
:~ .. :L.:_~·--··

... ,. ·: . . ~·

A MICROCOMPUTER CONTROLLER FOR A NYLON SPINNING MACHINE

by Terence Enfield Kirk

Submitted to the University of Capetown in partial

fulfilment of the requirements for the degree of

Master of Science in Engineering.

September 1985

fi --- . · ·~-·--.--~ ~_".":.~,;~_ ;-_~~;~~s~~~=~c:-t~~/,.~.·4'<~~·-"'·~

l
i The ~niversity of Cl'lpe To)IVn has_ been given I!
1 the. nght to rc.produca tlii!: thesis in whole ii
) or m part. Copyright Is held by the author. !
, ___ ------- ---- -------- -----'-----~---- -- ---- --•-~-. ---- - i

Univ
ers

ity
 of

 C
ap

e T
ow

n

The copyright of this thesis vests in the author. No
quotation from it or information derived from it is to be
published without full acknowledgement of the source.
The thesis is to be used for private study or non-
commercial research purposes only.

Published by the University of Cape Town (UCT) in terms
of the non-exclusive license granted to UCT by the author.

Univ
ers

ity
 of

 C
ap

e T
ow

n

.:,.

ABSTRACT

========

This thesis will show how a new type of controller for a Nylon

spinning machine was developed from an initial specification. The

controller is a component in a loosely coupled feedback system

which reads two tachometer pulse trains and various plant

interlocks, and produces two pulse trains which are used to

control two solid state variable frequency variable voltage

inverters and their AC motors. The specification calls for 24

controllers to be linked to a PDP 11/23 host computer which holds

a library of operating parameters which can be downloaded into

each control unit by ~n operator.

After examining the requirements of the system, a microcomputer

implementation was chosen as· best meeting the needs of the

project. Elsewhere in the plant several earlier attempts at using

micro-computers as dedicated controllers had been made, with

rather poor results. Consideration of the future requirements of

the company showed that there was a clear role for these

controllers, and it was clear that there was a need to define

standards for their development and implementation, and so a

survey of the company's requirements was done, on the basis of

which a standard was adopted.

The thesis covers ali system related aspects of the project, from

the initial selection of a microcomputer system and software

development system, to the design and implementation of the

controller.

ACKNOWLEDGEMENTS.

At the start of this project it was estimated that there were

approximately two person years of work to be done. The project had

to be commissioned within eight months, so it was necessarily a

team effort. My role was that of sys tern designer. Since

there were no established standards for microcomputer systems at

SANS, this role included a survey and assessment of the

company's microcomputer requirements, and the establishment of

standards, as well as designing and developing the application

hardware and software.

I had invaluable assistance in all aspects of the software design

and implementation from Dave Thalrose of the computer applications

group at SANS, who also wrote the host communications module, and

explained the operation of the SMT operating system to me. Don

Glass had overall responsibility for the project, and made sure

that all phases of the project fitted together smoothly, but still

managed to find time to write the OCP module. Michel Malengret

adapted the sequence control module from the Type 30 Conmac

software, and Karsten Rapmund designed and built the prototype I/O

board. Len Baxter and Dereck Gray built the C~binet for the

control units, as well as assisting with the assembly and testing

of the computer drawers. Annelie Faure of the SANS technical

library was very helpful in locating technical data required for

the project.

I would not have been able to complete this work without the

financial assistance provided to me by the University in the form

of the J.W. Jagger.scholarship, as well as

from SANS.

the monthly remittance

Finally I would like to thank Professor Braae of the Electrical

Engineering department for the prompt and helpful supervision of

the final drafts of this thesis.

. 1)

\

1.1)

1. 2)

1. 3)

1. 4)

2)

2. 1)

2.2)

2.3)

3)

3. 1)

3.2)

3.3)

3. 4)

> . .,,,·.

ABSTRACT.

ACKNOWLEDGEMENTS.

TABLE OF CONTENTS.

ILLUSTRATIONS .

INTRODUCTION.

Introduction.

Requirements.

I N D E X

The Inverter Control Unit.

Selecting a real ti~e microcomputer system.

THE INVERTER CONTROLLER HARDWARE.

The SBC 88/25 hardware.

Interfacing - the I/O board.

Housing the inverter control unit.

THE INVERTER CONTROLLER SOFTWARE.

Magic, a software development system.

SMT+ a real time multitasking operating system for

small computers.

The inverter control unit software modules.

Making the system.

INDEX

4) USING THE INVERTER CONTROL UNIT SYSTEM.

4.1) Assembling and commissioning an ICU.

4.2) The local VDU OCP task.

4.3) The Control-A task.

4.4) The host OCP task.

5) CONCLUSION.

5.1) Assessment of MAGIC and INTEL SBC.

5.2) Assessment of project results.

5.3) The future of the ICU system.

6) GLOSSARY OF TERMS AND ABBREVIATIONS.

7) CITATIONS.

APPENDICES

A) Introduction to Nylon Spinning.

B) Production Specification for Machine SB controller.

C) Overview of Inverter Control Unit System.

D) Specification of operating environment for computers

at SANS.

E) Comparison of currently available microcomputer systems

suitable for use in real time control applications.

F) Communications protocol for an RS-422 multidrop link

between the host and ICU.

G) Software listings.

H) Hardware schematics and jumper allocations.

";.;.:.:·

ILLUSTRATIONS

2.1.1 Block diagram of Single Board Computer.

2.1.2 Single Board Computer memory map.

2.2.1. Logic diagram of I/O board.

2.3.1 General layout of computer cabinet.

2.3.2 Exploded view of computer drawer.

2.3.3 Schematic diagram of power supplies.

3.1.1 Schematic diagram of MAGIC development cycle.

3.3.1 Overview of Inverter Control Unit software and data.

3.3.2 Analysis of traverse speed measurement error.

3.3.3 Relationship between system clock and tacho pulses.

3.3.4 Ratio task flow diagram.

3. 3. 5

3. 3. 6

3. 3. 7

Winder drive task flow diagram.

Relationship between tasks producing inverter pulse trains.

Winder control task flow diagram.

3.3.8 Ramp down procedure flow diagram.

3.3.9 Ramp up procedure flow diagram.

3.3.10 Run procedure flow diagram.

3.3.11 SANS Sequence timing module flow diagram.

3.3.12 SANS Sequence Execution module flow diagram.

3.3.13 Inverter Control Unit Sequence task flow diagram.

3.3.14 Overview of OCP data.

3.3.15 OCP task flow diagram.

3.3.16 Traverse drive task flow diagram.

3.3.17 Traverse Control task flow diagram.

3.3.18 Graph of traverse speed vs time.

3.3.19 Traverse control task flags.

3.3.20 Traverse modulation parameters.

3.3.21 Modulation procedure flow diagram.

3.3.22 Banding Avoidance procedure flow diagram.

3.3.23 Determination of rate of change of chuck speed.

3.3.24 Graph of chuck speed vs time.

3.3.25 Graph of cake diameter vs time.

' _-_ --

/

··.: >

3.3.26 Chuck speed measurement task flow diagram.

3.3.27 Communications control task flow diagram.

3.3.28 Received data interrupt handling routine.
\

3.3.29 Transmitted data interrupt handling routine.

4. 1. 1

4 .1. 2

4. 1 • 3

4 .1. 4

4 .1. 5

4 .1. 6

4. 2. 1

4. 2. 2

4. 2. 3

4.2.4

4. 2. 5

4.2.6

4.2.7

4.2.8

4.4.1

4.4.2

A. 1

A.2

A.3

A.4

General view of ICU drawer.

Computer and I/O boards.

Inverter Control Unit drawer front panel.

Inverter Control Unit drawer back panel.

Front view of drawer with panel removed.

Back view of drawer with panel removed.

Operator Command Processor main menu.

Viewing and altering time and date.

Viewing current status of winder position.

Main menu option 2 help facility.

Viewing the current opertaing parameters.

Main menu option 3 help facility.

Altering banding avoidance parameters.

Altering traverse modulation parameters.

Host OCP main menu.·

Host OCP menu option 5.

General view of T18 M/C SB windup floor.

General view of Barmag winder.

View of Barmag winder in operation.

View of Barmag winder traverse tips.

A.5 Detail of traverse modulation waveform.

A.6 Graph of traverse speed vs cake diameter.

C.1 Overview of Inverter Control Unit components.,

C.2 Block diagram of inverters.

,,

INTRODUCTION

CHAPTER 1 : INTRODUCTION

========================

1.1 INTRODUCTION.

=================

The aim of this project was to control the speed of the traverse

and winder motors on a Barmag High speed wind up head, according

to the measured ratio of speeds of the traverse motor and a chuck

driven by the winder motor. For more details see the introduction

to Nylon Spinning given in Appendix A. The rest of this thesis

will assume familiarity with these ideas. A glossary of terms and

abbreviations is given in chapter 6.

Because of increased demand for certain types of yarn, and in

an~icipation of future demand, SANS decided to convert an existing

Type 18 Terylene spinning machine into a Type 18 Nylon Spinning

machine. One part of the project called for the installation of

Barmag high speed winders on the windup floor. The control of the

winder drives forms the subject of this thesis. Existing machines

use two inverters to control all 24 traverse and winder drives.

Inverter failure means that all 24 positions are

stopped. With the advent of low cost, solid - state, variable

speed AC drives, it seemed that it might be financially viable

to use individual inverters for each position, and it was clear

that an investigation was necessary.

Once the question of individual inverters on each position had

been raised, the question of inverter controllers for each

Page 1-1

.·
•. - • . . . ->" -· ~ · ..

,· ··:
.·. - .. - .. ' -.< .: .. ·.

INTRODUCTION

position also had to be considered. Assuming that a sophisticated

controller able- to give a programmable traverse frequency

modulation could be produced, the requirements for the system

would be as set out in the next section.

1.2 REQUIREMENTS.

=================

1) Reduce the amount of l-0st production time _through inverter

failure, without increasing the amount of maintenance time because

of a greater number of inverters and hence inverter failures.

2) Extend the range of products that can be spun with the Barmag

wind~r. The old combination of controller and winder could only

operate over a limited range, which restricted the number of

products which could be spun.

3) Improve the package .build of spun _cakes. Research carried out

by Hudgell, Sykes and _others (ref 1, 2, 3, 4) indicated that

improved modulation and banding avoidance techniques ~ould reduce

or even eliminate ribboning and banding problems which are

responsible for wasted production because of yarn takeoff

problems.

4) Simplify the updating of operational instructions to a winding

position. The controllers

which use potentiometers

on existing machines are analog devices

and switches to set operational

parameters. After a machine has

usually takes several further

been set up for a new product,

fine adjustments to get

satisfactory standard of output - a wasteful process.

it

a

5) Monitor the operation of each position on the machine to check

whether it is within preset limits, and generate an alarm if

operation moves outside those limits. The idea here was to monitor

the difference between desired and actual motor speeds to detect

bearing failures and log unscheduled production stoppages.

Page 1-2

:·,

INTRODUCTION

The production department conducted an investigation which

rev ea 1 e d that the break even point for cos t per in v_e rte r again s t

lost production time through inverter failure would be about one

inverter for five positions. Factors 2) to 5) called for

individual inverters, and the potential production gains from

having these features, coupled with the low cost of the inverters

made it possible for the machine to pay for itself within the

company's stipulated 2 year payback period for projects of this

nature. Thus a decision was made to use two inverters and one

controller per position.

This decision had other beneficial offshoots. The limited local

market for certain products and the inability of the old system to

produce more 'than one product at a time meant that some products

required short runs to satisfy demand. ~Incorrect setting up and

faulty operation of the analog controllers is one of the _major

sources of wasted production in similar systems elsewhere in the

plant. The ability to split the machine and control individual

positions means that low demand products can be set up on a few

positions and left running for longer periods, thus increasing the

conversion efficiency of the machine. Individual control also

enables some units to be used for pre-production trials while

normal production continues on the rest of the machine (it had

been the practice in the past to stop the machine and wind on only

a few heads while trials were in progress).

One aspect of individual control that was of particular interest

was the requirement in 3) for banding avoidance or "Ribbon

Breaking", which can only be done on the basis of chuck and

traverse speed measurements and individual position control.

Trials had been done at Barmag in Germany, FII in Canada and ICI

in the UK which indicated that banding avoidance leads to improved

package build and fewer customer returns (ref 1). The three

systems all use dual inverters on the traverse, with some method

for switching from one to the other when a ribbon point is

detected. However the dual inverters added to the cost of the

system, and considerable problems were experienced with switching

from one inverter to the other. In addition there were problems

Page 1-3

INTRODUCTION

achieving the resolution of control necessary for these schemes to

work. The scheme used by SANS overcomes all of these problems.

1.3 THE INVERTER CONTROL UNIT.

==============================

Once the general requirements for the controller had been decided

on, and the SANS production department .had produced a

specification for the controller operation (appendix B), it was

necessary to describe the required behaviour of the controller

exactly so that a design could be produced. The functions to be

performed by the controller are described in appendix C.

The design of

factors :

the controller was determined by the following
~

1) The need for highly accurate speed control and measurement to

keep yarn tension within closely defined tolerances (See Appendix

B for a specification of operational parameters).

2) The need for quick, reliable accurate and repeatable alteration

of operational parameters.

3) The lack of hardware development facilities at SANS. Past

experience has shown that project completion dates, in- service

reliability and cost are improved by buying board level components

from reliable vendors. In-house design and construction is

normally only justified when there is no commercially available

system to perform the task, or when the scale of the project

leads to savings on component count through hardware

optimisation (because ready-made boards ustially incorporate

features which are unnecessary for a particular project, but give

the greatest overall flexibility).

4) The controller bas to perform a complex sequence of operations

depending on the current status of the machine.

Page 1-4

INTRODUCTION

.s) The controller had to be able to incorporate future

improvements and changes to the machine. It was also desireable

that it should be usable in similar but different sytems.

There are no ready-made analog controllers which are able to

perform this control function. Given the range and. complexity of

the functions of the controller, and after investigating the

ability of a micro-computer to perform the necessary tasks, and

given the relutance of SANS to get involved in the development of

component level systems, the decision was taken to develop a

microcomputer controller rather than a custom made analog device.

This decision meant that a whole range of ready-made systems

became available.

1.4 SELECTING A REAL TIME MICROCOMPUTER SYSTEM.

===

Having decided to use a microcomputer, it then became necessary to

choose the microcomputer hardware, operating system, and a

development system to implement the controller. There were two

factors which had to be considered in making the choice.

The first is that there are already a number of microprocessor

controllers in operation at SANS, and it is expected that many

more will be installed in future. These sytems have several

disadvantages. The first is that they are mostly dedicated, with

software in ROM and no sou~ce· listing or development facility.

This means that it is difficult to maintain and tailor systems

for particular applications. In addition there are a number of

different systems, which means that a wide variety of spares have

to be kept, and more importantly development, maintenance and

operational staff have to be familiar with a wide range of

equipment. This is undesirable because of the training and

familiarisation time needed for each new item. There was a clear

need to try and rationalise the situation, and develop a standard

for microcomputer and development systems. The system chosen had

to be able to cope with all the present and projected needs of the

company, and as far as possible had to be compatible with existing

Page 1-5

INTRODUCTION

equipment, which implied a careful review ·of the company's present

and future requirements for dedicated computer control. Appendix D

is the result of this enquiry.

The second factor that had to be considered was the wide variety

of board level computer equipme~t_currently available on the

market. Each syste~ has drawbacks and advantages, which had to be

seen in the light of the company's present and future needs. The

various systems that were examined and the aspects of each that

were used for comparison are presented in Appendix E.

On the basis of these enquiries, the standards adopted

were: INTEL single board computers for target controller systems;

and the MAGIC development package running on DEC PDP-11

minicomputers for application software development.

Page 1-6

· INTRODUCTION

CHAPTER 2 : THE INVERTER CONTROL UNIT HARDWARE

==

2.1 THE SINGLE BOARD COMPUTER.

==============================

The.~eas6ns for

were dealt with in

using the INTEL iSBC 88/25 single board computer

chapter 1.4. This chapter will deal with the

hardware on the board, and describe how it is used to control the

inverter control unit. A brief description of the single board

computer will be given, followed by a detailed description of the

u~e of the component parts of the board in this project.

2.1.1 THE 1SBC 88/25 SINGLE BOARD COMPUTER.

A block diagram of the computer is given in Fig~re 2.1.1. The

basic board contains an 8 level Programmable Interrupt

Controller (PIC); a Programmable Peripheral Interface (PP!) giving

three eight bit parallel ports; a three channel Programmable

Interval Timer (PIT); a Universal Synchronous I Asynchronous

Receiver I Transmitter (USART) for·serial communication with a

local terminal; 4 kilobytes of RAM, with sockets for another 4

kilobytes; and four sockets for 2, 4, 8 or 16 kilobyte ROMs,

giving a maximum capacity of 64 kilobytes of EPROM or ROM.

Because of the need for a second serial port for host computer

communications and mor~ interval timers, an iSBX 351 piggy back

board was added to the mother board via one of the local bus iSBX

Page 2-1

BUFFERS

8 2 SS

P Pl

4K RAM

INTERFACE

1lUFFERS

8 2 S1

USART

64K ROM

LOCAL BUS

MULTIBUS

FIGURE 2.1.1: BLOCK DIAGRAM OF SBC

SBX
CONNECTOR.

82S3

PIT

8088 CPU

SBX
CONNECTOR

MULTIBUS

INTERFACE

-.· . .. •:
..• · ; ... ~,;... .. ·1. .~ .. ·:.~:~· -· . .. ·~ .

HARDWARE

connectors. This board provides an extra USART with buffers for

RS-232 or RS-422 (differential multidrop) serial communications,

and an extra PIT, which is usually used to clock the USART.

Note that a more general term for Progammable Interval Timer (or

PIT) is Real Time clock (or RTC). Both terms are used

interchangeably in this thesis. Figures H.l and H.2 in Appendix·H

contain full schematic circuit diagrams for the two boards.

2.1.2 USE OF PROGRAMMABLE INTERVAL TIMERS.

A requirement of the

smooth, avoiding sudden

such as P-jumps}. The

controller was that speed control be

speed changes (except intended changes

8253 PIT was carefully checked for

glitching at terminal counts, using a high speed logic analyser.

It was selected as a candidate for timing applications only when

it had been shown to have smooth, glitch free operation. There are

two PIT's in the system (one on the mother board and one on the

piggy back board), giving a total of six timers. The system real

time clock requirements were as follows :

1 x SOHz system clock.

2 x USART baud rate clocks.

1 x Traverse inverter pulse train.

1 x Winder inverter pulse train.

1 x Traverse tachometer.

1 x Chuck tachometer •

. Total 7

The use of each PIT channel will now be considered in more detail.

2.1.2.1 USART BAUD RATE GENERATION.

Since both USART's had to run at the same baud rate it was

possible to use one channel of the PIT for both USART clocks,

which meant that six

need could be satisfied by

PIT channels were required in all. This

the two existing 8253's. The USART

Page 2-2

··:··

HARDWARE

requires a square wave clock for the serial I parallel shift

register. To work out the frequency of the clock, the requirements

of the system and the operation of the USART had to be considered.

A baud rate of 9600 was required, and the PIT is clocked at 1.229

MHz. The USART has an internal divider which divides the clock by

1, 16 or 64 to give the baud rate. 1.229 MHz has to be divided by

approximately 128 to give a baud rate of 9600. The USART division

~as arbitrarily set to 16, which meant that the PIT had to divide

the basic clock by 8. Thus the PIT was set up to operate in mode 3

(square wave generator), with a count value of 8.

2.1.2.2 SHAFT SPEED MEASUREMENT.

The specification called

speed to be measured.

for the chuck speed and the traverse

There

measuring shaft speeds with

conversion of the output -0f a

are three common techniques for

a computer Analog to digital

tacho generator; shaft encoders;

a shaft rotation transducer (eg pulses from and counting of

proximity detector)

drawbacks. In this

over time. Each method has its advantages and

project the last method .was used for four

reasons :

A) Analysis showed that the pulse counting method was capable of

producing the required measurement accuracy.

B) The PIT had channels available for this purpose, providing a

simple and cheap method for speed measurement, the only extra

hardware required is for buffering and filtering.

C) Speed measurement had to be done to a high degree of accuracy.

If A-D or shaft encoding techniques had been used, high quality

(and therefore expensive) hardware would have been required.

D) There was

tachometer or

very little space

encoder, and the

on the machine to mount a

simplicity, small size 'and

reliability of proximity detectors offered reduced maintenance

overheads.

Page 2-3

•·
--·. ,:· . .,

HARDWARE

2.1.2.3 INVERTER PULSE TRAIN GENERATION.

The controller had to provide variable speed control for two

inverters. Because of the requirement for highly accurate speed

control, pulse driven inverters were used rather than the more

usual reference voltage control. This meant that Emerson had to

modify one

input (See

operation).

pulses, it

frequencies

of their standard inverters to accept a pulse train

appendix c for a description of the inverter

If a PIT channel was to be used to generate the

had to be able to produce the full range of operating

with the required accuracy. Two factors had to be

considered if this method was to work. The first is that the

inherent resolution of the PIT decreases as frequency of operation

increases, which had to be checked against the production

requirements •.. The second factor is that there is a maximum count

value that can be loaded into the PIT, which limits the low

frequency operation of the PIT. Each of these factors will now be

considered in detail.

A) HIGH FREQUENCY RESOLUTION OF THE PIT.

The traverse operates at a higher frequency than the winder, its

maximum fre4uency being 320 Hz. The control pulse train had to be

six times the r~quired o~tput frequency of the inverter,

maximum output frequency required was :

6 * 320 Hz = 1920 Hz.

\

so the

The specification called for a 0.2 Hz resolution, which translates

into 1.2 Hz from the PIT. In Mode 3 the 8253 operates as a square

wave generator. A count value loaded into the PIT is decremented

by clock pulses from a crystal oscillator. When the count has

reached half its value the state of the output is changed. When

the count reaches zero the state of the output is changed back,

and the count value is automatically reloaded into the counter.

Page 2-4

HARDWARE

Thus

CRYSTAL CLOCK FREQUENCY

SQUARE WAVE FREQUENCY =

COUNT VALUE.

The frequency resolution of the generated square wave is limited

by the integer count value loaded into the PIT. The resolution

decreases as the output frequen~y approaches the PIT clocking

frequency. Output frequency is controlled by loading different

count values into the PIT. The factory default clock rate is 1.229

MHz, thus :

1 229 000

MINIMUM COUNT VALUE = --------- = 640

1920

The smallest change in frequency that can be achieved at this

frequency is by increasing the count value from 640 to 641. This

corresponds to a frequency change from 1920 to 1917.3 Hz, ie

2.7Hz, which does not meet the specification. Fortunately it was

possible to double the PIT clock rate, as the 8253 will operate up

to 2.5MHz, and there was a 2.456MHz clock available. This

increased the minimum count to 1280, and the worst case

resolution is 0.225Hz, which was acceptable to the Production

Department.

B) MAXIMUM COUNT VALUE THAT CAN BE LOADED INTO PIT.

,The count value loaded into the PIT is a 16 bit integer, so

2 456 000

MINIMUM FREQUENCY=----------= 37.5 Hz.

65 536

Page 2-5

HARDWARE

Ramping 'of the motors down to a standstill was achieved by using

the expression

NEW SPEED = OLD SPEED - DECELERATION RATE

If the old speed minus the new speed results in a count value

requiring more than sixteen bits, then the high order bits above

sixteen will be lost (le the count "wraps around" from 65 536 to

zero), and the resulting count value will be incorrect. To

ensure that this situation never arises, the minimum speed

should be set so that the count value of new speed is never

greater than 65 536 :

OLD SPEED = NEW SPEED + DECELERATION RATE

expressing this in terms of the count value

Fi Fi

= + MAXDEC

Nold Nnew

Where Fi

Nold

Nnew

= clock rate (2.456 MHz)

previous count value

= new count value

MAXDEC = maximum deceleration rate

Rearranging

If Fi

Nnew

Fi * Nnew

Nold = -----------------
Fi + Nnew * MAXDEC

= 2.456MHz

= 65 536

MAXDEC = 4.2Hz per lOOmS (Limiting inverter acceleration rate)

Page 2-6

I

HARDWARE

Then maximum count value Nold = 58 930. This corresponds to a

frequency of 42 Hz.

Thus by using a clock frquency of 2.456 MHz it is possible to

achieve the speed resolution required by the specification, and

the useable speed range is 42 - 1920 Hz, corresponding to 7 - 320

Hz out of the inverter. Initially the aim was to get the starting

speed as low as possible to limit the starting current of the

(synchronous) wind up roll motor. However it was discovered that

the motor was unstable at this speed, causing inverter trips, and

the best practical starting speed was 13.3Hz, corresponding to

80Hz from the computer.

2.1.2.4 THE SYSTEM CLOCK.

The SMT operating system requires a 50Hz system clock which is

provided by one of the PIT channels. The requirement for highly

accurate speed measurement made it necessary to read the system

clock "on the fly" to achieve a clock resolution of less than 20mS

(see chapter 3.3.3 and 3.3.10). As a result the PIT was operated

in mode 2 as a divide by N rate counter, rather than in mode 3

as a square wave generator. In mode 3 the count value is

decremented by two for each clock pulse, and when the count

reaches zero the state of the OUT pin is inverted. In mode 2 the

count value is decremented by one each clock pulse, and when the

count reaches zero the OUT pin goes low for one clock pulse.

In mode 3 the state of the output pin has to be determined, as

well as the count, whereas in mode 2 only the count has to be

read, which is far simpler. Using mode 2 had no other

ramifications for the design, and gave satisfactory performance in

practice.

The clock frequency used was 1.228MHz, so the required PIT count

value was :

1 228 000

--------- = 24 560

50

Page 2-7

HARDWARE

2.1.3 THE PROGRAMMABLE INTERRUPT CONTROLLER.

This section assumes familiarity with the · 8086 interrupt

mechanism, 8086 assembly language, MULTIBUS, and the operation of

various Intel peripheral chips. Intel publishes numerous

ref ereµce manuals which should be consulted for more

information (See references 9 and 10). This section will be

limited to implementation notes.

Seven interrupts were required by the system, so the on-board

eight level 8259A interrupt controller was adequate, and the use

of slave interrupt controllers was not necessary. The interrupt

vector table is initialised in MSMTUl.RTL, the user hardware

initialisation module. Interrupts Types 1 to 4 are reserved for

8086 exception handling, single stepping and Non-Maskable

interrupts, and Types SH to 19H are reserved by Intel for future

use. To maintain compatability with future hardware and still

leave as much RAM available as possible, the controller used

Interrupt Types 20H to 27H, occupying physical memory addresses

from 80H to 9FH.

SMT has no provision for rotating priority interrupt arbitrat~on,

so the 8259A was used in the fixed priority mode, where INT 20 has

the highest priority and INT 27 the lowest. The version 1.0

release of the MAGIC assembler has a bug in it which makes it

impossible to use embedded absolute code sections in the middle of

other code segments. This meant it was not possible to use the ORG

and DW pseudo assembler instructions to initialise the vector

table, which had to be done with MOV instructions. The use of each

interrupt will now be considered in more detail.

2.1.3.1 INT 21, THE OFF BOARD ADDRESS TRAP.

The computer's MULTIBUS interface was not used, which means that

all system addresses are on-board. The computer has address

decoding ROM's which select the peripheral chips, and also give a

Page 2-8

·. . --. ·~. : : .• ..
-

HARDWARE

signal indicating whether the address is on-board or off-board. If

the address is off-board, it is handled by an 8289 bus

controller and an 8288 system controller dedicated to the bus. The

system then goes into a WAIT state until the bus peripheral being

addressed acknowledges

bus. If there is no

(XACK) that it has valid data on the data

peripheral, the computer would go into an

.indefinite wait state, that is it ~ould "crash". To prevent this

from happening, a monostable is gated with the XACK signal. If no

ALE signal is received by the monostable in lmS, it times out and

clears the 'HOLD releasing the CPU from its WAIT state. The

monostable output can be latched and used to interrupt the

processor.

Since there is no off board-device in this system, any attempt to

address one implies that something is wrong. If this does happen,

the processor traps this condition, which causes the unrecoverable

_error routine,(RRGEL) to be called with an error number 30.

2.1.3.2 INT 22, THE SYSTEM CLOCK INTERRUPT.

This routine gets called once every 20 mS when a system clock

interrupt is received from the PIT. The routine is held in

the system module SMTCLK, and is declared PUBLIC so that it can be

initialised in MSMTUl. The service routine sets a system event

which triggers the clock task which updates all its counters.

2.1.3.3 INT 23, TRAVERSE TACHO INTERRUPT.

This routine is triggerred when the tac ho PIT count reaches zero,

and is the timer for the traverse tac ho task. It takes the

current value of NOW, reads the system clock "on the fly", and

sets an event which tells the traverse tac ho that the timing

period has elapsed. See Chapter 3.3.3 for. a more detailed

explanation of the operation. The routing of the physical link is

described in the chapter on the I/O board.

Page 2-9

-·.

HARDWARE

2.1.3.4 INT 24, CHUCK TACHO INTERRUPT.

This performs the same function·as INT 23 for the chuck tacho. See

chapter 3.3.10 for more details.

2.1.3.5 INT 25, HOST LINK TRANSMIT DATA INTERRUPT.

The USART for the host link is on a piggy ,back SBX 351 board. This

·board can be configured for RS~232 or RS~422 (three state

differential) operation by changing some links. From the

programming point of view however, there is no difference between

these two modes.

As explained in chapter 3.3.12, the multidrop serial link is

·configured so that it produces an interrupt when the transmit

buffer is empty. The interrupt service routine fetches the next

character from the packet buffer, checks to see if it is the final

character, and loads it into the transmit buffer (after checking

to make sure it is empty). If the character is the final one,

then an event is set which tells the Host link communications task

that the transmission is complete. The routine is then exited

without reloading the transmit buffer, and data transmission

halts.

2.1.3.6 INT 26, THE LOCAL VDU RECEIVE DATA INTERRUPT.

Every time a key on the local VDU is pressed, the local VDU USART

receives a character in its input buffer, causing an interrupt

that calls the service routine in the system module

MSMTPIQ.RTL. The service routine checks the received character to

see if it is control-A. If it is, it sets the system event which

triggers the CTL-A task and exits. If it isn't CTL-A, it checks

that the input buffer is not full, and if it isn't, . places the

character in the text buffer and echoes it on the VDU. If the

buffer is full, then the pointers are reset and the previous data

is overwritten.

Page 2-10

·
. ··· ... '-

HARDWARE

2.1.3.7 INT 27, THE HOST LINK RECEIVE DATA ROUTINE.

This is similar to the transmit ioutine, and is fully described in

chapter 3.3.12.

2.1.4 THE SERIAL LINKS.

Two serial links are provided. One .is an RS-232 link used for

communication with a local VDU, and the other is an RS-422

multidrop link for communication with a remote process management

computer. The local VDU link uses the on board USART, while the

multi drop host link uses the piggy back USART.

Both links operate at 9600 baud, and use eight data bits, with one

stop bit and no parity. As explained before, the baud rate clock

for the transmit and receive buffers on both USART's are generated

by the same PIT output (See section 2.1.2.1). Initialisation of

the USART's is performed in MSMTUl.RTL, and follows the sequence

reccommended by INTEL, namely

1) Disable interrupts.

2) Write four zeroes to USART control port with a 16

clock cycle settling time between writes.

3) Write a USART reset character to control port.

4) Allow USART to settle.

5) Write mode definition word and allow settling time.

6) Write command word to control port.

7) Enable interrupts.

Once an_ initialising sequence has started, it must be completed.

To ensure that this happens in an oderly fashion, interrupts are

disabled at the start, and four dummy zeroes are written to the

control port, which will take the longest initialisation sequence

possible to completion. The settling periods are required by the

internal operation of the USART. Once any outstanding

initialisation sequences have been completed, control words can

be sent to the control port with appropriate settling times

between writes. The reset word instructs the USART that mode and

Page 2-11

. ·.· · .
. ···. : .. :- .

HARDWARE

control words are about to follow. The mode word sets up the

number of stop and data bits and disables parity. The command word

enables the Transmit and receive buffers, and sets the DTR and RTS

modem control pins. This completes the initialisation phase and

the USART can receive or send data. When data is received, the

interrupt routine merely has to read the USART data register. When

the CPU wishes to send data~ it writes it to the data port.

2.1.6 DIGITAL I/O.

The ~BC 88/25 computer has an

Peripheral Interface (PPI) chip,

on board 8255 Programmable

providing 24 lines of digital

I/O. The system digital requirements were for six inputs and four

outputs to the outside world, and one output for on board use, as

follows

INPUTS

1) Four address selection bits.

2) Position ready to start.

3) Tailing button. (not used in this syst~m)

OUTPUTS

1) Position ready.

2) Winder inverter run contact.

3) Traverse inverter run contact.

4) Software error.

5) Off board memory address latch clear.

Each of these signals is fully described in the section on the I/0

board (section 2.2), and the overall operation of these signals is

described in Appendix C. This section will be limited to a

description of the PPI.

The outputs had

latching. Port A

to be latched, but the inputs did not require

of the PPI has an 8287 bi-directional buffer,

whereas the other ports have facilities for output buffers only.

Page 2-12

. · .. ;. . · .. ,.,.,;

HARDWARE

So port A was made an input port, and the Transmit/Receive pin of

the 8287 buffer was pulled low to put it into the input mode. Port

B was configured as an output port, buffered by 74LSOO NANO gates

in sockets XU9 and XUlO. Both ports were initialised as basic

input/output mode 0 ports. The off board memory address latch

required bit set/reset facilities~ so one bit of port C was

used, since port C supports bit set/reset operation. Once again

the requirement was for simple latched operation,

configured as a mode 0 output port. Thus the PPI

as follows

PORT A

PORT B

PORT C

INPUT

OUTPUT

OUTPUT

MODE 0

MODE 0

MODE 0

so port C was

was initialised

The code which initialises the PPI is in MSMTUl.RTL.

· 2.1.6 RAM AND ROM.

Since the 8086 interrupt vector table oc~upies the first kilobyte

of physical address space, RAM is always mapped into the lowest

memory locations. The basic SBC 88/25 board comes with 4k of RAM

fitted. SMT requires approximately 2.5 k, the vector table uses

256 bytes, and the applications tasks need approximately 1.5 k

giving a total requirement of 4.25k. It might have been possible

to reduce this to under 4k by carefully tuning the system, but

because of the project time limits extra RAM was added to the

sockets provided on the board. The factory default setting maps

this RAM from physical addresses 3000 to 3FFF (hex). It was

re-mappeA to be contiguous with the ·on board RAM by cutting a

track from the address decoding ROM, and soldering a length of

wire from a different address select line (See Appendix H for

the det~ils).

The 8086 reset vector resides at

is always mapped to the

address

highest

FFFFOH, so on board ROM

memory locations. SMT

occupies approximately 16 kilobytes of code, whilst the

applications tasks have nearly 32 kilobytes of code. This makes

Page 2-13

FFFFF
FFFFO

FCOOO

F4000

01FFF

OOOFF

00000

RESET VECTOR TOP OF MEMO RY

SMT CODE

APPLICATIONS CODE

BOTTOM OF ROM

UNUSED

TOP OF RAM

SYSTEM DATA

INTERRUPT VECTOR TABLE
BOTTOM OF MEMORY

FIGURE 2.1. 2: SYSTEM MEMORY MAP

-.. ,._.•_u"" • •.

··.:, "; •• ·:~, 'r •,

HARDWARE

the total code requirement 48k. There are four ROM slots on the

board that can take all standard ROM sizes from 2 kilobytes up to

16 kilobytes. Four 8k ROMs give 32k, so it was necessary to use

three 16k ROMs. The RESET vector at FFFFOH contains a jump to the

SMT entry point. Figure 2.1.2 is a memory map of the system,

showing how RAM and ROM are used by the controller.

2.2 THE I/O BOARD.

==================

The function of the I/O board is to level shift and· buffer signals

from the plant and the computer. The board also logically AND's

·the winder i~terlock signals together and produces a Go/Nogo

signal for the computer. Each interlock drives an indicator LED

through a latch, so that its status can be monitored. The signals

handled by the I/O board will now be described. Appendix A should

be consulted for a description of a Nylon Spinning machine.

2.2.1 THE PLANT INTERLOCKS.

These are voltage free normally open contacts used to monitor the

state of the plant. The compute~ supplies 24V to one side of the

contact, and the other side goes to ground through an opto-coupler

and a limiting resistor. If the contact is closed, the output of

the opto-coupler goes _high, and this output is ANDed with all the

other outputs, and latched for an LED display. For the winder to

start or continue running, all these contacts must be open. The

start button is similar, except that the opto-coupler output is

latched before being ANDed with the other interlocks.

2.2.1.1 INPUTS FROM JHE PLANT.

A) STOP - this is a push button mounted next to each winder

position that when pressed causes the winder motors to ramp to a

standstill.

B) START this is a push button mounted next to each winder

~osition that causes the winder motors to ramp~p to running speed

Page 2-14

. ·.,..

HARDWARE

when pressed, provided none of the other interlocks are'enabled.

C) EMERGENCY STOP - There is one emergency stop button located at

either end of the machine. If either of these buttons is pressed,

all 24 winders ramp to a standstill.

D) WRAP DETECT A sensor mounted close to the winder and

traverse rolls is triggered if yarn gets wrapped around either of

them. This usually happens when the thread line has broken; and

the machine cannot operate under these conditions.

E) OIL MIST FAIL - The bearings of the motors and the chuck are

lubricated by oil droplets carried by air. If the lubrication

system fails, all 24 winder positions are ramped to a standstill.

F) THERMISTOR TRIP - Thermistors mounted in the stator windings

detect whether the motor is overheating, which signals imminent

motor failure, and ramps the winder to a standstill.

G) TRAVERSE INVERTER READY - Each traverse inverter has a set of

contacts which are closed as long as the inverter is not in a

tripped state, such as over or under voltage or current limit. If

an inverter does trip, the winder is ramped to a standstill.

H) WINDER INVERTER READY - As for the traverse inverter.

I) TAILING BUTTON - See Appendix A for a picture of the transfer

tail. Operation of the transfer tail indicates that a wind up

period has begun. The ability to monitor this condition was

included.in case it became necessary to know this start point in

future modifications to the system. However it is not used in this

application.

2.2.1.2 OUTPUTS TO THE PLANT.

A) HEAD LIFT SOLENOID - Whenever a fault condition occurs or the

winder is stopped for any reason, the winder roll must be lifted

clear from ·the package surface. The winder roll is mounted in

Page ~-15

,··' ..

HARDWARE

the head which is held in contact with the yarn package by

compressed air. The he•d lift solenoid switches the ·flow of air so

that the head is lifted clear ·of the package. This signal is

generated by ANDing all the input interlocks together, and is

generated completely independently of the computer sof'tware.

B) POSITION READY - This signal is fed to an indicator lamp

mounted ·next to each winder position, and indicates when the

motors are up to operating speed and ready for use.

C) WINDER RUN - This is a set of reliy contacts which energises

the winder roll inverter.

D) TRAVERSE RUN - As for the winder.

E) HOUR METER - This is a set of relay contacts which drive an

hour meter which records how long the unit has been in operation.

It is used for routine maintenance.

2.2.2 THE PULSE TRAINS.

There are four pulse trains in all. Two go from the computer via

the I/O board to the inverter, whilst the other two come from

variable relu~tance probes mounted on the shafts of the traverse

motor and chuck, and are used for speed sensing. The inverter

drive pulses are optically isolated and then buffered by

transistors. The tacho pulse trains are filtered and shaped, and

then optically isolated.

Page 2-16

. ' ~ ' . - .
·~0

HARDWARE

2.2.3 THE INDICATOR LED's.

Fourteen indicator LED's .are m~unted on the front panel of each

inverter control unit to give information about the status of the

plant interlocks and 1the operation of the computer system. Each

indicator is briefly described.

Ll - Winder inverter is not ready, ie it has tripped.

L2 - Traverse inverter has tripped.

L3 - Thermistor trip has occurred.

L4 - Emergency stop button has been pressed.

LS - Oil mist supply has failed.

L6 - Wrap detected on roll.

L7 - Stop button has been pressed.

LB - Software watch dog.

L9 - CPU running.

LIO - Data~ansmitted to host from ICU.

Lll - ICU received data from host •.

Ll2 - Position winder up to operating speed.

Ll3 - Position started.

Ll4 - Position ready to start.

Ll to L7 are red and reflect the state of the plant interlocks. If

any are lit the winder is stopped or stopping. L8 to Lll are

amber, and reflect the activities of the computer. L8 is driven by

Page 2-17

.........

HARDWARE

the sequencing task (see chapter 3.3.6.2), and will flash with a

two second period if all the system tasks are functioning

correctly. L9 is connected (via· a buffer) to the 8288 system

controller Address Latch Enable pin, and indicates whether the CPU

is running. LIO and Lll are connected to the host link USART

transmit and receive interrupt lines. If the USART is handling

data, the LED's will flash. L12 to L14 are green, and the winder

must be used only when all three are on. There is also a

pushbutton mounted on the front panel which resets the interlock

LED latches. THIS RESET BUTTON ONLY AFFECTS THE LED's, AND HAS NO

EFFECT WHATSOEVER ON THE OPERATION OF THE CONTROLLER.

2.2.4 THE LINK WITH THE COMPUTER.

To simplify maintenance and housing the I/O circuitry was

mounted on a board with a MULTIBUS form factor, which was

manufactured to a specification supplied by SANS. The MULTIBUS P-1

connector was not used at all, and the P-2 auxiliary connector was

used for bringing power onto the I/O board and connecting the I/O

board with the plant. The J-1 connector was used for connecting

the I/O board signals to the computer. Figure 2.2.1 shows a logic

diagram of the I/O board, whilst figure H.4 in Appendix H

shows a detailed schematic diagram of the board.

2.2.5 THE MARK II VERSION OF THE I/O BOARD.

Two problems were experienced with the first version of the I/O

board. The first was that no limiting resistor was placed on the

outputs of the inverter pulse train transistors, so if this

output was short circuited the transistors were destroyed. The

second problem was the lack of a driver transistor for the "Winder

Ready" signal lamp.

A second I/O board was produced with the necessary additions, and

these boards have been installed in ICU drawers that have had

repeated failures due to these ommissions.

Page 2-18

·.,_.· .~

·

·.··• .·

... '";.

l

SBC tNyERT£R CONJBtl, utm
.. INJERLOQS LOGIC . DJGIJAL

••
·~·: ::· ···"; ~ .. . :·-~· ..

. ,r~ . •. • • • .

._. :,

.. . .. ~ . • .··t- .•.

· · STOP . , ' . " -... ·. .. . Liii @) : VllOt 1X11i

WRAP omu · : - - '·. > · ... &m @------ ammss LmH OULE
Ol. IWSl VAlVl Ltd .. & &.I @) HOST COIOWJCltATIOM-TX

9'alGtXCY STOP· - . -c:::l>"'-.....,.lel..-...H &.I@ • tDST. C019WIUCATION·RX .
. • :rtf~"ISTOR TRIP .·

....

. ··-~ • START . -. . . +--ic::::>-----1:.RJP"R.OP=..:..:;::..r--,--r-----r-------~

...... SELECT .

•. · ..
••,• ".

. HEAl:i LIFT SOlfNOID

PDSljlON READY · -~--lal..,· .,....-..,---------:.-• POSITION READY . : •

~ ~2 Second Pulse .. ·- I
,+-e::J~---t:::::)i-------=-=-------------'---------------~. TAILING . . I . . .

. ~- ... "<. ~ . . ·,
-+-C:J. . .__-..,.-·-"...:.. -~ --i.r&1 ---~------4I -.. ..

TAILING BUTTON

.. • ...

,: • . .. : WINDER .RUN • !'" ".:

'l
'

•:

.: .. ~ .

~ \:J~~~~~~~~~~~~~~~~~~~~~~~~-'-,-.... -,:....,---.-.-.. -... -.. -:-.. ---.. -. -. -- WINDER RUN ~SIGNAL .. ,.'·.; ·.

TRJa'IERSE RUN ... ' .. .'--<4="-CJ.---'----1· 01-_----.. -------------------0- TRAVERSE. RU~: SIGNAL, .. :'.- ..

. :._

.

·.- ... · .. ·. .. ·
. :• ... -:

_: ..

. . .::·. ... :,....

L· . ".:.
':..'"'· .··

~-. .·.
•.

.......
·.·:.

: ..

·-··... +··· 1-:- , .. --- -- ----. •··---. - --"'""'---+,-. ~~--+--.. ~. -- - ~-;- -
1· ~-+-~+-,-.-1 ·_ : ' . . ·.

··i·-· -· ~ . • --· --:-. :. • • l

j .. t----t--+--t I ", . 't,

-. ;, '

. ~ ...

•"

. · ...
.· - ~ .t..

· ,

: . . : . ·l- . ..~ _.:.,_
~·-:-:::-:-:. -p·:__~, .. ~· ::.: :

. . . I._ ·.:_ __

·c:J-- -l=-l-"- 1 · ..

. _. ..

·~. ·.

1·
. f !

l ..
T .;t ~~---..:.

--1:_. •·.

.·

.... -~~--- .

-;.: ··O!~CiH.IJjQN ~N CHl(O •PP.J? R(V Of:!>(QIPl~QN I !?"~~N· ..£.U~g Af'r'I> fU.V pl!,(~IJ'll()t~

... -

.·;

. ~ • .. ,··. -t"

~ -"'~-··-~~~"""- '.~ ,. -

· .. .-
.. IS . •• 7 •

.. ·.· .. ··' . ·
.·":' . ·, ·-

. .,_ .. · ~ . .
...·.

· ·.: ..
,·_. .. · ·· . INIEBlOQS lQGIC -• ANALOGUE

.. •: ..
. ' J .'

.JW1.m.1.ffl!l!wi:;i~f~!E!.D~l--------------------------.....:l~m~IOMD~=----..----..-------I~
I. .. . t •
I .. · -· .. . - I :

I 1----··-----------------""".'""------------~------· '-~. ···wclfR
.. RIBIJDCY.

TRA\rtRSE.
FREtllEHCY •

.. •1 •

r:t~.R - .. "".,----1f?Mr~Hr~ .. ,----------.. -.. --"'------------.. -_

... ~~~ERSE ·,_·-----.,l~~JeH~t'irORt-1-------------------------t•-

.-
. •, . • .

· ..
. .. _ ... t-·

. ,·

-- :...- ·-· ~· :
.. .. ;

: ... ·

. . ·.-: .. ">
.... ~ ..

._ -

VlNDER ..
SPEED

TRAVERSE
SPEED

. : ' -·

:.·L

,; ~ .

. ,

' ·.

N'~4 NJ .r . .-1.~~- ~ ·~~ !.'.
o..rr • o ... rr rl.A.11

····:.

'. · .. ~ ·.·.,._

·,

. .

~Alf-·

0RAWN.

. ._ ..
t-----+--+----f Tlfll·

TiACtO RT. UNE'84

SOUTH AFRICAN NYLON SPINNERS

ICU
INTEF~FACE BOl-RD

(PTY) LTD .

BELLVILLE

LO~IC DIAGRAM

- - .•-- ~.:.....:...:._..:..:.....,.. __ 4 __ ~:__--~..:....---l'rcno~ot1 •.,.,:;;;-. ..,..---------------------------t
.. -·"-- - -· c -·---"----~-----,-,-----f

OtrUtlNCE ·.

p.;.Q0-01-490

;;~c:,~w~G!,~~I~ :~·~\;~~N ·~~.l~~~~i'~ cg~t4t~~l(.,~l~~~1 ~1 1.~~~ . ·.
COP1to os:i tou.no w11wt.'X!1 tHt W5"1lTEN CONSfNl c-t ~ouh~ "'''":C•N
N\"lON ~Pl,.......fR~ !Phi tlO .. NO """~' N 11PUf.'Nt0 lMMt('llAhl~- ()N ll-lf
COMr\I TION Of 1t NN~ ot C"ONHU,(f L . ;". :... . (.>,A.~f ,0.Aff D.ATt f)AJf {)Al~ [}.a.it. .. -----------.-.... ,--.-.'"'!!"""----- ·'. (,,, ·10~111111111J111111m11 11p1ttr,liif"'i"''ftminnrw,i1111tt•~"'Ji'"lilll/·:::;:111~u~m:1.1111rn1p1:1p111p: •• :""i".'il''i ,;· '.'I·. ,..,~:.fe";.:.,;:., it, ·;J·~j"~·~;;;;;;::.,?.":;'. ~':jiii1;t'::pii~7:.;·,r,.~111il\it,1i1n11r11Tii1jili1p11~1:";'m11i1111111111'\ • .~·~, • · · h· Li ·: : I

~C::':? ~:(~~~~;~~~~~~~i~~;~i:~t,.~~~;~:,;:~~;J;;:&">""'"*'"~'2R~,~lb..,l~··!"':..,"""'
1

."'*".l""'""'"'"'-~·"·~'!!"''?"'"'~·-~"·"'·~~ .. ,,._,. .• .,., _______ ,:-i;:_

....... o;:4•·\'•

. ~-:

-. .

'.+ •.

·t- . ;: -~

l
'·1'

"'

!

. :·.

·7.-·

,• .-

' ~ .

)
\

HARDWARE

2.3 THE INVERTER CONTROL UNIT CABINET.

======================================

The complete Inverter Control System consisted of 48 inverters and

24 computers, all of which had to be mounted in the same space as

the original two inverters and one· controller of the old machine.

Thus space was at a premium, and the computer cabinet had to fit

into a space which was two 19 inch rack spaces wide, and no more

than eight feet high. In addition the cabinet had to be mounted

against a wall with other cabinets on either side. However

individual computers had to be easily accessible for maintenance.

2.3.1 THE CABINET.

Each computer is housed in a 19 inch rack mounting drawer with

removable front and back panels. The indicator LED's are mounted

on the front panel, and all the interconnection sockets are

mounted on the back panel. The cabinet is made like a cupboard,

with two doors opening outwards. Twelve computer drawers were

mounted· in each door of the cabinet, with hanging connections

going from the back of the drawers to terminal strips on th~ back

of the cabinet. The field wiring was brought in through the top of

the cabinet and runs in a spine between the terminal strips.

Figure 2.3.1 shows a front view of the cabinet with the doors

opened.

This technique makes it possible to access the terminal strips or

the back of the drawers by opening the cabinet doors. However it

is also possible to remove i~dividual I/O or computer boards

without opening the cabinet, simply by removing the front panel of

a drawer, and sliding the relevant board out. Figure 2.3.2 is an

exploded diagram of the drawer showing the layout and orientation

of all the drawer components.

2.3.2 THE POWER SUPPLIES.

The maximum current consumption from the SV supply for each Single

Board Computer, its SBX piggy back board and I/O board is 6A.

Page 2-19

. I I ":

.... ______ ,__ • """ -~- ______ ______!._ ~ 1 · ._ • ' e • ~

•\,

_'f(• •.•. j' -· •f•
.... J !. .. (. H"'-• • .,.

:....,•c. ~.t:

.. ,~ ··c-·~;

::.-....'-·· .. (.,. : ~-"-;.

. r r~. '"-".-·---.
---- -=- .. ~'f?7

l l
i-~'Riii'"~~~-r i

rr.1 ~(t..a."' ~ ... r::-- . ..:.a,._."'"_

·'"''"""'
. .. ;- ... - . f· ... ~ ~ ;,

j /<ti.:.•·· b .1 I
I ~ . 1) ; !"-'. u .(. ·d
'

10

<~

zo
r. ~··....;.._ \'":__ '::'U"JAl. '..JI..:"- .

'1• 1' rio-:.o~"ooooooob f · 0 :;: r:.;..:._r·..:~&e&l!iC~.'.""':'

' l t ' ' . ' ~
I je:o ffi-~p~ g,,c:., ""~~ ~~

' '

JI

.~t I~~ <C 1111 j
~ ;EEJ!u ~- -=mi
~:r::

l •EEJIU 2D~

·I ~CL L:J.:J ll w...., ~r;T;1111 ;~ 1111
m11'-__ ----

iEEJ111 '"" Ill]

~EEJ111 - 4C llfl

~rn 111 40 1111

I
:,,... ' ..

: I j iEE] Ill SC 1111
11

I iEE]l11 °'o ml
! AD

'.'>C ~rn 111 GC 111 I

;J
so

oC

~EE] I If . 0D 1111

GO '----------~-<

P;ulP;u lc"u
3 ' 2. I

0 I 0 0

;:o::.,_1 IP':.U

~ I· A

:::; Io

· l -~ __ ..___ __ _;_...;_ __ ~--.!:-:..-~ r • - .,,.,."':"" ~""' ".

ri.11"-~ ·•-· .,.
1"' I CT.l t:==_~~l ...;

~If _-_· 1e ~- u; J-olt:
lllf '" 11lEEJ~

1111 2 ~ -111 EE~

Im ,,,, 111 EEJ i

llJI :lB llJ EE]i

lllf 4A · lfl EE]~

Im .. e 111!~ I~ Ii

UH ,.. 111 i:;@J'

llJI <;B Ill EE]~

Im \'A 111EEJ~

1111 0e 111EEh

CMt ·~ "!i

·--~---
- . · 1J1

H'.)'..)i C..OJM\JN!O:.\.TtOf\.J C1··t" t - IA. 1e: tC.:. 10 2A 2B 2'-. 20.

... :os"T COM,.1UNl.:.t<T10"-1 C.H a . - ~c.. ~~. 4C., '-0 .~c.. ~o &C. !DD

t-.O~TC.OMMU>JICA.T1(>.J · .C~ ~ - .~A.~. o .. .4f!>· ~J.,Se.. 6A ~e, ML. ... ,.:DRoP
.::-~-M:ft.Jl.:,Jt.- :Jt..J·. ~~.izi

::..:>:.Ai..

o LOC.A•_ VOU SE.RI~ -.1NJt(o

o do 0
1

o C{O o 0 o o· o o
o "'&"'.a.':>!'!>a4e.&.a. !el• ;:ei.a.1e 1.t. o: :OA a G 0

:oe

';.4 A

... e

'.>A

se

6A

6\'I

- SPAR'C -

I BACK CS: _PAM:L LA'IOUT r:::R. _

Au. R.IGl-JT HAND ORA'NE.R U>JITS

,.·

"R... • IN'T'E.'tPOc.:a..JG RtlA'(S

.·

!·1 i
~.

IO "

~I NS :=-;;;:ol'.JT ·!'..~:J-.J~:t~c) ,0 Dc::bLD D i='.ti-.NS i:-J::2of\.JT \:10Uf\.JT~

·•n<·ri

me
~t,/·:.R.:::.:O."-•'.:Y = i==:i $10P T~l2.M.NN..5·~'--~------...,---...,----'--'

F'~!....IE.R t .nLTE.R.. 2. FlL'!£ .~ FF:.~..;.

SW1NG D::::x:JR ::-\•·1.lp..,_t~ :::.i.::J12_·

(_<en) ~ ~ ~·-' l

·'

,.·

·.r' •

. ,_ . •,

_ ... ,. -
•;

~

.-,

FIGURE ~23.l

..

/\~:~{ '' -~'lr-·'\'I

:~~t~
~,~,~,.-~ .. ~-l"v:('·~
>~ '\ ;-.·~~~~

... _J-::"_'"".-. .f - f4 t~<~
.!""\" . ~:~~;

. \. "". · ... ~ ...
.... Jr.Ji! ... '"' j ".!: , ''4' .,.. '.'.'. ~

•Hi..~ ""11:

@ SOUTH AFRICAN NYLON SPINNERS '·: _· (})·
<PTYI l)D .• .-

BELL VILLE .. "Iii • . .
.. -. !!\'·'"'-'

lllH . . ~· •. .1.~

~~~·N~:t~::Sk~' ~:.~-:;. '-=~~ ~' T ~ '.··~W; 
,. lo- • I 

Cu 

0 •C, ~JO or:..:•·n101 .. 

- =± . 1=-:-c - . : ._ -l~ -- - -- if 1 ~ -: -:_: :~ ,_ ,---~ ~ - . -- -_ J;~~- -- ., ;::'.'.~o ;;~~.';':~",'.::';~:~;:~t;,~:.:; .. ;;;:.·.;, ·.\:'.'"·:::~·~ ... '.:-'- ·:-; 
•. _ __j____ -- -- - - --:jc= = = -- - r __ :L - ·•-.. - ' - - - - -.., f ---,-- - - - ·~- ,.; .... c.., '""' ......... ,~.,- ·.• . ~-~= ,== :_:c - .. -~-1: __ -cc~ I I ---i' ::.~ 1~1:·i;,1.::.!~ 1, • '~ -::,:' ~ -. k:_lf !:'. • ~:-r .: ·,;; ·.;- ~:.:'.~'..' ;:,· .. ' ""' ' •;.•.' ''.'.' '.'.'.,' '.•,.: < ''" -~---· ·"·;'; ··c.'.:.• ' - , , 

-!- ~l•ll 
PW(I WO 

::0::.. E- iG$0 
15-.·-t\ 

""'-..:' 
....... ~ 

J_V). 
tS\. 

1 T? '-' •. 1 I 1 ' • • ' f ' " " ,, ., .. ' [ ,.,· 

~ ri:m \ ¥ • • - ;• 

I::. 

3 
·. ~ -':!.' 

. /...\· 

I 2, 
1..1 1 · 

1 

:' 

-" 

.... 
.·.J,_ __,... 

"'"' 
-~-.. _ 

w~: J. ... 

'p 



a 

c 

D 

E 

F 

G 

-+ 

H 

' 
. ·. 

PLUG tNTERCOh'NECTIONS 

·110: 
110-P2- EXT-PS 

ClJt>Ul!R TO !10 BOARD: 
SBC-Ji -1ro-Ji 

C(J1PUT(R TO SBX BOARD: 
SBC-J4-SBX-?I 

U.D. AHO HARD'l/ARE RESET: 

U.0.-1 - ll(H2 
LO::Al VDU: 

SBC-J2 -EXT-P1 

HOST COHl'IS: 
SBX-J1 -EXT-P2 

POWER SUPPLIES : 
EXT-l'3 "-110·P2-
EXT-P3- SBC-P1 

· saFTlr/ARE RESET: 

S-RESET - SBC 

r= 
I 
'• 
~ 

110 - P2 

• 1 • 
LEG£NO OF LEO MEANING 

~ U U U 14 t5 If. 1.1 ti '' Ull UI tJ2 ,,, LA -

~~000000000000000 

u VIJIGP llM'.lml llJf REAOI' 

l? TlUVEllSE DMRTtR llJf RlAOY 

u.: THtRPISTI» ~ 
RED u ['6GEJIC'f' SfOP ACTIVATED 

lS - Otl tlST FAil.UR( TN:..Qtl' 

u- WRAP ammo 

10A1D <....,_ I Piii 2S .,.. t 

::s•SIT IUTIQll " LU!-t \ Slx-n \. ~PDU - --

'--------------~ \- ~\ '~-\ - - -- '-' .-sex JS, __ 
- - - IOAAD 

t - SIX-Pl ·., .... 
U- STOP ACTIVATED 

LI - RU£Nt AC?M 
L9 - TRARSfftT ACTIV[ AJlfBE!l 

·- PlllZ ---""-=-=s_o_-_ .. \ SIC-J1 \ ----\ SBC-J2 ' SIC ans IOARD ~; .. :: ~ ~~~ rom .....u P111S 111 CQilQIENT sa l'ID-- CPU RU10llN6 J 

-0 -
I· 

60 Wf<f CONNECTOR SBC-P1 80 WAY CONNECTOR 
·I 
r--. -

BACKPLANE DETAILS 
I VIEWED FROM FRONT) 

I 

' lVOI Mllll8l£D PlllS Cll Sllfl:RED SKJEI Ln-~ TIPO 

.]-· 
Allt PIN8S 

PIN1 ~~S9~-

' MIA.TIBUS ' ~ SBC-P2 \ SBC-Pl CCMlE 

Arnt PIN S6 t PIN2f PIN 60f 

l/O-J1 

' 
110-J2 

~~~ 
PIN 1

-0 ,__
0

7 -

PIN1 PIN1

-----.._' .11:l-P1 ..-----... ' UO-P2 ___________ __, -......_..;;.:;....;..:: __

SOFTWARE__.-
RESET -

. . -

!/O -
CONNECTOR -

S-RESC

---G-:

UC PS

EXT P1 EXT P2

D D . \

I I
LOCAL VDU
RS 232
LINK

HOST
COMPUTER
RS 422
LINK

I EXT {J
"

P3

\' Im P4

..........
rowrn SUPPLY

_ C0~4NECTOR

......_

FRlQUENCY
I/O

-- l - + _;_

Lt2- POSITION auor 10 W&O
L13- START ACTIVATED

l~- POSITOI J!C..AOY TO START

110 BoARD
IPIN NU118ERS ~ Fm SBC BOAllOl

HOST/
COMPUTER
"s 4n
LINK

BAO< PANEL
(REAR VIEW)_ LEFT HAND DRAWER EXT PS

-1'' 01
EXT Pl

""'r~) ¥ NOTE : All OTHER INTERNAL PWCiS, SOCKETS AM!
OOAR!JS 1'EMAIN IN A CONSTANT POSITION

I
POWER SlPPLY 1/0 CONNECTOR
CONNECTOR

BACK PANEL
(REAR VIEW 1 · RIGHT HANO DRAWER · EXT P2 EXT P1

/o.·n S-RESET

/-)J
0- SOFTWARE

RESET FIGURE 2.3.2

RS 232 --------1 SANS LOCAL VOJ ~ SOUTH AFRICAN NYLON SPINNERS
(PTY) LTD LINK SCAL[- • .,.,

CRAWN H ~ f.'3.Bf.

Arrli:O\'Hl
rN(--.iNtfR

- r- ~ - -------·

mu:

owo "°

INVERTER
LOCATION
CONTROL

BELLVILLE

CONTROL UN IT
OF CONNECTORS

UNIT
IN INVERTER

-~---=- ~---+t----r--+-----.--~---=-
;- ·- t_-

1~-t--
J . -- - P-00- 01 -490

SAB 1593

--------->---+----t-----1 ---r-- -
- ---- -------·--- -~L't ·-+ !'-I IJ

1

1 ~ ia.4 . , ,_.
.OlS(PIPllON

,-!_

HARDWARE

There are 24 computers, so the total current supply required is

144 Amps. In additioni +/- 12V supplies were required for the

RS-232 _serial communications and the 1/0 board, and 24V was needed

for the interlock contacts. This gave power supply requirements as

follows

Voltage I Current

---------------------------!----------------------------
+SV

+12V

-12V

+24V

!
I
I
I
I

144A

l.2A

1.2A

SA

The controller specification called for normal operation with up

to two seconds power loss from ESCOM, and protection against power

supply failure. A ring main UPS (Uninterruptible Power Supply) is

available at SANS, so the power supplies were run off this for

protection against ESCOM failure. For protection against power

supply failure, a backup power supply was needed. 144A power

supplies are expensive, so ten cheaper and more readily available

20A power supplies were wired in parallel. With this arrangement,

it is possible to operate with three power supplies out of action.

Each power supply is connected to a busbar system through a diode,

to isolate it from the rest of the system if it fails. The diodes

are 20A stud mounting types mounted directly onto the busbar for

cooling. Each power supply has individual mains fuses, and 22 000

micro Farad capacitors on the SV supply before the diodes. Voltage

sensing is done at the diode anodes, which are as close to the

load as possible. An attempt was made to sense directly on the

busbar itself, so that the voltage drop of the diode would be

automatically compensated for, but it proved impossible to

distribute the current evenly between the power supplies, and the

system was extremely unstable. Load balancing is done using a DC

current clamp to measure the current in individual supplies, and

adjusting the voltage setting pot on the power supply until it is

supplying approximately 14A. This process has to be done

Page 2-20

HARDWARE

iteratively two or three times until all the supplies are sharing

the load evenly.

Each supply has three LED's mounted on the front panel, indicating

the presence of mains, SV and +/- 12V •. Each group of three power

supplies is fed through an EMI/RFI filter to remove noise and

spikes on the mains. The power supplies are mounted in the door of

the cabinet beneath the computers, so that they can be adjusted

without opening the cabinet door. All connections to and from the

busbars are made via spade connectors.·

ELPAC ES130 switced mode power supplies were u~ed. These have

isolated supplies of SV at 20A, and 2 x 12V at lA which can be

connected in series to give the +/- 12V required. The 24V supply

is derived from an external UPS driven supply used for the

instrumentation and interlocks on the rest of the machine.

