.

c&%wlog

A MULTI-USER PROCESS INTERFACE SYSTEM
FOR A

PROCESS CONTROL COMPUTER

by BARRY GRAHAM SHERLOCK

Submitted to the University of Cape Town in partial
fulfilment of the requirements for the degree iof

Master of Science in Engineering.

September 1983

The Untversity of Cape Town has been given
the right to repwoduce thia thests in whole
of in pert. Copyright s held by the auther, |

M.

The copyright of this thesis vests in the author. No
quotation from it or information derived from it is to be
published without full acknowledgement of the source.
The thesis is to be used for private study or non-
commercial research purposes only.

Published by the University of Cape Town (UCT) in terms
of the non-exclusive license granted to UCT by the author.

ACKNOWLEDGEMENTS

My sincere appreciation is extended to:

Professor H.S. Bradlow, for his guidance, encouragement and

patience while supervising this project.

Bill Randall, who supplied the air-column apparatus used in the
student project, and was always ready to assist in all matters

relating to the Chemical Engineering department.

Tony Eva, for introducing me to the use of the PDP-11, and for
modification of the plotting terminal line from current loop to
) RS"232.

‘Alan Day, for valuable technical assistance including construction
of the Media front panel.

[
~

Bruce Ingram of SANS for advice and documentation on using the
‘Media hardware.

My brother Derek who assisted with the printing and copying of
this thesis.

" The CSIR, for their financial assistance during 1982.

Any others whom I may unwittingly have failed to mention here.

ABSTRACT

This thesis describes a system to implement a distributed
rvmulti—user process intefface to allow the PDP-11/23 computer in
the Electrical Engineering department at UCT to be used for
process control. The use of this system is to be shared between
. postgraduate students for research and undergraduates for doing
real-time control projects. The interface may be used
concurrently by several users, and access is controlled in such a
- way as to prevent users' programs from interfering with one

another.

The'process interface’hardware used was a GEC Micro-Media system,

which is a stand-alone process interface system communicating with
a host (the PDP-11/23) via a serial line. Hardware to drive a 600
metre serial link at 9600 baud between the PDP-11/23 and the Media

interface was designed and built.

The software system on the host, written in RTL/2, holds- all data
from the interface in a resident common data-base and continually
updates it. Access to the interface by applications programs is
done indirectlylby reading and writing to the data-base, for which

purpose a library of user interface routines is provided.

To allow future expansion and modification of the Media interface,
software (also written in RTL/2) for an LSI-11 minicomputer
interfaced to the Media bus was developed which emulates the
operation of the GEC proprietary Micro-Media software. A program

to download this software into the LSI-11 was written.

A suite of diagnostic programs enable testing of the system

hardware and software at various levels.

To ease testing, teaching and applications programming, a

PAGE 2

general-purpose simulation package for the simulation of analogue
systems was developed, as well as graphics routines for use with a

Tektronix 4010 plotting terminal.

A real-time computing project for a class of undergraduates was

_run in 1983. This project made extensive use of the system and

demonstrated its viability.

Keywords:

distributed interface multi-user

computer process control real-time

TABLE OF CONTENTS

ACKNOWLEDGEMENTS
ABSTRACT

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION
1.1 Requirements

1.2 The Process Interface System
Commercial System
The Modified System

1.3 Serial Data Link Hardware

1.4 The Host Software System
Introduction
Multi-user Access to the Media Interface
The Necessity for Simulation
Graphics Interface
System Management and Diagnostic Tools

1.5 Typical Applications

CHAPTER 2: MEDIA

2.1 Hardware
Introduction
o The UCT Micro-Media installation

Y

2.2 Software
' Outline
Media protocol frame format
Media operations

CHAPTER 3: THE LSI-11 MEDIA SYSTEM

3.1 The LSI-1l1 Media software
General
SMT System Modules
User modules '
Unrecoverable error handling in the SMT system
Building SMT.TSK
Note on debugging the user SMT modules

3.2 Remote system downloading and startup
The ODT -program
SMTLOAD - a bootstrap loader for the LSI-11

bW

CHAPTER 4: THE SERIAL LINK fNTERFACE‘HARDWARE
4.1 The serial lines 4-1

4.2 The serial interface units 4-2
CHAPTER 5: MEDCOM - THE DATA-BASE

CHAPTER 6: THE SOFTWARE INTERFACE BETWEEN MEDIA AND THE DATA-BASE
6.1 The Media update task ‘ 6-1
6.2 Procs interfacing between the data link and MEDCOM 6-=3
6.3 Securing and releasing devices and facilities 6-8

Securing and releasing the serial 1link 6-8
Securing and releasing the data-base 6-8

CHAPTER 7: USE AND MANAGEMENT OF THE MEDIA SYSTEM

7.1 Use of the system 7-1
Control of an individual user's access 7-1
Applications~user access to Media 7-5

7-1

Aborting tasks which access Media

7.2 Management of the system 7-11
CHAPTER 8: SYSTEM DIAGNOSTICS

CHAPTER 9: A GENERAL-PURPOSE ANALOG SIMULATION PACKAGE

1@8.1 Introduction ’ 9-1
10.2 Using the simulation package 9-6
16.3 Linking to the package ' 9-11

19.4 Plotting library for the Tektronix 401¢ terminal 9-11
CHAPTER 14: CONCLUSION
REFERENCES

APPENDIX A: MEDIA FRONT PANEL
APPENDIX B: ADDRESSING THE MEDIA CARDS

APPENDIX C: DETAILED DESCRIPTION OF MEDIA LINK FRAME STRUCTURE

APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX

.APPENDIX

SERIAL LINK HARDWARE CIRCUIT DIAGRAMS
THE MEDIA STATUS WORD‘

THE SECURE/RELEASE MODULE GSECREL

THE ABM AND ABOM ABORTING TASKS
CONSTRUCTION OF MEDCOM AS A RESIDENT COMMON
ASYNCHRONOUS SYSTEM TRAPS

SCREEN CURSOR ADDRESSING ROUfINES
STUDENT PROJECT INSTRUCTION SHEET
ERROR NUMBERS ’

MEDIA SYSTEM STARTUP PﬁOCEDURE
SOFTWARE LISTINGS: HOST SYSTEM

SOFTWARE LISTINGS: LSI-11 MEDIA SYSTEM

CHAPTER 1

INTRODUCTION

1.1 Requirements

This project arose out of the need of the University of Cape

Town's Electrical and Chemical Engineering departments for an
interface system to enable them to use the PDP-11/23 minicomputer
that is shared between the two departments, for process control.

The interface system had to satisfy the following requirements:

1.

Since the PDP-11 is used for various purposes, such as
departmental administration, teaching and research, the
use of the process interface must not load the computer
unduly; i.e. 1its use must coexist with the other tasks

performed by the computer.

The interface system should be suitable for use both for

postgraduate research and for undergraduate teaching.

Multi-user access to the system should be possible, so

that it can be used concurrently for postgraduate

INTRODUCTION . PAGE 1-2

research and undergraduate teaching. Typically, at any
given time, the interface may be in use by one
postgraduate and three or four out of a class of about

fifty final-year undergraduates.

4. The system should be commissioned as quickly as possible,
with as little effort as possible from University staff,

since the University is badly short-staffed in this area.

5. ©Software access to the interface system must be carefully
controlled, so as to ensure that no two users can
accidentally or deliberately interfere with each other's
software. 1In particular, the use of the system by
undergraduate students must not in any way interfere with

the research use by postgraduates.

6. Geographic considerations, viz. the fact that the
PDP-11/23 is situated in the Electrical Engineering
building and the processes to which it must interface are
in the Chemical Engineering building 600 metres away,

dictate that the sytem must be distributed.

1.2 The Process Interface System

1.2.1 Commercial System

A Media system [1] was chosen as the process interface hardware
(see chapter 2 for a description of Media). This choice was based

on the following considerations:

INTRODUCTION | - PAGE 1-3

Media is available in various sizes, ranging from very
small systems, such as the one used in this project, to
very large industrial systems involving several thousands
of inputs and outputs. From the teaching point of view,
therefore, the.students would be using a system which,
although small and relatively inexpensive, is similar in
architecture to large systems used in the industrial

environment.

Media is essentially a modular system, since it consists

' into which the various

of sets of card-cages or "bins'
Media circuit cards (such as analogue or digital inputs
and outputs) are plugged. This means that Media can be
easily expanded by the addition of further Media bins or
by replacing cards or inserting additional cards within a

bin.

Media is widely used in industrial process control in the
Western Cape, by such companies as AECI and SA Nylon
Spinners (SANS). Since contact is maintained between the
University and (particularly) SANS, the advantage would
be gained of a productive interchange of knowledge

between the University and industry.

"Media provides fast access to data anywhere in the

system, since the Media cards are mapped to word

addresses on the Media bus or "highway".

General Electric Corporation (GEC) supply a small sysfem, called

the GEC Micro-Media system [2], which is a stand-alone Media

process interface system which communicates with the outside world

via a serial line, using a simple link-level protocol. The system

may therefore be used as a remote stand-alone "outstation"

controlled, via the serial line, by a host computer (in this case
a PDP-11/23).

INTRODUCTION l PAGE 1-4

Stand-alone operation in Micro-Media is achieved by including
three special Media cards: the 8085 CPU card, Media interface
card and serial line interface card. The Media interface card
causes the Media cards to be addressable by the 8085 on the CPU
card, and the serial line interface card enables the 8085 to
communicate via the serial line to the host. The 8085 CPU card
has two ROMs containing a program which continually monitors the
serial line, receives command frames from the host, decodes them,
acts on them (for example, read a value from a particular analoguev
input), and encodes and sends the reply frames. Use of the GEC
Micro-Media system with this built-in program enables the system
to be commissioned very quickly because it is ready to run and

only the host software to drive the serial link need be written.

Because of the simplicity of the serial link protocol used by the
GEC Micro-Media system it is possible to write this host software
without modifying the operating system device drivers, i.e. a
normal serial port driver can be used provided that it supports a
‘transparent mode which passes all characters (the ports of the
PDP-11/23 can be configured to do this).

It was therefore decided to implement a GEC Micro-Media system.
The configuration chosen was one with two Media bins containing
the following Media cards:

1. A 10-bit analogue-to-digital converter card plus a l6-way
multiplexer card, thus providing 16 multiplexed analogue
inputs.

2. Two 1l6-line opto-isolated digital input cards.

3. A 16-line digital output card.

4. A 4-channel 8-bit digital-to-analogue converter card,

thus providing 4 analogue outputs.

5. The 8085 CPU, Media interface and serial line interface

INTRODUCTION PAGE 1-5
cards.
6. LSI-11-to-Media interface cards.

These cards provide sufficiently many inputs and outputs to

support the applications envisaged for the system.

1.2.2 The Modified System

In addition to being interfaced to the 8085 as explained above,
the Media highway may be interfaced to the LSI-11 Q-bus by means
of the LSI-1l1-to-Media interface cards mentioned above. The use
of these cards to interface an LSI-11 microcomputer to the Media
highway enables the LSI to access all of the Media cards at memory
speeds. This interface can coexist with the 8085 subsystem, i.e.
it is not necessary to remove the 8085 CPU, Media interface or

line interface cards if the LSI-11 interface is to be used.

A major aspect of this thesis is the development of an alternative
software system [3] to enable an LSI-11 microcomputer to control
Media as an alternative to the GEC 8085-based system. This
system, which will henceforth be referred to as the "LSI-11 Media
system", is software compatible from the host point of view with
the GEC Media system and was developed because of the following

considerations:

1. The documentation available on the GEC Media systém was
not sufficient to enable it to be easily modified and
extended. The LSI-11 Media system, on the other hand,
having been developed as part of this project, is fully
documented and understood and can be modified to allow
for future developments, such as the addition of further

Media cards.

INTRODUCTION PAGE 1-6

2. Altﬁough the GEC Media system is in theory immediately
usable, there were in fact several practical difficulties
in getting it to operate correctly. Difficulties
encountered included a hardware problem whereby the
system would re-initialise itself unexpectedly every few
minutes thus destroying data held in RAM, and a software

bug which made the analogue input data inaccessible.

As an alternative to developing an LSI-11l system which emulates
the GEC Media system, we could have designed and developed an
LSI-11 system without ensuring compatibility with the GEC system.
This approach has the advantages that it could be more closely
tailored to the needs of the application in mind, and that one
would not be forced to live withjthe several deficiencies of the
link-level protocol used by the GEC system (see chapter 2).
However, it was felt that these disadvantages were outweighed by
the fact that compatibility would enable the GEC Media system to
be used as a back-up system in the event of a hardware failure in
the LSI-11 Media system. ‘

The LSI-11 Media system software emulating the operation of the
GEC system was written in the high-level structured real-time
language RTL/2 in the form of two tasks running under the

operating system SMT [4]. This combination was chosen because:

1. The software could be developed on the host PDP-11/23
computer using its editing, RTL/2 compiling and linking

utilities.

2. RTL/2 as a real-time language offers several attractive
features including efficient code generation, legibility

and ease of writing, debugging and modification.

3. SMT is a small (6K words) multitasking operating system
ideally suited to downloading and running multi-task

real-time applications on a small LSI-11 micromputer such

INTRODUCTION S ’ "PAGE 1-~7

as the one used. It provides support for up to sixteen
independent tasks written in RTL/2.

The LSI-11 Media system software, named SMT.TSK (after the
operating system used), must be downloaded from the host computer
using a program called ODT (see chapter 3).. This program enables
- the operator to load a bootstrap loader into the LSI, and then, by
starting the bootstrap loader running, download SMT.TSK and start
it running. The necessity to download the program before use,
although simple and quick, is a disadvantage of the LSI-11 Media
system, since the GEC system program resides in ROM and does not
need to be downloaded. This is however offset by the flexibility
of being able to download specialised software systems if so

desired.

1.3 Serial Data Link Hardware

Because of the relatively lafge distance of 600 metres between the
Media interface and the host, an ordinary RS-232 1link could not be
used. The link is a 4-wire link installed by the GPO and is
driven in differential mode using the 8820 and 8830 differential
line driver and receiver integrated circuits. Two of these 4-wire
lines are used: one for the Media interface and one for a remote
terminal to the PDP-11. The line-driver hardware is described ‘in

chapter 4. The system hardware is illustrated in figure 1-1.

f:/

[/,wire, GPO lines ,

I
b

et Chan 1

R |

Chan !

M —

1 Chan2

Link driver

L: PDP-1 (23

u_gg,r - host
Eerminals ¢ .
: " & — M'\mCOmPuter

Elec_Eng Bui/o/inj

|

N
N
N
| |
N
|
L]
|
||
o

Chan 2 —__\
Link driver | R

Remote LSI-II

MINI BIN

Térrﬁinal PASSI\VE BIN

Media interface

Chem. Er\q Bui,o‘inq
J J

Fiﬁ J-1 S yskewm hardware .
- .

NOILONQOYLNI

8—~1 dDVd4

INTRODUCTION : PAGE 1-9

1.4 The Host Software System

1.4.1 Introduction

The PDP-11/23 host minicomputer runs the multi-user multi-tasking
operating system RSX-11M [5] which provides the environment for
the development and execution of multiple real-time tasks using a
priority-structured, event driven task scheduler. Password log-in
protection, memory protection and a heirarchical file structure
make it suitable for use by many users (such as a class of

students).

The host software system provides the necessary routines,
libraries, diagnostics and tasks to enable user-friendly
multi-user access to the Media interface. The host software, like
the LSI-11 Media system software, is written in the language RTL/2
[6] , a structured high-level language for real-time systems.
RTL/2 offers the advantages of compiling into efficient code, it
has compfehensive error handling, it is easy to learn and can be
used for both systems and applications programming. It was
therefore felt that RTL/2 was a good choice both for the host

- software system and for the applications programs to be run using
the system. Its use in industry (e.g. at AECI and SANS) means
that students using RTL/2 will be gaining useful programming
experience.

The RTL/2 compiler for the PDP—ll‘wés written by SPL
International, who also supplied a run-time support package to
interface between RTL/2 and RSX-11M. [7] The SPL interface has
several shortcomings [8], such as poor naming of the interface
procedures, insecure use of system ;raps, inadequate error

reporting and large memory overhead on file I/0.

INTRODUCTION PAGE 1-10

Therefore, it was decided to use an alternative run-time support
package called MTSLIB [9] which was developed at AECI and corrects

most of the deficiencies of the SPL interface.

1.4.2 Multi-user Access to the Media Interface

1.4.2.1 The Media Data-base -

In order to keep careful control over access to the interface,
user applications software is not given direct access to the
serial line connected to the Media interface. 1Instead, a copy of
all information relevant to Media is kept in a resident common
data-base in the memory of the PDP-1l1l host computer. This
data-base is called MEDCOM (for "Media eommon“) and contains all
the input and output data, times of last update, access control

codes, setpoints, etc.

1.4.2.2 The Media Update Task -

A task called MEDUPDAT (for "Media update task") runs continually
and updates the database regularly with fresh information from

Media and writes output data from the data-base to Media. The

.'update task is the only task that communicates directly with the

serial link to Media; all other tasks, including user application
programs, read and write data from/to the data~base and rely on
the updating task to ensure that the data in the data-base is
up-to-date and that the output data is passed on to Media.

INTRODUCTION - PAGE 1-11

1.4.2.3 The Media User Interface Library -

-~

In addition to being denied direct access to the serial link,
applications software is not given direct access to the data-base
MEDCOM itself, but must access it in a controlled fashion, to
ensure that application tasks cannot interfere with one another.

. To this end, a library of routines (called MEDUSER, for "Media
user routines") provides easy read and write access to the
data-base, and hence via the updating task to the Media interface
itself. From the user point of view, accessing Media is a simple
and direct operation, because the routines in MEDUSER make all of

the following transparent:

1. Securing and releasing of the data-base for indivisible

operations (see chapter 6)
2. The operation of the Media update task, and

3. Encoding and decoding of frames in the Micro-Media
protocol and the sending and receiving of data link

frames.

For example, to write the data OUTDATA to analogue output number

2, the user would simply write
WRMEDOUT(ANALOG, 2, OUTDATA);

and would not have to worry about securing, releasing, protocols,
etc. The disadvantage is obviously the time uncertainty in
controlling Media; i.e. one cannot know exactly when the data
written to MEDCOM will reach Media because a variable amount of
time may elapse before MEDUPDAT performs the transaction with

Media.

INTRODUCTION PAGE 1-12

1.4.2.4 Exclusive access to Media outputs -

Access to MEDCOM via the MEDUSER interface has been controlled in
such a way that any user is permitted to read data from any part
of the data-base, since this will not interfere with other users'
activities, but a user can only write to those parts of the
data-base to which he has "attached" before running his tasks.
Before running any task which writes information to MEDCOM, the
user must attach to the outputs involved by running a task called
ATTACH, after which he has exclusive access to the outputs to
which he has attached. The user may if he wishes specify to the
ATTACH task which outputs to which he wishes to attach, or may
allow ATTACH to give him whichever happen to be free.

A procedure is supplied in the MEDUSER interface which enables a
user-written task to determine which outputs it is attached to.
This approach allows user programs to be independent of which
particular outputs are used, obviously a desirable feature since
the availability of different outputs will clearly vary from time
to time due to the muti-user teaching and research use. The \

ATTACH task is described in detail in chapter 7.

1.4.2.5 The Data-base Manager -

A task called MEDRMD (for "Media RMDEMO") provides a dynamically
updated display of the activity of the data-base. This display is
updated every second and gives details of which user is attached
to each output, how much time has elapsed since the last update
and which task is currently securing the data-base. This task is
similar in spirit to the RSX-11 RMDEMO task [10] which gives a
dynamic display of the use of the computer system resources such
as memory, pool, task lists and disc space. Use of MEDRMD enables
a system manager to monitor the activity of the data-base, and
correct any complications that occur (such as users attaching to

outputs and failing to detach afterwards). It also enables a user

INTRODUCTION PAGE 1-13

to quickly and easily see whether MEDUPDAT is in fact updating the
data base, and see to which outputs he is attached.

One of the accounts (account number [300,1]) is designated the
data-base manager's account : a user with [300,1] as his
protection UIC has more privileged access to the data-base than do
the other users. By using the information from MEDRMD, he can
keep control over the data-base: for example, he can forcibly

 detach from outputs users who fail to do so themselves.

1.4.3 The Necessity for Simulation .

Although the primary function of this system for the purposes of
teaching is to give thebstudents hands-on experience of the
control of a real process, practical factors dictate that much of
the time the students will not in fact be controlling a real
process, but instead a software simulation of the process. For
example, there may be only one set of apparatus, or the apparatus
may be delicate and easily damaged by .a program which is not fully
debugged. The data-base MEDCOM, therefore, contains not only all
the data needed for the Media interface itself, but also an
additional part which is used for simulation. This part of MEDCOM
is not updated by MEDUPDAT, but instead by a simulation task which
.simulates the effect of the Media update task plus the Media
interface and the process apparatus. From ther users' point of
view, however, it is exactly as if he were controlling a real
system. The only difference to the user is that when he attaches
to outputs using ATTACH, he specifies that he wishes to use a

simulated system.

To enable the easy simulation of analogue systems, a simulation
package (see chapter 9) has been written which enables easy
implementation on the digital computer of almost any analogue

block diagram.

INTRODUCTION PAGE 1-14

1.4.4 Graphics Interface

A library of routines simplifying the use of the Tektronix 4010
plotting terminal is provided. This library is not intended to be
a complete graphics interface, but merely provides sufficiently
many software building blocks to enable users to easily build up
their own routines such as graph-plotting routines. This allows
users to plot graphs of the parameters of the processes that they
are controlling - for example the value of one of the analogue
inputs against time. Hard copies of the graphs plotted may be
obtained using the hard-copy unit attached to the plotting

"terminal.

1.4.5 System Management and Diagnostic Tools

Various diagnostic programs have been written which can be used to
test the Media interface and the various software modules and

libraries. These are described in chapter 8.

1.5 Typical Applications

1.5.1 Teaching

The system was used during the 1983 academic year to teach the
fundamentals of real-time software and multitasking to final-year
Electrical Engineering undergraduates at UCT. The project, which

is described in detail in chapter 10, involved controlling the

INTRODUCTION PAGE 1-15

temperature of air emerging from a 60 cm vertical column, as in

figure 1-2:

i

§

Tem'oemtu re

‘;tmmsolucer.
To Medi a PN '

i , aMJO%ITe ir\?uk &

; . | Heater
| analogwe output powes :
] <

! 2?1 co r\,{'ro\

- Blower

¥om 19

Figure 1'2: ﬂir-column aPParatus

INTRODUCTION PAGE 1-14

Air is blown upwards at a constant rate by the blower fan and the
temperature read by the thermistor is read in via one of the
analogue inputs of the Media interface. The power output to the

heater is controlled via one of the analogue outputs.

.In addition, a simulation task could be run which simulated the

. operation of four such columns using the simulation portion of
MEDCOM. The students' software, which accessed the data-base
using the MEDUSER library, could be debugged and tested on the

~ simulation system and then run on the real system — thus allowing

up to five students to run their software simultaneously.

1.5.2 Research

A good example of a research project that could be undertaken
using Media is the determination, using adaptive control
techniques, of the characteristics of a variable reflux-ratio
f;actional distillation tower, illustrated in figure 1-3. Two
‘analogue inputs would be ﬁsed to measure the teﬁperature at two
points in the column, and another would give a measure of the
purity of the emerging distillate. One analogue output would vary

the power to the heater, and another would vary the reflux ratio.

INTRODUCTION

PAGE l~17-
| ~
mﬁ\ﬁer A
ow N4
Y D
!
|
|
: \
¢ /Q&
Eé__—_ c,addinj
§ varfab‘e ('Cmux
o= splitter
i ceramic
' ‘ Ck@s
NI
=] liqwid tobe
distilled
‘ — variable heatin
Product - — element , 'j

Fiq 1-3 2 Variable Reflux-ratio distillation tower

CHAPTER 2

MEDIA

2.1 HARDWARE

2.1.1 Introduction

Media, or Modular Electronic Digital Instrumentation Assemblies
[1], is a family of process control interfaces designed by

Imperial Chemical Industries (ICI). The use of Media offers the
following advantages:

1. Media provides "data highways" which give read, write and
control access at memory speeds to any part of the
system. It is therefore particularly suited to the
control of more complex systems.

<

2. The highways provide random access to data.

3. Media is modular, since it is divided into groups of

19-inch card racks into which a wide variety of available

MEDIA PAGE 2-2

Media cards may be plugged. Because of this modularity,
Media offers flexibility in configuration and
capabilities.

4. Media can safely be used in a hostile electrical
environment, since isolation is provided on all inputs
and outputs.

Media systems come in three basic models:

1. Media Major.

This is the largest of the family and is used to control
large industrial plants involving several thousand plant

signals.

2. Media Minor.

This model is of intermediate size and fills the gap

between Media Major and Micro-Media.

3. Micro-Media.

Micro-Media is used to control small systems, typically

consisting of up to 32 control loops.

The process data is transferred on the Media highways, of which

there are two types:

1. Active highway. This contains those Media cards which

can take charge of the highway as master.

2. Passive highway. The passive highway is controlled by

the active highway and contains those Media cards which
respond to commands but do not take control of the

highway, e.g. digital inputs and outputs.

MEDIA

' ! PAGE 2-3

Up to 16 Media cards can be plugged into each 19-inch

rack-mounting "Media bin". These bins can be of three types:

l.

Active bins: These contain cards which are situated on

the active highway.

Passive bins: These contain cards which are situated on

the passive highway.

Mini-bins: Mini-bins have both an active and a passive

part,

and are only used in small Media systems.

2.1.2 The UCT Micro-Media installation

The UCT Media system [11], which is a Micro-Media system supplied

by GEC, has a mini-bin and a passive bin housed in a welded

open-frame chassis. The analogue and digital input and output

lines from the Media cards are connected to three connector rails

at the back of the Media chassis. A diagram of the connector

rails is given in Appendix A.

The mini-bin has the following cards installed:

l.

M7100
M?lOl
M6310
M0410
M7000

M7001

8085 CPU card

CPU-~to-Media interface card

serial I/0 card

minibin control card

PDP-11 interface (data)

PDP-11 interface (control)

MEDIA PAGE 2-4

7. M7002 LSI/Media bus interface with M7022 LSI-to Media
cableform.

8. MO0601 Highway terminator

The passive bin has the following cards installed:

1. Two M2001 16-line digital input cards. These 32 digital
lines are intended to be driven by switch contacts, but
have been brought out to the front panel (see appendix A)
in such a way as to enable' them also to be driven by TTL

logic levels.

2. One M3302 16-line digital output card. These 16 lines
emerge from the card with logic high being 24 volts, but
have been brought to the panel (see appendix A) in such a
way as to allow a choice between 24 volts and TTL logic

levels.

3. One M3004 4-channel analogue output card. The outputs
have 8-bit precision, with OOH being equiValent to -4ma,
and FFH to -20mA. They have been brought to the panel in
such a way as that they are also available as -1V to -5V

voltage outputs (see appendix A).

4. One M1601 16-way analogue multiplexer card. Selection of

a particular channel is described in Appendix B.

5. One M1000 10-bit analogue-~-to-digital converter card. The
analogue input to this card is the one selected by the
multiplexer card. The input voltage range is -1V (for
000H) to -5V (for 3FFH). The format of the data read is
described in Appendix B.

6. MO003 passive highway terminator card.

A serious problem with the system is that the ground reference

level for the digital cards is 15 volts below that of the analogue

MEDIA PAGE 2-5

cards. This means that there must be two ground levels (analogue
ground and digital ground), which leads to unnecessarily

complicated circuitry when interfacing Media to the circuit being

controlled.

Specific details of the programming of each individual Media card
are given in appendix B.

{

2.2 SOFTWARE

2.2.1 oOutline

As was menioned in the introduction, the heart of the Micro-Media
system consists of three boards: an 8085 CPU board,a Media
interface board and a serial I/0 board. These boards are plugged
into the active section of the mini-bin. Two ROM chips on the CPU
board contain a program, written in Coral-66, allowing Micro-Media
to be used as a remote data input/output station, connected to the
host computer via a serial data link. A simple half-duplex
link-level protocol [12], described below, is implemented whereby
the host sends command frames, and receives reply frames from

Micro-Media.

The Micro-Media software continually scans the Multiplexed
analogue inputs and stores the values read into an area of RAM
called the "analogue list". The data items stored in the analogue

~list are called "list items".

The 32 bits in the two "digital change words" stored in RAM
correspond to up to 32 16-line digital input cards. Whenever the
state of any of the input lines to one of the digital input cards

changes, the Media program sets the bit in the digital change

MEDIA PAGE 2-6

words corrésponding to this card. The digital change words are
cleared by the Media program after the host reads them. The
philosophy behind the use of the digital change words is to allow
the host to determine whether or not any of the digital input
lines have changed state, without having to access each digital
input card. In the present system, however, which has only two
digital input cards, only two bits of the digital change words are
used and no real advantage is gained over simply accessing both

digital input cards.

Each Media card is identified by its "Media address", i.e. 1its
address on the Media highway, and each item in the analogue list

" has a "list address". Media and list addresses are 10-bit
addresses. In the LSI-11 Media system, the Media addresses
correspond to successive locations in the I/0 space of the LSI, as

explained in appendix B.

- The Micro-Media protocol is a half-duplex link-level protocol.

All transactions between Media and the host are initiated by the
host. The host sends a frame in which is encoded a command field
to indicate to Media which of sixteen possible operations it must
perform, and Media replies with a reply frame including a status
field indicating whether or not the operation was successful, and
if not, what went wrong. Frame data integrity is checked using a
block check character. Error correction is not performed - the
host is expected to take corrective action, such as retransmitting
a frame, if the reply from Media indicated that the received frame
was faulty. A timeout is implemented by Media whereby the time
interval between any two successive bytes within a frame may not

exceed a certain amount, or else the frame is rejected.

2.2.2 Media protocol frame format

Each frame consists of a number of bytes into which the various

frame fields are encoded. The first and last byte of each frame

MEDIA PAGE 2-~7

has bit 6 set (regarding the least significant bit as bit 0, and
the most significant bit as bit 7). No other byte within a frame
has bit 6 set. After the first byte of a frame is detected, all
further bytes are included in the frame until another byte with
bit 6 set is detected. This byte is then taken as the last byte
in the frame.

This scheme has the disadvantage that the same method (setting bit
6) is used to indicate the start and the end of the frame, and
therefore, should a start or end byte be lost, all start bytes:
will be identified as stop bytes (and vice-versa) and so no

further frames will be transmitted correctly.

The following fields are present in all frames:

1. The command code. The command code informs the Media

program which of sixteen possible operations (such as
read digital change words or write to Media address) it
should perform. - The command code consists of bits 0 to 3
of the first byte in the frame. All possible command

codes are listed in Table 2-1 and described below.

2. The terminal address. Bits 4 and 5 of the first two

bytes contain a 4-bit terminal address, used to identify
a particular terminal if a multidrop line is used. 1In

the LSI-11 Media system, these bits are ignored.

3. The block check character (BCC). Bits 0 to 5 of the

final byte in the frame form a BCC, which is formed as

the logical exclusive-OR (vertical parity) of all

previous bytes in the frame.
4. Parity. Bit 7 of each byte may be used as a parity bit.
The LSI-11 Media system does not use the parity bit, but

instead puts zero into these fields.

5. Reply status. In the case of Media~-to-host reply frames,

bits 0 to 3 of the second byte give status information as

listed in Table 2~2. The status information informs the

MEDIA | PAGE 2-9

'2.2.3 Media operations R

"The operations which Media can perform in response to a command

frame from the host are summarised in Table 2-1.

- When data is written to Media, this is done in a two-stage

'lprocess, SO as to ensure integrity. A frame with a command field
indicating a write (code C or D) is sent to Media, containing an
item of data to be written to a specified Media or list address.

- Before taking any action, Media reflects the entire frame back to
the host. If the host is satisfied with this reply, it then sends
a confirmatory frame with a command field indicating "go" (code E)
causing the data to be written, and Media replies with a 3-byte A
frame containing the status field. Should a confirmatory "go"
frame not be received from the host, Media will not write the
data, but will simply perform whatever operation is specified by
the command field of the next frame received (i.e. the initial

"write" frame will have had no effect).

The following list describes all the operations which may be

specified by a frame from the host:

1. Single read from Media address (code 1). Media returns

the value read from the specified Media address.

- 1 b oy . . - -
L TORE R AL APE W P I i . S)

2. Single read from list address (code 2). Media returns

the value. read from the specified list address.

3. Block read from Media addresses (code 3). The frame from
the host indicates how many items must be read, and the
Media address of the first item. The items are read from

consecutive Media addresses and returned inside the reply

frame.

4. Block read from list addresses (code 4). Same as for

(3), except that list addresses are used.

5. Read digital change words (code 7). The reply frame from

MEDIA PAGE 2-10

Media contains the digital change words.

6. Read the printer status word (code 8). The reply from
Media contains the printer status word, which indicates
the status of the printer local to the Media interface.
Since our system does not have a local printer, this

function is not implemented in the LSI-11 Media system.

7. Write to a single Media address (code C). The frame from
the host contains the Media address and the data to be
written to that address. Media does not actually execute
the write until it receives a confirmatory "go" frame,
but instead reflects the entire frame back to the host

for checking.

8. Write to a single list address (code D). As for writing

to a Media address except that a list address is used.

9. Go (code E). This is the confirmatory command used in
the second stage of a write operation and informs Media
that it may now execute the write specified in the

previous host command frame.

10. Write text to printer (code 0). The frame received by
Media contains text which must be printed on the printer
local to the Media interface. Since our system does not
have such a printer, this command was not implemented in
the LSI-11 Media software.

CHAPTER 3

THE LSI-11 MEDIA SYSTEM

3.1 THE LSI-11 MEDIA SOFTWARE

3.1.1 General

This software component emulates the operation of the GEC
proprietary Micro-Media software. Since the target LSI-11
microcomputer consists only of CPU board, memory and serial I/0
interface, the operaﬁing system used must be built together with
the Micro-Media software into a single task (called SMT.TSK)
before being downloaded into the LSI-11l.

The operating systeﬁ used is SMT (for "Standard Multi-Tasking")
version 18 which is a small (about 6K words) multitasking
operating system designed for use in real-time control
applications [4]. Because of its small size, SMT is ideally

suited to applications such as this one where the system can be

THE LSI-11 MEDIA SYSTEM PAGE 3-2

compiled on a minicomputer and downloaded into a microcomputer
such as the LSI-11 used. SMT is written mostly in RTL/2, but has
assembler code inserts where necessary. The use of a high-level
language makes the operating system easier to understand and to

update.

SMT provides the framework into which the user may insert up to 16
tasks written in RTL/2 for his particular application. Full RTL/2
system and stream I/0 facilities are provided for the tasks, as
well as 16 user events and 16 facilities. SMT allows 255 levels
of priority for the tasks. Standard RTL/2 error handling

mechanisms are provided.

'3.1.2 SMT System Modules

The operating system itself consists of the following modules:

3.1.2.1 The SMTB1 and SMTB1X modules -

These contain all the machine-dependent system code, including
interrupt handling, real-time clock handling, unrecoverable error
handling and system start-up code.. Both are supplied with SMT,
but SMTB1X is the one that must be used with the RSX-11l
macro-assembler, since it contains certain .PSECT directives that

- the assembler ‘requires.

Because SMT was originally written to run on the old pre-LSI PDP
minicomputers, it does not exploit the larger instruction set of
the LSI-1l1l to the full. The LSI-11] has additional instructions
for processor status word access which were not present in the
instruction sets of the earlier PDPs. To enable these more

efficient instructions to be used, SMTB1lX must be edited to change

THE LSI-11 MEDIA SYSTEM PAGE 3-3

the old instructions to the new ones. All the necessary changes
are included in a file called SMTB1X.EDT (not supplied with SMT).
An edited file, SMTB1XUP.RTL, is produced by the DEC editor, as
follows:

EDT SMTB1XUP.RTL=SMTB1X.RTL
*INC =X /FI:SMTB1X.EDT

*XEQ =X .

*EX

SMTB1X is compiled using

RTL SMTBlX,SMTB1X=SMTB1XUP/CN:F/PE:SMTBlX/TI:SMTBlXUP
MAC SMTB1X=SMTB1X

The /CN:F switch is needed because SMTBlX contains code inserts,
the /PE switch is used to generate a .PSECT directive at the
beginning of the output macro-1l1 source and the /TI: switch

specifies a title.

3.1.2.2 The SMTUl and SMTUl1lX modules -

These contain the machine-dependent user task definitions and
initialisation code, i.e. vthe details about all the user tasks
that will be built into the system - what the names for the base

procedures of the user tasks are, what the tasks' priorities are,
"whether they are to be initialised into the running or suspended
states, etc. Therefore, SMTU1X must be edited to configure it to
run the two user tasks SMTCOMS and SMTMULTI (these are described
later). This module as supplied also includes the device driver
routines for the console serial line of the LSI. However, in this
application, these have been replaced by custom-written drivers in
the SMTDEVDRV module (below), and so must be deleted from this
module.

As for the SMTB1X module above, SMTUlX is the one that must be

e IEIRIE N N S

T e e

THE LSI-11 MEDIA SYSTEM " PAGE 3-4

used with the RSX-11 assembler. A file, SMTU1X.EDT, is provided
which contains all the necessary commands for the DEC editor to
edit SMTUlX.RTL to produce SMTUlXUP.RTL.

SMTUl1X is compiled using

RTL SMTU1X, SMTU1X=SMTU1XUP/CN:F/PE:SMTU1X/TI:SMTU1X
MAC SMTU1X=SMTU1X

The meaning of the switches used was described in the section on
SBTB1X.

3.1.2.3 The SMTB2 module -

This module contains the machine-independent system routines.
Included amongst these are routines conneéted with event flags
such as WAIT, DELAY, SET and RESET, the securing and releasing of
facilities, the printing of error messages when unrecoverable

errors occur and the standard RTL/2 stream I/0 procedures such as

IREAD and TWRT.

The only modification necessary is the suppressing of the output
of the error-message printing routine ERPRIN (for reasons

explained later). This is done by commenting out the bulk of the

.routine. Examination of the listing of the routine will show that

an alternative method would have been to set the error count ECT

to zero just before ERPRIN tests its value.

SMTB2 is compiled using

RTL SMTB2, SMTB2=SMTB2/TI :SMTB2
MAC SMTB2=SMTB2

THE LSI-11 MEDIA SYSTEM PAGE 3-5

3.1.2.4 The RTLCTL module -~

This module contains the control routines for RTL/2 tasks running
under SMT. These include the trap handlers, array bound checking
routines, stack unwind routines, type conversion and all
arithmetic routines such as compare, add, subtract, multiply,

divide and arithmetic shift.:

The module is written in macro-ll and does not need to be

modified. It is assembled using

MAC RTLCTL=RTLCTL

3.1.2.5 The SMTB3 module -

This contains the system data tables and the stacks for the tasks
which form part of the SMT operating system itself (e.g. the
real-time clock task). The contents of the system data tables is

not of any relevance from the user point of view.
No modifications are needed to SMTB3, and it is compiled using

RTL SMTB3,SMTB3=SMTB3/TI:SMTB3
MAC SMTB3=SMTB3

.3.1.3 User modules

THE LSI-11 MEDIA SYSTEM PAGE 3-6

3.1.3.1 The SMT device driver SMTDEVDRV -

The device drivers supplied with SMT as part of the SMTU1X module
are not suitable for use as drivers of the Media serial 1line,
which must transmit and receive 8-bit binary data without speéial

significance to any of the characters.

The supplied drivers were deleted and a module SMTDEVDRV was
written to replace them. The module consists of the hardware
input and output console line interrupt servicing routines as well
as byte input and output procedures intended to be assigned to the’
standard RTL/2 stream input and output procedure variables IN and
OUT in the SVC data brick ‘

SVC DATA RRSIO;
PROC () BYTE IN;
PROC (BYTE) OUT;

ENDDATA;

The description below of these four procedures should be read in
conjunction with the listing of SMTDEVDRV:

1. PROC INSERIAL ().

This is the hardware serial input interrupt service
routine and is vectored to via location 000060. It is
executed whenever a byte has been received on the line

and is ready for processing by the Media software.

Inspection of the listing will show that INSERIAL takes
this byte and puts it into a buffer (INAREA.INBUFF) and
increments the buffer pointer (INAREA.INPT). It then

queues the console input event INEVENT and returns.
2. PROC OUTSERIAL ();

This is the hardware serial output interrupt service

routine and is vectored to via location 000064. It is

~

THE LSI-11 MEDIA SYSTEM PAGE 3-7

executed on completion of the transmission of a serial
output byte.

All it does is to queue the printer event flag PREV to
indicate to the software that transmission of the

character is complete.
3. ENT PROC INBYTE () BYTE;

This procedure, together with INSERIAL, replaces the
SMT-supplied console input procedure INTTY. It is
assigned to the standard RTL/2 byte input proéedure
variable IN by the Micro~Media communications task
SMTCOMS. All 8 bits of all input bytes are passed, none

of them being given any special treatment.

Its operation is as follows. If there are bytes left in
the input buffer, the output pointer INAREA.QUTPT is
incremented and the byte pointed to is temporarily saved

" in the variable CHAR. A test is then done to see if the
byte is the last one left in the buffer. 1If it is, then
the buffer pointers INAREA.INPT and INAREA.OUTPT are
reset to zero. A suspension of interrupts using HLOCK
takes place during this critical test-and-reset
operation. The procedure then returns the byte saved in
CHAR.

4., ENT PROC OUTBYTE (BYTE B);

This procedure is used to output bytes to the console
line. It is assigned to the standard RTL/2 byte output
procedure variable OUT by the Micro-Media communications
task SMTCOMS. All 8 bits of all bytes are passed, and no
special significance is attached to any of the

characters.

THE LSI-11 MEDIA SYSTEM PAGE 3-8

SMTDEVDRV is compiled using

RTL SMTDEVDRV, SMTDEVDRV=SMTDEVDRV/CN:F/PS:DEVDRV/TI : SMTDEVDRV
MAC SMTDEVDRV=SMTDEVDRV

3.1.3.2 The SMTCOMS user task -

3.1.3.2.1 General description -

SMTCOMS is the serial I/0 communications task. It performs the

following operations:
1. Receiving and transmitting of all data link frames.

2. Decoding the Micro-Media protocol serial link command
frames received from the host, and detecting any errors

in these frames (such as faulty block check character).

3. Constructing the Micro-Media reply frames which it will
send to the host.

4. Performing all operations (such as Media read or write)
that are specified by the command frames received from
the host.

THE LSI-11 MEDIA SYSTEM - PAGE 3-9

3.1.3.2.2 Detailed description -

This description should be read in conjunction with the program

listing.

SMTCOMS is activated every time an input byte from the host
arrives down the serial link. It waits for the event flag INEVENT
which is set by the input interrupt servicing routine INSERIAL.

The input bytes are built up into complete frames (a frame being
a complete command from the host in the Media protodol format).
This is done by the procedure BUILD() which is called for each
input byte.

Checking of the input characters is only done once the input frame
is complete. The successive bytes of an input frame must arrive

within two seconds of each other, otherwise the frame is rejected.

The start and end bytes of each frame are detected by testing bit
6 of each incoming byte - a byte in a Media frame has bit 6 set if

and only if it is a start or end byte.

When the BUILD() routine indicates that the frame is complete,
PROCESS() is called to process the frame. It checks that the
block check character (BCC) is correct, decodes the frame, takes
appropriate action according to the Media code, builds up a reply

frame and outputs the reply down the console line.

- The fundamental procedures for accessing Media highway addresses
are WMEDIA and RMEDIA. These are also called by the SMTMULTI task

when it accesses Media.

1. ENT PROC RMEDIA (INT AD) INT. The returned integer
contains the data réad from the card at Media address AD.
AD is multiplied by 2 and added to the base address
176400 to convert it to an LSI address.

THE LSI-11 MEDIA SYSTEM PAGE 3-10

2. ENT PROC WMEDIA (INT ADDR, VALUE). The data VALUE is
written to the Media address ADDR.

Should a Media access error cause a bus time-out unrecoverable
error, control is passed to the unrecoverable error processing
label UNRECOV. Unrecoverable error processing is discussed in

section 3.1.4.
Procedure GETADD extracts the Media or list address from the

address field of input frame, and DECODE similarly extracts the
data from the data field.

3.1.3.2.3 Error conditions recognised -

_ The SMTCOMS task recognises several error conditions :

1. LENERR : Length of input frame is inconsistent with the

Media code used.

2. TOOMANY : Too many bytes in input frame - input buffer

overflow.

3. TIMEERR : Timeout error while waiting for input.

4. BADCODE : Invalid Media code received.

5. BLOCKERR : BCC of received message incorrect.

6. MEDIAERR : Media access error.

7. UNEXPGO : GO code received which was not preceded by a

write message.

THE LSI-11 MEDIA SYSTEM PAGE 3-11

The Micro-Media protocol, however, only allows five types of error
status to be returned : ‘

1. Parity, framing or overrun error in input frame. This is
returned for LENERR and TOOMANY.

2. Timeout on character input. This is returned for
TIMEERR.

3. Invalid Media code. This is returned for BADCODE and
UNEXPGO. - .

4, BCC faulty. This is returned for BLOCKERR.

5. Media error. This is returned for MEDIAERR.

3.1.3.2.4 Compiling SMTCOMS -

SMTCOMS is compiled using

RTL SMTCOMS, SMTCOMS=SMTCOMS/CN:F/TI : SMTCOMS
MAC SMTCOMS=SMTCOMS

3.1.3.3 The SMTMULTI user task. -

~

SMTMULTI is the analogue multiplexer scan task. Its function is
twofold:

1. It must continually read the digitél input cards and

update the digital change words in RAM accordingly.

THE LSI-11 MEDIA SYSTEM PAGE 3~-12

2. It must continually read the multiplexed analogue input

data and store this in the analogue list in RAM.

Every 60 milliseconds it reads in the digital inputs, compares
them with the wvalues read thg previous time, and stores the
.digital change words accordiﬁgly. It then writes to the
multiplexer to select the next analogue input to be read, waits 40
to 60 milliseconds to allow the multiplexer to settle, and reads
in the data from the ADC card. Only one analogue input is read
each time. It therefore takes 16 times as long, i.e. about one

second, to scan all 16 inputs.

Any Media access which causes a bus timeout on access is regarded
as a Media error, and causes error processing to pass to the
-unrecoverable error label. The unrecoverable error processing

‘then puts the card responsible for the error out of scan.

A list of cards which are out of scan is maintained, as well as a
pointer to this list. Each time'round the loop, one of the
out—-of-scan cards (if there are any) is accessed to see whether it
has come back into scan, and if so, its element is removed from
the out—-of-scan list. If however, the card is still out of scan,
~an unrecoverable bus time-out error will again occur. It is for
‘this reason that only one of the out-of-scan cards can be tested

at a time.
SMTMULTI is compiled using

RTL SMTMULTI, SMTMULTI=SMTMULTI/CN:F/TI:SMTMULTI
MAC SMTMULTI=SMTMULTI

THE LSI-11 MEDIA SYSTEM PAGE 3-14

SVC DATA RRERR;
LABEL ERL;
INT ERN;
PROC (INT) ERP;
ENDDATA;

3.1.5 Building SMT.TSK

Once all the modules have been compiled as described already, they
may be task-built to form SMT.TSK using the following command

TKB @TKBSMT

where TKBSMT.CMD is

SMT/-HD/-MM, SMT/-SP /MA/CR=LOWCR, SMTB1X, SMTB2, SMTB3
RTLCTL, SMTU1X, SMTDEVDRV, SMTMULTI , SMTCOMS

" STACK=0
UNITS=0
PAR=EXEPAR:0:160000

LOWCR.MAC reserves space for the bottom area of LSI memory which

will contain the interrupt vectors. It consists simply of

.PSECT :
.BLKW 128. . : Reserve 256. bytes for int. vectors

.END -

3.1.6 Note on debugging the user SMT modules.

In the’SMTCOMS, SMTMULTI and SMTDEVDRV modules, certain RTL/2
lines have been commented out using triple percent signs ("%$%3").

These lines were originally present while the software was being

THE LSI-11 MEDIA SYSTEM PAGE 3-15

debugged, and cause messages to be printed down the console line
describing what the programs are doing. If it is ever necessary
to debug or extend these routines, the abovementioned debugging
lines can be temporarily put back by changing all occurrences of
338" to "%%". Once debugging is complete, changing "%%" to "%%%"

will cause the debugging lines to be commented out again.

- 3.2 REMOTE SYSTEM DOWNLOADING AND STARTUP

3.2.1 The ODT program

3.2.1.1 General -

The remote system start-up procedure is structured around the use
of a program called ODT, so called because it interacts with the
microcoded ODT (Octal Debugging Technique) program [13] which runs
on the LSI-11 when it is halted.

ODT, which is run on the host and provides semi-transparent access
to the console line of the remote LSI-~11l, enables the operator to
perform any of the operations that are supported by the LSI-11's
console ODT. ODT can therefore be used to examine and change any
of the LSI's memory and register locations. As was mentioned in
the introductory chapter, ODT (together with the bootstrap loader
SMTLOAD) also provides the means whereby the LSI-11 Micro-Media
software SMT.TSK can be downloaded into the remote LSI-11 and

started running.

Ideally, ODT should provide full transparency between the

THE LSI-11 MEDIA SYSTEM ') PAGE 3-16

operator's terminal on the host and the LSI-1l1l's console line, so
that from the operator's point of view it would seem that his
terminal was directly plugged into the LSI. Such transparency can
be achieved using RSX-11M's asynchronous system traps (ASTs) [14]
to deal with the incoming characters from the two ports, but the
simpler approach of using standard QIO calls was used which
allowed the program to be made operational sooner and with less
effort.

dnfortunately, use of the RSX-11M QI10$S [15] I/O directive only
allows one to achieve partial transparency. The operator types in
a complete ODT command followed by a carriage return. This
command is scanned and checked by the program, and if it is a
satisfactory ODT command, is sent down -the line to the LSI. The
program then waits for a reply from the LSI, in most cases with a
one-second time-out. The reply received is then sent to the

user's terminal.

This approach requires the program to calculate the number of
characters expected in the reply from the LSI, and in order to do
this, a record is kept of what "state" the LSI is currently in.

The four states used are :

- 1. START : The LSI is waiting for a command and has output
an '@' prompt.

2. MEMORY : An LSI memory location is currently open.

3. REGISTER : An LSI register location is open.

4. PSW : The LSI processor status word location is open.
1f fhe user typés in a command which is inappropriate for the .

current state of the LSI, it is rejected and an error message is

displayed.

THE LSI-11 MEDIA SYSTEM PAGE 3-17

3.2.1.2 The flush (F) command -

The flush ('F') command, which is recognised in all states, is
provided so that the user can flush the input type-ahead buffer of
the host serial port to get rid of any unwanted input characters.
The program issues an 1/0 directive to read all characters withou£
echoing them, with a one-second time-out (a QIO$S #IO.RALITF.RNE
directive). Any input in the buffer, plus any that arrives in the
' next second, is discarded after being output to the user's screen.
It is recommended that the flush operation be done on program
startup and also whenever replies from the LSI appear not to be
properly aligned with the commands sent out. The flush command

also returns the program to the START state.

3.2.1.3 Commands recognised in START mode -

In addition to the flush command, the following are recqgnised in
START mode :

1. Open memory location
<octaldigitlist><'/'> (e.g. '700000/')

Memory location 'octaldigitlist' is opened and the
contents displayed. 'Octaldigitlist' must consint of one
to six octal characters. The program is put into MEMORY

mode.

2. Open register location

<'e I'R'><octa1digit><'/'> (e.g. 'R6/')

Register number 'octaldigit' is opened and the contents

displayed. the program enters REGISTER mode.

THE LSI-11 MEDIA SYSTEM PAGE 3-18

Open PSW location

<'s'I'R'><'s/'> (i.e. '$s/' or 'RS/')

The PSW is opened and the contents displayed. the

program 'enters PSW mode.

Go
<octaldigitlist><'G'> (e.g. '1070G‘')

Processing is started from the location specified by
'‘octaldigitlist'. No timeout is put into effect and the
program will wait until the LSI has output 11 characters
(normally caused by the LSI halting again). The program
remains in START mode.

Proceed

<'P'> (i.e. 'P')

Causes processing of the LSI to continue from the
location pointed to by the value of register 7. As for
the Go command, no timeout is imposed and the program

remains in the START state.

Help

< H LHELP'>

Sends to the terminal a short summary of the operation of

the ODT program.

Exit

< control~Z>

Stops execution of the program and returns control to
MCR.

THE LSI-11 MEDIA SYSTEM PAGE 3-19

Load
<'L'> (i.e. 'L')

This command is described in the section on downloading .
SMT (below).

3.2.2 Commands recognised in MEMORY and REGISTER state

3.2.2.1

Next location’
[<octaldigitlist>]J<'N'> (e.g. '1000N"')

The contents of the current location are replaced by
'digitlist' if this field is present. Then the next
location is opened and its contents displayed. The state

remains unchanged.

Close location
[<octaldigitlist'>]<'C'> (e.g. '34C')

The contents of the current location are replaced by

'octaldigitlist' if this field is present. Then the

location is closed and the program enters START state.

Commands recognised in PSW mode -

In PSW mode, only the Close location command is recognised. 1Its
syntax and operation is the same as for MEMORY/REGISTER mode.

THE LSI-11 MEDIA SYSTEM PAGE 3-20

3.2.2.2 Downloading the LSI-11 Media software -

The 'L' command, which can be invoked in START state, is used to
download a bootstrap loader into the LSI, cause this downloaded
loader to run and download the file 'SMT.TSK' into the LSI.

On typing 'L' the user is asked
DOWNLOAD THE ABSOLUTE LOADER (Y/N) ?

If the answer is Y, the absolute loader, stored in an octal dump
format in the file SMTLOAD.ABS, is loaded, word by word, into the
LSI, using the standard ODT commands, as if a person had typed it
all in by hand. All the information loaded is also displayed on

-the terminal screen. When this is complete, the program asks,
LOAD SMT (Y/N) ?

If Y is typed, then the file SMT.TSK is loaded in 512-byte blocks
down the line. After each block, the LSI returns a checksum byte,
which the ODT program compares to the checksum it calculated. If
a checksum error occurs, it is necessary to restart the LSI, flush
" the input buffer ('F' command) and start loading again. On the
other hand, if SMT is successfully loaded, the message 'LOADING
COMPLETE' is displayed and the program asks

START SMT RUNNING (Y/N) ?
If Y is typed, execution of the SMT program is started, and the
LSI-11 Media system is functional. The user will normally then

type control-Z to exit to MCR.

If N is typed, then the ODT commands can be used to examine and
modify the downloaded SMT program.

Step~by-step instructions for Media system startup are given in
appendix M.

THE LSI-11 MEDIA SYSTEM PAGE 3-21

3.2.2.3 Terminal settings -

The PDP port currently being used as the Media serial 1link is
TT10:. For the program to download correctly, it is essential

that this terminal be set to read-pass-all, as follows :

SET /RPA=TT10:
It is also recommended that the port be set to SLAVE, so that it
ignores unsolicited input, and to NOECHO so that if a spurious
character occurs, it will not be echoed back and forth across the

link :

SET /SLAVE=TT10:
SET /NOECHO=TT10:

The link speed is 9600 baud :

SET /SPEED=TT10:9600:9600

These four commands %fe included in DLO:[1,2]STARTUP.CMD and are
e hosk
executed as part of ,system start-up.

3.2.3 SMTLOAD - a bootstrap loader for the LSI-11

3.2.3.1 Description -

SMTLOAD is a 160-byte~long bootstrap loader for the LSI-11, which
is put into the LSI memory by the ODT task using the 'L' command
as explained above, and which loads the LSI-11 Media program
SMT.TSK into the LSI memory.

THE LSI-11 MEDIA SYSTEM PAGE 3-22

SMTLOAD itself occupies the 160 bytes from address 157000 to
157240. It is loaded by the ODT program while the LSI is halted
and in console-ODT mode. The file SMTLOAD.ABS, which is an octal
dump of SMTLOAD, is sent down the serial line byte-for-byte as if
a user had typed it all in by hand.

The ODT program then sets the PSW of the LSI to 000340 (priority
*7) so that it cannot be interrupted, and starts the LSI running
from location 157000.

1
i

 The first two bytes received by STMLOAD are interpreted as the
length in bytes of the file to follow. A running checksum is also
m~intained. After every 512 bytes received, the checksum byte is
output down the console line for checking by the ODT program.

oOnce all the bytes have been received, SMTLOAD halts.

SMT.TSK is then ready to be run by a "0G" command from ODT.

'3.2.3.2 Constructing SMTLOAD.ABS -

SMTLOAD is assembled and taskbuilt as follows:

MAC SMTLOAD=SMTLOAD
TKB @TKBSMTLD

where TKBSMTLD.CMD is

SMTLOAD/-MM/-HD, SMTLOAD/-SP=SMTLOAD

STACK=0
PAR=EXEPAR:157000:1000

//

The resultant task is a binary file SMTLOAD.TSK which has to be
translated into an octal dump format by the DMP utility :

THE LSI-11 MEDIA SYSTEM PAGE 3-23

RUN $DMP ' : ’ B
DMP>SMTLOAD . ABS=SMTLOAD.TSK/BL: 3

Then SMTLOAD.ABS must be edited (using EDT) as follows :

1. Delete the first two lines. These contain page heading

information.

2. Delete all line-feed characters, by typing

S/<LF>// $BE:%E

where <LF> is the line-feed character on the terminal

keyboard.

3. The last several lines will contain only zero data.

Delete these lines.

CHAPTER 4

THE SERIAL LINK INTERFACE HARDWARE

4.1 The serial lines

There are three 4-wire links runhing between the computer rooms of
the Electrical Engineering and Chemical Engineering buildings, a
distance of some 600 metres. These lines were installed by the

" Post Office. '

Two of these are currently in use - one as the line connecting the
LSI-11 (in Chem Eng) to the host PDP-11/23 (in Elec Eng), and the
other as a general-purpose terminal link to the PDP. Both run at
9600 baud and use the balanced-line interface units described
below. ‘

THE SERIAL LINK INTERFACE HARDWARE ‘ PAGE 4-2

4.2 The serial interface units

Each unit contains the circuitry necessary to interface two
independent RS-232C channels to two balanced 4-wire lines (i.e.
the GPO lines).

A full cicuit diagram of the unit is given in Appendix D.

The chips used are the DS8820 dual differential line-driver and
the DS8830 dual differential line receivers [16].

3 of delta
conneckoyr
(Rx) -

Figure h-I.

—
-

RS232 RS232
|
]
l = OO%pF

,"*5"1 8830 : | | l mes
' “} L | e
FbW\Pn ! . | 31+ .

|
o
| I
| |
| |
l |

o TOPh\Z
: ot delto-
\ 12V . connechor

(Tx)

GPpo

line

Figure 4-1 shows the system circuit diagram for one of the two
channels.

1

THE SERIAL LINK INTERFACE HARDWARE - _— PAGE 4-3

-~

4.2.1 - Circuit operation

Let us suppose that a terminal is plugged into the RS-232
connector for channel 1 of‘the unit. When a character is typed,
~ the- RS-232- level-signal-appears-at pin- 4 of the-1489.. .The- 1489
converts this signal to an inverted TTL-level signal at pin 6,
"which drives pin 1 of the 8830. The 8830 converts this to a
differential signal (the two levels being about -+{V and +4V)
between its AND and NAND outputs {(pins 6 and 5). The AND output
éignal is inverted reiative to the original input from the
tgrminal, whereas the NAND;output signal is not.

These outputs go via two gf the wires in the GPO 'link to pins 1
and 3 ofvthe 8820 in the interface unit on the other side of the
link. These signals are limited between -12V and-12V by the

protection zener diodes shown.

The line is terminated with a capacitor of 0,05 microfarads
between pins 1 and 2 of the 8820. The capacitor is chosen such
that the time—constant RC formed with the 170 ohm _termination
‘resistance-R- internal to the-8820-chip is-three tiﬁeslfl7]~the
line signal-propagation time. This time was measured as being
about 3,6 microseconds. ‘

Hence RC = 3 *3,6 microseconds, where R = 170 ohms, and from this

we calculate C = 0,05 microfarads.

The 8820 converts the differential signal to a TTL—level signal
inverted with respect to the original signal. This is converted
~to an RS-232 signal via the 1488 chip and appears on pin 8 of the

chip, from where it is connected to the RS-232 delta connector.

CHAPTER 5

MEDCOM - THE DATA-BASE

5.1 Description

All the information obtained from Media is stored in a data-base
called MEDCOM, which is continually being updated by the Media
update task. MEDCOM is an RSX-11lM resident common which is
permanently in memory, and is linked to at task-build time by
tasks that must access Media. User tasks wishing to access Media
do this indirectly by reading or writing to MEDCOM. using the user
interface routines in the MEDUSER library (see chapter 7).

In addition to containing all information relevant to Media,
MEDCOM also contains information which is used, as described in
the introduction, to enable real-time simulation of systems.
MEDCOM contains sufficient extra space to allow for the simulation
of four analogue outputs, four analogue inputs, 16 digital output
lines and 32 digital input lines. The simulation part of MEDCOM
is not updated by the Media update task, but instead by a

simulation task which simulates the effect of the Media update

MEDCOM - THE DATA-BASE PAGE 5-2

task communicating with a Media interface connected to a process.
The reason why simulation is necessary is given in the
introductory chapter, and an example of a simulation task is

described in the concluding chapter.

The basic structural item of MEDCOM is the MEDCARD (for "Media

card") record, which is defined as
MODE MEDCARD (INT STAT, MEDDAT, ADDR, REAL SCANTIME);
where

1. STAT is a status word, the bits defined as follows:

Bit 0: 1 = card is in scan
0 = card is out of scan
Bit 1: 1 = 'ADDR' field is a Media address
0 = 'ADDR' field is a list address
Bit 2: 1 = output card
0 = input card
Bit 3: 1 = analogue card

0 = digital card

Others: Reserved

2. MEDDAT . For an input, MEDDAT is the data as read from
Media by the the update task. For an output, MEDDAT is
the data that the update task must write to Media.

3. ADDR is the Media or list address of the cérd (or item).

4. SCANTIME is the time (in seconds past midnight) of the
most recent successful transaction between Media and the’
data-base for the item. (i.e. when last it was
updated).

In the case of the digital inputs and outputs, the MEDCARD record

corresponds to an actual card physically plugged into the Media

MEDCOM - THE DATA-BASE PAGE 5-3

highway. The MEDDAT field then contains the state of sixteen
digital 1lines.

However, a MEDCARD record does not directly represent a card on

the Media highway in the following cases:

1.

The analogue inputs are represented in MEDCOM by an array
of 16 MEDCARDs, corresponding to the 16 analogue list
items in RAM inside Media.

MEDCOM has four MEDCARDs to represent the four analogue
output channels, even though the four outputs are

physically situated on the same Media card.

The digital change words and the Media status word (see

appendix E) are also represented by MEDCARDS.

Parts of MEDCOM which are used for simulation clearly do

not correspond to physical Media cards.

The record used for describing an analogue output is the AOREC

record, defined as follows:

SETP);

where

MODE AOREC(INT UIC, USERINT, REF MEDCARD ANIN, REAL

UIC is the protection user identification code of the
user attached to the output. This is used by the MEDUSER
library routines to determine whether or not the calling

program should be permitted to write to the corresponding
output.

USERINT is an integer which is intended to be used for

inter-task communication by the user attached to the
corresponding analogue output. |

MEDCOM -~ THE DATA-BASE PAGE 5-4

ANIN is a pointer to the MEDCARD record representing the
analogue input being controlled by this output.

SETP is the setpoint of this analogue input. The ANIN
and SETP fields are provided to simplify the programming
of single-input single-output (SISO) control loops since
these are the most, frequently encountered. If the system
is not a SISO control loop, the ANIN and SETP fields are

not used.

MEDCOM consists of two ENT data bricks:

ENT DATA INAREA;

ARRAY(20) MEDCARD ANINP; $ 20 analogue inputs 2
2 (16 real, 4 simulated)$
ARRAY(4) MEDCARD DIGINP; $ 4 digital input cards %
$ (2 real, 2 simulated) %
MEDCARD MEDSTAT; % Media status word 2
ARRAY(2) MEDCARD DIGCHAN; ¢ digital change words %
ENDDATA;
ENT DATA OUTAREA;
ARRAY(8) - MEDCARD ANOUTP; $ 8 analogue outputs >
% (4 real, 4 simulated) %
ARRAY(2) MEDCARD DIGOUT; $ 2 dig. output cards %
% (1 real, 1 simulated) %
ARRAY(8) AOREC AODESC; ¢ descriptions of a.o.'s$
ARRAY(2,16) INT DIGUICS; %2 UIC's for each d.o.: >

ENDDATA;

We see that the MEDCARDs used for simulation are stored in the

same arrays as those used for access to the real Media system.

The real inputs and outputs always are the lowest-numbered

elements in these arrays, and the simulation inputs and outputs

are the higher-numbered elements. For example, the 16 real

MEDCOM - THE DATA-BASE ' PAGE 5-5

analogue iﬁputs are represented by elements 1 to 16 of the array
ANINP above; and the 4 simulation analogue inputs are represented
by ANINP(17) to ANINP(20).

INAREA holds all information that is read in from Media: a
MEDCARD record for each of the 16 analogue inputs and the two
digital input cards, MEDCARD records for the digital change words
and the Media status word. For simulation, there are 4 MEDCARDs

for the analogue inputs and 2 for the digital inputs.

OUTAREA holds all information about Media outputs: a MEDCARD
record for each of the 4 analogue outputs and the digital output
card, an AOREC record to describe each analogue output, and a UIC
to control write access to each digital output line. For
simulation, there are four MEDCARDs and four AORECS for the
analogue outputs, one MEDCARD for the digital outputs, and a UIC
for each digital output line.

5.2 Modifications needed for future changes

The numbers of real and simulation inputs and outputs of each type
(analogue or digital) are given in LET statements in the RTL/2
source for MEDCOM and the other modules which refer directly to
the data bricks INAREA and OUTAREA. Should it be decided to
include further Media or simulation inputs or outputs at a later
stage, it will be necessary to change these LET statements to
reflect these additions to the system. This also applies, of
course, should cards be removed instead of added. No further
changes to the software should be necessary, except that MEDRMD
(see chapter 7) would have to be rewritten because the layout of
its screen display obviously depends on the number of inputs and

outputs in the system.

MEDCOM - THE DATA~BASE '~ PAGE 5-6

5.3 Building MEDCOM as a resident common

This is described in appendix H.

CHAPTER 6

THE SOFTWARE INTERFACE BETWEEN MEDIA AND THE DATA-BASE

6.1 THE MEDIA UPDATE TASK

This task, called MEDUPDAT, runs continually and executes all the
transactions between MEDCOM and Media. As explained in the
introductory chapter, user tasks access Media indirectly by
writing to and reading from MEDCOM, and rely upon MEDUPDAT to do

the following at frequent intervals:

1. Write to Media the output data put into MEDCOM by the

user tasks.

2. Read data from all Media inputs and put this data into
MEDCOM for access by the user tasks.

Whenever an item of data is successfully transferred between Media
and MEDCOM, the time of day is written into the relevant
MEDCARD.SCANTIME field. This field allows user tasks to determine

how much time has elapsed since the most recent update of the

THE SOFTWARE INTERFACE BETWEEN MEDIA AND THE DATA-BASE PAGE 6-2

corresponding input or output.

Each update of the data-base is done in the following order (the
MEDLNK routines referred to are described in the section on MEDLNK
below):

1. Analogue inputs 1 to 8 and then 9 to 16 are read from
Media using the MEDLNK routine BLOCKIN to read in a block
of list items. This read is done in two blocks because
the 36-byte type-ahead buffer used by the RSX-11M
full-duplex terminal driver is not large enough to
receive the size of reply frame that results from a
l16-item block read.

2. The first and then the second 16-line digital input card

are read from Media, using the MEDLNK routine SINGLIN to
do a single Media read.

3. The digital change words are read, using the MEDLNK
routine GETDCW (get digital change words).

4. The four analogue outputs are written to in sequence,
using the MEDLNK routine WRITE to write the data from
MEDCOM to the Media address of the analogue output card.

5. The 16-line digital output card is written to, using the
MEDLNK routine WRITE to write the data from MEDCOM to the
Media address of the card.

If any transaction with Media results in Media indicating that a
"Media error" has occurred, then the Media card in question is put
out of scan (in/out of scan is indicated by one of the bits of the
STAT field of a MEDCARD record). A card which is out of scan
ceases to be written to or read from by MEDUPDAT, because a Media
error usually means' that the card is not present on the Media

highway. However, after every ten complete updates of MEDCOM, the

THE SOFTWARE INTERFACE BETWEEN MEDIA AND THE DATA-BASE PAGE 6-3

update task tries to access those cards which are out of scan. If
a further Media error does not occur, then the card in question is

put back into scan.

The speed at which MEDUPDAT runs is not dependent on the frequency
of access to MEDCOM by users, since it continually updates all
data-base information. Rather, it is dependent largely on the
‘overall load on the PDP—ll,;the serial link data transmission rate
and the priority at which MEDUPDAT is running. MEDUPDAT pauses

for 0.1 seconds after each complete scan of the data-base.

Each update involves the transfer of 189 bytes on the serial link,
which amounts to a total time of about 0.2 seconds per update at
9600 baud. This figure constitutes the limit to the speed of
MEDUPDAT when the PDP-11 is not loaded, but under normal loads the
_processing time limits the update rate to about once per second.
It was found that with a priority of 80, MEDUPDAT was capable of
updating at least every two seconds, even when the system was

heavily loaded.

Thus, the interface can only be used to control systems which have
time constants in excess of about four seconds. This constitutes
a fairly serious limitation on the range of applications for which
it may be used. Fortunately, the applications envisaged use
systems with time-constants of the order of minutes rather than

seconds.

Iy

6.2 PROCEDURES INTERFACING BETWEEN THE DATA LINK AND MEDCOM

The Media update task is the only task which accesses the serial
link directly (with the exception of the diagnostics described in
chapter 8). It does this by calling procedures within a library
MEDLNK of routines which transfer data between Media and MEDCOM.

THE SOFTWARE INTERFACE BETWEEN MEDIA AND THE DATA-BASE PAGE 6-4

These routines in turn call a routine MESSANS, inside the module
LINKLB, which controls the link itself.

6.2.1 The Serial Link Control Software

The link-control software is contained in the module LINKLB. This’
module contains only one ENT procedure,
ENT PROC MESSANS(REF ARRAY BYTE OUTBUF, INT OUTLEN,

REF ARRAY BYTE INBUF , INT INLEN) INT;

whose function is to output a frame of OUTLEN characters from the
buffer OUTBUF down the serial link, and receive a reply frame
consisting of INLEN characters into the buffer INBUF, giving error

status information in the integer returned.

This procedure is the lowest-~level procedure used on the host side
of the link. All frames to Media are transmitted via a call to
MESSANS. .
The write is done using the RSX-11M QIOW directive [15]. The
directive queues the buffer OUTBUF to the full-duplex terminal
driver, which is instructed to write all characters _ ’
(QIOWSS #I0.WAL), and a one-second timeout on output is imposed.
This method enables the standard RSX-11M fdll—duplex terminal
drivers to be u%?d, and therefore avoids the necessity of writing

"a device driver for the host to handle the Media link.

Reading the reply is complicated by the fact that one ideally
would want to read until the second occurrence of a character with
bit 6 set, and this cannot be done directly in RSX-11M unless a
special device driver to implement this is written. Therefore the
number of characters expected in the reply (i.e. 1INLEN) is passed

to MESSANS so that it knows how many characters to read. A

THE SOFTWARE INTERFACE BETWEEN MEDIA AND THE DATA-BASE PAGE 6-5

| problem with this is that, should an error reply be received, its
length will be three rather than the expected INLEN characters.
If one were to issue a QIOW directive to the driver with (say) a
three-second time-out to read all INLEN characters, one would
discover that whenever any sort of error occurred, the time-out
would occur, thus disabling all activity on the link for the full

three~second time-out period.

Sincé this is not acceptable, what is done is to read the first
three characters of the reply, to determine whether they form a
complete reply (by checking whether bit 6 of the third byte is
set), and if not, to read the remaining (INLEN - 3) characters,
also using a QIOW directive. A l-second timeout is imposed on the
first read, and a 3-second time-out on the second read. The QIOW
directives used instruct the terminal driver to read the input
characters, without echoing them, and put them into the buffer
INBUF (QIOWSS #IO.RALITF.RNE).

This method only works because all error replies are 3 characters
'long. Using the above method, time-outs on input should never
occur, irrespective of the error encountered (short of failure of

the line), and so maximum link bandwidth can be utilised.
Errors reported in the returned integer are:

1. Timeout error on input or output

2. QIO directive failure on input or output

»

i
3. INLEN or OUTLEN <= O

THE SOFTWARE INTERFACE BETWEEN MEDIA AND THE DATA-BASE PAGE 6-6

6.2.2 MEDLNK: Procedures interfacing MEDCOM to the data link

The module MEDLNK consists of the procedures which are used {(by
the Media update task) to transfer data between MEDCOM and the

link to the remote Media system.

VMEDLNK is the module that does all the encoding into, and decoding
from, the Media protocol. All error checking on reply messages
from Media is also done here. MEDLNK has procedures enabling
single or block read from a Media or list address, single write to
a Media or list address, and read of .the Media status word or the

digital change words.

During critical activities, the data-base is secured using the
secure and release procedures described later in this chapter.
The period during which MEDCOM is secured has been made as short

as possible.

if any access to Media fails for any reason other than a Media
error, a second attempt is made. Should this fail too, the
standard RTL/2 error recovery procedure ERP is called, causing an
error message to be sent to the system console. This message
gives an error number (see appendix L) as well as recording the

time at which the error occurred.

Occurrence of a Media error causes the access to be aborted and
the "out of scan™ bit of the .STAT field of the relevant MEDCARD
record is set, so{that the Media update task can put the card out

of scan.

The ENT procedures in the module MEDLNK are described below. 1In
all cases, the SCANTIME element of each MEDCARD record involved is
updated if and only if the transaction with Media was successful.
The integer returned is the error status, which may indicate
successful operation, Media error or one of several other errors

(see appendix L for details). The Media code MCODE which

THE SOFTWARE INTERFACE BETWEEN MEDIA AND THE DATA-BASE PAGE 6-7

indicates to Media which operation must be performed (see Table

2-1) is not checked for validity.

1.

ENT PROC SINGLIN (INT MCODE, REF MEDCARD INP) INT;

This procedure does a single read from the Media or list
address INP.ADDR, and the data, which is a 16-bit
integer, is written into INP.MEDDAT.

ENT PROC BLOCKIN (INT MCODE, FIRST, LAST,
REF ARRAY MEDCARD MBLOCK) INT;

This procedure does a block read (Media or list depending
on MCODE). The number of items read is LAST minus FIRST,
and the Media/list addresses are MBLOCK(FIRST).ADDR to
MBLOCK(LAST) .ADDR. The values read are written into the
MEDDAT fields of elements FIRST to LAST of the arréy
MBLOCK. LAST must be greater than FIRST, but the
procedure does not check this. However, it does check
that the .ADDR fields in the array MBLOCK are suitably
ordered.

ENT PROC WRITE(INT MCODE, REF MEDCARD OUTDAT) INT:

This procedure writes the data OUTDAT.MEDDAT into Media
or list address OUTDAT.ADDR. ‘

ENT PROC GETDCW(REF ARRAY MEDCARD DIGCN) INT;

This procedure gets the digital change words, using a
block Media read, and puts them into the MEDDAT fields of
DIGCN(1l) and DIGCN(2).

THE SOFTWARE INTERFACE BETWEEN MEDIA AND THE DATA-BASE PAGE 6-8

6.3 SECURING AND RELEASING DEVICES AND FACILITIES

Two secure/release mechanisms are used - one for the serial data

link and one for the data-base MEDCOM.

6.3.1 Securing and releasing the serial link

This is easily done because the MTSLIB RTL/2 interface provides
procedures SECDEV (LUN) and RELDEV (LUN), where LUN = logical unit
‘number of the device to be secured/released. These procedures are
used in MESSANS to control access to the link.

~Strictly speaking it is not necessary to secure and release the
link because under normal circumstances only one task, namely
MEDUPDAT, accesses the link. However, it is done because it is
" good programming practice to do so, and because it enables the
>Media link diagnostic tasks (see chapter 8) to be run while
MEDUPDAT is active.

6.3.2 Securing and releasing the data-base

An altogether mqge thorny problem is that of securing and
releasing the data-base MEDCOM, to ensure that indivisible
operations such as the updating of a MEDCARD record cannot be

interrupted by other tasks.

