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Abstract: The high demand for SARS-CoV-2 tests but limited supply to South African laborato-
ries early in the COVID-19 pandemic resulted in a heterogenous diagnostic footprint of open and
closed molecular testing platforms being implemented. Ongoing monitoring of the performance
of these multiple and varied systems required novel approaches, especially during the circulation
of variants. The National Health Laboratory Service centrally collected cycle threshold (Ct) values
from 1,497,669 test results reported from 6 commonly used PCR assays in 36 months, and visually
monitored changes in their median Ct within a 28-day centered moving average for each assays’
gene targets. This continuous quality monitoring rapidly identified delayed hybridization of RdRp
in the Allplex™ SARS-CoV-2 assay due to the Delta (B.1.617.2) variant; S-gene target failure in the
TaqPath™ COVID-19 assay due to B.1.1.7 (Alpha) and the B.1.1.529 (Omicron); and recently E-gene
delayed hybridization in the Xpert® Xpress SARS-CoV-2 due to XBB.1.5. This near “real-time” mon-
itoring helped inform the need for sequencing and the importance of multiplex molecular nucleic
acid amplification technology designs used in diagnostics for patient care. This continuous quality
monitoring approach at the granularity of Ct values should be included in ongoing surveillance and
with application to other disease use cases that rely on molecular diagnostics.

Keywords: SARS-CoV-2; COVID-19; laboratory diagnostics; cycle threshold; PCR platforms; median
Ct; moving average; variants; continuous quality monitoring

1. Introduction

South Africa (population of ~60.6 million people) [1] has one of the highest HIV and TB
prevalence rates in the world: 8.45 million people live with HIV (13.9% of the population) [1]
and a TB incident rate of 513/100,000 is reported [2]. Healthcare is funded through the
government for 84% of the population (public sector) and the remainder is funded privately
through individuals, medical schemes, and insurance companies [3]. Laboratory services
are provided through networks of private and public sector laboratories, with the latter
comprising 256 National Health Laboratory Service (NHLS) facilities positioned centrally
and at district level across the nine provinces.
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On 5 March 2020, South Africa reported their first case of COVID-19 [4] and both
public and private laboratories’ [5] virology services had to rapidly scale their SARS-CoV-2
nucleic acid amplification technology (NAAT); the primary method of diagnosing infection
with SARS-CoV-2 [6,7]. Within one month, however, the country’s SARS-CoV-2 testing de-
mands required expanding molecular testing to the national priority program (NPP) of the
NHLS. The NPP has capacity for 10 million molecular tests/annum, which predominantly
support HIV viral load (VL) monitoring [8] and TB molecular diagnostics [9]. Testing is
performed in 17 VL laboratories (11 also provide HIV early infant diagnostics) equipped
with cobas® [Roche Molecular, Pleasanton, CA, USA] and Alinity m [Abbott Molecular,
Des Plains, IL, USA] platforms) and 175 GeneXpert (Cepheid, Sunnyvale, CA, USA) testing
laboratories, which service ~3800 primary health care facilities. Test kit demands for the
NPP’s closed platforms (until 2021), however, could not be met due to the inability of
suppliers to ship to South Africa as demands escalated in their countries of manufacture.
SARS-CoV-2 testing therefore had to expand to a third network of laboratories. This in-
volved a SARS-CoV-2 surge program initiated by the South African Medical Research
Council (SAMRC) [10] with solidarity funding to support selected academic laboratories,
councils, and research institutes to conduct SARS-CoV-2 testing. A rapid laboratory elec-
tronic assessment tool was developed to collect information on site location, ISO 15189
status, Health Professions Council of South Africa status of key staff, SARS-CoV-2 readiness
(available testing platforms) and implemented quality management systems (trained staff,
use of electronic requisition forms, use of barcodes, PPE stock, kit and supply storage and
procurement processes, laboratory information (LIS) and IT support on-site). Thirty-two
sites were assessed by the NHLS’ Quality Assurance Division and eleven were selected
for SARS-CoV-2 surge testing. Testing in these laboratories commenced in June 2020 and
continued until January 2021.

