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Abstract

In this thesis, estimation in regression and classification problems which include low dimensional

structures are considered. The underlying question is the following. How well do statistical learn-

ing methods perform for models with low dimensional structures? We approach this question

using various algorithms in various settings. For our first main contribution, we prove optimal

convergence rates in a classification setting using neural networks. While non-optimal rates ex-

isted for this problem, we are the first to prove optimal ones. Secondly, we introduce a new tree

based algorithm we named random planted forest. It adapts particularly well to models which

consist of low dimensional structures. We examine its performance in simulation studies and

include some theoretical backing by proving optimal convergence rates in certain settings for a

modification of the algorithm. Additionally, a generalized version of the algorithm is included,

which can be used in classification settings. In a further contribution, we prove optimal con-

vergence rates for the local linear smooth backfitting algorithm. While such rates have already

been established, we bring a new simpler perspective to the problem which leads to better un-

derstanding and easier interpretation. Additionally, given an estimator in a regression setting,

we propose a constraint which leads to a unique decomposition. This decomposition is useful for

visualising and interpreting the estimator, in particular if it consits of low dimenional structures.
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Zusammenfassung

In dieser Arbeit betrachten wir Regressions- sowie Klassifikationsprobleme die auf niedrigdi-

mensionalen Strukturen beruhen. Wir interessieren uns für folgende Frage. Wie gut schneiden

Methoden des statistischen Lernens in Modellen mit niedrigdimensionalen Strukturen ab? Um

an diese Frage heranzutreten, untersuchen wir verschiedene Algorithmen in unterschiedlichen

statistischen Modellen. Als erstes Hauptresultat zeigen wir optimale Konvergenzraten in einem

Klassifikationsmodell für einen Schätzer der auf Neuronalen Netzen basiert. Suboptimale Raten

existieren bereits für dieses Problem. Wir sind hingegen die ersten, die optimale Raten in

diesem Problem für einen Schätzer, der auf Neuronalen Netzen beruht, beweisen. Ein weit-

erer wesentlicher Beitrag besteht in der Einführung eines neuen Baum-basierten Alorithmus

den wir ”Random Planted Forest” getauft haben. Dieser ist insbesondere für Modelle, die aus

niedrigdimensionalen Strukturen bestehen, konzipiert. Wir evaluieren die Schätzungen, die der

Algorithmus hervorbringt, anhand von Simulationsstudien und schaffen eine theoretische Grund-

lage für eine leicht abgeänderte Version des Algorithmus. Wir geben auch eine verallgemeinerte

Version an, die unter anderem für Klassifikationsprobleme verwendet werden kann. In einem

zusätzlichen Resultat beweisen wir optimale Konvergenzraten für den ”local linear smooth back-

fitting” Schätzer. Solche Raten wurden für diesen Algorithmus bereits gezeigt. Wir betrachten

das Problem aus einer neuen Perspektive, die eine neue Interpretation des Schätzers zulässt

und die Beweise vereinfacht. Des weiteren geben wir für einen beliebigen Schätzer in einem

Regressionsproblem eine Bedingung an, durch die man eine eindeutige Zerlegung des Schätzers

erhält. Diese Zerlegung ist hilfreich um den Schätzer zu visualisieren und zu interpretieren,

insbesondere wenn niedrigdimensionale Strukturen vorherrschen.
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1 Introduction

In this thesis, we contribute to the theoretical literature considering statistical learning algo-

rithms in settings with high dimensional data with low dimensional structures. Additionally, we

introduce and elaborate on a novel algorithm called random planted forests which is particularly

efficient in such settings.

The interest in statistical learning theory has steadily increased in the last few decades. Due

to technical advancements, computational capabilities have led to researchers dealing with huge

data sets including high dimensional data. After defining a response variable, there are many

different approaches for estimation within such data sets. Most prevalent, artificial neural net-

works and tree based estimators such as gradient boosting [37] or random forests [13] have shown

to be particularly useful in practice. These algorithms are often referred to as black box methods

for the following two reasons. First of all, there is a lack of rigorous mathematical explanations

for why the methods are so successful. Second, resulting estimators are difficult to interpret and

visualize.

Finding theoretical explanations for the success of black box algorithms is a wide field of re-

search. Theoretically approaching them has turned out to be quite challenging. Among others,

[6, 94, 127] have contributed by establishing convergence rates as well as asymptotic normality

for modifications of the random forests algorithm. Similarly, [74] and [109] prove consistency

results for neural networks in specific settings. While these findings have had considerable im-

pact in the statistical literature, they do not use the respective algorithms which are commonly

applied in practice. In both cases, this is due to technical issues which arise from non-standard

ways in which the algorithms unfold and use the input data. In the case of neural networks,

additional complications come from the fact that there are many variants and many hyperpa-

rameters involved. The approach from researchers to tackle these problems is as follows. One

begins by proving results for a oversimplified version of the algorithms in a simple statistical

setting. Iteratively, using former insights, one implements new ideas to prove theorems which

correspond to more complicated settings using algorithms which resemble the ones used in prac-

tice more accurately. Using this strategy, one hopes to achieve the goal of truly proving or

disproving the efficiency of the algorithms in question.

After estimating a function with an algorithm, many practitioners consider interpreting and

visualising their findings. For estimators resulting from algorithms such as random forests and

neural networks, it is not straight forward how to do so. In the literature, there have been some

ideas. Considering neural networks [85] suggest a method pointing out the most relevant fea-

tures for a decision made by the estimator. Similarly, variable importance measures are highly

used for random forests, see [13, 47, 118]. Other methods include partial dependence plots [37]
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1 Introduction

and so called shapley values [111] which are motivated from game theory.

In this thesis, we consider models based on low dimensional structures, which are described in

more detail in Section 1.1. These circumvent the curse of dimensionality. Additionally, if a

model is based on structures of a maximum dimension of two, the results can be visualised and

described by partial dependence plots. We are interested in the following question. How well

do statistical learning methods perform for models with low dimensional structures? Our main

contributions include the following.

• First of all, in Chapter 3 we prove optimal convergence rates up to a log term in a classifi-

cation setting using neural networks. One of the main driving factors for the convergence

rates we obtain are the assumptions on the boundaries of sets we consider for approxima-

tion. We point out that the main theorem (Theorem 3.3.4) is applicable to classes of sets

with other types of boundaries, which can lead to other convergence rates. Additionally,

we provide new insights on a specific statistical setting regarding an assumption sometimes

referred to as the Tsybakov noise condition. These insights can be useful independent of

the usage of neural networks.

• Secondly, in Chapter 4 we introduce a new tree based algorithm which we named random

planted forests. It is designed to adapt particularly well to data which can be described

mainly by low dimensional structures. In particular, the resulting estimator satisfies the

low dimensionality condition (BI) from Section 1.1 if specified beforehand. Thus, the

results are easily visualisable if we specify that the model is based on at most two di-

mensional structures. In simulation studies, we show that the algorithm performs well

in regression as well as classification settings using artificial as well as real world data.

Additionally, we prove optimal convergence rates for certain settings for a simplified ver-

sion of the algorithm. We conjecture that these convergence rates also hold for the true

algorithm.

Additional contributions include the following.

• In Chapter 2 we establish a new proof for optimal convergence rates for local linear smooth

backfitting. It provides a new interpretation of the algorithm as a projection of the data

onto a linear space. Additionally, it simplifies the arguments necessary significantly.

• Lastly, in Chapter 5 we introduce a marginal constraint which leads to a unique decom-

position of a given estimator. The decomposition allows for simple calculation of partial

dependence plots and provides a global interpretation of the function. While it is known

as Harsanyi dividend in game theory and as Möbius inverse in combinatorics, we bring

a new perspective to the decomposition and suggest using it in practice for interpreting

results from low dimensional structures. In particular, we implemented an open source

efficient algorithm for xgboost and random planted forest.

In the remainder of the introduction, we specify what we consider to be low dimensional struc-

tures by introducing a bounded interaction (BI) assumption. Additionally, we introduce some

algorithms which are central to our work and provide a short outline of this thesis.

14



1.1 Bounded Interaction Models

1.1 Bounded Interaction Models

We are handed i.i.d. data (Xi, Yi)
n
i=1 with Xi ∈ D ⊆ Rd, Yi ∈ R and

Yi = m(Xi) + εi,

with E[εi |Xi] = 0 and m : D → R. The goal is to find an estimator m̂ which converges to m in

some sense. In order to do so, we set some conditions for m. A typical approach is to impose

smoothness assumptions such as Hölder continuity with smoothness parameter β on m. Under

some moment conditions for ϵ, it is known that the optimal convergence rate with respect to the

L2-norm is n
− β

2β+d [116]. This rate suffers from the so called curse of dimensionality, meaning

the rate decreases exponentially for large input dimension d. There have been many suggestions

for conditions on m which enable rates of convergence which do not depend on d. One approach

is to impose a sparsity constraint. The idea is that the function m does not depend on all

input coordinates xi with i ∈ {1, . . . , d} but only on a small (unknown) subset with indices in

S ⊆ {1, . . . , d} with q := |S| << d. This assumption is used for example in parametric models

such as linear regression, where LASSO [124] and RIDGE [58] estimates are common approaches

to the problem. In this thesis, we focus on settings where m satisfies the bounded interaction

(BI) assumption.

Assumption (BI) The regression function m is of the form

m(x) =
∑

S⊆{1,...,d}, |S|≤q

mS(xS), (1.1.1)

where q ∈ {1, . . . , d} is the maximum order of interaction and mS : R|S| → R are functions.

Thus, we assume that a maximum of q coordinates may interact in m. Note that given m

the right hand side of (1.1.1) is not unique. Assumption (BI) is a generalisation of the sparsity

assumption. Instead of saying m may only depend on all coordinates with indices in a subset

S ⊆ {1, . . . , d} with |S| = q, we say that m can be a sum of such functions. In this thesis,

we consider a variety of estimators and various variations of the (BI) assumption. While we

consider additive models in Chapter 2 which corresponds to (BI) with q = 1, we consider higher

order interactions (q > 1) in Chapter 5 as well as Chapter 4. Furthermore, we also work with

classification settings in this thesis. There, we impose (BI) indirectly. In Chapter 3, we approach

a binary classification setup (Y ∈ {0, 1}) by directly estimating the set

G∗ =
{
x ∈ D

∣∣∣ P(Y = 1|X = x) ≥ 1

2

}
instead of the function m. Intuitively, we assume that the boarder ∂G∗ acts like a function

satisfying a generalisation of (BI). Lastly, in Section 4.6, we simply assume there is a link

15



1 Introduction

function σ such that

P(Y = 1|X = x) = σ(m(x))

and m satisfies (BI).

1.2 Algorithms

As discussed above, in non-parametric setups many different algorithms are considered for the-

oretical approaches as well as in practice. In this section, we describe three different algorithm

classes which are used in this thesis. In Subsection 1.2.1 we introduce backfitting algorithms

which are used mostly in additive models, i.e. if (BI) holds with q = 1. Later, we provide

new insights on proving optimal convergence rates for a specific method called the local linear

smooth backfitting estimator. Neural networks are considered in Subsection 1.2.2. The first of

two major contributions of this thesis is proving optimal convergence rates in a classification

setting where neural networks are used. Lastly, the other main contribution of this thesis is the

introduction of random planted forests. This is a novel tree based estimation procedure. The

basics of tree based algorithms are described in Subsection 1.2.3.

1.2.1 Backfitting

Backfitting was introduced in [15] for additive models. Theoretical results and variants followed

in [87, 99, 100], among others. A generalisation is given in [134], where the true function to

be estimated may include a link function to an additive model instead of being additive itself.

Backfitting algorithms have shown to approximate additive functions well, even in high dimen-

sions. Additionally, in contrast to e.g. random forests or neural networks, they typically provide

estimators which are additive themselves, which allows for easy visualisation and interpretation.

We begin by describing the structure of a backfitting algorithm. Let F be a class of functions

f : R→ R and let

f̂ : R2n → F

be an estimator. We assume (BI) holds for q = 1 and thus

m(x) =

p∑
k=1

mk(xk),

where we omit the term m∅. We then use the procedure given in Algorithm 1. The intuition why

this estimator provides reasonable results is as follows, which is motivated by Section A.4 in [9].

Let H be a Hilbert space and H1, . . . ,Hs ⊆ H be subspaces of H. Define H+ := H1 + · · ·+Hs

and let P+, P1, . . . , Ps be the orthogonal projection operators onto H+, H1, . . . ,Hs respectively.

Define an initial value h ∈ H. Regarding Algorithm 1, h typically corresponds to the data Y

and H1, . . . ,Hs are function spaces which include the one dimensional functions mk. Thus, H+

includes m. Assume f̂((Xik, Yi)
n
i=1) corresponds to the projection operator Pk. A template of

16



1.2 Algorithms

Algorithm 1 Template Backfitting Algorithm

1: Input: (Xi, Yi)
n
i=1

2: Start: m̂k ≡ 0, error =∞ ▷ k = 1, . . . , s
3: while error > tolerance do
4: error ← 0
5: for k = 1, . . . , s do
6: m̂old

k ← m̂k

7: R̂i ← Yi −
∑

j ̸=k m̂j(Xij)

8: m̂i ← f̂((Xik, Ri)
n
i=1)

9: error ← error + d(m̂k, m̂
old
k )

10: return m̂ =
∑s

j=1 m̂j

the rewritten algorithm is given in Algorithm 2. Under certain assumptions, the backfitting

algorithm approximates the orthogonal projection P+(h) using only the projections P1, . . . , Ps.

To see this, note that in the first step, we obtain ĥ1 = P1(h). We have ĥ2 = P2(h−P1(h)). Now,

note that h − P1(h) is the orthogonal projection onto H⊥
1 . Next, ĥ3 = P3(h − P1(h) − P2(h −

P1(h))) holds. Observe that h−P1(h)−P2(h−P1(h)) is the projection h−P1(h) onto H
⊥
2 . By

iteratively following these steps, we can see that in every iteration the algorithm projects the

previous result onto H⊥
k for some k = 1, . . . , s. One can now show that h−

∑
j ̸=k ĥj converges

to the orthogonal Projection of h onto H⊥
1 + · · · + H⊥

s . The assertion then follows by noting

that (H⊥
1 + · · ·+H⊥

s )⊥ = H+, if H+ is a closed subset of H.

Algorithm 2 Template Backfitting Algorithm

1: Start: h ∈ H, ĥk ≡ 0, error =∞ ▷ k = 1, . . . , s
2: while error > tolerance do
3: error ← 0
4: for k = 1, . . . , s do
5: ĥoldk ← ĥk
6: ĥk ← Pk(h−

∑
j ̸=k ĥj)

7: error ← error + |ĥk − ĥoldk |
8: return ĥ =

∑s
j=1 ĥj

Advantages of backfitting are the following

• Given f̂ , the algorithm is simple to explain and to implement.

• For additive models, the algorithm shows promising results.

• For many cases the algorithm has theoretical backing, meaning convergence results exist

for the true algorithm implemented.

Problems with backfitting include the following:

• Backfitting algorithms are typically not applicable if (BI) is not satisfied for q = 1, but for

q > 1.
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• The algorithms do not adapt well to sparsity.

We use a variant of the backfitting algorithm in Chapter 2. Additionally, the theoretical results

in Chapter 4 use ideas relating to backfitting.

1.2.2 Neural Networks

Artificial neural networks have shown astonishing results in various fields, which include disease

detection [70, 79], speech recognition [57] and image recognition [40] among many others. While

simulations suggest that neural networks outperform other algorithms in high dimensional set-

tings, theoretical backing is lacking due to many technical complications as well as the variety

of neural networks used for different tasks.

In this thesis, we consider feedforward deep neural networks and leave out the word ”feedfor-

ward” when referring to them. These networks have been studied theoretically for a long time.

They were first brought up in [93]. Universal approximation theorems where found in [29] and

[61]. In order to find convergence rates, one typically requires more sophisticated approximation

results, which specify the structures of neural networks required to approach certain classes of

functions. The paper [104] establishes such results for classes we are interested in. Using similar

findings, [74, 109] provide convergence rates for different statistical settings using different types

of neural networks. Note that the results obtained in these papers do not include networks

which are typically used in practice. Among others, the results above where improved upon in

[75] which use slightly more natural constraints. We are interested in providing similar results

in a different setting. This subsection is used to shortly define neural networks. We use the

definition and explanation below from [96].

Definition 1.2.1. Let L, z0, . . . , zL+1 ∈ N. For i = 1, . . . , L, let σi be a function

σi : R→ R.

For b = (b1, . . . , bzi) ∈ Rzi, define a shifted zi-dimensional version of σi by

σi,b : Rzi → Rzi , σi,b(y1, . . . , yzi) =
(
σi(y1 − b1), . . . , σi(yzi − bzi)

)
.

A neural network with network architecture

(
L, (z0, . . . , zL+1), (σ1, . . . , σL)

)
is a sequence

Φ :=
(
W1, b1, . . . ,WL, bL,WL+1

)
where each Ws ∈ Rzs×zs−1 is a weight matrix and bs ∈ Rzs is a shift vector. The realization of

a neural network Φ on a set D ⊆ Rz0 is the function

R(Φ) : D → RzL+1 , R(Φ)(x) =WL+1σL,bLWL · · ·W2σ1,b1W1x.
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Figure 1.1: Illustration of a neural network with L = 2 hidden Layers. It represents a function
f : R3 → R.

We denote by

NL,z,σ :=
{
R(Φ) | Φ =

(
W1, b1, . . . ,WL+1, bL+1

)
, Ws ∈ Rzs×zs−1 , bs ∈ Rzs

}
a set of realizations of neural networks where z := (z0, . . . , zL+1) ∈ NL+2 and σ := (σ1, . . . , σL).

We call (L, z, σ) the network architecture.

Typically, for i = 1, . . . , L the function σi is called activation function and σi,b is named

shifted activation function. The constant L denotes the number of hidden Layers. The values

d := z0 and zL+1 are the input and output dimensions, respectively. The dimensions zi are

referred to as number of neurons in the i-th layer. For the sake of completeness, we note

that a network with L=0 layers is of the form Φ := (W ) for W ∈ Rz0×z1 and has realization

R(Φ)(x) = Wx. Note that, in general, the weights of a neural network Φ, i.e. the entries of

its shift vectors (b1, . . . , bL+1) and weight matrices (W1, . . . ,WL+1) are not uniquely determined

by its realization R(Φ). In the following, for brevity, we occasionally introduce a network by

defining its realization. In such a case, it is clear from the presentation of the realization which

precise neural network is considered. Figure 1.2.2 contains a typical illustration of a neural

network. It can be interpreted as follows.

• Each node corresponds to a so called neuron of the neural network.

• The left most column corresponds to the input, the right to the output. Here, the input

is 3 dimensional and the output 1 dimensional.

• The columns in the middle correspond to the hidden Layers. Here, we have 2 hidden

Layers. The first has z1 = 4, the second z2 = 2 neurons.

• The arrows correspond to the weight matrices Wi. If there is no arrow between to neurons

of adjacent columns, the corresponding weight is zero. Here e.g. W1 ∈ R4×3 has 5 non-zero

weights.
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In order to use neural networks for statistical analysis, one typically defines an estimator m̂ of

the regression function m by an ”approximation” of

arg min
f∈N ′

V (f(X), Y ), (1.2.1)

where N ′ ⊆ NLn,zn,σ for sequences Ln, zn and V is some loss function. This procedure has two

main challenges.

• First of all, it is not clear how to define the sequences Ln, zn as well as which additional

conditions to impose on N ′. As discussed above, practical approaches differ substantially

from theoretical ones, which include sparsity constraints as well as bounding or discretizing

the weights among others.

• For most choices of classes of neural networks N ′ and loss functions V , the term (1.2.1)

cannot be reliably calculated since V (f(X), Y ) is highly non-convex in its parameters,

which are typically very high dimensional. Thus, many different minimization algorithms

are used to approximate the minimum such as gradient descent. However, it is not clear

in which form these algorithms truly approximate this minimum or if they do something

different such as getting stuck in local minima, see e.g. [30, 114, 121].

In Chapter 3 we define an estimator which is in the form (1.2.1). There, we do not discuss the

problem of finding the minimum but assume it is given. Thus, our results are entirely theory

based. Advantages of using neural networks for satistical problems are the following.

• They have provided extrodenary results in practice.

• They have a wide range of application.

Problems with neural networks include the following.

• Many different types of neural networks are used, such that a lot of fine tuning is required.

• For the algorithms used in practice, theoretical backing is lacking.

• The results are often hard to interpret.

1.2.3 Tree Based Algorithms

Tree based algorithms were popularised during the 1980s. On the one hand, there popularity

comes from the fact, that the construction of a tree is usually very intuitive and easy to under-

stand. On the other hand, algorithms such as gradient boosting [37] and random forests [13]

have provided useful results in many research areas, such as genomic data analysis [22], network

intrusion detection [68] and word recognition [62]. A tree in a tree based algorithm is typically

of the form

m̂(x) =

p∑
j=1

aj1(x ∈ Ij), (1.2.2)

20



1.2 Algorithms

x < 0.63

x < 0.38 x < 0.84

0.32
100%

0.085
66%

0.01
43%

0.22
23%

0.78
34%

0.63
22%

1
12%

yes no

Figure 1.2: Illustration of a decision tree. Each node corresponds to a set. The root at the
top corresponds to the set I0 = D = [0, 1]. The daughter cells of a node I form
a partition of I obtained by splitting it at some point c. For example, the bottom
left node corresponds to the set I21 = [0, 0.38]. The one next to it corresponds to
I22 = (0.38, 0.63].

where aj ∈ R and Ij ⊆ Rd. The name ”tree” comes from the idea, that the sets Ij are

constructed by an iterative procedure, which can be visualized by a graph theoretical tree with

a specified root node, see Figure 1.2 for an example. Algorithms differ in how the sets Ij and the

values aj are constructed. We explain the decision tree algorithm used in e.g. random forests

as well as gradient boosting as it is the most common example. Here, the Ij are hypercubes

which form a partition of the domain D of m. Define I01 = D. In step s, we go through a list of

all sets Is−1
1 , . . . Is−1

2s−1 and obtain a list Is1 , . . . Is2s as follows. Given Is−1
j we define a coordinate

k ∈ {1, . . . , d} as well as a split point c ∈ R in order to set

Is2j−1 = {x ∈ Is−1
j | xk ≤ c}, Is2j = {x ∈ Is−1

j | xj > c}.

This procedure is illustrated in Figure 1.2. The root node at the top corresponds to I01 = D.

Each row of nodes corresponds to a partition of D. Here, s = 2 and Is1 , . . . , I
s
2s are represented

by the nodes in the bottom row. The values as2j−1 and as2j are given by

as2j−1 =

∑
Xi∈Is2j−1

Yi∑
Xi∈Is2j−1

1
, as2j =

∑
Xi∈Is2j

Yi∑
Xi∈Is2j

1
.

Figure 1.3 shows the development of the estimator corresponding to Figure 1.2. Observe that

the number of subsets in the partition correspond to the number of nodes in the bottom row.
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Figure 1.3: Resulting estimator m̂ of the tree algorithm which is represented in Figure 1.2.

The coordinate j and split point c are chosen by the so called CART criteria

(k, c) ∈ arg min
k′,c′

∑
Xi∈Is

2j−1

(as2j−1 − Yi)2 +
∑

Xi∈Is
2j

(as2j − Yi)2, (1.2.3)

where Is2j−1, Is2j , a2j−1, a2j on the left hand side are constructed from Is−1
j using k′, c′. There

are many different conditions used for stopping the iteration. For simplicity, we just stay it

stops after S ∈ N steps where S is given beforehand. Pseudo-code of this procedure is given

in Algorithm 3. To complete a tree based algorithm, many different extensions are possible.

Algorithm 3 CART Decision Tree

1: Input (Y1, X1), . . . , (Yn, Xn)
2: I1 = D; p = 1
3: for s = 1, . . . , S do
4: for j = p, . . . , 1 do
5: Calculate k, c by (1.2.3)
6: I2j−1 = {x ∈ Ij | xk ≤ c}; I2j = {x ∈ Ij | xj > c}
7: for j = 1, . . . , p do

8: a2j−1 =

∑
Xi∈I2j−1

Yi∑
Xi∈I2j−1

1 ; a2j =

∑
Xi∈I2j

Yi∑
Xi∈I2j

1

9: Output m̂(·) =
∑p

j=1 aj1(· ∈ Ij)

For example, the random forest algorithm [13] creates B bootstrap samples and creates an

estimator m̂b with a CART decision tree with some minor adjustments on each of these samples

b = 1, . . . , B. The resulting estimator is given by m̂(x) = 1
B

∑B
b=1 m̂

b. The gradient boosting

algorithm [37] creates B estimators m̂b based on small trees (S is small) which are created by

replacing Yi with the current residual Ri = Yi −
∑b0−1

b=1 m̂b(Xi) for the tree with index b0. The

resulting estimator is given by m̂(x) =
∑B

b=1 m̂
b(x).

While the algorithms are popular for their intuitive explanation, theoretically some technical
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problems arise. We shortly explain a challenge in proving convergence rates as well as asymptotic

normality for random forests, since it comes up in our analysis of random planted forests as well.

The difficulty mentioned comes from the fact that the data is used for the creation of the leaves

as well as the estimator given in each of the leaves at the end. This double use of data creates

technical problems, which are not easy to circumvent. In [6, 94, 127], stylized versions of the

forest algorithm in which the leaves are created without using the values Yi of the data are used.

In [127] an alternative procedure is suggested, in which one splits the data into two sets. One set

is used to determine the leaves of a tree, the other is used to calculate the estimator. Recently,

[24] was able to show consistency for the original random forests algorithm from [13]. Their

analysis is complicated and the convergence rates are slow, but very interesting nonetheless.

Generally, advantages of tree based algorithms are the following

• Trees are easy to implement and intuitive to explain.

• Tree based algorithms are widely applied in practice due to promising results in many

areas.

Disadvantages include the following.

• For the algorithms used in practice, theoretical backing is lacking.

An additional disadvantage of most tree based algorithms is that they do not provide an esti-

mator which satisfies (BI), even in the case where (BI) is satisfied. In Chapter 4 we describe a

novel algorithm called random planted forests which is specifically designed to approximate low

dimensional structures. By pre-defining q in (BI), the resulting estimator does in fact satisfy

the assumption. Additionally, while the decomposition method introduced in Chapter 5 is the-

oretically applicable to any estimation procedure, it is particularly effective when the estimator

to be decomposed comes from a tree based method which satisfies (BI) for small q. It has been

implemented for xgboost [20] as well as random planted forests. It works well for these methods

since it involves calculating many integrals which is particularly simple for estimators of the

form (1.2.2).

1.3 Outline

We first introduce two novel theoretical results on topics regarding low dimensional structures.

The first given in Chapter 2 shows optimal convergence rates in a regression setting for a

backfitting algorithm when the underlying model is an additive model, i.e. (BI) is satisfied

for q = 1. It follows the paper [55]. In Chapter 3, a classification setup is considered which is

characterised by a restraint sometimes referred to as the Tsybakov noise condition. We show that

almost optimal convergence rates can be achieved using deep neural networks. The intuition

behind the approximation is to directly approximate optimal sets instead of approximating

the corresponding regression function. A generalisation of (BI) is imposed on functions which

represent a partition of the boundary of such optimal sets. The chapter follows the paper
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[96]. In Chapter 4, we introduce a new algorithm named random planted forest. It is a tree

based algorithm which adapts well to models with a low degree of interaction. In particular, in

contrast to the usual random forest algorithm introduced in [13], one can specify the degree q

beforehand. The resulting function then satisfies (BI) for q. The chapter follows the paper [54]

and includes research on a generalisation of random planted forest which will be published in

the future. Lastly, in Chapter 5, we provide a closed form representation for interaction terms

of a function m which make the interaction terms in (BI) identifiable. For tree based procedures

such as random forests [13], xgboost [20] and random planted forest introduced in Chapter 4, we

can construct particularly simple algorithms to calculate these closed form representations. The

algorithms are fast when the degree of interaction of m is low, which can be the case for xgboost

as well as random planted forest. Additional remarks to further enhance the understanding of

the projects are given in Chapter 6. We collected all proofs not included in the main text in

Chapter 7 and some simulation results in Chapter 8.
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2 Local Linear Smoothing in Additive Models

as Data Projection

This chapter follows the paper [55]. We included some slight modifications in order to embed it

into this thesis.

We discuss local linear smooth backfitting for additive nonparametric models. This procedure

is well known for achieving optimal convergence rates under appropriate smoothness conditions.

In particular, it allows for the estimation of each component of an additive model with the

same asymptotic accuracy as if the other components were known. The asymptotic discussion

of local linear smooth backfitting is rather complex because typically an overwhelming notation

is required for a detailed discussion. We interpret the local linear smooth backfitting estimator

as a projection of the data onto a linear space with a suitably chosen semi-norm. This approach

simplifies both the mathematical discussion as well as the intuitive understanding of properties

of this version of smooth backfitting.

2.1 Introduction

We consider local linear smoothing in an additive model

E[Yi|Xi] = m0 +m1(Xi1) + · · ·+md(Xid), (2.1.1)

where (Yi, Xi) (i = 1, . . . , n) are i.i.d. observations with values in R×X for a bounded connected

open subset X ⊆ Rd. Here, mj (j = 1, . . . , d) are some smooth functions which we aim to

estimate and m0 ∈ R. Below, we add norming conditions on m0, . . . ,md such that they are

uniquely defined given the sum. In [87] a local linear smooth backfitting estimator based on

smoothing kernels was proposed for the additive functions mj . There, it was shown that their

version of a local linear estimator m̂j of the function mj has the same pointwise asymptotic

variance and bias as a classical local linear estimator in the oracle model, where one observes

i.i.d. observations (Y ∗
i , Xij) with

E[Y ∗
i |Xij ] = mj(Xij), Y ∗

i = Yi −
∑
k ̸=j

mk(Xik).

In this respect the local linear estimator differs from other smoothing methods where the asymp-

totic bias of the estimator of the function mj depends on the shape of the functions mk for

k ̸= j. An example for an estimator with this disadvantageous bias property is the local
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constant smooth backfitting estimator which is based on a backfitting implementation of one-

dimensional Nadaraya-Watson estimators. It is also the case for other smoothing estimators as

regression splines, smoothing splines and orthogonal series estimators, where in addition also

no closed form expression for the asymptotic bias is available. Asymptotic properties of local

linear smoothing simplify the choice of bandwidths as well as the statistical interpretation of the

estimators m̂j . These aspects have made local linear smooth backfitting a preferred choice for

estimation in additive models. Deriving asymptotic theory for local linear smooth backfitting is

typically complicated by an overloaded notation that is required for detailed proofs. We use that

the local linear smooth backfitting estimator has a nice geometric interpretation. This simplifies

mathematical arguments and allows for a more intuitive derivation of asymptotic properties. In

particular, we see that the estimator can be characterized as a solution of an empirical integral

equation of the second kind as is the case for local constant smooth backfitting, see [92].

Our main point is that the local linear estimator can be seen as an orthogonal projection of the

response vector Y = (Y )i=1,...,n onto a subspace of a suitably chosen linear space. A similar

point of view is taken in [86] for a related construction where it was also shown that regression

splines, smoothing splines and orthogonal series estimators can be interpreted as projection of

the data in an appropriately chosen Hilbert space. Whereas this interpretation is rather straight

forward for these classes of estimators it is not immediately clear that it also applies for kernel

smoothing and local polynomial smoothing, see [86]. We introduce a new and simple view of

local linear smoothing as data projection. In the next section we define the required spaces

together with a corresponding semi-norm. We also introduce a new algorithm motivated by

our interpretation of local linear smooth backfitting. The algorithm is discussed in Section 2.3.

In Section 2.4 we see that our geometric point of view allows for simplified arguments for the

asymptotic study of properties of the local linear smooth backfitting estimator.

The additive model (2.1.1) was first introduced in [38] and enjoys great popularity for two main

reasons. The first is estimation performance. While not being as restrictive as a linear model,

in contrast to a fully flexible model, it is not subject to the curse of dimensionality. Assuming

that E[Yi|Xi = x] is twice continuously differentiable, the optimal rate of convergence of an

estimator of E[Yi|Xi = x] is n−2/(d+4) if no further structural assumptions are made, see [116].

This means the rate deteriorates exponentially in the dimension of the covariates d. Under

the additive model assumption (2.1.1) and assuming that each function mj , j = 1, . . . , d is

twice continuously differentiable, the optimal rate of convergence is n−2/5. The second reason

is interpretability. In many applications it is desirable to understand the relationship between

predictors and the response. Even if the goal is prediction only, understanding this relation-

ship may help detect systematic biases in the estimator, so that out of sample performance can

be improved or adjusted for. While it is almost impossible to grasp the global structure of a

multivariate function m in general, the additive structure (2.1.1) allows for visualisation of each

of the univariate functions, providing a comprehensible connection between predictors and the

response.

Though the setting considered here is fairly simple, it can be seen as a baseline for more compli-

cated settings. One main drawback is the additive structure which cannot account for interac-
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tions between covariates. It is assuring however that even if the true model is not additive, the

smooth backfitting estimator is still defined as the closest additive approximation. This is shown

in the next section. If the true regression function is far away from an additive structure, then

a more complex structure may be preferable. This could be done by adding higher-dimensional

covariates, products of univariate functions or considering a generalized additive model. For

testing procedures that compare such specifications, see also [48, 90]. Besides such structural

assumptions, other directions the ideas developed here can be extended to are time-series data

or high dimensional settings. Settings using more complicated responses like survival times,

densities or other functional data may also be approached. Some of these cases have been con-

sidered, e.g., in [43, 45, 46, 53, 67, 88, 89, 90, 92, 134]. We hope that a better understanding of

local linear estimation in this simple setting will help advance theory and methodology for more

complicated settings in the future.

2.2 Local Linear Smoothing in Additive Models

The local linear smooth backfitting estimator

m̂ = (m̂0, m̂1, . . . , m̂d, m̂
(1)
1 , . . . , m̂

(1)
d )

is defined as the minimizer of the criterion

S(f0, . . . , fd, f
(1)
1 , . . . , f

(1)
d )

= n−1
n∑

i=1

∫
X

Yi − f0 −
d∑

j=1

fj(xj)−
d∑

j=1

f
(1)
j (xj)(Xij − xj)


2

×KXi
h (Xi − x)dx

under the constraint

n∑
i=1

∫
X
fj(xj)K

Xi
h (Xi − x)dx = 0 (2.2.1)

for j = 1, . . . , d. The minimization runs over all values f0 ∈ R and all functions fj , f
(1)
j : Xj → R

with Xj = {u ∈ R : there exists an x ∈ X with xj = u}. Under the constraint (2.2.1) and some

conditions introduced in Section 2.3, the minimizer is unique. For j = 1, . . . , d the local linear

estimator of mj is defined by m̂j .

In the definition of S the function Ku
h (·) is a boundary corrected product kernel, i.e.,

Ku
h (u− x) =

∏d
j=1 κ

(
uj−xj

hj

)
∫
X
∏d

j=1 κ
(
uj−vj
hj

)
dvj

.

Here, h = (h1, . . . , hd) is a bandwidth vector with h1, . . . , hd > 0 and κ : R → R is some given
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univariate density function, i.e., κ(t) ≥ 0 and
∫
κ(t)dt = 1. We use the variable u twice in the

notation because away from the boundary of X , the kernel Ku
h (u− x) only depends on u− x.

It is worth emphasizing that the empirical minimization criterion S depends on a choice of a

kernel κ and a smoothing bandwidth h. While the choice of κ is not of great importance, see

e.g. Section 3.3.2. in [112], the quality of estimation heavily depends on an appropriate choice

of the smoothing parameter h. We do not discuss the choice of a (data-driven) bandwidth,

but note that the asymptotic properties of the local linear smoothing estimator do simplify the

choice of bandwidths compared to other estimators. The reason is that the asymptotic bias

of one additive component does not depend on the shape of the other components and on the

bandwidths used for the other components.

We now argue that the local linear smooth backfitting estimator can be interpreted as an em-

pirical projection of the data onto a space of additive functions. We introduce the linear space

H =
{
(f i,j)i=1,...,n; j=0,...,d| f i,j : X 7→ R, ∥f∥n <∞

}
with inner product

⟨f, g⟩n = n−1
n∑

i=1

∫
X

f i,0(x) +
d∑

j=1

f i,j(x)(Xij − xj)


×

{
gi,0(x) +

d∑
k=1

gi,k(x)(Xij − xj)

}
KXi

h (Xi − x)dx

and norm ∥f∥n =
√
⟨f, f⟩n. We identify the response Y = (Yi)i=1,...,n as an element of H via

Y i,0 ≡ Yi and Y
i,j ≡ 0 for j ≥ 1. We later assume that the functions mj are differentiable. We

identify the regression function

m : X → R, m(x) = m0 +m1(x1) + · · ·+md(xd)

as an element of H via mi,0(x) = m0+
∑

j mj(xj) and m
i,j = ∂mj(xj)/∂xj for j ≥ 1. Note that

the components of m ∈ H do not depend on i. We define the following subspaces of H:

Hfull = {f ∈ H| the components of f do not depend on i} ,

Hadd =
{
f ∈ Hfull| f i,0(x) = f0 + f1(x1) + · · ·+ fd(xd), f

i,j(x) = f
(1)
j (xj)

for some f0 ∈ R and some univariate functions fj , f
(1)
j : Xj → R,

j = 1, . . . , d with

n∑
i=1

∫
X
fj(xj)K

Xi
h (Xi − x)dx = 0

}
.

For a function f ∈ Hadd we write f0 ∈ R and fj , f
(1)
j : Xj → R for j = 1, . . . , d for the constant

and functions that define f . In the next section we state conditions under which the constant

f0 and functions fj , f
(1)
j are unique given any f ∈ Hadd. By a slight abuse of notation we also

write fj for the element of H given by f i,0(x) = fj(xj) and f
i,k(x) ≡ 0 for k = 1, . . . , d. We also
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2.2 Local Linear Smoothing in Additive Models

write f
(1)
j for the element of H with f i,k(x) ≡ 0 for k ̸= j and f i,j(x) = f

(1)
j (xj). Furthermore,

we define fj+d := f
(1)
j for j = 1, . . . , d for both interpretations. Thus, for f ∈ Hadd we have

f = f0 + · · ·+ f2d. (2.2.2)

Recall that the linear smooth backfitting estimator

m̂ = (m̂0, m̂1, . . . , m̂d, m̂
(1)
1 , . . . , m̂

(1)
d )

is defined as the minimizer of the criterion S under the constraint (2.2.1). By setting m̂i,0(x) =

m̂0 +
∑d

j=1 m̂j(xj) and m
i,j(x) = m̂

(1)
j (xj) for j ≥ 1 it can easily be seen that

m̂ = argmin
f∈Hadd

∥Y − f∥n. (2.2.3)

In the next section we state conditions under which the minimization has a unique solution.

Equation (2.2.3) provides a geometric interpretation of local linear smooth backfitting. The

local linear smooth backfitting estimator is an orthogonal projection of the response vector Y

onto the linear subspace Hadd ⊆ H. We make repeated use of this fact in this Chapter.

We now introduce the following subspaces of H:

H0 =
{
f ∈ H|f i,0(x) ≡ c for some c ∈ R, f i,j(x) ≡ 0 for j ̸= 0

}
,

Hk =
{
f ∈ H| f i,j(x) ≡ 0 for j ̸= 0, and f i,0(x) = fk(xk) for some

function fk : Xk → R with
n∑

i=1

∫
X
fk(xk)K

Xi
h (Xi − x)dx = 0

}
,

Hk′ =
{
f ∈ H| f i,j(x) ≡ 0 for j ̸= k, f i,k(x) = f

(1)
k (xk) for some

function f
(1)
k : Xk → R

}
for k = 1, . . . , d and k′ := k+d. Using these definitions we have Hadd =

∑2d
j=0Hj with Hj∩Hk =

{0}, j ̸= k. In particular, the functions fj in (2.2.2) are unique elements in Hj , j = 0, . . . , 2d. For

k = 0, . . . , 2d we denote the orthogonal projection of H onto the space Hk by Pk. Note that for

k = 0, . . . , d the operators Pk set all components of an element f = (f i,j)i=1,...,n; j=0,...,d ∈ H to

zero except the components with indices (i, 0), i = 1, . . . , n. Furthermore, for k = d+ 1, . . . , 2d,

only components with index (i, k − d) are not set to zero. Because H0 is orthogonal to Hk for

k = 1, . . . , d, the orthogonal projection onto the space Hk is given by Pk = Pk −P0 where Pk is

the projection onto H0 +Hk. In Subsection 7.1.1 we state explicit formulas for the orthogonal

projection operators.

The operators Pk can be used to define an iterative algorithm for the approximation of m̂. For

an explanation observe that m̂ is the projection of Y onto Hadd and Hk is a linear subspace of
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2 Local Linear Smoothing

Hadd. Thus Pk(Y ) = Pk(m̂) holds for k = 0, . . . , 2d. This gives

Pk(Y ) = Pk(m̂) = Pk

 2d∑
j=0

m̂j

 = m̂k + Pk

∑
j ̸=k

m̂j

 (2.2.4)

or, equivalently,

m̂k = Pk(Y )−
∑
j ̸=k

Pk(m̂j) = Pk(Y )− Ȳ −
∑
j ̸=k

Pk(m̂j),

where Ȳ = P0(Y ) = P0(Y ) is the element of H with (Ȳ )i,0 ≡ 1
n

∑n
i=1 Y

i, (Ȳ )i,j ≡ 0 for j ≥ 1.

This equation hyperrectanglenspires an iterative algorithm where in each step approximations

m̂old
k of m̂k are updated by

m̂new
k = Pk(Y )− Ȳ −

∑
j ̸=k

Pk(m̂old
j ).

Algorithm 4 provides a compact definition of our algorithm for the approximation of m̂. In

Algorithm 4 Smooth Backfitting Algorithm

1: Start: m̂k(xk) ≡ 0, m̃k = Pk(Y ), error =∞ ▷ k = 0, . . . , 2d
2: while error > tolerance do
3: error ← 0
4: for k = 0, . . . , 2d do
5: m̂old

k ← m̂k

6: m̂k ← m̃k −
∑

j ̸=k Pk(m̂j)

7: error ← error + |m̂k − m̂old
k |

8: return m̂ = (m̂0, m̂1, . . . , m̂2d)

each iteration step, either m̂j or m̂
(1)
j is updated for some j = 1, . . . , d. This is different from

the algorithm proposed in [87] where in each step a function tuple (m̂j , m̂
(1)
j ) is updated. For

the orthogonal projections of functions m ∈ Hadd one can use simplified formulas. They are

given in Subsection 7.1.1. Note that m̃k, k = 0, . . . , 2d only needs to be calculated once at the

beginning. Also the marginals pk(xk), p
∗
k(xk), p

∗∗
k (xk), pjk(xj , xk), p

∗
jk(xj , xk) and p∗∗jk(xj , xk)

which are needed in the evaluation of Pk only need to be calculated once at the beginning.

Precise definitions of these marginals can be found in the following sections. In each iteration

of the for-loop in line 4 of Algorithm 4, O(d× n× gs) calculations are performed. Hence for a

full cycle, the algorithm needs O(d2 × n× gs× log(1/tolerance)) calculations. Here grid.size is

the number of evaluation points for each coordinate xk.

Existence and uniqueness of the local linear smooth backfitting estimator are discussed in the

next section. Additionally, convergence of the proposed iterative algorithm is shown.
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2.3 Existence and Uniqueness of the Estimator, Convergence of the

Algorithm

In this section we establish conditions for existence and uniqueness of the local linear smooth

backfitting estimator m̂. Afterwards we discuss convergence of the iterative algorithm provided

in Algorithm 4. Note that convergence is shown for arbitrary starting values, i.e., we can set

m̂k(xk) to values other than zero in step 1 of Algorithm 4. For these statements we require the

following weak condition on the kernel.

(A1) The kernel k has support [−1, 1]. Furthermore, k is strictly positive on (−1, 1) and con-

tinuous on R.

For k = 1, . . . , d and x ∈ Rd we write

x−k := (x1, . . . , xk−1, xk+1, . . . , xd).

In the following, we show that our claims hold on the following event:

E =

{
For k = 1, . . . , d and xk ∈ X k there exist i1, i2 ∈ {1, . . . , n}

such that Xi1,k ̸= Xi2,k , |Xi,k − xk| < hk, (xk, Xi,−k) ∈ X for i = i1, i2.

There exist no b0, . . . , bd ∈ R with b0 +
d∑

j=1

bjXij = 0 ∀i = 1, . . . , n

}
,

where X k is the closure of Xk and by a slight abuse of notation

(xk, Xi,−k) := (Xi,1, . . . , , Xi,k−1, xk, Xi,k+1, . . . , , Xi,d).

