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Summary 

In summary, I conducted an integrative analysis of multi-omics data to highlight the most relevant 

alterations associated with cancer cells’ plasticity depending on two different modes of action: 

• The intrinsic modulation of cancer cells’ plasticity in TME by unraveling the inverse regulation of 

SOX2- and SOX9-related gene networks in HNSCC and other tumor entities.  Firstly, differentially 

expressed genes (DEG) related to SOX2 and SOX9 transcription were identified in TCGA-HNSC, which 

enables the clustering of patients into groups with distinct clinical features and survival. Secondly, a 

prognostic risk model was established by LASSO Cox regression based on expression patterns of DEGs in 

TCGA-HNSC (training cohort) and was confirmed in independent HNSCC validation cohorts as well as 

other cancer cohorts from TCGA. Moreover, differences in the mutational landscape among risk groups 

of TCGA-HNSC demonstrated enrichment of truncating NSD1 mutations for the low-risk group and 

elucidated DNA methylation as a modulator of SOX2 expression. Additionally, GSVA revealed differences 

in several oncogenic pathways among risk groups, including upregulation of gene sets related to 

oncogenic KRAS signaling for the high-risk group. Finally, in silico drug screen analysis revealed 

numerous compounds targeting EGFR signaling with significantly lower efficacy for cancer cell lines with 

a higher risk phenotype, but also indicated potential vulnerabilities. 

• Cancer cell-extrinsic mechanisms and modulators of plasticity and the role of neuroglial 

activation as an emerging new component of TME that modulates cancer cell plasticity. 

A SC-related 43-gene set was elucidated as an accurate surrogate for the presence of peripheral nerves 

across solid tumor entities. This model is characterized by higher oncogenic pathway activities such as 

TGF-β signaling in SChigh with an immunosuppressive phenotype and higher PI3K-AKT-MTOR pathway 

and cell cycle pathway activity in SClow with an immune active phenotype and more sensitivity to 
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topoisomerase agents as potential treatment vulnerabilities. Finally, the impact of PI3K pathway activity 

on TME abundance of peripheral neurons is context-dependent and dominated by the TP53 status. 

Zusammenfassung 

Zusammenfassend habe ich eine integrative Analyse von Multiomics-Daten durchgeführt, um die 

wichtigsten Veränderungen hervorzuheben, die mit der Plastizität von Krebszellen in Abhängigkeit von 

zwei verschiedenen Wirkmechanismen verbunden sind: 

• Die intrinsische Modulation der Plastizität von Krebszellen in der Tumormikroumgebung durch 

die Entschlüsselung der inversen Regulation von SOX2- und SOX9-abhängigen Gensignaturen beim 

HNSCC und anderen Tumorentitäten. Erstens wurden in TCGA-HNSC differenziell exprimierte Genen 

(DEGs) identifiziert, die mit der SOX2- und SOX9-Transkription zusammenhängen, was die Einteilung von 

Patienten in Gruppen mit unterschiedlichen klinischen Merkmalen und Überlebensraten ermöglicht. 

Zweitens wurde ein prognostisches Risikomodell durch LASSO-Cox-Regression auf der Grundlage von 

Expressionsmustern der SOX2/SOX9-abhängigen DEGs für TCGA-HNSC (Trainingskohorte) erstellt und in 

unabhängigen HNSCC-Validierungskohorten sowie in anderen soliden Tumorkohorten aus TCGA 

bestätigt. Darüber hinaus zeigten die Unterschiede in der Mutationslandschaft zwischen den 

Risikogruppen bei TCGA-HNSC eine Anreicherung von trunkierenden NSD1-Mutationen in der 

Niedrigrisikogruppe und klärten die DNA-Methylierung als Modulator der SOX2-Expression auf. Darüber 

hinaus zeigte die GSVA-Unterschiede in mehreren onkogenen Signalwegen zwischen den Risikogruppen, 

einschließlich einer Hochregulierung von Gensätzen, die mit der onkogenen KRAS-Signalübertragung in 

der Hochrisikogruppe zusammenhängen. Schließlich ergab eine in-silico Analyse zahlreiche 

Medikamente, die auf den EGFR-Signalweg abzielen und bei Krebszelllinien mit einem höheren 

Risikophänotyp eine deutlich geringere Wirksamkeit aufweisen, aber auch auf potenzielle 

Schwachstellen hinweisen. 
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• Externe Mechanismen und Modulatoren sowie die Rolle der neuroglialen Aktivierung als neue 

Komponente der Tumormikroumgebung, die die Plastizität von Krebszellen beeinflussen. 

Eine Signatur von 43 Genen mit Bezug zu SCs wurde als genaues Surrogat für das Vorhandensein von 

peripheren Nerven in soliden Tumorentitäten identifiziert. SChigh Tumore zeichneten sich durch eine 

höhere Aktivität onkogene Signalwege, wie z. B. TGF-β, und einen immunsuppressiven Phänotyp aus, 

während SClow Tumoren durch eine höhere Aktivität des PI3K-AKT-MTOR-Signalwegs, Zellzyklus-

Signalwege und einen immunaktiven Phänotyp charakterisiert sind sowie eine höhere Empfindlichkeit 

gegenüber Inhibitoren der DNA-Topoisomerasen als potenzielle Behandlungsschwachstellen aufweisen. 

Schließlich ist die Auswirkung der Aktivität des PI3K-Stoffwechsels auf die Tumormikroumgebung der 

peripheren Neuronen kontextabhängig und wird durch den TP53-Status dominiert. 
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List of Abbreviations: 

HNSCC: Head and Neck Squamous Cell Carcinoma 

HNC: Head and Neck Cancer  

SCC: Squamous Cell Carcinoma 

SOX: Sry-Related HMG Box 

TP53: Tumor Protin 53  

TGF-β: Transforming Growth Factor Beta 

PI3k: Phosphoinositid-3-Kinase 

miRNA: Micro-RNA 

SCs: Schwann Cells  

PNI: Perineural Invasion  

TCGA: The Cancer Genome Atlas Program 

CNA: Copy Number Alteration 

LUSC: Lung Squamous Cells Carcinoma 

LUAD: Lung Adenocarcinoma 

PAAD: Pancreatic Adenocarcinoma  

GBM: Glioblastoma  

CESC: Cervical Squamous Cell Carcinoma and Endocervical Adenocarcinoma 

ESCA: Esophageal Squamous Cells Carcinoma 

PRAD: Prostate Adenocarcinoma 

BRCA: Breast Invasive Carcinoma 

CCLE: Cancer Cell Line Encyclopedia 

FFPE: Formalin-Fixed Paraffin-Embedded Tissues  

CNI: Cancer Neuron Interaction 

IHC: Immunohistochemistry Staining  

MSigDB: Molecular signature database 

GOF: Gain-of-Function  

EGFR: Epidermal Growth Factor Receptor 

IARC: International Agency for Research on Cancer 

OPSCC: Oropharyngeal Squamous Cells Carcinoma  

OS: Overall survival  

DSS: Disease-Specific Survival  

PFS: Progression-Free Survival  
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GSVA: Gene Set Variation Analysis 

TSNA: Tobacco-Specific Nitrosamines  

PAH:  Polycyclic Aromatic Hydrocarbons  

HPV16: Human Papilloma Virus-16 

NK: Natural Killer Cells 

TAMs: Tumor-Associated Macrophages 

MDSCs: Myeloid-Derived Suppressor Cells  

DCs: Dendritic Cells  

CC: Cancer Cells 

CAFs: Cancer-Associated Fibroblasts 

Treg: T- Regulatory Cells  

MMPs: Matrix Metalloproteinases  

ECM: Extracelluar Matrix 

IFN-γ:  Interferon-Gamma 

LASSO: Least Absolute Shrinkage and Selection Operator 

GEO: Gene Expression Omnibus 

ANOVA: Analysis of Variance 

DEG: Differentially Expressed Gene 

RB: Retinoblastoma Protein  

CRT: chemoradiotherapy  

RT: Radiotherapy 

CT: Chemotherapy 

ICI: Immune Checkpoint Inhibitors 

NPC: neural progenitor cells  

TRKs: Tyrosine Receptor Kinases 
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1. Introduction 

1.1.  The Development and Causes of Cancer 

Cancer is a disease of altered signaling and metabolism, causing uncontrolled division and survival of 

transformed cells. A host of molecules, factors, and conditions have been nominated as underlying 

causes for the initiation and progression of the disease [1]. The fundamental abnormality resulting in the 

development of cancer is the continual unregulated proliferation of cancer cells [2]. There are more 

than a hundred distinct types of cancer, which can differ substantially in their behavior and response to 

treatment [2]. The development of cancer and the fundamental feature of cancer is based on tumor 

clonality, the development of tumors from single cells that begin to proliferate abnormally. Cancer 

arises through the accumulation of genetic and epigenetic changes in genes whose encoded proteins act 

in a variety of signaling pathways [3, 4]. At the cellular level, the development of cancer is demonstrated 

as a process with multistep entailing mutation and selection for cells with progressively increasing 

capacity for proliferation, survival, invasion, and metastasis [2]. The initial step in the process is tumor 

inception, as a result of a genetic alteration leading to the abnormal proliferation of a single cell. The cell 

proliferation then conducts to the outgrowth of a population of clonally derived tumor cells. Tumor 

progression continues as additional mutations occur within cells of the tumor population. Tumors are 

classified based on the type of cell from which they arise. Most cancers fall into one of three main 

groups: carcinomas, sarcomas, and leukemias or lymphomas. Carcinomas, which include approximately 

90% of human cancers, are malignancies of epithelial cells [2]. 

1.2. Head and Neck Squamous Cell Carcinoma (HNSCC) 

Head and neck cancer (HNC) is the term given to a variety of malignant tumors that develop in the oral 

cavity, larynx, and pharynx, and are predominantly squamous cell carcinomas (SCCs) [4]. HNSCCs arise in 

the mucosal linings of the upper aerodigestive tract (Figure 1.1) and are unexpectedly heterogeneous in 

nature. HNSCCs remain the sixth leading cause of cancer-related morbidity and mortality, with 600,000 
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new cases diagnosed yearly [4].

 

Figure 1.1: Anatomical structure and regions of the head and neck. 

The head and neck region is composed of paranasal sinuses, nasal cavity, oral cavity, larynx, and pharynx 

(Including the nasopharynx, oropharynx, and hypopharynx). Credit: Terese Winslow LLC 2012. 

1.3.  Epidemiology and Risk Factors of HNSCCs 

HNSCC is a heterogeneous disease and the main risk factors are tobacco smoking and alcohol 

consumption, and infection with high-risk types of human papillomavirus (HPV), in particular HPV16, [4]. 

The risk for HNSCC in smokers is approximately ten times higher than that of never smokers, and 70-80% 

of new HNSCC diagnoses are correlated with tobacco and alcohol use [5]. Smoking is more strongly 
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associated with laryngeal cancer and alcohol consumption with pharynx and oral cavity cancers. A 

combination of smoking and alcohol consumption causes a synergistic effect on the risk to develop 

HNSCC [6]. Although the mechanisms for alcohol-associated carcinogenesis are not fully understood, 

IARC listed both alcoholic beverages and acetaldehyde, its major metabolite, as human carcinogens in 

2012 [7, 8]. Previous studies have demonstrated several carcinogenic effects of ethanol and 

acetaldehyde in humans. First, acetaldehyde disrupts DNA synthesis and repair and binds to proteins, 

resulting in structural and functional alterations [8-11], which includes enzymes involved in DNA repair 

and methylation, as well as glutathione, an important anti-oxidative peptide [8-11]. Second, 

acetaldehyde binds to DNA forming stable DNA adducts [8, 9, 11-14]. Third, ethanol is oxidized to 

acetaldehyde by microbes in the oral cavity [8, 15, 16]. The second main risk factor is tobacco 

consumption. Since the Surgeon General’s report in 1964, there has been a tremendous effort to study 

the carcinogenic effects of tobacco products. These research efforts have led to significant advances in 

understanding the constituents of tobacco products. To date, over 70 known carcinogens have been 

described in cigarette smoke [5, 17]. Of the many toxic and carcinogenic substances resulting from 

tobacco exposure, tobacco-specific nitrosamines (TSNA) and polycyclic aromatic hydrocarbons (PAH) 

have been most heavily studied with regard to exposure and carcinogenicity [17] [5]. The third risk 

factor is infection with the oncogenic type of HPV. Nearly all adults in western counties have contact 

with oncogenic HPV during adolescence. In cervical cancer, the majority of cervical lesions typical 

oncogenic HPV types 16, 18, 31, and 45 are found [18]. The most frequently detected HPV type at the 

time of SCC diagnosis is HPV16 [19]. HPV16 plays a pathogenic role in a subset of HNSCC —mostly 

cancers of the oropharynx—with distinct epidemiological, clinical, and molecular characteristics 

compared with HPV16-negative counterparts [20]. Many recent studies have demonstrated that HPV16-

positive OPSCCs are associated with improved prognosis [21]. Furthermore, these tumors display a 

higher sensitivity to treatment agents like chemotherapy and radiotherapy [21]. 
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1.4.  The Molecular Mechanisms of HPV-16 associated Carcinogenesis  

The natural history of HPV16-induced head and neck tumors remains elusive. In contrast to cervical 

carcinomas, developing via dysplastic precursor lesions over a long period is well illustrated [22]. HPV16 

is the most prevalent high-risk type in oropharyngeal cancers [21]. The HPV-DNA is more frequently 

found unintegrated in the cancers of the oropharynx compared to those that arise in the cervix and may 

include novel HPV-human DNA hybrids episomes [21, 23]. The HPV-associated carcinogenesis is mainly 

driven by two viral early genes (E6 and E7, often referred to as HPV oncogenes), the physiological 

function of which is to trigger cell-cycle entry in the basal layer of the epithelium and thus permit viral 

genome replication [18, 21]. During HPV-associated carcinogenesis, p53 is marked for proteolytic 

degradation by E6 activity and thus inactivated. E7 binds to the retinoblastoma protein (RB) that triggers 

the cell cycle and releases the transcription factor E2F. This increases the transcription of genes that are 

relevant for cell proliferation [18, 21]. Nevertheless, HPV16-positive HNSCC with or without integrated 

viral genome also displayed different patterns of both human and viral gene expression and epigenetic 

regulations such as DNA methylation [21, 24]. These events imply that there may be an alternative 

mechanism of HPV viral oncogenesis that does not depend on E6/E7 expression or viral integration but 

may be driven by episomal E2/E4/E5 expression [25]. A study focused on the characterization of HPV 

and host genome interactions in primary HNSCC suggested that at least two-thirds of patients with high 

expression of E6 and E7 by RNA quantification have detectable integration sites in the genome [24]. 

Collectively, the accurate nature of the integration is the subject of an ongoing investigation. 

1.5.  The Genetic and Epigenetic Regulations in HPV- Positive and Negative HNSCCs 

Several publications have reported the mutational landscape of HPV16-positive versus HPV16-negative 

HNSCC [26-28]. Across much of the genome, the copy number alterations from HPV16-positive and 

HPV16-negative tumors are mostly identical, and shared amplifications are 1q, 3q, 5p, 8q, and others. 
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Largely included deletions are 3p, 5q, 11q, and others [26-28]. In solid tumors, TP53 is the gene most 

frequently affected by mutations [26]. In a comparative study, whole exome analyses were performed in 

15 types of solid tumors, 11 of them revealed TP53 as the most frequently mutated gene, in the other 

entities it ranked second twice and third once (preceded by KRAS or BRAF and NRAF) [18, 29]. In HNSCC, 

the mutation rate of TP53 is in the upper third of solid tumors with about 40%. Besides TP53, mutations 

of CDKN2A and RB1 (RB, retinoblastoma-associated protein) are often observed in HPV-negative HNSCC, 

however, they are missing in HPV16-associated OSCC [26, 30]. The Cancer Genome Atlas (TCGA) 

represents the most comprehensive integrative genomic analysis profiling 528 HNSCCs to provide a 

global landscape of somatic genomic alterations. The HPV-associated tumors are dominated by helical 

domain mutations of the oncogene PIK3CA, novel alterations involving loss of TRAF3, and amplification 

of the cell cycle gene E2F1. Smoking-related HNSCCs showed near-universal loss-of-function TP53 

mutations and CDKN2A inactivation with frequent copy number alterations such as the amplification of 

3q26/28 and 11q13/22. A subgroup of oral cavity tumors that have a favorable clinical outcome 

demonstrated infrequent copy number alterations in conjunction with activating mutations of HRAS or 

PIK3CA, coupled with inactivating mutations of CASP8, NOTCH1, and TP53. Other distinct subgroups 

contained loss-of-function alterations of the chromatin modifier NSD1, WNT pathway genes AJUBA and 

FAT1, and activation of oxidative stress factor NFE2L2, mainly in laryngeal tumors [27]. The TCGA reveals 

a limited number of pathways targeted by frequent genome alterations. Among receptor tyrosine 

kinases, EGFR/ERBB2 or FGFR1/3 alterations are the most frequent. Among downstream targets of the 

receptor tyrosine kinase (RTK)/RAS/phosphatidylinositol-3-OH kinase (PI3K) pathway, PIK3CA dominates 

with occasional HRAS and PTEN alterations. Further downstream, nearly every tumor has an alteration 

of genes governing the cell cycle. The tumor suppressors TP53 and CDKN2A, oncogenes CCND1 and 

MYC, are most often altered in HPV-negative tumors, whereas viral genes E6, E7, and E2F1 predominate 

in HPV-positive cases [27, 30-32]. In an integrative study based on proteogenomic characterization of 
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108 HPV-negative HNSCCs, a systematic catalog of HNSCC-associated proteins and phosphosites was 

identified that prioritizes copy number drivers and highlights an oncogenic role for RNA processing 

genes. Moreover, a systematic framework was provided to inform HNSCC biology and treatment by 

applying multi-omic analysis identifying three molecular subtypes with high potential for treatment with 

CDK inhibitors, anti-EGFR antibody therapy, and immunotherapy [33]. 

Besides the genetic aberrations, the epigenetic modifications of nucleic acids play a major role in the 

characterization of different tumor types [18, 27, 34]. The most important types are methylation of the 

DNA and modification of histones. The methylation of DNA is reversible, and its function is to use static 

information of the nucleic acid sequence in a variable manner. Different methylation patterns were well 

addressed in the context of tumor viruses including HPV [27, 35, 36].  

1.6.  The Mechanism of Treatment Failure in HNSCCs 

In recent years, advances in drug therapy for HNSCCs have progressed rapidly. Treatment is generally 

multimodal, consisting of surgery followed by chemoradiotherapy (CRT) for oral cavity cancers and 

definitive CRT for pharynx and larynx cancers [4, 37]. In addition to cytotoxic anti-cancer agents such as 

platinum-based drugs (cisplatin and carboplatin) and taxane-based drugs (docetaxel and paclitaxel), the 

EGFR monoclonal antibody cetuximab is generally used in combination with radiation in HPV-negative 

HNSCCs where comorbidities prevent the use of cytotoxic chemotherapy [4, 37]. The FDA approved the 

immune checkpoint inhibitors (ICI) such as anti-programmed cell death-1 (PD-1) antibodies 

pembrolizumab and nivolumab for the treatment of recurrent or metastatic HNSCC and pembrolizumab 

as the primary treatment for the unresectable disease [4, 37]. 

1.6.1. Surgery and Radiotherapy 

Treatment for HNSCC is usually selected based on the primary tumor subsite, TNM staging, and 

predicted functional outcomes following different treatment modalities. In general, early-stage (I or II) 

HNSCC is treated with local therapy, taking advantage of the ability of surgical removal or radiation to 
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offer a curative modality [38, 39]. The treatment failure in HNSCCs after surgical resection is based on a 

residual undetectable microscopic disease that causes aggressive invasive tumor growth in a local 

environment or disseminates by the lymph or blood vessel as dormant metastasis [40] [41]. Although 

radiation eradicates a large fraction of tumor cells, selected groups of tumor cells (clonogens) are able to 

survive and repopulate irradiated areas [42]. In the event of treatment failure after single modality 

radiation or surgery, retrieving with the alternative modality offers a high chance of cure [43, 44]. 

1.6.2.  Chemotherapy 

Clonal selection and enrichment of drug-resistant cancer cells are the most common drivers of 

treatment failure, and the identification of underlying molecular principles of tumor heterogeneity 

remains a major challenge [45].  

The standard chemotherapy regimens for stage III or IV patients are cisplatin, 5-fluorouracil (5-FU), and 

docetaxel/paclitaxel with a response rate of 20% to 40% [40, 46-48]. A combined strategy of docetaxel, 

cisplatin, and 5-FU (TPF) treatment in a total of 358 unresectable HNSCC patients showed significantly 

improved progression-free (11.0 months in TPF and 8.2 months in PF) and OS (18.8 months in TPF and 

14.5 months in PF) [49]. So, tumors with more advanced tumor or nodal stage, postoperative radiation, 

or chemoradiation, guided by pathological risk factors, reduce the risk of recurrence and improve 

survival [50, 51]. There are four main mechanisms that HNSCC cells acquire to avoid cell death following 

cisplatin, 5-FU [52, 53], and paclitaxel/docetaxel treatments [54-56], including DNA/RNA damage repair, 

drug efflux, apoptosis inhibition, and (EGFR)/focal adhesion kinase (FAK)/nuclear factor (NF)-κB 

activation [57]. The corresponding strategies to those four mechanisms can be translated into 

developing innovative cancer therapeutics to overcome chemotherapy resistance in HNSCC patients. 

1.6.3. Targeted Therapy 

In 2008, cetuximab was approved as the first molecular-targeted drug for HNSCCs, and it has come to be 

used in combination with RT and/or CT [58, 59]. The targeted therapy Cetuximab demonstrates that an 
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improved understanding of the molecular pathways underlying HNSCC will output valuable new 

treatment protocols. Cetuximab, a humanized mouse anti-EGFR IgG1 monoclonal antibody, improves 

locoregional control and overall survival in combination with radiotherapy in locally advanced tumors 

[58, 60]. In HNSCC, candidate sequencing studies have shown that EGFR is overexpressed most 

commonly through gene amplification and increased copy number [61], rather than activating mutations 

or truncation mutants such as EGFRvIII. Based on the limited dependence of HNSCC on EGFR signaling, 

inhibitors of EGFR have had variable success [40]. 

1.6.4. Immune Therapy 

Cancer immune surveillance is considered to be an important host protection process to inhibit 

carcinogenesis and maintain cellular homeostasis. In the interaction of host and tumor cells, three 

essential phases have been proposed: elimination, equilibrium, and escape [62]. During tumor 

progression, even though an adaptive immune response can be induced by antigen-specific T cells, 

immune selection produces tumor cell variants that lose major histocompatibility complex class I and II 

antigens and decreases amounts of tumor antigens in the equilibrium phase. Moreover, tumor-derived 

soluble factors facilitate the escape from an immune attack and allow progression and metastasis. [62]. 

The release of negative regulators of immune activation (immune checkpoints) that limit antitumor 

responses has resulted in unprecedented rates of long-lasting tumor responses in patients with a variety 

of cancers. This can be achieved by antibodies blocking the cytotoxic T lymphocyte-associated protein 4 

(CTLA-4) or the programmed cell death 1 (PD-1) pathway, either alone or in combination [63]. 

Therefore, ICI have emerged as a frontline treatment for multiple malignancies, enabling 

immunotherapy to join the ranks of surgery, chemotherapy, radiation, and targeted therapy for cancer 

treatment [64]. 

