
A Spaceborne 

Synthetic Aperture Radar · 

Data Processor 

Prepared By: 

Prepared For: 

Simon Welsh, Masters Student in the Department of 

Electrical Engineering at the University of Cape 

Town. 

Professor M.R. Inggs, Department of Electrical 

Engineering at the University of Cape Town. 

30 September 19~ 1 

Thesis prepared in Partial Fulfillment of the requirements for the degree of Masters 

in Electrical Engineering. 

:I 
The University of Cape Town has been given II 
the right to reproduce . this thesis in whole I 
or In part. Copyright is held by the author. b 

11,.-_ _,.......,......,..,..,,....,,,.........,.., 

Univ
ers

ity
 of

 C
ap

e T
ow

n



The copyright of this thesis vests in the author. No 
quotation from it or information derived from it is to be 
published without full acknowledgement of the source. 
The thesis is to be used for private study or non-
commercial research purposes only. 

Published by the University of Cape Town (UCT) in terms 
of the non-exclusive license granted to UCT by the author. 

Univ
ers

ity
 of

 C
ap

e T
ow

n



Table of Contents 

1. Introduction 

2. Background to Spacebome SAR Processing 
2.1 Applications of Spacebome SAR 
2.2 History of Spacebome SAR Processing 
2. 3 Basic Principles of Operation 

2.3.1 Range Resolution 
2.3.2 Azimuth Resolution 
2.3.3 Spacebome Considerations 

i) Range Walk 
ii) Range Curvature 

3. Processing Algorithms 
3 .1 Range Processing 
3.2 Azimuth Processing 

3.2.1 Unfocussed SAR Approximation 
3.2.2 Focussed SAR 

3.3 Processing Approach 
3.3.1 Non-Separable Processing 
3.3.2 Separable Processing 

3.4 Compensation for Separable Processing 
3.5 Pixel Spacing and Ground Truth 

3. 5 .1 Range Pixel Spacing 
3.5.2 Azimuth Pixel Spacing 
3.5.3 Look Angle Distortion 

4. Software Design Considerations 
4.1 Choice of Hardware and Operating System 

4 .1.1 VAX mainframe 
i) Advantages 
ii)-Disadvantages 

4.1.2 IBM Compatible Personal Computer 
i) Advantages 
ii) Disadvantages 

4.2 Choice of Language 
4.3 Mass Storage and the Flow of Data 

4.3.1 Raw Data Structure 
4.3.2 File Access 
4.3.3 Specific Intermediate Data Files 

i) Range Compression file output 
ii) Comer Tum file Output 
iii) Azimuth Compression file Output 

4.3.4 Standard Data Structure for Image Representation 
4.3.5 Scaling of Output File Data 

i) Range Compression Output Scaling 
ii) Azimuth Compression Output Scaling 

4.4 FFT Considerations 
4.4.1 Windowing of the Data 
4 .4. 2 Zero Padding the FFT 

5. Software Design Implementation 
5 .1 Common Control Files 

5. 1. 1 Batch Processing File 
5 .1. 2 User Input Parameter File 

i 

1 

3 
·3 
3 
4 

-6 
6 
7 
7 
7 

8 
8 
9 
9 
9 

10 
10 
10 
11 
11 
12 
12 
12 

14 
14 
14 
14 
14 
14 
14 
15 
15 
16 
16 
16 
17 
17 
17 
18 
18 
18 
18 
19 · 
19 
19 
19 

20 
20 
20 
21 



i) Filenames and Processing Parameters 
ii) Range Compression Parameters 
iii) Satellite Parameters 
iv) Viewing Parameters 
v) Miscellaneous Constants 

5.1.3 Status File 
5.2 Included Sub-Modules 

5.2.1 EXTRACT.H 
5.2.2 WINDOW.H 
5.2.3 SAR.H 
5.2.4 PARAM.H 
5.2.5 MATRIX.H 

5.3 Main Program Modules 
5.3.1 Parameter Setup Module, 'SATPARAM.C' 

i) Basic Processing Steps·Performed 
ii) Memory Requirements 
iii) Input Parameters and Data Files 
iv) Output Parameters and Data Files 

5.3.2 Comer Tum Module, 'CORNER.C' 
· i) Basic Processing Steps Performed 

ii) Memory Requirements 
iii) Input Parameters and Data files 
iv) Output Parameters and Data files 

5.3.3 Azimuth Compression Module, 'AZIMCOM.C' 
i) Basic Processing Steps Performed 
ii) Memory Requirements 
iii) Input.Parameters and Data files 
iv) Output Parameters and Data files 

5.3.4 Image Extractor Module, 'GETCFI.C' 
5.3.5 Quick Look Image Extractor, 'QUICKCFI.C' 

5 .4 Other Program Modules 
5.4.1 Image Viewer and Filter Modules 
5.4.2 Laser Printer Module, 'PRINTCFI.C' 

6. Software Testing 
6.1 Individual Module Testing 

6.1. 1 Range Compression Testing 
6. 1. 2 Comer Tum Testing 
6.1.3 Azimuth Compression Testing 

i) Main Module Testing 
ii) Windowing Testing 

6.1.4 Testing of Fixed-Point Output Scaler 
i) Range Compression Output 
ii) Azimuth Compression Output 

6. 2 Complete Program Testing 

7. Output Images and Post-Processing 
7 .1 Azimuth Compression Output Images 
7. 2 Reduction of Speckle Noise 

7.2.1 Low Pass Filtering 
7. 2. 2 Median Filtering 

7.3 Quick Look Output Image 
' 7.4 JPL SAR Processor Output Images 

7 .5 Output Image Observations 

8. Program Extensions . 
8.1 Multi-Look Processing 

ii 

23 
' 24 

24 
24 
25 
25 
26 
27 
27 
·27 
28 
28 
29 
31 
32 
33 
33 
34 
34 
34 
35 
35 
36 
36 
36 
36 
37 
37 
37 
37 
39 
39 
39 

40 
40 
40 
42 
42 
42 
43 
46 
49 
49 
49 

5L 
51 
51 
51 
52 
52 
57· , 
62 

64 
64 



I 

8.2 Dynamic Range of Output 

9. Conclusions and Future Work 

10. References 

11. Bibliography 

Appendix A Main SAR Program Modules 

SATPARAM.C - Generate Processing Parameters 

RANGECOM.C - Perform Range Compression 

CORNER.C - Perform Comer Tum 

AZIMCOM.C - Perform' Azimuth Compression 

Appendix B Included Sub-modules 

EXTRACT. H - Extract Raw radar data 

WINDOW.H - Provide.window functions 

SAR.H - Various Processing Routines 

PARAM.H - Extract input parameters 

MATRIX.H - Provide matrix utilities 

Appendix C Additional Modules 

GETCFI. C - Extract CFI image 

QUICKCFI. C - Extract unfocussed CFI image 

PRINTCFI. C - Print CFI image on HP Laserjet 

ST AT. C - Provide Statistics for input file 

REFORMAT. C - Reformat ASCII file 

BTOA.C - Convert Binary file to ASCII 

• 
Appendix D Test Programs 

RNGFILE. C - Create Range Compression Test file 

AZMFILE.,C - Create Azimuth Compression Test file 

CORFILE. C - Create Comer Tum Test file 

TESTCOR. C - Test the comer tum routine 

Appendix E SIR-B Raw Data format 

iii' 

64 

66 

67 

69 



Table Of Figures 

Figure 1 SAR geometry 
Figure 2 Batch Processing File Example 
Figure 3 Example of User Input Parameter File 
Figure 4 Example of Status File 
Figure 5 SAR Processing Flowchart 
Figure 6 Corner Turning Operation 
Figure 7 Range Compression, Single Point Target Response 
Figure 8 Azimuth Reference Function before and after windowing 
Figure 9 Azimuth Compression, Double Point Target Response 
Figure 10 Range Compression Output Distribution· 
Figure 11 Azimuth Compression Output Distribution 
Figure 12 Full Resolution Image A 
Figure 13 Low Pass Filtered Image A 
Figure 14 Median Filtered Image A 
Figure 15 Quick Look of Image A 
Figure 16 JPL processed Image B 
Figure 17 Full Resolution Image B 
Figure 18 Low Pass Filtered Image B 
Figure 19 Median Filtered Image B 
Figure 20 Point Reflectors on Image 

iv 

5 
21 
22 
26 
30 
35 
41 
44 
45 
47 
48 
53 
54 
55 
56 
58 
59 
60 
61 
63 



ANSI 

ASCII 

Azimuth 

Azimuth Compression 

Azimuth line 

Bit 

Byte 

CFI 

Chirp Waveform 

DFT 

FFT 

JPL 

Matched Filter 

PC 

Pixel 

PRF 

Pulse 

Radar Footprint 

Range 

Range Bin 

Glossary 

American National Standards Institute. 

American Standard Code for Information 

Interchange. 

Azimuth, in this case, is in the direction of travel of 

the radar. 

The Matched Filtering of the azimuth samples. with 

the azimuth reference function. 

A line of samples in the azimuth direction, at a 

fixed range. 

Boolean piece of information either O or 1. 

8 bits. 

Standard Image File Format used at UCT, using 

512 by 512 pixels with 8 bit magnitude. 

A Waveform that constantly increases or decreases 

in frequency for a fixed period. 

Discrete Fourier Transform. 

Fast Fourier Transform, which is a fast way of 

computing the DFT. 

Jet Propulsion Laboratories. 

A filter that is matched to the expected input 

waveform, thus providing maximum signal to noise 

on the filter output. 

Personal Computer. 

An area on the ground represented by a single 

number during processing. 

Pulse Repetition Frequency, the frequency with 

which the radar transmits pulses. 

Refers to a single transmitted radar pulse which 

may consist of a frequency swept waveform. 

The area on the ground intercepted . by the radar 

beam, while in a fixed position. · 

Range is measured in the direction in which the 

radar is pointing. 

A range bin is a single cell at a fixed distance from 

the radar. 

V 



Range Compression 

Range line 

SAR 

SIR-B 

Speckle 

Swath 

Swath Velocity 

UCT 

Word 

The Matched Filtering of the returned range 

samples with the range reference function. 

A line of sample point~ in the range direction, at a 

fixed azimuth position. 

Synthetic Aperture Radar. 

Shuttle Imaging Radar - B. 

The random variation of intensity between pixels in 

close proximity, caused by surface roughness. 

The complete area on the ground covered by the 

radar beam while it moves along. 

The forward ground velocity of the radar. 

University of Cape Town. 

Normally 4 Bytes, as in this case. 

vi 



Acknowledgments 

I would like to thank my thesis Supervisor, Professor Mike Inggs, firstly · for 

proposing research into this exciting field of engineering, and secondly for his 

continued assistance throughout the period of development. I would also like to 

thank my colleagues Paul Kritzinger, for his theoretical input to the problem and 

Alastair Knight for his assistance with the software. Thanks also to Amy Pang of 

IPL for supplying the SIR-B data, and all others who assisted with the production of 

this thesis. 

vii 



Synopsis 

This thesis is concerned with the design and implementation ofa Synthetic Aperture 

Radar (SAR) data processor. The implementation of the processing is based on a 

standard sequential approach to the problem and employs commonly used 

algorithms. The processing was done using the C language running on an IBM 

Compatible Personal Computer. 

The raw data processed was·that obtained from the Shuttle Imaging Radar B (SIR

B), and was supplied by the Jet Propulsion Laboratories (JPL) in California. The 

basic functions performed by the software include range and azimuth processing, 

which involve the match filtering of reference functions with the raw data. 

Compensation for the effects of being a spaceborne SAR were also implemented, 

which involved compensation for the effect of planet rotation and radar height. 

Images processed by JPL of the same area were also available, which allowed for 

direct comparisons between the outputs of the two SAR processors. The images 

produced were passed through a number of filters, to improve the image quality, 

and resulted in favorable comparisons to the JPL generated images. The actual 

images are included in the later sections of the thesis. 

viii 



1. Introduction 

The processing of Synthetic Aperture Radar (SAR) data is being done in a number 

of locations around the world, outside of South Africa. Various algorithms are 

being used, and the raw radar data is being produced by a number of radar sources. 

Processing of raw SAR data has not before been performed in South Africa, and the 

purpose of this thesis is to present a fully functional and locally designed SAR 

processor. 

At the University of Cape Town (UCT), we were lucky enough to be provided with 

Raw and Processed SAR data from the Shuttle Imaging Radar B (SIR-B). This was 

supplied by the Jet Propulsion Laboratory (JPL) in California, who currently 

process this on their SAR processor. The development of the SAR processor 

presented here was thus based around the processing of this data. 

This thesis is mainly concerned with the actual processing of the raw radar data. 

The masters thesis submitted by Paul Kritzinger, also at the University of Cape 

Town, deals with the theoretical aspects of the processing. This thesis is referenced 

a number of times and should be referred to for the actual formulae implemented. 

In the first section of this thesis, a brief explanation of the principles behind SAR 

will be given, as well as a brief history of SAR processing. 

The main sections will be concerned with the design and implementation of the . 

software. The basic design requirements of the software may be summarised as 

follows: 

The Software will provide for the processing of raw Synthetic Aperture 

Radar data, taken from a moving radar platform, and will provide for the 

compensation of spaceborne SAR effects. 

The output from the program will consist of an image file suitable for 

viewing with a simple viewing program. A Viewer will be provided for a 

standard IBM VGA monitor, and a printer driver for the Hewlett Packard 

Laserjet. 

The program will be written in a portable language, such that it may b~ run 

on a variety of systems. 

1 



The program shall be reasonably efficient in terms of speed, memory and 

disk space usage. However, as an initial SAR processor implementation, 

correct operation was considered _more important than efficiency. 

2 



2. Background to Spaceborne SAR Processing 

A brief background to Spacebome SAR Processing will be given first. This will 

include some of the applications, the basic principles of operation and a mention of 

some history to SAR and the processing thereof. 

2.1 Applications of Spaceborne SAR 

The main application of spacebome SAR is in the production of high resolution 

radar images of the earth's surface. This provides a different image to that provided 

by optical means, and is formed by variations in the radar reflectivity of the surface 

being mapped. 

Due to this fact, the number of applications increases considerably. For a start the 

radar pulses can penetrate through cloud cover, and are not dependant on any 

illumination such as the sun. Different features show up more strongly, particularly 

those with high radar reflectivity such as man made metallic objects. 

The radar pulses can also penetrate through low loss materials such as low moisture 

content soil, as found in the arid regions of Africa. This allows the underlying rock 

structures to be observed. 

Oceanographic applications include the detection of different sea states, as rough sea 

conditions would lead to an increase in radar reflectivity. This could indicate the 

pres~nce of high wind conditions on the ocean surface, and allow for the location of 

storms. 

These and many other radar imaging applications are discussed by Elachi 1. 

2.2 History of Spaceborne SAR Processing 

The SEASAT global ocean-monitoring satellite launched by NASA in June 1978 

was the first spacebome SAR that proved imaging of the earth's surface to be 

practically possible. This was followed by the Shuttle Imaging Radar A (SIR-A) 

which was the first of the Shuttle borne radars. 

In the early days of SAR processing, optical processors were used. These could 

basically perform a two-dimensional Fourier Transform instantaneously, which is 

3 



what SAR processing essentially involves. The main processors for the Seasat SAR 

and the SIR-A were both optical. The actual optical implementation is discussed by 

Elachi2. ' 

Optical processors have a number of shortcomings, including calibration and the 

delay in film developing and handling. With the advent of fast digital processors, a 

number of SAR processing algorithms have been devised. The digital approach 

provides for far more flexibility and access to intermediate processed data, as well 

as the possibility of real time SAR processing. 

The processing of the SIR-B radar data is current}y done by the Jet Propulsion 

Laboratories (IPL) in California, using a digital processor. 

2.3 Basic Principles of Operation 

The basic principles of operation of SAR will be discussed here, but· a more in 

depth analysis is given by Kritzinger. The main purpose of SAR is to obtain a high 

resolution in both the range and azimuth directions. 



The Complete SAR scenario is shown in the diagram below, which also allows for 

the definition of some terms: 

Figure 1 SAR geometry 

From the given diagram, it can be seen that the radar platform moves over the 

earth's surface while projecting a wide radar beam. This beam illuminates an area 

on the earth's surface called the radar footprint, and is projected at an angle 

measured from the vertical, called the look angle. . 

The radar footprint moves over the earth's surface as the radar moves in the 

azimuth direction, illuminating a continuous area called the radar swath. 

During the processing, range and azimuth lines are formed from the radar echoes. 

These are also defined on the diagram for clarity later on. 

5 



2.3.1 ·Range Resolution 

To achieve a high range resolution while still maintaining a good Signal To Noise 

ratio, conventional radar systems as well as SAR's may spread out the transmit 

pulse while using some form of coding, such as a frequency swept pulse. The return 

signal is then match filtered with a replica of the transmitted pulse, thus effectively 

allowing a very narrow pulse to be formed. 

This match filtering may be performed either in the hardware of the radar system 

itself, or it may be performed later in software after receiving and sampling the 

returned signal. 

In the case of the SIR-B' system, a down swept frequency pulse, or chirp, is used, 

which is not match filtered by the radar. The software processor must thus match 

filter with the transmitted chirp waveform. This matched filtering of the range 

returns will be termed Range Compression. 

The operation of Matched filtering is a standard signal processing technique and is 

discussed by St~emler3. 

2.3.2 Azimuth Resolution 

Azimuth resolution is achieved using the principle of the Synthetic Aperture Radar. 

This allows a high azimuth resolution to be achieved by synthesising a very long 

antenna. Each of the radar returns, at given ranges, are phase shifted and summed 

along the length of the synthetic antenna allowing a narrow beamwidth to be 

synthesised. 

The real beamw1dth of the radar is designed to be wide enough to illuminate a 

single point target for a number of pulses while the radar moves past. This allows 

the Synthetic array to be the distance covered by the radar while illuminating the 

single target. 

Complete descriptions of how Azimuth Resolution may be achieved using the SAR 

process have been documented by a number of authors, including Kritzinger4 and 

Elachi5. The results of this theory are relevant to the processing, but the theory 

itself is not, and so will not be described here in detail. 

6 



2.3.3 Spaceborne Considerations 

A number of SAR imaging radars in use are airborne, as opposed to spaceborne. An 

aircraft borne SAR would not require the consideration of the following two factors, 

which are specific to spaceborne SAR imaging. 

i) Range Walk 

Range walk may be defined as the movement of the target in the range direction, 

while being illuminated by the radar beam. The fact that the radar platform is not 

within the earth's atmosphere, and is not rotating with it, means that the target will 

always have a lateral movement component unless the platform is moving with the 

rotation. This could only occur if the platform remained over the equator. The 

range walk is thus dependant on the direction of travel and latitude of the radar 

platform. 

The length of time for which the target is illuminated, and the geographical position 

of the radar will determine the magnitude of the range walk. This must be 

compensated for during the processing. 

ii) Range Curvature 

Range Curvature is the variation in distance to a target on the earth's surface, while 

being illuminated by the radar beam. This variation is in addition to that caused by 

the range walk. The range curvature effect is caused by the geometry of the 

situation, and the fact the radar platform is so high off the ground. It is due to the 

spherical nature of the earth's surface. 

7 



3. 'Processing Algorithms 

A discussion on the various algorithms required to process the raw data will be 

presented in this section. 

3 .1 Range Processing 

The range compression operation requires the match filtering of the returned radar 

echoes with the radar transmit waveform. The frequency swept transmit waveform 

of the SIR-B may be represented by a number of parameters which allow its re

creation. 

The · actual match filtering operation may then be performed using the Discrete 

Fourier Transform (DPT). This is the most efficient way of convolving the 

reference transmit. waveform with the returned samples, which is what matched 

filtering amounts to. 

The most efficient way of implementing the DPT is by using the Fast Fourier 

Transform (FFT). The matched filtering operation using FFT's may be summarised 

as follows: 

1) FFT's of the range reference function and input samples are taken. 

2) The FFT orthe range reference function is conjugated, and then multiplied 

by the FFT of the input samples. 

3). The inverse FFT of the result is taken·, which yields the matched filter 

output. 

In the case of the SIR-B, the received radar waveform is sampled at an intermediate 

frequency. This requires demodulation of the signal down from the intermediate 

frequency to baseband. A digital technique for achieving this was developed by 

Kritzinger6, and may be summarised as follows: 

1) Perform a forward FFT on the sampled range waveform. 

2) Set the Negative frequency spectrum to zero. 

3) Demodulate by Shifting the positive spectrum to baseband. 

4) Perform an inverse FFT. 

8 



This process of demodulating may be combined in the range compression matched 

filtering operation, which includes the forward and inverse FFT's. 

3.2 Azimuth Processing 

Azimuth processing requires the summing of the returns in the azimuth direction, 

with various phase shifts applied prior to each summation. Various approaches to 

this may be taken as discussed below. 

3.2.1 Unfocussed SAR Approximation 

The simplest approach to azimuth processing is not to apply any phase shifts to the 

data prior to summation. This results in the basic unfocussed solution. 

The number of azimuth pulses that can be summed in this way before degradation in 

the image occurs, is limited, and is discussed by Kritzinger7. This is due to the 

variation in distance to the target, due to the trajectory of the radar platform. 

3.2.2 Focussed SAR 

The Focussed Azimuth Compression is essentially the application of the Synthetic 

Aperture Principle to the data. Returned pulses are summed in the azimuth direction 

after suitable phase shifting. The phase shift required by each returned sample may 

be represented by the azimuth compression reference function. Matched filtering 

with ~his reference function then effectively allows the pulses to be summed with 

. the required phase shifts. 

As in the range compression operation this may be most efficiently achieved with 

the Fast Fourier Transform. 

As the distances and geometry vary over the width of the swath, so the azimuth 

reference function varies. This means that for each azimuth line, a different azimuth 

reference function should be generated. It was found, however, with a suitably 

shortened azimuth reference function, that the same function could be used over the 

entire swath. This simply required that the function used was generated based on the 

distances to the centre of the swath. This variation in the azimuth reference function 

is called depth of focus and is discussed further by Kritzinger8. 

9 



3.3 Processing Approach 

The maximum amount of memory required by the program will be dependant on the 

way in which the processing is performed. Two possible approaches may be taken, 

each of which will be discussed below. 

3.3.1 Non-Separable Processing 

The range walk and curvature effects, as mentioned earlier under spacebome 

considerations, should be compensated for during the processing. These effects 

would normally require that range and azimuth processing be done together. The 

movement of the radar returns between azimuth lines (Range bins) while illuminated 

by the radar beam necessitates the consideration of more than one azimuth line at a 

time when performing the azimuth compression. 

This would imply that a simple one-dimensional approach would fail. With suitable 

compensation however, as will be discussed under separable processing, the one

dimensional separable approach may still be used. 

The non-separable two dimensional approach would be the ideal way of processing 

the data, which would combine the range and azimuth reference functions into a 

single two dimensional reference function. This would allow the range curvature 

and walk compensation to be built into this two dimensional reference function. A 

two dimensional matched filtering operation would then be performed. 