We require the following definitions.

p̂k(xk) =
1

n

n∑
i=1

∫
X−k(xk)

KXi
h (Xi − x)dx−k,

p̂∗k(xk) =
1

n

n∑
i=1

∫
X−k(xk)

(Xik − xk)KXi
h (Xi − x)dx−k,

p̂∗∗k (xk) =
1

n

n∑
i=1

∫
X−k(xk)

(Xik − xk)2KXi
h (Xi − x)dx−k,

where X−k(xk) = {u−k | (xk, u−k) ∈ X}.

Lemma 2.3.1. Make Assumption (A1). Then, on the event E it holds that ∥f∥n = 0 implies

f0 = 0 as well as fj ≡ 0 almost everywhere for j = 1 . . . 2d and all f ∈ Hadd.

One can easily see that the lemma implies the following. On the event E , if a minimizer

m̂ = m̂0 + · · · + m̂2d of ∥Y − f∥n over f ∈ Hadd exists, the components m̂0, . . . , m̂2d are
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2 Local Linear Smoothing

Figure 2.1: An example of a possible data set X ⊆ R2 including data points where the conditions
of the event E are not satisfied and where the components of functions f ∈ Hadd

are not identified. The data is visualized by blue dots. The size of the parameter
h = h1 = h2 is showcased on the right hand side. For explanatory reasons, the
interval a is included.

uniquely determined: Suppose there exists another minimizer m̃ ∈ Hadd. Then it holds that

⟨Y − m̂, m̂− m̃⟩n = 0 and ⟨Y − m̃, m̂− m̃⟩n = 0 which gives ∥m̂− m̃∥n = 0. An application of

the lemma yields uniqueness of the components m̂0, . . . , m̂2d.

Remark 2.3.2. In Figure 2.1 we give an example where a set X and data points Xi do not

belong to the event E and where the components of the function f ∈ Hadd are not identified.

Note that in this example for all k = 1, 2 and xk ∈ Xk there exist i1, i2 ∈ {1, . . . , n} such that

Xi1 ̸= Xi2 and |Xi,k − xk| < h, for i = i1, i2. However, for x1 ∈ a the condition (x1, Xi,2) ∈ X
is not fulfilled for any i = 1, . . . , n with |Xi,1 − x1| < h. Therefore, KXi

h (Xi − x) = 0 for all

x ∈ X with x1 ∈ a. Thus, any function satisfying f ∈ H1 with f1(x) = 0 for x ∈ X1\{a} has

the property ∥f∥n = 0.

Proof of Lemma 2.3.1. First, for each pair i1, i2 = 1, . . . , n define the set

Mi1,i2 := {x1 ∈ X1 | |Xi,1 − x1| < h, (x1, Xi,−1) ∈ X for i = i1, i2}

if Xi1,1 ̸= Xi2,1 and Mi1,i2 = ∅ otherwise. It is easy to see that Mi1,i2 is open as an intersection

of open sets. Note that on the event E we have⋃
i1,i2

Mi1,i2 = X1. (2.3.1)

Now, suppose that for some f ∈ Hadd we have ∥f∥n = 0. We want to show that f0 = 0 and that

fj ≡ 0 for j = 1, . . . , 2d. From ∥f∥n = 0 we obtain

{
f0 +

d∑
j=1

fj(xj) +
d∑

j=1

fj′(xj)(Xij − xj)
}2

KXi
h (Xi − x) = 0
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for i = 1, . . . , n and almost all x ∈ X . Let i1, i2 ∈ {1, . . . , n}. Then

f0 + f1(x1) +
d∑

j=2

fj(Xij) + fd+1(x1)(Xi1 − x1) = 0 (2.3.2)

holds for all i = i1, i2 and x1 ∈ Mi1,i2 almost surely. By subtraction of Equation (2.3.2) for

i = i1 and i = i2 we receive

fd+1(x1) = v1

with constant v1 = −
∑d

j=2(fj(Xi1,j) − fj(Xi2,j))/(Xi1,1 −Xi2,1) for x1 ∈ Mi1,i2 . Furthermore,

by using (2.3.2) once again we obtain

f1(x1) = u1 + v1x1

with another constant u1 ∈ R. Following (2.3.1), since X1 is connected and the sets Mi1,i2 are

open we can conclude

fd+1(x1) = v1 and f1(x1) = u1 + v1x1

for almost all x1 ∈ X1 since the sets must overlap. Similarly one shows

fj′(xj) = vj and fj(xj) = uj + vjxj

for j = 2, . . . , d and almost all xj ∈ Xj . We conclude that

0 = ∥f∥2n

=
1

n

∫ n∑
i=1

{
f0 +

d∑
j=1

fj(xj) +

d∑
j=1

fj′(xj)(Xij − xj)
}2

KXi
h (Xi − x)dx

=
1

n

∫ n∑
i=1

{
f0 +

d∑
j=1

uj +

d∑
j=1

vjXij

}2

KXi
h (Xi − x)dx

=

{
f0 +

d∑
j=1

uj +

d∑
j=1

vjXij

}2

.

On the event E the covariates Xi do not lie in a linear subspace of Rd. This shows vj = 0 for

1 ≤ j ≤ d. Thus fj ≡ 0 for d+ 1 ≤ j ≤ 2d and fj = uj for 1 ≤ j ≤ d.

Now,
∫
fj(xj)p̂j(xj)dxj = 0 implies that fj ≡ 0 for 1 ≤ j ≤ d and f0 = 0. This concludes the

proof of the lemma.

Existence and uniqueness of m̂ on the event E under Assumption (A1) follows immediately

from the following lemma.

Lemma 2.3.3. Make Assumption (A1). Then, on the event E, for every D ⊆ {0, . . . , 2d} the

linear space
∑

k∈DHk is a closed subset of H. In particular, Hadd is closed.
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2 Local Linear Smoothing

For the proof of this lemma we make use of some propositions introduced below. In the

following, we consider sums L = L1 + L2 of closed subspaces L1 and L2 of a Hilbert space with

L1 ∩ L2 = {0}. In this setup, an element g ∈ L has a unique decomposition g = g1 + g2 with

g1 ∈ L1 and g2 ∈ L2. Thus, the projection operator from L onto L1 along L2 given by

Π1(L2) : L→ L1, Π1(L2)(g) = g1

is well defined.

Proposition 2.3.4. For the sum L = L1 + L2 of two closed subspaces L1 and L2 of a Hilbert

space with L1 ∩ L2 = {0}, the following conditions are equivalent

(i) L is closed.

(ii) There exists a constant c > 0 such that for every g = g1+g2 ∈ L with g1 ∈ L1 and g2 ∈ L2

we have

∥g∥ ≥ cmax{∥g1∥, ∥g2∥}. (2.3.3)

(iii) The projection operator Π1(L2) from L onto L1 along L2 is bounded.

(iv) The gap from L1 to L2 is greater than zero, i.e.,

γ(L1, L2) := inf
g1∈L1

dist(g1, L2)

∥g1∥
> 0,

where dist(f, V ) := infh∈V ∥f − h∥ with the convention 0/0 = 1.

Remark 2.3.5. A version of Proposition 2.3.4 is also true if L1 ∩ L2 ̸= {0}. In this case, the

quantities involved need to be identified as objects in the quotient space L/(L1 ∩ L2).

Proposition 2.3.6. The sum L = L1+L2 of two closed subspaces L1 and L2 of a Hilbert space

with L1 ∩ L2 = {0} is closed if the orthogonal projection of L2 on L1 is compact.

The proofs of Propositions 2.3.4 and 2.3.6 can be reconstructed from A.4 Proposition 2 in

[9], Chapter 4 Theorem 4.2 in [69] and [72]. For completeness, we have added proofs of the

propositions in Subsection 7.1.2. We now come to the proof of Lemma 2.3.3.

Proof of Lemma 2.3.3. First note that the spaces Hk are closed for k = 0, . . . , 2d. We show that

Hk +Hk′ is closed for 1 ≤ k ≤ d. Consider R = minM where

M := {r ≥ 0 | (p̂∗k(xk))2 ≤ rp̂k(xk)p̂∗∗k (xk) for all xk ∈ X k and 1 ≤ k ≤ d}

and

Ixk
:=

{
i ∈ {1, . . . , n}

∣∣∣∣ ∫
u∈X−k(xk)

KXi
h (Xi − u)du−k > 0

}
for xk ∈ X k. By the Cauchy-Schwarz inequality we have

(p̂∗k(xk))
2 ≤ p̂k(xk)p̂∗∗k (xk)
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for xk ∈ X k and 1 ≤ k ≤ d. This implies R ≤ 1 . Now, equality in the inequality only holds if

Xik−xk does not depend on i ∈ Ixk
. On the event E for xk ∈ X k there exist 1 ≤ i1, i2 ≤ n with

|xk − Xi,k| < h for i = i1, i2 and Xi1,k ̸= Xi2,k. Thus, Xik − xk depends on i for i ∈ Ixk
and

the strict inequality holds for all xk. Furthermore, because the kernel function k is continuous,

we have that p̂k, p̂
∗
k and p̂∗∗k are continuous. Thogether with the compactness of X k this implies

that R < 1 on the event E . Now let f ∈ Hk and g ∈ Hk′ for some 1 ≤ k ≤ d. We show

∥f + g∥2n ≥ (1−R)(∥f∥2n + ∥g∥2n). (2.3.4)

By application of Proposition 2.3.4 this immediately implies that Hk+Hk′ is closed. For a proof

of (2.3.4) note that

∥f + g∥2n

= n−1
n∑

i=1

(fk(xk) + g0 + (Xik − xk)gk′(xk))2KXi
h (Xi − x)dx

=

∫
(fk(xk) + g0)

2p̂k(xk)dxk + 2

∫
(fk(xk) + g0)gk′(xk)p̂

∗
k(xk)dxk

+

∫
gk′(xk)

2p̂∗∗k (xk)dxk

≥
∫
(fk(xk) + g0)

2p̂k(xk)dxk +

∫
gk′(xk)

2p̂∗∗k (xk)dxk

−2R
∫
|fk(xk) + g0||gk′(xk)|(p̂k(xk)p̂∗∗k (xk))

1/2dxk

and thus

∥f + g∥2n

≥
∫

(fk(xk) + g0)
2p̂k(xk)dxk +

∫
gk′(xk)

2p̂∗∗k (xk)dxk

−2R
(∫

(fk(xk) + g0)
2p̂k(xk)dxk

)1/2(∫
gk′(xk)

2p̂∗∗k (xk)dxk

)1/2

≥ (1−R)
∫
(fk(xk) + g0)

2p̂k(xk)dxk + (1−R)
∫
gk′(xk)

2p̂∗∗k (xk)dxk

= (1−R)
(∫

fk(xk)
2p̂k(xk)dxk + g20 +

∫
gk′(xk)

2p̂∗∗k (xk)dxk

)
≥ (1−R)(∥f∥2n + ∥g∥2n),

where in the second to last row, we used that f ∈ Hk. This concludes the proof of (2.3.4). Note

that the statement of the lemma is equivalent to the following statement: ForD1, D2 ⊆ {1, . . . , d}
and δ ∈ {0, 1} the space δH0+

∑
k∈D1

Hk +
∑

k∈D2
Hk′ is closed. We show this inductively over

the number of elements s = |D2 ∩D1| of D1 ∩D2.

For the case s = 0, note that for D1 ∩ D2 = ∅, the space δH0 +
∑

k∈D1
Hk +

∑
k∈D2

Hk′

is closed, which can be shown with similar but simpler arguments than the ones used below.
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Now let s ≥ 1, δ ∈ {0, 1}, D1, D2 ⊆ {1, . . . , d} with |D2 ∩ D1| = s − 1 and assume L2 =

δH0+
∑

j∈D1
Hj +

∑
j∈D2

Hj′ is closed. Without loss of generality, let k ∈ {1, . . . , d}\(D1∪D2).

We argue that on the event E the orthogonal projection of L2 on L1 = Hk + Hk′ is Hilbert-

Schmidt, noting that a Hilbert-Schmidt operator is compact. Using Proposition 2.3.6 since L1

and L2 are closed, this implies that L = δH0 +
∑

j∈D1∪{k}Hj +
∑

j∈D2∪{k}Hj′ is closed which

completes the inductive argument.

For an element f ∈ L2 with decomposition f = f0 +
∑

j∈D1
fj +

∑
j∈D2

fj′ the projection onto

L1 +H0 is given by univariate functions gk, gk′ and g0 ∈ R which satisfy

0 =

n∑
i=1

∫ (
f0 +

∑
j∈D1

fj(xj) +
∑
j∈D2

fj′(xj)(Xij − xj)−g0 − gk(xk)

−gk′(xk)(Xik − xk)
)(

1

Xik − xk

)
KXi(Xi − x)dx−k.

Note that f0 = 0 if δ = 0. This implies(
g0+gk(xk)

gk′(xk)

)
=

1

(p̂kp̂
∗∗
k − (p̂∗k)

2)(xk)

(
p̂∗∗k −p̂∗k
−p̂∗k p̂k

)
(xk)

×
{
f0

(
p̂k

p̂∗k

)
(xk) +

∑
j∈D1

∫
fj(xj)

(
p̂jk(xj , xk)

p̂∗kj(xk, xj)

)
dxj

+
∑
j∈D2

∫
fj′(xj)

(
p̂∗jk(xj , xk)

p̂∗∗jk(xj , xk)

)
dxj

}
,

where gk and g0 are chosen such that
∫
gk(xk)p̂k(xk)dxk = 0. We now use that the projection

of g0 onto L1 = Hk +Hk′ is equal to(
rk(xk)

rk′(xk)

)
=

(
g0(1− cksk(xk)p̂∗∗k (xk))

g0cksk(xk)p̂
∗
k(xk)

)
,

where sk(xk) = p̂k(xk)/(p̂k(xk)p̂
∗∗
k (xk) − (p̂∗k)

2(xk)) and ck = (
∫
sk(xk)p̂

∗∗
k (xk) p̂k(xk)dxk)

−1.

Thus, the projection of f onto L1 is defined by (gk(xk) + rk(xk), gk′(xk) + rk′(xk))
⊺. Under our

settings on the event E this is a Hilbert-Schmidt operator. This concludes the proof.

We now come to a short discussion of the convergence of Algorithm 4. The algorithm is

used to approximate m̂. In the lemma we denote by m̂[r] the outcome of the algorithm after r

iterations of the while loop (see Algorithm 4).

We prove the algorithm for arbitrary starting values, i.e. we can set the m̂k(xk) to values other

than zero in step 1 of Algorithm 4. The vector of starting values of the algorithm is denoted by

m̂[0] ∈ Hadd.

Lemma 2.3.7. Make Assumption (A1). Then, on the event E, for Algorithm 4 and all choices
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of starting values m̂[0] ∈ Hadd we have

∥m̂[r] − m̂∥n ≤ V r∥m̂[0] − m̂∥n,

where 0 ≤ V = 1−
∏2d−1

k=0 γ2(Hk,Hk+1 + · · ·+H2d) < 1 is a random variable depending on the

observations.

Remark 2.3.8. On the event E, the algorithm converges with a geometric rate where in every

iteration step the distance to the limiting value, m̂, is reduced by a factor smaller or equal to V .

If the columns of the design matrix X are orthogonal, V is close to zero and if they are highly

correlated, V is close to 1. The variable V depends on n and is random. Under additional

assumptions, as stated in the next section, one can show that with probability tending to one, V

is bounded by a constant smaller than 1.

Proof of Lemma 2.3.7. For a subspace V ⊆ Hadd we denote by PV the orthogonal projection

onto V. For k = 0, . . . , 2d let Qk := PH⊥
k

= 1 − Pk be the projection onto the orthogonal

complement H⊥
k of Hk. The idea is to show the following statements.

(i) Y − m̂[r] = (Q2d . . .Q0)
r(Y − m̂[0]),

(ii) (Q2d . . .Q0)
r(Y − m̂) = Y − m̂,

This then implies

∥m̂[r] − m̂∥n = ∥m̂[r] − Y + Y − m̂∥n = ∥(Q2d . . .Q0)
r(m̂[0] − m̂)∥n.

The proof is concluded by showing

∥Q2d . . .Q0g∥2n ≤
(
1−

2d−1∏
k=0

γ2(Hk,Hk+1 + · · ·+H2d)

)
∥g∥2n (2.3.5)

for all g ∈ Hadd. Note that 0 ≤ V := 1−
∏2d−1

k=0 γ2(Hk,Hk+1 + · · ·+H2d) < 1 by Lemma 2.3.3

and Proposition 2.3.4.

For (i), observe that for all r ≥ 1 and k = 0, . . . , 2d we have

Y − m̂[r−1]
0 − · · · − m̂[r−1]

k−1 − m̂
[r]
k − · · · − m̂

[r]
2d

= (1− Pk)(Y − m̂
[r−1]
0 − · · · − m̂[r−1]

k−1 − m̂
[r]
k+1 − · · · − m̂

[r]
2d)

= (1− Pk)(Y − m̂
[r−1]
0 − · · · − m̂[r−1]

k−1 − m̂
[r−1]
k − m̂[r]

k+1 − · · · − m̂
[r]
2d)

= Qk(Y − m̂
[r−1]
0 − · · · − m̂[r−1]

k − m̂[r]
k+1 − · · · − m̂

[r]
2d).

The statement follows inductively by beginning with the case r = 1, k = 0. Secondly, (ii) follows

from

Qr . . .Q0(Y − m̂) = Qr . . .Q0PH⊥
0 ∩···∩H⊥

2d
(Y ) = PH⊥

0 ∩···∩H⊥
2d
(Y ) = Y − m̂.
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2 Local Linear Smoothing

It remains to show the inequality in (2.3.5).

For 0 ≤ k ≤ 2d defineNk := Hk+· · ·+H2d. We prove ∥Q2d . . .Qjg∥2n ≤ (1−
∏2d−1

k=j γ2(Hk,Hk+1+

· · ·+H2d))∥g∥2n for all g ∈ Hadd and 0 ≤ j ≤ 2d using an inductive argument.

The case j = 2d is trivial. For 0 ≤ j < 2d and any g ∈ Hadd let g⊥j := Qjg = g′ + g′′ with

g′ := PN⊥
j+1

(g) and g′′ := PNj+1(g). Then, by orthogonality, we have

∥Q2d . . .Qj+1g
⊥
j ∥2n = ∥g′ +Q2d . . .Qj+1g

′′∥2n = ∥g′∥2n + ∥Q2d . . .Qj+1g
′′∥2n.

Induction gives

∥Q2d . . .Qj+1g
′′∥2n ≤

(
1−

2d−1∏
k=j+1

γ2(Hk,Hk+1 + · · ·+H2d)

)
(∥g⊥j ∥2n − ∥g′∥2n)

which implies

∥Q2d . . .Qj+1g
⊥
j ∥2n ≤

(
1−

2d−1∏
k=j+1

γ2(Hk,Hk+1 + · · ·+H2d)

)
∥g⊥j ∥2n

+

2d−1∏
k=j+1

γ2(Hk,Hk+1 + · · ·+H2d)∥g′∥2n.

By Lemma 2.3.3 and Lemma 7.1.1 we have

∥g′∥2n ≤ ∥PN⊥
j+1
Q1∥2n = ∥PNj+1PHj∥2n = 1− γ2(Hj ,Hj+1 + · · ·+H2d).

This concludes the proof by noting that ∥g⊥j ∥n ≤ ∥g∥n.

2.4 Asymptotic Properties of the Estimator

In this section we discuss asymptotic properties of the local linear smooth backfitting estimator.

For simplicity we consider only the case that X is a product of intervals Xj = (aj , bj) ⊂ R. We

make the following additional assumptions:

(A2) The observations (Yi, Xi) are i.i.d. and the covariates Xi have one-dimansional marginal

densities pj which are strictly positive on [ak, bk]. The two-dimensional marginal densities

pjk of (Xi,j , Xi,k) are continuous on their support [aj , bj ]× [ak, bk].

(A3) It holds

Yi = m0 +m1(Xi1) + · · ·+md(Xid) + εi, (2.4.1)

for twice continuously differentiable functions mj : Xj → R with
∫
mj(xj) pj(xj)dxj = 0.

The error variables εi satisfy E[εi|Xi] = 0 and

sup
x∈X

E[|εi|5/2|Xi = x] <∞.
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2.4 Asymptotic Properties of the Estimator

(A4) There exist constants c1, . . . , cd > 0 with n1/5hj → cj for n→∞. To simplify notation we

assume that h1 = · · · = hd. In abuse of notation we write h for hj and ch for cj .

From now on we write m̂n = (m̂n
0 , m̂

n
1 , . . . , m̂

n
2d) for the estimator m̂ to indicate its dependence

on the sample size n. The following theorem states an asymptotic expansion for the components

m̂n
1 , . . . , m̂

n
d . Later in this section we state some lemmas which are used to prove the result.

Theorem 2.4.1. Make assumptions (A1) ,. . . , (A4). Then∣∣∣∣m̂n
j (xj)−mj(xj)−

(
βj(xj)−

∫
βj(uj)pj(uj)duj

)
− vj(xj)

∣∣∣∣
= oP (h

2 + {nh}−1/2) = oP (n
−2/5),

holds uniformly over 1 ≤ j ≤ d and aj ≤ xj ≤ bj, where vj is a stochastic variance term

vj(xj) =
1
n

∑n
i=1 h

−1k(h−1(Xij − xj))εi
1
n

∑n
i=1 h

−1k(h−1(Xij − xj))
= Op({nh}−1/2)

and βj is a deterministic bias term

βj(xj) =
1

2
h2m

′′
j (xj)

bj,2(xj)
2 − bj,1(xj)bj,3(xj)

bj,0(xj)bj,2(xj)− bj,1(xj)2
= O(h2),

with bj,l(xj) =
∫
Xj
k(h−1(uj − xj))(uj − xj)

lh−l−1bj(uj)
−1duj and bj(xj) =

∫
Xj
k(h−1(xj −

wj))h
−1dwj for 0 ≤ l ≤ 2.

The expansion for m̂n
j stated in the theorem neither depends on d nor on functionsmk (k ̸= j).

In particular, this shows that the same expansion holds for the local linear estimator m̃n
j in the

oracle model where the functions mk (k ̸= j) are known. More precisely, in the oracle model

one observes i.i.d. observations (Y ∗
i , Xij) with

Y ∗
i = mj(Xij) + εi, Y ∗

i = Yi −
∑
k ̸=j

mk(Xik), (2.4.2)

and the local linear estimator m̃n
j is defined as the second component that minimises the criterion

S̃(f0, fj , f
(1)
j ) =

n∑
i=1

∫
X

{
Y ∗
i − f0 − fj(xj)− f

(1)
j (xj)(Xij − xj)

}2

×κXij

h (Xij − x)dxj

with boundary corrected kernel

kuh(u− x) =
κ
(
u−x
h

)∫
Xj
κ
(
u−v
h

)
dv
.

We conclude that the local linear smooth backfitting estimator m̂j is asymptotically equivalent

to the local linear estimator m̃n
j in the oracle model. We formulate this asymptotic equivalence
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2 Local Linear Smoothing

as a first corollary of Theorem 2.4.1. In particular, it implies that the estimators have the same

first order asymptotic properties.

Corollary 2.4.2. Make assumptions (A1) ,. . . , (A4). Then it holds uniformly over 1 ≤ k ≤ d
and aj ≤ xj ≤ bj that ∣∣∣∣m̂n

j (xj)− m̃n
j (xj)

∣∣∣∣ = oP (h
2).

For xj ∈ (aj + 2h, bj − 2h) the bias term βj simplifies and we have that

βj(xj) = h2
1

2
m

′′
j (xj)

∫
k(v)v2dv.

This implies the following corollary of Theorem 2.4.1.

Corollary 2.4.3. Make assumptions (A1) ,. . . , (A4). Then it holds uniformly over 1 ≤ k ≤ d
and aj + 2h ≤ xj ≤ bj − 2h that∣∣∣∣m̂n

j (xj)−mj(xj)−
1

2

(
m

′′
j (xj)−

∫
m

′′
j (uj)pj(uj)duj

)
h2
∫
k(v)v2dv

−vj(xj)
∣∣∣∣ = oP (h

2).

Corollary 2.4.3 can be used to derive the asymptotic distribution of m̂n
j (xj) for an xj ∈ (aj , bj).

Under the additional assumption that σ2j (u) = E[ε2i |Xij = u] is continuous in u = xj we get

under (A1),. . . , (A4) that n2/5(m̂n
j (xj) − mj(xj)) has an asymptotic normal distibution with

mean

ch
1

2

(
m

′′
j (xj)−

∫
m

′′
j (uj)pj(uj)duj

)∫
k(v)v2dv

and variance

c−1
h σ2j (xj)p

−1
j (xj)

∫
k(v)2dv.

This is equal to the asymptotic limit distribution of the classical local linear estimator in the

oracle model in accordance with Corollary 2.4.2. Now, we come to the proof of Theorem 2.4.1.

First, we define the operator Sn = (Sn,0,Sn,1, . . . ,Sn,2d) : Gn → Gn with

Gn = {(g0, . . . , g2d)|g0 ∈ R, gl, gl′ ∈ L2(pl) with P0(gl) = 0 for l = 1, . . . , d},

where Sn,k maps g = (g0, . . . , g2d) ∈ Gn to fk with

f0 = P0

 ∑
1≤l≤2d

gl

 = P0

 ∑
d+1≤l≤2d

gl

 ∈ R,

fk(xk) = Pk

 ∑
0≤l≤2d,l ̸=k

gl

 (x),
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2.4 Asymptotic Properties of the Estimator

for 1 ≤ k ≤ 2d. With this notation we can rewrite the backfitting equation (2.2.4) as

m̄n(Y ) = m̂n + Snm̂n, (2.4.3)

where for z ∈ Rn we define m̄n
0 (z) = z̄ = 1

n

∑n
i=1 zi and for 1 ≤ j ≤ d,

m̄n
j (z)(xj) = p̂j(xj)

−1 1

n

n∑
i=1

(zi − z̄)
∫
KXi

h (Xi − x)dx−j ,

m̄n
j′(z)(xj) = p̂∗∗j (xj)

−1 1

n

n∑
i=1

(Xij − xj)zi
∫
KXi

h (Xi − x)dx−j .

The following lemma shows that I+Sn is invertible on the event E . Here we denote the identity
operator by I.

Lemma 2.4.4. On the event E the operator I + Sn : Gn → Gn is invertible.

Proof. Suppose that for some g ∈ Gn it holds that (I + Sn)(g) = 0. We have to show that this

implies g = 0.

For the proof of this claim note that gk + Sn,k(g) is the orthogonal projection of
∑2d

j=0 gj onto

Hk. Furthermore, we have that gk is an element of Hk. This gives that〈
gk,

2d∑
j=0

gj

〉
n

= 0.

Summing over k gives 〈
2d∑
j=0

gj ,

2d∑
j=0

gj

〉
n

= 0.

According to Lemma 2.3.1 on the event E we have g0 = 0 and gj ≡ 0 for j = 1, . . . , 2d. This

concludes the proof of the lemma.

One can show that under conditions (A1) ,. . . , (A4) the probability of the event E converges

to one. Note that we have assumed that X =
∏d

j=1Xj . We conclude that under (A1) ,. . . , (A4)

I+Sn is invertible with probability tending to one. Thus we have that with probability tending

to one

m̂n −m− m̄n(ε)− βn +∆nm+∆nβn (2.4.4)

= (I + Sn)−1(I + Sn)(m̂n −m− m̄n(ε)− βn +∆nm+∆nβn),

where m has components m0, . . . ,m2d with m0, . . . ,md as in (2.4.1) and with mj′ = m′
j for

1 ≤ j ≤ d. Furthermore, β(x) has components β0 = 0, βj(xj) and

βj′(xj) =
1

2
m

′′
j (xj)

bj,0(xj)bj,3(xj)− bj,1(xj)bj,2(xj)
bj,0(xj)bj,2(xj)− bj,1(xj)2

h
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2 Local Linear Smoothing

for j = 1, . . . , d with bj,l(xj) defined above. Additionally, the norming constants are given by

(∆nβ)j =

∫
βj(xj)p̂j(xj)dxj ,

(∆nm)j =

∫
mj(xj)p̂j(xj)dxj ,

(∆nβ)j′ = (∆nm)j′ = 0 for j = 1, . . . , d,

(∆nβ)0 =
d∑

j=1

∫
βj′(xj)p̂

∗
j (xj)dxj ,

(∆nm)0 =
d∑

j=1

∫
mj′(xj)p̂

∗
j (xj)dxj .

One can verify that for aj +2hj ≤ xj ≤ bj − 2hj one has βj′(xj) = oP (h). We have already seen

that βj(xj) =
1
2m

′′
j (xj)

∫
k(v)v2dv + oP (h

2) holds for such xj .

For the statement of Theorem 2.4.1 we have to show that for 1 ≤ j ≤ d the j-th component on

the left hand side of equation (2.4.4) is of order oP (h
2) uniformly for aj + 2h ≤ xj ≤ bj − 2h.

For a proof of this claim we first analyze the term

Dn = (I + Sn)(m̂n −m− m̄n(ε)− βn +∆nm+∆nβn) (2.4.5)

= m̄n(Y )− (I + Sn)(m+ m̄n(ε) + βn −∆nm−∆nβn).

For this sake we split the term m̄n(Y ) into the sum of a stochastic variance term and a deter-

ministic expectation term:

m̄n(Y ) = m̄n(ε) +
d∑

j=0

m̄n(µn,j), (2.4.6)

where

ε = Y −
d∑

j=0

µn,j ,

µn,j = (mj(Xij))i=1,..,n for j = 1, . . . , d,

µn,0 = (m0)i=1,..,n.

We write Dn = Dβ
n +Dε

n, with

Dβ
n =

d∑
j=0

m̄n(µn,j)− (I + Sn)(m+ βn −∆nm−∆nβn),

Dε
n = Sn(m̄n(ε)).

The following lemma treats the conditional expectation term Dβ.
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2.4 Asymptotic Properties of the Estimator

Lemma 2.4.5. Assume (A1) ,. . . , (A4). It holds Dβ
n,0 = op(h

2) and

sup
xk∈Xk

∣∣Dβ
n,k(xk)

∣∣ =
op(h2) for 1 ≤ k ≤ d,

op(h) for d+ 1 ≤ k ≤ 2d.

Proof. The lemma follows by application of lengthy calculations using second order Taylor ex-

pansions for mj(Xij) and by application of laws of large numbers.

We now turn to the variance term.

Lemma 2.4.6. Assume (A1) ,. . . , (A4). It holds Dε
n,0 = op(h

2) and

sup
xk∈Xk

∣∣Dε
n,k(xk)

∣∣ =
op(h2) for 1 ≤ k ≤ d,

op(h) for d+ 1 ≤ k ≤ 2d.

Proof. One can easily check that Dε
n,k(xk) consists of weighted sums of εi where the weights are

of the same order for all 1 ≤ i ≤ n. For fixed xk the sums are of order OP (n
−1/2) for 1 ≤ k ≤ d

and of order OP (h
−1n−1/2) for d+ 1 ≤ k ≤ 2d. Using the conditional moment conditions on εi

in Assumption (A3) we get the uniform rates stated in the lemma.

It remains to study the behaviour of (I + Sn)−1Dε
n and (I + Sn)−1Dβ

n. We use a small

transformation of Sn here which is better suitable for an inversion. Define the following 2 × 2

matrix An,k(x) by

An,k(x) =
1

p̂kp̂
∗∗
k − (p̂∗k)

2

(
p̂∗∗k p̂k p̂∗∗k p̂

∗
k

p̂∗kp̂k p̂kp̂
∗∗
k

)
(xk).

Furthermore, define the 2d × 2d matrix An(x) where the elements with indices (k, k), (k, k′),

(k′, k), (k′, k′) are equal to the elements of An,k(x) with indices (1, 1), (1, 2), (2, 1), (2, 2). We

now define S̃n by the equation I + S̃n = An(I + Sn). Below we make use of the fact that S̃n is

of the form

S̃n,km(x) =
∑

l ̸∈{k,k′}

∫
qk,l(xk, u)ml(u)du+

∑
l∈{k,k′}

∫
ql(u)ml(u)du, (2.4.7)

S̃n,k′m(x) =
∑

l ̸∈{k,k′}

∫
qk′,l(xk, u)ml(u)du+

∑
l∈{k,k′}

∫
ql(u)ml(u)du (2.4.8)

for 1 ≤ k ≤ d with some random functions qk,l, ql which fulfill∫
qk,l(xk, u)

2du,

∫
qk(u)

2du = OP (1)

uniformly over 1 ≤ k, l ≤ 2d and xk. Note that we need S̃n because Sn can not be written in

the form of (2.4.7) and (2.4.8). The operator S̃n differs from Sn in the h-neighbourhood of the

boundary by terms of order h2. Otherwise the difference is of order op(h
2). Outside of the h-

neighbourhood of the boundary, for n→∞, the matrix An(x) converges to the identity matrix.
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2 Local Linear Smoothing

Thus S̃n is a second order modification of Sn with the advantage of having (2.4.7)-(2.4.8).

For our further discussion we now introduce the space G0 of tuples f = (f0, f1, . . . , f2d) with

f0 = 0 and fk, fk′ : Xk → R with
∫
fk(xk)pk(xk)dxk = 0 and endow it with the norm ∥f∥2 =∑d

k=1(fk(xk)
2 + fk′(xk)

2)pk(xk)dxk. The next lemma shows that the norm of Hn(I + Sn)−1Dε
n

and Hn(I + Sn)−1Dβ
n is of order oP (h

2). Here Hn is a diagonal matrix where the first d + 1

diagonal elements equal 1. The remaining elements are equal to h.

Lemma 2.4.7. Assume (A1) ,. . . , (A4). Then it holds that ∥Hn(I + Sn)−1D∗
n∥ = ∥Hn(I +

Q̃n)
−1AnD

∗
n∥ = oP (h

2) for D∗
n = Dε

n and D∗
n = Dβ

n.

Proof. Define D̄ε
n and D̄β

n by D̄ε
nk
(xk) = Dε

n,k(xk) −
∫
Dε

n,k(uk)pk(uk)duk and D̄β
n,k(xk) =

Dβ
n,k(xk) −

∫
Dβ

n,k(uk)pk(uk)duk for 1 ≤ k ≤ d and D̄ε
n,k = Dε

n,k and D̄β
n,k = Dβ

n,k, other-

wise. It can be checked that it suffices to prove the lemma with Dε
n and Dβ

n replaced by D̄ε
n

and D̄β
n. Note that D̄ε

n and D̄β
n are elements of G0. For the proof of this claim we compare the

operator S̃n with the operator S0 defined by S0,0(g) = 0, S0,k′(g)(xk) = 0 and

S0,k(g)(xk) =
∑
j ̸=k

∫
Xj

gj(uj)
pj,k(uj , xk)

pk(xk)
duj

for 1 ≤ k ≤ d. By standard kernel smoothing theory one can show that

sup
g∈G0,∥g∥≤1

∥(S0 −HnS̃nH−1
n )g∥ = oP (1).

For the proof of this claim one makes use of the fact that non-vanishing differences in the h-

neighbourhood of the boundary are asymptotically negligible in the calculation of the norm

because the size of the neighbourhood converges to zero.

In the next lemma we show that I + S0 has a bounded inverse. This implies the statement of

the lemma by applying the following expansion:

(I +HnS̃nH−1
n )−1 − (I + S0)−1

= (I + S0)−1((I + S0)(I +HnS̃nH−1
n )−1 − I)

= (I + S0)−1(((I +HnS̃nH−1
n )(I + S0)−1)−1 − I)

= (I + S0)−1((I + (HnS̃nH−1
n − S0)(I + S0)−1)−1 − I)

= (I + S0)−1
∞∑
j=1

(I + (−1)j(HnS̃nH−1
n − S0)(I + S0)−1)j .

This shows the lemma because of

Hn(I + S̃n)−1AnD
∗
n = Hn(I + Q̃n)

−1H−1
n HnAnD

∗
n = (I +HnS̃nH−1

n )−1HnAnD
∗
n

for D∗
n = Dε

n and D∗
n = Dβ

n.

Lemma 2.4.8. Assume (A1) ,. . . , (A4). The operator I + S0 : G0 → G0 is bijective and has a

bounded inverse.
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2.4 Asymptotic Properties of the Estimator

Proof. For a proof of this claim it suffices to show that the operator I+S∗ : G∗ → G∗ is bijective

and has a bounded inverse where G∗ is the space of tuples f = (f1, . . . , fd) where fk : Xj → R
with

∫
fk(xk)dxk = 0 with norm ∥f∥2 =

∑d
k=1 fk(xk)

2pk(xk)dxk and

S∗,k(g)(xk) =
∑
j ̸=k

∫
Xj

gj(uj)
pj,k(uj , xk)

pk(xk)
duj

for 1 ≤ k ≤ d. We apply the bounded inverse theorem. For an application of this theorem we

have to show that I + S∗ is bounded and bijective. It can easily be seen that the operator is

bounded. It remains to show that it is surjective. We show that

(i) (I + S∗)gn → 0 for a sequence gn ∈ G∗ implies that gn → 0.

(ii)
∫
gk(I + S∗)kr(xk)pk(xk)dxk = 0 for all g ∈ G∗ implies that r = 0.

Note that (i) implies that G∗∗ = {(I+S∗)g : g ∈ G∗} is a closed subset of G∗. To see this suppose

that (I + S∗)gn → g for g, gn ∈ G∗. Then (i) implies that gn is a Cauchy sequence and thus gn

has a limit in G∗ which implies that (I + S∗)gn has a limit in G∗∗. Thus G∗∗ is closed.

From (ii) we conclude that the orthogonal complement of G∗∗ is equal to {0}. Thus the closure

of G∗∗ is equal to G∗. This shows that G∗ = G∗∗ because G∗∗ is closed. We conclude that (I+S∗)
is surjective.

It remains to show (i) and (ii). Fo a proof of (i) note that (I + S∗)gn → 0 implies that∫
gnk (xk)(I + S∗)kgn(xk)pk(xk)dxk → 0

which shows

d∑
k=1

∫
gnk (xk)

2pk(xk)dxk +
∑
k ̸=j

gnk (xk)pkj(xk, xj)gj(xj)dxkdxj → 0.

Thus we have

E[(
d∑

k=1

gk(Xik))
2]→ 0.

By application of Proposition 2.3.4 (ii) we get that max1≤k≤d E[gk(Xik)
2]→ 0, which shows (i).

Claim (ii) can be seen by a similar argument. Note that∫
gk(I + S∗)krpk(xk)dxk = 0

for all g ∈ G∗ implies that
∫
rk(I + S∗)kr(xk)pk(xk)dxk = 0.

We now apply the results stated in the lemma for the final proof of Theorem 2.4.1.

Proof of Theorem 2.4.1. From (2.4.4) and Lemma 2.4.7 we know that the L2 norm of m̂n−m−
m̄n(ε) − βn + ∆nm + ∆nβn = Hn(I + Sn)−1(Dε

n + Dβ
n) = Hn(I + S̃n)−1An(D

ε
n + Dβ

n) is of
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2 Local Linear Smoothing

order oP (h
2). Note that Hn(I + S̃n)−1 = Hn −HnS̃n(I + S̃n)−1. We already know that the sup

norm of all components in HnAn(D
ε
n +Dβ

n) are of order oP (h
2). Thus, it remains to check that

the sup norm of the components of HnS̃n(I + S̃n)−1An(D
ε
n +Dβ

n) is of order oP (h
2). But this

follows by application of the just mentioned bound on the L2 norm of Hn(I + Sn)−1(Dε
n +Dβ

n),

by equations (2.4.7), (2.4.8), and the bounds for the random functions qk,l and ql mentioned

after the statement of the equations. One gets a bound for the sup norms by application of the

Cauchy Schwarz inequality.
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3 Optimal Convergence Rates of Deep Neural

Networks in a Classification Setting

This chapter follows the paper [96]. We included some slight modifications in order to embed it

into this thesis.

We establish optimal convergence rates up to a log-factor for a class of deep neural networks in

a classification setting under a restraint sometimes referred to as the Tsybakov noise condition.

We construct classifiers in a general setting where the boundary of the bayes-rule can be approx-

imated well by neural networks. Corresponding rates of convergence are proven with respect to

the misclassification error. It is then shown that these rates are optimal in the minimax sense

if the boundary satisfies a smoothness condition. Non-optimal convergence rates already exist

for this setting. Our main contribution lies in improving existing rates and showing optimality,

which was an open problem. Furthermore, we show almost optimal rates under some additional

restraints which circumvent the curse of dimensionality. For our analysis we require a condition

which gives new insight on the restraint used. In a sense it acts as a requirement for the ”correct

noise exponent” for a class of functions.

3.1 Introduction

We consider i.i.d. data (Yi, Xi)
n
i=1 with Yi ∈ {0, 1} and Xi ∈ Rd. Our goal is to provide an

estimator of the form Ŷ = 1(X ∈ Ĝ) where Ĝ is constructed with a neural network which

approximates Y well with respect to the misclassification error. We show optimal convergence

rates under the following two conditions. First, the underlying distribution Q satisfies a noise

condition as in [126] described below. Second, the boundary of the set

G∗
Q :=

{
x
∣∣∣ fQ(x) ≥ 1

2

}
with fQ(x) := Q(Y = 1|X = x) satisfies certain regularity conditions.

Neural Networks have shown outstanding results in many classification tasks such as image

recognition [51], language recognition [26], cancer recognition [70], and other disease detection

[79]. Our work follows current approaches in the statistical literature to explain the success of

neural networks, e.g. the impactful contributions [73, 109]. The objective is to fill a gap in the

literature by proving optimal convergence rates in a specific setting which was also considered

in [71]. We focus on deep feedforward neural networks with ReLU-activation functions. Deep
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3 Classification using Neural Networks

networks have been considered in many theoretical articles [73, 74, 104, 105] and have proven

useful in many applications [78, 108]. Intuitively, we wish to approximate the set G∗
Q directly

instead of approximating the regression function fQ. The classification setting we consider is

similar to the setting given in [91, 126]. In particular, we assume that Q satisfies a noise condition

which can be described as follows. For Q-measurable sets G1, G2 define

dfQ(G1, G2) :=

∫
G1∆G2

|2fQ(x)− 1| QX(dx),

d∆(G1, G2) := QX(G1∆G2).

The condition then states that there exists a constant κ ≥ 1 such that

dfQ(G,G
∗
Q) ≥ c1dκ∆(G,G∗

Q) (3.1.1)

for some constant c1 > 0 and all G. This requirement is sometimes referred to as the Tsybakov

noice condition. It can be interpreted as a restraint on the probability distribution regarding

regions close to the boundary where fQ(x) =
1
2 . Roughly speaking, it forces the mass to decay at

a certain rate when one approaches this boundary. Using this, one can achieve rates approaching

n−1 for small κ, i.e. if there is not much mass in the region around fQ(x) =
1
2 . The condition has

been used in many statistical articles considering classification such as [3] and [131] who analyse

support vector machines. Similarly to [91], we show optimal convergence rates in the case where

the boundary of G∗
Q satisfies certain regularity conditions, i.e. is similar to an element of a

Dudley class [32]. More precisely, we consider sets which are slightly more general then the sets

given in [104]. While many other approximation results using neural networks exist, see [29]

using sigmoid activation functions or [132] using piecewise linear functions among others, the

methods used in [104] inspired us to obtain the results for our setting. The sets they consider

have been used in many articles such as [71, 105]. As an estimator, we use a risk minimizer of

the empirical version of the misclassification error. Precisely calculating this estimator involves

finding a global minimum of a highly non-convex loss with respect to the parameters of a neural

network. Typically, such calculations are not feasible in practice. Thus, the results we provide

are theoretical in nature and do not have direct useful applications, as is typical for results of

this kind [74, 109]. From our point of view, the main value of current contributions is to show

results such as consistency in situations which are typical for statisticians using relatively simple

classes of neural networks. In time, the techniques developed may be used to show claims in

cases which are closer to those encountered in reality and using classes of neural networks which

are closer to those used in practise.

A lot of work has been done regarding consistency of feedforward deep neural networks. [109]

prove optimal convergence rates with respect to the uniform norm in a regression setting. Among

others, similar results were given by [64] for non-continuous regression functions with respect

to the L2-norm, [75] who did not use a sparsity constraint, and [5]. Regarding results for

classification, [105] show convergence rates considering the misclassification error in a noiseless

setting. Consistency results which include condition (3.1.1) in the assumptions are given by
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3.1 Introduction

[12, 63, 74]. In contrast to our approach, the previously mentioned articles attempt to estimate

the regression function fQ instead of directly estimating the set G∗
Q. Additionally, while some

obtain optimal convergence rates, the settings do not correspond to the setting given in [126]. In

particular, the (optimal) convergence rates differ from ours in these papers. A very interesting

contribution was made by [71] who consider an almost identical situation to ours, while their

estimators differ. However, the rates they obtain are not optimal in the minimax sense.

