

Shale Gas and Hydraulic Fracturing in South Africa:

Towards a Petroleum Legal Framework that Provides for Innovative Technologies that Support Energy Security of Supply and Mitigation of Climate Change

Thesis submitted to

The University of Cape Town, Faculty of Law

for the

Degree of Doctor of Philosophy

Bу

Bongani Sayidini (SYDBON001)

1 June 2023

Supervisor

Professor Hanri Mostert, DST/NRF SARChi Research Chair: Mineral Law in Africa, Department of Private Law, Faculty of Law, University of Cape Town

MINERAL LAW

The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non-commercial research purposes only.

Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author.

DECLARATION

- 1. I know that plagiarism is wrong. Plagiarism is to use another's work and pretend that it is one's own.
- 2. I have used the footnoting convention for citation and referencing. Each contribution to, and quotation in, this thesis from the work(s) of other people has been attributed and has been cited and referenced.
- 3. This thesis is my own work.
- 4. I have not allowed, and will not allow anyone, to copy my work with the intention of passing it off as his or her own work.

ACKNOWLEDGMENTS

I dedicate this thesis to my children, Noah (11) and Amavi (2), who had to do with what little time I had left between my work and this PhD study. I commit to spending so much more time with you my boy, and baby girl, to play with you, travel with you, teach you, and guide you in your own journeys through school and life. Thanks to my wife, Yolanda, for being there for my kids, carrying Amavi during the critical 9 months, and almost single-handedly looking after her in the first year following her birth.

My sincere gratitude to Professor Hanri Mostert, my PhD Supervisor, who took on a Petroleum Engineer eager to deepen his knowledge and set him on a path to become a Petroleum Law Scholar. Thank you, Prof, for your nurturing supervision, while ensuring that your students develop to the highest academic standard. Thank you for the funding from the UCT Law Faculty and the International Bar Association which relieved me of the financial burden of a PhD study. For your commitment and contribution to humankind, producing so many African scholars, you deserve the "Order of the Baobab". Thanks to my fellow students at the PhD Hour Writing Circle, for their insights and critical reviews during the development of this thesis.

I owe a great deal to my mother, Nowanathi Sayidini, for guiding me through life, and teaching me how to pray. It is because of the discipline you instilled in me, and through prayer, that I have been able to reach the level of education I have reached today, a PhD, my dream come through! I remember you not missing a single day of prayer since I was 5 years old, praying for us, and for peace and harmony in our country and the world. I have strong memories of you praying through loud music in my car, every other hour, while taking long drives together to your home village, Sabalele, Cofimvaba, and during our many road trips through the western and eastern provinces of our country. Despite being illiterate, you did not take education for granted. You believed in my academic potential and supported me through school, even calling out subjects that challenged me during prayer. For that, I am eternally grateful to you mama. Thank you for instilling the belief in me that it is only through education that I will truly be free and lead a fulfilling life.

ABSTRACT

It is estimated that South Africa contains vast amounts of shale gas. Meanwhile, the country relies on coal as a primary energy source, as a result, it ranks amongst the highest carbon dioxide emitting countries globally, therefore is a significant contributor to climate change. Climate change is a cause for global concern, if not mitigated it will cause more severe devastation to society. The exploitation of shale gas requires the use of hydraulic fracturing, a technology that has generated controversy globally.

This thesis investigates whether South Africa's petroleum legal framework provides adequately for the protection of the environment against the risks posed by the use of hydraulic fracturing in shale gas development. It posits that with a petroleum legal framework premised on avoiding, mitigating and remediating environmental damage, shale gas could be developed in an environmentally sensible manner in South Africa, to enhance energy security of supply while reducing the country's carbon dioxide emissions to the atmosphere. The assessment employs the comparative legal research methodology and uses the prevention principle (avoidance), precautionary principle (mitigation), and polluter-pays principle (remediation) as comparative themes. The comparative jurisdictions are South Africa, the United Kingdom, and Canada. The United Kingdom and Canada are more mature petroleum provinces/jurisdictions, therefore, have relatively advanced legal frameworks for petroleum extraction.

The study finds that the petroleum legal framework of South Africa is inadequate to regulate shale gas development, to begin with, it does not provide for hydraulic fracturing. The study further finds that the environmental principles of avoidance, mitigation and remediation are already embedded in the South African environmental legal framework. Therefore, the appropriate petroleum legal framework for shale gas development in South Africa would be one that provides for the rigorous application of these principles, in an integrated and complementary manner, with close monitoring and enforcement. The capacity of the relevant regulatory agencies will have to be enhanced to ensure effective compliance monitoring and enforcement.

TABLE OF CONTENTS

DECLARATION	ii		
ACKNOWLEDGMENTS ii			
ABSTRACT	iv		
LIST OF ABBREVIATIONS	x		
CHAPTER 1: INTRODUCTION	1		
1.1 Introduction	1		
1.2 Research Objectives and Questions	8		
1.2.1 Research Objective	8		
1.2.2 Research Questions	8		
1.2.3 Delimitations	9		
1.3 Methodology	10		
1.4 Motivation for Choice of Comparative Jurisdictions	11		
1.5 Significance of this Study	14		
1.6 Thesis Structure	15		
CHAPTER 2: THE TECHNICAL ASPECTS OF SHALE GAS	17		
2.1 Introduction	17		
2.2 What is Shale Gas	18		
2.3 Shale Gas in the Karoo	19		
2.4 Horizontal Drilling	22		
2.5 Hydraulic Fracturing	23		
2.6 Hydraulic Fracturing: Process and Evolution	24		
2.7 Hydraulic Fracturing: Risks and Concerns	27		
2.7.1 Volume of Water Required	28		
2.7.2 Contamination of Water Resources			
2.7.3 Disposal of Wastewater	33		
2.7.5 Induced Earth Tremors	35		
2.7.4 Methane Emissions			
2.8 Conclusions			
CHAPTER 3: CLIMATE CHANGE AND SHALE GAS	40		
3.1 Introduction	40		
3.2 The United Nations Framework Convention on Climate Change	41		
3.3 The Kyoto Protocol	42		
3.4 The Copenhagen Accord	44		
3.5 The Doha Amendment to the Kyoto Protocol	45		
3.6 The Paris Agreement	46		

3.8 Methane Emissions - Another Area of Concern	52
3.8.1 Leak Detection and Repair	55
3.8.2 Carbon Capture and Storage	56
3.9 The Glasgow Climate Pact	59
3.10 South Africa's Climate Change Policy Framework	60
3.12 Conclusions	66
CHAPTER 4: PUBLIC PARTICIPATION	68
4.1 Introduction	68
4.2 What is Public Participation	68
4.3 Government as a Stakeholder	70
4.4 Local Communities	71
4.5 Karoo Landowners	71
4.6 Environmental Interest Groups	72
4.7 Public Participation under the MPRDA	73
4.8 Public Participation under the NEMA	76
4.9 Public Participation under the NWA	78
4.10 Public Participation under the NEM: WASTE ACT	81
4.11 A New Era for Public Participation in the Oil and Gas Sector	82
4.11.1 Border Deep Sea Angling v Minister of Mineral Resources and Energy	83
4.11.1.1 Introduction	83
4.11.1.2 Public Participation as it Relates to this Case	83
4.11.1.3 Ruling	84
4.11.2 Sustaining the Wild Coast v Minister of Mineral Resources and Energy	85
4.11.2.1 Introduction	85
4.11.2.2 Public Participation as it Relates to this Case	86
4.11.2.3 Ruling	87
4.11.3 Adams v Minister of Mineral Resources and Energy	88
4.11.3.1 Introduction	88
4.11.3.2 Public Participation as it Relates to this Case	89
4.11.3.3 Ruling	90
4.12 Insights and Learnings from Case Law	92
4.13 Conclusions	94
CHAPTER 5: SOUTH AFRICA'S LEGAL FRAMEWORK FOR SHALE GAS	97
5.1 Introduction	97
5.2 Selected Tenets of the Transitioning Petroleum Legislative Framework	98
5.2.1 Separating Petroleum from Hard-Rock Minerals in the Law	99
5.2.2 The Ownership of Petroleum in the Sub-Surface	101

、

5.2.3 Licensing of Petroleum Rights	106
5.2.4 Environmental Requirements	108
5.3 South Africa's Shale Gas Regulations compared with the UK and Canada .	111
5.3.1 Disclosure and Transparency	114
5.3.2 Risk Identification and Assessment	120
5.3.2.1 Assessment of water resources	125
5.3.2.2 Assessment of Seismicity	128
5.3.2.3 Minimizing Fugitive Emissions during Hydraulic Fracturing	
5.3.3 Well Design and Construction	134
5.3.4 Independent Well Examination	
5.3.5 Hydraulic Fracturing Operations (Production Phase)	
5.3.6 Decommissioning and Abandonment	141
5.4 Conclusions	144
CHAPTER 6: AVOIDING THE ENVIRONMENTAL IMPACT OF SHALE GAS	149
6.1 Introduction	149
6.2 Sustainable Development	151
6.2.1 The Rio Declaration on Environment and Development	155
6.2.2 The Millennium Development Goals	157
6.2.3 The Sustainable Development Goals	158
6.3 The Principle of Prevention	162
6.3.1 Setting Thresholds	165
6.3.2 Use of Best Available Technologies	166
6.3.3 Environmental Impact Assessments	168
6.4 The Application of the Preventive Principle in South Africa	170
6.4.1 Setting Thresholds	170
6.4.2 Use of Best Available Technologies	
6.4.3 Environmental Impact Assessments	
6.5 The Application of the Preventive Principle in the United Kingdom	176
6.5.1 Setting Thresholds	
6.5.2 Use of Best Available Technologies	178
6.5.3 Environmental Impact Assessment	179
6.6 The Application of the Preventive Principle in Canada	180
6.6.1 Setting Thresholds	181
6.6.2 Use of Best Available Technologies	181
6.6.3 Environmental Impact Assessments	182
6.7 Conclusions	184
CHAPTER 7: MITIGATING THE NEGATIVE EFFECTS OF SHALE GAS	186

`

7.1 Introduction	186
7.2 The Precautionary Principle	188
7.3 The Precautionary Principle in International Environmental Law	191
7.4 The Application of the Precautionary Principle in South Africa	198
7.5 The Application of the Precautionary Principle in the United Kingdom	200
7.6 The Application of the Precautionary Principle in Canada	206
7.7 Conclusions	211
CHAPTER 8: REMEDIATING THE ENVIRONMENTAL IMPACT OF SHALE GAS	212
8.1 Introduction	212
8.2 Defining Pollution	213
8.3 The Polluter Pays Principle	215
8.3.1 The Polluter Pays Principle in International Environmental Law	216
8.3.2 Critical Assessment	218
8.4 Environmental Remediation in South Africa	219
8.4.1 Environmental Remediation in terms of the NEMA	220
8.4.2 Environmental Remediation in terms of the MPRDA	228
8.4.3 Environmental Remediation in terms of the National Water Act	229
8.5 Environmental Remediation in the United Kingdom	231
8.6 Environmental Remediation in Canada	235
8.7 Conclusions	238
CHAPTER 9: CONCLUSIONS	240
BIBLIOGRAPHY	249

、

TABLE OF FIGURES

Figure 1: Map of the South African Karoo and Areas Earmarked for Shale Gas Development	. 20
Figure 2: Horizontal and Vertically Fractured Wells	. 23
Figure 3: The Hydraulic Fracturing Process	. 25
Figure 4: Potential Water Sources for Shale Gas Development	. 29
Figure 5: The Typical Composition of Hydraulic Fracturing Fluids	. 31
Figure 6: An Example of a Shale Gas Well Design	. 33

LIST OF ABBREVIATIONS

API	American Petroleum Institute
CEAA	Canadian Environmental Assessment Act, 2012
CH₄	Methane
CO ₂	Carbon Dioxide
COP	Conference of Parties
DECC	Department of Energy and Climate Change (UK)
DMRE	Department of Mineral Resources and Energy (SA)
EIA	Environmental Impact Assessment
EU	European Union
GTL	Gas-to-Liquids
IEA	International Energy Administration
IPCC	Intergovernmental Panel on Climate Change
LDAR	Leak Detection and Repair
MPRDA	Mineral and Petroleum Resources Development Act, No. 28 of
	2002 (SA).
NDP	National Development Plan
NEMA	National Environmental Management Act, No. 107 of 1998 (SA).
NWA	National Water Act, No. 36 of 1998 (SA).
SA	South Africa
TCF	Trillion Cubic Feet
TKAG	Treasure the Karoo Action Group
UK	United Kingdom
UKCS	United Kingdom Continental Shelf

、

i.		
	UKOOG	UK Onshore Operators Group
	UNEP	United Nations Environmental Programme
	US	United States of America
	US.EIA	United States Energy Information Administration
	WMO	World Meteorological Organization

•

CHAPTER 1: INTRODUCTION

1.1 Introduction

The main question this thesis seeks to answer is 'how can shale gas be developed in an environmentally sustainable manner in South Africa?' The thesis has the following sub-questions:

- (i) Does the petroleum legal framework of South Africa provide adequately for shale gas exploration and production?
- (ii) How does (and should) the petroleum legal framework provide for the protection of the environment against the risks posed by hydraulic fracturing, the main technology used to exploit shale gas?

South Africa potentially contains vast amounts of shale gas.¹ It is estimated to hold 390 trillion cubic feet (tcf) of technically recoverable shale gas resources, thus ranking eighth in the world in terms of the resource size.² This is a significant gas resource, which if produced, could enhance the country's energy security of supply.³ This amount of gas could also aid the country's efforts to reduce its contribution to climate change, and transition towards more cleaner energy sources, such as wind and solar.⁴ It is however not known with sufficient scientific certainty whether shale gas exists in commercial quantities in South Africa,⁵ because there has been no recent exploration

¹ U.S. Energy Information Administration 'Technically Recoverable Shale Oil and Shale Gas Resources: An Assessment of 137 Shale Formations in 41 Countries outside the United States' (2013) available at *https://www.eia.gov/analysis/studies/worldshalegas/pdf/overview.pdf* at 10, accessed on 14 May 2022; Michiel O. de Kock, Nicolas J. Beukes, Elijah O. Adeniyi & Doug Cole et al 'Deflating the shale gas potential of South Africa's Main Karoo basin' (2017) at 1, 113 *S Afr J Sci* 9/10.

² U.S. Energy Information Administration 'Technically Recoverable Shale Oil and Shale Gas Resources: An Assessment of 137 Shale Formations in 41 Countries outside the United States' (2013) at 10, available at *https://www.eia.gov/analysis/studies/worldshalegas/pdf/overview.pdf*, accessed on 14 May 2022; R. Wait & R. Rossouw 'A Comparative Assessment of the Economic Benefits from Shale Gas Extraction in the Karoo, South Africa' (2014) at 2, *Southern African Business Review* 18(2).

³ Maarten J.de Wit 'The great shale gas debate in the Karoo' (2011) at 2, S Afr J Sci; 107(7/8); R. Wait & R. Rossouw 'A Comparative Assessment of the Economic Benefits from Shale Gas Extraction in the Karoo, South Africa' (2014) at 2, Southern African Business Review 18(2).

⁴ Don C Smith 'Unconventional Gas Development 2.0: Reducing the 'Environmental Footprint' Through New Technologies' in Donald Zillman, Martha Roggenkamp, Leroy Paddock & Lee Godden (eds) *Innovation in Energy Law and Technology: Dynamic Solutions for Energy Transitions* (2018) at 227 (Oxford University Press, London); Sally M. Benson & S. Julio Friedmann 'Carbon Capture, Utilization, and Storage: An Important Part of a Response to Climate Change' (2014) in *The Bridge-Linking Engineering and Society* at 42 (National Academy of Engineering, Washington) 44(1).

⁵ Maarten J.de Wit 'The great shale gas debate in the Karoo' (2011) at 1, 107 S Afr J Sci (7/8).

done to quantify the resource.⁶ No wells have recently been drilled and hydraulically fractured in the Karoo to assess the ability of the gas to flow when produced, which is key in the determination of whether shale gas in the Karoo could be exploited at a commercial scale.⁷

A recent study by South African geoscientists indicates that the shale gas resource potential of the Karoo could be as low as 13 - 49 tcf, due to heating by dolerite sills and metamorphism, which resulted in the thermal maturity of organic matter and the destruction of hydrocarbon potential.⁸ The authors of that study however acknowledge that the two wells upon which their study is based fall outside of the area deemed to be prospective in shale gas in the karoo, the so called 'sweet-spot area'.⁹ The 13 - 49 tcf of gas still represents a significant resource that could help sustain the South African petroleum industry.¹⁰ This is considering that the Mossgas (now PetroSA) gasto-liquids refinery in Mossel Bay, was developed based on one trillion cubic feet of natural gas found off the south coast of South Africa.¹¹ That amount of gas sustained the GTL refinery operations in Mossel Bay for 28 years from 1992 to 2020.¹²

This amount of gas is also significant in the broader context of national energy security of supply. Almost half of the country's current installed electricity generation capacity of 51.7 Gigawatt (GW)¹³ could be generated with 13 - 49 tcf of gas over a 20-year

⁶ Academy of Science of South Africa (ASSAf) South Africa's Technical Readiness to Support Shale Gas Development (2016) at 58 (ASSAf, Pretoria); M Burns, D Atkinson, O Barker & C Davis et al 'Scenarios and Activities' in Robert Scholes, Paul Lochner, Greg Schreiner & Luanita Snyman-Van der Walt (eds) Shale Gas Development in the Central Karoo: A Scientific Assessment of the Opportunities and Risks (2016) at 1-12 (CSIR, Pretoria).

⁷ Academy of Science of South Africa (ASSAf) South Africa's Technical Readiness to Support Shale Gas Development (2016) at 58 (ASSAf, Pretoria).

⁸ Michiel O. de Kock, Nicolas J. Beukes, Elijah O. Adeniyi & Doug Cole et al 'Deflating the shale gas potential of South Africa's Main Karoo basin' (2017) at 11, *S Afr J Sci*; 113 (9/10).

⁹ İbid,1.

¹⁰ Ibid.

¹¹ C. Geel, M. de Wet, AT Booth & H-M. Schulz et al 'Palaeo-Environment, Diagenesis and Characteristics of Permian Black Shales in the Lower Karoo Supergroup Flanking the Cape Fold Belt Near Jansenville, Eastern Cape, South Africa: Implications for the Shale Gas Potential of the Karoo Basin' (2015) at 250, *Geological Society of South Africa*.

¹² PetroSA 'Annual Report 2020 available from http://www.petrosa.co.za/discover_petroSA/Documents/PetroSA%20AR%202020%20Final.pdf at 61, accessed on 25 June 2022.

¹³ Department of Mineral Resources and Energy 'Integrated Resource Plan' (2019) available from *http://www.energy.gov.za/IRP/2019/IRP-2019.pdf* at 10, accessed on 27 June 2022.

period.¹⁴ The Karoo shale gas also has the potential to reduce the country's high carbon dioxide emissions, thus its climate change impact.¹⁵ Climate change is of a global concern because it is causing unprecedented changes to human and natural systems, such as rising sea levels, more frequent floods and droughts, loss of biodiversity and other types of extreme weather conditions.¹⁶ These changes are causing increasing risks to vulnerable countries, including to food and water scarcity, human migration and political instability in some regions.¹⁷

South Africa heavily relies on coal as a primary energy source.¹⁸ Coal accounts for about 75% of the country's currently installed electricity generation,¹⁹ and a third of liquid fuels (petrol, diesel, paraffin) production.²⁰ Coal is a major contributor to climate change, as a result, South Africa is ranked amongst the highest carbon dioxide emitting countries globally.²¹ It is the 12th largest emitter of carbon dioxide, contributing about 1.6 per cent of global emissions, and almost half of Africa's emissions.²² The exploitation of shale gas could provide new solutions to reduce the country's carbon dioxide emissions and mitigate climate change.²³ Natural gas is a cleaner energy

¹⁴ According to the National Development Plan, 24 tcf of gas could generate 20 GW of electricity over a 20-year period. National Development Plan 2030: Our future - make it work (2011) at 169, available at https://www.gov.za/sites/default/files/gcis_document/201409/ndp-2030-our-future-make-itwork.pdf, accessed on 15 May 2022.

¹⁵ R. Wait & R. Rossouw 'A Comparative Assessment of the Economic Benefits from Shale Gas Extraction in the Karoo, South Africa' (2014) at 2, *Southern African Business Review* 18(4).

¹⁶ IPCC 'Global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty' (2018) at 53, *In Press*.

¹⁷ International Energy Agency 'Africa Energy Outlook (2022) World Energy Outlook Special Report' available at *www.iea.org.weo* at 46, accessed on 18 July 2022.

¹⁸ Brett Cohen & Herald Winkler 'Greenhouse gas emissions from shale gas and coal for electricity generation in South Africa' (2014) at 1, *S Afr J Sci*; 110(3/4); Department of Mineral Resources and Energy 'Integrated Resource Plan' (2019) available at *http://www.energy.gov.za/IRP/2019/IRP-2019.pdf* at 10, accessed on 27 June 2022.

¹⁹ Department of Mineral Resources and Energy 'Integrated Resource Plan 2019' (2019) available at http://www.energy.gov.za/IRP/2019/IRP-2019.pdf at 10, accessed on 27 June 2022.

²⁰ Theresa Moyo 'Low Carbon and Climate Resilient Investments – Is South Africa Doing Enough?' (2016) at 129, *Africa Insight* 45(4).

²¹ Ibid.

²² Ibid.

²³ Mark D. Zoback & Douglas J. Arent 'Shale Gas Development: Opportunities and Challenges' (2014) at 18 in *The Bridge-Linking Engineering and Society* (Washington, National Academy of Engineering) 44(1).

source than coal, it produces 50 per cent less carbon dioxide than coal, and 30 per cent less than oil.²⁴

However, the exploitation of shale gas is contentious because hydraulic fracturing poses serious risks to human health and the environment.²⁵ Environmental concerns associated with hydraulic fracturing include its use of vast amounts of water and chemicals that could contaminate surface and groundwater sources.²⁶ Hydraulic fracturing produces a considerable amount of wastewater that requires treatment for safe disposal, the handling and disposal of which are a threat to surface waters.²⁷ The potential of shale gas development to emit methane gas, a potent greenhouse gas,²⁸ and induce seismic events are also of significant environmental concern.²⁹ Several contamination incidents, induced tremors and non-compliance with regulations in the earlier days of shale gas development in the United States spurred public concerns.³⁰ Public concern was worsened by the refusal of several industry players to disclose the chemicals used in the hydraulic fracturing process publicly,³¹ and led to more intense opposition, public protests, and lawsuits.³²

²⁴ Joseph Tawonezvi 'The Legal and Regulatory Framework for the EU's Shale Gas Exploration and Production Regulating Public Health and Environmental Impacts' (2017) at 4, 2(1) *Energy.Ecol.Environ*; Maarten J.de Wit 'The great shale gas debate in the Karoo' (2011) at 2, *S Afr J Sci*; 107(7/8).

²⁵ Michael Esposito 'Water Issues Set the Pace for Fracking Regulations and Global Shale Extraction' (2013) at 172, *Tulane Journal of International & Comparative Law* 22.

²⁶ Jake Hays, Madelon L. Finkel, Michael Depledge, Adam Law & Seth B.C. Shonkoff 'Considerations for the development of shale gas in the United Kingdom' (2015) *Science of the Total Environment;* U.S. EPA 'Hydraulic Fracturing for Oil and Gas: Impacts from the Hydraulic Fracturing Water Cycle on Drinking Water Resources in the United States (Final Report)' (2016), Washington, DC, EPA/600/R-16/236F, available at www.epa.gov./hfstudy at 37, accessed on 28 May 2022.

²⁷ Daniele Costa, Joao Jesus, David Branco, Anthony Danko & Antonio Fiuza 'Extensive Review of Shale Gas Environmental Impacts from Scientific Literature (2010 – 2015)' (2017) at 14583, *Environ Sci Pollut Res* 24.

²⁸ Robert W. Howarth 'A bridge no nowhere: methane emissions and the greenhouse gas footprint of natural Gas' (2014) at 1, *Energy Science and Engineering*.

²⁹ Matthew Cotton 'Fair fracking? Ethics and environmental justice in the United Kingdom shale gas policy and plannin' (2017) at 186, 22(2) *Local Environment*, 185-202.

³⁰ Council of Canadian Academies 'Environmental Impacts of Shale Gas Extraction in Canada' (2014) at 32, available at https://cca-reports.ca/wp-content/uploads/2018/10/shalegas_fullreporten.pdf, accessed on 3 October 2020.

³¹ Ibid.

³² Ibid.

This thesis investigates whether South Africa's petroleum legal framework provides adequately for the protection of the environment against the risks posed by shale gas development. These risks emanate from the use of the hydraulic fracturing technology to extract the resource. It posits that with a petroleum legal framework premised on the effective application of the principles of avoidance, mitigation, and remediation, shale gas could be developed in an environmentally responsible manner in South Africa, to enhance energy security of supply, and reduce the country's carbon dioxide emissions to the atmosphere.

The study acknowledges that renewable energy sources are more environmentally friendly, therefore more effective at mitigating climate change than shale gas.³³ However, renewable energy sources such as wind and solar cannot yet ensure an uninterrupted supply of energy, hence energy security of supply.³⁴ When the wind is not blowing, and the sun is not shining, no wind or solar energy is generated.³⁵ Moreover, the technologies required to store the electricity generated from these energy sources, which could aid security of supply during these non-generative periods are not yet fully developed.³⁶ A more robust energy security of supply, and climate change mitigation strategy for South Africa, thus, would be one that is more diversified, and includes renewable energy sources and shale gas.³⁷

³³ Sally M. Benson and S. Julio Friedmann 'Carbon Capture, Utilization, and Storage: An Important Part of a Response to Climate Change' in *The Bridge-Linking Engineering and Society* (2014) at 42 (Washington, National Academy of Engineering) 44(1); Don C Smith 'Unconventional Gas Development 2.0: Reducing the 'Environmental Footprint' Through New Technologies' in Donald Zillman, Martha Roggenkamp, Leroy Paddock & Lee Godden (eds) Innovation in Energy Law and Technology: Dynamic Solutions for Energy Transitions (2018) at 227 (Oxford University Press, London).

³⁴ Don C Smith 'Unconventional Gas Development 2.0: Reducing the 'Environmental Footprint' Through New Technologies' in Donald Zillman, Martha Roggenkamp, Leroy Paddock & Lee Godden *Innovation in Energy Law and Technology: Dynamic Solutions for Energy Transitions* (2018) at 224 (London, Oxford University Press); Steffen Nolte, Clair Geel, Alexandra Amann-Hildenbrand, Bernhard M.Krooss, Ralf Littke 'Petrophysical and geochemical characterization of potential unconventional gas shale reservoirs in the southern Karoo Basin, South Africa' (2019) at 1, *International Journal of Coal Geology* 212.

³⁵ Marloes Dignum, Aad Correlje, Eefje Cuppen, Udo Pesch and Behnam Taebi 'Contested Technolgoeis and Design for Values: The Case of Shale Gas' (2015) at 1174, *Sci Eng Ethics* 22.

³⁶ DA Young Kim 'A Lesson from the Shale Revolution in the United States, Canada, and China' (2017) at 749, *The Georgetown Envtl. Law Review* 29.

³⁷ National Development Plan 2030: Our future - make it work (2011) at 169, available at https://www.gov.za/sites/default/files/gcis_document/201409/ndp-2030-our-future-make-itworkr.pdf at, accessed on 28 May 2022.

The South African Constitution,³⁸ 'affords everyone the right to an environment that is not harmful to their health or well-being,³⁹ and to have the environment protected for the benefit of present and future generations'.⁴⁰ 'The environment must be protected through reasonable legislative and other measures that prevent pollution and ecological degradation,⁴¹ promote conservation,⁴² and secure ecologically sustainable development and use of natural resources, while promoting justifiable economic and social development'.⁴³ The Mineral and Petroleum Resources Development Act,⁴⁴ seeks to give effect to this mandate of the South African Constitution.⁴⁵ Attaining the delicate balance required for shale gas development, while mitigating the risks associated with shale gas extraction requires unconventional wisdom.

The interests to be balanced, and stakeholders involved are also manifold. Environmental interest groups are concerned about the impact of shale gas development on the natural environment, in particular on surface and groundwater resources.⁴⁶ Landowners are concerned about the impact on their farming and agricultural activities.⁴⁷ The interest of local communities is in the socio-economic benefits that shale gas might bring.⁴⁸ The South African government on the other hand has a keen interest in shale gas, since the exploitation thereof could aid national energy security of supply and mitigating climate change.⁴⁹

³⁸ Constitution of the Republic of South Africa, 1996.

³⁹ S 24(a) of the Constitution.

⁴⁰ S 24(b) of the Constitution.

⁴¹ S 24(b)(i) of the Constitution.

⁴² S 24(b)(ii) of the Constitution.

⁴³ S 24(b)(iii) of the Constitution.

⁴⁴ Minerals and Petroleum Resources Development Act, No. 28 of 2002.

⁴⁵ Section 3(3) of the Minerals and Petroleum Resources Development Act, No. 28 of 2002.

⁴⁶ P Hobbs, E Day, P Roserwarne & S Esterhuyse et al, 'Water Resources' in Robert Scholes, Paul Lochner, Greg Schreiner & Luanita Snyman-Van der Walt et al Shale Gas Development in the Central Karoo: A Scientific Assessment of the Opportunities and Risks (2016) at 5-9 (CSIR, Pretoria).

⁴⁷ N Oettle, L Lindeque, J du Toit & I Samuels et al 'Impacts on Agriculture' in Robert Scholes, Paul Lochner, Greg Schreiner & Luanita Snyman-Van der Walt et al, *Shale Gas Development in the Central Karoo: A Scientific Assessment of the Opportunities and Risks* (2016) at 8-7 (CSIR, Pretoria).

⁴⁸ Van Zyl H, Fakir S, Leiman T & Standish B 'Impact on the Economy' in Scholes R, Lochner P, Schreiner G & Snyman-Van der Walt L et al Shale Gas Development in the Central Karoo: A Scientific Assessment of the Opportunities and Risks (2016) at 10-6 (CSIR, Pretoria).

⁴⁹ National Development Plan 2030: Our future - make it work (2011) at 169.

South Africa started paying attention to its potential shale gas resource around 2010 following applications for exploration rights by Bundu Gas and Oil Exploration (Pty) Ltd (Bundu), Falcon Oil and Gas Limited (Falcon) and Shell Exploration Company B.V (Shell).⁵⁰ These applications triggered opposition from environmental interest groups such as the Treasure the Karoo Action Group (TKAG), the Centre for Environmental Rights (CER), and the Sustainable Alternatives to Fracking and Exploration Alliance (SAFE).⁵¹ These environmental interests groups contend that shale gas development would cause irreparable damage to the Karoo's biodiversity.⁵²

As a result, the Minister of Mineral Resources and Energy imposed a moratorium on shale gas exploration and established a Ministerial Task Team in December 2011, to advise government on the potential impact of using hydraulic fracturing to extract shale gas in the Karoo.⁵³ The Task Team produced a report recommending that normal exploration for shale gas (excluding hydraulic fracturing) be allowed under the current regulatory framework.⁵⁴ The Task Team also recommended that the current regulatory framework be augmented, and once in place, for hydraulic fracturing operations to be allowed under strict supervision from a Monitoring Committee, which the Task Team also recommended should be constituted by the government.⁵⁵ Cabinet approved these recommendations in September 2012 and constituted the Monitoring Committee.⁵⁶

52 Ibid.

⁵⁰ John Douglas Stern and others vs Minister of Mineral Resources, para 3&4, 2015 SA 5672/2015 (High Court of South Africa, Eastern Cape Division, Grahamstown).

⁵¹ Jeannie van Wyk 'Fracking in the Karoo: Approvals Required?' (2014) at 35, *Stellenbosch Law Review*.

⁵³ Minister of Mineral Resources v Stern & others (1369/2017) and Treasure the Karoo Action Group & another v Department of Mineral Resources and others para 11 (790/2018) [2019] ZASCA 99 (4 July 2019); Academy of Science of South Africa South Africa's Technical Readiness to Support Shale Gas Development (2016) at 26.

⁵⁴ Department of Mineral Resources 'Report on Investigation of Hydraulic Fracturing in the Karoo of South Africa' (2012) available at http://www.info.gov.za/view/DownloadFileAction?id=174015, at 68, accessed on 5 July 2022.

⁵⁵ Ibid.

⁵⁶ Minister of Mineral Resources v Stern & others (1369/2017) and Treasure the Karoo Action Group & another v Department of Mineral Resources and others para 14 (790/2018) [2019] ZASCA 99 (4 July 2019).

In 2014 the Petroleum Agency SA notified Bundu Gas, Falcon Oil and Shell that their applications for exploration rights would be processed, however they should revise their environmental management programmes to exclude hydraulic fracturing, and embark on a further public participation process in terms of s 79(4)(a) of the MPRDA.⁵⁷ Despite this, no exploration right for shale gas has yet been awarded in South Africa,⁵⁸ due to the lack of an appropriate petroleum legal framework to regulate shale gas exploration and production.⁵⁹ In essence, the Supreme Court of Appeals reviewed and set aside the regulations that would govern the use of hydraulic fracturing in shale gas development until such time that they were lawfully promulgated.⁶⁰

1.2 Research Objectives and Questions

1.2.1 Research Objective

The objective of this study is to identify critical shortcomings in the petroleum legal framework of South Africa in relation to shale gas exploration and exploitation and recommend measures to close the gaps in the petroleum legal framework.

1.2.2 Research Questions

This study seeks to answer the following question: How can shale gas be developed in an environmentally sustainable manner in South Africa? Engaging with this question entails considering at least the following two sub-questions:

- (iii) Does the petroleum legal framework of South Africa provide adequately for shale gas exploration and production?
- (iv) How does (and should) the petroleum legal framework provide for the protection of the environment against the risks posed by hydraulic fracturing, the main technology used to exploit shale gas?

⁵⁷ Ibid, para 15.

⁵⁸ Ibid, para 16.

⁵⁹ Ibid, para 56.

⁶⁰ Ibid, para 56.

1.2.3 Delimitations

This study is limited to the assessment of the adequacy of South Africa's petroleum legal framework for shale gas exploration and exploitation. While of interest to the broader shale gas discourse,⁶¹ this study does not examine the potential economic impact of shale gas development in South Africa. The study recognizes shale gas development as an important economic activity that needs to be appropriately regulated to ensure that it does not affect the environment adversely. Anyway, there has been no exploration done in search of shale gas in South Africa, except for the onshore exploration wells that were drilled in the Karoo in the 1960s.⁶² While the onshore exploration programme of the 1960s coincidentally discovered shale gas,⁶³ it is not known with sufficient scientific certainty whether shale gas exists in commercial quantities in the country.⁶⁴ This makes the assessment of the potential economic impact of shale gas in the country highly speculative.

The economic potential of South Africa's shale gas will therefore only be known once a significant number of wells have been drilled and commercial flow rates established.⁶⁵ Furthermore, the exploitation of shale gas can be quite costly, due to the technical complexities associated with horizontal drilling and hydraulic fracturing.⁶⁶ As a result, the economics of shale gas are dependent on the geology, accessibility, and proximity of the shale gas from transportation and processing infrastructure, such as gas pipelines, power plants and chemical plants among others.⁶⁷ Isolated shale gas

⁶¹ Lanre Aledeitan & Chisom Nwosu 'Shale Gas Development: Their Gain, Our Pain and the Cost' (2013) at 216, *Journal of Politics and Law* 3(6).

⁶² Academy of Science of South Africa (ASSAf) South Africa's Technical Readiness to Support Shale Gas Development (2016) at 58 (ASSAf, Pretoria); M Burns, D Atkinson, O Barker, C Davis & E Day et al 'Scenarios and Activities' in Robert Scholes, Paul Lochner, Greg Schreiner & Luanita Snyman-Van der Walt et al (eds) Shale Gas Development in the Central Karoo: A Scientific Assessment of the Opportunities and Risks (2016) at 1-12 (CSIR, Pretoria); Michiel O. de Kock, Nicolas J. Beukes, Elijah O. Adeniyi, & Doug Cole et al 'Deflating the shale gas potential of South Africa's Main Karoo basin' (2017) at 1, S Afr J Sci; 113 (9/10).

⁶³ Ibid.

⁶⁴ Maarten J.de Wit 'The great shale gas debate in the Karoo' (2011) at 2, S Afr J Sci; 107(7/8).

⁶⁵ Bob Scholes, Paul Lochner, Greg Schreiner, Luanita Snyman-Van der Walt & Megan de Jager (eds) Shale Gas Development in the Central Karoo: A Scientific Assessment of the Opportunities and Risks (2016) at 10, Pretoria: CSIR; Jan Glazewski 'Sustainable development and proposed shale extraction in South Africa: prospects and challenges' (2016) at 226 UK, Edward Elgar Publishing Limited.

⁶⁶ Lanre Aledeitan & Chisom Nwosu 'Shale Gas Development: Their Gain, Our Pain and the Cost' (2013) at 219, *Journal of Politics and Law* 3(6).

⁶⁷ Lanre Aledeitan & Chisom Nwosu 'Shale Gas Development: Their Gain, Our Pain and the Cost' (2013) at 219, *Journal of Politics and Law* 3(6); R. Wait & R. Rossouw 'A Comparative Assessment of

basins, such as the Karoo, can therefore be expected to have higher development and production costs, due to lack of infrastructure and scarcity of water.⁶⁸

1.3 Methodology

This study relies on doctrinal analysis because there has been limited scholarly engagement with the petroleum legal framework of South Africa, within the context of shale gas exploration and exploitation. The study compares the petroleum legal frameworks of South Africa with those of the United Kingdom (UK) and Canada, which are more mature petroleum jurisdictions, therefore have relatively advanced legal frameworks for petroleum extraction. It uses the environmental legal principles of avoidance (prevention principle), mitigation (precautionary principle) and remediation (polluter-pays principle) as comparative themes.

Comparative law is concerned with a comparison of various legal systems to ascertain similarities and differences in the problems faced and solutions employed.⁶⁹ It enables the objective and systematic analysis of solutions that various legal systems offer to similar legal problems.⁷⁰ Using comparative law to study another country's legal style *"the system's history, mode of thought in legal matters, sources of law, and legal ideology*" makes it possible to understand, appreciate and evaluate the country of study's legal regime in a systematic way.⁷¹

There are inherent challenges with a comparison of legal systems between different jurisdictions.⁷² However, while a comparison of the legal rules of closely related legal systems may be intellectually meaningful, the minor differences potentially limit the

the Economic Benefits from Shale Gas Extraction in the Karoo, South Africa' (2014) at 3, *Southern African Business Review*; 18(2).

⁶⁸ Lanre Aledeitan & Chisom Nwosu 'Shale Gas Development: Their Gain, Our Pain and the Cost' (2013) at 219, *Journal of Politics and Law* 3(6).

⁶⁹ Peter de Cruz 'Comparative law in a changing world' (1999) 2nd ed at 7 (Cavendish Publishing Ltd: London); Imre Zajtay 'Aims and methods of comparative law' (1974) at 322, *Comparative and International Law Journal of Southern Africa* 07.

⁷⁰ Ibid.

⁷¹ Peter de Cruz 'Comparative law in a changing world' (1999) 2nd ed, at 7 (Cavendish Publishing Ltd: London); LG Baxter 'Pure comparative law and legal science in a mixed legal system' (1983) at 85, *Comparative and International Law Journal of Southern Africa* 16.

⁷² Frank Bates 'Comparative common law: a justification (1981) at 259, *Comparative and International Law Journal of Southern Africa* 14(3).

significance of the comparative assessment.⁷³ Nonetheless, there are features of petroleum law that are international in character, which help mitigate the difficulties associated with comparative international law.⁷⁴ Examples of the international character of petroleum law include: first, the affirmation of the sovereignty of states over their natural resources.⁷⁵ Secondly, the ownership of petroleum in situ.⁷⁶ Thirdly, the licensing of petroleum rights,⁷⁷ and fourthly, access to surface land for the purpose of exploration and production of petroleum resources.⁷⁸

1.4 Motivation for Choice of Comparative Jurisdictions

South Africa and Canada are former British colonies, therefore their legal systems have their historical roots in the common law of England.⁷⁹ The common law systems of South Africa, the UK and Canada historically adhered to the Roman-law maxim "*cuius est solum eius et usque ad coelum et ad inferos*",⁸⁰ which affirms mineral rights as belonging to the landowner.⁸¹ This changed in South Africa with the promulgation of the MPRDA.⁸² Nonetheless, all three legal systems recognize minerals in situ as public property.⁸³ Unsevered mineral and petroleum resources in South Africa are the common heritage of the people of South Africa, thus ownership thereof vests in the nation, with the State as custodian thereof.⁸⁴ The State therefore grants petroleum rights to private players on application for such rights.⁸⁵

⁷³ Ibid.

⁷⁴ Tina Hunter, Legal Regulatory Framework for the Sustainable Extraction of Australian Offshore Petroleum Resources – A Critical Functional Analysis (2010) at 33, PhD Thesis, University of Bergen.

⁷⁵ UN, General Assembly resolution 1803 (XVII) 'Permanent Sovereignty over Natural Resources' (1962); United Nations 'The Rio Declaration on Environment and Development' (1992) Principle 2.

⁷⁶ Minerals and Petroleum Resources Development Act, No. 28 of 2002, s 3(1); Petroleum Act, 1998, s 2(1); Canada Petroleum Resources Act, 1985.

⁷⁷ Minerals and Petroleum Resources Development Act, No. 28 of 2002, s 3(1); Petroleum Act, 1998, s 2(1); Canada Petroleum Resources Act, 1985.

⁷⁸ Minerals and Petroleum Resources Development Act, No. 28 of 2002, s 3(1); Petroleum Act, 1998, s 2(1); Canada Petroleum Resources Act, 1985.

⁷⁹ PJ Badenhorst 'Ownership of Minerals In situ in South Africa: Australian Darning to the Rescue' (2010) at 646, *SALJ* 127(4).

⁸⁰ Ìbid.

⁸¹ Elmarie van der Schyff 'South African mineral law: A historical overview of the State's regulatory power regarding the exploitation of minerals, 2012, at 133, *New Contree* 64

⁸² Minerals and Petroleum Resources Development Act, No. 28 of 2002, s 3(1)

⁸³ Minerals and Petroleum Resources Development Act, No. 28 of 2002, s 3(1); Petroleum Act, 1998, s 2(1); Canada Petroleum Resources Act, 1985.

⁸⁴ Minerals and Petroleum Resources Development Act, No. 28, 2002, s 3(2)(a).
⁸⁵ Ibid.

The ownership of petroleum in the sub-surface in the UK and Canada on the other hand vest with the Crown.⁸⁶ Similar to South Africa, the ownership of land in the UK and Canada does not confer the rights to the petroleum below the surface, rather the Crown has the exclusive right to the petroleum and can issue rights for the exploration and production thereof.⁸⁷ South Africa, the UK, and Canada's environmental legal frameworks recognize the need for sustainable development.⁸⁸ These legal frameworks furthermore embed the prevention principle,⁸⁹ the precautionary principle,⁹⁰ and the polluter pays principle,⁹¹ which are used as comparative themes in this thesis. In terms of jurisprudence, environmental legal principles are important in limiting the application of arbitrary power, thus ensuring that the administration of environmental decision making is more rational.⁹²

Moreover, Canada followed the United States in producing shale gas on a commercial scale,⁹³ and remains the second largest producer of shale gas globally.⁹⁴ Unconventional gas production (shale gas and tight gas) constitutes more than 50% of total natural gas production in Canada.⁹⁵ Shale gas and tight gas (unconventional resources which utilize horizontal drilling and hydraulic fracturing to exploit) production in Canada occurs mainly in British Columbia, Alberta, New Brunswick, Nova Scotia

⁸⁶ Jill Morgan Sustainability and stakeholder participation: shale gas extraction in the United Kingdom in James R. May & John C. Dernbach Shale Gas and the Future of Energy: Law and Policy for Sustainability (2016) at 144 (eds) (Edward Elgar Publishing Limited, UK); Petroleum Act, 1998, s 2(1); Canada Petroleum Resources Act, 1985

⁸⁷ Ibid, Minerals and Petroleum Resources Development Act, No. 28, 2002, s 3(2)(a).

⁸⁸ National Environmental Management Act, No.107 of 1998; Environmental Protection Act 1990; Canadian Environmental Protection Act, 1999.

⁸⁹ J. Verschuuren 'Sustainable Development and the Nature of Environmental Legal Principles' (2007) at 1, *Potchefstroom Electronic Law Journal* (1); Jan Glazewski and Lisa Plit 'Towards the application of the precautionary principle in South African law' (2015) at 194, *Stellenbosch Law Review* 26(1).

⁹⁰ United Nations 'The Rio Declaration on Environment and Development' (1992) Principle 15.

⁹¹ United Nations 'The Rio Declaration on Environment and Development' (1992) Principle 16.

⁹² Paul G.W Henderson 'Some thoughts on distinctive principles of South African Environmental Law' (2001) at 141, South African Journal of Environmental Law and Policy 8(2).

⁹³ Jiehui Yuan, Dongkun Luo & Lianyong Feng 'A review of technical and economic evaluation techniques for shale gas development' (2015) at 50, *Applied Energy*; Jan Glazewski & Surina Esterhuyse *Hydraulic Fracturing in the Karoo: Critical legal and Environmental Perspectives* (2016) at 22 (Claremont, Juta and Company (Pty) Ltd); Leonie Reins 'The Shale Gas Extraction Process and Its Impacts on Water Resources' (2011) at 300, *Review of European Community & International Environmental Law* 20 (3).

⁹⁴ DA Young Kim 'A Lesson from the Shale Revolution in the United States, Canada, and China' (2017) at 748, *The Georgetown Envtl. Law Review* 29.

⁹⁵ Government of Canada, Natural Resources Canada: Exploration and Production of Shale and Tight Resources, 2016, available at https://www.nrcan.gc.ca/our-natural-resources/energy-sourcesdistribution/clean-fossil-fuels/natural-gas/shale-tight-resources-canada/exploration-and-productionshale-and-tight-resources/17677, accessed on 9 February 2022.

and Quebec.⁹⁶ Systematically developed with the increasing exploitation of shale, Canada has a progressive shale gas regulatory framework that seeks to address the environmental concerns associated with shale gas exploitation.⁹⁷ Valuable lessons can thus be learned from Canada's shale gas regulatory framework.

Similarly, the UK is an appropriate jurisdiction from which South Africa can draw lessons. Although the exploration for shale gas in the UK is still at infancy,⁹⁸ the UK's experience of hydraulic fracturing and directional drilling for non-shale applications spans several decades.⁹⁹ Over 2000 wells have been drilled onshore the UK since the 1970s, and at least 200 of those wells have been hydraulically fractured to enhance oil and gas recovery.¹⁰⁰ Advances in directional drilling enabled the development of the Wytch Farm, Europe's largest onshore field in 1979.¹⁰¹ Most onshore oil production in the UK came from this giant oil field, which had over 200 wells drilled, producing over 500 million barrels of cumulative oil reserves.¹⁰²

The UK has at least 60 years of regulating onshore and offshore oil and gas exploration and production activities.¹⁰³ It has periodically reviewed its petroleum regulatory framework, thus has a stringent regulatory framework, which is being augmented to

⁹⁶ Ibid.

⁹⁷ Jan Glazewski & Surina Esterhuyse *Hydraulic Fracturing in the Karoo: Critical legal and Environmental Perspectives* (2016) at 22 (Claremont, Juta and Company (Pty) Ltd).

⁹⁸ John Paterson & Tina Hunter 'Shale Gas Law and Regulation in the United Kingdom' in Tina Hunter (ed) Handbook of Shale Gas Law and Policy: Economics, Access, Law and Regulation in Key Jurisdictions (2016) at 282, Energy & Law 18 (Intersentia Ltd, Cambridge: United Kingdom).

⁹⁹ Eike Albrecht and Dorte Schneemann 'Fracking in the United Kingdom: Regulatory Challenges between Resource Mobilisation and Environmental Protection' (2014) at 239, Carbon & Climate Law Review 8(4); John Paterson & Tina Hunter 'Shale Gas Law and Regulation in the United Kingdom' in Tina Hunter (ed) Handbook of Shale Gas Law and Policy: Economics, Access, Law and Regulation in Key Jurisdictions (2016) at 282, Energy & Law 18 (Intersentia Ltd, Cambridge: United Kingdom.

¹⁰⁰ John Paterson & Tina Hunter 'Shale Gas Law and Regulation in the United Kingdom' in Tina Hunter (ed) Handbook of Shale Gas Law and Policy: Economics, Access, Law and Regulation in Key Jurisdictions (2016) at 282, Energy & Law 18 (Intersentia Ltd, Cambridge: United Kingdom); Eike Albrecht & Dorte Schneemann 'Fracking in the United Kingdom: Regulatory Challenges between Resource Mobilisation and Environmental Protection' (2014) at 239, Carbon & Climate Law Review 8(4); The Royal Society and Royal Academy of Engineering 'Shale gas extraction in the UK: a review of hydraulic fracturing (2012) available from https://royalsociety.org/-/media/policy/projects/shalegasextraction/2012-06-28-shale-gas.pdf at 17, accessed on 3 August 2022.

¹⁰¹ Ibid.

¹⁰² The Royal Society and Royal Academy of Engineering, Shale gas extraction in the UK: a review of hydraulic fracturing (2012) available at https://royalsociety.org/-/media/policy/projects/shalegasextraction/2012-06-28-shale-gas.pdf at 17, accessed on 3 August 2022.

¹⁰³ Ibid.

provide for shale gas exploration and production.¹⁰⁴ In fact, the UK government proposed fiscal and legislative measures to facilitate shale gas exploration.¹⁰⁵ However, public concerns regarding the negative environmental impacts of shale gas such as on water resources and climate change have ledd to minimal exploration activity.¹⁰⁶

1.5 Significance of this Study

South Africa has significant security of energy supply challenges.¹⁰⁷ The country has a shortage of power supply, demonstrated by electricity supply cuts (rolling blackouts) over the last few years.¹⁰⁸ Furthermore, the country is overly reliant on coal in terms of its energy supply.¹⁰⁹ Coal is the greatest emitter of carbon dioxide, which is a major contributor to global climate change.¹¹⁰ Technological advancements, particularly the use of horizontal drilling combined with hydraulic fracturing,¹¹¹ improved the United States of America's energy security, and reduced its carbon dioxide emissions to the atmosphere.¹¹² Between 2000 and 2014, the United States reduced its carbon dioxide its carbon dioxide emissions by 18 per cent from the 1990 climate change baseline.¹¹³ The adaptation of the hydraulic fracturing technology to mitigate its environmental risks is poised to

¹⁰⁴ Jan Glazewski & Surina Esterhuyse 'Hydraulic Fracturing in the Karoo: Critical legal and Environmental Perspectives' (2016) at 23 (Claremont, Juta and Company (Pty) Ltd).

¹⁰⁵ Jill Morgan 'Sustainability and stakeholder participation: shale gas extraction in the United Kingdom' at 145 in James R. May and John C. Dernbach Shale Gas and the Future of Energy: Law and Policy for Sustainability (2016) Edward Elgar Publishing Limited, UK.

¹⁰⁶ Ibid; John Paterson and Tina Hunter 'Shale Gas Law and Regulation in the United Kingdom' in Tina Hunter (ed) Handbook of Shale Gas Law and Policy: Economics, Access, Law and Regulation in Key Jurisdictions (2016) at 282, Energy & Law 18 (Intersentia Ltd, Cambridge: United Kingdom).

¹⁰⁷ Brett Cohen & Herald Winkler 'Greenhouse gas emissions from shale gas and coal for electricity generation in South Africa' (2014) at 4, *S Afr J Sci*; 110(3/4).

¹⁰⁸ Hugo Meyer van den Berg & Hanri Mostert 'Challenges to Regulating Hydraulic Fracturing in South Africa: Technological Innovation and Law Making for Climate Change at the Crossroads' in Donald Zillman, Martha Roggenkamp, Leroy Paddock & Lee Godden *Innovation in Energy Law and Technology: Dynamic Solutions for Energy Transitions* (2018) at 258 (London, Oxford University Press).

¹⁰⁹ Brett Cohen & Herald Winkler 'Greenhouse gas emissions from shale gas and coal for electricity generation in South Africa' (2014) at 4, *S Afr J Sci*; 110(3/4).

¹¹⁰ Maarten J.de Wit 'The great shale gas debate in the Karoo' (2011) at 2, S Afr J Sci; 107(7/8).

¹¹¹ Lanre Aledeitan & Chisom Nwosu 'Shale Gas Development: Their Gain, Our Pain and the Cost' (2013) at 217, *Journal of Politics and Law* 3(6)

¹¹² Paolo D. Farah & Riccardo Tremolada 'A Comparison between Shale Gas in China and Unconventional Fuel Development in the United States: Water, Environmental Protection, and Sustainable Development' (2016) at 581, 41 Brook. J. Int'l L 579.

¹¹³ Administration of Donald J. Trump, Remarks Announcing United States Withdrawal From the United Nations Framework Convention on Climate Change Paris Agreement (2017) at 6, Authenticated U.S. Government Information (GPO) - Daily Compilation of Presidential Documents.

catalyse the development of shale gas globally.¹¹⁴ Therefore, the adoption of a petroleum legal framework that integrates the environmental legal principles of prevention, mitigation and remediation could enable the sustainable development of shale gas in South Africa.

1.6 Thesis Structure

This thesis has 9 Chapters. Chapter 1 covers the aims, objectives, and methodology of the research. Chapter 2 provides an overview of the technical aspects of shale gas extraction. It focuses on the technologies used to produce shale gas, such as horizontal drilling and hydraulic fracturing, and the associated environmental risks. Chapter 3 examines the public participation provisions within the relevant legal framework in South Africa and whether the effective implementation thereof could aid the societal acceptance of shale gas development. Chapter 4 reviews the international climate change regime, under the United Nations Framework Convention on Climate Change (UNFCCC).¹¹⁵ An understanding of the international climate change regime, and South Africa's commitment thereto are important to properly contextualise the role shale gas could play in climate change mitigation.

Chapter 5 reviews the Regulations for Petroleum Exploration and Production (Hydraulic Fracturing Regulations), which were gazetted in 2015 to regulate the use of hydraulic fracturing in South Africa. These are examined, as part of the broader assessment of the adequacy of the South African petroleum legal framework to regulate shale gas extraction. Chapter 6 focuses on Sustainable Development, a cornerstone of international environmental law. The chapter furthermore conducts a comparative assessment of the South African petroleum and environmental legal frameworks with those of the United Kingdom and Canada, using avoidance as the comparative theme. The Principle of Prevention is core to avoidance therefore is a key focus in Chapter 6.

¹¹⁴ Maarten J.de Wit 'The great shale gas debate in the Karoo' (2011) at 2, S Afr J Sci; 107(7/8).

¹¹⁵ United Nations 'United Nations Framework Convention on Climate Change' (1992) available at https://unfccc.int/resource/docs/convkp/conveng.pdf, accessed on 11 June 2022.

Chapter 7 is a comparative assessment of the petroleum and environmental legal frameworks of the comparative jurisdictions using mitigation as a comparative theme. Central to mitigation is the Precautionary Principle, which advocates for uncertainty to be factored into environmental decision-making. Chapter 8 is a comparative assessment of the application of the Polluter-Pays Principle in the comparative jurisdictions, to ascertain whether the principle could be used as a mechanism to deter or remediate environmental harm that may arise from shale gas development in South Africa.

Chapter 9 is the concluding chapter of this thesis. It brings together the key findings of this research. This study finds the petroleum legal framework of South Africa to be inadequate to regulate shale gas exploration and exploitation, since the MPRDA does not provide explicitly for the mitigation of the risks associated with hydraulic fracturing.¹¹⁶ Furthermore the Regulations for Petroleum Exploration and Production which were gazetted in 2015 to regulate the use of hydraulic fracturing were set aside by the Eastern Cape High Court in Grahamstown in 2015,¹¹⁷ and further invalidated by the Supreme Court of Appeals in 2019.¹¹⁸

This research further finds that the environmental legal principles of prevention, mitigation and remediation, upon which this comparative assessment is based, are already embedded in the South African environmental legal framework. Therefore, the appropriate petroleum legal framework to guide shale gas development in South Africa would be one that provides for the rigorous application of these principles, in an integrated and complementary manner, with close monitoring and enforcement. Furthermore, the capacity of the relevant regulatory agencies will have to be enhanced to ensure effective compliance monitoring and enforcement.

¹¹⁶ W du Plessis 'Regulation of Hydraulic Fracturing in South Africa: A Project Lifecycle Approach' (2015) at 1441, *Potchefstroom Electronic Law Journal* 18(5).

¹¹⁷ John Douglas Stern and others v Minister of Mineral Resources, 2015 SA 5672/2015 (High Court of South Africa, Eastern Cape Division, Grahamstown).

¹¹⁸ Minister of Mineral Resources v Stern & others (1369/2017) and Treasure the Karoo Action Group & another v Department of Mineral Resources and others para 53(2)(a) (790/2018) [2019] ZASCA 99 (4 July 2019).

CHAPTER 2: THE TECHNICAL ASPECTS OF SHALE GAS

2.1 Introduction

This chapter focuses on the technical aspects of shale gas development and the associated environmental risks. It outlines the geological evolution of shale gas, and the techniques associated with its extraction, namely, horizontal drilling and hydraulic fracturing. It attempts to explain the difficulty of choices to be made in South Africa, related to whether and how to engage with hydraulic fracturing for shale gas development, considering the concerns being raised in the South African context. Before delving into the intricacies of shale gas, this chapter defines petroleum and the exploration and production thereof in general.

In South Africa, petroleum is defined as 'any liquid or solid hydrocarbon or combustible gas that is existing in a natural condition in the earth's crust'.¹¹⁹ Accordingly, 'petroleum does not include coal, bituminous shale or other stratified deposits from which oil can be obtained by destructive distillation or gas arising from a marsh or other surface deposit'.¹²⁰ The exploitation of petroleum found beneath the earth's surface generally occurs in three main stages, these are, exploration; production (which includes appraisal and development); and decommissioning (which includes rehabilitation).¹²¹ Exploration involves the acquisition or reprocessing of seismic data to identify geological structures that may be suitable for exploratory drilling, named prospects, to determine the presence of oil and gas resources.¹²² During appraisal, exploration prospects are firmed up using extended well tests and additional drilling, to determine if the development of the reservoirs will be economically feasible.¹²³

 ¹¹⁹ Mineral and Petroleum Resources Development Act, No.28 of 2002, s 1; PJ Badenhorst & RW Shone "Minerals, "Petroleum" and "Operations" in the Mineral and Petroleum Resources Development Act of 2002: A Geologist as Devil's Advocate for a Change? (2008) at 33, OBITER.

¹²⁰ Ibid.

¹²¹ Academy of Science of South Africa (ASSAF) South Africa's Technical Readiness to Support Shale Gas Development (2016) at 30 (ASSAf, Pretoria).

¹²² Mineral and Petroleum Resources Development Act, No.28 of 2002, s 1.

¹²³ Bob Scholes, Paul Lochner, Greg Schreiner & Luanita Snyman-Van der Walt et al Shale Gas Development in the Central Karoo: A Scientific Assessment of the Opportunities and Risks (2016) at 1-52 (CSIR, Pretoria).

During field development and production, infrastructure is developed to enable the production of oil and gas from the reservoirs until the economical reserves are depleted.¹²⁴ Lastly, the decommissioning and rehabilitation stage entails the abandonment of wells and related pipelines, the removal of surface production facilities, and the restoration of the area disturbed by the oil and gas production activities to an environmentally sensible state.¹²⁵

2.2 What is Shale Gas

Shales are a common type of sedimentary rocks formed from deposits of mud, silt, clay and organic matter in low-energy environments, such as lakes, lagoons, tidal flats and deep-water basins, where the fine-grained clay particles fall out of suspension in quiet waters.¹²⁶ Algae, plant, and animal-derived organic debris are mixed with these fine-grained sediments when they are deposited.¹²⁷ When the mud turns into shales over geologic times, millions of years, bacteria metabolize the organic matter and release biogenic gas (methane – CH₄).¹²⁸ Natural gas is also formed when deeply buried organic matter is cracked by high pressure and heat, converting it into thermogenic methane gas.¹²⁹ The very fine sheet-like clay mineral grains and laminated layers of sediment result in a rock with permeability that is limited horizontally and extremely limited vertically.¹³⁰ This low permeability means that gas trapped in shale cannot move easily within the rock,¹³¹ therefore require technologies such as hydraulic fracturing to create fractures within the rock thereby enabling the gas to flow.¹³²

¹²⁴ Ibid.

¹²⁵ Ibid.

¹²⁶ J. Daniel Arthur, Brian Bohm and David Cornue 'Environmental Considerations of Modern Shale Gas Development' (2009) p2, SPE Paper No. 122931, Presented at SPE Annual Technical Conference and Exhibition, New Orleans, Louisiana, USA, 4-7 October 2009; Maarten J.de Wit 'The great shale gas debate in the Karoo' (2011) at 2, *S Afr J Sci*; 107(7/8) Art No. 791.

¹²⁷ İbid. ¹²⁸ Ibid.

¹²⁹ Academy of Science of South Africa South Africa's Technical Readiness to Support Shale Gas Development (2016) at 23 (ASSaf, Pretoria).

¹³⁰ Ibid, at 24.

 ¹³¹ J.C. Shaw, M.M. Reynolds, L.H. Burke 'Shale Gas Production Potential and Technical Challenges in Western Canada' (2006) at 2, Paper 2006-193, presented to the Petroleum Society's 7th Canadian International Petroleum Conference, Calgary, Alberta, Canada, 13-15 June.
 ¹³² Ibid.

Shale gas is regarded as an unconventional resource because natural gas was originally regarded as originating from shales as source rocks, then migrate into porous and permeable formations, reservoirs, which are then drilled into to produce the gas.¹³³ Shale gas on the other hand involves drilling directly into the source rock (the shale) to produce the gas.¹³⁴ In fact, shales constitute about 80% of all drilled sections of oil and gas wells, because they overlie (serve as cap rocks or seal) or underlie (serve as source rocks) most hydrocarbon bearing reservoirs.¹³⁵ In terms of its chemical composition, as is the case with conventional natural gas, shale gas comprises approximately 90% methane and small amounts of slightly heavier gases such as ethane, propane, and butane.¹³⁶ When burnt, natural gas releases significant amounts of energy, while emitting less carbon dioxide into the atmosphere than oil and coal.¹³⁷

2.3 Shale Gas in the Karoo

As stated in Chapter 1 of this thesis, the South African Karoo (figure 1) potentially holds 390 tcf of technically recoverable shale gas resources, and is ranked eighth in the world in terms of the resource size.¹³⁸ To the contrary, and based on wells falling outside of the area deemed prospective in shale gas in the Karoo, a more recent study by South African geoscientists indicates that the shale gas resource potential of the Karoo could be as low as 13 tcf.¹³⁹ This is due to heating by dolerite sills and metamorphism, which resulted in the thermal maturity of organic matter and the destruction of hydrocarbon potential.¹⁴⁰ Even 13 tcf of shale gas is significant potential

¹³³ Michael Esposito, Water Issues Set the Pace for Fracking Regulations and Global Shale Extraction (2013) at 170, 22, Tulane Journal of International & Comparative Law.

¹³⁴ Ibid.

¹³⁵ Audrey Ougier-Simonin, Francois Renard, Claudine Boehm and Sandrine Vidal-Gilbert 'Microfracturing and microporosity in shales' (2016) at 4, *Earth Science Reviews*.

¹³⁶ A.M. Dayal 'Shale' at 7, in Anurodh Mohah Dayal and Devleena Mani *Shale Gas: Exploration and Environmental and Economic Impacts* (2017) Elsevier, Oxford, United Kingdom.

¹³⁷ J. Daniel Arthur, Brian Bohm and David Cornue 'Environmental Considerations of Modern Shale Gas Development' (2009) p2, SPE Paper No. 122931, Presented at SPE Annual Technical Conference and Exhibition, New Orleans, Louisiana, USA, 4-7 October 2009.

¹³⁸ U.S. Energy Information Administration 'Technically Recoverable Shale Oil and Shale Gas Resources: An Assessment of 137 Shale Formations in 41 Countries outside the United States' (2013) available at *https://www.eia.gov/analysis/studies/worldshalegas/pdf/overview.pdf*, accessed on 14/05/2022; R. Wait & R. Rossouw 'A Comparative Assessment of the Economic Benefits from Shale Gas Extraction in the Karoo, South Africa' (2014) at 2, *Southern African Business Review*; 18(2).

¹³⁹ Michiel O. de Kock, Nicolas J. Beukes, Elijah O. Adeniyi, Doug Cole, Annette E. Götz, Claire Geel & Frantz-Gerard Ossa 'Deflating the shale gas potential of South Africa's Main Karoo basin' (2017) at 11, *S Afr J Sci*; 113 (9/10), Art No. 2016-0331.

¹⁴⁰ Ibid.

that the South African government is interested to know whether indeed exists, and could be exploited commercially to enhance the country's energy security of supply in the transition towards more renewable energy sources.¹⁴¹

Figure 1: Map of the South African Karoo and Areas Earmarked for Shale Gas Development¹⁴²

The main Karoo is made up of sedimentary formations of the Karoo Supergroup, and covers an area of approximately 700,000 km², which represents more than half of South Africa's land surface.¹⁴³ Shale gas in the Karoo was formed some 275 million years ago, when deeply buried mud and organic matter, was transformed into natural

¹⁴¹ National Development Plan 2030: Our future - make it work (2011) at 169, available from https://www.gov.za/sites/default/files/gcis_document/201409/ndp-2030-our-future-make-itworkr.pdf, accessed on 15/05/2022.

¹⁴² Petroleum Agency SA 'Recent Advances in South Africa's Upstream Petroleum Sector – Unlocking the Onshore & Offshore Oil & Gas Potential' (2022) Presented to the Southern Africa Oil and Gas Conference, Cape Town, 15 September.

¹⁴³ Bob Scholes, Paul Lochner, Greg Schreiner, Luanita Snyman-Van der Walt & Megan de Jager, Shale Gas Development in the Central Karoo: A Scientific Assessment of the Opportunities and Risks (2016) at 1-29, Pretoria, CSIR.

gas and oil.¹⁴⁴ The free gas and oil escaped out of the Karoo rock formations, however, some gas may have remained preserved in the shale rock layers, named Prince Albert and White Hill Formations.¹⁴⁵

The Whitehill Formation is considered the most promising rock formation, due to its total organic carbon content, maturity, mineralogy, thickness and burial depth.¹⁴⁶ It has a total organic carbon content averaging 4.5 per cent,¹⁴⁷ maturity of 1 - 4.3 percent,¹⁴⁸ mineralogy with an average quartz of 50 percent; and is likely to be sufficiently thick, with average burial depth of 2 - 4.5 km.¹⁴⁹ The total organic content, thermal maturity and presence of natural fractures particularly determine whether a shale formation constitute a reservoir that has the potential to produce commercially.¹⁵⁰ Albeit characterised by lower total organic content, the underlying Prince Albert Formation is another encouraging rock formation that could extend the shale gas prospective area in the Karoo.¹⁵¹

The Karoo however has a high degree of geological risk and uncertainty, since the Cape Fold Belt thermal tectonism and deep burial along the southern margin of the Karoo Basin may have resulted in the over-cooking and destruction of porosity (the ability of the rock formation to store the gas) thus reducing the volume of gas originally in place.¹⁵² Further north, the intrusion of the Karoo dolerites during the Jurassic

¹⁴⁴ Academy of Science of South Africa (ASSAF) South Africa's Technical Readiness to Support Shale Gas Development (2016) at 25 (ASSAF, Pretoria).

¹⁴⁵ Ibid.

¹⁴⁶ Ibid, at 60.

¹⁴⁷ C. Geel, M. de Wet, AT Booth, H-M. Schulz and B. Horsfield 'Palaeo-Environment, Diagenesis and Characteristics of Permian Black Shales in the Lower Karoo Supergroup Flanking the Cape Fold Belt Near Jansenville, Eastern Cape, South Africa: Implications for the Shale Gas Potential of the Karoo Basin' (2015) at 259, *Geological Society of South Africa.*

¹⁴⁸ Michiel O. de Kock, Nicolas J. Beukes, Elijah O. Adeniyi, Doug Cole, Annette E. Götz, Claire Geel & Frantz-Gerard Ossa 'Deflating the shale gas potential of South Africa's Main Karoo basin' (2017) at 8, S Afr J Sci; 113 (9/10), Art No. 2016-0331.

¹⁴⁹ Maarten J.de Wit 'The great shale gas debate in the Karoo' (2011) at 3, S Afr J Sci; 107(7/8).

¹⁵⁰ M.Y. Soliman, Johan Daal and Loyd East 'Impact of Fracturing and Fracturing Techniques on Productivity of Unconventional Formations' (2012) at 2, SPE Paper No. 150949, Presented at the SPE/EAGE European Unconventional Resources Conference and Exhibition, Vienna, Austria, 20-22 March.

¹⁵¹ D.E Black, AT W.K. Booth and M.J de Wet 'Petrographic, geochemical and petro-physical analysis of the Collingham Formation near Jansenville, Eastern Cape, South Africa – potential cap rocks to shale gas in the Karoo' (2016) at 172, *South African Journal of Geology* 119.1 (171-186).

¹⁵² Bob Scholes, Paul Lochner, Greg Schreiner, Luanita Snyman-Van der Walt & Megan de Jager, Shale Gas Development in the Central Karoo: A Scientific Assessment of the Opportunities and Risks (2016) at 1-32, Pretoria, CSIR.

geological time (millions of years ago) may have had a similar effect, and may also have resulted in the explosive degassing of the shale and the compartmentalization of shale reservoirs.¹⁵³ To gain a better understanding of the Karoo's geology and the risks associated with the extraction of shale gas requires exploration that includes the drilling of wells. Such exploration will require the use of special techniques such as horizontal drilling and hydraulic fracturing, these are discussed below.

2.4 Horizontal Drilling

As illustrated in figure 2 below, horizontal drilling entails the drilling of a vertical section of a well from surface to a certain depth, where the wellbore is curved away from the vertical plane until it reaches the targeted shale formation.¹⁵⁴ The wellbore is then extended laterally within the shale formation to a specific location in the subsurface.¹⁵⁵ This allows the wellbore to contact greater amounts of the reservoir formation and existing fractures and thereby drain a much larger section of the shale reservoir relative to a vertical well.¹⁵⁶ Shale gas extraction through horizontal wells is also beneficial from an environmental perspective, because horizontal wells can be used to avoid sensitive areas such as wetlands and watercourses if gas beneath is targeted for extraction.¹⁵⁷ Furthermore, the environmental footprint associated with the extraction of shale gas is minimized through horizontal wells.¹⁵⁸ This is because horizontal well pads.¹⁵⁹ This minimizes potential habitat fragmentation and disruption of wildlife movement patterns, the visual landscape, and conflicts with other land uses such as forestry and agriculture.¹⁶⁰

¹⁵³ Ibid.

¹⁵⁴ Council of Canadian Academies 'Environmental Impacts of Shale Gas Extraction in Canada' (2014) at 37, available at https://cca-reports.ca/wp-content/uploads/2018/10/shalegas_fullreporten.pdf, accessed on 31 August 2022.

¹⁵⁵ Ibid.

¹⁵⁶ Ibid.

¹⁵⁷ Matthew D Alexander, Lining Qian, Tim A Ryan and John Herron 'Considerations for Responsible Gas Development of the Frederick Brook Shale in New Brunswick' (2011) at 8, Fundy Engineering and Atlantica Centre for Energy.

¹⁵⁸ Ibid.

¹⁵⁹ Ibid.

¹⁶⁰ Ibid.

Figure 2: Horizontal and Vertically Fractured Wells ¹⁶¹

Horizontal drilling is a crucial complementary technology to the hydraulic fracturing of shale formations, particularly since shales, are much thinner reservoirs compared to conventional reservoirs (sandstones and limestones).¹⁶² The long-lateral section of the horizontal well enables a much larger section of the shale formation to be accessed, therefore more gas to be produced from the shale.¹⁶³ The hydraulic fracturing technology is dealt with in section 2.5 below.

2.5 Hydraulic Fracturing

The exploitation of shale gas without the use of hydraulic fracturing is currently not possible.¹⁶⁴ This is because the shales which hold the gas do not have sufficient permeability, that is, the flow-path through which the gas can flow.¹⁶⁵ Cracking the shale rock formation through hydraulic fracturing creates the flow-paths required to produce the gas to the surface.¹⁶⁶ However, hydraulic fracturing poses serious risks to

¹⁶¹ Figure 2 was adapted from a schematic obtained from Steven Finley, Eugene Wexler & Robin Watts 'Shale Gas Workshop' (2014) available at www.lindeoilandgas.com, accessed on 31 August 2022.

¹⁶² M Burns, D Atkinson, O Barker, C Davis, L Day, A Dunlop, S Esterhuyse, Hobbs P, I McLachlan, H Neethling, N Rossou, S Todd, L Snyman-Van der Walt, E Van Huyssteen, S Adams, M de Jager, Z Mowzer and B Scholes 'Scenarios and Activities' (2016) at 1-9, in Bob Scholes, Paul Lochner, Greg Schreiner, Luanita Snyman-Van der Walt & Megan de Jager, *Shale Gas Development in the Central Karoo: A Scientific Assessment of the Opportunities and Risks* (Pretoria, CSIR).

¹⁶³ Ibid, at 1-10.

¹⁶⁴ Academy of Science of South Africa (ASSAf) South Africa's Technical Readiness to Support Shale Gas Development (2016) at 24 (ASSAF, Pretoria).

¹⁶⁵ Ibid.

¹⁶⁶ Ibid.

human health and the environment, if not mitigated.¹⁶⁷ The hydraulic fracturing process and evolution are outlined below.

2.6 Hydraulic Fracturing: Process and Evolution

Hydraulic fracturing (figure 3) commences once a well has been drilled and completed.¹⁶⁸ It involves the firing of explosive charges by an electric current to perforate holes at selected rock intervals where shale gas is to be produced.¹⁶⁹ Pumps are used to inject fracturing fluids, mainly water, proppant (sand), and small amounts of chemicals (e.g. hydrochloric acid, methanol, ethylene glycol, sodium hydroxide and others)¹⁷⁰ under high pressure into the well.¹⁷¹ The injection of the hydraulic fracturing fluids under pressure create the fractures in the shale formation.¹⁷² The newly formed fractures extend a few hundred meters into the rock formation and are kept open by the injected sand/proppant.¹⁷³ Additional fluids are pumped into the well to maintain pressure so that fracture development can continue and the sand can be carried deeper into the formation.¹⁷⁴

¹⁶⁷ Michael Esposito 'Water Issues Set the Pace for Fracking Regulations and Global Shale Extraction' (2013) at 172, *Tulane Journal of International & Comparative Law* 22.

¹⁶⁸ The Royal Society and Royal Academy of Engineering, Shale gas extraction in the UK: a review of hydraulic fracturing (2012) at 8, available from https://royalsociety.org/-/media/policy/projects/shalegasextraction/2012-06-28-shale-gas.pdf accessed on 03/08/2022; Council of Canadian Academies 'Environmental Impacts of Shale Gas Extraction in Canada' (2014) at 37, available at https://ccareports.ca/wp-content/uploads/2018/10/shalegas_fullreporten.pdf, accessed on 03/08/2022.

¹⁶⁹ Ibid.

¹⁷⁰ United States Environmental Protection Agency, *Hydraulic Fracturing for Oil and Gas: Impacts from the Hydraulic Fracturing Water Cycle on Drinking Water Resources in the United States* (2016) at 56, Office of Research and Development, Washington DC, available at www.epa.gov./hfstudy, accessed on 31/08/2022.

¹⁷¹ Jasmin Cooper, Laurence Stamford, and Adisa Azapagic 'Environmental Impacts of Shale Gas in the UK: Current Situation and Future Scenarios' (2014) at 1013, *Energy Technology* 2.

¹⁷² Ibid.

¹⁷³ Ibid.

¹⁷⁴ Ibid.

Figure 3: The Hydraulic Fracturing Process 175

Before a well is hydraulically fractured, a series of tests are conducted to ensure that the well, wellhead and fracturing equipment are in good working condition and will safely withstand the fracture treatment pressures and pump rates to protect the environment.¹⁷⁶ Well construction and fracture design standards are regulated to ensure that the operations are safe and the environment is protected.¹⁷⁷ South Africa does not yet have regulations for shale gas wells and hydraulic fracturing operations,¹⁷⁸ there is therefore a risk that these tests could fail in the absence of guidelines to ensure the integrity of the wells and fracturing equipment. This thesis

¹⁷⁵ Figure 3 was adapted from a schematic obtained from Michael Quentin Morton 'Unlocking the Earth – A Short History of Hydraulic Fracturing' (2013) 10(6) GEOExPro, available at http://www.geoexpro.com/articles/2014/02/unlocking-the-earth-a-short-history-of-hydraulicfracturing, accessed on 31 August 2022.

¹⁷⁶ J. Daniel Arthur, Brian Bohm & Davd Cornue 'Environmental Considerations of Modern Shale Gas Development' (2009) at 3, SPE Paper No. 122931, Presented to the SPE Annual Technical Conference and Exhibition, New Orleans, Louisiana, USA, 4-7 October; The Royal Society and Royal Academy of Engineering, Shale gas extraction in the UK: a review of hydraulic fracturing (2012) at 25, available from *https://royalsociety.org/-/media/policy/projects/shale-gas.pdf* accessed on 3 August 2022.

¹⁷⁷ Daniel Arthur, Brian Bohm & Davd Cornue 'Environmental Considerations of Modern Shale Gas Development' (2009) at 3, SPE Paper No. 122931, Presented to the SPE Annual Technical Conference and Exhibition, New Orleans, Louisiana, USA, 4-7 October.

¹⁷⁸ Minister of Mineral Resources v Stern & others (1369/2017) and Treasure the Karoo Action Group & another v Department of Mineral Resources and others para 53(2)(a) (790/2018) [2019] ZASCA 99 (4 July 20219).

therefore recommends the adoption of the precautionary approach, where hydraulic fracturing on a commercial scale will only be allowed once the appropriate regulations have been promulgated.

Hydraulic fracturing is not an entirely new technology,¹⁷⁹ the first shale gas well was drilled and hydraulically fractured in Fredonia, New York, USA in 1821, although in a less sophisticated form.¹⁸⁰ This predates the drilling of the first oil well by Edwin Drake in Titusville, US, by almost 40 years.¹⁸¹ From the 1860s to the 1920s, natural gas was produced in the Appalachian and Illinois basins from shallow and low-pressured fractured shales.¹⁸² In the 1930s, shale gas was produced in the Northern Michigan Basin through the use of hydraulic fracturing.¹⁸³ In its more sophisticated modern-day form, the use of hydraulic fracturing to stimulate conventional oil and gas wells dates back to 1947.¹⁸⁴

Another significant technological development necessary to enable further shale gas production was the development of downhole motors (when lowered into the well/borehole these motors help steer the drilling, since they turn the drill bit from the vertical to a horizontal direction) in the early 1970s.¹⁸⁵ This technology made directional drilling, thus the drilling of horizontal wells possible.¹⁸⁶ Recent innovations that combine hydraulic fracturing with horizontal drilling and related technologies

¹⁷⁹ Paul C. Stern, Thomas Webler & Mitchell J. Small 'Special Issue: Understanding the Risks of Unconventional Shale Gas Development' (2014), at 1, *Environmental Science & Technology*.

¹⁸⁰ Carla Tagliaferri, Roland Clift, Paola Lettieri & Chris Chapman 'Shale gas: a life-cycle perspective for UK production' (2016) at 2, *Int J Life Cycle Assess.*

¹⁸¹ J.C. Shaw, M.M. Reynolds, L.H. Burke 'Shale Gas Production Potential and Technical Challenges in Western Canada' (2006) at 2, Paper 2006-193, presented to the Petroleum Society's 7th Canadian International Petroleum Conference, Calgary, Alberta, Canada, 13-15 June.

¹⁸² Ibid.

¹⁸³ O. Hausberger, L.A Högn & K Soliman 'Management Decision Matrix for Shale Gas Projects in Europe (2012) at 1, SPE Paper No. 162921, Presented to the SPE Hydrocarbon, Economics, and Evaluation Symposium, Alberta, Calgary, 24 - 25 October.

¹⁸⁴ Peter Jones, David Hillier and Daphne Comfort 'Fracking and public relations: rehearsing the arguments and making the case' (2013) at 385, *J. of Public Affairs* 13, 384-390.

¹⁸⁵ O. Hausberger, L.A Högn & K Soliman 'Management Decision Matrix for Shale Gas Projects in Europe (2012) at 1, SPE Paper No. 162921, Presented to the SPE Hydrocarbon, Economics, and Evaluation Symposium, Alberta, Calgary, 24 - 25 October.

¹⁸⁶ Ibid.

(micro-seismic and other three-dimensional mapping techniques that were established in the 1980s),¹⁸⁷ made shale gas development more commercially viable in the US.¹⁸⁸

The combination of these technologies to drill the first shale gas well in the Barnett shale by Michell Energy kick-started the shale gas revolution.¹⁸⁹ As a result more than one million shale gas wells have been hydraulically fractured to date, with about 20,000 new wells being hydraulically fractured in the United States annually.¹⁹⁰ It is fairly recently that the evolution of hydraulic fracturing and its more widespread use in areas that were not familiar to oil and gas activities has led to concerns.¹⁹¹ These concerns have influenced the response of countries newly identified for shale gas exploitation, such as South Africa (section 2.7 below outlines these risks and concerns).

2.7 Hydraulic Fracturing: Risks and Concerns

The following sections provide a discussion of the main concerns associated with hydraulic fracturing, particularly the risks it poses to human health and the environment.¹⁹² Environmental concerns associated with hydraulic fracturing include its use of vast amounts of water and chemicals that could contaminate surface and groundwater sources.¹⁹³ Secondly, it produces a considerable amount of wastewater that requires treatment for safe disposal, otherwise pose a risk to surface waters.¹⁹⁴

¹⁸⁷ Ibid.

¹⁸⁸ Michael Esposito, Water Issues Set the Pace for Fracking Regulations and Global Shale Extraction (2013) at 172, 22, Tulane Journal of International & Comparative Law.

¹⁸⁹ O. Hausberger, L.A Högn & K Soliman 'Management Decision Matrix for Shale Gas Projects in Europe (2012) at 1, SPE Paper No. 162921, Presented to the SPE Hydrocarbon, Economics, and Evaluation Symposium, Alberta, Calgary, 24 - 25 October. Symposium, Alberta, Calgary, 24 - 25 October.

¹⁹⁰ United States Environmental Protection Agency, *Hydraulic Fracturing for Oil and Gas: Impacts from the Hydraulic Fracturing Water Cycle on Drinking Water Resources in the United States* (2016) at ES-6, Office of Research and Development, Washington DC, available at www.epa.gov./hfstudy, accessed on 31/08/2022.

¹⁹¹ Paul C. Stern, Thomas Webler & Mitchell J. Small 'Understanding the Risks of Unconventional Shale Gas Development' (2014) at 1, *Environmental Science & Technology*.

¹⁹² Michael Esposito 'Water Issues Set the Pace for Fracking Regulations and Global Shale Extraction' (2013) at 172, Tulane Journal of International & Comparative Law 22.

¹⁹³ Jake Hays, Madelon L. Finkel, Michael Depledge, Adam Law & Seth B.C. Shonkoff 'Considerations for the development of shale gas in the United Kingdom' (2015) at 37, *Science of the Total Environment;* U.S. EPA 'Hydraulic Fracturing for Oil and Gas: Impacts from the Hydraulic Fracturing Water Cycle on Drinking Water Resources in the United States (Final Report)' (2016), Washington, DC, EPA/600/R-16/236F, available at www.epa.gov./hfstudy, accessed on 28/05/ 2022.

¹⁹⁴ Daniele Costa, Joao Jesus, David Branco, Anthony Danko & Antonio Fiuza 'Extensive Review of Shale Gas Environmental Impacts from Scientific Literature (2010 – 2015)' (2017) at 14583, *Environ Sci Pollut Res* 24.4.

Thirdly, the emission of methane, a potent greenhouse gas.¹⁹⁵ Fourthly, shale gas development could induce seismic events.¹⁹⁶

2.7.1 Volume of Water Required

Shale gas development competes with the normal uses of water by plants, animals, and humans who rely on groundwater or surface water to survive.¹⁹⁷ Hydraulic fracturing requires large amounts of water over short periods of time, typically 10 and 30 million litres of water per well.¹⁹⁸ While significant, the amount of water needed to fracture a well is on par with other industrial uses.¹⁹⁹ To contextualize, the amount of water needed to fracture and operate a shale gas well for 10 years is equivalent to that required to water a golf course for a month, or to operate a 1,000 MW coal-fired power plant for 12 hours.²⁰⁰ The water could be sourced from local groundwater aquifers, surface water sources, such as dams and rivers, treated wastewater from hydraulic fracturing operations, or transported from elsewhere (Figure 4).²⁰¹ The problem is that,

¹⁹⁵ Robert W. Howarth 'A bridge no nowhere: methane emissions and the greenhouse gas footprint of natural Gas' (2014) at 1, *Energy Science and Engineering*.