The problem with the non-separable approach, however, is the large amount of 

memory that is required. A complete two dimensional array of data would need to 

be processed at a time. This could be done by spooling from the mass storage 

device, but would probably slow down the processing considerably. 

Non-separable approaches to SAR processing are discussed by Franceschetti9 and 

Di Cenzo10. 

3.3.2 Separable Processing 

The processing may be separated if the two operations can be performed one 

dimensionally. This may be done if the range walk is compensated for and if the 

range curvature is ignored. The range walk is compensated for by 'slewing the data 

10 



returned from each pulse transmit. This effectively lines up the azimuth lines 

allowing one-dimensional processing on each individual azimuth output line. 

The range curvature, for the case of th~ SIR-B geometry, was found by 

Kritzinger11 , to be negligible for a suitably shortened synthetic array. It could thus 

be.ignored in the processing without a severe degrading of the image quality. 

Separable processing was thus decided upon, as this requires far less memory than 

the non-separable approach. Using separable processing, the maximum amount of 

memory required by the program will be that required to execute a complete match 

filter operation on a single range or azimuth line. 

3.4 Compensation for Separable Processing 

Range walk compensation is all that is required to perform separable processing. 

Range walk is caused by the movement of the earth beneath the radar platform in 

the range direction. As the radar platform moves forward, so the planet rotates 

beneath it, causing the data returns to be slewed. 

The actual slewing effect must be compensated for in the time domain. The 

frequency domain effects are compensated for in the azimuth compression reference 

function. 

Time domain compensation can take place at any stage in the processing, and it was 

found to be optimal to place it after the range co~pression operation and before the 

outputting of the data to the mass storage device. Thus when writing out each range 

line, it is slewed back to compensate for the range walk. 

The azimuth reference function is also affected by the range walk in a significant 

way, but this is handled separately to the slewing. 

3.5 Pixel Spacing and Ground Truth 

The output image files will be made up with a number of pixels, or points, each 

representing a given area on the ground. 

The pixel spacing is independent of the finest achievable resolution. The resolution 

is the minimum distance between which separate targets may be discerned, which 

11 



may be over a number of pixels. The limits on resolution will not be discussed here, 

as they have no bearing on the actual processing. The pixel spacing, however, will 

be discussed briefly, as this is direct! y linked to the size and dimension of the data 

files. It also allows actual ground distan~es to be matched to the output image files. 

The separate pixel dimensions in range and azimuth wi_ll be discussed first, followed 

by the effect of the radar look angle and how this may be compensated for. 

3.5.1 Range Pixel Spacing 

The pixel spacing in the range direction is determined by the sa'mpling frequency of 

the radar. When a single pulse is transmitted by the radar, a period of time is 

allowed to elapse while the radar returns are sampled. As the samples are taken, 

returns from further and further away are recorded, since these take longer to return 

to the radar. 

The time between taking samples is equivalent to the difference in ranges reached 

by the transmitted pulse. Thus the sample taken represents a single pixel, which is 

spaced from the adjacent pixel by an amount equal to the additional range covered 

by the pulse since the sampling of the previous return. 

3.5.2 Azimuth Pixel Spacing 

The returns from each pulse transmitted by the radar are sampled to determine the 

range pixel spacing. The transmission of pulses at different azimuth positions 

determines the azimuth pixel spacing. Each transmitted pulse is used to form a 

single line of data in the range direction, and the time between these pulse transmits 

determines the spacing of these lines. 

Thus, the spacing of the pixels in the azimuth direction is determined by the ground 

distance covered between radar pulse transmits. This is dependant on the forward 

ground velocity of the radar, and the Pulse Repetition Frequency (PRF) of the 

radar. The ground velocity of the radar is dependant on the earth's rotation and the 

trajectory of the radar platform, and the PRF is a known radar design parameter. 

3.5.3 Look Angle Distortion 

The calculation of the range pixel spacing assumes that the returned radar echoes 

12 



are from objects on a two dimensional plane that passes through the trajectory of the 

radar. This is, however, not the case as the radar returns are reflected from the 

surface that is both below and to the side of the radar. This means that there is a 

distortion in the spacing of the range pixels, which is determined by the angle at 

which the radar is pointing relative to the reasonably flat surface below·. 

Thus to obtain the true_ range pixel spacing, one must take into account the size of 

the radar look angle, which is the angle that the centre of the radar beam makes 

with the vertical. 

13 



4. Software Design Considerations 

The software design was made up of a number of steps, each of which will be 

discussed in the following sections. 

4.1 Choice of Hardware and Operating System 

The main operating systems and hardware considered in the design process are 

discussed below. 

4.1.1 VAX mainframe 

i) Advantages 

This is a multi-user mainframe based system, which provides a number of 

advantages and disadvantages. The main feature of this system is the speed with 

which the VAX mainframe can operate, particularly in conjunction with an array 

processor. The amount of continuous memory that may be addressed is also large 

compared to that in a personal computer, which allows for the convenient allocation 

of large blocks of memory. 

ii) Disadvantages . 

The main disadvantage is the fact that it must be· used in a multi-user terminal 

environment where processing time is shared with other users. This environment 

slows development time, but in a dedicated system, with no other users, the speed 

could be greatly increased. 

4.1.2 IBM Compatible Personal Computer 

i) Advantages 

The main advantage of the personal computer (PC) approach is the wide availability 

of software for these systems, which reduces the need to re-write already available . 

routines. 

14 



A number of PC compatible motherboards are also available which range from the 

8088 to the 80486 processor based motherboards. These provide a large range of 

operating speeds without sacrificing any hardware compatibility. 

Advanced co-processor boards are also available which can interface directly with 

the main PC motherboard. These can allow vastly improved performance, while 

still using the basic input and output provided by the PC. Examples of such co

processors are the Intel i860 and the Inmos T800. 

ii) Disadvantages 

The main problem with the personal computer approach is the fact that directly 

addressable memory is limited, and complex memory management is required. This 

was not considered a major limitation, as the algorithms used were designed to be 

memory efficient and would not suffer from a lack thereof. The compiler used 

would also automatically provide the necessary memory management where 

applicable. 

The decision was thus to develop the software in the PC compatible environment 

using an 80386/80387 processor combination. This was also chosen due to its 

availability to the author. 

4.2 Choice of Language 

The C language was chosen due to the ease with which the code could be 

transported to run under different operating systems or on different hardware 

platforms. All C language implementations conform to a standard set of ANSI-C 

language commands, allowing any ANSI-C implementation to run any given piece 

of ANSI-C code without any modifications of the code required. 

The actual version of C chosen was Borland•s Turbo C V2.00. This was used due to 

its availability and the fact that it runs under the operating system chosen. 

A number of additional commands are provided by this version of C, but as far as 

possible only the standard ANSI-C commands were used so as to maintain full 

compatibility. Non standard commands are clearly marked in th~ code and are only 

used to allow the code to be run on the specific hardware platform chosen. 

15 



4.3 Mass Storage and the Flow of Data 

Various data storage structures are used throughout the program, depending on 

factors such as accuracy and purpose. The first data structure is that used by the raw 

data file as received and sampled by the radar system. 

4.3.1 Raw Data Structure 

The raw unprocessed SIR-B data was held in a single file consisting of a number of 

records, each with a header. The file layout is given in Appendix E. Each record 

contains 3415 samples of radar .return data taken at successive azimuth positions. 

Each sample is represented with 6 bit precision, and the data file is stored in a 

compressed format of 5 samples per 4 byte word. The raw data extraction module 

must therefor include a data decompaction routine. 

The total size of the raw data file is 66.06 Mbytes, which includes 21504 records 

each of 3415 samples. The size of this file is an indication of how essential the 

efficiency of the data handling must be. 

4.3.2 File Access 

File access must clearly be done sequentially to allow for maximum throughput. 

The initial processing requires that range compression be performed. This involves 

a single range line of data at a time, which is held in a single record in the raw data 

file. The initial processing can thus be performed directly and sequentially on the 

raw data file, since· records are stored sequential! y. The output from this first stage 

will of course also be in order of range line, as read in. 

The. azimuth compression stage requires the data one azimuth line at a time. The 

azimuth lines run across the range lines, and to read in a complete azimuth line 

would require reading in the entire file of range lines. This would be extremely 

inefficient as the complete file would need to be read for each azimuth line. 

If memory permitted, then the complete file could be stored in memory, and then 

accessed in the desired way, instead of having to re-read it for each azimuth line. 

This would require 66 Mbytes of memory, which were assumed not to be easily 

available. 

16 



. 
To allow for the efficient processing of. azimuth lines, the complete file may be 

corner turned on the mass storage device. This would allow azimuth lines to be read 

in sequentially from the file and processed~ This technique is commonly used and is 

mentioned by Barber12 among others. · 

Depending on the algorithm used, the comer tum operation itself may require a 

certain amount of free memory, but this will be a fraction of the size of the 

complete data file. 

Due to the size of files involved, segments from the raw data file may be separately 

extracted and processed. Thus a smaller segment may be selected for processing if 

disk storage space is limited. 

4.3.3 Specific Intermediate Data Files 

As can be seen from the preceding discussion,· a number of intermediate files will 

need to be produced during the processing. The specific intermediate files produced 

by each of the main modules will be discussed here. 

i) Range Compression file output 

The first file produced will be by the range compression module. This file will hold 

a two dimensional array of complex numbers of size determined by the number of 

aziqmth and range lines processed. 

Each complex number will be represented with a dynamic range of 16 bits fixed 

point. 8 bits will be used for the real component and 8 bits for the imaginary 

component. This compact format is required to reduce the amount of disk storage 

space required. The original raw data was_ represented with 6 bits, so no loss of 

information is involved. 

ii) Corner Turn file Output 

The corner turn module will take as input the complex data file from the range 

compression module, and will output this file after corner turning. The range 

compression output disk file data structure is thus maintained, but with the azimuth 

and range dimensions swapped. 

17 



ill) Azimuth Compression file Output 

The input to this module will come directly from the corner turn module. The 

output file produced by the azimuth compression module will be an image file 

representing the final output from the processing stages. 

This output will be of real type only, with each pixel represented with 8 bits. This 

format is all that is required to produce complete 256 gray level output images. 

4.3.4 Standard Data Structure for Image Representation 

A standard file format for storing gray level images has been defined at .the 

University of Cape Town. The file format is defined for images of 512 by 512 

pixels, with each pixel represented with an 8 bit gray level magnitude. The file is 

structured as a byte dump of all 512 by 512 pixels, taken from left to right and from 

top to bottom of the image. All image files conforming to this standard will have 

the extension 'CFI'. 

A module to produce standard CFI images from the main azimuth compression 

output image file will be provided. A number of existing programs compatible with 

this file format were used, and will be discussed later. 

4.3.5 Scaling of '<:>utput File Data 

The range compression and azimuth compression modules both output data in a . 

fixed point format. The scaling of this output data is thus vital to ensure that it is 

centred in the middle of the fixed point range with a minimum of overflo~ and 

underflow errors. Output Scaling for each of these modules is performed as 

described below. 

i) Range Compression Output Scaling 

Before writing out any data to the disk, a suitable output scaling constant is 

determined. This is done by performing a number of sample range compressions 

and then averaging the peak output values from each of these sample range lines. In 

this way an average of the peak output values will be found. · 

18 



Using ·peak output values to scale will ensure that the peaks are not clipped off 

during the output process. The averaging is done to avoid scaling off an abnormally 

large peak. 

ii) Azimuth Compression Output Scaling 

This is done in a similar way to the range compression output scaling, except that a 

number of sample azimuth compressions are performed instead. Again the average 

of peaks is used to determine a scaling constant. 

4.4 FFT Considerations 

The Fast Fourier Transform as mentioned earlier was chosen to perform the 

matched filtering operations. Certain considerations n~ to l;>e made with respect to 

this choice, and these will be discussed here. 

4.4.1 Windowing of the Data 

Whenever an FFT is applied to a set of data points, an assumption is made that the 

points may be made periodic, without affecting the outcome of the FFT. This is not 

normally the case, and discontinuities are usually found at the endpoints, where the 

data points have been made to repeat. This gives rise to additional unwanted 

harmonics after performing the FFT, as shown by Harris 13. To overcome this 

. processing side-effect, a window if often applied to the data in the other domain to 

which. harmonic reduction is desired. 

The provision to apply various windows should thus be made available prior to 

performing the inverse FFT in the range and azimuth compression modules. 

4.4.2 Zero Padding the FFf 

The FFT algorithm used requires that the number of input and output samples be an 

exact power of 2. Since this is never the case, the remaining samples required to 

make up an exact power of 2 must be zero padded. This technique is discussed by 

Barber14. 

19 



5. Software Design Implementation 

The actual software implementation will be discussed in this section. The first part 

will deal with the control and parameter files used by the program as a whole, and 

this will be followed by a breakdown of the various modules. 

5.1 Common Control Files 

A number of control and parameter files were required in the implementation of the 

program. These files maintained control of the complete program, and allowed for 

the setting and passing of parameters. 

5.1.1 Batch Processing File 

This file is a result of the overall program design. Each of the main stages of the 

program are designed as individual stand alone modules that must be independently 

called· from some controlling file. This controlling file will be called the Batch 

Processing File, and will consist of calls to the relevant modules. 

This approach provides for flexibility in that the calling program is a standard text 

file that is not compiled, and can be easily modified for different processing 

scenarios. For example, if the range compression was performed by the radar 

hardware, then the call to that module could easily be left out. 

After the calling of each module, a test is made on an error flag, which may be set 

by the module· if an error occurred. This allows for the abnormal termination of the 

· batch processing file. 

20 



An example of a batch processing file as used under the Novell Network Operating 

system is shown in figure 2. Note that the first command line parameter specified 

when running the batch file is used to specify the name of a user input parameter 

file. This parameter is then passed to each of the main modules when called from 

the batch file. 

The error flag as used by the Disk Operating System (DOS) and set by each module 

is called the DOS errorlevel flag. This flag is tested after each module is run, to 

allow for abnormal termination. 

rem Turn off broadcast messages from other stations: 
castoff 

rem Generate Parameters for the other modules: 
satparam %1 
if errorlevel==l goto error-

rem Perform Range Compression 
rangecom tl 
if errorlevel==l goto error 

rem Perform Corner Turn: 
corner tl 
if errorlevel==l goto error 

rem Perform Azimuth Compression: 
azimcom tl 
if errorlevel==l goto error 

rem Successful completion will end up here: 
:complete 
echo Successful Completion 
goto fin 

rem Unsuccessful completion will force a jump to here: 
:error 
echo Processing Error has occurred - Inspect the status file 

rem Exit back to DOS: 
:fin 
logout 

Figure 2 Batch Processing File Example 

S.1.2 User Input Parameter File 

The user input parameter file takes the form of an ASCII file of input parameters 

and values. This allows the user easily to specify most of the input P3:fameters to the 

various program modules. Each of the parameters is specified with a parameter 

21 



name and value separated with a space. An example of an input parameter file is, 

shown in figure 3. 

Miscellaneous Constants: 

earthradius 6372070 
lambda 0.234 

Processing parameters: 

rawname g:/sir-b-79.dat 
rngname g:/sar/6000/6000rng.dat 
corname g:/sar/6000/6000cor.dat 
azmname g:/sar/6000/6000azm.dat 
statusname status.doc 
rawtype sirb 
rangebins 2494 
rangefftsize 4096 
pulses 4096 
azimfftsize 4096 
startpulse 6000 
samples 512 
window 0 

Shuttle position and other flight parameters: 

xpos 282499 
ypos .:.5637355 
zpos -3419207 
xvel 4763.469 
yvel 3359.391 
zvel -5143.152 
look 30.4 
slant 272670 
prf 1463.2 

Range reference parameters: 

pulselength 30.4e-6 
sampfreq 30.353e6 
sweep 12e6 
ifreq 7.2e6 

Parameters used by the CFI image extractor: 

cfiazimsize 1.64 
cfirangesize 1,00 

Parameters used by the Quickcfi image generator: 

quickazimave 16 
quickazimsize 5 
quickrangesize 3 

Figure 3 Example of User Input Parameter File 

22 



The input parameters may be broken down into a number of sections as will be 

described below. The parameter names that are used are shown in brackets next to 

the parameter descriptions. 

i) Filenames and Processing Parameters 

The following parameters include the filenames that will be used for the various 

intermediate files, as well as the raw data filename: 

- Raw Data File Name 

- Range Compressed File Name 

- Corner Turned File Name 

- Azimuth Compressed File Name 

- Status File Name 

[rawname]· 

[rngname] 

[corname] 

[azmnameJ 

[statusname] 

The next parameters define the position from which to extract data from the raw 

data file, as_ well as the desired. size of the output files: 

- Raw Data file type 

- Starting Azimuth pulse to extract 

- Number of Azimuth pulses to extract 

- Number of Range .. b_ins to output 

[rawtype] 

[startpulse] 

[pulses] 

[rangebins] 

The next two parameters should be specified to set the size of Fast Fourier 

Transform to be used in the Range compression and Azimuth compression modules. 

The sizes may be different, but should be a power of 2. The third parameter below 

may be used to specify a window type to apply to the data prior to the Inverse FFT. 

The window types supported are shown. 

- Range Compression FFT size 

- Azimuth Compression FFT size 

- Window type to apply 

0- No window 

1 - Raised Cosine 

2 Kaiser Bessel 

23 

[rangefftsize] 

[azimfftsize] 

[window] 



ii) Range Compression Parameters 

Also required are those parameters that will allow the range compression reference 

function to be re-created: 

- Intermediate Frequency [Hz] 

- Sampling Frequency [Hz] 

- Pulse length [S] 

- Sweep Rate [Hz/S] 

iii) Satellite Parameters 

[ifreq] 

[sampfreq] 

[pulselength] 

[sweep] 

The satellite parameters are those that relate to the satellite position, trajectory and 

radar look geometry. These parameters should normally .be extracted from the 

header section of the raw data file, but may be specified here if the header data is 

not available. 

- Average,Satellite Position 

- Average Satellite Velocity 

- Radar Look Angle [ deg] 

- Slant Range to centre of swath [m] 

iv) Viewing Parameters 

[xpos,ypos,zpos] 

[xvel,yvel,zvel] 

[look] 

[slant] 

The parameters defining the range and azimuth scaling constants for the CFI image 

extraction module and for the quick look image extractor must be specified. These 

may be set to scale the output images to provide correctly proportioned pixels. Also 

to be specified is the number of pixels to average for the unfocussed quick look 

image extractor, which will be discussed later. 

- CFI Azimuth Pixel sizing 

- CFI Range Pixel sizing 

- Quick Look Azimuth Pixel Sizing 

- Quick Look Range Pixel Sizing 

- Quick Look Averaging 

24 

[ cfiazimsize] 

[ cfirangesize] 

[quickazimsize] 

[ quickrangesize] 

[ quickazimave] 



v) Miscellaneous Constants 

Other miscellaneous constants required by the program must also be specified. 

These include: 

- Radar Pulse Repetition Frequency [Hz] 

- Radar Transmit Wavelength [m] 

- Earth Radius [m] 

5.1.3 Status File 

[prf] 

[lambda] 

[earthradius] 

The status file will be created by the first processing module that is run, and then 

updated by the others during their runs. It will hold useful output data, providing a 

complete summary relevant to the particular program run. 

At the start of each module, the module description will be written to the parameter 

. file. As each step is performed in the module, relevant details will be written to the 

status file, thus giving an up to date summary of what is happening. Any errors will 

be written to the status file immediately before aborting a program run, thus 

allowing complete postmortem analysis. 

The status file will also include the times taken to complete each module. An 

example of the status file is shown in figure 4. 

25 



Start of the Range Compression Module. 
====================================== 

Output File g:/sar/7650/7650rng.dat 
Range Walk Compensation: 0.236328 metres per pulse 
Starting azimuth pulse: 7650 
Total azimuth pulses to process: 4096 
Range bins output per azimuth line: 2494 
Window type: 0 

Output Scaling Factor: 0.394372 
Maximum Walk Shift in Range Bins: 99 
Maximum out of range errors: 59 at 9330 
Maximum zero errors: 10 at 11560 
Mean Output Magnitude: .41.3628 
Average Max Position before IFFT: 0 
Processing Time: 787 min 
Range Compression Module Complete 

Start of the Corner Turn Module. 
==~============================= 

Input File: g:/sar/7650/7650rng.dat 
Output File: g:/sar/7650/7650cor.dat 
Corner Turn Dimensions: 4096 by 2494 (2 byte complex) 
Available Memory Allocated: 393312 bytes 
Corner Turn Time Taken: 66 minutes 
corner Turn Module completed. 

Start of the Azimuth Compression Module. 
======================================== 

Input Data file g:/sar/7650/7650cor.dat 
Output Data file g:/sar/7650/7650azm.dat 
Window type: 0 
Output Scaling Factor: 0.108394 
Maximum out of range errors: 349 at 1037 
Maximum zero errors: 3582 at 2415 
Number of Azimuth Reference points: 512 
Processing Time: 470 min 
Azimuth Compression Module Completed., 

Figure 4 Example of Status File 

5.2 Included Sub-Modules 

A number of separate sub-modules are included by the main program modules. 

These modules have been separated from the main modules for a number of 

reasons. They may be included in any of the main modules where necessary, and 

may be accessed or replaced easily if modifications need to be made. Each of these 

sub-modules will be discussed here, and are listed in appendix B. The extension .H 

26 



is used, as this is a standard extension used for files that are to be included in C 

code. 

5.2.1 EXTRACT .H 

This module provides the code for extracting and decompacting range lines from the 

raw data file. It is included as a separate module, to allow it to be replaced easily if 

a different type of raw data were to be used. It is included by the range compression 

module, which requires access to the raw data file. 

The file consists of a single function, 'extract()', which takes as input the range line 

to extract, and pointers to the file and to storage space where the range line may be 

stored. 

S.2.2 WINDOW .H 

This module provides the functions to multiply a given complex input array by one 

of a number of selectable windows. This module is separated to allow different 

windows easily to be set up or modified. It is included by the range and azimuth 

compression modules, to provide windowing facilities to the FFT routines. 

The externally callable function, 'window()', takes as input pointers to real and 

imaginary components of the data to be windowed, as well as the array size and 

type of window to apply. 

5.2.3 SAR.H 

This module contains functions specific to the processing, which include the Fast 

Fourier Transform implementation and other associated routines. This module is 

included by the range and azimuth compression modules. 

The FFT algorithm implemented is based on the standard Power-of-Two Butterfly . 

FFT algorithm, which is widely documented. A good description of the 

computations involved is given by Roberts and Mullis 15 • 

This FFT algorithm requires certain multipliers which are dependant on the number· 

of points in the FFT, and the sine and cosine functions. These multipliers take a 

considerable amount of time to calculate, due to the calls to the sine and cosine 

27 



■ 

I 

functions. The multipliers remain the same for a given number of FFT points, so 

they may be computed once at the start of the program, and then stored and 

referenced during later calls to the FFT procedure. 

