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Abstract 

The study of network robustness is a critical tool in the understanding of complex interconnected 

systems such as the Internet, which due to digitalization, gives rise to an increasing prevalence of 

cyberattacks. Robustness is when a network maintains its basic functionality even under failure of some 

of its components, in this instance being nodes or edges. Despite the importance of the Internet in the 

global economic system, it is rare to find empirical analyses of the global pattern of Internet traffic data 

established via backbone connections, which can be defined as an interconnected network of nodes and 

edges between which bandwidth flows. Hence in this thesis, I use metrics based on graph properties of 

network models to evaluate the robustness of the backbone network, which is further supported by 

international cybersecurity ratings. These cybersecurity ratings are adapted from the Global 

Cybersecurity Index which measures countries’ commitments to cybersecurity and ranks countries 

based on their cybersecurity strategies. Ultimately this empirical analysis follows a three-step process 

of firstly mapping the Internet as a network of networks, followed by analysing the various networks 

and country profiles, and finally assessing each regional network’s robustness. By using TeleGeography 

and ITU data, the results show that the regions with countries which have higher cybersecurity ratings 

in turn have more robust networks, when compared to regions with countries which have lower 

cybersecurity ratings. 
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1 Introduction 
 

The objective of this thesis is to provide an analysis of the robustness of the Internet in relation to the 

importance of different nodes that govern the functioning of the Internet, which is measured by high 

graph-theoretical robustness metrics as well as high levels of protection the nodes have against 

cyberattacks. From this, the primary contribution of the thesis is a detailed disaggregated analysis of 

country level impacts to the robustness of the Internet as a whole, through analysing the criticality of 

the Internet backbone from a graph-theoretical perspective. The objective and contribution differ from 

the previous literature in that the core of this thesis makes use of real-world Internet geography and 

global cybersecurity data upon applying network and graph theory analysis. Similar to Yan et al. (2010), 

the main theme of this thesis is to perform a criticality analysis of the Internet infrastructure at a national 

level, with the difference being the use of different robustness methodologies and cybersecurity ratings 

as opposed to applying various traffic modelling techniques.  

Network robustness is defined as a measure of a network’s ability to continue functioning when part of 

the network is naturally damaged or targeted for attack. In the case of the Internet, the ability of the 

network to maintain its function means transferring data between pairs of nodes. The focus of network 

robustness is always placed on topological robustness properties and the corresponding topological 

robustness graph metrics, which mainly abstract from technical or organizational details of the Internet 

by the use of mathematical graph theory and particular graph models (Oehlers & Fabian, 2021). 

Given the Internet represents the global infrastructure for transporting products of the digital economy 

– information, business processes and communications – more individuals, firms and countries have 

come to rely on this global network infrastructure. While the Internet is a system that efficiently creates 

wealth in the economy ($8 trillion is exchanged each year)(McKinsey Global Institute, 2011), it can 

also be used to promote the spread of cyberattacks, which as of 2016 cost the global economy between 

$445 billion and $600 billion (IBM, 2020). Hence by using a series of empirical studies such as formal 

network analysis and graph theory, it is possible to quantify the robustness and vulnerability of such a 

scale-free network in the face of an attack. The interconnectedness of globalization is further enhanced 

by the fact that two billion people are connected to the Internet (McKinsey Global Institute, 2011), and 

the reason opportunities for cyberattacks are so prevalent stems from the TCP/IP protocols inherent in 

the functioning of the Internet. 

The Internet is a packet switched network, implying that a node using the Internet does not have a 

dedicated part of the network exclusively to themselves. As a result, all the data flowing along an edge 

between two nodes is split up into packets and aggregated with all the data packets from other nodes on 

the network (Pastor-Satorras & Vespignani, 2007). Thus, during this transmission stage, the original 

data that is sent is vulnerable as it is only fully compiled when it reaches the specified, destination IP 

address. In this instance, individual countries (nodes) act as the basis of the backbone network since 

they facilitate global control in the information exchange system by transporting the data packets along 

regional and international routes (edges). Therefore, the backbone of the internet constitutes of two 

entity types, nodes and edges, with the bandwidth data being sent along the edges between the nodes. 

Unlike most empirical studies which focus on the autonomous systems (AS) layer of the internet, this 

thesis uses graph models to study Internet robustness at the backbone level. The analysis takes place on 

the Internet backbone layer as this forms the core of the Internet, since it provides the shortest paths 

through high-capacity links and routers that are owned and operated by major Internet service providers. 

Moreover, given that cyberattacks are increasingly borderless, cybersecurity remains a transnational 

issue due to the increasing in3terconnection and correlated infrastructures between nations, and thus the 

degree of intactness of the international Internet backbone infrastructure determines how robust the 

virtual Internet network is. 
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With regards to robustness metrics, a combination of local and global metrics are used, where local 

metrics measure the individual node’s impact on network robustness (its vulnerability to connectivity 

failures to the rest of the network), and global metrics capture features about the entire network graph. 

In this thesis both types of metrics are accounted for as local metrics often depend on a smaller 

information set, provide more detailed insight and need less calculation time, while global metrics are 

more meaningful for assessing the state of the entire network and also allow for the comparison of 

different graphs (Oehlers & Fabian, 2021). Robustness metrics are then further classified as static and 

dynamic. Static metrics take a snapshot of the key characteristics that influence the robustness of a 

network, while dynamic metrics assess network behaviour under arbitrary removal strategies (Oehlers 

& Fabian, 2021). In this regard, the thesis focuses on only static robustness measures.  

Supporting the thesis objectives, the results from the robustness analysis show that some metrics differ 

when identifying the most robust countries in networks, and so using only one metric is not sufficient 

to measure the network robustness, which is also supported by findings from Oehlers & Fabian (2021). 

Therefore, this is the reason that a set of varying metrics is considered to calculate the robustness scores 

and used to compare the results. Essentially the objectives support the results in that certain countries 

with higher robustness scores and higher cybersecurity ratings have a greater contribution to the overall 

robustness of the Internet backbone when compared to regions which have poorer robustness metrics 

and a weaker cybersecurity status. This is attributable to more developed regions having high degree 

countries which in turn have better GCI ratings due to their influence as key nodes in their specific 

networks. And this is further supported by the fact that high degree countries also tend to have high 

Clustering Coefficient, Betweenness Centrality, and Eigenvector Centrality scores, all alluding to a 

more robust Internet backbone in that particular region. 

The remainder of this thesis is structured as follows: Section 2 outlines the Related Literature, Section 

3 explores the Methodology and Data, Section 4 presents the Results and Discussion, and Section 5 

closes with the Conclusion. 

 

2 Literature Review 
 

An important design feature of the Internet is its robustness, which can be described as the ability of the 

network to provide and maintain an acceptable level of service in the face of various faults and 

challenges to its normal operation. Several graph models have been used to imitate the Internet structure, 

the most popular being the classical network modelling approaches such as the Erdos and Renyi (ER) 

graph model (Erdös & Renyi, 1959) and the scale-free BA model developed by Barabsi and Albert 

(Newman, 2003).  

In contrast, this thesis uses Oehlers & Fabian (2021) as a starting point for studying network robustness, 

given that they provide a comparative overview of an extensive set of robustness metrics in six major 

categories, and discuss the respective advantages and drawbacks of each metric, as well as the main 

results obtained from analysing the robustness of theoretical Internet graphs. Furthermore, they compare 

and assess the suitability of each metric in detecting crucial backbone structures and measure important 

robustness aspects of Internet topology. However, unlike Oehlers & Fabian (2021), this research applies 

the robustness metrics to real world Internet data. A similar approach to this is seen by Rueda, Calle & 

Marzo (2017), who conduct a robustness analysis of fifteen real telecommunication networks under 

multiple failure scenarios, and by expanding on the taxonomy of structural and centrality robustness 

metrics, they analyse the common topological proprieties that group networks with similar robustness 

behaviour. The core of this thesis parallels Rueda, Calle & Marzo (2017) by using network analysis and 
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graph theory which are a set of research procedures for identifying specific structures within 

interconnected systems, based on relationships among various components of the systems. 

Further supporting the empirical literature on this topic are Baumann & Fabian (2015a), who use a large 

integrated dataset describing the Internet as a complex graph and develop a multi-dimensional 

Connectivity Risk Score that acts as a topological indicator of single Autonomous Systems (AS). They 

essentially develop an analytical scoring method that helps risk managers assess the potential 

vulnerability of an organization beyond its network perimeters. Comparably, Baumann & Fabian 

(2015b) investigate Internet robustness at the AS-level, and they too use empirical data and graph 

analysis to develop a graph model of the Internet in order to conduct a global assessment of Internet 

robustness. Yan et al. (2010) implement an AS path inference algorithm to derive inter-domain paths 

that are used on the real Internet, and similar to this thesis, they also study the geographical topology 

from an Internet backbone perspective on a national level, except their paper focuses only on Internet 

traffic in the US by using the skitter dataset. Following form this, the mapping of the TeleGeography 

network data in this thesis follows a similar narrative to the Internet Atlas described in Durairajan et al. 

(2013), where the Atlas is a visual geographical representation of the physical Internet including nodes 

and edges connecting the nodes. While visualising the physical backbone layer of the Internet is not the 

focus in this thesis, the common ground of analysing the interconnection structure of the Internet has 

been the subject of a large number of studies over the past decade, which concentrate on router-level 

(CAIDA, 2017; Madhyastha et al., 2006), PoP-level (Shavitt & Shir, 2005; Spring et al., 2004) and AS-

level (Mao et al., 2003; Zhang et al., 2005) Internet graphs. In addition and similar to Zhang et al. 

(2005), this thesis accumulates information from data over time, as Zhang et al. (2005) emphasize the 

importance of both collecting from data sources such as the TeleGeography and ITU registries, as well 

as accumulating the findings over time in order to obtain more complete connectivity information.  

Graph-theoretical analysis studies the structural properties of a geographical network derived from the 

Internet backbone topology, including its Degree distribution, Clustering structure, and also its 

Betweenness and Eigenvector Centrality measures (Yan et al., 2010). These four centrality measures 

that are widely used in network analysis (Newman, 2008) are also used as the robustness metrics that 

form the basis of this thesis, which can then be categorised into four buckets – Adjacency, Clustering, 

Throughput and Spectral measures.  

