Downey [37].
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A transfer cap is attached at the other end of the striker, while a flange of similar

size is screwed onto the input bar. Thus when the striker has attained its required

velocity the cap collides with the flange, creating a tensile incident pulse.

This design has a significant advantage over the parallel technique as changing

between compressive and tensile testing is relatively simple. All that is required

is for the striker and barrel to be replaced and the tensile bars aligned and thus a

dedicated tensile SHB station is not required.

Tubular Striker Numerical Analysis

A concern with using tubular strikers with either the parallel or reversed gas gun

technique is the influence the flanges and caps have on the pulse shape. Thus to

quantify this effect a finite element analysis was conducted by Bowden [38]. The

study showed that acceptable input pulses could be obtained by using tubular

strikers. There are several critical components that need optimization. The first

is the size of the transfer cap relative to the flange. If the endcap is too heavy

a stress peak occurs at the start of the pulse due to the additional inertia of the

component. This problem is exacerbated by using a material with a high density

for the transfer cap.

A similar effect was noted for the pressure cap which seals the striker at the gas

gun end. If the mass of this component is too large a stress peak occurs at the end

of the pulse. In contrast smaller pressure caps have the positive effect of increasing

the pulse length. Thus the mass of the endcap, flange and pressure cap should be

minimized for an ideal pulse shape.

2.3.3 Dispersion in the SHB

Dispersion in waves travelling along long bars is due to the signals containing

components with differing frequencies. The wave propagation velocity, c, is related

to the component frequency and thus the pulse shape changes as it travels down

the bar [39].
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Pochammer[40] and Chree[41] independently found the solution to the equation of

motion in an infinite cylindrical solid. This solution showed that the closer the bar

radius is to the wavelength, the slower the phase velocity. Thus high frequency

components travel at a lower velocity than those at lower frequencies.

Tyas and Watson[42] found that in signals containing only frequency components

of low wavelength, dispersion will be low and thus the waves will propagate almost

one dimensionally at c0 =
√
E/ρ. To ensure that pulse propagation is roughly

one dimensional, the wavelength, L, and radius, R, are related and limited to

R/L < 0.05 − 0.1 [42]. Thus the frequency needs to be kept lower for bars with

larger diameters.

Many experiments, such as those with impact tests, create higher frequency components.

This creates a problem as the component wavelength becomes close to the bar

radius. Thus radial inertia begins to have a noticeable influence on component

velocity as described by Pochammer and Chree[42]. In terms of the SHPB experiments,

this dispersion is evident in oscillations within the strain gauge reading and these

oscillations are undesirable as these indicate a variation in loading. This problem is

worse at higher strain rates in which the period of oscillation is significant relative

to the total strain [5].

A simple method to reduce dispersion is to introduce softened contact. This is

implemented by placing a small quantity of soft material such as putty on the

impact surface to absorb the high frequency components. However, pulse softening

does lead to a longer pulse rise time and thus a compromise needs to be made

between the degree of oscillations and the rise time.

2.4 Tensile Test

Tensile testing is complicated by the process of ‘necking’, a process in which an

instability causes localized thinning in the material.

As a neck is formed, the bar radius through the neck decreases significantly.

However, material past the neck boundary tends to inhibit this decrease in cross

sectional area and thus tensile non-axial stresses arise. Bridgman [6] proposed that

as an applied hydrostatic pressure increases material ductility, this hydrostatic
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tension due to the non-axial forces decreases ductility, leading to brittle fracture

on the axis. This in turn leads to the classic cup and cone fracture as the break

at the axis spreads outwards until the specimen is sufficiently deformed and shear

failure begins to dominate towards the outer surface.

The condition for necking is presented succinctly in the Considère criterion[43],

published in 1885. This states that necking occurs when the true hardening rate

equals the true stress
dσ

dε
= σ (2.35)

In essence, as a material hardens due to plastic deformation the hardening rate

decreases and the minimum cross-sectional area is reduced. The load is related to

the area through,

σ =
F

A

with F the reaction force and A the area. Thus for a constant force and perfectly

plastic material the load decreases with the reduction in area. However, for a

non-perfectly plastic material, hardening results in an increase in load. Eventually

the load reduction rate due to the change in area exceeds the increase due to

hardening. At this stage the maximum load is reached and an unstable situation

exists. Localization occurs with elastic recovery in the regions not affected.

In ductile tensile tests four points can be identified, plastic yield, diffuse necking,

localized necking and finally fracture. The process is shown in figure 2.20. Diffuse

necking occurs when the Considère criterion is met, while local necking occurs just

prior to fracture[44].

Hydrostatic tension within the necked region complicates the stress measurement

and calculation as it leads to an overestimation of flow stress and thus of hardening.

However, Bridgeman was able to develop a simple correction formula, based on

the geometry of the neck, to determine true tress.

fbridgman =

[(
1 + 2

R

a

)
log
(

1 +
a

2R

)]−1

(2.36)

where a is the bar radius at the neck centre and R is the radius of the neck groove

as shown in figure 2.21.
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Figure 2.20: Load displacement graph for a typical tension test[44].

R a

Figure 2.21: Neck dimensions used for the Bridgeman correction factor.

Implementation was simplified by the estimation of the geometric ratio by Roy

et al. [45], which related it to the current strain and the strain at maximum

load, εPmax,
a

R
= 1.1 (ε− εPmax) (2.37)

More recently, Zhang et al. [44], in 1999, attempted to address the same issue for

sheet specimens which have rectangular cross sections and unlike round specimens

undergo cross-section shape changes during deformation. In a numerical study on

sheet specimens, Zhang et al. noticed two forms of localized necking related to the

aspect ratio of width, w to thickness, t,

S =
w

t

47



2.4. Tensile Test Literature Review

Figure 2.22: Tensile neck formation beginning with (a) diffuse necking followed by
(b) localized necking with low aspect ratio and strong hardening or (c) high aspect
ratio and low hardening[44].

For a specimen with a low ratio and strong hardening, the localization occurs at

an angle across the thickness, shown in figure 2.22. In contrast, wider specimens

with a high aspect ratio, but low hardening localized across the width. Thus the

geometry of the cross section plays a key role in the form damage takes.

All specimens with different aspect ratios produced the same average true stress-

true strain profile before necking as round bars and thus it was concluded that the

Bridgman correction is still applicable. The problem is determining the shape of

the cross section post necking.

Zhang et al. proposed that the shape change could be split into a proportional

volume change, Ap and a non-proportional shape change, As

∆A

Ao
=

∆Ap
Ao
− ∆As

Ao
(2.38)

with the proportional term given by

∆Ap
Ao

= 2

(
∆t

to

)
−
(

∆t

to

)2

(2.39)
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and the non-proportional by

∆As
Ao

= fs(S) · ft(x) · fm(y) (2.40)

Ao and to refer to the initial area and thickness respectively, while x and y are

related to the current thickness ratio and that at maximum load

x =
∆t

to
−
(

∆t

to

)
Pmax

y =

(
∆t

to

)
Pmax

The function fs relates the area ratio to the aspect ratio, ft relates the area

ratio to the thickness ratio and fm is related to the material properties. These

functions have been found through curve fitting in [44]. However, the reliance on

the latter two to the change in thickness is problematic. This can be determined in

a quasistatic tests using an extensiometer, but not in a dynamic Split Hopkinson

Bar test.

An alternative approach was taken by Bao and Wierzbicki [7] in a 2004 study.

In this case, instead of attempting to estimate the change in specimen shape

during necking, an iterative simulation process was used in which the material

properties were altered until the deformed shape as well as the reaction force

versus displacement of the model matched that in the experiments. The method

is time consuming as several simulation runs are required, but allows flexibility for

specimens with complex designs such as notches to be tested without knowing the

materials hardening characteristics beforehand.

2.5 Specimen Design

To calibrate and analyse a damage model, tests are required from several different

regions of triaxiality and Lode angle. For example the Xue-Wierzbicki requires

tests from four positions and the more general Bai-Wierzbicki model uses six.

Figure 2.23 is a useful diagram that shows a range of tests plotted against Lode

Angle and triaxiality. Ideally tests should be taken from a wide range of these

points.

49



2.5. Specimen Design Literature Review

Figure 2.23: Calibration tests plotted relative to triaxiality and Lode angle [17].

2.5.1 Tension

In calibrating the Bai-Wierzbicki model, Bai and Wierzbicki [17] used two sets of

tensile tests. The first were round specimens which have a normalized Lode angle

of θ̄ = 1, shown in figure 2.24a. Straight round specimens have an initial triaxiality

of 1
3
, but this can be increased by machining notches into the cross-section [3]. The

material outside the notch limits radial deformation, creating non-axial stress and

thus increased triaxiality. Although not mentioned, a similar effect should be able

to be achieved with dogbone sheet specimens.

The second set used flat, grooved specimens with θ̄ = 0 shown in 2.24b. These

have a large lateral dimension, which tends to limit transverse deformation. Thus

the loading condition is approximately plane strain. To vary the triaxiality angle,

the grooves were made with differing radii[17].
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(a) Tensile round (b) Tensile flat

(c) Upsetting (d) Pure Shear (e) Combined loading

(f) Butterfly

Figure 2.24: Specimens used to calibrate the Bai-Wierzbicki model [17].
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2.5.2 Compression

Cylindrical compression tests have a normalized Lode of -1 and negative triaxialities.

In damage testing the experiments are termed ‘upsetting tests’. In these friction

between the compressive platens and the short specimens causes barrelling to

occur. This creates tensile circumferential stresses that result in failure on the

specimen outer surface [3]. However, the test is not practical with sheet metal

because the specimens would have to be too small.

2.5.3 Shear

From figure 2.23 it is clear that a pure shear test is useful as it is located at the

origin of both the triaxiality and Lode axes. Bao and Wierzbicki [3] developed a

specimen designed to test for pure shear. These involved a central shear zone with

a grip section attached on either side and pulled in opposite directions as shown

in figure 2.24d. These were then modified by angling the shear zone, imposing a

combined tensile-shear load. The combined tensile-shear concept is particularly

useful as it allows for tests in the transition triaxialities of 0 to 0.4 as detailed in

section 2.2.13.

2.5.4 Combined

The configuration suggested by Bai and Wierzbicki [17] is the ‘butterfly specimen’

shown in 2.24f. The main advantage is that the specimen can be placed under

several different loading conditions, with the fracture location constant for all. In

total Bai and Wierzbicki tested 8 different loading conditions on a biaxial test rig

with successful results. A further advantage is that it does not correspond only to

the limiting Lode angle cases of -1, 0 and 1 as occurs in the conventional specimens.

However, this specimen would be difficult to test using a SHB rig.
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2.5.5 Tensile Specimen Design Issues

Geometry

Unlike in compression, tensile specimens undergo a large degree of stress localization

through the process of necking. This provides a complication for Hopkinson tests

as only the axial displacement history of the specimen ends are known from the

tests6. The complications can be broadly split into two groups, which relate to

measuring the correct load and strain.

Load Measurement

One consideration may be to allow necking to develop fully as the Bridgman

correction factor can then be applied. In 1915, Upton (as reported by Davis et al.

[46]) found that round specimens with aspect ratios of length to diameter, L
D

, two

and greater had the same area reduction within the localized zone. With lower

aspect ratios lateral restraint is placed on the gauge section by the transition zone

which is the region between where the specimen is gripped and the gauge section.

In a more recent study Matic, Kirby and Jones [47] conducted experimental and

numerical tests on steel with similar findings. It was reported that specimens with

an aspect ratio of 1.67 and greater followed same stress strain profile up to necking,

while lower ratios resulted in an overestimation of material strength. This again is

due to the non-axial stresses caused by the lateral restraint of the transition zones.

In 2007 Bowden [38] conducted a finite element analysis of the Tensile Split

Hopkinson Test. The round tensile specimens provided similar results to the

quasistatic tests of Davis and Matic et al. with an aspect ratio of two or greater

required to prevent a large overestimation of material strength. In this study it

was shown that the error was due to non-axial stresses within the transition zone.

Strain Measurement

A further problem relates to the size of the transition zone as with low aspect ratios

the strain within this region became significant. As a Hopkinson test calculates

the displacement at the specimen ends, it is impossible to determine strain in the

gauge section relative to the transition zone without running parallel numerical

simulations. Ideally this transition zone effect should be minimized, which occurs

6Explained fully in section 2.4 on page 45
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with L
D
≥ 1.6 [38]. The influence of the transition zone radius size was also

considered, but was found not to have nearly as significant an effect.

Verleysen et al. [48] conducted a similar study and found that with sheet specimens

the transition radius had a far greater effect . For specimens 5mm long by 4mm

wide a 1mm radius accounted for 17% of total strain increasing rapidly with a 2mm

radius resulting in 29%. This was supported by experimental work conducted by

Verleysen and Degrieck [36] which, using a high speed camera to track specimen

deformation, found that the strain along the specimen was not constant due to

strain within the transition zones. Thus the TSHB test overestimates strain prior

to necking due to the transition round and then underestimates post necking due

to localization.

A caution with using too small radii was included in a later study by Verleysen et al.

[49]. This noted that non-axial stresses caused by the transition zone, which are

greater for sharper transition radii, tend to decrease strain through the material.

However, with a large gauge section this should not be restrictive on necking, as

Upton found (reported by Davis et al. [46]).

If parallel numerical work is conducted, the material properties obtained from

the TSHB data can be iteratively adjusted until the bar displacements in the

simulation match those of the test. This process was followed by Bao and Wierzbicki

[3] among others who reported success. A further advantage is that the material

characteristics can be obtained from specimens with complex geometries. However,

there is the possibility that by tailoring material parameters to fit the experimental

data, errors due to the mesh or modelled geometry could be hidden. If the fitted

model applies well to a range of different specimens, the risk of a major calibration

error is minimal.

Securing the Specimen

The methods to secure the specimen refer here to the dynamic SHB tests as

standard clamps are used to grip quasistatic specimen. Downey [50] tested axisymmetric

specimens with threaded attachment zones as shown in figure 2.25. This is a

conventional method used successfully by Li and Ramesh [35] and Rodŕıguez et al.

[51] among others.
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Figure 2.25: Tensile specimen used by Downey [50].

Figure 2.26: Tensile sheet specimen design used by Verleysen and Degrieck [36].

Close to the transition zone, flats were machined to allow the specimens to be

gripped easily and screwed into the Split Hopkinson bars. Parallel finite element

analysis on the design by Bowden [38] showed that the effect of the flats on

capturing material properties was insignificant for flat lengths less than 5mm on a

φ10 mm specimen. However, large oscillations due to wave reflections within the

region were evident for a specimen with a 15mm flat.

In the FEA model, the thread interaction was simplified as simply a nodal tie

between the specimen and bars. With this method, the length of the thread

did not have a significant effect on the results with only an unrealistic length of

2mm altering the resulting material stress strain curve drastically. Oscillations

were noted when steel specimens were placed in aluminium bars, but these were

minimized with thread lengths of around 15mm and over. However, although it

was not studied, the interaction of the thread itself may reduce the quality of the

results further.

In the series of tests on sheet specimens, Verleysen and Degrieck [36] glued the

specimens directly into slots in the bars. To ensure that the glue bond was strong

enough, the glue zone was significantly larger than the specimen gauge zone as
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illustrated in figure 2.26. The advantage of the method is that no end fixtures

other than the slots cut into the bars are required. However, the setup time

between experiments is presumably significant as each specimen needs to be glued

into the bars, tested and then removed in series.

2.6 Numerical Simulation

2.6.1 Tensile Split Hopkinson Tests

Basic Setup

Verleysen et al. [49, 52] modelled the split Hopkinson bar experiment to determine

the influence of tensile specimen geometry. The models used bars long enough to

prevent the reflected stress from interfering with the specimens, with a 2m length

required. 1
4

symmetry reduced the number of elements and hence computation

time. The applicable integration scheme for dynamic experiments such as these is

an explicit analysis as the computational cost for each step is low. The disadvantage

is that small time steps are required. However, as the simulations need to run for

only a short time period it is by far the most efficient.

Emphasis was placed on keeping a high mesh density in the region surrounding

the specimen while leaving the remainder of the bars relatively coarse. This was

deemed acceptable as the bars were only required to transmit the load onto the

specimen [49]. Verleysen et al. used eight noded continuum elements with reduced

integration and hourglass control and argued that these are relevant type for

modelling a highly dynamic process with 3D elements [49]. A similar system

was used by Rodŕıguez et al. [51] among others.

Infinite Elements

The stable time increment is dependent on the size of the smallest elements in the

specimen and this affects all elements including those of the long bars. Despite

this complication, most of the published work on simulating the SHB test report

modelling the entire bars (see for example [49]). However, a promising technique
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was implemented by Kammerer and Neme [53]. In the work ‘semi-infinite’ elements

replaced the bars by absorbing the reflected waves. The major advantage is that

the simulation only has to run for the time required to deform the specimen, not

for that taken by the stress waves to move along the bars. Furthermore the element

count is significantly reduced.

This technique is successfully implemented in this thesis and is covered in chapter 4.

Applying the Load

Instead of simulating a striker to create the input pulse, Rodŕıguez et al. [51]

loaded the specimen directly by placing a simplified velocity profile modelled on

that recorded experimentally onto one specimen edge. The pulse was shaped as a

trapezoid with a rise and fall time of 60 and 40µs respectively and a total duration

of 220µs. Allowing for a rise and fall reduces dispersion as the wave travels along

the bars. Dispersion results in oscillations within the stress wave and thus should

be minimized7.

Applying a load directly to the specimen is simple and minimizes the element count

and computational cost. However, the method is flawed as it does not take into

account the stress waves generated due to the velocity boundary condition. Thus

any error in material properties results in significant oscillations in the specimen

loading stress. Chapter 4 considers the technique in detail and found it to be

unsuitable for an accurate simulation.

A far better technique was implemented Bowden [38] in which a stress wave was

applied directly to the striker end of the input bar. This accurately replicates the

entire SHB experiment. The load was modelled as a sinusoidal stress pulse with

a plateau region at its peak. This was presented as a simple method of creating a

pulse with no gradient discontinuities and thus minimal dispersion.

Perhaps more applicable to this work is to include a loading pulse derived directly

from the incident pulse8, such as used successfully by Verleysen et al. [49]. The

advantage is accuracy in that the exact incident pulse should replicate the experimental

loading conditions more closely.

7Covered in section 2.3.3.
8The incident pulse is that generated by the striker. The SHB process is covered in detail in

appendix A.
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Specimen Interaction

To model the thread contact, Li and Ramesh[35] used contact pairs defined between

the threaded section and the bars. This was implemented successfully by Bowden

[38] among others, nevertheless it is a simplification as it ignores possible movement

between the threads. The error due to this approximation needs thorough analysis.

Verleysen et al. [49] used glue to attach sheet specimens to the bars. The glue-

specimen interaction was defined simply as a tie interaction. This defines the

nodes on one surface to follow the same displacements as the mating surface. The

end of the specimen were not tied as it was thought unlikely that the glue would

withstand the high direct tensile stresses resulting in the region. Although some

deformation would occur within the glue zone, this was argued to be minimal.

However, the advantage of using a tied connection is that it can easily be replaced

by a mode accurate interaction at a later stage[49].

2.6.2 Specimen Material Properties

Verleysen et al. [49] used an elasto-plasticity model that included isotropic hardening

to model tensile sheet specimens. The plasticity properties were determined using

quasistatic experimental tests and included in tabular format as equivalent stress

versus strain. However, as the simulations used dynamic testing, temperature and

strain rate need to be included.

A more thorough approach was taken by Bonorchis [54] who compared the simulation

specimen stress to that determined experimentally and iteratively changed the

material properties until the model corresponded to the experimental results for

a wide range of strain rates. This model took into account strain, strain rate and

temperature.

A similar iterative process was used by Bao and Wierzbicki [7] to determine

the plasticity curve for round and notched tensile specimens. As these were all

quasistatic, the rate and temperature effects were not significant and thus the

derived stress-strain curve could be input directly.
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2.6.3 Specimen Model

Bai and Wierzbicki [17] used 1
8

symmetry to model quasistatic experiments with

grooved flat plates . This technique assumes that the specimen is always in perfect

equilibrium and thus is not applicable to the split Hopkinson tests. However, it

does minimize the element count for the long running quasistatic tests.

To further decrease the quasistatic run time, Bonorchis [54] among others successfully

used mass scaling. This artificially increases element material density, which in

turn allows for a lower wave speed and thus greater critical time step, defined as

the maximum allowable time increment of an explicit step. Bonorchis found that

in modelling mild steel, mass scaling of between 5 and 625 times the initial density

was acceptable9.

In damage simulation, Bai and Wierzbicki [17] found that an axisymmetric mesh

with an element size of 0.1mm gave results with an difference of only 0.5% in force-

displacement response to that using 0.2mm long elements, indicating convergence.

In the final calibrations, the denser mesh of 0.1mm was used. The same density

was used by Bai et al. [55] in damage analysis.

To ensure failure occurred in the centre of the gauge zone, Zhang et al. [44]

introduced a small imperfection with dimensions of 0.4% specimen width and

a notch radius 12 times the thickness to trigger necking. However, the method

is not common in the literature. In experimental testing, specimens with small

gauge sections fail in the centre due to the restraining influence of the transition

radii, from the grip to the gauge section, having the least effect at this point.

For larger gauge sections, the influence is low in a large central region and thus

necking may occur away from the centre due to a small imperfection. In contrast,

a numerical analysis with no imperfections should still predict failure in the centre

as the transition radius has the lowest influence at that position.

9This is explained fully in the simulation procedure, chapter 4.
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Chapter 3

Apparatus Design

3.1 Introduction

This chapter includes all the design and testing work for the experimental tests.

The first section details the design of the tensile split Hopkinson apparatus. The

solutions uses a tubular striker with a reversed gas gun to create the incident pulse.

Section 2.3 of the literature review found that this technique is favourable as it is

requires little modification to the existing compression SHB station.

The second section covers the specimen design. The aim in the design was to

create specimens with a wide range of triaxiality and Lode angle. The method of

attaching the dynamic specimens to the split Hopkinson bars is also covered.

The final section considers the design of the gluing jig used to prepare specimens

to be secured to the TSHB apparatus.

3.2 Tensile Split Hopkinson Bar

The configuration chosen for the tensile rig uses a tubular striker based on that

designed by Cloete and Downey [37]10. This design, shown in figure 3.1, was

selected as it can be assembled on the same Hopkinson bar station as a compressive

rig. Little modification is required to the conventional compressive SHB apparatus

10Considered in detail along with several other configurations in section 2.3.
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Striker Input Bar Output BarSpecimen

Strain Gaugev0
Strain Gauge

Figure 3.1: Schematic of the tensile split Hopkinson bar using a tubular striker.

as the same gas gun orientation is used and thus changing between compressive

and tensile testing can be completed relatively fast. Furthermore, in comparison

to many options considered in the literature, the apparatus and specimens are

simple to manufacture. This section considers the design process, while detailed

drawings are included in appendix C.

The operation, shown in figure 3.2, is as follows:

1. Pressure built up in a gas gun is released through the barrel.

2. The striker is positioned to slide over the barrel and is sealed by a plug on the

barrel and a pressure cap at its far end. Thus as air flows through holes in

the barrel, pressure builds up behind the pressure cap and moves the striker

back towards the gun.

3. After sliding a set distance, the transfer cap on the striker connects with the

transfer flange on the input bar.

4. The impact generates a tensile stress wave that travels along the input bar,

specimen and output bar.

Strain gauges positioned on the input and output bars record the changes in stress

due to the specimen deformation and thus the forces and displacement through

the specimen are determined. For a more detailed analysis of the split Hopkinson

bar fundamentals see appendix A.

The final design is shown in figure 3.3, with photographs of the bars and striker

following in figure 3.4. The striker and bars slide through Teflon bushes and these

are contained by clamps, tightened securely to an I-beam. The clamps ensure that

the bars do not move out of alignment. The photographs indicate the large scale

of the apparatus, which is roughly 9m long in total.
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Figure 3.2: Striker interaction with impact bar. The pressure from the gas gun (1)
forces the striker to move (2) and impact against the input bar (3). This generates
tensile pulse, which travels towards the specimen (4).
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Figure 3.3: Final TSHB design. The total length includes the gas gun (not shown).
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(a) Full rig

(b) Striker

Figure 3.4: Photographs of the TSHB apparatus.
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3.2.1 Striker

Length

The requirement on the tensile rig is to deform specimens to the extent that

damage occurs. Thus the rig needs to produce a stress input pulse long enough

for specimen damage to occur. Pulse duration, tP , is directly related to striker

length, Ls, through

tP =
2 · Ls
c

(3.1)

where c refers to the wavespeed of the material given by c =
√

E
ρ

. Both the striker

and input bars are made from aluminium, resulting in a wavespeed of

c ≈
√

70× 109

2800
= 5000 m.s−1

The striker length is limited by the length of the input bar. To capture the full

incident and reflected pulses separately using only one strain gauge, the incident

pulse must be fully captured by the time the stress wave reflects back from the

specimen and reaches the gauge.

