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Abstract	 	 1	

 

ABSTRACT 

Meningiomas	are	thought	to	arise	from	the	arachnoid	cells	of	the	leptomeninx	and	make	up	

the	most	common	primary	intracranial	tumor	in	adults.	They	are	usually	benign,	however	in	about	

20	%	of	cases,	tumors	present	with	an	aggressive	phenotype	and	higher	risk	of	recurrence.	Risk	

stratification	thereby	remains	challenging	especially	for	NF2-mutated	meningiomas,	which	make	

up	 about	 two	 thirds	 of	 all	 cases,	 as	 they	 can	 occur	 at	 the	 full	 spectrum	 of	 WHO	 grades	 in	

meningioma	from	1	to	3.	Recently,	molecular	profiling	has	gained	 importance	 for	prognosis	 in	

meningioma	with	several	classification	systems	that	have	been	established	mostly	based	on	the	

DNA	methylation	of	the	tumors.	However,	the	DNA	methylation-based	classification	has	not	been	

extensively	 linked	 to	phenotypic	 traits	of	 the	 tumor.	Nor	have	meningiomas	been	 investigated	

regarding	 intratumoral	 subpopulations	 that	 may	 exist	 in	 parallel	 and	 may	 have	 different	

characteristics,	especially	regarding	the	stage	of	progression	and	ability	to	recur.	In	addition,	the	

role	 of	 the	 immune	 microenvironment	 in	 meningiomas	 is	 poorly	 understood,	 despite	 the	

identification	 of	 an	 immune-enriched	 meningioma	 subgroup	 with	 beneficial	 outcome	 in	 two	

independent	DNA	methylation	classification	systems.	

In	this	dissertation,	I	investigated	the	consistency	of	subgroups	initially	defined	on	epigenomic	

level	 across	molecular	 levels	 by	 comparison	 to	 transcriptomic	 and	 proteomic	 data.	 Further,	 I	

leveraged	 single	 nuclei	 transcriptomic	 profiling	 to	 dissect	 intertumoral	 differences	 in	 the	

expression	profile	specific	to	the	tumor	cell	population	depending	on	the	tumor	subgroup,	and	to	

investigate	 the	 abundance	 and	 phenotype	 of	 intratumoral	 tumor	 cell	 subpopulations	 across	

samples.	 Similarly,	 I	 analyzed	 the	 single	 nuclei	 transcriptomic	 data	 to	 characterize	 tumor-

infiltrating	 immune	 cells	with	 respect	 to	 their	 abundance	 and	 activation	 status.	 I	 furthermore	

correlated	the	differences	in	immune	infiltration	with	the	progression-free	survival	of	patients	by	

deconvoluting	DNA	methylation	array	data	according	to	their	cellular	composition.	

These	 analyses	 underlined	 the	 coherence	 of	 epigenomic	 meningioma	 subgroups	 across	

transcriptome	 and	 proteome.	 Moreover,	 I	 identified	 six	 tumor	 cell	 subpopulations	 that	 were	

defined	 by	 distinct	 expression	 profiles	 und	 could	 be	 identified	 across	 samples	 at	 varying	

abundancies	depending	on	the	stage	of	progression.	Similarly,	I	observed	profound	differences	in	

infiltrating	 immune	 cells	 between	 tumor	 subgroups,	 with	 a	 significant	 enrichment	 of	 tumor-

associated	macrophages	in	a	benign	subgroup	of	NF2-mutated	meningiomas	as	compared	to	more	

progressed	tumors.	In	parallel	to	their	abundancy,	macrophages	changed	in	activation	between	

benign	 and	malignant	 cases	 from	 an	 anti-	 to	 a	 pro-tumorigenic	 phenotype.	 The	 evaluation	 of	

progression-free	 survival	 data	 revealed	 a	 positive	 correlation	 to	 the	 proportion	 of	 infiltrating	

immune	cells	as	estimated	from	epigenomic	profiles.	

Altogether,	these	results	highlight	the	role	of	multi-level	molecular	profiling	for	tumor	grading	

in	a	paradigmatic,	epidemiologically	relevant	tumor	type.	They	further	indicate	an	important	role	
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of	tumor-infiltrating	macrophages	during	meningioma	progression	with	possible	consequences	

for	risk	prediction	as	well	as	therapeutic	targets	in	meningioma.	
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ZUSAMMENFASSUNG 

Meningeome	 entstehen	 nach	 aktuellem	 Kenntnisstand	 vermutlich	 aus	 den	 arachnoidalen	

Deckzellen	der	Leptomeninx	und	machen	den	größten	Anteil	primärer	intrakranialer	Tumore	bei	

Erwachsenen	aus.	Sie	sind	 für	gewöhnlich	benigne,	können	 jedoch	 in	rund	20	%	der	Fälle	mit	

aggressivem	Phänotyp	und	einem	hohen	Risiko	für	ein	Rezidiv	auftreten.	Risikostratifizierung	ist	

dabei	oft	problematisch,	im	Besonderen	für	NF2-mutierte	Meningeome,	welche	etwa	zwei	Drittel	

aller	 Fälle	 ausmachen,	 da	 diese	 entlang	 des	 gesamten	 Spektrums	 an	 WHO-Graden	 für	

Meningeome,	von	1	bis	3,	vorkommen	können.	Kürzlich	hat	die	molekulare	Charakterisierung	an	

Wichtigkeit	 für	 die	 Prognose	 bei	 Meningeomen	 aufgrund	 mehrerer	 Klassifikationssysteme,	

welche	auf	Grundlage	des	Tumorepigenoms	etabliert	wurden,	gewonnen.	Jedoch	wurden	die	auf	

DNA-Methylierung	basierenden	Klassifikationen	bisher	kaum	mit	phänotypischen	Eigenschaften	

des	 Tumors	 in	 Verbindung	 gebracht.	 Gleichsam	 wurden	 Meningeome	 bisher	 nicht	 bezüglich	

intratumoraler	 Subpopulationen	 untersucht,	 welche	 gleichzeitig	 innerhalb	 eines	 Tumors	

existieren,	 doch	 dabei	 unterschiedliche	 Merkmale	 insbesondere	 hinsichtlich	 der	

Progressionsstufe	und	Fähigkeit	zu	rezidivieren	aufweisen	könnten.	Des	Weiteren	 ist	die	Rolle	

des	Immunmikromilieus	in	Meningeomen	kaum	untersucht,	obwohl	eine	immun-angereicherte	

Subgruppe	 von	Meningeomen	mit	 günstiger	 Prognose	 in	 zwei	 unabhängigen	 epigenomischen	

Klassifikationssystemen	identifiziert	wurde.	

In	dieser	Dissertation	untersuche	ich	die	Vereinbarkeit	von	epigenomischen	Subgruppen	über	

molekulare	 Ebenen	 hinweg	 mit	 dem	 Transkriptom	 sowie	 Proteom.	 Zudem	 nutze	 ich	 die	

Profilierung	des	Transkriptoms	auf	Einzelzellebene,	um	Tumorzell-spezifische	Unterschiede	im	

Expressionsprofil	zwischen	Tumoren	in	Abhängigkeit	zur	Tumorsubgruppe	aufzudecken	sowie	

das	 Vorkommen	 und	 den	 Phänotyp	 von	 intratumoralen	 Tumorzellsubpopulationen	 zu	

untersuchen.	 Ebenso	 analysiere	 ich	 die	 Einzelzell-Transkriptomdaten,	 um	 die	 den	 Tumor	

infiltrierenden	 Immunzellen	 hinsichtlich	 ihres	 Vorkommens	 und	 ihres	 Aktivierungsstatus	 zu	

charakterisieren.	Darüber	hinaus	korreliere	 ich	die	Unterschiede	 in	der	 Immuninfiltration	mit	

dem	progressionsfreien	Überleben	der	Patienten,	 indem	 ich	 epigenomische	Daten	hinsichtlich	

ihrer	zellulären	Komposition	aufschlüssele.		

Diese	Analysen	bekräftigen	die	Kohärenz	von	Meningeom-Subgruppen,	welche	ursprünglich	

auf	 epigenomischer	 Ebene	 definiert	 wurden,	 in	 Transkriptom	 und	 Proteom.	 Darüber	 hinaus	

identifiziere	 ich	 sechs	 Tumorzellsubpopulationen,	 welche	 sich	 durch	 individuelle	

Expressionsprofile	auszeichnen	und	 in	verschiedenen	Tumoren	 in	variierender	Menge	 je	nach	

Progressionsstufe	 nachgewiesen	 werden	 konnten.	 Gleichermaßen	 konnte	 ich	 ausgeprägte	

Unterschiede	in	den	infiltrierenden	Immunzellen	abhängig	von	der	Tumorsubgruppe	beobachten,	

wobei	Tumor-assoziierte	Makrophagen	in	einer	Subgruppe	von	benignen	Meningeomen	mit	NF2-

Mutation	 im	Vergleich	zu	malignen	Meningeomen	signifikant	angereichert	waren.	Neben	 ihrer	
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Abundanz	 wechselten	 die	 Makrophagen	 auch	 in	 ihrer	 Aktivierung	 zwischen	 benignen	 und	

malignen	 Fällen	 von	 einem	 anti-	 zu	 einem	 protumorigenen	 Phänotyp.	 Die	 Auswertung	 des	

progressionsfreien	 Überlebens	 zeigte	 zudem	 eine	 positive	 Korrelation	 mit	 dem	 Anteil	 der	

infiltrierenden	Immunzellen,	welche	auf	Grundlage	von	epigenomischen	Daten	bestimmt	wurde,	

auf.	

Zusammen	 genommen	 verdeutlichen	 diese	 Ergebnisse	 die	 Bedeutung	 einer	 mehrstufigen	

molekularen	Auswertung	in	der	Bewertung	eines	paradigmatischen,	epidemiologisch	relevanten	

Tumortyps.	Zudem	weisen	sie	auf	eine	wichtige	Rolle	von	infiltrierenden	Makrophagen	während	

der	Tumorprogression	hin,	welche	möglicherweise	Auswirkungen	auf	die	Risikobewertung	sowie	

therapeutische	Ansätze	bei	Meningeomen	hat.	
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I.  INTRODUCTION 

1.1. MENINGES AND MENINGIOMA  

HEALTHY MENINGES 

The	connective	tissue	surrounding	the	central	nervous	system	(CNS)	is	called	the	meninges.	

The	meninges	can	be	separated	into	three	layers:	the	dura	mater,	the	arachnoid	mater,	and	the	

pia	mater.	The	dura	is	the	thickest	and	outermost	membrane	of	the	three,	directly	adjacent	to	the	

skull	(Figure	1).	It	consists	of	dense	fibrous	tissue	as	well	as	blood	and	lymphatic	vasculature,	and	

surrounds	 the	 dural	 sinuses	 (Derk	 et	 al.	 2021).	 Underneath	 the	 dura	 lies	 the	 thinner	 and	

transparent	 arachnoidea.	Within	 the	 arachnoidea,	 the	 arachnoid	 cells	 facing	 the	 dura	 form	 a	

tightly	connected	layer	of	cells	called	the	arachnoid	barrier	(Weller	et	al.	2018).	The	arachnoid	

barrier	constitutes	the	barrier	between	the	blood	circulation	in	the	dura	and	the	cerebrospinal	

fluid	in	the	so-called	subarachnoid	space	between	the	arachnoidea	and	the	pia	below	(Davson	and	

Segal	1996).	Fibrous	trabeculae	extend	from	the	arachnoidea	into	the	subarachnoid	space	(Figure	

1).	The	pia	as	the	innermost	membrane	is	the	most	delicate	layer,	mostly	consisting	of	just	a	single	

cell	layer	and	directly	adherent	to	the	brain	and	spinal	cord	(Weller	et	al.	2018).		

Together,	arachnoid	and	pia	mater,	 including	the	subarachnoid	space	in	between,	form	the	

leptomeninx.	Cells	forming	these	membranes	originate	in	the	neural	crest,	while	the	cells	forming	

the	 dura	 stem	 from	 the	 embryonal	mesoderm	 (O’Rahilly	 and	Müller	 1986).	Meningiomas	 are	

thought	to	arise	from	arachnoid	cells	of	the	leptomeninx	(Kalamarides	et	al.	2011).	

	
Figure	1.	Anatomy	of	the	human	meninges.	[Created	with	BioRender.com.]	
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EPIDEMIOLOGY AND PHENOTYPES OF MENINGIOMAS 

Meningiomas	are	the	most	frequent	primary	CNS	tumor,	making	up	39	%	of	all	CNS	tumors	

(Ostrom	et	al.	2021).	These	tumors	are	typically	slow	growing	(Buerki	et	al.	2018)	and	can	occur	

both	intracranially	and	in	the	spine,	with	spinal	lesions	making	up	4.2	%	of	meningiomas	(Ostrom	

et	al.	2021).	They	are	only	rarely	observed	in	children,	their	incidence	increasing	with	age,	and	

more	 frequently	 diagnosed	 in	 females	 with	 a	 male:female	 ratio	 of	 0.43	 for	 non-malignant	

meningiomas	and	0.92	for	malignant	tumors	(Ostrom	et	al.	2021).	

Meningiomas	can	be	divided	into	15	subtypes	based	on	their	histology	(Louis	et	al.	2021).	Nine	

of	these	subtypes	are	usually	associated	with	a	more	favorable	prognosis:	fibrous,	meningothelial,	

mixed,	 angiomatous,	 psammomatous,	 secretory,	 microcystic,	 metaplastic,	 and	

lymphoplasmacyte-rich	meningiomas.	Meningiomas	of	a	clear	cell	or	chordoid	histology	have	a	

higher	risk	to	recur	(Louis	et	al.	2021).	For	rhabodoid	and	papillary	meningiomas	on	the	other	

hand	it	has	not	sufficiently	been	demonstrated	whether	they	are	indeed	associated	with	a	more	

aggressive	behavior.	The	two	remaining	subtypes	however	are	determinative	of	aggressiveness	

and	irrespective	of	the	underlying	subtype:	atypical,	and	the	most	aggressive	subtype	of	anaplastic	

meningioma	(Louis	et	al.	2021).	

Risk	factors	for	developing	a	meningioma	include	ionizing	radiation	and	obesity,	as	well	as	the	

occupational	exposure	to	herbicides	(Wiemels,	Wrensch,	and	Claus	2010;	Takahashi	et	al.	2019;	

Samanic	et	al.	2008).	In	addition,	some	familial	syndromes	such	as	neurofibromatosis	type	2	and	

familial	 schwannomatosis	 are	 associated	with	 an	 increased	 risk	 for	meningioma	 (Kresak	 and	

Walsh	2016).	

	

MOLECULAR LANDSCAPE OF MENINGIOMAS 

Genetically,	 meningiomas	 can	 be	 broadly	 separated	 into	 two	 major	 groups.	 Namely,	

meningiomas	that	harbor	a	mutation	in	the	NF2	gene,	making	up	about	two	thirds	of	all	cases,	and	

meningiomas	without	a	 loss	of	NF2	(Zhang	et	al.	2014).	The	 latter	 is	usually	associated	with	a	

favorable	course	of	disease	and	displays	mutations	 in	other	genes	such	as	TRAF7,	AKT1,	KLF4,	

SMO,	POLR2A,	and	PIK3CA	(Clark	et	al.	2013;	Brastianos	et	al.	2013;	Reuss	et	al.	2013;	Yuzawa,	

Nishihara,	and	Tanaka	2016).	For	tumors	with	NF2	loss,	the	range	of	outcomes	is	broad,	covering	

slow-growing	cases	that	almost	never	recur	as	well	as	cases	with	aggressive	growth	and	high	risk	

of	recurrence	(Yuzawa,	Nishihara,	and	Tanaka	2016;	Sahm	et	al.	2017).	The	gene	product	of	NF2,	

Merlin,	influences	several	downstream	signaling	pathways,	such	as	the	Hippo,	PI3K,	MAPK,	and	

Wnt	signaling	pathways	(Stamenkovic	and	Yu	2010;	Cui	et	al.	2019).	It	regulates	the	cytoskeleton	

by	linking	actin	filaments	and	transmembrane	receptors	and	can	attenuate	proliferation	through	

contact	 inhibition	 (Stamenkovic	 and	 Yu	 2010).	 Mutations	 in	 this	 gene	 are	 usually	 nonsense,	
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frameshift,	or	splice	site	mutations,	resulting	in	a	loss	of	NF2	(Ahronowitz	et	al.	2007).	NF2	loss	in	

meningioma	is	associated	with	certain	histopathological	subtypes,	mostly	the	fibroblastic	and	the	

transitional	 subtype.	On	 the	 other	 hand,	KLF4	 and	TRAF7	mutations	 are	 linked	 to	 a	 secretory	

histology,	 and	 mutations	 in	 AKT1	 are	 frequently	 observed	 in	 meningothelial	 meningiomas	

(Brastianos	et	al.	2013).	Mutations	 in	TRAF7	often	occur	 in	combination	with	KLF4,	AKT1,	and	

PIK3CA	mutations	(Zotti	et	al.	2017;	Abedalthagafi	et	al.	2016),	although	they	can	also	present	in	

isolation	(Figure	2).	By	contrast,	mutations	in	SMO	and	POLR2A	are	typically	mutually	exclusive	

(Yuzawa,	Nishihara,	and	Tanaka	2016).	

Besides	gene	mutations,	meningiomas	frequently	display	copy	number	variations	(CNVs).	By	

far	the	most	common	alteration	is	the	deletion	of	chromosome	22q,	being	deleted	in	68%	of	all	

cases,	which	is	also	the	gene	locus	of	the	NF2	gene	(Maas	et	al.	2021).	Other	common	CNVs	include	

the	deletion	of	chromosomes	1p,	6q,	7p,	10q,	14q,	and	18q	(Maillo	et	al.	2003;	Riemenschneider,	

Perry,	and	Reifenberger	2006;	Ketter	et	al.	2007;	Maas	et	al.	2021).	The	number	of	alterations	

typically	increases	with	malignancy.	

Other	common	alterations	in	meningioma	are	the	deletion	of	the	CDKN2A/B	gene	locus	as	well	

as	TERT	promoter	mutations,	which	are	both	associated	with	an	aggressive	behavior	of	the	tumor	

(Goutagny	et	al.	2014;	Sahm	et	al.	2015;	Sievers	et	al.	2020).	Further	connected	with	increased	

malignancy	is	the	elevated	activity	of	the	transcription	factor	FOXM1	(Paramasivam	et	al.	2019).	

FOXM1	 may	 play	 a	 role	 in	 the	 promotion	 of	 tumor	 cell	 proliferation	 and	 their	 epithelial-

mesenchymal	transition	as	well	as	angiogenesis	within	the	tumor	(H.	Kim	et	al.	2020).	

The	evaluation	of	molecular	alterations	has	recently	gained	significance	in	risk	stratification	

for	meningioma	patients	(Louis	et	al.	2021).	

	
Figure	2.	Genetic	alterations	in	meningiomas.	[Adapted	from	Lee	and	Lee	2020.]	
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THE MENINGIOMA-SPECIFIC TUMOR MICROENVIRONMENT  

The	behavior	and	aggressiveness	of	tumor	cells	is	heavily	influenced	by	the	surrounding	tissue	

and	infiltrating	non-malignant	cells,	such	as	immune	cells	or	fibroblasts,	as	well	as	the	proteins	

that	they	produce,	including	extra-cellular	matrix	(ECM)	components,	cytokines,	chemokines,	and	

growth	 factors.	 Together,	 these	 cells	 and	 their	 secreted	proteins	 are	 referred	 to	 as	 the	 tumor	

microenvironment	 (TME).	 In	 meningiomas	 specifically,	 the	 TME	 consists	 of	 non-cancerous	

fibroblasts,	endothelial	cells,	and	immune	cells,	as	well	as	the	ECM	(Sahab-Negah	and	Gorji	2020).	

Importantly,	the	TME	in	meningioma	is	not	limited	by	the	blood	brain	barrier,	as	is	the	case	for	

parenchymal	 CNS	 tumors.	 The	most	 frequent	 infiltrating	 cell	 type	 are	myeloid	 cells,	 of	which	

macrophages	make	up	the	largest	component	(Fang	et	al.	2013).	Macrophages	that	are	observed	

in	the	healthy	meninges	compose	a	strongly	specialized	subtype	of	macrophages	and	are	therefore	

often	referred	to	as	border-associated	macrophages	(Utz	and	Greter	2019).	Besides	macrophages,	

the	immune	cell	compartment	within	meningiomas	includes	microglia,	T	cells,	most	of	which	are	

CD8	positive,	NK	cells,	 and	 to	a	 lesser	extent	B	 cells	 and	 regulatory	T	 cells	 (Fang	et	 al.	2013).	

Macrophages	 and	microglia	 have	 largely	 overlapping	 expression	 profiles	 and	 share	 the	 same	

embryonic	origin,	so	that	discrimination	of	both	cell	types	can	be	challenging;	however,	some	cell	

type	specific	markers	have	been	established	for	both	(Gomez	Perdiguero	et	al.	2015;	Ginhoux	et	

al.	2010;	Haage	et	al.	2019).	Furthermore,	myeloid	derived	suppressor	cells	have	been	reported	

in	meningiomas,	at	higher	proportions	in	high	grade	tumors	as	compared	to	WHO	grade	1	tumors	

(Pinton	et	al.	2018).	These	cells	are	known	to	have	an	immunosuppressive	activity	and	promote	

tumor	vascularization	(Veglia,	Sanseviero,	and	Gabrilovich	2021).	In	addition,	they	might	facilitate	

immune	 escape	 of	 the	 tumor	 by	 enhancing	 PD-L1	 expression.	 PD-L1	 expression	 has	 been	

demonstrated	to	be	increased	in	anaplastic	meningioma	(Du	et	al.	2015).		

Overall,	 the	 presence	 or	 absence	 of	 certain	 immune	 cell	 types	 heavily	 influences	 the	

malignancy	of	the	tumor.	However,	the	composition	and	behavior	of	the	meningioma	TME	is	not	

extensively	studied	thus	far.	

	

WHO GRADING OF MENINGIOMAS 

Meningiomas	occur	at	WHO	grades	1	to	3.	Their	grading	has	previously	been	purely	based	on	

histopathological	 evaluation,	 but	 in	 the	 most	 recent	 2021	 WHO	 classification	 also	 molecular	

markers	have	been	 introduced	 (Louis	et	al.	2021).	Still,	meningiomas	are	assigned	an	atypical	

subtype	and	thereby	classified	as	WHO	grade	2	 if	 they	either	have	a	mitotic	rate	of	 four	 to	19	

mitoses	per	mm2,	present	with	brain	 invasion,	or	display	three	of	the	five	histological	 features	

defined	as	atypical	by	the	WHO.	These	are:	spontaneous	intratumoral	necrosis,	high	cellularity,	

prominent	nucleoli,	a	low	cytoplasm	to	nucleus	ratio,	and	a	pattern-less	or	sheeted	architecture	
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(Louis	et	al.	2021).	Meningiomas	of	a	chordoid	and	clear	cell	subtypes	are	also	assigned	as	WHO	

grade	2.	Anaplastic	meningiomas,	which	are	classified	as	WHO	grade	3,	are	defined	by	their	high	

mitotic	rate	of	more	than	20	mitoses	per	mm2,	or	alternatively	frank	anaplasia	that	is	linked	to	a	

loss	of	the	meningothelial	differentiation.	In	addition,	two	genetic	alterations	have	been	included	

in	the	2021	WHO	classification	as	indicative	of	WHO	grade	3	tumors:	A	homozygous	deletion	of	

CDKN2A/B,	and	TERT	promoter	mutations	(Louis	et	al.	2021).	

Besides	 that,	 some	 genetic	 characteristics	 are	 frequently	 associated	 with	 malignancy,	

although	 they	 are	not	 decisive	 for	 tumor	 grading.	NF2-mutated	meningiomas	 for	 example	 are	

more	often	 classified	 as	WHO	grade	2	or	3.	 Furthermore,	 a	 loss	 of	H3K27	 trimethylation	 also	

points	towards	an	increased	risk	of	recurrence	and	more	aggressive	behavior	(Katz	et	al.	2018;	

Behling	et	al.	2021;	Nassiri,	Wang,	et	al.	2021;	Torp,	Solheim,	and	Skjulsvik	2022).	