¹⁹⁶ Matthew Cotton 'Fair fracking? Ethics and environmental justice in the United Kingdom shale gas policy and planning' (2017) at 186, *Local Environment* 22(2).

¹⁹⁷ United States Environmental Protection Agency, Hydraulic Fracturing for Oil and Gas: Impacts from the Hydraulic Fracturing Water Cycle on Drinking Water Resources in the United States (2016) at 2-2, Office of Research and Development, Washington DC, available at www.epa.gov./hfstudy, accessed on 31 August 2022.

¹⁹⁸ Academy of Science of South Africa, South Africa's Technical Readiness to Support Shale Gas Development (2016) at 77, DOI: http://dx.doi.org/10.17159/assaf.2016/0003; M Burns, D Atkinson, D, O Barker, C Davis, L Day, A Dunlop, S Esterhuyse, P Hobbs, I McLachlan, H Neethling, N Rossouw, S Todd, L Snyman-Van der Walt, E Van Huyssteen, S Adams, M de Jager, M, Z Mowzer and B Scholes 'Scenarios and Activities' (2016) at 1-62, in R Scholes, P Lochner, G Schreiner, L Snyman-Van der Walt G, and M de Jager (eds.) 'Shale Gas Development in the Central Karoo: A Scientific Assessment of the Opportunities and Risks' (2016), Pretoria: CSIR.

¹⁹⁹ The Royal Society and Royal Academy of Engineering, Shale gas extraction in the UK: a review of hydraulic fracturing (2012) at 20, available from https://royalsociety.org/-/media/policy/projects/shale-gasextraction/2012-06-28-shale-gas.pdf accessed on 3 August 2022.

²⁰⁰ United Kingdom Department of Energy and Climate Change, *Fracking UK shale: water* (2014) at 6, available at http://www.programmeofficers.co.uk/Cuadrilla/CoreDocuments/CD41/CD41.53.pdf, accessed on 10 June 2022.

²⁰¹ United States Environmental Protection Agency, *Hydraulic Fracturing for Oil and Gas: Impacts from the Hydraulic Fracturing Water Cycle on Drinking Water Resources in the United States* (2016) at 4-5, Office of Research and Development, Washington DC, available at www.epa.gov./hfstudy, accessed on 31 August 2022.

given the size of the estimated resource, shale gas development in South Africa will require thousands of wells, therefore vast quantities of water.²⁰²

Figure 4: Potential Water Sources for Shale Gas Development 203

South Africa is however water stressed and could become a water scarce country by 2025.²⁰⁴ The Karoo is located inland of the coastal mountain ranges in the relatively dry interior of South Africa.²⁰⁵ Due to a lack of dams and rivers, and sporadic rainfall, most Karoo towns heavily rely on groundwater resources for water supply.²⁰⁶ There is therefore very limited surface water to enable significant industrial activities in the Karoo.²⁰⁷

206 Ibid.

²⁰² P Hobbs, E Day, P Rosewarne & S Esterhuyse et al Water Resources (2016) at 5-9, in R Scholes, P Lochner, G Schreiner & L Snyman-Van der Walt et al (eds.) Shale Gas Development in the Central Karoo: A Scientific Assessment of the Opportunities and Risks (2016) Pretoria: CSIR.

²⁰³ This schematic has been simplified based on a schematic obtained from: United States Environmental Protection Agency, *Hydraulic Fracturing for Oil and Gas: Impacts from the Hydraulic Fracturing Water Cycle on Drinking Water Resources in the United States* (2016) at ES-10, Office of Research and Development, Washington DC, available at *www.epa.gov./hfstudy* accessed on 31 August 2022.

²⁰⁴ Academy of Science of South Africa, South Africa's Technical Readiness to Support Shale Gas Development (2016) at 80.

²⁰⁵ Ibid.

²⁰⁷ South African National Energy Development Institute, A Study of Surface Issues and Geography of Potentially Suitable Gas Exploitation (2015) at v, unpublished report.

In relation to the decision as to whether and how to introduce hydraulic fracturing for shale gas in South Africa, the availability of ground water in the Karoo is not deeply understood.²⁰⁸ This is due to a lack of information and data on groundwater systems at depths below 1000 meters, and their interaction with shallow water or ground water aquifers at depths of approximately 300 meters.²⁰⁹ The quantity of water required for shale gas development, and the potential impact of hydraulic fracturing on water quality (discussed below) requires a holistic approach to the use and protection of water resources in the Karoo.²¹⁰ Such an approach must be preceded by the assessment of the availability and quality of surface and groundwater, and verification of existing uses.²¹¹

2.7.2 Contamination of Water Resources

The contamination of ground and surface water resources by chemicals used during the hydraulic fracturing process is a major concern globally and in the Karoo.²¹² Contamination could be due to the upward migration of the hydraulic fracturing fluids into drinking water sources, groundwater and surface water.²¹³ The composition of hydraulic fracturing fluids differs from one reservoir to another, and between fracturing fluid contractors, but typically contains approximately 90 - 95 per cent water, 4 - 5 per cent proppant normally sand and 0.1 - 0.5 per cent chemicals (figure 5).²¹⁴

²⁰⁸ Academy of Science of South Africa *South Africa's Technical Readiness to Support Shale Gas Development* (2016) at 73.

²⁰⁹ Ibid.

²¹⁰ Ibid.

²¹¹ P Hobbs, E Day, P Rosewarne & S Esterhuyse et al Water Resources (2016) at 5-7, in R Scholes, P Lochner, G Schreiner & L Snyman-Van der Walt et al (eds.) Shale Gas Development in the Central Karoo: A Scientific Assessment of the Opportunities and Risks (2016) CSIR, Pretoria.

²¹² Terence J. Centner and Ludivine Petetin 'Permitting program with best management practices for shale gas wells to safeguard public health' (2015) 163 *Journal of Environmental Management 174-183*; P Hobbs, E Day, P Rosewarne, S Esterhuyse, R Schulze, J Day, J Ewart-Smith, M Kemp, N Rivers-Moore, H Coetzee, D Hohne, A Maherry, A Mosetsho and M de Jager (eds) 'Water Resources'' (2016) at 5-9, in R Scholes, P Lochner, G Schreiner, L Snyman-Van der Walt G, and M de Jager (eds.) 'Shale Gas Development in the Central Karoo: A Scientific Assessment of the Opportunities and Risks' (2016) CSIR, Pretoria..

²¹³ Michael Esposito, Water Issues Set the Pace for Fracking Regulations and Global Shale Extraction (2013) at 172, Tulane Journal of International & Comparative Law 22.

²¹⁴ The Royal Society and Royal Academy of Engineering, Shale gas extraction in the UK: a review of hydraulic fracturing (2012) at 26, available from *https://royalsociety.org/-/media/policy/projects/shale-gasextraction/2012-06-28-shale-gas.pdf* accessed on 3 August 2022.

Figure 5: The Typical Composition of Hydraulic Fracturing Fluids ²¹⁵

Hydraulic fracturing fluids are engineered to create and extend fractures in the targeted rock formation, carry proppant through the gas wells into the newly created fractures, and keep the fractures open to enable the continuous flow of shale gas.²¹⁶ The chemicals used in hydraulic fracturing serve specific purposes, such as the dissolution of minerals and initiation of fractures in the rock; the elimination of bacteria that produce corrosive by-products in the water; the prevention of formation clays from swelling; and the prevention of corrosion of the pipes.²¹⁷

The detailed composition of the chemical additives has been controversial because the companies that manufacture fracturing fluid components initially refused to

²¹⁵ Figure 4 was adapted from a schematic obtained from: The Royal Society and Royal Academy of Engineering, Shale gas extraction in the UK: a review of hydraulic fracturing (2012) at 26, available from https://royalsociety.org/-/media/policy/projects/shale-gasextraction/2012-06-28-shale-gas.pdf accessed on 3 August 2022.

²¹⁶ United States Environmental Protection Agency, *Hydraulic Fracturing for Oil and Gas: Impacts from the Hydraulic Fracturing Water Cycle on Drinking Water Resources in the United States* (2016) at 5-8, Office of Research and Development, Washington DC, available at www.epa.gov./hfstudy, accessed on 31 August 2022.

²¹⁷ Terence J. Centner and Ludivine Petetin 'Permitting program with best management practices for shale gas wells to safeguard public health' (2015) 163 *Journal of Environmental Management 174-183*; United States Environmental Protection Agency, *Hydraulic Fracturing for Oil and Gas: Impacts from the Hydraulic Fracturing Water Cycle on Drinking Water Resources in the United States* (2016) at 5-8, Office of Research and Development, Washington DC, available at www.epa.gov./hfstudy, accessed on 31 August 2022.

disclose their exact composition on the basis that it was proprietary.²¹⁸ In 2010, growing concerns about the use of potentially harmful chemicals in the hydraulic fracturing process resulted in the United States House of Representative Committee on Energy and Commerce launching an investigation.²¹⁹ The investigation focussed on the chemicals used in hydraulic fracturing by fourteen oil and gas service companies in the period from 2005 until 2009.²²⁰ That investigation found that some of the chemicals used were common and generally harmless such as salt and citric acid, while some were extremely toxic, such as benzene and lead.²²¹

Subsequently, the United States Environmental Protection Agency (EPA) conducted a more comprehensive investigation of chemicals used in hydraulic fracturing operations in the US over the period 2005 to 2013, about 1084 chemicals.²²² The EPA found that some of the chemicals used for hydraulic chemicals are potentially harmful to human health, particularly if they enter drinking water sources.²²³ Potential human health effects associated with oral exposure to some of the chemicals include cancer, immune system effects, changes in body weight, changes in blood chemistry, cardiotoxicity, neurotoxicity, liver and kidney toxicity, and reproductive and developmental toxicity.²²⁴

Given the concerns related to the use of potentially hazardous chemicals in the hydraulic fracturing process in South Africa, a transparent approach that compels full

²¹⁸ US House of Representatives Committee on Energy and Commerce 'Chemicals used in hydraulic Fracturing' (2011) at 1, available at http://ecolo.org/documents/documents_in_english/gas-_Hydraulic-Fract-chemicals-2011-report.pdf accessed on 31 May 2022; Council of Canadian Academies 'Environmental Impacts of Shale Gas Extraction in Canada' (2014) at 76, available at https://cca-reports.ca/wp-content/uploads/2018/10/shalegas_fullreporten.pdf, accessed on 3 August 2022.

²¹⁹ US House of Representatives Committee on Energy and Commerce 'Chemicals used in hydraulic Fracturing' (2011) at 1, available at http://ecolo.org/documents/documents_in_english/gas-_Hydraulic-Fract-chemicals-2011-report.pdf accessed on 31 May 2022.

²²⁰ Ibid.

²²¹ Ibid.

²²² United States Environmental Protection Agency, *Hydraulic Fracturing for Oil and Gas: Impacts from the Hydraulic Fracturing Water Cycle on Drinking Water Resources in the United States* (2016) at ES-20, Office of Research and Development, Washington DC, available at www.epa.gov./hfstudy, accessed on 31August 2022.

²²³ United States Environmental Protection Agency, Hydraulic Fracturing for Oil and Gas: Impacts from the Hydraulic Fracturing Water Cycle on Drinking Water Resources in the United States (2016) at 9-80, Office of Research and Development, Washington DC, available at www.epa.gov./hfstudy accessed on 31 August 2022.

²²⁴ Ibid.

disclosure of the chemicals used in hydraulic fracturing, while prohibiting those chemicals that pose a serious health hazard is recommended. Nonetheless, as standard practice, after the drilling of a shale gas well, and before the commencement of the hydraulic fracturing process, the well is sealed/cased with cement (figure 6) to prevent hydraulic fracturing chemicals from permeating into groundwater aquifers.²²⁵ Nonetheless, almost all the incidents where groundwater contamination is reported to have occurred in the US mainly relate to bad cement casing jobs.²²⁶ Regulating and monitoring the quality of cementing and well casing will therefore be crucial in South Africa, to ensure well integrity, thus the protection of water resources.

Figure 6: An Example of a Shale Gas Well Design 227

2.7.3 Disposal of Wastewater

After the hydraulic fracturing of a shale gas well has been completed, the well is depressurised, and some of the injected fluid flow back to the surface for treatment,

 ²²⁵ Michael Esposito, Water Issues Set the Pace for Fracking Regulations and Global Shale Extraction (2013), at 172 Tulane Journal of International & Comparative Law 22.
²²⁶ Hist

²²⁶ Ìbid.

²²⁷ This schematic was adapted from a schematic obtained from: The Royal Society and Royal Academy of Engineering, Shale gas extraction in the UK: a review of hydraulic fracturing (2012) at 24, available from https://royalsociety.org/-/media/policy/projects/shale-gasextraction/2012-06-28-shale-gas.pdf accessed on 3 August 2022.

recycling or disposal.²²⁸ This fluid is mixed with gas, saline water containing minerals from the shale formation,²²⁹ and chemicals used during the hydraulic fracturing process, some of which are toxic.²³⁰ The volume of flow-back water depends on the properties of the shale, the fracturing design, and the type of fracturing fluid used.²³¹ The production of oil and gas from reservoirs typically comes with reservoir water production.²³² The hydraulic fracturing fluids consist of water, sand, and chemicals that are pumped into the reservoir during the fracturing process only.²³³ Reservoir water continues to be produced to the surface throughout the life of the shale gas well.²³⁴

The management of the combined flow back and produced water streams (wastewater) has been of concern in the US and globally, particularly the uncontrolled releases or spillages that could contaminate surface water sources.²³⁵ The treatment, recycling, and discharge of the wastewater stream also generated controversy in the US.²³⁶ The standard wastewater disposal method in the US has been to inject the wastewater in underground reservoirs through a disposal well.²³⁷ US legislators and environmental lobby groups have spoken out against this practice, concerned that the toxic substances in the wastewater could seep into drinking water sources, and the wastewater for re-use in other hydraulic fracturing operations, as well as to treat the wastewater to drinkable level quality.²³⁹

 ²²⁸ Charles G. Groat & Thomas W. Grimshaw 'A Fact-Based Regulation for Environmental Protection in Shale Gas Development' (2012) at 24, Energy Institute - The University of Texas at Austin.
²²⁹ Ibid.

²³⁰ Michael Esposito 'Water Issues Set the Pace for Fracking Regulations and Global Shale Extraction' (2013) at 173, *Tulane Journal of International & Comparative Law* 22.

²³¹ The Royal Society and Royal Academy of Engineering, Shale gas extraction in the UK: a review of hydraulic fracturing (2012) at 20, available from *https://royalsociety.org/-*/media/policy/projects/shale-gasextraction/2012-06-28-shale-gas.pdf accessed on 3 August 2022.

²³² Charles G. Groat & Thomas W. Grimshaw 'A Fact-Based Regulation for Environmental Protection in Shale Gas Development' (2012) at 24, Energy Institute - The University of Texas at Austin.

 ²³³ The Royal Society and Royal Academy of Engineering, Shale gas extraction in the UK: a review of hydraulic fracturing (2012) at 20, available from *https://royalsociety.org/-/media/policy/projects/shale-gasextraction/2012-06-28-shale-gas.pdf* accessed on 3 August 2022.
²³⁴ Ibid.

 ²³⁵ Charles G. Groat & Thomas W. Grimshaw 'A Fact-Based Regulation for Environmental Protection in Shale Gas Development' (2012) at 24, Energy Institute - The University of Texas at Austin.
²³⁶ Ibid

²³⁷ Michael Esposito 'Water Issues Set the Pace for Fracking Regulations and Global Shale Extraction' (2013) at 173, *Tulane Journal of International & Comparative Law* 22.

²³⁸ Ìbid.

²³⁹ Ibid.

Moreover, waste such as mud used during drilling and produced water, can be managed by routine on-site containment.²⁴⁰ The amount of waste and other possible impacts can be further minimized by reducing the number of wells drilled and locating some wells on the same well pad/containment area.²⁴¹ Such co-locating of multiple wells on the same pad enables the use of closed mud systems to maintain mud quality from well to well and cut down on waste by re-using mud.²⁴² The method of steel tanks for mud management allows operators to segregate speciality muds that may only be used over short intervals, while the tank can be moved to other wells.²⁴³

In South Africa, the National Environmental Management: Waste Act regulates waste and wastewater management.²⁴⁴ The Act provides norms and standards for regulating the management of waste, licensing and control of waste management activities, remediation of contaminated land, and compliance and enforcement measures.²⁴⁵ The Act does not specifically provide for waste from shale gas operations, therefore should be revisited to take such waste into consideration.

2.7.5 Induced Earth Tremors

Induced seismicity (earth tremors or minor earthquakes) is one of the key concerns associated with shale gas development.²⁴⁶ Shale gas development can induce earth tremors in two ways, firstly, the hydraulic fracturing process can under certain circumstances give rise to minor earth tremors.²⁴⁷ Secondly, the injection of wastewater (from the hydraulic fracturing process into shale formations as a means of

²⁴⁰ Daniel Arthur, Brian Bohm and David Cornue, *Environmental Considerations of Modern Shale Gas Development* (2009) SPE Paper No. 122931, at 5, Presented at SPE Annual Technical Conference and Exhibition, New Orleans, Louisiana, USA, 4-7 October 2009.

²⁴¹ Ibid.

²⁴² Ibid.

²⁴³ Ibid.

²⁴⁴ National Environmental Management: Waste Act, No. 59, 2008.

²⁴⁵ National Environmental Management: Waste Act, No. 59, 2008.

²⁴⁶ Huimin Tan, Gabrielle Wong-Parodi, Shumin Zhang and Jianhua Xu 'Public risk perceptions of shale gas development: A comprehensive review' (2022) at 6, vol.89, *Energy Research & Social Science*; Laurence Williams and Benjamin K. Sovacool 'The discursive politics of 'fracking': Frames, storylines, and the anticipatory contestation of shale gas development in the United Kingdom' at 2, (2019) vol 58, *Global Environmental Change 101935.*

²⁴⁷ Academy of Science of South Africa, South Africa's Technical Readiness to Support Shale Gas Development (2016) at 109, DOI: http://dx.doi.org/10.17159/assaf.2016/0003.

disposal) reaching natural geological faults could give rise to more underground movements, which can potentially be felt at ground level.²⁴⁸

In 2011, small tremors were experienced at Preese Hall near Blackpool in the United UK, where hydraulic fracturing operations were taking place.²⁴⁹ As a result, the UK Department of Energy and Climate Change suspended all operations at the site and instituted an investigation into the cause.²⁵⁰ The tremors measured magnitudes 1.5 and 2.3 on the Richter scale.²⁵¹ Earthquakes of this size are not normally felt at the surface.²⁵² The detailed technical investigations and independent review found that the tremors may have been caused when hydraulic fracturing fluids flowed into a geological fault.²⁵³

US shale gas operations have been associated with larger earthquakes, for example, minor earthquakes associated with hydraulic fracturing that recorded 4.6 on the Richter scale occurred in Texas and were felt all the way to San Antonio.²⁵⁴ These were associated with large quantities of wastewater being re-injected into the rock formations.²⁵⁵ A lesson to be learned is that before any commercial shale gas production takes in South Africa, the geology of the Karoo needs to be thoroughly studied, including geological faults that may exist in the shale gas sweet spot area. Such a deeper understanding of the Karoo's geology which can only be gained through exploration drilling would ensure that the placement of shale gas wells is done in a manner that avoids the faults, thus hydraulic fracturing operations inducing seismic events when the pressurized fluids flow into natural geological faults.

²⁴⁸ Ibid.

²⁴⁹ Royal Society and Royal Academy of Engineering 'Shale gas extraction in the UK: a review of hydraulic fracturing' (2012) at 41.

²⁵⁰ Royal Society and Royal Academy of Engineering 'Shale gas extraction in the UK: a review of hydraulic fracturing' (2012) at 41.

²⁵¹ Ibid.

²⁵² Ibid.

²⁵³ Ibid.

 ²⁵⁴ Michael Esposito 'Water Issues Set the Pace for Fracking Regulations and Global Shale Extraction' (2013) at 174, *Tulane Journal of International & Comparative Law* 22.
²⁵⁵ Ibid.

²⁵⁵ Ibid

2.7.4 Methane Emissions

There is general recognition that natural gas emits less carbon dioxide per unit energy produced relative to coal or oil.²⁵⁶ This is however negated by the fact that the greenhouse gas effect of methane (the main component of natural gas, averaging 90 percent in concentration) is much higher than that of carbon dioxide.²⁵⁷ Greenhouse gases are the gaseous constituents of the atmosphere that absorb and re-emit infrared radiation.²⁵⁸ These gases, which include carbon dioxide and methane, intensify a natural phenomenon called the *greenhouse effect*, by forming an insulating layer in the atmosphere.²⁵⁹. This insulating layer reduces the amount of the sun's heat that radiates back into space, therefore having the effect of making the earth warmer.²⁶⁰

Methane may be more effective at trapping heat in the atmosphere than carbon dioxide, which makes methane a more potent greenhouse gas.²⁶¹ The impact of methane emissions from shale gas extraction to climate change may therefore be more severe.²⁶² Climate change refers to the ongoing change in weather patterns as a result of a general rise in atmospheric temperature.²⁶³ The rise in the average global temperature is mainly due to the increasing concentration of greenhouse gases (GHGs) in the atmosphere as a result of human activities.²⁶⁴ Methane gas can be emitted to the atmosphere during shale gas exploitation through flaring, venting or leakage.²⁶⁵

258 Ibid.

²⁵⁶ Joseph Tawonezvi 'The Legal and Regulatory Framework for the EU's Shale Gas Exploration and Production Regulating Public Health and Environmental Impacts' (2017) at 4, 2(1) *Energy. Ecol. Environ.*

²⁵⁷ Robert W. Howarth 'A bridge to nowhere: methane emissions and the greenhouse gas footprint of natural Gas' (2014) at 1, *Energy Science and Engineering.*

²⁵⁹ JT Houghton, GJ Jenkins & JJ Ephraums, *Climate Change: The IPCC Scientific Assessment* (1990) IPCC Working Group Report 1, University Press, Cambridge, Great Britain; Department of Environmental Affairs 'National Climate Change Response White Paper' (2011), at 8.

²⁶⁰ Ibid.

²⁶¹ Ibid.

²⁶² Ibid.

²⁶³ United Nations Framework Convention on Climate Change (1992) article 1.

²⁶⁴ Ibid.

²⁶⁵ Laurence Stamford & Adisa Azapagic A Fractured truth (2014), at 27, The Chemical Engineer; Brett Cohen & Herald Winkler 'Greenhouse gas emissions from shale gas and coal for electricity generation in South Africa' (2014) at 3, S Afr J Sci; 110(3/4).

During flaring, methane (the main component in natural gas) is converted to carbon dioxide through the combustion process.²⁶⁶ During venting on the other hand, methane does not undergo any combustion or burning, therefore is emitted to the atmosphere as is.²⁶⁷ It is the emission of this vented methane that is more detrimental to the atmosphere, in terms of its greenhouse gas effect, than carbon dioxide from the burning of coal or oil.²⁶⁸ Furthermore, the methane emissions from shale gas may be significantly larger than from conventional gas, considering the full shale gas lifecycle, which includes drilling, processing, transportation and use of the gas.²⁶⁹ Therefore, methane emissions from shale gas and conventional gas could contribute more to greenhouse gas emissions than other fossil fuels, such as oil and coal, particularly over a 20-year time horizon following emission.²⁷⁰ The 20-year time horizon is concerning because shale gas is regarded as a transitional fuel towards renewable energy sources over the next two to three decades.²⁷¹

It should thus not be taken for granted that the exploitation of shale gas in South Africa will lead to a reduction in the country's greenhouse gas emissions, hence net-zero carbon emissions by 2050, consistent with global efforts under the Paris Agreement.²⁷² This is because methane emissions could be released into the atmosphere during shale gas extraction,²⁷³ thereby negating the benefit of using gas to reduce the country's carbon dioxide emissions, since methane will have more impact to climate change over this period. The Intergovernmental Panel on Climate Change (IPCC) confirm that methane is a more potent greenhouse gas than carbon dioxide, however it has a much shorter residence time in the atmosphere, so its effect on global warming

²⁶⁶ Brett Cohen & Herald Winkler 'Greenhouse gas emissions from shale gas and coal for electricity generation in South Africa' (2014) at 3, *S Afr J Sci*; 110(3/4).

²⁶⁷ Laurence Stamford & Adisa Azapagic, *A Fractured truth* (2014) at 27, The Chemical Engineer.

²⁶⁸ Robert W. Howarth 'A bridge no nowhere: methane emissions and the greenhouse gas footprint of natural gas (2014) at 2, *Energy Science and Engineering*.

²⁶⁹ Robert W. Howarth, Renee Santoro & Anthony Ingraffea 'Methane and the greenhouse gas footprint of natural gas from shale formations' (2011) at 685, *Climate Change Letter*.

²⁷⁰ Ibid.

²⁷¹ Robert W. Howarth 'A bridge no nowhere: methane emissions and the greenhouse gas footprint of natural Gas' (2014) at 2, *Energy Science and Engineering.*

²⁷² Steven Hadden, Jonathan D. Moyer and Jessica Rettig, *Fracking for shale gas in South Africa: blessing or curse*? (2013) at 4-5, Institute for Security Studies.

²⁷³ Steven Hadden, Jonathan D. Moyer and Jessica Rettig 'Fracking for shale gas in South Africa: blessing or curse?' (2013) at 4-5, *Institute for Security Studies*.

dissipates quickly.²⁷⁴ Howarth concurs that methane has an atmospheric lifetime of about 12 years, while carbon dioxide has an effective influence on atmospheric chemistry of a century or longer.²⁷⁵ This implies that methane has a short-term effect on the atmosphere compared to carbon dioxide.²⁷⁶ In thinking about a legal framework that addresses hydraulic fracturing specifically, South Africa could learn from the US experience, and ensure that the petroleum legal framework provides for mitigations against methane emissions during shale gas exploitation.

2.8 Conclusions

The use of hydraulic fracturing to enhance the production of oil and gas is a wellestablished practice in the international petroleum industry, and dates back at least seven decades.²⁷⁷ Refinements of the hydraulic fracturing technology, especially the combination of hydraulic fracturing with horizontal drilling,²⁷⁸ and the emergence of technology to better image the sub-surface was an innovative breakthrough that ultimately led to the US shale gas revolution.²⁷⁹ As a result, the US has made great strides towards its energy security.²⁸⁰ The US furthermore significantly reduced its greenhouse gas emissions, therefore its contribution to climate change.²⁸¹ Approached correctly, and learning from the US experience, the exploitation of shale gas could potentially enhance South Africa's energy security of supply, and significantly reduce its carbon dioxide emissions. Chapter 3 below explores the global climate change regime, South Africa's role in it, and how the exploitation of shale gas could contribute to the country's efforts to transition to net-zero carbon emissions by 2050.

²⁷⁴ IPCC 'Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change' (2015). IPCC, Geneva, Switzerland.

²⁷⁵ Robert W. Howarth 'A bridge no nowhere: methane emissions and the greenhouse gas footprint of natural Gas' (2014) at 6, *Energy Science and Engineering.*

²⁷⁶ R. Wait & R. Rossouw 'A Comparative Assessment of the Economic Benefits from Shale Gas Extraction in the Karoo, South Africa' (2014) at 4, *Southern African Business Review*; 18(2).

²⁷⁷ O. Hausberger, L.A Högn & K Soliman, Management Decision Matrix for Shale Gas Projects in Europe (2012) at 1, SPE Paper No. 162921, Presented to the SPE Hydrocarbon, Economics, and Evaluation Symposium, Alberta, Calgary, 24 - 25 October 2012.

²⁷⁸ Ibid.

²⁷⁹ Ibid.

²⁸⁰ Minh-Thong Le 'An assessment of the potential for the development of the shale gas industry in countries outside of North America' (2018) at 2, *Helyon* 4.

²⁸¹ Ibid, at 3.

CHAPTER 3: CLIMATE CHANGE AND SHALE GAS

3.1 Introduction

As outlined in Chapter 1 of this thesis, shale gas could reduce South Africa's carbon dioxide emissions, therefore the country's contribution to climate change.²⁸² This is an important consideration because South Africa is reliant on coal as a primary energy source.²⁸³ As a result, it is a significant contributor to global climate change, comparable to industrialised countries,²⁸⁴ and more populous and fast-growing developing countries, such as India and China.²⁸⁵ Climate change, which manifests as increasing temperatures, flooding, erratic changes in rainy seasons, and winds, have a detrimental impact on water and food security, people's health, infrastructure, the ecosystem, and biodiversity.²⁸⁶ The consequence is the retardation of social and economic development, particularly in developing countries, where economic development is critically needed.²⁸⁷

Recognising the increasing risks posed by global climate change, the World Meteorological Organization (WMO) and the United Nations Environmental Programme (UNEP) established the Intergovernmental Panel on Climate Change (IPCC) in 1988 to help assess the available scientific data and recommend strategies

²⁸² Don C Smith 'Unconventional Gas Development 2.0: Reducing the 'Environmental Footprint' Through New Technologies' (2018) in Donald Zillman, Martha Roggenkamp, Leroy Paddock & Lee Godden Innovation in Energy Law and Technology: Dynamic Solutions for Energy Transitions at 227 (Oxford University Press, London); Mark D. Zoback & Douglas J. Arent 'Shale Gas Development: Opportunities and Challenges' (2014) in The Bridge Linking Engineering and Society at 44(1) (National Academy of Engineering, Washington); R. Wait & R. Rossouw 'A Comparative Assessment of the Economic Benefits from Shale Gas Extraction in the Karoo, South Africa' (2014) at 2, Southern African Business Review; 18(4); Sally M. Benson and S. Julio Friedmann 'Carbon Capture, Utilization, and Storage: An Important Part of a Response to Climate Change' (2014) at 42 in The Bridge – Linking Engineering and Society 44(1) (National Academy of Engineering, Washington).

²⁸³ Theresa Moyo 'Low Carbon and Climate Resilient Investments – Is South Africa Doing Enough?' (2016) at 130, *Africa Insight* 45(4).

²⁸⁴ Ìbid.

²⁸⁵ Miguel Arias Canete 'Paris is Much More Than the Deal' (2015) at 40, *New Scientist* (234) 3129.

²⁸⁶ IPCC 'Climate Change 2014: Synthesis Report – Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change' (2014) at 6 (IPCC, Geneva, Switzerland); Gina Ziervogel et al 'Climate change in South Africa – how are we tackling this?' (2015) at 6, *Quest* 11; International Energy Agency 'Africa Energy Outlook: World Energy Outlook Special Report' (2022) at 46, available at

https://iea.blob.core.windows.net/assets/6fa5a6c0-ca73-4a7f-a243-

fb5e83ecfb94/AfricaEnergyOutlook2022.pdf, accessed on 18 July 2022.

²⁸⁷ Gina Ziervogel et al 'Climate change in South Africa – how are we tackling this?' (2015) at 6, *Quest* 11.

to manage climate change.²⁸⁸ As a result, scientists from across the globe worked together to deepen the scientific understanding of climate change.²⁸⁹ In 1990, this work culminated in the First Assessment of the IPCC.²⁹⁰ Since then, the IPCC's reports have become authoritative on the growing scientific understanding of climate change and its impact.²⁹¹ The appreciation that global climate change was a reality that was brought about by the IPCC scientific assessment led to the global climate change treaty dubbed the *United Nations Framework Convention on Climate Change* (UNFCCC).²⁹² The UNFCCC is discussed below, together with the evolving climate change.

3.2 The United Nations Framework Convention on Climate Change

The UNFCCC emanated from concern that human activities were increasing the atmospheric concentrations of greenhouse gases, thereby leading to a warming of the earth.²⁹³ Greenhouse gases include Carbon Dioxide (CO₂); Methane (CH₄); Nitrous Oxide (N₂O); Hydrofluorocarbons (HFCs); Perfluorocarbons (PFCs) and Sulphur hexafluoride (SF6).²⁹⁴ Greenhouse gases absorb and re-emit infrared radiation, rather than allowing it to escape to space, thus causing a warming of the earth.²⁹⁵ The

²⁸⁸ JT Houghton, GJ Jenkins & JJ Ephraums 'Climate Change: The IPCC Scientific Assessment' (1990) at iii (Cambridge University Press, Cambridge); Milan M. Radovanovic, Vladan Ducic & Saumitra Mukherjee 'Climate Changes Instead of Global Warming' (2014) at 1056, *Thermal Science* (18)3.

²⁸⁹ JT Houghton, GJ Jenkins & JJ Ephraums 'Climate Change: The IPCC Scientific Assessment' (1990) at iii (Cambridge University Press, Cambridge); Pamela Chasek 'The Paris Negotiations: Background and Context' (2021) at 21 in Hendrik Jepsen, Magnus Lundgren, Kai Monheim & Hayley Walker (Eds) *Negotiating the Paris Agreement: The Insider Stories* (Cambridge University Press United Kingdom).

²⁹⁰ Ibid.

 ²⁹¹ Robin Kundis Craig 'Mitigation and Adaptation' (2021) at 50 in Elise Johansen, Signe Veierud Busch & Ingvild Ulrikke Jakobsen *The Law of the Sea and Climate Change: solutions and constraints* (2021) (University Printing House, Cambridge).
²⁹² United Nations 'United Nations Framework Convention on Climate Change' (1992)

²⁹² United Nations 'United Nations Framework Convention on Climate Change' (1992) FCCC/INFORMAL/84GE.05-62220 (E) 200705; Pamela Chasek 'The Paris Negotiations: Background and Context' (2021) at 21 in Hendrik Jepsen, Magnus Lundgren, Kai Monheim & Hayley Walker (Eds) *Negotiating the Paris Agreement: The Insider Stories* (Cambridge University Press, United Kingdom).

²⁹³ United Nations 'United Nations Framework Convention on Climate Change' (1992) FCCC/INFORMAL/84GE.05-62220 (E) 200705.

²⁹⁴ United Nations 'Kyoto Protocol to the United Nations Framework Convention on Climate Change' (1997) Annex A, available at https://unfccc.int/sites/default/files/resource/docs/cop3/I07a01.pdf, accessed on 11 June 2022; JT Houghton, GJ Jenkins & JJ Ephraums 'Climate Change: The IPCC Scientific Assessment 1' (1990) at 5 (Cambridge University Press, Cambridge); Mesarovic M.M 'Scientific Uncertainties Feed Scepticism on Climate Change' (2015) at 259, *Thermal Science* (19)2.,

²⁹⁵ Article 1(5) of the UNFCCC.

UNFCCC was adopted at the UN Earth Conference on Environment and Development in Rio de Janeiro in June 1992 and came into force in March 1994.²⁹⁶

The ultimate objective of the UNFCCC and related legal instruments that the Conference of the Parties (COP) adopted was to stabilize greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous human interference with the climate system.²⁹⁷ Such a level had to be achieved within a time horizon that would enable ecosystems to adapt naturally to climate change, to ensure security of food supply and sustainable economic development.²⁹⁸ The UNFCCC is the cornerstone of global climate change governance, and its rules, norms, institutions, and procedures are facilitating cooperative action, affecting behaviour, and are galvanising funding support for climate action.²⁹⁹ To give effect to the UNFCCC, the Kyoto Protocol,³⁰⁰ was adopted on 11 December 1997 in Kyoto, Japan,³⁰¹ see discussion below.

3.3 The Kyoto Protocol

The Kyoto Protocol to the United Nations Framework Convention on Climate Change,³⁰² was adopted at the third Conference of the Parties on 11 December

²⁹⁶ Jana von Stein 'The International Law and Politics of Climate Change: Ratification of the United Nations Framework Convention and the Kyoto Protocol' (2008) at 245, *The Journal of Conflict Resolution* 52(2); James Ford, Michelle Maillet, Vincent Pouliot, Thomas Meredith & Alicia Cavanaugh 'Adaptation and Indigenous Peoples in the United Nations Framework Convention on Climate Change' (2016) at 430, *Climate Change* 139.

²⁹⁷ Article 2 of the UNFCCC; Donald Zillman, Martha Roggenkamp, LeRoy Paddock, & Lee Godden 'Introduction: How Technological and Legal Innovation Are Transforming Energy Law' (2018) at 4 in Donald Zillman, Martha Roggenkamp, Leroy Paddock & Lee Godden *Innovation in Energy Law and Technology: Dynamic Solutions for Energy Transitions* (Oxford University Press, London).

²⁹⁸ Article 2 of the UNFCCC; Yun Gao, Xiang Gao and Xiaohua Zhang 'The 2 °C Global Temperature Target and the Evolution of the Long-Term Goal of Addressing Climate Change - From the United Nations Framework Convention on Climate Change to the Paris Agreement' (2017) at 272, *Engineering 3.*

²⁹⁹James Ford, Michelle Maillet, Vincent Pouliot, Thomas Meredith and Alicia Cavanaugh 'Adaptation and Indigenous Peoples in the United Nations Framework Convention on Climate Change' (2016) at 430, *Climate Change* 139.

³⁰⁰ United Nations 'Kyoto Protocol to the United Nations Framework Convention on Climate Change' (1997) available at https://unfccc.int/sites/default/files/resource/docs/cop3/l07a01.pdf, accessed on 11 June 2022.

³⁰¹ Jana von Stein 'The International Law and Politics of Climate Change: Ratification of the United Nations Framework Convention and the Kyoto Protocol' (2008) at 245, *The Journal of Conflict Resolution* 52(2).

³⁰² United Nations 'Kyoto Protocol to the United Nations Framework Convention on Climate Change' (1997) available at https://unfccc.int/sites/default/files/resource/docs/cop3/l07a01.pdf, accessed on 11 June 2022.

1997.³⁰³ Due to a complex ratification process, the Protocol only entered into force on 16 February 2005 following ratification by 55 parties to the UNFCCC, including parties accounting for at least 55 percent of the total carbon dioxide emissions in 1990.³⁰⁴ When it came into effect,141 countries had ratified the Protocol, and 192 countries are currently parties to it.³⁰⁵

Premised on the UNFCCC principle of *common but differentiated responsibility based on respective capabilities*, a foundational principle to share the burden of addressing climate change,³⁰⁶ the Protocol only bound developed countries in the first commitment period.³⁰⁷ This is because it recognized that they were primarily responsible for the high levels of greenhouse gas emissions in the atmosphere.³⁰⁸ The Protocol set a target for industrialized countries to reduce their combined greenhouse gas emissions by at least five per cent below 1990 levels in the first commitment period (2008 to 2012).³⁰⁹ The Kyoto Protocol further sought to encourage governments to enhance energy efficiencies, promote research, development, and the use of new and renewable forms of energy, together with innovative and environmentally sound technologies.³¹⁰

³⁰³ Jana von Stein 'The International Law and Politics of Climate Change: Ratification of the United Nations Framework Convention and the Kyoto Protocol' (2008) at 245, *The Journal of Conflict Resolution* 52(2).

³⁰⁴ United Nations 'What is the Kyoto Protocol?' available at *https://unfccc.int/kyoto_protocol*, accessed on 11 June 2022.

³⁰⁵ Ibid.

³⁰⁶ Article 3 of the Kyoto Protocol; Mizan R. Khan & Sirazoom Munira 'Climate change adaptation as a global public good: implications for financing' (2021) at 2, *Climate Change* 167(50); Robyn Eckersley 'The common but differentiated responsibilities of states to assist and receive climate refugees' (2015) 486, *European Journal of Political Theory* 14(4) 481 – 500; Yoshiro Matsui 'Some Aspects of the Principle of Common but Differentiated Responsibilities' (2012) at 155, *International Environmental Agreements: Politics, Law and Economics* 2: 151-171.

³⁰⁷ Article 3 of the Kyoto Protocol; Sandrine Maljean-Dubois 'The Paris Agreement: A New Step in the Gradual Evolution of Differential Treatment in Climate Regime?' at 151, (2016) *Review of European Community & International Environmental Law* 25(2); Mizan R. Khan & Sirazoom Munira 'Climate change adaptation as a global public good: implications for financing' (2021) at 2, *Climate Change* 167(50).

 ³⁰⁸ Mizan R. Khan & Sirazoom Munira 'Climate change adaptation as a global public good: implications for financing' (2021) at 2, *Climate Change* 167(50); Sandrine Maljean-Dubois 'The Paris Agreement: A New Step in the Gradual Evolution of Differential Treatment in Climate Regime?' at 151, (2016) *Review of European Community & International Environmental Law* 25(2).

³⁰⁹ Article 3 of the Kyoto Protocol.

³¹⁰ Article 2 of the Kyoto Protocol; Sandrine Maljean-Dubois 'The Paris Agreement: A New Step in the Gradual Evolution of Differential Treatment in Climate Regime?' at 151, (2016) Review of European Community & International Environmental Law 25(2)

The United States did not ratify the Kyoto Protocol because they were not happy that the Protocol only set a target for developed countries to reduce their greenhouse gas emissions when developing countries such as China and India were significant contributors to greenhouse gas emissions.³¹¹

3.4 The Copenhagen Accord

The 15th Conference of the Parties (COP15) to the UNFCCC was held in Copenhagen, Denmark in December 2009, and was widely expected to result in commitments on quantified emissions reduction targets being made for the post-2012 climate change regime.³¹² Despite several countries, including South Africa,³¹³ committing to quantifiable emissions reduction targets in Copenhagen, COP15 did not meet expectations.³¹⁴ The Copenhagen Accord which emerged from COP15 is merely a political agreement and does not represent a legal Protocol pertaining to the post-2012 period.³¹⁵ Despite that, the Accord contained several key elements of convergence.³¹⁶ Chief among these was the long-term goal of limiting the global average temperature increase to 2 degrees Celsius above pre-industrial levels.³¹⁷

Secondly, the consideration to limit the temperature increase below 1.5 degrees Celsius.³¹⁸ Thirdly, developed countries committed to fund efforts by developing

³¹¹ Sandrine Maljean-Dubois 'The Paris Agreement: A New Step in the Gradual Evolution of Differential Treatment in Climate Regime?' at 151, (2016) *Review of European Community & International Environmental Law* 25(2); Anthony H.F Li 'Hopes of Limiting Global Warming? China and the Paris Agreement on Climate Change' (2016) at 50, *China Perspectives*, Issue 1.

³¹² Werner Scholtz 'The promotion of regional environmental security and Africa's common position on climate change' (2010) at 22, *African Human Rights Law Journal* 10(1).

³¹³ Daniel Bodansky 'The Copenhagen Climate Change Conference: A Postmortem' (2010) at 233, *American Journal of International Law* 230.

³¹⁴ Miguel Arias Canete 'Paris is Much More Than the Deal' (2015) at 40, *New Scientist* 234(3129).

³¹⁵ Werner Scholtz 'The promotion of regional environmental security and Africa's common position on climate change' (2010) at 22, African Human Rights Law Journal 10(1); Daniel Bodansky 'The Copenhagen Climate Change Conference: A Postmortem' (2010) at 235, American Journal of International Law 230.

³¹⁶ Miguel Arias Canete 'Paris is Much More Than the Deal' (2015) at 40, *New Scientist* 234(3129); Daniel Bodansky 'The Copenhagen Climate Change Conference: A Postmortem' (2010) at 230, *American Journal of International Law* 230.

³¹⁷ United Nations 'United Nations Framework Convention on Climate Change, Report of the Conference of the Parties on its fifteenth session' at 5, held in Copenhagen from 7 to 19 December 2009; Miguel Arias Canete 'Paris is Much More Than the Deal' (2015) at 40, New Scientist 234(3129); Daniel Bodansky 'The Copenhagen Climate Change Conference: A Postmortem' (2010) at 230, American Journal of International Law 230.

³¹⁸ United Nations 'United Nations Framework Convention on Climate Change, Report of the Conference of the Parties on its fifteenth session, at 5 - 7, held in Copenhagen from 7 to 19

countries to reduce their greenhouse gas emissions and adapt to the effects of climate change.³¹⁹ Fourthly, developed countries committed to provide US\$30 billion towards climate change mitigation in developing countries for the period 2010 to 2012 and mobilize long-term finance of a further US\$100 billion a year by 2020.³²⁰ An agreement on the measurement, reporting and verification of developing country emissions and actions to mitigate climate change also emerged from Copenhagen.³²¹ The failure to have a legally binding Protocol in Copenhagen subsequently led to a more robust review of the progress made to emissions reductions as espoused in the Kyoto Protocol.³²² The resultant comprehensive review culminated into the Doha Amendments to the Kyoto Protocol,³²³ discussed in section 3.5 below.

3.5 The Doha Amendment to the Kyoto Protocol

At the end of the first commitment period on 8 December 2012, the Kyoto Protocol was amended in Doha, Qatar.³²⁴ The amendments included binding greenhouse gas reduction commitments for all countries that have ratified the amendment to the Kyoto Protocol.³²⁵ This is unlike the first commitment period of the Protocol which only had binding commitments for developed countries.³²⁶ The amendment marked the second commitment period covering 1 January 2013 to 31 December 2020.³²⁷ Nonetheless, the United States' continued non-ratification of the Kyoto Protocol served to discourage other countries to implement their greenhouse gas reduction targets, therefore

December 2009; The Copenhagen Climate Change Conference: A Postmortem' (2010) at 230, *American Journal of International Law* 230.

³¹⁹ United Nations 'United Nations Framework Convention on Climate Change, Report of the Conference of the Parties on its fifteenth session, at 5 - 7, held in Copenhagen from 7 to 19 December 2009; The Copenhagen Climate Change Conference: A Postmortem' (2010) at 237, *American Journal of International Law* 230.

³²⁰ United Nations 'United Nations Framework Convention on Climate Change, Report of the Conference of the Parties on its fifteenth session, at 5 - 7, held in Copenhagen from 7 to 19 December 2009; The Copenhagen Climate Change Conference: A Postmortem' (2010) at 237, *American Journal of International Law* 230.

³²¹ United Nations 'United Nations Framework Convention on Climate Change, Report of the Conference of the Parties on its fifteenth session, at 5 - 7, held in Copenhagen from 7 to 19 December 2009.

³²² Miguel Arias Canete 'Paris is Much More Than the Deal' (2015), at 40, *New Scientist*, Vol.234, Issue 3129.

³²³ United Nations 'Doha amendment to the Kyoto Protocol' (2012).

³²⁴ Daniel Bodansky 'The Paris Climate Change Agreement: A New Hope' (2016) 293, *The American Journal of International Law* 110 (269).

³²⁵ Article 1 of the Doha amendment to the Kyoto Protocol.

³²⁶ Annexure B of the Kyoto Protocol (1998).

³²⁷ Article 1 of the Doha amendment to the Kyoto Protocol.

rendering the Protocol ineffective.³²⁸ This was recognized in 2011 at COP17 in Durban, South Africa.³²⁹

The Ad Hoc Working Group on the Durban Platform for Enhanced Action (ADP) was therefore established to develop a new global agreement to limit greenhouse gas emissions to the atmosphere.³³⁰ Such an agreement had to have legal force and be applicable to all parties under the UNFCCC.³³¹ The ADP had to complete its work no later than 2015, so that the emergent agreement (Paris Agreement, discussed in section 3.6 below) could be adopted at the 21st Conference of the Parties at the end of 2015.³³² The Fifth Assessment Report (AR5) of the IPCC underscored the gravity of the situation.³³³ It observed that recent climate changes had a devastating impact on human and natural systems on all continents and across oceans.³³⁴

3.6 The Paris Agreement

The Paris Agreement was adopted at the 21st Conference of the Parties by 195 countries and the EU.³³⁵ By then it had become clear that limiting future climate change required substantial and sustained reduction of greenhouse gas emissions.³³⁶ Prior to the 21st Conference of the Parties, participating countries were urged to make pledges known as 'Intended Nationally Determined Contributions' to reduce their carbon emissions, according to their respective capabilities.³³⁷ This consensus-driven

³²⁸ Anthony H.F Li 'Hopes of Limiting Global Warming? China and the Paris Agreement on Climate Change' (2016) at 49, *China Perspectives* 1.

³²⁹ United Nations 'Report of the Conference of the Parties on its seventeenth session' (2012) at 2, held in Durban from 28 November to 11 December 2011.

³³⁰ Daniel Bodansky 'The Paris Climate Change Agreement: A New Hope' (2016) 293, *The American Journal of International Law* 110(269).

³³¹ United Nations 'Report of the Conference of the Parties on its seventeenth session' (2012) at 2, held in Durban from 28 November to 11 December 2011.

³³² Ibid.

³³³ IPCC, Climate Change 2014: Synthesis Report – Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (2014) at 6, IPCC, Geneva, Switzerland.

³³⁴ Ibid.

³³⁵ United Nations 'Paris Agreement' (2015) available at https://unfccc.int/sites/default/files/english_paris_agreement.pdf accessed on 11 June 2022; Ralph Bodle, Lena Donat and Matthias Duwe 'The Paris Agreement: Analysis, Assessment and Outlook' (2016) at 5, CCLR 1.

³³⁶ Anthony H.F Li 'Hopes of Limiting Global Warming? China and the Paris Agreement on Climate Change' (2016) at 49, *China Perspectives* 1.

³³⁷ UCT 'South Africa's "fare share": mitigation targets in the updated first NDC in an international context' (2021) at 8, Energy Systems Research Group, University of Cape Town, Cape Town; Anthony H.F Li 'Hopes of Limiting Global Warming? China and the Paris Agreement on Climate

approach amassed considerable buy-in as demonstrated by the overwhelming support of the Paris Agreement.³³⁸

The legally binding accord set the long-term goal of limiting global warming to well below two degrees Celsius, with the ultimate goal to reduce global warming to 1.5 degrees Celsius above pre-industrial levels by the end of the 21st Century.³³⁹ Other non-binding concessions were made in Paris, such as participating countries agreeing to review their respective Nationally Determined Contributions every five years, as a mechanism to monitor the effectiveness of greenhouse gas emissions reduction globally.³⁴⁰

Furthermore, developed countries undertook to discuss a roadmap to boost climate finance to US\$100 billion per year by 2020, to help developing countries in mitigating and adapting to the impact of climate change.³⁴¹ The Paris Agreement came into effect in 2021, following the expiration of the Kyoto Protocol in December 2020.³⁴² Soon after its coming into effect, the 26th Conference of the Parties that was held in Glasgow, Scotland in 2021 resulted in the Parties to the UNFCCC taking far reaching decisions, such as the pledge to reduce global carbon emissions to net-zero by 2050.³⁴³ The Outcome of the 26th Conference of the Parties and implications is discussed in section 3.9 of this chapter.

Change' (2016) at 49, *China Perspectives* 1; Daniel Bodansky 'The Paris Climate Change Agreement: A New Hope' (2016) at 293.

³³⁸ Daniel Bodansky 'The Paris Climate Change Agreement: A New Hope' (2016) at 289, *The American Journal of International Law* 110(269); Brian Deese 'Paris Isn't Burning' (2017) at 83, *Foreign Affairs* 96(4).

³³⁹ Article 2(a) of the Paris Agreement (2015), Daniel Bodansky 'The Paris Climate Change Agreement: A New Hope' (2016) 290, *The American Journal of International Law* 110 (269); Anthony H.F Li 'Hopes of Limiting Global Warming? China and the Paris Agreement on Climate Change' (2016) at 51, *China Perspectives* 1.

³⁴⁰ Article 4(9) of the Paris Agreement (2015).

³⁴¹ Article 9 of the Paris Agreement (2015).

³⁴² Anthony H.F Li 'Hopes of Limiting Global Warming? China and the Paris Agreement on Climate Change' (2016) at 51, (1) *China Perspectives*.

³⁴³ United Nations 'United Nations Framework Convention on Climate Change' Report of the Conference of the Parties serving as the meeting of the Parties to the Paris Agreement on its third session, held in Glasgow from 31 October to 13 November 2021.

The Paris Agreement overcame significant political challenges that prevented the effective implementation of the Kyoto Protocol.³⁴⁴ The critical stance of the United States on the leniency of the Kyoto Protocol towards developing countries some of whom are major contributors to climate change, and China's attitude towards climate change was a major hindrance to the implementation of the Kyoto Protocol.³⁴⁵ Under the Obama administration, concerted bilateral efforts by the United States and China led to a more solution oriented approach to climate change by these two major world economies.³⁴⁶ The prior constructive engagements between the United States and China are to a large extent credited for the emergence of the Paris Agreement.³⁴⁷

The election of Mr Donald Trump as the American President in 2016 threatened global efforts to mitigate climate change.³⁴⁸ Six months after he was sworn in, President Trump announced the withdrawal of the US from the Paris Agreement on 1 June 2017.³⁴⁹ This was because 'the Paris Accord placed a huge financial and economic burden on the United States, thus disadvantaging the United States to the benefit of other countries'.³⁵⁰ Consequently, together with the onerous energy restrictions that it places on the United States, the Paris Accord could cost the United States as much as 2.7 million jobs by 2025.³⁵¹ President Trump further asserted that the Paris Agreement was punishing the United States, a leader in environmental protection,

³⁴⁴ Daniel C. Esty and Dena AT Adler 'Changing International Law for a Changing Climate' (2018) 284 *American Journal of International Law* 112.

³⁴⁵ Daniel Bodansky 'The Paris Climate Change Agreement: A New Hope' (2016) 293, *The American Journal of International Law* 110(269); Brian Deese 'Paris Isn't Burning' (2017) at 83, *Foreign Affairs* 96(4); Anthony H.F Li 'Hopes of Limiting Global Warming? China and the Paris Agreement on Climate Change' (2016) at 50, *China Perspectives* 1.

 ³⁴⁶ Daniel Bodansky 'The Paris Climate Change Agreement: A New Hope' (2016) 293, *The American Journal of International Law* 110(269); Anthony H.F Li 'Hopes of Limiting Global Warming? China and the Paris Agreement on Climate Change' (2016) at 50, *China Perspectives* 1.

³⁴⁷ Ibid.

³⁴⁸ Brian Deese 'Paris Isn't Burning' (2017) at 83, 96(4) *Foreign Affairs*, Jul/Aug.

³⁴⁹ Daniel C. Esty and Dena AT Adler 'Changing International Law for a Changing Climate' (2018) 280 American Journal of International Law 112; UCT 'South Africa's "fare share": mitigation targets in the updated first NDC in an international context' (2021) at 39, Energy Systems Research Group, University of Cape Town, Cape Town; Administration of Donald J. Trump 'Remarks Announcing United States Withdrawal From the United Nations Framework Convention on Climate Change Paris Agreement' (2017), Authenticated U.S. Government Information (GPO) - Daily Compilation of Presidential Documents, 1 June.

³⁵⁰ Administration of Donald J. Trump 'Remarks Announcing United States Withdrawal From the United Nations Framework Convention on Climate Change Paris Agreement' (2017) Authenticated U.S. Government Information (GPO) - Daily Compilation of Presidential Documents, 1 June.

³⁵¹ Ibid.

while imposing no meaningful obligations on the world's leading polluters such as China and India.³⁵²

President Trump's decision to withdraw the United States from the Paris Agreement led to international condemnation.³⁵³ The European Union strongly condemned the United States withdrawal from the Paris Agreement because such action could potentially reverse the 'first-ever truly global climate deal, a major multi-lateral deal of the twenty-first century'.³⁵⁴ While carbon emissions from developed countries were declining, accounting for less than 35 per cent of global emissions, the European Union remained resolute that a global climate change pact that would galvanize the world towards decisive action had to emerge in Paris.³⁵⁵ Accordingly, any meaningful deal had to have the buy-in and commitment of the major greenhouse gas emitters in the developing world, China, India, Brazil, South Africa, and Indonesia otherwise it was doomed to fail.³⁵⁶

The Trump Administration's thrust towards climate change led to a far-reachingdecision by the US Supreme Court in June 2022.³⁵⁷ In *West Virginia et al. v. Environmental Protection Agency et al.*, the US Supreme Court ruled that the Clean Air Act,³⁵⁸ does not give the US Environmental Protection Agency (EPA) the authority to set greenhouse gas emissions limits for existing coal power plants.³⁵⁹ The process called generation shifting stems from the Obama administration's Clean Power Plan, a commitment to reduce US greenhouse gas emissions consistent with the Paris Agreement.³⁶⁰

³⁵² Ibid.

³⁵³ Brian Rowe 'Paris climate deal exit 'deeply troubling' to Catholic leaders' (2017), at 18, *National Catholic Reporter*, 16 June.

³⁵⁴ Miguel Arias Canete 'Paris is Much More Than the Deal' (2015), at 40, *New Scientist* 234 (3129)

³⁵⁵ Ibid.

³⁵⁶ Ibid.

³⁵⁷ West Virginia et al. v. Environmental Protection Agency et al. Supreme Court of the United States Certiorari to the United States Court of Appeals for the District of Columbia Circuit, No.20-1530, June 30, 2022.

³⁵⁸ United States Clean Air Act, 1970.

³⁵⁹ West Virginia et al. v. Environmental Protection Agency et al, at 6, Supreme Court of the United States Certiorari to the United States Court of Appeals for the District of Columbia Circuit, No.20-1530, June 30, 2022.

³⁶⁰ Environmental Protection Agency 'Carbon Pollution Emission Guidelines for Existing Stationary Sources: Electric Utility Generating Units: Finale Rule' (2015) at 64663, *Federal Register* 80(205).

Recognizing that power plants contribute the most to greenhouse gas emissions in the US, the Clean Power Plan recommends that limits be set for greenhouse gas emissions, and for measures to encourage a transition from coal to gas, and ultimately renewable energy sources for power generation be put in place.³⁶¹ In arriving at its decision, the US Supreme Court relied on the 'major questions doctrine'.³⁶² In terms of this doctrine, any issue with major economic or political consequences requires explicit congressional authorization in law.³⁶³ The Supreme Court decision has the potential to curtail the EPA's efforts to regulate greenhouse gas emissions from existing power plants.³⁶⁴

The Supreme Court did not however altogether remove the EPA's authority to regulate carbon dioxide or other air pollutants from power plant pollutants.³⁶⁵ While standards based on generation shifting are no longer allowed, the Clean Air Act,³⁶⁶ still requires the EPA to regulate greenhouse gas pollution from power plants.³⁶⁷ The EPA can still set standards for existing power plants,³⁶⁸ to the extent that such emissions reduction standards do not require generation shifting to clean energy.³⁶⁹ Furthermore, the *West Virginia v. EPA* ruling left many of the Clean Air Act's provisions intact, for example, the EPA can still regulate greenhouse gas emissions from new power plants.³⁷⁰ The

³⁶¹ Ibid.

³⁶² West Virginia et al. v. Environmental Protection Agency et al, at 4, Supreme Court of the United States Certiorari to the United States Court of Appeals for the District of Columbia Circuit, No.20-1530, June 30, 2022.

³⁶³ West Virginia et al. v. Environmental Protection Agency et al, at 6, Supreme Court of the United States Certiorari to the United States Court of Appeals for the District of Columbia Circuit, No.20-1530, June 30, 2022.

³⁶⁴ Earthjustice & Evergreen Action "What Does West Virginia v. EPA Mean for Climate Action?" (2022) July 6, 2022, available at https://earthjustice.org/blog/2022-july/what-does-west-virginia-v-epamean-for-climate-action accessed on 09/07/2022.

³⁶⁵ Earthjustice & Evergreen Action "What Does West Virginia v. EPA Mean for Climate Action?" (2022) July 6, 2022, available at https://earthjustice.org/blog/2022-july/what-does-west-virginia-v-epamean-for-climate-action accessed on 9 July 2022.

³⁶⁶ United States Clean Air Act, 1970.

³⁶⁷ Earthjustice & Evergreen Action "What Does West Virginia v. EPA Mean for Climate Action?" (2022) available at https://earthjustice.org/blog/2022-july/what-does-west-virginia-v-epa-mean-for-climateaction accessed on 9 July 2022.

³⁶⁸ In terms of section 111(d) of the Clean Air Act, 1970.

³⁶⁹ Earthjustice & Evergreen Action "What Does West Virginia v. EPA Mean for Climate Action?" (2022) July 6, 2022, available at https://earthjustice.org/blog/2022-july/what-does-west-virginia-v-epamean-for-climate-action accessed on 9 July 2022.

³⁷⁰ Section 111(b) of the Clean Air Act, 1970.

EPA can also still regulate carbon dioxide emissions from cars and methane emissions from oil and gas wells.³⁷¹

Resolute to forge ahead with decisive action to tackle climate change in the US, President Joe Biden issued a very strong statement against the decision of the Supreme Court.³⁷² He lambasted the Supreme Court's ruling as 'another devastating decision that aimed to take the US backward and put the nation's ability to keep the air clean and combat climate change at risk'.³⁷³

As stated earlier in this chapter, the ultimate objective of the UNFCCC is to stabilize greenhouse gas concentrations in the atmosphere at a level that will prevent dangerous human interference with the climate system.³⁷⁴ However, the related legal instruments that the Conference of the Parties historically adopted primarily focused on the impact of carbon dioxide emissions to climate change.³⁷⁵ This was partly because from a legal and policy perspective, anthropogenic carbon dioxide is generally regarded as the most critical greenhouse gas since it is linked directly to the use of fossil fuels, particularly coal.³⁷⁶ Furthermore, carbon dioxide remains in the atmosphere for a century or more, such that the earth remains warmer for a considerable amount of time into the future.³⁷⁷

³⁷¹ Ibid.

³⁷² White House – Statements and Releases 'Statement by President Joe Biden on Supreme Court Ruling on West Virginia v. EPA' (2022) June 30 available at https://www.whitehouse.gov/briefingroom/statements-releases/2022/06/30/statement-by-president-joe-biden-on-supreme-court-rulingon-west-virginia-v-epa/ accessed on 9 July 2022.

³⁷³ Ibid.

³⁷⁴ United Nations 'United Nations Framework Convention on Climate Change' (1992) Article 2.

³⁷⁵ Robin Kundis Craig 'Mitigation and Adaptation' in Elise Johansen, Signe Veierud Busch, Ingvild Ulrikke Jakobsen 'The Law of the Sea and Climate Change: solutions and constraints' (2021) at 54 (University Printing House, Cambridge, United Kingdom).

³⁷⁶ Robin Kundis Craig 'Mitigation and Adaptation' in Elise Johansen, Signe Veierud Busch, Ingvild Ulrikke Jakobsen 'The Law of the Sea and Climate Change: solutions and constraints' (2021) at 54 (University Printing House, Cambridge, United Kingdom); IPCC 'Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change' (2014) at 44. IPCC, Geneva, Switzerland.

³⁷⁷ Robin Kundis Craig 'Mitigation and Adaptation' in Elise Johansen, Signe Veierud Busch, Ingvild Ulrikke Jakobsen 'The Law of the Sea and Climate Change: solutions and constraints' (2021) at 54 (University Printing House, Cambridge, United Kingdom); IPCC 'Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change' (2014) at 45. IPCC, Geneva, Switzerland.

A growing concern within the global climate change discourse relates to the warming potential of methane emissions relative to carbon dioxide emissions,³⁷⁸ and that the mitigation measures that have so far primarily focussed on carbon dioxide emissions may be grossly inadequate.³⁷⁹ Methane is the major component in natural gas and constitutes at least 90 percent of natural gas or shale gas.³⁸⁰ For natural gas to serve as a transitional fuel towards cleaner energy sources in South Africa, the legal framework for shale gas should compel oil and gas companies to implement measures to prevent methane emissions to the atmosphere. Examples of some of these measures are outlined in section 3.8 below.

3.8 Methane Emissions - Another Area of Concern

There is general recognition that gas burns cleaner than oil or coal, that is, less carbon dioxide is emitted per unit energy of gas relative to coal or oil.³⁸¹ This is however negated by the fact that the greenhouse gas effect of methane is much higher than that of carbon dioxide.³⁸² Methane is deemed more effective at trapping heat in the atmosphere than carbon dioxide, which makes methane a more potent greenhouse gas.³⁸³ The impact of methane emissions from shale gas extraction to global warming may therefore be more severe.³⁸⁴ Methane gas can be emitted to the atmosphere

³⁷⁸ Robert W. Howarth 'A bridge no nowhere: methane emissions and the greenhouse gas footprint of natural Gas' (2014) at 1, Energy Science and Engineering.

³⁷⁹ Robin Kundis Craig 'Mitigation and Adaptation' in Elise Johansen, Signe Veierud Busch, Ingvild Ulrikke Jakobsen 'The Law of the Sea and Climate Change: solutions and constraints' (2021) at 54 (University Printing House, Cambridge, United Kingdom); IPCC 'Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change' (2014) at 44. IPCC, Geneva, Switzerland.

³⁸⁰ A.M. Dayal 'Shale' at 7, in Anurodh Mohah Dayal and Devleena Mani, at 7 (1.6) 'Shale Gas: Exploration and Environmental and Economic Impacts' (2017) Elsrivier, Oxford, United Kingdom.

³⁸¹ Maarten J.de Wit 'The great shale gas debate in the Karoo' (2011) at 2, S Afr J Sci; 107(7/8); Theresa Moyo 'Low Carbon and Climate Resilient Investments – Is South Africa Doing Enough?' (2016) at 129, Africa Insight; 45(4).

³⁸² Zhan Zhang, Evan D. Sherwin, Daniel J. Varon and Adam R. Brandt 'Detecting and quantifying methane emissions from oil and gas production: algorithm development with ground-truth calibration based on Sentinel-2 satellite imagery' (2022) at 7155, *Atmospheric Measurements Techniques* 15.

³⁸³ Shanru Tian, Kathleen M. Smits, Younki Cho, Stuart N. Riddick, Daniel J. Zimmerle and Aidan Duggan 'Estimating methane emissions from underground natural gas pipelines using an atmospheric dispersion-based method' (2022) at 1 *Elementa: Science of the Anthropocene* 10(1).

³⁸⁴ Robert W. Howarth 'A bridge no nowhere: methane emissions and the greenhouse gas footprint of natural Gas' (2014) at 1, *Energy Science and Engineering*.

during shale gas drilling or production through flaring, venting or leakage (also referred to as fugitive emissions).³⁸⁵

During flaring, methane is converted to carbon dioxide through the combustion process.³⁸⁶ During venting or leakage, methane does not undergo any combustion or burning, the resultant methane content therefore resembles the original methane content of the natural gas.³⁸⁷ It is the emission of this vented methane that is more detrimental as a greenhouse gas than carbon dioxide from the burning of coal or oil.³⁸⁸ In their 2011 publication, which fuelled the global debate on the methane emissions of shale gas, Howarth and colleagues, concluded that methane emissions from shale gas are significantly larger than from conventional natural gas, considering the full shale gas lifecycle.³⁸⁹ Therefore, methane emissions from shale gas and conventional gas could contribute more to greenhouse gas emissions than other fossil fuels, such as oil and coal, particularly over a 20-year time horizon following emission.³⁹⁰

The 20-year time horizon is relevant because natural gas is touted as a transitional fuel towards a lower carbon future over the next two to three decades.³⁹¹ It should therefore not be taken for granted that the production of shale gas will necessarily lead to a reduction in the country's greenhouse gas emissions.³⁹² This is because methane emissions could be released into the atmosphere during shale gas extraction, thereby negating the impact of the reduction of the use of coal in favour of natural gas.³⁹³ In its fifth assessment, the IPCC confirm that methane is a more potent greenhouse gas

³⁸⁵ Laurence Stamford & Adisa Azapagic 'A Fractured truth' (2014), at 27, *The Chemical Engineer*, Brett Cohen & Herald Winkler 'Greenhouse gas emissions from shale gas and coal for electricity generation in South Africa' (2014) at 3, *S Afr J Sci*; 110(3/4)..

³⁸⁶ Brett Cohen & Herald Winkler 'Greenhouse gas emissions from shale gas and coal for electricity generation in South Africa' (2014) at 3, *S Afr J Sci*; 110(3/4), Art No. 2013-0194.

³⁸⁷ Laurence Stamford & Adisa Azapagic 'A Fractured truth' (2014) at 27, *The Chemical Engineer*.

³⁸⁸ Robert W. Howarth 'A bridge no nowhere: methane emissions and the greenhouse gas footprint of natural gas (2014) at 2, *Energy Science and Engineering*.

³⁸⁹ Robert W. Howarth, Renee Santoro & Anthony Ingraffea 'Methane and the greenhouse gas footprint of natural gas from shale formations' (2011) at 685, *Climate Change Letter* 106.

³⁹⁰ Ibid.

³⁹¹ Robert W. Howarth 'A bridge no nowhere: methane emissions and the greenhouse gas footprint of natural Gas' (2014) at 2, *Energy Science and Engineering.*

³⁹² Steven Hadden, Jonathan D. Moyer and Jessica Rettig, *Fracking for shale gas in South Africa: blessing or curse?* (2013) at 4-5, Institute for Security Studies.

³⁹³ Ibid.

than carbon dioxide, however, methane has a much shorter residence time in the atmosphere so its effect on global warming dissipates quickly.³⁹⁴

Howarth concurs that methane has a shorter atmospheric lifetime than carbon dioxide which has an effective influence on atmospheric chemistry of a century or longer.³⁹⁵ This implies that methane has a short-term impact to the atmosphere compared to carbon dioxide.³⁹⁶ Underscoring the growing importance of methane emissions in the global climate change debate, the 26th Conference of the Parties that took place in Glasgow took a decision on what the parties to the UNFCCC are expected to do to mitigate methane emissions.³⁹⁷

Consequently, a Global Methane Pledge was signed by more than 100 countries, including major emitters of greenhouse gases.³⁹⁸ This is in recognition that to meet the Paris Agreement goal of keeping global warming well below 2 degrees Celsius, while pursuing efforts to limit warming to 1.5 degrees Celsius, significant methane emission reductions must be achieved globally by 2030.³⁹⁹ More specifically, the Global Methane Pledge aims to limit methane emissions by 30 per cent by 2030 compared to 2020 levels.⁴⁰⁰ Methane emissions from shale gas operations can be reduced through

³⁹⁴ IPCC 'Climate Change 2014: Synthesis Report. Contribution of Working Groups I,II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change' (2015) IPCC, Geneva, Switzerland.

³⁹⁵ Robert W. Howarth 'A bridge no nowhere: methane emissions and the greenhouse gas footprint of natural Gas' (2014) at 6, *Energy Science and Engineering.*

³⁹⁶ European Commission, United States of America 'Global Methane Pledge' 2021, available at *https://www.ccacoalition.org/en/resources/global-methane-pledge* accessed on 30 September 2022.

³⁹⁷ United Nations Framework Convention on Climate Change 'Report of the Conference of the Parties serving as the meeting of the Parties to the Paris Agreement on its third session, held in Glasgow from 31 October to 13 November 2021' (2022) "Glasgow Climate Pact" available at https://unfccc.int/sites/default/files/resource/cma2021_10_add1_adv.pdf accessed on 2 July 2022.

 ³⁹⁸ European Commission, United States of America 'Global Methane Pledge' 2021, available at *https://www.ccacoalition.org/en/resources/global-methane-pledge* accessed on 30 July 2022.
³⁹⁹ Ibid.

⁴⁰⁰ Ibid.

existing technologies,⁴⁰¹ and the stricter enforcement of regulations against nonemergency flaring.⁴⁰²

There are a number of emerging technologies that are already being used to reduce methane emissions from oil and gas operations and shale gas development in particular.⁴⁰³ These include Leak Detection and Repair (LDAR),⁴⁰⁴ and Carbon Capture and Storage (CCS).⁴⁰⁵ Furthermore, the development of regulations or stricter enforcement of existing standards, reducing routine flaring, and only allowing emergency flaring of gas could go a long way in reducing the methane emissions of shale gas development.⁴⁰⁶ These are discussed below.

3.8.1 Leak Detection and Repair

As indicated in the preceding paragraphs, fugitive emissions from gas production, processing and pipeline networks are a significant source of methane emissions to the atmosphere.⁴⁰⁷ About 30 per cent of onshore gas system leaks emanate from pipeline fittings such as seals, valve connectors etcetera.⁴⁰⁸ The Leak Detection and Repair (LDAR) technology is used to reduce methane emissions, through locating the leaks

⁴⁰¹ Don C Smith 'Unconventional Gas Development 2.0: Reducing the 'Environmental Footprint' Through New Technologies' (2018) at 227 in Donald Zillman, Martha Roggenkamp, Leroy Paddock & Lee Godden *Innovation in Energy Law and Technology: Dynamic Solutions for Energy Transitions* (London, Oxford University Press).

⁴⁰² International Energy Agency 'Africa Energy Outlook (2022) at 146, World Energy Outlook Special Report, available at *www.iea.org.weo accessed* on 18/07/2022.

⁴⁰³ Don C Smith 'Unconventional Gas Development 2.0: Reducing the 'Environmental Footprint' Through New Technologies' (2018) at 226 in Donald Zillman, Martha Roggenkamp, Leroy Paddock & Lee Godden 'Innovation in Energy Law and Technology: Dynamic Solutions for Energy Transitions' (London, Oxford University Press).

⁴⁰⁴ Ìbid.227.

⁴⁰⁵ Sally M. Benson and S. Julio Friedmann 'Carbon Capture, Utilization, and Storage: An Important Part of a Response to Climate Change' (2014) at 42 in *The Bridge - Linking Engineering to Society* 44(1) (Washington, National Academy of Engineering).

⁴⁰⁶ International Energy Agency 'Africa Energy Outlook (2022) at 146, World Energy Outlook Special Report, available at www.iea.org.weo accessed on 18 July 2022.

⁴⁰⁷ Shanru Tian, Kathleen M. Smits, Younki Cho, Stuart N. Riddick, Daniel J. Zimmerle and Aidan Duggan 'Estimating methane emissions from underground natural gas pipelines using an atmospheric dispersion-based method' (2022) at 1, *Elementa Science of the Anthropocene* 10(1); Zhan Zhang, Evan D. Sherwin, Daniel J. Varon and Adam R. Brandt 'Detecting and quantifying methane emissions from oil and gas production: algorithm development with ground-truth calibration based on Sentinel-2 satellite imagery' (2022) at 7155, *Atmospheric Measurements Techniques* 15.

⁴⁰⁸ Don C Smith 'Unconventional Gas Development 2.0: Reducing the 'Environmental Footprint' Through New Technologies' (2018) at 227 in Donald Zillman, Martha Roggenkamp, Leroy Paddock & Lee Godden *Innovation in Energy Law and Technology: Dynamic Solutions for Energy Transitions* (London, Oxford University Press).

to repair them promptly, and recover the leaking gas for onward sale to gas users.⁴⁰⁹ There is ongoing research to improve the cost effectiveness of the LDAR technologies, to encourage oil and gas producing companies to install these systems thereby aiding climate change mitigation.⁴¹⁰

Notable initiatives include the Stanford University's Natural Gas Initiative, where researchers have focused on the effectiveness of the LDAR technology.⁴¹¹ That work led to the development of the Fugitive Emissions Abatement Simulation Toolkit (FEAST) with the purpose to accurately simulate the evolution of methane leakage from gas operations over time.⁴¹² NASA's Jet Propulsion Laboratory and the California Institute of Technology assessed the practicality of using airborne instruments to identify and measure methane emissions on a regional basis.⁴¹³ Based on an area covering Arizona, Colorado, New Mexico, and Utah in the United States, where natural gas is produced from at least 20,000 oil and gas wells, two airborne spectrometers were used and successfully identified and measured methane emissions from different sources.⁴¹⁴ That program found the sources to be well pads, gas processing facilities, pipelines, and storage tanks.⁴¹⁵

3.8.2 Carbon Capture and Storage

Carbon Capture and Storage (CCS) could contribute significantly to global efforts to mitigate climate.⁴¹⁶ CCS refers to the capture of carbon dioxide (CO₂) from large

 ⁴⁰⁹ C Kemp, A Ravikumar and A Brandt 'Comparing Natural Gas Leakage Detection Technologies Using an Open-source "Virtual Gas Field" Simulator' (2016) at 1, *Environmental Science and Technology.* ⁴¹⁰ Ibid. at 2.

⁴¹¹ Don C Smith 'Unconventional Gas Development 2.0: Reducing the 'Environmental Footprint' Through New Technologies' (2018) at 228 in Donald Zillman, Martha Roggenkamp, Leroy Paddock & Lee Godden 'Innovation in Energy Law and Technology: Dynamic Solutions for Energy Transitions' (London, Oxford University Press).

⁴¹² Ibid.

⁴¹³ Don C Smith 'Unconventional Gas Development 2.0: Reducing the 'Environmental Footprint' Through New Technologies' (2018) at 229 in Donald Zillman, Martha Roggenkamp, Leroy Paddock & Lee Godden 'Innovation in Energy Law and Technology: Dynamic Solutions for Energy Transitions' (London, Oxford University Press).

⁴¹⁴ Ìbid.

⁴¹⁵ Ibid.

⁴¹⁶ Sally M. Benson and S. Julio Friedmann 'Carbon Capture, Utilization, and Storage: An Important Part of a Response to Climate Change' (2014) at 42 in *The Bridge – Linking Engineering to Society* (Washington, National Academy of Engineering) 44(1); IPCCC 'Sixth Assessment Report Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change' (2022), at 141 (IPCC, Geneva, Switzerland).

stationary sources such as coal power plants and crude oil refineries, the purification thereof to a concentration of about 95%, and the transportation and subsequent injection thereof into deep geological formations, where it should remain safely stored.⁴¹⁷ The deep geological formations include depleted oil and gas reservoirs, saline formations and coal beds among others.⁴¹⁸

In fact, large amounts of CO₂ could potentially be stored in depleted oil and gas reservoirs.⁴¹⁹ The storage of CO₂ in oil and gas reservoirs is feasible because of the presence of proven geological traps and seals, which prevent the movement and leakage of the injected CO₂.⁴²⁰ While geological formations have stored oil and gas for millions of years, their efficiency to store CO₂ is still being studied.⁴²¹ Therefore, CO₂ sequestration projects in oil and gas fields have to consider a complete evaluation of their long-term efficiency, and that CO₂ will remain stored in the reservoirs for decades to consider the storage process efficient with respect to climate change.⁴²²

A critical aspect of CCS is the required capability to model and monitor the injected CO₂ efficiently.⁴²³ Environmental considerations necessitate the prediction and verification of CO₂ movement over time to ensure that additional environmental problems, such as the contamination of aquifers are not created.⁴²⁴ Reservoir and geological knowledge are important, to optimize the CCS process and predict the

⁴¹⁷ Sally M. Benson and S. Julio Friedmann 'Carbon Capture, Utilization, and Storage: An Important Part of a Response to Climate Change' (2014) at 43 in *The Bridge – Linking Engineering to Society* (Washington, National Academy of Engineering).

⁴¹⁸ İbid, at 44.

⁴¹⁹ J.M. Ketzer, B. Carpentier, Y. Le Gallo, and AT Le Thiez'Geological Sequestration of CO₂ in Mature Hydrocarbon Fields: Basin and Reservoir Numerical Modelling of the Forties Field, North Sea' (2005) at 260, *Oil & Gas Science and Technology* 60(2), 259-273.

⁴²⁰ Ibid.

⁴²¹ Ibid.

⁴²² Ibid.

⁴²³ D.N Nguyen 'Geological Sequestration: Technical and Economic Review' (2003) SPE paper 81199, proceedings of 2003 SPE/EPA/DOE Exploration and Production Environmental Conference held in San Antonio, Texas, U.S.A., 10-12 March 2003.

⁴²⁴ Brinks, J. and Fanchi, J 'Geologic Sequestration: Modeling and Monitoring Injected CO₂' (2011) SPE paper 66749, proceedings of 2001 SPE/EPA/DOE Exploration and Production Environmental Conference held in San Antonio, Texas, 26-28 February 2001.

movement of the injected CO₂, while monitoring the injected CO₂ after CCS will help ascertain whether the injected CO₂ is retained in the reservoirs.⁴²⁵

There are numerous CCS projects related to oil and gas operations globally.⁴²⁶ Most of these projects focus on capturing and injecting CO₂ into producing oil and gas reservoirs to enhance the recovery of the oil and gas, thus aid the commercial viability of such operations.⁴²⁷ CCS projects related to oil and gas started in 1996 with the Statoil project at the Sleipner gas field offshore Norway.⁴²⁸ That project was partly motivated by a tax of US\$50/t CO₂ produced which would have heavily weighed on the commercial viability of the project.⁴²⁹ Subsequently, projects led by ExxonMobil, BP, PanCanadian, Shell, and Sonatrach initiated CCS projects associated with natural gas cleanup facilities, synfuels, or hydrogen production units in the US, Canada, Algeria etcetera.⁴³⁰

These projects are being monitored by academics, governments, and the petroleum industry to ensure that the CO₂ stays underground and to evaluate how closely the migration of CO₂ conform to simulation models.⁴³¹ Seismic imaging and pressure monitoring of the movement of the injected CO₂ have proven very useful in tracking the location of the stored CO₂ and detecting potential leakage.⁴³² All in all, the results from these CCS projects confirm that CO₂ can be safely stored in underground structures as a means of mitigating CO₂ emissions to the atmosphere and enhancing oil and gas recovery.⁴³³ There is also no evidence of groundwater contamination from

- 429 Ibid.
- ⁴³⁰ Ibid.
- ⁴³¹ Ibid.
- ⁴³² Ibid, at 47. ⁴³³ Ibid.

⁴²⁵ Nguyen, D.N 'Geological Sequestration: Technical and Economic Review' (2003) SPE paper 81199, proceedings of 2003 SPE/EPA/DOE Exploration and Production Environmental Conference held in San Antonio, Texas, U.S.A., 10-12 March 2003.

⁴²⁶ Sally M. Benson and S. Julio Friedmann 'Carbon Capture, Utilization, and Storage: An Important Part of a Response to Climate Change' (2014) at 45 in 'The Bridge' (Washington, National Academy of Engineering) Vol.44, No.1.

⁴²⁷ Ibid.

⁴²⁸ Ibid.

CCS projects to date.⁴³⁴ The Glasgow Climate Pact below outlines other key outcomes from the 26th Conference of the Parties.

3.9 The Glasgow Climate Pact

The 26th Conference of the Parties to the United Nations Framework Convention on Climate Change that was held in Glasgow, Scotland,⁴³⁵ reaffirmed the Paris Agreement goal of limiting the increase in global average temperatures to well below 2°C above pre-industrial levels.⁴³⁶ It further resolved to pursue efforts to limit the average temperature increase to 1.5°C.⁴³⁷ Moreover, recognising that parties to the UNFCCC had committed to reduce CO₂ emissions by 45 per cent in order to reach net-zero carbon emissions by 2050,⁴³⁸ but that with current NDCs this target would not be met, the Glasgow Climate Pact calls on all countries to revise their national action plans in 2022 as opposed to the original timeline of 2025.⁴³⁹ Countries also called on the UNFCCC to conduct an annual NDC assessment to ascertain whether the nationally determined contributions are sufficient to move the world towards net-zero emissions by 2050.⁴⁴⁰

The most contested decision to come out of Glasgow is the call to move away from fossil fuels, particularly the agreement to phase-down coal power and phase-out the subsidisation of fossil fuels.⁴⁴¹ COP26 noted 'with deep regret' that the US\$100 billion per annum by 2020 funding commitment that developed countries made to developing countries as part of the Paris Agreement was not met.⁴⁴² Consequently, COP26 urged developed countries to make good and fully deliver on the commitment urgently, and through to 2025.⁴⁴³ Furthermore, COP26 called for the doubling of finance to support developing countries in adapting to the effects of climate change and building

- ⁴³⁹ Ibid, para 29.
- ⁴⁴⁰ Ibid, para 30.
- 441 Ibid, para 36.

⁴³⁴ Ibid.

⁴³⁵ United Nations 'United Nations Framework Convention on Climate Change' Report of the Conference of the Parties serving as the meeting of the Parties to the Paris Agreement on its third session, held in Glasgow from 31 October to 13 November 2021.

⁴³⁶ United Nations 'United Nations Framework Convention on Climate Change' para 20, Report of the Conference of the Parties serving as the meeting of the Parties to the Paris Agreement on its third session, held in Glasgow from 31 October to 13 November 2021.

⁴³⁷ Ibid, para 21.

⁴³⁸ Ibid, para 22.

⁴⁴² Ibid, para 44.

