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Zusammenfassung

Lebende Zellen sind in der Lage, mechanische Einŕüsse ihrer Umgebung wahrzuneh-
men und auf diese zu reagieren. In der Zellkraftmikroskopie wird die Zughaftung von
Zellen auf elastischen Substraten anhand der Substratverformung sichtbar gemacht,
die durch die Bewegung von eingebetteten Markierungskügelchen gemessen wird. Wer-
den Substrate mit Hilfe der Elastizitätstheorie beschrieben, können wir die Adhäsions-
kräfte berechnen und so unser Verständnis der Zellfunktionen und des Zellverhaltens
vertiefen. In dieser Dissertation kombiniere ich analytische Lösungen mit numerischen
Methoden und Techniken des maschinellen Lernens, um die Vorhersage der Zugspan-
nung in einer Reihe von experimentellen Anwendungen zu verbessern. Ich beschreibe,
wie die normale Zugkraftkomponente in regularisierungsbasierte Fourier-Ansätze ein-
bezogen werden kann, die ich auf experimentelle Daten anwende. Ich vergleiche die
vorherrschenden Strategien zur Kraftrekonstruktion, die direkte Methode und inverse,
regularisierungsbasierte Ansätze, und lege dar, dass letztere präziser und erstere resis-
tenter gegenüber Rauscheffekten sind. Ich demonstriere, wie eine punktkraftbasierte
Rekonstruktion verwendet werden kann, um die Entwicklung des Kräftegleichgewichts
als Reaktion auf das Ziehen mit Mikronadeln zu untersuchen, wobei ein Übergang von
einer dipolaren zu einer monopolaren Kraftanordnung zu erkennen ist. Schließlich lege
ich da, wie ein konditionales, invertierbares neuronales Netzwerk nicht nur adhäsive
Bereiche lokalisierter rekonstruiert, sondern auch räumliche Korrelationen und Varia-
tionen in der Zuverlässigkeit von Traktionsrekonstruktionen aufzeigt.
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Abstract

Living cells possess capabilities to detect and respond to mechanical features of their
surroundings. In traction force microscopy, the traction of cells on an elastic substrate
is made visible by observing substrate deformation as measured by the movement of
embedded marker beads. Describing the substrates by means of elasticity theory,
we can calculate the adhesive forces, improving our understanding of cellular func-
tion and behavior. In this dissertation, I combine analytical solutions with numerical
methods and machine learning techniques to improve traction prediction in a range
of experimental applications. I describe how to include the normal traction compo-
nent in regularization-based Fourier approaches, which I apply to experimental data. I
compare the dominant strategies for traction reconstruction, the direct method and in-
verse, regularization-based approaches and őnd, that the latter are more precise while
the former is more stress resilient to noise. I őnd that a point-force based reconstruc-
tion can be used to study the force balance evolution in response to microneedle pulling
showing a transition from a dipolar into a monopolar force arrangement. Finally, I
show how a conditional invertible neural network not only reconstructs adhesive ar-
eas more localized, but also reveals spatial correlations and variations in reliability of
traction reconstructions.
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Chapter 1

Introduction

The ability to create setups where the transfer of energy, material and information
occurs in a regulated and thermal equilibrium evading fashion is one of the principal
aspects of live [1]. Biological research has revealed a wide range of chemical aspects
to these processes. However, as cells exist in a universe governed by the principles of
physics, the mechanical aspects of cellular interactions with their surrounding cannot
be neglected. Together with external applied forces, cells generate forces to modulate
their various actions, which not only include adhesion and migration but also differ-
entiation and immune functions [2, 3]. Research in the last decades has even revealed
that mechanical forces may affect biochemical activity directly, a process known as
mechanotransduction [4].

Given the substantial role of mechanics in understanding cellular behavior, the
ability to observe cell forces has become an essential ingredient in the research of
biological systems. Atomic force microscopy (AFM) [5], bio-membrane force probes
[6], magnetic and optical tweezers [7] and traction force microscopy (TFM) [8] are
only some of the techniques devised.

One of the earliest attempts to attribute cellular forces with an observable quantity
was made by Harris et al. [9]: Using a thin silicon rubber as a substrate, they observed
őbroblasts to create elastic wrinkles in the silicon layer when crawling. This showed
that the cells had used the substrate-cell interactions to exchange traction forces
in order to propel themselves forward. Some estimates could be made in terms of
traction magnitude by comparing the winkling to the one caused by a microneedle.
Unfortunately, this process overall could only be used as a qualitative measure, as the
surface wrinkling is a nonlinear and complex process, making it difficult to accurately
estimate forces.

A more quantitative method, traction force microscopy (TFM) was devised by
Dembo and Wang [8, 10] to measure the forces exerted by őbroblast cells on their
substrate during cell migration. Using a substrate of polyacrylamide gel with embed-
ded ŕuorescent beads, they could observe the deformation of the substrate in response
to cellular forces during the locomotion of őbroblast. By segmenting the cell into a
mesh of bi-linear shape functions, they were able to obtain a traction map of the cell.
This technique forms the basis of traction force microscopy (TFM) in the modern
sense. Since then, while the basic technique has remained constant, a variety of more
advanced variations of their principle technique have been devised, each improving
upon different aspects of the overall procedure.

Early on, improvements were made focusing on variations in the way the deforma-
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tion őeld is modeled: Schwarz et al. [11] used vinculin staining to detect individual
adhesion sites, modeled them as point forces and used the far őeld deformation to
assign a force vector to each of them. Butler et al. [12] introduced a Fourier space
description to predict traction distribution in more detail, which has since become
the standard approach for reconstructing traction forces on planar substrates. Other
efforts focused on including more information into the procedure by looking into trac-
tion forces together with modeling intracellular force generation [13] or focused on
how exactly to select a good reconstruction [14]. Finally, it was explored how the
overall setup could be made more ŕexible by the investigating inclusion of normal
force [15ś17], thin substrates [18] and the setups with non-planar interfaces between
the cell and a őbrous environment [19ś22]. Most recently, improvements have been
made using data driven approaches for cell force reconstruction [23ś26].

Nowadays, the term traction force microscopy describes not a single method, but
encompasses a range of techniques. All of these have certain things in common: They
observe deformations in a mechanically well understood material, the substrate, in
mechanical contact with the to be observed cell or biological material by using non-
invasive optical imaging. In most cases, ŕuorescent markers are employed to improve
deformation registration abilities [3].

In this dissertation, I will focus on how to further reőne and link up some of the
approaches in TFM mentioned. First, I will use some analytical calculations that
will give us a deep understanding about the force-deformation relationship in elas-
tic substrates. Using this information, I will show how the present techniques for
TFM that also consider a normal force component can be described more elegantly
when compared to previous approaches. I will then move on to show how these ex-
tended techniques can be deployed in practice to study clathrin-mediated endocytosis
of nanoparticles at the cellular ventral side.

After that, I will introduce the direct method for TFM. This technique involves
calculating the strain and stress tensors directly from the displacement data and in
principle is very ŕexible with respect to the underlying substrate geometry and its
elastic properties. I then compare it to the normal-force including technique intro-
duced in the prior chapter. Through this comparison, I aim to establish a relationship
between these two techniques and analyze their respective capabilities in handling
displacement data noise. By exploring the performance of these techniques and their
response to varying levels of noise, we can gain insights into their strengths and limi-
tations and are able to compare the performance of both traditional planar methods
and the methods commonly used in three-dimensional variants of TFM.

In the next part of my study, I will highlight some of the fundamental limitations
Fourier-based methods are facing when cells are put under the inŕuence of external
forces. I will present a variation of the point force method that avoids many of
the difficulties faced in the original approach by making use of the extensive insight
previously gained into the force-deformation relation in substrates. By combining
this technique with microneedle shearing at the apical cell surface, I will then use this
technique to quantify intracellular force transmission. Together with my experimental
collaborators, I will then study the response of cells to known shear forces exerted with
a calibrated microneedle.

Finally, I investigate recent neural-network based techniques and describe a new
fully probabilistic approach, trained on simulated data. This will not only improve
upon the preexisting analytical methods for traction force reconstruction, but also
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investigate the variability of the obtained solution revealing insight into the effects of
inhomogeneities and noise on the reconstruction.

1.1 Force generation in biological cells

1.1.1 Cytoskeletal structures

7 nm

G-Actin

Protofilament
Tubulin

dimer

25 nm 8-12 nm

+- +-

Actin filamentsMicrotubules Intermediate filamentsA

B

Figure 1.1: The three different components of the cytoskeleton. (A) Schematic drawing of
to the distribution of the three different cytoskeleton networks within the cell. The micro-
tubules (green) form rigid structures originating in the centromere (yellow) which is located
close to the nucleus. The actin őlaments form both linear bundles (stress őbers) as well
as networking structures concentrated in the nuclear cortex. Intermediate őlaments may
serve different roles, but some types span the cytoplasm, giving the entire cell mechanical
stiffness [27]. (B) At the molecular level, microtubules are hollow cylinders formed from
tubulin dimers. Actin őlaments display a helical shape formed from actin subunits. Both
microtubules and actin őlaments are polar and formed from globular subunits. In contrast,
intermediate őlaments are non-polar and are formed from őlamentous subunits. Ð A is
replicated from [27], B is modeled after [28] and [29] with modiőcations.

Cells must be able to achieve a wide range of mechanical objectives. They must
be able to obtain a desired shape and put up a stiff response against indentation and
maintain their internal structure, but they must also be able to change their shape
and relocate themselves and their internal structure if needed. In order to do so,
cells employ multiple active and continuously reconőguring protein őlament networks.
These are collectively known as the cytoskeleton [28]. There are three main types of
protein őlaments in the cytoskeleton: Microtubules, actin őlaments, and intermediate
őlaments. Each of them has unique mechanical and functional properties that allow
it to carry out speciőc tasks within the cell. It is the combination of the different
őlament types that enables the cell to achieve their speciőc objectives. In Fig 1.1, I
compare the three őlament structures.

All three network types are polymers that can be described by the worm-like chain
model and as such their mechanical properties can be described by their persistence
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length lp [30]. This length describes the correlation between the tangential vectors,
t(s1) and t(s2), at two different points, s1 and s2, on the polymer parameterized by
the polymer’s arc length [31]:

< t(s2) · t(s1) >= exp

(

−|s2 − s1|
lp

)

. (1.1)

The persistence length determines the length scale in which the polymer appears more
or less rigid.

Microtubules

Microtubules form by a spiraling polymerization of tubulin dimers as seen in Fig 1.1,
left column. This creates a pipe shaped structure with a diameter of 25 nm and a
persistence length of over 1 mm. This makes them the largest and strongest of the
three őlaments. As such, they play a primary role in maintaining the cells shape and
internal organization. However, they are also involved in the process of cell division
and intracellular transport processes.

Tubulin dimers form from two monomers known as α- and β-tubulin. As all dimers
are incorporated with the same orientation, the two ends of the microtubule differ, the
α-tubulin faces towards the so-called minus-end, the β-tubulin towards the so called
plus-end. The microtubule constantly grows and shrinks by polymerization and de-
polymerization of dimers at both ends of the polymer tube [28]. The net addition rate
is controlled by guanosine triphosphate (GTP) and guanosine diphosphate (GDP),
both of which can bind to β-tubulin. The energy rich GTP facilitates the incorpora-
tion of new monomers into the microtubule, while GDP increases the unbinding rate.
Dimers typically bind only if they carry GTP, however, this quickly hydrolyzes into
GDP upon incorporation into the microtubule. This creates a dynamical instability:
As long as the ratio of GTP-carrying dimers is high, microtubule growth outpaces the
hydrolysis front. However, if the dimer addition rate decreases due to GTP depletion
in the dimer pool, the hydrolysis front may reach the end of the microtubule and the
őlament subsequently starts to break up. As addition of dimers at the plus end is
generally faster than on the minus end, the critical concentration is lower for the plus
end than for the minus end. More details can be found in literature [32].

In most cases, only the plus end of a microtubule is free and grows. Its minus end
is bounded to a protein complex known as microtubule-organizing center (MTOC).
This binding prevents the microtubule disassembly at the minus end. Animal cells
typically have one single MTOC known as the centrosome located in proximity of
their nucleus from which microtubules grow radially in all directions ascertaining a
certain cell shape. Other kinds of MTOCs are also known. A detailed overview over
microtubule organization can be found in literature [33].

Microtubules provide a structure for accessory proteins to attach to. For example,
motor proteins like kinesin can perform locomotion along microtubules. By doing so,
they actively transport molecules along the microtubules which thus serve as track
ways for intracellular transport. Other accessory proteins cross-link between micro-
tubules as well as create relative traction. More details on accessory proteins can be
found in literature [34].
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Actin filaments

Actin őlaments, also known as microőlaments, are polar actin polymers build in a
right-handed double-helix structure, as show in Fig 1.1, center column. This form of
actin is also known as őlamentous actin (F-actin). They have a diameter of 8 nm and
a persistence length in the range of 10 µm [35]. This makes them the smallest and
most ŕexible kind of cytoskeleton őlaments. As such, they are primarily involved in
cell motility, but they do also provide mechanical support.

The actin monomer, known as globular actin (G-actin), is non-symmetric, resulting
in the actin őlaments having a so-called barbed (+) and pointed (-) ends. Monomers
predominantly attach to the barbed end [28]. Actin őlament growth is controlled by
adenosine triphosphate (ATP) concentration with monomers typically carrying ATP
which enhances binding affinity but hydrolyses into to adenosine diphosphate (ADP)
upon integration of the actin monomer into the polymer chain. ADP carrying actin
monomers show a higher unbinding rate [36]. Under normal physiological conditions
the actin concentration is such that the unbinding rate is lower than the binding rate
on the barbed end, with the reverse being true at the pointed end. This results in a net
growth at the barbed and a net shrinkage at the pointed end. This results in a process
known as treadmilling and results in the őlament’s center of mass traversing the cell,
without much movement of the individual monomers, while the overall length of the
őlament at any given time remains constant. This process makes the actin őlament
structure highly adaptive without compromising rigidity or plasticity at the same time
[37].

Actin őlaments are dispersed throughout the cell, but are most highly concen-
trated just beneath the cell membrane. Actin őlaments can cluster together to form a
variety of either one-dimensional linear bundles, two-dimensional networks or three-
dimensional hydrogels [28]. Actin bundles can further be classiőed into parallel and
antiparallel bundles. A typical example for actin bundles are stress őbers (SF). These
structures comprise between 10 and 30 actin őlaments arranged in an antiparallel
fashion, crosslinked by both passive crosslinkers like α-actinin and active myosin II
crosslinkers. This allows stress őbers to generate contractile forces between anchor-
ing points. The mechanism behind myosin II crosslinkers will be explained in the
subsequent section. Filopodia are a typical example for parallel actin bundles. They
are dense spike-like protrusions mostly located at the leading edge of the cell, the
edge facing the direction the cell is moving towards to, and consist of actin őlaments
connected by fascin and formin. Filopodia play an important role in migrating cells
[38], but they can also appear during the spreading of thrombocytes [39].

Network-like structures can be classiőed into cross-linked networks like the actin
cortex and branched networks like the lamellipodium. The actin cortex is connected
to the inner cell membrane by membrane-anchoring proteins. Similar to stress őbers,
it contains passive and active cross-linking proteins, such as α-actinin and myosin II.
This particular design enables the cell to tightly control its cell shape in order to resist
mechanical disturbances and change shape during cell migration and division. The
branched actin network known as the lamellipodium is located at the leading edge of
the cell and uses actin polymerization at the leaves of the actin network to propel the
cell envelope forward [28].
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Intermediate filaments

Intermediate őlaments (IF) have properties in between those of actin őlaments and
microtubules. They are a diverse group, made up of different kinds of őlament forming
proteins. IF include őlaments made of various keratins, neuroőlaments and vimentin-
like őlaments. IF often show unique mechanical properties, which include high tensile
strength and resistance to compression. IF are built up of α helical monomers that
group into coiled coil dimers. These dimers then stack together slightly asymmetrically
to form a tetramer. Eight of these tetramers form the threads of a single intermediate
őlament building block. The distribution and structure of an IF is presented in Fig 1.1,
right column. In contrast to the other cytoskeleton components, they do not undergo
treadmilling or dynamic instability and hence show much less dynamic reconőguration,
making them a more passive component of the cytoskeleton with slower dynamics [40].

1.1.2 The actomyosin complex

Cell-generated forces are largely driven by the interaction between the actin őlaments
and myosin motors, a structure known collectively as the actomyosin complex [41].

Myosin motors are formed by a protein known as myosin II, which is shown in
Fig 1.2. A single myosin II molecule is composed of two heavy chains, around 2000
amino acids long domains. These are intertwined to form a coiled-coil of two connected
α-helices. Each heavy chain has one open end, known as C-terminus and one other
end where it is connected to two light chains (hence four light chains in total). Each
light chain ends in a globular head domain, known as the motor head domain. The
end where the motor head is located is also known as the N-terminus [28].

Myosin motors can bind to actin őlaments with their motor heads and can generate
forces through a sequence of conformational changes known as the cross-bridging cycle.
This process involves the binding of an ATP to the myosin motor head domain, which
triggers changes in the conformation of the motor head. These changes cause the motor
head to dissociate from the actin őlament and changes the relative angle between
the motor head and the rest of the myosin molecule. The subsequent hydrolysis
of ATP to ADP and phosphate causes a reassociation between the motor head and
the actin őlament. The subsequent release of both ADP and phosphate provokes a
conformational change during which the myosin is regaining its original conőguration.
This is known as power stroke and releases mechanical energy leading to the generation
of force and movement along the actin őlament. The whole process is visualized in
Fig 1.2.

1.1.3 Cell adhesions

In normal biological circumstances, cells anchor themselves in their environment using
the so-called extracellular matrix (ECM) or by linking themselves to neighboring cells
[28]. The ECM is mainly composed of two classes of macromolecules, proteoglycans
and őbrous proteins. The dominant őbrous protein is collagen which may constitute
up to 30% of the total protein mass of a multicellular animal. Other őbrous proteins
include elastins, őbronectins, and laminins. Together, they are the main structural
elements, providing tensile strength, regulating cell adhesion, and directing tissue
development. In contrast, proteoglycans őll most of the extracellular space within the
tissue in the form of a hydrated gel and show a wide variety of hydration, binding,
and force-resistance properties [44]. The ECM is primarily produced and maintained
by őbroblasts, the most common cell type found in connective tissue [28]. Physical
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Figure 1.2: Structure and function of non-muscle myosin II (NM II). (A) Structure of
NM II with its subunit and domain organization. NM II consists of two heavy chains that
form a dimer by interacting with each other through α-helical coiled-coil rod domains. The
globular head domain contains actin-binding regions and enzymatic motor domains. The
essential light chains (ELCs) and regulatory light chains (RLCs) connect the head and rod
domains. Together they form the S-1 fragment. In the absence of RLC phosphorylation, NM
II adopts a compact, ring-like form (10S) through head-to-tail interactions, which is incapable
of associating with other NM II dimers. However, when the RLCs are phosphorylated, the
10S structure unfolds, transforming into an assembly-competent form (6S). (B) NM II bind
to actin őlaments using their motor domain and link up using their motor domain. By means
of the cross-bridging cycle they can cause a confocal change to the actin conőguration. (C)
Visualization of the cross-bridging cycle. The dissolution of ATP into ADP and phosphate
cause the motor head to move forward along the actin őlament. Ð A and B are replicated
from [41], C is adapted and modiőed from [42].

connections between the ECM and cells are known as cell-matrix connection. Both
actin őlaments as well as intermediate őlaments can be linked to the matrix in this
fashion. At least four different types of these have been established in őbroblasts:
Focal complexes, focal adhesions, őbrillar adhesions, and 3D-matrix adhesions [43].
These structures differ in the protein complexes they consist of as visualized in Fig 1.3.

In experiments, cells are often cultivated on top of 2D ECM-coated substrates.



8 Quantifying contractility in cells using traction force microscopy

Figure 1.3: Schematic drawing of the different kinds of cell adhesion, focal adhesions,
őbrillar adhesions, and 3D-matrix adhesions. All three types of adhesions recruit different
protein components which causes each of them to show different kinds of behavior. Ð
Adapted and modiőed from [43]

When őbroblasts are observed in this kind of setup the őrst kind of adhesive structure
observed starting from the leading edge, close to the lamellipodium are the focal com-
plexes. These are small dot-like adhesions that provide initial attachment at the newly
covered area and have a typical diameter of around 100 nm. Focal complexes may sta-
bilize and subsequently turn into focal adhesions. This kind of cell-matrix adhesion
has a typical contact area of a few square micrometers and are usually connected to
stress őbers which causes them to obtain an elongated shape. Physiologically, they
have been observed in blood vessels next to high ŕuid shear stresses. Focal adhesion
may further develop into őbrillar adhesions which are commonly found near the cell
center [45]. Fibroblasts in physiological 3D setups also show the 4th type of cell-
matrix adhesion, known as 3D-matrix adhesions that display enhanced cell biological
activities and a reduced integrin use [46].

Cells can also connect directly to neighboring cells using intercellular connections
without the need for ECM mediation [43]. Anchoring cell-cell junctions that link to
actin őlaments are known as adherence junctions, while those that have intermediate
őlaments as their intercellular cytoskeletal attachment are known as desmosome. A
detailed description can be found e.g., in Alberts et al. [28].

1.2 Quantifying contractility in cells using traction

force microscopy

1.2.1 Traction force microscopy

Traction force microscopy (TFM) represents the most widely used technique for mea-
suring cell forces [47]. One of the principal strengths of this method is its applicability
over multiple length scales: The method is able to generate continuous qualitative
traction maps that can be used to describe forces from the low micrometer regime of
individual cells (e.g. [8]) up to the range of tissue monolayers (e.g. [48]). Another
advantage is, that it requires only minor modiőcations to the growth of the existing
tissue culture.

Like mentioned above, cells adhere to sufficiently prepared hydrogel substrate in
a fashion that mimics natural cell adhesion to the ECM or neighboring cells. Typical
substrate materials used are polyacrylamide (PAA) or polydimethylsiloxane (PDMS),
which can be tuned to obtain for a wide range of stiffness. TFM commonly relies on
ŕuorescent beads, embedded during preparation or attached to the substrates surface.
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Figure 1.4: Main steps in TFM. (A) The reconstruction of cell forces is commonly separated
into two individual tasks. In a őrst step, an image registration algorithm is used to track the
movement of the different ŕuorescent beads and reconstruct a deformation őeld. Then, using
methods from continuum mechanics, the deformation őeld is used to reconstruct a traction
őeld. (B) Overlay of the ŕuorescent images showing bead conőgurations in the relaxed
and loaded state: Red describes the reference conőguration, blue describes the deformation
vectors. (C) reconstructed deformation őeld using a Kanade-Lucas-Tomasi (KLT) optical
ŕow algorithm (D) Reconstructed traction őeld using FTTC. Ð Experimental data presented
in manuscript 4.

These then serve as őducial markers for optical tracking in space and time [49]. A
TFM experiment typically consists of at least two distinct image acquisition phases:
During the őrst phase, the bead conőguration is measured in a loaded state, when the
cell is exerting contractile tension onto the substrate material. This phase may consist
of a single recording or a sequence of recordings to compare the contractility of the
cell at different moments (e.g. [50]). Then the cells attachment to the substrate needs
to be severed to also observe the substrate in its stress-free reference conőguration.
Usually, the cell is removed from the substrate by enzymatic means. In particular,
trypsin is commonly employed [51]. More recently a light induced release mechanism
has been introduced that enables a selective detachment of cell using controlled doses
of UV light. This technique, which I personally contributed to, is known as local UV
illumination traction force microscopy (LUVI-TFM) and is described in manuscript 2.

Care must be taken to ensure that not only the cell itself but also the neighboring
substrate area is in the őeld of view during the őrst step of image acquisition, such
that the deformation decays to zero when approaching the image boundary [52]. This
is because stress calculations close to the image edge become less reliable and may
result in artifacts, but is also highly beneőcial in properly aligning the two images in
subsequent steps.

After cell detachment a second recording is made that then describes the stress-free
reference conőguration. The reconstruction of traction forces generally is conducted
as a sequence of two subsequent steps as visualized in Fig 1.4: In a őrst step, the bead
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Figure 1.5: Different dimensional variants in TFM (A) Two-dimensional TFM considers
traction forces as a purely planar problem only focusing on tangential tractions and defor-
mations within the substrate. (B) 2.5D TFM maintains the planar setup of the cell sitting
on top of a substrate but extends the image registration and force reconstruction by a third
dimension considering the three-dimensional force generation of cells. (C) 3D TFM abandons
the planar substrate entirely and observes the forces acting on cells embedded in a 3D envi-
ronment closely mimicking the ECM. (D) Micro-sphere TFM observes the forces on spherical
force sensors making the method more suitable for organoid and in vivo observations.

conőguration in the reference conőguration is compared to the one in the loaded state
and by means of image processing techniques and a deformation őeld is obtained. I will
describe the different approaches for this in section 1.2.3. Then, in a second step, the
actual traction őeld is reconstructed. It is this second task on which I predominantly
focused in this work and a brief introduction is given in 1.2.4.

A wide range of variations has been introduced. One common variation is to
selectively designate adhesive and non-adhesive regions on the substrate using micro-
patterning techniques to study cellular response to speciőc anchoring modes onto the
substrate. Examples of this approach can be found in the works of Pasqualini et
al. [53] who applied a PDMS micro-contact stamp in order to selectively deposit
őbronectin onto a PAA substrate. Balaban et al. [54] used lithographic approaches to
create not only selectively coated PDMS substrates, but also to create relief proőles
at the surface.

Another variation is reference-free TFM. This approach introduced by Bergert et
al. [55] bypasses the acquisition of the reference image using nanodrip printing of
quantum dots into confocal monocrystalline arrays on the surface of PDMS substrate.
These substitute the ŕuorescent beads as individually identiőable light sources. Since
the quantum dots were originally printed in form of a highly structured lattice, linking
the points up with a mesh and relaxing it back to its highly symmetric structure reveals
the deformation at each sampling point from which tractions can be derived.

Finally, some approaches combine the force reconstruction directly with a mod-
elling of the force generation framework. These approaches are known as model-based
TFM. One common variant, used in TFM observations of cell monolayers is monolayer-
stress microscopy [56ś59]. This technique models the cell monolayer as a thin elastic
sheet and jointly solves the equations for the in-sheet stresses and the traction forces.
Similar techniques have also been used for single cell observations [13].

Originally, TFM methods created purely two-dimensional reconstructions of in-
plane traction őelds of cells by neglecting normal deformations and traction compo-
nents [10, 11]. This approach is referred to as 2D TFM and visualized in Fig 1.5 A.
However, these normal forces turn out to be relevant in a variety of biological pro-
cesses, such as tissue migration and tumor invasion [60]. For example, it could be
shown that normal traction is more likely to occur below distal and proximal focal ad-
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hesions [61]. To conduct these kinds of observations, a technique has been developed
that maintains the planar geometry but includes the full three-dimensional interaction
at the interface. This technique is known as 2.5D TFM [20, 62] and is presented in
Fig 1.5 B. We further discuss two techniques used for 2.5D TFM in chapter 3 and 4
of this dissertation.

Techniques that go beyond planar substrates have also been devised. Since in vivo
cells are usually navigating and adhering in three-dimensional ECM environments,
these methods aim to reconstruct force applied by cells onto őbrous matrices that
surround the cell. Techniques that deploy these kinds of 3D substrates are shown in
Fig 1.5 C and are referred to as 3D TFM [19ś22]. We study one technique used in
3D TFM, the direct method, in chapter 4 of this dissertation. 3D TFM requires a 3D
image volume in order to be able to reconstruct the full stress tensor. This is often
challenging given the anisotropic point spread functions of standard microscopes and
the time required to acquire image stacks.

Recently, another three-dimensional variant has been developed: Rather than em-
bedding the cells in a hydrogel environment, the setup is inverted by using elastic
beads deformed by cell traction [63ś65]. We scratch the layout of these techniques in
Fig 1.5 D.

1.2.2 Imaging techniques

TFM generally leverages a multitude of imaging techniques commonly used in micro-
biology [66] to track beads within the substrate.

Underlying to all microphotographic techniques for TFM is the concept of ŕuo-
rescence microscopy. Rather than observing light that is emitted by an external light
source, that is then subsequently scattered by an observed object, this microscopic
technique uses ŕuorophores, which can absorb energy when being irradiated by an
external light source and subsequently emit light with a characteristic frequency [66].
By selectively observing only the emitted frequency, a good resolution and contrast
ratio can be achieved. Fluorophores occur naturally in some species and a range of
ŕuorescent dyes with different emission frequencies is available. Many ŕuorescence
microscopes are capable of selectively imaging multiple frequency ranges (channels)
simultaneously, enabling the concurrent observation not only of the TFM-microbeads,
but also ŕuorescently stained cellular structures. Fluorophores may be attached to
antibodies, which can then bind to a multitude of structures allowing the highlighting
of speciőc structures of cells or organisms [55].

Confocal laser scanning microscopy (CLSM) uses a laser as a high intensity, corre-
lated light source. The laser radiation is redirected using a dichroic mirror and then
passed through a focusing lens, causing the light to only reach a signiőcant intensity
in a plane separated from the focusing lens by its focal length. By ensuring that the
ŕuorophores are only stimulated in this high intensity area, a selected slice can be
imaged. By variations in the distance of the probe and the focusing lens a three-
dimensional intensity map can be obtained. This is essential for 3D and most 2.5D
TFM techniques.

Light sheet ŕuorescence microscopy (LSFM) provides an alternative to CLSM to
obtain three-dimensional intensity maps: In this method the laser light source is
arranged orthogonal to the imaging setup next to the probe and a cylindrical lens
is used to focus light into a thin sheet such that only a selective plane within the
probe is illuminated. This selective excitation minimizes the loss of ŕuorophores due
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to excessive irradiation (ŕuorophore bleaching) and phototoxic effects.
When PDMS substrates are used, Total Internal Reŕection Fluorescence (TIRF)

microscopy [67, 68] can avoid illuminating the cell entirely: Here, the light source
is placed below the sample. Using a lens, that is connected to the substrate basin
via a őlm of immersion oil, the light is refracted in such a way, that it enters the
substrate basin in an almost vertical angle. Because the lens, the immersion oil, the
glass basin and the PDMS substrate all show a similar refractive index, the light
is passing through them with only minor refraction and the ŕuorescent beads get
stimulated. However, due to the signiőcant change in the refractive index between
substrate (n ≈ 1.49) and the cell (n ≈ 1.38) or its water-based medium (n ≈ 1.33),
internal reŕection occurs preventing the excitation light to damage the cell.

To increase spatial resolution Stimulated Emission Depletion (STED) microscopy
can be used [69, 70]. This technique selectively images individual spots in the image
sequentially and uses a donut-shaped depletion beam to suppress ŕuorescence emission
from the outer regions of the excitation spot, enabling the visualization of nanoscale
structures beyond the diffraction limit.

Recently, other super-resolution techniques like Structured Illumination Microsco-
py (SIM) [71, 72] and functional-based imaging [73] have been proposed as well. On
PDMS substrates SIM has been combined with TIRF [74] bundling the beneőts of
both techniques for 2D TFM.

Astigmatic TFM [75] uses TIRF-SIM combined with a non-circular point-spread
function. This technique allows the vertical displacement to be inferred from a single
imaging plane thus extending the beneőts of TIRF-SIM-TFM to 2.5D TFM tech-
niques.

1.2.3 Image registration techniques

The őrst step in reconstruction is image registration or extracting a deformation őeld
from the change in bead distribution. Microscopic data typically consists of two
intensity maps IR and ID where high intensity is attributed to the presence of beads.
The őrst image IR describes the stress-free or reference situation while the second
ID describes the deformed or loaded setup. The task is now to őnd a vector őeld
u describing the changes that occurred between the to images. Due to limitations
in microscopic observations, beads may become blurred or moving out of the őeld
of view during deformation. This poses additional challenges to the reconstruction
and is a source of errors that need to be accounted for. The selection of technique
for this task depends on the typical distance of beads when observed. In the case of
low bead density, tracing should be conducted on the level of individual beads as it is
very challenging to recognize the relative displacement of neighboring beads using this
technique. The most straight-forward approach for low pixel resolutions is particle
tracking velocimetry. This technique is particularly common in 3D approaches due to
the large bead spacing as a result of three-dimensional distribution of beads [76]. It
works by detecting the position of individually beads in the intensity map and then
matching up individual beads detected in the force free and loaded conőguration and
calculate the difference in position [77]. However, optical-ŕow based methods [78]
provide an alternative to particle tracking velocimetry, as they often have a lower
number of relevant parameters and feature a signiőcant reduction in computation
costs, making them less error-prone, easier to use and more efficient in production
[49].
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up

Figure 1.6: Concept of correlation tracking. Rather than tracing the displacement of beads
individually, a small subset, the interrogation patch (red shaded square), of the stress-free
image (blue circles) is translated until a good correlation with the loaded situation (green
circles) is found. The translation vector up corresponds to the average deformation in the
interrogation patch. By repeating the process with different interrogation patches a spatial
resolved displacement vector őeld, the deformation őeld, is found.