In 2016, anti-PD-1 monoclonal antibodies (Pembrolizumab and Nivolumab) have been approved by the 

FDA for RM-HNSCC treatment, which open a window for a historically 50% recurrence rate patient 
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population, despite aggressive multi-modality treatment [65]. Recently, ICI with anti-PD-1 antibodies 

have demonstrated groundbreaking improvements in clinical response in multiple human cancers, 

including HNSCC [66-68]. Patients with recurrent metastatic HNSCC (R/M HNSCC) may be cured by 

salvage resection, re-irradiation [69], or metastasectomy [70]. The remaining patients are considered for 

systemic therapy. First-line treatment should include ICI such as pembrolizumab, an IgG4 humanized 

antibody to PD1, in patients with PDL1-expressing tumors unless there is a contraindication to 

immunotherapy because of an underlying autoimmune disorder. A phase III trial compared 

pembrolizumab monotherapy or the combination of pembrolizumab with a platinating agent and 5-FU 

with the same chemotherapy combined with cetuximab. Pembrolizumab plus platinum and 5-FU is an 

appropriate first-line treatment for R/M HNSCC and pembrolizumab monotherapy is an appropriate 

first-line treatment for PD-L1-positive R/MHNSCC [71]. Immunotherapy resistance is associated with an 

impaired function of the immune system [72-74]. The anti-tumor immune response is an extremely 

complex multi-stage process depending on many factors. Based on the presence or absence of the 

immune system in the TME, there are three immunophenotypes of tumors: (1) “Hot” tumors, which are 

strongly infiltrated by T lymphocytes and many inflammatory signals are presented; (2) “cold” tumors, 

which are scanted of any immune cells infiltration nor inflammatory signs; (3) tumors with an immune 

exclusion, where immune cells are at the periphery or within the stromal tissue [72-74]. In contrast to 

the two other groups the group of patients with “Hot” tumors usually demonstrate a better prognosis 

[72-74]. 

1.7.  Mechanisms Regulating Lineage Plasticity in Cancer  

Lineage plasticity is the ability of cells to transform from one cell type to another and is an important 

part of tissue repair and maintenance of homeostasis. Cellular plasticity can be utilized in cancer when 

the molecular checkpoints controlling the process are compromised leading to emerging treatment 

resistance and disease recurrence [75]. So, cancer cell plasticity is a fundamental process in the 
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generation of tumor heterogeneity [76]. Various tumor cell-intrinsic and extrinsic factors have been 

demonstrated to be involved in regulating lineage plasticity. [45]. 

1.7.1.  Intrinsic Factors in Modulation of Cancer Cell Plasticity  

The mechanism of the tumor cell-intrinsic lineage plasticity depends on genetic factors including the loss 

of tumor suppressors and gain of oncogenes and the overexpression of several transcription factors, 

eventually resulting in the enabling of cellular reprogramming. The loss of tumor suppressor genes such 

as RB1, PTEN, and TP53 has been linked with the acquisition of lineage plasticity in multiple cancers [45]. 

 In addition, altered expression of epigenetic modulators and microenvironmental components also play 

an important role in facilitating the switching of cellular identity in response to various stressors [75]. 

Since the discovery of the four reprogramming factors (Oct4, Sox2, Klf4, and c-Myc) by Takahashi and 

Yamanaka, many other transcription factors have also been highlighted that are linked to lineage 

reprogramming in development [75]. Many studies suggested Oct4, a homeodomain transcription 

factor, as a modulator of reprogramming and as cancer progression. It is considered a cancer stem cell 

marker for multiple cancers including head and neck, breast and liver [75, 77-79]. The SOX family 

members are upregulated in breast cancer and are involved in promoting tumor progression, invasion, 

metastasis, and chemoresistance [80]. In particular, SOX9 was identified as an important regulator of 

luminal to basal plasticity in basal-like breast cancer [80]. Resistance of cancer cell types with specific 

traits facilitating tumor evolution and treatment resistance could be achieved by transcriptional 

plasticity [81]. 

1.7.2.  Extrinsic Factors in Modulation of Cancer Cell Plasticity 

 In addition to genetic and epigenetic mechanisms, cell-extrinsic factors such as inflammation, 

microenvironment, and therapeutic stress can induce cellular plasticity [81]. Different components in 

the tumor microenvironment (TME) such as fibroblasts, macrophages, endothelial cells, and infiltrating 

immune cells can conspire with the tumor cells to promote tumor cell plasticity [82, 83]. Furthermore, 
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stromal cells, components of the extracellular matrix (ECM) can also modulate cellular plasticity [84]. 

The matrix stiffness can promote the epithelial-mesenchymal transition (EMT) and stemness in different 

tumor entities [81]. Moreover, inflammation and therapeutic stress can induce cellular plasticity [85]. 

Chronic inflammation has long been identified as a hallmark of cancer [85]. and is an important player in 

tumor progression and metastasis [75] (e.g., Inflammatory cytokines, proinflammatory cytokines, and 

inflammation-associated myeloid cells are the three key inflammatory axes associated with stemness 

and EMT in breast cancer plasticity and malignancy [86, 87]. 

1.8.  EMT As a Main Feature of Lineage Plasticity 

EMT: a reversible change in molecular, morphological, and functional traits of epithelial cells to more 

mesenchymal phenotype during the metastatic cascade and/or in the emergence of drug resistance [88, 

89]. The process of EMT was first identified in embryonic development in higher chordates, where the 

primary epithelial cells form mesenchymal tissue through a cell-state transition [90, 91]. EMT is a 

fundamental cell biological process during wound healing, and also pathological conditions such as 

fibrosis and cancer [92]. It involves a reduction in epithelial traits such as cell–cell adhesion and 

apicobasal polarity and a concomitant gain of mesenchymal traits such as increased invasion and 

migration. Importantly, EMT is viewed as a fulcrum of cellular plasticity in carcinomas [93]. EMT is 

influenced by different pathways which include transforming growth factor β (TGFβ), Wnt–β-catenin, 

bone morphogenetic protein (BMP), Notch, Hedgehog, and receptor tyrosine kinases [94]. With the 

discovery of many intermediate states between canonical epithelial and mesenchymal states, EMT is 

being rechristened as EMP (epithelial-mesenchymal plasticity) [94]. 

1.9.  SOX Transcription Factors as Intrinsic Modulator in Cancer Cell Plasticity  

Several recent studies provided compelling experimental evidence for the critical role of SOX (Sry-

related HMG Box) transcription factors in mediating cancer cell plasticity [75]. The sex-determining 

region on the Y chromosome-related high mobility group box (SOX) transcription factor family contains 
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more than 20 members in vertebrates, which are classified into eight groups, denoted SoxA to SoxH 

[95]. The SOX protein family regulates self-renewal, fate specification, and differentiation of embryonic 

and adult stem/progenitor cells during development and to maintain tissue homeostasis [96, 97]. 

Several SOX proteins serve as prognostic biomarkers and potential therapeutic drug targets, but further 

investigations are required to understand the complexity and context dependency of their cancer-

related functions [98]. In addition to the pivotal role in maintaining the stemness of cells, aberrant 

expression or function of SOX proteins is a common feature in numerous human cancers such as breast 

cancer, prostate cancer, renal cell carcinoma, thyroid cancer, brain tumors, gastrointestinal and lung 

tumors and has been attributed to cancer progression, modulation of the TME, and metastasis [98]. 

Regarding the involvement of SOX family members in tumorigenesis, SOX2 is the most thoroughly 

investigated transcription factor. In healthy organisms, it plays a role in stem cell regulation during 

embryogenesis, as well as during adult tissue regeneration [98, 99]. Together with Oct4 and Nanog, Sox2 

regulates pluripotency and the self-renewal of stem cells, affecting promoters of a high number of other 

genes [100, 101]. It also has an influence on proliferation and apoptosis, as well as on the migration and 

adhesion of cells [102].  

In human SCC, including lung (LUSC), esophageal (ESCA), and HNSCC recurrent gain on chromosome 

3q26 encompassing the gene locus for the transcription factor SOX2 is a frequent event [103, 104]. 

A study demonstrated SOX2 promotes plasticity and antiandrogen resistance in TP53 and RB1-deficient 

prostate cancer using in vitro and in vivo human prostate cancer models [105]. In LUSC, SOX2 

amplification and it’s corresponding up-regulation were also frequent events but were linked to the 

indicators of favorable prognosis [103]. In line with previous studies, SOX2-positive cancer cells 

exhibited epithelial characteristics, while loss of SOX2 expression led to increased mesenchymal 

properties [106]. An association between SOX2 silencing and an EMT-like phenotype is also evident in 

lung cancer, and experimental data support a critical role of SOX2-mediated cellular plasticity in 
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tolerance against EGFR inhibition and metastatic dissemination [107]. Additionally, SOX9 was identified 

as a crucial regulator of luminal to basal reprogramming in basal-like breast cancer [80]. In lung cancer, 

an epigenetic switch between SOX2 and SOX9 allows phenotypic and oncogenic plasticity, enabling the 

cells to alter between proliferative and invasive states [108]. In the context of therapy-induced cancer 

cell plasticity, a recent study demonstrated that cisplatin resistance and drug-induced adaptation are 

acquired by loss of SOX2 and a concomitant gain of SOX9 expression in OSCC [106]. SOX2 is expressed in 

highly proliferative but minimally invasive lung cancer cells and again, phenotypic and oncogenic 

plasticity are acquired by a switch between differentiation programs controlled by either SOX2 or SOX9 

[108]. Taken together, SOX2 and SOX9 have been identified as key regulators in determining cancer cell 

plasticity, drug resistance, and metastatic progression in several cancers. 

1.10. The Components of The Tumor Microenvironment  

Cancer research and treatment have switched from a cancer-centric model to a TME-centric one, 

highlighting the crucial role of TME in cancer biology [109]. Accumulating evidence shows that cellular 

and acellular components in TME are able to reprogram tumor initiation, growth, invasion, metastasis, 

and response to therapies [109, 110]. While several cellular and molecular mechanisms have been 

presented to affect cancer progression, the identity and role of all TME components remain elusive 

[111]. The main components of TME are stromal cells, vasculature, immune cells, and a milieu of 

signaling molecules within an ECM. Other components of the TME are cancer-associated fibroblasts 

(CAFs), adipocytes, and pericytes [111]. Many studies have demonstrated different hallmarks of TME 

play a crucial role in plasticity [112]. TME can be classified into six specialized microenvironments, 

namely, hypoxic niche, immune microenvironment, metabolism microenvironment, acidic niche, 

innervated niche, and mechanical microenvironment [109]. Hypoxia is able to reprogram cancer biology 

in various aspects, including cancer progression, stemness, and dormancy, as well as redox adaptation, 

intercellular communication, and therapeutic resistance [112]. Metabolic reprogramming is a common 
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event in cancer and often shows elevated glucose, lipid, glutamine, and amino acids metabolism, lactate 

accumulation, and ROS addiction [109, 113, 114]. Moreover, the mechanical regulation of the TME 

(stiffness of ECM) is another recently investigated specialized microenvironment [112]. Its formation 

depends mainly on intracellular components (vimentin, actin, and neurofilaments), extracellular 

components (collagen and fibrin), intercellular signaling (integrin), and stromal cells (fibroblasts) [115]. 

CAFs secrete matrix metalloproteinases (MMPs) including MMP2, MMP3, and MMP9, or activate yes-

associated protein to promote ECM degradation and remodeling, EMT, and cancer-stem-cell stemness 

[116, 117]. Despite the heterogeneity of TME, similar biological roles are observed across multiple 

cancers related to metabolic support, angiogenesis, metastasis, chemoresistance, and immune 

regulation [116, 117]. 

1.11. Peripheral Nerves as Emerging Component Of TME 

The neuro-glial activation is a recently identified hallmark of growing cancers [14]. Moreover, the 

innervated niche is an emerging specialized microenvironment focusing on the neural regulation of TME 

[109]. Mounting evidence indicates that the nervous system plays a central role in cancer pathogenesis. 

In turn, cancers and cancer therapies can alter the nervous system’s form and function [118]. The close 

association between neurology and cancer science has been newly expanded. Accordingly, Monje and 

other scientists have suggested a novel field called “cancer neuroscience” to better study how the 

nervous system communicates with cancer.  The main focus is electrochemical interactions, paracrine 

interactions, systemic neural-cancer interactions, and cancer-therapy effects on the nervous system 

[109] [118]. 

1.12. Perineural Invasion and Its Clinical relevance In the Context of CNI  

As early in the 1900s nerve fibers were observed in several cancers [119, 120] among them HNSCC 

[121]. The main focus of the research was primarily on perineural invasion (PNI), which is described as a 
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tumor invasion of the existing locoregional nerves, leading to metastasis and reciprocal tumor and nerve 

growth [122]. Solid tumors disseminate in three well-known ways: direct invasion of surrounding tissue, 

lymphatic spread, and haematogenic spread. However, a fourth route of cancer spread is that of 

dissemination along nerves [123]. PNI is a common pathologic finding in SCCs, the most common type of 

HNSCCs that shows a high density of nerves and usually is associated with poor prognosis [124-126]. 

Molecular, cellular, and metabolic mechanisms are involved in PNI, which is characterized by a 

conservative symbiotic relationship between cancer cells and nerve cells [124, 127]. Substances secreted 

by nerve cells can induce cancer cells invasion, and cancer cells can promote the axonal growth of nerve 

cells. Due to the potential role of axonal growth in PNI, neurotrophins are considered possible molecular 

mediators leading to PNI [124].  

1.13. Innervated Niche: An Emerging Microenvironment Focusing on The Neural Regulation Of TME 

Nerves are emerging regulators of cancer progression. Cancer cells induce the outgrowth of nerves in 

the TME through the release of neurotrophic factors, and in return nerves liberate neurotransmitters 

that activate cancer growth and dissemination [128]. Nerves are composed of a variety of cells including 

neurons and Schwann cells (SCs). SCs are a major component of the peripheral nerves and have been 

recently identified as cells that promote cancer spread [129]. Furthermore, the contribution of nerves to 

the pathogenesis of malignancies has been raised as an important component of the TME [130]. 

However, the origin of these nerves and the mechanism of their inception are still elusive and need to 

be generously addressed.  

Over the past decade, several landmark studies have demonstrated a fundamental role of the nervous 

system in cancer initiation and progression, and that ablation of specific nerve types (parasympathetic, 

sympathetic, or sensory) revoke tumor growth in a tissue-specific manner [130].  
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Nerves in tumors can regulate various cellular and molecular processes, such as angiogenesis, 

lymphangiogenesis, immunity and inflammation, fibroblasts and the extracellular matrix, DNA repair, 

and oncogene activation. Furthermore, nerves have been shown to infiltrate the TME and actively 

stimulate CC growth and dissemination [128, 131, 132]. The neural regulation of immune responses has 

been identified as an emerging field in cancer biology [133]. Both sympathetic and parasympathetic 

nerve fibers have been reported in different studies modulating immune response e.g. vagus nerve was 

suggested to be involved in regulating immune responses in the TME [131, 134, 135]. The nerves bundle 

along blood vessels and are able to provide a critical set of signals that help tumors to redevelop a 

vascular network, which ensures nutrition and communication during cancer proliferation and 

progression [130]. In the context of the effect of nerves on the intrinsic CC traits, nerves sustain tumor 

proliferation and induce resistance to apoptosis [136]. Most chemotherapies can trigger the p53-

dependent apoptotic program of CC. Studies have demonstrated that the neurotransmitter 

catecholamine mediates chemotherapeutic resistance by activating β2-adrenergic receptor signaling of 

cervical cancer cells both in vitro and in vivo [136]. While evidently activated by non-mutational 

epigenetic reprogramming and, in some cases, genome instability and mutation, the increasing breadth 

of co-opted neuronal regulatory circuits in CC proposed that this concept warrants being a focal point as 

a significant hallmark-enabling feature that is conducive to multiple tumor phenotypes [137]. So, the 

high density of nerves in various modes of action has been reported in multiple human malignancies, 

including cancers of HNSCC, prostate, colon, rectum, breast, pancreas, stomach, lung, and skin [130, 

138, 139]. 

The peripheral nervous fibers (autonomic and sensorial) are attracted by the TME via axonogenesis 

which is the outgrowth of nerves in the TME [128, 137]. Axonogenesis is driven by the secretion of 

neurotrophic factors (NTF) by CC and takes place from peripheral nerves in the surrounding tissues that 

emerge from the CNS and associated neural ganglia. In return, nerve endings in the TME, which can be 
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of adrenergic, cholinergic, or sensory origin, release neurotransmitters (NT) that stimulate 

corresponding receptors in stromal cells, immune cells, and cancer stem cells, resulting in the regulation 

of cancer growth and metastasis [128]. The tumor-derived factors recruit neural progenitor cells (NPC) 

to promote intratumor neurogenesis [140]. Neurogenesis (increased number of neurons), and neural 

reprogramming process in TME, are biological phenomena and mechanisms to induce innervation and 

nerve growth [141, 142]. Intratumor sympathetic fibers are associated with the early phases of cancer 

triggering an angiogenic switch via adrenergic signaling. In later phases, parasympathetic fibers 

contribute to stimulating cancer cells to invasion and metastasis [140]. Furthermore, cancer cells release 

chemical messengers, e.g., axon guidance molecules and nerve growth factor (NGF) to emphasize neo-

neurogenesis and axonogenesis. In HNSCC, axon guidance molecules such as netrins, secreted by cancer 

cells act in synergy with neurotrophic growth factors to enhance axonogenesis therefore, there is a 

bidirectional crosstalk between tumors and nerves within TME and this plays an active role in the cancer 

process [143, 144]. In a landmark study, nerve fibers' impact on oral cancer tumor growth has been 

proven in several mouse models and their clinical relevance has been demonstrated in a retrospective 

analysis of samples from oral cancer patients [25]. The p53 tumor suppressor has been identified as an 

important regulator and its loss of function leads to adrenergic trans-differentiation of tumor-associated 

sensory nerves through loss of the microRNA miR-34a, thereby promoting tumor development and 

malignant progression [25]. So, it is conceivable that tumor innervation and co-opted neuronal signaling 

in cancer cells will prove to modulate additional hallmark capabilities and associated parameters, e.g., 

phenotypic plasticity [137, 145] (Figure. 1.2). 
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Figure 1.2: Neurons and their axonal projections are implicated as a common, functionally enabling 

constituent of the heterotypic cellular TME. 

1.14. Schwann Cells as Surrogate Marker of Peripheral Nerves in Cancer 

In addition to neurons, SCs as peripheral glial cells, a key component in neural repair and regeneration, 

and the most prevalent cell type in peripheral nerves might play a critical role in carcinogenesis [123]. In 

response to nerve damage caused by invading cancer cells, activated SCs begin to proliferate and 

migrate from nerves toward cancer cells [146, 147]. Studies have shown that SCs enable cancer 

progression by adopting a de-differentiated phenotype, similar to the SCs response to nerve trauma 

[129]. SCs interact with cancer cells and the 
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accompanying process of axonal sprouting at the premalignant phase provides the first access of cancer 

to nerves, which leads to neural dissemination at an early disease stage [146, 148]. Many Studies have 

demonstrated the role of SCs act as an active player of nerve dependence in cancer. In pancreatic and 

colon cancer, SCs colonize neoplastic sites before the onset of cancer invasion [147]. So, as its crucial 

role in attracting cancer cells to the perineural niche and enabling adhesion of cancer cells to the nerves 

[48, 148] (Figure. 1.3). 

 

Figure. 1.3: Schematic illustration showing the complexity of TME with its known components, outlining 

the newly discovered sensory nerves within the tumor. 
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1.15. Aims of Study  

Various tumor cell-intrinsic and extrinsic factors have been demonstrated to be involved in regulating 

lineage plasticity. The mechanism of the tumor cell-intrinsic lineage plasticity (e.g., mutational 

landscape, epigenetic regulation, signaling, and gene regulatory networks), while tumor cell-extrinsic 

lineage plasticity depends on (e.g., cellular and matrix components of TME). 

So, in this study I aimed extensively to examine cancer cell plasticity in the pathogenesis and therapy of 

HNSCC and other tumors.  

1.15.1. Focus on cancer cell-intrinsic mechanisms and modulators of plasticity in particular the role of 

SOX family members in cancer lineage plasticity, and more precisely the inverse regulation of SOX2- and 

SOX9-related gene networks in HNSCC and other tumor entities. 

The clinical relevance of inverse SOX2-SOX9 expression for HNSCC and other tumor entities and the 

establishment of risk models to identify patients with primary HNSCC and other cancers at a higher risk 

for treatment failure, who might benefit from a therapy targeting SOX2/SOX9-related gene regulatory 

and signaling networks. In addition to the molecular and cellular characterization of the predicted risk 

models in HNSCC and other tumor entities. 

1.15.2. Focus on cancer cell-extrinsic mechanisms and modulators of plasticity, particularly the role of 

molecular mechanisms contributing to the complex crosstalk between cancer cells, neurons, and their 

associated glial cells such as Schwann cells. 

The clinical relevance of nerve fibers and associated cells such as Schwann cells for HNSCC and other 

tumor entities and the molecular characterization of cancer-nerve crosstalk in HNSCC and other tumor 

types.  Finally, the establishment and analysis of pre-clinical models as a proof-of-concept for new 

therapeutic strategies. 
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2. Material and Methods 

2.1.  Key Resources 

Details on all publicly available data, patient cohorts, online tools, software, and algorithms used in this 

thesis are listed in (Table. 1A-B). All data are anonymized and the TCGA ethics and policies were 

originally published by the National Cancer Institute. Patient cohorts used in this thesis are TCGA-HNSC 

consisting of 499 primary HNSC as a training cohort and validation cohorts for HNSCC (GSE117973, 

CPTAC-HNSC, GSE65858, and GSE39368), and for other tumor entities from TCGA such as CESC, ESCA, 

LUSC, LUAD, PAAD, PRAD, GBM, and BRCA. The CCLE data from the GDSC1-2 and PRISM screening 

projects as well as the Oncopredict scores. Information on the HPV16 status was accessed from Cao et 

al., with a cutoff of 100 counts for HPV16 positivity [149]. 
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Table 1.A: Summary of data resources, online tools. 

 

Table 1.B: Summary of software, and algorithms. 