The	majority	of	all	meningiomas,	namely	80	%,	are	assigned	as	WHO	grade	1	(Ostrom	et	al.	

2021).	The	ten-year	overall	survival	rate	for	these	tumors	after	resection	is	with	around	83.7	%	

quite	high	(Ogasawara,	Philbrick,	and	Adamson	2021).	This	rate	is	decreased	to	53	%	for	WHO	

grade	2	meningiomas,	which	make	up	18.3	%	of	all	cases.	The	by	far	smallest	proportion	are	WHO	

grade	3	meningiomas	with	1.6	%	(Ostrom	et	al.	2021).	These	tumors	usually	have	a	poor	prognosis	

and	five-year	overall	survival	rate	of	0	%	(Ogasawara,	Philbrick,	and	Adamson	2021).	

As	histopathological	evaluation	for	grading	is	nonetheless	prone	to	sampling	error	as	well	as	

to	 some	degree	 subjectiveness	 of	 the	 pathologist,	 the	WHO	grading	 has	 recently	 been	 further	

refined	through	epigenetic	profiling.	The	existing	classification	systems	based	on	the	meningioma	

methylome	are	described	in	detail	in	the	following	section.	

	

	

1.2. MOLECULAR GRADING SYSTEMS FOR MENINGIOMA 

HEIDELBERG METHYLATION CLASSIFIER 

At	the	University	Hospital	Heidelberg,	a	classification	system	for	meningiomas	was	derived	

based	 on	 unsupervised	 clustering	 of	meningioma	 epigenomic	 profiles.	 It	 distinguishes	 six	 so-

called	methylation	classes	(MCs).	These	comprise	three	benign	classes,	MCs	ben-1,	ben-2,	and	ben-

3,	with	usually	good	prognosis,	one	malignant	class,	MC	mal,	characterized	by	aggressive	growth	

and	 high	 risk	 of	 recurrence,	 and	 two	 intermediate	 classes,	 MC	 int-A	 and	 int-B,	 with	 an	

intermediate	outcome	(Sahm	et	al.	2017).	Apart	from	their	epigenetic	profile	tumors	of	the	same	

MC	tend	to	share	other	characteristics	regarding	mutations,	CNVs,	as	well	as	the	anatomic	location	

at	which	they	typically	present.	NF2	mutations	and	a	deletion	of	chromosome	22q	for	example	are	

frequently	observed	in	ben-1,	int-A/B,	and	mal	tumor,	but	mostly	absent	in	MCs	ben-2.	MC	ben-3	

tumors	 in	 turn	 more	 often	 harbor	 chromosomal	 gains	 than	 other	 tumors,	 such	 as	 a	 gain	 in	
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chromosome	5	(Sahm	et	al.	2017;	Maas	et	al.	2021).	Overall,	chromosomal	changes	accumulate	

with	increasing	malignancy.	

This	classification	system	has	been	demonstrated	to	be	superior	in	risk	stratification	to	the	

conventional	 2016	WHO	 grading	 and	 is	 thus	 now	 considered	 in	 the	 most	 recent	 2021	WHO	

grading	(Sahm	et	al.	2017;	Louis	et	al.	2021).	

	

UCSF METHYLATION CLASSIFIER 

With	 a	 similar	 background,	 the	 University	 of	 California	 San	 Francisco	 (UCSF)	 has	 derived	

another	 classification	 system	 based	 on	 the	 clustering	 of	 meningioma	 methylation	 profiles	

(Choudhury,	 Magill,	 et	 al.	 2022).	 This	 classification	 only	 discriminates	 three	 meningioma	

subgroups,	 however:	Merlin-intact,	 immune-enriched,	 and	 hypermitotic	meningiomas.	Merlin-

intact	tumors	are	here	characterized	by	a	copy	number	neutral	state	of	chromosome	22q	as	well	

as	 an	 intact	NF2	 gene	 locus	 and	 the	 expression	 of	 NF2.	Moreover,	 they	 often	 harbor	 gains	 of	

chromosome	5	and	a	loss	of	chromosome	6p	(Choudhury,	Magill,	et	al.	2022).	Most	cases	in	the	

Merlin-intact	subgroup	(81	%)	are	classified	as	grade	1	through	WHO	grading.	Immune-enriched	

meningiomas	usually	follow	a	benign	course	as	well,	with	75	%	being	classified	as	WHO	grade	1.	

While	those	tumors	usually	present	with	a	chromosome	22q	deletion,	they	are	characterized	by	

an	 elevated	 HLA	 gene	 expression,	 often	 with	 chromosomal	 gains	 on	 chromosome	 6p,	 which	

harbors	 the	HLA	gene	 locus,	and	a	hypomethylation	of	 the	HLA	as	well	as	 lymphatic	gene	 loci	

(Choudhury,	Magill,	et	al.	2022).	The	hypermitotic	subgroup	was	the	most	aggressive	type,	with	

only	43	%	of	tumors	being	assigned	to	WHO	grade	1.	Meningiomas	of	this	subgroup	harbored	the	

most	CNVs,	most	frequently	chromosomal	losses	on	22q,	1p,	6p,	and	9p,	as	well	as	chromosomal	

gains	on	1q.	They	also	displayed	an	elevated	FOXM1	expression	and	a	hypermethylation	of	the	

CDKN2A/B	gene	locus	(Choudhury,	Magill,	et	al.	2022).	

	

TORONTO METHYLATION CLASSIFIER 

A	third	classification	system	was	developed	by	the	University	of	Toronto	(Nassiri,	Liu,	et	al.	

2021).	This	system	however	does	not	only	consider	the	epigenomic	profile,	but	also	CNVs	as	well	

as	the	transcriptome	for	identification	of	subgroups.	It	separates	four	subgroups:	immunogenic,	

NF2	wild	type,	hypermetabolic,	and	proliferative	meningiomas.	While	the	immunogenic	subgroup	

mostly	 contained	 benign	 meningiomas,	 high	 grade	 meningiomas	 were	 enriched	 in	 the	

hypermetabolic	 and	 proliferative	 subgroup,	 of	 which	 the	 proliferative	 displayed	 the	 most	

unfavorable	 clinical	 course,	 and	both	of	which	 accumulated	CNVs	and	mutations	 in	oncogenic	

driver	genes	(Nassiri,	Liu,	et	al.	2021).	NF2	wild	type	meningiomas	on	the	other	hand	displayed	

virtually	no	chromosomal	deletions	and,	as	the	name	suggests,	rarely	harbored	mutations	in	the	



1.2.	Molecular	grading	systems	for	meningioma	 	 17	

NF2	 gene.	 Instead,	 frequently	 mutated	 genes	 in	 this	 subtype	 were	 TRAF7,	 AKT1,	 KLF4,	 and	

POL2RA.	 If	none	of	 these	mutations	were	present,	usually	 chromosomal	gains,	 for	example	on	

chromosome	 4,	 12,	 13,	 17,	 or	 20	 could	 be	 observed	 (Nassiri,	 Liu,	 et	 al.	 2021).	 Immunogenic	

meningiomas	 mostly	 exhibited	 flat	 CNV	 profiles,	 apart	 from	 chromosome	 22q	 deletions.	 The	

subgroups	also	differed	in	their	gene	expression	profiles,	with	genes	connected	to	immune-related	

pathways	being	enriched	in	the	immunogenic	subgroup,	and	angiogenesis-related	genes	enriched	

in	the	NF2	wild	type	subgroup.	The	hypermetabolic	and	proliferative	subgroup	displayed	elevated	

expression	levels	of	genes	related	to	the	cell	metabolism	and	the	cell	cycle,	respectively	(Nassiri,	

Liu,	et	al.	2021).	

	

COMPARISON OF EXISTING METHYLATION CLASSIFICATION SYSTEMS 

Interestingly,	all	the	three	methylation	classifiers	described	above	identify	a	different	set	of	

subgroups,	even	though	they	are	all	based	on	unsupervised	clustering	of	meningioma	epigenomic	

profiles.	The	Heidelberg	classifier	defines	six	groups,	while	UCSF	and	Toronto	distinguish	three	

and	four	groups,	respectively.	Nonetheless,	some	similarities	between	the	three	systems	can	be	

observed.	All	the	classifiers	for	example	identify	a	subgroup	of	tumors	that	harbors	no	loss	of	the	

NF2	gene,	namely	the	Merlin-intact	tumors	in	the	UCSF	classifier,	the	NF2-wild	type	for	Toronto,	

and	MC	ben-2	meningiomas	in	the	Heidelberg	classifier	(Sahm	et	al.	2017;	Choudhury,	Magill,	et	

al.	2022;	Nassiri,	Liu,	et	al.	2021).	MCs	ben-2	and	ben-3,	which	also	have	comparatively	few	NF2	

alterations,	 hereby	 differ	 in	 the	 Heidelberg	 classification	 system	 by	 the	 CNV	 profile,	 which	 is	

virtually	flat	in	ben-2	and	enriched	for	chromosomal	gains	in	ben-3;	an	observation	that	was	also	

made	within	the	Toronto	NF2-wild	type	group.	In	addition,	the	UCSF	immune-enriched	and	the	

Toronto	 immunogenic	 subgroup	 share	 their	 enrichment	 in	 immune-related	processes	 and	 the	

beneficial	 prognosis.	 The	 UCSF	 hypermitotic	 subgroup,	 the	 Toronto	 hypermetabolic	 and	

proliferative	 subgroups,	 and	 the	 Heidelberg	 MC	mal	 all	 share	 the	 accumulation	 of	 CNVs	 and	

mutations	as	well	as	the	aggressive	behavior.	A	recent	publication	has	even	demonstrated	that	the	

hypermetabolic	and	proliferative	subgroup	in	the	Toronto	system	can	indeed	be	regarded	as	a	

further	 subgrouping	 of	 the	 UCSF	 hypermitotic	 subgroup	 (Choudhury,	 Chen,	 et	 al.	 2022).	 This	

leaves	the	two	intermediate	subgroups,	MCs	int-A	and	int-B,	of	the	Heidelberg	classifier	without	

immediate	 counterpart,	 which	 raises	 the	 question	 whether	 these	 add	 prognostic	 value	 in	

comparison	 to	 the	other	 two	systems.	So	 far	however,	 little	 is	known	regarding	 the	molecular	

subgroups	 in	 terms	 of	 cellular	 composition,	 tumor	 microenvironmental	 changes,	 and	 the	

regulatory	mechanisms	leading	up	to	tumor	progression.	
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1.3. SINGLE CELL AND SPATIAL TRANSCRIPTOMICS 

BENEFITS OF SINGLE CELL TRANSCRIPTOMICS 

The	classification	and	characterization	of	the	above-named	subgroups	of	meningioma	relies	

mostly	on	epigenomic	and	transcriptomic	data	obtained	from	bulk.	While	this	can	identify	global	

differences	between	 tumors,	 it	 is	often	difficult	 to	 impossible	 to	distinguish	whether	observed	

changes	originate	 from	the	 tumor	cells	 themselves	or	 from	 the	 infiltrating	cell	populations,	or	

whether	they	may	be	due	to	changes	in	the	composition	of	cell	types.	Investigating	tissue	on	a	

cellular	level	overcomes	these	difficulties.	Due	to	that,	single	cell	sequencing	methods	have	gained	

importance	in	the	last	years,	and	the	range	of	available	technologies	is	growing.	They	enable	the	

identification	 of	 the	 cell	 types	 present	 in	 a	 tissue	 as	 well	 as	 their	 proportions	 and	 allow	 a	

comparison	of	certain	cell	populations	between	conditions.	Increasing	throughput	and	decreasing	

costs	for	single	cell	sequencing	experiments	allow	for	broader	application	of	these	methods.	

	

SINGLE CELL RNA-SEQUENCING METHODS 

Methodologies	for	single-cell	RNA-Sequencing	(scRNA-Seq)	can	in	general	be	well-based,	e.g.	

Smart-Seq2,	or	droplet-based,	e.g.	10X	Chromium.	For	well-based	approaches,	cells	are	first	sorted	

into	individual	wells.	Here,	cells	are	lysed,	mRNA	is	reverse	transcribed	to	cDNA	and	amplified,	

and	sequencing	adapters	are	added	before	pooling	the	wells	for	sequencing	(Picelli	et	al.	2014).	

The	usage	of	well	plates	limits	however	the	throughput	to	a	few	hundred	cells.	While	this	may	

already	be	a	good	number	of	cells,	it	is	often	not	enough	to	recapitulate	the	full	diversity	of	cell	

types	 and	 subtypes.	 The	 droplet-based	 Chromium	 device	 from	 10X	 Genomics	 overcomes	 this	

limitation	by	enabling	the	simultaneous	profiling	of	thousands	of	cells,	making	it	one	of	the	most	

widely	applied	technologies.	This	methodology	is	based	on	microfluidics,	through	which	the	cells	

are	 placed	 into	 individual	 gel	 beads,	 each	 of	 them	 containing	 barcoded	 primers	 and	 enzymes	

which	 allows	 capturing	 and	 barcoding	 of	 the	 RNA	 molecules	 of	 each	 single	 cell	 (Figure	 3).	

Afterwards,	they	can	be	pooled	for	generation	of	sequencing	libraries.	While	the	throughput	in	

terms	of	cell	numbers	for	this	method	is	much	higher	compared	to	the	well-based	Smart-Seq2	

protocol,	 it	 identifies	 less	 transcript	per	cell	and	has	a	higher	dropout	rate,	meaning	genes	 for	

which	no	expression	could	be	detected	due	to	technical	issues	(X.	Wang	et	al.	2021).	In	addition,	

the	10X	protocol	requires	the	Chromium	device,	whereas	Smart-Seq2	runs	without	any	specific	

devices.	Still,	the	better	coverage	of	cells	with	the	10X	Chromium	allows	for	the	detection	of	rare	

cell	populations,	aside	 from	providing	a	 larger	sample	size.	Thus,	 the	choice	of	method	always	

must	be	made	based	on	the	aim	of	the	study.	
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Figure	3.	Droplet-based	scRNA-Seq	approach	using	the	10X	Chromium	platform.	[Taken	from	10X	Genomics.]	

	

BENEFITS OF SPATIAL TRANSCRIPTOMICS 

Single	 cell	 sequencing	methods	allow	 for	 a	 characterization	of	 cellular	 types	and	 subtypes	

present	within	a	sample.	They	do	not,	however,	permit	any	predictions	where	in	the	tissue	these	

cell	 populations	 are	 located,	 as	 samples	 need	 to	 be	 dissociated	 into	 single	 cell	 suspensions.	

Nonetheless,	this	information	can	be	important,	as	the	tissue	architecture	is	known	to	strongly	

influence	 biological	 function,	 and	 one	 can	 infer	 interacting	 cell	 populations	 based	 on	 their	

neighborhood	 as	 well	 as	 cellular	 niches.	 Spatial	 transcriptomics	 enable	 these	 kinds	 of	

investigations	by	placing	the	detected	RNA	expression	at	its	respective	location	within	the	tissue.	

	

SPATIAL TRANSCRIPTOMICS METHODS 

Broadly,	methods	for	investigating	transcriptomics	on	spatial	level	can	be	separated	into	next-

generation	 sequencing	 (NGS)	 based	 methods,	 and	 imaging-based	 methods	 (Rao	 et	 al.	 2021).	

However,	also	methods	that	leverage	aspects	of	both	exist.	Imaging-based	methods	either	rely	on	

in-situ	 hybridization	 (ISH),	where	a	 complementary	probe	with	a	 fluorescent	marker	aligns	 to	

RNA	molecules	in	the	tissue	which	can	subsequently	be	imaged	(Figure	4c),	or	they	rely	on	in-situ	

sequencing	(ISS).	For	the	latter,	the	RNA	is	captured	with	targeted	so-called	padlock	probes,	which	

are	amplified	through	a	rolling	circle	amplification.	This	attaches	a	specific	barcode	sequence	to	

the	 RNA	 molecule	 which	 can	 then	 be	 decoded	 sequentially	 using	 fluorescently	 labeled	

oligonucleotides	(Figure	4b).	Both	ISH	and	ISS	thereby	require	a	pre-selection	of	the	probes	and	

thus	the	RNA	molecules	to	be	queried,	making	them	targeted	approaches.	NGS-based	methods,	on	

the	other	hand,	are	unbiased	as	they	capture	all	polyadenylated	RNA.	They	are	based	on	oligo-

coated	slides,	where	each	oligo	sequence	encodes	a	specific	spot	of	a	certain	diameter	on	the	slide.	

Tissue	is	placed	on	the	slide	and	lysed,	whereby	the	mRNA	anneals	to	the	primers	on	the	slide	and	

the	barcode	is	ligated	in	the	subsequent	reverse	transcription	and	cDNA	generation.	The	barcoded	

cDNA	is	then	basis	for	sequencing	library	generation	(Figure	4a).	A	commercial	application	of	this	

technique	 is	 the	Visium	platform	(10X	Genomics).	While	 this	approach	can	be	applied	without	
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prior	feature	selection,	its	resolution	is	limited	by	the	size	of	the	spots.	In	the	case	of	Visium,	spots	

have	a	diameter	of	55	µm,	which	is	of	course	well	beyond	the	size	of	most	cells,	rendering	spatial	

profiling	at	single	cell	resolution	impossible.	The	resolution	of	imaging-based	methods	is	much	

better,	allowing	even	for	subcellular	localization.	However,	NGS-based	methods	are	still	rapidly	

improving	 in	 resolution.	 Another	 disadvantage	 of	NGS-based	methods	 is	 their	 low	 sensitivity.	

Image-based	methods	have	a	much	higher	detection	efficiency,	especially	 ISH	can	detect	 lowly	

expressed	RNA	molecules	with	high	sensitivity.	Nonetheless,	NGS-based	methods	are	the	method	

of	choice	for	an	unbiased	approach	without	feature	selection	and	are	often	easier	to	apply	due	to	

the	availability	of	commercial	solutions.	

	

	
Figure	4.	Available	spatial	transcriptomics	approaches.	[Taken	with	permissions	from	Rao	et	al.	2021.]	

	

		

1.4. AIM 

As	molecular	classification	is	gaining	increasing	importance	for	meningioma	and	has	recently	

been	 included	 in	 the	2021	CNS	WHO	classification,	 this	 thesis	aims	to	 further	characterize	 the	

methylation	classes	that	were	previously	established	by	the	Heidelberg	University	Hospital	and	

thus	 improve	 risk	 stratification	 for	 meningioma	 patients.	While	 commonalities	 regarding	 the	

epigenome,	CNV	 status,	 and	mutational	profile	have	been	 investigated	between	 the	 individual	

MCs,	nothing	is	known	about	the	differences	in	cellular	processes	and	regulatory	mechanisms	that	

might	 cause	 the	 differences	 in	 patient	 outcome.	 Here,	 I	 leveraged	 bulk	 transcriptomic	 and	

proteomic	data	to	investigate	whether	the	MCs	that	have	been	defined	based	on	the	level	of	the	

epigenome	can	be	recapitulated	on	RNA	and	protein	level.	 In	addition,	these	data	are	basis	for	

enrichment	and	pathway	analyses	to	highlight	the	underlying	features	of	each	MC.	
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However,	differences	in	tumor	class	might	not	be	caused	by	global	changes	in	the	tumor	cell	

population.	It	is	more	likely	that	changes	are	gradual,	and	a	single	tumor	might	comprise	tumor	

cell	 subpopulations	 at	 different	 stages	 of	 progression,	 or	 with	 different	 tendencies	 towards	

progression.	 Thus,	 I	 investigated	 subpopulations	 of	 cells	 that	 are	 shared	 or	 distinct	 between	

tumor	 classes	 using	meningioma	 scRNA-Seq	 data.	 Finding	 tumor	 cell	 subpopulations	 that	 are	

present	 across	 all	 stages	 of	 malignancy	 or	 ones	 exclusive	 to	 benign	 or	 malignant	 tumors,	

respectively,	can	give	indications	what	cellular	states	might	be	responsible	for	tumor	progression.	

The	primary	and	recurrent	tumor	pairs	from	the	same	patient,	that	are	also	included	in	the	data	

set,	 can	 facilitate	 this	 by	 allowing	 a	 direct	 comparison	 between	 the	 initial	 tumor	 and	 its	

recurrence.	Subsequently,	spatial	transcriptomics	data	for	a	set	of	meningiomas	allowed	me	to	

examine	the	 location	of	cell	subpopulations	within	the	tumor	tissue	and	their	association	with	

histological	structures.	

The	scRNA-Seq	data	also	enabled	me	to	put	known	molecular	risk	factors	into	perspective	on	

single	cell	level.	The	CDNK2A/B	gene	locus	for	example	is	often	deleted	in	high	grade	meningioma	

(Sievers	et	al.	2020).	However,	it	has	not	been	investigated	thus	far	whether	this	deletion	occurs	

homogeneously	across	cells	and	whether	regulatory	mechanisms	that	 facilitate	 the	 loss	of	 this	

gene	 locus	may	be	activated	during	meningioma	progression.	 I	not	only	probed	 the	single	cell	

transcriptomic	data	to	investigate	CDKN2A	expression	and	its	potential	heterogeneity	on	single	

cell	level,	but	also	leveraged	single-cell	ATAC-Sequencing	(scATAC-Seq)	data	that	was	additionally	

obtained	for	CDKN2A/B	homozygous	deleted	and	non-deleted	cases	to	examine	the	differences	in	

chromatin	 status.	 Similarly,	 FOXM1	 expression,	 which	 is	 a	 known	 risk	 factor	 for	 high-grade	

meningiomas	(Louis	et	al.	2021),	has	not	been	explored	on	single	cell	level.	Here,	I	assessed	in	the	

scRNA-Seq	data	whether	the	expression	of	this	genes	is	 indeed	upregulated	in	tumor	cells	and	

whether	this	is	a	global	change	or	only	caused	by	a	specific	cell	subpopulation.	

In	addition,	I	leveraged	the	single	cell	transcriptomic	data	to	closer	investigate	the	endothelial	

structures	 of	meningiomas	with	 an	 angiomatous	 subtype.	A	 high	 amount	 of	 vascularization	 is	

characteristic	 for	this	histological	subgroup.	However,	 it	has	not	been	conclusively	determined	

whether	 these	 blood	 vessels	 are	 formed	 by	 endothelial	 cells	 infiltrating	 the	 tumor	 based	 on	

angiogenic	 signals,	 or	whether	 the	 vessels	 are	 in	 fact	 formed	 by	 tumor	 cells.	 The	 question	 is	

addressed	in	this	thesis	by	examining	vascular	markers	as	well	as	copy	number	changes	in	the	

individual	cell	populations	of	these	tumors.	

Since	not	only	tumor	cells	are	captured	by	the	scRNA-Seq	data	but	also	the	range	of	infiltrating	

cell	populations,	I	subsequently	aimed	to	define	the	cell	types	typically	present	in	meningiomas	

and	the	changes	in	immune	cell	populations	that	can	be	observed	between	low-	and	high-grade	

tumors,	 including	 tumor	 associated	 macrophages	 and	 lymphocytes.	 The	 query	 of	 spatial	

transcriptomic	data	allowed	inferences	on	the	colocation	of	immune	and	tumor	cells	as	well	as	the	

association	 of	 immune	 cells	 and	 immune	 cell	 subtypes	 with	 histological	 features.	 Thereby,	
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information	 on	 the	 tumor	microenvironment	 can	 be	 appended	 to	 the	 epigenetic	 classification	

system.	This	is	of	especial	interest	as	two	of	the	alternative	methylation	classification	systems,	the	

UCSF	and	 the	Toronto	classifier,	both	 identify	a	benign	 subgroup	 that	 is	 enriched	 for	 immune	

signatures	(Choudhury,	Magill,	et	al.	2022;	Nassiri,	Liu,	et	al.	2021).		

