
A MULTI-USER PROCESS INTERFACE SYSTEM

FOR A

PROCESS CONTROL COMPUTER

by BARRY GRAHAM SHERLOCK

Submitted to the University of Cape Town in partial

fulfilment of the requirements for the degree 1of

Master of Science in Engineering.

September 1983

The Untver9lty of Cape Town has beett otven
the rtght to ref'l'Oduce thts thesis In who!•
or In~- ~yrtght Is held by Vie auther.

Univ
ers

ity
 of

 C
ap

e T
ow

n

The copyright of this thesis vests in the author. No
quotation from it or information derived from it is to be
published without full acknowledgement of the source.
The thesis is to be used for private study or non-
commercial research purposes only.

Published by the University of Cape Town (UCT) in terms
of the non-exclusive license granted to UCT by the author.

Univ
ers

ity
 of

 C
ap

e T
ow

n

ACKNOWLEDGEMENTS

My sincere appreciation is extended to:

Professor H.S. Bradlow, for his guidance, encouragement and

patience while supervising this project.

Bill Randall, who supplied the air-column apparatus used in the

student project, and was always ready to assist in all matters

relating to the Chemical Engineering department.

Tony Eva, for introducing me to the use of the PDP-11, and for

modification of the plotting terminal line from current loop to

' RS-232.

Alan Day, for valuable technical assistance including construction

of the Media front panel.

Bruce Ingram of SANS for advice and documentation on using the

Media hardware.

My brother Derek who assisted with the printing and copying of

this thesis.

The CSIR, for their financial assistance during 1982.

Any others whom I may unwittingly have failed to mention here.

ABSTRACT

This thesis describes a system to implement a distributed

multi-user process interface to allow the PDP-11/23 computer in

the Electrical Engineering department at UCT to be used for

p~ocess control. The use of this system is to be shared between

postgraduate students for research and undergraduates for doing

real-time control projects. The interface may be used

concurrently by several users, and access is controlled in such a

way as to prevent users' programs from interfering with one

another.

The process interface hardware used was a GEC Micro-Media system,

which is a stand-alone process interface system communicating with

a host (the PDP-11/23) via a serial line. Hardware to drive a 600

metre serial link at 9600 baud between the PDP-11/23 and the Media

interface was designed and built.

The software system on the host, written in RTL/2, holds-all data

from the interface in a resident common data-base and continually

updates it. Access to the interface by applications programs is

done indirectly by reading and writing to the data-base, for which

purpose a library of user interface routines is provided.

To allow future expansion and modification of the Media interface,

software (also written in RTL/2) for an LSI-11 minicomputer

interfaced to the Media bus was developed which emulates the

operation of the GEC proprietary Micro-Media software. A program

to download this software into the LSI-11 was written.

A suite of diagnostic programs enable testing of the system

hardware and software at various levels.

To ease testing, teaching and applications programming, a

PAGE 2

general-purpose simulation package for the simulation of analogue

systems was developed, as well as graphics routines for use with a

Tektronix 4010 plotting terminal.

A. real-time computing project for a class of undergraduates was

run in 1983. This project made extensive use of the system and

demonstrated its viability.

Keywords:

distributed

computer

interface

process control

multi-user

real-time

TABLE OF CONTENTS

ACKNOWLEDGEMENTS

ABSTRACT

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION

1.1 Requirements

1.2 The Process Interface System
Commercial System
The Modified System

1.3 Serial Data Link Hardware

1.4 The Host Software System
Introduction
Multi-user Access to the Media Interface
The Necessity for Simulation
Graphics Interface
System Management and Diagnostic Tools

1.5 Typical Applications

CHAPTER 2: MEDIA

2.1 Hardware
Introduction
The UCT Micro~Media installation

2.2 Software
Outline
Media protocol frame format
Media operations

CHAPTER 3: THE LSI-11 MEDIA SYSTEM

3.1 The LSI-11 Media software
General
SMT System Modules
User modules
Unrecoverable error handling in the SMT system
Building SMT.TSK
Note on debugging the user SMT modules

3.2 Remote system downloading and startup
The ODT program
SMTLOAD - a bootstrap loader for the LSI-11

1-1

1-2
1-2
1-5

1-7

1-9
1-9
1-10
1-13
1-14
1-14

1-14

2-1
2-1
2-3

2-5
2-5
2-6
2-9

3-1
3-1
3-2
3-5
3-13
3-14
3-14

3-15
3-15
3-21

CHAPTER 4: THE SERIAL LINK INTERFACE HARDWARE

4.1 The serial lines 4-1

4.2 The serial interface units 4-2

CHAPTER 5: MEDCOM - THE DATA-BASE

CHAPTER 6: THE SOFTWARE INTERFACE BETWEEN MEDIA AND THE DATA-BASE

6.1 The Media update task 6-1

6.2 Procs interfacing between the data link and MEDCOM 6-3

6.3 Securing and releasing devices and facilities 6-8
Securing and releasing the serial link 6-8
Securing and releasing the data-base 6-8

CHAPTER 7: USE AND MANAGEMENT OF THE MEDIA SYSTEM

7.1 Use of the system
Control of an individual user's access
Applications-user access to Media
Aborting tasks which access Media

7.2 Management of the system

CHAPTER 8: SYSTEM DIAGNOSTICS

CHAPTER 9: A GENERAL-PURPOSE ANALOG SIMULATION PACKAGE

7-1
7-1
7-5
7-10

7-11

~i.l Introduction 9-1

10.2 Using the simulation package 9-6

10.3 Linking to the package 9-11

10.4 Plotting library for the Tektronix 4010 terminal 9-11

CHAPTER 10: CONCLUSION

REFERENCES

APPENDIX A: MEDIA FRONT PANEL

APPENDIX B: ADDRESSING THE MEDIA CARDS

APPENDIX C: DETAILED DESCRIPTION OF MEDIA LINK FRAME STRUCTURE

APPENDIX D: SERIAL LINK HARDWARE CIRCUIT DIAGRAMS

APPENDIX E: THE MEDIA STATUS WORD

APPENDIX F: THE SECURE/RELEASE MODULE GSECREL

APPENDIX G: THE ABM AND ABOM ABORTING TASKS

APPENDIX H: CONSTRUCTION OF MEDCOM AS A RESIDENT COMMON

APPENDIX I: ASYNCHRONOUS SYSTEM TRAPS

APPENDIX J: SCREEN CURSOR ADDRESSING ROUTINES

APPENDIX K: STUDENT PROJECT INSTRUCTION SHEET

APPENDIX L: ERROR NUMBERS

APPENDIX M: MEDIA SYSTEM STARTUP PROCEDURE

APPENDIX N: SOFTWARE LISTINGS: HOST SYSTEM

.APPENDIX 0: SOFTWARE LISTINGS: LSI-11 MEDIA SYSTEM

CHAPTER 1

INTRODUCTION

1.1 Requirements

This project arose out of the need of the University of Cape

Town's Electrical and Chemical Engineering departments for an

interface system to enable them to use the PDP-11/23 minicomputer

that is shared between the two departments, for process control.

The interface system had to satisfy the following requirements:

1. Since the PDP-11 is used for various purposes, such as

departmental administration, teaching and research, the

use of the process interface must not load the computer

unduly; i.e. its use must coexist with the other tasks

performed by the computer.

2. The interface system should be suitable for use both for

postgraduate research and for undergraduate teaching.

3. Multi-user access to the system should be possible, so

that it can be used concurrently for postgraduate

INTRODUCTION PAGE 1-2

research and undergraduate teaching. Typically, at any

given time, the interface may be in use by one

postgraduate and three or four out of a class of about

fifty final-year undergraduates.

4. The system should be commissioned as quickly as possible,

with as little effort as possible from University staff,

since the Universitx is badly short-staffed in this area.

5. Software access to the interface system must be carefully

controlled, so as to ensure that no two users can

accidentally or deliberately interfere with each other's

software. In particular, the use of the system by

undergraduate -students must not in any way interfere with

the research use by postgraduates.

6. Geographic considerations, viz. the fact that the

PDP-11/23 is situated in the Electrical Engineering

building and the processes to which it must interface are

in the Chemical Engineering building 600 metres away,

dictate that the sytem must be distributed.

1.2 The Process Interface System

1.2.1 Commercial System

A Media system [l] was chosen as the process interface hardware

(see chapter 2 for a description of Media). This choice was based

on the following considerations:

INTRODUCTION PAGE 1-3

1. Media is available in various sizes, ranging from v~ry

small systems, such as the one used in this project, to

very large industrial systems involving several thousands

of inputs and outputs. From the teaching point of view,

therefore, the students would be using a system which,

although small and relatively inexpensive, is similar in

architecture to large systems used in the industrial

environment.

2. Media is essentially a modular system, since it consists

of sets of card-cages or 11 bins 11 into which the various

Media circuit cards (such as analogue or digital inputs

and outputs) are plugged. This means that Media can be

easily expanded by the addition of further Media bins or

by replacing cards or inserting additional cards within a

bin.

3. Media is widely used in industrial process control in the

Western Cape, by such companies as AECI and SA Nylon

Spinners (SANS). Since contact is maintained between the

University and (particularly) SANS, the advantage would

be gained of a productive interchange of knowledge

between the University and industry.

4. Media provides fast access to data anywhere in the

system, since the Media cards are mapped to word

addresses on the Media bus or "highway".

General Electric Corporation (GEC) supply a small system, called

the GEC Micro-Media system [2], which is a stand-alone Media

process interface system which communicates with the outside world

via a serial line, using a simple link-level protocol. The system

may therefore be used as a remote stand-alone "outstation"

controlled, via the serial line, by a host computer (in this case

a PDP-11/23).

INTRODUCTION PAGE 1-4

Stand-alone operation in Micro-Media is achieved by including

three special Medi~ cards: the 8085 CPU card, Media interface

card and serial line interface card. The Media interface card

causes the Media cards to be addressable by the 8085 on the CPU

card, and the serial line interface card enables the 8085 to

communicate via the serial line to the host. The 8085 CPU card

has two ROMs containing a pr~gram which continually monitors the

serial line, receives command frames from the host, decodes them,

acts on them (for example, read a value from a particular analogue

input), and encodes and sends the reply frames. Use of the GEC

Micro-Media system with this built-in program enables the system

to be commissioned very quickly because it is ready to run and

only the host software to drive the serial link need be written.

Because of the simplicity of the serial link protocol used by the

GEC Micro-Media system it is possible to write this host software

without modifying the operating system device drivers, i.e. a

normal serial port driver can be used provided that it supports a

transparent mode which passes all characters (the ports of the

PDP-11/23 can be configured to do this).

It was therefore decided to implement a GEC Micro-Media system.

The configuration chosen was one with two Media bins containing

the following Media cards:

1. A 10-bit analogue-to-digital converter card plus a 16-way

multiplexer card, thus providing 16 multiplexed analogue

inputs.

2. Two 16-line opto-isolated digital input cards.

3. A 16-line digital output card.

4. A 4-channel 8-bit digital-to-analogue converter card,

thus providing 4 analogue outputs.

5. The 8085 CPU, Media interface and serial line interface

INTRODUCTION PAGE 1-5

cards.

6. LSI-11-to-Media interface cards.

These cards provide sufficiently many inputs and outputs to

support the applications envi.saged for the system.

1.2.2 The Modified System

In addition to being interfaced to the 8085 as explained above,

the Media highway may be interfaced to the LSI-11 Q-bus by means

of the LSI-11-to-Media interface cards mentioned above. The use

of these cards to interface an LSI-11 microcomputer to the Media

highway enables the LSI to access all of the Media cards at memory

speeds. This interface can coexist with the 8085 subsystem, i.e.

it is not necessary to remove the 8085 CPU, Media interface or

line interface cards if the LSI-11 interface is to be used.

A major aspect of this thesis is the development of an alternative

software system [3] to enable an LSI-11 microcomputer to control

Media as an alternative to the GEC 8085-based system. This

system, which will henceforth be referred to as the "LSI-11 Media

,system", is software compatible from the host point of view with

the GEC Media system and was developed because of the following

considerations:

1. The documentation available on the GEC Media system was

not sufficient to enable it to be easily modified and

extended. The LSI-11 Media system, on the other hand,

having been developed as part of this project, is fully

documented and understood and can be modified to allow

for future developments, such as the addition of further

Media cards.

(

INTRODUCTION PAGE 1-6

2. Although the GEC Media system is in theory immediately

usable, there were in fact several practical difficulties

in getting it to operate correctly. Difficulties

encountered included a hardware problem whereby the

system would re-initialise itself unexpectedly every few

minutes thus destroying data held in RAM, and a software

bug which made the analogue input data inaccessible.

As an alternative to developing an LSI-11 system which emulates

the GEC Media system, we could have designed and developed an

LSI-11 system without ensuring compatibility with the GEC system.

This approach has the advantages that it could be more closely

tailored to the needs of the application in mind, and that one
)

would not be forced to live with the several deficiencies of the

link-level protocol used by the GEC system (see chapter 2).

However, it was felt that these disadvantages were outweighed by

the fact that compatibility would enable the GEC Media system to

be used as a back-up system in the event of a hardware failure in

the LSI-11 Media system.

The LSI-11 Media system software emulating the operation of the

GEC system was written in the high-level structured real-time

language RTL/2 in the form of two tasks running under the

operating system SMT [4]. This combination was chosen because:

1. The software could be developed on the host PDP-11/23

computer using its editing, RTL/2 compiling and linking

utilities.

2. RTL/2 as a real-time language offers several attractive

features including efficient code generation, legibility

and ease of writing, debugging and modification.

3. SMT is a small (GK words) multitasking operating system

ideally suited to downloading and running multi-task

real-time applications on a small LSI-11 micromputer such

INTRODUCTION PAGE 1-7

as the one used. It provides support for up to sixteen

independent tasks written in RTL/2.

The LSI-11 Media system software, named SMT.TSK (after the

operating system used), must be downloaded from the host computer

using a program called ODT (see chapter 3). This program enables

the operator to load a bootstrap loader into the LSI, and then, by

starting the bootstrap loader running, download SMT.TSK and start

it running. The necessity to download the program before use,

although simple and quick, is a disadvantage of the LSI-11.Media

system, since the GEC system program'resides in ROM and does not

need to be downloaded. This is however offset by the flexibility

of being able to download specialised software systems if so

desired.

1.3 Serial Data Link Hardware

Because of the relatively large distance of 600 metres between the

Media interface and the host, an ordinary RS-232 link could not be

~sed. The link is a 4-wire link installed by the GPO and is

driven in differential mode using the 8820 and 8830 differential

line driver and receiver integrated circuits. Two of these 4-wire

lines are used: one for the Media interface and one for a remote

terminal to the PDP-11. The line-driver hardware is described in

chapter 4. The system hardware is illustrated in figure 1-1.

To
lASet"'

cert"i\ ina ls

/

I

'
' " '~

'
/ ,.

I I q.wire. fil'O lines,

irf
Cha,,, t '" Oitm I

I I -
CJiari2

I
...

Ott.trt 2
I :

lirt k drivt,. I Link olri"u

I
I

'--- 'PDP- H {2 3
I
I

host

m'1ni co~p\Ater

Elec F"'j Buifditlj Cne.M. f""j Eu;IJ;!!3

F;3 1-1 ; S :'.1 skew. ho.~ ~o.>'e .

Med io. i"terfo.,e.

H
z
t-3
~
0
0
c:::
(')
t-3
H
0 z

~
tlj

.....
I

CD

INTRODUCTION PAGE 1-9

1.4 The Host Software System

1.4.1 Introduction

The PDP-11/23 host minicomputer runs the multi-user multi-tasking

operating system RSX-llM [5] which provides the environment for

the development and execution of multiple real-time tasks using a

priority-structured, event driven task scheduler. Password log-in

protection, memory protection and a heirarchical file structure

make it suitable for use by many users (such as a class of

students}.

The host software system provides the necessary routines,

libraries, diagnostics and tasks to en~ble user-friendly

multi-user access to the Media interface. The host software, like

the LSI-11 Media system software, is written in the language RTL/2

[6] , a structured high-level language for real-time systems.

RTL/2 offers the advantages of compiling into efficient code, it

has comprehensive error handling, it is easy to learn and can be

used for both systems and applications programming. It was

therefore felt that RTL/2 was a good choice both for the host

software system and for the applications programs to be run using

the system~ Its use in industry (e.g. at AECI and SANS} means

that students using RTL/2 will be gaining useful programming

experience.

The RTL/2 compiler for the PDP-11 was written by SPL

International, who also supplied a run-time support package to

interface between RTL/2 and RSX-llM. [7] The SPL interface has

several shortcomings [8], such as poor naming of the interface

procedures, insecure use of system traps, inadequate error

reporting and large memory overhead on file I/O.

INTRODUCTION PAGE 1-10

Therefore, it was decided to use an alternative run-time support

package called MTSLIB [9] which was developed at AECI and corrects

most of the deficiencies of the SPL interface.

1.4.2 Multi-user Access to the Media Interface

1.4.2.1 The Media Data-base -

In order to keep careful control over access to the interface,

user applications software is not given direct access to the

serial line connected to the Media interface. Instead, a copy of

all information relevant to Media is kept in a resident common

data-base in the memory of the PDP-11 host computer. This

data-base is called MEDCOM (for "Media common") and contains all

the input and output data, times of last update, access control

codes, setpoints,· etc.

1.4.2.2 The Media Update Task -

A task called MEDUPDAT (for "Media update task") runs continually

and updates the database regularly with fresh information from

Media and writes output data from the data-base to Media. The

update task is the only task that communicates directly with the

serial link to Media; all other tasks, including user application

programs, read and write data from/to the data-base and rely on

the updating task to ensure that the data in the data-base is

up-to-date and that the output data is passed on to Media.

INTRODUCTION PAGE 1-11

1.4.2.3 The Media User Interface Library -

In addition to being denied direct access to the serial link,

applications software is not given direct access to the data-base

MEDCOM itself, but must access it in a controlled fashion, to

ensure that application tasks cannot interfere with one another.

To this end, a library of routines (called MEDUSER, for "Media

user routines") provides easy read and write access to the

data-base, and hence via the updating task to the Media interface

itself. From the user point of view, accessing Media is a simple

and direct operation, because the routines in MEDUSER make all of

the following transparent:

1. Securing and releasing of the data-base for indivisible

operations (see chapter 6)

2. The operation of the Media update task, and

3. Encoding and decoding of frames in the Micro-Media

protocol and the sending and receiving of data link

frames.

For example, to write the data OUTDATA to analogue output number

2, the user would simply write

WRMEDOUT(ANALOG, 2, OUTDATA):

and would not have to worry about securing, releasing, protocols,

etc. The disadvantage is obviously the time uncertainty in

controlling Media: i.e. one cannot know exactly when the data

written to MEDCOM will reach Media because a variable amount of

time may elapse before MEDUPDAT performs the transaction with

Media.

INTRODUCTION PAGE 1-12

1.4.2.4 Exclusive access to Media outputs -

Access to MEDCOM via the MEDUSER interface has been controlled in

such a way that any user is permitted to read data from any part

of the data-base, since this will not interfere with other users'

activities, but a user can only write to those parts of the

data-base to which he has "attached" before running his tasks.

Before running any task which· writes information to MEDCOM, the

user must attach to the outputs involved by running a task called

ATTACH, after which he has exclusive access to the outputs to

which he has attached. The user may if he wishes specify to the

ATTACH task which outputs to which he wishes to attach, or may

allow ATTACH to give him whichever happen to be free.

A proce.dure is supplied in the MEDUSER interface which enables a

user-written task to determine which outputs it is attached to.

This approach allows user programs to be independent of which

particular outputs are used, obviously a desirable feature since

1;.he availability of different outputs will' clearly vary from time

to time due to the muti-user teaching and research use. The

ATTACH task is described in detail in chapter 7.

1.4.2.5 The Data-base Manager -

A task called MEDRMD {for "Media RMDEMO") provides a dynamically

updated disp-lay of the activity of the data-base. This display is

updated every secon~ and gives details of which user is attached

to each output, how much time has elapsed since the last update

and which task is currently securing the data-base. This task is

similar in spirit to the RSX-11 RMDEMO task [10] which gives a

dynamic display of the use of the computer system resources such

as memory, pool, task lists and disc space. Use of MEDRMD enables

a system manager to monitor the· activity of the data-base, and

correct any complications that occur {such as users attaching to

outputs and failing to detach afterwards). It also enables a user

INTRODUCTION PAGE 1-13

to quickly a~d easily see whether MEDUPDAT is in fact updating the

data base, and see to which outputs he is attached.

One of the accounts (account number [300,1]) is designated the

data-base manager's account : a user with [300,1] as his

protection UIC has more privileged access to the data-base than do

the other users. By using the information from MEDRMD, he can

keep control over the data-base: for example, he can forcibly

detach from outputs users who fail to do so themselves.

1.4.3 The Necessity for Simulation

Although the primary function of this system for the purposes of

teaching is to give the students hands-on experience of the

control of a real process, practical factors dictate that much of

the time the students will not in fact be controlling a real

process, but instead a software simulation of the process. For

example, there may be only one set of apparatus, or the apparatus

may be delicate and easily damaged by .a program which is not fully

debugged. The data-base MEDCOM, therefore, contains not only all

the data needed for the Media interface itself, but also an

additional part which is used for simulation. This part of MEDCOM

is not updated by MEDUPDAT, but instead by a simulation task which

simulates the effect of the Media update task plus the Media

interface and the process apparatus. From ther users' point of

view, however, it is exactly as if he were controlling a real

system. The only difference to the user is that when he attaches

to outputs using ATTACH, he specifies that he wishes to use a

simulated system.

To enable the easy simulation of analogue systems, a simulation

package (see chapter 9) has been written which enables easy

implementation on the digital computer of almost any analogue

block diagram.

INTRODUCTION PAGE 1-14

1.4.4 Graph~cs Interface

A library of routines simplifying the use of the Tektronix 4010

plotting terminal is provided. This library is not intended to be

a complete graphics interface, but merely provides sufficiently

many software building blocks to enable users to easily build up

their own routines such as graph-plotting routines. This allows

users to plot graphs of the parameters of the processes that they

are controlling - for example the value of one of the analogue

inputs against time. Hard copies of the graphs plotted may be

obtained using the hard-copy unit attached to the plotting

terminal.

1.4.5 System Management and Diagnostic Tools

Various diagnostic programs have been written which can be used to

test the Media interface and the various software modules and

libraries. These are described in chapter 8.

1.5 Typical Applications

1.5.1 Teaching

The system was used during the 1983 academic year to teach the

fundamentals of real-time software and multitasking to final-year

Electrical Engineering undergraduates at UCT. The project, which

is described in detail in chapter 10, involved controlling the

INTRODUCTION PAGE 1-15

temperature of air emerging from a 60 cm vertical column, as in

figure 1-2:

f;-o~ N\ e4-t'A
aJ\0.\09\\e. ottt v.t

Blower
fem~

--- . -

0

INTRODUCTION PAGE 1-16

Air is blown upwards at a constant rate by the blower fan and the

temperature read by the thermistor is read in via one of the

analogue inputs of the Media interface. The power output to the

heater is controlled via one of the analogue outputs.

In addition, a simulation task could be run which simulated the

operation of four such columns using the simulation portion of

MEDCOM. The students' software, which accessed the data-base

using the MEDUSER library, could be debugged and tested on the

simulation system and then run on the real system - thus allowing

up to five students to run their software simultaneously.

1.5.2 Research

A good example of a research project that could be undertaken

using Media is the determination, using adaptive control

techniques, of the characteristics of a· variable reflux-ratio

fractional distillation tower, illustrated in figure 1-3. Two

analogue inputs would be used to measure the temperature at two

points in the column, and another would give a measure of the

purity of the emerging distillate. One analogue output would vary

the power to the heater, and another would vary the reflux ratio.

INTRODUCTION

PAGE 1-17

wo..l~r
+low ~

~----- vari~~le reflu><
splitter

........-~:..,....:::.....+--+---- I j 1' \Aid to be..
d.i s!:i lied

Fi~ 1-3: \/ario.ble Refl1Ax~ro.l-io distillatiot't tower

CHAPTER 2

MEDIA

2. 1 HARDWARE

· 2.1.1 Introduction

Media, or Modular Electronic Digital Instrumentation Assemblies

[l], is a family of process control interfaces designed by

Imperial Chemical Industries (ICI). The use of Media offers the

following advantages:

1. Media provides "data highways" which give read, write and

control access at memory speeds to any part of the

system. It is therefore particularly suited to the

control of more complex systems.

2. The highways provide random access to data.

3. Media is modular, since it is divided into groups of

19-inch card racks into which a wide variety of available

MEDIA PAGE 2-2

Media cards may be plugged. Because of this modularity,

Media offers flexibility in configuration and

capabilities.

4. Media can safely be used in a hostile electrical

environment, since isolation is provided on all inputs

and outputs.

Media systems come in three basic models:

1. Media Major.

This is the largest of the family and is used to control

large industrial plants involving several thousand plant

signals.

2. Media Minor.

This model is of intermediate size and fills the gap .

between Media Major and Micro-Media.

3. Micro-Media.

Micro-Media is used to control small systems, typically

consisting of up to 32 control loops.

The process data is transferred on the Media highways, of which

there are two types:

1. Active highway. This contains those Media cards which

can take charge of the highway as master.

2. Passive highway. The passive highway is controlled by

the active highway and contains those Media cards which

respond to commands but do not take control of the

highway, e.g. digital inputs and outputs.

MEDIA PAGE 2-3

Up to 16 Media cards can be plugged into each 19-inch

rack-mounting "Media bin". These bins can be of three types:

1. Active bins: These contain cards which are situated on

the active highway.

2. Passive bins: These contain cards which are situated on

the passive highway.

3. Mini-bins: Mini-bins have both an active and a passive

part, and are only used in small Media systems.

2.1.2 The UCT Micro-Media installation

The UCT Media system [11], which is .a Micro-Media system supplied

by GEC, has a mini-bin and a passive bin housed in a welded

open-frame chassis. The analogue and digital input and output

lines from the Media cards are connected to three connector rails

at the back of the Media chassis. A diagram of the connector

rails is given in Appendix A.

The mini-bin has the following cards installed:

1. M7100 8085 CPU card

2. M7101 CPU-to-Media interface card

3. M6310 serial I/O card

4. M0410 minibin control card

5. M7000 PDP-11 interface (data}

6. M7001 PDP-11 interface (control}

MEDIA PAGE 2-4

7. M7002 LSI/Media bus interface with M7022 LSI-to Media

cable form.

8. M0601 Highway terminator

The passive bin has the following cards installed:

1. Two M2001 16-line digital input cards. These 32 digital

lines are intended to be driven by switch contacts, but

have been brought out to the front panel (see appendix A)

in such a way as to enable' them also to be driven by TTL

logic levels.

2. One M3302 16-line digital output card. These 16 lines

emerge from the card with logic high being 24 volts, but

have been brought to the panel (see appendix A) in such a

way as to allow a choice between 24 volts and TTL logic

levels.

3. One M3004 4-channel analogue output card. The outputs

have 8-bit precision, with OOH being equivalent to -4rnA,

and FFH to -20rnA. They have been brought to the panel in

such a way as that they are also available as -lV to -SV

voltage outputs (see appendix A).

4. One Ml601 16-way analogue multiplexer card. Selection of

a particular channel is described in Appendix B.

5. One MlOOO lO~bit analogue-to-digital converter card. The

analogue input to this card is the one selected by the

multiplexer card. The input voltage range is -lV (for

OOOH) to -SV (for 3FFH). The format of the data read is

described in Appendix B.

6. M0003 passive highway terminator card.

A serious problem with the system is that the ground reference

level for the digital cards is 15 volts below that of the analogue

MEDIA PAGE 2-5

cards. This means that there must be two ground levels {analogue

ground and digital ground), which leads to unnecessarily

complicated circuitry when interfacing Media to the circuit being

controlled.

Specific details of the programming of each individual Media card

are given in appendix B.

2.2 SOFTWARE

2.2.1 Outline

As was menioned in the introduction, the heart of the Micro-Media

system consists of three boards: an 8085 CPU board,a Media

interface board and a serial I/O board. These boards are plugged

into the active section of the mini-bin. Two ROM chips on the CPU

board contain a program, written in Coral-66, allowing Micro-Media

to be used as a remote data input/output station, connected to the

host computer via a serial data link. A simple half-duplex

link-level protocol [12], described below, is implemented whereby

the host sends command frames, and receives reply frames from

Micro-Media.

The Micro-Media software continually scans the Multiplexed

analogue inputs and stores the values read into an area of RAM

called the "analogue list". The data items stored in the analogue

list are called "list items".

The 32 bits in the two "digital change words" stored in RAM

correspond to up to 32 16-line digital input cards. Whenever the

state of any of the input lines to one of the digital input cards

changes, the Media program sets the bit in the digital change

MEDIA PAGE 2-6

words corresponding to this card. The digital change words are

cleared by the Media program after the host reads them. The

philosophy behind the use of the digital change words is to allow

the host to determine whether or not any of the digital input

lines have changed state, without having to access each digital

input card. In the present system, however, which has only two

digital input cards, only two bits of the digital change words are

used and no real advantage is gained over simply accessing both

digital input cards.

Each Media ~card is identified by its "Media address", i.e. its

address on the Media highway, and each item in the analogue list

has a "list address". Media and list addresses are 10-bit

addresses. In the LSI-11 Media system, the Media addresses

correspond to successive locations in the I/O space of the LSI, as

explained in appendix B.

The Micro-Media protocol is a half-duplex link-level protocol.

All transactions between Media and the host are initiated by the

host. · The host sends a frame in which is encoded a command field

to indicate to Media which of sixteen possible operations it must

perform, and Media replies with a reply frame including a status

field indicating whether or not the operation was successful, and

if not, what went wrong. Frame data integrity is checked using a

block check character. Error correction is not performed - the

host is expected to take corrective action, such as retransmitting

a frame, if the reply from Media indicated that the received frame

was faulty. A timeout is implemented by ~edia whereby the time

interval between any two successive bytes within a frame may not

exceed a certain amount, or else the frame is rejected.

2.2.2 Media protocol frame format

Each frame consists of a number of bytes into which the various

frame fields are encoded. The first and last byte of each frame

MEDIA PAGE 2-7

has bit 6 set (regarding the least significant bit as bit o, and

the most significant bit as bit 7). No other byte within a frame

has bit 6 set. After the first byte of a frame is detected, all

further bytes are included in the frame until another byte with

bit 6 set is detected. This byte is then taken as the last byte

in the frame.

This scheme has the disadvantage that the same method (setting bit

6) is used to indicate the start and the end of the frame, and

therefore, should a start or end byte be lost, all start bytes

will be identified as stop bytes (and vice-versa) and so no

further frames will be transmitted correctly.

The following fields are present in all frames:

1. The command code. The command code informs the Media

program which of sixteen possible operations (such as

read digital change words or write to Media address) it

should perform. The command code consists.of bits 0 to 3

of the ':t;irst byte in the frame. All possible command

codes are listed in Table 2-1 and described below.

2. The terminal address. Bits 4 and 5 of the first two

bytes contain a 4-bit terminal address, used to identify

a particular terminal if a multidrop line is used. In

the LSI-11 Media system, these bits are ignored.

3. The block check character (BCC). Bits 0 to 5 of the

final byte in the frame form a BCC, which is formed as

the logical exc.lusive-OR {vertical parity) of all

previous bytes in the frame.

4. Parity. Bit 7 of each byte may be used as a parity bit.

The LSI-11 Media system does not use the parity bit, but

instead puts zero into these fields.

5. Reply status. In the case of Media-to-host reply frames,

bits 0 to 3 of the second byte give status information as

listed in Table 2-2. The status information informs the

MEDIA PAGE 2-9

2.2.3 Media operations

The operations which Media can perform in response to a command

frame from the host are summarised in Table 2-1.

When data is written to Media, this is done in a two-stage

process, so as to ensure integrity. A frame with a command field

indicating a write (code C or D) is sent to Media, containing an

item of data to be written to a specified Media or list address.

Before taking any action, Media reflects the entire frame back to

the host. If the host is satisfied with this reply, it then sends

a confirmatory £rame with a command field indicating "go" (code E)

causing the data to be written, and Media replies with a 3-byte

frame containing the status field. Should a confirmatory "go"

frame not be received from the host, Media will not write the

data, but will simply perform whatever operation is specified by

the command field of the next frame received (i.e. the initial

"write" frame will have had no effect).

The following list describes all the operations which may be

specified by a frame from the host:

1. Single read from Media address (code 1). Media returns

the value read from the specified Media address.

2. Single read from list address (code 2). Media returns

the value .. read from the specified list address.

3. Block read from Media addresses (code 3). The frame from

the host indicates how many items must be read, and the

Media address of the first item. The items are read from

consecutive Media addresses and returned inside the reply

frame.

4. Block read from list addresses (code 4). Sarne as for

(3), except that list addresses are used.

5. Read digital change words (code 7). The reply frame from

MEDIA PAGE 2-10

Media contains the digital change words.

6. Read the printer status word (code 8). The reply from

Media contains the printer status word, which indicates

the status of the printer local to the Media interface.

Since our system does not have a local printer, this

function is not impiemented in the LSI-11 Media system.

7. Write to a single Media address (code C). The frame from

the host contains the Media address and the data to be

written to that address. M~dia does not actually execute

the write until it receives a confirmatory "go" frame,

but instead reflects the entire frame back to the host

for checking.

8. Write to a single list address (code D). As for writing

to a Media address except that a list address is used.

9. Go (code E). This is the confirmatory command used in

the second stage of a write operation and informs Media

that it may now execute the write specified in the

previous host command frame.

10. Write text to printer (code 0). The frame received by

Media contains text which must be printed on the printer

local to the Media interface. Since our system does not

have such a printer, this command was not implemented in

the LSI-11 Media software.

CHAPTER 3

THE LSI-11 MEDIA SYSTEM

3.1 THE LSI-11 MEDIA SOFTWARE

3.1.1 General

This software component emulates the operation of the GEC

proprietary Micro-Media so.ftware. Since the target LSI-11.

microcomputer consists only of CPU board, memory and serial I/O

interface, the operating system used must be built together with

the Micro-Media software into a single task (called SMT.TSK)

before being downloaded into the LSI-11.

The operating system used is SMT (for "Standard Multi-Tasking")

version 18 which is a small (about 6K words) multitasking

operating system designed for use in real-t_ime control

applications [4]. Because of its small size, SMT is ideally

suited to applications such as this one where the system can be

THE LSI-11 MEDIA SYSTEM PAGE 3-2

compiled on a minicomputer and downloaded into a microcomputer

such as the LSI-11 used. SMT is written mostly in RTL/2, but has

assembler code inserts where necessary. The use of a high-level

language makes the operating system easier to understand and to

update.

SMT provides the framework ~nto which the user may insert up to 16

tasks written in RTL/2 for his particular application. Full RTL/2

system and stream I/O facilities are provided for the tasks, as

well as 16 user events and 16 facilities. SMT allows 255 levels

of priority for the tasks. Standard RTL/2 error handling

mechanisms are provided.

3.1.2 SMT System Modules

The operating system itself consists of the following modules:

3.1.2.1 The SMTBl and SMTBlX modules -

These contain all the machine-dependent system code, including

interrupt handling, real-time clock handling, unrecoverable error

handling and system start-up code._ Both are supplied with SMT,

but SMTBlX is the one that must be used with the RSX-11

macro-assembler, since it contains certain .PSECT directives that

the assembler·requires.

Because SMT was originally written to run on the old pre-LSI PDP

minicomputers, it does not exploit the larger instruction set of

the LSI-11 to the full. The LSI-11 has additional instructions

for processor status word access which were. not present in the

instruction sets of the earlier PDPs. To enable these more

efficient instructions to be used, SMTBlX must be edited to change

THE LSI-11 MEDIA SYSTEM PAGE 3-3

the old instructions to the new ones. All the necessary changes

are included in a file called SMTBlX.EDT (not supplied with SMT).

An edited file, SMTBlXUP.RTL, is produced by the DEC editor, as

follows:

EDT SMTBlXUP.RTL=SMTBlX.RTL
*INC =X /FI:SMTBlX.EDT
*XEQ =X
*EX

SMTBlX is compiled using

RTL SMTBlX,SMTBlX=SMTBlXUP/CN:F/PE:SMTBlX/TI:SMTBlXUP

MAC SMTBlX=SMTBlX

The /CN:F switch is needed because SMTBlX contains code inserts,

the /PE switch is used to generate a .PSECT directive at the

beginning of the output macro-11 source and the /TI: switch

specifies a title.

3.1.2.2 The SMTUl and SMTUlX modules -

These contain the machine-dependent user task definitions and

initialisation code, i.e. the details about all the user tasks

that will be built into the system - what the names for the base

procedures of the user tasks are, what the tasks' priorities are,

whether they are to be initialised into the running or suspended

states, etc. Therefore, SMTUlX must be edited to configure it to

run the two user tasks SMTCOMS and SMTMULTI (these are described

later). This module as supplied also includes the device driver

routines for the console serial line of the LSI. However, in this

application, these have been replaced by custom-written drivers in

the SMTDEVDRV module (below), and so must be deleted from this

module.

As for the SMTBlX module above, SMTUlX is the one that must be

THE LSI-11 MEDIA SYSTEM PAGE 3-4

used with the RSX-11 assembler. A file, SMTUlX.EDT, is provided

which contains all the necessary commands for the DEC editor to

edit SMTUlX.RTL to produce SMTUlXUP.RTL.

SMTUlX is compiled using

RTL SMTUlX,SMTUlX=SMTUlXUP/CN:F/PE:SMTUlX/TI:SMTUlX

MAC SMTUlX=SMTUlX

The meaning of the switches used was described in the section on

SBTBlX.

3.1.2.3 The SMTB2 module -

This module contains the machine-independent system routines.

Included amongst these are routines connected with event flags

such as WAIT, DELAY, SET and RESET, the securing and releasing of

facilities, the printing of error messages when unrecoverable

errors occur and the standard RTL/2 stream I/O procedures such as

IREAD and TWRT.

The only modification necessary is the suppressing of the output

of the error-message printing routine ERPRIN (for reasons

explained later). This is done by commenting out the bulk of the

routine. Examination of the listing of the routine will show that

an alternative method would have been to set the error count ECT

to zero just before ERPRIN tests its value.

SMTB2 is compiled using

RTL SMTB2,SMTB2=SMTB2/TI:SMTB2

MAC SMTB2=SMTB2

THE LSI-11 MEDIA SYSTEM PAGE 3-5

3.1.2.4 The RTLCTL module -

This module contains the control routines for RTL/2 tasks running

under SMT. These include the trap handlers, array bound checking

routines, stack unwind routines, type conversion and all

arithmetic routines such as compare, add, subtract, multiply,

divide and arithmetic shift ...

The module is written in macro-11 and does not need to be

modified. It is assembled using

MAC RTLCTL=RTLCTL

3.1.2.5 The SMTB3 module -

This contains the system data tables and the stacks for the tasks

which form part of the SMT operating system itself (e.g. the

real-time clock task). The contents of the system data tables is

not of any relevance from the user point of view.

No modifications are needed to SMTB3, and it is compiled using

RTL SMTB3,SMTB3=SMTB3/TI:SMTB3

MAC SMTB3=SMTB3

3.1.3 User modules

THE LSI-11 MEDIA SYSTEM PAGE 3-6

3.1.3.1 The SMT device driver SMTDEVDRV -

The device drivers supplied with SMT as part of the SMTUlX module

are not suitable for use as drivers of the Media serial line,

which must transmit and receive 8-bit binary data without special

significance to any of the characters.

The supplied drivers were deleted and a module SMTDEVDRV was

written to replace them. The module consists of the hardware

input and output console line interrupt servicing routines as well

as byte input and output procedures intended to be assigned to the

standard RTL/2 stream inp~t and output procedure variables IN and

OUT in the SVC data brick

SVC DATA RRSIO;
PROC {) BYTE IN;
PROC {BYTE) OUT;

ENDDATA;

The description below of these four procedures should be read in

conjunction with the listing of SMTDEVDRV:

1. PROC INSERIAL {).

This is the hardware serial input interrupt service

routine and is vectored to via location 000060. It is

executed whenever a byte has been received on the line

and is ready for processing by the Media software.

Inspection of the listing will show that INSERIAL takes

this byte and puts it into a buffer {INAREA.INBUFF) and

increments the buffer pointer {INAREA.INPT). It then

queues the console input event INEVENT and returns.

2. PROC OUTSERIAL ();

This is the hardware serial output interrupt service

routine and is vectored to via location 000064. It is

THE LSI-11 MEDIA SYSTEM PAGE 3-7

executed on completion of the transmission of a serial

output byte.

All it does is to queue the printer event flag PREV to

indicate to the software that transmission of the

character is complete.

3. ENT PROC INBYTE () BYTE:

This procedure, together with INSERIAL, replaces the

SMT-supplied console input procedure INTTY. It is

assigned to the standard RTL/2 byte input procedure

variable IN by the Micro-Media communications task

SMTCOMS. All 8 bits of all input bytes are passed, none

of them being given any special treatment.

Its operation is as follows. If there are bytes left in

the input buffer, the output pointer INAREA.OUTPT is

incremented and the byte pointed to is temporarily saved

in the variable CHAR. A test is then done to see if the

byte is the last one left in the buffer. If it is, then

the buffer pointers INAREA.INPT and INAREA.OUTPT are

reset to zero. A suspension of interrupts using HLOCK

takes place during this critical test-and-reset

operation. The procedure then returns the byte saved in

CHAR.

4. ENT PROC OUTBYTE (BYTE B):

This procedure is used to output bytes to the console

line. It is assigned to the standard RTL/2 byte output

procedure variable OUT by the Micro-Media communications

task SMTCOMS. All 8 bits of all bytes are passed, and no

special significance is attached to any of the

characters.

THE LSI-11 MEDIA SYSTEM PAGE 3-8

SMTDEVDRV is compiled using

RTL SMTDEVDRV,SMTDEVDRV=SMTDEVDRV/CN:F/PS:DEVDRV/TI:SMTDEVDRV

MAC SMTDEVDRV=SMTDEVDRV

3.1.3.2 The SMTCOMS user task -

3.1.3.2.1 General description -

SMTCOMS is the serial I/O communications task. It performs the

following operations:

!. Receiving and transmitting of all data link frames.

2. Decoding the Micro-Media protocol serial link command

frames received from the host, and detecting any errors

in these frames (such as faulty block check character).

3. Constructing the Micro-Media reply frames which it will

send to the host.

4. Performing all operations (such as Media read or write)

that <;ire specified by the command frames received from

the host.

THE LSI-11 MEDIA SYSTEM PAGE 3-9

3.1.3.2.2 Detailed description -

This description should be read in conjunction with the program

listing.

SMTCOMS is activated every time an input byte from the host

arrives down the serial link. It waits for the event flag INEVENT

which is set by the input interrupt servicing routine INSERIAL.

The input bytes are built up into complete frames (a frame being

a complete command from the host in the Media protocol format).

This is done by the procedure BUILD() which is called for each

input byte.

Checking of the input characters is only done once the input frame

is complete. The successive bytes of an input frame must arrive

within two seconds of each other, otherwise the frame is rejected.

The start and end bytes of each frame are detected by testing bit

6 of each incoming byte a byte in a Media frame has bit 6 set if

and only if it is a start or end byte.

When the BUILD() routine indicates that the frame is complete,

PROCESS{) is called to process the frame. It checks that the

block check character {BCC) is correct, decodes the frame, takes

appropriate action according to the Media code, builds up a reply

frame and outputs the reply down the console line.

·· The fundamental procedures for accessing Media highway addresses

are WMEDIA and RMEDIA. These are also called by the SMTMULTI task

when it accesses Media.

1. ENT PROC RMEDIA (INT AD) INT. The returned integer

contains the data read from the card at Media address AD.

AD is multiplied by 2 and added to the base address

176400 to convert it to an LSI address.

THE LSI-11 MEDIA SYSTEM PAGE 3-10

2. ENT PROC WMEDIA (INT ADDR, VALUE). The data VALUE is

written to the Media address ADDR~

Should a Media access error cause a bus time-out unrecoverable

error, control is passed to the unrecoverable error processing .
label UNRECOV. Unrecoverable error processing is discussed in

section 3:1.4.

?rocedure GETADD extracts the Media or list address from the

address field of input frame, and DECODE similarly extracts the

data from the data field.

3.1.3.2.3 Error conditions recognised -

The SMTCOMS task recognises several error conditions

1. LENERR . . Length of input frame is inconsistent with the

Media code used.

2. TOOMANY : Too many bytes in input frame - input buffer

overflow.

3. TIMEERR Timeout error while waiting for input.

4. BADCODE Invalid Media code received.

5. BLOCKERR : BCC of received message incorrect.

6. MEDIAERR Media access error.

7. UNEXPGO : GO code received which was not preceded by a

write message.

THE LSI-11 MEDIA SYSTEM PAGE 3-11

The Micro-Media protocol, however, only allows five types of error

status to be returned :

1. Parity, framing or overrun error in input frame. This is

returned for LENERR and TOOMANY.

2. Timeout on character input. This is returned for

TIMEERR.

3. Invalid Media code. This is returned for BADCODE and

UNEXPGO.

4. BCC faulty. This is returned for BLOCKERR.

5. Media error. This is returned for MEDIAERR.

3.1.3.2.4 Compiling SMTCOMS ~

SMTCOMS is compiled using

RTL SMTCOMS,SMTCOMS=SMTCOMS/CN:F/TI:SMTCOMS

MAC SMTCOMS=SMTCOMS

3.1.3.3 The SMTMULTI user task. -

SMTMULTI is the analogue multiplexer scan task. Its function is

twofold:

1. It must continually read the digital input cards and

update the digital change words in RAM accordingly.

THE LSI-11 MEDIA SYSTEM PAGE 3-12

2. It must continually read the multiplexed analogue input

data and store this in the analogue list in RAM.

Every 60 milliseconds it reads in the digital inputs, compares

them with the values read the, previous time, and stores the

digital change words accordingly. It then writes to the

multiplexer to select the next analogue input to be read, waits 40

to 60 milliseconds to allow the multiplexer to settle, and reads

in the data from the ADC card. Only one analogue input is read

each time. It therefore takes 16 times as long, i.e. about one

second, to scan all 16 inputs.

Any Media access which causes a bus timeout on access is regarded

as a Media error, and causes error processing to pass to the

unrecoverable error label. The unrecoverable error processing

then puts the card responsible for the error out of scan.

A list of cards which are out of scan is maintained, as well as a

pointer to this list. Each time round the loop, one of the

out-of-scan cards (if there are any) is accessed to see whether it

has come back into scan, and if so, its element is removed from

the out-of-scan list. If however, the card is still out of scan,

an unrecoverable bus time-out error will again occur. It is for

this reason that only one of the out-of-scan cards can be tested

at a time.

SMTMULTI is compiled using

RTL SMTMULTI,SMTMULTI=SMTMULTI/CN:F/TI:SMTMULTI

MAC SMTMULTI=SMTMULTI

THE LSI-11 MEDIA SYSTEM PAGE 3-14

SVC DATA RRERR:
LABEL ERL:
INT ERN:
PROC (INT) ERP:

ENDDATA:

3.1.5 Building SMT.TSK

Once all the modules have been compiled as described already, they

may be task-built to form SMT.TSK using the following command

TKB @TKBSMT

where TKBSMT.CMD is

SMT/-HD/-MM,SMT/-SP/MA/CR=LOWCR,SMTB1X,SMTB2,SMTB3
RTLCTL,SMTUlX,SMTDEVDRV,SMTMULTI,SMTCOMS
I
STACK=O
UNITS=O
PAR=EXEPAR:0:160000
I

LOWCR.MAC reserves space for the bottom area of LSI memory which

will contain the interrupt vectors. It consists simply of

.PSECT

.BLKW 128 •
• END

: Reserve 2~6. bytes for int. vectors

3.1.6 Note on debugging the user SMT modules.

' In the SMTCOMS, SMTMULTI and SMTDEVDRV modules, certain RTL/2

lines have been commented out using triple percent signs ("%%%").

These lines were originally present while the software was being

THE LSI-11 MEDIA SYSTEM PAGE 3-15

debugged, and cause messages to be printed down the console line

describing what the programs are doing. If it is ever necessary

to debug or extend these routines, the abovementioned debugging

lines can be temporarily put back by changing all occurrences of

"%%%" to "%%". Once debugging is complete, changing "%%" to "%%%"

will cause the debugging lines to be commented out again.

3.2 REMOTE SYSTEM DOWNLOADING AND STARTUP

3.2.1 The ODT program

3.2.1.1 General -

The remote system start-up procedure is structured around the use

of a program called ODT, so called because it interacts with the

microcoded ODT (Octal Debugging Technique) program [13] which runs

on the LSI-11 when it is halted.

ODT, which is run on the host and provides semi-transparent access

to the console line of the remote LSI-11, enables the operator to

perform any of the operations that are supported by the LSI-ll's

console ODT. ODT can therefore be used to examine and change any

of the LSI's memory and register locations. As was mentioned in

the introductory chapter, ODT (together with the bootstrap loader

SMTLOAD) also provides the means whereby the LSI-11 Micro-Media

software SMT.TSK can be downloaded into the remote LSI-11 and

started running.

Ideally, ODT should provide full transparency between the

THE LSI-11 MEDIA SYSTEM PAGE 3-16

operator's terminal. on the host and the LSI-ll's console line, so

that from the operator's point of view it would seem that his

terminal was directly plugged into the LSI. Such transparency can

be achieved using RSX-llM's asynchronous system traps (ASTs) [14]

to deal with the incoming characters from the two ports, but the

simpler approach of using standard QIO calls was used which

allowed the program to be made operational sooner and with less

effort.

Unfortunately, use of the RSX-llM QIO$S [15] I/O directive only

allows one to achieve partial transparency. The operator types in

a complete ODT command followed by a carriage return. This

command is scanned and checked by the program, and if it is a

satisfactory ODT command, is sent down ·the line to the LSI. The

program then waits for a reply from the LSI, in most cases with a

one-second time-out. The reply received is then sent to the

user's terminal.

This approach requires the program to calculate the number of

characters expected in the reply from the LSI, and in order to do

this, a record is kept of what "state" the LSI is currently in.

The four states used are :

. 1. START : The LSI is waiting for a command and has output

an '@' prompt.

2. MEMORY An LSI memory location is currently open.

3. REGISTER An LSI register location is open.

4. PSW The LSI processor status word location is open.

If the user types in a command which is inappropriate for the

current state of the LSI, it is rejected and an error message is

displayed.

THE LSI-11 MEDIA SYSTEM PAGE 3-17

3.2.1.2 The flush (F) conunand -

The flush ('F') conunand, which is recognised in all states, is

provided so that the user can flush the input type-ahead buffer of

the host serial port to get rid of any unwanted input characters.

The program issues an I/O dir.ective to read all characters without

echoing them, with a one-second time-out (a QIO$S #IO.RALlTF.RNE

directive). Any input in the buffer, plus any that arrives in the

next second, is discarded after being output to the user's screen.

It is reconunended that the flush operation be done on program

startup and also whenever replies from the LSI appear not to be

properly aligned with the conunands sent out. The flush conunand

also returns the program to the START state.

3.2.1.3 Conunands recognised in START mode -

In addition to .the flush conunand, the following are recognised in

START mode :

1. Open memory location

<octaldigitlist><'/'> (e.g. '700000/')

Memory location 'octaldi~itlist' is opene.d and the

contents displayed. 'Octaldigitlist' must consint of one

to six octal characters. The program is put into MEMORY

mode.

2. Open register location

<I$ 'l 'R'><octaldigit><'/'> (e.g. 'R6/')

Register number 'octaldigit' is opened and the contents

displayed. the program enters REGISTER mode.

THE LSI-11 MEDIA SYSTEM PAGE 3-18

3. Open PSW l.ocation

<I$ 'I 'R'><'S/'> (i.e. '$S/' or 'RS/')

The PSW is opened and the contents displayed. the

program enters PSW mode.

4. Go

<octaldigitlist><'G'> (e.g. '1070G')

Processing is started from the location specified by

'octaldigitlist'. No timeout is put into effect and the

program will wait until the LSI has output 11 characters

(normally caused by the LSI halting again). The program

remains in START mode.

5. Proceed

<'P'> (i.e. 'P')

Causes processing of the LSI to continue from the

location pointed to by the value of register 7. As for

the Go command, no timeout is imposed and the program

remains in the START state.

6. Help

< I H • , I HELP I >

Sends to the terminal a short summary of the operation of

the ODT program.

7. Exit

< control-Z>

Stops execution of the program and returns control to

MCR.

THE LSI-11 MEDIA SYSTEM PAGE 3-19

8. Load

< 'LI> (. l.. e. 'L')

This command is described in the section on downloading

SMT (below).

3.2.2 Commands recognised in MEMORY and REGISTER state

1. Next locatio~

[<octaldigitlist>]<'N'> (e.g. I lOOON I)

The contents of the current location are replaced by

'digitlist' if this field is present. Then the next

location is opened and its contents displayed. The state

remains unchanged.

2. Close location

[<octaldigitlist'>]<'C'> (e.g. '34C I)

The contents of the current location are replaced by

'octaldigitlist' if this field is present. Then the

location is closed and the program enters START state.

3.2.2.1 commands recognised in PSW mode -

In PSW mode, only the Close location command is recognised. Its

syntax and operation is the same as for MEMORY/REGISTER mode.

THE LSI-11 MEDIA SYSTEM PAGE 3-20

3.2.2.2 Downloading the LSI-11 Media software -

The 'L' command, which can be invoked in START state, is used to

download a bootstrap loader into the LSI, cause this downloaded

loader to run and download the file 'SMT.TSK' into the LSI.

On typing 'L' the user is asked

DOWNLOAD THE ABSOLUTE LOADER (Y/N) ?

If the answer is Y, the absolute loader, stored in an octal dump

format in the file SMTLOAD.ABS, is loaded, word by word, into the

LSI, using the standard ODT commands, as if a person had typed it

all in by hand. All the information loaded is also displayed on

the terminal screen. When this is complete, the program asks,

LOAD SMT (Y/N) ?

If Y is typed, then the file SMT.TSK is loaded in 512-byte blocks

down the lirie. After each block, the LSI returns a checksum byte,

which the ODT program compares to the checksum it calculated. If

a checksum error occurs, it is necessary to restart the LSI, flush

the input buffer ('F' command) and start loading again. On the

other hand, if SMT is successfully loaded, the message 'LOADING

COMPLETE' is displayed and the program asks

START SMT RUNNING {Y/N) ?

If Y is typed, execution of the SMT program is started, and the

LSI-11 Media system is functional. The user will normally then

type control-Z to exit to MCR.

If N is typed, then the ODT commands can be used to examine and

modify the downloaded SMT program.

Step-by-step instructions for Media system startup are given in

appendix M.

THE LSI-11 MEDIA SYSTEM PAGE 3-21

3.2.2.3 Terminal. settings -

The PDP port currently being used as the Media serial link is

TTlO:. For the program to download correctly, it is essential

that this terminal be set to read-pass-all, as follows :

SET /RPA=TTlO:

It is also recommended that the port be set to SLAVE, so that it

ignores unsolicited input, __ and to NOECHO so that if a spurious

character occurs, it will not be echoed back and forth across the

link :

SET /SLAVE=TTlO:

SET /NOECHO=TTlO:

The link speed is 9600 baud :

SET /SPEED=TT10:9600:9600

These four commands are included in DL0:[1,2]STARTUP.CMD and are
\-hi., ~OS~

executed as part of Asystem start-up.

3.2.3 SMTLOAD - a bootstrap loader for the LSI-11

3.2.3.1 Description -

SMTLOAD is a 160-byte-long bootstrap loader for the LSI-11, which

is put into the LSI memory by the ODT task using the 'L' command

as explained above, and which loads the LSI-11 Media program

SMT.TSK into the LSI memory.

THE LSI-11 MEDIA SYSTEM PAGE 3-22

SMTLOAD itself occupies the 160 bytes from address 157000 to

157240. It is loaded by the ODT program while the LSI is halted

and in console-ODT mode. The file SMTLOAD.ABS, which is an octal

dump of SMTLOAD, is sent down the serial line byte-for-byte as if

a user had typed it all in by hand.

The ODT program then sets the PSW of the LSI to 000340 (priority
I

7) so that it cannot be interrupted, and starts the LSI running

from location 157000.

The first two bytes received by STMLOAD are interpreted as the

length in bytes of the file to follow. A running checksum is also

w~;ntained. After every 512 bytes received, the checksum byte is

output down the console line for checking by the ODT program.

once all the bytes have been received, SMTLOAD. halts.

SMT.TSK is then ready to be run by a "OG" command from ODT.

3.2.3.2 Constructing SMTLOAD.ABS -

SMTLOAD is assembled and taskbuilt as follows:

MAC SMTLOAD=SMTLOAD

TKB @TKBSMTLD

where TKBSMTLD.CMD is

SMTLOAD/-MM/-HD,SMTLOAD/-SP=SMTLOAD
I
STACK=O
PAR=EXEPAR:l57000:1000
II

The resultant task is a binary file SMTLOAD.TSK which has to be

translated into an octal dump format by the DMP utility :

THE LSI-11 MEDIA SYSTEM

' .,

RUN $DMP

DMP>SMTLOAq.ABS=SMTLOAD.TSK/BL:3

"

'" ~ ...- • ! . I ~

Then SMTLOAD.ABS must be edited {using EDT) as follows :

PAGE 3-23

1. Delete the first two lines. These contain page heading

information.

2. Delete all line-feed characters, by typing

S/<LF>// %BE:%E

where <LF> is the line-feed character on the terminal

keyboard.

3. The last several lines will contain only zero data.

Delete these lines.