3.1.1 Contribution

Our contribution includes the following.

• First and foremost, Theorem 3.4.1 together with Corollary 3.3.6 prove optimal convergence

rates in the minimax sense for the setting described above. To the best of our knowledge,

we are the first to obtain optimal convergence rates using neural networks corresponding

to the setting given in [126] and thus close this gap in the literature.

• Theorem 3.3.4 establishes convergence rates in a general setting, where the boundary of

the set G∗
Q can be well approximated by neural networks. This enables us to prove rates

in a variety of settings. We use this theorem to prove optimal convergence rates under an

additional constraint, which circumvents the curse of dimensionality, in the sense that the

rates do not decrease exponentially in the dimension d.

• In order to prove the results stated here, we require a condition which together with

condition (3.1.1) forces κ to be the ”correct parameter” for the distribution Q. We believe

that this condition may bring new insights to condition (3.1.1) and may be helpful in other

situations where (3.1.1) is required.

3.1.2 Outline

After introducing some notation, we rigorously introduce the problem at hand in Section 3.2.

Here, we also provide some convergence results considering empirical risk minimizers with re-

spect to arbitrary sets. These results are then used to prove our main consistency theorems

regarding neural networks in Section 3.3. Section 3.4 includes the corresponding lower bounds

followed by some concluding remarks in Section 3.5.

3.1.3 Notation

We introduce some general notation which is used throughout this article.

For x ∈ R, let ⌊x⌋ := max{k ∈ Z | k ≤ x} and ⌈x⌉ := min{k ∈ Z | k ≥ x}. Let λ be the

Lebesgue measure. For a function g : Ω ⊆ Rs → R and k ∈ N denote by

∥g∥∞ := sup
x∈Ω
|g(x)|, ∥g∥Lk :=

(∫
|g|k λ(dx)

) 1
k
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3 Classification using Neural Networks

the uniform-norm and the Lk-norm, respectively. Note that we omit the dependence on Ω in

the notation. For x ∈ Rs, let ∥x∥2 and ∥x∥∞ be the euclidean-norm and the uniform-norm,

respectively. For j ∈ {1, . . . , s} let

x−j := (x1, . . . , xj−1, xj+1, . . . , xs).

Additionally, let

Br(x) := {y ∈ Rs | ∥x− y∥∞ ≤ r},

B◦r(x) := {y ∈ Rs | ∥x− y∥∞ < r}.

For a ∈ Ns let |a| :=
∑s

i=1 ai.

Now, let β ∈ (0,∞). Define m := max{k ∈ N | k < β} and ω := β−m > 0. For f ∈ C
(
[0, 1]s,R

)
let

∥f∥Cβ :=
∑

|α|≤m

∥∥∂αf∥∞ +
∑

|α|=m

sup
x ̸=y

|∂αf(x)− ∂αf(y)|
|x− y|ω∞

be the Hoelder-norm. For B > 0, define the class of Hoelder-continuous functions by

Fβ,B,s :=
{
f ∈ C

(
[0, 1]s,R

) ∣∣∣ ∥f∥Cβ ≤ B
}
.

Let G1, G2 ⊆ Ω be two subsets. We write

G1∆G2 := (G1\G2) ∪ (G2\G1)

for their symmetric difference and

1(x ∈ G1) :=

1, for x ∈ G1,

0, otherwise

for the indicator function corresponding to G1.

3.2 General Convergence Results

In this section, we state our results in a relatively general setting. The results on neural networks

in the next section only consider the case where QX has a bounded density with respect to the

Lebesgue measure. Our setup is similar to the binary classification setup of [126].

3.2.1 Classification Setup

Let (Xi, Yi)
n
i=1 be i.i.d. observations distributed according to some probability measure Q, where

Xi ∈ Rd and Yi ∈ {0, 1}. Denote by QX the marginal probability distribution with respect to

X ∈ Rd. The goal is to predict Y ∈ {0, 1} when observing X ∈ Rd, where (X,Y ) is distributed
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3.2 General Convergence Results

according to Q independently of (Xi, Yi)
n
i=1 using classifiers of the form

Ŷ := 1(X ∈ Ĝ)

for some Q-measurable set Ĝ ⊆ Rd. Note that a classifier is uniquely determined by Ĝ. Perfor-

mance is measured by the misclassification error

R(Ĝ) := P
(
Y ̸= Ŷ

)
= E

[(
Y − 1(X ∈ Ĝ)

)2]
.

For fQ(x) := E[Y |X = x] = Q(Y = 1|X = x) the set

G∗
Q :=

{
x
∣∣∣ fQ(x) ≥ 1

2

}
is a so called bayes rule and thus minimizes the misclassification error. Classification can equiva-

lently be seen as estimation of G∗
Q by the set Ĝ, which is therefore equally referred to as classifier.

For a Q-measureable set G ⊆ Rd let

Rn(G) =
1

n

n∑
i=1

1
(
Yi ̸= 1(Xi ∈ G)

)
=

1

n

n∑
i=1

(
Yi − 1(Xi ∈ G)

)2
be the empirical version of the misclassification error R(G). We consider empirical risk mini-

mization classifiers defined by

Ĝn := arg min
G∈Nn

Rn(G)

where Nn is some finite collection of Q-measurable sets for all n ∈ N.

3.2.2 Consistency Results

Proposition 3.2.1 establishes convergences rates for estimating G∗
Q using Ĝn under certain con-

ditions on Nn and Q. For the loss function, we consider a slight generalization of the misclassi-

fication error

E
[(
R(Ĝn)−R(G∗

Q)
)p]

= E
[
dpfQ(Gn, G

∗
Q)
]

for p ≥ 1. The proposition is somewhat similar to Theorem 2 from [91]. In contrast to our

approach, they consider the discrimination of two probability distributions with underlying

distribution functions and do not allow for non-optimal convergence rates. The proposition is

an important component for the proof of our main theorem given in Section 3.3. The proofs of

this section can be found in Subsection 7.2.1.

Proposition 3.2.1. Let τn > 0 be a monotonically increasing sequence. Let Q be a class of

potential joint distributions Q of (X,Y ) and Nn be a collection of subsets of Rd for all n ∈ N
such that the following conditions hold.

(i) For all Q ∈ Q all sets in
⋃

n∈NNn and G∗
Q are Q-measurable.
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3 Classification using Neural Networks

(ii) There exists a constant κ ≥ 1 such that

dfQ(G,G
∗
Q) ≥ c1dκ∆(G,G∗

Q)

for some constant c1 > 0, all G ∈
⋃

n∈NNn and all Q ∈ Q.

Additionally, we assume that there is a constant N0 ∈ N such that for all n ≥ N0 the following

holds.

(iii) There is a constant c2 > 0 such that for all Q ∈ Q there is a G ∈ Nn with

dfQ(G,G
∗
Q) ≤ c2τ−κ

n .

(iv) There exist constants c3, ρ > 0 such that

log
(
|Nn|

)
≤ c3n

ρ
ρ+2κ−1 .

Then for all p ≥ 1 we have

lim sup
n→∞

sup
Q∈Q

τ̃κpn E
[
dpfQ(Ĝn, G

∗
Q)
]
<∞,

lim sup
n→∞

sup
Q∈Q

τ̃pn E
[
dp∆(Ĝn, G

∗
Q)
]
<∞,

where

τ̃n := min{τn, n
1

ρ+2κ−1 }

for all n ∈ N.

Condition (i) is needed for all terms to be well defined. Condition (iii) states that the set in

question must be well approximated by elements of Nn. A sufficient assumption is that Nn is

an ϵ-net of
{
G∗

Q
∣∣ Q ∈ Q

}
, where ϵ := c1τ

−κ
n . Together with (iv), this indirectly bounds the

complexity of Q. If the class of sets {G∗
Q | Q ∈ Q} is to large, one will not be able to find sets

Nn that satisfy (iii) and (iv) at the same time. It is clear that the best rates are achieved with

τn = n
1

ρ+2κ−1 . We do not use the same sequences in conditions (iii) and (iv) since one can prove

non-optimal convergence rates using this version of the proposition.

The second condition is the noise condition described in the introduction. Note that following

[126], for κ > 1 condition (ii) holds if

P
(∣∣2fQ(X)− 1

∣∣ ≤ t) ≤ ct 1
κ−1

for all t > 0 and some c > 0. Roughly speaking, this forces the mass to decay at a certain rate

when one approaches the boundary of G∗
Q. Note that we use (ii) instead of this assumption since

it is slightly more general and includes the case κ = 1. Additionally, it appears more naturally

in the proofs. Observing the alternative assumption, κ = 1 corresponds to the case where there

is no mass close to the boundary of G∗
Q, meaning that fQ does not take on values close to 1

2 .
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3.3 Convergence Rates for Neural Networks

Using Proposition 3.2.1 one can achieve rates approaching n−1 for small κ, ρ i.e. if there is not

much mass in the region around fQ(x) =
1
2 and the complexity of Nn, and consequently Q, is

moderate. In contrast, the following proposition provides convergence rates if condition (ii) is

not satisfied.

Proposition 3.2.2. Let τn > 0 be a monotonically increasing sequence. Let Q be a class of

potential joint distributions Q of (X,Y ) and Nn be a collection of subsets of Rd for all n ∈ N
such that the following conditions hold.

(i) For all Q ∈ Q all sets in
⋃

n∈NNn and G∗
Q are Q-measurable.

Additionally, we assume that there is a constant N0 ∈ N such that for all n ≥ N0 the following

holds.

(ii) There is a constant c2 > 0 such that for all n ∈ N and Q ∈ Q there is a G ∈ Nn with

dfQ(G,G
∗
Q) ≤ c2τ−1

n .

(iii) There exist c3, ρ > 0 such that

log
(
|Nn|

)
≤ c3n

ρ
ρ+2 .

Then for all p ≥ 1 we have

lim sup
n→∞

sup
Q∈Q

τ̃pn E
[
dpfQ(Ĝn, G

∗
Q)
]
<∞,

where

τ̃n := min{τn, n
ρ

ρ+2 }

for all n ∈ N.

Note that the requirement in conditon (ii) of Proposition 3.2.2 corresponds to requirement

(iii) of 3.2.1 with κ = 1. However, for p = 1 the best rate achievable is of order n
− 1

p+2 , which is

always slower n−
1
2 . Proposition 3.2.2 provides rates in absence of condition (ii) of Proposition

3.2.1. We do not claim optimality for these rates.

3.3 Convergence Rates for Neural Networks

We begin by shortly introducing neural networks. The idea is to use Proposition 3.2.1 to obtain

optimal convergence rates up to a log factor. Neural networks are used to define a suitable class

of sets Nn for every n ∈ N .
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3 Classification using Neural Networks

3.3.1 Definitions Regarding Neural Networks

In this article, we are interested in the case where for i = 1, . . . , L the activation function in the

i-th layer is the rectifier linear unit (ReLU)

σi(x) := max{x, 0}.

Additionally, if not further specified, we consider a compact domain D := [0, 1]d and a one

dimensional output zL+1 = 1.

As a first step, we wish to introduce a suitable finite class of sets parameterized by neural

networks and count the number of elements. We define these sets as R(Φ)−1(1) where Φ is a

realization of a neural network. Equivalently, we could have considered neural networks with a

binary step function in the output layer or find a neural network Φ̃ and define the approximating

set R(Φ̃)−1((0.5, 1]), which is closer to the idea that the realization of the neural network repre-

sents some sort of probability. Since this is not the idea of our approximation results, we stick to

the version above. In order to obtain a finite class, we need to reduce the number of considered

elements of NL,z,σ while maintaining reasonable approximating capabilities. A typical approach

in the theoretical literature is to use a sparsity constraint. For s > 1 we therefore only consider

realizations of neural nets which have at most s nonzero weights. If s is the total number of

nonzero weights, we say that the network has sparsity s. Additionally, we assume all weights to

be elements of the set

Wc :=
{
k2−c

∣∣ c ∈ N, k ∈ {−2c,−2c + 1, . . . , 2c − 1, 2c}
}
.

Thus, we only consider weights |w| ≤ 1. Concluding, we use the following notation to describe

the collection of sets we are interested in.

Definition 3.3.1. Let L0, c ∈ N and s0 > 1 be fixed. Denote by ÑL0,s0,c the set of realizations

of neural networks with d dimensional input, one dimensional output, at most L0 layers, ReLU

activation functions and sparsity at most s0, where all weights are elements of Wc. The class of

corresponding sets given by neural networks is then

NL0,s0,c :=
{
R(Φ)−1(1) ⊆ [0, 1]d,

∣∣ Φ ∈ ÑL0,s0,c

}
.

Note that the requirements from Definition 3.3.1 allow for realizations of neural networks

with arbitrary hidden layer dimensions (z1, . . . , zL) ∈ NL. However, it is easy to see that every

element of ÑL0,s0,c is a realization of a neural net which satisfies the properties described in the

Definition and zi ≤ s0 for all i ∈ {1, . . . , L0}. Using this, we receive an upper bound on the

number of elements of NL0,s0,c by counting the number of corresponding neural networks. Thus,

the following bound is independent of the choice of activation functions σ.

Lemma 3.3.2. For s0 > 1 and L0, c ∈ N let NL0,s0,c be the class of sets introduced in Definition
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3.3 Convergence Rates for Neural Networks

3.3.1. We have an upper bound on the number of elements given by

∣∣NL0,s0,c

∣∣ ≤ ((ds0 +min{s0, L0}(s0 + 1)2)2c+2
)s0 .

Proof. First of all, if s0 ≤ L0, clearly only the last s0 layers have influence on the realization of

a neural network. Thus, an upper bound is given by counting the number of neural nets with at

most min{s0, L0} layers, at most sparsity s0, weights in Wc and mi ≤ s0 for all i ∈ {1, . . . , L}.
Each weight can take on |Wc| = 2c+1 + 1 different values. The total number of weights can be

bounded by

z0z1 +

min{s0,L}∑
i=1

(zi + 1)zi+1 ≤ ds0 +
min{s0,L0}∑

i=1

(s0 + 1)s0

≤ ds0 +min{s0, L0}(s0 + 1)2

=: V.

Note that if s0 ≤ L0, the input dimension does not influence the outcome. Therefore, there are

at most (
V

s0

)
≤ V s0

possible combinations to pick s0 (possibly) nonzero weights. Thus

∣∣NL0,s0,c

∣∣ ≤ V s0
(
2c+1 + 1

)s0 ≤ (V 2c+2
)s0 .

3.3.2 Conditions on the Bayes-Rule

In order to define the set of probability distributions we consider for approximation, we restrict

the possible bayes rules. We then add a smoothness condition to the function fQ near the

boundary of the respective bayes rule. Intuitively, the boundary should satisfy some kind of

smoothness condition so that it can be approximated by neural networks. Additionally, the set

must be discretizable in some sense. When using F = Fβ,B,d−1 the class of sets we use is similar

to a class defined in [104]. Note, that the class used here is larger. This version depends on a

set F which represents a class of boundary functions. The idea is that we can obtain different

convergence rates for different classes using the same procedure.

Definition 3.3.3. Let β ≥ 0, B > 0 and d ∈ N with d ≥ 2. Additionally, let r ∈ N, ϵ1, ϵ2 > 0,

Q be a probability measure on [0, 1]d × {0, 1} and F be a class of functions

γ : [0, 1]d−1 → R.
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Define

I := {1, . . . , d} × {−1, 1},

D :=

{ d∏
i=1

[ai, bi]

∣∣∣∣ 0 ≤ ai < bi ≤ 1

}
.

and

Hβ,B :=
{
g ∈ Fβ,B,1

∣∣ ∀α < β : ∂αg(0) = 0
}

if β > 0. Let KF
Q,β,B,ϵ1,ϵ2,r,d

be the class of all subsets H = H1∪· · ·∪Hu ⊆ [0, 1]d for u ∈ {0, . . . , r}
such that for ν = 1, . . . , u there exist (jν , ιν) ∈ I, γν ∈ F , Dν =

∏d
i=1[a

ν
i , b

ν
i ] ∈ D with the

following properties.

1. For all ν = 1, . . . , u we have

Hν = Dν ∩ {x ∈ [0, 1]d | ινxjν ≤ γν(x−jν )}.

2. λ(Dν1 ∩Dν2) = 0 for ν1 ̸= ν2.

3. If β > 0, the following holds. For ν = 1, . . . , u and all x ∈ Dν∩∂H there exists gν,x ∈ Hβ,B

such that for yjν ∈ [max{0, xjν − ϵ1},min{1, xjν + ϵ1}] we have

|2fQ(y)− 1| ≤ gν,x(xjν − yjν ) for xjν − ϵ1 ≤ yjν ≤ xjν ,

|2fQ(y)− 1| ≤ gν,x(yjν − xjν ) for xjν ≤ yjν ≤ xjν + ϵ1,

where y = (x1, . . . , xjν−1, yjν , xjν+1, . . . , xd).

4. bνjν − a
ν
jν
≥ ϵ2 for all ν = 1, . . . , u.

Note that g ∈ Hβ,B implies g(0) = ∂0g(0) = 0. The idea is to use sets defined by realizations

of neural networks to approximate G∗
Q ∈ KF

Q,β,B,ϵ1,ϵ2,r,d
from Definition 3.3.3 for a suitable

class F in order to apply Proposition 3.2.1. Figure 3.1 shows an example for an element of

KF
Q,β,B,ϵ1,ϵ2,12,2

, where F is the set of piecewise linear functions. The definition contains an

additional condition on the function fQ close to the boundary of G∗
Q. Following the intuition

mentioned in [91], for β > 0 condition (ii) in Theorem 2.1 means that fQ acts like xβ close

to the boundary of G∗
Q, where κ = 1 + β. More precisely, condition (ii) requires that fQ does

not increase slower than xβ. In order to prove the combination of conditions (iii) and (iv), we

require that β is the correct rate, meaning that fQ does not increase faster than xβ. In Section

3.4 we prove that this condition does not lower the complexity of the problem. Thus, the rates

obtained by [91] are still optimal.
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3.3 Convergence Rates for Neural Networks

Figure 3.1: Example for an element of KF
Q,β,B,ϵ1,ϵ2,12,2

, where F is the set of piecewise linear
functions. The grey objects represent the set. The small boxes represent a possible
choice for D1, . . . , D12.

3.3.3 Main Theorems

We begin by stating the central result of this article. We then use this result to show consistency

results for more specific cases. The rates we obtain in Theorem 3.3.4 are optimal up to a log

factor. In the following, all proofs of this section are given in Subsection 7.2.2.

Theorem 3.3.4. Let β ≥ 0, B, ρ > 0 and d ∈ N with d ≥ 2. Let F be a set of functions

γ : [0, 1]d−1 → R

such that the following holds. There exist ϵ0, C1, C2 > 0 and C3, C4 ∈ N such that for any γ ∈ F
and any ϵ ∈ (0, ϵ0) there is a neural network Φ with L ≤ L0(ϵ) := C1⌈log(ϵ−1)⌉ layers, sparsity
s ≤ s0(ϵ) := C2ϵ

−ρ log(ϵ−1) and weights in Wc with c = c0(ϵ) := C3 + C4⌈log(ϵ−1)⌉ such that

∥R(Φ)(x)− γ∥∞ ≤ ϵ.

Define κ := 1 + β and let Q be a class of potential joint distributions Q of (X,Y ) such that the

following conditions hold.

(a) There is a constant M > 1 such that for all Q ∈ Q the marginal distribution of QX has a

Lebesgue density bounded by M .

(b) There are constants r ∈ N and ϵ1, ϵ2 > 0 such that for all Q ∈ Q the bayes rule satisfies

G∗
Q ∈ KF

Q,β,B,ϵ1,ϵ2,r,d
.

(c) We have

dfQ(G,G
∗
Q) ≥ c1dκ∆(G,G∗

Q)
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for some constant c1 > 0, all G ∈ N and all Q ∈ Q, where

N :=
⋃
n∈N
Nn,n,n

is the class of sets corresponding to any neural network.

Let

τn :=
n

1
2κ+ρ−1

log
2
ρ (n)

.

Then there exist constants C ′
1, C

′
2 > 0 and C ′

3 ∈ N such that for all p ≥ 1 we have

lim sup
n→∞

sup
Q∈Q

τpκn E
[
dpfQ(Ĝn, G

∗
Q)
]
<∞,

lim sup
n→∞

sup
Q∈Q

τpn E
[
dp∆(Ĝn, G

∗
Q)
]
<∞,

where

Ĝn := arg min
G∈Nn

Rn(G).

with Nn = NC′
1L0(τ

−1
n ),C′

2s0(τ
−1
n ),C′

3c0(τ
−1
n ).

3.3.4 Results for Regular Boundaries

We can now prove results for specific classes of sets F to obtain convergence results. A first

important example is the class Fβ,B,d. The following Lemma is a consequence of Theorem 5 in

[109].

Lemma 3.3.5. Let β,B > 0 and d ∈ N. Then there exist ϵ0, c1, c2 > 0, c3, c4 ∈ N such that the

following holds. For any function γ ∈ Fβ,B,d and any ϵ ∈ (0, ϵ0), there exists a neural network

Φ with L ≤ L0(ϵ) := c1⌈log(ϵ−1)⌉ layers, sparsity s ≤ s0(ϵ) := c2ϵ
− d

β log(ϵ−1) and weights in Wc

with c = c0(ϵ) := c3 + c4⌈log(ϵ−1)⌉ such that

∥R(Φ)(x)− γ∥∞ ≤ ϵ.

Corollary 3.3.6. Let β1 ≥ 0, B1, β2, B2 > 0 and d ∈ N with d ≥ 2. Let Q be a class of

potential joint distributions Q of (X,Y ). Assume (a),(b),(c) from Theorem 3.3.4 hold with

ρ := d−1
β2

, β := β1, B := B1 as well as F := Fβ2,B2,d−1. Let

τn :=
n

1
2κ+ρ−1

log
2
ρ (n)

.
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Then there exist constants C ′
1, C

′
2 > 0 and C ′

3 ∈ N such that for all p ≥ 1 we have

lim sup
n→∞

sup
Q∈Q

τpκn E
[
dpfQ(Ĝn, G

∗
Q)
]
<∞,

lim sup
n→∞

sup
Q∈Q

τpn E
[
dp∆(Ĝn, G

∗
Q)
]
<∞,

where

Ĝn := arg min
G∈Nn

Rn(G)

with Nn = NC′
1L0(τ

−1
n ),C′

2s0(τ
−1
n ),C′

3c0(τ
−1
n ) and L0, s0, c0 from Lemma 3.3.5.

Corollary 3.3.6 together with Theorem 3.4.1 from the next section prove optimal convergence

rates, which was the main goal of this work.

Following up, note that the rates we receive from Corollary 3.3.6 are affected by the curse of

dimensionality. Observe that the rates obtained by Theorem 3.3.4 are influenced by condition

(c) on the one hand and the ability of neural networks to approximate sets in F on the other.

The dependence on the dimension d in Corollary 3.3.6 comes from the latter. Thus, a natural

approach to circumvent the curse of dimensionality is to approximate a smaller set F . Intuitively,
it is clear that without strong restrictions on the distribution we can only overcome the curse if

the complexity of the boarders of the sets we approximate is small enough so that they themselves

can overcome the curse. In the literature, many different sets are considered which infer useful

approximation capabilities of neural networks. Here, we use a class of sets introduced by [109]

which is close to class Fβ,B,d.

Definition 3.3.7. Let r ∈ N, t ∈ Nr, d ∈ Nr+1, β ∈ Rr and B > 0 with ti ≤ di, βi > 0 for

i = 1, . . . , r, dr+1 = 1. Define

Gr,t,β,B,d :=
{
γ = γr ◦ · · · ◦ γ1

∣∣ γi = (γij ◦ ιij)di+1

j=1 , γij ∈ Fβi,B,ti , ιij ∈ IDi,

γij : [0, 1]
ti → [0, 1] for i = 1, . . . , r − 1,

γr1 : [0, 1]
tr → R

}
,

where

IDi =
{
ι : [0, 1]di → [0, 1]ti

∣∣ ι(x) = (xi1 , . . . , xiti ), ij ∈ {1, . . . , di}
}
.

Instead of requiring that γij is supported on [0, 1]ti , we could have used the condition that γij

is supported on
∏ti

k=1[ak, bk] for some values ak, bk ∈ R. However, this does not enlarge the class
considerably. It can easily be seen that we can instead increase the bound B to find an even

larger class. The idea for using the set Gr,t,β,B,d is that its complexity does not depend on the

input dimension d1, but only on the most difficult component to approximate. The complexity

of the components depend on their effective dimension ti and their implied smoothness. As
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3 Classification using Neural Networks

described by [109], the correct smoothness parameter to consider is

β∗i := βi

r∏
k=i+1

min{βk, 1}.

Examples for sets that can profit from Definition 3.3.7 are additive models (r = 1, t1 = 1),

interaction models of order k (r = 1, t1 = k), or multiplicative models (they are a subset of

Gr,t,β,B,d when r = log2(d) + 1, ti = 2 for all i). Next, our goal is to establish a convergence

result when the set of boundary functions is Gr,t,β,B,d. Similarly to the approach above, we first

provide a lemma which provides approximation results using neural networks.

Lemma 3.3.8. Let r ∈ N, t ∈ Nr, d ∈ Nr+1, β ∈ Rr and B > 0 with ti ≤ di, βi > 0 for

i = 1, . . . , r, dr+1 = 1. Let Gr,t,β,B,d be defined as in Definition 3.3.7 and define

ρ := max
i=1,...,r

(
ti
β∗i

)
.

Then there exist ϵ0, c1, c2 > 0, c3, c4 ∈ N such that the following holds. For any function γ ∈
Gr,t,β,B,d and any ϵ ∈ (0, ϵ0), there exists a neural network Φ with L ≤ L0(ϵ) := c1⌈log(ϵ−1)⌉
layers, sparsity s ≤ s0(ϵ) := c2ϵ

−ρ log(ϵ−1) and weights in Wc with c = c0(ϵ) := c3+c4⌈log(ϵ−1)⌉
such that

∥R(Φ)(x)− γ∥∞ ≤ ϵ.

The following corollary establishes the corresponding convergence result. Theorem 3.4.2 pro-

vides the lower bound in the case where

ti ≤ min{d1, . . . , di}.

Corollary 3.3.9. Let r2 ∈ N, t ∈ Nr2, d ∈ Nr2+1, β1 ≥ 0, β2 ∈ Rr2, and B1, B2 > 0 with

β2,i > 0 for i = 1, . . . , r2, dr2+1 = 1. Additionally, t1 < d1 and ti ≤ di for i ̸= 1. Define

d′ ∈ Nr2+1 with d′1 = d1 − 1, d′i = di for i ̸= 1 and

ρ := max
i=1,...,r2

ti
β∗2,i

Define κ := 1+ β1 and let Q be a class of potential joint distributions Q of (X,Y ) such that the

following conditions hold.

(a) There is a constant M > 1 such that for all Q ∈ Q the marginal distribution of QX has a

Lebesgue density bounded by M .

(b) There are constants r1 ∈ N and ϵ1, ϵ2 > 0 such that for all Q ∈ Q the bayes rule satisfies

G∗
Q ∈ KF

Q,β1,B1,ϵ1,ϵ2,r1,d1
with

F := Gr2,t,β2,B2,d′ .

(c) We have

dfQ(G,G
∗
Q) ≥ c1dκ∆(G,G∗

Q)
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for some constant c1 > 0, all G ∈ N and all Q ∈ Q, where

N :=
⋃
n∈N
Nn,n,n

is the class of sets corresponding to any neural network.

Let

τn :=
n

1
2κ+ρ−1

log
2
ρ (n)

.

Then there exist constants C ′
1, C

′
2 > 0 and C ′

3 ∈ N such that for all p ≥ 1 we have

lim sup
n→∞

sup
Q∈Q

τpκn E
[
dpfQ(Ĝn, G

∗
Q)
]
<∞,

lim sup
n→∞

sup
Q∈Q

τpn E
[
dp∆(Ĝn, G

∗
Q)
]
<∞,

where

Ĝn := arg min
G∈Nn

Rn(G).

with Nn = NC′
1L0(τ

−1
n ),C′

2s0(τ
−1
n ),C′

3c0(τ
−1
n ).

Note that Corollary 3.3.9 is a generalisation of Corollary 3.3.6. The rate now depends on ρ

which in turn depends on t1, . . . , tr2 instead of the input dimension d1. Clearly, the effective

dimensions ti can be much smaller then the input dimension d1, for example, when the boundary

functions come from an additive function.

3.4 Lower Bound

We now establish lower bounds on the convergence rates from corollaries 3.3.6 and 3.3.9. Note

that the lower bounds also prove that the rates obtained in Theorem 3.3.4 can not be improved

up to a log-factor. Since Corollary 3.3.9 is a generalisation of 3.3.6, we only have to prove a

lower bound for the setting given in the former. For clarity, we provide both statements. The

proofs of this section can be found in Subsection 7.2.3.

Theorem 3.4.1. Let β1 ≥ 0, B1, β2, B2, ρ > 0 and d ∈ N with d ≥ 2. Let Q be the class

of all potential joint distributions Q of (X,Y ) such that (a),(b) from Theorem 3.3.4 hold with

ρ := d−1
β2

, κ := 1 + β1, β := β1, B := B1, F := Fβ2,B2,d−1 and some M > 1, r ∈ N, ϵ1, ϵ2 > 0.

Let (c) hold with c1 > 0 large enough and set

τn := n
1

2κ+ρ−1 .
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Then

lim inf
n→∞

inf
Gn∈G

sup
Q∈Q

τpnE
[
dp∆(Gn, G

∗
Q)
]
> 0,

lim inf
n→∞

inf
Gn∈G

sup
Q∈Q

τpκn E
[
dpfQ(Gn, G

∗
Q)
]
> 0

for every p ≥ 0, where G contains all estimators depending on the data (X1, Y1), . . . , (Xn, Yn).

Intuitively, B1 bounds the factor of the xβ2-term of fQ close to the boundary from above. On

the other hand, c1 bounds this term from below. Thus, not every combination of B1, c1 > 0 is

possible. We prove Theorem 3.4.1 for large c1 > 0. We do not provide the exact ratio of B and

c1 required since it is not important for the statement. Lastly, the lower bound corresponding

to Corollary 3.3.9 is given.

Theorem 3.4.2. Let r2 ∈ N, t ∈ Nr2, d ∈ Nr2+1, β1 ≥ 0, β2 ∈ Rr2, and B1, B2 > 0 with β2,i > 0

for i = 1, . . . , r2, dr2+1 = 1. Additionally, t1 < d1 and ti ≤ min{d1, . . . , di} for i ̸= 1. Let

ρ := max
i=1,...,r2

ti
β∗2,i

Define κ := 1+β1 and let Q be the class of all potential joint distributions Q of (X,Y ) such that

(a),(b) from Corollary 3.3.9 hold for some M > 1, r ∈ N, ϵ1, ϵ2 > 0. Let (c) hold with c1 > 0

large enough and set

τn := n
1

2κ+ρ−1 .

Then

lim inf
n→∞

inf
Gn∈G

sup
Q∈Q

τpnE
[
dp∆(Gn, G

∗
Q)
]
> 0,

lim inf
n→∞

inf
Gn∈G

sup
Q∈Q

τpκn E
[
dpfQ(Gn, G

∗
Q)
]
> 0

for every p ≥ 0, where G contains all estimators depending on the data (X1, Y1), . . . , (Xn, Yn).

3.5 Concluding Remarks

We establish optimal convergence rates up to a log-factor in a classification setting under the

(3.1.1) using neural networks. Theorem 3.3.4 can be applied for many different boundary func-

tions. The complexity of the class of boundary functions F is one of the main driving factors of

the convergence rate. In particular, many approaches which circumvent the curse of dimension-

ality in a regression setting can be used to circumvent the curse in this classification setting.

Note that the ideas provided here are of a theoretical nature. While sparsity constraints are

considered thoroughly in the theoretical literature, they are not widely used in practice. Addi-

tionally, we did not discuss the minimization required for the calculation of Ĝn. This is a very

interesting but complicated topic which is not in the scope of this article. Observe that the class
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of neural networks used in Theorem 3.3.4 depends on κ as well as ρ. We believe that one can

extend the results developed here by either having adaptive classes of neural networks or a class

independent of κ and ρ in a similar manner to [126]. One obstacle to overcome is the fact that

the conditions on the probability distribution Q required are not strictly weaker for larger κ and

ρ.

Lastly, while our goal is to prove results considering neural networks, it also contains new in-

sights on the noise condition (3.1.1). In order to establish optimal convergence, an additional

condition in order to show approximation results of neural networks with respect to the metric

dfQ is necessary. Intuitively, the reverse inequality is required for certain sets. Note that requir-

ing the reverse inequality is an overly restrictive assumption which holds for almost no classes

of possible distributions Q for κ ̸= 1. This proved to be a major challenge and is solved by (3.)

in Definition 3.3.3. While this condition is always also satisfied for larger but not lower β (and

thus κ), the reverse is true in condition (3.1.1). Thus, together the requirement is that κ is the

”correct rate”. Note that condition (3.) still allows for highly non-continuous fQ close to the

boundary of G∗
Q. This is essential, since considering only smooth fQ close to the boundary leads

to different convergence rates as shown in Theorem 2 of [71].
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4 Random Planted Forest

This chapter follows the paper [54]. We included some slight modifications in order to embed

it into this thesis. Additionally, it includes joint research with Lukas Burk, Munir Hiabu, Enno

Mammen and Marvin Wright on a generalisation of random planted forest which will be pub-

lished in the future.

We introduce a novel interpretable, tree based algorithm for prediction in a regression setting

in which each tree in a classical random forest is replaced by a family of planted trees that

grow simultaneously. The motivation for our algorithm is to estimate the unknown regression

function from a functional decomposition perspective, where each tree corresponds to a function

within that decomposition. The maximal order of approximation in the decomposition can be

specified or left unlimited. If a first order approximation is chosen, the result is an additive

model. In the other extreme case, if the order of approximation is not limited, the resulting

model places no restrictions on the form of the regression function. In a simulation study we

find encouraging prediction and visualisation properties of our random planted forest method.

We also develop theory for an idealised version of random planted forests in cases where the

maximal order of approximation is low. We show that if the order is smaller than three, the

idealised version achieves asymptotically optimal convergence rates up to a logarithmic factor.

4.1 Introduction

In many ways, machine learning has been very disruptive in the last two decades. The class

of neural networks has shown unprecedented and previously unthinkable predictive accuracy in

fields such as image recognition [78, 106], speech recognition [57], and natural language process-

ing [27]. Deep neural networks are strong in applications where huge amounts of data can be

assembled and many variables interact with each other. A second disruptive class of machine

learning algorithms are decision tree ensembles. The gradient boosting machine [37] in particular

excels in many applications. It often is the best performing algorithm for tabular data [44] and

as such it is praised by many practitioners. Among the 29 challenge-winning solutions posted

on Kaggle during 2015, 17 used xgboost – a variant of a gradient boosting machine [20]. The

second most popular method, deep neural networks, was used in 11 solutions.

These two classes of machine learning algorithms are in contrast to classical statistical models

that assume an explicit structure such as a linear model [97] or an additive model [15, 38]. Tra-

ditionally, if the data does not fit into the required structure, the analyst tries to transform the

variables at hand to achieve better fits – for example by using a log-transformation. Estimators
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4 Random Planted Forest: A Directly Interpretable Tree Ensemble

received from the classical statistical models are highly accurate if the model is correctly speci-

fied. However, they perform poorly if the data deviates strongly from the structure assumed by

the model.1

Our aim is to combine the best of the two worlds. We propose a new tree based algorithm we

call random planted forests (rpf). It starts with a simple structure and becomes increasingly

flexible in a data-driven way as the algorithm unfolds.

We believe that one important factor of the success of gradient boosting is that it indirectly

limits the order of interaction between predictors by limiting the depth of the trees. Thus,

higher order interaction terms are ignored which usually require a large amount of data to be

predicted accurately. This heuristic is also supported by [122] who find that random forests

perform poorly in additive models and by their proposal to look for modifications of random

forests that adapt to structures in the data. Motivated by this paper, in [123] a modification of

random forest was proposed where in each iteration the tree is replaced by a finite fixed number

of trees that grow in parallel. We consider a regression problem and assume that the regression

function can be well approximated by lower order terms in a functional decomposition

m(x) =
∑

t⊆{1,...,d}

mt(xt) = m∅ +
∑

t∈{1,...,d}

m{t}(xt) +
∑
t1<t2

m{t1,t2}(xt1 , xt2) + · · · . (4.1.1)

The rpf algorithm approximates this decomposition by hierarchically estimating the summands

from lower to higher order interaction terms. Figure 4.1 provides a short illustration. The

interaction terms included can be selected in advance. For example, one can fix the maximum

order of approximation in the decomposition. If all interaction terms of all orders are included

one has the full model where no restrictions are applied to the regression function. Uniqueness

of the components is ensured via identification constraints, see Subsection 6.1.2. In contrast to

the problem considered by [2], the constraint itself is of secondary importance. The reason is

that we do not aim to approximate a multivariate estimator by (4.1.1). The rpf estimator is

already in the form of (4.1.1). Hence, the constraint does not have an effect on the quality of

the estimator.

In the simulation study presented in Section 4.4, we find that even if the order of approximation

in the rpf algorithm is not bounded the results are promising. However, bounding the order of

interaction does increase the performance slightly if the true model satisfies the same constraint.

An additional advantage of choosing a first or second order approximation is that the prediction

can be visualised easily. Figure 4.2, Figure 4.3, and Figure 4.4 show plots that visualise additive

and two dimensional components of a high dimensional model, respectively. The models we

compare to where chosen since they are the strongest competitors which are easily visualisable

regarding the simulation results in Section 4.4. Our rpf algorithm differs from classical random

forests in several respects:

• Each tree in a random forest is replaced by a tree family. Each tree in a family corresponds

1There are also fully nonparametric estimators which do not assume a specific structure, e.g., local polyno-
mial estimators. However these are exposed to the curse of dimensionality, i.e. exponentially deteriorating
estimation performance with growing number of variables.
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Figure 4.1: Illustration of a family of planted trees. Higher order trees are descendants of lower
order trees. Trees grow simultaneously and the height of the edges indicate the order
in which splits occurr.
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Model 1: additive+sparse+smooth, d=30

Figure 4.2: Estimates from 40 simulations for m1 of Model 1: m(x1, . . . , x30) = m1(x1)+m2(x2)

with mk(xk) = 2(−1)k sin(πxk). The true function is visualised as a black solid line.
Sample size is n = 500. Predictors have an approximate pairwise correlation of 0.3
and the noise has variance 1. For rpf and xgboost, parameters are picked from a
grid search. The gam curves have data-driven parameters.
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Figure 4.3: Estimates from 40 simulations for m1 of Model 4: m(x1, . . . , x30) = m1(x1) +m(x2)

with mk(xk) = (2(−1)k sin(πxk)−2)1(x ≥ 0)+(−2 sin(πxk)+2)1(x < 0). The true
function is visualised as a black solid line. Sample size is n = 500. Predictors have
an approximate pairwise correlation of 0.3 and the noise has variance 1. For rpf and
xgboost parameters are picked from a grid search. The gam curves have data-driven
parameters.

to one term in the decomposition. The trees grow simultaneously and the global fit is given

by the sum of the tree estimates.

• The algorithm for a tree family starts by growing main effect trees. Interaction trees of

order two are generated as descendants of main effect trees. More generally, interaction

trees of higher order come from interaction trees of one degree less.

• As in classical random forests, splits are only allowed in a random subset of variables. This

is done to reduce dependence between tree families with the aim of decreasing the variance

of the forest estimator. Constructing random subsets is more involved in the rpf algorithm

because different trees in one family have different dimensions. We call the parameter

controlling the size of these random subsets t try.

• Split points are selected from a finite set of random points. Not considering all possible

points for splitting reduces computation time. Choosing random points further reduces

the dependence between tree families. Additionally, bias is reduced in the case of smooth

components. This can be deducted from our simulation study as well as theory developed

in Section 4.5. We call the parameter controlling the number of possible split points

split try.

The idea of using splits from a finite set of random points is very similar to the method used in

extremely random forests [41].

A tree family in the rpf algorithm can be thought of as one traditional decision tree in which a

leaf is not removed from the algorithm when split in some cases. This happens when a leaf is

split with respect to a component which was not used to construct the leaf so far. Additionally,

each leaf may not be constructed by using more than r covariates. A simple heuristic why it

may be beneficial not to remove a leaf from a tree when splitting is the following. Consider the

regression problem Yi = m(Xi) + ϵi with i = 1, . . . , n and m(x) =
∑d

j=1 1(xj ≤ 0.5) for large
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Figure 4.4: Heatmap from the median performing run for each method, measured via
mean squared error, out of 40 simulations. Predictions are for m1,2 of Model
3: m(x1, . . . , x30) =

∑3
k=1mk(x) +

∑
1≤k<j≤3mk,j(xk, xj) with mk,j(xk, xj) =

2(−1)k sin(πxkxj), mk(xk) = (−1)k2 sin(πx1). Sample size is n = 500. The pre-
dictors have an approximate pairwise correlation of 0.3 and the noise has variance
1. Parameters are picked from a grid search.

d. If we never remove the original leaf, one can approximate m by splitting the original leaf

once with respect to each covariate j. Thus, for each direction, n data points are considered for

finding the optimal split value. Additionally we end up with on average n/2 data points in each

leaf. In the original random forests algorithm, in order to find a similar function, one would

have to grow a tree with depth d, where each leaf is constructed by splitting once with respect

to each covariate. This implies that we end up with 2d leaves, which on average contain n/(2d)

data points. Thus, the estimation should be much worse both because of less precise split points

and less accurate fitted values.

If we only allow for a maximum interaction of two or less, the rpf algorithm provides an estimator

which is easily interpretable. In recent years, there have been other algorithms with similar ben-

efits: The rpf method differs from the tree based explainable boosting machine [16, 80, 81, 82]

and the neural network based neural additive model [1] recently introduced in several ways.

Similar to rpf, these methods aim to approximate the regression function via the functional

decomposition (4.1.1). However, they rather resemble classical statistical methods described

earlier. After specifying a fixed structure, the explainable boosting machine assumes that every

component is relevant and all components are fitted via a backfitting algorithm [14]. A similar

principle using backpropagation instead of backfitting is applied in the neural additive model.

In contrast, the rpf algorithm may ignore certain components completely. Additionally, inter-

action terms do not need to be specified beforehand. Hence explainable boosting machine and

the neural additive model do not share two key strengths that rpf has: a) automatic interaction

detection up to the selected order, b) strong performance in sparse settings.

Some model-based boosting algorithms [59] have similar properties to the ones given above. In

particular, they also suffer from the fact that they do not have automatic interaction detection,

especially if a large number of covariates are present. An algorithm not suffering from this

problem is multivariate adaptive regression splines [36]. However, it has a continuous output

as composition of hinge functions. Thus, it does not adapt well when single jumps are present.
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4 Random Planted Forest: A Directly Interpretable Tree Ensemble

Furthermore, as seen in our simulation study in Section 4.4, multivariate adaptive regression

splines are less accurate when many covariates are active. A related algorithm which copes well

with interaction terms is bayesian additive regression trees [25]. As seen in our simulation study

in Section 4.4, the algorithm is competitive in all cases considered. However, bayesian additive

random trees provides an estimator which does not follow a functional decomposition. Thus,

it does not allow for interpretability as rpf does. Additionally, the MCMC method required is

computationally expensive.

In Section 4.5, we develop theory for an idealised version of rpf. From a theoretical point of

view, the most comparable algorithm to rpf is random forests. A theoretical study of Breiman’s

original version of random forests [13] is rather complex due to the double use of data, once

in a CART splitting criterion and once in the final fits. [110] provide a consistency proof for

Breiman’s algorithm while assuming an underlying additive model. They also show that the

forest adapts to sparsity patterns. In more recent papers, theory has been developed for subsam-

pled random forests. By linking to theory of infinite order U-statistics, asymptotic unbiasedness

and asymptotic normality has been established for these modifications of random forests, see

[94, 95, 103, 127]. In our analysis of rpf, we assume that the splitting values do not depend on

the response variable. In this respect, we follow a strand of literature on random forests, see

e.g. [6, 7]. Thus, we circumvent theoretical problems caused by the double use of data as in

Breiman’s random forest. We leave it to future research to study the extent to which theory

introduced here carries over to random forests with data-dependent splitting rules, in particular

for the case of random forests based on subsampling or sample-splitting. For a review of theo-

retical aspects of random forests, we also refer to [8].