When bead concentration is sufficiently high the correlation in displacement be-
tween neighboring beads should be considered. In this case, one can greatly improve
deformation őeld construction by observing the collective motion of beads rather than
the individual one with a decrease in spatial resolution, as shown in Fig 1.6. The dom-
inant method used for TFM in this case (see [52]) is correlation tracking, which is also
known as particle image velocimetry (PIV) [79ś81], digital image correlation (DIV)
[82] or digital volume correlation (DVC) [83ś85].

Instead of calculating the deformations with respect to the reference frame in a
single step, in time series we can also use an iterative stepping process where we
őnd the deformation between two succeeding images and accumulate the individual
deformation steps between the different frames [50].

Correlation tracking

Correlation tracking starts by covering both the traction-free or relaxed as well as
the loaded or deformed bead image by several őxed-size patches. The intensity őeld
in each patch is labeled R and D and patches have a speciőc window size wR and
wD respectively. Westerweel [80] suggested selecting wR equal or larger than four
times the typical displacement of features. wD can be chosen equal in size to wR,
may be chosen large which allows features to be found in a larger radius. In any
case wD must be chosen sufficiently large to be able to predict the largest deformation
observable. Patches can be chosen in an overlapping fashion and it has been suggested
that choosing an overlap of 50% optimally compromises between over and under-őtting
of information [86, 87].

For each patch a bulk deformation is then determined with the help of the cross-
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correlation function C(r, s), which is given by

C(r, s) =
1

w2
R

·
wR∑

i=1

wR∑

j=1

(R(i, j)− R̄)(D(r + i, s+ j)− D̄). (1.2)

Here R̄ and D̄ are the average value of the respective őelds in the patch and r and s
are discrete indices corresponding to the tested displacement vector u = (r, s)T when
measured in pixel units. If the beads are very unevenly distributed, the correlation
has to be stabilized by dividing C(r, s) with the standard deviations of both R and
D respectively [88]. If both images are segmented into patches of the same size w =
wR = wD, the cross-correlation function can be computed efficiently using the Fast
Fourier Transform [79, 88, 89]. In order to improve the granularity of the displacement
reconstruction, a Gaussian őt is employed surrounding the peak value [90]. The sub-
pixel accuracy displacement vector is now given by:

ux = r̂ +
lnC(r̂ − 1, ŝ)− lnC(r̂ + 1, ŝ)

lnC(r̂ − 1, ŝ)− 4 lnC(r̂, ŝ) + 2 lnC(r̂ + 1, ŝ)

uy = ŝ+
lnC(r̂, ŝ− 1)− lnC(r̂, ŝ+ 1)

lnC(r̂, ŝ− 1)− 4 lnC(r̂, ŝ) + 2 lnC(r̂, ŝ+ 1)

(1.3)

Where r̂ and ŝ are those values for r and s that maximize the correlation function.
Correlation calculation in 2.5D and 3D follows a similar pattern save for the extra
dimension.

In some regions, e.g. those with low intensity difference between the bead signal
and background noise or along the boundaries of the image, the algorithm will produce
spurious vectors. Classiőcation and substitution techniques can be used to detect and
subsequently replace these spurious vectors. Vectors with high probabilistic ambiguity
are removed by limiting the minimally accepted signal-to-noise ratio in the correlation
function [91]. If the correlation shows two distinct peaks and the ratio between the
highest and second highest peak is below a certain threshold, the vector is found
unreliable and removed from the output. General outliers are removed by a so-called
normalized median test [92]. Here, for each sampling patch, whose displacement
vector we label u0, we calculate the median um of the displacement vectors ui for
each of the 8 adjacent patches cells: um = median(ui|i = 1, . . . , 9). We then compare
the displacement residual of the interrogated patch r0 = |u0 − um| to the median
residual of the adjacent patches rm = median(ri = |u0 − um||i = 1, . . . , 8). If now
the normalized residual r0/rm exceeds a certain threshold, the interrogated patch is
considered an outlier and its displacement vector is substituted by the mean of its
neighbors.

By assigning the deformation of each patch to the center coordinate of each patch,
the correlation tracking yields the deformation őeld of the material in a rectangular
grid sampled representation. An efficient implementation for 2D TFM including the
two classiőcation and substitution techniques is implemented in the OpenPIV software
utility [93]. This implementation both in an adapted version of its original form as well
as a modiőcation to extend it to 2.5D was used for correlation-based image registration
in this work.

In the case of large deformations, iterative procedures can be used that őrst use
a large window size to calculate macro-scale displacement u(0) and then map the ref-
erence conőguration to a slightly deformed image I

′

R(x, y) = IR(x + u
(0)
x , y + u

(0)
y )
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and repeat the calculation with a smaller window size until a sufficient resolution is
reached. The full deformation can be found by accumulating the individual deforma-
tions from all iterations [85].

Optical flow algorithm

The Optical ŕow algorithm [78, 94] was originally developed to track continuous ŕow
őelds, but may also be used to reconstruct bead displacement őelds [49]. The following
description is given for the 2D scenario but can be trivially extend to the 2.5D and
3D case if needed. In a őrst step, trackable features (beads) are located in an image’s
intensity őeld using a Shi-Tomasi corner detection algorithm [95]. We őrst deőne a
sum of squared differences (SSD) for a given point (i, j) which detects the level of
change observed in an interrogation window under an image drift:

SSD(x, y) =
b∑

i,j=1

(I(i+ x, j + y)− I(i, j))2 (1.4)

If we assume both drift parameters x and y to be small, we can use a Taylor expansion
to őnd that

SSD(x, y) ≈
b∑

i,j=1

(I(i, j) + ∂xI(i, j)x+ ∂yI(i, j)y − I(i, j))2

=
(
x y

)
·A ·

(
x
y

)

,

(1.5)

where we identiőed the structure tensor

A =
b∑

i,j=1

(
(∂xI)

2 (∂xI)(∂yI)
(∂xI)(∂yI) (∂yI)

2

)

. (1.6)

An easy to track feature is determined by a large SSD value in all directions, meaning
for any choice of (x, y). The Shi-Tomasi [95] criterion for this is R(i, j) = min(λ1, λ2),
λ1 and λ2 being the eigenvalues of A, and we can take the őrst N points with the
largest R value to be the relevant features. In order to get discrete meaningful points,
we reject features that are below a certain threshold Q below the most deőnitive
feature (R(i, j) < Q · maxk,l R(k, l)) as well as those that are closer than a minimal
distance Dmin relative to a more prominent feature. Displacement are now calculated
by means of the Kanade-Lucas-Tomasi (KLP) optical ŕow algorithm [94, 96]. This is
based on the optical ŕow equation. If a feature moves from (x, y) to x + ux, y + uy,
we őnd that

ID(x, y, t) ≈ IR(x− ux, y − uy) ≈ IR(x, y, t)−∇x,yIR(x, y, t)

(
ux

uy

)

(1.7)

which effectively describes a time discretized continuum equation
(
ux uy

)
· ∇x,yIR = −∆I. (1.8)

Where we deőned ∆I = ID − IR. The Lucas-Kanade method now assumes that the
drift remains constant over a multitude of points within a sampling window of size
w × w. A sampling vector can now be found by solving

argminux,uy

∥
∥
∥
∥
S ·
(
ux

uy

)

− t

∥
∥
∥
∥

2

2

, (1.9)
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Figure 1.7: Concept of Free Form Deformation. Here the underlying coordinate mash is
deformed in such a manner, that beads in reference image (marked in blue) are mapped to
their counterparts in the loaded situation (marked in green).

where

ST =
(
∇x,yIR(q1), . . . ,∇x,yIR(qN)

)
t =

(
−∆I(q1), . . . ,−∆I(qN)

)
(1.10)

and the double index qi runs over all N = w2 points within the sampling window.
Eq 1.9 can be solved exactly by calculating

(
ux

uy

)

= (STS)−1ST t. (1.11)

If the displacements become too large, the approximations made in Eq 1.7 are no
longer valid. The pyramidal Kanade-Lucas-Tomasi (KLP) optical ŕow algorithm
[94, 96] avoids this issue by őrst down-sampling the image, to őnd the macro-scale
deformations. Then similar to iterative correlation methods, the reference image is
substituted by a projection and the procedure is repeated for a őner granularity.

If the displacements become too large, the approximations made in Eq 1.7 are no
longer valid. One solution is to use the above-mentioned cumulative procedure where
only the displacement between cumulative steps in a time series are calculated. In this
case Eq 1.7 corresponds to an effective Euler stepping which may lead to numerical
instability. This issue can be resolved by also performing the optical ŕow analysis in
the inverse direction and calculate

ui =
1

2

(
u(i−1)→i − ui→(i+1)

)
(1.12)

Advanced algorithms

More recently advanced algorithms have been devised, like the Free Form Deformation
(FFD) algorithm [97], which is visualized in Fig 1.7. Here the deformation is described
by a sequence of B-splines,

uΦ(x) =
3∑

r=0

3∑

s=0

3∑

t=0

Br(q)Bs(v)Bt(w)Φi+r,j+s,k+t, (1.13)
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where x = (∆xi+ 1 + q,∆yj + 1 + v,∆zk + 1 + w)T such that i, j and k are integers
describing pixel indices. q, v and w should be non-negative real numbers below one.
The functions Bn are cubic B-spline polynomials given by:

B0 = (1− q)3/6 B1 = (3q3 − 6q2 + 4)/6 (1.14)

B2 = (−3q3 + 3q2 + 3q + 1)/6 B3 = q3/6 (1.15)

In order to őnd the coefficients Φi,j,k, the normalized cross correlation between the
loaded intensity map ID(x) and the transformed reference image IR(x + uΦ(x)) is
found by a stochastic gradient descent method.

1.2.4 Traction reconstruction

A wide range of approaches has been established for traction force reconstructions.
Methodically, there are two major approaches for traction force reconstruction, known
as the direct method and the inverse method.

The workŕow known as the direct (or forward) method (DM) starts from a rep-
resentation of the three-dimensional displacement őeld. Recalling the concepts of
continuum mechanics, the strain tensor can be calculated, which is a linear compo-
sition of the deformation gradient. Then, using the constitutive law of the material,
it can be converted into a stress tensor. For an linear isotropic material, this step is
simply a linear transformation. Finally, the surface traction follows as contraction of
the stress tensor with the surface normal.

The DM has been pioneered for 2.5D TFM [15ś17], but also has been applied to
3D TFM [98, 99] and to elastic beads with embedded markers that are deformed by
the traction forces in cell aggregates [63]. The DM is especially suited to deal with
large deformations and non-linear material laws, but it also can be used in the linear
regime, which is typically used for 2D or 2.5D TFM on soft elastic substrates. In
general, however, the direct method is not very commonly used, for two main reasons.
First the method is intrinsically three-dimensional making it unsuitable for situations
where 2D TFM is sufficient, but the requirements of 3D imaging pose a signiőcant
restriction. Secondly, it is a numerical challenge to calculate the required derivatives
in the presence of the unavoidable experimental noise, especially when microscope
resolution is low. In contrast, the DM seems to be an attractive choice for non-planar
geometries like elastic beads, for which it is very challenging to calculate appropriate
GFs [63]. Another beneőt of this method is the fact that, when used in combination
with advanced image registration methods, the DM may leverage their representation
of the displacement őeld directly during the gradient taking step [99]. I will discuss
the DM in more detail in chapter 4.

The more common and historically older workŕows for traction reconstruction are
encompassed by the term inverse method (IM). In order to avoid derivatives, in this
approach, one does not explicitly calculate strain or stress tensors, but stays on the
level of displacement őelds. A solution is found, by minimizing the difference between
the measured displacement őeld and a displacement őeld calculated from an estimated
traction őeld. Doing so, which possibly requires one to calculate the deformation from
estimated traction (direct problem) repeatedly, one arrives at the best estimate given
the experimental data.

The IM includes approaches based on Green’s functions as well as those based on
the Finite Element Method (FEM), the former of which includes the approach őrst
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conceived for 2D TFM by its pioneers [8, 10]. Green’s function approaches use a fun-
damental solution of the elastic boundary value problem (Green’s function) to reduce
the direct problem to a simple matrix application on the deformation őeld. Green’s
functions can be used only for linear elasticity, but offer several advantages. First, the
Green’s function for thick elastic substrates is well known (Boussinesq solution) [100]
and also the Green’s function for a őnite thickness substrate has been derived [18].
Second, for ŕat cells on planar substrates it is sufficient to know the displacements in
a two-dimensional plane close to the gel surface. This reduces the Green’s function
from a 3x3 to a 2x2 matrix, which makes this approach usable for 2D TFM. And
third, one can use fast Fourier methods to convert the convolution of GF and traction
into a product. Due to its speed, Fourier Transform Traction Cytometry (FTTC)
[12] therefore has become the method of choice for high resolution measurements.
Together, these advances make the inverse method very attractive for measuring cell
traction on elastic substrates.

Because elasticity theory leads to an ill-posed inverse problem due to its long-
ranged deformation őelds, one usually deals with the noise problem by invoking some
regularization procedure, like the zero-order Tikhonov regularization [10, 11, 20, 76].
In order to choose the correct value of the regularization parameter, different schemes
have been suggested, including the L-curve criterion or generalized cross-validation
[13, 14]. When using FTTC, the regularization can be formulated in Fourier space
and therefore many schemes can be applied to deal with the noise issue [14, 101,
102]. The need for explicit regularization can be avoided by using TFM-schemes that
effectively őlter the deformation data, like image smoothing [12, 59] or by using a the
FEM [71, 98, 99]. I will discuss Green’s function-based approaches in more detail in
chapter 2.

When geometrical and material linearity can no longer be assumed, the direct
problem is usually solved using FEM-based approaches. This is usually the case for
3D TFM, but might also apply to cases that simply aim to study strong cells on
particularly soft substrates [21, 98, 103ś105], but can also be used in 2D setups [106].

Neural-network based approaches have been the most recent edition to the collec-
tion of traction force reconstruction techniques [23, 26, 107]. These methods cannot
be cataloged into the DM and IM classiőcation. Neural network methods used for 2D
TFM often use the U-Net [108], an convolutional network architecture widely applied
in biomedical image segmentation tasks, similar in nature to TFM [23, 24, 109]. Neu-
ral network models are generally trained by generating a large collection of simulated
force deformation pairs that mimic the adhesive proőles on real data without losing
generality.

Besides for deformation-to-force reconstruction, neural networks have also been
deployed for closely related force inference techniques and to study cellular force gen-
eration itself [25, 109]. For example, Schmitt et al. [25] used neural networks to show
that cytic traction őelds could be predicted from an immunostaining image of the cell’s
zyxin distribution, a protein found in the cell’s focal adhesions. They also showed that
both a short-range and a long-range correlation exists between the zyxin and traction
force distribution, highlighting the role of focal adhesions as the linker between the
cytoskeleton and the extracellular mechanical anchoring of the cell. Neural-network
based approaches will be discussed in detail in chapter 6.
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1.2.5 Quantitative evaluation of traction maps

After a traction map τ has been calculated, we can use a spatial visualization to ob-
serve the distribution of force qualitatively. For a more quantitative analysis, different
metrics have been established to characterize the contractile strength, as well as spe-
ciőc properties of the traction pattern. For 2D TFM the following metrics have been
devised.

Strain energy

The strain energy qualiőes the amount of mechanical energy, that is stored in the
substrate deformation and conforms to the work invested by the cell into deforming
the substrate. It is deőned by [12]:

U =
1

2

∫

C

τ · u dx dy . (1.16)

The integration area C should be chosen to encompass the adhesive area of the cell.

Total force

The total force [110] quantiőes the cell’s overall and momentary contractile activity. It
is formed by accumulating the force magnitude transmitted by all adhesions, yielding

Ftot =

∫

C

|τ | dx dy . (1.17)

Again, the integration area C should be chosen to encompass the adhesive area of the
cell.

Force monopole

The force monopole describes the net directed force on the substrate, which is deőned
by

F =

∫

τA dx dy . (1.18)

If no external forces are applied onto the cell, the monopole force must be zero due
to moment conservation.

Dipole moment matrix

The őrst order moment or dipole matrix M is deőned by means of [12]

Mij =

∫

C

(xi − xCP,i)τj dx dy . (1.19)

The coordinate frame for this integral is chosen with respect to the center of force of
the system, which is given by

xCF =

(∫

|τ | dx dy .
)−1 ∫

|τ |x dx dy . (1.20)

which can be calculated in any coordinate frame.
The diagonal components of the moment matrix describe the contractility of the

system. The two off-diagonal components correspond to a torque relative to the center
of force [12]. We deőne the contractile momentum by

µ = M11 +M22. (1.21)
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This describes the net ability to dilate or contract the cell. The net torque is deőned
by

M = M12 −M21. (1.22)

Both µ and M are independent of the orientation of the coordinate axes and are
independent of each other. In the absence of external forces, angular momentum
conservation dictates that the net torque must vanish and the moment matrix must
hence be symmetric. In this case, one can őnd an orientation of the axis such that M is
diagonal and the eigenvalues can be used to őnd the directed and isotropic contractile
moment of the system. The two eigenvalues are known as the dipole moments, with
the one with the largest absolute magnitude being referred to as the major dipole
moment and the other as the minor dipole moment. The corresponding eigenvectors
form an orthogonal coordinate base and the corresponding coordinate axes are referred
to as the major and minor dipole axis respectively.

Areal integrated force

The areal integrated force F A describes the force transmitted over a speciőed contact
area A, hence

F A =

∫

A

τ dx dy (1.23)

When choosing A to be the entire area of cellular adhesion, this force is also known
as the monopole force. If no external forces are applied onto the cell, the monopole
force must be zero due to moment conservation.



Chapter 2

Theoretical framework

TFM relies extensively on an understanding of the mechanical behavior of the hydrogel
substrates. In order to accurately interpret the traction forces exerted by cells on
hydrogel substrates, it is essential to study the principles of continuum mechanics.

Continuum mechanics is a branch of physics and mathematics that provides a
theoretical framework for studying the behavior of continuous materials, such as hy-
drogels, under the inŕuence of external forces. By treating the hydrogel substrate as a
continuous medium, continuum mechanics enables the development of mathematical
models and equations that describe the mechanical properties and behavior of the
substrate [111].

In the framework of TFM, continuum mechanics describes the relationship be-
tween the deformation and stress distribution within the hydrogel substrate caused
by cellular forces. This information is crucial for accurately inferring the traction
forces exerted by cells based on the observed substrate displacement.

In this chapter, I will give a brief overview over some fundamental concepts of
continuum mechanics and also describe some analytical solutions that will be used in
the subsequent sections.

2.1 Continuum description of solids

2.1.1 Elasticity theory

Elasticity theory is the area of continuum mechanics concerned with describing objects
with a deőned rest shape. Rather than describing the mechanics of individual atoms
and molecules at an atomic scale, it uses a continuum approximation. It is hence a
macroscopic őeld theory [100].

The underlying physical observable of all continuum mechanic theories is defor-
mation or displacement. There exist two different ways to parameterize spatially dis-
tributed quantities. One can either describe őelds by giving their values at each point
in space, this is known as Eulerian speciőcation[112]. If the system is in motion, the
microscopic particles contributing to the properties at each position will thus change
and propagation of properties attributed to local material quanta like local density,
temperature or momentum must be tracked explicitly in the dynamic equations of
each őeld. The main beneőt of this description is that the choice of parameters is in-
dependent of the observed system and in particular does not depend on any previous
state of the system. This kind of description is often used in hydrodynamics, as it
considers the Marcovinan nature of ŕuids [113].

21
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An alternative method of description is obtained by parameterizing the different
material quanta irrespectively of their current position. The advantage of this is,
that the microscopic particles contributing to the described properties will remain
the same for each point in the parameter space. However, we must choose a reference
conőguration, based on which the material quanta are parameterized. This description
is most suitable for elastic solids. Those have a dedicated relaxed state, and the motion
is dominated by the difference between the current conőguration and one of the relaxed
state[113].

Another major advantage of using the Lagrangian description for solids is the
treatment of boundary conditions. As the boundaries of a material are determined by
the motion of surface material quanta, the boundary will generally remain constant
in the Lagrangian description, while it will depend on the evolution of őelds in the
Lagrangian description. The major disadvantage of this approach is that the defor-
mation of the coordinate system will result in the parameterization being curved and
must therefore be described using methods from differential geometry[112].

We introduce a Lagrangian parameterization of a system by assigning each mate-
rial quantum a set of parameters X which corresponds to its spatial position at the
reference conőguration. We can now describe the dynamics of the material by a őeld
x(X, t). If the system assumes this conőguration at a speciőc time t0 we thus have
by construction an initial condition

x(X, t0) = X. (2.1)

For a different time the positions will differ: The displacement őeld

u(X, t) = x(X, t)−X (2.2)

describes the change in position with respect to the initial conőguration [113]. We also
deőne the Jacobian of the displacement őeld and of the coordinate transformation as
the displacement gradient tensor and the deformation gradient tensor respectively:

H =
∂u

∂X
F =

∂x

∂X
= H+ I (2.3)

Strains and Stresses

The strain tensor describes local bending, stretching and compression of the system
compared to the reference conőguration [114]. The (Green-Lagrangian) strain tensor
is deőned by:

E :=
1

2

(
FTF− I

)
=

1

2

(
HT +H+HTH

)
(2.4)

If we select three neighboring points X, X + dA, X + dB, that will move to x,
x + da, x + db under the deformation, the deformation gradient tensor now can be
used to estimate the changes in the relation of the separation vectors, namely:

da · db− dA · dB = dA · E · dB (2.5)

It is apparent, that this generalizes the one-dimensional concept of strain as a local
increase in length to a 3d quantity.

Just like discreet bodies interact with neighboring bodies using forces, different
materials and different regions of the same material can exchange forces on shared
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surfaces. These forces are known as traction forces. Tractions caused by internal
cohesion forces between adjunct volume elements within the same material are known
as stresses. These are caused by thermodynamic pressure as well as atomic and
molecular bindings. The total traction force transmitted over a surface S is given by

F S =

∫

S
τ da , (2.6)

where τ describes the traction or traction force per area. By geometrical consideration
on őnds, that at any given point the traction one surfaces with different surface normal
are related and can be described by a tensor, known as the Cauchy stress tensor σ

[113]. The traction τ contributed by a given point on a surface with surface normal
n is given by:

τ = σn. (2.7)

This stress tensor describes the local mechanical properties of the material and
is the most commonly used tensor to describe stresses in the material. In order to
preserve angular momentum, the stress tensor must also obey an additional condition
σ = σT , meaning the Cauchy-Stress Tensor, must be a symmetric one [100]. If this
would not be imposed the torque acting on an inőnitesimal volume element would be
őnite.

Elastostatics

If the system is in a static state, meaning u̇ = 0, the forces in each volume element
must be balanced, hence:

−
∫

Ω

ρg d3x =

∫

∂Ω

σn da . (2.8)

Here the left-hand side corresponds to a potential density dependent body force due
to external factors (electromagnetic interaction/gravity etc.).

In the Eulerian coordinate frame this integral equation reduces to a point-wise
differential equation:

0 = ρg +
∂

∂x
σ (2.9)

In the Lagrangian coordinates, the corresponding equation is written as:

0 = ρ0g +
∂

∂X

(
det(F)F−1σ

)
(2.10)

The relationship between strain and stress depends on the material. In ŕuid like
materials there is no reference conőguration. As such, the stress is fully dependent on
the current ŕow őeld.

An important group of materials are those, where the stress in any given point
does only depend on the deformation gradient tensor, meaning σ = σ(F), such mate-
rials are called (Cauchy)-elastic ones [115]. Such a material will return to its preferred
conőguration after external forces, that caused the material to deform, cease to apply.
The stress-strain relation is known as a constitutive relation and completes the mo-
mentum conservation equation into a full differential equation [113]. Particular useful
subgroups are hyperelastic and isotropic linear elastic materials.
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In a hyperelastic material, stress is conservative and fully determined by the local
deformation energy density W (E) [115]:

σ =
1

det(F)

∂W

∂E
FT (2.11)

Isotropic hydrogels can be commonly described by a Neo-Hookean model [13, 116, 117]:

W =
E

4(1 + ν)

(
Ī1 − 3

)2
+

E

6(1− 2ν)
(J − 3)2 (2.12)

where Ī1 and J are isotropic expressions, describing the average linear stretching and
the local volume compression respectively [115]

Ī1 =
tr
(
FFT

)

det(F)2/3
=

2 tr(E) + 3

det(2E+ I)1/3
J = det(F) =

√

det(2E+ I) (2.13)

The resulting strain-stress relation is then given by:

σ =
E

2(1 + ν)J5/3

(

FFT − 1

3
tr
(
FFT

)
I

)

+
E

3(1− 2ν)
(J − 1) I (2.14)

The material constants E and ν are known as the Young’s modulus and the Poisson’s
ratio, respectively, and describe the stiffness and compressibility of the material.

Linearized theory

In most cases the material is stiff, and hence the deformation gradients will be very
small and only need to be considered up to linear order. In this approximation, the
strain tensor can be simpliőed to

E ≈ ε =
1

2

(
H+HT

)
. (2.15)

For isotropic materials, the constitutive equation reduces to

σ =
E

1 + ν

(

ε+
ν

1− 2ν
tr(ε)I

)

(2.16)

=
E

2(1 + ν)

(

H+HT +
2ν

1− 2ν
(∇u)I

)

. (2.17)

In addition, the differences of using the Eulerian and the Lagrangian parameterization
will only contribute to higher order terms and can hence be neglected.

Whether a substrate is considered stiff or soft is determined by the relation between
the typical traction force amplitude and the Young’s modulus. The dimensionless
deformation gradient will typically be in the same order of magnitude as the ratio
σij/E. We must consider the substrate to be soft, if we expect the magnitude of the
traction forces to be much larger than the substrates Young’s modulus. Then the
linear approximation as given in Eq 2.15 does not necessarily apply anymore and has
to be replaced by a more complicated (non-linear) mapping. Both PAA and PDMS
substrates can be created for a wide range of stiffness. For experiments, a typical
substrate stiffness is E = 10 kPa while the typical range of cell contractility is in the
range of 100Pa. This means that in most cases a stiff substrate can be assumed and
the linear relation is typically satisőed. Both types of substrates are usually considered
to be close to incompressible, with a Poisson ratio close to 0.5. It should be noted
that incompressibility implies ∇u = 0 in the linear case assumed in Eq 2.17. This
counteracts the apparent divergence for ν → 1/2 that would otherwise occur in the
last term of Eq 2.17.
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Figure 2.1: Visualization of the elastic halve-space problem. The surface lies in the x-y-
plane while the z axis points into the substrate. Each point S(x, y) on the halve-space surface
is attributed a set of tangential surface tractions τx and τy as well as a normal pressure vector
τz.

2.2 Analytical solutions of the elastic half-space

problem

2.2.1 Modeling linear substrate

In typical TFM setups, cell-induced displacements are around two orders of magnitude
smaller than the thickness of the substrate, which can usually be found in the range
of 50 to 80 µm [47]. In these cases, the effects of the substrates lower surface, as
well as the limited horizontal extent of the hydrogel layer can be neglected and the
substrate can be described as an inőnite elastic half-space due to its predominantly
elastic behavior within the relevant deformation range. This assumption simpliőes the
modeling and analysis of traction forces exerted by cells onto the substrate interface.
We also assume that the substrate behaves homogenously and isotropically in order
to allow for it being treated as an elastic material with uniform properties, allowing
for concise mathematical modeling and analytical solutions. In some cases, these
assumptions do not uphold and boundary effects need to be discussed [18].

We must now őx a coordinate system and we model our system in such a way,
that the traction stresses are exerted on the z = 0 plane and the substrate is conőned
to the z > 0 half-space as visualized in Fig 2.1.

The general problem of őnding the deformation őeld in an inőnite half-space with
surface traction as boundary condition and no internal forces follows from Eq 2.17
and Eq 2.7 as

∂

∂xj

(
∂ui

∂xj

+
∂uj

∂xi

+
2ν

1− 2ν
(∇u)δij

)

= 0 , −σiz|z=0 = τi , (2.18)

where τ describes the surface traction őeld corresponding to the traction exerted by
the cell.

2.2.2 Green’s function

A general solution to Eq 2.18 can be found using a Green’s function. This approach
makes use of the linearity of Eq 2.18 to relate the traction forces to the deformation
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using a convolution relation with a Fredholm integral [118].

u(x, y, z) =

∫

S

G(x− x′, y − y′, z) · τ (x′, y′) dx′ dy′ , (2.19)

The Green’s function G for the elastic half-space problem is known analytically from
literature (Boussinesq solution) [100]:

2πE

1 + ν
G(x, y, z) =






2(1−ν)r+z
r(r+z)

+ (2r(νr+z)+z2)x2

r3(r+z)2
(2r(νr+z)+z2)xy

r3(r+z)2
xz
r3

− (1−2ν)x
r(r+z)

(2r(νr+z)+z2)xy
r3(r+z)2

2(1−ν)r+z
r(r+z)

+ (2r(νr+z)+z2)y2

r3(r+z)2
yz
r3

− (1−2ν)y
r(r+z)

(1−2ν)x
r(r+z)

+ xz
r3

(1−2ν)y
r(r+z)

+ yz
r3

2(1−ν)
r

+ z2

r3






, (2.20)

where we used r =
√

x2 + y2 + z2. Cases where the substrate is not sufficiently
thick and interactions at the bottom surface of a őnite-thickness substrate cannot be
neglected have also been studied [18]. In these cases, the convolution relation is still
valid, but a different Green’s function has to be used. Note the 1/r-dependence of
this Green’s function, it is the reason why the inverse problem to Eq 2.19 is ill-posed.

2.2.3 The Boussinesq-Cerruti potential functions

Finding solutions for Eq 2.18 can be simpliőed by introducing appropriate potential
functions. An approach using harmonic potential functions is known as Boussinesq-
Cerruti potential functions [113, 114]. For a given surface traction őeld τ , we őnd
solutions P1, P2 and P3 that each solve the boundary value problem

∇2Pi = 0 , ∂3
zPi|z=0 = −τi .. (2.21)

It can now be shown, that if a solution Pi to this boundary value problem has been
found, a solution of Eq 2.18 is now given by:

ui =
3∑

j=1

u
(j)
i , (2.22)

together with the x-tangential contributions

2µu(1)
x = 2ν∂2

xPx + 2∂2
zPx − z∂2

x∂zPx

2µu(1)
y = 2ν∂x∂yPx − z∂x∂y∂zPx

2µu(1)
z = (1− 2ν)∂x∂zPx − z∂x∂

2
zPx,

(2.23)

the y-tangential contributions

2µu(2)
x = 2ν∂x∂yPy − z∂x∂y∂zPy

2µu(2)
y = 2ν∂2

yPy + 2∂2
zPy − z∂2

y∂zPy

2µu(2)
z = (1− 2ν)∂y∂zPy − z∂y∂

2
zPy

(2.24)

and the normal (z) contributions

2µu(3)
x = −(1− 2ν)∂x∂zPz − z∂x∂

2
zPz

2µu(3)
y = −(1− 2ν)∂y∂zPz − z∂y∂

2
zPz

2µu(3)
z = 2(1− ν)∂2

zPz − z∂3
zPz.

(2.25)



Analytical solutions of the elastic half-space problem 27

2.2.4 3D displacement őelds for a Hertz-like force proőle

In this subsection, I determine an analytical solution for the inőnite halfspace problem
presented in Eq 2.18 with the boundary condition

τ (x) =

{
3

2πa3
F
√

a2 − (x− xc)2 (x− xc)
2 < a2

0 (x− xc)
2 ≥ a2

, (2.26)

with the vector notation x = (x, y)T .
This proőle is identical to the one generated by a sliding Hertz contact and aims

to approximate structures found in physical adhesion proőles, in particular focal ad-
hesions. The parameter x0 = (x0, y0)

T describes the center of a force transmission
area, a its radius and F the total force transmitted.

In a őrst step, we note, that the proőle can be separated into a tangential and a
normal component:

τ (x) = R(ϕ)τ T (FT , R(ϕ)−1(x− x0)) + τN(FN ,x− x0). (2.27)

τ T (Q,x) =
3

2πa3
Qex

√
a2 − x2Θ(a2 − x2) (2.28)

τN(Q,x) =
3

2πa3
Qez

√
a2 − x2Θ(a2 − x2) (2.29)

Here, we use the deőnitions FN = Fz and FT =
√

F 2
x + F 2

y . The angle ϕ is chosen
such that Fx = FT cos(ϕ) and Fy = FT sin(ϕ). R(ϕ) describes the matrix of an active
rotation by an angle ϕ. Θ describes the Heaviside step function:

Θ(x) =







0 x < 0
1
2

x = 0

1 x > 0

(2.30)

Now, we only need to őnd the deformation őeld corresponding to τ T and τN .
I deal with τN őrst. Following an ansatz put forward by [119], we őrst deőne a

function

M(x, y, z) =

∫ a

0

t(ξ)k(x, y, z + iξ) dξ (2.31)

k is chosen in a such a way that M is a complex harmonic function (∇2M = 0):

k(x, y, z1) =
1

2

(

z21 −
1

2
r2
)

ln(z1 +R1)−
3

4
R1z1 +

1

4
r2 (2.32)

I use the abbreviations r =
√

x2 + y2 and R1 =
√

z21 + r2 and t(ξ) is a function
deőned on the integration interval.