Test results (SARS-CoV-2 detected, SARS-CoV-2 not detected and test unsuccess-
ful) from the private laboratories, the surge testing sites and the NHLS (including NPP)
were reported as cases by the National Institute of Communicable Diseases (NICD),
who provide central COVID-19 epidemiology and surveillance reporting nationally [11]
and regionally [12]. Overall, the private laboratories performed ~55% of South Africa’s
SARS-CoV-2 diagnostics (as reported in week 34 of 2021 [13]). A link was also established
to the genomics network with five laboratories identified across South Africa capable
of performing SARS-CoV-2 sequencing [14]. Throughout the five COVID-19 infectious
waves in South Africa [15], specimens were shared between the diagnostic laboratories and
genomics group to detect SARS-CoV-2 variants, including variants of concern (VOC).

Laboratories are required to participate in external proficiency testing to monitor pre-
analytical, analytical and post-analytical performance. However, after decades of quality
indicators, a paradigm shift should be towards indicators of total quality [16]. Figure 1
briefly outlines some of the processes required for quality management prior to selecting
suitable laboratory tests, implementing tests in the field and then data environments for
result reporting. During large scale pandemic testing, such as during COVID-19, external
quality assessment programs were implemented [17–19]. However, these would not easily
identify quality issues timeously. The South African NHLS approached this challenge
by including the cycle threshold (Ct) values for each gene target of the SARS-CoV-2 tests
performed in their laboratories that identified the presence of SARS-CoV-2 (and therefore
diagnostic for COVID-19) in their LIS interface. The NHLS has a single national LIS,
TrakCare (InterSystems, Cambridge, MA, USA), where all SARS-CoV-2 diagnostic systems
are interfaced, and Ct values accessed for analysis from a central data warehouse (Netezza,
IBM, USA-based server in Johannesburg).
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nine provinces are listed on the map. Each instrument placed in the field within the NHLS is con-
nected to a LIS (TrakCare), with data extracted, transformed and loaded and stored within a central 
data warehouse (CDW). This is then accessible for post-market surveillance and in the case of this 
study for continuous quality monitoring of the Ct values obtained from each test performed. 

The aim of this study was therefore to highlight how the Ct values from the ensemble 
of closed and open testing platforms and assays in the NHLS laboratories were used for 
continuous quality monitoring (CQM) of diagnostic assay performance. 

2. Materials and Methods 
Specimens received in the NHLS laboratories for SARS-CoV-2 testing were collected 

using nasopharyngeal and oropharyngeal swabs. These were transported dry during 
shortages of universal transport medium (UTM) and were cut and placed into phosphate 
buffered saline upon arrival and processed according to standard operating procedures. 
Specimens were registered in the LIS and tested across 205 NHLS laboratories using the 
locally available platforms and testing protocols. Test results, including Ct values (when 
SARS-CoV-2 was detected) were accessed from the CDW through an extract, transform 
and load process to generate a .csv file for analysis. Data did not include patient unique 
identifiers, and hence analyses performed included longitudinal follow-up testing. Ethics 
approval was obtained from the University of the Witwatersrand Human Research Ethics 
Committee (number M160978), Johannesburg, South Africa. Data files were analyzed and 
data visualized using STATA 14 (StataCorp. 2015, Stata Statistical Software: Release 14. 
College Station, TX, USA: StataCorp LP) and Tableau 2020.3 (Tableau Software. 2020. Se-
attle, WA, USA: Tableau). Bar charts depicted daily positive test numbers and line graphs 
represented changes in median Ct values within a 28-day centered moving average. 
Changes in patterns of the moving average of the median Ct values of one or more gene 
targets could reflect an assay performance issue (quality or even lot variability) or due to 
the introduction of a SARS-CoV-2 mutation that impacts PCR efficiency. The latter could 

Figure 1. An overview of quality management systems required for laboratory diagnostics applied
in patient care and the key role of laboratory information systems. This diagram highlights South
Africa’s spread of care facilities (orange) across the nine provinces (listed on the South African map).
The purple shading reflects population density at a district (municipality) level. The names of the nine
provinces are listed on the map. Each instrument placed in the field within the NHLS is connected
to a LIS (TrakCare), with data extracted, transformed and loaded and stored within a central data
warehouse (CDW). This is then accessible for post-market surveillance and in the case of this study
for continuous quality monitoring of the Ct values obtained from each test performed.