CHAPTER 4

THE SERIAL LINK INTERFACE HARDWARE

4.1 The serial lines

There are three 4-wire links running between the computer rooms of

the Electrical Engineering and Chemical Engineering buildings, a

distance of some 600 metres. These lines were installed by the

·Post Office.

Two of these are currently in use - one as the line connecting the

LSI-11 (in Chem Eng) to the host PDP-11/23 (in Elec Eng), and the

other as a general-purpose terminal link to the PDP. Both run at

9600 baud and use the balanced-line interface units described

below.

THE SERIAL LINK INTERFACE HARDWARE PAGE 4-2

4.2 The serial interface units

Each unit contains the circuitry necessary to interface two

independent RS-232C channels to two balanced 4-wire lines {i.e.

the GPO lines) •

A full cicuit diagram of the unit is given in Appendix D.

The chips used are the DS8820 dual differential line-driver and

the DS8830 dual differential line receivers [16].

~S2.32.

f°r"DWI pil'I

'3 ~ tleito.
c.o,..nechw

(R,c)

TTI-

6 I

I
I
I
I
I
1 ~PO

lin~

fi~ure. 4 -/.

I r
I
I
I_
I

TTL RSl3Z

To pin 2
ot deAl;o..­
UJWI e,c)rJ.f'

(Tx)

Figure 4-1 shows the system circuit diagram for one of the two

channels.

THE SERIAL LINK INTERFACE HARDWARE PAGE 4-3

4.2.1 Circuit operation

Let us suppose that a terminal is plugged into the RS-232

connector for channel 1 of the unit. When a character is typed,

the· RS-23-2-- -level--~signal---appears-at. -pin- 4- -of -the-1489 •. - -The- 1489

converts this signal to an inverted TTL-level signal at pin 6,

which drives pin 1 of the 8830. The 8830 converts this to a

differential signal (the two levels being about -+-1V and +4V)

between its AND and NAND outputs (pins 6 and 5). The AND output

signal is inverted relative to the original input from the
i .

terminal, whereas the NAND' output signal ~s not.

These outputs go via two of the wires in the GPO-link to pins 1

and 3 of the 8820 in the interface unit on the other side of the

link. These signals are limited between -12V and --12V by the

protection zener diodes shown.

The line is terminated with a capacitor of 0,05 rnicrofarads

between pins 1 and 2 of the 8820. The capacitor is chosen such

that the time-constant RC formed with the 170 ohm .. termination
'

- -resistance-·R- in-ternal- -t.o t.he-8820 - chip is - three -times-=-[11]. the

line_ signal-propagation time. This time was measured as being

about 3,6 microseconds.

Hence RC = 3 *3~-6 microseconds, where R = 170 ohms, and from this

we calculate C = 0,05 rnicrofarads.

The 8820 converts the differential signal to a TTL-level signal

inverted with respect to the original signal. This is converted

to an RS-232 signal via the 1488 chip and appears on pin 8 of the

chip, from where it is connected to the RS-232 delta connector.

! .

CHAPTER 5

MEDCOM - THE DATA-BASE

5.1 Description

All the information obtained from Media is stored in a data-base

called MEDCOM, which is continually being updated by the Media .

update task. MEDCOM is an RSX-llM resident common which is

permanently in memory, and is linked to at task-build time by

tasks that must access Media. User tasks wishing to access Media

do this indirectly by reading or writing to MEDCOM using the user

interface routines in the MEDUSER library {see chapter 7).

In addition to containing all information relevant to Media,

MEDCOM also contains information which is used, as described in

the introduction, to enable real-time simulation of systems.

MEDCOM contains sufficient extra space to .allow for the simulation

of four analogue ou~puts, four analogue inputs, 16 digital output

lines and 32 digital input lines. The simulation part of MEDCOM

is not updated by the Media update task, but instead by a

simulation task which simulates the effect of the Media update

MEDCOM - THE DATA-BASE PAGE 5-2

task communfcating with a Media interface connected to a process.

The reason why simulation is necessary is given in the

introductory chapter, and an example of a simulation task is

described in the concluding chapter.

The basic structural item of MEDCOM is the MEDCARD (for "Media

card") record, which is defined as

where

MODE MEDCARD (INT STAT, MEDDAT, ADDR, REAL SCANTIME):

1. STAT is a status word, the bits defined as follows:

Bit 0: 1 = card is in scan

0 = card is out of scan

Bit 1: l = 'ADDR' field is a Media address

0 = 'ADDR' field is a list address

Bit 2: 1 = output card

0 = input card

Bit 3: 1 = analogue card

0 = digital card

Others: Reserved

2. MEDDAT . For an input, MEDDAT is the data as read from

Media by the the update task. For an output, MEDDAT is

the data that the update task must write to Media.

3. ADDR is the Media or list address of the card (or item).

4. SCANTIME is the time (in seconds past midnight) of the

most recent successful transaction between Media and the

data-base for the item.

updated).

(i.e. when last it was

In the case of the digital inputs and outputs, the MEDCARD record

corresponds to an actual card physically plugged into the Media

MEDCOM - THE DATA-BASE PAGE 5-3

highway. The MEDDAT field then contains the state of sixteen

digital lines.

However, a MEDCARD record does not directly represent a card on

the Media highway in the following cases:

1. The analogue inputs, are represented in MEDCOM by an array

of 16 MEDCARDs, corresponding to the 16 analogue list

items in RAM inside Media.

2. MEDCOM has four MEDCARDs to represent the four analogue

output channels, even though the four outputs are

physically situated on the same Media card.

3. The digital change words and the Media status word (see

appendix E) are also represented by MEDCARDS.

4. Parts of MEDCOM which are used for simulation clearly do

not correspond to physical Media cards.

The record used for describing an analogue output is the AOREC

record, defined as follows:

MOPE AOREC{ INT UIC, USERINT, REF MEDCARD ANIN, REAL

SETP);

where

1. UIC is the protection user identification code of the

user attached to the output. This is used by the MEDUSER

library routines to determine whether or not the calling

program should be permitted to write to the corresponding

output.

2. USERINT is an integer which is intended to be used for

inter-task communication by the user attached to the

corresponding analogue output.

MEDCOM - THE DATA-BASE PAGE 5-4

3. ANIN is a pointer to the MEDCARD record representing the

analogue input being controlled by this output.

4. SETP is the setpoint of this analogue input. The ANIN

and SETP fields are provided to simplify the programming

of single-input single-output (SISO) control loops since

these are the most. frequently encountered. If the system

is not a SISO control loop, the ANIN and SETP fields are

not used.

MEDCOM consists of two ENT data bricks:

ENT DATA INAREA:

ARRAY(20) MEDCARD ANINP: % 20 analogue inputs %

% (16 real, 4 simulated)%

ARRAY(4) MEDCARD DIGINP: % 4 digital input cards %

% (2 real, 2 simulated) %

MEDCARD MEDSTAT: % Media status word %

ARRAY(2) MEDCARD DIGCHAN: % digital change words %

ENDDATA:

ENT DATA OUTAREA:

ARRAY (8) MEDCARD ANOUTP: % 8 analogue outputs %

% (4 real, 4 simulated) %

ARRAY(2) MEDCARD DIGOUT: % 2 dig. output cards %

% (1 real, 1 simulated) %

ARRAY(8) AOREC AODESC: % descriptions of a.o. 's%

ARRAY(2,16) INT DIGUICS: % UIC's for each d.o.· %

ENDDATA:

We see that the MEDCARDs used for simulation are stored in the

same arrays as those used for acce~s to the real Media system.

The real inputs and outputs always are the lowest-numbered

elements in these arrays, and the simulation inputs and outputs

are the higher-numbered elements. For example, the 16 real

MEDCOM - THE DATA-BASE PAGE 5-5

analogue inputs are represented by elements l to 16 of the array

ANINP above; and the 4 simulation analogue inputs are represented

by ANINP(l7) to ANINP(20).

INAREA holds all information that is read in from Media: a

MEDCARD record for each of the 16 analogue inputs and the two

digital input cards, MEDCA~D records for the digital change words

and the Media status word. For simulation, there are 4 MEDCARDs

for the analogue inputs and 2 for the digital inputs.

OUTAREA holds all information about Media outputs: a MEDCARD

record for each of the 4 analogue outputs and the digital output

card, an AOREC record to describe each analogue output, and a UIC

to control write access to each digital output line. For

simulation, there are four MEDCARDs and four AORECS for the

analogue outputs, one MEDCARD for the digital outputs, and a UIC

for each digital output line.

5.2 Modifications needed for future changes

The numbers of real and simulation inputs and outputs of each type

(analogue or digital) are given in LET statements in the RTL/2

source for MEDCOM and the other modules which ref er directly to

the data bricks INAREA and OUTAREA. Should it be decided to

include further Media or simulation inputs or outputs at a later

stage, it will be necessary to change these LET statements to

reflect these additions to the system. This also applies, of

course, should cards be removed instead of added. No further

changes to the software should be necessary, except that MEDRMD

(see chapter 7) would have to be rewritten because the layout of

its screen display obviously depends on the number of inputs and

outputs in the system.

\

MEDCOM - THE DATA-BASE PAGE 5-6

5.3 Building MEDCOM as a resident conunon

This is described in appendix H.

\
<.

CHAPTER 6

THE SOFTWARE INTERFACE BETWEEN MEDIA AND THE DATA-BASE

6.1 THE MEDIA UPDATE TASK

This task, called MEDUPDAT, runs continually and executes all the

transactions between MEDCOM and Media. As explained in the

introductory chapter, user tasks access Media indirectly by

writing to and reading from MEDCOM, and rely upon MEDUPDAT to do

the following at frequent intervals:

1. Write to Media the output data put into MEDCOM by the

user tasks.

2. Read data from all Media inputs and put this data into

MEDCOM for access by the user tasks.

Whenever an item of data is successfully transferred between Media

and MEDCOM, the time of day is written into the relevant

MEDCARD.SCANTIME field. This field allows user tasks to determine

how much time has elapsed since the most recen~ update of the

THE SOFTWARE INTERFACE BETWEEN MEDIA AND THE DATA-BASE PAGE 6-2

corresponding input or output.

Each update of the data-base is done in the following order (the

MEDLNK routines referred to are described in the section on MEDLNK

below):

1. Analogue inputs 1 to 8 and then 9 to 16 are read from

Media using the MEDLNK routine BLOCKIN to read in a block

of list items. This read is done in two blocks because

the 36-byte type-ahead buffer used by the RSX-llM

full-duplex terminal driver is not large enough to

receive the size of reply frame that results from a

16-item block read.

2. The first and then the second 16-line digital input card

are read from Media, using the MEDLNK routine SINGLIN to

do a single Media read.

3. The digital change words are read, using the MEDLNK

routine GETDCW (get digital change words).

4. The four analogue outputs are written to in sequence,

using the MEDLNK routine WRITE to write the data from

MEDCOM to the Media address of the analogue output card.

5. The 16-line digital output card is written to, using the

MEDLNK routine WRITE to write the data from MEDCOM to the

Media address of the card.

If any transaction with Media results in Media indicating that a

"Media error" has occurred, then the Media card in question is put

out of scan (in/out of scan is indicated by one of the bits of the

STAT field of a MEDCARD record). A card which is out of scan

ceases to be written to or read from by MEDUPDAT, because a Media

error usually means· that the card is not present on the Media

highway. However, after every ten complete updates of MEDCOM, the

THE SOFTWARE INTERFACE BETWEEN MEDIA AND THE DATA-BASE PAGE 6-3

update task.tries to access those cards which are out of scan. If

a further Media error does not occur, then the card in question is

put back into scan.

The speed at which MEDUPDAT runs is not dependent on the frequency

of access to MEDCOM by users, since it continually updates all

data-base information. Rath,er, it is dependent largely on the

overall load on the PDP-11, the serial link data transmission rate

and the priority at which MEDUPDAT is running. MEDUPDAT pauses

for 0.1 seconds after each complete scan of the data-base.

Each update involves the transfer of 189 bytes on the serial link,

which amounts to a total time of about 0.2 seconds per update at

9600 baud. This figure constitutes the limit to the speed of

MEDUPDAT when the PDP-11 is not loaded, but under normal loads the

processing time limits the update rate to about once per second.

It was found that with a priority of 80, MEDUPDAT was capable of

updating at least every two seconds, even when the system was

heavily loaded.

Thus, the interface can only be used to control systems which have

time constants in excess of about four seconds. This constitutes

a fairly serious limitation on the range of applications for which

it may be used. Fortunately, the applications envisaged use

systems with time-constants of the order of minutes rather than

seconds.

6.2 PROCEDURES INTERFACING BETWEEN THE DATA LINK AND MEDCOM

The Media update task is the only task which accesses the serial

link directly (with the exception of the diagnostics described in

chapter 8). It does this by calling procedures within a library

MEDLNK of routines which transfer data betweer1Media and MEDCOM.

THE SOFTWARE INTERFACE BETWEEN MEDIA AND THE DATA-BASE PAGE 6-4

These routines in turn call a routine MESSANS, inside the module

LINKLB, which controls the link itself.

6.2.1 The Serial Link Control Software

The link-control software is contained in the module LINKLB. This

module contains only one ENT procedure,

ENT PROC MESSANS{ REF ARRAY BYTE OUTBUF, INT OUTLEN,

REF ARRAY BYTE INBUF , INT INLEN) INT:

whose function is to output a frame of OUTLEN characters from the

buffer OUTBUF down the serial link, and receive a reply frame

consisting of INLEN characters into the buffer INBUF, giving error

status information in the integer returned.

This procedure is the lowest-level procedure used on the host side

of the link. All frames to Media are transmitted via a callito

MESSANS.

The write is done using the RSX-llM QIOW directive [15]. The

directive queues the buffer OUTBUF to the full-duplex terminal

driver, which is instructed to write all characters

(QIOW$S #IO.WAL), and a one-second timeout on output is imposed.

This method enables the standard RSX-llM full-duplex terminal

drivers to be u~ed, and therefore avoids the necessity of writing

a device driver for the host to handle the Media link.

Reading the reply is complicated by the fact that one ideally

would want to read until the second occurrence of a character with

~it 6 set, and this cannot be done directly in RSX-llM unless a

special device driver to implement this is written. Therefore the

number of characters expected in the reply (i.e. INLEN) is passed

to MESSANS so that it knows how many characters to read. A

THE SOFTWARE INTERFACE BETWEEN MEDIA A,ND THE DATA-BASE PAGE 6-5

problem with "this is that, should an error reply be received, its

length will be three rather than the expected INLEN characters.

If one were to issue a QIOW directive to the driver with (say) a

three-second time-out to read all INLEN characters, one would

discover that whenever any sort of error occurred, the time-out

would occur, thus disabling all activity on the link for the full

three-second time-out period~

Since this is not acceptable, what is done is to read the first

three characters of the reply, to determine whether they form a

complete reply (by checking whether bit 6 of the third byte is

set), and if not, to read the remaining (INLEN - 3) characters,

also using a QIOW directive. A 1-second timeout is imposed on the

first read, and a 3-second time-out on the second read. The QIOW

directives used instruct the terminal driver to read the input

characters, without echoing them, and put them into the buffer

INBUF (QIOW$S #IO.RALlTF.RNE).

This method only works because all error replies are 3 characters

long. Using the above method, time-outs on input should never

occur, irrespective of the error encountered (short of failure of

the line), and so maximum link bandwidth can be utilised.

Errors reported in the returned integer are:

1. Timeout error on input or output

2. QIO directive failure on input or output

~

i
3. INLEN or OUTLEN <= 0

THE SOFTWARE INTERFACE BETWEEN MEDIA AND THE DATA-BASE PAGE 6-6

6.2.2 MEDLNK: Procedures interfacing MEDCOM to the data link

The module MEDLNK consists of the procedures which are used {by

the Media update task) ~o transfer data between MEDCOM and the

link to the remote Media system.

MEDLNK is the module that does all the encoding into, and decoding

from, the Media protocol. All error checking on reply messages

from Media is also done here. MEDLNK has procedures enabling

single or block read from a Media or list address, single write to

a Media or list address, and read of .the Media status word or the

digital change words.

During critical activities, the data-base is secured using the

secure and release procedures described later in this chapter.

The period during which MEDCOM is secured has been made as short

as possible.

If any access to Media fails for any reason other than a Media

error, a second attempt is made. Should this fail too, the

standard RTL/2 error recovery procedure ERP is called, causing an

error message to be sent to the system console. This message

gives an error number (see appendix L) as well as recording the

time at which the error occurred.

occurrence of a Media error causes the access to be aborted and

'the "out of scan" bit of the .STAT· field of the relevant MEDCARD

record is set, so~that the Media update task can put the card out
'j.

' of scan.

The ENT procedures in the module MEDLNK are described below. In

all cases, the SCANTIME element of each MEDCARD record involved is

updated if and only if the transaction with Media was successful.

The integer returned is the error status, which may indicate

successful operation, Media error or one of several other errors

{see appendix L for details). The Media code MCODE which

THE SOFTWARE INTERFACE BETWEEN MEDIA AND THE DATA-BASE PAGE 6-7

indicates to.Media which operation must be performed (see Table

2-1) is not checked for validity.

1. ENT PROC SINGLIN (INT MCODE, REF MEDCARD !NP) INT:

This procedure does a single read from the Media or list

address INP.ADDR, a~d the data, which is a 16-bit

integer, is written into INP.MEDDAT.

2. ENT PROC BLOCKIN (INT MCODE, FIRST, LAST,

REF ARRAY MEDCARD MBLOCK) INT:

This procedure does a block read (Media or list depending

on MCODE). The number of items read is LAST minus FIRST,

and the Media/list addresses are MBLOCK(FIRST).ADDR to

MBLOCK(LAST).ADDR. The values read are written into the

MEDDAT fields of elements FIRST to LAST of the array

MBLOCK. LAST must be greater than FIRST, but the

procedure does not check this. However, it does check

that the .ADDR fields in the array MBLOCK are suitably

ordered.

3. ENT PROC WRITE(INT MCODE, REF MEDCARD OUTDAT) INT:

This procedure writes the data OUTDAT.MEDDAT into Media

or list address OUTDAT.ADDR.

4. ENT PROC GETDCW(REF ARRAY MEDCARD DIGCN) INT:

' This procedure gets the digital change words, using a

block Media read, and puts them into the.MEDDAT fields of

DIGCN(l) and DIGCN(2).

THE SOFTWARE INTERFACE BETWEEN MEDIA AND THE DATA-BASE PAGE 6-8

6.3 SECURING AND RELEASING DEVICES AND FACILITIES

Two secure/release mechanisms are used - one for the serial data

link and one for the data-base MEDCOM.

6.3.1 Securing and releasing the serial link

This is easily done because the MTSLIB RTL/2 interface provides

procedures SECDEV (LUN) and RELDEV (LUN), where LUN =logical unit

number of the device to be secured/released. These procedures are

used in MESSANS to control access to the link.

Strictly speaking it is not necessary to secure and release the

link because under normal circumstances only one task, namely

MEDUPDAT, accesses the link. However, it is done because it is

good programming practice to do so, and because it enables the

Media link diagnostic tasks (see chapter 8) to be run while

MEDUPDAT is active.

6.3.2 Securing and releasing the data-base

An altogether mGre thorny problem is that of securing and
~

releasing the data-base MEDCOM, to ensure that indivisible

operations such as the updating of a MEDCARD record cannot be

interrupted by other tasks.

Securing of facilities is usually done using a "test-and-set

lock". This involves performing an indivisible operation which

sets a flag or location to a state representing "device secured"

while at the same time determining whether or not the flag was set

THE SOFTWARE INTERFACE BETWEEN MEDIA AND THE DATA-BASE PAGE 6-9

before the operation. Using this mechanism, to secure a facility

a program sets the. flag to the "device secured" state, and if the

flag was not in the "device secured" state before the operation,

then the task knows that it has secured the facility. On the

other hand, if the flag was already in the "device secured" state

then some other task has secured the facility and the task must

try again until such time as 1 it succeeds.

Releasing the facility is done simply by setting the flag to some

state other than "device secured".

The MTSLIB interface provides secure and release procedures [18]

which use the group-global event flags as a test-and-set lock to

secure and release facilities. The radix-SO name of the task

currently securing each facility is stored in a data-brick inside

RSXBA2, which must be installed in a common partition of memory,

and hence any tasks using the secure and release must be linked to

this partition at task-build time.

These MTSLIB procedures have certain disadvantages

1. It turns out to be necessary, because of limitations on

the operating system directives available, to have a

secured device represented by a flag in the reset state,

and a non-secured device represented by a flag in the set

state. The problem with this is that at system start-up,

all flags "wake up" in the reset state, thus representing

all facilities secured. It is thus necessary at system

start-~ time, or at any rate before any securing or

releasing is done, to explicitly set any event flags that

will be used for facility locking.

2. An attempt to remedy the above complication led to the

author of MTSLIB partially relaxing the test-and-set

mechanism by allowing a task to secure the facility

regardless of the state of the event flag, provided that

the field in RSXBA2 containing the name of the task

THE SOFTWARE INTERFACE BETWEEN MEDIA AND THE DATA-BASE PAGE 6-10

currently securing the facility was filled with zeros, as

it would be on system start-up.

Unfortunately, this made it possible for two tasks to be

simultaneously secured to the same facility. The

circumstances under which this occurs are the following.

The release procedu.re first clears the task-name . field in

RSXBA2 to indicate that no task is currently secured to

the facility and then releases the facility by setting

the relevant event flag. If a second task attempts to

secure the facility between these two operations, it

succeeds because the task-name field is zero, and

therefore both tasks are simultaneously secured to the

facility. Worse still, the first task then almost

immediately releases the facility by setting the event

flag, leaving the the facility free to be secured by a

third task!

Because of this, the secure/release procedures could not

be trusted to work reliably.

3. If a task is aborted (by using the ABO command or signing

off) while it is securing a facility, the facility is

never released and so no other task can access the

facility, which therefore 11hangs 11
• The facility is not

automatically released on task abortion because the

facility secure/release· mechanism is not part of the

RSX-llM operating system, which consequently cannot be

expected to tidy up on behalf of a mechanism of which it

has no knowledge • ...,

4. SECURE and RELEASE use group-global event flags. This

means that all users of the facility would have to be in

the same UIC group or. else the mechanism would have no

value.

THE SOFTWARE INTERFACE BETWEEN MEDIA AND THE DATA-BASE PAGE 6-11

It was felt necessary to use global event flags, so as to make it

possible for users of all UICs to use Media. This is especially

the case because the system is designed to support different

categories of user, viz. students and researchers, whose accounts

will be assigned different UIC group codes. It was also necessary

to correct the bug mentioned in (2) above. This was done by

restoring the strict test-and-set lock mechanism and providing a

task, MCOMINIT, which initialises the relevant event flags by

setting them and is run automatically on system start-up by the

system start-up file LB:[l,2]STARTUP.CMD.

A partial solution was also found to problem (3) above, which was

to write a task specifically designed for aborting tasks using the

Media data-base (see appendix F).

A description of all the procedures relating to securing and

releasing as well as the modifications necessary to RSXBA2 are

given in appendix G. Forming a common partition RTLLIB con~aining

RSXBA2 and linking user programs to this partition are described

in appendix H.

CHAPTER 7

USE AND MANAGEMENT OF THE MEDIA SYSTEM

7.1 USE OF THE SYSTEM

7.1.l Control of an individual user's access to the system

7.1.1.1 Introduction -

Since one of the fundamental requirements of the system is that it

must allow multi-user access in such a way that no users are

permitted to interfere with one another, it is of primary

importance that access to the data in MEDCOM be carefully

controlled.

It was decided to allow each user read access to all of the data

in MEDCOM, since this could not compromise the security of other

USE AND MANAGEMENT OF THE MEDIA SYSTEM PAGE 7-2

users' tasks: However, it is clear that a user must not be

permitted to write data to parts of MEDCOM (such as outputs) that

are in use by another user, since this would destructively

interfere with his system. No harm is caused, however, by another

user reading from any part of the data-base.

A user may wish to write to MEDCOM under the following

circumstances (see the chapter on MEDCOM for a description of the

data records referred to):

1. Writing data to a Media output. The data will have to be

put into the MEDDAT field of the MEDCARD record

corresponding to the required Media output.

2. Writing to the AODESC.USERINT integer associated with one

of the analogue outputs (this integer being intended for

a user's inter-task communication).

3. Assigning an analogue input as the one being controlled

by a particular analogue output. This is used in

controlling SISO systems and involves writing to the

AODESC.ANIN field of the output in question.

4. Setting the setpoint of an analogue input when

controlling a SISO system, by writing to the AODESC.SETP

field associated with the corresponding analogue output.

Therefore we see that all write operations to MEDCOM involve

writing to a MEDCARD or AODESC record which is associated with a

particular output. Consequently, the need to control write access

to MEDCOM reduces to controlling write access to the (analogue and

digital) outputs.

USE AND MANAGEMENT OF THE MEDIA SYSTEM PAGE 7-3

7.1.1.2 The.ATTACH task -

This control is effected by requiring that a user "attach" to the

outputs he needs, using a task called ATTACH, before running his

tasks, and detach from these outputs (also using ATTACH) after his

work is completed so that the outputs are free for use by other

users.

Since there are several users of Media, however, a user may not

have the same output every time he uses Media - another user may

be busy with the one that he had on the previous occasion. On the

other hand, he may for some reason wish to use the same output

every time (the ATTACH task allows a user to. specify the

particular output required if he wishes). In either case it would

clearly not be satisfactory for him to have to modify his software

to suit the particular outputs he happens to attach to. Therefore

a means is provided (the ATTACHED routine in the MEDUSER library

described below) whereby a user progam can determine which outputs

the user is attached to.

Corresponding to each analogue and digital output, the ATTACH task

maintains an integer in MEDCOM containing the protection UIC of

the user who is attached to the output, and hence authorised to

write to it. If no-one is attached to an output, then the integer

is zero. Any attempt by a user of the MEDUSER procedures to write

to a part of MEDCOM not corresponding to an output to which he is

attached, will be aborted and the standard RTL/2 error recovery

procedure ERP called. For the digital outputs, the corresponding

attached-UIC integers are stored in the array DIGUICS in the brick

OUTAREA of MEDCOM. For analogue output number I, the attached UIC

is kept in AODESC(I).UIC.

The security of this mechanism is dependent upon all users

accessing MEDCOM only via the "official" inter~ace, namely

MEDUSER. Therefore, users should not be given specifics of the

exact layout of MEDCOM.

USE AND MANAGEMENT OF THE MEDIA SYSTEM PAGE 7-4

7.1.1.3 Using the ATTACH task -

Attaching to outputs is done by the user prior to running his

control (user applications) task. The user runs the task ATTACH,

and is asked whether he wishes to attach or detach. If the reply

is attach, then he is given the following menu of choices:

1. Any digital output (Real Media)

2. Any digital output (Simulation)

3. Specific digital output

4. Any analogue output (Real Media)

5. Any analogue output (Simulation)

6. Specific analogue output

Note that it is during the attaching process that the user

determines whether he will be using the real Media system or the

simulation system •

. . Digital outputs 1 to 16 and analogue outputs 1 to 4 are the real

Media outputs. Digital outputs 17 to 32 and analogue outputs 5 to

8 are the simulation outputs.

Choice (1), (2), (4) and (5) imply that the user wishes to attach

to an output, but does not mind which one it is. The program will

find the lowest-numbered output channel that is not yet attached

to, attach the user to it and print out an appropriate message.

If none are available, the program will inform him of this.

Choices (3) and (6) imply that the user wishes to attach to a

particular output. If the output required is not already attached

to, then the program attaches the user 'to it~ otherwise it

informs him that the output is not available.

In all cases, if the required output is out of scan, then the

program will inform the user and not allow him to attach to it.

USE AND MANAGEMENT OF THE MEDIA SYSTEM PAGE 7-5

Once the user has finished using the output, he must detach

himself from it so that it becomes available for use by other

users. To do this, he runs ATTACH and requests the Detach menu,

which is as follows:

1. Detach from digital output

2. Detach from analogue ?utput

3. Detach from all outputs

If the choice is (1) or (2) the user is asked which output number

is to be detached. The program will only allow a user to detach

from those outputs to which he is attached. Choice (3) detaches

the user from all outputs (analogue and digital) to which he is

attached.
,---,

(

The ATTACH task secures and releases the data-base in such a way

as to ensure a test-and-set lock mechanism on attach (this

mechanism is described in chapter 6), which makes it impossible

for two users both to be attached to the same output at the same

time, even if they simultaneously request to attach.

7.1.2 Applications-user access to Media

7.1.2.1 Introduction -

Applications-user access to Media is done by calls to a library,

called MEDUSER, of routines the aim of which is not only to ensure

strict control over the data-base MEDCOM, but also to provide a

simple and easy-to-use interface which makes it seem from the user

point of view as if he is accessing Media directly. In reality,

of course, all Media data passes via MEDCOM and the Media update

task, but this occurs transparently to the user software.

USE AND MANAGEMENT OF THE MEDIA SYSTEM PAGE 7-6

The global event-flag secure and release procedures described in

chapter 6 are used inside the MEDUSER routines to secure the

data-base and thus prevent other tasks accessing the data-base

during critical sections of the code when it is necessary to write

or read data in an indivisible manner. The user never secures or

releases MEDCOM explicitly. This minimises the chance of MEDCOM

becoming "hung" by a user s~curing and not subsequently releasing

it. This possibility is further discussed in the section below on

aborting Media tasks.

The MEDUSER procedures allow the user to perform the following

operations:

1. Determine which outputs the user is attached to (proc

ATTACHED) •.

2. Write data to an analogue or digital output (proc

WRMEDOUT).

3. Read data from an analogue or digital input or output

(proc RDMEDIA). Reading from an output is done in a

multi-tasking application when one task wishes to see

what value another task has written to an output.

4. Read or write to one of the AODESC.USERINT integers which

are intended for inter-task communication use (procs

WRCOMMINT and RDCOMMINT).

5. Read the time that an input or output was last scanned by

the Media update task or the simulation task (proc

RDSCANTIME).

6. For a SISO system, create a logical association between

an analogue output and an analogue input indicating that

the input is being controlled by the output: or

determine which input is being controlled by a given

output (procs SETANINP and GETANINP).

USE AND MANAGEMENT OF THE MEDIA SYSTEM PAGE 7-7

7. For a SISO system, to set or read .the setpoint of an

analogue input being controlled by a given analogue

output {procs SETSETPT and GETSETPT).

7.1.2.2 Using the routines in the MEDUSER library

The user should include the following LET statements in his source

program :

LET ANALOG = 0;

LET DIGITAL = l;

LET INPUT = O;

LET OUTPUT = l;

These values are passed in the ADSWITCH and IOSWITCH parameters of

the procedure calls. {e.g. X := RDMEDIA{ ANALOG, INPUT, 3) would

read analogue input number 3 and put the value into X).

All errors that occur are reported via ERP or RRGEL. A .list of

error numbers is given in appendix L.

In the description of the procedures in MEDUSER, CHANNUM

represents the channel number of the digital or analogue input or

output channel in question. The following channel numbers are

valid:

1. Digital inputs. Numbers 1 .. 32 are the real Media digital

input; numbers 33 •• 64 are the simulation digital inputs.

2. Digital outputs. Numbers 1 •• 16 are the real Media

digital outputs; numbers 17 •• 32 are the simulation

digital outputs.

USE AND MANAGEMENT OF THE MEDIA SYSTEM PAGE 7-8

3. Analogue inputs. Numbers 1 •• 16 are the real Media

analogue inputs: numbers 17 •• 20 are the simulation

analogue inputs.

4. Analogue outputs. Numbers 1 •• 4 are the real Media

analogue outputs: numbers 5 •• 8 are the simulation

analogue outputs.

The following is a description of .the procedures in the MEDUSER

library.

1. ENT PROC ATTACHED (INT ADSWITCH, REF ARRAY INT OUTARRAY):

This procedure· examines the AODESC.UIC or DIGUICS fields

in MEDCOM, and puts into the array OUTARRAY the channel

numbers of those outputs to which the user is attached.

The rest of OUTARRAY is filled with zeros. For example,

if ADSWITCH = DIGITAL and the user is attached to digital

outputs 1, 5 and 7 then the procedure will set

OUTARRAY(l) to 1, OUTARRAY(2) to 5, OUTARRAY(3) to 7 and

the other elements of OUTARRAY to zero. The length of

OUTARRAY must be greater than or equal to the number of

outputs attached to.

2. ENT PROC WRMEDOUT(INT ADSWITCH, MDATA, CHANNUM):

This procedure writes the data MDATA to the analogue or

digital output number CHANNUM. CHANNUM must be in the

correct range. For an analogue output, only the least

significant eight bits of MDATA are used because the DAC

is 8-bit. The digital output value is 0 if MDATA is

zero, or 1 if MDATA is not zero. In order for the write

to succeed, the-user must be attached to the output and

the output must be in scan.

3. ENT PROC RDMEDIA(INT ADSWITCH, IOSWITCH, CHANNUM) INT:

. 'Iii..'

USE AND MANAGEMENT OF THE MEDIA SYSTEM PAGE.7-9

This procedur~ reads the·analogue or digital input or

output number CHANNUM from MEDCOM and returns the value

read. CHANNUM must be in the correct range. Digital

inputs and outputs will be returned as 0 or 1. Analogue

inputs (outputs) will be returned as a 10-bit (8-bit)

number in the ten (eight) least significant bits of the

returned integer and the other bits zero.

4. ENT PROC WRCOMMINT(INT CHANNUM, VALUE};

This procedure writes VALUE into.AODESC(CHANNUM

).USERINT which is an integer used for inter-task

communication. CHANNUM must be in range 1 •• 20 and
-

analogue output number CHANNUM must be attached to.

5. ENT PROC RDCOMMINT(INT CHANNUM) INT;

This procedure reads the value of the inter-task

communication integer corresponding to analogue output

number CHANNUM and returns the value read. CHANNUM must

be in the range 1 •. 20.

6. ENT PROC SETANINP (INT ANOUTPNUM,ANINNUM);

7.

This procedure causes analogue input number ANINNUM to be

logically associated with analogue output number ANOUTNUM

by setting AODESC(ANOUTNUM).ANIN to point to analogue

input ANINNUM. This would then mean that analogue input

ANINNUM is the one which is.being controlled by analogue

output ANOUTNUM. ANOUTNUM and ANINNUM must be in the

correct ranges and analogue output number ANOUTPNUM must

be attached to.

ENT PROC GETANINP (INT ANOUTPNUM) INT;

This procedure returns the channel number of the analogue

input logically associated with analogue output ANOUTPNUM

USE AND MANAGEMENT OF THE MEDIA SYSTEM PAGE 7-11

should not be a problem.

Under conditions {l) or {2) above, the chance of MEDCOM "hanging"

is relatively small because it is only secured for short periods

of time. Nonetheless, it was felt that an alternative aborting

task to the RSX-llM ABO command, which does not ensure that the

task releases MEDCOM before it exits, should be written. This

task is called ABM {for "abort Media").
\

ABM is a non-privileged task which should be installed as ••• ABM

and uses the same command-line format as ABO, i.e.

ABM TASKNAME

or,

ABM

where the taskname is assumed to be the default taskname for the

terminal, e.g. "TT7" if invoved from terminal TT7:.

ABM should be installed at a high priority {say 150.) to ensure

that it operates quickly even when the system is very heavily

loaded.

ABM works by securing MEDCOM, issuing an abort directive to abort

the task and then releasing MEDCOM. In this way it is assured

that the task being aborted is no~ securing MEDCOM. A detailed

description of ABM is given in appendix F.

7.2 MANAGEMENT OF THE MEDIA SYSTEM

USE AND MANAGEMENT OF THE MEDIA SYSTEM PAGE 7-12

7.2.1 Introduction

One of the accounts (account number [300,l]) is designated the

"data base manager's account". The data-base manager is the user

who has logged on under this account and has [300,l] as his

protection UIC. The software system allows the data-base manager

to perform certain operations that other users may not - he is

able to 11 unhang 11 MEDCOM should it "hang" for any of the reasons

given in the above section, and he can forcibly detach any user

from any output should that user fail to do so himself.

7.2.2 The MEDRMD display of .data-base activity

The RSX-llM RMDEMO task [10] gives a dynamic display of the use of

the computer resources such as memory, pool, task lists and free

disc space. Since it is updated every second, the RMDEMO display

gives the viewer a good idea of what is happening in the system

from moment to moment, and whether or not any of the critical

system resources, such as system pool, are dropping below

acceptable limits.

A task called MEDRMD (for "Media RMDEMO") was written which is

intended to give the data-base manager a similar display, except

that the activity of MEDCOM rather,than the RSX-llM system is

displayed.

MEDRMD displays information relating to the parts of MEDCOM

associated either with the real Media interface or with the

simulation system. When MEDRMD is running, typing an 'S' displays

information about the simulation portion of MEDCOM, typing

control-C or control-Z causes MEDRMD to terminate and typing any

other character displays information about the real Media

interface.

USE AND MANAGEMENT OF THE MEDIA SYSTEM PAGE 7-13

MEDRMD displays the following information :

1. The protection UIC of the user attached to each analogue

and digital output.

2. The date and time.

3. The name of the task that is currently securing MEDCOM.

4. The time (in seconds) that has elapsed since MEDCOM was

· last updated by MEDUPDAT. This is split into five

subfields :

a. Digital inputs 1

b. Digital inputs 2

c. Digital outputs

d. Analogue inputs

e. Analogue outputs

Should any of the cards be out of scan, the text

"*OUT OF SCAN*" is displayed in the relevant field

instead of the time since last update.

Although MEDRMD is intended primarily for use by the data-base

manager, the display may be viewed by any user. Uses for the

display are the following:

1. To see which output channels are attached to, and which

are free.

2. To check that the update task is running properly - if it

USE AND MANAGEMENT OF THE MEDIA SYSTEM PAGE 7-14

is not, then the time since last update will continually

increase.

3. To see which task is currently securing MEDCOM - for

example, if the data-base manager [300,l] sees that the

"Task currently securing MEDCOM 11 field 'does not change,

he can run UNHANG (see below) to remedy the situation

where a task has exited while secured to MEDCOM.

The display is terminated and the screen cleared, as in RMD, when

the control-C or control-Z character is typed at the keyboard.

MEDRMD achieves this by using the AST-routines in the module AST

(see Appendix I).

7.2.3 Detachment by the data-base manager

The ATTACH task allows the data-base manager to detach any or all

of the users who are attached to outputs~ By examining the MEDRMD

display, the manager can see which users have failed to detach

from outputs after completing their work on Media, and then run

ATTACH to forcibly detach such users so that the outputs are free

for others to use.

7.2.4 The UNHANG task

If the data-base manager sees by examining the MEDRMD display that

MEDCOM is secured by a task which has exited without releasing it

(the symptom for this is that the "Task currently securing MEDCOM"

field in the display does not change, he can "unhang" the

data-base by running the UNHANG task.

USE AND MANAGEMENT OF THE MEDIA SYSTEM PAGE 7-15

UNHANG first checks the protection UIC of the invoking user to

ensure that he is indeed the data-base manager, and then releases

MEDCOM by calling FREEMEDCOM (see appendix G} and exits.

CHAPTER 8

SYSTEM DIAGNOSTICS

Diagnostics have been written to test the operation of various

parts of the system:

1. The micro-Media data link protocol

2. The Media input and output hardware.

3. The software interfacing between Media and the data-base

(i .. e. MEDLNK)

4. The data-base MEDCOM.

5. The user interface library MEDUSER.

8.1 A diagnostic for the Media data-link protocol.

This task is called MEDFRAME and may be used to generate Media

data-link protocol frames, send them down the serial link to

SYSTEM DIAGNOSTICS PAGE 8-2

Media, receive the reply frame from Media and then display in

octal on the operator's screen each byte of both frames. ·This

enables the operator to determine whether the frame format of the

responses from Media is correct.

MEDFRAME gives the operator a menu allowing him to generate frames

corresponding to any of the following commands to Media:

1. Single Media or list read.

MEDFRAME prompts the operator for which Media or list

address is to be read.

2. Block Media or list read.

MEDFRAME prompts the operator for the starting address

and length of a contiguous block of Media or list items

to be read.

3. Read digital change words.

4. Read Media status word (the Media status word is

described in appendix D)

5. Write to Media or list address.

This implements the fir~t stage of a two-stage write.

MEDFRAME prompts the operator for the data to be written

and the Media or list address to which it must be

written.

6. Go.

This implements the second, or confirmatory, stage of a

two-stage write.

7. Synchronise.

SYSTEM DIAGNOSTICS PAGE 8-3

This causes a single byte with bit 6 set to be output to

Media. It is included because the protocol cannot

distinguish between the first and last byte in a frame

because both are indicated by having bit 6 set. Should

Media lose synchronism, this operation will restore it.

8.2 Diagnostics to test the Media input/output hardware.

8.2.1 The simulation package •

. It will be explained in chapter 9 how the simulation package could

be used as a diagnostic for the Media hardware, by simulating a

SISO system in software and then controlling it via two pairs of

Media analogue inputs and outputs.

8.2.2 The diagnostic MEDTEST.

MEDTEST can be used to test or exercise either the analogue or

digital Media inputs and outputs. The description below

presupposes familiarity with the Media front panel described in

appendix A.

Two cat~gories of digital tests can be performed:

1. Monitor switches.

This provides a quick visual indication of whether the

SYSTEM DIAGNOSTICS PAGE 8-4

digital inputs and outputs are functioning correctly.

The operator chooses digital inputs 1-16 or 17-32 and

wires these to the correspondingly numbered switches on

the Media front panel. MEDTEST continually reads the

digital inputs and writes the same data to the digital

output lines, which are displayed on the LEDs on the

panel. Altering the state of any of the switches will

alter the state of the corresponding LEDs. The test is

terminated by typing control-C at the keyboard.

2. Cyclic test.

The operator connects digital output lines 1-16 to the

digital input lines, in one of the following formats:

1. Output lines 1-16 to input lines 1-16 (respectively}.

2. Output lines 1-16 to input lines 17-32

(respectively}.

3. Output line 1 to input lines 1 and 17, output line 2

to input lines 2 and 18, etc.

MEDTEST generates a series of constantly changing bit

patterns in a 16-bit word. For each change, MEDTEST

writes the 16 bits out to the digital outputs and then

reads in the state of the digital input lines which the

operator connected to the outputs. If the values read

fail to match those written, a message to the operator's

screen informs him of the error, giving the data value

written and the incorrect value read back. After every

sixteen write-read pairs, a '+' character is sent to the

operator's screen. Typing control-C terminates the test.

SYSTEM DIAGNOSTICS PAGE 8-5

For the analogue test, MEDTEST prompts for the numbers of four

analogue inputs that it will associate with analogue outputs 1 to

4. In a continual loop, MEDTEST reads from these four analogue

inputs and writes the data {scaled down from the 10-bit value read

to an 8-bit value) to the analogue outputs. The fo~r outputs thus

will follow the voltages applied to the corresponding four

analogue inputs. If this is not the case with one of the

input-output pairs, then this pair is faulty. Typing control-c

terminates the test.

8.3 A diagnostic for the Media-MEDCOM interface routines

The task MEDLNKTST provides a test for the routines in MEDLNK

which interface between the serial link and MEDCOM.

MEDLNKTST is similar to the Media protocol diagnostic MEDFRAME,

but works at a higher level. It uses the subroutines in MEDLNK to

communicate with Media, and can be used to test any of the

routines in MEDLNK {i.e. SINGLIN, BLOCKIN, WRITE, GETMED and

GETDCW).

MEDLNKTST gives the operator a menu allowing the following

choices:

1. Single Media or list read.

The operator specifies the Media or list address of the

item to be read. SINGLIN is then called to perform the

read. The data read, and the error status returned by

the call, is displayed.

2. Block Media or list read.

SYSTEM DIAGNOSTICS PAGE 8-6

The operator specifies the starting address and number of

items for a contiguous block of Media or list items to be

read. BLOCKIN is then called to perform the read. The

data read, and the error status returned by the call, is

displayed.

3. Read digital change words.

The digital change words are read from Media by a call to

GETDCW and displayed on the screen together with the

error status returned by the call.

4. Read Media status word.

The Media status word {see appendix £) is read by calling

GETMED and displayed on the screen together with the

error status returned by the call.

5. Write to Media or list address.

The operator specifies the data and the Media or list

address to which the data is to be written. A call to

WRITE performs the write. The error status returned by

the call is displayed.

8.4 Diagnostics for MEDCOM.

The task MEDRMD described earlier can also be used as a diagnostic

for MEDCOM since it gives a running display of activity on MEDCOM.

SYSTEM DIAGNOSTICS PAGE 8-7

8.5 Diagnostics for the user interface library.

8.5.1 The MEDUSER-testing task MUTEST

This task, called MUTEST, enables the testing of all of the

subroutines in the MEDUSER library.

The operator is prompted with a menu consisting of the names of

the routines in the library. After choosing one of these he is

prompted for the values of each of the parameters that must be

passed to the routine, e.g. channel number, data, etc. The

appropriate MEDUSER routine is then called and any data returned

by the routine is displayed on the screen. If an error occurs

then an appropriate message is printed.

This task could also be used to inspect and change the data in

MEDCOM (and hence Media) in an interactive way. For example, if a

device controlled by one of the digital outputs for some reason

must be turned off in a hurry, the quickest and simplest way to do

this would be to write zero to the appropriate output using

MUTEST.

8.5.2 The procedure READMEDCARD.

READMEDCARD is a procedure which was included in the user

interface library MEDUSER to allow an indivisible read of a

MEDCARD record in MEDCOM. It was written to assist in the

debugging of MEDUSER.

ENT PROC READMEDCARD (INT ADSWITCH, IOSWITCH, CARDNUM,

REF MEDCARD CARD) ;

SYSTEM DIAGNOSTICS PAGE 8-8

This procedure reads the MEDCARD record determined by ADSWITCH,

IOSWITCH and CARDNUM from MEDCOM and puts it into CARD. CARDNUM

must be in the correct range (1 .• 2 for digital output, 1 •• 4 for

digital input, 1 •. 8 for analogue output and 1 •. 20 for analogue

input).

CHAPTER 9

A GENERAL-PURPOSE ANALOG SIMULATION PACKAGE

9.1 INTRODUCTION

The analogue simulation package was written with the following

applications in mind:

1. It would facilitate the writing of simulation tasks which

could simulate real processes interfaced to Media.

Student tasks to control these processes could then be

developed and debugged using the simulation part of

MEDCOM and the simulation•task, and when ready used on

the real system.

2. It can be used within the student or research tasks which

control the processes. For example, any analogue

controller {a simple example is a

proportional-plus-integral controller) could be

implemented using the simulation package.

A GENERAL~PURPOSE ANALOG SIMULATION PACKAGE PAGE 9-2

3. It can be used to test the operation of the Media

interface hardware, without having to connect a process

to Media.

Consider, for example, the case where a control task has

been developed to control a given SISO process. Suppose

that it writes it outputs its control signal to analogue

output number 1 and reads the process output from

analogue input number 1.

A second task is written using the simulation package to

simulate the SISO process itself, reading its input from

analogue input number 2 (say) and writing its output to

analogue output number 2.

If output 1 is connected to input 2, output 2 connected

to input 1 and the control and simulation tasks executed,

then the control task should control the simulated

process. Failure to control correctly would indicate

that one of the Media outputs or inputs used is not

functioning correctly.

4. It can also be used for any other real-time or off-line

simulation of analogue systems, possibly totally

unrelated to Media.

In addition, a library of plotting subroutines is provided

simplifying the use of the Tektronix 4010 plotting terminal. The
i

description of this is included here because the plotting

interface is intended chiefly to be used in conjunction with the

simulation software.

Analog simulation -languages, such as SIMC, MIMIC, and CSMP, are

special-purpose computer languages enabling the user to simulate

on the digital computer any system that can be represented on an

analog computer. The digital computer has the advantage of a far

A GENERAL-PURPOSE ANALOG SIMULATION PACKAGE PAGE 9-3

greater range and accuracy of real number representation, thereby

avoiding the necessity for the tiresome process of scaling the

inputs to integrators and amplifiers. In addition, the digital

computer can easily perform any non-linear operation that may be

required, which is not readily achievable on the analog computer.

During somewhat frustrating attempts to use the analog simulation

languages SIMC and MIMIC on the Varian and Univac 1100/86

respectively, it occurred to the author that there would be

several advantages in using a general-purpose high-level language

such as RTL/2 rather than one of the dedicated analog simulation

languages. A digital computer is, after all, capable of easily

and accurately performing any of the operations of an analog

computer, with the. possible exception of integration. The main

advantage of such an approach would be that one would not be

constrained by the {usually rather narrow) restrictions placed on

the user by simulation languages. Instead, one would be able to

do anything permissible within the general-purpose language used,

such as file manipulation or {in this application) calling the

Media access routines in the module MEDUSER.

The main difficulty in developing the present package was to find

a way of performing an accurate running integration on a variable,

knowing only the present value f and past values fn , f11-1, f 11•2, • • • of

the input variable f{t), and the past values Yn ,y
11

_1,y"-2.'... of the

output variable y{t). Examples satisfying this requirement are

the trapezoidal rule

S
t"

'1tt+1 =- ~" + .-Fdt
h1-1

and the Simpson formula

where b, t: == t t1+I -t.n .
However, these methods are not nearly as accurate as another

A GENERAL-PURPOSE ANALOG SIMULATION PACKAGE PAGE 9-4

method, called the fourth-order Adams' method (19]:

The advantage of this method is that the error is of the order of

the time-step to the fifth power, being equal to

I 'f
720

which is very small indeed.

. where ,

The package implements an initialisation section, a main loop

{each time round representing an increment of time DT} and a

finishing-off or "tidying-up" section. The package can implement

either real-time or offline simulation.

The functioning of the package is summarised in figure 9-1. The

ma.in procedure (RRJOB) is situated insid~. the package and is not

written by the user. The user must supply the three routines

SIMINIT(), SIMJOB() and SIMTIDYUP() shown in the figure. These

are described in the next section.

A GENERAL-PURPOSE ANALOG .SIMULATION PACKAGE PAGE 9-5

i
I

i '
I
I
l

Iriilicxlise · sef detaults
I

Cc.II user ini~ia.lis.et~ior1

procedure.

lricre ment loop counters / eh:.

Call user si~ul~~io . ., job
pro c e.of ttre..

Delo for T>eUIYTfCKS tic.1c s.

SlMINtT()

~ SIMTOB()

Call u~e,,- tirl'j-UD rroced.ure. ()
r 4-> SIMTIDYUP

A GENERAL-PURPOSE ANALOG SIMULATION PACKAGE PAGE 9-6

9.2 Using the simulation package

The user is required to do little more than draw the syst_em block

diagram and write down the system equations from this.

Three RTL/2 subroutines must be provided by the user:

a) ENT PROC SIMINIT()

This procedure is called before the main loop and consists

of any initialisation or change of default options (the

defaults are real-time rather than off-line control, a delay

of one second each time round the main control loop, and no

AST processing). that the user may desire.

This routine may, for example, be used to read in the system

constants of the analogue block diagram being simulated

(such as time constants or gains, etc.) For this purpose,

standard RTL/2 stream terminal I/O is initialised by the

package before SIMINIT() is called.

Any other initialisation of any nature that must be

performed before simulation is started (e.g. opening files)

must be done in SIMINIT.

b) ENT PROC SIMJOB()

This procedure is called each time round the main loop and

must contain the equations of the block diagram. The user

must; however, be careful to get the equations in the right

order. For example, if one were to simulate the following

system

X , A

A GENERAL~PURPOSE ANALOG SIMULATION PACKAGE PAGE 9-7

one could write

y := X*A;
~) z := Y*B;

or

z := Y*B;
(?) y := X*A; .

Obviously (1) is better than (2) because in (2) z is

calculated using the value of Y left over from the previous

time round the loop, whereas in (1) the value of Y is first

updated, then used.

All variables should be of type REAL except for inputs to

integrators, which should be ARRAY(4) REAL for reasons given

in the description of the INTEGRATE subroutine below.

Elements 2 to 4 of this array can be ignored by the user

because they are only used by the integration routine. The

user should regard element 1 of the array as the actual

variable. For example:

A
y

Here X is an ARRAY(4) REAL, Y is REAL and Z is REAL. The

user writes

X(l) := A*Z;

INTEGRATE(X,Y,INITIALCOND);

The user can, of course, write to the screen or disc any

information he chooses.

c) ENT PROC SIMTIDYUP()

A GENERAL-PURPOSE ANALOG SIMULATION PACKAGE PAGE 9-8

This procedure is called after the main loop, and could be

used to do any tidying-up needed, e.g. sending to the

Tektronix screen information stored during the main loop, or

closing files, etc.

The user has access to the following data brick used by the

package:

ENT DATA SIMDATA;

INT N,

DELAYTICKS;

REAL DT;

ARRAY(4} REAL TIME;

ENDDATA;

These items are:

a} N:

The number of times round the main loop so far.

b} DELAYTICKS:

If simulation is real-time, this is the number of ticks

(fiftieths of a second} of delay that will occur after each

time round the loop. If some value other than the default

value of 50 is required, this should be set up in SIMINIT().

If simulation is offline, DELAYTICKS is set to zero by the

call to OFFLINE(} (see belqw).

c} DT:

The time-step. For offline simulation, DT must be set up by

the user in SIMINIT(}. If simulatio~ is real-time, DT is

determined by the package as a running average over the past

four sampling times - this is optimal for the integration

method used. DT will then be equal to the execution time of

A GENERAL-PURPOSE ANALOG SIMULATION PACKAGE PAGE 9-9

SIMJOB{) plus DELAYTICKS ticks.

d) TIME:

If simulation is real-time, then this array will contain the

actual real time {in seconds past midnight) of the present

and past sampling instants.

The user can call the following procedures in the package:

a). ENT PROC {) HALT

This procedure halts the simulation when called from

SIMJOB{). The main loop is terminated on return from

SIMJOB{) and simulation falls through to SIMTIDYUP{):

b) ENT PROC() OFFLINE

The package defaults to real-time simulation. If offline

simulation is wanted, then OFFLINE{) should be called from

within SIMINIT{), in which case DT must also be set up by

the user. A call to OFFLINE{) sets DELAYTICKS to zero.

c) ENT PROC {) NOAST

The package defaults to a mode whereby during the main loop

processing may be interrupted at any time by typing

control-C, causing an AST {Asynchronous System Trap) and the

appearance on the screen of a•menu of choices, e.g. whether

to continue, restart, or abort. If this feature is not

required, NOAST() should be called from within SIMINIT().

d) ENT PROC INTEGRATE (REF ARRAY REAL XDOT, REF REAL X,

REAL XO)

This procedure is the heart of the package and pe~forms the

integration. The input variable XDOT must be an array of

A GENERAL-PURPOSE ANALOG SIMULATION PACKAGE PAGE 9-10

four reals. This is because the integration algorithm must

be able to access past values of the input variable XDOT.

For each integrator used, an array of four reals to

represent the input variable must be declared by the user.

These past values of the input variable are stored as a

stack consisting of XDOT(2), XDOT(3), and XDOT(4). This

stack is maintained by the subroutine and the user need only

consider XDOT(l) as the input variable. Each time INTEGRATE

is called it updates the past values in this stack by

"bumping" them down by one:

XDOT(4} := XDOT(3}; % update oldest past value., %

XDOT(3} := XDOT(2);

XDOT(2) := XDOT(l); % update newest past value %

% with present value of XDOT. %

The output variable X must be a real variable and NOT an

expression.

XO is the "initial condition" value for the integrator.

Although it is only needed on the first call to the

subroutine, it is passed every time. This approach, which

leads to a user program layout similar to that used in most

simulation languages, avoids the need to write another

routine whose sole function is to initialise integrators.

A GENERAL-PURPOSE ANALOG SIMULATION PACKAGE PAGE 9-11

9.3 Linking to the package

The user module containing the three user-written routines is

linked to the package by setting up a taskbuild command file (say

SIMTKB.CMD) containing the following:

USERMODULENAME=USERMODULENAME

SIMBGS,SCREEN,AST

@COMINTFCE

I
STACK=300

ASG=TI:l:2

LIBR=RTLLIB:RW

COMMON=MEDCOM:RW

II

\

The user then types TKB @SIMTKB and runs the resultant task.

9.4 PLOTTING LIBRARY FOR THE TEKTRONIX 4010 TERMINAL

The module PLOTLIB contains subroutines simplifying the use of the

Tektronix 4010-1 plotting terminal for graphics output. This

library is not intended to be a complete graphics interface, but

merely provides sufficiently many software building blocks to
..

enable users to easily build up their own routines such as

graph-plotting routines. This .allows users to plot graphs of the

parameters of the processes that.they are controlling - for

example the value of one of the analogue inputs against time.
'" Hard copies of the graphs plotted may be obtained using the

hard-copy unit attached to the plotting terminal.

The Tektronix terminal was previously used with the Electrical

Engineering department's Varian minicomputer, and was connected

I

A GENERAL-PURPOSE ANALOG SIMULATION PACKAGE PAGE 9-12

via a current-loop serial line. The line~driver hardware of the

terminal was converted to produce RS-232/c levels at 9600 baud so

that it could be plugged into a serial port of the PDP-11/23.

The Tektronix screen has a resolution of 1024 points (horizontal)

by 781 points (vertical). All graphics is done by means of·

escape-sequences as described in (20].

PLOTLIB contains the following ENT data brick:

ENT DATA PLOTDATz_A;

REAL XQFFSET, XFACTOR, YOFFSET, YFACTOR;

REAL XMIN := -1.0, XMAX := 1.0,

YMIN := -1.0~ YMAX := 1.0;

ARRAY (20) BYTE REPLYBUF;

ENDDATA;

where

1. XMIN, XMAX, YMIN and YMAX are the X and Y values of the

edges of the screen in the units· used by the user.

2. XFACTOR and YFACTOR are scaling factors to convert real

numbers'in the ranges XMIN to XMAX and YMIN to YMAX

respectively to integers in the ranges 0 to 1024 and 0 to

781 respectively.