Considerable problems were experienced initially with all ten

power supplies going into fold-back current limiting for no

apparent reason. The problem was traced to the ELPAC overvoltage

crowbar circuit, which is extremely sensitive to noise. This was

cured by paying very careful attention to earthing, and by

increasing the capacitor on the crowbar thyristor gate, the

philosophy being that it is cheaper to risk destroying a power

supply than it is to stop production on the machine. Figure

2.3.3 is a schematic diagram of the power supply system, and

Figure H.5 in appendix H shows a detail of the power supply

connection to an inverter control unit drawer.

2.3.3 THE COMMUNICATIONS LINKS.

Each ICU had to be able to communicate with a local VDU, and also

with a remote process control computer. The local VDU connections

were made via 24 GPO stereo jacks mounted on the front panel of

the computer cabinet, any particular ICU

plugging a GPO plug into the appropriate jack.

the stereo type to accommodate the transmit

the RS-232 protocol.

Page 2-21

being

The

and

addressed by

jacks had to be

receive line of

:·
. •.

"'"•cui.•• ;· .
. ,

• ,::ci ,., -
~...,.

·•I •l~l+

la~•.-

.. , ,..
~ ! I I

~~~J~. ·. ·· 111 

·:.. 

, . 

,,·.· 

·. 

.. 

·~ lt'11'.IJ 
UICAI. -a;-- CllO 

1? 

f? 

,, -

R!O ·rr;r
l.ED. ~ 

Gil• 
t.E D. 

Yl.W 
. LEO· 

PSIJ 1 

.-
,.!..... 

t:Dv 

·---

°' 
•12• Lc=--+-+-r1rr•t::::: __ ,,..2 

~-
,_ 

.on 
ti ~~11~1 1 

,, ... ~,Rt 
\ ( 

... 
~ 

~ 

z 
"' 
i 
"' 
~ 

,.. 

~-

~I lllll + 

(91 ., .. ~ 
' • ·l: --·,llJW 

• 

Cf 15•1 

l 11 I 

1) 

.,,. 

·,. 

PSU 2 

IAS FER PSU1l 

014 

~ 
013 
.~ 

~ 

·1i '!. -SllCllT·Clll\ll (-~ I 

~ 

1· 
PSUJ 

1 
§ 1 ... 

~ 
·;m~m;m;m~r11· 1 • 
=.- l... ) '1• 

lltlU• 

'"i!•., 
~ 

' .. -~ 
.Cf H-1 

L • ,( 

15 

10 

£+ 

PSU4 .. 

•· 

· .. · 

·, 

.· 

... 

. ":. { .. . 

Cll 'Flr.llT -·-· 
. ,, 

l 

.a.~_-.lilJiiil. - -

· ol al rl + 

/ 

cut 1( u ~ . 

111
·'· r· I I 

, 

I&>. J I I , 
·miu.z I I 

~ 
!* UICAl. VIII SlffV C.U 

,' 

•L it1•1 • .. 

CHeJ' 
..4 

l 

i 

'J. "J. 'A • 
1JA 

·· l ·a I SIDIT WTl.IT C - CAllllllT l 
· ... 8i1111A 

uasL 
(1171-J 

' • r 

• £ ... £? 
~ 29 JO 
.-+-~~~~~ ..... -+~~~~~~-. 

nl 11 ·111 - ·1 
PSUS PSU 6 PSU7 ·Psue 

"1JTE ·= 'o'IRD<fi Of PSU 2:10 IS IOtllTlUL Tll PSUL 
AU TERl!INALS SHOWN AS It IJlf SITUAl[l) 
It; TB 1 TERKllW. 8LQO( 

"'~-f1-f1) 2A . 
1£1. 1£Z.lf6.IE7.£TC. ZD A 

· 1£l,1E4.1B.1U.1£9.1f10.ETt. ZA 

ll!lll!l.!m. 01 • 010 10 IF 40 . 
OTI·030 N>:.06 • 

CB 1-4 TO 8£ Tl£RIW. Kl!iliETC TYi'!: 
L.Ell l&Z VISUAi. OiEOI TltAT SUFPl.Y IS A'OJL"8l.E 

ANO 71£REFORE COOLING FANS SHOUl.O BE Ol'ERIJOIAI. 

'· 

FIGURE 2. 3.~ 
. . 

1HnlH+ 

.(Ho,. 
Jo< 

L • I 
Ull111JI 

WW. 
a ?S-2 

i • 

f? £·~: 

&"'I .•• 

n1 r 
PSU9 PSUUI 

·:·· 

Fl>tJI PSU 1l 

031 llll'l!'. I' . I 1. 

~- ~ ~il~tl~ 
L· . 

c 
Ii 

f
;:-7.:. 
~!} 

~:'.<:}~-
,~ ~'7-i._f./ 

t.1~~~ ft;· )' 
I 

l 
i 

' ii ,.1 
~ 

J 
., 

-' ... 

;I' . il 
•· ".fl~ .. 
. .·'I' 

- ;I /J.f··· .· 
~! .[: ' 

• < 

.j 

l' : 7 .... ; . .. 

.. 
,. 
• 

·,t''.'."_: 
r •. 

~11·_.-. '. . -
f, ~) 

' :.:~~; ~ .. 
·:·,~".'_-;: : 

. ~-~ ·1_ ·_,:. ';. -- ' 
i;~ :~~ 

I 

I 
i 
• 

I 

• 

• 

D~ sruo 1rn1nmo · 
°" 6IJS 

07t'7 
DC BUS BARS 

Oil,!,' ii• i:t~~}~ '·~'*~.'11 
~ .::]{;·:_~-: '\ •Sv >-

-12v 

Oit c;~ & 12..i • , .,_.. ..: 

+12v 

-. • 24v 

.. -.. 
·;,"JVJ;AJ.r·~. · Ov ==s~=========--~57 :OIJ.IU· ~ 

·.· 
· .. ... 

. '• . 

· tPnl lTD . i·' @ SOUTH AFRICAN NYLON SPINNERS 

. BELL VILLE ' 

~1/C SB 
INVERTER COl\'TROL CABINET 
POWER SUPPl.Y SCHEMATIC 

=-: ·=r:: =-=~ ~·~ 
-!----~ 
·r ~~ ~-3--· -:--- I .... ,., . 

·1 

SAB 1600 

-· ~-1-4. ~1j- r' •. · ~ -~ ~. ':"f i j ·j ·I ' .· .':. ~. ~~~.:::I: : ~-+·- .. ,. ··· . .'·: · - .,.... "" ""' ~ P-01-01-490 · 

..::..~--~--.:- .... ......_:......:.._·--f ------ ~-- 1 --- , k. :__:_ .-1=.-131-~ ~ • > ·. _. "d: ." .· ._·:~.k. ~~~-. -- . ··-~~~:.~.~~:~>1,.~·o.ft>•~~~~~-· ., ~S1',~~~~'~;~~~~~rs;~·;:~~.;~:~~·!:·;:I A 
lioffftil•~•· .:D•c;;r4' L ~•Of~ t P•GN" ~I. i•f\(f.'1•Vt··. . l,,.. .... ~1·"· .,... ~1. • I'~·... . ~· Ill' •.• >V''''1 ·- l.1i.o.•11CMll lV.11,ct;I '"'"'"'" ~ .. ~c. (~f'\,1111."'-l'>t'lf"'IC'tlr-('t"""h .. ,' 

' ~~ \ ii T\,t."I, ~• ru1~ , 1 ... • ,.,, ri...1 .,J. _ ~·-'""""'-"'""-'-"'"-1-"-...,.-----..-:- · '· · · I -~-t--:-:-· --1 ·-r·:.11!<·'•""-1•· ~.- · ""'"!'·- · ......... , ....... - ""-~~~. · · :- - ,...,,..., ~ !'.t\ ....,.... • I · ' r l ·1 . . 2 , • ' I 1 • J I " ' t. I ' t '"' ... "' H• 1' ! '' "" I\ /9 t _n .U J) J. In. • • • 3 • , 

~ .... 

,...... • • • . . ... i . ' (.!;\ . •' - ~ . ,..:.... . ...... .. ·•. . .. ... ·, ... .,. ;.,, ~ ' .. ~_ .... . ' l: • I'~"' 

~ • .. " . . \.!fl~~,. . ' •;. ~· • , : -;: '' ; ." . -· '• ..... ~k' ,·, .,: :.< l,.' . .... "• • ,, ~ • \1!11);) . . I 

;,~~'.'7f{~~~i'3~q;~;~~,tu;Jf 3~~~::J,Ii;iJ·~;:~c\,;2C,'.:'.t;2:,t~::~'.,~:~;1;f;JW:fJ3,'!'i ... "l.r~'::':>l:'t11::~'.~"-~!!li=-."·:~,:~~~~~~,~~"'~~:11iS•::~"-t!!;r~~'~'";~:'':~~!!l)~~:';;~~.~·~~~,:~!!!~~"";!llJ~'.!ll~[IJ!'.:ii:~•;·"'~ll!·~.,···~".:ote~,"~·~~~.~"'~·!lll~lll!ir!l.~"')19}111:~'!11;~"'·--:i'ii-"-"-";.'!l?'·s111~,"'~"t~l!l~\~.~~.~-"~-":~~·;~f!!llil:,";; ... ,:_",."'t=_ .. !'!~·;;:f!~,.,_:~'1~~t:~ll"~:"!~:rT'!l:~l'l!!Jff:~~~;~~,,;'~ 

,t;,~;~·;" ·3 ,, 
n;.~"···~· 

-~~1.~:· t:~ ~. 
-~. ···~~q~. 
'~'~·\·~·· 1'.l~tii•.•": 

t!~:' 
~:/· .; 

t· 

t . .. 



. ·~ . ',• 

HARDWARE 

At the host computer end, the total requirement was for a local 

RS-232 link to an LA 120 hard copy terminal, and RS-422 link(s) to 

the ICU's. The host computer (which is part of the plant process 

management system, called T18 OLDMAC) was a PDP 11/23 computer, 

with no spare serial ports. The options were to get one RS-232 

board and one RS-422 board for the system, or to get a single 

multi channel RS-232 board and attach RS-232 to RS-422 converters 

to it. The RS-422 board (with two serial channels) .was unable to 

drive all 24 ICU's, so two boards would have been required. 

This made the cost of the first solution much higher than the 

second, so an 8 channel BML was chosen, with three RS-232 to 

RS-422 converters, which meant that one channel controlled eight 

!CD's (the converters had drive. capacity for up to eight !CD's). 

Figure H.6 in Appendix H shows details of the communications 

links. 

2.3.4 WIRING AND INTERCONNECTIONS. 

Appendix H.7 contains a schedule of all connections in the ICU 

drawers~ Figure H.8 shows details of the field wiring connections, 

and ~igure H.9 shows modifications that have to be made to a new 

SBC received from the manufacturers in order for it to work as an 

inverter control. unit. 

Page 2-22 



=r--. 

SOFTWARE 

CHAPTER 3 : THE INVERTER CONTROLLER SOFTWARE 

============================================ 

3.1 MAGIC, A SOFTWARE DEVELOPMENT SYSTEM. 

========================================= 

Magic is a software development package which converts programs 

written in RTL/2 into machine code for four different 

microprocessors. Development is done on a multi-user host 

computer; which produces object code which can then be loaded into 

the target microprocessor system. This allows modular applications 

development by a team of programmers. There are facilities for 

testing and debugging programs and producing ROM format object 

code files. The package is designed to operate on DEC computers 

running the RSX-11 operating system. 

Two run-time environments are supported by MAGIC. The first is a 

stand alone Base program called BASEM. This provides a minimal 
( 

environment with a single task entry to a single user procedure. 

It sets up the RTL/2 stack and provides simple housekeeping and 

1/0 functions. The second environment is SMT, which provides a 

real time multitasking environment as described in chapter 3.2. 

Both environments can operate in the free standing mode, or in the 

host /target link mode. 

The MAGIC system consists of five utilities and the source code 

for the run-time environments. The utilities are : A compiler; a 

target processor assembler; a linker; a target test controller; 

and a ROM object code formatter. The utilities can be configured 

for the users requirements by specifying different options at 

Page 3-1 



SOFTWARE 

build time. 

Figure 3.1.1 shows the application program development cycle in 

schematic form. The RTL/2 source program is 'submitted to the 

compiler which produces three output files : An assembler source 

file, a cross reference file and a compiler list file which 

contains error messages and compilation statistics. On successful 

compilation, the assembler source file and cross reference file 

are submitted to the assembler, which produces two output files : 

An object code file and an assembler list file which contains 

error messages and assembly statistics. On successful assembly 

the object file, along with other applications code and executive 

object files are submitted to the linker which resolves inter 

and intra module ref~rences; allocates physical address space 

to all the object modules; splits the object code into data and 

procedure blocks for allocation to ROM or RAM in the final system; 

and verifies the link. The linker produces two files : A link file 

which is a loadable HEX-ASCII image of the system; and a map file 

which gives the locations of all brick level objects in the system 

and entry points. At this stage there are two options •. The first 

is to use the test link controller utility (MAG) to load and test 

the link file into RAM on the target. The second option is to 

produce a ROM image using the ROM formatting utility (FDM), which 

can be loaded into an EPROM programmer and blown into EPROM for 

the final debugged version. 

Page 3-2 



,. 

RELOCATABLE 
OBJECT 
MODULES 

ASSEMBLER 
SOURCE 

.ASM 

.OBJ 

INTERACTIVE 
USER i---~ 

INPUT 

SOURCE MODULE 
.RTL 

COMPILER 

SJ R 

ASSEMBLER 

ASM 

.OBJ 

LINKER 

LLM 

EXECUTABLE LINK FILE 
Bl NARY 
IMA.GE . .LN K 

LI ST Fl LE 
--~ .SRC 

CROSS 
REFERENCE 

.XRF 

LI ST FILE 

.LST 

.OBJ 

MAP FILE 

.MAP 

ROM FORMATTER LI N K 
CONTROLLER 

FD M MAG 

ROMS TARGET RAM 

FIGURE 3.1.1: MAGIC OEVE LOPMEN T CYCLE 



SOFTWARE 

3.2 THE SMT OPERATING SYSTEM. 

============================= 

The source modules for SMT are supplied as part of the MAGIC 

package. SMT is a real time multitasking operating system. suitable 

for use in small microcomputer systems. Only those parts of the 

executive required for the final system need be i~cluded, so its 

size will vary between applications, but generally it uses between 

10 and 16k of code, and about 2 to 3k of RAM. Because the source 

code for the system is supplied, it can be easily modified for use 

by the applications code. It is modular so that only the features 

requir~d iri the final system need be added. It offers 

l) Support for up to 255 tasks 

2) Task scheduling 

3) Task priorities 

4) Interrupt handling 

5) Events 

6) Timing 

7) Facility control 

8) Run-time monitor 

9) System error traps 

10) Run-time checking. 

Each task can be in one of two states, either GO or NOGO. These 

two states can be further subdivided as follows : 

1) GO - Running. Only one task can be running at any given 

time. This will be the task with the highest priority 

that is in the GO state. 

- Pending. Any task which is ready to run ~ut has a lower 

priority than other pending or running tasks will be 

placed in the pending state. 

Page 3-3 



'~ .· 

... .:. :· 

SOFTWARE 

2) NOGO - Stopped. The task will not run at all. 

- Suspended. A task can be suspended for three reasons : 

Waiting for an event; securing a facility; delayed for 

a time interval. 

Every time the currently executing task enters the "suspended" or 

"stopped" state or a hardware interrupt occurs, the scheduler 

puts the highest priority "pending" task into the "running" state. 

If there is no "periding" task, it activates th~ fallback task 

which has the lowest system priority and simply executes a "jump 

to itself" instruction. The executive itself appears as several 

system tasks, with negative task numbers to distinguish them from 

the application tasks. 

Run-time checks are designed to provide protection between tasks, 

to try and prevent tasks from corrupting other tasks, and also to 

provide an oderly recovery mechanism from a detected error. Checks 

are performed on a range of activities such as array bound 

checking, divide by zero, stack overflow, floating point underflow 

or overflow and a range of other system errors. 

Each of the procedures that provide system services will be 

briefly described. 

1) Timing 

DELAY for an integer multiple of 20 mS 

2) Event handling 

SET an event flag 

RESET or clear an event flag 

WAIT for an event flag to be set 

TWAIT wait for event flag to be set or for a delay timeout 

Page 3-4 



... . .. 

SOFTWARE 

3) Facility control 

SECURE a system facility, suspend task if not available 

RELEASE a system facility 

TSECURE attempt to secure facility within timeout period 

TSTSCR test whether facility is secured 

4) Task control 

START a task 

STOP a task and release its secured facilities 

5) Scheduling 

LOCK disable task scheduling 

UNLOCK enable task scheduling 

6) Interrupts 

HLOCK disable interrupts 

HUNLOCK enable interrupts 

7) Error handling 

RRGEL unrecoverable error trap 

CLEANUP release task's secured facilities 

ERPRIN print error message 

8) System default procedures 

Note 

DFERP recoverable error trap 

DEFIN stream input 

DEFOUT stream output 

RRNUL null procedure (fallback task) 

ME returns own task number 

The MAGIC 

implementation is called 

package used was version 1.0. This 

"SMT+" which has some features not 

Page 3-5 



_. .~ ... .. -

SOFTWARE 

found in other versions of SMT. Th~se additional features were not 

used in order to maintain compatibility with other systems in use 

at SANS. In addition this version had to be modified to comply 

with the version 18 SMT used by the company. 

Page 3-6 



SOFTWARE 

3.3 THE INVERTER CONTROL UNIT SOFTWARE MODULES. 

=============================================== 

3.3.1 SOFTWARE OVERVIEW. 

The software for the Inverter control unit has been broken into 

ten tasks. The relationships between the tasks and the data in the 

system is illustrated in Fig 3.3.1. The control parameter database 

holds all the operational values and parameters that the computer 

controller must use to produce the required yarn, as well as all 

global flags and data bricks required for inter task 

communication. 

Machine operational conditions are entere~ into the database 

either by an operator typing them in from a local VDU connected to 

the controller, or from the PDP-11 host via an RS-422 multidrop 

serial link. The host communication task and local VDU task 

convert the stream of serial data from either. source into the 

appropriate data type expected by the computer hardware, and 

stores it in a buffer in the data base update task. The update 

task loads these values into the database at the correct point in 

the machine's operational cycle. 

The winder and traverse tacho tasks take a stream of pulses from 

the transducers fitted to the motor shafts and convert them into 

speeds ·which are stored in the database. The traverse tacho task 

also has to calculate the ratio of the winder and traverse speeds 

and initiate banding avoidance, and so it is called the "ratio" 

task. 

The traverse arid winder control tasks generate speed values .which 

are used by the corresponding drive tasks to generate the pulse 

trains which drive the inverters~ 13 seconds worth of speed values 

are generated every 11 seconds, and stored in the control 

tables. The drive tasks take speed values from the table every 

lOOmS and convert them into appropriate square waves. 

Page 3-7 



CHUCK 
PULSES 

PLANT CONTROLLER . TRAVERSE . 

CHUCK 
TAC HO 
TASK 

INTERLOCKS STATUS PULSES 

/\ 

\/ 

SEQUENCE 

TASK 

/\ 

'I 
TRAVERSE 
TACHO AND 
RATIO TASK 

TRAVERSE 
CONTROL 

TASK 

J \ • 

WINDER FLAGS WINDER 
RPM 

TRAVERSE RAGS 
RPM RPM 

\I 

'------~~ CONTROL PARAMETER AND 

DATABASE 
-~ GLOBAL DATABASE 

INITIALISATION 

HOST 
LINK 
TASK 

If\ 

\II 

/\ 

DATABASE 
UPDATE 

TASK 

L 0 CAL 
VDU 

TASK 
/\ 

\I 

I 

l TRAVERSE 
I CONTROL AND 
1 CONDITION ,____ 
i CODE TABLES 
I 
1-----------
: WIN DER 
I 

: CONTROL -
I 
: TABLE 

/\ 

WINDER 
~--)- CONTROL 

TASK 

FIGURE 3.3.1: OVERVIEW OF ICU TASKS AND DATA 

TRAVERSE 
INVERTER 

TRAVERSE 
f7 DRIVE 

TASK 

WINDER 
-7 DRIVE 

TASK 

WINDER 
INVERTER 



~.· . 

SOFTWARE 

The sequence task monitors plant interlock signals and controls 

the system state by setting flags and events which are used by 

other tasks in the system. It also provides status information for 

the benefit of plant operators. 

Each of the tasks will now be considered in more detail, and the 

design decisions and task algorithms will be discussed. The tasks 

will be discussed in the same order as the linker processes them. 

The emphasis will be on design criteria, and the system will be 

explained at flowchart level. Familiarity with RTL/2 and SMT is 

assumed, although a brief introduction to SMT is given in Chapter 

3.2. The RTL/2 listings in appendix G should be consulted for 

details. In the software listings, variables and data relating to 

the winder are prefixed with a "W", whilst those relating to the 

traverse are prefixed with a "T". As far as possible, names have 

been made self explanatory. 

Page 3-8 



SOFTWARE 

3.3.2 SYSTEM STARTUP AND INITIALISATION. 

Initialistion of the database is performed 

RRFILL in the module RRFILC which loads data 

by the SMT procedure 

held in a ROM table 

into a specified area of RAM. The littker creates a "data template" 

consisting of all the data declared in linker data segments (not 

to be confused with 8086 segment registers). This template is held 

in a data brick called RRDITP. RRFILL loads the contents of this 

brick into the specified RAM at sytem startup. 

Hardware initialisation is performed by an SMT module called 

MSMTUl.RTL This module is written in 8086 assembly 

language by the applications programmer, and sets up interrupt 

vectors, as well as initialising both serial link controllers, the 

8255 parallel I/O chip, the six 8253 timer channels and the 8259 

interrupt controller. MSMTUl is called by the operating system 

before any system tasks are started. A listing of MSMTUl.RTL as 

used in this system is contained in Appendix G. In addition, the 

interrupt servicing routines are kept in MSMTUl 

When the system is RESET or powered up, the CPU starts executing 

whatever code is at physical address FFFFO Hex. A module called 

STARTUP.COD was placed at this address, which executes a jump to 

the SMT entry point (RRXEQ) in the system module ROMCBA. This 

module is coupled with the SMT segment of the system at link time, 

so that the external references between the system and startup 

code can be resolved. A hardware testing routine to check the 

system hardware at startup could be called first if required. 

Page 3-9 



SOFTWARE 

3.3.3 THE RATIO TASK. 

The function of this task is to convert a pulse train from a speed 

transducer into RPM, calculate the ratio of the traverse and 

winder speeds and flag the rest of the system to take banding 

avoidance if raquired. 

The speed of the traverse was found by loading a. count value into 

an 8253 Real Time Clock chip, and then using the tacho ~ulses to 

decrement the count value and interrupt the processor when the 

count reaches zero. The processor measures the time interval 

between interrupts and calculates the shaft rotational speed by 

dividing the count value by the time taken to count that number of 

pulses. 

To get the accuracy required by the specification, the count value 

loaded into the RTC and the measurement of the time between 

interrupts had to be considered very carefully. Problems arise 

because the traverse is frequency modulated and because the 

system clock has an inherent accuracy and resolution. 

Both of these problem areas will be considered in detail, and then 

the results will be combined to calculate the actual tacho speed 

in RPM. Once an expression for the tacho speed in RPM has been· 

derived, the requirements for banding avoidance will be 

considered. 

3.3.3.1 DETERMINING THE COUNT VALUE. 

As discussed previously (Chapter 2.1.2.2), the speed measurement 

technique chosen was that of counting pulses over a time interval. 

There are two approaches to this technique : the number of pulses 

in a fixed time interval can be measured (variable pulse method); 

or the time interval for 

(variable time method). 

a fixed number of pulses can be measured 

The latter method was chosen because the 

sytem clock is clocked at a much higher rate than the tacho RTC, 

so the inherent resolution is much higher. Analysis showed that 

the measurement interval would have to be unacceptably long to 

Page 3-10 



SOFTWARE 

achieve the desired accuracy of measurement with the former 

method. 

Tacho speeds are measured by taking the time for a fixed number of 

pulses to be counted. Since the traverse is modulated with a 

symmetrical waveform, tacho clocking pulses must be measured for 

an integral multiple of the traverse modulation period, so the 

measured value is the mean value of the traverse speed. The count 

value which will produce an integr~l multiple of the traverse 

modulation period can be calculated from the expression : 

COUNT = MODULATION PERIOD * TACHO PULSE FREQUENCY 

The modulation period is given, and the tacho speed should be 

the same as the motor speed (ignoring motor slip), and motor 

speed is given by 

TRAVERSE MOTOR RTC CLOCK FREQUENCY 

TRAVERSE MOTOR SPEED = ---------------------------------
TRAVERSE MOTOR RTC COUNT VALUE 

Note that there is one RTC used for generating motor control 

signals, and another used for measuring the tacho speed. 

Several scaling factors are needed 

1) The tacho pulses are derived from a shaft driven through a 2:3 

gear train from the traverse shaft. 

2) Th~ shaft gives two tacho pulses for every revolution. 

3) The computer output frequency is 6 times the inverter output 

frequency. 

Thus the required scaling factor is 2/3 * 1/6 * 2 = 2/9 and the 

required count value for the traverse tacho RTC is 

2 * MODULATION PERIOD * TRAVERSE MOTOR RTC CLOCK FREQUENCY 

COUNT = ----------------------------------------------------------
9 * TRAVERSE MOTOR RTC COUNT VALUE 

Page 3-11 

·~ ... 



SOFTWARE 

A factor was included to make the measurement period greater than 

8 seconds, but still an integral multiple of the modulation 

period. This factor is a leftover from an earlier attempt to 

measure the spee~. However, it guarantees that the required 

accuracy will be achieved, so it was left in. Thus 

2 * PERIOD * TRAVERSE FREQUENCY 

COUNT = ------------------------------- * TIME FACTOR 

9 * RTC COUNT VALUE 

Where 

_TIME FACTOR = 1 + (15 - MODULATION PERIOD) :/ (MODULATION PERIOD) 

:/ is- the integer divide function which returns no remainder. 

Thus in terms of the variables and constants used in the Inverter 

control system software : 

Where 

2.0 * TMPERIOD * CLOCKFREQ 

TCNT = -------------------------- * TNCYCCNT 
9.0 * TPITVAL(TPOINT) 

TMPERIOD = Required modulation period. 

CLOCK FREQ = Clocking frequency of RTC 

inverter pulses. 

TPITVAL(TCNT) = Count loaded into inverter 

RTC. 

producing 

OU tpu t pulse 

['NCYCCNT = Factor to make duration of measurement 

greater than or equal to 8 secs. 

The traverse motor is an induction motor so -there will be some 

slip. This will result in a speed measurement error.because pulses 

will be coming from the tacho slightly slower than expected, so 

the measurement interval will be slightly longer than the 

modulation period, and as a result the measured speed will not be 

Page 3-12 



. SOFTWARE 

the true mean speed. Note that this problem could have been 

avoided by measuring a variable number of pulses for a fixed time. 

However as pointed out before this method could not be used 

because the measurement intervals became unacceptably long. 

If the traverse has a slip of e% of set speed, then the 

measurement interval will be e% longer than expected. To get an 

idea of the error involved a triangular waveform with amplitude a% 

of set speed without P-jumps was analysed (see figure 3.3.2a). The 

mean value of any waveform over some interval is given by the area 

under the curve. The mean value of the modulation waveform over 

the interval 0 t 1 is zero. The error due to the measurement 

interval being too long will be given by the shaded portion under 

the curve. Figure 3.3.2b shows the error portion of the curve with 

the axes shifted to simplify the analysis. The slope of the curve 

is : 

a 4a 

= 

and the mean value of the shaded portion is : 

1 

J
et 

4a 

t, 
0 

4a 

2ae t dt = 

This result confirms the intuitive expectation that the error will 

be proportional to the slip and the modulation amplitude. The slip 

will.vary according to the rate of acceleration or de~elaration of 

the traverse, and can even have a negative value ("regenerative" 

braking). According to Hudgell (reference 2) the slip under no 

load conditions is 0.5%, whilst the average slip with modulation 

can be up to 0.8% at 200 Hz. Assuming a maximum slip of 1% and 

a maxi~um modulation amplitude of 4%, 

measurement error will be : 

the worst case speed 

0.04 * 0.01 * 2 = 0.08% of mean speed 

Page 3-13 



. FREQUENCY 

FREQUENCY 

(Al 

(8) 

f-a ------------------------

0 t, t,+et. 

TIME 

a ----------------- -------------------------

0 ~....._,_~~,....,._.~~~~~~~~~~~~~~~~--' 

0 et, t, 
4 

TIME 

FIGURE 3.3. 2: TRAVERSE SPEED MEASUREMENT ERROR 



SOFTWARE 

' 
The specification called for measurement accuracies of 0.1%, so 

this measurement technique was,accepted as meeting the design 

requirements. 

3.3.3.2) DETERMINING THE TIME BETWEEN RTC INTERRUPTS. 

An examination of figure 3.3.3 shows that the accuracy of the 

measured speed depends on how accurate!) time is measured. The 

system operates by interrupting the CPU when the required number 

of pulses has been counted, and recording the current time. The 

time of the previous interrupt is known, so the time duration 

between interrupts can be calculated. The system clock operates 

at 50 Hz which means that its resolution is 20 mS. To achieve a 

0.1% accuracy the measurement period would have to be at least 20 

seconds. This was too slow for the chuck speed measurement (see 

chapter 3.3.10), which works on the ~ame principles, so a better 

resolution had to be achieved. 

It is possible to read the 8253 RTC count 

between interrupts. By this method it was 

fractional count value with a resolution 

the crystal driving the RTC. With reference to 

TIME BETWEEN INTERRUPTS = 

value at any time 

possible to get a 

approaching that of 

Figure 3.3.3 : 

TIME AT END OF COUNT- TIME AT START OF COUNT. 

SMT provides a counter that gets incremented every 20 mS. The 

counter is an integer variable called NOW, whose value increases 

from O to 65536 and then "wraps around" back to zero. The 

interrupt service routine simply records the current value of NOW 

and the fractional value of the RTC. These values are saved until 

the next interrupt so that the end of one inte~rupt period is also 

the start of the next period. With variables defined as follows : 

Page 3-14 



\ 

START OF 
MEASUREMENT 

' I 
~ LASTTSTART 

I 
I 

:< 
I 
I 
I 
I 

IAIJ l I l I 
I I 

I : 
I I 
I t 

I : 
I I 
I I 
I I 
I I 
I I 

--7l l<--LASTTGOFRAC 
. I : 

I I 
I I 
I I 
I I 
I I 
I I 
I I 

I : 

(BJ I . t 
, .... ___ _ 
I 
I 
I 

' . 
COUNT LOADED 
INTO RTC 

A-SYSTEM CLOCK'PULSES 

8- TACHO PULSES 

START OF NEXT 
MEASUREMENT 

END OF 
MEASUREMENT 

I 

~ 
I 
I 
I 

TS TOP 
I 

k 
I 
I 
I 

I I 
I I 

s s-----;t I t I 
I 
I 
I ' 
I 
I 
I 
I 
I 
I 

>' 

I 
I 
I 

k--TENDFRAC 

t 
COUNT REACHES 
ZERO 

FIGURE 3.3. 3: RELATIONSHIP BET WEEN SYSTEM CLOCK PULSES 

AND TACHO PULStS 



SOFTWARE 

LASTTSTART = the value of NOW at the previous interrupt. 

LASTGOFRAC = count value read from RTC at the previous interrupt. 

TSTOP ~·the value of NOW at current interrupt. (Becomes 

TENDFRAC 

ITSOHZ 

LASTSTART) 

= count value read from RTC at current interrupt. 

= total RTC count value to give a SOHz pulse output. 

Thus ·: 

TIME AT END OF COUNT - TIME AT START OF COUNT 

= (TSTOP + FRACTIONAL COUNT) - (LASTTSTART + FRACTIONAL COUNT) 

ITSOHZ - TENDFRAC ITSOHZ - LASTTSTART 

= TSTOP + ----------------- - LASTTSTART + -------------------
ITSOHZ 

TENDFRAC and LASTTSTART 

is loaded into the 

expression gives : 

TIME BETWEEN INTERRUPTS = 

are 

RTC 

ITSOHZ 

subtracted from ITSOHZ because ITSOHZ 

and decremented. Simplifying thii 

LASTTGOFRAC - TENDFRAC 

TSTOP - LASTTSTART + ---------------------
ITSOHZ 

If a situation occurs where a tacho interrupt occurs while a 

clock interrupt is':- being serviced, the tacho interrupt will be 

serviced immediately after the clock interrupt, before the value 

of NOW has been updated ·(NOW is updated by an S-task which is 

triggered by an event set by the interrupt H-task). This means 

that the value of NOW picked up by the tacho service routine could 

be wrong. To prevent this happening, the fractional part of the 

count is tested to see if the count is close to its start or end. 

If it is then that speed measurement is discarded. This is the 

function of the test with INTLIMIT in the listing. 

Page 3-15 



SOFTWARE . 

3.3.3.3 DERIVING THE TACHOMETER SPEED. 

Now that we have an expression for the count value to be loaded 

into the RTC and a method for accurately determining the time 

period between interrupts, it is possible to calculate the a~tual 

tacho speed. Remember that this is found from 

COUNT VALUE LOADED INTO RTC 

TA CHO SPEED = -----------------------------------------
TIME TAKEN TO COUNT THAT NUMBER OF PULSES 

Various constants of proportionality have to be considered. Time 

measurements are in l/50ths of a second. The traverse shaft sensor 

is mounted on a secondary shaft driven through a 3:2 gear ratio, 

and the sensor produces 2 pulses for every revolution of the 

shaft. Finally the tacho speed must be converted to RPM by 

multiplying the frequency by 60. Thus the required constant is : 

(60 * 50 * 3/2) I 2 = 22so 

In the terms used in the program : 

Where 

TT A CHO 

TCNTLAST 

TTIM 

2250 * TCNTLAST 

TTACHO = --------------
TTIM 

= Traverse tacho speed in RPM. 

= Count value for last time interval. 

= Period between previous two interrupts from RTC. 

3.3.3.4 BANDING AVOIDANCE. 

The Chuck tacho speed is measured in a similar way to the traverse 

tacho speed (see chapter 3.3.10). By definition, the Ribbon ratio 

is given by : 

Page 3-16 



SOFTWARE 

6 * CHUCK TACHO SPEED 

RIBBON RATIO = --------------------
TRAVERSE TACHO SPEED 

After the Traverse tacho speed has been calculated, the Ratio task 

calculates the Ribbon ratio, and checks to see if it is less than 

or equal to the critical value where ribboning starts or ends. If 

a critical point has been reached the flags which control the 

Traverse control task are altered so that banding avoidance starts 

or ends. The flow diagram in Fig 3.3.4 and the listing of the 

Ratio task in Appendix H give details of operation. 

Page 3-17 



~-------tRESEr FLA<;S 

C40 INTO 

~-----iUlllDING 

1'VO\Ollo.NCE 

y 

c.-.LC.UL.._T E" 

COUNT VAU.JE 

Flt<>M ouTP\fr 
FReGU£NC.Y 

Wl\\1" l:"OR 

l"'TERPUPT ~ 
A.LCUU.,TE RP1" 

RATIO 

y 

FIGURE 3.3.4: RATIO TA SK FLOW 0 IAG RAM 

T1'1E 

al.IT :QRPN 

y 

ENO !!,ANOl'-1<; 

/>,\JOI OAN<:.£ 

INCIU>ME.N T 
R~S:NT~O

IN<; ~INTNUM
SER 

SET FLA<iS 



... -
.. ~ .' . . . ... · .. 

SOFTWARE 

3.3.4 WINDER DRIVE TASK. 

This task reads a value from the winder control table every lOOmS 

and outputs it to the winder drive RTC (See chapter 2.1 for a 

description of the RTC). The control table values are generated 

by the winder control task which calculates the required output 

speeds and fills the table. The winder and traverse drive tasks 

directly control the speed of the inverter and hence control the 

behaviour of the winding process. Because of their important 

function these two tasks have the highest priorities in the 

system. To prevent them from holding out other lower priority 

tasks they were made as compact and efficient as possible. 

Their only other duty is to ensure that maximum acceleration or 

deceleration rates are not exceeded, and that the maximum 

frequency for the winder drive is not exceeded. If they are 

exceeded for any reason, they are limited to safe values. Figure 

3.3.5 shows a flow diagram of the winder drive task. 

Page 3-18 



FETC~ CURQ.!iNT 
OlJTP\J'1" VAUJE 
~Rott CoNT TA 

Q;)t'tPA RE WI "t'i 

~IOCJS VAt,,.JJE: 

N 

t.11'1 rr Ac:a 
r-~~~~~~~~TCl'fA~UH 

'WAlT lCOMS 

tNC.R5MUJT 
c:.oNTROL. "11l.BI..£ 

PorN''T'ER 

LIMIT S?'EEo TO 

~ Pl:\lrlt:5SABLE --
VALUE 

AAM ISS~ \JN.VE: 

FIGURE 3.3.S:WINDER DRIVE TASK FLOW DIAGRAM 



SOFTWARE 

3.3.5 WINDER CONTROL TASK. 

This task generates wind~r control table values according to the 

state of the system (as defined by the sequencing task)~ and 

responds rapidly and appropriately to system state changes. It 

generates 13 seconds worth of control table values every 11 

seconds, except when the state changes (eg from STOPPED to 

STARTING), when it responds immediately. The drive task reads a 

value from this table every lOOmS and outputs it to the RTC. 

3.3.5.1 SYSTEM CONSTRAINTS. 

This technique for generating speed values was arrived at after 

considering the limitations of the system as a whole. These 

limitations fell into two broad categories those of the 

inverters and their associated motors; and those of the computer 

system. They placed conflicting demands on the computer, 

because on the one hand the motors needed to have their RTC 

output values updated as often as possible, but at the same time 

the amount of calculation to be done by the computer had be kept 

to a minimum. The solution was a compromise between the two 

requirements. 

In practice it would have been extremely difficult to predict 

exactly what the timings and requirements of the ~arious tasks 

would be, as they all run asynchronously with completely different 

cycle times, and the number of possible states of the system is 

vast. So empirical methods were used to determine some of the 

timings. The values that were arrived at were lOOmS for the RTC 

update period, and a 128 value control table updated every ·11 

seconds. (Note that if one value is read from the control table 

every lOOmS, then it will take 12,8 seconds to read the entire 

table). Figure 3.3.6 shows the broad principles of the system 

used, whilst figure 3.3.7 is a flow diagram of the control task. 

Each of the areas of limitation will now be considered in more 

depth, showing the factors that led to the final design. 

Page 3-19 



r . 

' 

'II 

1- FIND OUT WHERE 
DRIVE TASK IS 
READING FROM 
TABLE 

2 - CAL CU LATE A NEW -

VALUE SEVERAL PLACES 
AHEAD OF THIS POINT 

' / 

\II· 
\V 

3 ·CARRY ON CALCULATING 
SEQUENTIAL TABLE VALUES DRIVE 
UNTIL POINT 1 IS REACHED 

TABLE 
-

J 
...... OUTPUT A VALUE FRO.M 

\I / 

TABLE TO RTC 
4 ·WAIT 11 SECONDS 

~ 
WAIT 100.HS 

I 

FIGURE 3.3.6: OVER VIEW OF TASKS PRODUCING INVERTER 

.PULSE TRAINS. · 

-



y 
Do'rJN ~p PlOC~ 
rU...L TA8Ur Wint 

>----AAMP powN 

'n.t.IJES 

RUN PROC~ 

y ~U.J.. Nl.E INITH 
2SECONoSO~ ~--~~~~~~--~ 

SYNCliRONISIN(.j 
VAL.USS 

N 

uPAAMP P~: 
Fu .. .i .. •A&.e W\TH 

,..._~-=toj --~~~-

W~IT ~ ll S&rS 

OR. tJt..n"IL. evEIJT 
SET BY SfQv~ 

TASK 

RAH P uP 
vAL..uES 

u...i PRoC:.; 
F\LL.. TAEt.E "'1 lil.f 

SET Si>££!> 

v.e-i...ues. 

N 

FIGURE 3.3.7~ WINDER CO NT ROL TASK 
FLOW DIAGRAM 



SOFTWARE 

3.3.5.2 INVERTER AND HARDWARE LIMITATIONS. 

The traverse and winder drive output have to be updated often 

enough to ensure smooth control of the winder and traverse rolls. 

There should be no sudden changes in frequency (apart from 

P-Jumps), which would shorten inverter life by causing large 

current surges, and cause unacceptable changes in yarn tension. 

Since the traverse is frequency modulated, it is more important,in 

deciding system values than the winder, so the limitations it 

places on the system will now be considered. Trials with sweep 

generator control of the traverse inverter indicated that the 

maximum continuous acceleration and deceleration rate that the 

inverter could maintain without tripping is 3 Hz/sec, whilst the 

maximum short duration acceleration and deceleration (less than 

five seconds) was 7 Hz/sec. Trials with computer control of the 

inverter showed that an RTC update period of lOOmS enabled the 

specified modulation of the traverse to be achieved without 

exceeding the maximum acceleration rates of the inverter, as well 

as giving satisfactory inverter performance with negligible 

current spikes and smooth acceleration. 

Similar trials with the winder inverter showed that the maximum 

continuous acceleration or deceleration it could reliabily 

sustain was !Hz/sec. Trials with step changes were not conducted 

because they were not required, and because synchronous motors 

behave unpredictably (and sometimes destructively!) when they lose 

synchronism. The traverse and winder motors could accelerate at 

far ~reater rates than they could decelerate (mainly because the 

inverters can supply more energy than they can absorb - through 

regenerative braking without tripping ). Since the modulation 

waveform had to be symmetrical under all conditions, the limiting 

acceleration and deceleration rates had to be made the same, which 

meant that the overall acceleration I deceleration limit was 

determined by the deceleration limit. 

Page 3-20 



SOFTWARE 

3.3.5.3 COMPUTER SYSTEM LIMITATIONS. 

There were three areas of the computer system that had to be 

examined : Firstly there was a limited amount of RAM available in 

the system, so efficient use had to be made of memory; Secondly 

there were other tasks in the system requiring CPU time, so the 

drive tasks could not prevent lower priority tasks being serviced; 

thirdly the control table had to have valid data before the drive 

task tried to read values from it. Each of these limitations will 

now be considered in turn. 

A) RANDOM ACCESS MEMORY LIMITATIONS. 

The drive table had to use RAM economically, as there was only 8k 

available. However the size of the table also had to be large 

enough to reduce the frequency of value calculation, so that lower 

priority tasks could get their fair share of CPU time. The 

communication and tachom~ter tasks had lower priorities, and ~ycle 

times (where appropriate) of about 5 to 15 seconds. A table uidate 

period of about 10 seconds (100 values) gave no detectable 

interference with other tasks. A value of 128 was eventually 

settled on because it made hexadecimal manipulation of the table 

array index simpler. 

B) MULTITASKING LIMITATIONS. 

The winder and traverse drive tasks were given the highest 

priorities in the system because the purpose of the controller 

was to supply a smooth supply of pulses to the inverters. Reliable 

real time generation of values cannot be guaranteed because of the 

nature of multitasking systems. The standard method for producing 

fast real time output values from a computer is by using look up 

tables. A static table required too much memory, as the range of 

operating conditions is extremely wide. An interpolated table 

would have increased the real time processing overhead once more. 

The solution was to use a dynamically generated table, the data 

Page 3-21 



.:.::·:· . ' . ~ 

.... ~~·> .• 

SOFTWARE 

values being generated at a 1ow priority when the system did not 

have more important tasks to service. 

A second aspect of the operating system that had to be considered 

was the 50Hz system clock. The SMT task delay mechanism is 

controlled by this clock, so delays are multiples . of the clock 

period. Task switching often occurs after a system clock 

interrupt, which places a limit of 20 mS on the drive task 

switching .time. In practice. the drive .task cycle period should be 

much greater than this to avoid excessive system overhead. A lOOmS 

update period means that the drivi tasks are only activated once 

every 5 clock periods, which gave a practically acceptable system 

overhead. 

C) GENERATION OF CONTROL TABLE VALUES. 

A 12. S S c y c 1 e time 1 e f t enough time f or drive tab 1 e v a 1 u e 

calculation. The time taken by the system to calculate 128 

values under a wide range of conditions was measured, and it 

never exceeded 600mS. (These measurements were done by printing 

out the difference in the system clock variable NOW on entrance to 

and exit from the calculation procedure.) 

To prevent the drive task reading invalid data (from 12.8 seconds 

previously}, new data had to be generated before the drive task 

reached the end of the table. A 300% safety margin was allowed on 

the 600mS maximum generation time, so new values had to be 

generated 1.8 seconds before the end of the table was reached, 

that is every 11 seconds. Thus 12.8 seconds worth of values are 

produced every 11 seconds. 

3.3.5.4 WINDER CONTROL TASK OPERATION. 

The relationship between RTC count value and output frequency is 

given by : 

Page 3-22 



. . . . 
". -.· ··.· ... : / -.' 

. ._- .·.: 

SOFTWARE 

RTC CLOCK ~REQUENCY 

RTC OUTPUT FREQUENCY = -------------------
COUNT VALUE 

The RTC has a 2,456 MHz clock, so the desired output frequency can 

be obtained by calculating the corresponding count value. Note 

that the output frequency and count value are reciprocally 

related, which means that frequency resolution is inversely 

proportional to output frequency, and that the range of output 

frequencies is limited. This factor coupled with the high 

resolution demanded by the specification indicated that a careful 

consideration of clock frequency was required. See Chapter 2.1 for 

a description of how this was determined. 

The winder motor has four states of operation 

1) Stopped or ramping down to standstill. 

2) Start up synchronisation. 

3) Ramp up to operational speed. 

4) Normal operation. 

As explained in Appendix C (Overview of ICU system), the inverters 

have a minimum start up frequency of 13.3Hz. At startup, the 

output frequency is held at this value for 2 seconds to allow the 

(synchronous) winder motor to synchronise itself. The 2 second 

period was determined by trial and error. After the 

synchronisation period the motor has to be smoothly accelerated up 

to the se~ speed. Once at set speed it has to stay there until the 

stop button is pressed or a fault occurs (such as a winder or 

groove. roll wrap, head lift through air supply failure, or 

inverter failure). When commanded to stop the motors must smoothly 

ramp down to a standstill. 

Once down to the idling speed the system stays in the ramp down 

condition, although an internal test limits the minimum speed to 

13.3 Hz. No distinction is drawn between the RAMPING DOWN and 

STOPPED states as a safety precaution, so that as long as the 

system is in this state it will try to ramp down to a standstill. 

Page 3-23 



.. , ... : ."': :·:, ·.· 
.... ·;.-,: ··--:.-' ... 

SOFTWARE 

This prevents the motors stopping at an intermediate speed if 

an error occurs .where there is , confusion between ,a STOPPED and a 

RAMPING DOWN state. 

Since phases 1,2 and 3 of the traverse and winder motors are 

identical, and since SMT is specifically designed to support 

re-entrant code, the drive table value generation procedures were 

held in a globaily accessible module (COMPROC.RTL) ~hich could be 

called by both the winder and traverse control tasks. The 

sequencing tasks TCONT.RTL and WCONT.RTL keep track of where the 

drive tasks are reading values from and call the. appropriate table 

value generation procedures with the correct parameters. 

PHASE 1 STOPPING OR STOPPED 

In this phase the table has to be filled with values that 

correspond to 13.3Hz, which corresponds to an RTC count value of 

2 456 000 

----------- = 30 708 

6 * 13.33 

The required output frequency has to be multiplied by six because 

the inverters require an input frequency six times greater than 

the desired output frequency. (See Appendix C for a description of 

the inverter operation). This function is handled by a procedure 

in COMPROC called DOWNRAMP. It has four parameters passed to 

it 

a) The name of .the control table for which values are to be 

generated. (PITVAL in the program listing) 

b) The current value of the pointer that the drive task is using 

to read values from. (STARTP in the program listing) 

c) The value of pointer which table entries are to ·be generated 

from (CALCP in the program listing). This will usually be three or 

four more than the value passed in b). 

d) The deceleration rate in Hz I lOOmS. (DEC in the program 

listing) 

Page 3-24 



,· ......... 
.. ·~ ,' - : •,'. :> .· 

SOFTWARE 

Figure 3.3.8 is a flow diagram of the Ramp down algorithm 

DOWNRAMP. The RTC count value is derived as follows 

Required new speed = Current speed - deceleration rate. 

Thus Fe / Nnew = Fe' / Nold - DEC. 

Fe * Nold 

Rearranging Nnew = ---------------

Fe - Nold * DEC 

Where Fe = RTC clock frequency (2,456 MHz) 

Nold = Previous RTC count value in table. 

Nnew = Required RTC count value. 

DEC = Deceleration rate in Hz I lOOmS. 

PHASES 2 & 3 STARTUP SYNCHRONISATION AND RAMP UP TO RUN 

When an operator presses the start button, the:system goes into 

the Synchronisation phase for two seconds, and then moves into the 

Ramp up phase. The sequencing task controls the change from one 

state to the next by setting various flags which indicate what 

state it should be in. The control task monitors these flags and 

calls 'the appropriate procedure with the correct parameters for 

that phase of operation. In the synchronisation phase the RUN 

procedure is called which fills the control table with idling 

speed values (13,3Hz). Two seconds later the control flags are 

altered_ and the ramp up procedure is called. The next section 

describes the operation of the RUN procedure. The Ramp up 

procedure (UPRAMP in the common procedures module COMPROC.RTL) 

wo'rks in essentiall_y the same fas hi on as the DOWNRAMP procedure 

described in the last section, except that instead of decreasing 

the speed, it is increased : 

Required new speed = Current speed + acceleration rate 

Thus Fe I Nnew = Fe I Nold + ACC 

Page 3-25 



N 

F=1 U.. NliXT 2.. 
ABJ..E A:Js1-f-1 ON! 

w1m Cc.IAA£Jo.l'T" 
V#l.1-1.JE 

MAR.IC: STAftTIN<i 
PolNT OF 'l/Af..UE: 

Gi£NEMnorJ 

oa:REHeJJT 
UQ.RENT TASl..f 

v,..we BY DECE'
RATE 

WRITS COAAeJ-JT 

V,.._~UE INTO 

ThSr..E 

IJJCREMENT 

PolNTER 

y SET OJRREN T 
,_ __ VAL.r.Je = 

~ SPESC. 

FIGURE 3.3.e: RAMP DOWN PROCEDURE ALGORITHM 



• '-~ • • < -

. ·.··· -
... 

SOFTWARE 

Fe * Nold 
Rearranging Nnew = ---------------

Fe + Nold * ACC 

Where Fe = RTC clock frequency (2,456 MHz). 

Nold = Previous RTC count value in table. 

Nnew = Required RTC count value. 

ACC = Acceleration rate in Hz I lOOmS. 

The Ramp up procedure also has to check on whether the required 

operating speed has been reached. This check is performed every 

time a new table value is calculated. Once the normal run speed 

has been reached, the RUN procedure is called with the appropriate 

parameters to fill the rest of the table with run values, and the 

run flag (WRUNF) is set. The sequencing task clears the start 

flag (STARTF) when it detects that both motors are up to speed. 

Figure 3.3.9 shows a flow diagram of the Ramp up procedure UPRAMP. 

PHASE 4 NORMAL RUN OPERATION 

Once the motor has reached the required operational speed, the 

c6ntrol table is filled with the required run v~lue. This is very 

simply achieved, and figure 3.3.10 shows the flow diagram of the 

procedure. The RUN algorithm fills the control table with the 

speed value passed as a parameter, which means that it can be used 

in the synchronisation phase to fill the table with startup 

values. 

Page 3-26 



FILL NEXT Two 
Pos1noNS win< 
CURRENT vA..1-!JE 

M.&.RI<. 
ST ART"I N ~ 

POINT 

INCREMENT 
ClJRRE"'i't' VAL.VE 
t3Y Ac.c.E1... RATE 

WRl't'E" Nfi:w 
VAL-ufE JNTO 

-P.SLE' 

l~REl1ENT 
TAB!:-E POINTE~ 

VA1-t.lE 

y Si:f RcJN Fl.A<j 

r----?tCAU.. RUN PRoc. 

FIGURE 3.3.9: RAMP UP PROCEDURE .ALGOR I TI-iM 



MARK 

5TART11'fq 

POINT' 

PUT REQ.UIRE'D 
RI.JN V,A.LIJE 

INTO TABL..c 

!NC::R.EMENT 
"TAE.t..E 

POINTE:.J< 

,, 

FIG URE 3.3.10: RUN PROCEDURE ALGORITHM 



·-. > . 
••• ...... ·,.:·_:. < ••• 

SOFTWARE 

3.3.6 SEQUENCING TASK. 

The sequencing task is the interface between the various digital 

signals required by the hardware, and the internal state of the 

software. There are three functions that have to be performed : 

1) Monitor plant interlocks (such as the ON and OFF buttons), and 

modify the state of the system accordingly. 

2) Output status information about the state of the system, and 

open and close interlock relays. 

3) Monitor the internal state of the system software, take 

appropriate action and issue information if illegal states occur. 

3.3.6.1 THE SANS STANDARD SEQUENCE TASK. 

This task was adapted from a standard module developed by SANS for 
' 

sequence control on PDP-11 computers. The use of standard modules 
\ 

reduces software development time, and makes software maintenance 

and readibility by other programmers far simpler. The task 

actually consists of three modules in the development stage, and 

two modules in the final system, namely 