Securing of facilities is usually done using a "test-and-set
lock". This involves performing an indivisible operation which
sets a flag or location to a state representing "device secured"

‘while at the same time determining whether or not the flag was set

THE SOFTWARE INTERFACE BETWEEN MEDIA AND THE DATA-BASE PAGE 6-9

before the oberation. Using this mechanism, to secure a facility
a program sets the flag to the "device secured" state, and if the
flag was not in the "device secured"” state before the operation,
then the task knows that it has secured the facility. On the
other hand, if the flag was already in the "device secured" state
then some other task has secured the facility and the task must

try again until such time as, it succeeds.

Releasing the facility is done simply by setting the flag to some

.state other than "device secured".

The MTSLIB interface provides secure and release procedures [18]
which use the group-global event flags as a test-and-set lock to
secure and release facilities. The radix-~50 name of the task
currently securing each facility is stored in a data-brick inside
RSXBA2, which must be installed in a common partition of memory,
and hence any tasks using the secure and release must be linked to

this partition at task-build time.
These MTSLIB procedures have certain disadvantages :

1. It turns out to be necessary, because of limitations on
the operating system directives available, to have a
secured device represented by a flag in the reset state,
and a non-secured device represented by a flag in the set
state. The problem with this is that at system start-up,
all flags "wake up" in the reset state, thus representing
all facilities secured. It is thus necessary at system

) start-ug time, or at any rate before any securing or
releasing is done, to explicitly set any event flags that

will be used for facility locking.

2. An attempt to remedy the above complication led to the
author of MTSLIB partially relaxing the test-and-set
mechanism by allowing a task to secure the facility
regardless of the state of the event flag, provided that
the field in RSXBA2 containing the name of the task

THE SOFTWARE INTERFACE BETWEEN MEDIA AND THE DATA-BASE PAGE 6-10

currently securing the facility was filled with zeros, as

it would be on system start-up.

Unfortunately, this made it possible for two tasks to be
simultaneously secured to the same facility. The
circumstances under which this occurs are the following.
The release procedure first clears the task-name field in
RSXBA2 to indicate that no task is currently secured to
the facility and then releases the facility by setting
the relevant event flag. If a second task attempts to

secure the facility between these two operations, it

‘succeeds because the task-name field is zero, and

therefore both tasks are simultaneously secured to the
facility. Worse still, the first task then almost
immediately releases the facility by setting the event
flag, leaving the the facility free to be secured by a
third taskl

Because of this, the secure/release procedures could not
be trusted to work reliably.

1f a task is aborted (by using the ABO command or signing
off) while it is securing a facility, the facility is
never released and so no other task can access the
facility, which therefore "hangs". The facility is not
automatically released on task abortion because the
facility secure/release mechanism is not part of the
RSX-11M operating system, which consequently cannot be
expected to tidy up on behalf of a mechanism of which it

has no tpowledge.

SECURE and RELEASE use group—-global event flags. This
means that all users of the facility would have to be in
the same UIC group or. else the mechanism would have no

value.

THE SOFTWARE INTERFACE BETWEEN MEDIA AND THE DATA-BASE PAGE 6-11

It was felt‘necessary to use global event flags, so as to make it
possible for users of all UICs to use Media. This is especially
the case because the system is designed to support different
categories of user, viz. students and researchers, whose accounts
will be assigned different UIC group codes. It was also necessary
to correct the bug mentioned in (2) above. This was done by
restoring the strict test-and-set lock mechanism and providing a
task, MCOMINIT, which initialises the relevant event flags by
setting them and is run automatically on system start-up by the
system start-up file LB:[1,2]STARTUP.CMD.

A partial solution was also found to problem (3) above, which was
to write a task specifically designed for aborting tasks using the

Media data-base (see appendix F).

A description of all the procedures relating to securing and
releasing as well as the modifications necessary to RSXBA2 are
given in appendix G. Forming a common partition RTLLIB containing
RSXBA2 and linking user programs to this partition are described

in appendix H.

CHAPTER 7

USE AND MANAGEMENT OF THE MEDIA SYSTEM

7.1 USE OF THE SYSTEM

7.1.1 Control of an individual user's access to the system

f7.1.1.1 Introduction -

Since one of the fundamental requirements of the system is that it
must allow multi-user access in such a way that no users are
‘permitted to interfere with one another, it is of primary
importance that access to the data in MEDCOM be carefully
controlled.

It was decided to allow each user read access to all of the data

in MEDCOM, since this could not compromise the security of other

USE AND MANAGEMENT OF THE MEDIA SYSTEM _ PAGE 7-2

-users' tasks. However, it is clear that a user must not be
permitted to write data to parts of MEDCOM (such as outputs) that
are in use by another user, since this would destructively
interfere with his system. No harm is caused, however, by another

user reading from any part of the data-base.

A user may wish to write to MEDCOM under the following

circumstances (see the chapter on MEDCOM for a description of the
data records referred to):

1. Writing data to a Media output. The data will have to be
put into the MEDDAT field of the MEDCARD record

corresponding to the required Media output.

2. Writing to the AODESC.USERINT integer associated with one
of the analogue outputs (this integer being intended for

a user's inter—-task communication).

3. Assigning an analogue input as the one being controlled
by a particular analogue output. This is used in
controlling SISO systems and involves writing to the

" AODESC.ANIN field of the output in question.

4. Setting the setpoint of an analogue input when
controlling a SISO system, by writing to the AODESC.SETP
field associated with the corresponding analogue output.

" Therefore we see that all write operations to MEDCOM involve
writing to a MEDCARD or AODESC record which is associated with a
particular output. Consequently, the need to control write access
' to MEDCOM reduces to controlling write access to the (analogue and
digital) outputs.

USE AND MANAGEMENT OF THE MEDIA SYSTEM PAGE 7-3

'7.1.1.2 The ATTACH task -

This control is effected by requiring that a user "attach™ to the
outputs he needs, using a task called ATTACH, before running his
tasks, and detach from these outputs (also using ATTACH) after his
work is completed so that the outputs are free for use by other

users.

Since there are several users of Media, however, a user may not
have the same output every time he uses Media - another user may

" be busy with the one that he had on the previous occasion. On the
other hand, he may for some reason wish to use the same output
every time (the ATTACH task allows a user to specify the
particular output required if he wishes). In either case it would
clearly not be satisfactory for him to have to modify his software
to suit the particular outputs he happens to attach to. Therefore
a means is provided (the ATTACHED routine in the MEDUSER library
described below) whereby a user progam can determine which outputs
the user is attached to.

Corresponding to each analogue and digital output, the ATTACH task
maintains an integer in MEDCOM containing the protection UIC of
the user who is attached to the output, and hence authorised to
‘write to it. If no-one is attached to an output, then the integer
is zero. Any attempt by a user of the MEDUSER procedures to write
. to a part of MEDCOM not corresponding to an output to which he is
‘attached, will be aborted and the standard RTL/2 error recovery
| procedure ERP called. For the digital outputs, the corresponding
attached-UIC integers are stored in the array DIGUICS in the brick
OUTAREA of MEDCOM. For analogue output number I, the attached UIC
~is kept in AODESC(I).UIC.
The security of this mechanism is dependent upon all users
accessing MEDCOM oniy via the "official" interface, namely
MEDUSER. Therefore, users should not be given specifics of the
exact layout of MEDCOM.

USE AND MANAGEMENT OF THE MEDIA SYSTEM PAGE 7-4

7.1.1.3 Using the ATTACH task ~-

Attaching to outputs is done by the user prior to running his
control (user applications) task. The user runs the task ATTACH,
~and is asked whether he wishes to attach or detach. If the reply

is attach, then he is given the following menu of choices:

1. Any digital output (Real Media)
2. Any digital output (Simulation)
3. Specific digital output

4. Any analogue output (Real Media)
5. Any analogue output (Simulation)

6. Specific analogue output

Note that it is during the attaching process that the user
determines whether he will be using the real Media system or the

simulation system.

~ Digital outputs 1 to 16 and analogue outputs 1 to 4 are the real
Media outputs. Digital outputs 17 to 32 and analogue outputs 5 to
8 are the simulation outputs.

Choice (1), (2), (4) and (5) imply that the user wishes to attach
to an output, but does not mind which one it is. The program will
find the lowest-numbered output channel that is not yet attached

- to, attach the user to it and print out an appropriate message.

If none are available, the program will inform him of this.

Choices (3) and (6) imply that the user wishes to attach to a

- particular output. If the output required is not already attached
to, then the program attaches the user to it; otherwise it
informs him that the output is not available.

In all cases, if the required output is out of scan, then the

program will inform the user and not allow him to attach to it.

USE AND MANAGEMENT OF THE MEDIA SYSTEM PAGE 7-5

Once the user has finished using the output, he must detach
himself from it so that it becomes available for use by other
users. To do this, he runs ATTACH and requests the Detachvmenu,

which is as follows:

1. Detach from digital output
2. Detach from analogue output

3. Detach from all outputs

If the choice is (1) or (2) the user is asked which output number
- is to be detached. The program will only allow a user to detach
from those outputs to which he is attached. Choice (3) detaches
the user from all outputs (analogue and digitai) to which he is
attached.

w0
The ATTACH task secures and releases the data-~base in such a way
as to ensure a test-and-set lock mechanism on attach (this
mechanism is described in chapter 6), which makes it impossible
for two users both to be attached to the same output at the same

~time, even if they simultaneously request to attach.

7.1.2 Applications—-user access to Media

7.1.2.1 Introduction -

Applications—-user access to Media is done by calls to a library,
célled MEDUSER, of routines the aim of which is not only to ensure
strict control over the data-base MEDCOM, but also to provide a
simple and easy-to-use interface which makes it seem from the user
point of view as if he is accessing Media directly. 1In reality,
of course, all Media data passes via MEDCOM and the Media update

task, but this occurs transparently to the user software.

USE AND MANAGEMENT OF THE MEDIA SYSTEM ' PAGE 7-6

The global event-flag secure and release procedures described in

chapter 6 are used inside the MEDUSER routines to secure the

data-base and thus prevent other tasks accessing the data-base

during critical sections of the code when it is necessary to write

or read data in an indivisible manner. The user never secures Or

releases MEDCOM explicitly. This minimises the chance of MEDCOM

becoming "hung" by a user securing and not subsequently releasing

it. This possibility is further discussed in the section below on

aborting Media tasks.

The MEDUSER procedures allow the user to perform the following

operations:

1.

Determine which outputs the user is attached to (proc
ATTACHED) .

Write data to an analogue or digital output (proc
WRMEDOUT) .

Read data from an analogue or digital input or output
(proc RDMEDIA). Reading from an output is done in a
multi-tasking application when one task wishes to see

what value another task has written to an output.

Read or write to one of the AODESC.USERINT integers which
are intended for inter-task communication use (procs
WRCOMMINT and RDCOMMINT). .

Read the time that an input or output was last scanned by
the Media update task or the simulation task (proc
RDSCANTIME) .

For a SISO system, create a logical association between
an analogue output and an analogue input indicating that
the input is being controlled by the output; or
determine which input is being controlled by a given
output (procs SETANINP and GETANINP).

USE AND MANAGEMENT OF THE MEDIA SYSTEM PAGE 7-7

7. For a SISO system, to set or read the setpoint of an
analogue input being controlled by a given analogue
output (procs SETSETPT and GETSETPT).

7.1.2.2 Using the routines in the MEDUSER library -

The user should include the following LET statements in his source

program :

LET ANALOG = O;
LET DIGITAL = 1;
LET INPUT = 0;
LET OUTPUT = 1;

These values are passed in the ADSWITCH and IOSWITCH parameters of
the procedure calls. (e.g. X := RDMEDIA(ANALOG, INPUT, 3) would

read analogue input number 3 and put the value into X).

All errors that occur are reported via ERP or RRGEL. A list of

error numbers is given in appendix L.

In the description of the procedures in MEDUSER, CHANNUM
represents the channel number of the digital or analogue input or
output channel in question. The following channel numbers are

valid:

1. Digital inputs. Numbers 1..32 are the real Media digital

input; numbers 33..64 are the simulation digital inputs.

2. Digital outputs. Numbers 1..16 are the real Media
digital outputs; numbers 17..32 are the simulation

digital outputs.

USE AND MANAGEMENT OF THE MEDIA SYSTEM PAGE 7-8

Analogue inputs. Numbers 1..16 are the real Media
analogue inputs; numbers 17..20 are the simulation

analogue inputs.

Analogue outputs. Numbers 1l,.,.4 are the real Media
analogue outputs; numbers 5..8 are the simulation

analogue outputs.

The following is a description of the procedures in the MEDUSER

library.

1.

ENT PROC ATTACHED (INT ADSWITCH, REF ARRAY INT OUTARRAY);

This procedure examines the AODESC.UIC or DIGUICS fields
in MEDCOM, and puts into the array OUTARRAY the channel
numbers of those outputs to which the user is attached.
The res£ of OUTARRAY is filled with zeros. For example,
if ADSWITCH = DIGITAL and the user is attached to digital
outputs 1, 5 and 7 then the procedure will set '
OUTARRAY(1l) to 1, OUTARRAY(2) to 5, OUTARRAY(3) to 7 and
the other elements of OUTARRAY to zero. The length of
OUTARRAY must be greater than or'equal to the number of
outputs attached to.

ENT PROC WRMEDOUT(INT ADSWITCH, MDATA, CHANNUM);

This procedure writes the data MDATA to the analogue or
digital output number CHANNUM. CHANNUM must be in the
correct range. For an analogue output, only the least
significant eight bits of MDATA are used because the DAC
is 8-bit. The digital output value is 0 if MDATA is
zero, or 1 if MDATA is not zero. In order for the write
to succeed, the user must be attached to the output and

the output must be in scan.

ENT PROC RDMEDIA{ INT ADSWITCH, IOSWITCH, CHANNUM) INT;

N L

USE AND MANAGEMENT OF THE MEDIA SYSTEM PAGE. 7-9

This procedure reads the;analogue or digital ihput or

output number CHANNUM from MEDCOM and returns the value

read. CHANNUM must be in the correct range. Digital
inputs and outputs will be returned as 0 or 1. Analogue
inputs (outputs) will be returned as a 10-bit (8-bit)
number in the ten (eight) least significant bits of the

returned integer and the other bits zero.

ENT PROC WRCOMMINT(INT CHANNUM, VALUE):

‘This procedure writes VALUE into AODESC(CHANNUM

) .USERINT which is an integer used for inter-task
communication. CHANNUM must be in range 1..20 and

analogue outpﬁt number CHANNUM must be attached to.
ENT PROC RDCOMMINT(INT CHANNUM) INT;

This procedure reads the value of the inter-task
communication integer corresponding to analogue output
number CHANNUM and returns the value read. CHANNUM must
be in the range 1..20.

ENT PROC SETANINP {(INT ANOUTPNUM, ANINNUM);

This procedure causes analogue input number ANINNUM to be
logically associated with analogue output number ANOUTNUM
by setting AODESC(ANOUTNUM) .ANIN to point to analogue
input ANINNUM. This would then mean that analogue input
ANINNUM is the one which is being controlled by analogue
output ANOUTNUM. ANOUTNUM and ANINNUM must be in the
correct ranges and analogue output number ANOUTPNUM must
be attached to. ' '

ENT PROC GETANINP (INT ANOUTPNUM) INT;

This procedure returns the channel number .of the analogue

input logically associated with analogue output ANOUTPNUM

USE AND MANAGEMENT OF THE MEDIA SYSTEM PAGE 7-11

should not be a problem.

Under conditions (1) or (2) above, the chance of MEDCOM "hanging"
is relatively small because it is only secured for short periods
of time. Nonetheless, it was felt that an alternative aborting
task to the RSX-11M ABO command, which does not ensure that the
task releases MEDCOM before it exits, should be written. This
task is called ABM (for "abort Media").

\
ABM is a non-privileged task which should be installed as ...ABM

and uses the same command-line format as ABO, i.e.
ABM TASKNAME

or,
ABM

where the taskname 1s assumed to be the default taskname for the

- terminal, e.g. "TT7" if invoved from terminal TT7:.

ABM should be installed at a high priority (say 150.) to ensure
that it operates quickly even when the system is very heavily
loaded. ‘

ABM works by securing MEDCOM, issuing an abort directive to abort
the task and then releasing MEDCOM. 1In this way it is assured
that the task being aborted is not securing MEDCOM. A detailed

description of ABM is given in appendix F.

i

7.2 MANAGEMENT OF THE MEDIA SYSTEM

USE AND MANAGEMENT OF THE MEDIA SYSTEM lPAGE 7-12

7.2.1 Introduction

One of the accounts (account number [300,1]) is designated the
"data base manager's account”. The data-base manager is the user
Qho hasllogged on under this account and has [300,1] as his
protection UIC. The software system allows the data-base manager
to perform certain operations that other users may not - he is
able to "unhang" MEDCOM should it "hang" for any of the reasons

. given in the above section, and he can forcibly detach any user

from any output should that user fail to do so himself.

- 7.2.2 The MEDRMD display of data-base activity

The RSX-11M RMDEMO task [10] gives a dynamic display of the use of
the computer resources such as memory, pool, task lists and free
disc space. Since it is updated every second, the RMDEMO display
gives the viewer a good idea of what is happening in the system
from moment to moment, and whether or not any'of the critical
'system resources, such as system pool, are dropping below

acceptable limits.

A task called MEDRMD (for "Media RMDEMO") was written which is
intended to give the data-base manager a similar display, except
that the activity of MEDCOM rather than the RSX-11M system is
displayed.

MEDRMD displays information relating to the parts of MEDCOM
associated either with the real Media interface or with the
simulation system. When MEDRMD is running, typing an 'S’ displays
information about the simulation portion of MEDCOM, typing
control-C or control-Z causes MEDRMD to terminate and typing any
other character displays information about the real Media

interface.

USE AND MANAGEMENT OF THE MEDIA SYSTEM - _ PAGE 7-13

MEDRMD displays the following information :

1. The protection UIC of the user attached to each analogue
and digital output.

2. The date and time.
3."Thevname of the tgsk that is currently securing MEDCOM.
4. The time (in seconds) that has elapsed since MEDCOM was
last updated by MEDUPDAT. This is split into five
subfields :
a. Digital inputs 1
b. Digital inputs 2
c. Digital outputs
d. Analogue inputs
e. Analogue outputs
Should any of the cards be out of scan, the text

"*QUT OF SCAN*" is displayed in the relevant field

instead of the time since last update.

Although MEDRMD is intended primarily for use by the data-base
manager, the display may be viewed by any user. Uses for the

display are the following:

1. To see which output channels are attached to, and which

are free.

2. To check that the update task is running properly - if it

USE AND MANAGEMENT OF THE MEDIA SYSTEM PAGE 7-14

is not, then the time since last update will continually

increase.

3. To see which task is currently securing MEDCOM - for
example, if the data-base manager [300,1] sees that the
"Task currently securing MEDCOM" field does not change,
he can run UNHANG (see below) to remedy the situation

where a task has exited while secured to MEDCOM.

The display is terminated and the screen cleared, as in RMD, when
the control-C or control-Z character is typed at the keyboard.
MEDRMD achieves this by using the AST-routines in the module AST
(see Appendix I).

7.2.3 Detachment by the data-base manager

The ATTACH task allows the data-base manager to detach any or all
of the users who are attached to outputs. By examining the MEDRMD
display, the manager can see which users have failed to detach
from outputs after completing their work on Media, and then run
ATTACH to forcibly detach such users so that the outputs are free

for others to use.

7.2.4 The UNHANG task

If the data-base manager sees by examining the MEDRMD display that
MEDCOM is secured by a task which has exited without releasing it
(the symptom for this is that the "Task currently securing MEDCOM"
field in the display does not change, he can "unhang"” the
data-base by running the UNHANG task.

USE AND MANAGEMENT OF THE MEDIA SYSTEM PAGE 7-15

UNHANG first checks the protection UIC of the invoking user to
ensure that he is indeed the data-base manager, and then releases
MEDCOM by calling FREEMEDCOM (see appendix G) and exits.

CHAPTER 8

SYSTEM DIAGNOSTICS

Diagnostics have been written to test the operation of various

parts of the system:
1. The micro-Media data link protocol
2. The Media input and output hardware.

3. The software interfacing between Media and the data-base
(i.e. MEDLNK)

4. The data-base MEDCOM.

5. The user interface library MEDUSER.

8.1 A diégnostic for the Media data-link protocol.

- This task is called MEDFRAME and may be used to generate Media

data-link protocol frames, send them down the serial 1link to

SYSTEM DIAGNOSTICS PAGE 8-2

Media, receive the reply frame from Media and then display in
octal on the operator's screen each byte of both frames. - This
enables the operator to determine whether the frame format of the

responses from Media is correct.

MEDFRAME gives the operator a menu allowing him to generate frames

corresponding to any of the following commands to Media:

1. Single Media or list read.

MEDFRAME prompts the operator for which Media or list

address is to be_read.

2. Block Media or list read.

MEDFRAME prompts the operator for the starting address
and length of a contiguous block of Media or list items

to be read.

3. Read digital change words.

4, Read Media status word (the Media status word is

described in apbendix D)

5. Write to Media or list address.

This implements the first stage of a two-stage write.
MEDFRAME prompts the operator for the data to be written
and the Media or list address to which it must be

written.
6. Go.

This implements the second, or confirmatory, stage of a

two-stage write.

7. Synchronise.

SYSTEM DIAGNOSTICS PAGE 8-3

This causes a single byte with bit 6 set to be output to
Media. It is included because the protocol cannot
distinguish between the first and last byte in a frame
because both are indicated by having bit 6 set. Should

Media lose synchronism, this operation will restore it.

8.2 Diagnostics to test the Media input/output hardware.

8.2.1 The simulation package.

It will be explained in chapter 9 how the simulation package could
be used as a diagnostic for the Media hardware, by simulating a
SISO system in software and then controlling it via two pairs of

Media analogue inputs and outputs.

8.2.2 The diagnostic MEDTEST.

MEDTEST can be used to test or exercise either the analogue or
digital Media inputs and outputs. The description below
presupposes familiarity with the Media front panel described in

appendix A.
Two categories of digital tests can be performed:

1. Monitor switches.

This provides a quick visual indication of whether the

SYSTEM DIAGNOSTICS : ' ' PAGE 8-4

digital inputs and outputs are functioning correctly.
The operator chooses digital inputs 1-16 or 17-32 and
 wires these to the correspondingly numbered switches on
the Media front panel. MEDTEST continually reads the
digital inputs and writes the same data to the digital
output lines, which are displayed on the LEDs on the
panel. Altering the state of any of the switches will
alter the state of the corresponding LEDs. The test is
terminated by typing control-C at the keyboard.

2. Cyclic test.

The operator connects digital output lines 1-16 to the

digital input lines, in one of the following formats:
1. Output lines 1-16 to input lines 1-16 (respectively).

2. Output lines 1-16 to input lines 17-32

(respectively).

3. Output line 1 to input lines 1 and 17, output line 2
to input lines 2 and 18, etc.

MEDTEST generates a series of constantly changing bit
patterns in a 16-bit word. For each change, MEDTEST
writes the 16 bits out to the digital outputs and then
reads in the state of the digital input lines which the
operator connected to the outputs. If the values read
fail to match those written, a message to the operator's
screen informs him of the error, giving the data value
written and the incorrect value read baék. After every
sixteen write-read pairs, a '+' character is sent to the

operator's screen. Typing control-C terminates the test.

SYSTEM DIAGNOSTICS - PAGE 8-5

For the analogue test, MEDTEST prompts for the numbers of four
analogue inputs that it will associate with analogue outputs 1 to
4., 1In a continual loop, MEDTEST reads from these four analogue
inputs and writes the data (scaled down from the 10-bit value read
to an 8-bit value) to the analogue outputs. The féﬁr outputs thus
will follow the voltages applied to the corresponding four -
analogue inputs. If this is not the case with one of the
input-output pairs, then this pair is faulty. Typing control-C

terminates the test.

8.3 A diagnostic for the Media~MEDCOM interface routines

The task MEDLNKTST provides a test for the routines in MEDLNK
which interface between the serial 1link and MEDCOM.

MEDLNKTST is similar to the Media protocol diagnostic MEDFRAME,
but works at a higher level. It uses the subroutines in MEDLNK to
communicate with Media, and can be used to test any of the
routines in MEDLNK (i.e. SINGLIN, BLOCKIN, WRITE, GETMED and
GETDCW) .

MEDLNKTST gives the operator a menu allowing the following

choices:

1. Single Media or list read.

The operator specifies the Media or list address of the
item to be read. SINGLIN is then called to perform the
read. The data read, and the error status returned by

the call, is displayed.

2. Block Media or list fead.

SYSTEM DIAGNOSTICS PAGE 8-6

The operator specifies the starting address and number of
items for a contiguous block of Media or list items to be
read. BLOCKIN is then called to perform the read. The
data read, and the error status returned by the call, is

displayed.

3. Read digital change words.
The digital change words are read from Media by a call to
GETDCW and displayed on the screen together with the

error status returned by the call.

4, Read Media status word.

The Media status word (see appendix E) is read by calling
GETMED and displayed on the screen together with the

error status returned by the call.

5. Write to Media or list address.

The operator specifies the data and the Media or list
address to which the data is to be written. A call to
WRITE performs £he write. The error status returned by
the call is displayed.

8.4 Diagnostics for MEDCOM.

The task MEDRMD described earlier can also be used as a diagnostic

for MEDCOM since it gives a running display of activity on MEDCOM.

SYSTEM DIAGNOSTICS ' PAGE 8-7

8.5 Diagnostics for the user interface library.

- 8.5.1 The MEDUSER-testing task MUTEST

~This task, called MUTEST, enables the testing of all of the .
subroutines in the MEDUSER library.

The operator is prompted with a menu consisting of the names of
the routines in the library. After choosing one of these he is
prompted for the wvalues of each of the parameters that must be
passed to the routine, e.g. channel number, data, etc. The
appropriate MEDUSER routine is then called and any data returned
by the routine is displayed on the screen. If an error occurs

then an appropriate message is printed.

This task could also be used to inspect and change the data in

' MEDCOM (and hence Media) in an interactive way. For example, if a
device controlled by one of the digital outputs for some reason
must be turned off in a hurry, the quickest and simplest way to do
this would be to write zero to the appropriate output using
MUTEST.

8.5.2 The procedure READMEDCARD.

READMEDCARD is a procedure which was included in the user
interface library MEDUSER to allow an indivisible read of a
MEDCARD record in MEDCOM. It was written to assist in the
debugging of MEDUSER.

ENT PROC READMEDCARD (INT ADSWITCH, IOSWITCH, CARDNUM,
REF MEDCARD CARD);

SYSTEM DIAGNOSTICS PAGE 8-8

This procedure reads the MEDCARD record determined by ADéWITCH,
IOSWITCH and CARDNUM from MEDCOM and puts it into CARD. CARDNUM
must be in the correct range (1..2 for digital output, 1l..4 for
digital input, 1..8 for analogue output and 1..20 for analogue
input).

CHAPTER 9

A GENERAL-PURPOSE ANALLOG SIMULATION PACKAGE

9.1 INTRODUCTION

The analogue simulation package was written with the following

applications in mind:

1. It would facilitate the writing of simulation tasks which
could simulate real processes interfaced to Media.
Student tasks to control these processes could then be
developed and debugged using the simulation part of
MEDCOM and the simulation-task, and when ready used on

the real system.

2. It can be used within the student or research tasks which
control the processes. For example, any analogue
controller (a simple example is a '
proportional-plus-integral controller) could be

.

implemented using the simulation package.

A GENERAL-PURPOSE ANALOG SIMULATION PACKAGE ' PAGE 9-2

It can be used to test the operation of the Media
interface hardware, without having to connect a process

to Media.

Consider, for example, the case where a control task has
been developed to control a given SISO process. Suppose
that it writes it outputs its control signal to analogue
output number 1 and reads the process output from

analogue input number 1,

A second task is written using the simulation package to
simulate the SISO process itself, reading its input from
analogue input number 2 (say) and writing its output to

analogue output number 2.

If output 1 is connected to input 2, output 2 connected
to input 1 and the control and simulation tasks executed,
then the control task should control the simulated
process. Failure to control correctly would indicate
that one of the Media outputs or inputs used is not

functioning correctly.

It can also be used for any other real-time or off-line
simulation of analogue systems, possibly totally

unrelated to Media.

In addition, a library of plotting subroutines is provided

simplifying the use of the Tektronix 4010 plotting terminal. The

description of this is included here because the plotting

interface is intended chiefly to be used in conjunction with the

simulation software.

Analog simulation -languages, such as SIMC, MIMIC, and CSMP, are

special-purpose computer languages enabling the user to simulate

on the digital computer any system that can be represented on an

analog computer. The digital computer has the advantage of a far

A GENERAL-PURPOSE ANALOG SIMULATION PACKAGE ' © PAGE 9-3

greater range and accuracy of real number representation, thereby
avoiding the necessity for the tiresome process of scaling the
inputs to integrators and amplifiers. In addition, the digital
computer can easily perform any non-linear operation that may be

required, which is not readily achievable on the analog computer.

During somewhat frustrating attempts to use the analog simulation
languages SIMC and MIMIC on the Varian and Univac 1100/86
'respectively, it occurred to the author that there would be
several advantages in using a general-purpose high-level language
such as RTL/2 rather than one of the dedicated analog simulation
languages. A digital computer is, after all, capable of easily
and accurately performing any of the operations of an analog
computer, with the possible exception of integration. The main
advantage of such an approach would be that one would not be
constrained by the (usually rather narrow) restrictions placed on
the user by simulation languages. Instead, one would be able to
do anything permissible within the general-purpose language used,
such as file manipulation or (in this application) calling the

Media access routines in the module MEDUSER.

The main difficulty in developing the present package was to find

a way of performing an accurate running integration on a variable,

‘knowing only the present value f and past values £, ,&,,f,... of
the input variable f(t), and the past values y, , et Ynet ¢ o * of the

output variable y(t). Examples satisfying this requirement are

3 ta
o = .t S:
" % £nr
and the Simpson formula

Yno = Yn + "C (‘Fnu *l}-pn +Pn-'> A’t

where At =tn+l "'tn .

the trapezoidal rule
-th = (J“ +.'|$_ (‘Fn*' +.pn> A+t

However, these methods are not nearly as accurate as another

A GENERAL-PURPOSE ANALOG SIMULATION PACKAGE PAGE 9-4

method, called the fourth-order Adams' method [19]:

Yoo = Yo + 33 (160 +19F, -5£. +ﬁ-z> A

The advantage of this method is that the error is of the order of

the time-step to the fifth power, being equal to

%%—’0 (A€>5 _F(N) (~§> ;wkere ‘3 € ({n)-l;nﬂ>

which is very small indeed.

The package implements an initialisation section, a main loop
(each time round representing an increment of time DT) and a
- finishing-off or "tidying-up" section. The package can implement

‘either real-time or offline simulation.

The functioning of the package is summarised in figure 9-]. The
main procedure (RRJOB) is situated insidé.the package and is not
written by the user. The user must supply the three routines
SIMINIT(), SIMJOB() and SIMTIDYUP() shown in the figure. These

are described in the next section.

i

A GENERAL-PURPOSE ANALOG SIMULATION PACKAGE - PAGE 9-5

Y

Ini(:ia'ike; set defaults

Gall user ini(—ialisuHon'

Procedur& - | @ S,MW’T() |

. L A
[ncrement loop counters, etc.

Call user simulation job
Proceolure_

& SIMTOB()

Y

Delaq for DELAYTICKS ticks.

Did user
call HHLT’() 4

.YES

Call user tidlj-u‘p f’véed“fc

, F;'gure 9q-/ : Opefafl'on of the simulation pdd(aqe .
£ . J A

&> SIMTIDYUP()

A GENERAL-PURPOSE ANALOG SIMULATIdN PACKAGE S PAGE 9-6

9.2 Using the simulation package-

The user is required to do little more than draw the system block

diagram and write down the system equations from this.

Three RTL/2 subroutines must be provided by the user:

* a) ENT PROC SIMINIT()

b)

This procedure is called before the main loop and consists
of any initialisation or change of default options (the
defaults are real-time rather than off-line control, a delay
of one second each time round thé main control loop, and no

AST processing). that the user may desire.

This routine may, for example, be used to read in the system
constants of the analogue block diagram being simulated
(such as time constants or gains, etc.) For this purpose,
standard RTL/2 stream terminal I/O is initialised by the
package before SIMINIT() is called. '

Any other initialisation of any nature that must be
performed before simulation is started (e.g. opening files)
must be done in SIMINIT.

ENT PROC SIMJOB()

This procedure is called each time round the main lobp and
must contain the equations of the block diagram. The user
must, however, be careful to gét the equations in the right
order. For example, if one were to simulate the following

system

X Y Z

— A B —>

‘A GENERAL-PURPOSE ANALOG SIMULATION PACKAGE ' PAGE 9-7

one could write

Y := X*a; /

.Z := Y*B;)
or

Z := Y*

Obviously (1) is better than (2) because in (2) Z is
calculated using the value of Y left over from the previous
time round the loop, whereas in (1) the value of Y is first

updated, then used.

All variables should be of type REAL except for ihputs to
integrators, which should be ARRAY(4) REAL for reasons given
in the description of the INTEGRATE subroutine below.
Elements 2 to 4 of this array can be ignored by the user
because they are only used by the integration routine. The
user should regard element 1 of the array as the actual

variable. For example:

SIYRSIRES

Here X is an ARRAY(4) REAL, Y is REAL and Z is REAL. The

user writes

X(1) := A*7Z:
INTEGRATE(X,Y,INITIALCOND);

The user can, of course, write to the screen or disc any

information he chooses.

c) ENT PROC SIMTIDYUP()

A GENERAL-PURPOSE ANALOG SIMULATION PACKAGE PAGE 9-8

This procedure is called after the main loop, and could be
used to do any tidying-up needed, e.g. sending to the
Tektronix screen information stored during the main loop, or

closing files, etc.

The user has access to the following data brick used by the

package:

ENT DATA SIMDATA;
INT N,
DELAYTICKS;
REAL DT; | |
ARRAY(4) REAL TIME; y
ENDDATA;

These items are:

a)

b)

c)

N:

The number of times round the main loop so far.

DELAYTICKS:

If simulation is real-time, this is the number of ticks
(fiftieths of a seéond) of delay that will occur after each

time round the loop. If some value other than the default
value of 50 is required, this should be set up in SIMINIT().

If simulation is offline, DELAYTICKS is set to zero by the

call to OFFLINE() (see below).

DT:

The time-step. For offline simulation, DT must be set up by
the user in SIMINIT(). If simulation is real-time, DT is
determined by the package as a running average over the past
four sampling times - this is optimal for the integration

method used. DT will then be equal to the execution time of

A GENERAL-~PURPOSE ANALOG SIMULATION PACKAGE v' PAGE 9-9

d)

SIMJOB() plus DELAYTICKS ticks.
TIME:
If simulation is real-time, then this array will contain the

actual real time (in seconds past midnight) of the present

and past sampling instants.

The user can call the following procedures in the package:

a)

b)

c)

d)

ENT PROC() HALT

This procedure halts the simulation when called from

SIMJOB(). The main loop is terminated on return from

SIMJOB() and simulation falls through to SIMTIDYUP():

ENT PROC() OFFLINE

The package defaults to real-time simulation. If offline
simulation is wanted, then OFFLINE() should be called from
within SIMINIT(), in which case DT must also be set up by
the user. A call to OFFLINE() sets DELAYTICKS to zero.

ENT PROC () NOAST

The package defaults to a mode whereby during the main loop
processing may be interrupted at any time by typing
control-C, causing an AST (Asynchronous System Trap) and the
appearance on the screen of a'menu of choices, e.g. whether
to continue, restart, or abort. If this feature is not
required, NOAST() should be called from within SIMINIT().

ENT PROC INTEGRATE (REF ARRAY REAIL, XDOT, REF REAL X,
REAI, XO)

This procedure is the heart of the package and performs the

integration. The input variable XDOT must be an array of

A GENERAL—PURPOSE ANALOG SIMULATION PACKAGE PAGE 9-10

four reals. This is because the integration algorithm must
be able to access past values of the input variable XDOT.
For each integrator used, an array of four reals to

represent the input variable must be declared by the user.

These past values of the input variable are stored as a
stack consisting of XDOT(2), XDoT(3), and XDOT(4). This
stack is maintained by the subroutine and the user need only
consider XDOT(1l) as the input variable. Each time INTEGRATE
is called it updates the past values in this stack by
"bumping” them down by one:

XDOT(4) := XDOT(3); % update oldest past value., 2
XDOT(3) := XDOT(2); _
XDOT(2) := XDOT(1l); % update newest past value %

% with present value of XDOT. %

The output variable X must be a real variable and NOT an

expression.

X0 is the "initial condition" value for the integrator.
Although it is only needed on the first call to the
subroutine, it is paséed every time. This approach, which
leads to a user program layout similar to that used in most
simulation languages, avoids the need to write another

routine whose sole function is to initialise integrators.

A GENERAL-PURPOSE ANALOG SIMULATION PACKAGE PAGE 9;ll

9.3 Linking to the package

The user module containing the three user-written routines is

linked to the package by setting up a taskbuild command file (say
~ SIMTKB.CMD) containing the following:

USERMODULENAME=USERMODULENAME
SIMBGS, SCREEN, AST
@COMINTFCE °

/

STACK=300
 ASG=TI:1:2

LIBR=RTLLIB:RW
COMMON=MEDCOM: RW

//

The user then types TKB @SIMTKB and runs the resultant task.

9.4 PLOTTING LIBRARY FOR THE TEKTRONIX 4010 TERMINAL

The module PLOTLIB contains subroutines simplifying the use of the
Tektronix 4010-1 plotting terminal for graphics output. This
library is not intended to be a complete graphics interface, but
merely provides sufficiently many software building blocks to
enable users to easily build up their own routines such as
graph-plotting routines. This allows users to plot graphs of the.
parameters of the processes that. they are controlling - for
example the value of one of the analogue inputs against time.

Hard copies of the graphs plottgd may be obtained using the
‘hard—copy unit attached to the plotting termiﬁal.

The Tektronix terminal was previously used with the Electrical

Engineering department's Varian minicomputer, and was connected

A GENERAL-PURPOSE ANALOG SIMULATION_PACKAGE PAGE 9-12

via a current-loop serial line. The line-driver hardware of the
terminal was converted to produce RS-232/C levels at 9600 baud so
that it could be plugged into a serial port of the PDP-11/23.

The Tektronix screen has a resolution of 1024 points (horizontal)
by 781 points (vertical). All graphics is done by means of -

escape-sequences as described in [20].
" PLOTLIB contains the following ENT data brick:

ENT DATA PLOTDATA;
REAL XOFFSET, XFACTOR, YOFFSET, YFACTOR;
REAL XMIN := -1.0, XMAX := 1.0,
YMIN := -1.0, YMAX := 1.0;
ARRAY (20) BYTE REPLYBUF;
ENDDATA ; -

where

1. XMIN, XMAX, YMIN and YMAX are the X and Y values of the

edges of the screen in the units used by the user.

2. XFACTOR and YFACTOR are scaling factors to convert real
numbers ' in the ranges XMIN to XMAX and YMIN to YMAX
respectively to integers in the ranges 0 to 1024 and 0 to

781 respectively.
3. XOFFSET and YOFFSET are offsets used in the above
convergion,
The following ENT procedures may be used :
1. ENT PROC SCALE (REAL XMN, XMX, YMN, YMX);:

This procedure defines the limits of the screen as

A GENERAL-PURPOSE ANALOG SIMULATION PACKAGE ' PAGE 9-14

called. Both axes will then range from -1.0 to 1.0.
ENT PROC GRAPHMODE ();

The terminal is put into graphics mode, so that it will
be ready for graphics commands like MOVE and DRAW.

ENT PROC ALPHAMODE ():

The terminal is put into alphanumeric mode, so that it is

ready to output or input alphanumeric characters.
ENT PROC DRAW (REAL XPOS, YPOS);

If the terminal is in graphics mode, a line is drawn from
the current position on the screen to the point at (XPOS,
YPOS). If the point is off the edge of the screen, ERP
is called and the offending coordinate is truncated to

the appropriate’ limit (XMAX, XMIN, YMAX or YMIN).
ENT PROC MOVE (REAL XPOS, YPOS);

If the terminal is in graphics mode, the current screen
position moves to (XPOS, YPOS) but no line is drawn.

Points off the edge of the screen are treated as in DRAW.
ENT PROC CLEARSCREEN ();:

The entire screen is cleared of all alphanumerics and
graphics. A delay of one second is executed to wait for

the terminal to complete the screen-clearing process.
ENT PROC CROSSHAIRS ();

In graphics mode, this procedure causes a pair of
crosshairs to appear on the screen. The position of the

crosshairs is adjusted using the two potentiometers

A GENERAL-PURPOSE ANALOG SIMULATION PACKAGE PAGE 9-15

alongside the keyboard.
9. ENT PROC GETCROSSHAIRS (REF REAL XPOS,YPOS):

The current position on the screen of the intersection

point of the crosshairs is written into XPOS and YPOS.

- An example of the use of these routines is the program STAR.TSK

which plots a pattern of lines on the screen. The task expects

the Tektronix to be connected to TT1l2:.

-

CHAPTER 10

CONCLUSION

A fitting conclusion to this thesis.is to give an example of how
the system has been used in practice. To this end, a description
is given of the real-time project given to Electrical Engineering
final-year students at UCT during the second trimester of 1983;
this project having involved extensive use of all aspects of the

Media system and the associated software.

The class consisted of about 40 students and the project was done
in groups of two students each. The project instruction sheet is
included as appendix K.

The apparatus used , developed in the Chemical Engineering
department, is an 18-inch vertical thermally insulated column of

. alr as illustrated below. The blower fan shown blows air up the
column at a constant rate, and the temperature of the air emerging
from the top of the column is measured by the thermistor whose
output signal is connected to one of the Media analogue %pputs. A
heater element inside the column heats the air as it travels up
the column. The heater can supply 0 to 1000 watts of power. The
circuitry controlling the heater is connected to one of the Media

analogue outputs.

CONCLUSION PAGE 10-2

1

- ToMedia | Ermsclucer.

. analogee tnpuh S

\ Heater ol
analogue output powes - : jlemm

S ey

This apparatus was used because it had the advantage that it Qas
already built, operational and easily connected to Media with
minimal further hardware coqstruétion. The disadvantage of the
apparatus is that changes caused by the students' control tasks
are not visually apparent - a system to control the level of water

in a tank, for example, would have been far better in this
respect.

The students' project involved the development of software to
control the temperature of the air emerging from the column, using

a simple proportional- plus-integral control algorithm. This

CONCLUSION ' | A PAGE 10-3

software had to be divided into three concurrently executing

tasks:
1. The Operator Control Panel (OCP) task.

This task allows the operator at any time to change the
setpoint temperature or display on the screen information
about the column (time, setpoint, temperature and power

output) .
2. The control task.

This task performs the actual ‘control. It reads in from
the analogue input the value representing the temperature
of the air and then converts it to temperature in degrees
Centigrade using a calibration function to compensate for
the non-linearity of the thermistor. The difference
between this actual temperature and the desired
(setpoint) temperature as set up by the OCP task is
computed. This temperature error value is fed into the
proportional-plus-integral control algorithm which
calculates the amount of power which the heater must
generate. The power is then written to the analogue

output.
3. The logging task.

This task logs all relevant information about the column
(time, setpoint, temperature and power) to a disc file at
regular intervals. This file may be examined later or

printed out.

Inter~-task communication is done using the WRCOMMINT and RDCOMMINT
procedures from the user interface MEDUSER -~ for: example, one of
the bits in the common integer may represent an instruction from
the OCP task to stop logging. '

CONCLUSION — PAGE 10-4

10.1 Simulation.

Thé existence of only one set of apparatus meant that only one
student could use the real system at a time. Therefore,
simulation software was written which uses the simulation package
to simulate the operation of four other sets of apparatus (four
sets because there are four simulation analogue outputs in the

data-base). Thus, the system could be used by up to five students

* simultaneously.

The algorithm simulating the column operation is a simple

first—-order one:

—
e —

Powerin | +ST

Topot _pi(s) = A

where it was assumed that the time constant ‘T may be different
during heating and cooling of the column. The values of

A, /t1MHn3 and T cooling were determined empirically by taking
readings of temperature against time for known values of heater

power.

Thus the simulation of the column could be done using the

following analogue block diagram:

CONCLUSION PAGE 10-5

Temperatre(°C)

Power +

(watts)

' | Tovesse of .
_ @ thermistor Digital

calibrotion valve

A\ -

‘cw\cb‘ on .

The simulation task reads the power written by the user to the
simulation analogue output and uses it as input to the simulation
'block above. The temperature, before being written to the
simulation analogue input for the user program to read, must first
be converted to thé same digital value that would be produced by
the thermistor in the real system. This is done using a look-up

table to representing the 'inverse of the thermistor's calibration
function.

The simulation of all four columns is done in parallel, and data

is read from and written to the simulation portion of MEDCOM every
second.

10.2 Results

The use of the computer by up to five students simultaneously for
program editing, compilation and running, together with the
simultaneous execution of the Media update task and the simulation

task caused the compﬁter to be very heavily loaded at times,

CONCLUSION PAGE 10-6

slowing it down considerably. This proved to be the major problem
encountered. The only apparent solution to this is to reduce the
number of students or to obtain a faster computer, the latter

solution being a more practicable one.

No problems were experienced with the securing and releasing
mechanism for MEDCOM because all students used the special Media’
abort task ABM to abort their tasks. As a result, it was never
necessary to "unhang” MEDCOM using the data-base manager task
UNHANG.

However, the students were less well disciplined regarding
detaching from outputs after use. It was occasionally necessary
to free outputs by detaching users who had left without detaching.
In this regard, MEDRMD proved itself to be an invaluable

management tool.

This student project involved heavy use of all software and
hardware components of the system over a period of some seven
weeks. During this time, the system was also being used for a
final-year research project by a chemical engineering student, and
it is therefore felt that the fact thatuﬁhe system ran
successfully during the entire period of the projects demonstrates
the viability and pracﬁicality of the multi-user process interface

developed in this thesis.

REFERENCES

1. "The MEDIA Family: Technical Background®", manufacturer's
publication no Al@097-39 and Al@@7-1, Fisher Controls
Limited, New Parks, Leicester, England.

2. Parry, J.N. (Ed.): Documentation received with the GEC
Media system supplied to UCT (not titled), GEC Process
Control Company, Johannesburqg,1982,

3. Bleach, I.C.: "Stand—-alone process control computer
system”, undergraduate thesis number 20, 1981, Department
of Electrical Engineering, University of Cape Town.

4, "SMT operating system for PDP-11", RTL/2 Reference 122,
SPL International. .

5. "RSX-11M version 4.0 real-time operating system", Digital
Equipment Corporation software product description SPD
14.35.18, April 1982,

6. Barnes, J.G.P.: "RTL/2 Design and Philosophy", Heyden,
London, 1976.

7. DEC RSX-11l RTL/2 user manual, SPL International, London,
March 19886. Chapter 5. '

8. Dehning, R.W. "Using RTL/2 under RSX~1lM - a view on
support -.environments”, paper presented at the
international RTL/2 users dgroup (RUG), Brighton, October
1982.

9. Dehning, R.W.: "Using RTL/2 under the DEC RSX-11M
+éxecutive (in -an envirodnment similar to MTS)", AECI Ltd.,
5 Nov 1981.

1d. "Resource Monitoring Display (RMD)", chapter 6 of RSX-11M
Version 4.0 System Management Gu1de, Digital Equipment
Corporation, March 1982.

11, [2] above, sections 2 and 3.

12, [2] above, section 7.

13. "Microcomputer processor handbook", Digital Equipment
Corporation, 1984d. Pages 78 to 87.

14. RSX-11M Version 4.0 Executive Reference Manual, Digital
Equipment Corporation, November 1981. Pages 2-6 to 2-11.

15. [14] above, pages 5-112 to 5-117.

16. National Semiconductor interface data book 1980, pages
1-88 to 1-97.

17.
18.

19.

20.

21.

22.

23.

24.

[16] above, page 10-13.

[9] above, section 6.2.

Conte, S.D. and de Boor, C.: "Elementary numerical
analysis, an algorithmic approach", second edition,

McGraw Hill, 1972, page 351.

"40919 and 49019-1 maintenance manual", manual number
#70-1183-008, Tektronix Inc., Beaverton, Oregon.

{14] above, pages 5-8 to 5-9.

RSX-11M System Generation and Installation Guide, Digital
Equipment Corporation, November 1981, Chapter 3.

[9] above, section 6.6.2.

[{14] above, pages 5-14 to 5-15.

e

- APPENDIX A

. MEDIA FRONT PANEL .

MEDIA FRONT PANEL

C)/(((JJ(((J((((/J

..
[/

®©

PAGE A-2
/ 114 " 52
DIGITAL
@ INPUTS @
) re 17 3z
SWITCHES

(I(/({(J{(((J(J(C)

DiGITAL

EARTH

o0000 00 00 .5D5

8 9 0 101 3 IS

sV

1

@ :
@
@

DIGITAL OUTPUTS

_SW/

/

&0
@

r\'

@ ©

ANBLOG
EARLTH

ANALOG
4 | E | qurruTs

Yo
T

/ 23

ANALOG INPUTS

Y /4

I

WU

®
©
®

Fiqure A-1: Medja Front Panel .

MEDIA FRONT PANEL

Digital inputs |

PAGE A-3

A J1IEIZIEIR|E 161 E 1Z7IE{I181€|T|E 321E
ff'L——Digibj 3rouno\.
Disitq\ outputs Ana\ogu& in?u{:s
B 1|elz|elz]e kle| [1]ql2l6i3lG |G

Anq'oquc qrouno!
J J

C | {1]6|2[c[3|ale|s|

Anal osue ou!;Pu\L—s

Fiﬂwe P.—Z . Media connection ails

MEDIA FRONT PANEL o R ' PAGE A-4

‘The layout for the front panel of the Media system is shown in
Figure A-1. This panel was designed in the Electrical Engineering
digital labbratory and brings the analogue and digital butput and
input lines from the connection rails at the back of the Media
housing (see figure A-2) to more eaéiiy-used connection blocks at
the front of the housing. The Media lines are also level-shifted

" where this was felt desirable.

NOTE

_ Because of the way the Media cards‘have been
designed, the analogue and digital Media cards »
use different earth reference levels. In |

 fact, ‘ A .

Digital ground = Analogue ground - 15 volts.
Care must therefore be téken to ensure that

one is referencing signals to the correct

ground.

A.1 Digital Outputs

MEDIA FRONT PANEL PAGE A-5

| {}Ohihﬂaﬂhzl
dl’(jita] au('ru\: card

Biock ® \ §moﬂ
Onfnnd.- ‘ |

OV = tow
SV =HIGH

jzy LED

(D;ﬂ‘;tar&rollh‘)
~ Figure A-3.
Each of the sixteen digital output lines is wired as in figure ‘
A-3. Thus all digital outputs are always displayed‘on'the LEDs at

(D) on the panel, and two levels are available — one at 24V and

one TTL-compatible.

A.2 Digital Inputs

| to Media

[digital input
o - ~card.
2N2222
== pgmae
GROUND

F\'gure' A-L.

Blocks (A) and (R) on the panel are connection blocks enabling

' TTL-level signals to drive the digital inputs. 1In fact, any level

MEDIA FRONT PANEL | B - . PAGE A-6

from about 3 volts to 24 volts will drive the inputs. The wiring
of the inputs is shown in figure A-4. This.circuitry was _
necessary. because the inputs on the Media cards are intended to be

'operated by switches, not Voltages.

Note that the circuit above is an inverting circuit : the
inversion thus caused is undone in the software (procedure
‘RDDIGINP in MEDUPDA’I’). '

A.3 Switches

124V

6 Switchat -
4 ©®

anel connection

at_(, or(:)

= 'D:yiéal

3 rou nd
Fia-uve A-5.

32 switches, wired as in figure A-5, are provided. These can be

connected directly to the 32 digital inputs, as sense switches or

for testing purposes. Switch up corresponds to loglcal 1 (or +24
volts) and switch down corresponds to loglcal 0 (or 0 volts)

A.4 Analogue Outputs

'MEDIA FRONT PANEL = = S PAGE A-7

(evkqva\ole link

from Media S'P_----@ . N —50
anal ut . Chanel sockets
03 mrf Panel catheohans Selec; %29)_0_ m‘fand
' ' switch . o
TE: fina!
3rounA

Figure A-6 .

Each of the four analogue outputs is brought to a connection on

" block (H) on the panel. 1In addition, analogue earth is the’

rightmost connection on block (H).

-4 mA to -20 mA outputs ére available from block (G) if the'wire
links between blocks (G) and (H) in the appropriate places are
removed. Otherwise, the 4-way switch can be used to select one of
the analogue outputs, which is then available as a -1 to -5 voit

- output at (3). - The current—to—voltage_conversion is done by a 250

ohm resistor, as shown in figure A-6.

A.5 Analogue Inputs

The 16 analogue input lines to the multiplexer card are connected

to block (G) of the panel. =~1V corresponds to an ADC output of
zero, and -5V to an ADC output of HEX 3FF. : ‘

MEDIA FRONT PANEL S S PAGE A-8

| $o Media inpul’

mux card .

Conneckions

S ®

Figure A "'7.

In addition, analogue signals can be connected to block (K)., pass
via attenuators (L) and switches (M) to block (N), and hence to

_block (0) via wire links. This is shown in figure A-7.

rd

A.6 Connections to the Media connection blocks

The connections to the connection blocks at the back of Media are
shown in figure A-2. The input/output lines from the Medla cards
are brought directly to the termlnal p01nts shown.

Digital ground is obtained by connecting the earth lines (from the
Media cards) of the dlgltal inputs and outputs together. ‘Analogue

ground is produced. s1m11arly.

APPENDIX B

ADDRESSING THE MEDIA CARDS

This section describes how the systems prbgrammer interacts with
the Media cards using the LSI-1l1l. ' P '

" B.l1 Converting between Media and LSI-11 addresses.

A Media address is a ten-bit address of a card on the Media;
~ highway. When the PDP-11 to Media interface cards are present in
the minibin, successive Media addresses are available to the -
LSI-11 as successive memory-mapped words in the 1/0 sPace of the
.,LSI, starting from address octal 764000.

—

The formula for converting Media addresses to LSI-11 addresses is
L.SI address = 764000.+,(2 * Media address)
and td convert LSI addresses to Media addresses,

Media address = (LSI address - 764000) / 2.

[

ADDRESSING THE MEDIA CARDS | PAGE B-2

B.2 Addresses of the Media cards

Media Card Media address LSI address
16-way dig. inp. card 1 g 764000
l16-way dig. inp. card 2 1 764002
l6-way digital output card 4 (octaO. 764010
16-way analogue mux card 19 764020
A/D converter card 14 764022
4-way D/A converter card 14 764039

‘Table B-2: Addresses of thé Media cards

The Media and LSI addresses of the Media cards are given in Table
B-1. 1In addition, the Media status word is available at LSI

address 767776 (Media address 1777) and can be interpreted as :

000000
010000

last transaction successful

device missing error

B.3 Accessing the cards

v
*

B.3.1 The digital—to-analogué converter card

. This card is a four-channel 8-bit digital-to-analogue converter.

The word at Media address OCT 14 is organised as follows :

5 1 I3 /2 M 0 9 & T ¢ S 4 3 z 1 o

X ID7|De |5 |Du |D3 |DZ [Br [P0 | W | X | X |cHe|cH3|cHzicHs
MSEB ' LSB ¢
L Y) L\ ~" 7
’ Channel select
Data

ADDRESSING THE MEDIA CARDS " © PAGE B-3

Any of the four channel-select bits can be used; so that the same
data can be written to more than one output simultaneously if -

required. However, Micro-Media does not use this feature.

Each analogue output is a current signal in the range -4mA (for
digital 0) to -20mA (for digital HEX FF).

B.3.2 The digital input cards

These are read as two consecutive words at Media addresses: 0 and 1

for digital inputs 1-16 and 17-32 respectively.

mse | T |
764 000
l-.-....--.----------.----. B 8 d-b;j;n.nu..\gr
Msé B ' . - LSB
. 764002
I7... R R L ¥ A 4_D33'.., number

Digital input number 1 the the most significant bit of fhe first
word, and'input number 32 is the least significant bit of the
second word, as shown in the diagram.

The digital input cards require switch inputs, but have been wired
to the front panel in such a way that either switches or TTL logic .
levels can be used. '

ADDRESSING THE MEDIA CARDS - " DPAGE B-4

B.3.3 The digital output card

' These may be written to at LSI address 764010. Digital output 1
is the most significant bit and output 16 is the least significant
bit. ’ | |

The Media card provides 24V = logical 1 and OV = logical 0. The

outputs are also available on the front panel as TTL compatible

levels. .

B.3.4 The analogue inputs

These 16 inputs are organised as a l6-channel multiplexer card at
‘LSI address 764020 and an ADC card at address 764022. '

To read an analogue input, the following procedure is followed :
1. Select the required input by writing to the multipléxer.

2. Wait for the multiplexer to settle (this takes about 50>”

milliseconds).

3. Read the digital value from-ﬁhe ADC card.

B.3.4.1 The multiplexer card - The multiplexervcard word at LSI
address 764020 is organised thus: ' '

ADDRESSING THE MEDIA CARDS B ' PAGE B-5

cha'nnel select

To select analogue input n, a word musf. be written to the
multiplexer with the enable bit (bit 4) set, and bits 0 to 3 must
contain the number n-1. For example, to select channel 4, one
must write OCT 000023 to the muitiplexer. '

B.3.4.2 The ADC card - The ADC card word at LSI address 764022 is
oraanised as follows : I T ‘
/s @ 13 12 pn 0o 9 g 7T ¢ S & 3 2 [o

X [pe [ps | D7 [ve [os [pe [p2|pz[p [oo [XXX [X | x
msg LSB '
NG ~ | >,

| ~ Data |

The data is read as the 10 bits from bit 5 to 14 (inclusive) of

‘the word. -1V corresponds to digital zero, and -5V to digital HEX
7FEO. o |

APPENDIX C

- DETAILED DESCRIPTION OF MEDIA LINK FRAME STRUCTURE

This appendix describes in detail the format of the Media data

link frames introduced in chapter 2.

C.1 sSymbols used

The descripﬁions below use the following symbols:

1. TAl to TA4 are the 445it terminal address f
2. P is the périty‘bit_"

_3. A0 to A9 is‘thé 10-bit Media addfess

4. :DO to D15 is the 16-bip data field

‘5. BCC‘is the block cﬁeék charaqtér

6. X represents a don't-care bit

DETAILED DESCRIPTION OF MEDIA LINK FRAME STRUCTURE

C.2 - Single read (Codes 1,2,8)

The host-to-Media frame is as follows

Hsh
Pl 1 |743 782 coDE
Plo Tkl TAO| A3| A2]| A1 | AO
P o [ae]as|a7]46] A5] A2
Pl Bcc

The Media-to-host reply is as follows

AP I |TA3|TAZ CcopE

P 'o -pé,'Tno STATUS

P| o|[P5|Dy |D3|Dz|D) DO
Pl o|X |[po]|D9|D8|D7|De
PlO| X |Dis|Dyl|Di3 P/z 'Pﬁ
P. / Bcc

" PAGE C-2

: Thus the returned data is encoded into bytes 3 to 5 of the reply '

frame.

o

' C.3 Printer output (Code 0)

This command causes the supplied text (CHAR1 to CHARn) to be

printed at the terminal local to the Media.

This is not

implemented in the LSI-11 Media system as there is no local

DETAILED DESCRIPTION OF MEDIA LINK

printer.

The host-to~Media frame is

NIRRT CODE .
VPl O|\m!lm | a3laz|a | Ao
! PlO|Aa|as |[A7|AL|As| AL
: P CHARACTER VI

; P CHARACTEKR 2 :

| .

P EOT

‘ ! BCc

-

FRAME STRUCTURE

Nddress bits ale

ignored

where EOT = control-D = binary 0000100.
i

The Media—to—host reply is :

P.] {TA3 | 182

CopE

P | O |74 |7h0

STATUS

P/

BCcC

C.4 Block read (Codes 3 and 4)

\

PAGE C-3

The Media or list address of the start address of the block is

encoded into bytes 2 and 3 of the host-to-Media frame.

of items required is put into byte 4. The frame is

The number

DETAILED DESCRIPTION OF MEDIA LINK FRAME STRUCTURE . PAGE C-4

| |TA3 |Th2 coDE

TA! | TAO| A3 A2| B! | AO

1B | B [A7 | RE| AS | Ay |

NUMBER OF ITEMS To READ

|| |{v| 9] |~
~llollollo

BCC

i
|
i
B

'The Media-to-host reply is :

| |TA3|TAZ2| CcoODE

TAI | TRO STATUS -

D§ Dy | D3| D2 | Dt | DO
X (Do P9 |D8 (D7 D¢ |
Y |Dis |Diw|Di3|{Diz | D

First

word

s | Dy | D3\D2 | D1 | DO
X |Diwo|Da|Ds|D7|De
T X D5 Diz|Diz | D

Se.c.or\d

- word

o | |V [R] [|9 Y[
ol{ollo]lello] o

P / BCcC
N , _ | \ .
The k'th data item read is encoded into bytes 3k to 3k + 2 of the

‘ ‘reply frame, as shown.

DETAILED DESCRIPTION OF MEDIA LINK FRAME STRUCTURE -. PAGE C-5

C.5 Keyboard input (Code 9)

This is used for the host to read in the keyboard buffer of the
terminal local to the Media. This is not implemented in the -
LSI-11"Media system.)

The host-to-Media frame is :

i
)

VP jrAz Az CODE
; i
P | O [rAr |TAO A3] A2] A1 | 4o ; Modrese bits me,}
: PO [AF|As | A7 A6 AS| AL | ianored /,_/v .
N Bcc |)

The Media-to-host reply is :

-

| |TA3|m2| cope

O |t#1 {TA0| ~STATuUS

CHARARCTER /

v| |9} |||V

' CHARACTER 2

~EOT

Pl Bcc

DETAILED DESCRIPTION OF MEDIA LINK FRAME STRUCTURE v PAGE C-6

C.6 Single write (Codes C, D and E)

The write is implemented as a two-stage process. First the host

issues a Media/list write frame (code C or D), as follows :

P

TA3|TAZ CODE

1 |7a0] A3 A2] A1 [AO

29 [As | A7 | A6 | A5 | An

Ds|'Dy| D3| D2 | DI | Do

X [pw [»9 [Dz [D7] Do
X | Dis{ Dy |Di3| Diz| Du

| || |||V || {7
Q|0 {TC]IO] Q] |~

{ BCC

Media“then does nothing except to echo this frame, in its '
entirety, back to the host for checking. If the host is satisfied
with this reply, it sends a confirmatory 'Go' frame (code E), as

follows :

Pl 1 |743 742 ‘ co»b'e

P | O |rAr |rR0| A3| A2] p1 | 40
PloO 99_99 A7| A6 | As|Ap|
Pl - Bcc

The Media then performs'the write and sends the following reply :

P] |7A3| 182 CODE

P | O |78 T80 STATuUS

P-/‘ : " BCc

DETAILED DESCRIPTION OF MEDIA LINK FRAME STRUCTURE

C.7 Réad digital change words (Code 7)

"The host-to-Media frame is

P 1 |7A3|7A2 copeE

P | O |rar |7A0| A3| A2| h! | AO
Pl O |Ag|AY|AT7 Aé As | Ay
Pil Bcc

where the address field is ignoréd by Media.

The Media-to-host reply is :

—

3

TAZ

cobg

TA!

TAo

STATUS

Ds

Dy

D3

D2

DI

Do

X

Dio

D9

Dg

D7

De

X

Dis

D

D3

Diz

Dy

Dy

Dy

D3

Dz

Ds

Do

Do

Dz

D7

D¢

D

D/3

Du.

Dn

ol lollollicl o] |o

Dic

P .
P
P
P
P
P
P
P
P

Bcc

Frst |
dr\ange
word .

SQCO“J
cha nge
word,

PAGE C~7

DETAILED DESCRIPTION OF MEDIA LINK FRAME STRUCTURE

C.8 Media frame lengths

PAGE C-8

Table C-I shows the lengths of all the Media frames in bytes.

'l Code

Meaning

Command

..Length (bytes)

Reply

mMOOQOWPOONONDLEWN SR

Printer output

Read Media address

Read list address

Read block Media addresses
Read block list addresses
Spare '
Spare

Read digital change words
Read printer status word
Read keyboard input

Spare

Spare

Write to Media address
Write to list address

Go (2nd stage of write)

variable

s | n e

FOQES R R |

3

6
. 6
3(n+l)
3(n

W~ |

+1)

9

6
variable

Table C-1:

Media link frame lengths .-

APPENDIX D

SERIAL LINK HARDWARE CIRCUIT DIAGRAMS

D.1 The'serial lines

The wires of each 4-wire serial 1link between the Electrical and

Chemical Engineering buildings are connected as follows:

élec Eng- Chem Eng

wall socket wall socket

Pin number pin number i,) i 4

iz 7 ' fe

1 5 ' _21 ;ﬂ . GPO line i el
4 7 ’ l- _] —~— l_ LalkLiy
5 1 '
7 4

The lead connecting the wall GPO socket to the DIN socket on the
interface unit is wired thus:

SERIAL LINK HARDWARE CIRCUIT DIAGRAMS PAGE D-2

Din P'ug ({oolu'.j inbor’u:]) ‘ G PO Pl“j

18]
0z 11
03 ¢
Hl4 s i

D.2 The link driver circuitry

Full circuit diagrams and‘parts list follow.

DIN
Socket

DIN
Socket

ki Delta
' g connector
A 4
3
j 7
i N’
1459
c7 4
Del ta
connector
2
3
+1
Z2S-25 0.054 +5 _r
[2v 1
Re = 1

‘ 10 2¢2
& 4 &9
g 15 |12 3 {

A (24

&2 30

+12V

)

1

0./
T

I

. FSi - "
+5V
| p — 3L0-T12 340-Ts
C1 cg
(100g | /
- 0.
220V o—o —y— g -
| GND
ez c?
1o —5—
M TTou
]
e 320 1-12 — L2Y
Ic2z
sy 4120 o4 $5Y
J:J,z | W
0.
cs Ccé /C7
ci3 $830 o uss 48
7 !
2 e .

SERIAL LINK HARDWARE CIRCUIT DIAGRAMS

PARTS LIST
ICl : LM34¢-T12 voltage regulator
IC2 : LM328-T12 voltage regulator
IC3 : LM34¢-TS voltage regqulator
IC4 : DS5882¢ dual differential line receiver
IC5 : DS883¢ dual differential line driver
IC6 : DS1488 quad RS-232 line driver
IC7 : DS1489 quad RS-=232 line receiver
' D1-D4 : 1N4@@7 diode
© Z1-Z8 $ 12 volt zener
R1-RS : 2K2 1/4 watt resiétor

C1,C3 : 1068 uF 25V electrolytic
c2,C4,C8,C9,C12-Cl6 : @G.1uF 25V ceramic disc
Cl¢,Cll : @.65 uF ceramic disc

’

Tl : Transformer, 224 volt to 15-¢-15 volt 1 amp
FS1 : 508 mA fuse
Sl : SPST toggle switch 258 volts

Two 25-pin panel-mounting male delta éohnectors
Two 5-pin panel-mounting DIN sockets

THE MEDIA STATUS WORD - . . " = prggg-2

ENT PROC GETMED (REF MEDéARD.MSTAT) INT}f*

whlch puts. the Media status word 1nto MSTAT MEDDAT, updates ,
MSTAT SCANTIME and returns an 1nteger 1nd1cat1ng error status (as .
_'for tne other procedures in MEDLNK) ' ’ - :

~ APPENDIX F

. THE ABM AND ABOM ABORTING TASKS

' The two tasks ABM and ABOM are provided for use instead of the

RSX-11M abort command ABO, and are intended for aborting

 app1ications'tasks which access MEDCOM. . ABO cannot be used for

aborting such tasks'because it does not,ensure,that the task -

‘releases MEDCOM before it exits.

ABM is a,ﬁon-pfivileged task which should be{instailed as ...ABM

,and'useS[the same commahd—line format as ABO. ABM calls GETMCR()

to'get'the comméhd—line~typed in, and from this,”gets the name of

. .the task to be aborted. . It converts the task-name into radix-50
' task name format. If the user did not specify a task name, then
" the usual default name is used'(i.eol name "TT1" if_invoked from

. terminal TT1:, etc.)

—

Once the task name is obtained,'ABM.sécures MEDCOM dsing

" SECMEDCOM(), "the task is aborted using the RSX~11M ABRTSS"

directive [21], and then MEDCOM is released. ' This ensures that .

".the task being aborted will not be secured to MEDCOM on exit. ..

Two checks are necessary before the ABRT$S can be issued:

1. The task to be aborted must not be "MCR...". if a user

THE ABM AND ABOM ABORTING TASKS | . - PAGE F-3

ABOM because privileged tasks cannot be installed from

non-privileged terminals.

The above method of having two'abort—MEDIA tasks is intended only
as -a temporary measure until a way is'found_arodnd the difficulty
'mentioﬁed'above. There definitely is a solution, since the
RSX-11M TAL command, given a task name, prints out information

which includes the terminal from which the task was run.

- APPENDIX G

THE SECURE/RELEASE MODULE GSECREL

" G.1 Procedures provided in GSECREL

In addition to the procedures relating to the securing and
releasing of facilities, three'other procedures.(the final three
in the list below) are included in this module because they are
often used by the same tasks that use the éecure/release |

. procedures.

1. - ENT PROC GSECURE (INT FA);

_This proc secures the facility represented by event flag:

" FA. It is similar to the MTSLIB SECURE, but uses the
global event flags 33 to 56. ' I

2. ENT PROC GRELEASE (INT FA):

This proc releases the facility represented by the global
event flag FA. ' ' ' | '

THE SECURE/RELEASE MODULE GSECREL ~ = - ~ PAGE G-2

ENT PROC RELMEDCOM ();

ENT PROC FORCEDRELEASE (INT FA);

This is the same as RELEASE excépt that it feleases_the

- facility irrespective of who has sechred‘itQ It is

intended for use by a system manager to free a“faciiity

~ that has become "hung" (as explained earlier).

ENT PROC SECMEDCOM ();

Secures the data-base, using GSECURE with the event flag

' MEDCOMEF (= 33 at present).

Releases the data—base, using GRELEASE with the event '
flag MEDCOMEF. o

ENT PROC MCOMINIT ():

Sets the flag MEDCOMEF. This is meant to be called once

'only, as part of the RSX-11M system startﬁp, and corrects

for the problem mentioned in section 6.3.2 whereby the
flags "wake up” in the reset state when the system is
started up. '

ENT PROC FREEMEDCOM ();

This proc calls FORCEDRELEASE (MEDCOMEF) to free MEDCOM

. should it "hang". It is intended for use only by the

data~base manager [300,1] and is called only by the task

- UNHANG.

ENT PROC MCOMTASK (REF'RSONAME TASK);

- This proc returns the radix-50 name of the task which is

currently securing MEDCOM. If no task is securing, TASK
is zeroed. It is called by MEDUPDAT.

oy

THE SECURE/RELEASE MODULE GSECREL R . PAGE G-3

9. ENT PROC PRIVILEGED () INT;
This proc returns 1 if the calling task was run from a
privileged terminal, otherwise it returns 0. The calling
- task must have logical unit 1 assigned to TI:. '

10. ENT PROC TASKINFO (REF TASKBUF TB):;

This is the same as the SPL 1nterface proc RSXGTS except
that it RRGELs 1f the GTSKSS dlrectlve fails.

- G.1l.1 Modifications to RSXBA2

As mentioned in chapter 6, the MTSLIB-supplied version of RSXBA2
stores the names of the tasks securing facilities. To do this, it

uses a section of code equivalent to

MODE R50NAME (INT R50N1, R50N2);
ENT DATA RRFACS;

ARRAY(32) R50NAME FACS:;
ENDDATA;

Element i of FACS contains the radix-50 name of the task securing
the facility represented by event flag 64 + 1i.

To enable the secure/release mechanism using the global event
flags (33 to 56), two extensions to RSXBA2 have been made :

1. code equivalent to

THE SECURE/RELEASE MODULE GSECREL o PAGE G-5

MAC RSXBA2=LB:[1,1]EXEMC/ML,SY:[100,6]RSXBA2 .

RTLLIB is then built using
TKB @RTLLIBTKB
where. RTLLIBTKB.CMD is

RTLLIB/—HD,RTLLIB/—SP,RTLLIB=LB:[l,l]RTLCTL
'8Y:[100,6]1RSXBA2, RRGEL _ '
SY:[lOO,GJTTOUT,DEVIO,TWRT,IWRT,IWRTF,NLS,SPS
- SY:[100,6JIREAD, TREAD, RWRTX, RWRTU, RREADU
-/ ' '
STACK=0
 PAR=RTLLIB:120000:14000
/7 - . ,

The details of forming the RTLLIB partition during system VMR are
given in appendix H. ' o : '

APPENDIX H

CONSTRUCTION OF MEDCOM AS A RESIDENT COMMON

H.1 Compilation and building of the data-base

‘Medcom is built using the following commands:

RTL MEDCOM, MEDCOM=MEDCOM
MAC MEDCOM=MEDCOM
TKB @TKBMEDCOM

where TKBMEDCOM.CMD consists of:

- o .
MEDCOM/~-HD ; MEDCOM/~SP , MEDCOM=MEDCOM
y o
STACK=0 :
PAR=MEDCOM: 140000 : 1100

//

The line PAR=MEDCOM:140000:1100 tells the taskbuilder that the

'CONSTRUCTION OF MEDCOM AS A RESIDENT COMMON - . PAGE H-2

output file will be installed in a partition called MEDCOM, of
size 1100 (octal) bytes starting at virtual address 140000 octal.

H.2 Creating partitions for MEDCOM and RTLLIB

RTLLIB, which is a library of RTL/2 procedures and contains the
extended version of the RSXBA2 procedure which is needed by the
global event-flag secure/release pfocedures, is introduced in
"appendlx G, where 1t is also explained why RSXBA2 must res1de

inside a common area of memory
This section deals with the procedure which must be followed when
building the partitions RTLLIB and MEDCOM. This is done at VMR
time: durlng Phase two of RSX-11M system. generatlon [22].

The file_DLO:[I,54]SYSVMR.CMD must be.édited to insert the lines

SET /MAIN=MEDCOM:*:11:COM
. SET /MAIN=RTLLIB:*:147:COM

just before the line
SET /MAIN=GEN:*:*:SYS

to inform VMR that MEDCOM and RTLLIB will be common partitions of_.'
size 11 ¢ (octal) and 147 (octal) 64—byte blocks respectlvely. '

VMR i$ then performed as follows:

' CONSTRUCTION OF MEDCOM AS A RESIDENT COMMON - ~ PAGE H-3

. SET /uic=[1,54] | .
'PIP DL2:RSX11M.SYS/NV/CO/BL:258.=DLO:RSX11M.TSK
PIP DL2:=DL0O:*.STRB . ‘

ASN DL2:=SY:

ASN DL2:=LB:. :

INS $VMR

VMR @DLO:SYSVMR
ASN DLO:=SY:

ASN DLO:=LB:

' PIP =DL2:RSX11M.SYS

The new system is then booted using

BOO RSX11M
The files MEDCOM.TSK, MEDCOM.STB, MEDCOM.MAP, RTLLIB.TSK,
" RTLLIB.STB and RTLLIB.MAP must then be copied to LB:[l,l], and the
startup file d10:[1,2]STARTUP.CMD edited to include the lines

'INS LB:[1,1]MEDCOM
INS LB:[1,1]RTLLIB

’ H.3g_Linking tasks to MEDCOM

TaSKS'which'éccess MEDCOM have to be taskbuilt as'follows:'
TKB @USERTKB

where USERTKB.CMD includes:

. CONSTRUCTION OF MEDCOM AS A RESIDENT COMMON - = . PAGE H-4 =

USERTASK, USERTASK/~SP=USERTASK
@LB:[1,54]1COMINTFCE S
y T
LIBR=RTLLIB:RW

COMMON=MEDCOM: RW

72

ASYNCHRONOUS SYSTEM TRAPS o ' PAGE I-2

It is not good programming practice to run AST service rouiines in
an RTL/2 énvironment because this can compromise the system
sécurity [23]. A module called AST, has therefore been written

- which provides RTL/2~-callable subroutines which enable the
processing of ASTs in a simple fashion which does not involve the
‘buffering up of incoming characters, and can only supply the task

with the most recent unsolicited character.