In Section 4.2, we introduce and explain the rpf algorithm in detail. In Section 4.3, the influence

of various parameters is discussed. Additionally, we explain the intuition behind choices made in

the construction of the algorithm. In Section 4.4, we perform a simulation study and compare our

rpf algorithm to various other methods. Section 4.5 is a theoretical section. Among others, we

show that an algorithm related to the rpf algorithm achieves asymptotically optimal convergence

rates up to a logarithmic factor when the maximum order of approximation r ≤ 2. Lastly, in

Section 4.6, we introduce a generalisation of the algorithm, which is part of an ongoing research

project. Among others, the generalisation can be used in classification settings.

4.2 The Algorithm

In the following, we describe the rpf algorithm. We are handed data (Yi, Xi,1, . . . , Xi,d)
n
i=1

consisting of i.i.d. observations with Yi, Xi,k ∈ R. We consider the regression problem

E[Yi|Xi = x] = m(x),

70
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with the goal of estimating m. We assume that m can be approximated well by a functional

decomposition [18, 60, 117]

m(x) =
∑
t∈Tr

mt(xt), (4.2.1)

with a specified maximum order of approximation r = 1, . . . , d, where

Tr := {t ⊂ {1, . . . , d} | |t| ≤ r}.

Note that m∅ is a constant. Rpf is based on tree-like structures, which we refer to as trees for

simplicity. A tree consists of a set of dimensions t ∈ Tr, a finite class of subsets {It,1, . . . , It,p}
and values mt,1, . . . ,mt,p ∈ R. For t ∈ Tr and i = 1, . . . , p, the sets It,i, which we refer to as

leaves, are hyperrectangles

It,i ∈

{
d∏

j=1

Aj

∣∣∣∣∣ Aj ∈ A for j ∈ t, Aj = R for j /∈ t

}
(4.2.2)

with

A = {A ⊆ R | A = (b, c] or A = (b,∞) for b ∈ [−∞,∞), c ∈ R}.

The corresponding estimator for mt is given by

m̂t(x) =

p∑
j=1

mt,j1(x ∈ It,1).

Note that for any x ∈ Rd, due to (4.2.2), m̂t only depends on the value of xt. The sets Itj are

obtained by an iterative procedure, where in each step a leaf is selected and split into two new

leaves. In the following, we usually call the components mt trees. In the definition of trees in the

literature, the leaves of a tree typically form a partition of the domain. However, in general, the

leaves of trees in the rpf algorithm are neither disjoint, nor do they unify to the domain. The

algorithm provides an estimator of the regression function m from an ensemble of tree families.

Each tree family estimates the function m from a bootstrap sample. The final estimator is the

average of the estimators derived from the different tree families. A family of planted trees

consists of a tree for each set of coordinates t ∈ Tr, where a tree is grown using only information

on its respective coordinates. Thus, the resulting estimator is in the form of (4.2.1).

An illustration of the algorithm unfolding for a family of planted trees is given in Figure 4.1.

Nodes correspond to leaves. The children of a leaf are connected via edges and are located below

the respective node. The vertical position of a node indicates when the split occurred. The final

leaves are located at the bottom. If a node is connected to a node above via a dashed edge,

this represents a split where the original leaf is not replaced. This happens when growing from

one tree to another. The example given here includes three coordinates. Each data point is

contained in between three and six leaves. Note that the illustration does not contain a single
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node of the tree corresponding to t = ∅. Instead, the top node of tree 1, tree 2 and tree 3

correspond to the tree t = ∅. This choice was made to simplify the illustration.

We proceed by explaining the algorithm precisely, including most technical details. We start by

introducing the calculation of a split in Subsection 4.2.1 followed by the iterations in Subsection

4.2.2. We conclude with the extension to a forest and a discussion on the driving parameters.

4.2.1 Calculating a Split

We are handed a coordinate k ∈ {1, . . . , d}, a tree t ∈ Tr, a set I ⊆ Rd, a current value mI ,

residuals Ri, observations Xi, and a value c ∈ R. Define a partition I = I+ ∪ I− by

I+ := {x ∈ I | xk > c}, I− := {x ∈ I | xk ≤ c}.

Let gI+ :=
∑

Xi∈I+ Ri/
∑

Xi∈I+ 1, gI− :=
∑

Xi∈I− Ri/
∑

Xi∈I− 1 and

gI,c : Rd → R, gI,c(x) = 1(x ∈ I+)gI+ + 1(x ∈ I−)gI− .

Note that gI,c is constant on each of the sets I+, I− and Rd\I. Using the function gI,c, we

update the residuals Rnew
i := Ri − gI,c(Xi) and values

mnew
I+ := mI + gI+ , mnew

I− := mI + gI− . (4.2.3)

Pseudo-code of this procedure is given in Algorithm 5.

Algorithm 5 Calculating a Split

Input k, t, I, c,mI , R1, . . . , Rn, X1, . . . , Xn

Calculate I+, I−
for i = 1, . . . , n do

Ri := Ri − gI,c(Xi);

Calculate mI+ := mI + gI+ ; mI− := mI + gI−

Output mI+ , mI− , I+, I−, R1, . . . , Rn

4.2.2 Planted Tree Family

We start off by setting the residuals R
(0)
i := Yi for i = 1, . . . , n. We set a single leaf I

(0)
∅,1 := Rd

and thus the number of leaves for t = ∅ is p(0)∅ = 1. The corresponding value is m∅,1 = 0. The

trees t ̸= ∅ have no starting leaves and thus, p
(0)
t = 0.

An iteration step is carried out as follows. In step s we are handed residuals R
(s−1)
i , leaves

I(s−1)
t,1 , . . . , I(s−1)

t,p
(s−1)
k

and values m
(s−1)
t,1 , . . . ,m

(s−1)

t,p
(s−1)
k

. The leaves are of the form (4.2.2). In each

step s, we select a tree ts, a coordinate ks = 1, . . . , d, an index js = 1, . . . , p
(s−1)
ts , and a split

point cs in order to split I(s−1)
ts,js

using Algorithm 5. The chosen combination must be viable in

the sense that it must fulfill the following three conditions.
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(C1) p
(s−1)
ts ≥ 1.

(C2) If |ts| = r , then ks ∈ ts.

(C3) We have

{i ∈ {1, . . . , n} | Xi,ks ∈ I, Xi,ks > cs}, {i ∈ {1, . . . , n} | Xi,ks ∈ I, Xi,ks ≤ cs} ≠ ∅.

Now, there are two cases with different updating procedures for the corresponding estimators.

If ks ∈ ts, we use mI := m
(s−1)
ts,js

as an input for Algorithm 5. The leaf I(s−1)
ts,js

is replaced by I+

and I− in tree ts. If ks /∈ ts, we use mI := 0 as an input for Algorithm 5. The sets I+, I− are

added to the tree {ks} ∪ ts. The corresponding values and residuals are updated according to

Algorithm 5. In order to select ts, ks, js, and cs, we use the CART methodology. For suitable

t, k, j, and c, let Rt,k,j,c
i denote the residual one obtains by using Algorithm 5 with inputs k, t

I := I(s−1)(t, j), c, and mI := m
(s−1)
t,j , if k ∈ t, mI := 0 otherwise. We now select ts, ks, js, and

cs as

(ts, ks, js, cs) := arg min
t,k,j,c

n∑
i=1

(Rt,k,j,c
i )2. (4.2.4)

Note that this procedure guarantees that the leaves I(s)t,j of every tree ts are of the form (4.2.2)

for all s. Therefore, they are easy to keep track of. The algorithm stops after nsplits iterations.

Pseudo-code of this procedure is given in Algorithm 6.

Algorithm 6 Random Planted Trees

Input (Y1, X1), . . . , (Yn, Xn)
Ri ← Yi; I∅,1 ← Rd; m∅,1 ← 0; pt ← 0; p∅ ← 1
for s = 1, . . . , nsplits do

Calculate ts, ks, js, cs using Equation (4.2.4)
k ← ks; t← ts; I ← Its,js ;
if ks ∈ ts then

mI ← mts,js

Calculate mI+ ,mI− , I+, I−, R1, . . . , Rn (Algorithm 5)
Its,js ← I+; Its,pts+1 ← I−
mts,js ← mI+ ; mts,pts+1 ← mI− ; pts ← pts + 1

else
mI ← 0
Calculate mI+ ,mI− , I+, I−, R1, . . . , Rn (Algorithm 5)
ts ← ts ∪ ks
Its,pts+1 ← I+; Its,pts+2 ← I−
mts,pts+1 ← mI+ ; mts,pts+2 ← mI− ; pts ← pts + 2

4.2.3 From a Tree Family to a Forest

In order to reduce variance, an extension of Algorithm 6 similar to the random forest procedure

is considered. We draw ntrees independent bootstrap samples (Y b
1 , X

b
1), . . . , (Y

b
n , X

b
n) from
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our original data. On each of these bootstrap samples, we apply Algorithm 6 with two minor

adjustments. Instead of minimizing over all c ∈ R satisfying the constraint (C3), in each iteration

we uniformly at random select split try values for each coordinate in each leaf I in each tree

t. For each coordinate k, the values are chosen (with replacement) from

{
Xi,k

∣∣ Xi,k ∈ I, Xi,k ̸= max{Xi,j | Xi,j ∈ I}
}
.

Secondly, define a set representing the viable combinations

Vr :=
{
(k, t) ∈ {1, . . . , d} × Tr

∣∣ k ∈ t, max{pt, pt\k
}
≥ 1}

In each iteration step we select a subsetM ⊆ Vr uniformly at random, where |M | = ⌈|Vr|·t try⌉
for some given value t try ∈ (0, 1]. In step 4, when calculating (ts, ks, js, cs) in Equation

(7.2.2), we minimize under the additional conditions that c is one of the split try values and

(ks, ts) ∈M or (ks, ts\ks) ∈M . The resulting estimators are m̂b
t(x) :=

∑pbt
j=1 1(x ∈ Ibt,j)mb

t,j for

b = 1, . . . , ntrees. The overall estimators are given by

m̂t(x) :=
1

ntrees

ntrees∑
b=1

m̂b
k(x).

4.3 Discussion of Parameters

In this section, we shortly discuss the parameters introduced and explain why choices were made

when designing the algorithm. Further remarks on the algorithm can be found in Section 6.1.

4.3.1 t try

In the rpf algorithm, the number of combinations of trees and coordinates considered in each

iteration step is defined as a fixed proportion t try of the number of viable combinations |V |.
Thus, the number of combinations considered increases as the algorithm unfolds. We assessed

many different similar mechanisms in order to restrict the number of combinations used in an

iteration step. First of all, we found that using a random subset of the viable combinations

instead of simply restricting the coordinates for splitting is far superior. Roughly speaking, the

reason is that the algorithm may lock itself in a tree if all trees are splitable in each step. The

question remains how to quantify the amount of combinations used. Selecting a constant number

of viable combinations has the disadvantage of either allowing all combinations in the beginning

or having essentially random splits towards the end of the algorithm. Thus, the number of

combinations considered must depend on the number of viable combinations. While other

functional connections between the number of viable and the number of considered combinations

are possible, choosing a proportional connection seems natural.
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4.3.2 split try

In contrast to t try, the parameter split try implies an almost constant number of considered

split points in each iteration. The split try split options are selected uniformly at random

with replacement. In Section 4.4, we find that the optimal value for split try is usually small

compared to the data size. In our experience, setting a constant proportion either leads to

totally random splits for small leaves or essentially allows all splits for large leaves. The reason

is that for large leaves, if a small number of data points are added or removed, the estimation is

basically the same. For the same reason, having a low amount of potential split points in a large

leaf is not a problem. The version we use here yielded the best results. The choice t try < 1 as

well as only using split try split points is done in order to reduce the correlation between tree

families and additionally reducing bias in latter case. It also reduces computational cost. While

it is not obvious which of the two parameters, split try or t try, should be lowered in order

to reduce variance, our results significantly improved as soon as we introduced the mechanisms

regarding the parameters.

4.3.3 Driving Parameters

Although the presence of the mechanisms involving split try and t try improve the results of

rpf, the exact value they take on is not as relevant. Rather, we consider them to be fine-tuning

parameters. Similarly, the number of tree families ntrees in a forest does not have much impact

as long as ntrees is large enough; in our simulation study, ntrees = 50 seemed satisfactory.

The main driving parameter for the estimation quality of rpf is the number of iteration steps

nsplits. While the estimation is quite stable under small changes of nsplits, strongly lowering

nsplits results in a bias, while vastly increasing the parameter leads overfitting.

4.4 Simulations

In this section, we conduct an extensive simulation study in order to arrive at an understanding

of how the rpf algorithm copes with different settings and how it compares to other methods.

For each of 100 Monte-Carlo simulations s = 1, . . . , 100, We consider the regression setup

Y s
i = m(Xs

i ) + εsi , , i = 1, . . . , 500,

where εsi ∼ N(0, 1) i.i.d. with twelve different models, i.e. different functional shapes of m.

The models are outlined in Table 4.1. In sparse models, we consider cases with d = 4, 10, 30

predictors. For dense models we use d = 4, 10. Following [99], the predictors (Xs
i,1, . . . , X

s
i,d) are

distributed as follows. We first generate (X̃s
i,1, . . . , X̃

s
i,d) from a d-dimensional standard multi-

normal distribution with mean equal to 0 and Cov(X̃s
i,j , X̃

s
i,l) = Corr(X̃s

i,j , X̃
s
i,l) = 0.3 for j ̸= l.

Then, we set

Xs
i,k = 2.5π−1arctan(X̃s

i,k).

This procedure is repeated independently 500 times. The methods we compare are given in Table
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4 Random Planted Forest: A Directly Interpretable Tree Ensemble

Table 4.1: Dictionary for model descriptions. In total we consider 12 models. Each model has
a model structure (first six rows) as well as a function shape (last two rows). The
constant d denotes the total number of predictors.

Description Meaning

additive+sparse m(x) = m1(x1) +m2(x2)
hierarchical-interaction m(x) = m1(x1) +m2(x2) +m3(x3)
+sparse +m1,2(x1, x2) +m2,3(x2, x3)
pure-interaction+sparse m(x) = m1,2(x1, x2) +m2,3(x2, x3)
additive+dense m(x) = m1(x1) + · · ·+md(xd)

hierarchical-interaction+dense m(x) =
∑d

k=1mk(xk) +
∑d−1

k=1mk,k+1(xk, xk+1)

pure-interaction+dense m(x) =
∑d−1

k=1mk,k+1(xk, xk+1)

smooth mk(xk) = (−1)k2 sin(πxk)
mk,k+1(xk, xk+1) = mk(xkxk+1)

jump mk(xk) =

{
(−1)k2 sin(πxk)− 2 for x ≥ 0,

(−1)k2 sin(πxk) + 2 for x < 0

mk,k+1(xk, xk+1) = mk(xkxk+1)

4.22. Performance is evaluated by the average mean squared error (MSE) from 100 simulations.

Table 4.2: Dictionary for algorithms. In total we consider 7 different ones. Additionally, 2 toy
algorithms are considered for benchmark values.

Description short Code-Reference

A gradient boosting variant xgboost [21]
rpf rpf Github
Random forest rf [130]
Smooth backfitting3 sbf Github
Generalized additive models4 gam [129]
Bayesian additive regression trees BART [115]
multivariate additive regression splines MARS [50]

1 nearest neighbours 1-NN
Sample average mean

The MSE is evaluated on test points Xs
501, . . . , X

s
1000 which are generated independently of the

data:
1

100

100∑
s=1

1

500

1000∑
i=501

{m(Xs
i )− m̂s(Xs

i )}2,

where s runs over the different simulations and m̂s represents the estimator depending on the

parameters in question as well as the data (Xs
i , Y

s
i )

500
i=1.

For xgboost and rpf, we record results for the case when the estimators are additive. Addition-

ally, we show results for estimators which can approximate higher order interaction terms. For

the rpf algorithm, we further distinguish between an estimator able to approximate interaction

terms of order up to two as well as an unbounded configuration. Details are presented in Table

2Some codes are available on GitHub: https://github.com/PlantedML/randomPlantedForest.

76

https://github.com/PlantedML/randomPlantedForest


4.4 Simulations

8.1 in Section 8.1. Beforehand, we ran 30 simulations to find the optimal parameter combinations

for each method from the parameter options outlined in Table 8.1. These simulations where con-

ducted independently from the final simulations using training data (X̄s
1 , Ȳ

s
1 ), . . . , (X̄

s
500, Ȳ

s
500)

for s = 1, . . . , 30. A parameter combination was considered optimal if it minimized the mean

squared error averaged over all 30 simulations. For xgboost and rpf, we also considered data-

driven parameter choices (indicated by CV). We ran a 10-fold cross validation considering all

parameters outlined in Table 8.1 including all sub-methods and options. The initial parameter

options are hand-picked from preliminary simulation runs. Note that we did not optimize pa-

rameters for the method gam. Instead, we used a fully data-driven version. We now present

the results from 100 Monte Carlo simulations. We only show selected parts of the overall study

here. Additional tables can be found in Subsection 8.1.

Table 4.3 contains the additive sparse smooth setting. We observe that algorithms relying on

continuous estimators (sbf, gam, MARS) outperform the others with gam being the clear winner,

irrespective of the number of predictors d. From the other algorithms, bayesian additive random

trees and additive (max interaction=1) rpf do best with similar performance between the two

algorithms. Note that smooth backfitting (sbf) falls off considerably for d = 10, 30, hinting that

it cannot take advantage of the sparsity condition. This is not surprising given that no penalty

terms are used for the L2 losses.

Table 4.3: Model 1: Additive Sparse Smooth Model. We report the average MSE from 100
simulations. The standard deviations are provided in brackets.

Method dim=4 dim=10 dim=30

xgboost (depth=1) 0.119 (0.021) 0.142 (0.021) 0.176 (0.027)
xgboost 0.141 (0.024) 0.166 (0.028) 0.193 (0.033)
xgboost-CV 0.139 (0.028) 0.152 (0.029) 0.194 (0.035)
rpf (max interaction=1) 0.087 (0.018) 0.086 (0.017) 0.097 (0.019)
rpf (max interaction=2) 0.107 (0.015) 0.121 (0.025) 0.142 (0.026)
rpf 0.112 (0.017) 0.134 (0.026) 0.162 (0.028)
rpf-CV 0.103 (0.02) 0.102 (0.035) 0.105 (0.022)
rf 0.209 (0.021) 0.252 (0.027) 0.3 (0.029)
sbf 0.071 (0.026) 0.134 (0.013) 0.388 (0.073)
gam 0.033 (0.012) 0.035 (0.013) 0.058 (0.021)
BART 0.085 (0.019) 0.076 (0.017) 0.091 (0.023)
BART-CV 0.09 (0.019) 0.081 (0.014) 0.09 (0.02)
MARS 0.054 (0.014) 0.061 (0.025) 0.076 (0.031)
1-NN 1.509 (0.1) 3.228 (0.182) 5.534 (0.313)
average 3.811 (0.217) 3.689 (0.183) 3.748 (0.202)

Interestingly, random rpf (max interaction=2) and rpf perform very well and even outperform

the additive (depth=1) xgboost. Random forest (rf) shows the worst performance in this setting.

However, it seems to catch up to smooth backfitting with increasing dimension, indicating that

it makes better use of the sparsity condition.

In the hierarchical-interaction sparse smooth setting, which is visualized in Table 4.4, we only

show results from methods which can deal with interactions. Other cases are deferred to Sec-

77



4 Random Planted Forest: A Directly Interpretable Tree Ensemble

tion 8.1. Here, we find that BART as well as multivariate additive regression splines (MARS)

outperform our rpf algorithm. However, the latter slightly outperforms xgboost. In the Table

8.6 in Section 8.1, a similar picture can be observed in the pure-interaction case. In particular,

BART proves to be much stronger than all competing algorithms. This indicates that BART

does not rely on a hierarchical interaction structure as much as the other methods. However, it

comes at the cost of increased computational time. Recall that in contrast to rpf, MARS pro-

vides a continuous estimator and the estimator provided by BART is not interpretable. Next,

we re-visit the additive case. However, this time, the regression function is not continuous. The

results are tabulated in Table 8.2 in Section 8.1. In this setting, our additive rpf algorithm and

the BART algorithm perform best. A visual picture of the excellent fit of rpf was provided in

Figure 4.3. Random forest and xgboost share the third position. The best interpretable com-

petitor is xgboost (additive). Unsurprisingly, models based on continuous estimators can not

deal with the jumps in the regression functions. Cases including interaction terms and jumps in

the regression function are deferred to Section 8.1.

Table 4.4: Model 2&3: Hierarchical and Pure Interaction Sparse Smooth Model. We report the
average MSE from 100 simulations. The standard deviations are provided in brackets.

Method dim=4 dim=10 dim=30

H
ie
ra
rc
h
ic
al
-

in
te
ra
ct
io
n xgboost 0.374 (0.035) 0.481 (0.064) 0.557 (0.089)

xgboost-CV 0.393 (0.051) 0.499 (0.058) 0.563 (0.089)
rpf (max interaction=2) 0.248 (0.038) 0.327 (0.045) 0.408 (0.07)
rpf 0.263 (0.034) 0.357 (0.044) 0.452 (0.076)
rpf-CV 0.277 (0.039) 0.366 (0.051) 0.463 (0.083)
rf 0.432 (0.039) 0.575 (0.061) 0.671 (0.08)
BART 0.214 (0.03) 0.223 (0.04) 0.252 (0.037)
BART-CV 0.242 (0.043) 0.276 (0.053) 0.315 (0.047)
MARS 0.355 (0.089) 0.282 (0.038) 0.414 (0.126)
1-NN 2.068 (0.156) 5.988 (0.624) 11.059 (0.676)
average 8.366 (0.43) 8.086 (0.246) 8.207 (0.496)

We now consider dense models. In the additive dense smooth model, see Table 8.3 in Section 8.1,

the clear winners are sbf and gam, with gam having the best performance. This is not surprising,

since these methods have more restrictive model assumptions than the others. Therefore, if the

assumptions are met, one would expect the methods to do well. Additionally, gam typically has

an advantage over sbf in our setting. This is because splines usually fit trigonometric curves

well, while kernel smoothers would be better off with a variable bandwidth in this case, which

we did not implement. Observe that MARS does not deal well with this situation, in particular

in the case d=10. Our rpf method is in third place, tied with BART and slightly outperforming

xgboost. This suggests that the rpf algorithm is especially strong in sparse settings. In dense

settings, the advantage towards xgboost and BART shrinks. This observation is underpinned

by the next scenario.

As a final setting, we consider the hierarchical-interaction dense smooth model. The results
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are tabulated in Table 8.4 in Section 8.1. The results further strengthen our intuition that the

current version of the rpf algorithm performs worse in dense settings. While it is by far the

best performing algorithm with only four predictors, the performance deteriorates faster than

that of other methods when adding predictors. In dimension 10, i.e, with ten predictors, xboost

outperforms rpf whereas the reverse can be observed for d=4.

Concluding remarks on simulations results From the conducted simulation study, we find that

BART showed the strongest performance while the rpf algorithm is the runner-up. Compared

to BART, rpf has the advantage that results can be easily plotted and interpreted (if only lower-

interactions are fitted). Additionally, the BART algorithm is computationally quite intensive and

we indeed struggled to get BART running in the higher dimensional cases without error already

in our study with a sample size of 500 (probably because of memory limitations). Xgboost

showed very strong results in terms of accuracy while being very fast and resources effective.

However, accuracy turns out to be slightly worse than rpf in low-interaction settings and it does

not provide the possibility to visualize the fit.

4.5 Theoretical Properties

In this section we derive asymptotic properties for a slightly modified rpf algorithm. The main

difference is that in the tree family construction of the modified forest estimator, splitting does

not depend directly on the responses (Yi : i = 1, ..., n). With this modification we follow other

studies of forest based algorithms to circumvent mathematical difficulties which arise if settings

are analyzed where the same data is used to choose the split points as well as to calculate the

fits in the leaves. Clearly, one can apply the results in this section to a similar modification

of rpf making use of data splitting to separate splitting and fitting. Our results imply two

findings. First, for r ≤ 2 the estimator can achieve optimal rates up to logarithmic terms in the

nonparametric model where the interaction terms mt (for |t| ≤ 2) allow for continuous second

order derivatives. Secondly, for all choices of r one achieves faster rates of convergence for the

forest estimator than for tree family estimators that are based on calculating only one single

tree family. We comment below why the situation changes for r ≥ 3 compared to r ≤ 2. A

major challenge in studying rpf lies in the fact that the estimator is only defined as the result

of an iterative algorithm and not as the solution of an equation or of a minimizing problem.

In particular, our setting differs from other studies of random forests where tree estimates are

given by leaf averages of terminal nodes. In such settings the tree estimator only depends on

the leaves of terminal nodes, but not on other structural elements of the tree, and in particular

not on the way the tree was grown. Secondly, the definition of the estimator as a leaf average

allows for simplifications in the mathematical analysis. We cannot make use of either of these

advantages. The main point of our mathematical approach is to show that approximately, the

tree family estimators and the forest estimators are given by a least squares problem defined

by the leaves of at the end of the algorithm. We assume that the regression function fulfills
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m(x) := m0(x) =
∑

t∈Tr
m0

t (xt) for some r ∈ N. The data is generated as

Yi = m0(Xi) + εi =
∑
t∈Tr

m0
t (Xi,t) + εi,

where the additive components m0
t : t ∈ Tr are smooth functions. In the model equation, the

εi’s are mean zero error variables, and, for simplicity, the covariables Xi,k are assumed to lie in

[0, 1]; i = 1, . . . , n; k = 1, . . . , d.

We now describe the iteration steps of the tree family algorithm discussed in this section. As

initialisation we set I0t,1 = [0, 1]d, Lt,0 = 1 and m̂0
t ≡ 0 for t ∈ Tr. In iteration steps s =

1, ..., S partitions Ist,l =
∏

k∈t(a
s
t,k,l, b

s
t,k,l] ×

∏
k ̸∈t(0, 1] of [0, 1]

d with l = 1, ..., Lt,s are updated

by splitting one of the rectangles Ist,l for one t ∈ Tr, one l ∈ {1, ..., Lt,s} along one coordinate

k. Here, in abuse of notation, we write
∏

k∈t · ×
∏

k ̸∈t · for the set of tuples with coordinates

ordered according to the value of k and not according to the appearance in the product sign

subindices. We now describe step s where the rectangles Is−1
t,l are updated. At step s one chooses

a ts ∈ Tr, an ls ∈ {1, ..., Lts,s−1}, a ks ∈ ts and a splitting value bsts,ks,ls ∈ (as−1
ts,ks,ls

, bs−1
ts,ks,ls

). The

values are chosen by some random procedure that satisfies the assumptions (A1), . . . , (A8) below.

Using these values one splits (as−1
ts,ks,ls

, bs−1
ts,ks,ls

] into (asts,ks,ls , b
s
ts,ks,ls

] and (asts,ks,Lts,s
, bsts,ks,Lts,s

],

where asts,ks,ls = as−1
ts,ks,ls

, asts,ks,Lts,s
= bsts,ks,ls , b

s
ts,ks,Lts,s

= bs−1
ts,ks,ls

and Lts,s = Lts,s−1 + 1. For

(k, l) ̸= (ks, ls) we set (asts,k,l, b
s
ts,k,l

] = (as−1
ts,k,l

, bs−1
ts,k,l

]. Then we update the rectangle Ists,l for

l = ls and l = Lts,s by defining Ists,l = I
marg,s
ts,l

×
∏

k ̸∈ts(0, 1] with I
marg,s
ts,l

=
∏

k∈ts(a
s
ts,k,l

, bsts,k,l].

All other rectangles are taken over identically from the last step. Finally, for the chosen tree

ts, the values m̂s
ts are updated by averaging residuals over the intervals Ists,l for l = 1, ..., Lts,s.

For a subset I of [0, 1]d we write |I| for the Lebesgue measure of the set. Note that for finite

sets Q, we also use |Q| for the number of Elements in Q. From context, it is always clear which

version is used. Additionally, we write |I|n = |{i : Xi ∈ I}|/n for the empirical measure of I.
Then, for xts ∈ I

marg,s
ts,l

with l ∈ {1, ..., Lts,s} the estimator can be written as

m̂s
ts(xts) =

1

n|Ists,l|n

∑
i:Xi∈Is

ts,l

Yi − ∑
t∈Tr,t ̸=ts

m̂s−1
t (Xi,t)

 .

Because m̂s−1
t is constant on the set Ist,k we can rewrite the formula with m̂s−1

t (Ist,k) equal to

m̂s−1
t (u) for u ∈ Ist,k as follows

m̂s
ts(xts) = ̂̄ms

ts(xts)−
1

|Ists,l|n

∑
t∈Tr,t̸=ts

Lt,s∑
k=1

|Ists,l ∩ I
s
t,k|n m̂s−1

t (Ist,k).

Here for xts ∈ I
marg,s
ts,l

with l ∈ {1, ..., Lts,s} the function ̂̄ms
ts is a marginal estimator defined bŷ̄ms

t (xt) =
1

n|Is
t,l|n

∑
Xi∈Is

t,l
Yi. Furthermore we define the density estimator p̂st (xt) = |Ist,l|n/|Ist,l|

for x ∈ Ist,l and the |t ∪ t′|-dimensional estimator p̂st∪t′(xt∪t′) = |Ist,l ∩ Ist′,l′ |n/|Ist,l ∩ Ist′,l′ | for
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x ∈ Ist,l ∩ Ist′,l′ . With this notation we get

m̂s
ts(xts) = ̂̄ms

ts(xts)−
∑

t∈Tr,t̸=ts

∫
(0,1]|t\ts|

p̂sts,t(xts , ut\ts)

p̂sts(xts)
m̂s−1

t (xt∩ts , ut\ts)dut\ts .(4.5.1)

Here and in the following, we sometimes write f(x) instead of f(xt) for functions f that depend

only on x via xt, e.g. m̂
s−1
t (x) = m̂s−1

t (xt). For t ̸= ts we set m̂
s
t = m̂s−1

t . After S (S corresponds

to nsplits) steps we get the estimators m̂S
t for t ∈ Tr. These estimators are not calibrated in

the sense that we do not have
∑n

i=1 m̂
S
t (X

i
t\t′ , xt′) = 0 for t′ ⊊ t and xt′ ∈ [0, 1]|t

′|. Calibration

can be achieved by straight forward modifications of m̂S
t which may require further splits of

rectangles ISt′,l for t′ ⊊ t. This is not discussed here.

Now, the tree family estimator of the function m0 is given by m̂S(x) =
∑

t∈Tr
m̂S

t (xt). For the

forest estimator, tree family estimators are repeatedly constructed. They are denoted by m̂S,v
t

for t ∈ Tr and m̂S,v for v = 1, ..., V (V corresponds to ntrees). We define the forest estimator as

m̂t = V −1
∑V

v=1 m̂
S,v
t for t ∈ Tr and m̂ = V −1

∑V
v=1 m̂

S,v. If necessary, we also write Is,vt,l , a
s,v
t,k,l,

tvs ,kvs , ... instead of Ist,l, ast,k,l, ts ,ks, ... to indicate that we discuss the tree family estimator

with index v.

Considering the above, there are three further modifications in the theoretical version of the

algorithm studied in this section compared to the algorithm of the preceding sections. First, we

construct trees based on the full sample and not on bootstrap samples. Below, we observe that

bootstrap is necessary neither for rate optimality for r ≤ 2 nor rate improvement by averaging

tree families. Our results can be generalized to versions that make use of bootstrap. Second,

each tree in a family is grown from an own root. Higher order trees do not come from lower

order ones. This assumption is made to simplify mathematical theory. Third, in the iteration

steps we make an update of the estimator m̂s
ts(x) for all rectangles Ists,l (l = 1, ..., Lts,s) of the

chosen tree ts. In our implementation of rpf in the preceding sections we only did this for the

splitted rectangle, i.e. for l = ls and l = Lts,s. From simulations, we concluded that the third

change is not severe. For our result, we make use of the following assumptions.

Assumption (A1) The tuples (Xi, εi) are i.i.d. The functions m0
t : [0, 1]|t| → R are twice

continuously differentiable and E[m0
t (Xi,t)] = 0 for all t ∈ Tr. The covariable Xi has a density

p that is bounded from above and below (away from 0). For t ∈ T2r, the joint density pt of

the tuple Xi,t allows continuous derivatives of order 2. Conditionally on Xi and the iterative

constructions of the leaves in the trees, the error variables εi have mean zero and variance

bounded by a constant and the products εiεj are mean zero for i ̸= j. Conditionally on Xi, the

iterative constructions of the leaves in the tree families are i.i.d. for v = 1, ..., V .

Assumption (A2) The number S of iterations in the tree family construction and the number

V of contructed trees is allowed to depend on n.

Note that S is of the same order as the number of rectangles in the final partition. S is
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4 Random Planted Forest: A Directly Interpretable Tree Ensemble

assumed to converge to infinity, see (A3). When considering the forest estimator one usually

requires V to converge to infinity in order to obtain useful convergence rates, see also (A7),(A8).

Assumption (A3) For CA3 > 0 large enough we assume that there exists a constant C ′
A3 > 0

such that, with probability tending to one, for {s : S − J ′ ≤ s ≤ S} and 1 ≤ v ≤ V there exist

a partition S − J ′ = sv0 < sv1 < ... < svJ = S such that for 1 ≤ j ≤ J the set {tvs : svj−1 < s ≤ svj}
contains all elements of Tr. Here J and J ′ are the smallest integers larger or equal to CA3 log n

or C ′
A3(log n)

2, respectively.

Assumption (A4) For x ∈ [0, 1], t ∈ Tr, 1 ≤ v ≤ V we define lt(x) = lvt (x) such that x ∈ IS,vt,lvt (x)
.

We assume that with probability tending to one uniformly over t ∈ Tr, 1 ≤ v ≤ V , k ∈ t,

1

n

n∑
i=1

(
bS,vt,k,lvt (Xi,t)

− aS,vt,k,lvt (Xi,t)

)2
≤ δ21,n

for a sequence δ1,n with (log n)2δ1,n → 0 and nRδ1,n →∞ for R > 0 large enough.

Assumption (A5) It holds for t, t′ ∈ Tr, 1 ≤ v ≤ V and S − J ′ ≤ s ≤ S that

sup
t,t′∈Tr,t̸=t′

∫
(0,1]|t∪t′|

(
p̂S,vt∪t′(u)

p̂S,vt (ut)
−
p̂s,vt∪t′(u)

p̂s,vt (ut)

)2

dut∪t′ ≤ δ21,n(log n)
−4,

sup
t∈Tr

∫
(0,1]|t|

( ̂̄mS,v
t (ut)− ̂̄ms,v

t (ut)
)2

dut ≤ δ21,n(log n)
−4

with probability tending to one.

Assumption (A6) It holds uniformly for t, t′ ∈ Tr, 1 ≤ v ≤ V that

∫
(0,1]|t∪t′|

(
p̂S,vt∪t′(u)

p̂S,vt (ut)
− pt∪t′(u)

pt(ut)

)2

dut∪t′ ≤ δ22,n,

sup
u∈(0,1]|t|

|p̂s,vt (u)− pt(u)| ≤ η1,n for s = S, S − J ′ − 1,

with probability tending to one for sequences δ2,n, η1,n with (log n)2δ2,n → 0 and η1,n → 0.

Theorem 4.5.1. Under (A1)–(A6), for 1 ≤ v ≤ V the tree family estimators satisfy∥∥∥∥∥∑
t∈Tr

(m̂S,v
t −m0

t )

∥∥∥∥∥ = OP (δ1,n + S1/2n−1/2)

with probability tending to one, where ∥ · ∥ denotes the L2(P ) norm.

We shortly discuss this result. Suppose that the rectangles Ist,l have side lengths of order h

for some sequence h→ 0. Then δ1,n is of order h, S is of order h−r and up to logarithmic terms
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we obtain a rate of order h + (nhr)−1/2 for the estimation error of m̂S,v =
∑

t∈Tr
m̂S,v

t . For

discussing the complete forest estimator, we need the following assumptions.

Assumption (A7) It holds uniformly for t, t′ ∈ Tr, 1 ≤ v ≤ V that

sup
u∈(0,1]|t∪t′|

∣∣∣p̂S,vt∪t′(u)− pt∪t′(u)
∣∣∣ ≤ η2,n,

∥p̂S,vt − pt(u)∥,

∥∥∥∥∥
∫
(0,1]|t′\t|

p̂S,vt∪t′(u)− pt∪t′(u)
pt(ut)

m0
t′(ut′)dut′\t

∥∥∥∥∥ ≤ δ3,n

with probability tending to one for some sequences η2,n, δ3,n with η2,n, δ3,n → 0.

Assumption (A8) For t, t′ ∈ Tr we write p̂S,+t∪t′ = V −1
∑V

v=1 p̂
S,v
t∪t′ and p̂

S,+
t = V −1

∑V
v=1 p̂

S,v
t . It

holds uniformly for t, t′ ∈ Tr that

∥p̂S,+t − pt(u)∥1,

∥∥∥∥∥
∫
(0,1]|t′\t|

p̂S,+t∪t′(u)− pt∪t′(u)
pt(ut)

m0
t′(ut′)dut′\t

∥∥∥∥∥
1

≤ δ4,n

with probability tending to one for a sequence δ4,n → 0. Here, ∥ · ∥1 denotes the L1(P ) norm.

Below we argue that under certain assumptions the averaged estimators in (A8) can achieve

rates of convergence δ4,n = O(δ21,n), compared to their summands which have a bias of order

δ1,n. If the density pt is twice continuously differentiable, qualitatively, p̂S,+t behaves like a kernel

density estimator with bandwidth h of order δ1,n. We switch from the L2(P ) norm to the L1(P )

norm in Assumption (A8) and in the next theorem, because at the boundary of size Ch with C

large enough we have a bias of order h and in the interior the bias is of order h2. Thus, measured

by the L1(P ) norm we get a bias of order h2 whereas the L2(P )−norm has a slower rate caused

by the boundary effects.

Theorem 4.5.2. Under (A1)–(A8), for the forest estimator we have∥∥∥∥∥∑
t∈Tr

(m̂t −m0
t )

∥∥∥∥∥
1

≤ C(δ21,n + δ1,nδ2,n + δ23,n + δ4,n + S1/2n−1/2)

with probability tending to one.

Again, we shortly discuss this result. As above, suppose that the rectangles Ist,l have side

lengths of order h for some sequence h→ 0. Then δ1,n is of order h and S is of order h−r. The

sequence δ2,n is the rate of a histogram estimator of dimension ≤ 2r which up to logarithmic

terms is of order h+(nh2r)−1/2 for 2r dimensional estimators. Assume for x ∈ [0, 1]|t| sufficiently

far away from the boundary of [0, 1]|t| the random variables xk − aSk and bSk − xk approximately

follow the same distribution, where aSk , b
S
k are the lower and upper bounds of the leaf which

contains x with respect to dimension k. Then the bias terms of order h cancel and we get that

the bias terms measured by δ4,n are of order h2. Thus up to logarithmic terms, we get a bound

on the accuracy of the forest estimator of order h2+h(nh2r)−1/2+(nhr)−1/2. This rate is faster
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4 Random Planted Forest: A Directly Interpretable Tree Ensemble

than the tree family rate if nh2r → ∞, i.e. we need consistency of 2r dimensional histogram

estimators. These histogram estimators show up as kernels in integral equations which define

the tree family and forest estimator. This means that, approximately, the tree family estimators

m̂v are given as solutions of integral equations of the form m̂v = m̄v + Avm̂v with random

integral operators Av, where the operators Av are defined by up to 2r dimensional density

estimators. If these density estimators are consistent the operators Av are approximately equal

to an operator A not depending of v. Then, m̂v approximately solves m̂v = m̄v +Am̂v and the

forest estimator m̂ = V −1
∑V

v=1 m̂
v solves approximately m̂ = V −1

∑V
v=1 m̄

v +Am̂. For getting

faster convergence rates for the forest estimator one shows that the average V −1
∑V

v=1 m̄
v has

faster rates as the summands m̄v. For the whole argument it is crucial that up to 2r dimensional

density estimators are consistent. Also in case these estimators are inconsistent we expect a

better performance of forest estimators compared to tree family estimators. However, additional

terms show up in the expansion of the rpf estimator that are not of order h2. Let us discuss

this for a bandwidth h that is rate optimal for dimension r when one estimates r dimensional

twice differentiable functions. Then h is of order n−1/(r+4) and the 2r-dimensional estimators

are consistent only for r ≤ 3. Thus our result shows that for optimal tuning parameters forest

estimators perform better as tree family estimators for r ≤ 3. For r ≤ 2 we obtain optimal rates

by the forest estimator, i.e. n−2/5 for r = 1 and n−1/3 for r = 2.

Note that our results also hold for other iterative partition schemes as long as Assumptions

(A1)–(A8) are fulfilled. In particular, in the proofs we did not use that partitions are based on

iterative splitting as described in the first part of this section.

4.6 Generalized Random Planted Forest

This section follows an ongoing research project with Lukas Burk, Munir Hiabu, Enno Mammen

and Marvin Wright. We include the general ideas of the algorithm as well as some simulation

results.

We are given data (Yi, Xi,1, . . . , Xi,d)
n
i=1 consisting of i.i.d. observations with Yi ∈ Rd1 , Xi,k ∈ R

and wish to estimate some function µ : Rd → Rd2 . General planted forests are constructed with

an iterative algorithm. The algorithm depends on a link function σ : Rd1 → Rd2 , an updating

function g, and a loss function L. The resulting estimator is of the form

µ̂(x) = σ

(∑
t∈Tr

m̂t(x)

)
,

for some r ∈ {1, . . . , d}. For every t ∈ T , the function m̂t is of the form

m̂t(x) =

pt∑
i=1

ai1(x ∈ It,i),

where ai ∈ Rd1 and It,i is a hyperrectangle satisfying (4.2.2). In order to obtain the functions m̂t
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a forest-type procedure similar to the one described in 4.2 is used. Alterations are the following.

• In each iteration, a single set It,i is split into two subsets according to Subsection 4.2.1 for

some t ∈ T . The estimator m̂t is updated on each of these subsets. However, instead of

using equation (4.2.3) for updating, we update by setting

m̂new
t∪{k}(x) := m̂t∪{k}(x) + 1(x ∈ I+)g+ + 1(x ∈ I−)g−,

where

g+ := g
(
I+, X1, . . . , Xd, Y1, . . . , Yd, (m̂t)t∈T

)
,

g− := g
(
I−, X1, . . . , Xd, Y1, . . . , Yd, (m̂t)t∈T

)
,

and g is the updating function. Pseudo code for the algorithm is given in Algorithm 7.

Algorithm 7 Calculating a Split

Input t, k, I, c, (X1, Y1), . . . , (Xn, Yn), (m̂t)t∈T
Calculate I+, I−
Calculate m̂t∪{k}(x) := m̂t∪{k}(x) + 1(x ∈ I+)g+ + 1(x ∈ I−)g−
Output m̂t∪{k}, I+, I−

• Again, we begin with a single leaf I
(0)
∅,1 := Rd which implies p

(0)
∅ = 1. The corresponding

value is m∅,1 = 0. Additionally, we have p
(0)
t = 0 for t ̸= ∅. The iterative algorithm is

carried out as in Section 4.2.2 with one difference. Instead of using Equation (4.2.4), the

values ts, ks, js, and cs are chosen by

(ts, ks, js, cs) := arg min
t,k,j,c

L(t, k, j, c). (4.6.1)

Note that L also may depend on the data (X1, Y1), . . . , (Xn, Yn), the current estimators

m̂
(s−1)
t as well as the current leaves I(s−1)

t,k , k = 1, . . . , pt, t ∈ Tr. The dependencies where

omitted in (4.6.1) for simpler notation. Typically, L will strongly relate to the updating

function g as well as the link function σ. The algorithm stops after nsplits iterations.

Pseudo code for this procedure is given in Algorithm 8.

• Extending the planted tree family type algorithm to a forest is analogous to Section 4.2.3.

The rest of this section is structured as follows. In Subsection 4.6.1 we include some remarks

on the algorithm. In Subsections 4.6.2 – 4.6.5 we introduce some examples for combinations of

link functions σ, updating functions g and loss functions L which can be used in classification

setups. Lastly, Subsection 4.6.6 our current Simulation results.