1) A sequence timing module which ensures that the correct 

sequence gets called at the correct time. The module was developed 

for a multi-tasking process control system, and so there is 

provision for as many sequences as required by a system. Each 

sequence can be executed at a regular interval set by the 

sequence. Each step in a sequence is timed and has a timeout 

limit, and each sequence can be stopped, held or adjusted. Figure 

3.3.11 shows the flow diagram of this module. 

2) Sequence execution modules. These form the body of each 

sequence and consist of main sequence steps, and sequence sub 

steps. A main step corresponds with the state of the machine ~J 

stopping, synchronising or ramping up. Sub-steps are the 

Page 3-27 



s•c:iu&:NCE 
NUMSER:.J 

lloJC~lii.MENT 

INTE.Rll'AL. TIHER. 

""A.l.T l.llJ"TIL. 
SfWtSiur=/l.Jc..e cva...s 
Ttrle' Si PSE . 

y 

y SET SEQU ENQ 
~-__;~CAU.. l=L.Aq 

TAl<.6. CORRS::Tl\JE: 

J.{:;.TION 

FIG URE 3.3.11: 

SEQUENCE TIMING MODULE 



· .. ;. 

SOFTWARE 

individual steps that have to be -performed eg check that the 
, 

emergency stop button has not been pressed, close the start relay 

contacts, flash the warning light. Each sequence execution module 

sets its own Main and sub step values according to the information 

it receives from the plant interlocks. Figure 3.3.12 shows the 

flow diagram of this module. 

3) Sequence Operator Command Processor (OCP). This module is only 

used in the testing and debugging phases. Through a local 

terminal, each sequence can be stop~ed, held where it is or have a 

hold set for a future step. It also enables the sequence main and 

sub step values to be set as required, so that the detailed 

operation of each step can be tested. The module is straight 

forward and directly manipulates the sequence data, so it will not 

be described further. 

The data for the sequence task is held in two data bricks. One is 

local to the sequence timing module and holds the basic cycle time 

for the timing module, an array of the sequence execution 

procedures, and a matching array of delay, timeout and hold 

counters. There is a second data br'ick in the global data base 

which holds an array of step variables and flags for each 

sequence. 

3.3.6.2 THE INVERTER CONTROL UNIT SEQUENCING TASK. 

This task is made up of the sequence timing module and a sequence 

execution module. It has the following features : 

1) There are no events in the plant which have to be synchronised 

with internal system events, 

the timing module is not used. 

so the sequence timeout feature of 

2) There is only one sequence execution module. 

3) The basic cycle time of the timing module is one second. This 

choice resulted from the need for a reasonably quick response 

time to plant interlocks (eg the emergency stop button). 

Page 3-28 



Sl&l-ECT MAIN 

S~ve/\JC.c Sn:::? 

FIG URE 3.3.12: 

SEL..Ec.. T SUS 

STEP 1 

SE:l-&:CT SUS 

STEP 2. 

SEl..cC.T SUS 

Sn::P N 

SEQUENCE EXECUTION MODULE 

Si'E'Pl 

STEP2. 

STEP M 

STEP 2. 

STEP M 



_. .. 
. ·.~- "·._. ,. 

SOFTWARE 

4.) A watchdog timer has been added to the timing module, which 

turns an indicator LED on and .off every second if six critical. 

tasks in the system are functioning correctly. It uses the fact 

that every task has to cycle within a certain period. If a task 

fails to complete a cycle in that period, then there must be 

something wrong with it. Each of the six tasks loads a count value 

into an array each time it completes a cycle. When the sequence 

task cycles, it decrements all the elements of the array and 

checks to see if any of them have reached zero. If any have 

reached zero it means that they have been held up for longer than 

the allowable period, so an error message is printed saying which 

task has failed, the LED is turned off, and the sequence alarm 

flag is set which causes the motors to ramp to a stop. 

-3.3.6.3 SEQUENCE TASK INPUTS AND OUTPUTS. 

As mentioned previously, this task forms the interface between the 

plant and the computer system. Each of the signals and conditions 

that affect the state of the system will now be considered. 

A) INPUTS FROM THE PLANT. 

1) THE READY SIGNAL. As described in Chapter 2.2, the start, 

stop, emergency stop, oil mist fail, thermistor trip, wrap 

detector, winder inverter trip.and traverse inverter trip inputs 

are AND'ed together into a single digital input. If this input is 

"TRUE" the winder is running, and must ramp up to operating speed. 

If it is "FALSE" the winder is stopping, and must ramp down to a 

stands~ill. 

2) THE WINDER TACHOMETER. The sequence task use• this tachometer 

to set a system event which causes any new operating parameters 

which have been sent to the controller to become the current 

operating parameters. 

occur when the chuck is 

"doffed". This means 

Updating of the running parameters has to 

stationary ie when the winder is being 

that new operating conditions are 

synchronised with the start of a new package, rather than -in the 

Page 3-29 



SOFTWARE 

middle of a package. 

B) OUTPUTS TO THE PLANT. 

l} WINDER RUNNING INDICATOR. The computer turns this LED on once 

both the winder and traverse rolls are at their operating speeds. 

This indicator is relayed to the machine head, and tells the 

operator that the machine is ready for use. 

2} WINDER INVERTER RUN RELAY. This si~nal closes a set of contacts 

in the inverter which enables it to be started. The contacts are 

closed when the READY signal is TRUE, and opened when the READY 

signal is FALSE. 

3} TRAVERSE INVERTER RUN RELAY. As for the winder ·run relay. 

C} INPUTS FROM THE COMPUTER SYSTEM. 

The sequence task monitors the frequency of the pulses being fed 

to the inverters for two reasons 

1) To ensure that the inverters do not start unless the output 

is at idling frequency. This means that once the stop button has 

been pressed, th~ motors cannot be restarted until they have 

·ramped to a standstill. 

2) To switch the RUN indicator on when both the winder and the 

traverse are up to speed. 

D) OUTPUTS TO THE COMPUTER SYSTEM. 

These are binary flags which signal to the rest of the system what 

phase of 

of these 

cleared. 

operation is required. The sequence task controls three 

flags. When any of them are set, the others will be 

1) The STOP flag. This is set whenever the READY signal is FALSE, 

and signals to the system that the stopping phase has been 

Page 3-30 



SOFTWARE 

~ntered. All other flags are cleared when the STOP flag is set. 

z) The SYNC flag. This is set for the first two seconds after the 

READY signal has been set, and allows the synchronous winder motor 

to get itself into lock. · 

. 
3) The START f~ag. After two seconds, the SYNC flag is cleared and 

the START flag is set. This results in a steadily . ramping pulse 

train being fed to the inverters. 

Once both inverters have reached their required operating speed, 

all three of these flags are cleared, and the ratio ·task takes 

over control of the internal state of the controller. 

Figure 3.3.13 

the sequence 

controller. 

shows a flow diagram of the combined operation of 

execution and sequence timing modules for the 

Page 3-31 



f1AIN SEQU£NcE 

STEP '3 

SUS-STEl'I 

SUB-Sl&l>z ~~---'"'--~~ 
Cl..Ell\R />U- RAG$ 

SUIS-ST'EP 4-

N 

SET STOP FLN; 

S\JITc.t-1 OC:F 

REAl>V Ll(\J.IT 

FIGURE 3.3.13; SEQUENCE TASK OPERATION 

Cl.EA!t ALL fl.A(\$ 

MAllJ S(;QIJENCE 
STEP I 

Sll~-STEPI 

SllB-SiEP 3 

SUS-STEPS 

STARr RAG. 

SUS-STEP ::J 

CLE: Mt STAil I RA~. 
Slo.llTCH READY LIC\HT CJt...J 

t1.\IN SEG\lEIJ<.E 

STEP 2. 



SOFTWARE 

3.3.7'THE OPERATOR COMMAND PROCESSOR (OCP) TASK. 

This task allows an operator to enter operating parameters into 

the controller via a local VDU. It converts the parameters from 

a form familiar to the operator into the form required by the 

computer. For example, the operator is used to setting the 

traverse and winder speeds in (REAL) Hertz. However the computer 

uses the number of (INTEGER) counts of a 2.456MHz clock to 

represent this frequency. 

between the two. 

Clearly there has to be a conversion 

SANS has 

management 

terminals 

a large commitment to computer systems for process 

and process control, and there are numerous 

on the factory floor which are used by operators. As a 

result the company has attempted to evolve a standard menu driven 

operator interface. This section will examine the thinking 

underlying the OCP task; and then it will look at the operation 

of the software. 

3.3.7.1 REQUIREMENTS FOR AN OCP. 

The standards ~or operator communication adopted by SANS were 

based on those developed by an ICI team in England, who 

encountered problems when numerous projects were developed by many 

different people over a long time. There are two groups. of people 

who stand to gain from standardisation, namely operators and 

programmers. Most machine operators are unfamiliar with computers, 

so it is desirable to establish a simple and consistent approach 

to operator communication to minimise training, and given the 

complexity of some plants, reduce the risk of error. From the 

perspective of the programmer, standardisation reduces development 

time and makes it easier to understand and maintain a piece of 

software written by another person. 

The ICI development team found that 

approach between projects, and 

there was no consistency of 

much effort was wasted through 

Page 3-32 



SOFTWARE 

duplication and having to rewrite software for each job. The 

result was programs that were often difficult to use and read. To 

overcome these problems the software had to be versatile enough to 

handle all situations, had to have standard and self explanatory 

procedure names, had to be in globally accessible modules, and had 

to avoid hardware specific features. 

Experienc~d operators sho~ld be able to interact quickly and 

efficiently, but when mistakes are made or inexperienced 

operators use the system, additional information should be 

available. The solution was a menu driven system that lists the 

available options and prompts for a reply. Typing "X" (for 

e"X"planation) provides additional information. Validity 
/ 

checking is performed. on operator entries, and invalid 

entry produces an error message and analysis. To prevent 

unauthorised use of the system, security checks have to be passed 

before the data can be altered. 

3.3.7.2 OCP SOFTWARE. 

Because operating parameters can only be updated when the winder 

is "doffed" (see Appendix A : "Introduction to Nylon Spinning" for 

a description of terms used in Nylon Spinning), and because the 

computer uses different forms of the parameters from the operator, 

it was necessary to have three sets of data for the OCP. Figure 

3.3.14 shows a block diagram of the relationship between these 

three data bricks, each of which will now be decribed in detail. 

A) CURRENTLY ACTIVE PARAMETERS. 

Firstly there 

efficiency it 

is the data that is active at present. For 

is held in the form most suitable for the computer 

hardware, so that conversion only has to occur once when the data 

is entered, rather than having to be converted every time it is 

required. This has the added advantage of reducing the amount of 

RAM needed, as computer hardware generally uses byte and word 

orientated data, whereas people tend to use real data, which 

requires four bytes for each variable. This resulted in a 75% 

Page 3-33 



D \SP L i\.YE'O 

.. .. 

t>ISPt..A-Y 

ACTIV~ 

PARl>.H ETEl<S 

DAT 'fl. 

IN 

FIGURE 13.14: OVERVIEW OF OCP DATA 

SERIAL LINK. 
WlTH 
1-tCST 

DA 'TA 

l>ATA
TRi\1'1SfER 

~r;EN 

W\NOER 
0C"A=ED 



SOFTWARE 

reduction in the amount of RAM required for the traverse and 

winder control tables, which have 128 entries each. 

B) FUTURE PARAMETERS. 

The second data brick is a temporary storage area that holds the 

newly entered operating parameters until the machine is doffed and 

the new parameters can become the operating parameters, which 

ensures that a change of operating conditions does not occur in 

the middle of a _product run. This ~~ta brick is updated either by 

an operator entering values through a local VDU, or via the s~rial 

multidrop link with the host. It is an exact replica of the main 

data brick, using the same variable names prefixed with "AW" to 

indicate that they are "AW"aiting update. There is a set of flags 

which indicate which variable (if any) has been altered. When the 

speed of the chuck falls below 1500 RPM, the sequence task sets 

an event which triggers a database update task, which copies the 

contents of the awaiting update data into the main data brick. 

C) DISPLAYED PARAMETERS. 

The third data brick is a set of variables that hold the data in a 

form suitable for the op~rator. Valid parameters entered by the 

operator are converted into the form required by the computer and 

copied into the awaiting update data brick when the operator has 

passed a security check. The operator can view the parameters in 

the computer by the inverse conversion. There is one further 

refinement in that the most recently entered parameters are 

displayed. If these are the running parameters, then a message on 

the VDU informs the operator that he is viewing the "ACTIVE 

PARAMETERS". If these parameters have been altered but the main 

data base has not yet been updated, then the message indicates 

that these are the "FUTURE PARAMETERS~. 

The operation and use of the OCP is fully described in Chapter 

4.2. The software for the OCP task is fairly straightforward, and 

is illustrated in the flowchart in Figure 3.3.15. 

Page 3-34 



FIGURE 3.3.15: 
OCP TASK ALGORITHM 

WA\ T RlR SPACE' 
SAR TO St: 

PRESSED 

OPTIONS 

W~\'t" R Ms.JU 
CP.TION TO BE 

se<w:crco 

DISPU\'{ TLME< 

>.!>JC DATE 

O\SPLl\.Y OPEAATll'-Xj 

PAR4HErcgs 

y 

DlSPl....A-Y 
'>-'-r-"?"1pARAH£TEe.5 

Hoo\i:'( 
.J_ _____ I ?AR.'1KE T'e:RS · 



SOFTW~RE 

3.3.8 TRAVERSE DRIVE TASK. 

This task is identical in operation to that of the winder control . 
task described in chapter 3.3.4. It reads a value from the 

traverse control table every 100mS and outputs it to the traverse 

drive RTC. The control table is filled with values by the traverse 

control task. 

The only difference from the winder drive task is that allowance 

has to be made for traverse P-jumps. The maximum step 

acceleration needed for the P-jump is far greater than the 

limiting acceleration rate of the inverter. This meant that the 

inverter would not have been able to achieve the desired 

modulation characteristics. However, the inverters can withstand 

an instantaneous step acceleration much larger than the greatest 

continuous acceleration. The inverters have two current overload 

trips : a maximum instantaneous current trip; and an average 

current trip derived by integrating the load current. The 

integrated current ~rip is the ~ne which limits the continuous 

acceleration rate, and the maximum current trip is the one which 

limits the step acceleration. If the average of the peak currents 

is more than the average current set point, the inverter will 

trip. Thus empirical tests were run on the inverters to determine 

the limiting repetition rate for the maximum P-jump required. In 

practice the inverters were able 

called for by the specification 

to meet the worst conditions 

In the software for the traverse drive task, the check 

maximum acceleration or deceleration is modified so 

limiting rate is set to a different value if a P-jump 

for the 

that the 

is being 

executed. Figure 3.3.16 shows a flow diagram of the traverse drive 

task. 

Page 3-35 



Ff!:TC.t'f CURRENT 
OUTPIJT vPtt..ue 

cot'IPIHU: Wl"TR 
PRE\/tOVS VA1..ui;;; 

[..lt1rt" CURi:l.E>JT 
T~IP VAL.Uld 

UTPuT' VAl.JJE "f'O 
R.TC.., lr.ICR.ENEIJT 

ABLE' ~INTER. 

M~ DE:C::..EL.: 
LIMIT CLJR.Re:NT 
~IP VALUE 

t1A)(. Ji..ccE L.. ::. 
AVERA<:jE" cu 
"TR1P LtH IT 

I-IHI T SPEE 0 

L1Ml1" Ceca., 

FIGURE 3.3.16: TRAVERSE DRIVE TASK 



.·•.·. 

SOFTWARE 

3.3.9 TRAVERSE CONTROL TASK. 

This task is essentially the same as the Winder control task 

described in section 3.3.5, except that traverse modulation and 

programmable banding avoidance must be provided in place of the 

normal "RUN" operation of the winder. Section 3.3.5 sh6uld be 

consulted for a description of the requirements and limitations 

that led to the final design of the control task software. Figure 

3.3.17 is a flow diagram of the traverse control task. 

The traverse has five states of operation 

1) Stopped or ramping down to a standstill. 

2) Start up synchronisation. 

3) Ramp up to operating speed. 

4) Traverse modulation. 

5) Banding avoidance. 

The first three states have been described in chapter 3.3.5. Figure 

3.3.18 is a plot of frequency vs time showing all these phases of 

operation. The modulation amplitude and banding avoidance speed 

change have been greatly exagerrated for clarity. Each of the 

labelled points of operation in Figure 3.3.18 will now be examined 

in more detail. 

A) Shows the start up synchronisation phase. The traverse runs at 

13.3 Hz until the winder motor has achieved synchronisation, and 

then ramp up occurs. 

B) Traverse ramps up to operating speed. 

C) Traverse reaches normal operating speed. This is known as the 

"Fl" speed. 

D) Traverse modulation does not start until the winder roll 

has reached its operating speed. (At this 

~witches the "WINDER READY" light on, 

Page 3-36 

point the sequence task 

which signals to the 



l=IL-L COWTRC)L. AND 
C.ONOIT\OJJ CoDe' 
T$1iSLE'S w ITI{ SToP 
VAt.IJ~S. ~ET STOP 

l=L.A<; 

• 

~o 1'I i>Roc.. i.J I TJ-4 
>--..,.:!JYNC. VAt-VES ~ !--------------------~ 

2 SECOIV05 

">----""' uPR.AMP PRoc.. 

R~CA~ PAil.AMS 
~----,.RAMP To F2. 

c:...c AN«.E ~L.A«S 

RECAU:. PA~H5 
,__.,.,. Rt\MP TO ;::: I 

Wh\T I l 3E"c:S O~ 
UIVTll.. EVEIVT SET 

BY SEQvli:NCE" r~ 

CHA-...iqi;: Fl.AAS 

SEIT P.urJ J:"LJ.}a 
'-----""'lo!C>IU- MOOlJL.~TlOl\l 1---~ 

PRoc.. 

FIGURE 3.3.17: TRAVERSE CONTROL TASK 

;, 
i' 



.-XPAl-JOEQ DErA-IL. 
SHow1tJq TRINE:R.SE 
l"k:'OUL-AT IOIJ WIWEFOet1 

FIGURE 3.3.18: TRAVERSE SPEED. VS TIME 



SOFTWARE 

operator that the machine can be used.) 

E) Banding avoidance begins. The ratio task has detected that the 

ratio of the chuck and traverse speeds has reached a critical 

point where banding is about to occur, and has set the banding 

avoidance flag. Modulation is stopped, and the traverse ramps to 

its new speed. The rate of ramping is one of the process variables 

set up by an operator via the local VDU or host link. 

F) The banding avoidance speed is reached. This is called the "F2" 

speed. This speed can take any value, and could have been less 

than the Fl value. F2 modulatfon begins. 

G) Banding avoidance ends. The ratio task has detected that the 

need for banding avoidance has ended, and has cleared the banding 

avoidance flag. 

H) Modulation stops, and 

frequency. This ramp rate is 

operator. 

the traverse ramps to the new Fl 

also a process variable set by an 

I) The new Fl frequency is reached, and Fl modulation begins 

again. The new Fl speed is also a process variable which can be 

set to any value, and does not have to be the same as the first Fl 

speed at D. 

J) The machine is stopped either by the operator or because a 

fault condition has occurred. 

K) Modulation stops and the traverse ramps to a standstill. 

Only one banding avoidance point was shown. In practice up to 15 

points can be specified, each with its own Fl and F2 set speeds. 

This enables a close control of wind on tension and package build 

to be obtained. See Appendix A for a description of why this 

traverse behaviour is required. 

Page 3-37 



SOFTWARE 

3.3.9.1 THE CONTROL FLAGS. 

Outing the normal run phase, 

operation : 

1) Fl modulation. 

the 

2) Ramp to F2 operation 

3) F2 modulation. 

traverse has four phases of 

4) Ramp to Fl operation. 

Three flags were required to uniquely specify each phase of 

operation one to indicate Fl operation; two to indicate F2 

operation; three for banding avoidance. Figure 3.3.19 shows the 

flag settings for each phase. The control task examines these flags 

and calls the appropriate procedure according to their status. 

Another flag called the "RAMP" flag was required. When the 

operating parameters have been altered and the winder has to 

operate at a new speed, the large step changes at P-jumps 

allowed by the traverse drive task must be disabled while the 

traverse ramps to its new set point. When the ramp flag is set 

the control task calls the banding procedure with dummy parameters 

so that a banding avoidance speed change is performed. This 

results in a smooth ramp to the new operating speed. 

3.3.9.2 THE MODULATION PROCEDURE. 

The modulation waveform has four components : a positive speed ramp 

to the modulation amplitude maximum; a negative P-jump; a negative 

speed ramp to the modulation amplitude minimum; a positive P-jump. 

The control task . finds the point where the drive task is reading 

values from the control table, and starts generating new values a 

few places ahead. Since this point is arbitrary, it is 

necessary to determine the modulation phase being executed, as 

well as the stage of the phase that has been reached. 

Various methods were tried. All of them involved scanning the 

control table values and trying to fit the observed pattern with 

Page 3-38 



~ 
UI 
? 
(J 
UI 
ct u. 
1.11 
(/') 

d. 
lll 
:> a: 
ot r-

~ ~;er 70" RESET 

..--~~~~~~~~~~---

I ~ I I ~ l 0 0 
0 

0 0 

FIGURE 13.19 TRAVERSE MODULATION CONTROL FLAGS 



. ··.: ...... ·. 
. . ·:.· 

SOFTWARE 

reference patterns, which proved to be clumsy and time consuming. 

Eventually each phase was give~ a number, and a "condition 

code" table was used. Each entry in this table matches the control 

table and holds the modulation phase or condition code. The 

condition code values are as follows -: 

0 - No modulation ie mean speed change in progress. 

1 - Positive speed ramp to maximum modulation amplitude. 

2 - Negative P-jump. 

3 - Negative speed ramp to minimum modulation amplitude. 

4 - Positive P-jump. 

Figure 3.3.20 is a detailed diagram of the modulation waveform, 

showing the condition code values for the different phases. With 

this table the phase of operation can be determined immediately, 

and then it is only necessary to find how many lOOmS steps from the 

end of the phase the calculation point is. This can be be done by 

comparing the output speed at the calculation point with the target 

speed for that phase. 

3.3.9.3 GENERATING THE TRAVERSE MODULATION WAVEFORM. 

The parameters given in the operating instruction are TFXSPEED 

for the . required mean speed, TFXAMP for the modulation amplitude, 

TFXPJ for the P-jump amplitude, and TMPERIOD for the modulation 

period~ All the other values are derived from these four. The 

simplest way to generate the control table values is to fix each of 

the end points in the waveform and then interpolate between them. 

·Figure 3.3.20 shows these end-points and the variable names used 

for them in the software, namely TFXUPSTART, TFXUPSTOP, 

TFXDOWNSTART and TFXDOWNSTOP, whose names 

TRAMPTIME is the ramp duration (in lOOmS 

P-jump hold period (also in lOOmS counts). 

are self explanatory. 

counts). THOLD is the 

The prefix "TFX". is used because these ~re "T"raverse variables, 

and can be set for either non banding (Fl) or banding (F2) 

operation. Variables not given in the operating instruction are 

calculated by a procedure call~d PARAM (in module COMPROC) which 

Page 3-39 



1 
TFX~MP 

'T'FXAMP 

I 
I 
I 
I 

~ 

TF'J( \.l PSTOP 

_____ i __ 

I 
I 
I 
I 
I 
I 

---+- - 11---
1 

I 
I 

l< TRAl'1PTW\E ---~ ')1 k 
I 

. ~T\.lOL-0 
I I 

--?>! ~THOLO 

I 
TMPER.100 

12 I 

MEA.N SPEED 

T~XP! 

-n:)(..DO'fJNSTOP ---7- ,- - - __ t__ 
I 
I 
I 

TP.AMPT\l'\G >1 
I 

I 
I 

3 14 I 
FIGURE 33.20 TRAVERSE MODULATION VARIABLES 



.:·~·. 

SOFTWARE 

gets called with the parameters for the'current phase of operation. 

In what follows it must be rem~mbered that the modulation waveform 

is symmetrical about the mean frequency, and that the modulation 

period remains the same for Fl and F2 operation. Each of the 

variables will now be derived. 

A) TIME DURATIONS. 

To prevent the traverse inverter from tripping when the maximum 

value of P-jump permissable is immediately followed by a continuous 

ramp, an inverter recovery time THOLD was inserted after the 

P-jump. It was made variable so that it could be dynamically 

altered to cope with different situations if required. In practice 

a value of 1 prov~d to be satisfactory for all cases. Thus 

Modulation period = (2 * TRAMPTIME) + (2 * THOLD) 

Modulation period is held as seconds, so in lOOmS counts 

10 * TMPERIOD = (2 * TRAMPTIME) + (2 * THOLD) 

Rearranging and remembering that THOLD is given 

TRAMPTIME = (5 * TMPERIOD) - THOLD 

B) CALCULATION OF RAMP UP PARAMETERS. 

From figure 3.3.20 

Start of upramp = mean speed - modulation amplitude + P-jump. 

The modulation amplitude and P-jump are both held _as percentages 

of the mean speed, thus : 

Page 3-40 



SOFTWARE 

Start frequency of upramp = 

mean speed * (1 - mod amp I 100 + P-j amp I 100) 

= mean speed * (100 - mod amp + P-j amp) I 100 

Speed values are held as RTC counts (see section 3.3.5.3), and 

Thus 

RTC clock frequency 

RTC output frequency = ------------------
RTC count 

Clock freq Clock freq (100 - mod amp + P-j amp) 

----------- = ----------- * 
start ·count Mean count 100 

Rearranging 

Mean count * 100 

start count = -------------------------
( 100 - mod amp + P-j amp) 

Using the vari~ble names of the program listing 

Where 

100 * TMFXSPEED 

TFXUPSTART 

(ioo - TMFXAMP + TMFXPJ) 

TMFXSTART = Start count of modulation upramp. 

TMFXSPEED =Count corresponding.to mean speed of traverse. 

TMFXAMP = Modulation amplitude as % of mean speed. 

TMFXPJ = P-jump amplitude as % ~f mean speed. 

The end point of the ramp can be found in the same way since 

End point of upramp = mean speed + mod amp 

Page 3-41 



and 

SOFTWARE 

100 * TMFXSPEED 

TFXUPSTOP = --------------

( 100 + TMFXAMP) 

Ramping between the start and end points was achieved by finding 

the iotal speed difference and dividing it by the number of lOOmS 

steps between the two points. Each individual ·step was found 

f~om : 

speed at step = speed at previous step + step speed increment. 

Thus step speed increment = 

TFXUPSTOP - TFXUPSTART 

TFXUPINC = ----------------------
TRAMPTIME 

This ~ields a negative value as TFXUPINC, TFXUPSTOP and TFXUPSTART 

are all RTC count values which are inversely proportional to 

frequency, so to increase frequency, the count value must be 

decreased. Since smooth ramping is required under all conditions 

TFXUPINC was held as a REAL variable, and the ramp calculation was 

done as a REAL, conversion to INTEGER count only taking place when 

the calculation was complete. 

C) CALCULATION OF RAMP DOWN PARAMETERS. 
I 

The same techniques were used for the ramp down phase of the 

modulation waveform, so : 

start of downramp = mean speed + mod amp - P-jump amp 

Page 3-42 



or 

and 

and 

SOFTWARE 

1-00 * TMFXSPEED 

TFXDOWNSTART = -----------------------
{ 100 + TMFXAMP - TMFXPJ) 

end of downramp = mean speed - mod amplitude. 

100 * TMFXSPEED 

TFXDOWNSTOP = --------------
{ 100 - TMFXAMP) 

TFXDOWNSTOP - TFXDOWNSTART 

TFXDOWNDEC = -------------------------
TRAMPTIME 

This yields a positive value since the count value of TFXDOWNSTOP 

is greater than that of TFXDOWNSTART. 

D) THE P-JUMPS. 

An examination of Figure 3.3.20 shows that the P-jump values are 

really TFXDOWNSTART and TFXUPSTART held for THOLD lOOmS steps. So 

once the ramp end points were reached a step change was made to the 

ramp start point. 

E) TH~ TRAVERSE MODULATION PROCEDURE. 

Figure1 3.3.21 shows the flow diagram of this procedure. It is 

called with the traverse control table pointer and the desired mean 

speed passed as parameters. The modulation parameters are picked up 

from the global database. 

Page 3-43 



N 

(\Gi'..T" CoNT"RQL... 

TAB!..6 Po11JTER 

c;£T STATUS FROM 
cotJOll"ION CoOE 

TASl...J: . 

y 

AAHP UP 1. STEP 

ENO oi:: y 
TABLE:? 

P.E'.ACWEO 

Ti:;')COPSTOP? 

y 

UTP\JT = Tl='illlPSi~Q. 
~ -rH0t-o eoul'JTS 
cc. T"A~L6 vl\LUE~ 

,,._.,T c.A-L.C. v~R 

Sl4TIJS .::( 

N 

cl,Lc.UL A-TE I-JO oi:; 

I00'1.S STEPS Rbt1 
0 oc. ~MP 

ENO OC. y 
Tr'l-8LE ? /"'"----__, 

N 

R~H P I S-rE'P 

SlATuS ::= 1 

FIGURE 3.3.21: TRAVERSE MODULATION PROCEDURE 

y 



SOFTWARE 

3.3.9.4 BANDING AVOIDANCE. 

The banding avoidance procedure is held in the module COMPROC along 

with the other winder and traverse control procedures. It is used 

whenever the mean speed of the traverse has to be altered, either 

during banding avoidance, or when a new operating instruction 

requiring a different mean speed is entered. It is called with the 

target mean speed, the acceleration rate and control flass ·passed 

as parameters. 

While ramping is in progress the corresponding condition code table 

values are set to zero. The procedure ramps the traverse speed at a 

rate set by one of the parameters passed to the procedure. This 

ramp rate is in Hz I sec, and so the corresponding rate in counts I 
sec must be determined. Thus : 

unit ramp rate = (new frequency - old frequency) in unit time. 

Converting the frequencies into their equivalent count values 

clock freq clock freq 

rate = ----------
new count old count 

Rearranging in terms of new count 

clock freq * old count 

new count = -----------------------------
rate * old count + clock freq 

Ramp rate in terms of old counts only is given by 

Unit ramp rate = old count - new count 

clock freq * old count 

= old count 

rate * old count + clock freq 

Page 3-44 



·, ,' 

SOFTWARE 

or in terms of the viriable names used in the listings 

CLOCK FREQ 

SLOPE= TPITVAL(TCALCP) * (1 - ----------------------------------) 
RATE * TPITVAL(TCALCP) + CLOCKFREQ 

Where SLOPE = ramp rate counts per 1 oom·s. 

RATE = ramp rate in Hz per lOOmS. 

TPITVAL(TCALCP) = control table value being output. 

CLOCK FREQ = RTC clock frequency. (2.456 MHz) 

A flow diagram of the banding procedure is given in figure 3.3.22. 

Page 3-45 



y 

N 

CJ\L.CUt.ATE R.~T'E: 
OF 

etiAN'4E: 

FIGURE 3.3.22: 
BANDING AVOIDANCE 
PROCEDURE 

CHANGE Sl((IJ 

oi:: RM-IP SuJPE 

IJ 

HOkO CUR~6\JT 
'i>PE!m Fol? "THOL.0 

R.i:\MP Al A.A-T~ 
SErr ia'< SLOPE" 

c.c:. T~SU: ;: 0 

Ct-#~(\ Er FLJl.<i S 
TO 

Na..J Sri4 TU....S 



.. ,·. 

SOFTWARE 

3.3.10 THE CHUCK TACHOMETER TASK. 

This task calculates the speed of 

during banding avoidance action. 

identical to that of the traverse 

the chuck in RPM, for use 

The operation of the task is 

tachometer task descibed in 

secti9n 3.3.3. A variable reluctance probe mounted above the chuck 

produces a pulse every time one of two holes drilled in the shaft 

passes it. The pulses are filtered and shaped, and are then used 

to clock an 8253 RTC. This RTC interrupts the CPU every time the 

count value reaches zero. The interrupt service routine reloads 

the counter and notes the time that the interrupt occurred. 

The major difference from the traverse tachometer task lies in the 

length of time that pulses are counted, and hence the count value 

which is loaded into the PIT. The chuck speed changes continually 

from the time the machine is "strung up" until it is "do~fed". To 

ensure that 

measurement 

the required measurement accuracy is met, the 

interval will have to be considered first. Following 

that an expression for the corresponding count value will be 

derived. 

3.3.10.1 RELATIONSHIP BETWEEN CHUCK SPEED AND TIME. 

The production specification called for a measurement accuracy of 

0.1%. The speed measurement technique used is essentially an 

integrating one, so the result is the mean speed of t~e chuck. For 

a small segment of the speed/time curve, the change of speed is 

approximately linear, so the mean speed is half the start and end 

speeds. If the meas.ured speed is to be accurate to 0.1%, the 

actual speed must not change by more than 0.2% during the 

measurement interval. This places an upper bound on the 

measurement interval. In 

expression relating rate 

have to be found. 

order to calculate this limit, an 

of change of chuck speed with time will 

Page 3-46 



SOFTWARE 

Figure 3.3.23 represents a cake of yarn, the weight of the annulus 

of thickness dD is : 

weight = Volume of annulus * density of yarn. 

PI 

= * [ (D+dD)
2 

- D
2

] * s * p * 10-6 

4 

Where PI = 3.142 

D = inner diameter of annulus in mm. 

dD = thickness of annulus in mm. 

s = length of stroke of traverse tip (ie 

annulus) in_ mm. 

p = density of yarn in gcm3 

The weight can also be found from 

Where 

weight = length of yarn * weight per unit length. 

= velocity * time * weight per unit length. 

v * Y * 1 o-1-

= ------------ * dt. 

v 

y 

dt 

60 

= wind up speed in metres per minute. 

= decitex of yarn in g per 104 metres. 

= the time interval of measurement. 

length of 

These two expressions can be equated to find the change of 

thickness of the annulus dD in a time interval dt. Note that the 

units are those traditionally used in yarn technology, which 

accounts for the unusual constants of proportionality. Thus 

PI 

4 

v * y * 10-~ 

* [ ( d D + D )2. - D
2 

] * s * p * 10-E. = - - - - - - - - - - - - * d t 

60 

Page 3-47 



dO 

FIGURE 33.23: DEFINITION OF VARIABLES USED TO CALCULATE RATE OF 

CHANGE OF CHUCK SPEED WITH TIME. 



SOFTWARE 

Rearranging this in terms of ~t, and assuming that the term dD2 -

vanishes as dD -> 0 gives : 

300 * PI * s * p * D * dD 

dt = -------------------------
y * v 

The chuck speed and the diameter of the package are inversely 

related; the diameter starts small and increases, whereas the 

speed is large to begin with, and decreases during the wind up 

period. This is illustrated in figures 3.3.24 and 3.3.25. The 

speed must not change by more than 0.2% in the measurement 

interval. We are trying to determine the shortest time interval 

dt which corresponds to a 0.2% change in chuck speed. It is clear 

that dt is going to have its minimum value at the very start of 

the run. A speed decrease of 0.2% is almost equal to a diameter 

increase of 0.2%, so the calculation will be done in terms of 

diameter rather than chuck speed. The worst situation will occur 

when s, p and D have their minimum values, and Y and v have their 

maximum values. 

The stroke s has a fixed value of 120 mm 

The diameter D has a minimum value of 87 mm 

.The density p has a value of 1. 2 gcm3 for most yarns. 

A 0.2% change in the diameter at 87 mm makes dD = 0.174 mm. 

Decitex Y, and velocity v are interrelated. Some values and their 

products are tabulated below : 

Decitex (Y) velocity (v) I Product (Y * v) 

( g I 1 04 m ) I ( m I m i n ) I 
---------------1---------------1-------------------

20 

26 

42 

206 

1 4800 I 
I 4600 I 
I 6000 I 
I 3600 I 

Page 3-48 

96 000 

119 600 

252 000 (1) 

741 600 (2) 



CHUCK 
SPEED 

CAKE 
DIAMETER 

FIGURE 3.324: CHUCK SPEED VS TIME 

FIGURE 3.3.25: CAKE OIAME TE R VS TIME 

TIME 

TIME 



SO~TWARE 

NOTES 

(1) This ~roduct cannot be produced at present because of 

technical production 'limitations, ~ut it is hoped that it will be 

possible to produce it at some stage in the future. 

(2) This product is the "spun" yarn, made by twisting several 

threadlines together. 

Substituting these values for all four. Yv products gives dt's of 

y * v I dt 

I (secs) 

-------------1------------
96 000 

119 600 

252 000 

741 600 

1 

I 
I 
I 

21.40 

17.18 

8.15 

2.77 

The final Yv product of 741 600 is the largest that will ever be 

encountered, so the measurement period should be less than 2~8 

seconds to guarantee that the required accuracy is met for all 

products. Unfortunately, no allowance was made for the last 

product at the design phase, and ·a measurement period of 4 seconds 

was chosen (giving a 100% safety factor). If this product is 

produced in future, this measurement period may have to be 

altered. With the chosen value of four seconds the worst speed 

measurement error will be slightly less than 0.15%. 

There is one other source of error to be considered. The system 

clock places a lower limit on the time measurement. Of necessity 

the clock interrupt has to have the highest priority. The S-task 

and H-task stack switching procedures PTORTL and RETFIN take a 

combined total of about 150 micro-seconds to execute. Most 

interrupt service routines take something like 50 micro-seconds to 

execute. This means that the worst case latency for the clock is 

of the order of 200 micio-seconds. To achieve a 0.1% measurement 

accuracy 

so there 

the measurement period must be greater than 0.2 seconds, 

should be no problem with errors from this source. 

Page 3-49 



SOFTWARE 

3.3.10.2 DERIVATION OF COUNT VALUE. 

To get a measurement period ·of four seconds, it is necessary to 

predict the number of pulses expected to arrive from the tacho 

in four seconds, that is the current speed of the chuck must be 

predicted. This can be derived from the speed of the chuck at 

start up and the current ribbon ratio. So : 

current ribbon ratio 

current chuck speed = initial chuck speed * 
initial ribbon ratio 

A) initial chuck speed 

1 circumference of winder roll 

= - * winder output frequency * 
6 circumference of tube 

1 CLOCKFREQ 

= - * --------------- * 
6 WPITVAL(WPOINT) 2 

Note that ihe initial ratio of 3:2 for the circumferences is an 

approximation. 

B} current ribbon ratio 

6 * WTACHO 

= ----------
TT A CHO 

C) initial ribbon ratio 

= approximately 7 

Thus approximate current chuck speed 

Page 3-50 



SOFTWARE 

' 1 CLOCK FREQ 3 6 * WTACHO 1 

1. = - * * --* * Hz 

6 WPITVAL(WPOINT) 2 TT A CHO 7 

·Required count value 

= chuck speed * time interval * no of pulses / rev 

= chuck speed * 4 * 2 

CLOCK FREQ WT A CHO 

=1.714* * 
WPITVAL(WPOINT) TT A CHO 

Where 

CLOCK FREQ = Winder pulse RTC clock frequency (2.456 Mhz) 

WPITVAL(WPOINT) = Current count being loaded into RTC. 

WT A CHO = Current chuck speed (in RPM) 

TT A CHO = Current traverse speed (in RPM). 

There will be a problem when either WTACHO or TTACHO are zero 

(either when the machine is first started or after a doff). To 

overcome this problem, a dummy count value of 100 is used until 

both speeds exceed 500 RPM. The measured speed during this time 

will be extremely inaccurate. However, accurate speed measurement 

is only required when both the .traverse and winder motors are up 

to their normal operational speed. 

3.3.10.3 DERIVING THE CHUCK SPEED. 

This is done in exactly the same manner as for the traverse tacho 

speed, by dividing the number of pulses counted by the time taken 

to count them. Once again the possibility of the value of NOW 

changing while the fractional part of the count is read "on the 

fly" is catered for, by discarding speed measurements whose 

fractional values are close to the count reload time. Figure 

3.3.26 shows the flow diagram for this task. 

Page 3-51 



• . 
.. -: 

SET C.0CJ"1T 

VAL.\JE':::. ICO 

y 

LOAO Pl:T WITH 
INITIAL. VAL.UE TO 

STl\P.T INTERRU 

c.ALCULI'\ TE 

CovN r VAL.UE' 

TIMEiO\JT W~-r FOR R.TC. 
.--------1 \NTERP.UPI 

'SET CHUC.~ 

SfEEt> = ORPM 

FIGURE 3.126: CHUCK SPEED MEASUREMENT TASK 



SOFTWARE 

3.3.11 THE DATA BASE UPDATE TASK. 

This task is very straight forward - it simply transfers data from 

the awaiting update data bricks into the system data bricks, 

after performing any necessary conversions. The update is 

triggered by a system event which is -set when the sequence task 

detects that the chuck speed has fallen below 1500 RPM, indicating 

that a doff is in progress. When any data is altered (by the OCP 

or host link tasks) a flag is set to show which block of data has 

been altered. The update task scans these flags and updates the 

appropriate data. The OCP and host link communications tasks 

should be consulted for further information on updating 

operating data. 

Page 3-52 



SOFTWARE 

3.3.12 THE HOST COMMUNICATIONS TASK. 

The function of this task is to wait for c~mmands from the host 

computer (a DEC PDP-11 Process management computer), and to 

execute the commands when . they are received. The 

communication requirements of the system are for the transfer of 

operational information between the host and the inverter control 

units. This requirement arose for two reasons 

1) An operating Instruction can have up to 70 parameters, and 

there are 24 controllers. Entering all these parameters is 

extremely tedious and error prone. In addition the host can hold a 

"library" of operating instructions for different processes. In 

time operating instructions for most processes required will be 

built up, and will not need retyping each time~ 

2) The host computer can monitor the status of each position and 

provide both immediate alarms, and long term logging and 

statistical information on the system. The host computer monitors 

all the stages of the process, and can thus provide detailed 

breakdowns of how the process is functioning. 

The Nylon Spinning industry often requires precise control of a 

single process, repeated a large number of times. The advent of 

lo~ cost industrial computers has raised the possibility of 

sophisticated control for large numbers of machines. There is a 

clear need for a host computer communicating with large numbers 

of dedicated control computers. Multi-dropping reduces the amount 

of wire and serial channels required, and simplifies installation. 

As a result, a standard communications protocol that would 

satisfy the needs of all applications that could be foreseen was 

developed. The results are reproduced in Appendix F. 

The communication requirements for the inverter control unit are 

for the host to be able to send operating instructions to the 

controllers, and for the host to be able to interrogate the 

controllers about their current status. There will never be any 

need for control units to communicate with each other, and all the 

Page 3-53 



SOFTWARE 

applications foreseen involve communication between a supervisory 

computer arid dedicated controllers. Thus a master I slave protocol 

was chosen since it is considerably easier to implement than full 

station to station asynchronous communication. With this protocol 

the host always initiates data transfers, so there are no problems 

with busy or jamme~ lines. 

Each controller on the line has a unique station·address set up by 

a four bit DIP switch on the I/O board. Any communication from the 

host is received by all the controllers, which scan the fourth 

byte of the received data packet for the destination address, 

and compare it with the station address. 

3.3.12.1 THE COMMUNICATIONS SOFTWARE. 

This task consists of two modules: One for the hardware driver 

routines; and one for the packing and unpacking of data into 

packets. Since simultaneous reception and transmission of data 

will never occur, the same buffer is used for transmission and 

reception of data. The buffer is 138 bytes 

optimal length for the amount of data 

long, which is an 

to be sent. The 

communications task, called LINKDA.RTL, waits for an event which 

is set by the received data interrupt routine. This event is set 

once an entire packet destined for that station has been 

successfully received. LINKDA.RTL then decodes the packet type by 

looking at the fifth byte and decides whether the host is 

requesting or sending data. 

If data is being requested by the host, it is fetched from the 

data base, converted into the format expected by the host, and 

packed into the data buffer along with appropriate header, end 

of message and checksum data. Once the packet has been assembled, 

the interrupt service routine is invoked through software by using 

the INT machine code instruction. The interrupt routine then 

automatically sends the buffer to the host, until the end of 

message byte has been transmitted .• The interrupt service routine 

then stops sending data, and sets a system event which tells the 

communications task that the buffer has been sent. If this event 

Page 3-54 



SOFTWARE 

is not set within a time limit, the task prints an error message 

and clears the USART transmit .. and receive enable flags. This 

ensures that the USART does not jam the multidrop link data lines. 

The host polls all stations once every five minutes, and prints 

out an irror log message if no answer is received from a station. 

To give added protection against jamming, the host sends a "Z" 

type message if no answers are received from any stations after 

information has been solicited. This message type clears the USART 

enable flags. 

If the host is sending data to the controller, the communications 

task performs the reverse process: it checks the· header and 

checksum, unpacks the data from the packet in the data buffer, 

converts from host to controller format, and places the received 

data in the data base. Because of the large amount of data 

contained in an operating instruction, the host sends a total of 

four packets to the controller, each packet containing part of the 

data. The controller always acknowledges a host communication, 

indicating whether it was successful or not. DEC has a slightly 

different representation of floating point reals fr6m INTEL, so it 

was necessary to modify REAL variables passed between the systems. 

This conversion was performed by the controller. Figure 3.3.27 

shows a flow diagram of the communications control task. 

The Serial link USART is configured so that the reception of a 

data byte from the host interrupts the CPU, which unloads the 

USART data buffer. The Received data interrupt routine keeps track 

of the number of bytes received from the host and checks to see if 

it is part of the header, the data block or the end of message. If 

the data is part of the header and the packet is addressed to that 

station the counters and pointers for the packet are initialised. 

If the packet is not destined for the station, the counters are 

set up in such a way that when the end of message byte is received 

the message length byt~ of the header does not tally with the 

buffer pointer, so the value is discarded. If the received byte is 

part of the data part of the packet, it is put into the 

appropriate place in the buffer. If the byte is an "end of 

message" character and the buffer pointer tallies with the length 

Page 3-55 



S~ND NACK. 
C.1-EAQ. USART 

SENT 

FINO PPaC.KcT 

NUMBER 

VNPAO<. PAC.KET 

INTO O~T'FIBASE 

/l.Ck. P.,E"C.E"I PT Ol= 

~Reel DATA 

N 

i..JAIT l=OR P.X 
DAT~ EVENT 

O..E"AR USART 

FIGURE 3.3.27: COMMUNICATION CONTROL TASK 



.. · .. · . . . . . ~ 

of the message, then 

communications task 

Figure 3.3.28 is a 

handliQg routine. 

SOFTWARE 

a system 

to service. 

flowchart 

event is set which triggers the 

the request from the host. 

of the Received data interrupt 

The Transmit channel of the USART is also configured so that the 

CPU is interrupted once the USART transmit buffer is empty. 

Because the transmission rate of the data (9600 baud) is much 

slower than the s~eed of operation of the computer, the CPU can 

load 'the transmit buffer with a character, and then continue 

executing S-tasks until the USART transmit buffer is empty again, 

which causes ·an interrupt and loads the next character and so on. 

Figure 3.3.29 is a flowchart of the Transmit data interrupt 

handling routine. 

Page·3-56 



8 
SIN~ S-TA5l( ST!\C.K 
~E:T" UP H-TASK, 

STAC.K. 

qe:T DAT A FRoM 

U3AR.T 6UF=F~ 

SET R" OATA 

EVENT 

RESTORE S-TASK 

ST~ 

y 

SET COl.Jl'JTER.S 

PUT CHARAC.TE.12. 
11'\TO J:)ATA- 8\Ji:FER 

N 

FIGURE 33.28~ RECEIVED DATA INTERRUPT SERVICE ROUTINE 



SAVIO" S-T~SI<: STAO< 
SET uP t-1-TASK' 

STACK 

INCAEMENT 
Bl.IFF£R 
PotA.J'raR. 

RE5TO~E S-iP\SK 
t=Nv1~NMEtJT 

y 

SET 8'.10 00:: 

IX EVENT 

. FIGURE 3.3.29: TRANSMIT DATA INTERRUPT SERVICE ROUTINE 



SOJTWARE 

-3.4 MAKING THE SYSTEM. 
' ' . ====================== 

The source modules for the applications software for the inverter 

control unit are held on RL02 lOMB disc packs in the computer 

hardware development laboratory of SANS. The SMT source and object 

files are held in account DL0:[230,l]. In the RSX operating 

system, accounts are called User Identification Codes. They 

consist of the device where the file is located, and group and 

member numbers as follows : DLaa:[ggg,mmm]. aa is the device 

number, ggg is the (octal) group number, and mmm is the 

(octal) member number. A standard for account layouts has been 

e~tablished. Each project is held in UIC's with the same group 

number. SMT modules that have been modified for a particular 

project are held in member number 001 of the UIC along with the 

command file to make the SMT portion of the system. Project 

application development is done in the iemaining member numbers of 

that UIC group number. Thus the SMT modules that had to be 

specially modified for this project are held in account 

OL1:[341,l], whilst the applications modules are found in 

DL1:[341,2] •. This last account can be signed into with the MCR 

command 

MCR>HEL ICUNIT/TEK 

If modifications have to be made to any of the source files it 

will be necessary to remake the system. This can be done by 

signing .in to account DL1:[341,2] as explained above and running 

the command file TOTSYS.CMD by typing @TOTSYS. This command file 

contains all the necessary utility calls, switches etc 'to 

rebuild the -entire system. The command file will give you several 

prompts as follows 