To facilitate this, these tables are set up prior to calling the FFT procedure, 'fftO', 

with a call to the 'loaclsincosO' procedure. This procedure takes as input the size of 

the desired FFT, and pointers to the lookup tables. The lookup tables are then set 

up with the sine and cosine multipliers. 

Other functions found in this module include a bit reversal function, 'bitrevO' 

which is used by the FFT procedure to reverse the bits in a given numb~r. The 

procedure, 'multiplyO' is used to multiply two complex arrays of numbers, and 

takes as input pointers to the real and imaginary array components, as well as the 

array size. 

5.2.4 PARAM.H 

This module contains the functions used to access the parameter files. It allows 

specific parameters to be extracted from the files. It is included in all main modules 

that access any of the parameter files. 

The functions 'getfloatparamO' and 'getstringparamO' may be used to extract 

floating point or strlrig parameters from a parameter file. Function input parameters 

include the parameter name to extract, and the parameter file to use. An output 

parameter indicates the success of the extraction.· 

5.2.5 MATRIX.ff 

This module contains functions that relate to the manipulation of matrices. This 

module is included by the Parameter Setup Module, to compute the various 

parameters. It is separated only because the functions provided are all directly 

related to each other. 

All matrix manipulations are based around three dimensional matrices, which are 

assumed throughout the module. This provides for faster and simpler matrix 

computations. 

28 



5.3 Main Program Modules 

Each of the main program modules described in this section are self-standing 

programs, able to be run independently. They may thus be combined in different 

sequences depending on the requirements of the processing, as mentioned earlier 

under the section on the Batch Processing File. 

A flowchart showing how the main modules and files would normally relate to each 

other is shown in figure 5. The modules described in this section are all shown on 

the flowchart, which may be used for reference purposes; Note that the User input 

parameter file is input to all of the modules, and thus appears more than once on the 

flowchart. The 'SATPARAM.EXE' module has been separated on the flowchart 

only for clarity. 

29 



AZIMREF.DAT 
Azinuth 

Reference 
Function Fi le 

RANGEC04.EXE 
Range 

Coopression 
Module 

(Auto-Scaling) 

Range 
c~ressed 
and Walk 

Coq:,ensated 
Data Fi le 

CORNER.EXE 
Corner Turn 

Module 

Corner Turned 
Data Fi le 

AZIMC<»t.EXE 
Azi111.1th 

Coopression 
Module (Auto 

Scaling) 

Azirruth 
Coopressed 
Image File 

with 256 gray 
Levels 

User 
Generated 

Input 
Parameter 

File 

QUICKCFI.EXE 
Quick 

Unfocussed 
CF! Image 
Generator 

User 
Generated 

Input 
Parameter 

File 

GETCFI.EXE 
CFI Image 
Extractor 

User 
Generated 

Input 
Parameter 

File 

Auto-Generated 
Input Parameter 

File 

CFI Image 
File 512x512 

256 level 

CFI Image 
File 512x512 

256 level 

Figure 5 SAR Processing Flowchart 

30 

SATPARAM.EXE 
Paramater and 

Azinuth Reference 
Function Generator 

Raw SAR input 
Data File 

AZIMREF .DAT 
Azi111Jth 

Reference 
Function 



5.3.1 Parameter Setup Module, 'SATPARAM.Ct 

Data extracted from the raw data file header and the input parameter file will be 

used to compute constants that will be passed to the other modules. 

The function of this module will be to extract the header and ephemeral data from 

the raw data file or from the user generated input parameter file. The output from 

this module will take the form of another parameter file holding computed constants 

to be passed to the other modules, and the azimuth compression reference function, 

to be passed to the azimuth· compression module. 

The range walk will be computed in metres per pulse. This can· be done, as 

mentioned earlier, by considering the sideways movement of the earth relative to 

the radar, and the radar PRF. The pixel spacings in range and in azimuth are also 

computed using the techniques described earlier. 

Computation of the azimuth reference function requires the forward ground velocity 

of the radar as well as the distance to the target. 

These computations all require the computation of the same constants, the main one 

being the relative movement of the target with respect to the radar. For this reason, 

they have all been grouped together into a single parameter setup module. The 

computations required were determined by Kritzinger16, and implemented directly 

from the formulae provided. 

The main section of this module computes an array of distances to a target based on 

the relative radar and target movements. This array is then_ output as the azimuth 

reference function, and the range walk is computed directly from it. The swath 

velocity, or forward ground velocity, is used to compute the azimuth pixel size. 

The required input parameters will be taken from the raw data header and the input 

parameter file, and will include: 

- Average Satellite Position 

- Average Satellite Velocity 

- Pulse Repetition Frequency [Hz] 

- Radar Look Angle [deg] 

- Slant Range to centre of swath [m] 

31 

[xpos,ypos,zpos] . 

[xvel;yvel,zvel] 

[prf] 

[look] 

[slant] 



The output parameter file will include the following computed constants to be used 

by the other modules: 

- Range Walk [m/pulse] 

- Range Pixel Size [m] 

- Azimuth Pixel Size [m] 

[rangewalk] 

[ rangepixelsize] 

[ azimpixelsize] 

The azimuth compression reference function will be output to a complex floating 

point numeric file, stored in ASCII format, called 'azimref.dat'. 

5.3.2 Range Compression Module, 'RANGECOM.C' 

The main functions of this module are to extract the raw data from the input data 

file, to compress the data in range, and then to output the compressed data to the 

range compressed data file. This module may be omitted in the processing if range 

compression is not required. 

To compensate for the effects of range walk, each output range line is shifted by a 

given amount in the range compression module before being written out to disk. 

The raw data, in the case of the SIR-B, was sampled at an intermediate frequency. 

This requires that it be demodulated to baseband, which is achieved with a shift of 

the samples in the frequency domain, prior to performing the inverse FFT. 

The extraction of the range lines, the range compression and the range walk 

compensation operations are all combined to speed the processing and also to reduce 

disk space requirements. 

i) Basic Proc~ing Steps Performed 

The function 'comp~_range_line0' included in this module is called to extract, 

demodulate and compress a single range line. This includes the following steps: 

Extract range line from the raw data file. 

Perform FFT on the extracted range line. 

Multiply by the FFT'd and conjugated range reference function as set up. 

Zero the upper half of the samples. 

32 



Shift the samples to effectively demodulate from the Intermediate frequency 

to baseband. 

Perform Inverse FFT. 

The Basic processing steps performed by the main section of the module may be 

summarised as follows. 

Extract Input Parameters from specified Parameter file. 

Generate Range Reference Function and form the conjugated FFT of it. 

Perform Sample range compressions to determine scaling constant for output 

file. 

Perform actual range compressions and output the data with the required 

range walk shift. 

ii) Memory Requirements 

Since each range line is compressed separately, the memory required by this module 

should be enough to allow a range compression to be performed on a single line. 

This is determined by the size of FFT chosen and the floating point format used. 

Normally, a 4096 point FFT is performed using complex 4 byte floating point 

numbers, as follows: 

(4096 point) * (4 byte float) * (2 complex) = 32K 

To store the range reference function, input range_ line and output, three times this 

amount is required: 

3 * 32K = 96K 

iii) Input Parameters and Data Files 

At the start of this module, the required input parameters are extracted from the 

user input parameter file and from the computed parameter file set up by the 

parameter setup module. 

The Raw data file as specified in the input parameter file is processed. 

33 



iv) Output Parameters and Data Files 

The output from this module is a complex data file, with filename as specified in 

the input parameter file. Output Dynamic Range is 8 bits real and 8 bits imaginary, 

both fixed point. 

5.3.2 Corner Turn Module, 'CORNER.C' 

This module takes as input a complex data file that is to be rotated by 90 degrees, to 

allow processing in the other direction. This is required to allow for the efficient 

accessing of the data by the azimuth compression module. 

i) Basic Processing·Steps Performed 

The method of comer tum used was chosen to be as fast as possible by minimising 

disk accesses. This is achieved by dynamically allocating as large a section of 

memory as possible. Input data is then read from the disk in blocks the size of 

available memory, as depicted in figure 6. 

As can be seen in the input file diagram, the lines making up the blocks (Block 

Lines 1,2 ... as depicted in block I) are not stored sequentially and must be read in 

one line at a time, randomly. Once a complete block has been read into memory, it 

is written out one output line at a time, in the order as shown in the output file 

diagram. This effectively entails a memory comer tum as the output block is written 

to the disk. The process is repeated for as many blocks that are required to comer 

tum the complete input file. 

34 



• 
·:! ... ... 

I'-

s bl.OU<. JI. 
&Lee~ t,1.0q( fSi.C(ll 

I ]: i1T ....;.') 

Figure 6 Corner Turning Operation 

The basic processing steps for the corner turn module may be summarised as 

follows: 

Extract parameters from the specified parameter file. 

Allocate all available memory for corner turn. 

Perform the Corner Turn. 

ii) Memory Requirements 

This module requires as much free memory as possible, due to the method of corner 

turn used. All available memory is used, and speed is directly dependant on the 

amount available. 

iii) Input Parameters and Data files 

The input parameters are extracted from the user input parameter file, and include 

the size of block to corner turn. The range compressed input data file of complex 

numbers, is passed from the range compression module. 

35 



iv) Output Parameters and Data files 

The output from the comer tum module will be a comer turned complex data file 

with filename as specified in the input parameter file. It will be ready to be 

processed in the azimuth direction. 

5.3.3 Azimuth Compression Module, 'AZIMCOM.C' 

This module applies the Synthetic Aperture Radar Azimuth compression to an input 

file. This is required to effectively sum the radar returns in the Synthetic Array. 

i) Basic Processing Steps Perf onned 

The function 'compress_azim_line0' included in this module is called to extract 

and compress a single azimuth line. This includes the following steps: 

Extract azimuth line from the comer turned data file. 

Perform FFT on the extracted azimuth line. 

Multiply by the FFT'd and conjugated azimuth reference function as set up. 

Perform Inverse FFT. 

The Basic processing steps performed by the main section of the module may be 

summarised as follows. 

Extract Input Parameters from specified Parameter file. 

Read in the azimuth reference function and form the conjugated FFT of it. 

Perform Sample azimuth compressions to determine scaling constant for 

output file. 

Perform actual azimuth compressions and output the data. 

ii) Memory Requirements 

Memory requirements are similar to that of the range compression module, as a 

single azimuth compression is performed at a time. Thus for an FFT size of 4096, 

the memory required will be 96K. 

36 



- . 
iii) Input Parameters and Data files 

The reference function used to apply the azimuth compression will have been 

generated by the parameter setup module, and will be passed to the azimuth 

compression module in the form of the "Azimref.dat" file. Input parameters will 

also include the comer turned data file, and the file dimensions. 

iv) Output Parameters and Data files 

The output from this module will be the main image file, of filename as specified in 

the input parameter file, from which sub-images may be called up using one of the 

viewer or printer modules. 

5.3.4 Image Extractor Module, 'GETCFI.C' 

This module has been provided to extract an image of a given size from the main 

output image file, to allow it to be sent to one of the viewer or printer modules. The 

extracted output image will be of standard CPI type as defined earlier. 

The Input Parameters passed from the input parameter file include the desired 

azimuth and range scaling factors for the output images. The position of the top left 

comer of the output image in the main image file may be specified on the command 

line. 

The output image will be of fixed and standard size, so the greater the size of image 

selected, the lower the output resolution will be. 

5.3.5 Quick Look Image Extractor, 'QUICKCFI.C' . 

The quick look image extractor module has been provided to extract an image 

directly from the range compressed and comer turned data file. Thus no azimuth 

compression is required prior to extracting -an image with this module. 

The technique used is to apply unfocussed azimuth processing while extracting the 

image. Thus a running average of a number of azimuth pulses is taken. The azimuth 

resolution obtained is not nearly as high as that obtained with focussed azimuth 

compression, but it allows major features of the image to be identified before full 

azimuth compression. 

37 " 



The input parameters passed from the input parameter file include the desired 

azimuth and range scaling factors of the output image, as well as the number of 

pulses to average in azimuth. The image position to extract may be specified on the 

command line. The output will be a standard CFI image as defined earlier. 

38 



5.4 Other Program Modules 

Other modules not central to the actual processing will be mentioned here. These 

include modules included from elsewhere and written by others. 

5.4.1 Image Viewer and Filtf:'r Modules 

Image viewer and filter modules were taken from a collection of image processing 

and viewing utilities, developed by A. Dacks. These were developed as part of a 

Masters Thesis at the University of Cape Town. 

The viewer module used is one that is compatible with the Standard IBM VGA 

format. It takes as input a standard CFI file as defined, and displays it on a standard 

VGA monitor using 32 gray levels. 

The filter modules included a low pass image filter and median filter. These were 

applied to the output images to observe their effect, which will be discussed in a 

later section. 

5.4.2 Laser Printer Module, 'PRINTCFI.C' 

Producing hard copies of the output images requires either a printer capable of 

producing a range of gray levels, or a fine resolution printer on which gray scaling 

may be simulated using different dot densities. The latter approach was decided 

upon .due to the availability of a 300 Dots per Inch Hewlett Packard Laserjet. 

The module developed takes as input a standard 512 by 512 pixel CFI type file as 

defined earlier, and produces a 6.8 Inch by 6.8 Inch Hard Copy. The 256 gray 

levels of the input image are divided into 16 possible dot combinations each of 

which are made up with a 4 by 4 matrix of dots. The images presented later were 

printed using this module. 

This routine is listed in Appendix C, and was developed jointly by the Author and 

A. Knight. 

39 



6. Software Testing 

Program testing was required at all stages to maintain the correct course of 

development, and to allow for error location and correction. The testing may be 

broken down into the testing of the program as a whole, and the individual testing 

of modules. The individual module testing will be discussed first, followed by the 

complete program testing. 

A number of additional programs were used during the testing stages to generate 

test files and to test or view output files. All programs used for testing are listed in 

Appendix D. 

Included in these programs is one that was used to convert from the compact binary 

file format, that is used to store all data, to standard ASCII format. The ASCII files 

were then easily imported into a spreadsheet program to allow for viewing or 

graphing. The spreadsheet program used for this purpose was Quattro Pro Version 2 

which is referred to in this section. 

6.1 Individual Module Testing 

The major program modules were each tested separately before being combined to 

form the complete program. 

6.1.1 Range Compression Testing 

The range compression module was tested by generating and inputting an 

uncompressed test file consisting of a single range line. This test file was stored 

with the same format as used by the raw data file which is normally input to this 

module. 

A number of uncompressed test range lines were used, these included one with a 

single point reflector, and one with two point reflectors positioned in close 

proximity. The compressed output range line with a single point reflector is shown 

in figure 7. The resulting point target response is slightly spread out, as predicted 

by Kritzinger17, due to the fact that the process of demodulation results in an 

oversampled signal. 

The program used to generate the test file is listed in appendix D. 

40 



Figure 7 Range Compression, Single Point Target Response 

Range Compression Output 
Single Pulse Response 

180~-------------------------, 

1601-1-------------+---------------t 

14014------------#------:-------------1 
(1) 
Cl.l 
~ 120-+-------------ft----------------i 
0 
f¼ 
(1) 

~ 
100-+-------------1\H--;----------,-,-----------i 

(1) 

~ 8Q1-l------------w+-------------
~ ·-~ 
~ 60-+-------------1-H---------------i 
~ 

404------------f--t----------------i 

200 Range Pixels 

41 



6.1.2 Corner Turn Testing 

The corner tum module required that the complex input file be comer turned and 

output to the complex output file. 

A test file was initially generated holding a sequence of numbers in one row, and 

zeros in all other rows. This file was large enough to require being broken down 

into a number of smaller blocks during the comer turn. The file was then comer 

turned, and the output file manually inspected to ensure the correct placement of the 

transposed row, and the presence of zeros elsewhere. 

A program to compare the input and output files to the corner turn module was also 

written. This program compared every number in the corner turned output file with 

the corresponding number in the input file. Any .errors were signalled, to allow 

debugging of the program to take place. This test was run on the actual comer 

turned file used during the processing, to confirm the absence of any errors. 

The programs to generate the test file, and to compare the input and output files are 

listed in Appendix D. 

6.1.3 Azimuth Compression Testing 

i) Main Module Testing 

This module was tested by generating a test file of the size used during actual 

processing. The file contained one line with a single point target response, and 

another with two point target responses in close proximity. The rest of the file was 

filled with zeros. 

The test file was then azimuth compressed and the output file inspected. The two 

test azimuth lines in the file were extracted, converted to ASCII and imported into 

the Quattro spreadsheet. The azimuth compressed output with two point targets is 

shown in figure 9 which also shows the effects of the windowing as discussed later. 

· The outputs appear correctly spaced with narrow main lobes, as expected, verifying 

the correct operation of the azimuth compression module. 

The program to generate the azimuth compression test file, ,is listed in Appendix D. 

42 



ii) Windowing Testing 

The testing of the windowing was done in conjungtion with the testing , of the 

azimuth compression for convenience, but the windows are used by both the range 

and azimuth compression modules. Each of the windows implemented were initially 

output to ASCII files and viewed on Quattro, to verify that they appeared correct. 

The windowing of the data in the frequency domain was tested by outputting the 

waveforms at various stages during the processing. The azimuth compression 

reference was output before and after multiplication by a window in the frequency 

domain. This is shown in figure 8. As can be seen, the window has the effect of 
I 

reducing the magnitude of the extreme positive and negative frequencies. 

The effect of the window on the azimuth compression output was then tested with a 

number of inputs. These included a single point target and a double point target 

separated by a distance of 10 points. The output for the double point target is shown 

in figure 9 with no window, and with the Kaiser window. The slight side-lobe 

reduction and broadening of the main lobes on the windowed output can be 

observed quite clearly. 

43 



Figure 8 Azimuth Reference Function before and after windowing 

FFT of the Azimuth Ref ere nee Function 
45...-------------------------, 

40-1------f'l----------------++-------1 
~ j No Window j 

35 

30-+---lffffl,H---.H---------------t-H-t-ttttt-------1 

· 25-1---------4+--++-_...;,,,,.-,--------,---------+-1--'-------I 
Kaiser Windowed 

20+------H---------------tt-------1 

15-1---------1+----------------,.---++------1 

104--------++---------------H------f 
Maximum Frequency 

5-1-------~~------'-----.------......_,---.11+---------1 

a----------

44 



. 200 

180 

160 

140 

120 

JOO 

. 80 

60 

40 

20 

0 

Figure 9 Azimuth Compression, Double Point Target Response 

Azimuth Compression Output Line· 
Point Targets Spaced by 10 

45 

No Window 
Keiser, Alpha ..;;. 3.5 



6.1.4-Testing of Fixed-Point Output Scaler 

The testing of the automatic output scaler was vital to ensure that the limited 8 bit 

dynamic range was being used to its fullest, and that a minimum of truncation 

errors were produced. 

A separate analysis program was written for the·purpose of analysing the fixed point 

output data. This program reads in a file of any length made up of 8-bit bytes. An 

ASCII summary of the frequency of occurrence of each byte is produced, as well as 

mean and standard deviation values. 

This ASCII output summary was then imported into Quattro to allow a graphical 

view of the output byte frequencies to be produced. The output data frequencies 

from the range and azimuth compression modules were graphed and printed as 

shown in figures 10 and 11. 

46 



Figure 10 Range Compression Output Distribution 

Range Compression Output Distribution 
14-r--------------------------, 

12 
,-... 

~ ~ Zeroes .____, 
~ 10 u 
t:: 
~ 
1-. 
1-. 

8 ;::::3 
u u 
0 
C+-i 
0 6 
>. u 
t:: . 
~ 
;::::3 4 cr-
~ 
1-. 
~ Negative Overflows Positive Overflows 

2 

0 4nnmti11111111111111111111ffl11ffla1 

Output Value from -127 to+ 128 

47 



Figure 11 Azimuth Compression Output Distribution 

Azimuth Compression Output Distribution. 
12...--------------------------

10 -~ ,,_,, 
(l) 

Underflows u 8 ~ 
(l) 
;... 
;... 
:l u· u 

6 0 
t+-. 
0 
~ u 
~ 4 (l) Overflows :l 
er 
(l) 
;... 

~ 
2 

0 

Output Value from Oto 2~5 

48 



i) Range Compression Output 

The range compression , output consists of signed complex numbers with each 

component in the range -127 to + 128. The central spike on the graph represents the 

number of zeroes, and the spikes at the left and right extremes represent the. number 

of negative and positive overflow errors which were truncated to the maximum or 

minimum value. A trade-off between the number of zeroes and the number of 

truncation errors was required in the output scaling. The chosen scaling as shown 

was decided upon after visual inspection, to provide an as even as possible 

distribution. 

The large number of zeroes in both the range compression and azimuth compression 

outputs can be ascribed to the fact that zero padding was used when shifting the 

output data to compensate for range walk., This means that a number of zeroes were 

required around the actual data, so as to square it off. 

ii) Azimuth Compression Output 

The output from the azimuth compression module consists of unsigned bytes in the 

range Oto +255. As can be seen the 8 bit range.is well utilised, although a number 

of underflows and overflows do exist. The presence of the zeroes, or underflows, 

was described above, and the overflows are unavoidable using linear scaling. The 

overflow errors do ·not detract from the image quality much, as most of the values 

used are in the lower end of the 8 bit range, and a tapering effect toward the upper 

range is present. 

6.2 Complete Program Testing 

Complete testing was made quite difficult by the length of time required to perform 

all of the SAR processing steps. To reduce the time required, smaller blocks from 

the raw data file were processed for test purposes. The output images were then 

compared with the images generated by the Jet Propulsion Lab SAR processor. The 

effects on the image of variations in particular input parameters could then also be 

observed. Example images are shown in the next section. 

The generation of a simulation test file to be sent through all processing stages was 

not thought necessary. Such a simulation file could ·be produced by reversing the 

SAR processing process as implemented. This would thus not provide testing of the 

49 



algorithms, but simply of the program itself which had already undergone extensive 

testing on a modular basis. 

50 



7. Output Images and Post-Processing 

The actual output images obtained from the various stages of the program will be 

presented here. Also to be mentioned here are the effects of a couple of common 

image enhancement procedures that were applied to the output images. 

All images presented were printed on a laser printer using the routine mentioned 

earlier. 

7 .1 Azimuth Compression Output Images 

Example image A, as shown in figure 12, was extracted from the main output 

image file. The pixels have been scaled such that they are square and approximately 

10m by 10m. The figure thus represents an area of approximately 5km by 5km, 

since it was produced from a standard 512 by 512 pixel CFI image. 

7 .2 Reduction of Speckle Noise 

The rapid and random intensity variation from pixel to pixel in close proximity is 

known as speckle. This is caused by random variations in radar reflectivity due to 

the roughness of the surface being mapped, and does not indicate any macro 

variations in radar reflectivity. A complete definition of Speckle is given by 

Wehner18. 

A commonly used way of reducing speckle is to apply multi-look processing, which 

involves the overlaying of images generated from different sections of the synthetic 

array. This process was used in the generation of the JPL images, but was not 

implemented as part of this thesis. 