4.6.1 Remarks

The algorithm described above can be used for a wide variety of estimation problems by selecting

specific link, updating and loss functions. While different choices lead to different estimators,
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Algorithm 8 Random Family of Planted Trees

Input (Y1, X1), . . . , (Yn, Xn)
for |t|0 = 1 do m̂t ← 0; It,1 ← Rd; pt ← 1

for |t|0 > 1 do m̂t ← 0; pt ← 0

for s = 1, . . . ,nsplits do
Calculate ts, ks, js, cs using Equation (4.6.1)
t← ts; k ← ks; c← ts; I ← Its,js
Calculate m̂ts∪{ks}, I+, I− using Algorithm 7
if ks ∈ ts then
Its,js ← I+; Its,pts+1 ← I−; pts ← pts + 1

else
t← ts ∪ {ks}
It,pt+1 ← I+; It,pt+2 ← I−; pt ← pt + 2

Output (m̂t)t∈T

functions returned by a general planted forest algorithm have certain structural aspects. First

of all, observe that the resulting estimators m̂t are of the form

m̂t(x) =

pt∑
i=1

ai1(x ∈ It,i)

where It,i are of the form (4.2.2). Thus, the functions mt only depend on the components in t

so that they can be represented by |t|-dimensional functions. The d-dimensional input space is

used for simpler notation.

While r in the algorithm described in Section 4.2 bounds the maximal order of interaction in

an additive sense, the implications of the bound r in a general random planted forest algorithm

depends on the link function σ. This allows for many different structures. For example, if we

set r = d1 = d2 = 1 and σ(x) = exp(x) the resulting estimator is multiplicative in the sense

that it is an element of {
f : Rd → R

∣∣∣∣ f(x1, . . . , xd) = d∏
k=1

f(xk)

}
.

Note that r and σ are specified beforehand. We may however use them as tuning parameters

for our algorithm and select them via some selection procedure such as cross validation. This

method was also used in Subsection 4.6.6.

Note that µ̂ takes on values in Rd2 , where we allow for d2 > 1. This is useful for classification

problems which include more then two classes. Then, Yi is of the form Yi = ej ∈ Rd2 , where

ejk = 1 for j = k and ejk = 0 otherwise. Each Component of Yi corresponds to a class, where we

define Yik = 1 if Yi is in the k-th class. With this definition, we grow one general random planted

forests for the classification problem. Alternatively, we could also grow a general random planted

forest for each class and then use some normalizing constraint in the end. While we consider

multiclass classification problems in our project, in the examples below we only consider binary

86



4.6 Generalized RPF

classification for simplicity.

4.6.2 Least Squares Regression

Assume we are handed data (Xi, Yi)
n
i=1 with Xi ∈ Rd and Yi ∈ {0, 1}. We wish to obtain an

estimator m̂ which takes on values in [0, 1].

As a first variant, we consider the original random planted forest algorithm introduced in Section

4.2 with a slight modification. While the original algorithm is a natural specification of general

random planted forests, we do not expect the least squares approach to be optimal for classifi-

cation. Nonetheless, it is interesting to see how the original algorithm performs in comparison

to other variants. Additionally, it serves as an easy example to showcase the intuition of general

random planted forests.

In order to define the updating and loss functions, we first define the residuals

Ri := Yi −
∑
t∈T

m̂t(Xi)

for i = 1, . . . , n. Then, the updating function is given by

gL2

(
I, X1, . . . , Xd, Y1, . . . , Yd, (m̂t)t∈T

)
=

∑
Xi∈I Ri∑
Xi∈I 1

.

Next, given t ∈ T , k ∈ {1, . . . , d}, j ∈ {1, . . . , pt} and c ∈ R, the updated residuals are given by

Rt,k,j,c
i := Ri − 1(Xi ∈ I+t,k,j,c)gL2

(
I+t,k,j,c, X1, . . . , Xd, Y1, . . . , Yd, (m̂t)t∈T

)
− 1(Xi ∈ I−t,k,j,c)gL2

(
I−t,k,j,c, X1, . . . , Xd, Y1, . . . , Yd, (m̂t)t∈T

)
,

where I+t,k,j,c, I
−
t,k,j,c are the splits of It,j at c with respect to the coordinate k. The loss function

is then

LL2(t, k, j, c) :=

n∑
i=1

(
Rt,k,j,c

i

)2
.

We would obtain the algorithm introduced in Section 4.2 by selecting σ = idR. However, in

order to obtain a function that returns values in [0, 1], we simply truncate the result at 0 and 1.

Thus, the link function is

σL2(x) :=


0, for x ≤ 0,

x, for x ∈ (0, 1),

1, otherwise.
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4.6.3 L1 Loss

The setup is very similar to the previous case. Considering the L1 loss relates to the Gini im-

purity loss. When considering only one split, both are equivalent.

The updating and link functions are again given by

gL1

(
I, X1, . . . , Xd, Y1, . . . , Yd, (m̂t)t∈T

)
=

∑
Xi∈I Ri∑
Xi∈I 1

,

σL1(x) :=


0, for x ≤ 0,

x, for x ∈ (0, 1),

1, otherwise.

However, the loss function is now given by

LL1(t, k, j, c) :=
n∑

i=1

|Rt,k,j,c
i |.

Thus, we choose the variables t, k, j, s such that the updated estimate minimizes the resulting

residuals with respect to the L1-norm.

4.6.4 Logit Link Function with Maximum Likelihood

We use the logit link function

σLogit(x) =
1

1 + exp(−x)
.

In order to define the updating function, for some fixed ϵ ∈ [0, 0.5) we introduce the functions

pI,ϵ = pϵ(I, X1, . . . , Xd, Y1, . . . , Yd) = min

{
1− ϵ,max

{
ϵ,

∑
Xi∈I Yi∑
Xi∈I 1

}}
,

uI = u
(
I, X1, . . . , Xd, (m̂t)t∈T

)
=

∑
Xi∈I m̂(Xi)∑

Xi∈I 1
,

where m̂(Xi) =
∑

t∈T m̂t(Xi). Thus, the function pI,ϵ returns the average response in leaf I
which corresponds to an estimator for the probability P(Y = 1|X ∈ I), where the function is

truncated by ϵ from below and 1 − ϵ from above. The updating function, which depends on ϵ,

is then given by

gϵLogit
(
I, X1, . . . , Xd, Y1, . . . , Yd, (m̂t)t∈T

)
= log

(
pI,ϵ

1− pI,ϵ

)
− uI .

If we set ϵ = 0 and {Yi | Xi ∈ I} = {1} holds, the updating function gϵLogit returns ∞. Thus, if

the estimator m̂t(x) is finite, it is set to ∞ in I. However, gϵLogit = −∞ if {Yi | Xi ∈ I} = {0}.
This may result in adding ∞ and −∞. In our simulations, we use ϵ > 0 so that the calculations

are well defined. This also prohibits numerical obstacles which may occur when using high
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numbers.

For the definition of the loss function, we introduce the updated estimators

mt,k,j,c(x) = m̂(x) + 1
(
x ∈ I+t,k,j,c

)
g0Logit

(
I+t,k,j,c, X1, . . . , Xd, Y1, . . . , Yd, (m̂t)t∈T

)
+ 1

(
x ∈ I−t,k,j,c

)
g0Logit

(
I−t,k,j,c, X1, . . . , Xd, Y1, . . . , Yd, (m̂t)t∈T

)
The loss function is given by the maximum likelihood criteria

LLogit(t, k, j, c) :=
n∑

i=1

Yi log
(
σ(mt,k,j,c(Xi))

)
+ (1− Yi) log

(
1− σ(mt,k,j,c(Xi))

)
. (4.6.2)

Observe that we set ϵ = 0 in the loss function. Thus, we do not truncate the estimators of the

conditional probabilities when searching for the next split.

4.6.5 Logit Link Function with Exponential Loss

Next, we consider minimizing the exponential loss function

E[exp(−sign(Yi − 0.5)m(X))].

The exponential loss is an upper bound on the misclassification error and has been considered

by many others in classification settings [34, 35]. As discussed in [35], it is minimized by

m(x) =
1

2
log

(
P(Y = 1|x)
P(Y = 0|x)

)
.

In Result 2, the authors motivate an iterative procedure, where consecutive updates of weights

and the estimator are given by

m̂new(x) = m̂old(x) + g(x) = m̂old(x) +
1

2
log

(
P̂wold(Y = 1|x)
P̂wold(Y = 0|x)

)
,

wnew(x, y) = wold(x, y) exp(−sign(y − 0.5)g(x)),

where P̂w is an estimator of the weighted probability

Pw(Y = 1|x) = E
[
1{Y=1}w(Y, x)

∣∣x].
We translate this to a general planted forest setting by defining an updating function g which

includes the sample version of P̂w in a respective leaf. Additionally, we select the split which

minimizes the empirical version of the exponential loss. Note that in contrast to the intuition

of [35], the function m̂ is only updated for a subset of the domain in each iteration step.

We now describe the precise choices required for a general random planted forest. Again, we
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use the logit link function

σExp(x) =
1

1 + exp(−x)
.

In order to define the updating function, we first introduce the loss at (Xi, Yi) by

Ri := exp(−0.5sign(Yi − 0.5)m̂(Xi)).

For some fixed ϵ ∈ [0, 0.5), we define the weighted truncated estimators for the conditional

probabilities P(Yi = 1 | Xi ∈ I)

pI,ϵ = pϵ(I, X1, . . . , Xd, Y1, . . . , Yd) = min

{
1− ϵ,max

{
ϵ,

∑
Xi∈I YiRi∑
Xi∈I Ri

}}
.

Observe that the responses Yi are weighted with their corresponding losses. Thus, if the current

estimator correctly predicts Yi, the response has a relatively low impact on the current split.

The updating function is given by

gϵExp
(
I, X1, . . . , Xd, Y1, . . . , Yd, (m̂t)t∈T

)
= log

(
pI,ϵ

1− pI,ϵ

)
With a similar argumentation as in Subsection 4.6.4, we select ϵ > 0 in our simulations. For the

definition of the loss function, define the updated estimators

mt,k,j,c(x) = m̂(x) + 1
(
x ∈ I+t,k,j,c

)
g0Exp

(
I+t,k,j,c, X1, . . . , Xd, Y1, . . . , Yd, (m̂t)t∈T

)
+ 1

(
x ∈ I−t,k,j,c

)
g0Exp

(
I−t,k,j,c, X1, . . . , Xd, Y1, . . . , Yd, (m̂t)t∈T

)
and corresponding residuals

Rt,k,j,c
i := exp(−0.5sign(Yi − 0.5)mt,k,j,c(Xi)).

The loss function is then given by

LExp(t, k, j, c) =
n∑

i=1

Rt,k,j,c
i . (4.6.3)

Note that the loss function is the sum of the single losses when updated with ϵ = 0. In contrast,

the weight imposed on any data point Xi is precisely the current value of the loss function

when using the actual updating function (ϵ > 0). It seams natural to use the loss of the actual

estimate instead of the modified one. However, discarding numerical obstacles, intuitively one

would rather use ϵ = 0 for updating. Since numerical obstacles exist, one must deviate from

the idealized version. The current version showed the most promising results which are given

in Section 4.6.6. The updating procedure of the weights corresponds to the one introduced by
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[35], since

Rnew
i = exp(−0.5sign(Yi − 0.5)m̂new(Xi))

= exp(−0.5sign(Yi − 0.5)mold(Xi)− sign(Yi − 0.5)g(Xi))

= Rold
i exp(−sign(Yi − 0.5)g(Xi)),

where

g(x) =
1

2
1
(
x ∈ I+t,k,j,c

)
log

(
pI

+
t,k,j,c,ϵ

1− pI
+
t,k,j,c,ϵ

)

+
1

2
1
(
x ∈ I−t,k,j,c

)
log

(
pI

+
t,k,j,c,ϵ

1− pI
+
t,k,j,c,ϵ

)
.

4.6.6 General RPF Simulations

In this section, we present first results from a simulation study using real world date. We wish

to compare general random planted forests algorithms with state of the art methods. While the

simulation study is not in its final state, it still provides some interesting insights.

The study was conducted as follows. We use all data sets from [10] with n · d ≤ 100000 and no

missing values. Here, we present the results from data sets where the response Yi has a binary

outcome. A summary of the data sets is given in Table 8.14 in Subsection 8.1.2. Simulations

concerning multiclass classification are provided in figures 8.2, 8.3, and 8.4 in Subsection 8.1.2.

For each data set, we consider three algorithms which are given in Table 4.55. Note that all

Table 4.5: Dictionary for the algorithms considered.

Description short Code-Reference

A gradient boosting variant xgboost [21]
genaral rpf rpf Github
Random forest rf [130]

algorithms given in Table 4.5 have tuning parameters. These are set via a 5-fold crossvalidation

with respect to the AUC, where for each algorithm we minimize over 200 uniformly at random

selected parameter combinations from a grid. The gids of parameters are collectively given in

Table 8.15 in Subsection 4.6.6. We call the procedure described above the inner crossvalidation.

Note that for rpf, the specific algorithm selected is also a tuning parameter. In the results pre-

sented here, the possible algorithms include Loss=L1 corresponding to the algorithm given in

Subsection 4.6.3 as well as Loss=exponential corresponding to the algorithm given in Subsection

4.6.5. Additionally, for rpf and xgboost, we also consider a variant in which we bound the maxi-

mum order of interaction of m̂ by two. Thus, the resulting estimators are easily visualisable. To

obtain figures 4.6 and 4.7 we obtain 10 estimates for each algorithm by applying the respective

estimation procedure (including the inner crossvalidation) to one of 10 crossvlaidation sets of

5Some codes are available on GitHub: https://github.com/PlantedML/randomPlantedForest.
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4 Random Planted Forest: A Directly Interpretable Tree Ensemble

Figure 4.5: Summary of binary classification results over all 17 data sets. Each node corresponds
to the AUC (left) or Brier Score (right) of one distinct data set. Lower and upper
bounds of boxplots correspond to 25% and 75% quantiles respectively. Black lines
correspond to the mean.

the original data. Each box plot is given by a lower bound corresponding to the 25% empirical

quantile, an upper bound corresponding to the 75% quantile and a central bar corresponding to

the median. We summerize the results given in figures 4.6 and 4.7 in Figure 4.5. Here, each node

corresponds to the median of the respective estimator obtained for a specific data set. Since

there are 17 data sets, Figure 4.5 has 17 nodes for each algorithm.

From the summary in Figure 4.5 we can see that the rpf algorithm on average can keep up with

state of the art methods. In figures 4.6 and 4.7 we observe that in some cases, rpf outperforms

xgboost as well as ranger. However, it sometimes is outperformed. When bounding the maxi-

mum order of interaction, the algorithm falls off in some cases. However, one can observe that

for most data sets, the data can be well approximated by low dimensional structures. Addition-

ally, the results for AUC are slightly better than the results for the Brier score.

While the results presented here are interesting, there are a few improvements which we are

currently working on. First of all, regarding Figure 8.1.2, we can see that in two cases, namely

tic-tac-toe and phoneme, nsplits ∼ 50 for most folds. This suggests that the optimal value

for nsplits exceeds the value 50. This may be the reason why rpf is clearly worse than the

other algorithms in these cases. We are currently testing which upper bound to set for nsplits.

Furthermore, the parameters are tuned with respect to the AUC, not the Brier score. This

may explain why the algorithm performs worse when considering this Scoring rule. This also
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4.6 Generalized RPF

Figure 4.6: AUC results of each of the 17 data sets used for binary classification. Each plot
contains 10 estimates obtained by splitting the data into test data and training
data with a 10 fold crossvalidation. Each node corresponds to one of the 10 outer
crossvalidation estimates. Lower and upper bounds of boxplots correspond to 25%
and 75% quantiles respectively. Black lines correspond to the median.

Figure 4.7: Brier scores of each of the 17 data sets used for binary classification. Each plot
contains 10 estimates obtained by splitting the data into test data and training
data with a 10 fold crossvalidation. Each node corresponds to one of the 10 outer
crossvalidation estimates. Lower and upper bounds of boxplots correspond to 25%
and 75% quantiles respectively. Black lines correspond to the median.
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suggests that when training rpf with respect to the AUC, the resulting estimator does not well

approximate probabilities, but only tendencies of the classification problem. Lastly, we use Loss

which alters the specific algorithm used as a tuning parameter. Here, we only considered the al-

gorithms explained in subsections 4.6.3 and 4.6.5. However, the algorithms given in subsections

4.6.2 and 4.6.4 may also be interesting for consideration.

Summarising, in this first simulation study we observe that the rpf algorithm can keep up with

state of the art methods in binary classification problems. In Subsection 4.6.6, we see that the

same holds for multiclass classification. However, this study can still be improved.

4.7 Conclusion

We introduce a new tree based prediction method coined random planted forest. While fully

flexible, it follows a structured path by growing trees in a family simultaneously which approx-

imate terms of a functional decomposition. A first simulation study provided in this thesis

shows promising results. Rpf seems to be able to detect both jumps in the regression function

as well as interactions between predictors. Especially in sparse settings, rpf demonstrated an

unmatched combination of accuracy and flexibility under easily interpretable models. For clas-

sification problems, we found that rpf keeps up with state of the art methods. Rpf predictions

are easily visualisable if the maximal order of interaction of the estimator is bounded by either

one or two.
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5 Unifying Local and Global Model

Explanations by Functional Decomposition of

Low Dimensional Structures

This chapter follows the paper [56]. We included some slight modifications in order to embed it

into this thesis.

We consider a global representation of a regression or classification function by decomposing

it into the sum of main and interaction components of arbitrary order. We introduce a new

marginal identification constraint which defines the decomposition and show that q-interaction

SHAP with an interventional value function is the unique solution to that constraint. Here,

q denotes the highest order of interaction present in the decomposition. Additionally, under

the same marginal identification, partial dependence plots correspond to main effect terms plus

intercept. Our result provides a new perspective on SHAP values with various practical and

theoretical implications: The decomposition of SHAP values into main and all interaction effects

provides a truly global explanation in the sense that each component only depends on the

values of its respective features. Furthermore, we show how the identification can have causal

applications. In principle, the decomposition can be applied to any machine learning model.

However, since the number of possible interactions grows exponentially with the number of

features, exact calculation is only feasible for methods that fit low dimensional structures or

ensembles of those. We provide an algorithm and efficient implementation that calculates this

decomposition for gradient boosted trees (xgboost) and random planted forests. Conducted

experiments suggest that our method provides meaningful explanations and reveals interactions

of higher orders. Lastly, we investigate further potential of our new insights: By utilizing the

truly global explanation, we motivate a new measure of feature importance and provide a method

for reducing direct as well as indirect bias by post-hoc component removal.

5.1 Introduction

In the early years of machine learning interpretability research, the focus was mostly on single-

value global feature importance methods that assign a single importance value to each feature.

More recently, the attention has shifted towards local interpretability methods, which provide

explanations for individual observations or predictions. Popular examples of the latter are LIME

[107] and SHAP [84, 111]. The major reason for this shift is that local methods provide a more
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comprehensive picture of model explanations than single-value global methods, most impor-

tantly in presence of nonlinear effects and interactions. This, however, neglects the fact that

global methods can be more than single-value methods: Ideally, a global method provides useful

information about the entire regression or classification function by providing an explanation

for each feature and each interaction effect of arbitrary order, relative to the values they take

on. As with local methods, this gives us an explanation for each observation. The crucial

difference is that two observations which have a set of feature values in common, receive the

same explanation for main and interaction effects involving exclusively those features. We call

a representation of a function with this property truly global. The components of a truly global

explanation are not specific to all feature values of an observation but only to the corresponding

feature values. This does not only give a more comprehensive picture than local methods but

the complete picture. In summary, we distinguish between three properties of an explanation of

a function.

• single-value global: Each feature j ∈ {1, . . . , d} receives a single descriptive value vj ∈ R
which does not depend on x ∈ Rd.

• truly global: Each subset of features S ⊆ {1, . . . , d} receives a descriptive function mS :

RS → R which only depends on values xS = {xk : k ∈ S} and not on other values

x−S = {xj : j /∈ S}.

• local: Each subset of features S ⊆ {1, . . . , d} receives a descriptive function ϕS : Rd → R
which may depend on all values of x ∈ Rd.

We introduce a truly global explanation procedure by identifying components in a functional

decomposition. We show that the proposed explanation is identical to q-interaction SHAP [125],

where q corresponds to the maximal order of interaction present in the model to be analyzed.

Hence, we provide a new interpretation of SHAP values which is not game-theoretically mo-

tivated. [125] argue that it is practically not feasible to calculate q-interaction SHAP exactly

because of computational complexity. However, the authors implicitly assume q = d, i.e., the

highest order of interaction present in the initial estimator is equal to the number of features.

We argue that this is not the case for many state-of-the-art machine learning algorithms that

only fit low dimensional structures or ensembles of those. We exploit this fact and discuss

an implementation that exactly calculates q-interaction-SHAP for tree-based machine learning

models. In principle, our results can be applied to any model and our algorithm can be ap-

plied to any tree-based model. However, since the number of components grows exponentially

with increasing q, exact calculation is only feasible if q is sufficiently small. We provide a fast

implementation for xgboost [20] and random planted forest from Chapter 4.

As a result, one dimensional contributions mk and two-dimensional contributions mjk are one

and two-dimensional real-valued functions that can be plotted. Furthermore, together with

higher order contributions they can be used to decompose simple SHAP values into main effects

and all involved interaction effects. Additionally, main and interaction components can be

summarised into feature importance values. Beyond explaining feature effects, our proposed
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decomposition can be used to detect bias in models where LIME and SHAP fail [113] and

reduce such bias by removing individual components from the decomposition.

5.1.1 Motivating Example

We give a toy example of how the interplay of correlations and interactions can give rise to

misleading SHAP values. Consider the function m(x1, x2) = x1+x2+2x1x2. The interventional

SHAP value for the first feature is ϕ1(x1, x2) = x1−E[X1]+x1x2−E[X1X2]+x1E[X2]−x2E[X1].

If the features are standardized, i.e., X1 and X2 have mean zero and variance one, the expression

reduces to

ϕ1(x1, x2) = x1 + x1x2 − corr(X1, X2).

Hence, e.g., if corr(X1, X2) = 0.3, an individual with x1 = 1 and x2 = −0.7 would see a SHAP

value of 0 for the first feature:

ϕ1(1,−0.7) = 0.

This is quite misleading, since clearly x1 has an effect on the response m that is irrespective

of the particular value of x1. The underlying problem is that locally at (x1, x2) = (1,−0.7),
the main effect contribution and interaction contribution cancel each other out. Indeed, we

see that the SHAP value ϕ1 can be decomposed into a main effect contribution of x1, which

is m1(x1) = x1 − 2corr(X1, X2) = 0.4 and an interaction contribution of {x1, x2}, which is

m12(x1, x2) = x1x2 + corr(X1, X2) = −0.4. Figure 5.1 shows SHAP values and the functional

decomposition of an xgboost model of the function m(x1, x2). The SHAP values ϕ1 and ϕ2

contain main effect contributions m1 and m2 as well as the interaction contribution m12. The

functional decomposition separates the contributions m1, m2 and m12.

Those familiar with SHAP values may argue that one can detect the non-zero impact of x1 by

plotting ϕ1 over all instances (see Figure 5.1). This argument has two problems. Firstly, this

does not change the misleading local value. Secondly, SHAP values can be quite arbitrary: If

two estimators m and m̃ are equal on the support supp(X1, X2), the corresponding SHAP values

at x ∈ supp(X1, X2) are generally not equal. This is because SHAP values are constructed by

extrapolating outside the support of the data. [113] has empirically demonstrated how this

phenomenon can be exploited to hide the importance of protected features. One could ask for

local explanations that do not extrapolate, hoping that this solves the problem. Unfortunately,

this is not possible: If explanations are deduced only from the region with data support, those

explanations are based on the correlation structure of the features [66]. In particular a feature

that has zero effect on the model output can still be assigned a value stemming from a correlated

feature [66, 120]. We conclude:

Local explanations that do not explicitly specify all interactions cannot lead to mean-

ingful interpretations in the presence of correlated features.

This is important to remember, noting that interpretation tools are usually used for black-box

algorithms with the main purpose being to explain the model well in cases where interactions

are present. Intuitively speaking:
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Figure 5.1: Simple example. Given an xgboost estimator m̂ estimating the true function
m(x1, x2) = x1 + x2 + 2x1x2, we calculate SHAP values (top row) and functional
decomposition (bottom row).

A local interpretation that explicitly considers all interactions is a truly global in-

terpretation.

Hence the goal is to unify local and global explanations. We emphasize again that in contrast

to simple SHAP or l-interaction SHAP (l < q), q-interaction SHAP provides a truly global

explanation of a trained model.

5.1.2 Related Work

A functional decomposition for truly global interpretation of regression functions was introduced

in the statistical literature in [117], and has been further discussed in [18, 60, 80]. These

authors considered a different constraint called (generalized) functional ANOVA decomposition.

In contrast, the constraint we introduce in this chapter is linked to Shapley values. There is

considerable literature on interactions and Shapley values. In cooperative game theory, pairwise

player-player interactions were first considered by [101] and later generalized to higher-order

interactions by [42]. In the machine learning context, arbitrariness of Shapley values due to

interactions and correlations has been discussed in [76, 113, 120], and possible solutions have

been proposed in [49, 65, 77, 119, 135]. Recently, [125] introduced interaction SHAP for any

given order and proposed an approximation to calculate them. In this chapter, we introduce an

identification constraint for a functional decomposition which connects to partial dependent plots

[37] and Shapley values with a value function that has recently been coined interventional SHAP

[19]. Alternative value functions have been discussed in [39, 133]. There are a variety of methods

to obtain single-value global feature importance measures implied by SHAP. These include
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[17, 39, 128], among others. Similar to our method suggested in Section 5.4, these measures are

weighted averages of local importance values. However, in contrast to our suggestion, most are

motivated by additive importance measures [28].

Lastly, recently, two related and relevant works where published. [11] show that for every

SHAP-value function there exists a one-to-one correspondence between SHAP values and an

identification in a functional decomposition. But they do not provide explicit solutions. [52]

describe an identification constraint that connects to observational SHAP. We, however, find

an identification constraint that gives a one-to-one correspondence to interventional SHAP and

provides a fast implementation for tree-based methods.

5.2 Main Result

Let (Yi, Xi,1, . . . , Xi,d) be a data set of n i.i.d. observations with Xi,k ∈ R, i = 1, . . . , n; k =

1, . . . , d. We consider the supervised learning setting

E[Yi|Xi = x] = m(x),

where the function m is of interest and Y is a real valued random variable.1 We assume that a

reasonable estimator m̂ of m has been provided.

5.3 Truly Global Interpretation

With increasing dimension it can quickly get very hard, if not impossible, to visualize and

thereby comprehend a multivariate function. Hence, a global interpretation of m̂ is arguably

only feasible if it is a composition of low-dimensional structures. Let us consider a specific

decomposition of a multivariate function into a sum of main effects, bivariate interactions, etc.,

up to a d-variate interaction term.

m̂(x) = m̂0 +
d∑

k=1

m̂k(xk)

+
∑
k<l

m̂kl(xk, xl) + · · ·+ m̂1,...,d(x)

=
∑

S⊆{1,...,d}

m̂S(xS).

The heuristic of the decomposition is that if the underlying function m(x) only lives on low-

dimensional structures, then mS should be zero for most feature subsets S and the order of

maximal interaction q = max{|S| : mS ̸= 0} should be much smaller than the number of fea-

tures: q << d. This discussion, however, is not very meaningful before one has agreed on an

identification; without suitable identification constraints, it is possible to change components on

1We use Yi ∈ R for notational convenience. It is straight-forward to extend to binary classification, whereas
multiclass classification would require a slightly different procedure.
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the right without altering the left hand side. We propose the following identification which we

see as reasonable in its own right, but also connects interventional SHAP values [19, 66], partial

dependence plots [37] and a causal application, as is explained in the next three subsections.

Marginal identification: For every S ⊆ {1, . . . , d},

∑
T∩S ̸=∅

∫
m̂T (xT )p̂S(xS)dxS = 0, (5.3.1)

where p̂S is some estimator of the density pS of XS .

The next theorem states existence and uniqueness of a decomposition that satisfies the identifi-

cation constraint (5.3.1) and describes the solution explicitly.

Theorem 5.3.1. Given any initial estimator m̂(0) = {m̂(0)
S |S ⊆ {1, . . . , d}}, there exists exactly

one set of functions m̂∗ = {m̂∗
S |S ⊆ {1, . . . , d}} satisfying constraint (5.3.1) with

∑
S m̂

∗
S =∑

S m̂
(0)
S . The functions are given by

m̂∗
S(xS) =

∑
T⊇S

∑
T\S⊆U⊆T

(−1)|S|−|T\U | (5.3.2)

×
∫
m̂

(0)
T (xT )p̂U (xU )dxU .

In particular m̂∗ does not depend on the particular identification of m̂(0).

Remark 5.3.2. In principle, in Theorem 5.3.1, we could have only considered m̂
(0)
{1,...,d} =∑

S m̂
(0)
S with m̂

(0)
S = 0 for S ̸= {1, . . . , d} as an initial estimator. This would have simplified

the notation. However, a main point we aim to make here is that while it may be computational

very expensive, if not infeasible, to calculate the marginal identification (5.3.2) in general, this

is not the case if the initial estimator m̂(0) is the composition of low dimensional structures. In

Subsection 6.2.4, we discuss that, if m̂(0) can be represented by functions m̂
(0)
S , where m̂

(0)
S = 0

for |S| ≥ q << d, then m̂∗ can be calculated reasonably fast. We provide an implementation

for xgboost [20] and random planted forest from Chapter 4 that calculates (5.3.2) exact and

reasonably fast.

Example 5.3.3. Consider the setting of our simple example (Section 5.1.1), m(x1, x2) = x1 +

x2 + 2x1x2, with X1 and X2 having mean zero and variance one. If m(x) = m∗(x) and m∗(x)

satisfies the marginal identification (5.3.1), then

m∗(x1, x2) = m∗
0 +m∗

1(x1) +m∗
2(x2) +m∗

12(x1, x2),
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5.3 Truly Global Interpretation

with

m∗
0 = 2corr(X1, X2)

m∗
1(x1) = x1 − 2corr(X1, X2)

m∗
2(x2) = x2 − 2corr(X1, X2)

m∗
12(x1, x2) = 2x1x2 + 2corr(X1, X2).

5.3.1 Describing SHAP Values in Terms of our Truly Global Explanation

We now show that there is a direct connection between the truly global explanation described

in the previous section and SHAP values. In particular, this connection describes SHAP values

uniquely without the use of game theoretically motivated Shapley axioms or a formula running

through permutations, where the number of summands grows exponentially with d, see formula

(6.2.1) in Subsection 6.2.2. Fix a value x0 ∈ Rd. A local approximation at x0 of the function m̂

is given by

m̂ (x0) = ϕ0 +

d∑
k=1

ϕk(x0), (5.3.3)

for constants ϕ0, ϕ1(x0), . . . , ϕd(x0). Similar to the case of truly global explanations, the right

hand-side is not identified. Local explanations add constraints to equation (5.3.3) such that

ϕk(x0) is uniquely identified and best reflects the local contribution of feature k to m̂ (x0). Note

that the explanation is local because the explanation for feature k depends on the value of all

features x0 = x0,1, . . . , x0,d and not on x0,k only.

In what follows, we consider the identification leading to intervention SHAP values [19, 66], i.e.,

Shapley values with value function

vx0(S) =

∫
m̂(x)p̂−S(x−S)dx−S |x=x0 . (5.3.4)

See Subsection 6.2.1 for a definition of Shapley values.

Theorem 5.3.4. If m̂ is decomposed such that (5.3.1) is fulfilled, then the interventional SHAP

values are weighted averages of the corresponding components, where an interaction component

is equally split to all involved features:

ϕk(x) = m̂∗
k(xk) +

1

2

∑
j

m̂∗
kj(xkj) + · · ·+

1

d
m̂∗

1,...,d(x1,...,d).

Remark 5.3.5. A crucial point of Theorem 5.3.4 is that the local SHAP values can be described

by the components of a truly global explanation. The result is also intriguing since usually the

contribution or importance of a single feature in a general truly global representation as in (4.2.1)

is a complicated interplay between various interactions, see Subsection 6.2.3.
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5 Decomposition of Low Dimensional Structures

XU

XV m(U,V)

XU

do(XV = xV ) m(U,V)

Figure 5.2: Left: Initial causal structure. Right: Causal Structure after removing effect of XU

on XV .

5.3.2 Describing Partial Dependence Plots in Terms of our Truly Global

Explanation

Given an estimator m̂ and a target subset S ⊂ {1, . . . , d}, the partial dependence plot [37], ξS ,

is defined as

ξS(xS) =

∫
m̂(x)p−S(x−S)dx−S .

It is straight forward to verify that partial dependence plots are linked to a functional decom-

position {m̂∗
S} identified via (5.3.1) through

ξS =
∑
U⊆S

m̂∗
U .

In particular if S is only one feature, i.e., S = {k}, we have

ξk(xk) = m∗
0 +m∗

k(xk).

5.3.3 A Causal Application Stemming from our Truly Global Explanation

Assume U is a set of features that should not have an effect on m̂. For example, one could

set U = {gender, ethnicity} in the case of non-discriminatory regulation requirements. Assume

{1, . . . , d} is the disjoint union of U and V with a directed acyclic graph structure XU → XV →
m, XU → m; as illustrated in Figure 5.2. Eliminating the causal relationship between XV and

XU can be achieved via the do-operator, do(XV = xV ), that removes all edges going into XV ,

see Figure 5.2. The function E[m(X)| do(XV = xV )) does not use information contained in XU ;

neither directly nor indirectly. Under the assumed causal structure, standard calculations [102]

lead to

E[m(X)| do(XV = xV )] =

∫
m(x)pU (xU )dxU .

If m̂ is identified via (5.3.1), then m̃(x−U ) :=
∫
m̂(x)p̂U (xU )dxU can be extracted from m̂ by

dropping all components that include features in U :

m̃(x−U ) =

∫
m̂(x)p̂U (xU )dxU =

∑
S⊆V

m̂S(xS).
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5.4 Feature Importance

5.4 Feature Importance

The truly global interpretation also provides a new perspective on feature importance. SHAP

value feature importance for feature k is usually given by an empirical version of E[|ϕk(x)|]. By
Corollary 5.3.4,

E[|ϕk(x)|] = E

[∣∣∣∣∣ ∑
S:k∈S

1

|S|
m̂∗

S(xS)

∣∣∣∣∣
]
.

In this definition, contributions from various interactions and main effects can cancel each other

out, which may not be desirable. An alternative is to consider

E

[ ∑
S:k∈S

1

|S|
|m̂∗

S(xS)| ,

]

or to extend the definition of feature importance to interactions by defining feature importance

as E [|m∗
S(xS)|], for a set S ⊆ {1, . . . , d}.

Example 5.4.1. Going back to our simple example (Section 5.1.1), where m(x1, x2) = x1 +

x2 + 2x1x2, SHAP feature importance for feature x1 is an empirical version of

E

[∣∣∣∣X1 − 2corr(X1, X2)−
1

2
{2X1X2 + 2corr(X1, X2)}

∣∣∣∣]
= E [|X1 −X1X2 − corr(X1, X2)}|] ,

which merges main effect and interaction effect. Alternatively, one may consider

E [|X1 − 2corr(X1, X2)|+ |X1X2 + corr(X1, X2)}|] .

5.5 Experiments

We apply our method to several real and simulated datasets to show that the functional decom-

position provides additional insights compared to SHAP values and SHAP interaction values.

First, we show on real data that a truly global explanation can provide a more comprehensive

picture than a local explanation method. Second, we show on real and simulated data that

the same holds for the feature importance measure proposed in Section 5.4. Finally, we show

that the functional decomposition allows post-hoc removal of features from a model, which can

be used to reduce bias of prediction models. We performed all experiments with xgboost and

random planted forests. The results with xgboost are presented in Sections 5.5.1-5.5.3, whereas

the results with random planted forests are in Subsections 8.2.2-8.2.4.

5.5.1 Truly Global Explanations

As an example of a real data application, we apply our method to the bike sharing data [33],

predicting the number of rented bicycles per day, given seasonal and weather information. Fig-
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5 Decomposition of Low Dimensional Structures

ure 5.3 shows SHAP values, main effects, 2-way interactions and 3-way interactions of the fea-

tures hour of the day (hr, 0-24 full hours), Temperature (temp, normalized to 0-1) and working

day (workingday, 0=no, 1=yes).

Figure 5.3: Bike sharing example (xgboost). SHAP values (top row), main effects (second row),
2-way interactions (third row) and 3-way interactions (bottom row) of the features
hour of the day (hr, 0-24 full hours), Temperature (temp, normalized to 0-1) and
working day (workingday, 0=no, 1=yes) of the bike sharing data.

In the top row, we see that different SHAP values are observed for the same values of the

features and conclude that SHAP values are not sufficient to describe the features’ effects on

the outcome, due to interactions. In the second row, the main effects from the decomposition

show a strong effect of the hour of the day: Many bikes are rented in the typical commute

times in the morning and afternoon. We also see a positive effect of the temperature and no

main effect of whether or not it is a working day. The 2-way interactions in the third row

reveal strong interactions between the hour of the day and working day: On working days, more

bikes are rented in the morning and less during the night and around noon. We also see that

the temperature has a slightly higher effect on non working days and in the afternoon. In the
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5.5 Experiments

bottom row, the 3-way interactions show that interactions between the hour of the day and the

temperature are stronger on non working days than on working days.

We conclude that the full functional decomposition provides a more comprehensive picture of the

features’ effects, compared to usual SHAP value interpretations and 2-way interaction SHAP,

as e.g. proposed by [83]. Note that, as described above, our methods do indeed provide the full

picture, including all higher-order interactions, whereas Figure 5.3 only shows a subset of these

interactions.

5.5.2 Feature Importance

As described in Section 5.4, the functional decomposition can also be used to calculate feature

importance. Figure 5.4 shows the feature importance for the function m(x) = x1 + x3 + x2x3 −
2x2x3x4 and the bike sharing data from Section 5.5.1 based on SHAP values and our functional

decomposition. For the simple function, the SHAP feature importance identifies x1 and x3 as

equally important and x2 and x4 as less important but it gives no information about interactions.

On the other hand, the feature importance based on the functional decomposition shows that x1

has a strong main effect but no interactions, whereas x2 and x4 have only interaction effects but

no main effects and x3 both kinds of effect. Similarly, on the bike sharing data, the hour of the

day (feature hr) and the temperature (temp) have both main and interaction effects, whereas

the feature working day has 2-way interaction effects but no main effects (compare Figure 5.3).

Note that both definitions of feature importance are based on absolute values of SHAP values or

components mS and thus are non-negative, in contrast to other methods of feature importance

[17, 98].

5.5.3 Post-Hoc Feature Removal

We show that our method can be used to remove features and all their effects, including inter-

actions, from a model post-hoc, i.e. after model fitting. We trained models on simulated data

and the adult dataset [31]. Both models contained a feature sex or gender, which is a protected

attribute and should not have an effect in fair prediction models [4]. In the simulation, we

considered the simplified scenario where we predict a person’s salary, based on their sex and

weekly working hours. We set the weekly working hours to an average of 40 for men and to 30

for women. Salary was simulated as 1 unit (e.g. thousand Euro per year) per weekly working

hour and an additional 20 for males (see Figure 5.2). Thus, men earn more for working longer

hours (on average) and for being male per se. The first effect should be kept by a fair machine

learning model, whereas the second effect is discriminating women. In the adult data, we have

the same features sex and hours but we do not know the causal structure.

Figure 5.5 shows the prediction for females and males of the full model, a refitted model without

the protected feature sex and a decomposed model where the feature sex was removed post-hoc.

In the simulated data, we see that refitting the model does not change the predictions at all:

Because of the high correlation between sex and hours, the effects of sex cannot be removed by

not considering the feature in the model. Our decomposition on the other hand allows us to
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Figure 5.4: Feature importance (xgboost) for the function m(x) = x1+x3+x2x3−2x2x3x4 (top
row) and the bike sharing data from Section 5.5.1 (bottom row) based on SHAP
values (left column) and our functional decomposition separately for main effects
and interactions of different orders (right column).

remove the (unwanted) direct effect of sex while keeping the (wanted) indirect effect through

hours. On the adult data, we see a similar difference, but less pronounced.

5.6 Concluding Remarks and Limitations

We have introduced a way to turn local Shapley values into a truly global explanation using a

functional decomposition. The explanation has a causal application under the DAG structure

given in Figure 5.2. This causal structure might be quite realistic in many fairness considerations,

but the true causal structure is generally unknown. In this respect, it would be interesting to

look into other causal structures that could motivate different identification constraints, which

may connect to other local explanations than interventional SHAP. Indeed, [11] show that every

SHAP-value functions corresponds to a specific identification. Also, while our suggestions for

feature importance measures paint a more precise picture in many cases, it is not directly

motivated by a theoretical constraint, such as usual additive importance measures. It will

require more research to back these ideas by theory. Another point not considered in here is the

difference between the estimate m̂ and a potential true functionm. In particular, it is not clear if

a method that estimates m well is also a good estimator for a selection of components mS . This
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Simulation Adult

Female Male Female Male
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Model Full Refitted Decomposed

Setting Median difference
Full Refitted Decomposed

Simulation 29.79 29.79 10.57
Adult 0.13 0.07 0.05

Figure 5.5: Post-hoc feature removal (xgboost). Predictions in a simulation (left) and the adult
dataset for males and females of the full model, a refitted model without the protected
feature sex and a decomposed model where the feature sex was removed post-hoc.
The table below shows the median differences between females and males for the
three models.

discussion is related to work done in double/debiased machine learning [23]. Moving forward, it

could be interesting to modify out of the box machine learning algorithms to specifically learn

the low dimensional structures well.

Ethical implications Generally, explaining prediction models can help to reduce bias or dis-

crimination. Specifically, our methods can be used to reveal higher-order interactions with

protected attributes and by that detect bias and reduce such bias by post-hoc feature removal

(see Section 5.5.3). However, there is more to fair machine learning than removing effects of

protected attributes [see e.g. 4] and, as shown by [113], machine learning explanation methods

are not immune to (adversarial) attacks. Thus, results should be interpreted with care.
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6.1 Random Planted Forest: A Directly Interpretable Tree Ensemble

In this section, we add some technical details which improve the understanding of the random

planted forest algorithm. We first give a short overview over the algorithm in the additive case,

i.e. if r = 1. The simplification is easier to understand and is of particular interest in our

simulation studies in Section 4.4. Next, we include the discussion of an identification constraint

for the functional decomposition, which is important for plotting the components. Lastly, we

add some additional remarks.

6.1.1 Additive Random Planted Forests

In this section, we explain the rpf algorithm in the additive case. Thus, we assume that m has

an additive structure

m(x) = m∅ +m1(x1) + · · ·+md(xd).

The algorithm then simplifies in the following way. The algorithm now grows a tree for each

coordinate k ∈ {1, . . . , d}. As discussed above, the tree t = ∅ never grows during the algorithm.

Thus, in every step, a coordinate k is chosen for which the tree k is grown. Furthermore, the

set Vr introduced in Subsection 4.2.3 reduces to

V =
{
(k, {k})

∣∣ k ∈ {1, . . . , d}}.
In particular, it does not depend on the current state of the family of planted trees. Noting

that |V | = d, the value m try := ⌈t try · d⌉ is constant throughout the algorithm. The pa-

rameter t try or equivalently m try act exactly the same as the parameter m try in Breimans

implementation of random forests. In this case, the algorithms mainly differ due to the fact that

instead of growing a single tree including all coordinates, the rpf algorithm grows a tree for each

coordinate separately.

An illustration of the construction of a family of additive planted trees is given in Figure 6.1.

Observe that in this case the leaves of a tree form a partition of R. Each data point is contained

in exactly one leaf of each tree. Note that the latter two statements do not hold in general in

the additive case.
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Figure 6.1: Illustration of an additive family of planted trees. Trees grow simultaneously and
the height of an edge indicates when the split occurred.

6.1.2 Identification Constraint

If r ∈ {1, 2}, the components can be visualised easily. In order to reasonably compare plots, we

need a condition that ensures uniqueness of the functional decomposition. We assume that for

every u ⊆ {1, . . . , d} and k ∈ u,∫
mu (xu)

∫
w(x)dx−u dxk = 0, (6.1.1)

for some weight function w. With this constrained the decomposition is known as generalized

functional ANOVA. Observe that this is not an additional assumption on the overall function m.

The constraint ensures that the functional decomposition is unique for non-degenerated cases.