Module name, DATAPREL, ALL or SMT? 

If you have only altered one module, type the name of that module 

only (do not type the file extension .RTL). If you want to remake 

the entire system, type "ALL". If you want to remake the SMT 

P~ge 3-57 



SOFTWARE 

portion of the system type "SMT".You will then be asked whether 

you want Source or Code listings~ to which you must respond with a 

"Y"es or "N"o. 

If you chose to remake SMT at the first· prompt, you will be 

prompted ·: 

Do you want to remake SMT? 

If you answer "Y"es you will be prompted for the module name and 

listings as before. Once compilation and assembly of all RTL/2 

sourci files has been completed, the SMT system will be linked, 

followed by a link of the SMT system with the applications 

modules. 

This is the only interaction necessary with the command file. 

Appendix G contains a listing of TOTSYS.CMD, and this should be 

consulted for detailed information on making the system. 

Notes 

1) If the database (DATA.RTL) is altered, then the data prelude 

file (DATAPREL.RTL) should be altered accordingly, and then all 

the modules and both parts of the system must be remade. 

2) TOTSYS calls two linker files, one for the SMT portion of the 

system, and one for the applications tasks. If the linker 

operation has to be altered, then th~se two files (ROMSYS.C~D for 

the SMT ·portion in DL1:[341,l), and ICUSYS.CMD in DL1:{341,2] for 

the applications tasks) must be edited. See Appendix G for 

listings of these files. The linker map file in Appendix G is the 

output of ICUSYS.CMD. 

When the system is ready to be blown into ROM, the SMT link 

command file must be edited for the correct memory addresses, 

both parts of the system must be re-linked, and then a ROM image 

must be produced using the utility FDM. The user will be prompted 

by FDM for the start and end addresses of the code, and for a 

Page 3-58 



.·:.· ·•.· .. 

SOFTWARE 

selection mask for splitting the code. Since 8088 systems are byte 

orientated and not word orientated like the 8086, there is no 

need to split the code and the required mask is 11111111. The 

output from FDM is put into a file specified by the. applications 

programmer, usually of extension type .BIN. The .BIN files can 

then be downloaded into an EPROM programmer, and blown into EPROM. 

Page 3-59 



Fl GURE 4.1.1 



USING THE SYSTEM 

CHAPTE~ 4 : USING THE SYSTEM. 

============================= 

4.1 ASSEMBLING AND COMMISSIONING AN ICU. 

======================================== 

An Inverter control unit has five components 

1) A Single board computer~ 

2) An I/O board. 

3) A drawer to house the computer and I/O board. 

4) A front panel. 

5) A back panel. 

Figure 2.3.2 in chapter 2.3 should be consulted for a diagram 

showing the contents of the drawer and 

other. 

4.1.1 CONFIGURING THE COMPUTER. 

their orientation to each 

If a new board is received straight from the manufacturers, it 

will need a number of modifications in order to work as an 

Inverter Control unit. These changes are set out in Appendix H.9 

which lists the SBC jumper allocations. Once these alterations 

have been made it will be necessary to install EPROM's and extra 

RAM. The RAM consists of two 2168 four bit by 4k chips installed 

in sockets U52 and 068. 

Page 4-1 



SBC 

1/0 

F I G U R E 4.1. 2 



USING THE SYSTEM 

Three EPROM chips are required, labeled as follows: 

ICUFA/B 

VERS l.C 

DD/MM/YY 

ICU identifies the EPROM as belonging to the Inverter Control 

Unit. FA/B is the start address of 8k blocks of the software in 

the EPROM's, VERS l.C is the version number of the software, and 

DD/MM/YY is the date the EPROM was blown. 

At the time of writing the software had reached version 1.7 of 

October 1984, so before installing EPROM's check that you have the 

latest version • The location of the EPROM's is as follows : 

EPROM LABEL 

ICUF4/6 

ICUF8/A 

ICUFC/E 

MEMORY ADDRESS 

F4000 - F7FFF 

F8000 - FBFFF 

FCOOO - FFFFF 

SOCKET NUMBER 

U34 

U64 

U33 

For details of how to ~rogram the EPROM's see chapter 3.4. Once 

all the jumpers and memory chips have been installed, the SBC 

board should be inserted into the top slot in the drawer. 

4.1.2 CONFIGURING AN I/O BOARD. 

The only action necessary before installing an I/O board is to set 

the station address for the host link communications on the four 

pole DIP switch. If the board is inserted in its proper 

orientation in the bottom slot of the drawer, the LSB is the 

rightmost bit if looked at from the front of the drawer. The 

address should be set according to the drawer's position in the 

cabinet as follows 

Page 4-2 



FIGURE 4.1.3 

.. Fl G URE 4.1.4 



USING THE SYSTEM 

LINK POSITION STATION LINK POSITION STATION 

NO NO ADDRESS NO NO ADDRESS 

------- -------- -------- -------
1 lA 1 1 lC 3 

1 lB 2 1 lD 4 

1 2A s 1 2C 7 

1 2B 6 1 2D 8 

2 3A 1 3 3C 1 

2 3B 2 3 3D 2 

2 4A 3 3 4C 3 

2 4B 4 3 40 4 

2 SA s 3 SC s 
2 SB 6 3 SD 6 

2 6A 7 3 6C 7 

2 6B 8 3 60 8 

This table shows the location of the drawers in the cabinet as 

seen from the front of the cabinet. The link numbers are the 

serial link numbers from the host computer, and the position 

numbers are the wind up head position numbers. 

Once the station address has been set, the I/O board should be 

inserted into the lowest slot in the drawer. Once the I/O board 

and the SBC have been inserted, the signal link cable should be 

inserted to connect them together. This consists of a S centimeter 

length of SO way ribbon cable with SO way edge connectors at 

either end. The edge connectors are plugged into the Jl connectors 

of the MULTIBUS form factor. This is the connector in the middle 

of the boards as looked at from the front of the drawers, and can 

be clearly seen in figure 4.1.S. 

4.1.3 THE FRONT AND BACK PANELS. 

The front panel connects to the J2 connector on the I/O board. 

This is the 26 pin connector on the left hand side of the drawer 

as seen from the front. 

The back panel carries the I/O connector, the host and local VDU 

Page 4-3 



FIGURE 4.1.5 

F I GU RE 4.1. 6 



USING THE SYSTEM 

serial link sockets, the power connector socket, and the auxiliary 

I/O connector. For details of these connections, consult the 

wiring schedule in Appendix H.7: The serial links must be plugged 

into the SBC and piggy back boards at the front of the drawer, so 

the plugs and wiring must be fed down the side of the drawer. The 

multidrop RS-422 link connects to the piggy back 26 way edge 

connector, while the local VDU RS-232 link connects to the SBC J2 

connector on the left hand - side of the drawer as seen from the 

front. 

Once all the connections have been made inside the drawer, it can 

be tested by inserting it into the ICU cabinet, or by using the 

test jig produced by the computer hardware department. This jig 

emulates a winder head, and allows the ICU to be put through all 

its paces. When the drawer is powered up, the amber CPU running 

LED (LlO) should come on, and the watchdog LED (Lll) should flash 

continuously with a 2 second period. If a local VDU is connected, 

it should beep and give an "OCP CLEARED" message. After this it 

should be possible to set up process parameters through the OCP 

function on the local VDU, and test the operation of the computer 

by running it. Software has been developed on the computer 

hardware development bureau to emulate the host computer, and this 

can be used to test the operation of the host communication 

facility. 

Page 4-4 



USING THE SYSTEM 

4.2 THE LOCAL VDU OCP TASK. 

=========================== 

The operator communicates with the computer either through the 

host link or the local VDU. Both links are menu driven, and the 

operator is prompted for responses. Typing "X" to any prompt gives 

an explanation of the options available to an operator. Out of 

range or inc?rrect responses are rejected, and the operator is 

repronipted. 

Notes 

1) All responses or entries to the system must be terminated with 

a carriage return, except when the main menu is called up. 

2) The system will only accept upper case characters, so the "CAPS 

LOCK " key on the terminal must be depressed at all times. The 

system will respond with a "NO!" or "INVALID CHARACTER" if lower 

case characters are entered. 

3) The main OCP menu is called up by pressing the space bar. 

(Carriage return must not be pressed in this case) 

4) Typing "Z" in response to any prompt will cause the system to 

exit back to the point where pressing the space bar will call up 

the main menu. 

5) Typing "X" to any prompt from the system will result in a full 

explanation of the options available to the operator at that 

point. 

6) If the system appears to be "hung up" and does not respond when 

the space bar is pressed, try pressing "Z" followed by carriage 

return, which will clear the system if it was busy doing something 

else. If the system still does not respond try RESETting the 

computer by pressing the RESET button on the back panel of the 

drawer. If there is still no response there is probably a fault in 

the hardware or software, and a technician should be called. 

Page 4-5 



USING THE SYSTEM 

7) If no response is entered to a system prompt, then the system 

will time out after about two minutes and return to the default 

condition waiting for the space bar to be pressed. 

8) If operati~nal values are to be changed or the "Control-A" 

monitor is invoked, a security check will have to be passed. When 

the operator has finished making changes, he will be prompted for 

an "OPERATOR NUMBER" followed by a "PASSWORD". If both of these 

are entered correctly, he will be asked if he wants to "MAKE 

CHANGES". If he answers "Y"es, the changes will be made and the 

old parameters lost. If he replies "N"o or enters the password or 

operator number incorrectly, the system will return to the default 

state and the changes will be abandoned. See the T30 shift 

supervisor to get the passwords. 

4.2.1 THE MENU OPTIONS. 

Figures 4.2.1 through to 4.2.8 show printouts of a typical 

interaction with the ICU through a local VDU. Each of the options 

will be briefly explained. 

Figure 4.2.1 

Three basic menu options are provided. The time and date can be 

set or viewed, The current operating status can be viewed, and the 

current operating parameters can be viewed or modified. The main 

menu is called up by pressing the space bar when the system is in 

the default mode. Figure 4.2.2 shows the time and date being 

altered ·. 

Figure 4.2.3 

This shows menu option 2, which allows the current status of the 

machine to be viewed. After displaying the status, the user will 

be asked whether he wants the "DISPLAY AGAIN". Answering "Y"es 

will re-display the latest values of the status information. 

Page 4-6 



USING THE SYSTEM 

Figure 4.2.4 

This shows the result of typing "X" when prompted in menu option 

2, and tells the operator what options are available in option 2. 

Figure 4.2.S 

This shows menu option 3, which allows the current operating 

parameters to be viewed and modified. The operator is prompted 

after the display. Four options are available, as can be seen by 

typing "X" (see Figure 4.2.6) 

Figure 4.2.7 

This shows how the parameters for banding avoidance point number 1 

may be altered, by responding with a "B" to the prompt in menu 

option 3. 

Figure 4.2.8 

be 
This shows how the modulation parameters can~altered by responding 

with an "M" to the prompt in menu option 3. 

Page 4-7 



_.,. . 

OCP OF'TlONSt-
1-DATE AND TIME 

*** 'SANS INVERTER 

2-DISP~AY FIXED PARAMETERS AND SPEEDS 
3-DISPLAY OR CHANGE TRAVERSE PARAMETERS 
OPi!Qf.1:::[ 

FIGURE 4. 2.1 

CO~ITROL SYSTEM *** 



*** SANS INVERTER CONTROL SYSTEM *** 
OCP OPTIONS:-
1-DATE AND TIME 
2-DISPLAY FIXED PARAMETERS AND SPEEDS 
3-DISPLAY OR CHANGE TRAVERSE PARAMETERS 
OPTION=C1J .'":.'..'.) · 

00:07:33 01/01/81 CHANGE?CYJ DATEC26/6/85J TIMEC15!00J OK 

OCP CLEARED 

:t•• •. 

. ~ 

y. . . 
, _;._v 

FIGURE 4.2.2 



OCP OPTIONS:-
1-DATE AND TIME 

*** SANS INVERTER CONTROL SYSTEM *** 

2-DISPLAY FIXED PARAMETERS AND SPEEDS 
3-DISPLAY OR CHANGE TRAVERSE PARAMETERS 
OPTION=C2J -:,.:•.>· ) ::H<~;' . 

-DISPLAY. FIXED PARAMETERS AND SPEEDS 15:00:33 26/06/85 
CURRENT CONTROL STATUS = WINDER STOPPED 

WIND MAX ACCEL/DECEL RATE 
TRAV MAX ACCEL/DECEL RATE 
WINDER MAXIMUM FREQUENCY 
TRA 1JERSE MAXIMUM F_REQUE.NCY 
MINIMUM FREQUENCY CLAMP 

= 
= 
= 

.1.00 I 1.00 HZ/SEC 
3.00 I 3.00 HZ/SEC 

211.98 HZ 

START-bP DELAY PERIOD = 
WINDER SPEED SETPOINT = 
OUTPUT FREQUENCY - WINDER = 
CAKE SPEED C1MIN AVERAGE) -

333.33 HZ 
13.33·· 1->Z 

2 SECS 
50. 00 hl.Z 
13.33 HZ 

O.OO RPM 

CURRENT BANDING POINTC1- 1>= 1 
OUTPUT FREQUENCY - TRAVERSE = 13.33 HZ 
TRAVERSE SPEED Cl MIN AVE> - 0.00 RPM 
CURRENT RIBBON RATIO - TRAVERSE STOPPED 
CAKE DIAMETER = CHUCK STOPPED 

DISPLAY AGAIN? CY/N) ? [ 

FIGURE 4.2.3 

... .. .. 
' 



OCP OPTIONS:-
1-DATE AND TIME 
2-DISPLAY FIXED PARAMETERS AND SPEEDS 
3-DISPLAY OR CHANGE TRAVERSE PARAMETERS 
OPTION=C2J ~ · ) 

-DISPLAY FIXED PARAMETERS AND SPEEDS 15:01:29 26/06/85 
CURF:ENT CONTROL STATUS = WINDER STOPPED 

WIND MAX ACCEL./DECEL RATE = 
TRA\.' MAX ACCEL/DECEL RATE = 
WINDER MAXIMUM FREQUENCY. --
TF:ri\.'EF:SE MAXIMUM FREQUE~~CY -· 
MINIMUM FREQUENCY CLAMP = 

A 

START-UP DELAY PERIOD -· 
WINDER SPEED SETPOINT = 
OUTPUT FREQUENCY - WINDE?=; --
CAKE SPEED (1MIN AVEl~AGr::) --

CURRENT BANDING POINTC1- 1)= 
OUTPUT FREQUENCY - TRAVERSE = 

1+00 I 
3.00 I 

211.98 HZ 
333. 33,..H(.: 

13.33 HZ 

2 SECS 
50 . 00 HZ 
13.33 HZ 
o.oo RPM 

1 

0.00 RF'M 

1+00 
3.00 

• 

TRAVERSE SPEED <1 MIN AVE) -
CURRE NT RIBBON RATIO 
CAKE DIM1ETER 

TRAVERSE STOPPE D 
CHUC!\ STOPPED 

DISPLAY AGAIN? CY/N) ? CXJ 

'Y' - CAUSES AN UPD~TE OF THE DISPLA Y. 
CWITH REFRESHED DATA AS AT DISPLAYED TIME) 

'N' - RE TURN S TO 'OCP CLEARE~ ' 

'Z' ESCAPES TO 'OCP CLEARED' 

'X' - EXPLANATION 
DISPLAY AGAIN? CY/N) ? C 

FIG URE 4.2.4 

HZ/SEC 
l-IZ/SEC 

. . 
.·.'· .· 



OCP OPTIONS:-
1-DATE AND TIME 

1 2-DISPLAY FIXED PARAMETERS AND SPEEDS 
3-D!SPLAY OR CHANGE TRAVERSE PARAMETERS 
.OPTION=C3J ~ ... : . . · > . "' __ ::'"''. 

-DISPLAY OR CHANGE TRAVERSE PARAMETERS 15:02:35 26/06/85 ACTIVE PARM ' S 

RIBBON POINTS 

.R1 R2 
1 o:ooo o.ooo ,., o.ooo 0+000 ..:.. 

3 o.ooo o.ooo 
4 o.ooo o.ooo 
5 o.ooo o.ooo 
6 o.ooo o.ooo ..., o.ooo o.ooo , 
8 o.ooo o.ooo 
9 o.ooo o.ooo 

1 0 o.ooo o.ooo 
11 o.ooo o.ooo 
12 o.ooo o.ooo 
13 o.ooo o.ooo 
14 o.ooo o.ooo 
15 o.ooo o.ooo 

· -"' -SPEEDS 

Fl F2 
30.0 3,0. 0 
30.0 30.0 
30.0 30.0 
30.0 30.0 
30.0 30+0 
30.0 30.0 
30 . 0 30 : 0 
30.0 30.0 
30.0 30.0 
30.0 30.0 
30.0 30.0 
30.0 30.0 
30.0 30.0 
3 (> . 0 30.0 
30 .0 30 .0 

TRAVERSE 
1')?1F'lITUDE 
Fl F2 

o.oo o.oo 
•· 

MODULATION 
P-JUMP 

Fl F2 
o.oo o. oo 

TRAVERSE ACCELER ATIO N 
Fl TO F2 F2 TO Fl 

0.83 0.83 

WINDER SPEED 
50. ·J·~ 

Mt1X BAND = :!. 

REDISPLAY/B ANDI NG CH~NGE/MOD & SPEE D CH~NGE/EXIT CR/B/M / E ) ? [ 

FI GU RE 4.2.5 

PEFUOD 
SECS 
2.0 



OCP OPTIONS:-
1-DATE AND TIME 
2-DISPLAY FIXED PARAMETERS AND SPEEDS 
3-DISPLAY OR CHANGE TRAVERSE PARAMETE~S 
OPTION=C3J 

-DISPLAY OR CHANGE TRAVERSE PARAMETERS i5:03!28 26/06/85 ACTIVE PARM ' S 

RIBBON POINTS . 

_;Rl F' ') ..... 
i o.ooo 0. 000. 
2 o.ooo o.ooo 
3 o.ooo o.ooo 
4 0."000 o.ooo 
5 o.ooo 0.009 

~ 

SPEEDS 

Fi F2 
30.0 30.0 
30.0 30.0 
30.0 3Q.Q 
30.0 30.0 
30.0 30.0 

•.. .. TRAtJERSE 
AMPLITUDE 
Fl F2 

o.oo · o.oo 
y . 

MODULATION 
P-~IUMP 

Fl F2 
o.oo o.oo 

l. u o.ooo o.ooo 30.0 30.0 TRAVERSE ACCELERATION 
7 o.ooo 
0 u o.ooo 
9 o. ooo 

10 o.ooo 
il o.ooo 
12 o.ooo 
1• 
~ ~· o.ooo 
14 o.ooo 
1 c" 

~· o.ooo 

o.ooo 30.0 
o.ooo 30.0 
o.ooo 30.0 
o.ooo 30.0 
o.ooo 30.0 
o.ooo 30.0 
o.ooo 30.0 
o.ooo 30.0 
o.ooo 30.0 

30.0 
30.0 
30.0 
30.0 
30.0 
30.0 
30.0 
30.0 
3().() 

Fi TO F2 F2 TO Fl 
0.83 0.83 

WINDER SPEED 
50.00 

REDISPLAY/BANDING CHANGE/MOD & SPEED CHANGE/EXIT CR/B/M/El ? 

TYPE 'R ' TO RE-DISPLA Y THE CONTENTS OF THE TEMPORAR Y DB 

TYPE 'B' TO M~KE CHANGES TO THE BANDING AVOIDANCE DATA. 
TYPE 'M' TO MAKE CHANGES TO THE MODULATION PARAMETERS, 

INCLUDING W!NDER SPEED. 
TYPE 'E' TO EXIT ~ND RETURN TO 'OCP CLEARED'. 
TYP E 'Z' TO ES CAPE TO 'OCP CLEARED ' . 

REDISPLAY/BANDING CHANGE/MOD & SPEED CHANGE/EXIT CR/B/M/E) ? C 

FIGURE 4.2. 6 

PEF;I DD 
SECS 
2.0 

J 
I 
I 
I 
( 

! 



. .,........ 
·~ . - . 

. . · - ----~ : -~:__ ~~=~~_..:_:_ ___ ·~----~ -... ~-.:..·_~.__.::i_~·s-=--- .. - -· - ~ _, --.- . ... .• 

-DISPLAY OR CHANGE TRAVERSE PARAMETERS 15:04:32 26/06/85 ACTIVE PARM'S 

RIBBON POINTS 

R1 R" ·-
1 o.ooo 0. 090 . ,., o.ooo o.ooo .:.. 

3 0 . .:.000 o.ooo 
9 4 o.ooo o.ooo 

5 o.ooo o.ooo 
6 o.ooo o.ooo 
7 0+000 o.ooo 
8 o.ooo o.ooo 

· 9 o.ooo o.ooo 
10 o.ooo o.ooo 
11 o.ooo o.ooo 
1-:-1 ·- o.ooo o.ooo 
i3 o.ooo o.ooo 
14 o.ooo o.ooo 
15 o.ooo o.ooo 

SPEEDS 

Fi F2 . , . 
·30 .o 30.0 
30.0 30;0 
30.0 30.0 
30.0 30.0 
30.0 30.0 
30.0 30.0 
30.0 30.0 
3(). 0 30.0 
30.0 30.0 
30.0 30.0 
3 0 .0 30.0 
30.0 30.0 
30.0 30.0 
30.0 30.0 
30.0 30.0 

TF:AVERSE 
AMPLITUDE 
Fl . F2 

o.oo o.oo 
t• • •. 

•· 
··'·· ·· 

MODULATION 
P-JUMP 

Fi F2 
o.oo o.oo 

TRAVERSE ACCELE RATION 
Fl TO F2 F2 TO Fi 

0.83 0+83 

l.JI NDEF; SPEED 
50.00 

MAXB16iND = i 

RED I SPLA Y/BANDING CHANGE/MOD & SPEED CHANGE/EXIT CR/B/M/E) ? CBJ 
MA XI MUM NUM BER OF BANDI NG POINTS: PRESENT = 1 CHANGE CJ 
WHICH BANDI NG POINT TO CHANGE = ClJ 
BANDIN G AVOID ANCE POINT NUMBE R 1 

F:AT I 0 Rl f' F.;ES ENT .... 

F: 1-,TIO C.•...., ···- PF:ES ENT = 
FREJ Fl PF:ESENT 
FF~E D F2 PF:ESEN T 
NEXT BAN DI NG POINT 

F:IF.<B ON POINTS 

F:l R':°' 
·~ 

1 6.250 6.200 ,., o. ooo o.ooo .:. 

3 o.ooo o.ooo 
4 o.ooo o.ooo 
·=- o.ooo o.ooo ~· 
6 o.ooo o.ooo 
7 o.ooo o.ooo 
8 o.ooo o.ooo 
9 o.ooo o.ooo 

10 o.ooo o.ooo 
11 o.ooo o.ooo 
12 o.ooo o.coo 
13 o.ooo o.ooo 
i4 o.ooo o.ooo 
1 1::-... ~· o.ooo o. ooo 

SECUR I TY EXECUTE! 
OPERA TOR NO = (iJ 
CODE NO :::: CJ 

--
·-

O. O CHAN GE C6. 25J 
O. O CHANGE C6.20J 

30.00 CHANGE [234.S OJ 
30.00 CHAN GE C230.25 J 

-· [ 0 J 
SPEEDS TRAl.JEF:SE MODULATION 

AMPLITUDE F'-JU!"l F' 
Fl F2 

234 .. 5 230.+ 2 
30.0 3 0 .0 
30.0 3 0 .0 
3 0. () 30.0 
30.0 3 0 .0 
30. 0 30.0 
30.0 30.0 
30.0 30.0 
30.0 30.0 
30.0 30.0 
30.0 30. 'J 
30.0 30.0 
30.0 3() io 0 
30.0 30.0 
30.0 30.0 

Fi 
o.oo 

F2 Fl F2 
o.oo o.oo o.oo 

TR AVERSE ACC ELERATION 
Fi TO F2 F2 TO Fi 

0+83 0.83 

WINDER SPEED 
50.00 

Mt1XBAND = 1 

EXECUTE CY / N) ? CYJ EXECUTED FIGURE 4.2 .7 

\ . ,, 

PERIOD 
SECS 
2.0 

PE RIOD 
SE CS 
2+0 



·-· -· \ . 

-DISPLAY OR CHANGE TRAVERSE PARAMETERS 15!07!03 26/06/85 ACTIVE PARM'S 

RIBBON POINTS SPEEDS TRA\..'ERSE MODULATION 
AMPLITUDE P-JUMP 

R1 R2 Fi F2 Fl F2 Fi 
\ 

F2 
i 6.250 6.200 234.4 230.2 o.oo o.oo o.oo o.oo 
2 o.ooo o.ooo 30+0 30.0 
3 o.ooo 0 .000· ·"30 .o 30.0 
4 o.ooo o.ooo 30.0 30·. 0 

... .. 
c: 9.000 o.ooo 30.0 30.0 '"' 
6 o.ooo o.ooo 30.0 30.0 TRi'WERSE ACCELERATION 
7 o.ooo o.ooo 30;0 30.0 r - Fi TO_,: f2 F2 TO Fl 
8 o.ooo o.ooo 30.0 30.0 o.83 0+83 
9 o.ooo o.ooo 30.0 3 1); 0 

10 o.ooo o.ooo 30+0 30.0 vJINDER SPEED 
11 o.ooo o.ooo 30.0 30.0 50.00 
12 o.ooo o.ooo 30.0 30+0 
13 o.ooo o.ooo 30.0 30.0 
14 o.ooo o.ooo 30.0 30.0 Mi1XBMID =1 
15 o.ooo o.ooo 30.0 30.0 

REDISPLAY/BANDING CHANGE/MOD & SPEED CHANGE/EXIT CR/B/M/E) ? CMJ 
WIND ER SPEED PRESENT = 
tiMPL I TIJDE AT F 1 PF>ESENT ··· 
AMPLITUDE AT F2 PRESENT = 
P-JUMP FOR Fl PRESENT = 
P-JUMP FOR F2 PRESENT = 
PERIOD PRESENT = 2.0 
ACCEL Fl TO F2 PRESENT -
ACCE L F2 TO Fl PRESENT -

50.00 CHANGE C150.05J 
O.O CHANGE C3 . 5J 
O.O CHANGE C2.5J 

O.O CHANGE [2.0J 
O.O CHANGE C2.15J 

Ci-L·1NGE [ 10 J 
0.8 CH AN GE C1 .5J 
0.8 CHANGE [3.0J 

RIBBON POINTS SPEEDS TRAVERSE MODUL.r1 TI ON 
P-JUMF' 

R1 !'.;•") 
J ...... 

1 6.250 6. 20() 
2 o.ooo o.ooo 
7 . o.ooo o.ooo .., 
4 o.ooo o.ooo 
r::- o.ooo o.ooo ,_, 

6 o.ooo 'J. 000 
7 o.ooo o.ooo 
0 w o.ooo o.ooo 
9 o.ooo o.ooo 

j_ () o.ooo 0.000 
11 o.ooo o.ooo 
12 o.ooo o.ooo 
13 o.ooo o.ooo 
14 o.ooo o.ooo 
1 '::-
~· o.ooo o.ooo 

SECUF:ITY EXECUTE! 
DPEF:t'li TOF: NO -- [ 

w.w. 

Fl 
234.4 
30.0 
30.0 
30.0 
30.0 
30.0 
30.0 
3(.> + () 

30.0 
30.0 
30.0 
30. C1 

30.0 
30.0 
30.0 

Ai"'lPLITUDE 
F2 Fi F2 F'l F' 2 

230.2 
30.0 
3() .. 0 
30.0 
30.0 
30.0 
30.0 
30.0 
30.0 
30.0 
30.0 
30.0 
30 . 0 

3.50 2.50 2.00 2. 15 

TRAVE RSE ACCELERATION 
Fl TO F2 F2 TO Fl 

1+50 3.00 

1.•JINI!E!=\ SPEED 
150.05 

30.0 MAXBAND =1 
30.C-

FIGURE 4.2.8 

PERIOD 
SECS 
2.0 

F'E:F: IOD 
:-::ECS 

10.0 



USING THE SYSTEM 

4.4 THE HOST OCP TASK. 

~===================== 

The host OCP task performs essentially the same function as the 

local VDU task. It is also menu driven, with all the same features 

as the local task. The main differences arise from four sources 

A) The host is the Master controller for the system. 

B) System logging has to be performed by the host. 

C) A "library" of operating instructions has to be held. 

D) The host is controlling 24 positions. 

The host computer is the Tl8 process management computer, which is 

in turn a foreground computer for the T30 process management 

computer. The host polls the ICU's once every 5 minutes for 

position status information, and sends any new OPI's that have 

been allocated to the machine. If the host detects that a position 

status is incorrect, or the ICU responds with a "Negative 

Acknowledge", or does not respond at all, the host prints the 

position number and error type on an alarm printer. Figure 4.4.1 

shows the main menu options available on the host, and figure 

4.4.2 shows the disp~ay produced by option 5. 

Each OPI is allocated a unique number. Each time a new OPI is 

entered, it can be permanently stored on disc. In this way a 

library of OPI's for different products can be built up, which 

reduces the amount of typing, and hence the scope for error 

when library OPI's are recalled for use at later dates. 

The Tl8 operators manual should be consulted for further 

information on the use of the host computer. 

Page 4-9 



*** ICU SUPERVISORY SYSTEM *** 
OCP OPTIONS!-
1-DISPLAY FIXED PARAMETERS 
2-DISPLAY OR CHANGE OPI'S 
3-PASS I ALLOACATE OPI'S 
4-F'RINT OF'I 
5-MAC/W!NDER LINKAGE ~ 
6 - UN I T 0 F' E F~ AT I O"N L 0 G-G I NG 
OPT I ON ·-= C 

AND WINDER STATUS . 

·' ·~ .. 

,. 

FIGURE 4.4.1 

.·, 



. I 

•• ·~ 0 

ICU SUPERIJI SOF:Y SYSTEM *** CF' OF'T I (lNS: -
-DISPLAY FIXED PARAMETERS AND WINDER STATUS 
- DISPLAY OR CHANGE OPI ' S 

y. 

-PASS I ALLOACATE OPI ' S 
-PRINT 0-PI · 
-MAC/WINDER LIN KAGE 
-UNIT OPERATION LOGGING 
PTION=C5J 

;~ ?: C / !,.; I N D E ;::~ I N F Q ::~ I~ !~ T IGN 1 5 . 0 / 
. -~ 2 6 /08 ./ 85 . • .:; 7 

NDF: LINl·< ADDH GP I -NUl'i ST i:'":t TUS OP I-R UN WNDR I ~I~-· ;;DD::~ OP :r. -NUM ST r~ TUS OF - - RU N ~ "' ·-. ,~ 1 3 10001 WOF:K!NG J " .-. ,.. .. 

.L'"' ! • .. .,,tV 'J..;. ,~ 1 1 """ l·' r. ::;· l{ NG OOQ ~ . . VV\) ~ . . 
1D 1 4 10001 WOR t<ING 1000 ;. . ... 1 '"l . 000 wor.:l'; ING . " ,.. .... 

i;. ... ~ ' .. .,' '-..,,''. ) .• 
2C 1 7 10001 WOF:r;;!NG 10001 : A 5 . .'JOO . WOE~~ 

~ NG :!. 0 ·'":·0 . .. -
2D < ,... 

10001 WOF: l\ING 10001 .L (J 2B 1 6 1 00 0 ... w o r~ f·~ .t NG 1.:} ·::·.:) . .. 
-r ... 1 10001 WOF:i<! NG 10001 .;)-., .::.. 3 1; 3 1 1 000 1 WOF:!<I NG . ·:· ·::· 0 .l. -
3D 2 2 10001 WOr: l,;ING 1000 1 2'.E: ~ 1 GO j~ :i. WO F:!< rm ~ ·' 

•. J ... ... 1._J 'v' .. , .I. 

4C 2 3 1 '"' r. t\ 1 WOR!<ING 10001 \J v..,. 4A "I ,:, 1 C".,iOO 1 WDF: !< ' i~·-l G 1 "' _., r . . 
~ I._; '.J '..,; 

4'"' 2 4 10001 WOF:l\I NG 1000 1 L• 4B 3 4 1 000 ' wo:::~ t ·:: I NG 1 .-.. -. ·""' \} l .. J •.; ... 
C"'"' .-, 5 10001 wo~: K!NG :!.0001 ..; \., .::.. 5t~ 3 5 1 0()0 1 WOF:!< ~.JG 

.~ . .... . "\ .•. -· ' .. ) \,: I) .• 
5D ~ 6 1 0001 WOF: l\ ING 100·;)~~ 5t\ 3 6 1 000 1 W 0 F~ ~< NG OG Ci 1 ... ... .... 

2 
.., 

1_0001 WOF~ K ING 10001 OL / 6A - 7 1 000 1 I , -,-,~, • I NG ' 
·"' ·' ,,.._ 1 -· WL! ;"\, \ \..) ' ••• / 1,_,1 

6D ~ 8 lOQ01 WOF:l'; I NG 10001 .::.. 6B 3 8 1 000 1 WOF:K I NG 1 O·:• O J • 

. * * :i< I CU SUP E :::: '.JI S 0 F: Y SYST EM * * :~ 
~;:· OF'T IONS: -
-DISPLAY FIXED PARAMETERS AND WIND ER STATUS 
- DISPLAY OR CHANGE OPI ' S 
-PASS ./ ALLOA CATE OPI'S 
-PF:INT OF"I 
-MAC/WINDER LINKAGE 
-UNIT OPERATION LOGGING 
:· T I 0 N c" [ Z J 
::RMINt-iL Fr:EE 

FIG URE 4.4.2 

\ 



USING THE SYSTEM 

CHAPTER 5 : CONCLUSIONS. 

======================== 

5.1 ASSESSMENT OF COMPUTER SYSTEM. 

================================= 

The MAGIC development package performed all the functions required 

of it, although the initial release had a number of bugs in it, 

and some aspects of its operation were not as documented. Ways 

were fo~nd around all of these problems, although there is no 

doubt they delayed the project completion date. However it is 

inevitable that the first project attempted with any new system 

will take longer because of the learning required. Most of the 

problems have been fixed in later releases of the package, and 

considerable experience has been gained with its intricacies since 

then, and we feel confident of our ability to use MAGIC to 

develop applications software. From an efficiency point of view, 

RTL/2 modules compiled under MAGIC are about 20% longer than the 

equivalent compilation for PDP processors, 

overhead in code size when using MAGIC. 

so there is some 

A question mark hangs over the future of the MAGIC package, 

because it does not have a large user base, and SPL are unwilling 

to commit themselves to future maintenance, which raises the 

problem of support and keeping abreast with technology advances 

that SANS might want to take advantage of. The runtime environment 

manual for RTL/2 on 8086 microprocessors indicates that the MAGIC 

implementation has adhered to INTEL's iRMX conventions for 

Page 5-1 



CONCLUSION 

register and stack usage. Contact has been made with a large 

company in the UK who have implemented RTL/2 on an RMX executive, 

and claim that it is comparatively simple to do. This offers a 

useful alternative to SMT if problems should ever be experienced 

No problems were experienced with the SBC 88/25 computer board, 

apart from the 

development. There 

usual misunderstandings and problems of 

are now nearly forty of these boards installed 

in various places around the plant, and so far there has only been 

one genuine failure, all the rest being due to overstressing, 

incorrect connections or other user related problems. There have 

not been any problems with execution speed either. With any real 

time operat i ng system it is necessary to have a good knowledge of 

the executive, the computer and the application to ensure that the 

computer performs the task required of it, and careful system 

design is essential . Provided due attention is paid to these 

factors, it seems unlikely that the computer will not be 

"powerful'' enough to perform any of the applications foreseen at 

present. If this should ever happen, the application can always be 

directly transported to one of the more powerful INTEL computers. 

The MAGIC I SBC combination has now been used in two other 

successful applications (a 256 thermocouple multiplexer, and a 48 

stage process timer I sequencer). Two other immediate applications 

are in the inves t igation stage, and at least six other 

applications are being considered. The combination has become a 

very satisfactory standard, and the results have vindicated the 

original investigation. 

Page 5-2 



CONCLUSION 

5.2 ASSESSMENT OF PROJECT PERFORMANCE. 

====================================== 

5.2.1 PROCESS PERFORMANCE. 

There are two common measures of the success of a production 

process in use at SANS. One is conversion efficiency, which is the 

ratio of the useful product made to the amount of wasted product. 

The second measure is customer returns. On both of these measures 

the performance 

efficiency has 

of Machine 

risen from 

5B has 

95.5% to 

improved, 

97% (on 

the conversion 

average), while 

customer returns have dropped from 9% to 3%. 

There are 

first is 

three possible sources for these improvements 

improved inverter reliability overall because of 

the 

the 

single inverters per position approach; the second is improvements 

due to the banding avoidance facility; the third can be 

attributed to other modifications that were made to the machine 

when the M/C 5B changeover was done. Unfortunately it is extremely 

difficult to separate the different influences to gauge their 

individual effects. 

The inverters used to drive the winder and traverse rolls have 

proved to be extremely unreliable, and the computer hardware 

department is _currently involved in a project to make an inverter 

system which avoids the problems of the existing units and 

incorporates the good features of other more reliable units 

used elsewhere on the plant. Unfortunately no records of inverter 

failure prior to . the changeover are available, so it is not 

possible . to compare the amount of lost production due to inverter 

failure before and after the project. However the performance of 

two other machines which use the same winders but the old inverter 

per machine approach, was compared with the performance of the 

new inverter per winder system. Maintenance logs were checked for 

w ~nder inverter failures for each of the three machines from 

1/1/85 up to 27/8/85. The results were as follows 

Page 5-3 



CONCLUSION 

1----------1----------1----------1----------1 
I MACHINE I NUMBER I DURATION I POSITION I 
I NUMBER I OF I OY ' ALL I HOURS I 
I I FAILURES I FAILURES I LOST I 
1----------1---~------1----------1----------1 
I SA I s I 22 HRS I S28 I 
I SB I 33 I 66 HRS I 66 I 
I 6B I s I so HRS I 1200 I 
1----------1----------1----------1----------1 

The position hours column was derived by multiplying the number of 

positions affected by the time 

operation. 

that the positions were not in 

Machine SB has the new control system. The production lost on this 

machine due to inverter failure is between 8 and 18 times less 

is clear that a considerable than that on the old machines, so it 

improvement in lost production has been made using the inverter 

per position approach. Although 

is more than six times that of 

the number of failures on M/C SB 

the other machines, because there 

are 24 inverters the reliability of the per-position inverters is 

3.S times greater than that of the . per-machine inverters. It seems 

that greater productivity has been exchanged for increased 

maintenance. Using one common product as a baseline, the cost 

of the failures quoted in the table above are RIO 890, Rl 362 and 

R24 750 respectively. If the new approach was used on the older 

machines, R32 916 would have been saved. However, it is difficult 

to estimate maintenance costs, and the cost of converting the 

machines also has to be considered. 

The effectiveness of the banding avoidance feature could be tested 

by comparing two batches 

avoidance facility, and 

of 

the 

product, one made with the banding 

other made without. However the 

production department is understanderbly reluctant to experiment 

in this fashion with product which is to be sold, as the feeling 

is that it does help, and the result of experimentation would 

inevitably mean lower conversion efficiencies. To be meaningful 

such a test would have to be done in a systematic fashion for a 

Page S-4 



· CONCLUSION 

range of products, which cannot be justified at present. 

Determination of the effectiveness of banding avoidance will have 

to wait until a justification for ' the tests can be found, or until 

a different method for its determination can be devised. However 

the conversion efficiency on machine SB is 1.57. better than that 

on machine 6B when both are making the same product. It is not 

possible to say conclusively that this is due to banding 

avoidance, but since the machines are very similar in most other 

respects it is possible that banding avoidance is the source of 

the improvement. 

Simil~rly it is not possible to isolate the effects of other 

modifications to the machine. The only way these other factors 

could be accounted for is by measuring the other two factors and 

then subtracting their effect from the total improvement. 

Page 5-5 



CONCLUSION 

5.2.2 ICU PERFORMANCE. 

Extensive testing has been cairied out on the operation of the 

Inverter Control Unit. This was done using calibrated stroboscopes 

which can measure the speeds of the different rotating parts 

extremely precisely. Stroboscopes are only of use where the speed 

of the shafts are constant, reliable results cannot be obtained 

when the speeds are changing. The table below shows the results of 

the tests : 

1-----------1---------------1--------------- ---------------1 
I MOD AMP I 0 % I 2 i. 4 % I 
1-----------1 I 
I SET SPEED I I 
1-----------1---------------1--------------- ---------------
' 100 Hz C I 5969.9 (0.1) I 5963.0 (0.2) 5952.7 (0.5) 

I s I 5973 <o.o5z> I 
1-----------1---------------1--------------- ---------------
' 200 Hz C I 11934.2 (0.1) I 11923.4 (0.3) 11905.7 (1.0) 

I s I 11936(0.02%) I 
1---~-------1---------------1~-------------- ---------------
' 270 Hz C I 16099.0 (0.2) I 16090.0 (1.7) 16059.3 (1.9) 

I s I 16104 <o.o3z) I 
1-----------1---------------1--------------- ---------------

C results as measured by computer (brackets show maximum 

deviations from mean speed in RPM). 

S = results measured by strobescope (brackets show percentage 

deviation between speed as measured by strobe and computer). 

All measured values in the table are in RPM. 

NOTES 

1) It was not posssible to measure speed with modulation applied 

to the traverse. 

2) The difference in the speeds measured by the strobe and 

computer (with no modulation) were less than or equal to . 0:05%, 

Page 5-6 



• I 

CONCLUSION 

which is well within the specification. 

3) Motor slip is given by the difference between the set speed and 

the measured speeds. With no modulation the slip is as follows 

Traverse set speed I Measured speed I Slip 

------------------------1-------------------1----------
100 Hz (6000 RPM) 

200 Hz (12000 RPM) 

270 Hz (16200 RPM) 

1 5973 RPM I 
I 11936 RPM I 
I 16099 RPM I 

0.45% 

0.53% 

0.59% 

These results confirm Hudgell's findings (reference 2) that motor 

slip is about 0.5%, with no modulation or load. The increase in 

slip with speed can be attributed to windage and friction. 

4) The mean motor speed measured by the computer decreases as the 

modulation increases, or expressed another way, motor slip 

increases as modulation amplitude increases. The magnitude of the 

slip is approximately the same as that observed by Hudgell 

(reference 2) using a different technique, which indicates that 

the speed as measured by the computer is accurate. The table 

below shows the slip measured by the computer for different speeds 

and modulation am~litudes 

I Modulation amplitude 

Traverse set speed I 0% I 2% I 4% 

-----------------------1------1------1-------
100 Hz I 0.45 I 0.62 I 0.79 

200 Hz I 0.53 I 0.63 I 0.79 

270 Hz I 0.59 I 0.68 I 0.87 

5) A cyclical {luctuation was observed in the speed of the 

traverse measured by the computer, and the 

this fluctuation was directly proportional to 

amplitude. It s source is probably the effect 

magnitude of 

the modulation 

theoretically 

predicted in Chapter 3.3.3.1, ~hich predicted a speed measurement 

error brought about by the slip of the motor not being accounted 

for. The cyclical nature of the effect is probably due to a 

Page 5-7 



CONCLUSION 

"beating" effect between the actual measurement interval and the 

modulation period, sin~e the starting point for the measurement 
' will be at a slightly different point on the modulation waveform 

each time. The worst case value occurs at 270Hz with 4% 

· modulation. The measured value of the fluctuation was 0.012%, and 

the theoretically predicted value was 0.07% (the measured values 

were less than the theoretically predicted values in every case). 

These values are of the same order, and are at the resolution 

limit of the measurement method, so it would seem that the 

theoretically predicted speed errors were correct. 

5.2.2.1 CONCLUSIONS ON SPEED MEASUREMENT. 

The overall accuracy of both traverse and chuck speed measurements 

was better than the O.li. specified, being generally of the order 

of 0.05%, so no further attempts were made to improve the 

operation of the speed measurement system. 

5.2.3 DEVELOPMENT AND COMMISSIONING. 

The project was commissioned in May 1984, nine months after it was 

started, and one month behind our own schedule. The rest of the 

project also ran a bit slower than expected, so there was never a 

point where the ICU development held back the overall project 

implementation. Time for contingencies had been allowed ' for, 

and in fact the project was completed slightly ahead of overall 

schedule. 

Several bugs of varying degrees of seriousness were found in the 

software; and the last version to be made was version 7 of October 

1984. One of the most serious bugs was in one of the SMT modules 

. released by SPL. This was the "REAL COMPARE" function, and caused 

the ICU to work incorrectly. The problem was traced and the 

offending source module was edited. The bug has been fixed in the 

later releases of MAGIC. 

Because of the need to get the machine into production 

quickly (anticipated output had already been sold to 

Page 5-8 



CONCLUSION 

customers), the commissioning time was cut short, and this had a 

very bad effect on the initial reliability of the wind up system, 

and in fact it was not until mid-September, four months later, 

that all 24 positions were successfully commissioned. The main 

problem was with the power supplies for the I~U's, which kept 

shutting down for no apparent reason (see chapter 2.3.2), and with 

problems in the mechanical construction of the ICU drawers. Any 

work performed on the ICU cabinet carried ·a high risk of 

shutting the power supplies down, which caused all the winders to 

stop whatever production was occurring. As a result the production 

department were reluctant to allow work on the machine, while at 

the same time putting pressure on the department to make it work 

properly. In the end the computer hardware department had to 

insist on a total shutdown for several days in order to correct 

the problems. This involved changing the earthing on the power 

supply system, modifying the power supplies themselves, and 

changing plugs and sockets on the ICU's. 

Longer term but less severe problems were encountered with the 

host communications. On one link in particular, a lot of problems 

were experienced in getting all eight stations working. This was 

mainly because there were three separate problems masking each 

other, and once again it was very difficult to work on the system 

without stopping production, which meant that it took much longer 

to find the problems. The situation was only corrected when the 

machine was shut down for five days for other reasons. The source 

of the problem was found by disconnecting all the stations from 

the line, and testing the continuity of all the plugs and sockets 

from one end of the link to the other. From this it was discovered 

that two of the links had been crossed over, so the search for the 

problem had been directed at the wrong link on previous attempts. 

When this problem had been cleared up, each station was 

individually reconnected to the link and tested for operation, 

which revealed that one position was not communicating at all. 

After this the stations were reconnected onto the link one by one, 

which led to the discovery that one station had its transmit 

buffer permanently enabled, 

transmit. 

so that no other 

Page 5-9 

station could 



CONCLUSION 

Two very important lessons have been learned from this phase 

of the project: Firstly the success of a project hinges on the 

physical construction of the unit, especially with regard to 

seemingly trivial items like plugs and sockets; Secondly, adequate 

commissioning time at the end of the development phase is more 

than compensated for by subsequent reliable operation. 

The Control Unit side of the project 

extremely reliably since the start of 1985. 

has been 

There has 

operating 

been one 

computer failure since commissioning, and nearly all other 

problems have been due to the Inverter pulse driver 

transistors (on the I/O board) being burnt out, through accidental 

short circuiting when inverters are repaired or altered. This 

problem is easily remedied by swapping boards, . and the Mark II I/O 

board has been modified to provide short circuit protection. 

Page 5-10 



CONCLUSION 

5.3) THE FUTURE OF THE ICU SYSTEM. 

================================== 

5.3.1) FURTHER DEVELOPMENT OF THE ICU. 

There are two aspects of the ICU that still require more 

attention, namely : Cooling of the inverter control unit cabinet; 

and protecting the ICU's from host computer failures. Each of 

these will be considered in turn. 

A) Cooling of the ICU drawers is done by blowing air up a duct 

that seals over the side of each ICU drawer in 

side of the drawer has a vent (see figure 4.1.1) 

the cabinet. Each 

that catches the 

air flow on one side and expels it on the other side. However the 

computers are running at a very high temperature, and it is clear 

that the air circulation is inadequate. This situation has serious 

implications for the long term reliability of the computers, and 

there are suspicions that the one computer failure recorded was 

due to overheating. Accordingly arrangements have been made to 

supplement the air circulation in the cabinet with the chilled air 

used to cool the inverters. This system has a high volume 

circulation, and should improve matters. 

B) Every time an ICU station receives a data character from the 

host, the CPU is interrupted. If continuous data were received 

from the host, the CPU would spend all its time servicing the 

interrupts, and there would be no time left to service system and 

application tasks. This situation has arisen on two occassions, 

once when the host computer failed to a state where it was sending 

data continuously down the links, and once when the BML eight 

channel serial link board on the host was unplugged from its 

backplane, and random noise was sent down the lines. The result in 

both cases was to crash all the ICU's and stop production on the 

machines. Since it is impossible to prevent situations like this 

occurring, the solution will have to be implemented in software. 

One method being tried is to mask off the receive data interrupt 

for a fixed time duration once a certain number of interrupts has 

been exceeded. This is still under investigation. 

Page 5-11 



CONCLUSION 

5.3.2) NEW IMPLEMENTATIONS OF THE ICU. 

There are at least nine other machines that could be converted in 

the same way as Machine SB. Justification for conversion will 

depend on customer demand, and reliability of the old plant. At 

present there is a strong possibility of one other machine being 

converted, with two more at a later date. The ICU system produces 

yarn more efficiently than the old method, so it is a prime 

contender. A Japanese company· produces a precision winder (ref 7) 

which has comparable performance, so the final decision will rest 

on cost. Using the Emersen inverters, the cost of the two systems 

is approximately the same, but the Japanese system is more 

reliable. With the prospect of reliable, cheap, locally produ~ed 

inverters, there is a strong case for these units being used. 

A second possible use is a modified ICU controlling existing 

machines. Analog controllers are difficult and expensive to 

obtain, and are the source of wasted production (through incorrect 

controller set up and inherent unreliability). The computerised 

ICU has shown itself to be far more reliable than the older 

controllers, and less prone to incorrect set up. A costing 

exercise has been done, and there are plans to install the 

computer controllers on six machines. There will be one computer 

per machine, it will not perform banding avoidance (so there would 

be no need for tacho's), and there would be no plant interlocks. 

In addition, it will have to control the meter pump and spin 

finish pumps as well as the traverse and winder inverters. 

Enquiries about the system have been received from !CI in the UK 

and from Fibre makers in Australia. Negotiations are in progress 

with both companies for units to be sent for trials. 

The Inverter Control Unit is still being assessed, but it is 

becoming increasingly clear that it offers reliable, repeatable 

and economical control for high speed Barmag winders, and that it 

has successfully satisfied all the requirements set out in the 

specification. 

Page 5-12 



BRICK 

CAKE 

CHUCK 

CHAPTER 6 : GLOSSARY OF TERMS AND ABBREVIATIONS. 

================================================ 

A basic program building block in RTL/2. 

There are two types of brick data and 

procedure. All code and data in an RTL/2 is 

contained in bricks. In stand alone 

systems, data bricks will be copied into 

RAM, and procedure bricks will be contained 

in ROM. 

A cylinder or tube on which undrawn yarn 

has been wound. 

Free running spindle 

cardboard tubes placed on 

thread onto. 

which 

it 

has four 

for winding 

CONVERSION EFFICIENCY The ratio of useful yarn made t~ useful 

yarn made plus wasted yarn. 

DOFF Remove a cake of yarn from the chuck. 

H-TASK Hardware task. See S-task. 

IC Integrated Circuit or "chip". 

Page 6-1 



ICU 

GLOSSARY 

Inverter Control Unit. The unit which 

control$ a Barmag Winder head, and forms 

the subject of this thesis. 

INDIRECT COMMAND FILE A file on an RSX system which contains MCR 

and other utility instructions which will 

be automatically executed by the computer. 

MELT POOL 

MGR 

OCP 

OPI 

P-JUMP 

PIC 

PIT 

Part of a nylon spinning machine where 

polymer chip is melted prior to extrusion. 

Monitor Console Routine. A command line 

interpreter commonly used in RSX. 

Operator Command Processor. A program which 

allows an operator to control a computer 

through a terminal. 

Operating Instruction. Set of machine 

settings which define how a particular 

batch of yarn will be made. 

An instantaneous change of frequency in the 

traverse modulation signal which 

compensates for the inertia of the traverse 

roll. 

Programmable Interrupt Controller. An IC 

(8359A on the SBC 88/25) used to detect and 

control interrupts to the 8088 

microprocessor. 

Programmable Interval Timer. An IC (8253 

on the SBC 88/25) used in computers for 

generating pulse trains and measuring time 

durations. Also known as a Real Time Clock 

or RTC. 

Page 6-2 



PPI 

QUENCH CHIMNEY 

RL02 

RSX 

RTC 

SPINNERET 

S-TASK 

STRING UP 

THERMEX 

UIC 

GLOSSARY 

Programmable Peripheral Interface. An IC 

(8255 on the SBC 88/25) used in computers 

to send or receive binary data. 

Part of a Nylon Spinning Machine where yarn 

is cooled and crystallised after extrusion 

from the melt pool. 

A 10 Megabyte removable hard disk drive 

used on PDP-11 minicomputers. 

A multitasking real time operating system 

used on DEC PDP-11 minicomputers. 

Real Time Clock. See PIT. 

A small orifice through which molten 

polymer is pumped to form Nylon yarn. 

Software task. In RTL/2 there are two types 

of task. Software tasks are controlled by 

the scheduler and come into operation 

according to the state of other S-tasks in 

the system. H-tasks directly control the 

computer hardware, and are usually invoked 

by an interrupt. 

Thread Nylon yarn onto a winder. 

A heated liquid used for transferring heat 

in Nylon Spinning machines. 

User Identification code. Defines an 

account in the RSX operating system. User 

and system files can only be accessed by 

suppling the correct UIC and password for 

the account. 

Page 6-3 



UPS 

USART 

WIND UP 

WRAP 

GLOSSARY 

Uninterruptable 

supply driven 

Power Supply. A power 

battery system that 

through ESCOM supply continues 

failures. 

off 

operation 

a 

Universal Synchronous Asynchronous Receiver 

Transmitter. An IC used in computers to 

convert serial data streams from peripheral 

devices such as terminals or printers into 

the parallel data required by the computer, 

and vice versa. 

Draw yarn onto a cardboard tube 

cake of yarn. 

to form a 

Also known as "head wrap". Yarn which has 

broken off and wrapped around the windup 

roll instead of the spinning tube. 

Page 6-4 



1) GIBB R.D. 

2) HUDGELL A.W.D. 

3) EVANS G.B. 

4) LAFEBER A. 

5) HUDGELL A.W.D. 

CITATIONS 

CHAPTER 7 : CITATIONS. 

====================== 

Status report on Barmag 

Research note R375/81, 

winder developments. 

ICI Fibres Research 

Engineering and textile department Harrogate. 

Winder traverse modulation. Harrogate lab 

report HLR 135/80. ICI Fibres Research 

Engineering and textile department, Harrogate. 

Optimum Modulation parameters 

Fibres, Harrogate. Ref GBE/GLC. 

report. ICI 

Theoretical Investigation to avoid banding by 

improved modulation. ICI Fibres, Harrogate. Ref 

AL/CK. 

Winder traverse tension. ICI Fibres, Harrogate. 

Ref F0/0.335/AWDH/GLC. 

6) HUDGELL A.W.D. High speed winding. Survey of frictional and 

SYKES G. geometrical effects. ICI Fibres Research 

Engineering and textile department, Harrogate. 

7) CAMPBELL W.E. or Precision Winding choosing a Random 

system. Textile Institute and Industry, Oct 

1979 p367. 

PAGE 7-1 



8) 

9) INTEL 

10) INTEL 

. ... .- .. . 

CITATIONS 

A number of journals were consulted, see 

Electronic Design, March 18th 1982 p77 and 

April 15, 1982 for a comprehensive survey. In 

addition see : Pulse Oct 1984 p6 and Dataweek 

Feb 24th 1984 for a survey of the South African 

situation. 