A Ct value is intrinsic to PCR assays and is a measure of the amount of target nucleic
acid in the specimen [20]. SARS-CoV-2 test manufacturers provide information on which
SARS-CoV-2 gene regions their assays target and provide the Ct values in the test output
comma separator value (.csv) files. Therefore, in addition to central monitoring of daily test
volumes, qualitative test results and indicators to track changes in South Africa’s COVID-19
epidemic, the NHLS’ centrally collected SARS-CoV-2 Ct values were analyzed.

The aim of this study was therefore to highlight how the Ct values from the ensemble
of closed and open testing platforms and assays in the NHLS laboratories were used for
continuous quality monitoring (CQM) of diagnostic assay performance.

2. Materials and Methods

Specimens received in the NHLS laboratories for SARS-CoV-2 testing were collected
using nasopharyngeal and oropharyngeal swabs. These were transported dry during
shortages of universal transport medium (UTM) and were cut and placed into phosphate
buffered saline upon arrival and processed according to standard operating procedures.
Specimens were registered in the LIS and tested across 205 NHLS laboratories using the
locally available platforms and testing protocols. Test results, including Ct values (when
SARS-CoV-2 was detected) were accessed from the CDW through an extract, transform
and load process to generate a .csv file for analysis. Data did not include patient unique
identifiers, and hence analyses performed included longitudinal follow-up testing. Ethics
approval was obtained from the University of the Witwatersrand Human Research Ethics
Committee (number M160978), Johannesburg, South Africa. Data files were analyzed
and data visualized using STATA 14 (StataCorp. 2015, Stata Statistical Software: Release
14. College Station, TX, USA: StataCorp LP) and Tableau 2020.3 (Tableau Software. 2020.
Seattle, WA, USA: Tableau). Bar charts depicted daily positive test numbers and line
graphs represented changes in median Ct values within a 28-day centered moving average.
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Changes in patterns of the moving average of the median Ct values of one or more gene
targets could reflect an assay performance issue (quality or even lot variability) or due to
the introduction of a SARS-CoV-2 mutation that impacts PCR efficiency. The latter could
lead to primer/probe reduced hybridization (where the median Ct value would increase
above other unaffected targets) or complete drop-out (where the median Ct value would
decrease substantially due to the recording of zero Ct values in contrast to unaffected
target Ct values). These changes were monitored across all assays and their gene targets,
and no Ct values were modified or removed to ensure consistent daily monitoring of
raw data outputs that could inform critical alerts in near-real time. Ten SARS-CoV-2
molecular assays were recorded in the CDW database. However, 94.2% of tests were
performed on six assays, which form the focus of this analysis. These assays are classified
into open laboratory testing platforms: Allplex™ SARS-CoV-2 (SeeGene Inc., Seoul, Korea);
TaqPath™ COVID-19 (Thermo Fisher Scientific, Waltham, MA, USA) and closed platforms:
cobas® SARS-CoV-2 (Roche Molecular, Pleasanton, CA, USA); Xpert® Xpress SARS-CoV-2
(Cepheid, Sunnyvale, CA, USA), RealTime SARS-CoV-2 (Abbott Molecular, Des Plains,
IL, USA) and Alinity m (Abbott Molecular, Des Plains, IL, USA). Table 1 details the assay
gene targets and range in Ct values when a specimen is reported positive for the detection
of SARS-CoV-2. All assays report their gene targets in different fluorescent channels and
can individually be identified, except the RealTime SARS-CoV-2 and the Alinity m, where
both gene targets are reported in a single fluorescent channel and neither target can be
individually identified.

Table 1. Description of the six commonly used SARS-CoV-2 open and closed testing platforms within
NHLS laboratories.