As the input pulse length is nominally twice that of the striker, a strain gauge

positioned midway along the input bar should receive both signals separately if

the bar length is twice that of the striker, Li ≥ 2 ·Ls. This is shown schematically

in figure 3.5.

The length of the available input bar was Li = 3.66 m, resulting in a maximum

striker length of Ls = 1.83 m. However, the generated signal is not perfectly square.

To reduce the effects of wave dispersion, a small quantity of putty is placed on

the flange. This softens the impact to damp the oscillations visible on the stress

pulses, yet adds an estimated combined pulse rise and fall time of 10µ(s).

The additional pulse length reduces the gap between pulses by,

L = 2 · t · c = 2 · 10× 10−6 · 5000 = 0.1 m

Thus to ensure adequate pulse separation, a 1.6m striker tube with a pulse duration

of 640µs was built.
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Figure 3.5: Stress wave propagation through the input bar.

In testing, the rise time was greater than expected due to the interaction of the

transfer cap with the flange. Ultimately the rise and fall times are approximately

60µs,which is 50µs greater than predicted. Thus the length had to be decreased

by a minimum of,

∆Ls =
∆tP · c

2
=

2 · 50× 10−6 · 5000

2
= 0.25m

The final striker was conservatively built with a total length of 1.3 m. This

proved ideal as it produces an incident wave with a clear separation as shown

in figure 3.6.The pulse remains relatively constant at its peak value for roughly

470µs and, if the rise and fall time is included, the pulse is approximately 590µs

in total.

As a precaution, in case the 1.3 m would not be long enough to fracture all the

specimens, a third striker of length 1.45 m was manufactured. Figure 3.6 shows

that for this striker, the pulse separation is not perfectly distinct. However, if no

pulse smoothing putty is applied, the separation is large enough to conduct TSHB

experiments.

A further success of this striker is the smooth incident pulse generated. This is a

significant improvement on the previous iteration built by Downey [50] as in that

case significant oscillations were evident in the pulse due to the transfer cap, flange

and pressure cap. The improvements made to optimize the pulse are included in

section 3.2.2.
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Figure 3.6: Effect of striker length on the incident pulse with no softening. A 1.3m
striker was ultimately chosen as the separation between incident and reflected pulse
is clear.

Cross-sectional Area

When the striker impacts the incident bar, tensile stress is formed at the contact

area. For bars of uniform material properties, the stress at the interface is divided

between the striker and input bar relative to the areas of each,11

σs =
Ai

Ai + As
ρcvs σi =

As
Ai + As

ρcvs (3.2)

with σs and the σi the striker and input bar stress respectively. The variables ρ,

c and vs refer to the density, wavespeed and striker velocity. Thus the greater

the area of the striker relative to the input bar, the greater the input bar stress.

However, if the striker cross-sectional area is greater than that of the input bar,

two or more wave reflections are required before the striker comes to rest12. This

is undesirable as it results in an input pulse that steps incrementally down to zero,

instead of decreasing from the peak to zero in one step.

11Derived in section A.3.1.
12Explained in detail in section A.3.2.
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Clearly the cross-sectional area of the striker must not exceed that of the input

bar and ideally to maximize the magnitude of the incident pulse the areas should

be equal.

As
Ai
≤ 1 ∴ π

(
D2
outer −D2

inner

) ≤ d2
i

where D refers to the striker and d to the input bar. As the input bar available

is sized as 19.05 mm, a combination of a standard inner diameter of Dinner =

31.75mm with a machined down outer diameter of 37.0mm results in both the

striker and input bar having equal areas. However, as a conservative measure, the

outer diameter was ultimately machined to 36.5mm in diameter. This results in

an acceptable ratio of
As
Ai

= 0.9

Velocity Range

For strikers having the same material as the input bars and an area ratio of 0.9 as

shown above, the required collision velocity is derived from equation 3.2 as,

vs =
Ai + As
As

σi
ρc

= 2.111
σi
ρc

(3.3)

As a rough guide to ensure that the strain gauges do not get damaged this stress

should be kept below 200 MPa [50], resulting in a maximum striker velocity of

≈ 30 m.s−1. Using this velocity, the maximum strain rate13 is found through [25],

ε̇ ≤ vs
l0

(3.4)

where l0 is the specimen length. Thus a 5mm specimen could attain a maximum

strain rate of 6000s−1, while a 10mm specimen is capped at 3000s−1. Using this

potential strain rate, maximum strain is calculated by ε = ε̇ · tP . A strain of

≈ 1.6 is achievable for the 10mm specimen. This should be more than adequate to

fracture most materials, but can be increased to 3.2 for short specimens of 5mm

length.

13Strain rate in this sense refers to average strain across the entire gauge length, the critical
regions in necked specimens may experience far greater strain rates.
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3.2.2 Striker-Input bar Interaction

To form the incident pulse the striker transfer cap collides with a flange screwed

onto the input bar. Adding the flange and cap complicates the interaction as the

additional inertia has been found to create a signal spike at the start of the signal

followed by increased oscillations [38].

The effect is reduced if the cross-sectional area of both pieces is similar. Indeed in

tensile tests conducted by Downey [50] using his rig, the spike is evident, but not

excessive, even though steel with a much higher density than the aluminium bars

was used for the flange and cap.

To minimize the effect both are manufactured out of titanium. This material has

the advantage of being relatively lightweight and thus having low inertia. Using

cheaper aluminium would have been acceptable from a mass consideration, but

connecting two aluminium parts together may result in bonding between the two.

As the cap needs to be removed easily to add the pulse smoothing putty for each

test, bonding would present a major problem.

The components used to create the tensile pulse are shown in figure 3.7. Note that

to remove the stress concentration from the first thread, a circumferential groove

is cut into the impact face of both the flange and cap. This same technique was

used in [50].

Bowden [38] found similar inertia effects due to the pressure cap at the other end

of the striker. However, this piece is only used to trap the gas gun air and is

not subjected to the large impact stresses that the transfer cap and flange need

to withstand. Thus the cap, shown in figure 3.7, is made out of high density

polyethylene (HDPE), with negligible mass.

No seals are required on the plug or pressure cap and free running fits are specified

on the interacting parts between striker and barrel as the time required to pressurize

the striker is too low for significant leakage. The lack of seals is an advantage as

it allows the air to vent and thus prevents repeated impact.
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(a) Transfer cap (b) Transfer flange (c) Pressure cap

(d) Pressure Cap, barrel and plug

Figure 3.7: Photographs of the striker Components. When the gas gun is fired,
pressure builds up between the pressure cap and plug, forcing the transfer cap
attached to the striker to impact against the flange on the input bar.

3.2.3 Complications and Adjustments

A Teflon bush on the transfer flange allows the striker to run smoothly over the

input bar. In testing this bush caught on the thread at the end of the striker

when the striker was removed between experiments. This was easily prevented by

adding a low angled taper after the thread.

The long input bar which was significantly bent. This meant that when a laser

alignment system was used to correctly align the setup, the bars would not run

smoothly in the bushes. Thus the laser alignment system was abandoned and the

setup had to be configured manually. This was time consuming, but ultimately

successful provided a fair amount of lubrication was applied to the support bushes.

One of the two support bushes on the striker was also removed to allow it to align

itself more easily relative to the input bar.
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3.3. Specimen Design Apparatus Design

3.3 Specimen Design

3.3.1 Specimen Geometries

Ideally, to adequately characterize the Wierzbicki damage model, specimens with

a wide range of triaxialities and Lode angles are required. However, the scope of

this thesis is limited to uniaxial tensile testing apparatus and hence all lie in the

region 0 ≤ η and 0 ≤ θ̄ ≤ 1.

The 3 forms of specimen developed are straight sheet, notched sheet and flat

grooved plates. The first two are square section adaptations of axisymmetric tensile

specimens with θ̄ ≈ 1, while the latter is similar to the plates tested by Bai and

Wierzbicki [17] with θ̄ ≈ 0 14.

Section 3.3.2 details the technique used to secure the specimens to the split Hopkinson

bars. Concisely, the specimens are glued into slots. This placed two constraints on

the specimen design, firstly the maximum cross-sectional area at the gauge section

centre was limited to 8mm2 to prevent glue failure. Secondly the glue jig, which is

used to bond the specimens, required common sized gauge sections between groups

of specimens.

Ideally the jig should be able to hold all different specimen types with no modifications.

Nevertheless, in practice it was decided to develop spacers that would fit in the

jig and locate the different specimen geometries precisely15. To limit the number

of different spacers that needed to be manufactured, the width of the notch and

straight specimens was set at 4mm. Secondly the thickness of the notch and groove

specimens was set at 2.4mm, just lower than the sheet plate thickness of between

2.7 and 3mm.

14The specimens used by Bai and Wierzbicki [17] are included in section 2.5 on page 49.
15The jig design is detailed in section 3.4 on page 79
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Figure 3.8: Basic specimen geometries used in both the dynamic and quasistatic
tests.
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The straight specimens have the lowest triaxiality of the uniaxial tension specimens

with η = 1
3

and a high normalized Lode of close to 1. For these specimens a

thickness of 1.4mm was set resulting in a cross-sectional area through the gauge

zone centre of 5.6mm2. The specimen, shown in figure 3.8a, was designed with

a low transition zone radius of 1mm between the gauge section and glue zone to

limit the transition zone deformation. This follows studies found in the literature

on transition zone deformation covered in section 2.5.5. Ultimately the radius was

increased to 1, 25mm due to machining constraints.

The notched specimens follow the same theory as that used by Bao and Wierzbicki

[3] to increase the initial triaxiality by machining ‘necks’ into the specimens. The

triaxiality at yield was approximated by[55]

η =
1

3
+
√

2 ln
(

1 +
a

2R

)
(3.5)

where a is the minimum radius and R the notch radius. This is a modified version

of the Bridgman formula found numerically by Bai, Teng and Wierzbicki for round

specimens. In this application square sheet specimens are used and thus as a rough

estimation a was set to t
2

where t is the minimum thickness through the neck.

Equation 3.5 indicates that the greater the ratio of t
R

the higher the triaxiality.

Thus to get a broad range of triaxialities, the thickness is kept constant at 2.4mm,

while the notch radius increased from 1.25 to 2 to 5mm as shown in figure 3.8b.

The deformation of grooved plate specimens can be approximated by the plastic

plain strain condition as the width is great relative to the thickness and hence lie

in the region of θ̄ = 0. The triaxiality was approximated through [55]

η =

√
3

3

[
1 + 2 ln

(
1 +

t

4R

)]
(3.6)

For this case, groove radii of 1.25, 2 and 5mm are again used, but the minimum

thickness set at the low 0.6mm to allow the groove to cut significantly into the

profile, shown in figure 3.8c.
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Figure 3.9: Approximate initial specimen states. The grooved specimens have a
Lode of θ̄ ≈ 0, while the straight and notched are higher at θ̄ ≈ 1.

Figure 3.10: Photograph of all the different types of specimen tested. From left
to right is an example of a straight specimen followed by 3 notched and finally 3
grooved examples.

The approximate initial specimen states are shown in figure 3.9. The predicted

range at θ̄ = 0 is narrow, but aimed to contrast the specimens at θ̄ = 1. To

confirm the approximations, a rough finite element analysis was conducted on

each specimen up to yield. This shows similar results, the only major difference

being the normalized Lode angle for the notch and straight specimens is lower at

θ̄ ≈ 0.8

The manufactured specimen set is pictured in figure 3.10. Due to the small

dimensions, manufacture is difficult and time consuming. Thus the test program

is limited to three specimens of every geometry for each of the three strain rates

tested. This equates to 63 specimens in total.
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Figure 3.11: Sheet specimen glued into two sections of threaded bar.

3.3.2 Securing Specimens to the Split Hopkinson Bars

A complication with tensile testing is the question of how to attach the specimens

to the bars. Verleysen et al[36, 48, 49, 52] in work on sheet metal specimens,

used glue to secure the specimens directly into slots cut into the Hopkinson bars.

In contrast Downey [50], amongst others, tested round specimens by machining a

threaded region on either side of the specimen gauge zone and and then screwing

the specimens into the bars. This has the advantage of quick specimen setup for

testing 16.

In this thesis all specimens were manufactured from one sheet of mild steel,

making the task of machining threads onto specimens difficult. The solution is

a compromise between both techniques. Slots were cut into short sections of

threaded bar that can be screwed into the SHB. The specimens were then glued

into the slots with an example shown in figure 3.11. The photograph in figure 3.12

shows a specimen being screwed into the input bar. The next section contains the

experimental results used to analyse the glue strength.

3.3.3 Glue Tests

The forces transferred through to the specimen have to be large enough to fracture

the material and thus the glue must be able to withstand significant shear forces.

With this in mind two types were considered.

The first, Pratley SP020, is a quick drying adhesive with a lap shear strength of

29 MPa between two steel parts. The advantage of this option is its fast cure time

to handling strength in 5 minutes and full strength in 24 hours.

16The literature relating to securing specimens is included in section 2.5.5 on page 54.
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Figure 3.12: Photograph of a dynamic specimen being screwed to the TSHB.

The second, 3M Scotch-Weld EPX Adhesive DP490, requires 6 hours before handling,

but 25 hours to full strength, allowing for a heat treat cycle of 1 hour at 80oC.

Lap shear tests for steel are unavailable, but that with aluminium using this cure

is 28.7 MPa.

To check whether the glue strength in this application matched the lap shear

specifications, quasistatic tensile tests were conducted. The tests involved rectangular

specimens glued into threaded bar. The bar was then threaded onto attachments

connected to the the Zwick tensile testing machine. In these tests the displacement

rate was set at 5mm/min.

The first set of specimens was made from mild steel with dimensions shown in

table 3.1. As the Hopkinson bars are nominally 20mm in diameter, the threaded

bar was set at size M14. This allows for a specimen glue width of 12mm without

interfering with the thread. The glue length was set at 30mm as that allowed the

specimens to be bonded using an existing jig.

Specimens A through D were made from 2.8mm plate, which was a closely fitted

into the 3mm slot cut into the bar. Of these A and B used the Pratleys, while

the remainder used the 3M. Specimens E through I were made from 2mm plate,

allowing a larger clearance gap of 0.5mm between specimen and bar slot.
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The results from Set 1 are shown in figure 3.13. The first observation is that

the tests using the 3M product with a close 0.1mm glue gap performed poorly,

withstanding a maximum force of 2 kN before failing. This weakness may be due

to its thick grease like consistency as when the plate is placed into the clamp slot,

most of the epoxy is scraped off.

The Pratleys product performed better with the same glue thickness, exceeding 4

kN. However, it is difficult to work with for two reasons. Firstly it has a water

like consistency resulting in a portion of the glue pouring out of the slot before it

is fully set and using a larger glue gap would exacerbate this problem. Secondly

its rapid cure time to handling strength means that small misalignments when the

specimen is first placed into the clamp slot cannot be adjusted.

Interestingly the worst results came from using the 3M product with a cure cycle

of 7 days at room temperature. According to its specifications, this should have

resulted in the maximum shear strength. Yet in testing it clearly was not properly

cured and failed instantly.

Table 3.1: Specimen and threaded bar dimensions used to test glue strength

wl

t
G

T

Specimen w l t T G Glue Cure Material
mm mm mm mm mm

Set 1
A-B 12 30 2.8 3 0.1 Pratley 24 hrs Mild Steel
C-D 12 30 2.8 3 0.1 3M 24 hrs, 1 at 80oC Mild Steel
E 12 30 2 3 0.5 3M 7 Days
F-I 12 30 2 3 0.5 3M 24 hrs, 1 at 80oC Mild Steel

Set 2
J-M 12 20 2 3 0.5 3M 24 hrs, 1 at 80oC Gauge Plate
N-Q 12 20 2 4 1 3M 24 hrs, 1 at 80oC Gauge Plate
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Figure 3.13: Results from Glue Test set 1 showing pulling force versus
displacement.
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Figure 3.14: Results from Glue Test set 2 showing pulling force versus
displacement. The cut-off line indicates the force required to reach a stress of
800MPa in a specimen of gauge section 4× 2 mm.
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The optimum was the 3M glue with a 0.5mm glue gap, these tests reach a consistent

reaction force of 7 kN before failing. However, this force is close to that resulting

in plastic yield. These specimens have a constant cross section in the grip zone

and gauge section. Thus, if plastic yield did occur, it would yield at the glue

interface due to the stress concentration. Plastic yield in the glue region results in

instant glue failure, resulting in a sharp drop in reaction force as the epoxy cannot

withstand large strains. By measuring the specimen prior and post testing, it is

clear that significant plastic deformation exceeding 3mm did occur, and thus a

second set of tests, Set 2, were run.

In this group, the specimens were made out of gauge plate steel, which is an

annealed high carbon steel far stronger than the mild steel used in Set 1. To

ensure that the material did not yield before the glue failed, the glue length was

reduced to 20mm. For this set, 3M Scotchweld was used for all the tests and thus

the only varying parameter is the clamp slot thickness. This was set at 3mm with

a 2mm plate for half the specimens resulting in a glue gap of 0.5mm, while the

remainder used a wider slot of 4mm with a glue gap of 1mm.

The results are shown in figure 3.14. This plot cannot be directly compared to

those of set 1 due to the lower glue length, thus as a measure of glue strength a

cut-off force, corresponding to a stress of 800 MPa for a specimen of cross sectional

area 8 mm2, is considered. The glue performed well with the 0.5mm gap specimens

achieving a maximum yield force of 6 to 8 kN. Those with the larger glue gap were

not as strong with a yield force of between 4.5 and 6.5 kN.

The large range of results is due to inconsistency in gluing technique. The glue

jig used to make the specimens allowed the threaded bar clamps to rotate and

change pitch relative to the specimen. This resulted in certain specimens with a

large thick glue region on one face, but very little on the other.

If both faces have an equal amount of epoxy, the shear force is divided equally

among the two. However, if one face has a far worse bond, the shear force acting

on that face would cause it to fail first. Once one face has torn, the shear force acts

completely on the remaining face and the bond there fails soon thereafter. The

misalignment can be seen when considering the post test pictures (figure 3.15) of

test K, which performed well, and J which only reached 6 kN.
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(a) Test J showing poor specimen alignment.

(b) Test K showing better specimen alignment.

Figure 3.15: Post test results of glue test specimens. Specimen J failed at a lower
force than K due to the poor alignment between the specimen and slot.

From this test it was concluded that the 3M epoxy could be used for tensile testing.

To ensure that the glue did not fail before the specimen gauge section, a larger

30mm glue length is used, while the maximum cross section permitted through

the notched region was kept below 8mm2. This conservative value corresponds to

the 800 MPa cut-off line in figure 3.14. To prevent misalignments, the glue jig was

optimized to hold the specimens securely during the cure cycle as covered in the

following section.

3.4 Gluing Jig

A gluing jig is required to produce large numbers of specimens with the sheet grip

sections aligned accurately to the threaded bar slots. The final version is shown

in figure 3.16, with detailed drawings in appendix C.

A prototype was developed, loosely based on an already built, but untested,

version designed by Govender [56]. It consists of a central removable clamp to

hold the specimen, and a base that secures the clamp and threaded bars. The

main limitation is that the rotation and pitch of the threaded bar are not fixed.

This allows the bar to move relative to the specimen, often resulting in more epoxy

being applied to only one of the specimen glue surfaces.
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Cap screw

Jig base

Upper clamp

Lower clamp

Threaded bar

Specimen

Locating centremark

Locating flats

Figure 3.16: Final glue jig design.

Two methods were introduced as improvements. Firstly, to constrain rotation and

vertical movement, flats were machined into the end of the threaded bar. Locating

sections were then cut into the lower and upper halves of the central clamp to hold

the flats firmly. These flats have the added advantage of allowing a spanner to be

used in securing and removing the specimens from the Split Hopkinson bars.

To ensure that the pitch remained level, a locating centremark was placed at the

other end of the threaded bar. Cap screws were then tapered so that the point at

the screw tip would locate the rear end.

The specimens are bonded as follows:

1. First the upper and lower halves of the clamp are screwed together, securing

the specimen in between. A spacer is used to correctly position the specimen

(figure 3.17).

2. The threaded section is prepared by winding thread tape over the slot (figure 3.18).

This prevents glue from spilling onto the thread.

3. Epoxy is then applied to both the specimen gauge section and to the threaded

bar slot (figure 3.19).

4. The clamped specimen is the slid into position and screwed down onto the

base. Locating screws are placed on either side of the clamp to ensure it is

centrally located.
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5. The slotted threaded bar sections are slid in through a hole from outside the

jig and secured with cap screws (figure 3.20).

6. After curing to handling strength the specimens are removed, this is achieved

by removing the upper and lower halves of the clamp separately and removing

the cap screws. The specimen is then pushed through either of the holes.

The lower half of the clamp, considered in the first point, was split to allow it

to be removed. In the initial prototype the this part was cut into two identical

halves with a flat face. However, this allowed for vertical and horizontal motion

before the clamp was screwed down. Thus to ensure that both sides are correctly

aligned, the mating surfaces had horizontal and vertical sections cut out, shown

in figure 3.21. These sections prevent horizontal and vertical motion as well as

rotation.

Figure 3.17: Photograph of the specimen positioned in the lower clamp by a spacer.
Several spacers were made to locate the different specimen geometries.

(a) Original
(b) Taped

Figure 3.18: Slotted threaded bar showing thread tape covering the glue slot. The
tape prevents epoxy from spilling onto the thread during the curing process. Note
the flat machined at the front of the bar, this is used to align the slot as well as
grip the specimen when it is screwed into the bars.
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Figure 3.19: Clamped specimen and threaded bars with epoxy applied. The clamp
was covered in tape before gluing to prevent the epoxy from bonding the lower
and upper clamp sections together.

Figure 3.20: Bar bonding to specimen in the jig. The cap screw aligns the rear of
the bar and compresses it against the clamp.

Figure 3.21: Photograph of the lower glue jig clamp. The piece is comprised of two
halves which key together to ensure accurate vertical and horizontal alignment.
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Chapter 4

Simulation Procedure

4.1 Introduction

This chapter contains the theory and techniques used to develop the material

models and simulate the experiments.

The first two sections deal with the development of the plasticity and damage

failure model written as a user defined material model (VUMAT) in Fortran.

Plasticity is described by the Zhao model [57], which is valid across a wide range

of strain rates, while a simplified symmetric Bai-Wierzbicki failure locus [17] is

included to track damage propagation.

The latter sections cover techniques used to model the geometry and loading

conditions. First the dynamic model is considered, followed by the quasistatic.

4.2 Plasticity Model

Plastic deformation refers to that in which strains are not totally recoverable [58]

and thus permanent deformation remains once the load is removed. This analysis

considers the Mises flow rule to determine whether plastic deformation occurs.

The von Mises, or ‘distortion energy’, criteria assumes that plastic deformation

is caused only by the shear strain, or ‘deviatoric’, energy components and thus

deformation related to volume change has no influence [58].
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The plasticity model begins by assuming the increment is strain is purely elastic.

With this assumption a trial stress is determined and compared to that predicted

by the yield function. If the trial is lower than yield the step is elastic and the

trial stresses are taken as the final stresses, while if the trial is greater than yield

the change in plastic strain needs to be solved.

In this analysis, scalar quantities are written as lower case letters, tensor quantities

as upper case with components i and j. The subscript old refers to the state of the

previous time step, while new indicates the current.

The repeated index summation convention is used.

4.2.1 Trial stress

The trial stress is determined using Hooke’s law,

∆T trialij = 2G∆Eij + λEkkδij (4.1)

where G is the shear modulus and λ is the first lamé parameter. Tij refers to the

Cauchy stress tensor and E to the strain tensor. The final trial stress is simply,

T trialij = T oldij + ∆T trialij (4.2)

The equivalent von Mises stress is derived from the deviatoric components, Sij,

thus the hydrostatic pressure, p, needs to be removed.

p = −1

3
T trialii (4.3)

Strialij = T trialij + pδij (4.4)

Thus the equivalent trial stress is given by,

∴ σtrial =

√
3

2
SijSji (4.5)
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Check for yield

The step involves plastic deformation if the trial stress is greater than the yield

function, f .

f(εpl, ε̇pl, T )− σtrial ≤ 0 (4.6)

If not met, the strain step is purely elastic. The final stress is equal to the trial

stress and all state variables are set to the previous values.

Tij = T trialij (4.7)

4.2.2 Plastic Strain

Large deformation results in a large trial stress. This is mostly irrecoverable and

thus the plastic portion must be determined. In this scenario, both the new plastic

strain and equivalent stress need to be found. Two solutions were attempted, the

first used a nonlinear solver, while the second implemented a linear predictor return

algorithm.

In this section subscript pl refers to plastic variables and el to elastic.