Microprocessor and peripheral handbook, 1983. 

iAPX 86,88 user's Manual. 

PAGE 7-2 



,_ 

'' .• 

APPENDIX A 

.. 



APPENDICES 

APPENDIX A : INTRODUCTION TO NYLON SPINNING. 

============================================ 

Nylon spinning is a mixture bet~een a batch orientated process 

and a continuous process. The production of the Nylon threadline 

is continuous, but the winding up of the yarn is batch orientated. 

This thesis is concerned with the control of the wind up head, 

which is at the very bottom of the machine. Figure A.l gives a 

general view of the wind up floor of a Nylon spinning machine, 

showing the 24 wind up heads. In one sense the production of the 

threadline is a batch process in that the market for most types of 

nylon is not large enough to allow for continuous production. So a 

batch of one particular type of yarn will be made, after which the 

machine will be "changed over" to manufacture a new type of yarn. 

The rest of the process on the higher floors will be briefly 

described for context. 

Dried, pre-crystallised polymer is fed by an archimedian screw at 

a controlled rate into a "melt pool", which is heated to a 

carefully controlled temperature. Molten polymer is then pumped 

out of the melt pool through spinnerets which are small orifices 

of a carefully controlled shape and size, and from there through a 

"quench chimney" which cools the yarn and causes it to solidify. 

From the quench chimney it is fed to the winding head which winds 

the yarn onto a cardboard tube called a "bobbin". Each wind up 

head actually takes four threadlines, which are wound onto four 

cardboard tubes, which are called ''cakes" or "cheeses" when they 

are full. 

Page A-1 



FIGURE A.1 

FIGURE A.2 



APPENDICES 

Figure A.2 shows an unloaded, free standing wind up head. Four 

main components can be seen in the diagram. The first is the 

grooved traverse roll. The yarn runs in the groove, which 

guides the yarn onto the surface of the cake. The second component 

is the the smooth, shiny wind up roll. This is held in contact 

with the cake, causing it to rotate by frictional contact. The 

third component is the chuck which holds the ~ardboard tubes, and 

the fourth component is the transfer tail which transfers the yarn 

onto the cardboard tube at the start of the wind up period. Figure 

A.3 shows the winder in operation. If the picture is examined 

carefully, the threadlines can be made out as they pass through 

the traverse tips, into the groove roll and then onto a half full 

cake. 

Each of the four threadlines are guided through traverse tips, 

which shuttle backwards and forwards in synchronism with grooves 

in the traverse roll. A close up view of the traverse tips is 

shown in figure A.4. The traverse tips guide the yarn into 

grooves on the traverse roll, whi~h then feeds the yarn onto the 

cake in regular layers. As yarn gets wound onto the cake, its 

diameter grows, and so the winder h~ad gradually lifts. Once the 

cake is full and the winder head has risen as far as it can go, 

the machine is "doffed". Firstly the threadlines are cut and a 

vacuum suction gun used to draw off the yarn from the quench 

chimney (Figure A.l shows an operator in the process of doffing a 

winder, using a suction gun); secondly the winder roll is lifted 

off the cake surface, and the four cakes are stopped; and thirdly, 

the cakes are removed from the chuck, and replaced with new 

cardboard tubes so that the process can begin again. 

The winder roll is actually the armature of a two pole permanent 

magnet synchronous motor, the stator being inside the armature. 

The function of the winder roll is to draw the yarn onto the cake 

at a constant speed and tension. The cake is surface driven to 

ensure that the yarn take up rate and tension are constant. If the 

chuck were driven directly, the surface velocity of the cake would 

increase as 

would have 

its diameter increase'd, and so the speed of the chuck 

to be proportionately decreased. This problem is 

Page A-2 



FIG URE A,3 

I .y. ;...r ... ':'.,.· 

----------

FIGURE A.4 



APPENDICES 

avoided by using surface drive. A synchronous motor is used 

because yarn tension determines yarn quality, and tension depends 

on the wind up rate, so close sieed control is essential. There is 

a small amount of slip between the winder roll and the cake 

which also has to be taken into ~ccount (ref 5). 

The traverse roll is the armature of a two pole induction motor. 

The function of the traverse roll and its associated groove roll 

and traverse tips, is to lay the yarn in a regular fashion onto 

the cake, so that when the yarn is taken off by the customer 

(often at a high speed), there are no yarn breaks or snagging 

which might cause variations in yarn consistency. At first sight 

this may seem a trivial problem, but there are a number of 

problems. An examination of Appendix B, which is the production 

specification for the project, shows that a maximum wind up speed 

of 6000 metres per minute is required. A wind up period can last 

up to 12 hours, which means that it is possible to get up to 4000 

km of yarn on a single cake. The customer must be able to draw 

this whole length off without any breaks or snags. 

Problems arise when the cake rotates an integral number of 

revolutions for one double stroke of the traverse tip, in other 

words when the ratio of the chuck and winder speeds reaches a 

critical value. When this happens the crossover points of the yarn 

start falling in exactly the same place on successive layers of 

the cake, and ridges form. These cause the winder roll to vibrate 

against the cake surface, which compacts and traps filaments of 

yarn under lower filaments. This trapping causes the yarn to break 

when it is pulled off the cake. If - the vibration becomes severe 

enough, - upper layers can slip on lower layers towards the centre 

of the cake where tangles form, causing the threadline to snap and 

the yarn to wrap itself around one of the rolls (this condition is 

known as a "head wrap"). Theoretically this problem should occur 

instantaneously, but in practice conditions are sufficiently close 

to the critical ratio for the effect to occur for an appreciable 

time. 

Page A-3 



APPENDICES 

There are two methods of overcoming these problems. The first is 

to frequency modulate the traverse speed. This introduces a 
l 

cyclical change in traverse frequency which ensures that the 

critical ratio only occurs for short periods of time. The 

amplitude and the rate of change of the modulation will determine 

how long the traverse speed dwells in the critical range. The 

second method of avoiding this effect, known as "banding" or 

"ribboning", is to rapidly alter the mean traverse speed as the 

critical point is approached, in order to pass it very rapidly. 

Once .clear of the critical ratio, the mean speed is changed back 

to its original value. 

Nylon Spinning Machines up until the present have only been able 

to use traverse modulation because all 24 winder heads are 

controlled by two inverters. The use of individually controlled 

motors allows a combination of both methods to be used. Traverse 

speed modulation removes a large proportion of the problem, whilst 

a change in average frequency overcom~s most of the remainder. The 

degree of the problem varies from product to product, so different 

modulation and avoidance parameters are used in different 

which accounts for the need for a programmable situations, 

controller. There is also a very rigid limitation on how far the 

mean speed can be changed because as mentioned before the tension 

of the yarn is critical. There are some ribbon points on some 

products that it is not possible to overcome. However, a 

considerable improvement can be obtained by using these methods. 

Figure A.5 shows the traverse modulation waveform used. The 

function of the P-Jump is to overcome the inertia of the roll, 

which makes reversal of roll acceleration unacceptibly slow if a 

simple triangular modulation is used. It should be noted that 

large modulation values shorten inverter life spans, and 

avoided as far as possible. 

so are 

Figure A.6 is a graphical representation of what happens when the 

second method of ribbon avoidance is used. As the chuck speed 

decreases and a critical point is approached, the traverse speed 

is rapidly decreased from x to y so that the ribbon point is 

Page A-4 



i 
MODULATION 

~P-JUMP i 
FREQUENCY · AMPLITUDE 

___ _J_ __ 
MEAN -------

FREQUENCY 

TIME~ 

FIGURE A.S: TRAVERSE MODULATION WAVEFORM 



. TRAVERSE 
' SPEED 

F1 

FIGURE A6 BANDING AVOIDANCE 

z F2 r--------
' \ I \ 

I \ 

x ,' \, 

RIBBON POINT 

CAKE OIAMETE R 



APPENDICES 

avoided. As the ribbon point is approached again, the mean speed 

is altered as rapidly as possible back to its original value so 

that the ribbon point is traversed as rapidly as possible. 

Avoidance could also be taken by going from x to z. 

It should be noted that this method of winding is called "Random 

winding". There is another method used called "precision winding" 

where the traverse speed is kept (by mechanical means) at a 

fixed (and very carefully chosen) ratio of the chuck speed, which 

ensures that the crossover points are evenly distributed over the 

cake surface for all cake diameters. See reference 7 for a 

description and comparison of the two methods. 

Page A-5 



.. . 
=' 

. ·. 

- : 

. ' 

... •"','"' 

.. 'I .. ,, •• --f .. 
~'~· .. ~~ . 

' . 

t .' 

. , 

' . " 

, · 

· r"" • 

' ·. ., 
,· 

.. , . , 

' . 

B 

.. -~ ... 'I. ~- • • ,.J 

. •, 

,, 

., 

' • t;.~"" 
' . ,· ~ 

" ""~ · ;', 

.. 
"£' 

' 

' ' 
.' 

.; 

. 
·, ~": ,. 

,, 

; 
l .. 

,\ 
• 
' 1 
; 
t 
f 
•; 
t 

t 

' .I 

~ 
' · l 

1 
.\ 



APPENDICES 

APPENDIX B : PRODUCTION SPECIFICATION FOR THE CONTROLLER. 

================================~======================== 

This specification is the result of a series of consultations 

between the production department, which produced the original 

specification, and the computer applications group at SANS. The 

original production specification was studied and preliminary 

trials were done to test the feasibility of t~e goals and 

aims. Some of the less realistic requirements were altered after 

consultation with and agreement from the production department. 

B.l) INTRODUCTION. 

The project's aim is to produce a controller which will run the 

new individual position inverter system for BARMAG winders. It 

will allow specific control of the traverse to avoid banding and 

ribboning during cake build. The controller will be developed 

using an INTEL single_ board computer system running software 

written in RTL/2 and developed using the INTEL version of the 

MAGIC software development system. It will control the winder and 

traverse motor on each position. The standard ramp up, ramp down 

and traverse modulation (with P-jump) control will be provided. In 

addition a banding avoidance function will be provided. The 

strategy for this will be determined by a table of user set 

parameters. Advantage will be taken 

facility to provide a rough profile of 

cake build. 

Page B-1 

of the banding avoidance 

wind on tension during the 



APPENDICES 

B. 2) OPERATIONAL LIMITS AND TARGETS. 

PROCESS SPEEDS MAXIMUM 

Wind up speed 6000 

12710 

212 

Traverse speed 6480 

19155 

319 

Traverse modulation waveform 

Amplitude 

P-jump 

Period 

+/- 4% 

+/- 4% 

30 

Modulation to be symmetrical. 

B.3) BANDING AVOIDANCE. 

MINIMUM 

2500 

5217 

88 

2700 

7980 

133 

0% 

0 % 

2 

STEP SIZE 

i'tPM 

RPM 

0.2 Hz 

MPM 

RPM 

0.2 Hz 

0.2 

0. 2 

1. 0 

Hz 

Hz 

sec 

Banding avoidance consists of ramping the traverse from one mean 

frequency "Fl" to another temporary mean frequency "F2". This 

takes place as the system approaches a banding condition. The 

traverse would continue to run with modulation at this new 

frequency until the banding state had passed, when the traverse 

would be ramped back to normal mean speed. The avoidance action 

can be taken in a positive or negative direction. 

During the wind up of a cake the chuck speed steadily decreases, 

so the ratio between the chuck and traverse speeds decreases. This 

can be specified as a ratio : 

CAKE RPM 

R ---------------------------

TRAVERSE ROLL SPEED* (1/6) 

Page B-2 



APPENDICES 

The conditions for banding can be set by specific values for R. 

A typical banding avoidance operation will be specified by setting 

a ratio value at which to start avoidance and another 

corresponding one at which to end avoidance action. 

All banding avoidance control parameters will be variable data set 

by operators and the only checks will be for consistency and 

safety. Allowance will be made for fifteen banding avoidance 

points. The acceleration and deceleration rates to and from 

banding avoidance are variable parameters, and are different from 

the general limiting rates derived from hardware limitations. 

B.4) WIND ON TENSION PROFILE. 

When a banding avoidance point "Rl" is reached the mean traverse 

frequency is changed from Fl to F2. During this change modulation 

and P-jump will be disabled. After banding avoidance has been 

completed, when ratio 

speed is ramped back to 

"R2" has been reached, the mean traverse 

Fl. The new value of Fl does not have to 

be the same as the original value. This enables a step profile of 

wind on tension to be implemented with the 

at banding avoidance points. 

step changes occuring 

Modulation will be active during normal operation at the level set 

by the user. Modulation is disabled during the transition from Fl 

to F2 or F2 to Fl, and the user can select different modulation 

parameters at Fl or F2. 

Page B-3 



APPENDICES 

B.5) TABLE OF PARAMETERS. 

FIXED VARIABLES (not changeable by operators) 

Winder 

Acceleration rate 

Deceleration rate 

Frequency maximum 

Frequency minimum 

Traverse 

Acceleration rate 

Deceleration rate 

Frequency maximum 

Frequency minimum 

Motor start up sync time 

1. 0 

1. 0 

212 

13 

3.0 (7.0) 

3 • 0 ( 7 • 0 ) 

319 

13 

2 

Hz/sec 

Hz/sec 

Hz 

Hz 

Hz/sec 

Hz/sec 

Hz 

Hz 

secs 

Figures in brackets show maximum acceleration I deceleration rate 

in changing speed between Fl and F2. 

CONTROL PARAMETERS (to be set by operators) 

Banding avoidance start ratio 

Banding avoidance end ratio 

Normal mean traverse speed 

Avoidance mean traverse speed 

TRAVERSE MODULATION PARAMETERS. 

Rl 

R2 

Fl 

F2 

Amplitude % of Fl in normal operation 

P-jump % of Fl in normal operation 

Amplitude of F2 in avoidance operation 

P-jump % of F2 in avoidance operation 

Page B-4 

x 15 

x 15 

Hz x 15 

Hz x 15 

0-4% of Fl 

0-4% of Fl 

0-4% of Fl 

0-4% of Fl 



Fl to F2 rate of change 

F2 to Fl rate of change 

WINDER PARAMETERS 

Winder speed 

B.6) HARDWARE I/O 

PULSE INPUTS 

Chuck speed 

Traverse speed 

PULSE OUTPUTS 

Winder frequency 

Traverse frequency 

APPENDICES 

RPM+/- 0.1% 

RPM+/- 0.1% 

Hz +/- 0.2Hz 

Hz +/- 0.2Hz 

Page B-5 

Hz/sec 

Hz/sec 

Hz 



APPENDICES 

B.7) PARAMETER MODIFICATIONS. 

Direct access to the control parameter table will be possible 

through an interactive display and modification section of the 

system. It will use a standard VDU and will have security 

protection for the data base change functions. The responsibility 

of data integrity and validity will be the responsibility of the 

user, except where safety or consistency consi.derations indicate 

an error. 

All control parameters will be displayed, and a minimal set of 

status data for stand alone operation will be provided. This will 

consist of : 

Current banding point (1-15) 

Status (stopped, starting, running-normal, running-avoidance) 

Traverse output frequency (Hz) 

Winder output frequency (Hz) 

Cake speed (RPM) 

Traverse speed (RPM) 

Current ribbon ratio 

Cake diameter. 

Page B-6 



•. ' ~. t 

. '· 
.. 

. ' 

APPENDIX C 

. 
. ~ 

~ 
t 



.· ..... ::·: ..... . 

APPENDICES 

APPENDIX C : OVERVIEW OF INVERTER CONTROL UNIT PROJECT. 

======================================================= 

Figure C.l shows how the different parts of the system fit 

together. The winder and traverse inverters with their integral 

armatures are each driven by a variable f~equency inverter. The 

output frequency of each inverter is controlled by a pulse train 

fed to the inverter from the computer. 

The I/O board isolates the plant from the computer, and converts 

computer TTL levels to plant transducer levels. 

Each of the 24 ICU's is linked to a PDP 11/23 host computer by an 

RS-422 mul~idrop serial link. The host computer monitors and logs 

the condition of each ICU, and sends operating instructions 

(control parameters for the product being made) to the ICU's. The 

type of yarn to be wound is chosen from a library held by the 

host, and sent over the serial link. This avoids the tedium of 

entering operating instructions (which could consist of up to 40 

parameters) by hand, and also allows alterations to be made to the 

parameters very rapidly. 

The traverse and winder inverters are housed in the inverter 

cabinet, which is fed traverse and winder motor control pulses, 

and "inverter run" interlocks from the computer. The inverters 

supply "inverter not tripped" interlocks back to the computer. 

The traverse and winder rolls are supplied with power from the 

inverters, and proximity detectors mounted on the traverse roll 
\ 

Page C-1 



'· 

,. 

.. 

· .. 

... 

I• 

L£O 1 
U- l14 AND 
lOCAl RESET 

l • 

INV COHTR<l. UNIT 

.-----fllO·J2 llO-P2 ------

9l~Y 
All!Oll 

l10-P2 

l~ssj 
llO-Jt 

SSC CCJ'IPUTER 

S8C-Jt 
( IUAU.fl.l 

BACK ~N£l 

"'-----1 EXT-PS 
( 1/0 CONNI 

1---------1 EXT-P3 
( PWR SUPPLY) 

EXT·P4 

SllX HOOUU 

S8X· P1 
~OOUL£ 

1----------l SBC·J4 

SBX·J1 

(S£RJAU 

SBC· J2 SBC· P1 
SERIALJ SBC - P1 

( HULTIBUS) ~-----I EX T·P2 
I LOCAL VDU) 

EXT· P1 · 
4( SCRN (HOST COl111) 

'--------~ S· REStT 

,, 1 ··"f'• ... :rr •l' •l\i 

' 1 

,_._ .... . .... ... . . 

t· 

( SOFTWARE 
RESETJ 

. .!. ·,. 

8 7 

L----"'----------~---- TRAY. INV. FAQ 

I 
--....,__I 

~ 

' .. 

RS ;:32 

RS 422 

MULTI OROPPf: J 

·. 

t 

t 
- I 

·-

Wll()-Lf' IN\£ FAQ 
TRAV IN\£ RUN 
WINO-UP INV RUN 
TRAY. READY 
WINO-LP READY 

~ TRAV S?O FRO . I ND-UP SPO. FRQ . 

L----------·E·· "J 
START 
THERMISTOR TR ,P 

.,1' .. ... )\ l (' 
l"'.J. ' "- !! "' 
· ···' •' '' t 

~. J =-:: 
i-

lllU 

ETC 

FIGURE C.1 

I VERTER CO TROL UNIT 
SYSTEM SCHEM~T I C 

. ~-::-= (=~,.._~..,,.~-S_A_B_1_6_2_7 ~----- r p -00-01- .. 90 
•-<5' ;""· ''"' .t-..,. t\., .. .., \ .... ! '"'~ ... , ... "'I ..... "' 
~ ... ..,...._ ~ ,, 1,,'r ,..._'l\._·lH ~ 1 ,· '" "-' '' '"' , ••. ,..._:\ 

\("II· f l'~ t 0...Nf \\11~ ~1' '~" 1\l.; ,.,,, .._,,, ~; '' 

~·r f l<?t N1,..( {'\.\ c. N O "'' t '"' '°'N""-' t Ii' ~ r1' '- 1' .... .. • ,.,,.! ~ ...... , • 
!ti' ,.t. 

,:.,.t.,.;-,,.;.~,--,,.,,,....,.. _______ ..., __ ...:., ___ ..,... ___ ":-:--,-;-~-'-,.._".;...t_.,_~'"' or l~ "" C°l tli ' · \ .._,"'- .... , 

1' .,,•llti;!I·~ •I ~ ~\ .. 3 

.. ... :. .t. ---

SP!NNEl\S 

c 
c 



APPENDICES 

and chuck send speed information back to the computer. These are 

used to determine the ratio of their speeds, on which the 

decision to take banding avoidance by altering the mean speed of 

the traverse is based. The winder also has various interlock 

signals which are fully described in chapter 2.2. 

TRAVERSE AND WINDER INVERTERS. 

A brief description of the inverters used in this system will be 

given to aid understanding of the task the computer has to 

perform. Figure C.2 is a block diagram of the main parts of the 

inverter. 

A three phase 460V supply is rectified and fed to a pulse width 

modulated chopper transistor, which produces a variable DC voltage 

(after the AC component has been filtered out with an inductor). 

The variable DC voltage is fed to a three phase transistor bridge. 

The transistor bases are driven by a ring counter which is clocked 

by the pulse train from the computer. This is why the computer 

output frequency has to be six times the required frequency of 

operation. The overall result is a six 

variable voltage three phase supply. 

step variable frequency 

The computer pulse 

converter which is 

train is also fed to a frequency to voltage 

used to control the duty cycle of the chopper 

transistor, which gives a constant Volts to Hertz ratio. A 

digital speed signal was used rather than an analogue one because 

of the very tight speed tolerances required in the project. 

The protection logic monitors over voltage, under voltage and over 

current conditions, and trips the inverter if safe limits are 

exceeded. Over current protection is provided for peak and average 

conditions. 

Pa g e C-2 



460VAC 

T!ltPPE.0 

3 PHASE 

BRIO GE 

560VDC PWM 

CHOPPER 

FI V 

CONVERTER 

FILTER 

INTERLOCKS1------_.__ _______ ""' 

PROTECTION CURRENT AND 
1---- VOLTAGE 

LOGIC MONITORING 

' · ,,I 

13 - 320HZ 0- 424 v 

o-s6o voe l l 

RING COUNTER 

FIGURE C.2 INVERTER BLOCK DIAGRAM 



1 

1 
~ i ' 
. 

~ . 
) 
' 

APPE NOi X D 



... 
,, ....... ~ 

APPENDICES · 

APPENDIX D : OPERATIONAL REQUIREMENTS FOR COMPUTERS AT SANS. 

============================================================ 

This appendix 

of the 

presents 

project 

the results of . a survey done at the 

start to assess the requirements for dedicated 

microcomputer control at SANS. The term "dedicated control" is 

distinguish it from "process control". In dedicated used to 

control a microcomputer controls part of a process, whereas in 

process control the entire process is controlled. 

When th ls survey was done several previous attempts at 

dedicated control with microcomputers at SANS were investigated. 

The applications had been attempted at component level, and had 

shown poor results because of · overrun budgets and development 

timescales, technical problems such as overheating and noise, or 

most importantly difficult maintenance of hardware and software. 

The purpose of this document is to try and define what is required 

of a dedicated microcomputer controller, both at the development 

stage and on the factory floor. 

Several points became clear at the outset 

A) Computers installed on machines should be as flexible as 

possible, to allow future modifications or additions to the 

computer system to be done as easily as possible, with minimum 

disruption to the existing system. 

B) Standardisation is essential for ease and speed of development, 

Page D-1 



APPENDICES 

installation, commissioning and maintenance. Staff should be 

trained once for the basic system, with supplementary training for 

new applications. 

C) There are a wide range of commercially available board level 

products which can be used as a base for building systems. 

In-house component level development is justified only for large 

volume production or specialised applications, which will seldom 

be required at SANS. Experience has shown that the cheapest and 

quickest way of getting limited quantity applications installed 

and running is to use board level products. 

D) The company has limited hardware production facilities, so the 

assembly of board level products such as specilised applications 

or I/O boards will be contracted out to manufacturing companies. 

E) The company has a very large investment in DEC computers and 

development facilities, using the RTL/2 language running under the 

RSX, MTS and SMT operating systems. Any system chosen should make 

as much use of existing facilities as possible. 

D.1) MICROCOMPUTER REQUIREMENTS. 

ENVIRONMENTAL CONDITIONS. 

A) Ambient conditions. 

Operating temperature range 

Humidity 

Atmospheric corrosion 

B) Mains supplies. 

Voltage 

Frequency 

0 - 45 deg C. 

90% non condensing. 

Mildly reducing. 

220 VAC 

SO Hz 

Mains supplies often carry large amounts of electrical noise, 

which the system will have to tolerate. 

Page D-2 

~ .... 



APPENDICES 

C) Equipment location. 

Computers will of ten have to be mounted inside machine cabinets on 

the factory floor, so housings should be available which can 

withstand corrosion, dirt etc. 

SOFTWARE. 

In order to take advantage of existing software and development 

facilities there was a strong motivation for using RTL/2 and SMT 

as the applications language and multi-tasking executive 

respectively. Two options presented themselves here. The first was 

to use a small DEC computer such as the PDP 11/03 or FALCON as the 

target system, and use existing development facilities. The second 

option was to find an RTL/2 cross compiler that would produce 

object code for one of the more common microprocessors. A 

company called SPL based in the UK produces such a package, called 

MAGIC. Because of a technology exchange agreement between SANS 

and ICI in the UK, it was possible to get MAGIC at a low cost. 

When the prices, facilities and support for various different 

microprocessor systems was compared, (see appendix E) it was clear 

that the DEC computers were much more costly than other systems, 

so INTEL Multibus Single Board Computers using the MAGIC 

development package were eventually chosen. The MAGIC package 

produces object code for 6809, 8086, 68000 and LSI-11 processors, 

so any system with these CPU's is suitable for operation with 

MAGIC. 

SIGNALS- FOUND IN THE PLANT. 

The system had to be able to handle the wide range of signals 

found in the plant, and precise tailoring of applications was 

necessary to avoid redundancy. In other words the system had to be 

as modular as possible to ensure maximum flexibility. 

Page D-3 



. ...: .. 

A) ANALOG SIGNALS 

Inputs 

Outputs 

Voltage 

Current 

Current 

- ... ·.· . 

APPENDICES 

( 

0-lmV, 0-lOmV, 0-lOOmV, o-sv, o-sov 
0-20mA, .4-20mA, 0-lOOmA 

4-20mA 

In most applications, up to twenty analog inputs or outputs are 

required, although in some cases up to 240 inputs are required 

B) DIGITAL SIGNALS 

Inputs 

Outputs 

Up to 220V AC or DC 

Up to 220V AC or DC 

In most applications anywhere from twenty to three or four hundred 

digital inputs and outputs are required. 

C) MEMORY REQUIREMENTS. 

Once the decision to use MAGIC had been taken, it was necessary to 

choose a microcomputer capable of hosting SMT and the application 

tasks. SMT on its own uses up to 16K bytes of code space and 2.SK 

bytes of RAM space. Applications tasks were expected to use up to 

64K of ROM space and up to 8K of RAM space. During the development 

stage systems are loaded into RAM, so the target computer had 

to have facilities for extra RAM during development. Battery 

backup will be required in some applications. 

D)- REAL TIME CLOCKS. 

Since the computer is required for real time applications, there 

must be some provision for real time clocks. 

E) COMMUNICATIONS. 

Most applications considered required bi-directional ~ommunication 

either with a host computer and/or a local VDU. The data to 

Page D-4 



APPENDICES 

be communicated will be operating instructions or status reports 

in most situations, so the data transfer rate does not need to be 

high, and 9600 baud operation down an RS-422 or RS-232 link should 

be adequate. 

Page D-5 



. 
APPENDIX E 



' ' .. • .. . 

APPENDICES 

APPENDIX E : COMPARISON OF MICROCOMPUTER SYSTEMS. 

================================================= 

Summarising appendix D, 

system are as follows 

the requirements for the microcomputer 

A) 16 bit processor. 

B) Approximately 64K Rom space and 8K RAM space with provision for 

larger amounts of RAM. 

C) 9600 baud serial communications. 

D) Provision for battery backup. 

E) Provision for frequency and event counting by Real time clock. 

F) Provision for a wide range of digital and analog I Io. 

A study was done of the technical literature for a comparison 

between different single board computers, in the context of the 

South African market (see ref 8). The factors considered in making 

the selection were as follows 

A) Processor type. 

B) Address and data bus widths. 

C) Form factor. 

D) Power requirememts. 

E) Number of pins on backplane. 

F) Number of suppliers. 

G) Application development facilities outside the company. 

H) Facilities provided by basic SBC, and facilities for further 

expansion. 

I) Cost, both for the basic system and for expansion. 

PAGE E-1 



APPENDICES 

The availability of different systems in South Africa was then 

considered, and the following sy.stems were found to be readily 

available : 

A) SABUS. E) SlOO bus 

B) STD bus. F) The DEC Q-bus 

C) VME bus. G) MULTIBUS 

D) VERSABUS. 

SABUS and STD were ruled out at the outset, as they do not 

support 16 bit processors very easily. A 16 bit processor was not 

available for SABUS at the time, although one was being developed. 

However it was felt that the backplane did not really have 

sufficient pins for true 16 bit operation, and that this would 

eventually place restrictions on the system. In addition SABUS has 

a rather erratic history, and there were doubts about its long 

term viability. The VME and VERSABUS systems were discounted 

because of their prohibitive cost. Both systems have large 

backplanes, and the cost of housing coupled with the high cost of 

the basic board ruled them out. In addition the supply of the 

boards was very uncertain. 

That left the SlOO, Q-bus and MULTIBUS. A cost comparison between 

the three systems was done for several applications envisaged. 

The MULTIBUS system proved to offer the best price I performance 

ratio. This coupled with the fact that MULTIBUS is the most widely 

used bus in South Africa and has the largest user base in real 

time control applications settled the issue in its favour. 

PAGE E-2 



APPENDIX F 



APPENDICES 

APPENDIX F : COMMUNICATIONS PROTOCOL. 

===================================== 

The communications protocol described below was arrived at with 

the following aims in mind : 

1 ) The prime requirement is data transmission between the 

supervisory system and a remote unit. For reasons of economy a 

number of units will be connected to the same link, however it is 

considered extremely unlikely that projects of this type will ever 

require the units to be able to communicate amongst themselves. 

Hence a simple master-slave method of controlling link usage will 

result in the simplest software and most efficient usage of the 

link. 

2) As the link will be required to carry communications traffic 

for a number of logical channels the control information overhead 

for each message should be kept to a minimum. This resulted in the 

choice of a two pass protocol, 

containing binary data sections. 

using variable length messages 

3) In an effort to keep the system's knowledge of its own status 

as full as possible, a receiving station will always reply to a 

message. The reply would be the expected response if the message 

was received correctly and a negative acknowledgement including 

the relevant error code if it had been received incorrectly. Thus 

the only time no response would be expected was if the line was 

down or the received . message was distorted so that the destination 

Page F-1 



·.::·. 
: ~ · ~. . 

APPENDICES 

could not be determined from the message contents. In this case 

the receiving system would not be able to tell that the message 

was intended for it. 

F.l) DATA LINK MESSAGE LAYOUT. 

NO NAME NO OF BYTES CODES 

----------- -----
1 SYNC 1 55 HEX 

2 START 1 STX 

3 SOURCE ADDRESS 1 ASCII @,A-Z 

4 DESTINATION ADDRESS 1 

5 CONTROL TYPE 1 ASCII (S,R,P,A,N) 

6-9 SPARE 4 

10 LENGTH 1 BIN 

1 1 DATA 1 BIN 

LENGTH 

BYTES 

254 DATA 1 BIN 

255 CHECKSUM 1 BIN 

NOTES: 

A) Address @ will be used for the supervisory system ie the master 

for that link's communications. The other addresses will be 

numeric starting at one but biased by 40 hex, and so will be 

stored as A,B,C .. etc. 

B) There will usually not be more than eight to ten slave units 

connected on a single multi-dropped link, and their addresses will 

be set alphabetically from A onwards. 

C) The message type codes are intended for use as listed below. 

Further details of their usage in connection with the protocol 

Page F-2 



.... -~ ... 

APPENDICES 

will be given in the next section. 

(S)END DATA MESSAGE 

(R)EQUEST DATA MESSAGE. 

(P)OLL FOR UNSOLICITED DATA MESSAGES. 

(A)CKNOWLEDGE POSITIVE RECEIPT OF A MESSAGE. 

(N)EGATIVE ACKNOWLEDGE OF RECEIPT OF A MESSAGE. 

D) Four spare bytes have been left in the control portion of this 

message layout for future developments. 

E) The length byte in the control section will indicate 

of bytes of binary data ,included in this message in 

section. The value will be stored in binary as a single 

there will be an upper limit of 255 bytes of da~a. 

the number 

the data 

byte so 

F) The data section layout will depend entirely on the particular 

application. Normally the first byte will be a data message type 

code. This would have a project dependant meaning and would define 

the contents of the remainder of the data section. 

G) The last byte of the message would be a checksum. It will 

be generated by taking the modulus 256 value of the negative 

summation of all bytes in the message bounded by, but not 

including the STX character and the checksum itself. 

H) The entire message control packet and data from 

checksum inclusive constitute what is . transmitted over 

link, however the user's useful information comprises 

sync to 

the data 

only the 

data section and thus this is sometimes known as the user message 

or data message. 

Page F-3 



. · . .-4')• - - ...... ; .. 

APPENDICES 

F.2) MESSAGE PROTOCOL. 

MASTER SLAVE 

S-TYPE MESSAGE ---> <--- A - TYPE MESSAGE (ONE DATA BYTE, AN 

ECHO OF SENT DATA) 

OR 

<--- N - TYPE MESSAGE (ONE DATA BYTE, THE 

ERROR CODE) 

R-TYPE MESSAGE ---> <--- A - TYPE MESSAGE (ECHq OF REQUESTED DA~A 

MESSAGE TYPE FOLLOWED 

BY A VARIABLE NUMBER 

OF DATA BYTES) 

OR 

<--- N - TYPE MESSAGE (ONE DATA BYTE, THE 

ERROR CODE) 

P-TYPE MESSAGE ---> <--- A - TYPE MESSAGE (EITHER A CODE {255} TO 

SHOW NO UNSOLICITED 

DATA MESSAGES ARE 

WAITING, OR THE OLDEST 

DATA MESSAGE WAITING 

TO BE TRANSMITTED) 

OR 

<--- N - TYPE MESSAGE (ONE DATA BYTE, THE 

THE ERROR CODE) 

Page F-4 



APPENDIX G 

1- LINKER OUTPUT FILE 
2- DATABASE 
3-RATIO TASK 
4 - WINDER TA SK 
5- WINDER CONTROL TA SK 
6- OCP TASK 
7- TRAVERSE DRIVE TASK 
S- TRAVERSE CONTROL TASK 
9- CHUCK TACHO TASK 

10- DATABASE UPDATE TASK 
11- COMMUNICATIONS TASK 
12- SANS INTERACTIVE STANDARDS PRO(EDURES 
13- ICU COMMON PROCEDURES 
14- MSM T U1 
15- STARTUP CODE 
16 - SYS T EM BU I L D C 0 M MA N D F r LE 

' 



·- . 
. ... 

.. ; ·, ~. 

:*MAGIC **LONG ADDRESSING INTEL 8086 VERSION 1.0 S.P.L. 15-0CT-84 

· ,ROMLNK.MAP 

.INKER M SYSTEM FILE FROM ?=[341,lJSMTROM.SAV 

M>SEG RATIOAR AREAS=A2,A3 
M>SEG WDRVAR AREAS=A2,A3 
M>SEG WCONTAR AREAS=A2,A3 
M>SEG SEQ AREAS=A2,A3 
M>SEG OCP1AR AREAS=A2,A3 
M>SEG TDRVAR AREAS=A2,A3 
M>SEG TCONTAR AREAS=A2,A3 
M>SEG WTACHAR AREAS=A2,A3 
M>SEG DBUPAR AREAS=A2,A3 
.M>SEG COMMS AREAS=A2,A3 

J 

.M>TASK ID=l SEG=RATIOAR,GOSMT ENTRY=RATS PRI=58 GO 

.M>TASK ID=2 SEG=WDRVAR,GOSMT ENTRY=WDRIVE PRI=CO GO 

.M>TASK ID=3 SEG=WCONTAR,GOSMT ENTRY=WALGO PRI=60 GO 
M>TASK ID=4 SEG=SEQ,GOSMT ENTRY=SEQMON PRI=BO GO 
.M>TASK ID=5 SEG=OCP1AR,GOSMT ENTRY=GENOCP STACK=180 PRI=54 GO 
M>TASK ID=6 SEG=TDRVAR,GOSMT ENTRY=TDRIVE PRI=CO GO 
M>TASK ID=7 SEG=TCONTAR,GOSMT ENTRY=TALGO PRI=60 STACK=180 GO 
M>TASK ID=B SEG=WTACHAR,GOSMT ENTRY=WINDTA PRI=57 GO 
.M>TASK ID=9 SEG=DBUPAR,GOSMT ENTRY=UPDATE PRI=55 GO 
M>TASK ID=A SEG=COMMS,GOSMT ENTRY=SENDME STACK=lOO PRI=56 GO 
.M>MODS SEG=RATIOAR 

·BJECT MODULE FILE NAMECS> !=RATIO 

.M>MODS SEG=WDRVAR 

1BJECT MODULE FILE NAMECS> !=WDRV 

.M>MODS SEG=WCONTAR 

~BJECT MODULE FILE NAME<S> !=WCONT,COMPROC 

.M>MODS SEG=TDRVAR 

1BJECT MODULE FILE NAME<S> ! =TDRV 

.M>MODS SEG=TCONTAR 

)BJECT MODULE FILE NAMECS> ! =TCONT,COMPROC 

.M>MODS SEG=SEQ 

JBJECT MODULE FILE NAME<S> !=SQMON,INVSQ 

.M >MODS SEG=OCP1AR 

)BJECT MODULE FILE NAME<S> !=OCP1 

.M>MODS SEG=WTACHAR 

)BJECT MODULE FILE NAMECS> !=WTACHO 

.M >MODS SEG=DBUPAR 

10!59 



~JECT MODULE FILE NAME<S> !=DBUP 

1>MODS SEG :::: COMMS 

~JECT MODULE FILE NAME<S> ! =LINKDA 

-INK OK 

'1>LINK SMT =GOSMT 
•f:> DUMP FWM =A5 
JADFILE NAME? >ROMSYS 

~TA TEMPLATE OCCUPIES 

) 

7B2 BYTES 

~XEQ TAKEN FROM SEGM ENT! GOSMT 

-r::GMENT MAP 
:::: :: ::: = ! = = :-.:: :::: = :::: 

-REA A2 FROM: 100 TO: 2000 LENGTH! 
BASE USED STAO~ < LENGTH ) 

100 1 OC ti (l ( 10CA) DAT ti SEG 
l1DO 0 lOO 100) DATA SEG 
12DO 0 100 l00) DATA SEG 
l3DO 0 lOO l00) DA Tri SEG 
14DO lA 100 11A) Dr1 TA SEG 
l5FO 1I<4 180 ( 334) DATA SEG 
1930 0 100 ( 100) DATA SEG 
1A30 0 180 l80) DATA SEG 
1BBO 0 1 ()0 ( 100) ItAT11 SEG 
1CBO 0 lOO ( 100) DATA SEG 
1DBO 0 100 100 ) DATA SEG 

REA A3 FROM! F4000 TD: FB820 LENGTH! 
BASE USED STtiCK< LENGTH ) 

F4000 8DA 0 ( BDA> PF;OCS SEG 
F48EO 286 0 ( 286) PRO CS SEG 
F4B70 . F:l. 8 0 ( F18) PF:ocs SEG 
F5A90 ti2B 0 ( A2B) PROCS SEG 
F64CO 2A57 0 ( 2A57) PF:OCS SEG 
F8F20 2D1 0 2D1) PRO CS SEG 
F9200 1294 0 ( 1294) PF;OCS SEG 
FA4AO 31C 0 ( 31C> PROCS SEG 
FA7CO c ···z c:-

.,,_) '-I \,,.I 0 ( 535) PF:OCE: SEG 
FtiDOO 9B9 0 ( 9B9) F·1:;:ocs SEG 

1REA r15 FF:DM ! FB820 TO! FCOOO LENGTH! 
BAS E U'.~! E D STACI< ( LENGTH ) 

1REA A4 FFrnM: FCOOO TO! FFFFO LENGTH! 
Bt1S E usi::: D ST ti CK< LENGTH ) 

1FOO 

GOSMT <SHFn 
RAT I Ori 
W DF:i.1ti1:; 
WCONTA 
SEQ 
DCF' 1 AF; 
TDRt.1r11:;: 
TCONTA 
WTACHA 
DBUPAR 
COM MS 

7820 

RtiTI01"'i 
WDRW':!:;: 
WCONTA 
SEQ 
OCF'1AR 
TDRVtiR 
TCDNTA 
WT AC HA 
DBUPAF: 
COM MS 

7EO 

3FFO 



FCOOO 3F96 0 ( 3F96) F'ROCS SEG GOSMT 

~EA Al FROM: FFFFO TO: 100000 LENGTH: 10 
BASE USED STACK< LENGTH ) 

FFFFO 6 0 ( 6) ALL SEG STRTUF' 

3YSTEM TOF'::: FFFFF 

) 

JDULE MAF' 
---------- .. __ -· -· ---- -·· 

EGMENT GOSMT FROM: 0 TO! 10CA IN AREA A2 

BASE TOF' <LENGTH) 
0 1")-, 

..:...~ 2:~) ROMCBA <DATA) ,.,,., ,,,, 0) SM TD BA < D1Ht1) A...:.. A-A.-

22 22 0) SMTB1 <DATA) 
22 44 ( 22) SMTB2 <DATA) 
44 8A4 ( 860) SMTB3 <DATA) 

8f'l4 8A4 ( 0) MSMTCT <DATA) 
Br"'I'~ SBO ( C) MEMTU1 <DATA) 
8BO 90C ( 5C) MSMTF'I <DATA) 
90C 9A4 ( 98) LINKDR < Dt'Hf'1) 
9t'li4 A2E ( 8A) MSMTCL <DATA) 
ti2E A3C ( E) SMTCLK <DATA) 
A3C A3C ( 0) SMTEF;F; <DAT 11 ) 
A3C A3C ( 0) MSMTEt) <D1'1TA) 
A3C A4E ( 12) MSMTFI ( DAT11) 
A~iO A/'8 ( 28) RFiFILC <DATA) 
A78 10C8 ( 650) DATA (DAT 11) 

10C8 10CA ( 2) INVSG <DtiTti) 

>EGMENT RATIOA FROM: 0 TO: 100 IN Al~EA Ar' "-

·-----------------------------------------------------
BASE TOP <LENGTH) 

0 0 ( 0) FiATIO <DATA) 

>EGMENT WDR'hil~ FROM: 0 TO! 100 IN AREA 112 
------------------------------------------------------

BtiSE 
0 

3EGMENT 

BASE 
0 
0 

. TOP <LENGTH) 
0 0) 

WC ONT A FROM! 0 

TOF' <LENGTH) 
0 ( 0) 
0 ( 0) 

WDRI) <DATA) 

TO! 100 IN 

WCOi'!T <DATA) 
COMF'RO (DATA) 

AF:EA ti2 

SEGMENT SEQ Fr.;;oM: 0 TO! 11A IN AF\Eti A2 

BASE TOF' <LENGTH) 

<SHR) 



0 
14 

14 ( 
1A ( 

EGMENT OCP1AR FROM: 

BASE 
0 

TOP 
1B4 

EGMENT TDRVAR FROM: 

BASE 
0 

TOP 
0 

EGMENT TCONTA FROM: 

BASE 
0 
0 

EGMENT 

BASE 
0 

WTACHA 

TOP 
0 
0 

FROM! 

TOP 
0 

EGMENT DBUPAR FROM! 

BASE 
0 

TOP 
0 

:EGMENT CO MMS FROM! 

BASE 
0 

TOP 
0 

iE GMENT RATIOA FROM! 

BASE 
0 

TOP 
BDA 

3EGMENT WDRVAR FROM! 

BASE 
0 

TOP 
286 

;EGMENT WCDNTA FROM! 

BASE TOP 
0 220 

220 F18 

3EG MENT SEQ FROM! 

14) 
6) 

SQMON <DATA) 
INVSQ <DATA) 

0 TO: 

<LENGTH> 
1B4> OCP1 

0 TO: 

<LENGTH> 
0) TDRV 

0 TO: 

<LENGTH> 
0) TCONT 
0) COMPRO 

0 TO! 

334 IN AREA A2 

<DATA> 

100 IN AREA A2 

CDATA) 

180 IN AREA A2 

<DATA) 
<DATA> 

100 IN AREA A2 

<LENGTH> 
0) WTACHO <DATA> 

0 TO: 

<LENGTH) 
0) DBUP 

0 TO! 

100 IN AREA A2 

<DATA> 

100 IN AREA A2 

<LENGTH> 
0) LINKDA <DATA) 

0 TO: BDA IN AREA A3 

<LENGTH> 
8DA> RATIO CPROCS> 

0 TO! 286 IN AREA A3 

<LENGTH> 
286) WDRV CPROCS) 

0 TO ! F18 IN AREA A3 

<LENGTH> 
220) WCONT <PROCS) 
CFS> COMPRO CPROC S ) 

0 TO! A2B IN AREA A3 



BASE 
0 

5B4 

EGMENT 

BASE 
0 

TOP 
5B3 ( 
A2B ( 

OCP1AR FROM: 

TOP 
2A57 

;EGMENT TDRVAR FROM! 

BASE 
0 

TOP 
2D1 

SEGME NT TCONTA FROM! 

BASE TOP 
0 59C ( 

59C 1294 ( 

SEGMENT WT A CHA FROM: 

BASE 
0 

TOP 
31C 

SEGMENT DBUPAR FROM! 

BASE TOP 
0 

SEGMENT COMMS FROM! 

BASE 
0 

TOP 
9B9 

SEGMENT GOSMT FROM: 

BASE TOP 
0 358 
0 0 ( 

358 3F7 ( 

3F8 10EB ( 
10EC 10EC ( 
10EC 15A1 ( 

15A2 176A ( 
176A 19AB ( 
19AC 1BOD ( 
1BOE 2827 ( 
2828 2A78 ( 
2A78 2C78 ( 
2C78 30FF ( 

(LENGTH) 
5B3> SQ MON CPROCS> 
477) INV SQ CPROCS> 

0 TO! 2A57 IN AREA A3 

<LENGTH> 
2A57> OCP1 

0 TO! 

<LENGTH> 
2D1> TDRV 

CPROCS> 
) 

2D1 IN AREA A3 

<PROCS) 

0 TO! 1294 IN AREA A3 

<LENGTH> 
59C> TCONT CPROCS> 
CFS) COMPRO CPROCS) 

0 TO! 31C IN AREA A3 

<LENGTH> 
31C) WTACHO CPROCS> 

0 TO! 535 IN AREA A3 

(LENGTH> 
535) DBUP CPROCS) 

0 TO! 9B9 IN AREA A3 

<LENGTH> 
9B9) LINKDA CPROCS) 

0 TO: 3F96 IN AREA A4 

(LENGTH> 
358) ROMCBA <PROCS) 

0) SMTDBA <PROCS> 
9F> SMTB1 CPROCS> 

CF3) SMTB2 <PROCS> 
0) SMTB3 <PROCS> 

4B5) MSMTCT CPROCS) 
1C8> MSMTU1 CPROCS> 
241) MSMTPI CPROCS> 
161) LINKDR CPROCS) 
D19> MSMTCL CPROCS> 
250) SMTCLK <PROCS> 
200) SMTERR CPROCS) 
487) MSMTEV <PROCS> 



3100 3A2A ( 92A) MSMTFI' <PROCS) 
3A30 3AD1 ( Al) RRFILC <PROCS) 
3AD2 3AD2 ( 0) DATA CPROCS> 
3AD2 3F96 ( 4C4) INVSQ CPROCS) 

3EGMENT STRTUP FROM: 0 TO: 6 IN AREA Ai 
' ------------------------------------------------------

BASE 
0 

TOP <LENGTH> 
5) 

JNSATISFIED REFERENCE LIST 
========================== 

:NTRY POINTS LIST 
------------------- ---------------

STUPCD 
) 

3EGMENT GOSMT FROM! 0 TO! 10CA IN AREA A2 

:NTRY POINTS IN MODULE! SMTDBA 

~RUSG CSD> 6, RRERR <SD) 
~RSED <SD> 14 

:NTRY POINTS IN MODULE! SMTB2 

)ATTERC D> 22 

: NTRY POINTS IN MODULE! SMTB3 

~EGDATC D> 
3SPRI < D> 
:RRSTK<ST> 
TASKDA< D> 

798, TIMEDAC D> 
842, FBSTK CST> 
44A, CLKSTK<ST) 
526, INSTK CST) 

:NTRY POINTS IN MODULE! MSMTU1 

~RAVSTC D> BAAY WINDST< D> 

:NTRY POINTS IN MODULE! LINKDR 

3UFFER< D> 90C 

16, RRINFOCSD) 

782, SSSOFF< [I ) 

116, SSSTAT< [I ) 

382, TRAPDA< [I ) 

18E 

8A4 

24, RRSIO <SD> 

7BA, SYSTACCST> 
854, SSEOFF< D> 
7AC, HSTK CST) 

c 

2BA 
7FE 

4E 



NTRY POINTS IN MODULE: RRFILC 

ILSTK< ?> A78 

~NTRY F'OINTS IN MODULE! DATA 

ODDAT< D> 10AA, SEQVAR< D) DE8y FLAGSI< D> E14y AWAI TU< II) Eti2 
ECODE< [I) E2A, M1iXRAT < [I) E7E, DF'tiRAM ( [I ) E71i, RF'ARAM< D> Ail2 
F'AFiAM < [I) A78y FLl61GSO ( D) 
ATCHD< D> E6C 

E1E, TCONTT< II) F.<5C, WCONTT< [I) CE2 
.) 

EGMENT RATIOA FROM: 0 TO! 100 IN AF:EA A2 

EGMENT WDRVAR FROM: 0 TO! 100 IN tif~EA A2 

EGMENT WCONTA FROM! O TO! 100 IN AFiEA A2 

EGMENT SEQ FROM! 0 TO! :I. :I.A IN AREA A2 

;EGMENT OCF'1AR FROM! 0 TO: 334 IN AF:EA ti2 

;EGMENT TDRVAR FROM! O TO! 100 IN AF:Eti t'l2 

;EGMENT TCONTA FROM! 0 TO! 180 IN AREA A2 

iEGMENT WTACHA FROM! 0 TO! 100 IN AF·>EA ti2 

3EGMENT DBUF'AR FROM! 0 TO! 100 IN AFiEA A2 

3EGMENT COMMS FROM! 0 TO! 100 IN AF:EA A2 

3EGMENT RATIOA FROM! 0 TO! 8IIA IN AF\EA A3 

~NTRY F'OINTS IN MODULE! RATIO 

-RATS p) c 

SEGMENT WDRVAR FROM! 0 TO! 286 IN AF:EA A3 

ENTRY F'OINTS IN MODULE! WDRV 

SEGMENT WCONTA FROM! 0 TD! F18 IN M~EA A3 



ENTRY POINTS IN MODULE: WCONT 

WAL GO ( p) c 

ENTRY POINTS IN MODULE: COMPRO 

TMOD ( p) 654, UPRAMP< F' ) 
PAR AM ( p) 472, BAND ( F· ) 

SEGMENT SEQ FROMt 0 TO! 

ENTRY POINTS IN MODULE! SQMON 

SEQMON< F' ) 98 

ENTRY POINTS IN MODULE: INVSQ 

INVSEQ< p) 613 

SEG~ENT OCP1AR FROM! 0 TOt 

ENTRY POINTS IN MODULE! OCPl 

GENOCP< P> BD2 

SEGMENT TDRVAR FROM! 0 TO! 

ENTRY POINTS IN MODULE! TDRV 

TDRIVEC P ) 10 

SEGMENT TCONTA FROM! 0 TO! 

ENTRY POINTS IN MODULE! TCONT 

TALGO ( F' ) c 

~NTRY POINTS IN MODULE! COMPRO 

TMOD ( F' ) 9DO, UPRAMP< F' > 
~ARAM ( F' ) 7EE, BAND ( P> 

3EGHENT WTACHA FROM: 0 TO! 

~NTRY POINTS IN MODULE: WTACHO 

32D, DOWNRA< p) 
BBF ) 

A2B IN AREA A3 

2A57 IN AREA A3 

2D1 IN AREA A3 

1294 IN AREA A3 

6A9, DOWNRAC P) 
FOB 

31C IN AREA A3 

220, RUN ( F' ) 43B 

59C, RUN ( F' > 7B7 



IINDTA ( P) C 

EGMENT DBUPAR FROM: 0 TO: 535 IN AREA A3 

NTRY POINTS IN MODULE: DBUP 

tPDti TE ( P) O 
) 

EGMENT COMMS FROM: 0 TO: 9B9 IN AF~EA A3 

:NTRY POINTS IN MODULE: LINKDA 

'ENDME ( P) 26, MYr1DDR( F') 7CF 

EGMENT GOSMT FROM: o ro: 3F96 IN AF:EA A4 

:NTRY POINTS IN MODULE: RDMCBA 

'TORTL < p) 43v Rr.;:XEQ ( p) 1FF, CLOCK I ( P) B, STKINI< p) '"It.~ ,,;_u/ 

:F:GEL ( p) F'., "'- , RETFIN< p) 88, 81.JDINI < F') 2DC, CHANGE( p) Bi 
...;03 ( R> 1C3, HUNLOC< p ) AF, HLOCI< ( p) AD 

:NTRY POINTS IN MODULE: SMTB1 

--\ETEV ( P> 3C8, QE\.,1RRE < P> 3tiA, QEI) ( P) 358 

:NTRY POINTS IN MODULE! SMTB2 

>TOP ( p) 416, ME p) 90r1, FEWROC< p) 10DA, DEFOUT< P) 10D6 
.OCK ( F') 69F, GTIM ( F' ) D8C, TSECUR( F') 1086, RESET ( P> 64C 
>ECURE < P> 922, SYSSTO < P) 81F, SYSRTO( P> 84F, WtiITFO< P) 674 
.IELAY ( p) 49E, DEF IN ( p) 10C5, TIMDAT< p) E06, SETDAT( p) EF1 
~JAIT ( p) 5C8, UNLOCK< P> 6Bti, TWAIT ( p) 104A, SET ( F') 734 
~LEMW< p) D47, DFEF:P ( p) 1oc2, STAF\T ( p) 45A, RELEAS< p) A17 
rnNUL ( P) 10D9, TSTSCR< F') 1002 

::NTRY POINTS lN MODUL.E: MSMTCT 

~01 ( F: ) 10EC, R02 ( Fn 111E, R11 F: > 12AE, FU~5 R) 12A3 
~30 ( R) 1539, R15 ( F:) 134?, R31 ( R> 1533, ROB ( F{) U . 3F 
n2 R) 1176, F:40 ( F: ) 1211, R09 ( R) 1156, R41 ( R> 122F 
U7 ( R> 1400, R25 ( FO 14CE, R34 ( FO 11B5, f{42 ( FD 123C 
~26 ( R) 14E9, R3~5 ( Fn 11c1, R43 ( R> 121D, 1:;;19 ( F: ) 14AE 
~27 ( FD 1 ~iOF, n36 ( FO 11CE, R28 ( R> 150A, F:37 ( R> 11E1 
129 ( R> 1505, R38 ( R> 11EF, F::·59 Fn 1206 

::NTRY POINTS IN MODULE! MSMTU1 

JSERIN< F') 15f'12 

I 



~NTRY POINTS IN MODULE: MSMTF'I 

-CNTTY ( p) 185C, RRIN ( p) 
3ETNEC < F') 1996, RROUT ( p) 

::NTRY POINTS IN MODULE! LINKDI:".\ 

"INl<F~X < F' ) 19B7, SENDBU( p) 

::NTRY POINTS IN MODULE: MSMTCL 

·rNSTF::U < p ) 1C02 

::NTRY POINTS IN MODULE: SMTCU< 

:LOCI< ( F' ) 2828 

::NTRY POINTS IN MODULE: SMTERF: 

:. RPFU N < F' ) 2AB6 

~NTRY POINTS IN MODULE: MSMTEV 

3ETFMCH F') 2C78, RRMAG ( P) 

-ENTF;Y POINTS IN MODULE! MSMTFI 

"f~ WBT ( p) 36FO, SPS ( F') 

·RREtiD ( F') 3491, ZREAD ( p) 
=HWF;T ( F') 3212, NLS ( F') 
I READ ( p) 3257, FWRTF ( p) 

ENTRY POINTS IN MODULE! RRFILC 

RRFILL< '?) 3A34, RRDITP( ?> 

-ENTRY POINTS IN MODULE: INVSQ 

IREPTO < P) 

DIGOUT< F') 
INPORT< P> 

3B8C, SETBYTC P> 
3EDF, VAL.BIT< F') 
3F7C, NOXPLNC F') 

SEGMENT STRTUP FROM: 0 TO! 

LM>MtiP ENTS 
LM>EXIT 

LINKER RUN ENDS 

1982, OUTTTY( p) 
1842 

1AE8, LINl<TX < ?i 

3094 

3130, IWRTF p) 
327F, FREAD p) 
3100, HREAD ( p) 
3397, TWF:T ( P) 

3E60, EXECODC P) 
3EAB, DIGIN ( F') 
3B6E 

6 IN AREA Al 

. .. . :-' 

176A, RXINTE( p) 

1 riA2, HOSTLI( F' ) 

31BO, TREriD ( F') 
339ti, IWRT ( F') 
326B, FWRT ( p) 
3453, RWRTF ( p) 

3DOF, CHOICE< P> 
3F28, SETBIT< Pl 

1893 

19AC 

33B8 
3160 
3394 
3714 

3C2F 
3E15 



~ITLE DATA BASE FOR CONTROL PARAMETERES. 
"CREATED 12-SEP-83 BY TEK. FILE : DATA.RTL 
LAST EDITED 2-0CT-84 TEK; 

_ET IDLE = 30700; 

' *********************************************************************** % 
~ * * /. 
C * CONTROL PARAMETER DATA BASE. * % 

.,' 

~ * RAM BASED DATA * % 

' * * i; 
~ *********************************************************************** % 

~NT DATA TPARAMS; % TRAVERSE CONTROL PARAMETERS % 
% SPEED BEFORE/DURING BANDING % 
% VALUES STORED ARE COUNTS % 

ARRAY CNUMBAND> INT 
TF1SPEED:=C13644CNUMBAND>>, 
TF2SPEED:=C13644CNUMBAND>>; 

% DEFAULT VALUES : 30HZ % 
% COUNT = (2.456E6 I OUTPUT FREQUENCY>% 
;c CONVERSELY % 

REAL TMF1AMP:= O.O, 
TMF2AMP:= o.o; 

REAL TMF1PJ := O.O, 
TMF2PJ := o.o; 

INT TMPERIOD:= 2; 
REAL TACC :=0.5, 

TDEC :=o.~; ; 

~NDDATA; · 

~NT DATA RPARAMS; 

% OUTFREQ = C2.456E6 I COUNT>% 

% MODULATION fliMPLITUDE IN PEF:CENT% 
"I ,. MODULATION AMPLITUDE IN PERCENT/. 
% P-JUMP AMPLITUDE IN PEF:CENT;c 
"I MODULATION P·-JUMP AMPLITUDE lo 

% MODULATION PERIOD IN SECONDS 
/. Fl TO F2 & F2 TO Fl t~CCEL & 
% RATES IN HZ/100 MILLISECS i.: 

% RATIO TASK CONTROL PARAMS % 
% TACHO SPEEDS IN RPM /. 

% 
/~ 

DECEL 

% RIBBON RAT I O START/STOP VALUES % 
% HELD AS RATIOS /. 

/. 

REAL WTACHO:=O.O,TfACHO: =o.o; 
ARRAY CNUMBAND> REAL 

RIBS1:=CO.OCNUMBAND>>, 
RIBS2:=CO.OCNUMBAND>>; 

I NT CUFrnAND: = 1., 
MAXBAND:=INITMAXBAND, 
NOPI:=o; 

% CURRENT POINTER TO BANDING PARAMS % 
% MAX NUMBER OF VALID BANDING POINTS % 
% CURRENT OPI NUMBER O=INIT VALUES % 

~NDDATA; 

~ NT DATA TCONTTABLE; % TRAVERSE CONTROL PARAMS % 
ARRAY CNUMTAB> INT TPITVAL: =<IDLECNUMTAB>>; 

% ••• LOOKUP TABLE INITIALISED WITH IDLING SPEED VALUES% 
ARRAY <NUMJAB> BYTE TSTAT:=<OCNUMTAB>>; 
INT TPOINT: =1; % TABLE POINTER % 

~NDDATA; 

~NT DATA WCONTTABLE; % WINDER CONTROL PARMS % 
ARRAY CNUMTAB> INT WPITVAL: =<IDLE<NUMTAB>>; 

% ••• LOOKUP TABLE INITIALIZED WITH IDLING SPEED VALUES % 
I NT WPOINT: =l, % TABLE POINTER /. 

WSPEED:~s1s7; % WINDER TARGET SPEED IN COUNTS % 
mENDDATA; 

~NT DATA SEQVARIABLES; % USED BY SEQUENCE TASK% 



INT CURSEQ; 
LABEL SEQEXIT; 
ARRAYC1)REAL MAXSTEP : =C9.9 >; 
ARRAY<1>INT DSEQSTAT, 

:NDDATA; 

DTIMOUT, 
DCALLSEQ, 
DSTEP, 
DSS , 
HOLDSTEP,HOLDSS; 

%TEMPORARY WHILE TESTING% 

%BIT 1=HELD% 
%SEQ TIME-OUT CNTERS% 
%SET TO 1 FOR ENTRY AT NEXT SCAN% 
%SEQ MAIN STEP% 
/.SEQ SUB-~TEP% 
%STEP 0 IF NO HOLD% 

~ NT DATA FLAGSIN; % FLAGS FROM SEQUENCE TASK % 
% ASSOCIATED WITH EVENT 2 % 

INT STOPF,HOLDF,STARTF,BANDF,SYNCF; 
~ NDDATA; 

~NT DATA FLAGSOUT; % FLAGS FROM CONTROL TASKS % 
INT WRUNF,TF1F,TF2F,RAMPF,RUPF,RDOWNF; 

~NDDATA; 

~NT DATA SECODES; 
INT NOVALID:=20; 
ARRAYC20) I NT PEOPLE:=C1,2,0 C6),2204,0C11> >; 
ARRAYC20>BYTE SECCODE: =C40,20,0(6),255,0C 11)l; 

~NDDATA; 

~NT DATA WATCHDOG; 
ARRAYC6 >INT WATCNT 

ENDDATA; 

: =<2, 
2, 
20, 
20, 
45, 
15); 

% 
~ 
h 

% 
% 
% 
I. 
% 

WATCHDOG TIMER LIMIT VALUES % 
1ST: TRAV DRIVE LIMIT ~ SECS z ~ 

2ND: WINDER DR I VE LIMIT 2 SECS % 
3RD : TRAV CONTROL LIMIT 15 SECS ~ 

h 

4TH: WINDER CONTROL LIMI T 15 SECS I. 
5TH: TRAV TA CHO LIMIT 35 SECS I. 