Name Version Link Reference 

annotate 1.62.0 https://cran.r-project.org/ RRID:SCR_003005 

AnnotationDbi 1.48.0 https://bioconductor.org/ RRID:SCR_006442 

Biobase 2.46.0 https://cran.r-project.org/ RRID:SCR_003005 

BiocGenerics 0.32.0 https://cran.r-project.org/ RRID:SCR_003005 

broom 0.7.11 https://cran.r-project.org/ RRID:SCR_003005 

CePa 0.7.0 https://cran.r-project.org/ RRID:SCR_003005 

circlize 0.4.13 https://cran.r-project.org/ RRID:SCR_003005 

clusterProfiler 3.12.0 https://cran.r-project.org/ [150] 

ComplexHeatmap 2.0.0 https://cran.r-project.org/ [151] 

CoNVaQ 0.1.0 https://exbio.wzw.tum.de/convaq/ [152] 

dplyr 1.0.7 https://cran.r-project.org/ RRID:SCR_003005 

edgeR 3.26.8 https://cran.r-project.org/ [153] 

enrichplot 1.4.0 https://cran.r-project.org/ RRID:SCR_003005 

eulerr 6.1.1 https://cran.r-project.org/ RRID:SCR_003005 

Description Data types Source Link Accession Date

Cancer Cell Line Encyclopedia (CCLE) Cell line information depmap portal https://depmap.org/portal/ 2023-01-05

Gene expression 20Q4 depmap portal https://depmap.org/portal/ 2023-01-05

GDSC  1&2 depmap portal https://depmap.org/portal/ 2023-01-05

GSE117973 Gene expression GEO: GSE117973 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi 2020-10-11

Tumor Tissues GEO: GSE117973 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi 2016-11-21

CPTAC-HNSC Gene expression  GDC Portal  LinkedOmics: http://www.linkedomics.org 2023-01-03

Copy number data  GDC Portal  LinkedOmics: http://www.linkedomics.org 2023-01-03

GSE65858 Gene expression GEO: GSE65858 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi 2023-01-03

GSE39368 Gene expression GEO: GSE39368 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi 2023-01-03

GSE143716 Gene expression GEO:GSE143716 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi 2023-01-03

Molecular SignaturesDatabase (MSigDB)  Gene sets (version 7.2) MSigDB https://www.gsea-msigdb.org/gsea/msigdb/index.jsp 2020-10-07

Immunhistochemical staining This study

Protein Atlas GAP43 Abcam ab75810 rabbit Human Protein Atlas https://www.proteinatlas.org/ 2021-08-05

Protein Atlas UCHL1 Sigma HPA005993 rabbit Human Protein Atlas https://www.proteinatlas.org/ 2021-08-05

Protein Atlas S100B abcam ab52642 rabbit Human Protein Atlas https://www.proteinatlas.org/ 2021-08-05

Protein Atlas SNCA Sigma HPA005459 rabbit Human Protein Atlas https://www.proteinatlas.org/ 2021-08-05

Protein Atlas NCAM1 Invitrogen MA5-16446 mouse Human Protein Atlas https://www.proteinatlas.org/ 2021-08-05

TCGA-HNSC Clinical data cBioPortal https://www.cbioportal.org/ 2020-08-17

GDC portal https://gdac.broadinstitute.org/ 2020-08-17

Gene expression GDC portal https://www.cbioportal.org/ 2019-02-19

Mutation data cBioPortal https://www.cbioportal.org/ 2020-09-01

Copy number data cBioPortal https://www.cbioportal.org/ 2020-08-17

Copy number data Firehose Broad GDAC https://gdac.broadinstitute.org/ 2020-08-17

miRNA counts Firehose Broad GDAC https://gdac.broadinstitute.org/ 2022-08-17

TCGA-LUSC Gene expression  (GDC) Data Portal  LinkedOmics: http://www.linkedomics.org 2020-08-17

miRNA counts Firehose Broad GDAC https://gdac.broadinstitute.org/ 2022-08-17

TCGA-CESC Gene expression (GDC) Data Portal  LinkedOmics: http://www.linkedomics.org 2020-08-17

miRNA counts Firehose Broad GDAC https://gdac.broadinstitute.org/ 2022-08-17

TCGA-ESCA Gene expression (GDC) Data Portal  LinkedOmics: http://www.linkedomics.org 2020-08-17

miRNA counts Firehose Broad GDAC https://gdac.broadinstitute.org/ 2022-08-17

TCGA-BRCA Gene expression  (GDC) Data Portal  LinkedOmics: http://www.linkedomics.org 2020-08-17

miRNA counts Firehose Broad GDAC https://gdac.broadinstitute.org/ 2022-08-17

TCGA-LUAD Gene expression (GDC) Data Portal  LinkedOmics: http://www.linkedomics.org 2020-08-17

miRNA counts Firehose Broad GDAC https://gdac.broadinstitute.org/ 2022-08-17

TCGA-PAAD Gene expression  (GDC) Data Portal  LinkedOmics: http://www.linkedomics.org 2020-08-17

miRNA counts Firehose Broad GDAC https://gdac.broadinstitute.org/ 2022-08-17

TCGA-PRAD Gene expression  (GDC) Data Portal  LinkedOmics: http://www.linkedomics.org 2020-08-17

miRNA counts Firehose Broad GDAC https://gdac.broadinstitute.org/ 2022-08-17

Panglao DB (Schwann cells signature) single cell RNA sequencing data Panglao DB https://panglaodb.se/index.html 2020-08-01

Schwann cells related gene sets (Rodents) unbiased single-cell transcriptomic [25] 2020-08-01

Anova Tukey HSD calculator Independent multiple data treatments https://astatsa.com › OneWay_Anova_with_TukeyHSD 2023-03-01

gProfiler gene, protein, microarray probes https://biit.cs.ut.ee/gprofiler/ 2020-03-08

Harmonizome gene, gene sets Mayan lab https://maayanlab.cloud/Harmonizome/ 2020-07-01

Kassandra deconvolution data (immune cells, stromal etc.) Boston Gene https://science.bostongene.com/kassandra/ 2020-09-01

Cibersortx deconvolution data (immune cells) Alizadeh and Newman Lab https://cibersortx.stanford.edu/ 2020-09-01

xCell deconvolution data (immune cells, stromal, etc.) Butte lab and  Aran lab https://xcell.ucsf.edu/ 2020-09-01
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forcats 0.5.1 https://cran.r-project.org/ RRID:SCR_003005 

futile.logger 1.4.3 https://cran.r-project.org/ RRID:SCR_003005 

GenVisR 1.16.1 https://cran.r-project.org/ RRID:SCR_003005 

ggbreak 0.0.8 https://cran.r-project.org/ RRID:SCR_003005 

ggplot2 3.3.5 https://cran.r-project.org/ RRID:SCR_003005 

ggpubr 0.4.0 https://cran.r-project.org/ RRID:SCR_003005 

ggrepel 0.9.1 https://cran.r-project.org/ RRID:SCR_003005 

gmodels 2.18.1 https://cran.r-project.org/ RRID:SCR_003005 

graph 1.62.0 https://cran.r-project.org/ RRID:SCR_003005 

gridExtra 2.3 https://cran.r-project.org/ RRID:SCR_003005 

GSEABase 1.46.0 https://cran.r-project.org/ [154] 

GSVA 1.32.0 https://cran.r-project.org/ [155] 

IGV 2.8.0 http://www.broadinstitute.org/igv [156] 

illuminaHumanv4.db 1.26.0 https://cran.r-project.org/ RRID:SCR_003005 

IRanges 2.20.2 https://cran.r-project.org/ RRID:SCR_003005 

jstable 1.0.7 https://cran.r-project.org/ RRID:SCR_003005 

lattice 0.20-45 https://cran.r-project.org/ RRID:SCR_003005 

limma 3.40.6 https://cran.r-project.org/ [157] 

maftools 2.0.16 https://cran.r-project.org/ [157] 

Matrix 1.3-4 https://cran.r-project.org/ RRID:SCR_003005 

MVisAGe 0.2.1 https://cran.r-project.org/ RRID:SCR_003005 

org.Hs.eg.db 3.8.2 https://bioconductor.org/ RRID:SCR_006442 

prodlim 2019.11.13 https://cran.r-project.org/ RRID:SCR_003005 

purrr 0.3.4 https://cran.r-project.org/ RRID:SCR_003005 

QuPath 0.2.3 https://qupath.github.io/ [158] 

R Version 3.6.1 https://www.r-project.org/ RRID:SCR_001905 

RColorBrewer 1.1-2 https://cran.r-project.org/ RRID:SCR_003005 

readr 2.1.1 https://cran.r-project.org/ RRID:SCR_003005 

readxl 1.3.1 https://cran.r-project.org/ RRID:SCR_003005 

rlist 0.4.6.2 https://cran.r-project.org/ RRID:SCR_003005 

RStudio 1.2.1335 https://www.rstudio.com/ RRID:SCR_000432 

S4Vectors 0.24.4 https://cran.r-project.org/ RRID:SCR_003005 

stringr 1.4.0 https://cran.r-project.org/ RRID:SCR_003005 

survey 4.1-1 https://cran.r-project.org/ RRID:SCR_003005 

survminer 0.4.9 https://cran.r-project.org/ RRID:SCR_003005 

tblhelpr 0.2.0 https://cran.r-project.org/ RRID:SCR_003005 

tibble 3.1.6 https://cran.r-project.org/ RRID:SCR_003005 

tidyr 1.1.4 https://cran.r-project.org/ RRID:SCR_003005 

tidyverse 1.3.1 https://cran.r-project.org/ RRID:SCR_003005 

vcd 1.4-9 https://cran.r-project.org/ RRID:SCR_003006 

VennDiagram 1.7.1 https://cran.r-project.org/ RRID:SCR_003007 

xgboost 1.5.0.2 https://cran.r-project.org/ RRID:SCR_003008 

Oncopredict 0.1 https://cran.r-project.org/ [159] 
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XML 3.99-0.3 https://cran.r-project.org/ RRID:SCR_003009 

corrplot 0.92 https://cran.r-project.org/ [160] 

rstatix 0.7.2 https://cran.r-project.org/ rpkgs.datanovia.com/rstatix/ 

Hmisc 5.0-1 https://cran.r-project.org/ hbiostat.org/R/Hmisc/ 

hgu95a.db 3.16 https://bioconductor.org/packages/hgu95a.db/ [160] 

crosstable 0.5.0 https://cran.r-project.org  https://github.com/DanChaltiel/crosstable/ 

Subio64 1.4 https://www.subioplatform.com Subio Inc., Tokyo, Japan 

 

2.2.  Tissue Microarrays and Immunohistochemical Staining  

Paraffin-embedded tissue specimens of primary HNSC from surgical resections of the GSE117973 cohort 

were provided by the tissue bank of the National Center for Tumor Diseases (NCT, Institute of Pathology, 

University Hospital Heidelberg, Heidelberg, Germany) and were analyzed according to protocols (ethic 

votes: S-206/2005 and S-232/2022), approved by the Ethics Committee of Heidelberg University, with 

written informed consent from all participants. The generation of tissue microarrays (TMAs), a summary 

of clinical and histopathological data, an assessment of HPV16 status, and IHC staining for SOX2 have 

been described elsewhere [161], [162]. 

IHC staining was performed according to Thierauf et al. [163] on formalin-fixed paraffin-embedded 

(FFPE) sections from a TMA with a polyclonal rabbit anti-SOX9 antibody (HPA001758, Sigma-Aldrich). 

Stained TMAs were scanned with the Nanozoomer HT Scan System (Hamamatsu Photonics), and the 

scoring procedure was performed using the NDP.view 2 software (Hamamatsu Photonics). The final 

immunoreactivity score (IRS, ranging from 1-16) was computed by multiplying a score for the amount of 

stained cancer cells (1 = no staining; 2 = 1-33%; 3 = 34‐66%; 4 = 67-100%) and a score for staining 

intensity (1 = no staining; 2 = low; 3 = moderate; 4 = high). 

For the IHC-staining with the anti-GAP43 antibody and five other established peripheral nerve and SCs 

marker proteins were selected (Anti-UCHL1, Anti-S100B, Anti-NCAM1, and Anti-SNCA). IHC-stained 

slides were scanned with the VENTANA DP 200 Slide Scanner (Roche, Mannheim, Germany), and 
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quantification of areas with GAP43-positive neurons was done by visual inspection of ten independent 

areas on digital images. 

2.3.  Differential Expressed Gene (DEGs) Analysis 

Cases of the TCGA-HNSC cohort were ranked according to either SOX2 or SOX9 transcript levels (FPKM) 

and those with the lowest or highest expression were selected, respectively, according to quartiles (top 

and top 25%). Significantly DEGs (-1>log2FC<1 and adj. P<0.05) among groups with lowest versus highest 

SOX2 or SOX9 expression (n=125 each subgroup) were computed by either limma-voom or edgeR 

packages in R Studio (4.0.2). The common gene set (n=57) was identified by using Venn diagrams. 

2.4.  LASSO-Penalized Cox Regression Analysis 

A LASSO-penalized Cox regression analysis was applied to prioritize the most relevant prognostic 

candidate genes using the glmnet package in RStudio (4.0.2). The prioritized 15-gene set was used to 

establish the regression risk model based on 5-years overall survival of TCGA-HNSC. The risk score was 

computed by the maxstat package in R studio (4.0.2). The analytical formula for risk assessment was 

based on following coefficients: EVPLL = -0.107583793, ADAMTS6 = -0.083781705, C12orf56 = -

0.083235761, EXPH5 = -0.078477708, PDZD2 = -0.057412849, SERPINA11 = -0.029773486, TPRG1 = -

0.029335434, EGR2 = -0.000104553, PLAU = 0.000159152, DCBLD1 = 0.0012265, TNFRSF12A = 

0.002378353, ADTRP = 0.006139973, UGT1A7 = 0.010549492, CAMK2N1 = 0.016350322, RASL11A = 

0.023046717. 

2.5.  Copy Number Alteration (CNA) Analysis 

Segmented data for TCGA-HNSC were downloaded from the “Firehose Broad GDAC”. A value of segment 

bigger than 0.2 or less than -0.2 were defined as gain or loss, respectively. Group comparisons were 

done with differences in frequency of specific events at any chromosomal location tested for 

significance by a two-tailed Fisher’s exact probability test with an accepted P-value significance at a 
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defined percentage difference level using CoNVaQ. Summary plots were visualized with the IGV_2.4.19 

software (Integrative Genomic Viewer_2.4.19). 

2.6.  Somatic Mutation Analysis 

Mutation counts and candidate genes identified by MutSig 2.0 [164] for TCGA-HNSC were accessed from 

cBioPortal. Statistically significant differences between subgroups were determined by the chi-square 

test using R studio (4.0.2). 

2.7.  GSVA Analysis for Regulatory Networks and Oncogenic Pathway of MSigDB  

Gene sets of the category Hallmark (H) of C6 from the Molecular Signatures Database (MSigDB) were 

used and enrichment scores were computed by gene set variation analysis (GSVA) package in R using 

Gaussian Kernel [155] that computes the distribution of enrichment scores of different gene sets based 

on TCGA-HNSC RNA-seq data counts. Statistical differences in GSVA scores among groups were analyzed 

by an independent two-sided t-test. 

To integrate the selected SCs gene set in the computational analysis GSVA scores were computed for 

different gene sets, which are related to the peripheral nervous system (PNS) in particular SC based on 

RNA-seq data of the TCGA-HNSC, n=499 cohort. This model provided harmonized Schwann cell scores 

(SC score), which we stratified into three groups of SC score (low, moderate, and high). Furthermore, 

eleven gene sets were selected from MsigDB [165] and applied to the GSVA model with the same 

purpose of ranking the TCGA-HNSC. To compare the SC score with other published gene sets, three gene 

sets were selected from a study that provided an unbiased single-cell transcriptomic characterization of 

the non-diseased rodent PNS [25]. Lastly, I computed the GSVA scores for a SCs gene set provided by 

Panglao DB [166] that is based on single-cell data of mice and humans. The scores of the established 

gene sets were compared to the SC score using Spearman’s correlation. 

GSVA scores for gene sets with a statistical difference were visualized in a multicolored heatmap using 

the package Complexheatmap) in R studio (4.0.2). 
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2.8.  Reverse Phase Protein Array (RPPA) Data Analysis 

RPPA data were downloaded from cBioPortal. Statistical differences in RPPA data for selected candidate 

proteins between low-risk and high-risk tumors were analyzed by independent two-sided t-test.  

2.9.  DNA Methylation Analysis  

DNA methylation data for TCGA-HNSC were accessed from The PanCancer-Atlas. The global mean beta 

value was computed based on beta values for the 15,000 genes with the highest variance across all 

samples, excluding genes of sex chromosomes. Beta values for individual probes annotated for SOX2 of 

TCGA-HNSC and TCGA-CESC were available from the maplab online tool. 

2.10. In Silico Drug Screening Analysis 

Gene expression data of HNSCC cell lines (n=45) from Lepikhova et al. were available under the GEO 

accession number GSE108062 and drug sensitivity data were obtained from the supplemental material. 

Normalized RNA-seq data (log2-transformed TPM values using a pseudo-count of 1, version 20Q3) of 

selected cancer cell lines from the Cancer Cell Line Encyclopedia (CCLE) were downloaded from the 

Dependency Map (DepMap) portal of the Broad Institute. Drug response data of the Sanger GDSC1 and 

GDSC2 drug screen and the PRISM Repurposing drug screen (version 19Q4) were obtained from the 

DepMap portal of the Broad Institute. 

Statistical differences in drug responses for cancer cell lines were analyzed by Spearman´s correlation 

using the risk score as a continuous variable. 

The Oncopredict scores [159] were computed using the R package (Oncopredict) for TCGA-HNSC based 

on the CCLE RNA-seq and the drug response IC50 of GDSC1-2.  

Statistical differences for the SC score (high vs low) were computed by the Wilcoxon rank test. 

2.11. Establishment of the Schwann Cell-Related Gene Set 

The Harmonizome tool represents a collection of processed datasets gathered to serve and mine 

knowledge about genes and proteins from over 70 major online resources [167]. It provided 547 
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proteins co-occurring with the keyword “Schwann cell” in abstracts of biomedical publications from the 

“TISSUES Text-mining” Tissue Protein Expression Evidence Scores. The scores indicate the relative 

strength of the functional associations between genes/proteins and their attributes. Standardized values 

are related to empirical p values as abs (standardized values) = (-log10p-value) and they are only 

available for initially continuous data sets. Based on the cutoff p<0.05, n=43 genes were selected to 

build a SCs-related gene set. 

2.12. Immune Phenotype Analysis  

In order to infer the enrichment of immune cells in groups of TCGA-HNSCC patients deconvolution data 

for different cell types were downloaded from xCell (n=64), CibersortX (n=22), and Kassandra (n=22) to 

visualize the enrichment of these cells between SC score (high vs low) for TCGA-HNSCC, (n=330) and 

TCGA-CESC (n=222). 
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3. Results 

3.1. Establishment of a Plasticity-Associated Risk Model Based on a SOX2- and SOX9-Related Gene Set 

in Head and Neck Squamous Cell Carcinoma 

3.1.1. Inverse SOX2 And SOX9 Expression and Clinical Relevance in an OPSCC Cohort 

IHC staining of tissue microarrays (TMAs) with tumor samples of an oropharyngeal SCC (OPSCC) cohort 

[162] revealed a heterogeneous SOX9 expression pattern ranging from low to prominent nuclear 

staining in cancer cells (Figure. 3.1A). 

 In total, an immune reactivity score (IRS, range 1-16) was computed for n=139 cases and demonstrated 

a statistically significant association between a SOX9high expression pattern (IRS>8) and HPV16-negative 

OPSCC (p<2.34E-04) or larger tumor size (p=1.2E-02) (Table S1).  

Kaplan-Meier plots confirmed an unfavorable progression-free (PFS) and disease-specific survival (DSS) 

for OPSCC with SOX9high (5-years PFS 25.4% and 5-years DSS 33.6%) versus SOX9low expression (5-years 

PFS 56% and 5-years DSS 59.9%) (Fig. 3.1B).  

However, SOX9high expression did not serve as an independent risk factor for unfavorable survival in a 

multivariate Cox regression model, which might be explained by the close association with the HPV16 

status (data not shown). Comparison with IRS for SOX2, which were assessed for the same OPSCC cohort 

in a previous study [98] revealed an inverse SOX2 versus SOX9 expression pattern in almost 60% of cases 

for which data for both proteins were available (Table S2).  

It is worth noting that the lowest frequency of HPV16-positive OPSCC was detected for the 

SOX2low/SOX9high subgroup which had a significantly shorter PFS and DSS (5-years PFS 31.6% and 5-years 

DSS 44.7%) as compared to the SOX2high/SOX9low subgroup (5-years PFS 57.7% and 5-years DSS 62.7%) in 

this OPSCC cohort (Fig. 3.1C). 
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Figure 3.1: Clinical relevance of SOX2 and SOX9 protein expression in OPSCC. (A) Representative 

pictures of an IHC staining with an anti-SOX9 antibody show heterogeneous nuclear staining (brown 

signal) in cancer cells of OPSCC samples. Histological staining with hematoxylin to visualize tissue 

architecture; scale bar = 200 µM. Kaplan-Meier plots illustrate significant differences in progression-free 

survival (PFS) or disease-specific survival (DSS) between groups with low or high SOX9 expression (B), or 

between SOX2high/SOX9low and SOX2low/SOX9high subgroups (C). (D) Dot plot summarizes the distribution 

of SOX2 and SOX9 transcript levels for cases of TCGA-HNSC. Red dashed lines indicate median levels of 

either SOX2 or SOX9 transcript levels, respectively. Data provided kindly from the thesis by Julia 

Schwärzler 2020. Regulation und Funktion der Transkriptionsfaktoren IRX4, SOX9 und SOX2 in der 

Pathogenese des HPV-assoziierten Plattenepithelkarzinoms im Kopf- und Halsbereich.  
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3.1.2. SOX2 and SOX9-related DEGs in the TCGA-HNSC 

SOX2 and SOX9 transcript levels were analyzed for samples of the TCGA-HNSC cohort, and an inverse 

expression was evident for almost 50% of cases (Fig. 3.1D). Samples were ranked according to either 

SOX2 or SOX9 transcript values and stratified into low or high expression based on the median to define 

SOX2low/SOX9low, SOX2high/SOX9low, SOX2low/SOX9high, and SOX2high/SOX9high subgroups for crosstab 

analysis. In line with the OPSCC cohort, the SOX2high/SOX9low subgroup was enriched for HPV16-positive 

OPSCC, while almost all tumors of the SOX2low/SOX9high subgroup were HPV16-negative (Table S3).  

As the activity of both transcription factors critically depends on post-transcriptional regulation, protein 

modifications, and protein-protein interaction [97, 98], I assumed that a gene set related to inverse 

SOX2 and SOX9 expression more reliably reflects their impact on tumor cell plasticity than individual 

transcript or protein levels. Subgroups of the TCGA-HNSC cohort were defined based on quartiles of 

samples with the lowest or highest SOX2 or SOX9 transcript levels, respectively, to conduct differential 

gene expression analysis (Fig. 3.2A-B). Both approaches revealed a set of common differentially 

expressed genes (DEGs, n=57, Fig. 3.2C, Table S4), which were categorized into four groups related to 

SOX2 and SOX9 expression (Fig. 3.2D).  
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Figure 3.2: Identification of SOX2 and SOX9-related DEGs for TCGA-HNSC. (A) Schematic summary of 

the study design. (B) Volcano plots illustrate significant DEGs (|log2FC|>1 and adj. p<0.05) for subgroups 

with high versus low SOX2 (upper graphs) or SOX9 (lower graphs) transcript levels by either limma voom 

(left graphs) or edgeR (right graphs). (C) Venn diagrams show common DEGs (n=57) for distinct 

combinations of SOX2 and SOX9 expression patterns. (D) Protein-protein interaction network of DEGs 

(n=57) based on STRING (https://string-db.org/). 
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Hierarchical clustering based on transcript levels of these DEGs defined two main clusters (A and B), 

each with two sub-clusters (Fig. 3.3A). HPV16-positive OPSCC were significantly more frequent in cluster 

A comprising the SOX2high group and perineural invasion was significantly associated with the SOX9high 

group in cluster B (Table S5). Sub-cluster A2 was enriched for cases with SOX2high/SOX9low and had a 

significantly more favorable prognosis considering DSS and OS as compared to sub-cluster B2 resembling 

the SOX2low/SOX9high subgroup (Fig. 3.3B-C).  
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Figure 3.3: Identification of common DEGs related to SOX2 and SOX9 transcription in TCGA-HNSC. (A)
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Heatmap illustrates an unsupervised hierarchical cluster analysis based on DEG transcript levels (n=57) 

for TCGA-HNSC. (B) Violin plots illustrate variations of SOX2 (left graph) or SOX9 transcript levels (right 

graph) for sub-clusters. (C) Kaplan-Meier plots for five-years overall survival (left graph) or disease-

specific survival (right graph) of sub-clusters. Numbers of patients at risk at the indicated time points are 

given below. 

 

3.1.3. Prognostic Risk Model Based on SOX2 And SOX9-Related DEGs 

Next, a prognostic risk model for five-years OS was established applying LASSO Cox regression analysis 

based on SOX2 and SOX9-related DEGs (Fig. 3.4A-C).  

 

Figure 3.4: LASSO Cox regression analysis based on SOX2 and SOX9-related DEGs for TCGA-HNSC. 

The prediction of a risk model was based on applying LASSO-penalized Cox regression models. Two 

vertical lines in (A) represent the lambda. best and lambda. min cutoffs for the selection of variables. The 

non-zero coefficient values of the risk model variables are illustrated in (B). The coefficient values either 

negative (good prognosis) or positive (poor prognosis) were used to predict a risk score for individual 

cases. Patient stratification into high and low-risk groups was done by best risk score cutoff (C). (D) Dot 
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plot illustrates inverse and positive correlations between SOX2 and SOX9 expression and the risk score for 

the TCGA-HNSC cohort. 

 

The analysis revealed a 15-gene set separating the TCGA-HNSC cohort in low-risk and high-risk groups 

(Fig. 3.5A). As expected, the low-risk group had significantly higher SOX2 expression, while the high-risk 

group had significantly higher SOX9 expression and unfavorable survival (5-years DSS 53.5% and 5-years 

OS 37.3%) as compared to the low-risk group (5-years DSS 70.8% and 5-years OS 60.4%) (Fig. 3.4D, Fig. 