I will make use of the Boussinesq-Cerruti potential functions introduced in Eq 2.22
We can now őnd solutions to Eq 2.18 by setting

PN,x = 0 PN,y = 0 PN,z = ImM (2.33)

The deőnitions of PN,x and PN,y provide trivial solutions to their boundary value prob-
lems. The őeld equation for PN,z is already satisőed, because PN,z is harmonic from
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being the imaginary part of a complex harmonic function. The boundary condition
for PN,z results in an integral problem for t(ξ) given by:

τN,z(P, x, y) = −∂3
zPN,z|z=0 = − Im

∫ a

0

t(ξ)
1

√

r2 + (iξ)2
dξ

=

∫ a

r

t(ξ)
1

√

ξ2 − r2
dξ

. (2.34)

For the speciőc proőle of τN,z given in Eq 2.29 this can be solved by setting:

t(ξ) =
3Q

2πa3
ξ. (2.35)

To solve the resulting integral formula Eq 2.31, we transform the integral path onto
a complex curve:

Pz(x, y, z) = Im
3Q

2πa3

∫

γ

(z − z1)k(x, y, z1) dz1

for γ : ξ ∈ [0, a] 7−→ z1(ξ) = z + iξ.

(2.36)

Now, we őnd a function M1, such that M1(x, y, z, ·) is holomorphic and

d

dz1
M1(x, y, z, z1) = (z − z1)k(x, y, z1) (2.37)

for all z1 in a open set containing γ. By explicit calculation one can verify, that

M1(x, y, z, z1) =

r2 (16z (4R1 + 9z1)− 9z1 (R1 + 8z1))

576
+

z21R1(63z1 − 88z)

288

+
(3r4 + 24r2z1(z1 − 2z) + 8z31(4z − 3z1)) ln (R1 + z1)

192

(2.38)

is a suitable solution. The function M1 is holomorphic in z1 except if z1 = im for
m ∈ IR, |m| > r. We now őnd for Pz:

Pz(x, y, z) = Im
3Q

2πa3
(M1(x, y, z, z + ia)−M1(x, y, z, z))

= Im
3Q

2πa3
M1(x, y, z, z + ia)

(2.39)

In preparation of őnding expressions for the deformation őeld, we also calculate an
auxiliary function, M2(x, y, z)

M2(x, y, z) = ∂z (M1(x, y, z, z + ia))

= (∂zM1)(x, y, z, z2) + (z − z2)k(x, y, z2)

=
4z22 + r2

9
R2 −

z32
3
log (z2 +R2) + zk(x, y, z2)

, (2.40)

where z2 = z + ia and R2 =
√

z22 + r2.
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Next, we insert the expression for the potential function PN,z into Eq 2.31 and
simplify the partial derivative in z direction using M2. We őnd:

uN,x(x, y, z) =
3Q

4πµa3
Im
(
(2ν − 1)∂xM2(x, y, z)− z∂x∂zM2(x, y, z)

)

uN,y(x, y, z) =
3Q

4πµa3
Im
(
(2ν − 1)∂yM2(x, y, z)− z∂y∂zM2

)

uN,z(x, y, z) =
3Q

4πµa3
Im
(
2(1− ν)∂zM2(x, y, z)− z∂2

zM2(x, y, z)
)

(2.41)

These equations can easily be solved analytically.
Next, I őnd a solution for τ T . We note that τ T,x looks identical to τN,z. Since

the equations for the 3 Boussinesq-Cerruti potential functions given in 2.21 do not
couple, we can simply set

PT,x = PN,x = Im
3Q

2πa3
M1(x, y, z, z + ia) PT,y = 0 PT,z = 0. (2.42)

Again, we can insert the expression for the potential function PT,z into Eq 2.31 and
simplify the partial derivative in z direction using M2. We őnd:

uT,x(x, y, z) =
3Q

4πµa3
Im
(
2ν∂2

xM1(x, y, z, z2) +
(
2∂z − z∂2

x

)
M2(x, y, z)

)

uT,y(x, y, z) =
3Q

4πµa3
Im
(
2ν∂x∂yM1(x, y, z, z2)− z∂x∂yM2(x, y, z)

)

uT,z(x, y, z) =
3Q

4πµa3
Im
(
(1− 2ν)∂xM2(x, y, z)− z∂x∂zM2(x, y, z)

)
.

(2.43)

Again, these equations can be solved analytically.

2.2.5 Surface displacement őelds for a constant traction and

Hertz-like contact proőles

In many cases only the deformations at the surface ū = u|z=0 are needed, as these are
the only ones observable using 2D TFM. In this case, the calculation can be greatly
simpliőed and solutions are more widely available in literature, e.g. in Johnson’s
Contact mechanics [120].

Circular constant traction contact

The analytical solution for the surface deformation created by a tangential traction
force F = (Fx, Fy)

T distributed equally over a circular area with radius a at the surface
of a sufficiently thick substrate in the linear, isotropic elastic regime has recently
been calculated in the context of traction force microscopy [14]. Employing polar
coordinates x = r(cos θ, sin θ) centered around the middle of the circular adhesion,
the surface traction proőle is given by:

τ (r, θ) =

{
F
πa2

r < a

0 r ≥ a
(2.44)

The proőle is shown in Fig 2.2 A and the corresponding deformation őeld is given by

ūx(r, θ) =
1 + ν

π2aE
[(1− ν)N1(r, θ) + νN2(r, θ))Fx − νN3(r, θ)Fy] (2.45)

ūy(r, θ) =
1 + ν

π2aE
[−νN3(r, θ)Fx + (1− ν)N1(r, θ) + νN4(r, θ))Fy] (2.46)
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Figure 2.2: Visualization of constant traction and Hertz-like contact proőles. (A) Traction
proőle for a constant traction proőle for a force őeld oriented in direction of the x-axis (B)
Traction proőle for a Hertz-like contact proőle with same orientation and contact area. (C)
Deformation őeld for the constant traction proőle. (D) Deformation őeld for the Hertz-like
traction proőle

Here the E describes the substrate stiffness (Young’s modulus) and ν the Poisson
ratio. The functions N1 to N4 have the following form in the inner region where r < a
and ξ1 = r2/a2:

N1 = 4E0(ξ1) (2.47)

N2 =
4 cos(2θ) ((r2 + a2)E0(ξ1) + (r2 − a2)K0(ξ1))

3r2
+ 4 sin2 θE0(ξ1) (2.48)

N3 =
2 sin(2θ) ((r2 − 2a2)E0(ξ1) + (r2 − a2)K0(ξ1))

3r2
(2.49)

N4 = 4 cos2 θE0(ξ1)−
4 cos(2θ) ((r2 + a2)E0(ξ1) + (r2 − a2)K0(ξ1))

3r2
. (2.50)
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For the outer region where r > a and ξ2 = a2/r2 we have

N1 =
4 (r2E0(ξ2) + (a2 − r2)K0(ξ2))

ar
(2.51)

N2 =
(6r2 − 2(r2 − 2a2) cos(2θ))E0(ξ2) + 2(r2 − a2)(cos(2θ)− 3)K0(ξ2)

3ar
(2.52)

N3 =
2 sin(2θ) ((r2 − 2a2)E0(ξ2) + (a2 − r2)K0(ξ2))

3ar
(2.53)

N4 =
(6r2 + 2(r2 − 2a2) cos(2θ))E0(ξ2)− 2(r2 −R2)(cos(2θ) + 3)K0(ξ2)

3ar
. (2.54)

In both cases, K0 and E0 are the complete elliptic integrals of the őrst and second
kind [121]:

K0(m) =

∫ π
2

0

dθ
√

1−m sin2 θ
E0(m) =

∫ π
2

0

√

1−m sin2 θ dθ (2.55)

The shape of the deformation őeld is shown in Fig 2.2 C.

Circular Hertz-like contact

The surface deformation created by a tangential traction force distributed in a Hertz-
like manner over a circular area is known from contact mechanics [120]. Employing
Cartesian coordinates centered on the center of the circular adhesion, and the abbre-
viation r =

√

x2 + y2, the surface traction proőle, presented in 2.2.4 is given by:

τ (x, y) =

{
3F
2πa3

√
a2 − r2 r < a

0 r ≥ a
(2.56)

The corresponding deformation őeld is given by:

ūx(x, y) =
3(1 + ν)

8Ea3
((W1 +W2)Fx +W3Fy) (2.57)

ūy(x, y) =
3(1 + ν)

8Ea3
(W3Fx + (W1 +W4)Fy) (2.58)

The functions W1 to W4 have the following form in the inner region where r < a:

W1 =
1

4
4(2− ν)a2 (2.59)

W2 = −1

4
((4− 3ν)x2 + (4− ν)y2) (2.60)

W3 =
1

4
2νxy (2.61)

W4 = −1

4
((4− 3ν)y2 + (4− ν)x2) . (2.62)
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For the outer region where r > a and ξ2 = a2/r2 we have:

W1 =
2− ν

π

(

(2a2 − r2) arcsin
a

r
+ ar

√

1− a2

r2

)

(2.63)

W2 =
ν

2π

(

r2 arcsin
a

r
+ (2a2 − r2)

a

r

√

1− a2

r2

)

x2 − y2

r2
(2.64)

W3 =
1

π

(

r2 arcsin
a

r
+ (2a2 − r2)

a

r

√

1− a2

r2

)

xy

r2
(2.65)

W4 =
ν

2π

(

r2 arcsin
a

r
+ (2a2 − r2)

a

r

√

1− a2

r2

)

y2 − x2

r2
. (2.66)

These expressions show the corrected version the equations found in [120], where a
normalization factor 1/r2 is included in W2 to W4 [122].

The shape of the traction and deformation is shown in Fig 2.2 B and D. We can
easily verify, that Eq 2.57 and 2.58 describe a special case of Eq 2.43.

Elliptical Hertz-like contact

Finally, I also present the results for an elliptical contact, that has been elongated to
an elliptical shape. For simplicity, we assume that the direction of force and one of the
semi-axes are both parallel to the x-axis. The general case where both the semi-axes
and the direction of force do not align can be found using a combination of rotation
and superposition, similar to 2.27. The traction őeld for this setup is given by

τ (x, y) =

{
3Fxex

2πab

√

1− x2

a2
− x2

b2
x2

a2
+ y2

b2
< 1

0 x2

a2
+ y2

b2
≥ 1

, (2.67)

where we used a to designate the semi-axes parallel to the x and b to designate the
semi-axes parallel to the y axes.

The deformation őeld for this kind of proőle inside the contact area has been found
by Vermeulen and Johnson [123]:

ūx =
3

4πµ

[

Γ
(a

b

)

− Φ
(a

b

) x2

a2
−Ψ

(a

b

) y2

b2

]

(2.68)

ūy =
3

4πµ
Θ
(a

b

) xy

ab
(2.69)

Here we used the deőnitions Γ, Φ, Ψ and Θ given by:
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Γ
(a

b

)

=







K0(m)− νD(m) a < b
π(2−ν)

4
a = b

b
a
[K0(m)− νB(m)] a > b

(2.70)

Φ
(a

b

)

=







B(m)− ν
m
(2B(m)− E0(m)) a < b

π(4−3ν)
16

a = b
b
a

[
D(m)− ν

m
(2B(m)− E0(m))

]
a > b

(2.71)

Ψ
(a

b

)

=







D(m)− ν
m
(D(m)− B(m)) a < b

π(4−ν)
16

a = b
b
a

[

B(m)− ν b2

a2m
(D(m)− B(m))

]

a > b

(2.72)

Θ
(a

b

)

=







2ν a
bm

(D(m)− B(m)) a < b
πν
8

a = b

2ν b2

a2m
(D(m)− B(m)) a > b.

(2.73)

(2.74)

Here K0 and E0 are the complete elliptic integrals of the őrst and second kind as
above and B as well as D are functions given by:

B(m) = K0(m)−D(m) D(m) =
1

m
(K0(m)− E0(m)) (2.75)

The modulus m is given by m = 1− a2/b2 for a < b and m = 1− a2/b2 for b > a.

2.3 Green’s function-based 2D force inference

2.3.1 Quantization approaches and regularization

As mentioned in the introductory chapter, Green’s function-based approaches rely on
the formulation of a direct problem, by means of which displacement can be predicted
from current traction estimates in order to verify and improve the current estimate.
In principle this problem has already been solved in Eq 2.19 and 2.20. In 2.5D TFM
the Green’s function can be used directly. In 2D TFM only the planar part is used.
This is justiőed by the fact that the normal traction is on average signiőcantly smaller
than its normal counterpart and hydrogels are mostly incompressible (ν ≈ 0.5). This
means that the factor 2ν−1 becomes very small, which causes the in-plane and normal
components of the displacement and traction őeld to decouple [47]. We can therefore
neglect the in-plane normal interaction as well as the normal component itself entirely.
In general, the embedding depth z of the beads is also considered to be negligible.
Using these two simpliőcations the Greens function reduces to a simple 2D one,

G(x, y) =
1 + ν

2πEr3
=

(
(1− ν)r2 + νx2 νxy

νxy (1− ν)r2 + νy2

)

, (2.76)

where the Fredholm integral simpliőes to

u(x, y) =

∫

S

G(x− x′, y − y′) · τ (x′, y′) dx′ dy′ . (2.77)
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For simplicity and to agree with conventions found elsewhere (e.g. [12, 76]), we omit
the bar over the deformation symbol in the following, when describing the surface
deformation. In order to solve Eq 2.19 numerically, we must now discretize both u

and τ to reduce the problem to a numerically traceable operation.

Boundary element method

The őrst way to do so is using the so-called boundary element method (BEM)) [8, 10],
a detailed description of which was given by Sabass et al. [101]. This method starts by
determining a boundary of the computational mesh, that should encompass all points
where non-zero traction is to be expected. Typically, an area larger than the one
enclosed by the cell boundary is selected to avoid boundary effects. Next, each point
xn where the displacement vector u(exp)

n has been predicted in the image registration
step is marked and a triangulation network between the sampling points is established.
Then, a linear interpolation and separation into a weighted element representation of
u(x) is produced. Now using the procedure described in the appendix of Sabass
et al. [101], a matrix formulation of Eq 2.77 is obtained:

uim =
2∑

j=1

∑

n

Mijmnτjn (2.78)

τ n and un now describe the traction vector and the predicted displacement vector at
each sampling point. The matrix elements relating adjacent (near őeld), mid-distanced
and far-distanced matrix elements are treated differently. Only for mid distance nodes
the integration over the matrix elements is performed explicitly. When calculating the
near-őeld elements, angular coordinates are used to avoid the divergence in the limit
|x′ − x| → 0. For the far őeld an approximate procedure is used to simplify the
calculation.

While the solution τ n őtting u
(exp)
n most faithfully can be found by inverting the

matrix application Eq 2.78 directly, this will not produce robust traction estimates,
since the inverse problem of elasticity is ill-posed. This is the case, because elastic
effects are long-ranged, meaning that local changes in traction will have non-negligible
effects on the displacement even over large distances. This is a problem because the
input data for the displacement őeld will be always subject to experimental noise due
to limitations in resolution or inhomogeneities in the medium [76]. A naive inversion
will try to reproduce all the őne details of the input őeld by changing global properties
of the force őeld, thus this ill-posed nature of the inverse problem will be reŕected by
a large condition number of the inverse matrix. This problem can be addressed either
by őltering the displacement data, e.g. by image smoothing [8, 12], or by introducing
a regularization scheme [11, 14].

While this can be explained purely numerically [124, 125], a probabilistic motiva-
tion for regularization was given by Huang et al. [14]: Taking into account the noise,
Eq 2.78 can be written as

u = M · τ + s. (2.79)

Here s now designates a random variable representing the noise and u(exp) can be seen
as one particular realization of u and we have collected all M sampling points into
a 2M × 1 vector. Assuming the noise to be Gaussian distributed, which has been
veriőed to be a good approximation [126], the probability density can now be written

p(u|τ , β) = 1

Zu

exp

(

−β

2
(Mτ − u)T (Mτ − u)

)

. (2.80)
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Here β describes the spread of distribution due to noise and Zu = (2π/β)M . One can
now postulate a certain prior-distribution on the force conőguration:

p(τ |α) = 1

Zf

exp
(

−α

2
τ Tτ

)

), (2.81)

where Zf = (2π/α)M . This prior describes the fact that when selecting between solu-
tions with large force magnitude and those with small one, the large force magnitude
is considered more energy expensive and thus less probable. According to Bayes’ rule
the distribution of τ can be found as a posterior:

p(τ |u, α, β) = p(u|τ , β)p(τ |α)
p(u|α, β) =

exp
(
−β

2
K(τ )

)

ZuZfp(u|α, β)
, (2.82)

where
K(τ ) = (Mτ − u)T (Mτ − u) +

α

β
τ Tτ (2.83)

and

p(u|α, β) =
∫

exp
(
−β

2
K(τ )

)

ZuZf

d2Mτ . (2.84)

The highest posterior probability solution τMP, maximizes p(τ |α) and can thus be
found by minimizing K(τ ):

τMP = argmin
τ

(
(Mτ − u)T (Mτ − u) + λ2τ Tτ

)

=
(
MTM+ λ2I

)−1
MTu.

(2.85)

where we deőned λ2 = α/β. The second term in the őrst row describes a regular-
ization, in this case, the so-called L2 or 0th-order Tikhonov regularization [124, 125].
This kind of regularization effectively results in smoothing of the underlying traction
őeld and signiőcantly increases the stability of our reconstruction [14].

While the L2 regularization is by far the most popular choice [11, 69, 101], other
optimization criteria have also been discussed. The L1 regularization, also known
as Lasso regression [127], has also been occasionally used [128ś130]. It is deőned by
replacing the Euclidean norm in the regularization term by a Taxicab one, meaning

τ L1 = argmin
τ

(
(Mτ − u)T (Mτ − u) + λ1∥τ∥1

)
, (2.86)

where ∥τ∥1 =
∑2

j=1

∑

n |τjn|. In contrast to the L2 regularization, which optimizes
against high magnitude, energy intensive conőgurations, this norm also minimizes the
number of non-zero components in the traction vector τ [128] which often improves
the level of background noise [14].

The elastic net or EN regularization [131] combines the regularization terms of L1
and L2 in order to achieve the effects of both factors and is particularly suited for
correlated entries. While it is rarely used in TFM, Huang et al. [14] showed that such
a regularization could potentially improve force reconstruction.
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Traction reconstruction with point forces

A second reconstruction method introduced by Schwarz et al. [11] has been suggested
in the case focal adhesions are clearly locatable due to being tagged with a ŕuorescent
label. This method is known as traction reconstruction with point forces (TRFP). As
suggested by its name, the traction őeld is now modeled by a collection of singular
force peaks located at the site of each focal adhesion τ (x) =

∑

i F iδ(x − x′
i). This

assumption neglects the őnite extend of each adhesion. Due to their singular nature,
the Fredholm integral now reduces to a simple matrix application,

u(xn) =
∑

i

G(x− x′
i)F i, (2.87)

in the direct problem. This can now be inverted by an L2 Regularization as described
for the BEM.

Fourier Transform Traction Cytomety

Many of the computational issue of solving Eq 2.77 can be avoided by Fourier Trans-
form Traction Cytomety (FTTC), which is the most widely used inverse method
[12, 69, 101, 102, 128]. This approach uses the fact that the Fredholm integral from
Eq 2.77 becomes a product in Fourier space and that fast Fourier transforms allow
one to quickly switch between real and Fourier space numerically.

To use it, the displacement őeld u(x) must őrst be interpolated onto a regular,
rectangular grid covering the whole image. We will designate the values at the sample
points xij by uij in the following, where i = 0 . . . (Nx − 1) and j = 0 . . . (Ny − 1),
yielding a total number of M = Nx · Ny nodes. Then the traction force τ (x, y) is
described by a set of plane waves f̂mn(x, y)

τ (x, y) =
Nx−1∑

m=0

Ny−1
∑

n=0

τ̂mnf̂mn(x, y) , f̂mn(x) =
1

NxNy

eikmn·x . (2.88)

The wave vectors kmn are chosen in accordance with the sampling grid. This choice
ensures that the expansion coefficients τ̂mn are in fact the 2D discrete Fourier trans-
form of the traction sampled at the xij. Due to the Fourier convolution theorem,
Eq 2.77 reduces to

ûmn = G̃ (kmn,x, kmn,y) · τ̂mn, (2.89)

where ûmn and uij are also related by a 2D discrete Fourier transform. The term
G̃(kx, ky) describes the function obtained from applying a continuous Fourier trans-
form in the two tangential directions to the real space Green’s function, deőned in
Eq 2.76, which is given by [12, 101]

G̃(kx, ky) =
2(1 + ν)

Ek3

(
(1− ν)k2 + νk2

y −νkxky
−νkxky (1− ν)k2 + νk2

x

)

. (2.90)

The full description of the direct problem relating the real space traction values τ ij

to their displacement equivalents uij is now deőned by:

uij = IDFT
mn

[

G̃ (kmn) ·DFT
i′j′

(τ i′j′)mn

]

ij

, (2.91)
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where DFT and IDFT designate the Discrete Fourier Transform and its inverse re-
spectively.

Eq 2.89 diverges when evaluating at k00 = 0. This can be avoided by restricting
our model to cases, where τ̂ 00 = 0, which corresponds to a vanishing total integrated
force in the entire őeld of view, thus removing this mode from our calculation. This
limitation is generally not signiőcant in traction force reconstruction due to the inter-
nal force balance of the cell. This topic will be further discussed in chapter 5.

Similar to the BEM, directly inverting Eq 2.91 to obtain the least-square őt force
reconstruction of the experimentally obtained deformation őeld suffers from noise
related overőtting issues. Some researches [12, 59] addressed this, by smoothing the
deformation őeld using a series of őlters prior to force reconstruction. Instead, and
in close analogy to the BEM, a L2 regularization scheme can be introduced to őnd a
robust traction reconstruction [69, 101]:

τMP = argmin
τ

∥
∥
∥
∥
u(exp) − IDFT

mn

[

G̃ (kmn) ·DFT
i′j′

(τ i′j′)mn

]∥
∥
∥
∥

2

2

+ λ2∥τ∥22 (2.92)

Using the fact that the Fourier transform is a unitary operation with respect to the
Euclidean norm ∥x∥22 =

∑

i x
2
i , the problem can be described in Fourier space, where

the different Fourier modes decouple and the minimization problem can be solved
analytically:

τ̂MP,mn = argmin
s

∥û(exp)
mn − G̃ (kmn) · s∥

2

2 + λ2∥s∥ 2
2

=

[(

G̃†G̃+ λ2I
)−1

G̃†
]

û(exp)
mn =: Ĝ#

λ,mnû
(exp)
mn .

(2.93)

Here the superscript † designates the Hermitian conjugate. Additionally, G̃ (kmn) has
been denoted simply by G̃ for visual clarity in the second line.

The calculation can be performed for each mode individually making FTTC highly
performant, while it has been shown to produce comparable results to the BEM [101].
Because of this, I selected FTTC as the primary method for my analysis.

The usage of a periodic discreet Fourier transform may result in boundary artifacts,
known as ringing, when large deformations are found close to the boundary of the őeld
of view. To address this, the image can either be augmented with additional sampling
points set to zero, in process known as padding [52] or by applying a Tukey windowing
function [132] that smoothly reduces the deformation values at the boundary [110].

2.3.2 Regularization parameter selection in FTTC

The regularization parameter λ must be chosen with care [14, 102] as each choice
will result in a different reconstruction of the traction őeld. If the value is chosen
too large, this will result in a loss of accuracy and resolution in the resulting force
map. If it is chosen too small, the result will be dominated by noise [13]. Different
methods have been introduced to automatically select a regularization parameter. An
overview of selection methods in the general context of inverse methods was given by
Bauer and Lukas [133]. In the following, I mention some of the approaches that are
applicable to FTTC. For simplicity I use a vectorized notation where τ λ is a 2M -
element vector that contains all traction values reconstructed by Eq 2.93, û(exp) does
similarly contain all displacement values obtained during image processing and M̂ as
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well as M̂
#
λ are 2M × 2M block-diagonal matrices containing the entries of G̃ (kmn)

and Ĝ
#
λ,mn respectively on their diagonal.

L-curve method

The L-curve method is a graphical motivated procedure developed by Hansen [134]
that has seen wide adaption in TFM applications [11, 61, 69, 101, 128, 135]. The
L-curve method uses the fact that when plotting the logarithms of the two terms in
Eq 2.93,

η̃ = log ∥τ̂ λ∥ 2, ρ̃ = log ∥û(exp) − M̂τ̂ λ∥ 2, (2.94)

for different values of λ, an L-shaped curve is obtained whose corner deőnes a good
compromise between under- and overőtting. Numerically, this point can be found
by calculating the curvature κ(λ) of the (η̃, ρ̃) graph and őnding its maximal value.
Hansen [134] also presented a scheme based on the singular value decomposition to
calculate the curvature analytically at every point, avoiding numerical differentiation.

Bayesian parameter selection

Bayesian parameter selection[102] makes use of the Bayesian interpretation of regu-
larization described in Eq 2.82, which we can express similarly for FTTC:

p(τ̂ |û, α, β) = exp
(
− β

2M
K(τ̂ )

)

ZuZfp(û|α, β)
, (2.95)

where Zu and Zf are deőned as above and

K(τ̂ ) = (M̂τ̂ − û)T (M̂τ̂ − û)
︸ ︷︷ ︸

Eu(τ̂ )

+
α

β
τ̂ T τ̂
︸︷︷︸

Ef (τ̂ )

. (2.96)

In addition, while adapting Eq 2.84 to FTTC, the Gaussian integral can be solved
explicitly by completing the square which yields a formula

p(û|α, β) =
∫

exp
(
− β

2M
K(τ̂ )

)

ZuZf

d2Mτ

=
(2π)M

ZuZf

√
detA

exp

(

− β

2M
K
(

τ̂
λ=
√

α/β

))

,

(2.97)

where A = (−αI−βM̂TM̂)/M . Bayesian parameter selection now treats α as a hyper-
parameter and its Bayesian optimal value can be found by maximizing the marginal
probability p(u|α, β), while β is determined directly by calculating the variance in
some region far away from the cell. By taking the logarithm of p(u|α, β) and using
a corollary of Jakobi’s formula, since A is non-singular, we have log detA = tr logA
[136], it can easily be shown that the optimal selection αB must satisfy the equation

Ef

(

τ̂
λ=
√

α/β

)

= tr
(
A−1

)
+

2M2

α
. (2.98)

A solution to this equation can now be found iteratively and a regularization parameter
λB =

√

αB/β can be calculated.
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Normalized Cumulative Periodogram

The Normalized Cumulative Periodogram (NCP) method [137] can be used to detect
a bias in the residual vector eλ = M̂τ λ − û(exp). based on its power spectrum pλ,k =
|DFT1(eλ)k|2, using the one-dimensional discrete Fourier transform DFT1. We now
deőne the NCP vector c(eλ) ∈ R

M by

c(eλ)k =

∑k+1
i=2 pλ,k

∑M+1
i=2 pλ,k

. (2.99)

If eλ only describes white noise, we expect c, when plotted as a function of k, to
describe a straight line going from the origin to (M + 1, 1). Assuming that noise is
indeed Gaussian distributed as previously predicted, we can therefore select λ such
that this condition is fulőlled.

Generalized Cross-Validation

Generalized Cross-Validation (GCV) [138] is a variation of the ordinary leave-out-
one-value cross-validation method, that has been used more recently [139]. It uses an
estimator function, which is deőned by

G(λ) =
∥M̂τ̂ λ − û(exp)∥ 2

2

(tr(1− M̂M̂
#
λ ))

2
, (2.100)

and always has a minimum for a strictly positive value of λ, at which an optimal
regularization can be found. It can easily be calculated for a large number of values
using the singular value decomposition of G̃, which is known. Using the determined
value for λ, an estimate for the deformation őeld can be calculated. Probst [110]
estimated this method to yield more reliable results than the L-curve approach.

Due to its ease of use, reliability and less dependence on the prior assumption of
Gaussian noise, I have used GCV in this dissertation as the primary regularization
parameter selection method.





Chapter 3

2.5D Fourier Transform Traction

Cytometry on thick elastic substrates

In this chapter, we describe an elegant approach to include the dimension of normal
vector components into FTTC to extend the technique from 2D to 2.5D. The theory
to this section has been covered as a minor part of manuscript 1. The experimen-
tal analysis follows research conducted by Joel Christian under supervision of Ada
Cavalcanti-Adam [140].

3.1 Motivation

As elaborated in the previous sections, two-dimensional methods for measuring cellu-
lar traction forces have been widely adapted and employed in experimental research.
In reality however, 2D TFM must be considered as an incomplete measurement, po-
tentially leading to errors even when estimating in-plane traction forces due to neglect-
ing possible interactions with normal components [60]. In addition, these out-of-plane
stress components are also crucial in biological processes, it has been shown, for ex-
ample, that the underlying extracellular matrix is clearly deformed not only in-plane
but also in out-of-plane direction during tumor growth and development [141, 142].

Early studies by Frank, Maskarinec and others [15, 143] used the direct method,
which will be discussed in detail in the subsequent section, to calculate both tangential
and normal traction forces on soft elastic substrates during őbroblast migration. This
was extended by Hur et al. [103] who modelled the problem as a boundary value
problem using the surface deformation as boundary condition and used the FEM to
solve the problem and extract the deformations.

The inverse method was used for 2.5D TFM by Legant et al. [61] and del Álamo
et al. [18]. Legant et al. used a BEM-like approach, where they őrst simulated
the 3D deformation őeld created by a singular force on one of the tile corners on a
regular 3D tetrahedral mesh with a triangular surface using the FEM. They then used
the surface solutions of this calculation to construct a numerical discretization of the
Green’s kernel. This could then be used to construct the matrix M introduced in
Eq 2.79 without the need to perform extensive problem speciőc calculations. On the
other hand, del Álamo et al. analytically found a representation for the relation of
traction and deformation in Fourier space, and introduce a function G̃ whose inverse
G̃−1 = G̃ can be substituted into Eq 2.89 to obtain a 2.5D extension of FTTC. Instead
of a regularization they used a local averaging procedure to reduce the level of noise
in their experimental dataset. In addition to not considering regularization, their
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formula is rather impractical to use in the case of large substrate thickness.
In this chapter, we now derive a complementary approach by assuming a thick

substrate and present a more straight-forward calculation to derive a closed form
solution for the Green’s function in Fourier space, that is consistent with the 2D
formula presented in Eq 2.90 and effectively gives the same results as the procedure
by del Álamo et al. in the limit of an inőnite thick halfspace.

3.2 Theory

A general ansatz for solving Eq 2.18 can be made using the Boussinesq-Cerruti po-
tential functions [113, 114].

The GF in real space is known as described by Eq 2.19 with the Boussinesq equa-
tion [100]. By making use of the convolution theorem, Eq 2.19 can be reduced into
the simple product expression

ũi(kx, ky, z) =
3∑

j=1

G̃ij(kx, ky, z)τ̃j(kx, ky). (3.1)

Here a tilde above the quantities represents the Fourier transform along the x
and y axis. Unfortunately, őnding an analytical expression for G̃ij directly from
transforming the real space Boussinesq solution would require us to solve a complex
integral expression. Instead of doing so, we will derive the relation between τ̃ and
ũ directly from the boundary problem stated in Eq 2.18. We can then extract the
analytical expression for G̃ij by comparing this relation to Eq 3.1. In general, our
procedure follows the same steps as described in Ref [100] to derive the real space GF
in the őrst place.

Now, by applying the mentioned two-dimensional Fourier transform to Eq 2.21,
the different modes decouple and we obtain the following initial value problem:

∂2
z P̃i(kx, ky, z)− (k2

x + k2
y)P̃i(kx, ky, z) = 0 , ∂3

z P̃i|z=0 = −τ̃i . (3.2)

Because the differential equation is linear, it can easily be solved and we őnd for the
Fourier transform of the potential functions:

P̃i(kx, ky, z) =
1

√
k2
x + k2

y

3 e
−
√

k2x+k2yz τ̃i(kx, ky). (3.3)

In the next step, we apply the Fourier transform onto Eq 2.22 to Eq 2.25 and obtain:

ũi =
3∑

j=1

ũ
(j)
i , (3.4)

together with the x-tangential contributions

2µũ(x)
x = −2νk2

xPx + 2∂2
zPx + k2

xz∂zPx

2µũ(x)
y = −2νkxkyPx + kxkyz∂zPx

2µũ(x)
z = ikx(1− 2ν)∂zPx − ikxz∂

2
zPx,

(3.5)

the y-tangential contributions

2µũ(y)
x = −2νkxkyPy − z∂zPy

2µũ(y)
y = −2νk2

yPy + 2∂2
zPy + k2

yz∂zPy

2µũ(y)
z = ikx(1− 2ν)∂zPy − ikxz∂

2
zPy

(3.6)
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and the normal (z) contributions

2µũ(z)
x = −(1− 2ν)ikx∂zPz − ikxz∂

2
zPz

2µũ(z)
y = −(1− 2ν)iky∂zPz − ikyz∂

2
zPz

2µũ(z)
z = 2(1− ν)∂2

zPz − z∂3
zPz.