Method I: Nonlinear Solver

The nonlinear solver method determines the change in strain using the previous

elastic strain and the current strain increment. Newton’s method is used to

iterate towards the exact solution. The basic theory is given in the Abaqus

documentation [59], but is limited. Thus a full derivation is included here for

the sake of completeness.
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Firstly, the old elastic strain is found using the old deviatoric stress. The pressure

can be determined directly from the old stress state as plastic deformation is

assumed to be independent of hydrostatic pressure, p.

p = −1

3
T oldij (4.8)

Soldij = T oldij + pδij (4.9)

∴Eel
ij |old =

Soldij
2G

(4.10)

The equation for the final deviatoric stress is separated into knowns and unknowns,

Sij = 2GEel
ij

= 2G
(
Eel
ij |old + ∆Eel

ij

)
= 2G

(
Eel
ij |old + ∆Eij −∆Epl

ij

)
= 2G

(
Eel
ij |old + ∆Eij −∆εplNij

)
= 2G

(
Eel
ij |old + ∆Eij −∆εpl

3

2

Sij
σv

)
as Nij =

3

2

Sij
σv

∴ Sij

(
1 +

3G

σ
∆εpl

)
= 2G

(
Eel
ij |old + ∆Eij

)︸ ︷︷ ︸
Êij

= 2GÊij (4.11)

This is reduced to scalar form by taking the inner product of both sides with

themselves and taking the square root of the solution.√
SijSji

(
1 +

3G

σ
∆εpl

)2

=

√
(2G)2ÊijÊji

∴
σ√
3/2

(
1 +

3G

σ
∆εpl

)
= 2G

√
ÊijÊji from equation 4.5

σ + 3G∆εpl = 3G

√
2

3
ÊijÊji︸ ︷︷ ︸
ε̃

= 3Gε̃ (4.12)
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This forms a description of the yield surface, s.

s = 3G
(
ε̃−∆εpl

)− σ = 0 (4.13)

The function is in the correct form to be solved using Newton’s method, which is

described by,

c = xn − xn+1 =
s (xn)

s′ (xn)

where c is the residual. The solution is regarded to have converged when this value

is within a specified tolerance17. Thus applied to equation 4.13

cpl =
3G
(
ε̃−∆εpl

)− σ
3G+H

(4.14)

where H is the derivative of the equivalent stress term,
dσ

dεpl

After each iteration ,n, the plastic strain is updated through

∆εpln = ∆εpln−1 + cpl

and the equivalent stress, σ, is recalculated until cpl is within the tolerance. Note

that for this implementation, the strain rate and temperature is kept constant

during the iterations to minimize the computation. This will lead to marginal

errors, but as the time increment is very small these should be insignificant. At

the end of the iteration the strain rate and temperature are updated.

Once the final equivalent plastic strain and stress are known, the deviatoric stress

components are found using equation 4.11 rearranged as,

Sij =
2G

1 + 3G
σv

∆εpl
Êij (4.15)

17The tolerance used is discussed in section 4.2.4 on page 94.
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Figure 4.1: Predictor return algorithm used to determine the new position on the
yield surface. The step is first assumed to be elastic from which a trial stress is
found, this is then scaled using a factor λ and combined with a Taylor expansion
of the flow rule to find the final plastic strain.

Method II: Predictor Return Algorithm

The predictor return method18 was attempted due to instabilities in the implementation

of Method I. In this case the new position on the yield surface is predicted by scaling

the magnitude of the trial stress by a factor λ and by using a Taylor expansion

from the previous point on the surface [54]. This is shown graphically in figure 4.1.

The scaling factor is given by [60] as,

λ =
σnew

σtrial
= 1− 3G∆εpl

σtrial
(4.16)

The trial stress here is the same equivalent von Mises stress found in equation 4.5,

while σnew refers to the final position on the yield surface that needs to be found.

By rearranging to solve for the change in equivalent strain, ∆εpl is shown to be

directly related to the trial stress.

∆εpl = (1− λ)
σtrial

3G
(4.17)

18Derived and implemented successfully by Bonorchis [54]
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4.2. Plasticity Model Simulation Procedure

Two equations are needed for the two unknowns, εplnew and σnew, the second is

derived from the Taylor expansion of the flow rule as follows,

σnew = σold +

(
δσ

δεpl

)old
∆εpl +

(
δσ

δε̇pl

)old
∆ε̇pl + . . .

≈ σold +

(
δσ

δεpl

)old
∆εpl +

(
δσ

δε̇pl

)old(
∆εpl

∆t
− ε̇plold

)
(4.18)

where σold is the yield stress determined from the yield function, f , and is related

to the plastic strain, strain rate and temperature from the previous plastic step.

Thus from equations 4.17 and 4.18 the scale factor can be found,

λ =
σold + A−B
σtrial + A

(4.19)

where,

A =
σtrial

3G

[(
δσ

δε̄pl

)old
+

(
δσ

δε̇pl

)old
1

∆t

]
and,

B =

(
δσ

δε̇pl

)old
ε̇plold

Finally the change in plastic strain is found through equation 4.17 and the deviatoric

stress components are solved simply through,

Snewij = λStrialij (4.20)

The method is more efficient and stable computationally than using Newton’s

method as no iterations are required. The approximation of the flow rule does

introduce a degree of error, but in an explicit analysis the time step increments

are so small that this error is insignificant.
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Simulation Procedure 4.2. Plasticity Model

Stress

Once the new deviatoric stress is known the total stress can be found. Plastic

deformation is assumed by the von Mises criteria to be independent of hydrostatic

stress [58], thus the p used is that calculated from the trial pressure.

Tij = Sij − pδij (4.21)

Plastic Strain Rate

Newton’s method requires the current strain rate, this is approximated through

the deviatoric equivalent strain, before the iterations begin.

∆ED
ij = ∆Eij − 1

3
∆Ekk (4.22)

∆εD =

√
2

3
∆ED

ij∆ED
ji (4.23)

ε̇pl ≈ ∆εD

∆t
(4.24)

In contrast, the predictor return algorithm only requires the strain rate from the

previous plastic increment, this is found simply from the change in plastic strain

and stored.

ε̇pl =
∆εpl

∆t
(4.25)

Temperature

Temperature is a function of plastic strain and is thus updated after every plastic

step. Firstly, the heat flux, q, per unit volume, V , for a time step is defined in [59]

as,
q

V
= η̂Tij∆E

pl
ji (4.26)

where η̂ is the percentage of plastic work that is converted into heat 19.

19Note that this ratio is generally referred to as η (see for example [54, 59]), but is referred to
in this work as η̂ to distinguish it from triaxiality.
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4.2. Plasticity Model Simulation Procedure

Heat flux is defined as,

q = mCp∆T

= ρV Cp∆T (4.27)

where C is the specific heat. Thus from equations 4.26 and 4.27 the change in

temperature can be found.

ρCp∆T = η̂Tij∆E
pl
ji

∴ ∆T =
η̂

ρCp
Tij∆E

pl
ji (4.28)

In the solver routine, the plastic strain is found as an equivalent strain. Thus it is

convenient to transform the strain and stress terms into equivalent scalar forms,

Tij∆E
pl
ji = σNij∆ε

plNji

= σ∆εplNijNji

= σ∆εpl (4.29)

Thus the form implemented is,

∆T =
η̂σ∆εpl

ρCp
(4.30)

Internal and Dissipated Energy

The final state variables that need to be updated are the specific internal energy

and the dissipated inelastic specific energy[59].

The former is found by calculating the integral of average stress and strain during

the increment.

∆P =
1

2

(
T newij + T oldij

)
Eij (4.31)

The internal energy is then given by,

Energynewintern = Energyoldintern +
∆P

ρ
(4.32)
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While the dissipated energy is the product of the plastic strain increment and

equivalent stress, or plastic work, per unit mass.

∆W = σ ·∆εpl (4.33)

Energynewdiss = Energyolddiss +
∆W

ρ
(4.34)

4.2.3 Yield Function

Johnson-Cook

The first model considered was that by Johnson and Cook given below. Note that

in this analysis, the equivalent strain always refers to the plastic strain, εpl, thus

the superscript is dropped for convenience.

f = σ = [A+Bεn]

[
1 + C ln

(
ε̇

ε̇0

)]
[1− T ∗m] (4.35)

The first term is a affected by plastic strain and gives the function an exponential

shape defined by the constants a, B and n. The second is related to the strain

rate with the constant C and the reference strain rate ε̇0 predicting an increase in

yield with rate. Finally the last term, using the constant m, decreases yield with

an increase in temperature.

The temperature term is defined by,

T ∗ =
T − Ttrans

Tmelt − Ttrans (4.36)

This introduces two additional constants: Ttrans, which is the transition, or room,

temperature and Tmelt, the melting temperature. T ∗ is set to 0 if the temperature

is below the transition and set to 1 if the melting temperature is reached.

On a scale of the log of strain rate versus stress, Johnson-Cook predicts a linear

relationship. This has since been shown to be a fair approximation only in two

distinct regions, low strain rates of less than 1 s−1 and high rates above 100 s−1

[57]. In this thesis a single model is required to cover both regions and thus a

change is required.
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4.2. Plasticity Model Simulation Procedure

As an alternative solution, the strain rate adjustment term can be replaced by

that used by Cowper-Symonds as given in[61]. This was shown in chapter 6 to

give a closer approximation to the material properties.

σ

σ0

= 1 +

(
ε̇

ε̇0

)1/k

(4.37)

Zhao

A more refined model was developed by Zhao [57]. This is a major improvement

as it was designed to be valid across a wide race of strain rates. However, nine

constants need to be calibrated.

σ =

(
A+Bεn + [C −Dεm] log

[
ε̇

ε̇0

]
+ Eε̇k

)
f(T ) (4.38)

The advantage is that at low strains, the model is tailored by changing the

constants C, D and m which relate to the log term, while high strain rate behaviour

is influenced mainly by the exponential term constants E and k. This relation was

used to calibrate the model in chapter 6.

The temperature term was taken as that used by Johnson-Cook

4.2.4 Evaluation

To evaluate the plasticity model a series of tests were conducted, first on single

elements 5× 5× 5 mm3 subjected to tension, then on a 5× 5× 5 block of elements

under the same loading conditions and finally on a simulated experiment.

Using Newton’s Method

The first set considered the basic Johnson-Cook model using Newton’s method.

The properties were set at that for 1006 steel given by Johnson and Cook [15]

with temperature and strain rate effects included. Johnson-Cook is useful as a

convenient first attempt as there is a built-in model in Abaqus to compare it

against.
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Figure 4.2: Equivalent stress resulting from using the built-in and VUMAT
Johnson-Cook models on a 5× 5 block of elements subjected to a 10 m.s−1 tensile
boundary condition

Two sets of velocity boundary conditions were tested, the first was set at 10 m.s−1

with a strain rate expected in the region of ε̇ ≈ v
L

= 2000. The model performed

perfectly as shown in figure 4.2. For the 5 by 5 element block oscillations occurred

both in the VUMAT and built-in models, but this was easily stabilized by ramping

the velocity over 20µs. In the actual high speed experiments the velocity is ramped

during the rise time of the input pulse thus this is not a problem. Note that the

increased stress followed by a sudden drop around 70µs is due to the damage

model removing the elements.

However, at the low velocity of 0.005 m.s−1 equivalent to a strain rate ε̇ ≈ v
L

= 1

significant oscillations were evident as shown in figure 4.3.

Some understanding of the instability is gained by considering the change in plastic

strain in figure 4.4. The strain follows that of the built-in model almost exactly,

but a closer view reveals that elastic steps (indicated by the horizontal regions in

the curve) occur in between the plastic steps.

Even though the average of the sharp plastic strain increments followed by the

elastic regions results in the correct total plastic strain, the sharp increases in

strain result in significantly oscillations to the strain rate. This in turn results in

the oscillations evident in figure 4.3.

95



4.2. Plasticity Model Simulation Procedure

0 10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

Time (ms)

St
re

ss
(M

P
a)

Built-in
VUMAT

Figure 4.3: Equivalent stress resulting from using the built-in and VUMAT
Johnson-Cook models on a single element subjected to a 0.005 m.s−1 tensile
boundary condition
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Figure 4.4: Plastic strain versus time for the model at a low strain rate using
the Johnson-Cook model. Instabilities arise due to the elastic steps which follow
plastic deformation as shown in the detailed view.
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The stepped form of the plastic curve is due to errors with the Newton solver, but

decreasing the tolerance required to complete the Newton steps does not help. The

problem is that at low strain rates, the strain during a single time step is so small

that the algorithm does not predict the strain precisely. Setting the strain rate at

a constant value completely removes the instability. This is not an ideal solution,

but as the strain rate has only a minor influence at low strains it is viable.

For these simulation the Newton’s Method tolerance initially taken as |cpl| ≤
1× 10−9, which is 10 times lower than that used in developing a Newton’s method

dynamic material model by Bonorchis [62]. Decreasing the tolerance to |cpl| ≤
1 × 10−16 resulted in no improvement. In addition, changes were implemented

to update the strain rate and temperature during each iteration. This increases

the computation steps required, but should increase the accuracy of the solution.

However, this adjustment did not correct the problem.

Despite these complications, tests were run on a simulated SHB experiment. At

first these seemed to perform correctly until the strain rate itself was considered.

Increasing the strain rate term, C, from 0.022 to the high 0.085 resulted in

significant oscillations within the strain rate as shown in figure 4.5. In this case the

elements were significantly smaller than those used in the single element tests and

measured roughly 0.1× 0.1× 0.1 mm. Thus despite the high strain rate the stable

time increment was very small. In this case the same problem occurred to that of

the single element tests at slow rates, sharp plastic steps resulting in significant

strain rate oscillations followed by elastic steps to correct the overestimation.

An attempt was made to correct the oscillations by setting the strain used in the

solver to be a weighted average of the current and previous strain with the form,

ε̇avg =
ε̇+N.ε̇old
N + 1

(4.39)

where N is the weighting factor.
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Figure 4.5: Strain rate resulting from using the Newton’s Method solver to simulate
a SHB experiment. A weighted average is used to reduce oscillations.

Two weighting options are included in figure 4.5. With N = 100, the strain rate

is stable and with N = 20 the oscillations should not affect the yield surface

significantly. Yet both predictably result in a decrease in strain rate. Several

attempts were made at improving this, the most promising was to use Lagrange

extrapolation to better predict the new strain rate instead of simply the weighted

average, but no improvement resulted. Attempts were also made using the Cowper-

Symonds and Zhao models with similar negative effects.

Interestingly, Abaqus [59] reports using Newton’s Method in solving isotropic

plasticity models, which include Johnson-Cook. In the Abaqus implementation,

the solution is stable and thus improving the method to achieve stable results is

possible. However, Abaqus does not detail how a stable solution is achieved and

this may be proprietary.
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Figure 4.6: Strain rate of a single element test using a Predictor Return algorithm
for the Johnson Cook model

Using the Predictor Return Method

The predictor return algorithm was attempted as an alternative to using Newton’s

method due to the instabilities in strain rate. In this case the Johnson-Cook

model resulted in a stable strain rate result, even in the case of the low velocity

of 0.005 m.s−1 as shown in figure 4.6. The only problem was the spike at the

beginning of the pulse which occurred for both the low and high strain rate cases.

The Zhao model was then implemented due to its validity across a large range of

stain rates. When applied to the high strain rate model the results were perfect,

with no oscillations at all. However when applied to a low rate as shown in

figure 4.7 significant instability occurs until suddenly at around 90µs when it

becomes perfectly stable. This is presumably the same problem as seen using the

Newton’s Method algorithm as some elastic steps are evident, but not in the same

quantity as that using Newton’s Method. This was easily corrected by using the

average of the previous and current strain rate.

At lower strain rates a higher degree of weighted averaging was required. In this

case at a strain rate of 0.2, a averaging weight of N = 2 was required before

convergence was reached, shown in figure 4.8. This was predictable as a lower

strain rate would have more elastic steps following a plastic step.
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Figure 4.7: Strain rate of a single element test using a Predictor Return algorithm
for the Zhao model at ε̇ ≈ 1. Using an average strain rate averaged over the
previous and current step results in stability.
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Figure 4.8: Strain rate of a single element test using a Predictor Return algorithm
for the Zhao model at a slow strain rate of 0.2. In this case a weighted average of
N = 2 is required for stability
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Figure 4.9: Strain rate of a single element test using a Predictor Return algorithm
for the Zhao model at dynamic rates. The effect of using an average strain rate is
negligible.

The dynamic tests at a strain rate of between 500 and 2000 required no averaging,

but to ensure that the correct strain rate was still obtained an averaging method

of weight N = 5 was compared to that using no averaging in figure 4.9. The

difference is insignificant and thus it is acceptable to use a small degree of strain

rate averaging in the simulations across all strain rates.

Thus the Zhao locus using the Predictor Return algorithm was chosen to run all

the models. To ensure the quasistatic tests ran smoothly an average weighting of

N = 5 was used across the simulations.
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4.3 Damage Model

Of all the damage models reviewed in section 2.2, the fracture locus developed by

Bai and Wierzbicki [17] was selected. Bai and Wierzbicki argued that the model

is accurate across a wide range of loading conditions and thus is ideal for the work

conducted by BISRU. The full form is asymmetric about the normalized lode of

0, yet as all the experiments had normalized Lode angles in the range 0 ≤ θ̄ ≤ 1,

the reduced symmetric form of the model was implemented.

εf
(
η, θ̄
)

=
[
D1e

−D2η −D3e
−D4η

]
θ̄2 +D3e

−D4η (4.40)

This involves 4 constants to be calibrated, as opposed to 6 in the full model.

The terms η and θ̄ refer to the average quantities of triaxiality and normalized

Lode defined as,

ηavg =
1

εpl

∫ εpl

0

η(εpl)dεpl θ̄avg =
1

εpl

∫ εpl

0

θ̄(εpl)dεpl (4.41)

The model is calibrated using the method described in [17] and summarized here:

1. The FEA element at which failure occurs first is located, for the specimens

tested here this is in the centre of the specimen.

2. At the time of fracture, εpl, η and θ̄ are recorded for the element.

3. The result for each specimen is then included in a Matlab curve fitting

algorithm which uses a least-squares approach to find the constants that

fit the experimental data optimally.

In implementation failure occurs once the element strain is greater than the failure

strain.

εf (θ̄, η)− εpl ≤ 0 (4.42)

At this point the element is deleted from the mesh and does not function in the

stiffness matrix for the remainder of the simulation.
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4.4 SHB Simulations

A limitation to modelling Split Hopkinson Bar experiments is the length of the

two bars relative to the specimen. For example, the input bar is 3.664m long, i.e.

over 300 times the length of a 12mm specimen.

The problem is twofold, firstly the total test duration is far longer than that

required to deform the specimen as the stress wave has to travel the complete

length of the input bar and through to the output gauge. The second is that the

element count due to the bars is substantial. These elements do not need to be as

small as through the specimen, yet the stability time increment, tcrit, is determined

by the smallest element size and is constant for all elements. Thus the additional

computation is substantial.

Three techniques were attempted to reduce computation time. The first involved

replacing the 1
4

symmetry elements through the bar with beam elements. The

second removed the bars completely, placing velocity boundary conditions on either

side of the specimen based on the experimental results. Finally part of the bars

were replaced with infinite elements, which allow the stress wave to pass through

without reflecting back.

4.4.1 Beam Elements

Using beam elements does not reduce the physical time duration as the stress wave

still needs to travel the length of the bars. However, it does reduce the element

count substantially.

The model to determine the validity of the technique is shown in figure 4.10.In

the model, a tensile stress pulse is applied at the far end of the solid bar. This

stress pulse travels the length of the bar before reaching the beam elements and

travelling through these. The interaction is defined by constraining the 3D nodes

to move with the same displacement as the beam elements.

The results are compared by considering the stress at a point along the 3D bar,

close to the interface. These are shown in figure 4.11, where beam elements with

a round cross section and diameters 5, 6 and 10mm are connected to 1
4

symmetry

20mm diameter bar.
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Figure 4.10: Model used to study the effect of replacing the input bar with beam
elements. At the interaction surface, the 3D nodes are constrained to move with
the same displacement as the beam node.

The φ 10 mm beam was chosen initially as it had the same cross sectional area as

the 3D section. For this case a significant reflection of over 50 MPa is evident.

Interestingly, the reflection of the wave is also tensile, indicating that the interface

is acting in a similar manner to a fixed boundary. Thus the solution improved

when the beam diameter was decreased, yet could not be perfected as the φ 5 mm

and smaller beams did not result in improvement from the φ 6 mm. However, in

repeating the simulation using a full circular solid section with cylindrical beam

elements of the same diameter, the stress wave passed completely through the

interface with no reflection.

The failure of the beam elements implemented together with the quarter symmetry

bar may be to do with the position of the beam axis. For these tests the axis was

placed on the edge of the beam (see figure 4.10) and thus the beam cross section

is effectively offset from that of the the bar. Abaqus implements the Timoshenko

beam theory which, unlike conventional Euler-Bernoulli beam elements, allow for

transverse shear strain [59]. Thus the cross section of the beam element may rotate

away from being orthogonal to the beam axis. This appears likely to occur in this

case due to the beams cross-section being offset from the bar.

The full circular beam test proves that the beam elements could work. It is

assumed that these can also be applied successfully to a quarter symmetry bar

if the beam axis is selected such that the cross-section of the beam lines up with

that of the bar. However, the benefit is limited as the job still needs to be run

for the full duration of the Hopkinson experiment. Due to the effectiveness of the

infinite element implementation, this investigation was not pursued further.

104



Simulation Procedure 4.4. SHB Simulations

0 20 40 60 80 100 120 140 160 180 200

−150

−100

−50

0

time (µs)

M
is

es
St

re
ss

(M
P
a)

φ 10
φ 6
φ 5
No symmetry BC’s

Figure 4.11: Effect of using circular beam elements with dimensions φ 10, φ 6
and φ 5mm with a φ 20, 1

4
symmetry bar.φ 10mm corresponds to the same cross-

sectional area as the bar. Also shown is the result from using a full 3D bar,
with no symmetry boundary conditions, together with beam elements of the same
dimensions.

4.4.2 Displacement Boundary Condition

An ideal option would be to model the specimen, but remove the bars. This

technique was used by Rodŕıguez et al. [51] to analyse tensile specimens and no

errors relating to the loading conditions were reported 20. The advantage is twofold,

firstly the element count is minimized and secondly the simulation is only required

to run for the duration deformation occurs.

The aim in this case was to determine whether applying displacement boundary

conditions derived from the SHB experiments directly on either side of the specimen

would result in accurate simulations. An axisymmetric model was used to test

the option. The first simulation included both bars specimen and was used to

determine the displacements on either side of the specimen resulting from a stress

pulse being applied as in a physical test. The built-in Johnson-Cook plasticity

model was used for the specimen with properties A = 350 MPa, B=275 MPa,

C=0.022, η = 0.36, ε̇ = 1, a melting temperature of 1811K and room temperature

of 300K.

20See section 2.6.1.
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Figure 4.12: Specimen stress versus strain curves resulting from using velocity
boundary conditions. The full model is compared to that using the velocity BC’s
with the same specimen properties. The properties are then changed resulting in
poor correlation.

The first comparison, shown in figure 4.12, modelled only the specimen using

the derived displacements, but keeping all material specimen properties constant.

This gave an identical result to the complete setup. However, in finite element

simulations, the calibrated material properties are only a good approximation to

the true properties.

Furthermore, small errors may occur in measuring specimens. To determine

whether these minor errors could result in poor simulations, the specimen properties

and dimensions were altered. Thus in the second comparison, the specimen diameter

was increased from 5 to 6mm resulting in some oscillations and a slight decrease

in magnitude.

Keeping the dimensions the same as the original, but increasing the Elastic modulus

from 200 GPa to 210 GPa, and the yield constants A and B to 400 MPa and 325

MPa respectively predictably resulted in a stronger specimen. However, additional

oscillations within the signal are evident.

The situation is even worse when the reflected pulse is incorrectly offset by 20 µs.

This results in the correct magnitude, but significant oscillations.
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Simulation Procedure 4.4. SHB Simulations

The first issue of magnitude is not related to displacement conditions, but rather

to material properties. For example a higher yield leads to greater elastic strain

and thus higher stresses within the plastic regime.

The second issue of oscillations within the signal can be explained by spurious

reflections within the specimen. Using a specimen with identical properties to

the actual works correctly as the stress waves generated by the displacement

boundary conditions create displacements on the specimen-bar interface identical

to the imposed boundary. However, changing the properties creates a mismatch

between the imposed displacements and those generated from the stress waves.

For example a larger specimen diameter results in lower deformation through this

region and at the output boundary.

Thus stress wave reflections occur at the boundary creating oscillations and loading

the specimen differently to that in tests. Determining exact specimen properties

to eliminate these is unlikely. The method is workable if specimen geometries and

properties are extremely close to the actual properties, but is not ideal.

4.4.3 Infinite Elements

A more natural solution is to use infinite elements to replace the bars. In explicit

analysis, Abaqus includes an implementation of infinite elements based on that by

Lysmer and Kuhlemeyer [63]. These are designed to damp the boundary such that

no stress wave reflection is returned.

