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Abstract

Community networks have been proposed by many networking experts and researchers
as a way to bridge the connectivity gaps in rural and remote areas of the world. Many com-
munity networks are built with low-capacity computing devices and low-capacity links.
Such community networks are examples of low resource networks. The design and im-
plementation of computer networks using limited hardware and software resources has
been studied extensively in the past, but scheduling strategies for conducting measurements
on these networks remains an important area to be explored. In this study, the design of
a Quality of Service monitoring system is proposed, focusing on performance of schedul-
ing of network measurement jobs in different topologies of a low-resource network. We
also propose a virtual network testbed and perform evaluations of the system under vary-
ing measurement specifications. Our results show that the system is capable of completing
almost 100% of the measurements that are launched by users. Additionally, we found that
the error due to contention for network resources among measurements stays constant at
approximately 34% with increasing number of measurement nodes.
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1
Introduction

1.1 Motivation

Rosson et al.[1] define community networks as follows:

“A network community is a group of people whose communication and collaboration over

networks strengthens and facilitates their shared identity and goals[..] A community network

is a special case of a network community in which a physical community coextends with the

network community.”

According to this definition, a community exists not only due to collaboration through

the network but also due to the contributions by people with their own resources. These

networks are often run by non-profit organizations in partnership with citizens [2, 3, 4, 5].

Some of the services provided by community networks include local networking, content

sharing, voice connections, and most importantly, internet access [6, 3]. Since multimedia

content is usually relayed through these networks, it is important to measure and evaluate

the users’ perceived Quality of Service (QoS) and Quality of Experience (QoE) [7]. On a

basic level, QoE reflects the actual experience of the end user while QoS entails the measure-
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ment of quantitative aspects like throughput, error rate, delay, jitter, frames per second, and

bits per pixel. Although QoE is a function of different QoS parameters, there is an indirect

relation between QoS parameters and QoE. Therefore, it is important to understand which

kind of degradation in QoS parameters lowers the user experience [7].

Typically, community networks are marked by a heterogeneous structure [3], i.e, they

combine a variety of wired and wireless architectures at the physical layer. As communi-

ties expand in size, the amount of mobile traffic is also expected to grow. Therefore, users’

demand for high quality communication services will increase significantly. In order to ad-

dress these demands, community networks are expected to increase their heterogeneity even

further. The demand for efficient content delivery will become essential not only for wired

networks but also wireless networks. Software defined networking (SDN) [8] has the po-

tential to manage the network services and applications with greater efficiency [9]. SDN

technologies like the OpenFlow protocol [10] were initially best suited for infrastructure-

based networks [9]. More recently, a lot of research [11, 12, 13] has been conducted to mod-

ify these technologies for wireless mesh networks. Therefore, it is reasonable to assume that

community networks in the future are expected to be managed and implemented as soft-

ware defined networks.

Most community networks lack dedicated network measurement and monitoring plat-

forms. The networks are implemented, maintained and extended by volunteers, which

2



results in the absence of a management and administrative authority to take decisions

on hardware and software to be used in the nodes. The extension of some community

networks occurs in a rather ad-hoc manner, without any implementation studies or cost-

benefit analyses [14]. Further, the node owners in these networks are people with different

levels of software and network expertise. Thus, any software or network issues in these net-

works are resolved by the users cooperatively, without the external help of an expert.

Community networks use a combination of links at the physical layer involving a higher

proportion of wireless links as compared to wired links. As a consequence, the most pop-

ular way of accessing the internet is through smartphones. The usage of smartphones as a

computing and networking device presents an opportunity in terms of the construction of

mobile crowdsourcing applications [15]. Crowdsourcing is an attractive approach to con-

duct network monitoring as it allows network measurement activities to be executed on

end users’ hardware, without the economical and practical burden of managing a dedicated

system [15]. Therefore, mobile crowdsourcing is an area worth exploring in order to design

a monitoring system for community networks.

Architectures of systems based on crowdsourcing are generally more complex as com-

pared to systems where design, implementation and execution are centralized [15]. Other

challenges arise due to adopting smartphones as an execution unit. It is difficult to pre-

cisely capture internet data through smartphones because the conditions, like location and
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bandwidth, are always changing over time, and as the subject moves with the device. Smart-

phones, unlike server-class or desktop computing systems, are powered from batteries that

are limited in both size and capacity. For ensuring good user experience, this forces develop-

ers to make important architectural and implementation choices when designing applica-

tions. Thus managing energy is important in these devices [16, 17]. Further, monitoring in-

ternet connectivity in smartphones can be expensive due to communication costs incurred.

In passive monitoring techniques, limited bandwidth and high communication costs do

not pose a challenge, since the monitoring is done without sending/receiving packets. But

in active techniques the generated high traffic raises a concern, especially when network

monitoring is performed by leveraging crowdsourcing techniques [15]. When collecting

information from smartphones, it is paramount to ensure that the identity of the subject

cannot be associated with the data [17]. Thus, privacy protection is another challenge when

it comes to internet measurement using smartphones. Lastly, smartphones are generally

not well suited for conducting network monitoring measurements. The operating system

in these devices is designed for the prospective applications that run on them, and not for

low-level networking mechanisms [15], thus making compatibility a major research chal-

lenge.

Although the load of executing measurements is shifted to smartphones in a crowd-

sourced architecture, a centralized server should be able to allocate the measurements intel-
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ligently, given the availability of resources like network bandwidth and execution capacity

of smartphones. If a large number of measurements are carried out using a limited number

of vantage points, the obtained results could suffer from the observer effect [15], i.e a bias

in the measurements due to the measurement infrastructure itself. Measurement processes

that are executed in different common points and links could contend for shared network

resources. This contention for resources is also called measurement conflict problem [18].

Thus, scheduling and synchronization of measurements among the smartphones is impor-

tant to ensure proper resource utilization and accuracy of results.

1.2 Problem statement

Low resource networks, such as those found in many underserved communities, present

an interesting case of research. This is because measurement and monitoring techniques

that apply to resource intensive networks may not be applicable to these networks as they

operate using routers with legacy hardware, limited buffer sizes and sometimes outdated

software. Mobile crowdsourcing has been shown as one of the better ways of performing

network measurements despite certain implementation and usability challenges. This study

aims to develop a monitoring system specifically designed to address the needs of commu-

nity network users. In an attempt to find the best possible design, we present an empirical

analysis of alternative techniques for measurement scheduling and synchronization, and
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study the trends in performance of these strategies with varying parameters that constitute

internet measurements.

1.3 Research questions

The main objective of this research is to answer the question ‘what design considerations

are necessary for a low cost internet measurement system for under-resourced networks’. Our

study aims to answer this question by focusing on measurement scheduling and synchro-

nization strategies. First, we survey related literature and determine ‘what coordination, syn-

chronization and scheduling strategies would be suitable for measurement and data collection

in community internet measurement platforms’. After this, we implement these strategies

in our own measurement platform and evaluate them on a synthetic community network

testbed and we conduct relevant experiments to find out ‘how are measurement results af-

fected by changes in scheduling strategies and measurement specifications’.

1.4 Research approach

The first part of this research dealt with the implementation of four measurement schedul-

ing algorithms that include Round Robin (RR), Earliest Deadline First (EDF), Ascending

order of subvertices degree (AOSD) and descending order of subvertices degree (DOSD).

Our implementation of these algorithms was based on the assumption that the execution
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time of measurements is always fixed. Therefore, to minimize the overlapping of measure-

ments with each other we conducted a series of preliminary experiments to determine maxi-

mum execution times (in milliseconds) of five types of measurements. These measurement

types were pings, DNS lookups, traceroutes, HTTP downloads and TCP speed tests (both

uplink and downlink). For the ease of implementation, these values were rounded to the

next integer so that we can have 1 millisecond as the size of one time slot. The algorithms

were implemented as part of a measurement orchestration server. The server was capable

of accepting measurement specifications from a user (a researcher or community network

manager) and store the collected network data in a central repository available to all users.

The system was also designed to support passive measurements in the form of usage sum-

mary data from the smartphones of community network users.

The second part of our research focused only on TCP speed test performance due to

their high execution time and throughput consumption. Motivated by the recent advance-

ments in Software defined networking, we implemented a virtual network testbed that

aimed to emulate a community network through the use of software defined networks.

Community networks are typically implemented as a wireless mesh with one or more access

points connected with each other for redundancy[19]. Thus, to virtualize such a network,

we implemented switches that were capable of handling multipath routes. To compare our

results with the case where there’s little or no scheduling, we also implemented an approach
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that randomly assigned measurements to the measurement nodes.

1.5 Thesis outline

The rest of this thesis is structured as follows. Chapter 2 provides a review of existing com-

munity network research. It also provides a comparative analysis of various measurement

tools, platforms and scheduling algorithms that have been proposed in literature to address

classical network measurement challenges and evaluates their usability in a community net-

work context. Chapter 3 focuses on design and implementation of our measurement plat-

form and the proposed evaluation framework. To this end, we discuss about setup of our

community network testbed and define experiments and metrics to evaluate the perfor-

mance of selected measurement scheduling algorithms. In chapter 4 we present the results

of our experiments. Lastly, chapter 5 concludes the dissertation by detailing the findings of

our study and discusses about what could be done as future work.
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2
Background and RelatedWork

This chapter begins by highlighting some of the important community networks located

all over the world. Section 2.1 also provides insights into different sub-areas of exisitng com-

munity network research. We then describe some of the existing measurement tools and

platforms for classical networks in section 2.2 with a focus on the scheduling strategies used

for measurements. In section 2.3, we describe different measurement scheduling that have

been proposed to address the problem of managing resources in active network measure-

ments. This is followed by an overview of research in software defined networking and a

description of its relevance in this study in section 2.4. We end this chapter by providing

some conclusions in section 2.5.

2.1 Community Network Research

Community networks have evolved into a variety of shapes and sizes with respect to their

network technologies, their offered services and their organizational structure [4]. All over

the world, citizens and organisations pool their resources and coordinate their efforts to
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build network infrastructures [20]. At present, numerous community networks are opera-

tional all over the world, including those in the below subsections that have been surveyed

for the purpose of this study.