One possibility is w(x) =
∏

k p̂k(xk), where p̂k is an estimate of the marginal density of the

design density of X. The resulting plots are known as partial dependence plots [37]. With the

burden of extra computational cost, one can choose w as an estimate of the full design density,

see also [80]. Compared to the previous example, a computationally more efficient constraint has

recently been proposed in [2]. Note that we could also use the constraint proposed in Chapter

5. Depending on the viewpoint, different choices for w may be advantageous. Since the precise

constraint is not the focus of Chapter 4, we settled for the simple constraint w ≡ 1 which suffices

in the sense that it allows us to compare plots of different estimators.

Note that while we obtain a tree for every component in the ANOVA decomposition (except

the constant), in general, these estimators do not satisfy the constraint (6.1.1). Thus, in order

to obtain suitable estimators for the components, we must normalize the estimated components

without changing the overall estimator. This can be achieved by using an algorithm similar to
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the purification algorithm given in [80].

6.1.3 Additional Remarks

This subsection contains various remarks to further enhance the understanding of the algorithm.

As for the backfitting algorithm [14], updating the estimator in each iteration step is important,

especially when the predictors are correlated. We also considered alternative updating proce-

dures such as updating all leaves in the tree where the split occurs. While this may be worth

some consideration, we observed the best results with our current version. Secondly, we impose

3 conditions that must be satisfied for a split to viable. The first condition (C1) is obviously

required, since we need a leaf to split. The second condition is necessary in order to assure that

the resulting trees are elements of Tr - we do not want leaves of trees to depend on more than r

coordinates. We impose (C3) so that each leaf contains at least 1 observation. Also, note that

the tree t = ∅ never grows during the algorithm. Rather, it functions as the root leaf of the

trees t with |t| = 1. This implies m̂∅ = 0 throughout the algorithm.

Besides interpretability, advantages of restricting the order of approximation in the ANOVA

expansion (4.2.1) are potentially faster convergence rates as well as the possibility of using more

constrained estimators. In the simulation study in Section 4.4, we find that using an uncon-

strained rpf works surprisingly well, even if the data generating regression function is additive,

i.e. a first order approximation is exact. A constrained version slightly improves the results.

The flexibility, however, comes with the cost of reduced interpretability.

6.2 Unifying Local and Global Model Explanations by Functional

Decomposition of Low Dimensional Structures

6.2.1 SHAP Values

Consider a value function vx0 that assigns a real value vx0(S) to each subset S ⊆ {1, . . . d}.
Shapley axioms provide a unique solution under the four axioms efficiency, symmetry, dummy

and additivity [111], see Subsection 6.2.2. Defining ∆v(k, S) = v(S ∪ k) − v(S), the Shapley

values are

ϕk =
1

d!

∑
π∈Πd

∆v (k, {π(1), . . . , π(k − 1)}) (6.2.1)

=
1

d!

∑
S⊆{1,...,d}\{k}

|S|!(d− |S| − 1)!∆v(k, S), (6.2.2)

where Πd is the set of permutations of {1, . . . , d}. We follow [66] and define SHAP values as

Shapley values with the value function

vx0(S) =

∫
m̂(x)p̂−S(x−S)dx−S |x=x0 , (6.2.3)
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which is also the version implemented in TreeSHAP [83].

6.2.2 Shapley Axioms

Given a function m, a point x0, and a value function v, the Shapley axioms [111] are

• Efficiency: m (x0) = ϕ0 +
∑d

k=1 ϕk(x0).

• Symmetry: Fix any k, l ∈ {1, . . . , d}, k ̸= l. If vx0(S ∪ k) = vx0(S ∪ l), for all S ⊆
{1, . . . d} \ {k, l}, then ϕk(x0) = ϕl(x0)

• Dummy If vx0(S ∪ k) = vx0(S), for all S ⊆ {1, . . . d} \ {k}, then ϕk = 0

• Linearity If m(x0) = m1(x0) +m2(x0), then ϕk(x0) = ϕ1k(x0) + ϕ2k(x0), where ϕ
l is the

explanation corresponding to the function ml.

6.2.3 Connecting a General Truly Global Expansion to SHAP Values

If a regression or classification function m is not identified via (5.3.1), then calculating SHAP

values from such a decomposition leads to lengthy and non-trivial expressions. Here, we show

how the terms up to dimension three in a general non-identified decomposition enter into a

SHAP value. The following formula follows from straight forward calculations using (5.3.3).

For vx(S) =
∫
m(x)p−S(x−S)dx−S , we get

ϕ1(x0) = m1(x1)− E[m1(X1)]

+
1

2

∑
j ̸=1

m1j(x1, xj)− E[m1j(X1, Xj)]

+
∑
j ̸=1

E[m1j(x1, Xj)]− E[m1j(X1, xj)]


+

1

3

 ∑
j,k ̸=1,j<k

m1jk(x1, xj , xk)− E[m1jk(X1, Xj , Xk)]

+
∑

j,k ̸=1,j<k

E[m1jk(x1, Xj , Xk)]− E[m1jk(X1, xj , xk)]

+
1

2

∑
j,k ̸=1,j<k

E[m1jk(x1, Xj , xk)]− E[m1jk(X1, xj , Xk)]

+
1

2

∑
j,k ̸=1,j<k

E[m1jk(x1, xj , Xk)]− E[m1jk(X1, Xj , xk)]


· · ·
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6.2.4 Functional Decomposition of SHAP Values from Low-Dimensional Tree

Structures

Our proposed decomposition can be calculated from tree-based models by directly applying

Theorem 5.3.1. Inspired by [83], we first describe näıve algorithms for xgboost and random

planted forest models and then describe an improved algorithm for xgboost that only needs a

single recursion through each tree.

Näıve xgboost Algorithm

For all subsets of features S ⊆ {1, . . . , d}, we calculate the decomposition m̂S(xi) for all observa-

tions of interest xi ∈ X recursively for each tree with features T by considering all subsets U, T

with T \ S ⊆ U ⊆ T . In each node of a tree, if the node is a leaf node we return it’s prediction

(e.g. the mean in CART-like trees). For internal (non-leaf) nodes, the procedure depends on

whether the feature used for splitting in the node is in the subset U or not. If the feature is

in the subset U , we continue in both the left and right children nodes, each weighted by the

coverage, i.e. the proportion of training observations going left and right, respectively. If the

feature is not in the subset U , we apply the splitting criterion of the node and continue with

the respective node selected by the splitting procedure for observation xi. See Algorithm 9 for

the full algorithm in pseudo code.

Random Planted Forest Algorithm

For the random planted forest algorithm (rpf), we use a different approach. By slightly altering

the representation of an rpf in [54], the result of an rpf is given by a set

m̂(0) = {m̂(0)
S,b|S ⊆ {1, . . . , d}, b ∈ {1, . . . , B}},

where each estimator m̂
(0)
S,b can be represented by a finite partition defined by an |S|-dimensional

grid (leaves) and corresponding values. Thus, we start with

• a grid Gk = {xk,1, . . . , xk,tk} for each coordinate k ∈ {1, . . . , d},

• for each S ⊆ {1, . . . , d}, b ∈ {1, . . . , B} an array representing the value of m
(0)
S,b(x) for

each coordinate x ∈ ×k∈SGk. Here x is considered to be the bottom left corner of a

hyperrectangle.

Note that every tree-based algorithm can be described in such a manner. Given an estimator p̂S

and using this representation, directly calculating (5.3.2) is simple, where for each combination

of sets U, T ⊆ {1, . . . , d} with U ⊆ T , we only need to calculate the term
∫
m̂

(0)
T,b(xT )p̂U (xU )dxU

once and then add/subtract it to the correct estimators m̂∗
S . See Algorithm 10 for the full

algorithm in pseudo code. For the calculation of an estimator p̂S in our simulations we used

the following. For each S ⊆ {1, . . . , d}, let aS(x) be the number of data points residing in the

hyperrectangle with bottom left corner x for each coordinate x ∈ ×k∈SGk. For |S|-dimensional
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Algorithm 9 Näıve xgboost algorithm

Procedure: decompose(X, m̂(x))
Input: Data X ∈ Rn×d, tree-based model m̂(x) with B trees
Output: Components m̂S(xi) for all S ⊆ {1, . . . , d} and xi ∈ X
for i ∈ 1, . . . , n do

for S ⊆ {1, . . . , d} do
m̂S(xi)← 0
for tree ∈ {1, . . . , B} do

if T ⊇ S then
for U : T \ S ⊆ U ⊆ T do

m̂S(xi)← m̂S(xi) + (−1)|S|−|T\U |rec(tree, U, xi, 0)

Return: m̂S

Procedure: rec(tree, U, xi,node)
Input: Tree ID (tree), subset U , data point xi, node ID (node)
Output: Coverage-weighted prediction
if isleaf(node) then

Return: prediction(node)
else

j ← split-feature(node)
if j ∈ U then

Cleft ← coverage(left-node)
Cright ← coverage(right-node)
Return: Clrec(tree, U, xi, l-node) + Crrec(tree, U, xi, r-node)

else
if xji ≤ split-value(node) then

Return: rec(tree, U, xi, left-node)
else

Return: rec(tree, U, xi, right-node)

Algorithm 10 Näıve rpf algorithm

Procedure: decompose(X, m̂(x))

Input: Data X ∈ Rn×d, tree-based model with initial decomposition m̂
(0)
S,b(x) for S ⊆

{1, . . . , d} and trees b = {1, . . . , B}, estimator p̂S
Output: Components m̂S(xi) for all S ⊆ {1, . . . , d} and xi ∈ X
for i ∈ 1, . . . , n do

for S ⊆ {1, . . . , d} do
m̂S(xi)← 0

for b ∈ {1, . . . , B} do
for T ⊆ {1, . . . , d} do

for U ⊆ T do
updateT,U ←

∫
m̂

(0)
T,b(xi,T\U , xU )p̂U (xU )dxU

for S : T \ S ⊆ U, S ⊆ T do
m̂S(xi)← m̂S(xi) + (−1)|S|−|T\U |updateT,U

m̂S(xi)← m̂S(xi)/B

Return: m̂S
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y we then set

p̂S(y) =
aS(xy)∑

x∈×k∈SGk
aS(x)

1

vol(x)
,

where xy is the coordinate of the bottom left corner of the hyperrectangle which includes y

and vol(x) is the volume of the hyperrectangle corresponding to x. Using this estimator, the

updating function in the algorithm simplifies to

updateT,U =
∑

xU∈×k∈UGk

m̂
(0)
T,b(xi,T\U , xU )p̂U (xU ).

Improved xgboost Algorithm

To improve the algorithm described in Subsection 6.2.4 and Algorithm 9, we pre-calculate the

contribution of each tree for all n observations and tree-subsets T in a single recursive procedure

by filling an n × 2D matrix, where D is the tree depth. In a second step, we just have to sum

these contributions with the corresponding sign (see Theorem 5.3.1).
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7 Proofs

7.1 Local Linear Smoothing in Additive Models as Data Projection

7.1.1 Projection Operators

In this section we state expressions for the projection operators P0, Pk, Pk and Pk′ (1 ≤ k ≤ d)
mapping elements of H to H0, Hk, Hk + H0 and Hk′ , respectively, see Section 2.2. For an

element f = (f i,j)i=1,...,n; j=0,...,d the operators P0, Pk, and Pk (1 ≤ k ≤ d) set all components

to zero but the components with indices (i, 0), i = 1, . . . , n. Furthermore, in the case d < k ≤ 2d

only the components with index (i, k − d), i = 1, . . . , n are non-zero. Thus, for the definition of

the operators it remains to set

(P0(f))i,0(x) =
1

n

n∑
i=1

∫
X
{f i,0(u) +

d∑
j=1

f i,j(x)(Xij − uj)}KXi
h (Xi − u)du.

For 1 ≤ k ≤ d it suffices to define (Pk(f))i,0(x) = (Pk(f))
i,0(x)− (P0(f))i,0 and

(Pk(f))
i,0(x)

=
1

p̂k(xk)

[
1

n

n∑
i=1

∫
u∈X−k(xk)

{
f i,0(u) +

d∑
j=1

f i,j(u)(Xij − uj)
}

×KXi
h (Xi − u)du−k

]
,

(Pk′(f))
i,0(x)

=
1

p̂∗∗k (xk)

[
1

n

n∑
i=1

∫
u∈X−k(xk)

{
f i,0(u) +

d∑
j=1

f i,j(u)(Xij − uj)
}

×(Xik − xk)KXi
h (Xi − u)du−k

]
.

For the orthogonal projections of functions m ∈ Hadd one can use simplified formulas. In

particular, these formulas can be used in our algorithm for updating functions m ∈ Hadd. If

m ∈ Hadd has components m0, . . . ,md,m
(1)
1 , . . . ,m

(1)
d the operators Pk and Pk′ are defined as
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follows

(P0(m)(x)))i,0 = m0 +

d∑
j=1

∫
Xj

m
(1)
j (uj)p̂

∗
j (uj)duj ,

(Pk(m)(x))i,0 = m0 +mk(xk) +m
(1)
k (xk)

p̂∗k(xk)

p̂k(xk)

+
∑

1≤j≤d,j ̸=k

∫
X−k,j(xk)

[
mj(uj)

p̂jk(uj , xk)

p̂k(xk)
+m

(1)
j (uj)

p̂∗jk(uj , xk)

p̂k(xk)

]
duj ,

as well as

(Pk(m)(x))i,0 = mk(xk) +m
(1)
k (xk)

p̂∗k(xk)

p̂k(xk)
−
∑

1≤j≤d

∫
Xj

m
(1)
j (uj)p̂

∗
j (uj)duj

+
∑

1≤j≤d,j ̸=k

∫
X−k,j(xk)

[
mj(uj)

p̂jk(uj , xk)

p̂k(xk)
+m

(1)
j (uj)

p̂∗jk(uj , xk)

p̂k(xk)

]
duj ,

(Pk′(m)(x))i,0 = m
(1)
k (xk) + (m0 +mk(xk))

p̂∗k(xk)

p̂∗∗k (xk)

+
∑

1≤j≤d,j ̸=k

∫
X−k,j(xk)

[
mj(uj)

p̂∗kj(xk, uj)

p̂∗∗k (xk)
+m

(1)
j (uj)

p̂∗∗jk(uj , xk)

p̂∗∗k (xk)

]
duj ,

where for 1 ≤ j, k ≤ d with k ̸= j

p̂jk(xj , xk) =
1

n

n∑
i=1

∫
X−(jk)(xj ,xk)

KXi
h (Xi − x)dx−(jk),

p̂∗jk(xj , xk) =
1

n

n∑
i=1

∫
X−(jk)(xj ,xk)

(Xij − uj)KXi
h (Xi − x)dx−(jk),

p̂∗∗jk(xj , xk) =
1

n

n∑
i=1

∫
X−(jk)(xj ,xk)

(Xij − uj)(Xik − xk)KXi
h (Xi − x)dx−(jk)

with X−(jk)(xj , xk) = {u ∈ X : uk = xk, uj = xj}, X−k,j(xk) = {u ∈ Xj : there exists v ∈ X
with vk = xk and vj = u} and u−(jk) denoting the vector (ul : l ∈ {1, . . . , d}\{j, k}).

7.1.2 Proofs of Propositions 2.3.4 and 2.3.6

In this section we give proofs for Propositions 2.3.4 and 2.3.6. They are used in Section 2.3 for

the discussion of the existence of the smooth backfitting estimator as well as the convergence of

an algorithm for its calculation.

Proof of Proposition 2.3.4. (ii)⇒ (i). Let g(n) ∈ L be a Cauchy sequence. We must show

limn→∞ g(n) ∈ L. By definition of L there exist sequences g
(n)
1 ∈ L1 and g

(n)
2 ∈ L2 such
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that g(n) = g
(n)
1 + g

(n)
2 . With (2.3.3), for i = 1, 2 we obtain

∥g(n)i − g(m)
i ∥ ≤ 1

c
∥g(n) − g(m)∥ → 0.

Hence, g
(n)
1 and g

(n)
2 are Cauchy sequences. Since L1 and L2 are closed their limits are elements

of L1 ⊆ L and L2 ⊆ L, respectively. Thus,

lim
n→∞

g(n) = lim
n→∞

g
(n)
1 + g

(n)
2 ∈ L.

(i)⇒ (iii). We write Π1(L2) = Π1. Since L is closed, it is a Banach space. Using the closed

graph theorem, it suffices to show the following: If g(n) ∈ L and Π1g
(n) ∈ L1 are converging

sequences with limits g, g1, then Π1g = g1.

Let g(n) ∈ L and Π1g
(n) ∈ L1 be sequences with limits g and g1, respectively. Write g(n) =

g
(n)
1 + g

(n)
2 . Since

∥g(n)2 − g(m)
2 ∥ ≤ ∥g(n)1 − g(m)

1 ∥+ ∥g(n) − g(m)∥

g
(n)
2 is a Cauchy sequence converging to a limit g2 ∈ L2. We conclude g = g1 + g2, meaning

Π1g = g1.

(iii)⇒ (ii). If Π1 is a bounded operator, then so is Π2, since ∥g2∥ ≤ ∥g∥ + ∥g1∥. Denote the

corresponding operator norms by C1 and C2, respectively. Then

max{∥g1∥, ∥g2∥} ≤ max{C1, C2}∥g∥

which concludes the proof by choosing c = 1
max{C1,C2} .

(iii)⇔ (iv). This follows from

∥Π1∥ = sup
g∈L

∥g1
∥
∥g∥ = sup

g1∈L1,g2∈L2

∥g1∥
∥g1 + g2∥

= sup
g1∈L1

∥g1∥
dist(g1, L2)

=
1

γ(L1, L2)
.

Lemma 7.1.1. Let L1, L2 be closed subspaces of a Hilbert space. For γ defined as in Proposition

2.3.4 we have

γ(L1, L2)
2 = 1− ∥P2P1∥2.
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Proof.

γ(L1, L2)
2 = inf

g1∈L1,∥g1∥=1
∥g1 − P2g1∥

= inf
g1∈L1,∥g1∥=1

⟨g1 − P2g1, g1 − P2g1⟩

= inf
g1∈L1,∥g1∥=1

⟨g1, g1⟩ − ⟨P2g1,P2g1⟩

= 1− sup
g1∈L1,∥g1∥=1

⟨P2g1,P2g1⟩

= 1− sup
g∈L,∥g∥=1

⟨P2P1g,P2P1g⟩

= 1− ∥P2P1∥2.

Proof of Proposition 2.3.6. Let Pj be the orthogonal projection onto Lj . Following Lemma 7.1.1

we have

1− ∥P2P1∥2 = γ(L1, L2)
2.

Using Proposition 2.3.4, proving ∥P2P1∥ < 1 implies that L is closed. Observe that ∥P2P1∥ ≤ 1

because for g ∈ L
∥Pjg∥2 = ⟨Pjg,Pjg⟩ = ⟨g,Pjg⟩ ≤ ∥g∥∥Pjg∥,

which yields ∥Pi∥ ≤ 1 for i = 1, 2. To show the strict inequality, note that if P2∣∣L1
is compact,

so is ∥P2P1∥ since the composition of two operators is compact if at least one is compact. Thus,

for every ε > 0, P2P1 has at most a finite number of eigenvalues greater than ε. Since 1 is

clearly not an eigenvalue, we conclude ∥P1P2∥ < 1.

7.2 Optimal Convergence Rates of Deep Neural Networks in a

Classification Setting

7.2.1 General Convergence Results

The proof of Proposition 3.2.1 is similar to the proof of Theorem 2 in [91]. For the sake of

completion, we provide the entire argumentation here anyway.

Proof of Proposition 3.2.1. Let n ≥ N0. Without loss of generality, we may assume that τn ≤
n

1
ρ+2κ−1 , since otherwise the conditions are also satisfied when using τ̄n = n

1
ρ+2κ−1 . We begin by

proving the assertion for the first term. The idea is to bound

P
(
dfQ(Ĝn, G

∗
Q) > tτ−κ

n

)
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for some t > 0. First, observe that for any G ∈ Nn

Rn(G)−Rn(G
∗
Q)− dfQ(G,G

∗
Q)

=
1

n

n∑
i=1

(
Yi − 1(Xi ∈ G)

)2 − 1

n

n∑
i=1

(
Yi − 1(Xi ∈ G∗

Q)
)2

−
(
E
[(
Y − 1(X ∈ G)

)2]− E
[(
Y − 1(X ∈ G∗

Q)
)2])

=
1

n

n∑
i=1

hG(Xi, Yi)− E
[
hG(Xi, Yi)

]
=:

1

n

n∑
i=1

Ui(G)

holds, where

hG : Rd × {0, 1} → R, hG(x, y) =
(
y − 1(x ∈ G)

)2 − (y − 1(x ∈ G∗
Q)
)2
.

Regarding (iii), for every n ∈ N there exists a Gn ∈ Nn such that

dfQ(Gn, G
∗
Q) ≤ c2τ−κ

n .

For t > 0, define

Ξt :=
{
G ∈ Nn

∣∣∣ dfQ(G,G∗
Q) ≥ tτ−κ

n

}
.

Then, for t ≥ 4c2 and G ∈ Ξt we have

1

2
dfQ(G,G

∗
Q)− dfQ(Gn, G

∗
Q) ≥ c2τ−κ

n . (7.2.1)

Recall that by definition Ĝn minimizes Rn(·). Therefore, in view of the calculations above, for

t ≥ 4c2

P
(
dfQ(Ĝn, G

∗
Q) > tτ−κ

n

)
≤ P

(
∃G ∈ Ξt : Rn(G)−Rn(Gn) ≤ 0

)
= P

(
∃G ∈ Ξt : Rn(G)−Rn(G

∗
Q)−

(
Rn(Gn)−Rn(G

∗
Q
)
≤ 0
)

= P

(
∃G ∈ Ξt : dfQ(G,G

∗
Q) +

1

n

n∑
i=1

Ui(G)

− dfQ(Gn, G
∗
Q)−

1

n

n∑
i=1

Ui(Gn) ≤ 0

)

121



7 Proofs

holds. Using inequality (7.2.1) in the third row yields

P

(
∃G ∈ Ξt : dfQ(G,G

∗
Q) +

1

n

n∑
i=1

Ui(G)

− dfQ(Gn, G
∗
Q)−

1

n

n∑
i=1

Ui(Gn) ≤ 0

)

= P

(
∃G ∈ Ξt :

(
1

2
dfQ(G,G

∗
Q) +

1

n

n∑
i=1

Ui(G)

)

+

(
1

2
dfQ(G,G

∗
Q)− dfQ(Gn, G

∗
Q)−

1

n

n∑
i=1

Ui(Gn)

)
≤ 0

)

≤ P

(
∃G ∈ Ξt :

1

2
dfQ(G,G

∗
Q) +

1

n

n∑
i=1

Ui(G) ≤ 0

)

+ P

(
c2τ

−κ
n − 1

n

n∑
i=1

Ui(Gn) ≤ 0

)

≤ P

(
∃G ∈ Ξt :

1

n

n∑
i=1

Ui(G) ≤ −
1

2
dfQ(G,G

∗
Q)

)

+ P

(
c2τ

−κ
n ≤ 1

n

n∑
i=1

Ui(Gn)

)

and thus

P
(
dfQ(Ĝn, G

∗
Q) > tτ−κ

n

)
≤ P

(
∃G ∈ Ξt :

1

n

n∑
i=1

Ui(G) ≤ −
1

2
dfQ(G,G

∗
Q)

)

+ P

(
c2τ

−κ
n ≤ 1

n

n∑
i=1

Ui(Gn)

)
.

It remains to find upper bounds for the two terms above. In order to bound the first term, note

that for (x, y) ∈ Rd × {0, 1} and any G ∈ Nn we have

|hG(x, y)| =


∣∣1− 1(x ∈ G)−

(
1− 1(x ∈ G∗

Q)
)∣∣, for y = 1,∣∣1(x ∈ G)− 1(x ∈ G∗

Q)
∣∣, for y = 0

= 1
(
x ∈ G∆G∗

Q
)
.

For all i = 1, . . . , n this implies |Ui(G)| ≤ 2 and

E
[
Ui(G)

2
]
≤ E

[
hG(Xi, Yi)

2
]
= E

[
1
(
x ∈ G∆G∗

Q
)]

= d∆(G,G
∗
Q) ≤ c

− 1
κ

1 dfQ(G,G
∗
Q)

1
κ
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where the last inequality follows from (ii). By Bernstein’s inequality, for all a > 0

P

(∣∣∣∣ 1n
n∑

i=1

Ui(G)

∣∣∣∣ ≥ a
)
≤ 2 exp

(
− k1na

2

a+ c
− 1

κ
1 dfQ(G,G

∗
Q)

1
κ

)

holds, where k1 > 0 is a constant. By setting a = 1
2dfQ(G,G

∗
Q) and observing that dfQ(G,G

∗
Q) ≤

1, we have

P

(∣∣∣∣ 1n
n∑

i=1

Ui(G)

∣∣∣∣ ≥ 1

2
dfQ(G,G

∗
Q)

)
≤ 2 exp

(
− k2ndf,g(G,G∗

Q)
2κ−1

κ

)

for some constant k2 > 0. Noting that by definition τn ≤ n
1

ρ+2κ−1 and κ ≥ 1, by (iv) we have

P

(
∃G ∈ Ξt :

∣∣∣∣ 1n
n∑

i=1

Ui(G)

∣∣∣∣ ≥ 1

2
dfQ(G,G

∗
Q)

)
≤ 2 exp

(
c3n

ρ
ρ+2κ−1

)
exp

(
− k2nt

2κ−1
κ τ1−2κ

n

)
≤ 2 exp

(
c3n

ρ
ρ+2κ−1

)
exp

(
− k2t

2κ−1
κ n

1−2κ
ρ+2κ−1

+1)
≤ 2 exp

((
c3 − k2t

2κ−1
κ
)
n

ρ
ρ+2κ−1

)
≤ 2 exp

(
− c3τρn

)
for all t ≥

(
2c3
k2

) κ
2κ−1

. To bound the second term we use Bernstein’s inequality with a = c2τ
−κ
n

and receive

P

(
c2τ

−κ
n ≤ 1

n

n∑
i=1

Ui(Gn)

)
≤ exp

(
− k1nc

2
2τ

−2κ
n

c2τ
−κ
n + c

− 1
κ

1 dfQ(G
∗
Q, Gn)

1
κ

)
≤ exp

(
− k3nτ−2κ+1

n

)
≤ exp

(
− k3τρn

)
for some constant k3 > 0. Therefore, for t ≥ max

{
4c2,

(
2c3
k2

) κ
2κ−1

}
we find an upper bound

P
(
dfQ(Ĝn, G

∗
Q) > tτ−κ

n

)
≤ P

(
∃G ∈ Ξt :

1

n

n∑
i=1

Ui(G) ≤ −
1

2
dfQ(G,G

∗
Q)

)

+ P

(
c2τ

−κ
n ≤ 1

n

n∑
i=1

Ui(Gn)

)
≤ 2 exp

(
− c3τρn

)
+ exp

(
− k3τρn

)
.

123



7 Proofs

Observing that dfQ(Ĝn, G
∗
Q) ≤ 1 we conclude

E
[
dpfQ(Ĝn, G

∗
Q)
]

≤ E
[
1
(
dfQ(Ĝn, G

∗
Q) > tτ−κ

n

)]
+ tτ−pκ

n E
[
1
(
dfQ(Ĝn, G

∗
Q) ≤ tτ−κ

n

)]
≤ 2 exp

(
− c3τρn

)
+ exp

(
− k3τρn

)
+ tτ−κp

n

and thus

lim sup
n→∞

sup
Q∈Q

τκpn E
[
dpfQ(Ĝn, G

∗
Q)
]

≤ lim sup
n→∞

τκpn

(
2 exp

(
− c3τρn

)
+ exp

(
− k3τρn

)
+ tτ−κp

n

)
<∞.

Proving that the second term in the assertion is finite follows directly, since regarding (ii) for all

Q ∈ Q and sets G ∈ Nn it holds hat

dfQ(G,G
∗
Q) ≥ c1dκ∆(G,G∗

Q).

Proof of Proposition 3.2.2. Let n ≥ N0. Without loss of generality, we may assume that τn ≤
n

1
ρ+2κ−1 , since otherwise the conditions are also satisfied when using τn = n

1
ρ+2κ−1 . The idea is

to bound

P
(
dfQ(Ĝn, G

∗
Q) > tτ−1

n

)
for some t > 0. First, observe that for any G ∈ Nn

Rn(G)−Rn(G
∗
Q)− dfQ(G,G

∗
Q)

=
1

n

n∑
i=1

(
Yi − 1(Xi ∈ G)

)2 − 1

n

n∑
i=1

(
Yi − 1(Xi ∈ G∗

Q)
)2

−
(
E
[(
Y − 1(X ∈ G)

)2]− E
[(
Y − 1(X ∈ G∗

Q)
)2])

=
1

n

n∑
i=1

hG(Xi, Yi)− E
[
hG(Xi, Yi)

]
=:

1

n

n∑
i=1

Ui(G)

holds, where

hG : Rd × {0, 1} → R, hG(x, y) =
(
y − 1(x ∈ G)

)2 − (y − 1(x ∈ G∗
Q)
)2
.

Regarding (ii), for every n ∈ N there exists a Gn ∈ Nn such that

dfQ(Gn, G
∗
Q) ≤ c2τ−1

n .
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For t > 0, define

Ξt :=
{
G ∈ Nn

∣∣∣ dfQ(G,G∗
Q) ≥ tτ−1

n

}
.

Then, for t ≥ 4c2 and G ∈ Ξt we have

1

2
dfQ(G,G

∗
Q)− dfQ(Gn, G

∗
Q) ≥ c2τ−1

n . (7.2.2)

Recall that by definition Ĝn minimizes Rn(·). Therefore, in view of the calculations above, for

t ≥ 4c2

P
(
dfQ(Ĝn, G

∗
Q) > tτ−1

n

)
≤ P

(
∃G ∈ Ξt : Rn(G)−Rn(Gn) ≤ 0

)
= P

(
∃G ∈ Ξt : Rn(G)−Rn(G

∗
Q)−

(
Rn(Gn)−Rn(G

∗
Q
)
≤ 0
)

= P

(
∃G ∈ Ξt : dfQ(G,G

∗
Q) +

1

n

n∑
i=1

Ui(G)

− dfQ(Gn, G
∗
Q)−

1

n

n∑
i=1

Ui(Gn) ≤ 0

)

holds. Using inequality (4.2.4) in the third row yields

P

(
∃G ∈ Ξt : dfQ(G,G

∗
Q) +

1

n

n∑
i=1

Ui(G)

− dfQ(Gn, G
∗
Q)−

1

n

n∑
i=1

Ui(Gn) ≤ 0

)

= P

(
∃G ∈ Ξt :

(
1

2
dfQ(G,G

∗
Q) +

1

n

n∑
i=1

Ui(G)

)

+

(
1

2
dfQ(G,G

∗
Q)− dfQ(Gn, G

∗
Q)−

1

n

n∑
i=1

Ui(Gn)

)
≤ 0

)

≤ P

(
∃G ∈ Ξt :

1

2
dfQ(G,G

∗
Q) +

1

n

n∑
i=1

Ui(G) ≤ 0

)

+ P

(
c2τ

−1
n − 1

n

n∑
i=1

Ui(Gn) ≤ 0

)

≤ P

(
∃G ∈ Ξt :

1

n

n∑
i=1

Ui(G) ≤ −
1

2
dfQ(G,G

∗
Q)

)

+ P

(
c2τ

−1
n ≤ 1

n

n∑
i=1

Ui(Gn)

)
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and thus

P
(
dfQ(Ĝn, G

∗
Q) > tτ−1

n

)
≤ P

(
∃G ∈ Ξt :

1

n

n∑
i=1

Ui(G) ≤ −
1

2
dfQ(G,G

∗
Q)

)

+ P

(
c2τ

−1
n ≤ 1

n

n∑
i=1

Ui(Gn)

)

It remains to find upper bounds for the two terms above. In order to bound the first term, note

that for (x, y) ∈ Rd × {0, 1} and any G ∈ Nn we have

|hG(x, y)| =


∣∣1− 1(x ∈ G)−

(
1− 1(x ∈ G∗

Q)
)∣∣, for y = 1,∣∣1(x ∈ G)− 1(x ∈ G∗

Q)
∣∣, for y = 0

=


∣∣1(x ∈ G∗

Q)− 1(x ∈ G)
∣∣, for y = 1,∣∣1(x ∈ G)− 1(x ∈ G∗

Q)
∣∣, for y = 0

= 1
(
x ∈ G∆G∗

Q
)
.

For all i = 1, . . . , n this implies |Ui(G)| ≤ 2 and

E
[
Ui(G)

2
]
≤ E

[
hG(Xi, Yi)

2
]
= E

[
1
(
x ∈ G∆G∗

Q
)]

= d∆(G,G
∗
Q) ≤ 1.

By Bernstein’s inequality, for all a > 0

P

(∣∣∣∣ 1n
n∑

i=1

Ui(G)

∣∣∣∣ ≥ a
)
≤ 2 exp

(
− k1na

2

a+ 1

)

holds, where k1 > 0 is a constant. By setting a = 1
2dfQ(G,G

∗
Q), we have

P

(∣∣∣∣ 1n
n∑

i=1

Ui(G)

∣∣∣∣ ≥ 1

2
dfQ(G,G

∗
Q)

)
≤ 2 exp

(
− k2ndf,g(G,G∗

Q)
2
)

for some constant k2 > 0. Noting that by definition τn ≤ n
1

ρ+2 , by (iii) we have

P

(
∃G ∈ Ξt :

∣∣∣∣ 1n
n∑

i=1

Ui(G)

∣∣∣∣ ≥ 1

2
dfQ(G,G

∗
Q)

)
≤ 2 exp

(
c3n

ρ
ρ+2
)
exp

(
− k2nt2τ−2

n

)
≤ 2 exp

(
c3n

ρ
ρ+2
)
exp

(
− k2t2n−

2
ρ+2

+1)
≤ 2 exp

((
c3 − k2t2

)
n

ρ
ρ+2

)
≤ 2 exp

(
− c3τρn

)
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for all t ≥
√

2c3
k2

. To bound the second term we use Bernstein’s inequality with a = c2τ
−1
n and

receive

P

(
c2τ

−1
n ≤ 1

n

n∑
i=1

Ui(Gn)

)
≤ exp

(
− k1nc

2
2τ

−2
n

c2τ
−1
n + 1

)
≤ exp

(
− k3nτ−2

n

)
≤ exp

(
− k3τρn

)
for a constant k3 > 0. Therefore, for t ≥ max

{
4c2,

√
2c3
k2

}
we find an upper bound

P
(
dfQ(Ĝn, G

∗
Q) > tτ−1

n

)
≤ P

(
∃G ∈ Ξt :

1

n

n∑
i=1

Ui(G) ≤ −
1

2
dfQ(G,G

∗
Q)

)

+ P

(
c2τ

−1
n ≤ 1

n

n∑
i=1

Ui(Gn)

)
≤ 2 exp

(
− c3τρn

)
+ exp

(
− k3τρn

)
.

Observing that dfQ(Ĝn, G
∗
Q) ≤ 1, we conclude

E
[
dpfQ(Ĝn, G

∗
Q)
]

≤ E
[
1
(
dfQ(Ĝn, G

∗
Q) > tτ−1

n

)]
+ tτ−p

n E
[
1
(
dfQ(Ĝn, G

∗
Q) ≤ tτ−1

n

)]
≤ 2 exp

(
− c3τρn

)
+ exp

(
− k3τρn

)
+ tτ−p

n

and thus

lim sup
n→∞

sup
f∈F

τpnE
[
dpfQ(Ĝn, G

∗
Q)
]

≤ lim sup
n→∞

τpn

(
2 exp

(
− c3τρn

)
+ exp

(
− k3τρn

)
+ tτ−p

n

)
<∞.

7.2.2 Convergence Rates for Neural Networks

The first goal of this section is to prove Theorem 3.3.4. We then follow this up by proving

Lemma 3.3.5 and Lemma 3.3.8.

Proof of the Main Result

In order to simplify the approximation results below, we introduce a lemma considering the

parallelization and concatenation of two networks Φ1 and Φ2. Since these results have been
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shown in many other articles e.g. [104, 109], we omit the proof.

Lemma 7.2.1. Let R(Φ1) : Rd1 → Rd3 and R(Φ2) : Rd2 → Rd4 be realizations of neural networks

with L1, L2 layers, sparsity s1, s2 and weights in Wc1 ,Wc2, respectively.

• If d4 = d1, the concatenation of the functions R(Φ1) ◦ R(Φ2) can be realized by a neural

network with L = L1 + L2 + 1 layers, sparsity s ≤ 2s1 + 2s2 and weights in Wmax{c1,c2}.

• If d1 = d2, the parallelization of the functions P (R(Φ1), R(Φ2)) : Rd1 → Rd3+d4 given by

P (R(Φ1), R(Φ2))(x) := (R(Φ1)(x), R(Φ2)(x))

can be realized by a neural network with L = max{L1, L2} layers, sparsity s ≤ s1+s2+2dL

and weights in Wmax{c1,c2}.

Note that we are only using weights |w| ≤ 1. In order to approximate high numbers, we use

the following lemma.

Lemma 7.2.2. Let c,M ∈ N. Then there exist neural networks Φ1,Φ2 with input dimensions

z0 = 1, at most L =M + 1 layers, sparsity s ≤ 4M + 1 and weights in Wc such that

R(Φ1)(x) = 2Mx,

R(Φ2)(x) = 2M

for all x ∈ [0, 1].

Proof. The network Φ1 is given by

Φ1 :=
(
W1, b1, . . . ,WM+1, bM+1

)
where WM+1 =W T

1 = (1 1),

Wi =

(
1 1

1 1

)

for i = 2, . . . ,M , bi = (0, 0) for i ≤M and bM+1 = 0. The other network is

Φ2 := (W0, b0, . . . ,WM+1, bM+1) = (W0, b0)× Φ1

where W0 = 0 and b0 = 1.

The layers of both networks are bounded by M + 1. Sparsity of both networks can be bounded

by

s ≤ 2 ∗ 2 + 4(M − 1) + 1 = 4M + 1.
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7.2 Classification using Neural Networks

Next, we construct a neural network for each G ∈ KF
Q,β,B,ϵ1,ϵ2,r,d

which approximates G well

with respect to the metric dfQ . The rough idea for the construction of the network is similar to

ideas used in [104]. However, the precise construction in order to adapt to the metric in question

differs substantially. The proof of the following theorem is one our the main contributions.

Theorem 7.2.3. Let β ≥ 0, B, ρ > 0 and d ∈ N with d ≥ 2. Let F be a set of functions

γ : [0, 1]d−1 → R

such that the following holds. There exist ϵ0, C1, C2 > 0 and C3, C4 ∈ N such that for any γ ∈ F
and any ϵ ∈ (0, ϵ0) there is a neural network Φ with L ≤ L0(ϵ) := C1⌈log(ϵ−1)⌉ layers, sparsity
s ≤ s0(ϵ) := C2ϵ

−ρ log(ϵ−1) and weights in Wc with c = c0(ϵ) := C3 + C4⌈log(ϵ−1)⌉ such that

∥R(Φ)(x)− f∥∞ ≤ ϵ.

Define κ = 1 + β and let Q be a class of potential joint distributions Q of (X,Y ) such that the

following conditions hold.

(a) There is a constant M > 1 such that for all Q ∈ Q the marginal distribution of QX has a

Lebesgue density bounded by M .

(b) There are constants r ∈ N and ϵ1, ϵ2 > 0 such that for all Q ∈ Q the bayes rule satisfies

G∗
Q ∈ KF

Q,β,B,ϵ1,ϵ2,r,d
.

Let

τn :=
n

1
2κ+ρ−1

log
2
ρ (n)

.

Then there exist constants C ′
1, C

′
2 > 0 and C ′

3 ∈ N such that the set

Nn = NC′
1L0(τ

−1
n ),C′

2s0(τ
−1
n ),C′

3c0(τ
−1
n )

satisfies the following property. There is a constants c2 > 0 and N0 ∈ N such that for all n ≥ N0

and Q ∈ Q there is a G ∈ Nn with

dfQ(G,G
∗
Q) ≤ c2τ−κ

n .

Proof. Set ϵ0 := min{ϵ1, ϵ24 }. Choose N0 large enough such that τN0 ≥ ϵ−1
0 . The proof is outlined

as follows. We first construct a candidate set G using neural networks. Then, we show that it

satisfies the desired properties.

Let n ≥ N0, Q ∈ Q and

G∗
Q = H1 ∪ · · · ∪Hu

as in Definition 3.3.3 with u ≤ r. We begin with the construction of the candidate set G.

The idea is to define a network which approximates G∗
Q well on each set Hν separately. Define
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Figure 7.1: The collection of sets D̃ν when considering the example from Figure 3.1. The dotted
lines are the boarders of the sets D1, . . . , D12. Note that δ is quite large in this
example and observe, that the distance between two sets D̃ν1 , D̃ν2 is at least δ.

ιν , jν , a
ν
i , b

ν
i , Dν , γν and gν,x as in Definition 3.3.3. First, for each ν = 1, . . . , u we consider a

set D̃ν with boarders lying on a grid. The advantage of using H̃ν = D̃ν ∩Hν instead of Hν is

twofold. On the one hand, the grid and parameters of Nn are defined such that the boarders

of D̃ν can be constructed precisely. On the other, using the grid, two sets H̃ν1 , H̃ν2 have a

minimum distance for ν1 ̸= ν2, which is important for our method to work. For δ > 0 let

hδ = max
{
h = 2−c

∣∣∣ h ≤ δ, c ∈ N
}
.

Set ϵ := τ−1
n . Define I :=

{
0, hϵκ , 2hϵκ . . . , 1− hϵκ

}
and let

ãνj := min{a ∈ I | a > aνj },

b̃νj := min{b ∈ I | b < bνj },

for ν = 1, . . . , u, j = 1, . . . , d. Now, set

D̃ν :=


∏d

j=1

[
ãνj , b̃

ν
j

]
, if ∀j = 1, . . . , d ãνj < b̃j ,

∅, otherwise.

Note that b̃νjν − ã
ν
jν
≥ 2ϵ for all ν = 1, . . . , u by the choice of ϵ0. Figure 7.1 shows the collection

of sets D̃ν in the example considered in Figure 3.1. Obviously we have D̃ν ⊆ Dν . Let

H̃ν = D̃ν ∩ {x ∈ [0, 1]d | ινxjν ≤ γν(x−jν )}.

The idea is to construct a neural network for every ν = 1, . . . , u with D̃ν ̸= ∅ which approximates

H̃ν . We obtain the final neural network by parallelizing and adding up these networks. More

specifically, we construct a network that approximates the product of 1(x ∈ D̃ν) and 1(ινxjν ≤
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7.2 Classification using Neural Networks

γν(x−jν )). The latter is approximated by a network Φγν which is the concatenation of a network

approximating the heaviside function 1(xjν > 0) and a network approximating

γ̃ν(x) :=
(
x1, . . . , xjν−1, ινxjν − γν(x−jν ), xjν+1, . . . , xd

)
.

For ν = 1, . . . , u, from the prerequisites given in the Theorem we obtain a network Φ1
γν with

L1
γν ≤ C1

1⌈log ϵ−1⌉, s1γν ≤ C1
2ϵ

−ρ⌈log ϵ−1⌉ and weights in Wc1 with c1 := C1
3 + C1

4⌈log ϵ−1⌉, such
that

∥R(Φ1
γν )− γν∥∞ ≤

ϵ

4
.

For technical reasons, we need to slightly change the realisations in order to handle the behaviour

of the approximations at the boarder of D̃ν . Define Φ2
γν by its realization

R(Φ2
γν )(x) :=

b̃νjν + ãνjν
2

+ σ

(
R(Φ1

γν )(x) + h ϵ
2
−
b̃νjν + ãνjν

2

)

− σ

(
b̃νjν + ãνjν

2
−R(Φ1

γν )(x) + h ϵ
2

)

=


R(Φ1

γν )(x) + h ϵ
2
, if R(Φ1

γν )(x) ≥
b̃νjν+

˜aνjν
2 + h ϵ

2
,

R(Φ1
γν )(x)− h ϵ

2
, if R(Φ1

γν )(x) ≤
b̃νjν+

˜aνjν
2 − h ϵ

2
,

2R(Φ1
γν )(x)−

b̃νjν+
˜aνjν

2 , otherwise.

Let γ̂ν := R(Φ2
γν ). Note that

∥γ̂ν − γν∥∞ ≤ ∥R(Φ1
γν )− γν∥∞ + h ϵ

2
≤ ϵ

4
+
ϵ

2
≤ ϵ

as well as

γ̂ν(x) ≥ γν(x) for x : γν(x) ≥ b̃νjν ,

γ̂ν(x) ≤ γν(x) for x : γν(x) ≤ ãνjν .