The Adjacency and Clustering categories build on each other and describe the general structure of 

graphs, hence why the Degree and Clustering Coefficient measures, Equations 1 and 2 respectively in 

the Methodology section, are considered to be structural metrics (Oehlers & Fabian, 2021; Rueda, Calle 

& Marzo, 2017). Degree refers to how connected a node is, namely how many links a node has with 

other nodes: the degree of node 𝑖 in a given network 𝐺 is defined by the number of edges connected to 

it. The higher the degree, the more central the node is, and this can be an effective measure since nodes 

with high degrees may have high centrality by other measures (Hansen, Shneiderman & Smith, 2011). 

A node degree of 15 indicates that 15 edges are connected to the node in the Internet network, however 

one pitfall of the degree metric is that it only indicates how many connections a node has, and not the 

quality of the connection. The Degree measure is used in most of the classical results on Internet 

robustness as it is the simplest measure of nodal centrality and is determined by the number of 

neighbours connected to a node. For example, the removal of a node with the highest degree could 

cause large damage to the network: the larger the degree, the more important the node is, the more 

difficult it is to disconnect the graph, and hence the higher the robustness of the network (Oehlers & 

Fabian, 2021). However, if a node with a high degree fails, potentially higher numbers of connections 

are also prone to being affected. Therefore, the degree of a node has influence on network robustness 

beyond only assessing the connectivity of a node to its direct neighbours, as it is rather important for 

capturing the topological connectivity of the Internet since the Internet cannot be seen as an isolated 

unit but is interconnected with a massive, interrelated network structure (Pastor-Satorras & Vespignani, 
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2007). Furthermore, relying on Degree alone for estimating the importance of a node could be 

misleading, hence additional measures are needed.  

Continuing with the definitions of the key variables, the Clustering Coefficient measures the probability 

that two nodes having a common neighbour are neighbours themselves (Hansen, Shneiderman & Smith, 

2011). For instance, a Clustering Coefficient of 1 indicates that all of the possible connections between 

neighbouring nodes are actually realized in the network. The Clustering Coefficient essentially refers 

to the extent of overlap between connections, where the proportion of a node’s neighbours are connected 

with each other, and the higher the Clustering Coefficient, the more triangles there are (since triangle 

count in a network is an important property to characterize and analyse network graphs) and hence the 

higher the robustness of the network (Oehlers & Fabian, 2021). The clustering of an undirected graph 

can be quantitatively measured by means of the Clustering Coefficient (Watts & Strogatz, 1998). From 

Equation 2, a high 𝑐𝑖 (Clustering Coefficient) denotes a node whose removal will impact the network’s 

robustness, as the many potential routes between its neighbours will cease to exist. As mentioned above, 

this is because the Clustering Coefficient captures the presence of triangles formed by a set of three 

nodes, and compares the number of possible triangles that can be formed to the number of actual 

triangles formed in the network (Rueda, Calle & Marzo, 2017). Hence the higher the Clustering 

Coefficient, the more triangles there are, and the higher the robustness of the network.  

Next, the Throughput category focuses on concepts that are crucial for communication networks, such 

as approximating the concrete Internet routing processes via shortest-paths and accounting for Internet-

specific link capacity restrictions (Oehlers & Fabian, 2021). A centrality measure like the Betweenness 

metric, given by Equation 3 in the Methodology, is calculated based on the whole network structure, 

meaning that changing arbitrary nodes in the network will have an influence on the robustness of the 

entire network (Singer, 2006). Betweenness Centrality refers to how important a node is in terms of 

connecting other nodes, and essentially measures a node’s ability to pass information from one node to 

another node on a different part of the network, by calculating the number of shortest paths passing 

through a certain node and roughly approximating the potential traffic flow through that node (Du, 

2019). Nodes with a high degree tend to have large betweenness scores since they are important for 

routing traffic, hence these nodes are important as they form the centre of the network and provide short 

routes through the entire network for other nodes (Singer, 2006). Furthermore, a node may have a high 

Betweenness Centrality while being connected to only a small number of other nodes, which are not 

necessarily central themselves. This is due to the fact that nodes acting as bridges between other nodes 

typically have a high value, so these nodes play a key role in the network and are important in 

information diffusion (Du, 2019). Given this measure detects the amount of influence a node has over 

the flow of information in a network, a node with a high betweenness score has a high probability to 

occur on a randomly chosen shortest path between two randomly chosen nodes (Rueda, Calle & Marzo, 

2017; Singer, 2006). As a result, Betweenness Centrality has a natural connection to graph robustness 

since it accounts for the network effects of how a node’s actions may impact the actions of its 

neighbours by measuring the traffic flow among other nodes in the network: the greater the information 

flow, the more central the node, the higher the betweenness score, and the more robust the network 

(Oehlers & Fabian, 2021).  

Consequently, some aspects of these three classes mentioned above are combined together with the 

Spectral methods which include more sophisticated matrix-calculation schemes such as random walks 

(Du, 2019; Oehlers & Fabian, 2021). As laid out in Equations 4 and 5, Eigenvector Centrality is 

proportional to the sum of the centrality scores of its neighbours, where the centrality corresponds to 

the largest eigenvector of the adjacency matrix, thus, it can take a large value either due to the node 

being connected to many other nodes or due to it being connected to a small number of important nodes 

(Rueda, Calle & Marzo, 2017). Interestingly, Choi, Barnett & Chon (2006) find there is a high positive 

correlation between Eigenvector Centrality and Degree, as well as with the shortest path traffic loads, 

essentially known as Betweenness Centrality. This is because there is an inherent circularity in the 
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calculation of Eigenvector Centrality scores, and so a node that is connected to more central nodes has 

its own centrality boosted, which indicates a more robust network. In this thesis, these strong, positive 

correlations are evident in the results. 

Overall, this thesis differs from previous work in its objectives in that it investigates Internet robustness 

at the backbone level, and over and above the network robustness analysis conducted in this thesis, it 

incorporates a cybersecurity element of ranking countries and regions based on their cybersecurity 

status. Shafqat & Masood (2016) focus on a related concept, except the authors only analyse and 

compare national cybersecurity strategies (based on legal, operational, technical, and policy-related 

measures) for 20 countries. Their research specifies and recommends best practices for improving the 

state of national cybersecurity and resilience, by evaluating the different cybersecurity trends, measures 

and approaches outlined in the respective publicly available strategy documents, and while the same 

factors as Shafqat & Masood (2016) are used to rank the cybersecurity profiles, 38 countries are 

analysed in this thesis. In a similar manner to Shafqat & Masood (2016), Yarovenk et al. (2020) discuss 

the formation of effective cybersecurity strategies on a country level where these strategies cover areas 

such as cybersecurity policy making, developing appropriate legal frameworks and powerful technical 

systems, and investing in cybersecurity research and educational programs. These areas are also 

reflected in the Global Cybersecurity Index (GCI) scores which is the basis on which this thesis ranks 

the cybersecurity status of countries. This final variable in the analysis, the GCI, is a composite index 

of indicators that monitor the level of cybersecurity commitment in the five pillars (Legal, Technical, 

Organizational, Capacity Building and Cooperative) of the Global Cybersecurity Agenda (International 

Telecommunication Union (ITU), 2015, 2017, 2018, 2020). The GCI score provides a country specific 

ranking of the following: The type, level, and evolution of cybersecurity commitments within countries 

and relative to other countries; the progress in cybersecurity commitment of countries from a global 

perspective; the progress in cybersecurity commitment from a regional perspective; and the 

cybersecurity commitment divide (the difference between countries in terms of their level of 

engagement in cybersecurity initiatives). In developing a national cybersecurity strategy, Yarovenk et 

al. (2020) argue it is important to understand which aspects of a country's cybersecurity need to be 

strengthened, and which already have a strong basis and require sustained support. They state this can 

be assessed by determining the ranking of countries which is dependent on the level of cybersecurity, 

and this is exactly what is done in this thesis. There are several sources used to rank countries, including 

the National Cyber Security Index (NCSI) quoted in Yarovenk et al. (2020) and the Global 

Cybersecurity Index (ITU, 2015, 2017, 2018, 2020) used in this thesis, which assess the level of 

readiness of countries to counter cyber threats. Both of these sources make use of the same indicators – 

Legal, Organizational, Technical, and Educational – that relate to the various aspects of cybersecurity, 

and after combining the points across these indicators, an average score is calculated which is used to 

rank the country’s overall rating. As is stipulated in Yarovenk et al. (2020), Kshetri and Murugesan 

(2013) and additionally in this thesis, a country’s cybersecurity ranking serves as a means to assess its 

national and global impact and to highlight key elements of its national cybersecurity strategy.  

Ultimately, to develop a complete and empirical analysis of Internet robustness, this thesis combines 

the quantitative elements of graph theory and network analysis as well as the qualitative factors relating 

to the cybersecurity status of countries. 

The current limitations and drawbacks of the metrics used in this thesis are highlighted by Yan et al. 

(2010) in that although theoretically appealing and appropriate for the application to Internet backbone 

analysis, the graph-theoretical analysis ignores the hierarchical routing scheme of the real Internet and 

due to its simplicity only uses the shortest path routing scheme. Instead, Yan et al. (2010) apply route-

based analysis which models realistic inter-domain and intra-domain routing schemes used on the 

Internet and then identifies those facilities that appear most frequently on paths in the Internet backbone 

topology, in addition to using traffic-based analysis which weighs each path by its respective traffic 
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demand. Future work in this regard could make use of consequence-based analysis to evaluate the 

importance of each node by measuring the amount of traffic lost after it is removed from the topology.  

With regards to the limitations of the cybersecurity rankings, while determining the ranking of countries 

by their level of cybersecurity is quite relevant and helps to obtain an adequate assessment of the country 

in terms of its ability to withstand cyberattacks, Yarovenk et al. (2020) confirm this approach used in 

this thesis does not take into account the importance of other indicators in forming an overall rating. 

This generalized approach does not respond to cases where there are different amplitudes of values and 

does not consider the use of additional characteristics that would better identify deviations from actual 

scores. However, the use of multi-attribute decision-making methods allows to solve several problems 

relating to the dimensionality of data and the determination of indicator weights, essentially accounting 

for the diversity of values of indicators and their fundamental differences. Therefore, the use of different 

approaches such as multicriteria analysis of decisions would cater for a more detailed assessment of 

cybersecurity ratings since they eliminate the above-mentioned shortcomings. 