The method is simple, the infinite elements result in damping on the boundary of

the form,

T11 = −dpu̇1 T12 = −dsu̇2 T13 = −dsu̇3 (4.43)

where Tij represents the Cauchy stress components, dp and ds the damping constants

under normal stress and shear, and u̇j the velocity components.
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4.4. SHB Simulations Simulation Procedure

Figure 4.13: Model used to study the effect of placing infinite elements in place of
the input bar. The infinite elements are in the foreground.

The damping constants are calibrated to prevent stress reflections at the boundary

by setting the value to,

d = ρc (4.44)

Thus the constant is related to the density and wave speed, which itself is given

by c =
√

E
ρ

.

Using Infinite Elements as a Boundary

The configuration for testing the effectiveness of the infinite elements is shown in

figure 4.13 and consists of a quarter symmetry bar with infinite elements placed

on the one end. A stress pulse is applied to the free end and an element sampled

midway along the bar, to record spurious reflections. The properties of the bar

were modelled as aluminium with E = 70GPa and ρ = 2800m.s−1

Figure 4.14 shows the incident pulse followed by the reflection against the infinite

boundary. Interestingly a reflection of roughly 5% did occur. A small error is not

completely unexpected as the Abaqus documentation [59] describes the infinite

boundaries as “quiet” as opposed to “silent”. The reflection is of the same nature

(tensile) as the incident wave and thus the infinite elements were over-damping

the boundary.

By iteratively decreasing the elastic modulus of the infinite elements by roughly

25% to 53.5 GPa, or a decrease in damping coefficient of 12.5%, the reflection is

minimized. With reduced damping, infinite elements seem ideal to simulate the

SHB bars as the reflection is negligible.
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Figure 4.14: Incident pulse reflected against a boundary of ‘infinite elements’.

Applying the load

If infinite elements are used, a load needs to be placed in the centre of the

bar, between the infinite and continuum elements. The load can be either a

displacement or a stress and, in the case of a split Hopkinson test, it is convenient

to use a stress as this is taken directly from the strain gauge reading.

To test the system, an incident stress pulse of 70 MPa was aimed for at a point

along the bar. The load cannot be placed at the end of the infinite elements, as

these would absorb the stress pulse, and thus must be placed between the infinite

and continuum elements. In this case the load is applied to one surface (the

continuum elements), but acts on two (the infinite elements and the continuum

elements). Thus the magnitude of the applied load should be twice that required.

The results for the test are included in figure 4.15 and show that if infinite elements

with no reduced damping are used, the input stress needs to be increased from 140

to around 150 MPa. In contrast, the reduced damping infinite elements required

very little change to the input pulse magnitude. Indeed in calibrating the infinite

elements to damp the actual bars, no magnitude modification was required.

A technicality when using the Abaqus software for the FEA analysis is that the

load must be applied as part of a user defined load, or VDLOAD. If not, Abaqus

does not recognise loads applied internally in the bars.
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(b) Using infinite elements with modified properties to minimize reflections

Figure 4.15: Stress obtained in the bar by applying a pressure load at the boundary
between the infinite and regular elements.
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Figure 4.16: Final model for simulation split Hopkinson bar experiments.The
model consists of input and output bars with infinite elements and a densely
meshed specimen and bar region.

Application to TSHB Test

The final setup for the SHB simulations is shown in figure 4.16. This consists of

an input bar with infinite elements at the end where the load is applied, a densely

meshed region including the specimen and finally the output bar with infinite

elements at its far end. Note that the infinite elements are placed 200mm from

the specimen as it is recommended to position the elements away from the main

area of interest[59].

The specimen is densely meshed and thus the simplest way to connect the coarse

bars to the specimen is to set a nodal tie which constrains the displacement of the

nodes at the interface to move in the same manner. To ensure that this interface

does not have any effect on the specimen itself, a small region of bar of length

20mm is meshed on either side of the specimen and this is tied to the outer bars.

As a final validation, a series of parallel tests were run comparing the setup shown

in figure 4.16 including infinite elements to a full model with the bars. A built-in

Johnson-Cook plasticity model with both temperature and strain rate effects was

used. Both stress in the centre of the specimen as well as the bar displacements

on either side of the specimen were compared.

The first test considered using infinite elements with no reduced damping, but

with an increased input stress to compensate for the small reflection at the infinite

boundary as considered in section 4.4.3. Figure 4.17 shows that while the stress

profile is correct, the displacements on both bars is underestimated. This must be

due to the tensile reflections reducing the displacement through the bars. However,

the resulting specimen extension is correct.

111



4.4. SHB Simulations Simulation Procedure

0 100 200 300 400 500 600 700 800
0

200

400

600

Time (µs)

M
is

es
St

re
ss

(M
P

a)

Full model
Using infinite elements

(a) Equivalent stress at the specimen centre.

Extension

Output end

Input End

0 100 200 300 400 500 600 700
−5

−4

−3

−2

−1

0

Time (µs)

D
is

pl
ac

em
en

t
(m

m
)

Full model
Using infinite elements

(b) Displacement at either side of the specimen.

Figure 4.17: Specimen deformation resulting from using infinite elements with
properties identical to the bars and iteratively increasing the load magnitude until
the input stress is equal to that in the full model.
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Figure 4.18: Specimen deformation resulting from using infinite elements with
material properties optimized to prevent reflections.
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Figure 4.19: Dynamic model specimen geometry.

A better solution is obtained with reduced damping infinite elements, shown in

figure 4.18. In this case both the specimen stress profile and bar displacements

correlate almost perfectly. This method was chosen to run the simulations as the

specimen iteration is almost identical to that modelling the complete apparatus.

Although a simple addition, a benchmarking test on a coarsely meshed TSHB

setup showed that using infinite elements cut down runtime from 12.3 to 1.2 min.,

a reduction over 90%. Thus the time saved running densely meshed simulations is

significant.

4.4.4 Modelling the Specimen

Figure 4.19 shows a typical dynamic model of a specimen attached to a short

section of bar. Note that the only geometry simplification is the threaded connection,

which is this case is modelled simply as a solid part with section cut out of it

representing the threaded bar.

Plasticity is expected to occur within the gauge section and thus the damage

VUMAT is applied. The specimen grip section is glued onto the threaded bar. It

is assumed that the deformation through the region is very low and limited to the

elastic region and thus the material was modelled as elastic.

Fixing the specimen to the threaded bar is a 0.5mm thick layer simulating the

epoxy. This was approximated as elastic with a density of 1200 kg.m−3, Poisson’s

ratio of 0.4 and elastic modulus of 1.8 GPa. The stiffness was taken as that used

by Djilal [64] with the same epoxy as used here.
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The threaded bar was given generic properties for mild steel of E = 20 GPa,

ν = 0.3 and ρ = 7800 kg.m−3. At the end of the thread a small gap was set as the

threaded bar is only fixed at its surface. Finally the bar sections were given the

same properties as the input or output bar depending upon which each was tied

to.

4.5 Quasistatic Tests

4.5.1 Mass Scaling

Normally when modelling a quasistatic tensile test an implicit finite element scheme

is used as these are not constrained by the critical time constant, tcrit, that is

required for stability in explicit analyses. However, writing an equivalent user

model for an implicit analysis (UMAT ) is beyond the scope of this thesis and thus

an explicit finite element method was used for both the quasistatic and dynamic

simulations.

The critical time constant poses a major problem for an explicit analysis that is

required to run over several seconds as it is so small relative to the total duration.

In a typical case tcrit ≈ 5× 10−9 s or lower with a total test time of 3s resulting in

600 million time steps. This is unrealistic even with extensive computing power.

An option is to introduce mass scaling. This technique artificially increases the

density of critical elements. Thus the wave speed, c =
√

E
ρ

, decreases leading to

an increase in the critical time constant, approximated by

tcrit ≈ Lmin
c

(4.45)

where Lmin is the smallest critical dimension of an element.

Thus increasing ρ by f 2 reduces the number of increments, n, to n
f
[59]. However, if

the density is increased too much, the inertia of these elements becomes significant,

degrading the accuracy of the solution.
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4.5. Quasistatic Tests Simulation Procedure

Figure 4.20: Quasistatic model specimen geometry.

In characterising steel for blast simulations, Bonorchis [54], successfully used mass

scaling to simulate quasistatic tensile tests. Mass scaling between between 5 and

625 times was implemented with little ill effects. Thus in this analysis the mass

scaling was kept within this range. The negative effect of the technique used in

these limits seems negligible as mass scaling of 350 resulted in identical readings

to that using only 8.

In implementation, a minimum stable time step, typically 3× 10−7 s, was set and

the mass of elements resulting in lower critical times increased to meet this limit.

Thus a significant number of time steps were still required, but most jobs were

able to run in under 20 hours using 6 processors.

4.5.2 Specimen

The model for the quasistatic specimen is simple and consists of a gauge region

with the same properties as the VUMAT and a small grip section with only

the elastic properties. 1
8

symmetry was used to minimize the element count,

while a set velocity boundary condition was applied to the grip section, shown

in figure 4.20. It was found that simplifying the model further and applying the

boundary condition directly onto the end of the gauge region resulted in marginally

different deformation. The change is presumably due to the transition from the

grip to the gauge zone influencing the loading distribution, yet only a small grip

section was required to correct this.

The results for all the final simulations, which model the specimens, are covered

in chapter 6.
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Chapter 5

Experimental Tests

5.1 Introduction

This chapter presents the experimental results of deforming tensile specimens at

dynamic and quasistatic strain rates. The specimens, designed together with

the apparatus in chapter 3, have differing geometry to create a range of loading

conditions characterized by triaxiality and Lode angle. These results are used

in the simulations of chapter 6 to study rate effects and the effectiveness of the

Bai-Wierzbicki damage locus, covered in section 2.2.

The first two sections cover the the techniques used to analyse the readings. For

the dynamic experiments this includes calibration techniques as well as a brief

study on the influence of threaded connections used to secure the specimens. The

quasistatic section deals with removing machine compliance and specimen slip

effects.

The final three sections contain both the quasistatic and dynamic results for the

straight specimens followed by the notched and finally the grooved specimens.
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Due to the complicated geometry it is not trivial to determine the true stress

throughout the specimen. For this reason an engineering stress is used to express

the results. This is defined as,

σ =
F

A0

(5.1)

where F is the force through the specimen and A0 the initial area through the

notch cross-section. In certain cases the data collection failed and these have been

excluded. Note that where strain gauge stress readings are shown, tensile stress is

taken as negative.

5.2 Dynamic Test Procedures

5.2.1 Calibration

To analyse the split Hopkinson bar results, the bar material properties of elastic

modulus E, density ρ and wavespeed c are required. Secondly the calibration

factor, K, which is the ratio between the measured strain gauge reading and stress

in the bar must be determined.

Bar Properties

Wavespeed can be determined by timing the movement of a stress pulse through the

bar and comparing it to the distance travelled. In implementation, a short striker

with excess putty is used to create an approximately sinusoidal pulse with almost

no dispersion. The sinusoidal pulse is formed as the excess putty dampens the

impact, removing high frequency wave components and thus minimizing dispersion21.

The stress wave is recorded as it passes the strain gauge and again after it reflects

against the end of the bar and returns. The reflected wave is processed by shifting

it in time until it is aligned with the original signal and this offset is taken as the

delay, ∆t. The distance is twice that from the gauge to the end of the bar.

c =
d

∆t
(5.2)

21Dispersion is covered in section 2.3.3 on page 44.
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A degree of error exists as the reflected signal is offset manually. However, the

bars are long and thus the magnitude of the offset is large compared to possible

error.

The density is determined from the volume and mass and thus finally, knowing

the wavespeed, the elastic modulus is determined simply by [5],

E = c2ρ (5.3)

Gauge Factor

The gauge factor is used to convert the strain gauge output, in volts, to axial stress

that can be used to analyse specimen deformation. This factor is estimated using

strain gauge theory (theoretical calibration factor), but human error dictates that

the strain gauges are not perfectly aligned and thus a degree of error exists. Thus

a more accurate measure is experimental testing. In this work two methods are

considered, the first determines the change in momentum of the striker (momentum

balance calibration factor) when it hits the bar as this is equal to the momentum

transferred as the incident pulse. The second method uses the impact of uniform

bars theory to relate the maximum stress in the bar to the striker velocity (maximum

stress calibration factor).

Theoretical Calibration Factor

The gauge output signal based on strain gauge theory is given by [65],

Vout =
1

4
KgfNεVin

where Kgf is the strain gauge factor, N is the number of arms in the Wheatstone

bridge and Vin the bridge voltage. Noting that,

ε =
σ

E
and Vout =

Vread
Gamp

with Vread the amplified output and Gamp the gain, and that the calibration factor

is defined by,

K =
σ

Vread
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The factor can be written as,

Ktheory =
4E

GampKgfNVin
(5.4)

For TSHB setup at BISRU Kgf = 2.16, N = 4 and a gain of 1000 is used resulting

in,

Ktheory =
E

2160Vin
(5.5)

Momentum Balance Calibration Factor

The momentum calibration is given by [54],

Kmom =
I

Ab
∫ T

0
Vreaddt

(5.6)

where the impulse can be determined from the striker velocity,

I = ms∆v

The initial velocity is measured using a light sensor on the barrel, while the final

velocity can be obtained using equation A.20, which is based on the elastic impact

of bars with uniform material properties.

vf =
vi

(
As

Ab
− 1
)

(
1 + As

Ab

)
Using this calibration factor, pulse smoothing should not be used as the putty

absorbs part of the energy due to the striker impact and thus the momentum

transferred to the bar is reduced.
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Table 5.1: TSHB properties.

E ρ c Ktheory Kmom Kstress

(GPa) (kg.m−3) (m.s−1) (MPa/V) (MPa/V) (MPa/V)
Input bar 73.7 2762 5165 13.767 12.40 13.17
Output bar 73.5 2769 5150 13.63 12.75 12.98

Maximum Stress Calibration Factor

A second method is simply to determine the maximum stress in the bar and

compare that to the readings.

Kstress =
σmax

V max
(5.7)

with the maximum stress estimated from equation A.18,

σmax =
As

As + Ab
cρvi

For this technique pulse smoothing should be used to minimize the oscillations due

to dispersion throughout the region of maximum stress.

Implementation

For accurate calibration, the impact area should be the same as that through the

remainder of the bar. However, the TSHB provided complications as the output

bar could not be directly calibrated due to the thread hole drilled into the specimen

end. Thus the calibration factor for the input bar was determined first. The output

bar could then be calibrated by securing it with a threaded bar to the input bar

and comparing the signals in each.

The properties for both bars are given in table 5.1. Three tests were run for each

calibration and the average taken. Ultimately the stress calibration factor was used

as this has been found to give the most accurate results22. A typical calibration

curve using the maximum stress calibration technique is included in figure 5.1.

22Private conversation with R. Govender
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Figure 5.1: Maximum stress calibration factor curve. The peak stress is taken as
the mean in the centre of the pulse, between the rise and fall.

5.2.2 Thread effect

The two major uncertainties with the specimen attachment technique are the

thread connection together with the effectiveness and stiffness of the glue. The

former was investigated by connecting the input and output bars directly together

with a length of threaded bar. By using the striker to create a tensile pulse in the

input bar, the change in pulse through the thread interface can be found.

The result, shown in figure 5.2, indicates that the thread interaction has only a

minor effect. Some discrepancies are evident at the start of the pulse, but nothing

significant later on. Note that for this comparison the output pulse needs to be

scaled by a factor

(
do
di

)2

, with do and di the output and input bar diameters

respectively, due to the different areas of each bar.
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Figure 5.2: Effect of the threaded connection on the stress pulse. Measurements
were taken at the input gauge before the thread interaction and at the output
gauge after. Note that tensile stress is taken as negative.

For certain SHB experiments, the thread interaction may have had a greater effect,

one example is the 1.25mm radius grooved specimen 4. This did not fracture,

instead figure 5.3 indicates that a large velocity occurs in a region of zero stress.

On analysing high speed camera footage of the experiment (recorded at 5 × 104

frames per second), the thread can be seen to shift slightly back and forwards as

the stress wave passed through. This is shown in figure 5.4.

Although the specimen is an extreme case, analysis of the other tests shows that

minor displacements within the threads does occur, with the severity possibly

depending on how tightly the specimens are screwed into the bars. This would

result in the initial specimen velocity result being too high and thus an overestimation

of displacement, being the integral of velocity.

A second case was specimen 2 shown in figure 5.5 with a large displacement of

0.2mm before the peak was reached. This case may be due to shifting in the

thread as the stress remains low before peaking sharply. However, the effect on

the majority of specimens is noticeably lower. Furthermore, the relative influence is

much smaller for the notched and straight specimens due to the greater displacement

at failure.
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Figure 5.3: TSHB results for the 1.25mm radius grooved specimen 4. This
specimen did not fracture during testing.

Figure 5.4: High speed camera images showing the threaded bar move within the
output bar. The displacement can be seen by considering the tip of a thread as
highlighted.
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Figure 5.5: TSHB results for the 2mm radius grooved specimen 2.

5.3 Quasistatic Test Procedures

The quasistatic tests are conducted on a Zwick 1484 testing machine with the

specimens held on either side with self locking wedge grips. These provide a

gripping force proportional to the tensile axial force through the machine. A

typical result is shown in figure 5.6, note that significant slip occurs initially before

the tensile force is great enough to grip the specimen correctly. This is not a major

obstacle as no visible slip occurred at greater stresses.

There is inherent machine compliance due mainly to the wedge grips, the apparatus

needed to secure these to the Zwick and the crosshead beam deflection. As the

specimens are small, the compliance has a major influence over the results and if

not removed the specimen deformation is significantly overestimated.
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Figure 5.6: Original quasistatic reading and that with machine compliance and
slip removed.

For these experiments the compliance effect is accounted for by determining the

ratio of engineering stress σ, proportional to the reaction force through the load

cell, and displacement, u.

m =
δσ

δu
(5.8)

The reading was taken through the region with the highest gradient as shown in

figure 5.6.

The displacement due to the compliance, uc is taken as proportional to the magnitude

of the engineering stress,

uc =
σ

m
(5.9)
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Once the gradient is known, the initial slip can be determined by considering

intercept displacement of a line with this gradient passing through the point of

maximum gradient, (u∗, σ∗) and the zero stress axis.

σ = mu+ c

∴ c = σ∗ −mu∗
and u0 = −c/m

The correct displacement, uf can now be determined by removing that due to

compliance and slip,

uf = u− uc −∆u0 (5.10)

A measure of accuracy is given by table 5.2. This compares the measured displacement

at failure for the 5mm radius notched specimens to that calculated using the

force displacement history, taking into account compliance and slip. The results

compare very closely and are generally within the tolerance of the vernier calliper

(0.02mm) used to measure the specimens. Thus the technique is a valid method

for determining specimen deformation.

Table 5.2: Final calculated and measured specimen displacement for the 5mm
radius notch specimens.

No. Calculated (mm) Measured (mm) Difference (%)
1 1.83 1.8 1.64
2 1.83 1.82 0.55
3 1.71 1.7 0.58
4 1.74 1.76 1.09
5 1.73 1.7 1.73
6 1.83 1.82 0.55
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Table 5.3: Measured dimensions of the straight specimens.

T

W

L

No. L (mm) W (mm) T (mm)

SHB specimens
1 11.9 4.15 1.31
2 11.9 4.11 1.34
3 11.9 4.11 1.38
4 11.98 4.03 1.39
5 11.98 4.025 1.41
6 11.98 4.00 1.37

Zwick specimens
1 12 4.05 1.44
2 11.98 4 1.23
3 11.98 4.02 1.39
4 12.14 4.015 1.385
5 12.1 4.03 1.34
6 11.98 3.98 1.26

5.4 Straight Specimens

The measured dimensions for the straight specimens are included in table 5.3, with

an example of specimen deformation in figure 5.7. For this design the length and

width are consistent to within 4.5%. However, as the thickness varied between

1.23 and 1.44mm, a discrepancy of roughly 15%, direct comparisons between the

specimen results can be misleading.

The quasistatic results with compliance and slip removed are shown in figure 5.8.

Two displacement rates were used, the first 0.6mm/min or 0.01mm/s corresponds

to a low initial strain rate of ≈ 1× 10−3s−1. The second was 100 times faster with

a strain rate of roughly 0.1s−1. These are referred as the slow and fast quasistatic

rates.

To compare the strain rate effect on final displacement, it is convenient to group the

specimens with those of similar thickness. These are 1 & 4; 2 & 6; 3,4 & 5. In each

case the specimens broken at the fast rate fail at a slightly greater displacement

than those at the slow rate.
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(a) Quasistatic 4

(b) Dynamic 6

Figure 5.7: Straight specimen photographs showing a quasistatic and dynamic
example taken before and after deformation.

Having to group the specimens raises the question of repeatability. The specimen

geometry inconsistencies indicate that either machining accuracy needs to be

improved, or more specimens should be tested at each strain rate to ensure that

several have almost identical dimensions. However, due to the manufacturing time

required this was not possible. Positively, the results for the notched and grooved

specimens are more consistent.

In contrast to the trend at low strain rates, the dynamic specimens fail at noticeably

lower displacements than the quasistatic specimens. These results are shown in

figure 5.9 and show the specimens failing at displacements between 2.3mm and

2.8mm in comparison to the quasistatic results between 3.2mm and 3.8mm. This

is clear from analysing the specimens post failure with the two specimens shown in

figure 5.7 having similar widths, but the quasistatic deforming significantly more.

All the dynamic specimens failed away from the gauge centre, while the quasistatic

specimens failed both in the centre and to the side.

The considerable difference in final displacement is at least partly due to the

relative strain hardening gradient through the specimen. In calibrating plasticity

models Zhao [57] among others found that specimens deformed at quasistatic

rates yield far earlier, but undergo greater hardening with strain than those tested

dynamically.
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Figure 5.8: Quasistatic results for the straight specimens.

In addition, the Considère criterion [43] states that necking occurs when the true

hardening rate equals the true stress,23

dσ

dε
= σ (5.11)

Thus a material with a higher hardening gradient should neck later than one

with a lower gradient. This is evident for the straight specimens considered here

as the dynamic specimens neck at a considerably lower displacement than the

quasistatic equivalents. Necking is an unstable deformation resulting in localized

strain and ultimately ductile failure and hence specimens that neck early can be

expected to fail at a lower displacement. Note however, the effect of strain rate on

ductile fracture itself cannot be separated from this phenomenon without parallel

simulations to determine the strain in the neck centre.

23Detailed in section 2.4 on page 45.

131



5.4. Straight Specimens Experimental Tests

0 0.5 1 1.5 2 2.5 3 3.5

0

200

400

600

800
En

gi
ne

er
in

g
St

re
ss

[M
Pa

]

1 Stress
4 Velocity
6

0 0.5 1 1.5 2 2.5 3 3.5

0

2

4

6

8

Displacement [mm]

Ve
lo

ci
ty

[m
.s−

1 ]

Figure 5.9: The deformation velocity is measured as the difference between the
bar velocities on either side of the specimen.

The deformed specimen photograph (figure 5.7) highlights the main problem with

testing these straight specimens. Failure is expected to occur in the specimen

centre as the influence of the transition zone on either side of the gauge section

is lowest 24. However, generally failure does not occur in the centre of the gauge

section. For example, the specimens shown in the figure failed very close to the

transition zone, presumably due to a small notch (imperfection) at the location

that resulted in the neck being formed away from the centre.

The failure location poses a complication for the simulations as a rough analysis

showed that these predict failure in the specimen centre. As the specimens fail

close to the transition zone, it is unlikely that the non-axial stress distribution,

which affects triaxiality, is the same as in the centre. Thus for an accurate analysis

imperfections would need to be placed in the model to initiate necking in the correct

location.

24Covered in the literature review section 2.5.5 on page 53.
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Experimental Tests 5.4. Straight Specimens

The dynamic results show the success of this version of the tensile split hopkinson

bar method. Apart from a stress spike at low displacements, the resulting engineering

stress is relatively free of oscillations. The stress spike is not evident in the incident

pulse, shown in figure 5.10, and may be due to the interaction of the glue and

thread securing the specimen to the bars. Similarly, the velocity profile is relatively

constant up until fracture at which point it increases as the load is removed.

The success of the tubular striker method is seen in figure 5.10 by the form of

the incident wave which has a constant magnitude with low oscillations. Further

the change between the transmitted stress wave and the difference between the

incident and reflected is small indicating that the specimen is in quasi-equilibrium

for a significant duration of the test.

Note that as the output bar (φ20.05 mm) has a larger area than the input (φ19.1 mm),

the transmitted stress is expected to be lower than that measured from the input

bar. A clearer comparison is shown in figure 5.11 in which the transmitted pulse

is scaled by the the bar area ratio of

(
di
do

)
where di and do refer to the input

and output bar diameters respectively. The scaled stress is still lower than the

difference between the incident and reflected waves, indicating that the specimens

are not in perfect equilibrium. This may be explained by the additional inertia

of the threaded bars securing the specimen, but needs further investigation to

confirm. However, the two differ by only 1 MPa and thus a state of quasi-

equilibrium occurs.
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Figure 5.10: Strain gauge readings for specimen ‘Straight 1’. The incident,
transmitted and reflected waves are shown, together with the difference between
the incident and reflected wave.
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Figure 5.11: Transmitted gauge reading for specimen ‘Straight 1’.
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Experimental Tests 5.5. Notched Specimens

5.5 Notched Specimens

The notch results fail in the centre of the gauge section due to the low cross

sectional area in the region. Generally the fast quasistatic specimens fail at higher

displacements to the slow, while the dynamic specimens fail before either. This

result is consistent with that found for the straight specimens.