3.5B-C).  
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Figure 3.5: Establishment of a risk model for TCGA-HNSC. (A) Heatmap illustrates transcript levels of the 

15-gene set for TCGA-HNSC, with ranked columns according to the risk score. (B) Violin plots 

demonstrate significantly higher SOX2 transcript levels for the low-risk group (upper graph), and 

significantly higher SOX9 transcript levels for the high-risk group (lower graph). (C) Kaplan-Meier plots 

confirm unfavorable five-years overall survival (left graph) or disease-specific survival (right graph) for 

the high-risk (red line) as compared to the low-risk group (blue line). Numbers of patients at risk at the 

indicated time points are given below.  

 

Most HPV16-positive OPSCCs were part of the low-risk group, while the high-risk group was enriched for 

tumors with pathological lymph node metastasis, angiolymphatic and perineural invasion (Table S6). 

Subgroup analysis demonstrated a significant prognostic value of the risk model for almost all categories 

tested (Fig. 3.6A), and multivariate Cox regression models confirmed that the risk model served as an 

independent prognosticator for OS (HR: 2.344, p=1.0E-03) and DSS (HR: 2.590, p=2.5E-03) (Table S7). 

Subgroup analysis also indicated a superior performance of the risk model for HNSCC patients with a 

smoking history and HPV16-negative tumors whose treatment included radiotherapy (Fig. 3.6).  

 

Figure 3.6: Uni- multivariate COX regression based on the predicted risk model. 

Forrest plot summarizes hazard ratios (HR) and 95% confidence intervals (95% CI) for five-years overall 

survival of the indicated features and variables with the low-risk group as a reference in TCGA-HNSC. 
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This assumption was further supported by Kaplan-Meier plots for subgroups with or without 

radiotherapy considering five-years progression-free, disease-specific, or overall survival as clinical 

endpoints (Fig. 3.7A-C).  

 

 

Figure 3.7: Survival analysis for patients with or without radiotherapy of TCGA-HNSC. Kaplan-Meier 

plots for subgroups with (right panel) or without (left panel) radiotherapy show differences between low-
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risk (blue line) and high-risk (red line) groups in five-years overall (A), disease-specific (B), and 

progression-free survival (C). Numbers of patients at risk at the indicated time points are given below. 

 

3.1.4. Differences in the Mutational Landscape Among Risk Groups in TCGA-HNSC 

An integrative analysis of multi-omics data was conducted to elucidate differences in the mutational 

landscape and the DNA methylome as potential drivers in the establishment and maintenance of inverse 

SOX2 and SOX9 regulation. Though no significant difference was evident in the global copy number 

alteration (CNA) fraction, we identified hot-spot regions with significant differences in copy number gain 

(11q21) or deletion (8p11-p23 and 16q21) among low-risk and high-risk groups (Fig. 3.8A-B). However, 

hot spot regions did neither overlap with candidate genes of the 15-gene set for the risk model nor with 

SOX2/SOX9-related DEGs (n=57). 

 

 

Figure 3.8: CNV analysis based on risk model for TCGA-HNSC. (A) Violin plot shows no significant 

difference among risk groups in the genome alteration fraction. (B) Frequency plots summarize copy 

number gains (red) and losses (blue), indicating hot spot regions with significant differences among risk 

groups. 

 

Moreover, no major difference in total somatic mutation counts was evident between low-risk and high-

risk groups, but significant differences was identified in the mutation frequency for selected candidate 

genes, which are annotated as significantly mutated genes for TCGA-HNSC (Fig. 3.9-B). Most significant 
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differences were detected for TP53 with higher mutation frequency for the high-risk group and NSD1 

with higher mutation frequency for the low-risk group (Fig. 3.9B).  

While the difference in TP53 somatic mutations was mainly attributed to the enrichment of HPV16-

positive samples in the low-risk group, the higher relative frequency of NSD1 mutations was also evident 

in HPV16-negative HNSCC (data not shown).  

In the past, disruptive NSD1 mutations in HNSCC were associated with favorable prognosis and a global 

DNA hypo-methylation [168-170]. Indeed, the low-risk group was particularly enriched for truncating 

NSD1 mutations (Fig. 3.9C), accompanied by significantly lower beta values for global DNA methylation 

as compared to the high-risk group (Fig. 3.9D). 

 HNSCC with truncating NSD1 mutations also exhibited a significantly lower beta mean level for SOX2 

methylation and higher SOX2 transcript levels (Fig. 3.9E-F), indicating that differences in SOX2 and SOX9 

transcript ratios depend at least in part on epigenetic regulation.  

This assumption was further supported by prominent differences in DNA methylation of 14 probes in 

the region upstream of the SOX2 gene (TSS1500), which were closely related to the presence of NSD1 

mutations and SOX2 transcript levels (Fig. 3.9G-I). In contrast, no major differences were detected in 

DNA methylation of probes annotated for SOX9 (data not shown). 
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Figure 3.9: Differences in somatic mutations among risk groups and SOX2 regulation by DNA 

methylation. (A) Violin plot demonstrates no significant difference in total mutation counts among risk 
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groups. Bar plots show significant differences among risk-groups in the relative frequency of patients 

with somatic mutations for indicated genes (B), and illustrate the relative frequency of patients with 

truncating NSD1 mutations for each risk group (C). Violin plots demonstrate significant differences in 

beta mean values for global DNA methylation among risk groups (D), in the beta mean values for DNA 

methylation of SOX2-annotated probes (E), and SOX2 transcript levels (F) between cases with truncating, 

missense or no (wt) somatic NSD1 mutations. (G) Heatmap illustrates an unsupervised hierarchical 

cluster analysis for TCGA-HNSC based on DNA methylation levels of indicated SOX2-annotated probes, 

which are ranked according to their genomic position. Violin plots demonstrate significantly lower beta 

mean values for methylation of selected probes (n=14) in HNSCC with NSD1 mutations as compared to 

wildtype counterparts (H), and significantly higher SOX2 transcript levels in cluster A with lower 

methylation of selected probes (I). * p<0.05 and ** p<0.005. 

 

 

3.1.5. SOX2 Regulation and Expression of SOX2/SOX9-Related DEGs in the TCGA-CESC 

Next, the SOX2 regulation and expression of SOX2/SOX9-related DEGs (n=57) in squamous cell 

carcinoma of TCGA-CESC were investigated, which exhibit the highest relative frequency of HPV16-

related tumors and belong to the top four human cancers in TCGA among glioma, lung and head and 

neck cancers with highest median SOX2 transcript levels (data not shown). We observed a trend towards 

higher SOX2 expression in HPV16-positive cervical cancers as compared to their HPV16- negative 

counterparts (p=0.06), and hierarchical clustering with SOX2/SOX9-related DEGs revealed two 

subgroups resembling cluster A2 (SOX2high/SOX9low) and B2 (SOX2low/SOX9high) of the TCGA-HNSC cohort 

(Fig. 3.10A-B). Both subgroups exhibit inverse SOX2 and SOX9 transcript levels, and a statistically 

significant difference in OS with an unfavorable prognosis for the SOX2lowSOX9high subgroup (5-years OS 

58.2%) as compared to the SOX2highSOX9low subgroup (5-years OS 80.4%) (Fig.3.10C-D). 
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Figure 3.10: Expression of SOX2 and SOX9 and related 57-gene set for the TCGA-CESC cohort. (A) Violin 

plots illustrate variation of SOX2 (left graph) or SOX9 transcript levels (right graph) for HPV16-negative 

or HPV16-positive cases of the TCGA-CESC cohort. (B) Heatmap illustrates an unsupervised hierarchical 
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cluster analysis based on DEG transcript levels (n=57) for TCGA-CESC. (C) Violin plots illustrate variation 

of SOX2 (left graph) or SOX9 transcript levels (right graph) for sub-clusters. (D) Kaplan-Meier plots for 

five-years overall survival of cases in clusters A1 versus A2. Numbers of patients at risk at the indicated 

time points are given below. 

 

Additionally, the DNA methylation pattern of probes annotated for SOX2 in TCGA-CESC was investigated 

and in line with TCGA-HNSC identified prominent differences in a subset of probes in the distal 

regulatory region of the SOX2 gene locus (Fig. 3.11A). As expected, SOX2 transcript levels were inversely 

correlated with DNA methylation of these probes, but the frequency of truncating NSD1 mutations was 

rather low in this TCGA cohort (Fig. 3.11A-B), indicating the existence of other modes of action for the 

establishment and maintenance of SOX2 regulation by DNA methylation. 
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Figure 3.11: Regulation of SOX2 by DNA methylation for the TCGA-CESC cohort. (A) Heatmap 

represents an unsupervised hierarchical cluster analysis for TCGA-CESC based on DNA methylation levels 

of indicated SOX2-annotated probes, which are ranked according to their genomic position. (B) Violin 

plot demonstrates significantly lower SOX2 expression of samples in cluster B as compared to cluster A 

with variable DNA methylation of selected probes (n=14) for the TCGA-CESC cohort. 

 

3.1.6. Upregulation Of Oncogenic KRAS Signaling in The High-Risk Group 

Gene set variation analysis (GSVA) for hallmark and oncology gene sets in MSigDB was performed to 

identify differences in cellular processes or signaling networks among risk groups as potential drug 

targets for high-risk patients with a SOX2lowSOX9high phenotype. This analysis revealed significantly 

higher GSVA scores for several oncogenic gene sets, including those related to EMT, hypoxia, CTNNB1, 

and LEF1, in the high-risk as compared to the low-risk group (Fig. 3.12A, Table S8). In addition, multiple 

of the top-ranked gene sets indicated accelerated KRAS signaling for the high-risk group, which was 

supported by significantly higher KRAS (Fig. 3.12B) and RAF1 protein levels (Fig. 3.12C) and a highly 

significant difference in GSVA score for the Hallmark-KRAS-Signaling UP gene set among risk groups (Fig. 

3.12B-D).  
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Figure 3.12: Differences in oncogenic gene sets among risk groups of TCGA-HNSCC patients. (A) 

Heatmap shows an unsupervised hierarchical cluster analysis based on GSVA scores of top-ranked 

MSigDB gene sets (h-hallmark and c6-oncogenic signature) with significant differences among risk 

groups. Violin plots demonstrate significantly higher KRAS (B) and RAF1 protein levels (C) and higher 

GSVA scores for active KRAS signaling (D) for the high-risk as compared to the low-risk group.  

 

3.1.7. Validation of the Risk Model in Independent HNSCC Cohorts and Other Tumor Entities 

The risk model was applied to transcriptome data of four independent HNSCC cohorts (GSE117973, 

GSE39368, GSE41613, GSE65858), which confirmed a highly significant difference in five-years OS 

among risk groups for the combined validation cohort applying Kaplan-Meier plots (5-years OS 31.2% for 
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the high-risk versus 61.1% for the low-risk group), univariate (HR: 2.582; p=3.0E-08), and multivariate 

Cox regression models (HR: 3.091; p=2.0E-08) adjusted for tobacco, HPV16, tumor size and lymph node 

metastasis (Fig. 3.13A, Table S9). Again, subgroup analysis demonstrated a good performance of the risk 

model for HPV16-negative HNSCC (data not shown), the high-risk group exhibited a SOX2low and SOX9high 

expression pattern (Fig. 3.13B), and GSVA scores indicated differences in KRAS signaling among risk 

groups (Fig. 3.13C). 

 

Figure 3.13: Differences in oncogenic gene sets among risk groups of independent HNSCCC cohorts. (A) 

Kaplan-Meier plot shows significantly shorter five-years overall survival for the high-risk (red line) as 

compared to the low-risk group (blue line) of the combined HNSCC validation cohorts. Numbers of 

patients at risk at the indicated time points are given below. (B) Violin plots confirm lower SOX2 (left 

graph) and higher SOX9 transcript levels in the high-risk group (right graph) for an independent HNSCC 

cohort (GSE41613). (C) Violin plots show significantly higher GSVA scores for a KRAS upregulated gene 
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set in the high-risk group (left graph), and for a KRAS downregulated gene set in the low-risk group (right 

graph). 

 

Next, the question was addressed, whether the newly established risk model serves as a reliable and 

robust prognosticator for other human cancers beyond HNSCC. The risk model was applied on 

transcriptome data from other TCGA cohorts, and an unfavorable five-years OS was found for the high-

risk as compared to the low-risk group for esophageal carcinoma (TCGA-ESCA) (Fig. 3.14A), 

adenocarcinoma of the lung (TCGA-LUAD) and pancreas (TCGA-PAAD), glioblastoma (TCGA-GBM), and 

the subgroup of invasive ductal breast carcinoma of TCGA-BRCA (data not shown). In addition, the risk 

model served as an independent risk factor for OS in TCGA-PAAD and TCGA-LUAD as assessed by 

multivariate Cox regression models (Table S10). High-risk tumors of TCGA-ESCA shared a SOX2low and 

SOX9high expression pattern, a higher GSVA score for a gene set related to active KRAS signaling, and a 

lower GSVA score for a gene set downregulated by active KRAS signaling (Fig. 3.14B-C). 
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Figure 3.14: Prognostic value of the risk model for TCGA-ESCA. (A) The Kaplan-Meier plot demonstrates 

significant differences in five-years overall survival for TCGA-ESCA stratified by the risk model. Numbers 

of patients at risk at the indicated time points are given below. Violin plots confirm lower SOX2 transcript 

levels (left graph) and higher SOX9 transcript levels in the high-risk group (right graph, B), and higher 

GSVA scores for a KRAS upregulated gene set (left graph) and lower GSVA scores for a KRAS 

downregulated gene set (right graph) in the high-risk-group (C). The statistically significant differences 

were measured using a two-sided t-test. 

 

3.1.8. The Drug Response of Cancer Cells Resembling a High-Risk Phenotype 

Finally, an in-silico drug sensitivity analysis was conducted to identify potential vulnerabilities of high-

risk tumors with a SOX2lowSOX9high phenotype and to investigate whether the newly established model 

could predict a higher risk of treatment failure for specific drug targets. We computed the risk score 

based on the expression pattern of the 15-gene set for 45 HNSCC cell lines for which transcriptome data 

and drug sensitivity scores (DSS) were available for FDA-approved compounds(n=220) [171]. The risk 
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score was positively correlated with SOX9 transcript levels, and an inverse correlation was evident for 

SOX2 expression and the risk score as well as SOX9 expression (Fig. 3.15A). This data indicated that 

molecular traits related to inverse SOX2 and SOX9 expression contributing to different risk phenotypes 

are at least in part cancer cell-intrinsic. Comparison of the risk score with the DSS, which indicates higher 

efficacy at a lower drug concentration revealed several drugs with either a significant positive or an 

inverse correlation (Fig. 3.15B; Table S11). HNSCC cell lines with a higher risk score shared a higher 

resistance towards Galiellalactone (STAT3 inhibitor), the alkylating compound Pipobroman and SB-

743921 (kinesin spindle protein inhibitor) but are more sensitive for drugs targeting key components of 

oncogenic pathways, such as NTRK signaling (Lestaurtinib), Hedgehog signaling (Vismodegib) or RAS-RAF 

signaling (NVP-RAF265). One shortcoming of this approach was the limited amount of HNSCC cell lines 

for in silico analysis. Hence, we computed the risk score for cancer cell lines from head and neck, 

esophagus, lung, pancreas, breast, and brain cancers of the Cancer Cell Line Encyclopedia (CCLE) for 

which compound response data were available from two independent drug screens: Sanger GDSC1 and 

GDSC2 (n=293) [172] and PRISM Repurposing Screen (n=253) [173]. Again, the risk score was positively 

correlated with SOX9 transcript levels, and an inverse correlation was evident for SOX2 expression and 

the risk score as well as SOX9 expression for selected cancer cell lines in both screening sets (data not 

shown). Comparison of IC50 z-scores from both screening sets, which indicates drug efficacy at higher 

concentration, revealed several compounds with significant differences in response efficacy for selected 

cancer cell lines with higher versus lower risk scores (Table S12-13). Strikingly, cancer cell lines with a 

higher risk score were less sensitive in both drug screens to numerous compounds targeting EGFR 

signaling (Fig. 14C, Table S12-13), which might be due to a higher activity of pathways downstream of or 

related to RAS-RAF signaling in these cells.  



   Results 

62 
 

 

Figure 3.15: In silico drug response analysis for cancer cell lines of CCLE. (A) Dot plot illustrates inverse 

and positive correlations between SOX2 and SOX9 expression and the risk score for HNSCC cell lines 

(n=45). (B) Volcano plot summarizes the result of the in-silico drug response analysis for HNSCC cell lines 

(n=45). Red dots indicate compounds with a statistically significant (p<0.05) positive or inverse 

correlation between the risk score and the drug sensitivity score.  (C) Dot plot illustrates inverse and 

positive correlations between the risk score and drug response data (IC50 or log-fold change viability 

values) for selected compounds from the Sanger GDSC1-2 and the PRISM Repurposing screens based on 

cancer cell lines from head and neck, esophagus, lung, pancreas, breast and brain cancers of the Cancer 

Cell Line Encyclopedia (CCLE). 

 

3.2. Cancer-Neuron Interaction as A Potential Mode of Action for Cancer Cell Plasticity 

The components of the TME play a crucial role in cancer cell plasticity, and neuro-glial activation is a 

recently identified hallmark of growing cancers [14]. The contribution of nerves to the pathogenesis of 
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malignancies has been raised as an important component of the TME [130]. However, the origin of 

these nerves and the mechanism of their inception are still elusive and need to be generously 

addressed. In line with the former results from cross-tabulation analysis of the patient’s clusters based 

on the inverse correlation of SOX2 and SOX9 expression values the group with SOX2high was significantly 

enriched for HPV16 positive OPSCC and perineural invasion was significantly associated with the SOX9high 

group with unfavorable prognosis. So, in the following section, I aimed to investigate the role of nerve 

fibers and their associated cells such as SCs as a modulator of extrinsic mode of action in plasticity the 

clinical relevance of NF and associated cells for HNSCC and other tumors and to address the molecular 

characterization of the CNI in HNSCC and other tumor types. Finally, establish and analyze pre-clinical 

models as proof-of-concept for new therapeutic strategies. 

3.2.1. Establishment of the Schwann Cell-related 43-gene Set as Surrogate Marker of Peripheral 

Nerves in Tumors 

I assumed that the abundance of SCs serves as an accurate surrogate for the presence of peripheral 

nerves in a tumor and utilized the Harmonizome online tool [167] to establish an SC-related 43-gene set 

from 547 proteins co-occurring with the keyword Schwann cell in abstracts of biomedical publications 

from the TISSUES Text-mining Tissue Protein Expression Evidence Scores dataset (cut-off p-value<0.05) 

(Table S14).  

GSVA scores were computed based on RNA-seq data from TCGA-HNSC for the SC-related 43-gene set, 

eleven gene sets of the MSigDB related to SCs or the peripheral nervous system, three gene signatures 

available for the unbiased single-cell transcriptomic characterization of the non-diseased rodent, and 

one SCs gene signature of Panglao DB curated from single-cell data of mice and humans. This analysis 

revealed a positive and significant correlation between the newly established SC-related 43-gene set 

and most other gene sets tested, except for one gene set: 

GO_PERIPHERAL_NERVOUS_SYSTEM_MAINTENANCE (Fig. 3.16A, Table S15). 
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 The positive correlation was also confirmed with gene expression data from four independent HNSCC 

cohorts and other solid tumors from TCGA with similar risk factors and histopathological characteristics 

(LUSC, CESC, and ESCA) or with well-established cancer-neuron-interaction in TME (LUAD, BRCA, PAAD, 

PRAD) [174, 175] (Fig. 3.16A, data table not shown). 

 In order to further substantiate the predictive accuracy of the SC-related 43-gene set, the enrichment of 

immune and stromal cells was inferred by deconvolution of gene expression data utilizing xCell [176]. 

The comparison of these data with GSVA scores for the SC-related 43-gene set confirmed a positive and 

significant correlation with the enrichment of astrocyte-like cells and neurons for TCGA-HNSC and 

independent HNSCC cohorts (Fig. 3.16B, Table S16).  

It is worth noting that a significant and inverse correlation was also observed for several immune cells, 

in particular T cells. Quantitative assessment of peripheral neurons adjacent to and within the tumor 

demonstrated an increase in the number of positive areas for HNSCC with a high GSVA score (SChigh, 

n=25) as compared to SClow tumors (n=25, Fig. 3.16C-D). 

 In summary, the newly established SC score based on the SC-related 43-gene set provides an adequate 

tool to infer the abundance of peripheral nerves in the TME and to explore their mutual interaction with 

tumor cells during cancer development and therapy.  
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Figure 3.16: Correlation coefficient of SC score with other gene sets TCGA-HNSC and other Validation 

cohorts. (A) Correlation coefficient matrix using Spearman’s correlation for the SC score based on GSVA 

scores using the predicted gene set (n=43) with other peripheral nervous system-related gene sets (n=15) 

in TCGA-HNSCC and other independent HNSCC cohorts (CPTAC-HNSCC, GSE117973, GSE65858, 
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GSE39368) as well as other tumor entities form TCGA (PAAD, LUSC, BRCA, LUAD, CESC, ESCA, PRAD). 

Positive correlations are indicated in red color) and negative correlations in blue color. (B) Spider plot 

presenting the correlation coefficient for SC score with the scores of astrocytes (blue color) and neurons 

(orange color) from xCell deconvolution matrix in TCGA-HNSCC and four independent HNSCC cohorts. (C) 

Representative pictures of an IHC-staining with an anti-GAP43 antibody show positive staining (brown 

signal) in peripheral nerve fibers (PN) adjacent to and within the tumors (T) of FFPE tumor sections from 

GSE117973. Histological staining with hematoxylin to visualize tissue architecture; scale bar = 200 µM. 

(D) Bar plot presents the quantitative assessment of positive areas with peripheral neurons adjacent to 

and within the tumor and demonstrates an increase in the number for HNSCC with a high GSVA score 

SChigh (red, n=25) as compared to SClow (green, n=25) tumors. 

 

3.2.2. Association of the SC-related 43-gene Set and Peripheral Nerves in the TME 

As a further proof-of-concept for the accuracy of the SC-related 43-gene set to serve as a molecular 

surrogate for peripheral neuron abundance in the TME, we examined FFPE tumor sections from a 

HNSCC cohort (n=50) for which transcriptome data were available (GSE117973) by IHC staining with an 

anti-GAP43 antibody. GAP43 was selected as it is expressed in axons of peripheral neurons and SCs and 

showed the best specificity with almost no positive staining in tumor cells or stromal cells of the TME as 

compared to other established marker proteins (Fig. 3.17A-E). 
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Figure 3.17: IHC-Staining of FFPE-Tumor-Tissue Sections with Schwann Cells and Peripheral Nerves 

Markers in GSE117973. Representative pictures of an IHC-staining with FFPE tumor sections from 

GSE117973 and specific antibodies for protein markers of Schwann cells and peripheral nerves: anti-

GAP43 (A), anti-NCAM1 (B), anti-UCHL1 (C), anti-SNCA (D), and anti-S100B (E). Pictures show 

heterogeneous positive staining (brown signal) in peripheral nerve fibers (PN), (orange arrow) adjacent 

to and within the tumor tissue (T), (red dotted line). Histological staining with hematoxylin to visualize 

tissue architecture; scale bar = 200 µM. 
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3.2.3. Association of the SC score with Clinical Features and the Mutational Landscape 

To explore potential differences in clinical and histopathological features across HNSCCs with distinct SC 

scores, tumors of the TCGA-HNSC cohort were ranked and classified into three groups: SClow (lower 

quartile), SCmoderate
, and SChigh (upper quartile). A cross-tabulation analysis demonstrated a highly 

significant enrichment of HPV16-positive OPSCC for the SClow group which were almost absent in the 

SChigh group (p=2.33E-06), while SChigh tumors were enriched for perineural invasion (p=2.50E-04) (Table 

S17). Concerning the mutational landscape, SChigh tumors exhibited a significantly lower fraction of 

global genomic alterations as compared to HNSCC with low or moderate SC scores, with hot spot regions 

(p<0.0005) of copy number gains at chromosomes 3q and 9p and copy number losses at chromosomes 

11q and 16q (Fig. 3.18A-B).  