 

3 Methodology 
 

3.1 Data 

3.1.1 Data Overview 

In this section, the two types of data used in this thesis will be described in depth, with the first being 

Internet geography network data, and the second being global cybersecurity ratings. This section will 

also cover the limitations and introduce the descriptive statistics for both data types.  

3.1.2 Data Description 

A) Network Data: 

The thesis uses Global Internet Geography data from TeleGeography (TeleGeography, 2020), which 

offers a complete source of data on international Internet capacity. The original data are broken into 

two sections: country-by-country international Internet capacity and international Internet traffic. 

However, this analysis uses only Internet traffic data as opposed to Internet capacity data, because 

International Internet bandwidth (capacity) represents point-to-point rather than end-to-end 

relationships and shows only the routes available between those points, whereas international Internet 

traffic (capacity usage) travels between any two points anywhere on the network. Consequently, the 

Internet traffic data represents the network topologies of several hundred Internet providers operating 

international Internet links such as routers or switches that directly connect across an international 

border.  

These links comprise the public Internet, which carries general Internet traffic travelling in both 

directions between the countries of each route. Ultimately, the bidirectional averages of both average 

and peak traffic over a link are used as the measures of traffic between two nodes. Average traffic is 

defined as the sum of all traffic across a link divided by the number of seconds in the month, and peak 

traffic is measured at the 95th percentile, which is calculated by dividing one month’s traffic into 5-

minute increments, ranking the traffic levels of each increment, and removing the top 5 percent. More 

notably, the link enabling traffic to flow between nodes is the basis for a common metric – link 

utilization – used to measure network performance, as it quantifies how much of a given link’s capacity 

is used over a given period of time. Link utilization is an important measure, where over a period of 

years it can be indicative of actual Internet traffic growth between two nodes. In essence, the link 

utilization rate, or weight, of a link is the traffic level divided by the capacity of the link, and the greater 

the weight of a link, the more influential that route is in the network. Overall, this Internet traffic data 
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is applied to a network topology in order to map the Internet as a network of interconnected countries 

and is subsequently analysed to determine its overall robustness. 

In summary, the TeleGeography data is structured such that 10 routes for each region (Africa, Asia, 

Europe, Latin America, Middle East, North America and Oceania) are reported, where these 10 routes 

are kept constant year on year with only the level of international Internet traffic between the routes 

changing. This network data is reported in its raw and tabular format for each of the seven regions used 

in this thesis. The data is composed of countries (nodes) and the route between two countries (edges), 

with the Internet traffic flowing between edges measured in Gbps. Each node has been assigned an 

attribute – the node’s respective cybersecurity status given by the International Telecommunication 

Union GCI data, and each edge has been assigned an attribute – the edge’s respective weight of Internet 

traffic given by the proportion of bandwidth sent over that route. This weight is calculated as a simple 

fraction of an edge’s traffic relative to the entire network’s traffic. The network data of each region is 

then aggregated to make up an international dataset spanning the five years 2016 – 2020, to produce a 

total of 38 nodes and 61 edges. 

B) Cybersecurity Data: 

In addition to the network data, there is data representing each node’s cybersecurity defence resources. 

The International Telecommunication Union (ITU) publishes a Global Cybersecurity Index (GCI) that 

ranks countries based on their cybersecurity strategies. The GCI measure presents factual 

representations of each country’s level of cybersecurity, as the GCI is a composite index combining 25 

indicators into one benchmark. This ranking applies to 193 ITU Member States in all regions: Africa, 

Americas, Arab States, Asia-Pacific, and Europe. The index aims to quantify the type, level, and 

evolution of cybersecurity policies in countries and relative to other countries, as well as the progress 

in cybersecurity methodologies of all countries from a global perspective. Furthermore, the index 

accounts for progress in cybersecurity strategies from a regional perspective, and accounts for the 

difference between countries in terms of their level of engagement in cybersecurity initiatives.  

The following five designated areas of the Global Cybersecurity Agenda form the basis of the 25 

indicators that the GCI statistic is comprised of.  

First off, legal measures are based on the existence of legal institutions and frameworks dealing with 

cybersecurity and cybercrime. The legal framework sets the minimum foundation of compliance on 

which further cybersecurity capabilities can be developed. The key objective is to have sufficient 

legislation in place to synchronize compliance on a national and global level, in order to reduce 

cybercrime.  

Second, the technical approaches are evaluated on the existence of technical elements and practical 

mechanisms dealing with cybersecurity. Technology is the primary tool against combatting 

cyberattacks, as without suitable technical skills countries are vulnerable. Therefore, for effective ICT 

development and utilization to hold, countries need to ensure that minimum security criteria are built 

for software applications and systems.  

Thirdly, organizational factors are based on the existence of policy coordination institutions and 

strategies for cybersecurity development at the national level. These factors involve agencies both 

setting strategic cybersecurity targets, as well as evaluating the outcomes. The organization of 

guidelines is important to ensure that the various industries are aligned with national cybersecurity 

objectives.  

Fourth is capacity building, where these aspects are evaluated on the existence of research and 

development, education and training programs, and certified professionals and public sector agencies 

promoting the legal, technical, and organizational pillars. While cybersecurity is primarily resolved via 
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technical measures, there are socio-economic and political implications which require human and 

institutional capacity building to generate systematic solutions.  

Lastly, cooperation includes measures dependent on the existence of partnerships, collaborative 

frameworks and information sharing networks. Given cybercrime is a global problem, a multi-

stakeholder approach is necessary for increased cooperation which gives rise to greater resources for 

building a better defence network, ultimately deterring a higher amount of online attacks.  

These five pillars essentially shape the inherent building blocks of a national cybersecurity culture, and 

as a result, the GCI rankings can be used to describe each node’s cybersecurity status, with the added 

advantage that the GCI measure acts as a proxy for a node’s vulnerability for all the countries that the 

TeleGeography data represents. 

The cybersecurity GCI statistic is bound between 0 and 1, where a score closer to 0 indicates a country 

has a poor cybersecurity status, while a score closer to 1 indicates a country has a sound cybersecurity 

status. Each of the four versions (2015, 2017, 2018, 2020) of the cybersecurity data has GCI scores for 

all the 38 TeleGeography countries, and hence the rankings are averaged over the four years to form a 

mean GCI Score. However, data is unavailable for years 2016 and 2019, hence GCI scores from the 

previous iterations (2015 and 2018, respectively) are imputed for these two missing years. Each iteration 

of the reports used in this thesis pinpoint the exact score and rank for all 38 countries.  

3.1.3 Data Limitations: 
This section highlights the several data limitations in both the Internet traffic data and in the 

cybersecurity data.  

With regards to the TeleGeography dataset, the first data limitation is that the Global Internet 

Geography data includes international Internet bandwidth statistics for 92 countries, however the 

international Internet traffic statistics are available for only 38 of the 92 countries. Therefore, the full 

Internet traffic dataset used in the thesis is for 38 countries, aggregated over the time period from 2016 

to 2020. Secondly, on routes that have imbalanced traffic flows, the data underreport the true average 

and peak demands placed on the link, since it examines the average traffic flow from both directions. 

The Internet traffic data reflects statistics obtained directly from service providers, and although the 

participating providers operate in a variety of regions and represent a large portion of all international 

Internet capacity, the data do not include statistics from all of the hundreds of international Internet 

operators in the world. To compensate for this incomplete dataset, TeleGeography developed estimates 

using proxies on backbone deployment and capacity utilization trends, including the carrier type and 

route type.  

Regarding the data limitations in the cybersecurity data, the ITU has published only four iterations of 

the GCI report (2015, 2017, 2018 and 2020), and as a result two years of data, namely 2016 and 2019, 

are missing when compared to the TeleGeography data. Hence for the years that do not have 

corresponding GCI data, the previous year’s data will be used. 

3.1.4 Descriptive Statistics: 
The Descriptive Statistics section provides an overview of the topological properties of each of the 

seven regional networks, as well as for the fully complete international network. This section serves as 

an introduction to and summary of the network and cybersecurity data by using specific methods such 

as the mean, which measures the centre or central tendency of a set of data, and the max, to calculate 

and summarize the data. The figures in Table 1 are based on the TeleGeography and International 

Telecommunication Union datasets, which were manually cleaned, and the resulting data was then 

transformed into the summary statistics all using Excel. Since the Descriptive Statistics are reported 

numerically, descriptions are given below to provide meaningful insight on the data. This section differs 

from the Results and Discussion section in that the Descriptive Statistics merely introduces a high-level 
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overview of the robustness metrics and the cybersecurity GCI scores. Furthermore, the statistics 

reported in this section do not pertain to individual countries but to overall regions, and hence a brief 

evaluation of the overall networks is given, where a more in-depth analysis of the individual country 

nodes takes place in the Results and Discussion.  

Summary Statistics of Static Robustness Measures: 

Table 1: The above Descriptive Statistics table provides the average and highest values for the topological properties of each 

of the seven regional networks, and the fully complete international network. 

At the upper level of Internet robustness, the more developed regions dominate the Degree metric, 

however the less developed regions dominate the Betweenness Centrality measure. Based on Table 1 

above, the European sample has the highest average number of links with other countries (2.5) but has 

the second lowest value of absolute links (5). The North American sample has the highest maximum 

number of links with other countries (10) but the lowest average links (1.9). This indicates that regional 

connectivity among countries in Europe is more evenly distributed compared to North America, where 

in that region the concentration of links occurs mainly in the United States. Interestingly, the Latin 

American region has the highest Betweenness Centrality score (2.889), indicating it has the most robust 

regional Internet network, with Africa (0.198), Asia (0.159) and the Middle East (0.15) also at the upper 

tail of the robustness scale. At the lower end of the Degree measure the developing regions prove to be 

less robust than the developed regions, although with regards to the Betweenness metric, the developed 

regions are less robust than the developing regions in this robustness measure. From the Descriptive 

Statistics in Table 1, Africa, Asia, Latin America, and Oceania all have the same number of average 

links among their respective countries (2.222), where these figures were calculated using the built-in 

“Degree” algorithms in Cytoscape and Gephi. The reason why all these regional networks have the 

same average number of connections is because the African, Asian, Latin American, and Oceanic 

networks all have 9 nodes and 10 edges, hence averaging to 2.222 across all these four regions. 

However, Africa and Asia are the least well connected, with a maximum of 3 and 5 links respectively. 