5.5.1 1.25mm Radius Notch

The 1.25mm radius notch specimen geometry is included in table 5.4 with photographs

of example specimens in figure 5.12. There are similar geometric inconsistencies

to the straight specimens, most notably the size of the gap between the notches.

The quasistatic results, included in figure 5.5.1, show a similar strain rate displacement

to failure trend to the straight specimens. Those deformed at 0.2mm/min break at

about 1.3mm, while those at 20mm/min fracture at just below 1.5mm. Specimen

2 is the only anomaly, breaking later than 1 and 3, but this had a significantly

greater initial gap thickness of G = 2.14mm compared to 1.8mm for the other two.

A second quasistatic specimen trend that was not noticeable for the straight

specimens is the stress magnitude. For an equivalent displacement, the stress

is higher for the specimens strained at the faster rate. However, as mild steel has

rate dependent plasticity behaviour, with strength increasing with strain rate, this

observation is not unexpected. Interestingly, the different material properties at

the two rates does not appear to have a significant influence over the initiation of

necking as specimens at both rates neck after a displacement of roughly 0.35mm.

The dynamic results in figure 5.15 are relatively consistent, generally failing around

1.2mm, noticeably below the range of 1.3 to 1.8mm for the quasistatic specimens.

Specimens 5 and 6 fail early, but then these specimens have a gap width 15% lower

than the remainder.
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5.5. Notched Specimens Experimental Tests

Table 5.4: Measured dimensions of the 1.25mm radius notch specimens.

T

W

L

G

No. L (mm) W (mm) T (mm) G (mm)

SHB specimens
1 11.98 3.89 2.275 2.19
2 11.98 3.98 2.24 2.19
3 12 3.88 2.29 2.18
4 11.98 3.87 2.21 2.19
5 11.98 3.8 2.29 1.89
6 12 3.76 2.29 1.85
7 11.96 4.02 2.38 2.11

Zwick specimens
1 12 3.75 2.24 1.81
2 12 4.02 2.23 2.14
3 11.98 3.72 2.27 1.82
4 11.98 3.74 2.5 1.79
5 11.98 3.77 2.49 1.91
6 11.98 3.75 2.255 1.83
7 12.05 3.99 2.4 2.1

(a) Quasistatic 4

(b) Dynamic 6

Figure 5.12: Photographs of the 1mm radius notched specimens.
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Figure 5.13: Quasistatic results for the 1.25mm radius notched specimens.
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Figure 5.14: Strain gauge readings for 1.25mm radius notched specimen 4.
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Figure 5.15: TSHB results for the 1.25mm radius notched specimens.
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Experimental Tests 5.5. Notched Specimens

As the specimens fail at significantly lower displacements than the straight specimens,

the initial load peak dominates the first half of the stress-displacement curve. This

spike is larger than expected and may be due to the combination of thread and

glue interactions. A similar spike is evident in the literature for tensile bars which

use threaded specimens (see for example [50], [29]). However, the magnitude of

the spike for these specimens is larger. This may be due to the small specimen

size resulting in the peak being large relative to the load required for deformation

and or the glue influence. A thorough investigation is required to confirm this

hypothesis and ideally reduce the peak. Positively, for this analysis the oscillations

are minimal at the point of fracture. A 1.25mm notch gauge reading set is included

in figure 5.14.

5.5.2 2mm Radius Notch

The 2mm radius notch specimens result in very consistent results. The quasistatic

tests, shown in figure 5.17, show two distinct failure regions of 1.45mm for the slow

rate and 1.65mm for the faster rate. However, this difference may be exaggerated

due to the gap width of the slower specimens being roughly 10% lower than the

remainder (table 5.5). The change in gap width may also account for the fast rate

specimens necking at a larger displacement than the slow rate specimens, which is

not as evident for the 1.25mm and 5mm radius notched specimens.

The dynamic results in figures 5.18 and 5.19 all fail around 1.3mm, again significantly

lower than the quasistatic specimens. This is clearly evident in considering the

deformed specimens of figure 5.16, chosen as examples as both had a similar gap

width. Clearly the final notch of the quasistatic is significantly wider than the

dynamic.

The trend in dynamic specimens failing before the quasistatic is in contrast to that

found by Johnson and Cook [14] who used the final cross-sectional area at failure

to determine the fracture strain. A similar comparison given in figure 5.20, which

shows a scaled cross-section of grooved specimens at failure for both a quasistatic

and dynamic specimen. In this case the final cross-section of the quasistatic

specimen is smaller, indicating a greater failure strain.
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5.5. Notched Specimens Experimental Tests

Table 5.5: Measured dimensions of the 2mm radius notch specimens.

T

W

L

G

No. L (mm) W (mm) T (mm) G (mm)

SHB specimens
1 12 4.07 2.275 2.09
2 12 4.07 2.27 2.12
3 12 3.78 2.265 1.75

Zwick specimens
1 12 3.81 2.27 1.9
2 11.98 3.84 2.27 1.91
3 11.98 3.83 2.28 1.92
4 11.98 4.06 2.24 2.07
5 12 4.04 2.27 2.07
6 12 4.06 2.31 2.09

(a) Quasistatic 5

(b) Dynamic 1

Figure 5.16: Photographs of the 2mm radius notched specimens.
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Figure 5.17: Quasistatic results for the 2mm radius notched specimens.
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Figure 5.18: TSHB results for the 2mm radius notched specimens.
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Figure 5.19: Strain gauge readings for 2mm radius notched specimen 1.

(a) Quasistatic specimen 5

(b) Dynamic specimen 1

Figure 5.20: Fracture surface of the 2mm radius notched specimens. The cross
sectional area of the quasistatic specimen is visually smaller than that of the
dynamic.
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Experimental Tests 5.5. Notched Specimens

Figure 5.21: Profile of the 2mm radius notched specimens at failure. The dynamic
specimen 1 is shaded while the quasistatic specimen 5 is shown as an outline.

The difference between the quasistatic and dynamic specimen deformation is also

evident in figure 5.21, which compares the profile of the dynamic and quasistatic

specimens at failure. At the point of fracture, the quasistatic specimen has a

grooved region which is both longer and thinner in the centre than the dynamic

equivalent.

5.5.3 5mm Radius Notch

Finally, the 5mm notch specimen results are included in figures 5.23 to 5.25.

The quasistatic results seem to go against the trend of the faster rate specimens

breaking at greater displacements. However, as before this again can be explained

by inconsistencies in the geometry, shown in table 5.6. Specimens 1 and 2 both

have noticeably thick notch gaps and predictably fail at high displacements. In

comparing specimens 3 at a slow rate and 4 to 6 at the faster rate, the latter all

fail later, even though all the specimens yield at a displacement of around 0.5mm.

Note that even specimen 5 with a very low gap size and thickness failed after

specimen 3.

The dynamic results are excellent both in terms of consistency and the shape of

the stress displacement curve. For these, the initial stress peak plays only a minor

role in the initial 25% of the stress-displacement result. Past this point the result

is very smooth. Failure occurs after 1.5mm of travel compared to 1.8mm for the

quasistatic tests.
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5.5. Notched Specimens Experimental Tests

Table 5.6: Measured dimensions of the 5mm radius notch specimens.

T

W

L

G

No. L (mm) W (mm) T (mm) G (mm)

SHB specimens
1 12 4.08 2.27 2.13
2 11.98 4.08 2.285 2.16
3 12 4.08 2.22 2.11

Zwick specimens
1 12 4.06 2.3 2.13
2 11.98 4.075 2.305 2.14
3 12 3.8 2.25 1.83
4 12 3.69 2.26 1.78
5 12 3.65 2.205 1.66
6 11.98 3.85 2.3 1.96

(a) Quasistatic 4

(b) Dynamic 2

Figure 5.22: Photographs of the 5mm radius notched specimens.
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Figure 5.23: Quasistatic results for the 5mm radius notched specimens.
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Figure 5.24: TSHB results for the 5mm radius notched specimens.
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Figure 5.25: Strain gauge readings for 5mm radius notched specimen 1.

5.6 Grooved Specimens

The grooved specimens fail at significantly lower displacements than the notched

and straight tests with final displacements generally less than 0.5mm. Due to the

early fracture, analysing strain rate trends is more problematic as the differences

in fracture displacement are small.

5.6.1 1.25mm Radius Groove

The 1.25mm radius results show the problem clearly as very little distinction can be

made between the failure displacements of the fast and slow quasistatic specimens,

despite each set showing good consistency.

The groove specimens are heavily affected by the problems inherent in manufacturing

small specimens. The groove gap for example was specified as 0.6mm, but the

manufactured (table 5.7) varied between 0.73 and 1.06. This is a difference of 45%

and the latter is over 75% above that selected.
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Table 5.7: Measured dimensions of the 1.25mm radius groove specimens.

T

W

L

G

No. L (mm) W (mm) T (mm) G (mm)

SHB specimens
1 11.9 9.97 2.44 0.78
2 11.9 10.08 2.5 0.73
3 11.9 10.05 2.52 0.78
4 11.98 9.875 2.45 1.06
5 11.98 9.8 2.455 0.915
6 11.98 9.81 2.45 0.91

Zwick specimens
1 12 9.77 2.37 0.9
2 11.98 9.75 2.44 0.89
3 12 9.75 2.46 0.9
4 11.98 9.73 2.475 0.905
5 11.98 9.77 2.5 0.95
6 12 9.68 2.45 0.89

(a) Quasistatic 6

(b) Dynamic 5

Figure 5.26: Photographs of the 1mm radius grooved specimens.
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Figure 5.27: Quasistatic results for the 1.25mm radius grooved specimens.

The difference between the dynamic (figure 5.28) and quasistatic (figure 5.27)

results is less distinct than the notch specimens, but the latter again fracture

marginally after the dynamic with a displacement of 0.6mm compared to less than

0.5mm.

It is difficult to obtain the optimal striker velocity for the groove specimens. Too

low a velocity and the specimen fails to break, while higher magnitudes result

in a short deformation recording time as shown in the strain gauge reading of

figure 5.29. A further difficulty is the relatively large stress spike at the start

pulse, which for these small specimens is noticeable. For example in figure 5.28

the stress peak ends after 0.22mm, affecting the load over almost 45% of the

total displacement. Interestingly, specimen 5, which has the lowest velocity and

specimen 1, with the highest, have almost no stress peaks. The reason for this is

unclear, but may indicate that, if optimized, using glue and threaded bar to secure

the specimens should not affect the loading significantly.

The specimens shown in figure 5.26 include a case where the gauge section was

affected by the sanding process on the grip section, but care was taken to ensure

that the grooved section itself had no visible imperfections. The remaining groove

specimens were protected with tape to prevent this occurring.
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Figure 5.28: TSHB results for the 1.25mm radius grooved specimens.
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Figure 5.29: Strain gauge readings for 1.25mm radius grooved specimen 3.
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Table 5.8: Measured dimensions of the 2mm radius groove specimens.

T

W

L

G

No. L (mm) W (mm) T (mm) G (mm)

SHB specimens
1 12 10.14 2.47 0.57
2 11.98 10.15 2.38 0.58
3 12 10.16 2.48 0.54

Zwick specimens
1 12 10.15 2.46 0.575
2 12 10.2 2.47 0.565
3 11.98 10.26 2.5 0.59
4 12 10.17 2.49 0.58
5 11.98 10.12 2.48 0.555
6 11.98 10.225 2.47 0.56

5.6.2 2mm Radius Groove

The 2mm radius specimens produced similar results with the quasistatic specimens

all failing at approximately 0.45mm and the dynamic at the marginally lower 0.36

and 0.4mm. Good consistency is evident in the quasistatic results (figure 5.31).

However, the dynamic again showed the difficulty in testing this type of specimen.

In the two dynamic tests considered, specimen 1 took longer to peak than 3 and

resulted in a larger displacement prior to fracture. This may be due to specimen

3 being glued poorly. Although specimen 3, with strain gauge reading shown in

figure 5.33 is an acceptable result, the poor consistency indicates that the derived

properties should be used with caution.
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(a) Quasistatic 3

(b) Dynamic 3

Figure 5.30: Photographs of the 2mm radius grooved specimens.
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Figure 5.31: Quasistatic results for the 2mm radius grooved specimens.
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Figure 5.32: TSHB results for the 2mm radius grooved specimens.

0 100 200 300 400 500 600 700

−20

−10

0

10

20

Time [µs]

A
xi

al
St

re
ss

[M
P

a]

Incident
Transmitted
Reflected
Difference

Figure 5.33: Strain gauge readings for 2mm radius grooved specimen 3.
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5.6.3 5mm Radius Groove

Better results are obtained from the 5mm radius groove experiments. In this case,

the quasistatic results shown in figure 5.36 show a similar trend to the straight

and notch specimens with those deformed at the slow strain rate fracturing after

0.55mm and those at the higher rate at roughly 0.6mm. However, whether a

difference of 0.05mm is significant is debatable. Specimen 3 is an anomaly as it

has the lowest groove gap, but a significantly higher strength.

The dynamic results are encouraging, with all three specimens failing. Interestingly

fracture in this case occurs between 0.5mm and 0.57mm, which is only marginally

lower than the range for the quasistatic tests. This is evident both in figure 5.34,

which compares the deformation of a quasistatic and dynamic specimen and in

analysing the damage cross-section in figure 5.35. The only difference is that the

fracture surface of the dynamic specimen is rough compared to the quasistatic,

possibly due to slight misalignment while gluing .However, it may simply be due to

the material properties at the two strain rates affecting neck formation differently.

Figure 5.38, shows that for the 5mm groove specimens a lower incident pulse than

the smaller radius groove tests was produced. A lower input pulse decreases the

strain rate and thus increases the duration through which deformation is recorded.

This improves the quality of the result as the stress peak has a much smaller

influence. Thus minimizing the input pulse magnitude may improve the reading

for the smaller groove specimens. The procedure needs careful refinement as the

difference in striker velocity resulting in no fracture compared to that which creates

a large stress peak is small.
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5.6. Grooved Specimens Experimental Tests

Table 5.9: Measured dimensions of the 5mm radius groove specimens.

T

W

L

G

No. L (mm) W (mm) T (mm) G (mm)

SHB specimens
1 12 10.16 2.38 0.66
2 11.98 10.08 2.35 0.66
3 11.98 10.16 2.315 0.62

Zwick specimens
1 11.98 10.2 2.95 0.61
2 11.98 10.14 2.335 0.65
3 12 10.19 2.33 0.57
4 12 10.155 2.36 0.65
5 11.98 10.145 2.51 0.64
6 11.98 10.16 2.32 0.62

(a) Quasistatic 6

(b) Dynamic 3

Figure 5.34: Photographs of the 5mm radius grooved specimens.
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(a) Quasistatic specimen 6

(b) Dynamic specimen 3

Figure 5.35: Fracture surface of the 5mm radius grooved specimens. Unlike the
notched specimens a trend in cross-sectional area is not obvious. The only visible
difference is the rough break on the dynamic specimen relative to the quasistatic.

0 5 · 10−2 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.60

100

200

300

400

500

Displacement [mm]

En
gi

ne
er

in
g

St
re

ss
[M

Pa
]

1 - 0.36mm/min
2 "
3 "
4 - 36mm/min
5 "
6 "

Figure 5.36: Quasistatic results for the 5mm radius grooved specimens.
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Figure 5.37: TSHB results for the 5mm radius grooved specimens.
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Chapter 6

Numerical Simulation

6.1 Introduction

This chapter considers the finite element simulations used to analyse the damage

properties of the mild steel specimens damaged experimentally in chapter 5.

The first section details the meshing techniques as well as the methods to determine

the reaction force, velocity and parameters required for the damage analysis.

The next contains the calibration of the plasticity model, this was achieved by

iteratively changing the Zhao [57] model constants until the numerical work corresponded

closely to the experimental.

The latter sections relate to fracture analysis. The third section uses the calibrated

models to determine the relationships between triaxiality, Lode angle, strain rate

and failure strain. The final section implements a simplified version of the Bai-

Wierzbicki failure locus[17] to a specimen test.
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Numerical Simulation 6.2. Mesh and Readings

(a) Wide view

(b) Close view

Figure 6.1: Dynamic 2mm radius notched specimen mesh.

6.2 Mesh and Readings

In simulating damage, Bai and Wierzbicki [17], found that a mesh density of

element size 0.2mm was sufficient for a converged solution. The study used similar

specimens to those used here, although the straight and notched specimens were

round, not sheet specimens as used in this thesis. The specimens were also

larger with a minimum radius through the round notched specimens 8mm and

the minimum thickness through the grooved specimen 1.6mm.

As the specimens tested in this thesis are smaller, the specimen length in the

axial direction was limited to a maximum of 0.05mm at the specimen centre. The

density through the notch or groove was also kept high with the element length

increasing to 0.2mm at the notch edge.

Outside of the notch, no plastic deformation occurs and thus the density can be

increased significantly to limit the total number of elements. This is especially

important for the dynamic model in which the thread, glue and part of the bars

are modelled as the same part as the specimen25. An example of the mesh used

for a dynamic simulation is shown in figure 6.1.

25See chapter 4.
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6.2. Mesh and Readings Numerical Simulation

Figure 6.2: Quasistatic 5mm radius grooved specimen mesh.

The quasistatic model is smaller and kept to a minimum size as these take considerable

time to run. In this case only a small grip section was included with the displacement

boundary conditions applied to it. Figure 6.2 shows a grooved quasistatic specimen.

For the dynamic tests three sets of readings were taken, the first used an element

on the output bar 120mm from the edge to output the axial stress as a strain

gauge would do in an experiment. Generally, the output strain gauge is placed

at approximately 10 bar diameters (200mm for the built TSHB apparatus) from

the specimen interface as at this distance 1D wave propagation can be applied [5].

However, simulation showed that the signal at a distance of 120mm was the same

as that at 200mm and thus this length was selected. From the output bar element,

the reaction force at the specimen-bar interface can be determined.

The second reading measured the bar interface velocity on either side of the

specimen to infer the specimen velocity, in this case several nodes were selected

on each bar and the average taken. In future testing this is not necessary as

each reading is so similar that one node at any point on the interface is sufficient.

Finally for the damage analysis, an element was selected in the centre of the gauge

section to record the Lode angle, triaxiality and equivalent strain.

Note that as the stress wave takes a finite amount of time to reach the output

‘gauge’, the resulting stress pulse needed to be shifted in time to the specimen

interface, as in a SHB experiment.

In the case of the quasistatic specimens the 1
8

symmetry was taken advantage of to

record the reaction force at each node along the symmetry boundary in the centre

of the groove or notch. These were then summed to determine the total reaction

force as recorded by the Zwick tensile testing machine. The damage analysis was

accomplished in a similar manner by selecting the central element.
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Figure 6.3: Comparison of the final calibrated Zhao flow stress model to those in
the literature at a strain of 0.1. Also shown is experimental data conducted by
Cloete [66] on specimens manufactured from same sheet as used in this work.

6.3 Calibrating the Plasticity Model

6.3.1 Model Comparison

Thorough quasistatic tensile and dynamic compressive tests were conducted by

Cloete [66] on the same mild steel sheet as tested in this work. Several standard

material models applied to the data result in close correlation. These are shown

together with the experimental data and final model in figure 6.3.

The most basic model is that by Johnson-Cook model, calibrated by Tanimura

et al. [67]. The locus is reasonably accurate at strain rates of between 10 and

1000 s−1, but due to its simplistic linear form on a log scale the approximation

is poor elsewhere [61]. An improved solution uses the Johnson-Cook strain and

temperature terms, but replaces the strain rate dependence with that proposed by

Cowper-Symonds[61]. In this example, the constants are taken from [66].
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6.3. Calibrating the Plasticity Model Numerical Simulation

The standard Zhoa[57] mild steel model also shows good correlation as does that

by Bonorchis [54], which uses a simplified form of the Zhao strain rate dependence,

but with more detailed strain dependence.

The challenge was to calibrate a plasticity model with approximately the same

strain rate dependence as the models outlined above, but that also simulated the

experimental results closely. This work used an iterative process to calibrate the

constants from the Zhao model26 by simulating the experiments from chapter 5

until the simulated results corresponded well to the experimental. The Zhao

damage locus is described by,

σ =

(
A+Bεn + [C −Dεm] log

[
ε̇

ε̇0

]
+ Eε̇k

)
f(T ) (6.1)

with the temperature term taken as that used by Johnson-Cook,

f(T ) = 1− T ∗m T ∗ =
T − Ttrans

Tmelt − Ttrans (6.2)

The optimal solution is shown compared to the other models and the experimental

data by Cloete [66] in figure 6.3. The greatest discrepancy to the standard Zhao

[57] mild steel model is at low strain rates where the model underestimates the

material strength. This change was implemented by increasing the constants A

to D by 4%. Finally, to prevent this increase on influencing the high strain rate

values, the exponent k, which has a large influence on high strain rate strength, was

reduced from 0.3 to 0.28. The chosen material properties are included in table 6.1.

The temperature dependent data was taken directly from Bonorchis [54], with

only the transition temperature being changed marginally from 300 to 293K.

Although this data is also from testing mild steel, the temperature term does have

a significant influence and may need further calibration. This data is detailed in

table 6.2.

26The Zhao model is dealt with in detail in section 4.2.3 on page 93.
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Numerical Simulation 6.3. Calibrating the Plasticity Model

Table 6.1: Constants used for the standard Zhao [57] and the final chosen plasticity
models.

A B C D E k n m
(MPa) (MPa) (MPa) (MPa) (MPa)

Standard 145 550 35 47 18.5 0.3 0.42 0.3
Final 150.8 572 36.4 48.88 18.5 0.28 0.42 0.3

Table 6.2: Temperature constants used in the final model. η̂ is the proportion of
plastic work that is dissipated as heat.

m Ttrans Tmelt Cp η̂
(K) (K) (J/kgK)

0.669 293 1811 452 1

6.3.2 Specimen Calibration Tests

Ideally, a general model for each design using the specified geometries should be

modelled and compared to all the experimental data for that design. However, due

to the inconsistencies in the specimen dimensions, this method was not feasible.

Instead, a representative example of each was selected and modelled. These chosen

specimens are labelled in table 6.3.

Note that the straight specimens were not considered here as these generally failed

away from the centre due to imperfections27. Failure in these locations complicates

the simulation process as the stress distribution at the failure location is different to

that in the centre, where the numerical simulations predict failure. Not simulating

the straight specimens is ultimately a limiting factor to the applicable range of the

damage model as the triaxiality of these is lower than both the notch and groove

examples.

A further limitation is the explicit finite element scheme used. As detailed briefly

is section 4.5.1, an explicit analysis is limited by the critical time step. Using mass

scaling allows the fast quasistatic tests to be run. However, the slow tests have

durations often exceeding 500s compared to roughly 5s for the faster rate.

27See section 5.4 on page 129.
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6.3. Calibrating the Plasticity Model Numerical Simulation

Table 6.3: Specimens analysed in the simulations.

Quasistatic: Dynamic:
R1.25mm notched specimen 4 3
R2mm notched specimen 5 1
R5mm notched specimen 4 2

R1.25mm grooved specimen 6 2
R2mm grooved specimen 3 3
R5mm grooved specimen 6 3

To simulate the slow tests in under 24 hours using the computing power available

would require excessive mass scaling rates that would be detrimental to the results.

A solution would be to write a material model for an implicit analysis in Abaqus

(UMAT), but this is beyond the scope of this thesis. Thus only the fast quasistatic

specimens are simulated and the effect of strain rate in the low regime must be

inferred from the experimental results.

The accuracy of the plasticity simulation can be seen in figures 6.4 to 6.10. These

compare the simulations to the experimental results by considering the ‘engineering

stress’ defined previously as σ = F
A0

, where F is the reaction force and A0 the

minimum original cross sectional area. In the dynamic results the change in

velocity between the two bar ends can also be compared, whereas in the quasistatic

tests this value is nominally constant.

Figure 6.4 considers the 1.25mm radius notch specimen. For this model, and the

notched models in general, the simulation closely predicts the experiment. The

major discrepancy in this and indeed all the SHB simulations is the stress peak

evident at the start of the dynamic experiment deformation, but absent from the

numerical. When compared to the numerical simulation, the experimental result

appears similar to a mass-spring-damper system (figure 6.5) with the response

lagging behind the expected load followed by an overshoot and subsequent damping.

The lag may be due to the glue straining elastically, while the glue may also damp

the signal by decreasing the magnitude of the oscillations. However, although the

epoxy was simulated in the model, this response is not captured and thus the

simulation procedure clearly needs further analysis.
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Figure 6.4: Simulation of the 1.25mm radius notched specimen compared to the
experimental result. Both the quasistatic and dynamic tests are shown with
the latter comparing both engineering stress and velocity. Also shown is the
displacement where fracture was taken to occur.
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Figure 6.5: Mass-spring-damper system load response.
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Figure 6.6: Simulation of the 2mm radius notched specimen compared to the
experimental result.