Alternative methods of reducing speckle and generally improving the image quality 

were investigated. These included low pass and median filtering of the image. 

7 .2 .1 Low Pass Filtering 

Low pass filtering was the first post-processing enhancement applied to the image. 

The effect is shown in figure 13. As can be seen, the overall resolution has been 

degraded, but the image appears far smoother and continuous. 

51 



7 .2.2 Median Filtering 

Median filtering was also applied to the original image in figure 12 and the result is 

shown in figure 14. As can be seen, the image appears far more discretised with 

definite areas of light and dark. 

7 .3 Quick Look Output Image 

Output images from the Quick Look image extractor were generated and compared 

with those extracted from the main image file generated by the azimuth compression 

module. The image extracted is shown in figure 15. 

Since no azimuth processing was applied, apart from the simple averaging of the 

radar returns, the azimuth · resolution has been severely degraded. The image 

nevertheless still displays a definite correlation with the fully processed one, 

verifying the correct operation of the Quick Look image extractor. 

52 



Figure 12 Full Resolution Image A 

53 



Figure 13 Low Pass Filtered Image A 

54 



Figure 14 Median Filtered Image A 

. I 

55 



Figure 15 Quick Look of Image A 

56 



7 .4 JPL SAR Processor Output Images 

The JPL images were provided in the form of a large gray level file, from which 

standard CFI images were extracted. 

For comparative purposes, a single CFI image was extracted from the JPL 

processed file and included here. It is shown in figure 16, and may be compared 

with the images in figures 17, 18 and 19. The first of these images was extracted 

directly from the azimuth compressed image file, and the others are low pass and 

median filtered version of this. 

Both the low pass and median filter approaches, appear to provide a similar effect to 

multi-look processing when compared with the JPL generated image. 

Experimentation with different types of filter could probably provide better results. 

The JPL processing also includes compensation for range curvature, which allows 

the use of a longer synthetic array without introducing phase correction errors. 

This, apart from the multi-look processing, is probably another reason for the JPL 

image appearing more defined. 

57 



Figure 16 JPL processed Image B 

58 



Figure 1 7 Full Resolution Image B 

59 



Figure 18 Low Pass Filtered Image B 

60 



Figure. 19 Median Filtered Image B 

61 



7 .5 Output Image Obseryations 

The radar images produced were compared with topographical maps and a number 

of initial observations were made. 

The first observation that was made was the presence of bright lines running in the 

azimuth direction at a number of places on both the JPL processed and UCT 

processed images. These were thought to be strong radar reflectors such as metallic 

fences or maybe power lines. The fact that they were only visible when running in 

the azimuth direction, indicates the possibility that the reflections were from regular 

extended targets lying parallel to the direction of travel of the radar. These targets 

would need to be regular, since no reflections were received when not parallel Jo 

the direction of travel of the radar. 

Another observation made in a specific area on one of the images, was the presence 

of a number of strong radar reflectors., which were regularly spaced and formed a 

straight line. These could quite possibly be metallic pylons, which would probably 

be spaced in this way, and would certainly produce strong radar reflections. Figure 

20 shows this image, with the reflectors clearly visible. 

The observations mentioned here were merely noted from a glance at the output 

images, and further investigations would certainly be necessary to define them 

properly. 

62 



Figure 20 Point Reflectors on Image 

63 



8. Program Extensions 

A number of improvements and extensions, which are beyond the scope of this 

thesis, can be made to the basic software presented here. These will be discussed 

briefly in this section. 

8.1 Multi-Look Processing 

The purpose of multi-look processing is to reduce the effect of speckle, which is a 

problem that was defined earlier. 

Multi-look processing involves the splitting of the length of the synthetic array into 

a number of sections, effectively forming a number of sub-apertures. This allows 

each sub-aperture to be used to produce an image of the same area. The separate 

images are then combined by incoherently summing them to form the final image. 

F.ach sub-aperture will effectively be pointing in slightly different directions which 

allows the target to pass through each sub-aperture which will be able to resolve it 

looking at it from slightly different angles. These slightly different angles are then 

great enough to produce different speckle effects in each of the multi-look images. 

The incoherent summing of the images then allows an average of the looks to be 

produced, reducing the speckle effect. 

Multi-look processing could be implemented in the azimuth compression module, 

by splitting up the synthetic array and forming a number of multi-look images. The 

processing time overhead would not be increased, as the size of FFT required would 

be reduced by the number of looks required. 

8.2 Dynamic Range of Output 

The dynamic range of the output data files produced by each of the modules is 

limited by its fixed point nature. The reason for using a fixed point format was to 

economise on disk usage. A compact floating point format may alternatively be 

devised and used. This would obviously require an investigation into the effects of 

dynamic range and accuracy on the final image quality. 

Another solution could be to apply a Compander algorithm to the data. This would 

compress the dynamic range before outputting to the mass storage device, and then 

64 



expand again to the full dynamic range when reading in the data. This can probably 

be done quite simply using some sort of logarithmic scale. 

65 



9. Conclusions and Future Work 

The software developed in this thesis performed as it was designed to do, and met 

with the specifications required. 

The images produced compared favourably with those produced by the JPL SAR 

processor, but may be improved by implementing other processing enhancements. 

These could include multi-look and the lengthening of the synthetic array. This 

would also require range curvature and depth of focus compensation. 

The speed of processing may be improved by running the software on a different 

hardware platform, or re-developing the software to run in a parallel processing 

environment. Parallel approaches to SAR processing have been proposed by 

Franceschetti and others l 9 20. 

This thesis has been a successful initial implementation of a digital SAR processor, 

and has provided a useful starting point for future SAR processing work in South 

Africa. 

66 



10. References 

1 Elachi, Charles Spacebome Radar Remote Sensing: Applications and 

Techniques. IEEE Press, 1988. Imaging Applications: Pages 12-50. 

2 Elachi, Charles Spacebome Radar Remote Sensing: Applications and 

Techniques. IEEE Press, 1988. Optical Processing: Pages 145-151. 
' 

3 Stremler, Ferrel G. Introduction to Communications Systems. 2nd Ed. 

·Addison-Wesley, 1982, Pages 406-409: Matched Filtering. 

4 Kritzinger, P.J. (Masters Thesis to be submitted), Department of Electrical 

Engineering, University of Cape Town, 1991. 

5 Elachi, Charles Spaceborne Radar Remote Sensing: Applications and 

Techniques. IEEE Press, 1988. 

6 Kritzinger, P.J. (Masters Thesis to be submitted), Department of Electrical 

Engineering, University of Cape Town, 1991, Section 2.6.2: Digital 

Demodulation. 

7 Kritzinger, P.J. (Masters Thesis to be submitted), Department of Electrical 

Engineering, University of Cape Town, 1991, Section 3.4: Unfocussed 

Azimuth Processing. 

8 Kritzinger, P.J. (Masters Thesis to be submitted), Department of Electrical 

Engineering, University of Cape Town, 1991, Section 3.10: Depth of 

Focus. 

9 Franceschetti, G. and Schirinzi, G. A SAR Processor Based on Two-

~ Dimensional FFf Codes. IEEE Trans. AES Vol. 26, No. 2, March 1990, 

Pages 356-365. 

10 Di Cenzo, A. A New Look at Nonseparable Synthetic Aperture Radar 

Processing. IEEE Trans. AES Vol. 24, No. 3, May 1988, Pages 218-223. 

11 Kritzinger, P.J. (Masters Thesis to be submitted), Department of Electrical 

Engineering, University of Cape . Town, 1991, Section 3.9.5: Range 

Curvature. 

12 Barber, B.C. Review Article: Theory of Digital imaging from orbital 

synthetic-aperture radar. Int. J. Remote Sensing, 1985, Vol. 6, No. 7, pp. 

1009-1057 
. ' 

13 Harris, Fredric J. On the use of Windows for Harmonic Analysis with the 

Discrete Fourier Transform. IEEE proceedings, Vol. 66, No. 1, January 

1978. 

14 Barber, B.C. Review Article: Theory of Digital imaging from orbital 

synthetic-aperture radar. Int. J. Remote Sensing, 1985, Vol. 6, No. 7, pp. 

1009-1057 

67 



15 -Roberts, Richard A. and Mullis, Clifford T. Digital Signal Processing. 

Addison-Wesley, 1987. Power-of-Two FFT algorithms: Pages 148-152. · 

16 Kritzinger, P.J. (Masters Thesis to be submitted), Department of Electrical 

Engineering, University of Cape Town; 1991, Appendices B3 and B4. 

17 Kritzinger, P .J. (Masters Thesis to be- submitted), Department of Electrical 

Engineering, University of Cape l_'own, 1991, Section 3.3.3. 

18 Wehner D.R. High Resolutio~ Radar. Norwood, MA. Artech House, 

1987. Speckle: pages 231-235. 

19 Franceschetti G., Pascazio V., Schirinzi G., Mazzeo A., Mazzocca, N. A 

Distributed Parallel Processor for Precision SAR Imaging. International 

Geoscience And Remote Sensing Symposium (IGARSS) 1990, Pages 1303-

1307. 

20 Franceschetti G., Pascazio V., Schirinzi G., Mazzeo A., Mazzocca·, N. An 

Efficient SAR Parallel Processor. IEEE Trans. AES Vol. 27, No. 2, 

March 1991, Pages 343-352. 

68 



11. Bibliography 

Barber, B.C. Review Article: Theory of Digital imaging from orbital synthetic

aperture radar. Int. J. Remote Sensing, 1985, Vol. 6, No. 7, pp. 1009-

1057 

Borland, Turbo C Reference Manual, Ver 2.00 

Brigham E.O. The Fast Fourier Transform and its Applications. Englewood 

Cliffs, New Jersey: Prentice Hall, 1988. 

Cimino J.B., Holt B., Richardson A.H. The Shuttle Imaging Radar B (SIR-B) 

Experiment Report. Jet Propulsion Laboratory, California. NASA JPL 

Pub. 88-2, 1988. 

Curlander, John C. Performance of the SIR-B Digital Image Processing 

Subsystem. IEEE Trans, Vol. GE-24, No. 4, July 1986. pp. 649-651 

Elachi, Charles Spacebome Radar Remote Sensing: Applications and 

Techniques. IEEE Press, 1988. 

Geckinli, Nezih C. and Yavuz, Davras. Some Novel Windows and a Concise 

Tutorial Comparison of Window Families, IEEE Trans, Vol. ASSP-26, 

No. 6, December 1978. pp. 501-507. 

Harris, Fredric J. On the use of Windows for Harmonic Analysis with the 

Discrete Fourier Transform. IEEE proceedings, Vol. 66, No. 1, January 

1978. 

Hovanessian, S.A. Radar System Design and Analysis. Artech House Inc, 1984. 

Kritzinger, P.J. (Masters Thesis to be submitted), Department of Electrical 

Ery.gineering, University of Cape Town, 1991 

Munson, David C. and Visentin, Robert L. A Signal Processing View of Strip

Mapping Synthetic Aperture Radar. IEEE Trans. Acoustics, Speech and 

Signal Processing, VOL 37 No 12, December 1989 

Roberts, Richard A. and Mullis, Clifford T. Digital Signal Processing. Addison

Wesley, 1987. 

Sommerville, Ian. Software Engineering. 3rd Edition, Addison-Wesley 1989 

Stremler, Ferrel G. Introduction to Communications Systems. 2nd Ed. Addison

Wesley, 1982. 

Wehner D.R. High Resolution Radar. Norwood, MA. Artech House, 1987. 

69 



APPENDIX A 

Main SAR Program Files 

SATPARAM.C - Generate.Processing Parameters 

RANGECOM.C - Perform Range Compression 

CORNER. C - Perform Corner Turn 

AZIMCOM.C - Perform Azimuth Compression 



/*********~****************************************************************/ 
/* MODULE: SATPARAM.C */ 
/* */ 
/* Functions: main() - Parameter Generation procedure */ 

/* * I 
/* Author: Simon Welsh */ 
/* Date: 01/09/91 */ 
/**************************************************************************/ 

#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
#include <alloc.h> 
#include "param.h" 
#include "matrix.h" 

#define pi 3.141592654 
#define light speed 3e8 

/*************************************'*************************************/ 
/* main() */ 
/* Program to generate paramaters for the other modules */ 
/* */ 
/* Input Parameters: argc - Number of .Command Line parameters */ 
/* *argv(l] - Name of Input Parameter File */ 
/* */ 
/* Output Files: AZIMREF.DAT - Azimuth Reference Function */ 
/* SAT.PAR - Other Generated Parameters */ 
/**************************************************************************/ 

main(int argc, char *argv(]) 
{ 

FILE 
FILE 
FILE 
FILE 

double 

char 
char 
char 
int 
double 
float 
float 

*azimrefout; 
*azimrangeout; 
*inparamfile; 
*satparamfile; 

rangescale; 

found; 
rawname ( 30] ; 
rawtype(30]; 
samples; 
prf,lambda; 
rangebinsize; 
sampfreq; 

/* Scaling Factor for rangecom */. 

/* Size of Rangebin to determine range walk in bins*/ 
/* Sampling frequency to compute rangebinsize */ 

double satpos(3]; /* x,y,z Satellite Positiion */ 
double satvel[3]; /* x,y,z Satellite Velocity*/ 
double slant,earthradius,look; 
double b,c; 

double dsath; 
double· P[3][3]; 
double angle; 
double intercept[3]; 
double targetpos[3]; /* x,y,z Target Position*/ 

1 



double targetsph[ 3]; /* Spherical Target Position */ 
double dtargetsph[3J; /* Spherical Target Velocity */ 
double rotvect[3]; /* Earth Rotation Vector*/ 
double targetvel[3]; /* x,y,z Target Velocity*/ 
double swathvel[3]; /* x,y,z Swath Velocity*/ 
double swathvelmag; /* Swath Velocity Magnitude */ 
double azimuthpixel; /* Azimuth Pixe.l Size * / 
double rotaxis[3]; 
double Q[3][3]; 
double satsph[3]; /* Spherical Satellite Position */ 
double dsatsph [ 3]; /* Spherical Satellite Velocity */ 

double ti; 
int i; 
double A[ 3]; 
double T [ 3]; 
double 5(3]; 
double *R,*real,*imag; 
double rvect[3], rmag; 
float rangewalk; 

/**~**************************************************************************/ 
/* Check input parameters: */ 
/*****************************************************************************/ 

if (argc!=2) 
{ printf("SATPARAM paramfile\n"); 

return(l); } 

/*****************************************************************************/ 
/* Open the input parameter file for reading: */ 
/*********************************~*******************************************/ 

inparamfile = fopen(argv[lJ,"r"); 
.if (inparamfile==NULL) 
{ printf("%s Input Parameter File Not Found - Aborting\n",argv[l]); 

return(;); } 

/*****************************************************************************/ 
/*Setup input Constants, read from input parameter file: */ 
/*****************************************************************************/ 

satpos[0] = getfloatparam("xpos",inparamfile,&found); 
if (!found) return(l); 
satpos{l] = getfloatparam("ypos",inparamfile,&found); 
if (!found) return(l); 
satpos [ 2] = getfloatparam ( "zpos", inparamf ile, &found>.; 
if (!found) return(l); 
satvel[O] = getfloatparam("xvel",inparamfile,&found); 
if ( !found) return(l); 
satvel[l] = getfloatparam("yvel",inparamfile,&found); 
if (!found) return(l); 
satvel [ 2] = getfloatparam(''zvel", inparamfile, &found); 
if (!found) return(l); 
prf = getfloatparam("prf",inparamfile,&found); 
if (!found) return(l); 
lambda= getfloatparam("lambda",inparamfile,&found); 

2 



if (!found)_return(l); 
samples= getfloatparam("samples",inparamfile,&found); 
if (!found) return(l); 
look= getfloatparam("l~ok",inparamfile,&found); 
if (!found) return(l); 
earthradius = getfloatparam("earthradius",inparamfile,&found); 
if (!found) return(l); 
sampfreq = getfloatparam("sampfreq",inparamfile,&found); 
if (!found) return(l); 
getstringparam("rawname",rawname,inparamfile,&found); 
if (!found) return(l); 
getstringparam("rawtype",rawtype,inparamfile,&found); 
if (!found) return(l); 

/*****************************************************************************/ 
/* Allocate memory from the heap: * / 
/*****************************************************************************/ 

R = malloc( sizeof(double) *samples); 
real= malloc( sizeof(double) *samples); 

. imag = malloc( sizeof(double) *samples); 

/*****************************************************************************/ 
/* If slant range parameter not specified, then compute the slant range */ 
/* based on the radar height and look angle: */ 
/*****************************************************************************/ 

/* Convert look angle from degrees to radians: */ 

look= look* pi/180; 

slant= getfloatparam("slant",inparamfile,&found); 
if (!found) 
{ b = -2 * magnitude(~atpos) * cos(look); 

c = pow(magnitude(satpos), 2) - pow(earthradius, 2); 
slant= (-b - sqrt(pow(b,2) - 4 * c)) / 2; 
printf("Slant Range to Swath Center Computed. As: %g\n",slant); } 

/* Compute rangebinsize from the sampling frequency: */ 

rangebinsize = (lightspeed / ( sampfreq * 2 )) / sin(look) ; 

/*****************************************************************************/ 
/* Find Satellite and Target positions and velocities in spherical Co-ords */ 
/*****************************************************************************/ 

death= mult( satvel, satpos) / magnitude(satpos); 

constdiv( satpos, P[O], magnitude(satpos) ); 
constdiv( satvel, P[2], magnitude(satvel) ); 
crossprod( P[2], P[OJ, P[l] ); 
printf("\nP Matrix: \n"); 
show ( P [ 0] ) ; 
show ( P [ 1 ] ) ; 
show ( P ( 2] ) ; 

3 



angle = aco_s( (pow(slant,2) - pow(magnitude(satpos) ,2) - pow(earthradius,2)) / (-
2 * earthradius * magnitude(satpos))); 

intercept(O] = earthradius * cos(angle); 
intercept[l] = earthradius * sin(angle); 
intercept(2] = O; 
matmult( P, intercept, targetpos ); 

targetsph[O] = magnitude(targetpos); 
targetsph[l] = atan(targetpos(l] / targetpos(O]); 
targetsph[2] = acos(targetpos(2] / magnitude(targetpos)); 
printf("\ntargetsph:\n"); 
show(targetsph); 

dtargetsph[O] = O; 
dtargetsph[l] = (2*pi)/24/60/60; 
dtargetsph[2] = O; 
printf("\ndtargetsph:\n"); 
show(dtargetsph); 

crossprod( satpos, sa:tvel, rotaxis ); 
constdiv( rotaxis, rotaxis, magnitude(rotaxis) ); 

constdiv( satpos, Q[O], magnitude(satpos) ); 
constdiv( rotaxis, Q[2], 1); 
crossprod( Q[2], Q[O], Q[l] ); 
printf("\nQ Matrix:\n"); 
show( Q[O] ) ; 
show( Q(l] ) ; 
show( Q(2] ); 

satsph[O] = magnitude(satpos); 
satsph[l] = O; 
satsph[2] = pi/2; 
printf("\nsatsphJ\n"); 
show ( satsph); 

dsatsph[OJ.= death; 
dsatsph[l] = magnitude(satvel) / magnitude(satpos); 
dsatsph[2] = O; 
printf("\ndsatsph:\n"); 
show(dsatsph); 

/* Compute the Swath Velocity: */ 
/* Target Velocity= dtargetsph crossprod Target Position*/ 

rotvect[O] = O; 
rotvect(l] = O; 
rotvect(2] = (2*pi)/24/60/60; 
crossprod(rotvect, targetpos, targetvel); 
printf("\ndsatsph:\n"); 
show(targetvel); 

vectsub( satvel, targetvel, swathvel); 
swathvelmag = magnitude(swathvel); 
azimuthpixel = swathvelmag / prf; 

4 

/* Swath Velocity Magnitude*/ 
/* Compute Pixel Size*/ 



/*****************************************************************************/ 
/* Spherical co-ordinates of satellite and target have been set up. */ 
/* Now generate an .array of distances between satellite and target: */ 
/*****************************************************************************/ 

for(i=O; i<aamples; i++) 
{ 

ti= (-(samples/2)*(1/prf)+(i+l)*(l/prf)); 
S{OJ = (satsph[O]+dsatsph[OJ*ti) * sin(satsph[2]) * 

cos(satsph[l]+dsatsph[l}*ti); · 
S[l] = (satsph[O]+dsatsph[O]*ti) * sin(satsph[2]) * 

sin(satsph[l]+dsatsph[l]*ti); 
S[2] = (satsph[O]+dsatsph[OJ*ti) * cos(satsph[2]); 
matmult( Q, s, A); 

T(O] = targetsph[O] * sin(targetsph(2]) 
ti); ,. 

T[l] = targetsph[O] * sin(targetsph[2]) 
ti); 

T(2] = targetsph[OJ * cos(targetaph(2]); 

vectsub( A, T, rvect ); 
R[i] = magnitude(rvect); 

} 

* cos(targetsph[l] 

* sin(targetsph[l] 

+ dtargetsph[l] * 

+ dtargetsph[l] * 

/*****************************************************************************/ 
/* The Azimuth Reference Function is generated from the array of ranges: */ 
/* It is written out to the azimref.dat file to be read in by the */ 
/* azimuth compression module. */ 
/*****************************************************************************/ 

azimrefout=fopen("azimref.dat","w"); 
azimrangeout=fopen("azmrange.dat","w"); 
rmag = R[(samples-1)/2]; 
for(i=O; i<samples; i++) 
{ R ( i ] = 2 * ( R [ i ] - rmag) ; 

real ( i] = cos,(-2*pi*R( i] /lambda); 
imag{i] = sin(-2*pi*R[i]/lambda); 
printf("\d \g \g %g\n",i,R[iJ,real[iJ,imag(i]); 
fprintf(azimrefout, "\g %g\n", real{i],imag(i]); 
fprintf(azimrangeout,"%g\n",R[i]); 

} 
close(azimrefout); 

rangewalk = abs(R(samples-1] - R(O]) / (float} samples; 
printf("Rangewalk: %g m\n", rangewalk); 

/*****************************************************************************/ 
/* Open SAT.PAR parameter file for writing and write out new parameters: */ 
/*****************************************************************************/ 

satparamfile=fopen("SAT.PAR","w"); 
putfloatparam ( "xpos", satpos ( O), satparamfile); 
putfloatparam( "ypos", satpos( 1), satparamfile); 
putfloatparam("zpos",satpos(2J,satparamfile); 
putfloatparam("xvel",satvel[OJ,satparamfile}; 
putfloatparam("yvel",satvel[l],satparamfile); 

5 
/ 



putfloatparam("zvel",satvel[2J,satparamfile); 
putfloatparam("prf",prf,satparamfile); 
putfloatparam("look",look,satparamfile); 
putfloatparam("rangewalk",rangewalk,satparamfile); 
putfloatparam("rangepixel",rangebinsize,satparamfile); 
putfloatparam("azimuthpixel",azimuthpixel,satparamfile); 
put-floatparam( "slant", slant, satparamfile); 
close(satparamfile); 
close(inparamfile); 
return(O); 

} 

6 



/*******************************************************************~*~****/ 
/* MODULE: RANGECOM.C */ 

/* * I 
/* Functions: compress_range_line() - Compress Single Range Line */ 
/* main() - Compress Raw file of range lines */ 

/* */ 
/* Author: Simon Welsh */ 
/* Date: 01/09/91 */ 
/**************************************************************************/ 

I 

#include <stdio.h> 
#include <stdlib.h> 
#include <time.h> 
#include <math.h> 
#include "sar.h" 
#include "extract.h" 
#include "param.h" 
#include "window.h" 

/***************************************************************************/ 
/* compress_range_line() 
/* Compress a single range line 

/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 

Input Parameters: xreal - Pointer to real output store 
ximag - Pointer to imag output store 
sinlook - Pointer to Sin lookup table for FFT 
coslook - Pointer to Cos lookup table for FFT 
rrefreal - Pointer to Range Reference Function 
'i:-refimag - Pointer to Range Reference Function 
azimline - Rangeline to be compressed 
rangefftsize - Size of FFT to use 

*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 

\ 
(real) */ 
( imag) * / 

*/ 
/* 
/* 
/* 
/* 
/* 

totbins - Total rangebins extracted from raw file 
centreshift - Shift before IFFT 

*/ 
*/ 
*/ 

satdat - Pointer to raw input data file 

/* Steps Performed: 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 

Read in a real range line from the raw data file. 
Perform FFT on the input range line. 
Multiply FFT of the range line by FFT of the reference function. 
Zero the upper half of the samples. 
Shift the samples, effectively demodulating to baseband. 
Perform Inverse FFT on the result. 