3. XOFFSET and YOFFSET are offsets used in the above

conversion.

The following ENT procedures may be used :

1. ENT PROC SCALE (REAL XMN, XMX, YMN, YMX);

This procedure defines the limits of the screen as

A GENERAL-PURPOSE ANALOG SIMULATION PACKAGE PAGE 9-14

called. Both axes will then range from -1.0 to 1.0.

3. ENT PROC GRAPHMODE ();

The terminal is put into graphics mode; so that it will

be ready for graphics commands like MOVE and DRAW.

4. ENT PROC ALPHAMODE ();

The terminal is put into alphanumeric mode, so that it is

ready to output or input alphanumeric characters.

5. ENT PROC DRAW (REAL XPOS, YPOS);

If the terminal is in graphics mode, a line is drawn from

the current position on the screen to the point at (XPOS,

YPOS). If the point is off the edge of the screen, ERP

is called and the of fending coordinate is truncated to

the appropriate limit (XMAX, XMIN; YMAX or YMIN).

6. ENT PROC MOVE (REAL XPOS, YPOS);

If the terminal is in graphics mode, the current screen

position moves to (XPOS, YPOS) but no line is drawn.

Points off the edge of the screen are treated as in DRAW.

7. ENT PROC CLEARSCREEN ();

The entire screen is cleared of all alphanumerics and

graphics. A delay of one second is executed to wait for

the terminal to complete the screen-clearing process.

8. ENT PROC CROSSHAIRS ();

In graphics mode, this procedure causes ~ pair of

crosshairs to appear on the screen. The position of the

crosshairs is adjusted using the two potentiometers

A GENERAL-PURPOSE ANALOG SIMULATION PACKAGE PAGE 9-15

alongside the keyboard.

9. ENT PROC GETCROSSHAIRS (REF REAL XPOS,YPOS);

The current position on the screen of the intersection

point of the crosshairs is written into XPOS and YPOS.

An example of the use of these routines is the program STAR.TSK

which plots a pattern of lines on the screen. The task expects

the Tektronix to be connected to TT12: •

..
'

CHAPTER 10

CONCLUSION

A fitting conclusion to this thesis is to give an example of how

the system has been used in practice. To this end, a description

is given of the real-time project given to Electrical Engineering

final-year students at UCT during the second trimester of 1983~

this project having involved extensive use of all aspects of the

Media system and the associated software.

The class consisted of about 40 students and the project was done

in groups of two students each. The project instruction sheet is

included as appendix K.

The apparatus used , developed in the Chemical Engineering

department, is an 18-inch vertical thermally insulated column of

air as illustrated below. The blower fan shown blows air up the

column at a constant rate, and the temperature of the air emerging

from the top of the column is measured by the thermistor whose

output signal is connected to one of the Media analogue Jyputs. A

heater element inside the column heats the air as it travels up

the column. The heater can supply 0 to 1000 watts of power. The

circuitry controlling the heater is connected to one of the Media

analogue outputs.

CONCLUSION

F--o~ M~°'
QJ\o.\og'Ae. Ottt IAt

'' r,/

Hea.~er
power
COr'\,frOl

Blow.er

tQr) .~

..............

0

Air
colu.mn

PAGE 10-2

This apparatus was used because it had the advantage that it was

already built, operational and easily connected to Media with

minimal further hardware construction. The disadvantage of the

apparatus is that changes caused by the students' control tasks

are not visually apparent - a system to control the level of water

in a tank, for example, would have been far better in this

respect.

The students' project involved the development of software to

control the temperature of the air emerging from the column, using

a simple proportional- plus-integral control algorithm. This

,,

i

I

CONCLUSION PAGE 10-3

software had to be divided into three concurrently executing

tasks:

1. The Operator Control Panel (OCP) task.

This task allows the operator at any time to change the

setpoint temperature or display on the screen information

about the column (time, setpoint, temperature and power

output).

2. The control task.

This task performs the actual -control. It reads in from

the analogue input the value_ representing the temperature

of the air and then converts it to temperature in degrees

Centigrade using a calibration function to compensate for

the non-linearity of the thermistor. The difference

between this actual temperature and the desired

(setpoint) temperature as set up by the OCP task is

computed. This temperature error value is fed into the

proportional-plus-integral control algorithm which

calculates the amount of power which the heater must

generate. The power is then written to the analogue

output.

3. The logging task.

This task logs all releyant information about the column

(time, setpoint, temperature and power) to a disc file at

regular intervals. This file may be examined later or

printed out.

Inter-task communication is done using the WRCOMMINT and RDCOMMINT

procedures from the user interface MEDUSER - for· example, one of

the bits in the common integer may represent an instruction from

the OCP task to stop logging.

CONCLUSION PAGE 10-4

10.1 Simulation.

The existence of only one set of apparatus meant that only one

student could use the real system at a time. Therefore,

simulation software was written which uses the simulation package

to simulate the operation of four other sets of apparatus (four

sets because there are four simulation analogue outputs in the

data-base). Thus, the system could be used by up to five students

simultaneously.

The algorithm simulating the column operation is a simple

first-order one:

H(~) -
l +Sc

where it was assumed that the time constant l:'.. may be different

during heating and cooling of the column. The values of

A , Lk~4t;.,~ and -Ccooli~ were determined empirically by taking

readings of temperature against time for known values of heater

power.

Thus the simulation of the column could be done using the

following analogue block diagram:

CONCLUSION PAGE 10-5

-- -s
7. Triver:. e of

DiBit:al
th~i'!.brr

CA.Ii bro.lirn Vt.tf ue.
t"-"cb'ot\ ·

The simulation task reads the power written by the user to the

simulation analogue output and uses it as input to the simulation

block above. The temperature, before being written to the

simulation analogue input for the user program to read, must first

be converted to the same digital value that would be produ~ed by

the thermistor in the real system. This is done using a look-up

table to representing the ·inverse of the· thermistor's calibration

function.

The simulation of all four columns is done in parallel, and data

is read from and written to the simulation portion of MEDCOM every

second.

10.2 Results

The use of the computer by up to five students simultaneously for

program editing, compilation and running, together.with the

simultaneous execution of the Media update task and the simulation

task caused the computer to be very heavily loaded at times,

CONCLUSION PAGE 10-6

slowing it down considerably. This proved to be the major problem

encountered. The only apparent solution to this is to reduce the

number of students or to obtain a faster computer, the latter

solution being a more practicable one.

No problems were experienced with the securing and releasing

mechanism for MEDCOM because all students used the special Media

abort task ABM to abort their tasks. As a result, it was never

necessary to "unhang" MEDCOM using the data-base manager task

.UNHANG.

However, the students were less well disciplined regarding

detaching from outputs after use. It was occasionally necessary

to free outputs by detaching users who had left without detaching.

In this regard, MEDRMD proved· itself to be an invaluable

management tool.

This student project involved heavy use of all software and

hardware components of the system over a period of some seven

weeks. During this time, the system was also being used for a

final-year research project by a chemical engineering student, and

it is therefore felt that the fact that the system ran

successfully during the e~tire period of the projects demonstrates

the viability and pr~cticality of the multi-user process interface

developed in this thesis.

REFERENCES

1. "The MEDIA Family: Technical Background", manufacturer's
publication no Al007-30 and Al007-l, Fisher Controls
Limited, New Parks, Leicester, England.

2. Parry, J.N. (Ed.): Documentation received with the GEC
Media system supplied to UCT (not titled), GEC Process
Control Company, Johannesburg,1982.

3. Bleach, I.C.: "Stand-alone process control computer
system", undergraduate thesis number 20, 1981, Department
of Electrical Engineering, University of Cape Town.

4. "SMT operating system for PDP-11°, RTL/2 Reference 122,
SPL International.

5. "RSX-llM version 4.0 real-time operating system", Digital
Equipment Corporation software product description SPD
14.35.18, April 1982.

6. Barnes, J.G.P.: "RTL/2 Design and Philosophy", Heyden,
London, 1976.

7. DEC RSX-11 RTL/2 user manual, SPL International, London,
March 1980. Chapter 5.

8. Dehning, R.W. "Using RTL/2 under RSX-llM - a view on
support environments", paper presented at the
international RTL/2 users group (RUG), Brighton, October
1982.

9. Dehning, R.W.: "Using RTL/2 under the DEC RSX-llM
~~xecutive (in an envirdnment similar to MTS)", AECI Ltd.,

5 Nov 1981.

10. "Resource Monitoring Display (RMD)", chapter 6 of RSX-llM
Version 4.0 System Management Guide, Digital Equipment
Corporation, March 1982.

11. [2] above, sections 2 and 3.

12. [2] above, section 7.

13. "Microcomputer processor handbook", Digital Equipment
Corporation, 1980. Pages 78 to 87.

14. RSX-llM Version 4.0 Executive Reference Manual, Digital
Equipment Corporation, November 1981. Pages 2-6 to 2-11.

15. (14] above, pages 5-112 to 5-117.

16. National Semiconductor interface data book 1980, pages
1-88 to 1-97.

17. [16] above, page 10-13.

18. [9] above, section 6.2.

19. Conte, S.D. and de Boor, C.: "Elementary numerical
analysis, an algorithmic approachn, second edition,
McGraw Hill, 1972, page 351.

20. n4010 and 4010-1 maintenance manualn, manual number
070-1183-00, Tektronix Inc., Beaverton, Oregon.

21. [14] above, pages 5-8 to 5-9.

22. RSX-llM System Generation and Installation Guide, Digital
Equipment Corporation, November 1981, Chapter 3.

23. [9] above, section 6.6.2.

24. [14] above, pages 5-14 to 5-15.

APPENDIX A

MEDIA FRONT PANEL

•.:;,

t"----·

I

'
' I

. '

!
' '

MEDIA FRONT PANEL PAGE A-2

11 · H ..

® (111111111111111"1 ~~~u~~ . 11111111111111111 ©
I ff,, 17 32...

® 11111111111111111 11111111111111111®
SWITCHE"S

© •••••••• .,,...... , ••••• ,,.,.,.~··®

.
@ · • • • • • • • • • • •• • • • • LFl>s

I 2. 'J IL ~ ' ' f ' 10 II fl 13 1"- If° II.

@

@1

SW,/' . eo
@)

'JV

-
flNllLOCf

flNAl~

z 3 I./. E OUT f?UT.S

s,.l!:ru

©©
l>l&-ITllL
E;ttTH

f1Nftl.J)4 fNfU"f5

@ff i'l 11111111 I If Li

:Fi<jure A-1 : Medio. Ff"'Onl Panel.

MEDIA FRONT PANEL PAGE A-3

B IE2.E3E ·•·
'' E

I G-24-34- •··•

MEDIA FRONT PANEL PAGE A-4

The layout for the front panel of the Media system is shown in

Figure A-1. This panel was designed in the Electrical Engineering

digital laboratory and brings the analogue and digital output and

input lines from the connection rails at the back of the Media

housing (see figure A-2) to more easily-used connection blocks at

the front of.the housing. The Media lines are also level-shifted

where this was felt desirable.

NOTE

Because of the way the Media cards have been

designed, the analogue and digital Media cards

use different earth reference levels. In

fact,

Digital ground = Analogue ground - 15 volts.

care must therefore be taken to ensure that

one is referencing signals to the correct

ground.

A.l Digital Outputs

MEDIA FRONT PANEL

f,,.o,.., Med;o..

d1~it'4l au.~ru\: anA

Block@ ofl
pa.r'leA.
OV ::.LOW

24\/:: #IGH

®
0>1 ro-n~.

OV:: LOW

SV :..HIGH

PAGE A-5

LED

Each of the sixteen digital output lines is wired as in figure

A-3. ' Thus all digital outputs are always displayed on the LEDs at

(D) on the panel, and two levels are available - one at 24V and

one TTL-compatible.

A.2 Digital Inputs

11kfi

Fi9ute A-4.

Blocks (A) and (R} on the panel are connection blocks enabling

TTL-level signals to drive the digital inputs. In fact, any level

MEDIA FRONT PANEL PAGE A-6

from about 3 volts to 24 volts will drive the inputs. The wiring

of the inputs is shown in figure A-4. This circuitry was

necessary because the inputs on the Media cards are intended to be

·operated by switches, not voltages.

Note that the circuit above is an inverting circuit : the

inversion thus caused is undone in the software (proce~ure

RDDIGINP in MEDUPDAT).

A. 3 switches

32 switches, wired as in figure A-5, are provided. These can be

connected directly to the 32 digital inputs, as sense switches or

for testing purposes. Switch up corresponds to logical 1 (or +24

volts) and switch down corresponds to logical 0 (or 0 volts).

~····

A.4 Analogue Outputs

MEDIA FRONT PANEL

~ovo.~le link

-'-fr...;;_om;..._:_M_ecl_i_(). ---~j--~·----• •
• •

Qnal ?J ou.tr 1.d; Po..,, e,\ ClJY\lf\edil1)1~ Gho. nrr e/
~~- ~~

switch

PAGE A-7

Each of the four analogue outputs is brought to a connection on

block (H) on the panel. In addition, analogue earth is the

rightmost connection on block (H).

-4 mA to -20 mA outputs are available from block (G) if the wire

links between blocks (G) and (H) in the appropriat~ places are

removed. Otherwise, the 4-way switch can be used to select one of

the analogue outputs, which is then available as a -1 to -5 volt

output at (J). The current-to-voltage conversion is done by a 250

ohm resistor, as shown in figure A-6.

A.5 Analogue Inputs

The 16 analogue input lines to the·multiplexer card are connected

to block (G) of the panel. -lV corresponds to an ADC output of

zero, and -SV to an ADC output of HEX 3FF.

MEDIA FRONT PANEL PAGE A-8

connedioY\ (0 • • fo f'l1P.dia it1put <J.k block ?. •
® IOOk (• can.I . rnc.o<

@•

AnJ~ -~~ cA. -

Fi<J u.,.e A - 7.

In addition, analogue signals can be connected to block .CK), pass

via attenuators (L) and switches (M) to block (N), and hence to

block {O) via wire links. This is shown in figure A-7.

,,
A.6 Connections to the Media connection blocks

The connections to the connection blocks at the back of Media are

shown in figure A-2. The input/output lines from the Media cards

are brought directly to the terminal points shown.

Digital ground is obtained by connecting the· earth lines (from the

Media cards) of the digital inputs and outputs together. Analogue

ground is produced similarly •

....... - .

APPENDIX B

ADDRESSING THE MEDIA CARDS

This section describes how the systems programmer interacts with

the Media cards using the LSI-11. /

B.l Converting between Media and LSI-11 addresses.

A Media address is a ten-bit address of a card on the Media

highway. When the PDP-11 to Media interface cards are present in

the minibin, successive Media addresses are available to the

LSI-11 as successive memory-mapped words 1n the I/O SJ>ace of the

LSI, starting from address octal 764000.

The formula for converting Media addresses to LSI-11 addresses is

LSI address = 764000 + (2 * Media address)

and to convert LSI addresses to Media addresses,

Media address = (LSI address - 764000) / 2.

ADDRESSINq THE MEDIA CARDS PAGE B-2

B.2 Addresses of the Media cards

Media Card Media address LSI address

16-way dig. inp •. card 1 0 764000
16-way dig. inp. card 2 1

(octo.1).
764002

16-way digital output card 4 764010
16-way analogue mux card 10 764020
A/D converter card 14 764022
4-way D/A converter card 14 764030

Table B-2: Addresses of the Media cards •

The Media and LSI addresses of the Media cards are given in Table

8-1. In addition, the Media status word is available at LSI

address 767776 {Media address 1777) and can be interpreted as :

000000 = last transaction successful

010000 = device missing error

B.3 Accessing the cards

B.3.1 The digital-to-analogue converter card

This card is a four-channel 8-bit digital-to-analogue converter.

The word at Media address OCT 14 is organised as follows

I!; l'f I J /2 ,., 10 '1 8 7 ' S"" {/. 3 z. I 0

MSB LSB

\.._ J
-~------."""'y--------------------

D a ca
y

I

Channel se.tect

ADDRESSING .THE MEDIA CARDS PAGE B-3

Any of the four channel-select bits can be used; so that the same

data can be written to more than one output simultaneous1y if

required. However, Micro-Media does not use this feature.

Each analogue output is a current signal in the range -4.A (for

digital 0) to -20mA {for digital HEX FF).

B.3.2 The digital input cards

These are read as two consecutive words at Media addresses: 0 and 1

for digite.l inputs 1-16 and 17-32 respectively.

LSB

7(,tt 000
I - . - ... - - .. - - .. - . - - - - /(, 4-- l>i.'.J;n. "".,\,,.

M~B

-----------~----------~--~I 7,~002
17- · · . · · · · . · · • .. ·32 .__ l:;>i!Ji"' n.a..,l.er

Digital input number 1 the the most significant bit of the first

word, and input number 32 is the least signi.ficant bit of the

second word, as shown in the diagram.

The digital input cards require switch inputs, but have been wired

to the front panel in such a way that either switches or TTL logic .

levels can be used.

ADDRESSING THE MEDIA CARDS PAGE B-4

B.3.3 The digital output card

These may be written to at LSI address 764010. Digital output 1

is the most significant bit and output 16 is the least significant

bit.

The Media card provides 24V = logical 1 ana OV = logical 0. The

outputs are also available on the front panel as TTL compatible

levels.

B.3.4 The analogue inputs

These 16 inputs are organised as a 16-channel-multiplexer card at

LSI address 764020 and an ADC card at address 764022.

To read an analogue input, the following procedure is followed :

1. Select the required input by writing to the multiplexer.

2. Wait for the multiplexer to settle (this takes about 50

milliseconds).

3. Read the digital value from the ADC card.

B.3.4.1 The multiplexer card - The multiplexer card word at LSI

address 764020 is organised thus:

ADDRESSING THE MEDIA CARDS PAGE B-5

IS" Ill.·. 13 . 12. II . 10 . 9 . 8 7 l 5" tL 3 z I O

I
~'~~-"Vr--~__.J

channet select

To select analogue input n, a word must be written to the

multiplexer with the enable bit (bit 4) set, and bits 0 to 3 must

contain the number n-1. · For e.xample, to select channel 4, one

must write OCT 000023 to the multiplexer.

B.3.4.2 The ADC card - The ADC card word at LSI address 764022 is

oraanised as follows :
15 tu. 13 IZ... /f 10 'I g 7 ' S" [J. 3 Z.. I 0

I X I J>'f I :Ds I Jn I :H I)><; I b<l-1 D3 I))i_ I Jn I l>o I X I X I X I X I X I
\m~g . L.S8

'-------------------"'("' J

Do..to.
The data is read as the 10 bits from bit 5 to 14 (inclusive) of

the word. -lV corresponds to digital zero, and -SV to digital HEX

7FEO . .

--

APPnNDIX C

DETAILED DESCRIPTION OF MEDIA LINK FRAME STRUCTURE

This appendix describes in detail the format of the Media data

link ·frames introduced in chapter 2.

\

c.l Symbols used

The descriptions below use the following symbols:

1. TAl to TA4 are the 4-bit terminal address

2. P is the parity bit -

0.----

3. AO to A9 is the 10-bit Media address

4. DO to D15 is the 16-bit data field

5. BCC is the block check character

6. X represents a don't-care bit

DETAILED DESCRIPTION OF MEDIA LINK FRAME STRUCTURE PAGE C-2

C.2 Single read {Codes 1,2,8)

The host-to-Media frame is as follows . .
MS~

LS I?>

I p I IT/?31 T/121 COD€

I p 0 ''", 1-rllo I 113 I A 2 I n, I no I
I p 0 In~! n~IR1l~blAsln~I

I p I I :sec]

The Media-to-host reply is as follows . .

I p I IT1t3lr11z. . CO'P€

I p 0 ITAi ITllO sr1>rus

I p 0 I)>~ I Dlf 1>31 l>z. I Pl 1»0
I p 0 Ix IZ>1D]):Cf I "PE I "])71 -p,

I p o I x 11>,., Z>1y. I J>13 I J>1z. I]>11

I p I I Bee I
Thus the returned data is encoded into bytes 3 to 5 of the reply

frame.

C.3 Printer output (Code 0)

This command causes the supplied text (CHARI to CHARn) to be

printed at the terminal local to the Media. This is not

implemented in the.LSI~ll Media system as there is no local

I
i

.1

I

DETAILED DESCRIPTION OF MEDIA LINK FRAME STRUCTURE

printer.

The host-to-Media frame is :

.1 "P I lm.3 IT'12 I COPf: J
I P I O I 1111 I Tno I R 3 j 112 j 111 I no I
I p I 0 I A q I Jl8 I 111 I 1n 111~ 1 11 ~ 1
I p I CH/l/l(llCT~ I I
I p I CH1'1t.ltCTE~ ~ I

p

p I I

..
• •

£OT

BCC

where EOT = control-D = binary 0000100.

The Media-to-host reply_ is :

"P r I I ~cc.

c.4 Block read (Codes 3 and 4)

PAGE C-3

The Media or list address of the start address of the block is

encoded into bytes 2 and 3 of the host-to-Media frame. The number

of items required is put into byte 4. The frame is :

DETAILED DESCRIPTION OF MEDIA LINK FRAME STRUCTURE

(p f o ITn1 jT11of l13j 11z.j 1u j eo J

I P I o IA'I Ins- I A.7 I 1u I ns- j 1111-I·

I p I 0 I f.JUWlBE~ OF ITE"MS ro REll.J> j

Bee

The Media-to-host reply is

I p I 0 I TAI 111101 STf}TUS .

I p I 0 j J>~ j D~ 11>3 I Dz I Dr I .Do I
I P I o I x I D10 I J>cr I J> r I D1 lli]
I P I O X ID•~ ID14) J>nlD12 I Du I.

I P I o J>S" I J>l/-1 1>31 Di I D1 I I>o I
I p I 0 x f D10 I DC) I DI I J>7 I]) ' i
I p I I x IJ>•> I J)1Lil 1>13 I D1i J L>TQ

• • •

I p I / I Bee

. te--- .

. . .

. PAGE C-4

The k'th data item read is encoded ·into bytes 3k to 3k + 2 of the

reply frame, as shown.

DETAILED DESCRIPTION OF MEDIA LINK FRAME STRUCTURE
PAGE C-5

C.5 Keyboard input (Code 9)

This is used for the host to read in the keyboard buffer of the

terminal local to the Media. This is not implemented- in thtr
LBI:;.-;;lr-Media: system.

The host-to-Media frame is :

The Media-to-host reply is :

I p r f jrR31r112 I COJ>e I
I P_ I O lrn1 1-r110 I -STIJius I

. I p J CH!lfltlCT"l:fl I I
I p I -CHllRAC.T"Efl z. I

• • •

I l' I -EoT]
I p I I Bee I.

DETAILED DESCRIPTION OF MEDIA LINK FRAME STRUCTURE PAGE C-6

C.6 Single write {Codes C, D and E}

The write is implemented as a two-stage process. First the host

issues a Media/list write frame {codec or D), as follows :

I r I I lr193 l111z I CO!>£

IPIO TfU I TRO I 113 112 At llO

I Pj 0 1t'f I/}~ I n7 Ab 11 '5 11.IJ.

I I .D s-.l ·Dtt j 1>.3 p 0]>, DI]>o r.
I

I I)(I J)JD I J><t
i

p 0 '])~])7 l>b

I p I 0 x I Dis- I Dll~ I 1>13 L)IZ. 1>11

I p I I 13CC

..

Media then does nothing except to echo this frame, in its

entirety, back to the host for checking. If the host is satisfied

with this reply, it sends a confirmatory •Go' fram~ (code E), as

follows . .
p I jr113 lr112 j cot>E

p 0 lni1 l-r110 I f/31 A2 I 1J1 I Ao I
p 0 IA,lRrln1IA'IAsjn~I
p I I Bee]

The Media then performs the write and sends the following reply :

p .1 I ITIJ~ 1. TA2 I COJ>E"

I 'P I 0 ITAi 11110 I Sr11rus

I "P I I I tscc

DETAILED DESCRIPTION OF MEDIA LINK FRAME STRUCTURE

c.7 Read digital change words (Code 7)

The host-to-Media frame is :

l p I I I Tll 3 I i/12. I co D €

(p I o (1111 1-r,qol /131 A2I {;1 (no I
I P I o I R<r I A~ I 111 I >1b I A5 I n11- I
(P I I I :sec . · J

where the address field is ignored by Media.

The Media-to-hos~ reply is :

I p J I l-r11s I T112 I (/0()€ I
I p I o ITAi r~ol ~•llTUS 1· ..

I p I 0 I Ds- D1t- I "/> 3 l>l j J>I I ./)o I
fifst

f Plolx Pio j l>1 0111>1 IJ>1. I vha.l'l~-E!
wort!. I Pio x]JI> "]> ///.]>13 I i>u I 1>11 I

!Pio Dz. I D1 I Po I 1)) pq. '))3
SecoY\d

I p I D x ID10])q l)g I P7 I P6] cho.n9e.

1-P I· 0 1>131])121]) 11 I wora.. x I Die- D11.L

1 p I· I I Bee

PAGE C-7

DETAILED DESCRIPTION OF MEDIA LINK FRAME STRUCTURE PAGE C-8

C.8 Media frame lengths

Table C-1 shows the lengths of all the Media frames in bytes •

Code Meaning

0
1
2
3
4
5
6
7
8
9
A
B
c
D
E

J

Printer output
Read Media address
Read list address
Read block Media addresses
Read block list addresses
Spare
Spare
Read digital change words
Read printer status word
Read keyboard input
Spare
Spare
Write to Media address
Write to list address
Go (2nd stage of write)

. Length (bytes)
Command Reply

variable
4
4
5
5

4
4
4

7
7
4

3
6
6

3(n+l)
3(n+l)

9
6

variable

7
7
3

Table C-1: Medi a 1 ink frame lengths _.,

APPENDIX D

SERIAL LINK HARDWARE CIRCUIT DIAGRAMS

D.l The serial lines

The wires of each 4-wire serial link between the Electrical and

Chemical Engineering buildings are connected as follows:

Blee Eng· Chem Eng

wall socket wall socket

pin number pin number

1 5 ((PO line

4 7 ,--A--..
t

5 1

7 4

The lead connecting the wall GPO socket to the DIN socket on the

interface unit is wired thus:

SERIAL LINK HARDWARE CIRCUIT DIAGRAMS PAGE D-2

Din pl1.1.~ (/ook;j irtro rl'j)

o~-~

D.2 The link driver circuitry

Full circuit diagrams and parts list follow.

DIN
soc.J<.et

Df N
. Soc.ket

Delm
r----~---connectot"

7

3

r12.V

IC1 1C3
Tl' .Dt

I +5V JS _< f'-......1 "' 340--ni.. 34-0-TS"

Ci C2 _..I C5 .1 I c..7 I CB" :tJ_
-,..- TO.I I IDJA I I 1°i I o.r 1000;- I

311~
\. / I AC

22-0 v I I' I I _J__ 4NP --
-ff C.3 cq. .. C-b er +

l°J'<
I 0./

IS ./ 1....-1 \.. L '32.0 T-12.
I I I -12V

fC2.

-!fl v .fSV +sv

E o.I O,/_J_lzj o:!L_ IC§' /C{, IC-7 . IC/' /Cf!.
C-•2l m.o ! Cr 89'30 1~'89 1/189'

7 7
- --- -

\ ..

SERIAL LINK HARDWARE CIRCUIT DIAGRAMS

PARTS LIST

IC! . .LM340-Tl2 voltage regulator .
IC2 LM320-Tl2 voltage regulator

IC3 . LM340-T5 voltage regula·tor .
IC4 DS8820 dual· differential line receiver

ICS DS8830 dual differential line driver

IC6 : DS1488 quad RS-232 line driver

IC7 DS1489 quad RS~232 line receiver

Dl-04 : 1N4007 diode

Zl-Z8 : 12 volt zener

·Rl-RS : 2K2 1/4 watt resistor

' Cl,C3 : 1000 uF 25V electrolytic

C2,C4,C8,C9,Cl2-Cl6 : 0.luF 25V ceramic disc

Cl0,Cll : 0.05 uF ceramic disc

Tl Transformer, 220 volt to 15-0-15 volt 1 amp
~

FS! : 500 mA fuse

Sl : SPST toggle switch 250 volts

Two 25-pin panel-mounting male delta connectors

·) Two 5-pin panel-mounting DIN sockets

THE MEDIA STATUS WORD PAGE E-2

ENT PROC GETMED {REF MEDCARD MSTAT) INT: .

which puts the Media status word into MSTAT.MEDDAT, updates.·

MSTAT.SCANTIME and returns an integer indicating error status ·(as

for the other procedures in MEDLNK).

,.

\

l

I·

1 ·.

i

1 ·

APPENDIX F

THE ABM AND ABOM ABORTING TASKS

The two tasks ABM and ABOM are provided for use instead of the

RSX-llM abort command ABO, and are intended for aborting

applications tasks which access MEDCOM. ABO cannot be used for

aborting such tasks because it does not ensure .that the task .

releases MEDCOM before it exits.
..
\

..... ·.·

ABM is a non-privi~eged task which should be in.stalled as ••• I\BM

.and uses the same command-line format as ABO. ABM calls GETMCR()

to get. the command-line· typed in, and from this, ·gets the name of

• . the task to be aborted •. It converts the ·task-name into radix-56

task name format. If the user did not specify a task name, then

the usual default name is used (i.e •. name 11TTl 11 if invoked from

terminal TTl:, etc.)

. .
Once the task name is obtained, ABM.secures MEDCOM using

. SECMEDCOM(), ·the task is aborted using the RSX-llM ABRT$S.
directive [21], and then MEDCOM is released. ·This ensures that

.the task being aborted will not be secured to MEDCOM on exit.

Two checks are necessary before the ABRT$S can be issued:

. · .

1. The task t6 be aborted must not be "MCR ••• ". If a user

--·------ •• • •--~-~--~-~ ~---r

THE ABM AND ABOM ABORTING TASKS

ABOM because privileged tasks cannot be installed from

non-privileged terminals.

PAGE F-3

The above method of having two abort-MEDIA tasks is intended only

as a temporary measure until a way is found around the di ff icu_l ty

mentioned above. There definitely is a solution, since the

RSX-llM TAL command, given a task name, prints out information

which includes the terminal from which the task was run.

0--·

APPENDIX G

THE SECURE/RELEASE MODULE GSECREL

G.l Procedures provided in GSECREL

In addition to the procedures relating to the securing and

releasing of .facilities, three other procedures (the final three

in the list below) are included in this module because they are

often used by· the same tasks that use the secure/release

procedures.

1 • ENT PROC GSECURE {INT FA):

. This proc secures the facility represented by event flag·

FA. It is similar to the MTSLIB SECURE, but uses the

global event flags 33 to 56.

2. ENT PROC GRELEASE (INT FA):

This proc releases the facility represented by the global

event flag FA.

THE SECURE/RELEASE MODULE GSECREL . PAGE G-2

3. ENT PROC FORCEDRELEASE (INT FA);

This is the same as RELEASE except that it releases the

facility irrespective of· who has secured it. It is

intended for use by a system manager to free a facility

that has become "hung" (as explained earlier).

4. ENT PROC SECMEDCOM ():

Secures the data:...base, using GSECURE with the event flag

MEDCOMEF (= 33 at present).

5 •. ENT PROC RELMEDCOM ():

Releases the data-base, using GRELEASE with the event

flag MEDCOMEF.

6. ENT PROC MCOMINIT ():

7.

Sets the flag MEDCOMEF. This is meant to be called once

only, as part of the RSX-llM system startup, and corrects

for the ·problem mentioned in section 6.3.2 whereby the

flags "wake up°' in the reset state when the system is

started up.

ENT PROC FREEMEDCOM ():

This proc calls FORCEDRELEASE (MEDCOMEF) to free MEDCOM

should it "hang". It is intended for use only by the

data-base manager [300,1] and is called only by the task

UNHANG.

8. ENT PROC MCOMTASK (REF R50NAME TASK):

This proc returns the radix-50 name of the ta.sk which is

currently securing MEDCOM. If no task is securing, TASK

is zeroed~ It is called by MEDUPDAT.

THE SECURE/RELEASE MODULE GSECREL PAGE G-3

9. ENT PROC PRIVILEGED () INT;

This proc returns 1 if the calling task was run from a

privileged terminal, otherwise it returns O. The calling

task must have logical unit 1 assigned to TI: ..

10. ENT PROC TASKINFO {REF TASKBUF TB):

This is the same as the SPL interface proc RSXGTS except

that it RRGELs if the GTSK$S directive fails.

G.1.1 Modifications to RSXBA2

As mentioned in chapter 6, the MTSLIB-supplied version of RSXBA2

stores the names of the tasks securing facilities. To do this, it

uses a section of code equivalent to

MODE RSONAME { INT R50Nl, R50N2);

ENT DATA RRFACS:

ARRAY{32) RSONAME FACS:

ENODATA:

Element i of FACS contains the radix-50 name of the task securing

the facility represented by event flag 64·+ i.

--
To enable the secure/release mechanism using the global event

flags {33 to 56), two extensions to RSXBA2 have been made :

1. code equivalent to

THE SECURE/RELEASE MODULE GSECREL

MAC RSXBA2=LB:[l,l]EXEMC/ML,SY:[l00,6]RSXBA2

RTLLIB is then built using

TKB @RTLLIBTKB

where RTLLIBTKB.CMD is

RTLLIB/-HD,RTLLIB/-SP,RTLLIB=LB:[l,l]RTLCTL

SY:[100;6]RSXBA2,RRGEL

SY:[l00,6]TTOUT,DEVIO,TWRT,IWRT,IWRTF,NLS,SPS

SY:[100,6]IREAD,TREAD,RWRTX,RWRTU,RREADU

I
STACK=O

PAR=RTLLIB:120000:14000

II

PAGE G-5

The details of forming the RTLLIB partition during system VMR are

given in appendix H.

·--

APPENDIX H

CONSTRUCTION OF MEDCOM AS A RESIDENT COMMON

H.l Compilation and building of the data-base

Medcorn is built using the following commands:

RTL MEDCOM,MEDCOM=MEDCOM

MAC MEDCOM=MEDCOM

TKB @TKBMEDCOM

where TKBMEDCOM.CMD consists of:

MEDCOMl-HD;MEDCOMl-s~,MEDCOM=MEDCOM

I
STACK=O

PAR=MEDCOM:140000:1100

II

The line PAR=MEDCOM:140000:1100 tells the taskbuilder that the

./

. .

CONSTRUCTION OF MEDCOM AS A RESIDENT COMMON PAGE H-2

output file will be installed in a partition called MEDCOM, of

size 1100 (octal} bytes starting at virtual address 140000 octal.

H.2 Creating partitions for MEDCOM and RTLLIB

RTLLIB, which is a. library of RTL/2 procedures and contains the

extended version of the RSXBA2 procedure which is needed by the

global event-flag secure/release procedures, is introduced in

appendix G, where it is also explained why RSXBA2 must reside

inside a common area of memory.

This section deals with the procedure which must be followed when

building the partitions RTLL!B and MEDCOM. This is done at VMR

time· during Phase two of RSX-llM system generation [22].

The file DLO:[l,54]SYSVMR.CMD must be edited to insert the lines

SET /MAIN=MEDCOM:*:ll:COM

SET /MAIN=RTLLIB:*:l47:COM

just before the line

SET /MAIN=GEN:*:*:SYS

to inform VMR that MEDCOM and RTLLIB will be common partitions of

size 11 '(octal) and 147 (octal} 64-byte blocks respectively.

VMR is then performed as follows:

CONSTRUCTION OF MEDCOM AS A RESIDENT COMMON

SET /UIC=[l,54]

PIP DL2:RSX11M.SYS/NV/CO/BL:258.=DLO:RSX11M.TSK

PIP DL2:=DLO:*.STB

ASN DL2:=SY:

ASN.DL2:=LB:

INS $VMR

VMR @DLO:SYSVMR

ASN DLO:=SY:

ASN DLO:=LB:

PIP =DL2:RSX11M.SYS

The new system is then booted using

BOO RSXllM

PAGE H-3

The files MEDCOM.TSK, MEDCOM.STB, MEDCOM.MAP, RTLLIB.TSK,

RTLLIB.STB and RTLLIB.MAP must then be copied to LB:[l,l], and the

startup file dl0:[1,2]STARTUP.CMD edited to include the lines

INS LB:[l,l]MEDCOM

INS LB:[l,l]RTLLIB

H.3~_Linking tasks to MEDCOM

Tasks which access MEDCOM have to be taskbuilt as follows:

TKB @USERTKB

where USERTKB.CMD includes:

I

~

·'.
I ,.
I

I

CONSTRUCTION OF MEDCOM AS.A RESIDENT COMMON

USERTASK,USERTASK/~SP=USERTASK

@LB:[l,54]COMINTFCE

I

I. •

LIBR=RTLLIB:RW

COMMON=MEDCOM:RW

II

- ~--~- _..:__ ________ ~~ ~ ----~

PAGE H-4·

·."'

ASYNCHRONOUS SYSTEM TRAPS PAGE I-2

It is not good programniing practice to run AST service routines in

an RTL/2 environment because this can compromise the system

security [23]. A module called AST, has therefore been written

which provides RTL/2-callabl.e subrou.tines which enable the

processing of ASTs· in a simple fashion which does not involve the

buffering up of incoming characters, and can only supply the task

with the most recent unsolicited character.

I.2 Module description

The following description should be read in conjunction with the

listing of the AST module.

Logical unit number 2 must be assigned to the terminal from which

the asynchronous input is expected. Asynchronous input handling

is initialised by attaching to logical unit number 2 using

QIO$S :fl:IO .ATA, ••• I <:fl:ASTIO I :fl:AST2>

where ASTIO is the address of the AST service routine ASTIOPROC()

for characters other than control-Cf control-S, control-0,

control-Q, and control-X ; and AST2 is the address of the AST

service routine AST2PROC() for input control-C characters. The

control-S, control-Q, control-o, and control-X characters do· not

cause ASTs, but instead have the usual effect in controlling

output to the terminal.

Processing of ASTs is.terminated by issuing to logical unit number

2 a

QIO$S :fl:IO.DET, •••

to detach from the terminal.

ASYNCHRONOUS SYSTEM TRAPS PAGE I-3

A local data brick contains the following two integers :

1. ASTFLAG. This takes one of three values :

2.

CTLC : Indicates that an unsolicited control-C

character was input since the last input character dealt

with by the user.

AST : Indicates that an unsolicited.character other

than control-C, control-S, control-Q, control-a or

control-X was input since the last character dealt with.

NOTYET : Indicates that no unsolicited characters have

been input since the last input character dealt with. ·

CHAR : An integer containing the unsolicited input

character.

The AST service routines ASTIOPROC and AST2PROC should never be

called explicitly. A call to RRGEL aborts any attempt to do so.

ASTIOPROC services non-control-C ASTs. It moves the value #AST to

ASTFLAG to indicate the type of AST that has occurred, pops the

character off the stack and stores it in CHAR. It then sets event

flag ASTEF (event flag 4 at present), declares a significant event

and exits via the RSX-llM AST-exit directive ASTX$S [24]. Failure

of the ASTX$S would mean a serious system fault and is dealt with

by calling RRGEL.

AST2PROC, the control-C AST service routine, is the same as

ASTPROC except that it sets ASTFLAG to #CTLC and sets event flag

AST2EF (event flag 3 at present).

ASTFLAG is reset to NOTYET whenever a character is actually dealt

ASYNCHRONOUS SYSTEM TRAPS PAGE I-4

with by any of the procedures WAITAS'r, WAITCTLC, WAITNCTLC,

WTCCCZ, ASTYET, CTLCYET and NCTLCYET .. For example, AST FLAG is

reset by WAITCTLC if a control-C occurred, otherwise not.

r.3 Procedures in the module

The user may call.the following ENT procedures :

l • ENT PROC STARTAST {) :

This procedure initialises for AST processing by issuing

a QIO$S #IO.ATA directive to attach to logical unit

number 2.

2. ENT PROC WAITAST(INT NTIX) INT;

Puts the calling task into a wait state until an AST of

either type occurs. A timeout of NTIX ticks is imposed.

The integer returned is 1 if an AST occurred and 0 if the

wait timed out.

3. ENT PROC WAITCTLC (INT NTIX) INT;

As for WAITAST except that the wait is for ASTs of the

control-C type only.

4. F,:NT PROC WAITNCTLC (INT NT·IX) INT;

As for WAITAST except that the wait is for non-control-c

ASTs.only.

S. ENT PROC WAITCCCZ (INT NTIX) INT;

This procedure waits until control-C or control-Z is

ASYNCHRONOUS SYSTEM TRAPS PAGE I-5

typed, timing out after NTIX ticks. The retunmed integer

is 1 if control-C or control-.Z was typed, zer.o if timeout

occurred.

6. ENT PROC ASTYET {) INT;

If an AST of either type has occurred since the last

· character dealt with, 1 is returned; otherwise zero is

returned.

7. ENT PROC CTLCYET {) INT;

Returns one if a control-C AST has occurred since the

last character dealt with; otherwise returns zero.

8. ENT PROC NCTLCYET () INT;

Returns one if a non-control-C AST has occurredl since the

last character dealt with; otherwise returns :ero.

9 • ENT PROC ASTCHAR () BYTE;

This procedure returns the most recently receil'led input

byte. A call to ASTCHAR would be preceded by a call to

. one of the routines which indicates whether allll AST has

occurred. For example,

IF WAITAST{SO) =·l THEN

INPUTBYTE := ASTCHAR ();

END;

would wait for up to a second for .a character. and if one

was typed, put it into the variable INPUTBYTE. This

technique is used in MEDRMD to allow it to respond to the

pressing of any key.

10. ENT PROC ·sTOPAST () :

·-

ASYNCHRONOUS SYSTEM TRAPS PAGE I-6

This procedure issues a QIOW$S #IO.DET to detach from

·logical unit number 2. The effect is to stop processing

of ASTs and to return the terminal to its usual state.

·. ~ .

)

APPENDIX J

SCREEN CURSOR ADDRESSING ROUTINES

·'·

The module SCREEN provides easy-to-use ·subroutines for screen

cursor position control for a VT52 terminal. It is used by

several of the software modules such as MEDRMD and ATTACH, and may

also be used by applications tasks to present neatly-formatted
\.

data on the screen.

The RTL/2 byte-output procedure variable OUT should ideally be

assigned to HSOUT, because binary escape-sequences are output to

the screen. However, in practice no problems were encountered

using TTOUT.

The following cursor-routines are in the module :

t-1 '. ·ENT PROC GOTOLC (INT LINE, COL) :

This procedure positions the cursor on line LINE and

column COL of the screen. LINE must be in the range

1 •• 24 and COL in the range 1 •• 80, or ERP is called.

2. ENT PROC HOME ():

This procedure positions the cursor at the top of the

SCREEN CURSOR ADDRESSING ROUTINES PAGE J-2

screen, by outputting "<esc> H". It has the same effect

as GOTOLC (1,1).

3. ENT PROC CLEOS ();

Clears the screen from the current cursor position to the

end of the screen, by outputting "<esc> J".

4. ENT PROC CLSCREEN ();

Clears the entire screen by calling HOME() and then

CLEOS().

5. ENT PROC CLEOL ();

Clears from the current cursor position to the end of the

line, by outputting "<esc> K".

6. ENT PROC FORCEBUFFEROUTPUT ();

7.

This procedure calls OUT{ETX) to force the output of

OUTCL.BFR to the screen. It must be called if there is

any danger of OUTCL.BFR becoming full, i.e. if more than

80 characters are output between successive newline or.

ETX characters.

ENT PROC PRINTTIME ():

.This is not a screen cursor routine. It calls

TIMDAT(-1), and is only pre.sent in this module for

historical reasons.

APPENDIX K

STUDENT PROJECT INSTRUCTION SHEET

It will be ~oticed that the ~roject sheet on the next few page~

refers to two data bases: the data-base MEDCOM and a simulation __

data-base. This is because when this project was set, the

simulation part of MEDCOM was kept in a separate resident common

called MEDSIM. The simulation data in MEDSIM was later included

inside MEDCOM, enabling choice between simulation and real system

to be done at attach time rather than taskbuild time.

UNIVERSITY OF CAPE TOWN

DEPARTMENT OF ELECTRICAL ENGINEERING

EE 476 REAL-TIME COMPUTER SYSTEMS PROJECT

INTRODUCTION

The project is aimed to give the student practical experience of real-time computer
systems. The requirement of the project is for the student to design a software
system to control the temperature of the air in a vertical column. Since the purpose
of this course is to develop computer techniques rather than control techniques, a
simple control algorithm (which is discussed below) is quite adequate.

The air column system is shown in the diagram below

T~pe.rtttur-e.-
6-uWt 5d v.cer

Pow.er

um~
0-1000

Wolk

i....::-----~m YI

- - -·-

0 <

The air is blown up the column by a blower fan, and, during its passage up the
column, is heated by an electrical heating element. The temperture of the air
emerging from the top of the column is measured by a temperature transducer
(discussed below). The rate of flow of air is constant and cannot be varied.

The power to the heating element c~n be varied b~tween 0 and 1000 Watts.

The temperature of the air emerging from the column must not be allowed to exceed
100°c.

c. •

Controlling the air-column system

The software system to control the temperature must allow the operator to change
the desired temperature at any time, must provide a control algorithm for the
temperature control and facilities to log the temperature on disc. Obviously all
these activities must occur asynchronously and independently of each other so three
tasks are required :

1. A task to control the temperature by adjusting the power to the heater.

2. A task to enable the operator to change the setpoint temperature, and to
display the values relating to the column on his VDU.

3. A task to log the activity of the column onto disc.

The 3 tasks are concurrent in real-time and must all access the Media data-base.

A task, called the Media update task,performs a measurement scan of the MEDIA system
at a regular interval and obtains data from the column (i.e. its temperature). The
interval between measurements is known as the SAMPLING INTERVAL. Sampling is inherent
in any computer control system. The results of the measurement scan are stored in a
data base in the computer which is common to all tasks, i.e. all tasks can read and
write to this data base (which is called MEDCOM meaning Media Common.) Tasks which
need this data, such as a control task, then read MEDCOM and process the data they
obtain from it. The control task would then output a value to the Media interface
which would set the power to the heating element. The control task would do this at
a regular interval known as the CONTROL INTERVAL.

Now four (or more) tasks are going to be accessing and manipulating the common data
base(the rredia updating task, the control task, the OCP task and the logging task.)
These tasks are running concurrently and the possibility exists that 2 tasks or more
will try to use the data base simultaneously. This could lead to errors (e.g. say
that the updating task updates the temperature and is then interrupted by the logging
task which logs the temperature and the time, the latter having not yet been updated.)
In order to avoid this a task must 'secure' the data base for uninterrupted working
and then 'release' it when it is finished. If this is going to work all tasks must
secure the data base before they work with it. If another task has already secured
the data base the second task must wait until it has released it before continuing.

The control task and logging task must service the· data base at regular intervals.
After they have serviced the data base they must wait a period of real time before
repeating. To do this the application program makes use of a "system directive"
(i.e. a routine which interfaces to the operating system). ·

Simulating the system

Because there is only one set of air-column apparatus, and also because applications
programs must be properly debugged before being used on a real-life system, a task
has been supplied which simulates the behaviour of the column. Tasks running using
the simulated system access a different data-base. This data base is updated by the
simulation task instead of the media update task. The idea is that the software
system will be developed and debugged using the simulation data-base, and then run
using the real apparatus and data base.

As far as the software design for the project is concerned there is no difference
between the actual and the simulated system. The simulation is a calculated real­
time replica of the behaviour of the real column.

In order to provide a simulated real-time replica of the column behaviour the
computer calculates the value of the temperature that would have been read in at each
sampling interval. It does this at the same frequency as the sampling interval, so
the update of the simulation common data base occurs in the same way as for the real
system. Obviously the calculated result depends on the value of the setpoint
temperature which is set by the OCP task. The OCP task does this by updating a
memory location in the common data base. Another location stores the real time of
latest update.

3.

The Media system

The Media process control system, and the air column apparatus, is located in
the University Chemical Engineering building and is connected to the PDP 11/23
computer in the Electrical Engineering building Via a serial 9600 baud data line.
All the link communication is performed by the Media update task described earlier.

The Media system has the following inputs and outputs:

1. 16 lines of digital output

2. 32 lines of digital input

3. 4 analogue outputs (DAC)

4. 16 analogue inputs (ADC)

The present project uses only the analogue part of the system - in the real
system input and output number 1, and in the simulated system any one of input and
output pairs 1, 2, 3 or 4.
The power to the heater is set by the analogue output, and the value of temperature
is read via the analogue input.

Attaching the Media Outputs

If user A were to be running a program which uses analogue output number 2, say,
to output the value for the power to the heating element, he must be sure that
no other user can write to output number 2 - otherwise the other user could
destructively interfere with the task user A is trying to perform. To prevent such
an eventuality, a task is provided which 'attaches' a user to a particular output
and ensures that no other user can use that output. This task, called ATTACH,
must be run before executing any of the tasks which access the common data-base.
When he is finished running his control tasks, the user runs ATTACH again to 'detach'
from the output he had attached to. This is explained more fully later.

2. PROGRAMMING SPECIFICS

(a) Common data base - Medcom

This contains all the information pertinent to the media inputs and outputs :
data values, addresses, setpoints, most recent update times, UIC's of users
attached, etc. However, the user need not know exactly how the data is laid
out because a number of procedures (see part (c) below) have been provided to
read and write to/from Medcom'.

Note: As mentioned earlier, there are in fact two copies of the database - one
used for the simulated system and one for the real media system. The
correct database is automatically linked in at task build time if you
use $RTLCMP. (see below)

(b) Attaching to and detaching from outputs

(i) To attach type >$ATTACH
You will be prompted with a menu of choices - e.g. whether you
wish to specify which output to attach to, or wish to attach to
the lowest numbered output that is free, etc.

(ii) To detach, type $ATTACH and respond to the menu appro~riately.

YOU WILL NOT BE ABLE TO WRITE TO AN OUTPUT WITHOUT ATTACHING
YOURSELF TO ONE FIRST.
YOU MUST ALWAYS DETACH WHEN YOU ARE FINISHED.

(c) Accessing data in the Medcom data-base

Access to the data-base is provided via a set of subroutines provided for
the purpose. To use these routines (which must be declared as EXT PROC's),
you must have the following lines in your program:

------1
!

I
' 1.

LET ANALOG =
LET DIGITAL =
LET INPUT =
LET OUTPUT =

O;
1 •
' O;

1 •
'

These parameters are passed in the ADSWITCH and IOSWITCH parameters
of the procedure calls.

The following procedures may be used:

{ i) ENT PROC ATTACHED {INT ADSWITCH, REF ARRAY INT OUTARRAY);

You cannot know which output you will be using when you are
writing an application program. In order to write to the correct
output, you must use the procedure ATTACHED to find out which
outputs you are atta.ched to.
This procedure puts into the array OUTARRAY the numbers of those
outputs to which the user is attached. The rest of OUTARRAY is
filled with zeros. For this application we are using only analog
outputs and so the ADSWITCH parameter must be given as ANALOG. The
length of OUTARRAY must be greater than or equal to the number of
outputs attached to (e.g. if you know that you will only attach to
one output, OUTARRAY can be a~ array of length 1).

(ii) ENT PROC WROUTPUT (INT ADSWITCH, MDATA, CHANNUM);
This procedure writes the data MDATA to output ch~nnel number
CHANNUM. In this application, ADSWITCH.=ANALOG, CHANNUM must be
in range 1 .. 4 and only the least significant 8 bits of MDATA
are used because the DAC is 8-bit~

{iii) ENT PROC READINPUT (INT ADSWITCH, CHANNUM) INT;
This procedure reads in analogue {if ADSWITCH = ANALOG) input
number CHANNUM and returns the value read. CHANNUM must be in
range 1 ••. 16. Since the ADC is a 10-bit ADC, the value is put
in the 10 least significant bits of the returned integer, the
other bits being set to zero.

{ivl:ENT PROC RDSCANTIME {INT ADSWITCH, IOSWITCH, CHANNUM) REAL;
This procedure returns the time (in seconds past midnight) that the
specified input or output channel was last updated by the update·
task~
As before we let ADSWITCH = ANALOG and CHANNUM be the channel
number. IOSWITCH must be INPUT for an input or OUTPUT for an
output.

(v) ENT PROC SETSETPT {INT.CHANNUM, FRAC VALUE);
This procedure sets the setpoint for the analogue input controlled

_by analogue output number CHANNUM to VALUE.

{vi) ENT PROC GETSETPT {INT CHANNUM) FRAC;
This procedure returns the setpoint {as set u~ in a call to
SETSETPT) of the analog input controlled by analogue output number
CHANNUM.

{d) Securing and releasing the-data-base

This is done automatically in the interface procedures described in (c)
above, and occurs transparently to the user program.

b.

The purpose of these routines is to open and close I/O channels. An I/O
channel can be a VDU output, keyboard input, or disk file input or output.
More than 2 channels can be open at any time but only two channels (one for
input, one for output - see section (k) below) can be in use at one time.

Thus after you have initialised the I/O channels at the beginning of your
program py saying

INITIO ()

you open the channels you want to use, e.g.

OPENOUTFILE ("LOGFIL .• OUT")~ This opens LOGFIL.OUT as an output file.

Note that the input and output channels to the VDU console are automatically
opened by INITIO.

You specify which channels you want to use-for input and output by saying:

SWITTIN() % Input currently comes from terminal%

SWITTOUT() % Output currently goes to terminal%

SWFILOUT () % Output currently goeE. to the oi:en ed output file %

At any time during your program you can change your current input or output
channel by calling one of the above routines.

The code given in RRJOB in (2,1] EE476.RTL will open the user's console for
input and output and set them as the current channels.

The command to open an output channel to the disk file (for the logging task)
is also provided although it is between % signs so will not be compiled unless
these are removed. The reason for this is that for tasks that do not require
disk output you do not wish to open a disk file since it actually enters the
file in your directory and will clutter it with a whole lot of empty files.

It is important to close a disk output file properly by executing

CLOSEOUTFILE()

when you have finished outputting to the disk.

Be careful not to output data in an endless loop to the disk because you will
fill the disk!

Note: Input from files can also be done - consult the demonstrator for further
details.

(k) Stream I/O

RTL/2 as a language has no equivalent of the FORTRAN READ or WRITE statements.
The user program has to provide procedures to output to the device (via the
I/O Driver of the operating system) or input from it. In order to be able
to use the same routines for different devices one writes to the output
channel and reads from the input channel rather than to the particular device.
To write the same thing to different devices you can use the same output
procedure and merely switch channels (using SWTTIN, SWTTOUT, and
SWFILOUT).
For this reason Standard Stream I/O routines for use by RTL/2 programs are
defined. A description of these standard Stream I/O routines is provided.
Again these form a library which is linked to your program when your task is
being built so you must provide EXT references for any routine you use.

Note: When writing to the output channel, whether text or data, your output
will only actually be sent to the device when the appropriate termination
character is output. Valid termination characters are LF (line feed)
if a·new line is required or ETX(control-C) if you wish to stay on the
same line. Also, the ENQ (enquire) character should be used to terminate
any text that prompts for input from the terminal console.

7,

LF, ETX and ENC are defined via 'let' definitions.in [2,1] EE476.RTL.
You cannot include these characters in a character string unless enclosed
between # signs e.g.

TWRT("go to new line next #LF#");

You normally use LF except if you are prompting for input on the same line e.g.

TWRT ("INPUT INTEGER' VALUE #ENC#")

I · - IREAD () ;

If ENC were not included the prompt would not appear on the screen. If you
used LF the value input would be echoed on the line·below your prompt.

(£) Error numbers:

The meaning of the compiler error numbers (as you will see in your .SRC files)
is given in the accompanying table.

If you make a logical mistake which results in program failure your task will
be terminated and a message output:

'TASK' - nnn

Where TASK is the name of your task and nnn is the error number summarised in
the accompanying table of run-time errors.

(m) Running the programs

In order to start your software system you run each task in turn.

For example let TASK1

TASK2

TASK3

= CONTROL TASK

= OCP TASK

= LOGGING TASK

TASK1 requires K, TI (see part (o) below) to be input and then continues
controlling without further operator contact.

>RUN TASKI/TASK = TASK1

INPUT K, T~·: 1.0,2.0

After you input your values the cursor moves back to the beginning of the
line but does not line feed. The system is now running TASK1. To be able
to cowmunicate with MCR you press 'return' again and you get the MCR prompt.
You can then run TASK 3, etc.
To stop a task running~ use the ABM command. ABM is a special version of the
operating system ABO command, and must be used when aborting any tasks which
access the data-base.
The format is:

ABM 'taskname'

Note: DO NOT USE 'ABO' TO ABORT MEDIA TASKS. This is because ABO does not
ensure that the task being aborted releases the data-base. and thus
the data-base may "hang".

{n) Printout required

Your logging task must give for every sampling interval (= 1 sec) the
information about the column, i.e. time, setpoint, power, temperature. You
must also show the effect of changing the setpoint. About 3 minutes of
printout is sufficient.
The printout is contained in LOGFIL.OUT. Check it on your screen using PIP
before actually printing it. ,--#

•. .;i.

};.~

(o) Control interval and algorithm

The sampling interval is one second.

For the purposes of this project use a PI control algorithm given by

POWER = K.*{ e +\:btc ('le" + jq en-1 -5en-L +en-~ 7
n L-T:i: 21./- J '

I\

where n is the error at the present sampling interval (given by temperature
minus setpoint) and n-j is the error at the sampling interval j previously.

/:itc is the control interval which is taken as 1.0 seconds for the pruposes
of the marked report.

Note: 1. The heater element is capable of delivering up to 1000 Watts. Thus
POWER must be limitea so that it is positive and does not exceed
1000 Watts.

