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ate the s~ccess rate of all of the enhancement and analysis combinations is required if 

the automated detection system's success rate is to be maximised. Time and computer 

resource limitations made such an evaluation impossible. 

The experiments which were performed indicated that the automated nodule detection 

system is capable of detecting camouflaged nodules in digitised chest x-rays. It was, 

however, also evident that even the best combination of modules results in a poor ratio 

of true hits to false hits. Increasing the ratio of true hits to false hits can be achieved 

by improving the operation of the enhancement or analysis module, or by increasing the 

sophistication of the discriminating mechanisms in the classification process. 
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Chapter 1 

Introduction 

Diagnostic medicine was revolutionized in 1895 with Rontgen's discovery of x-rays. X-ra.y 

photography has played a very prominent role in diagnostics of all kinds since then and 

continues to do so. It is true that more sophisticated and successful medical imaging systems 

are available. These include Magnetic Resonance Imaging (MRI), Computerized Tomography 

(CT) and Positron Emission Tomography (PET). However, the hardware instalment and 

operation costs of these systems remain considerably higher than x-ray systems. Conventional 

x-ray photography also has the advantage of producing an image in significantly less time 

than MRI, CT and PET. X-ray photography is still used extensively, especially in third world 

countries. 

The routine diagnostic tool for chest complaints is the x-ray. Lung cancer may be diagnosed 

by the identification of a lung cancer nodule in a chest x-ray. The cure oflung cancer depends 

upon detection and diagnosis at an early stage. Presently the five year survival rate of lung 

cancer patients is approximately 10%. !flung cancer can be detected when the tumour is still 

small and localized, the five year survival rate increases to about 40% (12]. However, currently 

only 20% of lung cancer cases are diagnosed at this early stage [12]. Giger et al wrote that 

"detection and diagnosis of cancerous lung nodules in chest radiographs are among the most 

important and difficult tasks performed by radiologists". 

The observer error which causes nodules to go undetected may be due to [12]: 

1. Camouflaging effect of the surrounding anatomical background. 

2. Subjective and varying decision criteria used by radiologists. 

3. A premature discontinuation of the film reading because of a definite finding. 
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4. Focusing of attention on another abnormality by virtue of a specific clinical question. 

A negative diagnosis occurs when the x-ray is said to be clear of nodules. The diagnosis is 

false-negative when there actually are nodules but they go undetected. A computer system 

that alerts the radiologist to the possible occurrence of lung cancer nodules should allow the 

number of false-negative diagnoses to be reduced. The objective of this thesis was essentially 

to produce an algorithm which best gives the maximum true-positive1 and minimum false­

negative nodule detection results for lung cancer nodules. In other words a computer-aided 

nodule detection algorithm of maximum reliability was to be designed with the objective of 

assisting the radiologist in his diagnosis. 

1.1 Definition of the Problem and Motivation for Research 

The objective of this research was to locate suspicious nodule sites on a digitized x-ray im­

age. If a technique could be developed that would locate suspicious sites with a fairly high 

confidence factor, then the cost for a computer aided system would be justified. 

A Venn diagram, shown in Figure 1.1, is used to illustrate the principles. A represents the 

set of all pixels in the image. B represents the set of pixels identified as suspicious by the first 

phase of a computer detection scheme. C represents the final set of pixels classified by the 

computer as the centres of nodule sites. 'D represents the set of pixels corresponding to the 

centres of true nodule sites. Using set nomenclature for convenience, the following statements 

are considered as the ideal case: 

Bn'D='D 

C = 'D 

set 'D is fully included in set B 

set C and 'D are identical 

1.2 A Generic Approach to Automated Detection in Images 

The task of the computer, in assisting the radiologist, is essentially automated nodule detec­

tion (A.N.D). The automated in automated nodule detection implies that the A.N.D system 

will run without human intervention. The final product of the A.N .D system is an image 

which has been processed, analysed and classified by the computer. Any suspected nodule 

1 Direct analogy of false-negative, i.e: there are nodules and they are detected. 
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A The set of all pixels in the original image 

B The set of pixels corresponding to suspected nodule sites 

C The set of pixels classified by the computer as nodules 

D The set of pixels corresponding to TRUE nodule sites 

Figure 1.1: Venn diagram illustrating sets of positive and negative nodule sites, as well as 
those identified by the computer as positive and negative. 

sites are highlighted by the computer in the resultant image. A generic breakdown of an 

A.N.D system is described in this section. A very similar breakdown is presented in [13]. 

A.N.D may be divided into four primary categories, viz. restoration, enhancement, analysis 

and classification. A block diagram of the generic A.N.D system is provided in Figure 1.2. A 

module refers to a procedure which may be used as the enhancement or analysis phase of the 

A.N.D system. 

3 
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A·-A-B 
A, B and C represent the input and/or output sets of pixels for each module 

Figure 1.2: Block diagram of the generic Automated Nodule Detection system. 

1.2.1 Image restoration 

Image restoration, or correction, attempts to remove image characteristics imposed on the 

image by the nature of the image acquisition. Usually the restoration process attempts to 

reconstruct or recover an image that has been degraded, by using some a priori knowledge 

of the degradation process [6]. 

For example, in many optical acquisition systems the restoration process deconvolves the 

modulation transfer function (MTF) introduced by the lenses. This deconvolution process 

aims at removing the degradation from the acquired image so that it best matches the original 

image. 

However, in the case of x-ray, the concept of an original image is abstract. The person 

being x-rayed does not directly convey the original image information. Rather, it is the 

person's physical x-ray attenuation characteristics which constitute the original image data. 

The acquired image is thus a function of the original data and the x-ray system's acquisition 

properties. The acquired image can be improved, or corrected, by removing the artifacts 

which are imposed on the image by the x-ray system. 

1.2.2 Image enhancement 

The second stage, in A.N .D, is the enhancement of the image such that it is improved in some 

sense. In general, the methods of enhancement differ depending on whether the image is for 

human consideration or if the enhancement is a preprocessing stage - the output of which is 

intended for further processing by the computer. Sometimes, however, the same enhancement 

techniques are appropriate for both the human and computer. 

The enhancement methods which produce an image for human consumption strive to generate 

an image which visually best represents the sought information. On the other hand, the en-
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hancement for computer consumption produces an image where the information is made most 

amenable to quantifiable analysis. An automated nodule detection system might therefore 

use one method of enhancement as a preprocessing stage to further processing, and another 

enhancement technique to best visually display the final image where suspected nodule sites, 

set C, have been highlighted. 

In general, the enhancement techniques of A.N.D are concerned with simultaneous detail 

enhancement and dynamic range reduction. Some of the enhancement modules under consid­

eration are unsharp masking, adaptive histogram equalization, statistical difference filtering 

and morphological processing. 

1.2.3 Image analysis 

The third phase of A.N .D is the image analysis of the x-ray. Image analysis processes the 

enhanced image and then outputs abstract data, set B, from which classification may be 

realized. 

The form of the abstract data depends on the type of image analysis used. A common form of 

the data is a list of the suspected nodule sites, with each entry of the list containing numerous 

fields. The fields comprise items such as location coordinates and feature parameters of the 

suspected nodule site. 

The image analysis techniques suitable for A.N.D fall into the category of pattern recogni­

tion. The methods under investigation include template matching and the Hough transform. 

Implementations of template matching and the Hough transform are the image analysis mod­

ules. 

1.2.4 Image classification 

The final procedure of A.N .D is classification. The classification process may be likened to the 

diagnosis made by an expert diagnostician assisted by an intern. The intern points to what 

he considers possible nodule sites, set B, on the chest x-ray. The expert diagnostician then 

considers each of the sites indicated by his junior, draws on his own expertise, and makes a 

decision, generating set C. In the A.N.D system it is the image analysis phase which isolates 

suspected sites, while the classification phase classifies that site as positive or negative. This 

classification is based on the information provided in the output list of the analysis phase and 

perhaps reconsideration of the original image at the locations given in set B. The classification 

process operates on set B to produce set C. 

5 



1.3 Roadmap to the Dissertation 

The structure of this thesis follows the modular nature of the automated nodule detection . 

(A.N.D) system (see Figure 1.2). Chapters successively discuss image enhancement, analysis 

and classification as modules of the A.N.D algorithm. In general, each chapter has a four part 

structure, viz. (i) an introduction, (ii) the requirements of the module, (iii) an investigation 

into techniques for the module, and (iv) a summary of the suitability of the techniques 

examined. 

Chapter 2 discusses various classical enhancement techniques, while chapter 3 investigates 

morphological processing for image enhancement. The enhancement techniques covered in 

these chapters have two purposes. These are (i) enhancement for improved human intelli­

gibility, and (ii) enhancement as preprocessing for the image analysis phase of A.N.D. The 

relevant theory for each of these techniques will be discussed, followed by an examination of 

the technique in terms of the requirements in the A.N .D system. Chapter 4 considers varia­

tions on template matching and the Hough transform as potential image analysis modules. In 

template matching a variance measure, as opposed to correlation measure, is developed. The 

formation of the x-ray image is discussed when template design is investigated. In the Hough 

transform section a greyscale implementation is evolved from a binary technique. Chapter 

5 discusses the classification of nodule sites from the list of suspected sites produced by the 

image analysis phase, and describes the use of the receiver operating characteristic in the 

evaluation of different modules2 and their respective parameters. Chapter 6 is a collection of 

the results of most of the above-mentioned techniques applied in practice. Conclusions are 

drawn and recommendations are made in Chapter 7. 

2 As mentioned in section 1.2, a module is a procedure which may be used as the enhancement or analysis 
phase of the A.N.D system. 
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Chapter 2 

Classical Techniques for Image 

Enhancement 

2.1 Introduction 

Image enhancement is the processing of images to increase their usefulness. When images are 

enhanced for human viewers, the objective is to improve perceptual aspects. In other appli­

cations, an image may be preprocessed to aid machine performance [10]. In the application 

of the automated nodule detection (A.N.D) system, image enhancement is included for both 

human consideration and machine preprocessing. 

• Image enhancement for aiding machine performance: preprocessing the image 

to aid in subsequent image analysis by the computer. 

• Image enhancement for human consumption: enhancing the image with the pur­

pose of making it most visually suitable for human interpretation. 

The information contained in a medical x-ray has a dynamic range, in general, of 210 to 

212• In other words, for a medical x-ray to be accurately represented as a digital image, 

the number of intensity quantisation levels should be greater then one thousand. Tests have 

shown that humans can only discern a maximum of approximately 64, 26 , grey scales [5]. For 

the purposes of display it is therefore necessary to reduce the dynamic range, and at the same 

time ensure that all of the relevant detail is preserved. To achieve dynamic range reduction 

while preserving the relevant detail requires removing redundancy in the 210 (or 212 ) grey 

levels of the original image. 
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The objectives of dynamic range reduction and detail enhancement appear to be closely 

related. If one could remove the slowly varying large scale structure from an image1 , it would 

appear that the resulting image would contain smaller structures and that the overall dynamic 

range of the image would be reduced. The net effect should be an image which is easier to 

interpret. Image enhancement as a preprocessor to machine processing (the image analysis 

module) also requires that the slowly varying structure is removed from the image and that 

all the detail is superimposed on a constant level. Figure 2.1 illustrates the point. 

60.0------------------------, 

A: Original 
50.0 

B: Intermediate 

40.0 
C: Difference 

~ 
~ 30.0 

! 
-~ 20.0 
a. 

10.0 

-10.0------------------

Figure 2.1: Image profile showing dynamic range reduction and detail enhancement using 
background subtraction. 

Although the difference image contains only the detailed structure of the original image it 

may be added to the original image for the purposes of increasing intelligibility. The resulting 

image will be a detail enhanced version of the original. Adding the difference image to the 

original image is optional. In some cases the difference image might itself be a suitably 

enhanced image. In other cases, though, the difference image contains so little data that it 

is necessary to add it to the original image for the purposes of putting the detail enhanced 

1 Images are considered to display high intensity for high x-ray attenuation, and vice versa. This'is the case 
for conventional medical x-rays. Images which do not conform to this rule are inverted so that pixel intensity 
is proportional to x-ray attenuation at that point. 
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information in context. 

It may be necessary to decrease the dynamic range of the resultant image for the purposes 

of display. The detail-bearing information has already been extracted in the form of the 

difference image, Figure 2.lC, and therefore the original image, Figure 2.lA, may simply be 

compressed2 before adding, to reduce the dynamic range of the resultant image. 

In the above discussion, it was assumed that the small scale structures were of low intensity. 

Tests (and inspection) have shown that this assumption is often invalid. x.:ray images contain 

isolated high intensity small scale structures. The causes of such structures include: dental 

fillings, steel pins, pacemaker paraphernalia and other metallic components of prosthetics. 

There are thus two independent problems in image enhancement for human consumption. 

They are: 

• Enhancing small scale structures 

• Reducing dynamic range 

The image enhancement requirements for machine and human consumption are described 

below. Each of the enhancement techniques are evaluated in terms of these requirements. 

2.2 Requirements of the Enhancement Module 

In order to quantify the merit of each enhancement module it is necessary to define the require­

ments of the ideal enhancement process for both human and machine image enhancement. 

These requirements were established in an evolutionary manner as more was learned. 

The requirements which have been defined for both machine and human needs are: 

• Additive invariance: enhancement of a nodule should produce an equal output re­

gardless of whether the nodule is superimposed on a flat background or a slope, or a 

high plateau or a low valley, or superimposed over a discontinuity. 

This idea is illustrated in Figure 2.1 where two similar nodules are superimposed on a 

background image profile in different local regions. The nodule on the left is superim-

2If the original ima.ge ha.d a. dyna.mic ra.nge of 10 bits and a.n 8 bit dynamic ra.nge is required, this ma.y be 
obtained by dividing ea.ch intensity value in the original image by 4. More generally, N bits a.re obtained from 
M bits by dividing the intensity values of the M bit image by 2M-N. 
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posed on a sloping surface with an average pixel intensity of thirty. The nodule on the 

right is superimposed on an almost constant background with an average pixel intensity 

of fifteen. The intermediate profile B is subtracted to yield the difference profile C. The 

process which produced B can be said to satisfy additive invariance because both of 

the nodules in Care superimposed on a constant level (zero intensity) and because the 

nodules have been equally amplified. 

Additive invariance is a crucial requirement which will be tested with a simple test im­

age. In the test image two identical nodules are superimposed on a varying background. 

The. first nodule is superimposed on a slope while the second nodule is superimposed 

on a constant high intensity region. For a process to satisfy additive invariance these 

nodules must appear identical in the processed image. 

The purpose of this additive invariance requirement is to simplify the image for both 

human and machine consumption. The test image cannot prove the additive invariance 

of an enhancement technique but it can disprove it. 

• Elimination of structured noise: it should be ensured that removing the slowly 

varying structure results in all the detail being superimposed on a constant level. 

• No artifact production: artifacts are undesirable byproducts of a process and can 

be considered noise. 

• Rotational invariance: this requirement ensures that an object which is circularly 

symmetric before processing will remain circularly symmetric. Another consequence of 

rotational invariance is that a processed rotated object will be identical to a processed 

non-rotated object, albeit rotated. 

• Robust operation: the enhancement operation should be insensitive to noise. 

• Short processing time and cheap installation costs: if an A.N .D system is to 

be implemented as a screening technique, the processing time should be short and the 

·installation costs of the system should be small. Both of these items are a function of 

the computational· requirements of the system. 

As mentioned in section 2.1 additional requirements for human consumption have been iden­

tified: 

• Reduced Dynamic Range: the number of bits required to store all the information 

is best reduced to a maximum of eight. This is justified as follows: (i) As stated in 

section 2.1, human perception of greyscale images is limited to six bits. (ii) Commercial 

eight bit display devices are available and affordable. This hardware therefore copes 

adequately with the human requirements for a greyscale display. 
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• Detail Enhancement: It is important, for human consumption, that reducing the 

dynamic range is done in such a way that the relevant detail is made more visible. 

This amounts to amplifying the detail with respect to the background. In effect, detail 

enhancement is high pass filtering. One can, however, achieve vastly different results 

by using variations on the theme of high pass filtering. For instance, high pass filtering 

may be linear or nonlinear, adaptive or non-adaptive, or even adaptive nonlinear. 

2.3 Image Enhancement Modules 

In this section all of the classical enhancement techniques which were attempted in this 

research will be discussed. Morphological image enhancement techniques are the subject of 

chapter 3. Many of the techniques attempt to generate an intermediate image which contains 

the underlying background image. This intermediate image is then subtracted from the 

original image to yield an enhanced image. 

In the case of nodule detection in chest x-rays, the background image is the healthy chest x­

ray and the lung cancer nodules are the image detail of interest. The background information 

may be thought of as structured noise. The complexity of the problem arises because of 

the complexity of the structured noise. An x-ray image, like an optical image, may contain 

incredible diversity, including discontinuities. These discontinuities are the primary cause of 

the shortcomings of linear processing techniques. 

2.3.1 Unsharp masking 

Unsharp masking involves subtracting a low pass version of an image from the original image. 

This is essentially a high pass filtering technique inherited from photography. In the photo­

graphic process, a film is exposed through a negative superimposed on a slightly defocused 

positive transparency. In this way, the local mean is subtracted and the result is an image 

with improved edges (20, pp84-85]. 

Unsharp masking is a popular digital image processing technique which enhances local ·con­

. trast and improves the aesthetic appeal of the image. The output image Y is generated 

according to the formula: 

Y = cS - (1 - c)SLP 

where, 

c is a gain parameter 
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• 
S is the original image 

SLP is a low pass version of S 

Linear unsharp masking 

Conventionally, the low pass image is obtained using linear low pass filtering. SLP may, how­

ever, be produced by any variation of low pass filtering, including adaptive and/or nonlinear 

techniques. Regardless of the type of low pass filtering, SLP is always the background image 

which is subtracted from the original image to produce the enhanced image. 

Linear low pass filtering may be performed in either the space domain or Fourier (spatial 

frequency) domain. The Fourier domain is often used to lessen the computational burden 

by making use of the fast Fourier transform (FFT). Regardless of the means of implemen­

tation of low pass filtering, comprehension of linear filtering in the Fourier domain enhances 

understanding of the filter in the space domain. 

For instance, the dimension of the local region ( footprint )3 of averaging for the low pass filter 

has a marked effect on the resultant image. In particular, using a large footprint in the space 

domain amounts to a narrow spatial frequency band low pass filter. Such a filter maintains 

only the very low spatial frequency components, corresponding to the slowest varying struc­

tures, in the low passed image SLP· Consequently it is only these very low spatial frequencies 

which are attenuated in the difference image Y. At the other extreme, a small footprint (for 

example, averaging a local 3x3 region) has a broad response in the spatial frequency domain. 