I.2 Module description

‘The following description should be read in conjunction with the -
listing of the AST module. ‘ ')

Logical unit number 2 must be assigned to the terminal from which
thevasynchronous‘input is expected. Asynchronous input handling

is initialised by attaching to logical unit number 2 using
QI0$S #I0.ATA,...,<#ASTIO, #AST2>

where ASTIO is the address of the AST service routine ASTIOPROC()
for characters other than control-C, control-S, controlmd, '
control-Q, and control-X ; and AST2 is the address of the AST
service routine AST2PROC() for input control-C characters. The
control-S, control-Q, control-0, and control-X characters do not
.cause ASTs, butvinstead have the usual effect in controlling

output to the terminal.

Processing of ASTs is,terminated‘by issuing to logical unit number
) 4 _ _

Q10$s #I0.DET,...

to detach from the terminal.

ASYNCHRONOUS SYSTEM TRAPS . S . PAGE I-3

A local data brick contains the following two integers :
1. ASTFLAG. This takes one of three values :

CTLC : Indicates that an unsolicited control-C
character was input since the last 1nout character dealt

with by the user._

AST : Indicates that an unsolicited'character other
than control-C, control-S, control-Q, control-0 or _

control—x was input since the last_charactef'dealt with.

NOTYET : Indicates that no unsolicited characters have

been input since the last input character dealt with.

CHAR : An integer containing the unsolicited input

character.

The AST sérvicevroutines'ASTIOPROC and AST2PROC should never be
called explicitly. A call to RRGEL aborts any attempt to do so.

ASTIOPROC services non-control-C ASTs. It moves the value #AST to
ASTFLAG to indicate the type of AST that has occurred, pops the
character off the stack and stores it in CHAR. It then sets event
flag ASTEF (event flag 4 at present), declares aisignificant event
’_and,exits'via the RSX-11M AST-exit directive ASTX$S [24]. Failure
of the ASTX$S would mean a serious system fault and is dealt with
by calling RRGEL. o |

AST2PROC,'the control-C AST service routine, is the same as
ASTPROC except that it sets ASTFLAG to #CTLC and sets event flag

AST2EF (event flag 3 at present).

ASTFLAG is reset to NOTYET whenever a character is actually dealt

ASYNCHRONOUS SYSTEM TRAPS I .~ PAGE I-4

with by ény of the procedures WAITAST, WAITCTLC, WAITNCTLC, -
WTCCCZ,_ASTYET, CTLCYET and NCTLCYET. For example, ASTFLAG 1is
reset by WAITCTLC if a control-C occurred, otherwise not..

I.3 Procedures in the module

" The user may call the following ENT procedures :

l.

ENT PROC STARTAST():

This procedure initialises for AST processing by issuihg
a QIO$S #I0.ATA directive to attach to logical unit

number 2.

ENT PROC WAITAST(INT NTIX) INT;.

Puts the calling task into a wait state until an AST of
either type occurs. A timeout of NTIX ticks is imposed.
The integer returned is 1 -if an AST occurred and 0 if the

wait timed out.
ENT PROC WAITCTLC (INT NTIX) INT;

As for WAITAST except that the wait is for ASTs of the
control-C type only. '

ENT PROC WAITNCTLC (INT NTIX) INT;

As for WAITAST except that the wait is for non-control-C
'ASTs only. ‘ o

ENT PROC WAITCCCZ (INT NTIX) INT:

This procedure waits until control-C orncontrol—z is

ASYNCHRONOUS SYSTEM TRAPS S . PAGE I-5

typed, timing out after NTIX ticks. The returmed integer
is 1 if control-C or control-Z was typed, zero if timeout

occurred.

' ENT PROC ASTYET () INT;

If an AST of either type has occurred sinceith@ last

' character dealt with, 1 is returned; otherwise zero is

returned;
ENT PROC CTLCYET () INT;

Returns one if a control-C AST has occurred simce the .

last character dealt with; otherwise returns zero.

ENT PROC NCTLCYET () INT;

vRetdrns one if a non-control-C AST has occurred since the

" last character dealt with; otherwise returns Zero.

ENT PROC ASTCHAR () BYTE;:

Thiévprocedure returns the most fecently'receiwed input
byte. A call to ASTCHAR would be preceded by a call to

one of the routines which indicates whether am AST has

occurred. For example,

© IF WAITAST(50) = 1 THEN
' INPUTBYTE := ASTCHAR ();
END; L T

would wait for up to a second for a dharaéter, and if one
was typed, put it into the variable INPUTBYTE. This '

technique is used in MEDRMD to allow it to respond to the

 _ pressing of any key.

- 10.

ENT PROC STOPAST ():

' ASYNCHRONOUS SYSTEM TRAPS ~ .~ .- . ‘paGE I-6 -

'~ This procedure issues a QIOWSS #IO0.DET to-detach from
'~ logical unitﬂnumber_z.; The efféct_is:to stop processing .

.1bf ASTs and to return the terminal to its usual state. L

APPENDIX J

SCREEN CURSOR ADDRESSING ROUTINES.'

The ﬁoduie SCREEN prbvides‘éasy—to—use-subroutines for screen
cursor position control for a VT52 terminal. . It is used by

several of the software modules such as MEDRMD and'ATTACH, and may;.
also be used by applications tasks to present neatly-formatted |

data on the screen.

'~ The RTL/2 byte-output procedure variable OUT should ideally be

assigned to HSOUT, because binary escape~sequences are output to

the screen. However, in practice no problems were encountered

~ using TTOUT. ' ' -

- The following cursor-routines are in the module :

+1. ENT PROC GOTOLC (INT LINE, COL);
This procedure poéitions the cursor on line LINE and
column COL of the screen. LINE must be in the range
1..24 and COL in the range 1..80, or ERP is called.

2. ENT PROC HOME ():

This procedure positions the cursor at the top of the

SCREEN CURSOR ADDRESSING ROUTINES . - | PAGE J-2

screen, by outputting "<esc> H". It has the same effect

- as GOTOLC (1,1).
ENT PROC CLEOS ();

Clears the screen from the current cursor position to the

‘end of the screen, by outputting "<esc> J".

ENT PROC CLSCREEN ();:

Clears the entire screen by calling_HOME() and then

CLEOS().
ENT PROC CLEOL ();

Clears from the current cursor position to the end of the

line, by outputting "<esc> K".

ENT PROC FORCEBUFFEROUTPUT ();

This procedure calls OUT(ETX) to force the output of

. OUTCL.BFR to the screen. It must be called if there is
‘any danger of OUTCL.BFR becoming full, i.e. if more than

80 characters are output between successive newline or.

ETX characters.

ENT PROC PRINTTIME ():

This is not a screen cursor routine. It calls

TIMDAT(-1), and is only present in this module-for '

historical reasons.

APPENDIX K

STUDENT PROJECT INSTRUCTION SHEET

It will be noticed that the broject sheet on the next few pages
refers to two data bases: the data-base MEDCOM and a simulation.

data-base. This is because when this project was set, the

" - simulation part of MEDCOM was kept in a separate resident common

called MEDSIM. The simulation data in MEDSIM was later included
inside MEDCOM, enabling choice between simulation and real system

to be done at attach time rather than taskbuild time.

~.

UNIVERSITY OF CAPE TOWN

DEPARTMENT OF ELECTRICAL ENGINEERING

EE 476 REAL-TIME COMPUTER SYSTEMS PROJECT

INTRODUCTION

The project is aimed to give the student practical experience of real-time computer
systems. The requirement of the project is for the student to design a software
system to control the temperature of the air in a vertical column. Since the purpose
of this course is to develop computer techniques rather than control techniques, a
simple control algorithm (which is discussed below) is quite adequate.

The air column system is shown in the diagram below

bramsducer <ﬁ/ﬁr\ | 1 To amalos tnput of Medi

_ wﬁumm

—3 Power

con bl < H-eahlg element

: 0-1000 '
, Wakls |

O <= fir blower fan

The air is blown up the column by a blower fan, and, during its passage up the
column, is heated by an electrical heating element. The temperture of the air
emerging from the top of the column is measured by a temperature transducer
(discussed below). The rate of flow of air is constant and cannot be varied.

The power to the heating element can be varied bétween 0 and 1000 Watts.

The temperature of the air emerging from the column must not be allowed to exceed
100¢°C. ‘

Controlling the air-column system

The software system to control the temperature must allow the operator to change
the desired temperature at any time, must provide a control algorithm for the
temperature control and facilities to log the temperature on disc. Obviously all
these activities must occur asynchronously and independently of each other so three
tasks are required:

1. A task to control the temperature by adjusting the power to the heater.

2. A task to enable the operator to change the setpoint temperature, and to
display the values relating to the column on his VDU.

3. A task to log the activity of the column onto disc.

The 3 tasks are concurrent in real-time and must all access the Media data-base.

A task, called the Media update task, performs a measurement scan of the MEDIA system
at a regular interval and obtains data from the column {(i.e. its temperature). The
interval between measurements is known as the SAMPLING INTERVAL. Sampling is inherent
in any computer control system. The results of the measurement scan are stored in a
data base in the computer which is common to all tasks, i.e. all tasks can read and
write to this data base (which is called MEDCOM meaning Media Common.) Tasks which
need this data, such as a control task, then read MEDCOM and process the data they
obtain from it. The control task would then output a value to the Media interface
which would set the power to the heating element. The control task would do this at
a regular interval known as the CONTROL INTERVAL.

Now four (or more) tasks are going to be accessing and manipulating the common data
base (the media updating task, the control task, the OCP task and the logging task.)
These tasks are running concurrently and the possibility exists that 2 tasks or more
will try to use the data base simultaneously. This could lead to errors (e.g. say
that the updating task updates the temperature and is then interrupted by the logging
task which logs the temperature and the time, the latter having not yet been updated.)
In order to avoid this a task must 'secure' the data base for uninterrupted working
and then 'release' it when i1t is finished. If this is going to work all tasks must
secure the data base before they work with it. If another task has already secured
the data base the second task must wait until it has released it before continuing.

The control task and logging task must service the: data base at regular intervals.
After they have serviced the data base they must wait a period of real time before
repeating. To do this the application program makes use of a "system directive"
(i.e. a routine which interfaces to the operating system).

Simulating the system

Because there is only one set of air-column apparatus, and also because applications
programs must be properly debugged before being used on a real-life system, a task
has been supplied which simulates the behaviour of the column. Tasks running using
the simulated system access a different data-base. This data base is updated by the
simulation task instead of the media update task. The idea is that the software
system will be developed and debugged using the simulation data-base, and then run
using the real apparatus and data base.

As far as the software design for the project is concerned there is no difference
between the actual and the simulated system. The simulation is a calculated real-
time replica of the behaviour of the real column.

In order to provide a simulated real-time replica of the column behaviour the
computer calculates the value of the temperature that would have been read in at each
‘sampling interval. It does this at the same frequency as the sampling interval, so
the update of the simulation common data base occurs in the same way as for the real
system. Obviously the calculated result depends on the value of the setpoint
temperature which is set by the OCP task. The OCP task does this by updating a
memory location in the common data base. Another location stores the real time of
latest update. :

- —y——

The Media system

The Media process control system, and the air column apparatus, is located in

the University Chemical Engineering building and is connected to the PDP 11/23
computer in the Electrical Engineering building via a serial 9600 baud data line.
A1l the link communication is performed by the Media update task described earlier.

The Media system has the following inputs and outputs:
1. 16 lines of digital output
2. 32 lines of digital input
3. 4 analogue outputs (DAC)
4, 16 analogue inputs (ADC)

The present project uses only the analogue part of the system - in the real
system input and output number 1, and in the simulated system any one of input and
output pairs 1, 2, 3 or 4.

The power to the heater is set by the analogue output, and the value of temperature
is read via the analogue input.

" Attaching the Media Outputs

If user A were to be running a program which uses analogue output number 2, say,

to output the value for the power to the heating element, he must be sure that

no other user can write to output number 2 - otherwise the other user could
destructively interfere with the task user A is trying to perform. To prevent such
an eventuality, a task is provided which 'attaches' a user to a particular output
and ensures that no other user can use that output. This task, called ATTACH,

must be run before executing any of the tasks which access the common data-base.

When he is finished running his control tasks, the user runs ATTACH again to 'detach'
from the output he had attached to. This is explained more fully later.

PROGRAMMING SPECIFICS

(a) Common data base - Medcom

This contains all the information pertinent to the media inputs and outputs :
data values, addresses, setpoints, most recent update times, UIC's of users
attached, etc. However, the user need not know exactly how the data is laid
out because a number of procedures (see part (c) below) have been provided to
read and write to/from Medcom-

Note: As mentioned earlier, there are in fact two copies of the database - one
used for the simulated system and one for the real media system. The
correct database is automatically linked in at task build time if you
use $RTLCMP. (see below)

(b) Attaching to and detaching from outputs

(i) To attach type >$ATTACH
You will be prompted with a menu of choices - e.g. whether you
wish to specify which output to attach to, or wish to attach to
the lowest numbered output that is free, etc.

(ii) To detach, type $ATTACH and respond to the menu appropriately.

YOU WILL NOT BE ABLE TO WRITE TO AN OUTPUT WITHOUT ATTACHING
YOURSELF TO ONE FIRST.
YOU MUST ALWAYS DETACH WHEN YOU ARE FINISHED.

(c) Accessing data in the Medcom data-base

Access to the data-base is provided via a set of subroutines provided for
the purpose. To use these routines (which must be declared as EXT PROC's),
you must have the following lines in your program:

LET ANALOG = O;
LET DIGITAL = 1;
LET INPUT = O
LET OUTPUT = 1;

rd

These barameters are passed in the ADSWITCH and IOSWITCH parameters
of the procedure calls.

The following procedures may be used:

(i) ENT PROC ATTACHED (INT ADSWITCH, REF ARRAY INT OUTARRAY);

You cannot know which output you will be using when you are
writing an application program. In order to write to the correct
output, you must use the procedure ATTACHED to find out which
outputs you are attached to.

This procedure puts into the array OUTARRAY the numbers of those
outputs to which the user is attached. The rest of OUTARRAY is
filled with zeros. For this application we are using only analog
outputs and so the ADSWITCH parameter must be given as ANALOG. The
length of OUTARRAY must be greater than or equal to the number of
outputs attached to (e.g. if you know that you will only attach to
one output, OUTARRAY can be an array of length 1)..)

(ii) ENT PROC WROUTPUT (INT ADSWITCH, MDATA, CHANNUM);
This procedure writes the data MDATA to output channel number
CHANNUM. In this application, ADSWITCH - ANALOG, CHANNUM must be
in range 1 .. 4 and only the least significant 8 bits of MDATA
are used because the DAC is 8-bit.

(iii) ENT PROC READINPUT (INT ADSWITCH, CHANNUM) INT;
This procedure reads in analogue (if ADSWITCH = ANALOG) 1nput
number CHANNUM and returns the value read. CHANNUM must be in
range 1 ... 16. Since the ADC is a 10-bit ADC, the value is put
in the 10 least significant bits of the returned 1nteger, the
other bits being set to Zero.

(iv) ENT PROC RDSCANTIME (INT ADSWITCH, IOSWITCH, CHANNUM) REAL;
This procedure returns the time (in seconds past midnight) that the
specified input or output channel was last updated by the update
task.
As before we let ADSWITCH = ANALOG and CHANNUM be the channel
number. IOSWITCH must be INPUT for an input or OUTPUT for an
output.

(v) ENT PROC SETSETPT (INT.CHANNUM, FRAC VALUE);
This procedure sets the setpoint for the analogue input controlled
by analogue output number CHANNUM to VALUE.

(vi) ENT PROC GETSETPT (INT.CHANNUM) FRAC; *~
This procedure returns the setpoint (as set up in a call to

SETSETPT) of the analog input controlled by analogue output number
CHANNUM.

" {d) Securing and releasing the-data-base

This is done automatically in the interface procedures described in (c)
above, and occurs transparently to the user program.

(k)

The purpose of these routines is to open and close I/0 channels. An 1/0
channel can be a VDU output, keyboard input, or disk file input or output.
More than 2 channels can be open at any time but only two channels (one for

. input, one for output - see section (k) below) can be in use at one time.

Thus after you have initialised the I/0 channels at the beginning of your
program by saying

INITIO ()

you open the channels you want to use, e.g.

- OPENOUTFILE ("LOGFIL..QUT"); This opens LOGFIL.OUT as an output file.

Note that the input and output channels to the VDU console are automatically
opened by INITIO.

You specify which channels you want to use for input and output by saying:

SWITTIN() % Input currently comes from terminal %

SWITTOUT() % Output currently goes to terminal %

SWFILOUT() % Output currently goes totheopened output file %
At any time during your program you can change your current input or output
channel by calling one of the above routines.

The code given in RRJOB in [2,1] EE476 .RTL will open the user's console for
input and output and set them as the current channels.

The command to open an output channel to the disk file (for the logging task)
is also provided although it is between % signs so will not be compiled unless
these are removed. The reason for this is that for tasks that do not require
disk output you do not wish to open a disk file since it actually enters the
file in your directory and will clutter it with a whole lot of empty files.

It is important to close a disk output file properly by executing
CLOSEQUTFILE()
when you have finished outputting to the disk.

Be careful not to output data in an endless loop to the disk because you will
fill the disk!

Note: Input from files can also be done - consult the demonstrator for further

details.
Stream 1/0
RTL/2 as a language has no equivalent of the FORTRAN READ or WRITE statements.
The user program has to provide procedures to output to the device (via the '

I/0 Driver of the operating system) or input from it. In order to be able

to use the same routines for different devices one writes to the output
channel and reads from the input channel rather than to the particular device.
To write the same thing to different devices you can use the same output
procedure and merely switch channels (using SWTTIN, SWTTOUT, :and

SWFILOUT). .

For this reason Standard Stream I/0 routines for use by RTL/2 programs are
defined. A description of these standard Stream I/0 routines is provided.
Again these form a library which is linked to your program when your task is
being built so you must provide EXT references for any routine you use.

Note: When writing to the output channel, whether text or data, your output
will only actually be sent to the device when the appropriate termination
character is output. Valid termination characters are LF (line feed)
if a'new line is required or ETX(control-C) if you wish to stay on the
same line. Also, the ENQ (enquire) character should be used to terminate
any text that prompts for input from the terminal console.

7.

LF, ETX and ENQ are defined via 'let' definitions_ in [2,1] EE476.RTL.
You cannot include these characters in a character string unless enclosed

between # signs e.g.
TWRT("go to new line next #LF#");

You normally use LF except if you are prompting for input on the same line e.g.
TWRT ("INPUT INTEGER' VALUE #ENQ#")
I: = IREAD();

If ENQ were not included the prompt would not appear on the screen. If you

used LF the value input would be echoed on the line below your prompt.

{(£) Error numbers:

The meaning of the compiler error numbers (as you will see in your .SRC files)
is given in the accompanying table. :

If you make a logical mistake which results in program failure your task will
be terminated and a message output:

'TASK' - nnn

Where TASK is the name of your task and nnn is the error number summarised in
the accompanying table of run~time errors.

({m) Running the programs
~ In order to start your software system you run each task in turn.

For example let TASK1 CONTROL TASK

it

TASK? = OCP TASK
TASK3 = LOGGING TASK
TASK1 requires K, TI ~ (see part (o) below5 to be input and then continues

controlling without further operator contact.
>RUN TASKI/TASK = TASK]1
INPUT K, TI : 1.0,2.0

After you input your values the cursor moves back to the beginning of the
line but does not line feed. The system is now running TASK1. To be able
to cormunicate with MCR you press 'return' again and you get the MCR prompt.
You can then run TASK 3, etc.
To stop a task running, use the ABM command. ABM is a special version of the
operating system ABO command, and must be used when aborting any tasks which
access the data-base.
The format is:

ABM 'taskname'

Note: DO NOT USE 'ABO' TO ABORT MEDIA TASKS. This is because ABO does not
ensure that the task being aborted releases the data-base. and thus
the data-base may "hang".

(n) Printout required

Your logging task must give for every sampling interval (= 1 sec) the
information about the column, i.e. time, setpoint, power, temperature. You
must also show the effect of changing the setpoint. About 3 minutes of
printout is sufficient.

The printout is contained in LOGFIL.OUT. Check it on your screen using PIP
before actually printing it.

(o)

(p)

(q)

Control interval and algorithm

The sampling interval is one second.

For the purposes of this project use a PI control algorithm given by

POWER = K*{ en +Z$tc (7en <+ Iqen-l 'gen-z"f'e"’)} ;

2l

where n is the error at the present sampling interval (given by'temperature
minus setpoint) and n-j is the error at the sampling interval j previously.

[Xtc is the control interval which is taken as 1.0 seconds for the pruposes
of the marked report.

Note: 1. The heater element is capable of delivering up to 1000 Watts. Thus

POWER must be limited so that it is positive and does not exceed
1000 Watts.

2. 1t is a good idea to limit the contribution of the integral term in
the above algorithm to the range - 1000 to + 1000 Watts, so that it
does not grow excessively. '

The value to write to the analogue DAC output to produce a heating power of
POWER ‘watts (where 0.0 < POWER < 1000.0) can be determined from the following

(1) Power produced is linearly related to digital value written to the
DAC (i.e. the analogue output).

(2) Digital 00 Hproduces 0 Watts
(3) Digital FF H produces 1000 Watts

The value ADCVAL read in via the analogue input analog-to-digital converter
is however not linearly related to the actual temperature. This is because -
the thermistor used has a non-linear calibration curve.

The temperature can be calculated using the following relation:

temperature in degrees Centigrade = q3X3+02X2 +OX+ Ao

where X = T'F-(ADCVAL)
a;= 1.1636 £-5
a;=~2,849y €-3
ar= 0.5916 |
ag= 17.367

The task MEDRMD

Typing RUN MEDRMD causes a display of the activity of the data-base to the
screen. The information displayed includes which user is attached to which
output, when last the data-base was updated and which task has currently
secured the data-base.

~ APPENDIX L’

ERROR NUMBERS

Error numbers for all the software modules~are 1isted below.

A preflx of 'U' 1ndlcates an unrecoverable error (a call to RRGEL)"

and a preflx of 'R' indicates a recoverable error (a call to ERP);l

R715

" 'R716

"R717
R709

RSOl
R502
~ R503

Errors reported by MEDUSER

- Errors reported by‘MEDLNK

ey

User attempted to write to a part of MEDCOM (an output) ‘to -
~ which he was not attached. S)
_ADSWITCH or IOSWITCH parameter was not 8 or l.
| Channel number requested does not exist.

_Med1a 1nput/output is out of scan.

BCC error in frame received from Media.

- Alignment error in frame-received from Media , v
Media code in reply frame from Media does not correspond

tto the command code sent to Med1a. T)

vl R

"~ 'R611

' R605

ERROR NUMBERS ~ -~ .~ . oo o 0 pagE L-3

L.4 Errors reported by PLOTLIB
. U6@9 : XMIN > XMAX or YMIN > YMAX in call to SCALE.
"R610 :,_Error in reading the positlon of the crosshalrs. :
: ‘Attempt’ to MOVE or DRAW toa p01nt off the edge of the"
" 'screen. S ‘
L.5S ‘Errorsvfepdrted'by AST
ihh06671: ASTX$S d1rect1ve fallure. S
. U608 : Other dlrectlve failures. S P
L.6 _Errers reported by GSECREL ;;:
~R215 : 'Duting'facility”release,Jstate of event flag not
L : con31stent with facility having been secured.
Ul4 - : Illegal event flag number (not in range 33..56)
. Uis . Attempt to release a fac111ty which was not securede-
'Ul6 : Attempt to secure a facillty that the task has already
o "secured.. o BRI R
" L.7 ‘Errers reported by ODT .
ﬁ-R664 : Unexpected ehd—of-file while readlng SMT. TSK from dlsk

: Failure to: open, close or read from the flles SMT. TSK or ;
’ SMTLOAD ABS. : ' ‘

APPENDIX M

.MEDIA SYSTEM STARTUP 'PROCEDUR_E

This appendix describes the procedure to be followed when the

Media system is started up.

M.1 starting up the GEC Media system"

1. Plug the serial lead from the terminal into its socket on

the serial line interface unit andASignAon to the PDP.
2. Plug the Micro-Media serial line into its socket on the
interface unit. This line will have been set up at
75Ystem startup to slave, no-echo, read-pass—all and 9600
baud. o ‘
3. Power up the Media bins.

4. Run the Media update task MEDUPDAT .

5. Run MEDRMD to check that all is well.

MEDIA SYSTEM STARTUP PROCEDURE s o ~ .PAGE M-2

Starting up the LSI-11 Media systemi

8.

9.

10.

.Power up theHLSI and the Media bins.

Plug the serial lead from the terminal into its socket on
the serial interface unit and sign on to the PDP.

~ Plug the LSI-11 console line lead into its socket on the

interface unit. This line will have been set up at
syStem startup to slave, no-echo, read-pass-all and 9600
paud. ' - ’

Restart the LSI by raising the 'reset' switch while the
'halt’ switch is in the up position. Then drop the

'halt' switch and raise it again.

Run the ODT program from the terminal.

type 'F'<CR> to flush the buffer. and then type a few

ODT commands to check that communications between the

terminal, PDP and LSI are functional.

USe the ‘L' command to load and run .the SMT Micro-Media
replacement program. - (See the description of the ODT

program in chapter 3).

_Exit ODT by typing control-Z.

Run the Media update task MEDUPDAT. . The entire system
should now be functional and ready for user applications

programs to run.

Run MEDRMD to check that all is well.

APPENDIX N

SOFTWARE LISTINGS: HOST SYSTEM

!
Ay

Listings of all the software modules which run on the PDP-11/23
host system are given here. Pages of the listing have a circled
page number at the top right-hand side of the page. As an..
example, the 3rd page of the 2nd program in this appendix is
numbered "N-2-37.

The following are the programs listed in this appendix (given in
roughly the same order as their discussion in the main text): |,

Page N-1-1: The ODT program. :

Page N-2-1: The SMTLOAD bootstrap loader.A

Page N-3-1: The MEDCOM data-base.

Page N-4-1: The Media update task. '

Page N-5-1: The serial 1link control software LINKLB.

Page N-6-~1: The MEDLNK interface between Media and MEDCOM.
Page N-7-1: The secure/release module GSECREL.

Page N-8-1: The MCOMINIT program to initialise secure/release.
Page N-9-1: The ATTACH task.

Page N-10-1: The MEDUSER user interface 11brary.

Page N-11-1: The ABM and ABOM aborting tasks.

Page N-12-1: The MEDRMD display.

Page N-13-1: The UNHANG task to "unhang®" MEDCOM.

Page N-14-1: The MEDFRAME diagnostic. : S

Page N-15-1: The MEDTEST diagnostic.

Page N-16~1: The MEDLNKTST diagnostic.

- Page N-17-1: The MUTEST diagnostic.

Page N-18-1: The analogue simulation package.

Page N-19-1: The PLOTLIB plotting interface 11brary.
Page N-2¢-1: The STAR demonstration program for PLOTLIB.
Page N-21-1: The screen cursor positioning routines.
Page N-22-1: The AST asynchronous character input routines.
Page N-23-1: The air-column simulation program.

Page N-24-1: RSXBA2 as modified.

4

OPTION (1) CM;
TITLE ODT;
4 v | | - | v
X THIS ROUTINE IS USED TO COMMUNICATE WITH THE LSI 1123 ODT %
X AND DOUNLOAD THE SMT.TSK HEDIA ENULATION SOFTUARE INTG THE LSI. Z
%
LET LF = OCT 012; % LINE FEED CHARACTER %
LET CR = OCT D15; % CARIAGE RETURN CHARACTER %
LET ETX = OCT 003; v
LET EN@ = OCT DD05; o
LET EOS = OCT 200; X END OF STREAM CHARACTER %
LET BEL= OCT 007; % BELL CHARACTER | B
LET EOM = OCT 200; % END OF FILE CHARACTER X
LET SP = OCT 040; X SPACE CHARACTER %
LET DOL = HEX 24; % DOLLAR CHARACTER 2
LET RNE = OCT 1020; % CODE FOR READ NO ECHO %
LET RAL = OCT 1010; % CODE FOR READ ALL %
LET TMO = OCT 200; X CODE FOR TIMEOUT %
LET WRTCODE = OCT 410; X WRITE WITH WAL %
LET KILCODE = OCT 0012; ¥ KILL ALL I1/0 '
LET DETCODE = OCT 2000; % DETACH DEVICE %
LET ~ ATTCODE = OCT 1400: X ATTACH %
LET SERIALWRITELUN - = 5; % LU OF SERIAL WRITE %
LET SERIALREADLUN = &3 % LU OF SERIAL LINE X
LET INFILELUN = 3; % UNIT NUMBER OF INPUT FILES %
LET YES = 1
LET NO = 0
% 1 HAVE COINED THE FOLLOWING NAMES FOR SOME OF THE STATES OF ¥
% THE ODT. SEE PROCESS50R HANDBOOK P 80. NUMBERS CHOSEN FOR ¥
% THE STATES/MODES ARE ARBITRARY. %
LET START = 1 X START STATE OF 11/23°S ODT X
LET MEMORY = 2; % MEMORY STATE | 2
LET REGSTR = 3; X REGISTER STATE
LET PSU = . 43 X PSW STATE 4
2 MODE DEFINITIONS. %
z H Tt z
MODE IOSTAT(BYTE IOSTLOW, Z 10STATUS LOW BYTE %
I10STHIGH,, - % 10STAT HIGH BYTE X
INT IOSTVAL); X 10STAT VALUE '
% EXTERNAL PROCEDURE DEFINITIONS. %
z N E o ST mCo oSS RSz z .
% THE FOLLOWING ARE STANDARD STREAM I1/0 PROCEDURES - REFER %
2 TO THE STREAM 1/0 MANUAL X
EXT PROC ()TTIO;
EXT PROC(REF ARRAY BYTE) TWRT;
EXT PROC (REF ARRAY BYTE,REF ARRAY BYTE)INT TREAD:
EXT PROC () INT IREAD, OREAD;
EXT PROC (INT,INT,INT) MARKTIME;
EXT PROC (INT) IMRT ,OWRT;
EXT PROC (INT) CANMARK, RESET;
EXT PROC (INT)RRGEL;
EXT PROC (INT,REF ARRAY BYTE)ASSIGN;
EXT PROC () RRNUL; | ~
EXT PROC C(INT, X 1/0 FUNCTION CODE %

CINT, LUN OF DEVICE

% SR A
INT, % EVENT FLAG NUMBER % .-
INT ' &% PRIORITY . A
REF’ 105TAT, _ : X 170 STATUS BLOCK .
. PROGCO), - Z ‘AST SERVICE ROUTINE = 2
REF ARRAY INT) RSXQIU RSXQIO' Z DEVICE DEPENDENT)4
. | % PARAMETERS . '
4 LOCAL DATA BRICK DEFINITIONS. 4
¥ ==szzzxs=ssszssEsSsEIscEEI=sc y

.~ DATA LOCAL; / o o
"REF ARRAY BYTE TERMB:=*#CR,LF, EOS#"‘Z TERMINATING CHARACTERSZ
% FOR INPUT - g

- INT STATE 1= START; 1‘ L '.', % STATE OF 11/23 ODT % .
- INT TIMEOUT := YES; ' - .. % TIMEOUT ON SERIAL READXZ
-, INT ACCEPT :=YES ; © % FLAG FOR COMMAND OK 4
INT - NIN := 05 % NUMBER OF CHARACTERS %
‘ - A - X EXPECTED FOR READ . 4
o INT RECEND FILEND = 05 % FLAGS FOR END OF . - . 2 =~ -
SR - - : . % RECORD AND FILE, = X =
INT NCHARS'-U . % NUMBER OF CHARACTERS X _
INT - NREAD:=0; . . ~ % NO OF CHARS READ RY 4 P
o o Z SERIALR(). % -
- BYTE BCC; - , - % BLOCK CHECK CHAR Z , ,
- I0S5TAT STATUS; , % 10 STATUS BLOCK . Z- -
" ARRAY- (7} BYTE IBLK; - .~ % USED BY LOADLOADER() TO HOLD % .
~REF ARRAY BYTE BUFP := I0BUF; - "% POINTER TO IOBUF Z o
ARRAY (6) INT DEVPARM := (0, O D 0 0 ,0); % DEVICE DEPENDENT .~ . ' X
REF ARRAY INT PP := DEVPARM . R PARAHETERS : . Q‘ z

| ENDDATA' , | e | .

g - MAIN PROCEDURE = RRJOB. . = IR D A
¥ ====zszss=s=z=ss=ssssssszsx 0 L 0 T e T A
ENT PROC RRJOB()

| . ASSIGN(1,"TI+"); | T |

.~ ASS516N(2, “TI'") : D o ' S B
..INITIALISEIO()' . T L . % INITIALIZE STREAM 1/0 %
© o ISUTTINO - , -~ o - R
BWTTOUTO) 5 o) L . |
ASSIGN(INFILELUN, "SY'")'r . X LUN 3 IS THE LUN FOR FILE IN X -

‘ ASSIGN(SERIALREADLUN “TTID ")
"IASSIGN(SERIALURITELUN "TT10:") 5

- TURT("#CR LF#LSI 11 CONSOLE EMULATOR VER 3.1 5/4/83#CR LF#")-"”"
STATE := START"" % INITIALISE STATE. % o |
2 INITIALIZE THE BUFFERS AND CONTROL FOR SERIAL 0 % S
. FOR I::1 TO & DO DEVPARM(I):=0; REP; e
. RSXQIW(ATTCODE,SERIALREADLUN,1,0,STATUS, RRNUL pp)-'
TWRT ("STATUS AFTER ATTACH #CR,LF$");
CTURT("LOUBYTE /"); IMRT (STATUS. IOSTLON)' TNRT("#LF#")'

"% LOOP TO READ FROM TERMINAL WRITE TO LSI 1103 READ 2’.:
. % THE ANSNER AND DISPLAY IT ON THE TERNINAL B S

RSXGIW(KILCODE ,SERIALREADLUN,1,0, STATUS RRNUL, PP)

FOR I:=1 TO 6 DO DEVPARM(I) -D REP* . | '

~ ELSE
NREAD := STATUS.IOSTVAL; _
CANMARK (1) ; 4 CANCEL MARKTIHE REQUEST 4
END; ’

IF STAT < D THEN TWRT("READ ERROR: STATUS *);
IWRT(STAT); TWRT("BCR,LF&"):
| END; | |
ELSE | o | .
| NREAD:=0; % NO CHARS READ X
END; ' |

ENDPROC;
PROC GETNREAD () INT; o o
"X FINDS OUT, IN CASES OF TIMEOUT ON INPUT, HOW MANY CHARS WERE
% RECEIVED BEFORE TIMEOUT. DOES THIS IN A CRUDE WAY: WORKS OUT HOW
% MANY CHARS IN IO0BUF BEFORE FIRST OCCURRENCE OF A NULL, WHICH IT IS
X ASSUMED THE LSI WILL NEVER SEND WHILE IN CONSOLE ODT MODE
FOR I:=1 TO 80 DO
IF IOBUF(1)=0 THEN
RETURN(I);
END;
REP; - . | | | o
RETURN(80); % MORE THAN 80 CHARS IN BUFFER; SHOULD NEVER OCCUR
ENDPROC; . » -

MW IR

PROC SERIALW ()
CINT J,STAT;
"IF NCHARS > O THEN
FOR J:=1 TO & DO DEVPARM(J):=0; REP;
'DEVPARM(1) := BUFSET (I0BUF);
DEVPARM(2) := NCHARS;
RSX@IW (WRTCODE, SERIALNRITELUN 1,0,5TATUS, RRNUL , PP);
STAT:=CHECKST () ;
IF STAT<O THEN
" TWRT("WRITE ERROR: DIRECTIVE STATUS *);
© IMRT(STAT) ;TWRT ("HLF#") ;
| END;
END;
ENDPROC;

PROC CHECKST () INT;. _
2 THIS PROCEDURE CHECKS THE 10 STATUS. %

% IT RETURNS THE STATUS VALUE
£ -VE RETURNED VALUE MEANS A FAILURE = %

»

INT STTUS;

STTUS := (INT(STATUS. I0STLOW) SLL 8) SRA 8; -
RETURN (STTUS); :
ENDPROC;

PROC SCANQ); |
% THIS ROUTINE SCANS THE INPUT COMMAND FOR A VALID

X COMMAND CODE SYNTAX. THE ACCEPT FLAG IS SET TO YES
Z IF THE COMMAND IS VALID ELSE IT IS SET 70 1.

MR

IF I0BUF(1) = "F' THEN
FLUSHO) 3 |
ELSEIF IDBUF(1) = 'H’ THEN
HELP () ;
ELSEIF STATE = START THEN
IF I0BUF(1) = DOL OR IOBUF (1)
DOLLAR () ; v
ELSEIF 10BUF (NCHARS)
SLASH() 5 -
ELSEIF I10BUF (NCHARS)
GO(); ~
ELSEIF IOBUF(NCHARS) ‘P THEN
PROCED(}; - =
ELSEIF I0BUF(1) = °L° THEN
| LOAD () ;

‘R’ THEN,'

1

/7’ THEN
‘G° THEN

ELSE -
ACCEPT:= NO;
END; |

ELSE - | | z STATE IS REGSTR, MEHORY OR PSW %

IF IOBUF(NCHARS) = ‘¢’ THEN
CRETURN() ; ‘
ELSEIF I0BUF (NCHARS) = ‘N’ THEN
LFPROC() ; : -
ELSE .. .
ACCEPT := NO;
END; :
END;
NIN = NIN + NCHARS;
ENDPROC;

PROC DOLLAR () ;

¥ THIS ROUTINE IS USED FOR THE INTERNAL REGISTER ‘OPEN 4

% COMMAND

IF NCHARS # 3 THEN
ACCEPT:= NO; _
- ELSE :
IF IOBUF (3} # °*/° THEN
- ACCEPT := NO;
ELSE , ’ ' o -
IF I0BUF(2) < 'O° OR IOBUF(2) > “7° THEN

IF IOBUF(2) = "S§° THEN % WANTING TO OPEN PSN y S

ACCEPT :=YES;
NIN = 73 ,
TIMEOUT := YES;
STATE := PSW;

ELSE
ACCEPT := NO; ;
- END; ' : : '
ELSE > o o Z WANTING TO OPEN
ACCEPT := YES;
NIN I
TIMEOUT := YES;
STATE = REGSTR;
END; ' '
END;
END;

ENDPROC;,

REGISTER X

~ PROC SLASH();

- % THIS ROUTINE CHECKS THE OPEN HEHORY COMMAND r

IF NCHARS >= 2 AND NCHARS <= 7 THEN .

ACCEPT := YES;

FOR I:= 1 TO NCHARS - 1 DO |
IF T0BUF(I) < "0 OR IOBUF(I) > '7° THEN.
. ACCEPT z= NO; - -

END;
: REP;
ELSE
ACCEPT:= NO;
"END; :

NIN = 7; - .
TIMEOUT := YES;

END;
ENDPROC;

PROC FLUSHOQO) ;

IF ACCEPT = YES THEN

STATE := MEMORY;

% THIS ROUTINE IS USED TO FLUSH THE INPUT BUFFER % .

- IF NCHARS = 1 THEN

NCHARS5:=0;

“ NIN := BD

ACCEPT := YES;
TIMEOUT := YES;
STATE = S5TART;
ELSE - ’
ACCEPT := NO;
END; :
" ENDPROC;

~ PROC HELP(O);

X THIS ROUTINE OUTPUTS TO TI: A”DESCRIPTIONIOF HOW TO USE"~ X

% THE PROGRAM.

' % DOES NOT CHANGE °STATE'. R

b4

_IF NCHARS=1 OR IOBUF(2)="E" AND IOBUF(3) ‘L* AND IOBUF(4)="P° THEN

- TWRT("#LF(6) #THIS PROGRAM TAKES ODT COMMANDS AND SENDS THEM DOWN THE
TWRT ("#LF#SERIAL LINE TO THE LS5I-11 CONNECTED TO THE SERIAL LINE.");

- TWRT("#LF#IN ADDITION, IT CAN LOAD A BINARY LOADER PROGRAM");
TWRT("#LF#SMTLOAD.ABS WHICH CAN THEN DOWNLOAD THE FILE SMT.TSK.");
TNRT(”#LF#THE,COHHANDS ARE THE SAME AS ODT COMMANDS EXCEPT THAT YOU"
TURT ("#LF#MUST USE "N° (NEXT) INSTEAD OF LINE FEED AND °“C° INSTEAD O-
TWRT ("#LF#CARRIAGE RETURN.#LF#");

TWRT ("BLFHENON-ODT COMMANDS ARE #LF#“)'

TWRT("HBLFR'F" ¢
TWRT("HLFE L" =

FLUSH THE INPUT BUFFER (10 SECOND TIMEOUT). ");
LOAD : PROMPTS THE USER WITH QUESTIONS RE DONNLOADIN—

TWRT ("$LFBCONTROL-Z : EXIT TO MCR.");
TWRT("#LF#'H" OR "HELP® : PRINTS THIS TEXT #LF#")'

NCHARS:=0;
NIN:=0;
ACCEPT:=YES;
TIMEOQUT:=YES;
‘ELSE '
: ACCEPT:=NO;
END; '

Z THIS LINE REDUNDANT,BUT 50 NHAT, : X

ENDPROC;
PROC CRETURN();
X THIS ROUTINE DEALS WITH THE <CR> COMMAND

TOBUF (NCHARS) := CR;
IF NCHARS = 1 THEN
ACCERPT := YES;
ELSEIF NCHARS <= 7 THEN _ ‘
ACCEPT := YES; o RN
FOR I:= 1 TO NCHARS -1 DO _ _
IF IOBUF(I) < 'D° OR IOBUF(I) > 7' THEN
ACCEPT = NO; .
. END;
REP;
- ELSE -
' ACCEPT := NO;
END;
IF - ACCEPT = YES THEN
- I0BUF (NCHARS) := CR;
NIN = 3;
- TIMEOUT:= YES;
: STATE := GTART,
END;
ENDPROC;

PROC LFPROC(); |
% CLOSE LOCATION AND OPEN NEXT LOWER ONE

IF NCHARS = 1 THEN
ACCEPT ::=YES;
ELSEIF NCHARS <= 7 THEN
ACCEPT := YES;
FOR I:= 1 T0 NCHARS ~1 D0

IF IOBUF(I) < 0" OR IOBUF(I} > 7"THEN

, ACCEPT := NO'
END;
. "REP;
ELSE
' ACCEPRT := NO;
END; -
IF ACCEPT = YES THEN
TIMEOUT := YES;
T0BUF (NCHARS) := LF;
FF STATE = MEMORY THEN

NIN := 15;
ELSEIF STATE = REGSTR THEN
- NIN 1= 113 | |
ELSE % STATE IS PSW %
NIN := 23 |
~ STATE := START;
- END; v
END;
ENDPROC;
PROC GOO) ;

% 60 FRONM BIVEN POINT 4

-

ELSEIF NCHARS <= 7 THEN
| ACCEPT := YES;
FOR I:= 1 TO NCHARS - 1 DO
IF T0BUF (1) < '0° OR TOBUF (1) > ‘7" THEN
ACCEPT := NO; -

IF NCHARS = 1 THEN | .
 ACCEPT := YES; P - o

END;
} REP;
- ELSE '
ACCEPT := NG;
" END; ‘ '
IF ACCEPT = YES THEN
- NIN = 11; v v o
TIMEOUT := NO; # NO TIMECUT ON INPUT -
STATE := S5TART,; o , :
. END;
ENDPROC;

PROC PROCED();

% PROCEED %

IF NCHARS # 1 THEN . S T
ACCEPT := NO; - -

ELSE .
ACCEPT:= YES; ‘
NIN = 113 S o . ' R
TIMEQUT := NO; ~ - .% NO TIMEOUT ON INPUT)4
STATE := START; a
END; -
ENDPROC;

PROC LOADC();

% THIS PROC PERFORMS THE LOAD INSTRUCTION %
IF NCHARS = 1 THEN -
TTWRT ("HLFSDOMN LOAD THE ABSOLUTE LOADER? Y/N H#ENGE");
NIN := TREAD(IOBUF,TERMB); TWRT("SLF$"); z
IF I0BUF(1) = °Y’ OR IOBUF(1)="y’ THEN
LOADLOADER () ;
END; -

TWURT ("#LF ,LFSENSURE HALT SWITCH ON LSI IS UP BEFORE LOADING.");
TWRT("#CR,LF8LOAD SMT ? Y/N BENQH"); :
NIN := TREAD(IOBUF,TERMB); TWRT("S#LF8"); -
IF IOBUF(1) = “Y" OR IOBUF(1)="y’ THEN

LOADSMT () ;
END;

- TWRT("BLFBSTART SHT RUNNING ? Y/N BENGH") ;
TREAD(IO0BUF, TERMB) TWRT("BLFE");
IF - I0BUF (1) = °Y° 0R I0OBUF (1)="y" THEN o
NCHARS := 2; : 2 2 CHARS IN °06° X

NIN :=2; % EXPECT '06° IN REPLY %
I0BUF (1) :="0" ; I0BUF (2) :2°B"; v
SERTALWO) ;

SERIALR () ;

"FOR I:=1 TO NREAD DO

" REP;
END;
NCHARS := O;
NIN := D; ‘ ' : - ' '
TIMEOUT := YES; Z THIS LINE IS NOT NEEDED 4
: ACCEPT := YES; -
ELSE
ACCEPT := NO;
END; '
ENDPROC;

PROC LOADLOADER() ;

% THIS PROC LOADS THE ABSOLUTE LOADER. THE LOADER 15 IN
~ % THE ASCIT FILE WITH UNIT NUMBER INLD. E :

INT NRD:=D;
INT SKIP:=7;
INT K:=0;

BYTE INB := 0; ‘
OPENINFILE("SMTLOAD.ABS") ;

PROCESS ("157000/",7); % OPEN THE FIRST LOCATION
SWFILING) ; o % OPEN THE ABSOLUTE LOADER
S % INPUT STREAM a
WHILE INB # EOS DO S
INB := INCQ); % GET NEXT BYTE
IF INB = LF THEN SKIP := 7; END;
IF SKIP > 0 THEN
SKIP := SKIP -1;

N e NN

- ELSE :
IF INB # SP THEN:
K = K+ 13
IBLK(K) := INB;
-IF K =6 THEN

K °z

IBLK(7) := ‘N3

PROCESS(IBLK,7);

END; ' -
END;
END;
REP; -
SWTTINCQ); S S
PROCﬁSS("C" 15 Z GET BACK INTO START STATE %
CLOSEINPUTFILE() - ' o
ENDPROC;

PROC PROCESS (REF ARRAY BYTE INP, INT NCH);

Z THIS ROUTINE PROCESSES ONE ODT COMMAND. THE COMMAND X
% IS GIVEN IN THE IOBUF ARRAY AND IT HAS NCHARS CHARACTERSXZ

NCHARS := NCH;
FOR I:= 1 TO NCHARS DO IOBUF(I) := INP(I); REP;

SCAN(Q) ;
IF ACCEPT = YES THEN

OUT(IOBUF(I)); % SEND REPLY TO TI: %

CSERIALMO G T
SERIALR () ; - R o
CFOR 1:=1 TO NREAD DO © © = o s
| OUT (10BUF (1)) ; % SEND REPLY TO TI: % - . .-
: REP; L | N~ ST
END;
_ENDPROC; B
~ PROC LOADSMT()"

% THIS PROC LOADS THE SHMT OPERATING SYSTEM DOUWN THE 4

.~ % SERIAL LINE IN ABSOLUTE LOADER FORMAT. THAT IS5 - z
. % THE FIRST TWD BYTES ARE THE NUMBER OF BYTES TO FOLLOW X
. % THE REST ARE DATA BYTES THAT ARE LOADED INTO THE Z
)4 LSI 1103 IN SUCCESSIVE BYTES STARTING AT ZERO . ')4

"{INT FILELEN, NBYTES NREMAINDER, LSB: =0, MSB: 0 NBLKS 3, dzg o
INT BLKCNT; '
CINT ABORT; o

"5;OPEN8LKINF1LE("SMT TSK“)
- READBLK () 3

CxMax ADDRESS IS IN BYTES 11 & 12 OF FIRST RECORD OF *.TSK = % e
* % FILES. I FOUND THIS OUT BY DUMPING A COUPLE OF ».TSK FILESX

| LSB'*IOBUF(11)' f',- R LS BYTE OF MAX ADDRESS. -~ %

- MSB:=10BUF(12); - B % MS BYTE : . b =
o FILELEN := LSB + (MSB SLL 8) + 1; % LENGTH OF FILE = MAX ADDR + 1 %~ .
NBLKS -:= FILELEN SRL 9; % 512 tI.E. 2**9) BYTES_PER BLOCK 2.. B

NREMAINDER'“ FILELEN MOD 5123 _ A _
IF NREMAINDER#0 THEN - T
"~ NBLKS:=NBLKS + 1; . R SEND DATA IN CONPLETE BLOCKS ONLY B 4
- END; ' -
NBY%ES:=~NBLKS SLL 95 . Z NO OF CODE BYTES 70 XFER (2%%9 BYTES/BLOCKf

“TWRT ("SLFSFILE LENGTH IN BYTES (0CTAL) :."); OWRT(FILELEN) ;
© o TWRT("SLF#"); .)
*TWRT("NO OF 512-BYTE BLOCKS TO TRANSFER (OCTAL) 'z "); OWRT(NBLKS);
* TURT("#LF#TOTAL NO OF BYTES TO BE SENT : "); ONRT(NBYTES+2)"-TURT("#LF#"

x PUT 340 INTO PSW TO DISABLE ALL INTERRUPTS %

* PUT START ADDRESS (157000) INTO PC. %

. PROCESS("R7/",3); T
~ PROCESS("157000C",7) ;

- PROCESS("RS/",3); . R S
© PROCESS(*340C™,4)5 T

NCHARS := 1; - % 1 CHAR IN 'P* S 2
% OUTPUT "P* TO RUN THE LOADER ~ . % . -
- I0BUF(1)z=P'; o
' SERIALW(); % COMMAND TO LSI TO RUN THE LOADER = %
NIN:z=1; |
 TIMEOUT:=YES;
. SERIALR(); | | |
 FOR I:=1 TO NREAD DO~ S S
- OUTUIOBUF(I)); X OUTPUT THE REPLY TO TI: . %
_ REP; | S

" % THE FIRST 2 BYTES SENT TO THE LSI BIVE. THE LENBTH OF THE FILE 0 %
X FOLLOW. o | T S o X

BCC:=0; ' ') - ' ‘
FORI::1T0512D0.‘ | - '_
BCC:= BYTECINT(BCC) + INT(IOBUF(I))) - —

REP;

' ENDPROC'
PROC BUFSET (REF ARRAY BYTE BUFFER) INT;
% THIS PROC TAKES AS INPUT A REF ARRAY BYTE AND GIVES AS OUTPUT AN INT %

% EQUAL TO THE ADDRESS OF THE FIRST BYTE OF THE ARRAY POINTED TO BY z
% BUFFER. S I | z
INT TEMP; | | |
CODE 10,0 : -
MoV *BUFFER (%5) , *TEMP (X5) | . ' S
| INC *TENP (X5) "~ ;SINCE 15T BYTE 15 LENGTH OF ARRAY
*RTL; A < = e |
- RETURN(TENP)
ENDPROC; |
¥ SVC DATA BRICK DEFINITIONS. =~ - 2
y 4 ::::::::::::::;:::::::::::: ., B ‘ o 2 4
X SVC_DATA BRICKS ARE PART OF THE INTERFACE TO THE OPERATING %
% SYSTEM - o | | %
SVC DATA RRSIO; | EER o S
PROCOBYTE IN; % STREAM 1/0 INPUT PROCEDURE %
PROC (BYTE) OUT; % STREAM 1/0 OUTPUT PROCEDURE . %
ENDDATA; - ke PR |

SVC DATA RRSED'
BYTE TERWCH,

10FLAG;

ENDDATA; -

SVC DATA RRERR;
LABEL ERL; |
INT ERN; - o ~ | |
| PROC(INT) ERP; % THIS IS THE ERROR EXIT PROCEDURE RRGEL %
ENDDATA; | o

5VC DATA RRERRX; = - % THIS IS5 FOR DIAGNOSTIC INFO %
INT LINENO; .
BYTE UEFLAG,ERRLUN; : - | - | -
| INT RSXDSW; © . % DSW RESULT FROM EXECUTIVE DIRECTIVES %
ENDDATA; | S - « TR | VRS

% FILE 1/0 SECTION %

'NODE FNBLK(INT DEVDEVN,REF BYTE DEVT, INT DIRN yREF BYTE DIRT,
- INT NAMN,REF BYTE NAMT) ;
10DE IOCL(REF ARRAY BYTE BFR INT N,DV,PTR,MD,TRM) ;

EXT PROC(REF FNBLK,INT,INT,INT)INT FOPENB;
EXT PROC(REF INT, INT INT INT)INT GETBLK;
EXT PROC(REF ARRAY INT) FINIT

EXT PROC(REF ARRAY BYTE,REF FNBLK)FNAME'
EXT PROCCINT) INT- FCLOSE'

EXT PROC (REF FNBLK,INT,INT)INT FSTRTIN;
EXT PROC(BYTE) TTOUT,GPOUT;
EXT PROC()BYTE TTIN,GPIN, INF;

‘EXT DATA FILEO1; REF ARRAY INT FDBTBL; ENDDATA;
'SVC DATA RRCHAN; REF 10CL INCL,OUTCL;ENDDATA;

DATA FILEIOLOCAL;

FNBLK FILENAM:=(0,DUMMY,0,DUMMY,0,DUMMY) ;
BYTE DUMMY;

IGCL TTINCL :=(TTINBUF,0,1,0,0,0);

16CL TTOUTCL:=(TTOUTBUF,D,2,1,0,0);
10CL INFILECL:=(INFBUF,0,0,0,0,0);

ARRAY (132)BYTE INFBUF:=(’ ’(132));

ARRAY (132)BYTE TTINBUF:=(0(132));
ARRAY (132)BYTE TTOUTBUF:=(LF,* *(131));
ARRAY (512) BYTE 10BUF; »

INT DUMINT;

REF INT BUFADR'-DUMINT' % WILL LATER POINT TO I0BUF %

ENDDATA;

PROC INITIALISEIO();
REF ARRAY BYTE IOBUFPTR"IOBUF
FINIT(FDBTBL);

Z GET ADDRESS OF START OF IOBUF INTO THE REF INT BUFADR Z

- CODE 10,0;
Mov : *IOBUFPTR(S) *BUFADR/FILEIOLOCAL
: - INC *BUFADR/FILEIOLOCAL
#RTL; ‘
ENDPROC;

" PROC SMWTTIN();
~ INCL:=TTINCL;
IN:=GPIN;
ENDPROC;

PROC SWTTOUT ()
OUTCL:=TTOUTCL;
OUT:=GPOUT;

ENDPROC;

PROC OPENINFILE (REF ARRAY BYTE FILETEXT);
FNAME (FILETEXT ,FILENAM) 5 v
SWFILINC);
IF FSTRTIN(FILENAM,1, INFILELUN) 80 THEN
~ RRBEL (605) ;
END;

ENDPROC;

PROC CLOSEINPUTFILE()'
- IF FCLOSE(1)#0 THEN RRGEL(605); END’
ENDPROC;

- PROC SWFILINC);
INCL.=INFILECL'

- IN:=INF; :

ENDPROC;

PROC OPENBLKINFILE(REF ARRAY BYTE FILETEXT)'
FNAME (FILETEXT, FILENAHM) ;

IF FOPENB(FILENAM 1 INFILELUN 0)#0 THEN RRGEL(6US) END'

;POINT TO START

TITLE MEDFRAME; o

X DIAGNOSTIC TO BUILD UP ,SEND AND RECEIVE MEDIA DATA-LINK 4

X PROTOCOL FRAMES. IT CALLS THE LINKLB ROUTINE °MESSANS® TO X
X WRITE THE FRAME OUT AND RECEIVE THE REPLY FROM MEDIA. X
LET LF = 0CT 012;
LET ENG = 0CT 0D5;
LET ETX = 0CT 003;

EXT PROC(REF ARRAY BYTE)TWRT;
EXT PROC()INT IREAD,OREAD;
EXT PROC(CINT) IWRT,OWRT;

EXT PROC(REF ARRAY BYTE,INT,REF ARRAY BYTE,INT)MESSANS;
EXT PROC() TTIO;

DATA LOCAL;

. ARRAY (80) BYTE OUTBUF;
ARRAY (80) BYTE INBUF;
INT NOUT;

INT NIN;

INT ADDR;

INT SAVEADDR;

INT NITEMS;

INT DAT;

"INT GOFLAG :=0;

INT Nj

INT COMMAND;
ENDDATA;

ENT PROC RRJOB();
TTI00);

‘START:
TWRT("#LF# MEDFRAME (LINKLB tester) (Media protocol tester) BLF,LF#");
TWRT ("1, SINGLE MEDIA READ#LF#"); .
TWRT ("2, SINGLE LIST READSLF#");
TWRT ("3, BLOCK MEDIA READHLF#");
TWRT (" 4. BLOCK LIST READH®LF#");
TWRT ("5, DIGITAL CHANGE WORDSH#LF#");
TWRT ("4. MEDIA STATUS WORDHLFH");
TWRT ("7. WRITE TO MEDIABLF#");
TWRT("8. WRITE TO LISTHLF#");
TWRT ("9, GO#LF ,LF#");
TWRT("10. SYNCHRONISERLF#");
TWRT ("=>8ENGS") ;

N := IREAD();

IF N=1 OR N=2 THEN X SINGLE READ 2
: COMMAND := Nj
NOUT := 4;
NIN := 6
ADDRESS (
QUTBUF (1) := (BIN 01000000} LOR (BYTE(COMMAND))
ELSEIF N=3 OR N=4 THEN X BLOCK READ) 4
COMMAND := Nj
NOUT := 5;
TWRT ("BLFH#NO OF ITEMSHENQ#E"),
NITEMS := IREAD();
OUTBUF (4) := BYTE(NITEMS);
NIN = 3#(NITEMS + 1};

)
)
)
R

ADDRESS () ; -
OUTBUF (1) := (BIN D1000000) LOR (BYTE (COMMAND)); @
ELSEIF N=5 THEN XDIG CH WORDS X%

NOUT :=4;
OUTBUF (1) := BIN 01000111, _ _
OUTBUF(2) := O; -
OUTBUF (3) := O;
NIN :=9;
ELSEIF N=6 THEN X READ STATUS WORD - 4
OUTBUF (1) := BIN 01001000;
OUTBUF(2) := O;
OUTBUF(3) := 0O;
NOUT :=4;
NIN = 6;
ELSEIF N=7 OR N=8 THEN % WRITE X
COMMAND := N + 5;
OUTBUF (1) := (BIN 01000000) LOR (BYTE(COMMAND));
ADDRESS () ; ‘
NOUT :=7;
NIN := 7'

TwRT(“#LF#DATA(OCTAL)#EN@#")-
DAT := OREAD();
ENCODE (DAT) ;
ELSEIF N=9 THEN X G0 MESSAGE b4
NOUT := 4; |
NIN := 3;
0UTBUF(1) = BIN D1001110;
GOFLAG :=1; ’
ADDRESS () ;
ELSEIF N=10 THEN X SYNCHRONISE)4
NOUT := 1;
NIN := 20; ,
OUTBUF (1) := BIN 01001010 X A SPARE CODE X
ELSE
GOTO START;
END;

PUTBCC() ;

TWRT ("BLFHOUTPUT INFO :#LF#");
FOR I:=1 TO NOUT DO

OWRT(INT (OUTBUF(I))); TWRT(" ");
REP;

MESSANS (OUTBUF ,NOUT, INBUF ,NIN) ;

TWRT ("#LFBANSWER RECEIVED :");

FOR I := 1 TO NIN DO
IF ((I-1) MOD 8)=0 THEN TWRT("#LF#") END'
OWRT (INT (INBUF(I))); TWRT(" *);

REP;

TWRT ("SLF8") ;

GOTO START;
ENDPROC;

PROC PUTBCC();
INT T::=0;
BYTE B;
FOR I:=1 TO NOUT-1 DO
T:=T NEV OUTBUF(D);

REP;
B:=

BYTE(T LAND OCT 077); % CONVERT TO BYTE

B:= B LOR BIN 01000000;
OUTBUF (NOUT) := B;

ENDPROC;

PROC ADDRESS ()
IF GOFLAG = 1 THEN

- ELSE

END;

ADDR := SAVEADDR;

TWRT ("#LF#Media/list address #ENG#");
ADDR := OREAD();

OUTBUF (2) := BYTE(ADDR LAND BIN 00001111);

OUTBUF (3) := BYTE((ADDR SRL 4) LAND BIN 00111111);
SAVEADDR := ADDR;
GOFLAG := O;

ENDPROC;

PROC ENCODE(INT INPUT); -
OUTBUF (4) := BYTE(INPUT LAND BIN 00111111);

OUTBUF (5) :
OUTBUF (&)

ENDPROC;

BYTE((INPUT SRL 6) LAND BIN 0001
BYTE((INPUT SRL 11) LAND BIN 000

1111)
11111

¥
)i

TITLE HEDTEST
TESTS THE MICRO-MEDIA ANALOG & DIGITAL INPUTS & OUTPUTS;

% THIS PROGRAM, ALTHOUGH IT DOES NOT USE THE MEDCOM DATA BASE, %
% USES THE PROCEDURES FROM MEDLNK TO GET AND SEND THE DATA TO/FROM %

% MEDIA. THESE PROCS CALL THE SECURE/RELEASE PROCS IN SECREL, WHICH WE DO

%

% NOT WANT TO HAPPEN HERE, SO THE MODULE SECREL IS NOT INCLUDED AT TASKBUILD
%

% TIME, AND INSTEAD DO-NOTHING SECURE AND RELEASE PROCS ARE PROVIDED INSIDE
%

% THIS MODULE.

%

LET LF = 0CT 012;

LET ENG = 0CT 005;

LET ETX = 0CT 003;

LET ESC z 0CT 033;

LET YES=1;

LET NO=0;

LET RSNGANA
LET WSNGMED

2
1

Nu-

MODE MEDCARD (INT STAT,MEDDAT,ADDR,REAL SCANTIME);

EXT PROC (INT,REF MEDCARD)INT SINGLIN,WRITE;

EXT PROC (INT,INT,INT,REF ARRAY MEDCARD)INT BLOCKIN;
EXT PROC(REF ARRAY BYTE) TWRT;

EXT PROC()INT IREAD,OREAD;

EXT PROCCINT) IWRT,OWRT;

EXT PROC() TTIO; .

EXT PROC() STARTAST,STOPAST;

EXT PROC()BYTE ASTCHAR;

EXT PROCC)INT CTLCYET,ASTYET;

SVC DATA RRSIO;
PROC (}BYTE IN;

' PROC (BYTE) OUT;

ENDDATA;

DATA LOCAL;
INT CHOICE:=0;
ARRAY (4) INT INPUT :=(D0,0,0,0);
INT DIGDAT := HEX FFOO;
INT NIBLCT := O;
INT LOOPCT:=0;
INT ERRNO;
MEDCARD MCARD;
ENDDATA;

ENT PROC RRJOBO);
TTI00) 5
WHILE CHOICE <1 OR CHOICE >2 DO
HOME ()
CLEOS () ;
TWRT ("$LFEMEDIA TESTER");
TWRT ("#LF#============#LF ,LFA");
TWRT("1. DIGITALELFS");
TWRT("2. ANALOGUESLF#");
TURT ("->BENQE") ;
CHOICE:=IREAD();
REP;
IF CHOICE=1 THEN
DIGITAL ();
ELSE
ANALOGUE () ;

END; . ~
HOME () ; CLEOS ()

OUT (ETX) ;
ENDPROC;

PROC DIGITAL(O);
INT TYPE,SUBTYPE;
HOME () ; CLEOS()'
TNRT(“#LF#DIBITAL WORKOUT FOR MEDIA#LF#")'

TWRT (*1. DIG INPUTS 1-16 CONNECTED TO DIGOUTSHLF#");
TWRT("2. DIG INPUTS 17-32 CONNECTED TO DIGOUTSHLF#");
 TWRT("3. DIG INPUTS 1-32 CONNECTED TO DIGOUTSHLF#");
TWRT("4. MONITOR SWITCHES 1-148LF#");
TWRT("5. HONITOR SWITCHES 17-32#LF JLFE") 3
TWRT ("~>BENQH") ;
CHOICE:=IREAD () ;
TYPE:=CHOICE :/ 4; X0 : INS TO OUTS ; 1 : MONITOR SWITCHES 4
SUBTYPE:= TYPE + (CHOICE MOD 4);
STARTAST) ;
IF TYPE=0 THEN ¥ O/P CONNECTED TO I/P %
WHILE CTLCYET()=NO DO
NIBLCT:=(NIBLCT+1)MOD 16;
DIGDAT := NIBLCT LOR (NIBLCT SLL 4) LOR (NIBLCT SLL 8)
LOR (NIBLCT SLL 12);

MCARD.MEDDAT:=DIGDAT;
MCARD.ADDR:=4; Z DIG OUTPUT X
MCARD.STAT:=1;
ERRNO:=WRITE(12,MCARD) ;
IF ERRNO#0 THEN
TWRT("SLFH#ERR ") ; IWRT (ERRNO) ;TWRT(" ON WRITE TO DIG OGUTPUT");O0UT(LF);
ELSE
IF SUBTYPE=1 THEN X I/P 1-16 X
GETANDCHECK (D) ;
ELSEIF SUBTYPE=2 THEN
GETANDCHECK (1) ; .
ELSEIF SUBTYPE=3 THEN
GETANDCHECK (0 ;
GETANDCHECK (1)
ELSE
TWRT("SLFSILLEGAL SUBTYPE #LF#");
END;
END;
LOOPCT:=LOOPCT+1;
IF LOOPCT MOD 16 = O THEN
TWRT ("+BETX#") ;
END;
IF LOOPCT MOD 1200 = 0 THEN
TURT("SLF#")
END;
REP
ELSE X% SWITCHES X
WHILE CTLCYET()=NO DO
MCARD.STAT:=1;
MCARD.ADDR:=SUBTYPE-1;
ERRNO:=SINGLIN(1,MCARD) ;
IF ERRNO#0 THEN
TWRT ("#LFBERR ON READ FROM DIGIN ") ;IWRT(SUBTYPE-1);TWRT("#LF8");
ELSE
MCARD.ADDR:=4;
MCARD.STAT:=1;

MCARD .MEDDAT :=NOT (MCARD.MEDDAT) ; % BECAUSE DIGINS ARE -VE LOGIC

ERRNO:=WRITE (12,MCARD) ; @
IF ERRNO#0 THEN
TWRT ("SLF#ERROR ON WRITE TO DIGOUT BLF#");
END;
END;
REP;
END;
STOPAST () ;
ENDPROC;

PROC GETANDCHECK(INT N);
MCARD.ADDR: =N; ADIGIN X%
MCARD.STAT:=1; :
MCARD. HEDDAT"O
ERRNO"SINGLIN(1 MCARD) ;
IF ERRNO#0 THEN
TWRT ("#LF#ERR ON READ FROM DIGIN : ERRNO "); IWRT(ERRNO); TWRT("BLF#");
ELSE
IF NOT(MCARD.MEDDAT) #DIGDAT THEN X "NOT" BECAUSE I/P°S5 ARE -VE LOGICZ
TWRT("SLF#DATA INCORRECT : DIGIN NUMBER "); IWRT(N); TWRT("BLF#");
TWRT("DATA WRITTEN: "); OWRT(DIGDAT);

TWRT (" DATA READ: "); OWRT(NOT(MCARD.MEDDAT)); TWRT("#LF#");
END; '
END;
ENDPROC;
PROC ANALOGUE();
INT TMP2:=0;
INT TMP:=0;

HOME(); CLEOS();
TWRT("BLFETHIS SECTION OF THE PROGRAM READS IN THE SPECIFIED ANALOG ");
TWRT("B#LFH#INPUTS AND OUTPUTS THE VALUE READ TO THE SPECIFIED OUTPUTSH#LF#");
FOR I:=1 TO 4 DO
WHILE INPUT(I)<1 OR INPUT(I)>16 DO - -
TWRT("SLFSWHICH INPUT TO OUTPUT ®); IWRT(I); TWRT("™ BENQGE");
INPUT(I):=IREAD();
REP; :
REP;
STARTAST()'
WHILE CTLCYET()=N0 Do
FOR I:=1 TO 4 DO
MCARD.STAT:=1;
MCARD.ADDR:=INPUT(I);
MCARD.MEDDAT:=0;
ERRNO:=SINGLIN(RSNGANA,MCARD);
IF ERRNO#0 THEN
TWRT ("BLFBERR ") ; IWRT(ERRNO); TUWRT(" ON READ FROM ANINP ");
IWRT (1) 5 OUT(LF);
ELSE
MCARD.STAT:
MCARD. ADDR'-OCT 14; ‘
TMP:=MCARD. HEDDAT LAND OCT 001774, X MASK ALL XCEPT 8 MSB'S X
MCARD.MEDDAT:=(TMP SLL 5)LOR (1 sLL (I-1)); 4 SHIFT INTO POSN FOR D/A X
ERRNO: NRITE(NSNBMED MCARD) ;
IF ERRNO#0 THEN
TWRT("#LFHERR ") ; IWRT (ERRNO) ; TWRT (" ON WRITE TO ANINP ");
IWRT (1) ;0UT(LF);
END;
END;
REP;
REP;

ENDPROC; |
ENT PROC SETSETPT(INT ANOUTNUM, REAL VALUE);

X SETS THE SETPOINT OF THE ANALOG INPUT CORRESPONDING TO

ERROR (OUTOFRANGE); | |
END; . | | | |
RETURN (ANINNUM) ; - | - | |

4

Z ANALOGUE OUTPUT ANOUTNUM, AS ASSIGNED. PREVIOUSLY BY CALLING X

Z SETINPUT.

IF ANOUTNUM > O AND ANOUTNUM <= TOTALAO THEN
- TASKINFO(TBUF); . :

IF AODESC(ANOUTNUM) .UIC = TBUF.TASK17 THEN o
SECHMEDCOM(); I -
AODESC(ANOUTNUM) SETPOINT t= VALUE; o
RELMEDCOM () ;

ERRNUM := NOERROR;

ELSE : '

ERRNUM := WRONGUSER;
END;

ELSE ' o

ERRNUM := OUTOFRANGE;
END;
ERROR (ERRNUM) ;

ENDPROC;

ENT PROC GETSETPT(INT ANOUTNUM)IREAL ;

4 RETURNS THE SETPOINT FOR THE ANALOB INPUT CORRESPONDING TO
X AN. OUTP ANOUTNUHM.

REAL VALUE; |
IF ANOUTNUM > O AND ANOUTNUM <= TOTALAO THEN
VALUE := AODESC(ANOUTNUM).SETPOINT;
ERRNUM := NOERROR;
ELSE
ERRNUM := OUTOFRANGE;
END; |
ERROR (ERRNUM) ;
- RETURN (VALUE} ;
ENDPROC;

PROC ERROR(INT ERRNUM) ;
IF ERRNUMZNOERROR THEN
IF ERP = RRERP THEN '
% might as well give the user a more friendly message
Xz than the usual RRERP display. .
TURT("#LF,LF#MEDUSER ERROR -~ "}
IF ERRNUM = WRONGUSER THEN

TWRT("ATTEMPT TO WRITE TO CHANNEL NOT ATTACHED TOBLF,LF#") 5

ELSEIF ERRNUM = BADSWITCH THEN
TWRT("ADSWITCH OR IOSWITCH NOT O OR 18LF, LF#“)'
ELSEIF ERRNUM = OUTOFSCAN THEN :
TWRT("MEDIA INPUT / OUTPUT 1S OUT OF SCAN#LF LF#") 5
ELSEIF ERRNUM = OUTOFRANGE THEN
TWRT ("CHANNEL NUMBER OUT OF RANGESLF,LF#");
END;
ELSE
ERP (700+ERRNUM) ;
- END; ’
END;

-~ ENDPROC;

"TITLE ABM : - ' S o
~ ABORTS TASKS WHICH ACCESS nsncom o . @
% SECURES MEDCOM, ABORTS THE TASK, RELEASES MEDCOM, THEN EXITS %

LET ETX = 3;
LET ENQ = 5;
LET LF = OCT 123

| MODE RS5ONAME (INT R5ON1 RSDNZI;

MODE LUNBUF (INT LUNNAME, | 2 LUN NAME. E 5. “TT- OR ‘DL° %
BYTE LURDEV, - % DEVICE N, . 7 FOR TT7: OR %
- | % 1 FOR DL1: 4
LUNDEV1, - % THE REST IS IRRELEVANT BUMF. &
INT LUNCHART, | | - o
LUNCHARZ,
 LUNCHAR3,
 LUNSIZE);

EXT PROC() SECMEDCOM,RELMEDCOM; Z IN SECREL RTL %
EXT PROC (INT) IURT RRGEL;
EXT PROC(REF ARRAY BYTE) TNRT
" EXT PROC(REF R50ONAME) R5O0READ, RSDNRT
EXT PROC () TTIO,GETMCR;

SVC DATA RRTASK _ : - ' _
RSONAME MYTASK . IR : -
ENDDATA; : '

SVC DATA RRERRX;
INT LINENO;
BYTE UEFLAB ERRLUN;
: INT RSXDSW;
ENDDATA;

DATA LOCAL;
LUNBUF LB:=(0,0,0,0,0,0,0);
RSONAME NAME;
'REF RSONAME NAMEP:=NAME; o |
INT DS; | S | -
RSONAME MCRNAME:= (OCT 050712,0CT 131574); % RADIX-50 FOR "MCR...' ¥
ENDDATA; o s | | - .

ENT PROC RRJOB() ;
STTIO0;

‘% ABOM IS5 THE PRIVILEGED VERSION WHICH CAN ABORT ANY TASK. IT MUST
4 NOT BE INSTALLED SO ONLY PRIVILEGED USERS CAN RUN IT.

X ABM IS THE UNPRIVILEGED VERSION, WHICH SHOULD BE INSTALLEBD AT HIGH
X PRIORITY AS ...ABM. IT CAN ABORT PRECISELY THE SAME TASKS THAT '
X AN UNPRIVILEGED USER CAN ABORT USING °ABO’.

202 et

ZXZTURT (" TASKNAME #ENQ#");ZZZ N X THIS LINE FOR ABOM 3
XXGETMCR () ;2% 7 _ X% THIS LINE FOR ...ABM X

RS50READ (NAMEP) ; % GET THE TASK NAME z

IF NAME.R50N1= D AND NAME.R50N2=0 THEN

Z USER HAS NOT ENTERED A TASK NAME; USE DEFAULT (TThn:y %

- GETDEFAULTTASKNAME(NAMEP)' : :
END

IF NAME.RSON1=MYTASK.RSON1 AND NAME.RSON2=MYTASK.RSONZ THEN

% USER TRYING TO ABORT THIS TASK : STOP HIM! 2 -
"TWRT("ABM ~- TRIED TO ABORT ABMBETX#"); o | =

 ELSEIF NAME.RSDN1=MCRNAME.RSON1 AND NAME. RSDNZ -MCRNAME .R50N2 THEN
% USER TRYING TO ABORT MCR... %
TURT (“ABM -~ TASK NOT ABORTABLEKETX#");

ELSE

ABORT (NAMEP) ;

END;

ENDPROC;

'PROC ABORT(REF RSONAME TASK) ;
SECMEDCOM(); .

CODE 24,0; \ :
.MCALL = ABRTSS
- .LIST - MEB
.GLOBL = $DSU o
. MOV *TASK(R5) ,R1 v
ABRT$S R1 ‘
MOV - $DSW, *RSXDSU/RRERRX(RU) o
-~ .- BCC *0K _ , -
*RTL; ’ : i '
4 IF UNSUCCESSFUL THEN = - y 4
DS:= RSXDSW; y 4 SAVE DSW FOR LATER) 4
RELMEDCOM () ; 4 RELEASE MEDCOM y 4
CHECKDSWUW () ; } 4 CHECK WHY NOT SUCCESSFUL y 4
RETURN; y4 - S | X
OK: ' % ELSE (» SUCCESSFUL #} z
RELMEDCOM() ;)4 RELEASE MEDCOM 4
' : X END) 4
ENDPROC;
PROC CHECKDSWO);
CODE 36 0;
" chHp *DS/LOCAL , #IE.INS
BEG *#*NOTINS o
CMP *DS/L0CAL , #IE.ACT
BEQ *NOTACT
CMP *DS/LOCAL ,8IE. PRI
BEQ *NOTPRI
MOV #*DS/LOCAL , *RSXDSW/RRERRX (RD) o
*RTL; -
TWRT("ABM —- ABORT DIRECTIVE ERROR, DSW=H#ETX#") ; IWRT (RSXDSW)
RETURN; | o ' S
NOTINS: . . | ‘
TWRT("ABM —~- TASK NOT IN SYSTEHBRETX#"};
RETURN; o - o T
-~ NOTACT: | o
TURT("ABM —— TASK NOT ACTIVEBETX#");
" RETURN;
NOTPRI: ‘
TWRT("ABM -~ PRIVILEGED COMMANDRETX#");

ENDPROC}

PROC GETDEFAULTTASKNAME (REF RSONAME NAME) ;

% THIS PROC FINDS OUT NﬁICH TERMINAL THE USER IS SIGNED ONTO. 2%
X IT DOES THIS BY A CALL OF GLUN$S MACRO TO GET INFO ABOUT LUN 2

% NUMBER 1,

INT TTNO;

INT NSDIGITVLSDIEIT
LUNINFO(1,LB) ;

WHICH WAS ASSIGNED TO TI,
% SEE MODE LUNBUF (.