Assay Name
(Manufacturer) Platform (Type) Gene

Target(s) Ct Range 2

Allplex SARS-CoV-2
(SeeGene Inc, Seoul, Republic of Korea)

BioRad CFX96Touch, Applied
Biosystems (open) RdRp, N, E, S 1 6–40

TaqPath COVID-19
(Thermo Fisher Scientific, Waltham, MA, USA) Applied Biosystems (open) N, Orf1ab, S 5–43

Cobas SARS-CoV-2
(Roche Molecular, Pleasanton, CA, USA) Cobas 6800/8800 (closed) E, Orf1ab 12–42

Xpert Xpress SARS-CoV-2
(Cepheid, Sunnyvale, CA, USA)

GeneXpert (GX) 1, 4, 16 or
Infinity-48/80 (closed) N2, E 11–45

RealTime SARS-CoV-2 3

(Abbott Molecular, Abbott Park, IL, USA)
m2000sp and m2000rt (closed) RdRp, N 2–31

Alinity m SARS-CoV-2 AMP Kit (Abbott
Molecular, Abbott Park, IL, USA) 3 Alinity m system (closed) RdRp, N 5–42

1 version 2 included S-gene targets but in the same fluorescent channel as RdRp. 2 Ranges as captured through the
LIS and aggregated within the CDW environment. These Ct ranges are established by the assay manufacturers,
and specific to each assay, and several available in the assay package insert. The LIS reports these ranges as they
are drawn from each assays’ LIS interfaced file. 3 The two Abbott assays report their gene targets in a single
fluorescence channel.

3. Results

The six SARS-CoV-2 assays utilized by the NHLS were implemented at different times
during the pandemic and their uptake at a province level varied as outlined in Figure 2.
Across 36 months of testing (March 2020–March 2023), the Allplex™ SARS-CoV-2 and
the Xpert® Xpress SARS-CoV-2 contributed 48% of the test results. The Xpert® Xpress
SARS-CoV-2 assay is the only testing platform used in all provinces, which is a consequence
of the placement of this platform by the NPP for use in the national TB diagnostic program.
In contrast, the TaqPath™ COVID-19 assay was predominantly only used in the Gauteng
Province. The RealTime SARS-CoV-2 and Alinity m assays only contributed ~10% towards
testing, despite these platforms used for the HIV diagnostics program of NPP. At least 66%
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of all testing was reported from the three most densely populated provinces (Gauteng,
KwaZulu-Natal, and the Western Cape).
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Figure 2. Proportion of molecular SARS-CoV-2 testing performed by NHLS laboratories between
March 2020 and March 2023 across the six commonly used laboratory testing systems (accounting
for 94.2% NHLS test results). The testing proportions are stratified by province and conditional
formatting applied as colored bars.

A total of 8,573,872 tests were performed by NHLS laboratories during the study
time period and 1,572,098 (18.33%) of them reported the presence of SARS-CoV-2, and
1,497,669 (95.2%) of these included Ct values for their gene targets. Ct values would not
have been captured where pathology results were entered manually by some academic
partners whose systems were not interfaced with the NHLS LIS. The daily median Ct
for each SARS-CoV-2 gene target for the open and closed platforms is described in the
following sections. Common to all assays (and visualized across all plots), is the decrease
in median Ct (increase in SARS-CoV-2 viral concentration) during an infection wave and
vice versa after an infection wave.

3.1. The NHLS SARS-CoV-2 Open Testing Platforms
3.1.1. Allplex™ SARS-CoV-2 (SeeGene)

The Allplex™ SARS-CoV-2 assay was the first test to be implemented by NHLS in
March 2020 and contributed a national test count of 2,095,588 million tests (26%) after 36
months. Although this assay was used by all provinces, 91% of the results were generated
from the Gauteng, Western Cape, KwaZulu-Natal and Eastern Cape provinces. Figure 3
highlights that the E-gene generated the lowest Ct values followed by the RdRp and N-gene
Ct values. The changes in 28-day centered moving average of the median Ct for all three
genes mirror (duplicate) each other’s visual pattern except during South Africa’s third
COVID-19 wave, which peaked in July 2021. The RdRp median Ct increased above the
N-gene Ct. This increase in Ct (reduced PCR performance) was reported to be a result of
the B.1.617.2 (Delta) variant [21] which had a highly conserved nonsynonymous mutation
(G15451A) exclusively within the RdRp gene, and thereby negatively affecting the RdRp
PCR efficiency of the Allplex™ SARS-CoV-2 assay.