Positively, the time period through which the peak occurs is far from the point

of damage and the effect on the average triaxiality and Lode angle at failure

should be minimal. Further, the velocity from the simulations closely tracks the

experimental. This is especially pleasing as the Bai-Wierzbicki model is primarily

related to deformation, not stress magnitude.

Figure 6.4 also shows is the position at which fracture is taken to occur. This

failure displacement is found from the experimental result and used to determine

the simulation state for the same travel. The position is evident as a distinct

gradient change, both in the stress and velocity plot.

Figures 6.6 and 6.7 show the 2mm and 5mm radius notched specimens with

similarly good correlation.
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Figure 6.7: Simulation of the 5mm radius notched specimen compared to the
experimental result.
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Figure 6.8: Simulation of the 1.25mm radius grooved specimen compared to the
experimental result.
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6.3. Calibrating the Plasticity Model Numerical Simulation

The grooved specimens in figures 6.8 to 6.10 are more difficult to analyse, but

the simulations proved to be reasonably accurate. In the dynamic results the

stress peak has a more pronounced effect, but this is due to fracture occurring

much earlier than in the notched specimens. Of interest is the velocity plot, as the

experimental result shows the velocity increasing rapidly before dropping suddenly

at the time the stress peaks. The simulation follows a similar pattern, but on a

much smaller scale. For the 1.25mm radius specimens, the experimental velocity

drops after a displacement of 0.18mm, while the numerical after only 0.07mm.

It seems likely that this trend is related to the glue. When the glue stiffness is

reduced, the magnitude of the first velocity peak increases.

The influence of the peak is small over the notch specimens, but in the case of

the grooved specimens the displacement to fracture is so small that the effect may

be negatively influencing the results. In this case, if the epoxy has a lower elastic

modulus than considered here, the dynamic strain would be overestimated.

After the peak, the 1.25mm grooved specimen shows good correlation. The simulation

of the 2mm specimen overestimates the stress magnitude slightly, but follows the

velocity profile closely. Finally, the 5mm specimen simulation overestimates the

stress, while underestimating the velocity. This discrepancy may be explained

by the findings of Bai and Wierzbicki [17] who found that simulations of similar

grooved specimens correlated far better the the experimental results if the Lode

angle was accounted for in the plasticity model. This reduced the error between

experimental and the simulations from 19% to less than 2%. This approach is

beyond the scope of this thesis and requires further study.
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Figure 6.9: Simulation of the 2mm radius grooved specimen compared to the
experimental result.
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Figure 6.10: Simulation of the 5mm radius grooved specimen compared to the
experimental result.
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6.4. Damage Analysis Numerical Simulation

6.4 Damage Analysis

6.4.1 Applicable Loading Range

The Bai-Wierzbicki damage model is a locus generated in average triaxiality, ηavg,

and average normalized Lode angle, θ̄avg, space. Thus ideally tests should result in

a wide range of these invariants at failure. As covered in section 3.3.1, the scope

for this analysis is limited to η, θ̄ ≥ 0. However, figure 6.11 shows that the final

coordinates in this space are in a relatively narrow range.

The Lode angle, as expected, is close to 0 for the grooved specimens, while the

notched specimens are generally around 0.7. As round specimens in tension have

θ̄ ≈ 1, this value of 0.7 seems reasonable. For these specimens the notch is only

cut into one plane. Thus the specimen thickness retards strain in that direction

and hence decreases the Lode angle.

The range in triaxiality is lower than expected for the notched specimens. In the

design phase the specimens were estimated to have an initial triaxiality varying

between 0.45 and 0.8, whereas the simulation range at failure is a much smaller

0.67 to 0.8 for the quasistatic and 0.73 to 0.88 for the dynamic. The triaxiality

underestimation is probably also due to the square cross section used in the

experiments versus the round used to approximate the initial values. Triaxiality

increases with non-axial stress and thus a small notch with a narrow notch gap

has a high value. In the case of round specimens, this notch acts all around the

axis. However, the notched specimens used in this work had a section cut out of

only one plane, with the thickness through the plane kept constant. Thus prior to

necking, the non-axial stresses normal to the plane are minimal, moderating the

influence of the neck.

The initial and final strain rates for the element in the centre of each specimen

are shown in figure 6.12. Plastic deformation strain rate dependence is generally

compared on a log scale (see for example [57]) and thus the strain rates are plotted

in this format. Encouragingly, the final set of strain rates for all the quasistatic

specimens lie within in a narrow range and the final dynamic specimen strain rates

are close. Thus it is valid to compare all the specimens in each set together.
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Figure 6.11: Final average normalized Lode angle, θ̄avg, and triaxiality, ηavg.
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Figure 6.12: Initial and final strain rate of the element in the centre of the
specimen. The final strain rate is similar across all the different specimens for
both those deformed dynamically and at quasistatic rates.
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6.4.2 Triaxiality Evolution

Figure 6.13 shows the evolution of triaxiality with equivalent strain. In the first

plot the change in instantaneous triaxiality is shown. Predictably the triaxiality

is greatest for the specimens with smaller notches and increases with strain as

necking further deepens the notches. Interestingly, the triaxiality for the dynamic

results start similarly to the quasistatic, but then become noticeably higher than

the quasistatic equivalents. This is due to the greater hardening gradient at low

strain rates retarding localization within the neck. The phenomenon ties into the

experimental finding that quasistatic specimens fail significantly later, partly due

to delayed localization.

Figure 6.13a reveals a mesh density issue that arises at high strains. As detailed in

section 6.2, the element length is kept at under 0.05mm in the centre of the notched

region. However, at high strains even these small elements become significantly

distorted. This results in irregularities in the triaxiality, especially evident for the

1.25mm radius notch specimen.

Figures 6.14 and 6.15, respectively, consider a 1mm radius groove specimen under

dynamic loading conditions and a 2mm radius grooved specimen deformed quasistatically.

In both cases the central elements are distorted, especially the groove example

in which only 7 elements are included through the minimum thickness. If more

elements are included in this direction the density needs to be increased considerably

else each element would have an even larger length to thickness ratio. This issue

has not been pursued further due to constraints on time and server space, but

possible inaccuracies due to distorted elements need to be kept in mind during the

failure analysis.

For the damage model itself, Wierzbicki et al [7, 3, 68, 17] used the average

triaxiality and Lode angle, arguing that damage is history dependent and thus

some measure of the previous values are required. It could be argued that the

stress state when voids begin to form just prior to fracture is far more important

than that just after yield, but this has not been investigated here. Using an average

measure of triaxiality does remove the irregularities as evident in figure 6.13b.
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Figure 6.13: Change in triaxiality with equivalent strain for the notched specimens.
Both the instantaneous and the average triaxiality, which is used in the Bai-
Wierzbicki damage model, are considered. The symbols indicate the strain at
which fracture occurs.

173



6.4. Damage Analysis Numerical Simulation

(a) No deformation

(b) At point of fracture

Figure 6.14: Dynamic model of the 1.25mm notched specimen shown before
deformation and at the point of fracture. The relative magnitude of von Mises
stress is included.

Despite these complications, the expected trend of failure stain decreasing with

an increase in triaxiality is evident28. Furthermore, the strain rate does appear to

have an influence over the failure strain for a given triaxiality.

In contrast, it is difficult to decipher a failure pattern for the grooved specimen

triaxiality evolution, shown in figure 6.16. This may indicate that strain rate and

triaxiality has only a minor influence for specimens with a low Lode angle around

zero. However, the grooved specimens should be considered with caution as mesh

density may play a greater role than for the notched specimens as fewer elements

are placed across the thickness.

Note that a discrepancy appears with the 1.25mm radius grooved specimen having

a greater triaxiality in the quasistatic case, in contrast to the remaining two

grooved specimens and all the notch specimens. However, this is due to the

variation in the machined dimensions. The groove gap for the quasistatic specimen

is over 20% larger than that of the dynamic resulting in an inflated initial triaxiality.

At higher strains the dynamic specimen increases in triaxiality at a greater rate

than the quasistatic, in line with the other results.

28Found in several fracture models reviewed in chapter 2.

174



Numerical Simulation 6.4. Damage Analysis

(a) No deformation (b) At point of fracture

(c) Close view at fracture

Figure 6.15: Quasistatic model of the 2mm grooved specimen shown before
deformation and at the point of fracture.
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Figure 6.16: Change in average triaxiality with equivalent strain for the grooved
specimens.
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Figure 6.17: Fracture strain for all types of specimen. In general the dynamic
specimens fail at a lower strain than the quasistatic.

6.4.3 Effect of Strain Rate and the Invariants

The final fracture strain is plotted against average triaxiality for all the specimen

geometries in figure 6.17. The most simple observation is that the grooved specimens,

with a low Lode angle of 0, generally fail at lower strains than the notched

specimens, with a much higher Lode. This ties in with the findings of Wierzbicki

et al. [68, 55] that a measure of the third deviatoric stress invariant is required to

correctly predict fracture.

A second trend is the slight, but distinct effect of strain rate on fracture. In general,

the quasistatic specimens fail at a higher strain than the dynamic equivalents.

This is especially evident among the notch results, which appear to be the most

consistent. The trend is less clear for the grooved specimens and thus strain rate

may play less of a role for these specimens.
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Figure 6.18: Failure strain versus average triaxiality for the notched specimens.
Exponential curve-fits indicate the dynamic specimens failing before the
quasistatic.

A closer view of the notch results is given in figure 6.18, which again compares

average triaxiality to failure strain. In addition an exponential curve fit of the

form,

εf = AηKavg

was applied to both sets of data with interesting results. This type of curve fit was

used by Bao and Wierzbicki [3] in the high triaxiality region. The fitted curve for

the quasistatic specimens is clearly above that for the dynamic, especially at low

triaxialities. There is a danger in implying too much from trend-lines made up of

only three data points each. However, the strain rate appears to have a distinct

effect.
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6.5. Implementation Numerical Simulation

Figure 6.19: Fracture locus generated using the dynamic results.

6.5 Implementation

The experimental results reported here are located within a narrow band of triaxiality

and thus the derived Wierzbicki damage surface is not assumed to be applicable

for a wider range of geometries. However, to determine the success of the damage

model implemented in the VUMAT, a symmetric damage curve similar to that

used by Xue and Wierzbicki [68] was developed.

To derive the constants a Matlab script was written that uses the least squares

method to determine which constants result in the closest correlation. The final

solution, shown in figure 6.19, is different to that expected as the minimum is set

at θ̄, η = 0, whereas an increase in triaxiality should result in a lower failure strain.

The discrepancy is due to the influence of the grooved specimens, which predict a

slight increase in failure strain with triaxiality. This result is in contrast to that in

the literature (see for example [17]) and indicates that more tests in this loading

region are required. This complication shows clearly the importance of conducting

shear and compression tests to cover a larger region of the locus.
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Figure 6.20: 5mm notched specimen damage simulation compared to the
experiment. A sudden stress peak occurs at the point of fracture due to the
elements being removed instantly from the mesh with no prior softening.

Figure 6.21: Simulated 5mm radius notched specimen during fracture. At this
stage the central elements have failed and been removed, while the outer elements
remain in the mesh.
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6.5. Implementation Numerical Simulation

Nevertheless the average error between the calibration strains and fracture surface

is only 4.4% and thus a dynamic model of the 5mm radius notched specimen was

tested. The result is included in figure 6.20 with fracture occurring at the correct

central location, shown in figure 6.21. Interestingly, a stress spike occurs at the

point of failure. In the current implementation an element is immediately removed

from the stiffness matrix once the failure criterion is reached. This action could

result in an instability within the solver as the remaining elements are subjected to

a velocity determined during the previous step, before damage occurs. A possible

solution would be to introduce progressive element weakening as the fracture locus

approached, decreasing the element stiffness such that when the element is finally

removed the change to the total stiffness matrix is minimal.
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Chapter 7

Discussion

7.1 Introduction

In this chapter an analysis is conducted of both the apparatus and techniques

developed and the central experimental results. The first section considers the

design of the tensile split Hopkinson pressure bar and specimens developed in

chapter 3. The TSHB design is a significant success and is clearly an excellent

method in conducting tensile dynamic experiments. The simulation procedures of

chapter 4 are assessed in the next section, which primarily considers the infinite

element technique and the implementation of the user model.

The final sections are related to the experimental and numerical results. Section 7.4

considers the specimen deformation and the influence of the small specimen geometry.

This is followed by an analysis of the influence strain rate has over damage by

reviewing the results from chapters 5 and 6. Significantly, the results indicate that

at quasistatic to intermediate strain rates, an increase in rate increases strain to

failure, while at higher dynamic rates, failure strain decreases with strain rate.

Finally the damage model itself is reviewed.
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Discussion 7.2. TSHB Effectiveness

7.2 TSHB Effectiveness

One of the major successes of this project is the development of the tensile SHB.

Central to the design is the tubular striker that, although simple compared to other

options in the literature, produces a clear square pulse with minimal oscillations.

The striker was significantly improved from the previous iteration by Downey [50]

by replacing the steel transfer cap and flange with titanium pieces and the pressure

cap material with HDPE. This drastically decreases the inertia of the attachments

and hence reduces the stress spikes and oscillations seen in some of Downey’s

results. Clearly minimizing the mass of the end pieces is essential to producing a

clear incident pulse.

A further improvement was to use aluminium as the output bar to increase the

magnitude of the transmitted signal. Small specimens are deformed with a relatively

low reaction force and thus the stress signal through the output bar can be minimal.

However, aluminium has an elastic modulus of around 70 GPa compared to 200

GPa for steel and thus the equivalent stress results in a much larger strain being

read by the strain gauge. The success of the aluminium bars indicates that more

materials are worth investigating to increase the strain gauge reading even further.

Magnesium may be a good option as the elastic modulus is only 45 GPa, while

it has a very similar impedance to both aluminium and steel with a wavespeed of

c ≈ 5000 ms−1.

Finally the large scale of the bar allows for testing flexibility. The striker length

was carefully calibrated to generate a long pulse with an adequate delay between

pulses to ensure that each is read independently. If softening putty is used, the

1.3m striker is ideal as it produces an incident pulse of 590µs. Significantly, the

peak stress is maintained for 470µs . The pulse length can be extended even further

if the 1.45m striker is used without putty. However, softening is not possible with

this striker as the additional rise time results in inadequate separation between the

incident and reflected waves. The advantage of such a long signal is that specimens

can be deformed at a lower strain rate and still reach the point of fracture in the

initial loading.
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The novel specimen attachment technique succeeds in allowing the specimens to

fracture without permanent deformation within the glue or thread zones. Furthermore,

by securing the specimens firstly to lengths of threaded bar, the same split Hopkinson

bars can be used for characterizing both round and sheet metal specimens. However,

clearly some elastic deformation will occur within the glue zone. This strain has

a greater relative effect over the grooved specimens as these fail after a very

small displacement. If simulations are to be conducted on every specimen this

is not a major issue if the epoxy material properties can be accurately determined.

However, in practice many tests will be run without parallel simulations. In these

cases a possible solution may be to use a compliance factor, similar to that used

in the quasistatic experiments, to isolate and remove the displacement due to

deformation within the glue zone.

The gluing jig is a useful tool to glue the specimens and keep these correctly

aligned within the threaded bar slots. However, the gluing process itself is time

consuming as the 3M Scotchweld cure time to handling strength is 6 hours. In

practical terms this results in only two specimens being glued every six hours, one

in each of the two jigs. Thus, although this glueing technique is effective, further

attachment methods should be investigated.

7.3 Modelling

Using infinite elements to model the TSHB is an elegant solution. This technique

cuts down simulation time significantly as the stress pulse need not travel the

complete length of both bars. Implementing these elements is the optimal method

for this experimental setup.

It seems odd that the scheme has not been more generally applied in the literature.

Only an oblique reference was found by Kammerer and Neme [53] who used infinite

elements to model the split Hopkinson bars in the study of composites. However,

little mention was given to the details of the implementation, or success.

This work found that using the Abaqus implementation of infinite elements with

the same properties as the bars results in spurious reflections. It appears that the

unmodified elements over-damp the boundary. However, by simply reducing the

elastic modulus of the infinite elements iteratively this reflection is made negligible.
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Discussion 7.4. Specimen Deformation

An important success is the development and implementation of the user material

model, or VUMAT. This is presented in sections 4.2 to 4.3, while the complete

code is included in appendix B. In its final form the solver uses a predictor return

algorithm to determine plastic strain as this is stable for both quasistatic and

dynamic strain rates.

Using the iterative Newton’s method resulted in instabilities when applied at

quasistatic rates to a single element and to the full model in the dynamic case.

This is due to small errors in approximating the plastic strain as the increment

is overestimated resulting in a strain rate spike and followed by elastic steps to

to correct the initial mistake. The Abaqus implementation uses the iterative

Newton’s method [59] with stable results and thus, although not successful here,

optimising the Newton’s method implementation of the VUMAT must be possible.

The final, implemented model is stable through the entire range of strain rates

tested here. Furthermore, as it is designed to be easily adaptable to different

plasticity and damage functions, the model is a useful tool for the BISRU researchers

to use.

7.4 Specimen Deformation

The specimens were kept small firstly to ensure that fracture occurred before the

glue failed. In addition the grip width had to fit into the groove cut out of the M14

threaded bar. The major limiting factor was the glue and specimens were kept to

a maximum cross-sectional area of 8 mm2 in the centre of the gauge length.

The small geometry proved to be a problem as several specimens were machined

with dimensions quite different to that specified. The dimensions resulted in minor

machining error having a significant influence as, for example, a groove gap of

0.8mm when 0.6mm was specified.

Imperfections result from the machining process, especially the removal of burrs.

These may have a greater influence on damage initiation than similar sized defects

on larger specimens. With this in mind the specimens were prepared post manufacture

and generally fail in the centre of the gauge section as required.
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7.5. Strain Rate Effect on Ductile Fracture Discussion

The specimens that were deformed at similar strain rates fall within the same

band, indicating that the defects did not have a major influence. However, ideally,

the specimens should be polished to completely remove this risk.

The success of the glue indicates that the cross-sectional area can be increased.

The glue tests in section 3.3.3, showed that if the material had a yield strength

of 800 MPa and a glue length of 20mm, the glue would be between 15 and 30%

stronger than required by a specimen with a cross-sectional area of 8 mm2. Thus

conservatively, the area can be increased by a factor of 1.15. Furthermore, the

final glue length was 30mm. Assuming the glue strength is directly related to the

glue length, this results in a potential area increase of

1.15× 30

20
= 1.725 times

Finally, as the mild steel yielded at around 600 MPa, which increases the maximum

area by a combined

1.725× 800

600
= 2.3 times

Thus an acceptable cross-sectional area of 18.4 mm2 can be approximated. This

is a significant increase and specimens with this geometry could still have a grip

that fits into the threaded bar slot.

A separate, but interesting observation is that the specimens deformed at around

the fast quasistatic rate were noticeably stronger than those at the low rate, which

were deformed approximately 100 times slower. Thus rate dependency for plastic

deformation is clearly evident even at quasistatic rates. Predictably, the material

is far stronger in the case of the dynamic specimens.

7.5 Strain Rate Effect on Ductile Fracture

The experimental results in chapter 5 show that at quasistatic strain rates, the

specimens deformed at the faster rate fracture consistently at a greater displacement.

The higher rate specimens had a nominal strain rate in the centre of roughly 0.5 s−1

at yield and 2 s−1 at fracture. While the slow rate specimens were deformed at a

velocity nominally 100 times less and thus the strain rate should be approximately

0.02 s−1 at fracture.
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Discussion 7.5. Strain Rate Effect on Ductile Fracture

The lower rate specimens could not be modelled using an explicit analysis due

to the impractical computation time required29. Thus a conclusive indication

of the strain rate influence at these low rates cannot be taken directly from the

simulations. Instead, trends must be inferred from the experimental results. These

show that the specimens at both rates neck at roughly the same displacement, but

the fast specimens fracture at noticeably larger displacements. Thus it appears

likely that at quasistatic strain rates, fracture strain increases with strain rate.

In contrast, the specimens deformed dynamically at strain rates in excess of

1000 s−1 fail significantly earlier than those at the quasistatic rates. This trend

is partly due to the material plasticity behaviour at different strain rates. The

quasistatic specimens yield early, but have a high hardening gradient subsequently

and this delays the onset of necking. However, dynamic specimens, although

having a greater yield stress, have a low hardening gradient post yield and thus

neck before the quasistatic specimens. This is confirmed by the experimental

result, which clearly show the dynamic specimens necking consistently before the

quasistatic equivalents. The early onset of necking results in stress localizing in

the dynamic before the quasistatic specimens and this reduces the displacement

to failure.

However, by simulating the experiments a deeper understanding can be gained.

The simulation results in chapter 6 show that the notch specimens deformed at

the dynamic rate fail at a lower strain than the quasistatic. The trend is not as

clear for the grooved specimens, which fail at far lower displacements and thus are

difficult to assess. The lack of trend may be due to mesh density problems as the

specimens were very thin at the groove. However, the difference may be explained

by the Lode angle parameter. The notched specimens have a high normalized Lode

angle of approximately 0.7, while the grooved specimens have a low Lode angle of

zero. Thus it is speculated that strain rate has a greater influence at high Lode

angles.

29Covered in section 6.3.2 on page 163
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7.5. Strain Rate Effect on Ductile Fracture Discussion

The major difference between the quasistatic tests and the dynamic is temperature,

with the latter being approximated as adiabatic due to the experiment time scale

being so short. In contrast, specimens deformed at slow rates dissipate heat while

plastic deformation occurs and thus undergo an isothermal process. However,

without completing tests at different initial temperatures it is difficult to isolate

the influence of strain rate and that of temperature.

Johnson and Cook [14] tested notched, round specimens quasistatically and dynamically

to study damage. To determine the temperature effect, dynamic specimens were

heated to differing degrees prior to testing. The authors concluded that both strain

rate and temperature result in increased strain before failure, in contrast to the

results found in this thesis.

Johnson and Cook used the cross-sectional area through the neck at failure to

approximate the final strain. It was found that the dynamic specimens and those

at higher temperatures had a smaller final area than the quasistatic and inferred

that the failure strain was greater. However, the opposite is found here. Instead,

the lower cross-sectional area for the quasistatic specimens in this thesis30 supports

the finite element analysis, which shows a slight trend for the slow rate specimens

to fail at a greater strain for equivalent triaxialities. In the Johnson and Cook

analysis, round specimens were tested in comparison to the square cross-sections

considered in this work, but this should not have a significant influence over the

strain rate effect.

Little work has been published on strain rate or temperature effect since that by

Johnson and Cook. Indeed when Teng and Wierzbicki [13] used the Wierzbicki-

Xue model to simulate high velocity perforation, material data was obtained from

quasistatic tests and used directly with no strain rate or temperature modification.

This study has shown that the combination of strain rate and temperature does

have an effect on the failure strain. The following trends appear likely for this

material:

1. In the quasistatic range, fracture strain increases slightly with strain rate.

2. From high quasistatic to dynamic rates, fracture strain decreases with strain

rate.

30See for example figure 5.20 on page 142.
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For mild steel the strain variation is small and thus if only an approximate damage

analysis is required, using quasistatic data to generate a damage model implemented

in the dynamic regime should be acceptable. However, these must be used with

caution as the quasistatic specimens fail at a greater strain and thus using the

data would lead to an overestimation of fracture strain.

7.6 Damage Model

The Bai-Wierzbicki model [55] appears promising as it takes into account decreased

fracture strain at low Lode angles. The grooved specimens with a low Lode angle

of zero fail earlier than the notched examples with higher Lode parameters, thus

clearly some measure of the deviatoric stress invariant is required.

The model comes at the cost of extensive calibration as at least six tests are

required across the range of Lode angle and triaxiality. In this analysis the Bai-

Wierzbicki locus was simplified into a symmetric form about a Lode of 0 as

all the experiments have positive Lode angles. This version requires only four

experiments, but tests should include as wide a range of triaxialities as possible,

else the form of the locus may be incorrect. This occurred here as despite attempts

to create specimens with a wide range of triaxialities, the final band was narrow.

Implementing the damage model in the method used by Teng and Wierzbicki

[4] requires further analysis. The method involved removing elements from the

stiffness matrix when the failure criteria were met. However, a dynamic simulation

showed that this immediate change creates an instability which results in a reaction

force spike. Increasing the mesh density may improve this, but a more promising

solution would be to progressively weaken the elements when the failure is approached

such that when the element is finally removed, the change to the stiffness matrix

is minor.
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7.6. Damage Model Discussion

Figure 7.1: Predicted strain rate effect to the Bai-Wierzbicki damage mode.
A decrease in fracture strain is predicted at high Lode angles for dynamic
experiments.