DURING TASKBUILD oF ABH %
.) STATEMENT ABOVE _ Z

% TERMINAL FROM WHICH USER HAS CALLED ABM %
Z nn IN TThn: Z ’

2 LUN 1 IS ASSIENED TO TI: 4

TINO := INT(LB LUNDEV) ;

% WE Now ENCODE TTnn
% nn IS IN OCTAL. o
LSDIGIT:= TTNO LAND OCT 7;

(WHERE nn = TTNO) INTO RADIX 50 FORM.

AN

Z LEAST SIBNIFICANT DIGIT

- MSDIGIT:= (TTNO SRL 3) LAND OCT 7
- IF MSDIGIT=0 THEN
Z NEED "TTn’ 2
M5DIGIT:=LSDIGIT; .
NAME.R50N2:=0;
ELSE - -
NAME . R50N2: -1600*(LSDIGIT + 0CT 36); % 1600 IS (OCT 50) #»2
END; ' '
NANE R50N1:=0CT 076400 + OCT 001440 + MSDIGIT + OCT 36;

- ENDPROC;

PROC LUNINFO(INT LUN REF LUNBUF BUF) ;

4 EXECUTES GLUNSS DIRECTIVE REQUEST TO GET LUN INFO oz
CODE 22 03
HCALL GLUNSS
.LIST MEB
.GLOBL $DSW
’ GLUNSS *LUN(5) ,*BUF (5) 4 BLUN$S DIRECTIVE
.MOV $DSW, *RSXDSU/RRERRX(RU) y SAVE DSU . .
BCC- *0K sy DIRECTIVE SUCCESSFUL

#*RTL;
 RRGEL (612) ;

0K: o
ENDPROC;

- % DIRECTIVE UNSUCCESSFUL %

z.-‘..

TITLE MEDRMD;

X MEDRMD GIVES A RMDEMO-LIKE DISPLAY OF
%4 THE STATE OF THE DATA~BASE MEDCOM.

LET
LET

LET-

LET

LET
LET
LET
LET
LET
LET
LET

LET
LET

LET LF = OCT 12;
LET EN@=5;
LET ETX=3;
~ LET NL = 10;
LET ESC = OCT 33;
LET SP = -
LET CONTROLZZ26;
LET CONTROLC=3: | |
% numbers of inputs and outputs in MEDCOM.: g
LET NAO=4; o - |
LET NSIMAO=4;
LET TOTALAO=8;
LET NMULT = 14;
LET NSIMAI = 4;
LET TOTALAI = 20;
LET NDIGICARD = 2;
LET NSIMDIGICARD = 2

TOTALDIGICARD = 4;

NDIGOCARD = 1;
NSIMDIGOCARD = 1;
TOTALDIGOCARD = 2;

TIMELINE = 5; % line on screen where time is displayed

TIMECOL = 24; |
DIG = TIMELINE + 4;
ANA = DIG + 7;
SCANLINE = ANA + 3;

SECLINE = SCANLINE + 4 X line where current task is displayed
SECCOL = 355 »

YES=1;
NO=0;

MODE MEDCARD (INT STAT,MEDDAT,ADDR,REAL SCANTIME);

MODE AOREC(INT UIC, USERINT, ANIN,REAL SETP);

MODE RSONAME (INT RSON1,RSON2); . -
MODE IOCL(REF ARRAY BYTE BFR, INT N, DV, PTR, MD, TRM);

EXT
EXT
EXT
EXT
EXT
EXT
eXT
EXT

e
n b

EXT
EXT

O EXT

eXT
EXT

PROC (REF RSONAME) MCOMTASK a # IN SECREL.RTL %
PROC(INT) DELAY; : :
PROC () TTIO;

PROC (REF ARRAY BYTE) TNRT

PROC () BYTE TTIN,HSIN;

PROC (BYTE) HSOUT, TTOUT

PROC (REF RSUNAME) RSDNRT RSUREAD'

PROC (REAL)REAL TIMER;

PROC(REAL) RWRTU;

PROC (INT) TIHDAT _

PROC ()INT CTLCYET ASTYET, NCTLCYET

PROC (INT)INT NTCCCZ'

PROC ()BYTE ASTCHAR;

PROCCINT)INT NAITAST WAITCTLC NAITNCTLC,

N-12-1
INFORMATION ABOUT MEDIA AND %
; | x

ENT PROC RDMEDIA(INT ADSWITCH,IOSWITCH,CHANNUM) INT; _

% THIS PROC READS ONE OF THE DIGITAL OR ANALOGUE INPUTS OR OUTPUTS %
X FROM % |

% THE DATA BASE AND PUTS THE VALUE READ INTG THE INT VALUE. %

Z ADSWITCH : =D FOR ANALOGUE, =1 FOR DIGITAL. o X

% 10SWITCH : =0 FOR INPUT, =1 FOR OUTPUT. ' %

INT VALUE:=D; ' | | |

ERRNUM := NOERROR’
- IF ADSWITCH= DIGITAL THEN
IF IOSWITCH=INPUT THEN
VALUE: =RDDIGIN(CHANNUM) ;
- ELSEIF IOSWITCH=OUTPUT THEN
VALUE:=RDDIGOUT (CHANNUM) ;
ELSE
ERRNUH'“BADSWITCH
END;
ELSEIF ADSWITCH=ANALOG THEN.
IF TOSWITCH=INPUT THEN -
VALUE:=RDANIN(CHANNUM) ;.
ELSEIF TOSWITCH=0UTPUT THEN
VALUE'=RDANOUT(CHANNUM);

ELSE
ERRNUM:=BADSWITCH;
END;
ELSE
ERRNUM:=BADSWITCH;

- END; '
ERROR(ERRNUM)
RETURN(VALUE)"

ENDPROC;

PROC NRANOUT(INT CHANNUM, MDATA); _
THIS PROC WRITES THE DATA MDATA TO THE MEDCOM DATA BASE, FROM NHERE

[a 20 2 re 22

4
Z IT IS SENT TO MEDIA BY THE MEDIA UPDATE TASK MEDUPDAT. ,

- %2 THE OUTPUT CHANNEL MUST HAVE PREVIOUSLY BEEN ATTACHED TO.

‘X CHANNUM : ~ANALOGUE CHANNEL NUMBER TO NHICH THE DAT& 3
4 IS TO BE SENT. - ‘
4 ANALOGUE: CHANNUM IN RANGE 1..8 ' ‘
%X MDATA - : THE 8 LEAST SIGNIFICANT BITS ARE OUTPUT, ’ 4

IF CHANNUM > D AND CHANNUM <= TOTALAO THEN % CHANNEL 1IN RANGE

TASKINFO(TBUF) ; Z GET UIC OF USER PLUS OTHER GARBAGE INTO TBUF
IF AODESC(CHANNUM) UIC = TBUF.TASK17 THEN % CORRECT USER
z BITS 0 TO 3 OF MEDDAT ARE THE CHANNEL SELECT; LEAVE THEH
%2 ALONE. PUT THE 8 LEAST SIGNIFICANT BITS OF. NDATA INTO BITS
- % 7 TO 14 OF MEDDAT. : '
SECMEDCOM() ; : :
IF ANOUTP(CHANNUM).STAT LAND 1 = 1 THEN % IN SCAN 4

ANOUTP (CHANNUM) .MEDDAT := ((ANOUTP(CHANNUM) .MEDDAT) LAND HEX F)
: : . LOR ((MDATA LAND HEX FF) SLL 7);
"ELSE _ ’ -

ERRNUM := OUTOFSCAN;

END;

RELMEDCOM() ;
ELSE .

ERRNUM := WRONGUSER;

WEYE VIV VEW

END;
ELSE | ' | I ,
ERRNUM := OUTOFRANGE; % CHANNEL NO IS OUT OF RANGE %
ENDPROC

PROC WRDIGOUT (INT CHANNUM,MDATA) ;

IT 1S SENT TO MEDIA BY THE MEDIA UPDATE TASK MEDUPDAT

'THE OUTPUT CHANNEL CHANNUM MUST HAVE PREVIOUSLY BEEN ATTACHED TO.

CHANNUM THE CHANNEL NUMBER TO WHICH THE DATA IS TO BE SENT.
MUST BE IN RANGE 1..32*TOTALDIGOCARD. : _

MDATA : INTERPRETED A5 ZERO IF MDATA = 0O, OTHERUWISE ONE.

INT CARDNO, CARDCHAN, MASK; : : T
IF CHANNUM > O AND CHANNUM <= TOTALDIGOCARD#*146 THEN
TASKINFO(TBUF) ; 4
CARDNO == ((CHANNUM - 1) i/ 16) + 15
CARDCHAN := ((CHANNUM -1) MOD 16) + 1;
MASK := 1 SLL (146 - CARDCHAN);

NNN.NNN

IF DIGUICS (CARDNO,CARDCHAN) ='TBUF.TASK17 THEN X CORRECT USER

SECMEDCOM() ; |
IF DIGOUT (CARDNO).STAT LAND 1 = 1 THEN % IN SCAN
IF MDATA = D THEN
X SET BIT CHANNUM (FROM THE LEFT) OF THE DIG O/P TO ZERO

DIGOUT (CARDNO) .MEDDAT:= DIGOUT (CARDNO) .HEDDAT LAND NOT (MASK) ;

ELSE % REGARD NON-ZERO DATA AS A ONE 2
% SET BIT CHANNUM (FROM THE LEFT) OF THE DIG OUTPUT TO ONE
DIGOUT(CARDNO) MEDDAT := (DIGOUT(CARDNO).MEDDAT) LOR MASK;
END; : _
ELSE
~ERRNUM := OUTOFSCAN;
END;
RELMEDCOM () ; v _ ‘
ELSE Z WRONG UIC . y 4
ERRNUM := WRONGUSER; .
END; ' .
ELSE ' - 4 CHANNEL DOES NOT EXIST 4
ERRNUM := OUTOFRANGE; '
- ENDB;
ENDPROC'

PROC RDANIN(INT CHANNUM) INT;
X THIS PROC READS THE ANALOBUE INPUT NUMBER CHANNUM FRON THE DATQ
X BASE AND RETURNS THE VALUE READ.

- INT VALUE := O; :
IF CHANNUM > DO AND CHANNUM <= TOTALAI THEN
IF ANINP (CHANNUM) .STAT LAND 1 = 1 THEN Z IN SCAN 4
VALUE := (ANINP(CHANNUM) .MEDDAT SRL 5) LAND HEX 7FFF ; -
% (BECAUSE BITS 5 TO 14 ARE THE DATA) z
ELSE
- ERRNUM := OUTOFSCAN;_
END; :
ELSE : o
ERRNUM := OUTOFRANGE;
- END;
RETURN (VALUE);
ENDPROC;

PROC RDANOUT (INT CHANNUM) INT;
Z THIS PROC RETURNS THE MEDDAT "FIELD FROM THE MEDCARD REPRESENTING

THIS PROC WRITES THE DATA MDATA TO0 THE MEDCOM DATA BASE, FROM NHERE

2 2L L A2 e

4

. % ANALOGUE OUTPUT NO CHANNUM I.E. RETRIEVES THE VALUE THAT THE USER 4

X ATTACHED TO THAT ANALOGUE OUTPUT LAST WROTE TO - IT. . %
INT VALUE:=D; o _ T
IF CHANNUM > DO AND CHANNUM <= TOTALAC THEN - ¥ IN RANGE o 4
VALUE := (ANOUTP(CHANNUM) .MEDDAT SRL 7)LAND HEX OOFF; R
ELSE D) »
ERRNUM := OUTOFRANGE;
END;
RETURN (VALUE);
ENDPROC;
PROC RDDIGIN (INT CHANNUM)- INT; | -
% THIS PROC READS THE DIGITAL INPUT NUMBER CHANNUM FROM MEDCOM S 4

% AND RETURNS 1 0R 0 ACCORDINGLY. - . _ ' P4

INT VALUE := D,MASK, CARDNO CARDCHAN;
IF CHANNUM > O AND CHANNUM <= TOTALDIEICARD*16 THEN

CARDNO := ((CHANNUM - 1) /7 16) + 15

" CARDCHAN := ((CHANNUM -1) MOD 16) + 1'

MASK := 1 SLL (16 — CARDCHAN); : o Ce

IF DIGINP(CARDNO) .STAT LAND 1 2 1 THEN # IN SCAN ‘ Z‘

.IF DIGINP(CARDNO) .MEDDAT LAND MASK = O THEN
X CHANNEL CHANNUM CONTAINS A ZFRO(NEGATIVE LOGIC) SO RETURN A -ONE

VALUE := 1;
ELSE
- VALUE := 0;
END;.
ELSE v
ERRNUM := OUTOFSCAN;
END;
ELSE
ERRNUM := OUTOFRANGE;
END; :

- RETURN (VALUE) ;
ENDPROC'

- PROC RDDIGOUT (INT CHANNUM) INT;

% THIS PROC RETURNS THE VALUE (O OR " MOST RECENTLY WRITTEN TO DIGITAL %
% OUTPUT NUMBER CHANNUM. | R

INT VALUE:=0,CARDNO, CARDCHAN MASK L :

IF CHANNUM > "0 AND CHANNUM <z 16*TOTALDIGOCARD THEN X IN RANGE 4
CARDNO := ((CHANNUM - 1) :/ 16) + 1; : : SRR
CARDGHAN := ((CHANNUM - 1) MOD 16) +1' ' ‘ S
MASK := 1 SLL (16 -~ CARDCHAN);

VALUE := IF DIGOUT (CARDNO).MEDDAT LAND MASK = O THEN
1} . S C : _
ELSE
1
END;

- ELSE :
ERRNUM := OUTOFRANBE;
END;
RETURN (VALUE)3
ENDPROC

ENT PROC ATTACHED (INT ADSWITCH, REF ARRAY INT OUTARRAY);

THIS PROC EXAMINES THE DIGITAL OR ANALOGUE OUTPUT MEDCARDS IN

MEDCOM AND PUTS INTO THE ARRAY OUTARRAY THE CHANNEL NUMBERS OF
THOSE TO WHICH THE USER IS ATTACHED.

E.G. IF ADSWITCH=DIGITAL AND THE USER 15 ATTACHED TO DIGITAL
OUTPUTS 1,5 AND 7 THEN AFTER CALLING THIS PROC, OUTARRAY(1) WILL
BE 1, OUTARRAY(Z) WILL BE 5 AND OUTARRAY (3) NILL BE 7. THE REST
OF THE ARRAY WILL BE CLEARED TO ZEROS.

PP 2T PN R
R YRR]

INT ARRAYCOUNT:=0;
ERRNUM: =NOERROR

TASKINFO(TBUF) ; % GET INFO ABOUT USER (INCLUDING UIC) 4

FOR I:=1 TO LENGTH OUTARRAY DO
OUTARRAY (I) := O;.
REPR;

IF ADSWITCH = ANALOG THEN
FOR I:=1 TO TOTALAO DO : '
- IF AODESC(I).UIC = TBUF.TASK17 THEN X USER IS5 ATTACHED 4
ARRAYCOUNT :t= ARRAYCOUNT + 1; Z POINT TO NEXT INT IN ARRAY %
ENg?TARRAY(ARRQYCOUNT) = I Y AREAM (DUNT > LENSTH oyT ARRAY THEN
Zvp 17 ' :
REP; | p YO
ELSEIF GDSNITCH = DIGITAL THEN
FOR CARDNUM := 1 TO TOTALDIBOCARD DO
FOR I := 1 T0 16 DO
IF DIGUICS (CARDNUM,I) = TBUF. TASKUIC THEN
- ARRAYCOUNT := ARRAYCOUNT + 1;
OUTARRAY (ARRAYCOUNT) := (CARDNUN - 1)%186 + I;
END; v
REP;
REP;
ELSE % ADSWITCH NOT VALID Z
ERRNUM := BADSWITCH;
END;
ERROR (ERRNUM) ;
ENDPROC;

ENT PROC RDCOMMINT (INT CHANNUM) INT;
% THIS PROC RETURNS THE VALUE OF AODESC USERINT CORRESPONDING TO r4
% ANALOGUE OUTPUT NUMBER CHANNUM. THIS INTEGER CAN BE USED BY THE) 4
X USER FOR INTERTASK COMMUNICATION. 4

INT RET :=0; :
IF CHANNUM > 0 AND CHANNUM <= TOTALAO THEN ' ‘ -
RET 2= AODESC (CHANNUM).USERINT ;
ELSE ,
ERROR (OUTOFRANGE)3
END;
RETURN (RET) ;
ENDPROC;

ENT PROC NRCOMMINT (INT CHANNUM, VALUE);
% THIS PROC WRITES THE CONTENTS OF VALUE INTO THE USERINT FIELD -
% OF THE AOREC CORRESPONDING TO ANALOGUE OUTPUT NUMBER CHANNUM.
X THIS INTEGER IS INTENDED TO BE USED FOR INTERTASK COMMUNICATION BY
% USER TASKS.

IF CHANNUM >0 AND CHANNUM <= TOTALAO THEN
TASKINFO (TBUF);

I e

©_ IF AODESC {(CHANNUM) .UIC = TBUF TASK17 THEN Z CORRECT USER z

SECMEDCOM () 3 | .
AODESC (CHANNUM) . USERINT := vaLue; - . . |
RELMEDCOM () ; |) IR | _

ERRNUM := NOERROR;
ELSE

ERRNUM. := NRONBUSER;

END; '

“ELSE \ .
. ERRNUM := OUTOFRANGE;
END‘) S
~ ERROR (ERRNUM);
ENDPROC;

ENT PROC READHEDCARD(INT ADSWITCH, IOSWITCH, CARDNUM, REFXﬂEDCARD CARD) ;

% TAKES THE CONTENTS OF THE REGUIRED MEDCARD FROM THE MEDIA DATA BASE ¥
X AND PUTS IT INTO "CARD". %
‘X ADSWITCH : CHOOSES ANALOG(O) OR DIGITAL(1). '
% TOSWITCH : CHOOSES INPUT(D) OR OUTPUT(1). %
X CARDNUM : CHOOSES THE CARD NUMBER WITHIN THE cann TYPE SPECIFIED %
! BY ADSWITCH AND IOSWITCH. 1
Z CARD : VARIABLE OF TYPE MEDCARD. INTO WHICH THE INFO IS pur. %
IF ADSWITCH = ANALOG AND IOSWITCH = INPUT THEN
IF CARDNUM > O AND CARDNUM <: TOTALAL THEN
~ SECMEDCOMO) ; - | o
COPYCARD(ANINP(CARDNUH) CARD); % PUT THE MEDCARD INTO CARD %
RELHEDCOM()' ' . '
ERRNUM- := NOERROR;
ELSE |
 ERRNUM := OUTOFRANGE; | IERE
- END; RN .
ELSEIF ADSWITCH=DIGITAL AND IOSWITCH = INPUT THEN
~ IF_CARDNUM > 0 AND CARDNUM <= TOTALDIGICARD THEN
SECMEDCOMO);
COPYCARD(DIGINP(CARDNUM) | CARD) ; o |
RELMEDCOMO) ; T
 CARD.MEDDAT: =NOT (CARD. MEDDAT) ; - % CONVERT DIGIN DATA TO POS LOGIC %
ERRNUM := NOERROR; A o L
ELSE
ERRNUM := OUTOFRANGE'
END;

‘ELSEIF ADSWITCH = DIGITAL AND I0SWITCH = OUTPUT THEN
- IF CARDNUM > 0 AND CARDNUM <= TOTALDIGOCARD THEN

SECMEDCOM () ; o o
| COPYCARD(DIGOUT(CARDNUM) CARD)' SR PR
-~ RELMEDCOM () ; o T S

ERRNUM ::= NOERROR;

ELSE |
" ERRNUM := OUTOFRANGE'
END;,

"

ELSEIF ADSNITCH = ANALOG AND IOSWITCH OUTPUT THEN
IF CARDNUM > O AND CARDNUH <= TOTALAO THEN .
'~ SECMEDCOM();
COPYCARD(ANOUTP(CARDNUM) CARD)'

. RELMEDCOM() ;
ERRNUM := NOERROR'
ELSE .
_ ERRNUM := OUTOFRANGE
- END; :

ELSE -

RECMEDTOMTT
ERRNUM := NOERROR;
ELSE : :
ER%&UM = WRONGUSER;
END;
ELSE -
ERRNUM := OUTOFRANGE
END;
ERROR(ERRNUN)'
ENDPROC;

ENT PROC GETANINP(INT ANOUTNUM)INT' -
% RETURNS THE CHANNEL NO OF THE ANALOGUE INPUT BEING CONTROLLED BY X
Z ANALOGUE OUTPUT ANOUTNUN AS SET UP BY A PREVIOUS CALL TO SETANINP. %2

INT ANINNUH'-D

IF ANOUTNUM > 0 AND ANOUTNUH <= TOTALAO THEN
- ANINNUM := AODESC(ANOUTNUM) ANIN;

ELSE

i e e e ae A s e+ A i e Bt ok wan mp mme 2w e ane PPN

 EXT PROC() STARTAST,STOPAST; S
_EXT PROC (INT,INT) GOTOLC; . |
EXT PROC ()HOME,CLEOS,CLEOL; o -

SVC DATA RRS5IO0; PROCOBYTE IN; PROC(BYTE}OQUT ENDDATA'
SVC DATA RRERR; LABEL ERL; INT ERN; PROC(INT) ERP ENDDATA
SVC DATA RRCHAN REF IOCL INCL, OUTCL ENDDATA;

X The following 2 bricks are MEDCOM : : ‘.

EXT DATA OUTAREA'
ARRAY (TOTALAO) MEDCARD ANOUTP;
- ARRAY (TOTALDIGOCARD) MEDCARD DIBOUT'
ARRAY (TOTALAO) AOREC AODESC;
ARRAY (TOTALDIGOCARD,14) INT DIGUICS,
ENDDATA;

EXT DATA INAREA;
ARRAY (TOTALAI) MEDCARD ANINP;
ARRAY (TOTALDIGICARD) MEDCARD DIGINP;
ARRAY (2) MEDCARD DIGCHAN;
MEDCARD MEDSTAT'
ENDDATA;

DATA 10LOCAL; | | | |
ARRAY (132) BYTE IBUF,0BUFz= (NL,5P (131)); - v
10CL ICL := (IBUF,0,1,0,1,0); X HAVE SET MD TO 1 FOR BINARY %

JOCL OCL := (OBUF,0.1.1.1.03: . % DITTO %
ENDDATA; - 4 S
DATA LOCAL;.

ARRAY (161 INT DUIC;

ARRAY (4) INT AUIC;

RSONAME CURTASK; -

ARRAY (4) INT TAB := (1,20,40,40); |

ARRAY (5) INT TAB2:= (1,164,31,46,61); A -
 ARRAY(32) REF ARRAY BYTE NUMBERS := (" 1, n % 2, ®,m 3, w_n 4 »n

1] 5- ll’ll 6e ll’ll 7. ll,ll 8. “,ll 9- 1] "10 ll,ll11““’l112. .II’II13- ll’
ll14. ",ll15. ﬂ’ﬂl16. ll’ll17n ","185 n 1!19 ll’llznn "7"215 ","22- ll’ .
”23. ll,II24n ”9'"25" ","26. “’ll27.] "28 ll”l29- ”’“3[}1 ",”31-- ".,'“32-' ll) ;

ARRAY (9) BYTE UBUF;
ARRAY (5) INT INSCAN; - ' ,
ARRAY (6) REF ARRAY BYTE SCANBUF := ("Digini *,"Digin2 ", "Digout ", -
“anin ","anout *,"*0UT OF SCAN%");
REF ARRAY BYTE PARTID = "y : : , '
INT CHAR,DIGICARDMIN, DIGOCARD AOMIN,AIMIN; o - 8
ENDDATA; o ‘ S L

ENT PROC RRJOB();

INT UICTMP, EXIT"NO'
- BYTE INCHAR'

INITIALISEIO();
STARTAST() ;
INITFORMEDIA) ;
WHILE EXIT=NO DO
INITIALISEDATA () ;
INITIALISESCREEN() ;.
LOOP ()5
CHAR := ASTCHAR();
IF CHAR = CONTROLC OR CHAR = CONTROLZ THEN

% user wants to exit from MEDRMD X

EXIT = YES;.
ELSEIF CHAR = ‘S’ OR CHAR =

vs'

% user wants simulation info

INITFORSIMQ) ;
ELSE

INITFORMEDIA Q) ;
END;

REP;

STOPAST () ;

Z user wants real Media info

THEN

HOME () ; CLEOS() FORCEBUFFEROUTPUT()'

ENDPROC;
PROC INITFORMEDIA(Q);

PARTID:=" (Real HEUIB system)"'

AIMIN ::=1;
AOMIN =13
DIGICARDMIN t=1;
- DIGOCARD :=1;
ENDPROC;
PROC INITFORSIM(O); ‘
PARTID := " (Simulation part)";
 AIMIN = 17; -
- AOMIN = 53 _
DIGICARDMIN := 3;
DIGOCARD := 2;
ENDPROC; :

PROC LOOPO);

- INT UICTHMP;
INT STOP: NO'
WHILE STOP= NO Do
- PRINTTIMEQ);

FOR I:=1 TO 16 DO

UICTMP:=DIGUICS(DIGOCARD,I);

IF DUIC(I)BUICTMP THEN
DUIC(I):=UICTMP;
GTODOUT(I) ;
UICWRT(UICTMP);

END;

REP} o

FOR I:=1 TO 4 DO

UICTMP:=A0DESC(I- 1+AOHIN) uic;

IF AUIC(I)BUICTMP THEN
AUIC(I) :=UICTHP;
GTOAOUT(I);

UICWRT (UICTHMP);

END;

REP;

GOTOLC (SCANLINE+2, 1); CLEOLO);

SCANWRT () 5

MCOMTASK (CURTASK) ;
GOTOLC(SECLINE,SECCOL) ;

z

CLEOLO); | - |
IF CURTASK.R5ON1#0 THEN B |
RSOWRT (CURTASK) ; » ,
END; L |

HOME ()
FORCEBUFFEROUTPUT()

IF WAITAST(50)=YES THEN
STOP:=YES;
END;
- REP; .
ENDPROC;

PROC INITIALISEDATA() ;

- FOR I:=1 TO 16 DO
DUIC(I):= DIGUICS(DIGOCARD, I)
REP;
FOR I:=1 TO 4 DO '
AUIC(I):= AODESC (I~ 1+AOMIN) UIC'
REP;
MCOMTASK (CURTASK) ;
. ENDPROC;

PROC INITIALISESCREEN();

" HOME () ;
CLEOS()

GOTOLC(1,11); TNRT("Dynamic display‘nf‘usage of MEDCOM data base");
GOTOLC(Z,‘I 1); TNRT(":::");
GOTOLC(3,22); TWRT(PARTID); : ‘ \ '

PRINTTIME(); R
GOTOLC(DIG-2,1); TWRT("Digital Outputs :"); =

"FOR I:= 1 TO 4 DO
"FOR J:=1 T0 4 DO - |
GOTOLC (DIG+J~1,TAB(I)); 0 |
TWRT (NUMBERS ((DIGOCARD - 1)%16 + 4%(I-1) + J));
UTCWRT (DUIC (4% (I-1) + J));
* REP;
REP;

GOTOLC (ANA- 2,1); TNRT("Analog outputs A

FOR 1:31 TO 4 Do _ ,
GOTOLC (ANA,TAB(I)); , '
TNRT(NUNBERS(AOMIN -1 + I)); UICNRT(AUIC(I));

REP;

GOTOLC(SCANLINE 1135 TWRT ("Seconds since 1ast update ")y
FOR I:=1. T0 5 DO

GOTOLC(SCANLINE+1,TAB2(I)); TUWRT (SCANBUF (1))
REP;

GOTOLC(SECLINE, 1)' TuRT("Task currently securing MEDCOM :");
ENDPROC; :

' PROC INITIALISEIOQ);

BASED ON TTIO() BUT USE HSIN HS0UT

IN: =HSIN;

ouT: HSOUT;
- INCL:=ICL;

QUTCL:=0CL;
ENDPROC;

PROC PRINTTIME();

BOTOLC(TIMELINE TIMECOL)'

TIMDAT(-1);
NDPROC;

PROC UICWRT(INT UIC);

IF UIC # O THEN

UBUF(9):="1"

'UBUF(B)‘-BYTE((UIC LAND

UIC:=UIC SRL 3;

'.UBUF(7):=BYTE((UIC LAND

UIC:=UIC SRL 3;

UBUF (6) :=BYTE((UIC LAND

- UIC:=UIC SRL 2; '
- UBUF (5):= ;

UBUF(4)"BYTE((UIC LAND

UIC:=UIC SRL 3;

UBUF(B);=BYTE((UIC LAND

Urc:=uIcC SRL 3;

UBUF(Z)'-BYTE((UIC LAND

UBUF (1) :

FOR 1:=1 TO 9 DO
OUT(UBUF (1))

REP; :

ELSE

END; :
ENDPROC'

PROC BTODOUT(INT N);

7)

7)

3)

7)

7)

3)

FOR I:=1 TO 9 DO OUT(R

GOTOLC(DIG + ({N- 1) NOD 4)

. ENDBROC;

PROC GTOAOUT (INT N);

GOTOLC(ANA , 4 + TAB(N));

ENDPROC;

PROC FORCEBUFFEROUTPUT()'
TTOUT(ETX) ;

ENDPROC;

PROC SCANWRT () 3
REAL SCANT;
FOR I:=1 TO 2 DO

FOR BINARY DATA XFER X

REP;

4+ TABUIN-1) 3/ 4 + 1))

GOTOLC(SCANLINE+2,TAB2(1)); '
IF DIGINP(I- 1+DIGICARDNIN) 'STAT LAND 1 = 1 THEN
SCANT:=DIGINP(I-1+DIGICARDMIN) .SCANTIME;

RNRTU(TIHER(SCANT))'
ELSE

TWRT(SCANBUF(é))'
END;

g EOTOLC(SCANLINE+2 TABZ(3)) S S T
- IF DIGOUT(DIGOCQRD) STAT LAND 1= 1 THEN
SCANT'"DIBOUT(DIGOCGRD) SCANTIME; '
RNRTU(TINER(SCQNT))
.ELSE

L TNRT(SCANBUF(b)) .
' ,END' : _ o

~GOTOLC(SCANLINE+2 TA32(4))~‘
IF ANINP(ATMIN).STAT LAND 1 = 1 THEN - .
SCANT:=ANINP (AIMIN) .SCANTIME; = . -
 RWRTU(TIMER(SCANT)); . D -
'ELSE |
- _ THRT(SCANBUF (6))
END;

| GOTOLC(SCANLINE+2,TABZ(5)); .
- "IF ANOUTP(AOMIN) .STAT LAND 1 = 1 THEN

- . SCANT:=ANOUTP (AOMIN) .SCANTIME; . -
- RWRTU(TIMER(SCANT));
.-ELSE |
TWRT (SCANBUF (6)) ;
~ END; ..
ENDPROC; =

REP; - : - S S
IF FOUND = YES THEN - ' |
TURT ("SLFSATTACHED TO DIGITAL OUTPUT NO ") IWRT (CHAN) ;

ELSE
TNRT("#LF#COULD NOT ATTACH -- NO FREE CHANNELS#LF#")'

END;

ENDPROC;

PROC ATTACHDIGOUT() ;
INT CARDNO,CARDCHAN;
INT DONE'*NO CHAN"U
WHILE CHAN < 1 .OR CHAN > 16*TOTALDIGOCARD DO
: TURT("#LF#DIGITAL OUTPUT NUMBER BENQ#"); o
CHAN:=IREAD(); A - - ,
REP; S : ' o , S
CARDNO (¢ CHAN -1) 1/ 16) +1;
CARDCHAN = ((CHAN - 1) MOD 16) + 1; ' I
CIF DIGUICS(CARDNO CARDCHAN) 0 AND DIGOUT(CARDNO) STAT LAND % = 1 THEN
SECMEDCOM() ; : B - '
IF DIGUICS(CARDNO CARDCHAN) = 0 THEN
DIGUICS (CARDNO, CARDCHAN)"TBUF TASK175

- DONE '-YES'
END;
RELHEDCOM();

END;
IF DONE=YES THEN v
 TWRT("HLFBATTACHMENT COMPLETE");
ELSE ‘

TWRT ("#LF#COULD NOT ATTACH -- OUT OF SCAN OR ALREADY ATTACHED#LF#")'

END;

ENDPROC;

PROC FINDANDATTACHANOUT (INT CHOICE);
INT FOUND,I,CHAN, LONCHAN ‘HIGHCHAN;
- IF CHOICEZ4 THEN’

- % REAL MEDIA %
LOWCHAN = 1;
HIGHCHAN :=- NAO;

~ELSE X SIMULATION 2

LOWCHAN := NAOD + 1;
HIGHCHAN := TOTALAO;

END; _
I := LOWCHAN;
FOUND:=NO;

WHILE FOUND=NO AND I <= HIGHCHAN DO - 3
IF_AQDESC(I).UIC=D AND ANOUTP(I).STAT LAND 1= 1 THEN
SECMEDCOM) 3 |
IF AODESC(I).UIC=0 THEN
AODESC (1) .UIC:=TBUF.TASK17;
FOUND:=YES;
CHAN:=1;

END;

~ RELMEDCOM () ;

END;

I := 1+ 1;

REP; | |
IF FOUND=YES THEN
TURT ("SLF#ATTACHED TO ANALOG ouTPUT NUMBER ") ; IURT (CHAN) ; TWRT ("8LF#")

 ELSE
TWRT ("#LF#COULD NOT ATTACH -- NO FREE CHANNELS#LF#")'

END;

CENDPROC; S - o
PROC ATTACHANOUT () ; . o . |
"INT CHAN:=D,DONE - =NO; | |
WHILE CHAN < 1 OR CHAN > TOTALAO DO

THRT (" SLF$ANALOG OUTPUT NUNBER ENGH");

CHAN:=IREAD();
REP; | S |
IF AODESC(CHAN) .UIC=0 AND ANOUTP(CHAN).STAT LAND 1 = 1 THEN

SECMEDCOM() ; R

IF AODESC(CHAN) .UIC=D THEN

AODESC (CHAN) .UIC: =TBUF . TASK17;
DONE:=YES; -

END;

RELMEDCOM () ;
END;
IF DONEZYES THEN

TWRT (" $LFSATTACHNENT COMPLETE") ; |
ELSE | o

TWRT ("#LF#COULD NOT ATTACH -- ouT oF SCAN OR ALREADY ATTACHED")'
END; | |
ENDPROC;

PROC DETACH() ;

INT CHAN,CHOICE,BUSY;

BUSY'-YES .

WHILE BUSY=YES AND GUIT=NO DO
HOME () ; CLEOL () ' L .
TNRT(“DETACH MENU#LF#");'CLEOL(); QUT(LF); CLEOL () ;.
TWRT("1. Detach from digital output#LF#"); CLEOL();
TWRT("2. Detach from analogue output#LF#"); CLEOL ()
TWRT("3. Detach all outputs#LF#"); CLEOLCO); , '
TWRT("4. Return to main menu#LF#")' CLEOL()' R

- TWRT("S5. Quit#LF#"); CLEOLO); OUT(LF)' CLEOL()- OUT(ENQ)
CHOICE:=IREAD () ; '

CLEOS () ; | - |
IF CHOICE=1 THEN X DIGITAL X
~ DETACHDIG () ; : o '
ELSEIF CHOICE=2 THEN % ANALOGUE 4

DETACHANA () ;
ELSEIF CHOICE=3 THEN
. DETACHALLO); o

ELSEIF CHOICE=4 THEN

BUSY := NO;

ELSEIF CHOICE=5 THEN

QUIT := YES;

END;
REP; »-
 ENDPROC; .

PROC DETACHDIG() ;
. INT CARDNO, CARDCHAN CHAN'-U
WHILE CHAN < 1 OR CHAN > 16*TOTALDIGOCARD DO
TWRT("SLFBDIGITAL OUTPUT NUMBER BENQ#H");
CHAN:=IREAD(};
"REP; : :
"CARDNO = ((CHAN - 1)_:/ 16) + 1;
CARDCHAN := ((CHAN - 1) MOD 146) + 1;
IF MANAGER=YES THEN
IF DIGUICS(CARDNO, CARDCHAN) =0 THEN :
TWRT("BLF#COULD NOT DETACH —-- NO USER ATTACHED")'
ELSE

SECMEDCOM() : | o |
DIGUICS (CARDNO,CARDCHAN) : = - | o
'RELMEDCOM () ; Co T)
TWRT ("$LFEDETACHMENT COMPLETE") ; -
END;
ELSE % NOT MANAGER %
IF DIGUICS(CARDNO,CARDCHAN) =TBUF .TASK17 THEN
SECMEDCOM () ; | .
DIGUICS (CARDNO, CARDCHAN) :=0; % DETACH %
RELMEDCOM () ;) S
TNRT(“#LF#DETACHMENT COMPLETE") ;.
ELSE
TWRT("$LFECOULD NOT DETACH -~ USER NOT ATTACHED#LF#")'
END;
END;
ENDPROC;

PROC DETACHANA() ;
~INT CHAN:=0; ' |
WHILE CHAN < 1 OR CHAN > TOTALAO DO
TURT (" $LF#ANALOG OUTPUT NUMBER BENGS");
CHAN:=IREAD(); |
REP;
'IF MANAGER=YES THEN
IF AODESC(CHAN).UIC = O THEN - |
TWRT ("HLF#COULD NOT DETACH -~ NO USER ATTACHED");
ELSE |
SECHMEDCOM () 3
AODESC (CHAN) .U1C:=0;
AODESC (CHAN) . USERINT'*D'
AGDESC (CHAN) . ANIN:=0;
AODESC (CHAN) . SETPOINT =0.0;
RELMEDCOM() 3
TWRT (" $LF#DE TACHMENT COMPLETE") ;
END;
ELSE
IF AODESC(CHAN) .UTIC=TBUF .TASK17 THEN
SECMEDCOM () 3 |
AODESC (CHAN) .UIC:=0; -
AGDESC (CHAN) .USERINT : =03
AODESC (CHAN) .ANINz=0;
AODESC (CHAN) .SETPOINT:=0.0;
RELMEDCOM () ;
TNRT("#LF#DETACHMENT COMPLETE") ;
ELSE v - »
" TWRT("HLF#COULD NOT DETACH -- USER NOT ATTACHEDH#LF£");
END; . o o
END;
ENDPROC;

PROC DETACHALL();
- IF- MANAGER= YES THEN Z MANAGER - a8
- SECMEDCOM(); :
FOR 1:=1 TO TOTALAO DO
- AODESC(I).UIC:=0;
AODESC (1) .USERINT :=0;
. AODESC(I).ANIN:=0; _
AODESC(I) . SETPOINT =0.0;

REP;
FOR CARDCOUNT := 1 TO TOTALDIGOCARD DO

FOR I:=1 TO 16 DO
"DIGUICS (CARDCOUNT, 1) :=0;

RELMEDCOM()

 TWRT ("SLF$FUNCTION. COMPLETE -- ALL USERS OF OUTPUTS DETACHED#LF#"3§
e R

ELSE - % NON-MANAGER USER
~FOR I1:=21 TO TOTALAO DO
IF AGDESC(I).UIC=TBUF. TASK17 THEN
, SECHEDCOM() o S o o
- AODESC(1) u1c-—0 . AR - o -
" AODESC(I) .USERINT := o; S
~ AODESC(I).ANIN:=0; -
AODESC(]) . SETPOINT'-D 0;
RELHEDCOM()
: END
REP; | o
" FOR' CARDCOUNT % 1 TO TOTALDIaOCARD Do'
FOR I:z1 TO 14 Do

. IF DIGUICS(CARDCOUNT, I) =TBUF. TASK17 o | ‘s
 SECMEDCOM() ; THEN e z»T“;S-USER S
- DIGUICS (CARDCOUNT, 1) : =0; | ‘ |
RELHEDCOM() ;
 END;
REP;

REP,
TURT("#LF#FUNCTION COMPLETE -~ ALL ") UICNRT(TBUF TASKI?)
TWRT (" OUTPUTS DETACHEDBLF#") ;

END; -

ENDPROC

PROC UICMRT(INT UIC)' |

. UBUF(9):="1"; o -

f"UBUF(B) -BYTE((UIC LAND) 4 0);

- YIC:=UIC SRL 3; . o

. UBUF(7): -BYTE((UIC LAND 7) + °0°); - -

. UYIC:=UIC SRL 33 : R :

" UBUF(6) 1 =RYTE ((UIC LAND 3+
UI1C:=UIC SRL 7; S

. UBUF(5) =, e
UBLIF (4) + SRYTE ((UIC LAND 7). +

YIC:=UIC SRL 3; '
~UBUF(3)"BYTE((UIC LAND 7)

~ UIC:=UIC SRL 3; | ‘
UBUF (2) : BYTE((UIC LAND 3) +

UBUF(1).— €’
TWRT (UBUF) 5

ENDPROC,:,

-
OK
-
—
-~

o o o
" A4

y

PROC ATTACH(); - _ ' ' . ‘
- INT BUSY:=YES; : - B
- INT CHOICE,CHAN,FOUND,DONE; ‘ o
WHILE QUIT=NO AND BUSY=YES DO D ,
HOME () § :
CLEOL(); TWRT("ATTACH MENUBLF&");
CLEOL () ; OUT(LF); :
CLEOL(); TUWRT("1. Any digital output (real Media)#LF#"});
CLEOL(); TURT("2. Any digital output (simulation) #LF#");
CLEOL(); TWRT("3, Specific digital output #LF,LF#"); CLEOL()'
CLEOL (); TURT("4. Any analogue output (real Media)#LF#")
CLEOL(); TWRT("5. Any analogue output (simulation)sLFg");
CLEOL ()5 TWRT("6. Specific analogue outputdlLF, LF#“) CLEOL()'-
- CLEOL (); TWRT("7. Return to main menudLF#"); - '
CLEOL(); TWRT("8. QuitsLFs");
- CLEOL(); OUT(LF); CLEOLQO); OUT(ENG);
- CHOICE:=IREAD();
CLEOS ()
IF CHOICE=1 OR CHOICE=2 THEN
FINDANDATTACHDIGOUT (CHOICE) ;
ELSEIF CHOICE=3 THEN '
ATTACHDIGOUT () ; - _ -
ELSEIF CHOICE=4 OR CHOICE=5 THEN ' o - e
FINDANDATTACHANOUT (CHOICE) ; - : .
ELSEIF CHOICE=6 THEN
ATTACHANOUT () ;
ELSEIF CHOICE=7 THEN
BUSY :=NO;
ELSEIF CHOICE 8 THEN
0UIT'~YE5'
END; :
REP;
ENDPROC;'

PROC FINDANDATTACHDIGOUT (INT CHOICE);
INT CARDNO,I,CHAN,FOUND,LOWCARD,HIGHCARD;
IF CHOICE=1 THEN

LOWCARD :=1;

HIGHCARD := NDIGOCARD;
ELSE L

LOWCARD 3= NDIGOCARD+1;

HIGHCARD := TOTALDIGOCARD;
END;

CARDNO:=LOWCARD ' :
NHILE FOUND = NO AND CARDNO <= HIBHCARD Do
=13 ‘
NHILE FOUND = NO AND I <= 16 DO .
IF DIGUICS (CARDNO,I) = O AND DIGOUT (CARDNO) .STAT LAND 1 = 1 THEN
Z NO-ONE ATTACHED AND CARD IS IN SCAN 4 B

SECMEDCOM () ;
IF DIBUICS(CARDNO,I) =0 THEN
X STILL NO-ONE ATTACHED 4

DIGUICS (CARDNO,I) := TBUF. TASK17;,
FOUND := YES;
- CHAN := (CARDNO- 1)*16 + I
END;
RELMEDCOM() ;
END;
I:=1+1;
REP;
CARDNO := CARDNO + 13

ENT PROC RELMEDCOM () ; - | . | o | _

RELEASE (MEDCOMEF) ;
ENDPROC;

ENT PROC MCOMINIT()

THIS PROC IS INTENDED TO BE CALLED, ONCE AT THE START OF THE MEDIA
UPDATE TASK.

INITIALISES MEDCOM FOR SECURE AND RELEASE, BY SETTING FLAG MEDCOMEF.
THIS I5 NECESSARY BECAUSE THE SYSTEM HAKES UP WITH ALL FALGS ZERO,
WHICH REPRESENTS FACILITIES SECURED (SEE COMMENTS TO SECURE PROC).

RPN

SET (MEDCOMEF) ; - S S
ENDPROC; o | .

ENT PROC MCOMTASK(REF R5ONAME TASK)'

Z THIS PROC RETURNS TO THE CALLING PROGRAM THE RADIX S0 NAME OF THE
X TASK NHICH IS CURRENTLY SECURING MEDCONM.

TASK.R50N1:=6LFACS (MEDCOMEF-32). RSDN1V
TASK.R50N2: =GLFACS (NEDCOMEF-32) . RSDNZ'
ENDPROC;

ENT PROC FREEMEDCOM() ;

- X THIS PROC IS INTENBDED FOR A SYSTEM MANAGER TO FREE MEDCOM SHOULD IT

X SOMEHOW BECOME SECURED, NOT RELEASED AND HENCE "HANG'.

FORCEDRELEASE(HEDCOHEF)"
ENDPROC;

ENT PROC TASKINFO(REF TASKBUF TB);

X AN EQUIVALENT TO RSXGTS TO DO THE GTSK$S HACRO DOES NOT EXIST IN
Z MTSLIB, SO HERE IT 1S. :

- CODE 18,0,
: .MCALL GBTSKS$S
.LIST MEB
.GLOBL $DSW
GTSK$S *TB(5)
MoV $DSUW, *RSXDSN/RRERRX(RO)
BCC = »0K1
#RTL;
RRGEL(14); % DIRECTIVE UNSUCCESSFUL. B
OK1: . : ‘
ENDPROC;

PROC SECURE(INT FA);

THE 2 PROCS HERE ARE JUST LIKE THE MTSLIB SECURE & RELEASE, EXCEPT
THAT THEY USE THE GLOBAL EVENT FLAGS 33 TO 56 INSTEAD OF NTSLIB s
GROUP GLOBAL FLAGS. SINCE THE SYSTEM WAKES UP WITH THE FLAGS ZERO,
AND ZERO MEANS SECURED, IT IS NECESSARY TO EXPLICITLY SET

THE FLAGS BEFORE ANY TASKS CALLING SECURE ARE RUN (EG AT SYSTEH
STARTUP) .

TR R PR RPN

THE FACILITY IF THE R50N1 OF THE SECURING TASK IS ZERO (EVEN IF THE

NOTE: THE METHOD USED IN MTSLIB SECURE - TO ALLOW THE CALLER TO BRAB

EAE R &

N

NI IR LN

2 FLAG IS STILL CLEAR !) DOES NOT WORK. IT IS RECOMMENDED THAT THE %
X MTSLIB PROC BE CHANGED TO RESEMBLE THIS ONE, SINCE AT PRESENT, USE %

Z OF IT CAUSES MULTIPLE ERP(214) & (215)°'S IF 7 TASKS ARE COMPETING FOR % -

% THE FACILITY, AND ERP(214) FOLLOWED BY RRGEL(15) IF MORE THAN 2 TASKS %
X ARE COMPETING _ . D _ - 4

REF R50NAME TASK,

RSXDSH'-FA '

IF FA € 33 OR FA > 56 THEN
RRBEL (14) ‘

END;

TASK: =GLFACS (FA- 32);
IF TASK.R50N1 MYTASK RSON1 AND TASK.R50N2= MYTASK R50N2 THEN

RREEL (16); ¥ ALREADY SECURED %
END; |
CODE 20,0; - -

.MCALL CLEF$5,WTSE$S
.LIST MEB

S .GLOBL $DSW
AGAIN: CLEF$5 *FA(R5S) ' S :
: BCS DERR ; DIRECTIVE ERROR

CMP #IS.5ET,$D5UW ; WAS IT SET ?
BEG *GOTIT : . :
*RTL; .
CODE 14,0,
WTSESS *FA(RS5)
BCS DERR
_ BR AGAIN
*RTL; o
GOTIT: - - '
TASK.R50ON1 :=MYTASK.R50N1; 1 . -
TASK.R50NZ: =HMYTASK. RSDNZ - % GRAB THE FACILITY. 4
ENDPROC' - g : : L

PROC RELEASE(INT FA);
REF R5O0ONAME TASK;
. RSXD5W:=FA;
IF FA € 33 OR FA > 56 THEN
RRGEL (14);
- END;
TASK'—GLFACS(FA 32) 5
-IF TASK.R50N1 % MYTASK R50N1 OR TASK RSON2 # HYTASK RBUNZ THEN -
RRGEL(15); X% FACILITY NOT SECURED 4
END;

TASK.RSON1 := TASK.RSONZ 3= O3
CODE 20,0; | |

.MCALL SETF$S,DECL$S
SETF$S *FA(RS)

BCS DERR ‘
CHP 815.SET,$DSW
BNE *0K |
*RTL; | - o -
ERP(215); % SECURED,BUT FLAG WAS SET 7?7 X
CODE 14,0;
~ DECL$S

DERR: MOV - $DSW, *RSXDSW/RRERRX (RO)

| BCC *EXIT T ._
*RTL; . | v - S o |

RRGEL(14); % DIRECTIVE ERROR 4
EXIT: | .
'ENDPROC; .

PROC FORCEDRELEASE (INT FA);

SAME AS RELEASE, BUT BUT JUST RELEASES NTTHOUT CHECKING WHETHER

4
X THE CALLER WAS SECURED. INTENDED FOR USE BY THE SYSTEM MANAGER TO
% 'UNHANG® A FACILITY WHICH HAS BEEN SECURED AND NOT SUBSE@UENTLY BEEN
X RELEASED.
REF RSUNAME TASK;
RSXDSW:=FA;
IF FA < 33 OR FA > 56 THEN
RRGEL (14) 3
END; '
TASK: BLFACS(FA 32);
ZHERE WE LEAVE OUT THE CHECK 0F USER IDENTITY %
"TASK.R50ONY := TASK R50N2 := O;
CODE 20,0; ' - S - P
-MCALL SETF$5,DECLSS : o
SETF$S *FA(RS)
BCS DERR
CHMP . BIS.5ET,$DSW
"~ BNE *0K2
*RTL; : ' . _ '
ERP(215); X SECURED,BUT FLAG WAS SET ?? %
0K2: . -
CODE 14 ,a;
DECL$S ‘
MOV $DSW, *RSXDSW/RRERRX (RD)
BCC *EXIT2
*RTL; \
RRGEL (14); Z DIRECTIVE ERROR %
EXIT2: ' '
ENDPROC;

MODE I0STAT (BYTE IOSTLON,IOSTHIGH,INT.IOSTVAL); |
~ EXT PROCCINT,INT,INT,INT,REF I0STAT,PROC(),REF ARRAY INT)RSXQIW;

'DATA PRIVLOCAL; |
ARRAY (2)BYTE BUF;
105TAT *STATUS;
ARRAY (6) INT DP;

ENDDATA;

ENT PROC PRIVILEGED () INT;
INT RET;
REF BYTE RB:=BUF (1);
INT BUFADR;

INT FC;

CODE 12,0; | .
MOV *RB(5) , *BUFADR (5) 'ADDR OF BUFFER . |
MOV #SF.GMC, *FC(5) 3FN CODE GET MULT CHARACTERISTIX

*RTL;

" e 2 AL

. ENDPROC

- DP(3):=0;
 DP(4):=0;
- DP(5):=0;
. DP(&):= ,'

DP(Z)"Z' '_ Lo T e T LT

BUF (1) ¢ BYTE(OCT 51) g CODE FOR FINDING PRIV 0R NOPRIV =
. BUF(2) :=D; - _
. RSXQIM(FC.1,1,0,STATUS,RRNUL,DP);

IF RSXDSW<O THEN RRBEL(14) END' O

~ IF BUF(2)=1 THEN .

© 'RET:=YES;

CELSE
 RET :=NO; -
RETURN(RET)'““

.

LET MEDCOMEF = 33; | | | |
EXT PROC(INT) SET; . | N

ENT PROC RRJOB();

% THIS IS TO BE CALLED AT SYSTEM STARTUP TO SET THE MEDCOM DATA-BASE Z
% SECURE/RELEASE EVENT FLAG, BECAUSE RSX BRINGS EVENT FLAGS UP A5 CLEAR,Z
4

% WHICH CORRESPONDS TO FACILITY ALREADY SECURED. IF THIS MEANS NOTHING
Z 70 YOU , TRY TYPING - D>HELP RTL 214. ' '

SET (MEDCOMEF) ;
_ENDPROC;

SVC DATA RRSED; o v - |
BYTE TERMCH, IOFLAB' . o . .
ENDDATA; - . | | | -
SVC DATA RRERR;
LABEL ERL;
INT ERN;

PROC(INT) ERP;
ENDDATA;

X MEDIA DATA BASE : %

EXT DATA INAREA; _
ARRAY(TOTALAI) MEDCARD ANINP‘ .
ARRAY (TOTALDIGICARD) MEDCARD DIGINP;

- ARRAY(2) MEDCARD DIGCHAN;

MEDCARD MEDSTAT;

ENDDATA;

EXT DATA OUTAREA;
ARRAY (TOTALAO) MEDCARD ANOUTP
ARRAY (TOTALDIGOCARD) MEDCARD DIGOUT'
ARRAY (TOTALAO) AOREC AODESC;
ARRAY (TOTALDIGOCARD, 16) INT DIGUICS
ENDDATA;

DATA LOCAL;
INT MANAGER;
INT QUIT := NO; »
ARRAY (9)BYTE UBUF; X USED IN UICMRT = %
PROC (). DUMMY := RRNUL;
 TASKBUF TBUF := (0,0,0,0,0,0,0,0,0,0,0 DUNMY 0,0 o 0
ENDDATA; .

ENT PROC RRJOB();
INT CHOICE;
TTI00) - S
TASKINFO(TBUF))4 BET INFO ABOUT USER - % '
- IF TBUF. TASK17 O0CT 140001 THEN , % {300,131 1S THE DATABASE MANABER
MANAGER: =YES;
ELSE
MANAGER : =NO;
~ END;
QUIT := NO;
WHILE QUIT=NO DO
HOME () ; CLEOS ()
TNRT()#LF#MAIN MENU#LF LF#");
THRT("1. ATTACH #LF#”)'
THRT("2. DETACHBLF#");
TWRT("3. QUITHLF,LF,ENQGE");
CHOICE:=IREAD();
IF CHOICE=1 THEN
ATTACH() 5
ELSEIF CHOICE=2 THEN
DETACH() ;
ELSEIF CHOICE 3 THEN
QUIT := YES;
END;
REP;
HOHE()' CLEOS(); OUT(ETX)'
ENDPROC'

RELMEDCOM () ; o | - | _
END; | . o =
END;

RETURN(RET)'
ENDPROC;

ENT PROC WRITE (INT MCODE,REF MEDCARD OUTDAT) INT;

YRR

% PROC TO WRITE DATA IN DATA BASE TO
7 MEDIA.ONLY 1 CARD WRITTEN. - -
% ERROR STATUS 15 RETURNED.
INT RET:=0,5TOR: =0,ERRCNT: =0; o
WHILE STOP = NO DO |
"RET := SENDMESS (MCODE,OUTDAT.ADDR _OUTDAT.HEDDAT, 1) ; |
| % SEND MESSAGE TO MEDIA - GET REPLY %

IF RET = NOERROR THEN
RET : =SENDMESS (BOMES , OUTDAT. ADDR, 0,0) ;% SEND ZND HESSAGE - BET REPLY

IF RET = NOERROR THEN T % NO ERRORS ' y 4
SECMEDCOM () ; ~ o
OUTDAT. SCANTIME.—[INER(D 0};

RELMEDCOM () ;

END;
END;
IF RET

STOP
ELSEIF
- 5T0P
ELSE

ERRCNT. := ERRCNT + 13 S ' N -

IF ERRCNT >= 2 THEN % 2 UNSUCCESSFUL RETRIES ') 4

ERP (ERPBASE+RET); o o
STOP:=YES; _

ELSE o : ' 4 ‘ S

~STOP :=.NO; % ERROR BUT TRY AGAIN &

END; R : : C

END; '

REP;

NOERROR THEN - B |

YES; % SUCESSFUL WRITE | N
T = MEDIAERR THEN | o |

YES; o % MEDIA ERROR S .

o T ew
nman

RETURN(RET) ;
ENDPROC

ENT PROC GETMED (REF MEDCARD HSTATUS) INT :
% PROC TO GET MEDIA STATUS WORD. IF THE RETURNED VALUE IS NOT 3

% ZERO, THEN THE STATUS WORD COULD NOT BE ACCESSED. ¥
INT CHCKZ; ' |
CHCKZ:= SINBLIN(RSNGSTA MSTATUS) ;% GET MEDIA STATUS WORD FROM MEDIA %
RETURN (CHCK2) 5

ENDPROC

ENT PROC GETDCW(REF ARRAY MEDCARD DIGCN) INT;
Z PROC TO GET THE DIGITAL CHANGE WORDS. IF THE RETURNED VALUE IS NOT X%
% ZERO, THEN THE NORDS COULD NOT BE ACCESSED. , , : . X

INT RET := O;
RET := BLOCKIN(RDIGCHG 1,2,DI6CN) 5
RETURN (RET) ;

" ENDPROC;

% LOCAL PROCEDURES. | L g
b4 P T . : .- v .)4

PROC CHECINPUT (INT MCODE,NEXP} INT;
')4 PROC TO CHECK AN INPUT MESSAGE (IN X
% INMSG) RECEIVED FROM MEDIA.THE RESULT %
% GIVES THE ERROR STATUS OF THE TRANSACTION.:

% NEXP 1S EXPECTED LENGTH OF REPLY. %
INT NREC:=0; % NO OF CHARS IN REPLY FROM MEDIA c AR
INT RECSTATUS: =0; % STATUS GOT FROM BYTE 2 OF RECEIVED MESSAGE %
INT TEMP: NOERROR;
BYTE T1:=0 N | | |
IF MCODE=WSNGMED OR MCODE= WSNGANA THEN - % WRITE - ONLY NEED T0 %
_ FOR I:=1 TO 6 DO % CHECK THAT REPLY IS %
IF INMSG(I)#OUTMSG (1) THEN . % SAME AS SENT MESSAGE. %
TEMP := WRTERR; o R
END; _
~ “REP; g |
ELSE % ALL CODES OTHER THAN WRITE X
NREC := BETNREC(NEXP); % GET NO OF CHARS IN REPLY FROM MEDIA 2
FOR I:=1 TO NREC-1 DO % CALCULATE BCC CHARACTER OF RECEIVED BYTES 3
T1:=T1 NEV INMSG(I); % BCC BY EXCLUSIVE OR o 4
REP; o
T1:2(T1 LAND HEX 3F) LOR HEX 40; % BITS 0-5 PLUS BIT 6=1 o
IF T1 % (INMSG(NREC) LAND HEX 7F) THEN -
TEMP := BCCRECERR; % BCC ERROR IN RECEIVED PACKET %
ELSE | |
© IF INMSG(1) LAND HEX 40 =D OR INMSG(NREC) LAND HEX 40 = O THEN -
. TEMP := ALIGNERR; % ALIGNMENT ERROR IN RECEIEVD PACKET %
~ ELSE | .
IF INMSG(1) LAND HEX F # MCODE THEN | S
TEMP := WRONGCODE; X SENT AND RECEIVED CODES DIFFER %
ELSE 3
IF NREC=3 THEN % ERROR REPLIES FROM MEDIA HAVE LENBTH 3 %-
RECSTATUS := INMSG(2) LAND HEX F; h
IF RECSTATUS = = O THEN NO STATUS ERROR » g
IF NREC = NEXP THEN -
- TEMP := NOERROR; Z NO ERROR - %
ELSE L \
TEMP := LENERR; % ANSWER IS WRONG LENGTH %
END;
ELSEIF RECSTATUS = 1 THEN
.. . TEMP:=PARERR; X PARITY ERROR IN TRANSMITTED MESSAGE ¥
ELSEIF RECSTATUS = 2 THEN

TEMP:=BLOCKERR; % BCC ERROR IN TRANSMITTED MESSAGE %

ELSEIF RECSTATUS = 8 THEN
TEMP:=BADCODE; % INVALID CODE SENT)4
ELSEIF RECSTATUS = 4 THEN ,
- TEMP:=MEDIAERR; % MEDIA ERROR . ' z
ELSEIF RECSTATUS = HEX F THEN
TEMP:=TIMEERR; Z TIMEOUT ERROR ON MEDIA ACCESS %
ELSE :
TEMP: ERRERR' Z UNKNONN ERROR CODE - 4
END; - ‘
ELSE -% LENGTH OF INMSG IS NOT 3 S 4
IF NREC=NEXP THEN _
TEMP := NOERROR; Z NO ERROR . - %
ELSE

TEMP := LENERR; X REPLY IS WRONG LENGTH %

- END; | | | | _— |
END - o . Lo _
END; - v ' ' o : T
END;
END;

RETURN (TEMP) ;
ENDPROC;

PROC GETNREC(INT NEXP)INT;

4 PROC TO GET THE LENGTH OF THE ACTUAL RECEIVED MESSAGE FROM MEDIA 4
% 1T DOES THIS BY RETURNING THE NUMBER OF THE FIRST BYTE AFTER BYTE 1 %
Z WHICH HAS BIT 6 SET. IF NO SUCH BYTE IS FOUND WITHIN THE EXPECTED z
% LENGTH NEXP OF THE MESSAGE, THEN NEXP IS5 RETURNED. r 4
INT I,5TOB;
STOP 1= NO;

I 1= 15 '
WHILE STOP.= NO DO _

I 1= 1+ 1; ' S
IF INMSG(I) LAND BIN DTDDUDUD = 0 THEN Z BIT 6 NOT SET %
IF T < NEXP THEN : - :

STOP = NOj;- : ' Z CONTINUE SEARCHINB S 4
ELSE S
- STOP. := YES;)4 CHAR WITH BIT & SET NOT FOUND NITHIN)4
: : X NEXP CHARS.)4
END; :
ELSE o 4 BIT 6 IS SET %
- STOP := YES; Z FOUND CHAR WITH BIT 6 SET 4
END;
REP;
RETURN(I);
- CNDPROC;

PROC CHECLST (REF ARRAY MEDCARD MBLOCK,INT FIRST,LAST) INT;
- : : % PROC TO CHECK THAT MEDIA DATA REQUESTED %
%# FOR BLOCK INPUT IS5 CORRECTLY AND Z.
Z CONTIBUOUSLY ADDDRESSED S S 4

INT RET := NOERROR; | |
IF FIRST > O AND LAST-FIRST > O THEN

"~ FOR I:=FIRST+1 TO LAST DO
' IF MBLOCK(I-1).STAT LAND 2 = MBLOCK(I).STAT LAND 2 THEN

X ADDRESSES ALL LIST OR ALL MEDIA x
IF MBLOCK(I).ADDR # MBLOCK(I-1).ADDR + i1 THEN o
*“RET:=ADDRERR; X ADDRESSES NOT CONTIGOUSLY ORDERED . %
END; |
ELSE % ADDRESSES ARE MIXED LIST AND MEDIA %
 RET:=MIXEDADDRS; , - . S
END;
~ REP;
ELSE
RET:=BADBLKLIMS; |
END; | o o
RETURN(RET) ; o % SUCCESSFUL RETURN - - %
ENDPROC; | o | o T <
PROC DECODE (INT I) INT; % PROC TO DECODE DATA IN INPUT BUFFER %

- X AND TO ASSEMBLE IT INTO AN INTEGER 4

INT T1:=T2:=0; L | o "IIIII_

T1:=INMSG(3*I) LAND HEX 3F; % LEAST SIG 6 BfTS IN BYTE 3=I -

A

T2:=INMSG(3%xI+1) LAND HEX 1F; ' % NEXT 5 BITS FROM NEXT BYTE Z

' TZ2:=T2 SLL 6; © % SHIFT 5 RITS TO CORRECT POSITION 4

. - T1:=T1 LOR T2; ' - - % LOGICAL OR WITH BITS ALREADY IN Ti %

: T2:=INMSG(3*I+2) LAND HEX 1F; %2 GET LAST 5 BITS FROM NEXT BYTE %

T2:=T2 SLL 11, : Z SHIFT TO CORRECT POSITION o 4

- T1:=T1 LOR T2; 4 ADD THEM TO BITS ALREADY ASSEMBLED 4
RETURN(T1); o ' .

ENDPROC; | I I -

PROC ENCODE (INT INP) ;
: y 4 THIS PROC ENCODES INP INTO BYTES 4 TO 6 OF ouTMsE %
QUTMSE (4) :=BYTE (INP LAND BIN 0D111111); :
OUTMSG (5) :=BYTE((INP SRL &) LAND RIN 00011
- OUTMSG(6) :=BYTE((INP SRL 11} LAND BIN 0GD1
ENDPROC; ' i :

1111 ;
1111

4 .
U
‘ PROC READ(INT MCODE,ADDRESS, NUMRD) INT;

y 4 PROC TC DO DATA LINK HANDLING FOR h 4
Z READ MEDIA TRANSACTION S %

" INT TEMP,ERRCNT:=0,5TOP:=NO;
WHILE STOP = NO DO

TEMP := SENDMESS (MCODE,ADDRESS,NUMRD,NUMRD) ; % SEND OUT MESSAGE AND 3
X GET REPLY, AND CHECK IT. -

%
IF TEMP # NOERROR THEN X AN ERROR OF SOME SORT OCCURRED - %
| IF TEMP # MEDIAERR THEN Z NOT MEDIA ERROR Z
' ERRCNT := ERRCNT + 1; o
IF ERRCNT >= 2 THEN % 2 RETRIES HAVE BEEN ATTEMPTED %
ERP(ERPBASE+TEMP); % ABORT WITH DATA LINK ERROR NUMBER %
STOP := YES; % NO MORE RETRIES y
ELSE o - | o
STOP := NO; % RETRY - - . | 4
ELSE | o -
~ STOP := YES; Z MEDIA ERROR S0 NO RETRIES ¥
~ END; , o o
ELSE ' | | : v o | o
STOP :=YES; % ND ERRORS - SUCCESSFUL RETURN Z%.
END; - - o o
REP; :
RETURN(TEMP) ;

ENDPROC
PROC SENDMESS(INT MCODE,MADR, NDATA NUMRD)INT'
Z SETS UP MESSAGE TO BE SENT TO MEDIA, SENDS IT, GETS A REPLY FROM MEDIA 4

Z AND CHECKS IT FOR ERRORS. THE VALUE RETURNED IS THE ERROR STATUS %
INT NIN:=D; . % NO OF CHARS EXPECTED IN REPLY z
INT NOUT:=0; % NO OF CHARS IN OUTPUT MESSAGE . = ¥
INT TEMP:=D; . | o |

OUTMSB (1) := BYTE(NCODE) LOR BIN 01000000;

IF MCODE = RSNGMED OR MCODE = RSNGANA THEN %SINGLE READ)4
ADDREJS(MADR). '
NOUT := 4'

' NIN 1= 6 : ' " '

ELSEIF MCODE = RBLKMED OR MCODE = RBLKANA THEN _ '
ADDRESS (MADR) ; o . : . S ' .
NOUT:=5;

NIN: 3*(NUMRD + 1)

- OUTMSG(4) : ~BYTE(NUMRD LAND HEX DD3F)' : o -
ELSEIF MCODE = RDIGCHG THEN . - % READ DCW'S

OUTMSG(2) :=0;

OUTMSG (3) : D

NOUT:=4;

NIN:=9;
ELSEIF MCODE =
. QUTMS5G(2) :=0;
- OUTMSGE(3) :=D

NOUT:=4; , ,

NIN:=6; : e a . _

" ELSEIF MCODE = NSNBMED OR MCODE = WSNGANA THEN Z WRITE %
ADDRESS (MADR) ; _ : o
NOUT:=7;

NIN:=7;)
ENCODE(MDATA)' . - S
ELSEIF MCODE = GOMES THEN S %2 2ND STAGE OF WRITE.
ADDRESS (SAVEADDR) ; : .
NOUT : =4;
NIN:=3; o ' : L o '
ELSE o ' E : Z CODE NOT USED
OUTHSG(Z2) :=0; : : o .
NOUT:=3;
NIN:=3;
END;

H II

RSNGSTA THEN | % READ MEDIA STATUS

SAVEADDR := MADR;
PUTBCC (NOUT) ;
. FOR I:=1 TO NIN DO % SET INMSG TO ZERO'S %

INMSG (1) := O |
REP; o .

~ MESSANS (OUTMSE,NOUT , INMSG,NIN) %X SEND MESSABE, GET REPLY
TEWP := CHECINPUT(MCODE,NIN); % CHECK REPLY FOR ERRORS %
RETURN (TEMP) ;

ENDPROC;.

PROC ADDRESS(INT ADR);
4 ENCODES ADR INTO BYTES 2 AND 3 OF OUTHSG
OUTMSG6(2):= BYTE (ADR LAND HEX 00OF);
QUTMSG(3) := BYTE((ADR SRL 4) LAND HEX UD3F)'
ENDPROC; :

PROC PUTBCC(INT MSGLEN) ;
INT T:=0;
BYTE B;
FOR'I:=1 TO MSGLEN - 1 DO
- T:= T NEV OUTMS56(I);
REP;
B:=BYTE(T LAND OCT 077);
B:=B LOR BIN 01000000;
OUTMSG (MSGLEN) : =B;
" ENDPROC;

TITLE GSECREL

‘% SECURE AND RELEASE PROCS USING GLOBAL EVENT FLAGS

LET YES = 1;
LET NO = O3
LET MEDCOMEF = 33;

MODE RSONAME (INT RSONT,R50N2) ;

MODE TASKBUF (INT TASKI1, TASKIZ,
TASKP1, TASKP2,
TASKR1, TASKR2,
TASKRUN,

TASKUIC, X CURRENT UIC %

TASKNLUN,

TASKMCTY,

TASKSTDF,

REF PROC() TASTSST,
INT TASTSST2,
TASK15,TASK1 6,

TASK17) § % PROTECTION UIC

EXT PROC (INT) SET;
EXT PROC () RRNUL:
EXT PROC (INT) RRGEL;
EXT PROC (REF ARRAY BYTE) TWRT;

EXT PROC (INT) OWRT;
EXT PROC () TTIO;
EXT PROC(REF RSONAME)RSOREAD,RSOWRT;

SVC DATA RRERRX;
" INT LINENO;
BYTE UEFLAG,ERRLUN;
INT RSXDSW;
ENDDATA;

SVC DATA RRERR;
LABEL ERL;
INT ERN; .
PROC (INT) ERP;
ENDDATA;

SVC DATA RRTASK;
- R5ONAME MYTASK;
ENDDATA;

EXT DATA RRGLFACS;
. ARRAY (24) RSDNANE GLFACS'
ENDDATA;

DATA LOCAL;
PROC() DUNHY'"RRNUL'

% SET EVENT FLAG

%

" TASKBUF TBUF'-(U g, ao,0, 0,0, O, o,o0,0,0,DuMMY,0,0,0 0)‘

ENDDATA;
TNT PROC SECHEDCOH();

% PROC TO SECURE THE MEDCOM DATA BASE.

% FLAG MEDCOMEF.

© SECURE (MEDCOMEF) 5
ENDPROC;

%2 EVENT FLAG FOR HEDCOM SECURE/RELEASE 4

IT C@LLS SECURE USING EVENT

ENDP‘Q‘OC; D | R |
" PROC BETBLOCK ()5 S e T |
z READS A 512 BYTE BLOCK OF DATA FROM THE FILE OPENED BY CALLING '

Z OPENBLKIN, AND PUTS IT INTO 10BUF. CALLS ERP IF END-OF~FILE IS DETECTED ;
INT S; | - - |

S:=GETBLK(BUFADR,1,0,512) ;

IF 5<0 THEN RRGEL(éDS) END'

IF 5=1 THEN ERP(604); END
ENDPROC;

SHMTLOAD | - | BT '

BOOTSTRAP LOADER FOR THE LSI-11 TO LOAD.A'PROGRAM DOWN
THE CONSOLE SERIAL LINE. SMTLOAD MUST BE RELOCATED '
TO 157000=5TART ADDRESS AT TASKBUILD TIME, BY BUILDING AS FOLLOWS:

TKB)SMTLOAD/ MM/-HD, SHTLOAD/ -5P= SMTLOAD
TKB>/

TKB>STACK=0

TKB>PAR=EXEPAR:157000: 1000

TKB>// ‘

- SMTLOAD.ABS (THE FORM IN WHICH SMTLOAD IS USED BY ODT.TSK) IS5 MADE
AS FOLLOWS: ' = o , :
RUN $DMP
DMP>SHMTLOAD.ABS= SNTLOAD TSK/BL: 3 :
THEN SMTLOAD.ABS IS5 EDITED (USING EDT) TO REMOVE ALL <LF> CHARACTERS,
DELETE THE FIRST 2 LINES AND DELETE ALL LINES CONTAINING ONLY ZERO

VMY AEVS VS M VI VE NI WEVE Gy MEIVEVMEMEVMIVMEWIANE Wl NI S

 DATA.
.PSECT
s DEFINITIONS
; XX XL XX XXX 3 .
CRCSR = 177560 . :RECEIVER CONTROL /STATUS REGISTER
RBUF = RCSR+2 :READ BUFFER ADDRESS
XESR = 177564 :XMIT CONTROL/STATUS REGISTER
XBUF = XCSR+#2 = ;XMIT BUFFER ADDRESS
S%Acu = 157000 sSTACK POINTER (HIGHEST ADDRESSX
BLOCKSIZE = 1000 ;SIZE OF BLOCK OF INPUT DATA

THIS PROGRAM. HUST BE EXECUTED WITH THE PSW SET TO 340 (PRIORITY 7).
THIS IS DONE IN ODT BY LOADING THE PC WITH THE START ADDRESS
(157000) AND THEN GIVING THE PROCEED (P} COMMAND. NOTE THAT THE
COMMAND °1570D06° WILL NOT WORK AS THE GO (G) COMMAND CLEARS THE
PSW. B '

PR Y RVERVERFY RV]]

BEGIN: _ N - ' : ' |
MOV #STACK,SP SSET UP STACK POINTER
’ JSR . PC,BETCHAR ;BET THE FIRST TWO CHARS. THESE ARE
MOVB ~ @#CHAR,@#LENGTH v'THE NO OF BYTES TO FOLLOW (IE LENGTH
"JSR PC,GETCHAR '
| MOVE @#CHAR,@#LENGTH+1
! CLR R3 31
CLR . R?
CLRE @#BCC
FOR: - | | :FOR 1:=0 TO LENGTH-1 DO
~ JSR PC,BETCHAR 1 TBET NEXT INPUT CHARACTER

MOVB Q#CHAR R1
MOVB R1, (R3)

-

STORE IT AT ADDRESS I;

ADD a#BCC,R1

-e

BCC:=BCC + CHAR;

MOVE
INC

CMP
BLO
CLR

' Q0P:. - TSTB
BPL

MOVB

- CLRB
ENDIF:
T ING

CMP
- BLO

HALT
’
GETCHAR: |
» 1STB
BPL

MOVB
RTS

-e

LENGTH: .WORD

BCC: .BYTE"

CHAR: .BYTE
| .END

R1,3#BCC

R2

R2Z,8BLOCKSIZE

. ENDIF
R2

d#XCSR

Loop

"a#BCC, Q#XBUF
a#BCC

R3 :
R3 a#LENBTH

 FOR

a#RCSR
GETCHAR

PC

-
<
>
ol

1:

PERTE R TR L WVEY

~a .

a#RBUF , @#CHAR

BLOCKCOUNT:

IF BLOCKCOUNT >= BLOCKSIZE THEN

~

"3 BLOCKCOUNT:=0;

OUTPUT THE BCC

BCC:=0;
; END;

; REP;

$PROCEDURE TO INPUT THE NEXT BYTE

; LOOP TILL CHAR HAS ARRIVED

ADDRESS COUNTER -~ USE R3 :
COUNT OF CHARS IN PRESENT BLOCK -- USE
NO OF CHARS TO BE READ IN '

BLOCK CHECK CHAR -

BYTE CHAR CHARACTER RECEIVED

OPTION (1) CM; _ . _ v ‘
TITLE 3 N-3-
MEDCOM OCT-1981; - | ' : . :

b4 .
DESCRIPTION OF MODULE.