This was continuously monitored by calculating the relative change in Ct between
RdRp and E and any test result where the Ct of RdRp-E > 3.5 indicated the presence of the
Delta variant. During the Delta wave, up to 62% of all positive specimens tested using
the Allplex™ SARS-CoV-2 assay reported this phenomenon. No changes in this assays’
PCR efficiency were noted beyond the impact from the Delta variant. However, SeeGene
introduced a new Allplex™ SARS-CoV-2 assay version that included the S-gene target,
but this target is reported in the same PCR fluorescent channel as RdRp and therefore
neither target’s PCR efficiency is discernable. Towards the end of the study period (March
2023), the Allplex™ SARS-CoV-2 testing volumes were reduced to ~42/day, making daily
monitoring less reliable.
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3.1.2. TaqPath™ COVID-19 (Thermo Fisher Scientific)

The TaqPath™ COVID-19 assay was implemented in May 2020 and contributed to
1,660,419 million tests (21%) performed by the NHLS. Implementation, however, was not
national, and 50% of testing was performed in the Gauteng Province. Figure 4 shows the
Ct values of ORF1ab, N and S-genes generally mirrored each other for the first two waves.
However, the S-gene pattern changed during the 3rd, 4th and 5th waves, with the median
Ct of the S-gene target much lower than the ORF1ab and N-genes. This phenomenon
was due to S-gene target failure (SGTF) [22], brought about by deletion of amino acids
69 and 70 in B.1.1.7 (Alpha) and B.1.1.529 (Omicron) spike genes. This yielded a distinct
absent S-gene and hence no amplification during PCR and Ct values reported as zero in the
TaqPath™ COVID-19 .csv file, which contributed to an overall low median S-gene Ct value.
The TaqPath™ COVID-19 testing rates decreased to <4 tests/day at the end of March 2023,
making continuous quality monitoring less reliable.
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average for each gene target is represented on the secondary vertical axis. The key highlights the
assay specific gene targets. The impact of the B.1.1.7 (wave 3) and B.1.1.529 (waves 4 and 5) in causing
the SFTG is evident by the S-gene median Ct diverging from the ORF1ab and N-gene’s Ct (circles).

3.2. The NHLS SARS-CoV-2 Closed Testing Platforms

3.2.1. Xpert® Xpress SARS-CoV-2 (Cepheid)

The Xpert® Xpress SARS-CoV-2 assay was implemented by the NHLS in March 2020
and contributed to 2,073,844 million tests (26%) after 36 months. This assay was used in
all provinces across South Africa, however, Gauteng (21%), KwaZulu-Natal (17%), and
the Western Cape (16%) accounted for more than half (54%) of the total Xpert® Xpress
SARS-CoV-2 test results. Figure 5 highlights a change in the NHLS’ testing algorithm
implemented by their Xpert® Xpress SARS-CoV-2 testing sites on 15 September 2021.
Concerns were raised by the NHLS virology expert committee on reporting a positive
SARS-CoV-2 result when Ct values of either or both gene targets approached the threshold
of 45. The following algorithm was therefore implemented within the NHLS LIS: where a
single E or N2 has a Ct > 38 or where both E and N2 Ct > 40, these specimens are reported
as “inconclusive” (internal memo Dr M.P. da Silva). This change is evident in Figure 5 with
greater mirroring (less variability in the Ct trends) between both gene targets beyond this
date. Figure 5 further shows that the E-gene generated lower Ct values than the N2-gene
for 33 of the 36 months. Changes in the 28-day centered moving average of the median Ct
for both the E and N2-genes mirror each other with the exception of the period after January
2023, where the median E-gene Ct values increase. This phenomenon is due to XBB.1.5.
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VOC, which affects the E-gene coverage dropping by 1% due to two mismatches (personal
communication from Cepheid medical affairs) that delay PCR hybridization. As the Xpert®

Xpress SARS-CoV-2 continues to be used in NHLS testing sites (400 tests/day at the end of
March 2023), the proportion of specimens with E-gene Ct > N2-gene Ct can therefore be
used to monitor the circulation of XBB.1.5. This was evident among 92% (28-day moving
average) of Xpert® Xpress SARS-CoV-2 test results at the end of March 2023.
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Figure 5. The number of Xpert® Xpress SARS-CoV-2 tests (daily) reporting the presence of
SARS-CoV-2 in red bars between March 2020 and March 2023 (primary vertical axis) overlaid with
the median Ct values from each gene target in line plots. The median Ct value of the 28-day centered
moving average for each gene target is represented on the secondary vertical axis. The key highlights
the assay specific gene targets. A new specimen result reporting algorithm was implemented in
September 2021 (dotted vertical line). The effect of the XBB.1.5. is evident in the last few months of
2023 (circle), which causes a delayed hybridization in the E-gene PCR.