While no statistically significant difference was evident for the total count of somatic mutations 

between HNSCCs with low, moderate, or high SC scores (Fig. 3.18C), we identified several MutSig genes 

with significant differences in the relative frequency of somatic mutations (Fig. 3.18D, Table S18). In line 

with a recent study [25], we observed a significant (p=0.0078) and gradual rise in the relative frequency 

of somatic TP53 mutations with increasing SC scores, which was also evident for somatic NOTCH1 

mutations (p=0.0262, Fig. 3.18D). 

 In contrast, a significant and gradual decline in the relative somatic mutational frequency with 

increasing SC scores was evident for AGTR1 (p=0.03), RSRC1 (p=0.02), and PTEN (p=0.002). The higher 

frequency of somatic mutations in PTEN in combination with PIK3CA copy number gain at chromosome 

3q26 for SClow as compared to SChigh HNSCC suggested an inverse association between PI3K pathway 

activity in cancer cells and peripheral nerve abundance in the TME potentially due to impaired tumor-

related neurogenesis.  
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This assumption was further supported by a higher frequency of somatic mutations in PTEN in 

combination with copy number gain at chromosome 3q for SClow as compared to SChigh tumors of CPTAC-

HNSC (data not shown). 

 

Figure 3.18: Differences in the mutational landscape for tumors with low, moderate, and high SC score 

for TCGA-HNSC. (A) Violin plot shows statistically significant differences in the fraction genome altered 

for indicated in groups classified by the SC score (low, moderate, high). (B) Frequency plots summarize 

copy number gains (red) and losses (blue) and indicate hot spot regions with significant differences 

among groups with high or low SC score. (C) Violin plot shows no statistically significant difference in 

mutational counts between indicated groups classified by the SC score (low, moderate, high). (D) Bar plot 

illustrates Mutsig genes (TP53, NOTCH1, AGTR1, RSRC2, PTEN) with statistically significant differences in 

somatic mutation frequency among groups classified by the SC score (low, moderate, high). Statistical 
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difference in the fraction genome altered and mutational counts for indicated in groups classified by the 

SC score was determined using ANOVA-Tukey HSD, while the significant differences in relative 

mutational frequency for the former groups were determined by Chi-square test (* p<0.05 and ** 

p<0.005). 

 

3.2.4. Association of the SC score with Gene Regulatory Networks and Oncogenic Pathway Activity 

To substantiate the potential role of PTEN-PI3K signaling and to identify other underlying molecular 

principles of the mutual cancer-neuron-interaction, GSVA scores for hallmark gene sets of the MSigDB 

(category H) [165] were computed based on RNA-seq data from TCGA-HNSC and significant differences 

between SClow and SChigh tumors were identified using the limma package in R (Fig. 3.19A, Table S19). In 

line with differences in the mutational landscape, significantly higher GSVA scores were evident for the 

P53 pathway (p=4.8e-03), PI3K-AKT-MTOR (p=1.0e-02), and MTORC1 signaling (p= 7.03e-10) (Fig. 3.19A 

and B). Other gene sets with a higher GSVA score for SClow HNSCC resemble processes of metabolism 

and cell cycle progression, such as MYC or E2F target genes, oxidative phosphorylation, DNA repair, and 

G2M checkpoint (Fig. 3.19A). In contrast, top-ranked gene sets with higher GSVA scores for SChigh HNSCC 

were related to well-established oncogenic processes and pathways, such as epithelial-mesenchymal 

transition, hedgehog and TGF- signaling, KRAS, and angiogenesis (Fig. 3.19A and B). Significantly higher 

GSVA scores for PI3K-AKT-MTOR and MTORC1 signaling in SClow tumors and TGF- signaling and 

epithelial-mesenchymal transition in SChigh tumors were also evident in other solid tumors from TCGA, 

such as CESC and BRCA (Fig. 3.19C). Finally, a significantly higher TGF- pathway activity for SChigh HNSCC 

was confirmed with PROGENy (Fig. 3.19D, Table S20) and could contribute to a suppressed TIME with 

reduced numbers of TILs (Table S16) or be related to a higher resistance to radio- and/or chemotherapy. 
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Figure 3.19: Differences in oncogenic gene sets among risk groups in TCGA-HNSC and other validation 

TCGA cohorts such as CESC and BRCA. (A) Heatmap shows an unsupervised hierarchical cluster analysis 

based on GSVA scores of top-ranked MSigDB gene sets (h-hallmark) with significant differences among 

tumors with high or low SC score. (B) Violin plots demonstrate statistically significant differences 

between tumors with high or low SC scores for indicated gene sets in TCGA-HNSC,(C) and other tumors 

such as BRCA and CESC. (D) Violin plot demonstrates the significant differences between SC score groups 

(low, moderate, high) for TGF-β pathway score. The statistical significance was determined using 

ANOVA-Tukey HSD. 

3.2.5. Context-Dependent Impact of PI3K Pathway Activity 

To further explore the impact of PI3K pathway activity on the abundance of SCs as surrogate for 

peripheral nerves in the TME in the context of somatic TP53 mutations, tumors of the TCGA-HNSC 

cohort were stratified into four groups: tumors without somatic TP53, PTEN, or PIK3CA mutations or 

PIK3CA amplification (TP53wt/PTEN-PIK3CAwt), tumors with somatic TP53 mutations but without somatic 

PTEN or PIK3CA mutations or PIK3CA amplification (TP53mut/PTEN-PIK3CAwt), tumors without somatic 

TP53 mutation but with somatic PTEN or PIK3CA mutations or PIK3CA amplification (TP53wt/PTEN-
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PIK3CAmut), or tumors with somatic TP53 mutations and with somatic PTEN or PIK3CA mutations or 

PIK3CA amplification (TP53mut/PTEN-PIK3CAmut). In line with our assumption that PI3K pathway activity 

impedes axonogenesis, SC scores were significantly lower (p=0.01) for TP53wt/PTEN-PIK3CAmut HNSCC as 

compared to all other groups (Fig. 3.20A). However, this difference was not evident in the presence of 

somatic TP53 mutations, indicating that the impact of PI3K pathway activity on peripheral neurons in 

the TME is context-dependent and dominated by the TP53 status. A similar context dependency was 

also evident for neurotrophic factors, such as NGF (Fig. 3.20B). 

To further substantiate this assumption, we assessed the expression of miR-34a, which was recently 

reported as a p53-regulated target during neuron reprogramming in HNSCC [25]. MiR-34a exhibited a 

significantly lower expression in SChigh as compared to other tumors for TCGA-HNSC (p<0.01, Fig. 3.20C), 

and a significant difference in miR-34a related to the SC score was confirmed in other solid tumors from 

TCGA, such as LUSC, ESCA, CESC and PAAD (data not shown). Concerning the context-dependent role of 

PI3K pathway activity, highest miR-34a transcript levels were detected for TP53wt/PTEN-PIK3CAmut 

HNSCC, while its expression was significantly lower in the presence of somatic TP53 mutations (Fig. 

3.20D). A similar mode of regulation was also evident for TGF- signaling with a significant difference 

between TP53wt/PTEN-PIK3CA wt and TP53mut/PTEN-PIK3CA mut tumors (Fig. 3.20E). Next, the SC score was 

computed based on RNA-seq data from 4NQO-induced tongue tumors of genetically modified mice 

carrying a gain-of-function (GOF) allele for Pik3ca alone or in combination with a Tp53 mutation [177]. 

Again, significantly higher SC scores were detected for tongue tumors from Tp53mut mice independent of 

the Pik3ca genotype as compared to wildtype (WT) controls or Tp53wt/Pik3caGOF counterparts (Fig. 

3.20F). Tongue tumors also confirmed significantly higher Ngf expression in the presence of Tp53 

mutations as compared to WT controls and Tp53wt/Pik3caGOF mice (Fig. 3.20F).  
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Figure 3.20: Impact of PI3K pathway activity, neurotrophic factors, and miRNA on the abundance of 

SCs in the context of somatic TP53 mutations in TCGA-HNSC, and tongue tumors from mice. (A) Violin 

plots present differences among indicated mutational subgroups of TCGA-HNSC (TP53wt/PTEN-PIK3CAwt), 

(TP53mut/PTEN-PIK3CAwt), (TP53wt/PTEN-PIK3CAmut), (TP53mut/PTEN-PIK3CAmut) for the SC score, (B) NGF 
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expression values, (D) miR-34a expression values, (E) or GSVA scores for TGF-β signaling. (C) Violin plot 

shows statistically significant differences in mir-34a expression values for tumors with low, moderate, or 

high SC scores in TCGA-HNSC. (F) Bar plot presents SC scores (upper), or Violin Plot for Ngf expression 

values (lower) for 4NQO-induced tongue tumors from mice with indicated genotypes (wildtype (WT) 

controls, Tp53mut, Tp53mut/Pik3caGOF or Tp53mut/Pik3caGOF). 

3.2.6. The Immunosuppressive Phenotype in SChigh Tumors 

Reduced levels of TILs as determined by xCell data correlation with SC score (Table S16) and accelerated 

TGF- signaling (Fig. 3.19) suggested an immunosuppressive TME in SChigh HNSCC, which was further 

supported by deconvolution of RNA-seq data from TCGA-HNSC utilizing CibersortX and Kassandra tools 

(Fig. 3.21A-B). The former results were validated in different tumor entities: TCGA-CESC (Fig. 3.21C), and 

TCGA-BRCA (data not shown). 

 

Figure. 3.21: The enrichment of TILs between SC score groups (low vs high) in TCGA- (HNSC, CESC, 

BRCA) using three deconvolution algorithms (xCell and Cibersortx and Kassandra). (A) Violin plots for T 

cell CD8, T follicular helper cells, T cells CD4 memory activated from CibersortX data, n=22 in TCGA-HNSC 

based on SC score (high vs low). The statistical significance was measured by a two-sided t-test. (B) Violin 

plots for T cell CD8 in Kassandra data tool, n=22 in TCGA-HNSC based on SC score (high vs low). (C) Violin 

plots for T cell CD8 from Kassandra data tool, n=22 in TCGA-CESC based on SC score (high vs low). 
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3.2.7. Identification of Vulnerabilities by In-Silico Drug Screening and Oncopredict Scores 

In order to identify potential vulnerabilities for subgroups of SChigh or SClow HNSCC, we used OncoPredict 

scores [159] to impute sensitivity to all compounds with IC50 in the GDSC project (Table S21). This 

approach revealed potential vulnerabilities of SChigh HNSCC for EGFR inhibitors (e.g., CANERTINIB, AST-

1306), MEK inhibitors (e.g., REFAMETINIB), and inhibitors of PI3K and mTOR (e.g., GSK1059615, TORIN-

2, and WYE-125132), while SClow tumors were particularly sensitive against drugs targeting the cell cycle 

or topoisomerases (e.g., CAMPTOTHECIN, IRINOTECAN, TENIPOSIDE, and TOPOTECAN) (Fig 3.22). 

Subsequently, we confirmed a higher cell cycle progression pathway activity in the SClow (Fig. 3.19A-B). 

These results indicate certain cell cycle topoisomerase inhibitors could be beneficial for the patient of 

SClow. 

 

Figure 3.22: Volcano plot depicts differences between SC score (high vs low) in Oncopredict scores for 

TCGA-HNSC. based on the CCLE RNA-seq and the drug response IC50 of compound GDSC1-2 drug 

screening project.  ∆ negative-imputed drug sensitivity score (oncopredict) scores indicate a 
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highersensitivity and positive -scores a higher resistance of TCGA-HNSCC tumors to compouds of GDSC1-

2. Statistical difference was measured by the Wilcoxon rank test. 

 

4. Discussion 

4.1. The Modulation of TME and Plasticity: A New Avenue for Cancer Research 

 In their benchmark review article of 2011, Hanahan and Weinberg introduced the hallmarks of cancer 

[3]. These hallmarks constitute an organizing principle for rationalizing the complexities of neoplastic 

disease [3]. Hallmarks of cancer are the mechanisms underlying the multistep process of tumorigenesis 

that can be distilled into a logical framework involving the acquisition of functional capabilities, which 

are collectively envisaged to be necessary for malignancy. These capabilities, embodied both in 

transformed cancer cells as well as in the heterotypic accessory cells that together constitute the TME, 

are conveyed by certain abnormal characteristics of the cancerous phenotype [145]. However, these 

hallmark traits, on their own, fail to address the complexities of cancer pathogenesis [145], which raises 

an attractive question of whether there are hidden factors and modulators that regulate the 

pathogenesis and aggressiveness of tumors? 

In this context, metastasis is the primary cause of cancer morbidity and mortality, and the process 

involves a complex interplay between intrinsic tumor cell properties as well as mutual interactions 

between cancer cells and multiple components of the TME [178]. New evidence suggests that novel 

characteristics are required for invasive neoplastic cells to establish macroscopic secondary masses such 

as invasion and motility, plasticity, modulation of TME, and colonization [178]. Its already well 

established that EMT during cancer promotes disease progression and enhances the metastatic 

phenotype by bestowing upon previously benign carcinoma cell traits such as migration, invasion, 

resistance to anoikis, chemoresistance, and tumor-initiating potential [179]. A crucial characteristic of all 

metastases is their ability to restructure the local tissue by recruitment of new cells into the local 

microenvironment, eliciting mobilization of immune/inflammatory cells, manipulating the structure of 
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other tissues, altering metabolism of surrounding stroma, negating anti-tumor actions of the immune 

system, restructuring the behavior of other cancer cells, altering the extracellular matrix, or sharing 

normal behaviors of other cells to accomplish one or more steps of the metastatic cascade [178]. In the 

context of plasticity, cancer cell plasticity is a fundamental process in the generation of tumor 

heterogeneity [76]. Various tumor cell-intrinsic and extrinsic factors have been demonstrated to be 

involved in regulating lineage plasticity [45]. The determination of tumor composition at any time is 

purely a snapshot because selective pressures modify the composition and cellular behavior. Tumor cells 

communicate with each other as well as with normal stroma. Neoplastic cells can alter the growth rate 

of other cells and induce plasticity [180, 181]. In addition to the former hallmarks of metastasis the 

colonization of secondary tissues requires the same elements as the growth of the primary tumor such 

as nutrition and oxygen [182-184]. Importantly, the molecular intrinsic, and cellular extrinsic 

mechanisms that orchestrate the modulation of cancer cell plasticity of TME are still elusive and need to 

be addressed generously. 

Therefore, in this study, I conducted integrative analysis of multi-omics data to highlight the most 

relevant alterations associated with cancer cells’ plasticity depending on two different modes of action: 

Initially the intrinsic modulation of cancer cells’ plasticity by unraveling the inverse regulation of SOX2- 

and SOX9-related gene networks in HNSCC and other tumor entities. Secondly, cancer cell-extrinsic 

mechanisms and modulators of plasticity and the role of the peripheral nervous system as an emerging 

new pathological component of the TME. 

In conclusion, the main novelties of this study are (i) The established risk model which identifies patients 

with primary HNSCC, but also other cancers at a higher risk for treatment failure, who might benefit 

from a therapy targeting SOX2/SOX9-related gene regulatory and signaling networks, and (ii) the
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establishment of an SC-related gene set as an accurate surrogate for the presence of peripheral nerves 

within HNSCC and across solid tumor entities. Moreover, unraveling the potential vulnerabilities of SC-

related HNSCC subgroups emphasizing the need for a better characterization of these subgroups. 

4.2. The Cancer Cell-Intrinsic Mechanisms and Modulators of Plasticity 

Tumors represent a complex ecosystem of cells residing in genetically and phenotypically diverse states, 

and therapy-induced cellular plasticity has been postulated as a crucial adaptive response in therapy 

resistance and metastasis of cancers, including HNSCC. Recently, longitudinal single-cell RNA sequencing 

of patient-derived primary cells highlighted variable SOX2 and SOX9 expression patterns in drug-induced 

infidelity in the stem cell hierarchy of oral SCC [106]. However, the impact of SOX2/SOX9-related genetic 

programs in primary HNSCC and their association with risk factors or clinical features are still limited. 

Data of this study demonstrate a SOX2high/SOX9low phenotype for HPV16-positive OPSCC, which is in line 

with recent reports on a positive association between SOX2 expression and HPV16-positive HNSCC [185, 

186]. Moreover, an increased nuclear SOX2 staining in cervical carcinoma as compared to normal tissue 

was evident in several studies [187, 188]. In both HNSCC and cervical carcinoma, high SOX2 expression 

serves as a prognostic marker for improved clinical outcome [161, 185-187]. Though the molecular 

principle of elevated SOX2 expression in the pathogenesis of HPV16-driven carcinogenesis remains 

elusive, SOX2 upregulation by the viral E7 oncoprotein was demonstrated in vitro and in vivo [189]. In 

contrast, SOX9 expression progressively decreases during cervical carcinoma pathogenesis, and SOX9 

silencing in HeLa cells promoted cell growth in culture and tumor formation in mice [190]. These data 

suggest a negative association among SOX9 and virus-related carcinogenesis, which is further supported 

by diminished SOX9 expression in a mouse model of HPV16-induced skin tumorigenesis [191]. As loss of 

SOX2 and a concomitant gain of SOX9 was recently established for oral SCC as an important mode of 

tumor evolution under the selection pressure of cisplatin [106], it is tempting to speculate that impaired 
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therapy-induced cellular plasticity contributes, at least in part, to improved survival of HPV16-positive 

OPSCC patients. 

To fulfill their complex functions during tissue development, differentiation, and maintenance, SOX2 and 

SOX9 proteins are subjects of numerous post-translational modifications and interact with various 

partner proteins [97, 98]. Though a molecular subtype with low SOX2 and high SOX9 transcript levels 

was associated with unfavorable survival in the TCGA-HNSC cohort [106], the versatile regulation of both 

proteins might limit adequate assessment of their activity solely based on their transcript levels. Hence, 

in this study, a gene set was identified reflecting variable SOX2 and SOX9 transcript levels in HNSCC and 

established a risk model with a reliable prognostic value for TCGA-HNSC and independent HNSCC 

cohorts. An early and more accurate risk assessment is an urgent medical need for appropriate and 

more effective treatment of cancer patients with HNSCC and other tumor types. It will enable the 

stratification of either low-risk patients, who will benefit from less-intensive treatment to reduce 

therapy-related morbidity, or high-risk patients for treatment escalation including new options of 

targeted therapy to improve clinical outcome. So far, only patients with HPV16-positive OPSCC have 

been enrolled in clinical trials to test the concept of treatment de-escalation, and reliable risk models for 

HPV16-negative HNSCC are eagerly awaited [192]. Though the prognostic risk model based on transcript 

levels of the newly established 15-gene set requires validation in a larger prospective cohort, it has the 

potential to close this gap. This assumption is supported by an extensive subgroup analysis, which 

confirmed the prognostic value of the risk model for almost all conditions tested, with best performance 

for subgroups of HPV-negative HNSCC, at laryngeal or oropharyngeal subsites, with a smoking history, 

no histopathological evidence for angiolymphatic or perineural invasion, which are treated with 

radiotherapy. 
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Integrative analysis of multi-omics data elucidated differences in the mutational landscape among risk 

groups as underlying principles of inverse SOX2 and SOX9 regulation and potential drivers of cellular 

plasticity. As an example, a difference was identified in the frequency of truncating NSD1 mutations, 

which have been attributed to a better prognosis in laryngeal SCC and a widespread global DNA 

hypomethylation phenotype [168-170]. Moreover, NSD1 gene silencing in HNSCC cell lines resulted in a 

higher sensitivity to cisplatin [170], indicating that DNA methylation plays a critical role in the 

modulation of the SOX2 versus SOX9 balance. In support of this assumption, this study elucidated 

significantly lower DNA methylation and higher transcript levels for SOX2 in HNSCC with truncating NSD1 

mutation. Hence, disruptive NSD1 mutations represent another molecular trait in addition to HPV16 

with favorable prognosis, which might be due to limited adaptive therapy-induced cellular plasticity. 

This study also unraveled significant differences in the expression of several oncogenic gene sets among 

risk groups and indicates prominent activation of KRAS signaling in the presence of a SOX2low/SOX9high 

phenotype. KRAS transmits signals from activated growth factor receptors, such as EGFR, which might 

explain this finding despite the lack of oncogenic KRAS mutations in most HNSCC [32]. The impact of 

KRAS signaling on cetuximab efficacy for HNSCC has been postulated, and patients with a germline KRAS 

variant have poor progression-free survival when treated with cisplatin [193, 194]. So far, possible links 

between KRAS and SOX2 or SOX9 in HNSCC have not been addressed but are well-established for other 

cancers. KRAS induces SOX9 expression and activity, which is required for the development of KRAS-

mediated pancreatic ductal adenocarcinoma in mouse models [195-197]. Elevated SOX9 levels were also 

detected in human lung adenocarcinoma, particularly those with KRAS mutations, and experimental 

data provide compelling evidence for SOX9 upregulation by NOTCH signaling in lung cancer cells [198]. 

In contrast, KRAS-driven progression of lung adenocarcinoma in mice is supported by limited SOX2 

expression, while SOX2 overexpression inhibits KRAS-activated lung adenocarcinoma [199, 200]. These 

findings raise the attractive question, of whether targeting of KRAS or NOTCH signaling in HNSCC has the 
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potential to limit therapy-induced cellular plasticity related to variable SOX2 and SOX9 expression to 

reduce treatment adaptation and resistance [200]. Strikingly, our in-silico drug screening analysis 

revealed a lower efficacy for numerous compounds targeting EGFR signaling for selected cancer cell 

lines of the CCLE from head and neck, esophagus, lung, pancreas, breast, and brain cancers with a higher 

risk score as compared to those with a lower risk score. Assessment of SOX2 and SOX9 expression 

patterns or the risk score based on the newly established 15-gene set could enable early selection of 

patients with HNSCC, but also other tumor types, who will benefit from EGFR targeting therapy or are at 

high risk for treatment failure despite the absence of activating somatic mutations in RAS oncogenes or 

downstream signaling pathways (Fig. 4.1). 

 

Figure 4.1: Schematic illustration represents a summary of intrinsic modulators of cancer cell 

plasticity:  Assessment of SOX2 and SOX9 expression patterns defined by two main groups of 

(SOX2high/SOX9low vs SOX2low/SOX9high) with different molecular and biological characteristics and 

features in TCGA-HNSC tumors. Abbreviations:(RT= Radiotherapy, EGFRi= EGFR inhibitors). 
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4.3. The Cancer Cell-Extrinsic Mechanisms and Modulators of Plasticity 

High density and functionality of peripheral nerves in the TME have been associated with poor prognosis 

in several cancers, such as head and neck [201], pancreatic [202], prostate [110], gastric [203], colorectal 

[204], and hematological cancers [14, 205].To date, only limited information on molecular processes and 

communication between cancer cells and nerves are available. 

 In the present study, a SC-related 43-gene set was established as an accurate surrogate for the 

presence of peripheral nerves in a TME. Based on the SC score patients of TCGA-HNSC were classified 

into three groups (SClow, SCmoderate, SChigh). The positive correlation was also confirmed with gene 

expression data from four independent HNSCC cohorts and other solid tumors from TCGA with similar 

risk factors and histopathological characteristics (LUSC, CESC, and ESCA) or with well-established cancer-

neuron-interaction in the TME (LUAD, BRCA, PAAD, PRAD) [174, 175]. 

It is well known from previous studies that TP53 is the most commonly mutated gene in HNSCC and 

forms multiple aspects of tumor formation, including modulation of the TME [206, 207]. In a landmark 

study from 2020, it is well described that p53 loss of function serves as an important regulator of cancer–

nerve crosstalk, thereby promoting tumor development and malignant progression [206] [207]. 

Furthermore, p53-deficient tumors communicate with neurons through a mechanism based on miR-34a 

that facilitates neuronal responses to environmental cues and determines the fate of cancer-associated 

neurons. 

 MiR-34a is one of the most characterized tumor suppressor miRNAs, which is lost or expressed at 

reduced levels in a variety of tumors. Moreover, the re-introduction of miR-34a mimics was found to 

inhibit cancer cell growth both in vitro and in vivo [208]. MiR-34a was also identified in another study 

focusing on tumor suppressor miRNAs with a critical function in EMT and metastasis [209]. 
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In oral cancer patients, studies exhibited that miR-34a may have some significance in alleviating cancer-

related pain based on the inhibition of nerve infiltration; however, the difference in physiological 

characteristics and other features between different types of cancers should be considered. For 

example, the autonomic nerve plays a crucial role in TME of prostate cancer, pancreatic cancer, and 

breast cancer, among others, but its role is less well-established in other cancers [210]. In pancreatic 

cancer, referred pains are a novel predictive marker for neural invasion and the TP53 mutation plays an 

important role in the neural invasion of cancer cells [211]. 