2.1.1 iNethi

iNethi * is deployed in Ocean View andMasiphumelele regions in Cape Town, South

Africa. It was created to offer cheaper internet access and encourage content sharing among

members of the community [21]. The network uses mixed 2.4 GHz and 5GHzWifi mesh

networking powered by LibreMesh to connect WiFi hotspots [22]. It utilises open-source

software to share files and to allow people to communicate using OwnCloud and Diaspora

respectively [21].

2.1.2 Zenzeleni

Zenzeleni mesh network (ZMN)† is a community-driven, self-organized, decentralized and

bottom-up mesh network deployed and operational in the Mankosi administrative area of

the Eastern Cape Province, South Africa [23]. The network runs on low‐cost mesh potato

devices with solar power, enabling communication at affordable prices.

*https://www.inethi.org.za/
†https://zenzeleni.net/
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2.1.3 Guifi.net

Based in Spain, Guifi.net [24] consists of more than 27,000 operational nodes, which

makes it the world’s largest community network in terms of the number of nodes and cov-

erage area. Most of the links in Guifi.net are wireless. There’s now an increasing number of

fibre links being used [25].

2.1.4 AthensWirelessMetropolitanNetwork (AWMN)

Located in Greece, AWMN* is one of the largest community mesh networks in the world.

As of 2011, it had over 9000 registered nodes, with more than 2400 of them being active.

Some of the services in AWMN include mail, FTP, web hosting and game servers, VOIP,

P2P file sharing, etc [26].

2.1.5 FunkFeuer

FunkFeuer † is composed of multiple smaller networks in Austrian cities like Graz and

Wien. It is interconnected to Guifi.net and AWMN via CONFINE project ‡.

*http://www.awmn.net.
†https://funkfeuer.at/
‡http://confine-project.eu/
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2.1.6 wlan slovenija

wlan slovenija * is linked to FunkFeuer and AWMN and has more than 42,000 active users.

An open source system, nodewatcher has been developed to allow coordination between

participants in the network without requiring them to know each other.

2.1.7 WasabiNet

WasabiNet † is a mesh-basedWireless Internet Service Provider (WISP), operating low-cost

Wifi in the St. Louis area in United States. Each mesh node works with the other nodes to

find the shortest and fastest path through the mesh, thereby establishing a decentralized,

ad-hoc infrastructure for routing internet traffic.

2.1.8 Bogota-Mesh

Bogota-Mesh’s ‡ main objective is to link free technology to offer mass media a totally open,

being a platform that decreases the digital divide in Bogota, Colombia. It is an autonomous

network that can be used for different forms of communication, and sharing of social, cul-

tural, and scientific projects.

*https://wlan-si.at/
†https://gowasabi.net
‡https://wiki.p2pfoundation.net/Bogota_Mesh
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2.1.9 ITC e-choupal

ITC e-choupal provides a virtual marketplace where farmers can transact directly with a

processor and can make better profits for their outputs[27]. ITC Limited is a private sec-

tor company behind this initiative that provides the farmers with computers and internet

access across various villages in India.

2.1.10 AirJaldi

AirJaldi* provides high-quality broadband connectivity to rural areas in India at reasonable

rates. It connects large and small clients from the corporate, civil society and private sectors.

This initiative has its presence in 9 Indian states.

2.1.11 Wireless for Community (W4C)

W4C† is an init of Digital Empowerment Foundation (DEF) and the Internet Society

(ISOC) that has been supported by various partners over the years. Launched in 2010,

Wireless for Communities or W4C aims to connect rural and remote locations of India

and Pakistan, where mainstream Internet Service Providers (ISPs) are not willing to provide

internet connectivity as they feel their operations would not be commercially viable.

*https://airjaldi.com/
†https://wforc.in/
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2.1.12 ZittNet

ZittNet’s* objective is to improve access to communications in Kafanchan community of

Nigeria by providing intranet and internet access to local partners. Some of the stakehold-

ers in this initiative are educational institutions, faith based institutions, health services,

small enterprises and individuals.

2.1.13 SNET

SNET or Street Network connects tens of thousands of residential users across Havana,

Cuba. SNET is the standalone internet access option for most of it’s users as it hosts over

hundreds of websites including, a vast number of information and communication services

[28].

A lot of research in the area of community networks is related to providing open access

to internet data. Braem et. al [3] present a case of research for community networks and

the relation to Community-Lab. Community-lab is an a open infrastructure that provides

to researchers and experimenters a testbed to carry out experiments within wireless commu-

nity networks. It consists of a set of nodes integrated into the existing community networks

to give researchers access to the network and to allow them to perform experiments. As of

2013, this testbed was deployed in different cities across Europe, connecting multiple com-

*https://www.fantsuam.org/project/ict4d-ff
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munity networks. Rameshan et. al [29] demonstrate a monitoring system tailored to meet

the specific requirements of the community network testbed and propose an architecture

for self management to automate management. Similar to the work by Braem et. al, the

proposed architecture provides open access to other researchers to experiment with the data

generated by the monitoring system.

Braem et. al [20] uses Community-Lab to gather data and focuses on the end-to-end

quality of internet access in community networks. M-Lab’s NDTwas deployed on all

available nodes in the Community-Lab testbed. The data collected through this work was

logged toM-Lab’s servers and was accessible via Google’s BigQuery service. Download tests

were conducted in Guifi.net, AWMN and Ninux* community networks and measurements

like Round Trip Time (RTT) and throughput were collected. In this work, a compara-

tive analysis with ISP per country is also presented. The analysis shows the effectiveness of

community networks in providing satisfactory services to users, particularly effective for

underserved and rural areas.

Some of the community network research is focused on providing access to cloud ser-

vices from within the community network, instead of the internet. Jiménez et. al [30] de-

scribe the deployment of clouds in a community network. Their approach extends existing

platforms and cloud software systems to achieve a feasible deployment of a cloud system

in the Guifi.net community network. Baig et. al [31] show how cloud infrastructures have

*http://www.ninux.org
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been made operational in a community wireless network, as a particular case of a commu-

nity cloud, developed according to the specific requirements and conditions of the commu-

nity. Unlike Jiménez et. al, they evaluate the usability, operation and sustainability of the

cloud deployment and argue that other parameters like cost, security and innovation op-

portunity should be considered as well. Apolónia et. al [32] in a more advanced work, pro-

pose a system architecture for applying machine or container virtualization to the low-cost

hardware used in community networks. Their comparative analysis with the current infras-

tructure in Guifi.net gives evidence of how devices can concurrently run multiple services.

Their findings also highlight the tradeoffs between the number and resource requirements

of services and the degradation of quality in services.

In developing regions, a large portion of community network research focuses on their

establishment and operational challenges. Surana et. al[33] argue that most community in-

ternet infrastructures fail to stay sustainable over the long term, and do not go beyond the

pilot phase. Besides providing a detailed list of operational challenges, they propose a moni-

toring system to capture active and passive network metrics in two rural networks: Aravind

Eye Hospital in Southern India, and the AirJaldi community network in Northern India.

ITC e-Choupal is another Indian community network, researched upon for it’s sustainabil-

ity [27, 34] and contribution in the Indian agriculture sector. Pujol et. al [28] present the

first detailed characterization of SNET, Cuba, also known as Street Network. They describe
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the network’s infrastructure and map its topology, measure bandwidth, available services,

usage patterns, and user demographics. In addition, scalability, security, and organizational

challenges have also been discussed.

2.2 Measurement tools and platforms

An internet measurement platform is an infrastructure of dedicated probes that periodi-

cally run network measurement tests on the internet [35]. An internet measurement plat-

formmakes use of a variety of tools to provide information to the users about different as-

pects of network performance. Internet measurement tools range from simple commands

included in common operating systems, like ping, traceroute, etc., through open-source

applications to commercial packages and systems [36].

With the goal of building a measurement platform specifically for community networks,

we surveyed the architectural features of popular measurement tools and platforms. We

describe some of these platforms in more detail in the below subsections.

2.2.1 M-Lab

Measurement-Lab [37] is an open, distributed server platform for researchers to deploy

active internet measurement tools. M-Lab’s objective is to provide internet users with use-

ful information about their internet performance. All data collected via M-Lab platform

is openly available, and all the measurement tools used to collect this data are open source
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*. Measurements are conducted between a user’s device and the M-Lab servers to measure

the end-to-end network performance [37]. M-Lab maintains a repository of existing tools

and one of the most commonly used tools among these is the Network Diaganostic Tool

(NDT). NDTmeasures TCP throughput between a client running at user’s host and an

M-Lab server [37]. An NDT test provides detailed packet level information along with

kernel-level statistics on how the TCP connection performed in the given path. NDT helps

determine the causes of slow speeds, as well as checks for proxies, NAT devices between the

machine running the tests and the M-Lab server. The data collected is logged intoM-Lab

servers, which can be queried using Google’s BigQuery †. One limitation of NDT [38] is

that it evaluates network traffic between a mobile and the nearest M-Lab server, and not

any arbitrary server. To avoid the over-utilization of resources, M-Lab recommends that all

of its client integrations should use a Poisson [39] process to schedule at most four tests per

day at random times.

MobiPerf ‡ is another open-source tool which was earlier hosted onM-Lab. It supported

several types of network performance measurements. TheMobiPerf application was devel-

oped to measure network performance and diagnose problems with application content

delivery on mobile devices. It is based on the Mobilyzer [16] library that provides mea-

surement isolation (only one experiment is active at a time), which avoids bandwidth con-

*https://www.measurementlab.net/
†https://cloud.google.com/bigquery/docs/reference
‡https://sites.google.com/site/mobiperfdev/
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tention and radio power state transitions across experiments [38]. Throughput measure-

ments are not carried out in parallel as the results may suffer from a bias [40]. MobiPerf

takes comprehensive measurements of a smartphone’s network properties, such as HTTP

benchmark downloading latency (ms) and bandwidth (kbps), traceroute with latency (ms)

to different hops, ping latency (ms), DNS lookup latency (ms), TCP uplink and down-

link throughput (Kbps/Mbps), and IPv4/IPv6 compatibility. Throughput is measured

by transmitting random data to a nearbyM-Lab server for 16 seconds and then computing

uplink and downlink throughput from packet traces. To obtain metrics like uplink and

downlink UDP packet loss, out-of-order delivery and one-way latency, MobiPerf sends a

series of UDP packets to a nearbyM-Lab server, where the network metrics are calculated

from packet arrival time and order [41]. Mobiperf allows the experiments to run in the

background, which assists the researchers in monitoring long-term network performance.