3.2.2. cobas® SARS-CoV-2 (Roche Molecular)

The cobas® SARS-CoV-2 assay was implemented in April 2020 and contributed
1,357,991 million tests (17%) after 36 months to the NHLS’ test volumes. Although the
assay was implemented across all provinces in South Africa; the Eastern Cape (22%),
KwaZulu-Natal (21%), and the Western Cape (15%) contributed 60% of the total testing
volumes. Figure 6 clearly shows that changes in the 28-day centered moving average of
the median Ct is perfectly aligned for both gene targets (E and ORF1ab). Their mirrored
pattern remains throughout the 36 months of testing and this assay appears unaffected by
any VOCs. SARS-CoV-2 testing on this platform however ceased in the NHLS in July 2022.
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Figure 6. The number of cobas® SARS-CoV-2 tests (daily) reporting the presence of SARS-CoV-2
in red bars between March 2020 and March 2023 (primary vertical axis) overlaid with the median
Ct values from each gene target in line plots. The median Ct value of the 28-day centered moving
average for each gene target is represented on the secondary vertical axis. The key highlights the
assay specific gene targets. Both gene target Ct curves perfectly mirror each other throughout the
testing period.

3.2.3. RealTime SARS-CoV-2 and ALINITY m SARS-CoV-2 (Abbott Molecular)

The RealTime SARS-CoV-2 and ALINITY m SARS-CoV-2 assays, from a single supplier,
were implemented by the NHLS in May 2020 and November 2020 respectively. The
RealTime SARS-CoV-2 assay contributed 409,654 tests (5%) while the ALINITY m SARS-
CoV-2 assay contributed 479,536 tests (6%) to the NHLS’ national testing volumes during
the 36 months. A significant portion (62% of RealTime SARS-CoV-2 tests and 81% of
ALINITY m SARS-CoV-2) of these tests were conducted by two provinces (KwaZulu-Natal
and Gauteng). Both these assays target the RdRP and N gene regions, but neither region
can be distinguished by a Ct value as both targets fluoresce in a single channel as outlined
in Figure 7. SARS-CoV-2 testing continues to be reported on the ALINITY m SARS-CoV-2
platform (65 tests/day at the end of March 2023), however, testing was discontinued on the
RealTime SARS-CoV-2 in July 2022.
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Figure 7. The number of RealTime SARS-CoV-2 (a) and ALINITY m SARS-CoV-2 (b) tests (daily)
reporting the presence of SARS-CoV-2 in red bars between March 2020 and March 2023 (primary
vertical axis) overlaid with the median Ct values from each gene target in line plots. The median Ct
value of the 28-day centered moving average for each gene target is represented on the secondary
vertical axis. The key highlights the assay specific gene targets, which for these assays, both targets
are reflected in a single fluorescent channel (visualized as blue) and cannot be differentiated. Testing
on the RealTime SARS-CoV-2 discontinued in July 2022.

4. Discussion

The Ct is a variable that correlates with the amount of target RNA in a specimen [23],
and during COVID-19 the SARS-CoV-2 viral load in the respiratory tract was reported to
align with an individual’s disease progression [6,24–26]. In this analysis, we showed that
continuous quality monitoring of median Ct’s of SARS-CoV-2 gene targets at a national
(population) level could rapidly identify changes in assay PCR gene target performance,
due to genetic mutations of SARS-CoV-2 and assist in changing laboratory reporting
algorithms. Our Ct analyses were therefore provided in weekly updates (in the form
of written brief and weekly zoom meetings) to the South African scientific community
involved in the COVID-19 responses. Changes in Ct values over time could therefore be an
additional parameter included in good laboratory practices’ quality management systems,
and especially within the context of gene mutations that could impact molecular assay
performance.