In line with these findings, this study confirmed a higher frequency of somatic TP53 mutations in SChigh 

while P53 pathway activity was higher in SClow tumors. 

Furthermore, the expression of miR-34a, which was reported as a p53-regulated target during neuron 

reprogramming in HNSCC [25] was analyzed in this study. The mir-34a exhibited a significantly lower 

expression in SChigh as compared to other tumors for TCGA-HNSC. 

Interestingly a significant difference in miR-34a related to the SC score was confirmed in other solid 

tumors from TCGA, such as LUSC, ESCA, CESC, and PAAD raising an attractive question of whether the 

miR-34a as a tumor suppressor can be used in combination with currently established treatment 

regimens. However, the difference in nerve fibers and their physiological characteristics between 

different types of cancers should be considered. 

 

The main finding of this study is a different pattern of PI3K pathway activity as a potentially new 

mechanism of regulation for axonogenesis and neuron density in the TME. The analysis of gene 

regulatory networks and oncogenic pathway activities revealed significantly higher GSVA scores for PI3K-

AKT-MTOR and MTORC1 signaling in SClow tumors, which may illustrate the decline of peripheral nerves 

within HPV16-positive tumors. Furthermore, the higher frequency of somatic mutations in PTEN 

combined with PIK3CA copy number gain at chromosome 3q26 for SClow compared to SChigh suggested an 
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inverse association between PI3K pathway activity in cancer cells and peripheral nerve abundance in the 

TME potentially due to impaired tumor-related neurogenesis.  

In line with the assumption that PI3K pathway activity impedes axonogenesis, the subgroup analysis 

based on TP53, PIK3CA, and PTEN mutations in tumors of the TCGA-HNSC cohort revealed that SC score 

were significantly lower for TP53wt/PTEN-PIK3CAmut HNSCC as compared to all other groups. However, 

this difference was not evident in the presence of somatic TP53 mutations, indicating that the impact of 

PI3K pathway activity on the TME abundance of peripheral neurons is context-dependent and 

dominated by the TP53 status. Further evidence strengthens the argument that PI3K pathway activity is 

context-dependent the higher SC scores in tumors from the induced tongue tumors of genetically 

modified mice with significantly higher SC scores for tumors from Tp53mut and Tp53wt/Pik3caGOF mice as 

compared to WT controls or Pik3caGOF counterparts. 

 

Based on seminal studies the PI3K signaling pathway is a well‐known regulator of axon regeneration  

In the context of the TME recent research has demonstrated that cancer cells express neurotrophic 

markers such as NGF, BDNF, and GDNF and release axon guidance molecules such as Ephrin B1 to 

promote axonogenesis [142]. These molecules usually activate different receptors, among them the 

tyrosine-receptor kinases (Trks) TrkA, TrkB, and TrkC, and the p75 neurotrophin receptor [212]. 

Expression of NGF stimulates tumor cell proliferation and survival through the constitutive activation of 

the PI3K-AKT [213]. These receptors are also expressed on nerves, and the p75 neurotrophin receptor 

was reported to act as a chemoattractant for cancer cells [214]. The PI3k pathway activity has been well 

described in the context of HPV-16-induced tumorigenesis [215]. All of the major components of this 

pathway have been found to be frequently amplified or mutated in these types of cancers [215]. In 

OPSCC the activation of the PI3K signaling pathway by somatic mutation and/or copy-number 
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alterations of PIK3CA is a key feature of HPV-16 positive and seems to occur early in carcinogenesis [21, 

216]. The HPV oncoproteins E6 and E7 alter and regulate PI3K/AKT pathway. PI3K/AKT is particularly 

important due to its relation to the initiation of malignancy, cell proliferation, metastasis, and also drug 

resistance [217].  

 

Another highlight of this study is that a higher SC score was related to well-established oncogenic 

processes and pathways, such as TGF- signaling. Studies demonstrated that local paracrine signaling 

from nerves to the tumor or to stromal cells in the TME regulates cancer growth and invasion, while 

tumor-derived factors remodel peripheral nerves, promoting further nerve ingrowth into the TME [218, 

219]. 

On the other side, nerve-derived factors such as neurotransmitters and neuropeptides can modulate 

immune cell trafficking and function. Consequently, altered immune function can influence anti-cancer 

immunity and tumor growth-promoting inflammation [218]. Further studies in melanoma demonstrated 

that nociceptor sensory nerves promote CD8+ T cell exhaustion in TME of melanoma through the release 

of neuropeptides, which enables tumor progression by impairing anti-tumor immunity [220]. 

 In the context of immunosuppression its well-known from the literature that TGF- signaling suppresses 

the function of adaptive and innate immune cells [221-224]. Previous studies demonstrated signaling 

pathways between primary sensory neurons, SC, and immune cells are highly correlated, and cytokines 

and chemokines are central components in this complex network. SCs, infiltrating macrophages, 

neutrophil granulocytes, and mast cells release cytokines with an anti-inflammatory or regulatory 

function such as transforming growth factor-β1 (TGF-β1) [225]. Furthermore, it is well-established that 

TGF-β triggers the EMT [94].  
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Interestingly, presented data indicate an immunosuppressive phenotype for SChigh tumors, based on the 

reduced levels of TILs as determined by xCell, Cibersortx, and Kassandra. On the other side, the higher 

GSVA scores of TGF-β signaling and EMT indicate the potential role of TGF-β in the induction of an 

immunosuppressive TME and also as a modulator of cancer cell invasion and motility in the same 

HNSCCs.  In contrast, SClow tumors demonstrated an immune-active TME by the enrichment of immune T 

cells and showed a highly significant enrichment of HPV16-positive OPSCC which was almost absent in 

the SChigh group. OPSCCs originate at anatomical sites with lymphoid tissue, in particular tonsils and base 

of the tongue, which could also explain a higher density of different immune cells in the TME. However, 

it is also worth speculating that the presence and activity of specific immune cell subsets have a negative 

impact on peripheral nerve density by inhibition of axonogenesis in an immune-active TME. These 

findings highlight promising therapeutic targets in the context of cancer-neuron-immune crosstalk and 

further investigation in co-culture models using cancer cells, SC and immune cells will be important as a 

proof-of-concept for future translation into clinical application. 

Another finding of this study is the potential vulnerabilities for subgroups of SChigh or SClow HNSCC as a 

solid basis for further testing in adequate pre-clinical models and long-term translation into clinical 

trials. Importantly, the computed Oncopredict scores predicted the sensitivity of SClow tumors towards 

drugs targeting the cell cycle topoisomerases (e.g., CAMPTOTHECIN, IRINOTECAN, TENIPOSIDE, and 

TOPOTECAN).  

Inhibitors of the DNA topoisomerase 1 (TOP1) and 2 (TOP2A and TOP2B) have shown considerable 

potential as therapeutic agents against cancers, including head and neck cancers [226-228]. However, 

their adverse pharmacokinetic profiles and off-target toxicities have hindered their clinical application. 

Both obstacles can be mitigated by targeting their delivery via tumor-specific antibody formulations. The 
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strategically chosen antibody must specifically and selectively target an antigen expressed on tumor 

cells; by using different tumor-targeting antibodies, the spectrum of tumor types is broadened [229]. 

TOP2A/B inhibitors such as doxorubicin and etoposide are medications commonly used to treat breast, 

lung, and testicular cancer, as well as lymphomas, sarcomas, and other neoplasms, even though they 

present dose-limiting toxicity and side effects [230]. A large number of small molecules have been 

identified as inhibitors of TOP1 or TOP2A/B. Many of them have been tested in clinical trials, but only a 

few have resulted in clinical success [230]. 

FDA-approved camptothecins (TOPOTECAN, IRINOTECAN, IRINOTECAN liposome) have been used in the 

treatment of metastatic cervical and ovarian carcinoma and pancreatic adenocarcinoma, or metastatic 

colon cancer in combination with 5-Fluorouracil and Cisplatin [231]. In a phase I trial study, IRINOTECAN 

(Y01610) demonstrated manageable toxicity and promising anti-tumor activity in patients with 

advanced esophageal carcinoma [232]. In addition, a phase III trial study found that the combination of 

irinotecan with S-1 was similarly tolerable, but significantly prolonged PFS compared to S-1 

monotherapy as a second- or third-line treatment in patients with recurrent or metastatic ESCC [233]. In 

HNSCC a phase I/II prospective trial was applied with triple combination therapy using cisplatin, tegafur-

uracil, and irinotecan which was tolerated and effective for selected patients, indicating that 

individualized choice of treatment could influence prognosis and quality of life in recurrent/metastatic 

HNSCC patients [234]. However, studies showed that CAMPTOTHECIN induces PD-L1 and 

immunomodulatory cytokines in colon cancer. These findings highlight the need to examine, in 

preclinical models and clinical situations, the potential benefits of combining DNA topoisomerase 

inhibitors with immune-checkpoint inhibitors [235]. 
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Previous evidence exhibited that PI3K-AKT pathway activity mediates survival signals and is often related 

to treatment failure [236]. Moreover, aberrations of PI3K pathway have important clinical implications 

in the treatment of HNSCC. They frequently constitute ”gain of function” mutations that trigger 

oncogenesis, and PI3K mutations can also lead to the emergence of drug resistance after treatment with 

EGFR inhibitors [237]. About 66% of HNSCC harbor genomic alterations in one of the major components 

of PI3K pathway [238]. Targeting PIK3CA alteration in human squamous cell xenografts has 

demonstrated susceptibility to treatment in vitro and in vivo, leading a path for its clinical implication. 

Inhibition of PI3K by competitive blockage of ATP binding site led to decreased phosphorylation of AKT 

in several studies [239-241]. Preclinical data also suggested that additional molecular change should 

interact with PIK3CA alteration for tumorigenesis. Furthermore, cell lines engineered to harbor PIK3CA 

mutations in the ‘hotspots’ responded more favorably to PI3K/mTOR dual inhibition than PI3K inhibition 

only, indicating that tumor survival is not strictly dependent on the activated PI3K [242]. In a similar 

sense, PI3K inhibition demonstrated a markedly synergistic effect when combined with EGFR or MEK 

inhibition [243]. So, Compensatory hyperactivation of PIK3CA is one of the major mechanisms of 

treatment resistance [244]. 

Based on the oncopredict data analysis the list of top-ranked candidate compounds included EGFR 

inhibitors (e.g., CANERTINIB, AST-1306), MEK inhibitors (e.g., REFAMETINIB), and inhibitors of PI3K and 

mTOR (e.g., GSK1059615, TORIN-2, and WYE-125132). 

In line with the GSVA computed scores, oncogenic pathways activity analysis showed low PI3K-AKT 

signaling in HNSCCs with high SC score, the inhibition of PI3K signaling in cancer cells might induce 

axonogenesis and peripheral nerve density in the TME, which could accelerate an immune suppressive 

phenotype and cancer cell dissemination. So, the PI3K inhibitors might not be the best option for 

treating HNSCCs with low SC score. Importantly, this analysis also predicted resistance of SChigh tumors 
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towards drugs targeting the cell cycle topoisomerases (e.g., CAMPTOTHECIN, IRINOTECAN, TENIPOSIDE, 

and TOPOTECAN).  

Recent studies have shown Myc has been recently used as a target for new chemotherapeutics [245-

247]. Since its primary mechanism is to induce cancer survival genes [248], dual inhibition of Myc and 

TOP2 can be beneficial. In addition, TOP2 has been demonstrated to be essential in efforts to relax DNA 

and expose the Myc promoter region for transcription [248]. Thus, the combination of Myc–TOP2 

inhibition can help treat tumors. 

The oncogenic pathway analysis revealed a higher GSVA score for SClow HNSCC in pathways associated 

with cell cycle progression, including MYC or E2F target genes, and G2M checkpoint supporting the 

assumption that patients with a low SC score might benefit from treatment with topoisomerase 

inhibitors. These findings highlight promising therapeutic targets. Further investigation in the context of 

preclinical models will be important to translate this feasibility to clinical application.  

Together, the assessment of the SC score as a surrogate marker for the presence of peripheral nerves in 

the TME enables to unravel novel biological insights and to identify characteristic molecular features as 

well as vulnerabilities of different subgroups of HNSCC and other tumor entities, which might pave the 

way for new therapeutic concepts for a more efficient and less toxic treatment of HNSCC patients 

(Fig.4.2).  
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Figure 4.2: Schematic illustration represents a summary of extrinsic modulators of cancer cell plasticity 

in TME: Assessment of Schwann cells as surrogate marker of the peripheral nerve in TME defined by two 

main groups of (SChigh and SClow) with different molecular and biological characteristics and features 

representing the cancer nerve crosstalk in TCGA-HNSC tumors. Based on the presented graph open 

questions are raised in order to unravel the crucial factors and modulators in cancer nerve crosstalk: 

What are the molecular mechanisms behind the PI3k pathway activity that impedes neurogenesis and 

How does the pathway activity induce an active immune phenotype in SClow HNSCCs? How does the 

TGF_β signaling induce an immunosuppressive TME in SChigh?  Prospectively, how to achieve clinical 

treatment by cutting off nerves in solid tumors? How to target nerve-tumor communication to prevent 

tumor progression? What is the major biomolecule in the TME mediating axonogenesis, neurogenesis, 

and neural reprogramming process? Whether clinical neurologic drugs can be a way to treat tumors? 

 

4.4. Common Features of Cancer Cell Plasticity in the Intrinsic and Extrinsic Mode of Regulation 

In this section, I aimed to discuss potential associations between both modes of cancer cell plasticity 

regulation and raise an interesting question of whether intrinsic regulation of cancer cell plasticity by 
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inverse SOX2 and SOX9 expression and extrinsic regulation by peripheral neurons are functionally 

connected. 

Based on the clinical and histopathological features across HNSCCs with distinct SOX2/SOX9 expression 

subgroups demonstrated highly significant enrichment of perineural invasion SOX2low/SOX9high 

compared to SOX2high/SOX9low suggesting an exciting concept of SOX2/SOX9 as a modulator of cancer 

nerve crosstalk by altering the neurotrophic factors or miRNAs released by cancer cell to reprogram the 

nerve and drive neurogenesis and axonogenesis. 

The data analysis of clinical and histopathological features across HNSCCs with distinct SC score 

demonstrated highly significant enrichment SOX2 expression and HPV16-positive OPSCC for the SClow 

group which was almost absent in the SChigh group. These findings suggest further investigation in the 

context of preclinical models such as co-culture models between cancer cells and Schwann cells to 

mimic the cancer nerve crosstalk and also follow the plasticity regulation of the SOX2-SOX9 targets. 

A common gene early growth response protein 2 (EGR2) was identified in the established risk model 

based on SOX2/SOX9 expression and the Schwann cells signatures. Studies showed that Schwann cell 

myelination depends on Krox-20/Egr2 and other promyelin transcription factors that are activated by 

axonal signals and control the generation of myelin-forming cells. The myelination is induced by 

neuroglin (NRG1) and SOX10 [249] Myelin-forming cells remain remarkably plastic and can revert to the 

immature phenotype, a process that is seen in injured nerves and demyelinating neuropathies [250]. 

The most characteristic compound of the myelin sheath positively affected by EGR2 is the peripheral 

myelin protein 22 (BMP22) [251], in addition to NRG1 and SOX10 are identified in this study as gene sets 

in the Schwann cells signature. 

Worth noting that GAP43 is a neuron-specific, membrane-associated phosphoprotein whose expression 

is dramatically elevated during neuronal development and regeneration [252, 253], 
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and it serves as an intrinsic presynaptic determinant for neurite outgrowth and plasticity [254]. 

Neurotrophins (e.g., NGF), which are involved in both axon outgrowth and neuroblast migration, act in 

part through induction of Gap43 expression [255]. The IHC-staining of tumor tissues demonstrated high 

positive staining of anti-GAP43 antibodies in tumors with high SC scores. Moreover, NGF in this study 

was highly expressed in HNSCCs with high SC scores. 

Further investigation in that context might unravel the potential role of GAP43, NGF, and EGR2 or its 

regulators between cancer cells and nerve fibers and might be identified as modulators of cancer cell 

plasticity. 
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5. Summary 

In summary, I conducted an integrative analysis of multi-omics data to highlight the most relevant 

alterations associated with cancer cells’ plasticity depending on two different modes of action: 

5.1. The intrinsic modulation of cancer cells’ plasticity in TME by unraveling the inverse regulation of 

SOX2- and SOX9-related gene networks in HNSCC and other tumor entities.  

 Firstly, differentially expressed genes (DEG) related to SOX2 and SOX9 transcription were identified in 

TCGA-HNSC, which enables the clustering of patients into groups with distinct clinical features and 

survival. Secondly, a prognostic risk model was established by LASSO Cox regression based on expression 

patterns of DEGs in TCGA-HNSC (training cohort) and was confirmed in independent HNSCC validation 

cohorts as well as other cancer cohorts from TCGA. Moreover, differences in the mutational landscape 

among risk groups of TCGA-HNSC demonstrated enrichment of truncating NSD1 mutations for the low-

risk group and elucidated DNA methylation as a modulator of SOX2 expression. Additionally, GSVA 

revealed differences in several oncogenic pathways among risk groups, including upregulation of gene 

sets related to oncogenic KRAS signaling for the high-risk group. Finally, in silico drug screen analysis 

revealed numerous compounds targeting EGFR signaling with significantly lower efficacy for cancer cell 

lines with a higher risk phenotype, but also indicated potential vulnerabilities. 

5.2. Cancer cell-extrinsic mechanisms and modulators of plasticity and the role of neuroglial activation 

as an emerging new component of TME that modulates cancer cell plasticity. 

A SC-related 43-gene set was elucidated as an accurate surrogate for the presence of peripheral nerves 

across solid tumor entities. This model is characterized by higher oncogenic pathway activities such as 

TGF-β signaling in SChigh with an immunosuppressive phenotype and higher PI3K-AKT-MTOR pathway 

and cell cycle pathway activity in SClow with an immune active phenotype and more sensitivity to 
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topoisomerase agents as potential treatment vulnerabilities. Finally, the impact of PI3K pathway activity 

on TME abundance of peripheral neurons is context-dependent and dominated by the TP53 status. 
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8. Supplements 

Due to limitations of space, only a part of the information is displayed in Table S8. More 

details, please check the supplemental tables of the online manuscript (DOI: 10.1158/1541-7786.MCR-

21-0066). 

 

Table S1: Crosstab analysis for subgroups based on SOX9 protein expression and clinical as well as 

histopathological features of the OPSCC cohort.       

 

Category Feature n % n % p valuea

Tobacco current 61 74.4% 48 85.7% 1.15E-01

former 8 9.8% 5 8.9%

never 13 15.9% 3 5.4%

Alcohol current 63 76.8% 47 83.9% 3.70E-01

former 11 13.4% 7 12.5%

never 8 9.8% 2 3.6%

HPV16 yes 27 34.2% 4 7.1% 2.34E-04

no 52 65.8% 52 92.9%

Age [years] <57.4 43 51.8% 25 44.6% 4.07E-01

>57.4 40 48.2% 31 55.4%

Gender female 21 25.3% 17 30.4% 5.12E-01

male 62 74.7% 39 69.6%

Tumor size T1-2 43 51.8% 17 30.4% 1.20E-02

T3-4 40 48.2% 39 69.6%

Lymph nodes N0 15 18.1% 14 25.0% 3.24E-01

N1-3 68 81.9% 42 75.0%

Pathological grading G1-2 43 56.6% 24 55.8% 9.36E-01

G3 33 43.4% 19 44.2%
a  significant p values (<0.05) are indicated in italic and bold

SOX9low SOX9high
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Table S2: Crosstab analysis for subgroups based on SOX2 and SOX9 protein expression and clinical as 

well as histopathological features of the OPSCC cohort.       

  

Table S3: Crosstab analysis for subgroups based on SOX2 and SOX9 transcript levels and clinical as well 
as histopathological features of the TCGA-HNSC cohort. 

Category Feature n % n % n % n % p value
a

Tobacco current 24 80.0% 34 70.8% 26 89.7% 21 84.0% 4.93E-01

former 3 10.0% 5 10.4% 2 6.9% 2 8.0%

never 3 10.0% 9 18.8% 1 3.4% 2 8.0%

Alcohol current 25 83.3% 36 75.0% 25 86.2% 21 84.0% 6.69E-01

former 4 13.3% 6 12.5% 3 10.3% 3 12.0%

never 1 3.3% 6 12.5% 1 3.4% 1 4.0%

HPV16 yes 21 75.0% 20 42.6% 1 3.4% 3 12.0% 1.00E-03

no 7 25.0% 27 57.4% 28 96.6% 22 88.0%

Age [years] <57.4 17 56.7% 22 44.9% 16 55.2% 7 28.0% 1.32E-01

>57.4 13 43.3% 27 55.1% 13 44.8% 18 72.0%

Gender female 5 16.7% 15 30.6% 11 37.9% 6 24.0% 2.95E-01

male 25 83.3% 34 69.4% 18 62.1% 19 76.0%

Tumor size T1-2 16 53.3% 26 53.1% 10 34.5% 6 24.0% 5.00E-02

T3-4 14 46.7% 23 46.9% 19 65.5% 19 76.0%

Lymph nodes N0 6 20.0% 8 16.3% 9 31.0% 5 20.0% 4.87E-01

N1-3 24 80.0% 41 83.7% 20 69.0% 20 80.0%

Pathological grading G1-2 14 51.9% 27 58.7% 13 54.2% 11 57.9% 9.43E-01

G3 13 48.1% 19 41.3% 11 45.8% 8 42.1%
a  significant p values (<0.05) are indicated in italic and bold

SOX2lowSOX9low SOX2highSOX9low SOX2lowSOX9high SOX2highSOX9high

Category Featurea n % n % n % n % p valueb

Tobacco no 29 22.7% 24 20.5% 34 28.8% 24 18.9% 0.274

yes 99 77.3% 93 79.5% 84 71.2% 103 81.1%

Alcohol no 44 34.6% 37 31.4% 34 28.6% 42 33.6% 0.749

yes 83 65.4% 81 68.6% 85 71.4% 83 66.4%

HPV16 no 124 96.9% 85 73.3% 111 99.1% 104 86.0% 8.84E-11

yes 4 3.1% 34 29.3% 1 0.9% 17 14.0%

Age [years] <61 55 42.6% 68 56.7% 61 50.8% 60 46.2% 0.139

>=61 74 57.4% 52 43.3% 59 49.2% 70 53.8%

Gender female 38 29.2% 24 20.0% 41 34.2% 30 23.1% 0.058

male 92 70.8% 96 80.0% 79 65.8% 100 76.9%

Subsite hypopharynx 4 3.1% 1 0.8% 2 1.7% 3 2.3% 2.12E-17

larynx 12 9.2% 31 25.8% 17 14.2% 51 39.2%

oral cavity 106 81.5% 54 45.0% 97 80.8% 51 39.2%

oropharynx 8 6.2% 34 28.3% 4 3.3% 25 19.2%

Tumor size cT1-2 40 32.0% 47 40.2% 48 42.1% 41 31.8% 0.207

cT3-4 85 68.0% 70 59.8% 66 57.9% 88 68.2%

pT1-2 45 38.5% 47 45.6% 49 45.0% 37 31.9% 0.124

pT3-4 72 61.5% 56 54.4% 60 55.0% 79 68.1%

Lymph nodes cN0 65 52.4% 56 49.6% 56 50.0% 62 48.1% 0.92

cN1-3 59 47.6% 57 50.4% 56 50.0% 67 51.9%

pN0 50 46.3% 37 40.2% 39 39.0% 45 42.1% 0.727

pN1-3 58 53.7% 55 59.8% 61 61.0% 62 57.9%

Pathological grading G1-2 99 78.0% 83 74.1% 93 78.8% 85 68.5% 0.233

G3-4 28 22.0% 29 25.9% 25 21.2% 39 31.5%
a  c=clinical, p=pathological
b  significant p values (<0.05) are indicated in italic and bold

SOX2lowSOX9low SOX2highSOX9low SOX2lowSOX9high SOX2highSOX9high
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Table S4: DEGs related to SOX2 and SOX9 expression in the TCGA-HNSC cohort.  