Table 1 also shows that the North American region has the lowest Betweenness Centrality score (0), 

indicating it has the least robust regional Internet network in this regard. Oceania and Europe are slightly 

more robust than North America, but are still the second and third least robust Internet networks in 

terms of Betweenness Centrality given their scores are 0.103 and 0.137, respectively. 

Therefore, with regards to the Degree metric, there is a pattern among the more developed regions 

having a higher Internet robustness compared to the lesser developed regions. While the Betweenness 

Centrality measure shows an opposite and unexpected pattern which is also reported in (Singer, 2006), 

as seen by the less developed Latin American and African regions having a more robust Internet 

backbone network. 

Given that a higher Clustering Coefficient implies higher robustness, the Descriptive Statistics table 

(Table 1) shows that on average, countries in the Oceanic region overlap the most compared to countries 

from any other region, with countries in North America and Asia following suit. The African and 

Middle Eastern regions have the lowest Clustering Coefficients and are the only regions that do not 
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have a maximum Clustering Coefficient of 1. Thus, no countries in Africa or the Middle East have a 

complete connectivity overlap with their neighbouring countries. The Clustering metric follows the 

same pattern as the Degree metric, where the more developed regions showcase better network 

robustness compared to lesser developed regions. However, from a global perspective the Clustering 

Coefficient is 0.339, indicating the global Internet backbone cannot be considered well connected, as 

only 33.9% of all possible connections among countries are realized. 

Following from this, the Eigenvector Centrality in Table 1 displays interesting insights. Africa has the 

highest average Eigenvector Centrality measure (0.665), suggesting that countries in this region are 

well-connected to other countries from other regions, which are well-connected themselves. This is a 

surprising finding as one would expect the more developed regions such as Europe, North America and 

Oceania to have the most influential connections with countries in other regions. However, while 

Europe ranks second (0.608) in terms of Eigenvector Centrality, the opposite is true for North America 

and Oceania, which are both at the tail end of the ranking, scoring the lowest (0.1) and second lowest 

(0.304), respectively. Just as the more developed regions tend to be more robust in terms of the Degree 

and Clustering Coefficient metrics, the less developed regions tend to be more robust in terms of the 

Betweenness Centrality and Eigenvector Centrality measures. 

The overall pattern of cybersecurity levels for each region can be inferred from the Descriptive Statistics 

table in Table 1. The European region has the highest cybersecurity rating (0.821), with the Asian and 

North American regions trailing in second (0.758) and third (0.739) rank respectively. Latin America 

has the lowest GCI ranking (0.545) with Africa at the third lowest rank (0.679).  Therefore, the more 

developed regions score higher in terms of cybersecurity ranking relative to the less developed regions. 

Generally, each of the regions, excluding Latin America, score a higher rank when compared to the 

GCI cybersecurity ranking of the combined global network. 

To summarize the underlying trend in the descriptive statistics, North America, Europe and Oceania 

tend to have more robust Internet networks when the Degree and Clustering Coefficient metrics are 

considered, as well as higher cybersecurity rankings; while Latin America, Africa and the Middle East 

have higher Internet robustness when the Betweenness and Eigenvector Centrality metrics are 

considered, however these regions have lower cybersecurity rankings. The Asian region displays high 

Internet robustness in both the Clustering Coefficient and Betweenness Centrality measures, and also 

scores the highest out of all the regions in terms of cybersecurity status. Ultimately, the more developed 

regions fare well in terms of cybersecurity status and the structural robustness measures (Degree and 

Clustering Coefficient) compared to the lesser developed regions, while the developing regions fare 

well in the centrality robustness measures (Betweenness Centrality and Eigenvector Centrality) but 

under-perform in cybersecurity status. 

3.2 Robustness Metrics 
The Methodology section expands on the Robustness Metrics that are used on the TeleGeography 

network data, where all metrics were calculated with the help of graph analysis software Cytoscape and 

Gephi.  

The resulting networks focus on four key node measures, of which half are structurally based - Degree 

and Clustering Coefficient - and the other half are centrality based - Betweenness Centrality and 

Eigenvector Centrality. These four structural and central measures are then also applied to evaluate the 

static robustness of the regional networks, where the metrics analyse the global Internet topology, and 

so measure the topological robustness of networks which are modelled by undirected, weighted graphs. 

In fact, the analysis combines these several metrics to take advantage of their multiple benefits which 

outweigh their combined disadvantages. Furthermore, each of the four Robustness Metrics (Degree, 

Betweenness Centrality, Clustering Coefficient and Eigenvector Centrality) pertain to broader 

robustness classes, namely Adjacency, Throughput, Clustering and Spectral, respectively.  
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By taking these several connectivity-based aspects into account, the analysis is considered 

multidimensional, which helps to cope with the high complexity of the Internet graphs. The Robustness 

Metrics used in this thesis are then all applied to the TeleGeography network dataset, where the original 

data was already reported per regional network. Since the data was initially split into the seven regions, 

it only required to be converted into seven separate CSV files to fit the formatting for importing into 

Cytoscape, where Cytoscape has a built-in application called NetworkAnalyzer that for every node in 

a network computes its Degree, its Clustering Coefficient, and a variety of other parameters such as 

Betweenness Centrality. The seven network files were loaded into Cytoscape and the built-in formulae 

for calculating Degree, Clustering Coefficient, Betweenness Centrality and Eigenvector Centrality 

returned the values for every individual country in each of the seven regional networks. Hence the below 

metrics were applied to the existing datasets via the built-in Cytoscape NetworkAnalyzer formulae 

(Max Planck Institute for Informatics, 2018), which are represented by the equations that follow. The 

results were then collected and reported in the Results and Discussion section that follows the detailed 

metric equations below.  

A) Adjacency:  

The assessment of node adjacency is one of the first and easiest approaches for investigating network 

robustness. The intuition is that a node with many edges, a high-degree node, could be more important 

to the overall graph structure than a low-degree node. The average node Degree is the first indicator of 

overall network robustness, and of resilience against high-degree attacks. 

The Degree 𝑘𝑖 of node 𝑖 is defined as the number of edges in the graph incident on the node 𝑖:  

𝑘𝑖 =  ∑ 𝑎𝑖𝑗 =

𝑗∈𝑉

 ∑ 𝑎𝑗𝑖

𝑗∈𝑉

 

(1) 

For an undirected graph, with a symmetric adjacency matrix, 𝑘𝑖𝑛,𝑖 =  𝑘𝑜𝑢𝑡,𝑖  ≡ 𝑘𝑖: The in-degree of 

node i is the number of incoming edges and the out-degree is the number of outgoing edges.  

This Degree metric was applied to the existing data via Cytoscape, where the built-in NetworkAnalyzer 

calculates the Degree of node i as being the number of edges linked to node i, where this degree 

distribution gives the number of edges, or degree ‘k’ for k = 0,1,…,n (Diestel, 2017; Max Planck 

Institute for Informatics, 2018). 

B) Clustering: 

Clustering metrics aim to provide a detailed overview of the structure of the Internet in order to gain an 

understanding of its dynamic organization. The clustering of a graph refers to the tendency observed in 

many networks that form cliques based on specific nodes in the neighbourhood of a given network. 

Clustering implies the property that if node 𝑖 is connected to node 𝑗, and at the same time 𝑗 is connected 

to 𝑙, then there is some probability 𝑖 is also connected to 𝑙.  

The Clustering Coefficient is commonly applied to measure the interconnectedness of nodes with the 

same neighbour. Given node 𝑖, with degree 𝑘𝑖, and 𝑒𝑖 as the number of edges existing between the 𝑘𝑖 

neighbors of 𝑖, the Clustering Coefficient, 𝑐𝑖, of node 𝑖, is defined as the ratio between the actual number 

of edges among its neighbors, 𝑒𝑖, and its maximum possible value, 𝑘𝑖(𝑘𝑖 − 1)/2:  

𝑐𝑖 =  
2𝑐𝑖

𝑘𝑖(𝑘𝑖 − 1)
 

(2) 
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Thus, the Clustering Coefficient 𝑐𝑖 measures the average probability that any two neighbors of node 𝑖 

are also connected to each other. Cytoscape’s NetworkAnalyzer applies the Clustering Coefficient 

metric to the TeleGeography data by computing the ratio  
𝑁

𝑀
  for each network, where N is the actual 

number of edges between the neighbours of node i, and M is the maximum number of edges that could 

possibly exist between the neighbours of i (Max Planck Institute for Informatics, 2018). Ultimately, the 

clustering coefficient of a node always ranges between 0 and 1, with a value closer to 1 indicating high 

clustering (Watts & Strogatz, 1998; Barabási & Oltvai, 2004).  

C) Throughput: 

Throughput measures consider the fact that the capacity for information forwarding is limited, and these 

measures also calculate the maximum workload of network entities, or their likelihood to become 

overloaded when other entities fail. Evaluating path redundancy and distance increases is not enough 

for assessing network robustness, as traffic loads induced by flows along shortest paths and their 

capacity constraints must also be considered. 

To go from one node to another in the graph, following the shortest path, a certain sequence of nodes 

is visited. By counting all the nodes visited by the shortest paths between all the possible pairs of nodes 

in the graph, some key nodes will be visited more often than others. This fact can be quantitatively 

measured by the Betweenness, 𝑏𝑖, of node 𝑖, defined as the total number of shortest paths between any 

two nodes in the graph that pass through node 𝑖. More precisely, if 𝐿ℎ,𝑗, is the total number of shortest 

paths from ℎ to 𝑗 and 𝐿ℎ,𝑖,𝑗 is the number of these shortest paths that pass through node 𝑖, the 

Betweenness is defined as:  

𝑏𝑖 =  ∑ 𝐿ℎ,𝑖,𝑗 / 𝐿ℎ,𝑗 

(3) 

Where the sum is taken over all ℎ, 𝑗 pairs with 𝑗 ≠ ℎ.  

Cytoscape applies the Betweenness Centrality metric to the existing Internet geography data by 

ensuring that the betweenness value for each node i is normalized by dividing by the number of node 

pairs excluding i: 
(𝑁−1)(𝑁−2)

2
, where N is the total number of nodes in the connected component that i 

belongs to (Max Planck Institute for Informatics, 2018). Thus, the Betweenness Centrality of each node 

is a number between 0 and 1. Furthermore, the NetworkAnalyzer uses the fast algorithm by Brandes 

(2001) for the computation of node Betweenness Centrality, where this algorithm has a complexity 

function 𝑂(𝑁𝑀), with N being the number of nodes and M the number of edges in the network. 