This has the effect of attenuating only very high spatial frequencies in SLP, resulting in these 

high frequency components existing in Y. With a small footprint Y appears as an edge de­

tected image because it is only the edges and very small structures which contain these high 

spatial frequency components. 

The shape of the footprint also influences the effect of the low pass filter. This too can be 

understood by inspecting the spatial frequency response of the filter. Computational require­

ments of linear low pass filtering can be significantly improved with the use of a separable4 

filter. The shape of the filter determines if it is separable. For example, a square footprint is 

separable while a circular footprint is not. Although a separable filter is desired for compu­

tational reasons, the spatial frequency response of most separable filters is inferior. Clearly a 

3The terms local region, neighbourhood, local neighborhood, contextual region, footprint and window are 
all used interchangeably. In most cases the terms used by the referenced authors a.re adopted. 

4 A two dimensional filter f(x, y) is separable if f can be written as fi{x)/2(y). 
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tradeoff must be made when designing the most suitable linear filter for an application. 

A further factor in the design of the low pass filter is the windowing function. Window 

functions are employed to lessen the sidelobe effect of the filter response in the transform 

domain. 

Median unsharp masking 

Median filtering is an example of nonlinear low pass filtering. Because it is nonlinear, median 

filtering cannot be performed in the Fourier domain. Median filters may he implemented in a 

variety of ways by modifying the shape and size of the footprint. For instance, the footprint 

from which the median is derived may be square, circular, ring or cross shaped. A square 

footprint may also have the median computed for each of its rows, and then the median taken 

of that set of medians. One dimensional (lD) median filtering may be used horizontally on 

the image to produce an intermediate image. The intermediate image is then median filtered 

using lD vertical median filtering to produce the background image5 • 

Examination of unsharp masking 

Artifacts are generated if the image is low pass filtered using a simple linear averaging process 

(see Figure 2.2). It is interesting to note that it is exactly these artifacts that provide the 

aesthetic appeal of the image produced by conventional unsharp masking. The artifacts 

appear as shadow bands on either side of an edge. The intensity of the artifacts is proportional 

to the steepness of the slope, and the width of the artifact is proportional to the dimension 

of the low pass filter. 

The linear unsharp masking process appears to satisfy the requirement of additive invariance 

when applied to the test image (see Figure 2.3B). Figure 2.3B was generated using a square 

footprint of dimension llxll pixels and c = ½· The generation of an artifact is also evident 

in this figure. 

Use of a two dimensional (square, ring or circular footprint) median filter as the low pass filter 

produces substantially better results. It does, however, also generate artifacts at corners, as 

illustrated by Figure 2.4 where a square footprint 17xl 7 was used on a 2D unit step function. 

A cross footprint median filter does not produce these artifacts if, and only if, it is aligned6 

5The process could also be run vertically first, and then horizontally. Note that this will produce a slightly 
different image. 

6 Aligned in this sense implies that the limbs of the footprint are at 0° and 90° to the edges of the corner. lf 
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Figure 2.2: The generation of artifacts using the averaging of linear unsharp masking. 

with the corner. The effect of taking the median of the set of medians of each row produces 

very similar results to a simple square median filter. 

The corner artifacts, resulting from all 2D median filters, may be eliminated by operating the 

median filter as two one dimensional operations. It should be noted that the median filter is 

not separable, and consequently these one dimensional operations produce a different result 

from the two dimensional filter. 

The square footprint median unsharp masking process appears to satisfy the requirement 

of additive invariance when applied to the test image (see Figure 2.3C). Figure 2.3C was 

generated using a 17xl 7 square window and c = 

2.3.2 Statistical difference filtering 

The statistical difference (SD) filter was evaluated by Morishita and Akimbo [19]. They 

required a preprocessing filter which would satisfy the following requirements: 

• emphasize the fine structure of the image 

• eliminate the effect of slow grey level fluctuations 

this is not the case, for instance if the limbs are at 45° to the corner, then similar artifacts to the symmetrical 
median filter result. 
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A. Original Test Image B. Unsharp Masking 

C. Median Unsharp Masking D. Statistical Difference Filtering 

E. Adaptive Histogram Equalisation F. Morphological Greyscale Opening 

Figure 2.3: Test for additive invariance using different enhancement techniques. 

15 



-,-, 

/:- I /c 
_, 

I \ \ \ 
'-I 

ti 

A. Original Test Image B. Median filtered image 

C. Difference image C = A - B 

Figure 2.4: The generation of the corner artifact from the symmetrical 2D median filtering 
process. 

• be invariant to the properties of the image 

• short processing time 

The first two requirements are essentially detail enhancement and dynamic range reduction. 

The third point specifies that the filter should be suitable for any image. The final point 

is clear. These requirements, perhaps with the exception of point three, are a subset of the 

requirements outlined in section 2.2. 

Morishita and Akimbo claim that the SD filter outperforms the other filters which they 

evaluated. These filters included the differential filter (implemented as a Prewitt operator), 

the Laplacian, a bandpass filter, and a highpass filter. 
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The SD filter is implemented in a pixel by pixel, adaptive processing manner. Every pixel in 

the output image is evaluated according to: 

where, 

l'ii is the intensity of the output pixel 

o: is a gain parameter 

cf is the standard deviation for entire image 

CTij is the standard deviation for the local region 

µij is the mean value of the local region 

Sij is the intensity of the current pixel in the input image 

Examination of the SD filter 

The SD filter is difficult to evaluate because it requires two user input parameters, viz. gain 

factor o: and local region size. Optimising this filter requires an exhaustive search of a two 

dimensional (2D) space. The 2D search space results from the two user input parameters. 

The parameters to optimise the filter have not been established because the filter has been 

shown to be inappropriate. Firstly, the filter generates artifacts, and secondly, the filter is 

not additively invariant. This lack of additive invariance is illustrated in Figure 2.3D. 

As with unsharp masking, the artifacts improve the aesthetic appeal of an image produced 

by SD filtering. The artifacts appear as shadow bands where there are sharp differences in 

image intensity. 

The SD filter enhances small scale structures with some success. With a small footprint the 

artifacts are negligible and the detail enhancement is still noticeable. The SD filter is thus a 

worthwhile means of improving the aesthetic appeal of an image. 

2.3.3 Adaptive histogram equalization 

The process of histogram equalisation attempts to transform the image histogram into a 

uniform histogram. This is achieved by computing a mapping function, or look-up table, 

between the cumulative distribution functions of the image histogram and the desired uniform 

histogram. A comprehensive explanation of histogram modifications, like equalisation, 1s 
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found in [17]. Histogram equalisation is a fast and simple means of contrast enhancement. Due 

to its global application, it is often ineffective at accomplishing local contrast enhancement. 

The technique discussed in this section, adaptive histogram equalisation (ARE), adaptively 

performs histogram equalisation on local regions within the image. This has the advantage 

of achieving local contrast enhancement. 

ARE is a contrast enhancement technique in which the intensity of each pixel is replaced 

by its rank within a local neighbourhood [11]. Each pixel in the output image is computed 

according to the ARE algorithm (11]: 

for each pixel (i, j) in image do 
begin 

rank= 0 

for each (x, y) in contextual region of (i, j) do 

begin 

end 

end 

if image[i, jJ > image[x, y] 
· then rank = rank + 1 

output[i, j) = rank 

Contrast limited AHE 

As an undesirable consequence of enhancing image contrast, ARE tends to enhance noise 

in relatively constant level areas of the image [11]. Contrast Limited ARE (CLARE) at­

tempts to lessen the enhancement of noise by varying the maximum possible level of contrast 

enhancement according to the shape of the histogram in each contextual region. 

Examination of AHE 

CLARE was employed in [11] to lessen the over-enhancement of noise. CLARE requires two 

user input parameters, viz. clip level and window size. This makes it difficult to evaluate for 

the same reasons as the statistical difference :filter. 

Rehm and Dallas revealed a further disadvantage of ARE and CLARE (23]. This disadvantage 

is the generation of a zone of reduced contrast at regions where a substantial change in 

intensity occurs. This artifact is due to the large changes in the local histograms as they 

cross a boundary. The width of this artifact is directly proportional to the dimension of the 
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contextual region. 

Rehm and Dallas devised a scheme for suppressing the boundary artifact. It involved prepro­

cessing the image with background subtraction before subjecting the image to CLAHE. Their 

background subtraction algorithm used interpolation of cubic splines between knot points. 

The knot spacing was determined empirically and had not yet been automated. 

Operation of AHE on the test image clearly indicated that AHE is not additively invariant 

( see Figure 2.3E). 

2.3.4 Nonlinear adaptive curve fitting 

,. 
Nonlinear adaptive curve fitting attempts to generate the underlying background image with-

out being influenced by the small scale structures which are superimposed on this background. 

It operates on the assumption that the slope of the one dimensional profile before and after 

a nodule is approximately equal. 

The algorithm operates in a one dimensional manner. Each row of the image is processed to 

produce an intermediate imii-ge. This intermediate image is then processed columnwise7 by 

the same algorithm. 

The operation of one dimensional nonlinear adaptive curve fitting can be understood by 

considering a cursor Ca which follows the given profile and another cursor cb which traces out 

the new profile. Ca moves along the original profile, computing the instantaneous slope of the 

profile. While the slope remains constant, within a given tolerance, cb mimicks ca. If the slope 

deviates sufficiently then Ca continues alone for a given distance. If, within this distance, the 

slope returns to its value before the deviation, then it is assumed that a small scale structure 

was encountered. In this case Cb generates the new profile, using the slope value before the 

deviation. In this way an underlying profile, which does not contain small scale structures, 

has been created. A difference profile would show up all the small scale structures. 

The algorithm for performing nonlinear adaptive curve fitting, in one dimension, is provided 

below. Wis the maximum sought after width, Xis the array of the original data set, and Y 

is the array of the modified data set. 

7 Alternatively the image may be processed columnwise and then rowwise. Note that this will produce a 
slightly different image. 
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for every pixel i in a row do 
begin 

1. oldslope = Calculate Slope( X ) 

2. oldvalue = X[i] 
3. move to next data point 

4. currents/ope = Calculate Slope( X ) 

5. is olds/ope::::: currents/ope? 

6. if yes then 

begin 

end 

else 

begin 

end 

a. Y[i] = X[i] 
b. olds/ope = currents/ope 
c. goto 3 

position = 0 
move ahead one point at a time, computing the current slope, until 

(i) (currents/ope ::::: olds/ope) AND (currentvalue ::::: oldslope.position + 
oldvalue) OR (ii) we have moved W data points ahead 

increment position 

7. if (i) then ( a small scale structure was encountered, generate the underlying slope) 

begin 

end 

a. return to original current position and generate Y using oldslope for as many data 
points as were used. 

b. compute currents/ope at the final position. 

c. olds/ope = currents/ope 
d. goto 3 

else (ii) (no small scale structure encountered, an actual slope change in the underlying 
profile occurred) 

begin 

d 
end 

en. 

a. return to original current position and generate Y as Y[i] = X[i] for those W data 
points. 

b. compute currentslope at final position 

c. olds/ope = currents/ope 
d. goto 3 
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Examination of nonlinear adaptive curve fitting 

This approach suffers from several flaws. Firstly it assumes that the small scale structures are 

superimposed on linear profiles. This is a gross oversimplification. The second problem arises 

when the approximately equal to conditions are evaluated. What tolerance must be allowed 

to ensure values may be decided on as being approximately equal? 

The evaluation of additive invariance for nonlinear adaptive curve fitting is difficult because 

of the tolerance problem discussed above. If the slope on which a nodule is superimposed is 

sufficiently steep, then additive invariance will fail. This is because the change in slope due 

to the nodule is not adequate to exceed the tolerance of what constitutes a constant slope. 

Also, if a nodule is superimposed on a slope which is not linear, the intermediate profile will 

be linear (by the nature of the process) and the resultant nodule will be distorted. In other 

cases, however, it is likely that additive invariance will be satisfied. 

2.4 Summary of the Classical Enhancement Modules 

The classical enhancement modules are summarized in terms of the requirements described 

in section 2.2. A table for the evaluation of additive invariance, structured noise elimination, 

artifact production, rotational invariance, robust operation and processing time is provided 

(see Table 2.1). 

Processing time is written in order notation, followed by a label which represents the predominant8 

type of operation. All of the algorithms process each pixel and therefore the order notation is 

provided as a comparison basis on the computational requirements for a single pixel. Thus, 

the processing time for an entire image is proportional to the product of the image dimensions 

and the computational cost per pixel. In most cases the order notation is, by necessity, an 

approximation. The labels are (i) boolean, representing boolean comparison, (ii) integer, 

integer operations, and (iii) floating, for floating point operations. 

8 If floating point operations are used at all, it is likely that the floating label will be used. In other cases 
the operation which is used most in the algorithm is written as the label. 

9 Yes, when symmetrical two-dimensional median filters are used, but no when two one-dimensional median 
filter passes are used. 

10This process is exceedingly slow when sorting is used but may be sped up significantly with the use of a 
histogram method. The median may be found from a data set by generating a histogram of that data set and 
then counting the bins of the histogram until half the total count is reached. The bin which results in the 
count exceeding half the total count corresponds to the intensity value which is the median of that data set. 
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Enhance- Additive Removal oi Artifact Rotational Robust Processing 
ment invariance structured production invariance operation time 
modules noise 

Linear YES YES - uses YES - along YES NO O(n2 ) 

Unsharp background edges integer 
Masking subtraction 

Median YES YES - uses YES - at YES NO O(n3)10 
Unsharp background corners9 integer 
Masking subtraction 

. 
Statistical NO to some YES - along YES NO O(n2 ) 

Difference extent edges floating 
Filtering 

Adaptive NO to some YES - along YES very poor O(n2 ) 

Histogram extent edges b.oolean 
Equalis-
ation 

Nonlinear in most YES - uses unknown NO NO O(n) 
Adap- cases background :floating 
tive Curve subtraction 
Fitting 

Table 2.1: Comparison of classical enhancement techniques. 

With regard to enhancement for best visual representation, reduced dynamic range and detail 

enhancement are also taken under consideration. All the modules which use background 

subtraction will provide dynamic range reduction for most of the image. Isolated regions 

of high intensity might still exceed the required dynamic range. Dynamic range reduction 

in statistical difference filtering and adaptive histogram equalisation is difficult to evaluate. 

However, neither of these methods exhibit additive invariance and are thus withdrawn as 

candidates for the module of image enhancement. 

Nonlinear adaptive curve fitting is also not guaranteed to satisfy additive invariance. It, 
like one dimensional median :filtering, will produce different outputs depending on whether 

the image is processed vertically or horizontally first. Nonlinear adaptive curve fitting has 

additional problems, as mentioned in section 2.3.4, and will not be considered further. 

All the enhancement modules perform detail enhancement. Disregarding statistical difference 

filtering, adaptive histogram equalisation and nonlinear adaptive curve fitting, we are left to 

decide between linear unsharp masking and median unsharp masking. 
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Chapter 3 

Morphological Processing for 

Image Enhancement 

3.1 Introduction 

This chapter discusses the use of morphological image processing techniques for image en­

hancement in three ma.in sections. In the first section, the relevant morphological theory is 

presented. The second section investigates the use of a new algorithm, namely the rotating 

rod algorithm. The third section discusses the use of a fundamental morphological operation, 

the top-hat transform, which was found to be the most appropriate. Both the rotating rod 

and the greyscale top-hat transform a.re examined as potential candidates for the image en­

hancement module. As such, they are evaluated according to the requirements presented in 

section 2.2. 

3.2 Morphological Image Processing Theory 

The content of this section is based primarily on the content of two papers [18, 27) and 

is intended as a summary of the morphological image processing theory relevant to this 

thesis. A more complete mathematical description of morphological processing is provided in 

[18, 27, 14). 
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3.2.1 Introduction to morphology 

Classical techniques ( theory of linear systems and Fourier analysis) are often of limited use 

because they do not directly address the fundamental issues of how to quantify "shape or 

geometrical structure" in images (18]. In contrast, mathematical morphology can rigorously 

quantify many aspects of the geometrical structure of a signal, in a way that agrees with 

human intuition and perception (18]. 

An interesting perspective on morphological processing is presented by Serra [25) where he 

proposes " ... our philosophy will consist of stating that the images under study exhibit too 

much information, and that the goal of any morphological treatment is to manage the loss of 

information through the successive transformations." 

3.2.2 History and development of mathematical morphology 

Morphological image enhancement is a nonlinear approach to image enhancement based on the 

theory of mathematical morphology. The original formulation of mathematical morphology 

was proposed in the mid 1970's and was limited to binary images. The concepts were then 

extended in the mid 1980's to account for greyscale images [18]. 

Extension from binary to greyscale morphology may be achieved in various ways [18]. Tra­

ditionally Serra used the representation of an dimensional (n-dim) function1 f(x), (xis a 

n-dim vector, f ( x) is a greyscale signal2) by the ensemble of its threshold sets. An alternative 

extension by Sternberg represents an-dim function f(x) by a (n+l)-dim set, its umbra. The 

umbra of f is U(f) = {( x, a) : a ~ f( x )}. It is this extension, using umbrae, which will be 

discussed. An illustration of the umbra of a simple test image is provided in Figure 3.1. 

In [27] the equivalence between morphology in greyscale images and the more established field 

of mathematical morphology is described. Sternberg's [27] explanation of greyscale morphol­

ogy is essentially an explanation of mathematical morphology followed by reasoning which 

indicates that greyscale images are, in fact, the same mathematical sets for which mathe­

matical morphology is applicable. Consequently the theory of mathematical morphology is 

directly relevant to greyscale morphology, which is necessarily an application of mathematical 

morphology. Sternberg's explanation is summarized below: 

1 ln the case of an image f is a 2 dimensional function, n=2. 

2 f has a continuous or a quantized range. 
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Figure 3.1: The umbra of a simple test image is the solid set which extends infinitely below 
the undulating image surface. 

1. Consider morphology of sets in Euclidean 3D space. Of particular interest are the 

umbrae. These are solid sets which extend unbroken indefinitely downward in the 

negative z direction. 

2. The details of an umbra's third dimension can be determined by a single parameter, 

the height z of the umbra at ( x, y) in the image domain. 

3. Umbra means shadow, and the umbra of a set X in 3 dimensional space includes both 

X and the volume of points in its shadow (the shadow is cast by a point light source at 

an infinite distance in the positive z direction). 