(3.7)

We can now insert Eq 3.3 into these equations. This results in a simple product
expression relating τ̃ to ũ. By comparing the result to Eq 3.1 we can extract the
following Green’s function in Fourier space:

G̃(kx, ky, z) =

e−kz

2µk3





2k2 − (2ν + kz)k2
x − (2ν + kz) kxky (1− 2ν − kz) ikkx

− (2ν + kz) kxky 2k2 − (2ν + kz)k2
y (1− 2ν − kz) ikky

− (1− 2ν + kz) ikkx − (1− 2ν + kz) ikky 2(1− ν)k2 + k3z



 .
(3.8)

The procedure described for 2D FTTC in section 2.3 can now easily be extended
to a 3D procedure by promoting all 2-component quantities (uij, τ ij, ûnm, τ̂ nm) into
3-component ones. In addition, the deformation őeld must now be interpolated to a
singular plane in a depth d relative to the surface and the Green’s function in Eq 2.87
and Eq 2.93 is replaced by G̃(kmn,x, kmn,y, d) for where depth d is inserted.

3.3 Experimental evaluation: Particle uptake in

epithelial cells

Particle uptake of cells plays an important role in many biological processes. For
example, many intracellular pathogens, such as mammalian reovirus, must overcome
the apical epithelium barrier to gain access to the cytoplasma of epithelial cells and
subsequently penetrate the intestinal epithelium [144]. To do so, they mimic extracel-
lular matrix motifs to speciőcally interact with the host membrane [145]. This process
can be studied using protein coated nanoparticles, which decouples the processes of
cellular uptake from the chemical and physical properties of viruses and allows for
a variation in particle size [146]. However, the mechanical details of this process are
difficult to observe when occurring on the ventral (substrate facing) side with methods
like optical tweezers or AFM which are used on the dorsal side [147ś149]. While the
ventral uptake has been studied using molecular force sensors on glass substrates [149],
using softer hydrogel substrates and observing forces with TFM is expected to offer a
more physiological measurement [140] for the study of clathrin-mediated endocytosis
(CME). 2.5D TFM provides a non-intrusive method to examine the forces exerted by
the cell, including those under the inŕuence of nanoparticles. Experiments conducted
by my experimental collaborator, Joel Christian, on HeLa cells (immortal cervical can-
cer cells) [140] had already revealed that nanoparticles immobilized at the substrate
can be grabbed by CME and he postulated that particles are then dragged along the
ventral membrane to an area close to the cell center to be possibly internalized there.
However, by simultaneously observing the expression of GFP ŕorescence marked AP2,
a protein complex involved in endocytosis, he has also shown, that AP2 is not found
next to cell-matrix adhesions and that traction forces alone were insufficient to detach
nanoparticles close to the periphery. Despite this, he observed the initiation, but not
completion of CME in this area, which results in the formation of AP2 clusters around
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Figure 3.1: Traction forces exerted by HeLa cells on a 3 kPa őbronectin coated PAA
substrate. (A to C) Different components of the traction exerted onto the substrate as
reconstructed using 2.5D LUVI FTTC. Positive values indicate leftwards, downwards and
cellwards facing adhesive traction exerted by the cell onto the substrate, in A,B and C
respectively. The white contour indicates the transition between the pushing and pulling
area in normal direction. (D) GFP strained AP2 (AP2-eGFP) distribution in a cell (E)
Overlay of the distribution of AP2 (green, areal luminosity removed), immobilized 200 nm
nanoparticles (red) and normal traction (blue). White square indicates focus region. (F)
Insert shows the overlay in the focus area. Circles mark regions where clathrin mediated
uptake occurs. Scale bar A to E 50 µm, F 10 µm Ð Experimental data obtained from [140]
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nanoparticles. His research had also revealed that expression of AP2 was independent
of substrate stiffness and AP2 clusters were highly distributed at the cells periphery.
This was found by seeding AP2-eGFP expressing HeLa cells both on glass and 3 kPa
stiff QGel9201 substrates, both coated with immobilized 200 nm nanoparticles and
biofunctionalized with őbronectin. TIRF microscopy was used to analyze the spatial
distribution of AP2 around 4 hours after seeding.

An analysis shown in Fig 3.1 exampliőes the cell’s mechanical behavior on a 3 kPa
őbronectin coated PAA substrate: We can clearly see that the cell uses adhesive
contacts to exert a cell- and inwards pulling force on the its periphery, but exerts a
pushing forces onto the substrate in a ring shaped domain a little bit more inside. By
simultaneously observing the distribution of AP2 (D) and nanoparticles and correlat-
ing them to the normal component of the traction force (E and F), we can see that
the appearance of AP2 clusters correlates with the region, the cell is pushing into the
substrate. Correlation between AP2 and nanoparticle position was also found in the
cell center. This corresponds well to the previous observations, but also highlights the
importance of normal forces in this process.

3.4 Conclusion

In this section, I have presented a demonstration of how to extend the 2D regularized
FTTC method to also consider normal forces (2.5D TFM) based on a newly derived
Green’s function with normal components. I successfully retained the beneőts of this
Fourier method, which is very fast and reliable when combined with a regularization
scheme, for which here I have chosen zero-order Tikhonov regularization with gener-
alized cross-validation for identiőcation of the regularization parameter λ. Applying
this new variant of 2.5D FTTC to experiments studying the role of traction forces in
ventral endocytosis of nanoparticles, I have successfully shown that downward pres-
sure exerted by the cell appears to be an decisive factor in the localization of AP2
clusters, an initial stage of the endocytotic process.

1QGel920 is a silicon polymer manufactured by CHT Germany GmbH, Tübingen with glass-like

optical properties.





Chapter 4

Implementation and performance of

the Direct Method

In this chapter, the direct method for TFM is introduced and compared to 2.5D FTTC
introduced in chapter 3. The content of this chapter is published in manuscript 1,
except that I omitted the introduction of 2.5D FTTC, which has been moved to
chapter 3.

4.1 Motivation

As we have seen in the introductory chapter, a wide range of force reconstruction
approaches have been devised, each of which has its advantages and disadvantages in
a certain context. In particular, I have introduced the two fundamental approaches
for force reconstruction, the inverse method and the direct method. Very rarely,
however, are these different methods directly compared against each other. A notable
exception is a recent work that compares FEM-based implementations of the direct
and inverse methods for 3D TFM [98, 99]. Here I aim at a similar comparison,
but for 2.5D TFM and with Green’s function-based and őnite difference methods.
Rather than simulating experimental setups, I use simple test cases and simulations
with displacement noise to provide a comprehensive comparison of the mathematical
properties of direct versus inverse methods for 2.5D TFM.

In addition to its interest in fundamental questions of TFM, this work is also
motivated by different recent experimental developments. As already mentioned in the
introductory chapter, DM seems to be an attractive choice for non-planar geometries
like elastic beads, for which it is very challenging to calculate appropriate Green’s
functions [63]. I expect that this line of research will become more important in
the future with the promise of additive manufacturing to print 3D elastic materials
that are compatible with cell culture and deform under cell traction [150ś153]. Such
systems might by approached best with FEM-approaches, but in some cases (like
elastic beads) Green’s function-based inverse methods are possible [64, 154]. Here I
use this recent development as a motivation to compare direct and inverse methods
in the traditional setup of 2.5D TFM for planar substrates.

Second, new microscopy methods have been used to achieve better image resolu-
tion for 2.5D TFM, including Stimulated Emission Depletion (STED) microscopy
[69], Structured Illumination Microscopy (SIM) [71, 72], astigmatic SIM [75] and
ŕuctuation-based TFM [73]. The displacement data resulting from these experimental
advances is often analyzed with one of the different TFM-methods, but a systematic
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Figure 4.1: Comparison of the two fundamentally different methods for TFM: FTTC and
the Direct method. The inverse method estimates a force distribution that results in an
optimal match for the global displacement őeld. In Fourier Transform Traction Cytometry
(FTTC) one makes use of fast Fourier transforms. A regularization scheme is introduced to
address the fact that the inverse problem is ill-posed. In the direct method, point-wise com-
putational methods are used to determine the stress tensor locally. A divergence correction
can be applied to ensure that the physical force balance ∂iσij = 0 is satisőed.

comparison between different methods is usually not performed. In this context, it is
interesting to know how direct and inverse methods compare in regard to improve-
ments in sampling density. Here I use this recent development as a motivation to also
study the effect of varying sampling distance.

The work presented in this chapter is structured as follows. I will őrst provide an
in-depth introduction to direct methods for 2.5D TFM. I discuss different schemes for
numerically calculating the required derivatives and introduce a divergence correction
motivated by similar schemes from hydrodynamics. I deőne several simple test cases
for force reconstruction based on analytical solutions for Hertz-like adhesion patches.
To test the robustness of our different methods, I simulate different levels of dis-
placement noise, which is a common method to lump noise that might originate from
optical microscopy or gel preparation into one parameter. In addition, I investigate
the effect of varying sampling distance.

4.2 Direct method and divergence correction

In contrast to the inverse approach, in the direct method (compare Fig 4.1), one starts
directly with the observed deformation őeld and calculate the deformation gradient
tensor from it using a suitable gradient kernel. Subsequently one can then calculate
the strain and the stress within the substrate. From the strain tensor, one can then
extract the surface deformation 2.3 The surface traction can be determined from the
stress tensor using Eq 2.7. The direct method can be applied to both, 2.5D as well
as 3D setups, in the case of 2.5D TFM, the substrate is delimited by a planar surface
at the z = 0 plane and whose outwards normal is deőned to be (0, 0,−1)T and thus
Eq 2.7, reads:

τ = − (σ13, σ23, σ33) |z=0 . (4.1)

However, even in the 2.5D case, the direct method is fundamentally a 3D method and
the deformation must be known not only in a single plane, but in a volume below the
surface, in order to obtain the full stress tensor. It can easily be seen how in contrast
to the IM based on Green’s functions, the direct method can be extended easily to
non-planar surfaces (going beyond Eq 2.18) and non-linear materials (going beyond



Direct method and divergence correction 49

Eq 2.17).
The strains ∂ui/∂xj and the components Fij of the deformation gradient tensor

must be obtained numerically. To do so, the displacement őeld u is őrst sampled on
a regularly spaced 3D grid. Then both quantities can easily be obtained using a őnite
difference scheme. Frank et al. [16, 143] determine the derivative by őtting a 1st order
polynomial

u(x) = ax+ by + cz + d (4.2)

to a local region in the resulting traction proőle. The components of a, b and c contain
the strains ∂ui/∂xj directly. I refer to this technique as the 3x3x3 patch method as
a 3 by 3 by 3 data point support is used to estimate the deformation őeld gradient.
I investigate how well this approach performs in comparison to other approximation
techniques. The simplest alternative is a simple two-point őnite difference method
(only the equation for z-derivatives is stated):

∂ui

∂z

∣
∣
∣
∣
klm

≈ ui,kl(m+1) − ui,kl(m−1)

2∆x
. (4.3)

Increasing the number of sampling points contributing to the derivatives as done
in Eq 4.2 should in theory decrease the uncertainty of the result, but will decrease
resolution. Another alternative to this constitutes a four-point scheme:

∂ui

∂z

∣
∣
∣
∣
klm

≈ −ui,kl(m+2) + 8ui,kl(m+1) − 8ui,kl(m−1) + ui,kl(m−2)

12∆x
. (4.4)

In all three cases special non-symmetric expressions are used close to the boundary
that make use of the same number of support points, but avoid contributions outside
the observed area. All methods for numerical derivatives are dependent on the sam-
pling distance deőned by the sampling lattice. A smaller sampling distance should
reduce the systematic error, but on the other hand the statistical error on the de-
formation gradient is proportional to the ratio between the statistical error of the
displacement őeld and the spacing and therefore will increase for smaller sampling
distance.

While the inverse method always gives a valid displacement őeld because it is
calculated from a force distribution as a direct problem, the direct method uses a
displacement őeld that might not be valid as it violates force and torque balances. In
a static system, the force balance leads to the Cauchy momentum equation 2.9 (here
stated in the form used in linear elasticity):

∂σij

∂xj

= 0 . (4.5)

In other words, the stress tensor must be divergence-free (solenoid). This property
is not restricted to a speciőc geometry of the system. It describes a fundamental
property resulting from the fact that the stress tensor represents local force densities
that must be in balance for a static situation free of external forces. The coordinate
of the initial deformation őelds where the corresponding stress tensor őeld satisőes
Eq 4.5 are called compatible [113]. The importance of this condition has been pointed
out before in the context of monolayer stress microscopy [56] and 3D TFM[98].

While the true deformation őeld u(T ) is always compatible, the measured deforma-
tion őeld u(C) is not, as it contains errors attributed to noise and thus, the obtained
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stress tensor may not satisfy Eq 4.5. If I describe σij(u) to be the stress tensor
obtained from a deformation őeld u, we easily see by

∂σij(u
(C))

∂xj

=
∂(σij(u

(C))− σij(u
(T )))

∂xj

+
∂σij(u

(T ))

∂xj
︸ ︷︷ ︸

=0

=
∂σij(u

(C) − u(T ))

∂xj

(4.6)

that only the noise part of the deformation őeld will contribute to the divergence of
the obtained stress tensor σij(u

(C)). This means that one can use this divergence
to determine what ratio of the input data is attributed to noise. The divergence of
the calculated stress tensor σij(u

(C)) can be calculated on a local basis by using a
symmetric two-point form. Although the relation between the divergence and the dis-
placement noise contribution is less straight forward in the case of non-linear elasticity,
a similar argument can be made here.

Instead of the tensor-based formulation Eq 4.5, the compatibility equation can also
be represented as a condition for each column of the stress tensor:

∇ · a = 0, ∇ · b = 0, ∇ · c = 0, (4.7)

where I deőned σ = (a, b, c). This observation immediately generates a relation to hy-
drodynamics, because a similar situation can be found for hydrodynamic descriptions
of incompressible ŕuids, where the mass conservation equation reduces to

∇ · v = 0 (4.8)

for a ŕow őeld v. This property has been exploited by various studies and using
a variety of techniques to remove potential noise from v [155ś157]. Because of the
relation between the stress tensor and the surface traction Eq 2.7, removing the noise
contributions from σij for the full substrate might also yield a better result for the
surface traction, similar to regularization for the inverse method. An efficient method
for performing this kind of divergence correction on a ŕow proőle has been described
by Wang et al. [158] and this method can be generalized to any divergence-free vector
őeld. A short description of their technique is given in the appendix, section A.1.
This technique makes use of the particular structure of the problem to result in an
algorithm that applies matrix operations only on one coordinate at the same time,
which strongly reduces computational complexity as well as avoids complex operations
like matrix inversion.

The noise removal technique now consists of an iterative process. One starts with
the initial condition σ(0) := σexp and i := 0 and iterate the following steps [159]:

1. Split the stress tensor into column vectors:
(aexp, bexp, cexp) = σ(i−1)

2. Find ac, bc and cc that satisfy Eq 4.7 using the mentioned procedure for vector
őelds using aexp, bexp and cexp as input.

3. Reassemble the vector őelds into a new tensor
w = w(i) := (aexp, bexp, cexp).

4. Obtain a symmetric approximation for the stress tensor
σ(i) = (w +wT )/2.
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In each iteration, the divergence of the resulting stress tensor σ(i) is reduced. I tested
this reduction for a number of different inputs, including a white noise input, and
found that a őxed iteration of 20 cycles was sufficient to remove the noise of the input
(compare appendix, section A.2).

4.3 Implementation and comparison to the inverse

method

Design of simulated traction patterns

Because here I aim at testing different traction force reconstruction methods, I design
traction patterns that are useful for the task at hand and for which I can calculate
the deformations analytically. I then add displacement noise to these solutions and
őnally reconstruct the traction and compare with the original pattern. This process
is illustrated in Fig 4.2 for an example that includes the two most important features
known from adherent cells, namely tangential traction at focal adhesions and the
normal push by the nucleus (which due to momentum conservation has to be balanced
by counteracting normal forces at the focal adhesions). I discuss the properties of the
different reconstructions in the subsequent section. For the analytically tractable
patterns, I choose linear combinations of Hertz-like patches, which were introduced in
Eq 2.2.4, here brieŕy repeated.

τ (x) =

{
3

2πa3
F
√

a2 − (x− xc)2 (x− xc)
2 < a2

0 (x− xc)
2 ≥ a2

(4.9)

Using the derived analytical solution for this proőle and the linear properties of the
linear elastic half-space problem, the displacement őeld for a linear combination of
Hertz-like patches can be found analytically using linear superposition.

The analytical solution is then sampled on an lattice grid with cuboid unit cells,
where the distance between sampling points in x and y direction is equal. The dis-
tance in z-direction is usually chosen larger to reŕect the anisotropy of the point
spread function of traditional optical microscopes. In the next step, Gaussian noise
is added to the displacements. For each data point in the grid sampled deformation
őeld a random number is added. This number is drawn from a Gaussian distribution
with mean µ = 0 and standard deviation σ being őxed for all sampling points and
chosen with respect to the amplitude of deformation averaged over the whole őeld,
which I designate as < ||u|| >. In the following, I give the magnitude of the noise
in σ/ < ||u|| >. It has been shown before, that the noise distribution does indeed
have a Gaussian shape [126]. The perturbed őelds now form the input for the actual
TFM-analysis. The determined traction proőle τ recon can then be compared to the
initial analytical proőle τ . Studies that describe new methods to improve the image
processing part of TFM often include a simulation of the bead distribution, sometimes
also assuming a speciőc point spread function [85, 97, 99]. However, noise can also
arise from different sources, e.g. inhomogeneities in the gel or the bead distributions.
Because here I do not aim at simulating experimental setups, but focus on the mathe-
matical properties of different TFM-procedures, I simply simulate displacement noise
[11, 14, 101]. Every TFM-method will eventually fail at very high noise levels, but
here I ask if direct or inverse methods perform better for low or high noise levels. For
each dataset used, I list the full set of parameters, including the sample point spacing,
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Figure 4.2: Workŕow for reconstruction for cell-like traction pattern. The plots in the upper
row show the tangential components, while the lower row contains the normal component.
(A) As an introductory example, I include the two most important features of adherent cells,
namely focal adhesions with mainly tangential traction and the normal push of the nucleus
into the substrate. (B) From this given traction őeld one can then calculate the analytical
solution for the deformation őeld. (C) Noise is added to simulate experimental data (here
σN/ < ∥u∥ >= 0.2). (D) For this low noise level, 2.5D FTTC works very well. (E) The
direct method gives similar results for the tangential tractions, but performs less well for
normal traction. Details on the simulation parameters for this proőle can be found in the
appendix, section A.3
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Figure 4.3: Two different Hertzian traction proőles used for normal analysis with the direct
method. (A) Indenter monopole with Fz = 10 µN . (B) Ring dipole with Fz = 0 µN . The
upper row presents a heat map of the normal traction τz at the substrate surface. There is no
tangential traction in these cases. The lower row presents the change of the normal traction
along a lower-left to upper-right diagonal section. The results of the analysis corresponding
to these proőles are presented in Fig 4.4. The other simulation parameters for these proőles
can be found in the appendix, section A.3.

the material parameters and the parameters of the Hertz-like patches superposition
to generate the proőle in the appendix (section A.3).

4.3.1 Performance of differentiation procedures

I őrst optimize the direct method by assessing the performances of the numerical
derivatives and the importance of a divergence correction. Towards this aim, I choose
traction proőles that emphasize the normal component. This is not the standard case
in TFM, but in this way, I can best test the performance of the different approxima-
tions for derivatives that are required for the direct method. Moreover, this choice
demonstrates our ability to deal with three dimensions. Fig 4.3 shows the two simple
Hertzian traction patterns investigated below together with the cell-like proőle pre-
sented in Fig 4.2. The őrst proőle corresponds to a simple Hertz contact, which means
that it is a force monopole pushing into the substrate. This setup could be recreated
experimentally using a spherical indenter that presses into the substrate. Note that
in contrast to FTTC, the direct method works in real space and also can reconstruct
force monopoles. The second proőle mimics a situation in which pushing and pulling
tractions are exerted in different regions in a ring-like pattern. For example, this
resembles the way cancer cells invade tissue with invadopodia or fungi invade plants.
To quantitatively compare the different methods of determining the deformation gra-
dient as well as the effects of our divergence correction scheme, I calculate different
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Figure 4.4: Quantitative comparison between different variants of the direct method. The
plots use the Hertzian traction proőles introduced in Fig 4.2 and Fig 4.3. The normalization
factor < ∥u∥ > used to compare noise levels for different amplitudes is calculated by taking
the mean of the amplitudes of the deformation őeld. The x axes shows s = σN/ < ∥u∥ >.
In the upper line, I plot the variation in the predicted total force in x direction as a function
of the standard deviation of Gaussian noise added to the input data. The line indicates the
mean and the colored area indicates the standard deviation. In the mid row the same is done
for the total traction in z-direction. In the lower row, I plot the total difference in norm,
where the variation between the different samples is shown to be negligible. The different
colors designate the different ways of calculating the deformation gradients as well as whether
the divergence correction scheme (DCS) is used. Fy is not shown due to its similarity to Fx.

quantities of interest. First, I calculate the force monopole components Fx, Fy, Fz

deőned by

Fi =

∫

S

τi(x, y) dx dy (4.10)

which describe the total force transmitted between the sample and the substrate in
our őeld of view. Numerically, the integration is performed using the Simpson formula
[160]. These quantities serve as indicators on numerical inaccuracies that add up. If
they differ from their predicted value, they will therefore indicate asymmetric and
systematic errors in the analysis. The amplitude of the tangential components Fx

and Fy should be zero for all our normal indentation proőles, as no tangential force
is transmitted. Due to symmetry, one expects the Fy component to show the same
behavior as the Fx component. The Fz component should vanish for the dipolar
patterns. If Fz was different from the expected value, this may indicate a systematic
error due to the non-symmetric way of taking the derivative at the surface.
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Next, I calculate the total L2-difference between the TFM results and the reference
deőned as

dL2 =
∥
∥τ recon − τ true

∥
∥
2
=

√
∫

S

|τ recon(x, y)− τ true(x, y)|2 dx dy. (4.11)

This quantity measures how well the reconstructed őeld matches the analytical so-
lution. Again, the integration is performed using the Simpson formula. In contrast
to the monopole, this value will not only capture systematic aberration offset, but
also general noise and gives a measure for the uncertainty of the results. A high dL2
indicates that the reconstruction contains a high amount of noise artifacts.

Fig 4.4 shows the performance of the different variants of the direct method as
assessed through these metrics. First, I observe that as expected, the variance in the
monopoles and the distance metrics increase with increasing noise levels such that
σN/ < ∥u∥ >= 1 has to be considered to be large noise. At much higher noise levels,
all methods will fail. For the DM investigated here, I őnd that using a four-point (4P)
form instead of a simple two-point (2P) form does not improve the result, but causes
a signiőcantly higher level of overall noise, likely due to overőtting. In contrast, using
the 3x3x3 patch őt signiőcantly improves the noise suppression, both in the full őeld
as well as the background. However, it will result in an underestimate for the force
monopole z-component Fz in case of the indenter proőle (A). This is likely due to the
fact that uz/z will be underestimated due to the non-symmetric derivative. Applying
the divergence correction algorithm does improve the result in this case and also offers
a slightly better noise reconstruction. However, an opposite effect is found for Fz for
proőles (B) and (C), where the noise removal introduces a systematic offset in the
normal traction component, as well as for FN , where it also increases the aberration
in the force monopole normal components. Notably the difference in norm describes a
straight line with negligible variance between the samples. This comes from the fact
that for all methods, the deformation gradient and therefore also the resulting stress
have a linear relation to the input deformation őeld. This implies a linear relation in
the variance due to noise. This proportionality is then shared by the dL2 parameter.
Although the divergence correction ensures that formally force and torque balance are
satisőed, it does not improve the performance of the DM.

4.3.2 Comparison of direct method and FTTC

Now that I have optimized the direct method, I next compare it to the inverse method,
namely with FTTC-calculations both in 2.5D (2.5D FTTC) as well as with calculations
in which contributions in the normal dimension are not considered, as described by
Eq 2.90 (2D FTTC). Because FTTC is often used as a 2D method, I adopt the
standard choice for TFM on planar substrates, namely a collection of circular adhesion
sites with mainly tangential tractions, as commonly observed for contractile cell types
which adhere to ŕat substrates through focal adhesions.

Fig 4.2 presented traction reconstructions using different methods for the cell-
like pattern with low noise (σN/ < ∥u∥ >= 0.2). In contrast, Fig 4.5 displays such
reconstructions for varying noise levels (σN/ < ∥u∥ >= 0, 1 and 2 from top to bottom),
but only for the components in the xy-plane for simplicity. Upon visual inspection, it
appears that FTTC accurately reconstructs the deformation proőle shape for low noise
levels, but for high noise levels, it overestimates the force magnitude. At very high
noise levels, the DM can identify adhesion sites more easily than FTTC. The DM,
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Figure 4.5: Reconstruction for cell-like traction pattern for different noise levels and
reconstruction methods. The images show the reconstruction for no (upper row), large
(σN/ < ∥u∥ >= 1, mid row) and very large (σN/ < ∥u∥ >= 2, lower row) Gaussian noise
added to the analytical solution for the displacement before reconstruction with the different
methods as indicated. The simulation parameters are identical to the ones used in Fig 4.2
and details can be found in the appendix, section A.3.

especially when using divergence correction, predicts a traction strength amplitude
that is relatively insensitive to noise. However, the divergence correction scheme
generates some artifacts that are independent of the noise level, indicating that the
divergence removal algorithm transforms local noise into a more distributed signal
that is not directly associated with the physical force generators.

In order to make these qualitative assessments more objective, I next evaluated a
series of established metrics for the three different traction proőles shown in Fig 4.6.
As before, the analytical solutions are known and it is easy to add Gaussian noise to
the resulting deformation őelds. The analysis results in a traction őeld described by a
discrete sample vector τ recon

j for each site sampling point j, that can be compared to
its theoretical equivalent τ true

j predicted from the analytical solution. I estimate the
accuracy of the different reconstructions using the following őve metrics [14, 101]:

• The deviation of traction magnitude at adhesions (DTMA) is given by:

DTMA =
1

NP

∑

i

meanj(i)

(∥
∥
∥τ recon

j(i)

∥
∥
∥
2
−
∥
∥
∥τ true

j(i)

∥
∥
∥
2

)

meanj(i)

(∥
∥
∥τ true

j(i)

∥
∥
∥
2

) . (4.12)

Here Np is the number of adhesion patches and the index i iterates over the
individual patches. For each patch, the mean is taken over all sampling points
j(i) belonging to the given patch. The DTMA determines how well the average
magnitude of the patches is predicted. A good reconstruction would yield a
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Figure 4.6: Proőles for comparison of direct and inverse method. In the őrst row, the heat
map indicates the amplitude of the tangential traction, while the white arrows indicate their
direction. In the second row, the heat map indicates the normal traction. Details on the
simulation parameters for all three proőles can be found in the appendix, section A.3.

DTMA close to zero, while a positive or negative value would indicate an over-
or underestimation, respectively.

• The deviation of traction magnitude at adhesions restricted to the two tangential
dimensions (tDTMA) is given by:

tDTMA =
1

NP

∑

i

meanj(i)

(

n2(τ
recon
j(i) )− n2(τ

true
j(i) )

)

meanj(i)

(

n2(τ true
j(i) )

) . (4.13)

Here Np is the number of adhesion patches and the index i iterates over the indi-
vidual patches and n2(τ ) =

√
τ 2x + τ 2y . For each patch, the mean is taken over all

sampling points j(i) belonging to the given patch. The tDTMA determines how
well the average magnitude of the patches is predicted. In contrast to DTMA,
I do only take into account the two tangential components. This focuses on
situations in which the effect on the normal component behaves differently from
the tangential one. A good reconstruction would yield an tDTMA close to zero,
while a positive or negative value would indicate an over- or underestimation,
respectively.

• The signal to noise ratio (SNR) is deőned by:

SNR =

1
Np

∑

i meanj(i)

(∥
∥τ recon

j

∥
∥
2

)

stdk

(
∥τ recon

k ∥2
) . (4.14)

Here i,j(i) and k are deőned as above. The signal to noise ratio describes
how well the adhesion sites are realized in comparison to background noise. The
value should be signiőcantly larger than 1 to indicate a good separation between
traction sites and noise.
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• The deviation of traction magnitude in the background (DTMB) is given by:

DTMB =
meank (∥τ recon

k ∥2)
1
Np

∑

i meanj(i)

(∥
∥τ true

j

∥
∥
2

) . (4.15)

Here k runs over all sampling points not belonging to any patch. i and j(i) again
iterate over the patches and their sampling points respectively. The DTMB
describes the level of background noise in the reconstruction. Ideally it takes a
value close to zero indicating a low level of artifacts in the background.

• The deviation of traction maximum at adhesions (DMA) is deőned by:

DMA =
1

NP

∑

i

maxj(i)

(∥
∥
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∥
2
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2
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∥
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∥
2

) . (4.16)

Again, i and j(i) are deőned as above. The DMA is similar to the DTMA, but
rather than using the average traction over the whole adhesion site, the peak
traction is taken into account. This emphasizes the reconstruction of the correct
amplitude in core area over the correct proőle close to the boundary. Like with
the DTMA a good reconstruction would yield a DMA close to 0, while a positive
or negative value would indicate an over- or underestimation, respectively.

Fig 4.7 shows the performance of the three different methods as a function of
increasing noise level and for different traction patterns as shown in Fig 4.6. For
all metrics except the SNR, the optimal value is shown as black horizontal line. In
general, we see that all methods fail at very high noise levels. I őnd that FTTC is
better than the DM in predicting the correct strength of the adhesions at low noise
levels as seen in the DTMA, tDTMA and DMA results. However, the situation is
reversed for higher noise, as the regularization is not sufficient to prevent overőtting
above a certain noise level. While the application of the divergence correction scheme
does reduce the SNR result, it improves the results for DTMB and DMA, by bringing
them closer to zero, particular for high noise levels. A beneőcial effect of the divergence
removal is to reduce the difference between the DTMA and tDTMA scores, meaning
that the algorithm does predict the orientation of the force vector more correctly. In
contrast, the FTTC algorithm shows signiőcantly better values for the DTMB metric,
which means that it is more effective in preventing artifacts in the outside of adhesion
sites. Surprisingly, the SNR is lower in the case of FTTC compared to the direct
method. This can be attributed to the fact that FTTC works in Fourier space and
errors in the reconstruction effect the whole őeld of view, not only the area close to
the adhesion sites. I conclude that both methods perform similarly well, that the
divergence correction as used here is in fact a disadvantage, that FTTC works best
for small noise and that for larger noise the direct method becomes comparable and
gives a clearer visualization due to the higher SNR.

4.3.3 Effect of sampling density

I őnally study the effect of variation in sampling density, which experimentally is
related to marker bead density and the resolution of the optical microscope. Because in
practice displacement noise is expected to change with sampling distance and because
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Figure 4.7: Quantitative comparison of direct and inverse methods. Performance of dif-
ferent force reconstruction techniques as a function of noise for different force proőles. The
point proőles tested are the ones shown in Fig 4.6. Different metrics are shown, describing
the quality of the reconstruction at different locations. The plots in one column all corre-
spond to the same force proőle. The x axis shows noise in units of σN/ < ∥u∥ >
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Figure 4.8: Effects of variation in sample density. Plots A to E show how the different
metrics are affected when using a different distance of the sampling points when setting up
the input data without adding any noise. The proőle őrst shown in Fig 4.2 is used. The
default sample point spacing in x and y for this proőle is 0.4 µm and here is varied up and
down. The z-component is scaled proportionally. Since there is no noise, in general FTTC
performs much better. The direct method shows a consistent improvement for decreasing
sampling point distance. Details on the simulation parameters can be found in the appendix,
section A.4.

I now focus on the effect of sampling density, in Fig 4.8 I show the results for vanishing
displacement noise. As expected, overall, all metrics become worse with increasing
sampling distance. Interestingly, however, the performance of FTTC seems to be
more robust, while the DM quickly decreases in performance. This implies that a
decrease in sampling distance (that is an increase in sampling density) will be much
more beneőcial for the DM. I note that for FTTC, the SNR and (for 2.5D FTTC) also
DTMB can even slightly improve with decreasing sampling density. This surprising
(but weak) effect might be related to the fact that for the Fourier method, increasing
sampling distance amounts to stronger őltering of the data, thus focusing on the
overall adhesion pattern. I also checked that the same trends persist for variation of
sampling distance at őnite noise (appendix, section A.4). I noticed that for FTTC
the SNR now signiőcantly improves for a decrease in sampling density. This conőrms
that noise and sample point density are in fact correlated, because an increase in
sampling density also increases the number of nodes that contribute noise towards the
calculation. FTTC and DM are affected differently by an increase in sampling density
in the presence of noise. For the DM the increase of the numbers of nodes improves
the accuracy of the numerical gradients. For FTTC, the quality of reconstruction at
the sampling points does not signiőcantly improve when increasing the resolution, but
the increase of the number of nodes increases the negative effect of noise on the result.
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4.4 Conclusion

Motivated by the observation that different TFM-methods are often advanced in spe-
ciőc contexts, but rarely compared to each other, here I have conducted an in-depth
comparison of inverse and direct methods in the framework of 2.5D TFM. This con-
siders both the 3D-nature of the direct method as well as the fact, that the setup
of a ŕat elastic substrate, common for high-resolution experiments, is usually treated
by 2D TFM but can be expanded by considering also normal forces. By selecting
2.5D TFM both techniques could be directly compared to each other. For the inverse
method, I have used the 2.5D version of FTTC introduced and tested in the previous
session.