2. It is a good idea to limit the contribution of the integral term in
the above algorithm to the range - 1000 to + 1000 Watts, so that it
does not grow excessively.

(p) The value to write to the analogue DAC qutput to produce a heating power of
POWER,watts (where 0.0 <POWER < 1000.0) can be determined from the following

(1) Power produced is linearly related to digital value written to the
DAC (i.e. the-- analogue output).

(2) Digital 00 H produces 0 Wat ts

(3) Digital FF H produces 1000 Watts

The value ADCVAL read in via the analogue input analog-to-digital converter
is however not linearly related to the actual temperature. This is because -
the thermistor used has a non-linear calibration curve.
The temperature can be calculated using the following relation:

temperature in degrees Centigrade = a3X 3 + a2X 2 ~ o.X + ao

(q) The task MEDRMD

where X = ~(ADCVAL)
a 3 = 1.1635 E-5"
a2 = -2.8/j.'fif c-3
a i = o.sq1'7 -
ao= 17.3b7

Typing RUN MEDRMD causes a display of the activity of the data-base to the
screen. The information displayed includes which user is attached to which
output, when last the data-base was updated and which task has currently
secured the data-base.

I.

. APPENDIX L.

ERROR NUMBERS

Error numbers for all ihe software modules are listed below.

A ·pre~ix of 'U' indicates an unrecoverable error· (a call to RRGEL)'

and a prefix of 'R' indicates~ recoverable error (a call to ERP);·

L.1 Errors reported by MEDUSER

R715 e .

R716 . .
. R717 . .
R709 . .

t----

User attempted to write to a part of MEDCOM (an output}. to

· which he was not attached.

ADSWITCH or IOSWITCH parameter was not 0 or 1~

Channel number requested does not exist •
. .

Media input/output is otit of scan.

L.2 Errors reported by MEDLNK

R501 : BCC error in frame rec~ived from M~dia.

R502 : Alignment error in frame received from Media

R503 Media code in reply frame· from Media does no·t correspond

to the command code sent to Media.

~~--,,.------- --- - ---~-·- -- ·--------- -----~ ----- --- -- --- --·-·- ---

I.

ERROR NUMBERS . ,,

L.4 Errors reported by PLOTLIB

U609 : XMIN > XMAX or YMIN > YMAX in call."tO SCALE.

R610 : Error.in reading the. position of the .crosshairs.

(
PAGE L~3

I .

R611 : Attempt to MOVE or DRAW to. a po"int off the .edge of the·

screen.

L.5 Errors reported by AST

U607 : ASTX$S directive failure.

U608 : ·Other dir~ctiv~ failures.

L.6 Errors reported by GSECREL

R215 : During facility release,· state of .event flag not
'·

consistent with facility having been sec~rede

Ul4 Illegal event flag number (not· in range 33~.56).

Ul5 : Attempt to release a facility which was not securedo

U16 : Attempt to secure a facility that the task has already

secured •.

L.7 Errors ~eported by ODT

-·
··. R604 : · .. Unexpected end-of-file while· .reading SMT.TSK from disk.

R605 : Failure to open, close or read from th~ files SMT.TSK or

SMTLOAD.ABS.

APPENDIX M

MEDIA SYSTEM STARTUP PROCEDURE

This appendix describes the procedure to be followed when the

Media system is started up.

M.1 Starting up the GEC Media system

/
./

1. Plug the serial lead from the terminal into its socket on

the serial line interface unit and sign on to the PDP.

2G Plug the Micro-Media serial line into its socket on the

interface unit. This line will have been set up at

3.

5.

system startup to slave, no-echo, read-pass-all and 9600

baud.

Power up the Media bins.

Run the Media update task MEDUPDAT.

Run MEDRMD to check that all is well.

MEDIA SYSTEM STARTUP PROCEDURE .PAGE M-2

M.2 Starting up the LSI-11 Media system

1. Plug the serial lead from the terminal into its socket on

the.serial interface unit and sign on to the PDP.

2. Plug the LSI-11 console line lead into its socket on the

interface unit. This line will have been set up at

system startup to slave, no-echo, read-pass-all and 9600

baud.

3. Power up the LSI and the Media bins. ·

4. Restart the LSI by raising the 'reset' switch while the

'halt' switch is in the up position. Then drop the

'halt' switch and raise it again.

5 •. Run the ODT program from the terminal.

6. type 'F'<CR> to flush the buffer. and then type a few

ODT conunands .to check that communications between the

terminal, PDP and LSI are functional.

7. Use the 1 L 1 conunand to load and run.the SMT Micro-Media

replac~ment program. (See the description of the ODT

program in chapter 3).

a. Exit ODT by typing control-Z. -·
9. Run the Media update task MEDUPDAT •. The entire system

should now be functional and ready for user applications

programs to run.

10. Run MEDRMD to check that all is well.

·.--·

APPENDIX N

SOFTWARE LISTINGS: HOST SYSTEM

Listings of all the software modules which run on the PDP-11/23
host system are given here. Pages of the listing have a circled
page number at the top right-hand side of the page. As a~
example, the 3rd page of the 2nd program in this appendix is
numbered "N-2-3 8

•

The following are the programs listed in this appendix (given in
roughly the same order as their discussion in the main text):

Page N-1-1: The ODT program.
Page N-2-1: The SMTLOAD bootstrap loader •.
Page N-3-1: The MEDCOM data-base.
Page N-4-1: The Media update task.
Page N-5-1: The serial link control software LINKLB.
Page N-6-1: The MEDLNK interface between Media and MEDCOM.
Page N-7-1: The secure/release module GSECREL.
Page N-8-1: The MCOMINIT program to initialise secure/release.
Page N-9-1: The ATTACH task. .
Page N-10-1: The MEDUSER user interface library.
Page N-11-1: The ABM and ABOM aborting tasks.
Page N-12-1: The MEDRMD display.
Page N-13-1: The UNHANG task to "unhangn MEDCOM.
Page N-14-1: The MEDFRAME diagnostic.
Page N-15-1: The MEDTEST diagnostic.
Page N-16-1: The MEDLNKTST diagnostic.
Page N-17-1: The MUTEST diagnostic.
Page N-18-1: The analogue simulation.package.
Page N-19-1: The PLOTLIB plotting interface library.
Page N-20-1: The STAR demonstration program for PLOTLIB.
Page N-21-1: The screen cursor positioning routines.
Page N-22-1: The AST asynchronous character input routines.
Page N-23-1: The air-column simulation program.
Page N-24-1: RSXBA2 as modified.

OPTION (1) CH;
TITLE ODT; .

% x
% THIS ROUTINE IS USED TO COMMUNICATE WITH THE LSI 1123 ODT %
% AND DOWNLOAD THE SHT.TSK MEDIA EMULATION SOFTWARE INTO THE LSI. %
% %

LET LF = OCT 012; % LINE FEED CHARACTER %
LET CR = OCT 015; % CARIAGE RETURN CHARACTER %
LET ETX = OCT 003;
LET ENG = OCT 005;
LET EOS = OCT 200; % END OF STREAM CHARACTER %
LET BEL= OCT 007; % BELL CHARACTER %
LET EOM = OCT 200; % END OF FILE CHARACTER %
LET SP = OCT 040; % SPACE CHARACTER %
LET DOL = HEX 24; % DOLLAR CHARA~TER %
LET RNE = OCT 1020; % CODE FOR READ NO ECHO %
LET RAL = OCT 1010; % CODE FOR READ ALL %
LET THO = OCT 200·

'
% CODE FOR TIMEOUT %

LET · WRTCODE = OCT 410; % WRITE WITH WAL %
LET KIL CODE = OCT 0012; % KILL ALL I/O %
LET DETCODE = OCT 2000; % DETACH DEVICE %
LET ATTCODE = OCT 1400; % ATTACH %
LET SERIALWRITELUN - 5; % LU OF SERIAL WRITE %
LET SERIALREADLUN = 6•

'
% LU OF SERIAL LINE %

LET INFILELUN = 3; % UNIT NUMBER OF INPUT FILES %
LET YES = 1 •

' LET NO :: o·
'

% I HAVE COINED THE FOLLOWING NAMES FOR SOHE OF THE STATES OF %
% THE ODT. SEE PROCESSOR HANDBOOK P 80. NUMBERS CHOSEN FOR %
% THE STATES/MODES ARE ARBITRARY. %

LET
LET
LET
LET

%
%

START =
MEMORY =
REGSTR ::
PSW =

1 •
' 2·
' 3•
' 4•
'

MODE DEFINITIONS.

MODE IOSTAT<BYTE IOSTLOW,
IOSTHIGH,

INT IOSTVAL>;

% START STATE OF 11123·5 ODT
% MEMORY STATE
% REGISTER STATE
% PSW STATE

% IOSTATUS LOW BYTE
% IOSTAT HIGH BYTE
% IOSTAT VALUE

%
%

EXTERNAL PROCEDURE DEFINITIONS.
--•

%
%

%

%
%

x
%
%

%
%

% THE FOLLOWING ARE STANDARD STREAM I/O PROCEDURES - REFER %
% TO THE STREAM 1/0 MANUAL %
EXT PROC OTTIO;
EXT PROC<REF ARRAY BYTE) TWRT;
EXT PROC <REF ARRAY BYTE,REF ARRAY BYTE>INT TREAD;
EXT PROC () INT IREAD, OREAD;
EXT PROC CINT,INT,INT> HARKTIHE;
EXT PROC CINT> IWRT ,OWRT;
EXT PROC <INT> CANHARK, RESET;
EXT PROC CINT>RRGEL;
EXT PROC <INT,REF ARRAY BYTE>ASSIGN;
EXT PROC () RRNUL;
EXT PROC CINT, % 1/0 FUNCTION CODE %

%

I

{.
'

! .

. I

INT,
INl,
INT,

%. LUN OF DEV I CE ·•·<£ED.·. r z I
% EVENT FLAG NUMBER
X PRIORITY .

% . . ·. I
%.

REF IOSTfH,
. PROC () ,

REF ARRAY INT) RSXGIW, RSXGIO;

% LOCAL DATA BRICK DEFINITIONS.
% . =============================

DATA LOCAL; . .

% 1/0 STAtUS BLOCK
% AST SERVIC~ ROUTINE
% DEVICE DEPENDENT
% PARAMETERS .

%
%
%
%

'%
%

. REF ARRAY BYTE TERHB:=~#CR,LFjE05#";% TERMINATING CHARACTERS%
. % FOR INPUT % ·

INT STATE :=.START;
INT TIMEOUT := YES;

. INT ACCEPT : =YES . ;
INT ·NIN := O;

..
INT · RECEND . - FI LEND . -
INT NCHARS:=O;
INT · NREAD:=O;.

BYTE BCC;
IOSTAT STATUS;

. - a· . - '

%. STATE. OF 11 /2~ 'ODT % .
.% TIMEOUT ON SERIAL READ%
% FLAG FOR.COMMAND OK %
% NUMBER OF CHARACTERS % ·
% EXPECTED FOR READ %

% FLAGS FOR END OF .x
X RECORD AND FILE; x
% NUMBER OF CHARACTERS ·%
% NO OF CHARS READ RY %
% SERIALR (). %

· % BLOCK CHECK CHAR %
x IO STATUS BLOCK %

,.
'

ARRAY\ (7) BYTE IBLI<; % U~ED BY LOADLOADER() TO HOLD
. REF AR~AY BYTE BUFP . - IOBUF; % POINTER TO IOBUF. · % . - %

ARRAY (6) INT DEVPARM ~= co,o,o,o,o,o>;
REF ARRAY INT PP := DEVPARM;

% DEV I CE DEPENDENT· . . . %
% PARAMETERS . %

ENDDATA;

%
r

MAIN PROCEDURE = RRJOB.
--

\. -

%
%

I ENT PROC RRJOB<>;
AS51GN<1,"TI:">;
t.SSIGN<2, 11 TI: 11

);

INITIALISE IO();

!

I
I
I .

I
I . . .

i

. i

. SWTTIN ();
SWTTOUT<>;

ASSIGNCINFILELUN,"SY:">;
ASSIGN<SERIALREADLUN,"TT10:">;
·ASSIGN<SERIALWRITELUN,"TT10:">;

% INITIALIZE STREAM 1/0 %

% LUN 3 IS THE LUN FOR FILE IN %

·. TWRT("#CR,LF#LSI 11 CONSOLE EMULATOR VER 3.1 5/4/83#CR,LF#">;.

STATE := START;· % INITIALISE STATE· % -·

% INITIALIZE THE BUFFERS AND CONTROL FOR SERIAL IO %

FOR I:~1 TO 6 DO DEVPARM(l):=O; REP;. . .
· RSXQIW<ATTCODE,SERIALREADLUN,1,0,STATUS,RRNUL,PP>;.

TWRTC"STATUS AFTER ATTACH #CR,LF#">;
TWRT<"LOWBYTE.I">; IWRT(STATUS.IOSTLOWl; TWRT<"#LF#")j

% LOOP TO READ FROM TERMINAL, WRITE TO LSl 1103, READ % .
,% THE ANSWER AND DISPLAY IT ON THE TERMINAL %

FOR 1:=1 TO 6 DO DEVPARMCI>:=O;REP; ~
RSXGIWCKILCODE,SERIALREADLUN,1 ,D,STATUS,RRNUL,PP>;

ELSE
NREAD := STATUS.IOSTVAL;
CANHARKC1>; % CANCEL MARKTIME REQUEST %

END·
'

IF STAT< 0 THEN TWRTC"READ ERROR: STATUS">;
IWRTCSTAT>; TWRT("#CR,LF#">;

END;
ELSE

NREAD:=O;
END;

ENDPROC;

PROC GETNREADC>INT;

% NO CHARS READ

% FINDS OUT, IN CASES OF TIMEOUT ON INPUT, HOW MANY CHARS WERE
% RECEIVED BEFORE TIMEOUT. DOES THIS IN A CRUDE WAY: WORKS OUT
% MANY CHARS IN IOBUF BEFORE FIRST OCCURRENCE OF A NULL, WHICH
X ASSUMED THE LSI WILL NEVER SEND WHILE IN CONSOLE ODT MODE.
FOR 1:=1 TO 80 DO

IF IOBUF<I>=O THEN
RETURNCI>;

END;
REP;

x
HOW %
IT IS %

%

RETURN C 80> ;
ENDPROC;

% MORE THAN 80 CHARS IN BUFFER; SHOULD NEVER OCCUR

PROC SERIALW <>;
. INT J,STAT;

IF NCHARS > 0 ~HEN
FOR J:=1 TO 6 DO DEVPARMCJ>:=O; REP;
DEV PA RH C 1) : = BUFSET CI OBUF > ; \

DEVPARHC2) := NCHARS;
RSXGIWCWRTCODE,SERIALWRITELUN,1,o,STATUS,RRNUL,PP>;
STAT:= CHECKST () ;

END;
ENDPROC;

IF STAT<O THEN
TWRT<"WRITE ERROR: DIRECTIVE STATUS ">;
IWRTCSTAT>;TWRT<"#LF#">;

END;

PROC CHECKST () I NT;

% THIS PROCEDURE CHECKS THE- IO STATUS. %
% IT RETURNS THE STATUS VALUE %
r-~vE RETURNED VALUE MEANS A FAILURE %

INT STTUS; .

STTUS := <INT<STATUS.IOSTLOW) SLL 8) SRA B;
RETURN <STTUS>;

ENDPROC;

PROC SCANCl;

% THIS ROUTINE SCANS THE INPUT COMHAND FOR A VALID %
% COMMAND CODE SYNTAX. THE ACCEPT FLAG IS SET TO YES %
% IF THE COMMAND IS VALID ELSE IT IS SET TO 1. %

IF IOBUFC1> = "F" THEN
FLUSH();

ELSEIF IOBUFC1> = 'H" THEN
HELP() ;

ELSEIF STATE = START THEN
IF IOBUFC1) =DOLOR IOBUFC1> = 'R' THEN

DOLLAR<) ;
ELSEIF IOBUFCNCHARS> = "/' THEN

SLASH(); .
ELSEIF IOBUFCNCHARS> = "G" THEN

GO();
ELSEIF IOBUFCNCHARS) = ·p· THEN

PROCEDC>;
ELSEIF IOBUFC1) = "L' THEN.

LOAD() ;
ELSE

ACCEPT:= NO;
END;

ELSE % STATE IS REGSTR, MEMORY OR PSW %
IF IOBUFCNCHARS> = ·c· THEN.

END;

CRETURN<>;
ELSEIF IOBUFCNCHARS) = 'N" THEN

LFPROC ();
ELSE

ACCEPT := NO;
END;

NJN := NJN + NCHARS;
ENDPROC;

PROC DOLLAR<>;

% THIS ROUTINE IS USED FOR THE INTERNAL REGISTER OPEN X
% COMMAND %

IF NCHARS # 3 THEN
ACCEPT:= NO;

ELSE
IF I OBUF < 3) # • /"
. ACCEPT := NO;
ELSE

THEN .

IF IOBUFC2) < ·a· OR IOBUFC2) > ·7· THEN

END;
END;

S:NDPROC ;_

ELSE

IF IOBUF<2> = "5' THEN % WANTING TO OPEN PSW
ACCEPT :=YES;

ELSE

END;

NIN := 7;
TI ME OUT · : = YES;
STATE := PSW;

ACCEPT := NO;

ACCEPT := YES;
NIN ::: 7;
TIMEOUT := YES;
STATE := REGSTR;

% WANTING TO OPEN REGISTER %

END; •

PROC SLASH (> ; ~t:f)

% THIS ROUTINE CHECKS THE OPEN MEMORY COMMAND %

.IF NCHARS >=2 AND NCHARS <= 7 THEN

ELSE

ACCEPT := YES;
FOR I:= 1 TO NCHARS - 1 DO

REP;

IF IOBUF<I> < ·o· OR IOBUFCI) > ·7· THEN
· ACCEPT : = NO;

END·
'

ACCEPT:= NO;
END;
IF ACCEPT = YES THEN

NIN := 7;
TIMEOUT := YES;
STATE := MEMORY;

END;
ENDPROC;

PROC FLUSH () ;

% THIS ROUTINE IS USED TO FLUSH THE INPUT BUFFER %
IF NCHARS = 1 THEN

NCHARS:=O;
NIN := 80;
ACCEPT := YES;
TIMEOUT := YES;
STATE :·= START;

ELSE .
ACCEPT := NO;

END;
. ENDPROC;

PROC HELP<>;

% THIS ROUTINE OUTPUTS TO TI: A DESCRIPTION OF HOW TO USE %
% THE PROGRAM. %
% DOES NOT CHANGE 'STATE'. %

... -·

IF NCHARS=1 OR IOBUF(2)='E' AND IOBUF(3)='L' AND IOBUF(4)='P' THEN
TWRT< #LFC6)#THIS PROGRAM TAKES ODT COMMANDS AND SENDS THEM DOWN THE
TWRT< #LF#SERIAL LINE TO THE LSI-11 CONNECTED TO THE SERIAL LINE.">;
TWRT< #LF#IN ADDITION, IT CAN LOAD A BINARY LOADER PROGRAM">;
TWRTC #LF#SHTLOAD.ABS WHICH CAN THEN DOWNLOAD THE FILE SHT.TSK. 11 >;
TWRT< #LF#THE COMMANDS ARE THE SAHE AS ODT COHHANDS EXCEPT THAT YOU"
TWRT< #LF#HUST USE 'N' <NEXT> INSTEAD OF LINE FEED AND ·c· INSTEAD 0-
~WRT< #LF#CARRIAGE RETURN.#LF#">; -
TWRTC #LF#NON-ODT COMMANDS ARE :#LF#">;
TWRTC'#LF#"F' : FLUSH THE INPUT BUFFER C10 SECOND TIMEOUT>.">;
TWRT<"#LF#'L' : LOAD : PROMPTS THE USER WITH QUESTIONS RE DOWNLOADIN­
TWRTC"#LF#CONTROL-Z : EXIT TO MCR.">;
TWRTC"#LF#'H' OR 'HELP' : PRINTS THIS TEXT.#LF#">;

NCHARS:=O;
NIN:=O;
ACCEPT:=YES;
TIHEOUT:=YES; % THIS LINE REDUNDANT,BUT SO WHAT. %

ELSE .
ACCEPT: =NO;

END;

ENDPROC;

PROC CRETURN<l;

% THIS ROUTINE DEALS WITH THE <CR> COMMAND

IOBUF<NCHARS) := CR;
IF NCHARS = 1 THEN

ACCEPT := YES;
ELSEIF NCHARS <= 7 THEN

ACCEPT := YES;

ELSE

FOR I:= 1 TO NCHARS - 1 DO

REP;

IF IOBUF<I> < 'O' OR IOBUFCI> > ·7· THEN
ACCEPT := NO;

END·
'

ACCEPT := NO;
END;
IF ACCEPT = YES THEN

IOBUF<NCHARSl := CR;
NIN ::: 3;
TIMEOUT:= YES;
STATE := START;

END·
' ENDPROC;

PROC LFPRO·C C > ;

% CLOSE LOCATION AND OPEN NEXT LOWER ONE

IF NCHARS = 1 THEN
ACCEPT :=YES;

ELSEIF NCHARS <= 7 THEN
ACCEPT := YES;
FOR I:= 1 TO NCHARS - 1 DO

REP;

IF IOBUFCI) < "O' OR IOBUFCI) > ·7· THEN
ACCEPT := NO;

END·
'

ELSE
ACCEPT := NO;

END;
IF ACCEPT = YES THEN

TIMEOUT := YES;

END;
Et:rnPROC;

I OBUF < NCHARS > : = LF;
IF STATE = MEMORY THEN

NIN := 15;
ELSEIF STATE = REGSTR THEN

NIN:= 11;
ELSE % STATE IS PSW %

NIN := 2;
STATE := START;

END;

PROC GO();

% GO FROM GIVEN POINT %

\

IF NCHARS = 1 THEN
ACCEPT := YES;

ELSEIF NCHARS <= 7 THEN
ACCEPT := YES;

- ELSE

FOR I:= 1 TO NCHARS - 1 DO

REP·
'

IF -IOBUFCI) < ·o· OR IOBUFCI) > ·7· THEN
ACCEPT := NO;

END·
'

ACCEPT := NO;
END;
IF ACCEPT = YES THEN

NIN.:= 11;

END;
ENDPROC;

TIMEOUT := NO; % NO TIMEOUT ON INPUT
STATE := START;

% - -

% NO TIMEOUT ON INPUT %

PROC LOAD() ;

% THIS PROC PERFORMS THE LOAD INSTRUCTION
IF NCHARS = 1 THEN ,

TWRTC"#LF#DOWN LOAD THE ABSOLUTE LOADER? YIN
NIN:= TREAD<IOBUF,TERHB>; TWRTC"#LF#">i
IF IOBUFC1) = ·y· OR IOBUF<1>=·y· THEN

LOADLOADER<>;
END·

'

%_

#ENQ#" > •
- '

;./

TWRTC"#LF,LF#ENSURE HALT SWITCH ON LSI IS UP BEFORE LOADING.">;
TWRTC"#CR,LF#LOAD SHT? YIN #ENG#">;
N-IN := TREAD<IOBUF,TERHB>; TWRTC"#LF#">; ·
IF IOBUF(1) = ·y· OR IOBUFC1>='y: THEN

LOADSMT<>;
END;

TWRTC"#LF#START SHT RUNNING? YIN #ENG#">;
TREAD<IOBUF,TERMB>; TWRTC"#LF#">;
IF- IOBUFC1> = ·y· OR IOBUFCO=·y· THEN

NCHARS := 2; % 2 CHARS IN '06' %
NIN :=2; % EXPECT ·as· IN REPLY - %
I OBUF C 1) : =' 0. ; I OBUF C 2) : =. G. ;
SER IALW ();
SERIALRC>;
FOR I:=1 TO NREAD DO

ELSE

REP;
END;

OUTCIOBUF<I>>; % SEND REPLY TO TI:

NCHARS : = O;
NIN := O;
TIMEOUT := YES; % THIS LINE IS NOT NEEDED
ACCEPT := YES;

ACCEPT : = NO;
END;

ENDPROC;

PROC LOADLOADER<>;

%

% THIS PROC LOADS THE ABSOLUTE LOADER. THE LOADER ls IN. %
% THE ASCII FILE WITH UNIT NUMBER INLD. %

INT NRD:::.O;
INT SKIP:=7;
INT K:=O;
BYTE INB := O;

OPENINFILE<"SMTLOAD.ABS"l;

PROCESS<"157000/",7l;
SWF IL IN();

% OPEN THE FIRST LOCATION
% OPEN THE ABSOLUTE LOnDER
% INPUT STREAM

\

PROC PROCESSCREF ARRAY BYTE INP, INT NCH>;

%
%
%

%

% THIS ROUTINE PROCESSES ONE ODT COMMAND. THE COMMAND %
% IS GIVEN IN THE IOBUF ARRAY AND IT HAS NCHARS CHARACTERS%

NCHARS := NCH· ' . FOR I:= 1 TO NCHARS DO IOBUF(l) := INP_<I>; REP;

SCAN() ;
IF ACCEPT = YES THEN

END;
.ENDPROC;

SERI ALW <) ;· · ..
SERIALR ();
FOR 1:=1 TO NREAD DO

OUT.(IOBUF <I));
REP;.

PROC LOADSHT () ;

% SEND REPLY TO TI:.
. ' .

% THIS PROC LOADS THE SMT OPERATIN~ SYSTEH DOWN THE %
. % SERIAL LINE IN ABSOLUTE LOADER FORMAT. THAT IS . %

% THE FI~ST TWO BYTES ARE THE NUMBER OF.BYTES TO FOLLOW%
. : % THE REST ARE DATA BYTES THAT ARE LOADED INTO THE ' . %

% LSI 1103 IN SUCCESSIVE BYTES STARTING AT ZERO. %

. INT FILELEN,NBYTES, NREHAINDER, LSB:=O, MSB:~O, NBLKS, J, J1, J2;
INT BLKCNT;
INT ABORT;·

-OPENBLKINFILE<"SMT.TSK">;

READBUC C);

%MAX ADDRESS IS IN BYTES 11 & 12 OF FIRST RECORD OF *.T5K X
% FILES. I FOUND THIS OUT BY DUMPING A COUPLE OF *· TSK FILE.5% .

LSB:=IOBUFl11>; % LS BYTE OF MAX ADDRESS
MSB:=lOBUFC12>; · % HS BYTE

%
%

FILELEN := LSB + C HSB SLL 8) + 1; % LENGTH OF FILE=
NBLKS := FILELEN SRL 9; .% 512 CI.E. 2**9) BYTES PER

MAX ADDR + 1 % ·.
BLOCK % ..

NREMAINDER:= FILELEN HOD 512; . .
IF NREMAINDER#O THEN

NB~KS:=NBLKS + 1; % SEND DATA IN COHPLETE\BLOCKS ONLY·
END; .
NBYTES:=· NBLKS SLL 9; % NO OF CODE BYTES TO XFER <2**9 aYTES/BLOCK:

·. TWRT C "#LF#FI LE LENGTH IN BY.TES C OCTAL l : 11
) ; OWRT <F ILELEN) i

. TWRTC"#LF#") ·
. . ' ·TWRTC"NO OF 512-BYTE·BLOCKS TO TRANSFER <OCTAL>·: ">; OWRT<NBLKSl;
· TWRTC"#LF#TOTAL NO OF BYTES TO BE SENT : •>; OWRTCNBYTES+2>;·TWRTC"#LF#"

% PUT 340 INtO PSW TO DISABLE ALL.iNTERRUPTS. %
% PUT START ADDRESS (157000) INTO PC. %

PROCESSC"R7/",3>;
PROCESSC"157000C",7>;
PROCESSC"RSl",J);
PROCESSC"340C" 4)•

. ' ' ..-.. .

NCHARS : = 1 ; . : % 1 CHAR IN . P. %
· % OUTPUT "P" 10 RUN THE LOADER %

IOBUF (1) : =. P. ;
. SERIALW<>; .% COMMAND TO LSI TO RUN THE LOADER % .

NIN:=1;.
TIHEOUT:=YES;
SERIALR ();
FOR 1:=1 TO NREAD DO

OUTCIOBUF<I>>; % OUTPUT THE REPLY TO TI: · %
.REP;

. - .
< • ~ •

. % THE FIRST 2 BYTES SENT TO THE LSI GIVE THE LENGTH OF THE FILE TO %
.. % FOLLOW. %

BCC:=O;
FOR I := 1 TO 512 DO

BCC:= BYTECINTCBCC) + INTCIOBUFCI)));
REP;

ENDPROC;

PROC BUFSETCREF ARRAY BYTE BUFFER> INT;
,__

% THIS PROC TAKES AS INPUT A REF ARRAY BYTE AND GIVES AS OUTPUT AN INT %
% EQUAL TO THE ADDRESS OF THE FIRST BYTE OF THE ARRAY POINTED TO BY %
% BUFFER. . %

INT TEMP;
CODE 10, D;

HOV *BUFFERC%5),*TEMPC%5)
INC *TEMPC%5) ;SINCE 1ST BYTE IS LENGTH OF ARRAY

*RTL;
RETURN <TEMP) ;

ENDPROC;

%
x

SVC DATA BRICK DEFINITIONS.
--

%
%

% SVC DATA BRICKS ARE PART OF THE INTERFACE TO THE OPERATING %
% SYSTEM %

SVC DATA RRSIO;
PROC.() BYTE IN;
PROCCBYTE> OUT·

. ' ENDDATA;

SVC DATA RRSED;
BYTE TERMCH,

IOFLAG;
ENDDATA;

SVC DATA RRERR;
LABEL ERL;
INT ERN;
PROCCINT> ERP;

ENDDATA;

SVC DATA RRERRX;
INT LINENO;
BYTE UEFLAG,ERRLUN;
INT RSXDSW;

ENDDAT.A;

% FILE I/O SECTION %

% STREAM I/O INPUT PROCEDURE %
% STREAM I/O OUTPUT PROCEDURE %

\

% THIS IS THE ERROR EXIT PROCEDURE RRGEL %

% THIS IS FOR DIAGNOSTIC INFO %

% DSW RESULT FROM EXECUTIVE DIRECTIVES %_

MODE FNBLKCINT DEVDEVN,REF BYTE DEVT,INT DIRN,REF BYTE DIRT,
INT NAHN,REF BYTE NAHT>;

NODE IOCLCREF ARRAY BYTE BFR,INT N,DV,PTR,MD,TRM>;

EXT PROCCREF FNBLK,INT,INT,INT>INT FOPENB;
EXT PROCCREF INT,INT,INT,INT>INT GETBLK;
EXT PROCCREF ARRAY INT> FINIT;
EXT PROCCREF ARRAY BYTE,REF FNBLK>FNAHE;
EXT PROCCINT> INT·FCLOSE;

EXT PROC <REF FNBLK,INT,INT>INT FSTRTIN;
EXT PROCCBYTE>TTOUT,GPOUT;
EXT PROCC>BYTE TTIN,GPIN,INF;

EXT DATA FILE01; REF ARRAY INT FDBTBL; ENDDATA;

SVC DATA RRCHAN; REF IOCL INCL,OUTCL;ENDDATA;

DATA FILEIOLOCAL;
FNBLK FILENAM:=<O,DUHHY,O,DUMMY,O,DUHMY>;
BYTE DUHHY;
IOCL TTINCL :=<TTINBUF,o,1,0,0,o>;
IOCL TTOUTCL:=lTTOUTBUF,0,2,1,o,o>;
IOCL INFILECL:=<INFBUF,o,o,o,o,o>;
ARR~YC132>BYTE INFBUF:=c· . (132>>;
ARRAYC132>BYTE TTINBUF:=<OC132>>;
ARRAY C 132) BYTE TTOUTBUF: = C LF, . . C 131) > ;
ARRAYC512>BYTE IOBUF;
INT DUMINT;
REF INT BUFADR:=DUMINT; % WILL LATER POINT TO IOBUF %

ENDDATA;

PROC INITIALISEIOC>;
REF ARRAY BYTE IOBUFPTR:=IOBUF;
FINITCFDBTBL);
% GET ADDRESS OF START OF IOBUF INTO THE REF INT BUFADR %
CODE 10,0;

*RTL;
ENDPROC;

HOV
INC

PROC SWTTINO;
INCL:=TTINCL;
IN:=GPIN; .

ENDPROC;

*IOBUFPTRCS>,*BUFADR/FILEI-OLOCAL
*BUFADR/FILEIOLOCAL

PROC SWTTOUTC>;
OUTCL:=TTOUTCL;
OUT:=GPOUT;

ENDPROC;

PROC OPENINFILECREF ARRAY BYTE FILETEXT>;
FNAHECFILETEXT,FILENAH>;
SWFILIN ();
IF FSTRTINCFILENAH,1,INFILELUN> #0 THEN

RRGELC605>;
END·

ENDPROC; t-- .

PROC CLOSEINPUTFILEC>;
IF FCLOSEC1)#0 THEN RRGELC60S>;END;

ENDPROC;

PROC SWFILINO;
INCL:=INFILECL;
IN:=INF;

ENDPROC;

PROC OPENBLKINFILECREF ARRAY BYTE FILETEXT>;
FNAHECFILETEXT,FILENAH>;

;POINT TO START

~F FOPENBCFILENAM,1,INFILELUN,0)#0 THEN RRGEL(605>;END;

TITLE HEDFRAHE; ·~
% DIAGNOSTIC TO BUILD UP ,SEND AND RECEIVE HEDIA DATA-LINK %
% PROTOCOL FRAMES. IT CALLS THE LINKLB ROUTINE 'HESSANS' TO %
% WRITE THE FRAHE OUT AND RECEIVE THE REPLY FROH HEDIA. %

LET
LET
LET

LF
ENG
ETX

=
=
=

OCT 012;
OCT 005;
OCT 003;

EXT PROC<REF ARRAY BYTE>TWRT;
EXT PROCC>INT IREAD,OREAD;
EXT PROCCINT> IWRT,OWRT;
EXT PROCCREF ARRAY BYTE,INT,REF ARRAY BYTE,INT>HESSANS;
EXT PROCO TTIO;

DATA LOCAL;
ARRAYC80) BYTE OUTBUF;
ARRAYC80) BYTE INBUF;
INT NOUT;
INT NIN;
INT ADDR;
INT SAVEADDR;
INT NITEMS;
INT DAT;
INT GOFLAG :=O;
INT N;
INT COMMAND;

ENDDATA;

ENT PROC RRJOBC>;
TTIOO;

START:
TWRTC"#LF# MEDFRAME CLINKLB tester) <Media protocol tester> #LF,LF#">;
TWRTC 1. SINGLE HEDIA READ#LF#">;
TWRT < 2. SINGLE LIST READ#LF#" >;
TWRT< 3. BLOCK MEDIA READ#LF#");
TWRT< 4. BLOCK LIST READ#LF#">;
TWRT< 5. DIGITAL CHANGE WORDS#LF#">;
TWRTC 6. MEDIA STATUS WORD#LF#">;
TWRTC 7. WRITE TO MEDIA#LF#">;
TWRTC 8. WRITE TO LIST#LF#">;
TWRTC"9. GO#LF,LF#">;
TWRT<"10. SYNCHRONISE#LF#">;
TWRTC"=>#ENG#">;

N := IREADC>;

IF N=1 OR N=2 THEN % SINGLE READ %
COMMAND := N;
NOUT := 4;
NIN := 6;
ADDRESS<>;
OUTBUF<1>:= CBIN 01000000) LOR <BYTE<COMMAND>>

ELSEIF N=3 OR N=4 THEN % BLOCK READ %
COMMAND := N;
NOUT := 5;
TWRTC"#LF#NO OF ITEMS#ENG#">;
NITEMS := IREADO;
OUTBUFC4) := BYTE<NITEMS>;
NIN := 3*CNITEHS + 1>;

OUTBUFC1) := CBIN 01000000) LOR CBYTECCOHHAND»; N-/l~-Z.
ADDRESS<>; ~

ELSEIF N=5 THEN %DIG CH WORDS %
NOUT :=4;
OUTBUFC1) :=BIN 01000111;
OUTBUFC2> := O;
OUTBUFC3) := o;
NIN :=9;

ELSEIF N=6 THEN % READ STATUS WORD %
OUTBUFC1) :=BIN 01001000;
OUTBUF C 2 > : = 0;
OUTBUFC3) := O;
NOUT :=4;
NIN := 6;

ELSEIF N=7 OR N=B THEN % WRITE %
COMMAND := N + 5;
OUTBUFC1) := <BIN 01000000). LOR CBYTECCOHHAND>>;
ADDRESS() ;
NOUT :=7;
NIN := 7;
TWRTC"#LF#DATACOCTAL)#ENQ#">;
DAT : = OREAD C > ;
ENCODE <DAT>;

ELSEIF N=9 THEN % GO MESSAGE %
NOUT := 4;
NIN := 3;
OUTBUF(1) := BIN 01001110;
GOFLAG :=1;
ADDRESS<>;

ELSEIF N=10 THEN % SYNCHRONISE %
NOUT : = 1 ;
NIN := 20;
OUTBUF C1 > : = BIN 01001010 % A SPARE CODE %

ELSE
GOTO START;

END;

PUTBCCC>;

TWRTC"#LF#OUTPUT INFO :#LF#">;
FOR I:=1 TO NOUT DO

OWRT<INTCOUTBUFCI>>>; TWRTC" ">;
REP;

HESSANSCOUTBUF,NOUT,INBUF,NIN>;

TWRTC"#LF#ANSWER RECEIVED:">;
FOR I := 1 TO NIN DO

REP;

IF <<I-1> HOD 8)=0 THEN TWRTC"#LF#"l;END;
OWRTCINTCINBUFCI> > >; TWRTC" 11

);

TWRTC"#LF#");

GOTO START;

ENDPROc;

PROC PUTBCC<>;
INT T:=O;
BYTE B;
FOR I:=1 TO NOUT-1 DO

T:=T NEV OUTBUFCI>; I

REP;
B:= BYTE<T LAND OCT 077>;
B:= B LOR BIN 01000000;
OUTBUF CNOUT> : = B;

ENDPROC;

PROC ADDRESS<>;
IF GOFLAG = 1 THEN

ADDR := SAVEADDR;
ELSE

% CONVERT TO BYTE

TWRT<"#LF#Media/list address #ENG#">;
ADDR := OREADC>;

END;
OUTBUF<2> := BYTECADDR LAND BIN 00001111>;
OUTBUFC3l := BYTECCADDR SRL 4> LAND BIN 00111111>;
SAVEADDR := ADDR;
GOFLAG := O;

ENDPROC;

PROC ENCODECINT INPUT>;
OUTBUFC4> := BYTECINPUT LAND BIN 00111111>;
OUTBUF(5) := BYTECCINPUT SRL 6) LAND BIN 00011111>;
OUTBUFC6> := BYTECCINPUT SRL 11) LAND BIN 00011111>;

ENDPROC;

TITLE MEDTEST
TESTS THE MICRO-MEDIA ANALOG & DIGITAL INPUTS & OUTPUTS;

% THIS PROGRAM, ALTHOUGH IT DOES NOT USE THE MEDCOM' DATA BASE, %
% USES THE PROCEDURES FROM MEDLNK TO GET AND SEND THE DATA TO/FROM %
% MEDIA. THESE PROCS CALL THE SECURE/RELEASE PROCS IN SECREL, WHICH WE DO
%
% NOT WANT TO HAPPEN HERE, SO THE MODULE SECREL IS NOT INCLUDED AT TASKBUILD
%
% TIME, AND INSTEAD DO-NOTHING SECURE AND RELEASE PROCS ARE PROVIDED INSIDE
%
% THIS MODULE.
%

LET LF
LET ENG
LET ETX
LET ESC
LET YES=1;
LET NO=O;
LET RSNGANA =
LET WSNGHED =

= OCT 012;
= OCT 005;
= OCT 003;
= OCT 033;

2;
1 2;

MODE MEDCARD<INT STAT,HEDDAT,ADDR,REAL SCANTIHE>;

EXT PROC CINT,REF HEDCARD>INT SINGLIN,WRITE;
EXT PROC <INT,INT,INT,REF ARRAY MEDCARD>INT BLOCKIN;
EXT PROC<REF ARRAY BYTE>TWRT;
EXT PROCC>INT IREAD,OREAD;
EXT PROCCINT> IWRT,OWRT;
EXT PROC () TTIO;
EXT PROCC> STARTAST,STOPAST;
EXT PROCC>BYTE ASTCHAR;
EXT PROCC>INT CTLCYET,ASTYET;

SVC DATA RRSIO;
PROC C) BYTE IN;
PROC <BYTE) OUT;

ENDDATA;

DATA LOCAL;
INT CHOICE:=O;
ARRAYC4) INT INPUT :=<O,o,o,o>;
INT DIGDAT := HEX FFOO;
INT NIBLCT := O;
INT LOOPCT:=O;
INT ERRNO;
MEDCARD MCARD;

ENDDATA;

ENT PROC RRJOB<>;
TTIOO;
WHILE CHOICE <1 OR CHOICE >2 DO

HOME();
CLEOSC>;
TWRT<"#LF#HEDIA TESTER">;
TWRTC"#LF#============#LF,LF#">;
TWRT<"1. DIGITAL#LF#">;
TWRTC"2. ANALOGUE#LF#">;
TWRTC"->#ENQ#");
CHO I CE:= I READ() ;

REP;
IF CHOICE=1 THEN

DIGITAL();
ELSE

ANALOGUE<>;

END;
HOME() ; CLE OS() ;
OUTCETX>;

ENDPROC;

PROC DIGITAL();
INT TYPE,SUBTYPE;
HOME() ; CLEOS () ;
TWRTC"#LF#DIGITAL WORKOUT FOR MEDIA#LF#">;
TWRT<"=========================#LF,LF#");
TWRTC"1. DIG INPUTS 1-16 CONNECTED TO DIGOUTS#LF#">;
TWRTC"2. DIG INPUTS 17-32 CONNECTED TO DIGOUTS#LF#">;
TWRTC"3. DIG INPUTS 1-32 CONNECTED TO DIGOUTS#LF#"l;
TWRTC"4. MONITOR SWITCHES 1-16#LF#");
TWRTC"S. MONITOR SWITCHES 17-32#LF,LF#">;
TWRT<"-~#ENG#")· ·

' CHO I CE:= I READ() ;
TYPE:=CHOICE :/ 4; % 0 : INS TO OUTS ; 1 MONITOR SWITCHES %
SUBTYPE:= TYPE+ (CHOICE HOD 4>;
STARTAST ();
IF TYPE=O THEN % O/P CONNECTED TO l/P %

WHILE CTLCYET<>=NO DO
NIBLCT:=<NIBLCT+1)MOD 16;
DIGDAT := NIBLCT LOR CNIBLCT SLL 4) LOR CNIBLCT SLL 8)

LOR CNIBLCT SLL 12>;

MCARD.HEDDAT:=DIGDAT;
HCARD.ADDR:=4; % DIG OUTPUT %
MCARD.STAT:=1;
ERRNO:=WRITEC12,MCARD>;
IF ERRNO#O THEN

TWRTC"#LF#ERR ">;IWRTCERRNO>;TWRTC" ON WRITE TO DIG OUTPUT">;OUTCLF>;
ELSE

IF SUBTYPE=1 THEN % I/P 1-16 %
GETANDCHECKCO>;

ELSEIF SUBTYPE=2 THEN
GETANDCHECK(1);

ELSEIF SUBTYPE=3 THEN
GETANDCHECK CO> ;
GETANDCHECKC1>;

ELSE
TWRTC"#LF#ILLEGAL SUBTYPE #LF#">;

END;
END;
LOOPCT:=LOOPCT+1;
IF LOOPCT MOD 16 = 0 THEN

TWRTC"+#ETX#");
END;
IF LOOPCT MOD 1200 = 0 THEN

TWRTC"#LF#">;
END·

' REP;
ELSE % SWITCHES %

WHILE CTLCYET<>=NO DO
MCARD.STAT:=1;
HCARD.ADDR:=SUBTYPE-1;
ERRNO:=SINGLINC1,MCARD>;
IF ERRNO#O THEN

TWRTC"#LF#ERR ON READ FROM DIGIN ">;IWRTCSUBTYPE-1>;TWRTC"#LF#"l;
ELSE

HCARD.ADDR:=4;
HCARD.STAT:=1;

%
MCARD.MEDDAT:=NOTCMCARD.MEDDAT>; % BECAUSE DIGINS ARE -VE LOGI~

ERRNO:=WRITEC12,MCARD>;
IF ERRNO#O THEN

TWRTC"#LF#ERROR ON WRITE TO DIGOUT #LF#">;
END;

END;
REP;

END;
STOPASTC>;

E3

ENDPROC;

PROC GETANDCHECKCINT N>;
MCARD.ADDR:=N; %DIGIN %
MCARD.STAT:=1;
MCARD.MEDDAT:=O;
ERRNO:=SINGLINC1,HCARD>;
IF ERRNO#O THEN

TWRTC"#LF#ERR ON READ FROM DIGIN : ERRNO ">; IWRTCERRNO>; TWRTC"#LF#");
ELSE

IF NOTCHCARD.MEDDAT>#DIGDAT THEN % 'NOT' BECAUSE I/P'S ARE -VE LOGIC%
TWRTC"#LF#DATA INCORRECT : DIGIN NUMBER">; IWRTCN>; TWRTC"#LF#">;
TWRTC"DATA WRITTEN: ">; OWRTCDIGDAT>;
TWRTC" DATA READ: ">; OWRTCNOTCHCARD.MEDDAT>>; TWRTC"#LF#">;

END;
END;

ENDPROC;

PROC ANALOGUE<>;
INT TMP2:=0;
INT TMP:=O;
HOME() ; CLEOS () ;
TWRTC"#LF#THIS SECTION OF THE PROGRAM READS IN THE SPECIFIED ANALOG">;
TWRTC"#LF#INPUTS AND OUTPUTS THE VALUE READ TO THE SPECIFIED OUTPUTS#LF# 11 >;
FOR 1:=1 TO 4 DO

WHILE INPUTCI><1 OR INPUTCI>>16 DO
TWRTC"#LF#WHICH INPUT TO OUTPUT">; IWRTCI>; TWRTC" #ENQ#">;
INPUTCI>:=IREADC>;

REP;
REP;
STARTASTO;
WHILE CTLCYETC>=NO DO

FOR 1:=1 TO 4 DO
MCARD.STAT:=1;
MCARD.ADDR:=INPUTCI>;
MCARD.MEDDAT:=O;
ERRNO:=SINGLINCRSNGANA,MCARD>;
IF ERRNO#O THEN

TWRTC"#LF#ERR ">;IWRTCERRNO>; TWRTC" ON READ FROM ANINP ">;
IWRTCI>; OUTCLF>;

ELSE
HCARD.STAT:=1;
MCARD.ADDR:=OCT 14;
TMP:=MCARD.HEDDAT LAND OCT 001774; % MASK All XCEPT 8 MSB'S %
HCARD.MEDDAT:=CTMP SLL 5)LOR C1 Sll CI-1>>;% SHIFT INTO POSN FORD/A%
ERRNO:=WRITECWSNGMED,MCARD>;
IF ERRNO#O THEN

TWRTC"#LF#ERR ">;IWRTCERRNO>;TWRTC" ON WRITE TO ANINP ">;
IWRT CI> ;OUT CLF>;

END;
END;

REP;
REP;

ERRORCOUTOFRANGE>;
END·

' RETURN <ANINNUM>;
ENDPROC;

ENT PROC SETSETPTCINT ANOUTNUH, REAL VALUE>;

% SETS THE SETPOINT OF THE ANALOG INPUT CORRESPONDING TO %
% ANALOGUE OUTPUT ANOUTNUM, AS ASSIGNED PREVIOUSLY BY CALLING.%
% SETINPUT. %

IF ANOUTNUM > 0 AND ANOUTNUM <= TOTALAO THEN
TASKINFO<TBUF'>;
IF AODESCCANOUTNUH>.UIC = TBUF.TASK17 THEN

SECMEDCOM<>;
AODESCCANOUTNUH>.SETPOINT :=VALUE;
RELHEDCOH<>;
ERRNUH := NOERROR;

ELSE
ERRNUM := WRONGUSER;

END·
' ELSE

ERRNUH := OUTOFRANGE;
END·

' ERROR<ERRNUM>;
ENDPROC;

ENT PROC GETSETPTCINT ANOUTNUHlREAL;

% RETURNS THE SETPOINT FOR THE ANALOG INPUT CORRESPONDING TO %
% AN. OUTP ANOUTNUM. %

REAL VALUE;
IF ANOUTNUH > 0 AND ANOUTNUM <~ TOTALAO THEN

VALUE:= AODESCCANOUTNUM>.SETPOINT;
ERRNUM := NOERROR;

ELSE
ERRNUH := OUTOFRANGE;

END;
ERRORCERRNUM>;
RETURNCVALUE>;

ENDPROC;

PROC ERROR<INT ERRNUM>;
IF ERRNUH#NOERROR THEN

IF ERP = RRERP THEN

\.

% might as well give the user a more friendly mes~age %
% than the usual RRERP display. %
TWRTC"#LF,LF#HEDUSER ERROR -- ">; ·
IF ERRNUH = WRONGUSER THEN

TWRTC"ATTEHPT TO WRITE TO CHANNEL NOT ATTACHED TO#LF,LF#">;
ELSEIF ERRNUM = BADSWITCH THEN

TWRT<"ADSWITCH OR IOSWITCH NOT 0 OR 1#LF,LF#">;
ELSEIF ERRNUH = OUTOFSCAN THEN

TWRTC"HEDIA INPUT I OUTPUT IS OUT OF SCAN#LF,LF#">;
ELSEIF ERRNUH = OUTOFRANGE THEN

TWRTC"CHANNEL NUMBER OUT OF RANGE#LF,LF#"l;
END;

ELSE
ERPC700+ERRNUH>;

END;
END;

ENDPROC;

TITLE ABM
ABORTS TASKS WHICH ACCESS HEDCOM;

% SECURES MEDCOM, ABORTS THE TAS~, RELEASES MEDCOM, THEN EXITS %

LET ETX = 3;
LET ENQ = 5;
LET LF = OCT 12;

MODE R50NAHECINT R50N1,R50N2>;
MODE LUNBUFCINT LUNNAME,

BYTE LUNDEV,

LUNDEV1,
INT LUNCHAR1,
LUNCHAR2,
LUNCHAR3,
LUNSIZE>;

% LUN NAME- E.G. . rr- OR • DL' %
% DEVICE NO, E.G. 7 FOR TT7: OR %
X 1 FOR Dl1: %
% THE REST IS IRRELEVANT BUHF. %

EXT PROCC> SECMEDCOM,RELHEDCOH; % IN SECREL.RTL %
EXT PROC <INT) IWRT,RRGEL;
EXT PROCCREF ARRAY BYTE> TWRT;
EXT PROCCREF R50NAHE> R50READ,R50WRT;
EXT PROC <> TTIO,GETMCR;

SVC DATA RRTASK;
R50NAHE HYTASK;

ENDDATA;

SVC DATA RRERRX;
INT LINENO;
BYTE UEFLAG,ERRLUN;
INT RSXDSW;

ENDDATA;

DATA LOCAL;
LUNBUF LB:=<O,o,o,o,o,o,o>;
RSONAME NAME;
REF RSONAHE NAHEP:=NAHE;
INT DS;
RSONAHE HCRNAME:=COCT 050712,0CT 131574>;

ENDDATA;
% RADIX-SO f"OR 'MCR .•• · %

ENT PROC RRJOBC>;
TTIOO;

% ABOH IS THE PRIVILEGED VERSION WHICH CAN ABORT ANY TASK. IT MUST . %.
% NOT BE INSTALLED, SO ONLY PRIVILEGED USERS CAN RUN IT. X

% ABM IS THE UNPRIVILEGED VERSION, WHICH SHOULD BE INSTALt.B AT HIGH %
% PRIORITY AS ••• ABM. IT CAN ABORT PRECISELY THE SAHE TASKS THAT %
% AN UNPRIVILEGED USER CAN ABORT USING 'ABO'. %

%%%TWRTC"TASKNAHE #ENQ#">;%%%
%%GETHCR<>;%%

% THIS LINE FOR ABOH %
% THIS LINE FOR ••• ABtl %

RSOREAD<NAHEP>; % GET THE TASK NAME %
IF NAHE.R50N1=0 AND NAHE.R50N2=0 THEN

% USER HAS NOT ENTERED A TASK NAME; USE DEFAULT. <TTnn:) %
GETDEFAULTTASKNAHE<NAMEP>;

END; ·

IF NAHE.R50N1=HYTASK.R50N1 AND NAHE.R50N2=HYTASK.R50N2 THENEJ0·.
% USER TRYING TO ABORT THIS TASK : STOP HIM! % N-1/-2-
TWRT("ABM -- TRIED TO ABORT ABM#ETX# 11

); ·. . .

ELSEIF NAME.R50N1=HCRNAME.R50N1 AND NAME.R50N2=HCRNAME.R5DN2 THEN
% USER TRYING TO ABORT HCR... %
TWRTC"ABM ~-TASK NOT ABORTABLE#ETX# 11

);

ELSE
ABORT CNAHEP> ;

END;
ENDPROC;

PROC ABORT< REF R50NAME TASK>;

SECMEDCOM C); .

CODE 24,0;
.MCALL
.LIST
.GLOBL

*RTL;

HOV
ABRT$5
HOV
BCC

DS:= RSXDSW;
RELMEDCOM<>;
CHECKDSW<>;
RETURN;

OK:
RELMEDCOH<>;

ENDPROC;

ABRT$S
HEB
$DSW
*TASKCR5>,R1
R1
$DSW,*RSXDSW/RRERRXCRO>
*OK

% IF UNSUCCESSFUL THEN
% SAVE DSW FOR LATER
% RELEASE HEDCOM
% CHECK WHY NOT SUCCESSFUL
%
%
%
%

ELSE <*.SUCCESSFUL*)
RELEASE HEDCOH

END

PROC CHE Cl(DSW () ;

CODE 36,0;
CHP
BER
CMP
BEQ
CMP
BEQ
HOV

*RTL;
TWRT <"ABM
RETURN;

NOTINS:
0-·-·

TWRTC"ABH
RETURN;

NOTACT:
TWRT<"ABM
RETURN;

NOTPRI:
TWRTC"ABH

ENDPROC;

*DS/LOCAL,#IE.INS
*NOT INS
*DS/LOCAL,#IE.ACT
*NOT ACT
*DS/LOCAL,#IE.PRI
*NOTPRI
*DS/LOCAL,*RSXDSW/RRERRXCRO)

ABORT DIRECTIVE ERROR, DSW=#ETX#");IWRTlRSXDSW)~

TASK NOT IN SYSTEH#ETX#");

TASK NOT ACTIVE#ETX#">;

PRIVILEGED COHHAND#ETX#"l;

PROC GETDEFAULTTASKNAHECREF R50NAME NAME>;

%
%
%
%
%
%
x
x

X THIS PROC FINDS OUT WHICH TERMINAL THE USER IS SIGNED ONTO. %
% IT DOES THIS BY A CALL OF GLUN$S MACRO TO GET INFO ABOUT LUN %

8
% NUMBER 1, WHICH WAS ASSIGNED TO JI: DURING TASKBUILD OF ABM. %
% SEE MODE LUNBUF(...•) STATEMENT ABOVE. . . %

INT TTNO; . % TERMINAL FROM WHICH USER HAS CALLED ABM %
INT HSDIGIT,LSDIGIT; % nn IN TTnn: %

LUNINFO (1 ,LB>; % LUN 1 IS ASSIGNED TO TI: %
TTNO := INTCLB.LUNDEV>;
% WE NOW ENCODE TTnn <WHERE nn = TTNO> INTO RADIX 50 FORM. %
% nn IS IN OCTAL. %
LSDIGIT:= TTNO LAND OCT 7; % LEAST SIGNIFICANT DIGIT %
HSDIGIT:= CTTNO SRL 3> LAND OCT 7;
IF MSDIGIT=O THEN

% NEED 'TTn' %
MSDIGIT:=LSDIGIT;
NAHE.R50N2:=0;

ELSE
NAHE.R50N2:=1600*CLSDIGIT +OCT 36>; % 1600 IS <OCT 50)**2 %

END;
NAHE.R50N1.:=0CT 076400 + OCT 001440 + HSDIGIT + OCT 36;

ENDPROC;

PROC LUNINFOCINT LUN,REF LUNBUF BUF>;

% EXECUTES GLUN$5 DIRECTIVE REQUEST TO GET LUN INFO

.
'

CODE 22, 0; ·
.MCALL GLUN$S
.LIST HEB
. GLOBL $DSW

%

GLUN$S *LUNC5>,*BUFC5l ; GLUN$S DIRECTIVE
HOV $DSW,*RSXDSW/RRERRXCR0) ; SAVE DSW
BCC *OK ;·DIRECTIVE SUCCESSFUL

*RTL;

RRGELC612>;

OK:
ENDPROC;

% DIRECTIVE UNSUCCESSFUL %

TITLE HEDRHD; ~
% MEDRHD GIVES A RHDEMO-LIKE DISPLAY OF INFORMATION ABOUT HEDIA AND %
% THE STATE OF THE DATA-BASE MEDCOM. %

LET LF = OCT 12·
' LET ENQ=5;

LET ETX=3;
LET NL = 10;
LET ESC = OCT 33;
LET SP = • . ;
LET CONTROLZ=26;
LET CONTROLC=3;

% numbers of inputs and outputs in HEDCOM :

LET NA0=4;
LET NSIMA0=4;
LET TOTALAO=B;

LET NMULT = 16;
LET NSIMAI = 4;
LET TOTALAI = 20j

LET NDIGICARD = 2;
LET NSIMDIGICARD = 2;
LET TOTALDIGICARD = 4;

LET NDIGOCARD = 1;
LET NSIHDIGOCARD = 1;
LET TOTALDIGOCARD = 2;

LET TIMELINE = 5;
LET TIMECOL = 24;
LET DIG = TIMELINE + 4;
LET ANA = DIG + 7;
LET SCANLINE = ANA + 3;

% line on screen where time is displayed
\

LET SECLINE = SCANLINE + 4; % line where current task is displayed
LET SECCOL = 35;

LET YES=1;
LET NO=O;

HODE MEDCARDCINT STAT,HEDDAT,ADDR,REAL SCANTIHE>;
MODE AORECCINT UIC, USERINT, ANIN,REAL SETP>;
MODE R50NAHECINT RSON1,RSON2>;
MODE IOCLCREF ARRAY BYTE BFR, INT N, DV, PTR, MD, TRH>;

EXT PROC <REF R50NAME> HCOMTASK; % IN SECREL.RTL %
EXT PROCCINT> DELAY;
EXT PROC () TTIO;
EXT PROC <REF ARRAY BYTE> TWRT;
EXT PROC Cl BYTE TTIN,HSIN;
EXT PROC <BYTE> HSOUT,TTOUT;
cXT PROC CREF RSONAHE> RSOWRT,R50READ;
EXT PROC CREAL>REAL TIMER;
~~T PROCCREAL> RWRTU;
EXT PROC <INT> TIMDAT;
EXT PROC <>INT CTLCYET,ASTYET,NCTLCYET;
E:n PROC CINT>INT WTCCCZ;
~XT PROC <>BYTE ASTCHAR;
EXT PROCCINT>INT WAITAST,WAITCTLC,WAITNCTLC;

%

ENT PROC RDHEDIA<INT ADSWITCH,IOSWITCH,CHANNUH) INT;

% THIS PROC READS ONE OF THE DIGITAL OR ANALOGUE INPUTS OR OUTPUTS %
% FROM. %
% THE DATA BASE AND PUTS THE VALUE READ INTO THE INT VALUE. %
% ADSWITCH : =O FOR ANALOGUE, =1 FOR DIGITAL. %
% IOSWITCH : =O FOR INPUT, =1 FOR OUTPUT. %

INT VALUE:=O;
ERRNUH := NOERROR;
IF ADSWITCH=DIGITAL THEN

IF IOSWITCH=INPUT THEN
VALUE:=RDDlGINCCHANNUHJ;

ELSEIF IOSWITCH=OUTPUT THEN
VALUE:=RDDIGOUTCCHANNUH>;

ELSE .
ERRNUH:=BADSWITCH;

END;
ELSEIF ADSWITCH=ANALOG THEN

IF IOSWITCH=INPUT THEN
VALUE:=RDANIN<CHANNUM>;

ELSEIF IOSWITCH=OUTPUT THEN
VALUE:=RDANOUTCCHANNUHJ;

ELSE
ERRNUH:=BADSWITCH;

END;
ELSE

ERRNUM:=BADSWITCH;
END;
ERRORCERRNUH>;
RETURNCVALUE>;

ENDPROC; .