4. A greylevel function f can be thought ofin Euclidean space as a set of points [x, y, f(x, y)J, 
imagined as a thin undulating, not necessarily connected sheet. A greyscale image 

f(x, y) is represented in mathematical morphology by an umbra U[f] in Euclidean 3D 

space where a point p = (x, y, z) belongs to the umbra if, and only if, z::; f(x, y). 

3.2.3 Greyscale morphological transformations 

Umbrae remain umbrae under the usual morphological transformations of union and intersec­

tion, dilation and erosion (to be discussed). Note that union is the term used in mathematical 

morphology ( and also in set theory), and that dilation is used in greyscale morphology. The 

same is true for intersection and erosion. The equivalence of greyscale images and umbrae 

allow us to speak morphologically of dilating or eroding a greyscale image by a structuring 
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element3• An explanation of dilation and erosion follows. 

Dilation and erosion 

Dilation and erosion are fundamental operations of morphology, both binary and greyscale. 

Composite operations like openings and closings (to be discussed) are expressible in terms of 

dilations and erosions only. Dilation and erosion are carried over from set theoretic operations 

called Minkowski addition and Minkowski subtraction, respectively [14]. A comprehensive 

study of dilations and erosions is found in [14]. 

The dilation of an umbra U[X] by a structuring element (SE) B is formally stated as the 

maximum of the paired summations of B( x, y) with each of the points of X( x, y ); where U[X] 

is the umbra of image X and B( x, y) is the function describing the surface of B. The dilated 

image D is then 

D(x, y) = P,}ax[X(x - i,y - j) + B(i,j)]. 

Using morphology nomenclature, we have D = X 61 B. Similarly, the erosion of U[X] by B 
is the minimum of the paired differences of B(x,y) with each of the points of X(x,y). The 

eroded image E is then 

E(x,y) = P,}in[X(x - i,y- j)-B(-i,-j)]. 

Using morphology nomenclature, we have E =Xe B. Note that the negative arguments of 

B, i.e: B(-i, -j), are carried over from the formal mathematical definition. In all instances 

of practical SE's we have symmetry, thus B( i,j) = B( -i, -j). 

Sternberg [27] makes the observation that the expressions for dilation and erosion are similar 

to the convolution integral, or convolution sum in· the discrete case. Unlike linear convolution, 

however, dilations and erosions are non-invertible [27]. Sternberg thus concludes that "Image 

Processing through iterative morphological transformations is a process of selective informa­

tion removal where irrelevant image content is irrecoverably destroyed, enhancing the contrast 

of essential image feature" [27]. This is notably similar to Serra's quote in the introductory 

section. 

3The geometric description of a morphological structuring element is analogous to the parametric description 
of a linear filter. Structuring elements will be discussed in more depth later. 
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Opening and closing 

Openings and closings are composite operations of dilations and erosions. An opening of 

X by Bis denoted as X o B = (Xe B) ffi B. A closing of X by Bis denoted as X • B = 
(XEBB)eB. 

Openings, closings and the fundamental operations of erosion and dilation are conceptually 

described in the next section. Thus far the four morphological operations, dilation, erosion, 

opening and closing, have been discussed. Although these operations have been extended 

for manipulation of greyscale images, their operation is simpler to visualise when applied to 

binary images. A graphical depiction of the fundamental morphological operations applied 

to a binary image is provided in Figure 3.2, taken from {18]. 
r 

3.2.4 Conceptual description of morphological operators 

In this discussion a conceptual, as opposed to mathematical, description of morphological 

processing is presented. In simple terms, morphological processing is achieved by moving a 

structuring element (SE), of some geometrical shape, above or below the image surface. 

A c_onceptual4 description of erosion (and dilation) is provided because it helps to clarify 

the otherwise abstract mathematical descriptions most often found in the literature. The 

description will be given in terms of erosion but it may be read in terms of dilation by 

replacing the angle bracketed word with the preceding word. And, by extension, opening 

· and closing are also described because an openi!1g and a closing are compound operations of 

dilation and erosion. This algorithm describes the generation of the eroded <dilated> image 

surface S' from the original image surface S. 

4The conceptual algorithm may dift'er considerably from the implementation algorithm. The conceptual 
algorithm is provided here because it is easier to understand. The implementation algorithm is often dependent 
on the structuring element if the algorithm is optimised. 
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Figure 3.2: Erosion, dilation, opening and closing of a binary image X by a structuring 
element disk 8. The shaded areas correspond to the interior of the sets, the dark solid curve 
to the boundary of the transformed sets, and the dashed curve to the boundary of the original 
set X. Taken from [18]. 
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For every pixel (i, j) in S do 

1. Position the origin of the structuring element (SE) vertically below <above> location (i, j). 

2. Push the SE up <down> until it touches the underside <topside> of the image surface at 
some point. 

3. Store the pixel value at location (i, j) in S' as the pixel value in S which the SE first touches. 

End. 

This is the minimum <maximum> value, with respect 5 to the SE, in the local neighborhood 
of the image. 

The following two sections, 3.3 and 3.5, discuss the application of morphological processes to 

the problem of image enhancement. 

3.3 The Rotating Rod Algorithm 

The objective of this research was to enhance x-rays with the purpose of making nodules 

more easily discernible. It has been proposed that this objective could only be met with 

the use of nonlinear techniques. Unfortunately there is no formal recipe for designing an 

optimal nonlinear process for a specified application. In fact, the majority of our scientific 

and engineering education is based on linear techniques, because of their relative simplicity 

and general applicability. 

· Morphological image processing is a nonlinear approach to image processing and, as such, lacks 

formal methods for determining the most suitable filter for a particular application. According 

to Song and Delp [26}, "A systematic scheme for designing a complete morphological filter 

using multiple structuring elements is not yet available. Current design is usually based on 

trial and error." This is in contrast to linear techniques where well documented recipes for 

the design of linear filters6 are available. 

In the search for designing an appropriate morphological process for the enhancement of 

51n the case of a three dimensional structuring element (SE), for example: the sphere of the rolling ball 
algorithm, this minimum <maximum> value is not necessarily the minimum <maximum> value of the image 
in the local neighborhood. Rather, it is the first point on the image which the surface of the SE touches as it 
is pushed towards the thin undulating image surface. Clearly, this point on the image will be the minimum 
<maximum> when the SE is two dimensional, for example: a disc. 

6 Examples of linear filters for which there are design methods include bandpass filters, notch filters and 
matched filters. 
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nodules, the rotating rod algorithm was conceptualized. 

3.3.1 Why the rotating rod? 

Consider the signal A in Figure 3.3. It is desired that the two bumps (nodules) be extracted 

from the signal. 

Consider moving a window through the signal. The window is chosen to be wider than the 

bumps. Let the window be five pixels in width (the bumps in the diagram are three pixels 

in width). The origin of the window is taken as the centre pixel. We now move this window 

through the signal and compute the minimum value of the signal in the scope of (pixels seen 

by) the window. This minimum value is written to an intermediate signal at the current 

origin of the window. The intermediate signal would appear as B in Figure 3.3. 

If this intermediate signal was now subtracted from the original signal, the output signal 

would appear as C in Figure 3.3. This is almost the desired output, but the edges of the 

plateau have been enhanced too. How can this flaw be overcome? These unwanted artifacts 

will appear regardless of the size of the window; in fact they will be proportional in width to 

the window dimension. 

Consider using the leftmost pixel of the window as the origin. If this window is now moved 

through the signal a profile, as in D, is obtained. The difference signal, E, is closer to the 

desired output but the four rightmost pixels of the plateau have been enhanced too. Now, we 

move a second window through the original profile, this time with its origin as the rightmost 

pixel. This produces the profile in F. 

Profiles F and E are very similar, although they each have failed to entirely reconstruct the 

plateau. A combination of F and E, however, can regenerate the plateau completely. A new 

signal~ G, is produced as the maximum value per pixel from each of D and F. This new signal 

G is then subtracted from A yielding exactly the desired output, H. 

To summarize the algorithm in one dimension (lD); At each pixel position two minima are 

found. These minima result from the windows with leftmost and rightmost origins (repre­

sented as profiles D and F). The pixel value in the intermediate signal is taken as the maximum 

of these two minima. This produces the intermediate profile G, which is subtracted from the 

original A to yield the enhanced profile H. 

The above illustrates the operation of the conventional rotating rod in lD. The rotating in 

rotating rod is there because of the operation of this algorithm in two dimensions. In two 

30 



Fl ti T:,, 
~ 

: 

1·,·.·.·.·.·.·.·.·1 ......... 
. . . . . . .. . ......... 

! : 
l 

t 
! ...,.... 
I 

A original profile 

B 
profile after single 

window pass with 

origin at centre 

result: C - A - B, 

C undesired artifacts at 
_______ both edges 

profile after single 

D window pass with 
_______ leftmost origin 

E 
result: E - A - D, 

undesired artifact at 

______ right edge only 

F 
profile after single 

window pass with 

____ rightmost origin 

oomposlte profile 

G G(O • max[ F(i) + D(Q ] 

resultant desired profile 

H H•A-G 

Figure 3.3: Demonstration of the operation of the rotating rod algorithm in one dimension . 
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dimensions the same principle is applied, but the windows are rotated through a sequence of 

angles. At each orientation two minimum values are found, as in the lD case (see Figure 3.4). 

Thus for each pixel in the image S a set of 2n minima7 are found. The maximum value in this 

set is taken as the new value for that pixel in S'. This generates the intermediate image S'. 

The output image Y is then produced as the difference image, original minus intermediate. 

1 

1,2,3,4 are the orientations 

Figure 3.4: The architecture of the 2D rotating rod. 

In lD the rotating rod has the effect of preserving only those structures which are smaller in 

width than the length of its windows. In 2D the rotating rod has an analogous effect. In the 

2D case, however, both the vertical and horizontal dimensions of a structure must be less than 

the window size. In fact, if the rotating rod operates in more orientations than horizontally 

and vertically, n > 2, then the size of the structure in all of these orientations must be less 

than the window size, if it is to be enhanced. 

It should be clear that small circular structures are enhanced at the expense of any elongated 

structures, for a given window size. This was one of the driving forces in the development 

of the rotating rod. It has the abi~ity to remove elongated structured noise, like ribs, while 

preserving small circularly shaped objects, like nodules. The rotating rod eliminates large 

scale structures without producing any artifacts. If just one of the orientations of the rod is 

7The n in 2n is the number of orientations at which the windows are positioned. A high number of n is 
desired for maximum suppression of noncircular structures. A tradeoff must be made between the choice of n 
and the associated computational burden. 
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able to fit into a structure, then that structure will exist in the intermediate image and will 

consequently be eliminated in the difference image. 

A further point to note is the inherent robustness of the rotating rod. By finding the maxima 

of a set of minima, noise spikes will be ignored. This is a similar characteristic to that of 

the median filter. But, like median unsharp masking, these noise spikes will appear in the 

difference image. 

3.3.2 Algorithmic description of the conventional rotating rod algorithm 

The operation of the rotating rod is described by the pseudocode algorithm below. The 

algorithm requires a single parameter R, which is set to be the maximum expected nodule 

diameter. 

For every pixel in the image S do 

1. Compute the minimum value on the horizontal line R pixels to the left, of the current 
pixel8 •9 . Call it mino. 

2. Compute the minimum value on the horizontal line R pixels to the right of the current pixel. 
Call it min1. 

3. Compute the minimum value on the vertical line R pixels above the current pixel. Call it 
min2, 

4. Compute the minimum value on the vertical line R pixels below the current pixel. Call it 
min3. 

5. Compute the minimum value on the diagonal line north-east from the current pixel, and 
within a radius of R pixels. Call it min4. 

6. Continue in this manner for the other orientations10
• 

7, Find the maximum in the set {min0 , min1 , min2, ••• }. 

8. Write this maximum value to the intermediate image S 1
• 

End for loop. 
Generate resultant image as Y = S - S1

• 

End. 
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3.3.3 A limitation of the rotating rod 

A major limitation of the rotating rod algorithm arose from an oversight in the development 

of the algorithm. 

The rotating rod was designed with the assumption that the images of nodules would be 

superimposed on approximately constant intensity backgrounds. In other words, a best fit 

line at any of the orientations, in the region of the nodule, would be constant in the intensity 

dimension. This is a serious oversimplification. It is more often the case that the background 

is not of a constant intensity (noise assumed negligible). 

If the slope of the background is close to zero then the profile through a nodule exhibits 

a positive slope followed by a negative leeward slope. The nodule is thus still visible to the 

rotating rod. As the slope of the background becomes steeper, the leeward slope of the nodule 

become less. Above a certain background gradient the leeward slope of the nodule becomes 

positive, which has the effect of hiding the nodule. This is illustrated by Figure 3.5. 

Why is the nodule hidden from the rotating rod? 

The rotating rod has the effect of fitting into sloping surfaces completely. This is understood 

by investigating the one dimensional case. Consider an image profile with a positive slope 

(increasing in intensity from bottom left to top right) as in the steep slope profile of Figure 

3.5. The two orientations in this plane are west and east. The minimum value for the east 

orientation11 is the value of the leftmost data point which is the current pixel. This minimum 

value is also the maximum of the set of the west and east minima. Thus the current pixel 

intensity in the original profile is exactly replicated in the intermediate profile. This results 

in sloping profiles being completely regenerated in the intermediate profile. Consequently the 

output profile is zero in the region of sloping profiles. 

8 The current pixel is also included in the set from which the minimum is determined. This applies for all 
orientations. 

9 This determination of the minimum value in the scope of the structuring element (SE) may be concep­
tualised as pushing the SE up underneath S until the SE makes contact with the underneath of S at some 
point. Also, because the SE for the rotating rod is a line which is a constant in the Z dimension, that point of 
contact with S gives the minimum value directly. 

10Orientations { N, S, W, E, NE, NW, SE, SW} are most often used. West, or W, represents the orientation 
described as horizontal to the left in the pseudocode. An implementation using the additional orientations of 
{ NNE (north north-east), ENE, NNW, WNW, SSE, ESE, SSW, WSW } has also been used. 

11 Recall that the scope of the east orientation is R pixels to the right of, and including, the current pixel. 
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Figure 3.5: A steep background slope has the effect of hiding the nodule. The horizontal 
dotted lines represent two of the orientations of the rotating rod. The degree of removal of 
the nodule is indicated by the dotted line on the right moving closer to the original profile. 
Recall that the dotted lines move up and are constrained when they intersect the profile. 

By extension, it can be shown that sloping surfaces are also regenerated in the intermediate 

image, and consequently eliminated in the output image. This is due to the orientation 

parallel12 to the gradient giving the maximum value, of the set of minimum values, and that 

maximum value existing at the current pixel. 

Now, reconsider the scenario of a nodule image superimposed on a sloping background. When 

the leeward slope is positive, the nodule profile is that of a changing positive slope. The 

rotating rod fits into a positive slope completely, creating a background image containing the 

nodule. Subtraction to yield the output image results in the elimination of the nodule. 

12Orientations exist only in the XY plane. If the gradient of the slope is found as a vector of (x, y, z), z 
being the dimension of intensity, then the parallel orientation is that orientation which is closest, in direction, 
to the resultant of the x and y components of the gradient vector. Although orientations come in pairs (for 
example, E and W, or NW and SE), there is only one orientation parallel to the gradient. The other member 
of the pair is antiparallel. 
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3.3.4 Modifications to the rotating rod 

The limitation, discussed above, may be tackled with two possible approaches. 

(a) The first approach is to remove the underlying sloping surface from the image in 

a two dimensional sense. Such a strategy would then be used as a preprocessing 

stage to the rotating rod. 

(b) The second approach is to compensate for the sloping surface at each orientation 

of the rotating rod, i.e: in a one dimensional sense. 

The solution to both approaches, (a) and (b) is a process which is capable of generating an 

intermediate surface ( as in (a)), or an intermediate profile ( as in (b) ), which approximates 

the underlying background information. This is, however, the very crux of the enhancement 

problem. How does one distinguish background image information from the required image 

detail? This problem was also addressed in the introduction of section 2.3. Approaches using 

(a) and (b) are discussed .in the following two subsections. 

3.3.5 Preprocessing for the rotating rod 

Any enhancement module which results in the underlying sloping surface being removed is 

a potential preprocessor to the rotating rod. In other words, if the enhancement technique 

satisfies the requirements of additive invariance and structured noise removal then it is a 

candidate as a preprocessor. From section 2.4 we have seen that unsharp masking (both 

linear and nonlinear) satisfies these requirements. Later, in section 3.5, we will see that a 

greyscale top-hat transform is another potential candidate as a preprocessor to the rotating 

rod. 

3.3.6 One dimensional slope compensation for the rotating rod 

The second approach (b ), above, involves generating a new curve, for each orientation, which 

best describes the profile of the background surface on which the small scale structures are 

superimposed. This new curve can then be used as a reference level. The new curve is now 

raised, conceptually, beneath the original profile until it touches at some point. The analogy 

of the minimum point in the conventional13 rotating rod is the value at the origin (location 

13 Conventional refers to the implementation of the rota.ting rod as described in the algorithm of section 
3.3.2, i.e: without preprocessing or one dimensional slope compensation. 

36 



of the current pixel) of the shifted data set. This value will always be less than or equal to 

the original value at the current pixel. The principle of slope compensation is illustrated with 

Figures 3.6 and 3.7. Figure 3.6 demonstrates the shortcoming of the conventional rotating 

rod when a nodule is superimposed on a sloping surface, while Figure 3.7 shows the result 

that is possible with ideal one dimensional slope compensation. 

60.0...,.....------------------------------, 

50.0 

40.0 

I minimal gain at current pixel 
f (would distort true nodule shape) 

30.0 min0 

20.0 

10.0 min1 

0.0--------------------------------1 

scope of rotating rod 
-10.0-------------------------

Figure 3.6: The operation of the conventional rotating rod algorithm fails when a nodule is 
superimposed on a sloping surface. As illustrated in the diagram, the east orientation (which 
generates min~) of the rod fits up into the nodule eliminating it to a large extent. 

Various methods were attempted for the generation of the intermediate profile. 