Using parallelization and concatenation of Lemma 7.2.1, the function

R(Φ3
γν )(x) :=

(
x1, . . . , xjν−1, ινxjν − γ̂ν(x−jν ), xjν+1, . . . , xd

)
is a realization of a neural network with at most L3

γν ≤ L
1
γν + 3 layers, sparsity

s3γν ≤ 2s1γν + 14 + 6d+ 2dL1
γν ,
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and weights in Wc3 with c3 = c1 + 2. Now let

R(ΦH)(x) := σ(xjν + 1)− σ(xjν ) =


0, for xjν ≤ −1,

xjν + 1, for − 1 < xjν < 0,

1, for xjν ≥ 0.

Note that R(ΦH)(x) ∈ (0, 1) if xjν ∈ (−1, 0). Define Φγν := ΦH ◦ Φ3
γν as in Lemma 7.2.1

concatenation. The network Φγν has Lγν ≤ C
γν
1 ⌈log ϵ−1⌉ layers, sparsity sγν ≤ C

γν
2 ϵ−ρ⌈log(ϵ−1)⌉

and weights inWcγν with cγν := Cγν
3 +Cγν

4 ⌈log(ϵ−1)⌉ for some constants Cγν
1 , Cγν

2 > 0, Cγν
3 , Cγν

4 ∈
N. Then R(Φγν )(x) = 1 if ινxjν ≤ γ̂ν(x−jν ) and 0 ≤ R(Φγν )(x) < 1 otherwise. Next, for

ν = 1, . . . , u with H̃ν ̸= ∅ and i ∈ {1, . . . , d}, define the network Φν,i with realization

R(Φν,i)(x) := 2h−1
ϵκ

(
σ

(
xi − ãνi +

hϵκ

2

)
− σ (xi − ãνi )− σ

(
xi − b̃νi

)
+ σ

(
xi − b̃νi −

hϵκ

2

))

=



0, for xi ≤ ãνi −
hϵκ

2 ,

2h−1
ϵκ

(
xi − ãνi +

hϵκ

2

)
, for ãνi −

hϵκ

2 < xi < ãνi ,

1, for ãνi ≤ xi ≤ b̃iν,

1− 2h−1
ϵκ (xi − b̃νi ), for, b̃νi < xi < b̃νi +

hϵκ

2 ,

0, for xi ≥ b̃νi +
hϵκ

2 .

Note that Φν,i is a concatenation of two neural networks, since 2h−1
ϵκ ≥ 1. By Lemma 7.2.2,

we can realize the function x 7→ 2h−1
ϵκ x using a neural network Φϵ with Lϵ ≤ 1 + ⌈κ⌉cγν layers,

sparsity sϵ ≤ 4⌈κ⌉cγν + 5 and weights in Wcγν . Thus, Φν,i has Lνi ≤ 4 + ⌈κ⌉cγν layers, sparsity

sν,i ≤ 32⌈κ⌉cγλ + 32 and weights in W⌈κ⌉cγν . We then define

R(Φν)(x) := σ

( d∑
i=1

R(Φν,i)(x) +R(Φγν )(x)− d
)
.

For x ∈ [0, 1]d we have R(Φν)(x) = 1 if x ∈ D̃ν and ινxjν ≤ γ̂ν(x−jν ). Otherwise 0 ≤ R(Φν(x)) <

1 holds. Note that by regarding the construction of D̃, we have R(Φν1)R(Φν2) = 0 for ν1 ̸= ν2.

In order to construct the sum, we used a parallelization of the networks Φν,1, . . . ,Φν,d and Φγν .

Thus, the network Φν has Lν ≤ Cν
1 ⌈log ϵ−1⌉ layers, sparsity sν ≤ Cν

2 ϵ
−ρ⌈log ϵ−1⌉ and weights

in Wcν with cν = Cν
3 + Cν

4 ⌈log ϵ−1⌉ for some constants Cν
1 , C

ν
2 > 0, Cν

3 , C
ν
4 ∈ N1. Note that

1Note that the notation suggests that the constants differ depending on ν = 1, . . . , u. However, due to the
construction, this is not the case. The superscripts in the notations above are given in order to describe where
the constant comes from. For our analysis below, it does not make a difference if the constants change with
ν or not.
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Lemma 7.2.2 was used to construct d ≥ 1. The realization of the final network is given by

R(Φ)(x) =
∑

ν:D̃ν ̸=∅

R(Φν)(x).

Define G := R(Φ)−1(1). We now verify the desired properties.

We begin by finding constants C ′
1, C

′
2, C

′
3 > 0 such that

G ∈ NC′
1L0(τ

−1
n ),C′

2s0(τ
−1
n ),C′

3c0(τ
−1
n ).

Clearly, this realization R(Φ) can be achieved with

L ≤ max
ν:D̃ν ̸=∅

(Cν
1 )⌈log ϵ−1⌉+ 1 = max

ν:D̃ν ̸=∅
(Cν

1 + 1)⌈log τn⌉ =: C ′
1L0(τ

−1
n )

layers, sparsity

s ≤ 2u(Cν
2 ϵ

−ρ⌈log ϵ−1⌉+ Ld) ≤ 2r(Cν
2 ϵ

−ρ⌈log ϵ−1⌉+ Ld) = C ′
2s0(τ

−1
n )

and weights in WC′
3c0(τn)

with

C ′
3c0(τ

−1
n ) ≥ Cν

3 + Cν
4 ⌈log ϵ−1⌉.

with suitably chosen C ′
1, C

′
2 > 0, C ′

3 ∈ N. Note that the constants do not depend on u.

Next, we show that the set G := R(Φ)−1(1) satisfies the desired approximation property

dfQ(G,G
∗
Q) ≤ τ−κ

n . First, for ν = 1, . . . , u define Eν as follows. Let

Eν :=
d⋃

j=1

(
j−1∏
i=1

[0, 1]

)
×
([
aνj , ãj

ν
]
∪
[
b̃j

ν
, bνj

])
×

 d∏
i=j+1

[0, 1]

 .

It is easy to see that D̃ν = ∅ implies Dν ⊆ Eν . Set E :=
⋃u

ν=1Eν ∪ D̃ν . Figure 7.2 shows E in

the example considered in figures 3.1 and 7.2. Clearly G∗
Q, G ⊆ E. Thus

dfQ(GQ, G) =

∫
G∗

Q∆G
|2fQ(x)− 1|QX(dx)

≤M

(
u∑

ν=1

∫
Eν

1dx+

u∑
ν=1

∫
(G∗

Q∆G)∩D̃ν

|2fQ(x)− 1|dx

)
=:M

(
(I) + (II)

)
.
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Figure 7.2: The set E when considering the example from figures 3.1 and 7.1. The light grey
set represents E. Note that E covers a majority of the space, since ϵ = τ−1

n is quite
large in this example. Observe that G∗

Q, G ⊆ E.

We need to bound both terms. For (I) we observe that by construction hϵκ ≤ 2τκn we have

(I) ≤
u∑

ν=1

d∑
j=1

hϵκ ≤ 2rdτκn .

The calculations for the second term are a bit more involved. First, observe that by construction

of G, for all ν = 1, . . . , u we have∫
(G∗

Q∆G)∩D̃ν

|2fQ(x)− 1|dx

=

∫
∏

i̸=jν
[ãνi ,b̃

ν
i ]

∫ bν(x−jν )

aν(x−jν )
|2fQ(x)− 1|dxjνdx−jν .

where

bν(x−jν ) :=


ãνjν , if γ̂ν(x−jν ), γν(x−jν ) < ãνjλ ,

b̃νjν , if b̃νjν < γ̂ν(x−jν ), γν(x−jν ),

max{γ̂ν(x−jν ), γν(x−jν )}, otherwise,

aν(x−jν ) :=


ãνjν , if γ̂ν(x−jν ), γν(x−jν ) < ãνjλ ,

b̃νjν , if b̃νjν < γ̂ν(x−jν ), γν(x−jν ),

min{γ̂ν(x−jν ), γν(x−jν )}, otherwise.

Let x−jν ∈
∏

i ̸=jν
[ãνi , b̃

ν
i ] be fixed. We have the following cases.
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• Assume γν(x−jν ) ≥ b̃νjν . Then by construction we have

γ̂ν(x−jν ) ≥ γν(x−jν ) ≥ b̃νjν

and thus ∫ bν(x−jν )

aν(x−jν )
|2fQ(x)− 1|dxjν =

∫ b̃νjν

b̃νjν

|2fQ(x)− 1|dxjν = 0.

• Assume γν(x−jν ) ≤ ãν−jν
. Then by construction we have

γ̂ν(x−jν ) ≥ γν(x−jν ) ≥ ãνjν

and thus ∫ bν(x−jν )

aν(x−jν )
|2fQ(x)− 1|dxjν =

∫ ãνjν

ãνjν

|2fQ(x)− 1|dxjν = 0.

• Assume γν(x−jν ) ∈ (ãνjν , b̃
ν
jν
), by construction

x∗: = (x1, . . . , xjν−1, γν(x−jν ), xjν+1, . . . , xd) ∈ ∂G∗
Q.

Consider γν(x−jν ) ≤ xjν ≤ bν(x−jν ). Let

x = (x1, . . . , xjν−1, xjν , xjν+1, . . . , xd).

Now, for β = 0 we have∫ bν(x−jν )

aν(x−jν )
|2fQ(x)− 1|dxjν ≤

∫ γ̂ν(x−jν )

γν(x−jν )
1dxjν

= γ̂ν(x−jν )− γν(x−jν )

≤ τ−κ
n .

For β > 0, by definition of KF
Q,ϵ1,ϵ2,,r,d

we have

|2fQ(x)− 1| ≤
∣∣gν,x∗

(
xjν − γν(x−jν )

)∣∣
Let m := max{k ∈ N | k < β} and ω := β −m. Using a Taylor expansion, there exists
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yjν ∈
(
0, xjν − γν(x−jν )

)
such that

gν,x∗
(
xjν − γν(x−jν )

)
= gν,x∗

(
xjν − γν(x−jν )

)
− gν,x∗(0)

=

m−1∑
i=1

1

i!
∂ijνgν,x∗(0)

(
xjν − γν(x−jν )

)i
+

1

m!
∂mjνgν,x∗(yjν )

(
xjν − γν(x−jν )

)m
=

1

m!
∂mjνgν,x∗(yjν )

(
xjν − γν(x−jν )

)m
.

Note that we used the definition of Hβ,B in the last equality for all i ≤ m < β. Thus

|2fQ(x)− 1|

≤
∣∣gν,x∗

(
xjν − γν(x−jν )

)∣∣
≤ 1

m!

|∂mjνgν,x∗(yjν )− ∂mjνgν,x∗(0)|
(yjν − 0)ω

(
xjν − γν(x−jν )

)β
≤ B

m!

(
xjν − γλ(x−jν )

)β
.

Similarly, for aν(x−jν) ≤ x′jν ≤ γν(x−jν ) we obtain

|2fQ(x)− 1| ≤ B

m!

(
xjν − γλ(x−jν )

)β
.

This implies ∫ bν(x−jν )

aν(x−jν )
|2fQ(x)− 1|dxjνdx−jν

≤
∫ γ̂ν(x−jν )

γν(x−jν )

B

m!

(
xjν − γν(x−jν )

)β
dxjνdx−jν

=
B

m!(β + 1)

(
γ̂ν(x−jν )− γν(x−jν )

)β+1

≤ B

m!(β + 1)
τ−κ
n .

Therefore, we have∫ bν(x−jν )

aν(x−jν )
|2fQ(x)− 1|dxjνdx−jν ≤ max

{
B

m!(β + 1)
, 1

}
τ−κ
n .

for all ν = 1, . . . , u and x−jν ∈
∏

i ̸=jν
[ãνi , b̃

ν
i ] which yields

(II) ≤ max

{
B

m!(β + 1)
, 1

}
τ−κ
n .
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Thus

df (G,G
∗
Q) ≤

(
2rd+max

{
B

m!(β + 1)
, 1

})
τ−κ
n

which concludes the proof.

The remainder of the proof of our main result is now simple.

Proof of Theorem 3.3.4. We check the requirements in Proposition 3.2.1.

Conditions (i) and (ii) are clear.

Condition (iii) follows from Theorem 7.2.3.

Lastly, we need to prove (iv). Let n ≥ N0 where N0 is defined in Theorem 7.2.3. By Lemma

3.3.2 we have

|Nn| =
∣∣NC′

1L0(τn),C′
2s0(τn),C

′
3c0(τ

−1
n )

∣∣
≤
(
(dC ′

2sn(τn)

+ min{C ′
1Ln(τn), C

′
2s0(τ

−1
n )}(C ′

2s0(τn) + 1)2)2C
′
3c0(τ

−1
n )+2

)C′
2s0(τn).

Inserting all variables yields

|Nn| ≤
(
k1τ

k2
n log2(τn)

)k3τρn log(τn)

for some constants k1, k2, k3 > 0. Thus

log
(
|Nn|

)
≤ k4τρn log2(τn)

for some constant k4 > 0. By setting

τn :=
n

1
2κ+ρ−1

log
2
ρ (n)

we obtain assumption (iv)

log |Nn| ≤ c3n
ρ

2κ+ρ−1 .

Proofs for Regular Boundaries

Next, we prove Lemma 3.3.5. We first provide the corresponding statement from [109]. Lemma

3.3.5 is a reformulated version.

Theorem 7.2.4. (Theorem 5 in [109])

For any function f ∈ Fβ,B,d and any integers m ≥ 1 and N ≥ max
{
(β+1)d, B+1

}
there exists
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a neural network Φ with

L = 8 + (m+ 5)(1 + ⌈d log2 d⌉)

layers, sparcity

s ≤ 94d2(β + 1)2dN(m+ 6)(1 + ⌈log2 d⌉)

and weights |w| ≤ 1 such that

∥R(Φ)− f∥∞ ≤ (2B + 1)3d+1N2−m +B2βN−β
d .

Proof. Theorem 5 in [109].

Proof of Lemma 3.3.5. Let N be the smallest integer satisfying

N ≥ k1ϵ−
d
β ≥ max

{(
B2β+2ϵ−1

) d
β , (β + 1)d, B + 1

}
,

where k1 := max
{(
B2β+2

) d
β , (β + 1)d, B + 1

}
. Let k2 be the smallest integer satisfying

k2 ≥ log(k1 + 1) +
( d
β
+ 1
)
+ log((2B + 1)3d+1) + 1

and define m := k2⌈log(ϵ−1⌉ ∈ N. Since ϵ < 3−1 and thus log(ϵ−1) ≥ 1 we have

m ≥
(
log(k1 + 1) +

( d
β
+ 2
)
+ log((2B + 1)3d+1) + 1

)
log(ϵ−1)

≥ log(k1 + 1) +
( d
β
+ 1
)
log(ϵ−1) + log((2B + 1)3d+1) + 2

≥ N + log((2B + 1)3d+1) + log(ϵ−1) + 2.

Theorem 7.2.4 implies the following. For any f ∈ Fβ,B,d there exists a network Φ̃ with

L = 8 + (k2⌈log ϵ−1⌉+ 5)(1 + ⌈log2 d⌉)

layers, sparsity

s ≤ 94d2(β + 1)2dk1ϵ
− d

β (k2⌈log ϵ−1⌉+ 6)(1 + ⌈log2 d⌉)

and weights |wi| ≤ 1 such that

∥R(Φ̃)− f∥∞ ≤
ϵ

2
.

Note that

L ≤ (8 + (2k2 + 5)(1 + ⌈log2 d⌉) log ϵ−1 =: c1 log ϵ
−1,

s ≤
(
94d2(β + 1)2dk1(2k2 + 6)(1 + ⌈log2 d⌉

)
ϵ
− d

β log ϵ−1 =: c2ϵ
− d

β log ϵ−1.

Let V be defined as in the proof of Lemma 3.3.2. Following the proof of Lemma 12 of [109], we
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see that for any g ≤ ϵ
4(L+1)V there is a neural network Φ with L layers and sparsity s such that

∥R(Φ)−R(Φ̃)∥∞ ≤
ϵ

2
.

where the nonzero weights of Φ are discretized with grid size g. Now, define

ϵ

4(L+ 1)V

=
ϵ

4(L+ 1)
(
ds+ L(s+ 1)2

)
≥ ϵ

4(c1⌈log ϵ−1⌉+ 1)
(
dc2ϵ

− d
β ⌈log ϵ−1⌉+ c1⌈log ϵ−1⌉(c2ϵ−

d
β ⌈log ϵ−1⌉+ 1)2

)
≥ 1

4(c1 + 1)(dc2 + c1(c2 + 1)2
ϵ
2+2 d

β

≥ 2−
(
c3+c4⌈log(ϵ−1)⌉

)
=: g.

with

c3 := ⌈log
(
4(c1 + 1)(dc2 + c1(c2 + 1)2

)
⌉,

c4 :=
⌈
2 + 2

d

β

⌉
.

Therefore, all weights are elements of Wc with c = c3 + c4⌈log ϵ−1⌉ and

∥R(Φ)− f∥∞ ≤ ∥R(Φ)−R(Φ̃)∥∞ + ∥R(Φ̃)− f∥∞ ≤
ϵ

2
+
ϵ

2
= ϵ.

Lastly, we prove Lemma 3.3.8. The extension to this case is similar to the extension in [109].

Proof of Lemma 3.3.8. Let

γ = γr ◦ · · · ◦ γ1 ∈ Gr,t,β,B,d

with γi = (γij ◦ ιij)di+1

j=1 . We first construct a candidate network Φ for γ. Then, we show that it

approximates gamma well and satisfies the required properties.

In order to construct a network that approximates γ well, we first approximate γij and τij using

neural networks. The final network is constructed using concatenation and parallelization.

Let i = 1, . . . , r, j = 1, . . . , di + 1 and ϵi > 0. Using Lemma 3.3.5 there exist constants

ϵi0, c
i
1, c

i
2 > 0, ci3, c

i
4 ∈ N such that there exists a neural network Φij with Lij ≤ ci1⌈log(ϵ

−1
i )⌉

layers, sparsity sij ≤ ci2ϵ
− ti

βi
i log(ϵ−1

i ) and weights in Wci with c
i := ci3 + ci4⌈log(ϵ

−1
i )⌉ such that

∥R(Φij)(x)− γij∥∞ ≤ ϵi

if ϵi < ϵi0. Let γ̂ij := R(Φij)(x). Additionally, the function ιij is the realization of a network
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with 0 Layers and sparsity ti.

Since concatenating and parallelizing networks using Lemma 7.2.1 leads to linear transformations

on the upper bounds on the Layers, sparsity and the constant c′, there exist constants c′1, c
′
2 > 0,

c′3, c
′
4 ∈ N such that the function

γ̂ = γ̂r ◦ · · · ◦ γ̂1

with γ̂i = (γ̂ij ◦ ιij)d−1
j=1 is the realization of a network with

L ≤ c′1 max
i=1,...,r

⌈log(ϵ−1
i )⌉ layers,

s ≤ c′2 max
i=1,...,r

ϵ
− ti

βi
i log(ϵ−1

i ) sparsity,

c′ := c′3 + c′4 max
i=1,...,r

⌈log(ϵ−1
i )⌉

and weights in Wc′ .

Now, let ϵ > 0 be small enough. We show that γ̂ approximates γ well for suitabily chosen ϵi.

Following Lemma 9 in [109] we have

∥γ − γ̂∥∞ ≤ C
r∑

i=1

∥ max
j=1,...,di+1

|γij − γ̂ij |∥
∏r

k=i+1 min{βk,1}
∞

≤ C
r∑

i=1

ϵ
∏r

k=i+1 min{βk,1}
i

≤ Cr max
i=1,...,r

ϵ
∏i+1

k=1 min{βk,1}
i

for some constant C > 0. Set

ϵi :=
( ϵ

Cr

) 1∏i+1
k=1

min{βk,1} .

First, this implies

∥γ − γ̂∥∞ ≤ ϵ.

Additionally, the network Φ has

L ≤ c′1 max
i=1,...,r

⌈log(ϵ−1
i )⌉ ≤ c1⌈log(ϵ−1)⌉ layers,

s ≤ c′2 max
i=1,...,r

ϵ
− ti

βi
i log(ϵ−1

i ) = c2 max
i=1,...,r

ϵ
− ti

βi
∏i+1

k=1
min{βk,1} log(ϵ−1)

= c2ϵ
−ρ log(ϵ−1) sparsity,

c′ = c′3 + c′4 max
i=1,...,r

⌈log(ϵ−1
i )⌉ ≤ c3 + c4⌈log(ϵ−1)⌉ := c

and weights in Wc for some constants c1, c2 > 0, c3, c4 ∈ N.
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7.2.3 Lower Bound

We first prove Theorem 3.4.1. The outline of the proof is similar to the proof of Theorem 3 in

[91]. However, the setting of Theorem 3.3.4 differs substantially from theirs. This leads to a

new situation and new technical challenges to overcome in the proof of Theorem 3.4.1 .

Proof of Theorem 3.4.1. By Hoelders inequality and condition (c) it is enough to consider the

case p = 1 and the first inequality. Let Q1 ⊆ Q be a finite set of potential probability measures

of (X1, Y1), . . . , (Xn, Yn). Then

sup
Q∈Q

E[d∆(Gn, G
∗
Q)] ≥

1

#Q1

∑
Q∈Q1

E[d∆(Gn, G
∗
Q)]

Hence, it suffices to show that for any estimator Gn we have

1

#Q1

∑
Q∈Q1

E[d∆(Gn, G
∗
Q)] ≥ cn

− 1
2κ−1+ρ a.s., (7.2.3)

for some constant c > 0. We now define the set Q1. Then, we prove Q1 ⊆ Q. Lastly, we show

that Q1 satisfies (7.2.3).

Let ϕ : R→ [0, 1] be an infinitely many times differentiable function with the following proper-

ties:

• ϕ(t) = 0 for |t| ≥ 1,

• ϕ(0) = 1.

Let K ≥ 2 be an integer. For i ∈ {1, . . . ,K}d−1 define

ϕi : [0, 1]
d−1 → [0, 1], ϕi(y) = k1K

−β2

d−1∏
j=1

ϕ

(
K

(
yj −

2ij − 1

K

))

for some 0 < k1 small enough. Define

W :=
∏

i∈{1,...,K}d−1

{0, 1}.

For w ∈W let

γw : [0, 1]d−1 → [0, 1], γw(y) =
∑

i∈{1,...,K}d−1

wiϕi(y).

Now, for w ∈W defineQw as follows. The marginal distributionQw,X is the uniform distribution
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on [0, 1]d and

fQw(x) :=
1

2

(
1 + k2 (γw(x−1)− x1)β1

)
1 (x1 ≤ γw(x−1))

+
1

2

(
1− k2xβ1

1

)
1 (0 < x1 ≤ γ1−w(x−1))

+
1

2

(
1− k3 (x1 − γ1(x−1))

β1

)
1(γ1(x−1) < x1)

for some k2, k3 > 0. Finally, let

Q1 :=
{
Qw

∣∣ w ∈W}.
We now show that Q1 ⊆ Q by properly selecting the constants c1, k1, k2, k3 such that fQw is well

defined for all w ∈W and showing that Q1 satisfies the conditions (a),(b),(c).

First of all, we choose k1, k3 small enough and (given k2 > 0) K0 large enough such that for all

K ≥ K0 we have
1

4
≤ fQw(x) ≤ 1

for all x ∈ [0, 1]d and w ∈W .

(a) Clearly, for all w ∈ W the marginal distribution of Qw with respect to X has a Lebesgue

density which bounded by 1 ≤M .

(b) We need to show

G∗
Qw

=
{
x ∈ [0, 1]d

∣∣∣ fQw(x) ≥
1

2

}
∈ KFβ2,B2,d−1

Q,β,B,ϵ1,ϵ2,r,d

for all w ∈W .

1. Clearly, by selecting ν = u = 1, j = jν = 1, ι2 = 1, Dν = [0, 1]d and γ = γw we have

G∗
Qw

= H1 = Dν ∩
{
x ∈ [0, 1]d | ι2x1 ≤ γ(x−1)

}
.

For k1 small enough we also have γ ∈ Fβ2,B2,d−1 for all w ∈W .

2. clear.

3. If β1 > 0, for w ∈W and x ∈ ∂G∗
Qw

we have x1 = γw(x−1). Let

gν,x : [0, 1]→ R, gν,x(y) = max{k2, k3}yβ1 .

Note that for k2, k3 small enough we have gν,x ∈ Hβ1,B1 . Additionally, we have

|2fQw(y)− 1| ≤ gν,x(y − x1), for y ≥ x1,

|2fQw(y)− 1| ≤ gν,x(x1 − y), for y ≤ x1.

4. clear.
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This implies the assertion.

(c) Let w ∈W . For β1 = 0 we have

dκ∆(G,G
∗
Qw

) = d∆(G,G
∗
Qw

) =
1

min{k2, k3}
dfQw

(G,G∗
Qw

)

For β1 > 0, there is an η0 > 0 such that for all 0 < η ≤ η0 we have

λ
({
x ∈ [0, 1]d

∣∣ |2fQw(x)− 1| ≤ η
})

≤ λ
({

x ∈ [0, 1]d
∣∣∣ x1 ≤ γw(x−1), k2(γw(x−1)− x1)β1 ≤ η

}
∪
{
x ∈ [0, 1]d

∣∣∣ x1 ≤ γ1−w(x−1), k2x
β1
1 ≤ η

}
∪
{
x ∈ [0, 1]d

∣∣∣ γ1(x−1) ≤ x1, k3
(
x1 − γ1(x−1)

)β1

≤ η
})

≤ λ

({
x ∈ [0, 1]d

∣∣∣∣∣ γ2(x−1)−
1

k
1
β1
2

η
1
β1 ≤ x1 ≤ γw(x−1)

}

∪

{
x ∈ [0, 1]d

∣∣∣∣∣ x1 ≤ 1

k
1
β1
2

η
1
β1

}

∪

{
x ∈ [0, 1]d

∣∣∣∣∣ γ1(x−1) ≤ x1, γ1(x−1) +
1

k
1
β1
3

η
1
β1

})

≤

 2

k
1
β1
2

+
1

k
1
β1
3

 η
1
β1 .

Following Proposition 1 in of [126] there exists c̃1, η̃0 > 0 such that

dκ∆(G,G
∗
Qw

) ≤ c̃1dfQw
(G,G∗

Qw
)

for all G such that d∆(G,G
∗
Qw

) ≤ η̃0. If η̃0 ≥ 1 this implies the assertion with c1 := c̃1. If

not, the assertion is implied by setting c1 :=
c̃1
η̃κ0
.

Next we prove Inequality (7.2.3). For w ∈ W write Qn
w for the probability measure of the

distribution of (X1, Y1), . . . , (Xn, Yn) when the underlying distribution is Qw. Define the product

measure ψ = ζ×λ, where ζ is the counting measure on {0, 1}. Note that Qw has a density with

respect to ψ which is given by

dQw =
dQw

dψ
(y, x) := 1(y = 1)fw(x) + 1(y = 0) · (1− fw(x)).

Assume w1, w2 ∈W differ by only 1 entry. We obtain∫
min{dQn

w1
,dQn

w2
}dψ =

∫
min{dQn

0 , dQn
1}dψ,
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where for s = 0, 1 we write Qn
s = Qn

ws with

ws
i :=

s, for i1 = · · · = id−1 = 1,

0, otherwise

for i ∈ {1, . . . ,K}d−1. Then, using Assouad’s Lemma we get

1

#Q1

∑
Q∈Q1

E[d∆(Gn, G
∗
Q)]

≥ 1

2
Kd−1λ

({
x ∈ [0, 1]d

∣∣∣ x1 ≤ ϕ1(x−1)
} )∫

min{dQn
0 ,dQn

1}dψ

=
1

2
k1K

d−1−β2

∫
Rd−1

d−1∏
j=1

ϕ(Kxj+1)dx−1

∫
min{dQn

0 , dQn
1}dψ.

We first bound the term
∫
min{dQn

0 , dQn
1}dψ. By using the fact that∫

dQ0dψ = 1

and Hoelders inequality in the fourth row we calculate∫
min{dQn

0 ,dQn
1}dψ

= 1− 1

2

∫
|dQn

0 − dQn
1 |dψ

= 1− 1

2

∫ ∣∣∣√dQn
0 −

√
dQn

1

∣∣∣ · ∣∣∣√dQn
0 +

√
dQn

1

∣∣∣ dψ
≥ 1− 1

2

(∫ (√
dQn

0 −
√
dQn

1

)2
dψ

) 1
2
(∫ (√

dQn
0 +

√
dQn

1

)2
dψ

) 1
2

.
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By repeatedly using the fact that
∫
dQ0dψ = 1, this implies∫

min{dQn
0 ,dQn

1}dψ

= 1− 1

2

(
2

(
1−

∫ √
dQn

0dQn
1dψ

)) 1
2
(
2

(
1 +

∫ √
dQn

0dQn
1dψ

)) 1
2

= 1−

(
1−

(∫ √
dQn

0dQn
1dψ

)2
) 1

2

≥ 1−

(
1−

(∫ √
dQn

0dQn
1dψ

)2

+
1

4

(∫ √
dQn

0dQn
1dψ

)4
) 1

2

= 1−

(
1− 1

2

(∫ √
dQn

0dQn
1dψ

)2
)

=
1

2

(∫ √
dQn

0dQn
1dψ

)2

.

By independence we have ∫ √
dQn

0dQn
1dψ =

(∫ √
dQ0dQ1dψ

)n

.

Additionally, observe that∫ √
dQ0dQ1dψ

=
1

2

∫
dQ0dψ +

1

2

∫
dQ1dψ −

1

2

∫ (√
dQ0 −

√
dQ1

)2
dψ

= 1− 1

2

∫ (√
dQ0 −

√
dQ1

)2
dψ

and ∫ (√
dQ0 −

√
dQ1

)2
dψ

≤
∫ (√

fw0(x)−
√
fw1(x)

)2
dx+

∫ (√
1− fw0(x)−

√
1− fw1(x)

)2
dx

≤ 2

∫ (
fw0(x)− fw1(x)

)2
dx+ 2

∫ (
1− fw0(x)−

(
1− fw1(x)

))2
dx

= 4

∫ (
fw0(x)− fw1(x)

)2
dx
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where we used that fw(x) ≥ 1
4 for all x ∈ [0, 1]d and w ∈W . Next, we calculate∫ (

fw0(x)− fw1(x)
)2
dx

≥ 1

4

∫
[0,1]d−1

∫ ϕj(x−1)

0

(
k2 (ϕj(x−1)− x1)β1 + k2x

β1
1

)2
dx1dx−1

≥ k22
4

∫
[0,1]d−1

∫ ϕj(x−1)

0
(ϕj(x−1)− x1)2β1 dx1dx−1

+
k22
4

∫
[0,1]d−1

∫ ϕj(x−1)

0
x2β1
1 dx1dx−1

=
k22
4
(I1 + I2).

We need to control the terms I1 and I2. For the first we obtain

I1 :=

∫
[0,1]d−1

∫ ϕj(x−1)

0
(ϕj(x−1)− x1)2β1 dx1dx−1

=

∫
[0,1]d−1

∫ ϕj(x−1)

0
x2β1
1 dx1dx−1

=
1

1 + 2β1

∫
[0,1]d−1

ϕj(x−1)
1+2β1dx−1

≤ k1+2β1
1

1 + 2β1
K−β2(1+2β1)

∫
Rd−1

d−1∏
j=1

ϕ(Kxj+1)
1+2β1dx−1

≤ 2
k1+2β1
1

1 + 2β1
K−β2(1+2β1)−(d−1)

= 2
k1+2β1
1

1 + 2β1
K−β2(2κ−1+ρ)

and similarly

I2 :=

∫
[0,1]d−1

∫ ϕj(x−1)

0
x2β1
1 dx1dx−1

≤ 2
k1+2β1
1

1 + 2β1
K−β2(2κ−1+ρ).

This implies ∫
min{dQn

0 ,dQn
1}dψ ≥

1

2

(
1− c∗K−β2(2κ−1+ρ)

)2n
for some constant c∗ > 0. By setting K := n

1
β2

1
2κ−1+ρ we obtain∫

min{dQn
0 , dQn

1}dψ ≥
1

2

(
1− c∗ 1

n

)2n

> c′
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for some constant c′ > 0 for n large enough. Thus

1

#Q1

∑
Q∈Q1

E[d∆(Gn, G
∗
Q)]

=
1

2
k1K

d−1−β2

∫
Rd−1

d−1∏
j=1

ϕ(Kxj+1)dx−1

∫
min{dQn

0 , dQn
1}dψ

≥ 1

2
k1K

−β2

∫
Rd−1

d−1∏
j=1

ϕ(xj+1)dx−1 · c′

≥ cn−
1

2κ−1+ρ

for some constant c > 0. This concludes the proof.

Lastly, the proof of Theorem 3.4.2 is provided. The ideas used in the proof are very similar

to those used in the proof of Theorem 3.4.1 above. We therefore only focus on the differences.

Proof of Theorem 3.4.2. As in the proof of Theorem 3.4.1 the strategy is to show that for any

estimator Gn we have

1

#Q1

∑
Q∈Q1

E[d∆(Gn, G
∗
Q)] ≥ cn

1
2κ−1+ρ a.s.,

for some constant c > 0 and some finite set Q1 ⊆ Q. Let K ≥ 2 be an integer and let

iopt := arg max
i=1,...,r2

ti
β∗2,i

.

As in the proof of Theorem 3.4.1 define ϕ : R→ [0, 1] to be an infinitely many times differentiable

function with the following two properties:

• ϕ(t) = 0 for |t| ≥ 1,

• ϕ(0) = 1.

Note that ϕα also fulfills both properties for any α > 0, though it may not be infinitely many

times differentiable. For i ∈ {1, . . . ,K}tiopt define

ϕi : [0, 1]
d1−1 → [0, 1], ϕi(y) = k1K

−β∗
2,iopt

tiopt∏
j=1

ϕα
(
K

(
yj −

2ij − 1

K

))

for α :=
∏r2

k=iopt
min{βk, 1} and some 0 < k1 small enough. Define

W :=
∏

i∈{1,...,K}d−1

{0, 1}.
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For w ∈W let

γw : [0, 1]d1−1 → [0, 1], γw(y) =
∑

i∈{1,...,K}
tiopt

wiϕi(y).

Now, for w ∈W we define Qw as before. The marginal distribution QX is the uniform distribu-

tion on [0, 1]d and

fQw(x) :=
1

2

(
1 + k2 (γw(x−1)− x1)β1

)
1 (x1 ≤ γw(x−1))

+
1

2

(
1− k2xβ1

1

)
1 (0 < x1 ≤ γ1−w(x−1))

+
1

2

(
1− k3 (x1 − γ1(x−1))

β1

)
1(γ1(x−1) < x1)

for some k2, k3 > 0. Note that for k1 > 0 small enough γ := γw ∈ Gr2,t,β2,B2,d′ by defining

γi(y) = (y1, . . . , yti , 0, . . . , 0), for i < iopt,

γi(y) = (ψ(y), 0, . . . , 0), for i = iopt,

γi(y) =
(
kαi
1 y

min{βi,1}
1 , 0, . . . , 0

)
, for i > iopt,

where

ψ(y) :=
∑

i∈{1,...,K}
tiopt

wik
αiopt

1 K−β2,iopt

tiopt∏
j=1

ϕ

(
K

(
yj −

2ij − 1

K

))
,

αi :=
1

(r2 − iopt + 1)
∏r2

k=i+1min{βk, 1}

for iopt ≤ i ≤ r2. The rest of the proof is analogous to the proof of Theorem 3.4.1.

7.3 Random Planted Forest: a directly interpretable tree ensemble

Proof of Theorem 4.5.1 In the proof we denote different constants by C. The meaning of C

may change, also in the same formula. In this proof we omit the index v in the notation.

We rewrite (4.5.1) as

m̂s(x) = ̂̄ms
(xts) + Ψ̂sm̂s−1(x), (7.3.1)

where ̂̄ms
= ̂̄ms

ts , Ψ̂
s = Ψ̂s

ts and where

Ψ̂s
tm(x) = m(x)−mt(xt)

−
∑

t′∈Tr,t′ ̸=t

∫
(0,1]|t′\t|

p̂st∪t′(xt, ut′\t)

p̂st (xt)
mt′(xt′∩t, ut′\t)dut′\t
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7.3 Random Planted Forest

for an additive function m(x) =
∑

t∈Tr
mt(xt). Iterative application of (7.3.1) gives for 1 ≤ S1 <

S2 ≤ S

m̂S2 = ̂̄mS2 + Ψ̂S2 ̂̄mS2−1
+ Ψ̂S2Ψ̂S2−1 ̂̄mS2−2

+...+ Ψ̂S2 ...Ψ̂S1+1 ̂̄mS1 + Ψ̂S2 ...Ψ̂S1m̂S1−1. (7.3.2)

We use this equality in the proofs of the following lemmas for the choices S1 = 1, S2 = S∗ and

S1 = S∗, S2 = S with S∗ = S − J ′.

Lemma 7.3.1. It holds that

1

n

n∑
i=1

m̂S∗−1(Xi)
2 ≤ S1/2 1

n

n∑
i=1

Y 2
i .

Proof. It can be easily shown that for t ∈ Tr

1

n

n∑
i=1

̂̄mt(Xi)
2 ≤ 1

n

n∑
i=1

Y 2
i . (7.3.3)

Furthermore, for any function m we have

1

n

n∑
i=1

(
Ψ̂sm

)
(Xi)

2 ≤ 1

n

n∑
i=1

m(Xi)
2. (7.3.4)

For a proof of (7.3.4) consider the space of functions m : [0, 1]d → R endowed with the pseudo

metric

∥m∥2n,2 =
1

n

n∑
i=1

m(Xi)
2.

Then I − Ψ̂s is the orthogonal projection onto the space of piecewise constant functions that

are constant on the rectangles Ist,l : l = 1, ..., Lt,s. Furthermore, Ψ̂s is the orthogonal projection

onto the orthogonal complement of this space. This shows (7.3.4). The statement of the lemma

now follows from (7.3.3)–(7.3.4) by application of (7.3.2) with S1 = 1 and S2 = S∗ − 1.

This lemma can be used to show a bound for the L2(p)-norm of m̂S∗−1 which we denote by

∥m̂S∗−1∥

Lemma 7.3.2. It holds that with probability tending to one

∥m̂S∗−1∥2 =
∫
m̂S∗−1(x)2p(x)dx ≤ (1− Cη1,n)−1S1/2 1

n

n∑
i=1

Y 2
i .

149



7 Proofs

Proof. For t ∈ Tr we get by application of (A6) that∫
m̂S∗−1

t (xt)
2p(x)dx ≤

∫
m̂S∗−1

t (xt)
2p̂S

∗−1
t (xt)dxt

+

∫
m̂S∗−1

t (xt)
2|p̂S∗−1

t − pt|(xt)dxt

≤ 1

n

n∑
i=1

m̂S∗−1
t (Xt,i)

2

+Cη1,n

∫
m̂S∗−1

t (xt)
2pt(xt)dxt.

The statement of the lemma now follows by application of Lemma 7.3.1.

Lemma 7.3.3. It holds for some C > 0 and 0 < ρ < 1 that with probability tending to one

∥Ψ̂S ◦ ... ◦ Ψ̂S∗∥ ≤ CρCA3 logn.

Here for an operator Ψ mapping L2(p) into L2(p) we denote the operator norm ∥Ψ∥ =

sup{∥Ψm∥ : m ∈ L2(p), ∥m∥ = 1} by ∥Ψ∥. Before we come to the proof of this lemma let

us discuss its implications. Using the representation (7.3.1) we get from Lemmas 7.3.2, 7.3.3

that for all R > 0 we can choose a constant CR such that if CA3 is large enough with probability

tending to one

∥m̂S − m̂1,S∥ ≤ CRn
−R, (7.3.5)

where

m̂1,S = ̂̄mS
+ Ψ̂S ̂̄mS−1

+ ...+ Ψ̂S ...Ψ̂S∗+1 ̂̄mS∗
.

Note that m̂1,S only depends on the growth history of the tree in the last C ′
J(log n)

2 steps.

Thus we have shown that approximately the same holds for the tree estimators m̂S . Below we

go a step further and show that the tree family estimator approximately only depends on the

data averages in the terminal leaves and in particular not on the growth of the tree family in

the past. Before we come to this refinement we first give a proof of Lemma 7.3.3. For this

purpose we introduce population analogues Ψts of the operators Ψ̂s and we discuss some theory

on backfitting estimators in additive interaction models. We consider the following subspaces of

functions m : [0, 1]d → R with E[m2(Xi)] <∞ for t ∈ Tr

H = {m : [0, 1]d → R | E[m2(Xi)] <∞},

Ht = {m ∈ H | m(x) = mt(xt) for some function mt : [0, 1]
|t| → R},

Hadd = {m ∈ H | m(x) =
∑
t∈Tr

mt(xt) for some functions

mt ∈ Ht, t ∈ Tr}.
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7.3 Random Planted Forest

In particular, H∅ is the subspace ofH that contains only constant functions. In abuse of notation

for a function mt ∈ Ht we also write mt(x) with x ∈ [0, 1]d instead of mt(xt). Thus mt can be

interpreted as a function with domain [0, 1]|t| or with domain [0, 1]d. The projection of H onto

Ht is denoted by Πt. For Ψt = I −Πt and m =
∑

t∈Tr
mt with mt ∈ Ht (t ∈ Tr) one gets

Ψtm(x) =
∑

w∈Tr\{t}

mw(xw) +m∗
t (xt)

with

m∗
t (xt) = −

∑
w∈Tr,w ̸=t

∫
pt∪w(xt∪w)

pt(xt)
mw(xw)dxw\t.

We now consider operators K of the form Ψt1 ◦ . . . ◦ΨtkK with {t1, ..., tkK} ⊇ Tr. We call these

operators complete. We argue that there exists a constant γ < 1 such that for all complete

operators K of this form we have

∥K∥add = sup{∥Km∥ : m ∈ Hadd, ∥m∥ ≤ 1} < γ. (7.3.6)

Note that in particular γ does not depend on the order of t1, ..., tkK . Our notation is a little

bit sloppy because in the representation
∑

t∈Tr
mt of m the summands are not uniquely defined

because t∩t′ may be nonempty for some t, t′ ∈ Tr, t ̸= t′. A more appropriate notation would be

to define K as an operator mapping
∏

t∈Tr
Ht into

∏
t∈Tr
Ht and to endow this space with the

pseudo norm ∥
∑

t∈Tr
mt∥. For a proof of (7.3.6) we show that

∑
t∈T Ht are closed subspaces of

H for all choices of T ⊂ Tr. In particular, by a result of Deutsch (1985), see also Appendix A.4

in Bickel, Klaassen, Ritov and Wellner (1993), this implies that ρ(Htj ,Htj+1 + ... +Ht
kK

) < 1

for 1 ≤ j ≤ tkK−1, where for two linear subspaces L1 and L2 of H the quantity ρ(L1.L2) is the

cosine of the minimal angle between L1 and L2, i.e. ρ(L1.L2) = sup{
∫
h1(x)h2(x)p(x)dx : hj ∈

Lj ∩ (L1 ∩ L2)
⊥,
∫
h2j (x)p(x)dx ≤ 1 for j = 1, 2}.