⁴⁴³ Ibid, para 46.

resilience.⁴⁴⁴ A work programme to define a global goal on adaptation, which will identify collective needs and solutions to the climate crisis that was already affecting many countries was also established at COP26.⁴⁴⁵

3.10 South Africa's Climate Change Policy Framework

South Africa is a party to the global climate change regime.⁴⁴⁶ It has ratified the United Nations Framework Convention on Climate Change,⁴⁴⁷ the Kyoto Protocol,⁴⁴⁸ the Paris Agreement,⁴⁴⁹ and the Glasgow Climate Change Pact.⁴⁵⁰ The country has a moral and legal obligation to contribute towards global efforts to mitigate climate change.⁴⁵¹ Unlike the rest of Africa, South Africa is a significant emitter of greenhouse gas emissions,⁴⁵² with its emissions on par with those of industrialized countries.⁴⁵³ Nonetheless, South Africa's climate change response derives from the common African position that is enunciated in the Bali Action Plan.⁴⁵⁴ The four main pillars of the Bali Action Plan are adaptation, mitigation, financing and technology transfer.⁴⁵⁵ The Bali Action Plan embodies the shared African vision with regard to climate change.⁴⁵⁶ It advocates for an 'inclusive, fair and effective' climate change regime that

https://unfccc.int/sites/default/files/english_paris_agreement.pdf accessed on 11 June 2022.
⁴⁵⁰ United Nations 'Framework Convention on Climate Change : Report of the Conference of the Parties serving as the meeting of the Parties to the Paris Agreement on its third session, held in

⁴⁴⁴ Ibid, para 19.

⁴⁴⁵ Ibid, para 27.

⁴⁴⁶ Earthlife Africa Johannesburg v Minister of Environmental Affairs and Others, para 35, (65662/16) [2017] ZAGPPHC 58; [2017] 2 All SA 519 (GP); Kjersti Fløttum & Øyvind Gjerstad 'The Role of Social Justice and Poverty in South Africa's National Climate Change Response White Paper' (2014) at 85, South African Journal of Human Rights 29.

⁴⁴⁷ United Nations 'United Nations Framework Convention on Climate Change' (1992) FCCC/INFORMAL/84GE.05-62220 (E) 200705.

⁴⁴⁸ United Nations 'Kyoto Protocol to the United Nations Framework Convention on Climate Change' (1997) available at https://unfccc.int/sites/default/files/resource/docs/cop3/l07a01.pdf, accessed on 11 June 2022.

⁴⁴⁹ United Nations 'Paris Agreement' (2015) available at

Glasgow from 31 October to 13 November 2021' (2022) available at https://unfccc.int/sites/default/files/resource/cma2021_10_add1_adv.pdf accessed on 2 July 2022.

⁴⁵¹ Department of Environmental Affairs 'National Climate Change Response White Paper' (2011) at 25, available at

https://www.gov.za/sites/default/files/gcis_document/201409/nationalclimatechangeresponsewhite paper0.pdf accessed on 2 July 2022.

⁴⁵² Kjersti Fløttum & Øyvind Gjerstad 'The Role of Social Justice and Poverty in South Africa's National Climate Change Response White Paper (2014) at 61, South African Journal of Human Rights 29.

 ⁴⁵³ Gina Ziervogel et al 'Climate change in South Africa – how are we tackling this?'(2015) at 6, Quest
11.

⁴⁵⁴ Werner Scholtz 'The promotion of regional environmental security and Africa's common position on climate change' (2010) at 13, *African Human Rights Law Journal*.

⁴⁵⁵ Ibid.

⁴⁵⁶ Ibid.
recognizes the need for developing countries to respond in a manner that does not hinder their development.⁴⁵⁷

South Africa's climate change response policy recognizes that all countries in the Southern Africa Development Community (SADC) are beset by poverty, limited access to water resources, food insecurity, and other development challenges.⁴⁵⁸ It furthermore, recognizes that SADC countries are confronted with similar climate change risks, therefore may have similar adaptation needs.⁴⁵⁹ South Africa's climate change response policy thus commits the country to collaborate with other SADC countries to develop climate change adaptation strategies that seek to reduce risk and vulnerability, and share resources, technology and learning.⁴⁶⁰ Accordingly, a regional approach underpinned by climate change resilience could have significant socio-economic benefits.⁴⁶¹

South Africa's climate change policy is anchored in mitigation (reducing greenhouse gas emissions to the atmosphere) and adaptation (responding to the adverse effects of climate change).⁴⁶² Its main objectives are:⁴⁶³ firstly, to manage the effect of climate change in a manner that builds and sustains the country's social, economic and environmental resilience and emergency response capacity. Secondly, to contribute to global efforts fairly, to stabilize greenhouse gas concentrations in the atmosphere at a level that avoids dangerous anthropogenic interference with the climate system.⁴⁶⁴ This should be done with due regard to enabling socio-economic growth and sustainable development.⁴⁶⁵

https://www.gov.za/sites/default/files/gcis_document/201409/nationalclimatechangeresponsewhite paper0.pdf accessed on 2 July 2022.

⁴⁵⁷ Ibid.

 ⁴⁵⁸ Department of Environmental Affairs 'National Climate Change Response White Paper' (2011) at 16, available at

⁴⁵⁹ İbid.

⁴⁶⁰ Ibid.

⁴⁶¹ Ibid.

⁴⁶² Ibid, at 13.

⁴⁶³ Department of Environmental Affairs 'National Climate Change Response White Paper' (2011) at 11, available at

https://www.gov.za/sites/default/files/gcis_document/201409/nationalclimatechangeresponsewhite paper0.pdf accessed on 2 July 2022.

⁴⁶⁴ Ibid.

⁴⁶⁵ Ibid.

The policy is furthermore cognizant of the need to manage the unintended consequences of its climate change measures on other countries, and likewise responds to the unintended consequences of the climate change measures of other countries.⁴⁶⁶ Ultimately South Africa's Climate Change Response Policy aspires for economic, social, and environmental interventions that integrate mitigation and adaptation within a developmental context.⁴⁶⁷ The climate change policy sought to give effect to the commitment South Africa made at COP15 in Copenhagen, to reduce its greenhouse gas emissions by 34 percent by 2020 and 42 percent by 2025, based on a 2009 baseline.⁴⁶⁸ Consistent with article 4.7 of the UNFCCC this commitment was conditional on the provision of the necessary finance, technology, and capacity-building support from the international community.⁴⁶⁹

In December 2015 at COP21, South Africa signed the Paris Agreement and committed to reducing its greenhouse gas emissions to between 398 and 614 Mega tons carbon dioxide equivalent (MtCO₂e) over the period 2025 to 2030.⁴⁷⁰ This is consistent with South Africa's greenhouse gas emissions reduction commitment in Copenhagen in 2009,⁴⁷¹ however, is inadequate and not in line with the 'fair approach' the Paris Agreement calls for.⁴⁷² In terms of the 'fair approach' countries should strive to reduce their GHG emissions in a manner that would collectively limit global warming to less than two degree Celsius above pre-industrial levels by the turn of the 21st century.⁴⁷³

Leading up to COP26 in Glasgow, South Africa revised its Nationally Determined Contribution pursuant to its obligation in terms of the Paris Agreement.⁴⁷⁴ In terms of

⁴⁶⁶ Ibid,13.

⁴⁶⁷ Ibid.

⁴⁶⁸ Ibid,25.

 ⁴⁶⁹ United Nations 'United Nations Framework Convention on Climate Change' (1992) Article 4.7.
⁴⁷⁰ Hugo Meyer van den Berg & Hanri Mostert 'Challenges to Regulating Hydraulic Fracturing in South Africa: Technological Innovation and Law Making for Climate Change at the Crossroads' (2018) at 246 in Donald Zillman, Martha Roggenkamp, Leroy Paddock & Lee Godden *Innovation in Energy Law and Technology: Dynamic Solutions for Energy Transitions* (London, Oxford University Press).
⁴⁷¹ Ibid

⁴⁷² Ibid.

⁴⁷³ Ibid.

⁴⁷⁴ UCT 'South Africa's "fare share": mitigation targets in the updated first NDC in an international context' (2021) at 8, Energy Systems Research Group, University of Cape Town, Cape Town; Department of Environment, Forestry and Fisheries 'South Africa First Nationally Determined Contribution under the Paris Agreement: Updated September 2021' (2021) at 2, available at https://unfccc.int/sites/default/files/NDC/2022-

the revised NDC, greenhouse gas emissions in South Africa are expected to peak in the period 2020 to 2025, plateau between 2025 and 2035 and decline thereafter.⁴⁷⁵ The ultimate objective is to achieve an absolute decline in GHGs by 2040.⁴⁷⁶ Even with the new NDC commitments made by all the Parties to the UNFCCC the target to reduce net-zero carbon emissions by 2050 will not be met.⁴⁷⁷ The Glasgow Climate Pact, to which South Africa is a party, therefore calls on all countries to revise their national action plans in 2022 as opposed to the original timeline of 2025.⁴⁷⁸

Emerging case law is demonstrating the posture of South Africa's judiciary towards climate change. In *Earthlife Africa ("Earthlife") Johannesburg v Minister of Environmental Affairs and others*, Earthlife sought a review of the decision by the Chief Director of Environmental Affairs to grant an environmental authorisation to Thabametsi Power Company ("Thabametsi") in February 2015, and the Minister of Environmental Affairs's upholding of that decision in March 2016, following an appeal by EarthLife.⁴⁷⁹ The environmental authorization was for the building of a 1200-megawatt (MW) coal-fired powered station, near Lephalele in the Limpopo Province that was expected to operate until 2061.⁴⁸⁰

Earthlife is a non-profit organisation that was established to galvanise civil society around protecting the environment and was in this case an interested and affected party ("IAP").⁴⁸¹ Earthlife therefore is entitled to participate in public consultation forums on the potential environmental impacts of planned industrial activities such as

^{06/}South%20Africa%20updated%20first%20NDC%20September%202021.pdf accessed on 31 October 2022.

⁴⁷⁵ Department of Environment, Forestry and Fisheries 'South Africa First Nationally Determined Contribution under the Paris Agreement: Updated September 2021' (2021) at 2, available at https://unfccc.int/sites/default/files/NDC/2022-06/South% 20Africa% 20undated% 20first% 20NDC% 20September% 202021 pdf_accessed_on_31

^{06/}South%20Africa%20updated%20first%20NDC%20September%202021.pdf accessed on 31 October 2022.

⁴⁷⁶ Ibid.

⁴⁷⁷ Para 29 of the Glasgow Climate Pact.

⁴⁷⁸ Ibid.

 ⁴⁷⁹ Earthlife Africa Johannesburg v Minister of Environmental Affairs and Others, para 2, (65662/16)
[2017] ZAGPPHC 58; [2017] 2 All SA 519 (GP).

⁴⁸⁰ Ibid, para 1.

 ⁴⁸¹ as contemplated in s 24(4)(v)(a) of the National Environmental Management Act, No.7 of 1998; para 3; National Environmental Management Act, No. 107 of 1998.

the Thabametsi coal-fired power station.⁴⁸² Earthlife is also entitled to bring a review application in the interest of protecting the environment.⁴⁸³

In this case, Earthlife contended that the Chief Director failed to honour the obligation to consider the climate change impact of the proposed power station before granting the environmental authorisation.⁴⁸⁴ The NEMA provides that activities which are listed or specified by the Minister of Environmental Affairs, such as the Thabametsi proposed power station, must obtain an environmental authorization prior to commencement.⁴⁸⁵ Upon appeal of the Chief Director's decision by Earthlife, the Minister of Environmental Affairs acknowledged that the climate change impacts of the proposed power station were not thoroughly assessed before the environmental authorization was granted.⁴⁸⁶ However, the Minister did not withdraw the environmental authorization granted to Thabametsi, instead the Minister amended the authorisation to compel Thabametsi to undertake a climate change impact assessment before commencement of the power station project, to be reviewed by the Department of Environmental Affairs.⁴⁸⁷

Earthlife took this decision of the Minister on review, on the basis that the Minister undermined the purpose of the climate change impact assessment, and the environmental authorisation process.⁴⁸⁸ Consequently, if the anticipated climate change impact assessment indicated that environmental authorisation should not have been granted, the Minister would have no power to withdraw the environmental authorization.⁴⁸⁹ Earthlife contended that the Minister's decision to uphold a decision to grant an environmental authorisation without due consideration of the climate change impact of the proposed power station was unlawful, irrational and

⁴⁸² Ibid, para 3

⁴⁸³ in terms of s 32(1) of the National Environmental Management, No.7 of 1998; Ibid, para 3.

⁴⁸⁴ as contemplated in s 24 of the National Environmental Management, No.7 of 1998; Ibid, para 4.

⁴⁸⁵ S 24 of the National Environmental Management Act, No. 107 of 1998; *Earthlife Africa Johannesburg v Minister of Environmental Affairs and Others*, para 5, (65662/16) [2017] ZAGPPHC 58; [2017] 2 All SA 519 (GP).

⁴⁸⁶ Earthlife Africa Johannesburg v Minister of Environmental Affairs and Others, para 5, (65662/16) [2017] ZAGPPHC 58; [2017] 2 All SA 519 (GP).

⁴⁸⁷ Ibid, para 7.

⁴⁸⁸ Ibid, para 9.

⁴⁸⁹ Ibid.

unreasonable.⁴⁹⁰ This is because the NEMA requires that the Chief Director considers all relevant factors, climate change in this case, in granting or rejecting an application for environmental authorization.⁴⁹¹

Handing down judgment Judge Murphy J ruled that the granting of the environmental authorization without consideration of the climate change impact of the proposed Thabametsi power station was prejudicial.⁴⁹² The proposed project would emit greenhouse gas emissions for a significant period of time, at least 40 years.⁴⁹³ Thus, a thorough assessment of its climate change impact ought to be given appropriate consideration.⁴⁹⁴ The court directed the Minister to reconsider the environmental authorization of the proposed project, based on new evidence that would arise from a thorough climate change impact assessment report.⁴⁹⁵ The court suspended the environmental authorization that was granted to Thabametsi, subject to a climate change impact assessment being done and submitted to the Department of Environmental Affairs for review.⁴⁹⁶

The Thabametsi judgment confirms that climate change poses significant risks to sustainable development, hence recommend the comprehensive consideration of the impact of climate change as a prerequisite to protect future generations.⁴⁹⁷ The judgment has set precedence as to how South African courts should handle climate change-related cases.⁴⁹⁸ In fact, a climate change impact assessment, can be

⁴⁹⁰ Earthlife Africa Johannesburg v Minister of Environmental Affairs and Others, para 10; Margo-Ann Palani and Justine Sweet 'SA's first climate change court case' (2017) at 37-38, Without Prejudice 17 (4).

⁴⁹¹ Earthlife Africa Johannesburg v Minister of Environmental Affairs and Others, para 11; Margo-Ann Palani and Justine Sweet 'SA's first climate change court case' (2017) at 37-38, Without Prejudice 17 (4).

⁴⁹² Earthlife Africa Johannesburg v Minister of Environmental Affairs and Others, para 119; Margo-Ann Palani and Justine Sweet 'SA's first climate change court case' (2017) at 37-38, Without Prejudice 17 (4).

⁴⁹³ Ibid.

⁴⁹⁴ Ibid.

⁴⁹⁵ Earthlife Africa Johannesburg v Minister of Environmental Affairs and Others, para 126.1.

⁴⁹⁶ *Earthlife Africa Johannesburg v Minister of Environmental Affairs and Others*, para 126.2; The suspension was based on s 43 of the National Environmental Management Act, No. 107 of 1998.

 ⁴⁹⁷ Tracy-Lynn Humby 'A landmark case on climate change in SA' (2017) available at *https://www.wits.ac.za/gci/media/a-landmark-case-on-climate-change-in-sa/* accessed on 21 March 2018.
⁴⁹⁸ Ibid.

expected prior to the environmental authorization of shale gas exploration and production in the Karoo.

The emerging South African climate change law, the 'Climate Change Bill'⁴⁹⁹ which was introduced in Parliament in February 2022, provides for the Minister of Forestry, Fishing and the Environment to make regulations to give effect to South Africa's international climate change commitments and obligations.⁵⁰⁰ Such regulations may include the need to assess the potential impact to climate change of industrial activities such as shale gas development prior to their environmental authorization. Noneless, the Bill seeks to enable the development of an effective climate change response and a long-term, just transition to a low-carbon and climate resilient economy and society in South Africa, within the context of sustainable development.⁵⁰¹

3.12 Conclusions

The exploitation of shale gas could contribute to climate change mitigation.⁵⁰² Shale gas production is credited for the reduction of the US's carbon dioxide emissions from a peak of 6,023 megatons of CO₂ in 2007 to 5,290 megatons of CO₂ in 2012.⁵⁰³ A growing concern within the global climate change discourse relates to the effect of methane emissions to global warming.⁵⁰⁴ While the hydraulic fracturing technology pose significant emissions risks, if implemented with adequate safeguards and monitoring, the greenhouse gas emissions from shale gas operations could be prevented through improvements in technology, industry standards and best practice.⁵⁰⁵

⁴⁹⁹ Republic of South Africa 'Climate Change Bill' in Government Gazette No.45299 of 11 October 2021.

⁵⁰⁰ Republic of South Africa 'Climate Change Bill' in Government Gazette No.45299 of 11 October 2021, s 27.

 ⁵⁰¹ Republic of South Africa 'Climate Change Bill' in Government Gazette No.45299 of 11 October 2021.
⁵⁰² Paul C. Stern, Thomas Webler & Mitchell J. Small 'Special Issue: Understanding the Risks of Unconventional Shale Gas Development' (2014) at 1, *Environmental Science & Technology*.

⁵⁰³ Laurence Stamford & Adisa Azapagic 'A Fractured Truth (2014) at 27, The Chemical Engineer.

⁵⁰⁴ Robert W. Howarth 'A bridge no nowhere: methane emissions and the greenhouse gas footprint of natural Gas' (2014) at 1, *Energy Science and Engineering*.

⁵⁰⁵ Paul C. Stern, Thomas Webler & Mitchell J. Small 'Special Issue: Understanding the Risks of Unconventional Shale Gas Development' (2014) at 1, *Environmental Science & Technology*.

For shale gas to contribute to the transition towards net-zero greenhouse gas emissions in South Africa, the regulatory framework for shale gas will have to impose measures to mitigate greenhouse gas emissions to the atmosphere. Examples of some of these measures as mentioned earlier in this chapter include, Leak Detection and Repair,⁵⁰⁶ and Carbon Capture and Storage.⁵⁰⁷ Furthermore, the development of regulations or stricter enforcement of existing standards, reducing routine flaring, and only allowing emergency flaring of gas could go a long way in reducing the methane emissions of shale gas development.⁵⁰⁸

⁵⁰⁶ Ibid.227.

⁵⁰⁷ Sally M. Benson and S. Julio Friedmann 'Carbon Capture, Utilization, and Storage: An Important Part of a Response to Climate Change' (2014) at 42 in *The Bridge 44(1)* (Washington, National Academy of Engineering).

⁵⁰⁸ International Energy Agency 'Africa Energy Outlook (2022) at 146, World Energy Outlook Special Report, available at *www.iea.org.weo* accessed on 18 July 2022.

CHAPTER 4: PUBLIC PARTICIPATION

4.1 Introduction

As discussed in Chapter 2 of this thesis, shale gas development has been contentious because hydraulic fracturing, the process used to extract shale gas, poses serious risks to human health and the environment.⁵⁰⁹ Consequently, environmental interest groups successfully halted the exploration for shale gas in South Africa based on concerns related to the hydraulic fracturing process.⁵¹⁰ Ineffective public participation contributed to the controversy surrounding shale gas development in the Karoo.⁵¹¹ This chapter examines how the legal framework that is relevant to shale gas exploration and production in South Africa provides for public participation or stakeholder engagement.

4.2 What is Public Participation

Public participation or stakeholder engagement is premised on the principle that the satisfaction of one stakeholder group does not have to be at the expense of another stakeholder group.⁵¹² Effective public participation improves communication among key stakeholders, including local communities, who are often the most marginalised and vulnerable to the negative effects of industrial processes.⁵¹³ Public participation, a critical element of environmental governance, could lead to more informed decisions in respect of shale gas development in the Karoo.⁵¹⁴

⁵⁰⁹ Michael Esposito 'Water Issues Set the Pace for Fracking Regulations and Global Shale Extraction' (2013) at 172, *Tulane Journal of International & Comparative Law* 22.

⁵¹⁰ John Douglas Stern and others vs Minister of Mineral Resources, para 42, 2015 SA 5672/2015 (High Court of South Africa, Eastern Cape Division, Grahamstown); Minister of Mineral Resources v Stern & others (1369/2017) and Treasure the Karoo Action Group & another v Department of Mineral Resources and others para 53(2)(a) (790/2018) [2019] ZASCA 99 (4 July 2019).

⁵¹¹ John Douglas Stern and others vs Minister of Mineral Resources, para 42, 2015 SA 5672/2015 (High Court of South Africa, Eastern Cape Division, Grahamstown); Minister of Mineral Resources v Stern & others (1369/2017) and Treasure the Karoo Action Group & another v Department of Mineral Resources and others para 53(2)(a) (790/2018) [2019] ZASCA 99 (4 July 2019).

⁵¹² Thomas Donaldson and Lee E. Preston 'The Stakeholder Theory of the Corporation: Concepts, Evidence, and Implications' (1995) at 80, *Academy of Management Review* 20(1).

⁵¹³ Tanya Howard and Solange Teles Da Silva 'Possible legal obligations to consult' (2015) at 134, *Edward Elgar Publishing Limited* (Cheltenham, UK).

⁵¹⁴ Ibid.

For public participation to be effective, the relevant provisions of the law must go beyond procedural and compliance requirements, and call for the substantive engagement of interested and affected parties.⁵¹⁵ When interested and affected parties or local communities feel that their input or expectations are not being considered in project planning or development, they might withdraw from constructive engagement, which could lead to conflict or litigation,⁵¹⁶ as has happened with shale gas development in the Karoo.⁵¹⁷ Environmental and social justice issues, such as concerns related to the potential impact of Karoo shale gas on human health and the natural environment,⁵¹⁸ could be better handled through a legal framework that balances procedural and administrative requirements with substantive commitments to public participation.⁵¹⁹

Furthermore, effective stakeholder engagement appeal to the consideration of a broader array of people, groups, or organizations as stakeholders, including the nominally powerless.⁵²⁰ This view is consistent with democratic principles and social justice, where the interests of the relatively powerless must be considered.⁵²¹ One of the challenges of effective stakeholder engagement lies in the difficulty of considering *'mute'* stakeholders, such as the natural environment, and *'absent'* stakeholders, such as future generations, or potential victims.⁵²² There is difficulty in considering the natural environment as a stakeholder because most definitions of stakeholders, usually treat them as groups or individuals, thereby exclude the environment, because it is not a human group or community.⁵²³

⁵¹⁵ Ibid, at 135.

⁵¹⁶ Ibid.

⁵¹⁷ John Douglas Stern and others vs Minister of Mineral Resources, para 42, 2015 SA 5672/2015 (High Court of South Africa, Eastern Cape Division, Grahamstown).

⁵¹⁸ Michael Esposito 'Water Issues Set the Pace for Fracking Regulations and Global Shale Extraction' (2013) at 172, *Tulane Journal of International & Comparative Law* 22.

⁵¹⁹ Tanya Howard and Solange Teles Da Silva 'Possible legal obligations to consult' (2015) at 135, Edward Elgar Publishing Limited (Cheltenham, UK).

⁵²⁰ John M Bryson 'What To Do When Stakeholders Matter: Stakeholder Identification and Analysis Technique' (2004) at 22, *Public Management Review* 6 (1).

⁵²¹ Ibid.

 ⁵²² Branco M.C & Rodrigues L.L 'Positioning Stakeholder Theory within the Debate on Corporate Social Responsibility' (2007) at 7, *Electronic Journal of Business Ethics and Organization Studies* 12 (1).
⁵²³ Ibid.

One way to view the environment as a stakeholder is through the interests of future generations.⁵²⁴ It is however impossible to ask the opinion of the natural environment or future generations since they cannot participate in consultative processes.⁵²⁵ Nonetheless, if among the interests of legitimate stakeholders is a concern for the natural environment, it has to be taken into account.⁵²⁶ Moreover, stakeholders require different degrees and types of attention, depending on their attributed possession of power, legitimacy and urgency.⁵²⁷ The levels of these attributes (salience) can vary from issue to issue and from time to time.⁵²⁸ This is challenging because there needs to be an understanding of how different stakeholder groups might be characterized by differing levels of salience over time.⁵²⁹ It is also important to recognize that different stakeholder groups may mobilize support through engaging one another in coalitions, to impose their will.⁵³⁰

In the context of this thesis, stakeholders are those groups or individuals that can enable or deter shale gas exploration and production in the Karoo. These are the South African government, local communities, landowners, and environmental interest groups. The concerns and views of these stakeholders therefore need to be considered in the planning and subsequent exploration and exploitation of shale gas in South Africa. The rationale for the identification of these stakeholders as vital to shale gas development in the Karoo is provided below.

4.3 Government as a Stakeholder

The Government is a key stakeholder as it has to regulate the exploration and production of shale gas, and ensure that the risks associated with shale gas development are mitigated.⁵³¹ Relying on natural gas as a source of energy could

⁵²⁴ Ibid.

⁵²⁵ Ibid.

⁵²⁶ Ibid.

⁵²⁷ Sonpar K, Pazzaglia F & Kornijenko J 'The Paradox and Constraints of Legitimacy' (2010) at 4, *Journal of Business Ethics* 95.

⁵²⁸ Ibid.

⁵²⁹ Ibid.

⁵³⁰ Ibid.

⁵³¹ John Douglas Stern and others vs Minister of Mineral Resources, para 13, 2015 SA 5672/2015 (High Court of South Africa, Eastern Cape Division, Grahamstown); Minister of Mineral Resources v Stern & others (1369/2017) and Treasure the Karoo Action Group & another v Department of Mineral Resources and others para 16 (790/2018) [2019] ZASCA 99 (4 July 20219).

ensure that South Africa makes inroads towards its international obligation to reduce its climate change impact, by reducing its dependence on coal.⁵³² Furthermore the Government has an interest in the possibility that natural gas from shales could contribute to national energy security,⁵³³ and local socio-economic development.⁵³⁴

4.4 Local Communities

Local communities are key stakeholders since shale gas development could utilize land and water resources that would otherwise be preserved for their use.⁵³⁵ Also of concern to local communities is that shale gas extraction could have an adverse impact on the local landscape,⁵³⁶ noise levels,⁵³⁷ and could lead to seismic events, such as earth tremors or minor earthquakes.⁵³⁸ Local communities are however also interested in the potential socio-economic benefits that shale gas could bring.⁵³⁹

4.5 Karoo Landowners

Landowners are a key stakeholder because of the potential negative impact of shale gas development on their land and agricultural activities.⁵⁴⁰ Landowners are obliged to allow access to their land by shale gas exploration right holders.⁵⁴¹ This is provided that the right holders notify and consult with them before commencing exploration or

⁵³² Brett Cohen & Herald Winkler 'Greenhouse gas emissions from shale gas and coal for electricity generation in South Africa' (2014) at 4, *South African Journal of Science*.

⁵³³ Maarten J.de Wit 'The great shale gas debate in the Karoo' (2011) at 2, S Afr J Sci; 107(7/8) Art No. 791; R. Wait & R. Rossouw 'A Comparative Assessment of the Economic Benefits from Shale Gas Extraction in the Karoo, South Africa' (2014) at 2, Southern African Business Review; 18(2).

⁵³⁴ J. Butler-Adam 'Resolving fractured debates about fracking? the shale gas industry in South Africa' (2016) at 1, *South African Journal of Science.*

⁵³⁵ Ìbid.

⁵³⁶ Department of Mineral Resources 'Report on Investigation of Hydraulic Fracturing in the Karoo Basin of South Africa' (2012) at 47.

⁵³⁷ Ibid.

⁵³⁸ Ibid.

⁵³⁹ H. Van Zyl, S. Fakier, T.Leiman and B. Standish 'Impacts on the Economy' in Robert Scholes, Paul Lochner, Greg Schreiner, Luanita Snyman-Van der Walt & Megan de Jager Shale Gas Development in the Central Karoo: A Scientific Assessment of the Opportunities and Risks (2016) at 825 (10-4), Pretoria, CSIR; R. Wait & R. Rossouw 'A Comparative Assessment of the Economic Benefits from Shale Gas Extraction in the Karoo, South Africa' (2014) at 29, Southern African Business Review; 18(2).

⁵⁴⁰ N. Oettle, L. Lindeque, J. du Toit, I. Samuels, A. Osler S. Vetter, and E.A van Garderen 'Impacts on Agriculture' in Rob Scholes, Paul Lochner, Greg Schreiner, Luanita Snyman-Van der Walt & Megan de Jager Shale Gas Development in the Central Karoo: A Scientific Assessment of the Opportunities and Risks (2016) at 716 (8-7), Pretoria, CSIR; Jeannie van Wyk 'Fracking in the Karoo: Approvals Required?' (2014) at 44, Stellenbosch Law Review.

⁵⁴¹ S 5(3)(a) of the Minerals and Petroleum Resources Development Act, No. 28, 2002.

production activities.⁵⁴² Meanwhile petroleum right holders have no obligation to pay compensation to landowners for the petroleum resources beneath their land, except in circumstances where it has been determined that the landowner or lawful occupier of the land has suffered or is likely to suffer loss or damage as a result of shale gas development.⁵⁴³ Rather the State is paid tax, royalties and other fees by right holders.⁵⁴⁴ This implies that landowners, through whose land shale gas in the subsurface will have to be accessed, will gain nothing from the extraction of shale gas resources beneath their land.⁵⁴⁵ It may be prudent for agriculture and conservation organizations to work together to influence the development of legislation that would ensure that landowners are compensated by oil and gas companies for access to their land.⁵⁴⁶

4.6 Environmental Interest Groups

Environmental interest groups are key stakeholders due to their concern about the impact of shale gas development on the natural environment, particularly its use of vast amounts of water and potential contamination of water resources.⁵⁴⁷ It comprises among others the Treasure the Karoo Action Group; the Centre for Environmental Rights; the Sustainable Alternatives to Fracking and Exploration Alliance; and the Southern Cape Land Committee and Landowners.⁵⁴⁸

Stakeholder engagement or public participation related to shale gas development in South Africa is provided for in the Minerals and Petroleum Resources Development

⁵⁴² S 5(4)(c) of the Minerals and Petroleum Resources Development Act, No. 28, 2002.

⁵⁴³ S 54(3) of the Minerals and Petroleum Resources Development Act, No. 28, 200; Devan Allen McGranahan and Kevin Peter Kirkman 'Be proactive on energy sprawl: South Africa must anticipate surface impacts of fracking in rural areas' (2021) at 3, *Resources Policy* 72.

⁵⁴⁴ R. Wait & R. Rossouw 'A Comparative Assessment of the Economic Benefits from Shale Gas Extraction in the Karoo, South Africa' (2014) at 4, *Southern African Business Review* 18(2).

⁵⁴⁵ Steven Hedden, Jonathan D. Moyer and Jessica Rettig, *Fracking for shale gas in South Africa: blessing or curse?* (2013) at 6, *Institute for Security Studies.*

⁵⁴⁶ Devan Allen McGranahan and Kevin Peter Kirkman 'Be proactive on energy sprawl: South Africa must anticipate surface impacts of fracking in rural areas' (2021) at 3, *Resources Policy* 72.

⁵⁴⁷ AT Hobbs, E. Day, AT Roserwarne, S.Esterhuyse, R.Schulze, J. Day, J. Ewart-Smit, M. Kemp, N. Rivers-Moore, H. Coetzee, D. Hohne, A. Maherry and Mosetsho and M. de Jager 'Water Resources' in Bob Scholes, Paul Lochner, Greg Schreiner, Luanita Snyman-Van der Walt & Megan de Jager Shale Gas Development in the Central Karoo: A Scientific Assessment of the Opportunities and Risks (2016) at 382 (5-9), Pretoria, CSIR; Jeannie van Wyk 'Fracking in the Karoo: Approvals Requred?' (2014) at 34, Stellenbosch Law Review.

⁵⁴⁸ Jeannie van Wyk 'Fracking in the Karoo: Approvals Requred?' (2014) at 34, *Stellenbosch Law Review.*

Act,⁵⁴⁹ the National Environmental Management Act,⁵⁵⁰ the National Water Act,⁵⁵¹ and the National Environmental Management: Waste Act.⁵⁵² The relevant provisions of this legal framework are discussed in sections 4-7 below.

4.7 Public Participation under the MPRDA

The Minerals and Petroleum Resources Development Act (MPRDA),⁵⁵³ affirms the ownership of the country's mineral and petroleum resources as belonging to the nation,⁵⁵⁴ with the State being the custodian thereof.⁵⁵⁵ The MPRDA further obligates the State to protect the natural environment, ensure the ecologically sustainable development of mineral and petroleum resources, and promote economic and social development.⁵⁵⁶ The State therefore has the overall responsibility to grant, issue, control, administer and manage all mineral and petroleum rights.⁵⁵⁷ To conduct oil and gas exploration and production in South Africa, companies are granted petroleum rights by the Minister responsible for mineral resources, upon recommendation by the designated agency, currently the Petroleum Agency South Africa (Petroleum Agency).⁵⁵⁸

Petroleum rights are initiated through the granting of a Technical Cooperation Permit (TCP).⁵⁵⁹ This is followed by the granting of an Exploration Right (ER),⁵⁶⁰ and subsequently a Production Right (PR).⁵⁶¹ The TCP has a one-year duration,⁵⁶² the ER, a nine-year duration,⁵⁶³ and the PR a duration of up to 30 years.⁵⁶⁴ Petroleum Rights are limited real rights in relation to the petroleum and land to which they relate,⁵⁶⁵ and

⁵⁵⁰ National Environmental Management Act, No.107 of 1998.

⁵⁴⁹ Mineral and Petroleum Resources Development Act, No.28 of 2002.

⁵⁵¹ National Water Act, No.36 of 1998.

⁵⁵² National Environmental Management: Waste Act, No. 59 of 2008.

⁵⁵³ Minerals and Petroleum Resources Development Act, No. 28, 2002.

 $^{^{554}}$ S 3(1) of the MPRDA.

⁵⁵⁵ S 3(1) of the MPRDA.

⁵⁵⁶ S 3(3) of the MPRDA.

⁵⁵⁷ Elmarie van der Schyff 'South African mineral law: A historical overview of the State's regulatory power regarding the exploitation of minerals' (2012) at 132 *New Contree* 64.

⁵⁵⁸ Minerals and Petroleum Resources Development Act, No. 28, 2002, s 69.

⁵⁵⁹ S 76(1) of the MPRDA.

⁵⁶⁰ S 79(1) of the MPRDA.

⁵⁶¹ S 83(1) of the MPRDA.

⁵⁶² S 77(4)(b) of the MPRDA.

⁵⁶³ S 80(5) of the MPRDA

⁵⁶⁴ S 84(4) of the MPRDA.

 $^{^{565}}$ S 5(1) of the MPRDA.

are registered at the Mineral and Petroleum Titles Registration Office in terms of the Mining Titles Registration Act.⁵⁶⁶ The MPRDA compels the Petroleum Agency to publish applications for petroleum exploration rights within fourteen days of receiving an application.⁵⁶⁷

The Petroleum Agency is also required to call upon interested and affected persons to submit comments regarding the application within 30 days from the date of the notice.⁵⁶⁸ Should there be an objection to the granting of an exploration right, the objection must be considered and the Minister of Mineral Resources and Energy advised thereto.⁵⁶⁹ The MPRDA furthermore provides that once an exploration right application is accepted by the Petroleum Agency, and the applicant notified,⁵⁷⁰ the applicant should notify and consult the landowner or lawful occupier of the land before commencing with exploration or production activities.⁵⁷¹ Moreover, the applicant is required to submit the relevant environmental reports required in terms of Chapter 5 of the NEMA,⁵⁷² within 120 days from the notice.⁵⁷³

The MPRDA recognises the landowner or lawful occupier of the land as a key stakeholder because petroleum exploration and production have a direct impact on their land.⁵⁷⁴ The exploration and production right holder can enter the land to which the right relates, bring onto it machinery, lay surface or sub-surface infrastructure that may be required for the exploration and production of petroleum.⁵⁷⁵ The petroleum right holder can also conduct petroleum exploration and production activities,⁵⁷⁶ and commercialise the produced petroleum for his or her benefit.⁵⁷⁷ Subject to the National

⁵⁷⁵ S 5(3)(a) of the Minerals and Petroleum Resources Development Act, No. 28, 2002.

⁵⁶⁶ S 2(4) of the Mining Titles Registration Act, No.16 of 1967.

⁵⁶⁷ S 10(1)(a) of the MPRDA.

⁵⁶⁸ S 10(1)(b) of the MPRDA.

⁵⁶⁹ S 10(2) of the MPRDA.

⁵⁷⁰ S 79(4) of the MPRDA.

⁵⁷¹ S 79(4)(a) of the MPRDA.

⁵⁷² National Environmental Management Act, No.107 of 1998.

⁵⁷³ S 79(4)(b) of the MPRDA.

⁵⁷⁴ S 5(4)(c) of the MPRDA; N. Oettle, L. Lindeque, J. du Toit, I. Samuels, A. Osler S. Vetter, & E.A van Garderen 'Impacts on Agriculture' in Robert Scholes, Paul Lochner, Greg Schreiner, Luanita Snyman-Van der Walt & Megan de Jager Shale Gas Development in the Central Karoo: A Scientific Assessment of the Opportunities and Risks (2016) at 716 (8-7), Pretoria, CSIR; Jeannie van Wyk 'Fracking in the Karoo: Approvals Required?' (2014) at 44, Stellenbosch Law Review.

⁵⁷⁶ S 5(3)(a) of the MPRDA.

⁵⁷⁷ S 5(3)(c) of the MPRDA.

Water Act,⁵⁷⁸ the petroleum right holder can furthermore use water from any river or stream situated or flowing through such land or drill a well or borehole required for the petroleum operations.⁵⁷⁹

The environmental impact assessment is an important matter for stakeholder consultation in terms of the EIA regulations⁵⁸⁰ More specifically, the EIA must establish baseline data on the affected environment, to determine protection, remediation and environmental management objectives.⁵⁸¹ The EIA must assess, investigate and evaluate the potential impact to the environment,⁵⁸² and socio-economic conditions of any person who might be directly affected by the proposed petroleum exploration and production.⁵⁸³ The environmental management programme must include an environmental awareness plan, describing the risks involved and how the applicant intends to mitigate such risks to avoid degradation of the environment.⁵⁸⁴

As stated in section one of this chapter, another key stakeholder that has affected shale gas exploration in the Karoo are environmental interest groups.⁵⁸⁵ Environmental interest groups objected to the granting of exploration licenses for shale gas in the Karoo.⁵⁸⁶ Their objection led to the Minister of Mineral Resources putting a moratorium on shale gas exploration in the country in March 2010.⁵⁸⁷ This resulted in the Petroleum Agency not issuing shale gas exploration licenses that various oil and gas

⁵⁷⁸ National Water Act, No.36 of 1998.

⁵⁷⁹ S 5(3)(d) of the MPRDA.

⁵⁸⁰ Environmental Impact Assessment Regulations, 2014, in Government Notice R982, Government Gazette No. 38282 of 4 December 2014 Chapter 6.⁵⁸¹ S 24(4)(a)(iii) of the NEMA.

⁵⁸¹ S 24(4)(a)(iii) of the NEMA.

⁵⁸² S 24(4)(b)(i) of the NEMA.

⁵⁸³ S 23(2)(b) of the NEMA.

⁵⁸⁴ S 24N(3)(c) of the NEMA.

⁵⁸⁵ Jeannie van Wyk 'Fracking in the Karoo: Approvals Required?' (2014) at 35, Stellenbosch Law Review; John Douglas Stern and others vs Minister of Mineral Resources, para 42, 2015 SA 5672/2015 (High Court of South Africa, Eastern Cape Division, Grahamstown); Minister of Mineral Resources v Stern & others (1369/2017) and Treasure the Karoo Action Group & another v Department of Mineral Resources and others para 53(2)(a) (790/2018) [2019] ZASCA 99 (4 July 2019).

⁵⁸⁶ Jeannie van Wyk 'Fracking in the Karoo: Approvals Required?' (2014) at 35, Stellenbosch Law Review; John Douglas Stern and others vs Minister of Mineral Resources, para 42, 2015 SA 5672/2015 (High Court of South Africa, Eastern Cape Division, Grahamstown); Minister of Mineral Resources v Stern & others (1369/2017) and Treasure the Karoo Action Group & another v Department of Mineral Resources and others para 53(2)(a) (790/2018) [2019] ZASCA 99 (4 July 2019).

⁵⁸⁷ Jeannie van Wyk 'Fracking in the Karoo: Approvals Required?' (2014) at 35, *Stellenbosch Law Review*.

companies had applied for.⁵⁸⁸ The moratorium on shale gas exploration was subsequently lifted in September 2012, following recommendations of a Ministerial Task Team that was established to advise the Minister on shale gas exploration in the country.⁵⁸⁹

Despite the lifting of the moratorium, no licenses for shale gas exploration have yet been issued in South Africa,⁵⁹⁰ largely because there has not been an effective engagement of the relevant stakeholders. Rather than calling for the substantive engagement of key stakeholders, the MPRDA merely provides for interested and affected parties to be consulted,⁵⁹¹ a critical shortcoming in the MPRDA. To enable the societal acceptance of shale gas development in the Karoo, the meaningful and substantive engagement of key stakeholders will be crucial, as provided for in the NEMA.⁵⁹² section 5 below.

4.8 Public Participation under the NEMA

The National Environmental Management Act (NEMA),⁵⁹³ prescribes the environmental management principles to be applied when making decisions that may have a significant impact on the environment.⁵⁹⁴ A key principle of the NEMA is that environmental management must have people and their needs at its core.⁵⁹⁵ Environmental decisions must consider the interests, needs and values of all affected and interested parties (key stakeholders).⁵⁹⁶ Development should be socially, environmentally and economically sustainable.⁵⁹⁷ Sustainable development requires

⁵⁸⁸ Ibid.

⁵⁸⁹ Ibid.

⁵⁹⁰ Minister of Mineral Resources v Stern & others (1369/2017) and Treasure the Karoo Action Group & another v Department of Mineral Resources and others para 15 (790/2018) [2019] ZASCA 99 (4 July 2019).

⁵⁹¹ S 10(1)) of the MPRDA.

⁵⁹² S 2(4) of the NEMA.

⁵⁹³ National Environmental Management Act, No.107 of 1998.

⁵⁹⁴ National Environmental Management Act, No.107 of 1998.

⁵⁹⁵ S 2 (2) of the NEMA.

⁵⁹⁶ S 2 (4)(g) of the NEMA.

⁵⁹⁷ S 2 (3) of the NEMA.

that environmental degradation be avoided, and where it cannot be entirely avoided, be minimized and remedied.⁵⁹⁸

The NEMA provides that the participation of key stakeholders in environmental governance be promoted.⁵⁹⁹ It calls for all stakeholders to be given an opportunity to develop the understanding, skills and capacity necessary for achieving equitable and effective participation.⁶⁰⁰ It calls for the participation of vulnerable and disadvantaged groups to be ensured.⁶⁰¹ Accordingly, community wellbeing and empowerment must be promoted through environmental education, awareness and the sharing of knowledge and experience and other appropriate means.⁶⁰² The social, economic and environmental impacts of activities, including disadvantages and benefits must be considered, assessed and evaluated, with appropriate decisions taken in the context of such consideration and assessment.⁶⁰³

The NEMA Environmental Impact Assessment Regulations,⁶⁰⁴ list oil and gas exploration and production as part of environmentally invasive activities.⁶⁰⁵ These activities require scoping and environmental impact assessments to be done prior to embarking on them.⁶⁰⁶ Furthermore, the NEMA Environmental Impact Assessment Regulations,⁶⁰⁷ affirm the MPRDA requirement that exploration right holders should notify and consult the landowner or lawful occupier of the land to which the right applies before commencing with petroleum exploration or production activities.⁶⁰⁸

The NEMA Environmental Impact Assessment Regulations, provide a stronger formulation, which requires that written consent to undertake invasive environmental

⁵⁹⁸ S 2 (4) of the NEMA.

⁵⁹⁹ S 2 (4)(f) of the NEMA.

⁶⁰⁰ Ibid.

⁶⁰¹ Ibid.

⁶⁰² S 2 (4)(h) of the NEMA.

⁶⁰³ S 2 (4)(i) of the NEMA.

⁶⁰⁴ Environmental Impact Assessment Regulations (2014) in Government Notice R982, Government Gazette 38282.

⁶⁰⁵ Jeannie van Wyk 'Fracking in the Karoo: Approvals Required?' (2014) at 46, *Stellenbosch Law Review*.

⁶⁰⁶ Ibid.

⁶⁰⁷ Environmental Impact Assessment Regulations, Government Gazette No. 38282, 2014.

⁶⁰⁸ Environmental Impact Assessment Regulations, Government Gazette No. 38282, 2014; Jeannie van Wyk 'Fracking in the Karoo: Approvals Required?' (2014) at 46, *Stellenbosch Law Review*; S 79(4)(a) of the MPRDA.

activities be obtained from the landowner or person in control of the land.⁶⁰⁹ The provision, however, excludes petroleum exploration and production from this requirement.⁶¹⁰ One of the main shortcomings of the NEMA and EIA Regulations' public participation framework is its limitation to the application process for a prospecting or exploration right.⁶¹¹ Once a prospecting or petroleum exploration right is approved, the public or stakeholders have no influence on prospecting or exploration activities.⁶¹² The public cannot monitor project activities or be involved in project design and other related decisions.⁶¹³ The petroleum and environmental laws of South Africa should therefore be strengthened, to provide for the involvement of key stakeholders for the duration of the exploration and production rights. This would allow key stakeholders to monitor and influence decisions pertaining to shale gas development.

4.9 Public Participation under the NWA

Shale gas development is contentious largely because the hydraulic fracturing process uses vast amounts of water, and chemicals that could contaminate surface and groundwater resources.⁶¹⁴ Furthermore hydraulic fracturing produces a considerable amount of wastewater that requires treatment for safe disposal.⁶¹⁵ The handling and disposal of this wastewater is a threat to surface waters.⁶¹⁶

The National Water Act (NWA) regulates the protection and appropriate management of water resources in South Africa.⁶¹⁷ This is to ensure that the nation's water resources are protected, used, developed, conserved, managed and controlled, taking into account the basic human needs of present and future generations.⁶¹⁸ The NWA

⁶⁰⁹ S 39(1) of the Environmental Impact Assessment Regulations (2014) in GN R982 GG 38282

⁶¹⁰ S 39(2)(b) of the Environmental Impact Assessment Regulations.

⁶¹¹ P Kind and C Reddell 'Public Participation and Water Use Rights' (2015) at 11 *PER/PELJ* 4(18). ⁶¹² Ibid.

⁶¹³ Ibid.

⁶¹⁴ Jake Hays, Madelon L. Finkel, Michael Depledge, Adam Law & Seth B.C. Shonkoff 'Considerations for the development of shale gas in the United Kingdom' (2015) at 37, *Science of the Total Environment;* U.S. EPA 'Hydraulic Fracturing for Oil and Gas: Impacts from the Hydraulic Fracturing Water Cycle on Drinking Water Resources in the United States (Final Report)' (2016), Washington, DC, EPA/600/R-16/236F, available at www.epa.gov./hfstudy, accessed on 28 May 2022.

⁶¹⁵ Daniele Costa, Joao Jesus, David Branco, Anthony Danko & Antonio Fiuza 'Extensive Review of Shale Gas Environmental Impacts from Scientific Literature (2010 – 2015)' (2017) at 14583, *Environ Sci Pollut Res* 24: 14579 – 14594.

⁶¹⁶ Ibid.

⁶¹⁷ National Water Act, No.36 of 1998.

⁶¹⁸ S 1(2)(a) of the NWA.

furthermore facilitates equitable access to water, social and economic development.⁶¹⁹ It also promotes the efficient, sustainable and beneficial use of water in the public interest, taking into account the growing demand for water, ecosystems and biological diversity and international obligations. ⁶²⁰

Hydraulic fracturing is a controlled activity under the relevant provisions of the National Water Act.⁶²¹ This implies that companies applying for shale gas exploration rights will also have to apply for an integrated water use license at the Department of Water and Sanitation.⁶²² Before the issuing of the water use license, the reserve for the specific catchment has to be determined.⁶²³ The reserve defines the quantity and quality of water from a source that is required to supply the basic human needs, and to protect aquatic ecosystems, to ensure ecologically sustainable development and use of water resources.⁶²⁴

Consequently, companies applying for shale gas exploration licenses will be required to identify the sources of water supply within their exploration area of interest, or nearby, and to develop a water resource management plan, which must include mitigation of potential impacts on the water resources.⁶²⁵ The long-term monitoring of water use, together with liability obligations are to be a condition of the water use license.⁶²⁶ Moreover, water management strategies such as the use of alternative

⁶¹⁹ S (1)(2)(a) of the NWA.

⁶²⁰ S (1)(2)(a) of the NWA.

⁶²¹ Academy of Science of South Africa (ASSAf) South Africa's Technical Readiness to Support Shale Gas Development (2016) at 83 (ASSAf, Pretoria); Department of Water and Sanitation 'Declaration of the Exploration for and Production of Onshore Unconventional Oil or Gas Resources or any Activities Related Thereto Including but not Limited to Hydraulic Fracturing as a Controlled Activity, Government Gazette, No. 39299 of 16 October 2015.

⁶²² Academy of Science of South Africa South Africa's Technical Readiness to Support Shale Gas Development (2016) at 83 (ASSAf, Pretoria); Department of Water and Sanitation 'Declaration of the Exploration for and Production of Onshore Unconventional Oil or Gas Resources or any Activities Related Thereto Including but not Limited to Hydraulic Fracturing as a Controlled Activity, Government Gazette, No. 39299 of 16 October 2015.

⁶²³ S 3(15) of the NWA.

⁶²⁴ S 3(15) of the NWA.

⁶²⁵ Academy of Science of South Africa *South Africa's Technical Readiness to Support Shale Gas Development* (2016) at 83 (ASSAf, Pretoria).

⁶²⁶ Ibid.

water sources or water withdrawal restrictions can reduce the frequency or severity of impacts on drinking water sources from shale gas development.⁶²⁷

The NWA provides for consultation with the broader society on strategies aimed at managing water resources.⁶²⁸ It provides that a responsible authority, which is required to consider applications for water use licences, may provide comments from any State organ or interested persons.⁶²⁹ It may require applicants to give notice describing the licence applied for,⁶³⁰ and stating that written objections may be lodged against the application before a specified date, no less than 60 days after the publication of notice.⁶³¹ The responsible authority may also require applicants to take such steps as it may direct to bring the application to the attention of the relevant organs of state, interested persons and the general public,⁶³² and to satisfy the responsible authority that the interests of any other person having an interest in the land will not be adversely affected.⁶³³

The NWA further provides that the competent authority must afford applicants an opportunity to make representations on any aspect of the licence application.⁶³⁴ The word 'must' strengthen this requirement of the NWA, compared to the discretionary formulations in sections 42(2)(c) and 41(4) of the NWA, providing for public participation in relation to applications for water use licences.⁶³⁵ The NWA does not however provide an inclusive mechanism for public participation that ensures the ventilation of all matters of concern in relation to water use.⁶³⁶ It also provides no detail as to the nature and extent of the public participation procedure to be undertaken.⁶³⁷

⁶²⁷ United States Environmental Protection Agency, *Hydraulic Fracturing for Oil and Gas: Impacts from the Hydraulic Fracturing Water Cycle on Drinking Water Resources in the United States* (2016), at 15, Office of Research and Development, Washington DC, available at www.epa.gov./hfstudy, accessed on 25 July 2022.

⁶²⁸ S 5(5)(iii) of the NWA

⁶²⁹ S 41(2)(c) of the NWA

⁶³⁰ S 41(4)(a)(i) of the NWA

⁶³¹ S 41(4)(a)(ii) of the NWA

⁶³² S 41(4)(b) of the NWA

⁶³³ S 41(4)(c) of the NWA

⁶³⁴ S 41(2)(d) of the NWA

 ⁶³⁵ P Kind and C Reddell 'Public Participation and Water Use Rights' (2015) at 11 *PER/PELJ* 4(18).
⁶³⁶ Ibid.

⁶³⁷ Ibid.

Such an inclusive mechanism, enabling robust public participation in water use licensing processes,⁶³⁸ could aid the societal acceptance of shale gas in the Karoo.

4.10 Public Participation under the NEM: WASTE ACT

As discussed in chapter 2, hydraulic fracturing produces a considerable amount of wastewater that requires treatment for safe disposal,⁶³⁹ and the handling and disposal of this wastewater is a threat to surface waters.⁶⁴⁰ The National Environmental Management: Waste Act (NEM: Waste Act)⁶⁴¹ provides for national norms and standards for regulating the management of waste.⁶⁴² It provides for the licensing and control of waste management activities and for the remediation of contaminated land.⁶⁴³ It furthermore provides for a national waste information system, and for the compliance and enforcement of waste management.⁶⁴⁴ In terms of the Act, the Minister or MEC responsible for the environment must invite members of the public to submit written representations or objections related to a proposed waste generating activity.⁶⁴⁵ The Minister or MEC must take such representations or objections into account when taking a decision to authorise such an activity or not.⁶⁴⁶

The invitation must be through a notice in the Government Gazette,⁶⁴⁷ and in at least one newspaper that is distributed nationally or locally.⁶⁴⁸ Such a notice must allow the public at least 30 days to make the written representations or objectives to the proposed activity.⁶⁴⁹ The notice must contain sufficient information to enable the members of the public to submit the representations or objections.⁶⁵⁰ The Minister or

⁶³⁸ Ibid.

⁶³⁹ Hans-Holger Rogner & Ruud Weijermars 'The Uncertainty of Future Commercial Shale Gas Availability' (2014) SPE Paper No. 167710, at 6, presented to the SPE/EAGE European Unconventional Conference and Exhibition, Vienna, Austria, 25 – 27 February 2014; Daniele Costa, Joao Jesus, David Branco, Anthony Danko & Antonio Fiuza 'Extensive Review of Shale Gas Environmental Impacts from Scientific Literature (2010 – 2015)' (2017) at 14583, *Environ Sci Pollut Res* 24.

⁶⁴⁰ Ibid.

⁶⁴¹ National Environmental Management: Waste Act, No. 59 of 2008.

⁶⁴² Ibid.

⁶⁴³ Ibid.

⁶⁴⁴ Ibid.

⁶⁴⁵ S 73(2)(a) of the NEM: Waste Act.

⁶⁴⁶ S 73(4)(a) of the NEM: Waste Act.

 $^{^{647}}$ S 73(1)(a) of the NEM: Waste Act.

⁶⁴⁸ S 73(1)(b) of the NEM: Waste Act.

⁶⁴⁹ S 73(2)(a) of the NEM: Waste Act.

⁶⁵⁰ S 73(2)(b) of the NEM: Waste Act.

MEC, may, in appropriate circumstances, allow any interested person or community to make oral representations or objections to the Minister or MEC, or to a person designated by the Minister or MEC on the proposed activity.⁶⁵¹ Effective public participation leveraging the aforementioned provisions, could ensure that the risk of contaminating ground and surface waters or the environment by toxic waste arising from shale gas development is mitigated.

4.11 A New Era for Public Participation in the Oil and Gas Sector

Three recent court cases are quite instructive on the approach of the courts with regards to public participation related to the exploration of oil and gas in South Africa.⁶⁵² Two of these cases were heard in the Eastern Cape High Court in Grahamstown in November and December 2021 respectively.⁶⁵³ The third case, was heard in the Western Cape High Court in Cape Town in February 2022.⁶⁵⁴ In all three cases, the applicants sought an order interdicting various oil and gas companies from conducting seismic surveys off the coasts of South Africa.⁶⁵⁵ These cases are outlined in sections 4.11.1 to 4.11.3 below.

⁶⁵¹ S 73(3) of the NEM: Waste Act.

⁶⁵² Border Deep Sea Angling Association and others v Minister of Mineral Resources and Energy and others, 2021 SA 3865/2021 (High Court of South Africa, Eastern Cape Division, Grahamstown) (3 December 2021); Sustaining the Wild Coast NPC v Minister of Mineral Resources and Energy and Others, 2021 SA 3491/2021 (High Court of South Africa, Eastern Cape Division, Grahamstown) (28 December 2021); Christian John Adams and Others v Minister of Mineral Resources and Energy and others, 2022 SA 1306/22 (High Court of South Africa, Western Cape Division, Cape Town) (1 March 2022).

⁶⁵³ Border Deep Sea Angling Association and others v Minister of Mineral Resources and Energy and others, 2021 SA 3865/2021 (High Court of South Africa, Eastern Cape Division, Grahamstown) (3 December 2021); Sustaining the Wild Coast NPC v Minister of Mineral Resources and Energy and Others, 2021 SA 3491/2021 (High Court of South Africa, Eastern Cape Division, Grahamstown) (28 December 2021).

⁶⁵⁴ Christian John Adams and Others v Minister of Mineral Resources and Energy and others, 2022 SA 1306/22 (High Court of South Africa, Western Cape Division, Cape Town) (1 March 2022).

⁶⁵⁵ Border Deep Sea Angling Association and others v Minister of Mineral Resources and Energy and others, 2021 SA 3865/2021 (High Court of South Africa, Eastern Cape Division, Grahamstown) (3 December 2021); Sustaining the Wild Coast NPC v Minister of Mineral Resources and Energy and Others, 2021 SA 3491/2021 (High Court of South Africa, Eastern Cape Division, Grahamstown) (28 December 2021); Christian John Adams and Others v Minister of Mineral Resources and Energy and others, 2022 SA 1306/22 (High Court of South Africa, Western Cape Division, Cape Town) (1 March 2022).

4.11.1 Border Deep Sea Angling v Minister of Mineral Resources and Energy

4.11.1.1 Introduction

In *Border Deep Sea Angling v Minister of Mineral Resources and Energy*, the applicants sought to interdict BG International Limited, Shell Exploration and Production South Africa BV, and Impact Africa Limited (collectively referred to in the case as 'Shell') from conducting a 3 dimensional (3D) seismic survey off the East Coast of South Africa (also known as the wild coast) under Exploration Right 12/3/252 from 1 December 2021 onwards.⁶⁵⁶ The interdict was to come into effect pending the final determination of an application for review and setting aside of the grant of the Exploration Right by the Minister responsible for Mineral Resources, and its various renewals on 20 December 2017 and in May 2020 respectively.⁶⁵⁷ The application for review had not yet been lodged when the case was heard on 30 November 2021, and set down on 3 December 2021, therefore the notice of motion provided that, should the review not be instituted by 10 January 2022 the interdict would lapse.⁶⁵⁸ The application was lodged on an urgent basis because the seismic survey was planned to begin on 1 December 2021, or shortly thereafter, and that its commencement would cause substantial and irreversible harm.⁶⁵⁹

4.11.1.2 Public Participation as it Relates to this Case

Impact Africa applied for the Exploration Right in terms of section 79 of the MPRDA,⁶⁶⁰ to explore for oil and gas in the Transkei and Algoa exploration areas in 2013.⁶⁶¹ Upon acceptance of the application, the applicants were requested to develop an Environmental Management Programme (EMPr) required in terms of section 39 of the MPRDA.⁶⁶² To that effect, a public participation process was undertaken in 2013, when the draft EMPr was published for the consideration of interested and affected

660 Ibid, para 16.

⁶⁵⁶ Border Deep Sea Angling Association and others v Minister of Mineral Resources and Energy and others, para 2, 2021 SA 3865/2021 (High Court of South Africa, Eastern Cape Division, Grahamstown) (3 December 2021).

⁶⁵⁷ Ibid, para 2.

⁶⁵⁸ Ibid, para 2.

⁶⁵⁹ Ibid, para 4.

⁶⁶¹ Ibid. ⁶⁶² Ibid.

parties.⁶⁶³ The Exploration Right was then granted to Impact Africa in April 2014, following the approval of the EMPr.⁶⁶⁴

The Exploration Right entered into its first renewal period in December 2017, and into the second renewal period in August 2021.⁶⁶⁵ The granting of the Exploration Right occurred before the regulation of the environmental aspects of oil and gas activities fell under the NEMA, pursuant to the One Environmental System.⁶⁶⁶ Therefore the EMPr that was approved in terms of the MPRDA could, according to the respondents, be regarded as an Environmental Management Plan (EMP) approved under the NEMA.⁶⁶⁷ The applicants however alleged that Shell was required to obtain environmental authorisation in terms of the NEMA before embarking on exploration activities such as the seismic survey, which Shell did not have.⁶⁶⁸

4.11.1.3 Ruling

Judge Govindjee AJ, dealt with the requisites for an interim relief. First, a clear right, if not clear, a *prima facie* right had to be established; secondly, if the right is only *prima facie* established, there should be a well-grounded apprehension of irreparable harm if the interim relief is not granted and the ultimate relief is eventually granted; thirdly, the balance of convenience should favour the granting of an interim interdict; fourthly, the applicants should have no other satisfactory remedy.⁶⁶⁹

Accordingly, the applicants demonstrated that, if interim protection was given, they had a *prima facie* right to only part of the relief sought in the review, and that there was no alternative remedy available.⁶⁷⁰ The applicants however could not convince Judge Govindjee that there was a well-grounded apprehension of irreparable harm if the interim relief was not granted, and the ultimate relief was eventually granted, or that the balance of convenience favoured the applicants.⁶⁷¹ The judge therefore rejected

- 663 Ibid.
- 664 Ibid.
- ⁶⁶⁵ Ibid.
- ⁶⁶⁶ Ibid, para 18.
- ⁶⁶⁷ Ibid
- 668 Ibid.
- ⁶⁶⁹ Ibid, para 11.
- ⁶⁷⁰ Ibid, para 40.
- ⁶⁷¹ Ibid.

the application for an interim order interdicting Shell's 3D seismic acquisition off the wild coast.⁶⁷²

4.11.2 Sustaining the Wild Coast v Minister of Mineral Resources and Energy

4.11.2.1 Introduction

In *Sustaining the Wild Coast v Minister of Mineral Resources and Energy*,⁶⁷³ the applicants sought an order interdicting Shell Exploration and Production South Africa BV; Impact Africa Limited; and BG International Limited (herein referred to as Shell) from continuing their three-dimensional (3D) seismic survey pending the outcome of the relief sought in Part B of the case.⁶⁷⁴ In Part B, the applicants sought an interdict prohibiting the same respondents from proceeding with the seismic survey on the basis that the respondents did not have an environmental authorization to conduct the seismic survey granted under the National Environmental Management Act.⁶⁷⁵

The applicants are non-profit organisations, natural persons, and a communal property association.⁶⁷⁶ Their interests range from promoting sustainable livelihoods that construct, rehabilitate and protect the natural environment on the Wild Coast; traditional healing; small-scale fishing; and the mitigation of climate change.⁶⁷⁷ Collectively, the applicants act in the public interest and in the interest of protecting the environment.⁶⁷⁸ The respondents are the Minister of Minerals Resources and Energy; Minister of Environment, Forestry and Fisheries; and Shell.⁶⁷⁹

⁶⁷² Ibid.

 ⁶⁷³ Sustaining the Wild Coast NPC v Minister of Mineral Resources and Energy and Others, 2021 SA 3491/2021 (High Court of South Africa, Eastern Cape Division, Grahamstown) (28 December 2021).
⁶⁷⁴ Sustaining the Wild Coast NPC v Minister of Mineral Resources and Energy and Others, para 1, 2021 SA 3491/2021 (High Court of South Africa, Eastern Cape Division, Grahamstown) (28 December 2021).

⁶⁷⁵ Ibid.

⁶⁷⁶ Ibid, para 2.

⁶⁷⁷ Ibid.

⁶⁷⁸ Ibid.

⁶⁷⁹ Ibid, para 3.

4.11.2.2 Public Participation as it Relates to this Case

In 2013 Impact Africa applied for an Exploration Right,⁶⁸⁰ at the Petroleum Agency SA (Petroleum Agency) to explore for oil and gas in the Transkei and Algoa exploration areas.⁶⁸¹ The application was accepted by the Petroleum Agency on 1 March 2013.⁶⁸² A draft environmental management programme (EMPr) was made available to interested and affected parties, to enable them to raise concerns on the proposed exploration activities.⁶⁸³ Comments on the draft EMPr were required from 22 March to 12 April 2013.⁶⁸⁴ Advertisements were placed in several newspapers, including, The Times, Die Burger (Eastern Cape), The Herald, and The Daily Dispatch, notifying the public of the proposed project.⁶⁸⁵ The advertisements provided details of the consultation process, and shared information on how members of the public could provide input to the EMPr process.⁶⁸⁶

A final EMPr was produced during June 2013, and was approved by PASA on 9 September 2013, subject to certain conditions.⁶⁸⁷ The Deputy Director-General of the department responsible for mineral resources approved the EMPr, and on 29 April 2014 the Exploration Right was granted.⁶⁸⁸ Shell therefore conducted a seismic survey off the Eastern Coast of South Africa covering an area of 6 011 square kilometres at the beginning of December 2021.⁶⁸⁹ The seismic survey, which would last for 110 – 120 days depending on the weather, sea currents, and conditions, would provide imaging of the subsurface, which are used to identify geological structures that might contain oil and gas resources.⁶⁹⁰

⁶⁸⁰ In terms of section 79 of the MPRDA.

⁶⁸¹ Sustaining the Wild Coast NPC v Minister of Mineral Resources and Energy and Others, para 3.

⁶⁸² Ibid, para 5.

⁶⁸³ Ibid.

⁶⁸⁴ Ibid.

⁶⁸⁵ Ibid.

⁶⁸⁶ Ibid.

⁶⁸⁷ Ibid. ⁶⁸⁸ Ibid.

⁶⁸⁹ Ibid, para 6. ⁶⁹⁰ Ibid.

4.11.2.3 Ruling

In deciding the case, Judge Bloem J, dealt with the requisites for an interim interdict. First, the applicants had to satisfy the court that they had established a *prima facie* right even if open to some doubt.⁶⁹¹Secondly, that there was a reasonable apprehension of irreparable and imminent harm to the right if the interim interdict was not granted.⁶⁹² Thirdly, the balance of convenience favoured the granting of the interim interdict.⁶⁹³ Fourthly, the applicants have no other satisfactory remedy.⁶⁹⁴ Shell contended that the application should be dismissed because the applicants could not establish any of these.⁶⁹⁵

In his ruling, Judge Bloem affirmed that despite having the duty to meaningfully consult with the communities and individuals who would be impacted by the seismic survey, Shell failed to meaningfully consult, as demonstrated by evidence showing that the consultation process was inadequate and substantially flawed.⁶⁹⁶ He therefore, accepted that the applicant's right to meaningful consultation constituted *prima facie* rights that deserved to be protected by way of an interim interdict.⁶⁹⁷ He furthermore accepted that the Exploration Right, which was awarded based on a substantially flawed consultation process was unlawful and invalid.⁶⁹⁸ Moreover, on whether Shell had to have an environmental authorization obtained under the NEMA, the Minister confirmed that the environmental management program that was used to support the renewal application by Impact Africa constituted an environmental authorization, as envisaged by the NEMA, which may not be the case, this would be dealt with under Part B of the notice of motion.⁶⁹⁹

On whether there was a reasonable apprehension of irreparable and imminent harm if the interim interdict was not granted, the court accepted the expert evidence that

- ⁶⁹³ Ibid.
- ⁶⁹⁴ Ibid. ⁶⁹⁵ Ibid.
- ⁶⁹⁶ Ibid, para 33.
- ⁶⁹⁷ Ibid, para 34.
- ⁶⁹⁸ Ibid.
- ⁶⁹⁹ Ibid.

⁶⁹¹ Ibid, para 7.

⁶⁹² Ibid.

without its intervention, there was a real threat of irreparable harm to marine life,⁷⁰⁰ and that Shell's mitigation measures were inadequate to mitigate against the possible harm from the seismic survey.⁷⁰¹ Furthermore, the seismic survey would negatively impact the livelihoods of the fishers, and cause cultural and spiritual harm.⁷⁰² On the balance of convenience, the Judge weighed the harm that the applicants would suffer if the interim interdict was not granted, against the balance of convenience favoured the granting of the interim interdict.⁷⁰⁴ In terms of an alternative remedy being available to the applicants, the Judge also ruled that the only available remedy was to grant the interim interdict.⁷⁰⁵

4.11.3 Adams v Minister of Mineral Resources and Energy

4.11.3.1 Introduction

In *Adams v Minister of Mineral Resources and Energy*,⁷⁰⁶ the applicants sought an interim interdict or urgent order interdicting Searcher Geodata UK Limited, Searcher Seismic Australia, and BGP "Pioneer" (collectively Searcher) from commencing or continuing a seismic survey along the West and South Coasts of South Africa.⁷⁰⁷ The seismic survey was conducted based on a Reconnaissance Permit granted in terms of section 74 of the MPRDA.⁷⁰⁸ The two-part application was sought by small-scale fishers, indigenous communities, an environmental organization ('Green Connection'), and an organization established to enhance good governance ('We are South Africans').⁷⁰⁹ The interim interdict was sought pending the outcome of the applicant's internal appeal

⁷⁰⁰ Ibid, para 64.

⁷⁰¹ Ibid, para 65.

⁷⁰² Ibid, para 66.

⁷⁰³ Ibid.

⁷⁰⁴ Ibid, para 73.

⁷⁰⁵ Ibid, para 77.

 ⁷⁰⁶ Christian John Adams and Others v Minister of Mineral Resources and Energy and others, 2022 SA 1306/22 (High Court of South Africa, Western Cape Division, Cape Town) (1 March 2022).
⁷⁰⁷ Ibid, para 1.

⁷⁰⁸ Ibid.

⁷⁰⁹ Ibid, para 2.

against the granting of the Reconnaissance Permit to Searcher in terms of section 96 of the MPRDA, and the decision on Part B,⁷¹⁰ of the applicant's application.⁷¹¹

4.11.3.2 Public Participation as it Relates to this Case

Searcher applied for a Reconnaissance Permit at the Petroleum Agency SA on 30 April 2021, for approval by the Minister of Mineral Resources and Energy in terms of s 74 of the MPRDA.⁷¹² The application was accepted on 18 May 2021 on condition that Searcher develops an Environmental Management Programme (EMPr).⁷¹³ Searcher developed the EMPr and submitted it to the Petroleum Agency on 11 September 2021. Meanwhile, on 11 June 2021, the Department of the Environment, Forestry and Fisheries (DFFE) issued amendments to the Environmental Impact Assessment Regulations (EIA Regulations) Listing Notice 1, 2 and 3.⁷¹⁴

In terms of the new EIA Regulations, applicants for a Reconnaissance Permit submitted on or after 11 June 2021 were required to obtain an Environmental Authorization (EA), issued in terms of section 24 of the NEMA and the EIA Regulations of 2014.⁷¹⁵ Prior to the amendments to the EIA Regulations on 11 June 2021, applications for Reconnaissance Permits did not require Environmental Authorization.⁷¹⁶ Searcher's application for a Reconnaissance Permit, having been made before 11 June 2021 did not require an Environmental Authorization, therefore had to be finalized in terms of the law prevailing when the application was made.⁷¹⁷

In terms of Part A of this case, the issue was whether an urgent order interdicting Searcher from commencing, or continuing a seismic survey along the West and South

⁷¹⁰ Part B is based on whether Searcher had the right to commence the seismic survey without an environmental authorisation issued by the Minister of Minerals and Energy in terms of s 24F(1)(a) of the NEMA and s 5A of the MPRDA.

⁷¹¹ Ibid, para 1.

⁷¹² Ibid, para 22.

⁷¹³ Ibid.

 ⁷¹⁴ Environmental Impact Assessment Regulations, 2014 in GN R517 Government Gazette 44701; *Christian John Adams and Others v Minister of Mineral Resources and Energy and others*, para 22, 2022 SA 1306/22 (High Court of South Africa, Western Cape Division, Cape Town) (1 March 2022).
⁷¹⁵ Ibid.

⁷¹⁶ Environmental Impact Assessment Regulations, 2014 in GN R517 Government Gazette 44701.

⁷¹⁷ Christian John Adams and Others v Minister of Mineral Resources and Energy and others, para 22, 2022 SA 1306/22 (High Court of South Africa, Western Cape Division, Cape Town) (1 March 2022).

Coasts of South Africa, ought to be granted pending the decision on Part B.⁷¹⁸ Specific questions for consideration by the Court were: first, whether the Reconnaissance Permit issued to Searcher was illegal, on the basis that it did not have Environmental Authorisation in terms of the NEMA and related Environmental Impact Assessment Regulations,⁷¹⁹ therefore the commencement of the seismic survey on 24 January 2022 was illegal.⁷²⁰ Secondly, whether the survey would cause irreparable harm; thirdly, public interest and, fourthly, the balance of convenience.⁷²¹

In clarifying what an Interim Order is, Judge Thulare J outlined it as being 'a court order preserving or restoring the *status quo* pending the final determination of the rights of the parties'.⁷²² 'An interim order therefore does not involve a final determination of the rights of the parties and does not affect their determination'.⁷²³ He outlined the requisites for an interim interdict as being firstly, a *prima facie* right; secondly, a well-grounded apprehension of irreparable harm if the interim relief is not granted and the ultimate relief is eventually granted; thirdly, the balance of convenience favours the granting of an interim interdict; fourthly, the application has no other satisfactory remedy.⁷²⁴ Accordingly, based on the discretionary nature of an interim interdict, these requisites could not be assessed in isolation, but rather had to be looked at holistically in recognition of their interdependence.⁷²⁵

4.11.3.3 Ruling

Judge Thulare recalled that the MPRDA provides that if an application for a reconnaissance permit is accepted, the Petroleum Agency must within 14 days of the receipt of such an application notify the applicant to consult with the landowner, lawful occupier of the land in question, and interested and affected parties in the prescribed

⁷¹⁸ Ibid, para 3.

⁷¹⁹ s 24F(1)(a) of the NEMA; Environmental Impact Assessment Regulations, 2014 in GN R517 Government Gazette 44701.

⁷²⁰ Christian John Adams and Others v Minister of Mineral Resources and Energy and others, para 4, 2022 SA 1306/22 (High Court of South Africa, Western Cape Division, Cape Town) (1 March 2022).

 ⁷²¹ Christian John Adams and Others v Minister of Mineral Resources and Energy and others, para 4, 2022 SA 1306/22 (High Court of South Africa, Western Cape Division, Cape Town) (1 March 2022).
⁷²² Ibid, para 5.

⁷²³ Ibid.

⁷²⁴ Ibid.

⁷²⁵ Ibid.

manner.⁷²⁶ The results of such consultation must be included in the relevant environmental reports in terms of Chapter 5 of the NEMA.⁷²⁷ The applicants in this case, therefore, constituted the interested and affected parties referred to in the MPRDA,⁷²⁸ therefore ought to have been consulted, since they were concerned, had an interest, and wanted to be involved in the decisions related to the seismic survey, because it could have an effect in their lives.⁷²⁹ The small scale fishers and their communities were not consulted.⁷³⁰ The justification given for not considering them in the consultation process was that they were not directly affected by the seismic acquisition.⁷³¹

Even the publication of the consultation process in the newspapers, e-mail notifications, publication on the website and hard copies that were placed at libraries clearly did not target small scale fishers and their communities.⁷³² This is because had this grouping of stakeholders been a consideration, the publications would not have been limited to only the English and Afrikaans languages when IsiXhosa was one of the main languages spoken in these communities.⁷³³ They would also not have been limited to people who were literate and had access to technological devices such as computers, cellphones, and data to access the internet.⁷³⁴ The court noted that, according to the applicants, meaningful consultation could have been better achieved if Searcher had publicized the consultation process on the community radio stations, and called community meetings.⁷³⁵ Furthermore, Searcher is deemed to have outsourced its obligation to consult to an NGO, to fulfil the requirements of formal compliance with no regard to the substance of the duty to consult.⁷³⁶

In essence, the applicant's case was that in the absence of consultation the survey posed an immediate risk to marine and bird life and to the communities who relied on

⁷³⁴ Ibid.

⁷²⁶ Ibid, para 6.

⁷²⁷ Ibid.

⁷²⁸ S 74(4)(a) of the MPRDA.

 ⁷²⁹ Christian John Adams and Others v Minister of Mineral Resources and Energy and others, para 7, 2022 SA 1306/22 (High Court of South Africa, Western Cape Division, Cape Town) (1 March 2022).
⁷³⁰ Ibid, para 7.

⁷³¹ Ibid, para 7.

⁷³² Ibid, para 8.

⁷³³ Ibid.

⁷³⁵ Ibid, para 14.

the sea for their livelihoods and food sources.⁷³⁷ Therefore the failure to consult rendered Searcher's seismic survey unlawful hence required an immediate interdictory relief to avoid the anticipated harm.⁷³⁸ Searcher's non-consultation of small scale fishers, indigenous communities, Non-Governmental Organisations and other interest groups and individuals in the fishing sector in the West Coast meant that there was no adequate and appropriate opportunity for public participation in decisions that affected the public and that could affect the environment.⁷³⁹

Taking into account that the reconnaissance permit granted to Searcher might not be legal, rendering the commencement of the seismic survey illegal,⁷⁴⁰ that there was a reasonable apprehension the survey could cause irreparable harm,⁷⁴¹ public interest,⁷⁴² and that the balance of convenience favoured the applicants,⁷⁴³ the court granted the interdict, ordering Searcher from continuing seismic survey off the West Coast of South Africa based.⁷⁴⁴ The interdict is pending the outcome of the applicant's internal appeal against the granting of the reconnaissance permit to Searcher and the decision on Part B.⁷⁴⁵ This ruling underscores the criticality of substantive public participation in the upstream oil and gas sector in South Africa, which will have to be the guiding principle if shale gas development is to have any chance at societal acceptance.

4.12 Insights and Learnings from Case Law

As stated earlier in this chapter, lessons can be learned from these three court cases with regards to public participation related to the exploration of oil and gas in South Africa.⁷⁴⁶ Common among these cases is that oil and gas exploration activities were

739 Ibid, para 46.

⁷³⁷ Ibid, para 16.

⁷³⁸ Ibid.

⁷⁴⁰ Ibid, para 22.

⁷⁴¹ Ibid, para 34.

⁷⁴² Ibid, para 36.

⁷⁴³ Ibid, para 41.

⁷⁴⁴ Ibid, para 50.

⁷⁴⁵ Ibid.

⁷⁴⁶ Border Deep Sea Angling Association and others v Minister of Mineral Resources and Energy and others, 2021 SA 3865/2021 (High Court of South Africa, Eastern Cape Division, Grahamstown) (3 December 2021); Sustaining the Wild Coast NPC v Minister of Mineral Resources and Energy and Others, 2021 SA 3491/2021 (High Court of South Africa, Eastern Cape Division, Grahamstown) (28 December 2021); Christian John Adams and Others v Minister of Mineral Resources and Energy

interdicted while already underway. The cases clarified the requisites for interim interdicts as they pertain to public participation related to permits and rights for the exploration of oil and gas. Accordingly, a clear right, or a *prima facie*, right even if open to some doubt, had to be established. Secondly, there should be a reasonable apprehension of irreparable and imminent harm to the right if the interim interdict was not granted. Thirdly, the balance of convenience should favour the granting of the interim interdict. Fourthly, there should be no other satisfactory remedy.

While in the first case,⁷⁴⁷ which was very rushed, with the interdict lodged a few days before the actual commencement of the seismic acquisition and heard a day before the commencement of activities, the Judge ruled against the applicants.⁷⁴⁸ The basis for the rejection was that the Judge was not convinced that there was a well-grounded apprehension of irreparable harm if the interim relief was not granted, and the ultimate relief was eventually granted, or that the balance of convenience favoured the applicants.⁷⁴⁹ The Judge did not deal with public participation as a critical consideration in this case.

This omission was dealt with in the subsequent cases,⁷⁵⁰ where it was affirmed that despite having the duty to meaningfully consult with the communities and individuals who would be impacted by the planned activities, the companies concerned failed to meaningfully consult, and that the consultation process was inadequate and substantially flawed. Accordingly interested and affected parties' rights to meaningful consultation constituted *prima facie* rights that deserved to be protected. Consequently, the Exploration Right, which was awarded based on a substantially flawed consultation process in the Shell case was revoked as unlawful and invalid.

and others, 2022 SA 1306/22 (High Court of South Africa, Western Cape Division, Cape Town) (1 March 2022).

⁷⁴⁷ Border Deep Sea Angling Association and others v Minister of Mineral Resources and Energy and others, 2021 SA 3865/2021 (High Court of South Africa, Eastern Cape Division, Grahamstown) (3 December 2021).

⁷⁴⁸ Ibid, para 40.

⁷⁴⁹ Ibid.

⁷⁵⁰ Sustaining the Wild Coast NPC v Minister of Mineral Resources and Energy and Others, 2021 SA 3491/2021 (High Court of South Africa, Eastern Cape Division, Grahamstown) (28 December 2021); Christian John Adams and Others v Minister of Mineral Resources and Energy and others, 2022 SA 1306/22 (High Court of South Africa, Western Cape Division, Cape Town) (1 March 2022).

The consultation was flawed because key stakeholders/interested and affected parties were not consulted. For example, in the Searcher case, small-scale fishers and their communities were not consulted. Even the publication of the consultation process in the newspapers, e-mail notifications, publication on the website and hard copies that were placed at libraries did not target small scale fishers and their communities. According to the ruling, that grouping of stakeholders been a consideration, the publications would not have been limited to only the English and Afrikaans languages when IsiXhosa was one of the main languages spoken in these communities. They would also not have been limited to people who were literate and had access to technological devices such as computers, cellphones, and data to access the internet. The court even noted that, according to the applicants, meaningful consultation could have been better achieved if Searcher for example had publicized the consultation process on the community radio stations and called community meetings.

The courts further affirmed that there was reasonable apprehension of irreparable and imminent harm associated with oil and gas exploration activities, which require the meaningful engagement of stakeholders which should not be taken for granted, and that the use of an accessible language was central to meaningful public participation. As stated earlier in this section, this case law underscores the criticality of meaningful public participation in the upstream oil and gas sector in South Africa, which will have to be the guiding principle if shale gas development is to gain societal acceptance.

4.13 Conclusions

The review of the legal framework, including the relevant legislation and case law on public participation related to the exploration and production of oil and gas in South Africa, reveals that the societal acceptance of shale gas development will need to be earned through meaningful public participation. This implies substantive engagement of local communities and other relevant stakeholders at every stage of shale gas development.⁷⁵¹ This will require the applicants and holders of permits and rights for shale gas exploration and exploitation to share pertinent project information with the

⁷⁵¹ International Energy Agency 'Energy Policies of IEA Countries: Canada 2015 Review' (2016) at 115, available at https://iea.blob.core.windows.net/assets/e9e4c6be-dc28-44a8-8bcc-7e0af3a8f19e/EnergyPoliciesofIEACountriesCanada2015Review.pdf accessed on 25 July 2022.

relevant stakeholders or interested and affected parties.⁷⁵² That implies, provide full details on the technical aspects of shale gas exploration and exploitation, the associated risks, and mitigation measures to be put in place to protect the environment at the planning stage of shale gas development and in an accessible language.

Meaningful public participation could also mean giving the public access to independent experts to help them with in-depth analysis of the hydraulic fracturing process.⁷⁵³ Furthermore, there should be openness to adopt processes or project implementation plans in alignment with public concerns, perspectives, and expectations.⁷⁵⁴ This should be premised on the recognition that stakeholders have legitimate interests in procedural or substantive aspects of industrial activity,⁷⁵⁵ and that these interests have intrinsic value.⁷⁵⁶

Accordingly, the petroleum right holders should provide sufficient opportunity for comment on plans, operations, and performance, listen to concerns, and respond appropriately and promptly.⁷⁵⁷ Right holders should be encouraged to devise strategies and plans of engagement in accordance with statutory requirements. Moreover, the industry should work towards maximizing the economic benefits to local communities from their operations, for example by considering local employment and utilizing contractors or service providers, where possible. Participatory approaches to addressing environmental challenges have the potential to facilitate knowledge sharing, lessen contradictions, and build trust among key stakeholders, leading to support for industrial activities such as shale gas extraction.⁷⁵⁸

⁷⁵² Tanya Howard and Solange Teles Da Silva 'Possible legal obligations to consult' (2015) at 135, Edward Elgar Publishing Limited (Cheltenham, UK).

⁷⁵³ Thomas Donaldson and Lee E. Preston 'The Stakeholder Theory of the Corporation: Concepts, Evidence, and Implications' (1995) at 67, 20(1) *Academy of Management Review.*

⁷⁵⁴ Ibid.

⁷⁵⁵ Ibid.

⁷⁵⁶ Ibid.

⁷⁵⁷ International Energy Agency 'Energy Policies of IEA Countries: Canada 2015 Review' (2016) at 115, available at https://iea.blob.core.windows.net/assets/e9e4c6be-dc28-44a8-8bcc-7e0af3a8f19e/EnergyPoliciesofIEACountriesCanada2015Review.pdf accessed on 25 July 2022.

⁷⁵⁸ Mark S. Reed, Steven Vella, Edward Challies, Joris de Vente, Lynne Frewer, Daniela Hohenwallner-Ries, Tobias Huber, Rosmarie K. Neumann, Elizabeth A. Oughton, Julian Sidoli del Ceno & Hedwig van Delden 'A theory of participation: what makes stakeholder and public engagement in environmental management work?' (2018) at s7, *Restoration Ecology* 26.