The strain rate analysis indicated that strain rate does have an effect on fracture

strain. It is speculated that the effect is greatest at high Lode angles and minimal

at a Lode angle of zero. A possible form is shown in figure 7.1. This uses the data

from the simulations in chapter 6, but adds a data point at the location θ̄, η = 0

to prevent this location from becoming a local minimum. Thus to confirm the

locus, shear experiments need to be conducted as these have low Lode angles and

triaxiality.
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Chapter 8

Conclusions

8.1 Introduction

The main goals of this thesis were to develop a testing procedure aimed at determining

the influence of strain rate to ductile failure and to make an initial attempt at

establishing these properties. Although further research is needed, the first goal

was met. Of the latter, strain rate does have an influence over ductile failure and

further testing is required to quantify the effect.

8.2 Testing Procedure

The design of the tensile split Hopkinson bar rig is a significant success. Using a

tubular striker is an uncomplicated method of producing a tensile pulse, but when

optimized results in little noise. Furthermore, the scale of the rig allows a large

degree of flexibility for future testing as significant specimen deformation can be

achieved using a wide range of strain rates.

A further success is the adaptation using the combined system of threaded bar

and glue to secure the sheet specimens to the bars, as for every test the specimen

failed before the epoxy. However, some elastic deformation will occur within the

glue zone and thus this effect must be quantified.
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An advantage of the specimens configured here is that identical designs can be

used for both dynamic and quasistatic testing. This aids the manufacturing as it

reduces the number of jig changes required and hence decreases machining time.

The only disadvantage is that some slip occurs during quasistatic tests, but this

is limited to the elastic range and can easily be accounted for.

In modelling two methods were implemented for the different strain rate regimes.

The most significant is the use and refinement of infinite elements to replace the

split Hopkinson bars, which significantly reduce the dynamic experiment computation

time. Secondly, using mass scaling of up to 600 times reduces the computation

time for the quasistatic specimens, with no ill effects. Regrettably the duration

of the slow rate quasistatic tests at 0.001 s−1 was too long to simulate using an

explicit algorithm, even with mass scaling, and thus this will be the subject of

future work.

The damage and plasticity model was programmed as a user defined VUMAT

in Fortran. This implementation is stable for both low and high strain rates and

takes into account temperature, strain rate as well as the damage parameters Lode

angle and triaxiality. A further advantage is that it is easily adaptable to different

types of plasticity and damage loci.

The testing procedure to determine damage properties can be summarised as

follows:

1. Conduct quasistatic and dynamic tests for each specimen. Record the reaction

force, displacement and velocity.

2. Perform parallel numerical simulations, calibrating the plasticity constants

to allow good correspondence to the experimental data.

3. Determine the point of failure in the experimental results using point at

which the force gradient reduces significantly.

4. Use the position with equivalent displacement on the numerical result to

determine Lode angle, triaxiality and fracture strain.

5. Apply the surface fitting technique in Matlab to determine the Bai-Wierzbicki

damage model constants.
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8.3 Strain Rate Effect to Ductile Damage

At quasistatic strain rates, the specimens strained at the slow rate (≈ 0.02 s−1

at fracture) fail at a lower displacement than those at the fast rate (≈ 2 s−1 at

fracture). This trend is not due to neck initiation as both appear to neck after

similar displacements and thus strain rate is predicted to increase failure strain in

this regime.

In contrast, the dynamic specimens fail at significantly lower displacements than

those at the quasistatic strain rates. This can partly be explained by the low

hardening gradient experienced by the material at high rates leading to necking

at low strain. However, the simulations show that dynamic specimens generally

fail at a lower plastic strain within the neck than the quasistatic for equivalent

Lode angles and triaxialities. This trend is distinct for the specimens at high Lode

angles of 0.7, but less so for those at Lode angles of zero. Thus it is speculated

that, for tensile specimens, strain rate has a greater influence in loading cases

where the triaxiality is high.

The results confirm the need to take into account a measure of the deviatoric

stress for the damage model. The simulations showed that the grooved specimens,

with a normalized Lode angle of zero, fail at a lower strain than the notched

specimens with a greater Lode of around 0.7. Thus models such as the Bai-

Wierzbicki[17] damage locus, which consider this effect, look promising for accurate

damage analysis.

A simplified symmetric version of this model was implemented in Abaqus. The

fracture locus generated has a different form to that reported by Bai and Wierzbicki

[17] for A710 steel due to the final triaxialities of the specimens being located in too

narrow a band. This raises an important point, to correctly formulate the model

tests should be completed through a wider range of triaxiality and Lode angle than

occur within the intended application. The model correctly predicts the point of

failure, but results in a stress peak at the point of damage. The spike is due to

a mesh instability caused by instantaneously removing the damaged element from

the mesh.
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Chapter 9

Recommendations

9.1 Introduction

This chapter considers the steps required to further improve both the testing

procedure and damage analysis. The First section deals with small changes that

would make using the tensile split Hopkinson pressure bar apparatus an easier

and more efficient process. It also contains possible options to improve the sheet

specimen attachment method. Section 2 details the specimen design. Problems

with the specimens stem chiefly from the small dimensions, but these can be

increased. The final section recommends procedures to increase the accuracy of

the numerical simulations, such that the strain rate effect can be quantified.

9.2 TSHB

The built tensile rig is a significant success. However, due to the extreme length

of the bars, alignment is time consuming. This could be improved in two ways,

firstly by investigating methods to straighten the bars and secondly by improving

the laser alignment system as currently the light is severely diffracted when it

reaches the far end of the bar.
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Recommendations 9.2. TSHB

In the current apparatus, calibration is completed using a compressive striker as the

striker velocity can be determined using a light sensor developed for compressive

testing. The procedure is time consuming as the tensile barrel and striker both

need to be replaced by the compression equivalents. Ideally a short tensile striker

could be used instead, with a light sensor adapted for the apparatus. Developing

this useful adaptation should be is a simple task, but it is one that will increase

testing efficiency considerably.

Prior to each experiment, the transfer cap must be removed from the striker to

allow putty to be placed on the transfer flange attached to the input bar. An

alternative would be to replace the putty with a fixed material, for example a thin

rubber gasket, that would soften the impact, but not need regular replacement.

An added advantage would be the increased consistency in the degree of softening.

An additional practical adaptation would be to use left and right handed threaded

bar on either side of the specimen, thus allowing the specimen to be screwed in

while the bars are fixed in place. With the current system the specimen can

be screwed into one bar, but the second bar must then be rotated while the

specimen is fixed. This is inconvenient due to the strain gauge wires that must be

protected. Ideally a basic tool needs to be developed to clamp onto both sides of

the specimen and thus prevent the gauge section from being damaged during the

screwing process.

The greatest unknown with the current attachment system is the degree of deformation

within the glue. In the simulations, the epoxy was approximated as an elastic

material with properties found in the literature[64]. However, thorough investigation

is required to characterize this material correctly. One method would be to glue a

solid rectangular specimen into the two sections of threaded bar such that the two

halves completely cover the specimen. The resulting transmitted stress signal could

then be compared to a similar experiment using only a solid section of threaded

bar to replace the specimen. This test could be repeated on the Zwick quasistatic

tensile machine by screwing the threaded bar into the same end fixtures used in

the glue strength tests in this work.
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An alternative attachment system is to use a clamping system. A potential design

would be to manufacture a tapered bar with thread machined onto its outer surface.

This would then be split and the specimen placed in between such that when the

clamp sub-assembly is screwed into the bars it tightens over the specimen. A

major advantage with a clamping system is the much lower preparation time as

no epoxy is required.

A final long term goal should be to develop an image processing capacity so that

deformation through the specimen can be compared more closely to the FEA

models.

9.3 Specimen design

The tests in this thesis are in too narrow a triaxiality band to correctly calibrate

the Bai-Wierzbicki damage model and thus the test range needs expansion. As

the work in BISRU revolves mainly around the blast loading of plates the most

important regions are those dominated by tension and shear and thus concentrating

on the triaxiality and Lode range of 0 ≤ θ̄, η should be sufficient.

The notched and groove specimens cover the high triaxiality regions and redoing

the straight specimen tests should result in a mid triaxiality of around 1
3
. However,

notably absent is a test with Lode and triaxiality close to zero, this region is

equivalent to a state of pure shear and is a key area to research as the damage

mechanism is no longer failure due to void growth. Ideally pure shear needs to be

tested as well as that with superimposed tension and compression to fully populate

the region.

To improve consistency of the experimental results the specimens need optimization.

The problems with the current versions revolve around the following:

• Manufacture. The small specimens are difficult to manufacture accurately.

The process could be improved by designing a jig specifically to hold tensile

specimens securely in the CNC milling machine.

• Specimen preparation. Imperfections caused by burrs may result in necking,

and indeed failure, occurring earlier than predicted in the numerical work.

These imperfections have a larger influence the smaller the specimen size.
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• Measurement. Small errors in measurements result in relatively large errors

in the numerical work.

• Handling. The thin straight and groove specimens had to be handled with

caution as these were easily bent.

Ultimately, the inconsistencies only had a detrimental influence on the groove

specimens. These have a specified thickness of only 0.6mm to allow for a relatively

deep groove, yet increasing this dimension to 1mm will allow an acceptable groove

depth of 1mm. As the epoxy held firm for all tests, larger specimens can be

developed and a cross-sectional area of 18 mm2 should be acceptable. In addition,

focus needs to be placed on accurate machining and specimen preparation to

minimize imperfections.

For ease in manufacture, the quasistatic specimens are exactly the same design as

the dynamic. Yet this results in significant slip during early elastic deformation of

the quasistatic experiments. Ideally the quasistatic grip surface width should be

increased, especially if larger specimens are to be tested.

A measurement that was not taken prior to testing was the notch and groove radii.

This was assumed to be correct due to the correct milling bit used. Yet in light

of the inconsistencies it would be best in future to develop a system to accurately

measure radii as these have a major influence on triaxiality and hence damage

initiation.

9.4 Modelling

The current simulations are useful to identify trends in the failure pattern, yet

for a more quantitative analysis these need revision. At present there are several

unknowns, chief among these is the effect the threaded connection and glue have

on the readings. The glue stiffness requires physical testing, yet the thread should

be modelled to see whether the initial stress peak found in the experiments can

be repeated. However, this should not have a significant influence on the damage

analysis as the thread effects are only evident during early deformation.
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Another influence is mesh density. The simulations were developed using element

sizes from the literature[17, 55] as a guide. However, the element size does seem to

have an effect as those in the specimen centre are distorted at high strains. This

leads to minor errors in determining the status at the point of failure and could

explain the lack of clear trends within the grooved specimens. Due to numerical

time constraints using the explicit scheme, a deeper analysis with much greater

mesh densities was not completed and needs consideration.

For accurate quasistatic analysis, the VUMAT, which is only valid for an explicit

analysis, should to be rewritten as a UMAT to allow an implicit finite element

solver to be used. This in turn would allow much higher mesh densities through

the quasistatic specimens with no reliance on a mass scaling factor. Furthermore,

the slow quasistatic experiments could be simulated easily. As an increase in strain

rate seems to increase fracture strain in the low rate regime, this analysis would

aid understanding rate sensitivity considerably.

Although, implementing infinite elements is a significant success, the element

properties of these elements needed to be altered. In the final model, the infinite

element elastic modulus was reduced as the elements appeared to be over-damping

the boundary. However, this modification is not suggested by either the Abaqus

documentation [59] or the work by Kammerer and Neme [53] and thus requires

investigation.

For several models, the simulated engineering stress differed from the experiments.

In developing the plasticity model, Bai and Wierzbicki [17] found that by introducing

a hydrostatic and Lode angle effect to the model, tensile specimen deformation

could be simulated more accurately. The change was most noticeable for the

grooved specimens at a low Lode angle, which is where the correlations for this

work are the weakest and is thus worth attempting.

Finally, to improve the implementation of failure, a progressive damage model

needs to be attempted. The theory behind this is that by weakening the elements

prior to removal, the final change to the stiffness matrix at element failure will be

minor. Thus if the instability at failure is due to the sudden change of removing

the elements instantaneously, as believed, it could be corrected.
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A.1. Introduction Split Hopkinson bar theory

Striker Input Bar Output BarSpecimen

Strain Gaugev0
Strain Gauge

Figure A.1: Tensile split Hopkinson bar.

A.1 Introduction

The classic split Hopkinson bar theory, used to determine the stress and strain

of the specimen, is based on one-dimensional elastic wave propagation through

the pressure bars[5]. This chapter uses the concept to explain the basic principles

behind deriving stress and displacements from the experimental results. One-

dimensional wave theory is also used to analyse the interaction between the striker

and input bar during the striker collision.

A.2 Basic Principles

To review, the basic split Hopkinson pressure bar consists of two long bars, namely

the input and output bar, with a test specimen in between. A simplified setup of

a tensile TSHB is shown in figure A.1. The gas gun is used to fire a striker at

the input bar. This generates a stress wave (incident wave) that travels through

the bar. At the input bar - specimen interface, part of the wave travels through

the specimen (transmitted wave), while the remainder is reflected back (reflected

wave). This reflected pulse is of opposite nature to the incident, that is if the

incident wave is tensile, the reflected will be compressive.

Strain gauges, situated on the outer surface of both bars, are used to record the

wave as it passes. As the bars remain elastic, the stress is proportional to the

recorded strain as defined by the one-dimensional Hooke’s law,

σ = E · ε (A.1)

with σ, ε and E the stress, strain and elastic modulus respectively.
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Split Hopkinson bar theory A.2. Basic Principles

Figure A.2: Developing the one dimensional wave equation.

In practise the strain, as a volt reading, is converted directly to a stress through

the gauge calibration factor. By analysing the three captured waves (incident,

reflected and transmitted) the force and velocity at either side of the specimen can

be determined [5].

The pressure bars need to remain elastic during the experiment and hence the bar

yield strength limits the maximum stress that the specimen can be subjected to

[25]. Generally high strength metals, such as maraging steel, are used as these

allow for high specimen stress. However, materials with lower stiffness are ideal to

test low strength materials [5] and these reduce dispersion 31.

A.2.1 Wave equation in One Direction

The wave equation is used to describe wave propagation and is used in this case

to describe propagation through the pressure bars.

The one dimensional wave equation can be derived from Newton’s second law

and Hooke’s law and thus assumes that the bars are formed from a linear elastic

material [69]. From figure A.2, forces due to both laws can be written as,

FNewton = ma

= m · ∂
2

∂t2
u(x+ h, t) (A.2)

FHooke = Fx+2h + Fx

= k[u(x+ 2h, t)− u(x+ h, t)] + k[u(x, t)− u(x+ h, t)] (A.3)

wherem is the element mass, a accelleration, k the material stiffness, h the distance

between successive elements and finally u the displacement.

31Dispersion is covered in the literature review section 2.3.3 on page 44.
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A.2. Basic Principles Split Hopkinson bar theory

A value N is defined such that the masses are spread over a length L = Nh,

with the total mass M = Nm. Thus by noting that the total stiffness is given by

E = k
N

, the motion can be described by,

∂2u(x+ h, t)

∂t2
=
EL2

M
· u(x+ 2h, t)− 2u(x+ h, t) + ku(x, t)

h2
(A.4)

The wavespeed, c, in a material is given by [25],

c =

√
E

ρ
(A.5)

Over length L, this is equal to,

c =

√
EL2

M

Thus finally, if the limits are taken as N → ∞ and h → 0 for equation A.4, the

wave equation for one dimensional propagation is given by [69],

∂2u

∂x2
=

1

c2

∂2u

∂t2
(A.6)

The general form of this equation can be written in the following form [5],

u = f(x− ct) + g(x+ ct) (A.7)

where f and g are functions that describe the wave set. For a single wave moving

in the positive x direction, the wave displacement as a function of time is,

u = f(x− ct)

From this basic equation, the velocity and strain are found simply by differentiating

displacement with respect to time, t, and position, x, respectively,

v =
∂u

∂t
= −cf ′ (A.8)

ε =
∂u

∂x
= f ′ (A.9)
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Combining equations A.8 and A.9 leads to the relation,

v = −cε (A.10)

By noting that stress is related to strain through equation A.1, and the wavespeed

is related to the elastic modulus through equation A.5, the velocity can be written

in the form,

v = −c · σ
E

= − σ
ρc

(A.11)

Compressive stress is conventionally taken as positive in bar wave theory [25]

resulting in the common form that is used through this analysis,

∆σ = ρc∆v (A.12)

A.3 Striker interaction

The striker is set at an initial velocity by the gas gun, causing it to strike the input

bar. This interaction creates a square incident stress wave that travels towards the

specimen. One dimensional wave propagation theory can be used to explain the

interaction and the effects that bar size and material material have on the pulse.

In this analysis, the striker is denoted as bar 1, with the incident bar as 2. The

basic form of the derivation is similar to that followed by Bonorchis [54].

A.3.1 Impact of uniform cylindrical bars

The impact of the SHB striker colliding with a bar produces stress waves that

move in opposite directions along both bars. This stress change has been shown

in section A.2.1 to be related to the change in particle velocity. A split Hopkinson

pressure bar experiment exploits this phenomenon to produce a relatively square

wave in the input bar. The stress magnitude that results is related to the cross-

sectional area, density and Young’s modulus of both bars and to the striker velocity.

A.5



A.3. Striker interaction Split Hopkinson bar theory

From equation A.12, at impact the particle velocities in both bars are given as,

v1 =
σ1

c1ρ1

v2 =
σ2

c2ρ2

(A.13)

The combined velocity at the interface, v0, is simply the sum of the two bar

velocities. This is also equivalent to the initial striker velocity.

v0 = v1 + v2

=
σ1

c1ρ1

+
σ2

c2ρ2

(A.14)

Due to force equilibrium at the contact zone, the stress in the striker and bar is

related by the respective cross-sectional areas,

σ1A1 = σ2A2

∴ σ1 =

(
A2

A1

)
σ2 (A.15)

Thus solving for σ2 from equations A.14 and A.15 yields,

σ2 = v0/

[
A2

A1

· 1

c1ρ1

+
1

c2ρ2

]
= v0

[
A1(c1ρ1)(c2ρ2)

A1c1ρ1 + A2c2ρ2

]
(A.16)

This relationship can be simplified if the materials chosen for both bars have the

same properties, resulting in,

σ2 =
A1

A1 + A2

cρv0 (A.17)

and similarly the stress in the striker is given by,

σ1 =
A2

A1 + A2

cρv0 (A.18)

In the case of the split Hopkinson bar, the striker is bar 1, while the input bar

2. Clearly to maximise the stress in the input bar, the material should be dense,

but stiff, with a high Young’s modulus compared to its density as c =
√
E/ρ.
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i

ii

iii

iv

striker input bar

v1 2v<

v1 v0= v2 0=

c1

Δv1

tensile
compressive

Figure A.3: Impact of the striker and incident bars. c1 indicates the direction of
the wave, while ∆v1 considers the change in particle velocity through the striker.

However, as the signal to noise ratio is greater for materials with high stiffness

[5], a compromise between stress attained and acceptable noise levels is often

used. Simply increasing the initial striker velocity, v0, will also increase the stress

attained.

Equations A.17 and A.18 show that, if the size of the incident bar is kept constant,

an increase in striker cross-sectional area increases the stress within the the incident

bar, while reducing that in the striker itself.

A.3.2 Pulse length

If a striker with an acceptable cross sectional area is selected, the length of the

resulting incident pulse will be nominally twice that of the striker. This is due

to the stress wave within the striker needing to perform one reflection before the

striker velocity drops below that of the incident bar. This section considers the

phenomenon in detail.

In this explanation compressive stress is defined as positive and the positive axial

direction runs from the striker through the bar as shown in figure A.3. A compressive

collision is considered, although the principles apply equally to the tensile situation.
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A.3. Striker interaction Split Hopkinson bar theory

As shown in figure A.3, initially (stage i) there is no stress in either bar, while

bar 1 has an initial velocity. This changes after contact (stage ii) in which a

compressive stress is formed in both bars. Initially the change in velocity is in the

negative direction through the striker, reducing the particle speed as the stress is

compressive.

∆v =

> 0︷︸︸︷
∆σ

ρ c︸︷︷︸
< 0

< 0

The wave then reflects against the end of the striker (stage iii), becoming a tensile

pulse. The change in particle velocity remains negative as, the wave is moving in

the positive direction, but the stress is negative.

∆v =

< 0︷︸︸︷
∆σ

ρ c︸︷︷︸
> 0

< 0

Using equation A.18, the change in velocity is related to the bar area by,

∆v =
σ1

ρc
=

A2

A1 + A2

v0 (A.19)

For bars of equal area, the velocity change is,

∆v =
A

2A
v0 =

1

2
v0

Thus for a particle on the bar to come to rest (∆v = v0), the stress wave needs to

pass the point twice. This will occur once as the impact stress passes the particle

and again as the reflection passes. In practical terms this results in the length of

the striker being nominally twice that of the striker if the wave velocity, c through

each is the same.

However, if the area of the striker is greater than that of the incident bar, the

relative stress through the striker will be reduced. This results in a lower change

in velocity.

∆v <
1

2
v0
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Thus the stress wave must pass the particle three (or more) times before the striker

comes to rest. In practise, this results in the stress pulse through the input bar

decreasing after one striker reflection, but only returning to zero after two (or

more). This should be avoided as ideally the input pulse should have constant

amplitude through the duration.

Clearly the cross-sectional area of the striker must not exceed that of the input bar

and ideally, to maximize the magnitude of the stress in the input bar, the areas

should be equal.

A.3.3 Final Striker Velocity

From the change in velocity during each reflection, the final striker velocity can

be determined and used in calibrating the strain gauges. Assuming only one wave

reflection within the striker is required, the final velocity is given by,

vf = v0 − 2∆v

= v0 − 2v0
A1

A1 + A2

from equation A.19

= v0
A1 − A2

A1 + A2

(A.20)

A.4 Specimen Deformation

A.4.1 Specimen engineering stress

The stress through the specimen is found by calculating the force acting at the

specimen interfaces, at the end of both the incident and transmitted bars. This

derivation combines elements presented by both Al-Mousawi et al. [25] and Gray

III [5].

Three distinct stress waves act on the specimen during deformation, namely the

incident σi, reflected σr and transmitted σt. These are shown in figure A.4 together

with the resultant velocities and loads. Bar 1 refers to the input, while the output

bar is labelled 2.
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Input bar Output barSpecimen

v 1

P1
v 2

P2

σi

σr

σ t

Figure A.4: Velocity and loads acting on the specimen-bar interface.

Equation A.12 states that the change in particle velocity through the bar is directly

related to the change in stress. The input bar 1 has a tensile incident pulse moving

in the positive axial direction interacting with a compressive reflected pulse acting

in the opposite direction. Thus the velocity, v1, is given by,

v1 = vi + vr

=
σi
ρ1c1

+
σr

ρ1(−c1)

=
σi − σr
ρ1c1

(A.21)

where vi and vr are the ahange in velocity due to the incident and reflective waves

respectively.

At the transmitted bar interface, only the transmitted tensile wave, travelling in

the positive axial direction is present and thus the velocity at the end of the bar,

v2 is simply,

v2 = vt =
σt
ρ2c2

(A.22)

Similarly, as the cross-sectional area of both the incident bar, A1, and transmitted

bar, A2, are known, the loads acting on the specimen due to the stresses in each

bar can be calculated as,

P1 = (σi + σr) · A1 P2 = σt · A2 (A.23)
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Using these two forces the engineering stress in the specimen is found as,

σ =
P

A0

=
P1 + P2

2A0

(A.24)

where P is the average force acting on the specimen and A0 the initial specimen

area.

Assuming force equilibrium between the bars, P1
∼= P2 and thus the stress calculation

requires data only from the transmitted signal.

σ =
P1

A0

= σt

(
A1

A0

)
(A.25)

A.4.2 Specimen travel

Similarly to the stress derivation that calculated the forces acting on both bars,

the displacement can be determined by considering the velocity at the bar ends.

By integrating the bar interface velocity over time, the displacements, u1 and u2

are found simply as,

u1 =

∫ t

0

v1dt u2 =

∫ t

0

v2dt (A.26)

The specimen displacement is simply the difference, ∆u = u1 − u2.

For specimens with uniform gauge sections, the average strain is calculated based

on the displacement. The specimen gauge length at any moment in time can be

described by the original length and the extension,

l = l0 + |∆u| (A.27)

True strain is found by taking the natural log of the instantaneous length over the

original,

ε = ln

(
l

l0

)
(A.28)
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The strain rate is can be determined directly from the bar velocities,

ε̇ =
|∆v|
l0

(A.29)

If a constant strain rate is applied, the maximum strain attained in the specimen

is simply the strain rate multiplied by the time over which it acts. Thus by noting

that the length of the stress pulse is double that of the striker32, a simple relation

can be derived.

εmax = ε̇ · tpulse
= ε̇ · 2Ls

cs
(A.30)

with tpulse the wave duration and Ls and cs the length and wave propagation speed

of the striker.

32see section A.3.2
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Abaqus User Files

Contents
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B.1 Plasticity and Damage Model VUMAT

B.1.1 Predictor Return Algorithm

This is the final VUMAT used to study damage. Both the full and symmetric

Bai-Wierzbicki damage models can be selected.