Altogether,	in	this	thesis	I	aimed	to	consolidate	the	added	value	of	molecular	classification	for	

meningiomas	 to	 the	 conventional	WHO	grading	 and	 the	 consistency	 of	 epigenomic	 classes	 on	

transcriptomic	and	proteomic	level.	A	special	focus	was	thereby	on	the	infiltrating	non-tumor	cell	

populations	that	will	not	only	affect	any	results	on	bulk	level,	but	also	strongly	interact	with	the	

tumor	 cell	 populations.	 The	 gathered	 information	 will	 be	 valuable	 for	 understanding	 the	

meningioma	TME,	 the	molecular	mechanisms	of	progression	 in	meningiomas,	and	 thereby	 the	

identification	of	molecular	markers	for	risk	prediction.		
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II.  MATERIAL & METHODS 

2.1. MATERIALS 

This	 section	 gives	 on	 overview	 on	 the	 datasets	 used	 for	my	 analyses	 and	 how	 they	were	

derived.	 This	 part	 has	 not	 been	performed	by	me	but	 by	 colleagues	 in	 the	wet	 lab,	 especially	

thanks	to	Helin	Dogan	and	Michael	Ritter.	

	

BULK RNA-SEQ DATA 

Bulk	RNA-Seq	data	was	obtained	by	Helin	Dogan	and	lab	technicians	as	described	in	Stichel	et	

al.	2019.	In	short,	the	TruSeq	RNA	Library	Prep	for	Enrichment	kit	(Illumina)	was	used	to	generate	

libraries	from	formalin-fixed,	paraffin-embedded	(FFPE)	tissue.	Paired-end	reads	with	a	length	of	

75	bp	were	sequenced	using	a	NextSeq	500	device	(Illumina).	By	applying	the	in-house	pipeline	

for	 the	processing	of	RNA-Seq	data,	adapters	were	 trimmed,	reads	were	aligned	to	 the	human	

genome	(GRCh37)	with	the	STAR	aligner	(Dobin	et	al.	2013),	and	subsequently	quantified	using	

RSEM	(Li	and	Dewey	2011).	The	thus	generated	count	matrices	were	basis	for	all	further	analysis	

performed	by	me	as	described	in	the	methods	section.	

	

PROTEOMICS & PHOSPHOPROTEOMICS DATA 

Generation	 of	 proteomics	 and	 phosphoproteomics	 data	 was	 generated	 from	 FFPE	 tissue	

samples	 by	 Lisa	 Schweizer	 and	 Sophia	 Doll	 at	 the	 Max	 Planck	 Institute	 of	 Biochemistry,	

Martinsried,	 according	 to	 the	 previously	 described	 workflow	 (Coscia	 et	 al.	 2020).	 After	

enrichment	 for	 phosphorylated	 peptides,	 liquid	 chromatography	 –	 mass	 spectrometry	

measurements	 were	 performed,	 and	 mass	 spectrometry	 data	 was	 acquired	 in	 either	 data-

independent	mode	or	data-dependent	mode.	The	data	were	further	processed	by	combining	the	

SpectronoutTM	 and	 the	 SprectromineTM	 software.	 MaxQuant	 was	 used	 for	 analysis	 of	

phosphoproteomic	 data.	 Counts	 matrices	 were	 further	 processed	 by	 me	 as	 described	 in	 the	

methods	section.	

	

SINGLE NUCLEI RNA-SEQ DATA 

Single	nuclei	RNA-Seq	data	was	obtained	in	two	batches,	between	which	the	nuclei	isolation	

protocol	underwent	some	optimization.	They	are	described	separately	in	the	following.	
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Batch	1	–	original	nuclei	isolation	protocol	
Single	nuclei	isolation	and	library	preparation	for	this	batch	were	conducted	by	Laura	Dörner	

and	Lea	Hofmann.	To	this	end,	20	to	30	mg	of	tissue	were	mechanically	broken	up	using	a	scalpel	

under	addition	of	lysis	buffer.	The	suspension	was	transferred	to	a	Douncer	and	further	lysed	by	

eight	strokes	each	with	two	types	of	pestles.	The	lysate	was	subsequently	filtered	and	washed.	

After	resuspension	of	the	nuclear	pellet,	a	nuclei	suspension	was	obtained	that	was	basis	for	single	

nuclei	library	preparation.	

Batch	2	–	optimized	nuclei	isolation	protocol	
Single	nuclei	suspensions	were	obtained	from	frozen	tumor	and	library	preparation	for	this	

batch	was	performed	by	Helin	Dogan.	Therefore,	150	µm	tissue	sections	of	10	mg	are	lysed	in	lysis	

buffer	and	suspended	by	repeated	pipetting.	The	suspension	was	transferred	to	a	Douncer	and	

further	lysed	by	15	strokes	each	with	two	types	of	pestles.	The	lysate	was	subsequently	filtered	

and	washed.	Nuclei	concentration	was	adjusted	to	450	nuclei	per	µl	for	library	preparation.	

Library	preparation	
Single	nuclei	RNA-seq	libraries	were	obtained	from	nuclei	suspensions	using	the	Chromium	

Next	GEM	Single	Cell	3’	Reagent	Kits	v2	(10X	Genomics).	Sequencing	was	performed	on	a	NovaSeq	

6000	(Illumina).	

	

SINGLE NUCLEI COMBINED RNA- & ATAC-SEQ DATA 

Single	 nuclei	 isolation	 and	 library	 preparation	 for	 combined	 RNA-	 and	 ATAC-Seq	 was	

performed	by	Helin	Dogan.	Nuclei	isolation	was	performed	as	for	single	nuclei	RNA-Seq	in	Batch	

2;	however,	nuclei	concentration	was	adjusted	to	only	225	nuclei	per	µl.	Library	preparation	for	

RNA-	and	ATAC-Seq	was	conducted	according	to	the	Chromium	Next	GEM	Single	Cell	Multiome	

ATAC	+	Gene	Expression	Reagent	Kits	User	Guide	(10X	Genomics).	Sequencing	was	performed	on	

a	NovaSeq	6000	(Illumina).	

	

SPATIAL TRANSCRIPTOMICS DATA 

Spatial	 transcriptomics	 data	 acquisition	 was	 performed	 by	 Michael	 Ritter.	 	 Sample	

preparation	was	carried	out	as	described	in	the	Visium	Spatial	Gene	Expression	Reagent	Kits	User	

Guide	(10X	Genomics).	In	short,	10	µm	thick	fresh	frozen	tissue	slices	were	placed	on	the	capture	

frame	of	a	Visium	spatial	expression	slide	and	stained	with	hematoxylin	and	eosin	(H&E)	after	

fixation	with	Methanol.	 The	 slides	were	 imaged	 on	 an	 Aperio	 AT2	 Slide	 Scanner	 (Biosystems	

Switzerland	AG).	After	imaging,	the	RNA	was	released,	and	the	cDNA	synthesized.	The	released	
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cDNA	 was	 then	 used	 for	 library	 generation.	 Sequencing	 was	 performed	 on	 a	 NextSeq	 500	

(Illumina)	with	28	bp	for	Read	1	and	90	bp	for	Read	2.		

	

METHYLATION ARRAY DATA 

Methylation	data	were	 generated	 from	 frozen	 tissue	 by	 lab	 technicians	 using	 the	 Illumina	

HumanMethylation450	(450k)	array	platform	(Illumina)	as	previously	described	(Capper	et	al.	

2018).	DNA	methylation	status	of	10,000	CpG	sites	was	analyzed	on	the	current	version	v12b4	of	

the	MNP	Classifier	(www.molecularneuropathology.org)	to	determine	the	MC	of	each	sample.	

	

IMMUNOHISTOCHEMISTRY 

Immunohistochemistry	was	performed	by	Helin	Dogan	on	a	BenchMark	XT	immunostainer	

and	on	a	BenchMark	Ultra	 immunostainer	 (Ventana	Medical	 Systems).	Dilutions	and	antibody	

details	are	provided	 in	Supplementary	Table	1.	 Slides	were	 scanned	on	an	Aperio	AT2	Slide	

Scanner	(Biosystems	Switzerland	AG).	

	

	

2.2. METHODS 

All	further	analyses	described	here	were	performed	by	me.	

	

ANALYSIS OF BULK RNA-SEQ DATA 

Expected	counts	obtained	from	bulk	RNA-Seq	as	described	above	were	further	analyzed	in	R	

v.4.2.0	using	DESeq2	v.1.36.0	(Love,	Huber,	and	Anders	2014).	Genes	with	a	total	count	of	 less	

than	 ten	 across	 all	 samples	 were	 excluded	 from	 analysis.	 Size	 factors	 and	 dispersion	 were	

estimated	for	each	sample,	a	negative	binominal	generalized	linear	model	was	fitted,	and	Wald	

statistics	 calculated	 (DESeq())	with	 the	 tumor	MC	 included	 as	 variable	 in	 the	 design	 for	 later	

differential	 expression	 (DE)	 analysis.	 P-values	 and	 fold	 changes	 were	 calculated	 always	

comparing	one	MC	against	all	other	MCs	(results()).	P-values	were	adjusted	for	multiple	testing	

through	Benjamini-Hochberg	(pAdjustMethod	=	"BH").	

	

Cell	type	deconvolution	from	bulk	RNA-Seq	
The	enrichment	of	infiltrating	cells,	including	immune	and	stromal	cells,	was	predicted	from	

bulk	RNA-Seq	data	using	the	xCell	R	package	(Aran	2020).	xCell’s	intrinsic	dataset	containing	64	
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human	stroma	and	immune	cells	was	used	as	reference.	Bulk	gene	expression	levels	were	ranked	

per	sample.	Gene	set	enrichment	analysis	was	performed	on	the	ranked	expression	for	cell	type-

specific	signatures,	with	each	cell	 type	being	represented	by	several	signatures,	and	scores	for	

signatures	 of	 each	 cell	 type	 were	 averaged	 (rawEnrichmentAnalysis()).	 The	 thus	 obtained	

enrichment	 scores	 were	 transformed	 to	 a	 linear	 scale	 to	 resemble	 percentages	

(transformScores()).	Finally,	a	compensation	by	spill-over	was	performed	on	the	scores	to	account	

for	dependencies	between	the	scores	of	cell	types	that	are	closely	related	(spillOver()).	

	

PATHWAY ANALYSES FOR BULK RNA-SEQ AND PROTEOMICS 

Pathway	enrichment	analyses	were	performed	via	Ingenuity	Pathway	Analysis	(IPA),	a	web-

based	 software	 application	 (QIAGEN	 Inc.,	 https://www.qiagenbioinformatics.com/products/	

ingenuity-pathway-analysis),	based	on	all	differentially	expressed	genes	with	an	adjusted	p-value	

smaller	than	0.05	and	for	RNA-Seq	data	additionally	with	a	log	fold	change	of	at	least	one.	

	

SIMILARITY NETWORK FUSION ANALYSIS 

For	similarity	network	fusion	(SNF)	analysis,	Euclidean	distances	were	calculated	individually	

in	 the	 proteomics	 count	 data	 and	 the	 variance	 stabilizing	 transformed	 RNA-Seq	 count	 data	

between	each	sample	pair.	In	a	secondary	SNF	analysis,	this	was	analogously	performed	for	the	

phosphoproteomics	count	data.	For	each	of	the	thus	obtained	distance	matrices	an	affinity	matrix	

was	generated	(affinityMatrix())	using	the	R	package	SNFtool	v.2.3.1	(B.	Wang	et	al.	2018),	with	

the	number	of	nearest	neighbors	set	to	ten	(K	=	10)	and	the	variance	of	the	 local	model	to	0.5	

(sigma	 =	 0.5).	 The	 affinity	matrices	 were	 then	 used	 as	 input	 for	 construction	 of	 a	 consensus	

network	(SNF()),	with	the	number	of	nearest	neighbors	set	to	ten	(K	=	10)	and	ten	iterations	for	

the	diffusion	process	(t	=	10).	For	the	secondary	SNF	analysis	that	included	the	phosphoproteome	

data,	 the	 number	 of	 nearest	 neighbors	 for	 affinity	matrix	 generation	 and	 consensus	 network	

construction	was	set	to	three	(K	=	3)	due	to	the	limited	number	of	phosphoproteomics	samples.	

	

KINASE PERTURBATION ANALYSIS FROM PHOSPHOPROTEOME 

Kinase	 activities	were	 inferred	 from	 the	 phosphorylation	 status	 of	 their	 respective	 target	

proteins	using	the	KSEApp	R	package	(Wiredja	2017)	using	KSEA’s	integrated	kinase-substrate	

database	(2016).	First,	fold	changes	in	the	phosphorylation	status	and	matching	p-values	for	each	

phosphorylation	 site	 were	 calculated	 comparing	 each	 MC	 against	 the	 remaining	 MCs.	 These	

served	 then	 as	 input	 for	 calculating	KSEA	 kinase	 scores	 in	 each	 comparison	 individually	 as	 Z	

scores,	 and	 p-values	 as	 statistical	 assessment	 of	 the	 Z	 scores	 for	 all	 kinases	with	 at	 least	 one	
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identified	substrate	(KSEA.Scores()).	P-values	were	adjusted	for	multiple	testing	by	applying	the	

Benjamini-Hochberg	method.	

	

SINGLE NUCLEI RNA-SEQ DATA ANALYSIS 

Sequencing	data	from	the	Illumina	runs	was	converted	into	FASTQ	format	using	Cell	Ranger	

v.6.1	 (10X	 Genomics)	 in	 cellranger	 mkfastq	 mode	 with	 default	 parameters.	 Alignment	 to	 the	

human	 genome	 (GRCh38)	 and	 read	 counting	 were	 performed	 in	 cellranger	 count	 mode	 (Cell	

Ranger	v.6.1,	10X	Genomics)	with	default	parameters.	All	 further	analysis	was	conducted	 in	R	

v.4.2.0	with	 the	 Seurat	 package	 v.4.0.0	 (Hao	 et	 al.	 2021)	 unless	 otherwise	 specified.	 At	 this,	 I	

removed	cells	with	less	than	200	detected	features	or	a	median	absolute	deviation	of	more	than	

three	times	in	their	detected	features	for	analysis.	Similarly,	I	filtered	out	cells	with	a	percentage	

of	mitochondrial	genes	three	times	higher	than	the	median	value	across	all	cells.	Doublets	were	

subsequently	 removed	 using	 the	 DoubletFinder	 R	 package	 v.2.0.3	 (McGinnis,	 Murrow,	 and	

Gartner	2019).	To	this	end,	the	number	of	principal	components	(PCs)	was	set	to	15	(PCs	=	15),	

the	number	of	artificial	doublets	to	0.25	(pN	=	0.25),	and	the	number	of	expected	doublets	(nExp)	

was	calculated	as	the	number	of	cells	in	the	sample	times	0.8	divided	by	100,000,	as	suggested	as	

expected	doublet	rate	by	10X	Genomics.	The	PC	neighborhood	size	(pK)	was	determined	using	the	

paramSweep_v3()-function.	In	Seurat,	PCA	dimensionality	reduction	was	performed	(RunPCA())	

on	the	2,000	most	variable	features	and	nearest	neighbors	were	computed	(FindNeighbors())	on	

the	 first	 20	 PCs.	 Clusters	 of	 cells	 were	 identified	 based	 on	 the	 shared	 nearest	 neighbors	

(FindClusters())	with	a	resolution	of	0.6.	Uniform	Manifold	Approximation	and	Projection	(UMAP)	

reduction	was	performed	on	the	first	20	PCs	(RunUMAP()).	

	

Cell	type	annotation	
For	the	annotation	of	cell	types,	I	leveraged	several	sources	of	information.	This	included	the	

Human	Primary	Cell	Atlas	(Mabbott	et	al.	2013),	which	served	as	reference	for	automized	cell	type	

annotation	with	the	R	package	SingleR	v.1.10.0	(Aran	et	al.	2019).	Thereby	obtained	annotations	

were	validated	by	examination	of	cell	type	specific	marker	genes	as	listed	in	PanglaoDB	(Franzén,	

Gan,	 and	Björkegren	2019).	The	 annotation	of	presumed	neoplastic	 cells	was	 in	 the	 following	

validated	by	presence	of	copy	number	alterations.	

	

CNV	calling	from	single	cell	expression	profiles	
CNV	profiles	were	estimated	using	the	InferCNV	R	package	v.1.12.0	(Tickle	et	al.	2019).	Non-

malignant	cells	were	hereby	used	as	a	reference.	The	size	of	the	sliding	window	across	which	gene	
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expression	was	averaged	was	set	to	201	neighboring	genes	(window_size	=	201).	The	obtained	

expression	matrix	was	then	median	filtered	across	15	neighboring	genes	(window_size	=	15).	

	

Batch	effect	correction	
As	the	scRNA-Seq	data	was	obtained	in	two	rounds	by	different	people	and	with	considerable	

lag	 of	 time	 and	 modifications	 to	 the	 nuclei	 isolation	 protocol,	 I	 performed	 batch	 correction	

between	these	two	batches	as	well	as	between	samples	using	the	Harmony	R	package	(Korsunsky	

et	al.	2019).	Parameters	were	empirically	chosen	based	on	their	ability	to	cluster	cell	types	across	

samples.	For	correction	between	the	first	and	second	round	of	data	acquisition,	parameters	were	

set	to	λ =	10	and	θ =	0.1,	and	for	correction	between	samples	to	λ	=	1	and	θ	=	2.	

	

Differential	expression	analysis	
A	differential	expression	(DE)	analysis	was	applied	using	the	Libra	R	package	v.1.7	(Squair	et	

al.	 2021)	 to	 compare	 cell	 populations	 of	 interest	 (tumor	 cells	 and	macrophages,	 respectively)	

across	tumor	classes.	In	this	approach	I	chose	Libra’s	edgeR-LRT	pseudobulk	method.	To	this	end,	

counts	from	cells	of	the	same	type	and	sample	are	summarized	into	a	“pseudobulk”,	 for	which	

differentially	expressed	genes	are	calculated	as	for	bulk	transcriptomic	data,	applying	a	likelihood	

ratio	test	with	edgeR	(Robinson,	McCarthy,	and	Smyth	2010).	Comparisons	were	always	made	

between	one	MC	and	all	other	MCs.	Thereby	obtained	differentially	expressed	genes	were	basis	

for	further	pathway	enrichment	analyses.	

Specifically,	enrichR	(Kuleshov	et	al.	2016)	was	applied	for	comparison	of	enriched	Molecular	

Signature	Database	hallmark	gene	sets	(Liberzon	et	al.	2015)	in	the	neoplastic	cell	populations	

between	tumor	classes.	Thereby,	genes	with	a	fold	change	with	a	log	base	2	of	at	least	one	(log2FC	

>	1)	and	with	an	adjusted	p-value	smaller	than	0.05	were	considered	differentially	expressed	and	

supplied	as	input	to	enrichR.	

Macrophage	populations	were	only	queried	 for	Reactome	pathways	 (Gillespie	 et	 al.	 2022)	

pertaining	 interleukin	 signaling	 pathways.	 Their	 enrichment	 was	 determined	 through	

hypergeometric	testing	based	on	the	genes	participating	in	the	respective	pathways	on	one	side,	

and	the	genes	differentially	expressed	for	the	respective	tumor	class	(log2FC	>	1,	adjusted	p-value	

<	0.05)	on	the	other	side.	

	

Inference	of	transcription	factor	activities	
Activities	of	transcription	factors	were	inferred	from	the	expression	levels	of	their	respective	

target	genes	using	the	DoRothEA	R	package	v.1.8.0	(Garcia-Alonso	et	al.	2019).	I	used	DoRothEA’s	

internal	database	 to	determine	 transcription	 factor-target	regulons,	 restricting	 the	regulons	 to	

those	annotated	with	confidence	levels	A,	B,	or	C.	These	were	basis	for	the	virtual	 inference	of	
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protein-activity	by	enriched	regulon	analysis	using	viper	v.1.30.0	(Alvarez	et	al.	2016).	Single	cell	

signatures	were	 thereby	 computed	 using	 the	 rank	method	 (method	 =	 “rank”).	 Regulons	were	

further	 restricted	 to	 those	with	a	minimum	of	 four	 targets	 (minsize	=	4).	The	dataset	was	not	

limited	to	the	genes	represented	in	the	interactome	(eset.filter	=	FALSE).	

	

Prediction	of	ligand-receptor	interactions	between	cell	types	
Cell-cell	 interactions	were	 predicted	 on	 an	 individual	 sample	 level	 based	 on	 the	matched	

expression	of	a	ligand	in	one	cell	population	and	the	expression	of	its	respective	receptor	in	the	

other	cell	population	using	the	LIANA	R	package	v.0.1.5	(Dimitrov	et	al.	2022).	This	framework	

combines	 five	methods	 for	 ligand-receptor	 interaction	 inference	 and	 the	 information	 from	16	

databases	 of	 ligand-receptor	 interactions	 (liana_wrap()).	 Aggregate	 consensus	 ranks	 were	

calculated	 across	 methods	 (liana_aggregate()),	 denoting	 the	 significance	 of	 each	 interaction.	

SingleCellSignalR’s	LRscore	was	chosen	to	depict	the	magnitude	of	expression,	i.e.,	the	expression	

levels	of	ligand	and	receptor	in	the	respective	cell	populations.	Scores	for	each	interaction	were	

then	averaged	across	samples,	which	served	as	final	interaction	scores.	

	

Identification	of	tumor	subpopulations	with	shared	transcriptional	programs	
To	 identify	 shared	 signatures	 in	 the	 expression	 profiles	 of	 tumor	 cells	 across	 samples,	 I	

applied	a	non-negative	matrix	factorization	(NMF)	approach.	First,	NMF	was	performed	on	the	

tumor	cell	populations	individually	for	each	sample,	which	segregated	the	expression	matrix	into	

a	coefficient	and	a	factor	matrix	with	a	fixed	number	of	factors	as	determined	by	the	factorization	

rank.	To	this	end,	the	expression	data	was	centered	and	scaled	across	all	cells	of	the	respective	

sample.	Then,	NMF	was	performed	using	the	NMF	R	package	(Gaujoux	and	Seoighe	2010)	with	

several	factorization	ranks	in	the	range	between	two	and	four	(rank	=	2:4),	with	ten	runs	(nrun	=	

10),	and	using	the	Alternating	Least	Square	approach	(Hyunsoo	Kim	and	Park	2007)	(method	=	

“snmf/r”).	In	the	final	analysis,	a	factorization	rank	of	three	was	empirically	chosen	based	on	its	

ability	to	create	unique	clusters	 in	a	correlation	of	all	 thereby	across	samples	obtained	factors	

without	too	large	of	an	overlap	between	clusters.	For	each	of	the	three	factors	in	every	sample	the	

top	30	genes	contributing	to	the	respective	factor	were	selected	as	those	genes	with	highest	NMF	

scores.	These	genes	were	selected	as	gene	signature	specific	for	the	respective	factor.	Each	gene	

signature	was	then	assigned	a	cell-wise	score.	Scoring	was	performed	by	first	determining	those	

100	genes	with	smallest	difference	in	mean	expression	to	the	respective	signature	genes	across	

all	cells.	Then,	the	difference	in	expression	of	each	signature	gene	to	the	mean	expression	of	the	

100	selected	genes	was	calculated	on	a	cellular	level.	Scores	for	all	genes	in	the	same	signature	

were	averaged.	This	average	resembled	the	signature-specific	score	for	each	individual	cell.	The	

gene	signatures	of	all	samples	were	subsequently	hierarchically	clustered	based	on	their	cell-wise	
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signature	scores.	On	this	basis,	six	clusters	of	gene	signatures	with	similar	patterns	of	cell-wise	

signature	scores	were	identified.	The	cell-wise	scores	of	all	signatures	in	the	same	cluster	were	

averaged	and	cells	assigned	to	one	of	the	clusters	based	on	their	highest	average	score.	To	identify	

the	 gene	 signatures	 specific	 for	 each	of	 the	 clusters,	 all	 genes	 contributing	 to	 any	 of	 the	 gene	

signatures	 summarized	 in	 the	 respective	 clusters	were	 scored	within	all	 cells	assigned	 to	 that	

cluster.	 Therefore,	 again	 those	 100	 genes	with	 smallest	 difference	 in	mean	 expression	 to	 the	

respective	genes	across	all	cells	were	determined	and	the	difference	in	expression	between	the	

gene	and	the	mean	expression	of	the	100	selected	genes	calculated	for	each	cell.	Those	50	genes	

with	the	highest	average	scores	across	all	cells	from	one	cluster	were	selected	as	transcriptional	

signature	specific	to	the	respective	cluster.		