Although the CQM of Ct values across the gene targets and across assays was lim-
ited to only the NHLS testing laboratories (<50% of South Africa’s SARS-CoV-2 testing),
1,497,669 Ct values were analyzed over 36 months. This “big” data also reduced the impact
of variables (central limit theorem) such as specimen quality, PCR inhibitory substances,
variable transport media, variable front-end extraction or extraction-free technologies and
NAAT reaction volume, to name a few, that is reported as complexities in SARS-CoV-2 lab-
oratory testing [27].Quality control practices at a laboratory level (EQA or inter-laboratory
exercises) to assess the intrinsic laboratory quality and capacity are still necessary to be
implemented.

Our findings show that of the six SARS-CoV-2 molecular assays implemented at scale
across the NHLS, the Ct value analysis by gene target rapidly identified three assays’ targets
affected by VOCs: (i) the B.1.617.2 (Delta) variant affected the Allplex™ SARS-CoV-2 assay
in the RdRp target region [21]; (ii) the B.1.1.7 (Alpha) and the B.1.1.529 (Omicron) affected
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the TaqPath™ COVID-19 assay in the S-gene target region [15]; and (iii) the XBB.1.5 affected
the Xpert® Xpress SARS-CoV-2 in the E-gene target region. The cobas® SARS-CoV-2 assay
appeared not to be affected by circulating VOCs based on no changes identified in their
gene target Ct value trends. The inability to distinguish the Ct values for the multiple gene
targets in the RealTime SARS-CoV-2 and ALINITY m SARS-CoV-2 made the CQM less
helpful in identifying changes in the assay quality potentially due to VOC but was a stable
marker outlining the expected patterns in Ct change over the course of COVID-19 that
other assays could be compared. Despite several assays’ gene target performance being
affected by VOCs, their multiplex nature [28] (at least two viral genes targeted to increase
the probability to identify the virus at low viral load and in the presence of viral mutations),
enabled the assays to continue being used as the primary diagnostic for patient care [29,30].

Through the Ct CQM, the loss or change in target performance was, however, also
quickly identified as an advantage in monitoring the spread of VOC [15,22] in “near”
real-time with only a two-day lag period between specimen receipt and authorization.
This also included monitoring the recovery of Ct values of affected gene targets, with
the best example shown by the TaqPath™ COVID-19 where the B.1.1.7 (Alpha) caused
the SGTF during wave 3 (which was, however, rapidly replaced by the B.1.617.2 (Delta)
variant). Hence, the TaqPath™ COVID-19 S-gene target performance could inform changes
in circulating variants.

Although the NHLS’ multi-assay implementation approach was governed by test
demands and availability of platforms and reagents, it did prove possible to monitor such
a multi-assay program through the unique centralized LIS. This in turn also highlighted
some limitations, such as the TaqPath™ COVID-19 assay not being implemented nationally,
and >50% of test results reported from only the Gauteng Province. Findings such as the
SGTF therefore could not be extrapolated to regions where this assay was not being used.

Overall, this study is the first, to our knowledge, that highlights CQM using national
program laboratory Ct values from multiple SARS-CoV-2 assays. The data strongly show
that variables of molecular test results can be a key part of laboratory quality management.
It also highlights the multidisciplinary approach to CQM with the need to understand
molecular technology, the need to understand the role of diagnostics in clinical and lab-
oratory practices and the need to understand big data analytics and visualization. This
study also highlights the value molecular diagnostics “near-real-time” analysis has in
informing the need for sequencing. The introduction of rapid SARS-CoV-2 antigen tests,
and self-tests however severely limits this value and ongoing molecular surveillance should
be maintained. This system’s approach to quality management and program performance
monitoring therefore should also be investigated for other disease use cases, such as TB
and HIV, where molecular technology is the primary diagnostic test.

5. Conclusions

In conclusion, this study demonstrates the potential of Continuous Quality Monitoring
(CQM) using Ct values of SARS-CoV-2 gene targets at a national level to rapidly identify
changes in SARS-CoV-2 laboratory assay performance, particularly in response to genetic
mutations of the virus. Despite some limitations, such as the regional distribution of certain
assays, the approach using centralized laboratory information emphasizes the significance
of molecular diagnostics in informing clinical decisions and surveillance efforts but does
require multidisciplinary collaboration between clinical, molecular and data scientists. Fur-
thermore, the study suggests the potential application of this system’s approach to quality
management in other disease contexts where molecular technology serves as a primary
diagnostic tool. Overall, this research underscores the value of continuous monitoring in
pandemic responses and the need to maintain molecular surveillance.
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