Gene Symbol Gene ID log2FC FDR log2FC FDR log2FC adj.P.Val log2FC adj.P.Val

ADAMTS6 11174 -1.73 2.63E-04 1.36 1.58E-03 -1.19 1.78E-02 1.24 2.46E-02

ADTRP 84830 -3.43 1.79E-18 2.05 4.59E-06 -3.43 3.10E-10 2.14 8.29E-03

ALDH3A1 218 5.26 4.67E-22 -2.38 3.40E-03 5.81 6.48E-11 -2.79 4.36E-02

APCDD1L 164284 -2.90 1.34E-06 2.50 2.54E-05 -2.74 7.56E-04 2.09 3.85E-02

ARHGAP29 9411 -1.70 1.10E-06 1.28 1.12E-03 -1.42 1.08E-03 1.13 3.81E-02

ART3 419 -2.49 3.29E-04 2.89 1.03E-04 -2.95 6.06E-05 2.33 3.72E-02

C12orf56 115749 1.49 4.26E-04 -1.01 1.93E-02 1.88 1.27E-03 -1.12 3.68E-02

CACNA2D3 55799 2.46 5.59E-11 -1.21 2.24E-02 2.43 1.01E-07 -1.47 2.65E-02

CAMK2N1 55450 -2.18 4.76E-09 2.08 9.20E-08 -1.93 7.76E-05 1.74 8.16E-03

CCDC9B 388115 -1.21 2.39E-03 1.16 6.51E-03 -1.80 1.90E-04 1.39 2.54E-02

CEBPB 1051 -1.67 5.92E-11 1.01 2.25E-04 -1.44 7.36E-07 1.22 2.30E-04

CGB8 94115 -4.79 3.17E-08 3.41 7.77E-05 -2.96 1.66E-04 2.54 8.97E-03

COL27A1 85301 -1.19 5.79E-05 1.14 2.36E-03 -1.07 1.76E-03 1.24 1.76E-02

DCBLD1 285761 -1.65 1.35E-09 1.61 1.57E-06 -1.58 3.39E-06 1.42 6.74E-03

DUSP6 1848 -1.50 2.89E-06 1.53 1.52E-04 -1.22 5.55E-04 1.53 8.29E-03

EGR2 1959 1.33 1.02E-03 1.59 2.44E-03 1.53 1.41E-03 1.67 4.00E-02

EPHB2 2048 -2.09 4.39E-10 1.35 1.05E-03 -2.28 1.48E-06 1.69 2.71E-03

EVPLL 645027 3.12 5.23E-08 -3.21 7.09E-06 2.86 4.43E-04 -3.61 1.63E-04

EXPH5 23086 1.23 3.00E-05 -1.68 6.92E-07 1.48 2.63E-05 -1.59 4.10E-04

FGF1 2246 -1.08 1.17E-02 1.85 1.11E-05 -1.15 1.33E-02 1.69 1.20E-03

FHOD3 80206 -2.27 7.46E-07 1.54 8.45E-04 -1.90 2.55E-03 2.12 7.05E-04

FOXC2 2303 -2.61 2.51E-07 3.55 3.48E-13 -2.73 5.25E-05 3.15 4.10E-04

FOXL1 2300 -1.77 2.05E-04 2.70 3.04E-12 -2.17 1.93E-04 2.26 3.53E-04

FOXP2 93986 2.30 6.46E-06 -1.29 4.10E-02 2.90 1.22E-05 -1.86 5.00E-02

FZD7 8324 2.85 2.10E-15 1.41 6.89E-03 2.89 7.43E-08 1.70 2.54E-02

GFPT2 9945 -1.62 2.90E-05 1.19 2.83E-03 -1.34 3.52E-03 1.29 1.26E-02

HDAC9 9734 -1.16 1.52E-03 1.80 2.05E-05 -1.28 1.59E-03 1.33 4.92E-02

ICAM1 3383 -1.66 8.87E-08 1.56 7.90E-05 -1.45 1.04E-04 1.61 6.01E-03

ITGB6 3694 -2.37 4.90E-07 1.29 8.50E-03 -2.18 3.57E-03 1.88 2.13E-02

KCNJ11 3767 1.66 6.77E-04 -1.59 1.27E-02 2.00 4.27E-04 -2.09 8.67E-03

KIF12 113220 -3.23 1.21E-08 2.82 1.24E-05 -3.14 3.15E-05 2.42 1.62E-02

LGALS1 3956 -2.56 5.46E-14 1.10 2.94E-03 -2.11 1.38E-07 1.25 1.14E-02

MYCL 4610 1.86 2.95E-06 -1.46 2.58E-04 1.76 1.56E-03 -1.43 1.74E-02

NOX5 79400 -2.35 1.01E-08 2.31 4.64E-04 -2.86 3.24E-08 2.29 4.33E-02

PDZD2 23037 -1.55 3.89E-04 1.08 2.58E-02 -1.59 2.26E-03 1.39 3.70E-02

PHACTR3 116154 3.01 1.04E-05 -3.53 2.14E-06 2.35 2.32E-03 -1.93 4.38E-02

PLAU 5328 -1.33 6.60E-05 1.29 4.66E-03 -1.15 4.67E-03 1.36 4.85E-02

PLAUR 5329 -1.77 1.61E-09 1.61 2.19E-05 -1.48 6.56E-06 1.19 2.49E-02

PMEPA1 56937 -1.98 1.74E-07 1.76 2.14E-06 -1.80 3.90E-04 2.01 4.66E-04

PRDM8 56978 -1.03 3.21E-03 1.40 6.29E-04 -1.35 2.07E-04 1.08 1.96E-02

PTPRR 5801 -1.12 3.23E-02 1.61 3.71E-03 -1.66 2.93E-03 1.46 2.82E-02

RASD2 23551 -1.71 4.25E-05 2.20 5.53E-04 -1.20 1.50E-02 2.46 8.29E-03

RASL11A 387496 3.48 1.01E-19 -1.91 6.01E-05 2.89 1.46E-06 -1.22 4.47E-02

ROR1 4919 -1.31 2.39E-03 1.68 1.21E-03 -1.28 4.30E-03 1.70 2.14E-02

SEC14L2 23541 -2.43 1.22E-16 2.02 3.78E-07 -2.32 1.51E-08 1.97 1.28E-03

SERPINA11 256394 1.74 3.46E-02 3.86 1.37E-07 1.73 3.12E-02 3.96 1.47E-06

SERPINA3 12 -1.83 3.58E-03 2.97 8.00E-04 -2.19 9.93E-04 3.19 5.88E-03

SERPINE1 5054 -2.52 3.11E-09 1.33 6.88E-03 -2.01 2.81E-04 1.57 3.81E-02

SH3TC2 79628 -1.66 1.33E-03 1.49 7.73E-03 -2.27 4.38E-04 1.85 2.70E-02

SLC47A1 55244 2.84 3.99E-10 -1.86 1.07E-03 2.26 1.84E-04 -1.56 5.00E-02

SVOPL 136306 1.70 2.74E-03 1.50 2.91E-02 2.29 6.53E-04 1.84 3.51E-02

TGM6 343641 3.39 2.44E-05 -4.19 6.94E-05 2.17 7.47E-03 -2.52 4.35E-02

TINAGL1 64129 -2.09 7.39E-07 2.26 2.10E-09 -1.90 6.10E-04 2.67 1.22E-06

TNFRSF12A 51330 -2.11 1.47E-12 1.19 2.16E-03 -2.15 7.57E-08 1.43 1.39E-02

TPRG1 285386 1.91 1.91E-06 -1.96 1.22E-06 1.78 1.31E-03 -1.49 4.26E-02

TREX2 11219 -1.08 8.19E-03 -2.81 8.53E-07 -1.01 2.47E-02 -1.83 3.20E-02

UGT1A7 54577 8.19 2.01E-18 -4.95 3.03E-06 8.94 3.10E-10 -4.92 7.96E-04

SOX2 edgeR SOX9 edgeR SOX2 limma SOX9 limma
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Table S5: Crosstab analysis for clusters based on gene set (n=57) and clinical as well as histopathological 

features of the TCGA-HNSC cohort. 

 

Category Feature
a

n % n % n % n % p value
b

Age [years] ≤61 26 52.0% 78 48.8% 43 55.1% 97 46.0% 5.46E-01

>61 24 48.0% 82 51.3% 35 44.9% 114 54.0%

Gender female 8 16.0% 38 23.8% 26 33.3% 61 28.9% 1.15E-01

male 42 84.0% 122 76.3% 52 66.7% 150 71.1%

Tobacco no 14 28.6% 29 18.5% 20 26.0% 48 23.1% 3.80E-01

yes 35 71.4% 128 81.5% 57 74.0% 158 76.0%

Alcohol no 12 24.0% 54 34.8% 27 35.1% 64 31.1% 4.85E-01

yes 38 76.0% 101 65.2% 50 64.9% 142 68.9%

HPV16 no 33 67.3% 124 81.0% 73 97.3% 193 97.0% 4.70E-11

yes 16 32.7% 29 19.0% 2 2.7% 6 3.0%

Subsite Hypopharynx 0 0.0% 3 1.9% 0 0.0% 7 3.3% 2.57E-14

Larynx 10 20.0% 59 36.9% 12 15.4% 30 14.2%

Oral cavity 20 40.0% 69 43.1% 62 79.5% 156 73.9%

Oropharynx 20 40.0% 29 18.1% 4 5.1% 18 8.5%

Tumor size cT1-2 26 52.0% 58 37.9% 25 32.1% 66 32.5% 6.10E-02

cT3-4 24 48.0% 95 62.1% 53 67.9% 137 67.5%

pT1-2 18 48.6% 58 41.1% 24 33.8% 76 39.2% 4.91E-01

pT3-4 19 51.4% 83 58.9% 47 66.2% 118 60.8%

Lymph nodes cN0 15 30.0% 88 58.3% 35 47.3% 100 49.5% 6.21E-03

cN1-3 35 70.0% 63 41.7% 39 52.7% 102 50.5%

pN0 10 30.3% 57 44.5% 26 38.8% 77 43.3% 4.60E-01

pN1-3 23 69.7% 71 55.5% 41 61.2% 101 56.7%

Pathological grading G1-2 19 40.4% 120 79.5% 68 89.5% 152 73.8% 1.07E-08

G3-4 28 59.6% 31 20.5% 8 10.5% 54 26.2%

Pathological margin R0 36 90.0% 117 84.8% 65 89.0% 172 87.8% 7.33E-01

R1 4 10.0% 21 15.2% 8 11.0% 24 12.2%

Angiolymphatic invasion no 17 60.7% 62 60.2% 41 67.2% 98 67.1% 6.49E-01

yes 11 39.3% 41 39.8% 20 32.8% 48 32.9%

Perineural invasion no 20 71.4% 72 69.2% 27 43.5% 66 42.3% 2.30E-05

yes 8 28.6% 32 30.8% 35 56.5% 90 57.7%
a

 c=clinical, p=pathological
b

 significant p values (<0.05) are indicated in italic and bold

Cluster A1 Cluster A2 Cluster B1 Cluster B2
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Table S6: Crosstab analysis for risk model groups and clinical as well as histopathological features of the 
TCGA-HNSC cohort 

 
 
 
 
 
 
 
 
 

Category Featurea n % n % p valueb

Age [years] ≤61 142 52.4% 112 49.1% 0.47

>61 129 47.6% 116 50.9%

Gender female 80 29.5% 53 23.2% 0.11

male 191 70.5% 175 76.8%

Tobacco yes 206 78.3% 172 76.1% 0.56

no 57 21.7% 54 23.9%

Alcohol yes 184 68.7% 147 66.8% 0.67

no 84 31.3% 73 33.2%

HPV16 yes 7 2.7% 46 21.1% 2.10E-10

no 251 97.3% 172 78.9%

Subsite Hypopharynx 7 2.6% 3 1.3% 5.00E-06

Larynx 53 19.6% 58 25.4%

Oral Cavity 190 70.1% 117 51.3%

Oropharynx 21 7.7% 50 21.9%

Tumor size cT1-2 95 36.1% 80 36.2% 0.99

cT3-4 168 63.9% 141 63.8%

pT1-2 93 38.0% 84 42.4% 0.36

pT3-4 152 62.0% 115 58.1%

Lymph nodes cN0 120 46.5% 118 53.9% 0.11

cN1-3 138 53.5% 101 46.1%

pN0 77 34.8% 93 50.3% 1.70E-03

pN1-3 144 65.2% 92 49.7%

Pathological grading G1-2 202 76.5% 157 72.7% 0.19

G3-4 62 23.5% 59 27.3%

Pathological margin R0 218 85.5% 172 89.6% 0.20

R1 37 14.5% 20 10.4%

Angiolymphatic invasion yes 79 40.7% 41 28.5% 0.02

no 115 59.3% 103 71.5%

Perineural invasion yes 111 55.2% 54 37.2% 4.35E-04

no 90 44.8% 95 65.5%

Radiation yes 145 63.9% 134 65.0% 0.80

no 82 36.1% 72 35.0%
a  c=clinical, p=pathological
b  significant p values (<0.05) are indicated in italic and bold

High risk Low risk
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Table S7: (A) Univariate and multivariate Cox regression analysis for overall survival of the TCGA-HNSC 
cohort. 
 

 
 
 
 
 
 
 
 
 
 
 

Univariate Multivariate

Category Featurec HR lower upper p valueb HR lower upper p valueb

Gender Malea 1.396 1.021 1.910 0.04 1.198 0.748 1.919 0.45

Female

Age (years) <61a 1.229 0.916 1.648 0.17

>61

Tobacco noa 1.029 0.723 1.465 0.87

yes

Alcohol noa 0.934 0.685 1.275 0.67

yes

HPV16 noa 0.333 0.164 0.677 2.0E-03 0.781 0.240 2.543 0.68

yes

Tumor size cT1-2a 1.204 0.878 1.650 0.25

cT3-4

pT1-2a 1.811 1.290 2.550 6.2E-04 2.482 1.403 4.391 1.8E-03

pT3-4

Lymph node cN0a 1.254 0.936 1.681 0.13

metastasis cN+

pN0a 2.082 1.453 2.984 6.5E-05 1.331 0.805 2.200 0.27

pN+

Pathological G1-2a 0.984 0.705 1.374 0.92

grading G3-4

Resection margin R0a 1.768 1.208 2.586 3.4E-03 2.387 1.417 4.023 1.1E-03

R1

Angiolymphatic noa 1.724 1.200 2.476 3.2E-03 0.904 0.562 1.417 0.68

invasion yes

Perineural invasion noa 2.161 1.502 3.110 3.3E-05 1.669 1.047 2.661 3.1E-02

yes

Risk model lowa 2.730 1.971 3.781 1.5E-09 2.344 1.409 3.898 1.0E-03

high
a reference
b  significant p values (<0.05) are indicated in italic and bold
a  c=clinical, p=pathological

95% CI 95% CI
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Table 7:(B) Univariate and multivariate Cox regression analysis for disease-specific survival of the TCGA-
HNSC cohort. 
 

 
 
 
 
 
 
 
 
 
 
 
 

Univariate Multivariate

Category Featurec HR lower upper p valueb HR lower upper p valueb

Gender Malea 1.03 0.67 1.59 0.89

Female

Age (years) <61a 1.02 0.70 1.48 0.93

>61

Tobacco noa 1.05 0.67 1.65 0.84

yes

Alcohol noa 1.30 0.85 2.01 0.23

yes

HPV16 noa 0.33 0.14 0.82 1.7E-02 0.781 0.185 3.302 0.74

yes

Tumor size cT1-2a 1.46 0.95 2.23 0.08

cT3-4

pT1-2a 2.42 1.50 3.89 2.8E-04 4.535 1.922 10.698 5.6E-04

pT3-4

Lymph node cN0a 1.28 0.88 1.87 0.20

metastasis cN+

pN0a 2.38 1.46 3.87 5.1E-04 1.165 0.658 2.065 0.60

pN+

Pathological G1-2a 0.99 0.65 1.52 0.96

grading G3-4

Resection margin R0a 2.45 1.55 3.85 1.1E-04 2.571 1.453 4.552 1.2E-03

R1

Angiolymphatic noa 1.57 0.99 2.50 0.06

invasion yes

Perineural invasion noa 2.26 1.43 3.57 5.0E-04 1.405 0.812 2.429 0.22

yes

Risk model lowa 2.95 1.93 4.51 6.1E-07 2.590 1.399 4.796 2.5E-03

high
a reference
b  significant p values (<0.05) are indicated in italic and bold
a  c=clinical, p=pathological

95% CI 95% CI
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Table S8: GSVA for low versus high risk groups for TCGA-HNSC based on MSigDB (h - hallmarks and c6 - 
oncogenic signature). 
 

 
 
 
Table S9: Univariate and multivariate Cox regression analysis for overall survival of the combined HNSCC 
validation cohort (GSE117973, GSE39368, GSE65858).  
 

Gene set(Top 20 based on the lowest adj.p-value) p value adj. p value mean high mean low

KRAS.DF.V1_UP 1.18E-21 2.77E-19 0.05 -0.17

MEL18_DN.V1_UP 3.07E-21 3.61E-19 0.09 -0.19

BCAT.100_UP.V1_UP 1.27E-20 9.96E-19 0.08 -0.14

BCAT_GDS748_UP 9.70E-20 5.70E-18 0.08 -0.14

BMI1_DN_MEL18_DN.V1_UP 1.53E-19 7.20E-18 0.08 -0.17

HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION 1.07E-17 4.18E-16 0.09 -0.21

KRAS.300_UP.V1_UP 2.44E-17 8.18E-16 0.06 -0.14

KRAS.600_UP.V1_UP 4.21E-17 1.24E-15 0.05 -0.12

HALLMARK_HYPOXIA 4.00E-16 1.04E-14 0.03 -0.15

BMI1_DN.V1_UP 2.31E-15 5.42E-14 0.06 -0.16

ESC_V6.5_UP_LATE.V1_DN 1.29E-14 2.76E-13 0.01 -0.11

HALLMARK_COAGULATION 3.04E-14 5.96E-13 0.04 -0.14

LEF1_UP.V1_UP 4.70E-14 8.50E-13 0.04 -0.12

HALLMARK_KRAS_SIGNALING_UP 6.84E-14 1.15E-12 0.05 -0.14

PDGF_UP.V1_UP 8.49E-13 1.33E-11 0.02 -0.12

KRAS.LUNG.BREAST_UP.V1_UP 1.57E-12 2.31E-11 0.02 -0.13

HALLMARK_GLYCOLYSIS 3.59E-12 4.96E-11 0.03 -0.11

CYCLIN_D1_KE_.V1_UP 7.80E-12 1.02E-10 0.02 -0.10

HALLMARK_TNFA_SIGNALING_VIA_NFKB 1.08E-11 1.34E-10 0.05 -0.16

PKCA_DN.V1_DN 2.66E-11 3.13E-10 0.04 -0.08

Univariate Multivariate

Category Featurec HR lower upper p value HR lower upper p value

Gender Malea 1.142 0.759 1.712 5.00E-01

Female

Age (years) <61a 1.166 0.842 1.615 4.00E-01

>61

Tobacco noa 1.684 1.047 2.710 3.00E-02 1.95 1.1691 3.253 8.1E-02

yes

Alcohol noa 1.248 0.882 1.765 2.00E-01

yes

HPV16 noa 0.896 0.565 1.421 6.00E-01 0.8405 0.5193 1.3494 6.00E-01

yes

Tumor size pT1-2a 2.81 1.899 4.157 7.00E-08 2.567 1.6975 3.881 1.20E-05

pT3-4

Lymph node pN0a 1.727 1.172 2.546 5.00E-03 1.561 1.0322 2.359 1.91E-02

metastasis pN+

Risk model lowa 2.582 1.82 3.651 3.00E-08 3.091 2.1165 4.515 2.0E-08

high
a reference, significant p values (<0.05) are indicated in italic and bold
b  GSE41613 was excluded due to lack of HPV16-positive HNSCC
c  p=pathological

95% CI 95% CI
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Table S10: (A) Univariate and multivariate Cox regression analysis for overall survival of the TCGA-PAAD 
cohort.  

 
 
 
Table S10: (B) Univariate and multivariate Cox regression analysis for overall survival of the TCGA-LUAD 
cohort. 

 
 
 

Univariate Multivariate

Category Featurec HR lower upper p valueb HR lower upper p valueb

Gender Malea 0.797 0.497 1.279 3.00E-01

Female

Age (years) <61a 1.482 0.837 2.623 2.00E-01

>61

Tobacco noa 1.092 0.681 1.700 7.00E-01

yes

Alcohol noa 1.110 0.654 1.884 7.00E-01

yes

Tumor size pT1-2a 2.075 1.069 4.029 3.00E-02 1.689 0.810 3.522 1.63E-01

pT3-4

Lymph node pN0a 2.140 1.259 3.654 4.00E-03 1.888 1.055 3.379 3.23E-02

metastasis pN+

Pathological G1-2a 1.618 1.040 2.510 3.00E-02 1.299 0.814 2.073 2.72E-01

grading G3-4

Resection margin R0a 1.717 1.096 2.689 2.00E-02 1.586 0.999 2.518 5.03E-02

R1

Risk model lowa 2.046 1.286 3.257 2.00E-03 2.139 1.305 3.507 2.00E-03

high
1 reference
2  significant p values (<0.05) are indicated in italic and bold
c  p=pathological

95% CI 95% CI

Univariate Multivariate

Category Featurec HR lower upper p valueb HR lower upper p valueb

Gender Malea 1.037 0.766 1.403 0.80

Female

Age (years) <61a 1.209 0.890 1.638 0.20

>61

Tobacco noa 0.874 0.570 1.340 0.50

yes

Tumor size pT1-2a 2.314 1.561 3.431 2.00E-05 2.542 1.620 3.991 5.0E-05

cT3-4

Lymph node pN0a 2.082 1.453 2.984 4.00E-10 2.161 1.505 3.102 3.0E-05

metastasis pN+

Resection margin R0a 4.241 2.313 7.774 4.00E-07 2.220 1.151 4.280 1.7E-02

R1

Risk model lowa 1.570 1.123 2.195 5.0E-03 1.610 1.074 2.413 2.1E-02

high
a reference
b  significant p values (<0.05) are indicated in italic and bold
c  p=pathological

95% CI 95% CI
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Table S10: (C) Univariate and multivariate Cox regression analysis for overall survival of the TCGA-ESSC 
cohort. 

 
 
 
Table S10: (D) Univariate and multivariate Cox regression analysis for overall survival of the TCGA-BRCA 
cohort. 
 

 
 
 
 
 

Univariate 95% CI Multivariate 95% CI

Category Featurec HR lower upper p valueb HR lower upper p valueb

Gender Malea 2.87 1.029 8.003 4.00E-02 1.373 0.4261 4.427 4.53E-01

Female

Age (years) <61a 1.148 0.68 1.9 6.00E-01

>61

Tobacco noa 2.057 1.031 4.1 4.00E-02 1.764 0.7115 4.374 2.21E-01

yes

Alcohol noa 0.69 0.4 1.17 2.00E-01

yes

Tumor size pT1-2a 1.079 0.6198 1.878 9.00E-01

pT3-4

Lymph node pN1-2a 3.093 1.634 5.855 3.00E-04 2.518 1.1529 5.497 2.05E-02

metastasis pN3-4

Pathological G1-2a 1.621 0.9 2.91 1.00E-01

grading G3-4

Resection margin R0a 2.602 1.237 5.476 9.00E-03 3.456 1.1294 10.577 2.66E-02

R1

Perineural invasion noa 2.303 1.502 7.551 2.00E-01

yes

Risk model lowa 2.16 1.0346 4.508 1.00E-02 1.68 0.8178 3.453 1.58E-01

high
a reference
b  significant p values (<0.05) are indicated in italic and bold
c  p=pathological

Univariate Multivariate

Category Featurec HR lower upper p valueb HR lower upper p valueb

Age (years) <61a 1.201 0.700 2.042 5.00E-01

>61

Tumor size pT1-2a 2.001 1.001 4.038 5.00E-02 2.482 1.403 4.391 5.0E-02

pT3-4

Lymph node pN0a 2.082 1.453 2.984 2.00E-02 1.331 0.805 2.200 2.00E-01

metastasis pN+

Estrogen Receptor ESR-a 0.680 0.400 1.140 1.00E-01 1.331 0.805 2.200 2.00E-01

metastasis ESR+

Risk model lowa 2.463 1.128 5.378 2.00E-02 2.344 1.409 3.898 1.6E-01

high
a reference
b  significant p values (<0.05) are indicated in italic and bold
c  p=pathological

95% CI 95% CI
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Table S11: Summary of drugs with significant differences in DSS among HNSCC cell lines with high vs. 
low risk scores. 