Least squares curve fitting 

A first attempt at generating the intermediate profile involved using straight line least squares 

(LS) fits in each orientation ( of the rotating rod). This allowed an approximation to the gra­

dient of the surface to be incorporated in the rotating rod algorithm. LS fits were inadequate 

for two reasons: firstly, the LS fit was influenced by the nodule data; and secondly, a straight 
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Figure 3. 7: One dimensional slope compensation for the rotating rod. min0 and min1 are the 
two orientations of the rotating rod visi hie in this plane. Each of the slope compensated curves 
are raised independently beneath the original profile until they intersect the original profile 
at some point. mino and min1 are then taken as the value of their respective shifted curves 
at the location of the current pixel. In this diagram mino would be used as the replacement 
value for the current pixel because it is marginally greater. 

line was incapable of tracing the background profile acceptably. This is particularly true at 

regions of discontinuity, for example: step changes. 

Two reasons which make the straight line LS fit inappropriate were identified above. The 

obvious answer to the second problem would he to use a high enough order polynomial LS 

fit so as to ensure that step changes were suitably approximated. Unfortunately a high order 

polynomial also allows points of curvature which could trace small scale structures. 

Another disadvantage of least squares fitting is the degree of enhancement of small scale 

structures on the profile is dependent on the degree to which the profile approximates the 

type of curve ( straight line or quadratic, etc.) being fitted. This is a contravention of the 

additive invariance criterion in section 2.2. 
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Filtering - linear and nonlinear low pass 

A simple averaging process may be used to produce a curve which estimates the background 

profile. However, averaging (linear low pass filtering) is unable to preserve the sharp corners 

of profiles containing step, or near step, changes. The profile formed by averaging is thus 

inadequate because the smoothed corners prevent this profile from being raised to the desired 

level underneath the original data. Consequently the resulting value, taken as the origin of 

the shifted curve, is inaccurate. 

Nonlinear low pass filtering, specifically median filtering, is appealing because the filtered data 

can accurately reconstruct step changes. Equally attractive is the ability of the median filter 

to generate the underlying profile without small scale structures and without contributions 

from those small scale structures. This is subject to a suitable choice of window size for the 

median filter14 • 

Median filtering has the disadvantage, in this application, of being polarity invariant. In other 

words, small negative, as well as positive, deviations are excluded in the intermediate profile 

which is generated. In the case of small positive deviations, this is exactly what is required. 

The intermediate profile will be raised under the original profile until it makes contact at 

all points except where the deviation is. Narrow negative deviations (valley-like structures 

in the image) are entirely eliminated when using median filtering as slope compensation. 

The elimination of negative structures is illustrated by Figure 3.8. This is not necessarily a 

problem because nodule structures are always positive structures. It does, however, produce 

unsightly black regions in the output image. 

Erosion and dilation for slope compensation 

Standard morphological processes of dilation and erosion were implemented in an attempt to 

generate the underlying profile. 

The basic idea is to erode the profile to the stage where the small scale structures have been 

eliminated, and then to dilate the profile to its original size without the small scale structures. 

Such an erosion followed by a dilation constitutes a opening, as defined in section 3.2.3. This 

process is conceivable because of the irreversibility of these morphological processes. 

Note that it is a one dimensional data set, the image profile, which is to be opened. The 

14The window size of the median filter must be greater than twice the width of the structure. 
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Figure 3.8: The elimination of narrow negative structures when using median filtering as the 
means of slope compensation for the rotating rod. mino is the maximum of the two minima 
and will be used in the intermediate profile. mino is identical to the current pixel value and 

· therefore this current pixel will be set to zero in. the output (difference) image. 

opening can thus be implemented as one dimensional greyscale opening15 or as a two dimen­

sional binary opening. The binary image is represented in Euclidean 2-space where a point 

p(x,y) is set on if, and only if, y :5 f(x); where f(x) is the greyscale profile. A binary image 

generated in this way is the one dimensional analogy of the umbra. 

Slope compensation using morphological operators will be discussed in terms of the binary 

image. Binary erosion replaces an on pixel by an off pixel if any one of its eight neighboring 

pixels are off. Conversely, dilation replaces an off pixel by an on pixel if any one of its 

neighboring pixels is on. These operations assume a square 3x3 structuring element. 

15 A one dimensional greyscale opening differs from the standard (two dimensional) greyscale opening in the 
concept of a neighbourhood. In one dimension the neighbourhood is a number of pixels on either side of the 
cunent pixel. 
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Erosion of the binary image was iterated16 until the small scale structures were eliminated. 

The number of iterations is directly proportional to the width of the structures17• See Figure 

3.9A for an illustration of the binary erosion and dilation processes. An equal number of 

dilation iterations as erosion iterations are used. 

The binary opening was successful in removing small scale structures superimposed on a 

constant background. Unfortunately, the opening was incapable of effectively eliminating 

small scale structures from sloping surfaces. Binary erosion was unable to completely remove 

nodule data from the profile. After a certain number of iterations a non-reducible profile was 

attained. Any further erosions would not alter this profile. If the nodule data is not entirely 

removed, the little that is left is regrown in the dilation process. This is illustrated in Figure 

3.9B where a nodule, superimposed on a sloping surface, is eroded and dilated. 

Non-reducible bumps in lD slope compensation could be solved by using an area (as opposed 

to a line) about each rod orientation and then opening that area. This, however, turns out to 

be the same as performing a standard greyscale opening on the entire image and then using 

the rotating rod. 

3.4 From the Rotating Rod to Greyscale Opening 

. 
One dimensional slope compensation for the rotating rod using binary morphological tech-

niques was investigated. The use of binary morphological operators is easy to understand, 

and to visualise (see Figure 3.2). 

Binary erosion may be thought of as the peeling off of a thin layer, from the image, with 

each application. Binary dilation, on the other hand, applies a thin layer to the image with 

each iteration. Thus an erosion would remove fine structure, leaving the large predominant 

structures. An interesting notion is a Mandelbrot figure, where the effect of iterative binary 

erosion, on the pattern, would be to progressively eat away at the fine scale structure revealing 

the large scale features. It seems logical to extend this idea of successive detail removal into 

~ hree dimensions. For a crude example, imagine one of those World War II underwater mines 

- shaped as spheres with protruding detonators. A number of erosion iterations would remove 

the detonators, leaving the sphere. The process of erosion would also decrease the radius of 

the mine because of the peeling action. The next step is to dilate the mine and effectively 

16Increasing the size of the local region is equivalent to increasing the number of iterations. This will be 
discussed further in section 3.5. · 

11The number of erosion iterations should be just greater than than the radius of the nodule to ensure it is 
totally eliminated. 
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Figure 3.9: A. A sequence of binary erosion iterations on the original image gradually elim­
inates the nodule. This intermediate binary image is then dilated to raise the background 
surface to its original height. The difference image contains the undistorted nodule. B. This 
example shows the identical nodule (as in A) superimposed on a sloping surface. Erosion 
iterations are unable to entirely remove the nodule because a non-reducible shape is formed. 
Consequenlty the difference image shows a distorted nodule; it should have appeared as in A. 
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regrow it to its original radius. Now if we were to subtract, conceptually, the eroded mine 

(sphere only) from the original mine, we would be left only with the detailed information 

(detonators). 

After some thought about this idea of eroding in three dimensions it should become clear 

that greyscale erosion does almost exactly that. Imagine that the mine, discussed above, was 

quantised into voxels. If we were to replace each voxel by the minimum intensity18 voxel of 

its immediate neighbours we would erode away at the detonator from all sides. The difference 

between finding the minimum value and peeling off 19 is that constant surfaces do not shed a 

layer when the minimum neighbourhood value is used to replace each voxel. This difference is 

insignificant in a morphological opening because the regrowth, or dilation, process is entirely 

complementary. In other words, the opened surface will be identical regardless if it was 

generated by min max methods or by peeling and reapplying. Of course, the intermediate 

image (or mine) will be slightly different. 

The informal argument above makes it seems likely that a greyscale opening would be appro­

priate for generating an image which has been stripped of its detail. It remains to subtract 

this opened image from the original in order to produce an image containing the detail only. 

3.5 Greyscale Opening and the Top-hat Transform 

A greyscale opening is a composite operation of a greyscale erosion and a greyscale dilation. 

As described in section 3.3 binary erosion is achieved by replacing an on pixel by an off pixel 

if any one of its eight neighbouring pixels are off. Extending this binary concept to greyscale 

involves replacing each pixel by the minimum value in its neighbourhood. Several iterations 

are often required to erode small scale structures sufficiently. However, increasing the size of 

the local region, from which the minimum is found, is identical to increasing the number of 

iterations20 • 

18 lntensity in this example would be measured as radial distance from the centre of the mine. 

19This argument is somewhat informal. Careful consideration of the actual implementation of peeling off 
in two, or three, dimensions reveals the discrete nature of the problem. Simply turning an on pixel off, if 
any of its neighbours are off, is not an accurate implementation of our conceptual understanding of peeling 
off, especially if this process is iterated. Peeling off is better modelled by inspecting a radial neighbourhood. 
Extending this to three dimensions implies that a spherical region is the most suitable neighbourhood if peeling 
off is to be simulated. This is the well known rolling ball structuring element (to be discussed in section 3.5). 

20 The relationship between number of iterations and footprint dimension has, as yet, only been validated 
for the simple flat-topped square structuring element. 
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This description of greyscale erosion made no mention of a structuring element (SE). The 

effective SE, for the process described above, was a flat-topped square. Using more complex 

SEs involves inspecting the distances between the image and the SE for each image pixel in 

the scope of the SE. The current pixel is then replaced with the intensity of the image pixel 

which is closest to the SE. 

Greyscale dilation is the complement of greyscale erosion. The eroded image is subjected 

to greyscale dilation to produce the opened image. Opening X by structuring element B is 

denoted as X o B = (Xe B) EBB. The enhanced image is generated as the difference image, 

original minus opened image. Thus if the original image is X, then the enhanced image is 

given as: 

Xenhanced = X - (XO B) 

An image enhanced by this process, original minus opened, is said to have been top-hat 

transformed [18, pp701]. 

3.5.1 Simple greyscale opening 

The simplest opening is that which uses a flat-topped square as a SE. The operation of 

an opening using such a SE degenerates to generating an intermediate image by :finding the 

minima in each local region. This intermediate image is then processed to produce the opened 

image by finding the maxima in each local region. 

Openings using a disc, a hemisphere, a parabaloid and a cone as the SE have also been 

investigated. These structuring elements are shown in Figure 3.10. 

3.5.2 The rolling ball algorithm 

Greyscale opening, or closing, is called the rolling ball algorithm when the structuring element 

is a sphere21 • This technique has proved successful in applications ranging from angiogram 

enhancement [l] to the segmentation of the surface froth structures in flotation cells [31]. 

Based on the discussion of section 3.4, iterative applications of the rolling ball algorithm on 

an image may be termed peeling the image. 

:u It is sufficient to use a mathematical model of a hemisphere to simulate a sphere. 
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B. Flat Disc 
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C. Hemisphere (rolling ball) 

D. Parabaloid 

Figure 3.10, Illustration of common struct,uing elements 
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3.5.3 Examination of the greyscale openings 

The top-hat transform using the rolling ball is intended as a detail enhancement process 

and/or a dynamic range reduction process. With regard to detail enhancement the rolling 

ball may be inappropriate if it fits into nodule structures in the image. This is because the 

nodules themselves approximate a hemispherical mound in the image. 

This fitting of the rolling ball SE into the nodules is undesirable because S' contains these 

structures and consequently Y does not. The solution is to use a ball large enough so as not 

to fit into nodule structures. A large ball has the disadvantage that intermediate structures, 

i.e: smaller than the ball but larger than the nodules, are not eliminated. Remember that 

increasing the size of the ball decreases the curvature of the ball which prevents the ball from 

fitting into the nodule structures. A flat-topped square, or disc, has zero curvature regardless 

of its dimension. In other words a square, or disc, just larger than the nodules appears to be 

more suitable than a ball because the ball would have to grow unacceptably large in order 

for its curvature to be sufficiently diminished. 

The size of the SE has an important bearing on the resultant image. With a flat-topped square 

all objects oflesser dimension, in any orientation22 , will be enhanced. Thus increasing the size 

of the SE increases the sizes of objects which will be enhanced. For maximum discrimination 

the SE is designed to be just larger than the size of the sought after structures. In other 

words, if a nodule with a diameter of five pixels is to be enhanced, a SE of 7x7 is appropriate. 

The dimension of the SE is always an odd number of pixels to ensure symmetry. 

Operation of a simple top-hat transform on the test image indicates that the top-hat transform 

is additively invariant (see Figure 2.3). 

3.6 A Comparison of the Rotating Rod · and the Top-hat 

Transform 

The effective scope of all the rod orientations, used in the rotating rod algorithm, and the 

disc structuring element (SE), used in the top-hat transform, is the same. However, there is 

a subtle, but significant difference in the operation of these algorithms. 

22 Contrast this to the rota.ting rod where a.n object must be smaller in all dimensions for it to be enhanced. 
This is discussed in more depth in the next section. 
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Consider "islands" of various shapes and sizes in a binary image23 • Imagine that the disc SE 

is partitioned into sectors, where each sector corresponds in orientation to the rods of the 

rotating rod. Allow each sector to collapse to a single pixel line at each orientation. If this 

partitioned SE is to behave identically to the original disc SE it must obey the following rule: 

the binary output value must be 1 if any of ~he sectors do not fit; it will be O only if all the 

sectors fit. This is stated formally below. 

Let F denote a boolean variable which has the value 1 if the sector fits24 into the image 

structure, and a value O if the sector is restrained at any point from fitting in completely. At 

every position in the binary image, the binary output value is given as 

if there are n orientations. The V and -, represent the logical OR and logical NOT operators, 

respectively. 

By the definition of the rotating rod algorithm, the binary output value, for an image processed 

by the rotating rod, is 

where /\ is the logical AND operator. 

Thus, the top-hat transform, with a disc as the SE, will retain any island if the size of the 

island in any orientation is less than the radius of the disc. Conversely, the rotating rod 

algorithm will only retain an island if the size of the island is less in all orientations than 

the length of the rod. In summary, the rotating rod will eliminate elongated islands if the 

length of the island structure is longer than the rod length, whereas the top-hat transform 

will retain elongated islands if the width of the islands is less than the radius of the SE disc. 

3.7 Summary of the Morphological Enhancement Modules 

The morphological enhancement modules are summarized in terms of the requirements de­

scribed in section 2.2. A table, 3.1, for the evaluation of additive invariance, structured noise 

elimination, artifact production, rotational invariance, robust operation and processing time 

is provided below. As in section 2.4, processing time is written in order notation, followed by 

23 A binary image is considered, as opposed to a. greysca.le image, to a.void unnecessary complexity. The 
concepts discussed in this section a.re equa.lly applicable for greysca.le images. 

24 For a. sector, or a. rod, to fit inio an image structure, it implies that the binary image has the va.lue 1 for 
a.II pixels in the scope of that sector, or rod. 
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a label which represents the predominant type of operation. The interpretation of processing 

time is the same as in section 2.4. 

Enhance- Additive Removal oJ Artifact Rotational Robust Processing 
ment invariance structured production invariance operation time 
modules noise 

Rotating NO YES - uses N025 YES fair O(n2
) 

Rod. background boolean 
Algorithm subtraction 

Top-hat YES YES - uses unknown - YES NO O(n2
) 

Transform background appears not integer 
ation subtraction 

Table 3.1: Comparison of morphological enhancement techniques. 

With regard to enhancement for best visual representation, reduced dynamic range and detail 

enhancement are also taken into consideration. The morphological techniques use background 

subtraction and thus provide dynamic range reduction, for the most part of the image. Iso­

lated regions of high intensity might still exceed the required dynamic range. 

Although the simple top-hat transform preserves only those structures which are smaller than 

the footprint of the SE, it is possible, in principle, to do better. With a top-hat transform, 

all anatomical detail which is smaller than the SE will be enhanced. All of the enhancement 

modules discussed thus far suffer from the problem of enhancing anatomical detail. 

There exists another technique which has not been extensively investigated. This technique is 

called image warping. It operates by warping a reference image26 to register with the image to 

be diagnosed. The warped reference image is then subtracted from the x-ray under inspection. 

The difference image, thus generated, should, in principle, contain only information which is 

indicative of some pathology. Naturally normal anatomic detail (like blood vessels) will 

appear in both images and should therefore not be enhanced. 

\ 

25 The rotating rod does not generate artifacts, but it does remove information. 

26 This image is chosen to be representative of the average chest x-ray and to be clear of any pathology. 
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Chapter 4 

Image Analysis 

4.1 Introduction 

The image analysis module in the automated nodule detection system is concerned with 

processing an input image to produce data which may be classified. A common form of 

image analysis is segmentation. An image can be segmented into two or more regions based 

on certain characteristics. In this application we are interested in detecting the locations of 

possible nodule sites in an image. The nodule in the image can be reasonably accurately 

modelled. There are, however, some factors which result in a loss of model accuracy. These 

factors will be discussed in section 4.4.6 where the analytic nodule model is developed. 

The ability to model the objects being detected and the uncertainty of the locations of these 

objects make this problem suitable for the technique of template matching. Template match­

ing, using a model of the object to be detected, is the brute force approach according to 

Rosenfeld [10]. Rosenfeld goes on to introduce the Hough transform as an alternative ap­

proach to finding specific patterns in an image. 

In this chapter the requirements of the image analysis module are discussed. Both the Hough 

transform and a variation of template matching require an edge detected image. Before 

investigating template matching and the Hough transform, edge detection as a preprocessor 

to the image analysis module is discussed. Then the main sections of template matching and 

the Hough transform are presented. Finally a summary of all the image analysis modules is 

made. 
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4.2 Requirements of the Analysis Module 

Template matching is used as an image detection procedure which produces a surface with 

peaks corresponding to the centres of suspected objects. The Hough transform, an alternative 

image analysis procedure, also produces a surface ( or surfaces) where peaks correspond to 

the centres of suspected nodule sites. For the application of nodule detection in chest x-ray 

images the image analysis module should satisfy the following requirements: 

• Additive invariance: the processing of identical objects in an image should produce 

an equal output, in shape and in intensity, regardless of the position of the object in 

the image, and regardless of the average energy in that local region of the image. 

• Robust operation: the analysis operation should be insensitive to noise. 

• Short processing time: for the same reason as that mentioned in section 2.2, pro­

cessing time should be minimised. 

• Good discrimination: the output for a hit should be easily distinguishable from a 

non-hit. 

• Invariant measure of match: allows comparison of the goodness of a match regardless 

of the template1 and the image. 

• Intensity matching: for this application the intensity (vertical) scale of the object 

being detected is as important as the shape description and should therefore be included 

in the measure of match. This requirement differs from the standard correlation tech­

niques, where output intensity is either proportional to input intensity or invariant to 

input intensity. 