The requirement for substantive public consultation, and the obligation to obtain the full and informed consent of customary communities was emphasized in *Baleni v Minister of Mineral Resources*.⁷⁵⁹ Therefore, the soft formulation of the MPRDA, calling for consultation instead of substantive and comprehensive engagement of stakeholders therefore needs to be addressed to aid the societal acceptance of shale gas. A requirement for consent by landowners or persons in control of the land over which a petroleum right has been awarded would also go a long way to appease landowners in the Karoo. In essence, public participation in relation to shale gas exploration and production in the Karoo should be about ensuring that the interests of diverse stakeholders are coordinated in a way that could lead to amicable outcomes.⁷⁶⁰ The legal mechanisms as outlined in this chapter, could also assure stakeholders that their concerns and interests are considered in decision making.⁷⁶¹

⁷⁵⁹ Baleni v Minister of Mineral Resources, 2019 2 SA 453 (High Court of South Africa, Gauteng Division, Pretoria) (2016) para 84(2). The Baleni case relates to a dispute between the local community or villagers of Umgungundlovu who hold informal land rights on the wild coast in the Eastern Cape, South Africa who did not want Australian Mining Company – Transworld Energy and Mineral Resources (SA) Pty Ltd (TEM) to mine the titanium-rich sands on their ancestral land, under the Xolobeni Mineral Sands Project, on the basis that such mining would interfere with their way of life.

⁷⁶⁰ Thomas Donaldson and Lee E. Preston 'The Stakeholder Theory of the Corporation: Concepts, Evidence, and Implications' (1995) at 80, 20(1) *Academy of Management Review.*

⁷⁶¹ Tanya Howard and Solange Teles Da Silva 'Possible legal obligations to consult' (2015) at 134, *Edward Elgar Publishing Limited* (Cheltenham, UK).
CHAPTER 5: SOUTH AFRICA'S LEGAL FRAMEWORK FOR SHALE GAS

5.1 Introduction

The exploitation of shale gas in South Africa will require hydraulic fracturing because shale gas does not naturally flow into a well, therefore the shale rock needs to be fractured/cracked to allow the production of the gas at commercial scale.⁷⁶² However, the country's petroleum legal framework does not provide adequately for hydraulic fracturing.⁷⁶³ This resulted in the Petroleum Agency not awarding exploration rights for shale gas, despite several oil and gas companies having applied for such rights as far back as 2010.⁷⁶⁴ At the centre of the impasse is whether South Africa's Regulations for Petroleum Exploration and Production (the 'Hydraulic Fracturing Regulations') which were gazetted to regulate the use of hydraulic fracturing specifically,⁷⁶⁵ are adequate to protect the environment from the risks associated with shale gas extraction.⁷⁶⁶ The regulations were successfully challenged at the High Court in

⁷⁶² Michiel O. de Kock, Nicolas J. Beukes, Elijah O. Adeniyi, Doug Cole, Annette E. Götz, Claire Geel & Frantz-Gerard Ossa 'Deflating the shale gas potential of South Africa's Main Karoo basin' (2017) at 2, *S Afr J Sci*; 113 (9/10); J.C. Shaw, M.M. Reynolds, L.H. Burke 'Shale Gas Production Potential and Technical Challenges in Western Canada' (2006) at 2, Paper 2006-193, presented to the Petroleum Society's 7th Canadian International Petroleum Conference, Calgary, Alberta, Canada, 13-15 June.

⁷⁶³ Hugo Meyer van den Berg and Hanri Mostert 'Challenges to Regulating Hydraulic Fracturing in South Africa: Technological Innovation and Law Making for Climate Change at the Crossroads' (2018) at 260, in Donald Zillman, Martha Roggenkamp, Leroy Paddock, and Lee Godden *Innovation in Energy Law and Technology: Dynamic Solutions for Energy Transitions* (Oxford University Press, Oxford).

⁷⁶⁴ John Douglas Stern and others vs Minister of Mineral Resources, para 13, 2015 SA 5672/2015 (High Court of South Africa, Eastern Cape Division, Grahamstown); Minister of Mineral Resources v Stern & others (1369/2017) and Treasure the Karoo Action Group & another v Department of Mineral Resources and others, para 16 (790/2018) [2019] ZASCA 99 (4 July 2019).

⁷⁶⁵ Regulations for Petroleum Exploration and Production, Government Notice R.466 in Government Gazette No.38855 of 3 June 2015.

⁷⁶⁶ W du Plessis 'Regulation of Hydraulic Fracturing in South Africa: A Project Lifecycle Approach' (2015) at 1466, *Potchefstroom Electronic Law Journal* 18(5). Lisa Plit 'Regulating Petroleum Extraction: The Provisions of the Mineral and Petroleum Resources Development Act 28 of 2002' (2016) at 85, in Jan Glazewski and Surina Esterhuyse *Hydraulic Fracturing in the Karoo: Critical legal and Environmental Perspectives* (2016) Claremont, Juta and Company (Pty) Ltd; Hugo Meyer van den Berg and Hanri Mostert 'Challenges to Regulating Hydraulic Fracturing in South Africa: Technological Innovation and Law Making for Climate Change at the Crossroads' (2018) at 260, in Donald Zillman, Martha Roggenkamp, Leroy Paddock, and Lee Godden *Innovation in Energy Law and Technology: Dynamic Solutions for Energy Transitions* (Oxford University Press, Oxford).

Grahamstown,⁷⁶⁷ and their set aside was confirmed by the Supreme Court of Appeal.⁷⁶⁸

Despite being invalidated by the High Court, the regulations will invariably form the point of departure for regulating hydraulic fracturing in South Africa. This is because the regulations were developed with the oversight of the Monitoring Committee that is charged with ensuring the comprehensive and coordinated augmentation of the regulatory framework for shale gas.⁷⁶⁹ The monitoring Committee comprises of representatives from the Departments of Mineral Resources and Energy, Forestry, Fisheries and Environment, Water and Sanitation and Science and Technology.⁷⁷⁰ The Monitoring Committee continues to exist and is overseeing the refinement of the hydraulic fracturing regulations to be promulgated by the Minister of Forestry, Fisheries and the Environment. This chapter examines the 2015 regulations which were set aside, as part of the broader assessment of the adequacy of the South African petroleum legal framework to regulate shale gas development.

5.2 Selected Tenets of the Transitioning Petroleum Legislative Framework

An independent petroleum legal framework is emerging in South Africa, pending the separation of oil and gas regulation from mineral regulation.⁷⁷¹ This might help address the impracticality of introducing the appropriate framework for hydraulic fracturing under the current combined legislation.⁷⁷² This section discusses the existing legal

⁷⁶⁷ John Douglas Stern and others vs Minister of Mineral Resources, para 58, 2015 SA 5672/2015 (High Court of South Africa, Eastern Cape Division, Grahamstown).

⁷⁶⁸ Minister of Mineral Resources v Stern & others (1369/2017) and Treasure the Karoo Action Group & another v Department of Mineral Resources and others, para 53(2)(a) (790/2018) [2019] ZASCA 99 (4 July 20219).

⁷⁶⁹ Minister of Mineral Resources v Stern & others (1369/2017) and Treasure the Karoo Action Group & another v Department of Minera Resources and others, para 13 (790/2018) [2019] ZASCA 99 (4 July 2021).

⁷⁷⁰ Minister of Mineral Resources v Stern & others (1369/2017) and Treasure the Karoo Action Group & another v Department of Minera Resources and others, para 14 (790/2018) [2019] ZASCA 99 (4 July 2021).

⁷⁷¹ Draft Upstream Petroleum Resources Development Bill, Government Notice R.1706 in Government Gazette No.42931 of 24 December 2019; Lisa Plit 'Regulating Petroleum Extraction: The Provisions of the Mineral and Petroleum Resources Development Act 28 of 2002' (2016) at 85, in Jan Glazewski and Surina Esterhuyse 'Hydraulic Fracturing in the Karoo: Critical legal and Environmental Perspectives' (2016) Claremont, Juta and Company (Pty) Ltd

⁷⁷² Hugo Meyer van den Berg and Hanri Mostert 'Challenges to Regulating Hydraulic Fracturing in South Africa: Technological Innovation and Law Making for Climate Change at the Crossroads' (2018) at

framework as it relates to three important tenets that will affect the ability to use hydraulic fracturing in exploring for shale gas, these are ownership issues, licencing and authorisation challenges, and environmental requirements. It also addresses expected changes to the existing law in the wake of the new, but still deficient, regulation of upstream petroleum resources.

5.2.1 Separating Petroleum from Hard-Rock Minerals in the Law

The separation of petroleum from minerals is crucial to enable the appropriate regulation of shale gas exploration and production.⁷⁷³ This is because petroleum is fluid, unlike hard rock minerals, which are naturally found in a solid phase, the usual rules of land boundaries are hence not applicable.⁷⁷⁴ Furthermore, international standards and practices governing oil and gas exploration and production are quite distinct from hard rock mining practices.⁷⁷⁵ To this effect, the Minister of Mineral Resources and Energy gazetted the draft Upstream Petroleum Resources Development Bill (UPRD Bill) on 24 December 2019 and invited interested and affected parties to submit written comments on the Bill by 21 February 2020.⁷⁷⁶ Following the public comment process, the UPRD Bill was tagged as a section 76 Bill, that is, an ordinary bill affecting the provinces, and introduced to the National Assembly in July 2021.⁷⁷⁷ It was subsequently referred to the National House of Traditional and Khoi-San Leaders in August 2021 to solicit their comments over a two-month period.⁷⁷⁸

The UPRD Bill, 2021 iteration was issued for public comment in July 2022.⁷⁷⁹ Modelled closely on the MPRDA, the Bill suffers from the same weakness in relation to shale gas. In particular, it does not provide for shale gas exploitation using hydraulic

^{252,} in Donald Zillman, Martha Roggenkamp, Leroy Paddock, and Lee Godden *Innovation in Energy Law and Technology: Dynamic Solutions for Energy Transitions* Oxford, Oxford University Press. ⁷⁷³ Ibid, at 254.

⁷⁷⁴ Ibid.

⁷⁷⁵ Ibid.

⁷⁷⁶ Draft Upstream Petroleum Resources Development Bill, Government Notice R.1706 in Government Gazette No.42931 of 24 December 2019.

⁷⁷⁷ Upstream Petroleum Resources Development Bill (B13-2021), Government Gazette No. 44694 of 11 June 2021.

⁷⁷⁸ SABINET Law 'Comment Sought on Upstream Petroleum Resources Development Bill' (13 July 2022) available from https://legal.sabinet.co.za/articles/comment-sought-on-upstream-petroleum-resources-development-bill/ accessed on 6 August 2022.

⁷⁷⁹ Ibid.

fracturing specifically.⁷⁸⁰ It however recognizes shale gas as one of the resources whose exploration and production must be administered by the Petroleum Agency.⁷⁸¹ Furthermore, the Bill provides for shale gas to be designated as a frontier area by notice in the Gazette, because there is no or limited knowledge of its geology.⁷⁸² It thus does not help in closing the gap in existing legislation, instead, it affirms key elements of the MPRDA, such as providing for the orderly and sustainable development of the nation's petroleum resources, and equitable access thereto.⁷⁸³ It affirms the custodianship of the nation's petroleum resources,⁷⁸⁴ the legal nature of the petroleum rights,⁷⁸⁵ and the rights of holders thereto.⁷⁸⁶ Unlike the MPRDA, which provides for exploration and production rights separately, the UPRDB provides for a petroleum right that integrates the right to explore and produce the petroleum resources.⁷⁸⁷

Other new provisions in the Bill include, providing for the designation of the Petroleum Agency as the regulatory authority for the upstream petroleum sector,⁷⁸⁸ and for matters connected thereto.⁷⁸⁹ It provides for a controlled application system through licensing rounds, as it seeks to create an enabling environment for the acceleration of exploration and production of petroleum resources.⁷⁹⁰ The Bill affirms the requirement for the participation of black persons in the development of the nation's petroleum resources,⁷⁹¹ the reservation of blocks for black persons,⁷⁹² and for the holder of a petroleum right to retain its empowerment status after the exit of black persons under

- ⁷⁸⁶ S 5(2-3) of the UPRDB, 2021.
- ⁷⁸⁷ S 5(3)(a-e)
- ⁷⁸⁸ S 9 of the UPRDB. 2021.
- ⁷⁸⁹ S 10 of the UPRDB, 2021.
- ⁷⁹⁰ S 13-20 of the MPRDB, 2021.

⁷⁸⁰ Upstream Petroleum Resources Development Bill (B13-2021), Government Gazette No. 44694 of 11 June 2021.

⁷⁸¹ S 8(1) of the MPRDB, 2021.

⁷⁸² S 8(2) of the MPRDB, 2021.

⁷⁸³ S 3(1) of the UPRDB, 2021.

⁷⁸⁴ S 3(1) of the UPRDB, 2021.
⁷⁸⁵ S 5(1) of the UPRDB, 2021.

⁷⁹¹ S 31 of the UPRDB, 2021.

⁷⁹² S 32 of the UPRDB, 2021.

circumscribed circumstances.⁷⁹³ It furthermore provides for the designation of a Stateowned Company to manage the State's carried interest in petroleum rights.⁷⁹⁴

It provides for the advancement of national developmental imperatives,⁷⁹⁵ and for a petroleum right holder to sell a percentage of petroleum to the State for strategic stocks requirements.⁷⁹⁶ It provides for third party access to upstream petroleum infrastructure,⁷⁹⁷ and for local content, as a development strategy for skills development, local recruitment and national participation, through the supply of goods and services.⁷⁹⁸ Given the public participation and parliamentary process that the UPRD Bill is still undergoing, such as soliciting public comments by the parliamentary portfolio committee on mineral resources and energy in July 2022,⁷⁹⁹ there is still an opportunity to influence the review of the Bill to provide for the use of hydraulic fracturing to produce shale gas. Nonetheless, until such time that the UPRD Bill is enacted into law, oil and gas exploration and production in South Africa continues to be governed by the Mineral and Petroleum Resources Development Act,⁸⁰⁰ as outlined in the following section.

5.2.2 The Ownership of Petroleum in the Sub-Surface

Until the promulgation of the MPRDA in 2002, South Africa's mineral law was premised on the common law principle that the owners of land also owned the minerals beneath their land.⁸⁰¹ The Roman-Dutch law maxim *cuius est solum eius et usque ad coelum et ad inferos*, which means 'to whom the soil belongs, to that person it belongs all the way to the sky and the depths'⁸⁰² then affirmed mineral rights as belonging to the

⁷⁹³ S 33 of the UPRDB, 2021.

⁷⁹⁴ S 34(1) of the UPRDB, 2021.

⁷⁹⁵ S 35 of the UPRDB, 2021.

⁷⁹⁶ S 36 of the UPRDB, 2021.

⁷⁹⁷ S 68 of the UPRDB, 2021.

⁷⁹⁸ S 107(1)(a) of the UPRDB, 2021.

⁷⁹⁹ SABINET Law 'Comment Sought on Upstream Petroleum Resources Development Bill' (13 July 2022) available from https://legal.sabinet.co.za/articles/comment-sought-on-upstream-petroleumresources-development-bill/ accessed on 6 August 2022.

⁸⁰⁰ Mineral and Petroleum Resources Development Act, No.28 of 2002.

⁸⁰¹ F.T. Cawood and R.C.A. Minnitt 'A historical perspective on the economics of the ownership of mineral rights ownership' (1998) at 370, *The Journal of The South African Institute of Mining and Metallurgy*; Elmarie van der Schyff 'South African mineral law: A historical overview of the State's regulatory power regarding the exploitation of minerals' (2012) at 133, *New Contree 64.*

⁸⁰² Barry Barton 'The Common Law of Subsurface Activity' (2014), at 22, in Donald N. Zillman, Aileen McHarg, Lila Barrera-Hernandez and Adrian Bradbrook 'The Law of Energy Underground:

landowner.⁸⁰³ A consequence of the common law principle is that surface landowners could claim ownership of the subsurface, thus interference with the surface landowner's right to what is contained in the subsurface could be deemed as trespass, similar to the trespassing of surface land.⁸⁰⁴

The Mining Titles Registration Act,⁸⁰⁵ formally separated the ownership of minerals and petroleum resources from landownership.⁸⁰⁶ Subsequently, the MPRDA changed the nature of rights to minerals fundamentally, from common-law rights to statutory rights.⁸⁰⁷ Having come into effect in 2004, the MPRDA now affirms South Africa's mineral and petroleum resources as the common heritage of its people, thus vests ownership of these resources in the nation.⁸⁰⁸ The MPRDA furthermore designates the state as custodian of the country's mineral and petroleum resources for the benefit of all South Africans.⁸⁰⁹

Notwithstanding, the owner of the land where petroleum is located remains the owner of the unsevered petroleum resources.⁸¹⁰ However exploitation of these resources requires exploration and production rights, which are granted by the state.⁸¹¹

Understanding New Developments in Subsurface Production, Transmission and Storage' (2014), Oxford University Press, Oxford.

⁸⁰³ Elmarie van der Schyff 'South African mineral law: A historical overview of the State's regulatory power regarding the exploitation of minerals' (2012) at 133, *New Contree* 64.

⁸⁰⁴ Barry Barton 'The Common Law of Subsurface Activity' (2014), at 23, in Donald N. Zillman, Aileen McHarg, Lila Barrera-Hernandez and Adrian Bradbrook 'The Law of Energy Underground: Understanding New Developments in Subsurface Production, Transmission and Storage' (2014), Oxford, Oxford University Press.

⁸⁰⁵ Mining Titles Registration Act, No. 16 of 1967.

⁸⁰⁶ Lisa Plit 'Regulating Petroleum Extraction: The Provisions of the Mineral and Petroleum Resources Development Act 28 of 2002' (2016) at 65, in Jan Glazewski and Surina Esterhuyse 'Hydraulic Fracturing in the Karoo: Critical legal and Environmental Perspectives' (2016) Claremont, Juta and Company (Pty) Ltd.

⁸⁰⁷ PJ Badenhorst and NJJ Olivier 'Host Communities and Completing Applications in Terms of the Mineral and Petroleum Resources Development Act 28 of 2002' (2011) at 127, *De Jure.*

⁸⁰⁸ Minerals and Petroleum Resources Development Act, No. 28, 2002, s 3(1); PJ Badenhorst 'Ownership of Minerals In situ in South Africa: Australian Darning to the Rescue' (2010) at 647, SALJ, 127(4).

⁸⁰⁹ Minerals and Petroleum Resources Development Act, No. 28, 2002, s 3(1); H Mostert 'Land as a "National Asset" Under the Constitution: The System Change Envisaged by the 2011 Green Paper on Land Policy and What This Means for Property Law Under the Constitution' (2014) at 768, *PELJ*, (17)(2).

⁸¹⁰ Lisa Plit 'Regulating Petroleum Extraction: The Provisions of the Mineral and Petroleum Resources Development Act 28 of 2002' (2016) at 65, in Jan Glazewski and Surina Esterhuyse 'Hydraulic Fracturing in the Karoo: Critical legal and Environmental Perspectives' (2016) Claremont, Juta and Company (Pty) Ltd.

⁸¹¹ S 3(2) of the MPRDA.

Consequently, while the ownership of mineral or petroleum resources are vested in the landowner in common law, ownership only exists until the minerals or petroleum has been extracted from the land.⁸¹² Once the minerals or petroleum have been separated, it becomes movable property with ownership then vesting in the mineral or petroleum rights holder.⁸¹³ As the custodian, the State must ensure the sustainable development of the country's mineral and petroleum resources, within a framework of national environmental policy, norms and standards, while promoting economic and social development.⁸¹⁴ The State, therefore, acting through the Minister responsible for Mineral Resources has the responsibility to grant, issue, control, administer and manage all petroleum rights in South Africa.⁸¹⁵ The Minister responsible for mineral resources also has the responsibility in consultation with the Minister of Finance, to determine and levy fees or considerations payable in relation to petroleum rights.⁸¹⁶

Petroleum rights granted under the MPRDA are limited real rights with respect to the land to which the rights relate.⁸¹⁷ A holder of a petroleum right is entitled to enter the land to which the right relates, explore or produce from it for their benefit,⁸¹⁸ and subject to the National Water Act,⁸¹⁹ to use water from any natural water resource on such land.⁸²⁰ A landowner cannot prevent access to their land by the holder of a right.⁸²¹ However, the holder of the right is obliged to notify and consult with the landowner before commencing with exploration or production activities.⁸²² Furthermore,

⁸¹² Lisa Plit 'Regulating Petroleum Extraction: The Provisions of the Mineral and Petroleum Resources Development Act 28 of 2002' (2016) at 65, in Jan Glazewski and Surina Esterhuyse *Hydraulic Fracturing in the Karoo: Critical legal and Environmental Perspectives* (Claremont, Juta and Company (Pty) Ltd); *Agri South Africa v Minister of Minerals and Energy*, para 8, 2013, CCT 51/12 (ZACC9).

⁸¹³ Lisa Plit 'Regulating Petroleum Extraction: The Provisions of the Mineral and Petroleum Resources Development Act 28 of 2002' (2016) at 65, in Jan Glazewski and Surina Esterhuyse 'Hydraulic Fracturing in the Karoo: Critical legal and Environmental Perspectives' (2016) Claremont, Juta and Company (Pty) Ltd; *Agri South Africa v Minister of Minerals and Energy*, para 8, 2013, CCT 51/12 (ZACC9).

⁸¹⁴ S 3(3) of the MPRDA.

⁸¹⁵ S 3(2)(a) of the MPRDA; AT J. Badenhorst, 'The nature of new order prospecting rights and mining rights: a can of worms? (2017) at 361, SALJ 134 (2).

⁸¹⁶ S 3(2)(b) of the MPRDA.

⁸¹⁷ S 5(1) of the MPRDA; Elmarie van der Schyff 'Who "owns" the country's mineral resources? The possible incorporation of the public trust doctrine through the Mineral and Petroleum Resources Development Act' (2008) at 759, *TSAR* 4.

⁸¹⁸ S 5(3)(b) of the MPRDA.

⁸¹⁹ National Water Act, No.36, 1998.

⁸²⁰ S 5(3) (d) of the MPRDA.

⁸²¹ S 5(4)(c) of the MPRDA.

⁸²² S 5(4)(c) of the MPRDA.

petroleum right holders have no obligation to pay compensation to landowners for the petroleum resources beneath their land.⁸²³ The MPRDA does however provide for the compensation of landowners by petroleum right holders for loss or damage resulting from prospecting or mining operations.⁸²⁴

The implication is that landowners, through whose land shale gas in the sub-surface will have to be accessed, will gain nothing from the extraction of shale gas resources beneath their land.⁸²⁵ Consequently, landowners are objecting to the granting of shale gas exploration rights, even challenging the making of related regulations.⁸²⁶ The strengthening of the requirement to notify and consult landowners to a requirement to obtain consent could provide some leverage that could lead to mutually beneficial outcomes to the right holders and the landowners, while enabling the development of shale gas in an environmentally responsible manner.

The *Agri South Africa v Minister of Minerals and Energy* Constitutional Court case,⁸²⁷ and the *Anglo Operations vs Sandhurst* Supreme Court of Appeals case,⁸²⁸ are instructive in terms of the approach of the South African courts in relation to the conflicting rights of surface landowners and mineral right holders. In the *Agri South Africa (Agri SA) v Minister of Mineral Resources and Energy (Minister)* Agri SA appealed a judgment in favour of the Minister by the Supreme Court of Appeal (SCA).⁸²⁹ The Minister's appeal was on an earlier judgment in favour of Agri SA by the North Gauteng High Court.⁸³⁰

The case centred on whether the MPRDA expropriated mineral rights that existed prior to its coming into effect.⁸³¹ Agri SA argued that the MPRDA expropriated the coal rights

⁸²⁷ Agri South Africa v Minister of Minerals and Energy, 2013, CCT 51/12 (ZACC9).

⁸³⁰ Ibid. ⁸³¹ Ibid.

⁸²³ S 54(3) of the MPRDA.

⁸²⁴ S 54 of the MPRDA.

⁸²⁵ Steven Hedden, Jonathan D. Moyer and Jessica Rettig, *Fracking for shale gas in South Africa: blessing or curse?* (2013) at 6, Institute for Security Studies.

⁸²⁶ John Douglas Stern and others v Minister of Mineral Resources, para 58, 2015 SA 5672/2015 (High Court of South Africa, Eastern Cape Division, Grahamstown).

⁸²⁸ Anglo Operations Ltd v Sandhurst Estates (Pty) Ltd, 2006, 634/05 (ZASCA 146).

⁸²⁹ Agri South Africa v Minister of Minerals and Energy, para 18.

of Sebenza (Pty) Ltd (Sebenza) and vested them in the Minister.⁸³² This rendered the MPRDA unconstitutional with the provisions of section 25(2)(b) of the Constitution, which requires that expropriation be subject to compensation.⁸³³ Agri SA on the other hand had acquired the right to take the matter to court from Sebenza for R250 000.

In counter argument, the Minister contended that the decision for Sebenza to lose the coal rights, following its inability to convert the old-order rights to new order rights under the MPRDA did not imply expropriation by the state, since the state did not acquire such rights as a result of the deprivation.⁸³⁴ The Constitutional Court upheld the Supreme Court of Appeal judgment in favour of the Minister.⁸³⁵ It asserted that although the MPRDA deprived Sebenza of its coal rights, the deprivation did not constitute expropriation.⁸³⁶ This is because expropriation requires acquisition of the right by the expropriator, which is not what the MPRDA had achieved.⁸³⁷ According to the judgment, the MPRDA is unequivocal on facilitating equitable access to the country's mineral and petroleum resources, promote the sustainable development thereof and eradicate all forms of discriminatory practices in the mining sector.⁸³⁸

In the *Anglo Operations v Sandhurst*, Anglo Operations Ltd (Anglo Operations) appealed a judgment of the Pretoria High Court that was in favour of Sandhurst Estates Ltd (Sandhurst Estates).⁸³⁹ Sandhurst Estates owned a farm near Bethal in Mpumalanga, thus held the surface rights to the farm.⁸⁴⁰ Anglo Operations on the other hand held the sub-surface rights to coal on the farm.⁸⁴¹ What was in dispute was Anglo Operations' attempt to engage in open cast mining of coal on the farm, and to access water on the farm in support of its mining operations.⁸⁴² The case centred on whether the award of the mining right to Anglo Operations explicitly or tacitly permitted Anglo to conduct open cast mining on the farm owned by Sandhurst Estates.⁸⁴³ In essence,

⁸³⁷ Ibid, para 69.

⁸³² Agri South Africa v Minister of Minerals and Energy, para 56.

⁸³³ Ibid.

⁸³⁴ Ibid, para 57.

⁸³⁵ Ibid, para 72.

⁸³⁶ Ibid, para 68.

⁸³⁸ Ibid, para 64.

⁸³⁹ Anglo Operations Ltd v Sandhurst Estates (Pty) Ltd, 2006, para 1, 634/05 (ZASCA 146).

⁸⁴⁰ Ibid.

⁸⁴¹ Ibid.

⁸⁴² Ibid. ⁸⁴³ Ibid.

the SCA was required to consider whether the rights of a mineral right holder included the right to open-cast mining at the expense of the surface rights owner.⁸⁴⁴

Based on the application of English law, the Pretoria High Court had ruled that unless open-cast mining was specifically authorised by the grant, the mineral rights holder was limited to underground mining operations.⁸⁴⁵ Applying the Roman-Dutch law, the SCA overturned the decision of the High Court on the basis that the South African common law holds that unless specifically prohibited in the grant, the mineral rights holder is entitled to conduct open-cast mining, if reasonably necessary to remove the minerals beneath the surface of the land.⁸⁴⁶ It was particularly so if the open-cast mining operations would be done in a manner that was not necessarily damaging to the interests of the owner of the surface land.⁸⁴⁷ The SCA therefore decided that Anglo Operations had satisfied both requirements, therefore the High Court should not have ruled against it in the matter.⁸⁴⁸

A key learning from the two cases above is that a requirement for consent by landowners, or persons in control of the land over which a petroleum right has been awarded would go a long way in support of activities such as the exploration and production of shale gas in the Karoo. The soft formulation of the MPRDA, calling for the consultation instead of substantive engagement/consent of stakeholders, including landowners, needs to be revisited as part of the review of the existing petroleum legal framework. Section 5.2.3 below outlines the licensing of petroleum rights under the MPRDA.

5.2.3 Licensing of Petroleum Rights

To conduct oil and gas exploration and production in South Africa companies are granted petroleum rights by the Minister of Mineral Resources, upon recommendation by the Petroleum Agency South Africa.⁸⁴⁹ A petroleum right is initiated by granting a

⁸⁴⁴ Ibid.

⁸⁴⁵ Anglo Operations Ltd v Sandhurst Estates (Pty) Ltd, para 40.

⁸⁴⁶ Ibid.

⁸⁴⁷ Ibid.

⁸⁴⁸ Ibid.

⁸⁴⁹ Minerals and Petroleum Resources Development Act, No. 28, 2002, s 69.

technical cooperation permit (TCP),⁸⁵⁰ followed by the award of an exploration right (ER).⁸⁵¹ A production right (PR) is granted following successful exploration.⁸⁵² The TCP has a one-year duration,⁸⁵³ the ER, a nine-year duration,⁸⁵⁴ and the PR, up to 30 years.⁸⁵⁵ As indicated in the preceding section, petroleum rights are limited real rights, in relation to the petroleum and land to which they relate.⁸⁵⁶ They must therefore registered at the Mineral and Petroleum Titles Registration Office in terms of the Mining Titles Registration Act.⁸⁵⁷

The MPRDA compels the Petroleum Agency to publicise applications for petroleum exploration rights, within fourteen days of receiving an application.⁸⁵⁸ The Petroleum Agency is also required to call upon interested and affected persons to submit comments regarding the application within 30 days from the date of notice.⁸⁵⁹ Should there be an objection to the granting of an exploration right, the objection must be considered and the Minister of Mineral Resources and Energy advised by the Petroleum Agency.⁸⁶⁰

The MPRDA furthermore provides that once an exploration right application is accepted by the Petroleum Agency, and the applicant notified,⁸⁶¹ the applicant should notify and consult the landowner or lawful occupier of the land before commencing with exploration or production activities.⁸⁶² The environmental provisions pertaining to oil and gas exploration and production are outlined in the following section.

- ⁸⁵⁷ S 2(4) of the Mining Titles Registration Act.
- ⁸⁵⁸ S 10(1)(a) of the MPRDA.
- ⁸⁵⁹ S 10(1)(b) of the MPRDA.
- ⁸⁶⁰ S 10(2) of the MPRDA.
- ⁸⁶¹ S 79(4) of the MPRDA.
- ⁸⁶² S 79(4)(a) of the MPRDA.

⁸⁵⁰ S 76(1) of the MPRDA

⁸⁵¹ S 79(1) of the MPRDA.

⁸⁵² S 83(1) of the MPRDA

⁸⁵³ S 77(4)(b) of the MPRDA.

⁸⁵⁴ S 80(5) of the MPRDA

⁸⁵⁵ S 84(4) of the MPRDA.

⁸⁵⁶ S 5(1) of the MPRDA; Elmarie van der Schyff 'Who "owns" the country's mineral resources? The possible incorporation of the public trust doctrine through the Mineral and Petroleum Resources Development Act' (2008) at 759, *TSAR* 4.

5.2.4 Environmental Requirements

As indicated in chapter one of this thesis, the South African Constitution, calls for the protection of the environment for the benefit of present and future generations.⁸⁶³ Such protection must be done through reasonable legislative and other measures that,⁸⁶⁴ prevent pollution and ecological degradation;⁸⁶⁵ promote conservation;⁸⁶⁶ and secure ecologically sustainable development and use of natural resources.⁸⁶⁷ The National Environmental Management Act (NEMA) is the principal statute giving effect to environmental protection in South Africa,⁸⁶⁸ including pertaining to petroleum exploration and production.⁸⁶⁹ The NEMA prescribes the environmental management principles to be applied when making decisions that may have a significant impact on the environment.⁸⁷⁰

To give effect to the duty created in the Constitution, to have the environment protected through reasonable legislative measures,⁸⁷¹ the NEMA incorporates other key international environmental principles, such as the *prevention principle*, the *precautionary principle, and the polluter pays* principle.⁸⁷² These principles are core to this thesis, therefore are dealt with in greater detail in chapters six to eight. The NEMA advocates a risk-averse approach to environmental protection, an approach which could allow the time required to develop the appropriate legal framework before shale gas extraction takes place in the country.⁸⁷³

The National Water Act (NWA) regulates the protection and appropriate management of water resources.⁸⁷⁴ While the National Environmental Management: Waste Act

⁸⁶³ Constitution of the Republic of South Africa, 1996, s 24(b)

⁸⁶⁴ S 24(b) of the Constitution.

⁸⁶⁵ S 24(b)(i) of the Constitution.

⁸⁶⁶ S 24(b)(ii) of the Constitution.

⁸⁶⁷ S 24(b)(iii) of the Constitution.

⁸⁶⁸ National Environmental Management Act, No. 107 of 1998.

⁸⁶⁹ Section 50A(2)(a) National Environmental Management Act, No. 107 of 1998.

⁸⁷⁰ National Environmental Management Act, No. 107 of 1998.

⁸⁷¹ Constitution of the Republic of South Africa, 1996, s 24(b).

⁸⁷² S 28(1) of the NEMA; Loretta Feris 'Constitutional Environmental Rights: An Under-Utilized Resource' (2008) at 36, SAJHR 24.

⁸⁷³ Academy of Science of South Africa (2016) RSA Technical Readiness for Shale Gas Extraction, at 33 (ASSAf, Pretoria).

⁸⁷⁴ National Water Act, No.36 of 1998.

(NEM: Waste Act)⁸⁷⁵ regulates waste and wastewater.⁸⁷⁶ This legislation complements the NEMA and will be critical in regulating the use and management of water resources and wastewater related to shale development. The relevance of this legislation to shale gas exploitation is also dealt with in greater detail in chapter six to eight of this thesis. For now, it suffices to point out that MPRDA's prescribed application procedure for exploration rights is what initiates the compliance requirements with environmental provisions.

It is also worth noting that the National Environmental Management Laws Amendment Act served to repeal the environmental provisions in the MPRDA.⁸⁷⁷ More specifically, the Mineral and Petroleum Resources Development Act,⁸⁷⁸ the National Environmental Management Act,⁸⁷⁹ and the National Water Act,⁸⁸⁰ were amended to create the One Environmental System.⁸⁸¹ This was done to regulate all environmental aspects associated with mining and petroleum operations through the One Environmental System.⁸⁸² All environmental provisions in the MPRDA were therefore repealed.⁸⁸³ Section 50A was subsequently inserted in the NEMA by section 17 of the National Environmental Management Laws Amendment Act,⁸⁸⁴ effective from 2 September 2014.⁸⁸⁵ By the same token, section 163A was inserted in the National Water Act,⁸⁸⁶ by section 5 of the National Water Amendment Act.⁸⁸⁷

Consequently the Minister of Forestry, Fisheries and the Environment is responsible for the development of the regulatory framework, norms and standards pertaining to

⁸⁷⁵ National Environmental Management: Waste Act, No. 59, 2008.

⁸⁷⁶ Ibid.

⁸⁷⁷ National Environmental Laws Amendment Act, No. 25 of 2014.

⁸⁷⁸ Mineral and Petroleum Resources Development Act, No.28 of 2002 s 39.

⁸⁷⁹ National Environmental Management Act, No. 107 of 1998, s 50A.

⁸⁸⁰ National Water Act, No.36 of 1998, s 163A.

⁸⁸¹ W du Plessis, Regulation of Hydraulic Fracturing in South Africa: A Project Life-Cycle Approach? (2015) at 1444, *PER/PELJ* 18(5).

⁸⁸² Ìbid.

⁸⁸³ John Douglas Stern and others v Minister of Mineral Resources, para 21 (a), 2015 SA 5672/2015 (High Court of South Africa, Eastern Cape Division, Grahamstown).

⁸⁸⁴ National Environmental Management Laws Act, No.25 of 2014, s 17.

⁸⁸⁵ John Douglas Stern and others v Minister of Mineral Resources, para 21 (a), 2015 SA 5672/2015 (High Court of South Africa, Eastern Cape Division, Grahamstown).

⁸⁸⁶ National Water Act, No.36 of 1998, s 163A.

⁸⁸⁷ National Water Amendment Act, No.27 of 2014, s 5; *John Douglas Stern and others vs Minister of Mineral Resources*, para 21 (a), 2015 SA 5672/2015 (High Court of South Africa, Eastern Cape Division, Grahamstown); National Environmental Management Laws Act No.25 of 2014.

the environmental aspects of mining and oil and gas exploration and production.⁸⁸⁸ The Minister of Mineral Resources and Energy on the other hand is responsible for the implementation of the environmental provisions of the NEMA, as they relate to mineral prospecting and mining or the exploration and production of oil and gas.⁸⁸⁹ An oversight in the integration of environmental considerations under the NEMA is the fact that the Minister of Mineral Resources and Energy remains the authority and key decision maker for granting environmental authorizations for petroleum exploration and production.⁸⁹⁰ This does not best serve environmental protection relating to shale gas development, particularly given the environmental risks associated with hydraulic fracturing.⁸⁹¹

The criticality of vesting jurisdiction on the protection of the environment from hydraulic fracturing operations to the Minister of Forestry, Fisheries and the Environment has been clarified by the Eastern Cape High court in *John Douglas Stern and others vs Minister of Mineral Resources*.⁸⁹² Passing judgment, Judge Bloem GH ruled that the Minister of Mineral Resources and Energy did not have the authority to promulgate the Regulations for Petroleum Exploration and Production,⁸⁹³ since they are meant to regulate environmental aspects of hydraulic fracturing which is the domain of the Minister of Forestry, Fisheries and the Environment.⁸⁹⁴

⁸⁸⁸ John Douglas Stern and others v Minister of Mineral Resources, para 21 (b), 2015 SA 5672/2015 (High Court of South Africa, Eastern Cape Division, Grahamstown).

⁸⁸⁹ John Douglas Stern and others v Minister of Mineral Resources, para 21 (b), 2015 SA 5672/2015 (High Court of South Africa, Eastern Cape Division, Grahamstown).

⁸⁹⁰ Hugo Meyer van den Berg & Hanri Mostert (2018) 'Challenges to Regulating Hydraulic Fracturing in South Africa: Technological Innovation and Law Making for Climate Change at the Crossroads' at 256, in Donald Zillman, Martha Roggenkamp, Leroy Paddock & Lee Godden (2018) *Innovation in Energy Law and Technology: Dynamic Solutions for Energy Transitions* (Oxford University Press, Oxford).

⁸⁹¹ W du Plessis, Regulation of Hydraulic Fracturing in South Africa: A Project Life-Cycle Approach? (2015) at 1466, *PER/PELJ* 18(5); Hugo Meyer van den Berg & Hanri Mostert (2018) 'Challenges to Regulating Hydraulic Fracturing in South Africa: Technological Innovation and Law Making for Climate Change at the Crossroads' at 257, in Donald Zillman, Martha Roggenkamp, Leroy Paddock & Lee Godden (2018) *Innovation in Energy Law and Technology: Dynamic Solutions for Energy Transitions* (Oxford University Press, Oxford).

 ⁸⁹² John Douglas Stern and others vs Minister of Mineral Resources, para 29, 2015 SA 5672/2015 (High Court of South Africa, Eastern Cape Division, Grahamstown); W du Plessis 'Regulation of Hydraulic Fracturing in South Africa: A Project Lifecycle Approach' (2015) at 1441, Potchefstroom Electronic Law Journal 18(5); Jan Glazewski Sustainable development and proposed shale extraction in South Africa: prospects and challenges (2016) at 211 (UK, Edward Elgar Publishing Limited).
 ⁸⁹³ Ihid

⁸⁹⁴ John Douglas Stern and others v Minister of Mineral Resources, para 38.

5.3 South Africa's Shale Gas Regulations compared with the UK and Canada

As stated in the introduction of this chapter, South Africa's then Minister of Mineral Resources gazetted the Regulations for Petroleum Exploration and Production on 3 June 2015.⁸⁹⁵ This was to augment the existing petroleum legal framework to provide for the use of hydraulic fracturing to extract shale gas.⁸⁹⁶ The regulations were however set aside by the Grahamstown High Court.⁸⁹⁷ Judge Bloem J found that the Minister of Mineral Resources did not have the authority to promulgate the Regulations for Petroleum Exploration and Production,⁸⁹⁸ since they are meant to regulate environmental aspects of hydraulic fracturing, which is the domain of the Minister of Environmental Affairs.⁸⁹⁹

The Court also found that the development of the regulations was procedurally unfair.⁹⁰⁰ This was because the Proposed Technical Regulations for Petroleum Exploration and Exploitation,⁹⁰¹ which were issued for public comment in October 2013, and ultimately became the Regulations for Petroleum Exploration and Production, did not include the hazardous substances listed in Schedule 1 of the Regulations for Petroleum Exploration and Production.⁹⁰² The substances are prohibited for use in the hydraulic fracturing process.⁹⁰³ Nonetheless, the Court did not examine the substance of the regulations because the material aspects thereof were not challenged specifically.⁹⁰⁴ The Court therefore left the question of whether the regulations are adequate to regulate shale gas exploration and production in South Africa unanswered, a question that this thesis attempts to answer.

⁸⁹⁵ Regulations for Petroleum Exploration and Production, Government Notice R.466 in Government Gazette No.38855 of 3 June 2015.

⁸⁹⁶ Reg 85(1), GN R.466.

⁸⁹⁷ John Douglas Stern and others v Minister of Mineral Resources, para 59; S. Esterhuyse, D. Vermeulen and J. Glazewski 'Developing and enforcing fracking regulations to protect groundwater resources' (2022) at 6, NPJ Clean Water 5(3).

⁸⁹⁸ Ibid, para 29.

⁸⁹⁹ Ibid, para 38.

⁹⁰⁰ Ibid, para 42.

⁹⁰¹ Proposed Technical Regulations for the Petroleum Exploration and Exploitation, Government Notice R1032 in Government Gazette, No.36938 of 2013.

⁹⁰² John Douglas Stern and others v Minister of Mineral Resources, para 39.

⁹⁰³ Ibid, para 39.

⁹⁰⁴ Ibid, para 43.

As is the case in South Africa, the United Kingdom does not have regulations for shale gas and hydraulic fracturing specifically,⁹⁰⁵ rather it has regulations for conventional oil and gas exploration and production,⁹⁰⁶ complemented by the UK Onshore Shale Gas Well Guidelines.⁹⁰⁷ Similar to South Africa, the UK regulatory framework for hydraulic fracturing leverages established and existing laws on health and safety, the environment, land and property rights, combined with new requirements.⁹⁰⁸ The framework comprises command-and-control approaches such as regulatory standards and permits, planning permissions, self-regulatory arrangements and common law principles.⁹⁰⁹

The UK Onshore Shale Gas Well Guidelines were developed for the drilling of shale gas wells and use of hydraulic fracturing to stimulate production specifically.⁹¹⁰ The guidelines are limited to the exploration and appraisal phases of shale gas development only and are based on good industry practice.⁹¹¹ The exploration and appraisal phases are treated as a pilot to gain experience, and ensure that high safety

⁹⁰⁵ Jill Morgan 'Sustainability and stakeholder participation: shale gas extraction in the United Kingdom' (2016) in James R. May and John C. Dernbach *Shale Gas and the Future of Energy: Law and Policy for Sustainability* at 144 (Edward Elgar Publishing Limited, UK); Eike Albrecht and Dorte Schneemann 'Fracking in the United Kingdom: Regulatory Challenges between Resource Mobilisation and Environmental Protection' (2014) at 240, Carbon & Climate Law Review 8(4).

⁹⁰⁶ The Borehole Sites and Operations Regulations, No. 2038 of 1995; The Offshore Installation and Wells (Design and Construction etc) Regulations, No.913 of 1996; The Dangerous Substances and Explosive Atmospheres Regulations, No.2776 of 2002; The Hazardous Waste (England and Wales) Regulations, No.894 of 2005.

⁹⁰⁷ Peter Cameron, Juan Felipe Neira Castro, Tomas Lanardonne and Geoffrey Wood 'Across the universe of shale resources – a comparative assessment of the emerging legal foundations for unconventional energy' (2018) at 292, *Journal of World Energy Law and Business* 11; The United Kingdom Onshore Operators' Group 'UK Onshore Shale Gas Well Guidelines' (2016) at 17, available at

https://www.ukoog.org.uk/images/ukoog/pdfs/Shale_Gas_Well_Guidelines_Issue_4.pdf accessed on 3 October 2022.

⁹⁰⁸ John Pearson and Gary Lynch-Wood 'Concern and counter-concern: The challenge of fragmented fears for the regulation of hydraulic fracturing' (2017) at 673, *The Extractive Industries and Society* 4; Mark K Brewer 'Corporate Social Responsibility in the Age of Hydraulic Fracturing in the United States and the United Kingdom' (2018) at 582, *Creighton Law Review* 51.

⁹⁰⁹ John Pearson and Gary Lynch-Wood 'Concern and counter-concern: The challenge of fragmented fears for the regulation of hydraulic fracturing' (2017) at 673, *The Extractive Industries and Society* 4.

⁹¹⁰ United Kingdom Onshore Operators' Group 'UK Onshore Shale Gas Well Guidelines' (2016) at 5; Peter Cameron, Juan Felipe Neira Castro, Tomas Lanardonne and Geoffrey Wood 'Across the universe of shale resources – a comparative assessment of the emerging legal foundations for unconventional energy' (2018) at 292, *Journal of World Energy Law and Business* 11.

⁹¹¹ Ibid.

and environmental management standards are achieved prior to the production phase.⁹¹²

Canada on the other hand is already a significant producer of shale gas, the second largest producer in the world and have regulations and guidelines in place for shale gas exploration and production.⁹¹³ Assessing Canada's shale gas regulatory framework helps remedy the shortcoming of assessing draft regulations and guidelines in the case of South Africa and the UK. Technological advancements and increased gas prices enabled the production of shale gas on a commercial scale in the early 2000's in the United States, and a few years later in Canada.⁹¹⁴ Shale gas in Canada occurs in the western provinces, mainly British Columbia, Alberta, and Saskatchewan,⁹¹⁵ and its extraction and related activities are regulated primarily by the provinces.⁹¹⁶ Notwithstanding, the drilling, completion, maintenance and abandonment of oil and gas wells in federal lands in Canada are regulated through the Canada Oil and Gas Drilling and Production Regulations.⁹¹⁷

The following sections review the regulations and guidelines pertaining to shale gas development in South Africa, the United Kingdom and Canada. The assessment covers the exploration phase, which includes planning; disclosure and transparency; risk identification and assessment; the design and construction of shale gas wells, as well as hydraulic fracturing.⁹¹⁸ It furthermore covers the production phase,⁹¹⁹ and finally, the decommissioning and abandonment phase.⁹²⁰

⁹¹² Ibid.

⁹¹³ DA Young Kim 'A Lesson from the Shale Revolution in the United States, Canada, and China' (2017) at 749, The Georgetown Envtl. Law Review 29.

⁹¹⁴ Ibid.

⁹¹⁵ Ibid.

⁹¹⁶ Ibid, at 753.

⁹¹⁷ Canada Oil and Gas Drilling and Production Regulations, 2009.

⁹¹⁸ Department of Mineral Resources 'Regulations for Petroleum Exploration and Production' (2015) Government Gazette, No.38855; UK Onshore Operators Group 'UK Onshore Shale Gas Well Guidelines' (2016); Council of Canadian Academies/The Expert Panel on Harnessing Science and Technology to Understand the Environmental Impacts of Shale Gas Extraction 'Environmental Impacts of Shale Gas Extraction in Canada' (2014) Ottawa (ON).

⁹²⁰ Ibid.

5.3.1 Disclosure and Transparency

South Africa's Regulations for Petroleum Exploration and Production do not provide explicitly for public participation.⁹²¹ Rather the NEMA regulates all environmental aspects associated with the exploration and production of oil and gas, including public participation.⁹²² The NEMA provides that the participation of all key stakeholders in environmental governance be promoted,⁹²³ while, the NWA, provides for public participation in relation to applications for water use licences.⁹²⁴ Hydraulic fracturing is a controlled activity in terms of the NWA.⁹²⁵ This implies that companies applying for shale gas exploration rights will also have to apply for an integrated water use licence at the Department of Water and Sanitation, a process that requires public participation.⁹²⁶

In terms of the NEMA and EIA Regulations, however, public participation is considered only as part of the application process for a petroleum exploration right.⁹²⁷ Once a petroleum exploration right is approved, the public or stakeholders have no influence on exploration activities.⁹²⁸ The public cannot monitor project activities or be involved in project design and other related decisions.⁹²⁹ The National Water Act,⁹³⁰ another complementary legislation as regards shale gas exploitation, also falls short of providing for public participation that ensures the ventilation of all matters of concern

⁹²¹ W du Plessis 'Regulation of Hydraulic Fracturing in South Africa: A Project Lifecycle Approach' (2015) at 1466 Potchefstroom Electronic Law Journal 18(5).

⁹²² National Environmental Management Act, No. 107 of 1998, s 50A(2)(a); *John Douglas Stern and others v Minister of Mineral Resources*, para 21 (a), 2015 SA 5672/2015 (High Court of South Africa, Eastern Cape Division, Grahamstown); W du Plessis 'Regulation of Hydraulic Fracturing in South Africa: A Project Lifecycle Approach' (2015) at 1466 *Potchefstroom Electronic Law Journal* 18(5).

⁹²³ S 2(4)(f) of the NEMA. ⁹²⁴ S 41(4) of the NWA

 ⁹²⁵ Department of Water and Sanitation 'Declaration for the Exploration for and Production of Onshore Unconventional Oil or Gas Resources or any Activities Related Thereto Including but not Limited to

Hydraulic Fracturing as a Controlled Activity, Government Gazette, No. 39299 of 16 October 2015.
 ⁹²⁶ Academy of Science of South Africa 'South Africa's Technical Readiness to Support Shale Gas Development' (2016) at 83 (ASSAf, Pretoria).

⁹²⁷ P Kind and C Reddell 'Public Participation and Water Use Rights' (2015) at 11 *PER/PELJ* 4(18). ⁹²⁸ Ibid.

⁹²⁹ Ibid.

⁹³⁰ National Water Act, No.36 of 1998.

in relation to water use.⁹³¹ It provides little detail as to the nature and extent of the public participation procedure to be undertaken.⁹³²

To gain societal acceptance for shale gas development in the Karoo, the substantive engagement of key stakeholders will be crucial. A stronger requirement of the petroleum and environmental legal frameworks that calls for substantive public participation across the shale gas development lifecycle could assure interested and affected parties that their concerns and interests are factored into decisions on shale gas development. Furthermore, while South Africa's Regulations for Petroleum Exploration and Production provide for the disclosure of the chemicals used in the hydraulic fracturing process,⁹³³. such disclosure only has to be to the designated agency, the Petroleum Agency SA, the Department of Water and Sanitation, and to the Competent Authority as part of the application for Environmental Authorisation.⁹³⁴ Given the possible contamination of scare water resources in the Karoo as a result of leakage into groundwater aquifers, the disclosure of the chemicals used in the hydraulic fracturing process should be mandatory.⁹³⁵

In the United Kingdom, shale gas operators are encouraged to engage host communities at each stage of shale gas development, beginning in advance of any operations, and where possible, in advance of any application for planning permission.⁹³⁶ Shale gas operators are expected to provide sufficient opportunity for host communities to comment on plans, operations and performance, listen to concerns and respond appropriately and promptly.⁹³⁷ The emphasis is on recognizing relations with the host community as a key management priority, thus need to develop

 ⁹³¹ P Kind and C Reddell 'Public Participation and Water Use Rights' (2015) at 11 *PER/PELJ* 4(18).
 ⁹³² Ibid.

⁹³³ Regs 110(2)(b)(v); 113(2) GN R.466.

⁹³⁴ Regs 110(2)(b); 113(2); W du Plessis 'Regulation of Hydraulic Fracturing in South Africa: A Project Lifecycle Approach' (2015) at 1466 Potchefstroom Electronic Law Journal 18(5).

⁹³⁵ Geoffrey Chapman, Requier Wait & Ewert Kleynhans 'The governance of shale gas production in South Africa' (2015) at 70, South African Journal of International Affairs 23(1).

⁹³⁶ The United Kingdom Onshore Operators' Group (2016) Guidelines for UK Well Operations on Onshore Shale Gas Wells, at 7.

⁹³⁷ Ibid.

a stakeholder engagement strategy or plan that complies with and complements statutory processes early on.⁹³⁸

While the UK planning system provide for open consultation, shale gas operators are further encouraged to engage more broadly with stakeholders.⁹³⁹ Operators are expected to explain openly and honestly their drilling, fracturing design and operational practices, including environmental, safety, and health risks and how they will be addressed.⁹⁴⁰ This is to enable the public to gain a clear understanding of the challenges, risks and benefits associated with the development.⁹⁴¹

In relation to hydraulic fracturing, operators are expected to measure and disclose operational information such as the amount of water to be used, the volumes and characteristics of wastewater, and the methods to be used to dispose of wastewater.⁹⁴² Fracturing fluid additives (constituents, concentrations and volumes) also need to be disclosed,⁹⁴³ together with the emissions related to shale gas extraction.⁹⁴⁴ Furthermore, fracturing design, and containment and any expected induced seismicity are to be disclosed.⁹⁴⁵

⁹³⁸ Ibid.

⁹³⁹ Jill Morgan 'Sustainability and stakeholder participation: shale gas extraction in the United Kingdom' in James R. May and John C. Dernbach *Shale Gas and the Future of Energy: Law and Policy for Sustainability* (2016) at 144 (Edward Elgar Publishing Limited, UK); Peter Cameron, Juan Felipe Neira Castro, Tomas Lanardonne and Geoffrey Wood 'Across the universe of shale resources – a comparative assessment of the emerging legal foundations for unconventional energy' (2018) at 313, *Journal of World Energy Law and Business* 11.

⁹⁴⁰ The United Kingdom Onshore Operators' Group (2016) Guidelines for UK Well Operations on Onshore Shale Gas Wells, at 8; Peter Cameron, Juan Felipe Neira Castro, Tomas Lanardonne and Geoffrey Wood 'Across the universe of shale resources – a comparative assessment of the emerging legal foundations for unconventional energy' (2018) at 313, *Journal of World Energy Law and Business* 11.

⁹⁴¹ Jill Morgan 'Sustainability and stakeholder participation: shale gas extraction in the United Kingdom' in James R. May and John C. Dernbach Shale Gas and the Future of Energy: Law and Policy for Sustainability (2016) at 144 (Edward Elgar Publishing Limited, UK).

⁹⁴² John Paterson and Tina Hunter 'Shale Gas Law and Regulation in the United Kingdom' in Tina Hunter Handbook of Shale Gas Law and Policy: Economics, Access, Law and Regulation in Key Jurisdictions (2016) at 300 Energy & Law 18 (Intersentia Ltd, Cambridge: United Kingdom).

⁹⁴³ John Pearson and Gary Lynch-Wood 'Concern and counter-concern: The challenge of fragmented fears for the regulation of hydraulic fracturing' (2017) at 678, *The Extractive Industries and Society* 4.

⁹⁴⁴ John Paterson and Tina Hunter 'Shale Gas Law and Regulation in the United Kingdom' in Tina Hunter Handbook of Shale Gas Law and Policy: Economics, Access, Law and Regulation in Key Jurisdictions (2016) at 298 Energy & Law 18 (Intersentia Ltd, Cambridge: United Kingdom)

⁹⁴⁵ The United Kingdom Onshore Operators' Group (2016) Guidelines for UK Well Operations on Onshore Shale Gas Wells, at 8.

Good data measurement and transparency are deemed vital to public confidence in the UK, such as the tracking and documentation of wastewater to demonstrate to stakeholders that good practices are being adopted, and the proper treatment and disposal of wastewater is being recorded.⁹⁴⁶ Furthermore, public disclosure of the chemicals used in the hydraulic fracturing process, and the volumes, constituents and concentrations involved is deemed necessary to assist the public in understanding the process involved.⁹⁴⁷ Operators are required to demonstrate how they intend to minimize disruption to the community during operations, such as vehicle movement and noise reduction measures.⁹⁴⁸ Operators are also urged to work towards maximizing the economic benefits to local communities from their operations, such as through considering local employment and utilizing local contractors where possible.⁹⁴⁹

As stated above, the exploration and production of oil and gas, including shale gas, in Canada are primarily regulated by the provinces.⁹⁵⁰ New laws therefore emerged at the provincial level in response to the advent of shale gas.⁹⁵¹ To that effect, Alberta revised its *Well Drilling and Completion Data Filing Requirements*,⁹⁵² to include requirements for reporting sources of water and groundwater quality for hydraulic fracturing operations.⁹⁵³ British Columbia introduced a requirement for companies conducting hydraulic fracturing operations to disclose the hydraulic fracturing fluids used.⁹⁵⁴ New Brunswick also introduced the mandatory disclosure of the hydraulic fracturing fluids in 2013.⁹⁵⁵ Furthermore, New Brunswick requires companies conducting hydraulic fracturing operations to submit a risk assessment of the potential

⁹⁴⁶ Ibid.

⁹⁴⁷ Ibid.

⁹⁴⁸ Ibid; Peter Cameron, Juan Felipe Neira Castro, Tomas Lanardonne and Geoffrey Wood 'Across the universe of shale resources – a comparative assessment of the emerging legal foundations for unconventional energy' (2018) at 313, *Journal of World Energy Law and Business* 11.

⁹⁴⁹ Ibid.

⁹⁵⁰ DA Young Kim 'A Lesson from the Shale Revolution in the United States, Canada, and China' (2017) at 753, The Georgetown Envtl. Law Review 29.

⁹⁵¹ Ibid.

⁹⁵² Alberta, Directive 59: Well Drilling and Completion Data Filing Requirements (2012).

⁹⁵³ DA Young Kim 'A Lesson from the Shale Revolution in the United States, Canada, and China' (2017) at 753, *The Georgetown Envtl. Law Review* 29.

⁹⁵⁴ British Columbia, Drilling and Production Regulation (2012).

⁹⁵⁵ DA Young Kim 'A Lesson from the Shale Revolution in the United States, Canada, and China' (2017) at 753, *The Georgetown Envtl. Law Review* 29.

health and environmental risks of each of the chemical additives, with mitigation measures.⁹⁵⁶

Industry codes of good practice complement the general oil and gas legislation and regulations in respect of shale gas development.⁹⁵⁷ The Canadian Association of Petroleum Producers developed the guiding principles and operating practices for hydraulic fracturing activities for its members.⁹⁵⁸ The Petroleum Services Association of Canada also developed its own code of conduct to guide hydraulic fracturing operations.⁹⁵⁹ The Horn River Basin Producers Group, which comprises of shale gas operators in Northern British Columbia also produced a voluntary code in respect of shale gas development projects.⁹⁶⁰

Furthermore, the Canadian Constitution,⁹⁶¹ recognizes and affirms the treaty rights of First Nations, that is, the Aboriginal people, the Indian, Inuit and Métis,⁹⁶² including treaty rights acquired by way of land claim agreements.⁹⁶³ Shale gas development must therefore take the First Nations treaty rights, interests and concerns into account.⁹⁶⁴ Several judgments of the Supreme Court of Canada affirmed the Constitutional right of First Nations to be consulted in good faith, with the intention of

⁹⁵⁶ Ibid.

⁹⁵⁷ Council of Canadian Academies 'Environmental Impacts of Shale Gas Extraction in Canada' (2014) at 202, available at https://cca-reports.ca/wpcontent/uploads/2018/10/shalegas fullreporten.pdf, accessed on 3 October 2020.

 ⁹⁵⁸ Canada's Oil and Natural Gas Producers 'Hydraulic Fracturing Guiding Principles and Operating Practices' (2019) available at *https://www.capat ca/wp-content/uploads/2019/11/CAPP_Hydraulic_Fracturing_Guiding_Principles_and_Operating_Practic es_Packag-339104.pdf* accessed on 3 October 2020.

⁹⁵⁹ Petroleum Services Commission of Canada 'Code of Conduct for Hydraulic Fracturing Operations' (2019) available at https://www.psac.ca/wp-content/uploads/2019/08/WEC-Code.pdf, accessed on 15 November 2020.

⁹⁶⁰ Council of Canadian Academies 'Environmental Impacts of Shale Gas Extraction in Canada' (2014) at 202, available at https://cca-reports.ca/wp-

content/uploads/2018/10/shalegas_fullreporten.pdf, accessed on 3 October 2020.

⁹⁶¹ Constitution Act, 1982, s 35(1).

⁹⁶² Canada Constitution Act, 1982, s 35(2)

⁹⁶³ Canada Constitution Act, 1982, s 35(3)

⁹⁶⁴ Merryn Thomas, Nick Pidgeon, Michael Bradshaw 'Shale development in the US and Canada: A review of engagement practice' (2018) at 557, *The Extractive Industries and Society* 5.

addressing substantially the concerns of Aboriginal people whose lands are at issue.⁹⁶⁵

In *Haida vs. British Columbia*,⁹⁶⁶ the Court established that the Crown had an obligation to consult meaningfully with First Nations, where a proposed project subject to government authorization may have an adverse effect on treaty rights and traditional ways of life.⁹⁶⁷ Since the provinces own the oil and gas resources, it is their responsibility to ensure compliance with this requirement such that they can request operators to amend their development plans, to avoid impacts on Aboriginal and treaty rights.⁹⁶⁸

In sum, public engagement is crucial for shale gas development to gain public support and acceptance.⁹⁶⁹ The acceptance of shale gas development will depend on how the affected local communities perceive the legitimacy of the decision-making processes related to it.⁹⁷⁰ If local communities do not trust the oil and gas companies involved, or the government to protect their interests, they are not easily going to support shale gas development irrespective of its merits.⁹⁷¹ Public acceptance can also be situational, for example, shale gas development in the United States occurred fairly rapidly in the States of Pennsylvania, Texas, West Virginia, Wyoming and Colorado.⁹⁷² The States of New York, Maryland and Vermont on the other hand banned hydraulic fracturing due to local concerns and lack of support.⁹⁷³

⁹⁶⁵ Haida Nation v British Columbia (Minister of Forests), 2004, File No.: 29419, para 40; Taku River Tlingit First Nation v. British Columbia (Project Assessment); Mikisew Cree First Nation v Canada (Minister of Canadian Heritage).

⁹⁶⁶ Haida Nation v. British Columbia (Minister of Forests), 2004, File No.29419.

⁹⁶⁷ Haida Nation v. British Columbia (Minister of Forests), 2004, para 41, File No.29419.

⁹⁶⁸ Allan Ingelson 'Shale Gas Law and Regulation in North America' in Tina Hunter 'Handbook of Shale Gas Law and Policy: Economics, Access, Law and Regulation in Key Jurisdictions' (2016) at 312, *Energy & Law 18* (Intersentia Ltd, Cambridge: United Kingdom).

⁹⁶⁹ Merryn Thomas, Nick Pidgeon, Michael Bradshaw 'Shale development in the US and Canada: A review of engagement practice' (2018) at 557, *The Extractive Industries and Society* 5.

⁹⁷⁰ Ibid.

⁹⁷¹ Ibid, at 558.

⁹⁷² Jan Glazewski and Surina Esterhuyse 'Hydraulic Fracturing in the Karoo: Critical legal and Environmental Perspectives' (2016) at 17, Claremont, Juta and Company (Pty) Ltd.

⁹⁷³ DA Young Kim 'A Lesson from the Shale Revolution in the United States, Canada, and China' (2017) at 761-762, *The Georgetown Envtl. Law Review* 29; Peter Cameron, Juan Felipe Neira Castro, Tomas Lanardonne and Geoffrey Wood 'Across the universe of shale resources – a comparative assessment of the emerging legal foundations for unconventional energy' (2018) at 287, *Journal of World Energy Law and Business* 11.

A public engagement strategy in respect of shale gas development thus need to take these differences into account and be oriented to the local context, capacity and concerns.⁹⁷⁴ Gaining and maintaining social acceptance requires continuous effort, since information sharing, transparency and improvements in technology and risk mitigation practices could lead to confidence and legitimize shale gas development.⁹⁷⁵ Public engagement must involve dialogues between the companies that hold rights to exploit shale gas and the local communities.⁹⁷⁶ Such dialogues must recognize that local communities have a legitimate stake in the management of the land in their locality, and on which shale gas development will occur if supported.⁹⁷⁷

To obtain community support, public engagement needs to start early in the shale gas development planning, and continue through production and until decommissioning.⁹⁷⁸ Developing good relations between shale gas operators and the local community is best served through transparency.⁹⁷⁹ Transparency could lead to public trust, if shale gas companies provide access to relevant information timely to local communities and decision-makers.⁹⁸⁰ The information must be detailed, including on plans, operations, the amount of water and chemical additives in the hydraulic fracturing fluids, together with wastewater and air emissions.⁹⁸¹

5.3.2 Risk Identification and Assessment

In South Africa, before any exploration and production activities related to petroleum are undertaken, environmental authorization is required in accordance with the Environmental Impact Assessment Regulations.⁹⁸² The Regulations for Petroleum Exploration and Production require that the Petroleum Agency SA (PASA), Council of Geosciences (CGS), and the Council for Scientific and Industrial Research (CSIR) be

⁹⁸¹ Ibid.

⁹⁷⁴ Merryn Thomas, Nick Pidgeon, Michael Bradshaw 'Shale development in the US and Canada: A review of engagement practice' (2018) at 559-560, *The Extractive Industries and Society* 5.

⁹⁷⁵ Ibid.

⁹⁷⁶ Ibid.

⁹⁷⁷ Ibid

⁹⁷⁸ Ibid. ⁹⁷⁹ Ibid.

⁹⁸⁰ Ibid.

⁹⁸² Department of Environmental Affairs 'Environmental Impact Assessment Regulations' Government Notice No. R982, Government Gazette, No.38282 of 4 December 2014.

identified as interested and affected parties for the purpose of public participation.⁹⁸³ The EIA must be complemented by the assessment of the geology and geohydrology of the affected area before the design of wells, with a geological overview report submitted to PASA for approval.⁹⁸⁴

Prior to the design of shale gas wells, the exploration right holder has to conduct a well risk assessment.⁹⁸⁵ This includes the identification of the risks associated with the drilling of the well, and related hydraulic fracturing operations, and how such risks will be mitigated.⁹⁸⁶ The risk assessment must ensure that there is adequate isolation of permeable zones,⁹⁸⁷ through cement casing.⁹⁸⁸ It must ensure that groundwater is protected, while also preventing the migration of high salinity groundwater into the well.⁹⁸⁹ It must ensure that the decommissioning of the wells at the end of the shale gas production life is considered in the well design.⁹⁹⁰ Casing deformation and cement degradation must be considered,⁹⁹¹ together with fracturing containment.⁹⁹²

The risk assessment must consider the possibility of hydraulic fracturing inducing seismicity.⁹⁹³ The potential deformation of aquifers and geological strata as a result of injecting hydraulic fracturing fluids or due to the extraction of fluids must also be taken into account,⁹⁹⁴ together with the possible subsidence of the surface as a result of the deformation of aquifers and geological strata.⁹⁹⁵ Furthermore, the petroleum right holder has to prepare the area over which the right has been granted in compliance to the Environmental Authorization and Environmental Management Programme.⁹⁹⁶

- 983 Reg 86(4) GN R.466.
- ⁹⁸⁴ Reg 87(1).
- ⁹⁸⁵ Reg 94.
- ⁹⁸⁶ Reg 94(1).
- ⁹⁸⁷ Reg 94(2)(a).
- ⁹⁸⁸ Reg 94(2)(b). ⁹⁸⁹ Reg 94(2)(c).
- ⁹⁹⁰ Reg 94(2)(c).
- ⁹⁹¹ Reg 94(2)(d).
- ⁹⁹² Reg 94(2)(d).
- ⁹⁹³ Reg 94(2)(f).
- 994 Reg 94(2)(g).
- ⁹⁹⁵ Reg 94(2)(h).
- ⁹⁹⁶ Reg 90.

The drilling site must be prepared in a manner that will prevent the contamination of the environment through providing an impermeable site underlay and drainage system.⁹⁹⁷ Control measures must be put in place based on the risk assessment,⁹⁹⁸ and be documented as part of the well's basis of design and operations programmes.⁹⁹⁹ The well design risk assessment together with the control measures must be submitted to the competent authority as part of the environmental authorization process.¹⁰⁰⁰

In the UK, while the regulators set out goals in relation to health and safety risks, operators bear the primary responsibility for identifying, assessing and mitigating environmental hazards.¹⁰⁰¹ Operators are required to assess the risks associated with their activities and specify the mitigation measures that they will implement to reduce those risks as low as reasonably practicable (ALARP).¹⁰⁰² The risk assessment must as a minimum cover personal and process safety, environmental impacts and well integrity.¹⁰⁰³

In terms of the UK Offshore Operators Group, operators are expected to adhere to the following guidelines, when conducting hydraulic fracturing operations: First, to safeguard the quality of surface and groundwater resources, through sound wellbore construction practices, and minimization of the use of freshwater through finding alternative sources of water, and recycling water for re-use.¹⁰⁰⁴ Secondly, to measure and disclose water usage in an effort to minimize environmental impacts.¹⁰⁰⁵ Thirdly, to support the development of fracturing fluids and additives that have the least environmental risks.¹⁰⁰⁶ Fourthly, to advance technologies and best practices that

⁹⁹⁷ Reg 91.

⁹⁹⁸ Reg 94(3)(a).

⁹⁹⁹ Reg 94(3)(b).

¹⁰⁰⁰ Reg 94(4).

¹⁰⁰¹ John Paterson and Tina Hunter 'Shale Gas Law and Regulation in the United Kingdom' in Tina Hunter 'Handbook of Shale Gas Law and Policy: Economics, Access, Law and Regulation in Key Jurisdictions' (2016) at 286, *Energy & Law* 18 (Intersentia Ltd, Cambridge: United Kingdom); Michael Burns, Charlie Reid & Justyna Bremen 'UK Shale Gas – A Policy Tug War' (2016) at 249, *Journal of Energy & Nat Resources Law* 34(2).

¹⁰⁰² Ibid.

¹⁰⁰³ Ibid.

¹⁰⁰⁴ The United Kingdom Onshore Operators' Group 'Guidelines for UK Well Operations on Onshore Shale Gas Wells' (2016) 7(7.1)(1).

¹⁰⁰⁵ Ibid, 7(7.1)(2).

¹⁰⁰⁶ Ibid, 7(7.1)(3).

minimize the potential environmental risks of hydraulic fracturing.¹⁰⁰⁷ Fifth, to minimize or eliminate fugitive emissions where possible,¹⁰⁰⁸ and sixth, to disclose the chemicals used in hydraulic fracturing publicly.¹⁰⁰⁹

Canada, on the other hand, follows a management-based regulatory approach to the assessment, safe and appropriate management of risks associated with shale gas development and hydraulic fracturing in particular.¹⁰¹⁰ In terms of the assessment of risks associated with water resources, operators are required to prepare and submit a documented hydraulic fracturing programme that include the determination of fracture planning zones, a risk assessment of offset and energizing wells etcetera.¹⁰¹¹ Furthermore in recognition that hydraulic fracturing fluids may contaminate drinking water sources, certain provinces within Canada, such as Alberta, require operators to prepare a risk assessment when hydraulic fracturing operations are to be conducted above, or within a 100 metres below an area designated by the regulator as the base of groundwater protection.¹⁰¹²

In fact, five separate risk management plans are required to support applications for onshore drilling operations that involve hydraulic fracturing in Canada.¹⁰¹³ These are a Safety Plan; Risk Assessment Plan; Environmental Protection Plan; Waste Management Plan and a Spill Contingency Plan.¹⁰¹⁴ The Safety Plan has to provide sufficient detail to demonstrate the procedures, practices, resources, sequence of key safety-related activities, and monitoring measures necessary to ensure the safety of the proposed activity by the operators.¹⁰¹⁵

¹⁰¹⁴ Ibid.

¹⁰⁰⁷ Ibid, 7(7.1)(4).

¹⁰⁰⁸ Ibid, 7(7.1)(5).

¹⁰⁰⁹ Ibid, 7(7.1)(6).

¹⁰¹⁰ Allan Ingelson 'Shale Gas Law and Regulation in North America' in Tina Hunter Handbook of Shale Gas Law and Policy: Economics, Access, Law and Regulation in Key Jurisdictions (2016) at 313, Energy & Law 18 (Intersentia Ltd, Cambridge: United Kingdom).

¹⁰¹¹ Ibid, at 314.

¹⁰¹² Ibid, at 320.

 ¹⁰¹³ National Energy Board 'Filling Requirements for Onshore Drilling Operations Involving Hydraulic Fracturing' (2013) at 12 (Calgary, Alberta, Canada).
 ¹⁰¹⁴ Ibid.

The Risk Assessment Plan must describe the risk assessment and management processes with enough detail to demonstrate that operators have effective processes in place to identify hazards and threats to safety and the environment and have effective measures in place to evaluate and manage the associated risks.¹⁰¹⁶ Secondly, the Plan must demonstrate that the operators have taken or will take all the reasonable precautions to ensure that the safety and environmental risks are mitigated.¹⁰¹⁷

The Environmental Protection Plan has to provide sufficient detail to demonstrate an understanding of how the activity will interact with the environment.¹⁰¹⁸ The plan also has to have the procedures, practices, resources, and monitoring necessary to manage hazards and protect the environment from the impacts of the proposed activity, including potential impacts to groundwater.¹⁰¹⁹ Furthermore, the plan has to demonstrate that the identified environmental hazards and risks, including the preventive and mitigation measures in the environmental assessment are incorporated.¹⁰²⁰

In terms of the Waste Management Plan, operators are required to take all reasonable measures to minimize the volumes of waste materials generated by their operations, and the quantity of environmentally hazardous substances in the waste materials.¹⁰²¹ Accordingly, no substance can be discharged to the environment unless the National Energy Board has determined that the discharge will not have a detrimental impact on the environment.¹⁰²² The Spill Contingency Plan calls for emergency response procedures to mitigate safety and environmental impacts from unplanned or accidental discharges to the environment.¹⁰²³ The contingency plans for spill response has to provide enough detail to demonstrate that effective systems, processes, procedure,

¹⁰¹⁶ Ibid.

¹⁰¹⁷ Ibid.

¹⁰¹⁸ Ibid, at 13.

¹⁰¹⁹ Ibid.

¹⁰²⁰ National Energy Board 'Filling Requirements for Onshore Drilling Operations Involving Hydraulic Fracturing' (2013) at 13 (Calgary, Alberta, Canada).

¹⁰²¹ Ibid, at 14.

¹⁰²² Ibid.

¹⁰²³ Ibid.

and capabilities are in place to minimize impacts to the natural environment from unauthorized or accidental discharges, and to protect workers and the public.¹⁰²⁴

5.3.2.1 Assessment of water resources

In South Africa, an assessment of water resources is also required, therefore an exploration right holder is obliged to appoint an independent specialist to conduct a hydro-census of the affected area.¹⁰²⁵ The hydro-census must identify and indicate priority water resources and domestic groundwater supplies on geo-hydrological maps.¹⁰²⁶ A proposed water resource monitoring plan must be prepared and form part of the application for a water use license for approval by the department responsible for water affairs.¹⁰²⁷ The water resource monitoring plan must identify the water sampling methodology, monitoring points, parameters, frequency, and reporting frequency.¹⁰²⁸

The monitoring plan must furthermore be submitted to the competent authority as part of the application for Environmental Authorization.¹⁰²⁹ The water samples collected as part of the monitoring plan must be analysed by an accredited laboratory, and the results submitted to the Petroleum Agency and the department responsible for water affairs within seven days upon receipt of the results.¹⁰³⁰ A comprehensive water monitoring report must be included in the EMPr required in terms of the EIA Regulations.¹⁰³¹

After conducting the baseline water quality assessment, the exploration right holder must continue water monitoring in line with the approved plan.¹⁰³² The exploration right holder must subject the water resources to sampling, analysis and interpretation of

¹⁰²⁴ Ibid.

¹⁰²⁵ Reg 88(1) GN R.466.

¹⁰²⁶ Reg 88(1).

¹⁰²⁷ Reg 88 (2).

¹⁰²⁸ Reg 88(2)(a-e).

¹⁰²⁹ Reg 88 (3).

¹⁰³⁰ Reg 88(4).

¹⁰³¹ Reg 88(6); Department of Environmental Affairs 'Environmental Impact Assessment Regulations' Government Notice No. R982, Governmet Gazette, No.38282 of 4 December 2014, Reg 23(a).

¹⁰³² Regulations for Petroleum Exploration and Production, Government Notice R.466 in Government Gazette No.38855 of 3 June 2015, Reg 88(7) GN R.466.

water quality and changes in water levels by an independent specialist that is approved by PASA.¹⁰³³ The results of the water sampling analysis must be submitted to PASA and the department responsible for water affairs within seven days of receipt thereof, together with the monitoring reports.¹⁰³⁴

Furthermore, PASA, CGS and CSIR, designated local authorities, or the department responsible for water affairs, must be allowed access to collect samples of fluids encountered in the exploration and production area (water or hydrocarbons at depth or at the surface) for their own analysis and interpretation if they deem it prudent to do so.¹⁰³⁵ The data collected must be published, provided it does not enable an assessment of the presence of hydrocarbons and commercial value of the exploration acreage.¹⁰³⁶

In the UK, the Environmental Protection Agency is required to prevent hazardous substances from entering groundwater, and limit the entry to groundwater of non-hazardous pollutants, so as not to cause groundwater pollution.¹⁰³⁷ The Environmental Protection Agency is obliged to conduct all necessary investigations to prevent the pollution of groundwater, and must set out conditions requiring all necessary technical precautions towards that end to be observed when granting the permits.¹⁰³⁸ From this, it can be deduced that shale gas operations in England will not involve hazardous substances and where non-hazardous pollutants are involved such as in hydraulic fracturing fluids, these must be limited to non-polluting quantities.¹⁰³⁹

In terms of the UK Onshore Operators guidelines, operators are required to undertake baseline surveys of groundwater and shallow water aquifers as part of the well

¹⁰³³ Reg 88(7)(a) GN R.466.

¹⁰³⁴ Reg 88 (7)(b-c).

¹⁰³⁵ Reg 88 (8)(a).

¹⁰³⁶ Reg 88 (9).

¹⁰³⁷ John Paterson and Tina Hunter 'Shale Gas Law and Regulation in the United Kingdom' in Tina Hunter Handbook of Shale Gas Law and Policy: Economics, Access, Law and Regulation in Key Jurisdictions (2016) at 297, Energy & Law 18 (Intersentia Ltd, Cambridge: United Kingdom); Environmental Permitting Regulations 2010, s 35(2)(p).

¹⁰³⁸ Ibid.

¹⁰³⁹ Ibid, at 298.

planning phase.¹⁰⁴⁰ These should include: First, surface water sampling at the well site before the start of site construction.¹⁰⁴¹ Secondly, groundwater sampling before the start of site construction.¹⁰⁴² Thirdly, surface water sampling following site construction, drilling and fracturing operations.¹⁰⁴³ Fourthly, groundwater sampling following site construction, drilling and fracturing operations.¹⁰⁴⁴

Operators should ensure that all water sampling and analysis is done by qualified third parties using recognized sampling and analytical methods, with water testing results disclosed in accordance with any specific planning requirements or environmental permits.¹⁰⁴⁵ Any anomalies detected that are connected with operations should be risk assessed and reported as required by the Environmental Agency or Scottish Environmental Protection Agency.¹⁰⁴⁶

Taking into account the rapid shale gas development in British Columbia, which has tapped into groundwater resources, the Water Sustainability Act,¹⁰⁴⁷ replaced the Water Act¹⁰⁴⁸ in 2016, and includes groundwater use and management, which was not previously regulated in terms of the Water Act.¹⁰⁴⁹ The Water Sustainability Act also recognises the interconnected nature of surface water and ground water, rather than treat them as separate hydrologic resources as was previously the case.¹⁰⁵⁰

The Water Sustainability Act includes water source wells, which are wells constructed by the industry for the purposes of their oil and gas operations, including hydraulic fracturing.¹⁰⁵¹ The construction and operations of water source wells, and installation of monitoring wells nearby, which are regulated under the Oil and Gas Activities

¹⁰⁴⁰ The United Kingdom Onshore Operators' Group 'Guidelines for UK Well Operations on Onshore Shale Gas Wells' (2016) 8.1.

¹⁰⁴¹ Ibid, 8.1(1).

¹⁰⁴² Ibid, 8.1(2).

¹⁰⁴³ Ibid, 8.1(3).

¹⁰⁴⁴ Ibid, 8.1(4).

¹⁰⁴⁵ Ibid.

¹⁰⁴⁶ Ibid.

¹⁰⁴⁷ Water Sustainability Act, 2016.

¹⁰⁴⁸ Water Act, 1985.

 ¹⁰⁴⁹ Diana M. Allen, Chelsea Notte & Nancy Olewiler 'Enhancing water security in a rapidly developing shale gas region' (2017) at 274, *Journal of Hydrology: Regional Studies* 11.
 ¹⁰⁵⁰ Ibid; Water Sustainability Act, 2016, s 5-6.

¹⁰⁵¹ Diana M. Allen, Chelsea Notte & Nancy Olewiler 'Enhancing water security in a rapidly developing shale gas region' (2017) at 274, *Journal of Hydrology: Regional Studies* 11.

Act,¹⁰⁵² require permits from the British Columbia Oil and Gas Commissions (BCOGC).¹⁰⁵³ However, the quantity of water abstracted from these wells is not regulated.¹⁰⁵⁴ Nonetheless, the BCOGC has amended the water source application process to include new requirements for the hydrological assessment.¹⁰⁵⁵

5.3.2.2 Assessment of Seismicity

Hydraulic fracturing has been found to induce seismic activity,¹⁰⁵⁶ as a result of the energy released in the fracturing process.¹⁰⁵⁷ Earth tremors not related to hydraulic fracturing operations were experienced in certain parts of Cape Town, South Africa, in September and November 2020.¹⁰⁵⁸ These measured 6.2 and 3.4 respectively on the Richter scale.¹⁰⁵⁹ No impact, including on infrastructure and public safety was caused by these tremors.¹⁰⁶⁰ Nonetheless, as part of the risk assessment required in terms of the South African shale gas regulations, an assessment of the seismicity of the area is required.¹⁰⁶¹ Therefore prior to conducting hydraulic fracturing operations, the exploration right holder has to assess the potential risk of hydraulic fracturing operations inducing a seismic event.¹⁰⁶² The risk assessment report must identify stressed faults that must be avoided in the fracturing process,¹⁰⁶³ and fracture

¹⁰⁵² Oil and Gas Activities Act, 2008.

¹⁰⁵³ Diana M. Allen, Chelsea Notte & Nancy Olewiler 'Enhancing water security in a rapidly developing shale gas region' (2017) at 274, *Journal of Hydrology: Regional Studies* 11.

¹⁰⁵⁴ Ibid.

¹⁰⁵⁵ Ibid.

¹⁰⁵⁶ John Paterson and Tina Hunter 'Shale Gas Law and Regulation in the United Kingdom' in Tina Hunter Handbook of Shale Gas Law and Policy: Economics, Access, Law and Regulation in Key Jurisdictions (2016) at 282 Energy & Law 18 (Intersentia Ltd, Cambridge: United Kingdom); David K. Smythe 'Inadequate Regulation of the Geological Aspects of Shale Exploitation in the UK' (2020) at 15, International Journal of Environmental Research Public Health; Peter Cameron, Juan Felipe Neira Castro, Tomas Lanardonne and Geoffrey Wood 'Across the universe of shale resources – a comparative assessment of the emerging legal foundations for unconventional energy' (2018) at 315, Journal of World Energy Law and Business 11.

¹⁰⁵⁷ The Royal Society and Royal Academy of Engineering 'Shale gas extraction in the UK: a review of hydraulic fracturing' (2012) at 41.

¹⁰⁵⁸ Nidha Narrandes '6.2-magnitude earthquake shakes Cape Town' (2020) available from https://www.capetownetc.com/news/6-2-magnitude-earthquake-shakes-cape-town/ accessed on 28 November 2020.

¹⁰⁵⁹ Council for Geoscience 'Seismic Events' (2020) available at http://196.38.235.147:8070/quakeview/events/event_details/CGS2020wojk, accessed on 28 November 2020.

¹⁰⁶⁰ Nidha Narrandes '6.2-magnitude earthquake shakes Cape Town' (2020) available from https://www.capetownetc.com/news/6-2-magnitude-earthquake-shakes-cape-town/ accessed on 28 November 2020.

¹⁰⁶¹ Reg 89 (1) GN R.466.

¹⁰⁶² Reg 89 (1).