*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 

/***************************************************************************/ 

compress~range_line(float xreal[],float ximag[],float rrefreal[],float 
rrefimag(],float sinlook[],float coslook[], int azimline, int rangefftsize, int 
*totbins, float centreshift, FILE *satdat) 
{ 

int i; 

for(i=O;i<rangefftsize;xreal[i]=O,ximag[i]~O,i++); 
extract(satdat, azimline, xreal, totbins); 
fft(xreal,ximag,sinlook,coslook,rangefftsize,l); 
multiply(xreal,ximag,rrefreal,rrefimag,rangefftsize); 

7 



/* Zero the upper half of the samples: */ 

for(i=rangefftsize/2; i<rangefftsize; xreal[i]=0, ximag(i]=0, i++); 

/* TEST CODE: Determine the position of the maximum in frequency domain: */ 

/* 
maxval = 0; 
for(i=0; i<rangefftsize/2; i++) 
{ if (!(i\8)) fftmag=0; 

fftmag += (xreal[i] * xreal[i] + ximag(i] * ximag[i]); 
if ( fftmag > maxval) 
{ maxval = fftmag; 

maxpos = i-4; } } 
printf("MaxPos: \d ",maxpos); 
avemaxpos += maxpos; 
printf("AvePos: \d ",avemaxpos / (azimline - startazim + 1)); 

*/ 

/* Shift the samples so as to centre them at the fft origin, */ 
/* Thus demodulating to baseband: */ 

for(i=0; i<centreshift; i++) 
{ xreal(rangefftsize-centreshift+i] = ~real[i]; 

xreal[i] = xreal(centreshift+i]; 
ximag(rangefftsize-centreshift+i] = ximag(i]; 
ximag[i] = ximag(centreshift+i]; } 

/* Perform the inverse FFT: */ 

fft(xreal,ximag,sinlook,coslookrrangefftsize,-1); 
} 

/***************************************************************************/ 
/* main() */ 
/* Start of main program to compress range lines */ 
/* */ 
/* Steps Performed: */ 
/* */ 
/* Extract Input Parameters. */ 
/* Create Range Reference Function. */ 
/* Perform FFT on range reference Function and Conjugate it. */ 
/* * I 
/* Perform Sample Range Compressions to determine output scaling factor */ 
/* Perform actual range compressions with the computed output scaling */ 
/* factor, and shift the output samples to compensate for range walk. */ 
/* */ 
/* Output data to the status file */ 
/***************************************************************************/ 

main(int argc, char *argv(]) 
{ 

/* File Pointer Declarations: */ 

FILE 
FILE 
FILE 

*fpout; 
*satdat; 
*inparamfile; 

8 



FILE 
FILE 
FILE 

*sa_tparamfile; 
*status; 
*test; 

/* Input parameter variable declarations: */ 

char 

int 
int 
int 
int 
float 
char 
char 
char 

float 
float 
float 
float 
float 
floa:t 

float 
float 
int 

int 

found; 

rangefftsize; 
startazim; 
azimtot; 
rangebins; 
rangescale; 
rawname[S0J; 
rngname[S0J; 
statusname[S0]; 

pulse length; 
sampfreq; 
centreshift; 
ifreq; 
maxfreq; 
sweep; 

rangewalk; 
rangebinsize; 
windowtype; 

totbins; 

/* Indicate if parameter was found*/ 

/* Size of the FFT, closest to rangesamples */ 
/* Starting Azimuth Pulse*/ 
/* Number of azimuth pulses to process*/ 
/* Number of range compressed output rangebins */ 
/* rangescale for output*/ 
/* Name of the raw data file*/ 
/* Output Range Compressed Filename*/ 
/* Name of the status file*/ 

/* Reference Pulse Length*/ 
/* Sampling Frequency*/ 
/* Shift to centre samples before inverse FFT */ 
/* Intermediate Frequency*/ 

/* Chirp Sweep Range*/ 

/* Rangewalk in metres per pulse*/ 
/* Size of Rangebin to determine range walk in bins*/ 
/* Type of Window to apply*/ 

/* Number of bins in raw rangeline, set by extract*/ 

/* Declare Dynamic Heap Memory pointers: */ 

float *rrefreal; 
float *rrefimag; 
float *xreal; 
float *ximag; 
float *sin look; 
float *cos look; 

/* Variables for determining Scaling Factor: */ 

double peakmag; 
double fftmag; 
double avepeakmag; 

/* Other Program variable declarations: */ 

int 
float 
float 
int 
long 

int 
int 
int 
long 

N,i,dup; 
realout, imagout; 
maxval; 
maxpos; 
avemaxpos; 

wal~shift; 
maxwalkshift; 
azimline; 

/* Current bin shift for range walk compensation*/ 
/* Maximum Range Walk bin shift*/ 

starttime, endtime, outstart, outend; 

9 



long 
float 

out.error, zeroerror, maxouterror, maxzeroerror, outpos, zeropos; 
rangelinemean, minmag, maxmag, magout; 

unsigned char 
float 

buffer; 
value; 

/* Status output variables*/ 

float totmean; 

/* Range Reference Function variables: */ 

float 
float 
int 

gain,tm; 
ipos; 
pos; /* Position in Array*/ 

/**************************************************~**************************/ 
/* Check input parameters: */ 
/*****************************************************************************/ 

if (argcl=2) 
{ printf("RANGECOM paramfile\n"); 

return(l); } 

/**************************************************************************/ 
/* Open input parameter files INPUT.PAR and SAT.PAR: */ 
/**************************************************************************/ 

inparamfile = fopen(argv(l],"r"); 
if (inparamfile==NULL) 
{ printf("%s Input Parameter File Not Found - Aborting\n",argv(l]); 

return(l); } 

satparamfile = fopen("SAT.PAR","r"); 
if (satparamfile==NULL) 
{ printf("SAT.PAR Input Parameter File Not Found - Aborting\n"); 

return(l); } 

/**************************************************************************/ 
/* Read in parameter values from the parameter files: */ 
/***********************************************************************~**/ 

·getstringparam("rawname",rawname,inparamfile,&found); 
if (!found) return(l); 
getstringparam("rngname",rngname,inparamfile,&found); 
if (!found) return(l); 
getstringparam("statusname",statusname,inparamfile,&found); 
if (!found) return(l); 

startazim = getfloatparam("startpulse",inparamfile,&found); 
if (!found) return(l); 
azimtot = getfloatparam("pulses",inparamfile,&found); 
if (!found) return(l); 
rangebins = getfloatparam("rangebins",inparamfile,&found); /* Output 2494 */ 
if (!found) ret~rn(l); 
rangefftsize = getfloatparam("rangefftsize",inparamfile,&found); 
if (!found) return(l); 

10 



windowtype .= getfloatparam( "window", inparamfile, &found); 
if (!found) return(l); 

pulselength = getfloatparam("pulselength",inparamfile,&found); 
if (!found) return(l); 
sampfreq = getfloatparam("sampfreq",inparamfile,&found); 
if (!found) return(l); · 
ifreq = getfloatparam("ifreq",inparamfile,&found); 
if (!found) return(l); 
sweep= getfloatparam("sweep",inparamfile,&found); 
if (!found) return(l); 

rangewalk = getfloatparam("rangewalk",satparamfile,&found); 
if (!found) return(l); 
rangebinsize = getfloatparam("rangepixel",satparamfile,&found); 
if (!found) return(l); 

fclose(inparamfile); 
fclose(satparamfile); 

/**************************************************************************/ 
/* Open the status file for writing. Existing data is cleared. */ 
/**************************************************************************/ 

status = fopen(statusname,"w"); 
fprintf(status,"Start of the Range Compression Module.\n"); 
fprintf(status,"-~------------------------------------\n"); 
fprintf(status,"\n"); 
fflush(status); 

/**************************************************************************/ 
/* Allocate memory and check for out of memory error: */ 
/**************************************************************************/ 

rrefreal = malloc( rangefftsize * sizeof (float) ) ; 
rrefimag = malloc( rangefftsize * sizeof (float) ) ; 
xreal = malloc( rangefftsize * sizeof(float) ) ; 
ximag = malloc( rangefftsize * sizeof(float) ) ; 
sinlook = malloc( rangefftsize * sizeof (float) ) ; 
coslook = malloc( rangefftsize * sizeof(float) ) ; 

if (coslook==NULL) 
{ fprintf(etatue,"ERROR: Range Compression Memory Allocation - Aborting\n"); 

fclose(etatus); 
return(l); } 

/*****************************************************************************/ 
/* Open the satdat raw data file and range compressed output file: */ 
/*****************************************************************************/ 

satdat = fopen(rawname,"rb"); 
if (satdat==NULL) 
{ fprintf(status,"ERROR: Opening Raw data file: %s - Aborting\n",rawname); 

fclose(status); 
return(l); } 

fpout = fopen(rngname, ;,wb"); 

11 



/*****************************************************~***********************/ 
/* Send Useful Information to ASCII data file: */ 
/*****************************************************************************/ 

fprintf(status,"Output File %s\n",rngname); 
fprintf(status,"Range Walk Compensation: %g metres per pulse\n", rangewalk); 
fprintf(status,"Starting azimuth pulse: %d\n", startazim); 
fprintf(status,"Total azimuth pulses to process: %d\n", azimtot); 
fprintf(status,"Range bins output per azimuth line: %d\n", rangebins); 
fprintf(status,"Window type: %d\n",windowtype); 

fprintf(status,"\n"); 
fflush(status); 

/**************************************************************************/ 
/*Setup the range reference function: */ 
/* It is left justified. * / 
/**************************************************************************/ 

gain= sweep/ pulselength; 
tm = 1 / sampfreq; 
maxfreq = ifreq +sweep/ 2; 
centreshift = ifreq / sampfreq 

/* Sweep Gain*/ 
/* Time between samples*/ 
/* Compute maxfreq of reference 

* rangefftsize-; 

if ( (int) (pulselength * ·sampfreq) >= rangefftsize) 

*/ 

{ fprintf(status,"ERROR: Rangefftsize must be greater than range reference 
pulse\n"); 

fcloae(atatus); 
return(l); } 

printf("Generating Range Reference Function.\n"); 
for(ipoa=0;ipos<rangefftsize;rrefreal[ipos]=0,rrefimag(ipoa]=0,ipos++); 

test= fopen("rangeref.dat","w"); 
for(ipos=0; ipos <= (int) (pulselength * sampfreq) ; ipos++) 
{ rrefreal[ipos] = cos(2*pi*(maxfreq*tm*ipos-0.5*gain*tm*ipos*tm*ipos)); 

fprintf(test,"%g\n",rrefreal[ipos)); 
} 
fclose(teat); 

/****************************************************************************/ 
/* Perform FFT on the reference array. */ 
/* Conjugate the FFT of the reference function. */ 
/****************************************************************************/ 

loadsincos(sinlook,coslook,rangefftsize); 
fft(rrefreal,rrefimag,sinlook,coslook,rangefftsize,1); 
for(i=0;i<rangefftsize;rrefimag[iJ=-rrefimag[iJ,i++); 
window(rrefreal,rrefimag,rangefftsize,windowtype); 

/****************************************************************************/ 
/* Perform Sample Range Compressions to determine output scaling constant: */ 
/* Every 32nd azimuth pulse is range compressed. */ 
/****************************************************************************/ 

avepeakmag = 0; 

12 



for(azimline=startazim; azimline < startazim+azimtot; azimline+=32) 
{ 

compress_range_line (xreal, ximag, rrefreal, rrefimag, sinlook, coslook,·azimline, range 
fftsize,&totbins,centreshift,satdat); 

/* Determine the position of the peak: */ 

peakmag = 0; 
for(i=0; i<rangebins; i++) 
{ fftmag = (xreal[i] * xreal[i] + ximag[i] * ximag[i]); 

if (fftmag > peakmag) 
peakmag = fftmag; } 

avepeakmag += peakmag; 
printf("Peak Magnitude: %lg\n",peakmag); 

} 

avepeakmag/=(azimtot/32); 
rangescale = 150.0 / sqrt(avepeakmag/2); /* Origionally 134.0 */ 
fprintf(status,"Output Scaling Factor: %g\n",rangescale); 
fflush (status); 

/*****************************************************************************/ 
/* The reference correllation function has now been set up. */ 
/* Start of loop to process multiple range lines: */ 
/*****************************************************************************/ 

maxouterror = 0; 
maxzeroerror = 0; 
maxmag=0; 
minmag=l0000; 
avemaxpos=0; 
totmean=0; 

time(&starttime); 
for(azimline=startazim; azimline < startazim + azimtot; azimline++) 
{ time(&outstart); 

compress_range_line(xreal,ximag,rrefreal,rrefimag,sinlook,coslook,azimline,range 
fftsize,&totbins,centreshift,satdat); 

/*****************************************************************************/ 
/* Output the compressed range line to the output binary file: */ 
/* Unsigned bytes are used (0 to 255). */ 
/*****************************************************************************/ 

outerror = 1; 
zeroerror = 1; 
rangelinemean = 0; 

/* Compute the current range walk shift in rangebins: */ 

maxwalkshift = azimtot / (rangebinsize / rangewalk); 
walkshift = (azimline - startazim) / (rangebinsize / rangewalk); 

13 



/**************************~**************************************************/ 
/* Insert leading zeros for range walk compensation: */ 
/*****************************************************************************/ 

for(i = 0; i < (maxwalkshift-walkshift); 
{buffer= (unsigned char) 128; 

fwrite(&buffer, 1, 1, fpout); 
fwrite(&buffer, 1, 1, fpout); 
i++; } 

/*****************************************************************************/ 
/* Output the data: ' */ 
/*****************************************************************************/ 

for(i = rangebins-1-maxwalkshift; i>=0; 
{ realout = (xreal[i] * iangescale); 

imagout = (ximag[iJ * rangescale); 
magout = sqrt(realout*realout + imagout*irnagout); 
rangelinemean += magout; 
if (magout>maxmag)" maxmag=magout; 
if (magout<minmag) minmag=magout; 

buffer= (unsigned char) (realout+l28); 
if (realout > 127) buffer= (unsigned char) 255; 
if (realout < -127) buffer= (unsigned char) 0; 
fwrite(&buffer, 1, 1, fpout); 

buffer= (unsigned char) (imagout+l28); 
if (imagout > 127) buffer= (unsigned char) 255; 
if (imagout < -127) buffer= (unsigned char) 0; 
fwrite(&buffer, 1, 1, fpout); 

i--; 
if ((imagout > 127) II (imagout < -127) II (realout > 127) II (realout < -

127)) 
outerror++; 

if (!((signed char)imagout) && !((signed char)realout)) 
zeroerror++; 

} 

/*****************************************************************************/ 
/* Pad out with zeros for range walk compensation: */ 
/*****************************************************************************/ 

for(i=0; i<walkshift; ) 
{buffer= (unsigned char) 128; 

fwrite(&buffer, 1, 1, fpout); 
fwrite(&buffer, 1, 1, fpout); 
i++; } 

/*****************************************************************************/ 
/* Display useful data on the screen: */ 
/*****************************************************************************/ 

printf("\n"); 
printf("Current Range Walk Correction: %d\n", walkshift); 

14 



printf("Out of Range errors: %ld Percentage: %ld\n", 
outerror*lOO/rangebins ) ; 

printf(" Zero errors: %ld Percentage: %ld\n", 
zeroerror*lOO/rangebins ) ; 

printf(" Ave Out Mag: %g " (rarigelinemean I rangebins) 

printf(" Max Out Mag: %g ", maxmag ); 
printf(" Min Out Mag: %g\n", minmag ); 

outerror, 

zeroerror, 

) ; 

if (outerror > maxouterror) {maxouterroi = outerror; outpos=azimline; } 
if (zeroerror > maxzeroerror) {maxzeroerror = zeroerror; zeropos=azimline; } 
time(&outend); 
printf("Time Elapsed: %d sec ", outend-outstart); 
printf("Time Remaining: %d min\n",(azimtot * (outend-starttime)/(azimline

startazim+l))/60 ); 
totmean += (rangelinemean/rangebins); 

} 

time(&endtime); 

/*****************************************************************************/ 
/* Close all files and terminate the program: */ 
/*****************************************************************************/ 

fprintf(status,hMaximum Walk Shift in Range Bins: %d\n", maxwalkshift); 
fprintf(status,"Maximum out of range errors: %ld at %ld \n", maxouterror, 
outpos); 
fprintf(status,"Maximum zero errors: %ld at %ld \n", maxzeroerror, zeropos); 
fprintf(status,"Mean Output Magnitude: %g\n", (totmean / azimtot) ); 
fprintf(status,"Average Max Position before.IFFT: %d\n", (avemaxpos / azimtot) 
) ; 
fprintf(status,"Processing Time: %d min\n", (endtime - starttime)/60 ); 
fprintf(status,"Range Compression Module Complete\n\n"); 

fclose(status); 
fclose(fpout); 
fclose(satdat); 
return(O); 

} 

15 



/**********.****************************************************************/ 
/* MODULE: CORNER.C . */ 

/* */ 
/* Functions: main() - Apply corner turn */ 
/* */ 
/* Author: Simon Welsh */ 
/* Date: 01/09/91 */ 
/**************************************************************************/ 

#include <stdio.h> 
#include <time.h> 
#include <stdlib.h> 
#include <alloc.h> 
#include <math.h> 
#include "param. h" 

/**************************************************************************/ 
/* main() */ 
/* Program to Apply corner turn to input file and send output to output */ 
/*file.Read input file randomly and write output sequentially. */ 
/* */ 
/* Input Parameters: argc - Number of Command Line parameters */ 
/* *argv(l] - Name of Input Parameter Fiie */ 
/**************************************************************************/ 

main(int argc, char *argv(]) 
{ 
FILE 
FILE 
FILE 
FILE 

char 
long 
long 
char 
char 
char 

long 

unsigned 
unsigned 
unsigned 
unsigned 

int 
long 
char 

*status; 
*fpin; 
*fpout; 
*inparamfile; 

found; 
azimtot; 
rangebins; 
rngname(50]; 
corname(50]; 
statusname(50]; 

/* Range Compressed Input filename*/ 
/* Corner Turned Output filename*/ 
/* Status filename*/ 

starttime, endtime, blockstart, blockend; 

char huge *store; 
char huge *storepos; 
char huge *temp; 
char far *inblock; 

row, charsize; 
N, size, m, azim, block, i, 12, blocksize, curblocksize, test; 
*termn; 

charsize = sizeof(char); 

/*****************************************************************************/ 
/* Check input parameters: */ 
/*****************************************************************************/ 

if (argc!=2) 

16 



{ printf ( "CORNER paramfile\n") ;, 
return(!); } 

/**************************************************************************/ 
/* Open input parameter file and read size parameters: */ 
/**************************************************************************/ 

inparamfile = fopen(argv(l],"r"); 
if (inparamfile==NULL) 
{ printf("%s Input Parameter File Not Found - Aborting\n",argv(l]); 

return(!); } 

getstringparam("rngname",rngname,inparamfile,&found); 
if (!found) return(!); 
getstringparam("corname",corname,inparamfile,&found); 
if (!found) return(!); 
getstringparam("statusname",statusname,inparamfile,&found); 
if (!found) return(!); 

azimtot = getfloatparam("pulses",inparamfile,&found); 
if (!found) return(!); 
rangebins = getfloatparam("rangebins",inparamfile,&found); 
if (!found) return(!); 

/**************************************************************~*************/ 
/* Open status file and write relevant details: */ 
/****************************************************************************/ 

status=fopen(statusname,"a"); 
fprintf(status,"Start of the Corner Turn Module.\n"); 
fprintf(status,"--------------------------------\n\n"); 

fprintf(status,"InputFile: %s\n",rngname); 
fprintf(status,"Output File: %s\n",corriame); 
fprintf(status,"Corner Turn Dimensions: %ld by %ld (2 byte 
complex)\n",azimtot,rangebins); 

/*****************************************************************************/ 
/* Allocate Maximum Dynamic Heap Memory: */ 
/*****************************************************************************/ 

printf("Available Far Heap Memory: %ld\n", farcoreleft()); 
blocksize = ((farcoreleft() - 5000) / (2 * (azimtot + l))); 
if (blocksize > rangebins) blocksize = rangebins; 
printf("Blocksize chosen: %ld\n", blocksize); 
inblock = farmalloc( (unsigned long) blocksize * 2 ); 
store= farmalloc( (unsigned long) azimtot * blocksize * 2 ); 
if (store== NULL) 
{ fprintf(status,"ERROR - Cannot Allocate Enough Memory for corner turn\n"); 

fclose(status); 
return(!); } 

printf("Available Far Heap Memory: %ld\n", farcoreleft()); 

fprintf(status,"Available Memory Allocated: %ld bytes\n", (azimtot+l) * 
blocksize * 2 ); 

17 



/*******************~*****************~**********************i****************/ 
/* Open the input and output files and test for errors: */ 
/*****************************************************************************/ 

fpin 
fpout = 

= fopen(rngname,"rb"); 
fopen(corname,"wb"); 

if (fpin==-NULL) 
{ fprintf(status,"ERROR - %scorner turn input file not .found -
Aborting\n",rngname); 

fclose(status); 
return(l); } 

rewind( fpin); 