6TH: WINDER TA CH O LIMIT 10 SECS % 

% *********************************************************************** /. 
% * * % 
% * ROM BASED DATA * /. 
% * * % 
% *********************************************************************** % 

ENT DATA DPARAMS; 
INT WMAXF : =1931, 

TMAXF·:=1228; 
ENDDATA; 

ENT DATA MAXRATE; 
REA L MAXACC:=0.6, 

MAXDEC: =0 . 6, 
STACC:=1.8, 
STDEC : =1.8, 
RUNACC:=4.2, 
RUNDEC:=4.2, 
TMXACC:=1.8, 
TMXDEC:=1.a; 

INT IDLESP : =IDLE, 

% DRIVER CONTROL PARAMS % 
% WINDER MAX FREQ CLAMP IN COUNTS % 
% TRAVERSE MAX FREQ CLAMP C2000HZ> % 

% WINDER MAX ACCEL & DECEL RATES % 
/. IN HZ PER 100 MS. % 
% TRAVERSE RAMP UP RATE AT START % 
% TRAVERSE RAMP DOWN RATE AT STOP % 
% TRAVERSE ACCEL RATE AT RUN % 
% TRAVERSE DECEL RATE AT RUN % 
% CURRENT TRAV RATES IN HZ PER 100MS % 

% START UP IDLING SPEED COUNT C13.3HZ>% 



STARTSYNCTIM!=2; 
NDDATA; 

% DELAY BEFORE RAMPING UP 

NT DATA AWAITUPDATE; 
ARRAY <NUMBAND> REAL AWTF1SPEED, 

AWTF2SPEED, 
AWRIBS1!=C1.0CNUMBAND>>, 
AWRIBS2!=C1.0CNUMBAND>>; 

ARRAY <NUMBAND,4) INT BANDFLAG; J 

% DATA AWAITING UPDATE % 
% CHENCE PREFIX OF 'AW'% 

% FROM OCP INTO MAIN % 
% DATABASE % 

% TABLE OF FLAGS OF THOSE % 
% VALUES TO BE UPDATED % 

REAL AWTMF1AMP!=O.O,AWTMF2AMP!=O.O, % MOD AMPLITUDE % 
AWTMF1PJ!=O.O,AWTMF2PJ!=O.O, % MOD P-JUMP % 
AWTMPERIOD! =2.0, % MOD PERIOD % 
AWTACC!=0.3,AWTDEC!=0.3, % F1 TO F2 RATE OF CHANGE % 
AWWSPEED!=o.o; % WINDER SPEED SETPOINT % 

ARRAY (9) INT MODFLAG; % TABLE OF FLAGS FOR THE% 
INT AWMAXBAND, % MODULATION VALUES % 

UPDATEFLAG!=O, % DATA BASE UPDATE NECESSARY FLAG % 
OPINUM; % OPI NUMBER OF NEXT OPI TO BE STORED % 

NDDATA; 

• DATA MOVED FROM COMPROC NECESSARY FOR NEW ROM LINKAGE FORMAT % 

NT DATA MODDATA; 
INT TFXUPSTART,TFXUPSTOP; 
REAL TFXUPINC; 
INT TFXDOWNSTART,TFXDOWNSTOP; 
REAL TFXDOWNDEC; 
INT TRAMPTIME,THOLD!=l; 
REAL UPRATE,DOWNRATE; 
INT TEMPFLAG; % TEMP FLAG TO ENSURE TF1 OR TF2 NOT SET TOO SOON % 

ENDDATA; 



. ·.· 

"ITLE DATA BASE PRELUDE FILE FOR DATA BASE. 
CREATED 22-SEP-83 BY TEK. FILE : DATAPREL.RTL 
LAST EDITED 20-MAR-84 DRT; 

_ET NUMBAND = 15; 
_ET INITMAXBAND = 1; 
_ET NUMTAB = 128; 
_ET SPBAF:Et) = 1 ; 
_ET SEQEI) = 2; 
_ET TTACHOEV = 3; 
_ET WTACHOEV = 4; 
_ET DBUPDATE = 5; 
~ EVENTS 6 & 7 ARE USED BY THE 
_ET CLOCKFREQ = 2+456E6; 
_ET IT50HZVAL = 24576.0; 
_ET INTLMT = 300; 

% NUM~ER OF BANDING POINTS % 
% NUMBER OF POINTS IN TABLE TO BE INITIAL% 
% SIZE OF DRIVE & CONTROL TASK TABLE % 
% SPACE BAR EVENT NUMBER % 
% SEQUENCING EVENf NUMBER % 
% TRAV TACHO EVENT % 
% WINDER TACHO EVENT % 
% UPDATE MASTER DATABASE % 
DL COMMS CODE % 
% FREQUENCY OF CLOCK INPUT TO TIMERS % 
% SYSTEM CLOCK COUNTS PER 1/50 SECS % 
% SYSTEM COUNT LIMIT FOR INTERRUPT CLASH CHECK % 

~ *********************************************************************** % 
~ * * % 
I. * PRELUDE FILE FOR DATA BASE. * % 
~ * CTO BE INPUT TO SJR BEFORE MAIN .RTL FILE) * % 
I. * * ;~ 
I. *********************************************************************** % 

£XT DATA TPARAMS; 
ARRAY CNUMBAND> INT TF1SPEED,TF2SPEED; 
REAL TMF1AMP,TMF2AMP; 
REAL TMF1PJ ,TMF2PJ 
INT TMPERIOD; 
F:EAL TACC, TDEC; 

£NDDATA; 

EXT DATA RPARAMS; 
REAL WTACHOyTTACHO; 
ARRAY CNUMBAND> REAL RIBS1,RIBS2; 
INT CURBANDYMAXBAND,NOPI; 

ENDDATtH 

EXT DATA TCONTTABLE; 
ARRAY (NUMTAB> INT TPITVAL; 
ARRAY CNUMTAB> BYTE TSTAT; 
INT TPOINT; 

ENDDATt"i; 

EXT DATA WCONTTABLE; 
ARRAY CNUMtAB> INT WPITVAL; 
INT WPOINT,WSPEED; 

ENDDATA; 

EXT DATA SEQVARIABLES; 
INT CURSEQ; 
LABEL SEQEXIT; 
ARRAY<l>REAL MAXSTEP; 
ARRAY<l>INT DSEQSTAT, 

~ DTIMOUT, 
DCALLSEQ, 
DSTEP, 
DSS, 



HOLDSTEP,HOLDSS; 
~NDDATA; 

~XT DATA FLAGSIN; I 

INT STOPF,HOLDF,STARTF,BANDF,SYNCF; 
~NDDATA; 

~XT DATA FLAGSOLJT; 
INT WRUNF,TF1F,TF2F,RAMPF,RUPF,RDOWNF; 

~NDDATA; 

~XT DATA SECODES; 
INT NOVALID; 
ARRAYC20)INT PEOPLE; 
ARRAYC20>BYTE SECCODE; 

~NDDATA; 

EXT DATA WATCHDOG; 
ARRAYC6>INT WATCNT; 

ENDDATA; 

) 

% ************************************************************************% /. * * % 
% * ROM BASED DATA * % 
/. * * /. 
% *********************************************************************** /. 
EXT DATA DPARAMS; 

INT WMAXF, 
TMAXF; 

ENDDATA; 

EXT DATA MAXRATE; 
REAL MAXACC, 

MAXDEC, 
STACC, 
STDEC, 
RUNACC, 
RUNDEC, 
TMXACC, 
TMXDEC; 

INT IDLESP,STARTSYNCTIM; 
ENDDATA; 

% *********************************************************************** % 
~ * * % 
% * TEMPORARY DATABASE CONTAINING OCP UPDATED VALUES AWAITING THE * % 
/. * END OF A DOFF-CYCLE BEFORE UPDATING THE MAIN DATABASE. * % 
% * <FDR DESCRIPTIVE DETAILS REFER TO 'OCPDATABASE') * % 

/. * * /. 
% *********************************************************************** % 

EXT DATA AWAITUPDATE; 

ARRAYCNUMBAND> REAL AWTF1SPEED,AWTF2SPEED,AWRIBS1,AWRIBS2;%BANDING DATA% 
ARRAY<NUMBAND,4) INT BANDFLAG; % WHICH VALUES HAVE BEEN UPDATED % 

REAL AWTMF1AMP,AWTMF2AMP,AWTMF1PJ,AWTMF2PJ,AWTMPERIOD, 



;• .. . 

AWTACC,AWTDEC,AWWSPEED; Z MODULATION DATA Z 
ARRAYC9) INT MODFLAG; %WHICH MODULATION VALUES HAVE BEEN UPDATED% 
INT AWMAXBAND, 

UPDATEFLAG, 
OPINUM; 

~NDDATA; 

~XT DATA MODDATA; 
INT TFXUPSTART,TFXUPSTOP; 
REAL TFXUPINC; 
INT TFXDOWNSTART,TFXDOWNSTOP; 
REAL TFXDOWNDEC; 
INT TRAMPTIME,THOLD; 
REAL UPRATE,DOWNRATE; 
INT TEMPFLAG; 

~NDDATA; 

. ·.. . . 



TITLE PULSE TRAIN RATIO TASK <FOR BANDING AVOIDANCE). 
CREATED 15-AUG-83 BY TEK. FILE: RATIO.RTL 
LAST EDITED 11/4/84 DRT; 

LET NL = 10; 
LET ENQ=5; 
OPTION <1> BS; 
% **********************!************************~************************** % 
I. * . * % 
% * PULSE TRAIN RATIO TASK * % 

I. * * % 
% ~************************************************************************ % 

SVC DATA RRERR;LABEL ERL;INT ERN;PROC <INT) ERP;ENDDATA; 
SVC DATA RRSIO;PROC () BYTE IN;PROC <BYTE> OUT;ENDDATA; 

EXT DATA TRAVSTOP;INT TSTOP,TENDFRAC,TCNT;ENDDATA; 
EXT DATA TIMEDATA ; 

INT NOW; I. CYCLIC TICK COUNT % 
INT SECSNOW,MINSNOW; I. CYCLIC CLOCK COUNTS I. 
INT NTICKS; I. OUTSTANDING TICKS TO PROCESS % 
INT TCOUNT,SECS,MINS,HOURS,DAYS,MONTHS,YEARS; 

ENDDATA; 

EXT PROC () BYTE RRIN; 
EXT PROC <BYTE> RROUT; 
EXT PROC () INT !READ; 
EXT PROC CINT,INT) IWRTF; 
EXT PROC <REAL> RWRT; 
EXT PROC <REAL,INT,INT> RWRTF; . 
EXT PROC <REF ARRAY BYTE) TWRT; 
EXT PROC <INT> NLS; 
EXT PROC CINT> DELAY; 
EXT PROC CINT,INT,LABEL) TWAIT; 
EXT PROC () CLEANUP; 

% ************************************************************************* % 
/. * * % 
% * 
% * 

RTL/2 CODE FOR RATIO TASK. * /. 
* % 

% ************************************************************************* % 

ENT PROC RATS<>; 

INT TDELAY,STBFLGfTCNTLAST,TNCYCCNT; 
REAL TCONST1,TCONST2,TTIM,IT50HZ:=IT50HZVAL , RATIO; 
INT LASTTSTART,LASTTGOFRACfNEXTTSTART,NEXTTGOFRACfMAXFLAG; 

IN:=RRIN; 
OUT!=RROUT; 
ERL ! = LOCERL; 
ERP != LOCERP; 
ERN != o; 

% INITIALISATION FOR THIS MODULE % 
TCONST2 != CCLOCKFREQ I CTF1SPEEDC1) * 3.0)) * 5.0 * RIBS1<1>; 

% RATIO=WTACH0*6/TTACHO => WTACHO=RATIO*TTACH0/6 I. 

.. 



% TTACHO=TRAVERSE TARGET HZ*60 SECS % 
% TRAVERSE TARGET HZ=CLOCKFREQ/6*TF1SPEED % 
% THUS WINDER TARGET RPM = RATIO*CCLOCKFREQ/6*TF1SPEED>*60/6 % 

NEXTTSTART:=NOW;NEXTTGOFRAC!=O; 
TCNTLAST:=TCNT:=20; 
TTACHOSTARTC>; 
CURBAND := 1; 
BANDF != o; 
RAMPF:=o; 
MAXFLAG != o; 
STBFLG != o; 

• % INITIALISE COUNT VALUE % 
% START THE INTERRUPT CYCLE % 

J 

RATIO != o; 
TNCYCCNT!=C15-TMPERIOD)!/TMPERIOD+1; 
TDELAY != 50 * CTMPERIOD * TNCYCCNT t 5>; 
TCONST1!=2.0 * TMPERIOD * CLOCKFREQ I 9.0; 

% FACTOR TO MAKE TDELAY t/- 15 S 

~ATI01! 

% UPDATE WATCHDOG TIMER COUNT PERIOD % 

% CALCULATE COUNT VALUE BASED ON THE CURRENT TRAVERSE OUTPUT % 
% VALUE TO GIVE APPROX MODULATION PERIOD COUNT TIME % 

IF TPITVALCTPOINT> >= IDLESP THEN 
TCNT!=200; 

ELSEIF WRUNFtO AND TF1F LOR TF2Ft0 THEN 
TCNT!=IF BANDF=O THEN TF1SPEEDCCURBAND> ELSE TF2SPEEDCCURBAND> END; 
TCNT!~INTCTCONSTl/REAL TCNT * TNCYCCNT> 

ELSE TCNT!=INTCTCONSTl/REALCTPITVALCTPOINT>>>; 
END; 

% WAIT FOR EVENT WHICH IS SET BY INTERRUPT SERVICE ROUTINE WHEN % 
% COUNTER HAS COUNTED TCNT PULSES FROM THE TACHO % 

TWAITCTTACHOEV,TDELAY,RATI02>; 

% CALCULATE TTACHO IN RPM % 

LASTTSTART!=NEXTTSTART; 
LASTTGOFRAC!=NEXTTGOFRAC; 
NEXTTSTART:=TSTOP; 
NEXTTGOFRAC!=TENDFRAC; 

% SAVE OLD START TIME FOR % 
% THIS CALCULATION % 
% SAVE NEW START TIME FOR % 
% NEXT CALCULATION % 

% CHECK FOR POSSIBLE INTERRUPT CLASH TIMING ERROR % 
IF LASTTGOFRAC+INTLMT>IT50HZ OR NEXTTGOFRACtINTLMT>IT50HZ THEN 

TCNTLASt!=TCNT; 
GOTO RATIO! 

END; 

TTIM!=REALCTSTOP-LASTTSTART>+REAL<LASTTGOFRAC-TENDFRAC)/IT50HZ; 
TTACH0!=2250.0/TTIM*REAL TCNTLAST; % IN RPM. X 

% TCNT/2 REVS IN TTIM 1/50THS SEC % 
% *60 SECS * 3/2 GEAR RATIO => 2250.0 % 

TCNTLAST!=TCNT; 

% IF END OF DOFF THEN RESET POINTERS AND RECALCULATE MOD PARAMS % 



IF TTACHO <= 500.0 OR WTACHO <= 500.0 THEN % IE IF END OF DOFF OR % 

END; 

CURBAND := 1; % MACHINE STOPPED % 
BANDF := o; 
MAXFLAG := o; 
STBFLG := o; 
TCONST2 := CCLOCKFREQ I CTF1SPEED<1> * 3.0)) * 5.0 * RIBS1(1>; 
TCONST1:=2.0 * TMPERIOD * CLOCKFREQ I 9.0; 

% 2 PULSES/REV FOR TMPERIOD SECS ~ 2/3 % 
% DIV BY 6*CINV OUTPUT> => 2*TMPERIOD*213*6 % 

TDELAY := 50 * CTMPERIOD * TNCYCCNT t 5>; 
RATIO := o.o; 
TNCYCCNT: = C15-TMPERIOD)!/TMPERIODt1; 
IF RAMPF = 0 THEN 

PARAMCTMF1AMP~TMF1PJ,TF1 SPEED<1>>; 

END; 
GOTO RATI01; 

% CALCULATE NEW MOD PARAMS % 

RATIO := CWTA CH O * 6)/ TTACHO; % CALCULATE S RATIO OF SPE EDS % 

IF TF1F = 0 AND TF2F = 0 OR 
BANDF = 1 AND TF1F - 1 OR 
BANDF = 0 AND TF1F = 0 THEN 
GOTO RATI01; 

END; 

% DON'l DO RATIO CALCULATION % 
% UNLESS AT MODULATION SPEED % 

IF WTACHO >= TCONST2 TH EN STBFLG != 1;END ; 

IF CURBAND = 1 AND BANDF = 0 AND STBFLG = 0 AND WTACHO < TCONST2 THEN 
GOTO RATI01; 

END; 

% COMPARE WINDER AND TRAV ERS E TACHO SPEEDS, IF CRITICAL SET B AND FLAG % 

IF BANDF = 0 THEN % NO BAND I NG IE AT FREQ Fl % 

ELSE 

IF RATIO <= RIBS1CCURBAND> THEN % IF RIBBON POINT REACHED % 
IF MAXFLAG = 0 THEN % LAST BANDING POINT? % 

BANDF := 1; % SET BAND FLAG% 
GOTO RATI01; 

ELSE 
GOTO RATI01; 

END; 
ELSE GOTO RAT I 01; 
END; 

IF RATIO <= RIBS2CCURBAND> THEN 
BANDF := o; 
CURBAND := CURBAND + 1; 
IF CURBAND > MAXBAND THEN 

ELSE 

END; 
ELSE 

CURBAND := MAXBAND; 
MA XFLAG ! = 1; 
GOTO RATIOl; 

GOTO RAT I 01 ; 

GOTO RATIOl; 
END; 

% OTHERWISE CONTINUE % 

% BANDING IE AT FREQ F2 % 
% IF RIBBON POINT REACHED % 
% RESET THE BANDING FLAG % 
% INCREM ENT POINTER % 
% IE LAST RIBBON POINT % 





END; 

GOTO RATIO!; 

RATI02! 
TTACHO := o.o; 
PARAMCTMF1AMP,TMF1PJ,TF1SPEED<1>>; 

GOTO RATI01; 

LOCERL! 
CLEANUP<>; 
GOTO RATI01; 

ENDPROC; 

PROC LOCERP<INT N>; 

% CALL TO PARAH PUT HERE TO OVERCOME % 
% PARAM UPDATE PROBS WHEN TRAVERSE % 
% NOT RUN~ING E.G. ON MINIRIG % 

TWRTC"INLIERROR NO 1 );IWRTFCN,5>;NLSC1); 
ENDPROC; 

% THIS PROC CONVERTS THE MODULATION PARAMETERS FROM THE DATA BASE INTO % 
% COUNT VALUES FOR THE 8254 TIMER CHIP. THE PROC IS THE SAME AS THE ONE % 
% IN MODULE COMPROC.RTL. IT IS INCLUDED HERE TO AVOID PROBLEMS WITH SHARED % 
% AREAS IN THE SMT LINKER % 

PROC PARAMCREF REAL TMFXAMP,TMFXPJ,REF INT TMFXSPEED>; 
REAL Ki; 

K1!=100.0 *TMFXSPEED; % CONSTANT USED REPEATEDLY % 

TRAMPTI ME != 5 * TMPERIOD - THOLD; 

IF TMFXAMP <= 0.01 THEN 
TFXLJPSTART! =TFXUPSTOP!=TFXDOWNSTART! =TFXDOWNSTOP!=TMFXSPEED; 
TFXUPINC! =TFXDOWNDEC:=o.o; 

ELSE 

END; 

ENDPROC; 

TFXUPSTART != INTCKl/(100.0-TMFXAMPtTMFXPJ)); 
TFXUPSTOP != INTCK1/C100.0tTMFXAMP>>; 
TFXUPINC != <REAL TFXUPSTOP - REAL TFXUPSTART>IREAL TRAMPTIME; 

TFXDOWNSTART != INTCK1/C100.0 t TMFXAMP - TMFXPJ>>; 
TFXDOWNSTOP ! = INTCK1/C100.0 - TMFXAMP>>; 
TFXDOWNDEC ! = CREAL TFXDOWNSTOP - REAL TFXDOWNSTART)/REAL TRAMPTIME; 

% ************************************************************************ % 
I. * * % 
% * 8088 MACHINE CODE INSERTS FOR TRAVERSE TACHO TASK. * /. 
/. * * % 
% ************************************************************************ % 

PROC TTACHOSTARTC); 
CODE 10,10; 

ITXCTROXPORT EQLJ OBBH ;SBX TIMER CHANNEL O.<FOR TRAVERSE) 
;START TRAVERSE COUNT DOWN TO INTERRUPT+ 

MDV AX,SEG *TRAVSTOP 



*RTL; 
'.NDF'ROC; 

MDV 
MDV 
MDV 
OUT 
MDV 
OUT 
STI 

ES,AX 
AX,ES!*TCNT/TRAVSTOP 
DX~ I TXCTROXPOF:T 
DXyAL 
AL, tit-I 
DX, tiL 

;GET TRAVERSE COUNT VALUE. 

J . 



"ITLE WINDER DRIVE TASK. 
CREATED 13-SEP-83 BY TEK. FILE WDRV.RTL; 

.ET NL :::: 10; 

.ET ENQ = 5; 

.ET SETF :: 1 ; 
- )PT ION < 1) BS; 

; *********************************************************************** % * J. * % * WINDER DRIVE TASK. * % 

* * /. *********************************************************************** /. 
~VC DATA RRSIO;PROC () BYTE IN;PROC (BYTE> OUT;ENDDATA; 
;vc DATA RRERR;LABEL ERL;INT ERN;PROC (INT) ERP;ENDDATA; 

::xT PROC () BYTE RRIN; 
~XT PF:OC <BYTE) RF:OUT; 
::XT PROC <INT> DELAY,STOP; 
::xT PF;OC () INT ME; 
::xT PROC <REF ARRAY BYTE) TWRT; 
::xT PF:OC <INT) IWRT,NL.S; 
::xT PROC (INT,INT) I\.JRTF; 
::xT PROC () INT I READ; 
::xT PF;DC () CLEANUP; 

~NT PROC WDRIVE<>; 
INT WOUT,DIFF,COUNT,WLAST,WSAFEDEC,WSAFEACC,FLAG; 
INT ACCERR!=O,DECERR!=O,CLAMPERR!=O; /. ERROR COUNTERS % 
INT T:l.OOMS!::::~;; 

Hl: =F\F:IN; 
OUT!==RROUT; 
EF:L != LOCERL; 
ERP : :::: LOCEFff'; 
ERN !== o; 

STOF'<ME<>>; % STARTED BY CONTROL TASK % 
WPOINT!=l; 
WLAST!=WPITVAL<WPOINT>; 

=WDF:V 1 : 

WfHCNT ( 2): ::::2; % UPDATE WATCHDOG TIMER COUNT PERIOD % 

% CHECK TO SEE IF MAXIMUM DECELERATION OR ACCELERATION % 
% RATES ARE BEING EXCEEDED. IF THEY ARE,LIMIT THE RATE.% 

DIFF!=WLAST-WPITVALCWPOINT>; 
IF DIFF > 0 THEN /. ACCELERATING % 

WSAFEACC!=WLAST-INT<<CLOCKFREQ*WLAST)/(CLOCKFREQtWLAST*MAXACC>>; 
IF DIFF <= WSAFEACC THEN % IF ACCELERATION RATE SAFE /. 

COUNT:=WPITVALCWPOINT>; % ••••• OUTPUT TABLE VALUE% 
ELSE 

COUNT!=WLAST-WSAFEACC; 
ACCERR!=ACCERR t 1; 

END~ 

% IF NOT SAFE LIMIT IT /. 
% INC ERROR COUN TER % 



ELSEIF DIFF < 0 THEN % DECELERATING % 
WSAFEDEC:=INTCCCLOCKFREQ*WLAST)/CCLOCKFREQ-WLAST*MAXDEC>>-WLAST; 
IF ABS DIFF <= WSAFEDEC THEN % IF DECEL. RATE SAFE •••• % 

COUNT:=WPITVAL<WPOINT>; /. •••• OUTPUT TABLE VALUE/. 
ELSE 

COUNT!=WLASTtWSAFEDEC; 
DECERR: =DECERR t 1; 

END; 
ELSEIF DIFF = 0 THEN 

COUNT!=WPITVAL<WPOINT>; 
END; 

% IF NOT SAFE LIMIT IT /. 
/. INC ERROR COUNTER /. 

/. JNO CHANGE% 
/. OUTPUT TABLE VALUE % 

CHECK TO SEE IF FREQUENCY CLAMP VALUE IS BEING EXCEEDED, IF IT rs, LIMIT /. 
THE VALUE TO THE CLAMP VALUE. % 

IF COUNT < WMAXF THEN 
COUNT!=WMAXF; 
CLAMPERR!=CLAMPERR t 1; 

END; 

% NOTE THAT COUNT PROP TO 1/F % 

WRITE THE VALUE TO THE PIT <INITIALISED IN MSMTUl.RTL) % 

CODE 10,10; 
:TXCTRlXPORT EQU OBAH ;SBX PIT CHANNEL 1. 

MOV AX,S S !CBP+*COUNT J 
OUT ITXCTR1XPORT,AL ;OUTPUT LOW COUNT. 
MOV AL,AH 
OUT ITXCTR1XPORT,AL ;OUTPUT HIGH COUNT. 

~RTL; 

' INCREM ENT THE TABL E POINT ER "WPOINT" AFTER A lOOMS DELAY /. 

DELAYCTlOOMS>; 
WLAST! =COUNT; 
WPOINT! =WPOINT LAND HEX 7F t 1; 

30TO WDRV1; 

~OCERL! 

CLEANUP<>; 
GOTO WDRV1; 

~NDPROC; 

PROC LOCERP <IN T N>; 

/. WAIT FOR lOOMS /. 
% HOLD ACTUAL CURRENT VALUE % 
% DRT'S SUPER FAST METHOD % 

TWRTC"tNLtERROR NO ">;IWRTFCN,5>;NLSC1>; 
ENDPROC; 



TITLE WINDER CONTROL TASK. 
CREATED 14-SEP-83 BY TEK. FILE WCONT.RTL 

_ET SETF:::1; 
LET RESETF=O; 
_ET ENQ:::5; 
_ET NL=10; 

-r. *********************************************************************** % 
-r. * ; . * /. 
~ * WINDER CONTROL TASK. * % 
-r. * * /. 
--{; *********************************************************************** % 

5VC DATA 
5VC DATA 

::xT PROC 
::xT PROC 
::xT PROC 
::xr PROC 
::xT PROC 
::xT PROC 
::xT PROC 
::xT PROC 
::xr PROC 
::xT PROC 
::xT PROC 
::xT F'ROC 
::xT PROC 

RRSIO;PROC () BYTE IN;PROC <BYTE> OUT;ENDDATA; 
RRERR;LABEL ERL;INT ERN;PROC <INT> ERP;ENDDATA; 

() BYTE RRIN; 
(BYTE) RF:OUT; 
CREF ARRAY BYTE> TWRT; 
<INT,INT) IWRTF; 
( > INT !READ; 
<INT> STOP,NLS; 
() INT ME; 
<INT,INT,LABEL> TWAIT; 
<REF ARRAY INT,INT,INT,REF REAL> DOWNRAMP; 
<REF ARRAY INT,INT,INT,INT> RUN; 
<REF ARRAY INT,INT,INT,INT,REF INT,REF REAL>UPRAMP; 
() CLEANUP; 
(INT) STtiF;T; 

::XT DATA TIMEDATA; 
INT NOW,SECSNOW , MINSNOW,NTICKS; 
INT TCOUNT,SECS,MINS,HOURS,DAYS,MONTHS,YEARS; 

::NDDATA; 

::NT PROC WALGO<>; 
INT WCALCP,WSTARTP,FLAG,BEGIN,DELAY; 

% INITIALISATION. % 

IN!=RRIN; 
OUT t =F:ROUT; 
ERL != LOCERL; 
EF\F' t =: LOCERP; 
ERN != o; 

% DYNAMIC INIT OF WCONTTABLE % 

FOR J t= 1 BY 1 TO NUMTAB DO 
WPITVAL(J)!=IDLESP; 

REP; 

\IJPOINT!=l; 

/. INITIALISE FLAGS % 

/. DYNAMIC INITIALISATION OF /. 
% CONTROL TABLE % 

WF:UNF ! =RESETF; 
START<2>; % START WINDER DRIVE TASK WHEN ALL INIT DONE /. 



% MAIN CONTROL LOOP % 

AINLOOP! 
WATCNT(4)!=20; 
BEGIN!=NOW; 
WCALCP!=WPOINT; 
WSTARTP!=WPOINT; 

% UPDATE WATCHDOG TIMER COUNT % 

% SET UP TABLE POINTERS TO CALC •• % 
% •• NEW VALUES. % 

.) _ 

IF STOPF I 0 THEN % STOP SEQUENCE % 
DOWNRAMP<WPITVAL,WCALCP,WSTARTP,MAXDEC>; 

ELSEIF SYNCF t 0 THEN % START SYNC SEQUENCE % 
RUNCWPITVAL,WCALCP,WSTARTP,IDLESP>; 

ELSEIF STARTF I 0 THEN % START SEQUENCE % 
UPRAMP<WPITVAL,WCALCP,WSTARTP,WSPEED,WRUNF,MAXACC>; 

ELSEIF WRUNF I 0 THEN % NORMAL RUN SEQUENCE % 
RUNCWPITVAL,WCALCP,WSTARTP,WSPEED>; 

END; 

DELAY!=550-NOW+BEGIN; 

TWAIT<SEQEV,DELAY,MAINLOOP>; 

GOTO MAINLOOP; 

_OCERL! 
CLEANUP<>; 
GOTO MAINLOOP; 

~NDPROC; 

~Roe LOCERPCINT N>; 

% ENSURES LOOP TIME IS EXACTLY % 
% 11 SECONDS % 
% WAIT FOR 11 SECS OR EVENT 2 % 

TWRT<"tNLtERROR NO ">;IWRTFCN,5>;NLS<1>; 
~NDPROC; 



-fITLE 
INVSQ.RTL --- LOGIC SEQUENC MODULE FOR INVERTER CONTROL SYSTEM 

WRITTEN 8/9/83; 

LAST EDITED 29-JUN-84 "DRT % 

SEQUENCE PROCEEDURE TO PERFORM LOGIC CHECKS AND SEQUENCING OF INVERTER % 
CONTROL TASKS. RUN UNDER THE CONTROL OF THE SEQ4ENCE MONITOR % ,. . 

"""***************************************************************************/. 
A SEQUENCE SHOULD NOT DO ANY DIRECT OUTPUT OR PERFORM EXCESSIVE AMOUNTS /. 
OF CODE <THIS INCLUDES DELAYS AND WAITING FOR EVENTS OR FACILITIES> /. 

***************************************************************************% 
~PTION (1) BC; 
•ET SEQEV:::2; 

ET NSEQ==l; 
ET NL=lO; 
ET SP==32; 
ET ON=l; 
ET OFF == O; 
ET F;EADY==6; 

.ET RUNLIGHT==l; 

.ET WONRELAY=2; 

.ET TONF:ELAY:::3; 

%POSITION START I.E READY:::l STOP==O% 
/.POSITION READY I.E UP TO SPEED/. 
%WINDER ON RELAY% 
%TRAVERSE ON RELAY% 

~XT PROCCINT>SET; 
~XT PROC(INT>IWRT; 
~XT PROC<REF ARRAY BYTE>TWRT; 
'EXT PROC<REF ARRAY BYTE,REAL,REAL,PROCCINT>>REAL RREPTO;% 
~XT PROC<INT,REF INT,INT>SETBIT; 
~XT PROC<INT,REF BYTE,INT>SETBYT; 
~XT PROC<INT,INT>INT VtiLBIT; 
~XT PROCCBYTE,BYTE>DIGOUT; 
~XT PROCCBYTE>BYTE DIGIN; 

SVC DATA RRSIO;PROC<>BYTE IN;PROCCBYTE)OUT;ENDDATA; 

DATA LOCSEQDAT; 
INT SEQNO : =l,SST,ST::::1; 

ENDDATA; 

%PROC STEPOUTCINT ST,SST>;% 
% OUT (SP> ; ~~ 
/. IWRTCST>;;~ 
% OUT ( I • I ) ; % 
/. IWF:T<SST) p.: 
% 0 UT ( SF' ) ; % 
/.ENrlF'ROC; % 

PROC SETFLAGCREF INT FLAG>; 
CLEAFffLAGS <) ; 
VAL FL.AG: =l; 
SET< SEQEl)); 

ENDPF-:OC; 

PROC CLEtiRFLAGS<>; 
STARTF:=O;HOLDF:=o;STOPF!=O;BANDF:=o;SYNCF!=O; 



~DPF:oc; ... 
PROC CHECKHOLDC>;% 

• IF DSTEPCSEQNO>=HOLDSTEPCSEQNO> A~D DSSCSEQNO>=HOLDSSCSEQN0)% 
• THEN IF DSEQSTATCSEQNO)LAND 1=0 THEN NOT HELD /. 

DSEQSTATCSEQNO)! =DSEQSTATCSEQNO) LOR 1;% 
TWRTC 1 HELD AT 1 >;% 
STEPOUTCDSTEPCSEQNO>,DSSCSEQNO>>;% 
OUT C NU;;, 

nm;z 
GOTO SEQ EXIT;;~ 

END;;{. 
ENDPROC;/. 

PROC INSTEP CREF INT ST,SST> REAL;% 
REAL R p;: 
R!=RREPTOC 1 STEP 1 ,0.0,MAXSTEPCSEQNO>,EXPLN>;% 
VAL ST!=INTCR- 0.5>; STEP% 
VAL SST! =INTCCR-REAL ST>*10.0>;% 
IF SST =O THEN VAL SST! =l END;% 
F:ETUF:N ( R) ; ;, 

:ENDPROC; /. 

~ PROC EXPLNCINT X>;% 
TWRTC'tNLtNOT VALID");/. 

~ENDPROC; % 

~NT PROC INVSEQ CREF INT SEQSTAT 
SEQALARM, STEP, SS , STIM E, CALLTIME, TIMEOUT>; 

SEQEXIT:=EXIT; 

) 

IF SEQALARM LAND 110 THEN VAL STEP: =3;VAL ss: =1 END; 
SWITCH STEP OF W1 , W2,W3,W4; 
RETUF:N; 

~1: I. SYNC AND START SEQUENCE % 
.. BLOCK; 

SU 

IF DIGIN<READY>=O THEN VAL STEP: =3;VAL SS!=1;RETURN;E ND; 
IF WTACH0 <1500.0 THEN SETCDBUPDATE>;END;%EVENT OCPTASK AND RATIO TASK/. 
SWITCH SS OF Sl, 52, S3, S4, S5, S6, 87, SB, S9; 
RETURN; 

% CHECKHOLD<>; % 

83! 

CLEARFLAGS<>; 
DIGOUT<RUNLIGHT,OFF>;DIGOUTCWONRELAY,OFF>;DIGOUTCTONRELAY,OFF>; 
!JAL SS t =2 ;_ 

% CHECKHOLDC>; % 

S4t 
S5t 

IF DIGIN<READY>=l THEN 
SETFLAG<SYNCF>; 
!JAL SSt=4; 
END; 
RETUF.:N; 

% CHECKHOLD<>; % 
IF WPITVALCWPOINT> <=IDLESP AND TPITVALCTPOINT>=IDLESP THEN 

/.IS WINDER AND TRAV INV AT IDLE SPEED% 



-4 S6! 
.. 87! 

%NOTE COUNT INVERSE FREQ HENCE < % 
DIGOUTCWONRELAY,1>;DIGOUTCTONRELAY,1>;VAL 

END; 
RETURN; 

% CHECKHOLD<>; % 

ss: 

VAL CALLTIME!=STARTSYNCTIM; %WAIT 15 SECS% 
VAL SS!=8; 
RETURN; 

/. CHECKHOLD<>; % 
SETFLAG<STARTF>; 
VAL SS!=9; 

89! 
;~ CHECKHOLD < ) ; /. 

). . 

IF WPITVALCWPOINT> <= WSPEED AND TPITVAL<TPOINT> <= TF1SPEED<1> THEN 
/. WINDER AND TRAVERSE INVERTERS UP TO SPEED? % 

CLEARFLAGS<>;DIGOUTCRUNLIGHT,1>; 
VAL STEP!=2;VAL SS!=l; 

END; 
RETURN; 

ENDBLOCK; 

' W2! % NORMAL RUN SEQUENCE % 
'BLOCt\; 

Sl! 

S .., • 
.:.. . 

S3t 
S4! 
85! 
86! 
S7! 
ss: 
S9! 

IF DIGIN<READY>=O THEN VAL STEP!=3;VAL SS! =l;RETURN;END; 
IF WTACH0<1500.0 THEN SET<DBUPDATE>;END;%USED IN OCPTASK AND RATIO TASK% 
SWITCH SS OF Sl, S2, S3, S4, 55, S6, 57, SB, S9; 
RETURN; 

RETURN; 

F~ETURN; 

ENDBLOCK; 

W3! % STOP SEQUENCE % 

81! 

BLOCK; 
IF WTACHO < 1500.0 THEN SETCDBUPDATE>;END; 
SWITCH SS OF Sl, S2, S3, S4, 85, S6, S7, sa, 89; 
RETURN; 

% CHECKHOLD<>; % 
DIGOUT<WONRELAY,OFF>;DIGOUTCTONRELAY,OFF>; 
VAL ss:=2; 

S2! 
% CHECKHOLDC>; % 

SETFLt'G ( STOPF >; 
TF1F! =O;TF2F!=O;WRUNF!=O; 
RAM PF: ::::Q; 
VAL ss: :::: 3; 

% CLEAR RUN FLAGS % 
% ADDED 15/10/84 TEK % 



3: 
% CHECKHOLD<>; % 

DIGOUT<RUNLIGHT,OFF>; 
VAL SS!=4; 

4! 
/. CHECKHOLD<>; /. 

IF DIGIN<READY>=l 
AND WPITVAL<WPOINT>>=IDLESP AND TPITVAL<TPOINT>>=IDLESP THEN 
/.NOTE COUNTS INVERSE OF SPEED HENCE > % J . 

VAL STEP!=l; VAL SS!=l; %GO TO START SEQ/. 
END; 
RETURN; 

/. CHECKHOLD<>; % 
6! 
/. CHECKHOLD<>; % .., . 
I t 

% CHECKHOLD<>; % 
8! 
/. CHECKHOLDC>; % 
·9: 
/. CHECKHOLD<>; % 

RETURN; 
:NDBLOCK; 

-J4: 
-<LOCK; 

SWITCH SS OF Slv 52, 53, 54, S5, S6v 87, SB, 59; 
RETURN; 

/. CHECKHOLD < ) ; ;~ 

/. CHECKHOLDC>; % 
33t 

% CHECKHOLDC>; % 
54: 

/. CHECKHOLD<>; % 
55: 

/. CHECKHOLDC>; % 
56! 

% CHECKHOLDC>; % 
S7: 

% CHECKHOLDC>; % 
sa: 

% CHECKHOLD<>; % 
59! 

% CHEC!<HOLD C >; % 
RETURN; 

ENDBLOCK; 

EXIT! 

ENDPROC; 



.. ~. 

~ 

~ITLE SQMON.RTL --- SEQUENCE CONTROL MONITOR 
AKEN FROM SANS T30 SEQUENCE MONITOR ON CONMAC 8/9/83; I LAST EDITED 29-JUN-84 DRT z 

! 
ALLOWS 1) A SEQUENCE TO BE EXECUTED AT REGULAR INTERVALS ADJUSTABLE BY THE % 
SEQUENCE.2> THE ENTRY POINT FOR EACH EXECUTION TO BE SET BY THE SEQUENCE % 
ITSELF OR VIA A CONTROL OCP.3) AN EVENT'S DURATION TO BE ACCUMULATED.4> AN % 
EVENT TO HAVE A TIMEOUT SET FOR IT.5) AND IT A~LOWS THE SEQUENCE TO BE % 
STOPPED, HELD WHERE IT IS, HAVE A HOLD SET FDR .SOME FUTURE STEP, OR AS% 
STATED IN SECTION •2• BE SET TO A DIFFERENT SEQUENCE STEP. THE SECTION % 
•5• OPTIONS ARE MAINLY FOR DEBUGGING PURPOSES % 

PTION <1> BC; 

.ET TIMEINC = 1; 
.ET SEQHOLD = 1; 
.ET NSEQ=1; 
.ET MAXINT = 32767; 
.ET MININT = -32767; 
.ET BELL=?;LET NL=10;LET SP=32; 
.ET OFF=O;LET CPURUN=4; 

~XT PROC <INT,INT) IWRTF; 
~XT PROC () BYTE RRIN; 
~XT PROC <BYTE> RROUT; 
~XT PROC <INT> DELAY, IWRT,NLS; 
~XT PROC <REF ARRAY BYTE> TWRT; 
~XT PROC <>CLEANUP; 
~XT PROC <REF INT,REF INT,REF INT,REF INT,REF INT,REF INT,REF INT> INVSEQ; 
~XT PROC CBYTE,BYTE> DIGOUT; 

~XT DATA TIMEDATA; 
INT NOW, SN, MN, NTICKS, TC, SEC, MIN, HOUR, DAY, MONTH, YEAR; 

ENDDATA; 

SVC DATA RRSIO; 
PROC () BYTE IN; PROC <BYTE> OUT; ENDDATA; 

SVC DATA RRERR; 
1 LABEL ERL; INT ERN; PROC (INT> ERP; 
ENDDATA; 

DATA LOCALSEQVARIABLES; 
INT DELTIME; 
ARRAYCNSEQ) PROC (REF INT,REF INT,REF INT,REF INT,REF INT 

,REF INT,REF INT> SEQUENCE:=<INVSEQ>; 
ARRAYCNSEQ) INT DSEQALARM, 

DST I ME, 
DCALLTIME; 

ENDDATA; 

ENT PROC SEQMON <>; 
INT NEXTIME,FLASH; 
BYTE LED; 

ERL:=ERLAB; 
ERP:=LOCERP; 



-.. ,_ ... 

_j FOR S ! =1 TO NSEQ DO /. INC SEQ TIMERS % 

% INCREMENT SEQUENCE INTERVAL TIMERS CFOR LEARNING AV TIMES> % 
IF DSTIME<S><MAXINT THEN DST~MECS)!=DSTIME<S>+TIMEINC END; 

% DECREMENT SEQUENCE RECALL TIMERS & SET FLAGS TO CALL SEQUENCES % 
IF DCALLTIME<S>>MININT THEN DCALLTIMECS)!=DCALLTIMECS>-TIMEINC END; 
IF DCALLTIMECS> <TIMEINC THEN DCALLSEQCS)!=1 END; 

J. 

% DECREMENT SEQUENCE TIMEOUT COUNTERS & GIVE TIMEOUT ALARMS % 
IF DTIMOUTCS>>MININT THEN DTIMOUTCS)!=DTIMOUTCS>-TIMEINC END; 
IF ABS DTIMOUT<S><TIMEINC THEN TWRT ( 1 DELAY IN STEP ");% 

REP; 

IWRTCDSTEP<S>>; OUTC'.'>; IWRTCDSSCS>>; OUTCNL>;% 
END;;~ 

FOR S! =l TO NSEQ DO 
IF DCALLSEQCS)=l THEN DCALLSEQCS>!=O; 

IF DSEQSTATCS> LAND HEX 1=1 THEN GOTO SKIPSEQ END; % SEQ "HELD" /. 
CURSEQ!=S; 
SEQUENCECS><DSEQSTATCS>,DSEQALARM<S>,DSTEPCS>,DSSCS),DSTIMECS> 
,DCALLTIMECS>,DTIMOUTCS>>; 

END; 
• KIPSEC~: 

REP; 

1ELAB ! 
DELAYC15>; % TO ALLOW LOW PRIO TASKS IN% 
NEXTIME!=NEXTIMEtTIMEINC*50; 
DELTIME!=NEXTIME-NOW; 
DELAY<DELTIME>; 
GOTO ONESEC; 

-C:RLAB: 
CLEANUP<>; 
TWRTC" ERROR •>; IWRTCERN>;OUT<NL>; 
GOTO DELAB; 

-ENDPROC ; 

PROC LOCERP<INT N>; 
TWRTC"tNLIERROR NO ">;IWRT <N>;NLSC1>; 

ENDPROC; 

PROC ERRPRNCINT I>; % WATCHDOG ERROR PRINTING TASK % 
NLS<2>; . 
TWRTC"tBELLIWATCHDOG ERROR IN"); 
SWITCH I OF TDRV,WDRV,TCONT,WCONT,RATIO,WTACHO; 
GOTO NONE; 

TDRVt TWRTC"TRAVERSE DRIVE ">;GOTO FINISH; 
WDRV! TWRT<"WINDER DRIVE ">;GOTO FINISH; 
TCONT! TWRTC"TRAVERSE CONTROL ">;GOTO FINISH; 
WCONT! TWRT<"WINDER CONTROL ">;GOTO FINISH; 
RATIO! TWRTC"RATIO ">;GOTO FINISH; 
WTACHD: TWRTC"WINDER TACHO ">;GOTO FINISH; 
NONE! TWRT<"NO ">; 
FINISH: 

TWRT<"TASK">; 
NLS<l>; 



J . 



~TLE OCP MODULE FOR T18 INVERTER CONTROL PROJECT 
::G 03/11/83 
~ST EDITED 2-0CT-84 TEK; 

' ************************************************************************* /. * * /. * THIS MODULE CONSISTS OF FIVE SECTIONS * % 
* 1+ PRELUDE AND LOCAL DATA - DATAPREL * % 
* - LET,EXT PRdcs * x * - DATA OCPDATABASE * % * 2. ENTRY AND BASIC MENU DECISIONS - PROC GENOCP * % 
* 3. OPERATOR INPUT AND UPDATE - PROC COLLECTCHANGE * % 
* - PROC CHANGEDATABASE * % 
* 4. DATA TRANSLATION AND SCREEN DISPLAY - PROC FIXEDPARAMDISPLAY* % 
* - PROC READDATA * % * 5. SERVICE PROCEDURES - PROCS MYIN,MYRREPTO,LERP,OPTIONS, * % * - LOCERP,SCREENHEAD,CLEARSCREEN, * % * - CLEARFLAGS,LJNIT,XPLN1, * % 
* - XPLN2,XPLN4,XPLN5 * % 
* * % 
*************************************************************************V% 

.ET 

.ET 
.ET 
.ET 
.ET 
_ET 
_ET 
_ET 
_ET 
_ET 
_ET 
_ET 

NBTIMES4 ::: 60; 
INPUT = 1; 
OUTPUT = 1; 

% NUMBAND * 4 % 
%INPUT STREAM NUMBER % 
%OUTPUT STREAM NUMBER % 

NL = 10; 
SPACE = 18; 
ENQ=5; 
NOPTS:::3; 
OPENBRACl<ET:::91; 
ESC::::27; 
FIELfl::::S; 
EOM=-3; 
SECLE'v'EL:::40; 

% FIELD SIZE OF FORMATTED OUTPUT% 

~vc DATA RRERR;LABEL ERL~INT ERN;PROC <INT) ERP;ENDDATA; 
SVC DATA RRSIO;PROC <>BYTE IN;PROC <BYTE) OLJT;ENDDATA; 
SVC DATA RRSED;BYTE TERMCH,IOFLAG;ENDDATA; 

€XT PROC <INT> DELAY; 
EXT PROC <REF ARRAY BYTE,REF ARRAY BYTE,PROCCINT>> INT CHOICE; 
EXT PROC <REF ARRAY BYTE,INT,INT,PROCCINT>> INT IREPTO; 
EXT PROC () BYTE RRIN; 
EXT PROC <BYTE> RROUT; 
EXT PROC <>CLEANUP; 
EXT PROC <> INT IREAD; 
EXT PROC <INT> IWRT; 
EXT PROC <INT> INT EXECODE; 
EXT PROC <REF ARRAY BYTE> TWRT; 
EXT PROC <INT> SPS; 
EXT PROC CINT> NLS; 
EXT PROC <INT> STOP; 
EXT PROC <>INT ME; 
EXT PROCCINT>TIMDAT; 
EXT PROC<>SETDAT; 
EXT PROC<INT>WAIT,RESET,SET; 
EXT PROC () REAL RREAD; 
EXT PROC CREAL> RWRT; 



EXT PROC CREAL,INT,INT> RWRTF; 
EXT PROC <INT,INT> IWRTF; 

OPTION <1> BC; 

% *********************************************************************** /. * * 
% * 'DATABASE' USED BY OCP TASK * 
% * COMPARISON BETWEEN 'REAL" DATABASE AND THIS ONE IS SHOWN BELOW * 
% * j . * 
% *********************************************************************** 
DATA OCPDATABASE; 

% DATA BASE CONTENT 
% --------------- - -

ARRAY<NUMBAND> REAL DISPTF1SPEED, % 
DISPTF2SPEED, % 
DISPRIBS1, % 
DISPRIBS2; % 

ARRAYCNBTIMES4> BYTE DISPBANDFLAG; 
ARRAY<9> INT DISPMODFLAG; 
INT I,FLAGO,DISPMAXBAND; 
REAL 

DISPTMF1AMP,DISPTMF2AMP, 
DISPTMF1PJ,DISPTMF2PJ, 
DISPTMPERIOD, 
DISPTACC,DISPTDEC, 
DISPWFREQ,DISPTFREQ, 

I. WTACHO,TTACHO 
% MAXACC , MAXDEC 

% 
/. 
% 
k 
~ 
h 

y 
h 

~ 
h 

% 
/. 

COUNTS 
COUNTS 
RATIO 
RATIO 

PERCENT 
PERCENT 
SEC 
HZ/100MSEC 
COUNTS 
RPM 
HZ/100MSEC 
COUNTS 
COUNTS 
COUNTS 
COUNTS 

DISPLAY 

M/C HZ 
M/C HZ 
RATIO 
RATIO 

PERCENT 
PERCENT 
SECONDS 
*10.0/6+0 
M/C HZ 
RPM 
*10.0/6.0 
MIC HZ 
M/C HZ 
M/C HZ 
M/C HZ 

DISPWSPEED, 
DI SPWMAXF, 
DISPTMAXF, 
DISPIDLESP, 
DISPRRATIO, 
DISPCAKE; 

y 
h RATIO & SIZE CALCULATED FROM CAKE 
% 

ENDDATA; 

DATA OCPDATA; 
ARRAYCNOPTS>REF ARRAY BYTE OPTAGS!=( 
' - DATE AND TIME", 

AND 

'-DISPLAY FIXED PARAMETERS AND SPEEDS', 
"-DISPLAY OR CHANGE TRAVERSE PARAMETERS">; 
ARRAYC5) REF ARRAY BYTE UNITLIST!=( 
I HZ", 
I HZ/SEC", 
I SECS", 
I RPM", 
• MM">; 

ENDDATA; 

TRAVERSE SPEEDS. 

y 
h 

y 
h 

% 
y ,. 
y 
~ 

I. 
% 
y 
h 

I. 
/. 
y 
h 

y 
h 

/. 

% ************************************************************************* % 
% * * % 
%. * SECTION 2! OCP1 TASK * % 
x * * % 
% ************************************************************************* /. 
ENT PROC GENOCPC>; 

INT K,S,A,F! =O; 
/.ENTRY POINT FOR OCP TASK% 



BYTE B; 
REAL WINDSP,ZWSPEED; 
IN:==MYIN; 
our:=RROUT; 

' ERL:=LOCERL; 
ERP:=LOCERP; 
UPDATEFLAG:=O; 
ERN:=o; 

"ARTLAB: 
TWRT<"tNLtOCP CLEAREDtNLt">; 
WAIT ( SPBAREl,)); 
SCREENHEAD<>; 
CLEARFLAGS<>; 
TWRTC"OCP OPTIONS:-•>; 
FOR K:=l TO NOPTS DO 

OUTCNL>; 
IWRT<K>; 
TWRTCOPTAGS<K>>; 

REP; 
K:=OPTIONSCNOPTS>; 
ERL!=STARTLAB; 
SWITCH K OF DATETIME,DISPFIXPARAM,DISPTPARAM; 
GOTO STARTLAB; 

-ATETIME: 

.) 

SCF:EENHEAD < ) ; 
OUT<NL>;TIMDAT<-1>;SPS<2>;TWRT<"CHANGE?tENQI">; 
B:=IN< >; 
IF B='Y' THEN SETDAT<> END; 
OUTCNL.>; 
GOTO STARTLAB; 

ISPFIXPARt1M: 
SCF:EENHEt1D ( > ; 
SPSC9>;TWRTCOPTAGSCK>>;SPSC5>;TIMDATC-1>;0UTCNL.>; 

FIXEDPARAMDISPLAY<>; 
OUT<NU; 
SWITCH CHOICEC"DISPLAY AGAIN? ","YN",XPLN1> OF DISPFIXPARAM,STARTLAB; 

GOTO STARTLAB; 
rISPTPARAM: 

IF UPDATE~LAG = 1 THEN 
READDATA<l>;GOTO REDISP; 

ELSEIF UPDATEFLAG = 0 THEN 
READDATA<O>;GOTO REDISP; 

ELSE UPDATEFLAG:=O;GOTO ERL; 
END; 

~EDI SP: . 
SCREENHEAD<>; 
SPS<4>;TWRTCOPTAGSCK>>;SPSC3>;TIMDATC-1>; 
TWRT<IF UPDATEFLAG=O THEN • ACTIVE" ELSE • FUTURE" END>; 
TWRT<" PARM'SINLt">; 
F~EADDATA<2>; 

F:=o; 
SWITCH CHOICEC"REDISPLAY/BANDING CHANGE/MOD & SPEED CHANGE/EXIT 0

, 

• F:BME • , XPLN4 > 
OF REDISP,CHANGEBAND,CHANGEMOD,STARTLAB; 

GOTO STt1F\TLAB; 

.CHANGEBAND! 
F:= COLLECTCHANGEC3>; 



IF F t 1 THEN GOTO REDISP; END; 
REtiDDtiTA<2); 
IF EXECODE<SECLEVEL) t 0 THEN 

CHANGEDATABASEC3); 
CLEARr:LAGS <); 

ELSE 
DEUW < 2~i ); 

END; 
GOTO DI SPTPAF:AM; 

Ht~NGEMOD: 

F:= COLLECTCHANGEC2>; 
IF F I 1 THEN GOTO REDISP; END; 
READDATAC2); 
IF EXECODECSECLEVEL) t 0 THEN 

CHANGEDATABASEC2>; 
CLEtiRFU'lGS ( ) ; 

ELSE 
DEU'IY C 2!3); 

ENDt 
GOTO DISF'TF'Al~AM; 

.DCEF:L: 
CLEANUF' ( ) ; 
IF EF:N:U:O THEN 

TWRT<"ERROR NO "); 
HJF:T C EF~ N > ; 
ERN: =:::O; 
DLHCNL); 

END; 
GOTO STARTU~B; 

C:NDF'ROC; 

% ********************************************************************** 
% * * 
% * SECTION 3! * 
% * * 
% ********************************************************************** 
F'ROC COLLECTCHANGECINT X> INT; 

%************************************************************************ 
%* * %* THIS PROC CALLS 'MYRREPTO' TO COLLECT THE NECCESARY * 
%* CHANGES REQUESTED BY OCP. X=O NO COLLECTION * 
%* X=1 NO COLLECTION * 
%* X= 2 MODULATION & WI NDER PARAMS * 
%* X=3 BANDING AVOIDANCE * 
/.* * 
%************************************************************************ 

INT XFLAG:=O,J,LINE; 

IF X=2 THEN 
DISPWSPEED!=MYRREPTOC"WINDER SPEED •,DISPWSPEED,80.o,220.o,2,xPLN2); 

IF FLAGO = 1 THEN XFLAG!=1;DISPMODFLAGC9):=1;END; 
IF FLAGO = 2 THEN GOTO FINISH END; 

DISPTMF1AMF'!=MYRREPTOC"AMPLITUDE AT Fl",DISPTMFlAMP,o.o,s.o , 1,xPLN2 ) ; 
IF FLAGO = 1 THEN XFLAG!=l;DISPMODFLAGC2)!=1;END; 
IF FLAGO = 2 THEN GOTO FINISH END; 

DISPTMF2AMF'!=MYRREPTO<"AM PLITUDE AT F2",DISF'TMF2AMP,o.o,s . o,1,xPLN2 >; 

•1 
.'• 

./ ., 

•/ 
.'u 

"I 
.' • 

•1 
'• 

% 
/. 
•1 
/ u 

"I ,. 
% 
"l 
/n 

% 
/~ 
., 
'" 



IF FLAGO = 1 THEN XFLAG:=1;DISPMODFLAGC3>:=1;END; 
IF FLAGO = 2 THEN GOTO FINISH END; 

DISPTMF1PJ:=MYRREPTOC"P-JUMP FOR F1 1 ,DISPTMFlPJ,o.o,a.o,1,xPLN2>; 
IF FLAGO = 1 THEN XFLAG:=1;DISPMQDFLAGC4>:=1;END; 
IF FLAGO = 2 THEN GOTO FINISH END; 

DISPTMF2PJ:=MYRREPTO<"P-JUMP FOR F2 1 ,DISPTMF2PJ,o.o,a.o,1,xPLN2>; 
IF FLAGO = 1 THEN XFLAG:=1;DISPMODFLAGC5)!=1;END; 
IF FLAGO = 2 THEN GOTO FINISH END; 

DISPTMPERIOD:=MYRREPTOC 1 PERIOD",DISPTMPERIOD,2:0,30.o,1,xPLN2>; 
IF FLAGO = 1 THEN XFLAG:=1;DISPMODFLAGC6>:=1;END; 
IF FLAGO = 2 THEN GOTO FINISH END; 

DISPTACC!=MYRREPTOC'ACCEL Fl TO F2",DISPTACC,0.5,7.0,1,XPLN2>; 
IF FLAGO = 1 THEN XFLAG!=1;DISPMODFLAGC7>!=1;END; 
IF FLAGO = 2 THEN GOTO FINISH END; 

DISPTDEC!=MYRREPTOC"ACCEL F2 TO F1',DISPTDEC,0.5,7.0,1,XPLN2>; 
IF FLAGO = 1 THEN XFLAG!=l;DISPMODFLAG<B>:=l;END; 
GOTO FINISH; 

_SEIF X = 3 THEN 
DISPMAXBAND:=INT<MYRREPTOC'MAXIMUM NUMBER OF BANDING POINTS: •, 

REALCDISPMAXBAND>,1.0,REALCNUMBAND),0,XPLN6>>; 
IF FLAGO = 1 THEN XFLAG!=1;DISPMODFLAGC1>!=1;END; 
LINE!=IREPTOC"WHICH BANDING POINT TO CHANGE",O,NUMBAND,XPLN5>; 
IF LINE = 0 THEN GOTO FINISH END; 
SCF:EENHEAD ( ) ; 

_INEAGtiIN: 
TWRTC'BANDING AVOIDANCE POINT NUMBER ">;IWRTCLINE>;OUTCNL>; 

DISPRIBS1<LINE>!=MYRREPTOC'RATIO R1',DISPRIBS1CLINE>,o.o,a.o,1, 
XPLN2>; 

IF FLAGO = 1 TH EN XFLAG!=1;DISPBANDFLAG<LINE*4-1>!=1;END; 
IF FLAGO = 2 THEN GOTO FINISH END; 

DISPRIBS2CLINE>!=MYRREPTO<'RATIO R2",DI SPRIBS2<LINE>,o.o,s.o,1, 
XPLN2); 

IF FLAGO = 1 THEN XFLAG: =1;DISPBANDFLAGCLINE*4>:=1;END; 
IF FLAGO = 2 THEN GOTO FINISH END; 

DISPTF1SPEEDCLINE>!=M YR REPTOC'FREQ Fl ',DISPTF1SPEEDCLINE>, 
30.0,320.0,2,XPLN2>; 

IF FLAGO = 1 THEN XFLAG:=1;DISPBANDFLAGCLINE*4-3>:=1;END; 
IF FLAGO = 2 TH EN GOTO FINISH END; 

DISPTF2SPEEDCLINE>:=MYRREPTOC'FREQ F2 ",DISPTF2SPEED<LINE), 
30.0,320.0,2,XPLN2>; 

IF FLAGO = 1 THEN XFLAG:=1;DISPBANDFLAGCLINE*4-2)!=1;END; 
IF FLAGO = 2 THEN GOTO FI NISH END; 

LINE:=IREPTOC'NEXT BANDING POINT ·~o,DISPMAXBAND,XPLN5>; 

IF LINE t 0 THEN GOTO LINEAGAIN END; 
~LSE 

GOTO EF:L; 
~ND; 

=-IN I SH: 
Fff:TUF\N C XFLAG) ; 

::NDPROC; 

~Roe CHANGEDATABASE< INT B>; 
%**************************************************************************% 
%* *% 
%* AFTER RECEIVING CLEARANCE TO UPDATE THE MASTER DATABASE SUBSEQUENT TO *% 
Z* THE OCPDATABASE BEING UPDATED AND CHECKED,THIS PROC RE-CONVERTS THE *% 
%* VARIABLES FROM OCP FORM TO DATABASE VALUES. *% 



:* DIVIDED INTO THREE SECTIONS - B=O ERROR NO CHANGE TAKES PLACE *!. 
;* B=i NO ACTION *I. 
:* B=2 CHANGE MODULATION & WINDER PARAMS *!. 
;* B=3 CHANGE BANDING PARAMETERS *% 
:* *•/ .,. 
'**************************************************************************% 

FOR I! = 1 TO NUMBAND DO 
AWTF1SPEED<I>:=DISPTF1SPEED<I>; 
AWTF2SPEED<I>:=DISPTF2SPEED<I>; 
AWRIBS1CI>!=DISPRIBS1CI>; 
AWRIBS2CI)!=DISPRIBS2<I>; 

REP; 
AWTMF1AMP!=DISPTMF1AMP; 
AWTMF2AMP!=DISPTMF2AMP; 
AWTMF1PJ: =DISPTMF1PJ; 
AWTMF2PJ!=DISPTMF2PJ; 
AWTMPERIOD!=DISPTMPERIOD; 
AWTACC!=DISPTACC; 
AWTDEC!=DISPTDEC; 
AWWSPEED! =DISPWSPEED; 
AWMAXBAND!=DISPMAXBAND; 

IF B=2 THEN 
FOR I:= 2 TO 9 DO 

IF DISPMODFLAG<I>=l THEN 
MODFLAG<I>! =DISPMODFLAG<I>; 

END; 
REP; 
UPDATEFLAG!=l; 

END; 

IF B=3 THEN 
FOR I!= 1 TO NUMBAND*4 DO 

IF DISPBANDFLAGCI>=l THEN 

./ _ 

BANDFLAGC1tCCI-1)!/4),1t<<I-1> MOD 4))!=DISPBANDFLAGCI>; 
END; 

REP; 
IF DISPMODFLAGC1>=1 THEN 

MODFLAG(1)!=DISPMODFLAGC1>; 
END; 
UPDATEFLAG!=1; 

END; 

IF B=O OR B<2 OR B>3 THEN 
TWRTC"INLl · NO UPDATE OF DATABASE TOOK PLACE">; 
GOTO ERL; 

END; 

::NDPROC; 

~ Roe FIXEDPARAMDISPLAY<>; 
=(. ********************************************************************* 
Y. * * 
~ * THIS SECTION CALCULATES AND DISPLAYS A "DATABASE" WHICH * 
~ * CONTAINS THE DATABASE VALUES IN A FORM * 
~ * SUITABLE FOR PRESENTING TO THE SCREEN. * 
% * DISPLAYING FIXED PARAMETERS AND SPEED INDICATION. * 

/~ 

/. 
I. 
•1 
I• 



~ * * % 
< ********************************************************************* % 

DISPWSPEED ·- CLOCKFREQ I (REAL ( WSF'EED) * 6.0); . ·-
DISPWMAXF ·- CLOCKFREQ I <WMAXF * 6.0>; . ·-
DISPTMAXF . -· CLOCKFREQ I <TMAXF * 6.0>; .-
DISPIDLESP ·- CLOCKFF:EQ I <IDLESP * 6+0); .- ' DISPWFREQ ·- CLOCKFREQ I <WPITVAL<WPOINT) * 6: 0) ; . --
DISPTFREQ ·- CLOCKFF\EQ I < TP I Tt .. .'AL ( TPO I NT) * 6.o>; .-
TWRT ( I CURF~ENT CONTROL STATUS =I ) ; 

{ DETERMINE THE PRESENT OPERATING PHASE WITHIN THE SEQUENCE 
IF TF2F=1 OR BANDF=1 THEN 

TWRTC" BANDING AVOIDANCE">; 
ELSEIF WRUNF=1 AND TF1F=1 THEN 

IF WTACHO < 500.0 THEN 
TWRT<' CHUCK STOPPED"> 

ELSE 
TWRT (I RUNNING.) 

END; 
ELSEIF STARTF=l OR SYNCF=l THEN 

TWRT< 1 STARTING">; 
ELSEIF STOPF=l AND TTACHO < 500.0 THEN 

TWRT<" WINDER STOPPED">; 
ELSEIF STOPF=l THEN 

TWRT<" STOPPING"); 
ELSE 

TWRTC" BUSY CHANGING STATUS">; 
END; 

OUT< NL); 

•1 
'• 

TWRT<"tNLt WIND MAX ACCEL/DECEL RATE =·>;RWRTF<<MAXACC*l.667>,FIELD,2>; 
TWRTC" l">;RWRTF<<MAXDEC*1.667),3,2>;UNIT<2>; 

TWRT<"tNLt TRAV MAX ACCEL/DECEL RATE =1 >;RWRTFCCTMXACC*1.667>,FIELD,2>; 
TWRT<" l">;RWRTFCCTMXDEC*1.667),3,2>;UNITC2>; 

TWRT<"tNLI WINDER MAXIMUM FREQUENCY =">;RWRTF<DISPWMAXF,FIELD,2>;UNITC1>; 
TWRT<"tNLt TRAVERSE MAXIMUM FREQUENCY =">;RWRTF<DISPTMAXF,FIELD,2>;UNIT<1>; 
TWRTC 1 INL:fl: MINIMUM FREQUENCY CLAMP =">;RWRTFCDISPIDLESP,FIELD,2>;UNITC1>; 

OUT<NL>; 
TWF\T < "tNL:I: 
TWRT<"tNLt 
TWRT < • :ft:NU!: 

START-UP DELAY PERIOD 
WINDER SPEED SETPOINT 
OUTPUT FREQUENCY - WINDER 
CAKE SPEED ClMIN AVERAGE> 

=">;IWRTFCSTARTSYNCTIM,11>;UNITC3>; 
=1 >;RWRTF<DISPWSPEED,FIELD,2>;UNITC1>; 
=·>;RWRTFCDISPWFREQ,FIELD,2>;UNIT<1>; 
=">;RWRTF<WTACHO,FIELD,2>;UNIT<4>; TWRT<"tNLt 

OUT<NL>; 
TWRT<":fl:Nlt CURRENT BANDING POINTC1-">;IWRTFCMAXBAND,2>;TWRT(")="); 

IWRTFCCURBAND,11>; 
TWRTC"INLI OUTPUT FREQUENCY - TRAVERSE =">;RWRTFCDISPTFREQ,FIELD,2>;UNIT<1>; 
TWRTC"tNLt TRAVERSE SPEED (1 MIN AVE> =·>;RWRTF<TTACHO,FIELD,2>;UNITC4>; 
TWRTC"tNLt CURRENT RIBBON RATIO =">; 

IF TTACHO < <DISPIDLESP * 60.0) THEN 
TWRT<" TRAVERSE STOPPED">; 

ELSEIF WTACHO < 500.0 THEN 
TWRTC" CHUCK STOPPED">; 

ELSE 
DISPRRATIO:= <WTACHO * 6.0) I TTACHO; 
RWRTFCDISPRRATI0,7,3>; 

END; 



TWRT (I f.NL:f: CAKE 
IF WTACHO < 

TWRT (I 

ELSE 

DIAMETEF: 
500.0 THEN 
CHUCK STOPPED">; 

=I ) ; 

DISPCAKE!= <DISPWSPEED I WTACHO> 
RWRTF<DISPCAKE,FIELD,2>;UNIT<5>; 

END; 

* 9014.723; 

OUT<NL>; 
ENDPROC; j . 

PF:OC READDATA<INT Z>; 

% ********************************************************************* 
/. * * % * THIS SECTION CALCULATES A 'DATABASE" WHICH * 
/. :+: CONTAINS THE DATABASE VALUES IN A FORM * 
% * SUITABLE FOR DISPLAYING AND AMMENDING * 
/. * FOR USE IN THE OCP TASK * 
% * * /. ********************************************************************* 

IF Z=O THEN 
OPINUM!= - NOPI; /.MANUAL MODS TO OPI NEGATE 'DATA LINK STORED OPI NUMBER 
FOR I!=1 TO NUMBAND DO 

IF TFlSPEED<I> <lO THEN TFlSPEED<I>:=lO ; END; 
IF TF2SPEEDCI> <10 THEN TF2SPEED<I>! =10;END; 
DISPTF1SPEED<I>:= REAL CCLOCKFREQ / CTF1SPEED<I> * 6.0>>; 
DISPTF2SPEED<I>! = REAL (CLOCKFREQ/CTF2SPEED(I) * 6.0>>; 
DISPRIBS1<I> : = RIBS1<I >; 
DISPRIBS2CI> != RIBS2<I>; 

F~EP; 

DI SPTMF 1 AMF' != TMFltiMP; 
TMF2AMP; 
TMF1P~I; 

TMF2PJ; 

DISPTMF2AMP != 
DISPTMF1PJ != 
DI SPTMF2P ~' : = 
DISPTMPERIOD!= 
DISF'TtiCC ! = 
DISPTDEC : = 
DISPWSPEED ! = 
DISPWMAXF ! = 

REAL TMPERIOD; 
TACC * 1.6667; 
TDEC * 1.6667; 
CLOCKFREQ I CREAL<WSPEED> * 6.0>; 
CLOCKFREQ I <WMAXF * 6.0>; 

DISPTMAXF 
DISPIDLESP 

!= CLOCKFREQ I CTMAXF * 6.0>; 
!= CLOCKFREQ I <IDLESP * 6.0>; 

DI SPMAXBAND ! ::: 
GOTO RET; 
END; 

IF Z=l THEN 
OPINUM!=O; % MANUAL MODS TO OPI ZERO DATA LINK STORED OPI NUMBER % 
FOR I!=1 TO NUMBAND DO 

DISPTF1SPEEDCI)!=AWTF1SPEEDCI>; 
DISPTF2SPEED<I>!=AWTF2SPEED<I>; 
DISPRIBS1CI>! =AWRIBS1<I>; 
DISPRIBS2CI)!=AWRIBS2<I>; 

F:EP; 
DISPTMF1AMP!=AWTMF1AMP; 
DISPTMF2AMP! =AWTMF2AMP; 



DISPTMF1PJ:=AWTMF1PJ; 
DISPTMF2PJ!=AWTMF2PJ; 
DISPTMPERIOD!=AWTMPERIOD; 
DISPTACC!=AWTACC; 
DISPTDEC! =AWTDEC; 
DISPWSPEED!=AWWSPEED; 
DISPMAXBAND!=AWMAXBAND; 

GOTO RET; 
END; 

IF Z=2 THEN 

.) 

TWRT<"tNLt RIBBON POINTS SPEEDS");SPSC15>; 
TWRT<"TRAVERSE MODULATIONINLt">; 

SPSC41>;TWRT<"AMPLITUDE P-JUMP PERIOD">; 
TWRT<"INLI Rl R2 Fl F2 Fl 

SPSC6);TWRT<"F1 F2 SECS">; 
OUTCNL>; 
IWRT F <l ,2>; 

F2"); 

RWRTF<DISPRIBS1C1),3,3);RWRTFCDISPRIBS2<1>,2,3>; 
RWRTFCDISPTF1SPEED(1),7,1>;RWRTFCDISPTF2SPEEDC1),5,1); 
RWRTF<DISPTMF1AMP,4,2>;RWRTF<DISPTMF2AMP,4,2>; 
RWRTF<DISPTMF1PJ,4,2>;RWRTF<DI SPTMF2PJ,4,2>;RWRTFCDISPTMPERIOD,4,1); 
OUT<NL>; 
FOR I!= 2 TO NUMBAND DO 

IWRTF<I,2>; 
RWRTFCDISPRIBS1<I>,3,3>;RWRTF<DISPRIBS2<I),2,3>; 
RWRTFCDISPTF1SPEEDCI),7,1>;RWRTF<DISPTF2SPEED<I>,5,1>; 
IF I = 6 THEN 

SPS<9>;TWRT<"TRAVERSE ACCELERATION">; 
END; 
IF I = 7 THEN 

SPSC10>;TWRT<"F1 TO F2 F2 TO Fl">; 
END; 
IF I = 8 THEN 

RWRTFCCDISPTACC>,13,2>;RWRTF<<DISPTDEC),7,2>; 
END; 
IF I = 10 THEN 

SPS(11>;TWRTC"WINDER SPEED">; 
END; 
IF I = 11 THEN 

RWRTFCDISPWSPEED,17,2>; 
END; 
IF I= 14 THEN SPSCB>; 

TWRTC"MA XBAND =">;IWRTCDISPMAXBAND>; 
END; 
OUTCNL>; 

REP; 
END; 

RET! /. RETURN % 
ENDPROC; 

% ********************************************************************** % 
% * * % 
% * SECTION 5! * % 
% * * % 
% ********************************************************************** % 

PROC MYIN<>BYTE; 



BYTE B; 
IOFLAG:=o; 
B!=RRIN<); 
IF B='Z' OR 
RETURN<B); 

IOFLAGIO THEN GOTO ERL END; 
' 

ENDPROC; 

PROC MYRREPTO <REF ARRAY BYTE CUE,REAL VALUE,MIN,~AX,INT DEC, 
PROCCINT) XPLNTN) REAL; 

%GIVES A CURRENT REAL VALUE AND PROMPTS FOR A NEW VALUE% 
%CHECKS VALIDITY.CARRAIGE RETURN LEAVES VALUE AS BEFORE% 
%BASED IN INSTD 'RREPTO' BY DEG 18-10-83% 

INT SIZE:=o; 
REAL R!=O.O; 
ERN:=o; 
ERP!=LERP; 

FLAGO:~o; 

SIZE!=<FIELD - DEC); 
RPT! 

OUT<NL);TWRTCCUE>;TWRTC" PRESENT =">;RWRTF<VALUE,SIZE,DEC); 
TWRTC' CHANGE tENQI"); 

R:=RREAD<>; 

IF TERMCH - 'X' THEN XPLNTNCO>; GOTO RPT; END; 

IF TERMCH - 'F' THEN FLAG0!=2;GOTO XIT END; 

IF R<MIN OR R>MAX OR IOFLAGIO OR ERNIO THEN 
IF ERNIO OR IOFLAGIO THEN % MAYBE NUL % 

XITt 
ERN!=O; 
IOFLAG:=o; 
IF TERMCH = EOM THEN % YES IT WAS % 

ERP:=LOCERP; 
RETURNCVALUE>; % LEAVE AS BEFORE% 

END; 
END; 
TWRTC" INVALID NO.">; 
GOTO RPT; 

END; 
ERP!=LOCERP; 
FLAG0!=1; 
RETURNCR>; 

ENDPROC; 

~ROC LERPCINT A>; 
ERN!=A; 

ENDPROC; 

~Roe OPTIONSCINT LIMIT>INT; 
INT K!=O; 
OUTCNL);TWRTC"OPTION=IENQt"); 
K!=IREADC>; 
IF K>LIMIT OR K<l THEN ERPC5001>;END; 
RETURN<K>; 

:NDPROC; 



PROC LOCERPCINT N>; 
TWRTC"INLtOUT OF RANGE ERROR:">;IWRTCN>;NLSC1>; 
GOTO ERL 

ENDPROC; 

J 

PROC SCREENHEAD<>; 
CLEARSCREEN<>; 
SPSCSPACE>; 
TWRTC"*** SANS INVERTER CONTROL SYSTEM ***INLC1)i">; 

ENDPROC; 

PROC CLEARSCREEN<>; 
TWRTC"tESC,OPENBRACKETt2JtESCl8"); 

ENDPROC; 

PROC CLEARFLAGSC>; 
FOR I:=l TO NUMBAND*4 DO 

DISPBANDFLAGCI>!=O; 
REP; 
FOR I:=l TO 9 DO 

DISPMODFLAG<I>:=o; 
REP; 

ENDPROC; 

PROC UNIT CINT A>; 
TWRTCUNITLISTCA>>; 

ENDPROC; 

PROC XPLN1CINT J>; 
SCREENHEADC>; 
OUTCNL>; 
TWRTC"tNLt 'Y' - CAUSES AN UPDATE OF THE DISPLAY.">; 
TWRTC"tNLt <WITH REFRESHED DATA AS AT DISPLAYED TIME>">; 
OUTCNL>; 
TWRTC'INLI 
OUTCNL>; 
TWRTC"INLI 
OUT<NL>; 
TWRTC"INLI 

ENDPROC; 

'N' - RETURNS TO 'OCP CLEARED'">; 

'Z' - ESCAPES TO 'OCP CLEARED'"); 

'X' - EXPLANATION">; 

PROC XPLN2 <INT J>; 
SCREENHEADC>; 
TWRTC"tNLI TYPE 
TWRTC"tNLI 

, 7 , 
L 

'F' 
TO QUIT - ANY CHANGES ARE DISCARDED">; 
TO FINISH MAKING CHANGES">; 

TWRTC'INLt 
TWRTC"INLt 
TWRTC"INLt 
TWRTC"tNLt 
TWRTC'INLI 
TWRTC"tNLt 
TWRT("INLI 
TWRTC"tNLt 
TWRTC"tNLt 
TWRTC"INLI 

ENDPROC; 

'RETURN' 
'INVALID 

TO LEAVE VALUE UNCHANGED'>; 
NO' OCCURS FOR ALL OTHER CASES WHERE THE VALUES">; 

ARE OUTSIDE THE FOLLOWING RANGES:">; 
RATIO'S 
TRAVERSE SPEED 
WINDER SPEED 
MODULATION AMP 
MOD P- JUMP AMP 
MODULATION PERIOD 
RATE OF CHANGE 

1.0 TO 8.0">t 
130.0HZ TO 320.0HZ">; 

80.0HZ TO 220.0HZ">; 
O.O % TO 8.0 % OF MEAN FREQ"); 
O.O % TO 70.0 % OF MOD AMP">; 
2.0SEC TO 30.0SEC">; 
0.5HZ/S TO 7.0HZ/S">; 



;;PROC XPLN4 (INT J); 
% SWITCH ON CHANGE 
SCREENHEAD<>; 
TWRTC'INLt TYPE 'R' 
OUT <NL); 
TWRTC'INLt TYPE 'B' 
TWRTC'tNLt TYPE 'M' 
TWRTC'tNL:ft: 
TWRT<"tNLI TYPE 'E' 
TWRT('INLt TYPE 'Z' 

ENDPROC; 

~ROC XPLN5<INT J>; 

OF BANDING,WINDER SPEED,MODULATION DATA.% 

TO RE-DISPLAY THE CONTENTS OF THE TEMPORARY DB'); 

TO MAKE CHANGES TO THE BANDING AVOIDANCE DATA.'>; 
TO MAKE CHANGES TO THE MODULATION PARAMETERS,'>; 
INCLUDING WINDER SPEED.'>; I 

TO EXIT AND RETURN TO 'OCP JCLEARED'. 1
); 

TO ESCAPE TO 'OCP CLEARED'.'); 

% WHICH BANDING POINT TO CHANGE % 
SCREENHEAD<>; 
TWRTC~tNLt ENTER THE NUMBER OF THE LINE TO BE CHANGED IE 1 TO 15'>; 
TWRTC'tNLt ENTER A '0' TO EXIT PROPERLY.">; 

::NDPROC; 

~ROC XPLN6CINT J>; 
% UPDATE OF MAXBAND % 
SCREENHEAD<>; 
TWRTC'INLI THERE ARE A MAXIMUM OF 15 ALLOWED BANDING POINTS.">; 
TWRTC'tNLt THE FIGURE SHOWN INDICATES THE CURRENT NUMBER IN USE.">; 
TWRT<'INLt TO LEAVE UNCHANGED TYPE 'RETURN' .•>; 
TWRT('tNLt ELSE ENTER THE REQUIRED NEW VALUE'>; 

::NDPROC; 



"ITLE TRAVERSE .DRIVE TASK. 
CREATED 12-0CT-83 BY TEK. FILE 

J::T NL = 10; 
.ET ENQ = 5; 
JPTION (1) BS; 

TDRV.RTL; / 

~ *********************************************************************** /. 
~ * * % .) 
~ * TRAVERSE DRIVE TASK. * % 

~ * * % 
~ *********************************************************************** /. 
3VC DATA RRSIO;PROC () BYTE IN;PROC <BYTE> OUT;ENDDATA; 
3VC DATA RRERR;LABEL ERL;INT ERN;PROC <INT> ERP;ENDDATA; 

EXT PROC <> BYTE RRIN; 
~XT PROC <BYTE> RROUT; 
EXT PROC <INT> DELAY,STOP; 
EXT PROC () INT ME; 
~XT PROC CREF ARRAY BYTE) TWRT; 
EXT PROC <INT) IWRT,NLS; 
EXT PROC <INT,INT> IWRTF; 
~XT PROC <> INT IREAD; 
EXT PROC () CLEANUP; 

~NT PROC TDRIVE<>; 
INT DIFF,COUNT,TLAST,TSAFEDEC,TSAFEACC,T100MS!=5; 
REAL TACCEL,TDECEL,MAXJUMP:=54.0; 

IN!=RRIN; 
OUT!=RHOUT; 
ERL != LOCERL; 
ERP : = LOCEFff'; 
ERN : = 0; 

STOP<ME<>>; 
TPOINT != 1; 
TLAST!=TPITVAL<TPOINT>; 

TDRV1: 

WATCNT (:I.>: =2; % UPDATE WATCHDOG TIMER COUNT % 

% CHECK TO SEE IF MAXIMUM DECELERATION OR ACCELERATION % 
/. RATES ARE BEING EXCEEDED. IF THEY ARE, LIMIT THEM. /. 

DIFF!=TLAST-TPITVAL<TPOINT>; 
IF DIFF > 0 THEN 

IF TSTATCTPOINT> = 4 THEN 
TACCEL!=MAXJUMP; 

ELSE TACCEL! =TMXACC;END; 

% ACCELERATING ;~ 

% IF POS P-JUMP % 

TSAFEACC!=TLAST-INT<<CLOCKFREQ*TLAST)/CCLOCKFREQtTLAST*TACCEL>>; 

IF DIFF . <= TSAFEACC THEN 
COUNT!=TPITVAL<TPOINT>; 

ELSE 

% IF ACCELERATION RATE SAFE % 
% ••••• OUTPUT TABLE VALUE% 



COUNT!=TLAST-TSAFEACC; 
END; 

ELSEIF DIFF < 0 THEN 

IF TSTAT<TPOINT> = 2 THEN 
TDECEL!=MAXJUMP; 

ELSE TDECEL!=TMXDEC;END; 

% IF NOT SAFE LIMIT IT % 

% DECELERATING % 

% IF NEG P-JUMP % 

' , 

TSAFEDEC!=INT<<CLOCKFREQ*TLAST)/(CLOCKFREQ-TLAST*TDECEL>>-TLAST; 

IF ABS DIFF <= TSAFEDEC THEN 
COUNT!=TPITVALCTPOINT>; 

ELSE 
COUNT!=TLASTtTSAFEDEC; 

END; 
ELSEIF DIFF = 0 THEN 

COUNT!=TPITVALCTPOINT>; 
END; 

% IF DECEL. RATE SAFE •••• % 
% •••• OUTPUT TABLE VALUE% 

% IF NOT SAFE LIMIT IT % 

% NO CHANGE % 
% OUTPUT TABLE VALUE % 

% CHECK TO SEE IF FREQUENCY CLAMP VALUE IS BEING EXCEEDED, IF IT IS, LIMIT % 
% THE VALUE TO THE CLAMP VALUE. % 

IF COUNT < TMAXF THEN % NOTE THAT COUNT PROP TO 1/F % 
COUNT!=TMAXF; 

END; 

% WRITE THE VALUE TO THE PIT <INITIALISED IN MSMTU1.RTL> % 

CODE 10,10; 
ITXCTR2XPORT 

MDV 
OUT 
MDV 
OUT 

EQU OBCH 
AX,SS![BP+*COUNTJ 
ITXCTR2XPORT,AL 
Al,AH 
ITXCTR2XPORT,AL 

;SBX PIT CHANNEL O. 

;OUTPUT LOW COUNT. 

;OUTPUT HIGH COUNT. 

% INCREMENT THE TABLE POINTER •TPOINT" AFTER A 100MS DELAY % 

DELAYCT100MS>; 
TLAST!=COUNT; 
TPOINT!=TPOINT LAND HEX 7F t 1; 

-OOTO TDRV1; 

_OCERL! 
CLEANUP<>; 
GOTO TDRV1; 

~NDPROC; 

~Roe LOCERP<INT N>; 

/. WAIT FOR 100MS % 
% HOLD ACTUAL CURRENT VALUE % 
/. INCREMENT TCONTTABLE POINTER /. 

TWRTc•tNLtERROR NUMBER ·>;IWRTFCN,5>;NLS<1>; 
~NDPRDC; 



TITLE TRAVERSE CONTROL TASK. 
CREATED 12-0CT-83 BY TEK. FILE 
LAST EDITED 2-0CT-84 BY TEK ; 

LET SETF=l; 
LET RESETF=O; 
LET ENQ =5; 
LET NL=lO; 
LET RAI=REF ARRAY INT; 
LET RI=REF INT; 
OPTION<!> BC; 

TCONT+RTL 

) 

% *********************************************************************** % /. * * % 
% * TRAVERSE CONTROL TASK. * /. 
/. * * /. 
% *********************************************************************** % 

SVC 
SVC 

EXT 
EXT 
EXT 
EXT 
EXT 
EXT 
EXT 
EXT 
EXT 
EXT 
EXT 
EXT 
EXT 
EXT 
EXT 

DATA 
DATA 

PROC 
PROC 
PROC 
PROC 
PROC 
PROC 
PROC 
PROC 
PROC 
PROC 
PROC 
PROC 
PROC 
PROC 
PROC 

RRSIO;PROC () BYTE IN;PROC <BYTE> OUT;ENDDATA; 
RRERR;LABEL ERL;INT ERN;PROC <INT> ERP;ENDDATA; 

<> BYTE RRIN; 
<BYTE> RROUT; 
<REF ARRAY BYTE> TWRT; 
CINT,INT) IWRTF; 
<> INT IREAD; 
<INT> NLS,START; 
CINT,INT,LABEL> TWAIT; 
CRAI,INT,INT,REF REAL> DOWNRAMP; 
<RAI,INT,INT,INT> RUN; 
CRAI,INT,INT,INT,RI,REF REALlUPRAMP; 
CINT,INT,RI> TMOD; 
CRI,RI,RI,REF REAL,INT,INT> BAND; 
CREAL,INT,INT> RWRTF; 
<REF REAL,REF REAL,Rll PARAM; 
()CLEANUP; 

EXT DATA TIMEDATA; 
INT NOW,SECSNOW,MINSNOW,NTICKS; 
INT TCOUNT,SECS,MINS,HOURS,DAYS,MONTHS,YEARS; 

ENDDATA; 

ENT PROC TALGOC>; 
INT TCALCP,TSTARTP,DELAY,BEGIN,PCALCFLAG,TEMP1,DUMMY,FLAG:=O; 

/. INITIALISATION. /. 

IN:=RRIN; 
OUTt=RROUT; 
ERL t = LOCERL; 
ERP t= LOCERP; 
ERN t = o; 

% DYNAMIC INIT OF WCONTTABLE % 

FOR J t= 1 BY 1 TO NUMTAB DO 
TPITVALCJ)!=IDLESP; 
TSTATCJ>! =O; 

REP; 



TPOINT:=1; 

/. INITIALISE FLAGS % 

' TF1F:=TF2F:=PCALCFLAG:=TEMPFLAG:=BANDF!=RESETF; 
RUPF!=RDOWNF:=RAMPF!=RESETF; 

% CALCULATE PARAMETERS FOR INITIAL Fl MODULATISN % 

PARAMCTMF1AMP,TMF1PJ,TF1SPEEDC1>>; 

STARTC6>; % DRIVE TASK STARTED ONCE INITIALISATION COMPLETE % 

flAINLOOP! 
WATCNTC3)!=20; 
BEGIN:=NOW; 
TCALCP!=TPOINT; 
TSTARTP:=TPOINT; 

% UPDATE WATCHDOG TIMER COUNT PERIOD % 

% SET UP TABLE POINTERS TO CALC •• % 
% •• NEW VALUES. % 

IF STOPF t 0 THEN /. STOP SEQUENCE % 
TMXDEC:=STDEC;TMXACC:=STACC; 
DOWNRAMPCTPITVAL,TCALCP,TSTARTP,TMXDEC>; 
FOR I != 1 TO NUMTAB DO 

TSTATCTCALCP) := o; % FILL COND CODE TABLE WITH O'S % 
TCALCP := TCALCP LAND HEX 7F t 1; 

REP; 
ELSEIF SYNCF I 0 THEN % START SYNC SEQUENCE % 

RUN<TPITVAL,TCALCP,TSTARTP,IDLESP>; 
ELSEIF STARTF t 0 THEN % START SEQUENCE % 

UPRAMPCTPITVAL,TCALCP,TSTARTP,TF1SPEEDC1>,TF1F,TMXACC>; 
ELSEIF RAMPF t 0 THEN % NEW OPI % 

PARAMCTMF1AMP,TMF1PJ,TF1SPEED<1>>; 
BANDCTF1SPEEDC1>,RAMPF,DUMMY,STDEC,TCALCP,TSTARTP>; 

ELSEIF BANDF = 0 AND TF1F I 0 AND TF2F = 0 THEN % Fl MODULATION % 
TMXDEC!=RUNDEC;TMXACC:=RUNACC; 
TMODCTCALCP,TSTARTP,TF1SPEEDCCURBAND>>; 

ELSEIF BANDF t 0 AND TF1F t 0 AND TF2F = 0 THEN % Fl TO F2 RAMP % 
IF BANDF t PCALCFLAG THEN 

PCALCFLAG ! = BANDF; 
PARAMCTMF2AMP,TMF2PJ,TF2SPEEDCCURBAND>>; 

END; 
BANDCTF2SPEEDCCURBAND>,TF1F,TF2F,TACC,TCALCP,TSJARTP>; 

ELSEIF BANDF t 0 AND TF1F = 0 AND TF2F t 0 THEN % F2 MODULATION /. 
TMODCTCALCP,TSTARTP,TF2SPEEDCCURBAND>>; 

ELSEIF BANDF = 0 AND TF1F = 0 AND TF2F t 0 THEN % F2 TO Fl RAMP % 