PROC WRANOUTC INT CHANNUH, HDATA>;

% THIS PROC WRITES THE DATA MDATA TO THE MEDCOH DATA BASE,
% IT IS SENT TO MEDIA BY THE MEDIA UPDATE TASK MEDUPDAT.
% THE OUTPUT CHANNEL MUST HAVE PREVIOUSLY BEEN ATTACHED TO.
% CHANNUH : . ANALOGUE CHANNEL NUMBER TO WHICH THE DATA
% IS TO BE SENT.
% ANALOGUE: CHANNUM IN RANGE 1.a8
% MDATA THE 8 LEAST SIGNIFICANT BITS ARE OUTPUT;

FROM WHERE %
%
%

%.

%

IF CHANNUH > 0 AND CHANNUH <= TOTALAO THEN % CHANNEL IN RANGE %
TASKINFO<TBUF>; % GET UIC OF USER PLUS OTHER GARBAGE INTO TBUF %
IF AODESC<CHANNUM>.UIC = TBUF.TASK17 THEN% CORRECT USER %.

% BITS 0 TO 3 OF HEDDAT ARE THE CHANNEL SELECT; LEAVE THEM %
% ALONE. PUT THE 8 LEAST SIGNIFiCANT BITS OF.MDATA INTO BITS %
% 7 TO 14 OF HEDDAT. X
SECHEDCOH () ;
IF ANOUTP<CHANNUH>.STAT LAND 1 = 1 THEN % IN SCAN %

ANOUTPCCHANNUH>.MEDDAT := CCANOUTPCCHANNUHl.MEDDAT> LAND HEX Fl
LOR CCHDATA LAND HEX FF> SLL 7>;

ELSE
ERRNUH := OUTOFSCAN;

END;
RELHEDCOHC>;

ELSE
ERRNUH := WRONGUSER;

END;
ELSE

ERRNUH := OUTOFRANGE;
END;

ENDPROC;

8
% CHANNEL NO IS OUT OF RANGE %

PROC WRDIGOUT CINT CHANNUM,MDATA>;
% THIS PROC WRITES THE DATA HDATA TO THE HEDCOM DATA BASE, FROM WHERE %
% IT IS SENT TO MEDIA BY THE MEDIA UPDATE TASK MEDUPDAT %
% THE OUTPUT CHANNEL CHANNUM MUST HAVE PREVIOUSLY BEEN ATTACHED TO. %
~ CHANNUM THE CHANNEL NUMBER TO WHICH THE DATA IS TO BE SENT. %
% MUST BE IN RANGE 1 •• 32*TOTALDIGOCARD. %
% HDATA INTERPRETED AS ZERO IF MDATA = O, OTHERWISE ONE. %

INT CARDNO, CARDCHAN, MASK;
IF CHANNUM > 0 AND CHANNUM <:: TOTALDIGOCARD*16 THEN

TASKINFOCTBUF>;
CARDNO : :: C (CHANNUM - 1) : I 16) + 1 ; .
CARDCHAN := << CHANNUM -1) HOD 16) + 1;
MASK := 1 SLL C16 - CARDCHAN>;
IF DIGUICSCCARDNO,CARDCHAN> = TBUF.TASK17 THEN

SECHEDCOH ();
% CORRECT USER %

IF DIGOUTCCARDNO>.STAT LAND 1 = 1 THEN
IF HDATA = 0 THEN

% IN SCAN %

% SET BIT CHANNUH <FROM THE LEFTJ OF THE DIG O/P TO ZERO %
DIGOUTCCARDNO>.HEDDAT:= DIGOUTCCARDNO>.HEDDAT LAND NOT CHASK>;

ELSE % REGARD NON-ZERO DATA AS A ONE %
% SET BIT CHANNUH <FROM THE LEFT> OF THE DIG OUTPUT TO ONE
DIGOUTCCARDNOl.HEDDAT := CDIGOUTCCARDNOJ.MEDDAT) LOR MASK;

END;
ELSE

. ERRNUM := OUTOFSCAN;
END;
RELHEDCOM<>;

ELSE
ERRNUM ::: WRONGUSER;

END·
. '

%WRONGUIC·.

ELSE % CHANNEL DOES NOT EXIST
. ERRNUM := OUTOFRANGE;

END;
ENDPROC;

PROC RDANINCINT CHANNUM) INT;

%

%

%

% THIS PROC READS THE ANALOGUE INPUT NUMBER CHANNUM FROM THE DATA %
% BASE AND RETURNS THE VALUE READ. %

INT VALUE := O;
IF CHANNUM > 0 AND CHANNUH <= TOTALAI THEN

IF ANINPCCHANNUHl.STAT LAND 1 = 1 THEN
VALUE := <ANINPCCHANNUM>.HEDDAT SRL 5)
t <BECAUSE BITS 5 TO 14 ARE THE DATA>

ELSE
ERRNUH := OUTOFSCAN;

END;
ELSE

ERRNUM := OUTOFRANGE;
END;
RETURN <VALUE>;

ENDPROC;

% IN SCAN
LAND HEX 7FFF ;

%

%

PROC RDANOUT C INT CHANNUH) INT;
% THIS PROC RETURNS THE MEDDAT FIELD FROH THE MEDCARD REPRESENTING %

~
% ANALOGUE OUTPUT NO CHANNUM, I.E. RETRIEVES THE VALUE THAT THE USER %
% ATTACHED TO THAT ANALOGUE OUTPUT LAST WROTE TO ·IT. %

INT VAL.UE:::o;
IF CHANNUM > 0 AND CHANNUM <= TOTAL.AO THEN % IN RANGE %

VALUE := CANOUTPCCHANNUM> .MEDDAT SRL 7)LAND HEX DOFF;
ELSE

ERRNUH := OUTOFRANGE;
END· ' . RETURN (VALUE>;.

ENDPROC;

PROC RDDIGIN CINT CHANNUH) INT;
% THIS PROC READS THE DIGITAL INPUT NUMBER CHANNUH FROM HEDCOM %.
% AND RETURNS 1 OR 0 ACCORDINGLY. %

INT VALUE := O,HASK,CARDNO,CARDCHAN;
IF CHANNUM > 0 AND CHANNUM <= TOTALDIGICARD*16 THEN

CARDNO : = C (CHANNUM - 1) : I 16) + 1 ;
CARDCHAN := ((CHANNUM -1) HOD 16 > + 1;
MASK := 1 SLL (16 - CARDCHAN >;
IF DIGINPCCARDNO) .STAT LAND 1 = 1 THEN X IN·SCAN %

IF DIGINPCCARDNO>.MEDDAT LAND MASK= 0 THEN
% CHANNEL CHANNUM CONTAINS A ZEROCNEGATIVE LOGIC> SO RETURN A.-ONE

VALUE := 1;
ELSE

VALUE := O;
END;.

ELSE
ERRNUH := OUTOFSCAN;

END·
' .ELSE

ERRNUH := OUTOFRANGE;
END;

RETURN<VALUE>;

ENDPROC;

PROC RDDIGOUT < INT CHANNUH) INT;
% THIS PROC RETURNS THE VALUE CO OR 1) MOST RECENTLY WRITTEN TO DIGITAL%
% OUTPUT NUMBER CHANNUM. ·x

INT VALUE:=O,CARDNO,CARDCHAN,MASK;
IF CHANNUM > 0 AND CHANNUM <= 16*TOTALDIGOCARD THEN % IN RANGE %

CARDNO : = (C CHANNUM - 1) : I 16) + 1 ;
CARDOHAN := ((CHANNUM - 1) HOD 1&> +1;
MASK:= 1 SLL (16 - CARDCHAN>;

VALUE := IF DIGOUTCCARDNO>~HEDDAT LAND MASK = 0 .THEN
0

ELSE
1

END;

ELSE
ERRNUM := OUTOFRANGE;

END;
RETURN C VALUE >;

ENDPROC;

ENT PROC ATTACHED <INT ADSWITCH,REF ARRAY iNT OUTARRAY>;

<iii]J
% THIS PROC EXAMINES THE DIGITAL OR ANALOGUE OUTPUT MEDCARDS IN %
% HEDCOM AND PUTS INTO THE ARRAY OUTA~RAY THE CH~NNEL NUMBERS OF %
% THOSE TO WHICH THE USER IS ATTACHED. %
% E.G. IF ADSWITCH=DIGITAL AND THE USER IS ATTACHED TO DIGITAL %
% OUTPUTS 1,5 AND 7 THEN AFTER CALLING THIS PROC, OUTARRAY(1) WILL %
% BE 1, OUTARRAYC2) WILL BE 5 AND OUTARRAYC3) WILL BE 7. THE REST %
% OF THE ARRAY WILL BE CLEARED TO ZEROS. %

INT ARRAYCOUNT:=O;
ERRNUM:=NOERROR;

TASK INFO CTBUF) ; % GET INFO ABOUT USER <INCLUDING UIC>

FOR 1:=1 TO LENGTH OUTARRAY DO
OUTARRAY C Il : = 0;

REP;

IF ADSWITCH = ANALOG THEN
FOR I:=1 TO TOTALAO DO

%

IF AODESCCI>.UIC = TBUF.TASK17 THEN % USER IS ATTACHED
ARRAYCOUNT := ARRAYCOUNT + 1; % POINT TO NEXT INT IN ARRAY
OUTARRAYCARRAYCOUNT> := I; ~

END;
REP;

ELSEIF ADSWITCH = DIGITAL THEN
FOR CARDNUH := 1 TO TOTALDIGOCARD DO

FOR I := 1 TO 16 DO
IF DIGUICS CCARDNUH,I) = TBUF.TASKUIC THEN

ARRAYCOUNT := ARRAYCOUNT + 1;
OUTARRAYCARRAYCOUNT> := CCARDNUM - 1)*16 +I;

END;
REP;

REP;
ELSE % ADSWITCH NOT VALID

ERRNUH := BADSWITCH;
END·
ERRORCERRNUH>;

ENDPROC;

ENT PROC RDCOHHINT <INT CHANNUH) INT;

%
x

% THIS PROC RETURNS THE VALUE OF AODESC.USERINT CORRESPONDING TO %
% ANALOGUE OUTPUT NUMBER CHANNUH. THIS INTEGER. CAN BE USED BY THE %
% USER FOR INTERTASK COMMUNICATION. %

INT RET :=O;
IF CHANNUM > 0 AND CHANNUM <= TOTALAO THEN

RET t= AODESC <CHANNUM).USERINT
ELSE

ERROR< OUTOFRANGE >;
END;

· RETURN CRET> ;
ENDPROC;

ENT PROC WRCOHHINT <INT CHANNUH, VALUE>;
% THIS PROC WRITES THE CONTENTS OF VALUE INTO THE USERINT FIELD · X
% OF THE AOREC CORRESPONDING TO ANALOGUE OUTPUT NUMBER CHANNUM. %
% THIS INTEGER IS INTENDED TO BE USED FOR INTERTASK COMMUNICATION BY X
% USER TASKS. %

IF CHANNUH >O AND CHANNUM <= TOTALAO THEN
TASKINFO <TBUF>;

IF AODESC (CHANNUM>.UIC = TBUF.TASK17 THEN
SECMEDCOM ();
AODESCCCHANNUH).USERINT .- VALUE;
RELMEDCOM<>;
ERRNUM := NOERROR; .

ELSE
ERRNUH := WRONGUSER;

END;
·ELSE

ERRNUM := OUTOFRANGE;
END; .
ERROR (ERRNUM>;

E'NDPROC;

% CORRECT USER %

B

ENT PROC READMEDCARDCINT ADSWITCH, IOSWITCH, CARDNUH, REF MEDCARD CARD>;

% TAKES THE CONTENTS OF THE REQUIRED MEDCARD FROM THE MEDIA DATA BASE %
% AND PUTS IT INTO "CARD". .% .
% ADSWITCH : CHOOSES ANALOGCO) OR DIG!TALC1). %
% IOSWITCH: CHOOSES INPUTCO) OR OUTPUTC1). I
·x CARDNUH : CHOOSES THE CARD NUMBER WITHIN THE CARD TYPE SPECIFIED % .
% BY ADSWITCH AND IOSWITCH. %
% CARD : VARIABLE OF TYPE MEDCARD. INTO WHICH THE INFO IS PUT. %

IF ADSWITCH = ANALOG AND IOSWITC~ = INPUT THEN
IF CARDNUH > 0 AND CARDNUM <=· TOTALAI THEN

SECMEDCOM () ;
COPYCARDCANINPCCARDNUHl,CARD>;
RELHEDCOHC>;

% PUT THE MEDCARD I~TO CARD

ERRNUH· := NOERROR;
ELSE

ERRNUH := OUTOFRANGE;
END; . .

ELSEIF ADSWITCH=DIGITAL AND IOSWITCH = INPUT THEN
IF CARDNUM > 0 AND CARDNUM <= TOTALDIGICARD THEN

. SECMEDCOMC>; .
COPYCARD<DIGINPCCARDNUM>,CARD>;
RELHEDCOH1>; .

\

CARD.MEDDAT:=NOTCCARD.HEDDAT>; · % CONVERT DIGIN DATA TO POS LOGIC %
. ERRNUH := NOERROR;

·ELSE
ERRNUH := OUTOFRANGE;

.END;
ELSEIF ADSWITCH = DIGITAL AND IOSWITCH = OUTPUT THEN

IF CARDNUM > 0 AND CARDNUH <= TOTALDI~OCARD THEN
SECHEDCOM<>;
COPYCAR_D CDIG·OUT CCARDNUM), CARD>; .
RELHEDCOHC>; ..
ERRNUM := NOERROR;

ELSE
. ERRNUH := OUTOFRANGE;

END;
ELSEIF ADSWITCH = ANALOG AND IOSWITCH = OUTPUT THEN

IF CARDNUM > 0 AND CARDNUM <= TOTALAO THEN
SECM~DCOHC>; . ..
COPYCARDCANOUTPCCARDNUM>,CARD>;.

. RELMEDCOH () ;
ERRNUH := NOERROR;

ELSE
· ERRNUM := OUTOFRANGE;

END;
. ELSE

REC:ME1Jl:UMTIJ----~-----·--·---,-~­

ERRNUH := NOERROR;
ELSE

ERRNUM := WRONGUSER;
END·--.

' ELSE
ERRNUH := OUTOFRANGE;

END;
· ERROR CERRNUH) ;

ENDPROC; . .

ENT PROC GETANINPCINT ANOUTNUH>INT;
% RETURNS THE CHANNEL NO OF THE ANALOGUE INPUT BEING CONTROLLED BY % ·
% ANALOGUE OUTPUT ANOUTNUM, AS SET UP BY A PREVIOUS CALL TO SETANINP. %

INT ANINNUH:=O; .
IF ANOUTNUH > 0 AND ANOUTNUM <= TOTALAO THEN

ANINNUM := AODESCCANOUTNUM> .ANIN;
ELSE·

.!
I

. ~

!
. i

. i

. '
l
j
i

· 1

. l

. .

)
I ..

EXT PROCC) STARTAST,STOPAST;
·EXT PROC CINT,INT) GOTOLC;

EXT PROC C>H~HE,CLEOS,CLEOL;

SVC DATA RRSIO; PROCC>BYTE. IN; PROCCBYTE)OUT ENDDATA;
SVC DATA RRERR; LABEL ERL; INT ERN; PROCCINT> ERP ENDDATA;
SVC DATA RRCHAN; REF IOCL INCL, OUTCL ENDDATA;

% The following 2 bricks are MEDCOM :

EXT DATA OUTAREA;
ARRAYCTOTALAO) .HEDCARD ANOUTP;
ARRAYCTOTALDIGOCARD> HErrCARD DIGOUT;
ARRAYCTOTALAO> AOREC AODESC;
ARRAYCTOTALDIGOCARD,16) INT DIGUICS~

ENDDATA; ·

EXT DATA INAREA;
ARRAYCTOTALAI) HEDCARD ANINP;
ARRAYCTOTALDIGICARD) HEDCARD DIGINP;
ARRAYC2) MEDCARD DIBCHAN;
MEDCARD MEDSTAT;

ENDDATA;

DATA IOLOCAL;
ARRAYC132)BYTE IBUF,OBUF:=CNL,SPC131>>;
IOCL ICL := C IBUF,0,1,0,1,0>; % HAVE SET HD TO 1 FOR BINARY %
I 0 CL 0 CL : = C 0 BU F , 0 , 1 , 1 , 1 , O> ; % DI TT 0 %

ENDDATA;

DATA LOCAL;
ARRAYC16>INT DUIC;
ARRAYC4>INT AUIC;
R50NAHE CURTASK;
ARRAYC4> INT TAB := <1,20,40,60);
ARRAYC5) INT TAB2:= (1,16,31,46,61);
ARRAYC32) REF ARRAY BYTE NUMBERS:= C" 1. "," 2. "," 3. "," 4. ",

II 5 • II ' II 6 • II f ff 7 • II ' U 8 • II) II 9 • II) 1110 c II t p 11 c H J II 1 2 • fl) II 1 3 • II

11 14. ", 11 15. ","16. 11 ,"17. ", 11 18. ","19. ","20. " 7 "21. ","22. ",
11 23. 11 ,"24. ","25. ","26. ","27. 11

,
11 28. ","29. ","30. ","31. "~"32.

ARRAY(9) BYTE UBUF;
ARRAYC5) INT INSCAN;
ARRAYC6) REF ARRAY BYTE SCANBUF := (11 Digin1 ","Digin2 ","Digout ",

II) ;

ttAnin " "Anout " "*OUT OF SCAN*">·, , . ' REF ARRAY BYTE PARTID := "";
INT CHAR,DIGICARDMIN,DIGOCARD,AOMIN,AIHIN;

ENDDATA;

ENT PROC RRJOB<>;

INT UICTHP,EXIT:=NO;
BYTE INCHAR;

INITIALISEIO<>;
STARTAST<>;
INITFORHEDIA 0;
WHILE EXIT=NO DO

INITIALISEDATA<>;
INITIALISESCREEN<>;
LOOP<>;
CHAR := ASTCHAR<>;
IF CHAR = CONTROLC OR CHAR = CONTROLZ THEN

% us~r wants to exit from MEDRMD %
EXIT := YES;

ELSEIF CHAR = ·s· OR CHAR = 's' THEN
% user wants simulation info %
INITFORSIM ();

ELSE
% user wants real Media info %
INITFORHEDIAO;

END;
REP;
STOPAST<>;
HOHEC);CLEOS<>;FORCEBUFFEROUTPUT<>;

ENDPROC; .

PROC INITFORHEDIA<>;
PARTID:=" (Real Media system>";
AIMIN :=1;
AOHIN :=1;
DIGICARDMIN :=1;
DIGOCARD :=1;

ENDPROC;

PROC INITFORSIM<>;
PARTID := " (Simulation part >";
AIMIN := 17;

· AOHIN : = 5;
DIGICARDMIN := 3;
DIGOCARD := 2;

ENDPROC;

PROC LOOPC>; ,

INT UICTHP;
INT STOP:=NO;
WHILE STOP=NO DO

PRINTTIHE<>;

FOR 1:=1 TO 16 DO
UICTHP:=DIGUICSCDIGOCARD,I>;
IF DUICCI)#UICTMP THEN

DUIC<I>:=UICTMP;
GTODOUT<I>;
UICWRT<UICTHP>;

END;
REP; •-

FOR 1:=1 TO 4 DO
UICTHP:=AODESC(l-1+AOHIN>.UIC;
IF AUIC(l)#UICTMP THEN

AUIC<I) :=UICTMP;
GTOAOUTCI>;
UICWRTCUICTHP>;

END;
REP;

GOTOLCCSCANLINE+2,1>; CLEOL<>;
SCANWRT<>; .

MCOMTASKCCURTASK>;
GOTOLCCSECLINE,SECCOL>;

CLEOL ();
IF CURTASK.R50N1#0 THEN

R50WRT_CCURTASK);
END;

HOME();
FORCEBUFFEROUTPUTC>;

IF WAITASTC50>=YES THEN
STOP:=YES;

END· ,
REP;

ENDPROC;

PROC INITIALISEDATA<>;

FOR 1:=1 TO 16 DO
DUICCI>:= DIGUICSCDtGOCARD,I>;

REP;
FOR 1:=1 TO 4 DO

AUICCI>:= AODESCCI-1+AOHINl.UIC;
REP;
HCOHTASKCCURTASK>;

ENDPROC;

PROC INITIALISESCREENC>;

HOME();
CLEOSC>;

GOTOLCC1,11l; TWRTC"Dynamic display of usage of MEDCOM data base">;
GOTOLC(2,11) ·, TL'RT<"--")·

w -- t GOTOLCC3,2Z>; TWRTCPARTID>;

PRINTTIME 0;

~OTOLCCDIG-2,1>; TWRT<"Digital Outputs c">;

·FOR I:= 1 TO 4 DO
FOR J:=1 TO 4 DO

GOTOLCCDIG+J-1,TABCI>>; o
TWRTCNUHBERSCCDIGOCARD - 1>*16 + 4*(1-1) ~ J>>;
UICWRTCDUICC4*Cl-1) + J>>;

REP;
REP;

GOTOLCCANA-2,1>; TWRTC"Analog outputs :">;
FOR 1:~1 TO 4 DO

GOTOLCCANA,TABCI>>;
TWRTCNUHBERSCAOHIN - 1 +I>>; UICWRTCAUICCI>>;

REP;

GOTOLCCSCANLINE,1>; TWRTC"Seconds since last update
FOR 1:=1 TO 5 DO

GOTOLCCSCANLINE+1,TAB2Clll; TWRTCSCANBUFCI>>;
REP; .

II) • ,

GOTOLCCSECLINE,1>; TWRTC"Task currently securing MEDCOH :">;
ENDPROC;

PROC INITIALISEIO<>;

% BASED ON TTIO<) BUT ·USE HSIN,HSOUT FOR BINARY DATA

IN:=HSIN;

XFER ·%

OUT:::HSOUT;
INCL:=ICL;
OUTCL:=OCL;

ENDPROC;

PROC PRINTTIHE<>;
. GOTOLCCTIMELINE,TIHECOL>;

TIHDAT <-1>;
:NDPROC;

PROC UICWRTCINT UIC>;
.IF UIC # 0 THEN

UBUF (9) : :: • l ' ;
UBUF(8):::BYTE<CUIC LAND 7) + '0');
UIC:::UIC SRL 3;
UBUFC7l:=BYTECCUIC LAND. 7) + 'O'>;
UIC:::UIC SRL 3;
UBUF<6>:=BYTECCUIC LAND 3> + '0');
UIC:::UIC SRL 2;
UBUF (5) : =' , ' ;
UBUFC4>:=BYTECCUIC LAND 7) + 'O'>;
UIC:=UIC SRL 3;
UBUF<3l:=BYTE<<UIC LAND 7> + '0')•

' UIC:=UIC SRL 3;
UBUFC2):·=BYTECCUIC LAND 3) + '0');
UBUF < 1) : :: ' [. ;
FOR 1:::1 TO 9 DO

OUT CLJBUF <I)>;
REP;

ELSE
FOR 1:=1 TO 9 DO ourc· ');REP;

END;
ENDPROC;

-

PROC GTODOUT<INT N>;.
GOTOLCCDIG + ((N-1). MOD 4), 4 + TABCCN-1) :/ 4 + 1>>;

ENDPROC;

PROC GTOAOUTCINT N>;
GOTOLCCANA , 4 + TABCN>>;

ENDPROC;

PROC FOR~EBUFFEROUTPUT<>;
TTOUTCETX>; ·

ENDPROC;

PROC ·scANWRT () ;

REAL SCANT;

FOR 1:=1· TO 2 DO
GOTOLC<SCANLINE+2,TAB2CI)l;
IF DIGINP<I-1+DIGICARDHIN>.STAT LAND 1 = 1 THEN

SCANT:=DIGINPCI-1+DIGICARDHIN>.SCANTIHE;
RWRTUCTIHER<SCANT>>;

ELSE
TWRT,<SCANBUF (6));

END;

8

\

I.

REP;

60TOLC<SCANLINE+2,TAB2<3>>; ·· ·
IF DIGOUTCDIGOCARD}.STAT LAND 1 = 1 THEN

. SCANT:=DlGOUT<DIGOCARD>.SCANTIHE;
· RWRTUCTIHER<SCANT>>; ·

.ELSE .
. TWRT.CSCANBUF (6));
END; _

· • GOTOLC<SCANL1NE+2, TAB2<4> >;
IF ANINPCAI~IN>.STAT LAND 1 = 1 THEN

SCANT:=ANINPCAIHIN>.SCANTIME; ·
RWRTUCTIHER<SCANT)); · .

-ELSE
TWRTCSCANBUF<6>>;

. END; ..

. GOTOLCCSCANLI~E+2,TABZC5)l;
IF ANOUTPCAOHIN>.STAT LAND 1 = 1 THEN
· SCANT:=ANOUTP<AOHIN>.SCANTINE;
· RWRTUCTIMERCSCANTll;

ELSE
TWRTCSCANBUF(b))j

END;
ENDPROC;

. ,.

/ .

: .. ··

REP; . Q
IF FOUND = YES THEN ~

TWRTC"#LF#ATTACHED TO DIGITAL OUTPUT NO"); IWRTCCHAN>;
ELSE

TWRTC"#LF#COULD NOT ATTACH -- NO FREE CHANNELS#LF#">;
END;

ENDPROC;

PROC ATTACHDIGOUT<>;
INT CARDNO,CARDCHAN;
INT DONE:=NO,CHAN:=O;
WHILE CHAN < 1 OR CHAN> 16*TOTALDIGOCARD DO

TWRTC"#LF#DIGITAL OUTPUT NUMBER #ENG#")·
' CHAN:=IREAD();

REP;
CARDNO:= ((CHAN -1) :/ 16) +1;
CARD CHAN : = C (CHAN - 1) MOD 16) + 1 ;
IF DIGUICSCCARDNO,CARDCHAN>=O AND DIGOUTCCARDNO>.STAT LAND 1 = 1 THEN

SECHEDCOH<>;
IF DIGUICSCCARDNO,CARDCHAN> = 0 THEN

DIGUICSCCARDNO,CARDCHAN>:=TBUF.TASK17;
DONE :=YES; .

END· .
' RELHEDCOH<>;

END;
IF DONE=YES THEN
TWRTC~#LF#ATTACHMENT COMPLETE">;

ELSE
TWRTC"~LF#COULD NOT ATTACH -- OUT OF SCAN OR ALREADY ATTACHED#LF#">;

END;
ENDPROC;

PROC FINDANDATTACHANOUTCINT CHOICE>;
INT FOUND,I,CHAN,LOWCHAN,HIGHCHAN;
IF CHOICE=4 THEN
· % REAL MEDIA %

LOWCHAN := 1;
HIGHCHAN := NAO;

ELSE % SIMULATION %
LOWCHAN :=NAO+ 1;
HIGHCHAN := TOTALAO;

END;

I := LOWCHAN;
FOUND::No; .
WHILE FOUND=NO AND I <= HIGHCHAN DO

IF AQDESCCI>.UIC=O AND ANOUTPCI>.STAT LAND 1 = 1 THEN
SECMEDCOMC>; .
IF AODESCCil.UIC=O THEN

AODESCCI).UIC:=TBUF.TASK17;
FOUND:=YES;
CHAN:=I;

END;
RELMEDCOM<>;

END;
I :=I+ 1;

REP;
IF FOUND=YES THEN

TWRTC"#LF#ATTACHED TO ANALOG OUTPUT NUMBER "l;IWRT<CHAN>;TWRTC"#LF#">;
ELSE

TWRTC"#LF#COULD NOT ATTACH -- NO FREE CHANNELS#LF#">;
END;

ENDPROC;

PROC ATTACHANOUTC>;
INT CHAN:=O,DONE:=NO;
WHILE CHAN < 1 OR CHAN > TOTALAO DO

TWRTC"#LF#ANALOG OUTPUT NUMBER #ENG#")·
' CHAN:=IREAD<>;

REP;
IF AODESCCCHAN).UIC=O AND ANOUTPCCHAN>.STAT LAND 1 = 1 THEN

SECMEDCOHC>; .
IF AODESC<CHAN).UIC=O THEN

AODESCCCHAN>.UIC:=TBUF.TASK17;
DONE:=YES;

END;
RELHEDCOM<>;

END;
IF DONE=YES THEN

TWRTC"#LF#ATTACHHENT COMPLETE">;
ELSE

TWRTC"#LF#COULD NOT ATTACH -- OUT OF SCAN OR ALREADY ATTACHED">;
END;

ENDPROC;

PROC DETACH<>;
INT CHAN,CHOICE,BUSY;
BUSY:=YES;
WHILE BUSY=YES AND QUIT=NO DO

HOME<>;CLEOL<>; .
TWRTC"DETACH HENU#LF#"); CLEOLC>; OUTCLF>; CLEOLC>;
TWRTC"1. Detach from digital output#LF#">; CLEOLC>;
TWRT<"2. Detach from analogue output#LF#">; CLEOLC>;
TWRTC"J. Detach all outputs#LF#"); CLEOLC>; .
TWRTC"4. Return to main menu#LF#">; CLEOLC>;
TWRTC"S. Quit#LF#">; CLEOLC>; OUTCLF>; CLEOLC>; OUTCENG>;
CHO I CE:= I READ() ;
CLEOSC>;
IF CHOICE=1 THEN % DIGITAL %

DETACHDIGC>;
ELSEIF CHOICE=2 THEN % ANALOGUE %

DETACHANA<>;
ELSEIF CHOICE=3 THEN

DETACHALL () ;
ELSEIF CHOICE=4 THEN

BUSY := NO;
ELSEIF CHOICE=S THEN

QUIT := YES;
END;

REP; ...__.
ENDPROC;

PROC DETACHDIG<>;
INT CARDNO,CARDCHAN,CHAN:=O;
WHILE CHAN < 1 OR CHAN > 16*TOTALDIGOCARD DO

TWRT<"#LF#DIGITAL OUTPUT NUMBER #ENG#">;
CHAN: =I READ<) ;

.REP;
·CARDNO:= <<CHAN~ 1) :/ 16) + 1;

CARDCHAN := C <CHAN - 1 > HOD 16) + 1;
IF HANAGER=YES THEN

IF DIGUICSCCARDNO,CARDCHAN>=O THEN
TWRTC"#LF#COULD NOT DETACH -- NO USER ATTACHED">;

ELSE

SECHEDCOM<l;
DIGUICSCCARDNO,CARDCHAN>:=O;
RELMEDCOMC>;
TWRT<"JLF#DETACHMENT COMPLETE");

END· ' . ELSE % NOT MANAGER %
IF DIGUICSCCARDNO,CARDCHAN>=TBUF.TASK17 THEN

SECMEDCOMC>;
DIGUICSCCARDNO,CARDCHAN>:=O;

. RELMEDCOM C);
TWRT("#LF#DETACHHENT COMPLETE">;

ELSE

% DETACH

TWRTC"#LF#tOULD NOT DETACH -- USER NOT ATTACHED#LF#">;
END;

END· ,
ENDPROC;

PROC DETACHANAC>;
INT CHAN:=O;
WHILE CHAN < 1 OR CHAN > TOTALAO DO

TWRTC"#LF#ANALOG OUTPUT NUMBER #ENQ#")·
' CHAN:=IREAD<>;

REP;
IF MANAGER=YES THEN

IF AODESCCCHAN>.UIC = 0 THEN
TWRTC"#LF#COULD NOT DETACH -- NO USER ATTACHED">;

ELSE
SECMEDCOH () ;
AODESCCCHANl.UIC:=O; ·
AODESCCCHAN>.USERINT:=O;
AODESCCCHAN>.ANIN:=O;
AODESCCCHAN>.SETPOINT:=O.O;
RELMEDCOH<>;
TWRTC"#LF#DETACHMENT COMPLETE">;

END; .
ELSE

IF AODESCCCHAN>.UIC=TBUF.TASK17 THEN
SECMEDCOM<>;
AODESCCCHANl.UIC:=O;
AODESCCCHAN>.USERINT:=O;
AODESCCCHAN>.ANIN:=O;
AODESCCCHAN>.SETPOINT:=o.o;
RELMEDCOM<>;
TWRTC"#LF#DETACHHENT COMPLETE">;

ELSE
TWRTC"#LF#COULD NOT DETACH -- USER NOT ATTACHED#LF#">;

END;
END; ._.

ENDPROC;

PROC DETACHALLC>;
IF MANAGER=YES THEN % MANAGER %

SECMEDCOM<>;
FOR 1:=1 TO TOTALAO DO

AODESCCI> .UIC:=O;
AODESCCI>.USERINT :=O;
AODESCCI>.ANIN:=O;
AODESC<I>.SETPOINT:=O.O;

REP;
FOR CARDCOUNT := 1 TO TOTALDIGOCARD DO

FOR 1:=1 TO 16 DO
DIGUICSCCARDCOUNT,I>:=O;

REP·
' .. REP;·

RELHEDCOM C). ;

· TWRT C "#LF#FUNCTION COMPLETE -- ALL USERS OF OUTPUTS PETACHED#LF#") i
· .ELSE % NON-MANAGER U~ER %
. FOR 1:=1 TO TOTALAO DO

I·.

I
I .

IF AODESCCI>.UIC=TBUF.TASK17 THEN··
SECHEDCOMC>; ,
AODESCCI> .U1C!=O;
AODESCCI>.USERINT := O;
AODESCCI>.ANIN:=O;
AODESCCI) .SETPOINT:=o.o;
RELMEDCOHC>;

END·. .
' REP;

FOR CARDCOUNT :: 1 TO TOTALDiaOCARD DO
FOR 1:=1 TO 16 DO

IF·DIGUICSCCARDCOUNT,I>=TBUF.TASK17 THEN
SECMEDCOH<>;
DIGUICSCCARDCOUNT,I>:=O; .

.. RELHEDCOMC>;
: · .END;
I REP;

% THIS USER'S . %

l REP; ·
.-. TWRTC"#LF#FUNCTION COMPLETE -- ALL "l;tlICWRTCTBUF.TASK17>;
, TWRT<" OUTPUTS DETACHED#LF#">;. I

i · END;

I

I •.. ENDPROC;

I .PROCUICWRTCINTUIC>; I.
UB UF C 9) : = 4 l • : ·

, LAND 7) + '0'),· . UBUFCBJ:~BYTE(CUIC H

I ... UIC:=UIC SRL 3; L"ND 7) + 'O');
UBUFC7):=BYTEC<UIC H

. Uic':=UIC SRL 3; .~ LAND 3) + 'O'); .. UBUF.(6):=BYTECCUIC
UIC::;::LJJC SRL 2;.

UBUFC5):=·,·; L"ND 7>_ + 'O'>; UBUF(4):=BYTE<CUIC H

UIC:=UIC SRL 3; . 7) + ·o·);
UBUFCJ>:=BYTECCUIC LAND
UIC·=UIC SRL 3; . LAND 3) + ·a·>; ·uBU~<2>~~BYTECCUIC
UBUF C 1) : =' C' ; .
TWRT<UBUF>;

I .ENDPROC; .·
j
'· .

. ,;•

: .·

i .

PROC tHTflCH ();
INT BUSY:=YES;
INT CHOICE,CHAN,FOUND,DONE;
WHILE QUIT=NO AND BUSY=YES DO

HOME<);
CLEOL<>; TWRT<"ATTACH HENU#LF#">;
CLEOL<>; OUTCLF>;
CLEOL<>; TWRTC 1.
CLEOL<>; TWRTC 2.
CLEOLC>; TWRT< 3.
CLEOLC>; TWRTC 4.
CLEOL<>; TWRTC 5.
CLEOL<>; TWRT< 6.
CLEOLC>; TWRTC"7.
CLEOL<>; TWRTC"8.
CLEOL<>; OUTCLF>;
CHOI CE:= I READ();
CLEOS<>;

Any digital output Creal Medial#LF#");
Any digital output (simulationl#LF#">;
Specific digital output #LF,LF#">;CLEOL<>;
Any analogue output Creal Media)#LF#"J;
Any analogue output Csimulation)#LF# 11 J;
Specific analogue output#LF,LF#"l;CLEOL<>;
Return to main menu#LF#">;
Guit#LF#">;
CLEOL<>; OUTCENG>;

IF CHOICE=1 OR CHOICE=2 THEN
FINDANDATTACHDIGOUTCCHOICE>;

ELSEIF CHOICE=3 THEN
ATTACHDIGOUT();

ELSEIF CHOICE=4 OR CHOICE=5 THEN
FINDANDATTACHANOUTCCHOICE>;

ELSEIF CHOICE=6 THEN
ATTACHANOUT<>;

ELSEIF CHOICE=7 THEN
BUSY.: =NO;

ELSEIF CHOICE=8 THEN
QUIT:=YES;

END;
REP;

ENDPROC;

PROC FINDANDATTACHDIGOUTCINT CHOICE>;

..

INT CARDNO,I,CHAN,FOUND,LOWCARD,HIGHCARD;
IF CHOICE=1 THEN

LOWCARD :=1;
HIGHCARD := NDIGOCARD;

ELSE ..
LOWCARD := NDIGOCARD+1;
HIGHCARD := TOTALDIGOCARD;

END;

CARDNO:=LOWCARD;
WHILE FOUND = NO AND CARDNO <= HIGHCARD DO

I: =1 ;_
WHILE FOUND = NO AND I <= 16 DO

IF DISUICS <CARDN0,1) = 0 AND DIGOUTCCARDNO>.STAT LAND 1 = 1 THEN
% NO-ONE ATTACHED AND CARD IS IN SCAN %
SECMEDCOM<>;
IF DIGUICSCCARDNO,Il = 0 THEN

% STILL NO-ONE ATTACHED %
»IGUICSCCARDNO,I> := TBUF.TASK17;
FOUND := YES;
CHAN := CCARDN0-1)*16 + I;

END;
RELMEDCOHC>;

END;
I:=I+1;

REP;
CARDNO:= CARDNO+ 1;

ENT PRO! RELMEDCOMC>;

RELEASECHEDCOHEF>;
ENDPROC;

ENT PROC HCOMINIT<>;

% THIS PROC IS INTENDED TO BE CALLED, ONCE, AT THE START OF THE MEDIA X
% UPDATE TASK. %
% INITIALISES MEDCOM FOR SECURE AND RELEASE, BY SETTING FLAG MEDCOHEF. %
% THIS IS NECESSARY BECAUSE THE SYSTEM WAKES UP WITH ALL FALGS ZERO, %
X WHICH REPRESENTS FACILITIES SECURED <SEE COMMENTS TO SECURE PROCl. %

SET CMEDCOMEF>;
ENDPROC;

ENT PROC HCOMTASKCREF RSONAME TASK>;

% THIS PROC RETURNS TO THE CALLING PROGRAM THE RADIX-50 NAME OF THE %
% TASK WHICH IS CURRENTLY SECURING HEDCOM. %

TASK.R50N1:=GLFACS<MEDCOHEF-32).R50N1;
TASK.R50N2:=GLFACSCMEDCOMEF-32).R50N2;

ENDPROC;

ENT PROC FREEHEDCOH<>;

% THIS PROC IS INTENDED FOR A SYSTEM MANAGER TO FREE MEDCOM SHOULD IT %
% SOMEHOW BECOME SECURED, NOT RELEASED AND HENCE "HANG'. %

FORCEDRELEASECHEDCOHEF>;
ENDPROC;

ENT PROC TASKINFOCREF TASKBUF TB>;

% AN EQUIVALENT TO RSXGTS TO DO THE GTSK$S MACRO DOES NOT EXIST IN %
% HTSLIB, SO HERE IT IS. %

· CODE 18, 0;
.MCALL
.LIST
.GLOBL
GTSK$S
HOV
BCC

*RTL;

RRGEL C 14);
OK1:
ENDPROC;

GTSK$S
HEB
$DSW
*TB(S)
SDSW,*RSXDSW/RRERRXCRO>
*OK1

% DIRECTIVE UNSUCCESSFUL·

PROC SECURECINT FA>;

% THE 2 PROCS HERE ARE JUST LIKE THE MTSLIB SECURE & RELEASE, EXCEPT %
% THAT THEY USE THE GLOBAL EVENT FLAGS 33 TO 56 INSTEAD OF HTSLIB"S %
% GROUP GLOBAL FLAGS. SINCE THE SYSTEM WAKES UP WITH THE FLAGS ZERO, %
% AND ZERO MEANS SECURED, IT IS NECESSARY TO EXPLICITLY SET %
% THE FLAGS BEFORE ANY TASKS CALLING SECURE ARE RUN <EG AT SYSTEM %
% STARTUP). %
% NOTE: THE METHOD USED IN HTSLIB SECURE - TO ALLOW THE CALLER TO GRAB %
% THE FACILITY IF THE R50N1 OF THE SECURING TASK IS ZERO <EVEN IF THE %

-~
% FLAG IS STILL CLEAR !) DOES NOT WORK. IT IS RECOMMENDED THAT THE %
% MTSLIB PROC BE CHANGED TO RESEMBLE THIS ONE, SINCE AT PRESENT, USE %
% OF 1T CAUSES MULTIPLE ERPC214) & C215l'S IF 2 TASKS ARE COMPETING F-OR %
% THE FACILITY, AND ERPC214) FOLLOWED BY RRGELC15) IF MORE THAN 2 TASKS %
% ARE COMPETING. %

REF RSONAHE TASK;

RSXDSW:=FA;
IF FA < 33 OR FA > 56 THEN

RRGELC14>;
END;

TASK:=GLFACS<FA-32>;
IF TASK.R50N1=HYTASK.R50N1 AND TASK.R50N2=HYTASK.R50N2 THEN

RRGELC16>; % ALREADY SECURED %
END;

CODE 20,0;
.MCALL

· .LIST
.GLOBL

AGAlN: CLEF$S

*RTL;

BCS
CHP
BEG

CODE 14,0;
WTSE$S
BCS

*RTL;
GOT IT:

BR

CLEF$S,WTSE$S
MEB
$DSW
*FACR5>
DERR
#IS.SET,$DSW
*GOT IT

*FA<R5l
DERR
AGAIN

TASK.R50N1:=HYTASK.R50N1;

DIRECTIVE ERROR
WAS IT SET ?

TASK.RSON2:=HYTASK.R50N2; · % GRAB THE FACILITY %
ENDPROC;

PROC RELEASECINT FA>;
REF RSONAHE TASK;

.RSXDSW:=FA;
IF FA < 33 OR FA > 56 THEN

RRGELC14);
END;
TASK:=GLFACSCFA-32>;
IF TASK.R50N1 # MYTASK.R50N1 OR TASK.R50N2 # MYTASK.RSONZ THEN

RRGELC15>; % FACILITY NOT SECURED %
END; .._.

TASK.R50N1 := TASK.R50N2 := O;

CODE 20,0;
.MCALL
SETF$S
BCS
CMP
BNE

•RTL;

SETF$S,DECL$S
*FACR5l
DERR
#IS.SET,!liDSW
*OK

ERPC215>; % SECURED,BUT FLAG WAS SET??%
OK:

CODE 14,0;
DECL$S

DERR: HOV $DSW,*RSXDSW/RRERRXCRO>

BCC
*RTL;

RRGELC14>;
EXIT:
ENDPROC;.

*EXIT

% DIRECTIVE ERROR

PROC FORCEDRELEASE<INT FA>;

% SAHE AS RELEASE, BUT BUT JUST RELEASES WITHOUT CHECKING WHETHER %
% THE CALLER WAS SECURED. INTENDED FOR USE BY THE SYSTEM MANAGER TO X
% 'UNHANG' A FACILITY WHICH HAS BEEN SECURED AND NOT SUBSEQUENTLY BEEN %
% RELEASED. %

REF RSONAME TASK;
RSXDSW:=FA;
IF FA < 33 OR FA > 56 THEN

RRGEL<14>;
END·

' TASK:=GLFACSCFA-32>;

%HERE WE LEAVE OUT THE CHECK OF USER IDENTITY %

TASK.R50N1 := TASK.R50N2 := O;

CODE 20,0;
.MCALL
SETF$S
BCS
CHP
BNE

*RTL;

SETF$5,DECL$S
*FACR5>
DERR
#IS.SET,$DSW
*OK2

ERPC215>; % SECURED,BUT FLAG WAS SET ?1 %
OJ.<2:

CODE 14, 0;
DECL$S
HOV $DSW,*RSXDSW/RRERRXCRO>
BCC *EXIT2

*RTL;
RRGELC14>;

EXIT2:
ENDPROC;

% DIRECTIVE ERROR %

MODE IOSTAT <BYTE IOSTLOW,IOSTHIGH,INT IOSTVAL>; .

EXT PROCCINT,INT,INT,INT,REF IOSTAT,PROCC>,REF ARRAY INT>RSXGIW;

DATA PRIVLOCAL;
ARRAYC2>BYTE BUF;
IOSTAT t-STATUS;
ARRAYC6>INT DP;

ENDDATA;

ENT PROC PRIVILEGEDC>INT;
INT RET;
REF BYTE RB:=BUFC1>;
INT BUFADR;
INT FC;
CODE 12,0;
. HOV *RB<S>,*BUFADRC5) ;ADDR OF BUFFER

HOV #SF.GMC,*FCC5) ;FN CODE GET HULT CHARACTERISTIX
*RTL;

DPC1l:=BUFADR;
DP < 2) : = 2;

. DPC3l:=Oj
·. DPC4) :=O;

DPCS>:=O;
DPC6):=0;

e.·
BUFC1>~=BYTE<OCT 51>; % CODE FOR FINDING PRIV OR NOPRIV %
BUFC2l:=O;
RSXQIWCFC,1,1,o,srATUS,RRNUL,DP>;
IF RSXDSW<O THEN RRGELC14>;END;
IF BUFC2>=1 THEN . .

RET:=YES;
ELSE .

RET :=NO;
END;

. RETURN C RE T) ; ·.· ·
ENDPROC; .

·'·

LET MEDCOMEF = 33;

EXT PROCCINT> SET;

ENT PROC RRJOB<>;

% THIS IS TO BE CALLED
% SECURE/RELEASE EVENT
% WHICH CORRESPONDS TO
% TO YOU , TRY TYPING

SETCHEDCOMEF>;

.. ENDPROC;

AT SYSTEM STARTUP TO SET THE MEDCOH DATA-BASE %
FLAG, BECAUSE RSX B~INGS EVENT. FLAGS UP AS CLEAR,%
FACILITY ALREADY SECURED. IF THIS MEANS NOTHING %

>HELP RTL 214. %

- - ·r

SVC DATA RRSED;
BYTE TERMCH,IOFLAG;

ENDDATA;

SVC DATA RRERR;
LABEL ERL;
INT ERN;
PROCCINT> ERP;

ENDDATA;

% MEDIA DATA BASE : %

EXT DATA lNAREA; ·
ARRAYCTOTALAI) MEDCARD ANINP;
ARRAYCTOTALDIGICARD> HEDCARD DIGINP;
ARRAY<2> MEDCARD DIGCHAN;
MEDCARD HEDSTAT;

ENDDATA;

EXT DATA OUTAREAi
ARRAY CTOTALAO) MEDCARD ANOUTP;
ARRAY CTOTALDIGOCARD) HEDCARD DIGOUT;
ARRAY CTOTALAO) AOREC AODESC;
ARRAY (TOTALDIGOCARD,16) INT DIGUICS;

ENDDATA;

DATA LOCAL;
INT MANAGER;
INT QUIT := NO;
ARRAYC9)BYTE UBUF; % USED IN UICWRT
PROC () DUMMY := RRNUL;
TASKBUF TBUF := co,o,o,o,o,o,o,o,o,o,o,DUMMY,O,O,O,O);

ENDDATA;

ENT PROC RRJOB<>;
INT CHOICE;
TTIOO;
TASKINFOCTBUF>; % GET INFO ABOUT USER %

\

IF TBUF.TASK17=0CT 140001 THEN % [300,1] IS THE DATABASE MANAGER
%

MANAGER:=YES;
ELSE

MANAGER:=NO;
END·

. ' QUIT := NO;
WHILE GUIT=NO DO

HOME () ; CLEOS () ;
TWRT (.!' #LF#MA IN HENU#LF, LF# 11

) ;

TWRTC 11 1. ATTACH #LF# 11 l;
TWRTC"2. DETACH#LF#">;
TWRTC 11 3. GUIT#LF,LF,ENQ#">;
CHOICE:=IREADO;
IF CHOICE=1 THEN

ATTACH<>;
ELSEIF CHOICE=2 THEN

DETACH();
ELSEIF CHOICE=3 THEN

QUIT := YES;
END;

REP;
HOHEC>; CLEOS<>; OUT<ETX>;

ENDPROC;

RELMEDCOMC);
END;

END; .
RETURN CRET) ;

ENDPROC;

ENT PROC WRITE C INT MCODE,REF MEDCARD OUTDAT> INT;
% PROC TO WRITE DATA IN.DATA BASE TO %
% MEDIA.ONLY 1 CARD WRITTEN. %
% ERROR STATUS 15 RETURNED. · %

INT RET!=O,STOP:=O,ERRCNT:=O;

WHILE STOP = NO DO
RET := SENDMESSCHCODE,OUTDAT.ADDR,OUTDAT.MEDDAT,1);

% SEND MESSAGE TO MEDIA - GET REPLY %

IF RET = NOERROR THEN
RET:=SENDMESSCGOMES,OUTDAT.ADDR,D,O>;% SEND 2ND MESSAGE - GET REPLY

IF RET = NOERROR THEN
SECMEDCOMC>;
OUTDAT.SCANTIME:=TIMERCO.D>;
RELHEDCOMC>;

% NO ERRORS

END;
END;
IF RET = NOERROR THEN

STOP. : = YES;
ELSEIF RET = MEDIAERR THEN

STOP := YES;
ELSE

ERRCNT :~ ERRCNT + 1;
IF ERRCNT >= 2 THEN

£RP CERPBASE+RET>;
STOP:=YES;

ELSE
STOP :=-NO;

END;
END;

REP;

RETURN C RET> ;
ENDPROC;

% SUCESSFUL WRITE

% MEDIA ERROR

% 2 UNSUCCESSFUL RETRIES

% ERROR BUT TRY AGAIN . .

ENT PROC GETMED CREF MEDCARD HSTATUS) INT;

%

%

%

:{_PROC TO GET MEDIA STATUS WORD. IF THE RETURNED VALUE IS NOT %·
% ZERO, THEN THE STATUS WORD COU~D NOT BE ACCESSED. %

INT CHCK2;
CHCK2:= SINGLINCRSNGSTA,MSTATUS>;% GET MEDIA STATUS WORD FROH MEDIA%
RETURNCCHCK2>;

ENDPROC;

ENT PROC GETDCWCREF ARRAY MEDCARD DIGCN> INT;
% PROC TO GET THE DIGITAL CHANGE WORDS. IF THE RETURNED VALUE IS NOT %
% ZERO, THEN THE WORDS COULD NOT BE ACCESSED. %

INT RET := O;
RET := BLOCKINCRDIGCHG,1,2,DIGCN);
RETURNCRET>; .

ENDPROC;

%
%

LOCAL PROCEDURES.

PROC CHECINPUT <INT MCODE,NEXP) INT·
' % PROC TO CHECK AN INPUT MESSAGE <IN %

% INMSGJ RECEIVED FROM MEDIA.THE RESULT %
% GIVES THE ERROR STATUS OF THE TRANSACTION.~
% NEXP IS EXPECTED LENGTH OF REPLY. %

INT NREC:=O; % NO OF CHARS IN REPLY FROM MEDIA %
INT RECSTATUS:=O; % STATUS GOT FROM BYTE 2 OF RECEIVED MESSAGE %
INT TEMP:= NOERROR;
BYTE T1:=0;

IF MCODE=WSNGMED OR MCODE=WSNGANA THEN
FOR 1:=1 TO 6 DO

IF INMSGCI)#OUTMSGCI) THEN
TEMP := WRTERR;

% WRITE - ONLY NEED TO %
% CHECK THAT REPLY IS %
% SAME AS SENT MESSAGE. %

END;
·REP;

ELSE % ALL CODES OTHER THAN WRITE %
NREC := GETNRECCNEXPJ; % GET NO OF CHARS IN REPLY FROM MEDIA

FOR I:=1 TO NREC-1 DO
T1:=T1 NEV INMSGCI);

REP; .

% CALCULATE BCC CHARACTER OF RECEIVED
% BCC BY EXCLUSIVE OR

T1 := CT.1 LAND HEX 3F> LOR HEX 40; % BITS 0-5 PLUS BIT 6=1
IF T1 # <INMSGCNREC) LAND HEX 7F) THEN

TEMP := BCCRECERR; % BCC ERROR IN RECEIVED PACKET
ELSE

IF INMSGC1) LAND HEX 40 =D OR INMSGCNREC) LAND HEX 40 = 0 THEN
TEMP := ALIGNERR; % ALIGNMENT ERROR IN RECEIEVD PACKET

ELSE
IF INMSGC1) LAND HEX F # MCODE THEN

TEMP := WRONGCODE; % SENT AND RECEIVED CODES DIFFER
ELSE

%

BYTES
%

%

%

%

%

IF NREC=3 THEN % ERROR REPLIES FROM MEDIA HAVE LENGTH 3 %·
RECSTATUS := INHSGC2) LAND HEX F;
IF RECSTATUS . = 0 THEN % NO STATUS ERROR

IF NREC = NEXP THEN
TEMP := NOERROR;

ELSE
% NO ERROR

TEMP := LENERR; % ANSWER IS WRONG LENGTH
END;

ELSEIF RECSTATUS = 1 THEN
t-· . TEMP:= PARERR;

ELSEIF RECSTATUS =
TEMP:=BLOCl-<ERR;

ELSEIF RECSTATUS =
TEMP:=BADCODE;

ELSEIF RECSTATUS =
TEHP:=HEDIAERR;

ELSEIF RECSTATUS =
TEMP:=TIMEERR;

% PARITY ERROR IN TRANSMITTED MESSAGE
2 THEN

ELSE
TEMP:=ERRERR;

END; .

% BCC ERROR IN TRANSMITTED MESSAGE %
B THEN

% INVALID CODE SENT
4 THEN

% MEDIA ERROR
HEX F THEN

%

%

% TIMEOUT ERROR ON MEDIA ACCESS %

% UNKNOWN ERROR CODE %

ELSE -% LENGTH OF INHSG IS NOT 3 %
IF NREt=NEXP THEN

TEMP := NOERROR; % NO ERROR %
ELSE

TEMP := LENERR; % REPLY IS WRONG LENGTH %

%

:r

" A

END;
END· .

. ' END;
END; .