An example of intensity matching is provided in Figure 4.1. Figure 4.IA shows three , 

nodule models which are identically shaped but differently scaled in the intensity di­

mension. If it is desired that objects of the intensity of the right hand side (RHS) model 

are to be detected, then we would hope for an output, after template matching, which 

resembled 4.IB. The template matching section, 4.4, will show that many correlation­

type template matching procedures actually produce an output as in Figure 4.IC. In 

other words, these procedures are intensity invariant. 

1 An analogous concept to the template exists when using the Hough transform. The template may he 
likened to the algorithm which determines the filling of the Hough accumulator array. 
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A. Test image containing 3 nodule models 

B. Resultant surface after using intensity matching for the RHS nodule 

C. Resultant surface without using intensity matching 

Figure 4.1: Illustration of intensity matching in template matching 

4.3 Edge Detectors for Image Analysis 

Three edge detectors were investigated for use in the image analysis module. The motivation 

for the use of the chosen edge detectors is understood by the requirements of the edge detection 

routine in this context. In general, edge detectors are very sensitive to noise because of their 

inherent differentiation. The sensitivity of the edge detectors does not only amplify noise, 

but often it also results in true edges being poorly defined in the edge detected image. For 

the application of preprocessing to subsequent image analysis it was required that the edge 

detection process be robust and produce crisp edges. 

These requirements are similar to Canny's [4] edge detection performance criteria of: 

51 



• Good detection. By maximising the SNR there should be a low probability of obtaining 

false edges and a low probability of falsely enhancing a nonedge. 

• Good localization. The detected edge should be as close as possible to the centre of the 

true edge. 

• A single response for a single edge. Only one dominant peak should be present, for a 

single edge, in the edge detected output. 

The edge detector which was first attempted was the well known Sobel operator. The Sobel 

operator computes a measure of the gradient in the horizontal and vertical directions. The 

output intensity at each position is then given as the vector sum of the horizontal and vertical 

gradient strength. This edge detector was found to be too sensitive to noise, with the result 

that undesired, or false, edges were enhanced. 

The second edge detector was the difference of areas edge detector (DOAED). The DOAED 

was investigated because of its tunability, its noise robustness, and its history of success in 

this application [3]. The DOAED uses two adjacent windows of a given size. The window 

size is a user defined parameter, and it this parameter which allows the DOAED to be tuned. 

The one dimensional summations of the intensity values of the pixels within each window 

are computed. The output at the centre pixel value is the difference of the two summations. 

These windows are oriented vertically and horizontally, and centred on the current pixel. The 

vector magnitude of the horizontal and vertical outputs is taken as the edge detected value 

for that current pixel. 

This edge detection process can be mathematically described as the convolution of the edge 

detector windows with a data stream, viz. the pixels. The edge detector can be analysed 

using linear filter theory. The one dimensional description of the filter is: 

-1 W 

h(n)= L 6(n+i)-I:6(n+i) 
i=-W 

where Wis the width of each window and 6(n) is the impulse function. 

This filter has the disadvantage that all edges are spread by the convolution process. The 

amount of spread is directly proportional to the window size of the edge detector. It is desired 

that the edge detector is robust and, at the same time, produces a narrow (unspread) output 

for all edges. These requirements appear to be contradictory because both the robustness 

and the spread of the DOAED are proportional to the window size. A possible solution to 

this problem is provided by the non-spread edge detector discussed below. 
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The third edge detector was a refinement of the difference of areas edge detector called the 

nonspread edge detector (NED). The NED operates a~cording to the algorithm below: 

For every pixel in the image 

1. Compute the absolute value of the difference between the horizontal windows about the 
current pixel. 

2. Compute the absolute values of the differences between the horizontal windows centered 
behind and· ahead of the current pixel. 

3. Decide whether the current difference is greater than both the difference behind and the 
difference ahead, i.e: is the current difference a local maximum in the horizontal direction? 

4. Perform the same computations in the vertical orientation. 

5. If either the vertical or horizontal differences are local maxima then write the output value, 
for the current pixel, as the vector magnitude of the vertical and horizontal components. If 
neither differences are maxima then write a zero as the output value. 

End. 

The NED has the advantages of (a) being as robust as the DOAED, (b) being tunable, and 

( c) generating a single pixel line for an edge. 

The operation of the difference of areas and the nonspread edge detector is illustrated by 

Figure 4.2 which shows three surface plots. The first surface plot shows the model of a 

nodule. The second plot indicates the output after the application of the difference of areas 

edge detector. The third surface plot shows the output of the nodule after edge detection 

with the nonspread edge detector. The two cross sections (profiles) are taken through the 

difference of areas image and the nonspread image at the same row. These profiles illustrate 

the narrow response of the nonspread edge detector. 

4.4 Template Matching 

4.4.1 Introduction 

Template matching has been identified as an image analysis technique in the detection of 

nodules. Template matching is the two dimensional extension of the one dimensional matched 

filter. To detect nodules using template matching we generate a model of the x-ray image of 

a nodule - this is the template. 
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Nodule model DOA edge detected Nonspread edge detected 

I I I 

- -

I I I 

Cross section through DOAED nodule Cross section through NED nodule 

Figure 4.2: Comparison ofthe difference of areas ( doa) edge detector and the nonspread edge 
detector when applied to a model of a nodule. Cross sections through the edge detected 
images are also shown. 

There are several ways of implementing template matching. Section 4.4.2 discusses the cross­

correlation technique and three variations on this theme. An additional implementation of 

template matching, namely variance matching, is also investigated. 

4.4.2 Template matching using a correlation measure 

The theory of template matching is an extension of the one dimensional matched filter theorem 

[29] found in most signal processing texts. The following discussion is that of optimal linear 

operators as found in [24]. Rosenfeld [24] states at the beginning of chapter 9 that nonlinear 

operators may give better results. The theory of template matching is developed from first 

principles by Rosenfeld in [24, chapter 9] and is summarized here for completeness. 

A measure of match ( or mismatch) between two functions f and g over a local region A may 

be made using one of several formulae, or a user-defined formula. Commonly used formulae 

include 

54 



Tax If- g I, JL I f-g I dA and 

Using the last formula, we have 

For a given ff f 2 dA and ff g2 dA, ff f g dA may be used as a measure of match 2 • The same 

conclusion can be reached using the Cauchy-Schwarz inequality. 

In template matching, we assume that the footprint of f, the template, is much less than 

the footprint of g, and that f is zero outside a small region A. Template matching is then 

achieved by shifting the template f into all positions relative tog, the image, and computing 

ff f g dA for each shift. 

We have 

JL Jg dA = JL f(x,y)g(x + u,y + v) dxdy (4.1) 

where ( u, v) is the absolute pixel location in the image. 

But, since f is zero outside the region A, the right hand side of the previous equation may 

be written as 

Jj_: f(x,y)g(x + u,y + v) dxdy 

which is the cross correlation C19 off and g. 

The correlation coefficient r is formally defined (22] as 

(4.2) 

Note that -1 ::; r ::; 1, where -1 represents a perfect negative match and +1 represents a 

perfect match. A value of O is interpreted as zero match between f and g. 

2 ff (f - g)2 dA was used as a measure of mismatch. 

55 



Since if A /
2 dA is constant, a normalized correlation measure of 

may be used, as is given in [24]. This normalized measure will vary, however, if different 

templates are used. This is in contrast to the correlation coefficient r of equation 4.2 which 

is an invariant measure of match. 

A larger value of A will, in general, provide a more robust measurement for r because the 

area of integration has been increased. 

4.4.3 Evaluation of correlation template matching methods 

The standard technique and three variations of template matching using correlation measures 

are evaluated in terms of the image analysis requirements. Specifically, the requirements of (i) 
additive invariance, (ii) match measure invariance and (iii) intensity matching (as discussed 

in section 4.2) will be investigated for each variation of template matching3 • 

Consider matching the template f with the image 9. Within 9 are two potential matches 91 

and 92 • 91 has the identical mean value as J, but 92 has a different mean in its local region. 92 

is identical to 91 in all other respects. We cari write 92 as 91 + k, where k represents the mean 

difference between 91 and 92 • We compute the output values at a and b, the centre locations 

of 91 and 92· Additive invariance is then determined by computing the output at location a 

and the output at location b. An identical output is required for additive invariance to be 

satisfied. 

Simple correlation measure 

The simple correlation measure uses equation 4.L 

The template f is designed to accurately model the desired signal. Therefore we can write 91 

as / because they are identical signals within their respective local regions. Thus 92 becomes 

f + k. 

3 Recall that additive invariance implies an equal output for an object, regardless of its background surface; 
match measure invariance provides a measure of the degree of match, irrespective of the image and the template; 
and intensity matching uses the vertical scale information of the object as an additional matching parameter. 
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At location a the output value is computed as 

fl f 91 dA = fl /2 
dA 

while at location b the output value is 

fl f.(91 + k) dA =fl/.(/+ k) dA 

which simplifies to 

Uncorrelated high intensity regions, indicated by the value of k, give larger output in the 

correlation surface than genuine matches. This is not surprising because, according to Duda 

and Hart [8], " ... using cross-correlation in template matching involves a tacit assumption 

that the picture energy in every window is roughly the same." This assumption is clearly not 

satisfied, in general. 

This method does not give an invariant measure of match. There is also no intensity matching. 

Correlation measure with zero-mean template 

Correlation measure with zero-mean template uses equation 4.1. with the modification of a 

zero-mean template, ff A f dA = 0. 

At location a the output value is computed as JIA /91 dA, while at location b the output value 

is ff A f.(91 + k) dA 

The output at b simplifies to 

J L / 91 dA + k fl f dA 

which reduces to ff A /91 dA because ff A f dA = 0 

Thus the output values at a and bare identical and therefore the zero-mean template satisfies 

the additive invariance criterion. This method does not give an invariant measure of match. 

Also, there is also no intensity matching; instead output intensity is proportional to input 

intensity. 
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Normalized correlation measure 

In this section, and in the next, a similar result will be used. For this reason it is developed 

here in a generic manner. The result sought is the output at location b when the template is 

unspecified and the normalized cross correlation equation, 4.2, is used. Thus, computing the 

output value at b we have 

Which expands to the generic form below 

✓ ff A J2 dA. [ff A 91 2 dA + 2k ff A 91 dA + k2] 
(4.3) 

Use of equation 4.1 with normalization gives equation 4.2 which is the normalized cross 

correlation measure. The template used in normalized correlation measure is designed to 

match the signal and therefore we can write 91 as f. 

At location a the output value is computed as: 

T = ff A 12 dA = 1 

JffA/2 dA.ffA/2 dA 

and thus the correlation coefficient is, as expected, a perfect match. 

At location b, using equation 4.3 with 91 = f, we have 

ff A J2 dA + k ff A f dA 

✓ ff A J2 dA. [ff A J2 dA + 2k ff A f dA + k2
] 

Squaring the numerator, for comparison with the expression under the square root sign, we 

have 

numerator
2 = [fl J2 

dA] 
2 

+ 2k fl f 2 
dA. fl f dA + [ k fl f dA] 

2 

while. the denominator squared ( dropping the square root sign) evaluates to 
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denominator
2 = [IL 12 

dA] 
2 

+ 2k IL 12 
dA. IL l dA + k2 IL 12 

dA 

So, the quotient is not unity because the last term of the numerator and denominator differ 

and therefore the normalized correlation measure does not satisfy the additive invariance 

criterion. This method does give an invariant measure of match, but there is no intensity 

matching. 

Normalized correlation with zero-mean template 

Normalization gives an invariant measure of match, while a zero-mean template gives additive 

invariance. It is hoped th.at this combination will offer the advantages of both normalized 

and zero-mean correlation. 

Normalized correlation with zero-mean template is described by equation 4.2 with the modi­

fication of a zero-mean template, ff Al dA = 0. 

At location a the output value is computed as: 

At location b the output evaluates to equation 4.3. But, with ff l dA = 0, and distributing 

ff A J2 dA in the denominator, we get 

✓ ff A 91 2 dA.ffA J2 dA + 2k ff A 91 dA.ffA J2 dA + k2 ff A J2 dA 

So, the quotient is not the same as at a because of the additional terms 2k ff A 91 dA. ff A J2 dA 
and k 2 ff A J2 dA in the denominator. Therefore normalized correlation with a zero-mean 

template does not satisfy the additive invariance criterion. This method does give an invariant 

measure of match, but there is no intensity matching. 

Summary of correlation-type template matching 

The correlation methods investigated as template matching routines are summarised in terms 

of the requirements of additive invariance, invariance in match measurement and intensity 

matching (see Table 4.1). 
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Type of template matching Additive Invariant Intensity 
invariance measure of match matching 

Simple correlation measure NO NO NO 

Correlation measure YES NO NO 
with zero-mean template 

Normalized correlation measure NO YES NO 

Normalized correlation NO YES NO 
with zero-mean template 

Table 4.1: Comparison of template matching techniques using correlation measures. 

From the table it is evident that none of the methods use the intensity of the object be­

ing detected as a matching criterion. It is also clear that preprocessing is necessary for all 

implementations of template matching, except the zero-mean template matching procedure. 

The zero-mean template method, however, has the disadvantage that it does not provide an 

invariant measure of match. 

4.4.4 Template matching using a variance measure 

An alternative scheme for template matching was developed. This method uses the inverse 

of the variance between the image and the template as a measure of match. It also requires a 

preprocessed image with a constant background intensity because it does not satisfy additive 

invariance. This variance matching method has been designed to give an invariant measure 

of match and to provide intensity matching. For every pixel in the image, we compute: 

1 
(4.4) 

where energy = ffA(f - k)2 dA (k is the intensity le;el on which the template f is super­

imposed), giving a value of ½ on a level region of the image. A complete match has the 

denominator of equation 4.4 reducing to unity, and thus giving a match measure of unity. 

Alternatively, a match measure of zero arises as the denominator grows very large, as in the 

case of a large deviation from the template. 
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4.4.5 Template matching using first differences 

Some authors believe that edge detection prior to template matching is a better practical 

solution. 

This is the opinion of Woods [10, pp77-81] where he writes "The matched filter can be derived 

by maximising a filter's output SNR. A shortcoming of this approach, however, is that it does 

not obtain the bias correcting energy term. In fact, ... the matched filter thus obtained is 

more sensitive to signal energy than to signal shape. The advice given there to correct the 

problem is to use a so called derivative matched filter to emphasize the high-frequency or 

edge influence on the detection." 

Rosenfeld also supports this method. He states: "Because images are usually quite correlated, 

a copy of the desired pattern is usually not the ideal matched filter, it is better to cross­

correlate the first differences of the pattern and the image with each other. So this implies 

that edge detected template matching is a better proposition" [10, pp268]. 

A short discussion of edge detectors was provided in section 4.3. The image and template 

should be subjected to an identical edge detection process. This is to ensure that the template 

(model of the nodule) is modified in the same manner as the nodules in the image. 

Once the image and template have been edge detected, it is still necessary to perform the tem­

plate matching. We are again faced with the decision of which template matching paradigm 

to ·use. 

4.4.6 Design of the template 

In order to perform template matching, it is necessary to generate an accurate template. The 

template should best model the object being detected. 

The received x-ray energy I(x, y) is a function of both the x-ray attenuationµ of the material 

through which the beam passes and the thickness of the material at that point z(x,y). Thus, 

for an incident x-ray energy source [0 , we have: 

( 4.5) 

The exponential nature of the x-ray equation 4.5 implies that the intensity of a nodule image 
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will differ as a function of the attenuation4 of the background tissue. For example, a nodule 

behind a rib will produce an image of lower intensity than the same nodule obscured by lung 

tissue only. Processing is largely simplified if the image can be transformed into a domain 

where attenuation is additive. Such a transform is investigated. 

Transformation of the x-ray image into a linear attenuation domain 

The measure of x-ray film blackening5 is the photographic density: 

. (Lo) D = log10 L ( 4.6) 

where L 0 and L are the incident and transmitted light intensities, respectively for the black­

ened developed film [15]. Density is generally plotted as a function of logarithmic exposure 

to light, to produce a characteristic S curve. In diagnostic radiology this relation is appli­

cable because x-radiation is converted to light via intensifying screens [15]. In practice the 

linear portion of the density versus log exposure curve is used [15, pp415], making density 

proportional to log exposure. Exposure is synonymous with the received x-radiation /(x, y), 

and therefore we can write 

( 4.7) 

where 1 , which is the slope of the density versus log exposure curve, is a property of the film. 

Substituting equations 4.5 and 4.6 into equation 4. 7 yields 

(4.8) 

Simplifying and dropping the logarithm produces 

( 4.9) 

4 Attenuation is used loosely in this section to refer to the product of the attenuation coefficient µ and the 
beam path length z. 

51n diagnostic radiology conventional photographic film is used. Exposure to light causes the silver bromide 
grains of the film to become developable (to blacken). 
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Now L, the transmitted light through the film, is essentially the data which is digitised. 

Rearranging the equation above to make L the subject results in 

(4.10) 

Equation 4.10 represents the raw digitised image. It is easily seen that the transformation 

which results in attenuation being additive is the natural logarithm. Making this transfor­

mation produces 

( 4.11) 

which is an image where greyscale intensity is directly proportional to attenuation. This 

simple transformation, taking the natural logarithm of the image, is applied prior to any of 

the processing mentioned in this thesis. 

Modelling the image of a nodule 

Reconsider modelling the image of a nodule for the design of the template. We are interested 

in nod(x, y), an analytical description of I(x, y) (see equation 4.5) for the nodule. For a sphere 

of radius R, we have 

( 4.12) 

where r = displacement from the centre of the sphere. Substituting equation 4.12 into equa­

tion 4.5 gives nod(x,y) = [0 e-2µ....;w-:::::;r. 

In conventional x-ray systems the image blurring is characterized by the point spread function 

(PSF). The x-ray beam is usually cone shaped and of fixed angular extent. 

The PSF beam(x,y) is convolved with the ideal nodule image nod(x,y) to produce nod'(x,y) 

as 

nod'(x,y) = nod(x,y) * beam(x,y) (4.13) 

illustrations of nod(x,y), beam(x,y) and nod'(x,y) are provided in Figure 4.3. 
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Received x-ray energy nod( x, y) after passing through a nodule 

The point spread function beam( x, y) is modelled here as a gaussian function 

Convolving nod(x, y) with beam(x, y) yields nod'(x, y), the image of the nodule 

Figure 4.3: Depiction of the formation of a nodule image shown as profiles and surface plots. 
Note that the signal nod(x,y) is shown inverted, as is typical of medical x-rays (which are 
photographic negatives). 