Essentially the Betweenness metric counts the number of times a node acts as a bridge on the shortest 

path between two other nodes and it measures the total bandwidth flows which have to be redirected if 

node 𝑖 fails, thus quantifying how much control 𝑖 has over network traffic.   

D) Spectral:  

Spectral methods make use of random walks in their calculations, which provide a useful way to 

estimate node importance as their role in an alternative, non-shortest path metric. 

The Eigenvector Centrality of node 𝑖 is given by the 𝑖𝑡ℎ entry of the eigenvector of the adjacency matrix 

𝚨 corresponding to the largest eigenvalue:  

𝚨 ⋅ 𝑢𝑣 = 𝜆𝑣𝑢𝑣 

(4) 
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𝑢𝑣(𝑖)  = 𝑚𝑎𝑥 𝑡
∑ 𝑢𝑣,𝑡−1𝑗∈𝑉𝑖

(𝑗)

∑ 𝑢𝑣,𝑡(𝑘)𝑘∈𝑉
, 𝑤𝑖𝑡ℎ 𝑢𝑣,0(𝑖) = 1 

(5) 

With adjacency matrix 𝚨, its derivatives and corresponding eigenpairs (𝜆𝑖, 𝑢𝑖), and paths between nodes 

𝑖 and 𝑗 having length 𝑘. 

The manner in how the NetworkAnalyzer in Cytoscape applies the Eigenvector Centrality metric to the 

existing dataset, is that initially all nodes have equal centrality values, and at each step 𝑡 the value of 

each node is set to the sum of the values of its neighbours 𝑉𝑖. Then all values are normalized so their 

sum is 1 and the process is repeated until it converges. The vector entries reflect how many and how 

important the neighbors of a given node are, implicitly accounting for the whole network topology (Max 

Planck Institute for Informatics, 2018). Accordingly, Eigenvalue Centrality is based on the notion that 

a node should be classified as important if it is linked to other important nodes. 

 

4 Results and Discussion 
 

The results of the regional structural and centrality robustness metrics in a static scenario are presented 

alongside a regional cybersecurity comparison in this section. This group of metrics attempts to identify 

which countries in a network are the most central as these countries are better equipped to transport data 

in the network, and hence they are crucial in preventing the network from collapsing. These metrics 

also define the network centralization as a measure of how central the most central country is in relation 

to how central all the other countries are. Tables 2 to 8 show the structural and centrality robustness 

metrics and the cybersecurity status for the defined set of the regional Internet networks. 

A) Degree:   

Taking Degree, given by Equation 1 above, as the first structural robustness metric, each regional 

network has different countries with a differing level of connectivity, and a resulting pattern between 

certain regions is seen: the higher income regions (North America and Oceania), with the exception of 

the Middle East, are better connected than the lower income regions, Africa and Latin America.  

Table 2 shows the African network has Algeria and Morocco each with a maximum Degree of 3 in the 

network, followed by the Latin American network in Table 5 with Argentina having the maximum of 

3 connections in this respective network as well. Interestingly, the Asian network (Table 3) and 

European network (Table 4) are not at the upper end of the connectivity scale, as evidenced by 

Singapore and Germany each with the highest of only 5 connections in their respective regions.  

Slightly better connected is Turkey representing the Middle Eastern network (Table 6) with a maximum 

Degree of 6. All of these regions are comparably less well connected than the Oceanic (Table 8) and 

North American (Table 7) networks, which feature Australia and the United States having the highest 

Degrees of 8 and 10 respectively, essentially being connected to the majority of countries in their 

regions.  

From the GCI report, the above-mentioned countries that have a high connectivity (Turkey, Australia 

and the United States) all excel in four out of the five Global Cybersecurity Agenda pillars, whereas the 

countries with a lower connectivity (Algeria, Morocco and Argentina) excel in only one out of the five 

cybersecurity pillars (International Telecommunication Union, 2020).  
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When compared to the literature, Rueda, Calle & Marzo (2017) find that in many networks only a small 

number of nodes have high degrees, however in this analysis it is clear there are many regional Internet 

networks with high degree countries.  

B) Clustering Coefficient: 

In Tables 8, 7 and 3, the second structural robustness metric – the Clustering Coefficient (CC) – shows 

that Oceania, North America and Asia are the most robust countries in the network for this specific 

measure. The following countries, Australia, United States, Japan and Vietnam, all have a Clustering 

Coefficient of 1, meaning they realize 100% of all possible connections in their respective regional 

networks. In other words, these countries are the most interconnected with their neighbouring countries 

compared to countries in Africa and the Middle East, where the Clustering Coefficient is 0 for all 

individual nations in these regions. This is due to the slower pace of Internet diffusion in developing 

countries and Least Developed Countries (LDCs), which is related to their overall level of development 

(Creese, Dutton & Esteve-González, 2021).  

Again, Europe falls between the extreme sides of regional connectivity, alongside Latin America, with 

only the Netherlands, Brazil and Chile featuring a Clustering Coefficient of 1 and the majority of the 

remaining countries in these regions with a CC of 0.  

Ultimately, the reason behind a high Clustering Coefficient is that there are many alternative paths 

(triangles) when forming a link between countries and their connections, and with developed countries 

having more absolute connections (as seen by the Degree results above) as well as more wealth, it is 

expected that these nations would rank higher in this particular robustness metric. This result is 

supported by the findings of Creese, Dutton & Esteve-González (2021), who emphasize the impact of 

national development being anchored to regional Internet connectivity. 

C) Betweenness Centrality: 

With regards to the centrality-based metrics, Betweenness Centrality measures the network 

centralization and the importance of a vertex in a graph (Yan et al., 2010). As explained in the 

methodology, network centralization is used to analyse network robustness, which equates to the 

difference between the centrality of the most central node and that of all other nodes, which is reflected 

in Equation 3 above.  

From a regional perspective, the results indicate that Latin America (Table 5), Africa (Table 2) and Asia 

(Table 3) tend to have the highest Betweenness scores, whereas North America, Oceania and Europe 

have the lowest Betweenness scores. This is surprising given that for the other structural robustness 

measures (Degree and Clustering Coefficient) Latin America and Africa are two of the worst 

performing regions, whereas North America and Oceania are the two best performing regions. 

However, upon closer inspection of the individual country values, Latin America is an outlying result 

due to the United States’ pronounced influence in the region as seen by its extreme Betweenness 

Centrality score of 25.5. This is because bandwidth traffic between the United States and the other 

countries in the Latin American region flows from the United States to the other countries, and not from 

the other countries to the United States. Following from this, 78% and 90% of the respective countries 

in Oceania and North America have Betweenness scores of 0, which provides emphasis on how outlying 

results such as these may affect a network’s robustness.  

Accordingly, the results from the robustness analysis show that some metrics differ when identifying 

the most robust countries in networks, and so using only one metric is not sufficient to measure the 

network robustness (Oehlers & Fabian, 2021). Therefore, this is the reason that a set of varying metrics 

is considered to calculate the robustness and compare the results. 

D) Eigenvector Centrality: 
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The final robustness metric, Eigenvector Centrality, depends on both the number of a country’s 

neighbours as well as the quality, which in this case is measured by the cybersecurity level, of a 

country’s connections.  

The Asian, European, Middle Eastern and North American regions all feature countries (Singapore, 

Germany, Turkey and the United States) which have maximum Eigenvector scores of 1. While the 

countries in the remaining regions (Africa, Oceania and Latin America) do not score an Eigenvector 

value of 1, they score in the upper end of the range: Morocco with 0.939, New Zealand with 0.667 and 

Argentina with 0.626. Again, the same pattern of regions and countries are being repeated when it 

comes to scoring highly in the robustness metrics. Countries in the more developed North American, 

Asian and Oceanic regions tend to have higher scores in the robustness metrics compared to countries 

in the African and Latin American regions, while the European and Middle Eastern countries tend to 

be more consistent with having above-average robustness scores, falling in between the extreme values. 

E) CGI Scores:  

The concluding part of the results section involves analysing the Global Cybersecurity Index for all the 

countries in the seven regional networks. The International Telecommunication Union’s GCI Reports 

(International Telecommunication Union (ITU, 2015, 2017, 2018, 2020) classify each individual 

country as developed or developing and outline the key cybersecurity areas in which the specific country 

needs to improve upon. Countries that rank lower in the Global Cybersecurity Index are more likely to 

be LDCs as they are more likely to face resource challenges in bridging their cyber-capacity gap, which 

includes a lack of institutional knowledge, policy limitations and skills shortages to protect their 

cybersecurity systems, both physically and virtually.  

One of the various facets underlying the GCI ranking - Computer Incident Response Teams (CIRTs) - 

is  considered a primary factor within the technical measures pillar, as it enables countries to respond 

to incidents at a national level, using a centralized contact point that promotes quick and systematic 

action. For a country to effectively deter targeted cyber threats and incidents, it is essential to have 

technical teams that efficiently disseminate threat information to the concerned authorities and provide 

cyber protection and resilience capabilities (Shafqat & Masood, 2016). Such teams include CIRTs, and 

while many countries have made progress in implementing CIRTs, LDCs especially face significant 

barriers in establishing CIRTs due to a lack of resources, technological knowledge, and prioritization 

of an integrated cybersecurity ecosystem (International Telecommunication Union, 2018 & 2020).  

This is evident in the network results from Tables 2 to 8, where the five countries with the lowest GCI 

scores are Iraq (0.136), Papua New Guinea (0.145), Fiji (0.191), Algeria (0.302) and Ecuador (0.362). 

Unsurprisingly, Iraq, Algeria and Ecuador are classified as developing nations, Fiji as a LDC and Papua 

New Guinea as a Small Island Developing State (SIDS). Over half of LDCs do not have a national 

CIRT in place, and 60% of LDCs have yet to start the process of developing a National Cybersecurity 

Strategy (International Telecommunication Union, 2015 & 2017).  

Contrarily, the five countries with the highest GCI scores are the United States (0.971), Singapore 

(0.871), Canada (0.870), Australia (0.863) and the United Kingdom (0.854), all of which are classified 

as developed nations by the GCI report. This result relating to regional cybersecurity status is further 

supported by the fact that Africa as a continent only has 19 countries with a national CIRT, whereas the 

North American region has 21 CIRTs and the European region has only six countries that lack national 

CIRTs (International Telecommunication Union, 2017 & 2020).  