IF BANDF t PCALCFLAG THEN 

PCALCFLAG := BANDF; 
PARAM<TMF1AMP,TMF1PJ,TF1SPEEDCCURBAND>>; 

END; 
BAND<TF1SPEEDCCURBAND>,TF2F,TF1F,TDEC,TCALCP,TSTARTP>; 

END; 

DELAY!=550-NOWtBEGIN; 
TWAITCSEQEV,DELAY,MAINLOOP>; 
GOTO MAINLOOP; 

LOCERL! 
CLEANUP<>; 

% 1/50 THS TO GET HERE % 
Z WAIT FOR 11 SECS OR EVENT 2 % 



GOTO MAINLOOP; 
~NDPROC; 

~Roe LOCERPCINT N>; 
TWRT<"tNLtERROR NO ">;IWRTFCN,5>;NLSC1>: 

~NDPROC; 

) 



.. 

.. 

TITLE WINDER TACHO TASK. 
CREATED 20~JAN-84 TEK. FILE: WTACHO.RTL 
LAST EDITED 8- MAR-84 DRT; 

LET NL :::: 10; 
LET ENQ :::: 5; 
OPTION (1) BS; 
/. ************************************************************************** % /. * J . * % 
% * WINDER TACHO TASK * % 

7. * * /. 
% ************************************************************************** /. 
SVC DATA RRERR;LABEL ERL;INT ERN;PROC <INT> ERP;ENDDATA; 
SVC DATA RRSIO;PROC <>BYTE IN;PROC <BYTE> OUT;ENDDATA; 

EXT DATA WINDSTOP;INT WSTOP,WENDFRAC,WCNT;ENDDATA; 
EXT DATA TIMEDATA; 

INT NOW; % CYCLIC TICK COUNT % 
INT SECSNOW,MINSNOW; % CYCLIC CLOCK COUNTS /. 
INT NTICKS; % OUTSTANDING TICKS TO PROCESS % 
INT TCOUNT,SECS,MINS,HOURS,DAYS,MONTHS,YEARS; 

ENDDATr1; 

EXT PROC () BYTE RRIN; 
EXT PROC <BYTE> RROUT; 
EXT PROC () INT IREAD; 
EXT PROC CINT,INT> IWRTF; 
EXT PROC <REAL> RWRT; 
EXT PROC <REAL,INT,INT> RWRTF; 
EXT PROC CREF ARRAY BYTE> TWRT; 
EXT PROC <INT> NLS; 
EXT PROC <INT> STOP,DELAY; 
EXT PROC () INT ME; 
EXT PROC CINT,INT,LABEL> TWAIT; 
EXT PROC () CLEANUP; 

ENT PROC WINDTACHC>; 

INT T8SEC! =400; % DELAY T*20 rnS % 
REAL WCONST1,WTIM,IT50HZ! =IT50HZVAL; 
INT WCNTLAST! =100,LASTWSTART,LASTWGOFRAC,NEXTWSTART,NEXTWGOFRAC; 

IN! :::: RRIN; 
OUT!:::RROUT; 
ERL : :::: LOCERL; 
EF\F' : = LOCERP; 
EF:N ! = 0; 

/. INITIALISATION FOR THIS MODULE % 

WCONST1 != 4.0 * CLOCKFREQ/3.0; 

NEXTWSTART != NOW;NEXTWGOFRAC !:::: o; 
WTACHO!=o.o; 
~JCNT ! == 20; 

% 2 PULSES PER REV FOR 4 SECS % 
% OVER 6*CINV OUTPUT> => 4.013.0 % 



WTACHOSTART<); 

WIND1! 

·, ... 

% START INTERRUPT ROUTINES % 

WATCNT(6):=15; % UPDATE WATC~DOG TIMER COUNT PERIOD % 

% CALCULATE COUNT VALUE ON THE CURRENT WINDER OUTPUT % 
X VALUE TO GIVE APPROX 8 SEC COUNT PERIOD % 

1. 

IF WPITVAL<WPOINT) >= IDLESP THEN 
WCNT!=lOO; 

ELSE WCNT:=IF WTACH0>500.0 AND TTACH0>500.0 THEN 
INTCWCONST1/REALCWPITVALCWPOINT))*WTACHO/TTACH0*1•28571) 

ELSE /. 3/2*6/7=CINITIAL R> % 
100 

END; 
END; 

% WAIT FOR EVENT WHICH IS SET BY INTERRUPT SERVICE ROUTINE WHEN % 
/. COUNTER HAS COUNTED WCNT PULSES FROM THE TACHO % 

TWAITCWTACHOEV,T8SEC,WIND2>; 

% CALCULATE WTACHO IN RPM % 

LASTWSTART!=NEXTWSTART; 
LASTWGOFRAC!=NEXTWGOFRAC; 
NEXTWSTART!=WSTOP; 
NEXTWGOFRAC!=WENDFRAC; 

% SAVE OLD START TIME FOR % 
% CURRENT CALCULATION % 
% SAVE NEW START TIME FOR % 
% NEXT CALCULATION % 

~ % CHECK FOR POSSIBLE INTERRUPT CLASH AND IGNORE RESULT IF SO % 

.. 
~.· 

IF LASTWGOFRAC+INTLMT>IT50HZ OR NEXTWGOFRAC+INTLMT>IT50HZ THEN 
WCNTLAST!=WCNT; 
GOTO WIND1 

END; 

WTIM!=REALCWSTOP-LASTWSTART)tREAL<LASTWGOFRAC-WENDFRAC)/IT50HZ; 
WTACH0!=1500.0/WTIM*REAL WCNTLAST; % IN RPM+ % 

WCNTLAST!=WCNT; 

GOTO WIND1; 

WIND2! 
WTACHO:=o.o; 
GOTO WIND1; 

LOCERL! 
CLEANUP(); 
GOTO WINDi; 

ENDPROC; 

PROC LOCERPCINT N>; 

% WCNT/2 REVS IN WTIM 1/50THS SEC % 
% *60 SECS IN 1 MIN => 1500.0 % 

TWRTC'tNLIERROR NO ");IWRTFCN,5>;NLSC1>; 
ENDPROC; 

/. ************************************************************************ % 



I 

··~ ... _. 
-···.,.· · ... -.·· 

7. * * /. X * 8088 MACHINE CODE INSERTS FOR RATIO TASK. * % 
7. * * % 
% ************************************.************************************ % 

PROC WTACHOSTART<>; 
CODE 10,10; 

IT@CTR1@PORT EQU 
;START WINDER COUNT 
;INITIATE INTERRUPT 

MDV AX,SEG 
MOV ES ,ib1X 

OD2H ;SBC TIME~· CHANNEL 1.CFOR WINDER> 
DOWN TO INTERRUPT.CALLED ONCE AT START UP TO 
SEQUENCE. 
*WINDSTOP 

MOV AX,ES:*WCNT/WINDSTOP ;GET WINDER COUNT VALUE. 

*RTL; 
ENDPROC; 

MOV DX,IT@CTR1@PORT 
OUT DX,AL 
MOV AL,AH 
OUT DX,AL 

;LOAD LOW COUNT VALUE. 
;LOAD HI COUNT VALUE. 



TITLE T18 INVERTER CONTROL SYSTEM 
UPDATE MODULE TO INPUT THE TEMPORARY DATABASE 'AWAITUPDATE' 
INTO THE MASTER DATABASE IF ANY OCP INPUTS HAVE OCCURED+ 
DEG 02/11/83 <REFERENDUM DAY> MODULE : DBUP+RTL 
LAST EDITED 2-0CT-84 TEK; 

SVC DATA RRERR;LABEL ERL;INT ERNtPROC CINT> ERP;ENDDATA; 

EXT PROC <INT) WAIT; ) 

ENT PROC UPDATEDB<>; 

% ************************************************************************ /. 
7. * * /. 
% * THIS MODULE/PROC UPDATES THE MASTER DATABASE IF ANY CHANGES * % 
/. * HAVE BEEN MADE TO THE TEMPORARY DATABASE-VIA THE OCP TASK+ * % 
Z * THE PROC WAITS FOR 'DBUPDATE' EVENT ~ SET BY A LOW CHUCK SPEED * Z 
z * * /. 
% ************************************************************************ /. 
ERL:=STARTLB; 
ERN:=o; 
STARTLB: 

WAIT<DBUPDATE>; 
IF UPDATEFLAG = 
IF UPDATEFLAG == 
UPDATEFLAG:=o; 
GOTO STARTLB; 

% EVENT SET BY WTACHOCCHUCK SPEED> LOW % 
0 THEN GOTO STARTLB; END; 
1 THEN GOTO CHANGEDB; END; 

CHANGEDB: 
ERL: """CHANGEDB; 
UPDATEFLAG:==o; 

% ADDED TO VERSION 1+7 BY TEK 11-10-84 /. 

IF ABSCTF1SPEED<1>-INT<CLOCKFREQ/CAWTF1SPEED<1>*6+0))) <= 5 THEN 
RAMPF:=o; % DON'T RAMP FOR SMALL CHANGE % ELSE 

END; 

IF STOPF = 0 THEN 
TF1Fl=l;TF2F:=o; 
BANDF:=o; 

ELSE 
RAMPF:=o; 

END; 

% INITIATES SMOOTH RAMP TO NEW SPEED % 

% DON'T SET FLAGS IF IN STOP STATE % 
/. RESET FLAGS FOR NEW CYCLE % 

% END OF VERSION 1+7 PATCH % 

z ********************************************************************** % 
z * * /. 
% * IF ANY OF THE BANDING POINTS HAVE BEEN CHANGED THEN RE-CONVERT * % 
% * THEM FROM OCP DATA FORM TO DATABASE VALUES+ * % 

% * * % 
% ********************************************************************** % 

FOR I:= 1 TO NUMBAND DO 
IF BANDFLAGCI,1)=1 THEN 

% FREQUENCY BEFORE BANDING AVOIDANCE % 



BANDFLAGCI,1)!= o; 
TF1SPEEDCI):= INTCCLOCKFREQ/CAWTF1SPEEDCI) * 6.0>>; 

END; 
IF BANDFLAGCI,2>=1 THEN_ 

BANDFLAGCI,2>t= o; 
% FREQUENCY DURING BANDING AVOIDANCE % 

TF2SPEEDCI>:= INTCCLOCKFREQ/CAWTF2SPEED<I> * 6.0>>; 
END; 

IF BANDFLAGCI,3)=1 THEN 
BANDFLAGCI,3>:= o; 
RIBS1CI>:= AWRIBS1CI>; 

END; 
IF BANDFLAGCI,4>=1 THEN 

BANDFLAGCI,4)!= o; 
RIBS2CI>!= AWRIBS2CI>; 

END; 
REP; 

% BANDING AVOIDANCE START RATIO % 
I 

% BANDING AVOIDANCE STOP RATIO % 

IF MODFLAGC1>=1 THEN 
MODFLAGCll!=O; 
MAXBAND!=AWMAXBAND; 

END; 
% NUMBER OF BANDING POINTS IN USE % 

% ****************************************~**************************** % 
% * * /. 
% * UPDATE OF MODULATION DATA CHANGES CIF ANY> * % 

% * * % 
% ********************************************************************** % 

IF MODFLAGC2)=1 THEN 
MODFLAG<2>:=o; 
TMF1AMP:=AWTMF1AMP; 

END; 

IF MODFLAGC3>=1 THEN 
MODFLAGC3)t=O; 
TMF2AMP:=AWTMF2AMP; 

END; 

IF MODFLAGC4>=1 THEN 
MODFLAGC4>!=0; 
TMF1PJ:=AWTMF1PJ; 

END; 

IF MODFLAG<5>=1 THEN 
MODFLAGC5>:=0; 
TMF2PJ:=AWTMF2PJ; 

END; 

IF MODFLAGC6>=1 THEN 

% MODULATION AMPLITUDE AT FREQ 1 % 

% MODULATION AMPLITUDE AT FREQ 2 % 

% P-JUMP AMPLITUDE AT FREQ 1 % · 

% P-JUMP AMPLITUDE AT FREQ 2 % 

% PERIOD OF MODULATION % 
MODFLAG<6>t=O; 
TMPERIODt=INT AWTMPERIOD; 

END; 

IF MODFLAG<7>=1 THEN 
MODFLAGC7>:=o; 
TACC!=AWTACC I 1.6667; 

END; 

% ACCELERATION RATE FROM Fl TO F2 % 



I 

.. ··. -~ . . ·-·· . 
•, ::-·-·· 
·-:·: 

IF MODFLAG<8>=1 THEN 
MODFLAG<S>:=o; 
TDEC:=AWTDEC I 1.6667; 

END; 

% ACCELERAT.ION RATE FROM F2 TO Fl % 

% CHANGE WINDER SPEED SETPOINT IF MODFLAGC9)=1 THEN 
MODFLAG<9>:=o; 
WSPEED:=INT <CLOCKFREQ 

END; · 

NOPI!=OPINUM; 
OPINUM:=O; 

ERL!=STARTLB; 
GOTO STARTLB; 

ENDPROC; 

. ·_ .. 

I CAWWSPEED * 6.0>>; 
) 

% . 

-· -..... 

-. 



TITLE DATALINK TO HOST 
M+MALENGRET 20-DEC-83 
LAST EDITED 16-JUL-84 DRT 

MODULE*********LINKDA+RTL************ 

+ 

' LET SYNC='U'; 
STX =2; 
LINKRXEV=6; 
CR=13; 
E<UFSIZE::::138; 
NL=10; 
SP=32; 

'· ·:- -
.: ,,,_, .. _ 

. '· 

LET 
LET 
LET 
LET 
LET 
LET 
LET DLMSGSNDCMP=7; % DL MSG SEND COMPLETE E0ENT FLAG % 

SVC DATA RRSIO;PROC <>BYTE IN;PROC <BYTE> OUT;ENDDATA; 
SVC DATA RRERR;LABEL ERL;INT ERN;PROC <INT> ERP;ENDDATA; 

EXT PROC <INT,INT,LABEL> TWAIT; 
EXT PROC <>BYTE INPORTA; 
EXT PROC <BYTE>RROUT; 
EXT PROC (REF ARRAY BYTE>TWRT; 
EXT PROC <INT>IWRT; 
EXT PROC <>RETEV; 
EXT PROC <INT>QEV; 
EXT PROC <INT>WAIT; 
EXT PROC <>PTORTL; 
EXT PROC CINT> SENDBUFF; 
EXT PROC <INT> RESET; 

EXT DATA BUFFERS; 
BYTE CHAR; 
ARRAY<BUFSIZE>BYTE RXBUFF; 
INT LRBP, 

ENDDATA; 

LTBP, 
LRCOUNT, 
LTMAX, 
SEND; 

ENT PROC SENDME<>; 
BYTE TYPE,MESSAGE,ERRNO; 
REAL RTEMP; 
INT I,CRS,STBIT,M; 
REF INT RU::::r; 
ERL:=LOCERL; 
OUT:=RROUT; 

START:
RESETCDLMSGSNDCMP>; 
CRS t =12; 
LRBP!=O; 
WAIT<LINKRXEV>; 
IF CHECKSUMC)IO THEN 

ERRNO t =1;. 
GOTO ERROF: 

END; 

. \.. .- : 

. ' 



MESSAGE!=RXBUFFC5>; 
IF MESSAGE='R' THEN GOTO RXMESS; 
ELSEIF MESSAGE='S' THEN GOTO SXMESS; 
ELSEIF MESSAGE='Z' THEN 

DABLTXC>; 
GOTO START; 

ELSE ERRN0:=2; GOTO ERROR; 
END; 

RXMESS: 
PAKRCTTACHO,RXBUFF<12>>; 
PAKRCWTACHO,RXBUFFC16)); 
RTEMP!=CLOCKFREQ/CTPITVALCTPOINT>*6.0); 
PAKRCRTEMP,RXBUFFC20>>; 
RTEMP!=CLOCKFREQ/CWPITVALCWPOINT>*6•0>; 
PAKRCRTEMP,RXBUFF(24>>; 
RXBUFFC28>:=BYTE CURBAND; 
PACKICNOPI,RXBUFFC29>>; 
RXBUFFC31)!=IF TF2F=1 OR BANDF=l THEN 1 

CRS!=32; 
GOTO OKEY; 

SXMESS: 

ELSEIF TF1F=1 AND WRUNF=1 THEN IF WTACH0<500.0 THEN 4 ELSE 2 END 
ELSEIF STARTF=l OR SYNCF=l THEN 3 
ELSEIF STOPF=1 AND TTACH0<500.0 THEN 6 
ELSEIF STOPF=l THEN 5 
ELSE 7 
END; 

TYPE:=BYTE<RXBUFFC11>>; 
SWITCH TYPE OF BADTrTYPE2,TYPE3,TYPE4,TYPE5; 

BADT: 
ERRN0!=3; GOTO ERROR;%NO TYPE 1 FDR S MESSAG~% 

TYPE2: 
UNPACKICRXBUFFC12>,0PINUM>; 
FOR K!=1 TO 15 DO 

UNPAKRCRXBUFF<10+K*4>,AWTF1SPEED<K>>; 
UNPAKR<RXBUFFC70+K*4>,AWTF2SPEEDCK>>; 
BANDFLAGCK,1>:=1; 
BANDFLAGCK,2>!=1; 

REP; 
GOTO OKEY; 

TYPE3t 
UNPACKICRXBUFFC12>,I>; 
IF IIOPINUM THEN ERRN0:=4$0PINUMt=O;GOTO ERROR END; 
FOR K:=l TO 15 DO 

UNPAKRCRXBUFF<10+K*4>,AWRIBS1CK>>; 
UNPAKRCRXBUFF<70+K*4>,AWRIBS2CK>>; 
BANDFLAGCK,3>:=1; 
BANDFLAGCK,4>:=1; 

REP; 
GOTO OKEY; 

TYPE4: 
UNPACKI<RXBUFFC12>,I>; 
IF IIOPINUM THEN ERRN0:=4;0PINUM:=O;GOTO ERROR END; 
UNPAKR<RXBUFFC14),AWTMF1AMP>; 
UNPAKRCRXBUFFC18>,AWTMF2AMP>; 
UNPAKRCRXBUFFC22),AWTMF1PJ>; 
UNPAKRCRXBUFFC26),AWTMF2PJ>; 
UNPAKRCRXBUFFC30>vAWTACC>; 



I 

UNPAKR<RXBUFF(34>,AWTDEC>; 
UNPAKRCRXBUFFC38>,AWTMPERIOD>; 
UNPAKR<RXBUFFC42>,AWWSPEED>; 
AWMAXBAND:=RXBUFFC46); 
FOR K!=l TO 9 DO MODFLAG<K>!=l REP; 
UPDATEFLAG!=l; 
GOTO OKEY; 

TYPE5! 
FOR K:=l TO 20 DO 

UNPACKICRXBUFF<12+K*2>,PEOPLE<K>>; 
SECCODECK>!=RXBUFF<Kt53>; 

REP; 
NOVALID!=20; 
GOTO OKEY; 

ERROR: 
SETSTARTC>;RXBUFFC5)!='N';RXBUFFC10>:=1; 
RXBUFFC11>!=ERRNO; 
RXBUFF<12>t=CALCCSUMC12>; 
SENDBUFFC12>; 
GOTO TSTCMP; 

OKEY! 
SETSTARTC>; 
RXBUFFC5>:='A'; 
RXBUFFClO>!=BYTECCRS-11); 
RXBUFFC11)!=TYPE; 
RXBUFFCCRS>!=CALCCSUMCCRS>; 
SENDBUFFCCRS>; 

TSTCMP: 
TWAITCDLMSGSNDCMP,10,CLR>; 
M!=O; 
WHILE M<50 DO;% WAIT FOR SERIAL BUFFER TO BE EMPTY, BUT NOT TOO LONG % 

FOR K!=l TO 5 DO 
CODE o,o; 

MOV DX,OA2H ; PIGGY BACK STATUS ADDRESS 
IN AL,DX ; READ STATUS 
AND AL,04H ; CHECK TXE BIT 
MOV SS!CBP+*STBITJ,AL 

*RTL; 
M!=M+l; 
IF STBIT=O THEN GOTO NOTYET END; 
REP; 
GOTO CLR; 

NOTYET: 
REP; 

CLR! 
DABLTXC>; 
GOTO START; 

LOCERL! 
TWRTC"INLt DATA LINK COMMS TASK ERROR ERN - ">; 
IWRTCERN>; 
OUTCNL>; 
GOTO START; 

ENDPROC; 

PROC SETSTARTC>; 
RXBUFF<l>:=SYNC; 
RXBUFF<2l:=STX; 
RXBUFF(3)!=MYADDRESSC>; 



' . ' : 

RXBUFF<4>:='@';%DEST ADDR% 
ENDPROC; 

PROC DABLTX<>; 
CODE o,o; 

MDV DX, OA2H ; PIGGY BACK SERIAL PORT 
MOV AL, 037H ; ENABLE RX & TX AND RESET ERROR FLAG AND DTR & RTS = 1 
OUT DX,AL ; WRITE ABOVE CMD 

*RTL; 
ENDPROC; 

ENT PROC MYADDRESS<>BYTE; 

J 

RETURN<BYTE<INPORTAC>LAND HEX OF t 64>>;% IE SET SITE 1 TO ADDRESS A% 
ENDPROC; 

PROC CALCCSUMCINT A>BYTE; 
INT TMP!=O; 
FOR I:= 3 TO A-1 DO 
TMP!=TMP-RXBUFF<I>; 
REP; 
RETURNCBYTE TMP>; 

ENDPROC; 

PROC CHECKSUMC>BYTE; 
INT TMP!=O; 

FOR I!=3 TO LRBP DO 
TMP!=TMP+RXBUFFCI>; 

REP; 
RETURNCBYTE TMP>; 

ENDPROC; 

PROC PACKICREF INT RI,REF BYTE RB>; 
BLOCK REF BYTE RBTMP!=RB;ENDBLOCK; 
BLOCK REF INT RI1; 

VAL Ril!=RI; 
ENDBLOCK; 

ENDPROC; 

PROC UNPACKICREF BYTE RB,REF INT RI>; 
BLOCK REF BYTE RBTMP!=RB;ENDBLOCK; 
BLOCK REF INT RI1; 

VAL RI!=Ril; 
ENDBLOCK; 

ENDPROC; 

PROC UNPAKRCREF BYTE RB,REF REAL RR>; 
BLOCK REF REAL RRTMP!=RR;REF BYTE RBTMP!=RB;ENDBLOCK; 
BLOCK INT I1,I2,I3,I4; 

I2!=I2+2; % ORDER OF WORDS IN REAL IS REVERSED AS WELL % 
ENDBLOCK; 
BLOCK REF INT RI1~RI2; 

% REDUCE BIAS ON EXPONENT BY 2 PDP TO INTEL REAL FORMAT % 
VAL RI1!=IF RI2=0 THEN 0 

ELSE <RI2 LAND HEX 807F>LOR CRI2 LAND HEX 7F80 - HEX 100) 
END; 

ENDBLOCK; 
BLOCK INT I1,I2,I3,I4; 

r2:~12-2; 

% DOUBLE WORD REF'S SEG AND POINTER % 



··:·· ... ,: 

I4!=I4+2; 
ENDBLOCK; 
BLOCK REF INT RI1,RI2; 

VAL RI1 ! =RI2; 
ENDBLOCK; 

ENDF'ROC; 

A',., .. ,• .••' 

PROC PAKR<REF REAL RR,REF BYTE RB>; I 

BLOCK REF REAL RRTMP!=RR;REF BYTE RBTMP!=RB;ENDBLOCK; 
BLOCK INT I1,I2,I3,I4; 

I2!=I2+2; 
ENDBLOCK; 
BLOCK REF INT RI1,RI2; 

% INCREASE BIAS OF EXPONENT BY 2 INTEL TO PDP REAL FORMAT.CONVERSION% 
VAL RI2!=IF RI1=0 THEN 0 

ELSE CRI1 LAND HEX 807F>LOR CRI1 LAND HEX 7FBO t HEX 100) 
END; 

ENitBLOCK; 
BLOCK INT I1,I2,I3,I4; 

I2!=I2-2; 
I4!=I4+2; 

ENitBLOCK; 
BLOCK REF INT RI1,RI2; 

VAL RI2!=RI1; 
ENDBLOCK; 

ENitF'ROC; 

% DOUBLE WORD REF'S SEG AND POINTER % 



. . ~ '.- . . ... 
'.:. ... ' ........ · ... , ... • .·· 

TITLE DRIVER MODULE FOR COMMS BETWEEN iSBC AND HOST 
M.MALENGRET 20-DEC-83 
LAST EDITED 2-MAR-84 DRT 
MODULE ** LINKDR.RTL ***; 

LET SYNC='U'; 
LET STX=2; 
LET LINKRXEV=6; 

_J LET CR=13; 
LET BUFSIZE=138; 
LET SOURCEADDRESS='@'; 

) 

LET DLMSGSNDCMP=7; % DATA LINK MSG SEND COMPLETED EVENT % 

EXT PROC <>RETEV; 
EXT PROC CINT>QEV; 
EXT PROC ()PTORTL; 
EXT PROC () RETFIN; 
EXT PROC <>BYTE INPORTA; 

ENT DATA BUFFERS; 
. BYTE CHAR: =CR; 

ARRAY<BUFSIZE>BYTE RXBUFF; 
INT LRBP:=O, 

LTBP:=O, 
LRCOUNT:=Or 
LTMAX:=o~ 

SEND; 
ENIIDATA; 

ENT PROC HOSTLINKC>; 
CODE 24,0; 
SIO@DATA@PORT EQU OAOH 
SIO@STAT@PORT EQU 0A2H 
PUBLIC LINKRXINT 

&CRN P,LINKRXINT,QOZ 
LINKRXINT! 

CALL RP@PTORTL 
MDV DX,SIO@DATA@PORT 
IN AL,DX. 
MOV .*CHAR/BUFFERS,AL 
*F<TL; 
LRBP:=LRBP+l; 
SWITCH LRBP OF SYNCHAR,STXCHAR,SRADDR,DTADDR,RET,RET,RET, 
RET,RET,LNGTH; 
GOTO CONT; 

SYNCHAR: 
IF CHARISYNC THEN LRBP:=O;GOTO CON1 END;GOTO RET; 

STXCHAR! 
IF CHAR=STX THEN GOTO RET END; 

RETST! 
LRBP:=1;GOTO SYNCHAR; 

SRADDR: 
IF CHAR=SOURCEADDRESS THEN GOTO RET ELSE GOTO RETST END; 

ItTADDR: 
IF CHAR=DESTADDR<> THEN GOTO RET ELSE GOTO RETST END; 

LNGTH: 
LRCOUNT:=CHAR; 
IF LRCOUNTt11>LENGTH RXBUFF THEN LRCOUNT!=O END; 

.. · .. 
. ,... : 

••• -~ •• _!.... ·~~~--~-

:.···r 

·.·."·:··."· . 

. ~ ... . --= .. . ~ 



TITLE 
STANDARD INTERACTIVE PROCS 
MODIFIED FROM CONMAC FOR SANS P17 PACKERMAC 19 9 80 

10/12/81 ADDED EXECODE, R_EMOVED EXEQUES 
20/4/84 LAST EDITED DRT 

MODULE *** INTSTD.RTL *** ; 
%EDITED 16-9-83 DRT FOR USE IN MAGIC MICRO SYSTEM,% 

% CONVERSATIONAL PROGRAMS ARE MORE EFFECTIVE WHEN THEY MAKE USE OF A GOOD % 
% SET OF STANDARD INTERACTIVE PROCS. THE OBJECTIVES ARE++• % 
% (1) TO MAKE PROGRAMS MORE COMPACT % 
% (2) TO SIMPLIFY TRAINING BY CONVERSING IN A CONSISTENT METHOD & STYLE % 
% (3) TO ENCOURAGE OPTIONAL EXPLANATIONS. EXPERIENCED OPERATORS WILL HOLD % 
% 
•1 

'" 
% 

RAPID CONVERSATIONS IN THE COMPACT ·cuE & REPLY' FORM, WHILE THE % 
LESS CONFIDENT MAY RESPOND WITH 0 x•. THIS SHOULD RESULT IN MORE% 
EXPLANATIONS BEING PROGRAMMED WHILE AVOIDING UNSOLICITED CLUTTER. % 

% (4) TO INSIST THAT CHANGES ARE PROPERLY COMPLETED ON •EXECUTE" % 
AND A HARD-COPY JOTTING IS MADE. % 

% PROGRAMMERS MAY HAVE SOMETIMES TO CREATE THEIR OWN SPECIAL PROCS! % 
% THESE SHOULD CONFORM A.F.A.P. TO THE STYLE OF THE STANDARDS BELOW. % 

LET REJECT== 'Z'; 
LET BACKSPACE==OCT 10; 
LET NL ::-! 10t 
LET YEr'liH = 1; 
LET SP ::: 32; 
LET EOM == 3; 
LET ENQ = 5; 
LET ON:=l; 
LET OFF=:O; 

EXT PROC (REAL,INT,INT> RWRTF; 
EXT PROC () REAL RREAD; 
EXT PROC <> INT IREAD,ME; 
EXT PROC CINT) TIMDAT, IWRT, DELAY; 
EXT PROC CINT) SPS; 
EXT PROC CINT,INT) IWRTF; 
EXT PROC <REF ARRAY BYTE> TWRT; 
EXT PROC <> SETNECHO; 

s1.,.•c Dt'liTA 1:msio; 
PROC () BYTE IN; PROC <BYTE> OUT; 

ENDDtiTA; 

S1JC DATA RFiERR; 
LABEL ERL; INT ERN; PROC CINT> ERP; 

ENDDATA; 

SVC DAT'~ R!:::SED; 
• BYTE TERMCH, IOFLAG; 
=- ENDDATA; 

• EXT DATA TIMEDATA; 1 

INT NOW,SECSNOW,MN,NTICKS,TCOUNT,SECS,MINS,HRS,DAYS,MONTHS,YEARS; 
ENDDATA; 



ENT PROC NOXPLNTN <INT J>; 
TWRTC"tNLt SORRY - NO EXPLANATION AVAILABLE•>; 

ENDPROC; 
I 

ENT PROC IREPTO <REF ARRAY 
PROC <INT> REMERPt=ERP; 
INT J; 

BYTE CUE, INT MIN,MAX, PROC<INT> XPLNTN> INT; 

ERPt=XPLNTN; 
RPT! 

OUT<NL>; TWRTCCUE>; TWRT<• = IENQt•>; 
Jt=IREAD<>; 
IF J<MIN OR J>MAX OR IOFLAGIO THEN 

IF IOFLAG = 0 THEN 
TWRT<' INVALID NO •>; 

ELSE 
IOFLAG != O; 

END; 
GOTO RPT; 

END; 
ERPt=REMERP; 
RETURNCJ>; 

ENIIPROC; 

l 

%ENT PROC RREPTO <REF ARRAY BYTE CUE, REAL MIN,MAX, PROCCINT> XPLNTN> REAL;% 
/. REAL Rt;~ 

% PROC <INT> REMERP!=ERP; ERP!=XPLNTN;% 
/.RPTt/. 
% OUTCNL>; TWRT<CUE>; TWRTc• = IENQI">;% 
% Rt=RREADC>;X 
% IF R<MIN OR R>MAX OR IOFLAGIO THEN% 
% IF IOFLAG = 0 THEN% 
% TWRT<' INVALID NO 0 );% 
I. ELSE% 
% IOFLAG != O;% 
% END;% 
% GOTO RPT;% 
i:: END;% 
% ERP!=REMERP;% 
7. RETlJRN<R>;% 
/.ENDPROC;% 

ENT PROC CHOICE <REF ARRAY BYTE CUE, REPLIST, PROCCINT> XPLNTN> INT; 
INT L!=LENGTH REPLIST; BYTE c; 

RPTtOUTCNL>; TWRTCCUE>; TWRTC' c•>; 
FOR J!=l TO L DO 

OUTCREPLISTCJ>>; IF J<L THEN OUT('/') END; 
REP; 
TWRTC"> 1 IENQt•>; 
Ct=IN<>; IF C='X' THEN XPLNTN<O>; GOTO RPT; END; 
FOR J!=l TO L DO 

IF C=REPLISTCJ> THEN RETURNCJ) END; 
REP; 

I IF c = EOM THEN 
RETURNCO>; 

END; 
TWRT<' NOT IN LIST 0

); GOTO RPT; 

I 



ENtrPROC; 

ENT PROC EXECODECINT SECURITY>INT; %SECURITY=O-NO SECURITY% 
- %RETURNS O~INVAL1D% 

% -1 NO SECURITY/. 
% 1-30 OPS NO% 

INT PERSON:=-1,PCODE:=O,NOCHAR!=2; 
IF SECURITYtO THEN 

' ,, 
TWRTC 1 tNLISECURITY EXECUTE:•>; 
PERSON!=IREPTOC 1 0PERATOR N0 1 ,1,NOVALID,NOXPLNTN>; 
SETNECHO<>; 
PCODE:=IREPTO<"CODE NOa,1,32767,NOXPLNTN>; 
IF PEOPLECPERSON>IPCODE OR SECCODECPERSON><SECURITY 

TWRTC 1 INVALID NO 1 >;0UTCNL>;RETURNCO>; 
END; · 

END; 
IF CHOICEC 1 EXECUTE 1

,
1 YN 1 ,NOXPLNTN>=l THEN 

TWRTC 1 EXECUTED">;RETURNCPERSON>; 
END; 
RETURNCO>; 

ENDPROC; 

EXT DATA PATTERNS; %DATA 'PATTERNS' IN SMT% 
ARRAYC16)INT MASKS; 

ENDirATA; 

ENT PROC SETBITCINT BITNO,REF INT WD,INT V>; 
IF V:ll=O THEN 

VAL WD:=WD LOR MASKSCBITNO>; 
ELSE 

VAL WD!=WD LAND NOT MASKSCBITNO>; 
END; 

ENDPROC; 

ENT PROC SETBYTCINT BITNO,REF BYTE WD,INT V>; 
IF V=1 THEN 

VAL WD:=WD LOR BYTECMASKSCBITNO>>; 
ELSE 

VAL WD!=WD LAND BYTECNOT MASKSCBITNO>>; 
END; 

ENitPROC; 

ENT PROC VALBITCINT BITNO,WD>INT; 
IF WD LAND MASKSCBITNO>IO THEN RETURN<l> END; 
RETURN<O >; 

ENDPF:OC; 

DATA DIG; 
BYTE OUTSTORE!=O; 

ENDDATA; 

ENT PROC DIGOUT<BYTE SELECT,STATE>; 

THEN 

REF BYTE STORE!=OUTSTORE;SETBYTCSELECT,STORE,IF STATE=l THEN 0 ELSE 1 END>; 
OUTPORTBCOUTSTORE>; 

ENDPROC; 

ENT PROC DIGINCBYTE SELECT>BYTE; 
INT INPUT!=INPORTA<>; 



IF VALBITCSELECT,INPUT>=ON THEN RETURN<O>END; 
RETURN<1>; 

ENDPROC; 

PROC OUTPORTB<BYTE STATE>; 
CODE 20,0; 

PORTBADDR EQU OCAH 
OUTP: 

MDV AL,SStCBP+*STATEJ 
OUT PORTBADDR,AL 

*RTL 
ENDPROC; 

ENT PROC INPORTAC>BYTE; 
BYTE A; 
CODE 14,0; 
PORTAADDR EQU OC8H 
IN AL,PORTAADDR 
MOV ss:rBP+*AJ,AL 
*RTL; 
RETURN<A>; 

ENDPROC; 

;LOAD STATE VALUE TO REci AX 
;OUTPUT BINARY VALUE OF STATE 



TITLE PROCS USED MORE THAN ONCE BY WINDER & TRAVERSE TASKS+ 
CREATED 22-SEP-83 BY TEK. FILE COMPROC.RTL 
LAST EDITED 2-0CT-84 BY TEK; 

LET SETF=l; 
LET RESETF=O; 
LET NL=10; 
LET DELOFFSET = 3; 
OPTION (1) BC; 

) 

: -: ~,<.- . 

% *********************************************************************** % /. * * /. 
% * PROCS COMMON TO SEVERAL PARTS OF THE WINDER * % 
% * AND TRAVERSE CONTROL TASKS. * /. 
% * * % 
% *********************************************************************** % 

SVC DATA RRSIO;PROC C> BYTE IN;PROC CBYTE> OUT;ENDDATA; 

EXT PROC () BYTE RRIN; 
EXT PROC CBYTE> RROUT; 
EXT PROC CREF ARRAY BYTE> TWRT; 
EXT PROC CINT,INT> IWRTF; 
EXT PROC <INT> NLS; 
EXT PROC CREAL,INT,INT> RWRTF; 

% *************************************** % 
% RAMP DOWN TO STOP ********************* % 
/. *************************************** % 

ENT PROC DOWNRAMPCREF ARRAY INT PITVAL,INT CALCP,STARTP,REF REAL DEC>; 
INT LASTDR,CURRENT; 

% CALCULATES CONTROL TABLE VALUES FOR STOPPING MACHINE % 

FOR I:=O BY 1 TO 1 DO % HOLD SPEED CONST FOR 2 TICS % 
PITVALCCSTARTP + I>LAND HEX 7F + l>t=PITVALCSTARTP>; 

REP; 

CALCP:=<CALCP+2>LAND HEX 7F + 1; 
LASTDRt=PITVALCCALCP>; 

DRLOOP: 
CURRENTt=INTC<CLOCKFREQ*LASTDR>ICCLOCKFREQ-LASTDR*DEC>>; 

IF CURRENT > IDLESP THEN 
CURRENTt=IDLESP; % CAN'T GO-LESS THAN 240 HZ % 
RUNCPITVAL,CALCP,STARTP,CURRENT>; % FILL REST OF TABLE WITH STOP VALS % 
GOTO DREXIT; 

END; 

PITVALCCALCP>:=CURRENT; 
LASTDR:=CURRENT; 
CALCPt=CALCP LAND HEX 7F t 1; 

IF CALCP = STARTP THEN 
GOTO DREXIT; 

% WRITE NEW VALUE INTO TABLE % 
% REMEMBER CURRENT VALUE % 
% DO NEXT TABLE VALUE % 

% FILLED THE TABLE YET? % 



. ·.: . .. .:.. :. ·. '·· - .. .,. . . ·-. - . · .. •. 

- •• :. L --- • • •• • •• _.,: __ "•• .-•, ••• ·~~ •• ~ ....... •• - <- •..• ~. ' ... . . 

ELSE GOTO DRLOOP; 
END; 

DREXIT! 
ENDPROC; 

/. *************************************** % 
% RAMP UP TO RUN ************************ % 
/. *************************************** /. 

- . . .. ··~ .... . \:~ . 

'l • (.;: •. , ; .. ,.;,., ·• ·; • '" 

) 

ENT PROC UPRAMPCREF ARRAY INT PITVAL,INT CALCP,STARTP,SPEED,REF INT RUNF, 
REF REAL ACC>; 
INT LASTUP,CURRENT; 

% CALCULATES CONTROL TABLE VALUES FOR RAMPING MACHINE UP,% 

FOR I!=O BY 1 TO 1 DO % HOLD SPEED CONSTANT FOR 2 TICS% 
PITVALCCSTARTP + I>LAND HEX 7F + l>:=PITVAL<STARTP>; 

REP; 

CALCP!=CCALCP+2>LAND HEX 7F t 1; 
LASTUP!=PITVALCCALCP>; 

UPLOOP! 
CURRENT!=INTCCCLOCKFREQ*LASTUP)/(CLOCKFREQtLASTUP*ACC>>; 

IF CURRENT <= SPEED THEN 
CURRENT!=SPEED; % CURRENT SPEED = SET SPEED % 
VAL RUNF!=SETF; % SET THE RUN FLAG % 
RUN<PITVAL,CALCP,STARTP,CURRENT>; % FILL REST OF TABLE WITH RUN VALS % 
GOTO UPEXIT; 

END; 

LASTUPt=CURRENT; 
PITVALCCALCP)!=CURRENT; 
CALCP!=CALCP LAND HEX 7F t 1; 
IF CALCP = STARTP THEN 

GOTO UPEXIT; 
ELSE GOTO UPLOOP; 
ENI1; 

UPEXIT: 
ENDPROC; 

% REMEMBER CURRENT VALUE % 
% WRITE NEW VALUE INTO TABLE % 
% INCREMENT THE POINTER % 

/. *************************************** /. 
% RUN AT CONSTANT SPEED ***************** % 
/. *************************************** % 

ENT PROC RUN<REF ARRAY INT PITVAL,INT CALCP,STARTP,FREQ>; 

I % CALCULATES CONTROL TABLE VALUES FOR STEADY OUTPUT FREQUENCY % 

• • RUNLOOP! 

I PITVAL<CALCP>:=FREQ; % OUTPUT A VALUE TO THE TABLE /. 
CALCP:=CALCP LAND HEX 7F t 1; % INCREMENT POINTER % 

I 

I 

IF CALCP = STARTP THEN 
GOTO RUNEXIT; 

% END OF TABLE YET? % 



ELSE GOTO RUNLOOP; 
END; 

RUNEXIT! 
ENDPROC; . 

. . 

% *************************************** % 
% CALCULATE MODULATION PARAMETERS ******* % 
% *************************************** % 

) 

ENT PROC PARAMCREF REAL TMFXAMP,TMFXPJ,REF INT TMFXSPEED>~ 
REAL K2; 

K2:=100.0*TMFXSPEED; % PARAM CALC CONSTANT % 

TRAMPTIMEt=5*TMPERIOD-THOLD; 

IF TMFXAMP <= 0+01 THEN 
TFXUPSTART:=TFXUPSTOP:=TFXDOWNSTARTt=TFXDOWNSTOP:=TMFXSPEED; 
TFXUPINC:=TFXDOWNDEC:=o.o; 

ELSE 
TFXUPSTART:=INTCK2/C100.0-TMFXAMP+TMFXPJ>>; 
TFXUPSTOPt=INTCK2/C100.0+TMFXAMP>>; 
TFXUPINC:=CREAL TFXUPSTOP-REAL TFXUPSTART)/REAL TRAMPTIME; 

TFXDOWNSTART:=INTCK2/C100.0tTMFXAMP-TMFXPJ>>; 
TFXDOWNSTOP:=INTCK2/C100.0-TMFXAMP>>; 
TFXDOWNDEC:=CREAL TFXDOWNSTOP-REAL TFXDOWNSTART>IREAL TRAMPTIME; 

END; 
ENDPROC; 

~ 

% *************************************** % 
• % MODULATION RUN VALUES ***************** % 

% *************************************** % 

ENT PROC TMODCINT TCALCP,TSTARTP,REF INT TFXSPEED>; 

% FILLS TCONTTABLE WITH MODULATION COUNT VALUES % 

INT CCNOW,CCCOUNT,TARGET,I,VALUE,A1,A2,FLAG; 
REAL RATE,TEMP; 

TCALCPt=CTCALCPtTHOLDtDELOFFSET>LAND HEX 7F + 1; 
% DELOFFSET LEAVES SEVERAL VALUES UNTOUCHED TO LEAVE TIME FOR % 
% CALCULATION. ALSO USED IN PROC BAND AND MUST HAVE SAME VALUE % 

CCNOW!=TSTATCTCALCP>; % GET CURRENT COND CODE% 
FLAG := o; 

SWITCH CCNOW OF ONE,TWO,THREE,FOUR; 

ZERO: TARGETt=TFXUPSTOP; 
CCNOW:=1; 
RATE:=TFXUPINC; 
TEMP!=TFXSPEED; 
GOTO MODO; 

ONE! TARGET:=TFXUPSTOP; 
RATE!=TFXUPINC; 

-.,, 

% SELECT CALCULATION PARAMETERS % 
% APPROPRIATE FOR CONDITION CODE % 
% CORRESPONDING TO STARTING POINT % 



·t 
'I 

i 
1 
I 

-• 

. .. 
. . . ·. -· -

·.. . 

TEMP := TFXUPSTART; 
CCCOUNT := TRAMPTIME; 
GOTO MOD1; 

: .. ~·· . ... 
- .; ·.~ -. - :· · . 

TWO: WHILE TSTATCTCALCP> :::: 2 DO z· MOVE POINTER TO START OF P-JUMP % 
TCALCP t= CTCALCP - 2) LAND HEX 7F t 1; 

REP; 
CCNOliJ: =U 
CCCOUNT ::::: o; 
GOTO MOD3; 

THREE:TARGET:=TFXDOWNSTOP; 
RATE:=TFXDOWNDEC; 
TEMP := TFXDOWNSTART; 
CCCOUNT t= TRAMPTIME; 
GOTO MOD1; 

) 

FOUR: WHILE TSTAT<TCALCP) :::: 4 DO % MOVE POINTER TO START OF P-JUMP % 
TCALCPt=CTCALCP - 2> LAND HEX 7F t 1; 

MODO: 

REP; 
CCNOliJ: =3; 
CCCOUNT ::::: o; 
GOTO MOD3; 

TEMP:=TEMP + RATE; 
TPITVALCTCALCP>:=INT<TEMP>; 
TSTATCTCALCP>:=BYTE<CCNOW>; 
IF INT<TEMP> <= TARGET THEN 

TPITVALCTCALCP>!=TARGET; 
FOR I := 1 TO THOLD DO 

% RAMP UP TO TFXUPSTOP IF % 
Z THIS IS FIRST ENTRY TO % 
% THIS PROC AFTER START UP % 

TCALCP := TCALCP LAND HEX 7F + 1; 
IF TCALCP = TSTARTP THEN RETURN;END; 
TPITVALCTCALCP> := TFXDOWNSTART; 
TSTATCTCALCP> := 2; 

REP; 
CCNOliJ t= 3; 
RATE := TFXDOWNDEC; 
TARGET := TFXDOWNSTOP; 
CCCOUNT ::::: TRAMPTIME; 
TEMP != REAL TFXDOWNSTART; 
GOTO MOD2; 

ELSE TCALCP!=TCALCP LAND HEX 7F + 1; 
IF TCALCP :::: TSTARTP THEN 

RETURN; % EXIT IF TABLE HAS BEEN FILLED % 
END; 
GOTO MODO; 

END; 

MOD1! 

Ai != TPITVALCTCALCP>; 
A2 := o; 
I := <TCALCP - 2> LAND HEX 7F t 1; 

% OBTAIN VALUES FOR CCCOUNT AND % 
% TEMP FOR CURRENT % 
% STARTING POINT IN TABLE % 

WHILE TPITVAL<I> = Al AND CCCOUNT t 0 DO 
CCCOUNT t= CCCOUNT - 1; % OF CURRENT LEVEL OF TPITVAL % 
I t= CI - 2> LAND HEX 7F + 1; 
A2 := A2 + 1; 

REP; 

·.~ .... 



: ,_._; 

IF CCNOW = 1 THEN 
WHILE INTCTEMP> > Al AND CCCOUNT i 0 DO 

% FIND NUMBER OF 100 MS STEPS FROM % 
TEMP := TEMP + RATE; % STARTING POINT TO CURRENT LEVEL OF % 
CCCOUNT := CCCOUNT - 1; % TPITVAL AND CORRESPONDING CCCOUNT % 

ELSE 

END; 

REP; 

WHILE INTCTEMP> < Al AND CCCOUNT t O DO 
TEMP := TEMP + RATE; 
CCCOUNT := CCCOUNT - 1; 

REP; 

TEMP !=TEMP+ CA2 *RATE>; 
GOTO MOD3; 

MOD2t 

TCALCPt=TCALCP LAND HEX 7F + 1; 

IF TCALCP = TSTARTP THEN 
RETURN; 

END; 

) 

TEMP!= TEMP + RATE; 
TSTATCTCALCP>:=BYTECCCNOW>; 
TPITVALCTCALCP>t=INT TEMP; 

% UPDATE CONTROL TABLE VALUE % 
% UPDATE COND CODE TABLE % 

CCCOUNT:=CCCOUNT-1; 

MOD3! 
IF CCCOUNT > O THEN GOTO MOD2;END; 

IF CCNOW = 1 THEN 

FDR I != 1 TO THOLD DO 
TCALCP:=TCALCP LAND HEX 7F + 1; 
IF TCALCP = TSTARTP THEN RETURN;END; 
TPITVALCTCALCP) t= TFXDOWNSTART; 
TSTATCTCALCP> t= 2; 

REP; 
CCNOW := 3; 
RATE t= TFXDOWNDEC; 
TARGET ~= TFXDOWNSTOP; 
TEMP != REAL TFXDOWNSTART; 
CCCOUNT != TRAMPTIME; 

ELSE % IF CCNOW != 3 % 
/ 

FOR I != 1 TO THOLD DO 
TCALCP := TCALCP LAND HEX 7F +1; 
IF TCALCP = TSTARTP THEN RETURN;END; 
TPITVALCTCALCP> t= TFXUPSTART; 
TSTATCTCALCP) != 4; 

REP; 
CCNOW != 1; 
RATE := TFXUPINC; 



TARGET := TFXUPSTOP; 
TEMP != REAL TFXUPSTART; 
CCCOUNT := TRAMPTIME; 

END; 
FLAG : :::: 0; 
GOTO MOD2; 

ENDPROC; 

% *************************************** % 
X GO TO/FROM BANDING ******************** % 
% *************************************** % 

ENT PROC BAND<REF INT TFXSPEED,FLAG1,FLAG2,REF REAL RATE,INT TCALCP,TSTARTP>; 

% FILLS TCONTTABLE WITH RAMP VALUES ON ENTRY TO OR EXIT FROM A BANDING POINT % 

INT .J,K,DIFF; 
REAL TEMP,SLOPE; 

IF TEMPFLAG I 0 AND TSTAT<TCALCP) 
VAL FLAG2 := FLAG2 NEV 1; 
VAL FLAG1 != FLAG1 NEV 1; 
TEMPFLAG := o; 

I 0 THEN % IE AT NEW MODULATION POINT % 
% FOR THIS CONDITION TCALCP MUST % 
% NOT BE MOVED BACK 3 PLACES, SO % 
% GO TO TMOD DIRECTLY % 

GOTO Br'liND4; 

SLOPE := REAL TPITVALCTCALCP>*Cl-<CLOCKFREQ/ 
( RATE*REAL TPITIJAL ( TCALCP H·CLOCKFl:'.\EQ)) >; 

TEMP := TPITVAL<TCALCP>; 
DIFF := TPITVALCTCALCP> - TFXSPEED; 
J : :::: 2; 

IF DIFF < 0 THEN GOTO BANDO; 
ELSEIF DIFF > 0 THEN 

SLOPE := -SLOPE; 
GOTO BAND1; 

ELSEIF DIFF = 0 THEN GOTO BAND3; 
END; 

% RAMP UP OR DOWN? % 

% RAMP DOWN % 
% RAMP UP % 

% END OF RAMP % 

BANDO: % RAMPING DOWNWARDS % 
WHILE TPITVAL<TCALCP> <= TFXSPEED AND J >= 0 DO 

REP; 

L.OOP1: 

Tf3TAT<TCALCP) ::::: o; 
TPITVALCTCALCP> ::::: TPITVALCTSTARTP>; 
J != J - 1; 
TCALCP != TCALCP LAND HEX 7F t 1; 

TEMP != TEMP t SLOPE; 
TPITVAL<TCALCP> := INT TEMP; 
TSTATCTCALCP) :== o; 
TCALCP != TCALCP LAND HEX 7F + 1; 
IF TCALCP = TSTARTP THEN RETURN;END; 
IF INT TEMP >= TFXSPEED THEN 

% OUTPUT CURRENT VALUE FOR % 
% J * 100 MS TO LIMIT MAX % 
% ACCELE:RATION A: 



END; 

TEMP := TFXSPEED; 
GOTO BAND3; 

GOTO LOOP1; 

· .... 

BAND1: % RAMPING UPWARDS % 
WHILE TPITVALCTCALCP) >= TFXSPEED AND J >= O DO 

REP; 

LOOP2: 

TSTATCTCALCP> := o; 
TPITVALCTCALCP> := TPITVALCTSTARTP>; 
J := J - 1; 
TCALCP t= TCALCP LAND HEX 7F + 1; 

TEMP := TEMP + SLOPE; 
TPITVAL<TCALCP> := INT TEMP; 
TSTATCTCALCP> := o; 
TCALCP := TCALCP LAND HEX 7F t 1; 
IF TCALCP = TSTARTP THEN RETURN;END; 
IF INT TEMP <= TFXSPEED THEN 

END; 

TEMP := TFXSPEED; 
GOTO BAND3; 

GOTO LOOP2; 

BAND3: 

J 

IF TEMPFLAG = 1 THEN % TEMPFLAG IS SET THE FIRST TIME TPITVAL % 

ELSE 

END; 

VAL FLAG2 := FLAG2 NEV 1; 
VAL FLAGl := FLAGl NEV 1; 
TEMPFLAG t= o; 

TEMPFLAG := 1; 

% REACHES OPERATIONAL SPEED. RESET ON SE 
% PASS THROUGH BAND PROC % 

TSTATCTCALCP> != o; % ENSURES MOD CALC STARTS FROM MEAN SPEED % 
TCALCP != CTCALCP - (2 + DELOFFSET> - THOLD> LAND HEX 7F t 1; 

% MOVE TCALCP BACK 3 + THOLD PLACES % 
% SINCE TMOD MOVES IT FORWARD % 
% 3 t THOLD PLACES % 

BAND4: 
TMODCTCALCP,TSTARTP,TFXSPEED>; 
RETURN; 

ENDPROC; 



. ~ . . 

.·:;.:;.\~·,.· .. :. ·.· :;:::'.:-:,<::>:~~·:::.'2>\~:~).-::,:::~~):~f.·:,, ··-. >::.i:;;;</::.: 
.. .. ' . ,.. "· ~. . . . . - ... 

' .... ·"· 

'TITLE SMT COMMON LET ITEMS, Mori~~ ANb ·DATA~b~?tks 
15-AUG-80 

UPDATED FOR LON'G 8086 BY BRIAN DOBBING 2-1i~a1 
MODIFIED FOR INTEL 88/25 BY TERENCE KIRK 7-9-83 ; 

% THESE DECLARATIONS ARE PARAMETERISED.ON AMESG,SYSIOO 
I. SYSI01,SYSI02,REALSO 

LET REFAB= 
LET NL=10; 
LET EOM=3; 
LET VT=11; 
LET EDS= 
LET TRUE=1; 

LET 
LET 
LET 

LET F ALSE=O; . 
LET GO= o; 
.LET NOGO= 
LET PWFEV= 
LET CTLAEV=-15; 

REF ARRAY BYTE; 
SP=32; LET TAB=9; 
ENQ=5; LET BELL=7; 
CR=13;· LET FF=12; 
12a; 

64; 
-10; 

) . 

% CTLA TASK EVENT 
/. CLOCK TASK NUMBER 
% SET TASK NUMBER 
/. CTLA TASK NUMBER 

LET CLKTASKNO = -2; 
LET SETTASKNO = -3; 
.LET CTLATASKNO = -4; 
LET NSFAC =16; 
LET NSTSK = 6; 

% NUMBER OF SYSTEM FACILITIES 
/. NUMBER OF SYSTEM TASKS 

LET NSEV =16; 
LET FACEV=-11; 
LET STOPP=OCT 100; 
LET SUSP=OCT 200; 
LET WTNG=2; 

% NUMBER OF SYSTEM EVENTS 
% EVENT WAKES UP SECURED TASKS 

·LET NOTSTOP=OCT 277; 
LET EVQLEN=16; % MUST BE AN INTEGRAL POWER OF 

% EVQLEN MINUS ONE 
TWO 

. LET NEVQS= 15; 

j 
I 
( 

( 
---1· 

LET TTACHOEV=3; % TRAV TACHO EVENT.<TEK> % 
LET WTACHOEV=4; 
MODE DELREC < INT 

% WINDER TACHO EVENT.<TEK> % 
TIMUP, TASK, REF DELREC NXT >; 

MODE GETTIME <INT DD,MM,YY,H,M,S>J 

SVC DATA RRSIO; PROC () BYTE IN; PROC lBYTE> OUT; ENDDATA; 
SVC DATA RRERR; LABEL ERL; INT ERN; PROC (INT> ERP; ENDDATA; 
SVC DATA RRSED; BYTE TERMCH, .IOFLAG; ENDDATA; 
SVC DATA RRUSG; INT LINE, USAGEl ENDDATA; 

.EXT DATA TASKDATA; 
INT CURTASK,CURTEX,TASKLOCK,NXTCUR,EVINiEVOUT; 
ItELREC ADEL; 
REF DELREC FRPTR; 
BYTE HIPRI, LOPRI; 
ARRAY <16) INT TIMEOUT; 
ARRAY <16) DELREC DEL; 
ARRAY (16> STACK CELL; 
ARRAY (16) BYTE EVFAC,STAT,XSTAT,WTCHN; 
ARRAY Cl,32> INT EVBITS; 
ARRAY (16) REF BYTE STATADS; 
ARRAY (EVQLEN> INT EVQ; 
ARRA~ {32) BYTE FACILITY,FACTOTSK; 

j .•. 

% 
/. 
% 
% 

% 
/. 

~·.-·~· .. /·· 
' ~ .. 

; .... -· .. · 

% 
/. 

., , .. 
/. 
% 
/. 

I 

! 
i 



EXT PROC <BYTE> OUTTTY; 
EXT PROC () BYTE INTTY; 

% I/O FORMATTING PROCS % 

:·:··-

EXT PROC CINT> HWRT, IWRT, SPS, NLS; 
EXT PROC <INT,INT> IWRTF; 
EXT PROC CFRAC> FWRT; 
EXT PROC () INT IREAD, HREAD, ZREAD; 
EXT PROC () FRAC FREAD; 
EXT PROC CREFAB) TWRT; 

EXT PROC CREAL,INT,INT) RWRTF; 
EXT PROC () REAL RREAD; 

' : ' 
:·,.·::··· 

j 

TITLE SECOND PRELUDE FILE FOR LONG ADDRESSING SMT+ ON INTEL 8086. 
EXISTS FOR THE BENEFIT OF SMTBAS.RMP, WHICH DOES NOT WANT THESE EXT 

DEFINITIONS IN ITS PRELUDE; 

EXT PROC () CHANGE, HLOCK, HUNLOCK, PTORTL, RETFIN ; 
EXT PROC <INT> RRGEL; 
TITLE 

SMT-PLUS OPERATING SYSTEM FOR LONG-ADDRESSING ON 8086 
USER TASK INITIALISATION AND DEVICE-SPECIFIC CODE 
**** MODULE SMTU1 ****; 

OPTION Cl>; 

% THIS MODULE IS CONFIGURED ON SYSIOO, MAGIC~ AMESG % 

%USER INIT PROCS CALLED BY USERINITS% 

ENT PROC USERINITS<>; 
% USER EDITED INITIALISATION PROCEDURE % 
% CALLED BY STARTUP TASK BEFORE INTERRUPTS ARE ENABLED % 

% THIS CODE SECTION CONTAINS DEVICE-SPECIFIC INITIALISATIONS. % 
% IT IS INCLUDED HERE TO ALLOW THE USER TO AMEND THE VALUES "IF % 
/. NECESSARY. % 

CODE 200,0; 
EXT RN 
EXT RN 
EXT RN 
EXTRN 

IC@PORTA 
IC@PORTB 

RP@CLOCKINT:NEAR 
RXINTERRUPT:NEAR 
LINKRXINT:NEAR 
LINKTXINT:NEAR 

EQU 
EQU 

OCOH 
OC2H 



-: •.. 

IC@ICW1 
IC@ICW2 
IC@ICW4 
IT@CONTROL@F'ORT 
ITXCONTROLXPORT 
IT@CTRO@F'ORT 
IT@CTR1@PORT 
IT@CTR2@F'ORT 
ITXCTROXPORT 
ITXCTR1XPORT 
ITXCTR2XPORT 
IT@COM2 
IT@C1MO 
IT@C2M3 
ITXCOMO 
ITXC1M3 
ITXC2M3 
IT@50HZ 
IT@4800 
IT@9600 

, IT@RDCLK 
SIOXDATAXPORT 
SIOXSTATXPORT 
SIOXCRTXCMD 
SIOXCRTXMODE 
SIOXRESET 
SIO@Dt"ITA@PORT 
SIO@STAT@PORT 
SIO@CRT@CMD 
SIO@CBT@MODE 
SIO@RESET 
PIO@CONTROL@REG 
PIO@MODE@CONF 
PC3SET 
PC3RES 

INTSEG 
INT21 
INT22 
INT23 
INT24 
INT25 
INT26 
INT27 

EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
ECW 
EQU 

ECW 
EQU 
EQU 

·EQU 
EQU 
EQU 
EQU 
EQU 

13H 
201-1 
OFH 
OD61-1 
OBFH 
ODOH 
0It2H 
0It4H 
OBBH 
OBAl-I 
OBCH 
0341-1 
0701-1 
OB6H 
0301-1 
0761-1 
OB6H 
24576D 
0101-1 
0081-1 
OOOH. 
OAOH 
OA2H 
0371-1 
04EH 
0401-1 
0[181-1 
OitAH 
0371-1 
04EH 
0401-1 
OCEH 

~ 0901-1 
0071-1 
0061-1 

OOOH 
0841-1 
0881-1 
08CH 
0901-1" 
0941-1 
0981-1 
09CH 

.• 
-·· -· 

; Winder t•icho. 

'· 

;System clocK. 
; Winder t•icho. 
;USART clocK. 
;Traverse t•icho. 
;winder drive. 
;Tr•iverse drive. 
;crystal divider to give 50Hz. 
; For 4800 B•lUd. 
;For 9600 B11ud. 
;counter latch mod~. 

;Enoble F:~·: ·& T~·: •lnd res.et error fl•iss. 
;8 bits+ 1 stop,no parity,Baud=9600. 

;a bits + 1 stop,no parity,baud=9600. 

;Address of 8255 cntrl reg 
;Mode 0 A=input ,B & C=output 
;set port C bit 3. 
;Reset port C bit 3. 

;Data Sesment of interrupt table. 
;INT21 pointer to off board address. 
;INT22 pointer to clocK service. 
;INT23 pointer to trav tacho routine. 
;INT24 pointer to wind tacho routine+ 
;INT25 pointer to SBX Tx routine. 
;INT26 pointer to SBC Rx routine. 
;INT27 pointer to SBX Rx routine. 

;initialise PIT channel 0 for 50HZ clocK interrupts. 
MOV DX,IT@CONTROL@PORT 
MOV AL,IT@COM2 
OUT DX, t'\L 
MDV DX,IT@CTRO@PORT 
MOV AX,IT@50HZ 
OUT DX~AL 
MOV AL,At-1 
OUT DX,AL 

;initialise iSBX PIT channels 1 and 2 into mode 3 
;for winder and traverse drivers respectively. 

MDV ItX,ITXCONTROLXPORT 



i 
~ 

I 

'"~· 0 •• • M > 

. ~. 

MOV AL,ITXC1M3 
OUT DX,AL 
MDV AL,ITXC2M3 
OUT DX,AL 

;initialise•iS~C PIT ~hannel 1 for winder tacho 
;pulse counting, and iSBX PIT channel 0 fo~ traverse 
;tacho pulse countin!.(Count value loaded by service 
; routines in WDRV.RTL and TDRV.RTL> 
;<tEK) 1 

MDV AX,IT@ClMO 
OUT IT@CONTROL@PORT,AL 
MOV AX,ITXCOMO 
OUT ITXCONTROLXPORT,AL 

;set up PIC interrupt vector 7 for iSBX USART Rx. 
;CRS422 Multidrop link to host). 

MDV BX,INTSEG 
MDV ES,BX 
MDV ES:INT27,DFFSET LINKRXINT 
MDV ES!INT27t2,CS 

MDV 
MDV 

MDV 
MOV 

MOV 
MDV 

MDV 
MDV 

MDV 
MDV 

MDV 
MOV 

MDV 
MDV 
OUT 
MDV 
MOV 
OUT 
MDV 
OUT 
MDV 
OUT 

;set up PIC interrupt vector 6 for iSBC USART Rx. 
;CRS232 serial link to local VDU>; 

ES!INT26,0FFSET RXINTERRUPT 
ES!INT26+2,CS 

;set up PIC interrupt vector 5 for iSBX USART Tx. 
ES!INT25,0FFSET LINKTXINT 
ES!INT25t2,CS 

;set up PIC interrupt vector 4 fbr winder tacho.CTEK> 
ES!INT24,0FFSET RP@24SERVICE 
ES!INT24+2,CS 

;set up PIC interrupt vector 3 for traverse tacho. 
ES!INT23,0FFSET RP@23SERVICE 
ES!INT23t2,CS 

;set up PIC interrupt vector 2 for system clock. 
ES!INT22,0FFSET RP@CLOCKINT 
ES!INT22t2,CS 

;set up PIC interrupt vector 1 for address trap. 
ES!INT21,0FFSET RP@BADMEM 
ES!INT21t2,CS 

;Initialise Interrupts. 
DX,IC@PDRTA 
AL,IC@ICW1 
DX,AL 
DX,IC@PORTB 
AL,IC@ICW2 
DX,AL 
AL,IC@ICW4 
DX,AL 
AL,000000018 ;unmask all used interrupts. 
DX,AL 



LP2: 

LP3: 

LP4: 

LP'5! 

;initialise USART's: 

.. · .. . · . .,. .. 

;First :initiQlise SBC PIT channel 2 for USART clock. 
MDV DX,IT@CONTROL@PORT 
MOU AX,IT@C2M3 
OUT DX,AL 
MDV DX,IT@CTR2@PORT 
HOV AX,IT@9600 ;To GIVE 9600 BAug CLOCK. 
OUT DX ,f>1L 
MDV AL,AH 
OUT DX,AL 

;second :Initialise SBX USART. 

;RESET USARTt-
CLI 
MDV DX,SIOXSTATXPORT 
MOV AL,O ;To CLEAR USART. 
OUT DX,AL 
MOU cx,2 ;DELAY 
LOOP LP2 
OUT DX,AL 
MDV cx,2 ;DELAY 
LOOP LP3 
OUT DX,i61L 
MOV cx,2 ;DELAY 
LOOP LP4 
OUT DX,tiL 
MDV cx,2 ;DELAY 
LOOP LP'5 
MDV AL.,SIDXRESET 
OUT DX,AL 

MOV cx,200 
DELAYABITt 

LP6! 

LP7! 

NOP 
h.OOP 

MOU 
OUT 
MDV 
LOOP 
MDV 
OUT 

CLI 
MOV 
MDV 
OUT 
MDV 
LOOP 
OUT 
MOV 

DELAYABIT ;USART SETTLING TIME 

;configure SBX USART. 
AL,SIOXCRTXMODE 

·nx,AL 
cx,2 ;DELAY 
LP6 
tiL,SIOXCRTXCMD 
DX,i61L 

;Third !Initialise SBC USART. 

;RESET USART:-

DX,SIO@STAT@PORT 
AL,O 
DX,AL 
cx,2 
LP7 
DX,AL 
cx,2 



- ..... 

LP8: LOOP 
OUT 
MOV 

LP9: LOOP 
OUT 
MDV 

LP10t LOOP 
MDV 
OUT 

MDV 
WAITAlJHILE: 

LP11t 

NOP 
LOOP 

MDV 
OUT 
MOV 
LOOP 
MOV 
OUT 

LP8 
DX,AL 
cx,2 
LP9 
DX,AL 
cx,2 
LP10 
AL,SIO@RESET 
DXd1L 

cx,200 

WAITAWHILE 

;confi~ure SBC USART. 
AL,SIO@CRT@MODE 
DXdiL 
cx,2 
LP11 
AL,SIO@CRT@CMD 
DX,AL 

;INITIALLISE PIO 8255 

. , . ..:. ·.-.-. ... -:.· .~·:...... . . . ~ ·. 

) 

MDV 
OUT 

AL,PIO@MODE@CONF 
PIO@CONTROL@REG,AL 

;MODE 0 PORT A=INPUT B,C=OUTPUT 
;ADDRESS OF 8255 "CONTROL REG 

;This section clears the off board memory latch. 
MDV AL,PC3RES 
OUT PIO@CONTROL@REG,AL 
MDV AL,PC3SET 
OUT PIO@CONTROL@REG,AL 

STI 
*RTL 

ENDPROC; 

% USER HARDWARE TASKS :-. 
i 

% 

z ******************************************** /. 
% OFF BOARD MEMORY ADDRESS TRAP ************** % 
% ******************************************** /. 
PROC INTSERV21C>; 

CODE 20,0; 
RP@BADMEM: 

;This section cle~rs the off board memory latch. 
MOV AL,PC3RES 
OUT PIO@CONTROL@REG,AL 
MOV AL,PC3SET 
OUT PIO@CONTROL@REG,AL 

; set off board memory error number thirty. 
POP ex ; CLEAR RETURN ADDRESS ••• 
POP ex ; ••• NOT GOING BACK 



*RTL; 
ENDPROC; 

POPF ; RESTORE FLAGS 
MOV CX,1EH ; RRGELC30.) 
PUSH ex 
CALL RP@RRGEL 

' ; DOSEN'T RETURN 

% ********************************************* % 
/. TRAVERSE TACHO SERVICING ROUTINE ************ /. 
7. ********************************************* % 

. ' . ' ~ ·,.. 
.·.' 

) 

ENT DATA TRAVSTOP; /. DATA BRICK FOR INTSERV23 /. 
INT TSTOP,TENDFRAC,TCNT; 

ENDDATA; 

PROC INTSERV23<>; % INT SERVICE ROUTINE FOR TRAVERSE ~ACHO CTEK> % 
CODE o,o; 

RP@23SERVICE: 
CALL FAR PTR RP@PTORTL 

;Re•ld s1·stem 
MOV 

clock counter on' the fly to get fraction of 'NOW'. 
AL, I T@RDCL!"\ 

OUT IT@CONTROL@PORT,AL 
IN AL,IT@CTRO@PORT ;GET LSB. 
MDI..' CL,AL 
IN AL,IT@CTRO@PORT ;GET MSB. 
MOV 
MOV 

*RTL; 
TSTOPt=NOW; 
CODE o,o; 

CH, t'~L 
*TENDFRAC/TRAVSTOP,CX 

;Reload interrupt counter. 
MDV AX,*TCNT/TRAVSTOP 
MOV DX,ITXCTROXPORT 
OUT DX,AL 
MOV AL,Al-l 
OUT DX,AL 

*RTL; 
QEVRRET<TTACHOEV>; 

ENDPROC; 

/. ******************************************** /. 
/. WINDER TACHO SERVICING ROUTINE ************* /. 
% ******************************************** % 

ENT DATA WINDSTOP; % DATA BRICK FOR INTSERV24 % 
INT WSTOP,WENDFRAC,WCNT; 

ENDDtiTt"i; 

PROC INlSERV24C>; % INT SERVICE ROUTINE FOR WINDER TACHO <TEK> % 
CODE 20,0; 

RF'@24SERVICE! 
CALL FAR PTR RP@PTORTL 

;Read system clock counter on the fly to ~et fraction of 'NOW' 

····:.-·· . 
. . ": -· 



MDV 
OUT 
IN 
MOV 
IN 
MOIJ 
MOV 

*RTL; 
WSTOP: =NO~I; 
CODE o,o; 

AL,IT@RDCLK 
IT@CONTROL@PORT,AL 
AL,IT@CTRO@PORT 
CL,AL 
AL,IT@CTRO@PORT 
CH,AL 
*WENDFRAC/WINDSTOP,CX 

;Reload interrupt counter. 
MOV AX,*WCNT/WINDSTOP 
MOV DX,IT@CTRl@PORT 
OUT DX,AL 
MOV AL,AH 
OUT DX,AL 

*RTL; 
QEVRRET<WTACHOEV>; 

ENDPROC; 

;GET LSB+ 

;GET MSB. 

) 

%ENT PROC UPWFAILC>;% % NOT IMPLEMENTED FOR 8086 % 
% USER EDITED PROCEDURE WHICH IS CALLED ON POWER FAIL RESTART. 
% THERE ARE SEVERAL POWER FAIL RESTART MECHANISM$ WHICH CAN BE 
% IMPLEMENTED DEPENDING ON THE CODE OF THIS PROCEDURE:-

% (1) IF THIS PROCEDURE rs NULL, A POWER FAIL RESTART WILL 
% SIMPLY START ALL USER TASKS AS FOR A NORMAL SYSTEM 
% STARTUP CCOLD START FROM ZERO>. 

% (2) IF THIS PROCEDURE ENDS BY CALLING 'RETEV' , THIS WILL 
% ALLOW ALL TASKS TO CONTINUE FROM THE POINT THEY HAD 
% REACHED WHEN POWER FAIL OCCURRED. 

· .. :. '· 

"I ,. 
% 

% 
/. 
% 

% <3> THIS PROCEDURE RUNS IN A LIMITED HTASK ENVIROMENT, AND % 
% PROCEDURE QEV MAY BE USED TO SET EVENTS. IT IS NOT PERMITTED % 
% TO USE START, AND STOP, BUT EXT DATA TASKDATA MAY BE % 
% MANIPULATED DIRECTLY, AS IN CLOCKINT - SMTB1+ IT IS THE % 
% RESPONSIBILITY OF THE USER TO CHECK WHETHER THIS IS % 
% PERMISSIBLE IN HIS SYSTEM+ IT WILL USUALLY BE PREFERABLE % 
% TO USE AN STASK WAITING ON PWFEV, THE POWER FAIL EVENT TO % 
% TIDY UP. % 

% (4) THERE ARE TWO SYSTEM FEATURES WHICH MAY BE USEFUL ON % 
% POWER FAIL/RESTART:- /. 
% <A> PWFLAG IN PWFDATA IS SET NON ZERO AFTER A POWER FAILURE. % 
~~ <NOTE! THE SYSTEM NEVER ZEROS THIS _FLAG.> /. 
% CB> EVENT NUMBER-10(NEGATIVE BECAUSE IT IS A RESERVED SYSTEM % 
% EVENT>, WILL BE SET AFTER A POWER FAIL/RESTART. /. 

%ENDPROC;% 



STUPCD 
R01 
• 
' 

. -·-·.· .. 

' 

;M 
;x 
;o 
;T 
;T 
;T 
;o 
;L= 
;B 

START UP CODE FOR ROM VERSION OF ICU 

; L:::: 
;w 

RTL@PROCS 

RTL@SPOOL 
• 
' 

• '.-
0 

WHITTEN 22-2-84 
*** STARTUP.RTL 

STARTUP 
17 

DJ=.:T 
***; 

SEGMENT WORD PUBLIC 'PCLASS' 

LABEL WORD 

; START UP CODE FOR ROM VERSION OF ICU 
WRITTEN 22-2-84 DRT • 

' + , *** STARTUP.RTL *** 

) 

THIS MODULE HAD TO BE EDITED FBOM AN RTL COMPILATION ASH FILE 
HENCE USE THIS VERSION NOT THE RTL. IT INCLUDES THE XRF INFO 

I RTL@PROCS ENDS 

RTL@DATA 
RTL@DATA 

SEGMENT WORD PUBLIC 'DCLASS' 
ENDS 

RTL@PROCS SEGMENT WORD PUBLIC 'PCLASS' 
ASSUME DS: RTL@DATA ,' CS: F:TL@PF\OCS 

RP@STARTUP PROC FAR 

• , 

CODE INSERT--PARAMETERS OOOOOH AND OOOOOH 
EXTRN RP@RRXEQ:FAR 
JMP FAR PTR RP@RRXEQ 

RTL@PROCS ENDS 

END 

.• ·.7 



.;COMMAND FILE TO COMPILE ETC ICUNIT SYSTEM FORMAT IS -

.;@TOTSYS MODULE,SOURCE LISTING,CODE LISTING OR INPUT CAN 

.; BE DONE INTERACTIVLY • 
• ; FILENAME IS TOTSYS.CMD 29-NOV-83 DRT 
.; MODIFIED 21-DEC-83 TEK 

• . , .. 
+ , 

+ENABLE SUBSTITUTION 
.ENABLE GLOBAL 
.GOTO QRY1 
.ORY: 
; No! please re-enter module name 
.QRY1! 
+ASKS NAM 'Module name, DATAPREL, ALL or SMT• 
~IF NAM :::: • • • GOTO m::.:Y 
.IF NAM = 'SMT' .GOTO 15 
.GOSUB 102 
.IF NAM <> 'DATA" +IF NAM <> 0 DATAPREL 1 .IF NAM <> 8 ALL 0 .GOTO 1 
+SETS MOD 8 DATt1 • 
SJR 'MOD','SLST',SY:'MOD'=DATAPREL,'MOD'/NA!'MOD' 
.IF <EXSTAT> = 2 .GOSUB 100 . 
ASM 'MOD','CLST'='MOD'.XRF,'MOD' 
+IF <EXSTAT> = 2 .GOSUB 101 
.GOSUB 13 
• l. : 
+IF NAM <> 1 WCONT" +IF NAM <> 1 DATAPREL• +IF NAM <> "ALL" +GOTO 2 
.SETS MOD 1 WCONT 1 

SJR 'MOD'v'SLST',SY!'MOD'=DATAPREL,'MOD'/NA:'MOD' 
.IF <EXSTAT> = 2 .GOSUB 100 
ASM 'MOD','CLST'='MOD'.XRFv'MOD' 
.IF <EXSTAT> = 2 .GOSUB 101 
.GOSUB 13 ,, . 
·~. 
+IF NAM () 8 TCONT" +IF NAM () RDATAPREL 0

- +IF NAM () "ALL" +GOTO 3 
.SETS MOD "TCONT 1 

SJR 'MOD','SLST',SY!'MOD'=DATAPREL,'MOD'/NA!'MOD' 
.IF <EXSTAT> = 2 .GOSUB 100 
ASM 'MOD','CLST'='MOD'.XRF,'MOD' 
.IF <EXSTAT> = 2 .GOSUB 101 
.GOSUB 13 
• 3: 
+IF NAM <> 'COMPROC 8 .IF NAM <> "DATAPREL" ;IF NAM <> "ALL" .GOTO 4 
.SETS MOD ·coMPROCU 
SJR 'MOD','SLST',SY:'MOD'=DATAPREL,'MOD'/NA:'MOD' 
.IF <EXSTAT> = 2 .GOSUB 100 
ASM 'MOD','CLST'='MOD'.XRF,'MOD' 
.IF <EXSTAT> = 2 .GOSUB 101 
.GOSUB 13 
.4: 
.IF NAM <> "WDRV" .IF NAM <> 8 DATAPREL" .IF NAM <> •ALLn .GOTO 5 
• SETS MOD • WDF:l,J" 
SJR 'MOD','SLST',SY:'MOD'=DATAPREL,'MOD'/CN:F/NA:'MOD' 
.IF <EXSTAT> = 2 .GOSUB 100 
ASM 'MOD','CLST'='MOD'+XRF,'MOD' 
.IF <EXSTAT> = 2 .GOSUB.101 
.GOSUB 13 
• 5 ! ~ 
.IF NAM <> "TDRVn .IF NAM <> 8 DATAPREL" .IF NAM <> "ALL• .GOTO 6 
.SETS MOD •TDRV" 
SJR 'MOD','SLST',SY:'MOD'=DATAPREL,'MOD'/CN:F/NA!'MOD' 
.IF <EXSTAT> = 2 .GOSUB 100 
ASM 'MOD','CLST'='MOD'.XRF,'MOD' 



·-•: . 
. ·.:-,I "-;.:.··-

.. ·• ..... ·.··.·. 

,. 

'· r - .. . . 

":·--:; 

.IF <EXSTAT> = 2 .GOSUB 101 

.GOSUB 13 
• 6: 
+IF NAM <> •RATIO" .IF NAM <> •DATAPREL• +IF NAM <> 0 ALL• .GOTO 7 
.SETS MOD •RATIO' 
SJR 'MOD','SLST',SY!'MOD'=DATAPREL,'MOD'/CN!F/NA!'MOD' 
•IF <EXSTAT> :::: 2 .GOSUB 100 ' 
ASM 'MOD','CLST'='MOD'.XRF,'MOD' 
.IF <EXSTAT> = 2 .GOSUB 101 
.GOSUB 13 
• 7: 
.IF NAM <> ·wrACH0° .IF NA~ <> 8 DATAPREL 1 .IF NAM <> ·ALL" .GOTO 8 
.SETS MOD ·wTACHO" 
SJR 'MOD','SLST',SY!'MOD'=DATAPREL,'MOD'/CN:F/NA!'MOD' 
.IF <EXSTAT> = 2 .GOSUB 100 
ASM 'MOD','CLST'='MOD'.XRF,'MOD' 
.GOSUB 13 
.IF <EXSTAT> = 2 .GOSUB 101 
+8! 
+IF NAM <> "INVSQ" +IF NAM <> •DATAPREL• .IF NAM <> "ALLn .GOTO 9 
.SETS MOD •rNVSQ• 
SJR 'MOD','SLST',SY:'MOD'=DATAPREL,'MOD'/NA:'MOD' 
.IF <EXSTAT> = 2 .GOSUB 100 
ASM 'MOD','CLST'='MOD'.XRF,'MOD' 
.IF <EXSTAT> = 2 .GOSUB 101 
• GOSUB 1.3 

·. .. + 9: 
.IF NAM <> •SQMONu .IF NAM <> "DATAPREL" +IF NAM <> "ALL" .GOTO 10 
.SETS MOD "SQMON• 
SJR 'MOD','SLST',SY!'MOD'=DATAPREL,'MOD'/NA:'MOD' 
.IF <EXSTAT> = 2 .GOSUB 100 
ASM 'MOD','CLST'='MOD'.XRF,'MOD' 
.IF <EXSTAT> ~ 2 .GOSUB 101 
.GOSUB :1.3 . 
• 10: 
.IF NAM <> "INTSTD 8 +IF NAM <> "DATAPREL 0 .IF NAM <> "ALL• .GOTO 11 
.SETS MOD "INTSTD• 
SJR 'MOD','SLST',SY:'MOD'=DATAPREL,'MOD'/SS/CNtF/NA:'MOD' 
.IF <EXSTAT> = 2 .GOSUB 100 
ASM 'MOD','CLST'='MOD'.XRF,'MOD' 
.IF <EXSTAT> = 2 .GOSUB 101 
.GOSUB 1.3 
.l:L: 
• IF NAM <> D DBUP. +IF NAM <> D DATAPREL. • IF NAM <> 0 ALL. • GOTO 12 
.SETS MOD "DBUP• 
SJR 'MOD','SLST',SY:'MOD'=DATAPREL,'MOD'/NA!'MOD' 
.IF <EXSTAT> = 2 .GOSUB 100 
ASM 'MOD','CLST'='MOD'.XRF,'MOD' 
.IF <EXSTAT> = 2 .GOSUB 101 
.GOSUB 13 
+·l 2: 
.IF NAM<> 8 0CP1" .IF NAM <> "DATAPREL" .IF NAM <> •ALL" .GOTO 14 
+SETS MOD "OCP1° 
SJR 'MOD','SLST',SYt'MOD'=DATAPRELv'MOD'/TA:S3100/NA:'MOD' 
.IF <EXSTAT> = 2 .GOSUB 100 
ASM 'MOD','CLST'='MOD'+XRF,'MOD' 
.IF <EXSTAT> = 2 .GOSUB 101 
.GOSUB 13 
• 14: 
.IF NAM <> 1 LINKDA" .IF NAM <> "DATAPREL 8 .IF NAM <> •ALLu .GOTO 15 
.SETS MOD "LINKDA" 



' ... ~ . ·. . . ..:.. 

SJR 'MOD',SLST,SY!'MOD'=DATAPREL,'MOD'/CN!F/NA:'MOD' 
.IF <EXSTAT> = 2 .GOSUB 100 
ASM 'MOD 1 =1 MOD'.XRF,'MOD 1 

.IF <EXSTAT> = 2 .GOSUB 101 

.GOSUB 13 
• :1.5: 
.ASK SYS "Do you want to remake ·sMT • 
.IFF SYS .GOTO 20 
SET /UIC=C341,1J 
.GOTO QRY3 
.QRY2! 
; No! Please re-enter module name 
.QRY3t 
+ASKS NAM "M0dule name or ALL• 
.IF NAM= •• .GOTO QRY2 
.GOSUB 102 
.IF NAM <> 1 MSMTU1° .IF NAM <> "ALL 0 +GOTO 16 
.SETS MOD •MSMTU1° 
SJR 'MOD','SLSt 1 ,SY!'MOD'= 1 MOD 1 /CN:F/NA!'MOD' 
.IF <EXSTAT> = 2 +GOSUB 100 
ASM 'MOD','CLST'='MOD'.XRF,'MOD' 
.IF <EXSTAT> = 2 .GOSUB 101 
.GOSUB 13 
+16: 
.IF NAM <> •MSMTCLAn .IF Nt1M <> "ALL" .GOTO 17 
.SETS MOD •MSMTCLA" 
SJR 'MOD','SLST',SY!'MOD'='MOD'/CN!F/NA!'MOD' 
.IF <EXSTAT> = 2 .GOSUB 100 
ASM 'MOD','CLST'='MOD'.XRF,'MOD' 
.IF <EXSTAT> = 2 .GOSUB 101 
.GOSL.IB 13 
.l."7: 
+IF NAM<> 1 MSMTPIO• +IF Nr1M <>"ALL" .GOTO 18· 
.SETS MOD "MSMTPIO" 
SJR 'MOD','SLST',SY:'MOD'='MOD'/CNtF/NAt'MOD' 
.IF <EXSTAT> = 2 .GOSUB 100 
ASM 'MOD','CLST'='MOD'+XRF,'MOD' 
.IF <EXSTAT> = 2 .GOSUB 101 
.GOSUB 13 

.IF NAM <> 1 LINKDR 8 .IF NAM <> 0 ALL" .GOTO 19 

.SETS MOD 0 LINKDR" 
SJR 'MOD','SLST',SY:'MOD'='MOD'/CN:F/NAt'MOD' 
.IF <EXSTAT> = 2 .GOSUB 100 
ASM 'MOD','CLST'='MOD'+XRF,'MOD' 
.IF <EXSTAT> = 2 .GOSUB 101 
+GOSUB :1.3 
.1?: 
LLM C~SMTF;:DM 

.GOSUB 13 
SET /UIC=C341,2J 
.IF <EXSTAT> <> 2 +GOTO 20 
+EXIT 
.20: 
LLM @ROMLNK 
.IF <EXSTAT> = 2 .GOTO 21 
• GOSUB :1.3 
.EXIT 
• 21: 
; Link f11iled • 
• RETURN 

.·.·:· .-



. - ...... : -~-:·~ _:. _. "":··· .- " .. ; .. - ......... 
... 

... ·. 
~~: .. ~; ;., ,.~~·.::.~·~·-·· .. ~r.:.: . .. .:,, _·:....: . ..:-.-'·.:~ . .:.....:.. ···-~--.. : . . . . 

( 
-. 

.. GOSUB :1.3 

.EXIT 

.13: 
F'IF' *•ASM;*/DE 
PIP *•XRF;*/DE 
F'IF' Jt: • 1.</PU/L.D . 
• RETURN 
.100: 
;'<EXSTAT>' 'MOD' CompilQtion failure 
.RETURN 
.10l.! 
;'<EXSTAT>' 'MOD' Assembly failure 
.RETURN 
.102: 
.ASKS SLST • Source listing YIN n 

.ASKS CLST • Code listin~ Y/N " 

.IF SL.ST <> •y• .SETS SL.ST •• 

.IF CLST <> •y• .SETS CLST a• 

+IF SL.ST = ay• .SETS SLST 1 LP+SRC/SP 1 

+IF CL.ST = •ya +SETS CLST nLP+LST/SP 0 

• RETURN 

..... _. ~. ··- ' - .. - . 

. ::·1, 
- ··· .. -~ . ..;.':,_;,;.-;-· .;··~-·--= ... --~~~ ·.;~~--~~:.~~~· .... : - ... -.. 

.. '-'· 



' l . 

j 

, .. 

" 
.. 
~\ 

APPENDIX H 

1 - SBC SCHEMATIC 
2- SBX SCHEMATIC 
3 - I I 0 BOA R D SCHEMA T I C 
4- 1/0 BOARD COMPONENT LAYOUT 
5- POWER DISTRIBUTION SCHEMATIC 
6- COMMUNICATIONS SCHEMATIC 

- 7- WIRING SCHEDULES 
8- ICU DRAWER FIELD WIRING CONNECTIONS 
9- SBC J UMP ER C 0 N NEC TI ON S 



, .. 
' 

I 

! 
' I 

I> 

c 

·I 

A 

8 7 

_. C~I C6 
... 7,:tto'I. O.i 
WV 

' 

co;o C.'I 
"-1 :!:."Z01. o.t 
WV 

,i.· ... 
.:. 

I 

HZV Pl·"I.& f------l------f-----1'----~>-------+_;" -+t?.V 
0------~J...1·1 

r.-----< J?l-1 

... 

NOTES• UN\.e~ QTl.4E<tW15E 5PECIFIEO 
•• 0.~ITANCE VAJ...lJES> A.R.E IN MICAOFJl.RJlrr.05,+eo,..-to%,SOV 
£. REStSTAl>JC.E. \41rJ...UES A.RE llr.I Ot-IM!!!>, 1/64 W • S •/.. . 

J.1.1.. 0CD "'-"<l!ER PINS ON JI ARI! GllQl.JNO, ~ 
... I.I.. RESISTOR. PP.~ ~ IQK. 
'+!>Ve• INOICATE~ e.ATTERV +!',V. 

£PROM 51ZI!: 5El..EGT C.O>J>J~CTIONS AAE .A!!. S1-<CW-1N IN T ... BU! A, 
"'OllT l'V'JCTIONS .ARE AS SMOWN IN TABl.e 8 

6 R£1o!O'EO • m US!I, u~. U5Z, IJC1>.4, U6!5 AIJI) U'8 /oSlf!. MTOMER 1M5TALLED. 

• 7 • 
i; 

1'. 

• 

cm-+~~~z. 
1'-----< J4·Z. 
6-------< J?l·Z. 

~JZ·l9 

5 

4 

J 

... 

0 EF. OEC:.t~. 
""":.1Tl..eEO NOTUO>EO 

U"ll U?l5 
Yllo EtB~. IBG 
C~5 Cll, 1.4,Z.~ 
R~ 
RM 

~· UIZ. ' JD 
e1err 

4 

2 

--,,-.· · .. ;,_ 

t"DWER G.ROUND GATE L 
ReF-E.KeN(..I;:;. DEVICE. POW =-Ml PIWS 

CE:SIGN~TiO>J TYPE bNO +~v IV 

~ 
z 10 
3<o'ZSA· • I" .,.. .., IA 
~--· -.. ... ., .. ~ .., 14 

i 
.., 14 

vz;:-s&- L4 

U4Z "1 ... 
Z..t& I .. 

1J.4'1c....A I ~ ... 
UI ~ 

L'~ . ... 
u""" "" uzo "1 ... 
1)4,, ,., 10. 

c. b IC.. 

VZ.C..«> 41\1 ,4!>13& ·- ·~ 
UI"' ~~~~ r-1-~it Ult; 
U4 l"l'> .. 1~ 

512....,.,flo()~t ... ~ 10 .,., 
"14S , ... 

lJ44 f>& -,..,,,;>."I'S I "0 
;u14 ,~LS& 14 I 
UI!> :>le.9 141 

U!>2. 668& 1% ... o 
·~1 ~J-H 1 .. 

Ult. I I<. 
UZ4 

I 
'-~ %(,, 

ll"Z.?> 24 
"Z. 'I z;.. 

UZI 14 i?& 
04'> -.~··· 

I& 
"Z. .. ·20· .. ,, - ._lQ.- :z,o 
~~~ 