The template model nod'(x, y) can thus be constructed if R, µ, I0 , beam(x, y), L0 and, are 

known. These parameters could be determined empirically from the image by making several 

readings at the centre of, and at the background to, nodules in the image. Alternatively 

I 0 and beam( x, y) could be provided by the x-ray technician, µ could be read from a data 

book, L0 could be measured with a light meter, and , is usually known. Another scheme for 

determining the template parameters is to compare the analytical model with a real nodule, 

extracted from the image6 • The parameters of the analytical model can then be "tuned" until 

the best match is found. 

6 Any reference to image is a reference to the image which has been transformed into the linear attenuation 
domain, as it is this image on which all the processing is performed. 
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The model that is generated for the template matching procedure will be a function of the 

expected nodule radius R. It might be necessary to run the template matching procedure 

with a series of templates corresponding to different nodule radii. 

As mentioned in the introduction to this chapter, there are factors which result in a loss of 

model accuracy. 

Factors which reduce the accuracy of the nodule model 

• Irregular geometry: Nodules are modelled as spherical objects. Real nodules are not 

perfectly spherical, and in many cases are considerably distorted. Also, the discrete 

nature of an image becomes significant for small circular objects. 

• Variable size: Nodules of varying size often exist in the same lung. 

• Cavitation: Certain types of tumours restrict the blood circulation at their centres. 

This results in the cells at the centre dying and thereby reducing x-ray attenuation for 

this region. This effect alters the image of the nodule and consequently decreases the 

accuracy of the model. 

4.5 The Hough Transform as a Circle Finder 

4.5.1 Introduction 

The Hough transform is a method for detecting curves in images by exploiting the duality 

between points on a curve and parameters of that curve [2]. In particular, the Hough transform 

as a circle finder uses the information of the circle circumference only. 

The Hough transform may be thought of as a template matching process which matches 

on abstracted features. According to Wechsler [32], "The Hough transform is conceptually 

nothing more than a match filter, which can be derived from the Radon transform and 

operated by accruing evidence pointing to some specific interpretation." The Hough transform 

was initially developed for straight line detection, and with this interpretation Wechsler's 

statement is valid. The Hough transform has been extended for the detection of arbitrary 

curves in images [2]. Although the straight line Hough transform is a special case of the 

Radon transform, generalisations of the Hough transform (for example, as a circle finder) are 

not instances of the Radon transform. 
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This discussion of the Hough transform, section 4.5, is divided into three sections. The 

first section reviews the concepts behind the implementation of the Hough transform as a 

circle finder, as proposed by Ballard et al [16]. The next section discusses the author's 

implementation, including modifications, of this algorithm. The final section briefly discusses 

Ballard's use of the Hough transform circle finder for the detection of cancer nodules in chest 

x-rays. 

4.5.2 Overview of the Hough transform as a circle finder 

The Hough transform is used primarily for line detection. In (16] this idea is extended to 

circle detection. The Hough transform has subsequently been generalised for the detection of 

arbitary shapes [2]. 

Ballard's Hough transform circle finder 

The algorithm proposed by Ballard et al is essentially: 

Start Process: 

1. The original image is edge detected and thresholded to produce a binary image consisting 
primarily of lines and arcs. The binary image consists of black and white pixels only. The 
white pixels are those pixels which are the constituents of the lines and arcs. 

2. Store the locations of all white pixels of the input image in a list. . . 
3. · Generate the accumulator array using the above list and the original image. The process of 

generating the accumulator array is explained below. 

4. Threshold the accumulator array, as a function of radius, to find which elements of the array 
correspond to the centers of circles. 

End Process. 

'.1.he accumulator array is a three dimensional array. It may be written as AA[rJ[x][y]. Each 

of the AA[r] is an image plane or a two dimensional layer of (x, '!J) coordinates. There are 

Rma:x: - Rmin such layers, where Rma:x: and Rmin correspond to the maximum and minimum 

radius circles expected. The indicated number oflayers assumes unit steps in r. 

Let the input binary image to this algorithm be denoted p(.a;.), where .a;. is the location coordi­

nate (x, y). F9r each .a;. there is a set C=- which contains the centre locations of all the circles 
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which could pass through the pixel at ~ for a radius R. C:E. is thus the set of points on the 

circumference of the circle, centred at ~, having radius R. In Figure 4.4 the members of C:E.. 

are denoted by the shaded pixels. Each shaded pixel represents the centre of a circle which, 

with radius R, would pass through~-

Figure 4.4: The set of locations of all circle centres which could pass through the current 
pixel, for a given radius R. 

Let Xp denote the set of points { x I p(~) = white pixel}. The Duda/Hart algorithm [9] 

is used for filling the accumulator array. a(~) represents the circle's center location and 

rfa_) represents the circle's radius for each member of C:E.. The algorithm is shown below in 

pseudocode. 

if x E Xp then 
for all members of C:E. 

find a(~) 
find r(~) 
increment AA at position AA[r)[a] 

d 
.fend for en 1 
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Ballard's optimizing techniques 

Additional techniques were employed by Ballard et al to make the above algorithm compu­

tationally easier. These were: 

1. A procedure for generating the members of C:£ efficiently. 

To generate each member of C:£, Ballard et al computed the digitization of ( r cos(}, r sin 0) 

for a fixed r, while (} increases in increments of f:1(} ( f:1(} is a function of r). 

2. Including the directional component of the gradient at the current location in the orig­

inal image to eliminate unwanted members from C:£. 

Instead of using all the points as members of C:£, Ballard et al computed the direction 

of the gradient of the current pixel in the original image to select only members of 

C:£ that are likely to be circle centers. This computation produces an angle </J for the 

direction of the gradient. Now only select the members of C:£ that are in the range 

[<P - ~<P, <jJ + ~<P] . According to Ballard et al, this produces more accurate data and 

allows for faster computation of the algorithm. 

4.5.3 Implementation of the Hough transform as a circle finder 

The Hough transform has been implemented on a SPARCstation 2 using Ballard's algo­

rithm. 

Discussion of Ballard's suggested computational improvements 

• Ballard developed a procedure for generating the members of C:£ efficiently. 

This procedure was implemented with the use of a ~ine and a cosine look up table. 

This addition resulted in a fourfold decrease in processing time. f:1(} is computed as 

the reciprocal of the radius of the the nodule to be detected. The motivation for this 

decision is explained by Figure 4.5. 

• Computational efficiency can be improved by including the directional component of 

the gradient of the pixel in the original image to eliminate unwanted members from C:£. 

8This minimum is a consequence of the discreteness of the circle which results in two adjacent members of 
C,, existing in a vertical or horizontal line. A maximum of ,,/2 occurs where two adjacent members of C,, are 
adjacent diagonal pixels. -
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Figure 4.5: x represents the current circle center. The elements of Ci!!.. are the shaded pixels on 
the circumference of the circle centred at X· The minimum angle 6.0 is the angle subtended 
by two of the pixels of Ci!!.. to the circle centre x. The distance from x to the pixels on the 
circumference is the circle radius R; and the distance between any two adjacent members of 
Ci!!.. is a minimum8of one. Trigonometry thus gives 6.0 as arctan(k)- For small k, we have 
k ~ arctan(k), and thus k is a suitable equation for approximating 6..0. 

This idea was tested but is not being employed. The use of the directional gradient 

a_ctually degraded the results. 

The accumulator array, and classification 

Normalization of the accumulator array is achieved by dividing the contents of each plane by 

the radius it corresponds to (this idea was also employed by Ballard et a0. The motivation 

for this normalization is a consequence of the expected number of pixels in the circumference 

of a circle of radius R. This expected number of pixels is proportional to the radius by the 

relation: circumference = 211" R. 

After normalization the weight of any element of the array may be directly compared with 

any other element. This is highly desirable because it allows a single threshold value to be 

used for the entire array. Deciding on a threshold value is, however, a burden. It presents 

an unwanted parameter. A similar problem is found in attempting to classify the correlation 

surface, which the template matching procedures generate. Techniques for dealing with the 
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Binary Hough Transform Greyscale Hough Transform 

Input image is a thresholded edge detected Input image is an edge detected greyscale 
image image 

Storage of the white pixels of the binary in- No such storage is required 
put image in an array is necessary 

The accumulator array elements in a circle The accumulator array elements in a circle 
around each white pixel are incremented by around every pixel is incremented by the in-
a constant tensity of the current center pixel 

Table 4.2: Comparison of Binary and Greyscale Hough transform circle finding algorithms. 

classification of both the accumulator array and the correlation surface are explored in chapter 

5. 

The greyscale Hough transform circle finder 

The binary Hough transform, as proposed by Ballard et al requires two user input parameters. 

Any user input parameter is undesirable in an automated system and thus every effort is made 

to reduce the number of such parameters. The edge detected image must be thresholded to 

produce a binary image; this threshold value is the first parameter. The second parameter is 

the threshold value for the normalized accumulator array. 

The threshold value for the edge detected image is very difficult to decide on without human 

intervention. To overcome this requirement a greyscale Hough transform was designed. This 

modification of the binary to the greyscale Hough transform is not a reversion to the Radon 

transform, as was explained in section 4.5.1. 

The greyscale Hough transform is very similar in operation to the binary Hough transform. 

By way of explanation of the grey scale Hough transform, the differences between the binary 

and the greyscale Hough transform are supplied in Table 4.2. 

The implications of a gray scale input to the Hough transform are far reaching: 

• The burden of deciding on a threshold value, with or without human intervention, is 

eliminated. 

• No information is lost by a thresholding process. 

The binary Hough transform does, however, have some advantages over the greyscale trans-
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form: 

• It is considerably faster because only the white pixels need to be considered when gen­

erating the accumulator array. Contrast this to the greyscale transform which requires 

every pixel in the image to be considered. 

• It is an established procedure with dedicated hardware and presumably optimized soft­

ware available. 

4.5.4 The application of the Hough transform as a circle finder to nodule 

detection in x-rays 

Ballard et al used their algorithm for the detection of nodules in x-rays. They were successful 

in detecting large nodules (with radii, in pixels, of 6, 8 and 10) with no false hits. The success 

rate with smaller nodules was not as good. Edge detection was accomplished by filtering 

the image in the Fourier domain to enhance high spatial frequencies. The accumulator array 

threshold value was determined empirically. A threshold value, proportional to radius, was 

used in the accumulator planes corresponding to each radius in the search space. 

4.6 Summary of the Image Analysis Modules 

The analysis modules are summarised in terms of the required preprocessing and the require­

ments of invariance of match measurement and intensity matching (see Table 4.3). 

From Table 4.3 we note that the variance match measure is the only technique which takes into 

account the intensity of the object being detected. The table also shows that a preprocessing 

technique is required, in all cases but the zero-mean template match, to ensure the correct 

operation of the analysis process. 
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Image analysis module Required Invariant Intensity 
preprocessmg measure of matching 

for input image match 

Simple correlation measure constant back- NO NO 
ground level 

Correlation measure with none NO NO 
zero-mean template 

Normalized correlation measure constant back- YES NO 
ground level 

Normalized correlation measure constant back- YES NO 
with zero-mean template ground level 

Variance match measure constant back- YES YES 

ground level 

Binary Hough circle finder edge detected YES NO 
and thresholded 

Greyscale Hough circle finder edge detected YES NO 

Table 4.3: Comparison of image analysis modules. 
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Chapter 5 

Classification and Evaluation 

5.1 Introduction 

The fourth and final phase of the generic automated nodule detection (A.N.D) system, pro­

posed in section 1.2, is that of sub-image classification. According to the A.N.D model the 

purpose of this module is to classify sub-images, which correspond to suspected sites, in an 

image as either nodules or non-nodules. 

Humans are considerably more adept at object recognition, and/or classification, than are 

computers. However, even humans find the task of classifying nodules in chest x-rays par­

ticularly difficult, which presupposes that the ability of computers to perform proficiently is 

minimal. An artificial intelligence (AI) algorithm is perhaps best suited to this classification 

task, as, in principle, an AI algorithm simulates the role of a human. The research of this 

thesis, however, explored into deterministic classification schemes only. 

The two principle sections of this chapter are concerned with classification methods and with 

the evaluation of the automated nodule detection system. 

5.2 Classification as a Postprocessor to Matching 

The correlation surface is the output image produced by any of the template matching pro­

cedures. A single plane in the Hough accumulator array may also be considered a correlation 

surface. In a correlation surface, greyscale intensity is proportional to the degree of match. 
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Thus, the image analysis phase of the A.N .D system produces a surface, or surfaces, where 

peaks in the surface( s) correspond to the locations of suspected sites in the original image. 

An intensity peak in the correlation surface implies that the object, in the original image, 

centred at this position is a good match with the template. When the match is not perfect, 

the energy is distributed in a small region around the true centre, as opposed to being a single 

pixel in the correlation surface. Thus, for imperfect matches, there are lower rounded hills 

instead of high intensity single spikes in the correlation surface. 

The classification of sites by means of the correlation surface amounts to searching the corre­

lation surface for high intensity values. Because of the likelihood of spreading at a single true 

centre, it is necessary to modify the nature of the search. Classification may be achieved by 

various techniques, such as (i) locating the X 1 most likely suspected sites, or (ii) locating all 

the suspected sites above a certain given threshold. 

5.2.1 Classification using the Top X Suspects 

This classification scheme requires a single parameter, viz. the requested number X of sus­

pected sites. The following points describe an algorithm for determining the set of the X 

most likely nodule sites: 

1. Each pixel of the image has the associated attributes oflocation and intensity. A list is 

generated of all the pixels. 

2. This list is sorted2 with respect to the intensity field of each pixel. 

3. The first element of the sorted list (the coordinate of the pixel having the highest 

intensity) is accepted as the first element of the top X. 

4. The ith element of the sorted list is accepted as an element of the top X if it is not 

adjacent3 to any of the previously selected top X elements. If it is adjacent to any 

1The user specifies the number of requested sites. 

2 Conceptually, the list may be considered as being sorted. There are, however, computational techniques 
which can significantly speed up this process. 

3This classification scheme assumes that individual, non-overlapping nodules are to be detected. Due to the 
imperfection of the match it is likely that the next highest intensity pixel is a neighbour of the formerly selected 
pixel. Therefore, without an adjacency test, small clusters of suspected sites would exist for a single nodule. 
It is only desired that each nodule is identified by a single suspected site at its centre. The adjacency test 
ensures that each suspected site is at least the distance of the sought nodule radius from any other suspected 
site. 

74 



of the selected elements then the i + 1th element of the sorted list is inspected. This 

continues until the top X non-adjacent elements are found. 

5.2.2 Classification using a Threshold Value 

This classification scheme requires a single parameter, viz. the threshold value above which 

all local maxima are to be classified. The following points describe an algorithm, based on a 

threshold value, for determining this set of nodule sites: 

1. Each pixel of the image has the associated attributes of location and intensity. A list is 

generated of all the pixels which exceed the given threshold value. 

2. This list is sorted with respect to the intensity field of each pixel. 

3. The first element of the sorted list ( the coordinate of the pixel having the highest 

intensity) is accepted. 

4. The ith element of the sorted list is accepted as an element if it is not adjacent to any 

of the previously selected elements. If it is adjacent to any selected element then the 

i + 1th element of the sorted list is inspected. This continues until all the non-adjacent 

elements of the sorted list are found. 

5.2.3 A modification to classification if magnitude-only edge detection is 

used 

When the. Hough transform circle finder is used as the image analysis module, an additional 

requirement must be tested before accepting a suspect location as a hit. The suspected 

location must be examined to determine whether it is a hill (local maximum) or a valley 

(local minimum) in the original image. Only those sites which are hills in the original are 

accepted as hits. A valley, essentially a negative nodule, might give rise to a suspected site 

when using the Hough transform circle finder as a result of the edge detection preprocessing. 

All of the edge detectors mentioned, section 4.3, produced a magnitude-only output image. 

Consider a nodule described mathematically as nod(x, y). Consider now an image which has 

a hill and a valley, both modelled as nodules at (x1, Y1) and (x2, Y2), superimposed on a 

constant level, DC. We can write the image as 

lmage(x,y) =DC+ nod(x - x1,Y-Y1)- nod(x - x2,Y-Y2) 
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The magnitude-only edge detected image Edgelm would then be 

Edgelm(x,y) = EdgeNod(x - x1,y-yi) + EdgeNod(x - x2,Y-Y2) 

where EdgeNod(x,y) is the edge detected description of nod(x,y). 

Thus, if there are two structures in the image, which are identical but of opposite polarity, 

these structures will produce identical magnitude-only edge detected output. A solution to 

this problem is required in order to reduce the number of false hits. A simple modification 

is to compute the average greyscale intensity of a nodule sized region, in the original image, 

centred at the suspected site. The average greyscale intensity is then also computed for an 

annular region around the former area. False nodules, or valleys, are identified as having a 

higher average intensity in the surrounding annular region. Such sites are then excluded from 

the list of hits. 

5.2.4 Additional classification ideas 

Circularity in the correlation surface 

Correlation of a circular object with a circular template yields a peak in the correlation surface 

which is circular in cross section. Accordingly, in order to discriminate between nodule and 

non-nodule structures Giger et al used a circularity measure on the correlation surface [12]. 

The correlation surface was then thresholded at consecutive levels and the circularity of the 

"islands" in the thresholded image was graphed. It was expected that peaks corresponding 

to matched nodules would exhibit similar circularity for a range of thresholds. The effective 

diameter of a thresholded island was computed (see Figure 5.1) as 

2 
area of thresholded island 

7f' 

They then computed the degree of circularity, of each island, as the ratio 

area of island within circle 

area of island 

It was anticipated that peaks corresponding to nodules would exhibit both a high degree of 

circularity and a fairly constant circularity measure over the range of thresholds. Peaks which 

did not exhibit this tendency were less likely to correspond to nodules. 
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Figure 5.1: Giger's circularity measure 

Use of multiscale measures 

The Hough transform as a circle finder generates an accumulator array of several planes, with 

each plane corresponding to a different radius. This array can be inspected for peaks within 

a three dimensional search space. The accumulator array has the advantage of being size 

invariant. A similar effect can be achieved by producing a range of correlation surfaces, each 

generated by a template of increasing radius. 

Multiscale measure can be used to examine the behaviour of peaks in the correlation surface 

as the radius4 of the template is varied. In this way, knowledge of the multiscale behaviour 

of peaks corresponding to nodules can be utilised for additional discrimination. 