F) Correlations: 

From the discussion above the key countries responsible for maintaining the structure of the Internet 

backbone network when considering robustness metrics and cybersecurity levels are: United States, 

Singapore, Australia, Germany, Japan, Canada, United Kingdom, Algeria, Morocco, Turkey, 
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Argentina, Brazil, Chile, Vietnam, Netherlands and New Zealand. These countries feature the highest 

robustness graph theory metrics as well as the highest GCI ratings. Consequently, correlations among 

these specific countries were computed to determine their dependency and how sufficiently robust they 

are in the face of potential cyberattacks. Tables 9 to 14 reflect the findings of the correlations of the 

four robustness metrics (Degree, Betweenness Centrality, Clustering Coefficient, Eigenvector 

Centrality) and the GCI cybersecurity scores between these key countries.  

First off, Table 9 features the correlations between the key countries in the Africa region with Algeria 

and Morocco having a strong positive correlation of 0.990 since both countries have a Degree of 3 in 

the region. Further contributing to this strong correlation is the fact that Morocco and Algeria have 

almost identical Eigenvector Centrality scores of 0.939 and 0.937 respectively, and that Africa is one 

of the highest scoring regions for the Betweenness Centrality metric, hence both Algeria and Morocco 

have relatively high Betweenness Centrality scores – 0.19 and 0.565. Even though Algeria scores as 

one of the lowest ranked countries in terms of GCI ratings (0.302), the results imply that the Degree, 

Betweenness Centrality and Eigenvector Centrality metrics are fundamental in maintaining the African 

segment of the Internet backbone.  

Next is Table 10 which reflects the correlation scores among the nodes in the Asia region. Japan and 

Vietnam boast a very strong and positive correlation of 0.975 since both countries have a Clustering 

Coefficient of 1. Additionally, Singapore has an Eigenvector Centrality of 1 and Vietnam with 0.701, 

and Singapore and Japan both score highly for the GCI rating, which leads to high correlations of 0.814 

and 0.799 respectively. It is evident these three countries have high values for the Clustering Coefficient 

and Eigenvector Centrality robustness metrics as well as high GCI values, which are fundamental to 

the robustness of the Internet, and so it is not surprising these key nodes are well connected and correlate 

highly with one another.  

The European countries in Table 11 show very positive correlations among one another, with the United 

Kingdom and Germany almost being perfectly correlated at 0.995 with regards to the robustness and 

cybersecurity metrics. This can be explained by the fact that Germany has the highest number of links 

in Europe, 5, with the United Kingdom in second place with 4 links, as well as that Germany has an 

Eigenvector Centrality score of 1 with the United Kingdom scoring 0.924. The Netherlands also has a 

high Eigenvector score of 0.859 which leads to a correlation of 0.934 with Germany. Furthermore, the 

strong correlation between the Netherlands and the United Kingdom is given by a Clustering Coefficient 

of 1 for the Netherlands and 0.5 for the United Kingdom, and is supported by the United Kingdom 

ranking as the fifth highest GCI score of 0.854 with the Netherlands slightly below at 0.823. These three 

developed countries in Europe prove to score and rank highly across most of the graph theoretical and 

cybersecurity metrics which implies these nodes are important in contributing to the robustness of the 

global Internet backbone.  

Table 12 highlights the most prominent countries in the Latin American regional network, namely 

Argentina, Brazil and Chile. Given both Brazil and Chile have a Clustering Coefficient of 1, there is a 

correlation of 0.991 between them. Argentina has 3 links and an Eigenvector Centrality score of 0.626, 

and Brazil consists of 2 links and an Eigenvector Centrality score of 0.506, resulting in a lower 

correlation than that of itself and Chile however still a very strong and positive 0.887 between itself and 

Argentina. The last pair in the Latin American segment of the Internet backbone is Argentina and Chile, 

where both countries have almost identical GCI scores of 0.451 and 0.477 respectively, and hence result 

in a strong correlation of 0.908. 

With regards to the Middle Eastern region, Turkey is the only country that features in achieving any 

sort of robust scores as seen by a Degree of 6, and an Eigenvector Centrality score of 1, making it one 

of the most highly connected out of all the countries. The other nodes in the Middle Eastern network 

do not display any sort of robustness qualities; for instance Iraq has the lowest GCI score (0.136) of all 

38 countries in the analysis and each country in the Middle Eastern network, including Turkey, has a 
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Clustering Coefficient of 0. Hence Turkey has no other robust countries in its regional network that it 

correlates with and is the sole key node in the Middle Eastern portion of the Internet backbone which 

is why there is no correlation table for the Middle East.  

Table 13 displays the North American nodes that are key to maintaining a robust structure of the Internet 

backbone topology. Although the United States scores highly across every single robustness measure: 

a Degree of 10, a maximum score of 1 for the Clustering Coefficient, Betweenness Centrality and 

Eigenvector Centrality, and is at the top of the GCI rankings with a rating 0f 0.917, it interestingly has 

a low correlation of 0.657 with its key counterpart regional node, Canada. This is due to the fact that 

the United States is an outlier in achieving the highest scores for the robustness metrics, as Canada only 

fares well in being third highest in the cybersecurity rankings with a rating of 0.870, however only has 

1 link, has a CC score of 0.316 and yields 0 for both the Betweenness and Eigenvector Centrality 

metrics. Nonetheless, these two countries still remain central to the robustness of the Internet in the 

North American region. 

Lastly, the Oceanic country correlations are displayed in Table 14. The two robust nodes in the Oceanic 

region are Australia and New Zealand, with a positively strong correlation of 0.952. This is supported 

by the fact that Australia has a Degree of 8 and a Clustering Coefficient of 1, with New Zealand’s CC 

being 0.626. Furthermore, this high correlation is given by Australia ranking fourth highest in the GCI 

rating with New Zealand relatively close behind at 0.771, as well as the fact that these are the only two 

nodes in the Oceanic network that yield non-zero Betweenness Centrality scores. As a result, Australia 

and New Zealand are the two countries supporting the Oceanic portion of the global Internet backbone.  

Overall, countries that do not have metrics for assessing their cybersecurity risk at the national level 

make it more difficult for themselves to assess current risks, prioritize cybersecurity interventions, and 

track progress, and ultimately, a weaker cybersecurity status corresponds to a weaker and more 

vulnerable Internet network. Given the objectives of this thesis are to investigate the importance of 

different nodes that govern the functioning of the Internet, the results support the proposed research 

objectives in that certain countries with higher robustness scores and higher cybersecurity ratings have 

a greater contribution to the overall robustness of the Internet backbone when compared to regions 

which have poorer robustness metrics and a weaker cybersecurity status. Ultimately, these key countries 

are part of more developed regions with high robustness metrics which in turn have better GCI ratings 

due to their influence as key nodes in their specific networks.  

The results also tie in with the overall thesis contribution of a being a detailed analysis of country level 

impacts to the robustness of the Internet as a whole. Through analysing the criticality of the Internet 

backbone from a graph-theoretical perspective, the results make it evident that some metrics differ when 

identifying the most robust countries in networks, and that using only one metric is not sufficient to 

measure the network robustness. Therefore, this is the reason that a set of varying metrics is considered 

to calculate different robustness scores and used to compare the results. Furthermore, by using real-

world Internet geography and global cybersecurity data this thesis contributes more than just a 

theoretical approach of using and implementing different robustness methodologies to the Internet 

backbone topology, but also fills an analysis gap in the study of networks by applying graph theory 

metrics to global Internet traffic and cybersecurity data.  
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Table of Results for All Regional Networks: 

Table of Results showing the African Network Robustness Scores 

  
Table 2: The above results table highlights the robustness and cybersecurity scores for each country within the African 

network. Countries in the African network ranked at the top in the Betweenness Centrality and Eigenvector Centrality 

robustness metrics. 

 

Table of Results showing the Asian Network Robustness Scores 

 

 

 

 

 

 

 

Table 3: The above results table highlights the robustness and cybersecurity scores for each country within the Asian 

network. Countries in the Asian network scored highly with regards to cybersecurity, as well as with the Betweenness 

Centrality and Clustering Coefficient metrics. 

 

Table of Results showing the European Network Robustness Scores 

Table 4: The above results table highlights the robustness and cybersecurity scores for each country within the European 

network. Countries in the European network fared well in the Degree and cybersecurity measures. 
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Table of Results showing the Latin American Network Robustness Scores 

                     
Table 5: The above results table highlights the robustness and cybersecurity scores for each country within the Latin 

American network. Countries in the Latin American network performed well in the Betweenness and Eigenvector Centrality 

measures. 

 

Table of Results showing the Middle Eastern Network Robustness Scores 

      

 

 

 

 

 

 

 

Table 6: The above results table highlights the robustness and cybersecurity scores for each country within the Middle 

Eastern network. Countries in the Middle Eastern network only score highly in the Eigenvector Centrality metric. 

 

Table of Results showing the North American Network Robustness Scores 

 

 

 

 

 

 

 

    

Table 7: The above results table highlights the robustness and cybersecurity scores for each country within the North 

American network. Countries in the North American network ranked at the top in terms of Degree, Clustering Coefficient 

and cybersecurity. 
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Table of Results showing the Oceanic Network Robustness Scores 

 

 

 

 

 

 

 

 

Table 8: The above results table highlights the robustness and cybersecurity scores for each country within the Oceanic 

network. Countries in the Oceanic network scored highly when looking at the Clustering Coefficient metric and the 

cybersecurity status. 

 

 

Table of Results reflecting the Correlations of Graph Metrics between Robust Countries: 

Table of Results displaying the Robust African Node Correlations: 

  

 

                                                                                                                                

Table 9: The above results table highlights the correlations between the robustness and cybersecurity scores for the key 

nodes within the African network. Algeria and Morocco scored identically for Degree and almost identically Eigenvector 

Centrality hence the very high positive correlation. 

 

Table of Results displaying the Robust Asian Node Correlations: 

 

 

                                                                            
Table 10: The above results table highlights the correlations between the robustness and cybersecurity scores for the key 

nodes within the Asian network. Japan, Singapore and Vietnam score highly in the CC, Eigenvector and GCI metrics which 

yield these high correlations. 