¹⁰⁶³ Reg 89 (1)(a).

behaviour of targeted formations.¹⁰⁶⁴ Site specific seismic monitoring is to be undertaken before, during, and after the commencement of hydraulic fracturing operations.¹⁰⁶⁵

Site specific surveys are required to be carried out by the exploration right holder prior to hydraulic fracturing, to characterize local stress regimes, and identify nearby faults.¹⁰⁶⁶ The site characterization must contain existing geological maps,¹⁰⁶⁷ seismic reflection and refraction data,¹⁰⁶⁸ and other relevant geophysical data.¹⁰⁶⁹ The risk assessment report and site-specific surveys must be submitted to the competent authority as part of the application for environmental authorization.¹⁰⁷⁰ Furthermore, the assessment of the orientation and slip tendency of faults and bedding planes may be done once faults have been identified and geological stress regimes characterized.¹⁰⁷¹

The risk of fault movement must be mitigated through identifying stressed faults and preventing fracturing fluids from entering stressed faults.¹⁰⁷² The hydraulic fracturing of a targeted formation must first be tested using small pre-fracturing injection tests with micro-seismic monitoring.¹⁰⁷³ This should be followed by an investigation of whether seismic activity has occurred during the pre-injection fracturing tests to enable modification of subsequent hydraulic fracturing operations.¹⁰⁷⁴

Seismic monitoring at the site must also be undertaken by the exploration right holder for a period of three years after the hydraulic fracturing activities have come to an end.¹⁰⁷⁵ The results of the monitoring must be included in the seismic monitoring report.¹⁰⁷⁶ The duration of only three years for the monitoring of seismic activity, and

- ¹⁰⁶⁴ Reg 89 (1)(b). ¹⁰⁶⁵ Reg 89 (1)(c).
- ¹⁰⁶⁶ Reg 89 (2).
- ¹⁰⁶⁷ Reg 89 (2)(a).
- ¹⁰⁶⁸ Reg 89 (2)(b).
- ¹⁰⁶⁹ Reg 89 (2)(c).
- ¹⁰⁷⁰ Reg 89 (3).
- ¹⁰⁷¹ Reg 89 (4).
- ¹⁰⁷² Reg 89 (5).
- ¹⁰⁷³ Reg 89 (6).
- ¹⁰⁷⁴ Reg 89 (7).
- ¹⁰⁷⁵ Reg 89 (8). ¹⁰⁷⁶ Reg 89 (8).

five years for the monitoring of water contamination and quality is not adequate, the regulations should further indicate the responsibility of petroleum right holders should a seismic event, water contamination or environmental degradation occur after these timelines.¹⁰⁷⁷

In the UK, minor earthquakes were triggered by hydraulic fracturing operations at Preese Hall, near Blackpool, England, and measured 1.5 and 2.3 on the Richter scale.¹⁰⁷⁸ Detailed technical investigations and independent review found that the tremors may have been caused when hydraulic fracturing fluids flowed into a geological fault.¹⁰⁷⁹ Consequently, the Royal Society and Royal Academy of Engineering recommended that first, the British Geological Survey or other appropriate bodies should carry out national surveys to characterize stresses and identify faults in the UK shales.¹⁰⁸⁰ Secondly, operators should carry out site specific surveys prior to hydraulic fracturing operations to characterize local stresses and identify nearby faults.¹⁰⁸¹ Thirdly, once the faults have been identified and geological stresses characterized, operators are expected to assess the orientation and slip tendency of faults and bedding planes and should avoid hydraulic fracturing near faults with high slip tendency.¹⁰⁸²

In Canada, more than 4,000 earthquakes are recorded each year by the Geological Survey of Canada, and only about 50 are generally felt at the surface.¹⁰⁸³ Larger earthquakes have occurred in Canada, for example the Val-des-Bois, Quebec

¹⁰⁷⁷ W du Plessis 'Regulation of Hydraulic Fracturing in South Africa: A Project Lifecycle Approach' (2015) at 1467, *Potchefstroom Electronic Law Journal* 18(5).

¹⁰⁷⁸ Royal Society and Royal Academy of Engineering 'Shale gas extraction in the UK: a review of hydraulic fracturing' (2012) at 41; John Paterson and Tina Hunter 'Shale Gas Law and Regulation in the United Kingdom' in Tina Hunter *Handbook of Shale Gas Law and Policy: Economics, Access, Law and Regulation in Key Jurisdictions* (2016) at 282 Energy & Law 18 (Intersentia Ltd, Cambridge: United Kingdom); Peter Cameron, Juan Felipe Neira Castro, Tomas Lanardonne and Geoffrey Wood 'Across the universe of shale resources – a comparative assessment of the emerging legal foundations for unconventional energy' (2018) at 315, *Journal of World Energy Law and Business* 11; David K. Smythe 'Inadequate Regulation of the Geological Aspects of Shale Exploitation in the UK' (2020) at 15, *International Journal of Environmental Research Public Health*.

¹⁰⁷⁹ Royal Society and Royal Academy of Engineering 'Shale gas extraction in the UK: a review of hydraulic fracturing' (2012) at 41.

¹⁰⁸⁰ Ibid.

¹⁰⁸¹ Ibid, 43.

¹⁰⁸² Ibid, 43.

¹⁰⁸³ Penny Becklumb, Jed Chong & Tim Williams 'Shale Gas in Canada: Environmental Risks and Regulation' (2015) at 12, Economics, Resources and International Affairs Division, Parliamentary Information and Research Service, Publication No.2015-18-E.

earthquake that occurred in June 2010 and was also felt in Ontario and the United States as far as Kentucky, measured 5 on the Richter scale.¹⁰⁸⁴ The earthquake caused some damage in the epicentral region in eastern Canada, including landslides, and to buildings and roads.¹⁰⁸⁵ In British Columbia, 272 seismic events occurred near oil and gas operations, where more than 8000 hydraulic fracturing completions were performed in 2009 – 2011.¹⁰⁸⁶ No injuries or property damage resulted from the earthquakes, and only one of the earthquakes was felt at the surface.¹⁰⁸⁷ All of the earthquakes were caused by the injection of hydraulic fracturing fluids near existing geological faults.¹⁰⁸⁸

The British Columbia Oil and Gas Commission makes the following recommendations in respect of the management of seismicity related to hydraulic fracturing operations:¹⁰⁸⁹ First, geological and seismic assessments should be performed to identify pre-existing faulting that could trigger seismicity under pressure from hydraulic fracturing fluids. Secondly, induced seismic monitoring and reporting procedures should be established and made mandatory. Thirdly, ground motion sensors are to be placed in communities near hydraulic fracturing locations to help assess ground motion risks. Fourthly, micro-seismic reports are to be required to monitor hydraulic fracturing for containment of micro fracturing and to identify existing faults. Fifth, the relationship between hydraulic fracturing parameters and seismicity should be studied in greater detail prior, during and after hydraulic fracturing operations.

¹⁰⁸⁴ Natural Resources Canada 'The 2010 Val-des-Bois Quebec Earthquake: Earthquake Summary' (2010), at 1, Geological Survey of Canada, Ottawa.

¹⁰⁸⁵ Natural Resources Canada 'The 2010 Val-des-Bois Quebec Earthquake: Earthquake Summary' (2010), at 1, Geological Survey of Canada, Ottawa.

¹⁰⁸⁶ BC Oil and Gas Commission ¹Investigation of Observed Seismicity in the Horn River Basin (2012), at 3, available at *https://www.bcogc.ca/files/reports/Technical*-

Reports/investigation20of20observed20seismicity20in20the20horn20river20basinaug202012.pdf, accessed on 29 November 2020.

¹⁰⁸⁷ Ibid, 28.

¹⁰⁸⁸ Ibid, 26.

¹⁰⁸⁹ Ibid.

5.3.2.3 Minimizing Fugitive Emissions during Hydraulic Fracturing

The management of fugitive methane emissions related to hydraulic fracturing operations is crucial from an air quality perspective and to mitigate global warming.¹⁰⁹⁰ As outlined in Chapter 3 of this thesis, global warming is caused by increasing concentrations of greenhouse gases in the atmosphere.¹⁰⁹¹ Methane gas, a potent greenhouse gas that is associated with the production of natural gas, can be emitted to the atmosphere during shale gas drilling or production through flaring, venting or leakage (also referred to as fugitive emissions).¹⁰⁹² Also outlined in Chapter 3 are technologies that are already being used to reduce methane emissions from oil and gas operations and shale gas development in particular, such as leak detection and repair technologies.¹⁰⁹³

Nonetheless, the South African hydraulic fracturing regulations mandate petroleum right holders to minimize the emissions associated with the venting of hydrocarbon fluids and natural gas during hydraulic fracturing operations.¹⁰⁹⁴ This should be done through routing the recovered fluids into storage vessels,¹⁰⁹⁵ with recovered gas routed into a gas gathering system or to a generator for onsite energy generation.¹⁰⁹⁶ A method other than venting is also recommended, together with employing sand traps,¹⁰⁹⁷ surge vessels, separators and tanks during cleanout operations to minimize releases to the atmosphere.¹⁰⁹⁸ If a petroleum right holder can demonstrate that it is not technically feasible to minimize the emissions associated with hydraulic fracturing

¹⁰⁹⁰ Laurence Stamford & Adisa Azapagic 'A Fractured truth' (2014), at 27, *The Chemical Engineer*, Brett Cohen & Herald Winkler 'Greenhouse gas emissions from shale gas and coal for electricity generation in South Africa' (2014) at 3, *S Afr J Sci*; 110(3/4).

¹⁰⁹¹ United Nations 'United Nations Framework Convention on Climate Change' (1992) at 1.

¹⁰⁹² Laurence Stamford & Adisa Azapagic 'A Fractured truth' (2014), at 27, The Chemical Engineer; Brett Cohen & Herald Winkler 'Greenhouse gas emissions from shale gas and coal for electricity generation in South Africa' (2014) at 3, S Afr J Sci; 110(3/4); Shanru Tian, Kathleen M. Smits, Younki Cho, Stuart N. Riddick, Daniel J. Zimmerle and Aidan Duggan 'Estimating methane emissions from underground natural gas pipelines using an atmospheric dispersion-based method' (2022) at 1, Elementa Science of the Anthropocene 10(1).

¹⁰⁹³ Don C Smith 'Unconventional Gas Development 2.0: Reducing the 'Environmental Footprint' Through New Technologies' (2018) at 226 in Donald Zillman, Martha Roggenkamp, Leroy Paddock & Lee Godden *Innovation in Energy Law and Technology: Dynamic Solutions for Energy Transitions* (London, Oxford University Press).

¹⁰⁹⁴ Reg 127(1) GN R.466.

¹⁰⁹⁵ Reg 127 (1)(a).

¹⁰⁹⁶ Reg 127 (1)(a)(i).

¹⁰⁹⁷ Reg 127 (1)(a)(ii).

¹⁰⁹⁸ Reg 127 (1)(b).
operations using the methods mentioned above, the designated agency can compel the right holder to capture and direct the gas produced to a flare provided that such flaring may not cause a fire hazard or explosion.¹⁰⁹⁹

In terms of the UK guidelines, exploration right holders are required to put mechanisms in place to minimize emissions, and to disclose emissions in line with the requisite regulations.¹¹⁰⁰ Exploration right holders are required to eliminate any flaring and venting of natural gas, and adopt best practices from the design stage of shale gas development.¹¹⁰¹ They are encouraged to use green completions or reduced emissions completions, where natural gas is separated from the fracturing fluid during flow-back for beneficial use, while the remaining flow-back fluid is recycled and reused.¹¹⁰² The guidelines recognize that this may not always be practical during the exploration and appraisal phases, therefore there is some tolerance for flaring, while venting should be avoided as much as possible even during these phases.¹¹⁰³

In Canada, the federal government set a target to reduce the country's methane emissions by 45% by 2025.¹¹⁰⁴ This is in recognition that significant inroads in reducing methane emissions are being made by British Columbia, Alberta and Saskatchewan, the main producers of shale gas in Canada.¹¹⁰⁵ These provinces amended their regulations to specifically provide for the management of methane emissions.¹¹⁰⁶ The amendments include controls on flaring, venting, incinerating, and requirements for regular inspection and repair of methane leaks.¹¹⁰⁷ In Alberta, Directives 60 and 15

¹⁰⁹⁹ Reg 127 (2).

¹¹⁰⁰ The United Kingdom Onshore Operators' Group 'Guidelines for UK Well Operations on Onshore Shale Gas Wells' (2016) 10.

¹¹⁰¹ Ibid.

¹¹⁰² Ibid.

¹¹⁰³ Ibid.

¹¹⁰⁴ Canada's Oil and Natural Gas Producers 'Managing Methane Emissions for Natural Gas and Oil Development' (2021) at 2, available at https://www.capp.ca/wp-content/uploads/2021/02/Managing-Methane-Emissions-for-Natural-Gas-and-Oil-Development-386197.pdf accessed on 23 March 2023.

¹¹⁰⁵ DA Young Kim 'A Lesson from the Shale Revolution in the United States, Canada, and China' (2017) at 750, *The Georgetown Envtl. Law Review* 29; Allan Ingelson and Tina Hunter 'A Regulatory Comparison of Hydraulic Fracturing Fluid Disclosure Regimes in the United States, Canada, and Australia' (2014) at 224, *Natural Resources Journal* 54(2).

 ¹¹⁰⁶ Canada's Oil and Natural Gas Producers 'Managing Methane Emissions for Natural Gas and Oil Development' (2021) at 2, available at *https://www.capp.ca/wp-content/uploads/2021/02/Managing-Methane-Emissions-for-Natural-Gas-and-Oil-Development-386197.pdf* accessed on 23 March 2023
 ¹¹⁰⁷ Ibid.

are used to regulate methane emissions from natural gas and oil operations in.¹¹⁰⁸ In British Columbia, the B.C. Drilling and Production Regulation incorporates requirements for leak detection and repair, flaring, venting, and incinerating at any well site or production facility.¹¹⁰⁹ Amendments to Saskatchewan's Oil and Gas Conservation Act established more stringent methane emissions limits from oil and gas sites.¹¹¹⁰

Efforts to advance technology for methane emissions reduction from natural gas and oil development in Canada include using solar panels to power equipment, capturing vented gas from natural gas facilities and using the gas to fuel compressor engines.¹¹¹¹ A coordinated technology advancement initiative by organizations such as Natural Resources Canada, Emissions Reduction Alberta, and various universities led to a robust ground, aerial, and satellite-based methane detection network in Canada.¹¹¹² The oil and gas industry also partnered with the Petroleum Technology Alliance of Canada (PTAC) on initiatives such as:¹¹¹³ Area methane detection using work trucks, to ensure the early detection and repair of methane leaks; Advanced methane detection, analytics and mitigation to test technologies on major methane sources; Methane abatement tool that aggregates data and generates emissions reduction offsets in Western Canada.

5.3.3 Well Design and Construction

The most significant risks to groundwater or surface waters in respect of shale gas development relates to well integrity, that is, the design and construction of wells such that leaks of gas and other fluids are avoided.¹¹¹⁴ During hydraulic fracturing

¹¹⁰⁸ Ibid; Alberta Directive 60; Alberta Directive 15.

¹¹⁰⁹ Ibid; B.C. Drilling and Production Regulation 2020.

¹¹¹⁰ Ibid.

¹¹¹¹ Canada's Oil and Natural Gas Producers 'Managing Methane Emissions for Natural Gas and Oil Development' (2021) at 2, available at https://www.capp.ca/wp-content/uploads/2021/02/Managing-Methane-Emissions-for-Natural-Gas-and-Oil-Development-386197.pdf accessed on 23 March 2023.

¹¹¹² Ibid.

¹¹¹³ Canada's Oil and Natural Gas Producers 'Managing Methane Emissions for Natural Gas and Oil Development' (2021) at 2, available at https://www.capp.ca/wp-content/uploads/2021/02/Managing-Methane-Emissions-for-Natural-Gas-and-Oil-Development-386197.pdf accessed on 23 March 2023.

¹¹¹⁴ Penny Becklumb, Jed Chong & Tim Williams 'Shale Gas in Canada: Environmental Risks and Regulation' (2015) at 6, Economics, Resources and International Affairs Division, Parliamentary Information and Research Service, Publication No.2015-18-E; Council of Canadian Academies

operations wells can experience significant stresses which may lead to a loss of well integrity.¹¹¹⁵ Compromised well integrity could lead to sub-surface impacts or the release of fluids to the surface, thereby placing the public and the environment at risk.¹¹¹⁶ A high degree of well integrity is therefore critical.¹¹¹⁷ Generally, well integrity failure results from, blowouts or sudden and uncontrolled escape of fluids from a well to the surface.¹¹¹⁸ Secondly, annulus leaks, which result from the poor cementation of wells allowing fluids to move vertically through the well between well casings (cemented steel sections making up the well), or between the casing and rock formation.¹¹¹⁹ Thirdly, radial leaks, which result from casing failures, allowing fluid to flow horizontally out of the well into the surrounding rock formation.¹¹²⁰

In South Africa, a shale gas well must be constructed, operated, suspended and decommissioned such that it can be controlled at all times.¹¹²¹ The well must be designed such that it will prevent the migration of petroleum and other fluids into untargeted formations¹¹²² and the contamination of water resources.¹¹²³ The design of the well must furthermore mitigate the risks to human health and safety.¹¹²⁴ The petroleum right holder has to conform to the American Petroleum Institute (API) well construction standards when designing the wells.¹¹²⁵ A petroleum right holder may adopt well construction standards other than those developed by the API,¹¹²⁶ subject to submitting detailed information regarding the proposed well construction standards to the designated agency.¹¹²⁷

^{&#}x27;Environmental Impacts of Shale Gas Extraction in Canada' (2014) at 56, available at https://cca-reports.ca/wp-content/uploads/2018/10/shalegas_fullreporten.pdf, accessed on 03/10/2020.

¹¹¹⁵ Alberta Energy Regulator 'Directive 083: Hydraulic Fracturing – Subsurface Integrity' (2013) s 2.1 ¹¹¹⁶ Ibid.

¹¹¹⁷ Ibid; Council of Canadian Academies 'Environmental Impacts of Shale Gas Extraction in Canada' (2014) at 56, available at https://cca-reports.ca/wp-

content/uploads/2018/10/shalegas_fullreporten.pdf, accessed on 3 October 2020.

¹¹¹⁸ Royal Society and Royal Academy of Engineering 'Shale gas extraction in the UK: a review of hydraulic Fracturing' (2012) at 24.

¹¹¹⁹ Ibid.

¹¹²⁰ Ibid.

¹¹²¹ Reg 95(1)(a) GN R.466.

¹¹²² Reg 95(1)(a).

¹¹²³ Reg 95(1)(b).

¹¹²⁴ Reg 95(1)(c).

¹¹²⁵ Reg 96(1).

¹¹²⁶ Reg 96(5).

¹¹²⁷ Reg 96(6)(a).

A detailed comparative assessment of the proposed standards and the standards prescribed in the regulations for petroleum exploration and production from an independent drilling engineer is also required.¹¹²⁸ The assessment should demonstrate how the proposed well construction standards will ensure higher levels of well integrity relative to those prescribed.¹¹²⁹ The petroleum right holder may only proceed to implement the proposed well construction standards after receiving written consent from the designated authority.¹¹³⁰ Furthermore, the decommissioning of wells should be an integral part of the well planning stage, therefore be included in the application for Environmental Authorisation.¹¹³¹ To minimize the amount of land required, multiple wells, drilled horizontally and closely spaced (multi-well pads) must be considered as part of well design, provided that it is technically and environmentally sensible to do so.¹¹³²

In the UK, operators are required to ensure that wells are designed, modified, commissioned, constructed, equipped, operated, maintained, suspended and abandoned such that there can be no unplanned escape of fluids from the well, and the risks to health and safety are minimized.¹¹³³ Before the design of a well, operators are required to assess the geological formation and fluids through which the well is to be drilled.¹¹³⁴ Operators are also required to assess any hazards associated with the geological formation or fluids.¹¹³⁵ These assessments are to inform the design and construction of the well.¹¹³⁶ The Operators are furthermore required to ensure that these assessments are periodically reviewed, and if any change is observed, modifications be made to the design and construction of the well or any procedures as necessary.¹¹³⁷ Furthermore, the Borehole Site Operator has to ensure that suitable

¹¹³⁶ Ibid. ¹¹³⁷ Ibid.

¹¹²⁸ Reg 96(6)(b).

¹¹²⁹ Reg 96(6)(b).

¹¹³⁰ Reg 96(7).

¹¹³¹ Reg 95(2).

¹¹³² Reg 95(4).

¹¹³³ Offshore Installations and Wells (Design and Construction Etc) Regulations 1996, Regulation 14, Regulation 13, s 5.

¹¹³⁴ Ibid.

¹¹³⁵ Ibid.

well control equipment is used during the drilling, hydraulic fracturing, and flow-back operations.¹¹³⁸

In Canada, the provinces regulate the protection of groundwater from contamination as a result of compromised well integrity.¹¹³⁹ In some provinces operators are obliged to sample and test the quality of the groundwater prior to conducting hydraulic fracturing operations.¹¹⁴⁰ This enables an assessment of whether the quality of groundwater deteriorates after hydraulic fracturing operations have taken place.¹¹⁴¹ For example, in British Columbia it is mandatory that operators take samples of water wells that are within 200 metres of planned hydraulic fracturing operations before hydraulic fracturing can take place at depths shallower than 600 metres.¹¹⁴² In New Brunswick, drilling for oil and gas may not occur prior to water samples being collected and analysed from all water wells within 500 metres of the drilling site.¹¹⁴³

Furthermore petroleum right holders must design, construct, and operate their wells to ensure well integrity during hydraulic fracturing operations.¹¹⁴⁴ Petroleum right holders are furthermore expected to manage well integrity throughout the life of the well, from construction to post abandonment.¹¹⁴⁵ The wells must be designed with a dual-barrier system,¹¹⁴⁶ consisting of a primary barrier capable of containing and isolating the hydraulic fracturing fluids.¹¹⁴⁷ The dual barrier system must contain a secondary barrier, capable of providing well control in the event of a failure of the primary

¹¹³⁸ Borehole Sites & Operations Regulations 1995, schedule 2 (7), section 7.2

¹¹³⁹ Penny Becklumb, Jed Chong & Tim Williams 'Shale Gas in Canada: Environmental Risks and Regulation' (2015) at 6, Economics, Resources and International Affairs Division, Parliamentary Information and Research Service, Publication No.2015-18-E.

¹¹⁴⁰ Ibid.

¹¹⁴¹ Ibid.

¹¹⁴² BC Oil and Gas Commission 'Oil and Gas Activity Application Manual' (2019) at 53-54, version 1.33, British Columbia, Canada.

¹¹⁴³ New Brunswick Oil and Gas Commission 'Responsible Environmental Management of Oil and Natural Gas Activities in New Brunswick - Rules for Industry' (2015) at 22, New Brunswick, Canada.
¹¹⁴⁴ Alberta Energy Regulator (Directive 082) Hydraulia Erecturing – Subaurface Integrity' (2012) a 2.2.4

 ¹¹⁴⁴ Alberta Energy Regulator 'Directive 083: Hydraulic Fracturing – Subsurface Integrity' (2013) s 2.3.1 (2)

¹¹⁴⁵ Directive 083, s 2.3.1 (2).

¹¹⁴⁶ Directive 083, s 2.3.2.

¹¹⁴⁷ Directive 083, s 2.3.2 (4)(a).

barrier,¹¹⁴⁸ and a monitoring system to detect and allow for a response to a primary barrier failure.¹¹⁴⁹

Well integrity failure is not unique to shale gas development.¹¹⁵⁰ While poor well construction affects the entire oil and gas industry, shale gas development amplifies the challenge because of the high number of wells, and volume of chemicals required during hydraulic fracturing, hence ensuring well integrity becomes much more critical.¹¹⁵¹ Independent well examination which is discussed below enhances well integrity.

5.3.4 Independent Well Examination

Before commencing with drilling or hydraulic fracturing in South Africa, a petroleum right holder is mandated to submit a well examination plan to the designated agency.¹¹⁵² The plan must include ground water and aquifer isolation;¹¹⁵³ fracture containment;¹¹⁵⁴ related seismicity risks;¹¹⁵⁵ fracturing and flow-back or testing programmes and operations;¹¹⁵⁶ and an independent well examination.¹¹⁵⁷ The designated agency may furthermore appoint an independent and competent person to undertake well examination with the cost thereof borne by the petroleum right holder.¹¹⁵⁸

In the UK, the independent examination of well designs must also take into account ground water and aquifer isolation, fracture containment, and induced seismic

¹¹⁴⁸ Directive 083, s 2.3.2 (4)(b).

¹¹⁴⁹ Directive 083, s 2.3.2 (4)(c)

¹¹⁵⁰ Penny Becklumb, Jed Chong & Tim Williams 'Shale Gas in Canada: Environmental Risks and Regulation' (2015) at 6, Economics, Resources and International Affairs Division, Parliamentary Information and Research Service, Publication No.2015-18-E.

¹¹⁵¹ Council of Canadian Academies 'Environmental Impacts of Shale Gas Extraction in Canada' (2014) at 56, available at *https://cca-reports.ca/wp-*

content/uploads/2018/10/shalegas_fullreporten.pdf, accessed on 3 October 2022. ¹¹⁵² Reg 107(1) GN R.466.

¹¹⁵³ Reg 107(1)(a).

¹¹⁵⁴ Reg 107(1)(b).

¹¹⁵⁵ Reg 107(1)(c).

¹¹⁵⁶ Reg 107(1)(d).

¹¹⁵⁷ Reg 107(1)(e).

¹¹⁵⁸ Reg 107(2).

risks.¹¹⁵⁹ Well examiners rely on documentary evidence of well integrity as the main basis to assure well operators that wells are properly designed and constructed.¹¹⁶⁰ It is not obligatory that examiners do a physical inspection of the wells, unless the reliability of the documentary evidence is in question.¹¹⁶¹ Given that the UK shale gas industry has not yet gained public confidence, operators are encouraged to request their well examiners to physically inspect the well integrity during the early development stages in real-time as an additional oversight mechanism.¹¹⁶² Periodic site visits by well examiners are required to observe the operations and verify that they are executed in accordance with the approved programme, over and above ascertaining the documentary evidence.¹¹⁶³

5.3.5 Hydraulic Fracturing Operations (Production Phase)

The regulation of hydraulic fracturing operations is generally premised on the recognition that the risks posed by shale gas development to water quality often relate to operational practices.¹¹⁶⁴ The main operational risks to surface water and groundwater are first, accidental spills of hydraulic fracturing chemicals, and other related fluids during transportation, storage, or use.¹¹⁶⁵ Secondly, flowback or produced water spillages.¹¹⁶⁶ Thirdly, improper storage, treatment and disposal of flowback water.¹¹⁶⁷ Fourthly, leaks from surface ponds or other storage facilities.¹¹⁶⁸

In South Africa, the management of hydraulic fracturing operations entails, first, the management of drilling fluids;¹¹⁶⁹ hydraulic fracturing equipment;¹¹⁷⁰ mechanical integrity tests and monitoring;¹¹⁷¹ hydraulic fracturing fluid disclosure;¹¹⁷² and fracture

¹¹⁵⁹ The United Kingdom Onshore Operators' Group 'Guidelines for UK Well Operations on Onshore Shale Gas Wells' (2016) s 5(5.10).

¹¹⁶⁰ Ibid.

¹¹⁶¹ Ibid.

¹¹⁶² Ibid.

¹¹⁶³ Ibid.

¹¹⁶⁴ Penny Becklumb, Jed Chong & Tim Williams 'Shale Gas in Canada: Environmental Risks and Regulation' (2015) at 7, Economics, Resources and International Affairs Division, Parliamentary Information and Research Service, Publication No.2015-18-E.

¹¹⁶⁵ Ibid.

¹¹⁶⁶ Ibid.

¹¹⁶⁷ Ibid.

¹¹⁶⁸ Ibid. ¹¹⁶⁹ Reg 109 GN R.466.

¹¹⁷⁰ Reg 111.

¹¹⁷¹ Reg 112.

¹¹⁷² Reg 113.

and fracturing fluid containment.¹¹⁷³ Secondly, the management of fracturing fluids,¹¹⁷⁴ including flowback;¹¹⁷⁵ and the transportation,¹¹⁷⁶ and storage of the fluids.¹¹⁷⁷ A post hydraulic fracturing report is also mandatory.¹¹⁷⁸ Thirdly, management of water, which includes water balances;¹¹⁷⁹ protection of water resources;¹¹⁸⁰ and water use.¹¹⁸¹ Fourthly, management of waste,¹¹⁸² and pollution incidents such as spillages.¹¹⁸³ Fifth, management of air quality, including fugitive emissions;¹¹⁸⁴ dust;¹¹⁸⁵ and noise control.¹¹⁸⁶

Prior to the commencement of any drilling and hydraulic fracturing operations, the petroleum right holder must obtain the necessary authorizations, permits and licenses in terms of the National Water Act, the National Environmental Management Act, and the specific environmental management Act.¹¹⁸⁷ Furthermore, the well engineering design,¹¹⁸⁸ and hydraulic fracturing programme and procedure must be submitted to the Petroleum Agency SA, the Department of Water and Sanitation , and to the Minister of Mineral Resources and Energy as part of the application for environmental authorization.¹¹⁸⁹

In the UK, the Guidelines for UK Well Operations on Onshore Shale Gas Wells are limited to the exploration and appraisal phases only.¹¹⁹⁰ The exploration and appraisal phases are treated as a pilot, to gain experience, and ensure that high safety and environmental management standards are achieved prior to the production phase.¹¹⁹¹ Nonetheless, the Offshore Installations and Wells (Design and Construction Etc)

¹¹⁷³ Reg 114. ¹¹⁷⁴ Reg115. ¹¹⁷⁵ Reg 116. ¹¹⁷⁶ Reg 117. ¹¹⁷⁷ Reg 118. ¹¹⁷⁸ Reg 120 ¹¹⁷⁹ Reg 121. ¹¹⁸⁰ Reg 122. ¹¹⁸¹ Reg 123. ¹¹⁸² Reg 124. ¹¹⁸³ Reg 126. ¹¹⁸⁴ Reg 127. ¹¹⁸⁵ Reg 128. ¹¹⁸⁶ Reg 129. ¹¹⁸⁷ Reg 110(1). ¹¹⁸⁸ Reg 110(2)(a). ¹¹⁸⁹ Reg 110(2)(b). ¹¹⁹⁰ United Kingdom Onshore Operators' Group 'UK Onshore Shale Gas Well Guidelines' (2016) s 5. ¹¹⁹¹ Ibid.

Regulations 1996,¹¹⁹² and Borehole Sites & Operations Regulations 1995,¹¹⁹³ are applicable to shale gas development and apply through all phases of a well's value change, including the operations phase.¹¹⁹⁴

In Canada, the regulation of hydraulic fracturing related operational practices include the regulation of hazardous chemicals; wastewater (which includes storage and transportation of wastewater);¹¹⁹⁵ and fugitive emissions.¹¹⁹⁶ The Canadian Environmental Protection Act (CEPA) requires that all chemical substances that are used in Canada be assessed for toxicity and be made public.¹¹⁹⁷ The CEPA also regulate the chemicals used in hydraulic fracturing and oilfield, and provides for substantial fines and other penalties for violations.¹¹⁹⁸ The disclosure of hydraulic fracturing chemicals in Canada is also regulated by the major shale gas producing provinces, Alberta, British Columbia and New Brunswick in particular.¹¹⁹⁹ In 2012, British Columbia revised its Drilling and Production Regulation and now provides for the disclosure of fluids used in hydraulic fracturing operations.¹²⁰⁰ In 2013, New Brunswick also made the disclosure of hydraulic fracturing fluids mandatory, to be disclosed at least 30 days before hydraulic fracturing operations are conducted.¹²⁰¹

5.3.6 Decommissioning and Abandonment

In terms of the South African regulations this phase includes well suspension, suspended well integrity management, and well decommissioning and closure.¹²⁰² The holder of an exploration and production right is only allowed to suspend a well upon

¹¹⁹² Offshore Installations and Wells (Design and Construction Etc) Regulations 1996

¹¹⁹³ Borehole Sites & Operations Regulations 1995

¹¹⁹⁴ The United Kingdom Onshore Operators' Group 'Guidelines for UK Well Operations on Onshore Shale Gas Wells' (2016) s10.

¹¹⁹⁵ Penny Becklumb, Jed Chong & Tim Williams 'Shale Gas in Canada: Environmental Risks and Regulation' (2015) at 7, Economics, Resources and International Affairs Division, Parliamentary Information and Research Service, Publication No.2015-18-E.

¹¹⁹⁶ Ibid.

¹¹⁹⁷ Canadian Environmental Protection Act, 1999, s 68/

¹¹⁹⁸ Canadian Environmental Protection Act, 1999, schedule 1.

¹¹⁹⁹ Allan Ingelson and Tina Hunter 'A Regulatory Comparison of Hydraulic Fracturing Fluid Disclosure Regimes in the United States, Canada, and Australia' (2014) at 224, *Natural Resources Journal* 54(2).

¹²⁰⁰ DA Young Kim 'A Lesson from the Shale Revolution in the United States, Canada, and China' (2017) at 754, *The Georgetown Envtl. Law Review* 29.

¹²⁰¹ Ibid.

¹²⁰² Reg 130 GN R.466.

approval by the Petroleum Agency,¹²⁰³ and for a specified period.¹²⁰⁴ The right holder furthermore has an obligation to put in place standards and procedures for the management and monitoring of suspended wells, following drilling and hydraulic fracturing operations and prior to field development.¹²⁰⁵ The suspension of a well must be done in a manner that allows it to be safely and securely re-entered,¹²⁰⁶ while not compromising the final well abandonment.¹²⁰⁷ A well that will no longer be used, or has stopped production and its suspension period has lapsed, has to be plugged and decommissioned according to a decommissioning plan approved by the Petroleum Agency,¹²⁰⁸ and in line with the relevant provisions of the Environmental Impact Assessment Regulations.¹²⁰⁹

In the UK, well suspension and abandonment are government by the Offshore Installations and Wells (Design and Construction Etc) Regulation 15 and Guidance, the Oil and Gas UK Well Abandonment Guidelines, and the Oil and Gas UK Guidelines on Qualification of Materials for the Abandonment of Wells.¹²¹⁰ The UK Onshore Shale Gas Well Guidelines require that well operators ensure that a well be designed and constructed in a manner that it can be suspended and abandoned in a safe manner, and after its suspension and abandonment, there can be no unplanned escape of fluids from it or from the reservoir to which it led.¹²¹¹

In Canada, the drilling, completion, maintenance and abandonment of oil and gas wells in federal lands are regulated through the Canada Oil and Gas Drilling and Production Regulations.¹²¹² Before abandoning a well or removing any part of its casing, the petroleum right holder has to notify the Oil Conservation Engineer of such intent in writing and obtain written approval thereof.¹²¹³ It is mandatory that when abandoning wells, cement plugs be used to protect porous formations, in accordance with good oil

¹²¹³ Reg 15(1).

¹²⁰³ Reg 130 (1)(a).

¹²⁰⁴ Reg 130 (1)(b).

¹²⁰⁵ Reg 131 (1).

¹²⁰⁶ Reg 131 (3)(a).

¹²⁰⁷ Reg 131 (3)(b).

¹²⁰⁸ Reg 132 (1)(a).

¹²⁰⁹ Reg 132 (1)(b).

¹²¹⁰ United Kingdom Onshore Operators' Group 'UK Onshore Shale Gas Well Guidelines' (2016) s 5(5.8).

¹²¹¹ Ibid, 4(4.1)(a).

¹²¹² Canada Oil and Gas Drilling and Production Regulations 2009, Reg 3.

field practice.¹²¹⁴ Upon final abandonment, the petroleum right holder is required to restore the surface as close as possible to its original condition.¹²¹⁵

The decommissioning of shale gas wells is furthermore regulated at the provincial level,¹²¹⁶ particularly in the western provinces, such as British Columbia, Alberta and Saskatchewan, where shale gas is already being produced.¹²¹⁷ Wellbore integrity is as important during decommissioning and abandonment as it is during production.¹²¹⁸ For example, when the venting of natural gas from suspended shale gas wells is detected at the surface (surface casing vent flows), or when there is evidence of gas seepage from a particular well, such wells need to be remediated, to reduce the gas flows to negligible levels before they are sealed as part of decommissioning and abandonment.¹²¹⁹

It is the responsibility of the petroleum right holder to remedy the leaking of gas from decommissioned wells in accordance to standards set by the regulating agencies.¹²²⁰ Provinces such as Alberta charge levies on production called 'orphan well' funds for repairing leaking wells after their decommissioning and abandonment, and when operators can no longer be found.¹²²¹ This is because, over time, it is possible that slow gas migration can still take place from even properly decommissioned wells, which may not be detected if entering groundwater aquifers, rather than venting visibly at the surface.¹²²² Nonetheless, such gas seepage rates are low and deemed relatively harmless to human health and the environment.¹²²³ Therefore it is only if such gas migration is detected at surface that operators are required to re-enter and re-seal the well.¹²²⁴ The long-term effects of gas leakage or seepage from abandoned shale gas

¹²¹⁴ Reg 15(2).

¹²¹⁵ Reg 16.

¹²¹⁶ Council of Canadian Academies 'Environmental Impacts of Shale Gas Extraction in Canada' (2014) at 7, available at *https://cca-reports.ca/wp-*

content/uploads/2018/10/shalegas_fullreporten.pdf, accessed on 3 October 2020.

¹²¹⁷ DA Young Kim 'A Lesson from the Shale Revolution in the United States, Canada, and China' (2017) at 750, *The Georgetown Envtl. Law Review* 29.

¹²¹⁸ Verschuren Centre for Sustainability in Energy and the Environment 'Report of the Nova Scotia Independent Review Panel on Hydraulic Fracturing' (2014) at 211, Cape Breton University.

¹²¹⁹ Ibid. ¹²²⁰ Ibid.

¹²²¹ Ibid, at 12.

¹²²² Ibid, at 12.

¹²²³ Ibid. at 12.

¹²²⁴ Ibid. at 12.

wells is however not currently well understood, it is important therefore that this phenomena is thoroughly studied as part of efforts to mitigate the long-term risks associated with shale gas extraction.¹²²⁵

5.4 Conclusions

The emergence of shale gas as a potential resource in South Africa poses a challenge for the country's petroleum law and regulators.¹²²⁶ Chapter six, which is dedicated to oil and gas exploration and production in the MPRDA was developed with offshore petroleum exploration and production in mind.¹²²⁷ Unlike in the case of shale gas which is found onshore, access to offshore oil and gas resources has until the end of 2021 not been contentious, which could be because petroleum in-situ belong to the nation, with the state custodian of both the natural resources beneath the sea and the sea itself.¹²²⁸ Public participation has proven to be critical for shale gas in the Karoo, particularly as it conflicts with the interests of landowners who's resistance have served to deter shale gas development.¹²²⁹

The shortcomings in the current petroleum legal framework are thus: first, the integration of mineral legislation with petroleum legislation, which led to a limited focus on petroleum resources relative to mineral resources.¹²³⁰ As a result only one chapter is dedicated to petroleum in the MPRDA, demonstrating an afterthought in the law making process.¹²³¹ This complicates the petroleum legal framework with many

¹²²⁵ Ibid, at 12.

¹²²⁶ Hugo Meyer van den Berg and Hanri Mostert 'Challenges to Regulating Hydraulic Fracturing in South Africa: Technological Innovation and Law Making for Climate Change at the Crossroads' (2018) at 252, in Donald Zillman, Martha Roggenkamp, Leroy Paddock, and Lee Godden *Innovation in Energy Law and Technology: Dynamic Solutions for Energy Transitions* Oxford, Oxford University Press.

¹²²⁷ W du Plessis 'Regulation of Hydraulic Fracturing in South Africa: A Project Lifecycle Approach' (2015) at 1441 *Potchefstroom Electronic Law Journal* 18(5).

¹²²⁸ Minerals and Petroleum Resources Development Act, No. 28, 2002, s 3(1).

¹²²⁹ John Douglas Stern and others vs Minister of Mineral Resources, para 3-4, 2015 SA 5672/2015 (High Court of South Africa, Eastern Cape Division, Grahamstown).

¹²³⁰ Hugo Meyer van den Berg and Hanri Mostert 'Challenges to Regulating Hydraulic Fracturing in South Africa: Technological Innovation and Law Making for Climate Change at the Crossroads' (2018) at 253, in Donald Zillman, Martha Roggenkamp, Leroy Paddock, and Lee Godden *Innovation in Energy Law and Technology: Dynamic Solutions for Energy Transitions* (Oxford University Press, Oxford).

¹²³¹ Lisa Plit 'Regulating Petroleum Extraction: The Provisions of the Mineral and Petroleum Resources Development Act 28 of 2002' (2016) at 84, in Jan Glazewski and Surina Esterhuyse Hydraulic Fracturing in the Karoo: Critical legal and Environmental Perspectives (2016) Claremont, Juta and Company (Pty) Ltd.

references to the more comprehensive mineral chapters/sections within the MPRDA.¹²³² Secondly, the definition of petroleum is confusing in the MPRDA.¹²³³ The simplification of the definition in the emerging petroleum law,¹²³⁴ and ensuring that it takes into account the existence of shale gas in the Karoo could help the interpretation of the petroleum legal framework.

Thirdly, the regulatory framework does not require consent from local communities in relation to petroleum exploration and production.¹²³⁵ This poses a challenge for shale gas development to obtain local community acceptance. Fourthly, consent from landowners to access their land for petroleum exploration and production is not required as long as they have been consulted.¹²³⁶ This invokes the question whether access to land for the purpose of petroleum exploration and production infringes on existing rights to ownership.¹²³⁷ This conundrum has the potential to continue to put applications for petroleum exploration and production and loggerheads with landowners until sufficiently clarified.¹²³⁸

Fifth, while the MPRDA provides for the payment of compensation to landowners or lawful occupiers in the event of loss or damage to land caused by exploration and production activities,¹²³⁹ this provision might not be adequate to entice landowners to support shale gas development, thus could result in organised resistance towards shale gas development. Sixth, the MPRDA overly empowers the Minister of Mineral Resources on environmental matters pertaining to petroleum exploration and production.¹²⁴⁰ This is not appropriate, since environmental matters should be the

¹²³² Ibid.

¹²³³ Ibid, at 60.

¹²³⁴ Draft Upstream Petroleum Resources Development Bill, Government Notice R.1706 in Government Gazette No.42931 of 24 December 2019.

¹²³⁵ Mineral and Petroleum Resources Development Act, No.49 of 2008, s 5A(c). ¹²³⁶ Ibid.

¹²³⁰ IDIO.

¹²³⁷ Lisa Plit 'Regulating Petroleum Extraction: The Provisions of the Mineral and Petroleum Resources Development Act 28 of 2002' (2016) at 64, in Jan Glazewski and Surina Esterhuyse *Hydraulic Fracturing in the Karoo: Critical legal and Environmental Perspectives* (2016) Claremont, Juta and Company (Pty) Ltd.

¹²³⁸ Ibid.

¹²³⁹ Minerals and Petroleum Resources Development Act, No. 28 of 2002, s 54.

¹²⁴⁰ Hugo Meyer van den Berg & Hanri Mostert (2018) Challenges to Regulating Hydraulic Fracturing in South Africa: Technological Innovation and Law Making for Climate Change at the Crossroads, at 256, in Donald Zillman, Martha Roggenkamp, Leroy Paddock & Lee Godden (2018) *Innovation in Energy Law and Technology: Dynamic Solutions for Energy Transitions* (University Press, Oxford).

prerogative of the Minister responsible for environmental affairs.¹²⁴¹ The natural inclination and pre-occupation of the Minister of Mineral Resources is to enable the development of mineral and petroleum resources and not necessary to safeguard that they be developed in an environmentally sustainable manner.¹²⁴² The MPRDA does however compel the Minister of Mineral Resources to ensure that the nation's mineral and petroleum resources are developed in an orderly and economically sustainable manner.¹²⁴³

Seventh, the Hydraulic Fracturing Regulations provide for the hydraulic fracturing operation as though it is a production activity.¹²⁴⁴ Hydraulic fracturing is a well stimulation technique that largely occurs during field development, that is, the drilling and completion of wells from which gas may ultimately be produced.¹²⁴⁵ However, hydraulic fracturing can be used during the drilling of exploration wells, particularly as it enables the testing of the flow properties of the target formation.¹²⁴⁶ When used in

¹²⁴¹ John Douglas Stern and others vs Minister of Mineral Resources, para 38, 2015 SA 5672/2015 (High Court of South Africa, Eastern Cape Division, Grahamstown); Doreen Atkinson 'Fracking in a fractured environment: Shale gas mining and institutional dynamics in South Africa's young democracy' (2018) at 450, The Extractive Industries and Society 5.

¹²⁴² W du Plessis 'Regulation of Hydraulic Fracturing in South Africa: A Project Lifecycle Approach' (2015) at 1466, *Potchefstroom Electronic Law Journal* 18(5); Hugo Meyer van den Berg and Hanri Mostert 'Challenges to Regulating Hydraulic Fracturing in South Africa: Technological Innovation and Law Making for Climate Change at the Crossroads' (2018) at 257, in Donald Zillman, Martha Roggenkamp, Leroy Paddock, and Lee Godden *Innovation in Energy Law and Technology: Dynamic Solutions for Energy Transitions* (Oxford University Press, Oxford).

¹²⁴³ Section 3(3) of the MPRDA.

¹²⁴⁴ Hugo Meyer van den Berg and Hanri Mostert 'Challenges to Regulating Hydraulic Fracturing in South Africa: Technological Innovation and Law Making for Climate Change at the Crossroads' (2018) at 259, in Donald Zillman, Martha Roggenkamp, Leroy Paddock, and Lee Godden Innovation in Energy Law and Technology: Dynamic Solutions for Energy Transitions (2018) Oxford, Oxford University Press.

¹²⁴⁵ Maarten J.de Wit 'The great shale gas debate in the Karoo' (2011) at 1, S Afr J Sci; 107(7/8); Hugo Meyer van den Berg and Hanri Mostert 'Challenges to Regulating Hydraulic Fracturing in South Africa: Technological Innovation and Law Making for Climate Change at the Crossroads' (2018) at 259, in Donald Zillman, Martha Roggenkamp, Leroy Paddock, and Lee Godden Innovation in Energy Law and Technology: Dynamic Solutions for Energy Transitions (2018) (Oxford University Press, Oxford).

¹²⁴⁶ Michiel O. de Kock, Nicolas J. Beukes, Elijah O. Adeniyi, Doug Cole, Annette E. Götz, Claire Geel & Frantz-Gerard Ossa 'Deflating the shale gas potential of South Africa's Main Karoo basin' (2017) at 1, *S Afr J Sci*; 113 (9/10); Hugo Meyer van den Berg and Hanri Mostert 'Challenges to Regulating Hydraulic Fracturing in South Africa: Technological Innovation and Law Making for Climate Change at the Crossroads' (2018) at 259, in Donald Zillman, Martha Roggenkamp, Leroy Paddock, and Lee Godden *Innovation in Energy Law and Technology: Dynamic Solutions for Energy Transitions* (2018) (Oxford University Press, Oxford).

this fashion, such wells might not be completed into producing wells, but merely be plugged and abandoned.¹²⁴⁷

The petroleum legislation and hydraulic fracturing regulations should ensure that there is no ambiguity in whether hydraulic fracturing is regulated through an exploration, development or production right.¹²⁴⁸ Removing this ambiguity is particularly important given the robustness of the environmental authorization process for awarding production rights, as opposed to the lesser strict process of awarding exploration rights, which is inadequate to regulate hydraulic fracturing.¹²⁴⁹

Lastly, the Hydraulic Fracturing Regulations are not clear how activities that could have a detrimental impact on the environment will be monitored and enforced, ¹²⁵⁰ and they do not impose penalties for negative environmental impact as a result of shale gas operations.¹²⁵¹ This is contrary to the NEMA which creates liability for environmental damage,¹²⁵² thus provides for the costs of remedying pollution, environmental degradation and consequent adverse health effects be paid for by those responsible for harming the environment.¹²⁵³ Nevertheless, as outlined in this chapter, and elsewhere in this thesis, the appropriate management of the risks associated with shale gas development to protect human health and the environment will require an effective petroleum and environmental legal framework.¹²⁵⁴ Such a legal framework must be complemented by regulatory measures based on sound science, including

¹²⁴⁷ Michiel O. de Kock, Nicolas J. Beukes, Elijah O. Adeniyi, Doug Cole, Annette E. Götz, Claire Geel & Frantz-Gerard Ossa 'Deflating the shale gas potential of South Africa's Main Karoo basin' (2017) at 1, S Afr J Sci; 113 (9/10).

¹²⁴⁸ Hugo Meyer van den Berg and Hanri Mostert 'Challenges to Regulating Hydraulic Fracturing in South Africa: Technological Innovation and Law Making for Climate Change at the Crossroads' (2018) at 259, in Donald Zillman, Martha Roggenkamp, Leroy Paddock, and Lee *Godden Innovation in Energy Law and Technology: Dynamic Solutions for Energy Transitions* (2018) (Oxford University Press, Oxford).

¹²⁴⁹ Ibid.

¹²⁵⁰ Ibid, 260; Charissa Worthmann and Surina Esterhuyse 'A mobile application to protect groundwater during unconventional oil and gas extraction' (2022) at 14, *Royal Society Open Science* 9(220221).

¹²⁵¹ W du Plessis 'Regulation of Hydraulic Fracturing in South Africa: A Project Lifecycle Approach' (2015) at 1465, *Potchefstroom Electronic Law Journal* 18(5).

¹²⁵² Loretta Feris (2008) Constitutional Environmental Rights: An Under-Utilized Resource, at 36, SAJHR 24.

¹²⁵³ Section 2 (4)(p) of the NEMA.

¹²⁵⁴ S. Esterhuyse, D. Vermeulen and J. Glazewski 'Developing and enforcing fracking regulations to protect groundwater resources' (2022) at 6, *NPJ Clean Water* 5(3).

specific rules, standards, prohibitions, mandatory reporting, inspections, and penalties.¹²⁵⁵

This thesis posits that a more effective legal framework for shale gas development in South Africa should be premised on three pillars, these are: Avoidance, Mitigation and Remediation. Chapters six to eight below provide an assessment of the South African petroleum and environmental legal frameworks with those of the UK and Canada using Avoidance, Mitigation and Remediation as the comparative themes.

`

¹²⁵⁵ Ibid, Council of Canadian Academies 'Environmental Impacts of Shale Gas Extraction in Canada' (2014) at 203, available at https://cca-reports.ca/wpcontent/uploads/2018/10/shalegas_fullreporten.pdf, accessed on 3 October 2020.

CHAPTER 6: AVOIDING THE ENVIRONMENTAL IMPACT OF SHALE GAS

6.1 Introduction

Countries across the world responded differently to the advent of shale gas development, particularly the use of hydraulic fracturing to exploit the resource.¹²⁵⁶ Numerous states allow the use of hydraulic fracturing in the US, these include hosts of the major shale gas plays, such as the Marcellus and Barnet plays, the States of Pennsylvania, Texas, West Virginia, Wyoming and Colorado who are leading the exploitation of shale gas.¹²⁵⁷ There are states within the US that have banned hydraulic fracturing, notably Vermont, New York, and Maryland.¹²⁵⁸ As is the case in the US, Australian States such as Victoria and Tasmania have banned hydraulic fracturing despite it being generally allowed in the country.¹²⁵⁹ Countries such as Bulgaria, Denmark, France, the Netherlands, Northern Ireland, and Scotland have also banned the use of hydraulic fracturing to extract shale gas.¹²⁶⁰ Furthermore, hydraulic fracturing has, from a strategic thrust perspective, and at different points in time been allowed in countries such as Australia, Brazil, Canada, China, Germany, Mexico, New Zeeland, Norway, Poland, and the United Kingdom.¹²⁶¹

¹²⁵⁶ Roberto Cantoni, Matthias S. Klaes, Simone I. Lackerbauer, Claudia Foltyn, Reiner Keller 'Shale tales: Politics of Knowledge and promises in Europe's shale gas discourses' (2018) at 536, *The Extractive Industries and Society* 5; Peter Cameron, Juan Felipe Neira Castro, Tomas Lanardonne and Geoffrey Wood 'Across the universe of shale resources – a comparative assessment of the emerging legal foundations for unconventional energy' (2018) at 287, *Journal of World Energy Law and Business* 11; Louise Du Toit 'Experiences from Other Jurisdictions' in Jan Glazewski and Surina Esterhuyse *Hydraulic Fracturing in the Karoo: Critical legal and Environmental Perspectives* (2016) at 17 (Claremont, Juta and Company (Pty) Ltd; Jeannie van Wyk 'Fracking in the Karoo: Approvals Required?' (2014) at 39, *Stellenbosch Law Review*.

¹²⁵⁷ Louise Du Toit 'Experiences from Other Jurisdictions' in Jan Glazewski and Surina Esterhuyse Hydraulic Fracturing in the Karoo: Critical legal and Environmental Perspectives' (2016) at 17, Claremont, Juta and Company (Pty) Ltd.

¹²⁵⁸ DA Young Kim 'A Lesson from the Shale Revolution in the United States, Canada, and China' (2017) at 761-762, *The Georgetown Envtl. Law Review* 29; Peter Cameron, Juan Felipe Neira Castro, Tomas Lanardonne and Geoffrey Wood 'Across the universe of shale resources – a comparative assessment of the emerging legal foundations for unconventional energy' (2018) at 287, *Journal of World Energy Law and Business* 11.

¹²⁵⁹ Louise Du Toit 'Experiences from Other Jurisdictions' in Jan Glazewski and Surina Esterhuyse Hydraulic Fracturing in the Karoo: Critical legal and Environmental Perspectives' (2016) at 16, Claremont, Juta and Company (Pty) Ltd.

¹²⁶⁰ Roberto Cantoni, Matthias S. Klaes, Simone I. Lackerbauer, Claudia Foltyn, Reiner Keller 'Shale tales: Politics of Knowledge and promises in Europe's shale gas discourses' (2018) at 536, *The Extractive Industries and Society* 5 (535 – 546; Jeannie van Wyk 'Fracking in the Karoo: Approvals Required?' (2014) at 39, *Stellenbosch Law Review.*

¹²⁶¹ Peter Cameron, Juan Felipe Neira Castro, Tomas Lanardonne and Geoffrey Wood 'Across the universe of shale resources – a comparative assessment of the emerging legal foundations for

As outlined in the preceding chapter, a more effective legal framework for shale gas exploration and production in South Africa should be premised on three pillars, *Avoidance*, *Mitigation* and *Remediation*. These concepts are the cornerstones of international environmental law,¹²⁶² and give effect to Sustainable Development,¹²⁶³ outlined in 6.2 below. Their inter-relatedness is best expressed in the European Community Treaty which states that the European Community policy on the environment 'shall be based on the precautionary principle and on the principles that preventive action should be taken, that environmental damage should as a priority be rectified at source and that the polluter should pay'.¹²⁶⁴

The focus of this chapter is a comparative assessment of the South African petroleum legal framework with those of the United Kingdom and Canada, using *Avoidance* as the comparative theme. It hence explores the possibilities offered, and the pathways closed, by adopting an avoidant approach in regulating hydraulic fracturing. Embedding avoidance in the legal framework for shale gas exploration and production is key to giving effect to South Africa's environmental law, which mandates that environmental degradation be avoided, and where it cannot be entirely avoided, be minimized and remedied.¹²⁶⁵ From an international law perspective, avoidance is synonymous to the principle of prevention, alternatively, the principle of prevention is at the core of avoidance, ¹²⁶⁶ outlined in greater detail in this chapter.

unconventional energy' (2018) at 287, *Journal of World Energy Law and Business* 11; Louise Du Toit 'Experiences from Other Jurisdictions' in Jan Glazewski and Surina Esterhuyse *Hydraulic Fracturing in the Karoo: Critical legal and Environmental Perspectives* (2016) at 16 (Juta and Company (Pty) Ltd, Claremont).

¹²⁶² Nicholas der Sadeleer 'Environmental Principles – From Political Slogans to Legal Rules' (2002) at 13 (Oxford University Press, New York); J. Glazewski & S. Posnik 'Compliance with international environmental standards and expectations: review of international developments' (2000) at 211, *The Journal of the South African Institute of Mining and Metallurgy*.

¹²⁶³ Jan Glazewski 'Sustainable development and proposed shale extraction in South Africa: prospects and challenges' at 223 in May JR and Dernbach JC Shale Gas and the Future of Energy: Law and Policy for Sustainability (2016) (Edward Elgar Publishing Limited, UK); Jan Glazewski & Lisa Plit 'Towards the application of the precautionary principle in South African Iaw' (2015) at 195, Stellenbosch Law Review 26(1).

¹²⁶⁴ Treaty establishing the European Community, Title XIX, Article 144(2).

¹²⁶⁵ Section 2(4)(a)(ii) of the National Environmental Management Act, No. 107, 1998 (NEMA); Jan Glazewski 'Sustainable development and proposed shale extraction in South Africa: prospects and challenges' at 223 in May JR and Dernbach JC Shale Gas and the Future of Energy: Law and Policy for Sustainability (2016) (Edward Elgar Publishing Limited, UK).

¹²⁶⁶ Jan Glazewski & Lisa Plit 'Towards the application of the precautionary principle in South African law' (2015) at 195, *Stellenbosch Law Review* 26(1).

6.2 Sustainable Development

The concept of Sustainable Development gained impetus in 1987 when it found expression in the report titled *Our Common Future*,¹²⁶⁷ by the World Commission on Environment and Development (WCED) then chaired by Gro Harlem Brundtland.¹²⁶⁸ The WCED was formed to address concerns regarding the deterioration of environmental quality and integrity.¹²⁶⁹ Sustainable Development is henceforth defined as 'development that meets the needs of the present without compromising the ability of future generations to meet their own needs'.¹²⁷⁰ Sustainable development integrates two policy objectives that cannot be avoided, development and environmental protection or restoration.¹²⁷¹ Inter-generational equity is also an inherent and essential element of sustainable development, as it demands that development be sustainable for generations to come.¹²⁷²

Sustainable Development can also be described as 'the process where the exploitation of resources, investments, technological advancement, and institutional change are in harmony and enhance the ability to meet both current and future human needs and

¹²⁶⁷ United Nations 'Report of the World Commission on Environment and Development: Our Common Future' (1987) available at https://sustainabledevelopment.un.org/content/documents/5987ourcommon-future.pdf accessed on 1 November 2021.

¹²⁶⁸ John C. Dernbach 'Framing the sustainability questions' at 20, in May JR and Dernbach *JC Shale Gas and the Future of Energy: Law and Policy for Sustainability* (2016) (Edward Elgar Publishing Limited, UK). Ms Gro Harlem Brundland was the first female Prime Minister of Norway, who served three terms (1981, 1986 – 89, and 1990 – 96). She later became Director General of the World Health Organization (1998 – 2003).

¹²⁶⁹ Loretta Feris 'Constitutional Environmental Rights: An Under-Utilized Resource' (2008) at 29, (24) SAJHR; John C. Dernbach 'Framing the sustainability questions' in May JR and Dernbach JC Shale Gas and the Future of Energy: Law and Policy for Sustainability (2016) at 23, (Edward Elgar Publishing Limited, UK).

¹²⁷⁰ United Nations, 'Report of the World Commission on Environment and Development: Our Common Future' (1987) at 37, available at

https://sustainabledevelopment.un.org/content/documents/5987our-common-future.pdf accessed on 1 November 2021; Kenneth T. Kristl ' Public participation and sustainability: how Pennsylvania's shale gas program thwarts sustainable outcomes' in May JR and Dernbach JC Shale Gas and the Future of Energy: Law and Policy for Sustainability (2016) at 126, (Edward Elgar Publishing Limited, UK); David B. Spence 'Regulating shale gas production for sustainability: federalism questions' in May JR and Dernbach JC 'Shale Gas and the Future of Energy: Law and Policy for Sustainability' (2016) at 190, (Edward Elgar Publishing Limited, UK).

¹²⁷¹ John C. Dernbach 'Framing the sustainability questions' in May JR and Dernbach JC 'Shale Gas and the Future of Energy: Law and Policy for Sustainability' (2016) at 24, (Edward Elgar Publishing Limited, UK).

¹²⁷² Paul G.W Henderson 'Some thoughts on distinctive principles of South African Environmental Law' (2001) at 152, *South African Journal of Environmental Law and Policy*, 8(2).

aspirations'.¹²⁷³ Sustainable Development therefore treats economic development, environmental protection, and human rights in an integrated and interdependent manner.¹²⁷⁴ Sustainable Development as a decision-making framework and policy objective could aid shale gas development in South Africa, as it demands the integration of environmental protection and restoration, with social and economic development, using cost internalization, and the precautionary approach as core principles.¹²⁷⁵

According to the system envisaged by Sustainable Development, the current generation may not, in the quest to fulfil its needs, jeopardise the ability of future generations to fulfil their needs.¹²⁷⁶ Furthermore, environmental problems associated with the economic and technical development of developed countries should not have the effect of minimizing the prospects of economic growth for developing countries.¹²⁷⁷ The law is not enough to attain sustainable development, community knowledge and support are also required, characterized by greater public participation in environmental decisions.¹²⁷⁸ Meaningful public participation is better served through giving local communities an effective say over the use of their natural resources and environment.¹²⁷⁹

¹²⁷³ United Nations 'Report of the World Commission on Environment and Development: Our Common Future' (1987) at 37.

¹²⁷⁴ J. Verschuuren 'Sustainable Development and the Nature of Environmental Legal Principles' (2007) at 8, *Potchefstroom Electronic Law Journal*.

¹²⁷⁵ James R. May and John C.Dernbach 'Introduction' in May JR and Dernbach JC Shale Gas and the Future of Energy: Law and Policy for Sustainability at 5 (2016) (Edward Elgar Publishing Limited, UK).

¹²⁷⁶ J. Verschuuren 'Sustainable Development and the Nature of Environmental Legal Principles' (2007) at 7, *Potchefstroom Electronic Law Journal;* Pamela Ko and Patricia Salkin 'Sustainable drilling through health impact assessment: understanding and planning for public health impacts' in May JR and Dernbach JC *Shale Gas and the Future of Energy: Law and Policy for Sustainability* (2016) at 34, (Edward Elgar Publishing Limited, UK).

¹²⁷⁷ J. Verschuuren 'Sustainable Development and the Nature of Environmental Legal Principles' (2007) at 7, *Potchefstroom Electronic Law Journal.*

¹²⁷⁸ United Nations, 'Report of the World Commission on Environment and Development: Our Common Future' (1987) at 49; Tanya Howard and Solange Teles Da Silva 'Possible legal obligations to consult' (2015) at 134, *Edward Elgar Publishing Limited* (Cheltenham, UK).

¹²⁷⁹ Tanya Howard and Solange Teles Da Silva 'Possible legal obligations to consult' (2015) at 134, *Edward Elgar Publishing Limited* (Cheltenham, UK); Kenneth T. Kristl 'Public participation and sustainability: how Pennsylvania's shale gas program thwarts sustainable outcomes' in May JR and Dernbach JC Shale Gas and the Future of Energy: Law and Policy for Sustainability (2016) at 129, (Edward Elgar Publishing Limited, UK).

Activities that might have a high environmental impact could be better managed taking into account diverse views sourced through mandatory and meaningful public participation.¹²⁸⁰ This is particularly relevant to shale gas development, where reaching some form of consensus is critical to obtain community consent.¹²⁸¹ Public engagement could be greatly enabled through free access to relevant information and the availability of alternative sources of technical expertise.¹²⁸² Moreover, whenever feasible, decisions related to high environmental impact projects should be subject to prior public approval.¹²⁸³

Among others, the WCED affirms that reliable, safe, and environmentally sound energy sources are key to sustainable development.¹²⁸⁴ This is of particular relevance to this thesis, which proposes that with the appropriate petroleum and environmental legal framework, shale gas development could contribute towards a more sustainable energy path in South Africa. The WECD recommends that countries develop policies that ensure sufficient energy supplies to meet national economic growth objectives.¹²⁸⁵ Central to such national strategies should be energy efficiency and conservation measures, to reduce the waste of natural resources, and mitigate the risks to safety that is inherent in energy sources.¹²⁸⁶ To be reconciled within such policies and legal frameworks should be the protection of the biosphere, pollution prevention,¹²⁸⁷ and climate change mitigation.¹²⁸⁸

¹²⁸⁰ Pamela Ko and Patricia Salkin 'Sustainable drilling through health impact assessment: understanding and planning for public health impacts' in May JR and Dernbach JC Shale Gas and the Future of Energy: Law and Policy for Sustainability (2016) at 37, (Edward Elgar Publishing Limited, UK).

¹²⁸¹ Kenneth T. Kristl 'Public participation and sustainability: how Pennsylvania's shale gas program thwarts sustainable outcomes' in May JR and Dernbach JC Shale Gas and the Future of Energy: Law and Policy for Sustainability (2016) at 129, (Edward Elgar Publishing Limited, UK).

¹²⁸² Ibid, at 130.

¹²⁸³ Ibid.

¹²⁸⁴ United Nations 'Report of the World Commission on Environment and Development: Our Common Future' (1987) at 49; James R. May and John C. Dernbach 'Introduction' in May JR and Dernbach JC Shale Gas and the Future of Energy: Law and Policy for Sustainability at 1 (2016) (Edward Elgar Publishing Limited, UK).

¹²⁸⁵ United Nations 'Report of the World Commission on Environment and Development: Our Common Future' (1987) at 49.

¹²⁸⁶ Ibid.

¹²⁸⁷ Ibid.

¹²⁸⁸ Ibid, at 123.

The Experts Group on Environmental Law of the World Commission on Environment and Development proposed the General Principles, Rights and Responsibilities to give effect to Sustainable Development.¹²⁸⁹ These are, first, 'all human beings have a fundamental right to an environment that is adequate for their health and wellbeing'.¹²⁹⁰ Furthermore, States shall: Secondly, 'conserve and use the environment and natural resources for the benefit of the present and future generations'.¹²⁹¹ Thirdly, 'maintain ecosystems and ecological processes that are essential for the functioning of the biosphere, preserve biological diversity, and observe the principle of optimum sustainable yield in the use of living natural resources and ecosystems'.¹²⁹² Fourthly, 'establish adequate environmental protection standards, monitor changes and publish relevant data on environmental quality and resource use'.¹²⁹³ Fifth, 'make or require prior environmental assessments of proposed activities which may affect the environment or use of natural resources'.¹²⁹⁴

Sixth, States shall: 'inform all persons likely to be significantly affected by a planned activity promptly and grant them equal access to due process in administrative and judicial proceedings'.¹²⁹⁵ Seventh, 'ensure that conservation is treated as an integral part of the planning and implementation of development activities and provide assistance to other States, especially to developing countries, in support of environmental protection and sustainable development'.¹²⁹⁶ Eighth, cooperate in good faith with other States in implementing these rights and obligations'.¹²⁹⁷

The general principles, rights and responsibilities conceptualised by the Experts Group outlined above affirm the view expressed in Chapter 4 of this thesis, that to address sustainable development and concerns related to the potential impact of shale gas on

¹²⁸⁹ United Nations, 'Report of the World Commission on Environment and Development: Our Common Future' (1987) at 49.

 ¹²⁹⁰ United Nations, 'Report of the World Commission on Environment and Development: Our Common Future' (1987), at 235, Annexe 1: Summary of Proposed Legal Principles for Environmental Protection and Sustainable Development by the WECD Experts Group on Environmental Law.
 ¹²⁹¹ Ibid.

¹²⁹² Ibid.

¹²⁹³ Ibid.

¹²⁹⁴ Ibid.

¹²⁹⁵ Ibid.

¹²⁹⁶ Ibid.

¹²⁹⁷ Ibid.

human health and the natural environment,¹²⁹⁸ requires a legal framework that balances procedural and administrative requirements with substantive commitments to public participation.¹²⁹⁹ A number of these rights were subsequently affirmed in the Rio Declaration on Environment and Development,¹³⁰⁰ as outlined below.

6.2.1 The Rio Declaration on Environment and Development

The United Nations Conference on Environment and Development that took place in Rio de Janeiro in 1992, embedded the concept of Sustainable Development in international environmental law and affirmed the environmental legal principles in national environmental laws and policies.¹³⁰¹ To give effect to sustainable development, the Rio Declaration on Environment and Development, ¹³⁰² affirmed several principles, of which the following are specifically relevant to this thesis. Firstly, 'human beings are entitled to a healthy and productive life in harmony with nature'.¹³⁰³

Secondly, 'the sovereign right of States to exploit their natural resources in accordance with their environmental and development policies, and the obligation of States to ensure that activities within their jurisdiction do not cause damage to the environment of other States'.¹³⁰⁴ Thirdly, 'the right to development should be fulfilled to meet the developmental and environmental needs of present and future generations equitably'.¹³⁰⁵ Fourthly, 'to achieve sustainable development, environmental protection shall constitute an integral part of the development process'.¹³⁰⁶ Fifth, 'States must

¹²⁹⁸ Michael Esposito 'Water Issues Set the Pace for Fracking Regulations and Global Shale Extraction' (2013) at 172, *Tulane Journal of International & Comparative Law* 22.

¹²⁹⁹ Tanya Howard and Solange Teles Da Silva 'Possible legal obligations to consult' (2015) at 135, *Edward Elgar Publishing Limited (Cheltenham, UK).*

¹³⁰⁰ United Nations General Assembly 'Report of the United Nations Conference on Environment and Development: Rio Declaration on Environment and Development' (1992) A/CONF.151/26(1).

¹³⁰¹ J. Verschuuren 'Sustainable Development and the Nature of Environmental Legal Principles' (2007) at 1, *Potchefstroom Electronic Law Journal*; John C. Dernbach 'Framing the sustainability questions' at 24, in May JR and Dernbach JC *Shale Gas and the Future of Energy: Law and Policy for Sustainability* (2016) (Edward Elgar Publishing Limited, UK).

 ¹³⁰² United Nations General Assembly 'Report of the United Nations Conference on Environment and Development: Rio Declaration on Environment and Development' (1992) A/CONF.151/26 (Vol.1).
 ¹³⁰³ Principle 1 of the Rio Declaration.

¹³⁰⁴ Principle 2 of the Rio Declaration.

¹³⁰⁵ Principle 3 of the Rio Declaration.

¹³⁰⁶ Principle 4 of the Rio Declaration; Pamela Ko and Patricia Salkin 'Sustainable drilling through health impact assessment: understanding and planning for public health impacts' in May JR and Dernbach JC Shale Gas and the Future of Energy: Law and Policy for Sustainability (2016) at 57, (Edward Elgar Publishing Limited, UK).

facilitate and encourage public awareness and participation by making information concerning the environment widely available, which includes providing effective access to judicial and administrative proceedings, including redress and remedy'.¹³⁰⁷

Sixth, 'States shall develop national law regarding liability and compensation for the victims of pollution and other environmental damage'.¹³⁰⁸ Seventh, 'to protect the environment, the precautionary approach shall be widely applied by States consistent with their capabilities'.¹³⁰⁹ Eighth, 'States should promote the internalization of environmental costs and use of economic instruments, taking into account that the polluter should, in principle, bear the cost of pollution'.¹³¹⁰ Lastly, 'environmental impact assessments should be undertaken for proposed activities that are likely to have a significant adverse impact on the environment'.¹³¹¹

These principles are of relevance to the development of a petroleum legal framework that provides adequately for the protection of the environment against the risks posed by shale gas development in the Karoo.¹³¹² The principles underscore the need for the petroleum legal framework to ensure the avoidance, mitigation and remediation of environmental impacts arising from shale gas development. Guided by these principles, shale gas could be developed in an environmentally responsible manner in South Africa, to enhance energy security of supply, and reduce the country's greenhouse gas emissions.

Indeed, sustainable shale gas production requires a sophisticated and comprehensive regulatory system to protect public health and the environment, and a policy and legal framework that will ensure genuine social and economic benefits.¹³¹³ To give further

¹³⁰⁷ Principle 10 of the Rio Declaration.

¹³⁰⁸ Principle 13 of the Rio Declaration.

¹³⁰⁹ Principle 15 of the Rio Declaration.

¹³¹⁰ Principle 16 of the Rio Declaration; Pamela Ko and Patricia Salkin 'Sustainable drilling through health impact assessment: understanding and planning for public health impacts' in May JR and Dernbach JC Shale Gas and the Future of Energy: Law and Policy for Sustainability (2016) at 57, (Edward Elgar Publishing Limited, UK).

¹³¹¹ Principle 17 of the Rio Declaration.

¹³¹² John C. Dernbach 'Framing the sustainability questions' at 30, in May JR and Dernbach JC Shale Gas and the Future of Energy: Law and Policy for Sustainability (2016) (Edward Elgar Publishing Limited, UK).

¹³¹³ Ibid.

effect to Sustainable Development, the Millennium Development Goals were adopted in 2000, those that are of specific relevance to this study are outlined in sub-section 2.2 below.

6.2.2 The Millennium Development Goals

At the beginning of the new millennium, world leaders converged at the United Nations and developed a broad vision to eliminate poverty in all its facets.¹³¹⁴ The eight Millennium Development Goal (MDGs), a global framework for development,¹³¹⁵ emerged as the vision that would give further effect to Sustainable Development for the period 2001 to 2015.¹³¹⁶ MDG7 and MDG8 are relevant to this study which proposes the development of a more appropriate legal framework for shale gas exploration and production in South Africa, taking into account energy security of supply and climate change mitigation.

MDG7 is about ensuring environmental sustainability,¹³¹⁷ while MDG8 focuses on developing a global partnership for development.¹³¹⁸ Environmental sustainability is at the core of sustainable development, the key driver for achieving environmentally sustainable economic and human development.¹³¹⁹ A global partnership for

¹³¹⁴ United Nations 'The Millennium Development Goals Report' (2015) at 4, available at *https://www.un.org/millenniumgoals/2015_MDG_Report/pdf/MDG%202015%20rev%20(July%20 1).pdf*, accessed on 2 November 2022; Johanna Weststrate, Geske Dijkstra, Jasper Eshuis, Alberto Gianoli and Maria Rusca 'The Sustainable Development Goal on Water and Sanitation: Learning from the Millennium Development Goals' (2019) 796, Social Indicators Research 143(2).

¹³¹⁵ Hany Besada, Lea McMillan Polonenko and Manmohan Agarwal 'Did the Millennium Development Goals work?: Meeting future challenges with past lessons' (2017) at 292 (Cambridge University Press, Great Britain); United Nations 'The Millennium Development Goals Report' (2015) at 4, available at

https://www.un.org/millenniumgoals/2015_MDG_Report/pdf/MDG%202015%20rev%20(July%20 1).pdf, accessed on 2 November 2022.

¹³¹⁶ Osmar A. Dar and Mishal S. Khan 'Millennium development goals and the water target: details, definitions and debate' (2011) at 540, *Tropical Medicine and International Health* 16(5); United Nations 'The Millennium Development Goals Report' (2015) at 4, *available at https://www.un.org/millenniumgoals/2015_MDG_Report/pdf/MDG%202015%20rev%20(July%201) .pdf, accessed* on 2 November 2022.

¹³¹⁷ Osmar A. Dar and Mishal S. Khan 'Millennium development goals and the water target: details, definitions and debate' (2011) at 540, *Tropical Medicine and International Health* 16(5); United Nations 'The Millennium Development Goals Report' (2015) at 62, available at *https://www.un.org/millenniumgoals/2015_MDG_Report/pdf/MDG%202015%20rev%20(July%201)*.pdf,accessed on 2 November 2022.

¹³¹⁸ Ibid.

¹³¹⁹ Statistics South Africa 'Millennium Development Goals, Country Report 2013' (2013) at 91, (StatsSA, Pretoria).

development on the other hand is necessary for market access, international trade, and access to new technologies.¹³²⁰

A lot was achieved in meeting these MDGs, for example, ozone-depleting substances were virtually eliminated by 2015, this has a positive effect on climate change.¹³²¹ There was however regression in many other critical areas, such as carbon dioxide emissions which increased by over 50% from 1990 levels.¹³²² Addressing the persistent rise in greenhouse gas emissions, and the resultant likely impacts of climate change, including altered ecosystems, extreme weather conditions, and risk to society needed more urgent steps.¹³²³ This marked the birth of the Sustainable Development Goals,¹³²⁴ outlined below.

6.2.3 The Sustainable Development Goals

As outlined above, the key objective of the World Commission on Environment and Development when it was established in 1983 was to recommend long-term environmental strategies to achieve sustainable development by the year 2000 and beyond.¹³²⁵ It was also to determine how the challenges associated with protecting and enhancing the environment could be addressed.¹³²⁶ The 17 Sustainable Development Goals (SDGs) seek to build on the MDGs and close the gaps that were not achieved by the MDGs.¹³²⁷ They are meant to stimulate action over the next 15 years (2016 – 2030) in areas that are critical for humanity and the planet.¹³²⁸ They are a determination to end poverty and hunger, and to ensure that all human beings can fulfil their potential in dignity and equality, and in a healthy environment.¹³²⁹ They are meant to protect the planet from degradation, including through sustainable

¹³²⁰ Ibid, at 106.

¹³²¹ United Nations 'The Millennium Development Goals Report' (2015) at 7.

¹³²² Ibid.

¹³²³ Ibid.

¹³²⁴ United Nations, 'Transforming our world: the 2030 Agenda for Sustainable Development' (2015) General Assembly Resolution 70/1 adopted on 25 September 2015.

¹³²⁵ United Nations, 'Report of the World Commission on Environment and Development: Our Common Future' (1987), at 6.

¹³²⁶ Ibid.

¹³²⁷ United Nations, 'Transforming our world: the 2030 Agenda for Sustainable Development' (2015) at 1, General Assembly Resolution 70/1 adopted on 25 September 2015.

¹³²⁸ Ibid.

¹³²⁹ Ibid, at 2.

consumption and production,¹³³⁰ sustainably manage its natural resources, and taking urgent action on climate change.¹³³¹ The SDGs are integrated and balance the economic, social and environmental dimensions of Sustainable Development.¹³³²

The SDGs that are of specific relevance to this thesis are first, SDG6, which seeks to ensure availability and sustainable management of water resources.¹³³³ This implies improving water quality, by reducing pollution, eliminating the release of hazardous chemicals into water resources, treating wastewater, and substantially increasing recycling and reuse of wastewater.¹³³⁴ The implementation of these key elements of SDG6 in shale gas planning and development, combined with supporting and strengthening the participation of local communities in improving water management,¹³³⁵ would help address the key concerns associated with shale gas development.

Secondly, SDG 7, seeks to ensure access to affordable, reliable, sustainable and modern forms of energy.¹³³⁶ This includes international cooperation to facilitate clean energy research and technology, including advanced and cleaner fossil-fuel technology, together with investment in energy infrastructure and clean energy technology.¹³³⁷ Thirdly, SDG8, seeks to promote sustained, inclusive and sustainable economic growth.¹³³⁸ This implies countries should promote development oriented policies that support productive activities, creativity and innovation, while encouraging the formalization and growth of micro, small and medium enterprises.¹³³⁹ Fourthly, SDG9, seeks to build resilient infrastructure, promote inclusive and sustainable industrialization and foster innovation.¹³⁴⁰ This includes supporting domestic technology development, research and innovation in developing countries, including

¹³³⁰ Ibid.

¹³³¹ Ibid.

¹³³² Ibid, at 14.

¹³³³ SGD 6.

¹³³⁴ Ibid.

¹³³⁵ Ibid.

¹³³⁶ SGD 7; Inigo del Guayo 'The evolution of principles of energy law (a review of the content of the Journal of Energy & Natural Resources Law, 1982 – 2022) (2022) at 49, *Journal of Energy & Natural Resources Law* 40(1).

¹³³⁷ Ibid.

¹³³⁸ SGD 8.

¹³³⁹ Ibid. ¹³⁴⁰ SGD 9.

by developing policies that encourage industrial diversification and local beneficiation.¹³⁴¹

Fifth, SDG12, seeks to ensure sustainable consumption and production patterns.¹³⁴² This implies achieving sustainable management and efficient use of natural resources.¹³⁴³ It includes achieving environmentally sound management of chemicals and all wastes, and significantly reduce their release to air, water and soil, to minimize their adverse effects on human health and the environment.¹³⁴⁴ It also includes substantially reducing waste generation through prevention, reduction and reuse, and encouraging large and transnational companies to adopt sustainable practices and to integrate sustainability information in their reporting.¹³⁴⁵ Furthermore, it requires that people have the relevant information and awareness of sustainable development and lifestyles in harmony with nature.¹³⁴⁶

Sixth, SDG13, which is about taking urgent action to combat climate change and its impacts.¹³⁴⁷ This implies mitigating environmental degradation and climate change, through accelerating the reduction of greenhouse gas emissions and addressing adaptation to the adverse impacts of climate change.¹³⁴⁸ Seventh, SDG17, which is about strengthening the means of implementation and the revitalization of the Global Partnership for Sustainable Development.¹³⁴⁹ This includes promoting the development, transfer, dissemination and diffusion of environmentally sound technologies to developing countries on favourable terms.¹³⁵⁰

In relation to the comparative countries in this study, South Africa has adopted the concept of Sustainable Development as a core environmental management principle

¹³⁴⁷ SGD13; MT Ladan 'SGDs Framework as the Blueprint for Climate Change Action and Sustainable Development in Africa: Role of Law and Parliaments' (2016) at 167, *SAJELP* 22(159).
¹³⁴⁸ Ibid.
¹³⁴⁹ SGD17.

¹³⁵⁰ Ibid.

¹³⁴¹ Ibid.

¹³⁴² SGD 12.

¹³⁴³ Ibid.

¹³⁴⁴ Ibid.

¹³⁴⁵ Ibid.

¹³⁴⁶ Ibid.

in its Constitution.¹³⁵¹ As mentioned in chapter five, the South African Constitution affords everyone the right to an environment that is not harmful to their health or wellbeing,¹³⁵² and to have the environment protected for the benefit of present and future generations.¹³⁵³ This must be done through reasonable legislative and other measures that prevent pollution and ecological degradation,¹³⁵⁴ promote conservation,¹³⁵⁵ and secure ecologically sustainable development and use of natural resources, while promoting justifiable economic and social development.¹³⁵⁶

Consequently the environmental law of South Africa,¹³⁵⁷ places people and their needs at the forefront of sustainable development, and advocates that environmental management should serve their physical, psychological, developmental, cultural and social interests equitably.¹³⁵⁸ Accordingly, development must be socially, environmentally and economically sustainable.¹³⁵⁹ The NEMA requires the negative impacts on the environment and people's environmental rights to be anticipated and prevented, and where such cannot be totally avoided, to be minimized and remedied.¹³⁶⁰

Unlike in South Africa, the UK employs a risk-based approach to environmental regulation, which requires that the risks of an environmental incident related to oil and gas operations are reduced as low as practically possible.¹³⁶¹ Petroleum right holders are encouraged to do more than just adhere to minimum standards, but to strive for

¹³⁵¹ Constitution of the Republic of South Africa, 1996, s 24(b).

¹³⁵² S 24(a) of the Constitution.

¹³⁵³ S 24(b) of the Constitution.

 $^{^{1354}}$ S 24(b)(i) of the Constitution.

 $^{^{1355}}$ S 24(b)(ii) of the Constitution.

¹³⁵⁶ S 24(b)(iii) of the Constitution.

¹³⁵⁷ National Environmental Management Act, No. 107 of 1998 (NEMA).

¹³⁵⁸ s 2(2) of the NEMA.

¹³⁵⁹ s 2(3) of the NEMA.

¹³⁶⁰ s 2(4)(a)(viii) of the NEMA.

¹³⁶¹ Department of Energy and Climate Change 'Onshore oil and gas exploration in the UK: regulation and best practice' (2015) at 7, available at

https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/ 503067/Onshore_UK_oil_and_gas_exploration_England_Dec15.pdf accessed on 29 January 2023; Jill Morgan 'Sustainability and stakeholder participation: shale gas extraction in the United Kingdom' in James R. May and John C. Dernbach 'Shale Gas and the Future of Energy: Law and Policy for Sustainability' (2016) at 144 (Edward Elgar Publishing Limited, UK); John Pearson and Gary Lynch-Wood 'Concern and counter-concern: The challenge of fragmented fears for the regulation of hydraulic fracturing' (2017) at 673, *The Extractive Industries and Society* 4.

continuous improvement.¹³⁶² In Canada, the Canadian Environmental Protection Act (CEPA), the main instrument for the protection of the environment and human health,¹³⁶³ embeds sustainable development that is based on ecologically efficient use of natural, social and economic resources.¹³⁶⁴ It acknowledges the need to integrate environmental, economic and social factors in decision making by the State and private entities.¹³⁶⁵

6.3 The Principle of Prevention

As indicated in the introduction of this chapter, this section explores the principle of prevention in international environmental law.¹³⁶⁶ In this thesis, the principle underlies avoidance,¹³⁶⁷ as one of the regulatory mechanisms to avoid negative environmental impacts from shale gas development. International environmental law was originally premised on the belief that environmental damage could be remedied by requiring those responsible to repair the damage they caused.¹³⁶⁸

This line of thought, the polluter-pays principle,¹³⁶⁹ is dealt with in chapter 8 of this thesis. Eventually there was recognition that nature does not have endless ability to correct environmental damage caused by increasing human activity all by itself.¹³⁷⁰ This paradigm shift recognises the limitations of the belief that nature could be continually renewed, regenerate or cleaned up using the increased wealth and technology from the resultant economic growth.¹³⁷¹ Based on the adage *prevention is*

¹³⁶² Ibid.