For each performance test, I have őrst designed traction patterns that are rep-
resentative for experiments, suitable for the task at hand and analytically tractable.
Motivated by the observation that experimental noise is Gaussian-distributed in exper-
iments [126], I have added Gaussian noise to the displacements and than performed
the reconstructions with different methods. In the future, this procedure could be
complemented by a stronger focus on the actual image generation occurring in TFM-
experiments, in particular by using speciőc image processing algorithms and point
spread functions [85, 97, 99].

I have evaluated our reconstructions using commonly used metrics [14, 101]. This
methodology then was used in three ways. I őrst optimized the direct method, then
compared it with FTTC, and őnally studied the effect of sampling distance. For the
direct method, I found that the 3x3x3 patch calculation of the derivatives is indeed
the best solution and that the standard divergence correction from hydrodynamics
works, but does not necessarily improve our solutions and in fact worsens the visual
appearance of the traction pattern. Assuming a perfect elastic material, divergence
is generated only by noise, which is known to be essentially Gaussian in experimental
TFM data. This means that it is uncorrelated between different dimensions. Di-
vergence removal, however, couples the different dimensions and therefore does not
counteract the process that generated the divergence. I conclude that although re-
quired from the viewpoint of elasticity theory, divergence removal is not really needed
for the TFM procedures used here.

Our main result is the demonstration that the direct method for TFM can be used
to reliably predict the traction őeld at the surface of a ŕat elastic substrate and in
fact performs comparatively well to the best inverse method, that is FTTC, at least
for large noise, when FTTC worsens more quickly. The direct method also offers an
interesting alternative to costly FEM-simulations, in situations where FTTC cannot
be applied. The 3x3x3 patch method that has proven to be a reliable method for
deformation gradient calculation can in fact be easily adapted for curved surfaces.
Although FTTC is expected to remain the standard method for 2D TFM, I believe
that the direct method is a valuable alternative even in this case, e.g. because it
can also reconstruct monopolar traction patterns. For 2.5D TFM I believe that the
choice between the direct and inverse methods should depend on context, but that in
principle, both might work well.





Chapter 5

The adaptive near-field method and

cellular response to microneedle

shearing

In this chapter, I introduce an alternative method to accurately quantify adhesion
strength in unbalanced setups. This allows us to overcome some limitations of the
FTTC method in 2D setups. The chapter is largely based on the work published in
manuscript 3. This work was conducted in collaboration with Steven Huth and Chris-
tine Selhuber-Unkel from the Institute of Materials Science, Biocompatible Nanoma-
terials, Kiel University, who conducted the experiments and also closely collaborated
in interpreting the results

5.1 Motivation

Traction force microscopy is mostly used to study the cell-mechanical response to a
passive environment in the form of a static hydrogel substrate. Current traction force
microscopy models are optimized for this setup and methods like FTTC assume an
equilibrium of a cell’s traction forces.

Cells do, however, not only react to passive stimuli like the resistivity to a planar
substrate but also demonstrate a remarkable ability to respond to externally applied
forces and mechanical cues by means of a process known as mechanotransduction
[161, 162]. In nature, cells experience a variety of externally applied forces, for instance
from blood ŕow, muscle contraction, movement of other cells, or wound opening. In
particular, force transmission is important in tissue formation and adaption [57] as
well as in collective cell migration, where many cells interact with each other and
mechanically strong cells become leader cells [139, 163]. Therefore, to understand
force transmission by cells more completely, it is crucial to study traction forces under
external forces.

Techniques to exert mechanical stimuli to cells include atomic force microscopy
(AFM), which can be employed to measure forces necessary to rupture cellular ad-
hesions [164, 165] or forces exerted by cells [166, 167], hydrodynamic shear stress
[168ś170], optical or magnetic tweezers [171ś174], microneedle assays [175ś177] and
optical stretchers [178, 179]. Despite the fact that such a large variety of physical cell
manipulation techniques has been established and cellular forces exerted to surfaces
can be measured via TFM or elastic resonator interference stress microscopy [180],
a quantiőcation of cellular force adaptation as a response to well-deőned mechanical

63



64 Theory and Methods

stimuli applied to cells has not yet been realized.
Here, I present a new tool that combines TFM with externally applied mechanical

stimulation by microneedle shearing. This setting allows to quantify cellular force
transmission by measuring how cells distribute an external well-deőned shear force to
their adhesion sites. The spring constant of the microneedle is calibrated and thus the
shear force exerted by the needle is known. I advanced current TFM procedures to
create a novel procedure that analyzes traction forces in the presence of an external
force monopole. This new force transmission assay is a versatile technique that is
complementary to existing methods, as it can also be combined with other techniques
such as AFM to broaden our understanding of the interplay of cellular biomechanics
and adhesion.

5.2 Theory and Methods

5.2.1 Why FTTC is insufficient for this task

I have already demonstrated, that the FTTC algorithm would have to be modiőed
in order to remove the divergence of the Green’s function in the limit k → 0. Since
this divergence is primarily attributed to the inőnite thickness of the substrate, the
most obvious approach would be to replace the elastic halfspace postulate by a őnite
thickness solution. However, one can use a simple multipole expansion to highlight
the difficulties with this approach. As seen in the chapter 2, Eq 2.19, we know that:

ui(x) =

∫
∑

j

Gij(x− x′)τj(x
′) dx dy (5.1)

with the Green’s function given in Eq 2.76 now expressed in component notation

Gij(x) =
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)
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where r = |x|. In this section, I őx the coordinate system in such a way, that the
origin corresponds to a well-deőned point within the cell, which I call the cell center.

In a common traction force setup, τ is only non-zero in some region Ω around
the cell center, where |x′| < R. For a point far away from the cell center R << |x|,
only the moments of the traction distribution will dominate. To see the inŕuence of
different moments, I őrst őnd a Taylor expansion of the Green’s function, yielding the
following:
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The tensors H(0) and H(1) describe the angular dependency. They are given by.

H
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and

H
(1)
ijk(n) = r2

∂Gij

∂xk

∣
∣
∣
∣
x=rn

=
1 + ν

πE

(

(ν − 1)δijnk + νδkjni + νδkinj − 3ν
xi

r
ninjnk

)

.

(5.5)



Theory and Methods 65

Now for R << |x|, I őnd approximately:

ui(x) ≈
∑

j

H
(0)
ij (x)

r

∫

τj(x
′)d2x′ +

∑

jk

H(1)(x)ijk
r2

∫

x′
kτj(x

′)d2x′ (5.6)

By inserting the deőnition of the force monopole, Eq 1.18 and the őrst order moment
matrix, Eq 1.19, the far őeld solution takes an approximate form

ui(x) ≈
∑

j

H
(0)
ij (x)

r
Fj +

∑

jk

H
(1)
ijk(x)

r2
Mkj (5.7)

In usual TFM measures, the solution is balanced, meaning that the force monopole
has to be zero (F = 0). This means, the deformation őeld decays relatively quickly
with the inverse square of the distances. This fast decay is essential for FTTC as the
transformation of the deformation őeld into Fourier space makes implicit assumptions
about the structure of the deformation őeld at the boundaries of the observation
frame. Usually, because the deformation őeld decays quickly, the integration cutoff at
the boundary of the observation frame has little effect on the reconstructed traction,
but this is no longer the case when a force monopole is introduced.

Another major issue is determining the k = 0 mode of the deformation őeld.
In a practical setup, we can only observe the displacement of beads relative to the
stress-free conőguration, but not the displacement of beads relative to the base of
the substrate. This makes it impossible to distinguish bulk bead displacements from
changes in the őeld of view due to slight movements of the sample tray relative to the
microscope’s objective.

FTTC is unable to handle this particular setup due to the presence of a monopole
force. While the divergence of the Green’s function at the k = 0 mode has already
been mentioned in chapter 2, I will demonstrate that this issue is fundamental to
the fact, that we are working in Fourier space. The solution is therefore to avoid
the widely used Fourier space force reconstruction algorithms entirely and use an
approach based on the spatial domain. Although continuous force distributions can
in principle be reconstructed with the boundary element method (BEM) [10, 128],
here I make additional use of the fact that the cells used in our experiments have
well-deőned adhesion sites that are increasingly stressed as the cell is sheared by
the microneedle. I can therefore use methods that are specialized for localized force
distributions. However, force reconstruction by point forces as introduced by Schwarz
et al. [11] as described in chapter 2, which assumed force transmission at singular
points, often suffered from the divergence of the Green’s tensor (Eq 2.90) at such
singularities and thus avoided the near őeld and tried to estimate forces using far őeld
deformations. A principal shortcoming of this approach is the high susceptibility to
noise due to the often small deformation. In contrast, many modern approaches are
near őeld ones but often rely on speciőc problem setups to őt an analytical model
to the deformation őeld [181ś183]. For this reason, here I present a technique that
makes very little assumptions about the underlying geometry of adhesive regions.

5.2.2 Reconstruction of traction forces

As explained in the introductory sections, forces are primarily transmitted to cells
via focal adhesions. By making use of the fact that the analytical őeld is known, we
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mostly linear dependence is observed.

can now reconstruct forces using a technique similar to the traction reconstruction
method by point forces introduced in chapter 2. However, rather than sampling the
deformation in random points, we sample the deformation őeld immediately below the
predicted site of adhesion. In this point, both noise and contributions to the deforma-
tion őeld due to other sampling points are marginalized compared to the contribution
due to the local adhesions and can thus be neglected. Thus, the reconstructions of the
individual adhesion sites decouple, avoiding correlation errors between the individual
force reconstructions. If the forces would be reconstructed from the far őeld, the exact
adhesive proőle can be ignored and the force transmission can be described by singular
peaks. Since this approach uses the near őeld however, the solution heavily depends
on the exact nature of the adhesive pattern. In particular, the adhesions’ extent must
be taken into account.

To compare the effect of different assumptions, I initially consider two types of
circular adhesive patterns: the constant traction force pattern and radial decreasing
Hertz-like traction force pattern. Noticeably while it has been suggested that focal
adhesions have an elliptical shape [11, 13, 184ś186], in this analysis, I will assume
that focal adhesions have a circular shape. I will later show that choosing a circular
rather than an elliptical model for the adhesions will have only limited effects.

The analytical solution for the surface deformation created by a tangential traction
force F = (Fx, Fy)

T distributed equally over a circular area with radius a as deőned
in Eq 2.44 is described in Eq 2.45 and Eq 2.46. In the limit r → 0 I őnd that

F =
πaE

(1 + ν)(2− ν)
u(0) . (5.8)

This is the relation between overall force and displacement in the middle of the focal
adhesion. For the Green’s function, this displacement would diverge, because it only
describes the far őeld.

Similarly, the surface deformation created by a tangential traction force distributed
in a Hertz-like manner over a circular area as deőned in Eq 2.56 is described in Eq 2.57
and 2.58. In the limit r → 0, I őnd, that:

F =
8aE

3(1 + ν)(2− ν)
u(0) . (5.9)

Compared with Eq 5.8, we see that both scale linear in Young’s modulus and patch
size. Also, the contribution related to the Poisson ratio is equivalent. They differ only
in the constant prefactor.
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In general, the deformation őelds in both cases share many similarities. In both
cases the absolute value of the deformation őeld uabs =

√
u2
x + u2

y takes its maximal
value at the center of the deformation. In addition, the isolines of the uabs őeld enclose
simple connected regions always containing the center of the coordinate system. I
deőne Ah to be the area where uabs(x, y) > huabs(0, 0). While the deformation őeld u

is dependent on őve parameters E, ν, a, Fx and Fy, only two of them, a and ν, will
affect Ah. Because of the way we can choose the unit scale, it can be easily seen, that
a contributes quadratically (Ah ∝ a2). A numerical analysis (Fig 5.1) reveals that
the relation to ν can be estimated using a linear function. Therefore, the expression
Ah = (yh +mhν)a

2 describes the relationship between Ah, a and ν. The constants yh
and mh can be determined numerically by simulating the situation for an arbitrary
choice of the őve parameters mentioned above.

An estimation of the total force F of a Hertz-like or constant-traction contact
based on the deformation őeld can be found using Eq 5.8 or 5.9, by őnding the
deformation at the center of the contact. The contact radius a can be calculated from
the isoline-enclosed area Ah for some value h.

The overall algorithm to determine forces F i within each adhesion now contains
the following steps done individually for each adhesion search area i:

1. Interpolate the deformation őeld onto a regular spaced square grid for each time
step.

2. Calculate the absolute value uabs of the deformation őeld for each time step.

3. Locate the center of the adhesion by making use of the fact that uabs should
reach its maximum in this location for each time step.

4. A common issue in the above estimation is the fact that the adhesion in adjacent
search areas might cause the center of the current adhesion not to correspond
to the global maximum of uabs within its search area, in which case the largest
value for uabs can be found right next to the adhesion search area boundary. In
these cases, I rely on an interpolation from the other time steps to select the
presumed location for the area estimate.

5. Now that I have determined the center of the adhesion for each time step and
the radius a, I can determine the deformation u in the adhesion center.

6. Calculate the area Ah within the adhesion search area where uabs lies within
1− h = 5%, 10%, 20%, 30% of its maximal value for each time step.

7. For each time step and each threshold value an estimate for the adhesion ra-
dius a can now be determined using the above-mentioned area formula a =
√

Ah/(yh +mhν) using the predetermined values for yh and mh In general, all
of these estimates should yield a similar value, as the radius of the adhesion is
expected not to change during the procedure.

8. The őnal estimate for the adhesion radius can now be found by őnding the mean
of the estimates determined in the previous step. I explicitly emit those time
steps from the calculation, where I had to use the interpolation from the other
time-steps in step 4, as the estimates in these cases are particularly unreliable.
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of equal contact area F/F0 for ν = 0.5 using Eq 5.10. The horizontal axis describes the shape
factor given as deőned by [184].

9. Now that I have determined the deformation u in the center of each adhesion
for each time step and the radius a, I can determine the corresponding force F i

using Eq 5.8 or 5.9.

In the following I name this method the Adaptive Near-Field Method (AdNFM) or
circular patch method of TFM

In order to determine whether adhesion sites can be better described by Hertz-
like or the constant-traction proőles, one can compare the statistic variance between
the radius estimates derived from different search area estimates in step 7. In the
following, I select the setup using constant-traction proőles. During the experimental
analysis, I will later show this choice is slightly superior to the one using Hertz-like
proőles.

As mentioned above, many studies have suggested a more elliptic shape [184] rather
than a circular one as assumed by the two approaches discussed. An elliptical variant
of a Hertz like contact was introduced in Eq 2.67. Using the subsequent equation
Eq 2.68 and Eq 2.69, I őnd that the deformation őeld for force central displacement
relation at the center is given by:

F =
8
√
abE

3N(ν, a/b)(2− ν)(1 + ν)
u(0) . (5.10)

The function N(ν, a/b) is given by

N
(

ν,
a

b

)

=







4
π(2−ν)

√
a
b

(

K0(ma)− νK0(ka)−E0(ka)
k2a

)

a < b

1 a = b

4
π(2−ν)

√
b
a

(

(1− ν)K0(kb) + νK0(kb)−E0(kb)

k2
b

)

a > b

(5.11)

with the deőnition ka =
√

(1−a2/b2) and kb =
√

(1−b2/a2). Its inverse 1/N describes
the ratio between the force predicted using Eq 5.10 and the one predicted using Eq 5.9
for a circular adhesion of equal area. In Fig 5.2 1/N is plotted against the shape factor
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π2

4
b
a

1
E0(ma)2

. Assuming a shape factor of 0.5 as observed by [184], we see that the force
increase is only around 4% which is likely below the accuracy of the prediction.

5.2.3 Calculation of force moments

The calculation of force moments was introduced in the introductory chapter. How-
ever, procedures need to be adjusted due to the existence of a monopole moment.

The force monopole, the net directed force on the substrate was introduced in the
introductory chapter and is also mentioned in Eq 1.18. Due to momentum conserva-
tion, it should be equivalent to the force transmitted by the cantilever into the cell.
If the force contribution of each adhesion patch is known, the total force monopole
vector can be obtained by simply summing up the force contributions of all adhesions:

F =
∑

k

F k . (5.12)

Similarly, one can calculate the center of force (Eq 1.20) and the őrst order moment
matrix (Eq 1.19) by inserting the traction proőle for patches (Eq 2.56 or Eq 2.44) and
making use of the fact that due to their symmetric nature they contribute in the same
way as point forces:

xCF =

(
∑

k

|F k|d2x
)−1

|F k|xkd
2x , (5.13)

Mij =
∑

k

(xk)i(F k)jd
2x . (5.14)

Without needle pulling, angular momentum conservation dictates that the net
torque introduced in Eq 1.22 is zero and the moment matrix symmetric. In this case,
one can őnd an orientation of the axis such that M is diagonal and the eigenvalues can
be used to őnd the directed and isotropic contractile moment of the system. To also
consider the case of needle pulling, I deőne a slightly modiőed version of the moment
matrix, where I removed the torque contribution:

M
∥
ij =

∫

xixj
τ · x
x2

d2x . (5.15)

If I again insert the deőnition of the patches, I obtain:

M
∥
ij =

∑

k

(xk)i(xk)j
F k · xk

x2
k

. (5.16)

This matrix is symmetric and thus an orthogonal eigendecomposition can be found.
The two eigenvalues describe the dipole moments and the eigenvector corresponding to
the major dipole describes the main contractile axis. This can be proven by comparing
the trace of M ∥ to the contractile momentum µ introduced in Eq 1.21, which both
yield the same value.

5.3 Quantifying force in őbroblasts under external

shearing

To investigate the force transmission from the apical to the basal side of an adher-
ent cell, my experimental collaborators conducted experiments during which they
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Figure 5.3: Microneedle shearing of an PDMS pillar. (A) and (B) show exemplary phase
contrast images of the shearing. The needle moves downwards and bends the pillar. The
pillar, on the other hand, exerts a force to the needle, which results in a bending of the
needle. The force acting between needle and pillar is calculated from the bending of the
PDMS pillar. (C) presents a plot of the pillar force versus the bending of the microneedle for
each frame of the shearing experiment. The slope corresponds to the microneedle’s spring
constant.

exerted well-deőned shear forces to the apical side of mouse embryonic őbroblasts
(MEFs) while simultaneously measuring the change in traction forces at their basal
side (manuscript 3). Details of the imaging and image analysis methods can be found
in the appendix (section B.1); Details of the experimental methods can be found in the
manuscript. We studied MEF őbroblasts expressing mNeonGreen (NeonG) labeled
zyxin as a marker for focal adhesions. Cells were allowed to spread on a őbronectin-
functionalized PAA gel with embedded red ŕuorescent marker beads so that traction
forces could be derived from recording the displacement of the marker beads. A mi-
croneedle was installed into a micromanipulator such that the tip of the microneedle
was parallel to the cell substrate. Moving the microneedle with a computer-controlled
micromanipulator results in the application of a shear force to the apical cell surface.
The spring constant of this microneedle was calibrated by shearing PDMS pillars prior
to the cell experiments. To do so, őrst the Young’s modulus of the PDMS sample
was measured with an AFM-based indentation method [187]. Then, the calibration
of a microneedle was carried out by moving the microneedle against a PDMS pillar
(Fig 5.3) and measuring the associated PDMS pillar and microneedle bending. In
Fig 5.3 A and B, representative phase contrast images of the shearing of a PDMS
pillar with a microneedle show the bending of pillar and microneedle due to shear
forces. Knowing the geometry as well as the Young’s modulus of the pillar, the shear
force is calculated from the pillar bending [188]. Fig 5.3 C shows a plot of the shear
force versus the microneedle bending for each frame of the experiment. The slope of
a linear őt to this curve corresponds to the microneedle’s spring constant.

For the force transmission experiments, the microneedle was carefully inserted into
the őbroblast cell directly below or above the nucleus. Subsequently, the microneedle
was moved at a constant speed of 5 µm/s towards the nucleus to exert increasing shear
forces to the cell until the cell detached from the underlying PAA substrate. My col-
laborators decided to shear the nucleus, as other modes of exerting shear forces to the
cell caused the microneedle to quickly slip away. This is in agreement with published
work by Riveline et al. [176] and Paul et al. [177] who have shown that nucleus shear-
ing is the most efficient way to transmit forces to a cell with a microindenter. During
the shearing process, phase contrast images of the cell and needle as well as ŕuorescent
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Figure 5.4: A microneedle is inserted into a őbroblast, which expresses ŕuorescently labelled
zyxin and adheres to a TFM substrate. Subsequently, the needle is moved into the y-direction
at a constant speed and exerts shear forces to the cell until it is detached. (A) and (B)
Exemplary phase contrast images taken during cell shearing. Both the cell and the needle
bending are monitored. The bending of the needle is used to calculate the shear force.
(C) The cell’s zyxin distribution prior to the shearing process is recorded via ŕuorescence
microscopy. (D) Traction force map of the cell with adhesion search areas delimited by white
rectangles and mean patch locations marked by crosses. Traction forces were reconstructed
for t = 0 s using Fourier Transform Traction Cytometry (FTTC). For the reconstruction of
traction forces with the shear force monopole present (t > 0), we used the AdNFM. (E)
The needle force and the cell’s net traction force are plotted as a function of time. (F) The
traction forces in y-direction are plotted for different adhesion patches (labelled in panel (D)
to quantify how the cell loads its adhesion sites under the external shearing stimulus.

images of the marker beads embedded in the PAA gel were recorded. Fig 5.4 A and
B present exemplary phase contrast images of such an experiment. These phase con-
trast images were used to monitor the cell as well as to calculate the degree of needle
bending for each frame. Knowing the needle’s spring constant, the needle bending is
a measure for the shear force exerted to the cell. To correlate the measured traction
forces with the distribution of adhesion sites, the zyxin distribution of the őbroblast
prior to each experiment was recorded (Fig 5.4 C). This information is essential, as
focal adhesions are the main site of traction force exertion [54, 101].

The images of the ŕuorescent marker beads embedded in the PAA sample to
which the cell is adhering were used as the basis for computing the traction forces
that the cell exerted to the PAA sample as a function of external shear force. As the
microneedle applies external shear forces to the cell surface, cellular traction forces are
no longer balanced by internal forces only, and the overall force balance has to include
the overall force applied by the microneedle. In other words, the cell traction is not
dominated by the force dipole contribution, as is usually the case, but also includes a
force monopole.
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Figure 5.5: Comparison of the traction forces predicted in the absence of an external force
monopole (at t = 0) using the Adaptive Near Field Method (AdNFM) and a regularized
Fourier Transform Traction Cytometry (FTTC) [76] using generalized cross-validation [14].
(A) Proőle for the cells introduced in Fig 5.4. (B) Proőle for the cells introduced in Fig 5.8.
In both cases, the agreement between the two methods is rather good.

Fig 5.4 D shows a traction force map computed using FTTC overlayed with es-
timates made using the AdNFM as described above. The algorithm őrst determines
the main sites of traction force transmission from the cell to the PAA sample. These
sites ("adhesion patches") are marked by white crosses and numbers in the őgure
panel. I then calculated the traction force vector of each adhesion patch and then
determined the magnitude of the sum of all traction force vectors. This net traction
force magnitude was then compared to the needle force. As traction forces without a
force monopole are balanced, introducing an externally applied force must result in a
change of traction forces to balance the externally applied force. The results shown
in Fig 5.4 E demonstrate that the net traction force and the externally applied shear
force closely matched during the entire experiment, validating our analysis approach.
The fact that the shear force and net traction force do not match perfectly might have
several reasons: force can be dissipated [165] or cells might resist deformation with cell
speciőc responses. Furthermore, as several calibration steps are needed during force
calculations, the results are prone to calibration errors: The needle spring constant
was calibrated via shearing a PDMS pillar and the Young’s modulus of the PDMS
was measured for the computation of the needle’s spring constant. Furthermore, the
PAA’s Young’s modulus needed to be determined in order to reconstruct traction
forces from the bead displacement data. Both materials’ elastic properties were mea-
sured with a state-of-the-art atomic force microscopy procedure [187] naturally prone
to measurement errors, which means that neither the needle force, nor the traction
forces are perfectly accurate. Image analysis inaccuracies in the quantiőcation of the



Quantifying force in őbroblasts under external shearing 73

A B
0.5

0.4

0.3

0.2

1 1 2 3 4 5 6 7 8 9 10 11

Adhesion # Adhesion #

2 3 3 4 5

σ/
a

σ/
a

0.6

0.4

0.2

Hertz-like

const. traction

Figure 5.6: Comparison of the relative standard deviation of force reconstruction for Hertz-
like and constant traction proőles (A) Comparison of force in the deőnition of areas for the
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needle bending and bead displacement may further contribute to the slight mismatch
between the net traction force and externally applied force.

In Fig 5.4 F, the y-components of traction force vectors are plotted for the different
adhesion patches. For better visualization, some neighboring adhesion patches with
similar force loading behavior are combined. (The data for each individual adhesion
patch are presented in the appendix Fig C.1). As the needle pulled mainly in the y-
direction, the x-components of the traction vectors were not inŕuenced by the needle
shear force, which is why we concentrate on discussing the y-components (the graph of
the x-components of the traction vectors is also included in the plot in the appendix).
One sees that the microneedle pulling mainly loads the adhesion patches 2, 3 and 4,
and to a lesser extent also the adhesion patches 5, 6 and 7. This result had to be
expected due to the position of these adhesions in the part of the cell that is tensed
by the needle. On the other hand, Patches 8 and 9 are not or only slightly loaded,
presumably because they are located in the part of the cell subjected to compressive
forces during needle shearing. The plot shows that loading is not homogeneous and is
most likely related to cytoskeletal elements (e.g. between adhesions and nucleus) not
visible here. The asymmetric response of different adhesion patches can be explained
by the fact that the cytoskeleton is made from semiŕexible polymers, which respond
differently to pulling and pushing. Pulling reduces entropy and increases stretching
as well as bending energies, eventually leading to strain stiffening [189]. Pushing, on
the other hand, meets little resistance, because cytoskeletal őlaments tend to buckle
under force and the cytoplasm can ŕow away, thus it is difficult to locally build up
compression energy like in a solid [190, 191]. It is interesting to note that also in the
physiological context, cell mechanics is probed mainly in pulling, not in pushing, e.g.
in epithelial monolayers, which are under large prestress [192]. Therefore, pulling is
the relevant mode and much more meaningful than pushing. Thus, patches 2 - 7 were
loaded presumably because the needle pulling forces were transmitted efficiently to
these adhesion patches through the polymers of the cytoskeleton. Correspondingly,
patches 8 and 9 were probably not loaded because pushing forces are not transmitted
well by cytoskeletal polymers [193]. This is in agreement with earlier studies [12,
176, 177], but our results quantify the traction forces for individual focal adhesion
patches under an external mechanical stimulus in an unprecedented way. Our őndings
also demonstrate the complexity and non-uniform distribution of intracellular force
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Figure 5.7: Change of force monopole and dipole moments of the cell presented in Fig 5.4
in response to needle shearing. (A) presents the magnitudes of the force monopole, as well
as the major and minor dipole moments and the torque as functions of time. Our results
show that the contractile forces are initially distributed mostly isotropically around the
contractile center. However, the force monopole created by the needle shearing increases
over time while the minor dipole, which describes the contractility in the direction of the
force, deceases slightly. (B) shows the force monopole and the major dipole moment in
exemplary force maps recorded during the shearing experiment. The force monopole is
denoted by red arrows while the dipole moment is represented by purple arrows. All arrows
follow the indicated color-coded length scale. Areas where adhesions are predicted from the
cell’s zyxin distribution are marked in gray.

transmission as a function of load and location.
The good agreement between the needle force and the net traction force predicted

with AdNFM shown in Fig 5.4 E is a őrst and successful validation of my approach.
To further validate it, I reconstructed forces at t = 0 (when there is no force monopole)
at single patches with FTTC with 0th order Tikhonov regularization, where the reg-
ularization parameter is determined by generalized cross-validation. Adhesion forces
were then calculated by integrating the traction stress in each search window, both
for the cell analyzed in Fig 5.4 and the cell analyzed in Fig 5.8. As shown in Fig 5.5,
the agreement between the two methods is rather good in both cases. I also analyzed
whether a better result can be reached by modelling the contacts using a Hertz-like
proőle. As shown in Fig 5.6, both approaches give a similarly consistent image in this
regard. As the constant-force approach gives a slightly better estimate, I chose the
constant traction estimate for the experimental analysis.
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Figure 5.8: The change of traction forces as a response to microneedle shearing. (A) and
(B) show phase contrast images of a cell adhering to a PAA substrate and a microneedle
exerting shear forces to the cell. The cell’s zyxin distribution prior to the shearing process is
presented in (C) while (D) pictures a traction force map with cell’s adhesion patch positions
marked with white crosses and numbers. The force map is calculated using FTTC at t =
0 s. In (E) The shear force exerted by the needle to the cell is compared to the magnitude
of the net traction force vector. The y-components of the traction vectors for the adhesion
patches are plotted for each moment of the experiment in (F).

Because an unperturbed cell, to lowest order, forms a force dipole, while the needle
presents a force monopole, we next calculated the force moments as a function of time
using the special precautions mentioned in section 5.2.3. Fig 5.7 A shows, that for
the cell displayed in Fig 5.4, the monopole increases with time, but the major dipole
does not decrease as expected. The torque remains low but shows a slight upwards
slope. The explanation is provided by Fig 5.7 B, which explicitly shows the monopole
(in red) and the major dipole (in purple). Because they are oriented perpendicularly
to each other, the microneedle pulling does not perturb the cellular dipole for a long
time, until complete failure occurs.

We now turn to an example in which monopole and dipole orientations are co-
linear. For the cell presented in Fig 5.8, only adhesion patches 1, 2 and 3, which - in
contrast to patches 4, 5 and 6 - are loaded in tension, experience an increase in their
traction forces. Furthermore, the traction forces exerted through patch 2 change most
strongly. This is another indication that force components perpendicular to the shear
force vector are not affected by the shearing process as patch 2 lies directly below the
site of shear force exertion and thus has much weaker traction forces perpendicular to
the shearing direction than patches 1 and 3. Fig 5.8 E shows that the total traction
forces exerted through the cell have the same magnitude as the needle shear force,
which conőrms the validity of our approach. In Fig 5.9 I plot the force monopole
as well as the major and minor dipole moments measured during the experiment
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Figure 5.9: Change of force monopole and dipole moments of the cell presented in Fig 5.8
in response to needle shearing. (A) presents the magnitudes of the force monopole, as well
as the major and minor dipole moments and the torque as functions of time. The results
show that the force balance is initially governed by the major dipole moment. However,
the force monopole created by the needle shearing increases over time and governs the force
balance at high shearing forces. (B) shows the force monopole and the major dipole moment
in exemplary force maps recorded during the shearing experiment. The force monopole is
denoted by red arrows while the dipole moment is represented by purple arrows. All arrows
follow the indicated color-coded length scale. Areas where adhesions are predicted from the
cell’s zyxin distribution are marked in gray.

presented in Fig 5.8 as functions of time. These data demonstrate that the force
balance changes from a situation that is governed by the major dipole moment to one
dominated by the force monopole that is created by the needle shearing. While the
adhesions in front of the needle are less exposed to the stress, the ones behind are
subjected to large tensile cytoskeletal forces. Interestingly, the cellular dipole becomes
more and more localized to the tensed region, indicating a strong reorganization or
rearrangement also inside the cell. This is supported by the torque that experiences
a downward slope indicating that the adhesive center becomes more aligned with the
microneedle.

The results presented in Fig 5.10 show once more that not all adhesion patches are
loaded with forces. Patches 1 as well as 4 and 5 were not loaded under an external
shear force. Interestingly, not only patches 2 and 3, which were closest to the external
force application site were loaded, but also adhesion patches 10 and 11, even though
they were further away from the needle than patches 1, 4 and 5. These data suggest
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Figure 5.10: Redistribution of adhesion patch loading after a rupture event. (A) and (B)
show phase contrast images of a microneedle shearing a őbroblast on a PAA substrate. The
cell’s zyxin distribution is visualized in (C). A map of the traction forces at t = 0 s exerted
at the cell’s adhesion patches is presented in (D). The white crosses mark the cell’s adhesion
sites. The force map is calculated using FTTC at t = 0 s. The sum of traction forces
has roughly the same magnitude as the external shear force, as can be seen in (E). The
y-components of the traction vectors for the adhesion patches are plotted in F). The dashed
line marks the rupture of adhesion patches 1, 2 and 3 at t = 32 s

that internal transmission of tension can be long-ranged, for example through stress
őbers, as recently demonstrated by optogenetic control of cell contractility [194]. In
order to analyze this important aspect in detail, future work has to simultaneously
image also the actin cytoskeleton. However, this is very challenging, as we also have
to image the zyxin-marked focal adhesions and the ŕuorescent marker beads in the
elastic substrates.