 

Table of Results displaying the Robust European Node Correlations: 

 

 

                                     
Table 11: The above results table highlights the correlations between the robustness and cybersecurity scores for the key 

nodes within the European network. Germany, Netherlands and the United Kingdom each scored highly and evenly across 

all robustness metrics: Degree, Clustering Coefficient, Eigenvector Centrality and GCI score, and in the mid-range for 

Betweenness Centrality, ultimately producing high correlations across all three key countries. 
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Table of Results displaying the Robust Latin American Node Correlations: 

 

 

                                                                               
Table 12: The above results table highlights the correlations between the robustness and cybersecurity scores for the key 

nodes within the Latin American network. The high correlations among Argentina, Brazil and Chile are due to each scoring 

similarly but low for Degree, and similarly high for Clustering Coefficient and Eigenvector Centrality. 

 

Table of Results displaying the Robust North American Node Correlations: 

 

                                                                                                

Table 13: The above results table highlights the correlations between the robustness and cybersecurity scores for the key 

nodes within the North American network. Canada and the United States did not correlate highly as the United States scores 

excessively well across all robustness metrics however Canada only fares well in the GCI metric, hence the low correlation. 

 

Table of Results displaying the Robust Oceanic Node Correlations: 

 

 

                                                                                            

Table 14: The above results table highlights the correlations between the robustness and cybersecurity scores for the key 

nodes within the Oceanic network. The high correlation between Australia and New Zealand is because both scored highly 

for the GCI rating and the CC, and both have non-zero values for the Betweenness Centrality. 

 

5 Conclusion  
 

The study of network robustness is a critical tool in the understanding of complex interconnected 

systems such as the Internet, which due to digitalization, gives rise to an increasing prevalence of 

cyberattacks. Despite the importance of the Internet in the global economic system, it is rare to find 

empirical analyses of the global pattern of Internet traffic data established via backbone connections. 

This thesis uses metrics based on graph properties of network models to evaluate the robustness of the 

Internet backbone network. I chose one metric (Degree, Clustering Coefficient, Betweenness Centrality 

and Eigenvector Centrality) from each of the four respective robustness categories (Adjacency, 

Clustering, Throughput and Spectral Methods), to analyse seven regional Internet networks, where each 

metric is applicable to at least one graph type and is a direct measure of network robustness. Added to 

these measures is the International Telecommunication Union's Global Cybersecurity Index, which 

ranks countries based on their cybersecurity status. 

The analysis consists of a three-step process of firstly mapping the Internet backbone as a network of 

networks using TeleGeography Global Internet traffic data, followed by analysing the various network 

and country cybersecurity profiles by using the GCI data. The final step assesses each regional 

network’s robustness, where a combination of robustness measures are considered since the application 

of a single metric or metrics of the same category would not be sufficient for effectively evaluating 

Internet robustness. 
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Finally, the results show that the regions with countries which have higher cybersecurity ratings in turn 

have more robust networks, when compared to regions with countries which have lower cybersecurity 

ratings: the more economically developed regions have higher network robustness, while the less 

economically developed regions have lower network robustness. This is attributable to more developed 

regions having high degree countries which in turn have better GCI ratings due to their influence as key 

nodes in their specific networks. This is further supported by the fact that high degree countries also 

tend to have high Clustering Coefficient, Betweenness Centrality, and Eigenvector Centrality scores.  

The limitations of the current work done in this thesis are that only static robustness measures are used 

to analyse Internet robustness, and that only a brief overview of attack and defence models is given. 

Therefore, for future research, there should be consideration for using dynamic robustness measures 

such as arbitrary node removal strategies to analyse how robust the different components of the network 

would be depending on different parameters of the attacks such as origin and strength. Additionally, 

there could be scope for investigating the impact of simulated and calibrated cyberattacks on different 

nodes of the Internet by using various attack and defence models, and determining what the residual 

equilibrium network would be. In terms of the cybersecurity limitations, the current scoring system 

does not account for the dimensionality of data nor the differences in the diversity of indicator values, 

and hence for future research, multi-attribute decision making methods could be used to better rank the 

level of a country’s cybersecurity status. 
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7 Appendices 
 

7.1 Appendix A:  Student Outline DMP 
 

AN EMPIRICAL ANALYSIS AND EVALUATION OF INTERNET 
ROBUSTNESS 

A Data Management Plan created using UCT DMP 
 
Creator: Michele Stampanoni 
 
Affiliation: University of Cape Town  
 
Template: UCT Student Generic DMP 
 
Project abstract:  
The study of network robustness is a critical tool in the understanding of complex interconnected systems such 
as the Internet, which due to digitalization, gives rise to an increasing prevalence of cyberattacks. Robustness is 
when a network maintains its basic functionality even under failure of some of its components, in this instance 
being nodes or edges. Despite the importance of the Internet in the global economic system, it is rare to find 
empirical analyses of the global pattern of Internet traffic data established via backbone connections, which can 
be defined as an interconnected network of nodes and edges between which bandwidth flows. Hence in this 
thesis, I use metrics based on graph properties of network models to evaluate the robustness of the backbone 
network, which is further supported by international cybersecurity ratings. These cybersecurity ratings are 
adapted from the Global Cybersecurity Index which measures countries’ commitments to cybersecurity and ranks 
countries based on their cybersecurity strategies. Ultimately this empirical analysis follows a three-step process 
of firstly mapping the Internet as a network of networks, followed by analyzing the various networks and country 
profiles, and finally assessing each regional network’s robustness. By using TeleGeography and ITU data, the 
results show that the regions with countries which have higher cybersecurity ratings in turn have more robust 
networks, when compared to regions with countries which have lower cybersecurity ratings. 
 
ID: 3918 
 
Start date: 03-08-2020 
 
End date: 13-01-2023 
 
Last modified: 08-12-2022 
 
 
 

AN EMPIRICAL ANALYSIS AND EVALUATION OF INTERNET 
ROBUSTNESS - STUDENT OUTLINE DMP 

 
 

1. GENERAL GUIDELINES 

 
PURPOSE OF THIS TEMPLATE - The purpose of the Outline DMP is to indicate your initial plans for how 
your data will be collected, shared and stored, and to give you a chance to think about these data-
focused aspects of the research process. As your begin doing your research, your data process may 
change, and it is perfectly acceptable to change your data management plan to accommodate the 
changes in your research process. Indicate below that you understand the purpose of completing this 
Outline DMP template. 
 

I understand the Outline DMP template is a projection of my anticipated data management planning 
requirements and should be updated as my project develops. 
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2. AUTHORS AND SUPERVISORS 

 
PROJECT NAME - Replicate the title of your project, dissertation or thesis exactly as it appears in your 
proposal document. 
 
                      An Empirical Analysis and Evaluation of Internet Robustness.                      
 
 
PERSONAL DETAILS - Indicate the name(s) and student number(s) of the student(s) who will be involved 
in this project, dissertation or thesis. 
 
                      Michele Romolo Stampanoni - STMMIC001                      
 
 
SUPERVISOR(S) DETAILS - Indicate who will supervise this project, dissertation or thesis. If you do not 
yet have a supervisor, leave this section blank. 
 
                      Co-Pierre Georg                      
 
 
 

3. DATA COLLECTION/GENERATION 

 
COLLECTION OF ORIGINAL DATA - Indicate whether or not you intend to gather/produce original data 
for your study, and provide a brief description of the kind of data you think you will collect. If you are 
unsure at this time, indicate what you think you are most likely to collect.  If you are not intending to 
gather or collect your own data, declare that here. 
 

● I d not intend to collect original data. 

 
 
USE OF EXISTING DATA - Indicate if you intend to re-use existing data, either from online searches or 
from datasets provided by your supervisor, lab, or funder. If you are not intending to re-use existing data, 
declare that here. 
 

● I intend to reuse existing data in my study (described below). 

                     I intend to use existing datasets provided by TeleGeography Inc, for which I have obtained 
permission by TeleGeography Inc to use their data. Furthermore I also intend to use existing and publicly made 
available data from the International Telecommunication Union. In terms of storage, the TeleGeography data is 
stored on the TeleGeography Inc repository and both the TeleGeography and the International 
Telecommunication union data are stored on Google Drive and an external hard drive.                       
 
 
DATA SHARING - Indicate whether or not you are intending to publish your research data. If you are, 
indicate where you are intending to publish your data and under what licensing conditions, such as 
Creative Commons. If you are not intending to publish your data, provide reasons and reference the 
appropriate ethical considerations, commercial applications/patenting ambition, or data re-use 
agreements that prevent you from publishing your data. 
 

● I intend to share my data (details below). 

                     My research data is made open by default as there is no specific reason for my data not to be 
shared. The data from the International Telecommunication Union is already publicly available, however, 
TeleGeography has requested that all data be referenced upon publishing.                      
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4. DATA STORAGE 

 
ANTICIPATED DATASET SIZE - Indicate the estimated size of your completed dataset, and indicate 
whether or not you will need to access additional data storage facilities. If such storage is not provided 
by your unit or department, you may need to factor in the cost of purchasing additional storage space. 
 

● 20GB or less 

                     No additional data storage facilities are required as I have sufficient storage space for both the 
TeleGeography data as well as the International Telecommunication Data.                      
 
 
DATA BACKUPS - Indicate how you plan to ensure your data is secure and retrievable in case of errors 
or hardware failure. Describe what procedures you will put in place to back-up copies of your data and 
where they will be stored. 
 

● I intend to backup my data using a commercial service provider. 

                     During my data collection and analysis phase, I will backup my data each month to my personal 
Google Drive account as well as to an external hard drive. I will do a final backup when I submit my final draft for 
examination.                       
 
 
 

5. DATA CENTRE(S)/REPOSITORIES 

 
DATA CENTRES/REPOSITORIES - Once your project, dissertation or thesis is complete, it is advisable to 
curate and archive your completed dataset with an established data centre or repository. Note that you 
should archive your data even if you are not intending to publish it. Check with your supervisor or funder 
if you are required to deposit your data in a specific repository, or declare that you will deposit the data 
in ZivaHub (see the Guidance section). 
 

● At the end of my study, I will deposit my data on ZivaHub. 

                     I am not required to store my data on a specific subject repository, and hence I will be using the 
UCT secure data repository called ZivaHub.                       
 
 
METADATA - Metadata is descriptive information that others will need to make sense of your dataset. 
Metadata includes things like study descriptions or abstracts, study instruments (sample collection 
schedules, codebooks for variables, survey instruments, etc.), subject codes, and keywords. Indicate 
what metadata will accompany your curated dataset. 
 