¹³⁶³ Canadian Environmental Protection Act, 1999; Allan Ingelson 'Shale Gas Law and Regulation in North America' in Tina Hunter Handbook of Shale Gas Law and Policy: Economics, Access, Law and Regulation in Key Jurisdictions (2016) at 328, Energy & Law 18 (Intersentia Ltd, Cambridge: United Kingdom).

¹³⁶⁴ Declaration of the Canadian Environmental Protection Act, 1999.

¹³⁶⁵ Preamble of the Canadian Environmental Protection Act, 1999.

¹³⁶⁶ Principle 2 of the Rio Declaration.

¹³⁶⁷ Leslie-Anne Duvic-Paoli 'The Prevention Principle in International Environmental Law' (2018) at 17 (Cambridge University Press: United Kingdom).

 ¹³⁶⁸ Nicholas der Sadeleer 'Environmental Principles – From Political Slogans to Legal Rules' (2002) at
 14 (Oxford University Press: New York); Leslie-Anne Duvic-Paoli 'The Prevention Principle in
 International Environmental Law' (2018) at 28 (Cambridge University Press: London).

¹³⁶⁹ Principle 16 of the Rio Declaration.

¹³⁷⁰ Nicholas der Sadeleer 'Environmental Principles – From Political Slogans to Legal Rules' (2002) at 14 (Oxford University Press).

¹³⁷¹ Ibid.

better than cure it seemed logical to transition from the curative approach, towards the more sensible principle of prevention,¹³⁷² dealt with in this chapter.

The timely prevention of environmental damage, particularly when such damage may be irreversible is more sensible than a curative model that does not compel polluters to reduce their pollution, but encourages them to internalize the associated clean-up costs.¹³⁷³ The principle of prevention therefore seeks to complement the polluter-pays principle through setting standards and adopting measures to prevent environmental damage before it occurs.¹³⁷⁴ The principle of prevention advocates for the anticipation of pollution, and preventing it from occurring and causing damage.¹³⁷⁵ It is about the elimination of environmental hazards and potential damage before they occur.¹³⁷⁶ The principle focuses on the protection of the environment against specific hazards and the mitigation of the associated risks before they materialize.¹³⁷⁷

As stated in section 6.2.1 above, seeking to give effect to Sustainable Development, the Rio Declaration on Environment and Development reinforced the principle of prevention.¹³⁷⁸ It affirms the sovereign right of States to exploit their natural resources in accordance with their environmental and development policies.¹³⁷⁹ It also mandates States to ensure that activities within their jurisdiction do not cause damage outside of national jurisdiction.¹³⁸⁰ This does not imply that States must guarantee the prevention of environmental damage otherwise they could be held liable for damage caused by a source within their territory, rather, States need to exercise due care or diligence to prevent environmental damage.¹³⁸¹

¹³⁷² Leslie-Anne Duvic-Paoli 'The Prevention Principle in International Environmental Law' (2018) at 28 (Cambridge University Press: United Kingdom).

 ¹³⁷³ Nicholas der Sadeleer 'Environmental Principles – From Political Slogans to Legal Rules' (2002) at
 61 (Oxford University Press: New York).

¹³⁷⁴ Ibid.

¹³⁷⁵ Leon Bredenhann & Linda Garlipp 'The polluter pays principle in water and environmental law' (1999) at 17, *Civil Engineering* 7(2)2.

¹³⁷⁶ Jan Glazewski and Lisa Plit 'Towards the application of the precautionary principle in South African law' (2015) at 194, *Stellenbosch Law Review* 26(1).

¹³⁷⁷ Ibid.

¹³⁷⁸ Principle 2 of the Rio Declaration on Environment and Development.

¹³⁷⁹ Ibid.

¹³⁸⁰ Ibid.

 ¹³⁸¹ Nicholas der Sadeleer 'Environmental Principles – From Political Slogans to Legal Rules' (2002) at
 63 (Oxford University Press: New York).

A due care or due diligence obligation implies that States must prevent activities which involve significant risks of causing environmental harm.¹³⁸² Significance depends on the probability that a risk will materialize, and on the magnitude of the harm which might be caused.¹³⁸³ When damage is not expected to be serious, due diligence will only be required if such damage is highly likely to occur.¹³⁸⁴ The higher the risk, the greater the diligence required from the polluter.¹³⁸⁵ A risk with a low degree of probability may still be regarded as significant if it is likely to cause enormous harm.¹³⁸⁶ Due care comprises requirements such as environmental impact assessments, consultation, and disclosure and monitoring of activities that could potentially cause environmental damage.¹³⁸⁷

The principle of prevention in essence strengthens the general obligation to take due care of natural resources and the environment.¹³⁸⁸ The main use of the principle is the issuing of authorizations that outline conditions for administrative control, and penalties for activities that might have a negative impact on the environment.¹³⁸⁹ These make use of technical specifications to determine means of operation, quantities and concentrations of pollutants that may be discharged, and protective measures to be put in place by the permit holders (setting thresholds).¹³⁹⁰ The permits can be based on concepts such as best available techniques, best environmental practice, clean production methods or best available technology not entailing excessive costs.¹³⁹¹

Prevention may be linked to sources of pollution or points of impact.¹³⁹² With regards to the sources of pollution, governments may regulate manufacturing processes such that they are less damaging to the environment (make use of best available

¹³⁸² Leslie-Anne Duvic-Paoli 'The Prevention Principle in International Environmental Law' (2018) at 181 (Cambridge University Press: United Kingdom).

¹³⁸³ Ibid, at 182.

¹³⁸⁴ Ibid.

¹³⁸⁵ Ibid.

¹³⁸⁶ Ibid.

¹³⁸⁷ Ibid.

 ¹³⁸⁸ Nicholas der Sadeleer 'Environmental Principles – From Political Slogans to Legal Rules' (2002) at
 63 (Oxford University Press: New York).

¹³⁸⁹ Ibid, at 73.

¹³⁹⁰ Ibid.

¹³⁹¹ Ruven C. Fleming and Leonie Reins 'Shale gas extraction, precaution and prevention: A conversation on regulatory responses' (2016) at 131 *Energy Research & Social Science* 20.

 ¹³⁹² Nicholas der Sadeleer 'Environmental Principles – From Political Slogans to Legal Rules' (2002) at
 73 (Oxford University Press: New York).

technologies) or assess the environmental impacts of projects prior to granting their authorization (environmental impact assessment).¹³⁹³ In respect of impacts, quality standards that limit the amounts of polluting substances to be discharged may be established.¹³⁹⁴ Subsections 3.1 to 3.3 below outline the concepts which give effect to the preventive principle, these are: setting thresholds, making use of best available technologies, and environmental impact assessments.¹³⁹⁵

6.3.1 Setting Thresholds

Governments cannot anticipate nor prohibit all forms of environmental damage.¹³⁹⁶ Rather, they can set thresholds beyond which environmental harm cannot be tolerated, and use these to authorize activities that may be detrimental to the environment.¹³⁹⁷ Environmental management through the use of thresholds is more effective when breach of such thresholds is automatically considered as contravention, leading to criminal or administrative sanction, such as the withdrawal of permits.¹³⁹⁸ Despite its merits, the thresholds technique has two short-comings. First, it reinforces the power of experts, thus encourages technocratic decision-making.¹³⁹⁹ Secondly, by legalizing a certain level of nuisance, conciliating economic development with environmental protection, it neutralises the principle of non-degradation, which calls for the prohibition of activities that damage the environment.¹⁴⁰⁰ Therefore, although constituting the vanguard of the principle of prevention, the technique of thresholds remains open to criticism, owing to its tolerance of a certain degree of damage.¹⁴⁰¹

- ¹⁴⁰⁰ Ibid.
- ¹⁴⁰¹ Ibid.

 ¹³⁹³ Ruven C. Fleming and Leonie Reins 'Shale gas extraction, precaution and prevention: A conversation on regulatory responses' (2016) at 131 *Energy Research & Social Science* 20.
 ¹³⁹⁴ Ibid.

 ¹³⁹⁵ Nicholas der Sadeleer 'Environmental Principles – From Political Slogans to Legal Rules' (2002) at
 73 (Oxford University Press: New York).

¹³⁹⁶ Ibid, at 82.

¹³⁹⁷ Ibid.

¹³⁹⁸ Ibid, 82.

¹³⁹⁹ Ibid, 83.

6.3.2 Use of Best Available Technologies

The use of best available technologies is sometimes viewed from a precautionary principle perspective.¹⁴⁰² The use of best available technologies synergises better with the principle of prevention.¹⁴⁰³ This is because recourse to best available technologies is required when the impacts of pollution is known.¹⁴⁰⁴ In contrast, when recourse is uncertain, the obligation better links with the precautionary principle.¹⁴⁰⁵ In both cases, the requirement to use best available technology is generally related to the principle of prevention.¹⁴⁰⁶ In several international treaties, the requirement to prevent harmful releases to the environment is directly related to the obligation to apply best available technology.¹⁴⁰⁷

The Helsinki Convention on the Protection and Use of Transboundary Watercourses and International Lakes states that to prevent, control and reduce transboundary impacts, the Parties must act in a way that limits for wastewater discharges stated in permits, are based on the *best available technology* for discharges of hazardous substances.¹⁴⁰⁸ According to the Agreements Concerning the Protection of the Scheldt and Meuse Rivers, among others, the Contracting Parties shall be guided by the principle of preventive action according to which, in particular, *clean technologies* shall be used, under economically acceptable conditions.¹⁴⁰⁹ In terms of the OSPAR Convention, States are obliged to use *best available techniques*, including, where appropriate, clean technology.¹⁴¹⁰ The Baltic Convention includes a requirement to use

¹⁴⁰⁵ Ibid.

¹⁴⁰² Ibid.

¹⁴⁰³ Ibid.

¹⁴⁰⁴ Ibid.

¹⁴⁰⁶ Ibid.

¹⁴⁰⁷ United Nations 'Convention on the Protection and Use of Transboundary Watercourses and International Lakes' article 3(c) (1992); Agreements Concerning the Protection of the Scheldt and Meuse Rivers (1994), article 3(b); OSPAR Convention (1992) Article 3(b)(i); Aarhus Protocol on Persistent Organic Pollutants to the 1979 Long-Range Transboundary Air Pollution Convention (1998) Article 3(5)(b)(i; iii); Aarhus Protocol on Persistent Organic Pollutants to the 1979 Long-Range Transboundary Air Pollution Convention (1998) Article 3(5)(b)(i; iii).

¹⁴⁰⁸ United Nations 'Convention on the Protection and Use of Transboundary Watercourses and International Lakes' article 3(c) (1992).

¹⁴⁰⁹ Agreements Concerning the Protection of the Scheldt and Meuse Rivers (1994), article 3(b).

¹⁴¹⁰ OSPAR Convention (1992) Article 3(b)(i).

best available technology to prevent and eliminate pollution.¹⁴¹¹ The Aarhus Protocol on Persistent Organic Pollutants also requires the use of *best available techniques*.¹⁴¹²

In essence, the use of best available technologies shifts the focus from downstream solutions, to the regulation of industrial processes, so as to prevent harmful discharges in the first place.¹⁴¹³ Thus the best means of preventing pollution in the first place is to require the use of the most effective technologies available.¹⁴¹⁴ Nonetheless, the use of best available technologies is not necessarily always guaranteed, because when companies consider the cost of new technologies too high, they see them as eroding value therefore not economically justified.¹⁴¹⁵

Environmental regulation therefore tend to balance the requirement to use best available technologies such that investment in such technologies should not entail excessive costs for project owners.¹⁴¹⁶ This implies, the use of best available technologies should not only be technically feasible, it must also be economically viable.¹⁴¹⁷ Thus, the obligation to use the best available technologies not entailing excessive costs, implies that costs must be balanced against the nature and volume of the discharges in question.¹⁴¹⁸ The preventive principle therefore risks becoming considerably weakened by recourse to cost-benefit analysis.¹⁴¹⁹ In this context, the requirement to use best available technologies is therefore not strongly preventative in character.¹⁴²⁰

 ¹⁴¹¹ Convention on the Protection of the Marine Environment of the Baltic Sea Area (1992) Article 3(3).
 ¹⁴¹² Aarhus Protocol on Persistent Organic Pollutants to the 1979 Long-Range Transboundary Air

Pollution Convention (1998) Article 3(5)(b)(i;iii).

¹⁴¹³ Nicholas der Sadeleer 'Environmental Principles – From Political Slogans to Legal Rules' (2002) at 85, New York, Oxford University Press.

¹⁴¹⁴ Ibid.

¹⁴¹⁵ Ibid.

¹⁴¹⁶ Ibid.

¹⁴¹⁷ Nicholas der Sadeleer 'Environmental Principles – From Political Slogans to Legal Rules' (2002) at 85, New York, Oxford University Press.

¹⁴¹⁸ Ibid, at 86.

¹⁴¹⁹ Ibid.

¹⁴²⁰ Ibid.

6.3.3 Environmental Impact Assessments

The environmental impact assessments (EIAs) required of certain activities are core to the preventive principle.¹⁴²¹ Accordingly, an environmental impact assessment, shall be undertaken for proposed activities that are likely to have a significant adverse impact on the environment.¹⁴²² Setting minimum requirements for a proper EIA is critical, and may include disclosing the Environmental Assessment Practitioner that conducted the EIA, and all the relevant information pertaining to the planned activity or project.¹⁴²³ The underlying philosophy is that when authorities are fully aware of all the environmental consequences of a planned activity they will be in a better position to consider whether such an activity be approved or not, and if so, what should be done to minimize its negative consequences.¹⁴²⁴

Furthermore, EIAs ensure that administrators, project initiators, and third parties are informed and are provided with an opportunity to require fuller integration of environmental concerns into the decision-making process.¹⁴²⁵ A shortcoming of EIAs is that they only apply to activities that potentially have a significant impact on the environment.¹⁴²⁶ This implies that many activities that are deemed insignificant in terms of their potential environmental impact could be approved, with severe cumulative environmental impacts.¹⁴²⁷ In effect, while EIAs have the merit of providing information to the various actors concerned, they present no obstacle to the adoption of decisions that could lead to serious environmental damage.¹⁴²⁸

Nonetheless, beyond setting thresholds, making use of best available technologies, and environmental impact assessments, prevention can also take the form of civil and criminal liability, together with environmental taxation.¹⁴²⁹ Despite its inherently

¹⁴²⁷ Ibid, at 88.

¹⁴²¹ Ibid.

¹⁴²² Principle 17 of the Rio Declaration.

¹⁴²³ Nicholas der Sadeleer 'Environmental Principles – From Political Slogans to Legal Rules' (2002) at 86, New York, Oxford University Press.

¹⁴²⁴ Ibid.

¹⁴²⁵ Ibid, at 89.

¹⁴²⁶ Ibid.

¹⁴²⁸ Ibid, 89.

¹⁴²⁹ Ibid, at 73.
curative function, civil liability is preventative since it involves loss or impoverishment for those found liable.¹⁴³⁰ The quantum of the resulted reparation has the effect of ensuring that potentially liable parties adapt their behaviour consistent with the likelihood of liability.¹⁴³¹ Furthermore, the elimination of fault in determining responsibility for damage, which is inherent in strict liability regimes has served to reinforce the preventive dimension of civil liability.¹⁴³² In such regimes, parties responsible for environmental damage, not being able to plead the absence of fault, have an interest in exercising extreme care for the environment.¹⁴³³ Prevention may also be enforced via fiscal means, and/or command and control instruments such as taxes.¹⁴³⁴ For example an increase in taxes on activities that damage the environment may compel polluters to reduce their hazardous waste.¹⁴³⁵

A petroleum legal framework that is strict in terms of the prevention of environmental damage, setting thresholds that could result in the suspension or withdrawal of the petroleum rights when exceeded could significantly reduce the risk of environmental damage from shale gas development in the Karoo. The use of best available technologies, and environmental impact assessments could further ensure that inferior technologies are not utilized, and that the full potential impacts of planned activities are known upfront, with the planned activities only permitted when the mitigation measures are deemed adequate to protect the environment from the risks posed by hydraulic fracturing. Sections 4-6 below provides a comparative assessment of the application of the preventive principle in South Africa, the UK and Canada, focusing on setting thresholds, making use of best available technologies, and environmental impact assessments.

1432 Ibid.

1434 Ibid.

¹⁴³⁰ Ibid.

¹⁴³¹ Ibid.

¹⁴³³ Ibid.

¹⁴³⁵ Ibid.

6.4 The Application of the Preventive Principle in South Africa

Having dealt with the theory of the prevention principle above, I now turn to the application of the principle in South Africa.

6.4.1 Setting Thresholds

The obligation to avoid, mitigate and remedy pollution or environmental degradation in terms of the NEMA,¹⁴³⁶ has established a 'duty of care' from an environmental perspective.¹⁴³⁷ The duty of care imposes a duty on every person to act with due care to avoid causing damage to the environment.¹⁴³⁸ Therefore every person who may cause or has caused significant pollution or degradation of the environment must take reasonable steps to prevent such pollution or degradation from occurring.¹⁴³⁹ Where the pollution or environmental degradation is authorized by law or cannot be reasonably avoided or mitigated, to minimize and rectify such pollution or environmental degradation.¹⁴⁴⁰

The measures to be taken include: First, 'to investigate, assess and evaluate the impact of activities on the environment'.¹⁴⁴¹ Secondly, 'to inform and educate employees about the environmental risks associated with their work, and the manner in which they should perform their tasks to avoid causing significant environmental damage'.¹⁴⁴² Thirdly, to cease, modify or control any activity that causes harm to the environment'.¹⁴⁴³ Lastly, 'to contain or prevent the movement of pollutants;¹⁴⁴⁴ eliminate sources of pollution;¹⁴⁴⁵ and remedy the effects thereof'.¹⁴⁴⁶

¹⁴³⁶ National Environmental Management Act, No. 107 of 1998, s 2(4)(a)(ii).

¹⁴³⁷ Paul G.W Henderson 'Some thoughts on distinctive principles of South African Environmental Law' (2001) at 157, South African Journal of Environmental Law and Policy, 8(2).

¹⁴³⁸ Leon Bredenhann & Linda Garlipp 'The polluter pays principle in water and environmental law' (1999) at 17, *Civil Engineering*, 7 (2)2.

¹⁴³⁹ National Environmental Management Act, No. 107 of 1998, s 28(1).

¹⁴⁴⁰ S 28(1) of the NEMA.

¹⁴⁴¹ S 28(3)(a) of the NEMA.

¹⁴⁴² S 28(3)(b) of the NEMA.

¹⁴⁴³ S 28(3)(c) of the NEMA.

¹⁴⁴⁴ S 28(3)(d) of the NEMA.

¹⁴⁴⁵ S 28(3)(e) of the NEMA.

¹⁴⁴⁶ S 28(3)(f) of the NEMA.

The potential impact of hydraulic fracturing on water resources is one of the most critical concerns regarding shale gas development in the Karoo, given its arid nature.¹⁴⁴⁷ Hydraulic fracturing is a controlled activity under the relevant provisions of the National Water Act.¹⁴⁴⁸ This implies that companies applying for shale gas exploration rights, will also have to apply for an integrated water use license at the Department of Water and Sanitation.¹⁴⁴⁹ Before the issuing of the water use license, the reserve for the specific catchment must be determined.¹⁴⁵⁰ The reserve defines the quantity and quality of water from a source, that is required to supply the basic human needs, protect aquatic ecosystems, and ensure ecologically sustainable development and use of water resources.¹⁴⁵¹

Consequently, companies applying for shale gas exploration licenses should be required to identify the sources of water supply within their exploration area of interest, or nearby.¹⁴⁵² They will need to develop a water resource management plan, which must include mitigation of potential impacts on the water resources.¹⁴⁵³ The long-term monitoring of water use, together with liability obligations are to be a condition of the water use licence.¹⁴⁵⁴ Moreover, water management strategies, such as the use of alternative water sources or water withdrawal restrictions can reduce the frequency or severity of impacts on drinking water sources from shale gas development.¹⁴⁵⁵

¹⁴⁴⁷ Academy of Science of South Africa (2016) RSA Technical Readiness for Shale Gas Extraction, at 33 (ASSAf, Pretoria).

¹⁴⁴⁸ Department of Water and Sanitation 'Declaration for the Exploration for and Production of Onshore Unconventional Oil or Gas Resources or any Activities Related Thereto Including but not Limited to Hydraulic Fracturing as a Controlled Activity, Government Gazette, No. 39299 of 16 October 2015.

¹⁴⁴⁹ Academy of Science of South Africa (2016) RSA Technical Readiness for Shale Gas Extraction, at 83 (ASSAf, Pretoria).

¹⁴⁵⁰ S 3(15) of the NWA.

¹⁴⁵¹ Ibid.

¹⁴⁵² Academy of Science of South Africa (2016) RSA Technical Readiness for Shale Gas Extraction, at 83, ASSAf, Pretoria.

¹⁴⁵³ Ibid.

¹⁴⁵⁴ Ibid.

¹⁴⁵⁵ United States Environmental Protection Agency, Hydraulic Fracturing for Oil and Gas: Impacts from the Hydraulic Fracturing Water Cycle on Drinking Water Resources in the United States (2016), at 15 (Office of Research and Development, Washington DC).

6.4.2 Use of Best Available Technologies

As stated in Chapter 5 of this thesis, the South African shale gas regulations promote the use of best available technologies.¹⁴⁵⁶ Consequently, petroleum right holders have to conform to the American Petroleum Institute (API) well construction standards when designing shale gas wells.¹⁴⁵⁷ A petroleum right holder may however adopt well construction standards other than those developed by the API,¹⁴⁵⁸ subject to the petroleum right holder submitting detailed information regarding the proposed well construction standards to the designated agency.¹⁴⁵⁹

A detailed comparative assessment of the proposed standards, and the standards prescribed in the regulations for petroleum exploration and production from an independent drilling engineer is also required.¹⁴⁶⁰ The comparative assessment must demonstrate how the proposed well construction standards will ensure higher levels of well integrity relative to those prescribed.¹⁴⁶¹ The petroleum right holder may only proceed to implement the proposed well construction standards after receiving written consent from the designated authority.¹⁴⁶²

As stated in the preceding section, water management strategies such as the use of alternative water sources can reduce the impact of shale gas development on drinking water sources.¹⁴⁶³ Alternatives to the use of fresh water include recycled wastewater, groundwater and seawater, particularly in arid regions or onshore areas with water scarcity,¹⁴⁶⁴ such as the South African Karoo. Furthermore, the management of fugitive methane emissions related to hydraulic fracturing operations is crucial to

¹⁴⁵⁶ Reg 96(1) GN R.466.

¹⁴⁵⁷ Reg 96(1).

¹⁴⁵⁸ Reg 96(5).

¹⁴⁵⁹ Reg 96(6)(a).

¹⁴⁶⁰ Reg 96(6)(b).

¹⁴⁶¹ Reg 96(6)(b).

¹⁴⁶² Reg 96(7).

¹⁴⁶³ United States Environmental Protection Agency, Hydraulic Fracturing for Oil and Gas: Impacts from the Hydraulic Fracturing Water Cycle on Drinking Water Resources in the United States (2016), at 15, Office of Research and Development, Washington DC, available at www.epa.gov./hfstudy, accessed on 15 August 2018.

¹⁴⁶⁴ Daniele Costa, Joao Jesus, David Branco, Anthony Danko and Antonio Fiuza 'Extensive review of shale gas environmental impacts from scientific literature (2010 – 2015)' (2017) at 14582-14583, *Enviro Sci Pollut Res.*

mitigate climate change.¹⁴⁶⁵ A more potent greenhouse gas than carbon dioxide,¹⁴⁶⁶ the impact of methane emissions from shale gas extraction to climate change may be more severe.¹⁴⁶⁷ A variety of technologies are available to mitigate methane emissions from hydraulic fracturing operations, such as reduced emissions completions (RECs),¹⁴⁶⁸ and Leak Detection and Repair, a technology that is used to identify leaks for repair.¹⁴⁶⁹

In South Africa, petroleum right holders are furthermore required to minimize the emissions associated with the venting of hydrocarbon fluids and natural gas during hydraulic fracturing operations.¹⁴⁷⁰ The recovered gas should be routed into a gas gathering system or to a generator for onsite energy generation.¹⁴⁷¹ In the event that a petroleum right holder can demonstrate that it is not technically feasible to minimize the emissions associated with the venting of hydrocarbons during hydraulic fracturing, using the methods mentioned above, the designated agency can compel the right holder to capture and direct the gas produced during hydraulic fracturing to a flare, provided that such flaring may not cause a fire hazard or explosion.¹⁴⁷² South Africa should furthermore make it mandatory for petroleum right holders to make use of reduced emissions technologies in the design of shale gas wells to manage emissions from hydraulic fracturing operations.

¹⁴⁶⁵ Laurence Stamford & Adisa Azapagic 'A Fractured truth' (2014), at 27, *The Chemical Engineer*, Brett Cohen & Herald Winkler 'Greenhouse gas emissions from shale gas and coal for electricity generation in South Africa' (2014) at 3, *S Afr J Sci*; 110(3/4).

¹⁴⁶⁶ Shanru Tian, Kathleen M. Smits, Younki Cho, Stuart N. Riddick, Daniel J. Zimmerle and Aidan Duggan 'Estimating methane emissions from underground natural gas pipelines using an atmospheric dispersion-based method' (2022) at 1, *Elementa Science of the Anthropocene* 10(1).

¹⁴⁶⁷ Robert W. Howarth 'A bridge no nowhere: methane emissions and the greenhouse gas footprint of natural Gas' (2014) at 1, *Energy Science and Engineering*.

¹⁴⁶⁸ Don C Smith 'Unconventional Gas Development 2.0: Reducing the 'Environmental Footprint' Through New Technologies' (2018) at 228 in Donald Zillman, Martha Roggenkamp, Leroy Paddock & Lee Godden *Innovation in Energy Law and Technology: Dynamic Solutions for Energy Transitions* (London, Oxford University Press); Daniele Costa, Joao Jesus, David Branco, Anthony Danko and Antonio Fiuza, 'Extensive review of shale gas environmental impacts from scientific literature (2010 – 2015)' (2017) at 14587-14588, *Enviro Sci Pollut Res.*

¹⁴⁶⁹ Daniele Costa, Joao Jesus, David Branco, Anthony Danko and Antonio Fiuza, 'Extensive review of shale gas environmental impacts from scientific literature (2010 – 2015)' (2017) at 14587-14588, *Enviro Sci Pollut Res;* C Kemp, A Ravikumar and A Brandt 'Comparing Natural Gas Leakage Detection Technologies Using an Open-source "Virtual Gas Field" Simulator' (2016) at 1, *Environmental Science and Technology.*

¹⁴⁷⁰ Reg 127(1)(a) GN R.466.

¹⁴⁷¹ Reg 127(1)(a)(i).

¹⁴⁷² Reg 127 (2).

As indicated in Chapter 3, Carbon capture and storage is another technology that could be utilized for the capture and safe storage of carbon dioxide emissions from hydraulic fracturing operations.¹⁴⁷³ The technology has been used by oil and gas companies to enhance oil recovery for decades.¹⁴⁷⁴ Furthermore, when in supercritical state, CO₂ could potentially be used as a hydraulic fracturing fluid, and simultaneously reduce the water requirements of hydraulic fracturing, and need for the long-term safe storage of carbon dioxide.¹⁴⁷⁵ However, further tests are required to determine the efficacy of the technology of using carbon dioxide as a hydraulic fracturing fluid in the field.¹⁴⁷⁶

6.4.3 Environmental Impact Assessments

To give effect to the general objectives of integrated environmental management, South Africa's environmental law provides for the consideration, investigation and assessment of activities that may significantly impact the environment prior to their implementation, and for the reporting thereof to the organ of state responsible for the authorization of such activities.¹⁴⁷⁷ The assessment must include the potential impact of the activities that require environmental authorization on the environment;¹⁴⁷⁸ socio-economic conditions;¹⁴⁷⁹ and cultural heritage.¹⁴⁸⁰

The environmental impact assessment is a critical aspect of environmental protection in South Africa.¹⁴⁸¹ As stated in Chapter 4, the EIA must establish baseline data on the affected environment, to determine protection, remediation and environmental

¹⁴⁸⁰ S 24(1)(c) of the NEMA

¹⁴⁷³ Don C Smith 'Unconventioal Gas Development 2.0: Reducing the 'Environmental Footprint' Through New Technologies in Donald Zillman, Martha Roggenkamp, Leroy Paddock and Lee Godden *Innovation in Energy Law and Technology/Dynamic Solutions for Energy Transitions* (2018) at 232 Oxford University Press, Oxford, United Kingdom.

¹⁴⁷⁴ Ibid.

¹⁴⁷⁵ Ibid.

¹⁴⁷⁶ Daniele Costa, Joao Jesus, David Branco, Anthony Danko and Antonio Fiuza, 'Extensive review of shale gas environmental impacts from scientific literature (2010 – 2015)' (2017) at 14587-14588, *Enviro Sci Pollut Res.*

¹⁴⁷⁷ National Environmental Management Act, No. 107 of 1998, s 24(1).

¹⁴⁷⁸ S 24(1)(a) of the NEMA

¹⁴⁷⁹ S 24(1)(b) of the NEMA

¹⁴⁸¹ Environmental Impact Assessment Regulations, 2014, in Government Notice R982, Government Gazette No. 38282 of 4 December 2014 Chapter 6.¹⁴⁸² S 24(4)(a)(iii) of the NEMA.

management objectives.¹⁴⁸² It must assess, investigate and evaluate the potential impact to the environment,¹⁴⁸³ and socio-economic conditions of any person who might be directly affected by the proposed petroleum exploration and production.¹⁴⁸⁴ Moreover, the resultant environmental management programme must include an environmental awareness plan, describing the risks involved and how applicants for exploration and production rights intend to mitigate such risks to avoid degradation of the environment.¹⁴⁸⁵

Applicants for petroleum exploration and production rights are furthermore required to make the prescribed financial provision for the rehabilitation or management of negative environmental impacts, before the Minister of Mineral Resources approves the environmental management plan or environmental management programme.¹⁴⁸⁶ If the holder of a petroleum right fails to rehabilitate or manage the negative environmental impact, or if such a right holder is unable to undertake the requisite rehabilitation, the Minister of Mineral Resources and Energy may, upon written notice to the right holder, use the financial provision or part thereof to rehabilitate or manage the ostensible negative environmental impact.¹⁴⁸⁷

Nonetheless, despite the National Environmental Management Amendment Act aligning the environmental requirements in the MPRDA with the NEMA,¹⁴⁸⁸ powers on environmental matters pertaining to oil and gas exploration and production are still vested in the Minister of Mineral Resources and Energy.¹⁴⁸⁹ This was found not to be ideal for environmental protection, particularly pertaining to the use of hydraulic fracturing for shale gas exploration.¹⁴⁹⁰

1489 Ibid.

¹⁴⁸² S 24(4)(a)(iii) of the NEMA.

¹⁴⁸³ S 24(4)(b)(i) of the NEMA.

¹⁴⁸⁴ S 23(2)(b) of the NEMA.

¹⁴⁸⁵ S 24N(3)(c) of the NEMA.

¹⁴⁸⁶ S 41(1) of the MPRDA.

¹⁴⁸⁷ S 41(1) of the MPRDA.

¹⁴⁸⁸ National Environmental Management Amendment Act, No.62 of 2008.

 ¹⁴⁹⁰ John Douglas Stern and others vs Minister of Mineral Resources, para 58, 2015 SA 5672/2015
(High Court of South Africa, Eastern Cape Division, Grahamstown).

6.5 The Application of the Preventive Principle in the United Kingdom

The UK employs a risk-based approach to environmental regulation, which requires that the risks of an environmental incident related to oil and gas operations are reduced as low as practically possible.¹⁴⁹¹ The UK Secretary of State for Energy (Department for Business, Energy and Industrial Strategy 'BEIS') on behalf of the crown issues licences for onshore and offshore petroleum exploration and production, in terms of the Petroleum Act, and the Hydrocarbons Licensing Directive Regulations.¹⁴⁹² The BEIS is also responsible for enforcing environmental legislation in relation to petroleum exploration and production, and through the Office for Unconventional Gas and Oil (OUGA), to promote unconventional oil and gas resources in the UK.¹⁴⁹³

The main licence for onshore exploration and development in the UK is the Petroleum Exploration and Development Licence (PEDL).¹⁴⁹⁴ This is complemented by the new licence conditions that were issued in 2014 to address the unique features of shale gas development.¹⁴⁹⁵ Once granted, holders of the PEDL have to apply for the granting of a planning permission to the local Minerals Planning Authority (MPA) in England and Wales, the Local Planning Authority (LPA) in Scotland or Department of

¹⁴⁹¹ John Paterson and Tina Hunter 'Shale Gas Law and Regulation in the United Kingdom' in Tina Hunter Handbook of Shale Gas Law and Policy: Economics, Access, Law and Regulation in Key Jurisdictions (2016) at 286, Energy & Law 18 (Intersentia Ltd, Cambridge: United Kingdom). ¹⁴⁹² Peter Cameron, Juan Felipe Neira Castro, Tomas Lanardonne and Geoffrey Wood 'Across the universe of shale resources – a comparative assessment of the emerging legal foundations for unconventional energy' (2018) at 311, Journal of World Energy Law and Business 11; John Paterson and Tina Hunter 'Shale Gas Law and Regulation in the United Kingdom' in Tina Hunter Handbook of Shale Gas Law and Policy: Economics, Access, Law and Regulation in Key Jurisdictions (2016) at 285, Energy & Law 18 (Intersentia Ltd, Cambridge: United Kingdom). Petroleum Act 1998, s 3(1); Hydrocarbons Licensing Directive Regulations 1995, s 3(1).

¹⁴⁹² Peter Cameron, Juan Felipe Neira Castro, Tomas Lanardonne and Geoffrey Wood 'Across the universe of shale resources – a comparative assessment of the emerging legal foundations for unconventional energy' (2018) at 311, *Journal of World Energy Law and Business* 11; John Paterson and Tina Hunter 'Shale Gas Law and Regulation in the United Kingdom' in Tina Hunter *Handbook of Shale Gas Law and Policy: Economics, Access, Law and Regulation in Key Jurisdictions* (2016) at 285, Energy & Law 18 (Intersentia Ltd, Cambridge: United Kingdom). Petroleum Act 1998, s 3(1); Hydrocarbons Licensing Directive Regulations 1995, s 3(1).

¹⁴⁹³ Peter Cameron, Juan Felipe Neira Castro, Tomas Lanardonne and Geoffrey Wood 'Across the universe of shale resources – a comparative assessment of the emerging legal foundations for unconventional energy' (2018) at 311, *Journal of World Energy Law and Business* 11.

¹⁴⁹⁴ Morgan J 'Sustainability and stakeholder participation: shale gas extraction in the United Kingdom' in May JR and Dernbach JC Shale Gas and the Future of Energy: Law and Policy for Sustainability (2016) at 152 (Edward Elgar Publishing Limited, UK).

¹⁴⁹⁵ Michael Burns, Charlie Reid & Justyna Bremen 'UK Shale Gas – A Policy Tug War' (2016) at 249, *Journal of Energy & Nat Resources Law* 34(2); Petroleum Licensing (Exploration and Production) (Landward Areas) Regulations 2014.

Environment (DOE) Planning in Northern Ireland for consent to drill a well or conduct hydraulic fracturing operations.¹⁴⁹⁶

Petroleum right holders also have to negotiate access with landowners, and obtain permission from the Coal Authority if the well is expected to intercept coal seams.¹⁴⁹⁷ Operators are also required to consult the environmental regulators: the Environmental Agency (EA) in England, Natural Resources Wales (NRW) in Wales, the Scottish Environmental Protection Agency (SEPA) in Scotland or the Northern Ireland Environmental Agency (NIEA) in Northern Ireland, who are also the statutory consultees to the relevant planning authorities (MPA/LPA/DOE) in the UK.¹⁴⁹⁸

6.5.1 Setting Thresholds

As alluded to above, additional permits that sets thresholds, on waste; radioactive substances; the use of water; and chemicals must be obtained before hydraulic fracturing can take place in the UK.¹⁴⁹⁹ More specifically, shale gas operators must obtain a mining waste permit; a water withdrawal licence; a groundwater activity permit; a radioactive substances activity permit; and an assessment and approval of chemicals to be used for hydraulic fracturing.¹⁵⁰⁰ Furthermore, drilling permits related to the assessment of seismic hazards, monitoring of seismic activities during drilling,

¹⁴⁹⁶ Ibid, at 158.

¹⁴⁹⁷ Peter Cameron, Juan Felipe Neira Castro, Tomas Lanardonne and Geoffrey Wood 'Across the universe of shale resources – a comparative assessment of the emerging legal foundations for unconventional energy' (2018) at 312, *Journal of World Energy Law and Business* 1; John Paterson and Tina Hunter 'Shale Gas Law and Regulation in the United Kingdom' in Tina Hunter *Handbook of Shale Gas Law and Policy: Economics, Access, Law and Regulation in Key Jurisdictions* (2016) at 301, Energy & Law 18 (Intersentia Ltd, Cambridge: United Kingdom).

¹⁴⁹⁸ Peter Cameron, Juan Felipe Neira Castro, Tomas Lanardonne and Geoffrey Wood 'Across the universe of shale resources – a comparative assessment of the emerging legal foundations for unconventional energy' (2018) at 312, *Journal of World Energy Law and Business* 1; John Paterson and Tina Hunter 'Shale Gas Law and Regulation in the United Kingdom' in Tina Hunter *Handbook of Shale Gas Law and Policy: Economics, Access, Law and Regulation in Key Jurisdictions* (2016) at 295, Energy & Law 18 (Intersentia Ltd, Cambridge: United Kingdom).

¹⁴⁹⁹ Peter Cameron, Juan Felipe Neira Castro, Tomas Lanardonne and Geoffrey Wood 'Across the universe of shale resources – a comparative assessment of the emerging legal foundations for unconventional energy' (2018) at 312, *Journal of World Energy Law and Business* 1; John Paterson and Tina Hunter 'Shale Gas Law and Regulation in the United Kingdom' in Tina Hunter *Handbook of Shale Gas Law and Policy: Economics, Access, Law and Regulation in Key Jurisdictions* (2016) at 296, *Energy & Law 18* (Intersentia Ltd, Cambridge: United Kingdom).

¹⁵⁰⁰ Peter Cameron, Juan Felipe Neira Castro, Tomas Lanardonne and Geoffrey Wood 'Across the universe of shale resources – a comparative assessment of the emerging legal foundations for unconventional energy' (2018) at 312, *Journal of World Energy Law and Business* 1.

and mitigation plans for possible earthquakes that may be caused by hydraulic fracturing must be obtained.¹⁵⁰¹ There is also a requirement to install a real-time trigger to cut off injection into the well, if there is a significant risk of an earthquake.¹⁵⁰²

6.5.2 Use of Best Available Technologies

In terms of the use of best available technologies, UK oil and gas operators are required to ensure that shale gas wells are designed in a manner that minimizes the risks to health and safety.¹⁵⁰³ Before the design of a shale gas well, operators are required to assess the geological formation and fluids through which wells are to be drilled, and any hazards associated thereto.¹⁵⁰⁴ These assessments are required to be taken into account in the design and construction of wells.¹⁵⁰⁵ The Operators are furthermore required to ensure that these assessments are periodically reviewed, and if any change is observed, modifications be made to the design and construction of the well.¹⁵⁰⁶ Furthermore, the Borehole Site Operator has to ensure that suitable well control equipment is used during the drilling, hydraulic fracturing, and flow-back operations.¹⁵⁰⁷

From a climate change mitigation perspective, the UK requires that operators put mechanisms in place to minimize emissions.¹⁵⁰⁸ Operators are required to eliminate any flaring and venting of natural gas, and adopt best practices from the design stage of shale gas development.¹⁵⁰⁹ They are encouraged to use green completions or reduced emissions completions, where natural gas is separated from the fracturing fluid during flow-back, and sold, while the remaining flow-back fluid is recycled and re-used.¹⁵¹⁰ The guidelines recognize that this may not always be practical during the

¹⁵⁰¹ Ibid.

¹⁵⁰² Ibid.

¹⁵⁰³ Offshore Installations and Wells (Design and Construction Etc) Regulations 1996, Regulation 14. ¹⁵⁰⁴ Ibid.

¹⁵⁰⁵ Ibid.

¹⁵⁰⁶ Ibid.

¹⁵⁰⁷ Borehole Sites & Operations Regulations 1995, schedule 2 (7) s 7.2

¹⁵⁰⁸ The United Kingdom Onshore Operators' Group 'Guidelines for UK Well Operations on Onshore Shale Gas Wells' (2016) at 29.

¹⁵⁰⁹ Ibid.

exploration and appraisal phases, therefore there is some tolerance for flaring, while venting should be avoided as much as possible even during these phases.¹⁵¹¹

6.5.3 Environmental Impact Assessment

As stated above, once an applicant has been issued with a license for petroleum exploration and production in the UK, the licensee has to apply for the granting of a planning permission for consent to drill a well or conduct hydraulic fracking operations.¹⁵¹² The application for planning permission may need to be supported by an environmental impact assessment (EIA) following the EIA regulations of the relevant devolved country concerned.¹⁵¹³ A mandatory EIA is required only if the Minerals Planning Authority believes that the planned operations are likely to have significant negative impact on the environment.¹⁵¹⁴

The Oil and Gas Authority in the UK therefore will only give consent to the drilling of shell gas wells when the minerals planning authorities have granted permission to drill, and the relevant planning conditions have been satisfied, and all the necessary permits from the relevant environmental agencies are in place.¹⁵¹⁵ Consent to hydraulically fracture shale gas wells will also only be given after the relevant health and safety authorities have been notified and are satisfied with the well designs, following examination focussed on safety related to hydraulic fracturing by an independent well design expert.¹⁵¹⁶ The health and safety authorities then have to monitor progress on the drilling of the well and subsequent hydraulic fracturing operations.¹⁵¹⁷ Authorisation for hydraulic fracturing is therefore only given if the relevant agency is confident that

¹⁵¹¹ Ibid.

¹⁵¹² Morgan J 'Sustainability and stakeholder participation: shale gas extraction in the United Kingdom' in May JR and Dernbach JC Shale Gas and the Future of Energy: Law and Policy for Sustainability (2016) at 152, Edward Elgar Publishing Limited, UK.

¹⁵¹³ Peter Cameron, Juan Felipe Neira Castro, Tomas Lanardonne and Geoffrey Wood 'Across the universe of shale resources – a comparative assessment of the emerging legal foundations for unconventional energy' (2018) at 312, *Journal of World Energy Law and Business* 1; John Paterson and Tina Hunter 'Shale Gas Law and Regulation in the United Kingdom' in Tina Hunter *Handbook of Shale Gas Law and Policy: Economics, Access, Law and Regulation in Key Jurisdictions* (2016) at 292, Energy & Law 18 (Intersentia Ltd, Cambridge: United Kingdom).

¹⁵¹⁴ Ibid.

¹⁵¹⁵ Michael Burns, Charlie Reid & Justyna Bremen 'UK Shale Gas – A Policy Tug War' (2016) at 249, *Journal of Energy & Nat Resources Law* 34(2).

¹⁵¹⁶ Ibid, at 250.

¹⁵¹⁷ Ibid.

there will be no adverse impact to the environment.¹⁵¹⁸ Should an operator wish to start production from a shale gas development site, they will be required to go through the same permitting process as described above.¹⁵¹⁹

6.6 The Application of the Preventive Principle in Canada

As mentioned in section 2.3 of this chapter, the Canadian Environmental Protection Act (CEPA) is the primary instrument for the protection of the environment in Canada.¹⁵²⁰ The primary purpose of the CEPA is to contribute to sustainable development through pollution prevention.¹⁵²¹ Its focus is to prevent pollution from occurring, rather than the traditional approach of managing pollution after it has occurred.¹⁵²² The CEPA requires the elimination of the release of toxic substances that take a long time to break down, collect in living organisms, and end up in the food chain.¹⁵²³ All levels of government in Canada (federal, provincial, and territorial) have authority to protect the environment.¹⁵²⁴ The shared nature of environmental jurisdiction makes close cooperation among the different spheres of government and Aboriginal people critical to the protection of the environment in Canada.¹⁵²⁵

The CEPA is complemented by legislation such as, first, the Fisheries Act, which provides for pollution prevention of waters inhabited by fish.¹⁵²⁶ Secondly, the Canada Water Act, which provides for the management of water resources and the quality thereof.¹⁵²⁷ Thirdly, the Canadian Assessment Act which ensures that the environmental effects of projects are carefully reviewed before they are sanctioned, to avoid significant adverse environmental effects.¹⁵²⁸

¹⁵²⁶ Fisheries Act, 1985.

¹⁵¹⁸ Ibid.

¹⁵¹⁹ Ibid.

¹⁵²⁰ Canadian Environmental Protection Act, 1999; Allan Ingelson 'Shale Gas Law and Regulation in North America' in Tina Hunter Handbook of Shale Gas Law and Policy: Economics, Access, Law and Regulation in Key Jurisdictions (2016) at 328, Energy & Law 18 (Intersentia Ltd, Cambridge: United Kingdom).

¹⁵²¹ Declaration of the Canadian Environmental Protection Act, 1999.

¹⁵²² Ibid.

¹⁵²³ Ibid.

¹⁵²⁴ Ibid.

¹⁵²⁵ Ibid.

¹⁵²⁷ Canada Water Act, 1985.

¹⁵²⁸ Canadian Environmental Assessment Act, 2012.

The CEPA furthermore embeds other key environmental legal principles, such as, the precautionary principle and the polluter pays principle and embody them in the administrative duties of Government.¹⁵²⁹ In essence, the Canadian government's measures to protect the environment and health assume a precautionary approach, as they do not put emphasis on scientific evidence to prove a causal link between pollution and effects.¹⁵³⁰ Furthermore, polluters are compelled to take responsibility and bear the cost commensurate with the pollution they cause.¹⁵³¹ The precautionary principle and polluter pays principle are dealt with in more detail in chapter seven and eight of this thesis.

6.6.1 Setting Thresholds

The CEPA provides for the creation of science-based national environmental standards, essentially sets the thresholds for environmental protection.¹⁵³² It encourages the use of processes, practices, materials, products, substance or energy that avoid or minimize the creation of pollutants and waste, and reduce the overall risk to the environment or human health.¹⁵³³ It provides for mechanisms to assess risks to the environment and human health.¹⁵³⁴ It imposes timeframes for managing toxic substances, and provides tools to manage such substances and wastes.¹⁵³⁵ It also ensures that the most harmful substances are phased out or are not released into the environment in any measurable quantity.¹⁵³⁶ Regulations under the CEPA also regulate the chemicals used in hydraulic fracturing and oilfield and provides for substantial fines and other penalties for violations.¹⁵³⁷

6.6.2 Use of Best Available Technologies

The CEPA requires that science and traditional aboriginal knowledge (where available) play a central role in decision making, and that socio-economic and technical

¹⁵²⁹ Declaration of the Canadian Environmental Protection Act, 1999.

¹⁵³⁰ Ibid.

¹⁵³¹ Ibid.

¹⁵³² Ibid.

¹⁵³³ Ibid.

¹⁵³⁴ Ibid. ¹⁵³⁵ Ibid.

¹⁵³⁶ Ibid.

¹⁵³⁷ Ibid. ¹⁵³⁸ Ibid.

considerations form part of risk management processes.¹⁵³⁸ Scientific Research and Development are used to evaluate the impact of substances on the environment and human health, and to determine the extent of exposure to contaminants.¹⁵³⁹ This is used to guide the development of preventive and control measures, by identifying pollution prevention and technology solutions.¹⁵⁴⁰ Scientific research is also used to provide specialized sampling and analytical techniques used in compliance monitoring and enforcement.¹⁵⁴¹

6.6.3 Environmental Impact Assessments

Environmental impact assessments in Canada are governed by the Impact Assessment Act.¹⁵⁴² The Impact Assessment Act seeks to foster sustainability,¹⁵⁴³ and to protect the environment, health, social and economic conditions, from adverse effects caused by a designated project.¹⁵⁴⁴ The Act is premised on the recognition that impact assessments provide an effective means of integrating scientific data, and indigenous knowledge, into decision-making processes related to designated projects.¹⁵⁴⁵ It entrenches public participation in the impact assessment process, including the planning phase.¹⁵⁴⁶ It provides for information to be made accessible to the public to enable meaningful public participation in the impact assessment

Furthermore, the Act seeks to ensure that an impact assessment takes into account alternative means of carrying out designated planned activities, including the use of best available technologies.¹⁵⁴⁸ Designated activities are activities or projects that may cause adverse effects to the environment, adverse incidental effects, or that may cause public concern.¹⁵⁴⁹ Such projects must be subjected to screening by the Impact

¹⁵³⁸ Ibid.

¹⁵³⁹ Ibid.

¹⁵⁴⁰ Ibid.

¹⁵⁴¹ Ibid.

¹⁵⁴² Impact Assessment Act, 2019.

 $^{^{1543}}$ S 6(1)(a) of the Impact Assessment Act, 2019.

¹⁵⁴⁴ S 6(1)(a) of the Impact Assessment Act, 2019.

¹⁵⁴⁵ S 6(1)(b) of the Impact Assessment Act, 2019.

¹⁵⁴⁶ S 6(1)(h) of the Impact Assessment Act, 2019.

¹⁵⁴⁷ S 6(1)(j).

 $^{^{1548}}$ S 6(1)(k) of the Impact Assessment Act, 2019.

¹⁵⁴⁹ S 9(1); s11(a.2) of the Impact Assessment Act, 2019.

Assessment Agency of Canada, to determine whether they could potentially harm the environment.¹⁵⁵⁰ The Impact Assessment Agency is obliged to ensure that the public is provided an opportunity to participate meaningfully, in a manner that is appropriate to the Agency's preparations for a possible impact assessment of a designated project.¹⁵⁵¹ This includes inviting the public to provide comments within a specified period already in the screening phase.¹⁵⁵²

Following the consultation of the relevant stakeholders, including the public, the Agency is required to provide the proponents of designated projects with a summary of relevant issues to the project, including those raised by the public or any jurisdiction or Indigenous group.¹⁵⁵³ Project proponents are then required to provide the Agency with a notice detailing how they intend to address the issues raised, together with a detailed description of the project which includes all the prescribed information.¹⁵⁵⁴ On receipt of the notice, and if satisfied with the responses provided, and detailed project description, the Agency must take a decision on whether the designated project needs to undergo an impact assessment.¹⁵⁵⁵ If the Agency is satisfied that the proposed project will not cause adverse environmental effects within federal jurisdiction,¹⁵⁵⁶ or to the rights of the Indigenous peoples of Canada,¹⁵⁵⁷ the Agency may decide that the project does not need an impact assessment.¹⁵⁵⁸

If the Agency decide that a proposed project does require an impact assessment, the Agency must within 180 days of taking the decision notify the project proponent of the commencement of the impact assessment.¹⁵⁵⁹ The notice must set out the information or studies required from the proponent and which the Agency considers necessary for the conduct of the impact assessment.¹⁵⁶⁰ This should include any documents that are prescribed by the relevant regulations,¹⁵⁶¹ and plans for cooperation with other

¹⁵⁵⁰ S 11 of the Impact Assessment Act, 2019.

¹⁵⁵¹ S 11 of the Impact Assessment Act, 2019.

¹⁵⁵² S 11 of the Impact Assessment Act, 2019.

¹⁵⁵³ S 14(1) of the Impact Assessment Act, 2019.

¹⁵⁵⁴ S 15(1) of the Impact Assessment Act, 2019.

¹⁵⁵⁵ S 16(1) of the Impact Assessment Act, 2019.

¹⁵⁵⁶ S 16(2)(b) of the Impact Assessment Act, 2019.

¹⁵⁵⁷ S 16(2)(c) of the Impact Assessment Act, 2019.

¹⁵⁵⁸ S 16 of the Impact Assessment Act, 2019.

¹⁵⁵⁹ S 18(1)(a). of the Impact Assessment Act, 2019.

¹⁵⁶⁰ S 18(1)(a). of the Impact Assessment Act, 2019.

¹⁵⁶¹ S 18(1)(b) of the Impact Assessment Act, 2019.

jurisdictions, for engagement and partnership with the Indigenous peoples of Canada, for public participation and for issuance of permits.¹⁵⁶²

Irrespective of whether an impact assessment needs to be carried out or not, designated project proponents are prohibited from carrying out any act that could cause a change to fish or their habitat,¹⁵⁶³ aquatic species,¹⁵⁶⁴ migratory birds,¹⁵⁶⁵ or any other component that is set out in Schedule 3.¹⁵⁶⁶ Project proponents are not allowed to carry out acts that would negatively impact the physical and cultural heritage of the indigenous peoples of Canada,¹⁵⁶⁷ and the current use of lands and resources for traditional purposes.¹⁵⁶⁸ They are not permitted to conduct any act that would negatively impact structures or sites of historical, archaeological, paleontological or architectural significance.¹⁵⁶⁹ Furthermore, project components are not to carry out acts that may cause a negative change in the health, social or economic conditions of the Indigenous peoples of Canada.¹⁵⁷⁰

6.7 Conclusions

All three comparative jurisdictions provide for the sustainable development of petroleum resources that integrate social, environmental and economic factors.¹⁵⁷¹ They require that the social, environmental and economic impacts of petroleum operations be considered, assessed and evaluated with appropriate decisions taken. South Africa's environmental law seeks to ensure that environmental degradation is avoided, and where it cannot be entirely avoided, be minimized and remedied.¹⁵⁷²

¹⁵⁶² S 18(1)(b) of the Impact Assessment Act, 2019.

¹⁵⁶³ S 7(1)(a)(i) of the Impact Assessment Act, 2019.

¹⁵⁶⁴ S 7(1)(a)(ii) of the Impact Assessment Act, 2019.

¹⁵⁶⁵ S 7(1)(a)(iii) of the Impact Assessment Act, 2019.

¹⁵⁶⁶ S 7(1)(a)(iv) of the Impact Assessment Act, 2019.

¹⁵⁶⁷ S 7(1)(c)(i) of the Impact Assessment Act, 2019.

¹⁵⁶⁸ S 7(1)(c)(ii) of the Impact Assessment Act, 2019.

¹⁵⁶⁹ S 7(1)(c)(iii) of the Impact Assessment Act, 2019.

¹⁵⁷⁰ S 7(1)(d) of the Impact Assessment Act, 2019.

¹⁵⁷¹ National Environmental Management Act, No. 107, 1998; Environmental Protection Act, 1999; Environmental Permitting (England and Wales) Regulations, 2010; Environmental Permitting (England and Wales) (Amendment) Regulations, 2013.

¹⁵⁷² S 2 (4)(a)(ii) of the NEMA.

The UK on the other hand, employs a risk-based approach to environmental regulation, which requires that the risks of an environmental incident related to oil and gas operations are reduced as low as practically possible.¹⁵⁷³ Canada's focus is to avoid pollution from occurring,¹⁵⁷⁴ and all levels of government in Canada have authority to protect the environment.¹⁵⁷⁵ The shared nature of environmental jurisdiction makes close cooperation among the different spheres of government and Aboriginal people critical to the protection of the environment in Canada.¹⁵⁷⁶

Unlike in the UK and Canada, the inclusion of environmental rights in the South African Constitution attests to the importance that South Africa places to the protection of the environment.¹⁵⁷⁷ To further give effect to environmental protection, prevention should play a central role to South Africa's quest to exploit shale gas. The petroleum regulatory framework should compel companies that are planning to exploit shale gas to ensure that they put preventative measures in place for the exploration and production of shale gas. The conditions could include the consideration of alternatives, rather the use of freshwater as the main hydraulic fracturing fluid.

¹⁵⁷³ Department of Energy and Climate Change (2015) Onshore oil and gas exploration in the UK: regulation and best practice, at 7, England.

¹⁵⁷⁴ Environment Canada and Health Canada, 'A Guide to Understanding the Canadian Environmental Protection Act, 1999' (2004), at 3, Ottawa, Ontario.

¹⁵⁷⁵ Canadian Environmental Protection Act, 1999, at 1.

¹⁵⁷⁶ Environment Canada and Health Canada, 'A Guide to Understanding the Canadian Environmental Protection Act, 1999' (2004), at 2, Ottawa, Ontario.

¹⁵⁷⁷ Loretta Feris 'Constitutional Environmental Rights: An Under-Utilized Resource' (2008) at 49, SAJHR 24.

CHAPTER 7: MITIGATING THE NEGATIVE EFFECTS OF SHALE GAS

7.1 Introduction

As outlined in chapter five, a more effective legal framework for shale gas development in South Africa should be premised on mitigation as one of three pillars, together with prevention and remediation. Central to mitigation is the precautionary principle, which advocates for uncertainty to be factored into environmental decision-making.¹⁵⁷⁸ Undoubtedly, there is insufficient scientific evidence on the full impact of hydraulic fracturing on the environment.¹⁵⁷⁹ Equally, South Africa has limited practical knowledge of shale gas exploration and production.¹⁵⁸⁰ No exploration for shale gas has yet occurred in the country, although drilling by state owned Southern Oil Exploration Corporation (SOEKOR) in the 1960s did coincidentally discover shale gas in the Karoo.¹⁵⁸¹ At the time, the discovered gas could not be extracted due to a lack of technology to extract the resource economically.¹⁵⁸²

More recently, South Africa started paying attention to its potential shale gas resource around 2010 following applications for exploration rights by Bundu Gas and Oil Exploration (Pty) Ltd (Bundu), Falcon Oil and Gas Limited (Falcon) and Shell Exploration Company B.V (Shell).¹⁵⁸³ These applications triggered opposition from environmental interest groups such as the Treasure the Karoo Action Group (TKAG), the Centre for Environmental Rights (CER), and the Sustainable Alternatives to

¹⁵⁷⁸ United Nations 'The Rio Declaration on Environment and Development' (1992), Principle 15.

¹⁵⁷⁹ Maarten J.de Wit 'The great shale gas debate in the Karoo' (2011) at 1, S Afr J Sci 107(7/8); Academy of Science of South Africa (ASSAf) 'South Africa's Technical Readiness to Support Shale Gas Development' (2016) at 58 (ASSAf, Pretoria).

¹⁵⁸⁰ Academy of Science of South Africa (ASSAf) 'South Africa's Technical Readiness to Support Shale Gas Development' (2016) at 58 (ASSAf, Pretoria); M Burns, D Atkinson, O Barker, C Davis, E Day, A Dunlop, S Esterhuyse, P Hobbs, I McLachlan, H Neethling, N Rossouw, S Todd, L Snyman-Van der Walt, E Van Huyssteen, S Adams, M de Jager, Z Mowzer and B Scholes 'Scenarios and Activities' (2016) at 1-12 in Robert Scholes, Paul Lochner, Greg Schreiner, Luanita Snyman-Van der Walt & Megan de Jager Shale Gas Development in the Central Karoo: A Scientific Assessment of the Opportunities and Risks (CSIR, Pretoria).

 ¹⁵⁸¹ Michiel O. de Kock; Nicolas J. Beukes; Elijah O. Adeniyi; Doug Cole; Annette E. Götz; Claire Geel and Frantz-Gerard Ossa 'Deflating the shale gas potential of South Africa's Main Karoo basin' (2017) at 1, *South African Journal of Science* 113(9/10).
¹⁵⁸² Ibid.

¹⁵⁸³ John Douglas Stern and others vs Minister of Mineral Resources, para 3&4, 2015 SA 5672/2015 (High Court of South Africa, Eastern Cape Division, Grahamstown).

Fracking and Exploration Alliance (SAFE).¹⁵⁸⁴ These environmental interests groups contend that shale gas development would cause irreparable damage to the Karoo's biodiversity.¹⁵⁸⁵

Consistent with the precautionary principle, the Minister of Mineral Resources imposed a moratorium on shale gas exploration and established a Ministerial Task Team in December 2011, to advise government on the potential environmental impact of using hydraulic fracturing to extract shale gas in the Karoo.¹⁵⁸⁶ The Task Team produced a report recommending that normal exploration for shale gas (excluding hydraulic fracturing) be allowed under the current regulatory framework.¹⁵⁸⁷ The Task Team also recommended that the current regulatory framework be augmented, and once in place, for hydraulic fracturing operations to be allowed under strict supervision from a Monitoring Committee, which the Task Team also recommended should be constituted by the government.¹⁵⁸⁸ Cabinet approved these recommendations in September 2012 and constituted the Monitoring Committee.¹⁵⁸⁹

In 2014 the Petroleum Agency SA notified Bundu Gas, Falcon Oil and Shell that their applications for exploration rights would be processed, however they should revise their environmental management programmes to exclude hydraulic fracturing, and embark on a further public participation process in terms of section 79(4)(a) of the MPRDA.¹⁵⁹⁰ Despite this, no exploration right for shale gas has yet been awarded in South Africa,¹⁵⁹¹ due to the lack of an appropriate petroleum legal framework to

¹⁵⁸⁴ Jeannie van Wyk 'Fracking in the Karoo: Approvals Required?' (2014) at 35, *Stellenbosch Law Review*.

¹⁵⁸⁵ Ibid.

¹⁵⁸⁶ Minister of Mineral Resources v Stern & others (1369/2017) and Treasure the Karoo Action Group & another v Department of Mineral Resources and others para 11 (790/2018) [2019] ZASCA 99 (4 July 2019); Academy of Science of South Africa 'South Africa's Technical Readiness to Support Shale Gas Development' (2016) at 26 (ASSAf, Pretoria).

¹⁵⁸⁷ Department of Mineral Resources 'Report on Investigation of Hydraulic Fracturing in the Karoo of South Africa' (2012) at 68, available at http://www.info.gov.za/view/DownloadFileAction?id=174015, accessed on 5 July 2022.

¹⁵⁸⁸ Ibid.

 ¹⁵⁸⁹ Minister of Mineral Resources v Stern & others (1369/2017) and Treasure the Karoo Action Group & another v Department of Mineral Resources and others para 14 (790/2018) [2019] ZASCA 99 (4 July 2019).

¹⁵⁹⁰ Ibid, para 15.

¹⁵⁹¹ Ibid, para 16.

regulate shale gas exploration and production.¹⁵⁹² This chapter outlines the precautionary principle and reviews its application in South Africa, the UK and Canada to better contextualise a more effective legal framework for shale gas development in South Africa, premised on mitigation as one of three pillars.

7.2 The Precautionary Principle

The precautionary principle dates back to early civilisation and was embedded in the oral tradition of many indigenous peoples.¹⁵⁹³ Central to the early formulations of the principle was the notion that it is better safe than sorry, therefore better to err on the side of caution even where there is no evidence of harm.¹⁵⁹⁴ In modern day, the precautionary principle can be traced back to the German *Vorsorgeprinzip* (foresight principle).¹⁵⁹⁵ The *Vorsorgeprinzip* developed in the early 1970s as part of the domestic policy of the then Federal Republic of West Germany.¹⁵⁹⁶ In 1976, West Germany's environmental policy adopted the *Vorsorgeprinzip*, on the basis that environmental policy it was not enough for environmental policy to manageepotential hazards and elimination of damage after it had occurred.¹⁵⁹⁷ Rather, precautionary environmental policy requires that natural resources be protected, and their use carefully considered.¹⁵⁹⁸

The West German Federal Government elaborated further on the *Vorsorgeprinzip*, as a principle to protect the environment against specific environmental hazards, particularly avoiding or minimizing environmental risks before they materialize.¹⁵⁹⁹ The

1594 Ibid.

¹⁵⁹² Minister of Mineral Resources v Stern & others (1369/2017) and Treasure the Karoo Action Group & another v Department of Mineral Resources and others para 53(2)(a) (790/2018) [2019] ZASCA 99 (4 July 20219).

¹⁵⁹³ Mark Akunna Eze and Ifeanyi Samson Eze 'An Analysis of the Precautionary Principles and Its Adaptation in International, Regional and National Laws' (2019) at 48, *International Journal of Energy and Environmental Science* 4(3).

¹⁵⁹⁵ Liesl Marisa Harewood 'The importance of the precautionary principle in international environmental law' (2005) at 1, *Coventry Law Journal*,10(2); Jan Glazewski and Lisa Plit 'Towards the application of the precautionary principle in South African law' (2015) at 194, *Stellenbosch Law Review 26(1):* Mark Akunna Eze and Ifeanyi Samson Eze 'An Analysis of the Precautionary Principles and Its Adaptation in International, Regional and National Laws' (2019) at 48, *International Journal of Energy and Environmental Science* 4(3).

¹⁵⁹⁶ Jan Glazewski and Lisa Plit 'Towards the application of the precautionary principle in South African law' (2015) at 194, *Stellenbosch Law Review* 26(1).

¹⁵⁹⁷ Ibid.

¹⁵⁹⁸ Ibid.

¹⁵⁹⁹ Ibid.

Vorsorgeprinzip is thus closely related to the principle of prevention and pursuit of sustainable development.¹⁶⁰⁰ It evolved into a fundamental principle of German environmental law balanced by principles of economic viability.¹⁶⁰¹

The precautionary principle became entrenched in international environmental law following its adoption at the United Nations Conference on Environment and Development that was held in Rio de Janeiro in 1992.¹⁶⁰² Principle 15 of the Rio Declaration states that '*In order to protect the environment, the precautionary approach shall be widely applied by States according to their capabilities. Where there are threats of serious or irreversible damage, lack of full scientific certainty shall not be used as a reason to postpone cost-effective measures to prevent environmental degradation.*¹⁶⁰³ The principle advocates for caution to be exercised and measures to be taken to protect the environment from exposure to harm when there is scientific uncertainty about the impact of a particular proposed development or activity.¹⁶⁰⁴ This implies there does not need to be concrete evidence of harm before measures are taken to protect the environment from the possible harm.¹⁶⁰⁵

The Rio Declaration suggests that the precautionary principle becomes relevant when scientific evidence is inadequate, uncertain, or inconclusive, and preliminary scientific evaluations indicate that without adequate safeguards there may be reasonable grounds for concern that environmental harm may occur.¹⁶⁰⁶ The principle therefore requires that action be taken to protect the environment as long as there is threat of environmental damage, and despite scientific uncertainty with respect to the effect of

¹⁶⁰⁰ Ibid.

¹⁶⁰¹ Mags D. Adams 'The precautionary principle and the rhetoric behind it' (2002), at 304, *Journal of Risk Research* 5 (4); Joel Tickner, Carolyn Raffensperger and Nancy Myers 'The Precautionary Principle in Action A Handbook' (1999), at 2, *Science and Environmental Health Network.*

¹⁶⁰² Mags D. Adams 'The precautionary principle and the rhetoric behind it' (2002) at 306, *Journal of Risk Research* 5(4); United Nations 'The Rio Declaration on Environment and Development' (1992) Principle 15.

¹⁶⁰³ Ibid.

¹⁶⁰⁴ Jan Glazewski 'Conclusion: Looking Forward' in Jan Glazewski and Surina Esterhuyse Hydraulic Fracturing in the Karoo: Critical legal and Environmental Perspectives (2016) at 443 (Juta and Company (Pty) Ltd, Claremont).

¹⁶⁰⁵ Erica Weir, Richard Schabas, Kumanan Wilson and Chris Mackie 'A Canadian framework for applying the precautionary principle to public health issues' (2010) at 2, *Canadian Journal of Public Health* 101(2).

¹⁶⁰⁶ Wolfgang Huber 'After Fukushima: The precautionary principle revisited' (2012) at 4, *Verbum et Ecclesia* 33(2).

the planned activities.¹⁶⁰⁷ This does not mean science is no longer relevant in the assessment of risk or that action should be taken purely on hypothesis or theoretical assessment of risk.¹⁶⁰⁸ It is about not using science as an excuse not to act when faced with potential threats to the environment.¹⁶⁰⁹ It is a realization that no matter the level of sophistication of science and technology, there may not be a clear explanation of certain risks thus necessitating caution.¹⁶¹⁰

On the other hand, precaution is also about delaying the execution of projects whose risks have not been adequately identified.¹⁶¹¹ Precaution serves as an injunction against action when the nature of risks has not been clearly identified, and when such action threatens the environment.¹⁶¹² The precautionary principle is thus about balancing uncertainty with the irreversibility of the possible environmental effects, the potential benefits of a proposed activity, and technological advancement and scientific progress.¹⁶¹³ As such, decisions cannot be taken solely on the basis of the precautionary principle, rather the principle can be used as a criterion to evaluate proposed activities and consider alternatives.¹⁶¹⁴ The principle takes prospective responsibility seriously as a means to achieve sustainable development.¹⁶¹⁵

During the same year of the Rio Declaration, the United Nations Framework Convention on Climate Change obliged Parties to 'take precautionary measures to anticipate, prevent or minimize causes of climate change and mitigate its adverse effects. Where there are threats of serious or irreversible damage, lack of full scientific certainty should not be used as a reason for postponing such measures, taking into account that policies and measures to deal with climate change should be cost-

¹⁶⁰⁷ Mark Akunna Eze and Ifeanyi Samson Eze 'An Analysis of the Precautionary Principles and Its Adaptation in International, Regional and National Laws' (2019) at 48, *International Journal of Energy and Environmental Science* 4(3).

¹⁶⁰⁸ Ibid.

¹⁶⁰⁹ Ibid.

¹⁶¹⁰ Ibid.

 ¹⁶¹¹ Nicholas der Sadeleer 'Environmental Principles – From Political Slogans to Legal Rules' (2002) at 18 (Oxford University Press, New York).

¹⁶¹² Ibid, at 19.

¹⁶¹³ Wolfgang Huber 'After Fukushima: The precautionary principle revisited' (2012) at 6, Verbum et Ecclesia 33(2).

¹⁶¹⁴ Ibid.

¹⁶¹⁵ Ibid.

*effective to ensure global benefits at the lowest possible cost.*¹⁶¹⁶ Below are other international conventions and treaties where the precautionary principle find expression.

7.3 The Precautionary Principle in International Environmental Law

The use of the precautionary principle has grown gradually in international environmental law.¹⁶¹⁷ Marking its first clear expression in international law are the decisions that were adopted by States within the North Sea Ministerial Conferences.¹⁶¹⁸ There is reference to the principle in the Bremen Ministerial Declaration of the First International Conference on the Protection of the North Sea of 1984,¹⁶¹⁹ and the London Ministerial Declaration of the Second International Conference on the Protection of the Protection of the North Sea of 1987.¹⁶²⁰ The Hague Declaration of the Third Conference on the Protection of the North Sea of 1990,¹⁶²¹ and the Esbjerg Declaration of the Fourth Conference on the Protection of the North Sea of 1995,¹⁶²² also include the principle.

The First North Sea Declaration states that 'Conscious that damage to the marine environment can be irreversible or remediable only at considerable expense and over long periods, coastal states and the CEE¹⁶²³ must not wait for proof of harmful effects before taking action.'¹⁶²⁴ The Second North Sea Declaration is more explicit and states that 'in order to protect the North Sea from possible damaging effects of the most dangerous substances, a precautionary approach is necessary, which may require

¹⁶¹⁶ United Nations 'United Nations Framework Convention on Climate Change' (1992) Article 3(3).

¹⁶¹⁷ Jan Glazewski and Lisa Plit 'Towards the application of the precautionary principle in South African law' (2015) at 196, *Stellenbosch Law Review 26(1)*.

¹⁶¹⁸ Bremen Declaration of the International Conference on the Protection of the North Sea (1984); London Ministerial Declaration of the Second International Conference on the Protection of the North Sea (1987); Hague Declaration of the Third Conference on the Protection of the North Sea (1990); Esbjerg Declaration of the Fourth Conference on the Protection of the North Sea (1995).

 ¹⁶¹⁹ Bremen Declaration of the International Conference on the Protection of the North Sea (1984).
¹⁶²⁰ London Ministerial Declaration of the Second International Conference on the Protection of the North Sea (1987).

¹⁶²¹ Hague Declaration of the Third Conference on the Protection of the North Sea (1990).

¹⁶²² Esbjerg Declaration of the Fourth Conference on the Protection of the North Sea (1995).

¹⁶²³ Commission of the European Communities responsible for environmental protection.

¹⁶²⁴ Article 7 of the Bremen Declaration of the International Conference on the Protection of the North Sea (1984).

action to control inputs of such substances even before a causal link has been established by absolutely clear scientific evidence.¹⁶²⁵

In terms of the Third Conference on the Protection of the North Sea 'the participants will continue to apply the precautionary principle, that is, to take action to avoid potentially damaging impacts of substances that are persistent, toxic, and liable to bioaccumulate, even where there is no scientific evidence to prove a causal link between emissions and effects.'¹⁶²⁶ Recognizing that there is a connection between fisheries and the marine ecosystem, and that there are gaps in the scientific knowledge of the impact of fisheries upon the ecosystem, and of the impacts of environmental changes and pollution on fisheries,¹⁶²⁷ the Third Conference recommended that 'the precautionary principle be applied in fisheries management policies in accordance with the existing commitments of EU Member States.'¹⁶²⁸

Furthermore, on the prevention of pollution by hazardous substances, the Ministers agreed on the objective to ensure a sustainable, sound and healthy North Sea ecosystem, and that the precautionary principle would be the guiding principle to achieve that objective.¹⁶²⁹ While on the prevention of pollution from ships, the Ministers affirmed that the precautionary principle also applied to shipping activities, and welcomed and supported the work by the International Maritime Organization (IMO) to develop guidelines on the implementation of the precautionary principle in all relevant IMO activities.¹⁶³⁰ These Ministerial Declarations on the Protection of the North Sea were spurred by the fact that the availability of a significant amount of data on the pollution of the marine environment did not lead to a better understanding of the associated risks but more concern.¹⁶³¹

¹⁶²⁵ London Ministerial Declaration of the Second International Conference on the Protection of the North Sea (1987).

¹⁶²⁶ Hague Declaration of the Third Conference on the Protection of the North Sea (1990).

¹⁶²⁷ Esbjerg Declaration, s 16.

¹⁶²⁸ Esbjerg Declaration, s 16(i).

¹⁶²⁹ Esbjerg Declaration, s 17.

¹⁶³⁰ Esbjerg Declaration, s 42(iii).

¹⁶³¹ Nicholas der Sadeleer 'Environmental Principles – From Political Slogans to Legal Rules' (2002) at 94 (Oxford University Press, New York).

Complementing the declarations on the protection of the North Sea, the United Nations Environmental Programme recommended that all Governments adopt 'the principle of precautionary action' as the basis of their policy with regards to the prevention and elimination of marine pollution.¹⁶³² Subsequently, the UN Conference on Environment and Development (UNCED) affirmed the UN recommendation and assert that a precautionary and anticipatory approach should guide efforts to prevent the degradation of the marine environment rather than react after damage has been done.¹⁶³³ This requires the adoption of precautionary measures such as environment impact assessments, clean production techniques, recycling, and waste minimization.¹⁶³⁴

Other international conferences heed the call, such as the Nordic Council's Conference whose outcome states that 'taking into account the need for an effective precautionary approach, with that important principle intended to safeguard the marine ecosystem by, among other things, eliminating and preventing pollution emissions where there is reason to believe that damage or harmful effects are likely to be caused, even where there is inadequate or inconclusive scientific evidence to prove a causal link between emissions and effects.¹⁶³⁵

The application of the precautionary principle to the marine environment outlined above is relevant to exploitation of shale gas in the Karoo. The calls for precautionary and anticipatory approaches to guide efforts to prevent the degradation of the marine environment, rather than react after damage has been done,¹⁶³⁶ and encouraging the adoption of precautionary measures such as environment impact assessments, clean production techniques, recycling, and waste minimization,¹⁶³⁷ bear direct application

¹⁶³² UNEP 'Report of the Governing Council on the Work of its Fifteenth Session' (1989) U.N. Environment Programme, U.N. GAOR, 44th Sess., Supp No 25, 12th mtg at 153, U.N. DOC. A44/25 (1989).

¹⁶³³ United Nations 'Conference on Environment and Development' (1992) Article 17.2.1, A/CONF.151//26, Vol.II, 13 August 1992.

¹⁶³⁴ Ibid.

 ¹⁶³⁵ Nordic Council's International Conference on Pollution of the Seas: Final Document Agreed to, Oct.
18, 1989, in Nordic Action Plan on Pollution of the Seas, 99 apat V (1990).

¹⁶³⁶ United Nations 'Conference on Environment and Development' (1992) Article 17.2.1, A/CONF.151//26, Vol.II, 13 August 1992.

¹⁶³⁷ Ibid.

to the use of hydraulic fracturing in shale gas development. The receival of the precautionary principle within the African context as outlined below is also instructive.

In fact, a landmark agreement for the African continent in respect of the precautionary principle is the Bamako Convention on Transboundary Hazardous Waste into Africa, which compels the Parties to adopt and implement the preventive precautionary approach to pollution problems.¹⁶³⁸ This entails preventing the release of substances that could cause harm to the environment and human health without waiting for scientific proof regarding such harm.¹⁶³⁹ The Convention further obliges the Parties to cooperate in taking appropriate measures to implement the precautionary principle to pollution prevention, through the application of clean production methods, rather than the pursuit of a permissible emissions approach based on assimilative capacity assumptions.¹⁶⁴⁰

While the declarations and protocols outlined above focussed on the protection of the marine environment, the Montreal Protocol ushered in a new era in the climate change debate.¹⁶⁴¹ The Montreal Protocol embeds the precautionary principle in its preamble,¹⁶⁴² it states that '*Parties to the protocol are determined to protect the ozone layer by taking precautionary measures to control total global emissions of substances that deplete it equitably, with the ultimate objective of their elimination*'.¹⁶⁴³ This is to be achieved through development in scientific knowledge, taking into account technical and economic considerations and developmental needs of developing countries.¹⁶⁴⁴

The Second World Climate Conference subsequently recommended that to achieve sustainable development and to meet the needs of present and future generations, precautionary measures to address the climate challenge must anticipate, prevent, attack, minimize or mitigate the adverse consequences of environmental degradation

¹⁶³⁸ Bamako Convention on Hazardous Wastes within Africa art. 4(3)(f), 30 ILM 773, Jan. 30, 1991. ¹⁶³⁹ Ibid.

¹⁶⁴⁰ Ibid.

¹⁶⁴¹ United Nations 'Montreal Protocol on Substances that Deplete the Ozone Layer' 16 Sept 1987, Treaty Series, 1989, Vol. 1522, 1-26369.

¹⁶⁴² Ibid.

¹⁶⁴³ Ibid.

¹⁶⁴⁴ Ibid.

that might result from climate change.¹⁶⁴⁵ As such, where there are threats of serious or irreversible damage, lack of full scientific certainty should not be used as a reason for postponing cost-effective measures to prevent such environmental degradation, taking into account different socio-economic contexts.¹⁶⁴⁶ Despite its wide acclaim, the precautionary principle has its controversies. Some countries have adopted it as an accepted legal principle, while others view it as merely an approach to be taken subject to national discretion.¹⁶⁴⁷

The fact that a number of international treaties refer to it as the precautionary *principle*, while others as the precautionary *approach* does not help in clarifying the matter.¹⁶⁴⁸ The United States in particular is opposed to recognizing it as a legal principle because it lacks specific parameters for application and the necessary rigor required of legal rules.¹⁶⁴⁹ As a result it cannot be a legal principle since it cannot operate as a source of law, rather is an approach to be taken than a principle to be applied.¹⁶⁵⁰ In terms of the inherent conflict between trade and environment protection, the United States also rejects it as a principle to be applied and calls for trade measures to be based on sound science.¹⁶⁵¹ Other jurisdictions such as the European Union, regard the precautionary principle as a legal principle and have established minimum requirements for its application.¹⁶⁵² In the context of trade, the European Commission advocates for its inclusion among the governing principles.¹⁶⁵³ This is a progressive and flexible approach that recognizes that uncertainty requires that each case be evaluated on its own merits and decisions be made accordingly.¹⁶⁵⁴

¹⁶⁴⁵ Ibid.

¹⁶⁴⁶ Ibid.

¹⁶⁴⁷ Jan Glazewski and Lisa Plit 'Towards the application of the precautionary principle in South African law' (2015) at 195, *Stellenbosch Law Review* 26(1).

¹⁶⁴⁸ Ibid, at 196.

¹⁶⁴⁹ Ibid.

¹⁶⁵⁰ Ibid.

¹⁶⁵¹ Nicholas der Sadeleer 'Environmental Principles – From Political Slogans to Legal Rules' (2002) at 98 (Oxford University Press, New York).

¹⁶⁵² Jan Glazewski and Lisa Plit 'Towards the application of the precautionary principle in South African law' (2015) at 196, *Stellenbosch Law Review* 26(1).

 ¹⁶⁵³ Nicholas der Sadeleer 'Environmental Principles – From Political Slogans to Legal Rules' (2002) at 98 (Oxford University Press, New York).

¹⁶⁵⁴ Jan Glazewski and Lisa Plit 'Towards the application of the precautionary principle in South African law' (2015) at 196, *Stellenbosch Law Review* 26(1).

Broadly, criticism of the precautionary principle include that its interpretation could stifle technological progress, and reduce the role of science in policy-making.¹⁶⁵⁵ Furthermore the principle is criticized for not providing guidance on the level of evidence or indication of a threat that is required for precaution to become relevant.¹⁶⁵⁶ It is limited to serious or irreversible damage, implying that threats of minor damage are not of concern.¹⁶⁵⁷ It does not make it mandatory for protective measures to be taken, but merely indicates that lack of scientific certainty cannot be used as a reason to delay precautionary measures.¹⁶⁵⁸ Protective measures could be postponed for other reasons such as economic development or poverty reduction imperatives.¹⁶⁵⁹ Furthermore, the consideration of the capabilities of states, which includes economic, governance, and technical capabilities moderates the requirement to apply the precautionary principle.¹⁶⁶⁰

A stronger formulation of the precautionary principle emerged from the Wingspread Conference that was attended by scholars, activists, and environmentalists.¹⁶⁶¹ The Wingspread Consensus Statement states that '*when an activity raises threats of harm to the environment or human health, precautionary measures should be taken even if some cause and effect relationships are not fully established scientifically*'.¹⁶⁶² In terms of the Wingspread Consensus, a criterion to evaluate the applicability of the precautionary principle is the possibility of a threat of harm of an activity in the absence of scientific certainty.¹⁶⁶³ The threat of harm does not have to be serious or irreversible, just the threat of harm is sufficient ground to apply precaution.¹⁶⁶⁴ Consequently, society trying to protect the environment and human health against potentially harmful activities needing to prove such harm faced with scientific uncertainty about cause and

¹⁶⁵⁵ Erica Weir, Richard Schabas, Kumanan Wilson and Chris Mackie 'A Canadian framework for applying the precautionary principle to public health issues' (2010) at 2, *Canadian Journal of Public Health* 101(5).

¹⁶⁵⁶ Rosy Cooney 'The Precautionary Principle in Biodiversity Conservation and Natural Resource Management: An issues paper for policy-makers, researchers and practitioners' (2004) at 7, *IUCN Policy and Global Change*.

¹⁶⁵⁷ Ibid.

¹⁶⁵⁸ Ibid.

¹⁶⁵⁹ Ibid.

¹⁶⁶⁰ Ibid.

 ¹⁶⁶¹ The Science and Environmental Health Network Conference 'Wingspread Statement on the Precautionary Principle (1998), Racine, Wisconsin, 23 – 25 January 1998.
¹⁶⁶² Ibid

¹⁶⁶³ Joel Tickner, Carolyn Raffensperger and Nancy Myers 'The Precautionary Principle in Action A Handbook' (1999), at 3, *Science and Environmental Health Network*.

¹⁶⁶⁴ Ibid.

effect is waning.¹⁶⁶⁵ Therefore, if cause and effect can be satisfactorily determined then prevention supersedes precaution.¹⁶⁶⁶

The Wingspread Consensus Statement affirms the precautionary principle as providing a rationale for action to be taken against activities that are potentially harmful, when there is inadequate scientific evidence as to the harmful effect of the activity.¹⁶⁶⁷ It recognizes that the burden-of-scientific-proof approach has led to risk mitigation associated with potentially harmful activities being taken only after such risks have materialized.¹⁶⁶⁸ Accordingly, the precautionary principle shifts this burden of requiring proof of negative consequences in opposing an action, to requiring proof of the activity to be allowed.¹⁶⁶⁹ The Wingspread Consensus emphasizes the need for those intending to conduct potentially harmful activities to prove that such activities will not cause harm to the environment or human health.¹⁶⁷⁰

Accordingly, those who have the power, control and resources to act and prevent harm should bear that responsibility.¹⁶⁷¹ As such, regulations alone might not ensure precautionary behaviour, therefore market incentives such as requiring financial provisions for potential harm to the environment or human health to be made upfront, or liability for damages could further compel industry to seek ways to prevent such negative impacts.¹⁶⁷² Moreover, those undertaking potentially harmful activities have the duty to monitor, investigate, inform and act on potential harm to the environment and human health.¹⁶⁷³ They should routinely monitor their activities, with third-party

¹⁶⁶⁵ Liesl Marisa Harewood 'The importance of the precautionary principle in international environmental law' (2005) at 2, *Coventry Law Journal* 10(2).