The current version of MobiPerf records a user’s email address to access measurement his-

tory, if a user consents to provide one.

2.2.2 MySpeedTest

Unlike M-Lab, MySpeedTest is a standalone tool that measures network performance of

mobile devices [42]. MySpeedTest can be used to perform both active and passive mea-

surements. Passive measurements include total number of bytes received and transmitted

by each active application, battery and package information, and application status(active
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vs background). These metrics allow a user to understand which applications consume

the most data and power, and the dependencies among the applications in terms of per-

formance. Actively, MySpeedTest measures TCP uplink and downlink throughput, inter-

packet delay and packet loss. Along with active measurements, application usage data is

collected every 15 minutes [42]. TheMySpeedtest application collects personally identifi-

able information like phone number, IMEI and device location, which we seek to avoid in

our current work.

2.2.3 MONROE

MONROE * is another platform that solves a wide variety of hardware as well as software

challenges associated with mobile networks. MONROEmeasures performance of Mobile

Broadband (MBB) networks from the end-user perspective, using highly distributed mea-

surements from fixed and mobile nodes [43]. MONROEmakes use of an AngularJS-based

user access and scheduling system for handling measurements. In the underlying nodes,

MONROE leverages the use of container technology as it allows agile reconfiguration and

flexibility in terms of adding more containers to deploy additional experiments [44]. Users

can run baseline experiments like HTTP download, ping, and passive measurements using

this platform [45]. All the produced data is stored in a non-relational database, that stores

experiment measurements and metadata in separate collections [45, 44]. MONROE’s vi-

*https://www.monroe-project.eu/
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sualization tool comprises of time-based performance characteristics as line plots, and ag-

gregated values as guage/pie charts, along with device tracking information in the form of

indexed tables [44]. One of the key features of MONROE is it’s ability to run real-time

user-defined measurements on selected nodes. This aspect of MONROE’s design can be

replicated in a community network and nodes can be remotely triggered at scheduled time

intervals to collect data.

2.2.4 Portolan

While most of the previous tools and platforms focus on measuring end-to-end perfor-

mance of mobile application communications, Portolan is a tool that allows developers and

researchers to learn more about the state of network infrastructure and configurations that

affect transmission of application traffic [38]. Portolan takes advantage of crowdsourcing

approach for measuring large scale wired and wireless networks [15]. The platform uses a

software client that one can install on Android phones [35]. The client treats a smartphone

device as sensors that can measure network-related properties. A central server is responsi-

ble for converting a large measurement task into microtasks and distributes them to users’

smartphones through the help of dedicated proxies. Measurement tests like ping, tracer-

oute, maximum throughput, and detection of traffic shaping of BitTorrent traffic can be

conducted using Portolan. The Portolan mobile application limits the bandwidth usage

to 2 MB per day and postpones the experiments when the battery level drops below 40%.
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In our current work, we seek to adapt Portolan’s deisgn, introduce passive measurement

capability and allow the collected data to be publicly available to the stakeholders.

2.2.5 Ricercando

Having measurement tools is only the beginning of a successful network monitoring ef-

fort. To leverage the full capacity of these platforms, an equal amount of effort should be

spent on gathering, transforming and visualizing the collected data. Ricercando [46] is a

network data analysis framework that deals with the problem of detecting and explaining

Mobile Broadband network performance issues. Ricercando enables multi-staged data anal-

ysis by introducing four key features. First, it introduces a data representation scheme that

takes data from different sources and merges them into a time series-based representation,

which is suitable for querying at different levels of granularity. Second, it provides interac-

tive visualization of geographical and temporal multi-dimensional data. Third, Ricercando

implements anomaly detection methods that pinpoint where network performance indi-

cators deviate significantly from expected values. Fourth, Ricercando provides a machine

learning pipeline designed to help with the identification of key factors leading to the ob-

served anomalies. Ricercando’s code-base is open to extension by the research community.

This framework can be enhanced by introducing features that would enable the collection

of experiment data around an anomalous point by triggering automated measurements.

Each of the platforms described above have their own advantages and disadvantages. In
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this study, we attempt to adopt some aspects of the above platforms’ designs in a commu-

nity network monitoring platform. We will be considering a centralized crowdsourcing

based architecture similar to Portolan. In order to reduce installation and maintenance

costs, task allocation can be restricted to only the centralized server without the use of

strategically located proxies. For active network monitoring, MobiPerf can be used in the

measurement nodes as it supports a rich set of measurements and is also open source. Pas-

sively, data can be collected from the network firewall in the form of files and can be an-

alyzed within the centralized server. Another form of passive data collection can be per-

formed by measuring application internet consumption in the users’ smartphones, similar

to MySpeedTest. Further, the measurement nodes can be triggered at periodic intervals by

adopting MONROE’s approach and the measurement results thus obtained can be pro-

cessed and visualized using Ricercando.

2.3 Scheduling algorithms

Round Robin [47, 48] and Earliest Deadline First [49] are some of the most commonly

used scheduling algorithms with applications in process and network packet scheduling.

While Round Robin algorithm lets the tasks take turns for execution, the Earliest Deadline

First scheme selects tasks based on their deadlines. Both of these algorithms are designed

for uniprocessor systems and cannot be used in a concurrent context. Therefore, in order
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to schedule tasks in nodes scattered within a community network, these algorithms would

require appropriate modifications. In this subsection, we provide details about suggested

enhancements in these algorithms in order to solve the problem of network measurement

scheduling, discuss about additional distributed algorithms that deal specifically with net-

work monitoring, and comment on their usability in low resource networks.

2.3.1 Controlled Random Scheduling

Controlled Random Scheduling (CRS) [50, 51] is a distributed scheduling algorithm de-

signed to avoid network congestions by reducing the amount of concurrent measurements.

CRS assumes that each node can be either in a measurement state or sensor state at a given

point of time. Switching between these states is performed by using a controlled random

function that makes use of pseudo randomizers to generate a random number and then

comparing it against a threshold. This algorithm requires that each node must know how

to reach the other nodes at the time of scheduling.

2.3.2 Controlled Priority Scheduling

Controlled Priority Scheduler (CPS) is a suggested improvement over the CRS algorithm.

CPS inherits the distributed and concurrent properties from CRS, where each node alter-

nates between a measurement state and sensor state at a given random period. However,

the CPS algorithm uses a priority based scheme to decide which monitor/sensor pairs to
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measure. The CPS algorithm is designed to prevent starvation and get a more consistent

monitoring period between all the monitor/sensor pairs.

2.3.3 Round Robin Scheduling

The Round Robin (RR) algorithm [52] runs a job for a time slice, or scheduling quantum

and then switches to the next job in the run queue. During this quantum, only one job

is executed while the rest of the jobs in the queue wait for their turn. When a quantum

reaches its allocated limit, the next scheduled job will be executed. Round Robin algorithm

ensures that no process is starved, and there are no measurement conflicts among the pro-

cesses. Since concurrent measurements cannot be performed, the only way to decrease the

time to reach full monitoring coverage would be to decrease the time it takes to monitor

each scheme [53]. This algorithm does not scale when the number of jobs to be executed

increases. One drawback of round robin algorithm is that it cannot be utilized in a concur-

rent context. Qin et. al [18] suggest an improvement in the original round robin scheme

(Figure 2.1) and enhance it with concurrent execution capability. The improved scheme se-

lects tasks for execution by following a pre-defined order, provided as an input along with

conflict relationship of the jobs. A scheduling point is defined as any time instance when

a new job gets available for execution or one of the current jobs finishes it’s allotted time

slice. At a scheduling point, if there is no conflict with the current on-going task, the job is

scheduled, otherwise it is kept in the job queue for execution at the next scheduling point.
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Figure 2.1: A figure showing the modified version of Round Robin Algorithm, adapted from Qin et. al [18]

2.3.4 Earliest Deadline First Scheduling

The Earliest Deadline First (EDF) algorithm selects a job with the earliest deadline. This

algorithm assumes that whenever the execution of a job is ended, the next job can start with-

out wasting any time. However, this algorithm does not avoid deadline-misses [54]. Thus,

the execution of a job can start in an iteration but it may not necessarily end in the same

iteration. This algorithm has been shown to be optimal [55] and comes with a variety of

variations in real-time systems. One of the variations considered for this study has been
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proposed by Calyam et. al [49] (Figure 2.2). A novel mechanism to flexibly use the offline

schedule for minimizing the response time of on-demand measurement jobs has also been

proposed. This variation of the EDF algorithm allows concurrent executions, if possible,

to construct a schedule for a periodic measurement task set. Similar to concurrent round

robin algorithm, this algorithm also accepts a conflict relationship among the jobs as an

input.
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Figure 2.2: A figure demonstrating the EDF algorithm [49]
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2.3.5 Graph coloring-based Scheduling

Qin et. al [18] propose an active measurement scheduler for both periodic and on-demand

tasks. This concurrent algorithm is driven by a graph colouring perspective, called ascend-

ing order of the sum of clique number and degree of tasks. The algorithm focuses on re-

ducing the average waiting time for periodic monitoring while reducing measurement con-

flicts. For on-demand tasks, the proposed scheme minimizes the waiting time of inserted

on-demand tasks while keeping time space utilization high. This algorithm accepts just the

conflict relationship among the jobs as an input, and does not use any user-defined heuristic

to generate a schedule. Two variants of the proposed scheme are considered for evaluation

- AOSD and DOSD, corresponding to ascending and descending order of subvertices’ de-

gree respectively. Both these schemes rely on a centralized point of scheme generation and

task reporting, which according toMathew Clegg [53], is a drawback. However, this could

benefit this particular study as a centralized measurement system is being developed.
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Figure 2.3: A figure showing the DOSD algorithm, proposed by Qin et. al [18]. AOSD algorithm works in a similar
manner with the difference that it arranges the subvertices in ascending order of their degree.