END;
END· ' . RETURNCTEMP>;

ENDPROC;

PROC GETNRECCINT NEXP>INT;
% PROC TO GET THE LENGTH OF THE ACTUAL RECEIVED MESSAGE FROM MEDIA %
% IT DOES THIS BY RETURNING THE NUMBER OF THE FIRST BYTE AFTER BYTE 1 % .
% WHICH HAS BI1 6 SET. IF NO SUCH BYTE IS FOUND WITHIN THE EXPEtTED %
% LENGTH NEXP OF THE MESSAGE, THEN NEXP IS RETURNED. . %

INT I,STOP;

STOP := NO;
I : = 1 ;
WHILE STOP = NO DO

I := I + 1;
IF INHSGCI> LAND BIN

IF I < NEXP THEN
STOP := NO;

ELSE
STOP .- YES;

END;
ELSE ·

STOP.:::. YES;
END;

REP;
RETURNCI>;

::NDPROC·
. '

01000000 = 0 THEN % E:IT 6 NOT SET

% CONTINUE SEARCHING ~

% CHAR WITH BIT 6 SET NOT FOUND WITHIN
% NEXP CHARS.

% BIT 6 IS SET.
% FOUND CHAR WITH BIT 6 SET.

PROC CHECLST <REF ARRAY MEDCARD MBLOCK,INT FIRST,LAST> INT;

%

%

%
%

%
%

% PROC TO CHECK THAT MEDIA DATA REQUESTED %
% FOR BLOCK INPUT IS CORRECTLY AND %
% CONTIGUOUSLY ADDDRESSED %

INT RET := NOERROR;

IF FIRST > 0 AND LAST-FIRST > 0 THEN
FOR I:=FIRST+1 TO LAST DO

IF MBLOCKCI-1>.STAT LAND 2 = MBLOCK(l).STAT LAND 2 THEN
% ADDRESSES ALL LIST OR ALL.MEDIA %
IF HBLOCK<I>.ADDR # MBLOCKCI-1).ADDR + 1 THEN
~-RET:=ADDRERR; % ADDRESSES NOT CONTIGOUSLY ORDERED %
END·

ELSE ' % ADDRESSES ARE MIXED LIST AND MEDIA %
RET:=MIXEDADDRS;

END;
REP;

ELSE
RET: =BADBU<LIHS;

END;
RETURNCRET>; % SUCCESSFUL RETURN %

ENDPROC;

PROC DECODE C I NT I> I NT; % PROC TO DECODE DATA IN INPUT BUFFER %
% AND TO ASSEMBLE IT INTO AN INTEGER %

INT T1:=T2:=0;

T1 :=INMSGC3*I) LAND HEX 3F; %
T2:=INMSGC3*I+1) LAND HEX 1F;
T2:=T2 SLL 6; %
T1:=T1 LOR T2; %
T2:=INMSGC3*I+2) LAND HEX 1F;
T2:=T2 SLL 11; %
T1 :=T1 LOR T2; %
RETURN CT 1) ;

ENDPROC;

PROC ENCODE CI NT I NP) ;

·r£0J.
LEAST SIG 6 BITS IN BYTE 3*1 %

% NEXT 5 BITS FROM NEXT BYTE %
SHIFT 5 BITS TO CORRECT POSITION %
LOGICAL OR WITH BITS ALREADY IN T1 %

% GET LAST 5 BITS FROM NEXT BYTE %
SHIFT TO CORRECT POSITION %
ADD THEM TO BITS ALREADY ASSEMBLED %

% THIS PROC ENCODES INP INTO BYTES 4 TO 6 OF OUTMSG %
OUTMSGC4):=BYTECINP LAND BIN 00111111>;
OIJTMSGCS):=BYTECCINP SRL 6) LAND BIN 00011111>;
OUTMSGC6):=BYTECCINP SRL 11) LAND BIN 00011111>;

ENDPROC;

PROC READCINT MCODE,ADDRESS,NUMRD) INT;

INT TEMP,ERRCNT:=O,STOP:=NO;

WHILE STOP = NO DO

% PROC TO DO DATA LINK HANDLING FOR A %
% READ MEDIA TRANSACTION %

TEMP := SENDMESSCMCODE,ADDRESS,NUMRD,NUMRD); % SEND OUT MESSAGE AND }
% GET REPLY, AND CHECK IT.

%

IF' TEMP # NOERROR THEN % AN ERROR OF SOME SORT OCCURRED . %
IF TEMP # MEDIAERR THEN % NOT MEDIA ERROR %

REP;

ELSE

ELSE

ERRCNT := ERRCNT + 1;
IF ERRCNT >= 2 THEN

ERPCERPBASE+TEMP>;
STOP .- YES;

ELSE
STOP := NO;

END;

STOP := YES;
END;

STOP :=YES;
END;

RETURN <TEMP> ;
ENDPROC;

%
%

%

%

%

2 RETRIES HAVE BEEN ATTEMPTED %
ABORT WITH DATA LINK ERROR NUMBER

% NO MORE RETRIES %

RETRY %

HEDI A ERROR SO NO RETRIES %

NO ERRORS - SUCCESSFUL RETURN %.

PROC SENDMESSCINT MCODE,MADR,MDATA,NUMRDlINT;

% SETS UP MESSAGE TO BE SENT TO MEDIA, SENDS IT, GETS A REPLY FROM MEDIA %
% AND CHECKS IT FOR ERRORS. THE VALUE RETURNED IS THE ERROR STATUS %

INT NIN:=O;
INT NOUT:=O;
INT TEMP:=O;

% NO OF CHARS EXPECTED IN REPLY
% NO OF CHARS IN OUTPUT MESSAGE

OUTMSGC1) := BYTECHCODE) LOR BIN 01000000;

IF MCODE = RSNGMED OR MCODE = RSNGANA THEN
ADDRESSCMADR>;
NOUT := 4;

%SINGLE READ

%
%

2-

NIN := 6; -~
ELSEIF HCODE = RBLKMED OR MCODE = RBLKANA THEN ~

ADDRESSCMADR>;
NOUT:=5;
NIN:=3*CNUMRD + 1);

· OUTMSGC4l:=BYTECNUMRD LAND HEX 003F>;
ELSEIF MCObE = RDIGCHG THEN % READ DCW'S %

OUTMSG C 2 >: ::0;
OUTMSG (3): ::0;
NOUT:=4;
NIN:=9;

ELSEIF MCODE :: RSNGSTA THEN % READ MEDIA STATUS %
OUT MSG (2) : :: 0;
OUTMSGC3) :=O;
NOUT:=4;
NIN:=6;

ELSEIF HCODE = WSNGMED OR MCODE = WSNGANA THEN % WRITE Z
ADDRESSCMAOR);
NOUT:=7;
NIN:=7;
ENCODE<MDATA>;

ELSEIF MCODE = GOMES THEN % 2ND STASE OF WRITE %
ADDRESSCSAVEADDR>;
NOUT:=4;
NIN:=3;

ELSE % CODE NOT USED %
OUTMSGC2):=0;
NOUT:=3;
NIN:=3;

END;

SAVEADDR := MADR;

PUTBCC<NOUT>;

FOR 1:=1 TO NIN DO % SET INMSG TO ZERO'S ~
INMSG (I> : :: O;

REP;
MESSANSCOUTMSG,NOUT,INMSG,NIN>; % SEND MESSAGE, GET REPLY %

TEMP := CHECINPUTCMCODE,NIN>; % CHECK REPLY FOR ERRORS %
RETURN CTEMP) ;

ENDPROC;

PROC ADDRESSCINT ADR>;
% ENCODES ADR INTO BYTES 2 AND 3 OF OUTMSG

OUTMSGC2>:= BYTECAOR LAND HEX OOOF>;
OUTMSGC3>:= BYTE<CADR SRL 4) LAND HEX,003F>;

ENDPROC;

PROC PUTSCCCINT MSGLENl;.
INT T:=O;
BYTE B;
FOR 1:=1 TO HSGLEN - 1 DO

T:= T NEV OUTHSG<Il;
REP;
B:=BYTECT LAND OCT 077>;
B:=B LOR· BIN 01000000;
OUTMSGCHSGLEN>:=B;

ENDPROC;

TITLE GSECREL
. ·.cE?_j)

.
' % SECURE AND RELEASE PROCS USING GLOBAL EVENT FLAGS. %

LET YES= 1;
LET NO = O;
LET MEDCOHEF = 33; % EVENT FLAG FOR MEDCOH SECURE/RELEASE %

MODE RSONAHECINT R50N1 ,R50N2>;
HOOE TASKBUF<INT TASKI1,TASKI2,

TASKP1,TASKP2,
TASKR1,TASKR2,
TASKRUN,
TASKUIC, % CURRENT UIC %
TASKNLUN,
TASKMCTY,
TASKSTDF,
REF PROC<> TASTSST,
INT TASTSST2,
TASK15,TASK16,
TASK17>; % PROTECTION UIC · %

EXT PROC <INT) SET; % SET EVENT FLAG %
EXT PROC C> RRNUL;
EXT PROC <INT> RRGEL;
EXT PROC <REF ARRAY BYTE> TWRT;
EXT PROC <INT) OWRT;
EXT PROC () TTIO;
EXT PROCCR~F R50NAME>R50READ,R50WRT;

SVC DATA RRERRX;
. INT LINENO;

BYTE UEFLAG,ERRLUN;
INT RSXDSW;

ENDDATA;

SVC DATA RRERR;
LABEL ERL;
INT ERN;
PROCCINT) ERP;

ENDDATA;

SVC DATA RRTASK;
R50NAHE HYTASK;

ENDDATA;

EXT DATA RRGLFACS;
ARRAYCZ-4> R50NAHE GLFACS;

ENDDATA;

DATA LOCAL;
PROCC> DUHHY:=RRNUL;

l

. TASKBUF TBUF:=CO,O, o,o, o,o, o,o,o,o,o,nuMHY,O,O,O,O)j
ENDDATA;

~NT PROC SECHEDCOHC>;

% PROC TO SECURE THE HEDCOH DATA BASE. IT CALLS SECURE USING EVENT %
% FLAG MEDCOHEF. %

SECURECMEDCOMEF>;
ENDPROC; .

ENDP.ROC;
\

PROC ,GETBLOCK () ;
% READS A 512 BYTE BLOCK OF DATA FROM THE FILE OPENED BY CALLING %
% OPENBLKIN, AND PUTS IT INTO IOBUF. CALLS ERP IF END-OF-FILE IS DETECTED}
INT 5;
S:=GETBLKCBUFADR,1,0,512>;
IF S<O THEN RRGELC605>;END;
IF 5=1 THEN ERPC604>;END;

ENDPROC;

\

. i..-

.
'
.

. ' .
'

.
' .
' . . , .
' .
' .
' .
'
.
' ;,

' .
' .
' .
' .
' RCSR

RBUF .
' XCSR

XBUF .
' STACK .
'

SHTLOAD

BOOTSTRAP LOADER FOR THE LSI-11 TO LOAD A PROGRAM DOWN
THE CONSOLE SERIAL LINE. SMTLOAD MUST BE RELOCATED
TO 157000=START ADDRESS AT TASKBUILD TIME, BY BUILDING AS FOLLOWS:

TKB>SMTLOAD/-MM/-HD,SMTLOAD/-SP=SMTLOAD
TKB>/
TKB>STACK=O
TKB>PAR=EXEPAR:157000:1000
TKB>//

SMTLOAD.ABS <THE FORM IN WHICH SHTLOAD IS USED BY ODT.TSK) IS MADE
AS FOLLOWS:

RUN $DMP
DHP>SHTLOAD.ABS=SMTLOAD.TSK/BL:3

THEN SHTLOAD.ABS IS EDITED <USING EDT> TO REMOVE ALL <LF> CHARACTERS,
DELETE THE FIRST 2 LINES AND DELETE ALL LINES CONTAINING ONLY ZERO
DATA •

=
=

=
=

=

.PSECT

DEFINITIONS

177560
RCSR+2

177564
XCSR+2

157000

;RECEIVER CONTROL/STATUS REGISTER
;READ BUFFER ADDRESS

;XHIT CONTROL/STATUS REGISTER
;XMIT BUFFER ADDRESS

BLOCKSIZE = 1000

;STACK POINTER CHIGHEST ADDRESS)

;SIZE OF BLOCK OF INPUT DATA .
' THIS PROGRAM MUST BE EXECUTED WITH THE PSW SET TO 340 <PRIORITY 7).
; THIS IS DONE IN ODT BY LOADING THE PC WITH THE START ADDRESS

(157000) AND THEN GIVING THE PROCEED (P) COMMAND. NOTE THAT THE .
COMMAND '157000G' WILL NOT WORK AS THE GO CG> COMMAND CLEARS THE

; PSW.

BEGIN:

.
'

FOR: ·

.
'

HOV

'15R
MOVB
JSR
MOVB

CLR
CLR.
CLRB

JSR
MOVB
HOVB

ADD

#STACK,SP ;SE.T UP STACK POINTER

PC,GETCHAR
@#CHAR,@#LENGTH
PC,GETCHAR
@#CHAR,@#LENGTH+1

R3
R2
@#BCC

; I

PC,GETCHAR
@#CHAR·, R 1
R 1, <R3).

@#BCC,R1

;GET THE FIRST TWO CHARS. THESE ARE
;THE NO OF BYTES TO FOLLOW <IE LENGTH

;FOR I:=O TO LENGTH-1 DO
; GET NEXT INPUT CHARACTER

. ,

.
'

STORE IT AT ADDRESS I;

BCC:=BCC + CHAR;

.
'

.
' I .OOP:

.
'

END IF:

.
' GETCHAR:

.
'

HOVB

INC

CMP
BLO
CLR

TSTB
BPL
MOVB

CLRB

INC
CHP
BLO

HALT

TSTB
BPL
HOVB
RTS

R1,@#BCC

R2

R2,#BLOCKSIZE
END IF
R2

@#XCSR
LOOP
@#BCC,@#XBUF

@#BCC

R3
R3,@#LENGTH
FOR

@#RCSR
GET CHAR
@#RBUF,@#CHAR
PC

;VAR

.
'

IF BLOCKCOUNT >= BLOCKSIZE THEN

BLOCKCOUNT:=O;

OUTPUT THE BCC·
'

BCC:=O;
END·

'
; REP·;

;PROCEDURE TO INPUT THE NEXT BYTE
LOOP TILL CHAR HAS ARRIVED

I: ADDRESS COUNTER -- USE R3

LENGTH: .WORD 0
BLOCKCOUNT: COUNT OF CHARS IN PRESENT BLOCK -- USE

; NO OF CHARS TO BE READ IN
BCC:. .BYTE 0 ; BLOCK CHECK CHAR
CHAR: .BYTE 0 BYTE CHAR : CHARACTER RECEIVED

.END

OPTION en CH;
TITLE
HEDCOM OCT-1981;

DESCRIPTION OF MODULE.
--

%
%
%

%
x
x
%
%
%
%
%

THIS IS THE COMMON DATA BASE FOR ACCESSING MEDIA. %
THE DATA IN MEDIA IS COPIED INTO THIS DATA BASE BY THE %
MEDIA UPDATE TASK. FOR EACH INPUT AND OUTPUT, A RECORD OF %
THE TIME OF LAST UPDATE IS MAINTAINED. %

%
%

LET DEFINITIONS

LET NHULT = 16;
LET NSIHAI = 4;
LET TOTALAI = 20;

LET NDIGICARD = 2;
LET NSIHDIGICARD = 2;
LET TOTALDIGICARD = 4;

LET NAO = 4;
LET NSIHAO = 4;
LET TOTALAO = B;

-LET NDIGOCARD = 1;
LET NSIHDIGOCARD = 1;
LET TOTALDIGOCARD = 2;

% NUMBER OF
% NUMBER OF

%

%
%

MULTIPLEXED AN. INPUTS
SIMULATED AN. INPUTS

% NO OF MEDIA DGITAL INPUT CARDS
% NO OF SHULATION DIG. INPUT CARDS

/

% NO OF MEDIA ANALOG OUTPUTS/
% NO OF SIMULATION ANALOG OUTPUTS

% NO OF MEDIA DIG. OUTPUT CARDS
% NO OF MEDIA DIG. INPUT CARDS

% THESE MUST BE CHANGED IF MEDIA CARDS ARE ADDED

%
%

MODE DEFINITIONS.

MODE MEDCARD C

INT STAT,
% BIT 0
% BIT 1
%

%
%

% RECORD FOR STORING DESCRIPTION OF %
% A SINGLE MEDIA CARD OR ANALOGUE INPUT %
% SiATUS WORD %
: 1 = IN SCAN. 0 = OUT OF USE %
: 1 - "ADDR' IS MEDIA ADDRESS· %

0 = "ADDR' IS LIST ADDRESS %·
: 1 =OUTPUT ~ 0 = INPUT. %

%
%

%
%

%
%

%
%

% BIT 2
--· % BIT 3

%
: 1 = ANALOGUE (I.E. FRAC-INT CONV.REGUIRED J

MODE AOREC <

% BIT 4
%
% BIT 5
%

HEDDAT,
ADDR,

Q. = DIGITAL %
: 1 = ANALOG ·1s BOTH +VE AND -VE %

0 = ANALOG rs +VE ONLY t
: 1 = CA~D REPRESENTS PART OF MEDIA %

0 = CARD IS USED FOR SIMULATION %
% DATA AS OBTAINED FROM MEDIA %

REAL SCANTIHE
% MEDIA OR LIST ADDRESS OF CARD OR INPUT %
% TIME OF LAST TRANSACTION BETWEEN DATA %
% BASE AND MEDIA FOR THIS CARD OR INPUT %

INT UIC,
USERINT,

ANIN,

) ;

% RECORD FOR DESCRIBING AN ANALOGUE OUTPUT
% UIC OF USER
% INTEGER FOR THE USER TO USE.

·%FOR INTER-TASK COMMUNICATION.
% AI WHICH IS BEING
% CONTROLLED BY THIS AO

%
%
%
%
%
%

. %
x

REAL SETP % SETPOINT OF THIS Al
) .
'

ENT DATA· BRICK DEFINITIONS .
--

%
%

ENT DATA INAREA; % DATA BRICK FOR HOLDING COPIES OF MEDIA INPUTS %
ARRAY CTOTALAI) HEDCARD ANINP:=% ANALOGUE INPUTS %

<<HEX 0009,0,1,D.O>,
<HEX 0009,0,2,0.0>,
<HEX 0009,0,3,0.0>,
<HEX 0009,0,4,0.0>,
<HEX 0009,0,5,0.0>,
<HEX 0009,0,6~0.0),
(HEX 0009,0,7,0.0>,
<HEX 0009,0,8,0.0>,
<HEX 0009,0,9,0.0>,
<HEX 0009,0,10,0~0>,
(HEX 0009,0,11,0.0),
(HEX 0009,0,12,0.0>,
<HEX 0009,0,13,0.0>,
<HEX 0009,0,14,0.0>,
(HEX 0009,0,15,0.0>,
(HE~ 0009,0,16,0.0),

/

/

<HEX 0029,0,0,0.0>, % THESE ARE SIMULATED%
<HEX 0029,0,0,0.0>,
<HEX 0029,p,o,o.o>,
(HEX 0029,0,0,0.0>>;

ARRAY <TOTALDIGICARD> MEDCARD DIGINP:= % DIGITAL INPUTS %
<<HEX 0003,0,0,0.0),
iHEX 0003,0,1,0.0>,

<HEX 0023 1 0,0,0.0>, % SIMULATED %
·<HEX 0023,0,0,o.o>r;

ARRAY (2) HEDCARD DIGCHAN:= % DIGITAL INPUT CHANGE WORD %
<<J,o,o,o.o>,<3,o,o,o.o>>;

NEDCARD HEDSTAT; % STATUS WORD FOR MEDIA %
ENDDATA;

ENT DATA OUTAREA; % DATA BRICK HOLDING DATA TO BE SENT TO MEDIA %·
ARRAY <TOTALAO> HEDCARD ANOUTP:= % ANALOGUE OUTPUTS %

<<HEX OOOF,HEX 0001,0CT 14,0.0>,
<HEX OOOF,HEX 0002,0CT 14,0.0),
<HEX OOOF,HEX 0004,0CT 14,0.0>,

~- <HEX OOOF,HEX 0008,0CT 14,0.0>,

<HEX 002F,HEX 0001,0,0.0>, % SIMULATED%
(HEX 002F,HEX 0002,0,0.0>,
<HEX 002F,HEX 0004,0,0.0>,
<HEX 002F,HEX oooa,o,o.O>>;

ARRAY <TOTALDIGOCARD> NEDCARD DIGOUT:= % DIGITAL OUTPUTS %
<<HEX 0007,0,4,0.0>,

<HEX 0021,0,0,0.0>>; % SIHULATED %

ARRAY <TOTALAO> AOREC AODESC:= <<o,o,o,o.o> <TOTALAO>>;
% DESCRIPTIONS OF AO'S %

.EI])·
ARRAY C~OTALDIGOCARD,16) INT DIGUICS; %DESCRIPTIONS OF DO'S

%

ENDDATA;

\

. 0---·

TITLE MEDUPDAT
MEDIA UPDATE TASK;

LET LF = OCT 1 2 ;
LET BEL = 7•
LET ' CONTROL-C END-OF-TEXT ETX = 3• % ,
LET DEL = 10· % DELAY BETWEEN UPDATES

' LET MEDIAERR = 7• % MEDIA ERROR
' LET NOERROR = o·
'

LET RSNGHED = 1 •
'

% SINGLE READ FROM MEDIA
LET RBU<MED = 3; % BLOCK RE:r.~D FROM MEDIA
LET RBLKANA = ·4.

'
% BLOCK LIST READ

LET WSNGMED = 1 2; % WRITE: TO MEDIA

HODE MEDCARD(INT STAT,HEDDAT,ADDR,REAL SCANTIME>;
MODE AOREC <INT UIC, USERINT, ANIN,REAL SETPOINT>;

EXT PROCCINT> DELAY;

<i±JJ
%

EXT PROCC) SECHEDCOH,RELHEDCOH,FREEHEDCOH,HCOHINIT;
EXT PROC CINT,REF MEDCARD> INT SINGLIN;

% IN SECREL.RTL %

EXT PROC CINT,INT,INT,REF ARRAY HEDCARD) INT BLOCKIN;
· EXT PROC <REF ARRAY MEDCARO) INT GETDCW;

EXT PROC CINT,REF HEDCARD> INT WRITE;
EXT PROC <REF ARRAY BYTE> TWRT;
EXT PROC CBYTE>TTOUT;
EXT PROCC) TTIO,CLEANUP;
EXT PROC <.INT> IWRT,OWRT;

SVC DATA RRSIO;
PROCC) BYTE IN;
PROCCBYTE> OUT;

ENDDATA;

SVC DATA RRSED;
BYTE TERHCH,IOFLAG;

ENDDATA; .

SVC DATA RRERR;
. LABEL ERL;

INT ERN;
PROC<INT> ERP;

ENDDATA;

SVC DATA RRERRX;
INT LINENO;

..
'·

BYTE U6FLAG·,ERRLUN;
INT RSXDSW; % HOLDS DSW RESULT OF EXECUTIVE CALLS %

C:NDDATA;

·"· % HEDCOM DATA BASE
%

%
%
%

%
%

%
%
%
%

LET NHULT = 16;
LET NSIHAI = 4;

% NUMBER OF MULTIPLEXED AN. INPUTS %
% NUMBER OF SIMULATED AN. INPUTS %

LET TOTALAI = 20;

LET NDIGICARD = 2;
~ET NSIHDIGICARD = 2;
LET TOTALDIGICARD = 4;

% NO OF MEDIA DGITAL INPUT CARDS %
% NO OF SMULATION DIG. INPUT CARDS %

<EE>
· LET NAO = 4; % NO OF MEDIA ANALOG OUTPUTS %

LET NSIMAO = 4;
LET TOTALAO = Bf

% NO OF SIMULATION ANALOG OUTPUTS %

LET NDIGOCARD = 1;
LET NSIMDIGOCARD = 1;
LET TOTALDIGOCARD = 2;

%
%

NO OF
NO OF

% THESE MUST BE CHANGED IF MEDIA CARDS ARE ADDED

HEDIA
MEDIA

DIG. OUTPUT CARDS %
DIG. INPUT CARDS %

%

EXT DATA INAREA; % DATA BRICK FOR HOLDING COPIES OF MEDIA INPUTS %
ARRAY (TOTALAI> HEDCARD ANINP;
ARRAY CTOTALDIGICARD) HEDCARD DIGINP;
ARRAY (2) MEDCARD DIGCHAN;
HEDCARD HEDSTAT; % STATUS WORD FOR MEDIA %

ENDDATA;

EXT DATA OUTAREA; % DATA BRICK HOLDING DATA TO BE SENT TO MEDIA %
ARRAY <TOTALAO) HEDCARD ANOUTP;
ARRAY CTOTALDIGOCARD> HEDCARD DIGOUT;
ARRAY <TOTALAO> AOREC AODESC;
ARRAY <TOTALDIGOC~RD,16) INT DIGUICS;

ENDDATA;

DATA. LOCAL;
INT ERRCODE :~ NOERROR;

ENDDATA;

ENT PROC RRJOB<>;

INT LOOPCNT:=1;
ERL:=UNRECOV;

TTIOO;

TWRT<"#LF#MEDIA DAT~ BASE UPDATE TASK V2.1#LF,ETX#">;

% SET THE MEDIA SECURE/RELEASE EVENT FLAG <SEE COMMENTS IN SECREL.RTL> %
HCOHINIT ();

STARTUPDAT:

%

WHILE 1=1 DO

RDANINPS (); % READ ANALOG INPUTS AND PUT OUT OF.SCAN IF
% MEDIA ERROR OCCURS.

FOR 1:=1 TO NDIGICARD DO .
RDDlGINP<I>; % READ DIGITAL INPUTS, ETC •••

REP;

RDDCWS ();

FOR I:=1 TO NAO DO
WRANOUTCI>;

REP;

%% READ DIG CHG WDS, DITTO •••

% WRITE TO ANALOG OUTPUTS, DITTO

FOR 1:=1 TO NDIGOCARD DO
WRDIGOUT<I>; % WRITE TO DIG O/P·s, DITTO

REP;

%
%.

%

%

%

DELAY <DEL) ;

LOOPCNT ~= <LOOPCNT + 1) MOD 10;
IF LOOPCNT=O THEN

CHECKSCAN<>; % CHECK TO SEE IF ANY CARDS HAVE COME %
END; % BACK INTO SCAN. %

REP;

UNRECOV: % UNRECOVERABLE ERROR HANDLING. %
FREEMEDCOHC>; % FORCED RELEASE OF HEDCOM IRRESPECTIVE OF WHO %

% HAS SECURED IT. . %
CLEANUP<>;
TT I 0 ();
GOTO STARTUPDAT;

ENDPROC;

PROC RDANINPS<>;

% READ IN THE ANALOGUE INPUTS

IF ANINPC1>.STAT LAND 1 = 1 THEN % IN SCAN
ERRCODE := BLOCKINCRBLKANA,1,NMULT:/2,ANINP>;
IF ERRCODE#HEDIAERR THEN

ERRCODE:=BLOCKIN<RBLKANA,NHULT:/2 +1,NHULT,ANINP>;
END;
IF ERRCODE=HEDIAERR THEN

SECMEDCOH < > ; ·
FOR 1:=1 TO NHULT DO

%

/

ANINPCI>.STAT := ANINP<I>.STAT LAND HEX FFFE; % PUT -OUT OF SCAN%
REP;
RELHEDCOHC>;
FOR 1:=1 TO NHULT DO

TWRTC"#LF#OUT OF SCAN : ANINP ">; IWRTCI>;TWRTC"#BEL,ETX#">;
REP·

' END;
END;

ENDPROC;

PROC RDDIGINPCINT N>;

% READ IN THE DIGITAL INPUTS

IF DIGINP<N>.STAT LAND 1 = 1 THEN % IN SCAN %
ERRCQDE :: SINGLINCRSNGHED,DIGINPCN>>;
IF ERRCODE=HEDIAERR THEN

SECHEDCOMC>;
DIGINP<N>.STAT := DIGINP<NJ.STAT LAND HEX FFFE;

. RELMEDCOM () ;

%

TWRTC"#LF#OUT OF SCAN: DIGINP ">; IWRT<N>;TWRT<"#BEL,ETX#">;
END;

END;

ENDPROC;

PROC RDDCWSC>;

% READ IN THE DIGITAL CHANGE WORDS · %

IF DIGCHAN<1>.STAT LAND 1 = 1 AND DIGCHAN(2).STAT LAND 1 = 1 THEN

ERRCODE := GETDCWCDIGCHAN>;
IF ERRCODE=HEDIAERR THEN

SECMEDCOMC>;
FOR 1:=1 TO 2 DO

DIGCHAN<I>.STAT := DIGCHAN(l) .STAT LAND HEX FFFE;
REP;
RELHEDCOH<>;
TWRT<"#LF#OUT OF SCAN: DCWS">·TWRTC"#BEL ETX#")• , ' ' END;

END;

ENDPROC;

PROC WRANOUT<INT N>;

% WRITE TO ANALOGUE OUTPUT N

IF ANOUTP(N).STAT LAND 1 = 1 THEN
ERRCODE := WRITE<WSNGHED,ANOUTP<N>>;
IF ERRCODE=HEDIAERR THEN

SECHEDCOM<>;
ANOUTP<N>.STAT := ANOUTP<N>.STAT LANO HEX FFFE;

. RELHEDCOH () ;
TWRTC"#LF#OUT OF SCAN: ANOUT ">; IWRTCN>;TWRT<"#BEL,ETX#">;

END· ' . END·
'

ENDPROC;

PROC WRDIGOUT<INT N>;

% WRITE TO THE DIGITAL OUTPUTS

IF DIGOUT<N>.STAT LAND 1 = 1 THEN
ERRCODE := WRITE<WSNGHED,DIGOUT<N>>;
IF ERRCODE=HEDIAERR THEN

SECHEDCOH<>;
DIGOUT<N>.STAT := DIGOUTCN>.STAT LAND HEX FFFE;
RELHEDCOM<>;
TWRT("#LF#OUT OF SCAN: DIGOUT ">; IWRT<N>;TWRTC"#BEL,ETX#">;

END;
END;

ENDPROC;

PROC CHEGKSCAN();

% CHECKS ALL CARDS THAT HAVE GONE OUT OF SCAN TO SEE IF THEY X
% CAN BE BROUGHT BACK INTO SCAN. X

IF ANINP<1>.STAT LAND 1 = 0 THEN % OUT OF SCAN %
CHANINPS<>; % TRY TO ACCESS THE ANALOG INPUTS %

END;

FOR I:=1 TO NDIGICARD DO
IF DIGINPCI>.STAT LAND 1 = 0 THEN % OUT OF SCAN %

CHDIGINP CI);
END;

REP· ' .

%

% IF DIGCHANC1) .STAT LAND 1 = 0 THEN %% OUT OF SCAN %
% CHDCWSC>;%
% END;%

FOR 1:=1 TO NAO DO
IF ANOUTPCI>.STAT LAND 1 = 0 THEN % OUT OF SCAN %

CHANOUTCI>;
END·

' REP;

FOR 1:=1 TO NDIGOCARD DO
IF DIGOUTCI>.STAT LAND 1 = 0 THEN % OUT OF SCAN %

CHOI GOUT CI>;
END;

REP;

ENDPROC;

PROC CHANINPS ();

x CHECK IF ANINPS BACK IN SCAN %

· ERRCODE := BLOCKINCRBLKANA,1,NMULT,ANINP>;.
IF ERRCODE#MEDIAERR THEN % BACK IN SCAN X

SECMEDCOM () ;
FOR 1:=1 TO NHULT DO

ANINPCI>.STAT := ANINPCI~.STAT LOR 1;.
REP; .
RELMEDCOH<>;
FOR 1:=1 TO NMULT DO

TWRTC"#LF#BACK IN SCAN
REP;

END;

ANINP ")· IWRTCI>,· TWRTC"#BEL ETX#")·
' ' '

ENDPROC;

PROC CHDIGINPCINT Nl;

X CHECKS IF DIGINP N HAS COME BACK INTO SCAN %

ERRCODE := SINGLINCRSNGHED,DIGINP<N>>~.
IF ERRCODE#HEDIAERR THEN

SECHEDCOH<>;
DIGINPCN>.STAT:=DIGINPCN>.STAT LOR 1;
RELMEDCOH<>;
TWRTC"#LF#BACK IN SCAN: DIGINP ">; IWRTCN>; TWRTC"#BEL,ETX#">;

END; ..._.

ENDPROC;

PROC CHDCWS<>;

% CHECK IF DCWS ARE BACK IN SCAN %

ERRCODE:=GETDCW<DIGCHAN>;
IF ERRCODE#MEDIAERR THEN

SECMEDCOM<>;
FOR 1:=1 TO 2 DO

DIGCHANCI>.STAT:=DIGCHAN<I>.STAT LOR 1;
REP;
RELHEDCOMC>;
TWRTC"#LF#BACK IN SCAN : DCWS#BEL,ETX#"J;

END;

ENDPROC;

PROC CHANOUTCINT N>;

% CHECK IF ANOUT.N IS BACK IN SCAN %

ERRCODE:=WRITECWSNGMED,ANOUTPCN>>;
IF ERRCODE # HEDIAERR THEN

SECMEDCOMC>;. .
ANOUTPCN>.STAT:=ANOUTPCN>.STAT LOR 1;
RELHEDCOH<>;
TWRTC"#LF#BACK IN SCAN: ANOUT 11 >; IWRTCN>; TWRTC"#BEL;ETX#");

END;

·ENDPROC· ,

PROC CHDIGOUTCINT N>;

% CHECKS IF DIGOUT N HAS COME BACK IN SCAN %

ERRCODE:=WRITECWSNGHED,DIGOUTCN>>;
IF ERRCODE#HEDIAERR THEN

SECHEDCOH<>;
DIGOUTCN>.STAT:=DIGOUTCNl.STAT LOR 1;
RELHEOCOH<>;
TWRTC"#LF#BACK IN SCAN: DIGOUT ">; IWRT<N>; TWRT("#BEL,ETX#"l;

END;

ENDPROC;

OPT I ON C 1) CM;

TITLE
LINKLB;

% %
% THIS MODULE CONTAINS PROCEDURES FOR PASSING AND RECEIVING DATA %
% LINK PROCEDURES IN RSX 11M. IT IS INTENDED TO BUILD IT INTO A %
% GENERAL LIBRARY, ALTHOUGH IT IS INITIALLY WRITTEN TO .SERVE THE %
% MEDIA HANDLING PROCEDURES. %
% THE ENT PROC DEFINED HERE IS: %
Z MESSANS : PROC TO WRITE BUFFER DOWN DATA LINK AND TO READ %
% IN REPLY BUFFER,BOTH WITH TIMEOUT %
% %

LET LUN = 3•
' LET RAL = OCT 001010;

~ET RNE - OCT 20;
LET WAL = OCT 000410;
LET KIL = OCT 000012;
LET BUFLENERR = 13;
LET TIMERRI = 14;
LET TIHERRO = 15;
LET INERR = 16;
LET OUTERR = 17;
LET NOERROR = O;
LET LF = OCT 012;
LET SP = OCT 040;
LET BIT6 =· BIN 01000000;
%

. %
%

MODE DEFINITIONS •

% LOGICAL UNIT NUMBER OF MEDIA
% COMMAND CODE FOR READ ALL
% COMMAND SUB-CODE FOR READ NO ECHO
% COMMAND CODE FOR WRITE ALL
% CANCEL l/O REQUEST COMMAND CODE
% BUFFER LENGTH ERROR
% TIMEOUT ERROR ON INPUT
% TIMEOUT ERROR ON OUTPUT
% QIO STATUS ERROR ON INPUT
% QIO STATUS ERROR ON OUTPUT
% NO ERROR DETECTED
% LINE FEED CHARACTER
% SPACE CHARACTER

% BIT 6 MASK

%
%

%
%
%
%
%
%
%
%

// %
%
%
%
%

MODE IOSTAT CBYTE IOSTLOW, IOSTHIGH, INT IOSTVAL>; % 10 STATUS BLOCK%
MODE FLAGBUF <INT FLAGLOCALO,FLAGLOCAL1,FLAGCOHHON2,FLAGCOMHON3);

% EVENT FLAG SETTINGS FOR RSX11M DIRS. %

%
%

EXTERNAL PROCEDURE DEFINITIONS.
--

%
%

% THE FOLLOWING ROUTINES ARE IN THE BASE PROGRAMS %
EXT PROC () RRNUL; % NULL PROCEDURE %
EXT PROC (INT) RRGEL; % UNRECOVERABLE ERROR HANDLER %
% THE FOLLOWING ARE ROUTINES FROM LB:C1,1)MTSLIB.OLB %
EXT PROC (INT) RELDEV,SECDEV; % DEVICE RELEASE,SECURE %
EXT PROC C INT,INT,INT > MARKTIHE;
% THE POLLOWING ARE STANDARD STREAM I/O PROCEDURES - REFER %
% TO THE STREAM I/O MANUAL %

EXT PROC C REF ARRAY BYTE) TWRT;
EXT PROC (INT) IWRT ,OWRT;

% THE FOLLOWING ARE RSX 11H EXECUTIVE DIRECTIVES FROM %
% LB:C1,1)RTLEXC.OLB %
EXT PROC (INT,INT,INT,INT,REF IOSTAT,PROC<l,REF ARRAY INT) RSXQIW;
EXT PROC CINT,PROC()} RSXCHK; % CANCEL HARK TIME REQUESTS %

SVC DATA BRICK DEFINITIONS
--

SVC DATA RRERR;
LABEL ERL;

%
%

INT ERN;
PROC C INT) ERP;

ENDDATA;

%
%

LOCAL DATA BRICK DEFINITIONS.
--

%
%

DATA LOCAL;
IOSTAT STATUS;
ARRAY (6) INT DEVPARM;
INT ERRCODE:=NOERROR;

% IO STATUS BLOCK
% DEVICE SPECIFIC PARAMETERS FOR QIO
% ERROR CODE OF LINK TRANSACTION

%
%
x

ENDDATA;

%
%

ENT PROCEDURES.
----------------- -------------

%
%

ENT PROC MESSANS CREF ARRAY BYTE OUTBUF,INT OUTLEN,REF ARRAY BYTE INBUF,
INT INLEN)INT;

% THIS PROC OUTPUTS 'OUTLEN' CHARS DOWN THE LINE AND WAITS FOR %
% A REPLY OF 'INLEN' CHARS. IT FIRST WAITS FOR THE FIRST THREE X
% CHARS OF THE REPLY, SINCE ALL ERROR REPLIES FROM MEDIA ARE THREE %
% CHARS LONG. IT TESTS THESE 3 CHARS TO SEE lF THEY CONSTITUTE A %
% COMPLETE REPLY; IF NOT, IT WAITS FOR THE REST OF THE REPLY. %

ERRCODE := NOERROR;
FOR 1:=1 TO 6 DO DEVPARH<I>:=O; REP;

% ZERO THE DEVICE DEPENDENT PARAMETERS %
IF OUTLEN > 0 AND INLEN > 0 THEN

DEVPARMC1) :=BUFSETCOUTBUF>;
DEVPARMC2l:=OUTLEN; % SET BUFFER LENGTH
SECDEVCLUN>; % SECURE THE DATA LINK.
MARKTIHEC1,50,1l; % 1 SEC TIMEOUT TO OUTPUT MESSAGE
RSXGIWCWAL,LUN,1,0,STATUS,RRNUL,DEVPARM>;

CHECKIOCTIMERRO,OUTERR>;
DEVPARMC1>:=BUFSETCINBUF>;
IF INLEN > 3 THEN

% WRITE BUFFER OUTBUF TO LUN
% WAS OUTPUT OF MESSAGE SUCCESSFUL

% SET UP PARAMETERS FOR RECEIVING

DEVPARMC2>:=3; % FIRST READ IN THREE BYTES %

%
%
%

x·
? %
MESSAGE %

MARKTIHEC1,150,1l; % 3 SEC TIMEOUT TO RECEIVE ANSWER FROM LINK~
RSXQIW<RAL LOR RNE,LUNj1,0,STATUS,RRNUL,DEVPARM>;

% SET INPUT BUFFER,DO NOT ECHO
CHECKIOCTIHERRI,INERR>; % MESSAGE SUCCESSFULLY RECEIVED?
IF ERRCODE=NOERROR AND INBUFC3) LAND BIT6 = 0 THEN

%
%

% THERE ARE HORE BYTES TO COME : BIT 6 NOT SET AND NO ERROR YET %
DEVPARMC1>:=BUFSETCINBUF) + 3;
DEVPARHC2l:=INLEN - 3; % INLEN-3 BYTES STILL TO COME
MARKT I ME C 1 , 50, 1) ; .
RSXQIWCRAL LOR RNE,LUN,1,0,STATUS,RRNUL,DEVPARH>;
CHECKIO<TIHERRI,INERR>;

END;
ELSE % 3 COR FEWER C?l) CHARS EXPECTED IN REPLY

DEVPARHC2) := INLEN;
MARKTIMEC1,150,1>;
RSXQIWCRAL LOR RNE,LUN,1,0,STATUS,RRNUL,DEVPARH>;
CHECKIOCTIMERRI,INERR>;

END;
RELDEVCLUN>;

ELSE
ERRCODE:=BUFLENERR;

END;
RETURNCERRCODE>;

% RELEASE MEDIA
% BUFFERS OF WRONG LENGTH

%

%
%

.ENDPROC;

LOCAL PROCEDURES.

%
%

PROC BUFSET (REF ARRAY BYTE BUFFER> INT; .
% THIS ROUTINE TAKES A BUFFER ADDRESS · %
% AND RETURNS IT AS AN INTEGER VARIABLE %
% HUST BE COMPILED IN SYSTEMS MODE %

INT TEHP;

CODE 10, 0; .
HOV *BUFFERC%5),*TEHPC%5) ; MOVE ADDRESS IN BUFFER TO TEMP
INC *TEHPC%5) ; POINT TO FIRST DATA BYTE IN BUFFER

*RTL;
RETURN<TEHP>;

ENDPROC;

PROC CHECKIO <INT TIHERR,IOERR>;
% PROC CHECKS EVENT FLAGS AFTER 1/0 WITH%
% TIMEOUT HND ERR ABORTS IF 1/0 OR TIMEOUT %
% ERROR. %

IF STATUS.IOSTLOW =O THEN % TIME OUT HAS OCURRED %

ELSE

END;
ENDPROC;

FOR I:=1 TO 6 DO DEVPARMCI>:=O; REP;
RSXGIWCKIL,LUN,1,0,srATUS,RRNUL,DEVPARH>; .
ERRCODE:=TIMERR;

RSXCHKCO,RRNUL>; % NO TIMEOUT SO CANCEL MARKTIME %
IF STATUS.IOSTLOW >= 128 THEN %.I/O ERROR HAS,QCCURRED %

ERRCODE:=IOERR;
END;

OPTION (1) CM;
.TITLE
MEDLNI-<; .

DESCRIPTION OF MODULE.
-- --

<£0)_·

%
%
%
%

%
%
%
%
%
%
%
%
%
%
%
%

THIS MODULE CONTAINS THE PROCEDURES FOR TRANSFERRING DATA %
BETWEEN THE 'MEDCOM' COMMON DATA BASE IN THE PDP 11/23 AND %
THE REMOTE MEDIA SYSTEM. IT CONTAINS THE FOLLOWING PROCS %
AVAILABLE TO OTHER MODULES FOR READING FROM AND WRITING TO %
MEDIA: %

SINGLIN

BLOCIO N

WRITE :

GETHED :

GETDCW

INPUT A SINGLE MEDIA CARD OR
ANOLOGUE LIST ITEM FROM MEDIA
INPUT A CONTIGUOUSLY ADDRESSED
BLOCK OF MEDIA CARDS OR AN
ANALOGUE LIST FROM MEDIA

%
%
%
%
%

WRITE A 16 BIT WORD TO A SINGLE %
MEDIA CARD %
GET THE MEDIA STATUS WORD FROM %
MEDIA
GET THE DIGITAL CHANGE WORDS
FROM MEDIA

%
%
%
%
%
%
%
x
%
%
%
%

THESE PROCS ARE NORMALLY ONLY CALLED BY THE MEDIA UPDATE
TASK.

%
%
%
%
%
%

%
%

LET DEFINITIONS.

LET LF = OCT 012;
LET CR = OCT 015;
LET VT = OCT 013;
LET SP = OCT 040;
LET ETX = 3;
LET ENG = 5;
LET BEL = 7;

LET ERPBASE = 500;

. LET NOERROR = O;
LET BCCRECERR = 1;
LET ALIGNERR = 2;
LET WRONGCODE = 3;
LET PARERR = 4;
LET BLOCKERR ~ 5;
LET BADCODE = 6;
LET MEDIAERR = 7;

.LET LENERR = B;
LET OUTOFSCAN = 9;
LET WRTERR = 10;

LET ADDRERR = 11 ;
LET MIXEDADDRS = 1 z;

LET TIHEERR = 13;
LET ERRERR = 14;
LET BADBU<L I MS = 15;

LET RSNGMED = 1 •
'

% LINE FEED CHARACTER
% CARIAGE RETURN CHARACTER
% VERTICAL TAB CHARACTER
% SPACE. CHARACTER
% END OF TEXT
% PROMPT FOR INPUT CHARACTER
% BELL CHARACTER

% START OF ERROR NUMBERS

%

%
%

%
%
%
%
%
%
%

%

% NO ERROR %
% BCC ERROR IN RECEIVED MESSAGE %
% ALIGNMENT ERR IN REC'D HESG. %
% WRONG CODE IN REC'D MESSAGE %
% PARITY,ETC ERR IN REC'D MESG. %
% BCC ERR IN TRANSMITTED MSG %
% INVALID CODE TRANSMITTED %
% MEDIA ERROR %
% RECEIVED ANSWER IS WRONG LENGTH %
% MEDCARD IS OUT OF SCAN %
% REC'D MSG NOT IDENTICAL TO %
% XMITTED MSG IN WRITE. %
% BLOCK READ ADDRESSES NOT CONTIGUOUS %
% BLOCK READ ADDRESSES MIXED LIST AND %
% MEDIA. %
% TIMEOUT IN XMITTED MESSAGE %
% INVALID ERROR CODE RETURNED BY MEDIA %
% INVALID BLOCK LIMITS ON BLOCKINCl %

% CODE : READ SINGLE MEDIA ADDR %

LET RSNGANA = 2 •
' LET RBLKMEO = 3·
' LET RBLKANA - 4·
' LET RDIGCHG = 7·
' LET RSNGSTA = 6"
' LET WSNGMED = 1 2;

LET WSNGANA = 13;
LET GOMES = 14;

LET YES = 1 .
' LET NO = o·

'
% MODE DEFINITIONS.
% ----------------------------------

% CODE
% CODE
% CODE
% CODE
% CODE
% CODE
% CODE
% CODE

<£i:IJ
READ SINGLE LIST ADDR %­
READ BLOCK MEDIA ADDRS %
READ BLOC~ LIST ADDRS %
READ DIG CHG WORDS %
READ MEDIA STATUS WORD %
WRITE TO MEDIA ADDR %
WRITE TO LIST ADDR %
2ND STAGE OF WRITE %

%
%

MODE HEDCARD C INT STAT,HEDDAT,ADDR,REAL SCANTIME);% MEDIA CARD RECORD%
MODE AOREC { INT UIC,USERINT, ANIN,REAL SETP>; % AO RECORD %

%
%

EXTERNAL PROCEDURE DEFINITIONS.
--- ---------

% THE FOLLOWING RO~TINES ARE IN T~E BASE PROGRAMS
EXT PROC () RRNUL; % NULL PROCEDURE
EXT PROC C INT) RRGEL; % UNRECOVERABLE ERROR HANDLER

% THE FOLLOWING ARE ROUTINES
EXT PROC t INT) DELAY;
EXT PROC (BYTE) BYTE ODDPAR;
EXT PROC { INT) OWRT;
EXT PROC C REAL) REAL TIMER;
EXT PROC () TTIO;

FROM LB:<1,1)MTSLIB.OLB
% DELAY TASK BY NNN TICKS
% SET ODD PARITY ON BYTE
% WRITE OUT INT AS OCTAL
% REAL TIME DIFFERENCE
% SET UP TT I/O

% · THE FOLLOWING ARE STANDARD STREAM I/O PROCEDURES - REFER
% TO THE STREAM 1/0 MANUAL
EXT PROCCREF ARRAY BYTE) TWRT;
EXT PROC C INT> IWRT;

% THE FOLLOWING IS FROM MODULE LINKLB.OBJ
EXT PROC C REF ARRAY BYTE,INT,REF ARRAY BYTE,INT>INT MESSANS;

% SEND MESSAGE DOWN DATA LINK AND GET ANSWER.
% RETURN ERROR STATUS.

'

%
%

%

%
%

% THE FOLLOWING ARE FROM SECREL.RTL %

%
%
%

%
%
%
%
%

%

%
%

EXT PROC () SECMEDCOM, RELMEDCOM; % SECURE & RELEASE DATA BASE %

% SVC DATA BRICK DEFINITIONS. %
% =========================== %

% SVC DATA BRICKS ARE PART OF THE INTERFACE TO THE OPERATING %
% SYSTEM %

SVC DATA RRSIO;
PROCOBYTE IN;
PROC <BYTE) OUT;

ENDDATA;

SVC DATA RRSED;
BYTE TERMCH,

IOFLAG;
ENDDATA;

% STREAM 1/0 INPUT PROCEDURE %
% STREAM 1/0 OUTPUT PROCEDURE %

SVC DATA RRERR;
LABEL ERL;
INT ERN;
PROCClNn ERP;

ENDDATA;

%
%

%
%

EXTERNAL DATA BRICK DEFINITIONS.
--
LOCAL DATA BRICK DEFINITIONS.
---------------------------------~------------------------

%
%

%
%

DATA LOCAL;
REF ARRAY BYTE TERMB:="#CR,LF#";

·ARRAY C16) BYTE OUTMSG; .
ARRAY (80) BYTE INHSG;
INT SAVEADDR;

% TERMINATING CHARACTERS FOR INPUT %
% MESSAGES TO MEDIA OUTPUT BUFFER %
% MESSAGES FROM ME~IA INPUT BUFFER %
% HOLDS PREVIOUS ADDRESS FOR GOMES %

ENDDATA;

%
%

OTHER ENT PROCEDURES.
--

%
%

%************** HEDI~ ACCESS ROUTINES *************************%

ENT PROC SINGLIN C INT ttCODE,REF MEDCARD INP> INT; % PROC TO READ A %

%

% SINGLE INPUT FROM MEDIA. RESULT IS 16 BIT INT%
% THE ERROR STATUS IS RETURNED. %

INT RET;

RET:=READCHCODE,INP.ADDR,1>;
IF RET = NOERROR THEN

SECHEDCOHC>;

INP.MEDDAT:=DECODEC1>;
INP.SCANTIHE~=TIMERCO.O>;
RELMEDCOHC>;

END;

% READ SINGLE MEDIA OR LIST ADDRESS '
% NO FAULT IN READ %
x· SECURE DATA BASE

% GET DECODED DATA FROM INPUT BUFFER
% GET REAL TIHE OF SCAN
% RELEASE DATA BASE

%
%
%

RETURN CRET> ;
ENDPROC;

ENT PROC BLOCKIN < INT MCODE,FIRST,LAST,REF ARRAY MEDCARD MBLOCK) INT;
% PROC TO READ IN A BLOCK OF %
% CONSECUTIVE MEDIA CARDS OR AN ANALOG %

% READS IN LAST-FIRST + 1 ITEMS
% MULTIPLEXED LIST FROM MEDIA MEMORY %
AND PUTS THE VALUES INTO ELEMENTS FIRST %

% TO LAST- OF ARRAY MB LOCK.
% LAST MUST BE GREATER THAN FIRST.

INT RET:=NOERROR;

IF MCODE # RDIGCHG THEN

%
%

RET:=CHECLSTCMBLOCK,FIRST,LAST>;%CHECK THAT ARRAY IS SUITABLY ORDERED%
END; .
IF RET = NOERROR THEN % NO ERROR DETECTED BY CHECLST %

RET:=READCMCODE,MBLOCKCFIRST>.ADDR,LAST-FIRST+1>;% DATA LINK HANDLING%
IF RET = NOERROR THEN
. SECHEDCOHC>; . % SECURE DATA BASE %

FOR I:=FIRST TO LAST DO % GET DECODED DATA INTO DATA BASE %
HBLOCKCI>.MEDDAT:=DECODECI-FIRST+1>;
MBLOCKCI).SCANTIME:=TIHERCn.o>;

REP;

STOPAST ();
ENDPROC;

PROC HOME<>;
OUTCESC); OUT<. H');

ENDPROC;

PROC CLEOS C) ; ,
OUTCESC); OUT<. J');

ENDPROC;

ENT PROC SECMEDCOMC>;

% THIS PROC DOES NOTHING. IT IS HERE BECAUSE THE ROUTINES IN MEDLNK CALL
%
% A PROC OF THIS NAME TO SECURE MEDCOM. SINCE WE ARE NOT USING MEDCOH, THERE
%
% IS NO NEED TO SECURE IT C!) AND THIS IS HOW WE AVOID DOING IT.
%

ENDPROC;

ENT PROC RELMEDCOM<>;

% SEE COMMENTS TO SECHEDCOM<>.
%

ENDPROC;

% HEDLNKTST -- PROGRAM TO TEST THE ROUTINES IN MEDLNK.RTL %

LET LF = OCT 012;
LET ENG = OCT 005;
LET ETX = OCT.003;
LET YES= 1;
LET NO = O;

MODE HEDCARDCINT STAT,HEDDAT,ADDR,REAL SCANTIME>;

EXT PROC <INT,REF HEDCARD>INT SINGLIN,WRITE;
EXT PROC <INT,INT,INT,REF ARRAY HEDCARD>INT BLOCKIN;
EXT PROC CREF HEDCARD>INT GETMED; .
EXT PROC CREF ARRAY HEDCARD>INT GETDCW;
EXT PROC<REF ARRAY BYTE>TWRT;
EXT PROC<>INT IREAD,OREAD;
EXT PROC<INT> IWRT,OWRT;
EXT PROCO GPIO;

DATA LOCAL;
INT ADR;
INT NITEHS;
INT DAT;
INT N;
INT COMMAND;
INT ERRNO;
HEDCARD MCARD:=<1,0,0,0.0>;
ARRAY (8) MEDCARD MBLOCK:=C<1,o,o,o.o>'

c1,o,1,o.o>,
c1,o,2,o.o>,
<1,0,3,0.0)'
C1,0,4,0.0),
c1,o,s,o.o>,
(1,0,6,0.0>'
C1,0,7,0.0>>;

ARRAY C 2) MED CARD DCWS: = ((1 , 0, 8, 0. O> ,

MEDCARD MSTAT:=<1,o,o,o.o>;
ENDDATA;

ENT PROC RRJOBC>;
INT BLKSIZE:=O;
INT STOP :=NO;
GPIOC>; .

WHILE STOP=NO DO

C1,0,9,0.0>);

TWRTC"#LF# MEDLNK TEST MENU#LF,LF#">;
TWRT("1. SINGLE MEDIA READ#LF#">;
TWRTC"2. SINGLE LIST READ#LF#">;
TWRT<"3. BLOCK MEDIA READ#LF#">;
TWRT<"4. BLOCK LIST READ#LF#");
TWRT<"5. DIGITAL CHANGE WORDS#LF#");
TWRTC"6. MEDIA STATUS WORD#LF#">;
TWRTC"7. WRITE TO MEDIA#LF#");
TWRTC"8. WRITE TO LIST#LF#">;
TWRTC"9. EXIT#LF#">;
TWRT (II =>#ENG#") ;

N : = I READ() ;

IF N=1 OR N=2 THEN % SINGLE READ %
COMMAND := N;

§

ADDRESS<>; .
HCARD.ADDR := ADR;
MCARD.HEDDAT := O;
HCARD.STAT:=1;
ERRNO := SINGLINCCOMHAND,MCARD>;
TWRTC"#LF#Data read <octal) : ">; OWRTCMCARD.MEDDAT>;

ELSEIF N=3 OR N=4 THEN % BLOCK READ %
COMMAND := N;
TWRTC"#LF#Media/list start address of block <octal> :#ENQ#">;
ADR :=DREAD();

FOR 1:=1 TO 8 DO
MBLOCKCI>.ADDR := ADR +I - 1 •

' REP;
TWRTC"#LF#No of itemsC1 to 8) #ENG#")·

' ' BLKSIZE:=IREADC>;
ERRNO:=BLOCKINCCOMHAND,1,BLKSIZE,MBLOCK>;
TWRTC"#LF#Data read <octal> : ">;
FOR 1:=1 TO BLKSIZE DO

OWRTCMBLOCKCI>.MEDDAT>; TWRTC" ">;
REP;

ELSEIF N=5 THEN % READ DCW %
ERRNO:=GETDCWCDCWS>;
TWRTC"#LF#Change words <octal) : 11 >;
OWRTCDCWSC1>.MEDDAT>;TWRTC" ">;OWRTCDCWSC2>.HEDDAT>;

ELSEIF N=b THEN % READ MEDIA STATUS %
ERRNO:=GETMEDCMSTAT>;
TWRTC"#LF#Media status word <octal) : ">;OWRTCHSTAT.MEDDAT>;

ELSEIF N=7 OR N=8 THEN %WRITE %
COMMAND := N + 5;
ADDRESS();
TWRTC"#LF#Data<octal)#ENG#">;
DAT : = DREAD() ;
HCARD.STAT:=1;
MCARD.HEDDAT:=DAT;
MCARD.ADDR:=ADR;
ERRNO:=WRITECCOMHAND,MCARD>;

ELSE
STOP:=YES;

END;

IF STOP=NO THEN
TWRTC"#LF#Error status returned=">;

END;
IWRTCERRNO>· TWRTC"#LF#") ·

' '
REP;

ENDPROC;

PROC ADDRESS () ; _

ENDPROC;

TWRTC"#LF#Hedia/list address <octal> #ENG#">;
ADR : = OREAD () ;

% MUTEST -- PROGRAM FOR TESTING HEDUSER INTERFACE

LET LF = OCT 12;
LET ENQ = 5;
LET ETX = 3;
LET YES= 1;
LET NO = O;

HODE HEDCARDCINT STAT,HEDDAT,ADDR,REAL SCANTIMEl;

EXT PROCC) GPIO;
EXT PROCCREF ARRAY BYTE>TWRT;
EXT PROCCINT>OWRT,IWRT;

. EXT PROC<>INT OREAD,IREAD;
EXT PROCCREAL> RWRT·
EXT PROC ()REAL RREAD;
EXT PROC CREAL>REAL TIMER;

EXT PROC CINT,INT,INT) WRHEDOUT;
EXT PROC CINT,INT> WRCOHHINT, SETANINP;
EXT PROC <INT) INT RDCOMHINT, GETANINP;
EXT PROC CINT,INT,INT) INT RDMEDIA;
EXT PROC CINT,REF ARRAY INT> ATTACHED;
EXT PROC CINT,INT,INT,REF MEDCARD)READHEDCARD;
EXT PROC CINT,REAL>SETSETPT;
EXT PROC CINT>REAL GETSETPT;
EXT PROC CINT,INT,INT> REAL RDSCANTIME;

EXT PROC C>HOHE,CLEOL,CLEOS;

DATA LOCAL;
ARRAY C32) INT OUTARRAY;
INT ADSWITCH;
INT IOSWITCH;
INT DAT;
INT N;
INT CHAN;
HEDCARD CARD:=CO,o,o,o.o>;

ENDDATA; ,

ENT PROC RRJOB<>;
INT STOP:=NO;
GPIO ();
HOME() ; CLEOS () ;
WHILE STOP=NO DO

CLEOL<>;TWRTC HEDUSER MeMu #LF#">;
CLEOL () ; TWR T (
CLEOL<>;TWRTC
CLEOL () ; TWRT C
CLEOL<>;TWRTC
CLEOL () ; TWR T (
CLEOL () ; TWR T<
CLEOLC>;TWRTC

#LF# II) ; CLEOL () ;
1. ATTACHED
2. WRMEDOUT
3. RDMEDIA
4. RDSCANTIME
5. WRCOHMINT
6. RDCOMMINT#LF#">;

7.
a.
9.