P e e R e R el B R
e o o om e e e e o o a Gn B o . Em G m e e e -

)4
P4
* THIS IS5 THE COMMON DATA BASE FOR ACCESSING MEDIA.

X THE DATA IN MEDIA IS COPIED INTO THIS DATA BASE BY THE

% MEDIA UPDATE TASK. FOR EACH INPUT AND OUTPUT, A RECORD OF
4 THE TIME OF LAST UPDATE IS MAINTAINED.

4 ' :

X

LET DEFINITIONS ' : . . '
Y 4 sssznazszssaoes v o oo

e R R R PR AR

% NUMBER OF MULTIPLEXED AN. INPUTS %

LET NMULT = 16 ,
4 Z NUMBER OF SIMULATED AN. INPUTS %

LET NSIMAI = 45
LET TOTALAI = 20;

LET NDIGICARD = 2; - | o X NO OF MEDIA DGITAL INPUT CARDS 4
'LET NSIMDIGICARD = 2, ' X NO OF SMULATION DIG. INPUT CARDS %
LET TOTALDIGICARD = 4;

LET NAO = 4; | X NO OF MEDIA ANALOG OUTPUTS~ %
LET NSIMAD = 4; | % NO OF SIMULATION ANALOG OUTPUTS X
LET TOTALAC = B; - |

-LET NDIGOCARD = 1; X NO OF MEDIA DIG. OUTPUT CARDS Z
LET NSIMDIGOCARD = 1; ’ # NO OF MEDIA DIG. INPUT CARDS f 4
LET TOTALDIGOCARD = 2; _ ‘ '
Z THESE MUST BE CHANGED IF MEDIA CARDS ARE ADDED ‘ , x
% ~ MODE DEFINITIONS. ’ _ ' o o I 4
y 4 SE===SSsm=noosssSs : : ' b4
MODE MEDCARD ¢ . & RECORD FOR STORING DESCRIPTION OF 4
. : _ X A SINGLE MEDIA CARD OR ANALOBUE INPUT X
INT STAT, Z STATUS WORD : Y A
; XA BIT O = 1 = IN SCAN. 0 = OUT OF USE i/
Y BIT1 : 1= 'ADDR' IS MEDIA ADDRESGS - Z
% g = "ADDR" 1S LIST ADDRESS Z
Z BIT 2 : 1 = OUTPUT . 0 = INPUT. b4
.-% BIT 3 = 1 = ANALOGUE (I.E. FRAC- INT CONV.REGUIRED %
4 0 = DIGITAL y 4
% BIT 4 : 1 = ANALOG 'JS BOTH +VE AND -VE - X
— % -0 = ANALOG IS +VE ONLY p 4
% BIT S : 1 = CARD REPRESENTS PART OF MEDIA 4
y 4 0 = CARD IS USED FOR SIMULATION z
- MEDDAT, X DATA AS OBTAINED FROM MEDIA v 4
ADDR, % MEDIA OR LIST ADDRESS OF CARD OR INPUT 2
" REAL SCQNTIHE X TIME OF LAST TRANSACTION BETWEEN DBATA X
y 4 BASE AND MEDIA FOR THIS CARD OR INPUT X%
’s s R
MODE AOREC (. ‘% RECORD FOR DESCRIBINB AN ANALOGUE ouTPUT y 4
: INT UIC, X UIC OF USER p 4
USERINT, % INTEGER FOR THE USER TO0 USE. y 4
- % FOR INTER-TASK CONNUNICATION. 4
ANIN, Z AI WHICH IS BEING §
b4

CONTROLLED BY THIS AC

REAL SETP % SETPOINT OF THIS A1 S x
% ENT DATA BRICK DEFINITIONS. ' ' .%
y 4 SSZTSSESITSRZSZSSNISZSSSSSSES v b 4 '
"ENT DATA INAREA'. - % DATA BRICK FOR HOLDING COPIES OF MEDIA INPUTS %

ARRAY (TOTALAI) MEDCARD ANINP:=% ANALOGUE INPUTS X
((HEX 0009,0,1,0.0),
(HEX 0009,0,2,0.0,
(HEX 0009,0.3,0.0),
(HEX D00%.,0,4,0.0),
(HEX 0009,0,5,0.0),
(HEX 0009,0,6,0.0),
(HEX 0009.0,7,0.0),
(HEX 0009.0,8,0.0),
(HEX 0009.0,9,0.00,
(HEX 0009,0,10,0.0)
(HEX 0009,0,11,0.0)
(HEX 0009,0,12,0.0)
(HEX 0809,0,13,0.0)
(HEX 0009,0,14,0.0)
(HEX 0009,0,15,0.0)
(HEX 0009,0,16,0.0)

N WM W WM e W .

e

(HEX 00629,0,0,0.0), %X THESE ARE SIMULATED X
(HEX 0029,0,0,0.0), - B o
(HEX 0029,0.0,0.0),
_ (HEX 0029.0.0.,0.0));
ARRAY (TOTALDIBICARD) MEDCARD DIGINP: % DIGITAL INPUTS %

((HEX 0003 0,0,0.0),
{HEX 0003, 0 1 DYU)

(HEX 0023,0,0,0.0), % SIHULATED %

“(HEX 0023,0,0,0.00);
_ ARRAY (2) MEDCARD DIGCHAN:= % DIGITAL INPUT CHANGE WORD X
v » ~ (43,0,0,0.0),(3,0,0,0.00); -
MEDCARD HEDSTAT; , % STATUS WORD FOR MEDIA T
ENDDATA; | S | | S | .
ENT DATA OUTAREA; % DATA BRICK HOLDING DATA TO BE SENT TO MEDIA %

ARRAY (TOTALAD) MEDCARD ANOUTP:= % ANALOGUE OUTPUTS | 3
((HEX DOOF,HEX 0001,0CT 14,0.0), o

(HEX OGOF,HEX 0002,0CT 14,0.0),

- ~_ (HEX OOOF,HEX 0004,0CT 14,0.0),
— - S " (HEX DOOF,HEX 0008,0CT 14,0.0),

(HEX OD2F,HEX 0001,0,0.0), % SIMULATED %
(HEX 002F,HEX 0002,0,0.00,

(HEX 002F,HEX 0004,0,0.00,

(HEX 002F ,HEX 0008,0,0.00);

ARRAY (TOTALDIGOCARD) MEDCARD DIGOUT:= % DIGITAL ourpurs oz
((HEX 0007,0,4,0.00, | |
(HEX 0027,0,0,0.0)); . % SIMULATED X

= ((0,0,0,0.0) (TOTALAG));

ARRAY (TOTALAO) AOREC AODESC: :
o o ' ' X DESCRIPTIONS OF AO°S . ' R 1

.‘ ;»". x

~ ARRAY (TOTALDIGOCARD,16) INT DIGUICS; ~ ¥DESCRIPTIONS OF DO'S

 ENDDATA;

TITLE MEDUPDAT . - : |
MED1A UPDATE TASK; o | o

LET LF = 0CT 125 - |

LET BEL = 7; ~ | :

LET ETX = 3; % CONTROL-C END-OF-TEXT %

LET DEL = 10; % DELAY BETWEEN UPDATES X
LET MEDIAERR = 7; X MEDIA ERROR < X
LET = NOERROR = 03 |

LET . RSNGMED = 13 X SINGLE READ FROM MEDIA %
LET RBLKMED = 3; % BLOCK READ FROM MEDIA %
LET RBLKANA = 4; X BLOCK LIST READ %
LET WSNGMED = 125 % WRITE TO MEDIA X

MODE MEDCARD (INT STAT,MEDDAT,ADDR REAL SCANTIME); .
MODE AOREC (INT UIC, USERINT ANIN REAL SETPOINT)'

EXT PROC(INT) DELAY; ' - '
EXT PROC() SECMEDCOM,RELMEDCOM,FREEMEDCOM, MCOMINIT; ¥ IN SECREL.RTL %
EXT PROC (INT,REF MEDCARD) INT SINGLIN; - |

EXT PROC (INT,INT,INT,REF ARRAY MEDCARD) INT BLOCKIN;
EXT PROC (REF ARRAY MEDCARD) INT GETDCW:

EXT PROC (INT,REF MEDCARD) INT WRITE;

EXT PROC (REF ARRAY BYTE) TUWRT;

EXT PROC (BYTE)TTOUT;

 EXT PROC() TTIO,CLEANUP;

EXT PROC (INT) IWRT,OWRT;

SVC DATA RRSIO;
PROC() BYTE IN;
PROC (BYTE) OUT;

ENDDATA;

SVC DATA RRSED;
BYTE TERMCH, IOFLAE
ENDDATA; '

SVC DATA RRERR;
" LABEL ERL;
INT ERN;
PROC(INT) ERP,
- ENDDATA;

SVC DATA RRERRX;
INT LINENO;
'BYTE UEFLAG ERRLUN'

INT RSXDSW; % HOLDS DSW RESULT OF EXECUTIVE CALLS %
cNDDATA; ‘ DR
% MEDCOM DATA BASE o : r

'S . R , | z

4 NUMBER OF MULTIPLEXED AN. INPUTS %
X NUMBER OF SIMULATED AN. INPUTS X

CLET NMULT = 16
LET NSIMAI = 43
LET TOTALAI = 20;

* LET NDIGICARD = 2; S % NO OF MEDIA DGITAL INPUT CARDS %
"ET NSIMDIGICARD = 2; ‘ % NO OF SMULATION DIG. INPUT CARDS %
LET TOTALDIGICARD = 4; - . |

LET NAO = 4;
~ LET NSIMAO = 4;
LET TOTALAO = 8;

LET NDIGOCARD = 1;
LET NSIMDIGOCARD = 1;

LET TOTALDIGOCARD = 2;

X NO OF MEDIA ANALOG OUTPUTS z
4 NO OF SIMULATION ANALOB OUTPUTS %

Z NO OF HEDIA DIG. OUTRPUT CARDS Z
% NO OF MEDIA DIG. INPUT CARDS 2

Z THESE MUST BE CHANGED IF MEDIA CARDS ARE ADDED o | ' X

‘EXT DATA INAREA;

» 4 DATA BRICK FOR HOLDING COPIES OF MEDIA INPUT& %

ARRAY (TOTALAI) MEDCARD ANINP;
ARRAY (TOTALDIGICARD) MEDCARD DIEINP ' .
ARRAY (2) MEDCARD DIGCHAN;

MEDCARD MEDSTAT;
ENDDATA

EXT DATA OUTAREA'

¥ STATUS WORD FOR MEDIA oz

X DATA BRICK HOLDING DATA TO BE SENT T0 HEDIA 4

ARRAY (TOTALAO) MEDCARD ANOUTP;
ARRAY (TOTALDIGOCARD) MEDCARD DIGOUT'
ARRAY (TOTALAO) AOREC AODESC,

ARRAY (TOTALDIGOCARD,16) INT DIGUICS

ENDDATA;
DATA LOCAL;

INT ERRCODE 4: NOERROR'

ENDDATA
ENT PROC RRJOB();

INT LOOPCNT:=1;
'ERL:=UNRECOV;

TTI00);

TWRT ("BLFBMEDIA DATA BASE UPDATE TASK V? 18LF, &TX#")'

Z SET THE MEDIA SECURE/RELEASE EVENT FLAG (SEE COH”ENTJ IN SECREL RTL) %

, NCOMINIT(),

- STARTUPDAT:
WHILE 1=1 DO

_RDANINPS();

% READ ANALOG INPUTS AND PUT OUT OF SCAN IF %

FOR I"1 TO NDIGICARD DO

- RDDIGINP(I};
REP;

T RDDCUSO);

FOR I:=1 TO NAO DO
WRANOUT (1) ;

REP;

Z MEDIA ERROR OCCURS. _ R 4
% READ DIGITAL INPUTS ETC... _ - X
%% READ DIG CHG WDS, DITTO.;. _ - B 4

% WRITE TO ANALOG OUTPUTS, DITTO

FOR I'-1 TO NDIGOCARD DO

WRDIGOUT(I)
REP;v

% WRITE TO DIG 0/P°S, DITTO T

DELAY (DEL) 3 o S .
LOOPCNT == (LOOPCNT + 1) MOD 10;

IF LOOPCNT=0 THEN ‘
CHECKSCAN () ; % CHECK T0 SEE IF ANY CARDS HAVE COﬂE Y4

END; X BACK INTO SCAN. | 2
REP; | | - .
UNRECOV: -~ X UNRECOVERABLE ERROR HANDLING. X
- FREEMEDCOM(); X FORCED RELEASE OF MEDCOM IRRESPECTIVE OF WHO X
% HAS SECURED IT. %
CLEANUP () ; o
TTI00) ; :
GOTO STARTUPDAT;.
ENDPROC;

PROC RDANINPS () D
% READ IN THE ANALOGUE INPUTS T

IF ANINP(1).5TAT LAND 1 = 1 THEN - % IN SCAN 4
ERRCODE := BLOCKIN(RBLKANA,1,NMULT:/2, ANINP) ;
IF ERRCODE#MEDIAERR THEN
ERRCODE : =BLOCKIN (RBLKANA, NNULT /2 +1 s NMULT,ANINP) ;
END;
IF ERRCODE MEDIAERR THEN
SECMEDCOM() ;
FOR I:=1 TO NHULT DO

ANINP(I) .STAT := ANINP(I) STAT LAND HEX FFFE % PUT OUT OF SCAN 2
REP; ,

RELHEDCOM () ;
FOR I:21 TO NHULT DO . -
TURT ("$LFBOUT OF SCAN : ANINP "); IWRT(I);TWRT("¥BEL,ETX$");
END;
~ END;
'ENDPROC;
PROC RDDIGINPC(INT N} o
X READ IN THE DIGITAL INPUTS I T
_ IF _DIGINP(N).STAT LAND 1 = 1 THEN % IN SCAN x
ERRCODE := SINGLIN(RSNGMED,DIGINP(N)); N T
IF_ERRCODE=MEDIAERR THEN | s o -
SECMEDCOM () '
'DIGINP(N).STAT := DIGINP(N).STAT LAND HEX FFFE;
RELMEDCOM () ; . |
TURT ("#LF#0UT OF SCAN : DIGINP "); IWRT(N);TWRT("#BEL,ETX#");
END; o
END;
ENDPROC;
PROC RDDCWS(); | | |
"X READ IN THE DIGITAL CHANGE WORDS - o Sz

IF DIGCHAN(1).STAT LAND 1 = 1 AND DIGCHAN(2).STAT LAND 1 = 1 THEN

- ERRCODE := GETDCUW(DIGCHAN); ‘ : '
- IF ERRCODE=MEDIAERR THEN . ' :
SECMEDCOM() ;
FOR I:=1 TO 2 DO '
DIGCHAN(I) .STAT := DIGCHAN(I).STAT LAND HEX FFFE
REP;
RELMEDCOM();
TWRT("#LF#0OUT OF SCAN : DCNS");TNRT("#BEL,ETX#");
- END; - .
END;

ENDPROC; o
PROC WRANOUT(INT N)j |
Z WRITE TO ANALOGUE OUTPUT N

- IF ANOUTP(N) .STAT LAND 1 = 1 THEN

ERRCODE := WRITE(WSNGMED, ANOUTP(N))'

IF ERRCODE=MEDIAERR THEN _
SECMEDCOM() ; ' o
ANOUTP (N) . STAT := ANOUTP(N) .STAT LAND HEX FFFE; "
- RELMEDCOM() ; , : -
TNRT("#LF#OUT OF SCAN : ANOGUT ") IWRY(N);TWURT("S#BEL,ETX8"};

END; o : :

END;

!

ENDPROC;
"PROC WRDIGOUT(INT N);
% WRITE TO THE DIGITAL OUTPUTS

IF DIGOUT(N).STAT LAND 1 = 1 THEN

ERRCODE := WRITE (WSNGMED, DIBOUT(N))'

IF ERRCODE=MEDIAERR THEN _
SECHEDCOM(); o S _
DIGOUT(N) .STAT := DIGOUT(N}.STAT LAND HEX FFFE; _
RELMEDCOM() ; o ‘ o

. TWRT("SLFBOUT OF SCAN : DIGOUT -"); IWRT(N);TWRT ("#BEL,ETX#");

END; ’ R S

END;

ENDPROC;

PROC CHEGKSCAN()
~ % CHECKS ALL CARDS THAT HAVE GONE OUT OF SCAN TO SEE IF THEY %

Z CAN BE BROUEHT BACK INTO SCAN. r 4

IF ANINP(1).STAT LAND 1 0O THEN - Z 0UY OF SCAN) 4
CHANINPS() ; Z TRY TO ACCESS THE ANALOB INPUTS » y 4

END; : -

FOR I:=1 TO NDIGICARD DO - ' |
IF DIGINP(I).STAT LAND 1 = O THEN % OUT OF SCAN %
CHDIGINP(I); o o »
END;
REP;

1

% IF DIGCHAN(1).STAT LAND 1 = O THEN XX QUT OF SCAN ¥
X CHDCWS () ;% I | o /.
X END;Z . | | - o -
FOR I:=1 TO NAO DO
IF ANOUTP(I).STAT LAND 1
CHANOUT (1) ;

END;
REP;

FOR I:=1 TO NDIGOCARD DO
IF DIBOUT(I).STAT LAND 1
CHDIGOUT (1) | o
END; o - o

D THEN % OUT OF SCAN %

0 THEN Z 0UT OF SCAN)4

'ENDPROC;
PROC CHANINPS(); |
% CHECK IF ANINPS BACK IN SCAN %

 ERRCODE := BLOCKIN(RBLKANA,1,NMULT,ANINP);
IF ERRCODE#MEDIAERR THEN % BACK IN SCAN X
SECMEDCOM () ; -
FOR I:=1 TO NMULT DO | »
ANINP(I).STAT := ANINP(I).STAT LOR 1;
REP; . ~ |
RELMEDCOM () ;
FOR I:=1 TO NMULT DO . - 3
TWRT ("#LFBACK IN SCAN : ANINP *); IURT(I); TWRT("#¥BEL,ETX#");
REP; |
END;

”ENDPROC'
PROC CHDIGINP (INT N)"
% CHECKS IF DIGINP N HAS COME BACK INTO SCAN x

ERRCODE := SINGLIN(RSNGMED,DIGINP(N));
IF ERRCODE#MEDIAERR THEN

SECMEDCOM () ; _
'DIGINP(N). STAT"DIGINP(N) STAT LOR 1;

RELMEDCOM () ;
TNRT("#LF#BACK IN SCAN : DIGINPY")' TWRT(N) TURT(“#BEL ETX#");

END; ..
ENDPROC; |
PROC CHDCNS(); |
% CHECK IF DCWS ARE BACK IN SCAN X

ERRCODE:=GETDCUW(DIGCHAN) ;
IF ERRCODE#SMEDIAERR THEN
SECMEDCOM() ; :
FOR I:=1 TO 2 DO
DIGCHAN(I). STAT'-DIBCHAN(I) STAT LOR 13
REP; ' :

RELMEDCOM();
TWRT("BLF#BACK IN SCAN : DCUWSHBEL,ETX#");

. END; o o "
ENDPROC; o) .
' PROC CHANOUT (INT NJ;

% CHECK IF ANOUT N IS BACK IN SCAN 4

ERRCODE:=WRITE (WSNGMED,ANOUTP(N));
IF ERRCODE # MEDIAERR THEN

SECHMEDCOM() 5 :

ANOUTP(N) . STAT”ANOUTP(N) STAT LOR 15

RELMEDCOM() ;

TNRT("#LF#BACK IN SCAN : ANOUT *); INRT(N)' TWRT("#BEL ETX#")'
END;

- ENDPROC;

PROC CHDIGOUT(INT N} ; }
4 CHECKS IF DIGOUT N HAS COME BACK IN SCAN R 4

ERRCODE : =WRITE (WSNGMED,DIGOUT (N)) ;
IF ERRCODESMEDIAERR THEN
SECMEDCOM() 5
DIGOUT (N} .5TAT:=DIGOUT (N) .STAT LOR 13 |
RELMEDCOM () 3 | . -
TWRT ("#LF#BACK IN SCAN : DIGOUT "); IWRT(N); TWRT ("#BEL,ETX8");
END; | v o

ENDPROC;

OPTION (1) CHM;

CTITLE _ | . | '4 | | | "

LINKLB;
4 4
p 4 THIS MODULE CONTAINS PROCEDURES FOR PASSING AND RECEIVING DATA y 4
p 4 LINK PROCEDURES IN RSX 11M. IT IS INTENDED TO BUILD IT INTO A 4
4 GENERAL LIBRARY, ALTHOUGH IT IS INITIALLY ”RITTEN TO SERVE THE) 4
Y 4 MEDIA HANDLING pROCEDURES. b4
p 4 THE ENT PROC DEFINED HERE 1IS5: z
b4 MESSANS : PROC TO WRITE BUFFER DOWN DATA LINK AND TO READ %
§ i IN REPLY BUFFER,BOTH WITH TIMEOQUT v y 4
. v ¥
LET LUN = 3; X LOGICAL UNIT NUMBER OF MEDIA)4
LET RAL = OCT 001010; X COMMAND CODE FOR READ ALL b 4
"ET RNE = OCT 20; Z COMMAND SUB~CODE FOR READ NO ECHO) 4
LET WAL = OCT 000410; % COMMAND CODE FOR WRITE ALL y 4
LET KIL = OCT 000012; X CANCEL I/0 REQUEST COMMAND CODE Y4
LET BUFLENERR = 133 Z BUFFER LENGTH ERROR 4
LET TIMERRI = 14; Z TIMEOUT ERROR ON INPUT r4
LET TIMERRO = 15; Z TIMEOUT ERROR ON OUTPUT X
LET INERR = 16; X QIO S3TATUS ERROR ON INPUT A 4
LET OUTERR = 17 %X QI0 STATUS ERROR ON OUTPUT ' p4
LET NOERROR = D; ¥ NO ERROR DETECTED y4
LET LF = OCT 012; 2 LINE FEED CHARACTER Y 4
LET SP = OCT 040, X SPACE CHARACTER y 4
LET BITé = BIN D1000000; ' Z BIT 6 MASK
¥ ‘
I 4 MODE DEFINITIONS. o ' ' 4
% e s T o . . %
MODE IOSTAT (BYTE IOSTLOW, IOSTHIGH, INT IOSTVAL); Z 10 STATUS BLOCK

MODE FLAGBUF (INT FLAGLOCALO,FLAGLOCAL1,FLAGCOMMONZ ,FLAGCOMMONI) ;
% EVENT FLAG SETTINBS FOR RSX11M DIRS Z

y 4 EXTERNAL PROCEDURE DEFINITIONS. ’ 4

b4 ::::::::::::::::::::::::::::::: : _ b 4

Z THE FOLLOWING ROUTINES ARE IN THE BASE PROGRAMS 4

EXT PROC () RRNUL; - % NULL PROCEDURE 4

EXT PROC { INT) RRGEL; X UNRECOVERABLE ERROR HANDLER)4

x THE FOLLOWING ARE ROUTINES FROM LB:(1,1)MTSLIB.OLB : x

EXT PROC (INT) RELDEV,SECDEV; % DEVICE RELEASE,SECURE - z

EXT PROC (INT,INT,INT) MARKTIME' B

4 THE POLLONING ARE STANDARD STREAM I/O PROCEDURES - REFER)4

4 TO THE STREAM I/0 MANUAL z

EXT PROC (REF ARRAY BYTE) TWRT;

EXT PROC (INT) IWRT,OWRT;

)4 THE FOLLOWING ARE RSX 11M EXECUTIVE DIRECTIVES FROM X

)4 LB:(1,1)RTLEXC.OLB 4

EXT PROC (INT, INT,INT,INT, REF I0STAT,PROC() ,REF ARRAY INT) RSXGIUW;

EXT PROC (INT, PROC()) RSXCMK')4 CANCEL MARK TIME REQUESTS ')4
7 SVC DATA BRICK DEFINITIONS §

SVC DATA RRERR;
LABEL ERL;

INT ERN; o .
PROC (INT) ERP; - |
ENDDATA; - : - <

4 LOCAL DATA BRICK DEFINITIONS. ' 4
4 SEEZEESECoIEICEESRISZzSSzssaoa ' bs
DATA,LOCAL; | | -
IOSTAT STATUS; ' X 10 STATUS BLOCK)4
ARRAY (&) INT DEVPARM; - % DEVICE SPECIFIC PARAMETERS FOR QIO 4
. INT ERRCODE: NOERROR - % ERROR CODE OF LINK TRANSACTION - %
ENDDATA; : v . _
* ENT PROCEDURES. E | x
b 4 mzmoczzzssszzscoco . . : y 4

ENT PROC HESSANS (REF ARRAY BYTE OUTBUF INT OUTLEN,REF ARRAY BYTE INBUF
INT INLEN)INT,

THIS PROC OUTPUTS “OUTLEN" CHARS DOUWN THE LINE AND NAITS FOR

A REPLY OF °“INLEN® CHARS. . IT FIRST WAITS FOR THE FIRST THREE
CHARS OF THE REPLY, SINCE ALL ERROR REPLIES FROM MEDIA ARE THREE
CHARS LONG. IT TESTS THESE 3 CHARS TO SEE TF THEY CONSTITUTE A
COMPLETE REPLY; IF NOT, IT WAITS FOR THE REST OF THE REPLY.

PR 2EN
P2 PN

ERRCODE := NOERROR;
FOR I:=1 TO & DO DEVPARM(I):=0; REP;
Z ZERO THE DEVICE DEPENDENT PARANETERS)4
IF OUTLEN > O AND INLEN > O THEN
DEVPARM (1) : =BUFSET (OUTBUF) ; : :
DEVPARM(2) : =OUTLEN; . % SET BUFFER LENGTH

: 4

SECDEV(LUN) ; X SECURE THE DATA LINK,)4

MARKTIME (1,50,1); X 1 SEC TIMEOUT TO OUTPUT MESSAGE 4
RSXQIN(NAL LUN 1,0,5TATUS,RRNUL ,DEVPARM);

: 4 NRITE BUFFER OUTBUF TO LUN : 4

CHECKIO(TIMERRO,OUTERR) ; Z WAS OUTPUT OF MESSAGE SUCCESSFUL ? z

DEVPARM(1) : =BUFSET (INBUF) ; % SET UP PARAMETERS FOR RECEIVING MESSAGE *
IF INLEN > 3 THEN

DEVPARM(2) :=3; _ Z FIRST READ IN THREE BYTES 4
MARKTIME(1,150,1); - % 3 SEC TIMEOUT TO RECEIVE ANSWER FROM LINK 7
RSXQIW(RAL LOR RNE LUN,1,0,5TATUS,RRNUL ,DEVPARM) ;

2 GET INPUT BUFFER ,DO NOT ECHO %

CHECKIO(TIMERRI,INERR); X MESSAGE SUCCESSFULLY RECEIVED ?)4
IF ERRCODE=NOERROR AND INBUF(3) LAND BITé = 0O THEN :
% THERE ARE MORE BYTES TO COME : BIT & NOT SET AND NO ERROR YET %
DEVPARM (1) :=BUFSET(INBUF) + 3;)
‘DEVPARM(2) :=INLEN - 3; 2% INLEN 3 BYTES STILL TO COME . 4
MARKTIME (1,50,1);
RSXGIW(RAL LOR RNE LUN,1,0,STATUS,RRNUL DEVPARH)'
CHECKIO(TIMERRI, INERR)'

END;
ELSE ’ Z 3 (OR FEWER (?)) CHARS EXPECTED IN REPLY)4
DEVPARM(2) := INLEN;

'MARKTIME (1,150,1); .
RSXQIW (RAL LOR RNE,LUN,1,0,5TATUS,RRNUL,DEVPARM) ;
CHECKIO (TIMERRI, INERR) ;

END; :
REL6EV(LUN); - % RELEASE MEDIA ‘ B 4
ELSE ' Z BUFFERS OF WRONG LENGTH I 4
ERRCODE: =BUFLENERR;
END;

RETURN(ERRCODE)'

'ENDPROC; o
% LOCAL PROCEDURES. ‘ S x

PROC BUFSET (REF ARRAY ‘BYTE BUFFER) INT; ' '
' Z THIS ROUTINE TAKES A BUFFER ADDRESS X
% AND RETURNS IT AS AN INTEGER VARIABLE %

| o % MUST BE COMPILED IN SYSTEMS MODE :
INT TEMP; | | o -
CODE 10,0; | o o - |

- MOV’ *BUFFER(%5) ,»TEMP(25) ; MOVE ADDRESS IN BUFFER TO TEMP
~ INC *TEMP(%5) : POINT TO FIRST DATA BYTE IN BUFFER
*RTL; - - A |
RETURN (TEMP) ;

ENDPROC;

PROC CHECKIO (INT TIMERR,IOERR); : - _ ‘
: o : X PROC CHECKS EVENT FLAGS AFTER I/0 WITHZ
%4 TIMEOUT AND ERR ABORTS IF I/O OR TIMEOUT %

% ERROR. | . o
IF STATUS.IOSTLOW =0 THEN ~ TIME OUT HAS OCURRED oz
FOR I:=1 TO & DO DEVPARM(I):=0 REP; | -

RSXQIW(KIL,LUN,1,0,5TATUS RRNUL DEVPARM) ;
ERRCODE"TIMERR

ELSE , . - ’
RSXCMK (D,RRNUL) ; Z NO TIMEOUT S0 CANCEL MARKTIME : £
IF STATUS.IOSTLOW >= 128 THEN % 1/0 ERROR HAS -OCCURRED - %
ERRCODE:=I0ERR; . ‘ ‘ ' :
END; : ‘
END;

ENDPROC;

OPTION (1) CM;
TITLE
MEDLNK;

) 4
4
) 4
p4
4
Z
Z
4
b4
4
4
4

4
4
z
4
4
)4
4
)4
4
z
Z
)4
4

z

LET
LET
LET
LET
LET
LET
LET

LET

CLET
LET

LET.
- LET

LET
LET
LET
LET
LET
LET

LET.

LET
LET

LET
LET
LET

LET

DESCRIPTION OF MODULE.

pr=gengaciioniangusii oo Jmpepanie SRR SR g ang e

THIS MODULE CONTAINS THE PROCEDURES FOR TRANSFERRING DATA
'BETWEEN THE "MEDCOM' COMMON DATA BASE IN THE PDP 11/23 AND
IT CONTAINS THE FOLLOWING PROCS
AVAILABLE TO OTHER NODULES FOR READING FROM AND WRITING TO

THE REMOTE MEDIA SYSTEM.

MEDIA:
SINGLIN :

BLOCKIN

WRITE
 GETMED :
GETDCW :

THESE PROCS ARE NORNALLY

TASK.

LET DEFINITIONS.

piiasiiaeiinaanaianigengianinipailsegangen

LF = OCT 012
OCT D15;
OCT 013;
OCT D40;

<<
—
tHon

m
=z
o
wonn
w

ERPBASE = 500;

NOERROR
BCCRECERR = 1
ALIGNERR = 2;
WRONGCODE = 3;
PARERR = 43
BLOCKERR = 5;
BADCODE = 4;
MEDIAERR = 7;
LENERR = 83
OUTOFSCAN = 93
WRTERR = 10;

D-

ADDRERR = 11;
MIXEDADDRS = 12;

TIMEERR = 13;
ERRERR = 14;
BADBLKLIMS = 15;

RSNGMED = 1;

 ANALOGUE LIST FROM MEDIA

ONLY CALLED BY THE MEDIA UPDATE

T 32T AL N L T R 2 2P NL AL XY N2 M * 3R XN N

INPUT A SINGLE MEDIA CARD OR
ANOLOGUE LIST ITEM FROM MEDIA
INPUT A CONTIGUOUSLY ADDRESSED
BLOCK OF MEDIA CARDS OR AN

WRITE A 16 BIT WORD TO A SINGLE
MEDIA CARD

GET THE MEDIA STATUS WORD FROM
MEDIA

GET THE DIGITAL CHANGE WORDS
FROM MEDIA

LINE FEED CHARACTER
CARIAGE 'RETURN CHARACTER
VERTICAL TAB CHARACTER
SPACE. CHARACTER

END OF TEXT

PROMPT FOR INPUT CHARACTER
BELL CHARACTER -

START OF ERROR NUMBERS

NO ERROR :
BCC ERROR IN RECEIVED MESSAGE
ALIGNMENT ERR IN REC'D MESGK.
WRONG CODE IN REC°D MESSAGE
PARITY,ETC ERR IN REC'D MESG.
BCC ERR IN TRANSMITTED MSG6
INVALID CODE TRANSMITTED
MEDIA ERROR

LR R R & X & Ead P I AL AL e W LY PR 1L PY Y I 1L AL Y 12 YT L 2 ;AL IRy NNNN

RECEIVED ANSWER IS WRONG LENBTH
MEDCARD IS5 OUT OF SCAN 4
REC'D MSG NOT IDENTICAL TO = X%
XMITTED MSG IN WRITE.)4

BLOCK READ ADDRESSES NOT CONTIGUOUS
BLOCK READ ADDRESSES MIXED LIST AND
MEDIA.

TIMEOUT IN XMITTED MESSAGE %
INVALID ERROR CODE RETURNED BY MEDIA
INVALID BLOCK LIMITS ON BLOCKIN()

CODE : READ SINGLE MEDIA ADDR 2

RSNGANA

 BYTE TERMCH,
I0FLAG;

ENDDATA;

'CODE : READ SINGLE LIST ADDR

Z

2R 2R

LET = 23 4 Z.
LET RBLKMED = 3; Z CODE : READ BLOCK MEDIA ADDRS %
LET RBLKANA = 4; % CODE : READ BLOCK LIST ADDRS %
LET RDIGCHG = 7; % CODE : READ DIG CHG WORDS %
LET RSNGSTA = 6; %X CODE : READ MEDIA STATUS WORD %
LET WSNGMED = 12; Z CODE : WRITE TO MEDIA ADDR %
LET WSNGANA = 13; % CODE : WRITE TO LIST ADDR - p
LET GOMES = 14; % CODE : 2ND STAGE OF WRITE %
LET YES = 1;
LET NO = O;
% MODE DEFINITIONS. %
z Sz oozZzmzmTzzzsocoz z
MODE MEDCARD (INT STAT ,MEDDAT ,ADDR,REAL SCANTIME);Z MEDIA CARD RECORD %
MODE AOREC (INT UIC,USERINT, ANIN,REAL SETP); % A0 RECORD : '
%X EXTERNAL PROCEDURE DEFINITIONS. %
z predinegibadbngibundl oo g oo fivedlu g ool il =i il -l ad il fecfh e i ol g S = G il s . z
% THE FOLLOWING ROUTINES ARE IN THE EBASE PROGRAMS -
- EXT PROC () RRNUL; % NULL PROCEDURE
EXT PROC (INT) RRGEL; % UNRECOVERABLE ERROR HANDLER
X THE FOLLOWING ARE ROUTINES FROM LB: (1 ,1JMTSLIB.OLB. %
EXT PROC (INT) DELAY; % DELAY TASK BY NNN TICKS :
EXT PROC (BYTE) BYTE ODDPAR; % SET ODD PARITY ON BYTE
EXT PROC (INT) OWRT; %2 WRITE OUT INT AS 0OCTAL
EXT PROC (REAL) REAL TIMER % REAL TIME DIFFERENCE .
EXT PROC () TTIO; % SET UP TT 1/0
%2 - THE FOLLOWING ARE STANDARD STREAM 1/0 PROCEDURES ~ REFER X
¥ TO THE STREAM I/0 MANUAL %
EXT PROC(REF ARRAY BYTE) TWRT; S o .
EXT PROC (INT) IWRT; E R .
€ THE FOLLOWING IS FROM MODULE LINKLB.OBJ
EXT PROC (REF ARRAY BYTE,INT,REF ARRAY. BYTE,INT)INT MESSANS;
v % SEND MESSAGE DOWN DATA LINK AND GET ANSWER
% RETURN ERROR STATUS.

p4 THE FOLLOWING ARE FROM SECREL.RTL . , ' B2
EXT PROC () SECMEDCOM, RELMEDCOM; - %¥ SECURE & RELEASE DATA BASE
¥ SVYC DATA BRICK DEFINITIONS. 4
y 4 LN SIS EZZSECEISSERISZSZIIES Z
% SVC DATA BRICKS ARE PART OF THE INTERFACE 10 THE OPERATING %
Z SYSTEM X
'SVC DATA RRSIO; o : ' :

‘ PROC()BYTE IN; % STREAM I/0 INPUT PROCEDURE 4

PROC(BYTE) OUT % STREAM I/0 OUTPUT PROCEDURE %

ENDDATA; S :
SVC DATA RRSED;

LA R e N

SVC DATA RRERR;
LABEL ERL;
INT ERN;
PROC(INT) ERP;
ENDDATA;

% EXTERNAL DATA BRICK DEFINITIONS.

4
z ot gieaiioofiusiiodiodiuaiiionsiiio oo antiboionllboiengiuslion g g andiaoiogibveiiveiiugiogudlh ool =y z
X LOCAL DATA BRICK DEFINITIONS 4
y4 CCCoISIoSSSCCooEmSSESoIEEZIIox Z
pATA LOCAL; E - -
REF ARRAY. BYTE TERMB:="#CR, LF#"; % TERMINATING CHARACTERS FOR INPUT ¥
- ARRAY (16) BYTE OUTMSG; % MESSAGES TO MEDIA OUTPUT BUFFER X
ARRAY (80) BYTE INMSG; % MESSAGES FROM MEDIA INPUT BUFFER %
INT SAVEADDR; % HOLDS PREVIOUS ADDRESS FOR GOMES %
ENDDATA; . .
% OTHER ENT PROCEDURES. | | | . -

Z************;“* MEDI&A ACCESS ROUTINES *************************Z

ENT PROC SINGLIN (INT M@ODE REF MEDCARD INP) INT; % PROC TO READ A %
¥4 SINGLE INPUT FROM MEDIA. RESULT IS 16 BIT INT%
% THE ERROR STATUS 'IS RETURNED. . _ z

INT RET'

% READ SINGLE MEDIA OR LIST ADDRESS !

- RET:=READ(MCODE, INP ADDR 1)
' £ NO FAULT IN READ ,)4

~ IF RET = NOERROR THEN

SECMEDCOM () ; 4 SECURE DATA BASE
%
INP.MEDDAT:=DECODE(1); % GET DECODED DATA FRON INPUT BUFFER T 4
INP.SCANTIME:=TIMER(0.D0); % GET REAL TIME OF SCAN 4
RELMEDCOM (), S Z RELEASE DATA BASE X
END; :
: RETURN(RET)
ENDPROC;
ENT PROC BLOCKIN (INT MCODE,FIRS5T,LAST,REF ARRAY MEDCARD MBLOCK) INT;
% PROC TO READ IN & BLOCK OF ,) 4
% CONSECUTIVE MEDIA CARDS OR AN ANALOG X%
MULTIPLEXED LIST FROM MEDIA MEMORY 4
Z READS IN LAST-FIRST + 1 ITEMS AND PUTS THE VALUES INTO ELEMENTS FIRST Z
Z TO LAST OF ARRAY MBLOCK. 4
Z LAST MUST BE GREATER THAN FIRST. Y 4

INT RET:=NOERROR;

IF MCODE # RDIGCHG THEN
RET:=CHECLST (MBLOCK,FIRST,LAST) ;2CHECK THAT ARRAY IS SUITABLY ORDEREDZ
END; ‘ |
IF RET = NOERROR THEN X NO ERROR DETECTED BY CHECLST z
RET:=READ (MCODE,MBLOCK (FIRST) .ADDR,LAST-FIRST+1) ;% DATA LINK HANDLINGZ
IF RET = NOERROR THEN 3
SECMEDCOM () ; % SECURE DATA BASE - %
FOR 1:=FIRST TO LAST DO % GET DECODED DATA INTO DATA BASE X
MBLOCK (1) .MEDDAT:=DECODE(I-FIRST+1);
EHBLOCK(I) .SCANTIME:=TIMER(D.D);
REP; 4

STOPAST () ; ' |

ENDPROC;

PROC_HOME() ;
~ OUT(ESC); OUT('H');
 ENDPROC;

PROC CLEOS(); .
OUT(ESC); OUT("J");
ENDPROC;

ENT PROC SECMEDCOMQ);

2 THIS PROC DOES NOTHING. IT IS HERE BECAUSE THE ROUTINES IN MEDLNK CALL

§ A PROC OF THIS NAME TO SECURE MEDCOM. SINCE WE ARE NOT USING MEDCOM, THERE

2 IS NO NEED TO SECURE IT (!) AND THIS IS HOW WE AVOID DOING IT.
ENDPROC;

" ENT PROC RELMEDCOMO);

Z SEE COMMENTS T0 SECHEDCOM();
X :

ENDPROC;

X MEDLNKTST -- PROGRAM TO TEST THE ROUTINES IN MEDLNK.RTL y4
CLET LF

= 0CT 012; ‘ ¢‘IIIII”
LET ENQ = 0CT 005;
LET ETX = 0CT 003;
LET YES = 1;
LET NO = O;

MODE MEDCARD(INT STAT,MEDDAT,ADDR,REAL SCANTIME) ;

EXT PROC (INT,REF MEDCARD) INT SINGLIN,WRITE;

EXT PROC (INT,INT,INT,REF ARRAY MEDCARD) INT BLOCKIN;
EXT PROC (REF MEDCARD) INT GETMED; |
EXT PROC (REF ARRAY MEDCARD) INT GETDCW;

EXT PROC(REF ARRAY BYTE)TWRT;

EXT PROC() INT IREAD,OREAD;

EXT PROCCINT) IWRT,OWRT;

EXT PROC() GPIO;

DATA LOCAL;

INT ADR;

INT NITEMS;

INT DAT;

INT N;

INT COMMAND;

INT ERRNO;

MEDCARD MCARD:=(1,0,0,0.0);

ARRAY (8) MEDCARD MBLOCK:=((1,0,0,0.0),
(1,0,1,0.0),
(1,0,2,0.0),

ARRAY (2) MEDCARD DCWS:= (

P I T W B B]
-t il b h ol b =
N W W W Y e -
o000 o000
- M W e W W W

MEDCARD MSTAT:=(1,0,0,0.0);
ENDDATA; :

ENT PROC RRJOB();
INT BLKSIZE:=D;
INT STOP :=NO;
GPIO() ;

WHILE STOP=NO DO d
TWRT ("HLF# MEDLNK TEST MENU#SLF,LF#");
TWRT ("1. SINGLE MEDIA READ#LF#");
TWRT (2. SINGLE LIST READBLF#");
TWRT ("3, BLOCK MEDIA READ#LF#");
TWRT ("4, BLOCK LIST READ®LF#");

TWRT ("5. DIGITAL CHANGE WORDSHLF3");
TWRT ("6. MEDIA STATUS WORDHBLF#");
TWRT ("7, WRITE TO MEDIABLF#");
TWRT("8. WRITE TO LISTHLF#");

TWRT ("9. EXITHLESR") S

TWRT ("=>8ENQ#") ;

N := IREADQ);

IF N=1 OR N=2 THEN ¥ SINGLE READ X
COMMAND := N;

ADDRESS () ; A
MCARD.ADDR := ADR;
MCARD.MEDDAT := O;
MCARD.STAT:=1;

ERRNO := SINGLIN(COMMAND,MCARD) ;
: "); OWRT(MCARD.MEDDAT);

ELSEIF N=3 OR N=4 THEN ¥ BLOCK READ 2

TWRT("#LF#¥Data read (octal)
COMMAND := N;

TWRT("#LF#Media/list start address of block

ADR :=OREAD();
FOR I:=1 TO 8 DO

MBLOCK(I).ADDR := ADR + I - 1;

RER;

TNRT("#LF#NU of items(1 to 8) #ENQ#")

BLKSIZE:=1IREAD();

ERRNO: BLOCKIN(CONHAND,1,BLKSIZE,NBLOCK);

TWRT("#LF#Data read (octal)
FOR I:=1 TO BLKSIZE DO

REP;

ELSEIF N=5 THEN X READ DCW X

ELSEIF N=7 OR N=8 THEN ZWRITE 2

ERRNO:=GETDCW(DCWS) ;

- ");

OWRT (MBLOCK (I) .MEDDAT); TWRT(" ");

TWRT("#LF#Change words (octal) : ");
"} ;OWRT (DCWS (2) .MEDDAT) ;

ELSEIF N=6 THEN X READ MEDIA STATUS X

OWRT(DCWS (1) .MEDDAT) TWRT ("

ERRNO:=GETMED (MSTAT);
TWRT("#LF#Media status word

COMMAND := N + 5;
ADDRESS () ;

(octal)

TWRT("#LF#Data(octal) #ENQE");

DAT := OREAD();
MCARD.STAT:=1;
MCARD.MEDDAT:=DAT;
MCARD.ADDR:=ADR;

ERRNO:=WRITE(COMMAND ,MCARD) ;

ELSE

STOP:=YES;

END;

IF STOP=NO THEN
TWRT("#LF#Error status returned = ");

END;

REP;

ENDPROC;

PROC ADDRESS();
: TWRT("#LF#Mediaslist address (octal) BENQSE")

ADR := OREAD();

ENDPROC;

(octal) :BENQE");

: ") ;O0WRT (MSTAT.MEDDAT) ;

IWRT (ERRNO) ;

TURT ("BLF#") ;

X MUTEST -- PROGRAM FOR TESTING MEDUSER INTERFACE

LET LF = 0
LET ENG
LET ETX
LET YES
LET NO = O;

CT 123
5;
33
15

MODE MEDCARD (INT STAT,MEDDAT,ADDR,REAL SCANTIME);

EXT PROC() GPI10;

EXT PROC(REF ARRAY BYTE) TWRT;
EXT PROC(INT)OWRT, IWRT;
"EXT PROC () INT OREAD, IREAD;
EXT PROC(REAL) RWRT:

EXT PROC (YREAL RREAD;

EXT PROC (REAL)REAL TIMER;

EXT PROC (INT,INT,INT) WRMEDOUT;

EXT.PROC (INT,INT) WRCOMMINT, SETANINP;

EXT PROC (INT) INT RDCOMMINT, GETANINP;

EXT PROC (INT,INT,INT) INT RDMEDIA;

EXT PROC (INT,REF ARRAY INT) ATTACHED;

EXT PROC (INT,INT,INT,REF MEDCARD)READMEDCARD;
EXT PROC (INT,REAL)SETSETPT;

EXT PROC (INT)REAL GETSETPT;

EXT PROC (INT,INT,INT) REAL RDSCANTIME;

EXT PROC ()HOME,CLEOL,CLEQS;

DATA LOCAL;

ARRAY (32) INT OUTARRAY;

INT ADSWITCH;

INT T0SWITCH;

INT DAT;

INT N;

INT CHAN;

MEDCARD CARD:=(0,0,0,0.0);
ENDDATA;

ENT PROC RRJOB();
INT STOP:=NO;
GPIO();

HOME () ; CLEOS () 3
WHILE STOP=NO DO

CLEOL () ; TWRT (" MEDUSER Menu #LF#");

CLEOL () ;TWRT("#LF#") ;CLEOL ()

CLEOL () ; TWRT("1. ATTACHED 7. SETANINPRLF#");
CLEOL () ; TWRT("2. WRMEDOUT 8. GETANINPHLF#");
CLEOL () ; TWRT("3. RDMEDIA 9. SETSETPTH#LF#");
CLEOL () ;TWRT("4. RDSCANTIME 10. GETSETPTHLFSR");
CLEOL () ;TWRT("5. WRCOMMINT 11. READMEDCARD#LF#");
CLEOL () ;TWRT("&6. RDCOMMINTHLF#");

CLEOL () ;TWRT (" . 12. QuitsLF#");

~CLEOL () TURT("#LF#")'
CLEOL () ;TWRT("Choice BENQ#");
N: IREAD()
TNRT(“#LF#"); CLEOS(); TURT(“#LF#")}
IF N=1 THEN
- DOATTACHED ()
ELSEIF N=2 THEN
DOWRMEDOUT () ;

ELSEIF N=3 THEN
DORDMEDIA ()
ELSEIF N=4 THEN

DORDSCANTIME () ;
ELSEIF N=5 THEN
DOWRCOMMINT() ;
ELSEIF N=6 THEN
DORDCOMMINT () ;
ELSEIF N=7 THEN
DOSETANINP () ;
ELSEIF N=8 THEN
DOGETANINP () ;
ELSEIF N=9 THEN
DOSETSETPT () ;
ELSEIF N=10 THEN
DOGETSETPT () ;
ELSEIF N=11 THEN
DOREADMEDCARD () ;
ELSEIF N=12 THEN
STOP:=YES;
END;
HOME () 5
REP;
CLEOS ()
TWRT("BETXS8");
ENDPROC;

PROC DOATTACHED();
GETADSW ()

- ATTACHED (ADSWITCH,OUTARRAY)
TWRT("#LF8Attached to channels : #LF#"),
FOR 1:=1 TO LENGTH OUTARRAY DO

_IF OUTARRAY(I)#0 THEN
IWRT (OUTARRAY (1)) ; TWRT("™ ™);
END;
REP;
ENDPROC;

PROC DOWRMEDOUT ()
GETADSW () ;
GETCHAN ()
GETDATA () ;
WRMEDOUT (ADSWI TCH, CHAN, DAT) ;
TWRT ("#LFSWRMEDOUT complete®);
- ENDPROC;

PROC DORDMEDIA();
GETADSHW () ;
GETIOSW()
GETCHAN () ;
DAT := RDMEDIA(ADSWITCH,IOSWITCH,CHAN) ;

TWRT ("#LF#Data read (Octal) = ") ;O0WRT(DAT);

ENDPROC;

PROC DOWRCOMMINT ()3
GETCHAN();
GETDATA()
WRCOMMINT (CHAN,DAT) ;
 TWRT ("#LF#URCOMMINT complete®);
ENDPROC;

PROC DORDCOMMINT ();

GETCHAN Q) ;
DAT : =RDCOMMINT (CHAN) ;

TWRT("#LF#Data read from common integer (Octal)

ENDPROC;

PROC DORDSCANTIME();
REAL X;
GETADSWK () ;
GETIOSKW () ;-
GETCHAN() ;
X:=RDSCANTIME (ADSWITCH,IOSWITCH, CHAN) ;
TWRT ("#LF#S5cantime = ");RWURT(X);

TURT("#LF#Secands ago = ") ;RWRT(TIMER(X));

ENDPROC;

PROC DOSETSETPT();
REAL X;
TWRT("#LF#Analog output number HBENQE");
- CHAN := IREAD();
TURT("#LF#Setpoint (Real) BENGH");
X:=RREAD() ;
SETSETPT(CHAN, X);
TWRT ("#LF#SETSETPT complete");
ENDPROC;

PROC DOGETSETPT();
REAL X; .
TWRT("#LF#Analog output number BENQH");
CHAN := IREAD(); ,
X:= GETSETPT (CHAN) ;
TWRT("#LF#Setpoint = "); RUWRT(X);
ENDPROC;

PROC DOSETANINP();
INT ANO,ANI;
TWRT ("BLF#Analog output number BENQB");
ANO := IREAD();
TWRT("#LF#Analog input number BENQ#");
-ANI = IREADQ); '
SETANINP(ANO,ANI);
TWRT ("H#LFESETANINP complete");

ENDPROC;

PROC DOGETANINP();
INT ANI,ANO;
TWRT ("#LF#Analogue output number HENGE");
ANO := IREAD();
ANI := GETANINP(ANO);

TURT ("#LF#Corresponding analogue input number

ENDPROC;

PROC DOREADMEDCARD () ;
GETADSW () 3
GETIOSW();

TURT("sLF#Card number #ENQ#");CHAN := IREAD();

READMEDCARD (ADSWITCH, IOSWITCH, CHAN, CARD) ;

TWRT("BLF,LF#5tat : "); OWRT(CARD.STAT);
TWRT ("#LF#Meddat ¢ "); OWRT(CARD.MEDDAT);
TWRT("SLF#Addr : "); OWRT(CARD.ADDR);

TWRT("#LF#Scantime < "); RWRT(CARD.SCANTIME) ;

ENDPROC;

") ;OWRT (DAT) ;

") ; IWRT (AND) ;

PROC GETCHAN() ;
. THRT("#LF#Channel number SENG#");
- CHAN := IREAD(); : -
- ENDPROC;

PROC GETDATA();
TWRT("#LF#Data (Octal) BENQE");
DAT := OREADO); 4

ENDPROC;

'PROC GETADSW () ;
TURT ("SLFEADSWITCH (0=ANALOG, 1=DIGITAL) RENQ#") ;
ADSWITCH := IREAD();

ENDPROC;

PROC GETIOSW(); -
TWRT ("#LFAIOSWITCH (D=INPUT, 1=0UTPUT) FENGH™);

. IOSWITCH := IREADO);

ENDPROC;

TITLE SIMBGS :
PACKAGE TO ENABLE DIGITAL SIMULATION OF ANALOGUE SYSTEMS. °

IT SERVES AS A CORE WHICH CALLS THREE USER-WRITTEN SUBROUTINES
WHICH SPECIFY EXACTLY WHAT THE ANALOGUE SYSTEM IS.

’

LET LF=0CT 12;
LET ENG=5;
LET YES=1;
LET NO=0;

EXT PROC () SIMINIT, X USER-SUPPLIED ROUTINE CALLED BEFORE MAIN LOOP %
SIMJOB, X USER-SUPPLIED ROUTINE CALLED INSIDE MAIN LOOP X
SIMTIDYUP; X USER-SUPPLIED ROUTINE CALLED AFTER MAIN LOOP X

EXT PROC () STARTAST,STOPAST, X AST ROUTINES X
HOME, CLEOS, CLEOL ; % SCREEN CURSOR HANDLING ROUTINES 2

EXT PROC ()INT CTLCYET; X AST ROUTINE 4

EXT PROC (INT) DELAY;

EXT PROC(REAL)REAL TIMER;

EXT PROC ()INT IREAD;

EXT PROC ()RRNUL;

EXT PROC () GPIO;

EXT PROC(REF ARRAY BYTE) TURT;

SVC DATA RRERR;
LABEL ERL;
INT ERN;

PROC (INT)ERP;

ENDDATA;

ENT DATA SIMDATA;
INT N, X NO OF TIMES ROUND MAIN LOOP X
DELAYTICKS;% DELAY IN MAIN LOOP, USED IN REALTIME APPLICATIONS X
REAL DT; % THE TIME-STEP AROUND LOOP 4
ARRAY(4) REAL TIME; X THE PAST 4 SAMPLING TIMES (SECS PAST MIDNIGHT) /%
ENDDATA;

DATA LOCAL; .

INT TIDYUP, ¥ FLAG TO INDICATE IF SIMTIDYUP() IS TO BE CALLED 4
RESTART,X FLAG TO INDICATE IF PROGRAM MUST RESTART ON COMPLETION ¥
STOP, % FLAG TO STOP MAIN LOOP X -
REALTIME, % FLAG TO INDICATE REALTIME OR OFFLINE CONTROL 4
AST; _ X FLAG TO INDICATE IF THE AST ROUTINES ARE USED %
PROC () USERROUTINE:=RRNUL; % THE USER ROUTINE BEING EXECUTED 4
ENDDATA; ,

ENT PROC RRJOB();

RESTART:=YES;

WHILE RESTART=YES DO
RESTART:=NO;
INITIALISEFORLOOP();
SETDEFAULTS ()

USERROUTINE:=SIMINIT;
SIMINIT(); % USER SUPPLIED INITIALISATION X

IF AST=YES THEN STARTAST(); END;
WHILE STOP=NO DO
© Niz=N+1;

GETDT () ;

USERROUTINE:=SIMJOB;
SIMJOB(); X USER SUPPLIED MAIN LOOP PROCESSING

DELAY(DELAYTICKS);
IF AST=YES THEN
IF CTLCYET ()=YES THEN
PROCESSINTERRUPT () ;
END;
END;
REP; -
IF AST=YES THEN STOPAST(); END;

IF TIDYUP=YES THEN
USERROUTINE:=SIMTIDYUP;
SIMTIDYUP(); % USER SUPPLIED TIDYUP ROUTINE
END;
~ REP;
ENDPROC;

PROC INITIALISEFORLOOP();
GPIOO);
HOME () ;CLEOS () ;
TWRT (" ANALOG SIMULATION PACKAGE#LF,LF#");
N:=0;
TIDYUP:=YES;
STOP:=NO;
ENDPROC;

PROC SETDEFAULTS();
DELAYTICKS:=50; - % 1 SECOND DELAY ROUND LOOP
AST :=YES; % SUPPORT AST INTERRUPTS
REALTIME:=YES; % REALTIME,NOT OFFLINE
ENDPROC; *

PROC GETDTO);

Z THIS ROUTINE WORKS OUT DT IN A REAL-TIME SITUATION.

N re R

IT CALCULATES

)4

X AN AVERAGE OVER THE PAST 4 SAMPLING TIMES, WHICH IS OPTIMUM FOR THE %

X INTEGRATION ALGORITHM USED.
X IN OFFLINE SITUATION, THIS PROC DOES NOTHING.

IF REALTIME=YES THEN
TIME(4) :=TIME(3) ;
TIME(3) :=TIME(2);
TIME(2) :=TIME(1);
TIME(1) :=TIMER(O.O};
IF N=2 OR N=3 THEN
DT:= (TIME(1) - TIME(N))/REAL(N-1);
ELSEIF N>=4 THEN

DT:= (TIME(1) + TIME(2) - TIME(3) - TIME(4))/4.0;

END;
END;
'ENDPROC;

ENT PROC INTEGRATE (REF ARRAY REAL XDOT, REF REAL X, REAL X0);

“IF N=1 THEN
% SET TO INITIAL VALUE . 4
VAL X:=X0; | <
XDOT (2) :=XDOT (1) ;

ELSEIF N=2 THEN
% USE TRAPEZOIDAL RULE 4
VAL X:= XO + (XDOT(1) + XDOT(2))#DT/2.0;
XDOT (3) :=XDOT(2) ;

4
X

XDOT (2) :=XDOT (1) ;
ELSEIF N=3 THEN

% USE SIMPSON'S RULE o X

VAL X:= XO + (XDOT(1) + 4.0#XDOT(2) + XDOT(3))#DT/6.0;

XDOT (4) :=XDOT (3)

XDOT (3) :=XDOT (2) ;

XDOT (2) :=XDOT (1) ;
ELSE

% USE ADAMS’ 4TH ORDER METHOD 4

VAL X:2 X + (9.0%XDOT(1)+19.0%XDOT (2)-5.0%XDOT (3) +XDOT (4))#DT/24. 0;

XDOT (4) :=XDOT (3) ;

XDOT (3) : =XDOT (2) »

XDOT (2) :=XDOT (1) ;

END;
ENDPROC;
ENT PROC HALT ()
% STOP PROCESSING OF MAIN LOOP x
IF USERROUTINE=SIMJOB THEN
: STOP:=YES;
ELSE
ERP(681);
END;
ENDPROC;
ENT PROC NOAST();
X DO NO AST INTERRUPT PROCESSING)
IF USERROUTINE=SIMINIT THEN :
AST:=NO;
ELSE
ERP(602) ;
END;
ENDPROC;

. ENT PROC OFFLINE();
- X CONTROL 1S OFFLINE NOT REALTIME X
IF USERROUTINE=SIMINIT THEN
REALTIME:=NQO;
DELAYTICKS'“D'
ELSE
ERP(603);
END;
ENDPROC;

PROC PROCESSINTERRUPT();
INT CHOICE:=0;

- STOPAST (} 5

WHILE CHOICE<1 OR CHOICE>S DO
HOME () ; CLEOS () ;
TNRT("INTERRUPT MENUSLF, LF#”)'
TWRT("1. CONTINUE#LFS");
TWRT("2. TIDY UP AND RESTART#LF#");
TWRT("3. RESTARTHLF#");
TWRT("4. TIDY UP AND ABORTHLF#");
TWRT ("S5. ABORTH#LF,LF#");
TWRT ("?7#ENQSB");
CHOICE'-IREAD()

- REP;

IF CHOICE=2 THEN

" RESTART:=YES;

STOP:=YES;

ELSEIF CHOICE=3 THEN
RESTART :=YES;
STOP:=YES;,
TIDYUP:=NO;

ELSEIF CHOICE=4 THEN
STOP:=YES;

ELSEIF CHOICE=5 THEN
STOP:=YES;
TIDYUP:=NO;

END;

- STARTAST () ;

ENDPROC;

TITLE PLOTLIB; §
% LIBRARY OF ROUTINES TG ASSIST GRAPHICS USING THE TEKTRONIX 4014 X
% PLOTTING TERMINAL. X

LET FF
LET GS
LET ESC
LET ENQ
LET ETX
LET LF
LET CR
LET EOS
LET SUB

HEX OC;
HEX 1D;
HEX 1B;
HEX 05;
HEX 03;
HEX D0A;
“HEX 0D;
HEX 80;
HEX 14;

LET HISBITS = HEX 3E0;
LET LOWSBITS = HEX 1F;
~LET HIY = BIN 00100000;
LET LOWY = BIN 01100000,
LET HIX = BIN 00100000,
LET LOWX = BIN 01000000,

SVC DATA RRSIO;
PROC ()BYTE IN;
PROC (BYTE) OUT;

ENDDATA;

§VC DATA RRERR;
LABEL ERL;
INT ERN;
PROC (INT) ERP;
ENDDATA;

EXT PROC (REF ARRAY BYTE, REF ARRAY BYTE)INT TREAD;
EXT PROC (INT) RRGEL;
EXT PROC (INT) DELAY;

ENT DATA PLOTDATA;
REAL XOFFSET, XFACTOR, YOFFSE
REAL XMIN := -1.0, XMAX := 1

CYMIN := -1.0, YMAX 2= 1
ARRAY (20) BYTE REPLYBUF;
ENDDATA;

T, YFACTOR;
0
0

- -

- ENT PROC SCALE (REAL XMN, XMX, YMN, YMX);
X SCALE SCREEN SIZE TO THE UNITS THE UéER WILL USE X

IF XMN>=XMX OR YMN>=YMX THEN
RRGEL (609)

ELSE
XOFFSET
YOFFSET
XMAX ==
YMAX =
XFACTOR
YFACTOR

END;

ENDPROC;

ENT PROC ISOSCALE(REAL XCENTRE,YCENTRE,RADIUS)REAL;

> 3
zx
—f p—y
zz
" l:

024.0/ (XMAX-XMIN) ;

X
Y
’
i
781.0/7 (YMAX-YMIN) ;

sn o8 = D se o
HHTXon

% SCALE SCREEN SIZE TO USER’S UNiTS, BUT ENSURE EQUAL SCALE l
X SIZE IN X AND Y DIRECTIONS. (PRESERVES SHAPES OF OBJECTS) X

REAL MAJAXIS;
MAJAXIS:=2.0#RADIUS*1024.0/781.0;
SCALE (XCENTRE~-MAJAXIS/2.0, XCENTRE+MAJAX1S/2.0, YCENTRE-RADIUS , Y CENTRE+RAD US
RETURN (MAJAXIS) ;

ENDPROC;

ENT PROC DRAW (REAL XPOS, YPOS);
% DRAW A LINE FROM THE CURRENT SCREEN POSITION TO (XPOS,YPOS). X%
~INT XSCR, YSCR;
CONVERT (XPOS, YPOS, XSCR, YSCR);
SCRDRAW (XSCR, YSCR);
ENDPROC;
ENT PROC MOVE (REAL XPOS, YPOS);
% MOVE TO SCREEN POSITION (XPOS,YPOS) WITHOUT DRAWING A LINE. X
" INT XSCR, YSCR;
CONVERT (XPOS, YPOS, XSCR, YSCR);
SCRMOVE (XSCR, YSCR) ;
ENDPROC;
ENT PROC GRAPHMODE ()
% ENTER GRAPHICS MODE : %
OUT(GS) ;
SCRDRAW(512, 390);
ENDPROC;
ENT PROC ALPHAMODE () ;
% ENTER ALPHANUMERIC (TEXT) MODE 2

 OUT(CR};
ENDPROC;

ENT PROC CROSSHAIRS();
X GENERATE CROS5-HAIRS ON SCREEN 4

OUT (ESC) ;
OUT (SUB) ;
OUT(ETX) ;

ENDPROC;

ENT PROC GETCROSSHAIRS (REF REAL XP0S, YPOS);
X READ THE (X,Y) POSITION OF THE CROSS-HAIRS X

INT REPLYLENGTH, XSCR, YSCR;
OUT (GS) ;
CROSSHAIRS () ;
REPLYLENGTH := TREAD(REPLYBUF, "#CR, LF#");
IF REPLYLENGTH#5 THEN
ERP(610) ;
VAL XPOS := (XMAX-XMIN)/2.0;

VAL YPOS := (YMAX-YMIN)/2.0;
ELSE :
XSCR := ((INT(REPLYBUF(2)) LAND LOW5SBITS) SLL 5) +

(INT(REPLYBUF (3)) LAND LOWSBITS);

YSCR := ((INT(REPLYBUF(4)) LAND LOWSBITS) SLL 5) +

(INT (REPLYBUF (5)) LAND LOWSBITS);
VAL XPOS := XOFFSET + (REAL(XSCR)/XFACTOR) ;
VAL YPOS := YOFFSET + (REAL (YSCR)/YFACTOR);
END; :
ENDPROC;

ENT PROC CLEARSCREEN();
OUT(ETX) ;
OUT (ESC) ;
OUT (FF) 3
OUT (ETX) ;
DELAY (50) 3
ENDPROC;

PROC SCRHOVE (INT XPOS, YPOS);
X MOVE TO (X,Y) IN SCREEN. UNITS (NOT USER UNITS)

OUT (BS) ;
SCRDRAW (XPOS, YPOS);
ENDPROC;

PROC SCRDRAW (INT XPOS, YPOS);
Z DRAW LINE TO (X,Y) IN SCREEN UNITS (NOT USER UNITS)

IF XP0S>1023 THEN XPOS := 1023
 ELSEIF XPOS<O0 THEN XPOS := O
END:
IF YPOS>780 THEN YPOS := 780
 ELSEIF YPOS<O THEN YPOS := O
END;

OUT (BYTE (((YPOS LAND HISBITS)
OUT (BYTE ((YPOS LAND LOWSBITS)
OUT (BYTE (((XPOS LAND HISBITS)
OUT (BYTE ((XPOS LAND LOWSBITS)
OUT(ETX) ;

ENDPROC;

PROC CONVERT (REAL XPOS, YPOS, R
X CONVERT USER UNITS TO SCREEN U

IF XPOS<XMIN THEN
XP0S := XMIN;
ERP (611);

ELSEIF XP0OS>XMAX THEN
XPOS = XMAX;
ERP (611);

END;

IF YPOS<YMIN THEN
YPOS := YMIN;

: ERP (611);

ELSEIF YPOS>YMAX THEN

~ YPOS := YMAX;
ERP (611);

END;

SRL 5) LOR HIY));
LOR LOWY));
SRL 5) LOR HIX));
LOR LOWX));

EF INT XSCR, YSCR);
NITS X

VAL XSCR := INT ((XPOS - XOFFSET) * XFACTOR);
VAL YSCR := INT ((YPO5 - YOFFSET) # YFACTOR);
~ ENDPROC; | :

TITLE STAR;

LET

ETX=3;

LET ENG=5;

LET

SUB=HEX 1A;

LET ESC=HEX 1B;

LET
LET

65 = HEX 1D;
LF = 10;

LET FALSE = O;

MODE IOCL(REF ARRAY BYTE BFR,INT N,DV,PTR,MD,TRM);

EXT
EXT
EXT
EXT
EXT
EXT
EXT
EXT
EXT
EXT
EXT
EXT
EXT
EXT
EXT
EXT
EXT
EXT

PROC ()BYTE GPIN,TTIN,HSIN;
PROC (BYTE) GPOUT,HSOUT,TTOUT,OUTF;
PROC (REAL)REAL RSIN,RCOS,REXP;
PROC(REAL) RWRTU;

PROC () INT IREAD;

PROC ()REAL RREAD;

PROC(REF ARRAY BYTE,INT)DBGWRT;

PROC (INT) IWRT;

PROC(REF ARRAY BYTE)TWRT;

PROC (REF ARRAY BYTE,REF ARRAY BYTE) INT TREAD;
PROC (INT) DELAY;

PROC () STARTAST,STOPAST;

PROC ()INT CTLCYET, ASTYET;

PROC (REAL, REAL, REAL, REAL) SCALE;
PROC (REAL, REAL, REAL)REAL ISOSCALE;
PROC (REAL, REAL) DRAW, MOVE;

PROC () GRAPHMODE, ALPHAMODE;

PROC () CLEARSCREEN;

DATA LOCAL;
ARRAY (132)BYTE BUF, TIBUF,TOBUF, TEKINBUF;
I0CL TEKOUTCL:=(BUF,0,3,0,0,0);

- 10CL TEKINCL := (TEKINBUF 0.4,0,0,0);
10CL TTOUTCL:=(TOBUF,0,1,0,0,0);
10CL TTINCL:=(TIBUF,D,Z,D,D,D);
ARRAY (64)REAL X,Y;

ENDDATA;

Sve

DATA RRCHAN;

REF I0CL INCL,OUTCL;
ENDDATA;

SVC

DATA RRSIO;

PROC ()BYTE IN PROC (BYTE) OUT;
ENDDATA;

ENT

PROC RRJOB();

INT N;

IN 1= GPIN;

OUT := HSOUT;
INCL := TTINCL;
WHILE 1=1 DO

OUTCL := TTOUTCL;
TWRT ("SLF#NUMBER OF SIDES (1-64) ?HETX#");
N := IREADO);

SETUPPOINTS (N) ;

X DEMONSTRATION PROGRAM FOR THE TEKTRONIX PLOTTING LIBRARY
‘% PLOTLIB. DRAWS A PATTERN OF LINES ON THE SCREEN.

4
)4

~OUTCL := TEKOUTCL;
IS0SCALE (0.0,0.0,1.01);
CLEARSCREEN()
GRAPHMODE () ;
PLOTIT(N);
MOVE(0.0,1.0);
ALPHAMODE () ;

REP;

ENDPROC;

PROC PLOTIT(INT N);
% PLOTS A STAR PATTERN WITH N VERTICES %

INT L,K;
INT NBY2;
K:=1;
L:=1;
MOVE(X(1),Y(1));
FOR I:=1 TO (N-1) :/ 2 DO
FOR J:=1 TO N DO
IF L=K AND J#1 THEN
K:=(K MOD N} + 1;
Li=K;
MOVE (X(L),Y(L)); .
END; ' '
L:=((L+I-1) MOD N) + 1;
DRAW(X (L) ,Y(L));
REP;
REP;
IF (N MOD 2)=0 THEN
NBY2:=N :/ 2;
TO NBY2 DO
- Ki=((K+NBY2-1}) MOD N) + 1;
DRAW (X (K),Y(K)) 3
K:= (K MOD N) + 1,
MOVE (X (K) ,Y(K));
REP;
- END;
ENDPROC;

PROC SETUPPOINTS(INT N);
X INITIALISES VERTICES OF THE STAR PATTERN

REAL THETA;
THETA := 2.0%3.1415926/REAL (N);
FOR I:=1 TO N DO
X (1) :=RCOS((REAL(I-1))*THETA);
Y1) :=RSIN((REAL(I-1))*THETA) ;
REP;
OUT (ETX) ;
ENDPROC;

TITLE : SCREEN CURSOR POSITIONING ROUTINES;

LET LF = OCT 12;
LET ENQ=5;
LET ETX=3;
LET NL = 1
LET ESC =
LET SP =

MODE IOCL (REF ARRAY BYTE BFR, INT N,DV,PTR,HD,TRM);

0,
0CT 33;
;

EXT PROC (REF ARRAY BYTE) TWRT;

EXT PROC () BYTE HSIN;
EXT PROC (BYTE) HSOUT;

EXT PROC (INT) TIMDAT;

SVC DATA RRS5I0; PROC(O)BYTE IN; PROC(BYTE)OUT ENDDATA;
SVC DATA RRERR; LABEL ERL; INT ERN; PROC(CINT) ERP ENDDATA;
- SVC DATA RRCHAN; REF I10CL INCL, oufcL ENDDATA;

ENT DATA 10LOCAL;
ARRAY (132)BYTE IBUF,OBUF:=(NL,S5P(131));

1I0CL ICL := (IBUF,D,1,0,1,0); % HAVE SET MD TO 1 FOR BINARY
1I0CL OCL := (OBUF,0,1,1,1,0); X DITTO 3
ENDDATA;

PROC INITIALISEIOCO), .
% BASED ON TTIO() BUT USE HSIN,HS50UT FOR BINARY DATA XFER)4

IN:=HSIN;
0UT :=HS50UT;
INCL:=1ICL;
OUTCL:=0CL;
ENDPROC;

ENT PROC GOTOLC(INT LINE,COL);
% PUT CURSOR AT POSITION (LINE,COL) ON SCREEN)4

IF LINE>O AND COL>D THEN
IF LINE <= 24 AND COL <= 80 THEN
OUT (ESC) ; /
ouUT('Y");
OUT (BYTE(LINE + * * -
OUT(BYTE(COL + * * - 1
_ ELSE
~ ERP(406);
END;
ELSE
ERP (406) ;
END;
ENDPROC;

- umd
N

-y
-e

ENT PROC HOME();
"OUT(ESC); OUT('H');
ENDPROC;

ENT PROC CLEOS(); |

% CLEAR TO END OF SCREEN %
 OUT(ESC); OUT("J');
ENDPROC;

ENT PROC CLSCREENQ);
HOME () ;
CLEOS () ;

ENDPROC;

ENT PROC CLEOLQ); |
X CLEAR TO END OF LINE X
~ OUT(ESC); OUT('K');
'ENDPROC;

ENT PROC PRINTTIME();
TIMDAT (-1) ;
'ENDPROC;

ENT PROC FORCEBUFFEROUTPUT ()
OUT(ETX);
ENDPROC;

TITLE AST; »

% ASYNCHRONOUS SYSTEM TRAP ROUTINES, FOR ASYCH. CHARACTER INPUT.X

% ASYNCH INPUT IS FROM LUN 2, AND THE GIOS USE EVENT FLAG 1. %

% THE AST ROUTINES PUT THE INCOMING CHARACTER INTO CHAR/LOCAL %

% AND SET AN EVENT FLAG TO SIGNAL THAT AN AST OCCURRED. IF THE %

% USER PREFERS NOT TO USE THE ROUTINES THAT WAIT FOR AST WITH %

% TIMEOUT, HE CAN POLL TO SEE IF AST HAS OCCURRED BY USING %

% THE ASTYET POLLING ROUTINES. X

LET NOTYET=0; % NO AST HAS OCCURRED SINCE LAST ONE 4
X DEALT WITH. 4

LET AST=1; % NON CONTROL-C AST HAS OCCURRED. P

LET CTLC=2; % CONTROL-C AST HAS OCCURRED. %

% Event flag numbers used : . :) 4

LET ASTEF=4; % MUST BE IN RANGE 1..16 4

LET AST2EF=3; % MUST BE IN RANGE 1..16 %

LET ASTMASK= OCT 000015; X EF 3 0R 4 OR 1 %

LET CTLCMASK=0CT DDDOOS; X EF 3 OR 1 %

LET NCTLCMASK=0CT 0O0D11; X EF 4 OR 1 ¥

LET YES=1;

LET NO=D;

LET LF=0CT 12;

LET ENG=5;

LET ETX=3;

MODE IOCL(REF ARRAY BYTE BFR,INT N,DV,PTR,MD,TRM);
MODE IOXD(INT I10ST1,I05T2,BITS,THO);

EXT PROC (INT,INT,INT)MARKTIME;

EXT PROC (INT)CANMARK;

EXT PROC (INT)INT TSTEF;

EXT PROC (REAL)REAL TIMER;

EXT PROC () TTIO,RRNUL;

- EXT PROC(INT)IURT s OWRT;

EXT PROC(INT)SET RESET WAIT,DELAY,RRGEL;
EXT PROC(REF ARRAY BYTE)TURT

EXT PROC(REF ARRAY BYTE,INT)DBGNRT;

EXT PROC(INT,INT)RSXWTL;

SVC DATA RRSIO;
PROC ()BYTE IN;
PROC (BYTE) OUT;

ENDDATA;

SVC DATA RRCHAN;
REF 10CL INCL,OUTCL;
ENDDATA;

SVC DATA RRIOX;
REF I0XD INXD,OUTXD;
ENDDATA;

SVC DATA RRERRX;
~INT LINENO;
BYTE UEFLAG,ERRLUN;

- INT RSXDSW; :
ENDDATA; ,) _
SVC DATA RRERR; -~ ‘ |
LABEL ERL; |
INT ERN;

PROC(INT)ERP;
ENDDATA;

DATA LOCAL; .