/**.**************************************************************************/ 
/* Start of Main Block Read/Transpose/Write Loop: */ 
/****************************************************************************/ 

time(&starttime); 
time(&blockstart); 
for(block=O; block< (int) (0.999 + (float)rangebins/(float)blocksize) ; 
{ printf("Current Block Number: %ld\n", block); 

/* Current Block size may be smaller than the full block size on last. block: */ 

if (blocksize*(block+l) > rangebins) 
curblocksize = rangebins - block*blocksize; 

else 
curblocksize = blocksize; 

/* Read in and Transpose the current block in memory: */ 

for(azim=O; azim<azi,mtot; ) 
{ fseek(fpin, 2*((rangebins-block*blocksize-curblocksize) + (azim*rangebins)) 

, SEEK_SET); 
fread(inblock, 2*curblocksize, 1, fpin); 

storepos =store+ azim*2; 
for(i=O; i<2*curblocksize;) 
{ *storepos = (unsigned char) inblock( 2*curblocksize - i - 2 ); 

Componant */ 
storepos++; 
*storepos = (unsigned char) inblock[ 2*curblocksize - i - 1 ]; 

Componant */ 

} 

storepos--; 
storepos+=(azimtot*2); 
i+=2; } 

azim++; 

/* Debug Code: */ 

/* 
storepos = store; 
for(i=O; i<azimtot*blocksize*2; 
{ p~intf("%2X ", •storepos); 

18 

/* Real 

/* Imag 



*/ 

if (l((i+l)%16)) printf("\n"); 
i++;, 
storepos++; } 

/* Write out the transposed block to the output file: */ 

for(i=O; i<azimtot; i++) 
{ fwrite(•tore + i * curblocksize * 2, 1, curblocksize * 2, fpout); } 

/* Increment the block number and display current status: */ 

block++; 
blockend = blockstart; 
time(&blockstart); 
printf("Block Time Elapsed: %ld seconds\n",(blockstart-blockend)); 
printf("Time Remaining: %ld minutes\n", (blockstart-

blockend)*(rangebins/blocksize-block)/60 ); 
printf("\n"); 

} 

/* Write terminating data to the summary file: */ 

time(&endtime); 
fprintf(status,"Corner Turn Time Taken: %ld minutes\n",(endtime-starttime)/60); 
fprintf(status,"Corner Turn Module completed.\n\n"); 

/* Close all files and terminate the program: */ 

fclose(fpin); 
fclose(fpout); 
fclose(inparamfile); 
fclose(status); 
return(O); 

} ; 

19 



/**************************************************************************/ 
/* MODULE: AZIMCOM.C */ 

/* */ 
/* Functions: compress_azim_line() - Compress Single Azimuth line */ 
/* main() - Compress corner turned file of azimuth lines */ 

/* */ 
/* Author: Simon Welsh */ 
/* Date: 01/09/91 */ 
/**************************************************************************/ 

#include <stdio.h> 
#include <stdlib.h> 
#include <time.h> 
#include <math.h> 
#include "sar.h" 
#include "param.h" 
#include "window.h" 

/***************************************************************************/ 
/* compress_azim_line() */ 
/* Compress a single azimuth line */ 
/* */ 
/* Input Parameters: xreal - Pointer to real output store */ 
/* ximag - Pointer to imag output store */ 
/* sinlook - Pointer to Sin lookup table for FFT */ 
/* coslook - Pointer to Cos lookup table for FFT */ 
/* azimrefreal - Pointer to Azimuth Reference Fn (real) */ 
/* azimrefimag - Pointer to Azimuth Reference Fn (imag) */ 

/* */ 
/* aziminputline - Pointer to tempory input storage */ 
/* azimtot - Total •azimuth points to process */ 
/* azimfftsize - Size of FFT to use */ 
/* fpin - Pointer to input data file */ 

/* */ 
/* Steps Performed: */ 
/* */ 
/* Read in an azimuth line from the data file. */ 
/* Perform FFT on the input azimuth line. */ 
/* Multiply FFT of azimuth line by FFT of the azimuth reference function. */ 
/* Perform Inverse FFT on the result. */ 
/* */ 
/***************************************************************************/ 

compress_azim_line(float xreal[],float ximag[],float azimrefreal[],float 
azimrefimag[],float sinlook[],float coslook[],unsigned char aziminputline[],int 
azimfftsize,int azimtot,FILE *fpin) 
{ 

int i; 

/* Read in the input data from the file: */ 

for(i=0;i<azimfftsize;xreal[i]=0,ximag[i]=0,i++); 
fread(aziminputline, 2, azimtot, fpin); 
for(i=0; i<azimtot; ) 
{ xreal[i] = (float)aziminputline[i*2] - 128.0; 

ximag[i] = (float)aziminputline[i*2+1] - 128.0; 
i++; } 

20 



/* Perform forward FFT and multiply: */ 

fft(xreal,ximag,sinlook,coslook,azimfftsize,l); 
multiply(xreal,ximag,azimrefreal,azimrefimag,azimfftsize); 

/* Perform the inverse FFT: */ 

fft(xreal,ximag,sinlook,coslook,azimfftsize,-1); 
} 

/***************************************************************************/ 
/* main() */ 
/* Start of main program to compress azimuth lines */ 

/* * I 
/* Steps Performed: */ 

/* */ 
/* Extract Input Parameters. */ 
/* Read in Azimuth Reference Function. */ 
/* Perform FFT on azimuth reference Function and conjugate it. */ 

/* * I 
/* Perform Sample Azimuth Compressions to determine output scaling factor */ 
/* Perform Actual Azimuth Compressions with the computed output scaling */ 
/* factor, and output to the main image file */ 

/* * I 
/* output data to the status file */ 
/***************************************************************************/ 

main(int argc, char *argv(]) 
{ 
FILE 
FILE 
FILE 
FILE 
FILE 

char 
char 
char 

*fpin; 
*fpout; 
*status; 
*inparamfile; 
*azimrefdata; 

corname[SO]; 
azmname[SO]; 
statusname ( 50] ; 

/* Corner File output filename*/ 
/* Azimuth Compression output filename*/ 
/* status filename*/ 

/* Input parameter variable declarations: */ 

char found; /* Indicate if parameter was found*/ 
int azimfftsize; /* Size of the FFT, closest to rangesamples 
int azimtot; /* Number of azimuth pulses to process */ 

*/ 

int rangebins; /* Number of range compressed output rangebins */ 
float azimscale; /* Scaling factor for Azimuth Compression output 
int windowtype; /* Type of Window to apply*/ 

/* Declare Pointers to Dynamic Heap Memory: */ 

float *azimrefreal; 
float *azimrefimag; 
float *xreal; 
float *x,imag; 
float *sinlook; 
float *cos look; 

21 

*/ 



unsigned char *aziminputline; 

N,i,err,points; 
realout, imagout; 
rangeline, startrange; 
starttime, endtime, outstart, outend; 

int 
float 
int 
long 
long 
float 

outerror, zeroerror, maxouterror, maxzeroerror, outpos, zeropos; 
mean, minmag, maxmag, magout; 

_unsigned char 
float 

buffer; 
value; 

/* Variables for determining Scaling Factor: */ 

double peakmag; 
double fftmag; 
double avepeakmag; 

/*****************************************************************************/ 
/* Check input parameters: */ 
/*****************************************************************************/ 

if (argc!=2) 
{ printf("AZIMCOM paramfile\n"); 

return(l); } 

/**************************************************************************/ 
/* Open input parameter files: */ 
/**************************************************************************/ 

inparamfile = fopen(argv[l],"r"); 
if (inparamfile==NULL) 
{ printf("%s Input Parameter File Not Found - Aborting\n",argv[l]); 

return ( 1) ; _ } 

/**************************************************************************/ 
/* Read in parameter values from the parameter files: */ 
/**************************************************************************/ 

getstringparam("corname",corname,inparamfile,&found); 
if (!found) return(l); 
getstringparam("azmname",azmname,inparamfile,&found); 
if (!found) return(l); 
getstringparam("statusname",statusname,inparamfile,&found); 
if (!found) return(l); 

azimtot = getfloatparam("pulses",inparamfile,&found); 
if (!found) return(l); 
rangebins = getfloatparam("rangebins",inparamfile,&found); 
if (!found) return(l); 

/* Output 2494 */ 

azimfftsize = getfloatparam( "azimfftsiz.e", inparamfile, &found); 
if (!found) return(l); 
windowtype = getfloatparam("window",inparamfile,&found); 
if (!found) return(l); 

22 



/*************************************************************~************/ 
/* Open the status file: */ 
/**************************************************************************/ 

status_ = fopen(statusname,"a"); 
fprintf(status,"Start of the Azimuth Compression Module.\n"); 
fprintf(status,"----------------------------------------\n\n"); 
fflush(status); 

/*****************************************************************************/ 
/* Allocate Dynamic Heap memory: */ 
/*****************************************************************************/ 

aziminputline = malloc( azimtot * 2 ) ; 
azimrefreal = malloc( azimfftsize * sizeof (float) ) ; 
azimrefimag = malloc( azimfftsize * sizeof(float) ) ; 
xreal = malloc( azimfftsize * sizeof (float) ) ; 
ximag = malloc( azimfftsize * sizeof (float) ) ; 
sinlook = malloc( azimfftsize * sizeof ( float) ) ; 
coslook = malloc( azimfftsize * sizeof (float) ) ; 

if (coslook==NULL) 
{ fprintf ( status, "ERROR - Azimuth Compression Memory_ Allocation Error\n"); 

fclose(status); 
return(l); } 

/*****************************************************************************/ 
/* Open the input and output data files: */ 
/*****************************************************************************/ 

printf("Input File: %s\n",corname); 
printf("Output Data: %s\n",azmname); 

= fopen ( corname ,. ''. rb" ) ; 
fopen(azmname,"wb"); 

fpin 
fpout = 

if (fpin==NULL) 
{ fprintf(status,"ERROR: Azimuth Compression Cannot open %s - Aborting\n", 
corname); 

fclose(status); 
return(l); } 

rewind(fpin); 

/*****************************************************************************/ 
/* Send Useful Information to data file: */ 
/*****************************************************************************/ 

fprintf(status,"Input Data file %s\n",corname); 
fprintf(status,"Output Data file %s\n",azmname); 
fprintf (status, "Window type: %d\n" ,wiridowtype); 
fflush (status) ; 

23 



' /*****************************************************************************/ 
/* Obtain Azimuth Reference Array from data file. */ 
/*****************************************************************************/ 

printf("Extracting Azimuth Reference\n"); 
azimrefdata = fopen("azimref.dat","r"); 
if (azimrefdata==NULL) 
{ fprintf(status,"ERROR: Cannot Open Azimuth Compression Reference file\n"); 

fclose(status); 
return(l); } 

for(i=O; i<azimfftsize; azimrefreal[i]=O, azimrefimag[i]=O, i++); 
i=O; 
while ( (fscanf(azimrefdata,"%g", &azimrefreal{i]) != EOF) && 
(fscanf(azimrefdata,"%g", &azimrefimag{i]) != EOF) ) 

i++; 
points=i; 
for(i=O; i<points; printf("%d: %g %g\n", L, azimrefreal[i], azimrefimag(i] ), 
i_++); 

/*****************************************************************************/ 
/* Perform FFT on the Azimuth reference array. */ 
/* Conjugate the FFT of the azimuth reference·function. */ 
/* Multiply by the selected window function */ 
/*****************************************************************************/ 

printf("Points: \d\n",points); 
loadsincos(sinlook,coslook,azimfftsize); 
fft(azimrefreal,azimrefimag,sinlook,coslook,azimfftsize,1); 
for(i=O;i<azimfftsize;azimrefimag(i]=-azimrefimag[i],i++); 
window(azimrefreal,azimrefimag,azimfftsize,windowtype); 

/*****************************************************************************/ 
/* Determine scaling constant for output values based on average of peaks: */ 
/*****************************************************************************/ 

avepeakmag = O; 
for(rangel-ine=O; rangeline < rangebins; rangeline+=32) 
{ printf("EXTRACT %d ", rangeline); 

compress_azim_line(xreal,ximag,azimrefreal,azimrefimag,sinlook,coslook,aziminput 
line,azimfftsize,azimtot,fpin); 

/* Determine the position of the peak: */ 

peakmag = O; 
for(i=O; i<azimtot; i++) 
{ fftmag = (xreal[i] * xreal(i] + ximag[i] * ximag[i]); 

if (fftmag > peakmag) 
peakmag = fftmag; } 

avepeakmag += sqrt(peakmag); 
printf("Peak Magnitude: \lg\n",sqrt(peakmag)); 

avepeakmag/=(rangebins/32); 
azimscale = 300.0 / avepeakmag 

24 



fprintf(status,"Output Scaling Factor: %g\n",azimscale); 
fflush (status); 

/*****************************************************************************/ 
/* The reference azimuth correllation function has now been set up. */ 
/* start of loop to process multiple azimuth lines: */ 
/*****************************************************************************/ 

maxouterror = O; 
maxzeroerror = O; 
time(&starttime); 

for(rangeline=O; rangeline < rangebins; rangeline++) 
{ time(&outstart); 

printf("EXTRACT %d ", rangeline); 

compress_azim_line(xreal,ximag,azimrefreal,azimrefimag,sinlook,coslook,aziminput 
line,azimfftsize,azimtot,fpin); 

/*****************************************************************************/ 
/* output the compressed azimuth line to the output binary file: */ 
/* Unsigned bytes are used (0 to 255). */ 
/*****************************************************************************/ 

outerror = 1; 
zeroerror = 1; 
mean= O; 
maxmag=O; 
minmag=lOOOO; 

printf("Outputing "); 
for(i=O; i<azimtot; ) 
{ magout = azimscale * sqrt(xreal[i) * xreal[i] + ximag[i] * ximag(i]); 

mean+= magout; 
if (magout>maxmag) maxmag=magout; 
if (magout<minmag) minmag=magout; 

buffer= (unsigned char) (magout); 
if (magout > 255) buffer= (unsigned char) 255; 
fwrite(&buffer, 1, 1, fpout); 

i++; 
if (magout > 255) 

outerror++; 
if (!((signed char)magout)) 

zeroerror++; 
} 

/* Display useful data on the screen: */ 

printf("\n"); 
printf("Out of Range errors: 

outerror*lOO/azimtot ); · 
printf ( '' Zero errors: 

zeroerror*lOO/azimtot ); 
printf(" Ave Out Mag: %g ", 
printf (" Max Out Mag: %g ", 

%ld Percentage: %ld\n", outerror, 

%ld Percentage: %ld\n", zeroerror, 

(mean/ azimtot) ); 
maxmag ) ; 

25 



printf(" Min Out Mag: ig\n", minrnag ); 
if (outerror > maxouterror) {maxouterror = outerror; outpos=rangeline; } 
if (zeroerror > maxzeroerror) {maxzeroerror = zeroerror; zeropos=rangeline; } 
time(&outend); 
printf("Time Elapsed: %d sec ", outend-outstart); 
printf("Time Remaining: %d min\n",((rangebins-rangeline) * (outenp

starttime)/(rangeline+l))/60 ); 
} 

time(&endtime); 

/*****************************************************************************/ 
/* Write useful data to the status file: */ 
/*****************************************************************************/ 

fprintf(status,"Maximum out of range errors: %ld at %ld \n", maxouterror, 
outpos); 
fprintf(status,"Maximum zero errors: %ld at %ld \n", maxzeroerror, zeropos); 
fprintf(status,"Number of Azimuth Reference points: %d\n",points); 
fprintf(status,"Processing Time: %d min\n", (endtime - starttime)/60 ); 
fprintf(status,"Azimuth Compression Module Completed.\n\n"); 

/*****************************************************************************/ 
/* Close all files and terminate the program: */ 
/*****************************************************************************/ 

fclose(status); 
fclose(fpout); 
fclose(fpin); 
fclose(inparamfile); 
return(0); 

} 

26 



APPENDIX B 

Included Sub-Modules 

EXTRACT.H - Extract Raw radar data 

WINDOW. H - Provide window functions 

SAR.H - Various Processing Routines 

PARAM.H - Extract input parameters 

MATRIX.H - Provide matrix utilities 



/**************************************************************************/ 
/* MODULE: EXTRACT.H */ 

/* * I 
/* Functions: extract() - Extact Compacted Range Line from the raw */ 
/* data file. */ 
/* */ 
/* Author: Simcin Welsh */ 
/* Date: 01/09/91 */ 
/**************************************************************************/ 

/**************************************************************************/ 
/* extract() */ 
/* Function to extract a single raw range line from the raw data file: */ 
/* */ 
/* Input Parameters: satdat - pointer to raw data file */ 
/* rangeline - rangeline to extract */ 
/* range() - array in which to place rangeline */ 
/* */ 
/* Output Parameters: totbins - Number of rangebins extracted */ 
/* */ 
/**************************************************************************/ 

#define reclen 770 

extract(FILE ~satdat, unsigned long rangeline, float range(], int *totbins) 
{ 

char 
unsigned long 
char 
int 
unsigned char 

buffer(4); 
·word32[reclen); 
*ptr; 
err, i, num, n; 
raw[S); 

printf("EXTRACTING %ld ",rangeline); 

/* Open Input File*/ 

if (satdat == NULL) 
printf("%s","Satdat File Open Error"); 

rewind(satdat); 

/* Initialisation for main rangeline read loop: */ 

fseek( satdat, (rangeline * reclen * 4), SEEK_SET); 
err= fread(word32, 1, 6, satdat); /* Read In 6 bytes into buffer*/ 

/* Read Next Record into word32 array: */ 

ptr = word32; 
for (n=0; n<reclen; n++) 
{err= fread(buffer, 1, 4, satdat); /* Read In rangeline */ 

for (i=3; i>=0; *(ptr++) = buffer[i--J); 
} 

/* Display Fixed Header Data for current Record: */ 
/* 

print f ( "\nLine: %ld\n", (word32 [ 5) >>8) &0xffffff); 
printf ("Bits per sample: %d\n", (word32[5]>>5)&0x03+3); 

1 



printf ("Clock select: %f MHz\n", (word32[5J&Ox20) ? 30.353 45.530); 
printf ( "Spare range line count: %d\n", (word32 [ 5) &Oxf)); 
printf ("Serial state Vector Bits 0-15: %X\n", (word32[9]>>16)&0xffff); 
printf ("Serial attitude Vector Bits 16-31: %X\n", (word32[9J)&Oxffff); 

*/ 
/* Display All Header Words (32Bits) in record: */ 
/* 

*/ 

for(num=O; num<l3; num++) 
{ printf ( "%4d: ", num); 

} 

for (i=32;i>O;printf("%d",(word32[num]>>--i)&l)); 
pr intf (" \lx\n", word32 ( num]); 

/* Expand 6 bit Raw Data samples into range array: */ 
/* Samples are centred about zero. */ 

for(num=l3; num<696; num++) 
{ for(i=O;i<5; raw[i] = (word32[num]>>(6*(4-i++)))&Ox3f ); 

for(i=O;i<5; range((num-13)*5+i] = (float) (raw(i]-32), i++ ); 
} 

/* Zero the errors: */ 
/* 

for(i=2482; i<=2487; range[i]=O, i++); 
*/ 

*totbins = 3415; /* Number of raw rangebins in record*/ 
} 

/**************************************************************************/ 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 

MODULE: WINDOW.H 

Additional modules rec;iuired: MATH.H 

Functions: 

Author:· 
Date: 

fact() - return factorial 
IO() - Return modified Bessel 
window() - multiply input array 

Simon Welsh 
01/09/91 

by window 

*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 

/**************************************************************************/ 

#define pi 3.141592654 
#define alpha 1.5 

/**************************************************************************/ 
/* Function to return the factorial of x: */ 
/**************************************************************************/ 

long fact(x) 
{ 

long 
long 

fact=l; 

i; 
fact; 

for(i=l; i<=x; i++) 
fact*=i; 

return(fact); 

2 



} 

/**************************************************************************/ 
/* Function to return an approximation to the Bessel Function: */ 
/**************************************************************************/ 

double IO( double x) 
{ 

long k; 
double sum; 

sum= O; 
for(k=O; k<lO; k++) 

sum+= pow( (pow( (double) x/2, (double) k) / (double) fact(k)), 2); 

return(sum); 
} 

/**************************************************************************/ 
/* window() */ 
/* Procedure to multiply complex input array by a window function: */ 
/* */ 
/* Input Params: real - pointer to real array to be multiplied by window */ 
/* imag - pointer to imag array to be multiplied by window */ 
/* N - Length of real and imag arrays */ 
/* type - type of window with which to multiply */ 
/* */ 
/**************************************************************************/ 

window(float real[], float imag[], int N, int type) 
{ 

FILE *test; 
int n; 
float w; 
double x; 

test= fopen("Window.Dat","w"); 

for(n=O; n<N; n++) 
{ switch (type) { 

/* No Windowing: */ 

case 0: 
{ 

w = 1; 
break; 
} 

/* Raised Cosine Window: */ 

case 1: 
{ 

w = 0.5 * (1.0 - cos(2 * n *pi/ N)); 
fprintf(test,"%g\n",w); 
break; 
} 

3 



/* Keiser - Bessel Window: */ 

case 2: 
{ 

x = pi * alpha * sqrt( LO - pow ( ( (double) n -- ( (double) N / 2 ) ) / ( (double) 
N / 2),2)) ; 

w = (float) (IO(x) / IO(pi * alpha)); 
fprintf(test,"lg\n",w); 
break; 
} 

/* Cosine on pedestal Window: */ 

case 3: 
{ 

w = 0.5 + 0.5 * sin(n *pi/ N); 
fprintf(test,"lg\n",w); 
break; 
} 

/* Multiply the input real and imaginary componants by the window: */ 

} 

real [ (n + N/2) I NJ *= w; 
imag [ (n + N/2) I NJ *= w; } 

fclose(test); 
} 

0 

4 



/**************************************************************************/ 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
I* 
/* 
/* 
/* 
/* 

MODULE: SAR.H 

Additional modules required: MATH,H 

SAR library file 
This file-contains the following externally callable functions: 

Functions: bitrev() - Perform Bit reversal- for FFT function 
fft() ~ Perform forward or inverse fft 
loadsincos() - Set up the Sin and Cos tables 
multiply() - Multiply two complex numbers 
sendout() - Output a test file 

Author: Simon Welsh 
Date: 01/09/91 

*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 

/**************************************************************************/ 

/**************************************************************************/ 
/* bitrev() * / 
/* Function to perform a bit reversal on a single integer: */ 
/**************************************************************************/ 

long bitrev(long J, int NU) 
{ 

long J2,y,i; 
y=O; 
for(i=O;i<NU;i++) 
{ J2=J/2; 

y=y*2+(J-2*J2); 
J=J2; } 

return(y); 
}; 

/***************************************************************************/ 
/* fft() */ 
/* Procedure to perform an FFT: */ 
/* */ 
/* Input Parameters: xreal - Pointer to real array for input/ output */ 

· /* ximag - Pointer to imaginary array for input/ output*/ 
/* sinlook - Pointer Sin lookup table */ 
/* coslook - Pointer Cos lookup table */ 
/* N - Number of points in the FFT */ 
/* sign - (l=Forward FFT) (-l=Inverse FFT) */ 