                      The completed dataset will be accompanied by keywords, a short description taken from my 
dissertation abstract and relevant paragraphs on the data process taken from my data and methodology sections.                      
 
 
 

6. BUDGET 

 
BUDGET - Indicate any costs specifically relating to the management and curation of your data, such as 
purchasing additional storage space, digitisation of physical media, data storage or curation charges, 
and data audits. Most student research will be able to make use of free options provided by UCT and will 
not have to budget for data costs. 
 

● I do not anticipate any data costs as my data is less than 10GB, and I will be using a storage system 
provided by UCT (UCT GoogleDrive, UCT OneDrive, Netstorage, ZivaHub, etc.) to curate my data. 
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                     UCT’s ZivaHub platform and Google Drive do not charge for usage in the case of small datasets 
such as the one I will be using, and hence no budget will be required for data storage, data audits or data 
curation.                      
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2. PROJECT SUMMARY 

 
RESEARCH SUMMARY - Briefly summarise your study. Include the study's objectives, design, and 
methods.  
 
                      The study of network robustness is a critical tool in the understanding of complex interconnected 
systems such as the Internet, which due to digitalization, gives rise to an increasing prevalence of cyberattacks. 
Robustness is when a network maintains its basic functionality even under failure of some of its components, in 
this instance being nodes or edges. Despite the importance of the Internet in the global economic system, it is 
rare to find empirical analyses of the global pattern of Internet traffic data established via backbone connections, 
which can be defined as an interconnected network of nodes and edges between which bandwidth flows. Hence 
in this thesis, I use metrics based on graph properties of network models to evaluate the robustness of the 
backbone network, which is further supported by international cybersecurity ratings. These cybersecurity ratings 
are adapted from the Global Cybersecurity Index which measures countries’ commitments to cybersecurity and 
ranks countries based on their cybersecurity strategies. Ultimately this empirical analysis follows a three-step 
process of firstly mapping the Internet as a network of networks, followed by analyzing the various networks and 
country profiles, and finally assessing each regional network’s robustness. By using TeleGeography and ITU 
data, the results show that the regions with countries which have higher cybersecurity ratings in turn have more 
robust networks, when compared to regions with countries which have lower cybersecurity ratings.                      
 
 
 

3. DESCRIPTION OF THE DATA 

 
DATA REUSE DESCRIPTION - If you re-used data from third-party sources in your study, record pertinent 
details here such as the source of the data, the extent of the data, usage rights or restrictions pertaining 
to the data, and how it was incorporated into your study. 
 

I have used existing data in my study. 

                     I used data from TeleGeography Inc, consisting of 7 Excel spreadsheets of regional Internet 
geography data .This data was used as a baseline for my thesis's in depth network analysis. I signed a contract 
with TeleGeography obtaining their permission to use the data, provided I reference their data. In terms of the 
cybersecurity data, I used the International Telecommunication Union dataset which consists of four PDF 
documents of cybersecurity ratings for all 38 countries. This cybersecurity data is readily and publicly available on 
the internet for all to use.                       
 
 
DATA DESCRIPTION - Describe the data you have gathered for your study. Briefly describe the nature, 
scope and scale of the data you have produced. 
 
                      The TeleGeography data is structured such that 10 routes for each region (Africa, Asia, Europe, 
Latin America, Middle East, North America and Oceania) are reported, which is aggregated to make up an 
international dataset spanning the five years 2016 – 2020, to produce a total of 38 nodes and 61 edges. This 
internet Geography data is quantitative in nature with the seven Excel spreadsheets totalling to a size of 89kb. In 
addition to this, the Cybersecurity data from the International Telecommunication Union reports cybersecurity 
ratings for each of the 38 countries analysed in the thesis. This is also quantitative data and the four PDF 
documents total to 21.9 MB in size.                      
 
 
 

4. FORMATS AND QUALITY CONTROL 

 
QUALITY CONTROL - Describe what measures you took to ensure the data you collected were of high-
quality.  
 
                      The TeleGeography data was used directly from their repository, where TeleGeography developed 
estimates using proxies on backbone deployment and capacity utilization trends, including the carrier type and 
route type. Furthermore, I did general data cleaning activities such as checking for null values and outliers. 
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Regarding the ITU data, the cybersecurity GCI statistic is bound between 0 and 1, and each of the four versions 
(2015, 2017, 2018, 2020) of the cybersecurity data has GCI scores for all the 38 TeleGeography countries, and 
thus I averaged the rankings over the four years to form a mean GCI Score, Upon my general EDA, I noticed that 
data was unavailable for years 2016 and 2019, and hence I imputed GCI scores from the previous iterations 
(2015 and 2018, respectively) for these two missing years. Each iteration of the reports used in this thesis are 
provided, pinpointing the exact score and rank for all 38 countries.                      
 
 
FILE FORMATS - Indicate the formats in which your data will be collected and processed. Clarify whether 
these formats require specialised proprietary software to access or if they will be produced in or 
converted to more open, accessible formats for long-term accessibility and preservation. In the case of 
physical data objects (such as artworks or models) indicate whether these will be digitised or otherwise 
preserved for accessibility.  
 
                      The TeleGeography Internet Data is all in Excel format and the International Telecommunication 
Union Cybersecurity data is all in PDF format. I then combined these datasets into tabular Latex tables. 
Essentially all the data is accessible in open formats.                      
 
 
 

5. DATA MANAGEMENT, DOCUMENTATION AND CURATION 

 
CURATION (MANAGING AND STORING) DATA - Describe how you organise and manage your data. 
Specify any file-naming conventions or community data standards you have adopted. 
 
                      I organised and managed my data by storing it in its own folder on my personal computer as well as 
in its own folder on Google Drive and on the external hard drive. I named the Internet Geography data by region 
and I named the Cybersecurity data by year.                       
 
 
BACKUP AND STORAGE - Describe how your data is being stored and backed-up. If you are using a data 
service provider, provide details on for how long they will retain the data.  
 
                      I stored all my data on my personal computer, as well as on Google Drive and additionally I made 
back ups of all my data on an external hard drive. This includes the raw data, as well as the analysed data.                      
 
 
METADATA STANDARDS AND DATA DOCUMENTATION - Articulate what metadata and documentation 
you have produced about the data you have generated, collected or re-used. 
 
                      The TeleGeography data is structured such that 10 routes for each region (Africa, Asia, Europe, 
Latin America, Middle East, North America and Oceania) are reported, where these 10 routes are kept constant 
year on year with only the level of international Internet traffic between the routes changing. The data is 
composed of countries (nodes) and the route between two countries (edges), with the Internet traffic flowing 
between edges measured in Gbps. Each node has been assigned an attribute – the node’s respective 
cybersecurity status given by the International Telecommunication Union GCI data, and each edge has been 
assigned an attribute – the edge’s respective weight of Internet traffic given by the proportion of bandwidth sent 
over that route. This weight is calculated as a simple fraction of an edge’s traffic relative to the entire network’s 
traffic. The network data of each region is then aggregated to make up an international dataset spanning the five 
years 2016 – 2020, to produce a total of 38 nodes and 61 edges. The International Telecommunication Union 
(ITU) publishes a Global Cybersecurity Index (GCI) that ranks countries based on their cybersecurity strategies. 
The GCI measure presents factual representations of each country’s level of cybersecurity, as the GCI is a 
composite index combining 25 indicators into one benchmark. This ranking applies to 193 ITU Member States in 
all regions: Africa, Americas, Arab States, Asia-Pacific, and Europe. The index aims to quantify the type, level, 
and evolution of cybersecurity policies in countries and relative to other countries, as well as the progress in 
cybersecurity methodologies of all countries from a global perspective. Furthermore, the index accounts for 
progress in cybersecurity strategies from a regional perspective, and accounts for the difference between 
countries in terms of their level of engagement in cybersecurity initiatives. The ITU has published four iterations 
of the GCI report (2015, 2017, 2018 and 2020) all of which have been averaged and used in my thesis.                      
 
 
 

6. DATA SECURITY AND CONFIDENTIALITY OF POTENTIALLY DISCLOSIVE INFORMATION 
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SECURITY - Indicate to what extent your data can be considered sensitive or at-risk. Describe how you 
will control access to your data. Indicate whether you anticipate a need for encryption or password-
controlled access, and if so, how you will enforce that access.  
 
                      My data is not considered to be sensitive, as it only deals with bandwidth usage and cybersecurity 
ratings. The TeleGeography data is stored on the TeleGeography website, and all both the TeleGeography and 
ITU data is being stored on my personal computer, Google Drive and an external hard drive. I downloaded copies 
to my computer for active cleaning and analysis, where my computer is password-secured.                      
 
 
ETHICS AND PRIVACY - Describe, as per your Ethics Clearance form or other similar documentation, any 
ethical or privacy issues that your data are subject to (if any). Summarise the main risks to the 
confidentiality and security of information related to human participants, the level of risk, and how this 
risk will be managed. If your project did not require ethical clearance, you may ignore this section. 
 
                      My data on Global Internet Geography and Cybersecurity ratings contain no ethical issues as there 
are no human or animal participants.                      
 
 
 

7. DATA SHARING AND OPEN ACCESS 

 
DATA OWNERSHIP - If you have used existing datasets, note down any restrictions the data providers 
have indicated regarding data sharing. Otherwise, leave blank. 
 

● I have used existing data in my study and I have noted down the relevant restrictions as pertains to data 
sharing(details below). 

                     I am using data from TeleGeography, and I have signed a contractual agreement with them granting 
me a non-exclusive license to use the data. I am also using data from the International Telecommunications 
Union however this data has been made publicly available.                       
 
 
DATA LICENCE - Indicate under which licence you intend to share your research data. If you are not 
sharing your data, provide the appropriate justification as per the UCT Research Data Management 
guidelines. 
 

● CC BY 

                     I will share my data from my study under a CC BY licence. This license allows me to distribute, 
remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. 
The license allows for commercial use however credit must be given to the creator.                      
 
 
DATA PUBLICATION - Indicate where you intend to publish your research data at the end of your project.  
 
                      I will share my data on ZivaHub at the end of my project.                       
 
 
 

8. RELEVANT INSTITUTIONAL OR STUDY POLICIES 

 
Indicate the relevant departmental, unit, or institutional policies that influence your data management 
activities. 
 
                      Not applicable.                       
 
 

 