INT ASTFLAG:=NOTYET;

INT CHAR:=D;

I0XD MYINXD:=(0,0,0,0);
10XD MYOUTXD:=(0,0,0,0);
" ENDDATA;

ENT PROC STARTAST();
% This proc attaches to TI: to start AST processing

REF IOXD IO0SB:=MYOUTXD;

CODE 52,0;
LIST MEB
.GLOBL $DSW
.MCALL QIO0%$5,QI0S5Y$,TTSYM$
MOV *IOSB(B) JR1
QI0%S #10.ATA, #Z #1,,R1,,<#ASTIO,,#AST2>
MOV $DSW, *RSXDSN/RRERRX(D)
BCC *DOK

*RTL; RRGEL (608);

DOK:

ENDPROC;

ENT PROC WAITAST(INT NTIX)INT;
Z Wait for AST to occur (timeout=NTIX ticks) ¥
MARKTIME (1 ,NTIX,1);
RSXWTL (0,ASTMASK) ;
CANMARK (1) ;
RETURN(ASTYET ())
- ENDPROC;

ENT PROC WAITCTLC(INT NTIX)INT,;
%2 Wait for "C AST to occur (timeout=NTIX ticks) X.
MARKTIME (1,NTIX,1};
RSXWTL (O0,CTLCMASK) 3
CANMARK (1} ;
RETURN(CTLCYET(}));
ENDPROC;

ENT PROC WAITNCTLCCINT NTIX) INT;
% Wait for non-"C AST to occur (timeout=NTIX ticks)
MARKTIME (1,NTIX,1); |
RSXWTL (D,NCTLCMASK) ;
" CANMARK (1) ;
 RETURN(NCTLCYET());
ENDPROC;

ENT PROC WTCCCZ(INT NTIX)INT;
X WAIT FOR CTLC OR CTLZ TIMING OUT AFTER NTIX TICKS
REAL STARTTIME;
INT STOP,NWAIT,RET;
NWAIT:=NTIX;

STARTTIME: =TIMER(0.0); o |
STOP:=NO;
WHILE STOP=NO DO)

IF WAITAST(NWAIT)=YES THEN
IF CHAR=3 OR CHAR=26 THEN ¥ CTLC OR CTLZ X

STOP:=YES;
RET:=YES;
ELSE

NWAIT:=NTIX - INT(50.0#TIMER(STARTTIME));
IF NWAIT<O THEN NWAIT:=0; END;
END;
ELSE
STOP:=YES;
RET:=NO;
END;
REP;
RETURN(RET) ;
ENDPROC;

- PROC ASTIOPROCO);

X AST SERVICE ROUTINE TO SERVICE AST INTERRUPTS. SHOULD
Z NEVER BE CALLED EXPLICITLY

RRGEL (607) ; % PREVENTITIVE MEDICINE

CODE 34,0;
.LIST MEB
.MCALL ASTX$S,DECL$S,SETF$S

ASTIO: : -
MOV B*AST, *ASTFLAG/LOCAL :BGS
MOV (SP) +,*CHAR/LOCAL |
SETF$S #*ASTEF
BCS DONE
DECL$S

DONE : ASTX$S
#RTL; RRGEL(407);
ENDPROC;

PROC AST2PROC();
X AST SERVICE ROUTINE FOR CONTROL-C AST INTERRUPRTS. SHOULD
Z NEVER BE CALLED EXPLICITLY.
RRGEL (607) ; Z PREVENTITIVE MEDICINE

CODE 34,0;

.LIST MEB

.MCALL ASTX$S,SETF$S,DECL$S
AST2: |

MOV B*CTLC,*ASTFLAG/LOCAL

MOV (SP) +,*CHAR/LOCAL

SETF$S #*AST2EF

BCS DONE?2

. DECL$S

DONE2: ASTX$S
*RTL; RRBEL (607);
ENDPROC;

ENT PROC STOPAST(); .
X Detaches from terminal and stops AST processing X
REF I0XD IOSB:=MYOUTXD;
CODE 48,0;
.LIST MEB
.MCALL GIOW®S
.GLOBL $DSW

e

I eI

MOV *10SB(5),R1 ”
QIONSS #I0.DET,#2,8#1, R1 o
MOV $DSW, *RSXDSW/RRERRX(D} - .

BCC *EX
*RTL;
RRGEL (608) ;
EX:
ENDPROC;
ENT PROC ASTCHAR()BYTE;
X Return most recent asynch. input character) 4
RETURN(BYTE (CHAR LAND HEX FF});
ENDPROC'

ENT PROC ASTYET () INT;

Z Proc returns whether or not an AST has occurred since the last one dealt %
X with.)4
INT RET; N
. IF ASTFLAGENOTYET THEN :

ASTFLAG:=NOTYET;
RESET (ASTEF) ; ‘

RESET (AST2EF) ;
RET:=YES;
ELSE
RET:=NO;
END; C
RETURN(RET) ; T
ENDPROC; -

ENT PROC CTLCYET()INT;
X2 Proc returns whether or not “C AST has occurred. %

INT RET;

IF ASTFLAG=CTLC THEN
ASTFLAG:=NOTYET,;
RESET (ASTZ2EF) ;
RET:=YES;

ELSE
RET:=NO;

END;

RETURN(RET) ;

ENDPROC;

ENT PROC NCTLCYET () INT; .
X Proc returns whether or not non—-"C AST has occurred) 4
INT RET;
~IF ASTFLAG=AST THEN
ASTFLAG:=NOTYET;
RESET (ASTEF) ;
RET: YES'
ELSE
RET:=NO;
END;
RETURN(RET) ;
ENDPROC;

TITLE SIMGAS
SIMULATES THE ACTION OF FOUR GAS-COLUMN SETS OF APPARATUS;

THIS TASK SIMULATES THE OPERATION OF FOUR SETS OF AIR-COLUMN HEATING
THIS APPARATUS 1S USED IN THE EE476 REAL-TIME COMPUTING
CLASS PROJECT, AND SIMULATION IS DONE TO ENABLE DEVELOPMENT AND
DEBUGGING OF STUDENT PROGRAMS BEFORE THEY ARE USED TO CONTROL THE

IT ALSO ALLOWS UP TO FIVE USERS (ONE ON THE REAL THING
TO BE EXECUTING THEIR TASKS AT ONCE.

THE SIMULATION, ALTHOUGH ONLY FIRST-ORDER, IS A CLOSE APPOXIMATION

THE FOUR SIMULATED COLUMNS USE THE FOUR SIMULATION ANALOGUE INPUTS

AND OUTP 17
AND OUTP 18
AND OUTP 19
AND OUTP 20

CONTROL-C END-OF-TEXT X

NUMBER OF (MULTIPLEXED) A.I.’'S
SIMULATION ANALOG INPUTS

NUMBER OF DIGITAL INPUT CARDS

NUMBER OF SIMULATION DIG. INP. CARDS

NUMBER OF ANALOGUE OUTPUTS
NUMBER OF SIMULATION ANALOGUE OUTPUTS
TOTAL NO OF ANALOGUE OUTPUTS

NUMBER OF DIGITAL OUTPUT CARDS
SIMULATION DIG. OUT. CARD

X

% APPARATUS.

X

X

X REAL THING.

% AND FOUR USING THE SIMULATION)
X

X

X OF THE BEHAVIOUR OF THE REAL SYSTEM.
3

3

X AND OUTPUTS AS FOLLOWS:

3

X COLUMN 1 ANALOG INP 17
% COLUMN 2 : ANALOG INP 18
X COLUMN 3 : ANALOG INP 19
3 COLUMN 4 : ANALOG INP 20
LET LF = 0CT 12;
LET BEL = 73

LET ETX = 3; 4
LET ENG@ = 5;

LET NHUL T = 16; X
LET NSIMAI = 4; X
LET TOTALAI = 20;

LET NDIGICARD = 2; 4
LET NSIMDIGICARD = 2; %
LET TOTALDIGICARD = 4;

LET NAO = 4; 4
LET NSIMAO = 4; 3
LET TOTALAOC = 8 X
LET NDIGOCARD = 1; 4
LET NSIMDIGOCARD = 1; 3
LET TOTALDIGOCARD = 2;

MODE MEDCARD (INT STAT,MEDDAT,ADDR,REAL SCANTIME);

MODE AOREC

EXT
EXT
EXT
EXT
EXT
EXT
EXT
EXT

PROCCINT) DELAY;
PROC() SECMEDCOM,RELMEDCOM,FREEMEDCOM,MCOMINIT;
PROC (REF ARRAY BYTE)

TWRT;

PROC ()REAL RREAD;

PROC(REAL)

RWRT ,RURTU;

PROC (REAL)REAL TIMER;
PROC() GPIO,CLEANUP;

PROC (INT)

IWRT,OWRT;

(INT UIC,USERINT,REF MEDCARD ANIN,REAL SETPOINT);

% IN SECREL.RTL %

% THE FOLLOWING PROCS ARE IN THE ANALOGUE SIMULATION PACKAGE:
EXT PROC (REF ARRAY REAL,REF REAL,REAL) INTEGRATE;
EXT PROC () NOAST,OFFLINE,HALT;

sveC

PROC() BYTE IN;

DATA RRSIO0;

LI NI I NN N L T X PPN LR

N e

N NN e

PROC(BYTE) OUT;
ENDDATA;

SVC DATA RRSED;

BYTE TERMCH,IOFLAG;

ENDDATA;

S5VC DATA RRERR;
LABEL ERL;
INT ERN;
PROC(INT) ERP;
ENDDATA;

SVC DATA RRERRX;
INT LINENO;

BYTE UEFLAG,ERRLUN;

INT RSXDSW;
ENDDATA;

% MEDCOM DATA BASE :
EXT DATA INAREA;

% HOLDS DSW RESULT OF EXECUTIVE CALLS X

) 4

ARRAY (TOTALAI) MEDCARD ANINP;

ARRAY (TOTALDIGICAR
ARRAY (2) MEDCARD D
MEDCARD MEDSTAT;

ENDDATA;

EXT DATA OUTAREA;
ARRAY (TOTALAO) ME
ARRAY (TOTALDIGOCA
ARRAY (TOTALAO) AO
ARRAY (TOTALDIGOCA

ENDDATA;

EXT DATA SIMDATA ;
INT N,DELAYTICKS;
REAL DT;

ARRAY (4) REAL TIME;

ENDDATA;

DATA LOCAL;
ARRAY (4) INT AI,A0;
ARRAY (4) REAL POUT
ARRAY (4, 4)REAL DTD
REAL TAMBIENT,TAU,
REAL STARTTIME;
X LOOKUP TABLE FOR

D) MEDCARD DIGINP;
IGCHAN;

DCARD ANOUTP;

RD) MEDCARD DIGOUT;
REC AODESC;

RD,16) INT DIGUICS;

Z IN THE SIMULATION PACKAGE X

DTEMP,DTSAVE;
0T;
K, TAUHEAT , TAUCOOL ; -

INVERSE OF THERMISTOR CALIBRATION CURVE 4

ARRAY (160) INT LOOKUP :=

(0 ,108
1768 ,19649

6506 ,4779

,280 ,455 ,633 ,814 ,998 ,1186 ,1376 ,1570

,2174 ,2382 ,2594 ,2810 ,3030 ,3254 ,3481 ,3713 ,
3948 ,4188 ,4431 ,4679 ,4930 ,5184 ,5442 ,5704 ,5969 ,6236
'7053 7329 7606 ,7884 8163 ,B441 8719 ,8996

9272 ,9547 ,9819 , 10089 10357 10622 10883 11141 11396,11647,

11894,12138
14152,14357
16046,16218
17651,17799
19037,19166
20257,20372,
21348,21451
22334,22430,

$12377.12613,12844,13072, 13296, 13515,13731,13944,
' 14558, 14755,14949,15140,15328,15512,15493,15871,
,16387,16554,14718,14880,17039,17195,17350,17501,
,17944,18087,18229,18368,18505,18641,18775,18907,
,19293,19419,19543,19666,19787,19906,20025,20142,

20485 ,20597,20707,20817,20952,21033,21139,21244,

,21553,21454,21754,21853,21952,22049,22145,22241,

22523,22615,22700,22800,22900,23000,23065,23100,

23200,23300, 23400,23497,23600,23700,23800,23900,23913,23995,
24100,24200,24300,24314,24400,24500,24600,24700,24701, 24800,
24900,24900,25000,25076,25200,25200,25300,25300,25438,25500) ;
ENDDATA;
ENT PROC SIMINITO);
TWRT ("BLFESIMULATION TASK FOR GAS-COLUMN HEATING PROJECT (EE476)8LF,ETX#");

% SET THE MEDIA SECURE/RELEASE EVENT FLAG (SEE COMMENTS IN SECREL.RTL) %
MCOMINIT(),

TAUHEAT:=132.5; X TIME CONST OF COLUMN HEATING UP (SECONDS) 4

- TAUCOOL:=143.0; X DITTO FOR COOLING p 4
K:=0.1131; % STEADY-STATE CONSTANT (DEGREES CENT. PER WATT) %X
TAMBIENT:=19.0; X AMBIENT TEMPERATURE (DEG. CENT.) p 4

FOR I:=1 TO 4 DO
DTDOT (I,1):=0.0;
DTSAVE (1) :=0.0;

REP;

DELAYTICKS := 10;

NOAST ()

STARTTIME:=TIMER(0.0);
ENDPROC;

ENT PROC SIMJOBI();

GETPOWERS () ;

COMPUTE () ;

IF TIMER(STARTTIME) >= 1.0 THEN
ZSAMPLING INTERVAL HAS PASSED 4
STARTTIME:=TIMER(D.0);
WRITETOMEDCOM() ;

END;

ENDPROC;

ENT PROC SIMTIDYUP();
TWRT ("SIMTIDYUPHLF#") ;

ENDPROC;

PROC GETPOWERS ();
REAL NOW :=TIMER(D.D);
SECMEDCOM() ;

Z READ IN THE ANALOG OUTPUT VALUES FROM MEDCOM AND UPDATE THE SCAN-TIMES

X
FOR I:=1 TO 4 DO
AO(I) := (ANOUTP(NAO + I).MEDDAT SRL 7) LAND HEX FF;
ANOUTP(NAC + I).SCANTIME:= NOW;
REP;
RELMEDCOM () ;
% CONVERT THE VALUES READ TO WATTS OF OUTPUT POWER 4
FOR I:=1 TO 4 DO
POUT(I) := REAL(AO(I))#200.0/51.0;
REP; |
ENDPROC;

PROC COMPUTE () 5
X THIS PROC PERFORMS THE ACTUAL ANALOGUE SIMULATION AND DETERHINES p 4

X (BASED ON THE POWER READ IN FROM THE ANALOG OUTPUTS) WHAT COLUMN
X TEMPERATURE MUST BE WRITTEN TO THE MEDCOM ANALOG INPUTS.

X THE WORKING OF THIS PROC IS EASILY UNDERSTOOD BY REFERRING TO THE
X BLOCK-DIAGRAM OF THE SYSTEM.

TP R e

FOR I:=1 TO 4 DO
INTEGRATE(DTDOT(I), DTEMP(I), 0.0);
TAU:=IF DTEMP(I)<=DTSAVE(I) THEN TAUCOOL ELSE TAUHEAT END;
DTSAVE(I) :=DTEMP(I); X SAVE DTEMP FOR GETTING TAU NEXT TIME ROUND

BTBOT(I,1) = (K+*POUT(I) - DTEMP(I))/TAU;

X CONVERT THE TEMPERATURE IN DEGREES C. TO THE VALUE THAT THE THERMISTOR
X WOULD HAVE PRODUCED, BY USING THE INVERSE CALIBRATION LOOK-UP TABLE
4

AI(I) := INVCALIB(DTEMP(I)+TAMBIENT);
REP;
ENDPROC;

PROC INVCALIB(REAL TEMP)INT;

X PROC TO CONVERT REAL TEMPERATURE IN DEGREES CENTIGRADE TO z

Z A 10-BIT INTEGER VALUE TO BE WRITTEN TO THE ANALOGUE INPUT SO %
Z AS TO SIMULATE THE VALUE THE REAL TEMPERATURE TRANSDUCER 4

X WOULD HAVE PRODUCED. THE LOOKUP TABLE IS USED TO APPROXIMATE %
X THE INVERSE OF THE THERMISTOR INTEGER-TO-TEMPERATURE 4

Z CALIBRATION CURVE. 4

INT N; REAL F;

IF TEMP <= 17.367 THEN RETURN(O) ;END;
IF TEMP >=176.0 THEN RETURN(1023) ;END;

N:=INTPART(TEMP-16.0);
XIE 1 TO 160 IE TEMP BETWEEN 16+N AND 174N %X
F:=TEMP-16.0-REAL(N); ZFRACTIONAL PART OF TEMP X

RETURN(INT((REAL (LOOKUPR(N)) + REAL (LOOKUP(N+1) - LOOKUP(N))*F)/25.0));

% (VALUES IN LOOKUP TABLE ARE 100 TIMES AS LARGE AS THE 8-BIT VALUES X
% FOR WHICH THE THERMISTOR WAS CALIBRATED, S0 TO RETURN A 10-BIT VALUEX
% WE MUST DIVIDE BY 25 RATHER THAN 100). %
ENDPROC; .

PROC INTPART(REAL RNO)INT;
X RETURNS THE INTEGER PART OF A REAL NUMBER %
Z ONLY VALID IF RNO > 0.0 X
RETURN (INT (RNO-0.5)) ;

ENDPROC;

PROC WRITETOMEDCOM();
REAL NOW:=TIMER(0.D);
SECMEDCOM () ;
FOR I:=1 TO 4 DO :
ANINP (NMULT + I).MEDDAT:=AI(I) SLL 5; X DATA IN BITS 5 TO 14 X

ANINP (NMULT + I).SCANTIME:=NOW;
REP;

RELMEDCOM () ;
ENDPROC;

.TITLE RSXBA2 |
JIDENT /1.2/

e - — - —— S S T D e e W b e S) D e M M e G G L M e Gv S Py S e S G e e e T G . T Sl M S S M A e R . .- - - —

RS XBA?Z2
SHAREABLE (RE-ENTRANT) PART OF RTL/Z STARTUP (BASE) PROGRAM.

1.1 27-JAN-81 R.W.DEHNING -AECI-

1.2 19-JAN-82 RWD ©SVC DATA RREXS added and RO save for RRGEL to
- do checking on environment.

30 SEP 82 RRGLFACS included. - (B.G.Sherlock)

THIS 1S BASICALLY THE VERSION FROM SPL, BUT MODIFIED TO
GIVE MORE EXTENSIVE DIAGNOSTICS WHEN THE STACK DUMP VERSION
IS USED (ZERRD DEFINED)

’

;

;

;

;

’

;

’

1

H

;

;

H

’

H

: PROCEDURES, GLOBAL ENTRY POINTS ETC:

: RSXBA2 - ENTRY POINT FROM RSXBAT

: RRSIO ~ SVC DATA BRICK OFFSETS

: RRSED

; RRERR

; RRERRX

. RRTASK

: RREXS

: RRCHAN

. RRIOX

: RRFDB

; RRSTK

: RSXEXI - SHUTDOWN CODE FOR TASK

: BA3BPT - LINE NO (BPT) TRACE HANDLER
: PROC RRIPF () BYTE - INPUT STREAM FAILURE

: PROC RROPF (BYTE) OUTPUT STREAM FAILURE

: RRGMEM - ODD ADDRESS/BUS TIMEOUT

’
;
;
;
;
;
’
;
;
;
;
;
;
5
;

RRGMVI - MMU EXCEPTION TRAP HANDLER
RRGIOT - 10T TRAP HANDLER
RRGRES - ILLEGAL/RESERVED INSTRUCTION TRAP HANDLER
RRGEMT -~ NON-RSX EMT TRAP HANDLER
RRGFPX - FL.PT. EXCEPTION TRAP HANDLER
RRFACS - FACILITY TABLE OF TASK NAMES
RRGLFA(CS) - FACILITY TABLE OF TASK NAMES (GLOBAL EF’S)
PROC CLEANUP () - RELEASES ALL FACILITIES HELD BY TASK
OPTIONS: '
DEFINE ZERRD FOR STACK & REGISTER DUMP VERSION
ZERRS 5ST HANDLERS (RSXBA1 MUST BE COMPATIBLE)
ZFACS INCLUDE FACILITY HANDLING TABLE
THIS MODULE MUST BE ASSEMBLED WITH LB:[1,11EXEMC.MLB *1.2%
’ ’
ZERRS:
ZERRD:
ZFACS:

.MCALL HDRDF$% X
HDRDF $; DEFINE TASK HEADER OFFSETS

.PSECT RSXBA2

.GLOBL RRGEL,RRIPF,RROPF,RRNUL,R25
.GLOBL BA3BPT,CNTRTN,EX$SUC,RRSTKL

.MCALL GTSK$S,EXST$5S,5VTK$S,SETF$S
.LIST MEB | .

T S B Gt G — - - T G G W S Wt G = S T VP o G WO G WD GES Wb b s M = e e S St iy s S Sm SN b TG ML Gt it Gmm St e b St e men A e v e aen &

INITIALIZE SVC DATA BRICKS HELD ON STACK
AND SET SST VECTORS FOR (AT LEAST) ‘TRAP' AND ’'BPT’

SVC OFFSETS FROM BEGINNING OF STACK (ADDR IN RO)

NOTE: RRSTK MUST BE ON THE TOP OF THE SVC DATA AREA, SINCE RSXBA2
ASSUMES THAT STKLMT IS ALREADY CORRECTLY POSITIONED ON THE
STACK ON ENTRY FROM RSXBA1. HENCE, IF ADDING NEW SVC DATA
AREAS, ADD THEM BELOW RRSTK AND ADJUST THE RRSTK VALUE TO
SUIT. «BE CAREFUL=*

© o o e Bt ey e e o Gt U P > o W TS T - D S e - > o ————— — . W Seb W EE Gt b LD v s et e e > BOS l m w e P St oy ey T W S S A = - ©

AR AR TR IR TRFIRFFRVIR"TRER LN X1

RRS10 == 0

RRSED == 4

RRERR == 6

RRERRX == 16
-RRTASK == 24

RREXS == 30 HEAPYL
RRCHAN == 32 y 1.2+
RRIOX == 36 ; *1.2+
RRFDB == 44 ! . *1.2#
RROCP == 46 ; *1.2%
RRSTK =z 52 ; *1.2+
ERL =0

ERN = 4

ERP = 6

LINENO =0

UEFLAG = 2

ERRLUN = 3

RSXDSW = 4

EOS = 200

CR = 13

LF = 10

D s et o s v e e e . S Gb S £ Wt S St W . S S o S L b Wt o St W WS e s e Y = A W T e e M es S R P WE B e Am) AU e e = T W A e e . e o - ®

RS5XBA2 IS ENTERED HERE FROM RSXBA1, WITH THE FOLLOWING STACKED:

= STKLMT ' .. STACK LIMIT FOR SVC DATA RRSTK
SP+2 = RRJOB .. ENTRY PROC FOR USER TASK
sSp = SSTTBL .. PARTICULAR S5T FOR HIS TASK

’
)
’
; SP+4
)
’

O e e G . L A . — — ———_—— S - S S T e S S i St Pt S G Sk T A A G i S e By e A e e M S TR G e e - S S T — - o ¥

RSXBAZ::

RESERVE STACK FOR RRGEL/RRERP EXCLUSIVE USE
(OTHERWISE STACK OVERFLOW CANNOT BE REPORTED BY RO1)

ADD BRRSTKL, 4 (5P)
SET UP SS5T VECTOR PASSED FROM RSXBA1

SSTVL = 8. ;7 LENGTH OF SST VECTOR

RZ2 POINTS TO SST VECTOR *1.2#%
TO PUT ITS ADDRESS IN TASK HDR #1.2+%
(NOTE: R2 MUST REMAIN INTACT) #1.2+%

MOV (SP) ,R2
SVTK$S R2,#SSTVL

MOV . R2,3#H.TKVA KEEP SS5T VECTOR ADDRESS IN OUR #1.2#
COPY OF HEADER. RSX DOES ITS COPRY
TST (SP) + POP THE #5STTBL WORD

R RVERFERTY VY R Y

3 INITIALISE SVC DATA AREA ON STACK

MOV SP,RO ; POINTS TO SPACE FOR STKLO
; (WHICH PRESENTLY CONTAINS #RRJOB)
MOV (RO),R4 ; SAVE RRJOB ADDR TO CALL IT LATER
SUB BRRSTK+2,5P ; RESERVE SPACE FOR SVC DATA AREA
MOV SP, (RO) ; SET STKLO TO DUMMY LINK CELL
MOV SP,R5 7y RS POINTS TO DUMMY LINK CELL
CLR - (RD) ; CLEAR RROCP (6,5)
CLR - {(RO)
CLR -(R0O) ; CLEAR RRFDB
CLR -(RO) ; CLEAR RRIOX (INXD,O0UTXD,TF)
CLR - (RO)
CLR = (RO)
CLR - (R0O) ;y CLEAR RRCHAN (INCL,0UTCL)
CLR - (R0O) :
MOV BEX$SUC, - (RO) ; EXS = SUCCESS (=1) L o*1 . 2+#

; GET TASK NAME INTO SVC DATA BRICK RRTASK

SUB #32.,5P : RESERVE SPACE FOR GTSK$S
MOV SP,R1 : POINTER TO TASK NAME SLOT
GTSK$S R1
MOV 2 (R1) , - (RD) : = TASK NAME 2
MOV (R1),~(RO) : = TASK NAME 1
MOV RS ,5P : RECOVER STACK SPACE
CLR - (RD) : RSXDSW := O
MOV £400, - (RO) : UEFLAG := O
: ERRLUN := 1
CLR - (RO) : LINENO := O
MOV #RRERP, - (RO) : ERP := RRERP
CLR - (RO) : ERN - := 0
MOV 5P, - (RO) : ERL REG. 5 (LINK CELL)
MOV #RSXEXI,-(RO) 3 ERL REG. 7 (ADDRESS)
MOV BEOS, - (RD) : IOFLAG := D
: TERMCH := EOS
MOV #RROPF, - (RO) ; ouT := RROPF
MOV $RRIPF,-(RO) s IN = RRIPF

AT THIS POINT RO IS READY FOR RTL/2 USE
I.E. IT POINTS AT BASE OF SVC DATA AREA,
WHICH IS (CORRECTLY) RRSIO
SAVE IT BEHIND SST VECTOR IN RSXBA1 (WHICH WE CAN FIND VIA *1.2#%
THE TASK HEADER, S0 THAT RRGEL CAN CHECK IF RO GETS CORRUPTED
BY A FAILURE INSIDE AN FCS CALL, FOR EXAMPLE.

W WL W W ws

MOV RO,~(R2) ; SAVE RO FOR RRGEL CHECK *1.2%

CREATE DUMMY HALF LINK CELL ON BASE OF DYNAMIC PART OF STACK,
THUS COMPLETING THE SETTING UP OF THE RTL/Z ENVIRONMENT
BEFORE CALLING "RRJOB® AT THE ADDRESS PASSED FROM RSXBA1.

MOV Sp, (5P) ; CREATE DUMMY HALF LINK CELL
JSR R1, (R4) ;7 ENTER RRJOB
. PAGE :

(222X ISR AL R R R R R XS 2 XX 2 R R X i At a2 XXX R Rt XXX XX R X X Bd

AT THIS POINT, THE USER’S PROGRAM IS IN CONTROL. IT CAN USE THE
VARIOUS RTL/2 CALLABLE PROCS IN THIS MODULE, BUT ESSENTIALLY THE
NEXT TIME THIS MODULE TAKES CONTROL WILL BE WHEN:

’
’
’
’
’
]
; RRIPF OR RROPF IS CALLED BECAUSE AN ATTEMPT IS MADE TO USE A

H STREAM WHICH WAS CLOSED BY AN END OF FILE, OR IN

; FACT NEVER OPENED.

; RRERP IS CALLED DUE TO A RECOVERABLE ERROR (ERP)

; RRGEL 1S CALLED BECAUSE OF AN UNRECOVERABLE ERROR, EITHER
s EXPLICITLY BY THE USER’S TASK, OR BEHIND HIS BACK

; BY ONE OF THE SYSTEM LIBRARY PROCS, CONTROL ROUTINES
; GB6OTO ERL EXPLICITLY BY THE USER. GSYSTEM LIBRARY PROCS WILL

; ALWAYS CALL RRGEL, SINCE THIS DOES THE DIAGNOSTIC

; PRINTOUT BEFORE DOING A "GOTO ERL".

; RETURN FROM RRJOB IN WHICH CASE EXECUTION RESUMES DIRECTLY BELOW

; AT LABEL °“RSXEXI® TO CLEANUP ANY SECURED FACILITIES
H AND DO AN RSX-11M EXIT$S DIRECTIVE.

]

’

’

)

]

’

’

b

NOTE: RRIPF & RROPF BOTH CALL RRGEL. RRGEL DOES A 'GOTO ERL-
AFTER PRINTING THE ERROR DUMP. A "GOTO ERL® COMES IN AT
RSXEXI BY DEFAULT, TO SHUT DOWN THE TASK, UNLESS THE USER
HAS REDIRECTED ERL TO A LABEL WHICH IS IN SCOPE IN HIS TASK

HENCE, ALL PATHS EVENTUALLY END UP IMMEDIATELY AFTER THIS MESSAGE!

M ZIEXIIEZIIZIIII SRR RIS SRS RS R RSS2 XX X2 X 2R X2 XX XX 2 X X R R X X X X

VR NIV VS W VWMV VE WSS NS VE NIV WEWEWENIVE NS WS WL e W

B e e S - . (o o - G i S e S T TR R AT GEP M M e s s o e e M e e G i o - S S OV Bt TGN R A s e e s s we oo

L)
B e s o GEL B B B . S TS S S T TN PUD B B e i G D A et M M M e e Sad Bt GRS MAM M G e W e e e Aem e EAs G S S Ghe SR TN S e G S M M S Gt G s e S S G

RSXEXI::

CLEANUP IF FACILITIES PRESENT
RELEASES ALL FACILITIES STILL
SECURED BY THE CALLING TASK

.1F DF ZFACS
JSR R1,CLEANUP

“ws w3 e

_ENDC ; (ZFACS)
EXST$S RREXS+0(RO) : EXIT WITH STATUS EXS *1.2%

’
’
THIS IS THE BPT HANDLER USED IF THE MODULE WAS COMPILED ‘ H
WITH A "OPTION TR TO GIVE A SOURCE LINE NUMBER TRACE. ;

B e o - o . —— — o S Sl W S M S W . e S A N e . Men - D S N U R G T Y . G S WD S S Wom e dn S G M Gmd whv Gont e v ——

-
-

STREAM NOT SET UP
STREAM NOT SET uP

B o iy o o . — - —— — o —— — . — " s S o — i f i Gt e W S A e mad Mt A — WD o S A St G0 iy s e o e oy B

DEFAULT FOR IN

ERN = 98

60 CALL RRGEL TO CRATER IT
DEFAULT FOR OUT

ERN = 99
60 CALL RRGEL TO CRATER IT

BA3BPRT: : -
MOV - @(SP) ,RRERRX+LINENGC(RO) ; BPT ROUTINE
ADD $#2,(5P) .
RTI
’
H RRIPF &
; RRIPF = INPUT FAILURE, °IN’
; RROPF = OUTPUT " ‘ouT”
?
RRIPF
TRAP 1 ;
.WORD 2,-4
MOV #98.,-(5P) ;
BR RRGCOM ;
RROPF::
TRAP 1 ;
.WORD 2,-4
MOV #99.,-(5P) ;
BR RRGCOM ;
.IF DF ZERRS

-

B e s . — - — - Mt S — - ——— — I — — —— T . MR ST M AN Nt R Mt M P et Ee G Y s S v —— - — - — — &

HANDLERS

THESE ARE THE HANDLERS FOR (MAINLY HARDWARE FAILURE) TRAPS
THROUGH THE SPECIFIED SST VECTOR SET UP FROM RSXBA1.

B e o —_———— . G o —— — — n i A S —— o —— — e Atel . — ——— - —— —— _— —— — — — " — —— —

- RRGFPX::

RRGMEM: : .
MOV #10001.,-(SP)
BR RRGCOM
"RRGMVI::
MOV #10002.,-(5P)
BR RRGCOM
RRGIOT: :
MOV #10003.,-(5P)
BR RRGCOM
"RRGRES: :
MOV $10004.,-(5P)
BR RRGCOM
RRGEMT: : o
MOV #10005.,-(SP)
BR RRGCOM

-

-

MOV #10006. ,- (SP)
.ENDC ; (ZERRS) ’ N-24-6
RRGCOM: JSR R1,2#RRGEL s CRATER IT
.IF DF ZFACS
: RRFACS
i STORAGE FOR FACILITY TASK NAME LOCKS
s EQUIVALENT TO RTL/2:
s MODE RSONAME (INT RS5ON1, RSON2);
. ENT DATA RRFACS;
: ARRAY (32) RSONAME FACS;
H ENDDATA;
e SR SR
RRFACS: :
_WORD 128. : SIMULATE ARRAY(32) R5SONAME TASKS
.REPT 32.
.WORD O s RSON1
.WORD @ : R50NZ
.ENDM

@ o e s i i s s s D (S G A “he Bt S W T - oy =t B T i s P ik Gt SR RN ED R T G . — G e e —— - o §

"RRGELFACS
B.G. SHERLOCK 30 SEP 82

STORAGE FOR FACILITY TASK NAME LOCKS USING GLOBAL EVENT FLAGS
EQUIVALENT TO RTL/2:

ENT DATA RRGLFACS;
ARRAY (24) RS5ONAME GLFACS;

ENDDATA;

. S M e W de e T o - Ad T P B P G G S S At o Gt AW MNP DS WNP D AR G S e e Y e et e e e e G M T s e T e Y o S s o o e mas

RRBLFACS::
.WORD
.REPT
.WORD
.WORD
.ENDM

’
;
’
’
;
; MODE RSONAME (INT R5ON1, R50NZ);
;
)
;
;

96. : ~ 3 SIMULATE ARRAY (24) RS5ONAME

24.
0 | : RSONT
D s RSON2

-
B e i - = o = A S~ — ———— W M A A e T AR GO . SHe S S e A S Mt G He% Gem Gan Svm Gve See G S G Gak G G G e G s M ML S G e Gt e Ao T S e — o da

-

CLEANUP::
' MOV
MOV
MOV
1%: CMP
BNE
CHP
BNE

CLEANUP

0 -- RELEASE FACILITIES SECURED BY THIS TASK.

B s o= e T o oo e B W W T s P S AR Gt M Gme S e et b G o e A Tt e AN G e D R W e S et et D R e B T fme G SN Mem S S S SO R b GRS SR S e A S e S

®¥32.,R2 SETUP S0B COUNTER

H
BRRFACS+2,R3 ; AND ADDRESS POINTER
#65.,R4 ; AND FIRST EVENT FLAG NO
(R3) ,RRTASK+0 (RO) ; CHECK TASK N&ME -1
2% ; NOT. SECURED BY THIS TASK .
2(R3) ,RRTASK+2 (RO} ; CHECK TASK NAME 2
2% ; NOT SECURED BY THIS TASK

" THIS FACILITY WAS SECURED BY THIS TASK, SO FLAG IT RELEASED (0,0)
AND SET EVENT FLAG (65 - 96) TO TELL OTHER TASKS IT'S RELEASED

2%:

3%

-s

4%

LR (R3)
CLR 2 (R3)
SETF$S R4
ADD #4,R3
INC R4
SOB R2,1$
: EVENT FLAGS. (B.G.
MOV $24. ,R2
MOV $RRGLFACS+2 ,R3
MOV #33.,R4
CMP (3} ,RRTASK+0 (RO)
BNE 4%
BNE - 4%
CLR - (R3)
CLR 2 (R3)
SETF$S R4
ADD #4,R3
INC R4
SOB R2,3$
RTS R1
; (ZFACS) -

.ENDC

CMp 2(R3),RRTASK+2 (RO)

.END

s e S0

“yae e

H

’

’

CLEAR TASK NAME 1
CLEAR TASK NAME 2
SET APPROPRIATE EVENT FLAG

BUMP TO NEXT TASK NAME
& CORRESPONDING EVENT FLAG
AND LGGP 32 TIMES....

SIMILAR CODE TO RELEASE FACILITIES SECURED USING GLOBAL
SHERLOCK) .

24. GLOBAL EVENT.FLAGS
LOWEST EVENT FLAG NO IS 33.

; LOOP 24. TIMES

BEFORE RETURNING

~——

APPENDIX O

SOFTWARE LISTINGS: LSI-11 MEDIA SYSTEM

Listings of all the software modules which form part of the LSI-1l1
Media system are given here. The SMT system modules are listed as
modified for use in this system. Pages of the listings have a
circled page number at the top right-hand side of the page. For
example, the 3rd page of the 2nd program in this appendix is
numbered "0-2-3",

The following are the programs listed in this appendix:

Page 0-1-1: The SMTCOMS link communication task.
Page 0-2-1: The SMTMULTI analogue multiplexer scan task.
Page 0-3-1: The SMTDEVDRV device-driver module.
Page 0-4-1: The SMTUlXUP system module,
Page 0-5~1: The SMTB1lXUP system module,
Page 0-6-1: The SMTB2 system module,
Page 0-7-1: The SMTB3 system module.
Page 0-8-1: The RTLCTL system module. .
0-9-1: The ".EDT" editor command files.

Page

TITLE

COMMUNICATIONS ROUTINE "

LSI 11 SMT REPLACEMENT OF MICRO-MEDIA

OPTION(1) BC,TR;

NO ERROR DETECTED YET

LET NOERROR = B; X
LET UNEXP = 1; % UNEXPECTED CHARS. NO START BYTE ERROR
LET LENERR = 8; X MESSAGE LENGTH DOES NOT CORRESPOND TO CODE
LET TOOMANY = 2; Z TOO MANY CHARS ERROR

LET TIMEERR = 3; % TIMEOUT WAITING FOR INPUT

LET BADCODE = 43 % UNUSED CODE

LET BLOCKERR = 5; % ERROR IN THE BLOCK CHECK CHARACTER
LET MEDIAERR = b; % MEDIA ACCESS ERROR

LET UNEXPGO = 7; % UNEXPECTED GO MESSAGE

LET RSNGMED = 1; % READ FROM 1 MEDIA ADDRESS

LET RSNGANA = 23 X READ FROM 1 ANALOG LIST ADDRESS

LET RBLKMED = 3; % READ FROM A BLOCK OF MEDIA ADDRESSES
LET RBLKANA = 4; % READ FROM A BLOCK OF LIST ADDRESSES
LET RDIGCHG = 73 % READ THE DIGITAL CHANGE WORDS

LET RSNGSTA = b3 % READ THE MEDIA STATUS WORD

LET WSNGMED = 12; % WRITE TO MEDIA ADDRESS

LET WSNGANA = 13; % WRITE TO ANALOG ADDRESS

LET GOMES = 14; % DO THE WRITE AS SPECIFIED

LET NDIGICHG = 2; X NO OF DIGITAL CHANGE WORDS

LET NANAIN = 16; % NO OF ANALOG INPUTS

LET NANAOUT = 43 % NO OF ANALOG OUTPUTS

LET INEVENT = 13 % INPUT CHAR EVENT

% ALSO ARE PREV AND CTLAEV X

LET TIME = 100; % TIMEOUT TIME IN 1/50THS OF SECONDS
LET BITé = 0CT 100; % BIT & MASK

LET YES = 1;

LET NO = 0;

LET LF = 0CT 012;

EXT PROC(BYTE) OUTBYTE,DEFOUT,OUTTTY;

EXT PROC() BYTE INBYTE:

EXT PROC(INT) WAIT,WAITFOR,RESET,SET,SECURE,RELEASE, IWRT,OWRT;
EXT PROC() LOCK,UNLOCK,HLOCK,HUNLOCK, CLEANUP,SVDINIT:

EXT PROC (INT,INT,LABEL) TWAIT;

EXT
svC

PROC (REF ARRAY BYTE) TWRT;
DATA RRSIO;

PROC() BYTE IN;
PROC(BYTE) OUT;
ENDDATA;

Sv(C

DATA RRSED;

BYTE TERMCH, IOFLAG;
ENDDATA;

SvC

DATA RRERR;

LABEL ERL;
INT ERN;
PROC(INT) ERP;

ENDDATA;

NI R N re R L3 A P AL AT e R LA 3L MR WL PN R

SVC DATA STKUSG; |
INT USAGE,LINE;
ENDDATA; - |

MODE IOAREA(INT EXPECT,FULL,INPT,QUTPT, BYTE LASTCH,
REF ARRAY BYTE INBUFF);

ENT STACK COMSTK 300;

EXT DATA IO0DATA;
ARRAY (512) BYTE .I0BUFF;
ARRAY (80) BYTE TTYBUF;
I0AREA INAREA,TTYA;
ENDDATA;

EXT DATA TIMEDATA;

INT NOW,SECSNOW,MINSNOW,TCOUNT,SECS,MINS ,HOURS,DAYS, MONTHS, YEARS;
ENDDATA;

EXT DATA MULTIDATA;
ARRAY (NDIGICHG) INT DIGICHG;
ARRAY (NANAIN) INT ANALOGUE;
ARRAY (OCT 20} INT INSCAN;
ENDDATA;

DATA LOCAL;
ARRAY (156) BYTE INMSG;
ARRAY (154) BYTE REPLY;

INT INP :=0; % COUNTER FOR BYTES INPUT. X
INT OUTP :=0; X NO OF CHARS IN OUTPUT REPLY. P
INT ERRFLG:=NOERROR; ¥ INDICATES TYPE OF ERROR. 4
INT INCODE :=03 X MEDIA CODE OF INPUT MESSAGE. %
INT LASTCD =0 X LAST MEDIA CODE -- USED FOR GOMESS. %
INT ADDR :=0; X MEDIA ADDRESS. 4
INT VALUE = :=0; % VALUE OF DATA TO/FROM MEDIA/LIST. 4
INT STARTTIME :=0; % START OF PROCESSING OF PRESENT RECORD.ZX
INT TIMEOUT :=0; X TIME TO WAIT FOR INPUT EVENT FLAG. 4
INT STATUS :=0; 4 4
INT WAITIME ::0; X 4
ENDDATA;
ENT PROC COMS();

X THIS PROC IS THE BASE PROCEDURE FOR THE SERIAL 170 X

X COMMUNICATION USER TASK. THE TASK IS ACTIVATED EVERY X

% TIME THERE IS AN INPUT BYTE FROM HE SERIAL 1/0 LINE. X

X THE CONSOLE INPUT INTERRUPT CODE SETS THE USER EVENT X

% INEVENT AND THE COMS TASK WAITS FOR THIS EVENT. X

% WEN INEVENT IS SET THE INPUT BYTE IS PROCESSED AND X

% THE TASK WAITS FOR THE NEXT INPUT BYTE. THE BYTES 4

% ARE BUILT UP INTO RECORDS AND THE ACTUAL CHECKING OF X

¥ THE INPUT IS ONLY DONE WHEN THERE IS A FULL RECORD. X

X THE SUCCESSIVE CHARACTERS OF AN INPUT RECORD MUST 4

X ARRIVE WITHIN 2 SECONDS OF EACH OTHER. IF THEY ARE %

Y DELAYED BY MORE THAN THIS THEN THE RECORD IS REJECTED.X

X

INT COMPLETE := NOj; X RECORD INPUT BY BUILD() IS COMPLETE

COMSTART : o
IN:=INBYTE; '
OUT := DEFOUT; X SWALLOW ALL OUTPUT %
XXXOUT 1= OUTTTY; XXX
XXXTWRT ("COMSTARTHLFE") ; XXX

ERP := MYERP;

ERL := UNRECOV; X UNRECOVERABLE ERROR PROCESSING LABEL X
INP := 0O; X INITIALISE INPUT COUNTER E X
LASTCD := O;
WHILE 1=1 DO X FOREVER 4
IF INP = 0O THEN X INPUT RECORD IS EMPTY 4
ZXZTWRT ("WAITING FOR 1ST CHAR®LF#") ;XXX
WAIT(INEVENT); X WAIT FOR FIRST INPUT CHAR. 4
XZXTWRT ("INEVENT OCCURRED#LF#") ;XXX
ELSE X INPUT RECORD IS PARTIALLY FULL. X

TIMEOUT := STARTTIME + TIME - NOW;
ZAXZZTWRT("TWAITINGHLFS") ; Z2%
TWAIT(INEVENT, TIMEOUT,TIMELABEL) ;

ZIF INEVENT OCCURRED, THEN 4

XXZTURT ("INEVENT OCCURRED -- NO TIMEQUTHLF#") ;XXX
GOTO ENDIF; :

XELSE, TIMEOUT OCCURRED, SO SET ERROR FLAG 4
TIMELABEL:

XXXTWRT ("TIMEOUT OCCURREDH#LF#") ;%%
ERRFLG := TIMEERR;

PROCESS () ; X PROCESS THE RECORD AND 4
X RESET INPUT BYTE COUNTER X
ENDIF:
ZEND IF X

END;
WHILE INAREA.INPT > INAREA.OUTPT DO '
ZWHILE THERE ARE BYTES IN THE INPUT BUFFER 4
- COMPLETE := BUILD(); X GET NEXT BYTE INTO RECORD. X

STARTTIME := NOW; ¥ SAVE TIME FOR TIMEOUT CALCULATION %

IF COMPLETE=YES THEN X END OF INPUT RECORD REACHED. X
XTHE RECORD IS COMPLETE S0 PROCESS IT 4
PROCESS () X PROCESS THE RECORD AND RESET THE X
' Z INPUT COUNTER 4

END;

REP;
HLOCK () ;
IF INAREA.INPT <= INAREA.OUTPT THEN
X STILL NO BYTES IN INPUT BUFFER b4
RESET (INEVENT); X PREPARE TO WAIT FOR NEXT INPUT CHAR X
END;

HUNLOCK () ;

YXXTWRT("REP OF FOREVER LOOPHLF#") ;XXX
REP;

‘% WHAT FOLLOWS IS THE UNRECOVEﬁABLE ERROR PROCESSING. THIS LABEL IS

X NEVER NORMALLY REACHED BECAUSE OF THE REPEAT FOREVER LOOP ABOVE. 4
UNRECOV:

YXXTWRT ("UNRECOV. ERR. LBL.HLF#") ;XXX
XCLEANUP () ;X
ZSVDINIT(O) ;%X

X SEND A REPLY INDICATING MEDIA ERROR X
REPLY (1) := BYTE((INCODE LAND BIN 00001111) LOR BITé);
REPLY (2) := BIN 000DD100;
ouTP = 3;
PUTBCC();
- 'ANSWER ()

XXXTWRT("GOING TO COMSTARTHLF#") ;22X
GOTO COMSTART;

ENDPROC;
ENT PROC MYERP(INT NJ;
ZLLTWRT("MYERP ##%%nznnuxxxunnunnrxennrexefl FE") H by &4
ENDPROC;
PROC BUILD() INT;

X THIS PROC IS CALLED FOR EACH INPUT CHARACTER X
X AND PLACES THE INPUT BYTES INTO A RECORD.)4
X RETURNS ZERO NORMALLY, BUT RETURNS ONE WHEN 4
% END OF RECORD IS DETECTED (BIT 6 SET).)4

BYTE CH;
INT ENDMSG := NO;

X%%TURT("BUILD#LF#");XXX

CH = INBYTE(); X GET THE CHAR X

INP = INP + 13 Z INCREMENT INPUT COUNTER y 4

INMSG (INP) := CH; % PUT CHAR INC INMSG BUFFER 4

X CHECK FOR START OF INPUT y 4

IF INP = 1 THEN '
X FIRST BYTE OF SOURCE TO OUTSTATION MESSAGE)4
IF CH LAND BIT6 = O THEN X BIT 6 NOT SET; SOMETHING WRONG) 4

INP:=0; X RESET INPUT COUNTER, IE IGNORE THE CHAR 4

END; '

ELSE

IF CH LAND BIT6 # 0O THEN X BIT 6 IS SET X
ENDMSG := YES; N
ELSE '
IF INP = LENGTH INMSG THEN X BUFFER ABOUT TO OVERFLOW 4
ERRFLG:=TOOMANY;
ENDMSG: =YES;
END;
END;
END;
RETURN (ENDMSG) ;
ENDPROC;

PROC PROCESS();

'

% THIS PROC PROCESSES THE RECORDS THAT ARE INPUT.

X THE RECORDS ARE DECODE AND THE REQUIRED OPERATION IS
X PERFORMED BY APPROPRIATE PROCEDURES.

X THE INPUT RECORD POINTER IS ALWAYS RESET TO ZERO.

XXXTWRT ("PROCESSHLF#") ;XXX

X SET UP THE 18T 2 BYTES OF THE REPLY MESSABE ENSURING THAT
X BIT 6 OF BYTE 2 IS NOT SET.

REPLY (1) := INMSG(1);

Y(2) := INMSG6(2) LAND BIN 10111111,

REPL

IF ERRFLG=NOERROR THEN

CH

IF ERRFLG=NOERROR THEN

X NO ERROR DETECTED YET

KBCC(); % CHESK THAT THE BCC IS CORRECT

X STILL NO ERROR DETECTED

X EXTRACT THE CODE - 4 LS BITS OF 15T CHAR
INCODE:=INMSG (1) LAND OCT 17;
ZXXTWRT ("INCODE= ") INRT(INCODE)' TWRT("HLF8") ;22X

IF INCODE
RDSINGLE () ;
ELSEIF INCODE
RDSINGLE () ;
ELSEIF INCODE
RDBLOCK () 3
ELSEIF INCODE
RDBLOCK () ;
ELSEIF INCODE
RDCHANGE () ;
ELSEIF INCODE
RDSTATUS () ;
ELSEIF INCODE
WRSINGLE () ;
ELSEIF INCODE
WRSINGLE () ;
ELSEIF INCODE
GOMESS () 3
ELSE

RSNGMED THEN

X SINGLE MEDIA READ)4
RSNGANA THEN
X SINGLE LIST READ)4
RBLKMED THEN '
% BLOCK MEDIA READ)4
RBLKANA THEN
X BLOCK LIST READ)4
RDIGCHG THEN ,
X READ DIGITAL CHANGE WORDS 4
RSNGSTA THEN
X READ MEDIA STATUS WORD 4

WSNGMED THEN

Z WRITE TO MEDIA)4
WSNGANA THEN

X2 WRITE TO LIST 4
GOMES THEN

% CONFIRM WRITE)4

X THE CODE IS NOT USED X

ERRFLG := BADCODE;

END;

END;

END;

ZZX%NRT("HESSABE RECEIVED : INP :"); IWRT(INP); TWRT("BLFE") ;X%

ZXXZFOR I:=1 TO INP DOXXX

ZXXOWRT (INMSG(I)); TWRT("HLFH#");XX%

XX%R

AXZTWRT ("HLFB") ;ZX%

LAST
ERRO

EP; XXX

CD := INCODE;
R(O);

PUTBCC () ;
ANSWER () ;

INP

X SAVE CODE USED IN CASE NEXT CODE IS GOMESS

X PROCESS ANY ERRORS THAT HAVE OCCURRED

= 05 X RESET THE INPUT BYTE COUNTER

e AL NN

L2

ENDPROC;

PROC CHKBCC();
X THIS PROC CHECKS THAT THE BCC OF THE INPUT RECORD IS 0.K.)4

INT TST :=

H

)4

FOR I:=1 TO INP-1 DO o
TST := TST NEV INMSG(I); ° % EXCLUSIVE OR X
REP;

IF TST LAND OCT 77 # INMSG(INP) LAND OCT 77 THEN
% BCC IS INCORRECT X |
ZAXTWRT ("BCC ERROR ##«x»BLF#") ;XXX
ERRFLG := BLOCKERR;
END;
ENDPROC;

PROC ERROR();

" % THIS PROC DEALS WITH ALL ERROR CONDITIONS DETECTED. 4
X IT RESETS ERRFLG AND SETS UP THE STATUS AREA OF THE 4
X IND BYTE OF THE REPLY. 4

IF ERRFLG = NOERROR THEN X NO ERRORS)4

- 8TATUS := O;

ELSEIF ERRFLG = TOOMANY THEN X OVERRUN ERROR)4
STATUS := 1;

ELSEIF ERRFLG = TIMEERR THEN X TIMEOUT ERROR y 4
STATUS := HEX F;

ELSEIF ERRFLG = BADCODE THEN X INVALID CODE 4
STATUS := 8; ,

ELSEIF ERRFLG = BLOCKERR THEN X BCC ERROR)4
STATUS := 2; ‘ '

ELSEIF ERRFLG = MEDIAERR THEN X MEDIA ACCESS ERROR 4
STATUS = 4;

ELSEIF ERRFLG = LENERR THEN X MS6 IS WRONG LENGTH)4
STATUS := 1;

ELSEIF ERRFLG = UNEXPGO THEN X UNEXPECTED GO MSG 4
STATUS := 8; X INVALID CODE ?7? 4

END;

X PUT STATUS INTO BYTE 2 OF REPLY, EXCEPT IN THE CASE %

% OF SUCCESSFUL 1ST STAGE OF A WRITE, WHERE NO STATUS X

X INFO IS OUTPUT. : 4

IF ERRFLG = NOERROR THEN .
IF INCODE # WSNGANA AND INCODE # WSNGMED THEN
REPLY(2) := BYTE((INT(REPLY(2) LAND BIN 10110000)) LOR STATUS);
END;
ELSE |
REPLY(2) := BYTE((INT(REPLY(2) LAND BIN 10110000)) LOR STATUS);
END; :

IF ERRFLG # NOERROR THEN
ZXZTWRT("ERROR :"); IWRT(ERRFLG); TWRT("SLF#");2XX

OUTP:=3;
LASTCD := O % TO PREVENT AN UNWANTED GO MSG %
ERRFLG := NOERROR; X RESET ERRFLG %
END;
ENDPROC;

PROC RDCHANGE() ;)
X THIS ROUTINE PLACES THE DIGITAL CHANGE WORDS INTO)4
X THE REPLY BUFFER. 4

»

IF INP = 4 THEN X INPUT MSG THE RIGHT LENGTH
FOR I:=1 TO NDIGICHG DO
ENCODE (DIGICHG(I), 1)

DIGICHG(I) := O ‘:IIIIE'P
REP; |

OUTP := 9;
ELSE | ,
ERRFLG := LENERR;
END; v
ENDPROC;

PROC RDSTATUS();

4 THIS PROC READS THE MEDIA STATUS WORD AND PUTS IT
X INTO THE REPLY BUFFER.

INT TMP;

IF INP = 4 THEN
CODE 6,0;
MOV Q8167776 ,#THMP(5)"
*RTL;
')
ENCODE (TMP,1);
- OUTP = 6;
ELSE
ERRFLG := LENERR;
END;
ENDPROC;

PROC RDSINGLE();

)4

Z READS A SINGLE VALUE FROM MEDIA OR LIST AND PLACES IT INTO X

X THE REPLY BUFFER.

/

INT IN,AD;

IF INP=4 THEN

AD:=GETADD() ;

IF INCODE=RSNGMED THEN
IN := RMEDIA(AD);

ELSE
IN 1= ANALOGUE(AD);
IF INSCAN(OCT 11)=NO OR INSCAN(OCT 12)= N0 THEN

ERRFLG := MEDIAERR'

END;

END;

IF ERRFLG = NOERROR THEN
ENCODE(IN,1);

OUTP:=6;
END;
ELSE X MESSAGE THE WRONG LENGTH 4
ERRFLG := LENERR;
END; - ‘
ENDPROC;

PROC RDBLOCK();

X READS A BLOCK OF CONSECUTIVE MEDIA/LIST ADDRESSES AND
X PLACES THEM INTO THE REPLY BUFFER.

INT IN ,AD, NIN;

IF INP=5 THEN
AD:=GETADD () ;

NIN:=INMSG(4)} LAND OCT 77; X NO OF ITEMS TO BE READ

4

IF INCODE=RBLKMED THEN . |
FOR I:=1 TO NIN DO
IN:=RMEDIA (AD+1~1) ;

ENCODE (IN, 1) ;
REP;
OUTP := 3#(NIN+1);
ELSE
IF INSCAN(OCT 11)=YES AND INSCAN(OCT 12)=YES THEN
FOR I:=1 TO NIN DO -
IN: =ANALOGUE (AD+1-1);
ENCODE (IN, 1)

REP;
OUTP = 3#(NIN+1);
ELSE
ERRFLG:=MEDIAERR;
END;
END;
ELSE
ERRFLG := LENERR;
- END;
ENDPROC;

ENT PROC RMEDIA (INT AD) INT;

X THIS PROC ACCESSES THE MEDIA. AD IS THE MEDIA ADDRESS TO X
% BE READ. | o X

INT THP;
XXXTWRT ("RMEDIA -- ADDRESS:"); OMRT(AD); TWRT ("HLF#") ;XXX
CODE 14,0;
MOV *AD(5),%1
ASL X1 : CONVERT ADDRESS TO WORDS
ADD #164000,%1 : ADD IN MEDIA BASE ADDRESS
MOV (1), *TMP(5) s MOVE THE MEDIA VALUE TO THMP
*RTL; _
ZXXTWRT ("RMEDIA: RETURNING :"}; OWRT (TMP); TWRT("SLF#") ;XXX
RETURN (THP) ; .
"ENDPROC;

PROC DECODE () INT; :
X DECODES THE VALUE IN THE INPUT MESSAGE)4

INT BLD:=TMP:=0;
INMSG (4) LAND OCT 77,

BLD := X GET .HIGH BITS X

TMP := INMSG(5); X MIDDLE BITS X

TMP := TMP SLL é;

BLD := BLD LOR TMP; % JOIN THEM UP X

BLD := BLD LAND OCT 3777; X STRIP ANY JUNK X
TMP := INMSG(4); L LOW BITS X

TMP := THMP SLL 11;

BLD := BLD LOR THP; % WHOLE LOT NOW %

AXXTURT ("DECODE- RETURNING:"); OWRT(BLD); TWRT ("HLF#") ;X%
RETURN (BLD) ;

ENDPROC; -

ENT PROC WMEDIA(INT ADDR, VALUE);
% THIS PROC WRITES THE VALUE TO THE MEDIA ADDRESS ADDR X

IIITNRT("NHEDIA—HADR,DATA:");ONRT(ADDR);TURT(",");OQRT(VALUE);ZZZ
XXXTWURT ("BLFE#") ;XXX

CODE 14,0;

MOV *ADDR(5) ,%1 PUT MEDIA ADDRESS IN REGISTER 1
ASL X1 WORD ALIGN THE ADDRESS

ADD #164000, X1
MOV *VALUE(5), (1)
*RTL;

ADD IN BASE ADDRESS
WRITE TO MEDIA

“w-swrazwae

ENDPROC;
PROC WRSINBLE ()

X fHIS PROC PREPARES FOR A MEDIA OR LIST WRITE. THE ACTUAL WRITE IS
X ONLY DONE AFTER THE GO MESSAGE IS RECEIVED.

IF INP=7 THEN X INPUT MUST BE 7 CHARS
FOR I:=2 TO 7 DO
“REPLY(I) := INMSG(I); X RETURN THE RECEIVED DATA
REP;
"WAITIME := NOW; % SAVE THE CURRENT TIME FOR TIMEOUT

% CHECKS LATER.
ADDR := GETADD();
VALUE:= DECODE();
OUTP := 7;
ELSE
"ERRFLG := LENERR;
END;

ENDPROC;
PROC GOMESS () ;

% THIS PROC WRITES TO MEDIA OR LIST. THE WRSINGLE() PROC MUST HAVE
% JUST BEEN CALLED TO INITIALISE THE ADDRESS AND DATA.

IF INP=4 THEN X INPUT MSG MUST BE 4 CHARS LONG
IF LASTCD=WSNGMED THEN %2 WRITE TO MEDIA ADDRESS
WMEDIA (ADDR,VALUE) ;
QUTP := 3;

ELSEIF LASTCD WSNGANA THEN % WRITE TO LIST ADDRESS
ANALOGUE (ADDR) := VALUE; % USELESS-- RATHER ACCESS ANALOG 0/P°S
QUTP :=3;
ELSE X ERROR - NO CALL TO WRSINGLE HAS BEEN MADE
ERRFLGE := UNEXPGO;
END;
ELSE
ERRFLG := LENERR;
END;

ENDPROC;
PROC GETADD () INT;

¥ THIS PROC DECODES THE MEDIA OR LIST ADDRESS FROM THE INPUT RECORD.
X THE RESULT RETURNED IS THE INTEGER VALUE FOUND.

CINT BLD := THP := O;

BLD := INMSG(2) LAND OCT 17;
TMP := INMSG(3) LAND OCT 77;
TMP := TMP SLL 4;

N e

BLD := BLD LOR TMP; :
XXZTWRT ("GETADD-- RETURNING : "); OWRT(BLD); TWRT("H#LF&#") ;XXX

RETURN (BLD) ;
ENDPROC;

PROC ENCODE (INT BLD,I);

Z THIS PROC ENCODES THE INTEGER BLD AND PLACES IT IN THE OUTPUT
X BUFFER IN THE I°TH POSITION.

REPLY (1%3) = BYTE(BLD LAND OCT 77); % BUILD FIRST BYTE
REPLY (I#3+1) := BYTE((BLD LAND OCT 3700) SRL 4);
REPLY (I1%3+2) := BYTE((BLD LAND OCT 174000) SRL 11);

ENDPROC;

' PROC PUTBCC ()
% THIS PROC PUTS THE BCC AT THE END OF THE REPLY BLOCK.
INT SUM := O;

BYTE B;
FOR I:=1 TO OUTP-1 DO
SUM := SUM NEV REPLY(I); " X% EXCLUSIVE OR ¥
REP; S
B := BYTE(SUM LAND OCT 77); % CONVERT TO BYTE X
B := B LOR BITé; % SET BIT & P
REPLY (OUTP) := B; % SAVE IN REPLY BUFFER X
ENDPROC;
PROC ANSWER () ;
X THIS PROC WRITES THE REPLY BLOCK TO THE.SERIAL LINE 4

XXATURT (“ANSHER -- NO OF CHARS : "); IWURT(OUTP);%X%
. FOR I:=1 TO OUTP DO
XXZTWRT ("SLF#") ; OWRT(REPLY(I));2XX
OUTBYTE (REPLY (1)) ; “
REP; |
ZAXTURT ("HLF,LF#") ; XXX
ENDPROC;

TITLE
MULTIPLEXER SCAN ROUTINE
LSI 1123 SMT REPLACEMENT OF MICRO-MEDIA
;
LET LF = 0CT 12; .
LET NDIGICHE = 2; X NUMBER OF DIGITAL CHANGE WORDS
LET NANAIN = 163 X NUMBER OF ANALOGUE INPUTS
LET NDIGICARDS = 2; X NUMBER OF DIGITAL INPUT CARDS
LET MUXADDR = 0CT 10; % MEDIA ADDRESS OF MULTIPLEXER
LET ANINPADDR = OCT 11; % MEDIA ADDRESS OF ANALOG INPUT CARD
LET DIGINADDR = O; X MEDIA ADDRESS OF FIRST DIGITAL INPUT
LET DIGOUTADDR = 4; X MEDIA ADDRESS OF DIGITAL OUTPUT CARD
LET YES = 13
LET NO = 03

EXT PROC (BYTE) OUTTTY,DEFOUT,OUTBYTE;
EXT PROC () BYTE INTTY;
EXT PROC (INT) DELAY;

EXT PROC (INT, INT, LABEL) TWAIT;

AL PPN

% WRITE TO MEDIA

EXT PROC (INT, INT) WMEDIA;)4
EXT PROC (INT) INT RMEDIA; X READ FROM MEDIA X
EXT PROC () CLEANUP, SVDINIT; X SMT PROCEDURES X

EXT PROC (REF ARRAY BYTE) TWRT;
EXT PROC (INT) OWRT,IWRT;

X SVC DATA BRICKS X

SVC DATA RRSI0;
PROC () BYTE IN;
PROC (BYTE) OUT;
ENDDATA;

SVC DATA RRSED;
BYTE TERMCH, IOFLAG;
ENDDATA;

SVC DATA RRERR;
| LABEL ERL;
INT ERN;
PROC (INT) ERP;
ENDDATA;

X EXTERNAL DATA DEFINITIONS %X

EXT DATA MEDIAERRDATA;

INT NERRS X NUMBER OF MEDIA ACCESS ERRORS X
ENDDATA; '
EXT DATA TIMEDATA;
INT NOW,
SECSNOW,

MINSNOW,

TCOUNT, .
SECS, | 0-2-2
MINS,
HOURS,
DAYS,
MONTHS,
YEARS;
ENDDATA;

% ENTRY DATA DEFINITIONS X
ENT DATA MULTIDATA;

ARRAY (NDIGICHG) INT DIGICH;
ARRAY (NANAIN) INT ANAIN;

% ELEMENT 1 OF INSCAN INDICATES WHETHER THE MEDIA CARD AT MEDIA %
% ADDRESS I-1 IS IN SCAN. 3
ARRAY (OCT 20) INT INSCAN := (YES, X ADR 0: DIGITAL I/P 1-16 ¥%
YES, X ADR 1: DIGITAL I/P 17-32 .
NO,NO,
YES, X ADR 4: DIGITAL OUTPUTS ¥
NO,NO,NO, -
YES, % ADR 10: MULTIPLEXER
YES, X ADR 11: ANALOG INPUTS
NO, NO,
YES, % ADR 14: ANALOG OUTPUTS

o NO,NO,NO) ;
ENDDATA;

X LOCAL DATA DEFINITIONS X

DATA LOCAL; 3
ARRAY (NDIGICARDS) INT OLDIN, DIGIN := (D(NDIGICARDS));

INT J; HOLDS MEDIA ADDR OF CARD TESTED FOR

COMING BACK INTO SCAN.

INT ANAINCOUNT := 1; Z NUMBER IN RANGE 4 TO NANAIN INDICATING X
) X WHICH ANALOG INPUT IS SCANNED THE CURRENT
"% TIME ROUND THE FOREVER LOOP.
INT ADDR; . ¥ HOLDS MEDIA ADDR BEING ACCESSED
X
X

ENDDATA;
X STACK DEFINITION X

ENT STACK MULTISTK 300;
X ENTRY PROCEDURES X%

ENT PROC MULTI();

THIS PROCEDURE IS THE BASE PROCEDURE FOR THE MULTIPLEXER
SCAN TASK.

THE ' TASK RUNS EVERY 1/6 OF A SECOND. IT SCANS THE
MULTIPLEXED DATA AND STORES THE VALUES IN A VECTOR.

THE NEW VALUES ARE COMPARED WITH THE OLD ONES FROM THE
PREVIOUS SCAN AND ANY THAT CHANGE HAVE A CORRESPONDING BIT
SET IN A DIGITAL CHANGE WORD. THIS WORD MAY BE INTERROGATED
BY ANOTHER TASK AND CHANGES EASILY DETECTED.

PP PR X PN

LI

LI I P IR IR N

J = DIGINADDR; Z INITIALISE THE SCAN TEST POINTER

ANAINCOUNT :=1; Z INITIALISE THE ANALOG INPUT POINTER

INSCAN(1) := YES; X ADR O : DIGITAL INPUT

INSCAN(2) := YES; X ADR 1 : DIGITAL INPUT

INSCAN(3) :=INSCAN(4) :=NO;

INSCAN(5):= YES;. Z ADR 4 : DIGITAL OUTPUT

INSCAN(4) :=INSCAN(7) : =INSCAN(OCT 10) :=NO;

INSCAN(OCT 11) := YES; X ADR 10: MULTIPLEXER

INSCAN(OCT 12):= YES; X ADR 11: ANALOG INPUTS

INSCAN(OCT 13) :=INSCAN(OCT 14) :=NO;

INSCAN(OCT 15):= YES; X ADR 14: ANALOG OUTPUTS

INSCAN(OCT 14):=INSCAN(OCT 17) :=INSCAN(OCT 20) :=NO;
MULTISTART:

OUT:=DEFOUT;

AXZ0UT = OUTTTY; XXX
XXZTURT ("SLFASMTMULTI -- MULTISTART") ;XXX

ERL := UNRECOV; X UNRECOVERABLE ERROR LABEL 4

WHILE 1=1 DO X FOREVER X
XXZTURT ("HLFHSMTMULTI: START OF FOREVER LOOPELF#") ;XXX

FOR I:=1 TO NDIGICARDS DO
IF INSCAN(I)=YES THEN X THE CARD IS IN SCAN
ADDR := I-1; X SAVE ADDRESS IN CASE MEDIA ERROR OCCURS
OLDIN(I) DIGIN(I); % SAVE OLD VALUE OF DATA
DIGIN(I) RMEDIA(I-1);X DIG INPUTS ARE AT MEDIA ADDRS O & 1
IF DIGIN(I) # OLDIN(I) THEN
X THE DATA HAS CHANGED, SO SET DIG CHG WORD BIT
DIGICH(1) := DIGICH(1) LOR (1 SLL (I-1));
END;
END;
REP;

(101}

IF INSCAN(MUXADDR+1)=YES AND INSCAN(ANINPADDR+1)=YES THEN
X THE MUX AND ANALOG I/P CARDS ARE IN SCAN,S0O CAN READ NEXT ONE

ANAINCOUNT := (ANAINCOUNT MOD NANAIN) + 15 X POINT TO NEXT INPUT
ANAIN(ANAINCOUNT) := GETANA(ANAINCOUNT-1) ;X GET THE ANALOG DATA

END;
CHECKACARD () ; X CHECK ONE OF THE CARDS TO SEE IF IT HAS COME
X BACK INTO SCAN.
REP;

X UNRECOVERABLE ERROR PROCESSING %

UNRECOV:
AXXTWRT ("BLF#SMTMULTI: UNRECOV. LABEL ") ;X2X
XXXTURT ("#LFBADDRESS AT FAULT:"); OWRT(ADDR) ;XXX

INSCAN (ADDR+1) := NO;X PUT THE OFFENDING ADDRESS OUT OF SCAN X
X CLEANUP() ;X X GET RID OF ALL ATTACHED FACILITIES 4
X SVDINIT() ;X X RESTORE THE STACKS 4

N e R

E L S 3 S

e b L

XXXTWRT("#LFH#GOING TO I“IUL'TISTART");ZZZ

GOTO MULTISTART; X START AGAIN FROM FRESH X
ENDPROC;

PROC CHECKACARD();

EACH TIME ROUND THE FOREVER LOOP, WE CHECK A CARD TO SEE y 4
IF IT IS IN SCAN. THE PURPOSE OF THIS IS TO KEEP THE 4
MATRIX INSCAN UP TO DATE. IF A CARD WAS OUT OF SCAN BUT 4
COMES INTO SCAN AGAIN, THEN INSCAN WILL BE UPDATED WITHIN %
FOUR TIMES ROUND THE FOREVER LOOP.)4

ONLY ONE CARD IS CHECKED EACH TIME, BECAUSE WHEN IT IS OUT X
OF SCAN IT CAUSES A BRANCH TO THE UNRECOVERABLE LABEL !1!! 4

PP I AR 2 N

IF J=DIGINADDR THEN
J:=DIGINADDR + 1;

ELSEIF J = DIGINADDR + 1 THEN
J:=MUXADDR;

ELSEIF J = MUXADDR THEN
J:=ANINPADDR;

ELSEIF J = ANINPADDR THEN
J:=DIGINADDR;

ELSE % SHOULD NOT OCCUR y 4 ’
J:=DIGINADDR;

END;

IF INSCAN(J+1)= NO THEN - X CARD IS RECORDED AS OUT OF SCAN y4
RMEDIA(J); %X TRY TO ACCESS THE ADDRESS OF THE CARD %
X AT THIS POINT, THE PROGRAM WILL BOMB TO UNRECOV LABEL IF THE y4
% CARD IS STILL OUT OF SCAN. y4
INSCAN(J+1) :=YES; ¥ IF WE GET THIS FAR THEN THE CARD IS IN ¥

X SCAN AGAIN, S0 CORRECT INSCAN MATRIX. X
END; B
ENDPROC;

PROC GETANA(INT AD) INT;

% THIS PROCEDURE GETS THE NEXT ANALOGUE MULTIPLEXED x
% INPUT. 1
% THE MEDIA MULTIPLEX CARD HAS ABOUT A 150 MICRO SEC %
% SETTLE TIME. (TIME BETWEEN RECIEVING THE ADDRESS, 3
% AND GETTING THE VALUE FROM THE A TO D). %
INT SELECT := O; ‘
INT RET := O;
IF AD >= 0 AND AD <= NANAIN-1 THEN % ADRESS IS IN RANGE x

SELECT := (HEX 0010) LOR AD;
ADDR := MUXADDR; X SAVE ADDRESS IN CASE OF MEDIA ERROR)4

WMEDIA(MUXADDR,SELECT) ; % WRITE TO MUX SELECTING REQD CHANNEL

DELAY (2); X WAIT 40 TO 60 MILLISECS - LONG ENOUGH
X 70 FRY AN EGG, BUT THAT'S HOW LONG IT
X TAKES FOR THE CARDS TO GET READY !'!!

ADDR := ANINPADDR; X SAVE ADDRESS IN CASE OF MEDIA FAULT
RET := RMEDIA(ANINPADDR); X GET ANALOGUE INPUT
ELSE X ADDRESS OUT OF RANGE)1

N IR e

END; E

. ZXXTMRT ("SLFBSMTMULTI*GETANA -- RETURNING "); OWRT (RET) ;%%
RETURN(RET); :
ENDPROC;

TITLE
SMT DEVICE DRIVERS
LSI-11 MICRO MEDIA SYSTEM

SpTION (1)

LET NTASKS = 223

LET NUSERTASKS = 16;

LET GO = D

LET NOGO = b4;

LET PWFEV =-10;

LET LF = OCT 012;

)4

X NTASKS-NSTSK

4
4

X POWER FAIL EVENT

MODE DELREC(INT TIMUP, TASK, REF DELREC NXT);

LET NTDV1&6 = 2;
LET NEVENTS = 32;
LET EVALEN = 16;
LET NFAC = 323

EXT DATA TASKDATA;

INT CURTASK, CURTEX TASKLOCK ,NXTCUR,EVIN,EVOUT,

DELREC ADEL;
REF DELREC FRPTR;

BYTE HIPRI,LOPRI;

ARRAY (NTASKS) INT TIMEOUT;
ARRAY (NTASKS) DELREC DEL;
ARRAY (NTASKS) STACK CELL:

ARRAY (NTASKS) BYTE EVFAC STAT, PRIO WTCHN;

ARRAY (NTDV16,NEVENTS) INT EVBITS
ARRAY (NTASKS) REF BYTE STATADS;

ARRAY (EVQLEN) INT EVQ;

ARRAY (NFAC) BYTE FACILITY,FACTOTSK;

ARRAY (NEVENTS) BYTE EVTOTSK;
" ENDDATA;

EXT PROC (INT) WAITFOR,RESET,WAIT,SECURE,RELEASE,SYSSTO,QEY,QEVRRET;

EXT PROC() RETEV,RETFIN,PTORTL;
EXT PROC () HLOCK,HUNLOCK;
EXT PROC() INT SYSRTO;

SVC DATA RRSED;
BYTE TERMCH,IOFLAG;

ENDDATA;
X MODE DEFINITIONS X
X z=====zcz=zz=z=zz==z== ¥
MODE IOAREA
(INT EXPECT,
FULL,
INPT,
OUTPT,
BYTE : LASTCH,

REF ARRAY BYTE INBUFF);
X EXTERNAL DATA BRICKS %

ENT DATA IODATA;
ARRAY (512) BYTE IOBUF;
ARRAY (80) BYTE TTYBUF;

PP IR RN

INPUT EXPECTED FLAG

BUFFER FULL FLAG

NUMBER OF INPUT BYTES
NUMBER OF PASSED CHARACTERS
LAST CHARACTER PASSED
BUFFER -

AR

L R R B W

A INAREA :

I10ARE =
10AREA TTYA =
ENDDATA;
X LOCAL DATA BRICKS X
X ===z=z=z==z=zz=szz=zz==== X
DATA TTYDATA;
INT USAGE := 0;
BYTE CHAR;
ENDDATA;
LET TTYFAC = =-15;
LET- KBEV = -13;
LET PREV = =123
LET INEVENT = 1
LET NUL = 0
LET ENQ = 5;
LET EOM = :
LET EOS = 128;
LET NL = 10
LET CR = 133
LET OPENSGBR = OCT 133,
LET CLOSESGBR = 0CT 135;
LET BACKSP = 0CT 10;
LET BACKSLASH = OCT 134;
LET CTLAEV = -15;
LET CTLBEV = -14;
ENT PROC OUTTTY(BYTE C)'
INT D := C;
IF CURTEX#USABE THEN
"SECURE(TTYFAC);
USAGE: =CURTEX;
END;
TTYA.EXPECT := O;

IF C # EOM AND C # EOS

THEN
% OUTPU
IF C =
IF C =
OUTBY
IF C
THEN

I

% NOT LAST CHAR, OUTPUT 3
T CHARACTER _ X
ENQ@ THEN C := OPENSGBR END;
NL THEN OUTTTY(CR) END;
TE(C); % OUTPUT THE CHARACTER X
NL :
F D = EN@ THEN % KEYBOARD INPUT EXPECTED 4
TTYA.INPT := TTYA.OUTPT := D}
TTYA.EXPECT := 1;
10FLAG := 0
SYSSTO (60009 ; X 2 MINUTE TIMEOUT 4
WATTFOR (KBEV) ; X WAIT FOR INPUT COMPLETE %
TTYA.EXPECT := O; , ¥ TERMINATES AND RELEASE |
IF SYSRTO() = O THEN X TIMEOUT OCCURRED 3
TTYA.INPT := 1;
TTYA.INBUFF(1) := EOM;
I0FLAG :=—1;

(1,0,0,0,0,10BUF); ,
(0,0,0,0,0,TTYBUF) ;

X TASK CURRENTLY USING TTY
% COMPAIRED WITH CURTEX FOR
% ARRAY LOOK UP

X LAST CHAR TYPED

X INPUT BYTE READY EVENT

Z FOR VT 52)4

% FIRST CHARACTER -SECURE DEVICEZX

N IR IR

END;
ELSE RETURN;

END;
END;
END;
USAGE := O;

RELEASE (TTYFAC) ;

ENDPROC;

ENT PROC INTTY()BYTE;

- TTYA.OUTPT :=

TTYA.QUTPT + 13
RETURN (IF TTYA.INPT # O AND TTYA.OUTPT <= TTYA.INPT THEN
TTYA.INBUFF (TTYA.OUTPT) Z SOME VALID CHARACTERS AFTER

ELSE EOM

END) ;

ENDPROC;

ENT PROC INSERIAL();

LR R R R R R R IR R R R

RETURN;

Z CONSOLE INTERRUPT CODE

CODE 10,0;
DOT=.
.ASECT
.=60

INTERRUPT.