	

ANALYSIS OF COMBINED RNA- AND ATAC-SEQ DATA FOR SINGLE NUCLEI 

Sequencing	data	from	the	Illumina	runs	was	converted	into	FASTQ	format	using	Cell	Ranger	

ARC	v.2.0.0	(10X	Genomics)	in	cellranger-arc	mkfastq	mode	with	default	parameters.	Alignment	

to	 the	 human	 genome	 (GRCh38),	 peak	 calling	 from	ATAC,	 and	 read	 counting	 from	RNA	were	

performed	 in	cellranger-arc	 count	mode	 (Cell	Ranger	ARC	v.2.0.0,	10X	Genomics)	with	default	

parameters.	All	further	analysis	was	conducted	in	R	v.4.2.0	with	Seurat	v.4.0.0	(Hao	et	al.	2021)	

for	 the	RNA	assay	and	Signac	v.1.9.0	 (Stuart	et	 al.	2021)	 for	 the	ATAC	assay	unless	otherwise	

specified.	Cells	with	less	than	1,000	or	more	than	100,000	ATAC	peaks	and	with	less	than	1,000	

or	more	than	25,000	UMIs	in	the	RNA	assay	were	filtered	out.	Cells	with	a	transcription	start	site	

enrichment	score	of	less	than	one	were	removed	from	the	analysis	as	well.	For	the	RNA	assay,	

reads	 were	 normalized	 and	 scaled	 using	 regularized	 negative	 binominal	 regression	

(SCTransform()),	PCA	dimensionality	reduction	was	performed	(RunPCA()),	and	UMAP	reduction	

calculated	 based	 on	 the	 first	 50	 PCs	 (RunUMAP()).	 The	 ATAC	 assay	 was	 normalized	 through	

frequency	inverse	document	frequency	normalization	(RunTFIDF()).	Subsequently,	singular	value	

decomposition	 was	 performed	 (RunSVD())	 and	 UMAP	 reduction	 was	 calculated	 (RunUMAP())	

based	on	latent	semantic	indexing	(LSI)	components	two	to	50	(reduction	=	‘lsi’).	Both	assays	were	

combined	in	a	weighted	nearest	neighbor	graph	that	was	calculated	on	the	PCA	reduction	of	the	

RNA	assay	and	the	LSI	reduction	of	the	ATAC	assay	(FindMultiModalNeighbors()).	Another	UMAP	

reduction	was	 performed	 on	 the	weighted	 nearest	 neighbor	 graph	 (RunUMAP())	 and	 clusters	

were	calculated	based	on	shared	nearest	neighbors	(FindClusters())	with	a	resolution	of	0.5	from	

this	combined	graph.	Cell	type	annotation	as	well	as	CNV	calling	was	performed	solely	based	on	

the	RNA	assay	analogous	to	the	description	of	the	procedures	for	the	scRNA-Seq	data	above.	The	

ATAC	assay	was	used	to	predict	transcription	factor	activities	based	on	the	accessibility	of	their	

matching	 motifs	 using	 chromVAR	 v.1.18.0	 (Schep	 et	 al.	 2017)	 with	 default	 parameters	

(RunChromVAR()).	
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SPATIAL TRANSCRIPTOMICS DATA ANALYSIS 

The	Visium	platform	(10X	Genomics)	was	utilized	by	Michael	Ritter	as	described	above	 to	

generate	spatial	sequencing	data.	For	downstream	analysis,	I	deployed	the	Space	Ranger	software	

v1.3.0	(10X	Genomics)	in	spaceranger	mkfastq	mode	to	generate	FASTQ	files	from	the	Illumina	

runs	and	subsequently	in	spaceranger	count	mode	for	alignment	to	the	human	genome	(GRCh38)	

and	counting.	Any	further	analysis	was	performed	in	R	using	the	Seurat	package	v.4.0.0	(Hao	et	al.	

2021)	unless	otherwise	specified.	Spots	with	 less	than	500	UMIs	were	excluded	from	analysis.	

Normalization	and	variance	stabilization	were	performed	using	regularized	binominal	regression	

(SCTransform()),	correcting	for	the	number	of	UMIs	per	spot	(vars.to.regress	=	“nCount_Spatial”).	

PCA	 dimensionality	 reduction	 was	 applied	 using	 default	 parameters	 (RunPCA()),	 nearest	

neighbors	were	computed	on	the	first	30	PCs	(FindNeighbors()),	and	clusters	of	spots	identified	

with	 a	 resolution	 of	 0.5	 (FindClusters()).	 UMAP	 reduction	was	 performed	 on	 the	 first	 30	 PCs	

(RunUMAP()).		

	

CNV	calling	from	transcriptomic	profiles	of	single	spots	
CNV	profiles	were	inferred	for	each	spot	based	on	the	expression	data	using	the	SPATA2	R	

package	v0.1.0	(Ravi	et	al.	2022),	which	employs	InferCNV	(Tickle	et	al.	2019)	for	CNV	calling.	

Specifically,	I	applied	the	runCnvAnalysis()-function	with	default	parameters	and	using	SPATA2’s	

built-in	reference	of	healthy	human	brain	tissue.	

	

Integration	of	Visium	with	scRNA-Seq	data	
To	determine	the	cellular	composition	of	each	individual	spot,	transcriptomic	signatures	were	

decomposed	 using	 the	 scRNA-Seq	 dataset	 for	 reference.	 First,	 anchors	 between	 both	 data	

modalities	were	determined	(FindTransferAnchors()).	Then,	enrichment	of	cell	types	was	inferred	

for	 each	 spot	 in	 the	 spatial	 transcriptomic	 data	 (TransferAnchors())	 based	 on	 the	 PCA	

dimensionality	reduction	and	using	the	first	30	PCs	for	anchor	weighting	(dims	=	1:30)	through	

probabilistic	transfer	of	the	annotations	(Stuart	et	al.	2019).	

	

CELL TYPE DECONVOLUTION FROM EPIGENOME 

Methylation	 data	 obtained	 from	 Illumina	HumanMethylation450	 (450k)	 array	 platform	 as	

described	 above	 was	 deconvoluted	 to	 predict	 the	 proportion	 of	 the	 infiltrating	 immune	 cell	

compartment	using	the	Edec	R	package	v.0.9	(Onuchic	2022).	To	this	end,	a	set	of	methylation	

array	 data	 from	macrophages,	 CD3+	 T	 cells,	 endothelial	 cells,	 and	 fibroblasts	 (Dekkers	 2019;	

Hassler	et	al.	2016;	Lucero	et	al.	2020;	Vizoso	et	al.	2015)	served	as	cell	type	references.	Loci	were	

restricted	 to	 those	 that	 were	 most	 informative	 by	 selecting	 the	 500	 most	 hyper-	 or	
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hypomethylated	loci	(run_edec_stage_0())	with	a	p-value	of	less	than	0.00001	(max_p_val	=	1e-5)	

when	 comparing	 each	 reference	 cell	 type	 with	 the	 remaining	 reference	 cell	 types	 (version	 =	

“one.vs.rest”)	in	a	t-test.	Subsequently,	the	number	of	constituent	cell	types	in	the	bulk	methylation	

array	samples	was	estimated	(estimate_stability())	based	on	the	informative	loci	by	creating	five	

random	subsets	of	the	samples	(num_subsets	=	5)	and	including	80	%	of	the	data	in	each	of	these	

subsets	(subset_prop	=	0.8)	with	a	maximum	of	800	iterations	(max_its	=	800).	Thereby	an	optimal	

number	of	three	constituent	cell	types	was	obtained,	which	correlated	to	a	population	of	immune	

cells	including	macrophages	and	T	cells	that	could	not	be	further	discriminated,	as	well	as	two	

distinct	populations	of	fibroblasts.	The	informative	loci	were	further	used	to	estimate	the	average	

methylation	profile	for	each	of	the	three	constituent	cell	type	and	the	respective	proportion	of	the	

constituent	 cell	 types	 in	 the	 bulk	 methylation	 array	 samples	 (run_edec_stage_1()).	 The	 thus	

estimated	proportion	of	the	immune	cell	type	was	basis	for	further	analysis.	

	

MODELLING OF PROGRESSION FREE SURVIVAL 

A	Cox	proportional	hazard	model	with	risk	factors	as	covariates	was	generated	to	estimate	the	

hazard	 ratio	 of	 the	 respective	 risk	 factors,	 in	 this	 case	MC,	WHO	 grade,	 and/or	 proportion	 of	

infiltrating	 immune	cells	 for	each	sample	using	the	survival	R	package	v.3.3-1	(Therneau	et	al.	

2022).	The	factor	level	with	the	lowest	risk	for	each	risk	factor	was	chosen	as	the	reference	level.	

Cumulative	prediction	error	(Brier	score)	curves	were	calculated	and	the	integrated	Brier	score	

at	ten	years	determined	with	the	pec	R	package	v.2022.05.04	(Mogensen,	Ishwaran,	and	Gerds	

2012).	

	

PREDICTION OF UCSF MENINGIOMA SUBTYPE FROM METHYLATION ARRAY DATA 

A	linear	support	vector	machine	was	trained	according	to	the	code	and	annotated	training	

data	with	the	UCSF	meningioma	subtypes	“Merlin-intact”,	“immune-enriched”,	and	“hypermitotic”	

as	published	by	Choudhury	et	al.	(Choudhury,	Magill,	et	al.	2022).	The	Illumina	MethylationEPIC	

(850k)	 array	UCSF	 training	data	 therefore	had	 to	 be	 restricted	 to	 loci	 present	 in	 the	 Illumina	

HumanMethylation450	(450k)	array	 that	was	obtained	here.	 I	 then	applied	 the	 linear	support	

vector	machine	to	the	in-house	methylation	array	data,	generated	as	described	above,	and	each	

sample	was	thus	assigned	to	one	of	the	three	UCSF	subtypes.	
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III.  RESULTS 

3.1. RECAPITULATING EPIGENETIC CLASSES ON TRANSCRIPTOMIC AND 
PROTEOMIC LEVELS 

The	existing	subgroups	for	meningioma	that	extend	beyond	the	conventional	WHO	grading	

and	have	been	demonstrated	to	be	clinically	relevant	are	derived	solely	from	the	epigenetic	profile	

of	 the	 tumors	 (Sahm	 et	 al.	 2017).	 Thus	 far,	 it	 has	 not	 been	 investigated	 in	 depth	 how	 the	

Heidelberg	MCs	correlate	on	levels	downstream	of	the	epigenome,	specifically	the	transcriptome	

and	the	proteome.	To	characterize	these	previously	established	epigenetic	meningioma	subtypes		

at	the	transcriptional	as	well	as	proteomic	level,	RNA	sequencing	(RNA-Seq)	and	proteomics	data	

were	generated	for	a	cohort	of	44	meningioma	samples	covering	WHO	grades	1,	2,	and	3,	and	MCs	

ben-1/2,	and	mal	(Figure	5a).	Proteomics	data	was	available	for	all	samples,	RNA-Seq	data	for	40	

of	the	44	samples.	For	a	subset	of	eight	samples	across	WHO	grades	and	MCs,	phosphoproteomic	

data	was	additionally	obtained.	

	

DIFFERENTIAL EXPRESSION SIGNATURES ON TRANSCRIPTOMIC LEVEL 

For	comparison	of	the	epigenetic	subgroups	on	transcriptomic	level,	I	applied	a	differential	

expression	(DE)	analysis.	To	this	end,	RNA-Seq	data	for	samples	of	one	MC	were	compared	to	all	

others	and	a	pathway	analysis	was	performed	on	all	genes	determined	as	differentially	expressed	

in	each	of	these	comparisons.	Thereby,	MC-specific	transcriptomic	signatures	could	be	observed.	

While	 genes	 related	 to	 the	 cell	 cycle	 were	 expressed	 at	 elevated	 levels	 in	 MC	 mal	 samples	

compared	to	MC	ben-1/-2	samples,	MC	ben-1	tumors	displayed	a	strong	enrichment	for	pathways	

related	to	the	immune	system	(Figure	5c).	Interestingly,	also	a	differential	regulation	pertaining	

neuronal	 related	 processes	 could	 be	 observed,	 albeit	 no	 neuronal	 cells	 are	 to	 be	 expected	 in	

meningioma	 tissue.	 Furthermore,	 differences	 in	 signaling	 pathway	 activities	 were	 detected.	

However,	 there	 seemed	 to	 be	no	 association	of	 a	 tumor	 class	with	 the	 activity	 of	 any	 specific	

signaling	pathway.	

	

DIFFERENTIAL EXPRESSION SIGNATURES ON PROTEOMIC LEVEL 

As	clear	differences	could	be	observed	between	meningioma	MCs	on	transcriptomic	level,	I	

subsequently	investigated	whether	these	differences	were	preserved	on	proteomic	level.	On	the	

level	 of	 single	 genes,	 the	 MCs	 did	 not	 share	 a	 large	 overlap	 in	 differentially	 regulated	 genes	
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between	the	RNA	and	protein	datasets	(Figure	5b).	On	pathway	level	however,	MC	ben-1	samples	

were	indeed	strongly	enriched	for	immune-related	pathways,	similarly	as	observed	on	RNA	level	

(Figure	5d).	The	elevated	expression	 levels	 for	 cell	 cycle-related	pathways	on	 the	other	hand	

could	not	be	observed	in	the	proteome	of	MC	mal	to	a	similar	extent	as	on	transcriptomic	level.	

Also	signaling	pathways	were	not	consistently	differentially	regulated	on	RNA	and	protein	level.	

Thus,	 even	 though	 parallels	 in	 the	 MC-specific	 pathway	 enrichment	 were	 detected	 between	

transcriptome	and	proteome,	not	all	differences	could	be	observed	across	both	levels.	

	
Figure	5.	a	Meningioma	samples	included	in	the	bulk	transcriptome	and	proteome	datasets	and	their	mutational	status.	
homo/hetero	del	…	homozygous/heterozygous	deletion.	b	Overlap	in	differentially	expressed	genes	between	transcriptomic	
and	 proteomic	 data	 and	 between	 MCs.	 c	 Differentially	 regulated	 pathways	 on	 transcriptomic	 level.	 d	 Differentially	
regulated	pathways	on	proteomic	level.	
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CONSISTENCY OF SUBGROUPS ACROSS TRANSCRIPTOMIC AND PROTEOMIC LEVEL 

Given	the	differences	in	differentially	regulated	genes	and	pathways	between	RNA	and	protein	

level,	I	aimed	to	investigate	whether	a	combination	of	both	levels	would	be	able	to	successfully	

separate	MCs.	To	this	end,	I	employed	similarity	network	fusion	(SNF)	analysis	which	integrates	

data	modalities	by	creating	a	weighted	network	for	each	data	layer	and	encapsulating	those	in	one	

joint	network.	In	the	combined	SNF	analysis	for	transcriptomic	and	proteomic	data,	the	three	MCs	

ben-1,	ben-2,	and	mal	clearly	separated	(Figure	6),	even	though	according	to	the	DE	analysis	only	

a	fraction	of	genes	was	commonly	differentially	expressed	between	both	layers	(Figure	5b).	An	

interconnection	 of	 samples	 across	 MCs	 was	 only	 observed	 for	 two	 pairs	 of	 samples,	 namely	

between	the	MC	ben-1	tumor	mng-14	and	MC	ben-2	tumor	mng-25,	and	between	MC	ben-2	tumor	

mng-29	 and	 MC	 mal	 tumor	 mng-36.	 Given	 the	 difference	 in	 the	 genetic	 background,	 these	

intersections	 with	 the	 MC	 ben-2	 tumor	 class	 were	 unexpected.	 Nonetheless,	 all	 remaining	

connections	were	 formed	within	the	same	MC,	which	highlights	 the	consistency	of	epigenomic	

meningioma	subgroups	on	transcriptomic	and	proteomic	level.	

	
Figure	6.	Similarity	network	fusion	graph	combining	transcriptomic	and	proteomic	data.	Nodes	represent	samples,	edges	
indicate	similarity	between	samples.	Edge	widths	are	proportional	to	the	extent	of	similarity.	

	

SUBCLASS-SPECIFIC CHANGES OF THE PHOSPHOPROTEOME 

As	 activated	 pathways	 and	 processes	 are	 better	 understood	 by	 monitoring	 the	

phosphorylation	 status	 of	 proteins	 participating	 in	 these	 pathways	 than	 by	 examining	 their	

respective	 expression	 alone,	 I	 leveraged	 phosphoproteomic	 data	 for	 eight	 meningiomas	 to	

investigate	the	activities	of	regulatory	signaling	pathways,	for	which	no	clear	patterns	were	found	

in	the	differential	gene	and	protein	expression	analysis	above.	Kinase	perturbation	analysis	infers	

MC
ben−1
ben−2
mal

mng-15

mng-14

mng-38

mng-42

mng-41

mng-39

mng-35 mng-43

mng-19

mng-44

mng-16

mng-21

mng -6

mng-22

mng -3

mng-33

mng-18

mng-26

mng-13
mng -5

mng -8

mng -2

mng-12

mng -1

mng-11

mng-10

mng-17mng -4

mng-34
mng-24

mng-30

mng-32

mng-25
mng-29

mng-27

mng-28

mng-36

mng -9

mng -7



36	 	 III.	Results	

kinase	 activities	 based	on	 the	phosphorylation	 status	 of	 their	 respective	 targets.	 Employing	 it	

here,	again	comparing	one	MC	against	the	remaining	two,	revealed	an	activation	of	MAPK	kinases	

in	 MC	 ben-1	 and	 ben-2	 meningiomas,	 specifically	 of	 MAPK1/ERK2,	 MAPK3/ERK1,	 and	

MAPK14/p38a	(Figure	7).	AKT1	kinase	activity	was	in	addition	increased	in	MC	ben-2	tumors.	In	

MC	mal	meningiomas,	on	the	other	hand,	kinases	regulating	the	cell	cycle,	such	as	CDK2	and	CDK7,	

displayed	 elevated	 activities,	 in	 line	 with	 the	 elevated	 expression	 of	 cell	 cycle-related	 genes	

observed	on	RNA	level.	

	
Figure	7.	Kinase	activities	as	inferred	from	the	phosphorylation	status	of	their	respective	target	proteins.	Colors	represent	
Z	scores.	Asterisks	indicate	significant	differences	in	activation.	

Including	the	phosphoproteomic	data	in	the	SNF	analysis	revealed	a	consistent	separation	of	the	

three	 MCs	 (Supplementary	 Figure	 1).	 This	 further	 underlines	 the	 robustness	 of	 epigenetic	

subtypes	 not	 only	 on	 levels	 of	 gene	 and	 protein	 expression,	 but	 also	 protein	 regulation.	

Interestingly,	 the	 analysis	 suggests	 a	 closer	 interconnection	 between	 MC	 ben-2	 and	 MC	 mal	

tumors	and	none	between	MC	ben-1	and	MC	mal,	despite	the	shared	NF2	loss	and	chromosome	

22	deletion	in	both	these	MCs.	However,	the	small	sample	size	of	the	phosphoproteomic	dataset	

certainly	limits	final	conclusions.	

	

	

3.2. TUMOR CELL POPULATIONS ON SINGLE CELL LEVEL 

While	these	data	from	bulk	facilitate	the	understanding	of	general	differences	in	the	active	

processes	between	tumors,	they	do	not	allow	for	a	further	subdivision	into	processes	related	to	

certain	cell	populations.	The	observed	enrichment	for	pathways	related	to	the	immune	system	

that	was	observed	in	MC	ben-1	tumors	in	the	RNA-Seq	and	proteomics	data	above	for	example	

most	 likely	originates	not	 from	the	 tumor	cell	population	 itself,	but	 immune	cells	 that	may	be	

infiltrating	the	tumor.	To	distinguish	the	exact	source	for	such	differential	expression	patterns	is	

however	impossible	from	bulk	data.	Hence,	I	leveraged	single	nuclei	RNA-Seq	data,	for	simplicity	

further	 referred	 to	 as	 single	 cell	RNA-Seq	 (scRNA-Seq),	 to	 compare	 specifically	 the	 tumor	 cell	

population	 between	 meningioma	 subgroups.	 Not	 only	 does	 this	 permit	 the	 identification	 of	

expressional	 differences	 between	 stages	 of	 progression	 specific	 to	 the	 tumor	 cells,	 but	 it	 also	

allows	 for	 an	 identification	 of	 tumor	 cell	 subpopulations	 within	 the	 same	 tumor,	 and	 the	

comparison	of	their	presence	and	phenotype	across	tumor	stages.	

PDPK1

GSK3B
CDK7

CDK2

CSNK2A1
PLK1

MTOR

PRKDC

MAPK11

PRKAA1
RAF1

AURKB
CDK5

SGK1

CAMK2A
PAK1

CDK1
AKT2

RPS6KB1

PRKD1
PRKCI

ROCK1
HIPK2

CHEK1

RPS6KA1

TRPM7

MAPKAPK2

PRKG1

MAPK14

MAPK1

MAPK3

PRKCQ
AKT1

PRKACA

MAPK13

PRKCA

PRKCB

PRKCE

PRKCD

RPS6KA3

MAPK9

MAPK8
mal

ben−1

ben−2

* * * * * * * * * * * *
* * * * * * *

* * * * * * * * * * * * *

−3 −2 −1 0 1 2 3

Z score



3.2.	Tumor	cell	populations	on	single	cell	level	 	 37	

	

SAMPLE AND CELL TYPE COMPOSITION OF THE SCRNA-SEQ DATASET 

The	 scRNA-Seq	dataset	 that	was	 basis	 for	 the	 further	 analyses	 comprised	48	meningioma	

samples	from	43	patients	and	257,282	cells	in	total.	The	included	tumors	span	all	WHO	grades	1	

to	3	and	all	six	MCs	(Figure	8a,	Supplementary	Table	2).	I	integrated	the	data	under	removal	of	

batch	effects	between	the	two	batches	in	which	the	data	was	generated	(see	Methods)	as	well	as	

between	individual	samples	and	subsequently	annotated	cells	based	on	comparison	to	the	human	

primary	cell	atlas	(Mabbott	et	al.	2013)	and	the	expression	of	cell	type-specific	marker	genes.	A	

joint	clustering	of	all	samples	in	a	UMAP	representation	revealed	five	major	clusters	of	different	

cell	 types:	 the	 largest	 cluster	 comprising	 neoplastic	 cells,	 and	 in	 addition	 four	 clusters	 of	

infiltrating	cells,	namely	macrophages,	endothelial	cells,	lymphocytes,	and	mast	cells	(Figure	8b).	

Annotation	of	neoplastic	cells	was	confirmed	based	on	alterations	in	the	cellular	CNV	profile.		CNV	

profiles	 inferred	 from	 single	 cell	 expression	data	 greatly	matched	 the	 respective	CNV	profiles	

obtained	 from	 bulk	 methylation	 array	 data.	 While	 tumor	 cells	 from	 MC	 mal	 meningiomas	

generally	displayed	 the	most	copy	number	alterations,	CNV	profiles	of	MC	ben-2	 tumors	were	

virtually	flat	(Supplementary	Figure	2).	This	is	in	line	with	previous	findings	on	MC-specific	copy	

number	changes	(Sahm	et	al.	2017;	Maas	et	al.	2021).	

The	neoplastic	cells	were	isolated	in	the	following	for	further	analysis.	