Both CRS and CPS algorithms are based on a common scheme that requires the mea-

surement nodes to be reachable from one another. If implemented in a low resource con-

text, this would increase the amount of traffic and could lead to bias in measurements. On

the other hand, the concurrent version of RR, EDF, AOSD and DOSD require a con-

flict relationship between the jobs as an input, which makes these algorithms easy to com-

pare. Also, AOSD has been shown to outperform EDF and round robin with the help of
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computer simulations, it’s implementation on a non-synthetic testbed has not been yet ex-

plored. Therefore, we will consider concurrent RR, EDF, AOSD and DOSD schemes for

comparison in our work.

2.4 Software defined networking

Software defined networking (SDN) is a network design paradigm that aims to address

the limitations of existing networks by separating their control plane from the data plane

[56, 57]. This separation of concerns provides a number of important advantages. Not only

does SDN provide the ability of programmability to networks, it also simplifies network

management by logically centralizing the control plane [58]. Additionally, modification

of network policies becomes easy and accurate by the use of high-level languages and soft-

ware components, as compared to device-specific configurations in traditional networks. In

traditional networks, where the control plane and data plane are not separate, automatic

configuration and dynamic enforcement of policies is not possible. On the other hand, in

software defined networks, a centralized controller is able to access each switch’s control

plane. The policy decisions made at the controller are installed as forwarding rules in the

data plane through the SDN’s northbound API. This helps in performing configurations as

and when required [59].

A software defined network (Figure 2.4) comprises of 3 well-defined layers: the applica-
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Figure 2.4: Architecture of a Software defined network [60]

tion plane, the control plane and the data plane. Forwarding devices such as switches and

routers reside in the data plane, while one or more centralized controllers manage these

devices by implementing application-specific policies. A controller is typically a multi-

threaded program that communicates with the data plane using the OpenFlow protocol

[10]. Depending on the type of application, a controller is able to access and modify for-

warding tables in the data plane devices. Since the controller has a global view of the entire
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network, it can implement the logic to determine the forwarding path of each flow in the

network and modify the tables at runtime. The control plane usually exposes REST APIs

to a variety of applications like routing algorithms, intrusion detection systems and load

balancers [61].

Salman et al. [62] provide a comparative analysis of a number of network controllers

and state that the choice of an SDN controller depends on several criteria and the user. For

example, controllers like OpenDayLight * and Floodlight † have been used in large scale

networks like data center networks, while other controllers like Ryu ‡ are designed for

less specific environments like Campus networks. Also, a performance comparison [63]

of Floodlight, OpenDayLight and Ryu has shown that Ryu’s CPU consumption is much

lower than OpenDayLight and FloodLight. Community networks are built using off-the-

shelf hardware with limited network and CPU resources. Therefore, the network controller

scripts for this dissertation were chosen to be written using Ryu’s API.

2.5 Conclusions

In this chapter, we first provided an overview of existing community network research.

Then, we provided a discussion on measurement platforms that have been used to actively

measure classical networks. We also discussed the applicability of these measurement plat-

*https://www.opendaylight.org/
†https://github.com/floodlight/floodlight
‡https://ryu-sdn.org/
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forms in community networks. Then, we discussed about various scheduling algorithms

that have been proposed to address the problem of resource utilization in active measure-

ments. Lastly, to design an evaluation testbed for the system, we survey existing software

defined networking literature and evaluate different design choices in a low resource con-

text.

Most of the QoS monitoring research on community networks has been done on the

basis of Guifi.net (the largest community network) or other interconnected European com-

munity networks. Limited research has been performed on monitoring network charac-

teristics in the context of community networks for developing regions, and measurement

scheduling aspect of frameworks that characterize these networks has mostly been over-

looked. In classical networks, the design and evaluation of measurement scheduling algo-

rithms is based on computer simulations or synthetic testbeds. Also, these algorithms rely

on the assumption that the execution time of measurements is a constant, contrary to a real-

world scenario where it could vary because of several factors like signal strength, geolocation

and time of the day. In our work, we make an attempt to apply the principles used in litera-

ture to develop a QoS measurement platform that can be used and tested in any real-world

low resource network.

With the increasing popularity of SDN as a network management paradigm, we aim to

conduct performance evaluation of our measurement system in an SDN-emulated testbed.
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The primary objective of these evaluations will be to minimize the error in active measure-

ments due to the observer effect. As part of the measurement system, we implement four

measurement scheduling algorithms that formulate this minimization problem as a conflict-

aware job scheduling problem as proposed by Qin et. al. We also implement an additional

scheduling approach that assigns measurements immediately to end user devices to baseline

our results.
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3
Methodology

This project aims to evaluate existing network measurement scheduling strategies in the

context of community networks. To this end, we develop a measurement system for the

iNethi community network, located in Ocean View, Cape Town. The design principles

that we use in developing this system in this chapter have found their utility in other related

research studies [64, 65]. Our approach is divided into four main parts. The first part com-

prises of the implementation of four existing measurement scheduling algorithms as guided

by Section 2.3, namely, Round Robin (RR), Earliest Deadline First (EDF), Ascending Or-

der of Subvertices Degree (AOSD) and Descending Order of Subvertices Degree (DOSD).

They are implemented as part of a centralized server that distributed measurements to data

collection nodes.

The second part deals with the development of an application that could utilize these

algorithms to schedule measurements on end user devices. Past research deals with imple-

mentation and testing of the above algorithms on synthetic testbeds but our aim was to

evaluate the complete measurement system as a single unit.
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The third part of our methodology is the development of an end user application that

could execute measurements and send the results to a central repository. For this purpose,

the Android platform is chosen as about 66% of users in our target community network,

iNethi had access to Android phones [66].

Lastly, we develop a testbed for the performance analysis of our system. It is designed as

a containerized application that made it possible to be deployed in any real world commu-

nity network. Additionally, we develop an SDN controller application for the community

network. We test the system on a virtual network prior to a real-world deployment. This

approach also allows us to make use of different network topologies during the evaluation

phase. The scripts for performance analysis are written in Python as there are Python li-

braries that provide extensive support for interacting with docker containers.

3.1 Proposed measurement system

The main component in the proposed architecture is a measurement server, which is re-

sponsible for orchestrating measurement experiments across data collection points dis-

tributed within a community network. The measurement server can be configured to

run one of the scheduling algorithms described above for providing orchestration to user-

specified experiments. Each user-specified experiment is converted into a job by the mea-

surement server and is allowed to execute in one or more measurement nodes depending
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upon their availability. We implement RR, EDF, AOSD and DOSD algorithms for imple-

mentation within the measurement server. Additionally, we use a randomized scheduling

approach for the purpose of performance comparison. This approach assigns an available

job to any random device that is connected to the server. In addition to the measurement

server, a user interface is developed to allow researchers schedule experiments, visualize the

collected data and perform analysis. Through this interface, network managers will be able

to investigate performance-related issues and also monitor the measurement nodes and

their corresponding access points. Community members will be able to visualize appli-

cation usage on their smartphones in terms of number of bytes transmitted and received

across the network.

Figure 3.1 shows the architecture diagram of the proposed system. The key components

in the system as shown in the figure are described in the subsections below.

3.1.1 User Interface

The user interface consists of measurement initiator and data visualizer. Using the measure-

ment initiator, a researcher can schedule experiments in the job queue. The data visualizer

component is where the researchers will be able to graphically view the results of all the

experiments scheduled by them. For development of the user interface, ReactJS was used,

which is a component based library deployed for the development of interactive user inter-

faces [67]. ReactJS uses an efficient and lightweight document object model, which boosts
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performance. Also, it is supported by vast community of individual developers and organi-

zations. Thus, ReactJS is a good choice for the user interface.
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Figure 3.1: A figure showing the architecture of QoSMon, the proposed measurement system

3.1.2 Measurement Server

The measurement server is the main component of the system that receives and handles

requests from users. It has a job scheduler that is responsible for scheduling measurement
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experiments that users want to run. The scheduling algorithm to be used in the job sched-

uler can be configured by an administrator. Algorithm 1 shows a generic implementation of

the four algorithms used. While RR and EDF algorithms sort the jobs in order of their ar-

rival and deadlines respectively, DOSD and AOSD construct a subgraph using the conflict

matrix and colour it appropriately. The colour of a particular node in the subgraph deter-

mines which time slot is assigned to the job in the generated schedule. The implementation

of these algorithms is adapted fromQin et. al [18]. We include additional implementation

details like the job assignment criteria in Algorithm 1. Devices take turns in executing the

jobs in a circular fashion. This design choice has been made to ensure that the measurement

load is shared equally among the devices in all circumstances.

Lastly, the measurement server handles the logic for communication with databases. Any

data manipulation or aggregation logic is also handled in this component. To implement

the measurement server, we use Java’s Spring Boot [68] framework. The primary reason

for using Spring Boot for development of our system is that it provides embedded HTTP

servers like Jetty, Tomcat etc., which reduces the development and testing time. To ensure

portability, performance and ease of deployment in the community network cloud, the

measurement server will be containerized using docker.
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Algorithm 1A generic conflict-aware scheduling algorithm implemented as part of the
measurement server
Input: J,M,D,E ▷ List of jobs, Conflict Matrix, List of devices, Assumed execution times
Output: A

device_index← 0 ▷ Index of the device to be assigned to an outgoing job
Jp ← [] ▷An empty list to hold parallelly running jobs
A← {} ▷An empty mapping for job assignments
P← PriorityQueue() ▷Holds scheduling points
while P is not empty do

C← P.poll() ▷ Current scheduling point
for all j in Jp do

if j.dispatchTime+ E[j.type] = C thenRemove j from Jp
end if

end for
for all j1 in J do

if j1 not in A then
hasConflicts← False
for all j2 in Jp do

if M[j2] contains j1 then
hasConflicts← True

end if
end for
if not hasConflicts and |Jp| < |D| then

deviceid← D[device_index]
device_index← (device_index+ 1)%|D|
j1.dispatchTime← C
A[j1]← {C, device_id}
P← P+ C+ E[j1.type]
Jp ← Jp + j1

end if
end if

end for
end while

3.1.3 Data collection points

The data collection points consist primarily of Android phones but our platform’s sup-

port can easily be extended to Raspberry Pis as well. The Raspberry Pis execute special-

40



ized scripts for periodical as well as on-demand collection of QoS data, while the Android

phones run a customized version of MobiPerf. The communication between the data col-

lection points and the measurement server is achieved through HTTP websockets. This

is our modification over original MobiPerf’s polling mechanism where the data collection

points had to check-in with the server at regular intervals. In our implementation, measure-

ment requests are dispatched to the data collection points in the form of jobs as and when

they are ready to be executed.