/* * I 
/***************************************************************************/ 

fft(float xreal[], float ximag[], float sinlook[], float coslook[], int N, int 
sign) 
{ 

double c,s; 
float treal; 
float timag; 
int NU,NU1,L,I,M,N2,K,i,KN2; 

NU=log(N)/log(2); 
N2=N/2; 

5 



NUl=NU-1; 
K=O; 

/* Conjugate Input for inverse FFT: */ 

if (sign==-1) 
{ for(i=O; i<N; ximag[i]=-ximag[i], i++); 

printf("IFFT "); } 
else 

printf("FFT "); 

for(L=l;L<=NU;L++ 
{ do 

{ for(I=l;I<=N2;I++) 
{ M = (K/(l<<NUl)); 

KN2=K+N2; 
treal=xreal[KN2]*coslook[M] + ximag[KN2]*sinlook[M]; 
timag=ximag[KN2]*coslook[M] - xreal[KN2]*sinlook[M]; 
xreal[KN2]=xreal[KJ-treal; 
ximag[KN2]=ximag[K]-timag; 

} 

xreal[K]+=treal; 
ximag[K]+=timag; 
K++; } 

K+=N2; 
} 

while(K<N-1); 
K=O; 
NUl-=l; 
N2/=2; 

/* Perform Bit Reversal: */ 

for(K=O;K<N;K++) 
{ 

I=bitrev(K,NU); 
if (I>K) 
{ treal=xreal[K]; 

timag=ximag[K]; 
xreal[K]=xreal[I]; 
ximag[K]=ximag[I]; 
xreal[I]=treal; 
ximag[I]=timag; 

} 

} 

/* Conjugate and scale if IFFT: */ 

if (sign==-1) 
{ for(i=O;i<N;ximag[i]=-ximag[i], i++ ); 

for(i=O;i<N; xreal[i]/=(float)N, ximag[i]/=(float)N, i++ ); } 

} ; 

6 



/**********.****************************************************************/ 
/* loadsincos() */ 
/*.Procedure to load the sin and cos lookup tables: */ 
/* */ 
/* Input Parameters: sinlook - Pointer Sin lookup table */ 
/* coslook - Poin~er Cos lookup table */ 
/* N - Number of points in the FFT */ 
/,* */ 
/**************************************************************************/ 

#define pi 3.141592654 

loadsincos(float sinlook[], float coslook[], int N) 
{ 
int i; 
long NU,P; 
double arg; 

NU=log(N)/log(2); 

printf("Loading Sin/Cos Lookup Tables.\n"); 
for(i=0;i<N;i++) 
{ P = bitrev(i,NU); 

} ; 

arg = 2 *pi* (float)i / (float)N; 
sinlook(P)=sin(arg); 
coslook(P)=cos(arg); } 

/**************************************************************************/ 
/* multiply() 
/* Procedure to multiply two complex arrays: 
/* 
/* Input Parameters: reall - Pointer to first real array 
/* imagl - Pointer to first imaginary array 
/* ·real2 - Pointer to second real array 
/* imag2 - Pointer to second imaginary array 
/* N - Number of points in the arrays to multiply 
/* 
/* Output parameters: reall - Points to the real product 
/* imagl - Points to the imaginary product 

*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 

/**************************************************************************/ 

multiply(float reall[], float imagl[], float real2[J, float imag2[], int N) 
{ 

int 
float 

i; 
tempreal; 

printf("MULT "); 
for(i=0;i<N;i++) 
{ tempreal = r.eall ( i) * real2 ( i) - imagl ( i) * imag2 ( i) ; 

imagl[i] = reall[i] * imag2[i] + imagl[i] * real2[i); 
reall[i] = tempreal; } 

}; 

7 



/**************************************************************************/ 
/* sendout() */ 
/* Procedure to output a test file: */ 

/* * I 
/* Input Parameters: real - Pointer to real array */ 
/* imag - Pointer to imaginary array */ 
/* N - Number of points in the array */ 
/* filename - filename of output file */ 
/**************************************************************************/ 

sendout( float real[], float imag(], int N, char *filename) 
{ 

FILE 
int 

*fptr; 
i; 

fptr = fopen(filename,"w"); 
for(i=O; i<N; i++) 

fprintf(fptr, "%g %g %g\n",real[i], imag[i], 
sqrt(real[i]*real[i]+imag[i]*imag(i])); 

fclose(fptr); 

} 

a· 



/*************************************************************.************/ 
/* MODULE: 
/* 

PARAM,H */ 

/* Functions: 

/* 
/* 

*/ 
getfloat-param() - Get float parameter from parameter file */ 
getstringparam() - Get·string parameter from parameter file*/ 
putfloatparam() - Put float parameter into parameter file */ 

/* */ 
/* Author: Simon Welsh */ 
/* Date: 01/09/91 */ 
/****************************.*********************************************/ 

#include <string.h> 

/**************************************************************************/ 
/* getfloatparam() */ 
/* Get a floating point parameter from the parameter file */ 

/* * I 
/* Input Parameters: getname[) - name of parameter */ 
/* paramfile - name of parameter file */ 

/* */ 
/* Output Parameters: found - !=Parameter Found/ 0=Parameter Not Found */ 

/* * I 
/* return value= parameter value */ 
/**************************************************************************/ 

float getfloatparam( char getname[J, FILE *paramfile, char *found) 
{ 

} 

float value; 
int 
char 

i; 
paramname[30); 

value=0; 
rewind(paramfile); 
*found= 0; 
while (fscanf(paramfile, "%s %g",paramname,&value)!=EOF) 
{*found= !stricmp( getname, paramname ); 

if (*found) break; } 

if ( ! (*found)) 
printf("ERROR - %s Parameter not found\n",getname); 

else 
printf("%s = %g\n",paramname, value); 

return(value); 

9 



/**************************************************************************/ 
/* getstringparam() */ 
/* Get a string parameter from the parameter file */ 
I* * I 
/* Input Parameters: getname(] - name of parameter */ 
/* stringparam(] - array in which to place string */ 
/* paramfile - name.of parameter file */ 
/* */ 
/* Output Parameters: found - !=Parameter Found/ 0=Parameter Not Found */ 
/* */ 
/**************************************************************************/ 

getstringparam( char getname(J, char stringparam(J, FILE *paramfile, char 
*found) 
{ 

} 

int i; 
char paramname[30); 

rewind(paramfile); 
*found= 0; 
while (fscanf(paramfile, "%s %s",paramname,stringparam)!=EOF) 
{*found= !stricmp( getname, paramname ); 

if (*found) break; } 

if ( I ( *found) ) 
printf("ERROR - %s Parameter not found\n",getname); 

else 
printf("%s =. %s\n",paramname, stringparam); 

return; 

/**************************************************************************/ 
/* putfloatparam() */ 
/* Put a floating point parameter into a parameter file */ 
/* */ 
/* Input Parameters: putname(] - name of parameter */ 
/* value - value to assign to parameter */ 
/* paramfile - name of parameter file */ 
/* */ 
/**************************************************************************/ 

putfloa~param( char putname(], float value, FILE *paramfile) 
{ 

} 

printf("Parameter name: %s\n" ,putname); 
printf("Parameter Value: %g\n",value); 

fprintf(paramfile,"%s %g\n", putname, value); 

10 



/**************************************************************************/ 
/* MODULE: MATRIX.H . */ 
/* */ 
/* Functions: magnitude() - Return Magnitude of input vector */ 
/* crossprod() - Compute cross product of 2 vectors */ 
/* constdiv() - Divide vector by a constant */ 
/* constmult() - Multiply vector by a constant */ 
/* vectsub() - Perform Vector Subtraction */ 
/* vectcopy() - Copy vector */ 
/* show() - Display vector */ 
/* matmult() - Multiply matrix by vector */ 
/* mult() - Multiply vector by vector */ 

/* */ 
/* Author: Simon Welsh */ 
/* Date: 01/09/91 */ 
/**************************************************************************/ 

#define vsize 3 

/**************************************************************************/ 
/* magnitude() */ 
/* compute magnitude of input vector */ 
/* */ 
/* Input Parameters: vec - input vector */ 
/* returns magnitude */ 
/**************************************************************************/ 

double magnitude( double vec(] ) 
{ 

} 

int i; 
double 
sum=0; 

sum; 

for(i=0; i<vsize; i++) 
sum+= vec[i]*vecti]; 

return( sqrt(sum) ); 

/**************************************************************************/ 
I* cross prod ( ) * / 
/* Put cross-product of vectors a and bin c: (3-d only) */ 
/*********************************************************************t****/ 

crossprod( double a(], double b[], double c(] ) 
{ 

} 

c(0] = (a[l]*b[2] - a(2]*b[l]); 
c[l] = (a[2]*b[0] - a(0]*b[2]); 
c(2] = (a(0]*b[l] - a(l]*b[0]); 

/**************************************************************************/ 
/* constdiv() */ 
/* Divide vector a by constant x and put result in vector b: */ 
/**************************************************************************/ 

constdiv( double a(], double b[], double x) 
{ 

int i; 

11 



} 

for(i=O; _i<vsize; i++) 
- b[l] = a(i] / x; 

/**************************************************************************/ 
/* constmult() */ 
/* Multiply vector by constant to produce vector: */ 
/*************************~**~**************************************~******/ 

constmult( double a(], double b[J, double x) 
{ 

} 

int i; 
for(i=O; i<vsize; i++) 

b[i] = a(i] * x; 

/**************************************************************************/ 
/* vectsub() */ 
/* Subtract Vector from Vector to produce vector: */ 
/**************************************************************************/ 

vectsub( double a(], double b[], double c(] 
{ 

int i; 
for(i=O; i<vsize; i++) 

c[i] = a(i] - b[i]; 
} 

/**************************************************************************/ 
/* vectcopy() */ 
/* Copy Vector A to Vector B: */ 
/**************************************************************************/ 

vectcopy( double a[], double b[] 
{ 

} 

int i; 
for(i=O; i<vsize; i++) 

b[i] :::. a(i]; 

/**************************************************************************/ 
/* show() */ 
/* Display Vector a: */ 
/**************************************************************************/ 

show( double a(] 
{ 

} 

inti; 
for(i=O; i<vsize; i++) 

printf( "%g ", a(i] ); 
printf("\n"); 

12 



/**************************************************************************/ 
/* matmult() */ 
/* Multiply matrix by vector to produce vector: */ 
/**************************************************************************/ 

matmult( double a[vsize](vsize], double b[vsize], double c(vsize]) 
{ 

} 

int row,col; 
for(row=O; row<vsize; row++) 
{ c(row]=O; 

for(col=O; col<vsize; col++) 
c(row] += ((b(col]) * (a(col][row])); 

} 

/**************************************************************************/ 
/* mult() */ 
/* Multiply vector by vector to produce constant */ 
/**************************************************************************/ 

double mult( double a[], double b[] ) 
{ 

} 

inti; 
double c; 
c = 0; 
for(i=O; i<vsize; i++) 

c += (a[i] * b[i]); 
return( c ); 

13 



APPENDIXC 

Additional Modules 

GETCFI.C - Extract CFI image 

QUICKCFI.C - Extract unfocussed CFI image 

PRINTCFI. C - Print CFI image on HP Laserjet 

ST AT. C - Provide Statistics for input file 

REFORMAT. C - Reformat ASCII file 

BTOA.C - Convert Binary file to ASCII 



/**************************************************************************/ 
/ * MODULE: . GETCFI. C -· * / 

/* * I 
/* Functions: main(} - Extract CFI image from main image file */ 
/* */ 
/* Author: Simon Welsh */ 
/* Date: 01/09/91 */ 
/**************************************************************************/ 

#include <stdlib.h> 
#include <stdio.h> 
#include <time.h> 
#include <math.h> 
#include <conio.h> 
#include "param.h" 

#define cfisize 512 

/**************************************************************************/ 
/* main() */ 
/* Program to extract CFI image from azimuth compressed data file */ 
/~ Input Parameters: argc - Number of Command Line parameters */ 
/* *argv(l] - Name input parameter file */ 
/* *argv(2] - Starting azimuth pulse for image */ 
/* *argv(3] - Staring rangebin for image */ 
/**************************************************************************/ 

main(int argc, char *argv()) 
{ 

FILE 
FILE 
FILE 
FILE 

*cfiout; 
*azimcom; 
•test; 
*inparamfile; 

char 
char 
char 

azmname(S0J; 
outfile[S0J; 
docfile[S0J; 

/* Azimuth Compression output filename*/ 
/* Output filename*/ 
/* Output document name*/ 

int startrange, endrange, startazim, endazim, linetot, i, err; 
int 
long 
float 
float 

pos; 
starttime, endtime; 
outpix; 
rangeline; 

unsigned char 
unsigned char 

*range; 
*outpixarray; 

/* Input parameters: */ 

char found; 
int azimtot; 
float azimave; /* 1.64 
float rangeave; /* 1.00 

Output every azimave azimuth pixels 
Output every rangeave range pixels 

1 

*/ 
*/ 



/**************************************************************************/ 
/* Check that three input parameters exist: */ 
/***********************************************~**************************/ 

if · ( argc < 4 ) 
{ printf("SYNTAX: getcfi paramfile startpulse startbin\n"); 

return; } 

/**************************************************************************/ 
/* Open input parameter files INPUT.PAR and SAT.PAR: */ 
/**************************************************************************/ 

inparamfile = fopen(argv(l],"r"); 
if (inparamfile==NULL) 
{ printf("%s Input Parameter File Not Found - Aborting\n", argv[l]); 

return; } 

getstringparam("azmname",azmname,inparamfile,&found); 
if (!found) return; 
azimtot = getfloatparam("pulses",inparamfile,&found); 
if (!found) return; 
azimave = getfloatparam("cfiazimsize",inparamfile,&found); 
if (!found) return; 
rangeave = getfloatparam("cfirangesize",inparamfile,&found); 
if (!found) return; 

/**************************************************************************/ 
/* Allocate memory for one azimuth line: */ 
/**************************************************************************/ 

range = malloc( cfisize * 2 * azimave); 
outpixarray = malloc( cfisize ); 
if (outpixarray == NULL) 
{ printf("Memory Alla.cation Error\n"); 

return; } 

/********************************************~*****************************/ 
/* Open the azimcom processed data file: */ 
/**************************************************************************/ 

azimcom = fopen(azmname,"rb"); 

sscanf(argv[2], "%d", &startazim); 
sscanf(argv[3],· "%d", &startrange); 
printf ( "Starting Azimuth pulse: %d\n", startazim); · 
printf(" Starting Range bin: %d\n", startrange); 
sprintf(outfile, "%d%d.cfi",startazim, startrange ); 
sprintf(docfile, "%d%d.doc",startazim, startrange ); 

printf("%s\n",outfile); 
cfiout = fopen(outfile,"wb"); 

/**************************************************************************/ 
/* Open ASCII file and output useful data: */ 
/**************************************************************************/ 

test= fopen(docfile,"w"); 

2 



fprintf(test,"Azimuth compressed input filename: %s\n",azmname); 
fprintf(test,"CFI Output Filename: %d%d.cfi\nff,startazim, startrange ); 
fprintf (test, "Starting Azimuth line: %d\n", startazim); 
fprintf(test," Starting Range line: %d\n", startrange); 
fprintf (test, "Azimuth Ave: %g\n", azimave); 
fprintf(test," Range Ave: %g\n",rangeave); 
fclose(test); 

/**************************************************************************/ 
/* Start of the main CFI output loop: */ 
/**************************************************************************/ 

time(&starttime); 
endrange = startrange + (long) (cfisize * rangeave); 
for( rangeline ·= (float)startrange; (long)rangeline < endrange; rangeline += 
rangeave) 
{ fseek( azimcom, ((long)rangeline * (long)azimtot + (long)startazim), 
SEEK_SET); 

err=fread(range, 1, (long) (cfisize * azimave), azimcom); 
for(i=O; i<cfisize; 'i++) 

outpixarray(il = range[i*azimave]; 
fwrite(outpixarray, cfisize, 1, cfiout); 
time(&endtime); 
printf("Time Remaining: %d sec \r", (endrange-(long)rangeline) * (endtime

starttime) / ((long)rangeline-startrange+l) ); 
} 

/*****************************************************************************/ 
/* Close all files and terminate the program: */ 
/*****************************************************************************/ 

fclose(cfiout); 
fclose(azimcom); 

} 

3 



/**************************************************************************/ 
/* MODULE: QUICKCFI.C */ 
/* */ 
/* Functions: main() - Produce Unfocussed Image from Corner Turned File*/ 
/* */ 
/* Author: Simon Welsh */ 
/* Date: 01/09/91 */ 
/**************************************************************************/ 

#include <stdio.h> 
#include <stdlib.h> 
#include <time.h> 
#include <math.h> 
#include "param. h" 

#define cfisize 512 
#define scale 10.0 

/**************************************************************************/ 
/* main() * / 
/* Produce Unfocussed CFI Image from Corner Turned File */ 
/* */ 
/* Input Parameters: argc - Number of Command Line parameters */ 
/* *argv[l] - Name input parameter file */ 
/* *argv[2] - Starting azimuth pulse for image */ 
/* *argv[3] - Staring rangebin for image */ 
/**************************************************************************/ 

main(int argc, char *argv[)) 
{ 

FILE *cfiout; 
FILE *test; 
FILE *azim; 
FILE *inparamfile; 

char outfile[S0]; /* Output filename */ 
char docfile[ 50]; /* Output document name */ 
char corname [ 50] ; /* Input 

unsigned char 
unsigned char 
char 
char 
char 
char 

*inputarray; 
*outpixarray; 
*runavereal; 
*runaveimag; 
*xreal; 
*ximag; 

int i; 
int startazim; 
int startrange; 
int 
long 
float 

rangeline; 
realave,imagave; 
outmag; 

unsigned char cfibuf; 
long starttime,endtime; 

/* Input parameters: */ 

filename */ 

/* The running average real store*/ 
/* The running average imag store*/ 
/* Floating Point real componant sample*/ 
/* Floating Point imaginary componant sample*/ 

/* Magnitude of single sample*/ 

/* Output CFI buffer*/ 

4 



char 
int 
int 
int 
int 

found; 
azimtot; 
azimave; 
azimsize; 
rangesize; 

/**************************************************************************/ 
/* Check that 4 input parameters exist: */ 
/**************************************************************************/ 

if (argc < 4) 
{ printf("SYNTAX: quickcfi paramfile startpulse startbin\n"); 

return; } 

printf("\n\nQuick Look CFI Image Generator\n\n"); 

/**************************************************************************/ 
/* Open input parameter files: */ 
/**************************************************************************/ 

inparamfile = fopen(argv[l],"r"); 
if (inpararnfile==NULL) 
{ printf("ts Input Parameter File Not Found - Aborting\n", argv[l)); 

. return; } 

getstringpararn("cornarne",cornarne,inpararnfile,&found); 
if (!found) return; 
azimtot = getfloatpararn("pulses",inpararnfile,&found); 
if (!found) return; 
azimave = getfloatpararn("quickazimave",inpararnfile,&found); 
if (!found) return; 
azimsize = getfloatparam("quickazimsize",inparamfile,&found); 
if (!found) return; 
rangesize = getfloatparam("quickrangesize",inparamfile,&found); 
if (!found) return; 

/**************************************************************************/ 
/* Allocate memory for one azimuth line: */ 
/**************************************************************************/ 

inputarray = malloc( cfisize * 2 * azimsize); 
xreal = malloc( cfisize * azimsize); 
ximag = malloc( cfisize * azimsize); 
runavereal = callee( azimave, 1 ); 
runaveimag = callee( azimave, l ); 
outpixarray = malloc( cfisize ); 
if (outpixarray == NULL) 
{ printf("Memory Allocation Error\n"); 

return; } 

/************************************************************************~*/ 
/* Open the azimcom processed data file: */ 
/*************************************************~************************/ 

azim = fopen(corname,"rb"); 

5 



sscanf(argv[2J, "%d", &startazim); 
sscanf(argv(3J, "%d", &startrange); 
printf("Starting Azimuth pulse: %d\n", startazim); 
printf(" Starting Range bin: %d\n", startrange); 
sprintf(outfile, "Q%d%d.cfi",startazim, startrange ); 
sprintf(docfile, "Q%d%d.doc",startazim, startrange ); 

printf("Generating Output File: %s\n\n",outfile); 
cfiout = fopen(outfile,"wb"); 

/**************************************************************************/ 
/* Open ASCII file and output useful data: */ 
/**************************************************************************/ 

test= fopen(docfile,"w"); 
fprintf(test,"Range compressed and corner turned input filename: %s\n;, 1 corname); 
fprintf(test,"CFI output Filename: %d%d.qfi\n",startazim, startrange ); 
fprintf(test,"Starting Azimuth line: %d\n", startazim); 
fprintf(test," Starting Range line: %d\n", startrange); 
fprintf(test,"Azimuth Ave: \d\n",azimave); 
fprintf(test,"Range Size: \d\n",rangesize); 
fprintf(test,"Azimuth Size: %d\n",azimsize); 
fclose(test); 

/**************************************************************************/ 
/* Start of the main CFI output loop: */ 
/**************************************************************************/. 

time(&starttime); 
for(rangeline=startrange; rangeline < (int) (startrange + cfisize * rangesize); 
rangeline += (int)rangesize) 
{ 

fseek(azim, (((long)rangeline * (long)azimtot + (long)startazim) * 2), 
SEEK_SET); 

/* Read in one azimuth line of range compressed data into array: */ 
/* Transfer to real and imaginary arrays and centre about zero: */ 

fread(inputarray, 1, (int) (cfisize * azimsize * 2), azim); 
for(i=O; i< cfisize * azimsize; ) 
{ xreal[i] = (char) (inputarray[i*2]-128); 

ximag[i] = (char) (inputarray[i*2+1J-128); 
i++; } 

/* Output a running averaged azimuth line: */ 

realave=O; 
imagave=O; 
for(i=O; i<azimave; runavereal[i]=O, runaveimag(i]=O, i++ ); 
for(i=O; i < (int) (cfisize * azimsize) ; i++) 
{ 

realave += (long) xreal[i]; 
imagave += (long) ximag[i]; 
realave -= (long) runavereal[i\azimave]; 
imagave -= (long) runaveimag[i%azimave]; 
runavereal[i%azimave) = xreal[i); 
runaveirnag[i%azirnave] = ximagfi]; 

6 



} 

if (l(i%azimsize)) 
{ outmag = (long) ((float)scale / (float)azimave * sqrt 

} 

((float)realave * (float)realave + (float)imagave * (float)imagave )); 
if (outmag > 255) 

outpixarray(i/azimsize] = 255; 
else 

outpixarray[i/azimsize] = (unsigned char) outmag; 

fwrite(outpixarray, cfisize, 1, cfiout); 
time(&endtime); 
printf("Line: %4d Time Remaining: %d min \r", (rangeline-startrange+l) / 

rangesize, ((cfisize * rangesize) - (rangeline-startrange+l)) * (endtime
starttime) / (rangeline-startrange+l) / 60. ); 