¹⁶⁶⁶ Joel Tickner, Carolyn Raffensperger and Nancy Myers 'The Precautionary Principle in Action A Handbook' (1999), at 3, *Science and Environmental Health Network*.

¹⁶⁶⁷ Ibid.

¹⁶⁶⁸ Ibid, at 1.

¹⁶⁶⁹ Liesl Marisa Harewood 'The importance of the precautionary principle in international environmental law' (2005) at 2, *Coventry Law Journal* 10(2).

¹⁶⁷⁰ Ibid, at 4.

¹⁶⁷¹ Ibid.

¹⁶⁷² Ibid.

verification.¹⁶⁷⁴ They should have the responsibility to inform authorities and the public when a potential impact is found and act upon that knowledge.¹⁶⁷⁵

As mentioned in the introduction, this chapter conducts a comparative assessment of the South African petroleum and environmental legal frameworks with those of the UK and Canada, using *mitigation* as the comparative theme. How these three jurisdictions provide for Mitigation of environmental harm is outlined in the following sections.

7.4 The Application of the Precautionary Principle in South Africa

South Africa has a risk-averse and cautious approach to environmental protection that takes into account the limits of current knowledge of activities that might have a detrimental impact on the environment.¹⁶⁷⁶ The NEMA advocates for the anticipation and prevention of negative impacts on the environment and people's environmental rights, and where they cannot be prevented such impacts must be minimized and remedied.¹⁶⁷⁷

In *Fuel Retailers Association of Southern Africa v Director-General Environmental Management, Mpumalanga, and others*,¹⁶⁷⁸ the Constitutional Court affirmed the NEMA requirement of a 'risk-averse and cautious approach' to environmental protection, which takes into account the limits of current knowledge about consequences of decisions and actions.¹⁶⁷⁹ The Court determined that the precautionary principle required the authorities responsible for the protection of the environment and water resources to insist on adequate precautionary measures to safeguard against the contamination of underground water.¹⁶⁸⁰

¹⁶⁷⁴ Ibid.

¹⁶⁷⁵ Ibid.

¹⁶⁷⁶ S 2(4)(a)(vii) of the NEMA.

¹⁶⁷⁷ S 2(4)(a)(viii) of the NEMA.

¹⁶⁷⁸Fuel Retailers Association of Southern Africa vs Director-General Environmental Management, Mpumalanga, and others 2007, ZACC 67/06 [2007] ZACC13.

¹⁶⁷⁹ Jan Glazewski and Lisa Plit 'Towards the application of the precautionary principle in South African law' (2015) at 216, *Stellenbosch Law Review 26(1)*; s 2(4)(a)(vii) of the NEMA.

¹⁶⁸⁰ Fuel Retailers Association of Southern Africa and others vs Director-General Environmental Management, Mpumalanga 2007, para 98, ZACC 67/06 [2007] ZACC13.

In terms of the judgment, the precautionary principle is applicable where, due to insufficient scientific knowledge there is uncertainty on the future impact of a proposed development.¹⁶⁸¹ Accordingly, water is a precious commodity, a natural resource that needs to be protected for the benefit of present and future generations.¹⁶⁸² The judgment essentially clarified the position of the South African courts on the precautionary principle, viewing it as giving effect to sustainable development which is a constitutional imperative.¹⁶⁸³ The application of the precautionary principle will be crucial for shale gas development in South Africa. The effects of hydraulic fracturing in the Karoo are not yet known,¹⁶⁸⁴ particularly since no exploration for shale gas has yet occurred in the country.¹⁶⁸⁵ The risks related to the use of the technology have been highlighted,¹⁶⁸⁶ such as its potential impact on water resources,¹⁶⁸⁷ and climate change,¹⁶⁸⁸ associated with uncontrolled emissions of methane gas.¹⁶⁸⁹ Moreover, shale gas development could induce seismic events.¹⁶⁹⁰ The likelihood and extent of these risks are uncertain.¹⁶⁹¹ This attests to the need for South Africa to tread cautiously in its quest to exploit the shale gas resource.

¹⁶⁸¹ Ibid.

¹⁶⁸² Ibid.

¹⁶⁸³ Jan Glazewski and Lisa Plit 'Towards the application of the precautionary principle in South African law' (2015) at 216, *Stellenbosch Law Review 26(1)*.

¹⁶⁸⁴ Martin J.de Wit 'The great shale gas debate in the Karoo' (2011) at 1, *South African Journal of Science* 107(7/8).

¹⁶⁸⁵ Michiel O. de Kock; Nicolas J. Beukes; Elijah O. Adeniyi; Doug Cole; Annette E. Götz; Claire Geel and Frantz-Gerard Ossa 'Deflating the shale gas potential of South Africa's Main Karoo basin' (2017) at 1, *South African Journal of Science* 113(9/10).

¹⁶⁸⁶ Jan Glazewski and Lisa Plit 'Towards the application of the precautionary principle in South African law' (2015) at 218, *Stellenbosch Law Review 26(1)*; Michael Esposito 'Water Issues Set the Pace for Fracking Regulations and Global Shale Extraction' (2013) at 172, *Tulane Journal of International & Comparative Law 22.*

¹⁶⁸⁷ Academy of Science of South Africa 'South Africa's Technical Readiness to Support Shale Gas Development' (2016) at 73, (ASSAf, Pretoria); Jake Hays, Madelon L. Finkel, Michael Depledge, Adam Law & Seth B.C. Shonkoff 'Considerations for the development of shale gas in the United Kingdom' (2015) at 37, *Science of the Total Environment;* Daniele Costa, Joao Jesus, David Branco, Anthony Danko & Antonio Fiuza 'Extensive Review of Shale Gas Environmental Impacts from Scientific Literature (2010 – 2015)' (2017) at 14583, *Environ Sci Pollut Res* 24.

¹⁶⁸⁸ Robert W. Howarth 'A bridge no nowhere: methane emissions and the greenhouse gas footprint of natural Gas' (2014) at 1, *Energy Science and Engineering*.

¹⁶⁸⁹ Laurence Stamford & Adisa Azapagic A Fractured truth (2014), at 27, The Chemical Engineer.

¹⁶⁹⁰ Matthew Cotton 'Fair fracking? Ethics and environmental justice in the United Kingdom shale gas policy and planning' (2017) at 186, *Local Environment 22(2).*

¹⁶⁹¹ Jan Glazewski and Lisa Plit 'Towards the application of the precautionary principle in South African law' (2015) at 218, *Stellenbosch Law Review 26(1)*; Martin J.de Wit 'The great shale gas debate in the Karoo' (2011) at 1, *South African Journal of Science* 107(7/8).

7.5 The Application of the Precautionary Principle in the United Kingdom

Unlike in South Africa, the precautionary *principle* is not embedded in the UK environmental law,¹⁶⁹² nor its petroleum law.¹⁶⁹³ A precautionary *approach* was, however, introduced in Britain's policy through the 1990 White Paper on the Environment titled 'This Common Inheritance'.¹⁶⁹⁴ In terms of the White Paper, '*where there are significant risks of damage to the environment, the government will be prepared to take precautionary action to limit the use of potentially dangerous materials or the spread of potentially dangerous pollutants, even where scientific knowledge is not conclusive, if the balance of likely costs and benefits justifies it. The precautionary principle applies particularly where there are good grounds for judging either that action taken promptly at comparatively low cost may avoid more costly damage later, or that irreversible effects may follow if action is delayed*.'¹⁶⁹⁵ This is a convenient version of the precautionary principle, emphasising a cost benefit analysis before taking action.¹⁶⁹⁶

The 1999 strategy on sustainable development, which states that 'precautionary action requires an assessment of the costs and benefits of action, and transparency in decision-making', demonstrated that Britain still had no intent to adopt the precautionary principle fully.¹⁶⁹⁷ The UK's posture on the precautionary principle was laid bare in *R v. Secretary of State for Trade and Industry ex parte Duddridge*.¹⁶⁹⁸ The case was a judicial review of the decision of the Secretary of State of Trade and Industry of State of Trade and Industry not to issue regulations to the National Grid Company plc or other licence holders, under the Electricity Act 1989, so as to restrict the risk associated with the

¹⁶⁹² Environmental Protection Act, 1990; Environmental Act, 1995.

¹⁶⁹³ Petroleum Act, 1998.

¹⁶⁹⁴ Mags D. Adams 'The precautionary principle and the rhetoric behind it' (2002), at 305, *Journal of Risk Research* 5 (4).

¹⁶⁹⁵ Department of the Environment 'This Common Inheritance: Britain's Environmental Strategy: UK White Paper on Environmental Policy' (1990) (HMSO, London).

¹⁶⁹⁶ Mags D. Adams 'The precautionary principle and the rhetoric behind it' (2002), at 306, *Journal of Risk Research* 5(4).

¹⁶⁹⁷ Department of the Environment, Transport and the Regions 'A better quality of life: A Strategy for Sustainable Development for the United Kingdom Great Britain' (1999) (Stationery Office, London); Mags D. Adams 'The precautionary principle and the rhetoric behind it' (2002), at 306, *Journal of Risk Research* 5 (4).

¹⁶⁹⁸ The Status of the 'Precautionary Principle' in Law: R v Secretary of State for Trade and Industry ex parte Duddridge (1995) 7(2) J.Envtl.L.224. (United Kingdom Queen's Bench Division, Farquharson LJ and Smit J, 4 October 1994).

electromagnetic fields from electric cables being laid as part of a national grid.¹⁶⁹⁹ In essence, the laying of a possible high-tension electric cable in front of a school was challenged as possible risk of leukaemia to students.¹⁷⁰⁰

The applicants argued that the Secretary of State for Trade and Industry had a legal obligation in terms of Article 130r of the European Commission Treaty (EC Treaty) as amended by the Treaty of the European Union, the Maastrict Treaty which came into effect in November 1993 to consider the project taking the precautionary principle into account.¹⁷⁰¹ The Court considered Article 130r,¹⁷⁰² however rejected the argument on the basis that it does not impose an obligation on national governments.¹⁷⁰³ This was a narrow approach by the UK Court, dismissing the matter on administrative grounds rather than fully applying itself on the substantive content of the precautionary principle and its applicability.

The implication of relying on procedural technicalities to avoid the precautionary approach in the UK could spill over to activities such as shale gas development, where the precautionary approach certainly needs to be a consideration given that the risks associated with hydraulic fracturing to the environment are not yet fully understood. This was taken care of in *Friends of the Earth's Application for Judicial Review*, where the Northern Ireland court recognized the need to apply the precautionary principle.¹⁷⁰⁴

The case was an appeal against the decision of Maguire J dismissing an application for Judicial Review by Friends of the Earth Limited.¹⁷⁰⁵ The case relates to the Department of Environment refusing to issue a Stop Notice to the Shaftesbury Estate of Lough Neagh Limited, the owners of the bed of Lough Neagh (the Shaftesbury Estate) and a number of businesses involved in sand extraction from Lough Neagh (the sand traders) in 2015.¹⁷⁰⁶ Lough Neagh is a freshwater lough, where up to 1.5

201

¹⁶⁹⁹ Ibid, at 224.

¹⁷⁰⁰ Ibid.

¹⁷⁰¹ Ibid, 231.

¹⁷⁰² Ibid, at 231-237.

¹⁷⁰³ Ibid, at 238.

¹⁷⁰⁴ Friends of the Earth Ltd's Application for Judicial Review, Re, 2007 WL 03634956 (2017) *West Law* 2021, Thomson Ruiters.

¹⁷⁰⁵ Ibid, at 1. ¹⁷⁰⁶ Ibid.

million tons of sand was extracted per year over eighty years without planning permission.¹⁷⁰⁷ Because the lough is a protected site, and an area of special scientific interest, any application for planning permission would require an environmental impact assessment and a habitat's assessment.¹⁷⁰⁸

Upon an enquiry by the Ulster Angling Association on the status of the sand extraction in 2012, and after consultation with the relevant agencies and sand traders, in 2014, the Department of Environment informed the Shaftesbury Estate and the sand traders that the dredging of the sand was unauthorised therefore should cease.¹⁷⁰⁹ This decision was based on a report by the Department of Environment's Enforcement Group that indicated that the sand dredging had the potential to cause significant environmental impacts, therefore a precautionary approach had to be adopted in the absence of evidence proving otherwise.¹⁷¹⁰ Operations did not cease, therefore the Department of Environment issued an enforcement notice, an Enforcement Report, and an Environmental Assessment Determination Sheet to the Shaftesbury Estate and the sand traders in 2015.¹⁷¹¹

The Enforcement Report indicated that the operations were unauthorised, and that with the presence of doubt over the potential impacts of the operations on a European site, and the environment, the operations were not compliant with the EIA Directive and the Habitats Directive.¹⁷¹² The operations therefore had to cease until an Environmental Impact Assessment and a Habitats Assessment was done.¹⁷¹³ The Shaftesbury Estate and sand traders appealed against the Enforcement Notice at the Planning Appeals Commission (PAC) on the grounds that planning permission ought to be granted in respect of the breach of planning control.¹⁷¹⁴ The appeal implied that the Enforcement Notice had no effect pending its final determination.¹⁷¹⁵ While the Minister considered to issue a Stop Notice compelling cessation of operations, he did

- ¹⁷⁰⁷ Ibid.
- ¹⁷⁰⁸ Ibid.
- ¹⁷⁰⁹ Ibid.
- ¹⁷¹⁰ Ibid.
- ¹⁷¹¹ Ibid, at 2.
- ¹⁷¹² Ibid.
- 1713 Ibid.
- 1714 Ibid.
- 1715 Ibid.

not ultimately issue the Stop Notice against advice from Departmental officials.¹⁷¹⁶ That advice also recommended that the Department of Environment appoint a scientific body to undertake research on the impact of the sand extraction.¹⁷¹⁷

In November 2015 the Minister made the decision that a Stop Notice should not be issued because it would not be an proportionate response, since there was no evidence that the dredging, which had been ongoing long before the site's designation, is having any impact on the environmental features of the lough.¹⁷¹⁸ Accordingly it would not be in the wider public interest to risk the potential economic harm until there was an understanding of the potential environmental impact.¹⁷¹⁹ The Minister undertook to review the matter once the relevant information was available.¹⁷²⁰ It is this decision of the Minister that was taken for Judicial Review by Friends of the Earth Limited.¹⁷²¹ The application for Judicial Review challenged the failure of the Minister to issue a Stop Notice on the grounds that the decision was in breach of the EIA Directive and the Habitats Directive and the implementing Regulations.¹⁷²²

In June 2016 the Department received the report titled 'Implications of Sand Extraction on the Lough Neagh and Lough Beg SPA'.¹⁷²³ The report concluded that based on available evidence no significant negative impact of moderate significance or greater had been identified during the assessment.¹⁷²⁴ There was however recognition that further information on these areas was required in respect of impact assessment.¹⁷²⁵ Handing down judgment, the Northern Ireland Court referred to Article 191(2) of the Treaty on the Functioning of the European Union, which sets out the aims and principles, but does not impose any duty.¹⁷²⁶ Article 19(2) states that '*the policy on the environment shall be based on certain principles, namely, the precautionary principle*

¹⁷¹⁶ Ibid.

- 1717 Ibid.
- 1718 Ibid.
- ¹⁷¹⁹ Ibid.
- ¹⁷²⁰ Ibid.
- ¹⁷²¹ Ibid. ¹⁷²² Ibid.
- ¹⁷²³ Ibid, at 3.
- ¹⁷²⁴ Ibid.
- ¹⁷²⁵ Ibid.
- 1726 Ibid.

and on the principles that preventative action should be taken, that environmental damage should as a priority be rectified at source and that the polluter should pay.¹⁷²⁷

Environmental Impact Assessments arise from Directive 2011/92/EU as implemented by the Planning (Environmental Impact Assessment) Regulations (Northern Ireland) 2015.¹⁷²⁸ The preamble to the Directive states that the policy is based on the precautionary principle, and that the effects on the environment should be taken into account at the earliest possible stage in all the technical planning and decision-making processes.¹⁷²⁹ Article 2 (1) of the Treaty on the Functioning of the European Union requires that Member States adopt necessary measures to ensure that projects that potentially have a significant impact on the environment be subjected to an impact assessment before consent is given.¹⁷³⁰

Regulation 4(2) of the Planning (Environmental Impact Assessment) Regulations (Northern Ireland), provides that planning permission shall not be granted unless the requisite environmental information from the developer has been taken into account, together with any environmental information supplied as part of the consultation process.¹⁷³¹ An environmental screening process is undertaken to determine whether an environmental impact assessment is required for a particular project.¹⁷³²

The Northern Ireland court found that Maguire J erred in not finding that the failure of the Department to serve a Stop Notice was in breach of the Directives and Regulations.¹⁷³³ This was because in so doing the Department failed to give effect to the precautionary principle, the preventive principle, and the obligation under Article 4(3) of the Treaty of the European Union to take any appropriate measures to ensure

¹⁷²⁷ Article 191(2) of Treaty on the Functioning of the European Union.

¹⁷²⁸ Directive 2011/92/EU of the European Parliament and of the Council on the Assessment of the Effects of Certain Public and Private Projects on the Environment (13 December 2011); Regulation 4(2) of the Planning (Environmental Impact Assessment) Regulations (Northern Ireland) 2015; Friends of the Earth Ltd's Application for Judicial Review, Re, 2007 WL 03634956 (2017) at 3.

¹⁷²⁹ Directive 2011/92/EU of the European Parliament and of the Council on the Assessment of the Effects of Certain Public and Private Projects on the Environment (13 December 2011).

¹⁷³⁰ Article 2 (1) of the Treaty on the Functioning of the European Union.

¹⁷³¹ Regulation 4(2) of the Planning (Environmental Impact Assessment) Regulations (Northern Ireland) 2015.

¹⁷³² Regulation 4(2) of the Planning (Environmental Impact Assessment) Regulations (Northern Ireland) 2015.

¹⁷³³ Friends of the Earth Ltd's Application for Judicial Review, Re, 2007 WL 03634956 (2017) at 5.
fulfilment of obligations.¹⁷³⁴ Nonetheless, while the UK is flipflopping on the use of hydraulic fracturing it has adopted a cautious approach to its use.¹⁷³⁵ As a result shale gas development in the UK has not yet taken place due to a complex regulatory framework, and strong opposition from local communities.¹⁷³⁶

As stated in section 6.5 of this thesis, once an applicant has been issued with a license for petroleum exploration and production in the UK, the licensee has to apply for the granting of a planning permission for consent to drill a well or conduct hydraulic fracking operations.¹⁷³⁷ The application for planning permission may need to be supported by an environmental impact assessment (EIA) following the EIA regulations of the relevant devolved country concerned.¹⁷³⁸ A mandatory EIA is required only if the Minerals Planning Authority believes that the planned operations are likely to have significant negative impact on the environment.¹⁷³⁹

Therefore, the Oil and Gas Authority in the UK is obliged to only give consent to the drilling of shale gas wells when the minerals planning authorities have granted permission to drill, and the relevant planning conditions have been satisfied, and all the necessary permits from the relevant environmental agencies are in place.¹⁷⁴⁰ Consent to hydraulically fracture shale gas wells can also only be given after the relevant health and safety authorities have been notified and are satisfied with the well designs, following examination focussed on safety related to hydraulic fracturing by an independent well design expert.¹⁷⁴¹ The health and safety authorities then have to

¹⁷³⁴ Article 4(3) of the Treaty of the European Union. Friends of the Earth Ltd's Application for Judicial Review, Re, 2007 WL 03634956 (2017) at 5.

 ¹⁷³⁵ Jan Glazewski and Surina Esterhuyse 'Hydraulic Fracturing in the Karoo: Critical legal and Environmental Perspectives' (2016) at 23, (Juta and Company (Pty) Ltd, Claremont).
 ¹⁷³⁶ Ibid.

¹⁷³⁷ Morgan J 'Sustainability and stakeholder participation: shale gas extraction in the United Kingdom' in May JR and Dernbach JC Shale Gas and the Future of Energy: Law and Policy for Sustainability (2016) at 152, Edward Elgar Publishing Limited, UK.

¹⁷³⁸ Peter Cameron, Juan Felipe Neira Castro, Tomas Lanardonne and Geoffrey Wood 'Across the universe of shale resources – a comparative assessment of the emerging legal foundations for unconventional energy' (2018) at 312, *Journal of World Energy Law and Business* 1; John Paterson and Tina Hunter 'Shale Gas Law and Regulation in the United Kingdom' in Tina Hunter *Handbook of Shale Gas Law and Policy: Economics, Access, Law and Regulation in Key Jurisdictions* (2016) at 292, Energy & Law 18 (Intersentia Ltd, Cambridge: United Kingdom).

¹⁷³⁹ Ibid.

 ¹⁷⁴⁰ Michael Burns, Charlie Reid & Justyna Bremen 'UK Shale Gas – A Policy Tug War' (2016) at 249,
 Journal of Energy & Nat Resources Law 34(2).

¹⁷⁴¹ Ibid, at 250.

monitor progress on the drilling of the well and subsequent hydraulic fracturing operations.¹⁷⁴² Authorisation for hydraulic fracturing is therefore only given if the relevant agency is confident that there will be no adverse impact to the environment.¹⁷⁴³ Should an operator wish to start production from a shale gas development site, they will be required to go through the same permitting process as described above.¹⁷⁴⁴

7.6 The Application of the Precautionary Principle in Canada

The precautionary principle is embedded in Canada's legal system gradually embraced into policy,¹⁷⁴⁵ and legislation.¹⁷⁴⁶ The adoption of the Harmonisation Accord by the Canadian Council of Ministers of the Environment (excluding Quebec) in 1998 began the process of affirming the precautionary principle in the Canadian legal system.¹⁷⁴⁷ The objectives of the Accord are to enhance environmental protection, promote sustainable development, and achieve greater effectiveness, efficiency, accountability, predictability and clarity of environmental management in Canada.¹⁷⁴⁸ Through the Accord, the provinces would work together to develop and implement consistent environmental measures throughout Canada.¹⁷⁴⁹ Principle 2 of the Accord, captures Canada's then precautionary approach as follows 'where there are threats of serious or irreversible environmental damage, lack of full scientific certainty shall not be used as a reason for postponing cost-effective measures to prevent environmental degradation'.¹⁷⁵⁰

The sub-agreements that were developed to give effect to the Harmonization Accord somewhat diluted the commitments made in the Accord because the precautionary

¹⁷⁴² Ibid.

¹⁷⁴³ Ibid.

¹⁷⁴⁴ Ibid.

¹⁷⁴⁵ Canadian Ministers of the Environment 'A Canada-Wide Accord on Environmental Harmonization' (1998) available at *https://faolex.fao.org/docs/pdf/can83339.pdf* accessed on 24 October 2022.

¹⁷⁴⁶ Canadian Environmental Protection Act, 1999; Federal Sustainable Development Act, 2008; Canadian Environmental Assessment Act, 2012.

¹⁷⁴⁷ David L. Vanderzwaag, Susanna D. Fuler and Ransom A. Myers 'Canada and the Precautionary Principle/Approach in Ocean and Coastal Management: Wading and Wandering in Tricky Currents' (2002) at 124, Ottawa Law Review 34(1).

¹⁷⁴⁸ Canadian Ministers of the Environment 'A Canada-Wide Accord on Environmental Harmonization' (1998) available at *https://faolex.fao.org/docs/pdf/can83339.pdf* accessed on 24 October 2022.

¹⁷⁴⁹ Ibid.

¹⁷⁵⁰ Ibid, at 2.

approach is weakly formulated in them.¹⁷⁵¹ For example, the Sub-agreement on Canada-Wide Environmental Standards has various qualifications that have a neutralising effect such as, standards to be developed will be based on 'sound science' and that environmental measures will be determined in a sustainable development context, taking into account socio-economic considerations.¹⁷⁵²

In September 2001 the Federal Government of Canada issued a discussion document on the precautionary approach/principle, which began a process of establishing a Canadian federal framework for applying the precautionary approach.¹⁷⁵³ Its guiding principles include the general principles of application, such as recognizing the legitimacy for decisions to be guided by a society's chosen level of protection against risk.¹⁷⁵⁴ The document makes the following recommendations:¹⁷⁵⁵ Firstly, it recommends that sound scientific information be the basis for applying the precautionary approach, and calls for increased transparency, accountability and public involvement. Its guiding principles propose that precautionary measures put in place be subject to reconsiderations based on the evolution of science, technology and society's chosen level of protection.

Secondly, the precautionary measures should be proportional to the potential severity of the risk being addressed and to society's level of protection. Thirdly, the measures should be non-discriminatory and consistent with measures taken in similar circumstances. Fourthly, the measures should be cost-effective with the goal of generating an overall net benefit for society, at least cost and efficiency in the choice of measures. Fifth, the measures should be least trade restrictive.

While hailed as progressive, key critique of the discussion document is its strong emphasis of sound science, not addressing the burden of proof in decision-making,

¹⁷⁵¹ David L. Vanderzwaag, Susanna D. Fuler and Ransom A. Myers 'Canada and the Precautionary Principle/Approach in Ocean and Coastal Management: Wading and Wandering in Tricky Currents' (2002) at 124, *Ottawa Law Review* 34(1).

¹⁷⁵² Ibid.

¹⁷⁵³ Ibid; Jan Glazewski and Lisa Plit 'Towards the application of the precautionary principle in South African law' (2015) at 206, *Stellenbosch Law Review* 26(1).

 ¹⁷⁵⁴ David L. Vanderzwaag, Susanna D. Fuler and Ransom A. Myers 'Canada and the Precautionary Principle/Approach in Ocean and Coastal Management: Wading and Wandering in Tricky Currents' (2002) at 124, *Ottawa Law Review*, 34(1).

and neglecting the crucial alternatives assessment approach.¹⁷⁵⁶ Notably, Principle 3.3 requires that sound scientific information and evaluation be the basis for applying the precautionary approach.¹⁷⁵⁷ As such 'before the precautionary approach can be applied, scientific data relevant to the risk must be evaluated through a sound, credible, transparent and inclusive mechanism leading to a conclusion that expresses the possibility of occurrence of harm and the magnitude of that harm'.¹⁷⁵⁸ This is contrary to Principle 15 of the Rio Declaration which advocates for action to be taken particularly in the face of scientific uncertainty, where there are threats of serious or irreversible environmental damage.¹⁷⁵⁹

In terms of the burden of proof, the document suggests that when codifying the precautionary approach in statute, it may be crucial to shift the burden of proof to those planning activities that may have a detrimental effect on the environment.¹⁷⁶⁰ However it does not recommend, as a guiding principle, general burden of proof reversal.¹⁷⁶¹ Rather, Principle 3.4 restricts the burden of proof to those who should bear the burden of producing scientific information.¹⁷⁶² The document proposes that the responsibility of providing scientific information should generally rest with those planning to undertake activities that potentially cause irreversible harm to the environment, but that burden may shift depending on who, in a concrete scenario, would be in the best position to provide the information base.¹⁷⁶³ Similarly the alternatives assessment approach is neglected in the document.¹⁷⁶⁴ The alternatives assessment is important since it requires the consideration of alternative technologies, and result in the least environmentally damaging options being adopted.¹⁷⁶⁵

¹⁷⁶⁴ Ibid.

¹⁷⁵⁶ Ibid, at 125.

¹⁷⁵⁷ Ibid, at 126.

¹⁷⁵⁸ Ibid.

¹⁷⁵⁹ United Nations 'The Rio Declaration on Environment and Development' (1992) Principle 15.

¹⁷⁶⁰ David L. Vanderzwaag, Susanna D. Fuler and Ransom A. Myers 'Canada and the Precautionary Principle/Approach in Ocean and Coastal Management: Wading and Wandering in Tricky Currents' (2002) at 126, *Ottawa Law Review*, 34(1).

¹⁷⁶¹ Ibid.

¹⁷⁶² Ibid.

¹⁷⁶³ Ibid.

¹⁷⁶⁵ Jan Glazewski and Lisa Plit 'Towards the application of the precautionary principle in South African law' (2015) at 207, *Stellenbosch Law Review* 26(1).

Relevant Canadian legislation that contains the precautionary approach include the Canadian Environmental Protection Act,¹⁷⁶⁶ the Federal Sustainable Development Act,¹⁷⁶⁷ and the Canadian Environmental Assessment Act.¹⁷⁶⁸ The Canadian Environmental Protection Act embeds the precautionary principle in the administrative duties of Government, and does not put emphasis on scientific evidence to prove a causal link between pollution and effects.¹⁷⁶⁹ The Federal Sustainable Development Act provide the legal framework for developing and implementing a Federal Sustainable Development Strategy that will make environmental decision-making more transparent and accountable to Parliament.¹⁷⁷⁰ The Act acknowledges that sustainable development in Canada is based on an ecologically efficient use of natural, social and economic resources, and the need to integrate environmental, economic and social factors in decision-making by government.¹⁷⁷¹ As such the Sustainable Development Strategy should be based on the precautionary principle.¹⁷⁷²

The Canadian Environmental Assessment Act on the other hand provides for designated projects to be considered in a careful and precautionary manner, to avoid significant adverse environmental effects.¹⁷⁷³ It mandates the Government of Canada to exercise its powers in the administration of the Act in a manner that protects the environment and human health and applies the precautionary principle.¹⁷⁷⁴ Another pertinent statute which has enabled the implementation of precautionary principle to be tested in Canadian courts is the Species at Risk Act.¹⁷⁷⁵ In its Preamble, the Act commits the Government of Canada *to 'conserve biological diversity and to the principle that, if there are threats of serious or irreversible damage to wildlife species, cost effective measures to prevent the reduction or loss of the species should not be postponed for a lack of full scientific certainty'.¹⁷⁷⁶*

¹⁷⁶⁶ Canadian Environmental Protection Act, 1999.

¹⁷⁶⁷ Federal Sustainable Development Act, 2008.

¹⁷⁶⁸ Canadian Environmental Assessment Act, 2012.

¹⁷⁶⁹ Canadian Environmental Protection Act, 1999.

¹⁷⁷⁰ Federal Sustainable Development Act, 2008, s 3.

¹⁷⁷¹ Federal Sustainable Development Act, 2008, s 5(a).

¹⁷⁷² Federal Sustainable Development Act, 2008, s (5)(a.1)(iii)

¹⁷⁷³ Canadian Environmental Assessment Act, 2012, s 4.

¹⁷⁷⁴ Canadian Environmental Assessment Act, 2012.

¹⁷⁷⁵ Jan Glazewski and Lisa Plit 'Towards the application of the precautionary principle in South African law' (2015) at 208, *Stellenbosch Law Review,* Vol 26, Issue 1.

¹⁷⁷⁶ Species at Risk Act, 2002.

In *Spraytech v Town of Hudson*, the Court recognized the precautionary principle as part of international law.¹⁷⁷⁷ It relied on the principle for justifying the general interpretation of provincial statutory authority, allowing towns to regulate pesticides through by-laws on the basis of preventive action.¹⁷⁷⁸ In upholding the town of Hudson's by-law restricting the non-essential use of pesticides, Justice L'Heureux-Dube emphasised the importance of international legal principles in not only statutory interpretation, but also in assessing the reasonableness of discretionary administrative decisions.¹⁷⁷⁹

A growing number of cases involving the precautionary principle related to the Species at risk Act especially, have been considered by the Federal Court of Canada.¹⁷⁸⁰ One of these cases is the *Alberta Wilderness Association v. Minister of Environment* related to the endangered Great Sage-Grouse.¹⁷⁸¹ Another recent case is the *Environmental Defence Canada v. Minister of Fisheries & Oceans* related to the threatened Nooksack Dace fish.¹⁷⁸² In all these cases the Court found the government had failed to apply the precautionary principle as provided for in the Act.¹⁷⁸³ In the *Nooksack Dase* case, the Court went further to not only adopt the precautionary principle as a principle of statutory interpretation, but also found it to be law in Canada, consistent with the country's international obligations and through codification in national legislation.¹⁷⁸⁴ Therefore, while hydraulic fracturing is supported at the federal level in Canada, the potential adverse environmental impacts of its use are acknowledged, and caution is strongly advised given the uncertainties associated with its use.¹⁷⁸⁵ Canada is

¹⁷⁷⁷ David L. Vanderzwaag, Susanna D. Fuler and Ransom A. Myers 'Canada and the Precautionary Principle/Approach in Ocean and Coastal Management: Wading and Wandering in Tricky Currents' (2002) at 128, Ottawa Law Review 34(1).

¹⁷⁷⁸ Ibid.

¹⁷⁷⁹ Ibid.

¹⁷⁸⁰ Jan Glazewski and Lisa Plit 'Towards the application of the precautionary principle in South African law' (2015) at 210, *Stellenbosch Law Review* 26(1).

¹⁷⁸¹ Alberta Wilderness Association v. Minister of Environment, 2009 FC 710.

¹⁷⁸² Environmental Defence Canada v. Minister of Fisheries and Oceans, 2009 FC 878.

¹⁷⁸³ Jan Glazewski and Lisa Plit 'Towards the application of the precautionary principle in South African law' (2015) at 210, Stellenbosch Law Review, Vol 26, Issue 1; Alberta Wilderness Association v. Minister of Environment, 2009 FC 710; Environmental Defence Canada v. Minister of Fisheries and Oceans, 2009 FC 878.

¹⁷⁸⁴ Jan Glazewski and Lisa Plit 'Towards the application of the precautionary principle in South African law' (2015) at 210, *Stellenbosch Law Review*, Vol 26, Issue 1.

¹⁷⁸⁵ Jan Glazewski and Surina Esterhuyse 'Hydraulic Fracturing in the Karoo: Critical legal and Environmental Perspectives' (2016) at 22, Claremont, Juta and Company (Pty) Ltd.

furthermore committed to implement management measures to minimize or mitigate negative environmental impacts throughout the shale gas lifecycle.¹⁷⁸⁶

7.7 Conclusions

Given that the world does not know enough about the full impact of hydraulic fracturing on the environment,¹⁷⁸⁷ and with its limited practical knowledge of shale gas development,¹⁷⁸⁸ South Africa should adopt a precautionary approach to shale gas development. A precautionary approach will enable the development of the requisite knowledge, through academic research and exploration efforts. Therefore, in its quest to ascertain the shale gas potential in the Karoo, and developing the understanding of the risks associated with its extraction, South Africa should adopt an approach that presumes that the possibility of harm to the environment and human health to be adequate for precautionary measures to be put in place by those planning to conduct the potentially harmful activities, and that the threat of harm does not even have to be serious or irreversible.¹⁷⁸⁹

Furthermore, the onus to prove that shale gas related activities in the Karoo will not cause harm to human health and the environment must be the responsibility of those planning to conduct hydraulic fracturing operations to exploit Karoo shale gas.¹⁷⁹⁰ Similarly the alternatives assessment approach, which requires the consideration of alternative technologies in search for the least environmentally damaging options,¹⁷⁹¹ should be an integral part of South Africa's approach to shale gas development.

¹⁷⁸⁶ Ibid.

¹⁷⁸⁷ Martin J.de Wit 'The great shale gas debate in the Karoo' (2011) at 1, South African Journal of Science, Vol 107, No. 7/8.

¹⁷⁸⁸ Martin J.de Wit 'The great shale gas debate in the Karoo' (2011) at 2, South African Journal of Science, Vol 107, No. 7/8.

¹⁷⁸⁹ The Science and Environmental Health Network Conference 'Wingspread Statement on the Precautionary Principle (1998), Racine, Wisconsin, 23 – 25 January 1998.

¹⁷⁹⁰ Joel Tickner, Carolyn Raffensperger and Nancy Myers 'The Precautionary Principle in Action A Handbook' (1999), at 1, *Science and Environmental Health Network*, 1st edn.

¹⁷⁹¹ David L. Vanderzwaag, Susanna D. Fuler and Ransom A. Myers 'Canada and the Precautionary Principle/Approach in Ocean and Coastal Management: Wading and Wandering in Tricky Currents' (2002) at 126, *Ottawa Law Review* 34(1).

CHAPTER 8: REMEDIATING THE ENVIRONMENTAL IMPACT OF SHALE GAS

8.1 Introduction

Environmental law was originally premised on the notion that environmental damage, such as the contamination of water or pollution of the air, could be remedied by requiring those responsible to repair the damage they have caused.¹⁷⁹² Curative measures, such as the rehabilitation of areas impacted by industrial activities may remediate environmental damage however may be too late to deter such damage.¹⁷⁹³ A case in point is shale gas development, where the impact on the environment may be irreversible.¹⁷⁹⁴ As a means of remediation, the polluter-pays principle requires polluters to take responsibility for the costs associated with the pollution they cause.¹⁷⁹⁵

This chapter provides a comparative assessment of the application of the polluter-pays principle in South Africa, the United Kingdom and Canada. The objective is to ascertain whether the principle could be used as a mechanism to discourage or remediate environmental harm that may arise from shale gas development in South Africa. Section 8.2 below defines pollution, while section 8.3 traces the origin of the polluter pays principle, and its application in international environmental law. Section 8.4

¹⁷⁹² Julie Adshead 'The Application and Development of the Polluter-Pays Principle across Jurisdictions in Liability for Marine Pollution: The Tales of the Erika and the Prestige' (2018) at 432, *J.Envtl 30*; Jan-Henrik Meyer 'Who should pay for pollution? The OECD, the European Communities and the emergence of environmental polity in the early 1970s' (2017) at 382, *European Review of History: Revue européenne d'histoire* 24:3; Mizan R. Khan 'Polluter-Pays-Principle: The Cardinal Instrument for Addressing Climate Change' (2015) at 639, *Laws* 4.

¹⁷⁹³ Nicholas der Sadeleer 'Environmental Principles – From Political Slogans to Legal Rules' (2002) at 61 (New York, Oxford University Press).

¹⁷⁹⁴ Michael Esposito 'Water Issues Set the Pace for Fracking Regulations and Global Shale Extraction' (2013) at 172, *Tulane Journal of International & Comparative Law* 22; Jake Hays, Madelon L. Finkel, Michael Depledge, Adam Law & Seth B.C. Shonkoff 'Considerations for the development of shale gas in the United Kingdom' (2015) at 37, *Science of the Total Environment;* Daniele Costa, Joao Jesus, David Branco, Anthony Danko & Antonio Fiuza 'Extensive Review of Shale Gas Environmental Impacts from Scientific Literature (2010 – 2015)' (2017) at 14583, *Environ Sci Pollut Res* 24; Matthew Cotton 'Fair fracking? Ethics and environmental justice in the United Kingdom shale gas policy and planning' (2017) at 186, *Local Environment* 22(2).

¹⁷⁹⁵ Friedrich Soltau 'The National Environmental Management Act and Liability for Environmental Damage' (1999) at 43, SAJELP 6; Willemien du Plessis 'Absolving Historical Polluters from Liability Through Restrictive Judicial Interpretation: Some Thoughts on Bareki NO v Gencor Ltd' (2007) at 180, Stell LR 1.

undertakes the comparative analysis, indicating how these principles are heeded in the three jurisdictions that form part of this study.

8.2 Defining Pollution

There are two main schools of thought as to what constitutes pollution, traditionally, pollution was defined as the emission of a substance beyond the regulatory threshold established to avoid environmental damage.¹⁷⁹⁶ Therefore, to be considered pollution, the emission of a substance that is released to the environment have to exceed regulated discharge or quality standards.¹⁷⁹⁷ Consequently, as long as there is compliance with the regulatory threshold, the discharger or emitter of the substance in question is not subject to the polluter-pays principle.¹⁷⁹⁸ This implies the environmental effects that are authorised by public authorities do not give rise to financial liability.¹⁷⁹⁹

In terms of the contemporary view, pollution is the impact of a given activity on the environment to a point of damage.¹⁸⁰⁰ This implies those responsible for environmental damage are obliged to bear the consequences of the pollution they cause even if they complied with the regulated pollution standards or thresholds.¹⁸⁰¹ In South Africa, pollution is defined as 'the emission of substances radioactive or other waves, noise, odours, dust or heat into the environment, which causes a change in the environment'.¹⁸⁰² 'Such emissions must have adverse effect on human health or wellbeing or on the composition, resilience and productivity of natural and managed ecosystems, or on materials useful to people, or will have such an effect in the future'.¹⁸⁰³ In the United Kingdom, environmental pollution means the 'depositing, keeping or disposal of any substance into the air, water or land which may give rise to

¹⁷⁹⁶ Nicholas der Sadeleer 'Environmental Principles – From Political Slogans to Legal Rules' (2002) at 38, New York, Oxford University Press; Nicholas der Sadeleer 'Environmental Principles: From Political Slogans to Legal Rules' (2020) (2nd edn) at 47 (Oxford University Press, United Kingdom).

¹⁷⁹⁷ Nicholas der Sadeleer 'Environmental Principles – From Political Slogans to Legal Rules' (2002) at 38, New York, Oxford University Press.

¹⁷⁹⁸ Ibid.

¹⁷⁹⁹ Ibid.

 ¹⁸⁰⁰ Nicholas der Sadeleer 'Environmental Principles – From Political Slogans to Legal Rules' (2002) at 38, New York, Oxford University Press; Nicholas der Sadeleer 'Environmental Principles: From Political Slogans to Legal Rules' (2020) (2nd edn) at 47 (Oxford University Press, United Kingdom).
 ¹⁸⁰¹ Ibid.

¹⁸⁰² National Environmental Management Act, No.107 of 1998, s (1)(1)(xxiv).

¹⁸⁰³ S (1)(1)(xxiv) of the NEMA.

any harm'.¹⁸⁰⁴ 'It includes pollution caused by noise, heat or vibrations or any kind of release of energy'.¹⁸⁰⁵

In Canada, pollution means 'a condition arising wholly or partly from the presence of any substance that has certain enumerate negative consequences'.¹⁸⁰⁶ The consequences include, first, the pollution directly or indirectly endangers the health, safety, or welfare of humans.¹⁸⁰⁷ Secondly, it interferes with the normal enjoyment of life or property.¹⁸⁰⁸ Thirdly, it puts the health of animal at risk'.¹⁸⁰⁹ Fourthly, it causes damage to plants or property.¹⁸¹⁰ Fifth, it degrades the ecosystem to an extent that is detrimental to its use to humans, animals or plants.¹⁸¹¹

The traditional school of thought views pollution in the context of exceeding a particular threshold, without due regard for the damage caused.¹⁸¹² The contemporary view emphasises environmental effect, irrespective of whether it is legally allowed or not.¹⁸¹³ Consequently pollution results from the impact of emissions on the environment, the effect, not the cause.¹⁸¹⁴ The author of this thesis aligns with the contemporary view of pollution, which is premised on environmental effect, because it seems fair, and appropriate and may have legal coherence.¹⁸¹⁵ It is not ideal to limit financial liability only to cases of pollution caused by unlawful discharges, because the cost to

¹⁸⁰⁴ Pollution Prevention and Control Act 1999, s 2(b).

¹⁸⁰⁵ S 2(b)(a) of the Pollution Prevention and Control Act 1999.

¹⁸⁰⁶ Canadian Environmental Protection Act, 1999, s 3(1)(a).

¹⁸⁰⁷ Canadian Environmental Protection Act, 1999, s 3(1)(a).

¹⁸⁰⁸ S 3(1)(b) of the Canadian Environmental Protection Act 1999.

 $^{^{1809}}$ S 3(1)(c) of the Canadian Environmental Protection Act 1999.

 $^{^{1810}}$ S 3(1)(d) of the Canadian Environmental Protection Act 1999.

¹⁸¹¹ S 3(1)(e) of the Canadian Environmental Protection Act 1999.

 ¹⁸¹² Nicholas der Sadeleer 'Environmental Principles – From Political Slogans to Legal Rules' (2002) at 40, New York, Oxford University Press; Nicholas der Sadeleer 'Environmental Principles: From Political Slogans to Legal Rules' (2020) (2nd edn) at 47 (Oxford University Press, United Kingdom).
 ¹⁸¹³ Ibid.

¹⁸¹⁴ Friedrich Soltau 'The National Environmental Management Act and Liability for Environmental Damage' (1999) at 49, SAJELP 6; Tracy Field 'Liability to Rectify Asbestos Pollution' (2006) at 492, *Journal of Environmental Law* 18(3); Willemien du Plessis 'Absolving Historical Polluters from Liability Through Restrictive Judicial Interpretation: Some Thoughts on Bareki NO v Gencor Ltd' (2007) at 180, *Stell LR* 1; Emma Lees 'The Polluter Pays Principle and the Remediation of the Land' (2016) at 11, *IJLBE* 8.1.

¹⁸¹⁵ Nicholas der Sadeleer 'Environmental Principles – From Political Slogans to Legal Rules' (2002) at 40, New York, Oxford University Press.

remediate damage caused by such discharges is often borne by the broader society or local communities which contradicts the polluter-pays principle.¹⁸¹⁶

It is also not appropriate to limit the application of the polluter-pays principle to cases of pollution caused by unlawful discharges, since the objective of the principle is to also encourage polluters who may be compliant to emission standards or thresholds to reduce the harmfulness or quantity of their polluting emissions.¹⁸¹⁷ It would furthermore dilute the complementarity to the principle of prevention if the polluter-pays principle did not cover every damage to the environment.¹⁸¹⁸

8.3 The Polluter Pays Principle

The polluter-pays principle can be traced back to the British economist Arthur Pigou, who hypothesised that adverse transaction costs on third parties or the environment, the so-called external market costs, could be internalised through a tax system.¹⁸¹⁹ The polluter-pays principle is a means to internalise the costs of pollution, as it requires polluters to take responsibility for the costs associated with the pollution they cause.¹⁸²⁰ The principle has evolved to become a fundamental principle of international environmental law.¹⁸²¹ The sections below discuss the adoption of this principle at the international level, and the challenges posed by the principle.

¹⁸¹⁶ Ibid.

¹⁸¹⁷ Ibid.

¹⁸¹⁸ Ibid.

¹⁸¹⁹ Mizan R. Khan 'Polluter-Pays-Principle: The Cardinal Instrument for Addressing Climate Change' (2015) at 639, 4 *Laws*; Julie Adshead 'The Application and Development of the Polluter-Pays Principle across Jurisdictions in Liability for Marine Pollution: The Tales of the Erika and the Prestige' (2018) at 428, 30 *J.Envtl;* Arthur C.Pigou 'The Economics of Welfare (London: Macmillan and Co, Limited. 1932).

¹⁸²⁰ Julie Adshead 'The Application and Development of the Polluter-Pays Principle across Jurisdictions in Liability for Marine Pollution: The Tales of the Erika and the Prestige' (2018) at 427, 30 *J.Envtl*; Ayobami Loaniyan 'Imposing Liability for Oil Spill Clean-Ups in Nigeria: An Examination of the Role of the Polluter-Pays Principle' (2015) at 75, *Journal of Law, Policy and Globalization* 40; Willemien du Plessis 'Absolving Historical Polluters from Liability Through Restrictive Judicial Interpretation: Some Thoughts on Bareki NO v Gencor Ltd' (2007) at 180, Stell LR 1.

¹⁸²¹ Paul G W Henderson 'Some Thoughts on Distinctive Principles of South African Environmental Law' (2001) at 173, 8 SAJELAT; Mizan R. Khan 'Polluter-Pays-Principle: The Cardinal Instrument for Addressing Climate Change' (2015) at 640, Laws 4.

8.3.1 The Polluter Pays Principle in International Environmental Law

In terms of its formal status at an international level, the polluter-pays principle dates back to 1972, when it was adopted by the Organisation for Economic Co-operation and Development (OECD) Council.¹⁸²² Accordingly, 'the polluter-pays principle would be used for allocating the costs of preventing pollution, and measures to ensure that environmental resources are used rationally. This implies that the polluters would bear the costs of pollution prevention and associated measures to ensure that the environment was in an acceptable state. Consequently, the cost of these measures should be reflected in the price of goods and services that cause pollution. States would have to desist from subsidising the production of such goods and services, since such subsidies would distort international trade and investment'.¹⁸²³

The following are examples of international conventions and treaties that contain the polluter-pays principle:¹⁸²⁴

- (a) The Stockholm Declaration affirms that states have the sovereign right to exploit their resources in accordance with their national environmental policies, and a responsibility to ensure that activities within their jurisdictions do not cause environmental in other States.¹⁸²⁵
- (b) The International Convention on Oil Pollution Preparedness, Response and Cooperation declares the polluter-pays principle as a 'general principle of international environmental law, which applies along existing civil liability and compensation schemes for damages inflicted'.¹⁸²⁶
- (c) The Rio Declaration on Environment and Development calls on 'National authorities to endeavour to promote the internationalisation of environmental costs and the use of economic instruments, taking into account the approach that

¹⁸²² OECD, Recommendation of the Council on Guiding Principles concerning International Economic Aspects of Environmental Policies' (1972) OECD/LEGAL/0102.

¹⁸²³ OECD, Recommendation of the Council on Guiding Principles concerning International Economic Aspects of Environmental Policies' (1972) OECD/LEGAL/0102 (A)(4).

¹⁸²⁴ Mizan R. Khan 'Polluter-Pays-Principle: The Cardinal Instrument for Addressing Climate Change' (2015) at 641-642, *Laws* 4.

¹⁸²⁵ United Nations Environmental Programme 'Stockholm Declaration' (1972) Principle 21, *Environmental Law Guidelines and Principles*.

¹⁸²⁶ International Convention on Oil Pollution Preparedness, Response and Cooperation (1990), *United Nations Treaty Series* 89.

the polluter should, in principle, bear the cost of pollution, with due regard to the public interest and without distorting international trade and investment'.¹⁸²⁷

- (d) The Helsinki Convention on the Protection of the Marine Environment of the Baltic Sea Area, obliges the contracting parties to apply the polluter-pays principle'.¹⁸²⁸
- (e) The OSPAR Convention for the Protection of the Marine Environment of the North-East Atlantic calls on the Contracting Parties to 'apply the polluter pays principle, where the costs of measures to prevent, control and reduce pollution will be borne by the polluter'.¹⁸²⁹
- (f) The Bamako Convention on the Ban of the Import into Africa and Control of Transboundary Movement and Management of Hazardous Waste within Africa, calls for a protocol setting out appropriate rules and procedures with regards to liabilities and compensation for environmental damage caused by the transboundary movement of hazardous waste'¹⁸³⁰

Although the polluter-pays principle gained more prominence in international law when it was incorporated as Principle 16 in the Rio Declaration on Environment and Development,¹⁸³¹ it is formulated as soft law in the Rio Declaration.¹⁸³² It is not mandatory on the States, as demonstrated by the phrases it uses such as '*endeavour to promote*' and '*should in principle*'.¹⁸³³ Furthermore, economic requirements, such as *not distorting international trade and investment* must be taken into account, within a national context.¹⁸³⁴ Consequently, despite the progressive acceptance of the polluter-pays principle as a general principle of international environmental law, with most of the binding provisions of the principle incorporated in recent instruments at a

¹⁸²⁷ United Nations General Assembly 'Rio Declaration on Environment and Development' (1992) Principle 16, A/CONF 1: 151/26.

¹⁸²⁸ Helsinki Convention on the Protection of the Marine Environment of the Baltic Sea Area (1992) Article 3.4.

¹⁸²⁹ Convention for Protection of the Marine Environment of the North-East Atlantic (1992) Article 2b.

¹⁸³⁰ Bamako Convention on the Ban of the Import into Africa and Control of Transboundary Movement and Management of Hazardous Waste Within Africa (1991) Article 12.

¹⁸³¹ United Nations General Assembly 'Rio Declaration on Environment and Development' (1992) Principle 16, A/CONF. 151/26/(Vol.1).

 ¹⁸³² Julie Adshead 'The Application and Development of the Polluter-Pays Principle across Jurisdictions in Liability for Marine Pollution: The Tales of the Erika and the Prestige' (2018) at 428, 30 J.Envtl.
 ¹⁸³³ Ibid.

¹⁸³⁴ Ibid.

regional level, there are still questions whether the principle constitutes a rule of customary international law.¹⁸³⁵

8.3.2 Critical Assessment

In effect, the polluter-pays principle was a mechanism to internalise the costs of pollution emanating from industrial activities, to harmonise economic markets through ensuring that countries did not bear the cost of pollution that should be borne by the industries responsible for such pollution.¹⁸³⁶ Such costs had to be reflected in the price of the products produced to ensure that they were not priced cheaper than their equivalent in countries were the costs of pollution were not subsidised by the State.¹⁸³⁷

The traditional approach to the polluter-pays principle disregarded environmental consequences that might last for generations, whose costs would have to be borne by future generations, if the polluters were not immediately held responsible for such future effects.¹⁸³⁸ The evolving view is that, in addition to the cost of pollution prevention and control measures, the polluter must bear the cost of ecological damage he causes in its entirety.¹⁸³⁹ This is consistent with the 1991 OECD Recommendation on the Use of Economic Instruments in Environmental Policy, which takes into account that 'a sustainable and economically efficient management of environmental resources requires, inter alia, the internalisation of pollution prevention, control and damage costs'.¹⁸⁴⁰ It is also consistent with the Rio Declaration on Environment and Development, which requires the polluter to bear the cost of pollution, rather than just the cost of pollution prevention and control measures.¹⁸⁴¹

1835 Ibid.

¹⁸³⁶ Mizan R. Khan 'Polluter-Pays-Principle: The Cardinal Instrument for Addressing Climate Change' (2015) at 639, *Laws* 4.

¹⁸³⁷ Ibid, at 641.

 ¹⁸³⁸ Nicholas der Sadeleer 'Environmental Principles – From Political Slogans to Legal Rules' (2002) at
 43 (New York, Oxford University Press).

¹⁸³⁹ Ibid.

¹⁸⁴⁰ OECD, Recommendation of the Council on the Use of Economic Instruments in Environmental Policy' (1991) OECD/LEGAL/0258.

¹⁸⁴¹ United Nations General Assembly 'Rio Declaration on Environment and Development' (1992) Principle 16, A/CONF. 151/26/(Vol.1).

Nonetheless, the implementation of the polluter-pays principle is not as simple as it appears at face value, merely requiring polluters to bear the cost of the pollution they cause.¹⁸⁴² First, there is sometimes difficulty in identifying the actual polluter.¹⁸⁴³ Is it the owners of land, persons in control of the land, or persons who have a right to use the land or premises in which an activity or process that has caused pollution was performed?¹⁸⁴⁴ Secondly, there can be disagreement on the calculation of the costs of remediating pollution,¹⁸⁴⁵ such as how much of the cost was directly caused by the polluter.¹⁸⁴⁶ Thirdly, assessing the worth of the environment or ascribing a monetary value to it, such as the price of air, water in its natural state, plants and animals can also be quite complex.¹⁸⁴⁷

Given its limitations, the polluter-pays principle cannot operate effectively by itself, therefore should serve to complement the preventive and other anticipatory approaches such as the pre-cautionary principle.¹⁸⁴⁸ The preventive and precautionary principles are more capable of averting irreparable damage, while the polluter-pays principle could be applied effectively to reversible damages/and or to repair repairable damage.¹⁸⁴⁹ The application of the polluter-pays principle in the petroleum and environmental legal frameworks of South Africa, the United Kingdom and Canada is assessed in sections 8.4 - 8.6 below.

8.4 Environmental Remediation in South Africa

In South Africa, the polluter-pays principle is at the core of environmental remediation and find expression in the National Environmental Management Act,¹⁸⁵⁰ the Minerals and Petroleum Resources Development Act,¹⁸⁵¹ and the National Water Act.¹⁸⁵²

¹⁸⁴² Environmental Law Centre (Alberta) 'The Polluter Pays Principle in Alberta Law' (2019) at 1, CanLIIDocs 3671.

¹⁸⁴³ Ibid.

¹⁸⁴⁴ S 28(2) of the NEMA.

¹⁸⁴⁵ Environmental Law Centre (Alberta) (2019) at 1.

¹⁸⁴⁶ Bareki NO and Another v Gencor Ltd and Others, 2006 (1) para 20, SA 432 (T) (South Gauteng High Court).

¹⁸⁴⁷ Environmental Law Centre (Alberta) (2019) at 1.

¹⁸⁴⁸ Nicholas der Sadeleer 'Environmental Principles – From Political Slogans to Legal Rules' (2002) at 41, New York, Oxford University Press.

¹⁸⁴⁹ Ibid.

¹⁸⁵⁰ National Environmental Management Act, No.107 of 1998, s 2(4)(p)

¹⁸⁵¹ Mineral and Petroleum Resources Development Act, No.28 of 2002, s 46 (2).

¹⁸⁵² National Water Act, No. 36 of 1998, Chapter 5, Part 1, Chapter 16, s 151(1)(i); s 151(2); s 153.

This legislation is the most relevant to shale gas development and its associated potential environmental impact.

8.4.1 Environmental Remediation in terms of the NEMA

The NEMA provides that the costs of remedying pollution, environmental degradation and consequent adverse health effects and of preventing, controlling or minimising further pollution, environmental damage or adverse health effects must be paid for by those responsible for harming the environment.¹⁸⁵³ Consequently, and as a duty of care, the NEMA holds 'every person who causes significant environmental degradation liable, and requires that they take reasonable steps to prevent such pollution from occurring'.¹⁸⁵⁴ 'Where such pollution is authorised by law, or cannot reasonably be avoided or stopped those responsible must minimise and rectify such pollution.¹⁸⁵⁵

Therefore, an applicant for an environmental authorisation relating to petroleum exploration or production must make the prescribed financial provision for the rehabilitation, closure and ongoing post decommissioning management of negative environmental impacts before the Minister of Mineral Resources and Energy issues the environmental authorisation.¹⁸⁵⁶ If any holder of an exploration or production right or old order petroleum right fails to rehabilitate or manage, or is unable to undertake such rehabilitation or manage any negative impact on the environment, the Minister of Mineral Resources and Energy may, upon written notice to such holder, use all or part of the financial provision to rehabilitate or manage the negative environmental impact in question.¹⁸⁵⁷ Holders of exploration or production rights must assess their environmental liability in a prescribed manner and increase the financial provision annually to the satisfaction of the Minister,¹⁸⁵⁸ And submit an audit report on the adequacy of the financial provision from an independent auditor to the Minister.¹⁸⁵⁹

¹⁸⁵⁷ S 24P(2) of the NEMA.

¹⁸⁵³ S 2(4)(p) of the NEMA.

¹⁸⁵⁴ S 28(1) of the NEMA.

¹⁸⁵⁵ S 28(1) of the NEMA.

¹⁸⁵⁶ S 24P(1) of the NEMA.

¹⁸⁵⁸ S 24P(3)(a) of the NEMA.

¹⁸⁵⁹ S 24P(3)(b) of the NEMA.

If the Minister is not satisfied with the assessment and financial provision by the right holder, the Minister may appoint an independent assessor to conduct the assessment and determine the financial provision,¹⁸⁶⁰ 'The requirement to maintain and retain the financial provision remains in force until the Minister of Mineral Resources and Energy issues a closure certificate in terms of s 43 of the MPRDA, to such a holder or owner concerned.¹⁸⁶¹ The Minister may retain a portion of the financial provision as may be required to rehabilitate the closed petroleum exploration and mining activity in respect of latent or residual environmental impacts.¹⁸⁶² Nonetheless, the long awaited revised financial provisions were published for public comment in 2022.¹⁸⁶³ A key change in the new regulations is that, applicants for exploration or production rights will now only need to provide proof of the arrangements made to secure the financial provision prior to the issuing of the EIA, as opposed to providing proof that the financial provision was already available.¹⁸⁶⁴

The NEMA extends environmental liability to the owners of land or premises, persons in control of land or premises, or persons who have a right to use the land or premises on which or in which an activity or process that causes, has caused or is likely to cause significant pollution or environmental degradation was performed.¹⁸⁶⁵ This complicates the application of the polluter pays principle in South Africa, since liability may be imposed based on land ownership and control instead of causation or fault.¹⁸⁶⁶ In the context of shale gas development in South Africa, the polluter is unlikely to be the owner of the land nor person in control of the land, but rather a petroleum right holder who is entitled to access the land for the purpose of exploring for oil and gas in the sub-surface and the production thereof.¹⁸⁶⁷

¹⁸⁶⁵ S 28(2) of the NEMA.

¹⁸⁶⁰ S 24P(4)(a) of the NEMA.

¹⁸⁶¹ S 24P(5) of the NEMA.

¹⁸⁶² S 24P(5) of the NEMA.

¹⁸⁶³ Proposed Regulations Pertaining to the Financial Provisioning for the Mitigation and Rehabilitation of Environmental Damage caused by Reconnaissance, Prospecting, Exploration, Mining or Production Operations, Government Notice R.2272 in Government Gazette No.47112 of 11 July 2022.

¹⁸⁶⁴ Financial Provisioning Regulation 9.

¹⁸⁶⁶ Paul G W Henderson 'Some Thoughts on Distinctive Principles of South African Environmental Law' (2001) at 174, SAJELAT 6.

¹⁸⁶⁷ Minerals and Petroleum Resources Development Act, No. 28, 2002, s 5(3)(b)

Nonetheless, the costs to clean up pollution can be recovered first, from any person who is responsible for the pollution.¹⁸⁶⁸ Secondly, the owner of the land at the time the pollution occurred or that owner's successor in title.¹⁸⁶⁹ Thirdly, the person in control of the land or any person who has or had a right to use the land when the pollution occurred.¹⁸⁷⁰ Fourthly, any person who negligently failed to prevent the pollution.¹⁸⁷¹ Fault has to be proved in the case of the owners of land, persons in control of the land or person who has the right to use the land.¹⁸⁷² Proving fault in the case of successors-in-title, where liability is strict is not straight forward.¹⁸⁷³ This is because in terms of strict liability the authorities do not have to prove fault to recover costs on the basis that the alleged polluter failed to take reasonable measures to prevent such pollution or environmental degradation.¹⁸⁷⁴

Alleged offenders on the other hand may insist that they undertook the required reasonable measures,¹⁸⁷⁵ therefore are not liable for the clean-up costs incurred by the authorities.¹⁸⁷⁶ Depending on the polluter, causation may not be an issue when the authorities wish to recover the costs incurred when remedying the situation.¹⁸⁷⁷ For example, where it is alleged that it is the owner of the land or successor-in-title that is the potential polluter,¹⁸⁷⁸ all that needs to be proved is that they failed to take the requisite reasonable measures.¹⁸⁷⁹

On the other hand, causation is relevant where it is alleged that the pollution or degradation was caused by any person.¹⁸⁸⁰ In essence, the NEMA does not create any presumptions in terms of causation, needless to say, the existence of significant

¹⁸⁶⁸ S 28(8)(a) of the NEMA.

¹⁸⁶⁹ S 28(8)(b) of the NEMA.

¹⁸⁷⁰ S 28(8)(c) of the NEMA.

¹⁸⁷¹ S 28(8)(d) of the NEMA.

¹⁸⁷² Friedrich Soltau 'The National Environmental Management Act and Liability for Environmental Damage' (1999) at 48, SAJELAT 6.

¹⁸⁷³ Ibid.

¹⁸⁷⁴ Ibid.

¹⁸⁷⁵ S 28(1) of the NEMA.

¹⁸⁷⁶ Ibid; s 28(1) of the NEMA.

¹⁸⁷⁷ Ibid.

¹⁸⁷⁸ Ibid; s 28(8)(b) of the NEMA.

¹⁸⁷⁹ Ibid; s 28(1) of the NEMA.

¹⁸⁸⁰ Friedrich Soltau 'The National Environmental Management Act and Liability for Environmental Damage' (1999) at 49, *SAJELAT* 6.

pollution or degradation has to be proved in each case.¹⁸⁸¹ Moreover, if more than one person is liable for the pollution or environmental degradation,¹⁸⁸² liability must be apportioned among those concerned and according to the degree to which they might have contributed to the environmental harm.¹⁸⁸³

The NEMA furthermore provides for the control of emergency incidents in respect of environmental liability,¹⁸⁸⁴ by imposing certain duties on responsible persons.¹⁸⁸⁵ It defines incidents as unexpected sudden occurrences, including a major emissions, fires or explosions leading to serious danger to the public or potentially serious pollution or detriment to the environment, whether immediate or delayed.¹⁸⁸⁶ The responsible persons include, first, the person who is responsible for the incident,¹⁸⁸⁷ secondly, a person who owns any hazardous substance involved in the incident,¹⁸⁸⁸ thirdly, a person who was in control of any hazardous substance involved in the incident,¹⁸⁸⁹ thirdly, a person who was in control of any hazardous substance involved in the incident,¹⁸⁹⁰ undertake clean-up procedures,¹⁸⁹¹ remedy the effects of the incident,¹⁸⁹² and assess the immediate and long-term effects of the incident on the environment and public health.¹⁸⁹³

The NEMA also provides for criminal proceedings against offenders found to have caused loss or damage to any organ of state or other person, including the cost incurred or likely to be incurred by the an organ of state in rehabilitating the environment or preventing damage to the environment.¹⁸⁹⁴ Based on a written request by the authorities or other person concerned, the court can inquire summarily

¹⁸⁸¹ Ibid.

¹⁸⁸² Ibid; s 28(1) of the NEMA.

¹⁸⁸³ Ibid; s 28(11) of the NEMA.

¹⁸⁸⁴ S 30 of the NEMA.

¹⁸⁸⁵ S 30(4) of the NEMA.

¹⁸⁸⁶ S 30(a) of the NEMA.

¹⁸⁸⁷ S 30(b)(i) of the NEMA.

¹⁸⁸⁸ S 30(b)(ii) of the NEMA.

¹⁸⁸⁹ S 30(b)(iii) of the NEMA.

¹⁸⁹⁰ S 30(4)(a) of the NEMA. ¹⁸⁹¹ S 30(4)(b) of the NEMA.

 $^{1892 \} O \ O(4)(b) \ O(100 \$

¹⁸⁹² S 30(4)(c) of the NEMA.

¹⁸⁹³ S 30(4)(d) of the NEMA. ¹⁸⁹⁴ S 34(1) of the NEMA.

and without pleadings into the amount of the loss of the damage caused.¹⁸⁹⁵ Upon proof of such an amount, the court may give judgment in favour of the authorities or other person concerned, and such judgment has the same force and effect as a civil action that has been duly instituted before a competent court.¹⁸⁹⁶

The application of the polluters-pay principle as a mechanism to hold polluters liable for the pollution they caused as provided for in the NEMA,¹⁸⁹⁷ was tested in *Bareki* v Gencor.¹⁸⁹⁸ In this case, the first plaintiff, a traditional leader, brought action in his own interest, the interest of his tribe, and the inhabitants of the Heuningvlei community in the North West Province.¹⁸⁹⁹ The second plaintiff is a group concerned with the protection of the environment.¹⁹⁰⁰ The defendants are mining companies, Gencor Ltd (Gencor) is the first defendant, Griqualand Exploration and Finance Co (Pty) Ltd (Gefco) the second defendant, and Hanova Mining Holdings, the third defendant.¹⁹⁰¹ The Government South Africa is the fourth defendant, the Minister of Minerals and Energy the fifth defendant and Minister of Environmental Affairs and Tourism the sixth defendant. 1902

The plaintiffs allege that Gefco, majority owned by Gencor, caused significant pollution and degradation of the environment in the surrounding areas through their mining of asbestos at the Bute Asbestos Mine between 1976 and 1981.¹⁹⁰³ The remains of mining were still present after the mining activities had ceased, in the form of asbestos dumps, a beneficiation plant, a mill and a haul road between the mine and the beneficiation plant.¹⁹⁰⁴ Consequently, the pollution and degradation present a serious health risk to the local communities, and a significant threat to the environmental integrity of the region.¹⁹⁰⁵ In effect, the plaintiff alleged that significant pollution in the

¹⁸⁹⁵ S 34(1) of the NEMA.

¹⁸⁹⁶ S 34(2) of the NEMA.

¹⁸⁹⁷ S 28 of the NEMA.

¹⁸⁹⁸ Tracy Field 'Liability to Rectify Asbestos Pollution' (2006) at 489, Vol 18(3) Journal of Environmental Law 18(3).

¹⁸⁹⁹ Bareki NO and Another v Gencor Ltd and Others, 2006 (1) para 1, SA 432 (T) (South Gauteng High Court).

¹⁹⁰⁰ Ibid, para 2.

¹⁹⁰¹ Ibid.

¹⁹⁰² Ibid.

¹⁹⁰³ Ibid. ¹⁹⁰⁴ Ibid.

¹⁹⁰⁵ Ibid, para 16.

area was caused by the distribution of asbestos fibres.¹⁹⁰⁶ Therefore Gencor and Gefco were required in terms of section 28 (1) read with sections 2 and 3 of the NEMA to take reasonable measures to rectify the pollution and environmental degradation in the area.¹⁹⁰⁷

Accordingly, Gencor and Gefco remained responsible to take such reasonable measures even though the NEMA only came into effect after the actual mining operations had ceased.¹⁹⁰⁸ Equally, the plaintiff alleged that the Government as owner of the land, is also obliged, in terms of section 28(1) read with sections 2 and 3 of the NEMA to take reasonable measures to rectify the pollution and degradation, ¹⁹⁰⁹ which it failed to do.¹⁹¹⁰ Furthermore, the Director-General of the Department of Environment Affairs and Tourism was obliged in terms of section 28(7) and (8) of the NEMA to effect the rehabilitation and claim the costs of rehabilitation from the defendants.¹⁹¹¹ The plaintiffs therefore required the court to make such an order.¹⁹¹² The intervention of the Director-General of the Department of Environmental Affairs and Tourism was required because the defendants were not willing to accept liability for the costs of rehabilitation.¹⁹¹³ Furthermore, the defendants disputed the costs of the envisaged reasonable measures to rectify the pollution or degradation which the plaintiffs estimated to be R64 million, while the defendants estimated the costs to be between R18 million and R24 million.¹⁹¹⁴ With the differing costs estimates, the defendants were unlikely to effect such remedial action.¹⁹¹⁵

The court found that the provisions of section 28 of the NEMA are not retrospective, therefore the obligation to take corrective measures does not apply where the pollution and environmental degradation were caused prior to the NEMA coming into effect, as was the case in this instance.¹⁹¹⁶ According to the judgment, that retrospectivity would

- ¹⁹⁰⁷ Ibid, para 14. ¹⁹⁰⁸ Ibid, para 14.
- ¹⁹⁰⁹ Ibid, para 18.
- ¹⁹¹⁰ Ibid, para 19.
- ¹⁹¹¹ Ibid, para 20.
- ¹⁹¹² Ibid.
- ¹⁹¹³ Ibid.
- ¹⁹¹⁴ Ibid.
- ¹⁹¹⁵ Ibid.

¹⁹⁰⁶ Ibid, para 12.

¹⁹¹⁶ Ibid.

entail an unfairness that Parliament could not have intended is apparent from the fact that the duty or obligation created in section 28 is a strict, and arguably, in some cases even absolute one.¹⁹¹⁷ Furthermore, there is no monetary limit to such liability, and no statutory defences in favour of the person who caused the pollution.¹⁹¹⁸

The court got it wrong in finding that section 28 of the NEMA did not apply retrospectively.¹⁹¹⁹ The court heavily relied on the 'elementary considerations of fairness' in terms of the common law principle which assumes that statute does not apply retrospectively unless rebutted expressly or by implication, rather than the consideration of section 28 of the NEMA within the broader context of the South African Constitution.¹⁹²⁰ This is because strict or 'risk' liability does not honour the general South African legal principle that for harm to be recovered by delictual action conduct causing such harm must be both faulty and unlawful.¹⁹²¹

In essence, strict liability in terms of section 28 of the NEMA does not require fault to be established.¹⁹²² The interpretation of absolute liability as the preclusion of fault and unlawfulness is another problematic area in De Villiers J's ruling, since strict liability provides for defences, albeit limited, while absolute liability does not provide for blame to be apportioned.¹⁹²³ Actually, both strict and absolute liability are centred on the absence of blame, the main difference is whether the exclusion of the need to prove fault can be refuted.¹⁹²⁴ Furthermore, the NEMA does create statutory defences to the duty established by sections 28(1) and (2) upon a closer examination of how the duty

¹⁹¹⁷ Ibid.

¹⁹¹⁸ Ibid.

¹⁹¹⁹ Tracy Field 'Letting polluters off the hook? The impact of Bareki NO vs Gencor Ltd 2006 (1) SA 432 (T) on the reach of s 28 of the National Environmental Management Act 107 of 1998' (2007) at 115, *SALJELP*; Willemien du Plessis 'Absolving Historical Polluters from Liability Through Restrictive Judicial Interpretation: Some Thoughts on Bareki NO v Gencor Ltd' (2007) at 162, *Stell LR* (1).

¹⁹²⁰ Tracy Field 'Liability to Rectify Asbestos Pollution' (2006) at 490, Vol 18(3) *Journal of Environmental Law*, 479-494.

 ¹⁹²¹ Tracy Field 'Letting polluters off the hook? The impact of Bareki NO vs Gencor Ltd 2006 (1) SA 432 (T) on the reach of s 28 of the National Environmental Management Act 107 of 1998' (2007) at 115, SALJELP.

¹⁹²² Friedrich Soltau 'The National Environmental Management Act and Liability for Environmental Damage' (1999) at 48, 6 SAJELP; Tracy Field 'Letting polluters off the hook? The impact of Bareki NO vs Gencor Ltd 2006 (1) SA 432 (T) on the reach of s 28 of the National Environmental Management Act 107 of 1998' (2007) at 115, SALJELP.

¹⁹²³ Tracy Field (2007) at 115. ¹⁹²⁴ Ibid.

has been framed.¹⁹²⁵ For example, persons directed to take reasonable measures by the Director-General in terms of s (28)(1) could maintain that the pollution or degradation they have caused is not significant, and that they had already taken reasonable measures, and the same could apply to the persons contemplated in s (28)(2).¹⁹²⁶ Therefore, it can be concluded that section 28(1) and (2) do not establish absolute liability.¹⁹²⁷ Accordingly, a proper consideration of fairness, testing whether the legislature intended rebutting the retrospective presumption and going against the essence of fairness would have been to determine the nature of the duty or form of liability envisaged by section 28(1) and (2).¹⁹²⁸

Furthermore, had the Court properly considered and applied the polluter-pays principle as it relates to the case, it might have found that indeed section 28 did apply retrospectively.¹⁹²⁹ The Court should also have paid more attention to the life-cycle responsibility principle,¹⁹³⁰ which commands that a person initially responsible for producing a dangerous or toxic substance should remain responsible for such substance until it has been properly disposed of.¹⁹³¹ The retrospective application of section 28 of the NEMA has been settled by the insertion after section (1) of subsection (1A), which clarifies that section 28(1) of the NEMA also applies to significant pollution or degradation that occurred before the commencement of this Act.¹⁹³² The amendment furthermore clarifies that section 28(1) applies to significant pollution or degradation that arises or is likely to arise at a different time from the actual activity that caused the contamination,¹⁹³³ or arises through an act or activity of a person that results in a change to pre-existing contamination.¹⁹³⁴ Section 28 of the NEMA was

¹⁹²⁵ Ibid.

¹⁹²⁶ Ibid.

¹⁹²⁷ Ibid.

¹⁹²⁸ Tracy Field 'Liability to Rectify Asbestos Pollution' (2006) at 490, Vol 18(3) *Journal of Environmental Law* 18(3).

 ¹⁹²⁹ Willemien du Plessis 'Absolving Historical Polluters from Liability Through Restrictive Judicial Interpretation: Some Thoughts on Bareki NO v Gencor Ltd' (2007) at 179, *Stell LR* 1.
 ¹⁹³⁰ Ibid. at 184.

¹⁹³¹ Paul GW Henderson 'Some Thoughts on Distinctive Principles of South African Environmental Law' (2001) at 166, *SAJELAT* 8.

¹⁹³² National Environmental Laws Amendment Act, No.14 of 2009, s 12(a)(a); NEMA, s 28(1)(1A)(a) ¹⁹³³ 12(a)(b) of the NEMLAA; NEMA, s 28(1)(1A)(b)

¹⁹³⁴ S12(a)(c) of the NEMLAA; NEMA, s 28(1)(1A)(c)

subsequently amended and now clearly stipulates the retrospective application of the section.

8.4.2 Environmental Remediation in terms of the MPRDA

In terms of the MPRDA, 2002 'an applicant for a petroleum exploration or production right must make the prescribed financial provision for the rehabilitation and management of negative environmental impacts before the Minister approves the environmental management plan or environmental management programme'.¹⁹³⁵ 'If the holder of the exploration or production right fails to rehabilitate or manage, or is unable to undertake such rehabilitation or manage any negative impact on the environment, the Minister may, upon written notice to such holder, use all or part of the financial provision to rehabilitate or manage the negative environmental impact in question'. ¹⁹³⁶ 'The holder of an exploration or production right must assess his or her environmental liability and increase the financial provision annually to the satisfaction of the Minister'.¹⁹³⁷

'If the Minister is not satisfied with the assessment and financial provision by the right holder, the Minister may appoint an independent assessor to conduct the assessment and determine the financial provision'.¹⁹³⁸ 'The requirement to maintain and retain the financial provision remains in force until the Minister issues a closure certificate, ¹⁹³⁹ to such a holder, but the Minister may retain such portion of the financial provision as may be required to rehabilitate the closed petroleum exploration and mining activity in respect of latent or residual environmental impacts'.¹⁹⁴⁰ Moreover, the MPRDA accords the Minister powers to recover costs, when measures to remediate pollution or environmental damage caused by exploration or production activities which may be harmful to people's health or well-being are required urgently.¹⁹⁴¹

- ¹⁹³⁷ S 41(3) of the MPRDA.
- ¹⁹³⁸ S 41(4) of the MPRDA.
- ¹⁹³⁹ In terms of s 43 of the MPRDA.
- ¹⁹⁴⁰ S 41(5) of the MPRDA.

¹⁹³⁵ S 41(1) of the MPRDA.

¹⁹³⁶ S 41(2) of the MPRDA.

¹⁹⁴¹ S 45(1) of the MPRDA.

Furthermore, the Minister may instruct the relevant Regional Manager to take necessary measures to prevent further pollution or environmental degradation, or to rehabilitate the affected area where the mineral or petroleum right holder has not done so.¹⁹⁴² This is to be done utilising the financial provision made by the holder of the relevant mineral or petroleum right, and if there is no such provision, or if it is inadequate to do so, from money appropriated by parliament for that purpose.¹⁹⁴³ Should the Minister direct that measures be taken to prevent environmental degradation, or to rehabilitate an affected area, but establishes that the mining or petroleum right holder is either deceased or cannot be traced, the Minister may instruct the Regional Manager concerned to take the necessary measures to prevent further environmental impact or to make the area safe.¹⁹⁴⁴

Such measures are to be funded from the financial provision made by the mining or petroleum right holder, or from money appropriated by Parliament, if there is no such provision or the provision is inadequate.¹⁹⁴⁵ Upon completion of the remedial measures, the Regional Manager must apply to the registrar concerned that the title deed of the rehabilitated land be endorsed to the effect that such land had been remedied.¹⁹⁴⁶ Upon receipt of the application the registrar must make such endorsements so as to give effect that such land had been remedied.¹⁹⁴⁷

8.4.3 Environmental Remediation in terms of the National Water Act

The National Water Act,¹⁹⁴⁸ provides for 'measures to finance the provision of water management services, support the beneficial use of water, and for the protection and conservation of water resources'.¹⁹⁴⁹ Accordingly, water use charges may be used to ensure compliance with prescribed standards and water management practices according to the user pays and polluter pays principles.¹⁹⁵⁰ Furthermore, where any person is convicted of an offence in terms of the Act, and damage has been caused

¹⁹⁴² S 46(1) of the MPRDA.

¹⁹⁴³ S 46(2) of the MPRDA.

¹⁹⁴⁴ S 46(1) of the MPRDA.

¹⁹⁴⁵ S 46(2) of the MPRDA.

¹⁹⁴⁶ S 46(3)(a) of the MPRDA.

¹⁹⁴⁷ S 46(3)(b) of the MPRDA.

¹⁹⁴⁸ National Water Act, No.36 of 1998.

¹⁹⁴⁹ Chapter 5 of the NWA.

¹⁹⁵⁰ Part 1 of the NWA.

to another person,¹⁹⁵¹ or water resource,¹⁹⁵² the Court may, at the written request of the person who suffered harm,¹⁹⁵³ or the Minister of Water and Sanitation,¹⁹⁵⁴ and in the presence of the convicted person,¹⁹⁵⁵ enquire without pleadings into the harm, loss or damage and determine the extent thereof.¹⁹⁵⁶ After making a determination in terms of section 152, the Court may award damages for the loss or harm suffered,¹⁹⁵⁷ or order the accused to pay for the cost of any remedial measures implemented or to be implemented.¹⁹⁵⁸

Nonetheless, the NWA, 1998 provides for the prevention and remedying of the effects of pollution.¹⁹⁵⁹ Accordingly, the owner of land, a person in control of land or a person who occupies or uses the land on which an activity which causes, has caused or is likely to cause pollution of a water resources, must take all reasonable measures to prevent any such pollution from occurring, continuing or recurring'.¹⁹⁶⁰ Such measures may include stopping, modifying or controlling any activity or process causing the pollution and remedying the effects of the pollution.¹⁹⁶¹ A catchment management agency may also direct any person who fails to take the measures required to commence the undertaking of such measures before a specified date, diligently continue with such measures and complete them before a specified date.¹⁹⁶² Should a person fail to comply or comply inadequately with a directive by the catchment management agency may take the measures necessary to remedy the situation.¹⁹⁶³ The catchment management agency may take the measures necessary these responsible or contributed to the pollution or potential pollution,¹⁹⁶⁴ the owner of the land at the time when the pollution or the potential for pollution occurred,¹⁹⁶⁵ or the person in control of the land or any person who has a right to use the land.¹⁹⁶⁶

- ¹⁹⁶⁰ S 19(1) of the NWA.
- 1961 S 19(2) of the NWA.
- ¹⁹⁶² S 19(3) of the NWA.
- ¹⁹⁶³ S 19(4) of the NWA.
- 1964 S 19(5)(a) of the NWA.
- ¹⁹⁶⁵ S 19(5)(b) of the NWA.
- ¹⁹⁶⁶ S 19(5)(c) of the NWA.

¹⁹⁵¹ S 152(a) of the NWA.

¹⁹⁵² S 152(b) of the NWA.

¹⁹⁵³ S 152(b)(i) of the NWA.

¹⁹⁵⁴ S 152(b)(ii) of the NWA.

¹⁹⁵⁵ S 152(b)(iii) of the NWA.

¹⁹⁵⁶ S 152 of the NWA.

¹⁹⁵⁷ S 153(a) of the NWA. ¹⁹⁵⁸ S 153(b) of the NWA.

¹⁹⁵⁹ S 19 of the NWA.

The polluter-pays principle as provided for in the NWA,¹⁹⁶⁷ complemented by sections 153(a) and (b), are particularly relevant to this study, which is concerned with the production of shale gas in the Karoo utilizing hydraulic fracturing, a process that uses a lot of water,¹⁹⁶⁸ and chemicals that could potentially contaminate ground and surface water resources.¹⁹⁶⁹

8.5 Environmental Remediation in the United Kingdom

In the UK, the polluter pays principle finds expression in the Environmental Act.¹⁹⁷⁰ In terms of the Act, primary environmental liability is imposed on the person that 'caused' or knowingly permitted a contaminating substance to be in, on or under the land in question.¹⁹⁷¹ The Act defines contaminated land as any land where according to the local authority, significant harm is being caused, or there is a significant possibility of such harm being caused by substances in, on or under the land,¹⁹⁷² or where pollution of controlled waters is being caused or is likely to be caused.¹⁹⁷³ The harm to be avoided is to the health of living organisms or other interference with the ecological system, and includes to property in the case of man.¹⁹⁷⁴ The Act provides for the determination of 'significant' harm,¹⁹⁷⁵ whether the possibility of significant harm being

¹⁹⁶⁷ Part 1 of the NWA.

¹⁹⁶⁸ Academy of Science of South Africa South Africa's Technical Readiness to Support Shale Gas Development (2016) at 77.; M Burns, D Atkinson, D, O Barker & C Davis et al 'Scenarios and Activities' (2016) at 1-62, in R Scholes, P Lochner, G Schreiner & L Snyman-Van der Walt (eds.) Shale Gas Development in the Central Karoo: A Scientific Assessment of the Opportunities and Risks (2016), Pretoria: CSIR.