It is a well-established fact that focal adhesions rupture successively under external
forces [165], nonetheless our results presented in Fig 5.10 quantify for the őrst time the
redistribution of traction forces throughout the cell after the rupture of adhesion sites.
When adhesion patches 1, 2 and 3 ruptured after 32 s (marked by the dashed line)
- even though adhesion patch 1 had barely been loaded with force before that - the
traction forces exerted through all other patches except patch 9 increased substantially.
Interestingly, patches 10 and 11, which had been the only patches that were loaded
strongly prior to the rupture event, were only loaded with a small amount of force
upon the rupture event, while patches 4 and 5, which had been only marginally loaded,
changed their traction forces much more strongly following the rupture event. In the
future, one might use adhesive micropatterns to control the exact location of the
adhesion patches and therefore the way individual adhesion sites are loaded by the
shearing force.

In Fig 5.11 we present the force monopole as well as the major and minor dipole



78 Quantifying force in őbroblasts under external shearing

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

Time [s]

0

2000

4000

6000

8000

10000

12000
M

o
m

e
n
t 

s
tr

e
n
g
h
 [

n
N

µ
m

]

monopole 

major dipole

minor dipole

torque

200 nN

Time = 0.0 s Time = 17.7 s

10 µN µm

Time = 31.8 s

100

200

300

400

500

M
o
n
o
p
o
le

 a
m

p
li
tu

d
e
 [

n
N

]

0.0

0.2

0.4

D
is

p
la

c
e
m

e
n
t 

[µ
m

]

A

B

Figure 5.11: Change of force monopole and dipole moments of the cell presented in Fig 5.10
in response to needle shearing. (A) presents the magnitudes of the force monopole, as well
as the major and minor dipole moments and the torque as functions of time. The results
show that the force balance is initially governed by the major dipole moment. However,
the force monopole created by the needle shearing increases over time and governs the force
balance at high shearing forces. (B) shows the force monopole and the major dipole moment
in exemplary force maps recorded during the shearing experiment. The force monopole is
denoted by red arrows while the dipole moment is represented by purple arrows. All arrows
follow the indicated color-coded length scale. Areas where adhesions are predicted from the
cell’s zyxin distribution are marked in gray.

moments measured during the experiment presented in Fig 5.10 as functions of time.
The behavior is similar to the one presented in Fig 5.9.

Another striking aspect is the fact that the traction forces exerted through patches
2 and 3 started to slowly decrease several seconds prior to the rupturing event. We
observed a similar behavior for adhesion patch 3 of the cell presented in Fig 5.8. This
suggests that the rupture of focal adhesions is not necessarily an instantaneous event,
but that there exist rupture processes of extended duration, which we recorded using
our novel analysis approach. Strikingly, the load on some focal adhesions decreased
prior to rupture while in others, the traction forces increased until they ruptured.
Similar differences in adhesion site behavior have been described before as slip bonds
and catch bonds [195], but in our experimental setting, which analyzes the behavior of
intact cells, the mechanical properties of the cell and force transmission through the
cytoskeleton likely play an important role, too. My new technique and the experiments
of my collaborates hence enable us to reveal possible physical factors that inŕuence
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dynamic changes in force loading of adhesion sites.

5.4 Conclusion

Together with my collaborators, I have introduced a novel method for determining
traction forces in cells under external shear forces. The applicability of this method
has been proven by shearing őbroblasts off their underlying PAA substrates while
monitoring the change in cellular traction forces at speciőc adhesion sites. We have
shown that cells on soft substrates distribute an external shear force non-uniformly
among their adhesion sites, as a function of location and load (tensile vs. compressive).
Notably, we found that force transmission can be long ranged and mainly applies to
adhesions that are under tensile load. This result may be due to the polymeric na-
ture of the cytoskeletal network, which is better suited for the transmission of tensile
forces. As our technique monitors the change in traction forces simultaneously to the
shearing stimulation, it introduces a new quality to the recordings of rupture events
to complement conventional techniques such as the single-cell force spectroscopy. In-
deed, our method can be easily adapted to other force exertion methods and hence is
very versatile and complementary to existing procedures. In the future, it could be
combined with imaging of the cytoskeleton to achieve a more complete understanding
of how force is transmitted through the cell. Moreover, adhesive micropatterns might
be used to better control the positioning of the adhesion patches; with these two el-
ements in place, we expect that our method can be used to achieve a comprehensive
understanding of how force is transmitted through adherent cells.





Chapter 6

Using a conditional invertible neural

network to extract traction forces

In this chapter, I describe a technique that not only predicts forces without the limi-
tations previously presented, but in addition not just gives one dominant solution but
also suggests alternatives by means of conditional invertible neural networks (cINNs).
The design of the neural network and its training strategy has been developed in close
collaboration with Felix Draxler and Ullrich Koethe from the "Computer vision and
learning lab" at Heidelberg University (manuscript 6).

6.1 Motivation

As we have seen in the previous sections, each of the various variants of traction
force inference methods displays certain limitations. While FTTC is sufficient to
reconstruct forces in the majority of cases, we have seen that cases exist, that this
approach is unable to handle due to internal limitations. Another fundamental issue is
the regularization: It has been shown that regularization is essential to avoid incorrect
reconstruction of traction proőles [14], but on the other hand, if a too large regular-
ization is employed, the details of the reconstructed traction őeld are smoothed out
and the overall force magnitude is then too small [13]. As such, a properly regularized
reconstruction is only the best compromise between two undesired factors. Moreover,
the noise conditions, and thereby the optimal parameter values, may also vary within
a set of experiments, which may affect the comparability of different experiments.

In a more structural sense, TFM is a classical inverse problem [196] and neural
networks (NNs) have proven to be an elegant alternative to numerical schemes for
solving inverse problems in the context of elasticity. Exemplary applications can be
found in the context of wrinkling force microscopy [197] and pendant drop tensiometry
[24].

A non-linear reconstruction using deep learning can in principle improve the recon-
struction of traction forces, as it can aim to distinguish noise from signal, but might
face issues with generalization [196].

Deep NNs were őrst employed to implement TFM by Wang and Lin [23]. They
introduced a framework labeled "deep learning for TFM" (DL-TFM), which utilized
a convolutional neural network in a U-Net architecture to estimate the traction forces
exerted by cells from a displacement map. The general ideas of a U-Net architecture
will be described later in this chapter.

In order to train their model, Wang and Lin [23] created a synthetic dataset of
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simulated TFM patterns, where both the deformation and the traction were known.
For this, they used a model for cell migration and generated images that mimic the
situation in amoeboid and mesenchymal cells and also contains artiőcial radial con-
tractile circular patterns in order to improve the isotropy of cells. By doing so, they
obtained a network optimized for circular contractile cells.

Wang and Lin then compared their networks performance to a FTTC reconstruc-
tion and showed that their NN method is able to perform with similar efficiency to
FTTC. In addition, they also tested the model’s robustness against variations in the
input parameters by rescaling the input deformation őelds to account for different
deformation stiffness and force magnitudes and found a good generalization. Finally,
they also compared DL-TFM and FTTC on experimental datasets obtained from NIH
3T3 cells on PAA substrates, where they reaffirmed their results.

An alternative approach was made by Kratz et al. [107]. This approach also
features a U-Net architecture. In their study, they used a much simpler approach
to generate training data. They also motivated their design by claiming that the
innermost layers effectively take a similar role to the application of the Green’s kernel
in FTTC. Rather than doing an elaborate simulation of cell dynamics, they merely
generated an image of randomly distributed traction spots of different sizes, traction
magnitude and orientation. Despite this approach of sampling data generation being
seemingly much less compatible with experimentally observed reconstructions, applied
on experimental data, their results lead to a relatively comparable reconstruction.

Force reconstruction using deep-learning has also been implemented for 3D TFM
by Duan et al. [26]. Training data were generated by subdividing an experimental
observation into a range of sub-images each encompassing a piece of the cell-matrix-
interface. Training the network on confocal microscopy images directly, they focused
on reconstruction of the displacement and used a subsequent analytical layer to obtain
the forces from the displacements. Doing so they were able to reconstruct cell forces
on both numerically generated and experimentally obtained datasets with a similar
accuracy to FEM-based inverse method, but computationally faster.

Neural networks can not only be used to study TFM but also to study cellular force
generation itself, as shown by Schmitt et al. [25]. In their study, they őrst tried to
predict observable cellular forces from the distribution of labeled proteins within the
cells that are expected to show correlation with cellular force generation. By training
a U-Net that tries to predict the traction forces based on each labeling factor, they
then showed, that tractions could be predicted best from zyxin distribution, a protein
found in the focal adhesions of cells. They then moved on to study the exact nature of
the correlation by also building a network to predict the active stresses and adhesion
points needed to describe the cell as a two-dimensional elastic medium. Despite not
using the force distribution during training at all, they could again obtain traction
forces that show close similarity to those obtained via traction force estimates. Finally,
they also studied a setup, in which the neural network is extended by two analytical
layers: First a long-range Green’s function is applied to obtain a potential őeld χ and
a weight őeld ξ, where the traction őeld itself is calculated from a weighted potential
approach τ = ξ(x)∇χ(x). With this they show that force generation can be separated
into a short-range contribution described by the weight őeld and a long-range adhesion
correlation described by the potential őeld χ.

Another very recent approach in a similar direction focused on how forces can
be predicted from the contour proőle of cells. By training a generative adversarial
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network, based on experimental datasets containing the cells proőle as well as their
traction forces, but also simulated ones obtained from a cell monolayer simulation, Li
et al. [109] were able to mimic the distribution of forces.

While NNs have shown great potential in improving traction force reconstruction,
by using any of the above-mentioned approaches, we do learn little on how this is
achieved and how reliable and unique these reconstructions are. We have seen in chap-
ter 2, that the inverse problem is possibly degenerate, which prompted us to include a
regularization. However, regularization does not show how this degeneracy manifests:
Both conventional methods without regularization and the neural network approaches
mentioned do only yield one single solution for the traction forces. Regularized trac-
tion force microscopy offers some limited sampling options based on the choice of the
regularization parameter. While some more advanced methods like Bayesian FTTC
[102] use Bayesian-reasoning, they still arrive at a single unique solution τ (u) and do
not explore the full probability space p(τ |u).

In recent years, signiőcant research into generative networks has been conducted.
Generative approaches, like generative adversarial networks [198, 199], variational
autoencoders [200, 201] and diffusion-based models [202] have proven highly efficient
in returning high likelihood samples from a certain high-dimensional probability space
of reasonable solutions, for example the probability space of facial images.

A third method, invertible NNs [203], has proven to be particular useful in the case
where not an unbounded probability distribution p(τ ) is of interest, but one where we
wish to explore the distribution of possible responses relative to an observable p(τ |u).
This approach, referred to as invertible neural networks (conditional invertible neural
networks (cINNs)) [204], has been successfully used to study conditional probabilities,
that arose when trying to solve inverse problems [205, 206].

In this chapter, we therefore study, how cINNs may be employed to enhance TFM
in order to improve image not only increase the accuracy force reconstruction, but also
to study the invertibility of the forward problem, point out any potential degeneracies
due to noise and quantify the reliability of reconstruction by exploring the conditional
probability p(τ |u).

6.2 Theoretical background

6.2.1 Basic principles of machine learning and neural networks

Machine learning (ML) encompasses data-driven methods that aim to solve an infor-
mation processing tasks in a manner similar to how they would be solved by human or
biological agents [207]. The success of machine learning methods is based on growth
of computation power and the advent of data availability as well as the desire to move
beyond tasks that can be solved using a heuristic strategy [208].

ML problems can be predominantly classiőed into unsupervised and supervised
learning problems [208]:

The őrst case, unsupervised learning consists of problems, where a set of data
records is given and the task is to discover somehow relevant information therein.
It consists of clustering and dimensionality reduction. The aim of clustering is to
establish a partition of the data set into groups that categorize the input data based
on common traits. Dimensionality reduction on the other hand aims to őlter out
the relevant features that set the different data records apart and as such condenses
each record’s information into a low set of parameters. Such techniques can be used to
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identify quantities that can often be related to the cause of some observed phenomena.
In the latter case, supervised learning, a set of input-output pairs is given and the

task is to devise a transformation function that can be used to extrapolate the input
output mapping to other input data points where the corresponding output data point
is unknown.

Supervised learning models distinguish between classiőcation and regression prob-
lems. In a classiőcation problem, the output space consists of a set of discrete labels.
In contrast, in a regression problem the output is a continuous value or a set of such
values [207].

The following description of supervised learning problems and loss functions can
be found in text books, e.g. [207, 208]:

In a mathematical sense, a supervised problem is one where we have a quantity Y

which we are interested in, but in general cannot observe directly. We do, however,
know that there is another quantity X which we can observe directly and which
we assume to have a strong correlation to our desired quantity Y . In a regression
problem, we can describe both quantities by potentially huge vectors of real numbers
(X,Y ∈ R

N). The X is known as the features while Y is known as the response.
In the case of TFM, X = u corresponds to the surface deformation, which can be
directly observed, while Y = τ corresponds to the surface traction. Unfortunately we
do not know the exact relationship between X and Y . We only have a set of data
pairs [(X i,Y i)i=1,...,N ], where we observed both the features and their responses, that
can be used to make estimates about the general relationship between X and Y . This
set is known as the set of training data. The task is now to use this sample data to
explore the relationship between X and Y in order to obtain information about the
response for a particular observation of the features.

The most simplistic description is to assume that our sample data arose from a
statistical model with a deterministic relationship, e.g. Y = f(X) + ε where ε is a
random error with a vanishing expectation value (E(ε) = 0). Unfortunately, the exact
nature of the mapping function f(·) is unknown. We therefore postulate a generic
model f(·, θ) that, for the right choice of the conőguration parameter θ̂, should mimic
f(·) closely. We can then for every set of features X őnd a prediction Ŷ = f(X, θ̂)
of our responses Y . In order to select θ̂ we apply our model to our sample data to
obtain Ŷ i = f(X i, θ̂) and estimate the quality of our reconstruction using a so-called
loss function L(Y i, Ŷ i). We can then őnd a preferred reconstruction by őnding θ̂
such that it minimizes the loss function averaged over all training samples:

θ̂ = argmin
θ

L(θ) (6.1)

where

L = E[L] =
1

N

N∑

i=1

L(Y i, Ŷ i = f(X i, θ)) (6.2)

This optimization process is known as training.
The selection of the generic model f(·, θ) is a particular challenging task. If the

model is too restrictive, there is a real risk that even the best choice of θ̂ does not
result in a function that mimics the true function closely. In contrast, if the model
contains too many parameters this may result in over-őtting. An additional challenge
lies in the fact that the model must be supplemented by a training procedure, an
algorithm to solve Eq 6.1 at least approximately.
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Loss function and model evaluation

Finding a suitable loss function can be motivated in different manners, in the following
I will sketch out the motivation based on probabilistic reasoning, a summary of which
can be found in the book of Barber et al. [207]. The simplest choice of the loss
function is the square distance:

L(Y i, f(X i, θ)) = ||Y i − f(X i, θ)||22. (6.3)

This choice corresponds to the assumption that ε is uniformly Gaussian distributed
meaning that the likelihood for our solution is given by:

p(Y i|X i, θ) = exp

(

− 1

2σ2
||Y i − f(X i, θ)||22

)

(6.4)

The most probable choice of parameters θ̂ is then found by maximizing the posterior
probability p(θ|(Y i)i=1,...,N , (X i)i=1,...,N) with respect to the parameters

θ̂ = argmax
θ

p(θ|(Y i)i=1,...,N , (X i)i=1,...,N)

= argmin
θ

(− log p(θ|(Y i)i=1,...,N , (X i)i=1,...,N)

= argmin
θ

(

− log

(
N∏

i=1

p(Y i|X i, θ)

)

− σ2 log p(θ)

)

= argmin
θ

(
N∑

i=1

||Y i − f(X i, θ)||22 − 2σ2 log p(θ)

)

,

(6.5)

where we have used Bayes’ law in the third row to replace the posterior distribution by
the likelihood and the prior. If we assume all conőgurations to be equally likely, p(θ)
turns into a constant, the last term drops out and we obtain a least-square criterion.

Similar to the regularization in FTTC, we may also impose a non-constant prior
distribution and assume that high model parameters will be unlikely,

p(θ) = exp

(

− 1

2Nσ2
θ

||θ||22
)

. (6.6)

And again following the reasoning laid out while we regularized our inverse problem
for force reconstruction, this results in an additional term in the loss function,

L = Ei

(
||Y i − f(X i, θ)||22

)
+ λ2||θ||22, (6.7)

where we have collected the two variances into a regularization factor λ = σ/σθ.
In order to ensure the reliability and effectiveness of our machine learning model,

the introduction of test data becomes crucial. Test data are a second set of data
tuples [(X i,Y i)i=1,...,Ntest ], similar to the set of training data, but must be clearly
distinct. A common way to achieve this, is by randomly splitting a larger dataset into
two subsets with one serving as training and one as test data. In particular, test data
should not affect the training procedure in any way, to ensure unbiased evaluation and
realistic expectation when encountering unseen data. Test data should also represent
real-world scenarios the model will later encounter after training.
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Test data allow us to assess the model’s generalization and predictive accuracy
on unseen examples. By evaluating the model’s performance on test data, we can
determine its effectiveness, identify overőtting or underőtting issues, compare different
models or hyperparameters (model conőguration parameters not optimized during
training) and evaluate its readiness for deployment.

Calculating the loss function of the test data is the most straightforward way of
comparing generalizability of the model. A large discrepancy in the numerical value
of the loss function calculated from training and the one calculated from test data
indicates overőtting and in this case the model or its hyperparameters need to be
adjusted.

Neural networks

A very successful approach for selecting a model function has been inspired by the way
information is processed in biological neuron cells and is known as neural networks
(NNs), [209, 210].

The core structure of a (feed-forward) neural network is the so-called neuron,
a combination of an affine mapping of the input vector x onto the real numbers,
described by a weight vector w, an offset b and a non-linear activation function ϕ

y = ϕ(z) = ϕ(wTx+ b) (6.8)

The output y is commonly referred to as the activation, while z is often called the
pre-activation.

Multiple neurons are joined in parallel to form a full network layer:

y = l(x|W, ϕ)

= [ϕ (W0 · x+ b0) , ϕ (W1 · x+ b1) , . . . , ϕ (WL−1 · x+ bL−1)]
T

= ϕ (W · x+ b) = ϕ(z).

(6.9)

Here L now describes the number of outputs in this layer and the weights have been
collected into a weight matrix W, consisting of row vectors Wi. Similarly, the offsets
have been collected into an offset vector b. In the last row, we used the convention
that applying ϕ onto a vector is understood to mean element-wise application over the
elements of the pre-activation z = W·x+b. As common in programming we employ a
convention of starting array indices at 0 rather than one, hence b = (b0, b1, . . . , bL−1)

T .
A (deep) neural network is now created by taking a sequence of layers

f(·, θ) = lN ◦ . . . l2 ◦ l1 (6.10)

y(j) = li(y
(j−1)) = l(y(i−1)|W(j), b(j), ϕ(j)). (6.11)

Each layer has its own set of weights. Combined, they form the parameter space
θ = (W(1), b(1),W(2), b(2), . . . ,W(N), b(N)).

The őrst layer y(0) = X is known as the input layer, it is followed by a series of
so-called hidden layers and őnally the output layer y(N) = Y . Notice that each layer
may have a different size. It is quite common for hidden layers to have more nodes
than both the input and output layer.

Training of NNs

Training a NN can be done using gradient descent methods. The simplest approach
is stochastic gradient descent (SGD) [211, 212]. Here we őrst initialize the weights θ
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randomly and then update them using the following procedure:

θk+1 = θk − η∇θE[L]|θ=θk (6.12)

Due to the high number of parameters, in order to train a neural network, the
training data set is fairly large, so using the loss averaged over all training data
(E[L] = 1

N

∑N
i=1 L(Y i, Ŷ i)) at each step would be unfeasible. Therefore, we reorder

the samples and only use a relatively small randomly selected subset I of a őxed size n
(known as batch size) of all training data to average over (E[L] = 1

n

∑

i∈I L(Y i, Ŷ i)).
This technique is therefore known as stochastic gradient descent. An epoch is deőned
as a sequence of steps, after which all training datasets have been used once. The
convergence of this algorithm has been discussed in literature [213].

While SGD has proven to be relatively robust, it may suffer from a number of
shortcomings. If the learning rate is set too high, SGD may reach an oscillatory state
due to overshooting of the optimal parameters. In contrast, if the learning rate is set
too low, this may result in slow or even non-existing convergence. In addition, a very
anisotropic behavior of the loss function surrounding the global optimum may result
in a slow oscillatory descent.

A wide range of different strategies, many of which have been empirically justiőed,
have been developed [214]: Overshooting can be limited by decreasing the learning rate
during training, however, this has to be done manually on a case-by-case bias, while
other oscillatory behavior can be suppressed by introducing a form of momentum,
where the gradient is őrst averaged with the gradient values of previous iteration
steps before being used to adjust the model parameters.

A particularly widely used training strategy, that has proven to show a more rapid
convergence in empirical use, is to introduce both momentum and a form of automatic
learning rate adaptation. This strategy is known as ADAM [197, 215]. ADAM uses
four meta-parameters each given a suggested value by Kingma and Ba [215]:

• β1: First momentum decay rate (suggested value: 0.9).

• β2: Second momentum decay rate (suggested value: 0.999).

• η: Learning rate (suggested value: 0.001).

• ϵ: Small constant for numerical stability (suggested value: 10−8).

The ADAM optimization scheme can then be summarized by the following steps:

1. Initialize parameters: k = 0, m0 = 0, v0 = 0.

2. Repeat the following steps until a convergence criterion is reached:

(a) Increment k.

(b) Compute gradient:
gk = ∇θL|θ=θk−1

.

(c) Find updated biased őrst moment estimate:
mk = β1 ·mk−1 + (1− β1) · gk.

(d) Find updated biased second moment estimate:
vk = β2 · vk−1 + (1− β2) · (gk)2.
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(e) Correct bias in moment estimates:
m̂k =

mk

1−βk
1
, v̂k =

vk
1−βk

2
.

(f) Update parameters:
θk = θk−1 − 1√

v̂k+ϵ
ηm̂k.

Non-linear function and representation theorem

One important choice is the selection of the nonlinear activation functions ϕ(i) in the
network. It is critical in order to make the network able to approximate the ideal
solution f using training 6.1. The universal approximation theorem in its original
form [216] states that at least one ϕ(i) cannot be polynomial in order to achieve this,
but that any function f can in principle be approximated by a single layer network
provided that a sufficient non-polynomial function ϕ(1) is chosen.

Early neural networks would frequently employ sigmoid functions like the hyper-
bolic tangent ϕ(z) = tanh(z) = (exp(z)− exp(−z))/(exp(z)+exp(−z)) or the logistic
function ϕ(z) = 1/(1 + exp(−z)) [209]. However, in recent years the rectiőed linear
unit (ReLU) ϕ(z) = max(0, z) has been most commonly used [210]. This function is
not only more simple to implement computationally but also has a couple of practical
beneőts: First, ReLU avoids the problem of vanishing gradients by having a simple
derivative that does not converge to zero for large pre-activation values. Second, this
also avoids saturation allowing for faster convergence and better gradient ŕow during
training. Finally, ReLU also promotes a sparse activation in the network, that may
be used to reduce computational complexity and memory requirements [214].

A second form of the universal representation theorem states that if ReLU is chosen
as the activation function for all interior layers, a sufficiently deep neural network is
able to approximate any integrable function f [217].

Backward propagation

All iterative optimization schemes rely on the ability to compute the gradient of the
loss function with respect to the weights (∇θ [L(Y , f(X, θ))]). This can be achieved
using a technique known as backward propagation or back-propagation, that makes
use of backward automatic differentiation. For simplicity, we will omit the ground
truth parameter Y in the following. Backward propagation was őrst popularized
for NNs by Rumelhart et al. [218]. A more modern introduction into backward
propagation can be found e.g. in [214].

The primary idea of backward automatic differentiation is the observation that
just like we calculated the value of f(X, θ) using an iterative scheme starting with
y(0) = X and then applying Eq 6.11 recursively to transverse the network in a forward
manner in order to őnally arrive at y(N) = Y and then use this result to evaluate
the loss function (forward propagation), we can use the chain rule to őnd a similar
recursive condition for calculating the gradient of the loss function with respect to
different quantities starting with the last layer and then move backward through the
network (backward propagation).

The gradient of the loss function with respect to the pre-activation within the
different layers is given by:

z(j) = ∇zL ◦ lN ◦ . . . ◦ lj+1 ◦ ϕ|z=z(j) . (6.13)

For the output layer, we can apply the chain rule to relate z(j) to the partial
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derivatives of the loss function, which have to be analytically known.

z(N) =
∂

∂yk
L

∣
∣
∣
∣
y=Y

⊙ ϕ′(N)(z(N))

Here, ⊙ denotes the element-wise multiplication and we use ϕ′(j)(z(j)) to represent the
derivative of the activation function in the jth layer with respect to its input evaluated
at its corresponding pre-activation z(j).

The other gradients can now be calculated using the chain rule, in order to yield
a recursive relationship [219]:

z
(j)
k =

∂

∂yk
L ◦ lN ◦ . . . ◦ lj+1

∣
∣
∣
∣
y=ϕ(z(j))

ϕ′
(

z
(j)
k

)

=



∇zL . . . lj+2 ◦ ϕ|z=z(j+1) ·
∂W(j+1) · y + b(j+1)

∂yk

∣
∣
∣
∣
∣
y=ϕ(z(j))



ϕ′
(

z
(j)
k

)

=
(
z(j+1) ·W(j+1) · ek

)
ϕ′
(

z
(j)
k

)

z(j) =
(
(W(j+1))T · z(i+1)

)
⊙ ϕ′(j)(z(j))

(6.14)

Again, by applying the chain rule, one can now őnd the gradient contribution of
the current sample with respect to the weights and offsets in each layer [219]:

W
(j)

kl =
∂L ◦ f
∂W

(j)
kl

= ∇zL ◦ lN ◦ . . . ◦ lj+1 ◦ ϕ|z=z(j) · ∂

∂W
(j)
kl

(

W(j) · y + b(j)
)

= z
(j)
k y

(j)
l

(6.15)

b
(j)

k =
∂L ◦ f
∂b

(j)
k

= ∇zL ◦ lN ◦ . . . ◦ lj+1 ◦ ϕ|z=z(j) · ∂

∂b
(j)
k

(

W(j) · y + b(j)
)

= z
(j)
k

(6.16)

Modern machine learning frameworks like pyTorch [220] can typically perform back-
propagation without the back-propagation steps being written explicitly in the pro-
gram code. To achieve this, when the program code is evaluated in training mode, each
őeld variable is extended by a gradient őeld, that is őrst initialized to zero. During
the forward operation, the program will not only compute the results of each atomic
operation but also build a computation graph culminating in the computation of the
loss function value L = E [L]. Then starting with L = ∂L

∂L
= 1, the computation graph

is evaluated and for each input, weight or intermediate result x the value x = ∂L
∂x

is
found by making use of the fact, that for all intermediates yi that directly depend on
x via a relation yi = fi(. . . , x, . . .) we can őnd a recursive relationship.

x =
∂L

∂x
=
∑

i

∂L

∂yi

∂fi
∂x

=
∑

i

yi
∂fi
∂x

. (6.17)
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This strategy allows for a more ŕexible network structure. For example, certain infor-
mation can be passed alongside individual layers to be merged in again at a later point
or normalization layers may be introduced in which the activations are divided by their
average. Libraries such as pyTorch [220] contain an assortment of such structures.

Convolutional Neural networks

A slight variation of the standard neural network layer is often used when dealing
with grid-structured data such as images and is also used in all machine learning
methods for TFM: These data often have a huge number of input and output nodes
and also generally show some kind of translational invariance, meaning that if we
őnd a correspondence between an input őeld X(x) and an output őeld Y (x), we
predict, that a translated input X(x + a) should correspond to a translated output
Y (x = a). Linear operations that maintain this kind of relationship can be expressed
as convolution of the input, meaning:

Y (x) =

∫

K(x− x′)X(x′) dx (6.18)

One idea is therefore to replace the general fully connected formula for calculating
the pre-activation z = W · x + b by a convolution-based expression. For image-like
data, the inputs are usually described by a őeld of grid-sampled data. However, the
sampling is usually not over a grid of values, but instead each grid point is attributed
a vector-valued observation. For an image, the different values may describe the
different chromatic contributions, while for medical data, the different ŕuorescent
channels may be used. In traction force microscopy these different channels hold the
x and y component of the deformation, respectively. Consequently, in general the
input őeld X contains elements Xi,j,k, where the őrst index i goes over the number of
channels, while the other indices j and k would iterate over the width and height of
the input data. Similar to the nodes in the hidden layers, the output layer may also
have a different number of channels.

A convolutional layer may now be described by [214, 221]:

zi,j,k = c(X|K, s, b) = bi +

Cin∑

l=0

N−1∑

m=0

N−1∑

n=0

Ki,l,m,nXl,j·s+m,k·s+n. (6.19)

Here b now gives a bias for each layer, while the four-dimensional tensor K has the
dimension Cout × Cin × N × N . The parameters Cin and Cout describe the number
of channels in the input and output of each layer. Each element Ki,l,m,n describes
the m,n component of the connection kernel matrix connecting input channel l to
the output channel i. The parameter N describes the size of the kernel support and
thus the maximum distance in which input nodes affect the pre-activation at a given
sampling point. s describes the so-called stride, the number of pixels the kernel moves
forward to calculate the next datapoint in the pre-activation. A stride larger than 1
will result in a downsampling of the image.

Notice that the width and the height of the output is smaller than the input image.
To avoid this, the input is often augmented before each convolution by inserting a
speciőc number P of additional input nodes at the boundaries of the grid, which will
increase the size of the input by 2P in each direction. The additional nodes are either
őlled with zero, or are found by imposing some kind of symmetry condition on the
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Figure 6.1: Schematic depiction of the UNet architecture used in this chapter. Down-
sampling reduces the image resolution enabling the detection of longer-ranged correlations.
Upsampling reconstructs the image resolution. The model is fully convolutional. If the input
size is larger, the pixel size in each layer changes appropriately. In the őgure I use u for the
input and τ describing the U-Net conőguration that would be used to predict tractions from
deformations directly. In this study, however, I will use the U-Net only as a precondition
step, details are explained in section 6.3.1

input data. The relationship in size prior to padding and after application of the
convolution is now given by [220]:

Wout =

⌊
Win −N + 2P

s

⌋

Hout =

⌊
Win −N + 2P

s

⌋

(6.20)

Like in the fully connected case, we can use backward propagation to calculate the

gradients with respect to b(j) and K
(j)

i,l,m,n. They are given by [219]:

y
(j)
l,m,n =

Cout∑

i=0

Hout∑

p=0

Wout∑

q=0

N−1∑

m′=0

N−1∑

n′=0

Ki,l,m′,n′z
(j+1)
l,p,q δm,p·s+m′δn,q·s+n′ (6.21)

z
(j)
l,m,n = y

(j)
l,m,n · ϕ′(z

(j)
l,m,n) (6.22)

b
(j)

i =
Hout∑

m=0

Wout∑

n=0

z
(j)
i,m,n (6.23)

K
(j)

i,l,m,n =
Hout∑

p=0

Wout∑

q=0

z
(j)
i,m,ny

(j)
l,p·s+m,q·s+n (6.24)

where Cout, Hout, Wout, N and M describe the corresponding quantities for layer j
respectively.

A major beneőt of using connected layers is also the ŕexibility in input size. A
fully convolutional network, meaning a network without dense layers, can often be
applied to images with a different size of what it has been trained on.

6.2.2 U-Net architecture

One principal shortcoming of simply using a set of convolutional layers is the limited
context: Each convolutional layer has only a very restricted receptive őeld due to its
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őnite kernel size. In principle this could be overcome by increasing the kernel size,
however, this would drastically increase the degrees of freedom. The U-Net, an archi-
tecture őrst proposed by Ronneberger et al. [108] for Biomedical Image Segmentation,
tries to overcome this issue. A variant of the U-Net architecture is visualized in Fig
6.1. The principal idea is to intermix convolutional layers with downsampling steps,
that merge neighboring nodes of the same channel into one pixel. Each downsampling
step reduces the width and height of the intermediate output. Information can thus
be processed at a different length scale. The downsampling steps are followed by an
equal number of upsampling steps. In each upsampling step, we increase the width
and height of the intermediate output and then concatenate it with the output of
the last layer prior to downsampling. This procedure reintroduces local information.
The U-Net architecture has been successfully employed in a wide range of problems
including problems related to bio-imaging and traction force estimation techniques
[23, 25, 107, 108, 222].