	
Figure	8.	a	Meningioma	samples	included	in	the	scRNA-Seq	dataset	and	their	respective	WHO	grades	and	MCs.	Connecting	
lines	indicate	primary	and	recurrent	sample	pairs	from	the	same	patient.	b	UMAP	representation	of	the	integrated	dataset	
with	colors	indicating	cell	type,	and	sample	of	origin	for	each	cell	in	the	inset,	respectively.	
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DIFFERENTIAL EXPRESSION ANALYSIS OF TUMOR CELL POPULATIONS 

For	identification	of	expressional	patters	specific	for	the	tumor	cell	subset,	I	performed	a	DE	

analysis	that	compared	the	gene	expression	in	neoplastic	cells	from	samples	of	a	respective	MC	

with	that	in	neoplastic	cells	from	all	other	samples.	To	avoid	the	problem	of	pseudoreplication	

that	arises	from	cells	originating	from	the	same	tumor,	I	applied	a	pseudobulk	approach.	To	this	

end,	the	expression	of	the	tumor	cells	from	the	same	sample	is	averaged	and	treated	as	a	single	

sample,	which	can	then	be	compared	using	conventional	bulk	DE	methods	(Squair	et	al.	2021).	

The	greatest	number	of	differentially	expressed	genes	was	identified	in	MC	ben-2	meningiomas,	

followed	by	MC	ben-3	tumors	(Supplementary	Figure	3),	in	line	with	the	typical	differences	in	

their	genetic	background	compared	to	other	MCs	(Sahm	et	al.	2017).	Only	a	small	number	of	genes	

was	detected	as	differentially	expressed	in	MC	int-A	and	int-B	meningiomas,	possibly	due	to	the	

lower	number	of	samples	for	these	classes	or	caused	by	similarities	to	MC	mal	that	shares	genetic	

features.	 Interestingly,	many	HOX	genes	showed	an	elevated	expression	in	MC	mal	tumor	cells	

(Supplementary	Figure	3f),	confirming	previously	discovered	associations	of	an	increase	in	HOX	

gene	expression	with	malignancy	(Paramasivam	et	al.	2019).	

To	 gain	 a	 better	 understanding	 of	 the	 expressional	 signatures	 beyond	 individual	 genes,	 I	

performed	a	gene	set	enrichment	analysis	based	on	the	Molecular	Signatures	Database	hallmark	

gene	set	collection	(Liberzon	et	al.	2015)	on	the	differentially	expressed	genes	for	each	MC.	MC	

mal	 tumor	cells	showed	an	enrichment	 in	genes	related	to	 the	G2-M	checkpoint	and	epithelial	

mesenchymal	transition	(Figure	9a),	which	is	in	line	with	histological	observations	of	increased	

proliferation	 (Figure	9b)	and	a	 loss	of	growth	patterns	 typical	 for	meningiomas,	 the	so-called	

sheeting	 architecture	 (Figure	 9c)	 in	 these	 tumors,	 respectively.	 H&E	 tissue	 sections	 and	

immunohistochemistry	shown	here	were	obtained	by	colleagues	in	the	lab.	MC	ben-3	tumor	cells	

on	 the	 other	 hand	 displayed	 a	 signature	 of	 hypoxia	 (Figure	 9a),	 which	 could	 possibly	 be	

correlated	to	the	frequently	observed	angiomatous	subtype	in	this	class.	On	the	other	hand,	MC	

ben-1	tumor	cells	reflected	the	strong	involvement	of	the	immune	system	as	observed	on	bulk	

level	in	the	enrichment	for	immune-related	pathways	such	as	inflammatory	response,	which	was	

also	enriched	in	MC	mal	tumor	cells,	and	additionally	interferon	gamma	response	and	TNF-alpha	

signaling	via	NF-kB.	TNF-alpha	is	often	produced	by	macrophages;	however,	it	was	not	detectable	

in	the	scRNA-Seq	data.	
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Figure	9.	a	Differentially	regulated	hallmark	gene	sets	for	each	MC.	Red	color	indicates	upregulation	of	the	pathway	in	the	
respective	MC	(odds	ratio	>	1),	blue	indicates	downregulation	(odds	ratio	<	1).	Asterisks	indicate	significant	p-values.	****	
…	p	<	0.0001,	***	…	p	<	0.001,	**	…	p	<	0.01,	*	…	p	<	0.05.	b	Immunohistochemistry	for	the	proliferation	marker	Ki67	for	an	
MC	ben-1	meningioma	(left)	and	an	MC	mal	meningioma	(right).	c	H&E	staining	of	 the	MC	mal	meningioma	 from	(b)	
displaying	its	sheeting	architecture.	H&E	and	immunohistochemistry	sections	(b,c)	were	obtained	by	colleagues	in	the	lab.	

	

TUMOR CELL SPECIFIC BEHAVIOR OF MENINGIOMA RISK FACTORS 

CDKN2A	expression	and	deletion	in	high	grade	meningiomas	
Besides	 the	 more	 general	 pathway	 patterns	 that	 I	 have	 here	 identified	 to	 be	 linked	 to	

meningioma	subtypes,	the	expression	of	some	genes	has	already	been	associated	with	malignancy	

in	 meningiomas.	 It	 has	 for	 example	 been	 observed	 that	 CDKN2A/B	 homozygous	 deletion	 is	

associated	with	aggressive	meningioma	and	has	been	included	as	diagnostic	marker	in	the	recent	

WHO	 classification	 (Sievers	 et	 al.	 2020;	 Louis	 et	 al.	 2021).	 Interestingly	 however,	 non-

homozygous	deleted	high-grade	tumors	display	an	increased	expression	of	the	CDKN2A	gene	and	

its	gene	product	p16	compared	to	low-grade	tumors	on	both	transcriptomic	and	proteomic	level	

in	the	bulk	datasets	here	(Figure	10a).	However,	whether	the	high	CDKN2A	expression	is	caused	

by	 neoplastic	 cells	 or	 infiltrating	 non-tumor	 cells	 could	 not	 be	 determined	 from	 bulk	 data.	

Investigating	this	in	the	scRNA-Seq	dataset	revealed	that	neoplastic	cells	from	non-homozygous	

deleted	MC	mal	cases	displayed	increased	expression	levels	compared	to	neoplastic	cells	from	low	

grade	cases	(Figure	10b).	This	indicates	that	CDKN2A	is	indeed	expressed	specifically	in	tumor	

cells.	

It	 could	 be	 hypothesized	 that	 the	 frequent	CDKN2A/B	 homozygous	 deletion	 in	 high-grade	

meningioma	 is	preceded	by	an	especial	 “openness”	 in	chromatin	structure	at	 that	 locus	which	

causes	the	elevated	CDKN2A	expression	and	enhances	the	risk	for	deletion	of	the	gene	locus.	To	

compare	 the	 chromatin	 structure	 between	 CDKN2A/B	 homozygous	 deleted	 and	 non-deleted	

cases,	I	exploited	so-called	single	cell	Multiome	data,	which	does	not	only	capture	transcriptomic	

profiles	 of	 single	 cells,	 but	 also	 their	 respective	 chromatin	 structure	 in	 form	 of	 an	 assay	 for	
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transposase-accessible	 chromatin	 using	 sequencing	 (ATAC-Seq).	 This	 sequencing	 method	

captures	open	structures	of	chromatin	as	peaks.	The	Multiome	dataset	employed	here	comprised	

four	WHO	grade	3,	MC	mal	meningiomas	in	total,	two	of	them	with	CDKN2A	homozygous	deletion	

and	 two	 non-deleted	 cases.	 As	 expected,	 CDKN2A	 homozygous	 deleted	 cases	 displayed	 no	

expression	of	CDKN2A	and	no	peaks	at	 the	CDKN2A/B	 locus	 in	 the	neoplastic	cell	populations,	

whereas	both,	CDKN2A	expression	and	peaks	at	the	CDKN2A/B	locus,	were	clearly	present	in	the	

neoplastic	cells	of	the	non-deleted	cases	(Figure	10c,d).	

To	 investigate	 further	 differences	 in	 the	 overall	 chromatin	 structure	 of	 CDKN2A/B	

homozygous	deleted	and	non-deleted	tumors	I	subsequently	estimated	transcription	factor	motif	

activities	from	the	ATAC	assay	of	the	Multiome	data.	The	activity	of	known	transcription	factor	

binding	sites	was	hereby	estimated	 from	the	chromatin	accessibility	across	genomic	 locations.	

Several	 transcription	 factor	 motifs	 were	 identified	 to	 display	 a	 differential	 activity	 between	

tumors	with	differing	CDKN2A/B	status,	such	as	different	complexes	of	the	transcription	factor	

activator	protein	1	(AP-1)	that	is	formed	by	dimers	of	members	of	transcription	factor	families	

Jun	and	Fos	and	motifs	of	which	displayed	elevated	activity	in	CDKN2A/B	deleted	cases	(Figure	

10e).	 In	CDKN2A/B	 non-deleted	 cases	on	 the	other	hand	binding	motifs	 for	 the	Myc	 family	of	

transcription	factors	exhibited	increased	activity	levels.	This	might	indicate	that	the	CDKN2A/B	

homozygous	deletion	causes	an	overall	shift	in	regulatory	mechanisms	for	the	tumor	cells.	
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Figure	10.	a	Normalized	 expression	of	CDKN2A	 in	 bulk	RNA-Seq	data	 (left)	 and	of	 its	 respective	protein	p16	 in	bulk	
proteomic	 data	 (right).	 homo	 del	 …	 CDKN2A	 homozygous	 deletion.	 b	 Mean	 CDKN2A	 expression	 per	 sample	 in	 the	
neoplastic	cell	population	derived	from	scRNA-Seq	data.	c	UMAP	representations	of	weighted	nearest	neighbor	(WNN)	
graph	for	combined	RNA-Seq	and	ATAC-Seq	data	per	cell	colored	by	sample	of	origin	(left),	status	of	the	CDKN2A/B	gene	
locus	in	the	respective	sample	(middle),	and	normalized	expression	of	CDKN2A	(right).	wt	…	CDKN2A/B	wild	type	(non-
deleted),	del	…	CDKN2A/B	homozygous	deletion.	d	Cluster-wise	accessibility	of	the	CDKN2A/B	gene	locus.	Peaks	indicate	
accessible	 chromatin	 regions.	 Violin	 plots	 on	 the	 right	 reflect	 normalized	 CDKN2A	 expression	 in	 the	 respective	 cell	
population.	e	Transcription	factor	binding	motifs	with	differential	activity	in	cases	with	CDKN2A/B	homozygous	deletion	
compared	to	non-deleted	cases.	Positive	log2FC	indicates	elevated	activity	in	homozygous	deleted	cases.	

	

FOXM1	activity	in	high	grade	meningiomas	
Similarly	 to	 CDKN2A/B	 homozygous	 deletion,	 increased	 activity	 of	 the	 FOXM1	 expression	

factor	has	been	linked	to	aggressiveness	in	meningioma	(Vasudevan	et	al.	2018;	Paramasivam	et	

al.	2019;	H.	Kim	et	al.	2020).	Overall	FOXM1	expression	levels	were	low	in	the	scRNA-Seq	dataset,	

so	I	inferred	FOXM1	activity	from	the	expression	of	its	target	genes.	Indeed,	FOXM1	activity	was	
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significantly	increased	in	MC	mal	meningiomas	compared	to	MC	ben-2	meningiomas	(p-value	=	

7.8e-6	 as	 determined	 by	 Tukey’s	 range	 test).	 However,	 there	 was	 no	 significant	 difference	

between	 any	 of	 the	 remaining	 comparisons	 when	 comparing	 sample	 means.	 Instead,	 FOXM1	

activity	seemed	only	to	be	elevated	in	a	small	subpopulation	of	cells,	while	the	FOXM1	activity	for	

a	majority	of	cells	stayed	consistent	across	MCs,	with	MC	ben-2	as	the	only	exception,	as	it	had	a	

larger	population	of	cells	with	decreased	FOXM1	activity	(Figure	11a).	Moreover,	the	activity	of	

FOXM1	seemed	to	be	connected	to	the	cell	cycle	stage,	with	cells	undergoing	the	G2M	checkpoint	

displaying	a	higher	FOXM1	activity	compared	to	cells	in	the	G1	as	well	as	the	S	Phase	of	the	cell	

cycle	(Figure	11b).	

	
Figure	11.	a	Density	of	FOXM1	activity	as	 inferred	 from	the	expression	of	 its	 target	genes	per	MC.	Vertical	grey	 lines	
indicate	5%,	50%,	and	95%	quantiles.	b	Average	FOXM1	activity	per	sample	depending	on	the	cell	cycle	stage.	Lines	connect	
means	from	the	same	sample.	Asterisks	 indicate	significant	p-values	as	determined	from	a	post-hoc	paired	t-tests	after	
repeated	measures	ANOVA.	**	…	p	<	0.01,	****	…	p	<	0.0001.	

This	 indicates	 that	 not	 the	overall	FOXM1	 activity	 across	neoplastic	 cells,	 but	 only	 a	 small	

subpopulation	 of	 cycling	 cells	with	 elevated	FOXM1	 activity	 is	 determinative	 of	 the	 increased	

aggressiveness	in	meningioma.	

	

CELLULAR ORIGIN OF ENDOTHELIAL STRUCTURES IN ANGIOMATOUS MENINGIOMA 

While	CDKN2A/B	homozygous	deletion	and	increased	expression	as	well	as	elevated	FOXM1	

activity	are	associated	with	MC	mal	meningiomas,	MC	ben-3	 tumors	are	 frequently	associated	

with	an	angiomatous	histological	subtype.	Angiomatous	meningiomas	are	characterized	by	a	high	

amount	of	vascularization	within	the	tumor	tissue.	Thus	far	it	has	however	not	been	conclusively	

elucidated	whether	the	numerous	blood	vessels	are	formed	by	infiltrating	endothelial	cells	that	

are	attracted	by	angiogenic	factors	secreted	by	tumor	cells,	or	by	the	tumor	cell	population	itself.	

I	 queried	 the	 scRNA-Seq	 dataset,	 that	 comprised	 in	 total	 four	 angiomatous	 meningiomas,	 to	

investigate	this	question.	Comparing	the	expression	scores	for	endothelial	marker	genes	with	the	

CNV	scores	for	chromosomal	alterations,	specifically	the	chromosomal	gains	typical	for	this	tumor	

class	that	were	observed	in	at	least	one	of	the	four	samples,	namely	for	chromosomes	3,	5,	12,	13,	
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18,	 and	 20,	 in	 the	 tumor/endothelial	 cell	 population	 revealed	 no	 relationship	 between	 both	

(Figure	12a).	Cells	either	displayed	chromosomal	alterations	or	the	expression	of	endothelial-

specific	genes,	but	not	both.	This	indicates	that	the	vasculature	in	these	tumors	is	not	formed	by	

neoplastic	cells	but	infiltrating	endothelial	cells.	

To	gain	insights	into	how	the	endothelial	cells	are	attracted	to	the	tumor	site,	I	performed	a	

ligand-receptor	 analysis	 between	 the	 cell	 populations	 of	 the	 angiomatous	meningiomas.	 This	

analysis	 can	 infer	what	 cell	 populations	 interact	with	 one	 another	 through	which	 ligands	 and	

receptors	based	on	a	common	increase	in	the	expression	of	matching	ligand-receptor	pairs	in	the	

respective	 two	 cell	 populations.	 For	 the	 angiomatous	 meningiomas,	 a	 strong	 interaction	

specifically	 between	 the	 neoplastic	 and	 the	 endothelial	 cell	 population	was	 inferred,	with	 the	

endothelial	cells	as	the	receiving	cell	population	(Figure	12b).	These	interactions	were	frequently	

based	on	VEGFA/B,	a	growth	factor	involved	in	angiogenesis	(Murphy	and	Fitzgerald	2001),	and	

SLIT2	that	were	expressed	as	ligands	by	the	tumor	cells	(Figure	12c).	SLIT2	has	previously	been	

demonstrated	 to	 induce	 vascularization	 (Han	 and	 Geng	 2011).	 This	 demonstrates	 possible	

mechanisms	in	which	neoplastic	cells	attract	endothelial	cells	for	vessel	formation	in	the	tumor.	

	
Figure	12.	a	 Score	 for	 endothelial	marker	gene	expression	and	CNV	 score	 for	 chromosomal	gains	 for	 each	 cell	 in	 the	
meningioma	samples	of	angiomatous	subtype.	R	…	Pearson	correlation	between	both	scores.	b	Frequency	of	interactions	
between	cell	populations	with	the	ligand	expressing	cell	type	in	rows	and	the	receptor	expressing	cell	type	in	columns.	c	
Top	 interactions	 between	 neoplastic	 and	 endothelial	 cells	 with	 neoplastic	 cells	 as	 source	 (expressing	 the	 ligand)	 and	
endothelial	cells	as	target	(expressing	the	receptor).	

	

SHARED TRANSCRIPTOMIC SIGNATURES ACROSS TUMOR STAGES 

While	so	far	I	have	considered	the	neoplastic	cell	population	of	a	tumor	as	a	whole,	it	is	likely	

that	a	tumor	undergoing	progression	is	formed	by	different	tumor	cell	subpopulations	at	different	

stages	of	progression.	Some	of	these	may	be	responsible	for	a	more	aggressive	behavior,	such	as	

the	capability	of	tissue	invasion,	or	later	give	rise	to	recurrences.	Therefore,	I	aimed	to	identify	

such	tumor	cell	subpopulations	and	their	phenotypes	to	compare	how	they	are	shared	between	

tumors	of	differing	malignancy.	For	 identification	of	 tumor	cell	 subpopulations,	 I	 applied	non-

negative	matrix	factorization	(NMF)	to	the	neoplastic	cell	population	of	each	individual	sample	to	

dissect	transcriptomic	signatures	and	subsequently	determined	similarities	in	the	transcriptomic	
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signatures	across	samples.	This	analysis	revealed	six	transcriptomic	signatures	that	were	shared	

across	 samples.	 I	 scored	 all	 neoplastic	 cells	 according	 to	 their	 expression	 of	 the	 respective	

signature	 genes	 of	 each	 transcriptomic	 signature	 and	 thus	 assigned	 them	 to	 six	 tumor	

subpopulations,	each	with	a	specific	phenotype.	Based	on	the	transcriptomic	signature	genes,	a	

subpopulation	consisting	of	cycling	cells	was	identified,	as	well	as	a	population	of	neoplastic	cells	

expressing	 genes	 related	 to	 cell	 adhesion.	 Another	 subpopulation	 displayed	 an	 elevated	

expression	 of	 genes	 linked	 to	 epithelial-mesenchymal	 transition	 (EMT),	 hypoxia,	 and	

inflammation.	The	remaining	three	transcriptomic	signatures	covered	genes	connected	to	KRAS	

signaling,	oxidative	phosphorylation,	and	androgen	response,	respectively.	

The	 proportions	 at	 which	 each	 of	 these	 tumor	 cell	 subpopulations	 occurred	 within	 the	

neoplastic	cell	population	varied	strongly	between	the	tumor	subtypes	(Figure	13).	As	one	would	

expect,	the	cycling	cell	population	increased	significantly	with	malignancy	from	the	benign	MCs	

to	MC	mal	(adjusted	p-value	=	0.033	in	MC	ben-1	versus	MC	mal	as	determined	by	Tukey’s	range	

test).	All	 remaining	comparisons	did	not	 indicate	a	 significant	difference	 in	proportions	of	 the	

tumor	cell	subpopulations	between	MCs,	most	likely	due	to	the	high	inter-sample	variance	within	

MCs.	 Nonetheless,	 the	 tumor	 cell	 population	 with	 an	 adhesive	 phenotype	 tended	 to	 be	more	

prominent	in	the	benign	MCs	as	compared	to	the	intermediate	and	malignant	MCs,	with	highest	

proportions	 in	 MC	 ben-3	 and	 ben-2,	 both	 MCs	 with	 lowest	 risk	 for	 metastasis	 and	 tumor	

recurrence.	Interestingly,	a	majority	of	samples	of	the	NF2-mutant	MCs	ben-1,	int-A/B,	and	mal,	

but	not	all,	presented	with	a	high	proportion	of	cells	highly	active	in	oxidative	phosphorylation,	

while	tumors	of	the	non-NF2	mutant	MCs	ben-2	and	ben-3	tended	to	contain	higher	proportions	

of	cells	with	active	KRAS	signaling.	

	
Figure	13.	Proportion	of	tumor	cells	from	total	tumor	cells	per	sample	for	each	tumor	cell	subpopulation.		

Altogether,	 these	 results	 demonstrate	 that	 tumor	 cell	 subpopulations	 exist	 with	 shared	

transcriptomic	 profiles	 across	 samples,	 albeit	 at	 varying	proportions	 depending	 on	 the	 tumor	

subtype	and	genetic	background.	Further	investigations	will	however	be	necessary	to	understand	

in	detail	how	these	subpopulations	are	linked	to	tumor	progression.	
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SPATIAL DISTRIBUTION OF TUMOR MCS AND TUMOR CELL SUBPOPULATIONS 

On	single	cell	level,	I	have	discovered	tumor	cell	subpopulations	with	shared	transcriptional	

programs	across	samples,	which	occur	at	differing	proportions	depending	on	the	tumor	class.	A	

fundamental	 limitation	 of	 the	 scRNA-Seq	data	 is	 that	 it	 is	 not	 possible	 to	 infer	whether	 these	

subpopulations	tend	to	co-locate	or	whether	they	appear	at	spatially	distinct	locations	within	the	

tumor	tissue.	Thus,	I	queried	spatial	transcriptomics	data	that	was	obtained	for	17	meningiomas	

of	WHO	grades	1	to	3	and	MCs	ben-1,	int-A,	and	mal,	however	with	an	overrepresentation	of	MC	

int-A	and	MC	mal	cases	(Supplementary	Table	3).	

First,	I	investigated	whether	the	transcriptional	programs	of	the	six	MCs	can	occur	together	

within	the	same	tumor	and	if	any	of	them	tend	to	associate	with	certain	histological	structures.	

The	scRNA-Seq	data	was	used	as	a	reference	to	deconvolute	the	expression	profile	of	each	spot	in	

the	spatial	transcriptomics	to	predict	individual	cell	populations	as	they	were	observed	on	single	

cell	level.	This	included	infiltrating	cell	types	as	well	as	neoplastic	cells.	The	latter	were	annotated	

according	 to	 the	MC	of	 their	 sample	of	 origin.	The	distribution	of	MCs	within	 the	 tumors	was	

surprisingly	 mixed,	 especially	 for	 benign	 samples	 (Figure	 14a).	 Two	 MC	 ben-1	 samples	 for	

example	also	displayed	an	enrichment	for	the	int-B	transcriptional	signature	in	parts	of	the	tumor	

tissue	(Figure	14b).	And	while	one	MC	int-A	case	displayed	a	very	clear	enrichment	for	only	the	

int-A	 transcriptional	 signature	 (Figure	14c),	 the	 remaining	MC	 int-A	samples	exhibited	mixed	

enrichments	with	a	tendency	either	towards	the	ben-2	or	the	mal	transcriptional	signature.	MC	

mal	 tumors	 on	 the	other	hand	were	uniformly	 enriched	 for	 the	mal	 transcriptional	 signature,	

however	focal	enrichment	for	ben-2	and	ben-3	signatures	could	also	be	identified	in	small	sections	

of	the	tissue	(Figure	14d).	

Taken	together,	these	results	indicate	that	transcriptional	signatures	for	different	MCs	might	

coexist	 within	 the	 same	 tumor.	 Interestingly,	 this	 seems	 to	 be	 independent	 of	 the	 genetic	

background	that	is	typically	observed	for	the	individual	MCs,	as	also	MCs	with	different	genetic	

profiles	were	identified	within	the	same	tissue.	
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Figure	14.	a	Average	enrichment	per	sample	(rows)	for	each	of	the	MC-specific	transcriptional	signatures	(columns)	as	
derived	from	scRNA-Seq	data.	b-d	Spot-wise	enrichment	scores	for	MC-specific	transcriptional	signatures	for	an	MC	ben-1	
meningioma	(b),	an	MC	int-A	meningioma	(c),	and	an	MC	mal	meningioma	(d).	