3.1.4 Databases

Three types of databases are used to store the information related to the measurement sys-

tem.

3.1.4.1 User database

The user database stores information to the role of the user (researcher, network admin or

community member), the username and password, both in encrypted format. MongoDB*,

a document-based database has been used for this purpose as it provides great performance,

allows fast querying, is horizontally scalable and provides well-documented Java libraries.

*https://www.mongodb.com/
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3.1.4.2 Measurement database

This database is responsible for storing information related to experiment results. Each

recurring job is assigned a unique key by the system. To separate the individual instances

of each job, we use the instance’s end timestamp as an identifier. Time-series databases are

known to store measurements indexed by their timestamps and allow efficient real-time

analysis for large volumes of time-series data. Therefore, we use influxDB *, a widely used

time-series database for this purpose.

3.1.4.3 Metadata database

The metadata database stores the past experiment requests by the researchers. These experi-

ments can be shown under the profile of the user on the user interface. The requests will be

assigned a unique key against which the experiment parameters will be stored in a database

for fast retrieval. Therefore, for this purpose we use MongoDB database.

3.2 Community network testbed design

Figure 3.2 depicts the architecture of the testbed deployment of our system in the iNethi

[22] community network. This testbed is composed of two measurement servers, each

located at the University of Cape Town and the community network respectively. Two

*https://www.influxdata.com/
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Figure 3.2: A figure showing the testbed set up in iNethi community network for the proposed system

instances of the measurement server are necessary to separate the measurements that will

be launched by researchers from those by network managers. Additionally, a speed test

server is used to measure the end to end throughput between the community network and

the university. This throughput value will be of special interest to researchers as it will pro-

vide them with valuable insights about how the community network is performing. A re-

searcher does not have to be within the university campus to launch the measurements on
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the community network. This aspect of the testbed’s design allows authorized experts of

the world to conduct research on the network and help it grow further to support multi-

ple communities. The measurements will run on the Android devices of iNethi users and

multiple Raspberry Pis will also be deployed at different access points.

3.3 Performance testbed design

Performance analysis for the system was divided into two phases. In the first phase, the

evaluation of the system was based on a simulated topology. A detailed analysis of the ex-

periments conducted during this phase is discussed in our prior works [69, 70]. Our im-

plementation of the network topology was restricted to an adjacency list and the end-user

devices used were smartphones. The choice of an adjacency list allowed us to model a real-

world community network as a logical connection of smartphones with access points. In

the second phase, we built a virtual network using the SDNmininet emulator. To run mea-

surement scripts inside SDN hosts, we extended our platform to run measurements within

docker containers. We used Containernet *, a version of the Mininet † network emulator, to

run our containerizedMobiperf clients.
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Figure 3.3: A figure showing the testbed for QoSMon in the first phase of performance evaluation.

3.3.1 Phase 1 Evaluation

Figure 3.3 shows the performance testbed for the first phase of evaluations, i.e evaluation of

the simulated topology with actual smartphones. Four Android phones, co-located with

an experimenter in a lab were used to run measurements. We first conducted a set of pre-

liminary tests to determine the execution time of each job type and calibrate our scheduling

algorithms. We assumed the maximum time across each job type to be the expected value of

execution time for any upcoming job in our system. The maximum value of execution time

*https://containernet.github.io/
†http://mininet.org/
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would be a good estimate for setting a safe time window so that the next job will execute

after the previous job has finished execution.

The key aspects of this testbed’s design include the selection criteria of devices and con-

flict determination among measurements, selection of network topology, and the choice of

measurement profiles. Each of these aspects are described below.

3.3.1.1 Conflict Determination andDevice Selection

Conflicts between individual measurement instances are first decided on the basis of target

server. If two measurements are destined to the same target server, it is highly likely that

they use some common links in the network. In a low resource set up, we would want the

target server to handle the least load possible and not get overwhelmed by large number of

measurement requests. Thus, we use a pairwise binary matrix for representing conflicts be-

tween active measurements. This binary matrix is then used to build an undirected conflict

graph of the measurements and supplied to the scheduling algorithms as input.

Our implementation is also capable of addressing conflicts that arise due to the topol-

ogy of the network. During initialization phase of the measurement server, we load the

network topology as an undirected graph and then calculate the cost of scheduling on each

measurement node. A drawback of this approach is that the measurement server is not

sensitive to sudden changes in the network topology. We address this problem in a later

implementation.
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The scheduling cost is calculated by summing up the number of affected links in the

network. We thus calculate all simple paths from a measurement node to the gateway access

point and add the number of edges in the network graph. Fig. 3.4 shows an example of a

network topology in which AP3 is the gateway access point. Requests fromM4 to a target

server anywhere on the internet can be routed through one of the paths in the set {M4→

AP6→AP2→AP4→AP3, M4→AP6→AP2→AP1→AP3, M4→AP6→AP2→

AP1→AP5→AP3, M4→AP6→AP5→AP3, M4→AP6→AP5→AP1→AP3}. We

calculate the scheduling cost by adding up the number of links in these paths irrespective

of the number of times they appear in each path. Therefore, the scheduling cost for M4 is

20 in this example. We then assign the first available device with lowest value of scheduling

cost to an executing measurement.
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Figure 3.4: A figure showing an example topology to illustrate the calculation of scheduling costs. In this figure, blue
ovals represent data collection nodes and red ovals represent access points in the network. The access point marked
with an asterisk (*) represents a gateway access point, i.e an access point that is connected directly to the network’s
firewall.
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3.3.1.2 Choice of Network Topology
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Figure 3.5: Choice of network topologies for our experiments with 8 access points and 4 measurement nodes
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To evaluate the system’s performance on different types of network architectures, we de-

cided to execute our experiments on sparsely, moderately and densely connected network

topologies. To achieve this, we associated a conflict probability between the hosts and ac-

cess points in our virtual network. The higher this probability, the denser would be the

connectivity in the network. For lower values of conflict probability, there was a risk of in-

troducing a connectivity gap within the network. We prevented this by allowing at least

one gateway access point to be available in each connected component. Figure 3.5 shows the

network topologies generated using the conflict probability as 0.1, 0.5 and 0.9 respectively.

3.3.1.3 Measurement Profiles

For each scheduling algorithm, we chose 20 measurements for execution in 2 hours. The

measurement types were chosen randomly from the five available types- ping, DNS lookup,

traceroute, HTTP download and TCP throughput. The period of each job was chosen

uniformly from the integral range of 5 to 10 minutes. All TCP speed test jobs had the same

target server, which corresponded to the speed test server from figure 3.3. For the rest of the

job types, the target servers were chosen uniformly from top 8 Alexa global websites [71].

At the start of each experimental iteration, the measurement server was configured with the

combination of a scheduling algorithm and network topology. Thereafter, the jobs were

allowed to run until 2 hours elapsed. Results stored in InfluxDB were extracted into CSV

files and were used for evaluation. This process was repeated until all possible combinations
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of scheduling algorithms and topologies were exhausted.

3.3.2 Phase 2 Evaluation

The results from the first phase of evaluation suggested a number of changes in the sys-

tem’s design. First, it was found that the algorithms performed similarly on all three types

of topologies. This motivated the full virtualization of the community network using

SDNs. Secondly, TCP speed test jobs were found to consume the most network and CPU

resources, which led us to shift our focus only on these type of jobs. Another reason for fo-

cusing just on these jobs was the idea that a speed test server can also be made part of the

network topology. Since network emulators like containernet allow us to create point-to-

point links with fixed bandwidth and delay, we could compare the speed test results against

the throughput value that we fix on the links.

In this project, the ability of the system to schedule measurements is of a greater interest

to us than network metrics like throughput, latency, packet loss and jitter. So we evaluate

the system by using metrics that can highlight the effectiveness of the scheduling algorithms

used. We describe these metrics below.

Figure 3.6 shows an SDN-based testbed for the measurement system. In this experimen-

tal setup, the measurement server and the emulated network reside within a single host.

The default network interface of this host has been bridged and a virtual machine is con-

nected through it. The virtual machine is equipped with containernet which allows us to
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Figure 3.6: A figure showing the testbed for QoSMon in the second phase of performance evaluation.

create custom network topologies with hosts able to run measurements against the mea-

surement server. The controller for the emulated network was chosen to be remote and it

implemented a multipath routing algorithm [72]. We used breadth first search to discover

the shortest path from a given source to a destination. The reason for choosing breadth-

first search was that the network topologies used were represented as unweighted graphs

and breadth first search by design finds the shortest path to a given node being visited. In

case of a weighted graph, the implementation can be modified to use Dijkstra’s shortest

path algorithm.
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3.3.2.1 Conflict Determination andDevice Selection

In this phase of evaluation, since only TCP speed test jobs were used and were directed to a

single target server, we decided to make the jobs to be pairwise conflicting with each other.

As a result, the resultant schedules were expected to be non overlapping with each other

as no two jobs could be scheduled parallelly on two devices. Devices were decided to take

turns for executing a newly available job as it allowed an even load distribution among the

nodes.