CONSINT,340

.PSECT DEVDRV

.=DOT
CONSINT:

MOVB a8177562,*CHAR/TTYDATA
JSR Z1,*PTORTL

#RTL;

Z BYTE EXPECTED X

NUMBER 1 IS SET.
UP AND PROCESS THE INPUT BYTE.

IF INAREA.INPT >=

4

BUFFER IS FULL X

INAREA.FULL :=

ELSE

THIS PROC IS NEVER CALLED EXPLICITLY. 1IT IS AN
H~TASK PROC FOR DEALING WITH THE CONSOL INPUT
(VECTOR 60).

- THE INPUT BYTE IS PLACED IN A BUFFER INAREA.INBUFF.

THE INPUT BYTES ARE NOT MODIFIED IN ANY WAY BEFORE
BEING SAVED. v
THE BYTE TRANSMITTED IS ALWAYS SAVED IN INAREA.LASTCH
THE KEYBOARD EVENT (-15)
PROCEDURE.
TO INDICATE THAT INPUT HAS BEEN RECIEVED USER EVENT
THIS ALLOWS THE COMS TASK TO WAKE

-3

-a

’

X AN ENG

4
)4
)4
4
)4
4
4
)4
I8 SET BY THIS INTERRUPT) 4
)4
X
)4
)4
)4

Z PREVENTITIVE MEDICINE
4

SAVE THE LOCATION COUNTER

SET THE LOCATION COUNTER TO 60
GENERATE THE INTERRUPT VECTOR

; REVERT TO PREVIOUS LOCATION COUNTER

GET THE BYTE
SWITCH TO H TASK ENVIRONMENT

-y we

LENGTH INAREA.INBUFF THEN

-
’

% SAVE THE CHARACTER IN THE BUFFER X
INAREA.INPT := INAREA.INPT+1;
INAREA.INBUFF (INAREA.INPT)} := CHAR;

END;
INAREA.LASTCH

CHAR;

)4

QEV
QEVR

ENDPROC;
ENT PROC

BYTE

IF 1

(KBEV) ;

RET(INEVENT) ; X QUE EVENT AND RETURN FROM)4
X H-TASK ENVIRONMENT : 4

INBYTE() BYTE,

THIS ROUTINE RETURNS THE NEXT BYTE FROM THE SERIAL INPUT LINE.X
INPUT BUFFER. 4 4
THE BUFFER CAN ONLY BE RESET WHEN ALL THE BYTES THAT HAVE)
BEEN INPUT HAVE BEEN PASSED OUT BY THIS ROUTINE. THE BYTES 4
MUST BE USED AT A RATE GREATER THAN THEY ARE INPUT. 4
THE RESETING OF THE POINTERS IN THE I1/0 CONTROL AREA 4
INAREA.INPT AND INAREA.OUTPT MUST NOT BE INTERUPTED BY THE)
INPUT INTERRUPT. ASUSPENSION OF INTERRUPTS THUS COVERS THE)
RESETTING OF THESE POINTERS. p 4
IF NO CHARACTERS EXISTS IN THE INPUT BUFFER THEN THE PROC)
SETS IOFLAG AND RETURNS A NUL CHARACTER.)

)

LR R R R R R R N F

CHR; X BYTE TO USE AS A TEMPORY STORE
NAREA.INPT > O THEN X ARE BYTES IN BUFFER) 4
INAREA.OUTPT := INAREA.OUTPT + 1; ~ % INCREMENT OUTPUT COUNT

CHR := INAREA.INBUFF (INAREA.OUTPT); X PUT BYTE INTO BUFFER %
IF INAREA.OUTPT >= INAREA.INPT THEN

% ALL BYTES HAVE NOW BEEN OUTPUT FROM BUFFER, S0 CAN RESET THE X

ELSE

END;

RETU
ENDPROC;
PROC OUT

% BUFFER POINTERS. P4
HLOCK () ;
IF INAREA.OUTPT >= INAREA.INPT THEN
% STILL OK TO RESET POINTERS X
INAREA.INPT ::= O; % RESET BUFFER POINTERS

INAREA.OUTPT:= O;
END;

HUNLOCK) 3

END;
, Z INAREA.INPT = 0, IE NO BYTES IN BUFFER

CHR := NUL;
ZIOBUF := 1;%

RN (CHR);

SERIAL ()

X THIS PROC 1S NEVER CALLES EXPLICITLY. IT IS AN H-TASK 4
X ROUTINE TO DEAL WITH THE CONSOLE OUTPUT INTERRUPTS.)4
X (VECTOR 44). p 4

RETURN; X JUST IN CASE y 4

CODE 4,0;

DOT1
.ASE

=. ;SAVE THE LOCATION COUNTER
cT

=64 ;GENERATE CODE AT LOCATION &4
CONSPR, 340 ;THE INTERUPT VECTOR WORDS -
.PSECT DEVDRV
.=DOT1 ;REVERT TO OLD LOCATION COUNTER

CONSPR: f
JSR %1,*PTORTL ;GET INTO RTL ENVIRONMENT
*RTL; |

~ QEVRRET (PREV) ; X QUEUE PRINTER EVENT AND RETURN FROM H-TASK
~ ENDPROC;

ENT PROC OUTBYTE (BYTE CH);

% THIS ROUTINE OUTPUT ONE BYTE TO THE CONSOLE 4
% SERIAL 1/0 LINE. | X
% CHECK IF THE PORT IS READY , X
CODE 6,0;
TSTB a#177544 : STATUS WORD XCRSR
BMI *SND READY
*RTL; o

RESET (PREV);

CODE 6,0; , ‘

TSTB o#177564

BMI *#SND ;READY
#RTL;

WAIT (PREV);

SND:
CODE 12,0;
MOVB #CH(5) ,a8#177564 ;PUT BYTE IN OQUTPUT
MOV 3100,38177564 ;ENABLE INTERRUPT
*RTL; '

ENDPROC;

TITLE
SMT OPERATING SYSTEM

(WITH NEGATIVE TASK NUMBERS)

USER TASK DEFINITION AND INITIALISATION (READ/WRITE)
##%% MODULE SMTU1 #%xx

SMT 4(18) 13-D4-1981;

OPTION (13

Lo R

LET NTASKS = 22; 3 .
LET NUSERTASKS = 16; X NTASKS-NSTSK
LET NFREETASKS = 14; % NUSERTASKS-USEDTASKS
LET GO = D 4
LET NOGO = b4 X
LET PWFEV =~10; X POWER FAIL EVENT
MODE TASKLINK (REF ARRAY STACK TKS,
REF ARRAY PROC() TKP,
REF ARRAY BYTE TKPR,
TKST,
PROC () UINIT,
USERPF) ;
EXT DATA SYSIODATA;
PROC () BYTE CTLAIN;
PROC (BYTE} CTLAOUT,ERROUT;
ENDDATA;
EXT PROC () BYTE DEFIN,INTTY;
EXT PROC (BYTE) DEFOUT,OUTTTY;
EXT PROC () RRNUL;
EXT PROC () FBPROC,INSTRUCT,SETFM@,CLOCK,ERPRIN,MULTI, COMS;
EXT STACK FBSTK,INSTK,SYSTACK,CLKSTK,ERRSTK,MULTISTK,COMSTK;
ENT DATA TKDFN;
% TASKS -5 TO D ARE SYSTEM TASKS |
% -5. FALL-BACK TASK - LOWEST PRIO EXCEPT FOR TASK -3 (SEE BELOW)
% -4. CTLA TASK
% -3. STARTUP AND 'SET’ TASK. MAY BE GIVEN A PRIORITY LOWER
% THAN TASK -5. IT PERFORMS MOST OF THE STARTUP OPERATIONS
% BEFORE BECOMING THE TASK WHICH SERVICES THE EVENT QUEUE
% -2. CLOCK TASK - STIMULATED BY CLOCK INTERRUPT
X -1. ERROR PRINT TASK .
X 0. SPARE SYSTEM TASK
%2 1. MEDIA MULTIPLEXER SCANNING TASK
I 2. MEDIA COMMUNICATIONS TASK

ARRAY (NTASKS)STACK TKSTACK:=(FBSTK, INSTK,SYSTACK, CLKSTK,ERRSTK,FBSTK,
| MULTISTK, COMSTK,FBSTK (NFREETASKS)) ;
ARRAY (NTASKS) PROC () TKPROC:=(FBPROC, INSTRUCT,SETFMQ,CLOCK,ERPRIN,
RRNUL ,MULTI, COMS', RRNUL (NFREETASKS)) ;
. ARRAY (NTASKS) BYTE TKPR1O:=(2,240,1,250,200,0,
10,20,0 (NFREETASKS)),
TKSTAT:=(60,60,60,50,60,NOGO,
50, G0,NOGO (NFREETASKS)) ;
ENDDATA;

DATA TKLINK;

AL P 2 AL A I 2L L AL

TASKLINK TKDFNPTR := (TKSTACK,TKPROC,TKPRIO,TKSTAT,USERINITS,UPWFATL) ;
ENDDATA;

ENT PROC USERINITS(); ,
X USER EDITED INITIALISATION PROCEDURE : X
% CALLED BY STARTUP TASK BEFORE INTERRUPTS ARE ENABLED X

CTLAIN:I=INTTY;
CTLAOUT:=ERROUT:=0UTTTY;

L:
CODE 0,0;
JASECT
.=40
.WORD #TKLINK
.PSECT SMTU1X
.o*L

THIS CODE PLANTS A POINTER TO THE
USER TASK DEFINITION DATA INTO

“-awe

LOCATION 40

THE STARTUP CODE USES THIS AS A
REFERENCE VARIABLE OF MODE "TASKLINK'.
THE COMPONENTS OF THIS MODE WILL THEN
PROVIDE ACCESS TO THE DATA HELD IN
DATA BRICK TKDFN.

YR ERVETR-FRVERSY]

NOTE:

THIS METHOD OF ACCESSING TKDFN
ENABLES THE BASIC SMT SYSTEM TO
BE LINKED SEPARATELY. THE USER
TASKS (INCLUDING THIS MODULE) CAN
THEN BE ADDED IN A SUBSEQUENT
LINKING OPERATION.

P E R RVEREF RV VY R

*RTL;

CODE 12,0;
MOV #100,381775464

+++++++++ & FOR LSI

CLOCK INTERRUPT ENABLE +++ REMOVE

THIS LINE FOR LSI-11 UNLESS

KPV1i1 OR BDV11 CARDS ARE INSTALLED
TO ENABLE SOFTWARE CLOCK CONTROL,

OTHERWISE ERROR 30 WILL ALWAYS

BE REPORTED.

TTY KBD INTERRUPT ENABLE

PR LR FRVERV YRV RV IRTE)

MOV $100,0#177560
#RTL;
ENDPROC;

ENT PROC UPWFAILO);
% USER EDITED PROCEDURE WHICH IS CALLED ON POWER FAIL RESTART.
X THERE ARE SEVERAL POWER FAIL RESTART MECHANISMS WHICH CAN BE
X IMPLEMENTED DEPENDING ON THE CODE OF THIS PROCEDURE:-

(1) IF THIS PROCEDURE IS NULL, A POWER FAIL RESTART WILL
SIMPLY START ALL USER TASKS A5 FOR A NORMAL SYSTEM
STARTUP (COLD START FROM ZERO).

(2) IF THIS PROCEDURE ENDS BY CALLING "RETEV" , THIS WILL
ALLOW ALL TASKS TO CONTINUE FROM THE POINT THEY HAD
REACHED WHEN POWER FAIL OCCURRED.

(3) THIS PROCEDURE RUNS IN A LIMITED HTASK ENVIROMENT, AND
PROCEDURE QEV MAY BE USED TO SET EVENTS. IT IS NOT PERMITTED
TO USE START, AND STOP, BUT EXT DATA TASKDATA MAY BE
MANIPULATED DIRECTLY, AS IN CLOCKINT - SMTB1. IT IS THE
RESPONSIBILITY OF THE USER TO CHECK WHETHER THIS IS

R R R e L e PR
TP NN PR R R re e

END

I IR 32N E L L

(4)

PROC;

PERMISSIBLE "IN HIS SYSTEM. IT WILL USUALLY BE PREFERABLE

TO USE AN STASK WAITING ON PWFEV, THE POWER FAIL EVENT TO
TIDY UP.

THERE ARE TWO SYSTEM FEATURES WHICH MAY BE USEFUL ON
POWER FAIL/RESTART:-

(A)
(B)

PWFLAG IN PWFDATA IS SET NON ZERO AFTER A POWER FAILURE.
(NOTE: THE SYSTEM NEVER ZEROS THIS FLAG.)

EVENT NUMBER-10(NEGATIVE BECAUSE IT IS A RESERVED SYSTEMN
EVENT), WILL BE SET AFTER A POWER FAIL/RESTART.

)

A PRI MR P re

TITLE

SMT OPERATING SYSTEM

(WITH NEGATIVE SYSTEM TASK NUMBERS)

MACHINE DEPENDENT SYSTEM ROUTINES (READ ONLY)

##%#% MODULE SMTB1 ###x

SMT 1(18) 13-04-1981;

OPTION (1)

LET
LET
LET
LET
LET

- LET
LET
LET
- LET
LET
LET
LET
LET
LET
LET

LET
LET
LET

LET
LET
LET
LET
LET
LET

OVHD
RN .
MASK
UNMSK
HALT

NTASKS
NSTSK
NTDV16
NEVENTS
NSEV
NFAC
NSFAC
NEVQS
INVEVS
EVALEN

WTG
WTSEC
STOPR

QFULLERROR
CLKTASKNO

SETASKNO
ERPTNO
PUFEV
NSTCON

"wnou

30;

STKUSG+2;
0CT 340;
0; -

STACK OVERHEAD FOR SVCS ETC

%
%

3

%

%

X

P

%

P

x

%

3

%

%

x

4

%

3

% ERROR NO. FOR EVENT QUEUE FULL
: |
%

Z ERROR PRINT TASK NO

Z POWER FAIL EVENT

Z NO. OF STACK VALUES PRINTED
X ON ERROR

MODE DELREC (INT TIMUP, TASK, REF DELREC NXT J;

MODE TASKLINK (REF ARRAY STACK TKSTACK,
REF ARRAY PROC() TKPROC,

)3

REF ARRAY BYTE TKPRIO,
TKSTAT,
PROC () USERINITS,
USERPF

% ++++++++++ MARKS PROCESSOR STATUS WORD ACCESS

ANOTE THAT THE CODE FOR SETTING THE PSW ON THE LSI IS SHORTER THAN

XON 11734 ETC AND ADJUST LENGTHS OF CODE SECTIONS ACCORDINGLY.

XTHE CONSTRUCTIONS RECOMMENDED ALLOW THE CODE TO BE HELD IN ROM.
Z(MTPS #340 WILL ONLY WORK IN RAM - 1976-77 DEC MICROCOMPUTER HANDBOOK

EXT STACK SYSTACK,FBSTK,HSTK;

EXT DATA TIMEDATA;

ENDDATA;

INT NOW,SECSNOW,MINSNOW,TCOUNT,

SECS,MINS,HOURS,DAYS,MONTHS, YEARS;

IR P 3 AL 2 XL 2 I e LR R R R E R R]

R

y 4
)4
4
)4
X

EXT DATA CLKDATA;

INT TICK; ' X COUNT ALLOWS CLOCK TO CATCH) 4

ENDDATA; ‘ Z UP IF TASKLOCK ON

EXT DATA TASKDATA;
INT CURTASK,CURTEX,TASKLOCK, NXTCUR,EVIN JEVOUT;
DELREC ADEL;

REF DELREC FRPTR;

BYTE HIPRI,LOPRI;

ARRAY (NTASKS) INT TIMEOUT;

ARRAY (NTASKS) DELREC DEL;

ARRAY (NTASKS) STACK CELL;

ARRAY (NTASKS) BYTE EVFAC,STAT,PRIO,WTCHN;
" ARRAY (NTDV16,NEVENTS) INT EVBITS;
ARRAY (NTASKS) REF BYTE STATADS;
ARRAY (EVGLEN) INT EVQ;

ARRAY (NFAC) BYTE FACILITY,FACTOTSK:
ARRAY (NEVENTS) BYTE EVTOTSK;

ENDDATA;

EXT DATA REGDATA;
ARRAY (9) INT REGS;
ARRAY (NSTCON) INT STKVALS;
INT ECT,ERNO, TASKNO,LINENO;
ENDDATA;

EXT DATA TRAPDATA;
LABEL TASKEXIT;
REF TASKLINK T;

INT UR1,ERNUM,UPS;

ENDDATA;

EXT DATA PWFDATA;
INT PWFLAG;
ENDDATA;

EXT PROC () UNLOCK;

EXT PROC () CLEANUP;

EXT PROC (INT) DFERP,STOP;
EXT PROC () BYTE DEFIN;
EXT PROC (BYTE) DEFOUT;
EXT PROC () RRNUL;

SVC DATA RRERR; LABEL ERL; INT ERN; PROC(CINT) ERP ENDDATA;
SVC DATA RRSIO; PROC () BYTE IN; PROC ‘(BYTE) OUT ENDDATA;
SVC DATA RRSED; BYTE TERMCH,IOFLAG; ENDDATA;

SVC DATA STKUSG; INT USAGE,LINE ENDDATA;

19999999494 RZZ XXXXXXIXX

% THIS DATA BRICK IS INCLUDED TO PRESERVE THE STANDARD ‘MTS’
- X INTERFACE TO THE CONTROL ROUTINES. IT COULD BE REMOVED IF

X 'SMT° WRE MOUNTED ON ANOTHER M/C

ENT DATA RZZ;
PROC (INT) SYSERRORPROC:=RRGEL;
INT 221:=222:=0;

X

R

REF INT ZZ3:=7171; Z LOCATION ROO+6 IS USED A5 THE ENTRY ADDRESS)4

X FOR SVC PROCEDURE CALLS (MTS PROC

* CHANGE))4

% SUCH CALLS IN SMT WILL THEREFORE HALT AT
% ADDRESS RO0+2
ENDDATA;

OPTION (2) CM,SL;

ALL THE PSEUDO PROCEDURES WHICH FOLLOW, OVERWRITE THE NORMAL
RTL/2 PROCEDURE ENTRY CODE. THIS IS ASSUMED TO BE & BYTES
LONG (HENCE OPTION °"SL° ABOVE) AND THE CODE SECTION LENGTH
IS REDUCED ACCORDINGLY

PR W

PROC INTPTS();
ZXXZXZXXZ DEFINE SVC DATA BRICKS ZXXXXXX2%

CODE 0,0;

RRS10=z4

RRERR==10.
RRSED==18.

5TKUSG==20.

&CR N U,RRSI10=4,PQBPBQOZ
&CR N U,RRERR=10.,LIPIQOZ
&CR N U,RRSED=18.,BT2Z
&CR N U,5TKUSG=20.,1T2Z

THE FOLLOWING ' CONTROL ROUTINE' NAMES ARE

ASSUMED BY THE STANDARD MTS CONTROL ROUTINE MODULES
ROD==RZZ

&CR ROD=RZZ

&CR R23=RZZ+2

&CR R24=RZZ+2

*RTL;

- e

AXXX2ZX2Xx H — TASK NOTES 2ZXZXXX%X

% REFER TO MANUAL FOR FULL SYNTAX.

% SMT (ALL VERSIONS) RTL/2 IN H - TASKS

z T LI E IS S L ST e SR NSl CcT eSS sS=m=szozZzzzozz=zx=

% CERTAIN RTL/2Z CONSTRUCTIONS CAN CAUSE THE COMPILER TO USE WORKSPACE
% ABOVE THE H - STACK.

% FOR EXAMPLE, EVALUTING A COMPLEX EXPRESSION FOR LOOP COUNTING

% LOCAL VARIABLES, OR BLOCK DECLARATION ENDBLOCK.

X ON INTERRUPT THE VALUE OF R5 IS ONLY THE DUMMY HALF LINK CELL ON THE
% TOP OF THE STACK, AND ANY DISPLACEMENT FROM THIS CORRUPTS WHATEVER
X 1S LINKED ABOVE IT.

z .

X THE SECURE SOLUTION IS TO CREATE A PROCEDURE AND CALL IT THUS:-

X PTORTLO);

X MYHPROCO) ;

% THIS CALLS RO1 AND CREATES A NEW LINK CELL AND SPACE . ON THE

% H - STACK FOR LOCAL VARIABLES AND WORKSPACES.

% RETFINO);

X ALTERNATIVELY, IF THE DESIRED SPACE 1S5 DETERMINED AS BELOW THEN

™

e TN

N IR N »re LR R R R E R RE R

L AL e e e N I IR I TN

.

SPACE MAY BE CREATED ABOVE THE H - STACK.
FOR EXAMPLE:-~
ENT STACK HSTK 100;
DATA HWORKSPACE;
INT R7,FDUMP4,FDUMP6,FDUMP10; \
ENDDATA;
ENT STACK
-THIS AMOUNT (4 WORDS) SHOULD COVER MOST CASES..
IF THE PAL OUTPUT BY THE COHPILER IS INSPECTED AND THE PROCEDURE
ENTRY CODE (WHICH IS OVERWRITTEN) IS . -
JSR 2,R0O1
2 177774
THEN NO WORKSPACE IS USED AND EXECUTING THE CODE IS SAFE WITHOUT
CREATING ANY WORKSPACE.
X IF THE CODE BETWEEN PTORTL AND ENDPROC IS INSPECTED,
X THE HIGHEST DISPLACEMENT ON REGISTER 5 E.G. 6(5) INDICATES
X THE WORKSPACE ACTUALLY NEEDED AND THIS NUMBER DIVIDED BY TWO
X GIVES THE NUMBER OF WORDS OF WORKSPACE NEEDED, THAT IS 3 FOR THIS
% EXAMPLE.
4
ALXAXXAXYL VEC 4 INTERRUPT ZXZXZ2X%X
CODE 26,0; v ; +++++4+4+ 26 FOR LSI
.=*INTPTS
VEC4:
MOV #30.,*ERNUM/TRAPDATA
VEC4.4: ; COMMON UNRECOV ERROR CALL
MOV Z21,*UR1/TRAPDATA ; SAVE USERS 21
MOV (6)+,21 ; USERS LINK IN Z1 (JSR 1,RRGEL)
MOV (6),*UPS/TRAPDATA ; USERS PS
MOV *ERNUM/TRAPDATA, (6) ; ERROR NUMBER (PARAM OF RRGEL
MOV *UR1/TRAPDATA,-(6)
MTPS *UPS/TRAPDATA ; RESTORE USERS PS
;7 MTPS =UPS/TRAPDATA ON LSI
JMP a¥+*RRGEL ; SIMULATES JSR 1, RRGEL FROM USER
*RTL;
XXZXZXXZX VEC 10 INTERRUPT - ZXXZZXXAX%
CODE 8,0;
VEC10: _
- MOV #33.,*ERNUM/TRAPDATA
BR VEC4.4
*RTL;
ZXAXZXXZX VEC 20 INTERRUPT ZXZXZXXX%
CODE 8,0;
VEC20:

MOV #34.,*ERNUM/TRAPDATA
BR VEC4.4
#RTL;

I LI I LI I I I NN

I MM

IALZAAXXX VEC 30 INTERRUPT XZZXXXXLX

CODE 8,0;
VEC30: '
MOV #35.,*ERNUM/TRAPDATA
BR VEC4.4
- *RTL;

- XXXXAXXXXX POWER FAIL/RESTART INTERRUPT XXXZZXZZ%

CODE 18,0;. .
VEC24: ; POWER FAIL ENTRY
PW: -
JSR Z1,#PTORTL ~ 3 SAVE CURRENT MACHINE STATE
MOV #PUW2,24 ; POINT VECTOR AT POWER UP CODE
: HALT , .
PW2: ; POWER RESTORE ENTRY
- MOV #*BEGIN+4,Z1 ;7 SKIP OVER COLD START ENTRY POINT #*RS5X%#
JMP (1) ;7 1 NON ZERO IS ALS0O USE A5 A POWER FAIL
i ; FLAG BY THE STARTUP CODE
*RTL;

ZZEZXXAZXX% LINE TRACE INTERRUPT (BPT) ZXXXXXZXX

CODE 12,0;
VEC14:
MOV 20(&),*LINE/STKUSG (D) ; LINE NUMBER
ADD - #2,(6) : MOVE USER LINK PAST IT
RTI -
*RTL;

ENDPROC;

ENT PROC CLOCKINT();

% CLOCK INTERRUPT SERVICING CODE - 4
CODE 14,0; | |

.=CLOCKINT , : OVERWRITES ENTRY CODE

INC *NOW/TIMEDATA = TICK UP NOW

INC *TICK/CLKDATA ;
CLRB *STAT/TASKDATA+%#NSTSK+#CLKTASKNO ;

TST *TASKLOCK/TASKDATA ;
BEQ CKHT ; |
RTI ; RETURN IF LOCKED
CKHT:
#*RTL;
PTORTL () X SWITCH TO H-TASK ENVIRONMENT %
, CURTEX:=CLKTASKNO+NSTSK; :
RETFIN();
ENDPROC;

XXXXXZAXXY RRGEL XXXXXXXXX

ENT PROC RRGEL(INT N);
X HAND CODED UNRECOVERABLE ERROR PROC 4
CODE 152,4; ' o ; ++++++4+ 152 FOR LSI

.=*RRBEL

MFPS -(4) - ; USERS PS

MOV %1,-(4)
MOV 6(6) ,*ERN/RRERR (D)
MTPS *HIPRI/TASKDATA

?
L
)

++++++++ MFPS - (6)
USERS LINK ADDR
SET UNREC ERROR NO

; LOCKOUT +++++++ MTPS *HIPRI/TASKDATA

CLRB *STAT/TASKDATA+*ERPTNO+#NSTSK ; ERROR PRINT TASK T0 GO

INC *ECT/REGDATA
CMP *ECT/REGDATA, #1
BGT RRGL.1

CMP %0, $*HSTK

BNE RRGL.O

CLR *TASKNO/REGDATA
RRGL.O:

MOV 6&(6&) , *ERNO/REGDATA

MOV #*REGS/REGDATA+20.,%1

MOV 2(6),-(1)

MOV (6),-(1)

MOV %é,-(1)

ADD #8., (1)

MOV X5,-(1)

MOV X4,-(1)

MOV %3,-(1)

MOV %2,-(1)

MOV 4(&),-(1)

MOV %0,-(1)

MOV 14(1),%2

MOV #*STKVALS/REGDATA+2,X1
RRGL.3:

MOV (2)+, (1)+

BLE RRGL.3
RRGL.1:
ADD #8.,%6
CMP %0, B*HSTK
BEQ HTASKERR -
MOV *ERL/RRERR+2(D) ,~(6)
MOV BRRGL.2,-(4)
TRAP 25.
MOV: #3,*ERNO/REGDATA

MOV *TASKEXIT/TRAPDATA,*ERL/RRéR

- MOV 20,%5
ADD (0),X%5
- MOV %5,%6
RRGL . 2:
CLR *TASKLOCK/TASKDATA
MTPS *LOPRI/TASKDATA
JMP @*ERL/RRERR (D)
HTASKERR:
JSR X1,#RETFIN
*RTL;
ENDPROC;

XXXXXXXXX INTERRUPT LOCKOUT

ENT PROC HLOCK();
CODE 0,0;
. =*HLOCK

; AN ERROR ALREADY RECORDED
MOV *LINE/STKUSG(O) ,*LINENO/REGDATA
MOV *CURTASK/TASKDATA,*TASKNO/REGDATA

-~ e

-

ERROR NUMBER FROM STACK
TRANSFER REGISTERS
USERS LINK (X7)

USERS X6 BEFORE ENTRY TO RRGEL

SAVED USERS X1
USER’S STACK BEFORE ENTRY

; TRANSFER STACK VALUES TO STKVALS
CMP Z1,#*STKVALS/REGDATA+*NSTCON+*NSTCON

RV TR K

’

’

’

STACK NOW EMPTY

UNRECOV ERROR IN H-TASK
FINAL %5

GO TO RRGL.1 IF UNWIND OK
UNWIND STACK

STACK UNWIND FAILURE

R(0) ; DEFAULT %7

; RESET STACK POINTER

S0 THAT CLEANUP WILL WORK

REMOVE TASKLOCK
++++++++ MTPS *LOPRI/TASKDATA
GOTO ACTUAL ERROR LABEL

H-TASK UNRECOV ERROR EXIT

~ HLOCK AND HUNLOCK ZXXXXXZXX

* ++++++++ 0 FOR LSI

{

MTPS #HIPRI/TASKDATA ;H++++++ MTPS *HIPRI/TASKDATA

RTS X1
Gz
ENDPROC; |

ENT PROC HUNLOCK();

CODE 0,0; ; t+++++++ O FOR LSI
. =*#*HUNLOCK
MTPS #LOPRI/TASKDATA ;HH++++++ MTPS =LOPRI/TASKDATA
RTS %1
*RTL;
ENDPROC;

YXZXZXXXX INITIAL STARTUP ROUTINES XXZX¥%%%%
PROC BEGIN();

VEC34 TRAP IS INITIALISED BY CONTROL RTNS
.=40
.WORD O THIS LOCATION USED FOR TKLINK

INITIALISED BY SMTU1

X M/7C SPECIFIC STARTUP CODE FOR PDP-11)4
% SET UP INITIAL ENTRY (FROM ZERO) AND ALL)4
Z INTERRUPT VECTORS STATICALLY ‘)4
X INITIALISE STARTUP TASK STACK AND THEN CONVERT) 4
% TO A PROPER TASK BY CALLING RRMAG.)4
CODE 640,0; s+++++++4+ 60 FOR LSI *%RSX##
SMT...==#BEGIN :
.ASECT | | -
.=0 ‘ '
JMP a#*BEGIN s ENTRY FROM ZERO
.WORD VEC4,*MASK ;s VEC4 TRAP
.WORD VEC10,*MASK y VEC10 TRAP -
".WORD VEC14,*MASK ; VEC14 TRAP (LINE TRACE)
- .WORD VEC20,=MASK s VEC20 TRAP
.WORD VEC24,+*MASK y VEC24 TRAP (POWER FAIL)
.WORD VEC30,*MASK ; VEC30 TRAP
H
;
)
}

INTERRUPT VECTORS FOR DEVICES - THESE WILL BE OVERWRITTEN AT LOAD
‘"TIME FOR THOSE DEVICES FOR WHICH THERE ARE INTERRUPT HANDLING ROUTINES

.=60

.+2,#*HALT
.+2,#HALT
.+2,#HALT
.+2,«HALT
*#*CLOCKINT ,#MASK
.+2,%#HALT
.+2,*#HALT
+2,*%HALT
.+2,*#HALT
«+2,#HALT
.+2,#HALT
«+2, #HALT
.+2,#HALT
«+2,#HALT
.+2,#HALT
.+2,#HALT
.+2,*HALT
.+2,#HALT
.+2,%HALT

TTY KBD

TTY PRINTER

HS PT RDR

HS PT PUNCH:

CLOCK -~ ASSUMES OPTION °SL°

Meowe wy S ws

.PSECT
. =*BEBG

.12, #HALT .

.+2,#HALT

.+2,#HALT ‘

.+2,#HALT ‘

.+2,#HALT
.+2,#HALT
.+2,#HALT
.+2,#HALT
.+2,#HALT
++2,#HALT
.+2,%HALT
.+2, #*HALT
«+2,%#HALT

.+2,%HALT

.+2, *HALT
.+2,%HALT
.+2,%HALT .
.+2,%HALT
42, *HALT
.+2,%HALT
.+2, *HALT
.42, *HALT
.42, *HALT
.42, *HALT
.42, *HALT
.42, *HALT
42, #HALT -
.42, *HALT
42, *HALT
.+2,+HALT
42, *HALT
.+2,%HALT
.42, *HALT
SMTB1X

IN

RESET : %#%RSX %%

CLR

MOV
» BNE
Ld:
MOV

; POWER FAIL RESTART

Z1 2 DISTINGUISH COLD START FROM .
;,PICK UP ADDRESS OF USER TKLINK DATA

40,*T/TRAPDATA
*.0

HALT ; USER MODULE NOT LOADED

B #+MASK,*HIPRI/TASKDATA

CLRB *LOPRI/TASKDATA
MTPS #HIPRI/TASKDATA y t++++++ MTPS *HIPRI/TASKDATA

MOV
NREY
MOV
ADD
MOV
MOV
MOV
ADD
CMP
BNE
MOV
TST
| BEQ
© *RTL;

#*HSTK, 20 ; STACK ADDR

X0, %5

(0),%5 ; END OF STACK ADDR

15,26 |

X6, (6) s INITIALISE LAST (HALF) LINK CELL
X0,2(0) ;) STACK LENGTH CHECK

#%OVHD+*RN,2 (D) :) WORD SKLO

#*HSTK, XD

*L2 :

BPW, 24 : SET POWER FAIL INTERRUPT VECTOR

%1 : POWER FAIL RESTART ?
*NPF - : BRANCH IF NORMAL COLD START

- X POWER FAIL RESTART.

PWFLAG := PWFLAG + 1;
GEV (PWFEV) 5
T.USERPF () ;

NPF:
CODE 6,0;
MOV BxSYSTACK, 20
BR *L1
. #RTL;
L2:

. RRMAG (SETFM@) ;
ENDPROC;

ENT PROC TYPCHANGE();

X.NULL PROCEDURE USED TO PROVIDE A COMMON FRAMEWORK FOR THE

Z RTL TYPE CHANGE PROCEDURES SUCH AS
X ENT PROC ITORI (INT I)JREF INT;

' CODE 0,0;

.=*TYPCHANGE
RTS %1

; INITIALISE SYSTEM STACK

X CALL USER DEFINED POWER FAIL %
ZRESTART PROC

-% -SETFMQ@ WILL INITIALISE ALL
Z5-TASK STACKS

ITORI==#TYPCHANGE
ITORF==%TYPCHANGE
ITORR==#TYPCHANGE .
ITORB==#TYPCHANGE
RBTOI==#TYPCHANGE

&CR
&CR
&CR
&CR
&CR
&CR
&CR
&CR
&CR
&CR
#RTL;

ENDPROC;

CODE 46,0;

MOV~ *STK(5),
MOV %1,%2

~ADD (1) ,%2

MOV %2,(2)
MOV X2,%4
MOV *TKP(5),
TST —(2)
MOV #*UNMSK,
MOV ##RRMAG,
SUB #8.,%2
MOV~ X4,~(2)
MOV %2,4(1)
MOV %1,2(1)

mzmzmMmZZMZMZ

P,ITORI,IQEIZ

ITORI

P, ITORF,IQEFZ

ITORF

P,ITORR,IQERZ

ITORR

P,ITORB, IQEBZ

ITORB

P,RBTOI,EBQIZ

RBTOI

%1

. INT TO REF INT
: INT TO REF FRAC
: INT TO REF REAL
s INT TO REF BYTE
REF BYTE TO INT

-

ENT PROC STKINIT(STACK STK,PROC () TKP);

; ADDRESS OF STACK

; ADDRESS OF LAST WORD - USERS %5

)
-(2);

-(2);
=27

YR Y R RN R)

LAST (HALF) LINK CELL
USER BASE PROC (FOR RRMAG)

PS INITIAL VALUE

X7 INITIAL VALUE

SKIP STORAGE OF X1-%24

X5 INITIAL VALUE .

N.B. WHEN USING HARDWARE FLOATING POINT UNIT
EXTRA SPACE WILL BE REQUIRED TO STORE
THE FLOATING POINT ACCUMULATORS

SXé

STKLO-USED FOR STACK LENGTH CHECKS

X

2R

ADD #$*OVHD+*RN,2(1) | '
: #*RTL
ENDPROC; '

ENT PROC SVDINIT();
X SVC DATA INITIALISATION PROCEDURE

% SET UP TASK DEFAULT ERROR LABEL
X X7=TASKXT IN RRMAG
2 X5=STACK END
CODE 20,0;
MOV *TASKEXIT/TRAPDATA,*ERL/RRERR (0)
MOV Z0,*ERL/RRERR+2(0)
ADD (0) ,*ERL/RRERR+2 (D)
MOV #177777,*LINE/STKUSG (D)
*RTL;
- ERP:=DFERP;
IN:=DEFIN; OUT:=DEFOUT;
ENDPROC;

ENT PROC PTORTLO);

CODE 18,0;
R24==#PTORTL
.=#PTORTL
; SAVE USERS REGISTERS AND SWITCH TO HSTK
; "JSR Z1,PTORTL’" HAS ALREADY PUT USERS Z1 ON THE S5TACK
MOV 22,-(8) S
MOV X3,-(4)
MOV Z4,-(8)
MOV Z5,-(4)
MOV 26,4(0) ; %6 INTO SXé ON STACK
MOV ##HSTK, 20 ; HARDWARE TASK STACK
MOV 20,%Z5 .
ADD (0),X5 ; POINT TO LAST (HALF) LINK CELL
MOV %5,%6
JHP (1)
*RTL;
ENDPROC;

ENT PROC RETFIN();

CODE 30,0;
R23==#RETFIN
.=*RETFIN
; TERMINATE H-TASK AND RETURN TO 5-TASK DENOTED BY CURTEX
MOV *CURTEX/TASKDATA,Z3 - ‘
MOV X3,*CURTASK/TASKDATA
SUB ##NSTSK,*CURTASK/TASKDATA
ASL 23 _
MOV *CELL/TASKDATA(z) X0 ; NEW STACK ADDR:=CELL (CURTEX)
MOV 4(0),%6 , SXé
MOV (6)+ Z5
MOV (6)+,z4
MOV (6)+,%3
MOV (&6)+,%2
MOV (&) +,%1 :
RTI ; EXIT TO USER TASK
*#*RTL .
ENDPROC;

-se

N R 2

XAXXXZXZXX CHANGE ZAXXXZAXZZ ‘
ENT PROC CHANGE () ;

CODE 44,0; _ ;H+++++4+ 44 FOR LSI

.=%*CHANGE

MFPS (6) 3 PSW TO STACK ++++++++ MFPS (4)

MTPS *HIPRI/TASKDATA ; tt++++++ MTPS *HIPRI/TASKDATA

MOV %1,-(6)
SUB #10,%6
MOV X5,-(6)
MOV %6,4(0)
CLR *TASKLOCK/TASKDATA
CMP +EVIN/TASKDATA,*EVOUT/TASKDATA
BNE *RETEV+10 . UNPACK EVENT @ IF REGUIRED
MOV #*STATADS/TASKDATA+2,Z4; FIRST STATUS ADDRESS ~ HIGH PRIO
TSKTST: ‘
TSTB a(4)+ ; TEST CONTENTS OF STAT(STADS(I))
BNE TSKTST FOR ACTIVE TASK
MOV -(4),%3 ADDRESS OF CURTEX(STAT)
SUB B*STAT/TASKDATA,Z3 CURTEX
MoV 23,*CURTEX/TASKDATA
BR *RETFIN+4
*#*RTL;
ENDPROC;

LINK - SIMULATE HINTERRUPT
SET UP CELL WITH ONLY
MEANINGFUL REGISTERS TO SAVE
TIME OVER JSR 1 PTORTL

MewIwIws

wewmewmw

QUICK JUMP TO RETFIN

-u

OPTION (1) ;

X THE FOLLOWING ROUTINES - GEV,QEVRRET,RETEV,CLOCK,SETFMG@ AND RRMAG - %
X COULD RESIDE IN MODULE SMTB2. THEY ARE INCLUDED HERE BECAUSE)4
Z THEY COULD BE HAND CODED IN SOME SYSTEMS) 4

ENT PROC RETEVQ);

X USED TO RETURN FROM INTERRUPT) 4
¥ IF AN EVENT HAS BEEN SET)4
IF TASKLOCK 0 THEN -
CURTEX: SETASKNO+NSTSK' X ENSURE EVENT QUEUE IS SERVICEDZX
TASKLOCK"TASKLOCK 13
END; ' -
RETFIN(); ' Z RETURN)4
ENDPROC;

ENT PROC GEV(INT EVENT); :
% USED BY INTERRUPT SERVICING CODE TO X
% PLACE AN EVENT IN THE QUEUE ; 1
INT EVTST:=(EVIN+1) LAND NEVQS;
IF EVTST=EVOUT THEN
RRGEL (@FULLERROR) ;
END;
EVA(EVTST+1):= EVENT;
EVIN:=EVTST;

ENDPROC;

ENT PROC GEVRRET (INT EVENT);
% PLACE AN EVENT IN THE QUEUE - 4
% AND ALSO RETURN FROM INTERRUPT * X
QEV (EVENT) ;
RETEV();

ENDPROC

'ENT PROC CLOCK(); |
X BASE PROCEDURE FOR CLOCK INTERRUPT TASK y 4
CLK:
WHILE TICK > 0 DO
TICK = TICK - 1;
IF TCOUNT>=49 THEN
TCOUNT:=0; SECSNOW:=SECSNOW+1;
IF SECS>=59 THEN
SECS:=0; MINSNOW:=MINSNOW+1;
IF MINS>=59 THEN
MINS:=0;
IF HOURS>=23 THEN
HOURS: =0; X MIDNIGHT OWLS AND BROOMSTICKS %2

EVEN MONTHS ARE THIRTY DAY
UP TO AUGUST ANYWAY
POST JULY WE JUST ADD t .
AND FINISH AS WE HAVE BEGUN
THIRTY NEEDS BITS FIVE TO TWO
S0 LOR THEM IN - BIT ONE DROPS THROUGH
A SPECIAL TEST FOR FEBRUARY
I'M SAD TO SAY IS NECESSARY
BUT - ALL THE REST, NEW YEAR TO YULE
ARE GIVEN BY THIS SIMPLE RULE.
. : -XA.J.C. 1978

2L AL IR T IR IR

IF DAYS>=IF MONTHS=2 THEN Z FILLDYKE
IF. YEARS LAND 3 = 0 THEN % LEAPYEAR
29
ELSE 28
END
ELSE 30 LOR IF MONTHS > 7 THEN MONTHS+1
ELSE MONTHS END

R 2 2L AL I AR AL IR

END
THEN
DAYS:=0;
IF MONTHS5>=12 THEN X HOGMANAY)4
MONTHS:=0; YEARS:=YEARS+1;
END;
MONTHS: =MONTHS+1;
END;
DAYS:=DAYS+1;
ELSE
HOURS:=HOURS+1;
END;
ELSE
MINS:=MINS+1;
END;
ELSE
SECS:=5ECS+1;
ENDj;
ELSE
~ TCOUNT:=TCOUNT+1;
END;
REP; : , _
' % COUNT DOWN DELAYS AND TIMEOUTS)4

TASKLOCK:=1;
TRIAG:
BLOCK
REF DELREC PTR:=ADEL.NXT;
INT I, 5, TIMTST;

IF PTR :=: ADEL THEN GOTO STP; END;
TIMTST := PTR.TIMUP - NOW;
IF TIMTST > O THEN GOTO STP; END;
I := PTR.TASK;
ADEL.NXT := PTR.NXT;
PTR.NXT := FRPTR;
FRPTR := PTR;

S 1= STAT(I)JLAND WTSEC;
IF S#0

THEN IF TIMEOUT(I) > O
THEN TIMEOUT(I) := O;

X TIMEUP

Z TIMEOUT ONLY COUNTED IN WAIT
X PERIOD

- % TIMEOUT HAS RUNOUT, S0 CLEAR

% TASK FROM WTCHN

BLOCK
| REF BYTE TKPTR := IF S = WTG THEN EVTOTSK(EVFAC(I))
ELSE FACTOTSK(EVFAC(I))
END;
WHILE TKPTR # I % -TASK MUST BE IN WTCHN
DO TKPTR := WTCHN(TKPTR) % IF TO > O AND STATUS WAITING
REP; - X FOR FACILITY OR EVENT
VAL TKPTR := WTCHN(I);
WTCHN(I) := O; X REMOVES TASK FROM WTCHN
EVFAC(I) := 0;
ENDBLOCK;
END;
END;
STAT(I):=STAT(I) LAND STOPP;
GOTO TRIAG;
ENDBLOCK;
5TP:
STOP (CLKTASKNO) ; Z NB STOP CALLS CHANGE
~ BOTO CLK;
ENDPROC;

ENT PROC SETFMQR();
LABEL RERL;
ADEL.NXT := ADEL;
FRPTR := DEL(1);

FOR I:=1 TO NTASKS DO

TIMEOUT (1) :=-1; .

DEL(I).NXT := IF I = NTASKS
THEN ADEL
ELSE DEL(I+1)
END;

CELL (1) :=FBSTK;

PRIO(I) :=WTCHN(I) :=EVFAC(I):

STAT(I):=STOPP;

STATADS (1) :=STAT(1);
REP;
"FOR I :

FOR

E

. REP;
REP;
FOR I:
CURTASK:=SETASKNO;
CURTEX:=SETASKNO+NSTSK;
TASKLOCK:=EVIN:=EVOUT:=ECT:=0;

= 1 TO NTDVié6 DO
J = 1 TO NEVENTS DO
VTOTSK(J) EVBITS

L
- y

FOR I:=1 TO NTASKS DO
PROC()TKP := T.TKPROC(I);

=1 TO NFAC DO FACILITY(I)

:D;

(I,J) := O

:=0; FACTOTSK(I) := O REP;

I NN

e R

IF TKPSRRNUL THEN
PRIO(I):=T.TKPRIO(I |

)-
STAT (1) :=T.TKSTAT (1)}
CELL(I):=T.TKSTACK(I}

)

9
IF IBSETASKNO+NSTSK THEN - X AVOID REINITIALISING . S 4
' : £ OWN STACK -)4
STKINIT(CELL(I),TKP};
END;
END;
REP;
X INITIALISE °STATADS' ARRAY USED BY CHANGE)4
BLOCK :
INT J:=0,MAXP:=256,P;
L '
-Pr==1;
FOR I:=1 TO NTASKS DO
INT P1:=PRIO(I)};
IF P1>P AND P1<MAXP THEN P:=P1 END;
REP;
IF P>=0 THEN
FOR I:=1 TO NTASKS-DO
IF PRIO(I)=P THEN
NHENE 3 I :
STATADS (J) :=STAT(I);
END;
REP;
MAXP:=P;
GOTO L;
END;
ENDBLOCK;
RERL : =ERL;
ERL:=UERL;
T.USERINITS(}); X PERFORM USER INITIALISATIONS %
UERL:
ERL:=RERL;
‘X END OF STARTUP CODE , , x
HUNLOCK () ; _
- CHANGE () 5 - % SELECT A NEW S-TASK)3
X STARTUP "TASK® NOW REVERTS TO STANDBY LOOP 4
X WHICH SERVICES THE EVENT GQUEUE ‘ .)4
ERL:=EMTQ;
EMTQ:
UNLOCK ()
GOTO EMTGQ;
ENDPROC;

ENT PROC RRMAG(PROC () P);
: X BASE PROCEDURE FOR ALL TASKS oo 4

TASKEXIT:=TASKXT;
 SVDINITO) ; |
- ERN:=0; IOFLAG:=0;

PO

X NO TASK SHOULD EVER EXIT .

SVDINIT();
RRGEL (10) ;

TASKXT:

- ~CLEANUP() ;

~ STOP(CURTASK);
G0TO TASKXT;

"ENDPROC;

X RUN USER PROVIDED BASE
X PROCEDURE

Z RESET ERL TO JOBXT

% TASK DEFAULT UNRECOVERABLE
Z ERROR LABEL

e NNN@

X

TITLE ' : -
' SMT OPERATING SYSTEM
- MACHINE INDEPENDENT SYSTEM ROUTINES (READ ONLY)

DELAY, TIMEOUT AND WAIT, FOR EVENTS AND
FACILITIES IN ORDERED LISTS FOR SPEED
##*%x MODULE SMTBZ w#»#x

SMT 2(18) 13-04-1981;

OPTION (1) ;

LET NL = 10 4

LET SP = 32; %

LET TAB = 9; p

LET EOM = 3; %

LET ENGQ = 5 X

LET BELL = 73 %

LET CTLAEV = -15; % CTLA TASK EVENT

LET NEV@S = 15; %

LET NFAC = 32; %

LET NSFAC = 16; %

LET NTASKS = 223 b3

LET NSTSK = by %

LET NTDVi& = 2; K

LET NEVENTS = 32; 1

LET NSEV = 16; X

LET FACEV = -11; - % EVENT WAKES UP SECURED TASKS

LET STOPP = 0CT 100; % . -

LET SUSP = OCT 200; %

LET WTG = 23 3

LET WSEC = 1 p

LET NOTSTOP = OCT 277; %

LET EVGLEN = 163 %

LET NSTCON = 16 % NO. OF STACK VALUES PRINTED
% ON ERROR

LET ERPTNO = -1 3

ERROR PRINT TASK NO
MODE DELREC (INT TIMUP, TASK, REF DELREC NXT);

EXT PROC ()HLOCK,HUNLOCK;

EXT PROC (INT) RRGEL;

EXT PROC () CHANGE;

EXT PROC (INT) REF INT ITORI;
EXT PROC (INT) REF FRAC ITORF;
EXT PROC (INT) REF REAL ITORR;
EXT PROC (INT) REF BYTE ITORB;

SVC DATA RRERR; LABEL ERL; INT ERN; PROC (INT) ERP ENDDATA;
SVC DATA RRS5I0; PROC () BYTE IN; PROC (BYTE) OUT ENDDATA;
SVC DATA RRSED; BYTE TERMCH,IOFLAG ENDDATA;

EXT DATA TASKDATA;
INT CURTASK,CURTEX, TASKLOCK,NXTCUR,EVIN,EVOUT;
DELREC ADEL;
REF DELREC FRPTR;
BYTE HIPRI,LOPRI;
"ARRAY (NTASKS) INT TIMEOUT;.
ARRAY (NTASKS) DELREC DEL;
ARRAY (NTASKS) STACK CELL;
ARRAY (NTASKS) BYTE EVFAC,STAT,PRIO,WTCHN;
 ARRAY (NTDV14,NEVENTS) INT EVBITS;

I AL I I TN PN NI PO N I AL PRI PR MR AR

ARRAY (NTASKS) REF BYTE STATADS;
ARRAY (EVQLEN) INT EVG@; '
ARRAY (NFAC) BYTE FACILITY FACTOTSK'
ARRAY (NEVENTS) BYTE EVTOTSK

ENDDATA

EXT DATA TIMEDATA;
INT NOW, SECSNON MINSNOW, TCOUNT ,SECS,MINS,HOURS, DAYS,MONTHS ,YEARS;
ENDDATA;

EXT DATA REGDATA;
ARRAY (9) INT REGS;
ARRAY (NSTCON) INT STKVALS;
" INT ECT,ERNO,TASKNO,LINENO;
ENDDATA; .

EXT DATA SYSIODATA,

- PROCO)BYTE CTLAIN;

- PROC(BYTE). CTLAOUT ERROUT;
ENDDATA'

ENT DATA PATTERNS; . ¥ BIT MASK PATTERN DATA
_ S % (DO NOT ALTER#*%#)
ARRAY (16) INT BITS:=(1,2,4,8,16,32,64,128, ‘
256,512 1024 2048 4096 8192, 16384 HEX 8000)
ENDDATA'

LET NOLKTYPESz6;
MODE LKTYPE (BYTE CHAR,LEN);

DATA LOOKTYPES;
ARRAY (NOLKTYPES) LKTYPE TYPES:=(
(‘B*,1),(°C",1),('D",2),
W ,2),CF ,2), CR,4));
ENDDATA;

R 22%%%%%%% TASK CONTROL XXXXZZXZX%

ENT PROC STOP(INT TASK);
TASK: =TASK+NSTSK;
IF TASK<=0 OR TASK > NTASKS THEN RRBEL(11)' END'
TASKLOCK := 1; STAT(TASK) :=S5TAT(TASK) LOR STOPP;

CHANGE () 3 X USER MAY BE STOPPING HIMSELF
» % CHANGE EFFECTIVELY CALLS
<% UNLOCK
ENDPROC;

ENT PROC START (INT TASK);
TASK := TASK+NSTSK;

" IF TASK <= 0 OR TASK>NTASKS THEN RRBEL(11); END;
TASKLOCK := 1; STAT(TASK) := STAT(TASK) LAND NOTSTOP;
CHANGE () 3

o X CHANGE EFFECTIVELY CALLS

‘% UNLOCK
ENDPROC;

ENT PROC DELAY(INT TIME);

IF TIME<=0 THEN RETURN END;
INDEL (TIME) ;

STAT (CURTEX) := STAT(CURTEX) LOR SUSP;
~ CHANGE () ; -
| 4
ENDPROC;

PROC INDEL(INT TIME);

- TASKLOCK :="1;
BLOCK
REF DELREC BPTR := ADEL,
’ ' PTR,
: NPTR := FRPTR; b4
- INT TIMEUP := TIME + NOW,
TIMTST;
FRPTR := FRPTR.NXT;
TRIAG:
. PTR := BPTR.NXT;
IF PTR :=: ADEL
THEN GOTO STKIN; END;
TIMTST := TIMEUP - PTR.TIMUP,
IF TIMTST > 0
THEN BPTR := PTR;
GOTO TRIAG;
- END; '
STKIN:
NPTR.NXT = PTR; y 4
BPTR.NXT = NPTR;
NPTR.TIMUP := TIMEUP; Y 4
NPTR.TASK = CURTEX;
ENDBLOCK;
ENDPROC;

ENT PROC WAIT(INT EV);
IF UNWAIT(CURTEX,EV)
THEN

IF TIMEOUT (CURTEX) = O
THEN TIMEOUT (CURTEX) :=
END;
~ UNLOCK) 3
ELSE EVFAC(CURTEX) := BYTE (EV+NSEV);
CHAINWT (EVTOTSK (EV+NSEV) ,WTG) {%

$# 0

NI

_1;

END;
ENDPROC;

ENT PROC RESET(INT EV);
UNWAIT (CURTEX,EV);
UNLOCK () 3

ENDPROC;

ENT PROC WAITFOR(INT EV);

UNWAIT (CURTEX,EV); X
. WAIT(EV); X
ENDPROC;

CHANGE EFFECTIVELY CALLS
UNLOCK () ;

TAKE NEW RECORD

INSERT NEW RECORD
FILL IT UP

EVENT HAS OCCURRED
RESET TO ON A FIRST TIME
SUCCESS SO IT DIDN'T TIMEOUT

WAIT FOR EVENT OR TIMEOUT

RESET
WILL CALL CHANGE

NI

ENT PROC LOCK(); ‘ |
TASKLOCK := 1; :
ENDPROC;

ENT PROC UNLOCK();
4 CALLED FROH 5 TASK AT S TASK STACK LEVEL, IT USES HARDWARE LOCKOUTZ
Z FOR SHORT PERIODS, TO ALLOW THE EVENT QUEUE TO BE BUILT UP VIA)4
Z INTERRUPTS.IT CALLS SET, BUT SET WILL NOT GO TO CHANGE SINCE TASK X%
- %X LOCK IS SET. WHEN THE EVENT QUEUE IS EMPTY, IT CAN CALL CHANGE.)4

INT EVENT;
EM: HLOCK();
IF EVIN # EVOUT THEN
EVOUT := (EVOUT+1) LAND NEV@S' :
EVENT :t= EVQ(EVOUT+1); . . '
HUNLOCK ()
SET(EVENT);
HLOCK () ;
IF EVIN=EVOUT THEN
CHANGE () ;
END;
GOTO EM;
END; :
TASKLOCK:=0;
HUNLOCK () ;
ENDPROC;

ENT PROC SET(INT EV);
INT_WASLK :=TASKLOCK;

INT EVDX := EV + NSEV; '
IF EVDX <= 0 OR EVDX > NEVENTS THEN RRGEL (12); END;
TASKLOCK := 13 _ Z SET_UP THE EVENT FOR ALL TASKSZ

FOR I := 1 TO NTDVi1é6 DO :
EVBITS (I,EVDX) := HEX FFFF;.
REP; :
BLOCK
REF BYTE TS := EVTOTSK(EVDX) ;TF;
WHILE TS 8 O
DO TF := WTCHN(TS);

. QUTDEL(TS); = % TEST TIMEOUT AND PERHAPS EMPTYZ
UNWAIT(TS,EV) ; X AND REMOVE TASK EVENT BITS, X
vaL TS := O; - % AND STAT CLEAR WTCHN ELEMENT z
TS := TF; % AND STEP ON
REP;
ENDBLOCK;
IF WASLK = O THEN CHANGE(); END;
ENDPROC;

ENT PROC SYSSTO(INT TIME);
TIMEOUT (CURTEX) : =TIME;
ENDPROC;

ENT PROC SYSRTO () INT;
INT T: TIMEOUT(CURTEX)
' TIMEOUT (CURTEX) 2=~

RETURN(T) ;
ENDPROC;

PROC UNWAIT(INT TK,EV)INT;

% PRIVATE PROCEDURE TO REMOVE TASK EVENTS BIT AND TEST IT 4
INT EVDX := EV + NSEV;
IF EVDX <= 0 OR EVDX > NEVENTS
THEN RRGEL(12);
END;
TASKLOCK := 1;
BLOCK :
REF INT EVPTR := EVBITS(((TK-1)SRL 4) + 1,EVDX);
INT MBIT:=(BITS(((TK-1)LAND 15)+1))LAND EVPTR;
VAL EVPTR := EVPTR LAND NOT MBIT; -
RETURN(MBIT) ;
ENDBLOCK;
ENDPROC;
ENT PROC ME{) INT;
RETURN(CURTASK) ;
ENDPROC;
XXXXXZXXX FACILITY CONTROL XXZXXXXZZ
ENT PROC SECURE(INT FAC);
FAC := FAC + NSFAC;
IF FAC <= 0 OR FAC > NFAC THEN RRGEL(14); END;
BLOCK -
REF BYTE F := FACILITY(FAC);
REF INT T := TIMEOUT (CURTEX);
- IF F = CURTEX THEN RRGEL (16); END;
Lp:
TASKLOCK := 1;
IFF =20 , Z FACILITY FREE z
THEN VAL F := BYTE CURTEX; :
: IF T = 0 THEN VAL T := -1 END;
- UNLOCK () ; : '
ELSE EVFAC(CURTEX) = BYTE FAC;
CHAINWT (FACTOTSK (FAC) ,WSEC) ;
IF F # CURTEX AND T # O THEN
GOTO LP
END;
END;
ENDBLOCK-
ENDPROC;
ENT PROC RELEASE(INT FAQ);
X RELEASE AWARDS THE FACILITY TO THE HIGHEST PRIORITY WAITING TASK)
FAC := FAC + NSFAC; X AND UNWAITS ANY STOPPED TASKS X
IF FAC <= 0 OR FAC > NFAC THEN RRGEL (14); END;
BLOCK :
REF BYTE TKPTR := FACILITY(FAC);
INT P := HI = 0O; C
IF TKPTR # CURTEX THEN RRGEL(15); X CAN ONLY RELEASE OWN FACILITY X
END;
TASKLOCK =13
BLOCK

REF BYTE HPTR,TS

= FACTOTSK(FAC),TF;

WHILE TS # O '
DO TF := WTCHN(TS); |

IF STAT(TS)LAND STOPP # O

THEN OUTDEL (TS); X STOPPED TASKS UNWAITED FOR X%
vaL TS := TF; % LATER TRY - X
vaL TF := O;

IF TS # DO THEN
TF := WTCHN(TS) END;
ELSE IF PRIOG(TS) > P ‘
THEN P := PRIO(TS); X HIGHEST PRIORITY WAITING SO)4

HPTR := TS; ‘ Z FAR 4
HI = TS; - ’
END;
END;
TS := TF X TRY NEXT TASK 4
REP;
IF P> 0

" THEN VAL HPTR := WTCHN(HI); % CLEAR THE HIGHEST PRIORITY %
. % WAITING TASK FROM THE WAIT %
B % CHAIN FOR THIS FACILITY AND %
o OUTDEL (HI); % JOIN UP THE CHAIN AND SET IT %
" END; % GOING, AND REMOVE IT FROM THE %
o : % DELAY LIST X
VAL TKPTR := BYTE HI; - % SET FACILITY EITHER FREE OR TOX
CHANGE () ; % A NEW TASK %
ENDBLOCK -
~ ENDBLOCK;
ENDPROC

PROC OUTDEL (INT TK);

% OUTDEL REMOVES ANY ENTRY TO THE DELAY CHAIN, AND SETS THE TASK NOT X
% WAITING. EVFAC IS CLEARED. THE TASK WILL RESUME IN CHAINWT AND NEED X
% NOT CLEAR ANY DATA. IT USES TASK INDEX. P
REF INT T := TIMEOUT (TK);
STAT(TK) := STAT(TK)LAND STOPP; X SET TASK NOT WAITING 4
EVFAC(TK) :=z O; :
IFT>0 % IN THIS CASE A RECORD STILL X%
THEN = - =~ % EXISTS IN THE DELAY LIST %
BLOCK % EXTRACT IT %

REF DELREC BPTR := ADEL,
PTR := ADEL.NXT;
WHILE PTR :#: ADEL

Do :
IF PTR.TASK = TK
THEN VAL T := PTR.TIMUP - NOW;
BPTR.NXT := PTR.NXT;
PTR.NXT := FRPTR;
FRPTR := PTR;
GOTO RET;
END;
BPTR := PTR;
PTR := PTR.NXT;
REP; :
ENDBLOCK;
END;

RET:
ENDPROC;

PROC CHAINWT(REF BYTE TKPTR, INT STWT); .I

% LOCAL PROCEDURE TO HANDLE WTCHN AND DELAY CHAIN FOR WAIT AND SECURE X%
INT T := TIMEOUT(CURTEX);

IFT>0 '

THEN INDEL(T); % PUT TASK IN DELAY CHAIN IF %
END; % TIMEOUT SET %
IFT#O % DROP THROUGH ON ZERO TIMEOUT %
THEN

STAT(CURTEX) :=STAT (CURTEX) X WAIT, OR WTSEC STATUS X

LOR BYTE STWT;

WTCHN(CURTEX) := TKPTR; X PUT CURTEX INTO WAIT CHAIN %

VAL TKPTR 1= BYTE(CURTEX);

CHANGE () ; Z WAIT TILL ACTIVATED BY RELEASEX
ELSE EVFAC(CURTEX) := O; X SET STIM, OR T.O. 2oy
UNLOCK () 3
END;

ENDPROC;

ENT PROC CLEANUP();
FOR I:=1 7O NFAC DO
IF FACILITY(I)=CURTEX THEN RELEASE(I - NSFAC) END;
REP;
ENDPROC

XZZXXXXXX SECURE RELEASE ADDITIONS 1943493348

ENT PROC TSTSCR(CINT FAC)INT;
% RESULT IS5 0 IF CURTEX HAS NOT SECURED FAC 1 IF IT HAS 4
FAC := FAC + NSFAC;
IF FAC <= D OR FAC > NFAC THEN RRGEL(14)' END;
RETURN(IF FACILITY(FAC)= CURTEX THEN 1 ELSE 0 END)
ENDPROC;

ENT PROC TWAITC(INT EV,TIME,LABEL FAILEXIT);

% WAITS FOR EVENT EV FOR TIME/50 SECS 4
% IF EVENT 1S NOT SET THEN GOES TO FAILEXIT | %
SYSSTO(TIME) ;
WAIT(EV); ;
IF SYSRTO()=0 THEN GOTO FAILEXIT END;

ENDPROC;

ENT PROC TSECURE (INT FAC,TIME,LABEL FAILEXIT);
% TRIES TO SECURE FACILITY FAC FOR TIME/50 SECS 4
% GOES TO FAILEXIT IF UNSUCCESSFUL p
SYSSTO(TIME) ; ;
SECURE (FAC) ;
IF SYSRTO()=0 THEN GOTO FAILEXIT END;

ENDPROC;

AZXZXXXXX ERROR PRINTING XXXXXXXXX

ENT PROC ERPRIN(); % TASK BASE PROCEDURE y 4
INT Y; : ,

L: ,
STOP(ERPTNO) ; X WAIT TILL RESTARTED BY RRGEL %

% THE ERROR PRINTING HAS BEEN COMMENTED OUT. WHEN AN UNRECOVERABLE ERROR X%
X OCCURS, SMTCOMS OUTPUTS A MEDIA ERROR MESSAGE OF THREE BYTES.)4

IF ECT#0 THEN
OUT:=ERROUT;
TWRT("#NL ,BELL#ERROR "); IWRT(ERNO);
OUT(SP); TIMDAT(-1);
IF TASKNO#O THEN
TWRT(" TASK ") ; IWRT(TASKNO);
IF LINENO >= O THEN TWRT(" ON LINE "); IWRT(LINENO); END;
ELSE ‘ 1
TWRT (" IN H-TASK");
END;
OUT(NL))
FOR I:=1 TO 9 DO OWRT(REGS(I)); OUT(SP) REP;
TWRT ("BNLHSSTACKHNLE")
FOR I := 1 TO NSTCON DO OWRT(STKVALS(I));
OUT(IF I LAND 7 = D
THEN NL ELSE SP
END) ;
REP;
OUT(NL);
LOCK(); Y:=ECT; ECT:=0; UNLOCKQ); ,
IF Y81 THEN TWRT("#NL#ER DATA LOST#NL#") END;
END;
GOTO L;
ENDPROC;

Y Y R R Rk R R R R R RN YRV ECREe
~ LI I M I AL NP IR T L R PR PR N

XAXXZXAXLL CONTROL A EVENT RESPONSE TASK AXXXRZXAL

LET GO
LET STP
LET LK
LET SE
LET TD
LET ND

HEX 4F47
HEX 5053
HEX 4B4C
HEX 4553
HEX 4454
HEX 444E

DX R"ER_E RN I N Iy

EXT DATA INSTDATA;
LABEL NIXL;
BYTE NXCH;

ENDDATA;

ENT PROC INSTRUCT () % TASK BASE PROCEDURE 4
INT X,Y,ACTION; ~
INT NI,TYPTR,TYPLEN;
BYTE TYPE;
REAL YR;

IN:=CHIN; - X INITIALISE I/P FOR LOOK AHEAD X%

ENTER: Z RESTART POINT)4
OUT:=CTLAOUT; ' ' , :
CLEANUP () ; , % IN CASE OF ERROR ENTRY p4
ERL:=ENTER; NIXL:=NIX; ERP:=GOTOLBL;

WAIT(CTLAEV); : % WAIT FOR CTLAEV 4
%X RESPOND TO PRESSING OF CTL A KEY X
NXCH:=0;
TWRT ("SNLHCTLABENGS") ; , -
ACTION:=MNPACK () ; X RETURNS 2-CHAR MNEMONIC PACKEDX
o X INTO "INT)4
IF ACTION=TD THEN
SPS5(3);
TIMDAT(-1);
G070 OK
IF ACTION=ND THEN SETDAT(); GOTO ENTER END;
IF INO#',” THEN GOTO NIX END; X PARAMETER SHOULD FOLLOW 4
IF ACTION=LK THEN X CORE LOCATION LOOK) 4
NI:=1; TYPE:="W'; % DEFAULT NO OF ITEMS AND TYPE %
ABSADR:
o Xi=0;
- NEWADR: _
X:=X+ZREAD () ; X NEW LK ADDRESS) 4
READNOITYPE: : :
NIXL:=NIX;
WHILE TERMCH#EOM DO
IF TERMCH# ,” THEN GOTO NIX END;
BLOCK BYTE T:=NEXT(); S
NIXL:=READTYPE; ~ X TO READTYPE IF ZREAD FAILS 4
NI:=ZREAD () ; :
GOTO NT;
READTYPE:
TYPE:=T; TERMCH:=IN();
NT:
NIXL:=NIX;
ENDBLOCK;
REP;
FOR I:=1 TO NOLKTYPES DO
IF TYPES(I).CHAR=TYPE THEN
TYPTR:=1; TYPLEN:=TYPES(I).LEN; GOTO TYPOK;
END;
REP; ‘
GOTO NIX; % ILLEGAL TYPE)3
TYPOK:
IF TYPLEN#1 THEN X:=X LAND OCT 177776 END;
TO NI DO
REF INT A:=ITORI(X LAND OCT 177776)-
IF NI#1 THEN OUT (NL) END'
OUT("@"); OWRT(X); OUT(=");
SWITCH TYPTR OF BB,CC,II,WW,FF,RR;
% SWITCH CANNOT FAIL 4
BB: '
CC:
BLOCK
BYTE B := ITORB(X);
OWRT (B)
IF TYPTR 2 THEN OUT(',"); OUT(B) END;
GOTO UPDX;
ENDBLOCK;
I1:)
IWRT (A)

GOTO UPDX;

WW

"OMRT (A) ; |
GOTO UPDX;
FF: | |

BLOCK
REF FRAC RF:=ITORF(X);
RWRTF (REAL RF,0,7);
GOTO UPDX;
ENDBLOCK;
RR:
BLOCK .
 REF REAL RR:=ITORR(X);
RWRTF (RR,0,7) ;
ENDBLOCK;
UPDX: -
X:=X+TYPLEN; % ADVANCE ADDRESS FOR NEXT LK %
REP; |

IF NI#1 THEN GOTO NXTLK END; X NO REPLACEMENT VALUE 4
NXCH:=0; ~ .

X 1= X - TYPLEN;

TWRT (" :=BENQ#");

IF NEXT()=EOM THEN GOTO REPOK END;

SWITCH TYPTR OF RBB,RCC,RII,RWW,RFF,RRR;

X SWITCH CANNOT FAIL Y4

RBB:
RII:
RUWW: : o o

Y:=ZREAD(); GOTO CHKRD;
RCC: '

(=IN(); TERMCH:=IN(); GOTO CHKRD;

RFF:

Y:=INT(FREAD() SLA 15); % PRETEND FRAC IS AN INT PATTERNZ

GOTO CHKRD; % HAS NOT BEEN CHANGED BY THIS X
RRR:

YR:=RREAD () ;
CHKRD:
IF TERMCH#EOM THEN GOTO NIX END;

SWITCH TYPLEN OF ONEB,TWOB,REPOK,FOURB;% 3 NOT POSSIBLE %
% SWITCH CANNOT FAIL p
ONEB:
BLOCK
REF BYTE RB := ITORB(X);
VAL RB := BYTE(Y);
GOTO REPOK;

ENDBLOCK;
TWOB:
BLOCK
REF INT RI:=ITORI(X);
VAL RI:=Y;
GOTO REPOK;
- ENDBLOCK;
FOURB:
BLOCK
REF REAL RR:=ITORR(X);
VAL RR:=YR;
- ENDBLOCK;
- REPOK:

X:=X+TYPLEN;
TURT(" OK");

NXTLK: :
NXCH:=0; _
TNRT("#NL(Z)#CTLA LK#ENQ#") 7 :

IF NEXT()=EOM THEN TWRT (" EXIT");

GOTO OK END; % FINISHED
IF NXCH# ' +° AND NXCH#'~' THEN GOTO ABSADR END;
NIXL:=READNOITYPE; % WREAD ERROR MEANS SPECIAL
% + OR - CASE
GOTO NEWADR; v
END;

X:=IREAD(); - Z SHOULD BE AN INTEGER PARAMETERZX

IF TERMCH#EOM THEN GOTO NIX END;
IF ACTION=G0 THEN START(X); START TASK
‘ELSEIF ACTION=S5TP THEN STOP(X); STOP TASK

ELSEIF ACTION=SE THEN SET(X); SET EVENT

O R

-ELSE GOTO NIX;
- END;
0K:

UNKNOWN MNEMONIC

TWRT (" OKENLE"); GOTO ENTER;
NIX: o
TWRT (" NO#33,NL#"); GOTO ENTER;

ENDPROC;

ENT PROC MNPACK()INT;

BYTE CHAR:=IN();

RETURN(CHAR LOR (IN() SLL 8));
ENDPROC;

PROC NEXT()BYTE;
IF NXCH=0 THEN NXCH:=CTLAIN() END;
RETURN (NXCH) ;

ENDPROC;

PROC CHIN()BYTE;
BYTE 'B:=IF NXCH=0 THEN CTLAIN() ELSE NXCH END;
NXCH:=0;

RETURN (B) ;

ENDPROC;

PROC ZREAD() INT;
INT N:=0;

NEXT:
N:=N+WREAD () ;
IF TERMCH='+°' OR TERMCH='-' THEN
NXCH:=TERMCH;
GOTO NEXT;
END;
RETURN (N) ;
ENDPROC;

PROC GOTOLBL (INT N); % CTLA TASK ERROR PROCESSING
GOTO NIXL;
ENDPROC;

L S S

YLLAXLLXY DEFAULT PROCEDURES XXXXIXAXX
ENT PROC DFERP(INT N); I
ENDPROC; :

ENT PROC DEFIN()BYTE;
RETURN (OCT 200);
ENDPROC;

ENT PROC DEFOUT (BYTE B);
ENDPROC;

ENT PROC RRNUL () ;
ENDPROC;

ENT PROC FBPROC()}; X¥XX% FBTASK BASE PROCEDURE XXX
L: BOTO L;
ENDPROC;

XAZZXXZXZ 1/0 FORMAT PROCEDURES ZZZXZXZX%

ZXZZX TIMDAT ZZZX%

ENT PROC TIMDAT(INT T);
INT H,MI,S,D,MO,Y;

LOCK () 5 : X SAMPLE TIME AND DATE
ZINDIVISIBLY
H:=HOURS; MI:=MINS; §&:=8ECS;
D:=DAYS; MO:=MONTHS; Y:=YEARS;
UNLOCK () ; :

IF T<=0 THEN
PUTZ(H, :"};
PUTZ2(MI," ")
PUT2(S,IF T<O THEN® ° ELSE O END);
END; : ‘ -
IF T#0 THEN
PUTZ2(D, /")
PUT2(MO, /")
PUT2(Y,D);
A END;
ENDPROC;

ENT PROC PUT2(INT VLU,BYTE SEP);
OUT (BYTE(VLU:/10+°0°));
OUT (BYTE (VLU MOD 10+°0°));
IF SEP#0 THEN OUT(SEP); END;
ENDPROC; .