Similarly	as	for	the	MCs,	the	localization	of	the	six	tumor	cell	subpopulations	identified	by	NMF	

was	inferred	from	the	scRNA-Seq	data	to	identify	their	spatial	associations.	First,	I	investigated	

whether	 any	 of	 the	 tumor	 cell	 subpopulations	 tended	 to	 occur	 in	 the	 same	 tissue	 areas	 by	

correlating	 their	 spot-wise	enrichment	scores	 for	each	of	 the	six	 subpopulations.	Thereby,	 the	

subpopulation	 active	 in	 oxidative	 phosphorylation	 seemed	 negatively	 associated	 with	 the	

presence	of	the	cycling	and	hypoxic	subpopulations	as	well	as	the	subpopulation	with	active	KRAS	

signaling	(Figure	15a).	Histologically,	the	oxidative	phosphorylation	subpopulation	colocalized	

with	the	perinecrotic	zone	surrounding	necrotic	regions	in	tissue	sections	with	necrosis	(Figure	

15b).	Apart	from	this,	there	was	no	apparent	correlation	between	the	spatial	localization	of	any	

two	tumor	cell	subpopulations	or	an	association	with	visible	histological	features.	This	means	that	

the	subpopulations	on	one	hand	do	not	seem	to	be	mutually	exclusive	within	the	same	tissue	area.	

On	the	other	hand,	it	might	also	indicate	that	there	is	no	interdependence	between	the	tumor	cell	

subpopulations,	where	one	would	provide	a	favorable	environment	for	another	one.		

	
Figure	15.	a	Correlation	of	spot-wise	enrichment	scores	for	the	tumor	subpopulations.	Color	legend	represents	Pearson	
correlation	 scores,	with	 red	 color	 indicating	positive	 correlation	and	blue	 indicating	negative	 correlation.	b	 Spot-wise	
enrichment	scores	for	the	tumor	subpopulation	with	high	activity	in	oxidative	phosphorylation	for	two	WHO	grade	3	and	
MC	mal	meningiomas	with	necrosis.	
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TRANSCRIPTIONAL CHANGES ALONG THE INFILTRATION ZONE 

Another	 advantage	 of	 spatial	 transcriptomics	 data	 is	 the	 possibility	 to	 link	 histologically	

interesting	properties	directly	to	expressional	changes.	One	of	the	meningiomas	included	in	the	

spatial	 transcriptomics	dataset	 for	example	 captured	a	brain	 invasive	 region	of	 a	meningioma	

(Figure	16a).	Analyzing	 this	 in	detail	 could	 identify	changes	 in	expression	specific	 to	 invasive	

tumor	cells	that	might	facilitate	or	even	be	required	for	tumor	infiltration	in	meningioma.	Thus,	

in	the	following	I	analyzed	the	infiltration	zone	in	greater	detail.	

The	 tumor	 regions	 could	 be	 reliably	 separated	 from	 the	 non-tumor	 regions	 through	 the	

identification	 of	 tumor	 specific	 CNVs	 (Figure	 16b),	 consolidating	 the	 histology.	 I	 defined	 an	

infiltration	trajectory	from	the	tumor	regions	crossing	the	infiltration	zone	up	to	the	healthy	brain	

tissue	(Figure	16c).	Spots	located	along	this	trajectory	were	used	for	differential	expression	and	

pathway	 enrichment	 analysis.	 As	 expected,	 the	 Reactome	 pathway	 ‘Degradation	 of	 the	

extracellular	 matrix’	 displayed	 a	 peak	 in	 enrichment	 along	 the	 infiltration	 trajectory	 at	 the	

infiltration	zone	(Figure	16d).	The	same	was	observed	with	other	pathways	connected	to	tumor	

infiltration,	 such	 as	 collagen	 degradation.	 A	 number	 of	 genes	 was	 similarly	 differentially	

expressed	 along	 the	 trajectory.	 Among	 those	 were	 matrix	 metalloproteinases	 that	 exhibited	

expression	peaks	at	different	regions	along	the	trajectory	(Figure	16e).	Matrix	metalloproteinase	

2	(MMP2)	displayed	the	highest	peak	in	expression.	This	peak	also	concurred	directly	with	the	

infiltration	zone.	

	
Figure	16.	a	H&E	section	of	a	WHO	grade	3	and	MC	mal	meningioma	with	brain	invasion.	Arrows	mark	the	infiltration	
zone	between	tumor	(T)	and	brain	(B).	b	Spot-wise	scores	for	a	copy	number	change	of	chromosomes	1	(left)	and	22	(right),	
with	a	 score	of	1	 indicating	a	 copy	number	neutral	 status	and	a	 score	below	1	 indicating	a	deletion	of	 the	 respective	
chromosome.	c	Trajectory	along	the	infiltration	zone	of	the	tumor.	Dark	spots	were	included	for	analysis	of	the	infiltration	
trajectory.	 d	 Enrichment	 for	 the	 Reactome	 pathway	 ‘Degradation	 of	 the	 extracellular	 matrix’	 along	 the	 infiltration	
trajectory	 from	 (c).	 Grey	 area	 represents	 the	 confidence	 interval	 after	 smoothing.	 e	 Average	 expression	 of	
metalloproteinases	along	the	infiltration	trajectory	from	(c).	
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These	results	indicate	that	several	matrix	metalloproteinases	play	a	role	in	brain	invasion	that	

is	often	observed	in	aggressive	meningiomas,	with	MMP2	seemingly	being	of	specific	importance.	

Further	analysis	and	more	samples	will	however	be	necessary	to	unravel	the	mechanisms	driving	

brain	invasion	in	meningioma.	

	

	

3.3. MENINGIOMA TUMOR MICROENVIRONMENT 

DIFFERENCES IN INFILTRATING CELL POPULATIONS DEPENDING ON TUMOR GRADE AND MC 

Besides	neoplastic	cells,	a	number	of	infiltrating	cell	types	were	identified	in	the	scRNA-Seq	

dataset,	 including	 myeloid	 cells,	 lymphocytes,	 endothelial	 cells,	 and	 mast	 cells.	 It	 has	 been	

extensively	shown	that	these	cells,	which	together	with	the	molecules	they	secrete	make	up	the	

TME,	 heavily	 influence	 the	 tumor’s	 ability	 to	 progress,	 infiltrate	 the	 surrounding	 tissue,	 and	

metastasize	(Chen	et	al.	2015;	Jin	and	Jin	2020).	With	this	knowledge,	I	next	investigated	these	

non-neoplastic	 cell	 populations	 more	 closely	 and	 compared	 their	 abundance	 and	 phenotype	

across	 tumor	 classes,	 as	 they	might	 affect	meningioma	malignancy.	 Comparing	proportions	of	

infiltrating	 cells	 already	 highlighted	 stark	 differences	 between	 meningioma	 grades	 and	 MCs	

(Figure	17a).	While	there	was	no	significant	difference	 in	the	proportion	of	 total	 lymphocytes	

between	grades	or	MCs,	CD4	positive	T	cells	were	enriched	in	low	grade	versus	high	grade	cases	

(Supplementary	 Figure	 4,	 WHO	 grade	 1	 versus	WHO	 grade	 3:	 adjusted	 p-value	 =	 0.032	 as	

determined	by	Tukey’s	range	test).	A	similar	 tendency	was	observed	 for	NK	cells,	although	no	

significant	difference	was	detected.	CD8	positive	T	cells	on	the	other	hand	tended	to	be	enriched	

in	high	grade	cases,	but	also	without	significant	difference.	

Most	striking	was	however	the	difference	in	tumor-associated	macrophages	(TAMs).	TAMs	

were	present	at	significantly	greater	numbers	in	MC	ben-1	meningiomas	as	compared	to	MC	mal	

tumors	(Figure	17b,	Tukey’s	range	test	adjusted	p-value	=	0.00040).	Interestingly,	also	MC	ben-2	

meningiomas	 displayed	 significantly	 lower	 numbers	 of	 TAMs	 compared	 to	 MC	 ben-1	 cases	

(Tukey’s	range	test	adjusted	p-value	=	0.0021).	No	clear	difference	could	be	observed	between	

WHO	grade	1	and	grade	3	tumors,	most	likely	due	to	the	opposing	behavior	of	MCs	ben-1	and	ben-

2/-3	tumors.	A	similar	tendency	was	detected	between	matched	primary	and	recurrent	tumors	of	

the	 same	patient,	with	 lower	numbers	of	 infiltrating	TAMs	 in	 the	 recurrence	 compared	 to	 the	

respective	primary	tumor	(Figure	17c).	However,	only	five	such	matched	pairs	were	included	in	

the	dataset,	so	that	the	variance	was	too	great	for	a	stable	result	(paired	Wilcoxon	signed-rank	

test	p-value	=	0.062).		

To	subsequently	exclude	the	possibility	of	a	sampling	bias	during	nuclei	extraction	for	single	

cell	sequencing,	I	deconvoluted	the	bulk	RNA-Seq	data	using	xCell	to	predict	the	enrichment	of	
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cell	types	from	the	bulk	transcriptional	profiles.	As	expected,	macrophages	were	greatly	enriched	

in	MC	ben-1	cases	compared	to	MCs	ben-2	and	mal	(Supplementary	Figure	5).	This	was	also	in	

line	with	the	enrichment	for	immune-related	pathways	for	MC	ben-1	meningiomas	in	the	bulk	DE	

analyses.	Immunohistochemistry	stainings	for	the	macrophage	marker	CD68	that	were	obtained	

by	my	colleague	Helin	Dogan	in	the	lab	further	consolidated	this	finding	(Figure	17d).	

	
Figure	17.	a	Proportion	of	individual	cell	types	across	all	samples	of	each	MC.	b	Proportion	of	macrophages	in	each	sample	
with	respect	to	WHO	grade	(left)	and	MC	(right).	c	Changes	in	macrophage	proportions	between	primary	and	recurrent	
tumor	of	the	same	patient.	Lines	indicate	matching	sample	pairs.	d	Immunohistochemistry	stainings	for	the	macrophage	
marker	CD68	and	T	cell	markers	CD8	(CD8+	T	cells)	and	CD4	(CD4+	T	cells)	in	an	MC	ben-1	meningioma	(left)	and	an	MC	
mal	meningioma	(right).	

	

DIFFERENTIAL ACTIVATION OF TUMOR-ASSOCIATED MACROPHAGES BETWEEN MCS 

Macrophages	are	known	to	influence	tumor	cell	behavior	and	progression.	At	that,	they	can	

exert	 both	 protumoral	 as	 well	 as	 antitumoral	 effects.	 Given	 the	 stark	 differences	 in	 the	

macrophages	 that	already	became	apparent	by	comparing	abundances,	 in	a	 subsequent	 step	 I	

closely	analyzed	the	activation	status	of	the	TAMs	depending	on	tumor	grade	and	MC	to	predict	

their	potential	impact	on	the	tumor	cells.	To	this	end,	a	DE	analysis	was	performed	comparing	the	

TAM	population	of	each	MC	to	all	other	TAMs	applying	the	same	pseudobulk	approach	as	for	the	

neoplastic	 cell	 population.	 The	differentially	 expressed	 genes	were	 then	probed	 for	 activation	

patterns	of	interleukin	(IL)	signaling	pathways.	Indeed,	differences	between	the	TAM	populations	

of	 the	 individual	 MCs	 became	 apparent.	 TAMs	 infiltrating	 MC	 mal	 meningiomas	 for	 example	

displayed	a	strong	activation	of	the	IL-4	and	IL-13	signaling	pathway	as	well	as	the	IL-6	signaling	

pathway	(Figure	18),	both	of	which	are	known	to	have	protumoral	effects	(Hirano	2021;	Suzuki	

et	 al.	 2015).	 TAMs	 of	 MC	 ben-1	 tumors	 on	 the	 other	 hand	 were	 enriched	 for	 IL-2	 and	 IL-21	

signaling	 pathways,	 which	 have	 been	 demonstrated	 to	 have	 antitumoral	 effects	 (Waldmann	
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2018).	Thus,	the	activation	status	of	the	TAM	population	strongly	differs	between	MCs,	with	an	

activation	favorable	for	the	tumor	prevalent	in	MC	mal	cases.	

	
Figure	18.	Differential	activation	of	interleukin	signaling	pathways	between	MCs.	Asterisks	indicate	significance.	***	…	p	
<	0.001,	**	…	p	<	0.01,	*	…	p	<	0.05	

Given	 these	differences	 in	 abundance	and	activation,	 I	 investigated	whether	 they	 could	be	

caused	by	the	neoplastic	cell	population	that	stimulate	the	macrophages	in	one	way	or	another.	

Thus,	a	ligand-receptor	analysis	was	performed	to	test	for	interactions	between	neoplastic	cells	

and	macrophages	 depending	 on	 the	 tumor	 class.	 Thereby,	macrophages	were	 predicted	 to	 be	

stimulated	by	several	 factors	secreted	by	the	neoplastic	cells.	Among	these	was	the	CSF1/IL34	

ligand	complex	that	interacted	with	the	CSF1	receptor	(CSF1R)	on	the	macrophages	in	MC	ben-1	

and	MC	int-A	tumors	(Figure	19a).	The	same	interaction	was	not	predicted	for	MC	ben-2,	int-B,	

and	mal	tumors,	the	tumor	classes	with	typical	lower	macrophage	infiltration.	For	MC	ben-3,	no	

sufficient	expression	of	 the	 ligand-receptor	pair	could	be	observed	for	any	conclusions.	 In	 line	

with	this	were	the	significantly	decreased	CSF1	expression	levels	in	the	neoplastic	cells	of	these	

MCs	as	compared	to	MC	ben-1	meningiomas	(Figure	19b).	On	the	other	hand,	no	difference	in	the	

CSF1R	expression	of	the	macrophage	population	could	be	observed	between	MCs	(Figure	19c).	

This	might	 indicate	 that	 a	 shift	 in	 stimulation	 occurs	 in	 the	 neoplastic	 cell	 population	 during	

progression,	where	tumor	cells	cease	to	stimulate	macrophages	vis	CSF1.	Coincidentally,	the	CSF1	

gene	 is	 located	 on	 chromosome	 1p,	 a	 gene	 locus	 that	 is	 frequently	 deleted	 in	 high	 grade	

meningioma.	
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Figure	19.	 a	Aggregate	 rank	 across	 ligand-receptor	 analysis	methods	 for	 the	 interaction	 via	 the	CSF1/IL34	 complex	
expressed	by	neoplastic	cells	and	CSF1R	expressed	by	macrophages.	The	black	line	resembles	a	significance	level	of	0.05.	
Colors	represent	extent	of	expression	for	ligand	and	receptor	in	the	source	and	target	cell	population,	respectively.	b	CSF1	
expression	 in	 the	neoplastic	 cell	 population	depending	on	MC.	 Significant	differences	 in	mean	 expression	according	 to	
Tukey’s	rank	test	are	annotated	with	the	respective	p-values.	c	CSF1R	expression	in	the	macrophage	population	depending	
on	MC.	

Interestingly,	a	subpopulation	of	TAMs	also	expressed	typical	microglial	markers	(TMEM119,	

P2RY13,	P2RY12,	GPR34,	SLCA5).	The	proportion	of	TAMs	with	microglial	marker	gene	expression	

was	increased	in	low-grade	compared	to	high-grade	cases	(MC	ben-1	versus	MC	mal	adjusted	p-

value	=	0.0078	as	determined	by	Tukey’s	rank	test;	WHO	grade	1	versus	WHO	grade	3	adjusted	p-

value	=	0.0228	as	determined	by	Tukey’s	rank	test;	Figure	20).	This	was	an	unexpected	finding,	

given	that	especially	low-grade	cases	rarely	present	with	brain	invasion,	and	might	point	towards	

a	specialized	cell	type.	

	
Figure	20.	Proportion	of	microglia	in	the	total	TAM	population	of	each	tumor	by	WHO	grade	(left)	and	MC	(right).	

Altogether,	the	significant	differences	in	TAM	phenotypes	depending	on	meningioma	subtype	

indicate	that	they	might	heavily	influence	tumor	aggressiveness	and	progression	by	shaping	the	

tumor	microenvironment.	
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SPATIAL DISTRIBUTION OF TUMOR-ASSOCIATED MACROPHAGES WITHIN THE MENINGIOMA 
TISSUE  

As	the	TAMs	will	mainly	exert	their	pro-	and	antitumoral	effects	on	tumor	cells	in	their	direct	

vicinity,	I	next	investigated	the	spatial	distribution	of	TAMs	in	the	spatial	transcriptomics	data.	

Confirming	the	previous	findings,	MC	ben-1	tumors	displayed	a	higher	enrichment	for	TAMs	as	

compared	 to	 higher-grade	 meningiomas	 (Figure	 21a).	 However,	 the	 enrichment	 was	 rather	

homogenously	 distributed	 in	 the	 tumor	 (Figure	 21b).	 A	 focal	 enrichment	 for	 TAMs	 could	 be	

observed	only	in	tumors	with	necrotic	regions,	all	of	them	WHO	grade	3	and	MC	mal,	where	TAMs	

accumulated	in	the	perinecrotic	regions	surrounding	the	necrosis	(Figure	21b,c,	Supplementary	

Figure	6a,b).		

A	 closer	 analysis	 of	 these	 perinecrotic	 regions	 revealed	 an	 enrichment	 of	metallothionein	

expression	 (Figure	 21d,	 Supplementary	 Figure	 6c).	 Moreover,	 an	 expression	 of	 ferroptotic	

markers	 (FTL,	 FTH1,	TF,	TFRC)	 could	 be	 observed	 (Figure	 21e,	 Supplementary	 Figure	 6d),	

whereas	 no	 expression	 of	 apoptosis	 or	 necrosis	 related	 genes	 was	 detected	 around	 the	

histologically	visible	necrotic	areas	(Supplementary	Figure	6e,f).	To	investigate	whether	signs	

of	ferroptosis	could	be	found	in	the	scRNA-Seq	data,	the	same	marker	genes	were	queried	in	this	

dataset.	 However,	 there	 was	 no	 apparent	 correlation	 between	 the	 expression	 of	 ferroptosis	

related	genes	and	the	tumor	MC,	although	there	was	a	tendency	of	elevated	ferroptotic	marker	

gene	 expression	 levels	 in	 tumors	 of	WHO	grade	3.	 This	might	not	 be	 surprising,	 as	 no	 visibly	

necrotic	regions	were	 included	when	generating	the	scRNA-Seq	data.	Taken	together,	 the	data	

suggest	that	ferroptotic	processes	might	contribute	to	the	histologically	observed	necrosis	in	MC	

mal/WHO	grade	3	meningiomas.	
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Figure	21.	a	Average	 enrichment	per	 sample	 (rows)	of	 each	non-tumor	 single	 cell	 population	 (columns).	b	Spot-wise	
enrichment	score	for	macrophages	as	inferred	from	scRNA-Seq	data	for	an	MC	ben-1	meningioma	(left)	and	an	MC	mal	
meningioma	with	necrosis	(right).	c	H&E	staining	of	the	WHO	grade	3	and	MC	mal	meningioma	from	(b)	with	necrosis	and	
perinecrotic	regions	(arrows).	d	Spot-wise	enrichment	scores	for	metallothionein	expression	for	the	tissue	section	in	(c).	d	
Spot-wise	expression	of	four	ferroptotic	marker	genes	for	the	tissue	section	in	(c).	

	

 CORRELATION OF TUMOR-ASSOCIATED MACROPHAGES WITH PROGRESSION FREE SURVIVAL 

The	stark	differences	in	numbers	as	well	as	activation	of	the	TAM	population	depending	on	

the	tumor	MC	suggested	that	these	cells	influence	tumor	progression	and	with	that,	the	outcome	

for	 the	 patient.	 Therefore,	 I	 investigated	 a	 cohort	 of	 806	 meningioma	 samples,	 for	 which	

methylation	array	as	well	as	progression-free	survival	data	was	available.	First,	I	deconvoluted	

the	methylation	array	data	to	predict	the	proportion	of	infiltrating	immune	cells	in	each	of	the	

samples	using	public	methylation	sets	for	each	cell	type	as	reference	(Dekkers	2019;	Hassler	et	al.	

2016;	 Lucero	 et	 al.	 2020;	 Vizoso	 et	 al.	 2015).	 As	 expected	 from	 the	 scRNA-Seq	 dataset,	 the	

proportion	of	infiltrating	immune	cells	was	elevated	in	MC	ben-1	samples	(Figure	22a).	I	then	

compared	these	numbers	for	the	 infiltrating	immune	cell	population	with	the	progression-free	

survival	of	the	patients.	To	this	end,	I	grouped	the	samples	into	tumors	with	low	(below	the	first	

quartile),	 medium	 (between	 the	 first	 and	 third	 quartile),	 and	 high	 (above	 the	 third	 quartile)	

immune	 infiltration	 (Figure	22b).	Between	all	 samples,	 tumors	with	high	 immune	 infiltration	

presented	with	significantly	prolonged	progression-free	survival	as	compared	to	tumors	with	low	

immune	infiltration	(Figure	22c).		
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Figure	22.	a	Proportion	of	immune	cells	as	predicted	by	deconvolution	of	methylation	array	data.	b	Proportion	of	samples	
assigned	to	groups	of	meningiomas	with	high,	intermediate,	and	low	immune	infiltration,	respectively.	c	Progression	free	
survival	of	patients	depending	on	their	immune	status.	d	Progression	free	survival	of	patients	depending	on	WHO	grade	
and	combined	WHO	grade	and	immune	status.	e,f	Hazard	ratio	for	a	Cox	proportional	hazard	model	of		progression	free	
survival	including	immune	status	as	well	as	WHO	grade	(e)	or	MC	(f).	
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This	was	still	true	when	accounting	for	MC	as	well	as	WHO	grade	of	the	tumor	(Figure	22d-f).	

Especially	for	WHO	grade	1	and	2	cases,	for	which	risk	stratification	is	generally	more	difficult,	

the	 proportion	 of	 infiltrating	 immune	 cells	 had	 a	 significant	 correlation	with	progression-free	

survival,	while	the	effect	was	mitigated	for	WHO	grade	3	cases	(Supplementary	Figure	7).	The	

Brier	 score	 for	 the	 proportion	 of	 immune	 cells	 alone	 was	 not	 able	 to	 compete	 with	 MCs	 in	

prediction	of	the	progression-free	survival,	but	it	slightly	improved	the	prediction	in	combination	

with	the	MCs	(Table	1).		

	 IBS	(10	years)	

Reference	 0.198	

Immune	status	 0.184	

WHO	 0.166	

WHO	+	immune	status	 0.159	

MC	 0.152	

MC	+	immune	status	 0.150	

Table	1.	Integrated	Brier	Score	(IBS)	after	ten	years	for	a	Cox	proportional	hazard	model	of	progression	free	survival.	

A	comparison	of	 the	hazard	ratio	of	 the	 immune	subgroup	for	each	WHO	grade	separately	

revealed	 that	 the	 effect	 of	 the	 immune	 infiltration	 made	 a	 significance	 difference	 in	 patient	

outcome	for	WHO	grade	1	and	2	tumors,	but	not	in	WHO	grade	3	tumors	(Supplementary	Figure	

8).	This	indicates	that	the	effect	size	of	the	immune	infiltration	might	depend	on	the	tumor	grade.	

To	test	for	this	possible	subgroup	effect,	I	compared	an	additive	Cox	proportional	hazard	model	

with	WHO	grade	and	 immune	subgroup	as	covariates	with	a	multiplicative	model	of	 the	same	

covariates,	 representing	 a	 model	 without	 and	 with	 interaction	 between	 the	 covariates,	

respectively.	The	difference	between	both	models	was	not	significant	(analysis	of	variance	p-value	

=	0.155),	indicating	that	the	effect	of	the	immune	infiltrate	is	independent	of	the	WHO	grade.	

In	any	case,	the	information	on	the	immune	infiltration	of	the	tumor	will	be	most	useful	for	

the	 lower	grade	meningiomas,	 for	which	risk	stratification	 is	more	difficult.	Here,	 the	 immune	

infiltration	can	add	valuable	 information	to	the	WHO	grading	and	methylation	classification	 in	

terms	of	risk	stratification	for	patients.	