3.3.2.2 Choice of Network Topology

Previous work [73] states that wireless community networks are typically designed in such

a way that multiple nodes are connected to each other through a single link. The only way

to represent such links in a software-defined context is to have point-to-point links in which

one node is individually connected to all the other nodes forming a clique (Figure 3.7). Our

target network iNethi has 9 access points meshed together, so we decide to build clique-

based topologies with number of access points ranging from 4 up to 15. This helped us not

only in finding out trends in scheduling algorithm performance with varying network sizes

but also tackle the issue of scalability if the network size grows in future.
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Figure 3.7: A clique with 6 access points. One of the access points is connected to the speed test server (T1) while
the rest of them are connected to the measurement nodes. Traffic flows from a measurement node (H1 through H5)
towards the speed test server or vice versa, depending on whether an uplink or downlink speed test is scheduled. Each
link was allocated a throughput of 10 Mbps. This allowed us to have a fixed value of end‐to‐end throughput for every
combination of source and destination.

3.3.2.3 Measurement Profiles

For each scheduling algorithm, we scheduled 50 measurements for execution in 3 hours. All

of these measurements were either uplink or downlink speed tests, chosen randomly. The

period of each job was chosen uniformly from the integral range of 10 to 20 minutes. Like

in the first phase, these TCP speed test jobs were destined to the same target server. This

server was assigned a unique IP address of 10.0.1.1 in all topologies. The key difference be-

tween performance evaluation in the first and second phases was that in the second phase
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the specifications of each job were kept the same across all configurations of the measure-

ment server.

3.3.3 Performance metrics

The following metrics were used to evaluate the performance of the measurement system.

We consider the average value of each of these metrics during evaluation. Since the jobs in

consideration are periodic, this average is calculated across all instances once the measure-

ment server is configured with a particular scheduling algorithm.

3.3.3.1 Measurement Success Rate

This metric provides the fraction of measurements that executed successfully by taking all

of their individual instances into account. For example, if a measurementMi can theoret-

ically run for 10 times during the experiment duration but it successfully executes only 8

times, then it’s success rate would be 80%. Measurement success rate, MSR can be calcu-

lated using the formula below.

MSR =
Number of successful measurement instances

Total number of instances × 100 (3.1)

Here, we calculate the total number of instances using Algorithm 2.
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Algorithm 2Algorithm to calculate the total number of measurement instances
Input: M ▷This holds measurement metadata
Output: number_of_instances

current_time←M.start_time
number_of_instances← 0
while current_time ≤M.end_time do

number_of_instances← number_of_instances+ 1
current_time← current_time+M.period

end while

3.3.3.2 Measurement Error

This metric provides insights into how the observer effect operates when a certain number

of measurements are scheduled within our virtual network. This metric was used in the sec-

ond phase of evaluations. The measurement error, ME for a single speed test measurement

is defined as:

ME =
Baseline value of throughput− Observed value of throughput

Baseline value of throughput × 100 (3.2)

As stated previously, the baseline value of throughput was kept as 10 Mbps across all

links in the experimental network topologies.

3.3.3.3 Waiting Time

Waiting time for a measurement is defined as the time it spends in the waiting queue be-

fore it is dispatched to a device. It is useful to measure the waiting time because it gives us
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the opportunity to find out the precise reason why a particular measurement’s result was

delayed or whether or not a measurement misses its deadline. Waiting time, WT is defined

as:

WT = Dispatch time of a measurement− Enqueuing time of the measurement (3.3)

3.3.3.4 PlatformDelay

Platform delay for a job is defined as the time it takes for its result to be stored in the mea-

surements database starting from the arrival time of the job. This metric determines how

quickly the measurement system completes periodic measurements. Along with waiting

time, platform delay can also be used to calculate the time that a job spends out of the mea-

surement system. Platform delay, PD is defined as:

PD = Completion time of a job− Enqueuing time of the job (3.4)

3.3.3.5 Node Busy Time Ratio

This metric determines the distribution of jobs among the measurement nodes. The closer

the busy time ratios for nodes are to each other, the better is the distribution of jobs among

them. For example, in an experiment with 3 nodes, a distribution of 33 : 33 : 34 is better as
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compared to 60 : 30 : 10. The busy time ratio for a node, NBTR is defined as:

NBTR =
Time spent by the node in job execution

Total duration of the experiment (3.5)

3.3.3.6 Link Utilization

Tomeasure the impact that the system has on the underlying network, we calculate the

transmitted and received megabytes of traffic through each link in the network. This is only

calculated in phase 2 of experimentation as in this implementation we have control over the

end-to-end traffic path between a measurement node and speed test server. We also measure

the traffic distribution between the links connecting the switches to measurement nodes as

well as the links connecting switches to each other.

3.4 Conclusion

In this chapter, we proposed the design of a community network measurement platform.

The platform uses intelligent scheduling algorithms to minimize the conflicts for resources

among the measurement nodes. We evaluate this system in two phases. In the first phase,

we conducted evaluations over a logical map of the community network topology. These

logical maps varied among each other in terms of the density of connections, which we

fixed using a conflict probability. We used 5 types of measurements during these evalua-
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tions in a lab setup. The second phase involved a testbed in which software defined net-

work topologies were used. The controller of the SDNwas chosen to be a remote machine

and only TCP speed tests were used during the experiments. The performance metrics

used during both phases of evaluations were aimed to measure scheduling algorithm per-

formance.
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4
Research Findings

Chapter 3 presented our research methodology for utilizing four measurement schedul-

ing algorithms in the context of low resource networks. Round Robin (RR) algorithm

schedules jobs in the order that they arrive, while Earliest Deadline First (EDF) algorithm

schedules the jobs in the order of their deadlines. The remaining two algorithms, AOSD

and DOSD schedule jobs by coloring a conflict subgraph that is constructed using resource

constraint relationships among the jobs.

In this chapter, we present the performance analysis of the system based on the metrics

described in section 3.3.3. We begin with describing the results for the first phase of imple-

mentation in section 4.1. Then, in section 4.2 we discuss the motivation behind altering the

implementation for the second phase. Lastly, we describe the results for the second phase of

implementation in section 4.3. A discussion on phase 2 implementation results is provided

in a later chapter.
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4.1 Phase 1: Adjacency list Implementation

As indicated in Section 3.3.1 , we executed 20 periodic measurements in three types of com-

munity network topologies logically represented as an adjacency list. These jobs were uni-

formly selected from the available job types and they were destined to target servers uni-

formly chosen from top-8 Alexa global websites. The chosen topologies consisted of 8 ac-

cess points and 4 mobile phones. For a given pair of scheduling algorithm and the conflict

probability chosen to build the topology, the experiment was allowed to run for 2 hours

and the belowmetrics were calculated using the measurements’ metadata.

4.1.1 Measurement Success Rate

To measure the success rate, we calculate the number of successful instances per job and

average it over the 20 jobs for a single iteration for each scheduling algorithm and conflict

probability. The theoretical number of job instances are calculated by dividing the time

elapsed between start and end time by the measurement period. The ratio of number of

successful instances to theoretical number of instances is then used to calculate the overall

success rate. Figure 4.1 shows a plot of average success rate for each scheduling algorithm

against the conflict probability. We notice that a near 100% success rate is achieved for all

scheduling algorithms used. There were few missing instances in every case, which can be

attributed to few periodic measurements missing their deadlines, i.e, missing the second
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Figure 4.1: Measurement success rate for the first phase of experimentation

execution among 3 consecutively scheduled executions. We investigate this further in the

next phase of evaluation. We also observe that DOSD algorithm achieves a marginally lower

success rate which could be a result of the random nature of measurement specifications.

4.1.2 PlatformDelay

The overall delay between a measurement’s start time and completion time is referred to

as platform delay in this dissertation. Similar to average success rate, the average platform

delay was calculated by first calculating platform delay per measurement, which was then

averaged over all combinations of scheduling algorithm and conflict probability. The plot
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Figure 4.2: Average platform delay for the first phase of experimentation

of average platform delay (Figure 4.2) suggests that in all scenarios, a measurement com-

pletes execution within 1 minute of its start. If a larger number of conflicting measurements

are scheduled simultaneously, this delay is likely to increase. The aim of our experiments

was to determine the limits of the measurement system in scenarios where there is a greater

measurement load. Therefore, in a real-world deployment where there’s a greater likelihood

of a lower measurements-to-devices ratio, lower values of platform delays are expected.

63



 0

 0.05

 0.1

 0.15

 0.2

 0.25

0.1 0.5 0.9

A
v
e
ra

g
e
 W

a
it

in
g

 T
im

e
 (

m
in

)

Conflict Probability

RR
EDF

DOSD
AOSD

Figure 4.3: Average waiting time for the first phase of experimentation

4.1.3 Waiting Time

To determine the factors that contribute significantly towards platform delay, we calculate

the average waiting times, i.e the average time that a measurement spends in the job queue

before being dispatched. We observe in Figure 4.3 that the waiting time of the jobs was al-

most unaffected by network’s topology but it contributed quite significantly to the overall

platform delay. We observed that 33% of the platform delay in AOSD algorithm was due to

waiting time on an average. This percentage was 27%, 29% and 32% for DOSD, EDF and

RR respectively. The remaining portion of platform delay was due to factors like network

delay and scheduling delay within the phones due to uneven distribution of jobs.
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4.1.4 Node Busy Time Ratio

Node busy time ratio helps in determining the distribution of jobs among the measure-

ment nodes. We observed a highly skewed distribution of jobs among the phones in the

case of DOSD algorithm (Figure 4.4). RR and EDF had similar load distribution patterns

while the most even load distribution was achieved in AOSD, where one of the phones exe-

cuted about 50% of the total job load in all three topologies. This confirmed that the higher

contribution of factors like network delay and scheduling overhead towards platform de-

lay in RR, EDF and DOSDwas indeed due to a skewed distribution of jobs among the

phones.

4.2 Discussion on Phase 1 results

Our results show that AOSD algorithm provided better results compared to the rest of the

chosen algorithms in terms of efficient distribution of jobs among measurement nodes and

job success rate. A success rate as high as 97.3% is useful in areas where internet connection

is unstable due to a high proportion of wireless links in comparison to wired links. Even

though this algorithm shows great promise in terms of measurement distribution and suc-

cess rate, it still distributes about half of the total load to a single smartphone. This could

lead to scalability issues because the number of users in a community network keep fluctu-

ating. If there are less smartphones and more measurements, then users might experience
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Figure 4.4: Node busy time ratios for 4 mobile phones used in the first phase of experimentation

issues like high data usage and battery drainage. Also, the results suggest that the scheduling

performance does not depend on the network topology chosen.