According to a result of Smith, Solomon and Wagner (1977) this implies that for an operator

K of the above form we have that

∥K∥add ≤ 1−
kK∏
j=1

sin2(αj),

where αj is chosen such that cos(αj) = ρ(Htj ,Htj+1 + ...+Ht
kK

). We remark that this bound

is also valid if the space Htj is identical to the same space Ht for several choices of j. In this

case we have sin2(αj) = 1 for all such values of the index j with the exception of the last

appearance of Ht. Because there are only finitely many ways to order |Tr| elements we get by

the last remark that (7.3.6) holds with some γ < 1 for all operators K. For a proof of (7.3.6)

it remains to show that
∑

t∈T Ht are closed subspaces of H for all choices of T ⊂ Tr. For

this claim we argue that
∑

t∈T H̄t are closed subspaces of H for all choices of T ⊂ Tr, where

H̄t = {h ∈ Ht :
∫
h(x)dxj = 0 for j ∈ t}. According to Proposition 2 in the supplement material

A.4 of Bickel, Klaassen, Ritov and Wellner (1993) this follows if there exists some c > 0 such
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that
∫
(
∑

t∈T ht(xt))
2p(x)dx ≥ 1 implies that

∫
ht(xt)

2p(x)dx ≥ c for some t ∈ T . This can be

easily verified with c = C(maxx∈[0,1]d p(x))
−1|Tr|−1 by noting that for ht ∈ H̄t it holds that

∫ (∑
t∈T

ht(xt)

)2

p(x)dx ≤ max
x∈[0,1]d

p(x)

∫ (∑
t∈T

ht(xt)

)2

dx

= max
x∈[0,1]d

p(x)
∑
t∈T

∫
ht(xt)

2dx

≤ C max
x∈[0,1]d

p(x)
∑
t∈T

∫
ht(xt)

2p(x)dx

In particular, one can use (7.3.6) to show that with

m̄t(x) = E[Yi|Xi,t = xt] =
∑
t′∈Tr

∫
mt′(xt′)

pt′∪t(xt′∪t)

pt(xt)
dxt′\t

we have for µ∗ ∈ Hadd with some 0 < γ < 1, and some C > 0

∥m− µ∥ ≤ CγS
∗
(∥µ∗∥+ 1),

where

µ = m̄t∗v,1
+Ψt∗v,1

m̄t∗v,2
+Ψt∗v,1

Ψt∗v,2
m̄t∗v,3

+ ...+Ψt∗v,1
◦ ... ◦Ψt∗

v,S∗−1
µ∗

with t∗v,s = tv,S−s+1. Note that

m− µ = Ψt∗v,1
◦ ... ◦Ψt∗

v,S∗−1
(m− µ∗).

Proof of Lemma 7.3.3. By Assumption (A6) we have by application of Cauchy-Schwarz inequal-

ity that

∥Ψ̂s −Ψts∥ ≤ Cδ2,n (7.3.7)

with probability tending to one. This implies that, with probability tending to one,

∥Ψ̂s∥ ≤ 1 + Cδ2,n

and we get by a telescope argument that, with probability tending to one, for 1 ≤ j ≤ J ≤
CA3 log n+ 1

∥Ψ̂sj ◦ ... ◦ Ψ̂sj−1+1 −Ψtsj
◦ ... ◦Ψtsj−1+1∥ ≤ CJ ′(1 + Cδ2,n)

J ′−1δ2,n

≤ CC ′
A3(log n)

2(1 + Cδ2,n)
C′

A3(logn)
2
δ2,n ≤ C(log n)2δ2,n.

Because by Assumption (A3) Ψtsj
◦ ... ◦ Ψtsj−1+1 is a complete operator with high probability,
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7.3 Random Planted Forest

we get from (7.3.6) that, with probability tending to one, for 1 ≤ j ≤ J ≤ CA3 log n+ 1

∥Ψ̂sj ◦ ... ◦ Ψ̂sj−1+1∥ ≤ γ + C(log n)2δ2,n.

This inequality can be used to show the bound on ∥Ψ̂S ◦ ... ◦ Ψ̂S∗∥, claimed in Lemma 7.3.3.

As discussed above, Lemma 7.3.3 implies (7.3.5). We now approximate m̂1,S by m̂2,S where

m̂2,S = ̂̄mS
tS

+ Ψ̂S
tS
̂̄mS
tS−1

+ Ψ̂S
tS
Ψ̂S

tS−1
̂̄mS
tS−2

+ ...+ Ψ̂S
tS
...Ψ̂S

tS∗+1
̂̄mS
tS∗ .

Note that m̂2,S differs from m̂1,S by having always the superindex S for the operators Ψ and

the functions ̂̄m. In the following lemma we compare m̂S and m̂2,S . The bound can be shown

by similar arguments as in the proof of (7.3.5). In this proof one uses Assumption (A5) instead

of (7.3.7). One gets that for all R > 0 we can choose a constant CR such that if CA3 in

Assumption (A3) is large enough with probability tending to one ∥m̂S − m̂2,S∥ ≤ CRn
−R +

CC ′
A3(1+Cδ2,n)

C′
A3(logn)

2
δ1,n ≤ CRn

−R+Cδ1,n. If R is chosen large enough we get the following

lemma, see Assumption (A4).

Lemma 7.3.4. If CA3 in Assumption (A3) is large enough it holds that with probability tending

to one

∥m̂S − m̂2,S∥ ≤ Cδ1,n.

We now define m̂3,S =
∑

t∈Tr
m̂3,S

t as a minimizer of

n∑
i=1

(
Yi −

∑
t∈Tr

mt(Xi,t)

)2

over all function mt : (0, 1]|t| → R that are piecewise constant on the rectangles ISt,l : l =

1, ..., Lt,S . Then we have Ψ̂S
t m̂

3,S + ̂̄mS
t = m̂3,S for all t ∈ Tr which implies that

m̂3,S = ̂̄mS
tS

+ Ψ̂S
tS
̂̄mS
tS−1

+ Ψ̂S
tS
Ψ̂S

tS−1
̂̄mS
tS−2

+ ...+ Ψ̂S
tS
...Ψ̂S

tS∗+1
m̂3,S

tS∗ . (7.3.8)

This shows that

m̂3,S − m̂2,S = Ψ̂S
tS
...Ψ̂S

tS∗+1
(m̂3,S

tS∗ − ̂̄mS
tS∗ ).

This equation can be used to prove the following result:

Lemma 7.3.5. If CA3 in Assumption (A3) is large enough it holds that with probability tending

to one

∥m̂S − m̂3,S∥ ≤ Cδ1,n.
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We now decompose m̂3,S into a stochastic and a bias term

m̂3,S −m0 = m̂A,S + m̂B,S −m0,

where m̂A,S =
∑

t∈Tr
m̂A,S

t minimizes

n∑
i=1

(
εi −

∑
t∈Tr

mt(Xi,t)

)2

over all functionmt : (0, 1]
|t| → R that are piecewise constant on the rectangles ISt,l : l = 1, ..., Lt,S

and m̂B,S =
∑

t∈Tr
m̂B,S

t minimizes

n∑
i=1

(
m0(Xi)−

∑
t∈Tr

mt(Xi,t)

)2

over the same class of piecewise constant functions. We see that m̂A,S is the projection of ε onto

an (S + 1)-dimensional linear subspace of Rn. We conclude that

E

 1

n

n∑
i=1

∣∣∣∣∣∑
t∈Tr

m̂A,S
t (Xi,t)

∣∣∣∣∣
2
 ≤ (S + 1)n−1σ2. (7.3.9)

For the study of the bias term define m̄(x) =
∑

t∈Tr
m̄t(xt) with

m̄t(xt) =
1

n|ISt,l|n

∑
i:Xi,t∈IS

t,l

m0
t (Xi,t)

for xt ∈ ISt,l. Now, by definition of m̂B,S , we have that

1

n

n∑
i=1

∣∣∣∣∣∑
t∈Tr

m̂B,S
t (Xi,t)−m0(Xi)

∣∣∣∣∣
2

≤ 1

n

n∑
i=1

∣∣m̄(Xi)−m0(Xi)
∣∣2 .

Furthermore, we have by an application of Assumption (A4) that

1

n

n∑
i=1

∣∣m̄(Xi)−m0(Xi)
∣∣2 ≤ C 1

n

n∑
i=1

∑
t∈Tr

∑
k∈t

(
bSt,k,lt(Xi,t)

− aSt,k,lt(Xi,t)

)2
≤ Cδ21,n.

Using the same arguments as in the proof of Lemma 7.3.2 one gets the same bound with empirical

norm replaced by the L2(P )-norm ∥ · ∥. This concludes the proof of the theorem.

Proof of Theorem 4.5.2 We now introduce the super index v again which denotes the number

of the respective tree family. Note that the bound of Lemma 7.3.5 holds uniformly over 1 ≤ v ≤
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7.3 Random Planted Forest

V . We can decompose m̂3,S,v into a stochastic and a bias term

m̂3,S,v −m0 = m̂A,S,v + m̂B,S,v −m0

and we get from (7.3.9) that

E

 1

n

n∑
i=1

∣∣∣∣∣∑
t∈Tr

1

V

V∑
v=1

m̂A,S,v
t (Xi,t)

∣∣∣∣∣
2
 ≤ (S + 1)n−1σ2.

For the treatment of the averaged bias term note that for t ∈ Tr

m̂B,S,v
t (xt) = ̂̄mB,S,v

t (xt)−
∑
t′ ̸=t

∫
p̂S,vt∪t′(xt∪t′)

p̂S,vt (xt)
m̂B,S,v

t′ (xt′)dxt′\t

where ̂̄mB,S,v
t (xt) =

1

n|IS,v
t,l |n

∑
i:Xi,t∈IS,v

t,l
m0(Xi) for xt ∈ IS,vt,l . Now by subtracting m0

t (xt) we get

m̂B,S,v
t (xt)−m0

t (xt) = ̂̄mB,S,v
t (xt)− m̄0

t (xt)

−
∑
t′ ̸=t

∫ (
p̂S,vt∪t′(xt∪t′)

p̂S,vt (xt)
m̂B,S,v

t′ (xt′)−
pt∪t′(xt∪t′)

pt(xt)
m0

t′(xt′)

)
dxt′\t

where m̄0
t (xt) =

∫ p(x)
pt(xt)

m0(x)dx{1,...,d}\t. This can be rewritten as

m̂B,S,v
t (xt)−m0

t (xt) = ̂̄mB,S,v
t (xt)− m̄0

t (xt) + ∆v
1,t(xt)

−
∑
t′ ̸=t

∫
pt∪t′(xt∪t′)

pt(xt)

(
m̂B,S,v

t′ (xt′)−m0
t′(xt′)

)
dxt′\t +∆v

2,t(xt),

where

∆v
1,t(xt) = −

(
p̂S,vt (xt)− pt(xt)

)∑
t′ ̸=t

∫
pt∪t′(xt∪t′)

p2t (xt)
m0

t′(xt′)dxt′\t

−
∑
t′ ̸=t

∫
p̂S,vt∪t′(xt∪t′)− pt∪t′(xt∪t′)

pt(xt)
m0

t′(xt′)dxt′\t,
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and

∆v
2,t(xt) =

∑
t′ ̸=t

∫ (
p̂S,vt∪t′(xt∪t′)

p̂S,vt (xt)
− pt∪t′(xt∪t′)

pt(xt)

)(
m̂B,S,v

t′ (xt′)−m0
t′(xt′)

)
dxt′\t

−

(
p̂S,vt (xt)− pt(xt)

)2
p2t (xt)p̂

S,v
t (xt)

∑
t′ ̸=t

∫
p̂S,vt∪t′(xt∪t′)m̂

B,S,v
t′ (xt′)dxt′\t

+

(
p̂S,vt (xt)− pt(xt)

)
p2t (xt)

∑
t′ ̸=t

∫
pt∪t′(xt∪t′)(m̂

B,S,v
t′ (xt′)−m0

t′(xt′))dxt′\t.

By averaging the integral equations over v we get

m̂B,S,+
t (xt)−m0

t (xt) = ̂̄mB,S,+
t (xt)− m̄0

t (xt) + ∆1,t(xt) (7.3.10)

−
∑
t′ ̸=t

∫
pt∪t′(xt∪t′)

pt(xt)

(
m̂B,S,+

t′ (xt′)−m0
t′(xt′)

)
dxt′\t +∆2,t(xt),

where mB,S,+
t = V −1

∑V
v=1m

B,S,v
t , ̂̄mB,S,+

t = V −1
∑V

v=1
̂̄mB,S,v
t , ∆1,t = V −1

∑V
v=1∆

v
1,t and

∆2,t = V −1
∑V

v=1∆
v
2,t.

We now argue that with probability tending to one

∥∆1,t∥1 ≤ Cδ4,n, (7.3.11)

∥∆2,t∥1 ≤ C(δ2,n(δ1,n + S1/2n−1/2) + δ23,n), (7.3.12)

∥ ̂̄mB,S,+
t − m̄0

t ∥1 ≤ C(δ4,n + δ23,n). (7.3.13)

Note that with ∆t = ∆1,t +∆2,t + ̂̄mB,S,+
t − m̄0

t we can rewrite (7.3.10) as

m̂B,S,+ −m0 = ∆t +Ψt(m̂
B,S,+ −m0). (7.3.14)

Order the elements of Tr as t1, ..., t2r . Iterative application of (7.3.14) gives that

m̂B,S,+ −m0 = ∆+ +Ψ+(m̂
B,S,+ −m0), (7.3.15)

where ∆+ = ∆t1+Ψt1∆t2+...+Ψt1 ...Ψt2r−1
∆t2r and Ψ+ = Ψt1 ...Ψt2r . Because Ψ+ is a complete

operator we get from (7.3.6) that ∥Ψ+µ∥ ≤ γ∥µ∥ for µ ∈ Hadd with γ < 1. Furthermore, one

can easily verify that ∥Ψ+µ∥ ≤ C∥µ∥1 for µ ∈ Hadd with some constant C > 0. With the

help of (7.3.11)–(7.3.13) this shows that ∥∆+∥1 ≤ Cδn and ∥Ψ+∆+∥ ≤ Cδn with probability

tending to one where δn = δ2,n(δ1,n + S1/2n−1/2) + δ23,n + δ4,n. From (7.3.15) we get that

m̂B,S,+ −m0 = ∆+ +∆++ with ∆++ =
∑∞

k=1Ψ
k
+∆+. It holds with probability tending to one

that ∥∆++∥ ≤ Cδn which implies that ∥∆++∥1 ≤ Cδn. We conclude that ∥m̂B,S,+−m0∥1 ≤ Cδn
with probability tending to one. This shows the statement of Theorem 4.5.2. It remains to

verify (7.3.11)–(7.3.13). The first claim follows directly from Assumption (A7). For the proof of
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(7.3.12) one makes use of the bounds for m̂B,S,v
t′ −m0

t′ , p̂
S,v
t∪t′ − pt∪t′ and p̂

S,v
t − pt which we have

shown during the proof of Theorem 4.5.1 and which carry over to the averaged values. For the

proof of (7.3.13) note that

̂̄mB,S,+
t (xt)− m̄0

t (xt) = ∆3,t(xt) + ∆4,t(xt)

with

∆3,t(xt) =
p̂S,+t (xt)− pt(xt)

pt(xt)

∑
t′ ̸=t

∫
pt∪t′(xt∪t′)m

0
t′(xt′)dxt′\t

+
∑
t′ ̸=t

∫
p̂S,+t∪t′(xt∪t′)− pt∪t′(xt∪t′)

pt(xt)
m0

t′(xt′)dxt′\t,

∆4,t(xt) = −V −1
V∑

v=1

(
p̂S,vt (xt)− pt(xt)

)
×
∑
t′ ̸=t

∫
p̂S,vt∪t′(xt∪t′)− pt∪t′(xt∪t′)

p2t (xt)
m0

t′(xt′)dxt′\t

+V −1
V∑

v=1

(
p̂S,vt (xt)− pt(xt)

)2
p2t (xt)p̂

S,v
t (xt)

∑
t′ ̸=t

∫
p̂S,vt∪t′(xt∪t′)m

0
t′(xt′)dxt′\t.

Using similar arguments as above, one can easily verify that ∥∆3,t∥t,∗ ≤ Cδ4,n and ∥∆4,t∥ ≤
Cδ23,n, with probability tending to one. This concludes the proof of the theorem.

7.4 Unifying Local and Global Model Explanations by Functional

Decomposition of Low Dimensional Structures

7.4.1 Lemmata

Lemma 7.4.1. The solution m∗
S described in theorem 5.3.1 can be re-written as

m∗
S(xS) =

∑
V⊆S

(−1)|S\V |
∫
m(0)(x)p−V (x−V )dx−V ,

where m(0)(x) =
∑

Sm
(0)
S (xS). In particular m∗

S does not depend on the particular identification

of m(0).

Proof. We consider a fixed S ⊆ {1, . . . , d}. We make use of the fact that for a set T ̸⊇ S

∑
V⊆S

(−1)|S\V |
∫
m

(0)
T (xT )p−V (x−V )dx−V = 0, (7.4.1)
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and for a set T ⊆ {1, . . . , d}, T ⊇ S

{U : T \ S ⊆ U ⊆ T} = {T \ V : V ⊆ S} (7.4.2)

Combining (7.4.1) and (7.4.2), we get

∑
V⊆S

(−1)|S\V |
∫
m(0)(x)p−V (x−V )dx−V

=
∑

T⊆{1,...,d}

∑
V⊆S

(−1)|S\V |
∫
m

(0)
T (xT )p−V (x−V )dx−V

=
∑
T⊇S

∑
V⊆S

(−1)|S|−|V |
∫
m

(0)
T (xT )pT\V (x−T\V )dxT\V

=
∑
T⊇S

∑
T\S⊆U⊆T

(−1)|S|−|T\U |
∫
m

(0)
T (xT )pU (xU )dxU .

It is left to show (7.4.1) and (7.4.2). Equation (7.4.2) follows from straight forward calculations.

To see 7.4.1, note

∑
V⊆S

(−1)|S\V |
∫
m

(0)
T (xT )p−V (x−V )dx−V

=
∑

U⊆S∩T

∑
W⊆S\T

(−1)|S\{W∪U}|
∫
m

(0)
T (xT )p−{U∪W}(x−{U∪W})dx−{U∪W}

=
∑

U⊆S∩T

∫
m

(0)
T (xT )p−U (x−U )dx−U

∑
W⊆S\T

(−1)|S\{W∪U}|

=
∑

U⊆S∩T

∫
m

(0)
T (xT )p−U (x−U )dx−U

×

 ∑
W⊆S\T,|W |=odd

(−1)|S\U |−1 +
∑

W⊆S\T,|W |=even

(−1)|S\U |


=0,

where the last equality follows from the fact that every non-empty set has an equal number of

odd and even subsets.

Lemma 7.4.2 ([111]). For every U ⊆ {1, . . . , d},∫
m(x)p−U (x−U )dx−U =

∑
T⊆U

m∗
T (xT )
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Proof.

∑
T⊆U

mT (xT ) =
∑
T⊆U

∑
V⊆T

(−1)|T\V |
∫
m(0)(x)p−V (x−V )dx−V

=
∑
V⊂U

∫
m(0)(x)p−V (x−V )dx−V

∑
S⊆{1,...,|U\V |}

(−1)|S|

+

∫
m(0)(x)p−U (x−U )

=

∫
m(0)(x)p−U (x−U ),

where the last equation follows from
∑

S⊆{1,...,|U−V |}(−1)|S|=0, noting that a non-empty set has

an equal number of subsets with an odd number of elements as subsets with an even number of

elements.

7.4.2 Proofs

Proof of Corrolary 5.3.4. This proof is analogue to the proof of Lemma 3.1 in [111]. From 7.4.2,

We have
∫
m(x)p−U (x−U )dx−U =

∑
T⊆U m

∗
T (xT ). Hence the game m with value function

vm(U) =

∫
m(x)p−U (x−U )dx−U

equals the game m∗ with value function

vm∗(U) =
∑

S⊆{1,...,d}

m∗
S(xS)δS(U), δS(U) = 1(S ⊆ U).

We now concentrate on the function m∗
S with value function m∗

S(xS)δS(U). We show that for

every non-empty S ⊆ {1, . . . , d},

ϕk(x,m
∗
S(xS)δS(U)) = 1(k ∈ S) |S|−1m∗

S(xS). (7.4.3)

Here, ϕk(x, v) denotes the Shapley value for feature k at point x in a game with value function

v. The proof is then completed by the additivity axiom, together with

ϕk(x,m
∗
∅δ∅(U)) =

m∗
∅, k = 0,

0 else.

The last statement follows from the dummy axiom. To show (7.4.3), let’s assume that j, k ∈ S.
Then for every U ⊆ {1, . . . , d}, m∗

S(xS)δS(U ∪ j) = m∗
S(xS)δS(U ∪ k), which, by the symmetry

axiom, implies

ϕj(x,m
∗
S(xS)δS(U)) = ϕk(x,m

∗
S(xS)δS(U)).
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Additionally, for k ̸∈ S, we have ϕj(x,m
∗
S(xS)δS(U)) = 0, by the dummy axiom. Hence we

conclude (7.4.3) by applying (5.3.3).

Proof of Theorem 2.2. Lemma 7.4.2 implies thatm∗ is a solution. To see this, for S ⊆ {1, . . . , d},
consider the following decomposition∫

m∗(x)pS(xS)dxS =
∑

T∩S ̸=∅

∫
m∗

T (xT )pS(xS)dxS +
∑

T∩S=∅

m∗
T (xT ).

Using Lemma 7.4.2, we have∫
m∗(x)pS(xS)dxS =

∑
T⊆Sc

m∗
T (xT ) =

∑
T∩S=∅

m∗
T (xT ),

which with the previous statement implies that m∗ is a solution:

∑
T∩S ̸=∅

∫
m∗

T (xT )pS(xS)dxS = 0.

It is left to show that the solution is unique. Note that for every S ⊆ {1, . . . , d}

∑
T

∫
mT (xT )pS(xS)dxS =

∑
T∩S=∅

mT (xT ) +
∑

T∩S ̸=∅

∫
mT (xT )pS(xS)dxS .

Hence, condition (5.3.1) is equivalent to

∑
T

∫
mT (xT )pS(xS)dxS =

∑
T∩S=∅

mT (xT ). (7.4.4)

Now assume that there are two set of functions m◦ and m∗ that satisfy (5.3.1) with
∑

Sm
◦
S =∑

Sm
∗
S . From (7.4.4), it follows that for all S ⊆ {1, . . . , d}∑

T∩S=∅

m◦
T (xT ) =

∑
T∩S=∅

m∗
T (xT ),

implying m◦
T (xT ) = m∗

T (xT ) for all T ⊆ {1, . . . , d}.
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8 Simulation Results

8.1 Random Planted Forest: a directly interpretable tree ensemble

In this section, we provide further results from our simulations in Chapter 4.

8.1.1 Simulations Random Planted Forest

First, we provide the results which were omitted in Section 4.4. The results are given in the

following Tables and further confirm the discussion of that section.

Table 8.1: For each method, we ran 40 simulations to find the optimal parameter combina-
tions from the parameter range below, measured via sample mean squared error:
n−1

∑
i(m(Xi)− m̂(Xi))

2. The names of the parameters are drawn from their func-
tional definitions in their respective R-packages.

Method Parameter range

xgboost max.depth = 1 (if additive),
= 2,3,4 (if interaction(2+)),

eta = 0.005, 0.01, 0.02, 0.04, 0.08, 0.16, 0.32,
nrounds = 100, 300, 600, 1000, 3000, 5000, 7000.

ebm max tree splits = 1,
learning rate = 0.005, 0.01, 0.02, 0.04, 0.08, 0.16, 0.32,
nrounds = 100, 300, 600, 1000, 3000, 5000, 7000.

rpf max interaction = 1 (if additive),
= 2 (if interaction(2)),
= ∞ if (interaction(∞)),

t try = 0.25, 0.5, 0.75,
nsplits = 10, 15, 20, 25, 30, 40, 50, 60, 80, 100, 120, 200 ,
split try = 2, 5, 10, 20.

rf m try = ⌊d/4⌋, ⌊d/2⌋, ⌊3d/4⌋, ⌋7d/8⌊, ⌋d⌊,
min.node.size = 5,
ntrees = 500,
replace = TRUE,FALSE,

sbf bandwidth = 0.1, 0.2, 0.3.
gam select =TRUE, method = ’REM’ (in sparse models),

default settings (in dense models).
BART power(β) = 1, 2, 3,

ntree = 50,100,150,200,250,300,
sparsity parameter = 0.6,0.75,0.9.

MARS degree = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
penalty = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.
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8 Simulation Results

Table 8.2: Model 4: Additive Sparse Jump Model. We report the average MSE from 100 simu-
lations. The standard deviations are provided in brackets.

Method dim=4 dim=10 dim=30

xgboost (depth=1) 0.19 (0.029) 0.282 (0.044) 0.401 (0.045)
xgboost 0.198 (0.031) 0.265 (0.053) 0.286 (0.034)
xgboost-CV 0.209 (0.028) 0.281 (0.052) 0.313 (0.058)
rpf (max interaction=1) 0.159 (0.033) 0.198 (0.075) 0.179 (0.041)
rpf (max interaction=2) 0.185 (0.028) 0.24 (0.066) 0.259 (0.043)
rpf 0.192 (0.026) 0.251 (0.065) 0.282 (0.043)
rpf-CV 0.169 (0.033) 0.207 (0.072) 0.183 (0.042)
rf 0.274 (0.035) 0.322 (0.05) 0.375 (0.037)
sbf 0.342 (0.049) 0.603 (0.053) 1.112 (0.138)
gam 0.41 (0.047) 0.406 (0.027) 0.431 (0.06)
BART 0.177 (0.047) 0.162 (0.038) 0.157 (0.034)
BART-CV 0.179 (0.051) 0.163 (0.041) 0.159 (0.036)
MARS 0.751 (0.136) 0.74 (0.104) 0.687 (0.123)
1-NN 2.393 (0.229) 3.029 (0.308) 3.512 (0.333)
average 1.276 (0.075) 1.25 (0.063) 1.213 (0.054)

Table 8.3: Model 7: Additive Dense Smooth Model. We report the average MSE from 100
simulations. The standard deviations are provided in brackets.

Method dim=4 dim=10

xgboost (depth=1) 0.2 (0.035) 0.662 (0.059)
xgboost 0.273 (0.028) 1.233 (0.127)
xgboost-CV 0.209 (0.043) 0.673 (0.06)
rpf (max interaction=1) 0.162 (0.025) 0.578 (0.068)
rpf (max interaction=2) 0.191 (0.017) 0.798 (0.097)
rpf 0.222 (0.019) 1.052 (0.115)
rpf-CV 0.178 (0.03) 0.6 (0.072)
rf 0.567 (0.044) 10.527 (0.772)
sbf 0.071 (0.021) 0.183 (0.026)
gam 0.055 (0.012) 0.171 (0.045)
BART 0.155 (0.023) 0.438 (0.053)
BART-CV 0.165 (0.032) 0.465 (0.094)
MARS 0.166 (0.035) 4.4 (0.36)
1-NN 2.05 (0.108) 11.634 (0.702)
average 7.71 (0.381) 18.986 (1.391)
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8.1 Random Planted Forest

Table 8.4: Model 8: Hierarchical-interaction Dense Smooth Model. We report the average MSE
from 100 simulations. The standard deviations are provided in brackets.

Method dim=4 dim=10

xgboost 0.645 (0.053) 2.895 (0.271)
xgboost-CV 0.678 (0.042) 3.013 (0.338)
rpf (max interaction=2) 0.414 (0.047) 3.643 (0.349)
rpf 0.385 (0.034) 3.357 (0.372)
rpf-CV 0.413 (0.033) 3.665 (0.467)
rf 0.77 (0.034) 12.265 (1.447)
BART 0.34 (0.04) 1.889 (0.324)
BART-CV 0.354 (0.059) 2.133 (0.363)
MARS 0.624 (0.114) 10.885 (0.635)
1-NN 2.516 (0.141) 17.728 (1.215)
average 10.696 (0.621) 26.502 (1.892)

Table 8.5: Model 2: Hierarchical-interaction Sparse Smooth Model. We report the average MSE
from 100 simulations. The standard deviations are provided in brackets.

Method dim=4 dim=10 dim=30

xgboost (depth=2) 2.435 (0.157) 2.542 (0.15) 2.587 (0.152)
xgboost 0.374 (0.035) 0.481 (0.064) 0.557 (0.089)
xgboost-CV 0.393 (0.051) 0.499 (0.058) 0.563 (0.089)
rpf (max interaction=1) 2.36 (0.165) 2.43 (0.17) 2.404 (0.145)
rpf (max interaction=2) 0.248 (0.038) 0.327 (0.045) 0.408 (0.07)
rpf 0.263 (0.034) 0.357 (0.044) 0.452 (0.076)
rpf-CV 0.277 (0.039) 0.366 (0.051) 0.463 (0.083)
rf 0.432 (0.039) 0.575 (0.061) 0.671 (0.08)
sbf 2.298 (0.168) 2.507 (0.181) 3.163 (0.207)
gam 2.242 (0.172) 2.311 (0.159) 2.277 (0.185)
BART 0.214 (0.03) 0.223 (0.04) 0.252 (0.037)
BART-CV 0.242 (0.043) 0.276 (0.053) 0.315 (0.047)
MARS 0.355 (0.089) 0.282 (0.038) 0.414 (0.126)
1-NN 2.068 (0.156) 5.988 (0.624) 11.059 (0.676)
average 8.366 (0.43) 8.086 (0.246) 8.207 (0.496)
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Table 8.6: Model 3: Pure-interaction Sparse Smooth Model. We report the average MSE from
100 simulations. The standard deviations are provided in brackets.

Method dim=4 dim=10 dim=30

xgboost (depth1) 2.176 (0.14) 2.236 (0.176) 2.183 (0.136)
xgboost 0.417 (0.082) 0.797 (0.16) 1.381 (0.234)
xgboost-CV 0.443 (0.078) 0.872 (0.136) 1.497 (0.326)
rpf (max interaction=1) 2.172 (0.133) 2.236 (0.164) 2.199 (0.145)
rpf(max interaction=2) 0.416 (0.082) 1.289 (0.224) 1.822 (0.208)
rpf 0.219 (0.035) 0.556 (0.143) 1.186 (0.236)
rpf-CV 0.233 (0.033) 0.603 (0.163) 1.313 (0.253)
rf 0.304 (0.047) 0.744 (0.305) 1.295 (0.317)
sbf 2.249 (0.159) 2.473 (0.181) 3.133 (0.22)
gam 2.161 (0.13) 2.222 (0.172) 2.209 (0.168)
BART 0.168 (0.022) 0.172 (0.032) 0.202 (0.021)
BART-CV 0.192 (0.03) 0.199 (0.039) 0.223 (0.025)
MARS 0.245 (0.088) 0.831 (0.728) 0.429 (0.403)
1-NN 1.323 (0.117) 2.642 (0.317) 4.173 (0.413)
average 2.187 (0.125) 2.226 (0.174) 2.177 (0.146)

Table 8.7: Model 5: Hierarchical-interaction Sparse Jump Model. We report the average MSE
from 100 simulations. The standard deviations are provided in brackets.

Method dim=4 dim=10 dim=30

xgboost(depth=1) 2.974 (0.112) 3.046 (0.12) 3.098 (0.223)
xgboost 1.02 (0.152) 1.28 (0.16) 1.418 (0.156)
xgboost-CV 1.049 (0.125) 1.279 (0.157) 1.475 (0.185)
rpf (max interaction=1) 2.941 (0.117) 2.942 (0.123) 2.913 (0.197)
rpf (max interaction=2) 0.767 (0.096) 1.082 (0.139) 1.34 (0.132)
rpf 0.745 (0.089) 1.093 (0.142) 1.307 (0.113)
rpf-CV 0.769 (0.101) 1.167 (0.152) 1.404 (0.14)
rf 0.914 (0.091) 1.237 (0.121) 1.415 (0.152)
sbf 2.791 (0.098) 2.926 (0.12) 3.756 (0.284)
gam 2.782 (0.085) 2.728 (0.105) 2.793 (0.208)
BART 0.611 (0.078) 0.644 (0.106) 0.67 (0.094)
BART-CV 0.661 (0.111) 0.772 (0.173) 0.791 (0.133)
MARS 2.306 (0.17) 2.325 (0.145) 3.374 (2.716)
1-NN 4.559 (0.409) 8.883 (0.692) 13.434 (0.674)
average 8.721 (0.334) 8.449 (0.229) 8.638 (0.412)
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Table 8.8: Model 6: Pure-interaction Sparse Jump Model. We report the average MSE from 100
simulations. The standard deviations are provided in brackets.

Method dim=4 dim=10 dim=30

xgboost (depth=1) 2.662 (0.078) 2.616 (0.105) 2.565 (0.153)
xgboost - 1.034 (0.177) 1.723 (0.178) 2.337 (0.378)
xgboost-CV - 1.196 (0.371) 2.056 (0.3) 2.481 (0.385)
rpf (max interaction=1) 2.682 (0.076) 2.653 (0.103) 2.601 (0.155)
rpf (max interaction=2) 1.252 (0.164) 2.268 (0.13) 2.534 (0.175)
rpf 0.834 (0.121) 1.729 (0.156) 2.337 (0.284)
rpf-CV 0.886 (0.142) 1.939 (0.2) 2.438 (0.246)
rf 0.805 (0.172) 1.696 (0.168) 2.276 (0.306)
sbf 2.757 (0.094) 2.893 (0.128) 3.705 (0.282)
gam 2.645 (0.096) 2.617 (0.095) 2.674 (0.165)
BART 0.583 (0.074) 0.632 (0.124) 0.798 (0.29)
BART-CV 0.608 (0.106) 0.73 (0.184) 1.16 (0.655)
MARS 2.324 (0.14) 2.549 (0.296) 2.522 (0.291)
1-NN 3.769 (0.323) 5.459 (0.419) 6.247 (0.434)
average 2.637 (0.092) 2.59 (0.106) 2.55 (0.14)

Table 8.9: Model 8: Hierarchical-interaction Dense Smooth Model. We report the average MSE
from 100 simulations. The standard deviations are provided in brackets.

Method dim=4 dim=10

xgboost (depth=1) 3.509 (0.266) 10.108 (0.425)
xgboost 0.645 (0.053) 2.895 (0.271)
xgboost-CV 0.678 (0.042) 3.013 (0.338)
rpf (max interaction=1) 3.408 (0.237) 9.717 (0.378)
rpf (max interaction=2) 0.414 (0.047) 3.643 (0.349)
rpf 0.385 (0.034) 3.357 (0.372)
rpf-CV 0.413 (0.033) 3.665 (0.467)
rf 0.77 (0.034) 12.265 (1.447)
sbf 3.42 (0.208) 9.215 (0.419)
gam 3.258 (0.227) 9.212 (0.483)
BART 0.34 (0.04) 1.889 (0.324)
BART-CV 0.354 (0.059) 2.133 (0.363)
MARS 0.624 (0.114) 10.885 (0.635)
1-NN 2.516 (0.141) 17.728 (1.215)
average 10.696 (0.621) 26.502 (1.892)
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Table 8.10: Model 9: Pure-interaction Dense Smooth Model. We report the average MSE from
100 simulations. The standard deviations are provided in brackets.

Method dim=4 dim=10

xgboost (depth=1) 3.108 (0.197) 8.091 (0.359)
xgboost 0.596 (0.063) 3.888 (0.411)
xgboost-CV 0.684 (0.069) 3.974 (0.508)
rpf (max interaction=1) 3.119 (0.209) 8.156 (0.366)
rpf (max interaction=2) 0.712 (0.101) 5.944 (0.324)
rpf 0.38 (0.049) 4.747 (0.329)
rpf-CV 0.395 (0.055) 4.789 (0.335)
rf 0.657 (0.074) 5.784 (0.409)
sbf 3.385 (0.183) 9.177 (0.479)
gam 3.109 (0.216) 8.183 (0.389)
BART 0.266 (0.034) 1.425 (0.183)
BART-CV 0.299 (0.054) 1.738 (0.254)
MARS 0.618 (0.552) 6.257 (0.824)
1-NN 1.482 (0.126) 7.358 (0.514)
average 3.156 (0.221) 8.109 (0.363)

Table 8.11: Model 10: Additive Dense Jump Model.We report the average MSE from 100 sim-
ulations. The standard deviations are provided in brackets.

Method dim=4 dim=10

xgboost (depth=1) 0.325 (0.068) 1.095 (0.106)
xgboost 0.376 (0.085) 1.437 (0.153)
xgboost-CV 0.36 (0.073) 1.187 (0.145)
rpf (max interaction=1) 0.321 (0.047) 1.273 (0.161)
rpf (max interaction=2) 0.402 (0.059) 2.18 (0.139)
rpf 0.429 (0.067) 2.804 (0.192)
rpf-CV 0.326 (0.051) 1.303 (0.166)
rf 0.807 (0.104) 4.051 (0.186)
sbf 0.588 (0.078) 1.685 (0.185)
gam 0.923 (0.15) 4.405 (0.379)
BART 0.369 (0.079) 1.164 (0.093)
BART-CV 0.39 (0.076) 1.436 (0.253)
MARS 1.749 (0.151) 5.424 (0.304)
1-NN 3.822 (0.296) 11.278 (1.097)
average 2.5 (0.116) 6.332 (0.41)
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Table 8.12: Model 11: Hierarchical-interaction Dense Jump Model. We report the average MSE
from 100 simulations. The standard deviations are provided in brackets.

Method dim=4 dim=10

xgboost(depth=1) 4.19 (0.238) 13.112 (0.83)
xgboost 1.666 (0.159) 9.327 (0.594)
xgboost-CV 1.87 (0.312) 9.407 (0.653)
rpf(max interaction=1) 4.19 (0.253) 12.997 (0.831)
rpf (max interaction=2) 1.43 (0.205) 9.238 (0.648)
rpf 1.26 (0.165) 9 (0.64)
rpf-CV 1.303 (0.171) 9.441 (0.604)
rf 1.681 (0.14) 13.6 (1.247)
sbf 3.972 (0.254) 12.234 (0.688)
gam 3.997 (0.251) 12.524 (0.858)
BART 1.01 (0.121) 7.116 (0.653)
BART-CV 1.165 (0.224) 7.897 (0.917)
MARS 3.595 (0.15) 16.307 (1.266)
1-NN 5.839 (0.649) 30.736 (1.933)
average 11.471 (0.498) 29.623 (2.046)

Table 8.13: Model 12: Pure-interaction Dense Jump Model.We report the average MSE from
100 simulations. The standard deviations are provided in brackets.

Method dim=4 dim=10

xgboost (depth=1) 3.787 (0.297) 11.106 (0.546)
xgboost 1.606 (0.164) 10.005 (0.531)
xgboost-CV 1.768 (0.456) 10.868 (0.648)
rpf (max interaction=1) 3.816 (0.259) 11.246 (0.596)
rpf (max interaction=2) 2.005 (0.237) 10.846 (0.488)
rpf 1.441 (0.187) 10.264 (0.433)
rpf-CV 1.564 (0.214) 10.582 (0.536)
rf 1.36 (0.175) 10.235 (0.424)
sbf 3.928 (0.262) 12.129 (0.639)
gam 3.794 (0.271) 11.154 (0.573)
BART 0.972 (0.129) 6.835 (0.579)
BART-CV 1.04 (0.158) 7.208 (0.775)
MARS 3.541 (0.289) 11.03 (0.574)
1-NN 4.819 (0.475) 19.802 (1.51)
average 3.768 (0.283) 11.03 (0.574)
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8.1.2 Generalized Random Planted Forest

First, we provide the results which were omitted in Subsection 4.6.6. The results are given in

the following Tables and further confirm the discussion of that section.

Table 8.14: We summerize all data sets used for the results shown in Subsection 4.6.6. The
parameter n denotes the number of data, d denotes the number of covariates. The
data is taken from [10] and includes only binary responses with n · d ≤ 100000
without missing values.

data set n d

blood-transfusion-service-center 748 4
banknote-authentication 1372 4
ilpd 583 10
diabetes 768 8
tic-tac-toe 958 9
climate-model-simulation-crashes 540 18
kc2 522 21
wdbc 569 30
credit-g 1000 20
pc1 1109 21
wilt 4839 5
phoneme 5404 5
qsar-biodeg 1055 41
kc1 2109 21
pc4 1458 37
pc3 1563 37
churn 5000 20
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8.1 Random Planted Forest

Figure 8.1: Number of splits chosen by the inner crossvalidation for each of the 17 data sets used
for binary classification. Each node corresponds to one of the 10 outer crossvalidation
estimates.

Figure 8.2: Summary of multiclass classification results over all 11 data sets. Each node corre-
sponds to the AUC (left) or Brier Score (right) of one distinct data set. Lower and
upper bounds of boxplots correspond to 25% and 75% quantiles respectively. Black
lines correspond to the median.
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Figure 8.3: AUC results of each of the 11 data sets used for multiclass classification. Each
plot contains 10 estimates obtained by splitting the data into test data and training
data with a 10 fold crossvalidation. Each node corresponds to one of the 10 outer
crossvalidation estimates. Lower and upper bounds of boxplots correspond to 25%
and 75% quantiles respectively. Black lines correspond to the median.

Figure 8.4: Brier scores of each of the 11 data sets used for multiclass classification. Each plot
contains 10 estimates obtained by splitting the data into test data and training
data with a 10 fold crossvalidation. Each node corresponds to one of the 10 outer
crossvalidation estimates. Lower and upper bounds of boxplots correspond to 25%
and 75% quantiles respectively. Black lines correspond to the median.
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Table 8.15: For each method, we ran 40 simulations to find the optimal parameter combina-
tions from the parameter range below, measured via sample mean squared error:
n−1

∑
i(m(Xi)− m̂(Xi))

2. The names of the parameters are drawn from their func-
tional definitions in their respective R-packages.

Method Parameter range

xgboost max.depth = 1, . . . , 20,
eta ∈ (0, 1),
colsample bytree ∈ (0.1, 1),
subsample ∈ (0.1, 1),
nrounds = 10, . . . , 5000.

xgboost fixmax max.depth = 2,
eta ∈ (0, 1),
colsample bytree ∈ (0.1, 1),
subsample ∈ (0.1, 1),
nrounds = 10, . . . , 5000.

rpf max interaction = 1, . . . , 30,
t try ∈ (0.1, 0.9)
nsplits = 10, . . . , 30 ,
ntrees = 50,
split try = 1, . . . , 20,
Loss= L1, exponential.

rpf fixmax max interaction = 2,
t try ∈ (0.1, 0.9)
nsplits = 10, . . . , 30 ,
ntrees = 50,
split try = 1, . . . , 20,
Loss= L 1, logit.

rf mtry.ratio ∈ (0.1, 1),
min.node.size = 1, . . . , 50,
num.trees = 50,
replace = TRUE,FALSE,
sample.fraction∈ (0.1, 1].
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Table 8.16: We summerize all data sets used for multiclass classification. The parameter n
denotes the number of data, d denotes the number of covariates. The data is taken
from [10] and includes only responses which take on more than two values with
n · d ≤ 100000 without missing values.

data set n d

balance-scale 625 4
analcatdata dmft 797 4
car 1728 6
vowel 990 12
mfeat-morphological 2000 6
cmc 1473 9
vehicle 846 18
segment 2310 16
steel-plates-fault 1941 27
analcatdata authorship 841 70
mfeat-zernike 2000 47

Figure 8.5: Number of splits chosen by the inner crossvalidation for each of the 11 data sets
used for multiclass classification. Each node corresponds to one of the 10 outer
crossvalidation estimates.
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8.2 Unifying Local and Global Model Explanations by Functional

Decomposition of Low Dimensional Structures

8.2.1 Motivating Example

This section shows the simulation results when using the random planted forest algorithm as an

estimation procedure. First of all, the results considering the motivating example from Section

5.1.1 are given in Figure 8.6. The following subsections include the results of experiments which

where discussed in Section 5.5.

8.2.2 Truly Global Explanations

Figure 8.7 includes the results discussed in Subsection 5.5.1 when considering the random planted

forest algorithm instead of xgboost.

Figure 8.6: Simple example. SHAP values (top row) and functional decomposition (bottom row)
of a random planted forest model of the function m(x1, x2) = x1 + x2 + 2x1x2. The
red lines in the bottom row represent the SHAP values of the true function.
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Figure 8.7: Bike sharing example (random planted forest). SHAP values (top row), main effects
(second row), 2-way interactions (third row) and 3-way interactions (bottom row) of
the features hour of the day (hr, 0-24 full hours), Temperature (temp, normalized to
0-1) and working day (workingday, 0=no, 1=yes) of the bike sharing data.
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8.2.3 Feature Importance

Figure 8.8 includes the results discussed in Subsection 5.5.2 when considering the random planted

forest algorithm instead of xgboost.

Figure 8.8: Feature importance (random planted forest) for the function m(x) = x1+x3+x2x3−
2x2x3x4 (top row) and the bike sharing data from Section 5.5.1 (bottom row) based
on SHAP values (left column) and our functional decomposition separately for main
effects and interactions of different orders (right column).

8.2.4 Post-hoc Feature Removal

Figure 8.9 includes the results discussed in Section 5.5.3 when considering the random planted

forest algorithm instead of xgboost.
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Simulation Adult

Female Male Female Male
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Setting Median difference
Full Refitted Decomposed

Simulation 29.90 29.91 9.84
Adult 0.18 0.052 0.047

Figure 8.9: Post-hoc feature removal (random planted forest). Predictions in a simulation (left)
and the adult dataset for males and females of the full model, a refitted model
without the protected feature sex and a decomposed model where the feature sex was
removed post-hoc. The table below shows the median differences between females
and males for the three models.
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