XXXXZXAXXZXX IREAD ZXXXXXXZZXX

ENT PROC IREAD () INT;
INT SIGN;

~ RETURN (BUILD(FIRSTCH(SIGN),10,5IGN,101));
'ENDPROC; | v

RXXXZ TWRT ZZX2%%

ENT PROC IWRT(INT X);
" IF X>=0 THEN X:=-X ELSE OUT('~') END;
IF X<=-10 THEN IWRT(X:/-10) END;
OUT (BYTE(-(X MOD -10))LOR ‘0°);
ENDPROC; ,

LAY TWRT TXXLX
ENT PROC TWRT(REF ARRAY BYTE X);

FOR I:=1 TO LENGTH X DO OUT(X(I)) REP;
ENDPROC;

LLLLL OMRT ZALLX

ENT PROC OWRT(INT X);
ouT (")3
- FOR I:=15 BY -3 T0 0 DO
OUT(BYTE((X SRL IJLAND Z7)LOR "0°);
REP; |
ENDPROC;

IXXLALLLZIY OREAD YXTLZALZLZX
ENT PROC OREAD () INT;
INT SIGN, CH := FIRSTCH(SIGN);

RETURN (BUILD(IF CH = """ THEN INQO) '
ELSE CH + 256 END,8,5I6N,104)); X WILL FAIL,BUT TERMCH WILL
' X BE BYTE CH '

ENDPROC;

XXXXLLXXXXX WREAD XXXXXXXAXEXX

ENT PROC WREAD () INT;
INT SIGN, CH := FIRSTCH(SIGN),RADIX := 10;
IF CH = """
THEN RADIX := 8; CH = INQ);
- END;
"RETURN (BUILD(CH,RADIX,SIGN,105));

ENDPROC;

XZXXX NLS XXZZXX

ENT PROC NLS(INT N);
TO N DO OUT(NL) REP;
ENDPROC;

XXXXX SPS XXXXX
ENT PROC SPS(INT N);

TO N DO OUT (5P) REP
ENDPROC'

XXXZXXXZXXAXXXZAXX RWRTF ZAXXZZZXAXXZZXZXXR

ENT PROC RWRTF(REAL Y, INT M,N);

ST:
BLOCK

REAL ROUND := 0.5, LIM, X = Y; .

- INT EXP := D ABSEXP PLACE = 1,INTPT;
BYTE SIGN := SP;
IF X € 0.0 THEN X = -X; SIGN = "-' END;

TO N DO ROUND ':= ROUND/10.0 REP;
IF M # O THEN '
X
END;

X + ROUND;

WHILE X >= 10.0 DO X := X/10.0; EXP :

IF M > EXP THEN
PLACE := EXP + 1;

~ TO M - PLACE DO OUT(SP) REP;

- ELSE

EXP + 1 REP;

IF M # 0 THEN N := M + N; M := 0O; GOTO ST; END;

LIM := 1.0 - ROUND;

WHILE X < LIM AND X # 0.0 DO X := X%10.0; EXP := EXP - 1 REP;

X := X + ROUND;
END;

OUT(SIGN);

FOR I := 1 7O PLACE + N DO
INTPT 2= INT(X - 0.5);
OUT(BYTE INTPT LOR ‘0°);
X = (X - INTPT)+10.0;
IF T = PLACE AND N # D THEN OUT(

REP;

IF M = O THEN
ABSEXP := ABS EXP;

‘) END;

OUT(E); '
OUT(IF EXP >= O THEN “+° ELSE ‘-° END);

IF ABSEXP < 10 THEN OUT (“0') END;
IWRT (ABSEXP) ;
"END;
ENDBLOCK;
ENDPROC;

ZXXXXXXXXXX FREAD ZZXXZXXXXXAX
LET MAXFRAC = 32767.0B-15; % LARGEST 16 BIT FRACTION

ENT PROC FREAD()FRAC;

REAL N := RREAD(); X READ AS A REAL
"IF N> 1.00R N< ~-1.0 X TOO BIG, OR TOO SMALL?
- THEN IOFLAG := 1; ;
ERP(100);
N := 0.0;

ELSEIF N = 1.0 THEN RETURN (MAXFRAC) % JUST RIGHT
END;

RETURN (FRAC (N));
ENDPROC;

ZRXXZXXXXZZ RREAD XXXXXXZXZXX
ENT PROC RREADC() REAL;

REAL B := 1.0, R := 0.0;
INT EXP, SIGN, SGNEXP,
A =10, STARTED := O,

CH := FIRSTCH(SIGN); X SIGN AND LAYOUT

WHILE CH >= ‘0° AND CH <= "9’ . % BUILD THE NUMBER
DO STARTED := 1;

IF A = 1 THEN B := B/10.D0 END;

R := R*A + B*(CH - ‘'0°);

NXCH:
CH = INQ);
REP;

IF CH='.' AND STARTED=1 AND A = 10 X CHANGE TO FRPT
THEN STARTED := D; .
A 1= 1
GOTO NXCH;
END; -
TERMCH := BYTE CH;

TO IF STARTED = 1 AND CH # 'E°

THEN 0O '

ELSE BUILD (IF STARTED = 1 THEN FIRSTCH(SGNEXP)

ELSE CH + 256 % WILL FAIL
END, :
10, 1, % ABSOLUTE VALUE
102)

END

DO
R := R+ IF SGNEXP > O THEN 10.0 ELSE 0.1 END;

REP;

RETURN (R * SIGN);

ENDPROC;
‘% SET DATE AND TIME, USED BY CTLA TASK AND STARTUP JOB

LET ENQ@=5;
LET EOM=3;

ENT PROC SETDAT();
INT DYS,MNTHS,YRS,HRS,MNS;.

IOFLAG:=0;
TWRT (" DATESENG#");
DYS:=CREAD(1,31);
MNTHS:=CREAD (1,12}
YRS:=CREAD(0,99);
TWRT (" TIMERENGSE");
HRS:=CREAD (0, 23);
MNS:=CREAD (0,59} ;
IF IOFLAG=0 THEN
LOCK ()
DAYS:=DYS; MONTHS:=MNTHS; YEARS:=YRS;
HOURS:=HRS; MINS:=MNS5; SEC5:=0;
UNLOCK () 5
TWRT (" OKENLE");
ELSE TWRT(" NO#33, NL#") END'
ENDPROC;

ENT PROC CREAD(INT LO,HI}INT;
INT X:=IREAD();
IF X<LO OR X>HI THEN
10FLAG:=3;
END;
RETURN (X) ;
ENDPROC;

XXZXXXXXXZX FIRSTCH XXXXXXXXAXXX

PROC FIRSTCH (REF INT SIGN) INT; '
X A PRIVATE PROCEDURE TO DETECT FIRST NON LAYOUT CHARACTER AND SIGN
BYTE CHAR; .
VAL SIGN := 13

RDC:
CHAR := IN();
IF CHAR = SP OR CHAR = NL OR CHAR = TAB THEN

GOTO RDC
END;
IF CHAR = '~
THEN VAL SIGN :=
GOTO GETC
END;
IF CHAR = '+’
THEN
GETC:
CHAR := INQO);
END;

RETURN (CHAR);
ENDPROC;

_1;

XEXXZXXXZXX BUILD ZXZXXZXZAXXZ

PROC BUILD (INT CH,RADIX,SIGN,ERNUM) INT;

X BUILDS ANY RADIX TO 10,

INT STARTED := N
BLD:
TERMCH :=
CH :=
"IF CH >=
CH :=
’ GOTO BLD
END;
IF STARTED =

ERP (ERNUM) ;
END;

CH - ‘D"

0 AND CH <

THEN STARTED :
N z= N » RADIX

INO ;

0 THEN

USES SUPPLIED SIGN
r= 0;

BYTE CH;

RADIX
:1;
-CH;

IOFLAG := 13

: RETURN(IF SIGN > O THEN -N ELSE N END)

ENDPROC;

TITLE o '
SMT OPERATING SYSTEM
(WITH NEGATIVE TASK NUMBERS)

SYSTEM DATA BRICKS AND STACKS (READ/WRITE)
#%%% MODULE SMTB3 *##+
SMT 3(18) 13-04-1981;

OPTION (1)

LET NTASKS = 225)4 y 4
LET NTDV1é = 25)4 y4
LET NSEV = 16;)4 4
LET NEVENTS = 37,)4 z
LET NFAC = 32)4)4
LET NSFAC = 1635 4 y4
LET EVQLEN = 16;)4 4
LET NEVQS = 153 4 y4
LET INVEVS = -16;)4 4
LET STOPP = OCT 100; 4)4
LET NSTCON = 165 -, 4 4

EXT PROC () BYTE DEFIN;
EXT PROC (BYTE) DEFOUT;

MODE DELREC (INT TIMUP, TASK, REF DELREC NXT);
MODE TASKLINK (REF ARRAY STACK TKS,

REF ARRAY PROC() TKP,

REF ARRAY BYTE TKPR,TKST,

PROGC () UINIT,UPF);

AXXXXZEXX STACKS FOR SYSTEM TASKS ZXXXZXX%%

ENT STACK HSTK 160; % HARDMWARE TASK

ENT STACK FBSTK 70; % FALL-BACK TASK

ENT STACK INSTK 220; CTLA TASK

ENT STACK SYSTACK 160; SYSTEM STARTUP AND °SET' TASK
ENT STACK CLKSTK 160; CLOCK SERVICING TASK

ENT STACK ERRSTK 140; ERROR PRINT TASK

eI AR
I IR LI e e

ENT DATA TASKDATA;
INT CURTASK;
INT CURTEX;

X NO. OF CURRENTLY ALIVE 5-TASK %
% ARRAY INDEX OF CURRENTLY ALIVEZ
% S-TASK 4
)4

INT TASKLOCK := O; NON-ZERO IF TASK CHANGING IS X

ZLOCKED ouUT)4
INT NXTCUR; X TEMPORARY STORE)4
INT EVIN := O; Z INPUT POINTER TO EVENT QUEUE X%
INT EVOUT := O; %2 0/P POINTER FROM EVENT QUEUE %

DELREC ADEL;
REF DELREC FRPTR;
BYTE HIPRI := OCT 340,LOPRI := 0; % HI AND LO PRIORITY FOR LSI
ARRAY (NTASKS) INT TIMEOUT := (-1(NTASKS)) ;X TIMEOUT TO BE USED
ARRAY (NTASKS)DELREC DEL; ,
ARRAY (NTASKS) STACK CELL; % STACK ADDRESSES
ARRAY (NTASKS)BYTE EVFAC"(U(NTASKS)) X AWAITED EVNT/FAC NO.
STAT := (STOPP(NTASKS)), Z TASK STATE
PRIO := (1(NTASKS)) ' Z TASK PRIORITY
WTCHN := (O (NTASKS)) ;Z CHAINED LIST FOR WAITING FOR
, % EVENT OR FAC
ARRAY (NTDV16,NEVENTS) INT EVBITS := ((O(NEVENTS)) (NTDV14));

IR IR LR I

ARRAY (NTASKS)REF BYTE STATADS

ARRAY (EVALEN) INT EV@;

. -
-

(STAT (1) (NTASKS)) ;
X ADDRESSES OF STATUS BYTES OF TASKS IN PRIORITY ORDER

X NOTE THAT THE FALL BACK TASK IS ALWAYS IN A GO STATE

X EVENT SET BITS

X THE EVENT QUEUE

e e N‘iili

ARRAY (NFACIBYTE FACILITY:=(O(NFAC)) ,FACTOTSK:=(D(NFAC)) ;% FACILITIESZ

X HEAD OF THE TASKCHAIN WAITING
X FOR EACH FACILITY

ARRAY (NEVENTS)BYTE EVTOTSK:= (0 (NEVENTS)) ;

ENDDATA;

ENT DATA TIMEDATA;

INT NOW,
SECSNOW,
MINSNOW,
TCOUNT, .
SECS := 30,
MINS := 49,
HOURS 1= 14,
DAYS := 13,
MONTHS := 04,
YEARS := 81;

ENDDATA; |

ENT DATA CLKDATA;
INT TICK := 0O;
ENDDATA;

ENT DATA REGDATA;

ARRAY (9) INT REGS;

ARRAY (NSTCON) INT STKVALS;

INT ECT,ERNO,TASKNO,LINENO :=
ENDDATA;

ENT DATA TRAPDATA;
LABEL TASKEXIT;
REF TASKLINK T;
INT UR1,ERNUM,UPS;

ENDDATA;

ENT DATA PWFDATA;
INT PWFLAG;
ENDDATA;

ENT DATA SYSIODATA;

PROC () BYTE CTLAIN := DEFIN;
PROC (BYTE) CTLAOUT := DEFOUT;
PROC (BYTE) ERROUT = DEFOUT;

ENDDATA;

ENT DATA INSTDATA;
LABEL NIXL;
BYTE NXCH;

ENDDATA;

X HEAD OF THE TASKCHAIN WAITING
% FOR EACH EVENT

% CYCLIC 1/50 SEC COUNTER

%Z CYCLIC 1 SECOND COUNTER

% CYCLIC MINUTES COUNTER

Z REALTIME CLOCK 50TH SEC(D-49)
% SECONDS (D TO 59)

% MINUTES (0 TO 59)

% HOURS (0 7O 23)

% DAYS (0 TO 31)

X MONTHS (0 TO 12)

% YEARS (0 TO 99)

X STORES CLOCKTICKS TILL
% CLOCKTASK CATCHES UP

% CTLA TASK “IN° PROCEDURE
X CTLA TASK "OUT" PROCEDURE
X ERROR PRINT °0UT® PROCEDURE

% DATA USED BY GTLA TASK
X ERROR RE-ENTRY LABEL

4
4

y4
4

PR N AL PN IR IR

e re R

_PSECT RTLCTL @
CONTROL ROUTINES FOR RTL/2

OPTION NO. *-EIS M/C * REAL VARIABLES # "EI"™ OPTION * "FP" OPTION

‘“ae WAL wae

* * SUPPORTED * ALWAYS USED * ALWAYS USED
XTI ETER LRSI XIS RS R LR LR YR RS RS ER YR AR SR FX R TE R R RS ER ST R L RS R L N
; * * * *
: (5) * YES # - YES * NO * NO
; * »* * *
_TITLE CONTROL ROUTINES RTL/2 SET 05
ZHWMD
ZFLPT:

. PAGE
.SBTTL CONFIGURATION DETAILS
CONTROL ROUTINES FOR RTL/2 - OPTIONAL EIS AND FLOATING POINT

DOS RELEASE 2 VERSION (AFTER RS5X-11 VERSION) FOR
NEW COMPILER IN-LINE CAPABILITY AND ‘

11/45 FLOATING POINT INSTRUCTIONS

DOS RELEASE 3 VERSION 21-JULY-772 CID

NEW BASIC FLOATING POINT ROUTINES (EX RELEASE 215)

EIS VERSION OF R21 & R22 INCORPORATED

11/45 FPOFLO ROUTINE MODIFIED TO USE X1 (PRESERVING X4)

RSX11-M VERSION 5 FROM DOS 13/9/77 GW

IF SYMBOL ZFLPT IS DEFINED FLOATING AND FIXED POINT
ROUTINES ARE ASSEMBLED ELSE
FIXED POINT ONLY

IF SYMBOL ZHWMD IS DEFINED USE IS MADE OF HARDWARE MULTIPLY
AND DIVIDE INSTRUCTIONS
FOR INTEGER AND FRAC

IF SYMBOL ZEISIL IS DEFINED FIXED POINT MULTIPLY,DIVIDE,SHIFT
ROUTINES ARE NOT ASSEMBLED

IF SYMBOL ZFPIL IS DEFINED FLOATING POINT ROUTINES CONSIST OF TYPE
: - CONVERSIONS ONLY - ADD,SUB,MUL,DIV ARE
OMITTED

e TR TR L LR R R L N R e R P R R N A R A A A R A LR L A]

IF SYMBOL Z4S5FP IS DEFINED FLOATING POINT ROUTINES USE 11/45
FLOATING POINT PROCESSOR INSTRUCTIONS

ROUTINES OMITTED HAVE NO GLOBAL DECLARATION - PROGRAMS WITH
JSR R2,RXX WILL FAIL TO LINK CORRECTLY, PROGRAMS WITH
TRAPS TO EXCLUDED ROUTINES WILL CAUSE RRGEL CALL

THE STACK USAGES GIVEN BELOW ARE IN THE FORM
(PARAMETERS+LINK ADDRESS) + WORKSPACE E.G. 4+3

WG WY SN B WA ME WA IR gy g,

. PAGE

.SBTTL GLOBALS & ASSIGNMENTS
«IF DF Z45FP

ACO=20

AC1=21 _ ' :
.ENDC 3 (ZASFP)

X1=%1
X2=%2
X3=%3
X4=24
X5=2%5
X6=%6
X7=%7
i
; ,
.GLOBL STKUSG . xxxGMT
.GLOBL ROO,R23,R24,SMT... D xxxGHT

.GLOBL RRBEL

.GLOBL CNTRTN |

.GLOBL RO1,RO2,R03,R04,R25,R17,R18,R19,R20,R21,R09
.IF NDF ZEISIL

.GLOBL ROS5,R064,R07,R08,R10,R11,R12,R13

.IFTF s (ZEISIL)

.GLOBL R14,R15,R14,R22

.ENDC ; (ZEISIL)

.IF DF ZFLPT '

.GLOBL R30,R31,R32,R33,R34 R35 R36,R37,R38,R39
.IF NDF ZFPIL

.6LOBL R26,R27,R28,R29 '

.ENDC y (ZFPIL) !

JIFTF : (ZFLPT)
;
8KLO=2 ; ADDRESS OF BOTTOM OF USABLE STACK FOR RO1 CHECKING
| STKFLO=1
LABERR=2
ARRERR:= 4
LIFF | ; (ZFLPT) |
HAXTRAP=50. ; MAXIMUM CONTROL ROUTINE NO SUPPORTED
i (2 FOR RGX #x*)
; __BY TRAP HANDLER
JIFT : (ZFLPT)
MAXTRAP=78. ;"MAXIMUM CONTROL ROUTINE SUPPORTED
; (%2 FOR RGX %xx)
; BY TRAP HANDLER
. PAGE ,
.SBTTL TRAP HANDLER
(IFTF ; (ZFLPT)

TRAP HANDLER - TRAP 1 TO TRAP MAXTRAP ARE PROCESSED AS CALLS
TO CORRESPONDING CONTROL ROUTINES, APPEARING TO ROUTINES AS
JSR X2,RNN

e WML we WA ws

LASECT

.=34 '

.WORD CNTRTN, 340

.PSECT RTLCTL
CNTRTN:
’
’

FROM HERE TO TRP.2 MODIFIED FOR RSX

THIS IS BASIC
HANDLER SIMUL

MOV
SUB
MOV
BIC
ASL

-a

CHP

BGT

MOV

MOV

MOV

MOV

ADD
. MOV
N.B. THE
VARIES IN

afwewawe

RP.2:

RO1.D,R02.0,R0O3.

.IF DF ZEISIL

TRP.1,TRP.1,TRP.

. IFF

RO5.0,R06.0,R07.

LIFTF

RD9.0

JIFT
TRP.1,TRP.1,TRP

IFF

R10.0,R11.0,R12.

LAFTF

R17.0,R18.0,R19.

JIFT

TRP. 1

IFF

R22.0

.ENDC
R23,R24,R25.0
JIFT

.IF DF ZFPIL

TRP.1,TRP.1,TRP.

. IFF

R26.0,R27.0,R28
.ENDC

R30.0,R31.0,R32.

.ENDC

TRP.1: JMP

. PAGE

.SBTTL

PROCEDURE ENT

wavswsws

RO1:
RO1.0: MOV
SUB

FRAXXZXXXXXAXXR

ALLY THE RSX-11M VERSION, WITH THE ACTION OF AN SST
ATED IN THE NEXT FEW INSTRUCTIONS...

(SP) ,-(SP)
#2, (SP)
A(SP)+,~(SP)
#177400, (SP)
(SP)

- COPY PC VALUE
BACK OFF TO TRAP INSTR ADDRESS (PC-2)
PICKUP BOTTOM BYTE TRAP OPERAND

e wews

#*2 FOR WORD OFFSET INTO TRAP TABLE

-s

(6) , #BMAXTRAP CONTROL RTN CALL

TRP.1 :
4(5P),177776 ; RESTORE USER’S PSW (*%SMTxx%) "~ -
X2,4(6) ; X2 AS FOR JSR 2Z,RNN
2(6) X2 ; LINK INTO X2
(6)+ (6) ; TRAP OPERAND TO STACK
BTRP.2-2, (6) ; ADDR OF ROUTINE
o (6)+,X7 ;y SIMULATE JSR 2,RNN FROM USER

ABOVE INSTRUCTION IS A SUBSTITUTE FOR JMP (6) + WHICH
BEHAVIOUR BETWEEN DIFFERENT MODELS OF PDPt1

0,R04.0

1,TRP.1 |
| s (ZEISIL)
0,R08.0

s (ZEISIL)

s (ZEISIL)
.1,TRP.1,R14.0,R15.0,R16.0
s (ZEISIL)
0,R13.0,R14.0,R15.
s (ZEISIL)
0,R20.0,R21.0
s (ZEISIL)

0,R16.0

; (ZEISIL)

s (ZEISIL)
; (%*%SMT*%)
s (ZFLPT)

1,TRP.1
s (ZFPIL)
.0,R29.0
s (ZFPIL) v
0,R33.0, R34 0,R35.0,R36.0,R37.0,R38.0,R39.0
s (ZFLPT)

dRO0+4 ; S5VC PROC CALL

’

(%#SHT»x)
STACK ADMINISTRATION

RY, CHECKS FOR STACK OVERFLOW

Xb,X3
(2)+,X3
XAXXAXXXXAAXALXANANLAXXXL

COPY X6
COMPUT MAX STACK USAGE

’

CMP X3,5TKUSG+0 (D) _ ; RECORD LOWEST ADDRESSED STK #*%%RS

BHIS RO1.2
| MOV X3,5TKUSG+0(0) ; *xxGMT
ROt1.2: ,
222222 222222222222222%3222223222%23%4 %4

CMP X3, 5KLO (D) ; COMPARE TO LOWEST ADDR #x%%SMT

BHI RO1.1

MOV BSTKFLO,-(6) ; SET ERROR NUMBER

JSR X1,RRBEL . ; 60 TO ERROR ROUTINE
RO1.1: SUB (2)+,X6 ;y ADJUST X6

MOV X1,-(6) ; DUMP LINK

MOV X5,-(6) ; DUMP OLD X5

MOV X6,X5 ; SET NEW X5=Xé6

JMP (2) y RETURN TO CODING

; PROCEDURE EXIT - NO RESULT

RD2: '

RD2.0: TST (6)+ ; DISCARD OLD X2
MOV (6)+,X5 ; RESET X5
MOV (6)+,X2 ; PICK UP LINK
MOV X5,X6 ; RESET Xé

_ JMP (2) ; RETURN

’

; PROCEDURE EXIT - ONE WORD RESULT

3

RO3:

R0O3.0: 157 (6)+ ; DISCARD OLD X2
MOV (6)+,X1 ; PICK UP RESULT FROM STACK
MOV (6)Y+,X5 ; RESET X5
MOV (6)+,X4 ; PICK UP LINK

v ADD (2),X6 s RESET X6
RD3.1: MOV X1,-(6) ; DUMP RESULT
' : JMP (4) 3 RETURN

PROCEDURE EXIT - DOUBLE WORD RESULT

[PPRVY R X

el
o
&~

RO4.0: TST (&) +
MOV (6)+,X1
MOV (6)+,X3

DISCARD OLD X2
FIRST WORD OF RESULT FROM STACK
ZND. WORD OF RESULT FROM STACK

MOV (6)+,X5 RESET X5
MOV (6)+,X4 PICK UP LINK
ADD (2),X6 RESET Xé6

D Y RVER Y RFY RVENYE VY

MOV X3,-(6)
BR RO3.1

DUMP RESULT, FIRST WORD

GOTO GENERAL LABEL - USES STACK UNWIND ROUTINE R25

- e gy

RO9:

R0O9.0: TST (6)+ ; IGNORE LINK
JSR X2,R25.0 ; UNWIND, G60ES TO LABEL IF OK
MOV #LABERR,-(4) ; SET ERROR NUMBER
JSR X1,RRGEL ; B0 TO ERROR ROUTINE.

STACK UNWIND ROUTINE
; GOES DIRECTLY TO LABEL IF FOUND
; RETURNS WITH STACK UNCHANGED IF NOT FOUND

ﬁZS: s
R25.0: TST (6) + ; IGNORE OLD X2
MOV (6)+,X1 ; LABEL X7

R25.1:

R25.2:
R25.3:

RO5

RO&

VW WL WLMYVMAYEMEIMEWMEYEMIMS § WS WML ay

ROS:
R0O5.0:

’

l’mb:
RO6.0:
RO6.1:

.IF NDF

RO6.2:

RD6.3:

RD6.4:

MOV (6)+,X4

CMP X4,X5
BEQ R25.2
CMP X5, (5)
BEQ R25.3
MOV (5),X5
BR R25.1
MOV X5,X6
JMP (1)
MOV X6,X5
JMP (D)

. PAGE

IF NDF ZEISIL

MULTIPLY, SINGLE LENGTH RESULT
SETS FLAG AND USES RO6
EXEC TIME, FASTEST=58.5, SLOWEST=455.2

MULTIPLY, DOUBLE LENGTH RESULT
DESTROYS REGISTERS X1 AND X2

TESTS FLAG AT END OF ROUTINE TO DETERMINE
IF IS SINGLE LENGTH RESULT (RO5 CALL)
EXEC TIME, FASTEST=54.6, SLOWEST=451.3
STACK USAGE - 3+4 WORDS

CLR X1
BR RO6.1
MOV #1,X1

MOV X2, (6)
MOV X3,-(4)

ZHWMD

MOV X4,- (&)
SWAB X1
MOV 6(4),X2
BGE R04.2
NEG X2

INCB X1
MOV 8. (&) ,X3
BGE RD&.3
NEG X3
DECB X1

CMP X2, X3
BLE RO4.4
MOV X2,X4
MOV X3,X2
MOV X4,X3
CLR X4

MOV X1,-(4)
MOV X2,-(4)

“awa B ey

LRV YRy]

warws

LABEL X5
FOUND IT?

END OF S5TACK ?
UNWIND ONE LEVEL
RESET Xé

60TO LABEL

RESET STACK POINTER
RETURN TO CALLER

+SBTTL FIXED bOINT MUL, BASIC & EIS

ALL FIXED POINT OVERFLOW DETECTION LOGIC IS COMMENTED OUT.
SUCH ERRORS WOULD INVOLVE A BR (OR JMP)
CURRENTLY NOT DEFINED.

USERS MAY DEFINE OFLO IF THEY WISH.

TO A LABEL OFLO, WHICH IS

SET EXIT TYPE FLAG

SET EXIT TYPE FLAG
DUMP X3
DUMP X4

PUT EXIT TYPE INTO TOP BYTE

PICK UP FIRST OPERAND

NEGATE IF NEGATIVE
REMEMBER SIGN
PICK UP 2ND OPERAND

NEGATE IF NEGATIVE
REMEMBER SIGN.
X2:=SMALLER OF X2,X3

SWAP X2 AND X3
X4.X3 1S MULTIPLICAND

DUMP X1, SIGN FLAG
DUMP X2, MULTIPLIER

CLR X2 ‘ ; PRODUCT L.S. HALF @

. CLR X1 s PRODUCT M.S. HALF
RD4.5: TST (&) | ;s MULTIPLIER EXHAUSTED YET?
| BEQ RD6.7 :
ROR (4) ; TEST L.S. BIT
BCC RD6.6
ADD X3,X2 : 2 WORD ADD
ADC X1
" ADD X4 ,X1
RO4.6: ASL X3 - ; DOUBLE MULTIPLICAND
ROL X4
= BR RO&.5 ,
RD6.7: TST (&) + ; SKIP OLD MULTIPLIER
TSTB (&) : TEST SIGN BIT
BEQ RD4.8
NEG X1 : 2 WORD NEGATE
NEG X2
SBC X1

RD6.8: MOV X2,10. (&) ; DUMP RESULT L.S. HALF
: MOV X1,8.(8) : DITTO M.S. HALF
MOV (6)+,X1 ; ACCESS TYPE FLAG
MOV (6)+,X4 ; RESTORE X3 AND X4
MOV (6)+,X3

MOV (&) +,X2 s PICK UP LINK

SWAB X1 : ACCESS EXIT TYPE FLAG
.IFF ; (ZHWMD) |

MOV &(4) ,X2 : FIRST OPERAND

CLR X3

MUL 4. (&) ,X2
MOV X3,64(4)
MOV X2,4(6)

MULTIPLY BY SECOND
RESULT L.S. HALF
RESULT M.S5. HALF

wswews ws

MOV (&) +,X3 RESTORE X3
MOV (6) +,X2
* TST X1 ; RESULT TYPE FLAG

JIFTF s (ZHWMD)

- BNE RD4.9 -
| TST (4)+ ; REJECT M.S5. HALF
RD6.9: JMP (2) : RETURN

~ .PABE

.SBTTL FIXED POINT DIV, BASIC & EIS

RO?7 DIVIDE, SINGLE LENGTH DIVIDEND
EXTENDS DIVIDEND AND USES RO8
EXEC TIME, ADDS 23.3 TO RO8 IF DIVIDEND +VE, 27.3 IF -VE -

RO8 DIVIDE, DOUBLE LENGTH DIVIDEND
DIVISOR AND DIVIDEND ON STACK

RESULT ON STACK, REMAINDER IN X1
DESTROYS REGISTERS X1 AND X2

EXEC TIME, WORST CASE=390

STACK USAGE - 4+4 WORDS

VUM WME NSNS VA VME VWSV WL W WS WA

COPY X6

COPY OLD X2

COPY DIVISOR

CLEAR M.S5. HALF OF DIVIDEND
TEST L.S. HALF OF DIVIDEND

RO7.0: MOV Xé&,X1
» MOV (1)+,~(6)
MOV (1),-2(1)
CLR (1)+
ST (1)
BGE RO8.0

T RPEREVNE R TRV FY

BEC -2(1) EXTEND SIGN BIT IF NEGATIVE

hoa: | . (2§EZEEZ§Z>

RD&8.0: MOV X2, (6) REMEMBER LINK

-e
-

-3

MOV X3,-(6) sDUMP X3 AND X4
MOV X4,-(6)

JIFT s (ZHWMD)

CLR X3 : SIGN FLAG

MOV &4(6),X2 : PICK UP DIVISOR
zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz

BEQ OFLO . OVERFLOW IF NEGATIVE
-zzzzzzzzzzzzzxzzzzzzzzzzzzzzzzzzxzzzzz

BGT ROB.1

NEG X2 NEGATE IF NEGATIVE

INC X3

RO8.1: MOV 8.(&),X4
MOV 10.(&),X1
MOV X4,-(4)

REMEMBER SIGN
DIVIDEND M.S. HALF
DIVIDEND L.S. HALF
REMEMBER SIGN

e we WS

BGE RD&.2
NEG X4 : NEGATE IF NEGATIVE
NEG X1
SBC X4
DEC X3 : SET SIGN FLAG
RO8.2:
XXX AU AL AL AL A AXLXAALXLAXL LY
; CMP X1,X2 s OVERFLOW IF M.S. HALF GREATER
: BHI OFLO : THAN DIVISOR (UNSIGNED TEST)
222922323 222323233122¢2%34252525222222 2
MOV X3,-(6) : DUMP SIGN FLAG
MOV #16.,X3 : SET LOOP COUNT
ROB.3: ASL X1 s 2 WORD SHIFT
ROL X4
CMP X4,X2
BLO RDB.4
SUB X2,X4 ; SUB. DIVISOR IF M.S. HALF
: EXCEEDS IT
INC X1 : PUT BIT INTO RESULT
ROB.4: DEC X3 : LOOP IF MORE TO DO
BGT ROB.3
MOV (6)4,X3 : RESTORE SIGN FLAG
TST (&)+ ‘ : CORRECT SIGN OF REMAINDER
BGE RO8.5
NEG X4
FRXAAAAAAAALAAALAAXXAAAAAAARAAAAAAAARL
NEG X2 CHANGE SIGN OF DIVISOR
20232522333 23232825222%2325232322232528
RD8.5: TST X3 : CORRECT SIGN OF QUOTIENT
BEQ ROB.6
NEG X1
$333409223333434%35%92443222324%2228%2
; CMP XO,#100000 : QUOTIENT TOO LARGE?
; BEQ OFLO
: BR ROB8.7
3 333333%332¢224325434255353235800%0008%"
ROB.6:
320293343482 38% 4322333238358 3%3%%%%" :
; CMP (&) ,X2 : DIVISOR=ORIG. M.S. HALF?
BEQR OFLO

1333335%245+233333%29%422222232333333 %%
ROB.7: MOV X4,8.(6)
MOV (&) +,X4

DUMP REMAINDER
RESTORE X3 AND X4

-e-e

. IFF

ZZ%ZZZZZZXZXXXZXZXXXZXZZZZZXZXXZXZXZZXZ

- RO8.1:

RO8.2:

R0O8.5:
RO8.64:

RO8.7:

RO8.8:

JIFTF

MOV
MOV
TST
MOV
MOV

CLR
MOV

(6)+,X3
(6)+,X2
(6) +
X1,2(6)
(6)+,X1
3 (ZHWMD)
X1
6(8) ,X4

- e

. " .

’
’

PICK UP LINK 0-€-¢
SKIP OLD DIVISOR
DUMP RESULT

PICK UP REMAINDER

:SIGN FLAG
sDIVISOR

: BRANCH IF POSITIVE
sNEGATE IF NEGATIVE
:REMEMBER SIGN -
: DIVIDEND M.S. HALF
: DIVIDEND L.S. HALF
; REMEMBER SIGN

s BRANCH IF POSITIVE

:DOUBLE WORD NEGATE
*REMEMBER SIGN

: TEST FOR DIV.BY ZERO
OVERFLOW IF M.S5.>DIVISOR

-a

DO DIVISION

TEST FOR DIV.BY ZERO
MAXIMUM RESULT

AND ZERO REMAINDER

IV E R RPN XY N

OVERFLOW
; TEST SIGN OF DIVIDEND

-

SIGN FLAG

-

;NEGATE GQUOTIENT IF NEC.
jREMAINDER IN X1 ON EXIT
;QUOTIENT ON STACK
;RESTORE X4

sRESTORE X3

;sRESTORE X2

;DISCARD INPUT PARAMS,

s RETURN

BEQ OFLO
0322323823 422338322322%2 222382523 23521
BGT ROB8.1
NEG X4
INC X1
MOV 8.(6),X2
MOV 10. (6),X3
MOV X2,-(4)
BGE RO8.2
NEG X2
NEG X3
SBC X2
DEC X1
zzzzzzzzzzzzzzzzxzzzxzzzzzzzzzzzzzzzzzzz
TST X4
BEQ OFLO
CMP X3,X4
BHI OFLO
XXXAAXAXAAAAA AL AAAAR AR A AR A A AR UKL
DIV X4 ,X2
BCC RO8.5
MOV #77777,X2
CLR X3
BR RO8. 6
BVS RO8.3
TST (6)+
BGE RD8.7 f
NEG X3 v
TST X1
BEQ RDB.8
NEG X2
MOV X3,X1
MOV X2,10. (&)
MOV (6) +,X4
MOV (6)+,X3
MOV (6)+,X2
CMP (6)+, (&) 4+
s (ZHWMD)
JMP (2)
. PAGE

CIFT
R10

U TR LR YRS PR Ry

R11

.SBTTL ARITHMETIC SHIFTS, BASIC

SRA

SLA

s (ZHWMD)
ARITHMETIC RIGHT SHIFT

DOUBLE LENGTH OPERAND AND RESULT
DESTROYS REGISTERS Xt AND X2

THIS VERSION EXCHANGES BYTES WHERE POSSIBLE
EXEC TIME=35.1+9.5#N IF N<8,

ARITHMETIC LEFT SHIFT

+ ANOTHER 26.9 PER 8 BITS THEREAFTER

R L R R v T R T RV R E R Y B L VY

x
-
[]

R1

R1
R1

R1

R11.1: CMPB X3,#8.

)
R1

DOUBLE LENGTH OPERAND AND RESULT : i"?
DESTROYS REGISTERS X1 AND X2 O~
THIS VERSION EXCHANGES BYTES WHERE POSSIBLE

EXEC TIME=35.1+9.5*N IF N<8, + ANOTHER 24.6 PER 8 BITS THEREAFTER

R12 SIGNED ARITHMETIC SHIFT

SINGLE LENGTH OPERAND AND RESULT

EXTENDS OPERAND, SETS SPECIAL RETURN ADDRESS, THEN USES R13
EXEC TIME, ADDS 24.0 TO R13 IF OPERAND +VE, 38.0 IF -VE

R13 SIGNED ARITHMETIC SHIFT

DOUBLE LENGTH OPERAND AND RESULT

TESTS SIGN OF SHIFT COUNT AND USES R10 OR R11
EXEC TIME, ADDS 14.2 TO R10 AND 10.2 TO R11

STACK USAGE FOR ALL THE ABOVE - 4+2 WORDS

0.0: MOV X2,(é)
MOV X3,-(&)
MOV 4(4),X3

0.13: MOV 4(&),X1
MOV B.(&),X2

D.1: CMPB X3,#8.

DUMP LINK ADDRESS
DUMP X3

SHIFT COUNT
OPERAND M.S5. HALF
OPERAND L.S5. HALF
BYTE SHIFT?

BLO R10.3 GOTO BIT SHIFT
BYTE SHIFT '
SWAB X2 ; SHIFT LOWEST BYTE

EXTRACT LOWEST BYTE OF RESULT
AND NEXT BYTE UP
PUT BACK INTO X2

MOVB X2,-(6)
MOVB X1,1(4)
MOV (&) +,X2

ME WS W WE WY e

SWAB X1 MOVE TOP BYTE DOWN
MOVB X1,X1 EXTEND SIGN BIT
SUB #8.,X3 DECREMENT COUNT
BR R10.1 TRY AGAIN

: BIT SHIFT -

R10.2: ASR X1 : 2 WORD SHIFT
ROR X2

R10.3: DECB X3 : : DECREMENT COUNT
BGE R10.2 s MORE TO DO?

A BR R11.4 ~: COMMON -EXIT ROUTINE

y

;

R11:

R11.0: MOV X2, (4) DUMP LINK ADDRESS

MOV X3,-(6)

MOV 4(6),X3
1.13: MOV 4(6),X1

MOV B.(6),X2

DUMP X3

SHIFT COUNT
OPERAND M.S5. HALF.
OPERAND L.S. HALF
BYTE SHIFT?

BLO R11.3 GOTO BIT SHIFT

BYTE SHIFT
SWAB X2 ; SHIFT UP BOTTOM BYTE
MOVB X2,-(6) BOTTOM BYTE FOR NEW X1
MOVB X1,1(8) TOP DITTO
MOV (6)+,X1 CoPY TO X1

ZEROS IN L.S. BYTE

CLRB X2
SuUB $8.,X3 DECREMENT COUNT
BR R11.1 TRY AGAIN

BIT SHIFT

1.2: ASL X2 ;7 2 WORD SHIFT

DECREMENT count (O-8-/10
MORE TO DO?

ROL X1

R11.3: DECB X3 .
BGE R11.2 ;

R11.4: MOV (&)+,X3 ;. RESTORE X3
MOV X2,6(4) ; DUMP RESULT L.S. HALF
MOV (6)+,X2 s PICK UP LINK
TST (&) + s IGNORE OLD SHIFT COUNT
MOV X1, (&) : DUMP RESULT M.5. HALF
JHP (D) : RETURN

; . .

y

R12: .

R12.0: MOV X&,X1 3 COPY X&
MOV 2(1),-(4) : COPY SHIFT COUNT
CLR (1)+ : CLEAR OPERAND M.S. HALF
MOV 2(1),(1) ; COPY OPERAND L.S. HALF
BGE R12.1

| DEC -2(1) ; EXTEND SIGN BIT

R12.1: CMP —(&),(1)+ : ADJUST POINTERS
MOV X2, (1) : DUMP OLD LINK
MOV #R12.2,X2 : SET SPECIAL RETURN ADDRESS

H

y

' R13:

REMEMBER LINK ADDRESS
"DUMP X3
PICK UP SIGNED SHIFT COUNT

R13.0: MOV X2,(6)
: MOV X3,-(6)
MOV 4(6),X3

BGE R11.13 SHIFT LEFT IF POSITIVE
NEG X3 NEGATE IF NEGATIVE
BR R10.13 SHIFT RIGHT

H
1]
R12.2: TST (&)+
©OMOV (&) 4,X1
MOV (&) +,X2
MOV X1,-(4)

IGNORE M.S5. HALF OF RESULT
PICK UP L.S5. HALF

PICK UP LINK

DUMP RESULT

JMP (2) RETURN
. PAGE
.SBTTL ARITHMETIC SHIFTS, EIS

. IFF s (ZHWMD)

R10 SRA ARITHMETIC RIGHT SHIFT.
DOUBLE LENGTH OPERAND AND RESULT
DESTROYS X2

R11 SLA ARITHMETIC LEFT SHIFT
DOUBLE LENGTH OPERAND AND RESULT
DESTROYS X2

R12 SIGNED ARITHMETIC SHIFT
SINGLE LENGTH OPERAND AND RESULT
DESTROYS X2

R13 SIGNED ARITHMETIC SHIFT
DOUBLE LENGTH OPERAND AND RESULT
DESTROYS X2

sRIGHT SHIFT IS -VE IN ASH,ASHC

o o o

NEG 2(6)

xzzzzx'l‘.Ol‘.'w.ulnlﬁl‘lul‘lu.‘.u.‘.‘.

. ead wad ad e awd wad
W= =0C0

: MOV X2, (6) ;SAVE LINK

MOV
MOV
MOV
ASHC
MOV
MOV
MOV
MOV
TST
JMP

A W=
-

MOV
MOV
ASH
MOV
MOV
ADD
JMP

TENDC
"ENDC
< .PABE

X3,-(6)

6(6),X2

8.(6),X3
4(6),X2
X2,6(6)
X3,8.(6)
(6)+,X3
(6)+,X2
(6)+

(2)

X3,-(6)
6(6),X3
4(6),X3
X3,6(6)
(6)+, X3
B4 ,X6

(2)

s (ZHWMD)
s (ZEISIL)

.SBTTL LOGICAL SHIFTS, BASIC
.IF NDF ZHWMD -
SHIFT RIGHT LOGICAL

R14 SRL

CALLING SEQU

R15 SLL

R16 SHL

LR TR FR TRV YR TR FRPT R R AR LR A LR A A LR N TR TN ¥

R14

R14.0: TST
MoV

R14.1: CMPB
BLO

; BYTE SHIFT
CLRB
SWAB
SUB
BR

;y BIT SHIFT

R14.2: CLC
ROR

R14.3: DECB

EXEC TIME=20.

SIMILAR SPEC.
EXEC TIME=20.1+8.6*N IF N<38, OTHERWISE 38.9+8.6%(N-8)

ENCE IS

SHIFT LEFT
TO R14

SINGLE LENGTH OPERAND AND RESULT
DESTROYS REGISTERS X1 AND X2
THIS VERSION EXCHANGES BYTES WHERE POSSIBLE

JSR X2,R14

LOGICAL

SIGNED LOGICAL SHIFT

(6) +
(6)+,X1
X1,%8.
R14.3

(&)
(6)
#8.,X1
R14.1

(6)
X1

weipaws s

sSAVE X3

+MS HALF OPERAND
LS HALF OPERAND
D0 SHIFT

:MS HALF RESULT
LS HALF RESULT
sRESTORE X3
sRESTORE LINK
s0LD SHIFT COUNT
: RETURN

sSAVE X3

: OPERAND

sDO SHIFT
sRESULT ON STACK
sRESTORE X3

;SET STACK POINTER FOR EXIT

s RE TURN

SHIFT COUNT AND OPERAND ARE TOP TWO WORDS ON STACK
RESULT LEFT ON TOP OF STACK
1+10.1=N IF N<8, OTHERWISE 38.9+10.1#*(N-8)

TESTS SIGN OF SHIFT COUNT AND THEN USES R14 OR R15
EXEC TIME, ADDS 14.2 TO R14 AND 10.2 TO R15

STACK USAGE FOR ALL THE ABOVE - 3+0 NORDS

IGNORE OLD X2

PICK UP SHIFT COUNT

BYTE SHIFT?
GOTO BIT SHIFT

ZEROS (FOR TOP BYTE)

- DECREMENT COUNT

LOGICAL RIGHT SHIFT

DECREMENT COUNT

BGE R14.2 ; MORE TO DO?
JMP (2) ; RETURN 0 2 1z

R15: :

R15.0: TST. {6+ . ; IGNORE OLD X2
MOV (6)+,X1 y PICK UP SHIFT COUNT

R15.1: CMPB X1,28. ; BYTE SHIFT?
BLO R15.3 ; GOTO BIT SHIFT

s BYTE SHIFT .
SWAB (6) ; SHIFT BOTTOM BYTE
CLRB (8) s ZEROS IN L.S. BYTE
SUB #8.,X1 ; DECREMENT COUNT
BR R15.1 s TRY AGAIN

y BIT SHIFT

R15.2: ASL {6) ; SHIFT LEFT

R15.3: DECB X1 ; DECREMENT COUNT

o BGE R15.2 ; MORE TO DO?

JMP (2) ; RETURN

’

’

R16: :

R16.0: TST (6)+ ; IGNORE OLD X2
MOV (6)+,X1 ;7 PICK UP -SHIFT COUNT
BGE R15.1 ;y >=0, GOTO LEFT SHIFT
NEG X1 ; NEGATE IF NEGATIVE
BR R14.1 ; RIGHT SHIFT

y
. PAGE :
.SBTTL LOGICAL SHIFTS, EIS

IFF 5 (ZHWMD)

R14 SRL SHIFT RIGHT LOGICAL

SINGLE LENGTH OPERAND AND RESULT
BESTROYS X1,X2

R15 SLL SHIFT LEFT LOGICAL
SIMILAR TO R14

R16 SHL SIGNED LOGICAL SHIFT
TESTS SIGN OF SHIFT COUNT AND USES R14 OR R15

Vs J0we N0 we vt ws¥rwsen Bl We ws wewr o

14:
14.0: NEG 2(6) sNEGATE FOR ASHC
15.0:
15:
’
R16:
R16.0:
’ MOV X2, X1 sLINK VACATING' X2
CLR X2 sPROVIDES LEADING ZEROS IF RIGHT SHIFT
MOV 2(6),(6) sSHIFT COUNT i
MOV X3,2(6) ;SAVE X3
MOV 4(6),X3 <GET OPERAND

ASHC (6)+,X2
MOV X3,2(4)
MOV (6)+,X3

;D0 SHIFT AND DISCARD COUNT
:RESULT REPLACES OPERAND ON STACK
sRESTORE X3

JHP (1) ‘ ‘
; —R
-ENDC | 5 (ZHWMD) O-§-13
. PAGE

.SBTTL ARRAY BOUND & ACCESS, COMMON

R17 - R22 ARRAY ALIGNMENT i
BOUNDS CHECKING
ADDRESS CALCULATION

FOR ARRAYS OF
BYTES (R17) EXEC TIME=15.2
INT,FRAC,PROC,STACK (R18) EXEC TIME=20.1
LABELS (R19) EXEC TIME=25.0
REALS (R20) EXEC TIME=25.0
RECORDS (R21) TYPICAL EXEC TIME=130.0

MODIFIER IN X3, ARRAY BASE IN X4
X3 NOT DESTROYED, FINAL ADDRESS RETURNED IN X4

~R22 ALIGNS THE MODIFIER FOR ARRAYS OF RECORDS, RESULT RETURNED IN X3
TYPICAL EXEC TIME = 120.0

ALL THESE ROUTINES DESTROY X1

R21 AND R22 ALSO DESTROY X2 AND USE 3 WORDS OF STACK

CALLING SEQUENCE JSR X2,RNN ‘ .

AND FOR R21 AND R22 JSR XZ,RNN
WORD "MULTIPLICATION FACTOR"’

Q zw-gn WO ML I WS WV WM IGIME P VML MENEMEIVEVMEWEI Ve eE S -

17: ,

17.0: MOV 3-1, (6) ; BYTE ALIGNMENT FACTOR
MOV X3, X1 ; BYTE ENTRY

R17.1: 157 X1 ; ERROR IF <=0
BLE R17.2
ADD (6) ,X4 ;s ALIGN TO LENGTH WORD
CMP X1, (4) 3 CHECK WITH ARRAY LENGTH
BGT R17.2
ADD X1,X4 -3 CALCULATE FINAL ADDRESS
SUB (6)+,X4 ; SUBTRACT ALIGNMENT
JMP (2) -5 RETURN

R17.2: MOV BARRERR,-(6) 3 SET ERROR NUMBER
JSR X1,RRGEL ; GO TO ERROR ROUTINE

; , .

y

R18: » _

R18.0: MOV X3,X1 ; SINGLE WORD ENTRY
CLR (6) ; WORD ALIGNMENT FACTOR

R18.1: ASL X1 ; ALIGN
BR R17.1

.)

’

R19:

R19.0: ; DOUBLE WORD ENTRY

R20:

R20.0 . . sy REALS ENTRY
MOV 82, (6) ; DOUBLE WORD ALIGNMENT FACTOR
MOV X3,X1.

ASL X1 ALIGN

BR R18.1

JIF NDF ZHWMD

1
1.0:

0 Dws e e
N N

’

y

R22:
R22.0:
R22.1:

R22.2:

R22.3:

R22.4:

.IFF

.SBTTL ARRAY ACCESS, BASIC

'BASIC VERSION OF R21 & R22

MOV (2), (&)

SUB #2, (8)
CLR - (6)
BR R22 .1

MOV #1,-(4)
MOV (2)+,X1
MOV X2,-(6)

MOV X3,X2
CLR -(6)
TST X1

BEQ R22.4
ROR X1

BCC R22.3
ADD X2, (&)
ASL X2

BR R22.2

MOV (&) 4,X1
MOV (&)4,X2

TST (4)+
BEQ R17.1
MOV X1,X3
TST (&) +

JMP (D)

s (ZHWMD) -

.SBTTL ARRAY ACCESS, EIS

EIS VERGION OF R21 & R22
ON ENTRY: %3 CONTAINS SUBSCRIPT, JSR

22,R21

RECORD LENGTH
ALIGNMENT FACTOR
RECORD ENTRY, SET FLAG

RECORD MODIFIER ENTRY, SET FLAG

PICK UP RECORD SIZE

INCREMENT LINK ADDRESS AND DUMP

CoPYy X3

CLEAR RESULT FOR SIMPLE MULT

MORE TO DO?
EXAMINE L.S. BIT

ADD INTO RESULT
SCALE. UP BY 2

PICK UP RESULT
PICK UP LINK ADDRESS
TEST FLAG

SET RESULT OF R22

RESET Xé
RETURN

y - WORD RECORD LENGTH

REQUIRED RECORD -

INCREMENT LINK

.WORD RECORD LENGTH

; DO MUL & UPDATE LINK ADDRESS

. ON-EXIT : %3 UNCHANGED, %4 POINTS TO

R21:

R21.0: MOV (2), (6) :RECORD LENGTH
SUB #2,(6) : ALIGNMENT FACTOR
MOV (274, X1 : GET RECORD SIZE,
MUL X3, X1 DISPLACEMENT IN X1
BR R17.1 : "FOR BOUND CHECK

: ON ENTRY: %3 CONTAINS SUBSCRIPT, JSR %2,R22,

: ON EXIT : %3 CONTAINS SUBSCRIPT % RECORD LENGTH

R22:

R22.0: MUL (2)+,X3
RTS X2 : RETURN

?

ENDC s (ZHWMD)

’ . PAGE

- .IF DF ZFLPT

RTL/2 PDP-11 FLOATING POINT CONTROL ROUTINES

.IF NDF Z45FP

USES TWO WORD REAL FORMAT

ROUTINES DO NOT USE X0, AND PRESERVE X3,X4 AND X5
TIMES GIVEN ARE 1IN HICRO SECONDS

TOTAL SIZE = 409 WORDS

P MIVMIvwIweEMIVMIMI WS

IF NDF ZFPIL
.SBTTL FLOATING COMMON ENTRY, BASIC

COMMON ENTRY ROUTINE FOR FLOATING POINT ADD,

SUBTRACT, MULTIPLY AND DIVIDE

EXPECTS TO FIND TWO REALS DUMPED ON THE STACK

RETURNS WITH THE EXPONENTS IN X1 AND X4,

THE SECOND SIGN IN THE CARRY,

NEV OF THE SIGN BITS ON TOP OF THE X6 STACK,

AND LEAVES THE FRACTIONS OF THE REALS WITH THE TOP BYTE CLEAR AND
THE °“NORMALISE® BIT INSERTED

X2 POINTS TO THE M.S. HALF OF THE SECOND (HIGHEST ADDRESSED) REAL

Tiws we WA VMo UL VLT VMIWE By wa

PENT: MOV X2,2(6) ;REMEMBER LINK
MOV X4,-(6) _
MOV X6,X2 sPOINT X2 AT FIRST REAL
ADD #6.,X2
MOV (2)4,X1 | ; PICK TOP OF REAL
CLR - (&) - sCLEAR FOR SIGN
ROL X1 : SHIFT OUT SIGN OF FIRST
ROR (6) ; REMEMBER FIRST SIGN
CLRB X1 : CLEAR BOTTOM BYTE
SWAB X1 : PUT EXPONENT IN BOTTOM BYTE
CLRB -(2) : CLEAR TOP BYTE OF REAL
BISB #200,-(2) : | sPUT IN ‘NORMALISE® BIT
CMP ()4, (2)+ s POINT TO SECOND REAL
MOV (2)+,X4 _ 3 REPEAT FOR SECOND REAL
ADD X4, (4) ; NEV SIGN BITS
ASL X4 : SHIFT OUT SIGN
ROR (&) : STORE SECOND SIGN
CLRB X4
SWAB X4
CLRB -(2)
BISB #200,-(2) ;

ROL (6) . : SECOND SIGN TO CARRY

JMP (3) s RETURN

]
.PAGE

JIFTF s (ZFPIL)

.SBTTL FLOATING COMMON EXIT, BASIC

GENERAL PURPOSE ROUND NORMALISE AND EXIT,USED BY ALL THE
FP CONTROL ROUTINES YIELDING A REAL RESULT - ENTERED WITH
EXPONENT IN X1,5IGN ON STACK,M.S. PART OF MANTISSA IN X4,
L.S. PART OF MANTISSA IN X3.

A PN TN NN RV R

RNDTST:

ALIGN:

RUNUP:

UFLO:

FLOTST:

OVFLO:

NORM:

FPEXIT:

)
)
JIFT

-]
N
~

R27.0:

BIT
BNE

ADC
ADC

ASR
ROR
INC
BIT
BNE

ROL
ROL
DEC
TSTB

BMI
BNE
TST
BNE

CLR
CLR
TST
BR

TST
BLE
SWAB
BEQ

MOV
MOVB
MOV

ROL
ROR

BIC

BIS

MOV

MOV
MOV
MOV
MOV
CMP
JMP

. PAGE

.SBTTL FLOATING ADD & SUB, BASIC

ADD

$177400, X4
ALIGN

X3
X4

X4
X3

X1
$177600,X4
RNDTST

X3
X4
X1
X4

FLOTST
RUNUP
X3
RUNUP

X3

X4
(6)+
FPEXIT

X1
UFLO
X1
NORM

$377,X4
X4 ,X3
#177400, X1

(6)+

X1
#1200, X4
X1,X4

X3,12.(4)

X4,10. (6)

(6} +,X4
(6)+,X3
(6)+,X2
(6)+, (6)+
(2)

s (ZFPIL)

FLOATING POINT SUBTRACT
CHANGES SIGN OF SECOND OPERAND AND USES ADD

$100000,2(6)

-
e Wy e

. (O-8—/6)
: TEST IF READY TO ROUND
:1.E NEARLY ALIGNED.NOT
:SHIFTED DOWN TO ROUND POINT
: ROUND

sENTRY POINT

; TEST ALIGNMENT CORRECT
;WHEN SHIFTED UP.LS BIT IN CARRY

:15 MANTISSA ALIGNED AT

:BYTE BOUNDRY

:JUMP IF ALIGNED,NOT ALIGNED
:SHIFT UP MORE

: CONVENTIONAL ZERO

iGIVEN TIME IT WILL ALIGN
:FLOATING POINT UNDERFLOW ENTRY
: UNDERFLOW .RETURN

: CONVENTIONAL ZERO

:DITCH SIGN '

yUFLO IF EXPONENT ZERO OR NEG

;BRANCH IF NOT OFLO
yFLOATING POINT OVERFLOW ENTRY
;BIG REAL FRAC PART

;FETCH SIGN TO CARRY
;SHIFT EXP ADD SIGN BIT

; CLEAR NORMALISE BIT

; COMBINE EXP AND MANTISSA

;DUMP L.S. HALF OF RESULT
DUMP M.5. HALF OF RESULT

LINK ADDRESS .
SKIP OLD OPERAND
RETURN

Y RN KR X A

=
~N
o~

R26.0:

R26.1:

R26.2:

R26.8:
R26.3:

R26.4:
R26.5:

R246.6:

R26.7:

-y wa

FLOATING POINT ADD

JSR X3,FPENT
BCC R26.2
NEG 2(2)
ADC (2)
NEG (2)
COM (6)
CMP -(2),~(2)
TST (6)
BMI RZ6.1
MOV X4, (&)
MOV X6 ,X2
ADD $8.,X2
MOV (2)+,X4
MOV (2)+,X3
SUB X1, (&)
BLE R26.8
MOV (2)+,%X4
MOV (2),X3
SUB #6.,X2
aDD (&) ,X1
BR R26.3
NEG (&)
CMP (6) ,824.
BGE R26.7
CMP (6),X1
BEG R24.7
TST. ()
BEQ R26.4
-AsL X3
ROL - X4
DEC . X1
BR R264.5
ASR (2)
ROR 2(2)
DEC (4)
BNE R26.4
ADD 2(2),X3
ADC X4
ADD (2),X4
TST (6)+
JMP HOD

. PAGE

.SBTTL FLOATING MULTIPLY, BASIC

FLOATING POINT MULTIPLY

; USE COMMON ENTRY ROUTINE

;SECOND REAL IS +VE
;DOUBLE LENGTH NEGATE

;RECOVER SIGN FROM NEV

sPOINT TO FIRST REAL

;FIRST REAL IS NEGATIVE
;DUMP SECOND EXP. OVER SIGN
‘POINT TO FIRST REAL M.S.

;FIRST MANTISSA TO X3,X4

;X2 POINTS TO SECOND

;SKIP SWAB IF FIRST EXPONENT
+ IS LARGER

; SECOND (LARGER) MANTISSA

TO X3,X4

X2 POINTS TO FIRST(SMALLER)
;X1 BECOMES LARGER EXP.

; SHIFT COUNT = ABS SCALE DIFF

; COMPARATIVELY INSIGNIFICANT
;OR CONVENTIONAL ZERO

;BOTH SCALINGS SAME

;SHIFT LARGER UP 1 TO ROUND
;SCOPE FOR ROUNDING IN

; COMMON NORMALISE ROUTINE

;SHIFT SMALLER DOWN TO
; EQUATE SCALES

;DOUBLE LENGTH ADD

; IGNORE EXPONENT .

;TO MODULUS,NORMALISE AND EXIT

)
R28:
R28.0: c
JSR X3,FPENT ;
TST X1
BEQ UFLO
TST X4
BEG UFLO
MOV X5,-(48)
ADD X4,X1
SUB $202,X1
MoV X1,-(6)
CMP -12),-1(2)
MOV (2)+,X1
MoV (2)+,X5
ASL 2(2)
ROL (2)
CLR X4 ;
_ CLR X3
R28.1: ASR X4 ;
ROR X3
ASR X1 ;
ROR X5 ;
’
BCC R28.1 ;
ADD 2(2),X3 ;
ADC X4
ADD (2),X4
TST X5 _ ;
BNE R28.1
TST X1
BNE R28.1
BR PREXIT ;
’
)
' . PAGE

.SBTTL FLOATING DIVIDE, BASIC

FLOATING POINT DIVIDE

R29:

R29.0:
JSR X3 ,FPENT s
TST X1 :
BEQ OVFLO :
TST X4 :
BEQ UFLO
SUB X1,X4 :

ADD #200,X4

USE COMMON ENTRY ROUTINE

CLEAR X4 AND X3 TO HOLD RESULT
SHIFT RESULT ONE PLACE RIGHT

PICK UP BOTTOM BIT OF
MULTIPLIER AND LEAVE SHIFTED
ONE PLACE RIGHT

NOTHING TO DO THIS TIME

ADD MULTIPLICAND INTO RESULT

"MORE TO DO IN MULTIPLIER?

USE COMMON EXIT ROUTINE

USE COMMON ENTRY ROUTINE
DIVIDE BY ZERO?

OVERFLOW

CLEAR X4 AND X3 70O HOLD RESULT

CALC RESULT EXPONENT
; ADJUST SCALING

MOV X5,-(6) s DUMP
MOV X4,-(4)

CLR X3

CLR X4 : |

MOV (2)+,X1 sPICK UP DIVIDEND

MOV (2),X5 ~ .

CHP —(2),-(2) s POINT X2 AT DIVISOR
CHP = (2),X1 : IF DIVISOR > DIVIDEND THEN
BLT R29.1 : SHIFT DIVIDEND

BGT R29.8

CMP 2(2),X5

R29.8:
R29.1:
R29.2:

R29.9:

R29.3:

R29.4:
PREXIT:

Mswrwyws

+ENDC

LIFTF

BLOS
ASL
ROL
DEC
CLR
MoV
CMP
BGT
BLT
CMP
BLO
BIS
BIS
SuUB
SBC
SUB
ASL
ROL
ASR
ROR
BNE
TST
BNE
CMP

MOV
MOV
JMP

. PAGE

.SBTTL FLOATING ABS & NEG,

-(6)
$400,-(6)

X1, (2)

R29.9

R29.3

X5,2(2)

R29.3
(6),X4

2(6),X3

2(2),X5

X1

(2),X1

X5

X1

(4)

2(6)

R29.2

(6)

R29.2
(6)+, (6)4+

(6)4,X1
(6)+,X5
AL IGN

s (ZFPIL)

s (Z45FP)

. FLOATING POINT ABS
; |

§3D:
R30.0:

)
]
’
-
’
)
)
R31:
R31.0:

R31.1:

-4
-
-

BIC
RTS

TST
BEG
ADD

RTS

. PAGE

#100000,2(6)
X2 :

FLOATING POINT NEGATE

2(6)
R31.1
£100000, 2 (6)

X2

s (Z45FP)

-
’
?

1

R YRR Y]

~-e

“weowa M we

TEST BOTTONM HALVES

SHIFT DIVIDEND

. SET 2 WORDS ON STACK TO BE

;THE BIT TO ADD TO THE RESULT
IF DIVIDEND > DIVISOR THEN

SUBTRACT DIVISOR AND PUT BIT
INTO RESULT

TEST BOTTOM HALVES IF TOPS =
SET BIT INTO RESULT

DOUBLE LENGTH SUBTRACT

IF DIVIDEND IS ZERO AFTER THE
SHIFT DIVIDEND UP ONE

SHIFT “BIT" DOWN ONE

IF "BIT® IS SHIFTED RIGHT OUT
OF THE DOUBLE WORD THEN IS

NO MORE TO DO

PICK UP EXPONENT

COMMON

.SBTTL FLOATING COMPARE, BASIC

;CLEAR SIGN BIT

;DO NOT NEGATE IF
s CONVENTIONAL ZERO
sFLIP SIGN BIT

-aas s

FLOATING POINT COMPARE

R32:.
- R32.0: TST (6) +
MOV (&),X1
BIS #1200, X1
AsL 4(4)
BEQ R32.5
, BCS R32.2
: ; SECOND REAL IS >=0
R32.5: Ast (6)
BE®@ R32.1
BCS R32.3
R32.1: ; BOTH REALS HAVE SAME SIGN
' CMP 4(6), (6)
BHI R32.4
BLO R32.3]
CMP 6(6),2(6)
BHI R32.4
BLO R32.3
CLR X1
BR ~ R32.4 :
R32.2: ; SECOND REAL IS <D
ASL (8)
BCC R32.3
' BR R32.1
R32.3: COM X1
R32.4: ADD #8.,Xé
: TST X1
JMP (2)
. PAGE

s wE WL

O-8-20

IGNORE OLD X2

PICK UP M.S. HALF OF FIRST
REAL TO USE AS RESULT FLAG
;PUT IN °“NORMALISE® BIT TO

DEAL WITH R1=0.0 CASE

LOOK FOR -0.0
BRANCH IF NEGATIVE

LOOK FOR -D.0
BRANCH IF NEGATIVE AS NOW
KNOW RESULT OF COMPARE

wswawsasy

COMPARE M.S. HALVES

TREAT AS UNSIGNED INTEGERS
R2 FRACTION > R1 FRACTION
R2 FRACTION < R1 FRACTION
DITTO FOR L.S. HALVES

LR RVYREVE R X REVE)

REALS ARE EQUAL S0 CLEAR
RESULT FLAG

R2<0, R1>=0 50 KNOW RESULT
BOTH NEGATIVE

CHANGE SIGN OF RESULT
:SKIP OVER OPERANDS

: SET CONDITION CODES

: RETURN

: SIZE - 30 WORDS

: AVERAGE TIME ON 11/20 -
’

;

;

“-swurwras

IF SIGNS DIFFER - 30
IF SIGNS SAME - 45
STACK USAGE - 5+0 WORDS

.SBTTL CONVERSIONS TO REAL, BASIC

IR LR R TR T RN

INT TO REAL
R33 .
R33.0: MoV
R33.1: MOV

CLR
TST

BR

FRAC TO REAL

I WME W WP -,

TYPE CONVERSION ROUTINES -

ASSUMES ONE WORD IS ON THE STACK

$210,X1
2(4), (4)
2(6)
-(6)
R35.1

sSET INITIAL EXPONENT
s} CONVERT TO

:) BIGINT

: ADJUST STACK POINTER
: FLOAT AS A BIGINT

SETS INITIAL EXPONENT AND USES INT TO REAL ROUTINE

LOOK AT SIGN BIT OF SECOND REAL

LOOK FOR SIGN BIT OF FIRST REAL

LOOK AT SIGN BIT OF FIRST REAL

R34: ’ ' ‘
R34.0: MOV #171,X1 : .)
BR R33.1 |

BIGINT TO REAL
; ASSUMES DOUBLE WORD IS ON STACK

TR IR TR Y

~ MOD:

3
R35:
R35.0: MOV $230,X1 ;SET INITIAL EXPONENT
R35.1:
TST -(6)
MOV X2,-(6)
- MOV X3,-(6) , ; DUMP X3 AND X4
MOV X4,-(6) .
MOV 10.(6) ,X4 - ; PICK UP DOUBLE WORD
MOV 12.(6),X3
TST X4 ; NEGATE IF NEGATIVE
BGE R35.2
NEG X3 ; DOUBLE LENGTH NEGATE
ADC X4
NEG X4
BVC R35.3 ;y ADJUST FOR MOS5T NEG NUMBER
‘ ADC X1 -
: " ROR X4 .
R35.3:
SEC
R35.2: ROR -{6)
: JMP AL IGN
’
y
i
’
; MIXED TO REAL
; SETS INITIAL EXPONENT AND USES BIGINT TO REAL ROUTINE
3
R364:
R36.0: MOV $8211,X1

BR R35.1

FINEFRAC TO REAL
SETS INITIAL EXPONENT AND USES BIGINT TO REAL ROUTINE

IR YR ER NN LT RV Y

R37:
R37.0: MOV $172,X1
| BR R35.1
;
;
. PAGE
b4
.IFTF s (Z4SFP)

.SBTTL CONVERSIONS FROM REAL, COMMON
R38 AND R39 COMMON TO 11745 SET AND BASIC SET

Mawewaws

: REAL TO FRAC

F’138:
R38.0:
R38.1:

R38.4:
R38.2:
R38.3:
R38.5:
R38.6:

R38.7:
R38.8:

Wil VewEwswawewe

p=
W
~0

R39.0:
’

IFF

.ﬂ‘lvlv-u-un

PENT:

: FP ADD

MOV
MOV
MOV
ROL
CLRB
SWAB
SuB
MOV
BCC
CMP
BGT
SWAB
MOVB
BIS
TST
BGE
NEG
ROR
BR
ASR
INC
BLT
ADC
BVC
COM
MOV
TST
MOV
JMP
CLR
BR
CMP
BR

REAL TO INT -
SETS INITIAL EXPONENT AND USES REAL TO FRAC ROUTINE

MOV
BR

. PAGE

#201,X1
X3, (6)
2(6),X3
X3
X3
X3
X1,X3
#100000, X1
R38.8
£-16.,X3
R38.7
4(6)
2(6),5(4)
4(6),X1
2(4)
R38.4
X1
X1
R38.3
X1

- X3

R38.2

X1

R38.6
X1 ,
(&) +,X3
(&) +
X1, (6)
(2)

X1
R38.6
X1,2(6)
R38.5

$220, X1
R38.1

s (Z45FP)

sSET INITIAL EXPONENT
;DUMP X3 AND X4

= SHIFT UP EXPONENT AND STORE
: BRING EXPONENT TO BOTTOM
: OF WORD
: X1 IS NOW SHIFT COUNT
;X1 BECOMES LARGEST -VE NO.

sPICK UP REAL AS FRACTION
sBOTTOM BYTE.REPLACE NORMALISE
sBIT. (SWAB CLEARED CARRY)

: TEST SIGN -

sSKIP IF +VE

:NEGATE IF NEGATIVE

sFIRST SHIFT DOWN.X1 NOW +VE

s IN SUBSEGUENT SHIFTS.THE CARRY
15 NOT USED

s COUNT SHIFT

*MORE SHIFTS TO DO

sROUND CAN CAUSE OFLO ON MOST
sPOSITIVE NUMBER

sMOST -VE BECOMES MOST +VE
:RESTORE X3

:SKIP OLD MS PART

:STORE RESULT

sRETURN

:SET ZERO FOR UNDERFLOW

;SET OFLO IF REAL IS +VE
;SINCE X1 IS MOST NEGATIVE

.SBTTL FLOATING COMMON ENTRY,11/45

LDFPS
MOV
TST
RTS

11/45 FP ROUTINES

COMMON 11/45 FLOATING POINT ENTRY ROUTINE

%0 ;LOAD FPP PROGRAM STATUS

(6),2(4)
(6) +
X3

R26.0:

JSR X3, FPENT " s INITIALISATION
LDF (X&) +,ACO :2ND OPERAND
ADDF (X4),ACO :ADD FIRST OPERAND

SBTTL FLOATING OFLO & EXIT, 11/45
; COMMON OVERFLOW CHECK

1]
FPOFLO:
g MOV BFPMAX, X1
- CFCC sSET CPU'S CC
. BVC R26.9 ;NO OVERFLOW
FPOFL3: . |
~ BPL R26.5 ;BR IF +VE
TST (1)+
R264.5: ‘ -
~ LDF (1),ACO ;SET MAXIMUM + OR - RESULT
R26.9: '
- STF ACO, (X6) :STACK RESULT"
L JMP (2)
R
FPMAX: .WORD 077777,177777,177777 sMAXIMUM +VE AT FPMAX,FPMAX+2
| sMAXIMUM ~VE AT FPMAX+2 & 4
.PAGE

.SBTTL FLOATING ADD SUB MUL DIV COMP,11/45

. FP SUBTRACT

.

R27:

R27.0: '
JSR X3,FPENT s INITIALISATION

+ - LDF (X6)+,ACT ; ZND OPERAND

LDF (X6) ,ACO ; 1ST OPERAND
SUBF AC1,ACD ; PERFORM SUBTRACTION
JMP FPOFLO ;EXIT AS ADD

I

;y FP MULTIPLY

)

R28:

R28.0:
JSR X3 ,FPENT
LDF (X&) +,ACO ;s SECOND OPERAND
MULF {X6),ACO ; TIMES FIRST
JMP FPOFLO sEXIT AS ADD

]

; FP DIVIDE

b4

R29:

R29.0:
JSR X3,FPENT sINITIALISATION
LDF (X6)+,AC1 ;DIVISOR
CFCC
BNE R29.3 ;BRANCH IF NOT DIVIDE BY -ZERO
LDF (Xé) ,ACO sDIVIDEND
CFCC

T JMP FPOFL3

R29.3: ,

' LDF (X6) ,ACO ;LOAD DIVIDEND
DIVF AC1,ACO ;DO DIVISION

JMP FPOFLO

1}

: FP COMPARE

y INITIALISATION

(O-8-2¢)
; SECOND OPERAND

; COMPARE WITH FIRST

.SBTTL CONVERSIONS TO REAL, 11/45

3

R32:

R32.0:
JSR X3,FPENT
LBF - (6)+,ACO
CMPF (6)Y+,aC0
CFCC
JMP (2)
. PAGE

?

s INT TO REAL

, .

R33:

R33.0:
JSR X3,FPENT
LDCIF (6} ,ACO
18T -(6)
STF ACO, (6)
JMP (2)

LA LR L

“wswawe

FRAC TO REAL

BIG INT TO REAL

s INITIALISATION

;SPACE FOR RESULT
:RESULT TO STACK

R34:
"R34.0:
"¢ JSR X3,FPENT sINITIALISATION

LDCIF (X&) ,ACO
STEXP ACO,-(6) ; STORE EXPONENT
SuB $15.,0(6) ;REDUCE FOR FRAC ALIGNMENT
LDEXP (6) ,A4C0D sADJUSTED EXPONENT BACK INTO NO.
STF AacCo, (6} ;STORE FINAL ANSWER
JMP (2)

R35:
R35.0:
JSR X3,FPENT ., ;INITIALISATION
SETL :LONG MODE
LDCLF (X&) ,ACO
STF aco, (4)
JMP (2)

“-riwswas

FINE INT OR BIG FRAC TO REAL

R364:
R36.0:
JSR X3,FPENT s INITIALISATION
SETL : LONG MODE ‘
LDCLF (&) ,ACD
SETI
'STEXP ACO,-(&)
SUB $15,0(6) sADJUST EXPONENT. FOR FRAC
LDEXP (Xé)+,ACD
STF ACD, (&)
JNP - (X2)

Dwswewe

FINE FRAC TO REAL

37:

R37.0:

. JENDC
.ENDC

LENGTH:
SMT:

JSR
SETL
LDCLF
SETI
STEXP
SUB
LDEXP
STF

JMP

JMP
.END

X3,FPENT s INITIALISATION
(X&) ,ACO

ACO, - (X6)

#30.,0(6)

(X&) +,AC0

ACO, (4) - \

(2)

| s (Z45FP) : S

3 (ZFLPT) :

:50 WE CAN SEE LENGTH ON SYMBOL TABLE

SMT...

SMT

.

iMTUlX. EDT:

=MAIN .
F 'LET 60°
I .
LgT NFREETASKS = 143 . % NUSERTASKS-USEDTASKS
5/DEF IN/DEFIN, INTTY/ DEF IN;

S/DEFOUT/DEFOUT,OUTTTY/ DEFOUT;

S/ERPRIN;/ERPRIN,MULTI,COM;/ EXT PROC () FBPROC
§/3/,MULTISTK,COMSTK;/ EXT STACK FBSTK'

S/FBSTK (NUSERT/MULTISTK, COMSTK,FBSTK (NFREET/* FBSTK (NUSER"
5/0(NUSERT/20,10,0 (NFREET/" 0 (NUSERTASKS) *

S/NOBO(NUSERT/GO '50,NOGO (NFREET/ * NOGO (NUSERTASKS) *

D "USAGE:=0;
D TITLE SNT INTERACTIVE DEVICE DRIVER' :XE

SMTBIX.EDT:

=MAIN .
5728726/ +++ 26 FOR LSI’
S:MOV *#UPS/TRAPDATA,177776:MTPS =UPS/TRAPDATA: 'RESTORE USERS PS’
5/158/152/° +++ 152 FOR LSI”
S/MOV a#177776,/MFPS /' d8177776"
S:MOV #+MASK, 8#177776 MTPS *HIPRI/TASKDATA "+++ MTPS’
S:MOV #*UNMSK a#177776:MTPS #LOPRI/TASKDATA: +++ MTPS’
5/2/0/°+++ 0O FOR LST”
S:iMOV B+MASK,d8177776:MTPS *HIPRI/TASKDATA: "+++ MTPS’
§/2/0/°+++ 0 FOR LSI°
SiMOV BeUNMSK,d#177776:MTPS *LOPRI/TASKDATA: ' +++ MTPS’
§/62/60/° +++ 60 FOR LSI° :
S:MOV #¥xMASK,a#177776:MTPS #HIPRI/TASKDATA: +++ MTPS"
S/48/44/° +++ 44 FOR LSI”
S:tMOV a¥177776, :MFPS :"++ MFPS”

- SIMov B+MASK,d817776:"MTPS *HIPRI/TASKDATA: +++ MTPS®

1 5DEC 1983