	

	

3.4. COMPARISON OF HEIDELBERG MCS WITH UCSF CLASSIFIER 

Altogether,	the	data	shown	here	seem	to	emphasize	the	value	of	methylation	classification	and	

furthermore	 suggest	 a	 correlation	 with	 the	 immune	 infiltration.	 However,	 the	 Heidelberg	

methylation	classification	that	was	basis	for	the	analysis	thus	far	is	only	one	of	the	methylation	

classification	systems	that	have	been	suggested	for	meningioma.	Therefore,	 I	next	 investigated	
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how	 these	 classification	 systems	 compare,	 especially	 given	 that	 the	 UCSF	 and	 Toronto	

classification	 systems	 both	 include	 one	 subgroup	 of	 tumors	 with	 high	 immune	 infiltration.	 I	

therefore	 applied	 the	 published	 UCSF	 classifier	 (Choudhury,	 Magill,	 et	 al.	 2022)	 to	 our	 806	

meningioma	 samples	with	data	 on	 the	progression-free	 survival.	 As	 expected,	most	MC	ben-2	

tumors	were	assigned	to	the	Merlin-intact	subgroup,	fitting	their	mutational	background	(Figure	

23b).	MC	int-B	and	MC	mal	tumors	fell	mostly	into	the	hypermitotic	UCSF	subgroup,	all	subgroups	

with	most	unfavorable	outcome.	The	 immune-enriched	UCSF	subgroup	matched	well	with	MC	

ben-1,	which	I	observed	to	typically	present	with	high	immune	infiltration.	Only	MC	int-A	tumors	

composed	a	mixture	of	all	three	UCSF	subgroups,	albeit	most	adhered	to	the	hypermitotic	UCSF	

subgroup.	 Interestingly,	 the	UCSF	subgroup	assignment	 to	 the	 immune-enriched	group	mostly	

reflected	the	tumors	with	high	immune	infiltration	according	to	the	deconvolution	(Figure	23a).	

	
Figure	23.	Comparison	of	Heidelberg	MCs	and	UCSF	classifier	for	meningioma.	a	Most	relevant	CNVs	for	all	samples	from	
methylation	 array	 with	 respect	 to	 MC,	 WHO	 grade,	 and	 UCSF	 subgroup.	 Proportions	 of	 infiltrating	 immune	 cells	 as	
estimated	 from	 deconvolution	 and	 the	 respective	 immune	 group	 for	 each	 sample	 are	 annotated	 at	 the	 bottom.	 b	
Concordance	between	Heidelberg	MCs	and	UCSF	meningioma	subgroups.	

	

Exploring	the	progression-free	survival	in	correlation	to	Heidelberg	MCs	and	UCSF	subgroups	

revealed	a	slight	benefit	of	the	Heidelberg	MCs	in	comparison	to	the	UCSF	subgroups,	even	when	

adding	 the	 information	 on	 the	 immune	 infiltration	 (Table	 1	 and	Table	 2).	 Interestingly,	 the	

immune	status	was	able	to	improve	risk	stratification	in	combination	with	the	UCSF	subgroups,	

even	though	the	UCSF	classification	subgroup	comprises	the	immune-enriched	subgroup.	Taken	

together,	these	findings	indicate	that	the	Heidelberg	MCs	seem	to	have	a	slight	advantage	at	risk	

stratification.	
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	 IBS	(10	years)	

Reference	 0.197	

UCSF		 0.158	

UCSF	+	immune	status	 0.156	

Table	2.	Integrated	Briers	Score	(IBS)	after	ten	years	for	a	Cox	proportional	hazard	model	of	progression	free	survival.	
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IV.  DISCUSSION 

4.1. CONSISTENCY OF EPIGENETIC SUBGROUPS ACROSS REGULATORY LEVELS 

Besides	the	conventional	grading	of	meningiomas	based	on	their	histopathology,	molecular	

evaluation	 of	 the	 tumors	 has	 gained	 increasing	 importance	 for	 risk	 stratification.	 Several	

classification	systems	based	on	epigenomic	profiles	have	been	established	for	meningioma,	which	

all	have	been	demonstrated	to	be	of	additional	prognostic	value	compared	to	the	WHO	grading	

(Sahm	et	al.	2017;	Nassiri,	Liu,	et	al.	2021;	Choudhury,	Magill,	et	al.	2022).	In	only	one	of	these	

classification	systems,	the	epigenomic	classification	has	been	put	into	perspective	to	additional	

molecular	 layers,	 however	 (Nassiri,	 Liu,	 et	 al.	 2021).	 One	 of	 the	 aims	 of	 this	 thesis	 was	 to	

investigate	how	the	Heidelberg	MCs	are	recapitulated	on	RNA	and	protein	level.	Despite	major	

discrepancies	in	differentially	expressed	genes	and	proteins	as	well	as	in	the	pathway	regulation	

on	 both	 levels,	 transcriptomic	 and	 proteomic	 data	 combined	 consistently	 replicated	 the	

subgroups	on	epigenomic	level	in	an	SNF	analysis.	This	underlines	the	relevance	of	the	MCs	past	

the	epigenome,	which	is	relatively	upstream	in	regulation	of	expression,	and	implicates	a	more	

direct	correspondence	with	the	phenotype.	

A	consistent	differential	regulation	of	signaling	pathways	could	not	be	observed	across	RNA	

and	protein	level.	However,	active	signaling	pathways	are	not	always	immediately	associated	with	

a	change	in	expression,	but	rather	with	a	change	in	conformation	or	phosphorylation	status.	For	

this	reason,	transcriptomic	and	proteomic	datasets	are	not	the	best	suited	modalities	to	capture	

such	 differences.	 Thus,	 I	 analyzed	 the	 phosphoproteome	 for	 differences	 in	 signaling	 pathway	

regulation.	Thereby	I	indeed	identified	kinases	with	differential	activity	depending	on	the	tumor	

subgroup.	 Not	 surprisingly,	 cyclin-dependent	 kinases	 displayed	 increased	 activity	 in	 MC	 mal	

meningiomas.	They	regulate	the	cell	cycle	and	are	therefore	 indicative	of	 the	 increased	rate	of	

proliferation	that	is	generally	characteristic	of	high	grade	meningiomas	(Shapiro	2006).	In	MCs	

ben-1	 and	 ben-2	 on	 the	 other	 hand,	 kinases	 of	 the	MAPK	 family	were	 observed	 at	 increased	

activity	 levels	 compared	 to	MC	mal	 cases.	 Previously,	 a	 reduced	 activation	 of	MAPK	has	 been	

correlated	to	an	increased	rate	of	recurrence	in	meningioma	(Mawrin	et	al.	2005).	This	indicates	

that	the	MAPK	signaling	pathway	might	play	a	protective	role	in	tumor	progression.	However,	this	

will	require	more	in-depth	investigations.	In	the	same	study,	WHO	grade	2	and	3	tumors	were	

demonstrated	 to	 display	 elevated	 activity	 in	 the	 PI3K/AKT	 signaling	 pathway	 (Mawrin	 et	 al.	

2005).	 This	 is	 somewhat	 contradictory	 to	 the	 increased	 AKT1	 activity	 that	 I	 observed	 on	

phosphoproteomic	level	in	MC	ben-2	meningiomas,	which	are	typically	WHO	grade	1.	However,	

other	 benign	 MCs	 contribute	 to	 WHO	 grade	 1,	 and	 could	 therefore	 skew	 the	 observation.	
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Especially	since	the	increase	in	AKT1	activity	is	on	the	other	hand	in	line	with	the	frequent	AKT1	

and	PI3KCA	mutation	in	MC	ben-2,	which	are	both	typically	activating	mutations	and	thus	lead	to	

a	constituent	activation	of	the	Pi3K/AKT	signaling	pathway	(Carpten	et	al.	2007;	Zadeh,	Karimi,	

and	Aldape	2016).	Overall,	the	size	of	the	phosphoproteomic	dataset	is	however	too	small	for	any	

major	conclusion.	Data	will	have	to	be	generated	for	a	larger	cohort	to	obtain	conclusive	results.	

	

4.2. INTRA- AND INTERTUMORAL HETEROGENEITY OF NEOPLASTIC CELLS  

As	such	investigations	on	bulk	level	are	likely	to	miss	more	intricate	differences	in	tumor	cell	

subpopulations,	 I	 next	 investigated	 differential	 transcriptomic	 signatures	 on	 single	 cell	 level.	

Thereby	I	could	also	eliminate	any	confounding	effects	of	infiltrating	non-tumor	cell	populations.	

First,	I	generally	compared	the	neoplastic	cell	population	between	MCs.	Some	of	the	pathways	I	

identified	 to	 be	 differentially	 regulated	 had	 a	 direct	 counterpart	 in	 the	 histopathology	 of	 the	

tumors.	For	example,	MC	mal	neoplastic	cells	displayed	an	elevated	cell	cycle	activity,	which	again	

is	 in	 line	with	 the	 increased	proliferation	 in	 these	 tumors	 and	 can	be	directly	 observed	 as	 an	

increase	 in	 Ki67-positive	 cells	 in	 immunohistochemistry.	 Similarly,	 the	 activity	 in	 epithelial-

mesenchymal	transition	for	MC	mal	neoplastic	cells	can	be	inferred	to	be	the	regulatory	equivalent	

to	the	sheeting	architecture	often	observed	in	the	histology	of	high-grade	meningiomas,	where	

typical	histological	meningioma	growth	patterns	are	lost.	On	the	level	of	differentially	expressed	

genes,	several	genes	of	the	HOX	family	displayed	an	increased	expression	in	MC	mal	neoplastic	

cells.	 This	 further	 corroborates	 the	 hypothesis	 that	 HOX	 genes	 contribute	 to	 meningioma	

aggressiveness,	as	has	been	previously	suggested	based	on	the	presence	of	a	super	enhancer	near	

the	HOXD	gene	locus	and	an	upregulation	of	HOX	genes	in	MC	mal	in	bulk	analyses	(Paramasivam	

et	al.	2019).	

Having	 compared	 the	 tumor	 cell	 population	 as	 a	whole	between	 samples	 in	 a	 pseudobulk	

fashion,	 I	 subsequently	 leveraged	 the	 full	 potential	 of	 single	 cell	 sequencing	 to	 identify	

intratumoral	subpopulations	of	neoplastic	cells	and	how	they	overlap	between	tumor	subgroups.	

This	allows	for	the	identification	of	cellular	subpopulations	associated	with	aggressiveness,	with	

the	ultimate	goal	 to	discern	what	cellular	phenotypes	are	correlated	 to	a	higher	 risk	of	 tumor	

progression	and	recurrence.	Here,	 I	have	identified	six	tumor	cell	subpopulations	with	distinct	

phenotypes	 that	 could	 be	 identified	 across	 samples.	 Proportions	 at	 which	 each	 of	 the	

subpopulations	was	present	varied	between	MCs,	but	partially	also	between	samples	within	each	

MC,	 preventing	 conclusions	 on	 the	 role	 of	 each	 subpopulation	 in	 tumor	 progression.	 Yet,	

enrichments	of	subpopulations	 in	groups	of	specific	clinical	presentation	could	be	found:	Once	

again,	 the	 proportion	 of	 the	 cycling	 neoplastic	 cell	 population	 increased	 with	 malignancy,	

corresponding	to	the	definition	of	higher	grade	meningiomas	according	to	the	number	of	mitoses	
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(Louis	et	al.	2021).	A	neoplastic	cell	subpopulation	with	elevated	activity	in	the	KRAS	signaling	

pathway	 tended	 to	 be	 more	 prominent	 in	 MC	 ben-2	 and	 ben-3	 tumors	 as	 compared	 to	 the	

remaining	MCs	that	are	characterized	by	a	loss	of	NF2.	This	is	in	line	with	results	from	the	analysis	

of	phosphoproteomic	data	on	bulk	level,	where	I	have	found	an	increased	activity	of	MAPK1/ERK2	

and	 MAPK3/ERK1,	 both	 downstream	 targets	 of	 Ras	 in	 the	 MAPK	 signaling	 pathway,	 to	 be	

significantly	enriched	in	MC	ben-2	meningiomas.	Merlin,	the	gene	product	of	NF2,	has	previously	

been	demonstrated	to	be	necessary	for	accurate	regulation	of	Ras	(Cui	et	al.	2019).	Surprisingly,	

Merlin	 appears	 to	 suppress	 Ras	 activity	 in	 an	 indirect	manner	 (Morrison	 et	 al.	 2007).	 This	 is	

contradictory	to	the	observation	I	made	here.	However,	I	have	not	investigated	the	activity	in	the	

KRAS	signaling	pathway	in	direct	correlation	to	NF2	expression,	which	might	not	be	present	in	

the	same	cell	population.	On	the	other	hand,	a	cellular	subpopulation	with	increased	activity	in	

oxidative	phosphorylation	displayed	an	inverse	pattern	in	abundancy,	with	high	proportions	in	

the	ben-1,	intermediate,	and	malignant	MCs	and	decreased	proportions	in	MCs	ben-2	and	ben-3.	

Previously,	 complexes	 involved	 in	 oxidative	 phosphorylation	 have	 been	 demonstrated	 to	 be	

downregulated	in	WHO	grade	1	meningiomas	compared	to	higher	grade	tumors	(Feichtinger	et	

al.	2016).	A	hypermetabolic	meningioma	subgroup	was	also	observed	in	the	Toronto	methylation	

classification	system,	with	enrichment	in	metabolic	pathways	such	as	the	electron	transport	chain,	

fatty	 acid	 oxidation,	 and	 mitochondrial	 translation	 (Nassiri,	 Liu,	 et	 al.	 2021).	 This	 could	 be	

reflective	of	a	dominating	presence	of	the	cellular	subpopulation	that	I	 identified	on	single	cell	

level.	 A	 neoplastic	 cell	 population	 expressing	 genes	 related	 to	 cell	 adhesion	was	 observed	 at	

increased	proportions	at	the	benign	MCs	compared	to	the	intermediate	and	malignant	MCs,	which	

could	 be	 indicative	 of	 the	 tumor’s	 ability	 to	 invade	 surrounding	 structures	 or	 metastasize.	

However,	this	subpopulation	rarely	composed	the	majority	of	neoplastic	cells,	even	for	low-risk	

cases.	Altogether,	the	results	did	not	provide	sufficient	evidence	to	determine	a	subpopulation	of	

neoplastic	 cells	 with	 a	 clear	 tendency	 to	 progress	 or	 metastasize.	 A	 larger	 cohort,	 possibly	

including	more	primary	and	recurrent	tumor	pairs	of	the	same	patient,	could	help	identify	such	a	

population.	In	addition,	the	cellular	subpopulations	established	here	remain	to	be	validated	in	an	

independent	dataset.	

	

4.3. VASCULAR ORIGIN IN ANGIOMATOUS MENINGIOMA 

Dissecting	 tumor	 cells	 from	non-tumor	 cells	was	 not	 only	 important	 to	 gather	 differential	

expression	profiles	specific	to	the	neoplastic	cell	population,	but	also	of	specific	relevance	in	the	

context	of	angiomatous	meningiomas.	This	usually	benign	histological	subtype	is	characterized	by	

exceptionally	high	vascularization.	Thus	 far,	 it	has	not	been	 investigated	what	causes	 the	high	

vascularization	 in	 these	 tumors	 and	 where	 the	 endothelial	 structures	 originate	 from.	 Here,	 I	
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demonstrated	that	the	vessels	are	formed	not	by	the	neoplastic	cells	themselves,	but	by	infiltrating	

endothelial	 cells.	 Most	 likely,	 the	 endothelial	 cells	 are	 recruited	 into	 the	 tumor	 tissue	 by	 the	

neoplastic	 cells	 expressing	 the	 vascular	 endothelial	 growth	 factors	VEGFA/B	 as	well	 as	SLIT2.	

While	the	role	of	SLIT2	in	meningioma	has	not	been	studied	thus	far,	a	positive	correlation	has	

been	 previously	 shown	 for	 VEGFA	 expression	 on	 neoplastic	 cells	 with	 the	 expression	 of	 its	

receptors	on	vessels	in	meningioma	(Bernatz	et	al.	2021).	Interestingly,	this	study	demonstrated	

a	correlation	of	high	VEGFA	expression	with	a	decreased	overall	survival	of	patients.	However,	

only	WHO	grade	2	and	3	meningiomas	were	 investigated,	 thus	 likely	missing	the	angiomatous	

meningioma	subtype	that	typically	presents	at	WHO	grade	1.	Besides	that,	several	studies	have	

investigated	VEGF	in	the	context	of	meningiomas	with	contradicting	results,	some	demonstrating	

a	correlation	of	its	expression	with	malignancy,	others	an	absence	thereof	(Lamszus	et	al.	2000;	

Barresi	and	Tuccari	2010).	A	possible	explanation	would	be	that	angiomatous	meningiomas	are	a	

special	case,	in	which	high	vascularization	is	not	associated	with	increased	malignancy,	while	this	

might	 still	 be	 the	 case	 for	 other	 meningioma	 subtypes,	 hence	 introducing	 a	 bias	 when	

investigating	the	relationship	of	VEGF	and	tumor	grade	in	meningiomas.	

	

4.4. MOLECULAR RISK FACTORS AT SINGLE CELL LEVEL 

Besides	leveraging	the	single	cell	transcriptomic	data	to	characterize	phenotypic	changes	in	

neoplastic	 cell	 populations,	 I	 have	 applied	 the	 dataset	 to	 investigate	 the	 behavior	 of	 known	

molecular	risk	 factors	 in	meningioma	on	cellular	 level.	The	homozygous	 loss	of	 the	CDKN2A/B	

gene	locus	has	for	example	been	integrated	in	the	recent	WHO	grading,	promptly	assigning	tumors	

to	WHO	grade	3	if	present	(Louis	et	al.	2021).	Interestingly,	I	demonstrated	here	that	on	bulk	level,	

both	CDKN2A	and	its	gene	product	p16	displayed	an	increased	expression	in	malignant	MC	tumors	

compared	to	low-grade	tumors	in	those	cases	without	deletion	of	the	gene	locus.	I	subsequently	

deployed	the	scRNA-Seq	dataset	to	 investigate	whether	this	expression	increase	was	a	general	

mechanism	 in	 the	 neoplastic	 cell	 population.	 Indeed,	 CDKN2A	 expression	 was	 universally	

increased	in	the	neoplastic	cells	of	MC	mal	tumors	without	CDKN2A/B	deletion.	A	comparison	with	

ATAC-Seq	 data	 in	 addition	 revealed	 a	 high	 accessibility	 of	 the	 gene	 locus	 in	 these	 cases.	 One	

hypothesis	 to	 explain	 the	 correlation	 of	 malignancy	 in	 meningioma	 with	 increased	 CDKN2A	

expression	as	well	as	homozygous	deletion	of	its	gene	locus	would	be	that	expression	of	the	cell	

cycle	inhibitor	CDKN2A	 is	upregulated	as	a	means	to	counteract	the	elevated	proliferation	rate	

with	increasing	malignancy.	Due	to	the	higher	accessibility	of	the	gene	locus	that	this	entails,	this	

locus	may	be	more	prone	to	deletion,	thus	eliminating	an	important	check	point	to	prevent	cells	

from	proliferation.	However,	the	regulatory	mechanisms	to	support	this	hypothesis	remain	to	be	

investigated.	



62	 	 IV.	Discussion	

Another	molecular	risk	factor	in	meningioma	is	an	increased	activity	of	FOXM1	(Paramasivam	

et	 al.	 2019).	By	 investigating	FOXM1	 activity	on	 single	 cell	 level,	 I	 demonstrated	here	 that	 the	

observed	increase	in	activity	is	in	fact	not	generally	observed	across	the	neoplastic	cell	population	

but	limited	to	a	subset	of	cells.	This	subset	of	cells	with	elevated	FOXM1	activity	corresponded	to	

neoplastic	 cells	 undergoing	 cell	 cycle.	 As	 FOXM1	 plays	 an	 important	 role	 during	 cell	 cycle	

progression	(Wierstra	and	Alves	2007),	its	elevated	activity	in	malignant	cases	could	be	simply	

reflective	of	the	high	proliferation	rate.	Nonetheless,	FOXM1	might	have	an	impact	on	driving	this	

increase	 in	 proliferation	 in	 aggressive	meningioma.	 Further	 investigations	will	 be	 required	 to	

elucidate	the	mechanisms	of	action	for	FOXM1	in	meningioma.	

	

4.5. THE ROLE OF THE IMMUNE COMPARTMENT IN MENINGIOMA PROGRESSION 

Having	 investigated	 the	 transcriptomic	signatures	of	 the	neoplastic	cells	 in	detail,	a	 logical	

next	 step	was	 to	 further	dissect	 the	 infiltrating	 immune	cells	which	were	also	captured	 in	 the	

scRNA-Seq	dataset.	A	huge	disparity	in	numbers	depending	on	MC	already	indicated	pronounced	

differences	 in	 the	 immune	 microenvironment	 between	 tumor	 subgroups.	 MC	 ben-1	 tumors	

displayed	a	significantly	higher	number	of	infiltrating	TAMs	compared	to	MC	mal	meningiomas.	

Since	TAMs	can	have	both	tumor	promoting	as	well	as	tumor	suppressing	effects,	I	next	examined	

the	phenotypes	of	the	TAMs	across	subtypes.	TAMs	in	MC	mal	meningiomas	displayed	activity	in	

the	 IL-4	 and	 IL-13	 signaling	 pathway	 as	 well	 as	 the	 IL-6	 signaling	 pathway.	 Both	 have	 been	

demonstrated	 to	 execute	 roles	 promoting	 tumor	 growth	 and	 progression	 (Suzuki	 et	 al.	 2015;	

Hirano	 2021).	 TAMs	 infiltrating	 ben-1	 tumors	 on	 the	 other	 hand	 exhibited	 activity	 in	 anti-

tumorigenic	 pathways	 such	 as	 the	 IL-2	 and	 the	 IL-21	 signaling	 pathway	 (Waldmann	 2018).	

Considering	both	the	variation	in	numbers	of	infiltrating	TAMs	as	well	as	their	differing	activation	

status,	 these	 results	 strongly	 suggest	 an	 important	 role	 of	 the	 TAM	 population	 in	 tumor	

progression.	 Possibly,	 the	 number	 and	 anti-tumorigenic	 phenotype	 of	 the	 TAMs	 in	MC	 ben-1	

meningiomas	could	be	preventative	of	tumor	progression	and	only	if	lost,	the	tumor	will	adapt	a	

more	 aggressive	 phenotype.	 It	 could	 also	 be	 that	 the	 neoplastic	 cells	 actively	 influence	 the	

infiltration	and	phenotype	of	the	TAMs	and	thus	create	a	TME	that	is	favorable	to	them.	This	would	

be	supported	by	the	 interaction	between	CSF1	expressed	by	neoplastic	cells	and	CSF1R	on	the	

cellular	membrane	of	TAMs	that	I	predicted	in	my	analyses	here	for	the	MC	ben-1	and	int-A	cases	

with	high	immune	infiltration.	Considering	that	the	CSF1	gene	is	 located	on	chromosome	1p,	a	

gene	 locus	 that	 is	 frequently	 deleted	 in	 high-grade	 meningioma,	 this	 mechanism	 of	 TAM	

recruitment	 could	 be	 lost	 during	 tumor	progression.	 In	 the	 end,	 it	 remains	 to	 be	 investigated	

whether	the	TAM	population	is	shaped	by	the	neoplastic	cells	depending	on	their	aggressivity	or	
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whether	the	TAMs	themselves	determine	the	ability	of	the	neoplastic	cells	to	progress.	Both	might	

be	the	case,	but	the	exact	mechanisms	of	either	remain	to	be	elucidated.	