The problem related to distribution of measurements to devices can be addressed by en-

suring that measurements are assigned uniformly to the available phones. Therefore, the

implementations of each of the scheduling algorithms can be modified to assign measure-

ments to a random device that’s connected to the measurement server. For the purpose of

evaluation, if we limit the job types to speed tests only, we can put a limit on end-to-end

throughput by fixing the throughput of each link. This will allow us to measure the error
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in measurements against the link’s fixed throughput value as well.

4.3 Phase 2: SDN Implementation

In the second phase of evaluation, the implementation of RR, EDF, DOSD and AOSD

algorithms was altered to allow a more even distribution. Additionally, a randomized algo-

rithm was also included within our system which dispatched any available job without a

delay to a random device. We also extended the support for our system to docker containers

which allowed us to run measurements inside a virtual machine. This virtual machine was

equipped with the latest installation of a mininet fork called containernet*. Only complete

graph topologies were used to test the system in our experimental setup with the through-

put of each link fixed to 10Mbps. We varied the number of access points from 3 to 15 in our

experiments. This was done to ensure that the average number of access points matches

the number of access points in our target community network. This meant that for any

source-destination pair, the maximum end-to-end throughput was also fixed to 10Mbps.

Before evaluation, we generated a random set of 50 TCP speed test measurements, both up-

link and downlink, and used these measurements for all our experiments. All of these were

periodic jobs with periods chosen uniformly from the interval [10, 20] minutes. For every

combination of scheduling algorithm and number of hosts, our experiments were allowed

to run for 3 hours against a remote SDN controller. The following subsections highlight

*https://containernet.github.io/

67



the results of our experiments.

4.3.1 Measurement Error
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Figure 4.5: Measurement error for the second phase of experimentation

As described in Section 3.3.3, measurement error is the absolute percentage deviation

from the actual link throughput. The average measurement error calculated against 10

Mbps link capacity for the randomized approach was found to show an increasing trend

with the number of hosts (Figure 4.5). This suggests that the higher the number of mea-

surement nodes, the higher is the probability of conflicting measurements travelling through

the same links in the network. In contrast, the measurement error for the other four schedul-
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ing algorithms did not increase beyond the 34%mark. It was also found that the error for

the remaining scheduling algorithms stayed constant with increasing number of hosts. This

shows that irrespective of the structure and orientation of the network, the scheduling algo-

rithms provide our system the capability to conduct conflict-aware speed tests.

4.3.2 Measurement Success Rate

The success rate in phase 2 evaluation was found to be higher than in phase 1 and it did not

change much after the number of hosts increased to 4 (Table 4.1). When there are only 3

measurement nodes, the success rate is lower because of a high per-device load, thus a pro-

nounced observer effect. As the number of devices increase, the likelihood of the network

becoming congested decreases which results in measurements meet their deadlines. We

achieve a near 100% success rate in this implementation as well and it was also significantly

higher than the phase 1 implementation.

69



Number of hosts Random RR EDF DOSD AOSD

3 92.53% 94.08% 93.75% 94.00% 93.44%

4 99.77% 99.77% 99.77% 99.77% 99.50%

5 99.77% 99.55% 99.77% 99.60% 99.77%

6 99.45% 99.77% 99.47% 99.60% 99.77%

7 99.48% 99.77% 99.57% 99.40% 99.77%

8 99.40% 99.77% 99.77% 99.57% 99.77%

9 99.60% 99.77% 99.77% 99.77% 99.77%

10 99.65% 99.77% 99.21% 99.38% 99.77%

11 99.49% 99.77% 99.77% 99.77% 99.77%

12 99.77% 99.77% 99.44% 99.77% 99.77%

13 99.77% 99.59% 99.77% 99.55% 99.77%

14 99.77% 99.99% 99.37% 99.77% 99.77%

15 99.48% 99.77% 99.77% 99.57% 99.77%

Table 4.1: A table showing the measurement success rate with varying number of hosts in our experiments. The success
rate for 3 hosts was found to be significantly lower as compared to a higher number of hosts. As the number of hosts
increased, the success rate approached 100%.
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Figure 4.6: Platform Delay for the second phase of experimentation

4.3.3 PlatformDelay

Measurements in randomized approach are dispatched as and when they are required to,

we observe that this approach results in the least platform delay as compared to the other

algorithms (Figure 4.6). We observe an increase in the platform delay as compared to phase

1. This can be attributed to the greater number of measurements scheduled in phase 2. A

scheduling delay is caused because of conflicting jobs getting postponed beyond their ex-

pected start times. One key observation is that a trade-off can be observed between accuracy

of measurements and the platform delay. Since the error in measurements did not increase

with varying number of hosts, our recommendation would thus be to prioritize accuracy
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over platform delay.

4.3.4 Waiting Time
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Figure 4.7: Waiting time for the second phase of experimentation

Figure 4.7 shows that the waiting time remains constant with varying number of hosts

for all types of scheduling algorithms. For the randomized algorithm the average waiting

time is 59.98% lower as expected to the other algorithms on an average. The waiting time

for EDF is slightly higher because the jobs are arranged in the order of their deadlines before

being supplied to the scheduling algorithms. It can also be inferred that in phase 2 evalua-

tion, the majority of the platform delay is due to waiting time, i.e the delay caused by the
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scheduling algorithms. If the execution time of the speed test measurement is known be-

forehand for a given load pattern, this delay can be minimised. We thus hypothesize that

this delay can be minimised by not relying on the assumption of a fixed execution time.

4.3.5 Node Busy Time Ratio

Figure 4.8 provides insights into the measurement execution times for each algorithm as

the number of hosts vary in the virtual network. It is worth noting that the total time cal-

culated in these plots exceeds the total experiment duration of 3 hours. This is because a

large number of measurement instances run in parallel on different measurement nodes at

overlapping time slots. We observe that the overall load of measurements is spread evenly

among different devices in all cases. Even though the randomized approach assigned mea-

surements randomly to devices, it is still able to distribute the load almost evenly. The dis-

tribution of measurements in the other four algorithms is even more fair as compared to

the randomized approach. The higher the load on a single device, greater the likelihood of

smartphone battery drainage in a community network deployment. An even busy time

ratio thus translates directly to the energy efficiency of our system and the assignment of

measurements in turns is a better design choice over phase 1.

73



 0

 50

 100

 150

 200

 250

 300

3 4 5 6 7 8 9 10 11 12 13 14 15

S
u
m

 o
f 

m
e
a
su

re
m

e
n
t 

e
xe

cu
ti

o
n
 t

im
e
 (

m
in

)

Number of Hosts

H1
H2
H3
H4
H5
H6
H7
H8
H9
H10
H11
H12
H13
H14
H15

Measurement distribution among devices for Random

 0

 50

 100

 150

 200

 250

 300

3 4 5 6 7 8 9 10 11 12 13 14 15

S
u
m

 o
f 

m
e
a
su

re
m

e
n
t 

e
xe

cu
ti

o
n
 t

im
e
 (

m
in

)

Number of Hosts

H1
H2
H3
H4
H5
H6
H7
H8
H9
H10
H11
H12
H13
H14
H15

Measurement distribution among devices for RR

 0

 50

 100

 150

 200

 250

 300

3 4 5 6 7 8 9 10 11 12 13 14 15

S
u
m

 o
f 

m
e
a
su

re
m

e
n
t 

e
xe

cu
ti

o
n
 t

im
e
 (

m
in

)

Number of Hosts

H1
H2
H3
H4
H5
H6
H7
H8
H9
H10
H11
H12
H13
H14
H15

Measurement distribution among devices for EDF

Figure 4.8: Distribution of measurement execution times among nodes for each scheduling algorithm
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Figure 4.8: Distribution of measurement execution times among nodes for each scheduling algorithm (cont.)
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4.3.6 Link Utilization
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Figure 4.9: Traffic transferred through the link between each switch and the immediately connected host in a topology
with 9 hosts and 1 speed test server. x‐axis denotes the ID of the link. The switch with ID 10 corresponds to the link
between S10 and the speed test server. Similar to Figure 3.7, each hostHi was immediately connected to a switch Si.
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Figure 4.9 represents the transmitted and received traffic through each switch. We observe

a balanced distribution of traffic among the measurement nodes as there’s no visible spike

in the graphs for any of the algorithms. The link between the speed test server and switch

number 10 is heavlily utillized because of its direct connection to the speed test server. The

values of link utilization between received and transmitted plots differ due to the distribu-

tion of uplink and downlink measurements launched.

We also measured the amount of traffic flown through switch-to-switch links. As indi-

cated in figure 4.10, we again observe a fairly even distribution of traffic between the mea-

surement nodes. The links connected to the tenth switch were also on the shortest path

links to the speed test server from each host. Both these plots corresponded to exactly the

same values of transmitted and recieved megabytes, which means that no packets were

dropped during the process. Another observation was that 99.9% of the total traffic flows

went through the links connecting each switch to S10. This is because there was a single

speed test server handling the data transfers to and from the measurement nodes.
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5
Conclusions

In this chapter, we provide a discussion on the key findings of this dissertation and provide

recommendations for future work.

5.1 Key findings

In this study, we implemented four existing scheduling algorithms as part of a network

measurement platform. We envision the deployment of this measurement platform in the

iNethi community network in Cape Town where the measurements are expected to run

in users’ smartphones. We conduct the evaluation of this system in two phases. In the first

phase, we use four smartphones to run five distinct types of measurements in a lab setup.

The outcomes of these experiments suggested to alter our implementation for a more even

distribution of measurements. In the second phase, we conducted our experiments in a

software-defined testbed while focusing on speed tests only. Our system performed signif-

icantly better in terms of accuracy than a “no-scheduling” scenario where measurements

are dispatched to random devices as and when they are required to. We also found that
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the error in measurements due to sharing of common links stays constant at about 34% as

the number of hosts in the network increases. The performance of four scheduling algo-

rithms chosen did not differ much among themselves as they showed similar characteristics

in terms of accuracy and platform delay. On an average, the platform provides about 1.2

minutes of delay between the start of a measurement and its result to be received.