} 

fclosE;all (); 
} 

7 



/***********************************~*;************************************/ 
/ * MODULE: PRINTCFI. C . * / 
/* */ 
/* Functions: main() - Generate HP Laserjet Print file for CFI image */ 
/* */ 
/* Author: Simon Welsh */ 
/* Date: 0l/09/91 */ 
/**************************************************************************/ 

#include <stdio.h> 

/**************************************************************************/ 
/* main() * / 
/* Program to Generate an HP Laserjet Print file for a given CFI image */ 
/* Input Parameters: argc - Number of Command Line parameters */ 
/* *argv(l] - Input CFI image filename */ 
/* *argv(2] - Print Scaling Factor (Optional) */ 
/**************************************************************************/ 

main (int argc, char *argv()) 

{ 

char filename ( 50) ; 
FILE *infile, *prn; 
int row, subrow, col, err, bytel, byte2; 
float scale; 
unsigned char rowbuffer [512], outbyte; 

char tile [16)(4) = { 

{0, o, o, 0}' /* Gray Level 0 */ 
{0, o, o, 4}' /* Gray Level 1 */ 
{0, 4, o, 1}, /* Gray Level 2 */ 
{8, 1, o, 4}' /* Gray Level 3 */ 
{l, 8, 1, 2}, /* Gray Level 4 */ 
{8, 1, 10, 4}, /* Gray Level 5 */ 
{ 1, 10, 4, 10}, /* Gray Level 6 */ 
{10, s, 2, S}, /* Gray Level 7 */ 

{S, 10, 13, 10}, /* Gray Level 8 */ 
{14, s, 11, S}, /* Gray Level 9 */ 
{7' 14, s, 11}' /* Gray Level 10 */ 
{14, 7, 14, 13}, /* Gray Level 11 */ 
{7' 14, 15, 11}' /* Gray Level 12 */ 
{15, 11, ·15, 14}, /* Gray Level 13 */ 
{15, 15, 15, 11}' /* Gray Level 14 */ 
{15, 15, 15, 15} } ; /* Gray Level 15 */ 

/*****************************************************************************/ 
/* Check for input parameters: */ 
/*****************************************************************************/ 

if ((argc1=2) && (argc1=3)) 
{ printf("SYNTAX: printcfi filename scaling (.CFI extension assumed) \n"); 

return; } 

8 



/*****************************************************************************/ 
/* Read in input parameters and open files: · */ 
/*****************************************************************************/ 

printf("\n\nLaserjet Series II CFI image printer\n\n"); 
sprintf(filename, "%s.cfi", argv[l]); 
infile = fopen ( filename, "rb"); 
printf ( "Input file: %s\n", filename); 
rewind(infile); 
sprintf(filename, "%s.prn", argv[l]); 
prn = fopen (filename, "wb"); , 
printf ( "Output print file: %s\n", filename); 
printf ("Output print file'should be copied to prn with /b option\n\n"); 

/*****************************************************************************/ 
/* Set output scaling if specified on command line: */ 
/*****************************************************************************/ 

if ( argc==3) 
{ printf("Output Scaling Fa.ctor: %s\n",argv[2]); 

sscanf(argv[2],"%g",&scale); } 
else 

scale = 1.0; 

/*****************************************************************************/ 
/* Generate HP Laserjet compatible print file: */ 
/*****************************************************************************/ 

fprinti (prn, "\xlb*rB\xlb*t300R"); 
for (row= 0; row< 512; row++) 

{ 

printf("Row %3d\b\b\b\b\b\b\b",row); 
fread (rowbuffer, 1, 512, infile); 
for (subrow = 0; subrow < 4; subrow++) 

{ 

fprintf (prn, "\xlb*r0A\xlb*b256W"); 
for (col= 0; col< 256; col++) 

{ bytel = (rowbuffer[col*2J*scale)/16; 
byte2 = (rowbuffer[col*2+1J*scale)/16; 

} 

outbyte = tile [ byte1<256? bytel : 255 J[subrow] << 4; 
outbyte I= tile [ byte2<256? byte2 : 255 J[subrow]; 
fprintf (prn, "%c", -outbyte); 

fprintf (prn, "\xlb*rB"); 
} 

} 

fprintf (prn, "\xlb*rB\x0a\x0d"); 

/*****************************************************************************/ 
/* Close input and output files: */ 
/*****************************************************************************/ 

} 

fclose(prn); 
fclose ( in file); 

9 



/**************************************************************************/ 
/* MODULE: STAT.C */ , 
/* */ 
/* Functions: main()~ Produce Statistics for input binary file */ 
/* */ 
/* Author: Simon Welsh */ 
/* Date: 01/09/91 */ 
/**************************************************************************/ 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 

#define bufsize 2048 /* (Maximum) input buffer size*/ 

/**************************************************************************/ 
/* main() */ 
/* Program to generate statistic file for given input binary file */ 
/* Input Parameters: argc - Number of command Line parameters */ 
/* *argv(l] - Name of Input binary file */ 
/* *argv(2] - Name of output ASCII statistics file */ 
/*******************************************************~******************/ 

main(int_argc, char *argv[)) 
{ 
FILE *infile; 
FILE *out file; 
unsigned char buffer(bufsize]; 
unsigned long stat[256]; 
unsigned long i; 
unsigned long totread; 
unsigned int num; 
float mean; 
float 
float 
float 

sumsq; 
sum; 
sdev; 

printf("\n\nstatistic Analysis of Byte File\n\n"); 

/***************************************************************************/ 
/* Test for correct number of parameters: */ 
/***************************************************************************/ 

if (argc < 3) 
{ printf ( "SYNTAX: STAT inputfile outputfile\n"); 

return; } 

/***************************************************************************/ 
/* Open the input and output files: */ 
/**~************************************************************************/ 

infile = fopen(argv[l],"rb"); 
if (infile==NULL) 
{ printf("Input File Not Found: %s\n",argv[l]); 

return; } 

outfile = fopen(argv(2],"w"); 

10 



printf("In~ut Data File: %s\n",argv(l]); 
printf("Output Statistic File: %s\n",argv(2]); 

/***************************************************************************/ 
/* Loop through until.end of file: */ 
/***************************************************************************/ 

for(i=0; i<256; stat[i] = 0, i++); 

rewind ( inf ile) ; 
printf("\nReading Input File\n"); 
totread=0; 
sum=0; 
sumsq=0; 
do 
{ num=fread(buffer,l,bufsize,infile); 

for(i=O; i<num; ) 
{sum+= (unsigned float) (buffer(i]); 

sumsq += (unsigned float) (buffer(i] * buffer(i]); 
(stat(buffer(i++]])++; } 

totread+=num; 
printf("Bytes Read: %ld\r",totread); } 

while (num==bufsize); 

mean= sum/totread; 
sdev = sqrt(abs(( sumsq - (sum*sum)/totread 

printf ( "\n\nWriting Output File\n"); 
for(i=0; i<256; i++) 

/ (totread-1))); 

fprintf(outfile,"%ld %g%% %g\n",i, (100 * (float)stat[i] / (float)totread), 
((float)stat(i]/((float)totread/256)) ); 
fprintf(outfile,"\n\ncomputed Statistics:\n\n"); 
fprintf(outfile,"Samples: %ld\n",totread); 
fprintf(outfile,"Sum: %g\n",sum); 
fprintf(outfile,"Sum of Squares: %g\n",sumsq); 
fprintf(outfile,"Mean: %g\n",mean); 
fprintf(outfile,"Standard deviation: %g\n~,sdev); 

fclose(infile); 
fclose(outfile); 

} 

11 



I 

/**************************************************************************/ 
/ * MODULE: REFORMAT. C * / 
/* */ 
/* Functions: main() - Reformat Input ASCII file to Output ASCII file */ 
/* with a given number of numbers per line */ 
/* */ 
/* Author: Simon Welsh */ 
/* Date: 01/09/91 */ 
/**************************************************************************/ 

#include <stdio.h> 
#include <stdlib.h> 

/**************************************************************************/ 
/* main() · */ 
/* Program reformat ASCII input file */ 
/* Input Parameters: argc - Number of Command Line parameters */ 
/* *argv[l] - Name of Input ASCII file */ 
/* *argv[2] - Name of output ASCII file */ 
/* *argv[3] - Number of numbers to output per line */ 
/**************************************************************************/ 

main(int argc, char *argv[J) 
{ 

FILE 
int 
double 

*infile, *outfile; 
num,i; 
value; 

if (argc!=4) 
{ printf("SYNTAX: reformat inputfile outputfile num\n"); 

return(l); } 

infile = fopen(argv(l], "r"); 
outfile = fopen(argv[2}, "w"); 
sscanf( argv[3], "%d", &num); 
printf("Outputting %d values per line.\n",num); 

if (infile==NULL) 
{ printf("ERROR - Input file not found\n"); 

return(2); } 

i=0; 
while(fscanf(infile, "%lg", &value)l=EOF) 
{ fprintf(outfile," %lg",value); 

if (1(++i%num)) fprintf(outfile,"\n"); 
} 

fprintf(outfile,"\n"); 
fcloseall (); 

} 

12 



/**************************************************************~***********/ 
/* MODULE: BTOA.C */ 

/* * I 
/* Functions: main() - Convert input binary ~ile to ASCII output file */ 

/* */ 
/* Author: Simon Welsh */ 
/* Date: 01/09/91 */ 
/**************************************************************************/ 

#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 

/**************************************************************************/ 
/* main() */ 
/* Input Parameters: argc - Number of Command Line parameters */ 
/* *argv[l] - Name of Input binary file */ 
/* *argv(2] - Name of output ASCII file */ 
/* *argv(3] - Number of ASCII numbers output per line */ 
/********************w*****************************************************/ 

main(int argc, char *argv()) 
{ 
FILE *fpin,*fpout; 

unsigned char value; 

int count; 
int num; 

if (argc < 4) 
{ printf ( "BTOA inputfile outputfile numperline\n"); 

return; } 

sscanf(argv[3],"%d",&num); 

printf("Input Binary File: %s\n Output ASCII File: %s\n",argv(l], argv(2]); 
printf("%d Numbers per line\n",num); 

fpin = fopen(argv(l],"rb"); 
if (fpin==NULL) 
{ printf("Input File Not Found\n"); 

return; } 
fpout = fopen(argv[2J,"w"); 
rewind(fpin); 

count=O; 
while (fread(&value, sizeof(value), 1, fpin) 1= NULL) 
{ fprintf(fpout, "%d" value); 

if (1((count+l)%num)) fprintf(fpout, "\n"); 
count++; 
} 

fclose(fpout); 
fclose(fpin); 
} 

13 



APPENDIXD 

Test Programs 

RNGFILE. C - Create Range Compression Test file 

AZMFILE.C - Create Azimuth Compression Test file 

CORFILE. C - Create Comer Tum Test file 

TESTCOR. C - Test the comer tum routine 



/**************************************************************************/ 
/* MODULE: RNGFILE.C , */ 
/* */ 
/* Functions: main() - Generate Range Compression Test File */ 
/* */ 
/* Author: Simon Welsh */ 
/* Date: 01/09/91 */ 
/**************************************************************************/ 

#include <stdlib.h> 
#include <stdio.h> 
#include "param.h" 

#define rangebins 3415 
#define azimtot 4096 
#define points 923 
#define testpos 512 
#define sumnum 1 
#define dist 10 

/***************************************************************************/ 
/* Start of Program to generate test input file for range compression */ 
/***************************************************************************/ 

main(int argc, char *argv[]) 
{ 
FILE *infile; 
FILE *outfile; 
unsigned char testbyte; 
unsigned char *buffer; 
unsigned char *outbuf; 
int *testline; 

int i,j; 
float *rangerefreal; 
float *rangerefimag; 

printf("\n\nGenerating Test File for Range Compression\n\n"); 

/***************************************************************************/ 
/* Allocate Memory: */ 
/***************************************************************************/ 

rangerefreal = malloc( points* sizeof(float) ); 
rangerefimag = malloc( points* sizeof(float) ); 
testline = malloc( 2 * sizeof(int) * rangebins ); 
buffer = malloc( 2 * rangebins ); 
outbuf = malloc( 2 * rangebins ); 
if (outbuf==NULL) 
{ printf ( "Memory Allocation Error\n"); 

return; } 

/***************************************************************************/ 
/* Open the input and output files: */ 
/***************************************************************************/ 

infile = fopen("RANGEREF.DAT","r"); 

1 



if (infile==NULL) 
{ printf("RANGEREF.DAT Input File Not Found: \n"); 

return; } 

for(i=O; i<points; rangerefreal[i]=O, rangerefimag[i]=O, i++); 
i=O; 
while ( (fscanf(infile,"%g", &rangerefreal[i]) != EOF) ) 

i++; 

outfile = fopen("range.dat","wb"); 
if (outfile==NULL) 

return; 

/***************************************************************************/ 
/* Loop through until end of file: */ 
/***************************************************************************/ 

/*Setup the blank buffer: */ 

for(i=O; i<rangebins; buffer[i]=l28.0, i++); 

/* Clear the test buffer: */ 

for(i=O; i<rangebins; testline[i]=O, i++); 

/*setup the test azimuth line with an array of point targets: */ 

for(i=O; i<points; 
{ for(j=512; j<512+(sumnum*dist); j+=dist 

{ testline[(j+i)] += (rangerefreal[i] * 32.0 / sumnum); } 
i++; } 

/* Transfer Test line to output buffer centred at +32: */ 

for(i=O; i<rangebins; 
{ outbuf(i] = testline[i] + 32; 

if (testline[i] >= 32) outbuf[i] = 63; 
if (testline[i) <= -32) outbuf[i] = O; 
i++; } 

/* Output test line: */ 

fwrite(outbuf, 1, rangebins, outfile); 

/* Close files and terminate program: */ 

fclose(infile); 
fclose(outfile); 

} 

2 



/**********.****************************************************************/ 
/* MODULE: AZMFILE.C */ 

/* */ 
/* Functions: main() - Generate Test file for azimuth compression */ 
/* */ 
/* Author: Simon Welsh */ 
/* Date: 01/09/91 */ 
/**************************************************************************/ 

#include <stdlib.h> 
#include <stdio.h> 
#include "param. h" 

#define rangebins 2494 
#define azimtot 4096 
#define points 512 
#define testpos 1500 
#define sumnum 2 
#define dist 10 

/***************************************************************************/ 
/* Start of Program to generate test input file for azimuth compression */ 
/***************************************************************************/ 

main(int argc, char *argv[]) 
{ 

FILE *infile; 
FILE *outfile; 

, 
unsigned char testbyte; 
unsigned char *buffer; 
unsigned char *outbuf; 
int *testline; 

int i,j; ... 
float *azimrefreal; 
float *azimrefimag; 

printf("\n\nGenerating Test File for Azimuth Compression\n\n"); 
I 

/*****~************************~********************************************/ 
/* Allocate Memory: */ 
/***************************************************************************/ 

azimrefreal = malloc( points* sizeof(float) ); 
azimrefimag = malloc( points* sizeof(float) ); 
testline = malloc( 2 * sizeof(int) * azimtot ); 
buffer = malloc ( 2 * azimtot >'; 
outbuf = malloc( 2 * azimtot ); 
if (outbuf==NULL) 
{ printf("Memory Allocation Error\n"); 

return; } 

/***************************************************************************/ 
/* Open the input and output files: */ 
/***************************************************************************/ 

infile = fopen("AZIMREF.DAT","r"); 

3 



if (infile==NULL) 
{ printf("AZIMREF.DAT Input File Not Found: \n"); 

return; } 

for(i=O; i<points; azimrefreal[i]=O, azimrefimag[i]=O, i++); 
i=O; 
while ( (fscanf(infile,"%g", &azimrefreal[i]) != EOF) && (fscanf(infile,"%g", 
&azimrefimag[i]) != EOF) ) 

i++; 

outfile = fopen("azim.dat","wb"); 
if (outfile==NULL) 

return; 

./***********************************************~***************************/ 
/* Loop through until end of file: */ 
/***************************************************************************/ 

/*Setup the blank buffer: */ 
for( i=O; i<azimtot*2; 'buffer[ i]=l28.0, i++); 

/* Clear the test buffer: */ 
for(i=O; i<azimtot*2; testline[i]=O, i++); 

/*Setup the test azimuth line with an array of point targets: */ 

for(i=O; i<points; 
{ for(j=1024; j<1024+(sumnum*dist); j+=dist) 

{ testline[(j+i)*2] += (azimrefreal[i] * 127.0 / sumnum); 
testline[(j+i)*2+1] += (azimrefimag[i] * 127.0 / sumnum); } 

i++; } 

/*setup the test azimuth line with an array of sweep targets: */ 
/* 
for(i=1024; i<1024+sumnum; ) 
{ testline[(i)*2] = (127.0); 

testline[(i)*2+1] = (127.0); 
i++; } 

*/ 
/* Transfer Test line to-output buffer centred at +128: */ 
for(i=O; i<azimtot*2; ) 
{ outbuf[i] = testline[i] + 128; 

if (testline(i] >= 127) outbuf[i] = 255; 
if (testline(i] <= -128) outbuf[i] = O; 
i++; } 

/* Output test line: */ 
fwrite(outbuf, 1, azimtot*2, outfile); 

/* output blank lines: */ 
/* 
for(i=l; i<testpos; fwrite(buffer, 1, azimtot*2, outfile), i++); 
*/ 

/* Output test line: */ 
/* 

4 



fwrite(outbµf, 1, azimtot*2, outfile); 
*/ 

/* Output blank lines: */ 
/* 
for(i=testpos; i<rangebins-1; fwrite(buffer, 1, azimtot*2, outfile), i++); 
*/ 

/* Close files and terminate program: */ 
£close ( inf ile); 
fclose(outfile); 

} 

5 



/*********~****************************************************************/ 
/* MODULE: CORFILE.C */ 
/* * I 
/* Functions: main() - Generate Corner Turn Test File */ 
/* */ 
/* Author: Simon Welsh */ 
/* Date: 01/09/91 */ 
/**************************************************************************/ 

#include <stdio.h> 
#include <stdlib,h> 
#include <alloc.h> 

/**************************************************************************/ 
/* Program to generate corner turn test file: */ 
/**************************************************************************/ 

#define maxazim 
#deffne maxrange 

1024 
512 

/* 4096 Maximum number of azimuth lines*/ 
/* 3415 Maximum number of rangebins */ 

main(int argc, char *argv(]) 
{ 

FILE *fpout; 
unsigned char *testbuf, *blank; 
long azim,i; 

fpout = fopen("rangecom.dat","wb"); 

testbuf = malloc( maxrange * 2 ); 
blank = malloc( maxrange * 2 ); 
for(i=0; i<maxrange*2; blank[i]=0, i++); 
for(i=0; i<maxrange*2; testbuf[i] = (i/2)%256, testbuf[i+l] = (i/2)%256, i+=2 ); 

fwrite(testbuf, 2, maxrange, fpout); 
for(azim=l; azim<maxazim; ) 
{ fwrite(blank, 2, maxrange, fpout); 

azim++; 
} 

fclose(fpout); 
}; 

6 



\ 

/**************************************************************************/ 
/* MODULE: TESTCOR.C */ 
/* */ 
/* Functions: main() - Test the corner turn program by comparing the */ 
/* input and output files. */ 
/* */ 
/* Author: Simon Welsh */ 
/* Date: 01/09/91 */ 
/**************************************************************************/ 

#include <stdio.h> 
#include <time.h> 
#include <stdlib.h> 
#include <alloc.h> 
#include <math.h> 

/**************************************************************************/ 
/* Start of the main program: */ 
/**************************************************************************/ 

#define maxazim 4096 /* 4096 Maximum number of azimuth lines*/ 
#define maxrange 3415 /* 3415 Maximum number of rangebins */ 

main(int argc, char •argv[J) 
{ 

FILE •corner, *rangecom; 
unsigned char *test, *test2; 

long 
int 

rangeline, testazim; 
error; 

/**************************************************************************/ 
/* Allocate memory and Open files: */ 
/**************************************************************************/ 

test= malloc( maxazim * 2 ); 
test2 = malloc( maxazim * 2 ); 
if (test2==NULL) return; 

corner = fopen( "azim.datll, "rb"); 
rangecom = fopen("rangecom.dat","rb"); 
if (corner==NULL) return; 
if (rangecom==NULL) return; 
rewind(corner); 
rewind(rangecom); 

/**************************************************************************/ 
/* Loop to compare all azimuth lines: */ 
/**************************************************************************/. 

for(testazim = 0; testazim<maxazim; testazim++) 
{ 

printf("\nAzimuth Line: \ld ",testazim); 
for(rangeline=0; rangeline < maxrange; ) 
{ 

fseek(rangecom, (2 * ((long)testazim * (long)maxrange + (long)rangeline)), 
SEEK_SET); 

7 



fread(test2, 1, 2, rangecom); 
fseek(corner, (2-* ((long)testazim-+ (long)maxazim * ((long)maxrange - 1 -

(long)rangeline))), SEEK_SET); 

/* 

*/ 

} 
} 

fread(test, 2, 1, corner); 

printf("%2X %2X 
printf("%2X %2X 

test2[0], test2(1]); 
test(0], test(l]); 

if (l(rangeline%100)) printf("%d ", rangeline); 
if ((test(0]l=test2[0]) I I (test(l]!=test2[1])) 
{ printf("\nERROR found in Corner Turn File\n"); 

printf("Azimuth Line: %ld Rangeline: %ld\n\n",testazim,rangeline); 
return; } 

rangeline++; 

/**************************************************************************/ 
/* Close files and terminate program: _ * / 
/**************************************************************************/ 

fclose(corner); 
fclose(rangecom); 
} ; 

8 



APPENDIXE 

SIR-B Raw Data Format 



51B·D Raw Data Format · 

The SIR-B raw data sets you have requested are stored on two 9-track. 6250 bpi computer 
compatible tapes (CCI') •. There is one file on each raw data tape. The tapes are labelled 
with the data take number and the time of the data. 

SIR-B 
Raw 
Data 
File 

EOF.EOF 

SIR-B raw data tape 

Each record on the tape is a range line of the raw data set and contains 768 words ( a word 
is defined to be 32-bits). There are 21K records (i.e.,• 21504 records) in each file. The 
first 13 words of the raw data record consist of header information. The actual raw data 
begins at the 14th word. Documentation on the raw data header is attached. 

Raw Data Header 3415 SAR Data Samples Trailing Zeros 

Wl W2 Wl3 W14 Wl5 W696 W697 W768 

One raw data record 

Each range line contains 3415 SAR data samples followed by 288 bytes of trailing zeros. 
The raw data for data take Xl-035.60 were digitized using 6 bits/sample. Five samples 
are packed, right-justified within each 32-bit word. The two most significant bits of each 
word are zeros. 

ooj Sample 1 Sample 2 Sample 3 Sample 4 Sample S 

One 32-bit word containing 5 raw data samples -- "packed" format 