6.2.3 Conditional invertible neural networks

In the previous section we have always assumed a simple deterministic relationship
between the features and the response Y = f(X) + ε. In general, however, this is
not true. There may be no deterministic relationship between the features and the
response at all. Rather than trying to approximate the function f(·) we hence need
to look into the full probabilistic picture. A very elegant solution to do so has been
suggested by Ardizzone et al. [203, 204].

The relation between our features and our response can be described more generally
by their full posterior probability density, p(Y |X). In many cases, however, the
inverse relationship is better understood and can be described by a model X =
s(Y ) + ε. Motivated by this, we now introduce a random variable z ∈ R

K with
the same dimensionality as Y , and which we impose to have been distributed by a
standard distribution

z = f(Y ;X) z ∼ pZ(z) = N (z|0, IK) = (2π)K/2 exp
(
−z2

)
. (6.25)

The tilde here reads "distributed by". It can be shown that demanding such a pairwise
independent Gaussian distribution for the so-called latent variables does not impose
any additional restriction [223]. Just like in the simplistic description, we assume that
we can approximate f(Y ;X) by a traceable model f(Y ;X, θ).

If we now assume that the mapping f(Y ;X, θ) is invertible in its őrst component,
meaning a g(z;X, θ) such that g(·;X, θ) = f−1(·;X, θ) exists, the new quantity z

contains the latent variables, or information, which is contained in Y but cannot be
reconstructed from X.

We can now describe p(Y |X) by a coordinate transform [204]:

pY (Y |X, θ) = pZ(z = f(Y ;X, θ))

∣
∣
∣
∣
det

(
∂f

∂Y

)∣
∣
∣
∣
. (6.26)

Here we used ∂f/∂Y to describe the Jacobian of f .
In order to determine the model parameters θ we use Bayes’ theorem which gives

us the posterior over the model parameters

p(θ|X,Y ) ∝ pY (Y |X) · pθ(θ). (6.27)
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Figure 6.2: Visualization of an invertible coupling block. In the forward process (A) the
input u is őrst split into two parts. The őrst sub-network is used to generate the transforma-
tion parameters s1(u2, c) and t1(u2, c) to transform the őrst component u1. The transformed
őrst component v1 is then passed to the second network to generate the transformation pa-
rameters s2(v1, c) and t2(v1, c) to generate the transformed second component v2. (B) The
transformation can be reversed without requiring the subnets to be invertible. Both trans-
formations can be controlled by a conditioning parameter c, that is passed to the subnets.

Like in Eq 6.5, our goal is to őnd the network parameters that maximize this posterior,
which can be achieved by minimizing the loss [204]

L = Ei[− log(pY (Y i|X i, θ))]− log(pθ(θ)). (6.28)

If we now insert Eq 6.26 with the standard Gaussian Eq 6.25 and also introduce a
Gaussian prior on the weights like in Eq 6.6, we obtain

L = Ei

[

∥f(Y i;X i, θ)∥22
2

− log |Ji|
]

+ τ ∥θ∥22 . (6.29)

Ji is the determinate of the Jacobian introduced in Eq 6.26 and τ = 1/2σ2
θ . The case

of τ = 0 corresponds to an equal probability prior.
The function f completely describes the distribution of Y . For a given so-called

conditioning input X we can now őnd realizations of Y by drawing realizations of z
and calculate Y gen := g(z;X, θ).

Invertible architecture

If we now want to describe f(Y ,X, θ) by a traceable model using a neural network, we
need to construct this model in a speciőc manner, such that it is trivially invertible.
This can be achieved by building our network based on invertible coupling blocks
using an architecture őrst proposed by Dinh et al. [224], which is visualized in Fig
6.2. In order to do so, in each block, the block input u is split into two equal parts
[u1,u2] which are then passed through a layer of affine transformations

v1 = u1 ⊙ exp(s1(u2)) + t1(u2), (6.30)

v2 = u2 ⊙ exp(s2(v1)) + t2(v1). (6.31)

The outputs [v1,v2] can then subsequently be rejoined and passed on to the subse-
quent coupling block. The functions s1,2 and t1,2 may also take the conditioning X
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Figure 6.3: CINN architecture used for TFM. The input deformation őeld is őrst processed
by a preprocessing network following the U-Net architecture the cINN itself consists of 4
individual subnet blocks. Each subblock is constructed out of 4 convolutional layers using a
ReLU non-linear function.

as an additional input. They can be represented by arbitrary NNs. While the sub-
net functions s1,2 and t1,2 are not necessarily invertible and can only be evaluated in
forward direction, the entire coupling block can be inverted:

u2 = (v2 − t2(v1))⊘ exp(s2(v1)), (6.32)

u1 = (v1 − t1(u2))⊘ exp(s1(u2)). (6.33)

The symbol ⊘ here describes element-wise division. As shown by Dinh et al. [224]
the logarithm of the Jacobian determinant of this coupling block can be obtained
by simply summing up the results of s1(u2) and s2(v1) over all output nodes. The
functioning of an invertible coupling block is detailed in Fig 6.2.

Such a NN which describes, relative to a conditioning input, an invertible map
between particular realizations of a certain quantity and its latent space equivalent is
known as a conditional invertible neural network (cINN) [204].

6.3 Application to TFM

6.3.1 Model selection

For application in TFM, I use a cINN, whose network architecture is shown in Fig 6.3.
I use a U-Net architecture with 2 downsampling steps as a preprocessing step for our
conditioning input and use a network consisting of 4 consecutive invertible blocks,
with subnets each consisting of 8 layers with a relatively large kernel size of 16x16.
The idea is that the U-Net should ensure the distribution of the overall network, while
the individual layers predict the local structure of the network. Using the U-Net for
preconditioning ensures that the network is able to efficiently propagate long-range
interactions.

6.3.2 Sample generation framework

The primary bottleneck of machine learning methods is the availability of training
and test data: Either the goal of our algorithm must be sufficiently ŕexible to allow
for unsupervised algorithms or we must have a relatively large set of realizations of
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our problem where both the input and the correct response are known by a priori
means.

For simple problems that mimic human perception and response and do not aim to
excel human abilities one could simply manually perform this task [225], however, it is
obvious that such an approach is not feasible for problems like TFM. Given that TFM
is an inverse problem, the idea is to start with the traction őeld and solve the forward
problem to obtain a deformation őeld. In a subsequent step, random perturbations
are added to the resulting deformation őeld.

To obtain traction őelds, there are now multiple strategies as well. One obvious
approach would be to obtain datasets where the force is obtained using different,
non-TFM based methods, however, this approach not only requires extensive data
collection, but this strategy would maintain all shortcomings and issues of this alter-
native observation method.

The previous attempts to apply machine learning to TFM therefore used a different
strategy to obtain training data [23, 107]: Generate synthetic data and then use them
for the training. The main beneőt of this approach is that it is in principle unbiased
with respect to speciőc external observations. Also, shortcomings in the generalization
of the model should be more apparent.

For my analysis, I have chosen a sample generation routine that is a somehow
intermediate variant of the approaches described in [23] and [107]. The intention is
to simulate adhesion proőles that superőcially mimic the distribution of adhesions as
seen in actively contracting cells like őbroblasts. By doing so, I hope to ensure that
a certain correlation between different adhesion sites is maintained while avoiding
biasing due to the use of a certain speciőc model.

We will build up the deformation proőle analytically from circular adhesion pro-
őles. To do so, we perform our generation in 3 steps:

• Deőne a "cell boundary" that references the rough position of each adhesion.

• Distribute the adhesion sites and obtain their radial and angular coordinates.

• Determine the force contribution of each adhesion site

Creating Cell boundaries

As adhesions are predominantly found close the cell boundary, in a őrst step, we
generate a cell shape approximation. We can model each cell by an area

Ωrϕ,x0,y0 = (x, y) ∈ R
2|(x− x0)

2 + (y − y0)
2 < r(ϕ) (6.34)

where (x0, y0) describes some reference point close to the cell center, ϕ describes the
orientation of the vector (x − x0, y − y0)

T and r : [0, 2π) → R describes the radial
extent of the cell. In order to get smooth contours, we model r(ϕ) by a Fourier like
representation

r(ϕ) = R0

(

a0 +
a1
2η

+

Nsh∑

k=3

ai
kη

cos ((k − 1)(ϕ+ αi))

)

, (6.35)

where R0 describes the cell size and η describes a suppression factor that can be used
to control the roundness of the cell. The special treatment of the őrst two coefficients
avoids malformed cell shapes.



96 Application to TFM

Figure 6.4: Samples of synthetic cell shapes. The blue contour indicates the cell shape,
while orange indicates the regions where the adhesion sites are and forces act.

The full shape is now described in terms of its radial parameters ai and its phase
parameters αi. The ai are drawn from a uniform distribution U

(
1
4
, 1
)
, while the αi

are drawn from a uniform distribution U(0, 2π).
I also deőne the dominant axis for each cell such that it links up with the dominant

direction of elongation. The algorithm can be found in the appendix, section A.5. In
the following, I will use α to designate its orientation relative to the x axis.

The just described procedure generates a wide range of cell shapes as seen in
Fig 6.4.

It should be noticed, that compared to real cell shapes, these synthetic cells do
not necessarily represent the real cell shapes, as this procedure does not replicated
details such as invaginated arcs or őlopodia. However, as we will see in subsequent
steps, only the protrusive parts of this contour line bear signiőcant relevance.

Distribution of adhesion sites

In a subsequent step, we determine the positions ϕi of the individual adhesion sites.
For this, we try to favor crypts and protrusive areas. To do so, we randomly draw
angles from the distribution

p(ϕi) ∝







(
r(ϕ)
rmax

)f
r′′(ϕi)
cmax

≤ ct

0 r′′(ϕi)
cmax

> ct
, (6.36)

where rmax = maxϕ r(ϕ) and cmax = maxϕ r
′′(ϕ).

The case switching ensures that adhesions are predominantly found in protrusion
like areas, which is controlled by a threshold parameter ct. The inner term ensures
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that placing adhesions at points close to the cell center is suppressed and is controlled
by a parameter f .

Sampling this function can be easily conducted using the rejection method as
described in [226], by drawing a trial ϕi from a suitable range of angles and a test
parameter ui ∈ [0, 1] from a uniform distribution until the drawn value for ui is smaller
than the left-hand side of Eq 6.36.

I also avoid distributing all adhesion sites on one side of the cell. This is done by
splitting the cell in halve orthogonal to its dominant axis and distributing the same
number of adhesions in each halve.

In order to scatter the radial position, I introduce a specially designed random
number distribution deőned by a probability density pd(x) given by:

pd(x|a, b, d) =
{

1
b−a

− 6c
(b−a)3

[(
x− a+b

2

)2 − (b−a)2

12

]

x ∈ [a, b]

0 else
. (6.37)

Here, the variable c may be chosen arbitrarily and can be used to restrict how narrow
the adhesions should be distributed relative to the contour line. This distribution is
chosen such that parameters can be strictly restricted to a certain range [a, b] with
some emphasis on values being located close to the range’s median and mean value.

We őnd the cumulant of this distribution to be:

Pd(X ≤ x) =







0 x ≤ a
2−c

2(b−a)
(x− a) + 2c

(b−a)3

(
x− b+a

2

)3
+ 2c

(b−a)3

(
b−a
2

)3
x ∈ [a, b]

1 x > a

(6.38)

By using the transformation theorem [226], we can thus generate realizations of this
distribution by drawing a realization z from the uniform distribution between 0 and
1 and then őnd the value x such that z = P (x).

We őnally calculate the radial position of each adhesion by:

ri = r(ϕi) + ε where

ε ∼ pd(·|c,−s · rmax, s · rmax)
(6.39)

where the parameters s and d describe the degree of scattering.

Distribution of force strengths

We assume that the force vector at each adhesion site can be described by two com-
ponents: A radial component pulling towards the reference point (x0, y0)

T weighted
with a factor ai and a contractile component parallel to the cell’s main axis, weighted
with a factor bi.

F i =

(
bi cos(α)− ai cos(ϕi)
bi sin(α)− ai sin(ϕi)

)

(6.40)

It can easily be shown, that this representation is merely a reparameterization and
does not introduce any loss of generality. We now enforce two constraints that the
overall adhesion distribution should fulőll. First we enforce that the overall cell should
maintain force balance, meaning that:

F tot =
∑

i

F i = 0, (6.41)
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which can be transformed into

0 =
∑

i

bi − ai cos γi, (6.42)

0 = −
∑

i

ai sin γi, (6.43)

where we used the abbreviation γi := ϕi − α.
Second, we also deőne the contractile moment matrix with respect to the reference

point:

M =
∑

i

(
Fx,ixi

1
2
(Fx,iyi + Fy,ixi)

1
2
(Fx,iyi + Fy,ixi) Fy,iyi

)

. (6.44)

We now impose the constraint that the contractile moment matrix should have dipole
axes that correspond to the dominant axis and its normal, where we observe the major
and minor dipole moments M1 and M2 < M1 respectively:

M = R(α) ·
(
M1 0
0 M2

)

·RT (α) R(α) =

(
cos(α) − sin(α)
sin(α) cos(α)

)

. (6.45)

This results in

M1 =
∑

i

ri cos γi (bi − ai cos γi) , (6.46)

M2 = −
∑

i

riai sin
2γi, (6.47)

0 =
∑

i

ri (sin γi (bi − ai cos γi)− ai cos γi sin γi) . (6.48)

In order to őnd a unique solution, we now őx M1 and M2 and impose an opti-
mization criterion, namely that all ai and bi should be equal, this is to ensure that
force contributions are all in a similar range and in absence of exterior constrains
cells distribute forces equally over their focal adhesions. This results in a constrained
optimization problem

argmin
a,b,ai,bi

∑

i

(ai − a)2 + (bi − b)2

such that Eq 6.42, 6.43 and 6.46 to 6.48 hold.
(6.49)

This problem can now be efficiently formulated using Lagrangian multipliers and
explicitly be reduced to a linear system of equations, where I őrst determine the
values of a, b and all Lagrangian multipliers before using these 7 values to calculate
ai and bi using a matrix multiplication and use them to őnd F i using Eq 6.41.

Generation of force maps

Each adhesion site is now modeled by a circular adhesive patch. We use the analytical
solutions described in section 5.2.2 for each individual patch.

We now specify τ (x, y|a,F , c = 1) to be a constant-traction proőle with radius a
and total transmitted force F as described in Eq 2.44 with the corresponding defor-
mation proőle u(x, y|a,F , c = 1) as described in Eq 2.45 and 2.46.
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Figure 6.5: Generated traction and deformation samples. 6 samples are shown with their
traction őeld u and their deformation őeld τ . The deformation is in all cases shown below
the corresponding traction. For visualization a substrate stiffness of 6.7 kPa is assumed.
Displacement is shown prior to the addition of noise.
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Similarly, we specify τ (x, y|a,F , c = 0) and u(x, y|a,F , c = 0) to be a Hertz-like
proőle as described in Eq 2.56, 2.57 and 2.58.

We can now generate a complete traction map by picking a position for the cell
center, x0, y0 őnding the positions and force magnitudes of all adhesions and build up
an adhesive proőle using the linearity of linear elasticity

τ (x, y) =
∑

i

τ (x− xi, y − yi|ai,F i, ci)

u(x, y) =
∑

i

u(x− xi, y − yi|ai,F i, ci).
(6.50)

The values for ci ∈ 0, 1 can be used to select between Hertz-like and Heavyside like
proőles. A random selection between both proőles reduces the dependency of the
network on one particular adhesion layout. In order to simulate experimental data,
Eq 6.50 is evaluated on a regularly spaced grid. In order to simulate the reconstruction,
a point-wise Gaussian noise is then added to the deformation components.

As seen in Fig 6.5 we can generate a wide variety of samples using this process.

6.3.3 Experimental Data

For an evaluation of my method, I use two different sets of experimental data from
different cell lines.

The őrst dataset contains traction force imaging data for human induced pluripo-
tent stem cell derived cardiomyocytes (hiPSCs). Cardiomyocytes are cells found in
the heart which are responsible for contraction [227]. Somatic cells can revert to a
pluripotent state under the inŕuence of Yamanaka factors [228]. From this, hiPSCs
can be derived [229]. hiPSCs behave similar to cardiomyocytes in early stages of car-
diac development and are employed in the study of genetically caused diseases due to
the more simple and systematic way to obtain them compared to the extraction of
cells from an in vivo environment [230].

Protocols to grow hiPSCs showing highly phenotypic behavior of both atrial and
ventricular cardiomyocytes have been well established [231ś233]. The cardiomyocytes
used in this study have been grown at the Stem Cell Unit of the University of Göttin-
gen using a microcontact printing protocol established by Valentina Kuhn [234, 235]
and were originally used as part of a study to observe the effects of the mutation
R331Q of the LMNA gene found to be causing an increase of sudden death rates
[236]. Experiments and gel deformation observations were conducted by Christina
Goss, Valentina Kuhn, Anna Zelená, Isabelle Refke and Mangalika Sinha under the
guidance of Sarah Köster and are presented in [234, 235, 237]. I brieŕy describe the
experimental procedures in the appendix, section B.2

Their clearly bipolar, contractile peaks as well as the clearly predictable direction
of force generation, makes this kind of data an ideal candidate for evaluation of my
method. In this study I only use the wild type examples.

The second dataset used to evaluate cINN-based TFM is based on the study pre-
sented in manuscript 4 in which I, together with experimental collaborators, used
traction force microscopy to study force generation in human blood platelets or throm-
bocytes by őlamentous actomyosin structures.

Thrombocytes play an integral role in wound healing by facilitating blood clotting.
When a blood vessel is damaged, thrombocytes adhere to the surrounding matrix and
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Parameter value
Cell scale R0 12 µm
Number of shape modes Nsh 7
Mode suppression factor η 1.1
Number of adhesions Nadh 900
Scattering spread factor c 0.5
Major dipole moment M1 0.74NadhR0

Major dipole moment M2 0.25M1

Force map resolution 0.8 µm/pixel

Table 6.1: Parameters used for sample generation

contract to form a clot. This helps to restore normal blood circulation. The hemo-
static function of thrombocytes is directly related to their mechanics and cytoskeletal
organization. It is known that during spreading thrombocytes reorganize their cy-
toskeleton within minutes, which leads to the formation of contractile actomyosin
bundles. However, previous research has not revealed a direct correlation between the
emerging actin structures and the force őeld that is exerted to the environment. In
our study, we therefore combined ŕuorescence imaging of the actin structures with
simultaneous traction force measurements in a time-resolved manner and also imaged
the őnal states with super-resolution microscopy. Our study found that both force
őelds and cell shapes had clear geometrical patterns deőned by stress őbers and force
generation was localized in a few hotspots, which appear early during spreading, and
in the mature state anchor stress őbers in focal adhesions. The study also revealed
that for gel stiffness in the physiological range, force generation is a very robust mech-
anism and we observed no systematic dependence on the amount of added thrombin
in solution or őbrinogen coverage on the substrate. This suggested that force gener-
ation after thrombocyte activation is a threshold phenomenon that ensures reliable
thrombus contraction in diverse environments. The experimental details are described
in the appendix, section B.3.

Because super-resolution micrographs of the actin cytoskeleton and of vinculin,
which is found in focal adhesions, are recorded in the experiment, the force generation
mechanism of the cell could be observed directly. These additional observations can
serve as an alternative indicator to reason about the plausibility of the observed force
patterns. In combination with the more complex patterns of adhesion found in these
cells, thrombocytes are another interesting candidate for evaluating the capabilities
of cINN-base TFM.

6.4 Training

I generated a training dataset that consists of 10000 data-samples of a size of 128x128
pixels, with a resolution of 0.8 µm per pixel. 1000 data samples were used for val-
idation, while the remaining 90% were used for training. Since force strength only
depends on the choice of the Young’s modulus E we used a unit-less convention
E = 0.5 for the simulation. This factor improved training stability. Force predictions
made by the network thus need to be multiplied by 2E to obtain physical dimensions.
The conőguration parameters used for training are given in Tab 6.1.

The ADAM optimization scheme was employed and training used 71 epochs until
a high level of convergence was reached.
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Figure 6.6: Reconstruction for a validation dataset. Plots (A, B, C, D) show őeld mag-
nitudes, plots (A’, B’, C’, D’) show orientation. (A, A’) Simulated deformation őeld. The
white square indicates the focus area that will be used in Fig 6.8 and Fig 6.9 (B, B’) Ground
truth traction. (C, C’) cINN prediction averaged over multiple traction realization. (D, D’)
FTTC traction prediction. An orientation of 0 degrees corresponds to a force in leftward di-
rection. Positive angles indicate forces pulling in downward direction. Points with negligible
traction magnitude are conventionally assigned a leftward orientation (0°). All coordinate
axes show lengths in micrometers.
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6.5 Network evaluation

I őrst verify our reconstruction on a simulated dataset taken from our validation data.
The results of this are shown in Fig 6.6. Other datasets with different magnitudes
show similar behavior and can be found in the appendix, Fig C.2 and Fig C.3. The
őrst two plots, Fig 6.6 A and A’, show the simulated input deformation őeld. Next,
the true traction őeld, the deformation has been obtained from, is shown in Fig 6.6 B
and B’. Because tractions and deformations are vector quantities, in the following, I
show each őeld in two distinct plots, where the orientation plot is given the same letter
as the magnitude plot, except that a prime is affixed to the plot label. After that, I
show the force reconstructions using the cINN (Fig 6.6 C and C’) and FTTC (Fig 6.6
D and D’). For the cINN reconstruction, I have averaged over 50 individual traction
realizations obtained from our neural network to get sufficient statistics. For the
FTTC reconstruction I used an optimized regularization parameter λ = 0.55 as well
as a Tukey windowing function active in the outermost 10 pixels to avoid boundary
artifacts. Both the cINN as well as the FTTC were able to reconstruct the layout.
The cINN was in addition able to correctly recognize and remove the background
noise in the signal. It can be veriőed that for an input where the deformation data
purely consists of noise, our network is able to correctly predict the complete absence
of forces. This proves that in principle a cINN architecture is able to solve the inverse
problem of mechanical traction on an elastic halfspace on the macro-scale.

In order to study the micro-scale of the force reconstruction, I now focused closer
onto the area immediately adjacent to the lower two adhesions that has been marked
by a white square in Fig 6.6 A and A’. This detaining view is presented in őgure
Fig 6.7, where I again show the deformation őeld (Fig 6.7 A and A’), the true traction
őeld (Fig 6.7 B and B’), as well as the force reconstructions using cINN (Fig 6.7 C
and C’) and FTTC (Fig 6.7 D and D’). We can see that the addition of noise in our

°
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A BInput Deformation cINN mean predictionC

Figure 6.7: Zoomed-in view of validation dataset reconstruction showing the reconstruction
in the area marked by a weight square in Fig 6.6. Plots (A, B, C, D) show őeld magnitudes,
plots (A’, B’, C’, D’) show orientations. (A, A’) Simulated deformation őeld. (B, B’) Ground
truth traction. (C, C’) cINN prediction averaged over multiple traction realization. (D, D’)
FTTC traction prediction.
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Figure 6.8: Probability space sampling for the validation dataset in the zoomed-in view.
(A, A’) Traction magnitudes (A) and orientation (A’) for a singular cINN-realization. White
color is used for points where traction magnitude is generally to small to calculate a mean-
ingful orientation. (B, B’) Another realization, again showing traction magnitudes (B) and
orientation (B’). (C, C’) A third realization. (D) Relative standard deviation (σ/µ) of trac-
tion magnitude at each sampling point. White corresponds to sampling points where the
variation is exceeding 1, meaning that individual traction predictions at this locality are no
longer signiőcant statistically. (E) Standard deviation (σ) for traction orientation at each
sampling point.

sample dataset resulted in a loss of traction resolution. The averaged prediction given
by the cINN appears smoothed compared to the ground truth force and the contour
line of each adhesion has been reduced in length and complexity. Despite of this, some
details like the two locations of strong forces next to the outer edges of the adhesion
have been retained. The cINN reconstruction on our validation dataset exceeds the
prediction made using FTTC, both in predicting the correct magnitude as well as in
signal clearness and orientation reconstruction.

Next, I try to explore the probability space of our sample reconstruction. The
results of this analysis are shown in Fig 6.8. We can see that the different traction
reconstructions feature signiőcant variations in magnitude, but not in angle, which
reŕects the behavior of the input dataset. We can see that the network aims to recreate
different distributions of adhesions with points of high force transmission situated at
different sites of the adhesive area. The standard deviation of the traction magnitude,
displayed in Fig 6.8 D shows that the variability of traction reconstruction is relatively
consistent within the cell and only marginally lower than in the background. However,
there is a huge uncertainty with respect to the exact cell boundary, which can be seen
by the white contour line. In contrast, the reconstruction of the angle is relatively
unambiguously based on the input data. In Fig 6.8 E, I present the variability in the
reconstruction of orientation. Overall, the variability is very low, however, in small
adhesions, the reconstruction in the left and right, when seen from the contractile
center, delimiting point of the adhesive areas found to be very unreliable.

One primary beneőt of the cINN architecture is the fact that it not only predicts
the variability of the reconstruction in each sampling point but also detects strong
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Figure 6.9: Regional quantitative behavior of the responsive őeld. (A to C) Integrated
force in the zoomed-in view for differ realizations, in comparison to the ground truth, the
force obtained from the averaged traction plot and the FTTC prediction for different con-
őgurations in the validation dataset. (A) corresponds to the conőguration shown in Fig 6.6
to Fig 6.8. (D) Nearest neighbor correlation of traction magnitude reconstruction for two
adjacent sampling points net to the point of maximal deformation.

correlations between different sampling points. We can see this when calculating the
force transmitted in the zoomed-in window by integrating its traction. This is shown
in Fig 6.9 A to C. The neural network predicts the integrated force to be distributed
by a unimodal distribution and it shows a signiőcant covariance and anisotropy in the
distribution of traction in each sampling point.

The correlation in the reconstruction of traction magnitude between two adjacent
sampling points is shown in Fig 6.9 D. We can see that in particular strong forces
are show a highly level of correlation. While the distribution of traction magnitude
in a single sampling point is unimodal and closely biased towards 0, a large traction
magnitude in one sampling point never coincides with large traction value in the other
sampling. I hence predict, that the value taken by the probability density function
p(τ1, τ2), where τ1 and τ2 are the realizations of the traction at the two adjacent

sampling points, is somehow related to dp(τ1, τ2) = (τ p1 + τ p2 )
1
p for some p ∈ (0, 0.5)

via a monotonous transform.

6.6 Application to experimental data

After studying the networks performance on synthetic data, I applied my neural net-
work to the experimental data obtained for cardiomyocytes. The results from this
analysis are shown in Fig 6.10. These cells experience a strong periodic contractile
behavior. Here we show the situation when the cardiomyocyte’s contractility is at
its peak. One can already predict from the plot of the deformation őeld Fig 6.10A
and A’ that the cell exerts contractile force between two points. For better resolution
of details, we focus on the upper anchoring point, which is shown in the zoomed-in
view. As we can see, the cINN (Fig 6.10F) is able to localize the contractile areas in
a much cleaner manner, when compared to the FTTC prediction (Fig 6.10E). When
looking into the individual force realizations (Fig 6.10 G and H) one apparent fea-
ture is the emergence of diagonal (from the upper left to the lower right) chains of
sampling points with relatively large traction stresses. This is also reŕected in the
actin cytoskeleton presented in Fig 6.10 B, where the termination point of the actin
strains also ends along two diagonal lines upon close inspection. This is a strong hint
that the neural network is able to reconstruct substructures to a reasonable extent.
When looking into the relative variation in the individual sampling points (Fig 6.10
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Figure 6.10: Reconstruction for a cardiomyocyte. The plots marked X’ (where X is a
letter) display the orientation of the corresponding magnitude plot X. (A, A’) Deformation
őeld, magnitude (A) and orientation (A’). The white square indicates the zoomed-in view.
(B) Staining micrograph of the actin őlament skeleton. (C) Integrated force in the zoomed-in
view for different realizations, in comparison to the FTTC prediction. (D) Relative standard
deviation of the reconstructed force magnitude. White corresponds to sampling points where
the variation is exceeding 1, meaning that individual traction predictions at this locality are
no longer signiőcant statistically. (E, E’) FTTC prediction. (F, F’) cINN reconstruction
averaged over multiple traction realization. (G, G’) and (H, H’) are two individual cINN
reconstructions. Data presented in [237].
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Figure 6.11: Traction force reconstruction for a thrombocyte. The plots marked X’ (where
X is a letter) display the orientation of the corresponding magnitude plot X. (A) Super-
resolution STED-imaging; actin in cyan and vinculin in magenta. (B) Reconstruction of
stress őbers and adhesions. Details can be found in the appendix, section B.3 (C, C’)
Substrate deformation őeld, magnitude and orientation, the white square indicates the force
integration area. (D,D’) cINN reconstruction averaged over multiple traction realizations.
(E, E’) FTTC reconstruction of the cell traction. (F) Integrated force in the integration
area for different realizations, in comparison to the FTTC prediction. (G) Nearest neighbor
correlation of traction magnitude reconstruction for to adjacent sampling points net to the
point of maximal deformation. (H) Relative standard deviation of the reconstructed force
magnitude. (I) Absolute standard deviation of the reconstructed force angle. (K,K’) and
(L,L’) two individual cINN reconstructions. Data presented in manuscript 4.
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D) we can see a relatively high uncertainty in each pixel within the cell in particular
in the lower part of the adhesive area. This could be due to this area being in a region
where the deformation contributions of all adhesons overlap making it more difficult
to predict their exact location. When looking into the angular force distribution and
taking into account the fact that the main axes of contraction are clearly observable,
we see that both the FTTC reconstruction (Fig 6.10 E’) as well as the reconstruction
made by the cINN (Fig 6.10 F’, G’ and H’) show close agreement with the orientation
predicted by the orientation of the cardiomyocyte.

The results for a thrombocyte are shown in Fig 6.11, while some more examples
can be found in the appendix, Fig C.4 and Fig C.5. In Fig 6.11A and B we őrst show
the actin cytoskeletal structure and the locality of the adhesion sides and the present
the deformation (Fig 6.11C and C’). As we can see, similar to the cardiomyocyte,
the cINN (Fig 6.11D and D’) was able to reconstruct the cell forces correctly and in
a cleaner manner compared to FTTC (Fig 6.11E and E’). Interestingly, for this cell
both FTTC and our cINN reconstruction predict a concentration of traction towards
the lower end of the adhesive area, while predicting less force in the attachment
of the two protrusions clearly visible in Fig 6.11 E. This, despite not being in the
training set, correlates with the distribution of vinculin that is found predominantly
along the two contractile lines. By looking into the standard deviation prediction
(Fig 6.11 H and I), we őnd a high uncertainty being predicted in the upper right of our
reconstruction. This indicates the difficulty of isolating the force contribution of the
two protrusions and also correlates to the area where FTTC and cINN reconstructions
are most different. The cINN here predicts an outward-facing traction, which is likely
due to the presence of another cell in the vicinity.

When looking into the reconstructed force magnitude (Fig 6.11 F), which is in-
tegrated over the lower contractile area, we can see that the cINN makes a more
conservative estimate of the traction but agrees with the FTTC concerning the over-
all force orientation. Like in the case of synthetic data, we can also őnd a correlation
between neighboring sampling points (Fig 6.11 G), again conőrming the notion of
our network successfully recognizing areal force distribution more precisely than force
magnitudes at a selected sampling point.

When looking into two individual realizations of the traction őeld as predicted by
the cINN (Fig 6.11 K,K’ and L,L’) we notice the presence of multiple more or less
equally distributed peaks in the traction distribution along the nucleus-facing edge of
the adhesive area. These might represent individual focal adhesions. As seen in the
analysis of the synthetic dataset, these őne structures are highly dependent on noise
and can therefore not be seen in the averaged prediction (Fig 6.11 C and C’).



Conclusion 109

6.7 Conclusion

In this part of my work, I successfully explored the ability of a generative NN approach,
cINNs, to study the degeneracy of the inverse problem of traction force reconstruc-
tions. I showed that a force prediction network, even though trained using a rather
abstract way for obtaining synthetic data, was able to return highly plausible traction
reconstructions for experimental data showing a good generalization ability of the
underlying reconstruction. I was able to demonstrate that due to noise, the traction
force reconstruction is not unique on the scale of individual sampling points, but reli-
able and correlated on slightly longer length scales. Speculative interpretations even
suggest that cINN-based methods could make out and detect smaller scale structures
than possible using the standard Fourier-based technique. In addition, unlike the
Fourier-based method and other established techniques, cINN-based TFM, is able to
give a spatially resolved estimate of its force predictions, which can be used to more
reliably judge the statistical relevance of observed differences in force distribution.
Overall, these beneőts are paving the way for deeper insights into cellular mechanics
and behavior on a micro-scale.