Our results show that the algorithms are designed to address the conflicts for network

resources between measurements by providing better accuracy than a randomized schedul-

ing approach. However, these results do not declare a single algorithm as a clear winner. A

functional implementation of any of these algorithms can thus be used to schedule mea-

surements in a community network. The period of the measurements used in our experi-

ments was kept lower so as to create scope for maximum overlap among the jobs. In a real

deployment scenario, there will be multiple measurements running on an even large num-

ber of hosts. These measurements are likely to be scheduled by researchers and network

managers on an hourly basis to investigate the state of the community network. We thus

expect that the system should provide error-free measurements at a high success rate.

We posit that this system has a high applicability in community networks that are look-

ing to expand across hundreds of nodes. The cost to set up our measurement platform is

not very high as it has the capability to integrate with any hardware that supports a docker

installation. With software defined networking emerging rapidly as a network management
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paradigm, we believe that we are not far away from a point where community networks

will also adopt this trend. Given that our platform supports not just smartphones but any

docker-compatible hardware, its development is thus a significant step towards increasing

research efforts on community networks at a reduced cost.

5.2 Future work

The scheduling algorithms used in our study rely on the assumption that the execution

time of measurements is fixed. We believe that a thorough analysis involving different net-

work conditions and measurement distributions is required to minimize the observer effect

even further and increase the measurements’ accuracy. Also, the network topologies used

in our study were built using point-to-point links, which is different from wireless mesh ar-

chitecture. These results present a good starting point in terms of the performance metrics

used to evaluate the system. Future work will thus involve testing the system in an actual

deployed network with more challenging conditions like wireless hand-offs, mobility, and

cross-traffic.

Another interesting addition to this study could be to introduce anomaly detection ca-

pabilities in the system. Since the current implementation involves conduction of periodic

measurements, a future implementation could involve learning from network data and

launching of system generated measurements for a fine-grained network analysis. This
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would also involve the adjustment of schedule for existing measurements in the system in

accordance with a priority order as proposed in Qin et. al [18].

Further, a deeper analysis of the CPU and network footprints of our system would help

us in understanding if this system can be deployed alongside already existing community

network services without disrupting the end-user quality of experience. White et. al [74]

have proposed a containerized architecture for seamless deployment of community net-

work services in iNethi. A future work could thus be the integration our platform with this

architecture and getting the measurement system deployed in iNethi as per guidelines in

our current study.
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A
Deployment of the measurement system

In this chapter, we provide detailed instructions on how to set up the measurement system

on any Linux machine. The instructions for other platforms may differ on file paths used

and installation procedure for different dependencies.

A.1 Prerequisites

The steps shown in the subsequent sections assume that the host machine has working

installations of docker and docker-compose. The installation steps can be found here.

There’s a high likelihood that the current user account may not be able to invoke docker

and docker-compose commands without prefixing them with a “sudo”. To address this,

please review the post-installation steps here.

A.2 Setting up the backend

This component serves as the centralized server and orchestrates the conduction of measure-

ments.
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1. Clone the below GitHub repository and change your working directory to qosmon-

request-handler.
$ git clone https://github.com/staveesh/qosmon-request-handler
$ cd qosmon-request-handler

2. Create a hidden file .env.
$ touch .env

3. Add the below contents to the .env file. These values represent the environment
variables and configurations for the system. Defaults for the version used for experi-
ments can be obtained upon request to the authors.

INFLUXDB_USERNAME=#value
INFLUXDB_PASSWORD=#value
INFLUXDB_NAME=#value
INFLUXDB_PORT=#value
MONGODB_USERNAME=#value
MONGODB_PASSWORD=#value
MONGODB_NAME=#value
MONGODB_PORT=#value
MONGODB_HOST=#value
HTTP_SERVER_PORT=#value
TCP_SERVER_PORT=#value
FILE_SERVER_HOSTNAME=#value
MILLISECONDS_TILL_RETRY_CONNECT=#value
MILLISECONDS_TILL_ANALYZE_PCAPFILES=#value
MILLISECONDS_INIT_DELAY=#value
FILE_MONITOR_DELAY=#value
NUM_RETRY_CONNECT=#value
SCHEDULING_ALGO_NAME=#value (One of [random , rr, edf, aosd, dosd])

4. After the above file is saved with suitable environment variables, the below command
can be executed to launch the measurement server. This may take a long time during
first time setup.

$ docker-compose up --build

The measurement server should now be running and ready to receive newmeasure-

ments. The next step is to setup a measurement node.
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A.3 Setting up the speed test server

This component is responsible for sending and receiving speed test data from the mea-

surement nodes. Run the below command within the host on which the speed test server

should be launched. For testing purposes, this host can be kept the same as the measure-

ment server.

$ docker run -p 6001:6001 -p 6002:6002 -p 6003:6003 -p 31341:31341 staveesh/

speedserver:latest

A.4 Setting up a measurement node

Two platforms are supported as measurement nodes for the platform - Android and Linux.

The application has not been tested onWindows/macOS platforms yet but we anticipate

that the installation instructions should not difffer much.

A.4.1 Instructions for Android apps

The following instructions require a working installation of Android Studio. Please check

here for installation instructions.

1. Clone the below repository into the file system.
$ git clone https://github.com/staveesh/mobiperf

2. Open themobiperf directory as a project in Android studio. Then, wait for the gra-
dle build to finish.
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3. Browse to the filemobi/src/main/java/com/mobiperf/Config.java and change the
below parameters.

(a) SPEED_TEST_SERVER_ADDRESS: Address of the speed test server.

(b) SERVER_HOST_ADDRESS: Change this parameter to the hostname/IP
address of the measurement server.

(c) SERVER_PORT: Change this to the port on which the measurement server
was configured to run.

4. Running the app:
If an Android emulator has not been set up, please follow the instructions provided
here.
To run the app on a physical device, please follow the instructions provided here.

5. First time setup:
Figure A.1 shows the steps to be followed for setting up the app during the first in-
stall.
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(a) Select “InethiPerf” (b) Turn on “Permit usage access” (c) Go back to the InethiPerf app

(d) Select “While using the app” (e) Select “Allow” (f) Select “iNethi”

Figure A.1: First time install of the app 100



Figure A.2: Main screen of the application

The screen shown in Figure A.2 can be seen after the app is completely set up. Users can

launch custommeasurements using this interface and also view their results. Scheduled

measurements are also supported.

A.4.2 Instructions for Linux

To run measurements from any linux machine, follow the below steps:

1. Clone the below github repository and change current directory tomobiperf-simulator:
$ git clone https://github.com/staveesh/mobiperf-simulator
$ cd mobiperf-simulator

2. Create a .env file in this directory.
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$ touch .env

3. Add the below contents to the .env file. Use appropriate values for the measure-
ment_server_host and measurement_server_port.

SERVER_PORT=#value
MEASUREMENT_SERVER_ENDPOINT=ws://{measurement_server_host}:{

measurement_server_port}/mobiperf
MOBIPERF_DEVICE_ID=#value (A unique identifier)
MOBIPERF_SCHEDULE_FILE_PATH=/var/lib/schedule

4. Launch the below command to start the measurement node:
$ docker-compose up --build

Like any Android phone, this node should be able to receive measurements from the

measurement server.

A.5 Setting up the frontend

The frontend is written in ReactJS. It requires a working installation of NodeJS and the

Node Package Manager (npm). Click here to view the installation instructions. Then, the

following instructions can be followed to launch the frontend:

1. Clone the below github repository and change current directory to qosmon-ui:
$ git clone https://github.com/staveesh/qosmon-ui
$ cd qosmon-ui

2. Create a .env file in this directory.
$ touch .env
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3. Add the below contents to the .env file. Use appropriate values for the measurement
server’s address.

REACT_APP_API_URL= # Intended URL for the frontend
REACT_APP_PUBLIC_URL= # URL for the measurement server

4. Launch the below command to install frontend dependencies.
$ npm install

5. Launch the below command to start the frontend webserver.
$ npm start

The webserver will be up and running and users should be able to visit the frontend in

their browser. Users can also Sign Up and Log In to the system using the web forms pro-

vided on the homepage.

Figure A.3: QoSMon signup page
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Figure A.4: QoSMon login page

A.6 Launching a measurement

Measurements can either be launched using the frontend or through API invocation.

A.6.1 Launching measurements using the frontend

1. Once a user logs in into the system, the following screen becomes visible:
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Figure A.5: QoSMon home page

Select “Schedule Experiments” on the screen shown above.

2. On the “Schedule Experiments” screen, fill the form with suitable information and
click the “Submit” button.

Figure A.6: Launching a measurement in QoSmon through the frontend
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A.6.2 Launching measurements using API invocation

A generic JSON payload for a measurement is shown here. To schedule a measurement, a

POST request with suitable payload against the /scheduleAPI endpoint of the measure-

ment server can be issued.

$ curl -X POST http://{measurement-server-host}:{port}/schedule -H 'Content-Type:

application/json' -d '{payload contents}'

A.7 Checking measurement data in InfluxDB

To check the measurement data, issue the below commands within the measurement server.

Also check InfluxDB’s documentation for detailed instructions related to exporting time-

series data into multiple formats.

$ docker exec -it influxdb /bin/bash # Opening a shell inside the influxdb docker

container

<container-id>$ influx # Opening influxdb 's command line interface

> use mobiperf; # Specifying the database

> select * from <measurement >; # A measurement can be one of ping, dns_lookup ,

traceroute , influxdb , tcp_speed_test

A.8 Visualizing measurement results

1. Login into the home screen of the frontend and select the “View Experiment Re-
sults” option.
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Figure A.7: QoSMon “View Experiment Results” page
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Figure A.8: Sample visualization for a ping measurement is shown here

2. Select the job type from the left pane and the job number from the cards on the right.
A graph showing relevant metrics will appear as shown in the figure above.
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