The converging squares algorithm 

The converging squares algorithm [21] is not well suited to peak detection in the correlation 

surface because the ideal match in the correlation surface is an intensity spike, whereas the 

converging squares algorithm looks for high density5 regions. 

4 In fact, any variable which modifies the correlation surface may be used to aid in differentiating between 
nodule and non-nodule peaks in the correlation surface. For example, the response of a peak in the correlation 
surface when a parameter of the preprocessor is varied but the template size is kept constant may produce a 
distinctive trend which could aid in discrimination. 

5Density is defined as the sum of the greyscale intensities, within a region, divided by the pixel area of that 
region. 
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5.3 Evaluation of the Automated Nodule Detection System 

In order to evaluate the automated nodule detection (A.N.D) system it is necessary to quantify 

its success rate. Such a method which quantifies the success of the A.N .D system also allows 

the relative suitability of each of the modules and their parameters to be evaluated. In this 

way the A.N.D system can be constructed from the combination of enhancement and analysis 

modules which provide the highest success rate. 

A quantifiable method of evaluating the automated nodule detection system is the receiver 

operating characteristic (ROC) plot. 

5.3.1 The receiver operating characteristic 

The receiver operating characteristic (ROC) is a standard measure in detection theory. In 

most detection processes there is a parameter, often a threshold value, which, when varied, 

determines the probability of a false hit Pi and the probability of a true detection Pd, This 

locus of probability pairs is known as the ROC plot [10}. 

Pd is defined as the ratio of the number of true hits to the number of true sites. A hit is a 

location returned by the detection process as a suspected site. The true sites are known a 

priori and the hits are counted against the true sites to determine the number of true hits. 

A true hit corresponds to an element of the set C n V in Figure 1.1 (A represents the set of 

all pixels in the image, C represents the set of pixels classified by the computer as nodules, V 

represents the set of pixels corresponding to true nodule sites). 

Pi is defined as the ratio of the number of false hits to the number of false sites.6 

In Figure 1.1 a false hit is an element of the set An V. 

6 For the case of non-overlapping nodules, the total number of sites in the image is: 

M N 
Total,ites = r . l 1-f . 1 vertica tolerance horizontal tolerance 

where M is the number of rows and N is the number of columns in the image. The vertical and horizontal 
tolerances refer to the error distances from the true site within which a hit is regarded as being true. These 
tolerances are usually taken as the vertical and horizontal radii of the nodule, respectively. In general, the 
vertical and horizontal nodule radii are equal but certain image acquisition systems might blur more vertically, 
or vice versa. 

The number of false sites is given as: 

Falsesites = Total,ite, - True,ites 
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The line Pd = Pf implies equal probability of true and false-positive, and is thus indicative of 

no improvement .in detection. The generic ROC plot showing the line Pd = Pf is illustrated 

by Figure 5.2. 
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Figure 5.2: Generic receiver operating characteristic (ROC). The dashed line represents Pd 
Pf, and the solid curve is a typical ROC. 

In some cases, the horizontal axis is plotted using a logarithmic scale as the number of false 

sites may be several orders of magnitude greater than the number of true sites. This results 

in the line Pd = Pf appearing as an exponential curve. 

The ROC plot can be used to evaluate enhancement techniques, detection techniques and 

even the accuracy of the model used as the template in template matching. 

5.3.2 Generation of the ROC plot 

The following points describe the procedure for producing the ROC plot: 

1. Generate a list of the coordinates of the true sites by reading from a file containing a 

priori coordinate data. 

2. Classify the correlation surface for a range of thresholds, using the classification scheme 

of section 5.2.2. This returns a list of the coordinates of the suspected sites. 
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3. Inspect each suspect and determine whether it is close enough 7 to a true site to be 

counted as a true hit. Those that are not close enough are counted as false hits. Thus 

for each threshold value a percentage of true hits and a percentage of false hits is 

determined. 

4. Accumulate the graph data using the percentage of true hits and percentage of false 

hits for each threshold value. 

It is difficult to extract a single number representing the success rate from the ROC plot. 

Numerous success measures8 are possible, but none of these measures are truly representative 

of the full graph. 

An automated system for nodule detection is intended for use as a routine screening procedure 

in a clinical environment. The objective of such a system is to alert a diagnostician of the 

possibility of nodules in an x-ray. Only the medical cases associated with these x-rays would 

be subjected to careful further examination. Therefore, it is vitally important that all the 

x-rays containing nodules are isolated as suspect. On the other hand, it is also important that 

the number of false diagnoses be kept to a minimum. It would be disconcerting and expensive 

(in both time and follow-up procedures) to subject clear x-rays to further examination. It is 

apparent from the ROC plot that ensuring a high probability of detection also ensures a large 

percentage of false alarms, and therefore a compromise must be made between the certainty 

of diagnosis and the allowance for false alarms. 

The percentage of true hits for a constant false alarm rate is a reasonable measure of success. 

, However, it is not a robust measure because ROC plots of substantially different shapes might 

give the same reading at this single point, or vice versa. To increase the reliability of the 

measure it was decided to use the area under the logarithmic ROC plot between the 1 % and 

10% false hit rate points (see Figure 5.3). The range, 1 % to 10% false hits, was taken as the 

compromise between detection certainty and a low false alarm rate. The maximum success 

measure, or the maximum area, is the area of the rectangle having a width in the range -1 to 

-2 and a height of 100%. In general, shifting the ROC plot up and to the left increases the 

success measure. 

The ROC plot gives an automated measure of the accuracy of the A.N.D system. It cannot, 

however, be used in the actual A.N .D system since its generation and measurements require 

7The decision of close enough is related to the tolerance region discussed in section 5.3.1. At present, a 
suspect is regarded as being close enough if it is within the nodule radius of the true site coordinate. 

8The success measures which have been considered are (i} the area under the plot, (ii} the percentage of 
true hits when the false hit percentage is 0.1%, 1% or 10%, (iii} the maximum vertical difference between the 
ROC plot and the 50% curve. 
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Figure 5.3: An ROC plot showing the area (shaded) between the 10% (-1) and 1% (-2) false 
hit rates. The area, in the same range, under the exponential curve is a constant for all ROC 
plots. 

prior knowledge of the true sites in the image. A particular threshold, or a requested number 

of suspected sites, or a combination of both, must still be chosen for the implementation of 

the A.N .D system. 
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Chapter 6 

Results 

6.1 Introduction 

In this chapter, the effect of many of the techniques discussed in previous chapters, as ap­

plied to a medical chest x-ray is illustrated, and a quantitative analysis of the most suitable 

enhancement and analysis modules is presented. There are five main sections: (i) the devel­

opment of a test image, (ii) the results of different enhancement techniques as applied to the 

test image, (iii) the results of different analysis techniques as applied to the enhanced test 

image, (iv) an evaluation of the most suitable enhancement module, and (v) an evaluation of 

the most suitable analysis module. 

6.2 Development and Description of the Test Image 

A medical chest x-ray was obtained from the film library in the Department of Radiology, 

University of Cape Town. With the assistance of Dr Stoner [28], a specialist radiologist, 

this particular x-ray film was chosen, as it showed several indistinct metastatic1 nodules. Dr 

Stoner then diagnosed the x-ray and indicated the locations of the nodules. 

The x-ray film was then digitised using an OmniMedia 6cx XRS scanner. The digitised 

image had a bit depth of 8 and a resolution of 2400 rows by 3000 columns. The image was 

1 A metastatic nodule is a secondary cancer growth. Lung metastases are generally more spherical t han 
primary lung cancer nodules. 
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then reduced in resolution and improved in bit depth with the use of superpixel binning2 •. 

This produced a 12 bit image of 600 rows by 750 columns. 

The scanned x-ray image is illustrated in Figure 6.1. The image is then transformed into the 

linear attenuation domain ( see section 4.4.6), as shown in Figure 6.2. 

Figure 6.1: The scanned x-ray image from which the test image is derived. 

The x-ray image contained only four nodules of a similar size. Since the success measure is 

statistical in nature, it was important that many specimens existed in the image. The best 

nodule specimen was extracted from the image and an analytical model was "tuned" until it 

best matched the real nodule, as discussed in section 4.4.6. A radius of 8 pixels for the nodule 

model was found to be the best match with the real nodule. 141 instances of this analytical 

model were then superimposed on the image3 in a regular fashion within the lung region of 

the x-ray. A close-up view and a surface plot of a region of the image, illustrating the real 

nodule and a simulated nodule, are shown in Figures 6.3 and 6.4, respectively. The image of 

the simulated nodule, shown alongside the real nodule, is largely corrupted by the structured. 

noise of the picture. Being superimposed on a relatively noiseless background, the image of 

2The image was effectively tesselated into subregions of 4x4. A superpixel was then produced as the sum 
of the pixels in each subregion. 

3 Such a linear superposition is only valid because the image has already been transformed into the linear 
attenuation domain (see section 4.4.6). 
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Figure 6.2: The x-ray image transformed into the linear attenuation domain. 

another simulated nodule {in Figure 6.5) is more easily discerned. 

The test image with the superimposed nodules is depicted by Figure 6.6. It is very difficult to 

see where the simulated nodules are in the test image. For this reason, an enhanced version 

of the test image is included for the sole purpose of allowing the reader to see the locations· 

of the nodules ( see Figure 6. 7) . 

All processing was done on a SPARCstation 2 running custom developed C code on the 

SunOS 4.1.2 operating system. The image viewing utility and the surface plot utility was 

provided by Khoros [7]. The relevant C source code is described in Appendix A. 

6.3 Results of the Enhancement Techniques 

The effect of unsharp masking ( see section 2.3.1) applied to the test image is illustrated. An 

example of the result of linear unsharp masking is shown in Figure 6.8. Note the shadow 

band artifacts which are particularly evident at the ribs. An example of median unsharp 

masking is provided in Figure 6.9. The triangular artifact of symmetrical two dimensional 

median filtering is not obvious in the image. 
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Figure 6.3: A close-up view of a real nodule (left) and a simulated nodule (right) in the test. 
image. 

Figure 6.4: Surface plot of the real nodule ( above left) and the simulated nodule (below right) 
in the test image. 
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Figure 6.5: Surface plot of an easily discernible simulated nodule in the test image (the 
perspective of the surface plot causes the nodule to appear elongated). 

Figure 6.6: The test image with superimposed nodules. 
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Figure 6. 7: An enhanced version of the test image illustrating the locations of the nodules. 

Figure 6.8: Linear unsharp masking with a circular footprint inscribed in a 21x21 footprint. 
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Figure 6.9: Median unsharp masking with a circular footprint of radius 11. 

Examples of statistical difference filtering (see section 2.3.2) are illustrated in Figures 6.10. 

and 6.11. Shadow band artifacts are prominent and are proportional in width to the footprint 

of the filter. There is also an over-enhancement of noise, particularly when a smaller footprint 

is used (see Figure 6.10). 

The effect of adaptive histogram equalisation (see section 2.3.3), applied to the test image, is 

shown in Figure 6 .12. The over-enhancement of noise is clear. 

The result of the rotating rod algorithm ( see section 3.3) applied to the test image is provided 

in Figure 6.13. It is clear from the figure that the rotating rod has the effect of eliminating 

all image data that is not smaller in all orientations than the length of the rod, which is 20 

pixels in this example ( see section 3.6). 

The greyscale top-hat transform (see section 3.5) involves subtracting an opened image from 

the original image. The size and type of the structuring element (SE) employed dictates the 

nature of the enhancement. Figure 6.14 is an example of the test image top-hat transformed 

using a disc SE of radius 8, while Figure 6.15 shows the result of a sphere SE of radius 10. 

These figures (6.14 and 6.15) have been processed with SEs of similar footprint dimensions_ 

to the rotating rod, but, as is noticeable from the figures, all structures which are smaller 

in any orientation than the footprint size (17xl 7 or 2lx21) are retained. This differs from 
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Figure 6.10: Statistical difference filtering with a footprint of dimension 9x9. 

Figure 6.11: Statistical difference filtering with a footprint of dimension 21x21. 
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Figure 6.12: Adaptive histogram equalisation with a footprint of dimension 21x21. 

Figure 6.13: Rotating rod algorithm with a rod length of 20 applied to the test image. 
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the rotating rod where almost all elongated image data is removed (see section 3.6 for an 

explanation of this phenomenon). The small amount of remaining rib structure in Figure 

6.13 could, in principle, also be eliminated if the rotating rod was implemented to operate at 

more orientations (than the current eight). 

Figure 6.14: Test image top-hat transformed with a disc SE of radius 8. 

6.4 Results of the Analysis Techniques 

The results of the different edge detectors ( see section 4.3) applied to the test image are shown 

in Figures 6.16, 6.17 and 6.18. Sensitivity to noise is apparent in the Sobel edge detected 

image, Figure 6.16. The difference of areas edge detected image, Figure 6.17, is less sensitive 

to noise but the edges are blurred. The nonspread edge detected image, Figure 6.18, shows 

the relative insensitivity to noise and crisp edges. 

In a later section (6.5) it is shown that the image enhanced with median unsharp masking is 

well suited to the subsequent analysis procedure of variance matching. This enhanced image, 

already shown in Figure 6.9, is used as the input image to the variance matching procedure. 

The correlation surface resulting from variance matching the preprocessed image is provided in 

Figure 6.19. The same input image is subjected to normalized correlation template matching, 
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Figure 6.15: Test image transformed with a sphere SE of radius 10. 

Figure 6.16: Edge detected test image using the sobel edge detector. 
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· Figure 6.17: Edge detected test image using the difference of areas edge detector. 

Figure 6.18: Edge detected test image using the nonspread edge detector. 
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and the resultant correlation surface is shown in Figure 6.20. 

Figure 6.19: Correlation surface produced by variance matching with the median unsharp 
masked image as input. 

The Hough transform as a circle finder generates an accumulator array, a single plane of 

which is analogous to a correlation surface. Figure 6.22 depicts a plane of the accumulator 

array of the binary circle finder, while Figure 6.23 shows a plane of the accumulator array of 

the greyscale circle finder. Both accumulator arrays were generated after edge detecting the 

test image with the nonspread edge detector. Naturally, the edge detected image, which is· 

the input to the binary circle finder, was also thresholded (see Figure 6.21). 

6.5 Evaluation of the most suitable Enhancement Module 

Chapters 2 and 3 investigated different techniques for the implementation of the A.N .D en­

hancement module (see section 1.2). This section discusses the evaluation of various of these 

enhancement techniques and their parameters. The measure of success of an enhancement 

process in the A.N .D system is gauged by the area of the ROC plot between the false hit 

rates of 10% and 1 % ( see section 5.3.1 and Figure 5.3). 

The objective of this experiment is twofold. Firstly, the enhancement module which is the 
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Figure 6.20: Correlation surface produced by normalized correlation template matching with 
the median unsharp masked image as input. 

most suitable as the preprocessing stage to automatic detection is to be determined. Secondly, 

the parameters of this enhancement module, with respect to nodule diameter, are to be 

established. 

The experiment was conducted by subjecting the test image ( see section 6.2) to an enhance­

ment process followed by variance matching. The template for variance matching is generated 

by subjecting a simulated nodule to the same preprocessing which produced the enhanced 

image from the test image. The correlation surface, thus produced, is classified using the 

threshold value method (see section 5.2.2) for a number of thresholds, to produce an ROC 

plot. The success measure is computed from the data in the ROC plot. A maximum measure 

of 100 area units is possible ( see section 5.3.2). This process is repeated for a range of parame­

ters within each enhancement technique. The success rate versus an enhancement parameter 

( often footprint size) is graphed for each of the enhancement implementations ( see Figure-

6.24 ). The dimension of a footprint is often referred to as radius in the following sections. In 

this context, a footprint of 13x13 pixels is said to have a radius of 6, ( L 1l J ). 

Note that this success measure does not refer to the success of the particular enhancement 

technique, but to the success of the combination of that enhancement technique with a vari-
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Figure 6.21: Thresholded edge detected test image which is used as the input to the binary 
Hough transform circle finder. 

ance. matching detection stage. However, because all of the enhancement techniques are 

followed by an identical detection process, the success measure allows a relative comparison 

of the enhancement techniques as preprocessors to variance matching. It is possible that an 

enhancement module which produces a poor success measure when used as a preprocessor 

to variance matching, will produce a good success measure when used as the preprocessing 

stage to a different detection stage, and vice versa. 

The ROC plot used for determining the success measure was generated using ten equally 

spaced threshold values. A plot consisting of only ten points is often very coarse and sometimes 

quite inaccurate. Using more points to generate a smooth, reliable ROC plot is not difficult, 

but it is a considerable computational burden. The immense system requirements made 

exhaustive testing of the various enhancement and analysis modules impossible. In principle, 

these tests which attempt to evaluate the most suitable modules and their parameters, for 

the A.N .D system, should use all possible combinations of the modules and their parameters. 

The tests for the enhancement techniques alone required approximately 75 hours of CPU time 

and more than 500 Megabytes of disk space. 

The following sections evaluate the suitability of unsharp masking, median unsharp masking 
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Figure 6.22: A plane of the accumulator array, corresponding to a radius of 8, of the binary 
circle finder. 

and the top-hat transform as enhancement techniques. These processes were chosen because 

they are the enhancement techniques which satisfy additive invariance, a requirement of the 

variance matching stage. 

6.5.1 Suitability of linear and nonlinear high pass filtering to automatic 
nodule detection 

An experiment to determine the optimum footprint size of the linear filter used in the unsharp. 

masking process was conducted. The linear filter used had a circular footprint and was a 

simple4 averaging finite impulse response filter. 

The graph of the success rate versus the footprint radius is provided in Figure 6.25. 

This graph indicates that the combination of unsharp masking and variance matching is very 

poor for the entire range of filter radii. A notable feature of the graph is the improved 

performance for small filter radii. A small filter radius implies that the image is, in essence, 

4 A windowing function was not used. 
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Figure 6.23: A plane of the accumulator array, corresponding to a radius of 8, of the greyscale 
circle finder. 

being edge detected. This is in accordance with the opinions of the authors mentioned in 

section 4.4.5. 

An experiment to determine the optimum footprint size of the median filter used in the median 

unsharp masking process was conducted. This experiment was performed for the square 

footprint and the circu~ar footprint median filter. It was also done for the one dimensional 

dual pass median filter (see section 2.3.1). The graph of success rate versus footprint radius 

for each median filter type is supplied in Figure 6.26. 

function of i 

vary parameter i 

Figure 6.24: Block diagram depiction of an experiment for determining the most suitable 
enhancement technique in an _automated nodule detection system. 
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Figure 6.25: Graph of ROC interval area versus the radius of the linear filter footprint used 
in unsharp masking. 