¹⁹⁶⁹ Jake Hays, Madelon L. Finkel, Michael Depledge, Adam Law & Seth B.C. Shonkoff 'Considerations for the development of shale gas in the United Kingdom' (2015) at 37, *Science of the Total Environment;* Terence J. Centner and Ludivine Petetin 'Permitting program with best management practices for shale gas wells to safeguard public health' (2015) 163 *Journal of Environmental Management 174-183;* P Hobbs, E Day, P Rosewarne, S Esterhuyse, R Schulze, J Day, J Ewart-Smith, M Kemp, N Rivers-Moore, H Coetzee, D Hohne, A Maherry, A Mosetsho and M de Jager (eds) 'Water Resources'' (2016) at 5-9, in R Scholes, P Lochner, G Schreiner, L Snyman-Van der Walt G, and M de Jager (eds.) 'Shale Gas Development in the Central Karoo: A Scientific Assessment of the Opportunities and Risks' (2016), Pretoria: CSIR.
¹⁹⁷⁰ Environmental Act 1995.

¹⁹⁷¹ Environmental Act 1995, Part IIA, s 78F(2).

¹⁹⁷² S 78A(2)(a) of the Act.

¹⁹⁷³ S 78A(2)(b) of the Act.

¹⁹⁷⁴ S 78A(4) of the Act.

¹⁹⁷⁵ S 78A(5)(a) of the Act.

caused is significant,¹⁹⁷⁶ or whether the pollution of controlled waters is being, or is likely to be caused.¹⁹⁷⁷

The main objectives of the provision on contaminated land, are to identify and remove unacceptable risks to human health and the environment, and ensure that contaminated land is made suitable for use.¹⁹⁷⁸ Consequently, primary liability is imposed on the person that 'caused' or knowingly permitted a contaminating substance to be in, on or under the land in question.¹⁹⁷⁹ The meaning of 'causing' and 'knowingly permitted' are however not defined, the broad meaning of these can however be discerned from case law.¹⁹⁸⁰

In Crest Nicholson Residential Ltd v Secretary of State for Environment. Food & Rural Affairs, where the Claimant (Crest) was applying for permission to bring judicial review proceedings to challenge a remediation notice that was issued against the Claimant by the Secretary of State,¹⁹⁸¹ Justice Sales clarified the meaning of 'causing' and 'knowingly permitted'.¹⁹⁸² The remediation notice related to land at St Leonard's Court, Sandridge, Hertfordshire (the site) that was contaminated with bromide and bromate in the soil that was entering the local water course when raining.¹⁹⁸³ The notice identified Crest as an 'appropriate person' therefore liable for certain remedial costs because Crest had caused or knowingly permitted bromide and bromate to contaminate the land.¹⁹⁸⁴ The notice required Crest to assess or monitor the impact of bromide and bromate in local water supplies.¹⁹⁸⁵ It also required Crest to contribute to the cost of pumping and treatment of contaminated ground water by Veolia Water

232

¹⁹⁷⁶ S 78A(5)(b) of the Act.

¹⁹⁷⁷ S 78A(5)(c) of the Act.

¹⁹⁷⁸ Emma Lees 'The Polluter Pays Principle and the Remediation of the Land' (2016) at 11, *IJLBE*, 8.1. ¹⁹⁷⁹ Environmental Act 1995, Part IIA, s 78F(2).

¹⁹⁸⁰ Emma Lees 'The Polluter Pays Principle and the Remediation of the Land' (2016) at 11, *IJLBE*, 8.1; R Crest Nicholson Residential Ltd v Secretary of State for Environment, Food & Rural Affairs [2010] EWHC 561 (Admin) [2011] Env. L.R.1; Walker and Son (Hauliers) Ltd v. Environment Agency [2014] EWCA Crim 100; [2014] PTSR 929 [CA (Crim Div)].

¹⁹⁸¹ In terms of Section 78E of the Environmental Protection Act 1990 (as amended).

¹⁹⁸² R Crest Nicholson Residential Ltd v Secretary of State for Environment, Food & Rural Affairs [2010] EWHC 561 (Admin) [2011] Env. L.R.1.

¹⁹⁸³ R Crest Nicholson Residential Ltd v Secretary of State for Environment, Food & Rural Affairs [2010] para 2, EWHC 561 (Admin), [2011] Env. L.R.1.

¹⁹⁸⁴ Ibid. ¹⁹⁸⁵ Ibid.

Central Ltd (the local water supply company) and to the cost of disposing of such water by Thames Water Utilities Ltd (the local sewage company).¹⁹⁸⁶

In his judgment, Justice Sales reflected on the fact that from the 1950s to about 1980 activities by Redland Minerals Ltd ('Redland') produced chemicals on the site in buildings erected on hardstanding, with sump holes used to collect the waste bromide and bromate generated by the chemical processes.¹⁹⁸⁷ There was some leakage into the soil at the Site during that period, essentially causing all the bromide and bromate at the site.¹⁹⁸⁸ In September 1983, after the cessation of Redland's chemical production operations, Crest, a developer of residential properties, identified the site as a potential development site, carried out some testing therefore and acquired it from Redland.¹⁹⁸⁹

In early 1984, Crest demolished the existing buildings and broke up the hardstanding, but did not carry out construction works for about two-and-a-half years.¹⁹⁹⁰ Crest subsequently carried out the residential development in 1986 and 1987 and sold off the land and properties.¹⁹⁹¹ During the two-and-a-half year break period the site was exposed, the removal of the buildings and hardstanding allowed rain to wash bromide and bromate down into the soil than would otherwise have been the case.¹⁹⁹² Before Crest commenced development works in 1986, it excavated and disposed of a shallow layer of soil of between 1 to 1.5 metres deep across the site and dug out the sumps, as a means of removing any soil contaminated with bromide.¹⁹⁹³ The excavations by Crest were too shallow and failed to remove all the contaminants in the soil at the site, as a result, the bromide and bromate remaining in the ground gradually found its way into the local water course, thereby contaminating water supplies.¹⁹⁹⁴

- ¹⁹⁸⁶ Ibid, para 3.
- ¹⁹⁸⁷ Ibid, para 4.
- ¹⁹⁸⁸ Ibid.
- ¹⁹⁸⁹ Ibid, para 5.
- ¹⁹⁹⁰ Ibid, para 6.
- ¹⁹⁹¹ Ibid, para 6.
- ¹⁹⁹² Ibid, para 7.
- ¹⁹⁹³ Ibid, para 8.
- ¹⁹⁹⁴ Ibid, para 9.

Justice Sales clarified the meaning of 'causing' and 'knowingly permitted' when he ruled that the land was affected by both Redland and Crest activities as causes of the contamination of the land.¹⁹⁹⁵ This was consistent with the fact that the Environmental Protection Act of 1990 was amended by the Environment Act of 1995, introducing a regime requiring remedial works to be carried out to contaminated land, effective from 1 April 2000.¹⁹⁹⁶ Therefore, while the polluter-pays principle in the UK is primarily premised on strict liability, the intent is not to limit the liability only to the polluter if there may be other potentially liable persons.¹⁹⁹⁷ Causal liability in the UK therefore involves fault, is strict, and imposed on the polluter.¹⁹⁹⁸

If the polluter cannot be found, the owner or occupier of the land in question may be liable.¹⁹⁹⁹ The owner or occupier of the land is responsible for the remediation of the land by virtue of their legal rights to the land, or because they occupy and control the land in question.²⁰⁰⁰ This secondary liability is not based on fault or causation but the mere ownership or occupancy of land.²⁰⁰¹ In fact, the rules on contaminated land are primarily concerned with the remediation of the environmental damage caused on the land, rather than focussed on ensuring that the polluters pay for the environmental damage they have caused.²⁰⁰²

Accordingly, the enforcing authority, Environmental Agency in the case of England and Wales,²⁰⁰³ and Scottish Environmental Protection Agency in the case of Scotland,²⁰⁰⁴ may serve a remediation notice to the person that 'caused' or 'knowingly permitted' the contamination of land.²⁰⁰⁵ Should a person who has been served with a remediation notice fail to comply with the requirements thereof without reasonable grounds he shall be guilty of an offence.²⁰⁰⁶ Where the contaminated land to which the

¹⁹⁹⁵ Ibid, para 31.

¹⁹⁹⁶ R Crest Nicholson Residential Ltd v Secretary of State for Environment, Food & Rural Affairs [2010] para 11, EWHC 561 (Admin) [2011] Env. L.R.1; Environmental Act 1995, Part IIA, s 78A.

¹⁹⁹⁷ Emma Lees 'The Polluter Pays Principle and the Remediation of the Land' (2016) at 11, *IJLBE*, 8.1. ¹⁹⁹⁸ Ibid.

¹⁹⁹⁹ Environmental Act 1995, Part IIA, s 78F(4).

²⁰⁰⁰ Emma Lees 'The Polluter Pays Principle and the Remediation of the Land' (2016) at 11, *IJLBE*, 8.1. ²⁰⁰¹ Ibid.

²⁰⁰² Ibid.

²⁰⁰³ Environmental Act 1995, s 1.

²⁰⁰⁴ Environmental Act 1995, s 20.

²⁰⁰⁵ Environmental Act 1995, Part IIA, s 78M(1).

²⁰⁰⁶ Environmental Act 1995, Part IIA, s 78M(1).

remediation notice relates is industrial, trade or business premises, the offender shall be summarily liable to a fine not exceeding GBP20,000.²⁰⁰⁷

8.6 Environmental Remediation in Canada

In Canada, the polluter pays principle finds expression in the Canadian Environmental Protection Act (CEPA), the overarching environmental law at the federal level.²⁰⁰⁸ In terms of the preamble to the Act, 'the Government of Canada recognizes the responsibility of users and producers of toxic substances, pollutants and wastes, and has thus adopted the polluter pays principle'.²⁰⁰⁹ Accordingly, the protection of the environment in Canada takes precedence over ascertaining who is responsible for alleged pollution, therefore should be held accountable through the polluter-pays principle.²⁰¹⁰ The application of the polluter pays principle in Canada thus seeks to strengthen the protection of the environment, while safeguarding against the notion that, polluters can pollute, as long as they will bear the cost of remediation.²⁰¹¹

In *Kawartha Lakes (City) v. Ontario (Environment)* Judge Goudge J.A of the Court of Appeal for Ontario demonstrated this when he dismissed the City of Kawartha Lakes' appeal against the ruling of the Divisional Court, which upheld a ruling of the Environmental Review Tribunal.²⁰¹² The case relates to a fuel oil spill that occurred on a residential property that is privately owned by the Gendrons.²⁰¹³ The Gendron property is adjacent to a road that is owned by the City of Kawartha Lakes, which is in turn adjacent to the shore of Sturgeon Lake.²⁰¹⁴ The fuel oil was delivered to the Gendrons by Thompson Fuels Ltd on 18 December 2008.²⁰¹⁵ The fuel oil subsequently migrated onto the appellant's property and into the Surgeon Lake.²⁰¹⁶ On 30 December

²⁰⁰⁷ Environmental Act 1995, Part IIA, s 78M(4).

²⁰⁰⁸ Canadian Environmental Protection Act, 1999.

²⁰⁰⁹ Ibid.

²⁰¹⁰ Kawartha Lakes (City) v. Ontario (Environment) 2013 ONCA 310.

²⁰¹¹ Ibid.

²⁰¹² Kawartha Lakes (City) v. Ontario (Environment) para 21, 2013 ONCA 310.

²⁰¹³ Ibid, para 1.

²⁰¹⁴ Ibid.

²⁰¹⁵ Ibid.

2008, the Ministry of the Environment issued an order for the Gendrons to 'prevent, eliminate and ameliorate' the adverse effects of the spill, as they were at fault.²⁰¹⁷

The Gendrons accepted responsibility and commenced remediation by hiring a cleanup company, however they ran out of funds three months later therefore could not continue any remediation off site, that is, on the appellant's property.²⁰¹⁸ Consequently the Ministry of the Environment ordered the appellant to remediate the adverse effects of the spill on his property.²⁰¹⁹ The appellant appealed unsuccessfully to the Environmental Review Tribunal,²⁰²⁰ and subsequently to the Divisional Court, which upheld ruling of the Environmental Tribunal.²⁰²¹ Goudge J.A of the Divisional Court ruled that, while all agreed that the appellant was innocent of any fault related to the fuel oil spill, the order for the appellant to clean up the damage caused by the spill was not premised on finding fault on the part of the appellant, but rather on the need to serve the environmental Protection objective of the Canadian environmental legislation.²⁰²² The Environmental Tribunal was therefore correct in not revoking the order by the Ministry of the Environmental protection, the primary objective of the Canadian environmental law.²⁰²³

In *Imperial Oil v Quebec (Minister of Environment)* the Canadian Supreme Court of Appeal noted that the polluter-pays principle is entrenched in Canadian environmental law and is found in almost all federal and provincial environmental legislation.²⁰²⁴ The Court affirmed the role of the principle in Canada, pronouncing that it encouraged sustainable development, hence assigns the responsibility of remedying contamination to those responsible for such pollution, and imposes on them the direct and immediate costs of pollution.²⁰²⁵ Consequently, polluters are required to pay more

²⁰¹⁷ Ibid, para 5.

²⁰¹⁸ Ibid, para 6.

²⁰¹⁹ Ibid, para 7.

²⁰²⁰ Ibid, para 12.

²⁰²¹ Ibid, para 13.

²⁰²² Ibid, para 19.

²⁰²³ Ibid, para 21.

²⁰²⁴ Imperial Oil v Quebec (Minister of Environment) para 24 [2003] 2 SCR 624.

²⁰²⁵ Ibid.

attention to the need to protect ecosystems in the course of their economic activities.²⁰²⁶

This case arose when contamination at a site that was previously operated by Imperial Oil caused problems, and Quebec's Minister of the Environment (Minister) ordered Imperial Oil to prepare a site characterisation study that includes appropriate decontamination measures for the observed contamination for submission to the Minister.²⁰²⁷ Imperial Oil challenged the order, on the basis that the Minister was conflicted because he was involved in the earlier decontamination work on the site and was now being sued by the present owners of the land.²⁰²⁸ Imperial Oil argued that the Minister was therefore in violation of the rules of procedural fairness.²⁰²⁹

Dismissing the appeal, the Supreme Court of Appeal ruled that the Minister had the authority to issue the order under the Environmental Quality Act.²⁰³⁰ In terms of the ruling, section 31.42 of the Environmental Quality Act, which set out the polluter-pays principle, allowed for the use of a broad discretion by the Minister.²⁰³¹ In terms of that provision, the Minister could impose an obligation on the parties responsible for the contamination of the environment, to conduct the studies required to ascertain the nature of the problem, to submit a remedial plan, and where applicable, to remediate the site at their expense.²⁰³² The Supreme Court of Canada further affirmed the polluter-pays principle as a well-recognized tenet of Canadian environmental law.²⁰³³ It reiterated that the principle 'assigns polluters the responsibility for remedying environmental damage for which they are responsible, thereby incentivising companies to pay attention to the environment in the course of their economic activities'.²⁰³⁴

²⁰³⁰ Ibid.

²⁰³⁴ Ibid.

²⁰²⁶ Ibid.

²⁰²⁷ Ibid, para 1.

²⁰²⁸ Ibid.

²⁰²⁹ Ibid.

²⁰³¹ Ibid, para 25.

²⁰³² Ibid.

²⁰³³ Orphan Well Association v Grant Thornton Ltd., 2019 SCC 5, para 29.

8.7 Conclusions

The review of the polluter-pays principle reveals two possible interpretations of the principle as a justification for environmental liability and remediation.²⁰³⁵ On the one hand, the principle can be interpreted as requiring only the polluters to pay for damage caused by their activities.²⁰³⁶ In terms of this interpretation, if anyone else is made to pay for environmental damage caused by polluting activities, the cost of the polluter-pays principle as an economic principle to advance free trade, taking into account incoherent environmental protection legislation.²⁰³⁸ On the other hand, the polluter-pays principle can be interpreted as going beyond economic rationale, and towards environmental justice.²⁰³⁹ While it is fair that the polluters should pay for the damage they cause,²⁰⁴⁰ it may be in the interest of environmental protection, therefore fair for another person or the State to pay to remediate such environmental damage.²⁰⁴¹ There is a contradiction in the two approaches, the first approach excludes liability for others, while the second approach provides for others to be held liable in the interest of environmental justice.²⁰⁴²

In all the three comparative jurisdictions of this study the polluter pays principle does not apply strictly,²⁰⁴³ although primarily allocates environmental liability to those who have caused contamination.²⁰⁴⁴ These jurisdictions furthermore impose secondary liability to the owners or occupiers of contaminated land, when the polluter cannot be found or has insufficient funds to meet the cost of remediation.²⁰⁴⁵ The application of the polluter-pays principle in all three jurisdictions is limited to the actual existence of environmental damage. This limited application of the polluter-pays principle lacks the

²⁰³⁵ Emma Lees 'The Polluter Pays Principle and the Remediation of the Land' (2016) at 6, *IJLBE*, 8.1 ²⁰³⁶ Ibid.

²⁰³⁷ Ibid.

²⁰³⁸ Ibid, Nicholas der Sadeleer 'Environmental Principles – From Political Slogans to Legal Rules' (2002) at 34 (Oxford University Press, New York).

²⁰³⁹ Emma Lees 'The Polluter Pays Principle and the Remediation of the Land' (2016) at 6, IJLBE, 8.1. ²⁰⁴⁰ Ibid.

²⁰⁴¹ Ibid.

²⁰⁴² Ibid.

²⁰⁴³ Tracy Field 'Letting polluters off the hook? The impact of Bareki NO vs Gencor Ltd 2006 (1) SA 432 (T) on the reach of s 28 of the National Environmental Management Act 107 of 1998' (2007) at 115, SALJELP.

²⁰⁴⁴ Section 2(4)(p) of the NEMA; Environmental Act 1995, Part IIA, s 78F(2); Imperial Oil v Quebec (Minister of Environment), [2003] 2 SCR 624 at para 24.

²⁰⁴⁵ Section 28(2) of the NEMA; Environmental Act 1995, Part IIA, s 78F(4).

foresight required to ensure that the principle also serve to reinforce precautionary measures to mitigate potential environmental damage. For example, the OECD, Recommendation on the application of the Polluter-Pays Principle to Accidental Pollution require potential polluters to make financial contributions to preventive measures put in place by public authorities, therefore is forward looking in its avoidance of potential pollution.²⁰⁴⁶

As it considers the optimal approach to shale gas development, consistent with the polluter-pays and precautionary principles, South Africa should, as a licence condition, require shale gas petroleum right holders to make financial contributions to preventative measures put in place by the relevant government agencies or for the monitoring of their activities for possible environmental damage. South Africa should affirm the polluter-pays principle as going beyond economic rationale, and towards environmental justice, to ensure that the environment in the Karoo is protected against the risks associated with shale gas development. Furthermore, given that the polluter-pays principle cannot operate effectively by itself, in relation to shale gas development, South Africa, should ensure that it serves to complement the preventive and precautionary principles, because these principles are more capable of averting irreparable damage, while the polluter-pays principle could be applied effectively to reversible damages/and or to repair repairable damage.²⁰⁴⁷

²⁰⁴⁶ OECD 'Recommendation on the Application of the Polluter-Pays Principle to Accidental Pollution' (1989) OECD/LEGAL/0251.

²⁰⁴⁷ Nicholas der Sadeleer 'Environmental Principles – From Political Slogans to Legal Rules' (2002) at 43, New York, Oxford University Press.

CHAPTER 9: CONCLUSIONS

South Africa potentially contains vast amounts of shale gas, a cleaner energy source than crude oil or coal. Despite this potential endowment in natural gas, trapped in the Karoo shales, the country relies on coal as a primary energy source for power generation and production of fuels, such as petrol, diesel, and paraffin. Consequently, South Africa has high carbon dioxide emissions, therefore is a significant contributor to climate change. If found to exist in commercial quantities and produced, shale gas could enhance the country's energy security of supply and aid its efforts to mitigate climate change, and transition towards renewable energy sources, such as wind and solar. The exploitation of shale gas requires the use of hydraulic fracturing, a technology that has generated controversy globally due to its potential risks to the environment and human health.

This thesis investigates whether South Africa's petroleum legal framework provides adequately for the protection of the environment against the risks posed by shale gas development in the karoo. It finds that the country does not have an effective legal framework to regulate the exploration and production of shale gas using this technology. To start with, the petroleum chapter within the Minerals and Petroleum Resources Development Act of 2002 does not provide for hydraulic fracturing, since it was developed with conventional oil and gas exploration and production in mind. In fact, the lack of effective public engagement related to shale gas as a new potential energy source in South Africa and hydraulic fracturing in particular led to the halting of exploration for shale gas in the Karoo before it even began.

The review of the petroleum legal framework, including the most recent case law on public participation related to the exploration and production of oil and gas in South Africa reveals that the societal acceptance of shale gas development will need to be earned through meaningful public participation. This implies the substantive engagement of local communities and other relevant stakeholders at every stage of shale gas development. This will require the applicants and holders of permits and rights for shale gas exploration and exploitation to share pertinent project information, such as the technical aspects of the shale gas development, the associated risks, and
mitigation measures to be put in place to protect the environment with the relevant stakeholders or interested and affected parties, even at the planning stages of the shale gas projects.

Meaningful public participation also means giving the public access to independent experts to help them with in-depth analysis of the hydraulic fracturing process. Furthermore, there should be openness to adopt processes or project implementation plans in alignment with public concerns, perspectives, and expectations. This should be premised on the recognition that stakeholders have legitimate interests in procedural or substantive aspects of industrial activity, and that these interests have intrinsic value. Accordingly, the petroleum right holders should provide sufficient opportunity for comment on plans, operations, and performance, listen to concerns, and respond appropriately and promptly. Petroleum right holders will have to develop strategies and plans of engagement in accordance with the requirements of the National Environmental Management Act and related Environmental Impact Assessment regulations.

Participatory approaches to addressing environmental challenges have the potential to facilitate knowledge sharing, lessen contradictions, and build trust among key stakeholders leading to support for industrial activities such as shale gas extraction. A requirement for consent by landowners or persons in control of the land over which a petroleum right has been awarded would go a long way to ensure support for shale gas development in the Karoo. In essence, public participation in relation to shale gas exploration and production in the Karoo should be about ensuring that the interests of diverse stakeholders are coordinated in a way that could lead to amicable outcomes.

Moreover, to further aid the societal acceptance of shale gas development, petroleum right holders should strive towards maximizing the economic benefits to local communities from their operations, for example through investing in the education of local people, skills development, creating employment opportunities, investment in social infrastructure such as schools, clinics, roads and other infrastructure that will be required in support of the industry, while also enjoyed by local people, and utilizing locally-based contractors, where possible.

Key shortcomings in the current petroleum legal framework are: first, the integration of mineral legislation with petroleum legislation, which led to a limited focus on petroleum resources relative to mineral resources. As a result, only one chapter is dedicated to petroleum in the MPRDA, demonstrating an afterthought in the law-making process. This complicates the petroleum legal framework with many references to the more comprehensive mineral chapters/sections within the MPRDA. Secondly, the definition of petroleum as it relates to petroleum is confusing in the MPRDA. The simplification of the definition in the emerging petroleum law, to consider the existence of shale gas in the Karoo could help the interpretation of the petroleum legal framework.

Thirdly, the petroleum regulatory framework does not require consent from local communities/and or interested and affected parties in relation to petroleum exploration and production, this poses a challenge for the local community's acceptance of shale gas development, a key stakeholder. Fourthly, the MPRDA does not require consent from landowners to access their land for petroleum exploration and production, it merely requires that they be consulted. This invokes the question whether access to land for the purpose of petroleum exploration and production infringes on existing rights to ownership. This conundrum has could continue to put applicants for petroleum exploration and production and production and production and production and production.

Fifth, while the MPRDA provides for the payment of compensation to landowners or lawful occupiers in the event of loss or damage to land caused by exploration and production activities, this is not enough to persuade landowners to support shale gas development. Sixth, the MPRDA overly empowers the Minister of Mineral Resources and Energy on environmental matters pertaining to petroleum exploration and production. This is not appropriate since environmental matters should be the prerogative of the Minister of Forestry, Fisheries and the Environment. The natural inclination of the Minister of Mineral Resources, and not necessary to safeguard that they be developed in an environmentally sustainable manner. Granted, the MPRDA does compel the Minister of Mineral Resources and Energy to ensure that the nation's mineral and petroleum resources are developed in an orderly and economically sustainable manner while promoting justifiable social and economic development. Seventh, the Hydraulic Fracturing Regulations provide for the hydraulic fracturing operation as though it is a production activity. Hydraulic fracturing is a well stimulation technique that largely occurs during field development, that is, the drilling and completion of wells from which gas may ultimately be produced. However, hydraulic fracturing can also be used during the drilling of exploration wells, particularly as it enables the testing of the flow properties of the target formation. When used in this fashion, such wells might not be completed into producing wells, but merely be plugged and abandoned. The petroleum legislation and hydraulic fracturing is regulated through an exploration, development, or production right. Removing this ambiguity is particularly important given the robustness of the environmental authorization process for awarding production rights, as opposed to the lesser strict process of awarding exploration rights, which is inadequate to regulate hydraulic fracturing.

Lastly, the Hydraulic Fracturing Regulations are not clear how activities that could have a detrimental impact on the environment will be monitored and enforced, and they do not impose penalties for negative environmental impact because of shale gas operations. This is contrary to the NEMA which creates liability for environmental damage, thus provides for the costs of remedying pollution, environmental degradation and consequent adverse health effects be paid for by those responsible for harming the environment.

Indeed, the appropriate management of the risks associated with shale gas development to protect human health and the environment will require an effective petroleum and environmental legal framework. Such a legal framework must be complemented by regulatory measures based on sound science, including specific rules, standards, prohibitions, mandatory reporting, inspections, and penalties. To that effect, this thesis finds that a more effective legal framework for shale gas development in South Africa would be best premised on the principles of avoidance, mitigation, and remediation. These principles are already embedded in the South African environmental law as demonstrated in this thesis. This thesis finds that all three jurisdictions in the comparison provide for the sustainable development of petroleum resources that integrates social, environmental, and economic factors. They require

that the social, environmental, and economic impacts of petroleum operations be considered, assessed, and evaluated with appropriate decisions taken.

South Africa's environmental law derives its mandate on the prevention of pollution and environmental degradation from the Constitution. The NEMA seeks to ensure that environmental degradation is avoided, and where it cannot be entirely avoided, be minimized and remedied. In South Africa, every person who may cause or has caused significant pollution or degradation of the environment must take reasonable steps to prevent such pollution or degradation from occurring. The UK on the other hand, employs a risk-based approach to environmental regulation, which requires that the risks of an environmental incident related to oil and gas operations are reduced as low as practically possible. Canada's focus is to avoid pollution from occurring, and all levels of government in Canada have authority to protect the environment. The shared nature of environmental jurisdiction makes close cooperation among the different spheres of government and Aboriginal people critical to the protection of the environment in Canada.

Environmental Impact Assessments are mandatory in South Africa. The NEMA provides for the consideration, investigation and assessment of activities that may significantly impact the environment prior to their implementation. The assessment must include the potential impact on the environment; socio-economic conditions; and the cultural heritage, of the activities that require environmental authorization. In the UK, a mandatory EIA is required only if the Minerals Planning Authority believes that the planned operations are likely to have significant negative impact on the environment. In such circumstances, the applicant can request a scoping opinion to agree what issues should be included within the EIA process. In Canada oil and gas projects are subject to environmental screening by the Canadian Environmental Assessment Agency, who may decide that no environmental assessment is required, or that an environmental assessment study should be done.

Unlike in the UK and Canada, the inclusion of environmental rights in the Constitution, alongside other universally accepted rights, such as the right to equality, dignity and the right to life, attests to the importance that South Africa places to the protection of the environment. To further give effect to environmental protection, prevention should play a central role to South Africa's quest to exploit shale gas. Therefore, the petroleum regulatory framework should compel companies that are planning to exploit shale gas to ensure that they put preventative measures in place for the exploration and production of shale gas. The conditions could include the need for complete disclosure and use of less harmful chemicals in the hydraulic fracturing process, and the consideration of alternatives, rather the use of freshwater as the main hydraulic fracturing fluid.

Given that the world does not know enough about the full impact of hydraulic fracturing on the environment, and with its limited practical knowledge of shale gas development, it is prudent that South Africa adopts a precautionary approach to shale gas exploration and production in the Karoo. A precautionary approach will enable the development of the requisite knowledge, through academic research and exploration efforts. In its quest to ascertain the shale gas potential in the Karoo and developing the understanding of the risks associated with its extraction, South Africa should align with the interpretation that the possibility of harm to the environment and human health alone should be adequate for precautionary measures to be demanded from those planning to conduct the potentially harmful activities, and that the threat of harm does not even have to be serious or irreversible.

Therefore, the approach should not be about a perfect understanding of the risks associated with shale gas extraction in the Karoo, but the mere awareness of the potential risks should ensure that precautionary measures are put in place. Furthermore, the onus to prove that shale gas related activities in the Karoo will not cause harm to human health and the environment must not be negotiable and must fall on those planning the potentially harmful activities. Similarly, the alternatives assessment approach, which requires the consideration of alternative technologies, in search for the least environmentally damaging options, should be an integral part of South Africa's approach to shale gas development.

The review of the polluter-pays principle reveals two possible interpretations of the principle as a justification for environmental liability and remediation. On the one hand,

the principle can be interpreted as requiring only the polluters to pay for damage caused by their activities. In terms of this interpretation, if anyone else is made to pay for environmental damage caused by polluting activities, the cost of the pollution is not fully internalised. This is consistent with the original objective of the polluter-pays principle as an economic principle to advance free trade, taking into account incoherent environmental protection legislation. On the other hand, the polluter-pays principle can be interpreted as going beyond economic rationale, and towards environmental justice. While it is fair that the polluters should pay for the damage they cause, it may be in the interest of environmental justice, therefore fair for another person or the State to pay to remediate such environmental damage. There is a contradiction in the two approaches, the first approach excludes liability for others, while the second approach provides for others to be held liable in the interest of environmental justice.

In all the three comparative jurisdictions of this study the polluter pays principle does not apply strictly, although primarily allocates environmental liability to those who have caused contamination. These jurisdictions impose secondary liability to the owners or occupiers of contaminated land, when the polluter cannot be found or has insufficient funds to meet the cost of remediation. The application of the polluter-pays principle in these jurisdictions is limited to the actual existence of environmental damage. This limited application of the polluter-pays principle lacks the foresight required to ensure that the principle also serve to reinforce precautionary measures to mitigate potential environmental damage. For example, the OECD, Recommendation on the application of the Polluter-Pays Principle to Accidental Pollution require potential polluters to make financial contributions to preventive measures put in place by public authorities, therefore is forward looking in its avoidance of potential pollution.

As it considers the optimal approach to shale gas development, consistent with the polluter-pays and precautionary principles, South Africa should, as a licence condition, require shale gas petroleum right holders to make financial contributions to preventative measures put in place by the relevant government agencies or for the monitoring of their activities for possible environmental damage. Furthermore, South Africa should affirm the polluter-pays principle as going beyond economic rationale,

and towards environmental justice, to ensure that the environment in the Karoo is protected against the risks associated with shale gas development. Furthermore, given that the polluter-pays principle cannot operate effectively by itself, in relation to shale gas development, South Africa, should ensure that it serves to complement the preventive and pre-cautionary principles, because these principles are more capable of averting irreparable damage, while the polluter-pays principle could be applied effectively to reversible damages/and or to repair repairable damage.

In sum, the use of hydraulic fracturing to enhance the production of oil and gas is a well-established practice in the international petroleum industry, and dates back at least seven decades. Refinements of the hydraulic fracturing technology, especially the combination of hydraulic fracturing with horizontal drilling, and the emergence of technology to better image the sub-surface was an innovative breakthrough, that ultimately led to the US shale gas revolution. Approached correctly and with the protection of the environment as a key priority, the exploitation of shale gas could enhance South Africa's energy security of supply and reduce its carbon dioxide emissions.

It will take at least 10 years for shale gas to be produced commercially in the Karoo. The South African government therefore have the opportunity to integrate best practice in the regulation of shale gas development. Lessons learned from the US and Canada as leaders in shale gas development, together with the UK as an aspirant shale gas producer, can be adapted to a South African context. Collaborations between the relevant governmental authorities, and agencies such as the Petroleum Agency SA, Council for Geoscience, industry, key stakeholders, and the public could lead to innovative solutions for the protection of the environment and human health against the risks posed by shale gas development in the Karoo.

This thesis has been written amidst uncertainty as to whether the South African Karoo indeed contain shale gas resources in quantities that would justify the development thereof commercially. Key to the assessment of the commercial viability of shale gas development is the use of hydraulic fracturing to ascertain whether shale gas could be liberated from the shales and flow at sufficient rates to render it commercially viable.

Hydraulic fracturing has never been used in South Africa, therefore what it would take to mobilise and use such technology is not yet fully understood. For example, where would the water and sand required for hydraulic fracturing come from? Assuming such water and sand would be transported using trucks initially, would the current road infrastructure be able to carry such increased traffic of trucks etcetera. More research in this area would enrich existing research and provide further insights that this thesis has not been able to provide.

Furthermore, the country also does not have a sense of the speed with which shale gas development could take place in the Karoo, given that most of the enablers that ensured the rapid development of shale gas in the US and Canada are absent in the Karoo, such as existing gas pipeline networks, supporting services and a gas market. This thesis also does not address this area given its focus on the legal framework. Further research could close this blind spot, which have a bearing on the speed with which the appropriate legislation to regulate shale gas development needs to be in place, recognizing that secondary legislation/and or hydraulic fracturing regulations and related water use regulations might be gazetted by the Department of Forestry, Fisheries and the Environment and Department of Water and Sanitation framework in 2023. At the core of an appropriate legislative framework for shale gas development would be the rigorous review of the primary legislation through the multi-party parliamentary system, which regulations do not necessarily fully benefit from. More thorough research as to what would constitute a social licence to operate for shale gas in the Karoo would also be of great benefit for South Africa.

BIBLIOGRAPHY

Legislation

Canada Constitution Act, 1982.

Canadian Environmental Assessment Act, 2012.

Canadian Environmental Protection Act, 1999.

Canada Petroleum Resources Act, 1985.

Canada Water Act, 1985.

Constitution of the Republic of South Africa, No.108 of 1996.

Environmental Protection Act 1990 (UK).

Federal Sustainable Development Act, 2008 (Canada).

Fisheries Act, 1985 (Canada).

Impact Assessment Act, 2019 (Canada).

Minerals and Petroleum Resources Development Act, No. 28 of 2002.

Mining Titles Registration Act, No. 16 of 1967.

National Environmental Management Act, No.107 of 1998.

National Environmental Management: Waste Act, No. 59, 2008.

National Water Act, No.36 of 1998.

National Water Amendment Act, No.27 of 2014.

Oil and Gas Activities Act, 2008 (Canada).

Petroleum Act, 1998 (UK).

Species at Risk Act, 2002 (Canada).

Upstream Petroleum Resources Development Bill, Government Notice R.1706 in Government Gazette No.42931 of 24 December 2019.

Water Act, 1985 (Canada).

Water Sustainability Act, 2014 (Canada).

Regulations and Government Notices

Alberta Energy Regulator, Directive 083: Hydraulic Fracturing – Subsurface Integrity, 2013.

Alberta Energy Regulator, Directive 59: Well Drilling and Completion, 2012.

British Columbia, Drilling and Production Regulation, 2012.

Borehole Sites & Operations Regulations, 1995 (UK).

Canada Oil and Gas Drilling and Production Regulations, 2009.

Department of Water and Sanitation 'Declaration of the Exploration for and Production of Onshore Unconventional Oil or Gas Resources or any Activities Related Thereto Including but not Limited to Hydraulic Fracturing as a Controlled Activity, Government Gazette, No. 39299 of 16 October 2015.

Environmental Impact Assessment Regulations, 2014, in GN R982 GG 38282.

Environmental Impact Assessment Regulations, 2014, in GN R517 GG 44701.

Environmental Permitting Regulations 2010 (UK).

Environmental Permitting (England and Wales) Regulations, 2010.

Environmental Permitting (England and Wales) (Amendment) Regulations, 2013.

Helsinki Convention on the Protection of the Marine Environment of the Baltic Sea Area (1992).

Offshore Installations and Wells (Design and Construction Etc) Regulations 1996 (UK).

Oil and Gas Well Abandonment Guidelines, 2015 (UK).

Regulations for Petroleum Exploration and Production, Government Notice R.466 in Government Gazette No.38855 of 3 June 2015.

The Borehole Sites and Operations Regulations, No. 2038 of 1995 (UK).

The Hazardous Waste (England and Wales) Regulations, No.894 of 2005.

The Offshore Installation and Wells (Design and Construction etc) Regulations

The United Kingdom Onshore Operators' Group (2016) Guidelines for UK Well Operations on Onshore Shale Gas Wells, Issue 4.

UK Borehole Sites & Operations Regulations, 1995.

UK Offshore Installations and Wells (Design and Construction Etc) Regulations 1996.

UK Hydrocarbons Licensing Directive Regulations, 1995.

Upstream Petroleum Resources Development Bill (B13-2021) Government Gazette No. 44694 of 11 June 2021.

United States Clean Air Act 1970.

The Dangerous Substances and Explosive Atmospheres Regulations, No.2776 of 2002 (UK).

Petroleum Licensing (Exploration and Production) (Landward Areas) Regulations 2014 (UK).

Proposed Regulations Pertaining to the Financial Provisioning for the Mitigation and Rehabilitation of Environmental Damage caused by Reconnaissance, Prospecting, Exploration, Mining or Production Operations, Government Notice R.2272 in Government Gazette No.47112 of 11 July 2022.

Planning (Environmental Impact Assessment) Regulations (Northern Ireland) 2015.

Cases

Agri South Africa v Minister of Minerals and Energy, 2013, Case No: CCT 51/12 (ZACC9).

Anglo Operations Ltd v Sandhurst Estates (Pty) Ltd, 2006, Case No: 634/05 (ZASCA 146).

Alberta Wilderness Association v. Minister of Environment, 2009 FC 710.

Bareki NO and Another v Gencor Ltd and Others, 2006 (1), SA 432 (T) (South Gauteng High Court).

Border Deep Sea Angling Association and others v Minister of Mineral Resources and Energy and others, 2021 SA 3865/2021 (High Court of South Africa, Eastern Cape Division, Grahamstown) (3 December 2021).

Christian John Adams and Others v Minister of Mineral Resources and Energy and others, 2022 SA 1306/22 (High Court of South Africa, Western Cape Division, Cape Town) (1 March 2022).

Earthlife Africa Johannesburg v Minister of Environmental Affairs and Others, (65662/16) ZAGPPHC 58; [2017] 2 All SA 519 (GP).

Environmental Defence Canada v. Minister of Fisheries and Oceans, 2009 FC 878.

Fuel Retailers Association of Southern Africa vs Director-General Environmental Management, Mpumalanga, and others, 2007, ZACC 67/06 [2007] ZACC13.

Haida Nation v. British Columbia (Minister of Forests) 2004, File No.: 29419.

John Douglas Stern and others vs Minister of Mineral Resources, 2015 SA 5672/2015 (High Court of South Africa, Eastern Cape Division, Grahamstown).

Mikisew Cree First Nation v. Canada (Minister of Canadian Heritage) 2005 SCC 69 (30246).

Minister of Mineral Resources v Stern & others (1369/2017) and Treasure the Karoo Action Group & another v Department of Mineral Resources and others (790/2018) [2019] ZASCA 99 (4 July 2019).

Peralta Judgment of the Court, 14 July 1994, in Case C-379/92.

Sustaining the Wild Coast NPC v Minister of Mineral Resources and Energy and Others, 2021 SA 3491/2021 (High Court of South Africa, Eastern Cape Division, Grahamstown) (28 December 2021).

R v. Secretary of State for Trade and Industry ex parte Duddridge, October 4, 1994, United Kingdom Queens Bench Division, Vol. 7 No. 2, 224.

Supreme Court of Canada in 114957 Canada Ltée v Hudson [2001] 2 S.C.R.

West Virginia et al. v. Environmental Protection Agency et al. Supreme Court of the United States Certiorari to the United States Court of Appeals for the District of Columbia Circuit, No.20-1530, June 30, 2022.

Treaties and Conventions

Aarhus Protocol on Persistent Organic Pollutants to the 1979 Long-Range Transboundary Air Pollution Convention (1998).

Agreements Concerning the Protection of the Scheldt and Meuse Rivers (1994).

Bamako Convention on the Ban of the Import into Africa and Control of Transboundary Movement and Management of Hazardous Waste Within Africa (1991).

Bremen Declaration of the International Conference on the Protection of the North Sea (1984).

Convention on the Protection of the Marine Environment of the Baltic Sea Area (1992).

Convention for the Protection and Development of the Marine Environment of the Wider Caribbean Region (1983).

Convention for Protection of the Marine Environment of the North-East Atlantic (1992).

Directive 2011/92/EU of the European Parliament and of the Council on the Assessment of the Effects of Certain Public and Private Projects on the Environment (13 December 2011).

Esbjerg Declaration of the Fourth Conference on the Protection of the North Sea (1995).

International Convention on Oil Pollution Preparedness, Response and Cooperation (1990) United Nations Treaty Series 1891.

Nordic Council's International Conference on Pollution of the Seas: Final Document Agreed to, Oct. 18, 1989, in Nordic Action Plan on Pollution of the Seas, 99 app. V (1990).

OSPAR Convention (1992).

OECD 'Recommendation of the Council on Guiding Principles concerning International Economic Aspects of Environmental Policies' (1972) OECD/LEGAL/0102.

OECD 'Recommendation of the Council on the Implementation of the Polluter-Pays Principle' (1974) OECD/LEGAL/0132.

OECD 'Recommendation on the Application of the Polluter-Pays Principle to Accidental Pollution' (1989) OECD/LEGAL/0251.

OECD 'Recommendation on the Uses of Economic Instruments in Environmental Policy' (1991) OECD/LEGAL/0258.

Treaty establishing the European Community, Title XIX, Article 144(2).

Treaty on the Functioning of the European Union.

United Nations 'Conference on Environment and Development' (1992) Article 17.2.1, A/CONF.151//26, Vol.II, 13 August 1992.

United Nations 'Convention on the Protection and Use of Transboundary Watercourses and International Lakes' (1992).

United Nations 'Doha amendment to the Kyoto Protocol' (2012).

United Nations General Assembly 'Rio Declaration on Environment and Development' (1992) Principle 16, A/CONF. 151/26/(Vol.1).

UN, General Assembly resolution 1803 (XVII) 'Permanent Sovereignty over Natural Resources' (1962)

United Nations 'United Nations Framework Convention on Climate Change' (1992).

United Nations 'Kyoto Protocol to the United Nations Framework Convention on Climate Change' (1997).

United Nations 'Paris Agreement' (2015).

United Nations 'Report of the Conference of the Parties on its seventeenth session' (2012) held in Durban from 28 November to 11 December 2011.

United Nations 'Report of the World Commission on Environment and Development: Our Common Future' (1987).

United Nations 'The Millennium Development Goals Report' (2015) United Nations, New York.

United Nations 'Transforming our world: the 2030 Agenda for Sustainable Development' General Assembly Resolution 70/1, United Nations, New York.

United Nations 'Montreal Protocol on Substances that Deplete the Ozone Layer' (1989) 16 Sept 1987, Treaty Series, 1989, Vol. 1522, 1-26369.

UNEP 'Report of the Governing Council on the Work of its Fifteenth Session' (1989) U.N. Environment Programme, U.N. GAOR, 44th Sess., Supp

United Nations 'Conference on Environment and Development' (1992) Article 17.2.1, A/CONF.151//26, Vol.II, 13 August 1992.

United Nations Environmental Programme 'Stockholm Declaration' (1972).

Books and Journals

Academy of Science of South Africa South Africa's Technical Readiness to Support Shale Gas Development (2016) (ASSAf, Pretoria).

Adams MD 'The precautionary principle and the rhetoric behind it' (2002) *Journal of Risk Research* 5 (4).

Adshead J 'The Application and Development of the Polluter-Pays Principle across Jurisdictions in Liability for Marine Pollution: The Tales of the Erika and the Prestige' (2018) *J.Envtl* 30.

Albrecht E and Schneemann D 'Fracking in the United Kingdom: Regulatory Challenges between Resource Mobilisation and Environmental Protection' (2014) *Carbon & Climate Law Review* 8(4).

Alexander MD, Qian L, Ryan TA & Herron J 'Considerations for Responsible Gas Development of the Frederick Brook Shale in New Brunswick' (2011) Fundy Engineering and Atlantica Centre for Energy.

Aledeitan L & Nwosu C 'Shale Gas Development: Their Gain, Our Pain and the Cost' (2013) *Journal of Politics and Law* 3(6).

Diana M. Allen, Chelsea Notte & Nancy Olewiler 'Enhancing water security in a rapidly developing shale gas region' (2017) *Journal of Hydrology: Regional Studies* 11.

Arthur JD, Bohm B David Cornue D 'Environmental Considerations of Modern Shale Gas Development' (2009) SPE Paper No. 122931, Presented at SPE Annual Technical Conference and Exhibition, New Orleans, Louisiana, USA, 4-7 October 2009.

Atkinson D 'Fracking in a fractured environment: Shale gas mining and institutional dynamics in South Africa's young democracy' (2018) *The Extractive Industries and Society* 5.

Badenhorst PJ 'Ownership of Minerals In situ in South Africa: Australian Darning to the Rescue' (2010) *SALJ* 127(4).

Barton B 'The Common Law of Subsurface Activity' in Zillman DN, McHarg A, Barrera-Hernandez L & Bradbrook A *The Law of Energy Underground: Understanding New Developments in Subsurface Production, Transmission and Storage* (2014) (Oxford University Press, Oxford). Bates F 'Comparative common law: a justification' (1981) Comparative and International Law Journal of Southern Africa 14(3).

Baxter LG 'Pure comparative law and legal science in a mixed legal system' (1983) *Comparative and International Law Journal of Southern Africa*, 16.

Besada H, McMillan L Polonenko L and Agarwal M 'Did the Millennium Development Goals work?: Meeting future challenges with past lessons' (2017) (Cambridge University Press, Great Britain).

Benson SM & Friedmann SJ 'Carbon Capture, Utilization, and Storage: An Important Part of a Response to Climate Change' in *The Bridge* (2014) (National Academy of Engineering, Washington).

Bernhard H, Krooss M, Littke R 'Petrophysical and geochemical characterization of potential unconventional gas shale reservoirs in the southern Karoo Basin, South Africa' (2019) *International Journal of Coal Geology* 212.

Black DE, Booth PWK & de Wet MJ 'Petrographic, geochemical and petro-physical analysis of the Collingham Formation near Jansenville, Eastern Cape, South Africa – potential cap rocks to shale gas in the Karoo' (2016) *South African Journal of Geology* 119.1.

Bodansky D 'The United Nations Framework Convention on Climate Change: A Commentary' (1993) Yale Journal of International Law (18)451.

Bodansky D 'The Copenhagen Climate Change Conference: A Postmortem' (2010) *The American Journal of International Law* 230.

Bodansky D 'The Paris Climate Change Agreement: A New Hope' (2016) The *American Journal of International Law* 110(269).

Bodle R, Donat L & Duwe M 'The Paris Agreement: Analysis, Assessment and Outlook' (2016) *CCLR* 1.

Branco M.C & Rodrigues L.L 'Positioning Stakeholder Theory within the Debate on Corporate Social Responsibility' (2007) *Electronic Journal of Business Ethics and Organization Studies* 12 (1).

Brewer MK 'Corporate Social Responsibility in the Age of Hydraulic Fracturing in the United States and the United Kingdom' (2018) *Creighton Law Review* 51.

Brinks, J. and Fanchi, J 'Geologic Sequestration: Modeling and Monitoring Injected CO2 (2011) SPE paper 66749, proceedings of 2001 SPE/EPA/DOE Exploration and Production Environmental Conference held in San Antonio, Texas, 26-28 February 2001.

Burns M, Reid C & Bremen J 'UK Shale Gas – A Policy Tug War' (2016) *Journal of Energy & Nat Resources Law* 34(2).

Burns M, Atkinson D, Barker O, Davis C & Day E et al 'Scenarios and Activities' in Scholes R, Lochner P, Schreiner G & Snyman-Van der Walt L (eds) *Shale Gas Development in the Central Karoo: A Scientific Assessment of the Opportunities and Risks* (2016) (CSIR, Pretoria).

Bredenhann L & Garlipp L 'The polluter pays principle in water and environmental law' (1999) *Civil Engineering* 7 (2)2.

Cameron P, Castro JFN, Lanardonne T and Wood G 'Across the universe of shale resources – a comparative assessment of the emerging legal foundations for unconventional energy' (2018) *Journal of World Energy Law and Business* 11.

Canete MA 'Paris is Much More Than the Deal' (2015) New Scientist 234 (3129).

Cantoni R, Klaes MS, Lackerbauer SI & Foltyn C et al, 'Shale tales: Politics of Knowledge and promises in Europe's shale gas discourses' (2018) *The Extractive Industries and Society* 5.

Cawood FT & Minnitt RCA 'A historical perspective on the economics of the ownership of mineral rights ownership' (1998) *The Journal of The South African Institute of Mining and Metallurgy*.

Centner TJ & Petetin L 'Permitting program with best management practices for shale gas wells to safeguard public health' (2015) *Journal of Environmental Management* 163.

Chapman, Wait R and Kleynhans E 'The governance of shale gas production in South Africa' (2015) *South African Journal of International Affairs* 23(1).

Chasek P 'The Paris Negotiations: Background and Context' (2021) in Jepsen H, Lundgren M, Monheim K and Walker H (Eds) 'Negotiating the Paris Agreement: The Insider Stories' (2021) (Cambridge University Press, United Kingdom).

Cohen B & Winkler H 'Greenhouse gas emissions from shale gas and coal for electricity generation in South Africa' (2014) *S Afr J Sci*110(3/4).

Costa D, Jesus J, Branco D, Danko A & Fiuza A 'Extensive Review of Shale Gas Environmental Impacts from Scientific Literature (2010 – 2015)' (2017) *Environ Sci Pollut Res* 24.

Cooney R 'The Precautionary Principle in Biodiversity Conservation and Natural Resource Management: An issues paper for policy-makers, researchers and practitioners' (2004) IUCN Policy and Global Change (IUCN, Gland, Switzerland and Cambridge, UK).

Cotton M 'Fair fracking? Ethics and environmental justice in the United Kingdom shale gas policy and planning' (2017) *Local Environment* 22(2).

Cotton M 'Fair fracking? Ethics and environmental justice in the United Kingdom shale gas policy and planning' (2017) *Local Environment* 22(2).

Craig RK 'Mitigation and Adaptation' in Johansen E, Busch SV, Jakobsen IU (eds) *The Law of the Sea and Climate Change: solutions and constraints* (2021) (University Printing House, Cambridge).

Dar OA and Khan MS 'Millennium development goals and the water target: details, definitions and debate' (2011) *Tropical Medicine and International Health* 16(5).

Del Guayo I 'The evolution of principles of energy law (a review of the content of the Journal of Energy & Natural Resources Law, 1982 – 2022) (2022) *Journal of Energy & Natural Resources Law* 40(1).

Dayal AM 'Shale' in Dayal AM & Mani D Shale Gas: Exploration and Environmental and Economic Impacts (2017) (Elsrivier, Oxford, United Kingdom).

De Cruz P *Comparative law in a changing world* (1999) 2nd ed (Cavendish Publishing Ltd: London).

De Kock MO, Beukes NJ, Adeniyi EO & Cole D, et al 'Deflating the shale gas potential of South Africa's Main Karoo basin' (2017) *S Afr J Sci*; 113 (9/10).

De Wit MJ 'The great shale gas debate in the Karoo' (2011) S Afr J Sci; 107(7/8).

Deese B 'Paris Isn't Burning' (2017) 96(4) Foreign Affairs.

Dignum M, Correlje A, Cuppen E, Pesch U & Taebi B 'Contested Technologies and Design for Values: The Case of Shale Gas' (2015) *Sci Eng Ethics* 22.

Der Sadeleer N *Environmental Principles – From Political Slogans to Legal Rules* (2002) (Oxford University Press: New York).

Der Sadeleer N *Environmental Principles: From Political Slogans to Legal Rules* (2020) (2nd edn) (Oxford University Press: United Kingdom).

Donaldson T & Preston LE 'The Stakeholder Theory of the Corporation: Concepts, Evidence, and Implications' (1995) *Academy of Management Review*.

Du Plessis W 'Absolving Historical Polluters from Liability Through Restrictive Judicial Interpretation: Some Thoughts on Bareki NO v Gencor Ltd' (2007) *Stell LR* 1.

Du Plessis W 'Regulation of Hydraulic Fracturing in South Africa: A Project Lifecycle Approach' (2015) *Potchefstroom Electronic Law Journal* 18(5).

Du Toit L 'Experiences from Other Jurisdictions' in Glazewski J and Esterhuyse S *Hydraulic Fracturing in the Karoo: Critical legal and Environmental Perspectives* (2016) (Juta and Company (Pty) Ltd, Claremont).

Duvic-Paoli L *The Prevention Principle in International Environmental Law* (2018) (Cambridge University Press: London).

Eckersley R 'The common but differentiated responsibilities of states to assist and receive climate refugees' (2015) *European Journal of Political Theory* 14(4).

Environmental Law Centre (Alberta) 'The Polluter Pays Principle in Alberta Law' (2019) *CanLIIDocs* 3671.

Esposito M 'Water Issues Set the Pace for Fracking Regulations and Global Shale Extraction' (2013) *Tulane Journal of International & Comparative Law* 22.

Esty DC and Adler DP 'Changing International Law for a Changing Climate' (2018) *American Journal of International Law* 112.

Esterhuyse S, Vermeulen D and Glazewski J 'Developing and enforcing fracking regulations to protect groundwater resources' (2022) *NPJ Clean Water* 5(3).

Eze MA & Eze IS 'An Analysis of the Precautionary Principles and Its Adaptation in International, Regional and National Laws' (2019) *International Journal of Energy and Environmental Science* 4(3).

Farah PD & Tremolada R 'A Comparison between Shale Gas in China and Unconventional Fuel Development in the United States: Water, Environmental Protection, and Sustainable Development' (2016) 41 *Brook. J. Int'l L.* 579.

Finkel ML, Depledge M, Law A & Seth C, Shonkoff SBC 'Considerations for the development of shale gas in the United Kingdom' (2015) *Science of the Total Environment*.

Fleming RC and Reins L 'Shale gas extraction, precaution and prevention: A conversation on regulatory responses' (2016) *Energy Research & Social Science* 20.

Fløttum K & Gjerstad Ø 'The Role of Social Justice and Poverty in South Africa's National Climate Change Response White Paper' (2014) *South African Journal of Human Rights* 29.

Ford J, Maillet M, Pouliot V, Meredith T and Cavanaugh A 'Adaptation and Indigenous Peoples in the United Nations Framework Convention on Climate Change' (2016) *Climate Change* 139.

Gao Y, Gao X, Zhang X 'The 2 °C Global Temperature Target and the Evolution of the Long-Term Goal of Addressing Climate Change - From the United Nations Framework Convention on Climate Change to the Paris Agreement' (2017) *Engineering* 3.

Grafton RQ, Gronshaw IG & Moore MC *Risks, Rewards and Regulation of Unconventional Gas: A Global Perspective* (2017) (Cambridge University Press, UK).

Geel C, de Wet M, Booth P, Schulz HM & Horsfield B 'Palaeo-Environment, Diagenesis and Characteristics of Permian Black Shales in the Lower Karoo Supergroup Flanking the Cape Fold Belt Near Jansenville, Eastern Cape, South Africa: Implications for the Shale Gas Potential of the Karoo Basin' (2015) *Geological Society of South Africa*.

Glazewski J 'Sustainable development and proposed shale extraction in South Africa: prospects and challenges' in May JR and Dernbach JC *Shale Gas and the Future of Energy: Law and Policy for Sustainability (*2016) (Edward Elgar Publishing Limited, UK).

Glazewski J & Plit L 'Towards the application of the precautionary principle in South African law' (2015) *Stellenbosch Law Review* 26(1).

Glazewski J & Esterhuyse S *Hydraulic Fracturing in the Karoo: Critical legal and Environmental Perspectives* (2016) (Claremont, Juta and Company (Pty) Ltd).

Glazewski J and Posnik S 'Compliance with international environmental standards and expectations: review of international developments' (2000) *The Journal of The South African Institute of Mining and Metallurgy*.

Groat CG & Grimshaw TW 'A Fact-Based Regulation for Environmental Protection in Shale Gas Development' (2012) (Energy Institute - The University of Texas at Austin).

Hadden S, Moyer JD & Rettig J 'Fracking for shale gas in South Africa: blessing or curse?' (2013) *Institute for Security Studies*.

Hague Declaration of the Third Conference on the Protection of the North Sea (1990).

Harewood LM 'The importance of the precautionary principle in international environmental law' (2005) *Coventry Law Journal* 10(2).

Hausberger O, Högn LA & Soliman K 'Management Decision Matrix for Shale Gas Projects in Europe' (2012) SPE Paper No. 162921, Presented to the SPE Hydrocarbon, Economics, and Evaluation Symposium, Alberta, Calgary, 24 - 25 October 2012.

Hays J, Finkel ML, Depledge M, Law A & Shonkoff BC 'Considerations for the development of shale gas in the United Kingdom' (2015) *Science of the Total Environment.*

Henderson PGW 'Some thoughts on distinctive principles of South African Environmental Law' (2001) *South African Journal of Environmental Law and Policy* 8(2).

Hobbs P, Day E, Roserwarne P & Esterhuyse S et al 'Water Resources' in Scholes R, Lochner P, Schreiner G & Snyman-Van der Walt L et al *Shale Gas Development in the Central Karoo: A Scientific Assessment of the Opportunities and Risks* (2016) (CSIR, Pretoria).

Houghton JT, Jenkins GJ & Ephraums JJ *Climate Change: The IPCC Scientific Assessment* (1990) (Cambridge University Press, Cambridge).

Howard T & Da Silva ST *Possible legal obligations to consult* (2015) (Edward Elgar Publishing Limited, United Kingdom).

Howarth RW 'A bridge no nowhere: methane emissions and the greenhouse gas footprint of natural Gas' (2014) *Energy Science and Engineering*.

Howarth RW, Santoro R & Ingraffea A 'Methane and the greenhouse gas footprint of natural gas from shale formations' (2011) *Climate Change Letter*.

Hunter T (ed) *Handbook of Shale Gas Law and Policy: Economics, Access, Law and Regulation in Key Jurisdictions* (2016) Energy & Law 18 (Intersentia Ltd, Cambridge: United Kingdom).

Hunter T 'Legal Regulatory Framework for the Sustainable Extraction of Australian Offshore Petroleum Resources – A Critical Functional Analysis' (2010) PhD Thesis, University of Bergen.

Huber W 'After Fukushima: The precautionary principle revisited' (2012) *Verbum et Ecclesia* 33(2).

Ingelson A 'Shale Gas Law and Regulation in North America' in Tina Hunter (ed) *Handbook of Shale Gas Law and Policy: Economics, Access, Law and Regulation in Key Jurisdictions* (2016) Energy & Law 18 (Intersentia Ltd, Cambridge: United Kingdom).

Ingelson A & Hunter T 'A Regulatory Comparison of Hydraulic Fracturing Fluid Disclosure Regimes in the United States, Canada, and Australia' (2014) Natural Resources Journal 54(2).

Jones P, Hillier D & Daphne Comfort D 'Fracking and public relations: rehearsing the arguments and making the case' (2013) *J. of Public Affairs* 13.

Kemp C, Ravikumar A and Brandt A 'Comparing Natural Gas Leakage Detection Technologies Using an Open-source "Virtual Gas Field" Simulator' (2016)*Environmental Science and Technology*.

Ketzer JM, B. Carpentier B, Le Gallo Y, & Le Thiez P 'Geological Sequestration of CO2 in Mature Hydrocarbon Fields: Basin and Reservoir Numerical Modelling of the Forties Field, North Sea' (2005) *Oil & Gas Science and Technology* 60(2).

Khan MR 'Polluter-Pays-Principle: The Cardinal Instrument for Addressing Climate Change' (2015) *Laws* 4.

Khan MR & Sirazoom Munira 'Climate change adaptation as a global public good: implications for financing' (2021) *Climate Change* 167(50).

Kind P & Reddell C 'Public Participation and Water Use Rights' (2015) *PER/PELJ* 4(18).

Ko P and Salkin P 'Sustainable drilling through health impact assessment: understanding and planning for public health impacts' in May JR and Dernbach JC (eds) *Shale Gas and the Future of Energy: Law and Policy for Sustainability* (2016) (Edward Elgar Publishing Limited, UK).

Kristl KT 'Public participation and sustainability: how Pennsylvania's shale gas program thwarts sustainable outcomes' in May JR and Dernbach JC (eds) *Shale Gas and the Future of Energy: Law and Policy for Sustainability* (2016) (Edward Elgar Publishing Limited, UK).

Ladan MT 'SGDs Framework as the Blueprint for Climate Change Action and Sustainable Development in Africa: Role of Law and Parliaments' (2016) p.167, SAJELP 22(159).

Le M 'An assessment of the potential for the development of the shale gas industry in countries outside of North America' (2018) *Helyon* 4.

Lees E 'The Polluter Pays Principle and the Remediation of the Land' (2016) *IJLBE* 8.1.

Li A 'Hopes of Limiting Global Warming? China and the Paris Agreement on Climate Change' (2016) *China Perspectives* 1.

Loaniyan A 'Imposing Liability for Oil Spill Clean-Ups in Nigeria: An Examination of the Role of the Polluter-Pays Principle' (2015) *Journal of Law, Policy and Globalization* 40.

May JR and Dernbach JC 'Introduction' in May JR and Dernbach JC (eds) *Shale Gas and the Future of Energy: Law and Policy for Sustainability* (2016) (Edward Elgar Publishing Limited, United Kingdom).

Maljean-Dubois S 'The Paris Agreement: A New Step in the Gradual Evolution of Differential Treatment in Climate Regime?' (2016) *Review of European Community & International Environmental Law* 25(2).

Matsui Y 'Some Aspects of the Principle of Common but Differentiated Responsibilities' (2012) *International Environmental Agreements: Politics, Law and Economics* 2.

Matthew C 'Fair fracking? Ethics and environmental justice in the United Kingdom shale gas policy and planning' (2017) *Local Environment* 22(2).

McGranahan DA and Kirkman KP 'Be proactive on energy sprawl: South Africa must anticipate surface impacts of fracking in rural areas' (2021) *Resources Policy* 72..

Meyer J 'Who should pay for pollution? The OECD, the European Communities and the emergence of environmental polity in the early 1970s' (2017) *European Review of History: Revue européenne d'histoire*, 24:3.

Mesarovic M.M, 'Scientific Uncertainties Feed Scepticism on Climate Change' (2015) *Thermal Science* 19(2).

Moore MC 'Regulation of Unconventional Hydrocarbons in Alberta, Canada' in Grafton RQ, Gronshaw IG & Moore MC (eds) *Risks, Rewards and Regulation of Unconventional Gas: A Global Perspective* (2017) (Cambridge University Press, UK).

Morgan J 'Sustainability and stakeholder participation: shale gas extraction in the United Kingdom' in May JR and Dernbach JC (eds) *Shale Gas and the Future of Energy: Law and Policy for Sustainability*'(2016) (Edward Elgar Publishing Limited, United Kingdom).

Mostert H 'Land as a "National Asset" Under the Constitution: The System Change Envisaged by the 2011 Green Paper on Land Policy and What This Means for Property Law Under the Constitution' (2014) *PELJ* (17)2.

Moyo T 'Low Carbon and Climate Resilient Investments – Is South Africa Doing Enough?' (2016) *Africa Insight* 45(4).

Nguyen DN 'Geological Sequestration: Technical and Economic Review' (2003) SPE paper 81199, proceedings of 2003 SPE/EPA/DOE Exploration and Production Environmental Conference held in San Antonio, Texas, 10-12 March 2003.

Oettle N, Lindeque L, du Toit J & Samuels I et al 'Impacts on Agriculture' in Scholes R, Lochner P, Schreiner G & Snyman-Van der Walt L et al *Shale Gas Development in the Central Karoo: A Scientific Assessment of the Opportunities and Risks* (2016) (Pretoria, CSIR).

Ougier-Simonin A, Renard F, Boehm C & Vidal-Gilbert S 'Microfracturing and microporosity in shales' (2016) *Earth Science Reviews*.

Palani M and Sweet J (2017) SA's 'first climate change court case' *Without Prejudice* 17(4).

Paterson J and Hunter T 'Shale Gas Law and Regulation in the United Kingdom' in Tina Hunter (ed) *Handbook of Shale Gas Law and Policy: Economics, Access, Law and Regulation in Key Jurisdictions* (2016) Energy & Law 18 (Intersentia Ltd, Cambridge: United Kingdom).

Pearson J and Lynch-Wood G 'Concern and counter-concern: The challenge of fragmented fears for the regulation of hydraulic fracturing' (2017) *The Extractive Industries and Society* 4.

Pigou AC The Economics of Welfare (1932) (Macmillan and Co, Limited, London).

Plit L 'Regulating Petroleum Extraction: The Provisions of the Mineral and Petroleum Resources Development Act 28 of 2002' in Jan Glazewski and Surina Esterhuyse *Hydraulic Fracturing in the Karoo: Critical legal and Environmental Perspectives* (2016) (Claremont, Juta and Company (Pty) Ltd).

Radovanovic MM, Ducic V & Mukherjee S 'Climate Changes Instead of Global Warming' (2014) *Thermal Science* 18(3).

Reed MS, Vella S, Challies E & de Vente J et al 'A theory of participation: what makes stakeholder and public engagement in environmental management work?' (2018) *Restoration Ecology* 26.

Reins L 'The Shale Gas Extraction Process and Its Impacts on Water Resources' (2011) *Review of European Community & International Environmental Law* 20 (3).

Rowe B 'Paris climate deal exit 'deeply troubling' to Catholic leaders' (2017), *National Catholic Reporter*, 16 June 2017.

Scholtz W 'The promotion of regional environmental security and Africa's common position on climate change' (2010) *African Human Rights Law Journal*.

Scholes B, Lochner P, Schreiner G & Snyman-Van der Walt L et al (eds) *Shale Gas Development in the Central Karoo: A Scientific Assessment of the Opportunities and Risks* (2016) (Pretoria: CSIR). Shaw JC, Reynolds MM, Burke LH 'Shale Gas Production Potential and Technical Challenges in Western Canada' (2006) Paper 2006-193, presented to the Petroleum Society's 7th Canadian International Petroleum Conference, Calgary, Alberta, Canada, 13-15 June.

Smith DC 'Unconventional Gas Development 2.0: Reducing the 'Environmental Footprint' Through New Technologies' in Zillman D, Roggenkamp M, Paddock L & Godden L *Innovation in Energy Law and Technology: Dynamic Solutions for Energy Transitions*' (2018) (Oxford University Press, London).

Smythe DK 'Inadequate Regulation of the Geological Aspects of Shale Exploitation in the UK' (2020) at 15, *International Journal of Environmental Research Public Health*.

Soliman MY, Daal J & East L 'Impact of Fracturing and Fracturing Techniques on Productivity of Unconventional Formations' (2012) SPE Paper No. 150949, Presented at the SPE/EAGE European Unconventional Resources Conference and Exhibition, Vienna, Austria, 20-22 March.

Spence B 'Regulating shale gas production for sustainability: federalism questions' in May JR and Dernbach JC 'Shale Gas and the Future of Energy: Law and Policy for Sustainability' (2016) (Edward Elgar Publishing Limited, UK).

Stern PC, Webler T & Small MJ 'Special Issue: Understanding the Risks of Unconventional Shale Gas Development' (2014) *Environmental Science* & *Technology*.

Stamford L & Azapagic A 'A Fractured truth' (2014) The Chemical Engineer.

Scholtz W 'The promotion of regional environmental security and Africa's common position on climate change' (2010) *African Human Rights Law Journal* 10(1).

Sonpar K, Pazzaglia F & Kornijenko J 'The Paradox and Constraints of Legitimacy' (2010) *Journal of Business Ethics* 95.

Soltau F 'The National Environmental Management Act and Liability for Environmental Damage' (1999) *SAJELP* 6.

Stern PC, Webler T & Small MJ 'Special Issue: Understanding the Risks of Unconventional Shale Gas Development' (2014) *Environmental Science* & *Technology*.

Tan H, Wong-Parodi G, Zhang S & Xu J 'Public risk perceptions of shale gas development: A comprehensive review' (2022) *Energy Research & Social Science* 89.

Tawonezvi J 'The Legal and Regulatory Framework for the EU's Shale Gas Exploration and Production Regulating Public Health and Environmental Impacts' (2017) *Energy.Ecol.Environ* 2(1).

Tian S, Smits KM, Cho Y, Riddick SN, Zimmerle DJ and Duggan A 'Estimating methane emissions from underground natural gas pipelines using an atmospheric dispersion-based method' (2022) *Elementa Science of the Anthropocene* 10(1).

Thomas M, Pidgeon N and Bradshaw M 'Shale development in the US and Canada: A review of engagement practice' (2018) *The Extractive Industries and Society* 5.

Tracy Field 'Liability to Rectify Asbestos Pollution' (2006) *Journal of Environmental Law* 18(3).

Tracy Field 'Letting polluters off the hook? The impact of Bareki NO vs Gencor Ltd 2006 (1) SA 432 (T) on the reach of s 28 of the National Environmental Management Act 107 of 1998' (2007) *SALJELP*.

Van den Berg & Mostert H 'Challenges to Regulating Hydraulic Fracturing in South Africa: Technological Innovation and Law Making for Climate Change at the Crossroads' in Zillman D, Roggenkamp M, Paddock L & Godden L (eds) *Innovation in Energy Law and Technology: Dynamic Solutions for Energy Transitions* (2018), (London, Oxford University Press).

Van der Schyff E 'South African mineral law: A historical overview of the State's regulatory power regarding the exploitation of minerals' (2012) *New Contree* 64.

Van der Schyff E 'Who "owns" the country's mineral resources? The possible incorporation of the public trust doctrine through the Mineral and Petroleum Resources Development Act' (2008) *TSAR 4*.

Van Zyl H, Fakir S, Leiman T & Standish B 'Impact on the Economy' in Scholes R, Lochner P, Schreiner G & Snyman-Van der Walt L et al *Shale Gas Development in the Central Karoo: A Scientific Assessment of the Opportunities and Risks* (2016) (CSIR, Pretoria).

Van Wyk J 'Fracking in the Karoo: Approvals Required?' (2014) *Stellenbosch Law Review*.

Verschuuren J 'Sustainable Development and the Nature of Environmental Legal Principles' (2007) *Potchefstroom Electronic Law Journal* 1.

Vanderzwaag DL, Fuler SD & Myers RA 'Canada and the Precautionary Principle/Approach in Ocean and Coastal Management: Wading and Wandering in Tricky Currents' (2002) *Ottawa Law Review* 34(1).

Von Stein J 'The International Law and Politics of Climate Change: Ratification of the United Nations Framework Convention and the Kyoto Protocol' (2008) *The Journal of Conflict Resolution* 52(2).

Wait R & Rossouw R 'A Comparative Assessment of the Economic Benefits from Shale Gas Extraction in the Karoo, South Africa' (2014) *Southern African Business Review* 18(2).

Weir E, Schabas R, Wilson K & Mackie C 'A Canadian framework for applying the precautionary principle to public health issues' (2010) *Canadian Journal of Public Health* 101(5).

Weststrate J, Dijkstra G, Eshuis J, Gianoli A and Rusca M 'The Sustainable Development Goal on Water and Sanitation: Learning from the Millennium Development Goals' (2019) *Social Indicators Research* 143(2).

Williams L & Sovacool BK 'The discursive politics of 'fracking': Frames, storylines, and the anticipatory contestation of shale gas development in the United Kingdom' (2019) *Global Environmental Change* 58.

Worthmann C and Esterhuyse S 'A mobile application to protect groundwater during unconventional oil and gas extraction' (2022) *Royal Society Open Science* 9..

Young Kim DA 'A Lesson from the Shale Revolution in the United States, Canada, and China' (2017) *The Georgetown Envtl. Law Review* 29.

Yuan J, Luo D & Feng L 'A review of technical and economic evaluation techniques for shale gas development' (2015) *Applied Energy* 184..

Zajtay I 'Aims and methods of comparative law' (1974) *Comparative and International Law Journal of Southern Africa*07.

Zhang Z, Evan D. Sherwin ED, Varon DJ and Brandt AR 'Detecting and quantifying methane emissions from oil and gas production: algorithm development with ground-truth calibration based on Sentinel-2 satellite imagery' (2022) *Atmospheric Measurements Techniques* 15.

Ziervogel G, et al 'Climate change in South Africa – how are we tackling this?' (2015) *Quest* 11.

Zoback MD & Arent DJ 'Shale Gas Development: Opportunities and Challenges' in *The Bridge* (2014) (Washington, National Academy of Engineering, Washington 44(1).

Electronic Sources

Administration of Donald J. Trump 'Remarks Announcing United States Withdrawal from the United Nations Framework Convention on Climate Change Paris Agreement (2017) Authenticated U.S. Government Information (GPO) - Daily Compilation of Presidential Documents.

BC Oil and Gas Commission 'Investigation of Observed Seismicity in the Horn River Basin (2012), available at *https://www.bcogc.ca/files/reports/Technical-Reports/investigation20of20observed20seismicity20in20the20horn20river20basinaug 202012.pdf*, accessed on 29 November 2022.

BC Oil and Gas Commission 'Oil and Gas Activity Application Manual' (2019) British Columbia, Canada.

Becklumb P, Chong J & Williams T 'Shale Gas in Canada: Environmental Risks and Regulation' (2015) Economics, Resources and International Affairs Division, Parliamentary Information and Research Service, Publication No.2015-18-E.

Canadian Ministers of the Environment 'A Canada-Wide Accord on Environmental Harmonization' (1998) available at *https://faolex.fao.org/docs/pdf/can83339.pdf*, accessed on 24 October 2022.

Canada's Oil and Natural Gas Producers 'Managing Methane Emissions for Natural Gas and Oil Development' (2021) available at *https://www.capp.ca/wp-*
content/uploads/2021/02/Managing-Methane-Emissions-for-Natural-Gas-and-Oil-Development-386197.pdf accessed on 23 March 2023.

Canada's Oil and Natural Gas Producers 'Guiding Principles for Hydraulic Fracturing Activities' (2019) Calgary (AB): CAPP.

Centre for Sustainability in Energy and the Environment 'Report of the Nova Scotia Independent Review Panel on Hydraulic Fracturing' (2014) Cape Breton University.

Council of Canadian Academies 'Environmental Impacts of Shale Gas Extraction in Canada' (2014) available at *https://cca-reports.ca/wp-content/uploads/2018/10/shalegas_fullreporten.pdf*, accessed on 3 October 2022.

Council of Canadian Academies/The Expert Panel on Harnessing Science and Technology to Understand the Environmental Impacts of Shale Gas Extraction 'Environmental Impacts of Shale Gas Extraction in Canada' (2014) Ottawa (ON).

Council for Geoscience 'Seismic Events' (2020) available at *http://196.38.235.147:8070/quakeview/events/event_details/CGS2020wojk*, accessed on 28 November 2022.

Department of Energy and Climate Change (2015) Onshore oil and gas exploration in the UK: regulation and best practice, England.

Department of Mineral Resources and Energy 'Integrated Resource Plan' (2019) available at *http://www.energy.gov.za/IRP/2019/IRP-2019.pdf*, accessed on 27 June 2022.

Department of Mineral Resources 'Report on Investigation of Hydraulic Fracturing in the Karoo of South Africa' (2012), available at *http://www.info.gov.za/view/DownloadFileAction?id=174015*, accessed on 5 May 2022.

Department of Environmental Affairs 'National Climate Change Response White Paper' (2011) available at https://www.gov.za/sites/default/files/gcis_document/201409/nationalclimatechanger esponsewhitepaper0.pdf accessed on 2 July 2022.

Department of Environment, Forestry and Fisheries 'South Africa First Nationally Determined Contribution under the Paris Agreement: Updated September 2021' (2021) available at *https://unfccc.int/sites/default/files/NDC/2022-*06/South%20Africa%20updated%20first%20NDC%20September%202021.pdf accessed on 31 October 2022.

Department of the Environment 'This Common Inheritance: Britain's Environmental Strategy: UK White Paper on Environmental Policy (London: HMSO, 1990).

Department of the Environment, Transport and the Regions 'A better quality of life: A Strategy for Sustainable Development for the United Kingdom Great Britain' (London: Stationary Office, 1999).

Earthjustice & Evergreen Action 'What Does West Virginia v. EPA Mean for Climate Action?' (2022) July 6, 2022, available at *https://earthjustice.org/blog/2022-july/what-does-west-virginia-v-epa-mean-for-climate-action*, accessed on 9 July 2022.

Environment Canada and Health Canada 'A Guide to Understanding the Canadian Environmental Protection Act, 1999' (2004), Ottawa, Ontario.

Environmental Protection Agency 'Carbon Pollution Emission Guidelines for Existing Stationary Sources: Electric Utility Generating Units: Finale Rule' (2015) Federal 80(205) Register, October 23, 2015.

European Commission 'United States of America -Global Methane Pledge' 2021 available at *https://www.ccacoalition.org/en/resources/global-methane-pledge* accessed on 30 September 2022. FracFocus Chemical Disclosure Registry, available at *http://www.fracfocus.ca/en/welcome*, accessed on 26 November 2022.

Government of Canada 'A Canadian Perspective on the Precautionary Approach/Principle Discussion Document' (2001).

Government of Canada 'Natural Resources Canada: Exploration and Production of Shale and Tight Resources' (2016) available at *https://www.nrcan.gc.ca/our-naturalresources/energy-sources-distribution/clean-fossil-fuels/natural-gas/shale-tightresources-canada/exploration-and-production-shale-and-tight-resources/17677*, accessed on 9 February 2022.

Intergovernmental Panel on Climate Change 'Global warming of 1.5°C above preindustrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty' (2018).

International Energy Agency 'Africa Energy Outlook: World Energy Outlook Special Report' (2022) available at *https://iea.blob.core.windows.net/assets/6fa5a6c0-ca73-4a7f-a243-fb5e83ecfb94/AfricaEnergyOutlook2022.pdf*, accessed on 18 July 2022.

International Energy Agency 'Energy Policies of IEA Countries: Canada 2015 Review' (2016) available at https://iea.blob.core.windows.net/assets/e9e4c6be-dc28-44a8-8bcc-7e0af3a8f19e/EnergyPoliciesofIEACountriesCanada2015Review.pdf accessed on 25 July 2022.

IPCC 'Climate Change 2014: Synthesis Report – Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (2014) IPCC, Geneva, Switzerland.

IPCC 'Sixth Assessment Report on Climate Change 2022: Mitigation of Climate Change - Contribution of Working Group III Contribution to the Sixth Assessment

Report of the Intergovernmental Panel on Climate Change' (2022) IPCC, Geneva, Switzerland.

London Ministerial Declaration of the Second International Conference on the Protection of the North Sea (1987).

Marthinus Cloete 'Atlas on geological storage of carbon dioxide in South Africa (2010).

Morton MQ 'Unlocking the Earth – A Short History of Hydraulic Fracturing' (2013) 10(6) GEOExPro, available at http://www.geoexpro.com/articles/2014/02/unlocking-the-earth-a-short-history-of-hydraulic-fracturing, accessed on 31 August 2022.

National Energy Board 'Filling Requirements for Onshore Drilling Operations Involving Hydraulic Fracturing' (2013) Calgary, Alberta, Canada.

Natural Resources Canada 'The 2010 Val-des-Bois Quebec Earthquake: Earthquake Summary' (2010) Geological Survey of Canada, Ottawa.

National Planning Commission 'National Development Plan 2030: Our future - make it work' (2011) available at https://www.gov.za/sites/default/files/gcis_document/201409/ndp-2030-our-futuremake-it-workr.pdf, accessed on 28 May 2022.

Narrandes N '6.2-magnitude earthquake shakes Cape Town' (2020) available from *https://www.capetownetc.com/news/6-2-magnitude-earthquake-shakes-cape-town/* accessed on 28 November 2022.

New Brunswick Oil and Gas Commission 'Responsible Environmental Management of Oil and Natural Gas Activities in New Brunswick - Rules for Industry' (2015) New Brunswick, Canada. PetroSA 'Annual Report 2020, available at

http://www.petrosa.co.za/discover_petroSA/Documents/PetroSA%20AR%202020%2 0Final.pdf, accessed on 25 June 2022.

Petroleum Services Commission of Canada 'Code of Conduct for Hydraulic Fracturing Operations' (2019) available at *https://www.psac.ca/wpcontent/uploads/2019/08/WEC-Code.pdf*, accessed on 15 November 2022.

SABINET Law 'Comment Sought on Upstream Petroleum Resources Development Bill' (13 July 2022) available at *https://legal.sabinet.co.za/articles/comment-soughton-upstream-petroleum-resources-development-bill/* accessed on 6 August 2022.

South African National Energy Development Institute 'A Study of Surface Issues and Geography of Potentially Suitable Gas Exploitation (2015) unpublished report.

South African Government 'Revised Nationally Determined Contributions' (2021).

Statistics South Africa 'Millennium Development Goals, Country Report 2013' (StatsSA, Pretoria).

Taku River Tlingit First Nation v. British Columbia (Project Assessment).

Tickner J, Raffensperger C & Myers N 'The Precautionary Principle in Action A Handbook' (1999) Science and Environmental Health Network, 1st edn.

The Royal Society and Royal Academy of Engineering 'Shale gas extraction in the UK: a review of hydraulic fracturing' (2012) available at *https://royalsociety.org/-/media/policy/projects/shale-gasextraction/2012-06-28-shale-gas.pdf*, accessed on 3 August 2022.

The Science and Environmental Health Network Conference 'Wingspread Statement on the Precautionary Principle (1998) Racine, Wisconsin, 23 – 25 January 1998. Tracy-Lynn Humby 'A landmark case on climate change in SA' (2017) available at *https://www.wits.ac.za/gci/media/a-landmark-case-on-climate-change-in-sa/* accessed on 21 March 2018.

UCT 'South Africa's "fare share": mitigation targets in the updated first NDC in an international context' (2021) Energy Systems Research Group (University of Cape Town, Cape Town).

United Kingdom Department of Energy and Climate Change 'Fracking UK shale: water' (2014), available at *http://www.programmeofficers.co.uk/Cuadrilla/CoreDocuments/CD41/CD41.53.pdf*, accessed on 10 June 2022.

United Nations 'United Nations Framework Convention on Climate Change 'Report of the Conference of the Parties serving as the meeting of the Parties to the Paris Agreement on its third session, held in Glasgow from 31 October to 13 November 2021.

United Nations Framework Convention on Climate Change 'Report of the Conference of the Parties serving as the meeting of the Parties to the Paris Agreement on its third session, held in Glasgow from 31 October to 13 November 2021' (2022) "Glasgow Climate Pact" available at *https://unfccc.int/sites/default/files/resource/cma2021_10_add1_adv.pdf* accessed on 2 July 2022.

United Nations 'United Nations Framework Convention on Climate Change, Report of the Conference of the Parties on its fifteenth session' held in Copenhagen from 7 to 19 December 2009.

United Nations 'Report of the World Commission on Environment and Development: Our Common Future' (1987) available at https://sustainabledevelopment.un.org/content/documents/5987our-commonfuture.pdf accessed on 1 November 2021. United Nations General Assembly 'Report of the United Nations Conference on Environment and Development: Rio Declaration on Environment and Development' (1992) A/CONF.151/26 (Vol.1).

United States Environmental Protection Agency 'Hydraulic Fracturing for Oil and Gas: Impacts from the Hydraulic Fracturing Water Cycle on Drinking Water Resources in the United States' (2016), Office of Research and Development, Washington DC, available at *www.epa.gov./hfstudy*, accessed on 31 August 2022.

U.S. Energy Information Administration 'Technically Recoverable Shale Oil and Shale Gas Resources: An Assessment of 137 Shale Formations in 41 Countries outside the United States' (2013) available at

https://www.eia.gov/analysis/studies/worldshalegas/pdf/overview.pdf, accessed on 14 May 2022.

US House of Representatives Committee on Energy and Commerce 'Chemicals used in hydraulic Fracturing' (2011) available at http://ecolo.org/documents/documents_in_english/gas-_Hydraulic-Fract-chemicals-2011-report.pdf accessed on 31 May 2022.

White House – Statements and Releases 'Statement by President Joe Biden on Supreme Court Ruling on West Virginia v. EPA' (2022) June 30, available at https://www.whitehouse.gov/briefing-room/statementsreleases/2022/06/30/statement-by-president-joe-biden-on-supreme-court-ruling-onwest-virginia-v-epa/ accessed on 9 July 2022.