Chapter 7

Summary and Outlook

By observing adhesive forces, cells exert on their environment, many insights into
cellular mechanics can be obtained. In traction force microscopy these observations are
made possible by a good understanding of the mechanics of the speciőcally designed
extracellular environment, the ŕuorescent bead sprinkled elastic substrate used in this
context. In this dissertation, I have used analytical calculations, numerical methods,
neural networks and the results of experimental observations obtained in cooperation
with my collaborators to gain a deeper understanding in how substrates respond to
speciőc mechanical stimuli and how the cell’s traction forces can be reconstructed
from observable substrate deformations. In the process, these new predictions have
helped to further understanding of processes like endocytosis or stress őber dynamics
in thrombocytes and őbroblasts.

In Chapter 2 I’ve laid down and collected the analytical insights traction recon-
structions are based on. This essential step introduced many recurring concepts and
gave a solid foundation of individual techniques I could build up on. In particular,
we have shown how a diverse range of linear elasticity problems can be solved by
separating them into elementary problems and using potential approaches to solve
them.

In Chapter 3, I have made use of the potential approach introduced previously
to derive a full solution of the Greens function in Fourier space. This allowed me to
extend the well-established 2D regularized FTTC method into a 2.5D method which
also considers normal forces. By doing so, I could successfully keep the procedure
known from 2D, including the fast and reliable Fourier based reconstruction and the
concept of using a generalized cross validation to őnd an optimal zero-order Tikhonov
regularization parameter. I then applied this new method to experiments studying the
effect of traction forces in the formation of AP2 clusters, an initial stage in the process
of endocytosis. This allowed me to study the mechanics of endocytosis of nanoparticles
of cells on their ventral side and gave the result that normal pressure exerted by the
cell onto the substrate correlates with the formation of AP2 clusters. In the future,
it would be interesting to integrate this method into more external processes to gain
more insight into the three-dimensional nature of cellular force generation.

In Chapter 4, I have őrst introduced the direct method of traction force microscopy
and compared how it performed when challenged with reconstructing traction from
a dataset. in which the deformation őeld has been perturbed by Gaussian noise. I
showed how a robust gradient scheme could successfully make the force reconstruc-
tion highly resilient, when tasked with the reconstruction of noised data. I directly
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compared the performance of the direct method with the 2.5D FTTC method as a
representative for inverse methods in general. I was able to demonstrate that FTTC
works best if only tangential forces are reconstructed. I also showed that 2.5D FTTC
is more precise for small noise, but that the performance of the direct method ap-
proaches the one of 2.5D FTTC for larger noise, before both fail for very large noise.
Moreover, I found that mechanically tackling noise in the direct method by means of
a divergence correction is not really needed. I was also able to show that the direct
method proőts more from increased resolution than the inverse method. In the fu-
ture, the direct method might thus become more relevant due to several experimental
developments: Image quality for TFM quickly improves, e.g. due to super-resolution
microscopy [69, 71ś73, 75], and this might play in favor of the direct method, which
improves with smaller sampling distance. On the other hand, recent advances in mi-
crofabrication and additive manufacturing will lead to completely new geometries and
setups [150ś153], for which the analytical solutions required for methods like FTTC
will not be possible anymore, except for simple geometries like elastic beads [64, 154].
Here, the direct method would provide a computationally attractive alternative to the
currently dominating FEM-environments.

In Chapter 5, I have introduced the adaptive near őeld method. It allowed us
to make quantitative predictions of location and force transmission via individual
adhesion sides by observing only the areal contour of the deformation őeld. The ap-
plicability of our method has been proven experimentally for monitoring the change in
cellular traction forces at speciőc adhesion sites, which occur when shearing őbroblasts
off their underlying PAA substrates. By doing so, together with my collaborators, we
could prove that force transmission can be long ranged and the shear force is not
distributed uniformly among the cell’s adhesion sites. This őnding could potentially
be explained by the polymeric nature of the cytoskeletal network. In the future, this
technique could be combined with imaging of the cytoskeleton to directly correlate
traction predictions with intracellular force transition or with micropatterning to con-
trol the area of adhesion more precisely thus improving the predictability of forces.
Due to its areal nature, like the direct method, the adaptive near őeld approach could
also prove to be an attractive technique for setups, where the planar nature can only
be assumed locally, like in setups with completely new, less planar geometries.

Finally, in Chapter 6, I successfully explored the potential of using a cINN for
traction reconstruction in TFM. By describing a method to generate a large amount
of synthetic training data, I was able to predict not only the distribution of cell
forces, but was also able to make estimates about the reliability of force predictions.
My study showcases the potential of using a cINN in solving the inverse problem of
mechanical traction of cells on surfaces. This neural network-based approach offers
improved accuracy and more detailed force reconstructions compared to traditional
FTTC methods as well as statistical estimates about the uncertainty of the force
reconstruction. This paves the way for deeper insights into cellular mechanics and
behavior on a micro-scale. In the future, I predict that traction force reconstructions
can be improved by advances in the generation of experimental data, potentially by
using machine learning processes in this setup itself or by including more information
about the experimental structures. This could potentially even lead to the ability to
not only predict areal traction distribution but the placement strength and shape of
individual focal adhesions. In addition, newly devised analytics may better leverage
the available statistical information on the variability in force generation to make more
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statistically sound quantitative predictions about cellular effects resulting in deeper
insights into the effects of different factors of the force reconstruction.

Summing up, this dissertation contributes to our understanding of the facets of
traction force manifestation, enhancing our ability to make educated decisions on
how experimental setups and evaluation techniques need to be designed to give reli-
able predictions and enable researches to also specify the experimental accuracy more
precisely.
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Appendix A

Simulation and algorithm details

A.1 Divergence correction of a vector őeld

Divergence correction can be used to correct a vector őeld uexp, which is expected to
be divergence free. The input vector őeld uexp is slightly perturbed into a corrected
vector proőle uc, which is free of divergence. A corrected proőle can therefore be
obtained by solving the optimization problem

uc = argmin
u

∫

(uexp(x)− u(x))2 d3x (A.1)

under the constraint
∇ · uc = 0. (A.2)

When discretized to a mesh using a őrst order őnite difference, the problem can be
written [157]:

(uijk
c , vijkc , wijk

c ) = argmin
(u,v,w)

nx,ny ,nz∑

i,j,k=1

(uijk
exp − uijk)2 + (vijkexp − vijk)2 + (wijk

exp −wijk)2 (A.3)

under the constraint

nx∑

i′=1

dii′

nx
ui′jk
c +

ny∑

j′=1

djj′

ny
vij

′k
c +

nz∑

k′=1

dkk′

nz
wijk′

c = 0 for all i, j, k = 1 . . . nx, ny, nz. (A.4)

Here uijk
c ,vijkc and wijk

c denote the three vector components sampled on a grid and
dii′

nx
,djj′

ny
and dkk′

nz
are the coefficients of the one-dimensional őnite difference operators

in x, y and z direction. The coefficients dii′

nx
s form nx×nx sparsely populated matrices

dnx
given by

dnx
=

1

∆x










−1 1
−1

2
0 1

2
. . . . . . . . .

−1
2

0 1
2

−1 1










. (A.5)

Here ∆x corresponds to the grid spacing in the x direction. dny
and dnz

can be
deőned analogously. An explicit solution for Eq (A.3) can be found by enforcing
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Eq (A.4) using appropriate Lagrange multipliers as shown in by Wang et al. [158]
(presented in appendix 1 of their study). This results in an algorithm that starts with
calculating an eigenvalue decomposition of dnx

dT
nx

, dny
dT
ny

and dnz
dT
nz

:

dnx
dT
nx

= Qnx
Lnx

QT
nx

(A.6)

dny
dT
ny

= Qny
Lny

QT
ny

(A.7)

dnz
dT
nz

= Qnz
Lnz

QT
nz

(A.8)

Since each of these matrices has only the size of one of the three spatial dimensions
of the sample, they are comparatively small compared to an algorithm that would
target Eq (A.3) directly and would have to deal with nx × ny × nz components
simultaneously. Furthermore, if the sample is a square (nx = ny) or multiple data sets
need to be analyzed, an already calculated eigenvalue decomposition can be reused to
increase the computational efficiency.

If we now denote the components of Qnx
, Qny

and Qnz
by Qij

nx
, Qij

ny
, Qij

nz
and the

diagonal elements of Lnx
,Lny

and Lnz
by λk

nx
, λk

ny
, λk

nz
, the algorithm has the following

steps, that contain only basic algebra and matrix multiplications.

• Calculate the divergence residue őeld of the uncorrected data

Sijk
exp =

nx∑

i′=1

dii′

nx
ui′jk
exp +

ny∑

j′=1

djj′

ny
vij

′k
exp +

nz∑

k′=1

dkk′

nz
wijk′

exp (A.9)

• Calculate the helper variables Γlmn given by:

Γlmn = λl
nx

+ λm
ny

+ λn
nz

(A.10)

• Calculate another set of helper variables µijk given by:

µijk =

nx,ny ,nz∑

l,m,n=1

Qil
nx
Qjm

ny
Qkn

nz

Γlmn

(
nx,ny ,nz∑

i′,j′,k′

Qi′l
nx
Qj′m

ny
Qk′n

nz
Si′j′k′

exp

)

(A.11)

Γlmn contains a single zero element. In order to calculate µijk, this zero element
must be replaced by a non-zero value (for example one). This particular value
does not affect the result for the corrected vector őeld. The situation is similar
to the calculation of a scalar potential, where a constant offset will also have no
effect on its gradient őeld.

• Finally, the corrected őeld can be obtained by:

uijk
c = uijk

exp −
∑

i′=1

di′i
nx
µi′jk, (A.12)

vijkc = vijkexp −
∑

j′=1

dj′j
ny
µij′k, (A.13)

wijk
c = wijk

exp −
∑

k′=1

dk′k
nz

µijk′ . (A.14)
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Figure A.1: Absolute mean divergence of σ(i) and mean value of the asymmetricity for
w(i) plotted with respect to the iteration number i. The blue line represents the effect of
the divergence correction on random data (σ(0) is őlled with white noise.) The other lines
represent data for σ(0) obtained from different pressure and point adhesion proőles with and
without noise perturbations.

A.2 Convergence of the divergence correction algo-

rithm

The iterative divergence correction scheme used for the Divergence-free Direct method
3D traction force microscopy tries to optimize the result according to two criteria:

• Minimize the divergence of σ(i).

• Reduce the asymmetry of w

We estimate the level divergence of σ(i) by őrst calculating

Sijk
r =

nx∑

i′=1

dii′

nx
σi′jk
r1 +

ny∑

j′=1

djj′

ny
σij′k
r2 +

nz∑

k′=1

dkk′

nz
σijk′

r3 (A.15)

for σrl = (σ(i))rl for r = 1, 2, 3 using the őrst order discrete derivatives and then
taking the L2 norm

∑

i,j,k

√

(Sijk
1 )2 + (Sijk

2 )2 + (Sijk
3 )2 (A.16)

The asymmetricity of a matrix can be described by

asym(w) =

∥
∥w −wT

∥
∥

2∥w∥ (A.17)

where asym(w) = 1 indicates a fully asymmetric and asym(w) = 0 a symmetric
matrix.

As we can see in őgure A.1, every iteration improves both quantities. The sym-
metricity of u is improved and the remaining divergence ∇σ is reduced. However, no
universal termination criterion can be extracted from either improvement. Notice that
the rate of improvement reduces after 5 to 20 iterations. For this reason, we assume
that a sufficient level of improvement is reached after 20 iterations and terminate the
divergence correction algorithm at this point.
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A.3 Parameters used for simulated proőles

In general, proőles can be described by

τ (x, y) =
∑

i

H(x, y, xi, yi, ai,F i) (A.18)

with the deőnition

H(x, y, x′, y′, a,F ) =
3

2πa3
F
√

a2 − ρ2 Θ(a− ρ) (A.19)

where ρ =
√

(x− x′)2 + (y − y′)2.

• Proőle of Fig 4.2, Fig 4.4 C, Fig 4.5, Fig 4.6 C, Fig 4.7 C and Fig 4.8

Substrate properties
Young’s Modulus E 10 kPa

Poisson Ratio ν 0.5
Simulation properties

Spacing x and y direction dxy 0.4 µm
Spacing z direction dz 0.8 µm

Number of sampling points x and y direction nxy 128
Number of sampling points z direction nz 6

Proőle parameters
i x′ y′ a Fx Fy Fz

1 0.0 µm 0.0 µm 6.0 µm 0.0 nN 0.0 nN 300 nN
2 −10.8 µm 6.2 µm 2.0 µm 86.6 nN −50.0 nN −50.0 nN
3 10.8 µm −6.2 µm 2.0 µm −86.6 nN 50 nN −50.0 nN
4 7.7 µm 12.5 µm 2.0 µm 0.0 nN −100 nN −50.0 nN
5 −7.7 µm −12.5 µm 2.0 µm 0.0 nN 100 nN −50.0 nN
6 10.8 µm 6.2 µm 2.0 µm −86.6 nN −50.0 nN −50.0 nN
7 −10.8 µm −6.2 µm 2.0 µm 86.6 nN 50 nN −50.0 nN

• Proőle of Fig 4.3 A and Fig 4.4 A

τx = 0 τy = 0 τz =
3F

2πa3

√
a2 − r2 Θ(a− r) (A.20)

Substrate properties
Young’s Modulus E 10 kPa

Poisson Ratio ν 0.45
Force proőle parameters

Total Force F 10 µN
Radius of force affect region a 20 µm

Simulation properties
Spacing x and y direction dxy 0.8 µm

Spacing z direction dz 2.0 µm
Number of sampling points x and y direction nxy 128

Number of sampling points z direction nz 10
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• Proőle of Fig 4.3 B and Fig 4.4 B

τx = 0 τy = 0

τz = F

(
3

2πa3I

√

a2I − r2 Θ(aI − r)− 3

2πa3O

√

a2O − r2 Θ(aO − r)

)
(A.21)

Substrate properties
Young’s Modulus E 3 kPa

Poisson Ratio ν 0.45
Force proőle parameters

Force amplitude F 1 µN
Radius of force affect region aO 60 µm

Radius of inner region aI 45 µm
Simulation properties

Spacing x and y direction dxy 0.8 µm
Spacing z direction dz 2.0 µm

Number of sampling points x and y direction nxy 256
Number of sampling points z direction nz 10

• Proőle of Fig 4.6 A and Fig 4.7 A

Substrate properties
Young’s Modulus E 10 kPa

Poisson Ratio ν 0.5
Simulation properties

Spacing x and y direction dxy 0.4 µm
Spacing z direction dz 0.4 µm

Number of sampling points x and y direction nxy 128
Number of sampling points z direction nz 6

Proőle parameters
i x′ y′ a Fx Fy Fz

1 0.0 µm 0.0 µm 6.0 µm 0nN 0nN 100 nN
2 4.3 µm 11.7 µm 2.0 µm −34.2 nN −93 nN −25 nN
3 4.3 µm −11.7 µm 2.0 µm −34.2 nN 93 nN −25 nN
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• Proőle of Fig 4.6 B and Fig 4.7 B

Substrate properties
Young’s Modulus E 10 kPa

Poisson Ratio ν 0.45
Simulation properties

Spacing x and y direction dxy 0.8 µm
Spacing z direction dz 4.0 µm

Number of sampling points x and y direction nxy 64
Number of sampling points z direction nz 4

Proőle parameters
i x′ y′ a Fx Fy Fz

1 −6.4 µm 7.7 µm 2.0 µm 128.5 nN −153.2 nN 0.0 nN
2 6.4 µm −7.7 µm 2.0 µm −128.5 nN 153.2 nN 0.0 nN
3 6.1 µm 10.0 µm 2.0 µm 0nN −50.0 nN 0.0 nN
4 −6.1 µm −10.0 µm 2.0 µm 0nN −50.0 nN 0.0 nN
5 6.4 µm 7.7 µm 2.0 µm −64.3 nN −76.6 nN 0.0 nN
6 −6.4 µm −7.7 µm 2.0 µm 64.3 nN 76.6 nN 0.0 nN

A.4 Effect of sampling density in combination with

displacement noise

As complement to Fig 4.8, which was calculated without noise, here I document the
effect of changing sampling density in the presence of noise in the displacement őeld.
In Fig A.2 and Fig A.3 I simulated the effects of variation in sampling density for a
high (σN/ < ∥u∥ >= 1) and very high (σN/ < ∥u∥ >= 2) noise level, respectively.
Surprisingly, we see that the SNR of FTTC now signiőcantly improves when decreasing
the sample density (increasing the sample distance). This is due to the fact that
while for the DM only neighboring points are used to calculate the local traction,
in FTTC even points far away contribute. This means that increasing the sample
distance decreases the number of sampling points and as such the number of points
that contribute to the error in traction at each sampling point.
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Figure A.2: Effects of variation in sampling density for a high noise level. Plots A to E show
how the different metrics are affected when using a different distance of the sampling points
when setting up the input while adding noise with a standard deviation that is equivalent
to the average of the mean deformation őeld of the unperturbed proőle (σN/ < ∥u∥ >= 1).
Moving to higher levels of noise worsens the performance of the Fourier-based methods, while
the performance of the direct method is affected less.

Figure A.3: Effects of variation in sampling density for a very high noise level. Plots A to
E show how the different metrics are affected when using a different distance of the sampling
points when setting up the input while adding noise that is equivalent to twice of the average
of the mean deformation őeld of the unperturbed proőle (σN/ < ∥u∥ >= 2).
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A.5 Determination of the dominant axis of a syn-

thetic cell

For each cell, we deőne the centered moment of area matrix by

M =

∫

Ωr,φ,x0,y0

(
(x− x0)

2 (x− x0)(y − y0)
(x− x0)(y − y0) (y − y0)

2

)

dx dy . (A.22)

The radial integration can be performed analytically and one obtains

M =
1

4

∫ 2π

0

r(ϕ)4
(

cos2(ϕ) cos(ϕ) sin(ϕ)
cos(ϕ) sin(ϕ) sin2(ϕ)

)

dϕ . (A.23)

The dominant axis can be found by őnding the eigenvector of this matrix attributed
to it’s largest eigenvalue. This vector is given by:

e1 = C

(
cos(α)
sin(α)

)

, (A.24)

where C is an arbitrary constant and

α =
1

2
arctan 2(2Mxy,Mxx −Myy). (A.25)

The arctan 2 function follows the convention established in section B.3. This formula
can be veriőed by direct matrix application. The dominant axis of the cell is now the
straight line obtained when rotating the x-axis by α counterclockwise.
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Materials and Methods

B.1 Microneedle shearing of őbroblasts

In this section we describe the methods used to obtain the experimental data presented
in the application section 5.3 of chapter 5. A detailed description, also including
preparation procedures can be found in manuscript 3.

Cell shearing and imaging

Imaging was conducted by Steven Huth. A ŕuorescence image of the zyxin distribu-
tion of a well-spread őbroblast was recorded. The calibrated microneedle was inserted
into this cell directly above or below the nucleus and a phase contrast image of cell
and needle was recorded. Subsequently, the needle was moved horizontally at 5 µm/s
against the nucleus. During the shearing process, phase contrast images of cell and
needle as well as ŕuorescent images of the marker beads embedded in the underlying
PAA substrate were recorded alternately at a frame rate of 0.85 fps. After cell de-
tachment, an additional pair of ŕuorescent microscopy and phase contrast images was
recorded. This last ŕuorescent image pair recorded the bead position of the PAA sam-
ple without any inŕuence of traction forces and served as reference image for traction
force calculations.

Images were recorded using an inverted microscope (Z1 Observer, Zeiss) equipped
with a CMOS Camera (Hamamatsu ORCA Flash 4.0) and a 40x objective with phase
contrast (Zeiss EC Plan-Neoŕuar 40x/0.75 Ph2 M27). Both, the phase contrast images
and the ŕuorescence images were recorded using the RFP őltercube (necessary to
image the ŕuorescent marker beads) to minimize the time between the measurement
of shear force and traction forces. The microneedle was handled using a Eppendorf
InjectMan NI2 micromanipulator. For each frame, the bending of the needle was
calculated as described in the calibration section above. The shear force was computed
by multiplying the needle bending with the needle’s spring constant calibrated prior
to each experiment.

Image registration

The substrate deformation őeld was obtained from ŕuorescent bead images using PIV.
A windows size of 64 pixels and a 50% window overlap were used. Spurious vectors
were removed using a minimal signal-to-noise ratio in the correlation function of 1.5
and a threshold of 2.0 for the normalized median test. The reference image was taken
after cell detachment.
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B.2 Traction force microscopy of cardiomyocyte

The cardiomyocyte sample preparation is described in detail by Goß and Kuhn [234,
235, 237] and follows procedures outlined by Ribeiro et al. [231] and Wheelwright et
al. [238].

Imaging

Imaging was conducted by Christina Goß and Valentina Kuhn on an inverted micro-
scope (IX81, Olympus) equipped with a stage top incubator and a 60x immersion
oil objective. For each cell, őrst a snapshot was taken using the Bright-őeld channel.
Then the ŕuorescent beads beneath it are recorded for 250 frames and őnally the cell’s
actin structure is recorded for 250 frames. A relaxed cell phase was chosen as reference
conőguration, while a maximal contracted phase was used for traction reconstruction.

Image registration

First a Shi-Tomasi corner detector was used to őnd the position of beads. In this
step, the number of detectable features was limited to 5000 to prevent mismatches.
To avoid double-counting of clusters, a minimum distance between registered beads
was set to 3 pixels. The pyramidal KLT algorithm was used to track the intensity
gradients around the detected beads within search windows of size 64 × 64 pixels
and in the second round of size 32 × 32 pixels. Drift correction was performed by
selecting a region far from the cell where the displacements due to the traction of the
cell are assumed to have vanished, calculating its mean displacement and subtracting
this value from the displacement őeld [110]. To calculate the traction stresses from
the displacement őeld, a Young’s modulus of 9.8 kPa (determined via nanoindentation
of a gel) and a Poisson’s ratio of 0.5 were used. The objective used to capture the
video of the ŕuorescent beads resolved 0.1 microns per pixel, and the nodal distance
of the grid the Fourier Space methods were performed on was 8 pixels.

FTTC force reconstruction

For FTTC reconstructions, a Tukey őlter with α = 0.1 was used to suppress artifacts
caused by the discretization in Fourier space. The General-Cross-Validation method
was used to őnd the optimal value of the regularization factor λ for several cardiomy-
ocytes. A representative value of λ = 2.6× 10−3 was found and subsequently used for
all force reconstructions.

B.3 Traction force microscopy of thrombocytes

In this section we describe the experimental methods applied to obtain data used in
the experimental analysis of chapter 6. Experiments and data collection were con-
ducted by Anna Zelená and Sarah Köster at the Research Group Cellular Biophysics,
Institut für Röntgenphysik, University of Göttingen. The experimental and analytical
procedures are described in detail in manuscript 4.

Live cell traction force microscopy and epi-ŕuorescence imaging

Sample growth and preparation was conducted by Anna Zelená with the help of
Rūta Gerasimaitė and Gračvydas Lukinavičius for the super-resolution microscopy
measurements.
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The observation was conducted in two process steps, confocal imaging of cellular
structures and traction force marker beads and STED microscopy on őxed thrombo-
cytes:

In the őrst step, the actin őlaments were stained with SiR-actin (Spirochrome
Ltd., Stein am Rhein, Switzerland) and cells are placed on an PAA substrate, with a
thickness of at least 50 µm. Fluorescent images of the cells on a PAA TFM-substrate
were recorded on an inverted microscope (IX81, Olympus), equipped with a 60×
water immersion objective (UPlanSApo, NA = 1.2, WD = 0.28mm, Olympus) an
MT20 Xenon arc lamp (150W, Olympus) lamp operated at 23% of the maximum
intensity and a CMOS camera (Orca Flash 4.0, Hamamatsu Photonics Deutschland
GmbH, Herrsching am Ammersee, Germany). Fluorescence imaging employed a dual-
band őlter (FITC/Cy5; excitation at 470 nm and 628 nm and emission at 537 nm and
694 nm (AHF Analysentechnik AG, Tübingen, Germany)). Thrombocyte spreading
was recorded for 2 hours at one frame every 7.5 s with an exposure time of 50 ms
each for the actin structures and the beads. A total recording time of 2 hours was
chosen to account for different thrombocytes to adhere and start spreading at different
time points and so as to capture 30 mins of spreading and contraction time for each
thrombocyte. After 30 mins the thrombocytes were fully contracted. Some remain in
this contracted state, whereas, for some, the underlying gel relaxes, possibly due to
detachment of the thrombocyte.

In a second step, thrombocytes were őxed and permeabilized. Next cells were
incubated with a primary antibody against vinculin (monoclonal mouse anti-vinculin
V9131, Sigma-Aldrich, St. Louis, Missouri, USA). The samples were imaged through
the glass slide using super-resolution STED-microscopy (see manuscript 4, Supplemen-
tal Material, Fig. S3B), using an Abberior STED Facility Line microscope (Abberior
Instruments GmbH, Göttingen, Germany) built on a motorized inverted microscope
IX83 (Olympus) equipped with an 60× silicone oil immersion objective (UPlanSApo,
NA = 1.3, WD = 0.3 mm, Olympus). For this setup the pixel size is 30 nm and the
pinhole is set to 0.92 AU (Airy units with 1 AU = 1.22 λ/NA) for STED-imaging.
The dwell time was set to 20 µs. The ŕuorescent probe SiR-actin was excited by 2 %
power of a 640 nm laser and detected in the emission range 650-755 nm. For STED a
775 nm laser with 10% power was used and each line scanned 10 times. The spherical
correction was set to 1 to improve the image quality.

Image registration

The image sequences with the recorded beads are down-sampled from 16 to 8 bit in
ImageJ [239]. The Shi-Tomasi corner detector tracked the position of at maximum
1000 beads. To avoid double-counting of clusters, a minimum distance between beads
is set to 3 pixels. The pyramidal KLT algorithm is used to track the intensity gradients
around the detected beads within search windows of size 48 × 48 pixels and in the
second round of size 24 × 24 pixels. The displacements are tracked between successive
images and the complete trace is reconstructed with reference to the undeformed image
before adhesion of the thrombocytes. We assume a linear movement inside each of
the search windows using a forward Euler approach. The drift correction is applied
on a small area of the image sequence without deformation and the detected drift is
subtracted from all calculated displacements.
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FTTC force reconstruction

Application of a Tukey őlter (α = 0.4) ensured a zero velocity őeld at the border of the
grid with drift-corrected displacements. The traction forces are calculated by FTTC
with Tikhonov regularization using regularization parameters deőned by a generalized
cross-validation function. A new optimal regularization parameter was found for each
reconstruction.

Stress őber reconstruction

To extract the stress őbers, I used a combination of MATLAB scripts for morphometric
analysis by Lickert et al. [240] and the tool FilamentSensor [241]. First, I used
the MATLAB scripts Deőne Cells and Process Cells of the morphometric analysis
toolbox, to obtain a binarized bitmap of the actin staining as well as a prediction of
the local stress őber orientation angle. I then determined the dominant orientation
angle and produced two bitmap images: one in which only those bits of the actin image
are retained, in which the corresponding orientation angle is roughly parallel to the
dominant orientation angle (angles differ by less than 45°), and one in which only those
bits of the actin image are retained, in which this is not the case. I found that this
procedure of processing stress őbers in these two groups improves their reconstruction.
Both bitmap images were then processed independently using the FilamentSensor. I
loaded the images using the Stack View option and selected łAs straight piecesž in the
Line Sensor menu in order to obtain the őlaments in a segment-wise manner. I then
used the łExport őlaments as .csž option to extract the segments. In a post processing
step, I őrst assembled the segments into piece-wise straight lines and then merged the
őlament data sets obtained from the parallel and non-parallel bitmap images.

Focal adhesion localization procedure

In order to compare the localization of vinculin to actin in the STED-images, I őrst
apply a 2nd order Sobel őlter on the vinculin data to compute the Laplacian. This
identiőes the points where the intensity is maximal. I apply a threshold to create a
bitmap around these points. I then perform a connected component analysis and only
retain sufficiently large patches. For each component i, the orientation ϕi, the length
ai of its semi-major axis and its eccentricity εi can be calculated using a moment
analysis. I calculate the center of the adhesion (x0, y0)

T as
(
x0

y0

)

=

∫

Ωi

(
x
y

)

dx dy, (B.1)

where Ωi is the area of the patch found in the component analysis. We then őnd the
centered moment matrix of area M i by

M i =

∫

Ωi

(
(x− x0)

2 (x− x0)(y − y0)
(x− x0)(y − y0) (y − y0)

2

)

dx dy , (B.2)

using summation to numerically solve the integral. If the adhesion was an ellipse, we
would have for the moment matrix

M el = αa4
√
1 + ε2

(
1 + ε2 sin2(ϕ) ε2 cos(ϕ) sin(ϕ)
ε2 cos(ϕ) sin(ϕ) 1 + ε2 cos2(ϕ)

)

, (B.3)

where the factor α takes into account that the threshold will only retain the innermost
parts of the adhesion. By comparing both expressions for the moment matrix, we őnd
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that

ϕ =
1

2
arctan 2(2Mi,xy,Mi,xx −Mi,yy)

S = αa4
√
1 + ε2(2 + ε2) = Mi,xx +Mi,yy

T = αa4
√
1 + ε2ε2 =

√

(Mi,xx −Mi,yy)2 + 4 ∗Mi,xy

ε =

√

2T

S − T

a =

(
2T

α
√
1 + ε2ε2

)1/4

.

(B.4)

The arctan 2 function follows the usual convention of taking y as its őrst parameter.
This means arctan 2(y, x) = arctan(y/x) for positive y and x values. In my analysis, I
empirically selected a threshold value of −2.5, retained components comprising more
than 25 pixels and used a scaling factor α = 3−4.





Appendix C

Additional Results

C.1 Qualifying traction forces in őbroblasts under

external shearing
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Figure C.1: Traction force data from the cell presented in Fig 5.4. (A) shows the x-
components of the traction force vectors. It is very clear the these are not inŕuenced by
the shearing in y-direction, which is why we focus our discussion on traction forces in y
direction. (B) shows the y-components of the traction forces for each adhesion patch. We
decided to combine some neighboring patches with similar behavior for better visualization.
We combined patches 2,3 and 4 as well as 5,6 and 7.
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C.2 Additional cINN-ML-TFM reconstructions

cINN-ML-TFM reconstruction for some additional validation

data samples

Ground Truth cINN mean prediction cINN single realization Relative std per pixel

5 µm kPa

kPa

kPa

kPa

1/1

1/1

1/1

1/1

Figure C.2: cINN-ML-TFM magnitudes reconstruction for some additional validation
datasets. For each dataset, we show the ground truth traction őeld, the cINN prediction
averaged over multiple traction realizations, a single cINN realization and the relative stan-
dard variation in each pixel. Plots in one row all belong to the same cell. The second row
displays an input containing no nonzero tractions.
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5 µm
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Figure C.3: cINN-ML-TFM magnitudes reconstruction for some additional validation
datasets. For each dataset, we show the ground truth traction őeld, the cINN prediction
averaged over multiple traction realizations, a single cINN realization and the relative stan-
dard variation in each pixel. These plots are complementary to the ones shown in Fig C.2.
Each plot in this őgure corresponds to the magnitude plot in the same position in Fig C.2.
An orientation of 0 degrees corresponds to a force in leftward direction. Positive angles
indicate forces pulling in downward direction. Points with negligible traction magnitude are
conventionally assigned a leftward orientation (0°). Some plots displayed in the second row
are empty due to small magnitude but have been kept to maintain correlation to Fig C.2.



154 Additional cINN-ML-TFM reconstructions

cINN-ML-TFM reconstruction for some additional thrombo-

cytes

FTTCActin+Vinculin cINN mean Relative std per pixel
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Figure C.4: cINN-ML-TFM reconstruction for some additional thrombocytes. In each row,
I present one example. In the őrst column, I show the actin and vinculin staining, for each
cell, where actin is shown in cyan and vinculin is shown in magenta. In the second column
I show the force reconstruction as presented by FTTC. In the third column, I present the
force reconstruction according to cINN averaged over multiple traction realizations. The
rightmost column displays the variation in the relative error of the cINN reconstruction.
Notice that all reconstruction plots have been rescaled to őt a common size of the plot. The
scalebar shown after the cINN mean plot is also valid for the FTTC plot and the relative
error plot left to it.
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FTTCActin+Vinculin cINN mean Relative std per pixel
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Figure C.5: cINN-ML-TFM angle reconstruction for some additional thrombocytes. In the
őrst collumn, I present the reconstruction of stress őbers and adhesions. Details can be found
in the appendix, section B.3. The second collumn shows the FTTC and the third one the
cINN reconstraction averaged over multiple realizations. The plots in these two correspond
directly to the magnitude presented in Fig C.4 except that they show angle not magnitude.
Each plot corresponds to the plot found in the same position in Fig C.4. Positive angles
indicate forces pulling in downward direction. Points with negligible traction magnitude are
conventionally assigned a leftward orientation (0°). The őnal collumn shows the standard
deviation in the angle reconstruction. Each scalebar is valid for all plots in the same row.
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