The footprint dimensions, for which the graphs are a maximum, are understood by examining 

the areas of the footprints in comparison with the nodule area. The area of a median filter 

footprint must be just greater than twice the area of the object which is to be enhanced. The 

pixel area of a nodule with radius of 8, is rr(8.5)2 = 227. The table below contains the pixel 

areas. of a circular and a square footprint for a range of footprint radii. 

footprint square disc 
radius area area 
9 361 283 
10 441 346 
11 529 415 
12 625 490 

Twice the nodule area is 454 and therefore the median filter radius which is expected to give 

the peak response is marginally greater than 10 for the square footprint and between 11 and 

12 for the circular footprint. These expected values correlate very well with the coordinates 

of the peaks read from the graph. 

If the footprint dimension is larger than required, the enhanced image will contain more image 

data which has the effect of shifting the ROC plot to the right and thereby increasing the 

false hit rate. 
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Figure 6.26: Graph of ROC interval area versus the radius of the median filter footprint used 
in unsharp masking. 

The minor peak at a footprint radius of 2 might be due to the edge detecting effect of a small 

footprint. 

6.5.2 Suitability of morphological structuring elements to automatic nod­
ule detection 

A top-hat transform can be likened to a filtering operation where the structuring element {SE) 

is analogous to the filter. The SE is defined by two parameters, viz. shape and dimension. 

This section discusses the evaluation of different SEs in terms of both shape and size. 

In this experiment the objective was to determine {a) which SE, and {b) what dimension of 

SE is the most suitable for use in the automatic detection of nodules. 
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The test image (see section 6.2) was processed using a top-hat transform (see section 3.5) 

with a variety of SEs. This process was repeated using a range of sizes of the SE. Five SE 

shapes were tested in this manner. The results of ROC interval area versus SE radius were 

graphed for each of the SEs ( see Figure 6.27). 
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Figure 6.27: Graph of ROC interval area versus the radius of various structuring elements. 

The graphs for all the SEs exhibited a trend which was anticipated. The graphs following this 

trend have three noticeable segments. Initially, when the SE radius is much smaller than the 

nodule radius, there is a very poor response and the ROC interval area is minimal. Then, as 

the radius of the SE approaches the radius of the nodule model, there is an abrupt increase 

in ROC interval area culminating in a peak. The final graph segment shows a slow decrease 

in ROC interval area as the SE radius becomes increasingly larger than the nodule radius. 

The first graph segment can be attributed to the almost total elimination of the nodule by 

a SE which fits into it (remembering that although the nodules in the image are largely 

eliminated, so too is the template). As the SE can no longer fit into the nodu!e, the nodule 
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is progressively better retained in the top-hat transformed image and subsequently matched 

well in the variance matching phase. Once the SE becomes large enough to retain the nodule, 

in the top-hat transformed image, the detection rate is maximised. An increase in SE radius 

has the effect of retaining larger structured noise, thus confusing the matching process. In the 

limit of a very large SE radius, the input image is not altered by the enhancement stage, and 

it is known that variance matching does not work effectively when the object to be detected 

is superimposed on large scale structures5• 

The SEs investigated were a flat disc, a flat square, a sphere6 , a cone, and a parabaloid. As 

mentioned above, all of these SEs exhibited the trend discussed. The responses of the SEs 

differed in the position of their peak. In particular, the square SE, cone SE and parabaloid SE 

graphs peaked when their radii were two less than the radius of the nodule model. The disc 

SE and sphere SE graphs peaked when the SE radius was just larger than the nodule radius. 

The premature peaking of the square, cone and parabaloid graphs can be attributed to the 

fact that all of these SEs have meaningful data at every point in the square footprint which 

they occupy. This is unlike the disc and sphere which only have meaningful data within the 

inscribed circle of their square footprints (see Figure 3.10). The disc and sphere can therefore 

fit into the nodule structure providing that it is less in radius. The other SEs (square, cone 

and parabaloid) will not fit into the nodule at an earlier stage7• 

From the graph it appears that the sphere or disc SE is the most suitable when the SE radius 

is equal, or larger, to the radius of the nodule sought. 

6.5.3 The suitability of peeling off as an enhancement module 

In section 3.4 the concept of peeling off was mentioned. In this section an experiment which 

determines the suitability of peeling off as a preprocessor is discussed. An image is said to have 

been peeled if it has been iteratively processed using the rolling ball algorithm (see section 

3.5). In principle, the best simulation of peeling off is numerous iterations of a very small 

spherical SE. Unfortunately, small SEs lose their integrity as spheres due to the quantisation 

effect. Clearly, a compromise between SE size and number of iterations must be found. The 

purpose of this experiment is thus twofold. Firstly, this compromise must be found, and 

secondly, the suitability of peeling off as an enhancement technique must be evaluated. The 

5 Variance matching does not satisfy additive invariance (see section 4.4.4). 

6Often referred to as the rolling ball. 

7The diagonal of a square footprint exceeds the nodule diameter when the radius of the footprint is 6. A 
footprint of radius 6 has dimension 13x13 and consequently a diameter of 18. The diameter of nodule, radius 
8, is 17. 
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results are shown in Figure 6.28. 
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Figure 6.28: Surface plot and intensity map of the ROC interval area as a function of ball 
radius (horizontal variable) and number of iterations ( vertical variable). The degree of success 
is proportional to the whiteness of the pixels in the intensity map. A maximum success 
measure of 32 occured when the radius was one and the number of iterations was eight. 

From the results of this experiment, it is observed that multiple iterations with a small sphere 

produces a higher success measure than few iterations with a larger radius sphere. A hyper­

bolic trend is noticeable in the intensity map. This trend results because the success measure 

is approximately proportional to the product of the radius and the number of iterations. 

6.6 Evaluation of the most suitable Analysis Module 

Chapter 4 investigated template matching techniques, using correlation measures and the 

Hough transform circle finder, as the detection stage in the A.N.D system. This section 

attempts to evaluate the image analysis modules and to determine which is the most suitable. 

ln the previous section the enhancement techniques were evaluated as preprocessors to vari­

ance matching. Based on the results of that section three enhancement implementations were 

selected as the most successful. They are, (i) median unsharp masking with a circular foot­

print of radius 11, (ii) top-hat transformation with a disc SE of radius 8, and (iii) peeling off 

using eight iterations with a sphere of radius 1. As mentioned previously, exhaustive testing 

of all the combinations of enhancement anq. analysis modules is impractical. Thus, in order 

to gain some insight into the operation of the different analysis modules, three of the analysis 
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procedures were chosen to be used as the detection stage for the images enhanced by the 

aforementioned methods. ROC plots for the enhanced image followed by normalized correla­

tion, the greyscale Hough circle finder and variance matching are superimposed on a single 

set of axes for comparison purposes. This is done for each of the three enhanced images and 

the ROC plots are shown in Figures 6.29, 6.30 and 6.31. 

The labels in the graph legend nc, gh, vm and 50% correspond to normalized correlation, 

greyscale Hough circle finder, variance matching, and the exponential curve (see section 5.3.1 ), 

respectively. 
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Figure 6.29: ROC plots of the different analysis techniques applied to the median unsharp 
masked image. · 

It is observed from the plots that no single analysis module produces the best results for all 

the preprocessed images. An optimal implementation of template matching is not a trivial 

exercise. A particular combination of shape and scale information must be determined if the 

i,rocess of template matching is to yield the maximum detection rate. _ 

The highest success measure, 57, occured when median unsharp masking preceded variance 

matching. On that ROC plot, Figure 6.29, the percentage of true hits was 77% when the 

false hit rate was 10%. The total number of sites in the image was 63198, giving the total 

number of false sites as 6319- 141 = 6178 (there are 141 true sites). Therefore 10% of the 

8 Derived from the total site formula. f~~~l-f ~:~l = 6319 (see section 5.3.1). 
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Figure 6.30: ROC plots of the different analysis techniques applied to the top-hat transformed 
image. 
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Figure 6.31: ROC plots of the different analysis techniques applied to the image which has 
undergone the peeling off process. 
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false sites is 618, and 77% of the true sites is 109. This indicates that only 1 out of every 

7 sites, isolated by the computer as suspect, are true sites. For a false hit rate of 1 %, the 

true hit rate was 37%. Therefore there are 62 false sites and 52 true sites in the image. The 

statistics improve when the false hit rate is 0.1 %. At this rate the percentage of true hits is 

24. Thus there are 34 true sites and only 6 false sites. From these statistics it is clear that 

the best combination of A.N.D modules results in a poor ratio of true hits to false hits when 

the number of false sites is much greater than the number of true sites. 

For the very low false hit rate of 0.1% the method of variance matching is the only analysis 

technique which achieved a true hit rate greater than 10%, albeit in only one of the three 

examples. Time limitations prevented a more comprehensive examination of the most suitable 

analysis technique, but it does appear that the suitability of the analysis processes is also a 

function of the tolerable false hit rate. 
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Chapter 7 

Conclusions and Recommendations 

It was stated in an introductory paragraph of chapter 5, that "Humans are considerably more 

adept at object recognition, and/or classification, than are computers. However, even humans 

find the task of classifying nodules in chest x-rays particularly difficult, which presupposes 

that the ability of computers to perform proficiently is minimal." The possibility of assisted 

detection by the computer is further diminished because the image with which the computer 

works is a degraded version of the medical x-ray film which the diagnostician inspects. The 

degradation occurs in the scanning process by the digitisation which quantises both the spatial 

resolution and the intensity range. 

Humans can only discern a maximum of 64 greyscale intensities at any one time, and therefore 

dynamic range reduction is necessary for human interpretation. The computer, on the other 

hand, has an advantage over human~ in that a greater dynamic range improves the computer's 

understanding of the image. 

In my opinion, dynamic range reduction for improved human perception is the only way 

the computer can assist the human in visually interpreting the image. The techniques for 

achieving human visual enhancement using dynamic range reduction often accomplish the 

necessary preprocessing which is required if the processed image is to be used as the input to 

an automated detection algorithm. In other words, enhancement for visual understanding and 

enhancement as a preprocessor have very similar requirements. Enhancement for subsequent 

automated detection does not require dynamic range reduction, but this is often a result of 

the enhancement process. 

There are, in general, numerous parameters for each enhancement technique. It is expected 

that the optimal implementation of each of the enhancement techniques will not have been 
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achieved. Also, only educated guesses can be made when optimising nonlinear processes, 

such as median unsharp masking and the top-hat transform, as these operations are not well 

understood. Linear unsharp masking and the design of the optimal linear filter are, however, 

well understood procedures and it is therefore recommended that the optimal linear filter, for 

this application, be designed because it can act as a benchmark against which the nonlinear 

techniques can be judged. An exhaustive search of the multi-dimensional parameter space 

would be needed if the optimal implementation of each human visual enhancement technique 

were to be found. Even with exhaustive testing, the decision of the optimal technique is 

subjective, rendering it difficult, if not impossible, to evaluate. To further complicate matters 

the techniques are picture dependent. The enhancement for preprocessing has the advantage 

that it can be quantifiably assessed in combination with detection and classification modules. 

The disadvantage, though, is the massive increase in search space if exhaustive testing of the 

enhancement, analysis and classification is made. 

The field of greyscale morphology shows promise and deserves more thorough investigation. 

The rotating rod algorithm, essentially a morphological process, was originally designed with 

the fulcrum of the rod in the centre. This design was later discarded because of noticeable 

artifact production. The replacement design, with the fulcrum at the end, does not generate 

obvious artifacts, but it has the severe limitati6n of being unable to enhance nodules on 

slopes, and it is consequently not additively invariant. In retrospect it might have been worth 

investigating the original design of the rotating rod, which is able to enhance nodules on 

slopes. It is known that most of the investigated techniques (linear and nonlinear unsharp 

masking, statistical difference filtering, and adaptive histogram equalisation) also produce 

noticeable artifacts. Artifacts are not a cause for concern if the process is intended as a 

preprocessor to a detection stage and, more importantly, if the artifacts do not "confuse" the 

detection process. 

Peeling off is an example of a technique which was limited by the discrete nature of the image. 

Improved performance is expected from all processes if the resolution of the image is finer, in 

other words if there are more pixels per nodule. This allows the nodule, the filters and the 

structuring elements to be better described. 

Image warping, or registration, is the only deterministic technique which has the potential of 

generating the perfect difference image because it has the fundamental ability to eliminate 

all anatomical information. This class of processes warrants thorough investigation. 

Edge detection is an important step in many image processing applications. Satisfying 

Canny's requirements and designing the optimal edge detector for a specific application is 

often a difficult task. The nonspread edge detector appears to do well but suffers the flaw of 

not having rotational invariance. 
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Template matching is used extensively in signal and image processing applications, but it is 

not the only means of detection. There are numerous variations on the template matching 

theme which are concerned with different descriptions of the object to be detected. For 

example, the Hough circle finder uses the edge information ·of the nodule, while normalized 

correlation uses the full three dimensional shape description of the nodule. Two important 

considerations of additive invariance and intensity matching are vital for optimal detection. 

Variance matching was an attempt at an implementation of template matching which allowed 

intensity matching. But variance matching was not additively invariant and consequently 

required the image to be preprocessed. Because the planar shape of an object in an image is 

its most recognisable feature, the Hough transform circle finder performs reasonably well on 

an edge detected image. It should be possible to increase the dimensionality of the Hough 

accumulator array, and in this way match using other significant characteristics of a nodule. 

An experiment which evaluated different template matching procedures using edge, shape 

and intensity information was non-conclusive in determining which of these descriptions is 

the most appropriate. A feature vector with weighting for features which are thought to 

characterize a nodule could be investigated. This suggests the use of a learning paradigm, 

· such as self organising feature maps (a class of neural networks), for determining the most 

relevant features and their respective weighting. 

The binary Hough transform circle finder only works as well as the greyscale Hough transform 

· circle finder if the correct threshold value is chosen. A suitable threshold value is often very 

difficult to determine and therefore the greyscale circle finder is a more effective technique for 

use with real images. 

The classification techniques employed were simplistic. Further discriminating measures could 

be introduced to lessen the false positive hit rate. Contextual information, for example 

the locations of the major arteries (which appear similar to nodules), could be included for 

discrimination. Circularity in the correlation surface could also be employed to decrease the 

likelihood of false hits. The use of multiscale measures is another area which warrants further 

investigation. The abrupt change and the distinctive shape in the graph of success rate versus 

footprint size make the use of multiscale measurements for discrimination an attractive option. 

Determining a success measure from an ROC plot is an interesting problem of reducing 

dimensionality. It is likely that the ROC interval area used as the success measure is not. 

the most appropriate means of quantifying the ROC plot for this application. Investigation 

into alternative methods of quantifiying the ROC plot should be made in conjunction with a 

radiologist. 

The experiments conducted in chapter 6 indicate that the automated nodule detection ( A.N .D) 

system is capable of detecting camouflaged nodules in digitised chest x-rays. It was, however, 
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also evident that even the best combination of A.N.D modules results in a poor ratio of true 

hits to false hits when the number of false sites is much greater than the number of true sites. 

Increasing the ratio of true hits to false hits can be achieved by improving the operation of 

the enhancement or analysis module, or by increasing the sophistication of the discriminating 

mechanisms in the classification process. 

The recent trend towards the utilisation of digitised images in the medical environment sug­

gests that implementations of enhancement and automatic detection algorithms are becoming 

indispensable. Although this thesis has not solved the problem of reliable automated detec­

tion of lung cancer nodules in chest' x-rays, it has laid the foundations of a modular A.N .D 
system. 
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Appendix A 

Source Code Description 

The relevant source code to this thesis is provided on a single floppy disk1 . All code was 

written in C on the SUN SPARCstation 2. 

There are 3 models of the program that can be built. Each model deals with images of 

different dimensions. The BIG model currently uses images of 720 rows by 1800 columns and 

12 bits per pixel. The MED model operates on images of 600 by 750 by 12 bits. The SMALL 

model operates on the images provided by most framegrabbers, viz. 512 by 512 by 8 bits. 

The building of the programs from the source code is facilitated with UNIX makefiles. There 

are 3 such makefiles: BIG.mak, MED.mak, SMALL.mak. The built programs will have 

the names h_demo, m_demo and s_demo. 

The source code is logically divided into separate files. The highest level file x_demo.c 

provides a simple user interface from which all of the processes can be executed. The source 

code files all have associated header files which contain a list of the functions which are 

publically available2 after linking. The source code files are: 

• x_curve.c and x_curve.h for nonlinear adaptive curve fitting. 

• x_edge.c and x_edge.h for all edge detection routines. 

1 A large amount of code was written because image processing packages, such as Khoros [7] and Sunvision 
[30], were not available at the time of implementation. Despite the quantity of code, this thesis was not a 
software project and therefore it was deemed unnecessary to include source code listings. 

2This code was not written in c++ and therefore public, or private, functions are only a suggestion by the 
author. 
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• x_eqlise.c a.nd x_eqlise.h for a.11 histogram modification routines. 

• x_fft.c a.nd x_fft.h for Fa.st Fourier Transform routines. 

• xJilter.c a.nd xJilter.h for filtering functions, linear, nonlinear a.nd adptive. 

• x_hough.c a.nd x_hough.h for the Hough transform circle finder routines. 

• x_io.c a.nd x.Jo.h for all file input/output routines. 

• x_match.c and x_match.h for all the template matching processes, excluding the 

Hough transform. 

• x_morph.c a.nd x_morph.h for all the standard morphological processes. 

• x_rod.c a.nd x_rod.h for all implementations of the rota.ting rod algorithm. 

• x_sort.c and x_sort.h for classification related functions, including the generation of 

the ROC plot. 

•• x_utils.c a.nd x_utils.h for all general image processing utilities. 

• stats.c and stats.h for statistical functions. 

All of the built programs include the additional header x_gen.h which provides important 

definitions and conventions that a.re used throughout the code. In addition to this header, 

the program b_demo all includes b_.h a.nd b_types.c. b_,h defines the number of rows 

and columns a.nd the number of intensity levels of the images on which b_demo operates. 

b_types.c defines the data types which will be used throughout the code. This includes the 

defintion of the data. type for a.n image, amongst others. Similar files m_.h, m_types.c a.nd 

s_,h, s_types.c exist for the programs m_demo a.nd s_demo, respectively. 

The program ma.y be rebuilt to operate on any image of any dimensions by editing the b_.h 
( or m_.h or s_,h) file and recompiling with the use of the makefile. 
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