 
 
 
 
Table S12: Summary of drugs with significant differences in IC50 values (GDSC1-2) among CCLE cell lines 
(head and neck, lung, esophagus, pancreas, breast, CNS) with high vs. low risk scores. 

Drug Name PubChem Spearman´s rho p-valuea Target/Mode of action Target Pathway

Galiellalactone 3698011 -0.47 1.02E-03 STAT3 JAK-STAT signaling

Pipobroman 4842 -0.33 2.54E-02 Alkylation

SB-743921 49867937 -0.33 2.93E-02 Kinesin spindle protein (KSP) inhibitor

Entinostat 4261 -0.28 6.05E-02 HDAC1, HDAC3 Chromatin histone acetylation

Omacetaxine 65305 -0.28 6.19E-02 Protein synthesis inhibitor

Trametinib 11707110 -0.27 7.68E-02 MEK inhibhitor MAPK/ERK signaling

TAK-733 24963252 -0.27 7.86E-02 MEK inhibhitor MAPK/ERK signaling

PF-04708671 51371303 -0.25 9.69E-02 Kinase inhibitor RSK p70 subfamily

Carboplatin 426756 0.25 9.76E-02 DNA crosslinking

Uracil mustard 6194 0.26 8.69E-02 Alkylation

NVP-RAF265 11656518 0.32 3.42E-02 BRAF RAS-RAF signaling

Tamatinib 11213558 0.33 2.91E-02 Non-receptor kinase inhibitor SYK family

Topotecan 60700 0.33 2.78E-02 DNA topoisomerase type I inhibitor DNA replication

Vismodegib 24776445 0.37 1.28E-02 SMO Hedgehog pathway and ABC transporter inhibitor

Lestaurtinib 126565 0.41 5.72E-03 FLT3, JAK2, NTRK1, NTRK2, NTRK3 Other, kinases
a  significant p-values are indicated in italic and bold

Drug Name Drug ID Spearman´s rho p-value Targeta Target Pathwaya PubChem

RIBOCICLIB 1632 -0.31 4.73E-02 CDK4, CDK6 Cell cycle 44631912

KIN001-135 91 -0.29 8.11E-03 IKK Other, kinases 11626927

THZ-2-49 344 -0.19 1.28E-03 CDK9 Cell cycle

(5Z)-7-OXOZEAENOL 1242 -0.16 7.35E-03 TAK1 Other, kinases 9863776

AXITINIB 1021 -0.13 1.49E-02 PDGFR, KIT, VEGFR RTK signaling 6450551

PIPERLONGUMINE 1243 -0.13 2.54E-02 Induces reactive oxygen species Other 637858

CHIR-99021 154 -0.12 4.07E-02 GSK3A, GSK3B WNT signaling 9956119

FORETINIB 308 -0.12 4.28E-02 MET, KDR, TIE2, VEGFR3/FLT4, RON, PDGFR, FGFR1, EGFRRTK signaling 42642645

AST-1306 381 0.12 4.89E-02 EGFR, ERBB4 RTK signaling 24739943

PELITINIB 282 0.12 3.88E-02 EGFR EGFR signaling 6445562

IPA-3 176 0.13 3.79E-02 PAK1 Cytoskeleton 521106

CI-1033, CANERTINIB 362 0.13 3.33E-02 EGFR, ERBB2, ERBB4 RTK signaling 156414

PILARALISIB, XL-147 372 0.13 2.78E-02 PI3K PI3K/MTOR signaling56599306

DACOMITINIB, PF-00299804 363 0.13 2.58E-02 EGFR, ERBB2, ERBB4 RTK signaling 11511120

GSK591, EPZ015866, GSK3203591 2110 0.13 4.05E-02 PMRT5 Chromatin histone methylation117072552

MIM1 446 0.14 2.34E-02 MCL1 Apoptosis regulation16241412

ALPELISIB 1560 0.14 2.98E-02 PI3Kalpha PI3K/MTOR signaling56649450

PRT062607 1631 0.14 3.75E-02 SYK Other, kinases 44462758

UMI-77, UMI 77 1939 0.14 3.29E-02 MCL1 Apoptosis regulation 992586

A-83-01 477 0.14 1.80E-02 TGFB Other 16218924 

AZD5582 1617 0.16 2.09E-02 XIAP, cIAP Apoptosis regulation49847690

AGI-6780 562 0.16 8.32E-03 IDH2 R140Q mutant Metabolism 71299339

AZD8931 1549 0.16 1.26E-02 EGFR, ERBB2, ERBB3 EGFR signaling 11488320

ERLOTINIB 1168 0.16 1.48E-02 EGFR EGFR signaling 176870

FTY-720, FINGOLIMOD HYDROCHLORIDE; GILENYA; TDI-132; IMUSERA; GILENIA546 0.17 5.67E-03 S1P Other 107969

CUDC-101 273 0.17 5.07E-03 HDAC1-10, EGFR, ERBB2 Other 24756910

METAP2 INHIBITOR, A832234 410 0.17 4.69E-03 MetAP2 Other 53413272

CPI-613 415 0.17 4.43E-03 Metabo, Mitochondria Other 24770514

GEFITINIB 1010 0.17 8.41E-05 EGFR EGFR signaling 123631

RU-SKI-43 576 0.18 3.41E-03 Shh Other 46006640

LAPATINIB 1558 0.18 4.35E-03 EGFR, ERBB2 RTK signaling 208908

AFATINIB 1032 0.19 8.78E-06 ERBB2, EGFR EGFR signaling 10184653

IBRUTINIB 1799 0.19 3.81E-03 BTK Other, kinases 24821094

AZD3759 1915 0.20 2.62E-03 EGFR EGFR signaling 78209992

KOBE2602 563 0.24 4.49E-05 RAS effector RTK signaling 3827738

OSIMERTINIB 1919 0.27 4.13E-05 EGFR EGFR signaling 71496458
a  according to Genomics of Drug Sensitivity in Cancer (https://www.cancerrxgene.org/)
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Table S13: Summary of drugs with significant differences in viability values (PRISM) among CCLE cell 
lines (head and neck, lung, esophagus, pancreas, breast, CNS) with high vs. low risk scores. 
  

 
 
 
 
 
 
 
 
 
 

Drug Name Drug ID Spearman´s rho
a

p-value
a
Target/Mode of Action Mode of Action PubChem

oxotremorine-m BRD-K01942991-005-08-2 -0.265566818 2.51E-05 CHRM1, CHRM2, CHRM3, CHRM4 acetylcholine receptor agonist 4629

IOX2 BRD-K98251413-001-04-0 -0.251801776 5.39E-05 EGLN1, KDM2A, KDM5C hypoxia inducible factor inhibitor 54685215

RS-100329 BRD-K08640512-003-02-3 -0.251446428 6.56E-05 ADRA1A, ADRA1D adrenergic receptor antagonist 3567002

azilsartan-medoxomil BRD-K25723200-001-02-7 -0.248385644 9.24E-05 AGTR1, AGTR2 angiotensin receptor antagonist 135409642

chlorpyrifos BRD-K08303368-001-10-0 -0.239192768 2.31E-04 ACHE acetylcholinesterase inhibitor 2730

amiloride BRD-K97181089-003-24-7 -0.235932218 1.58E-04 AOC1, ASIC1, ASIC2, ASIC3, PKD2, PKD2L1, sodium channel blocker 16231

PLAU, SCNN1A, SCNN1B, SCNN1D,

, SCNN1G, SLC9A1, TRPC7, TRPV2

alacepril BRD-K51784806-001-01-6 -0.232995882 2.50E-04 ACE angiotensin converting enzyme inhibitor71992

clofoctol BRD-K02900412-001-11-3 -0.229773805 2.65E-04 protein synthesis inhibitor 2799

SN-6 BRD-A14316475-001-02-3 -0.22712005 3.04E-04 sodium/calcium exchange inhibitor

lercanidipine BRD-A18992208-003-02-7 -0.22449302 4.00E-04 CACNA2D1, CACNG1 calcium channel blocker 65866

nateglinide BRD-K44353683-001-08-3 -0.218210806 6.15E-04 ABCC8, KCNJ10, KCNJ11, PPARG insulin secretagogue 5311309

diflunisal BRD-K22031190-001-23-6 -0.216793357 5.72E-04 PTGS1, PTGS2 prostanoid receptor antagonist 3059

AG-1024 BRD-K08310154-001-03-8 -0.213304314 7.22E-04 IGF1R insulin growth factor receptor inhibitor2044

estriol BRD-K17016787-001-16-7 -0.212258244 7.49E-04 ESR1, ESR2 estrogen receptor agonist 5756

CHIR-99021 BRD-K16189898-003-03-3 -0.209216437 8.32E-04 CDK1, GSK3A, GSK3B, MAPK1 glycogen synthase kinase inhibitor 9956119

telmesteine BRD-A05523972-001-01-5 -0.208137858 9.52E-04 mucolytic agent 65946

aceclofenac BRD-K68538666-001-12-3 -0.207961215 9.61E-04 PTGS2 prostanoid receptor antagonist 71771

muscimol BRD-K60441002-001-04-8 -0.205460013 1.19E-03 GABRA1, GABRA2, GABRA3, GABRA4, GABRA5 benzodiazepine receptor agonist 4266

, GABRA6, GABRR1, GABRR2, GABRR3

CHIR-98014 BRD-K42973005-001-04-0 -0.205427543 1.11E-03 GSK3A, GSK3B glycogen synthase kinase inhibitor 53396311

SGI-1027 BRD-K61228301-001-01-2 0.202955796 1.25E-03 DNMT1, DNMT3A, DNMT3B DNA methyltransferase inhibitor 24858111

buclizine BRD-A91444184-300-01-9 0.206333443 1.16E-03 CHRM1, HRH1 histamine receptor antagonist 6729

dronedarone BRD-K05524748-003-04-4 0.206795647 1.33E-03 ADRA1A, ADRA1B, ADRA1D, ADRA2A, ADRA2B, ADRA2C, ADRB1, adrenergic receptor antagonist 208898

CACNA1C, CACNA1D, CACNA1F, CACNA1S, CACNB1, CACNB2

, CACNB3, CACNB4, KCNA5, KCNH2, KCNK2, SCN1A

BIBU-1361 BRD-K49294207-300-03-8 0.206840529 1.15E-03 EGFR EGFR inhibitor 17756796

icotinib BRD-K31698212-001-02-9 0.208709583 8.57E-04 EGFR EGFR inhibitor 22024915

nexturastat-a BRD-K70402238-001-02-8 0.209633846 8.52E-04 HDAC1, HDAC6 HDAC inhibitor 71462653

talmapimod BRD-K17555800-003-01-5 0.210492584 8.30E-04 MAPK11, MAPK14 p38 MAPK inhibitor 9871074

canertinib BRD-K50168500-001-07-9 0.214380262 6.61E-04 AKT1, EGFR, ERBB2, ERBB4 EGFR inhibitor 156414

spironolactone BRD-K90027355-001-13-3 0.215426331 8.87E-04 AR, CACNA1A, CACNA1B, CACNA1C, CACNA1D, mineralocorticoid receptor antagonist5833

CACNA1H, CACNA1I, CACNA1S, CACNA2D1,

CACNA2D2, CACNA2D3, CACNB1, CACNB2, CACNB3, CACNB4

AST-1306 BRD-K26838195-075-04-9 0.215648605 5.83E-04 EGFR, ERBB2 EGFR inhibitor 24739943

poziotinib BRD-K50010139-001-02-3 0.2179508 5.93E-04 EGFR, ERBB2, ERBB4 EGFR inhibitor 25127713

pelitinib BRD-K08799216-001-05-3 0.22140749 5.66E-04 EGFR EGFR inhibitor 6445562

BIBX-1382 BRD-K70914287-300-02-8 0.222035041 4.17E-04 EGFR, ERBB2 EGFR inhibitor 6918508

ibrutinib BRD-K70301465-001-02-6 0.229591916 2.68E-04 BLK, BMX, BTK Bruton's tyrosine kinase (BTK) inhibitor24821094

gefitinib BRD-K64052750-001-17-5 0.232442635 2.30E-04 EGFR EGFR inhibitor 123631

ACY-1215 BRD-K82928847-001-04-7 0.236039139 2.07E-04 HDAC1, HDAC2, HDAC3, HDAC6, HDAC8 HDAC inhibitor 53340666

SRC-kinase-inhibitor-I BRD-K50495309-001-02-0 0.244708784 9.39E-05 CSK, LCK, RIPK2 src inhibitor 1474853

pyroxamide BRD-K11663430-001-02-3 0.245230127 9.07E-05 HDAC1 HDAC inhibitor 4996

osimertinib BRD-K42805893-001-04-9 0.247882552 7.08E-05 EGFR EGFR inhibitor 71496458

U-18666A BRD-K22025381-003-01-9 0.252433314 5.53E-05 oxidosqualene cyclase inhibitor 9954082

AEE788 BRD-K40718343-001-02-6 0.254141898 4.57E-05 EGFR, ERBB2, ERBB4, FGFR2, FGFR3, KDR EGFR inhibitor, VEGFR inhibitor 10297043

AZD8931 BRD-K98572433-001-02-9 0.257774492 3.93E-05 EGFR, ERBB2, ERBB3 EGFR inhibitor 11488320

PD-153035 BRD-K26603252-003-04-9 0.261659831 3.72E-05 EGFR, KDR EGFR inhibitor 4705

ARRY-334543 BRD-K46386702-001-02-1 0.266585129 2.08E-05 ERBB2 EGFR inhibitor 42642648

tyrphostin-AG-1478 BRD-K68336408-001-10-9 0.268098717 1.94E-05 EGFR, MAPK14 EGFR inhibitor 2051

GW-583340 BRD-K79930101-300-03-7 0.268877436 1.63E-05 EGFR, ERBB2 EGFR inhibitor 5329480

PD-168393 BRD-K17702546-001-03-2 0.2737306 1.13E-05 EGFR, ERBB2, SRC EGFR inhibitor 4708

AV-412 BRD-K23190681-001-01-1 0.277366498 9.67E-06 EGFR, ERBB2 protein tyrosine kinase inhibitor 11700696

neratinib BRD-K85606544-001-09-1 0.295976493 3.41E-06 EGFR, ERBB2, KDR EGFR inhibitor 9915743

OSI-420 BRD-K73309154-003-02-8 0.351818399 1.18E-08 EGFR EGFR inhibitor 10317566
a  cut-off: -0.2>Spearman´s rho>0.2 and p<0.05
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Table S14: SC-related 43-gene sets with standardized empirical p values. 
 

 
 



   Supplements 

121 
 

Table S15: Spearman's correlation matrix for GSVA scores based on RNA-seq data from TCGA-HNSC 
(n=500).  
  

  
 
 
 
Table S16: Spearman's correlation matrix for GSVA scores of the SC-related 43-gene set and xCell cell 
population( Top5 positive-negative) based on RNA-seq data from TCGA-HNSC (n=500).  
 

 
 
 
 
 
 
 

xCell matrrix SC-score Astrocytes Neurons

SC-score 1 0.567658798 0.289282

Astrocytes 0.567659 1 0.301562

Chondrocytes 0.450066 0.654120268 0.348103

Mesangial.cells 0.317449 0.461368199 0.021335

Fibroblasts 0.313226 0.520162175 0.213045

Pericytes 0.299175 0.346295327 0.186732

CD4+.memory.T-cells -0.27301 -0.190284834 -0.26625

Th1.cells -0.27997 -0.203026153 -0.13716

CD8+.Tcm -0.29878 -0.133087957 -0.36218

CD8+.naive.T-cells -0.30321 -0.162004993 0.061117

pro.B-cells -0.3598 -0.370960348 -0.21797

Top 5 positive-negative correlated cells 

Gene sets Gene set (n) SC-score

HARMONIZOME_SCHWANN_CELLS (SC-related 43-gene set) 43 1

PANGLAO_DB_SCHWANN_CELLS 19 0.66112476

GO_SYMPATHETIC_NERVOUS_SYSTEM_DEVELOPMENT 21 0.62827177

REACTOME_EGR2_AND_SOX10_MEDIATED_INITIATION_OF_SCHWANN_CELL_MYELINATION 29 0.60311872

GO_MYELIN_SHEATH 43 0.55565367

GO_AXONOGENESIS_INVOLVED_IN_INNERVATION 6 0.48016447

GO_PERIPHERAL_NERVOUS_SYSTEM_AXON_REGENERATION 10 0.44812478

MYELINATING_SCHWANN_CELLS (MOUSE) 430 0.44499418

CURATED_TRANSCRIPTS_NOT_IDENTIFIED_PREVIUOSLY_AS_SCHWANN_CELLS (MOUSE) 99 0.42765589

NON_MYELINATING_SCHWANN_CELLS (MOUSE) 535 0.41947732

GO_RESPONSE_TO_NERVE_GROWTH_FACTOR 52 0.36634677

GO_SYMPATHETIC_GANGLION_DEVELOPMENT 9 0.36525755

GO_SCHWANN_CELL_MIGRATION 5 0.31797388

GO_PERIPHERAL_NERVOUS_SYSTEM_NEURON_DIFFERENTIATION 12 0.21466499

NEGATIVE_REGULATION_OF_SCHWANN_CELL_PROLIFERATION 6 0.0483725

GO_PERIPHERAL_NERVOUS_SYSTEM_MYELIN_MAINTENANCE 9 -0.0217303
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Table S17: Crosstab analysis based on the subgroups of SC score in TCGA-HNSC (n=500). 
 

 
 
 
 
 
 
 
 
 

Category Feature n % n % n % p value

Age [years] ≤61 80 47.9% 78 47.0% 86 51.8% 6.40E-01

>61 87 52.1% 88 53.0% 80 48.2%

Gender female 52 31.1% 43 25.9% 38 22.9% 2.00E-01

male 115 68.9% 123 74.1% 128 77.1%

Tobacco yes 129 97.0% 123 96.9% 126 98.4% 8.50E-01

no 4 3.0% 4 3.1% 2 1.6%

Alcohol yes 111 96.5% 104 97.2% 116 97.5% 6.00E-01

no 4 3.5% 3 2.8% 4 3.4%

HPV16 yes 3 1.9% 16 10.2% 34 21.1% 2.33E-06

no 155 98.1% 141 89.8% 127 78.9%

Subsite Hypopharynx 2 1.2% 3 1.8% 5 3.0% 7.39E-05

Larynx 33 19.8% 48 28.9% 30 18.1%

Oral Cavity 121 72.5% 94 56.6% 92 55.4%

Oropharynx 11 6.6% 21 12.7% 39 23.5%

Tumor size cT1-2 62 37.6% 62 39.0% 51 31.9% 3.00E-01

cT3-4 103 62.4% 97 61.0% 109 68.1%

pT1-2 63 40.6% 61 42.4% 52 36.1% 2.00E-01

pT3-4 92 59.4% 83 57.6% 92 63.9%

Lymph nodes metastasis cN0 85 52.1% 84 54.2% 69 43.4% 1.00E-01

cN1-3 78 47.9% 71 45.8% 90 56.6%

pN0 61 43.0% 59 42.4% 50 37.0% 5.90E-02

pN1-3 81 57.0% 70 50.4% 85 63.0%

Pathological grading G1-2 129 79.1% 120 75.0% 110 70.1% 2.00E-01

G3-4 34 20.9% 40 25.0% 47 29.9%

Resection  margin R0 16 10.5% 20 13.6% 21 14.3% 6.80E-01

R1 137 89.5% 127 86.4% 126 85.7%

Angiolymphatic invasion yes 48 38.1% 34 30.9% 38 37.3% 5.50E-02

no 78 61.9% 76 69.1% 64 62.7%

Perineural invasion yes 78 60.0% 43 39.1% 44 40.0% 2.50E-04

no 52 40.0% 67 60.9% 66 60.0%
a  c=clinical, p=pathological
b  significant p values (<0.05) are indicated in italic and bold

SChigh SCmoderate SClow
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Table S18: Somatic mutation frequency of MutSig genes for TCGA-HNSC (n=500). 
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Table S19: Association of the SC score with Hallmark gene sets from MSigDB for TCGA-HNSC (n=333). 



   Supplements 

125 
 

Table S20: Spearman's correlation matrix for SC and PROGENy scores based on RNA-seq data from 
TCGA-HNSC (n=496). 
 

 
 
 
 
Table S21: In silico drug sensitivity screening of GDSC project for SC score (high vs low) in TCGA-HNSC, 
n=333 based on OncoPredict scores. 
 

 
 
 

Drugs mode of action Mean Difference Target p.value
CAMPTOTHECIN topoisomerase inhibitor 0.985707268 TOP1 4.21E-27

CAY10566  selective SCD1 inhibitor 0.368330644 4.76E-23

IRINOTECAN topoisomerase inhibitor 0.831374075 TOP1, TOP1MT 5.9E-23

MK-1775 WEE1 kinase inhibitor 0.761666919 WEE1 1.02E-22

MG-132 proteasome inhibitor -0.437839238 PSMB1 1.35E-22

T0901317 Anti-proliferation_LXR agonist 0.605779548 1.17E-21

SORAFENIB FLT3 inhibitor, KIT inhibitor, PDGFR tyrosine kinase receptor inhibitor 0.694202289 BRAF, DDR2, FGFR1, FLT1, 1.27E-21

RAF inhibitor, RET tyrosine kinase inhibitor, VEGFR inhibitor FLT3, FLT4, KDR, KIT, PDGFRB, RAF1, RET

OLAPARIB PARP inhibitor 0.627382867 PARP1, PARP2 2.06E-21

TENIPOSIDE topoisomerase inhibitor 0.912919677 TOP2A, TOP2B 5.55E-21

TOPOTECAN topoisomerase inhibitor 0.78395068 TOP1, TOP1MT 1.17E-20

VX-702 p38 MAPK inhibitor 0.591708542 MAPK11, MAPK12, MAPK14 1.2E-20

CISPLATIN DNA alkylating agent, DNA synthesis inhibitor 0.673236592 XIAP 1.66E-20

AR-42 HDAC inhibitor 0.603688163 HDAC1 1.73E-20

MN-64 0.629224516 1.77E-20

PEVONEDISTAT nedd activating enzyme inhibitor 0.785435441 NAE1, UBA3 1.93E-20

CAY10603 0.549107748 2.17E-20

GEMCITABINE ribonucleotide reductase inhibitor 0.919461228 CMPK1, RRM1, RRM2, TYMS 1.54E-19

MIRIN 1.024366592 1.64E-19

5-FLUOROURACIL thymidylate synthase inhibitor 0.844684453 DPYD, TYMS 2.33E-19

PEMETREXED dihydrofolate reductase inhibitor, thymidylate synthase inhibitor 0.679806587 ATIC, DHFR, GART, TYMS 2.56E-19

Top20 drugs based on the lowest P-value

Mean Difference   SC low vs SC high

 PROGENy SC score

SC score 1

TGF_ß 0.321409178

Estrogen 0.282957855

WNT 0.190647138

Androgen 0.143443781

Trail 0.126091338

TNFa 0.116487846

p53 0.077227827

EGFR 0.027353423

Hypoxia 0.005628618

MAPK -0.031383779

VEGF -0.044325805

PI3K -0.048508886

NFkB -0.08258224

JAK_STAT -0.088602236
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