~-= ~-u~<.

~'f~~
,,~~~ .. I tr I

7-4 -,3 I() zo

,.

2

" FIGURE

. .. t:';- ~"' ... :; .;trf.°! I •

' . t ll j • ,.. ·~ 1. • -i, I~ .. • '·' ._~-.,.~~ ,-

1 --·~.l l. • t,..1-4.t

- +;.,, ... 1 •• •• ·.:r·

•H
~PAReGl>'rt0

+ CIJTPl.IT Pl~
zo u_,

Ub·~,!!.~.va.~
Z7-<I IO

l~A§jt
"1'8m

~ -II

-·~

...

•A _,..,

•·

·I r·

I I
j ,!

I
:' I

I
L_
' I
I
I

A
I

f .

(
• !

!)

c

B

A

J

Q Sl.<T4, ~OEIJ

SHTZ.>.O<ll-1'07 [Q]__::....

. 51-<T Z. PA.&·Pl>.11
51-!TZ, PAIZ-PAIS

SHT 4, 61JS LOCK I
5HT4, eu:> AEN/

- 8

eM

[B=

-..e.
Q
!:!.
M
,.2
..B.

u

ll
A

. ·.r

!

f RZ8 o; ... K

q A
:OIU5Sr
74537 A07

"°" ADS
.... 04
AD3
ADZ
ADI
"D0

)

-

7

'CS Ulo!>
e.ze.7

8 "8 BS IZ
7 A7 87 I!>

c. 1'I. er.. 14
IS 5 l>.5 B5

4M l'>4 v..
!> P.!> B3

,..,
z i:.z e.z 18
I Al Bl l'I

T/R
1·1

AD0

I ADI
ADZ
AD!>
Jo.04
AD5

A°"
AD7

PM
PA'I
PAIO
PAii
Pt.I?..
PAI?>
P"l4
PAIS

.,

' :

6

---- ----· -----

7 ?>O
U"'-

"°"
A0

e. 40 'IQl'I Jo.I

I!> 50 o;o'Z AZ
•8 80 8Q I'! A!>

,.., 7o
7Q '"

A4

14 '-D (,Q 15 A'7
4 ZD 2Q s A'-
3 ID IQ z A7

1'1537?>

U4e6Q i'! If> ~!) AB
17 7D 70 IC. A'l

14 (.D (.Q 15 J>..10

13 5D 5Q IZ All
s ID IQ z 1>.1Z
4 'ZD ZQ 5 Al!>
7 30 3Q "

Al4

e. 40 4Ct q l>.15

74LS:n3

U4<..
3 10 IQ z AIC.

4 1D ZQ s Al'!

, 30 3Q c. J>..16
8 40 4Q q Al9

14 "° iJ2_ "° 18 BO OQ ~
l1. 10 IQ I

@. c;o74~.JO .!?.
ca OE

111 .r

5

I
·~

..

" . '

. AQ)

... ,
AZ
~

M ,...,
A<..
A7

Af>
A'l
AIO
All
1>.IZ
A•?>
Al4

"'"

"'" .>.17

z"" UC.I ..,.,
4 Jo.Z YZ

" "3 Y3
"'M Y4
II A7 YS.
I!> Alo I"('(,
15 J>..7; '..,.,
17 />b ' Y'6

74L!>Z40

!I ix,o
M Y4

" A!> Y3
4 AZ YZ
'Z Al YI
11 />F, YS
l!>M,. Y(,,
15 A7 Y7
1711.e. Y8

74LSZ40

~ USO
A<I Y4

c. t.3' '(?>

~·-"-~ ~
l>.l'I. z Al YI

,_!..l A~ Y?

UA7 Y7
~ "" YC.

l! l'b "'"
~~ L-_r

'

4

111.
IC.
14
12
.q

7
~

...

l'Z
14
1<..
16
q ,
5 ..
~
14
1<..

... EIRI

~
-

3
r; .

r---

;

i

-

--

0£1eg

Pl·C. !I, OAT 7/
'7. DAT lo/ Pl-(.;

-7PI·
Pl~C::a

10, D T 5/
'l, oi>.T 41
Z, DAT 3/
I , [)b.T. 7-/
4,-01>.T I/
?>,OAT([)/

Pl-7
)Pl-7
• Pl-7

Pi-7

Pl· 51, Jo.DR.([)/
58, ORI I
o;'>,AORZ/
5'.,P..DR3/
S3,,1>.DR.4/
~.AOR"!>/
SI, DR.lo/
SZ,AOR7/

~Pl·
Pl·
Pl·
Pl·
Pl-
Pl·
Pl·

.... ;~ ,·. ·.·: ;,. . ..,...

Pl· 4'!, ADR6/
SO, AOR.'l/
47,Jo.ORP../
46,ADRe>/
4S,AORC/
'41o, AORO/ ~
4!1, A.DRE I ~ r
44, /:>.OR.Fl

Pl·
Pl-
Pi-
Pl·
Pl•
Pl-
Pl-

'Pl· ze, Jo.ORIO/
Pl-~ DRiii

~2,llo.ORl'2./ _,_, .. ;·l
34,AORl3/

Pl·
Pl·

)Pl-

~

,:t1.
;tJ.
~
~

~
J:J..
)<..
.:!.

Z5, LOCK/

A.-4•1C:t. IO,lct I 5HT' ~
ACZl,A4-I?>, !>HTS,<..
~. SMTS,<o,10
A?.., 51-fT(o,7,6. IO
Al , Sl-fT '-- 10
All, SI-IT Z,?
W(R/)SHT"
MEM(IOl) 51-fTZ.4,;

r' ...,.

AODRE55 AND OJ>:rA BUl'FER!l<

2 '

i
i'

D

c

-·· I

B

A

D

l
I
c

;, I

·1
;

•• I

I

!
I

~ ~:
l

'A

' 1 I ·-1

I I

--..

!1 ... T.?>,l>.0,A,-1., IW

. :

7 6 ! -!. 4 'J [

. . --c .. ,...,.,.___..,_.-.-.~· .,- ~-' .," +'" +:;v ""'" I
' '

Atq ·'°'"' 6 ...:.r·"ot

~~ ' • ·, ... <-._.'..~ ('
t:.::~. :~~':...-:_ : __

r--+--:::=-t---""· ---.---''l.l"'l ' r- ·-·--... -- {!-~~ , ;;i,::. .. ~ T- ,

' r:· , ' U40 A'I AAM0/}; .• ':'••
~ & ~:::i~ SH!C:.

-=) " I l'J..i RAM3/

;•

']
I L_,.,' l ,._

I
_i ·r

•

t +•[N
'·

•;)1' '

I R8 I

°"' II I IK. . - • . I
ce1

1

o ON~AqRi;5~-m:,4,9
• • f> ,. ,, , • • . I

· -·--r--· -·- r.~"~"""'~ -1·--·----- ·1-'1v·.14q . - ·-3- ----- -· ..,;1: MA)-; ~TH._:
. -- ------- JJ.~iw.·.i;

_. ... --- -~

- " !> I~.: : .'. • I ~ ~ PROMIJ/}

I - I !.HT4,MROC/ ~ 11 :~c. . ' I
!11-lT4,AMWTC/ 1 ~· .

?1-~-~
,,

' 'I
~

10\;ijl .._I'
' I • ~ :-:!- : ·, I

•
I

';,.' ... -:.
' ~ I . ' ' ~ '" I I ' I I!> F.: PROM I/

· 1 ".f l l
17 i/!! l>ROMZ/

' . I 11 ~ P~M3/
~11 'f- 10 ;:; PROM4/, ~fo
I 'I = Pl<OM',;/,_

I • ~ 7 = PROMC./
'· (PROM7/

• . i
f j I I

., i ;.;-..

..... . i -=
'

...... g • . . I · · l 5 ... T ~:~~~~L.---J..l _Jl _ _:. _ _:_ _________ -;;l~~~IUO:~~ 1 .. . '
; I , ..

!
i I

I

+w·
,1

J
! ·~ !

D

c

RP~

I • ,
i I 1'

c1B,

I i i ~ • : 1 I uzr. • "' ozs11>. c5/ s~ 7
I ' I ' , I ' z & "" oz,3Ac:.1::. ... T;

~ , I ! ~ AO ez"nA~.5~e.
~;---------~"AViil6,Z"'"" C.:i/,5 ... T~ r·

. - i I \ !?0)(.Z C.SIZ>/1
' I ' · "1. 5e)(.Z. C!>I/

• , 1 ~~' ' ' I
1

AY :1e.x 1 CS4/ SMT IO

; ! I - . l•-'' -~~~·1 CSll J r-
1

I I J I - --- - - -- - "~".,i J.: I - 1 I "1 I ·
I ; . . ' t .. ; -· _ ... _ ~. '1.r: ~,.;;.;.r j

• c.__,.,.......,_: !> ~ , l 1 ~ '' ' - 1 · ... -· · • ·. '1::1 \; r "' "-.,.·r~
: 37 I + : J I \ 1 ... --'t'- - • ~ '\q.~ .. \.'
I 74500 , • ' • MEMOBY '-NO 110 oecooe j

~10,M~T/

~:-------:§l<lu~2-_;' _ _i -;- ~...z!IA-1 t . ' . j ,:-, .I j
~1-<r;;, ME.M CJ01)fil- i , :.' : : , / 1 " . Ii~ I A

~HT'l,INTA. LOO<.!([] I
I

- • 7 @:r-r--- I jidf 'j -;:j
5 6 4 -I 3

i: ,;

. ··;"

'·

;

'

c

B

A

I 1

-----------------·-··----------------

C5 CJD
l-----t--------t---------------~~---------.,..!C<b~--~Zol.j7~ RTSp<Oi<'~---+----.o-!''Z:.,-...._'

l"o'-'1'-__ ze.=iD1 ~11>'-11'----+-----~JZ·IO, CLEAR TO 5ENO
l"oz,,,,,_ ___ '-11 OZ U2<1 7516a

""03~--~z""!D3 n<"ur'9~---r---r-1'~;;\):~~'-----------7 "'o04=-~~---.<.j <;D<! Ul4 ?SIA~ ; JZ·C:.. RECEIVE DATA
l"'C-7"-----'°=.iD? BZ?IA vu

t'°"'=----"710.:0 r:;l OTR Z4 4
t'07~---~B'lD7 L'..J ~P"'°~---------tJZ·IZ, CA.TA 5ET ROY.

S>-<T 2., R5T Q}---·------j--------------------------jf----'Z~ICJRFSET 75106 " ;

1UI? ._ 0 ----------------l-----""17!dCT5/ TI.RD'ff;15~--+----------------!-ICB1~51T~ li~TR. 5HTq
REQUEST TO SEND, JZ·O (---------·-<>----~--';2P'""" 3 RXD R'l< - 14 SIR)<. INTR,5HT9

~NSM1T 01'T JZ 4 ,,~~75189 ' 2.-<S&MH"l. ~ ~c: !>YNOET/e.0 ~ -
-uz UI? q -n.C. T<EMPT'f I&

Df>.T;>. TERM ROY, JZ·l3 (-------------"15-IO_, __ l""jQ
9

£!!>' Ee.& ~ R)(C.

El<T"'P"ll>L UOCI(, JZ·7 (- .. u~o;. '° "'l'W:\9 RD WR

~-,.,_:.1owc_1

SH,- 4, fORC I

SHTO,EXT CLK JM
PLC,PZ ·31

S._.T S, 8Z5~1>. CS

~ii {GP.TE0CNTR. L8Y
SI-IT & GATE I ':.NTR L BZ

5Tl<.D
~

..,, I '?/ 10
7?109

'----t-----------,-----J-+.'F~78"'o ~

E~ FE& .r'·' U14 ··

~
15160

E"'IO

+5LV TN;ll(" ~ E~ i-jr-: +--~---"<=""""'-----1--->-----+---t---lf---.-+-------!e e>CL.l<.,~4w
' voe <)!(fil1r ~v cue. Q~ 14 '
2'°"'M"""'~ R<. Ult. ao& '

etm "'- I K. 1'051~~ QC l\:Z.__ ;
l, """" ...,., . .!.. ~ C!.R Q W-., ,~
.!l.~ c",!.!.. ,.,1, ENP O ~ 17:'-++-+-------i-----------~'E TINIER01NTR,5 T9

Ult. jlt~ ~ ENT E<ol t:=--+-:-:+-------i;-------------f:F TIMER I INTR., 5HT '!

-·----·· ---·
------- ·---··I--

zz 2.?>
RD WR

00 A 00 OUTZ .!L
DI 7 DI OUT0IO
DZ t;, DZ CUTI 13

82Z4 µ ~~
X.fAU.JTNJ C.'1

14 I') I?

YI .a
19.66HMZ.

R30
SIO

.., 10

1.Z.2.9MM'Z,E.i;.? - ec.J_

E::R - ..,...
El.3

~ 5~ />-.(!) l'I Al

~----4 D4 l>.I zo p:z
05 "OS
()(.,

2 °" UZ!>
01 I 07 BZS3·5

'I CU<(!) . GJ IS CLKI
18 CLl<Z.

-+"# • • Rl3
I<. GP.TEZ.

IOI< .z.l.c cs
GATEll> GA"Tt:I

II 14

~--------------------4-----------------l-----lf---l----'--".;.__-'-----l---..C...--''-------l55PLC,51-1T'I

TIME!:! AND SERIAL !?ORTS

..... .., - a 7 6 s 4 3 2 1

' !
o'

!

c
I
!

!

B

'
I

!
I
f4

-
j I 7 I .; l .l ~ ~ I - I . •

b •· ···.- :j I ••···-:::.: . ,__ ~--~----~ - --· 1, ~.

- -F:~~·--~·1
51-<'T 7,!l•T.t. >NT~ i ,---------------------------------------1----j(:~E TIMER0 l>(TR, ~><T 7 _ i
~., 5111>' INT'I. c "' TIMER I INTR, ~HT.., I

i) I ~T 'a. ~INT<>- c.c, c sexz •NTa>, 5HT 10
~ ... T .e.. ?f> INTR a. 56l<Z. INTI • :>HT 10 D

\J42. • I t ., : r ~ t .. l q:,. • •-c.t._ .,!;. • t.-.!' \

5uTt>.~•i.trn.o..rr@}-- '[>oz. er1zo '''I ·:1 ' I
7«X> I I (.•

A.(,, • " ' : ~IA 5BXI 1"'1"0,51-ITIO
""' ~ - .CN sex I INT I • '!>I-IT 10 '
p.a ·• PLC., 0:.l-IT 7 ;
11.7 ' • J ·I.MINT ~
II.I u "oc::J 7 ... >PZ·l<J,PFlN/ !
11.-Z. (o '74l..S>4 ~ ~- •7v)Jl·!>O, eilT INn:!./ i

~~ • I

• - H
1

NMI.:;~,:.z.,.:~

1NT0/, P1·41 E.filo '" INTI/, Pl-4'Z~ EIBO II

INT'Z./,P1·~ E1"14 "
INT~/,?t·<IO Eill."'-a ·~ --I INT4/,P1~7E- E.1"730 :?.
INT5/, ?I·~& (El'1:2o 4

INT<./, P1·3~(Et79
0 ~

INT7/, Pl·"!lf.' ErT7.
. "

'--==2...--------+---------ii-:"JINMt ~K./, 51-1T6 ' .. ' :
"'=' I. I R.PZ. Rl, '... ..~ .. ·- - -~--- - t~ \ '4 J)!'>.1 h.f•..i.-:

. • S.<.K.
z GINTR.si-rrz.,,~

U" uzq ,, ,l ... ~ri·e
II 10 II 10 c 5<J DEN/: SI-IT 4

c c

1--------------------0"1::--_.""'I I '14l.:.04 "14504
~ .
07
()<\

~

ut<J
~[>o4 I f ~'_;t.!., .-,;. t 1-..-.":

~.
SHT4,~CE ~~~~~~--i74.!>04

M j ~ 14-

8

-

A

01 ' L PJ>.8-PA.11, SI-IT Z

00 * . -- . f:~' ... "" - "!4 j, t • .:.
• 1 • iti1c • .~1 .. ·

. - :-_:.~·---~-- ~:~.~ ~~;:~/.~; ·~ ::_,;
51-n' 4, /;.LE/ • 5'1 lt-rr'A/, 51-n"Z.

+ V Rrl INTP.. LOCK. , Sl-ITZ
IK. E. IN1"P.. LOCK/,SHT Z,S

!;l~T4,P.U-N0.1 N!-----...:..:"'--+--"9 ~5V

51-fTZ,RST 11-------------<>------------+------------------..,

.
, . , ~EISO •.

SHTS,oo-!l!O~ • ., ·e.14'1 9~
~T4, INTA/ el!. IO 3

'4~.!>Z. I•.,

-·
... 'r 't;l

!>HT4, eu.!> l>.ENI~ 4~
~T 4, llU~ '"'°"'' ~'I 7453Z J

~LOCAL INTI"o., Si.<TZ

~II !----~,;. .. i

1.)(.,
"'~
Vi41~

f-·r -'! > .=:il~~~ 'i

I
.~ ~~r.~,

:-r-. .. u, .a,\,~.).,;~

~6 ~~
. , ... i:-.·~p(:,,.

• ..::.:;,~. ,..c.., .. ~,. .• , I
- ~·!_:?'' J

:- :@JP.U- No-2.,SHTZ

e~ I
~v

l ~ . . _, ; . __ .. I ... -. . . -- I
I :;.1.. :-iA.r.I\

•' .! •. ' • i .· .. ,;·~-:~~,
IN"l"ERRUPT' L()(;1c. ~ • ::.,.:

!
e.ia;

,. r - 8 I 7 . 'l 6 I .s t .4

t~,
~OK. :J~

l -.',l

. --· ··~I
I I ;{ j•i e

. ..1..-- - -- •

•
,1 I 3 1

'

8

r-
'
' l
l
I :,
I
llA
I

~~-

{;
''.;

, ...

;!.

1: 'I l

!
~'
r

1:
j:

~
!'
lj

11
" i

I

·I l·?i.

FIGURE H.2

;:::i l:t:=~~-=1ll 1 I • I • I • I • ~;c --~~-:--l_-·~~"'"---"J~; ·=--.....,,. =-----

.... ..,
p

QS.'!E:"T :s
,..,,._{II II

XOit.1::11 l'!o
l°"";tt I ,~

MCS{I)/ Z7.
MC{O ~
MO\ 'lo\
MCa,. ~
Mt:>~ 7.,
n:>4 z.,,
Mt:>-. 7."'!>
Mt>W Z.1
Mt:>, I~ ~

....,,~g, 14

Ml~\ 1-z.
oP1"QI. 'llO
,OP"TI UI

M , C!I
M:.1:.V 'U>

•l'Z." ' I
•rz.v
t

•O,U

•W""', "'
•1'M .. ~ +.7

Ul:S
-· , IOV
- 1

..:··11 -\"l.V &.

l"h .. ~

. .-v·;!=l
~~{~

~:\l'JUi.Y.a~~~·
1. ~""'•·u•-..•·s••u •. eoc:
a..·~n~-~-

F~.·6°"-·~,"!ICN.
~ QC>"l.\<;,~·QMlilQ--..i·
'~~~~.

fAI ~"°""'CA,-.. ... -c:-i CJ ...-...IOC>-'i'A"t~
[SJ ~~ -=t-",CJC&
~~':'.~~=~

r;::r ~~"<\~a. --.--z.-.."Z..C.~,\fi>~lo,I
C!:I ~~""~~-a

......,.~ ... "T -~><...n-
: ·.lltl'!. I~ "THE f1'C10f'I lle.FAU.:T.
f;1 <:.CE TJ>.B\.f. ~ I llNO Z FOR CLOCK FRf.QUENC.IE.'<I
L!J ·AND RE.QUIRED JUMPE.R&.

- • .. 6

......, ...
-

I

-
·------ e. ~-=~ -"Z. --

C.~,.._,~.,.~V"l:iM."3. l
.... ~c-· .. ~"Z..

---------------0 .,.,~......... -"Z..

t=_

I I I I I I l'i"I

·----a~~·'°~~ --z.
---- F ~,...,,1HiilM,..,,_l::N" ~2

-@T)l.C\...,.;. '°""Z.

- -'--IE]e.><.o..~ 'IM\""2.

MASTER

-- I -

D

c

I

:I ~--- I ' I
I I I I I I I . ,; ..-nm -·~=i '; .. -~!;~ ~... -~ A

- . ~· ·.SC.liEM.:..T;z-· CRZ

"'' Ull

·5

""'" "'' i\.e.
CIU

._....~
Cl~
~

• J

l'.
·SERIAL MULTIMOOUl..E".
L.._.....J:e>~

""' -----. 1 ·-·· .

~
;

.....

'" :-
!-

-~ _,.

.·

. ..

r
t

'•

!
•I

~ -
.... · ..

tO "

I =:<
I' I

. t

. ·~1
____ ,_d

.,.
~

~---. .. c;_,,---,

•.

,.

., '

~ v !

~~- .. :
' .. I 1T I

I.

-.-~ . =~ -. n
:~·11 0

;01 ..
~~/I '
- I

.· ...

-':-- ~ -~

.... ..J. -·-·----

- ____ ..._ ________ _
'· -t

' ' a>! -e- -

i;:
~
n ..
';

-

,_
I.

f
I

Ut
I

-9

-"' ;:~
E~

2

I

' "': -g.
NO

e
"'•
~~
m~
~~ v,

i

~ ...

:r ..

-g-§-g@
I
u

-,
I
I FIGURE H.3

~ .. -s.~ SOUTH AFRIC~~1 ':'r6LON SPINNERS f .t

~ BELLVILLE l

""' ICU
INVERTER CONTROL UNIT
INTERFACE BOARD· CIRCUIT DIAGRAM MARK II

nwo,..
SA/B 1688 ·

P_00.01-490

,, ,

""'

' .
. j . '

i
i

-<;

....

;I
..

' ...

. .
' ~

[0,01uF I

.,

~ ~ ~~~
·~~

.. •

. FJ'GURE H.4

NOTE: OC 1-13 ARE 4N33
= OC 14-17 ARE 4 N 25 :AN NYLON SPINNERS

(PTY) LTD·

BELLVILLE

.· .·

..

TIAL COMMUNICATION AND THE
----------------r---1o--+---.1ERS lrTY) l TO IT MUST NOT BE

DRW'N CHK D APP'D "ONS[NT Of SOUTH AFRICAN
DATE . DATf . DATf IURN[D IMMEDIATELY ON THE.

DESCRIPTION
~----------------,,_ ___________ __ _.. ____ ...,. __ _

,.,.,.. 1 ,- p:in11111111fflllli/llii/lllij;tll/rlr1[ril1 1 .1111rmr1m1~m11111111 11/tlllllllll'fl
f 0 t 2 3' s 6 7 8 q

REV

...
u
"'

0

I .

,.

.

'

' ...

I

MAIN
=

POWER
BUS =-

I SITUATED AT
BASE OF
CA.BIN:TJ-

SEE OWG SAS 1600

+12v

Ov

-12v

:.+Sv

+24v

Ov

__ ,
~: .. :,. -1,
~. ':- :.~ :-.~~-~--t : : . -·. ~~:

. ,.,· ..

..I .

.

.\

• .i;, , '

7 I

\
\ \

I

\

FIGURE H.5

·:.

)
sol. UTH AFRICAN NYLQN, "SPINNERS

.f'TYJ l"::>

BELLVILLE

B
TER CONT~OL CABINET

10\\'ER DlST.

\ 1633

"f-01-49 D

"'
- !

...

...

"

""~ ~· ;. :
,,. ._ ...

. {·I

l : • r·
f

i:
!
i
I

8

c

r

a.&

,

!:al.

•12•
:; ES 1lCI = -tlw

Ow

3

BHl 3 2 =
7

., .

I

Bl

GRN

RED .

ICU DRAWER

' ..

·.

1

ETC. .
_J

SOUTH

..

..

AFRICAN NYLON SPINNERS
(PTYl LTD

BELLVIUE

SB INVERTER CONTROL
1UNiCATION & SIGNAL MON!TORfNG

---------------------MATIC

1-
..... ---~~.
~·--

8 1626

I '
I

'

~

= • E !
c
c

.t .
\

J

.:~ .·· : ..

ICUSCH.DOC
C300,20J

SANS BELLVILLE
ENGINEERING DEPARTMENT

COMPUTER HARDWARE SECTION

Revision 05 COMPUTER CONNEC~IONS FOR ICU PROJECT

I N T E R C 0 N N E C T I 0 N

F 0 R

INVERTEF: C 0 N T R O L

Prepared by T.E. KirK. _

R~?V 00
Rev 01
Rev 02

.Rev 03
R~?V 04
Rev 05

released 23/2/84
corrected and altered 12/3/84
serial linK details altered 16/3/84
D9 wirins included.- 20/3/84
serial link d0tails altered.
power switch details included.

FIG URE H.7

S C H E D U L E S

C 0 M P U T E R

'

Issued
24th July,. 1984

Rev 05 COMPUTER DRAWER CONNECTIONS FOR ICU PROJECT.

' C 0 N T E N T S.

A> KEY TO CONVENTIONS USED IN THIS DOCUMENT.

B> COMPUTER DRAWER INTERNAL CONNECTIONS.

9+1) Multibus.
B.2> I/O board to external I/O connector.
B.3) I/O board to computer board.
B+4) Local VDU serial linK.
B.5) Host to ICU serial linK.
B+6> Power Supplies+ .

C> COMPUTER DRAWER EXTERNAL CONNECTIONS.

C.1) I/O to terminal strip and interposin5 relay.

.. . - ... ~ . .. <· : ··. ·. : .. : . .":
. ; ···.--··

Rev 05 COMPUTER DRAWER CONNECTIONS FOR ICU PROJECT.
--

A> Key to conventions used in this document.

In this documen~ the following conventions will be
used for namin~ sockets and plug~ <See Fig 1 for an
illustration of the physical appearance and location of the
boards).

XXX-YYY-ZZZ

Where XXX is the unit where the socket or plug is located.
SBC - SBC 88/25 Single Board Computer.
SBX - SBX 351 "Piggy Back" serial Comms card.
I/O - IIO Board.
EXT = Back panel of computer drawer.
LED - Board carrying LED's mounted on front panel.
WX - Terminal strip at other end of I/O plug.

YYY is the particul~r plug or socket on a board or panel.

ZZZ is the pin number on the plug or socket.

e.g. SBC-Pl-14 would be pin 14 on the Pl connector of the
SBC 88/25 single board computer.

,

' .

. . . ·-. -~ - .. -
' .

Rev 05 COMPUTER DRAWER CONNECTIONS FOR ICU PROJECT.
---~--

B.1) Computer Multibus connector.

:----~---P~----------------------------------~-------------------------------1
:Multibus Pin
:source.

Multibus Pin
destination.

Connection Function.

--~---------------------------:
SBC-Pl-1,2,85,86 : EXT-PJ-6,7 GROUND for 5V and t/-12V.
--:
SBC-Pl-3,4,83,84 : EXT-P3-1,2 5V Power.
--:
SBC-Pl-7,8 EXT-P3-3 t12V Power
:--:
lSBC-P3-79,80 EXT-P3-4 -12V Power
:--:
lSBC-P1-1
:SBC-P1-14

EXT-RESET
EXT-RESET .

Software Reset.

:--:

Rev 05 COMPUTER DRAWER CONNECTIONS FOR ICU PROJECT.

B.2) I/O Board to External I/O connector.

:--~~---------:
:I/O Plu~ Pin
:source.

I/O Board P~
: destination.

: Terminal Strip : Connection Function.
: number.

:---:
: EXT-P5-A I/O-P2-60 1 : Stop Button. I

I

:---:
: EXT-P5-B I/O-P2-58 2 : Wrap Detect sense. I

I

:---:
: EXT-P5-C I/O-P2-56 3 : Oil Mist Fail.
:---:
: EXT-P5-D : I/O-P2-44 4 : Tailin~ Button.
:---:
I EXT-P5-E I/O-P2-46 : Start Button.
:------------------------------7-------7---------------------------------L--:
: EXT-P5-F : l/O-P2-32 I

• I 6 : Position Ready.
:---:
: EXT-P5-G I/O-P2-43 31 : 24V GND.
:--~----------------:
l EXT-P5-H I/O-P2-38 32 : Traverse Run 24V. I

I

:---:
l EXT-P5-J I/O-P2-45 l 33 : Winder/Trav Common. :
:---:
: EXT-P5-K I/O-P2-36 34 l Winder Run 24V. I

I

!---:
: EXT-P5-L I/O-P2-50 16 : Traverse Inverter Ready:
:-----------~~----------------------------7---------------------------------:
: EXT-P5-M I/O-P2-48 17 : Winder Inverter Ready.
:---------~---:
: EXT-P5-N I/O-P2-30 23 : Head Lift Solenoid. I

I

:---~---:
: EXT-P5-P l I/O-P2-42 24 : Hour Mater 24V.
!--~--------------:
I EXT-PS-R I/O-P2-52 : Thermistor Trip.
:---:
: EXT-P5-S l l/O-P2-54 26 : Emer~ency Stop.
:---:
: EXT-P5-T 27 : Spare.
:--~------------------:
: EXT-P5-U : EXT-P3-9 11 l +24V DC.

l I/O-P2-40
:--~----------:
: EXT-P5-V I/O-P2-7 28 : ChucK Speed TP+
:---:
l EXT-P5-W l I/O-P2-1 l 29 l ChucK/trav TP GND.
:--~----------:
l EXT-P5-X I/O-P2-3 30 : Traverse Speed TP.
:--------~--:
l EXT-PS-Y N/C : Spare.
:---:
l EXT-P5-Z N/C : Spare.
:---1
: EXT-P5-a I/O-P2-6

: l/O-P2-8
I
I 8

7
I ChucK Tacho Screen.
: Chuck Tacho Core.

:---:

,.: .. : -·.·:
· ... ·:.

Rev 05 COMPUTER DRAWER CONNECTIONS FOR ICU PROJECT.
--

EXT-P5-b I/O-F'2·-2
I/O-P2-4

I

) :
. I

' 10
9

I Trav Tacho Screen.
I Trav Tacho Core •

I I
I

:---~---------------------------------:
I EXT-P5-c I/O-P2-14

I/O-P2--16
l. 9
18

I Trav Freq out Screen.
: Trav Freq out Core.

:---:
l EXT-P5-d I/O-F'2-10

I/O-P2-:l.2
21
20

: Wind Freq out Screen.
I Wind Freq out Core+

:-----L-----------------------------------~---~-~---------------------------:
l EXT-P5-e I/O-P2-4l. : 22 : Screens for Co-ax+ :
:--~----------------:

<The external I/O terminal pin numbers are included for ease of reference.)

These connections are made by links which are crimped into snap-in plu! pins
at the plu~ end~ and soldered to connector lu~s at the other end.

The MIL spec plu~ used for P5 has an unreliable record where the coax
connectors are concernedv and so these connections were duplicated with
twisted pair wires on F'4, which is connected as follows:

:---:
I/O bo11rd

: source.
: B•lCK P•lnel F'4
: clestin•ition.

: connection function

:---:
: I/O-P2-6 : EXT-F'4-1 : Chuck tacho screen
l I/O-P2-8 l EXT-P4-6 core.
:---:

I/O-F'2-2
l I/O-P2-4

: EXT-P4·-2
: EXT-P4-·7

: Trav tacho screen.
core.

:---:
: I/O-P2-14

I/O-F'2·-16
: EXT-F'4-3
: EXT-P4·-8

: Trav freq out screen.
core.

:---:
: I/O-F'2-10
l I/O-P2-l.2

l EXT-P4-4
: EXT-F'4··-9

: Winder freq out screen.
core.

:--~------------------:

B.3> I/O board to Computer Board.

:---:
: SBC ,J1 I/O Ji : Connection Function
: connector : 1 connec:toT'+
:---:
l SBC-Jl-4 : I/O-Jl-4 : Host Communication Rx+
:---:
: -6 : -6 : Host Communication Tx.
:-------------------~---:
: -8 : -8 l CPU Runnin~.
:------~--:

-10 -l.O : Software Error.
:---:

r
Rev 05 COMPUTER DRAWER CONNECTIONS FOR ICU PROJECT.

-12 -12 ~reverse Run.
:---:

-·14 -14 Winder Run.
:---------------------------------------~-----------------------------------:

-16 I
I -16 Position Ready.

:---:
-18 -18 Traverse Freq Out.

:---~---------------------------:
-24 I

I -24 Winder Freq Out.
:---:
: -26 -26 Winder Tacho Pulses In.
:----~--:

-28 -28 Traverse Tacho Pulses In+
:---:
I
I -38 -38 Position Ready to start.
:---:
I -40 -40 l Tailing Button. -:
:------------------------------~-------7-------------~----------------------:

-4Z I
I -42 Address select Bit 0

:---:
-44 -44 Address select.Bit 1

1 :---:
-46 -46 Address select Bit 2

:--~--:
I -48 -48 Address select Bit 3
:--------~--:

The I/O and Computer boards are linked to~ether by a
ribbon cable terminated at both ends by 3M plugs. The cable
the SBC-Ji connector and the I/0-Jl connector.

, ,

40 way one-to-or
i~ fitted betwe•

'.. .. ··. ~. .·.·.

COMPUTER DRAWER CONNECTIONS FOR ICU PROJECT.

~.4) Local VDU serial link.

f .

I . .

~---:
~Computer board
llink source.

: Back panel Pl
: destination.

: Connection function

{---
: SBC-J2-4 EXT-Pl-2 : Transmit Data. <Blue>
{--------~---------~--
: SBC-J2~6 EXT-Pl-3 : Receive Data. <Green>
t--~--------------------,
I SBC-J2-14 EXT-Pl-7 : Signal Ground. <Red)
:---:
: SBC-J2-8 I

I EXT-Pl-8 : RTS <Not used>. (Yellow>
{---:

e.5) Host io ICU link.

:--~----~---------:
: Pi~gy back
: board source

l Back panel P2
: destination

: Connection function.

:---:
l SBX-Jl-8 EXT-P2-3 : Receive Data.C-ve)
:---:
: SBX-Jl-12 : Transmit Data.C-ve)
:--------------------------~--:
: SBX-Jl-9 EXT-P2-14 : Transmit Data.<+ve)
:---~---:
: SBX-Jl-5 : EXT-P2-16 I Receive Data.Ctve)
:---:

The local VDU link is a standard 3-wire RS-232 Serial link, and the host
link is a stndard RS-422 multidrop link+ In both cases the connection is made
~sing 4-core screened cable.

~ev 05 COMPUTER DRAWER CONNECTIONS FOR ICU PROJECT.

3.6) Power supplies.

:--~--~-------------------------------:
·:Supp 1 y Source
·l pin.

4PDT switc:h
: connection.

incoming/outgoing

Supply Connector function.:

~---:
EXT-P3-1,2 S~J-2/3 SBC-Pl-3,4,5,6,: 5V Power

81.,82,83,84
I/O-P2-55,57,59:

--:
EXT--P3-6, 7 N.C. SBC-·P 1-1, 2, 11,

l.2,75,76,85
86

Ii0-P2-49,5:l.,53l
:~-----------------------------~-------7--------------~---------------------:
: EXT-P3-3 l SW-5/6 : SBC-P1-7,8

I/O-P2-35
: +12V Power

:---:
: -EXT·-P3-4 : SW-8/9 : SBC-Pl-79,80

I/O-P2-37
: . -121,.1 Pm..ier

:---:
EXT-P3-8 N.C. Ii0-P2-1,5,9,l.3: t/-12V GND.<Also

17,23v27,10, used as screen
14,6,2 GND.>

:---:
l EXT-P3-9. : SliJ-11/12 I/O-P2-40
: l : EXT--P5-U :
:--~------------------:
: EXT-F'3-5 : N.C. I /O·-P2-43, 45,

41.~47
: 24V GND.

:~-~--:

These connections are made by individually soldered leads.

~ev 05

...
·, .:.

........ ·: :. . . •. ·:. '. .~ : . :5·· :_._~.-.

COMPUTER DRAWER CONNECTIONS FOR ICU PROJECT.

:.1> I/O to terminal strip and interpnsihs Relay.

•I ------------------ - --·----- - -·-·- .. -- - ---- - - - - ---- - - - -- - -- --- - -- - - - - --·- - -·-----··- - - :

•' I
I/O plus Pj.n. : Connection function.

~-------------------~---:

·l
I
I

·l

I .,

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
l. 8
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
N/C
N/C

I
I

I.
I

' \

A
B
c
D
E
F
•l

•l

b
b
lJ

REL-1
REL-1
REL-2
REL·-2

l..
M
c
c
d
d
e
N
p
I~

s
T
v
~J

x
G
H
,J
~~
y
z

Stop Button.
Wro.p Detect.
Oil Mist F•1il.
Tailing Button+
St11 rt Butt<:Hl •
Position reody.
Winder Tacho core.
Winder Tacho Screen.
Tr11v To.cho core.
Trav Tacho Screen.
24V-
Interposin~ relay contacts.

•

•
Traverse Inverter ready.
Winder Inverter ready.
Trav Freq out core.
Trav freq out screen.
Winder freq out core.
Winder freq out icreen.
Co-axial cable screens.
Head Lift solenoid+
Hour meter 24V relay contact.
Thermistor Trip.
Emer':;iency stop.
Sp11 re.
Chuck Speed test point.
Test point Common.
Traverse speed test point.
241v' GND.
Traverse run relay C24V to coil)
Trav/Wind run common.
Winder run relay C24V to coil>
Sp11 re.
Spi::1r~~.

'I
I

I
I'

:---~---------------------:

I
'··.·

_, ti _: ~

' l
.i

i)

.•

;-~ -- --

• <

1

F~
INVERTER

FllOM
WINDER
CONTROL -
PANU

LOCAL TO
(A81NET

~-,.-- --

R3

R4

~4 -..-+---ti

1

01l NSTCA8MET FU.

ffElO

"' "' ...
~---~

L.y....L.,rL-r&--~----1

.~ 28 P!N
PtuG

W24

IT.26l

8

9 SOUTH AFRICAN NYLON SPINNERS
~ (PTY) LTD

BELLVILLE

ACHIN£ SB
'IVERTER CONTRO~ FIELD WIRING

~AB 1422

b_Q1-0L490

,.. ... 1$ A. r~11.•Tf AN("! lON~IC'lfNTIAl ll'J""Ml}Nl(A'\,."1"" ..,.,_.;"I fht

_1, _______ :__ ______ ~!--+--+..,..,.,,-:+""""'!r---:---.~ci.~'; .,.~,,,~~~~ T~fYl~ll 1~~~~~~·:~' Ofll~~11p~J~~e·0~ f.t

Pf'\/ ...,IQ~ ,rn·~ lTfl AN[' A.1dS1 N. tfTLNl'N(("I l~M(l:'·•·~.- (_'),...'°'It
, C"f TrNC'lfJi" {"IJi" C"C'"-Th,(T

..
' "'

,.

•.
1

j
..

...
LIST OF SIGNALS AND ASSOCIATED JUMPERS ON THE INVERTER CONTROL UNIT SBC 88/25 BOARD,

SIGNAL TYPE SIGNAL ORIGIN/DESTINATION JUMPER REMOVE/INSTALL : SBC PLUG & PIN NUMBERS : IC REF,

---·---------------- --------------------------------------·--------:-------·--------------------;--------------------------:------------
DIGITAL INPUTS

CON BOARD BUFFER)
PORT A

ADDRESS SELECTION -
14-INPUTSl

TAILING BUTTON

BIT
BIT
BIT
BIT
BIT
BIT

0
1
2
3
4
~
~

BUFFER U7 ON BOARD
NO JUMPERS

Jl-48
Jl-46
Jl-44
Jl-42
Jl-40
Jl-38

U7 & U22

-------·------------.--:---------------------------~------------------------:--------------
DIGITAL OUTPUTS

(INSTALL BUFFERS>
PORT B

POSITION READY BIT 0 INSTALL BUFFERS Jl-16 : XU-10 &
WINDER RUN BIT 1 XU-10 C74LSOOl Jl-14 XU-11 &
TRAVERSE RUN BIT 2 XU-11 C74LS08l Jl-12 U22
WATCHDOG TIMER BIT 3 NO JUMPERS Jl-10
CPU RUNNING BIT 4 CUT TRACK IC22-22 Jl-8

SOLDER IC48-11 TO xu11-1,2
COMMUNICATION-TX BIT 5 CUT TRACK IC22-23 Jl-6

SOLDER IC30-8 TO XUll-4,51
SOLDER IC21-23 TO IC30-9,10

COMMUNICATION-RX BIT 6 CUT TRACK IC22-24 Jl-4
SOLDER IC21-25 TO XUll-9,10

---------------·---- ----------------------~----------------------:---------------------------:------------------------- ------~------
DIGITAL OUTPUTS OFF BOARD MEMORY INTERRUPT REMOVE E50-E46 INSTALL E50-E105 <RESET LATCH>

INSTALL E12-E13-E14 : lOmS timeout
INSTALL E122-E118 l IRl interrupt

--------------------- --:---------------------·------:------------------------- -------------
PARALLEL I/O JUMPER REMOVAL REQUIRED REMOVE LINK

REMOVE LINK
REMOVE LINK
REMOVE LINK

E36-E40
E37-E41
E44-E48
E45-E49

-------------------1---:---------------------------:------------------------:--------
LOCAL VDU COMMS : INSTALL LINK E114-E117

: INSTALL LINK E84-E85
: SBC Rx int to IR6
: CTS-RTS

--------------------:---:----------------------------:------------------------:-------
FREQUENCY OUTPUT

<INSTALL BUFFER>
FROM TIMER ON
sex BOARD

WINDER FREQUENCY -SBX TIMER CLOCK-1
COPTO ON SBC BOARD>

TRAVERSE FREQUENCY -SBX TIMER CLOCK-2
COPTl ON SBC BOARD>

INSTALL BUFFER XU-9
<USE 74LSOO IC'S l
REMOVE LINK E47-E43
INSTALL LINK E43-E139
ON SBX-BOARD!
INSTAL~ LINK E26-E25

ON SBC-BOARD!
REMOVE LINK E46-E50
INSTALL LINK E46-E140
ON SBX-BOARD!
INSTALL LINK E28-E23

Jl-24

Jl-18

XU-9 &
SBX-U9

--------------------:---;----------------------------:------------------------:--------
FREQUENCY INPUT

<INSTALL HEADER)
FROM TIMERS ON SBX WINDER FREQUENCY -SBC TIMER CLOCK-1

TRAVERSE FREQUENCY -SBX TIMER CLOCK-0

ON SBC-BOARD!
INSTALL HEADER XU-8
CLINK PINS 11&12,8&9)
REMOVE LINK E38-E42
INSTALL BUFFER
U-50 C74LS13l
SOLDER U50-8 TO E58 &

U50-9,10,12,13 TO E38

REMOVE LINK E35-E39

Jl-26
SHMITT BUFFER FOR
CLEAN TACHO PULSES.

Jl-28

XU-8 &
SBX-U9 &
U-23

FIGURE H~

CMINTR1 ON SBC BOARD>
VIA J4-24 ON SBC BOARD

INSTALL LINK E120-E126
SOLDER U50-6 TO J4!24 &

U50-1,2,4,5 TO E35
ON SBX-BOARD!
REMOVE LINK E17-E18
REMOVE LINK E27-E28
REMOVE LINK E29-E30

IR3

' INSTALL LINK E27-E29 :-TO GO TO SBC-UART CLOCK:
INSTALL LINK E24-E33
INSTALL P1!24-E18 ICSOLDER WIRE ONTO P1!24li

----··-----------·---:--- ---------------------------:-----------------------~-:----------
UART CLOCKS TO COMBINE CLOCK FOR SBC AND sex UART'S

-SBC TIMER CLOCK-2
ON SBC-BOARD:
SOLDER J4!10 TO U24-9
ON SBX-BOARD:
INSTALL P1110-E31

ICSOLDER WIRE ONTO J4!10 I
: AND PIN 9 OF THE 82511 :

:<SOLDER WIRE ONTO Jll10li
-------------------:---.---------------------------:--------------------~---:-------------

8254 MODIFICATION INCREASE CLOCK RATE TO 20456 MHZ ON SBX-BOARD:
CUT TRACK TO U9-18
SOLDER U9-18 TO E20
REMOVE LINK E19-E20
INSTALL LINK E20-E38

: U-9=CPITJ=8254
:<SOLDER WIRE ONTO PIN 181
: OF THE 82541

CLEAVE E37-E38 INSTALLED>

U-9

----·--------------- ---:----------------------------:-------------------------:------------
RAM MODIFICATION TO GET SBC TO ACCEPT 2168 RAM CHIPS ON SBC BOARD:

CUT TRACK TO U40-14
SOLDER U40-13 TO U52-9 : !SOLDER WIRE ONTO PIN 131

IOF U-40 & PIN 9 OF U-521'

U-40,U-52

-------------------:---:---------------------------:------------------------ -------------
ROM MODIFICATION TO GET SBC TO ACCEPT 27128 ROM CHIPS ON SBC BOARD SOCKET J6:

INSTALL JUMPER PIN 1-14
INSTALL JUMPER PIN 6-9
INSTALL JUMPER PIN 7-8
REMOVE JUMPER PIN 2-13
REMOVE JUMPER PIN 3-12
REMOVE JUMPER PIN 4-11

INSTALL JUMPERS ON J6 J6

-------------------:--:---------------------------:------------------------ -------------

.QC
SBC BOARD STANDARD JUMPER CONFIGURATION

I'-.) ---·-------------·-----·-----------------------·--------------- .. ----------------------·----···--·-

0
m.
C") .

_. f

'°;.
00
U'I

JUMPER PAIR I IN/OUT
.------------:------------

1-2 IN
4-6 IN
9-10 IN

12-13 :.~· -··IN
13-14 IN
15-16 OUT
17-:1.8 : IN

L •..•.• _ . --20-21 ·-·-·-I·-- --·OUT
22-24 OUT

\ ·· 23-25 · · IN
.1 · 26-30 IN

--·- - - 27-29- -- ····· '· --·· - OUT
30-31 IN
33-34· OUT
35-39 OUT

··· --·- ·· · 36-40- ·OUT·
37-41 OUT
38-58 IN ·
43-139 IN
44-48 . I... OUT"
45-49 I OUT
46-140 IN
5:1.-52 l OUT

· 53-54 :··-··: IN
55-56 IN
59-60 OUT
61-62 OUT
63-64 OUT
65-66 OUT
67-68 OUT
70-71 OUT
72-73 OUT
74-75 OUT
76-77 IN
78-79 OUT

JUMPER PAIR : IN/OUT
.------------:------------

80-81 IN
82-83 OUT
84-85 IN

86-87 IN
88-89 IN
90-91 IN

.. 92-93 IN
94-187 IN
95-96 IN
97-98 OUT
99-100 our·

101-102 OUT
103-104 IN

109-110 IN
111-119 .IN
1:1.2-113 IN
114-117 IN
116-125 IN
120-126 IN
122-118 IN

133-,J4: 26: IN
141-142 OUT
143-145 IN
144-146 OUT
147-148· OUT

' 149-150 IN
151-152 IN
154-155 IN

JUMPER PAIR : IN/OUT
------------:------------

:1.56-157 IN
158-159 IN
160-161 IN

163-164 IN
165-166 IN
168-169 IN
170-171 IN
172-173 OUT
174··175 OUT
:1.76-177 OUT
179...:179 OUT
181-:1.82 OUT
183··184 IN

PINS NOT CONNECTED

3,5,7,a,11,15,16,19
28,32,42,4?,57
69,118,l23

124, 132, 135, :1.53
162,167,180