To	better	correlate	the	presence	of	 infiltrating	TAMs	with	patient	outcome,	 I	deconvoluted	

epigenomic	 data	 with	 available	 information	 on	 progression-free	 survival	 for	 the	 immune	

compartment.	Thereby	I	discovered	a	positive	correlation	of	the	proportion	of	infiltrating	immune	

cells	with	the	progression-free	survival.	For	WHO	grade	1	and	2	tumors,	this	was	true	even	within	

the	 respective	WHO	grade.	This	 could	have	 important	 implications	 for	 prognosis,	 as	 for	WHO	

grade	1	and	2	meningiomas	risk	stratification	if	often	difficult.	TAM	infiltration	could	however	be	

easily	 and	 cost-effectively	 determined	 by	 immunohistochemistry	 to	 aid	 risk	 stratification	 for	

these	cases	in	the	future.	

	

4.6. FERROPTOSIS AS CELL DEATH-INDUCING PROCESS IN MENINGIOMA 

Through	 the	 analysis	 of	 spatial	 sequencing	 data,	 I	 in	 addition	 investigated	 the	 spatial	

distribution	of	infiltrating	TAMs	within	the	tumor	tissue.	While	no	specific	enrichment	could	be	

observed	in	benign	cases,	an	accumulation	of	TAMs	could	be	observed	in	the	perinecrotic	regions	

in	 those	 MC	mal/WHO	 grade	 3	 tumors	 with	 necrosis.	 The	 same	 region	 further	 displayed	 an	

increased	expression	of	metallothioneins.	Metallothioneins	are	cytoplasmatic	proteins	with	the	

ability	 to	 bind	 metals	 (Dai	 et	 al.	 2021).	 They	 have	 been	 demonstrated	 to	 be	 expressed	 in	

meningiomas,	with	increasing	frequency	in	WHO	grade	2	and	3	meningiomas	(Tews	et	al.	2001).	

As	 WHO	 grade	 1	 meningiomas	 rarely	 present	 with	 necrosis,	 this	 could	 at	 least	 be	 partially	

explained	 with	 their	 association	 to	 perinecrotic	 regions	 as	 I	 have	 detected	 here.	 In	 addition,	

metallothioneins	have	been	illustrated	to	enhance	an	inflammatory	response	to	an	LPS	stimulus	

in	macrophages	(Dai	et	al.	2021).	This	could	further	contribute	to	the	phenotypical	shift	 in	the	

TAMs	of	malignant	as	compared	to	benign	tumors.	As	iron-chelators,	metallothioneins	also	exert	

an	 anti-ferroptotic	 role	 by	 sequestering	 excessive	 iron	 (Sun	 et	 al.	 2016).	 Ferroptosis	 is	 an	

alternative	pathway	leading	to	cell	death	and	relies	mainly	on	the	oxidative	damage	caused	by	

iron	(Chen	et	al.	2015).	Since	I	have	observed	the	expression	of	ferroptosis-related	genes	within	

the	perinecrotic	regions	as	well,	the	increased	metallothionein	expression	could	be	the	result	of	

an	attempt	to	counteract	the	underlying	processes	causative	for	ferroptosis.	Previously,	NF2	loss	

has	been	shown	to	promote	ferroptosis	 in	meningioma	cells	(Bao	et	al.	2021).	The	same	study	

demonstrated	 that	 the	 induction	 of	 ferroptosis	 was	 thereby	 dependent	 on	 cell	 density.	

Considering	that	apoptotic	and	necrotic	markers	were	absent	in	perinecrotic	regions,	one	could	

hypothesize	that	ferroptosis	plays	an	important	role	in	causing	cell	death	in	the	tumor	center	with	

high	cell	density.	This	susceptibility	to	ferroptosis	could	be	leveraged	in	novel	therapy	approaches	
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by	triggering	ferroptotic	processes	in	meningioma.	However,	ferroptosis	as	well	as	the	possibility	

to	target	it	therapeutically	has	not	been	sufficiently	studied	in	meningioma	thus	far.	

	

4.7. PROGNOSTIC VALUE OF METHYLATION CLASSIFICATION SYSTEMS 

Despite	recent	advances	with	the	establishment	of	molecular	markers,	risk	prediction	remains	

difficult	in	many	cases	for	meningioma	patients.	Especially	for	NF2-mutated	cases	that	occur	at	

the	entire	bandwidth	of	WHO	grades	 for	meningioma,	 tumors	 that	 later	progress	or	 recur	are	

sometimes	initially	classified	as	WHO	grade	1.	A	more	accurate	risk	prediction	would	be	highly	

valuable	for	patients	and	selection	of	the	treatment	strategy.	Several	studies	have	attempted	to	

tackle	this	problem	by	introducing	molecular	classification	systems	based	on	the	epigenome	of	

the	tumors	(Sahm	et	al.	2017;	Nassiri,	Liu,	et	al.	2021;	Choudhury,	Magill,	et	al.	2022).	Two	of	these,	

the	 classification	 system	of	UCSF	 and	Toronto,	 share	 a	 subgroup	of	meningiomas	without	 the	

frequent	NF2	mutation.	 This	 is	 also	 reflected	 in	 the	MC	 ben-2	 of	 the	Heidelberg	 classification	

system,	which	usually	does	not	harbor	a	mutation	in	NF2	or	a	loss	of	chromosome	22q,	comprising	

the	NF2	 gene	 locus.	 Both	 the	 UCSF	 and	 the	 Toronto	 classification	 systems	 further	 harbor	 an	

immune-enriched	meningioma	subgroup.	Similarly,	I	have	found	the	Heidelberg	MC	ben-1	and	a	

subset	 of	 MC	 int-A	 here	 to	 display	 a	 high	 amount	 of	 immune	 infiltration,	 making	 up	 the	

counterpart	for	the	immune-enriched	subgroup.	I	confirmed	this	by	applying	the	UCSF	classifier	

to	the	dataset	here,	where	MC	ben-1	samples	and	a	subset	of	MC	int-A	samples,	consistently	those	

with	 high	 immune	 infiltration,	 typically	 were	 assigned	 to	 the	 immune-enriched	 subgroup.	

However,	 the	 deconvolution	 for	 the	 immune	 cells	 that	 I	 performed	 on	 the	 epigenomic	 data	

revealed	 not	 two	 distinct	 groups	 in	 the	 distribution	 of	 proportion	 of	 immune	 cells,	 but	 a	

continuum	in	immune	infiltration.	This	indicates	that	an	immune-enriched	subgroup	is	possibly	

not	that	clearly	to	be	separated.	Nevertheless,	it	reflects	the	beneficial	outcome	for	patients	with	

an	increased	immune	infiltration.	A	possible	way	to	implement	this	in	the	clinic	with	direct	impact	

for	 patients	would	 be	 to	 analyze	 the	 immune	 infiltration	 through	 immunohistochemistry	 and	

define	a	high	immune	infiltration	as	indicator	for	a	low	risk	of	progression.	The	by	far	more	cost	

and	time	intensive	molecular	profiling	would	then	only	have	to	be	performed	for	the	remaining	

cases.	However,	a	suitable	cutoff	would	have	to	be	defined	and	extensively	validated	in	further	

studies.	

Among	the	existing	methylation	classification	systems,	risk	stratification	with	the	UCSF	and	

the	Toronto	classifier	leads	to	comparable	results,	with	largely	overlapping	subgroups	between	

both	(Choudhury,	Chen,	et	al.	2022).	Parallels	can	also	be	observed	to	the	Heidelberg	classifier.	

However,	the	Heidelberg	classifier	comprises	additional	groups,	especially	two	intermediate	MCs	

with	no	immediate	counterpart	in	the	other	two	classification	systems.	Here,	I	demonstrated	that	
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the	 Heidelberg	 classifier	 allows	 for	 an	 improved	 risk	 stratification	 as	 compared	 to	 the	 UCSF	

classification	 system,	both	 if	 including	 the	 immune	 infiltration	 status	 and	 if	 not.	 In	both	 cases	

however	 the	 epigenomic	 classification	 was	 superior	 to	 the	 WHO	 grading,	 and	 for	 both	

classification	systems	including	the	immune	infiltration	status	improved	risk	stratification.	This	

was	especially	remarkable	for	the	UCSF	classifier,	as	this	classification	system	already	considers	

an	immune-enriched	subgroup.	

Altogether,	these	results	suggest	a	further	use	of	the	Heidelberg	methylation	classification	for	

risk	stratification	in	combination	with	the	evaluation	of	the	immune	infiltration.	How	the	immune	

status	 is	best	 integrated	will	have	to	be	validated	in	further	studies,	 ideally	with	a	prospective	

patient	cohort.	
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V.  CONCLUSION & FUTURE PERSPECTIVES 

5.1. CONCLUSION 

In	this	 thesis,	 I	have	conclusively	 investigated	the	 inter-	and	 intratumoral	heterogeneity	of	

tumor	 cell	 populations	 as	 well	 as	 of	 infiltrating	 immune	 cells	 with	 specific	 focus	 on	 tumor-

infiltrating	TAMs	 in	meningiomas.	 Thereby,	 I	 have	 identified	broad	 changes	 in	 the	 expression	

profiles	of	neoplastic	cells	between	tumor	subgroups,	which	are	partially	reflected	in	the	tumor’s	

histopathology.	 Furthermore,	 I	 have	 discovered	 six	 tumor	 cell	 subpopulations	 with	 distinct	

phenotypes	that	could	be	detected	across	samples,	with	varying	abundancies	depending	on	the	

tumor	 grade.	 Besides	 these	 differences	 in	 the	 tumor	 expression	 profiles,	 I	 have	 unveiled	

significant	differences	between	tumor	subgroups	with	respect	 to	 the	 infiltrating	 immune	cells,	

especially	infiltrating	TAMs,	in	terms	of	numbers	as	well	as	activation	status.	TAMs	were	thereby	

highly	abundant	in	the	low-grade	MC	ben-1	meningiomas,	but	only	present	at	small	numbers	in	

high-grade	MC	mal	meningiomas.	Their	activation	transitioned	from	an	anti-tumorigenic	status	in	

MC	 ben-1	 tumors	 to	 a	 pro-tumorigenic	 activation	 in	 MC	 mal	 tumors.	 Given	 this	 profound	

variability,	TAMs	seem	to	play	a	crucial	role	in	guiding	tumor	progression.	The	TAM	population	

could	thereby	influence	the	tumor	cells’	ability	to	progress,	while	the	tumor	cells	in	high-grade	

cases	at	the	same	time	might	shape	TAM	infiltration	as	well	as	their	activation	status	to	their	favor.	

Altogether,	the	immune	microenvironment	is	thereby	possibly	an	interesting	target	that	could	be	

leveraged	in	novel	therapy	approaches	in	meningioma.	

Furthermore,	 I	 have	 highlighted	 the	 coherence	 of	 epigenetic	 subgroups	 in	 meningiomas	

across	molecular	levels	as	well	as	their	importance	in	risk	stratification.	Despite	the	MCs	having	

been	defined	purely	based	on	the	tumor	epigenome,	these	subgroups	were	recapitulated	when	

jointly	grouping	according	to	the	transcriptome	and	proteome.	This	underlines	the	fact	that	the	

differences	on	the	regulatory	upstream	level	of	DNA	methylation	propagate	further	downstream	

to	transcriptional	and	translational	processes,	resulting	in	phenotypical	differences.	Epigenomic	

classification	for	meningiomas	has	gained	prognostic	value	and	has	been	included	in	the	recent	

2021	WHO	classification.	I	have	demonstrated	here	that	among	existing	methylation	classification	

systems,	the	Heidelberg	methylation	classifier	appears	to	be	superior.	However,	it	could	be	further	

refined	by	including	information	on	the	immune	status	for	risk	stratification,	as	patients	with	high	

immune	infiltration	have	a	significantly	improved	progression-free	survival.	Examination	of	the	

immune	 status	 could	 therefore	 easily	 be	 integrated	 during	 tumor	 grading	 to	 improve	 risk	

stratification	for	patients.	
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5.2. LIMITATIONS & FUTURE PERSPECTIVES 

Despite	the	relevant	conclusions	with	impact	on	risk	stratification	and	potential	therapeutic	

targets	 in	meningioma,	some	key	aspects	remain	topic	 for	 further	research	to	substantiate	the	

findings	of	this	thesis.	

Importantly,	although	distinct	tumor	cell	subpopulations	with	differing	phenotypes	have	been	

defined	which	can	be	present	simultaneously	within	the	same	tumor,	their	impact	on	the	tumor’s	

ability	to	progress	and	metastasize	still	has	to	be	elucidated.	First,	their	presence	will	have	to	be	

validated	 in	 another,	 independent	meningioma	dataset.	Then,	 a	potentially	bigger	 cohort	with	

information	on	progression-free	survival	of	patients	could	aid	the	stratification	of	the	risk	that	

each	of	the	subpopulation	carries	for	tumor	recurrence.	Ideally,	the	cohort	would	further	contain	

more	primary	and	recurrent	tumor	sample	pairs	from	the	same	patient,	so	that	the	abundance	of	

the	subpopulations	could	be	extensively	compared	before	and	after	tumor	recurrence.	

Furthermore,	 the	mechanisms	 of	 interaction	 between	 tumor	 cells	 and	TAMs	 remain	 to	 be	

elucidated.	While	I	have	demonstrated	the	differences	in	TAM	infiltration	and	activation	between	

tumor	 subgroups	 and	have	 identified	 the	CSF1/CSF1R	 ligand-receptor	 pair	 as	 possible	way	 of	

interaction	between	tumor	cells	and	TAMs,	the	exact	effects	that	TAMs	exert	on	tumor	cells	and	

vice	versa	still	need	to	be	investigated.	Further	insights	on	the	ongoing	regulatory	mechanisms	

would	then	also	allow	inferences	on	possibilities	to	leverage	the	involvement	on	TAMs	in	tumor	

progression	for	novel	therapy	approaches.	

While	 I	 have	 shown	 in	 detail	 how	 the	 immune	 infiltration	 positively	 correlates	 to	 the	

progression-free	survival,	I	have	not	drawn	final	conclusions	how	this	could	be	applied	in	a	clinical	

setting.	 In	 an	 immediate	 next	 step,	 the	 correspondence	 of	 the	 results	 from	my	 deconvolution	

approach	from	DNA	methylation	to	estimate	the	proportion	of	infiltrating	immune	cells	with	the	

quantification	 of	 infiltrating	 TAMs	 via	 immunohistochemistry	 would	 have	 to	 be	 established.	

Should	both	be	in	line	as	expected,	immunohistochemistry	could	be	applied	to	estimate	immune	

infiltration	and	render	the	more	time	and	cost	consuming	molecular	profiling	unnecessary	in	a	

subset	of	cases	that	were	thereby	assigned	a	low	risk	of	progression.	Ideally,	criteria	for	assigning	

tumors	to	a	subgroup	of	samples	with	high	immune	infiltration	based	on	immunohistochemistry	

would	 be	 defined	 in	 a	 retrospective	 cohort	 and	 its	 significant	 difference	 in	 patient	 outcome	

validated	in	a	prospective	cohort.	If	it	is	thereby	possible	to	define	criteria	to	assign	meningiomas	

a	low	risk	based	on	this,	this	could	possibly	make	molecular	profiling	unnecessary	for	these	cases.	

At	least	however,	it	would	greatly	aid	risk	stratification	for	patients.	
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SUPPLEMENTARY FIGURES 

	
Supplementary	Figure	1.	Similarity	network	fusion	graph	combining	transcriptomic,	proteomic,	and	phosphoproteomic	
data.	Nodes	represent	samples,	edges	indicate	similarity	between	samples.	Edge	widths	are	proportional	to	the	extent	of	
similarity.	

	

	
Supplementary	Figure	2.	CNV	profiles	as	estimated	from	single	cellular	expression	profiles	individually	for	each	MC.	Red	
color	indicates	chromosomal	gains,	blue	color	indicates	chromosomal	loss.	
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Supplementary	Figure	3.	Differentially	expressed	genes	between	the	neoplastic	cells	of	one	MC	versus	all	other	neoplastic	
cells.	Genes	with	a	higher	expression	in	the	respective	MC	have	a	positive	log2FC.	
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Supplementary	Figure	4.	Proportion	of	lymphocyte	subtypes	in	the	total	lymphocyte	population	of	each	WHO	grade	(left)	
and	MC	(right).	

	

	
Supplementary	Figure	5.	Cell	type	enrichment	scores	as	estimated	from	bulk	RNA-Seq	data	for	selected	infiltrating	non-
malignant	cell	types.	
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Supplementary	Figure	6.	a	H&E	staining	of	a	WHO	grade	3	and	MC	mal	meningioma	with	necrosis	and	perinecrotic	zones	
(arrows).	b	Spot-wise	enrichment	score	for	macrophages	as	inferred	from	scRNA-Seq	data	for	the	MC	mal	meningioma	
from	(a).	c	Spot-wise	enrichment	scores	for	metallothionein	expression.	d	Spot-wise	expression	of	four	ferroptotic	marker	
genes.	e,f	Spot-wise	enrichment	scores	for	necrotic	(left)	and	apoptotic	(right)	marker	genes	in	two	MC	mal	meningiomas	
with	histologically	visible	necrosis.	

	

	
Supplementary	Figure	7.	Progression	free	survival	of	patients	depending	on	the	number	of	infiltrating	immune	cells	split	
by	WHO	grades.	
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Supplementary	Figure	8.	Hazard	ratio	of	immune	infiltration	separated	by	WHO	grades.	

	

	

SUPPLEMENTARY TABLES 

Supplementary	Table	1.	Antibodies	and	dilutions	used	for	immunohistochemical	staining.	

Antibody	 Manufacturer	 Clone	 Catalogue	No.	 Pretreatment	 Dilution	 Incubation	

CD4	 Cell	Marque	 SP35	 104R-16	 CC2	(pH=6,0),	
56min	

1:50	 32min	

CD8	 Dako	 C8/144B	 M7103	 CC1	(pH=8,4),	
52min	

1:50	 32min	

CD68	 Dako	 PG-M1	 M0876	 CC1	(pH=8,4),	
36min	

1:20	 32min	

	

	

Supplementary	Table	2.	Meningiomas	that	were	included	in	the	scRNA-Seq	dataset.	n.a.	…	data	not	available.	

	 WHO	grade	 MC	 Sex	 Age	 Batch	 No.	of	cells	

MNG-1	 1	 ben-1	 f	 36	 batch	2	 11,164	

MNG-2	 1	 ben-1	 f	 41	 batch	2	 5,120	

Immune group

low

medium

high

(N=68)

(N=226)

(N=112)

2.5

3.1

reference

(0.92 − 7.0)

(1.30 − 7.3)

0.072

0.011 *

# Events: 53; Global p−value (Log−Rank): 0.014646
AIC: 517.92; Concordance Index: 0.59 1 2 5

Hazard Ratio: WHO grade 1

Immune group

low

medium

high

(N=84)

(N=151)

(N=79)

3.7

2.2

reference

(1.8 − 7.4)

(1.1 − 4.3)

<0.001 ***

0.025 *

# Events: 96; Global p−value (Log−Rank): 0.00026137
AIC: 915.22; Concordance Index: 0.59 2 3 4 5 6 7 8 9

Hazard Ratio: WHO grade 2

Immune group

low

medium

high

(N=51)

(N=24)

(N=12)

1.14

0.91

reference

(0.48 − 2.7)

(0.35 − 2.3)

0.771

0.837

# Events: 63; Global p−value (Log−Rank): 0.72725
AIC: 455.84; Concordance Index: 0.53 0.2 0.5 1 2

Hazard Ratio: WHO grade 3
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MNG-3	 1	 int-A	 f	 69	 batch	2	 16,980	

MNG-4	 1	 ben-2	 m	 54	 batch	2	 1,207	

MNG-5	 1	 ben-2	 f	 73	 batch	2	 9,756	

MNG-6	 1	 ben-2	 f	 75	 batch	2	 8,424	

MNG-7	 1	 ben-2	 f	 64	 batch	2	 9,878	

MNG-8	 1	 ben-3	 f	 65	 batch	2	 11,855	

MNG-9	 1	 mal	 f	 90	 batch	2	 14,251	

MNG-10	 3	 int-B	 m	 72	 batch	2	 5,358	

MNG-11	 3	 mal	 f	 67	 batch	2	 4,396	

MNG-12	 3	 int-A	 m	 64	 batch	2	 12,857	

MNG-13	 3	 mal	 f	 79	 batch	2	 6,123	

MNG-14	 3	 mal	 m	 68	 batch	2	 3,555	

MNG-15	 3	 int-A	 m	 78	 batch	2	 4,081	

MNG-16	 3	 mal	 f	 75	 batch	2	 17,094	

MNG-17	 3	 int-B	 f	 79	 batch	2	 13,428	

MNG-18	 3	 int-A	 f	 80	 batch	2	 18,928	

MNG-19	 1	 int-B	 m	 72	 batch	1	 4,292	

MNG-20	 3	 mal	 m	 78	 batch	1	 1,096	

MNG-21	 1	 ben-1	 f	 71	 batch	1	 2,314	

MNG-22	 1	 ben-3	 m	 43	 batch	2	 3,511	

MNG-23	 1	 ben-1	 f	 60	 batch	1	 1,034	

MNG-24	 1	 ben-2	 f	 68	 batch	2	 25,764	

MNG-25	 1	 ben-2	 f	 62	 batch	2	 5,043	

MNG-26	 1	 ben-3	 m	 72	 batch	2	 4,243	

MNG-27	 3	 mal	 m	 81	 batch	1	 181	

MNG-28	 2	 int-A	 f	 74	 batch	1	 1,135	

MNG-29	 1	 ben-2	 f	 78	 batch	1	 1,065	

MNG-30	 3	 mal	 f	 46	 batch	1	 3,017	

MNG-31	 1	 ben-2	 m	 65	 batch	1	 1,462	

MNG-32	 1	 ben-2	 f	 35	 batch	1	 896	

MNG-33	 2	 int-A	 f	 69	 batch	1	 318	

MNG-34	 3	 int-B	 f	 75	 batch	1	 317	

MNG-35	 1	 ben-1	 f	 47	 batch	1	 3,135	

MNG-36	 2	 int-A	 m	 55	 batch	1	 2,363	

MNG-37	 3	 mal	 m	 58	 batch	1	 972	
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MNG-38	 1	 ben-1	 f	 52	 batch	1	 2,924	

MNG-39	 3	 mal	 m	 75	 batch	1	 196	

MNG-40	 2	 mal	 f	 62	 batch	1	 4,881	

MNG-41	 2	 mal	 f	 62	 batch	1	 3,402	

MNG-42	 1	 ben-1	 f	 67	 batch	1	 229	

MNG-43	 1	 int-A	 n.a.	 n.a.	 batch	1	 3,762	

MNG-44	 1	 ben-1	 f	 63	 batch	1	 178	

MNG-45	 3	 mal	 f	 63	 batch	1	 442	

MNG-46	 1	 ben-1	 n.a.	 n.a.	 batch	1	 1,522	

MNG-47	 1	 int-A	 n.a.	 n.a.	 batch	1	 2,650	

MNG-48	 3	 mal	 f	 65	 batch	1	 484	
	

	
Supplementary	Table	3.	Meningiomas	included	in	the	spatial	transcriptomics	dataset.	n.a.	…	data	not	available.	

	 WHO	grade	 MC	 matching	SC	
sample	

spMG-1	 1	 ben-1	 MNG-1	

spMG-2	 1	 ben-1	 MNG-2	

spMG-3	 1	 int-A	 MNG-3	

spMG-4	 3	 mal	 MNG-37	

spMG-5	 1	 ben-2	 MNG-38	

spMG-6	 2	 mal	 MNG-41	

spMG-7	 3	 mal	 MNG-45	

spMG-8	 3	 mal	 –	

spMG-9	 3	 int-A	 	–	

spMG-10	 3	 mal	 –	

spMG-11	 3	 int-A	 –	

spMG-12	 3	 int-A	 –	

spMG-13	 3	 int-A	 –	

spMG-14	 3	 n.a.	 –	

spMG-15	 3	 mal	 –	

spMG-16	 3	 mal	 –	

spMG-17	 3	 mal	 –	
	