10.
11 •

SETANINP#LF# 11 >;
GETANINP#LF# 11 >;
SETSETPT#LF# 11 >;
6ETSETPT#LF# 11 >;
READHEDCARD#LF# 11 >;

CLEOLC>;TWRTC 1 2. Qu 1t#LF# 11 > ;
CLEOL<>;TWRT< #LF#");
CLEOL<>;TWRTC Choice #ENQ#">;
N: =I READ() ;
TWRTC"#LF#">; CLEOS<>; TWRTC"#LF#">;
IF N=1 THEN

DOATTACHED<>;
ELSEIF N=2 THEN

DOWRMEDOUTC>;

ELSEIF N=3 THEN
DORDMEDIA<>;

ELSEIF N=4 THEN
DORDSCANTIME<>;

ELSEIF N=S THEN
DOWRCOMMIN'r<>;

ELSEIF N=6 THEN
DORDCOMH I NT() ;·

ELSEIF N=7 THEN
DOSETANINP ();

ELSEIF N=8 THEN
DOGETANINP ();

ELSEIF N=9 THEN
DOSETSETPT<>;

ELSEIF N=10 THEN
DOGETSETPT<>;

ELSEIF N=11 THEN
DOREADMEDCARD<>;

ELSEIF N=12 THEN
STOP:=YES;

END·
' HOME();

REP;
CLEOSC>;
TWRT C "#ETX#" >;

ENDPROC;

PROC DOATTACHED<>;
GETADSW ();
ATTACHEDCADSWITCH,OUTARRAY>;
TWRTC"#LF#Attached to channels : #LF#">;
FOR 1:=1 TO LENGTH OUTARRAY DO

IF OUTARRAYCI)#O THEN
IWRT<OUTARRAYCI>>; TWRTC" 11 >;

END;
REP;

ENDPROC;

PROC DOWRMEDOUTC>;
GETADSW ();
GETCHANC>;
GETDATAC>;
WRMEDOUTCADSWITCH,CHAN,DAT>;
TWRTC"#LF#WRMEDOUT complete">;

ENDPROC;

PROC DORDHEDIAC>;
GETADSW<>;
GETIOSW ();
GETCHANC>;
DAT := RDHEDIACADSWITCH,IOSWITCH,CHAN>;
TWRTC"#LF#Data read <Octal> = ") ;OWRTCDAT>;

ENDPROC;

PROC DOWRCOMMINT<>;
GETCHAN<>;
GETDATAO;
WRCOHMINTCCHAN,DAT>;
TWRTC"#LF#WRCOMMINT complete">;

ENDPROC;

PROC DORDCOMHINTC>;

GETCHAN<>; ~
DAT:=RDCOMHINTCCHAN>; ~
TWRTC"#LF#Data read from common i~teger <Octal> = ">;OWRT<DAT>;

ENDPROC;

PROC DORDSCANTIME<>;
REAL X;
GETADSWO;
GET I OSW () ;-
GETCHAN C >;
X:=RDSCANTIME<ADSWITCH,IOSWITCH,CHAN>;
TWRT<"#LF#Scantime = ">;RWRTCX>;
TURTC"#LF#Seconds ago= ">;RWRTCTIHER<X>>;

ENDPROC;

PROC DOSETSETPT<>;
REAL X;
TWRTC"#LF#Analog output number #ENG#">;
CHAN : = I READ C > ;
TWRTC"#LF#Setpoint <Real> #ENG#">;
X: =RREAD () ;
SETSETPTCCHAN,X>;
TWRTC"#LF#SETSETPT complete">;

ENDPROC;

PROC DOGETSETPT<>;
REAL X;
TWRTC"#LF#Analog output number #ENG#">;
CHAN:= IREADO;
X:= GETSETPTCCHAN>;
TWRTC"#LF#Setpoint = ">; RWRT<X>;

ENDPROC;

PROC DOSETANINP<>;
INT ANO,ANI;
TWRT<"#LF#Analog output number #ENG#">;
ANO : = IREAD ();
TWRTC"#LF#Analog input number #ENG#">;

. AN I : = I READ() ;
SETANINPCANO,ANI>;
TWRTC"#LF#SETANINP complete");

ENDPROC;

PROC DOGETANINP<>;
INT ANI,ANO;
TWRTC"#LF#Analogue output number #ENG#">;
ANO : = I READ();
ANI := GETANINPCANO>;
TWRTC"#LF#Correspondtng analogue input number= ">;IWRTCANI>;

ENDPROC;

PROC DOREADMEDCARD<>;
GETADSW<>;
GETIOSW();
TWRTC"#LF#Card number #ENQ#">;CHAN := IREAD<>;
READMEDCARDCADSWITCH,IOSWITCH,CHAN,CARD>;
TWRTC"#LF,LF#Stat : ">; OWRTCCARD.STAT>;
TWRTC"#LF#Heddat : ">; OWRTCCARD.MEDDAT>;
TWRTC"#LF#Addr 11 >; OWRTCCARD.ADDR>;
TWRTC"#LF#Scanttme "); RWRTCCARD.SCANTIME);

ENDPROC;

PROC GET CHAN();
TWRT<"#LF#Channel number #ENG#">;
CHAN := IREAD<>;

ENDPROC;

PROC GETDATA () ;
TWRT("#LF#Data (Octal) #ENG#">;
DAT : = OREAD ();

ENDPROC;

PROC GETADSWC);
TWRT<"#LF#ADSWITCH <O=ANALOG, 1=DIGITAL> #ENG#">;
ADSWITCH := IREAD<>;

ENDPROC;

PROC GET I OSW () ;
TWRT("#LF#IOSWITCH <O=INPUT, 1=0UTPUT> #ENG#");
IOSWITCH := IREAD<>;

ENDPROC;

TITLE SIHBGS ~
PACKAGE TO ENABLE DIGITAL SIMULATION OF ANALOGUE SYSTEMS. ~
IT SERVES AS A CORE WHICH CALLS THREE USER-WRITTEN SUBROUTINES
WHICH SPECIFY EXACTLY WHAT THE ANALOGUE SYSTEM IS •

. ,
LET LF=OCT 12;
LET ENQ=5;
LET YES=1;
LET NO=O;

EXT PROC () SIHINIT, % USER-SUPPLIED ROUTINE CALLED BEFORE MAIN LOOP%
SIMJOB, % USER-SUPPLIED ROUTINE CALLED INSIDE HAIN LOOP %
SIMTIDYUP; % USER-SUPPLIED ROUTINE CALLED AFTER HAIN LOOP %

EXT PROC () STARTAST,STOPAST, % AST ROUTINES %
HOME,CLEOS,CLEOL; % SCREEN CURSOR HANDLING ROUTINES %

EXT PROC ()INT CTLCYET; % AST ROUTINE %
EXT PROC (INT) DELAY;
EXT PROCCREALlREAL TIMER;
EXT PROC ()INT IREAD;
EXT PROC <>RRNUL;
EXT PROC () GPIO;
EXT PROCCREF ARRAY BYTElTWRT;

SVC DATA RRERR;
LABEL ERL;
INT ERN;
PROC (INT> ERP;

ENDDATA;

ENT DATA SIMDATA;
INT N, % NO OF TIMES ROUND MAIN LOOP %

DELAYTICK5;% DELAY IN MAIN LOOP, USED IN REALTIME APPLICATIONS %
REAL DT; % THE TIME-STEP AROUND LOOP %
ARRAYC4l REAL TIME; % THE PAST 4 SAMPLING TIMES <SECS PAST MIDNIGHT> 1%

ENDDATA;

DATA LOCAL;
INT TIDYUP, % FLAG TO INDICATE IF SIHTIDYUPC) IS TO BE CALLED %

RESTART,% FLAG TO INDICATE IF PROGRAM HUST RESTART ON COMPLETION X
STOP, % FLAG TO STOP MAIN LOOP %
REALTIME, % FLAG TO INDICATE REALTIME OR OFFLINE CONTROL %
AST; % FLAG TO INDICATE IF THE AST ROUTINES ARE USED %

PROC Cl USERROUTINE:=RRNUL; % THE USER ROUTINE BEING EXECUTED %
ENDDATA;

ENT PROC RRJOBC>.;
RESTART:=YES;
WHILE RESTART=YES DO

RESTART:=NO;
INITIALISEFORLOOPC>;
SETDEFAULTS();

USERROUTINE:=SIMINIT;
SIMINIT<>; % USER.SUPPLIED INITIALISATION%

IF AST=YES THEN STARTASTC>; END;
WHILE STOP=NO DO

N:=N+1;
GETDT () ;

USERROUTINE:=SIMJOB;
SIMJOB<>; % USER SUPPLIED MAIN LOOP PROCESSING

DELAY<DELAYTICKS>;
IF AST=YES THEN

IF CTLCYET<>=YES THEN
PROCESSINTERRUPT<>;

END;
END;

REP;
IF AST=YES THEN STOPAST<>; END;

IF TIDYUP=YES THEN
USERROUTINE:=SIMTIDYUP;
SIHTIDYUP<>; % USER SUPPLIED TIDYUP ROUTINE %

END;
REP;

ENDPROC;

PROC INITIALISEFORLOOP<>;
GPIOO;
HOME() ; CLEOS () ;
TWRT<" ANALOG SIMULATION PACKAGE#LF,LF#">;
N:=O;
TIDYUP:=YES;
STOP:=NO;

ENDPROC;

PROC SETDEFAULTS<>;
DELAYTICKS:=SO; ··
AST:=YES;
REALTIME:=YES;

· % 1 SECOND DELAY ROUND LOOP - %
% SUPPORT AST INTERRUPTS %
% REALTIME,NOT OFFLINE %

ENDPRO.C;

PROC GETDT<>;
% THIS ROUTINE WORKS OUT DT IN A REAL-TIME SITUATION. IT CALCULATES %
% AN AVERAGE OVER THE PAST 4 SAMPLING TIMES, WHICH IS OPTIMUM FOR THE %
% INTEGRATION ALGORITHM USED. %
% IN OFFLINE SITUATION, THIS PROC DOES NOTHING. %

IF REALTIME=YES THEN
TIHEC4l:=TIME<3>;
TIMEC3) :=TIMEC2);
TIHE<2>:=TIHE<1>;
TIMEC1) :=TIMERCO.O>;
IF N=2 OR N=3 THEN

DT:= CTIME(1) - TIHECN))/REALCN-t>;
ELSEIF N>=4 THEN

DT:= CTIHEC1) + TIMEC2) - TIMEC3) - TIHEC4))/4.0;
END;

END;
ENDPROC;

ENT PROC INTEGRATE <REF ARRAY REAL XDOT, REF REAL X, REAL XO>;
·IF N=1 THEN '

% SET TO INITIAL VALUE %
VAL X:=XO;
XDOT < 2 > : = XDOT < 1 > ;

ELSEIF N=2 THEN
% USE TRAPEZOIDAL RULE %
VAL X:= XO+ CXDOTC1> + XDOT<2>>*DT/2.0;
XDOTC3>:=XDOT<2>;

XDOTC2>:=XDOTC1>;
ELSEIF N=3 THEN

% USE SIMPSON'S RULE %
VAL X:= XO+ CXDOTC1) + 4.0*XDOTC2> + XDOTC3>>*DT/6.0;
XDOTC4>:=XDOTC3);
XDOTC3>:=XDOTC2>;
XDOT<2>:=XDOTC1>;

ELSE
% USE ADAMS' 4TH ORDER METHOD %
VAL x:: X + C9.0*XDOTC1l+19.0*XDOTC2>-5.0*XDOTC3>+XDOTC4>>*DT/24.0;
XDOTC4>:=XDOTC3>;
XDOTC3l:=XDOTC2>;
XOOT<2>:=XDOTC1l;

END·
' ENDPROCj

ENT PROC HALT();
% STOP PROCESSING OF HAIN LOOP %
IF USERROUTINE=SIMJOB THEN

STOP:=YES;
ELSE

ERP C 601> ;
END;

ENDPROC;

ENT PROC NOAST<>;
% DO NO AST INTERRUPT PROCESSING %
IF USERROUTINE=SIMINIT THEN

AST:=NO;
ELSE

ERP·c 602 >;
END;

ENDPROC;

, ENT PROC OFFL I NE() ;
% CONTROL IS OFFLINE, NOT REALTIME %
IF USERROUTINE=SIHINIT THEN

REALTIHE:=NO;
DELAYTICKS:=O;

ELSE
ERPC603>;

END;
ENDPROC;

PROC PROCESSINTERRUPT<l;
INT CHOICE:=O;

· STOPAST () ;
WHILE CHOICE<1 OR CHOICE>5 DO

HOME() ; CLEOS () ;
TWRTC"INTERRUPT MENU#LF,LF#">;
TWRTC"1. CONTINUE#LF# 11

);

TWRT (11 2. TI DY UP AND RESTART#LF# 11
) ;

TWRTC"3. RESTART#LF# 11 l;
TWRTC 11 4. TIDY UP AND ABORT#LF#"l;
TWRTC 11 5. ABORT#LF,LF# 11 l;
TWRTC 11 ?#ENQ# 11

);

CHOI CE:= IREAD ();
REP· .

' IF CHOICE=2 THEN
. RESTART:=YES;

STOP:=YES;

ELSEIF CHOICE=3 THEN
RESTART:=YES;
STOP:=YES;
TIDYUP:=NO;

ELSEIF CHOICE=4 THEN
STOP:=YES;

ELSEIF CHOICE=S THEN
STOP:=YES;
TIDYUP:=NO;

END;
STARTASTCl;

ENDPROC;

TITLE PLOTLIB;

% LIBRARY OF ROUTINES TO ASSIST GRAPHICS USING THE TEKTRONIX 4014 %
% PLOTTING TERMINAL. %

LET FF = HEX oc;
LET GS = HEX 1D;
LET ESC = HEX 18;
LET ENG = HEX 05;
LET ETX = HEX 03;
LET LF = HEX OA;
LET CR = HEX OD;
LET EOS = HEX 80;
LET SUB = HEX 1A;

LET HISBITS = HEX 3EO;
LET LOWSBITS = HEX 1F;
LET HIY = BIN 00100000;
LET LOWY = BIN 01100000;
LET HIX = BIN 00100000;
LET LOWX = BIN 01000000;

SVC DATA RRSIO;
PROC ()BYTE IN;
PROC <BYTE) OUT;

ENDDATA;

SVC DATA RRERR;
LABEL ERL;
INT ERN;
PROC <INT> ERP;

ENDDATA;

EXT PROC CREF ARRAY BYTE, REF ARRAY BYTE>INT TREAD;
EXT PROC <INT> RRGEL;
EXT PROC CINT> DELAY;

ENT DATA PLOTDATA;
REAL XOFFSET, XFACTOR, YOFFSET, YFACTOR;
REAL XMIN := -1 .O, XHAX := 1.0,

. YHIN := -1.0, YMAX := 1.0;
ARRAY <20) BYTE REPLYBUF;

ENDDATA;

ENT PROC SCALE <REAL XHN, XHX, YHN, YHX>;

% SCALE SCREEN SIZE TO THE UNITS THE USER WILL USE %

IF XMN>=XMX OR YHN>=YMX THEN
RRGELC609)

ELSE
XOFFSET := XHIN := XMN;
YOFFSET := YHIN := YMN;
XMAX := XMX;
YMAX := YMX;
XFACTOR := 1024.0/CXHAX-XMIN>;
YFACTOR := 781.0/CYMAX-YMIN>;

END;
ENDPROC;

ENT PROC ISOSCALE<REAL XCENTRE,YCENTRE,RADIUS>REAL;

% SCALE SCREEN SIZE TO USER'S UNITS, BUT ENSURE EQUAL SCALE
% SIZE IN X AND Y DIRECTIONS. <PRESERVES SHAPES OF OBJECTS>

REAL HAJAXIS;
HAJAXI5:=2.0*RADIUS*1024.0/781.0;
SCALE(XCENTRE-MAJAXIS/2.0,XCENTRE+HAJAXIS/2.0,YCENTRE-RADIUS,YCENTRE+RADIUS
RETURN<HAJAXIS>;

ENDPROC;

ENT PROC DRAW <REAL XPOS, YPOS>;

% DRAW A LINE FROM THE CURRENT SCREEN POSITION TO <XPOS,YPOS>. %

INT XSCR, YSCR;
CONVERT <XPOS, YPOS, XSCR, YSCR>;
SCRDRAW <XSCR, YSCR>;

ENDPROC;

ENT PROC MOVE <REAL XPOS, YPOS>;

% HOVE TO SCREEN POSITION <XPOS,YPOS> WITHOUT DRAWING A LINE.

INT XSCR, YSCR;
CONVERT <XPOS, YPOS, XSCR, YSCR>;
SCRMOVE <XSCR, YSCR>;

ENDPROC;

ENT PROC GRAPHMODE<>;

% ENTER GRAPHICS MODE

OUT<GS>;
SCRDRAW<512, 390>;

ENDPROC;

ENT PROC ALPHAMODE<>;

% ENTER ALPHANUMERIC <TEXT> MODE

OUT<CR>;
ENDPROC;

ENT PROC CROSSHAIRS<>;

%

% GENERATE CROSS-HAIRS ON SCREEN %

OUT<ESC>;
OUT<SUB>;
OUT<ETX>;

ENDPROC;

ENT PROC GETCROSSHAIRS<REF REAL XPOS, YPOS>;

%

% READ THE <X,Y> POSITION OF THE CROSS-HAIRS %,

INT REPLYLENGTH, XSCR, YSCR;
OUT<GS>;
CROSSHA I RS{) ;
REPLYLENGTH := TREAD<REPLYBUF, "#CR, LF#">;
IF REPLYLENGTH#5 THEN

ERPC610>;
VAL XPOS := CXHAX-XHIN)/2.0;

VAL YPOS := <YHAX-YHIN)/2.0;
ELSE

XSCR := CCINT<REPLYBUF<2)) LAND LOWSBITS> SLL 5) +
<INT<REPLYBUF<3)) LAND LOW5BITS);

YSCR := CCINTCREPLYBUFC4)) LAND LOWSBITS> SLL 5) +
<INTCREPLYBUF(5)) LAND LOW5BlTS>;

VAL XPOS := XOFFSET + C REALCXSCR)/XFACTOR) ;
VAL YPOS := YOFFSET + (REALCYSCR)/YFACTOR >;

END;
ENDPROC;

ENT PROC CLEARSCREEN<>;
OUTCETX>;
OUTCESC>;
OUTCFF>;
OUT<ETX>;
DELAYC50>;

ENDPROC;

PROC SCRHOVE <INT XPOS, YPOS>;

% HOVE TO <X,Y> IN SCREEN UNITS CNOT USER UNITS)

OUTCGS>;
SCRDRAW <XPOS, YPOS>;

ENDPROC;

PROC SCRDRAW <INT XPOS, YPOS>;

% DRAW LINE TO CX,Y> IN SCREEN UNITS <NOT USER UNITS> %

IF XPOS>1023 THEN XPOS := 1023
ELSEIF XPOS<O THEN XPOS := 0
END;
IF YPOS>780 THEN YPOS := 780
ELSEIF YPOS<O THEN YPOS := 0
END;
OUTCBYTECCCYPOS LAND HI5BITS> SRL 5) LOR HIY>>;
OUT<BYTECCYPOS LAND LOW5BITS) LOR LOWY>>;
OUT<BYTECCCXPOS LAND HI5BITS> SRL 5) LOR HIX>>;
OUTCBYTECCXPOS LAND LOW5BITS> LOR LOWX>>;
OUTCETX>;

ENDPROC;

PROC CONVERT CREAL XPOS, YPOS, REF INT XSCR, YSCR>;

% CONVERT USER UNITS TO SCREEN UNITS . %

IF XPOS<XHIN THEN
XPOS := XHIN;
ERP C6.11>;

ELSEIF XPOS>XHAX THEN
XPOS := XHAX;
ERP (611>;

END;
IF YPOS<YHIN THEN

YPOS := YHIN;
ERP C611>;

ELSEIF YPOS>YHAX THEN
YPOS := YHAX;
ERP (611>;

END;

VAL XSCR :=
VAL YSCR :=

ENDPROC;

INT C CXPOS - XOFFSET> INT (CYPOS _ YOFFSET> * XFACTOR) • * YFACTOR)!
'

TITLE STAR;

X DEMONSTRATION PROGRAM FOR THE TEKTRONIX PLOTTING LIBRARY %
% PLOTLIB. DRAWS A PATTERN OF LINES ON THE SCREEN. %

LET ETX=3;
LET ENQ=S;
LET SUB=HEX 1A;
LET ESC=HEX 18;
LET GS = HEX 1D;
LET LF = 10;

LE.T FALSE = O;

MODE IOCLCREF ARRAY BYTE BFR,INT N,DV,PTR,MD,TRM>;

EXT PROC<>BYTE GPIN,TTIN,HSIN;
EXT PROCCBYTE> GPOUT,HSOUT,TTOUT,OUTF;
EXT PROCCREAL>REAL RSIN,RCOS,REXP;
EXT PROCCREAL) RWRTU;
EXT PROCC>INT IREAD;
EXT PROC <>REAL RREAD;
EXT PROCCREF ARRAY BYTE,INT>DBGWRT;
EXT PROCCINT>IWRT;
EXT PROCCREF ARRAY BYTE >TWRT;
EXT PROCCREF ARRAY BYTE,REF ARRAY BYTE> INT TREAD;
EXT PROC <INT> DELAY;
EXT PROC () STARTAST,STOPAST;
EXT PROC <>INT CTLCYET, ASTYET;
EXT PROC CREAL, REAL, REAL, REAL> SCALE;
EXT PROC CREAL, REAL, REAL>REAL ISOSCALE;
EXT PROC CREAL, REAL> DRAW, MOVE;
EXT PROC () GRAPHHODE, ALPHAHODE;
EXT PROC () CLEARSCREEN;

DATA LOCAL;
ARRAYC132>BYTE BUF,TIBUF,TOBUF,TEKINBUF;
IOCL TEKOUTCL:=<BUF,0,3,0,0,0>;
IOCL TEKINCL := CTEKINBUF,0,4',o,o,o>;
IOCL TTOUTCL:=<TOBUF,o,1,0,o,o>;
IOCL TTINCL:=CTIBUF,0,2,o,o,o>;
ARRAYC64>REAL X,Y;

ENDDATA;

SVC DATA RRCHAN;
REF IOCL INCL,OUTCL;

ENDDATA;

SVC DATA RRSIO;
PROCC>BYTE IN; PROCCBYTE>OUT;

ENDDATA;

ENT PROC RRJOB<>;
INT N;
IN := GPIN;
OUT := HSOUT;
INCL := TTINCL;
WHILE 1=1 DO

OUTCL := TTOUTCL;
TWRTC"#LF#NUMBER OF SIDES <1-64) ?#ETX#");
N := !READO;
SETUPPOINTSCN>;

· OUTCL := TEKOUTCL;
ISOSCALE <0.0,0.0,1.01>;
CLEARSCREENC>;
GRAPHHODE<>;
PLOTITCN>;
HOVE (0. 0, 1 • 0) ;
ALPHAHODE<>;

REP;
ENDPROC;

PROC PLOTITCINT N>;

% PLOTS A STAR PATTERN WITH N VERTICES %

INT. L,K;
INT NBY2;
1<:=1;
L: = 1 ;
HOVE < X < 1) , Y <1 >) ;
FOR 1:=1 TO <N-1> :/ 2 DO

FOR J:=1 TO N DO
IF L=K AND J#1 THEN

K:=<K HOD N> + 1;
L:=K;
MOVE (X CL> , Y (l >) ; .

END; .
L:=«L+I-1> HOON> +1;
DRAW C X CL> , Y CL) > ;

REP;
REP;
IF CN MOD 2)=0 THEN

NBY2:=N :/ 2;
TO NBY2 DO

K:=<CK+NBY2-1> HOD N> + 1;
DRAW< X CK) , Y 00 > ;
K: = (K HOD N) + 1 ;
MOVE (X 00 , Y (K >) ;

REP;
END;

ENDPROC;

PROC SETUPPOINTS<INT N>;

% INITIALISES VERTICES OF THE STAR PATTERN %

REAL THETA;
THETA := 2.0*3.1415926/REAL<N>;
FOR 1:=1 TO N DO

X <I>: =RCOS <<REAL (1-1) >•THETA>;
Y<I> :=RSIN< <REAL<I-1) >•THETA>;

REP;
OUT<ETX>;

ENDPROC;

TITLE : SCREEN CURSOR POSITIONING ROUTINES;

LET LF = OCT
LET ENG=5;
LET· ETX=3;
LET NL :: 10;
LET ESC = OCT
LET SP= . ·;

12. ,

33;

MODE IOCL (REF ARRAY BYTE BFR, INT N,DV,PTR,HD,TRH>;

EXT PROC CREF ARRAY BYTE> TWRT;
EXT PROC <> BYTE HSIN·
EXT PROC <BYTE> HSOUT;
EXT PROC <INT> TIHDAT;

SVC DATA RRSIO; PROC<>BYTE IN; PROC<BYTE>OUT ENDDATA;
SVC DATA RRERR; LABEL ERL; INT ERNf· PROCCINT> ERP ENDDATA;
SVC DATA RRCHAN; REF IOCL INCL, OU Cl ENDDATA;

ENT DATA IOLOCAL;
ARRAYC132>BYTE IBUF,OBUF:=CNL,SPC131>>;
IOCL ICL := (IBUF,0,1,0,1,o>; % HAVE SET HD TO 1 FOR BINARY %
IOCL OCL := C OBUF,0,1,1,1,0); % DITTO %

ENDDATA;

PROC INITIALISEIO<>;

% BASED ON TTIO<> BUT USE HSIN,HSOUT FOR BINARY DATA XFER %

IN:=HSIN;
OUT:=HSOUT;
INCL:=ICL;
OUTCL:=OCL;

ENDPROC;

ENT PROC GOTOLCCINT LINE,COL>;

· % PUT CURSOR AT POSITION <LINE,.COL> ON SCREEN %

IF LINE>O AND COL>O THEN
IF LINE <= 24 AND COL <= 80 THEN

OUT<ESC>;
OUT<' Y' > ;
OUTCBYTECLINE + - 1>>;
OUTCBYTECCOL + ' ' - 1>>;

ELSE
ERPC606>;

END;
ELSE

ERPC606>;
END;

ENDPROC;

ENT PROC HOME<>;
OUTCESC>; OUTC'H'>;

ENDPROC;

ENT PROC CLEOSC>;
% CLEAR TO END OF SCREEN %

OUTCESC>; OUTC'J'>;
ENDPROC;

ENT PROC CLSCREENC>;
HOME();
CLEOS<>;

ENDPROC;

ENT PROC CLEOL<>;
% CLEAR TO END OF LINE %

OUTCESC>; OUTC'K'>;
.ENDPROC;

ENT PROC PRINTTIMEC);
TIHDAT C-1 >;

ENDPRO~;

ENT PROC FORCEBUFFEROUTPUTC>;
.. OUT CETX>;

ENDPROC;

TITLE AST;

% ASYNCHRONOUS SYSTEM TRAP ROUTINES, FOR ASYCH. CHARACTER INPUT.%
% ASYNCH INPUT IS FROM LUN 2, AND THE GIOS USE EVENT FLAG 1. %

% THE AST ROUTINES PUT THE INCOMING CHARACTER INTO CHAR/LOCAL %
% AND SET AN EVENT FLAG TO SIGNAL THAT AN AST OCCURRED. IF THE %
% USER PREFERS NOT TO USE THE ROUTINES THAT WAIT FOR AST WITH %
% TIMEOUT, HE CAN POLL TO SEE IF AST HAS OCCURRED BY USING %
% THE ASTYET POLLING ROUTINES. %

LET NOTYET=O;

LET AST=1;
LET CTLC=2;

% NO AST HAS OCCURRED SINCE LAST ONE
% DEALT WITH.
% NON CONTROL-C AST HAS OCCURRED.
% CONTROL-C AST HAS OCCURRED.

% Event flag numbers used

LET ASTEF=4; %
LET AST2EF=3; %
LET ASTHASK= OCT 000015;
LET CTLCMASK=OCT 000005;
LET NCTLCMASK=OCT

LET YES=1;
LET NO=O;

LET LF=OCT 12;
LET ENG=5;
LET ETX=3;

000011;

MUST BE ,IN RANGE 1 •• 1 6
MUST BE IN RANGE 1 •• 16

% EF 3 OR 4 OR 1 %
% EF 3 OR 1 %
% EF 4 OR 1 %

MODE IOCLCREF ARRAY BYTE BFR,INT N,DV,PTR,HD,TRM>;
MODE IOXDCINT IOST1,IOST2,BITS,TMO>;

EXT PROC CINT,INT,INT>MARKTIME;
EXT PROC CINT>CANMARK;
EXT PROC CINT>INT TSTEF;
EXT PROC CREAL>REAL TIMER;
EXT PROC () TTIO,RRNUL;
EXT PROCCINT>IWRT,OWRT;
EXT PROCCINT>SET,RESET,WAIT,DELAY,RRGEL;
EXT PROCCREF ARRAY BYTE>TWRT;
EXT PROCCREF ARRAY BYTE,INT)DBGWRT;

EXT PROCCINT,INT)RSXWTL;

SVC DATA RRSIO;
PROC ()BYTE IN;
PROCCBYTE>OUT;

ENDDATA;

SVC DATA RRCHAN;
REF IOCL INCL,OUTCL;

ENDDATA;

SVC DATA RRIOX;
REF IOXD INXD,OUTXD;

ENDDATA;

SVC DATA RRERRX;
INT LINENO;
BYTE UEFLAG,ERRLUN;

%

%
%

%
%
%
%

INT RSXDSW;
ENDDATA;

SVC DATA RRERR;
LABEL ERL;
INT ERN;
PROC<INT>ERP;

ENDDATA;

DATA LOCAL;
INT ASTFLAG:=NOTYET;
INT CHAR:=O;
IOXD HYINXD:=CO,o,o,o>;
IOXD HYOUTXD:=<O,o,o,o>;

ENDDATA;

ENT PROC STARTAST<>;

% This proc attaches to TI: to start AST processing %

REF IOXD IOSB:=HYOUTXD;
CODE 52,0;

.LIST HEB

.GLOBL $DSW

.MCALL QIO$S,GIOSY$,TTSYH$
HOV *IOSB<S> ,R1
QIO$S #IO.ATA,#2,#1,,R1,,<#ASTIO,,#AST2>
HOV $DSW,*RSXDSW/RRERRX<O>
BCC *DOK

*RTL; RRGELC608);
DOK:
ENDPROC;

ENT PROC WAITASTCINT NTIX>INT;
% Wait for AST to occur Ctimeout=NTIX ticks) %
MARKTIMEC1,NTIX,1);
RSXWTLCO,ASTHASK>;
CANMARK C 1) ;
RETURNCASTYET<>>;

ENDPROC;

ENT PROC WAITCTLCCINT NTIX>INT;
% Wait for ·c AST to occur Ctimeout=NTIX ticks> % .

HAR KT I HE C 1 , NT IX, 1) ;
RSXWTLCO,CTLCHASK>;
CANHARKC1>;
RETURNCCTLCYETC>>;

ENDPROC;

ENT PROC WAITNCTLCCINT NTIX>INT;
% Wait for non-·c AST to occur Ctimeout=NTIX ticks) %

HARKTIHEC1,NTIX,1);
RSXWTLCO,NCTLCHASK>;
CANMARKC1>;
RETURN CNCTLCYET ());

ENDPROC;

ENT PROC WTCCCZCINT NTIX>INT;
% WAIT FOR CTLC OR CTLZ TIMING OUT AFTER NTIX TICKS %
REAL STARTTIHE;
INT STOP,NWAIT,RET;
NWAIT:=NTIX;

STARTTIHE:=TIHER<O.O>;
STOP:=NO;
WHILE STOP=NO DO

IF WAITAST<NWAIT>=YES THEN
IF CHAR=3 OR CHAR=26 THEN % CTLC OR CTLZ %

STOP:=YES;
RET:=YES;

ELSE
NWAIT:=NTIX - INT<SO.O*TIHER<STARTTIHE>>;
IF NWAIT<O THEN NWAIT:=D; END;

END;
ELSE

STOP:=YES;
RET:=NO;

END;
REP;
RETURN< RET> ;

ENDPROC;

. PROC ASTIOPROC<>;
% AST SERVICE ROUTINE TO SERVICE AST INTERRUPTS. SHOULD %
% NEVER BE CALLED EXPLICITLY %
RRGEL(607>; % PREVENTITIVE MEDICINE %

CODE 34,D;
.LIST HEB
.MCALL ASTX$S,DECL$S,SETF$S

AST IO:
HOV #*AST,*ASTFLAG/LOCAL ;BGS
HOV <SP>+,*CHAR/LOCAL
SETF$S #*ASTEF
BCS DONE
DECL$S

DONE: ASTX$S
*RTL; RRGEL(607);
ENDPROC;

PROC AST2PROC();
% AST SERVICE ROUTINE FOR CONTROL-C AST INTERRUPTS. SHOULD %
% NEVER BE CALLED EXPLICITLY., %
RRGELC607); % PREVENTITIVE MEDICINE %

CODE 34,D;

AST2:

.LIST HEB

.MCALL ASTX$S,SETF$S,DECL$S

HOV
HOV
SETF$S
BCS
DECL$S

#*CTLC,*ASTFLAG/LOCAL
<SP)+,*CHAR/LOCAL
#*AST2EF
DONE2

DONE2: ASTX$S
*RTL; RRGEL<607>;
ENDPROC;

ENT PROC STOPAST<>;
% DetachBs from terminal and stops AST processing %

REF IOXD IOSB:=HYOUTXD;
CODE 48,0;

.LIST HEB

.MCALL GIOW$5

.GLOBL $DSW

HOV
GIOW$5
HOV
BCC

*RTL;
RRGEL<60B>;

EX:
ENDPROC;

*IOSBC5) ,R1
#10.DET ,#2,#1, ,R1
$DSW,*RSXDSW/RRERRXC0)
*EX

ENT PROC ASTCHARCJ.BYTE;
% Return most recent asynch. input character %

RETURNCBYTECCHAR LAND HEX FF>>;
ENDPROC;

ENT PROC ASTYETC>INT;
% Proc returns whether or not an AST has occurred since the last one dealt %
% with. %

INT RET;
IF ASTFLAG#NOTYET THEN

ASTFLAG:=NOTYET;
RESET<ASTEF>;
RESETCAST2EFJ;
RET:=YES;

ELSE
RET: =NO; .

END;
RETURN C RETJ ;

ENDPROC;

ENT PROC CTLCYETC)INT;
% Proc returns whether or not ·c AST has occurred. ·x

INT RET;
IF ASTFLAG=CTLC THEN

ASTFLAG:=NOTYET;
RESETCAST2EF>;
RET:=YES;

ELSE
RET:=NO;

END;
RETURN C RETJ ;

ENDPROC; ·r

ENT PROC NCTLCYETC>INT;
% Proc returns whether or not non-·c AST has occurred %

INT RET;
IF ASTFLAG=AST THEN

ASTFLAG:=NOTYET;
RESETCASTEF>;
RET:=YES;

ELSE
RET:=NO;

END;
RETURNCRET);

ENDPROC;

TITLE SIMGAS
SIMULATES THE ACTION OF FOUR GAS-COLUMN SETS OF APPARATUS;

% THIS TASK SIMULATES THE OPERATION OF FOUR SETS OF AIR-COLUMN HEATING X
% APPARATUS. THIS APPARATUS IS USED IN THE EE476 REAL-TIME COMPUTING %
% CLASS PROJECT, AND SIMULATION IS DONE TO ENABLE DEVELOPMENT AND X
% DEBUGGING OF STUDENT PROGRAMS BEFORE THEY ARE USED TO CONTROL THE %
% REAL THING. IT ALSO ALLOWS UP TO FIVE USERS <ONE ON THE REAL THING %
X AND FOUR USING THE SIMULATION> TO BE EXECUTING THEIR TASKS AT ONCE. %
% x
% THE SIMULATION, ALTHOUGH ONLY FIRST-ORDER, IS A CLOSE APPOXIHATION %
% OF THE BEHAVIOUR OF THE REAL SYSTEM. %
% %
% THE FOUR SIMULATED COLUMNS USE THE FOUR SIMULATION ANALOGUE INPUTS %
% AND OUTPUTS AS FOLLOWS: X
% %
% COLUMN 1 ANALOG INP 17 AND OUTP 17 %
% COLUMN 2 ANALOG INP 18 AND OUTP 18 %
% COLUMN 3 : ANALOG INP 19 AND OUTP 19 %
% COLUMN 4 ANALOG INP 20 AND OUTP 20 %

LET
LET
LET
LET

LF
BEL
ETX
ENG

= OCT 12;
= 7;
= 3; % CONTROL-C END-OF-TEXT %
= 5;

LET
LET
LET

NHULT = 16;
= 4;
= 20·

% NUMBER OF <MULTIPLEXED> A.l.'S %
NS IMAI
TOTALAI

X SIMULATION ANALOG INPUTS %

'
LET
LET
LET

NDIGICARD
NSIMDIGICARD
TOTALDIGICARD

= 2;
= 2;
= 4;

% NUMBER OF DIGITAL INPUT CARDS %
% NUMBER OF SIMULATION DIG. INP. CARDS %

LET
LET
LET

NAO
NS I MAO
TOTALAO

= 4;
= 4•

' = a;

% NUMBER OF ANALOGUE OUTPUTS %
% NUMBER OF SIMULATION ANALOGUE OUTPUTS %
% TOTAL NO OF ANALOGUE OUTPUTS %

LET
LET
LET

NDIGOCARD
NSIMDIGOCARD
TOTALDIGOCARD

= 1 ;
= 1 ;
= 2;

% NUMBER OF DIGITAL OUTPUT CARDS
% SIMULATION DIG. OUT. CARD

MODE HEDCARD<INT STAT,MEDDAT,ADDR,REAL SCANTIME>;
MODE AOREC <INT UIC,USERINT,REF MEDCARD ANIN,REAL SETPOINT>;

EXT PROC<INT> DELAY;
EXT PROC() SECMEDCOM,RELHEDCOM,FREEMEDCOM,MCOMINIT; % IN SECREL.RTL %
EXT PROC <REF ARRAY BYTE> TWRT;
EXT PROC <>REAL RREAD;
EXT PROC<REAL) RWRT,RWRTU;
EXT PROC <REAL>REAL TIMER;
EXT PROC<> GPIO,CLEANUP;
EXT PROC <INT> IWRT,OWRT;

% THE FOLLOWING PROCS ARE IN THE ANALOGUE SIMULATION PACKAGE:
EXT PROC <REF ARRAY REAL,REF REAL,REAL>INTEGRATE;
EXT PROC <> NOAST,OFFLINE,HALT;

SVC DATA RRSIO;
PROC () BYTE IN;

%
%

PROC CBYTE> OUT;
ENDDATA;

SVC DATA RRSED;
BYTE TERMCH,IOFLAG;

ENDDATA;

SVC DATA RRERR;
LABEL ERL;
INT ERN;
PROC Cl NT> ERP;

ENDDATA;

SVC DATA RRERRX;
INT LINENO;
BYTE UEFLAG,ERRLUN;
INT RSXDSW; % HOLDS DSW RESULT OF EXECUTIVE CALLS

ENDDATA;

% MEDCOM DATA BASE : %

EXT DATA INAREA;
ARRAY<TOTALAI> HEDCARD ANINP;
ARRAYCTOTALDIGICARD> MEDCARD DIGINP;
ARRAYC2> HEDCARD DIGCHAN;
MEDCARD MEDSTAT;

ENDDATA;

EXT DATA OUTAREA;
ARRAY CTOTALAO) HEDCARD ANOUTP;
ARRAY CTOTALDIGOCARD) MEDCARD DIGOUT;
ARRAY CTOTALAO> AOREC AODESC;
ARRAY CTOTALDIGOCARD,16> INT DIGUICS;

ENDDATA;

EXT DATA SIHDATA ;
INT N,DELAYTICKS;
REAL DT;
ARRAYC4> REAL TIME;

ENDDATA;

DATA LOCAL;
ARRAYC4> INT AI,AO;

% IN THE SIMULATION PACKAGE

ARRAYC4> REAL POUT,DTEMP,DTSAVE;
ARRAYC4,4lREAL DTDOT;
REAL TAMBIENT,TAU,K,TAUHEAT,TAUCOOL;'
REAL STARTTIME;

%

%

% LOOKUP TABLE FOR INVERSE OF THERMISTOR CALIBRATION CURVE %
ARRAYC160) INT LOOKUP :=

co ,108 ,280 ,455 ,633 ,814 ,998 ,1186 ,1376 ,1570 '
1768 ,1969 ,2174 ,2382 ,2594 ,2810 ,3030 ,3254 ,3481 ,3713'
3948 ,4188 ,4431 ,4679 ,4930 ,5184 ,5442 ,5704 ,5969 ,6236 '
6506 ,6779 ,7053 ,7329 ,7606 ,7884 ,8163 ,8441 ,8719 ,8996'
9272 ,9547 ,9819 ,10089,10357,10622,10883,11141,11396,11647,
11894,12138,12377,12613,12844,13072,13296,13515,13731,13944,
14152,14357,14558,14755,14949,15140,15328,15512,15693,15871,
16046,16218,16387,16554,16718,16880,17039,17195,17350,17501,
17651,17799,17944,18087,18229,18368,18505,18641,18775,18907,
19037,19166,19293,19419,19543,19666,19787,19906,20025,20142,
20257,20372,20485,20597,20707,20817,20952,21033,21139,21244,
21348,21451,21553,21654,21754,21853,21952,22049,22145,22241,
22336,22430,22523,22615,22700,22800,22900,23000,23065,23100,

~
23200,23300,23400,23497,23600,23700,23800,23900,23913,23995,
24100,24200,24300,24314,24400,24500,24600,24700,24701,24800,
24900,24900,25000,25076,25200,25200,25300,25300,25438,25500);

ENDDATA;

ENT PROC SIMINIT<>;

TWRT<"#LF#SIHULATION TASK FOR GAS-COLUMN HEATING PROJECT <EE476)#LF,ETX#">;

% SET THE MEDIA SECURE/RELEASE EVENT FLAG <SEE COMMENTS IN SECREL.RTL> %
_MCOHINITO;

TAUHEAT:=132.5;
TAUCOOL:=143.0;
K:=0.1131;
TAHBIENT:=19.0;
FOR I:=1 TO 4 DO

% TIME CONST OF COLUMN HEATING UP <SECONDS> %
% DITTO FOR COOLING %
% STEADY-STATE CONSTANT <DEGREES CENT. PER WATT> %
% AMBIENT TEMPERATURE <DEG. CENT.> %

DTDOT<I,1) :=O.O;
DTSAVE<I> :=O.O;

REP·
' DELAYTICKS := 10;

NOAST<>;
STARTTIHE:=TIMER<O.O>;

ENDPROC;

ENT PROC SIMJOBC>;

GETPOWERSC>;
COMPUTE<>;
IF TIMER<STARTTIME> >= 1.0 THEN

%SAMPLING· INTERVAL HAS PASSED %
STARTTIME:=TIMERCO.O>;
WRITETOHEDCOM ();

END;

ENDPROC;

ENT PROC SIMTIDYUPC>;
TWRT<"SIMTIDYUP#LF#">;

ENDPROC;

PROC GETPOWERS <>;
REAL NOW :=TIMER<O.O>;
SECMEDCOMC>;

%
% READ IN THE ANALOG OUTPUT VALUES FROM HEDCOM AND UPDATE THE SCAN-TIMES

FOR 1:=1 TO 4 DO
AOCI) := CANOUTPCNAO + I>.HEDDAT SRL 7) LAND HEX FF;
ANOUTPCNAO + I>.SCANTIHE:= NOW;

REP;
RELMEDCOM<>;

% CONVERT THE VALUES READ TO WATTS OF OUTPUT POWER
FOR 1:=1 TO 4 DO

POUT<I> := REALCAO<I>>*200.0/51.0;
REP;

ENDPROC;

PROC COMPUTE<>;

%

% THIS PROC PERFORMS THE ACTUAL ANALOGUE SIMULATION AND DErERMINES %

8
% <BASED ON THE POWER READ IN FROM THE ANALOG OUTPUTS> WHAT
% TEMPERATURE MUST BE WRITTEN TO THE MEDCOH ANALOG INPUTS.

COLUMN %

% THE WORKING OF THIS PROC IS EASILY UNDERSTOOD BY REFERRING TO THE
% BLOCK-DIAGRAM OF THE SYSTEM.

FOR I:=1 TO 4 DO
INTEGRATECDTDOTCI>, DTEMP<I>, 0.0);
TAU:=IF DTEHPCI><=DTSAVE<I> THEN TAUCOOL ELSE TAUHEAT END;

%
%
%

DTSAVE<I>:=DTEMP<I>; % SAVE DTEMP FOR GETTING TAU NEXT TIME ROUND

DTDOT<I,1> := <K*POUT<I> - DTEMP<I>>ITAU;

% CONVERT THE TEMPERATURE IN DEGREES C. TO THE VALUE THAT THE THERMISTOR
% WOULD HAVE PRODUCED, BY USING THE INVERSE CALIBRATION LOOK-UP TABLE

%

AI <I> := INVCALIB<DTEMP<I>+TAMBIENT>;
REP;

ENDPROC;

PROC INVCALIBCREAL TEMP>INT;

% PROC TO CONVERT REAL TEMPERATURE IN DEGREES CENTIGRADE TO X
% A 10-BIT INTEGER VALUE TO BE WRITTEN TO THE ANALOGUE INPUT SO %
% AS TO SIMULATE THE VALUE THE REAL TEMPERATURE TRANSDUCER %
% WOULD HAVE PRODUCED. THE LOOKUP TABLE IS USED TO APPROXIMATE %
% THE INVERSE OF THE THERMISTOR INTEGER-TO-TEMPERATURE %
% CALIBRATION CURVE. %

INT N; REAL F;

IF TEMP<= 17.367 THEN RETURN<O>;END;
IF TEMP >=176.0 THEN RETURNC1023>;END;

N:=INTPARTCTEMP-16.0>;
XIE 1 TO 160 IE TEMP BETWEEN 16+N AND 17+N %
F:=TEMP-16.0-REAL<N>; %FRACTIONAL PART OF TEMP%

RETURN< INT<CREALCLOOKUPCN)) + REALCLOOKUPCN+1> - LOOKUPCN>>*F)/25.0> >;

% <VALUES IN LOOKUP TABLE ARE 100 TIMES AS LARGE AS THE 8-BIT VALUES %
% FOR WHICH THE THERMISTOR WAS CALIBRATED, SO TO RETURN A 10-BIT VALUE%
% WE HUST DIVIDE BY 25 RATHER THAN 100 >. %

ENDPROC;

PROC INTPARTCREAL RNO>INT;
% RETURNS THE INTEGER PART OF A REAL NUMBER %
% ONLY VALID IF RNO > 0.0 %
RETURNCINTCRN0-0.5>>;

ENDPROC;

PROC WRITETOMEDCOMC);
REAL NOW:=TIHERCO.O>;
SECMEDCOM<>;
FOR I:=1 TO 4 DO

ANINPCNMULT + I>.MEDDAT:=AICI> SLL 5;
ANINPCNMULT + I>.SCANTIME:=NOW;

REP;
RELMEDCOMC>;

ENDPROC;

% DATA IN BITS 5 TO 14 %

.TITLE RSXBA2

.!DENT /1.2/
;----------------------~----------------~-----------------------------; .

' .
'

R S X 8 A 2 .. .
' ' SHAREABLE <RE-ENTRANT) PART OF RTL/2 STARTUP <BASE) PROGRAM.

.
'

R.W.DEHNING -AECI- .
' .

'
1 .1 27-JAN-81
1 • 2 19-JAN-82 RWD SVC DATA RREXS added and RO save for RRGEL to •

' . , .
' .
' .
' • ,

. , .
' .
' .
' .
' .
' .
' .
' .
' . , .
' .
' .
' .
' .
' .
'
. ,
.
' .
' .
' .
' .
' . ,

do checking on environment.
30 SEP 82 RRGLFACS included. CB.G.Sherlock)

THIS IS BASICALLY THE VERSION FROM SPL, BUT MODIFIED TO
GIVE HORE EXTENSIVE DIAGNOSTICS WHEN THE STACK DUMP VERSION
IS USED (ZERRD DEFINED >

PROCEDURES, GLOBAL ENTRY POINTS ETC:
RSXBA2 - ENTRY POINT FROM RSXBA1
RRSIO - SVC DATA BRICK OFFSETS
RRSED
RRERR
RRERRX
RR TASK
RREXS
RR CHAN
RR I OX
RRFDB
RRSTK
RSXEXI - SHUTDOWN CODE FOR TASK
BA3BPT - LINE NO CBPT> TRACE HANDLER

PROC RRIPF () BYTE - INPUT STREAM FAILURE
PROC RROPF <BYTE> - OUTPUT STREAM FAILURE

RRGMEH - ODD ADDRESS/BUS TIMEOUT
RRGMVI - HMU EXCEPTION TRAP HANDLER
RRGIOT - IOT TRAP HANDLER
RRGRES - ILLEGAL/RESERVED INSTRUCTION TRAP HANDLER
RRGEHT - NON-RSX EMT TRAP HANDLER
RRGFPX - FL. PT •. EXCEPTION TRAP HANDLER
RRFACS - FACILITY TABLE OF TASK NAMES
RRGLFACCS) - ~ACILITY TABLE OF TASK NAMES <GLOBAL EF'S)

PROC CLEANUP () - RELEASES ALL FACILITIES HELD BY TASK

OPTIONS:
DEFINE ZERRD FOR STACK & REGISTER DUMP VERSION

ZERRS SST HANDLERS <RS~BA1 MUST BE COMPATIBLE>
ZFACS INCLUDE FACILITY HANDLING TABLE

THIS MODULE MUST BE ASSEMBLED WITH LB:C1,1JEXEMC.HLB

.
' .
' .
' .
' .
' .
' .
' .
' .
' .
'

.
'

.
'
.
'

. ,

.
' .
' .
'

·---· , '
ZERRS:
ZERRD:
ZFACS:

.MCALL HDRDF$
HDRDF$

.PSECT RSXBA2

DEFINE TASK HEADER OFFSETS

.GLOBL RRGEL,RRIPF,RROPF,RRNUL,R25

.GLOBL BA3BPT,CNTRTN,EX$SUC,RRSTKL

.MCALL GTSK$S,EXST$S,SVTK$S,SETF$S

.LIST MEB

·---· ' ' ; INITIALIZE SVC DATA BRICKS HELD ON STACK

.
' .
'
• ,, .
'
•
'· .
' .
'

AND SET SST VECTORS FOR <AT LEAST> 'TRAP' AND 'BPT'

SVC OFFSETS FROM BEGINNING OF STACK (ADDR IN RO>

NOTE: RRSTK MUST BE ON THE TOP OF THE SVC DATA AREA, SINCE RSXBA2
ASSUMES THAT STKLMT IS ALREADY CORRECTLY POSITIONED ON THE
STACK ON ENTRY FROM RSXBA1. HENCE, IF ADDING NEW SVC DATA
AREAS, ADD THEM BELOW RRSTK AND ADJUST THE RRSTK VALUE TO
SUIT. *BE CAREFUL*

.
' .
'
.
'

;---------------------------------~-----------------------------------;

RRSIO -- 0
RRSED -- 4
RRERR -- 6
RR ER RX -- 16

·.· .. . RRTASK -- 24
RREXS -- 30 *1.2*
RR CHAN -- 32 . *1.2* ' RR I OX -- 36 . *1.2* ' RRFDB -- 44 I ·• *1.2* ' RROCP -- 46 . *1. 2* ' RRSTK -- 52 . *1. 2*

'
ERL = 0
ERN = 4
ERP = 6

LINENO = 0
UEFLAG = 2
ERRLUN = 3
RSXDSW = 4

EOS = 200
CR = 13
LF = 10

;---;
; RSXBA2 IS ENTERED HERE FROM RSXBA1," WITH THE FOLLOWING STACKED:

; SP+4 = STKLMT
; SP+2 = RRJOB
; SP = SSTTBL

.. STACK LIMIT °FOR SVC DATA RRSTK

.. ENTRY PROC FOR USER TASK

.. PARTICULAR SST FOR HIS TASK

.
'

;---;
RSXBA2: :

. , .
'

RESERVE STACK FOR RRGEL/RRERP EXCLUSIVE us~
<OTHERWISE STACK OVERFLOW CANNOT BE REPORTED BY R01)

ADD #RRSTKL,4CSP>

; SET UP SST VECTOR PASSED FROM RSXBA1

SSTVL = 8. ; LENGTH OF SST VECTOR

HOV CSP) ,R2
SVTKSS R2,#SSTVL

HOV R2,@#H.TKVA

TST CSP>+

<§i!J
R2 POINTS TO SST VECTOR *1.2*
TO PUT ITS ADDRESS IN TASK HDR *1.2*
CNOTE: R2 MUST REMAIN INTACT> *1.2*
KEEP SST VECTOR ADDRESS IN OUR *1.2*
COPY OF HEADER. RSX DOES ITS COPY

; POP THE #SSTTBL WORD

; INITIALISE SVC DATA AREA ON STACK

HOV

HOV
SUB
HOV
HOV

CLR
CLR

CLR

CLR
CLR
CLR

CLR
CLR

HOV

SP,RO

CRO>,R4
#RRSTK+2,SP
SP,<RO>
SP,R5

-CRO>
- C RO>

-CRO>

-CRO>
-CRO>
-CRO>

-<RO>
-CRO>

#EXSSUC,-CRO)

POINTS TO SPACE FOR STKLO
; CWHICH PRESENTLY CONTAINS #RRJOB)

SAVE RRJOB ADDR TO CALL IT LATER
RESERVE SPACE·FOR SVC DATA AREA
SET STKLO TO DUMMY LINK CELL
R5 POINTS TO DUMMY LINK CELL

CLEAR RROCP CG,S)

CLEAR RRFDB

CLEAR RRIOX CINXD,OUTXD,TF>

; CLEAR RRCHAN CINCL,OUTCL)

EXS = SUCCESS C=1>

; GET TASK NAME INTO SVC DATA BRICK RRTASK

.
' .
' . , .
' .
'

SUB
HOV
GTSK$S
HOV
HOV
HOV

CLR
HOV

CLR

HOV
CLR
HOV
HOV

HOV

HOV
HOV

#32. ,SP
SP, R1
R1
2 CR1) ,-<RO>
CR1>,-CRO>
R5,SP

- CRO>
#400,-CRO)

-CRO>

#RRERP,-CRO>
-CRO>
SP,-CRO>
#RSXEX I, - CRO)

#EOS,-CRO>

#RROPF ,- CRO>
#RRIPF,-CRO>

RESERVE SPACE FOR GTSKSS
POINTER TO TASK NAME SLOT

; = TASK NAME 2
= TASK NAME 1

; RECOVER STACK SPACE

RSXDSW := 0
UEFLAG := 0
ERRLUN := 1

; LINENO := 0

; ERP := RRERP
ERN := -0
ERL REG. 5 CLINK CELL)
ERL REG. 7 <ADDRESS)

IOFLAG := 0
TERHCH := EOS

OUT : = RROPF
IN := RRIPF

AT THIS POINT RO IS READY FOR RTL/2 USE
I.E. IT POINTS AT BASE OF SVC DATA AREA,

WHICH IS CCORRECTLY> RRSIO
SAVE IT BEHIND SST VECTOR IN RSXBA1 CWHICH WE CAN FIND VIA *1.2*
THE TASK HEADER, SO THAT RRGEL CAN CHECK IF RO GETS CORRUPTED
BY A FAILURE INSIDE AN FCS CALL, FOR EXAMPLE .