C /////////////////////////////////////////////////////////////
C VUMAT f o r 3D model

C Johnson−Cook p l a s t i c i t y model
C Bai−Wierzb ick i damage model
C St ra in ra t e & temperature p l a s t i c i t y dependence

C Andrew Bowden − 23/09/2009
C −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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C SYNTAX:
C s : s t r e s s e : s t r a i n
C d : d e v i a t o r i c i : increment
C E : e l a s t i c P : p l a s t i c
C 0 : o ld component Eq : equ iva l en t
C ///////////////////////////////////////////////////////////////

subroutine vumat (
C −−−−−−−−−−−−−−−−− Var iab l e s to be used −−−−−−−−−−−−−−−−−−−−−−−−
C Read only −

1 nblock , ndir , nshr , nstatev , n f i e l d v , nprops , lannea l ,
2 stepTime , totalTime , dt , cmname , coordMp , charLength ,
3 props , dens i ty , s t r a i n I n c , r e lSp in Inc ,
4 tempOld , stretchOld , defgradOld , f i e l dOld ,
3 s t re s sOld , stateOld , enerInternOld , ener Ine lasOld ,

C Write only −
6 tempNew , stretchNew , defgradNew , f ie ldNew ,
5 stressNew , stateNew , enerInternNew , enerInelasNew )

C −−−−−−−−−−−−−−−−−−−−−−− Required f i l e −−−−−−−−−−−−−−−−−−−−−−−−−
include ’ vaba param . inc ’

C −−−−−−−−−−−−−−−−−−−−− State Var iab l e s −−−−−−−−−−−−−−−−−−−−−−−−−
C The s t a t e v a r i a b l e s are s to r ed as :
C STATE(∗ , 1 ) = t o t a l equ iva l en t p l a s t i c s t r a i n
C STATE(∗ , 2 ) = s t r a i n ra t e c a l c u l a t e d a f t e r prev ious s tep
C STATE(∗ , 3 ) = s t r a i n ra t e used in prev ious s tep
C STATE(∗ , 4 ) = LodeInt
C STATE(∗ , 5 ) = TriaxInt
C STATE(∗ , 6 ) = DAMAGE
C −−−−−−−−−−−−−−−−−−−−−− Array Dimensions −−−−−−−−−−−−−−−−−−−−−−−
C Al l a r rays dimensioned by (∗ ) are not used in t h i s a lgor i thm

dimension props ( nprops ) , dens i ty ( nblock ) ,
1 coordMp ( nblock , ∗ ) ,
2 charLength (∗ ) , s t r a i n I n c ( nblock , nd i r+nshr ) ,
3 r e l S p i n I n c (∗ ) , tempOld ( nblock ) ,
4 s t re tchOld (∗ ) , defgradOld (∗ ) ,
5 f i e l d O l d (∗ ) , s t r e s sO ld ( nblock , nd i r+nshr ) ,
6 stateOld ( nblock , ns tatev ) , enerInternOld ( nblock ) ,
7 ene r Ine la sOld ( nblock ) , tempNew( nblock ) ,
8 stretchNew (∗ ) , defgradNew (∗ ) , f i e ldNew (∗ ) ,
9 stressNew ( nblock , nd i r+nshr ) , stateNew ( nblock , ns tatev ) ,
1 enerInternNew ( nblock ) , enerInelasNew ( nblock )
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C Max length o f mate r i a l name
character∗80 cmname

C −−−−−−−−−−−−−−−−−−−−−−− Def ine Parameters −−−−−−−−−−−−−−−−−−−−−
real E, nu ,

1 A, B, C, D, E1 , k , n , m, SR0 , Tm, Ttrans , Tmelt , Cp, eta ,
1 D1 , D2 , D3 , D4 , D5 , D6
double precision G, twoG , lamda ,

1 s1 , s2 , s3 , s4 , s5 , s6 , sEq , p ,
1 ds1 , ds2 , ds3 , ds4 , ds5 , ds6 , dsmag ,
1 T, Tstar ,
1 strainTerm , strainRateTerm , tempTerm , y i e ld ,
1 der iv1 , der iv2 , termA , termB , sca l eFactor ,
1 ePEq , iePeq , ieVol , ide1 , ide2 , ide3 , ideEq ,
1 ideEqDot , ideEqDotLog ,
1 rCubed , xi , Lode , LodeAve , Triax , TriaxAve , f a i l s t r a i n ,
1 f a c to r , stressPower , p last icWorkInc
integer count

parameter ( ze ro = 0 . , one = 1 . , two = 2 . , th ree = 3 . ,
1 t h i rd = one/ three , h a l f = . 5 , twoThirds = two/ three ,
2 t h r e e H a l f s = 1 .5 d0 , n ineHa l f s = 4 . 5 ,
3 p i = 3.141592654 , lg10 = 2.302585093 )

C −−−−−−−−−−−−−−−−−− Retr i eve Mater ia l P r o p e r t i e s −−−−−−−−−−−−−−−
C E l a s t i c

E = props (1 )
nu = props (2 )

C PLast ic
A = props (3 )
B = props (4 )
C = props (5 )
D = props (6 )
E1 = props (7 )
k = props (8 )
n = props (9 )
m = props (10)
SR0 = props (11)
Tm = props (12)
Ttrans = props (13)
Tmelt = props (14)
Cp = props (15)
eta = props (16)
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C Damage
D1 = props (17)
D2 = props (18)
D3 = props (19)
D4 = props (20)
D5 = props (21)
D6 = props (22)

C−−−−−−−−−−−−−−−−−−− Calcu la te Lame Parameters −−−−−−−−−−−−−−−−−
G = E / ( two ∗ ( one + nu) ) ! Shear Modulus
twoG = two∗G
lamda = twoG ∗ nu / ( one − two∗nu) ! 1 s t Lame parameter

C ///////////////////////////////////////////////////////////////

C Begin Calc S t r e s s at each i n t e g r a t i o n po int
do 80 i = 1 , nblock

C −−−−−−−−−−−−−−−−− Tr i a l s t r e s s ( Hooke ’ s Law) −−−−−−−−−−−−−−−−−−
i eVo l = s t r a i n I n c ( i , 1 ) + s t r a i n I n c ( i , 2 ) + s t r a i n I n c ( i , 3 )

s1 = s t r e s s O ld ( i , 1 ) + twoG∗ s t r a i n I n c ( i , 1 ) + lamda∗ i eVo l
s2 = s t r e s s O ld ( i , 2 ) + twoG∗ s t r a i n I n c ( i , 2 ) + lamda∗ i eVo l
s3 = s t r e s s O ld ( i , 3 ) + twoG∗ s t r a i n I n c ( i , 3 ) + lamda∗ i eVo l
s4 = s t r e s s O ld ( i , 4 ) + twoG∗ s t r a i n I n c ( i , 4 )
s5 = s t r e s s O ld ( i , 5 ) + twoG∗ s t r a i n I n c ( i , 5 )
s6 = s t r e s s O ld ( i , 6 ) + twoG∗ s t r a i n I n c ( i , 6 )

C Dev ia to r i c part o f t r i a l s t r e s s [ S ]
p = − th i r d ∗ ( s1 + s2 + s3 )
ds1 = s1 + p
ds2 = s2 + p
ds3 = s3 + p

C Magnitude o f the d e v i a t o r i c t r i a l s t r e s s d i f f e r e n c e [ s q r t (S : S ) ]
dsmag = s q r t ( ds1 ∗∗2 + ds2 ∗∗2 + ds3 ∗∗2

1 + 2 .∗ s4 ∗∗2 +2.∗ s5 ∗∗2 +2.∗ s6 ∗∗2 )

C −−−−−− Get equ iva l en t p l a s t i c s t r a i n from prev ious s tep −−−−−−−
ePEq = stateOld ( i , 1 )
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C−−−−−−−−−−−−−−−−−−−−−−− Calcu la te Tstar −−−−−−−−−−−−−−−−−−−−−−−−
T = tempOld ( i )
i f (T . l t . Ttrans ) then

Tstar = zero
e l s e i f (T . ge . Ttrans . and . T . l e . Tmelt ) then

Tstar = (T − Ttrans ) / ( Tmelt − Ttrans )
else

stateNew ( i , 6 ) = 0
Tstar = zero

end i f

C−−−−−−−−−−−−−−−−−−−− Determine s t r a i n ra t e −−−−−−−−−−−−−−−−−−−−−
ideEqDot = ( 5∗ s tateOld ( i , 3 ) + stateOld ( i , 2 ) ) / 6
stateNew ( i , 3 ) = ideEqDot

i f ( ideEqDot . gt . ze ro ) then
ideEqDotLog = log10 ( ideEqDot/SR0)

else
ideEqDotLog = zero

end i f
C −−−−−−−−−−−−−−−−−−− Calcu la te y i e l d s t r e s s −−−−−−−−−−−−−−−−−−−−

tempTerm = one − Tstar ∗∗Tm
y i e l d = ( A + B∗ePEq∗∗n + (C − D∗ePEq∗∗m)∗ ideEqDotLog

1 + E1∗ ideEqDot∗∗k )∗ tempTerm
sEq = s q r t ( t h r e e H a l f s )∗dsmag

i f ( ( sEq . l e . abs ( y i e l d ) )
1 . or . ( stepTime + totalTime . eq . ze ro ) ) then

C //////////////////////// ELASTIC \\\\\\\\\\\\\\\\\\\\\\\\
stressNew ( i , 1 ) = s1
stressNew ( i , 2 ) = s2
stressNew ( i , 3 ) = s3
stressNew ( i , 4 ) = s4
stressNew ( i , 5 ) = s5
stressNew ( i , 6 ) = s6

stateNew ( i , 1 ) = stateOld ( i , 1 )
stateNew ( i , 2 ) = stateOld ( i , 2 )
stateNew ( i , 3 ) = stateOld ( i , 3 )
stateNew ( i , 4 ) = stateOld ( i , 4 )
stateNew ( i , 5 ) = stateOld ( i , 5 )
stateNew ( i , 6 ) = stateOld ( i , 6 )
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else
C /////////////////////// PLASTIC \\\\\\\\\\\\\\\\\\\\\\\\
C −−−−−−−−− Solve f o r change in eq p l a s t i c s t r a i n −−−−−−−−−
C −−−−−−−−−−−−−−−−−−−− Pred i c to r Return −−−−−−−−−−−−−−−−−−−

i f ( ePEq . l t . 1 . 0 d−8 ) ePEq = 1 .0 d−8
der iv1 = ( n∗B∗ePEq∗∗(n−one )

1 − m∗D∗ePEq∗∗(m−one )∗ ideEqDotLog ) ∗ tempTerm

i f ( ideEqDot . l t . 1 . 0 d−7 ) ideEqDot = 1 .0 d−7
der iv2 = ( (C − D∗ePEq∗∗m) ∗ SR0/( lg10 ∗ ideEqDot )

1 + E1∗k∗ ideEqDot ∗∗(k−1) ) ∗ tempTerm

termA = sEq /( three ∗G) ∗ ( de r iv1 + der iv2 /dt )
termB = der iv2 ∗ ideEqDot
s c a l eF ac to r = ( y i e l d + termA − termB )/( sEq + termA)

iePEq = ( one−s c a l eF ac to r )∗ sEq /( three ∗G)
ePEq = ePEq + iePEq
ideEqDot = iePEq/dt
sEq = (A + B ∗ ePEq∗∗n + (C−D∗ePEq∗∗m)∗ ideEqDotLog

1 + E1∗ ideEqDot∗∗k )∗ tempTerm
C −−−−−−−− Calc d e v i a t o r i c s t r e s s components [ Snew ] −−−−−−−

ds1 = s ca l eF ac to r ∗ ds1
ds2 = s ca l eF ac to r ∗ ds2
ds3 = s ca l eF ac to r ∗ ds3
ds4 = s ca l eF ac to r ∗ s4
ds5 = s ca l eF ac to r ∗ s5
ds6 = s ca l eF ac to r ∗ s6

C −−−−−−−−−−−−−−−−−−−− Set new s t r e s s −−−−−−−−−−−−−−−−−−−−−
stressNew ( i , 1 ) = ds1 − p
stressNew ( i , 2 ) = ds2 − p
stressNew ( i , 3 ) = ds3 − p
stressNew ( i , 4 ) = ds4
stressNew ( i , 5 ) = ds5
stressNew ( i , 6 ) = ds6

C −−−−−−−−−−−−−−−− Calcu la te temperature −−−−−−−−−−−−−−−−−−
tempNew( i ) = tempOld ( i )

1 + eta ∗ iePEq / ( dens i ty ( i ) ∗ Cp) ∗ sEq
C −−−−−−−−−−−−−−−− Update s t a t e v a r i a b l e s −−−−−−−−−−−−−−−−−

stateNew ( i , 1 ) = ePEq ! Eq p l a s t i c s t r a i n
stateNew ( i , 2 ) = ideEqDot ! Eq p l a s t i c s t r a i n ra t e
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C ////////////////// Check f o r damage \\\\\\\\\\\\\\\\\\\\\

C −−−−−−−−−−−−−−−−−−−−− S t r e s s I n v a r i a n t s −−−−−−−−−−−−−−−−−
dsXds1 = ds1 ∗∗2 + ds4 ∗∗2 + ds6 ∗∗2
dsXds2 = ds4 ∗∗2 + ds2 ∗∗2 + ds5 ∗∗2
dsXds3 = ds6 ∗∗2 + ds5 ∗∗2 + ds3 ∗∗2
dsXds4 = ds1∗ds4 + ds4∗ds2 + ds6∗ds5
dsXds5 = ds4∗ds6 + ds2∗ds5 + ds5∗ds3
dsXds6 = ds1∗ds6 + ds4∗ds5 + ds6∗ds3

rCubed = n ineHa l f s ∗( dsXds1∗ds1 + dsXds2∗ds2 + dsXds3∗ds3
1 + 2 .∗ dsXds4∗ds4 + 2 .∗ dsXds5∗ds5 + 2 .∗ dsXds6∗ds6 )

x i = rCubed / ( sEq∗∗ three )

i f ( abs ( x i ) . gt . one ) x i = one
Lode = 1 − 2/ p i ∗ acos ( x i )

Triax = −p/sEq

C −−−−−−−−−−−−−−−− Find Ave Lode & Triax −−−−−−−−−−−−−−−−−−
stateNew ( i , 4 ) = stateOld ( i , 4 ) + Lode ∗ iePEq
LodeAve = stateNew ( i , 4 ) / ePEq

stateNew ( i , 5 ) = stateOld ( i , 5 ) + Triax ∗ iePEq
TriaxAve = stateNew ( i , 5 ) / ePEq

C −−−−−−−−−−−−−−−− Find St ra in To Fa i l u r e −−−−−−−−−−−−−−−−−
C
C FULL MODEL
C
C f a i l S t r a i n = ( h a l f ∗( D1∗exp(−D2∗TriaxAve )
C 1 + D5∗exp(−D6∗TriaxAve ) )
C 1 − D3∗exp(−D4∗TriaxAve ) )∗LodeAve∗∗2
C 1 + h a l f ∗( D1∗exp(−D2∗TriaxAve )
C 1 − D5∗exp(−D6∗TriaxAve ) ) ∗ LodeAve
C 1 + D3∗exp(−D4∗TriaxAve )

C SYMMETRIC MODEL
C

f a i l S t r a i n = ( D1∗exp(−D2∗TriaxAve )
1 − D3∗exp(−D4∗TriaxAve ) )∗LodeAve∗∗2
1 + D3∗exp(−D4∗TriaxAve )
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C −−−−−−−−−−−−−−−−− Remove Damaged Elements −−−−−−−−−−−−−−−
i f ( ( ePeq . ge . f a i l S t r a i n )

1 . and . ( f a i l S t r a i n . gt . ze ro ) ) then
stateNew ( i , 6 ) = 0
print ∗ , ”FAILED ELEMENT : ” , i
print ∗ , ”Time ” , stepTime + totalTime
print ∗ , ”LodeAve ” , LodeAve
print ∗ , ”TriaxAve ” , TriaxAve
print ∗ , ” f a i l S t r a i n ” , f a i l S t r a i n
print ∗ , ”ePEq ” , ePEq
print ∗ , ”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−”

else
stateNew ( i , 6 ) = 1

end i f
end i f

C////////////////////////////////////////////////////////////////

C Update the s p e c i f i c i n t e r n a l energy
stres sPower = h a l f ∗ (

1 ( s t r e s sO ld ( i ,1)+ stressNew ( i , 1 ) )∗ s t r a i n I n c ( i , 1 )
1 + ( s t r e s sO ld ( i ,2)+ stressNew ( i , 2 ) )∗ s t r a i n I n c ( i , 2 )
1 + ( s t r e s sO ld ( i ,3)+ stressNew ( i , 3 ) )∗ s t r a i n I n c ( i , 3 )
1 + two ∗( s t r e s sO ld ( i ,4)+ stressNew ( i , 4 ) )∗ s t r a i n I n c ( i , 4 )
1 + two ∗( s t r e s sO ld ( i ,5)+ stressNew ( i , 5 ) )∗ s t r a i n I n c ( i , 5 )
1 + two ∗( s t r e s sO ld ( i ,6)+ stressNew ( i , 6 ) )∗ s t r a i n I n c ( i , 6 ) )

enerInternNew ( i ) = enerInternOld ( i ) + stres sPower / dens i ty ( i )

C Update the d i s s i p a t e d i n e l a s t i c s p e c i f i c energy −
plast icWorkInc = iePEq ∗ sEq
enerInelasNew ( i ) = ener Ine la sOld ( i ) + plast icWorkInc / dens i ty ( i )

80 continue
C

return
end
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B.1.2 Nonlinear Solver

This is less stable than the Predictor Return algorithm, but is included here for

completeness. Only the plasticity code is shown. To implement, copy this section

and paste it in the full code above, replacing from the section “Calc strain rate”

up until “Set new stress”.

C−−−−−−−−−−−−−−−−−−−− Calcu la te s t r a i n ra t e −−−−−−−−−−−−−−−−−−−−−
ideEqDot = ideEq/dt
stateNew ( i , 5 ) = ideEqDot

i f ( ideEqDot . gt . ze ro ) then
ideEqDotLog = log10 ( ideEqDot/SR0)

else
ideEqDotLog = zero

end i f
C −−−−−−−−−−−−−−−−−−− Calcu la te y i e l d s t r e s s −−−−−−−−−−−−−−−−−−−−

y ie ldConst = A + C∗ ideEqDotLog + E1∗ ideEqDot∗∗k
c tempConst = one − Tstar ∗∗Tm

y i e l d = yie ldConst + B∗ePEq∗∗n − D∗ ideEqDotLog∗ePEq∗∗m
C −−−−−−−−−−−−−−−−−−−−−−− Check f o r y i e l d −−−−−−−−−−−−−−−−−−−−−−−

dsEq = s q r t ( t h r e e H a l f s )∗dsmag
i f ( ( dsEq . l e . abs ( y i e l d ) )

1 . or . ( stepTime + totalTime . eq . ze ro ) ) then
C //////////////////////// ELASTIC \\\\\\\\\\\\\\\\\\\\\\\\
C i f ( i . eq . 1) print ∗ , ” E l a s t i c ” , dsEq , Yie ld

iePEq = zero
stressNew ( i , 1 ) = s1
stressNew ( i , 2 ) = s2
stressNew ( i , 3 ) = s3
stressNew ( i , 4 ) = s4
stressNew ( i , 5 ) = s5
stressNew ( i , 6 ) = s6
stateNew ( i , 1 ) = stateOld ( i , 1 )
stateNew ( i , 2 ) = stateOld ( i , 2 )
stateNew ( i , 3 ) = stateOld ( i , 3 )
stateNew ( i , 4 ) = 1

C stateNew ( i , 5 ) = zero
else

C /////////////////////// PLASTIC \\\\\\\\\\\\\\\\\\\\\\\\\
i f ( i . eq . 1) print ∗ , ” P l a s t i c ” , dsEq , Yie ld
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C −−−−−−−−−−−−−−−− o ld d e v i a t o r i c s t r e s s e s −−−−−−−−−−−−−−−−
p0 = −th i r d ∗ ( s t r e s sO ld ( i , 1 )

1 + s t r e s sO ld ( i , 2 ) + s t r e s sO ld ( i , 3 ) )
ds01 = s t r e s sO ld ( i , 1 ) + p0
ds02 = s t r e s sO ld ( i , 2 ) + p0
ds03 = s t r e s sO ld ( i , 3 ) + p0

C −−−−−−−−−−− Find equ iva l en t d e v i a t o r i c s t r a i n s −−−−−−−−−−
eC1 = ds01 / (twoG) + ide1
eC2 = ds02 / (twoG) + ide2
eC3 = ds03 / (twoG) + ide3
eC4 = s t r e s sO ld ( i , 4 ) / (twoG) + s t r a i n I n c ( i , 4 )
eC5 = s t r e s sO ld ( i , 5 ) / (twoG) + s t r a i n I n c ( i , 5 )
eC6 = s t r e s sO ld ( i , 6 ) / (twoG) + s t r a i n I n c ( i , 6 )

C −−−−−−−−−− Calcu la te eT = s q r t (2/3 ∗ eC : eC) −−−−−−−−−−−−−
eCmag = s q r t ( eC1∗∗2 + eC2∗∗2 + eC3∗∗2

1 + 2 .∗ eC4∗∗2 + 2 .∗ eC5∗∗2 + 2 .∗ eC6∗∗2)
eT = s q r t ( twoThirds ) ∗ eCmag

C −−−−−−−−− Solve f o r change in eq p l a s t i c s t r a i n −−−−−−−−−
C −−−−−−−−−−−−−−−−−−−−− NEWTONS METHOD −−−−−−−−−−−−−−−−−−−−

err = one
R = one
count = 0

c iePEq = 0
iePEq = ideEq

newtonTol = 1 .0 d−9
reduct ion = 5
do while ( ( err . ge . newtonTol ) . and . ( count . l e . 15) )

count = count + 1
R0 = R
ePEq = stateOld ( i , 1 ) + iePEq
sEq = yie ldConst + B∗ePEq∗∗n − D∗ ideEqDotLog∗ePEq∗∗m
H = B∗n∗ePEq∗∗(n−1) − D∗ ideEqDotLog∗m∗ePEq∗∗(m−1)
R = ( three ∗G ∗ (eT − iePEq ) − sEq ) / ( three ∗G + H)
iePEq = iePEq + R
do while ( s tateOld ( i , 1 ) + iePEq . l e . ze ro )

iePEq = iePEq/ reduct i on
i f ( s tateOld ( i , 1 ) . eq . ze ro ) iePEq = abs ( iePEq )

end do
err = abs (R)

end do
i f ( count . gt . 15) print ∗ ,

1 ”WARNING − Newton i t e r a t i o n s exceeded ”
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Abaqus User Files B.1. Plasticity and Damage Model VUMAT

C −−−−− Calcu la te d e v i a t o r i c s t r e s s components [ Snew ] −−−−−
f a c t o r = two∗G / ( one + three ∗G/sEq ∗ iePEq )
ds1 = f a c t o r ∗ eC1
ds2 = f a c t o r ∗ eC2
ds3 = f a c t o r ∗ eC3
ds4 = f a c t o r ∗ eC4
ds5 = f a c t o r ∗ eC5
ds6 = f a c t o r ∗ eC6

B.11



B.2. Load Application VDLOAD Abaqus User Files

B.2 Load Application VDLOAD

This is required to apply the incident stress pulse to the input bar. The basic

code sets the value to the amplitude stored in the input deck mutiplied by the

maximum incident stress value.

C ////////////////////////////////////////////////////////////////
C VDLOAD to apply load to i n f i n i t e elment boundary
C
C Value should be twice that r equ i r ed f o r the i n c i d e n t wave magnitude
C Amplitude must be inc luded in input deck
C
C Andrew Bowden − 10/08/2009
C −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

subroutine vdload ( nblock , ndim , stepTime , totalTime , amplitude ,
1 curCoords , v e l o c i t y , dirCos , j l t yp , sname , va lue )
include ’ vaba param . inc ’

dimension curCoords ( nblock , ndim ) , v e l o c i t y ( nblock , ndim ) ,
1 dirCos ( nblock , ndim , ndim ) , va lue ( nblock )
character∗80 sname

C −−−−−−−−−−−−−−−−−−−−− Set wave magnitude −−−−−−−−−−−−−−−−−−−−−
do km=1, nblock

value (km) = −amplitude ∗7.003254 e+07
end do

return
end
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Drawings C.1. Tensile Split Hopkinson Pressure Bar
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C.1. Tensile Split Hopkinson Pressure Bar Drawings
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Drawings C.1. Tensile Split Hopkinson Pressure Bar
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C.1. Tensile Split Hopkinson Pressure Bar Drawings
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Drawings C.1. Tensile Split Hopkinson Pressure Bar
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C.1. Tensile Split Hopkinson Pressure Bar Drawings
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Drawings C.1. Tensile Split Hopkinson Pressure Bar
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