HOV RO,-CRZ> SAVE RO FOR RRGEL CHECK

CREATE DUMMY HALF LINK CELL ON BASE OF DYNAMIC PART OF STACK,
; THUS COMPLETING THE SETTING UP OF THE RTL/Z ENVIRONMENT
; BEFORE CALLING 'RRJOB' AT THE ADDRESS PASSED FROM RSXBA1.

HOV SP,<SP>
JSR R1,<R4>
.PAGE

; CREATE DUMMY HALF LINK CELL
; ENTER RRJOB

;***; . , .
' .
'
.
'

.
' .
'
.
' .
' . ,

. ,

AT THIS POINT, THE USER'S PROGRAM IS IN CONTROL. IT CAN USE THE
VARIOUS RTL/Z CALLABLE PROCS IN THIS MODULE, BUT ESSENTIALLY THE
NEXT TIME THIS MODULE TAKES CONTROL WILL BE WHEN:

RRIPF OR RROPF IS CALLED BECAUSE AN ATTEMPT IS MADE TO USE A
STREAM WHICH WAS CLOSED BY AN END OF FILE, OR IN
FACT NEVER OPENED.

RR ERP IS CALLED DUE TO A RECOVERABLE ERROR <ERP>

.
' .
' .
'

RRGEL

GOTO ERL

IS CALLED BECAUSE OF AN UNRECOVERABLE ERROR, EITHER
EXPLICITLY BY THE USER'S TASK, OR BEHIND HIS BACK ;
BY ONE OF THE SYSTEM LIBRARY PROCS, CONTROL ROUTINES;
EXPLICITLY BY THE USER. SYSTEM LIBRARY PROCS WILL
ALWAYS CALL RRGEL, SINCE THIS DOES THE DIAGNOSTIC
PRINTOUT BEFORE DOING A ~GOTO ERL' • .

' RETURN FROM RRJOB IN WHICH CASE EXECUTION RESUMES DIRECTLY BELOW
AT LABEL 'RSXEXI' TO CLEANUP ANY SECURED FACILITIES
AND DO AN RSX-11M EXIT$S DIRECTIVE.

NOTE: RRIPF & RROPF BOTH CALL RRGEL. RRGEL DOES A 'GOTO ERL'
AFTER PRINTING THE ERROR DUMP. A 'GOTO ERL' COMES IN AT
RSXEXI BY DEFAULT, TO SHUT DOWN THE TASK, UNLESS THE USER
HAS REDIRECTED ERL TO A LABEL WHICH IS IN SCOPE IN HIS TASK

HENCE, ALL PATHS EVENTUALLY END UP IMMEDIATELY AFTER THIS MESSAGE! . .
' ' ;***;

;---;
RSXEXI = RETURN POINT FROM INITIAL ERL, OR RRJOB .

' ; CLOSE DOWN TASK BY ISSUING EXIT$ DIRECTIVE ;
;-------------------------------------i-------------------------------;
RSXEXI::

.IF DF ZFACS
JSR R1,CLEANUP

.ENDC ;<ZFACS)

EXST$S RREXS+OCRO)
.PAGE

CLEANUP IF FACILITIES PRESENT
• RELEASES ALL FACILITIES STILL
' SECURED BY THE CALLING TASK

EXIT WITH STATUS EXS

·---; ' .
' .
' .
'

B A 3 B P T

THIS IS THE BPT HANDLER USED IF THE MODULE WAS COMPILED
WITH A 'OPTION TR' TO GIVE A SOURCE LINE NUMBER TRACE .

.
'

·---· ' '

BA3BPT::
HOV
ADD
RTI

··.@CSP) ,RRERRX+LINENOCRO> BPT ROUTINE
#2,CSP)

;---·----------------------------; .
' .
' .
'

R R I P F & R R 0 P F

RRIPF = INPUT FAILURE, 'IN' STREAM NOT SET UP
RROPF = OUTPUT " 'OUT' STREAM NOT SET UP

;---;
RRI PF::

TRAP 1 DEFAULT FOR IN
.WORD 2,-4
HOV #98. ,- CSP> ERN = 98
BR RRGCOM . GO CALL RRGEL TO CRATER IT

'
RROPF::

TRAP 1 DEFAULT FOR OUT
.WORD 2,-4
HOV #99.,-<SP> ERN = 99
BR RRGCOM GO CALL RRGEL TO CRATER IT

. IF DF ZERRS
;---;

5 S T HANDLE.RS .
' .
' THESE ARE THE HANDLERS FOR <MAINLY HARDWARE FAILURE> TRAPS

THROUGH THE SPECIFIED SST VECTOR SET UP FROM RSXBA1.
;---;
RR GM EM::

.. RRGMVI::

RRGIOT::

·RR GRES::

RRGEMT::

RRGFPX: :

MOV #10001.,-<SP)
BR RRGCOM

MOV
BR

MOV
BR

MOV
BR

HOV
BR

#10002.,-CSP)
RRGCOM

#10003.,-<SP>
RRGCOM

#10004.,-CSP>
RRGCOM

#10005.,-<SPl
RRGCOM

; ERN

HOV #10006.,-<S~)
.ENDC ;<ZERRS>

RRGCOM: JSR R1,@#RRGEL CRATER IT

.IF DF ZFACS
~---;
, RRFACS • .
' . , .
' . .

'

STORAGE FOR FACILITY TASK NAME LOCKS
EQUIVALENT TO RTL/2:

MODE R50NAHE < INT R50N1, RSON2 >;
ENT DATA RRFACS;

' .
'

.
' .

ARRAYC32> RSONAHE FACS;
ENDDATA;

- ' ;---;
RRFACS::

.WORD

.REPT

. WORD

.WORD

.ENDH

128.
32 •
0
0

SIMULATE ARRAYC32) RSONAHE TASKS

; R50N1
R50N2

;--·
; RRGLFACS '

.
'

.
'

B.G. SHERLOCK 30 SEP 82

STORAGE FOR FACILITY TASK NAHE LOCKS USING GLOBAL EVENT FLAGS
EQUIVALENT TO RTL/2:

MODE R50NAHE C INT R50N1, R50N2 >;
ENT DATA RRGLFACS;

ARRAYC24) R50NAHE GLFACS;
ENDDATA;

.
'
.
' .
' ·--· ' . . ,

RRGLFACS::
.WORD 96.
.REPT 24 •
• WORD 0
.WORD 0
.ENDH

SIMULATE ARRAYC24> R50NAME

; R50N1 ·
; R50N2

·---· ' . ' . .
' ' .
'

C L E A N U P .
' RELEASE FACILITIES SECURED BY THIS TASK.

.
' PROC CLEANUP () .
' ;---;

CLEANUP: :
HOV
HOV
HOV

1 $: CMP
BNE
CHP
BNE

#32.,R2
#RRFACS+2,R3
#65., R4
CR3>,RRTASK+OCRO>
2$
2CR3l,RRTASK+2CRO>
2$

SETUP SOB COUNTER
AND ADDRESS POINTER
AND FIRST EVENT FLAG NO
CHECK TASK N~HE 1
NOT. SECURED BY THIS TASK .
CHECK TASK NAHE 2
NOT SECURED BY THIS TASK

i · THIS FACILITY WAS SECURED BY THIS TASK, SO FLAG IT RELEASED <O,O)
AND SET EVENT FLAG (65 - 96) TO TELL OTHER TASKS IT'S RELEASED

CLR CR3)
CLR 2CR3)
SETF$S R4

2$: ADD #4,R3
INC R4
SOB R2, 1 $

I
I

/.

@
CLEAR TASK NAME 1 .
CLEAR TASK NAME 2
SET APPROPRIATE EVENT.FLAG

BUMP TO NEXT TASK NAME
& CORRESPONDING EVENT FLAG
AND LOOP 32 -TIMES .. ~~·~····

SIMILAR CODE TO RELEASE FACILITIES SECURED USING GLOBAL
EVENT FLAGS. CB.G. SHERLOCK)

3$:

.
'

.ENDC

HOV
HOV
HOV
CMP
BNE
CMP
BNE ·

CLR ·
CLR
SETF$S
ADD
INC
SOB

RTS

#24. ,R2
#RRGLFACS+2,R3
#33. ,R4
(3) ,RRTASK+OCRD>
4$
2CR3>,RRTASK+2CRO)
4$

CR3>
2CR3)
R4
#4,R3
R4
R2,3$

R1

; CZFACS)

.END

LOWEST EVENT FLAG NO IS 33.

LOOP 24. TIMES

BEFORE RETURNING

\

·'

APPENDIX 0 .

SOFTWARE LISTINGS: LSI-11 MEDIA SYSTEM

Listings of all the software modules which form part of the LSI-11
Media system are given here. The SMT system modules are listed as
modified for use in this system. Pages of the listings have a
circled page number at the top right-hand side of the page. For
example, the 3rd page of the 2nd program in this appendix is
numbered "0-2-3".

The following are the programs listed in this appendix:

Page 0-1-1: The SMTCOMS link communication task.
Page 0-2-1: The SMTMULTI analogue multiplexer scan task.
Page 0-3-1: The SMTDEVDRV device-driver module.
Page 0-4-1: The SMTUlXUP system module.
Page 0-5-1: The SMTBlXUP system module.
Page 0-6-1: The SMTB2 system module.
Page 0-7-1: The SMTB3 system module.
Page 0-8-1: The RTLCTL system module.
Page 0-9-1: The ".EDT" e~itor command files.

v
~

TITLE
COMMUNICATIONS ROUTINE
LSI 11 SMT REPLACEMENT OF MICRO-MEDIA

•
' OPTIONC1> BC,TR;

LET NOERROR
LET UNEXP
LET LENERR
LET TOOHANY
LET TIMEERR
LET BADCODE
LET BLOCKERR
LET MEDIAERR
LET UNEXPGO

LET RSNGMED
LET RSNGANA
LET RBU<MED
LET RBLKANA
LET RDIGCHG
LET RSNGSTA
LET WSNGHED
LET WSNGANA
LET GOMES

LET NDIGICHG
LET NANAIN
LET NANAOU,T

= o;
= 1 ;
= 8;
= 2;
= 3• ' = 4;
= 5•

' = 6;
= 7;

= 1 ;
= 2;
= 3;
= 4;
= 7;
= 6;
= 12;
= 13;
= 14;

= 2;
= 16;
= 4;

% NO ERROR DETECTED YET
% UNEXPECTED CHARS. NO START BYTE ERROR
% MESSAGE LENGTH DOES NOT CORRESPOND TO CODE
% TOO MANY CHARS ERROR
% TIMEOUT WAITING FOR INPUT
% UNUSED CODE
% ERROR IN THE BLOCK CHECK CHARACTER
% MEDIA ACCESS ERROR
% UNEXPECTED GO MESSAGE

% READ FROM 1 MEDIA ADDRESS
% READ FROM 1 ANALOG LIST ADDRESS
% READ FROM A BLOCK OF MEDIA ADDRESSES
% READ FROM A BLOCK OF LIST ADDRESSES
% READ THE DIGITAL CHANGE WORDS
% READ THE MEDIA STATUS WORD
% WRITE TO MEDIA ADDRESS
% WRITE TO ANALOG ADDRESS
% DO THE WRITE AS SPECIFIED

% NO OF DIGITAL CHANGE WORDS
% NO OF ANALOG INPUTS
% NO OF ANALOG OUTPUTS

LET INEVENT = 1; % INPUT CHAR EVENT
% ALSO ARE PREV AND CTLAEV %
LET TIME = 100; % fIMEOUT TIME IN 1/50THS OF SECONDS
LET BIT6 = OCT 100; % BIT 6 MASK

LET YES
LET NO

LET LF

= 1 ;
= o;
= OCT 012;

EXT PROCCBYTE) OUTBYTE,DEFOUT,OUTTTY;
EXT PROC<> BYTE INBYTE;
EXT PROCCINT> WAIT,WAITFOR,RESET,SET,SECURE,RELEASE,IWRT,OWRT;
EXT PROCC> LOCK,UNLOCK,HLOCK,HUNLOCK,CLEANUP,SVDINIT;
EXT PROCCINT,INT,LABELlTWAIT;
EXT PROCCREF ARRAY BYTE>TWRT;

SVC DATA RRSIO;
PROC () BYTE IN;
PROCCBYTE) OUT;

ENDDATA;

SVC DATA RRSED;
BYTE TERMCH, IOFLAG;

ENDDATA;

SVC DATA RRERR;
LABEL ERL;
INT ERN;
PROC <I NT> ERP;

ENDDATA;

%
%
x
%
%
%
%
%
%

%
%
%
%
%
%
%
%
%

%
%
%

%

%
%

SVC DATA STKUSG;
INT USAGE,LINE;

ENDDATA;

MODE IOAREA<INT EXPECT,FULL,INPT,OUTPT, BYTE LASTCH,
REF ARRAY BYTE INBUFF>;

ENT STACK COHSTK 300;

EXT DATA IODATA;
ARRAYC512) BYTE ·IOBUFF;
ARRAY (80) BYTE TTYBUF;
IOAREA INAREA,TTYA;

ENDDATA;

EXT DATA TIHEDATA;
INT NOW,SECSNOW,MINSNOW,TCOUNT,SECS,MINS,HOURS,DAYS,HONTHS,YEARS;

ENDDATA;

EXT DATA HULTIDATA;
ARRAYCNDIGICHG) INT DIGICHG;
ARRAY C NANA IN) INT ANALOGUE;
ARRAY<OCT 20) INT INSCAN;

ENDDATA;

DATA LOCAL;
ARRAY (156) BYTE INHSG;
ARRAY C156) BYTE REPLY;
INT INP :=O; % COUNTER FOR BYTES INPUT. %
INT OUTP :=O; % NO OF CHARS IN OUTPUT REPLY. %
INT ERRFLG:=NOERROR; % INDICATES TYPE OF ERROR. %
INT INCODE :=O; % MEDIA CODE OF INPUT MESSAGE. %
INT LASTCD :=O; % LAST MEDIA CODE ---USED FOR GOHESS. %
INT ADDR : =O; % MED I A ADDRESS. %
INT VALUE :=O; % VALUE OF DATA TO/FROM MEDIA/LIST. %
INT STARTTIME :=O; % START OF PROCESSING OF PRESENT RECORD.%
INT TIMEOUT :=O; % TIME TO WAIT FOR INPUT EVENT FLAG. %
INT STATUS : =O; % %
INT WAITIME :=O; % %

ENDDATA;

ENT PROC COMS<>;

% THIS PROC IS THE BASE PROCEDURE FOR THE SERIAL 1/0 %
% COMMUNICATION USER TASK. THE TASK IS ACTIVATED EVERY %
% TIME THERE IS AN INPUT BYTE FROM HE SERIAL 1/0 LINE. %
% THE CONSOLE INPUT INTERRUPT CODE SETS THE USER EVENT %
% INEVENT AND THE COMS TASK WAITS FOR THIS EVENT. %
% WEN INEVENT IS SET THE INPUT BYTE IS PROCESSED AND X
% THE TASK WAITS FOR THE NEXT INPUT BYTE. THE BYTES %
% ARE BUILT UP INTO RECORDS AND THE ACTUAL CHECKING OF %
% THE INPUT IS ONLY DONE WHEN THERE IS A FULL RECORD. %
% THE SUCCESSIVE CHARACTERS OF AN INPUT RECORD HUST %
% ARRIVE WITHIN 2 SECONDS OF EACH OTHER. IF THEY ARE %
% DELAYED BY HORE THAN THIS THEN THE RECORD IS REJECTED.%

INT COMPLETE := NO; % RECORD INPUT BY BUILD() IS COMPLETE %

COMSTART:

IN:=INBYTE;
OUT := DEFOUT; % SWALLOW ALL OUTPUT %
%%%OUT := OUTTTY; %%%
%%XTWRT<"COHSTART#LF#">;%%%
ERP := MYERP;
ERL := UNRECOV; X UNRECOVERABLE ERROR PROCESSING LABEL %

% INITIALISE INPUT COUNTER % INP := O;
LASTCD := O;

WHILE 1 = 1 DO % FOREVER %
IF INP = 0 THEN % INPUT RECORD IS EMPTY %

%%%TWRTC"WAITING FOR 1ST CHAR#LF#">;%%%
WAIT(INEVENT>; % WAIT FOR FIRST INPUT CHAR. %

.%%%TWRT<"INEVENT OCCURRED#LF#">;X%%
ELSE % INPUT RECORD IS PARTIALLY FULL. %

TIMEOUT := STARTTIME + TIME - NOW;
%%%TWRT<"TWAITING#LF#">;%%%
TWAITCINEVENT,TIMEOUT,TIMELABEL>;

%IF INEVENT OCCURRED, THEN %

%%%TWRT<"INEVENT OCCURRED -- NO TIMEOUT#LF#">;%%%
GOTO ENDIF;

%ELSE, TIMEOUT OCCURRED, SO SET ERROR FLAG %

TIMELABEL:
%%%TWRT<"TIMEOUT OCCURRED#LF#">;%%%
ERRFLG := TIMEERR; ,
PROCESS<>; % PROCESS THE RECORD AND %

% RESET INPUT BYTE COUNTER %

END IF:
%END IF %

END;

WHILE INAREA.INPT > INAREA.OUTPT DO
%WHILE THERE ARE BYTES IN THE INPUT BUFFER %

COMPLETE:= BUILD<>; % GET NEXT BYTE INTO RECORD. %
STARTTIME := NOW; % SAVE TIME FOR TIMEOUT CALCULATION %
IF COMPLETE=YES THEN % END OF INPUT RECORD REACHED. %

%THE RECORD IS COMPLETE SO PROCESS IT %
PROCESS<>; % PROCESS THE RECORD AND RESET THE X

END;
REP;

HLOCK<>;

% INPUT COUNTER %

IF INAREA.INPT <= INAREA.OUTPT THEN
X STILL NO BYTES IN INPUT BUFFER %.
RESETCINEVENT>; % PREPARE TO WAIT FOR NEXT INPUT CHAR %

END;
HUNLOCK();

%%%TWRTC"REP OF FOREVER LOOP#LF#">;XXX
REP;

% WHAT FOLLOWS IS THE UNRECOVERABLE ERROR PROCESSING. THIS LABEL IS %

s
% NEVER NORMALLY REACHED BECAUSE OF THE REPEAT FOREVER LOOP ABOVE. %

UNRECOV:

%%%TWRTC"UNRECOV. ERR. LBL.#LF#"l;%%%
%CLEANUP() ; %
%SVDINITO ;%

% SEND A REPLY INDICATING MEDIA ERROR %
REPLYC1) := BYTECCINCODE LAND BIN 00001111) LOR BIT6>;
REPLY (2) : = BIN 000001 00;
OUTP := 3;
PUTBCCC>;

· ANSWER Ct;

%%%TWRTC"GOING TO COMSTART#LF#">;X%%
GOTO COMSTART;

ENDPROC;

ENT PROC MYERPCINT N>;
%%%TWRTC"MYERP **************************#LF#"l;%%%

ENDPROC;

PROC BUILD<> INT;

% THIS PROC IS CALLED FOR EACH INPUT CHARACTER %
% AND PLACES THE INPUT BYTES INTO A RECORD. %
% RETURNS ZERO NORMALLY, BUT RETURNS ONE WHEN %
% END OF RECORD IS DETECTED CBIT 6 SET>. %

BYTE CH;
INT ENDMSG := NO;

%%%TWRTC"BUILD#LF#">;X%%
CH:= INBYTEC>; % GET THE CHAR %
INP := INP + 1; % INCREMENT INPUT COUNTER %
INMSGCINP> := CH; % PUT CHAR INO INMSG BUFFER %

% CHECK FOR START OF INPUT %

IF INP = 1 THEN
% FIRST BYTE OF SOURCE TO OUTSTATION MESSAGE %
IF CH LAN·D BIT6 = 0 THEN % BIT 6 NOT SET; SOMETHING WRONG %

INP:=O; % RESET INPUT COUNTER, IE IGNORE THE CHAR %
END;

ELSE
IF CH LAND BIT6 # 0 THEN % BIT 6 IS SET %

ENDMSG := YES;
ELSE

IF INP = LENGTH INMSG THEN % BUFFER ABOUT TO OVERFLOW %
ERRFLG:=TOOMANY;
ENDMSG:=YES;

END;
END;

END;
RETURNCENDMSG>;

ENDPROC;

PROC PROCESS<>;

8
% THIS PROC PROCESSES THE RECORDS THAT ARE INPUT. %
% THE RECORDS ARE DECODE AND THE REQUIRED OPERATION IS %
% PERFORMED BY APPROPRIATE PROCEDURES. %
% THE INPUT RECORD POINTER IS ALWAYS RESET TO ZERO. %

%%%TWRT<"PROCESS#LF#">;%%%
% SET UP THE 1ST 2 BYTES OF THE REPLX MESSAGE, ENSURING THAT %
% BIT 6 OF BYTE 2 IS NOT SET. %
REPLY<1) := INMSG<1);
REPLYC2) :.= INMSG<2> LAND BIN 10111111;

IF ERRFLG=NOERROR THEN % NO ERROR DETECTED YET %
CHKBCC<>; % CHESK THAT THE BCC IS CORRECT %
IF ERRFLG=NOERROR THEN % STILL NO ERROR DETECTED %

% EXTRACT THE CODE - 4 LS BITS OF 1ST CHAR %
INCODE:=INMSG<1> LAND OCT 17;
%%%TWRT<"INCODE= ">; IWRT<INCODE>; TWRTC"#LF#">;%%%
IF INCODE = RSNGMED THEN

RDSINGLE<>; % SINGLE MEDIA READ %
ELSEIF INCODE = RSNGANA THEN

RDSINGLE<>; % SINGLE LIST READ %
ELSEIF INCODE = RBLKMED THEN

RDBLOCK<>; % BLOCK MEDIA READ %
ELSEIF INCODE = RBLKANA THEN

RDBLOCK<>; % BLOCK LIST READ %
ELSEIF INCODE = RDIGCHG THEN

RDCHANGEC>; % READ DIGITAL CHANGE WORDS %
ELSEIF INCODE = RSNGSTA THEN

RDSTATUS<>; % READ MEDIA STATUS WORD %
ELSEIF INCODE = WSNGHED THEN

WRSINGLE<>; % WRITE TO MEDIA %
ELSEIF INCODE = WSNGANA THEN

WRSINGLE<>; % WRITE TO LIST %
ELSEIF INCODE = GOMES THEN

GOMESSC>; % CONFIRM WRITE %
ELSE % THE CODE IS NOT USED %

ERRFLG := BADCODE;
END;

END;
END;
%%%TWRTC 11 MESSAGE RECEIVED: INP :">; IWRTCINP>; TWRTC"#LF#">;%%%
%%%FOR I:=1 TO INP DO%%%

%%%0WRTCINMSG<I>>; TWRTC"#LF#">;%%%
%%%REP;%%%
%%%TWRTC"#LF#")•%%%

. '
LASTCD := INCODE;
ERROR<>;

PUT.BCC (> ;
ANSWER<>;

% SAVE CODE USED IN CASE NEXT CODE IS GOMESS
% PROCESS ANY ERRORS THAT HAVE OCCURRED

INP := O; % RESET THE INPUT BYTE COUNTER

ENDPROC;

PROC CHKBCC<>;

% THIS PROC CHECKS THAT THE BCC OF THE INPUT RECORD IS O.K. %

INT TST := O;

%
%

%

FOR I:=1 TO INP-1 DO
TST := TST NEV INMSG<I>;

REP;
• % EXCLUSIVE OR %

IF TST LAND OCT 77 # INHSG<INP> LAND OCT 77 THEN
% BCC IS INCORRECT %
%%%TWRT<"BCC ERROR *****#LF#">;%%%
ERRFLG := BLOCKERR;

END;
ENDPROC;

PROC ERROR<>;

% THIS PROC DEALS WITH ALL ERROR CONDITIONS DETECTED. %
% IT RESETS ERRFLG AND SETS UP THE STATUS AREA OF THE %
% 2ND BYTE OF THE -REPLY. %

IF ERRFLG = NOERROR THEN % NO ERRORS %
STATUS : = o;

ELSEIF ERRFLG = TOOHANY THEN % OVERRUN ERROR %
STATUS := 1;

ELSEIF ERRFLG = TIHEERR THEN % TIMEOUT ERROR %
STATUS := HEX F;

ELSEIF ERRFLG = BADCODE THEN % INVALID CODE %
STATUS := B;

ELSEIF ERRFLG = BLOCKERR THEN % BCC ERROR %
STATUS := 2;

ELSEIF ERRFLG = MEDIAERR THEN % MEDIA ACCESS ERROR %
STATUS := 4;

ELSEIF ERRFLG = LENERR THEN % HSG IS WRONG LENGTH %
STATUS:= 1;

ELSEIF ERRFLG = UNEXPGO THEN % UNEXPECTED GO MSG %
STATUS := B; % INVALID CODE ?? %

END;

" %: PUT STATUS INTO BYTE 2 OF· REPLY, EXCEPT IN. THE CASE %
% OF SUCCESSFUL 1ST STAGE OF A WRITE, WHERE NO STATUS %
% INFO IS OUTPUT. %

IF ERRFLG = NOERROR THEN
IF INCODE # WSNGANA AND INCODE # WSNGMED THEN

REPLY<2> := BYTE<<INT<REPLYC2> LAND BIN 10110000)) LOR STATUS>;
END;

ELSE
REPLYC2) := BYTECCINTCREPLYC2) LAND BIN 10110000)) LOR STATUS>;

END; '

IF ERRFLG # NOERROR THEN
%%%TWRTC"ERROR :">; IWRTCERRFLG>; TWRTC"#LF#");%%%
OUTP:=3;
LASTCD := O; % TO PREVENT AN UNWANTED GO MSG %
ERRFLG := NOERROR; % RESET ERRFLG %

END;
ENDPROC;

PROC RDCHANGE<>;
% THIS ROUTINE PLACES THE DIGITAL CHANGE WORDS INTO %
% THE REPLY BUFFER. %

IF INP = 4 THEN % INPUT MSG THE RIGHT LENGTH %
FOR 1:=1 TO NDIGICHG DO

ENCODE<DIGICHGCI>,I>;

DIGICHG<I> := O;
REP;
OUTP := 9;

ELSE
ERRFLG := LENERR;

END;
ENDPROC;

PROC RDSTATUSC>;
% THIS PROC READS THE MEDIA STATUS WORD ANO PUTS IT %
% INTO THE REPLY BUFFER. %

INT TMP;

IF INP = 4 THEN
CODE 6,0;

HOV @#167776,•TMPCS)
•RTL; ·

l
ENCODE <THP, 1) ;
OUTP : = 6;

ELSE
ERRFLG := LENERR;

END·
' ENDPROC;

PROC RDSINGLE<>;

% READS A SINGLE VALUE FROM MEDIA OR LIST AND PLACES IT INTO X
% THE REPLY BUFFER. %

INT IN,AD;

IF INP=4 THEN
AD:=GETADDC>;
IF INCODE=RSNGMED THEN

IN:= RMEDIACAD>;
ELSE

IN:= ANALOGUECAD>;
IF INSCANCOCT 11>=NO OR INSCANCOCT 12>=NO THEN

ERRFLG := MEDIAERR;
END;

END;
IF ERRFLG = NOERROR THEN

ENCODE CIN, 1);
OUTP:=6;

END;
ELSE % MESSAGE THE WRONG LENGTH %

ERRFLG := LENERR;
END;·

ENDPROC;

PROC RDBLOCK<>;

% READS A BLOCK OF CONSECUTIVE MEDIA/LIST ADDRESSES AND %
% PLACES THEM INTO THE REPLY BUFFER. %

INT IN ,AD, NIN;

IF INP=S THEN
AD: =GE TADD() ;
NIN:=INMSGC4> LAND OCT 77; % NO OF ITEMS TO BE READ %

IF INCODE=RBLKHED THEN
FOR 1:=1 TO NIN DO

IN:=RHEDIA<AD+l-1>;
ENCODE< IN, I>;

REP;
OUTP := 3*<NIN+1>;

ELSE
IF INSCAN<OCT 11>=YES AND INSCAN<OCT 12>=YES THEN

FOR I:=1 TO NIN DO
IN:=ANALOGUECAD+l-1>;
ENCODECIN,I>;

REP;
OUTP := 3*(NIN+1>;

ELSE
ERRFLG:=MEDIAERR;

END;
END;

ELSE
ERRFLG := LENERR;

END;
ENDPROC;

ENT PROC RHEDIA <INT AD> INT;

X THIS PROC ACCESSES THE MEDIA. AD IS THE MEDIA ADDRESS TO %
% BE READ. %

INT THP;
%%%TWRT<"RMEDIA
CODE 14,0;

ADDRESS:">; OWRT<AD>; TWRT(11 #LF# 11);%%%

HOV *AD(5),%1
ASL %1
ADD #164000,%1
HOV <1) ,*TMP<S>

; CONVERT ADDRESS TO WORDS
ADD IN MEDIA BASE ADDRESS
MOVE THE MEDIA VALUE TO TMP

./ *RTL;
%%%TWRT< 11 RMEDIA: RETURNING : 11 >; OWRT<THP>; TWRT< 11 #LF#">;%%%
RETURN CTMP > ;

ENDPROC;

PROC DECODE <) INT;
% DECODES THE VALUE IN THE INPUT MESSAGE %

INT BLD:=TMP:=O;

BLD := INHSGC4> LAND OCT 77; % GET ,HIGH BITS %
THP := INMSG<5>; % MIDDLE BITS %
TMP := TMP SLL 6;
BLD := BLD LOR TMP;
BLD := BLD LAND OCT 3777;
TMP := INMSG<6>;
TMP := TMP SLL 11;

% JOIN THEM UP %
% STRIP ANY JUNK
% LOW BITS %

BLD := BLD LOR THP; % WHOLE LOT NOW %

%

%%%TWRT<"DECODE- RETURNING:">; OWRT(BLD>; TWRT(11 #LF# 11);%%%
RETURN <BLD) ;

ENDPROC;

ENT PROC WHEDIACINT ADDR, VALUE>;
'

% THIS PROC WRITES THE VALUE TO THE MEDIA ADDRESS ADDR %

%%%TWRTC"WHEDIA-MADR,DATA: 11 >;0WRT<ADDR>;TWRT< 11 ,">;0WRT<VALUE>;X%%
%%%TWRT(11 #LF#")j%%%

CODE 14,0;
HOV *ADDR<S> ,%1
ASL %1
ADD #164000,%1
HOV *VALUE(5),(1)

*RTL;

ENDPROC;

PROC IJRSINGLE ();

; PUT MEDIA ADDRESS IN REGISTER 1
; WORD ALIGN THE ADDRESS
;, ADD IN BASE ADDRESS
; WRITE TO MEDIA

% THIS PROC PREPARES FOR A MEDIA OR LIST WRITE. THE ACTUAL WRITE IS %
% ONLY DONE AFTER THE GO MESSAGE IS RECEIVED. %

IF INP=7 THEN
FOR I:=2 TO 7 DO

REPLY<I> := INHSG<I>;
REP;

WAITIHE := NOW;

ADDR := GETADD<>;
VALUE:= DECODE<>;
OUTP := 7;

ELSE
ERRFLG := LENERR;

END;

ENDPROC;

PROC GOHESS<>;

% INPUT HUST BE 7 CHARS

% RETURN THE RECEIVED DATA

% SAVE THE CURRENT TIME FOR TIMEOUT
% CHECKS LATER.

%

%

%
%

% THIS PROC WRITES TO MEDIA OR LIST. THE WRSINGLE<> PROC HUST HAVE %
% JUST BEEN CALLED TO INITIALISE THE ADDRESS AND DATA. %

IF INP=4 THEN % INPUT MSG HUST BE 4 CHARS LONG %
IF LASTCD=WSNGHED THEN % WRITE TO MEDIA ADDRESS %

WHEDIA<ADDR,VALUE>;
OUTP := 3;

ELSEIF LASTCD=WSNGANA THEN % WRITE TO LIST ADDRESS %
ANALOBUE<ADDR> := VALUE; % USELESS-- RATHER ACCESS ANALOG O/P'S %
OUTP :=3;

ELSE % ERROR - NO CALL TO WRSINGLE HAS BEEN HADE %
ERRFLG := UNEXPGO;

END;
ELSE

ERRFLG := LENERR;
END;

ENDPROC;

PROC GETADD <> INT;

% THIS PROC DECODES THE MEDIA OR LIST ADDRESS FROM THE INPUT RECORD. %
% THE RESULT RETURNED IS THE INTEGER VALUE FOUND. %

INT BLD := TMP := O;

BLD := INHSG(2) LAND OCT 17;
TMP := INMSG(3) LAND OCT 77;
TMP := TMP SLL 4;

BLD := BLD LOR THP;

%%%TWRT<"GETADD-- RETURNING
RETURN <BLD>;

ENDPROC;

PROC ENCODE <INT BLD,I>;

")• OWRT<BLD>· TWRT("#LF#")·%%¥
' ' , At

% THIS PROC ENCODES THE INTEGER BLD AND PLACES IT IN THE OUTPUT X
X BUFFER IN THE I'TH POSITION. %

REPLYCI*3)
REPLYCI*3+1>
REPLYCI*3+2>

:= BYTECBLD LAND OCT 77>; % BUILD FIRST BYTE
:= BYTECCBLD LAND OCT 3700) SRL 6>;
:= BYTECCBLD LAND OCT 174000) SRL 11>;

ENDPROC;

PROC PUTBCCC>;

% THIS PROC PUTS THE BCC AT THE END OF THE REPLY BLOCK.

INT SUM := O;
BYTE B;

FOR I:=1 TO OUTP-1 DO
SUM :=SUM NEV REPLYCI>;

REP;
% EXCLUSIVE OR %

B := BYTECSUM LAND OCT 77>;
B := B LOR BIT6;

% CONVERT TO BYTE %
% SET BIT 6 %

REPLY COUTP> : = B; % SAVE IN REPLY BUFFER X
ENDPROC;

PROC ANSWER<>;

% THIS PROC WRITES THE REPLY BLOCK TO THE.SERIAL LINE

%%%TWRTC"ANSWER -- NO OF CHARS: ">; IWRTCOUTP>;%%%
FOR I:=1 TO OUTP DO

%%%TWRTC"#LF#">; OWRTCREPLYCI>>;%%%
OUTBYTECREPLYCI>>;

REP; .
%%%TWRTC"#LF,LF#") ;%%%

ENDPROC;

...

%

%

%

•

TITLE
MULTIPLEXER SCAN ROUTINE
LSI 1123 SMT REPLACEMENT OF MICRO-MEDIA . ,

LET LF = OCT 1 2 ;
LET NDIGICHS = 2; % NUMBER OF DIGITAL CHANGE WORDS %
LET NANAIN = 16; % NUMBER OF ANALOGUE INPUTS %
LET NDIGICARDS = 2; % NUMBER OF DIGITAL INPUT CARDS %
LET MUXADDR = OCT 10; % MEDIA ADDRESS OF MULTIPLEXER %
LET ANINPADDR =
LET DIGINADDR =
LET DIGOUTADDR =

OCT
o;
4·
'

11; % MEDIA ADDRESS OF ANALOG INPUT CARO %
% MEDIA ADDRESS OF FIRST DIGITAL INPUT %
% MEDIA ADDRESS OF DIGITAL OUTPUT CARD %

LET YES = 1 •
' LET NO = o·
'

% EXTERNAL PROCEDURES %
% =================== %

EXT PROC <BYTE> OUTTTY,DEFOUT,OUTBYTE;
EXT PROC () BYTE INTTY;
EXT PROC <INT> DELAY;
EXT PROC <INT, INT, LABEL> TWAIT;
EXT PROC <INT, INT> WMEDIA;
EXT PROC (I NT> INT RHED I A;
EXT PROC () CLEANUP, SVDINIT;
EXT PROC CREF ARRAY BYTE> TWRT;
EXT PROC <INT> OWRT,IWRT;

% SVC DATA BRICKS %
% =============== %

SVC DATA RRSIO;
PROC () BYTE IN;
PROC <BYTE) OUT;

ENDDATA;

SVC DATA RRSED;
BYTE TERMCH, IOFLAG;

ENDDATA;

SVC DATA RRERR;
LABEL ERL;
INT ERN;
PROC <INT> ERP;

ENDDATA;

% EXTERNAL DATA DEFINITIONS %
% ========================= %

EXT DATA HEDIAERRDATA;

% WRITE TO MEDIA
% READ FROM MEDIA
% SHT PROCEDURES

%
%
%

INT NERRS; % NUMBER OF MEDIA ACCESS ERRORS %
ENDDATA;

EXT DATA TIHEDATA;
INT NOW,

SECSNOW,
HINSNOW,

ENDDATA;

TCOUNT,
SECS,
MINS,
HOURS,
DAYS,
HONTHS,
YEARS;

% ENTRY DATA DEFINITIONS %
% ====================== %

ENT DATA MULTIDATA;
ARRAY CNDIGICHG> INT DIGICH;
ARRAY CNANAIN> INT ANAIN;

% ELEMENT I OF INSCAN INDICATES
% ADDRESS 1-1 IS IN SCAN.

WHETHER THE MEDIA CARD AT MEDIA %
%

ARRAY COCT 20) INT INSCAN := <YES, % ADR O: DIGITAL I/P 1-16 %
YES, % ADR 1 : DIGITAL I/P 17-32 ,
NO,NO,
YES, % ADR 4: DIGITAL OUTPUTS
NO,NO,NO,
YES, % ADR 10: MULTIPLEXER
YES, ·% ADR 11 : ANALOG INPUTS
NO,NO,
YES, % ADR 1 4: ANALOG OUTPUTS
NO,NO,NO>;

ENDDATA;

% LOCAL DATA DEFINITIONS %
% ====================== %

DATA LOCAL;

ENDDATA;

ARRAY CNDIGICARDS> INT
INT ANAINCOUNT := 1;

INT ADDR;
INT J;

% STACK DEFINITION %
% ================ %

OLDIN, DIGIN := CO<NDIGICARDS>>;
% NUMBER IN RANGE 1 TO NANAIN INDICATING %
% WHICH ANALOG INPUT IS SCANNED THE CURRENT

· % TIME ROUND THE FOREVER LOOP. %
% HOLDS MEDIA ADDR BEING ACCESSED %
% HOLDS MEDIA ADDR OF CARD TESTED FOR %
% COMING BACK INTO SCAN. . %

ENT STACK MULTISTK 300;

% ENTRY PROCEDURES %
% ================ %

ENT PROC MULTI<>;.

% THIS PROCEDURE IS THE BASE PROCEDURE FOR THE MULTIPLEXER %
% SCAN TASK. %
% THE TASK RUNS EVERY 1/6 OF A SECOND. IT SCANS THE %
% MULTIPLEXED DATA AND STORES THE VALUES IN A VECTOR. %
% THE NEW VALUES ARE COMPARED WITH THE OLD ONES FROM THE %
% PREVIOUS SCAN AND ANY THAT CHANGE HAVE A CORRESPONDING BIT %
% SET IN A DIGITAL CHANGE WORD. THIS WORD MAY BE INTERROGATED %
% BY ANOTHER TASK AND CHANGES EASILY DETECTED. %

%

8
J := DIGINADDR;
ANAINCOUNT:=1;

% INITIALISE THE SCAN TEST POINTER %
% INITIALISE THE ANALOG INPUT POINTER %

INSCAN(1) := YES; % ADR 0 : DIGITAL INPUT
INSCAN(2) := YES; % ADR 1 : DIGITAL INPUT
INSCAN<3>:=INSCAN<4>:=NOj
INSCAN<5>:= YES;, % ADR 4 : DIGITAL OUTPUT
INSCAN<6>:=1NSCAN<7>:=INSCAN<OCT 10>:=NO;
INS CAN <OCT 11> : = YES; % ADR 10: HULT I PLEXER
INSCAN<OCT 12>:= YES; % ADR 11: ANALOG INPUTS
INSCAN<OCT 13>:=INSCAN<OCT 14>:=NO;
INSCAN<OCT 15):= YES; % ADR 14: ANALOG OUTPUTS
INSCAN<OCT 16>:=INSCAN<OCT 17):=1NSCAN<OCT 20>:=NO;

MULTISTART:
OUT:=DEFOUT;

%%%OUT := OUTTTY;%%%
%%%TWRT<"#LF#SMTMULTI

ERL := UNRECOV;

WHILE 1=1 DO

MULTISTART">;X%%

% UNRECOVERABLE ERROR LABEL

% FOREVER %

%%%TWRT("#LF#SMTMULTI: START OF FOREVER LOOP#LF#">;%%%

FOR I:=1 TO NDIGICARDS DO

%

%
%

%

%
%

%

IF INSCAN<I>=YES THEN % THE CARD IS IN SCAN %
ADDR := 1-1; % SAVE ADDRESS IN CASE MEDIA ERROR OCCURS %
OLDIN<I> := DIGIN<I>; % SAVE OLD VALUE OF DATA %
DIGINCI> := RHEDIA<I-1 > ;% DIG INPUTS ARE AT MEDIA ADDRS 0 & 1 %
IF DIGIN<I> # OLDIN<I> THEN

% THE DATA HAS CHANGED, SO SET DIG CHG WORD BIT %
DIGICH<1) := DIGICH<1> LOR (1 SLL <I-1));

END;
END;

REP;

IF INSCAN<HUXADDR+1>=YES AND INSCAN<ANINPADDR+1>=YES THEN

% THE HUX AND ANALOG l/P CARDS ARE IN SCAN,SO CAN READ NEXT ONE %

ANAINCOUNT:=<ANAINCOUNT MOD NANAIN> + 1; % POINT TO NEXT INPUT %
ANAIN<ANAINCOUNT> := GETANA<ANAINCOUNT-1>;% GET THE ANALOG DATA %

END;

CHECKACARD<>;

REP;

% CHECK ONE OF THE CARDS TO SEE IF IT HAS COME %
% BACK INTO SCAN. %

% UNRECOVERABLE ERROR PROCESSING %

UNRECOV:
%%%TWRT<"#LF#SMTMULTI: UNRECOV. LABEL">;%%%
%%%TWRT<"#LF#ADDRESS AT FAULT:">; OWRT<ADDR>;%%%

INSCAN CADDR+1)
% CLEANUP<>;%
% SVDINITO;%

:= NO;% PUT THE OFFENDING ADDRESS OUT OF SCAN %
% GET RID OF ALL ATTACHED FACILITIES %
% RESTORE THE STACKS %

%%%TWRT("#LF#GOING TO MULTISTART">;%%%

GOTO MULTISTART;
ENDPROC;

PROC CHECKACARD<>;

% START AGAIN FROM FRESH %

% EACH TIME ROUND THE FOREVER LOOP, WE CHECK A CARD TO SEE %
% IF IT IS IN SCAN. THE PURPOSE OF THIS IS TO KEEP THE %
% MATRIX INSCAN UP TO DATE. IF A CARD WAS OUT OF SCAN BUT %
% COMES INTO SCAN AGAIN, THEN INSCAN WILL BE UPDATED WITHIN %
% FOUR TIMES ROUND THE FOREVER LOOP. %
% ONLY ONE CARD IS CHECKED EACH TIME, BECAUSE WHEN IT IS OUT %
% OF SCAN IT CAUSES A BRANCH TO THE UNRECOVERABLE LABEL !! ! %

IF J=DIGINADDR THEN
J:=DIGINADDR + 1;

ELSEIF J = DIGINADDR + 1 THEN
J:=MUXADDR;

ELSEIF J = MUXADDR THEN
J:=ANINPADDR;

ELSEIF J = ANINPADDR THEN
J:=DIGINADDR;

ELSE % SHOULD NOT OCCUR %
J:=DIGINADDR;

END·
' '
IF INSCAN<J+1>= NO THEN % CARD IS RECORDED AS OUT OF SCAN %

RHEDIA<J>; % TRY TO ACCESS THE ADDRESS OF THE CARD%

% AT THIS POINT, THE PROGRAM WILL BOMB TO UNRECOV LABEL IF THE %
% CARD IS STILL OUT OF SCAN. %

INSCAN<J+1>:=YES;

END;
ENDPROC;

PROC GETANA<INT AD> INT;

% IF WE GET THIS FAR THEN THE CARD IS IN %
% SCAN AGAIN, SO CORRECT INSCAN MATRIX. %

% THIS PROCEDURE GETS THE NEXT ANALOGUE MULTIPLEXED %
% INPUT. %
% THE MEDIA MULTIPLEX CARD HAS ABOUT A 150 MICRO SEC %
% SETTLE TIME. <TIME BETWEEN RECIEVING THE ADDRESS, %
% AND GETTING THE VALUE FROM THE A TOD>. %

INT SELECT := O;
INT RET := O;

IF AD >= 0 AND AD <= NANAIN-1 THEN % ADRESS IS IN RANGE %
SELECT := <HEX 0010) LOR AD;
ADDR := MUXADDR; % SAVE ADDRESS IN CASE OF MEDIA ERROR %

WMEDIA<MUXADDR,SELECT>;

DELAY<3>;

% WRITE TO HUX SELECTING REQD CHANNEL %

% WAIT 40 TO 60 MILLISECS - LONG ENOUGH %
% TO FRY AN EGG, BUT THAT'S HOW LONG IT %
% TAKES FOR THE CARDS TO GET READY ! !! %

ADDR := ANINPADDR; % SAVE ADDRESS IN CASE OF MEDIA FAULT %
RET := RMEDIA<ANINPADDR>; % GET ANALOGUE INPUT %

ELSE % ADDRESS OUT OF RANGE %

RET :=O;
END·

'
%%%TWRT<"#LF#SMTMULTl*GETAN~ -- RETURNING">; OWRT<RET>;%%%
RETURN <RET>;

ENDPROC;

TITLE
SHT DEVICE DRIVERS
LSI-11 MICRO MEDIA SYSTEM .

' OPTION C 1);

LET NTASKS = 22; %
LET NUSERTASKS = 16•

'
X NTASKS-NSTSK

LET GO = o·
'

%
LET NOGO = 64•

'
x

LET PWFEV =-10; x POWER FAIL EVENT
LET LF = OCT 012·

'
HODE DELRECC INT TIMUP, TASK, REF DELREC NXT>;

LET NTDV16 = 2·
' LET NEVENTS = 32• ,

LET EVQLEN = 16;
LET NFAC = 32• ,
EXT DATA TASKDATA;

INT CURTASK,CURTEX,TASKLOCK,NXTCUR,EVIN,EVOUT;
DELREC ADEL;
REF DELREC FRPTR;
BYTE HIPRI,LOPRI;
ARRAY CNTASKS> INT TIMEOUT;
ARRAY CNTASKS) DELREC DEL;
ARRAY CNTASKS) STACK CELL;
ARRAY CNTASKS> BYTE EVFAC,STAT,PRIO,WTCHN;
ARRAY CNTDV16,NEVENTS> INT EVBITS;
ARRAY CNTASKS> REF BYTE STATADS;
ARRAY CEVQLEN> INT EVQ;
ARRAY CNFAC> BYTE FACILITY,FACTOTSK;
ARRAY CNEVENTS> BYTE EVTOTSK;

ENDDATA;
EXT PROC <INT> WAITFOR,RESET,WAIT,SECURE,RELsASE,SYSSTO,QEV,QEVRRET;
EXT PROCC> RETEV,RETFIN,PTORTL;
EXT PROC <> HLOCK,HUNLOCK;
EXT PROCC> INT SYSRTO;

SVC DATA RRSED;
BYTE TERMCH,IOFLAG;

ENDDATA;

% HOOE DEFINITIONS %
% ================ %

MODE IOAREA
C INT

BYTE
REF ARRAY BYTE

EXPECT,
FULL,
INPT,
OUTPT,
LAST CH,
INBUFF>;

% EXTERNAL DATA BRICKS %
% ==================== %

ENT DATA IODATA;
ARRAY <512) BYTE IOBUF;
ARRAY (80) BYTE TTYBUF;

% INPUT EXPECTED FLAG
% BUFFER FULL FLAG
% NUMBER OF INPUT BYTES
% NUMBER OF PASSED CHARACTERS
% LAST CHARACTER PASSED
% BUFFER

x
x
%
x
%

%
%
%
%
%
%

IOAREA
IOAREA

ENDDATA;

INAREA := <1 ,O,O,O,O, IOBUF>;
TTYA .- <O,o,o,o,o,TTYBUF);

% LOCAL DATA BRICKS %
% ~================ %

DATA TTYDATA;
INT USAGE := O;

BYTE CHAR;
ENDDATA;

LET TTYFAC
LET·KBEV
LET PREV

=
=
=

-15;
-13;
-12;

% TASK CURRENTLY USING TTY
% COMPAIRED WITH CURTEX FOR
% ARRAY LOOK UP
% LAST CHAR TYPED

%
%
%
%

LET INEVENT = 1 ; % INPUT BYTE READY EVENT %

LET NUL = o;
LET ENG = 5·

' LET EOM = 3·
' LET EOS = 128;

LET NL = 10;
LET CR = 13;
LET OPENSGBR = OCT 133;
LET CLOSESQBR = OCT 135;
LET BACKSP = OCT 10; % FOR VT 52 %
LET BACKSLASH = OCT 134;

LET CTLAEV = -15;
LET CTLBEV = -14;

ENT PROC OUTTTY<BYTE C>;
INT D : = C; ·.
IF CURTEX#USAGE THEN

. SECURE CTTYFAC> ; % FIRST CHARACTER -SECURE DEVICE%
USAGE:=CURTEX;

END;
TTYA.EXPECT := O;
IF C # EOM AND C # EOS
THEN % NOT LAST CHAR, OUTPUT %

% OUTPUT CHARACTER %
IF C = ENG THEN C := OPENSGBR ENb;
IF C = NL THEN OUTTTY<CR> END;

OUTBYTE<C>; % OUTPUT THE CHARACTER %
IF C # NL
THEN

IF D = ENG THEN % KEYBOARD INPUT EXPECTED %
TTYA.INPT := TTYA.OUTPT := O;
TTYA.EXPECT := 1;
IOFLAG := O;
SYSSTOC60DO>; % 2 MINUTE TIMEOUT %
WAITFOR<KBEV>; % WAIT FOR INPUT COMPLETE %

TTYA.EXPECT := O; % TERMINATES AND RELEASE
IF SYSRTO<> = 0 THEN % TIMEOUT OCCURRED %

TTYA.INPT := 1;
TTYA.INBUFF(1) := EOM;
I OF LAG : =-1 ;

END;

END;
ELSE RETURN;
END·

' END;

USAGE := O;
RELEASE CTTYFAC>;

ENDPROC;

ENT PROC INTTYC>BYTE;
TTYA.OUTPT := TTYA.OUTPT + 1;
RETURN C IF TTYA.INPT # 0 AND TTYA.OUTPT <= TTYA.INPT THEN

TTYA.INBUFFCTTYA.OUTPT> % SOME VALID CHARACTERS AFTER %

ENDPROC;

ELSE EOM
END>;

% AN ENQ %

ENT PROC INSERIALC>;

% THIS PROC IS NEVER CALLED EXPLICITLY. IT IS AN %
% H-TASK PROC FOR DEALING WITH THE CONSOL INPUT %
% INTERRUPT. <VECTOR 60). %
% THE INPUT BYTE IS PLACED IN A BUFFER INAREA.INBUFF. %
% %
% THE INPUT BYTES ARE NOT MODIFIED IN ANY WAY BEFORE %
% BEING SAVED. %
% THE BYTE TRANSHITTED IS ALWAYS SAVED IN INAREA.LASTCH %
% THE KEYBOARD EVENT C-15) IS SET BY THIS INTERRUPT %
% PROCEDURE. %
% TO INDICATE THAT INPUT HAS BEEN RECIEVED USER EVENT %
% NUMBER 1 IS SET. THIS ALLOWS THE COHS TASK TO WAKE %
% UP AND PROCESS THE INPUT BYTE. %

RETURN; % PREVENTITIVE MEDICINE %

% % CONSOLE INTERRUPT CODE

CODE 10, 0;

CONS INT:

DOT= .
. ASE CT
.=60
CONSINT,340
.PSECT DEVDRV
.=DOT

SAVE THE LOCATION COUNTER

SET THE LOCATION COUNTER TO 60
; GENERATE THE INTERRUPT VECTOR

REVERT TO PREVIOUS LOCATION COUNTER

MOVB
JSR

*RTL;

@#177562,*CHAR/TTYDATA ; GET THE BYTE
%1,*PTORTL ; SWITCH TOH TASK ENVIRONMENT

% BYTE EXPECTED %
IF INAREA.INPT >=LENGTH INAREA.INBUFF THEN

% BUFFER IS FULL %

ELSE
INAREA.FULL := 1;

% SAVE THE CHARACTER IN THE BUFFER %
INAREA.INPT := INAREA.INPT+1;
I NAREA. I NBUFF CI NAREA. I NPT) : = CHAR;

END;
INAREA.LASTCH := CHAR;

GEV <KBEV>;
GEVRRET<INEVENT>;

B
% GUE EVENT AND RETURN FROM
% H-TASK ENVIRONMENT

%
%

ENDPROC;

ENT PROC INBYTE<> BYTE;

%

%

%

% THIS ROUTINE RETURNS THE NEXT BYTE FROM THE SERIAL INPUT LINE.%
% INPUT BUFFER. %
% THE BUFFER CAN ONLY BE RESET WHEN ALL THE BYTES THAT HAVE %
% BEEN INPUT HAVE BEEN PASSED OUT BY THIS ROUTINE. THE BYTES %
% MUST BE USED AT A RATE GREATER THAN THEY ARE INPUT. %
% THE RESETING OF THE POINTERS IN THE 1/0 CONTROL AREA %
% INAREA.INPT AND INAREA.OUTPT MUST NOT BE INTERUPTED BY THE %
% INPUT INTERRUPT. ASUSPENSION OF INTERRUPTS THUS COVERS THE %
% RESETTING OF THESE POINTERS. %
% IF NO CHARACTERS EXISTS IN THE INPUT BUFFER THEN THE PROC %
% SETS IOFLAG AND RETURNS A NUL CHARACTER. %

BYTE CHR; % BYTE TO USE AS A TEHPORY STORE %

IF INAREA.INPT > 0 THEN % ARE BYTES IN BUFFER %
INAREA.OUTPT := INAREA.OUTPT + 1; % INCREMENT OUTPUT COUNT

CHR := INAREA.INBUFF<INAREA.OUTPT>;
IF INAREA.OUTPT >= INAREA.INPT THEN

% PUT BYTE INTO BUFFER %

% ALL BYTES HAVE NOW BEEN OUTPUT FROM BUFFER, SO CAN RESET THE %
% BUFFER POINTERS. %

END;
ELSE

HLOCKCl;

IF INAREA.OUTPT ~= INAREA.INPT THEN
% STILL. OK TO RESET POINTERS %
INAREA.INPT := O; % RESET BUFFER POINTERS

INAREA.OUTPT:= O;
END;

HUNLOCK (> ;

% INAREA.INPT = O, IE NO BYTES IN BUFFER

CHR := NUL;
%IOBUF := 1;%

END;

RETURN CCHR>;

ENDPROC;

PROC OUTSERIAL<>;

% THIS PROC IS NEVER CALLES EXPLICITLY. IT IS ANH-TASK %
% ROUTINE TO DEAL WITH THE CONSOLE OUTPUT INTE~RUPTS. %
% <VECTOR 64)~ %

RETURN;

CODE 4,0;
DOT1= .
. ASECT

% JUST IN CASE

;SAVE THE LOCATION COUNTER

.=64
CONSPR,340
.PSECT DEVDRV
.=DOT1

CONSPR:

;GENERATE CODE AT LOCATION 64
;THE INTERUPT~EtTOR WORDS ·

;REVERT TO OLD LOCATION COUNTER

;GET INTO RTL ENVIRONMENT JSR %1,*PTORTL
*RTL;
QEVRRETCPREV>; % QUEUE PRINTER EVENT AND RETURN FROM H-TASK

ENDPROC;

ENT PROC OUTBYTE <BYTE CH>;

SND:

% THIS ROUTINE OUTPUT ONE BYTE TO THE CONSOLE
% SERIAL I/O LINE.

% CHECK IF THE PORT IS READY

CODE 6,0;
TSTB
BMI

*RTL;

@#177564
*SND

RESET CPREV>;

CODE 6,0;
TSTB @#177564

*SND BMI
*RTL;

WAIT CPREV>;

; STATUS WORD XCRSR
;READY

;READY

CODE 12,0;
MOVB
MOV

*RTL;

*CHC5),@#177566 ;PUT BYTE IN OUTPUT
#100,@#177564 ;ENABLE INTERRUPT

ENDPROC;

%
%

%

%

TITLE
SMT OPERATING SYSTEM
(WITH NEGATIVE TASK NUMBERS)
USER TASK DEFINITION AND INITIALISATION <READ/WRITE>
**** MODULE. SMTU1 ****
SMT 4(18) 13-04-1981;

OPTION en;

LET NTASKS
LET NUSERTASKS
LET NFREETASKS
LET GO
LET NOGO
LET PWFEV

= 22;
= 16;
= 14;
= o;
= 64;
=-10;

MODE TASKLINK REF ARRAY STACK TKS,
REF ARRAY PROCC) TKP,
REF ARRAY BYTE TKPR,

TKST,
PROC () UINIT,

USERPF>;

EXT DATA SYSIODATA;
PROC () BYTE CTLAIN;
PROC CBYTE) CTLAOUT,ERROUT;

ENDDATA;

EXT PROC () BYTE DEFIN,INTTY;
EXT PROC CBYTE) DEFOUT,OUTTTY;
EXT PROC () RRNUL;

%
% NTASKS-NSTSK

% NUSERTASKS-USEDTASKS
%
%
% POWER FAIL EVENT

EXT PROC () FBPROC,INSTRUCT,SETFMG,CLOCK,ERPRIN,MULTI,COMS;

EXT STACK FBSTK,INSTK,SYSTACK,CLKSTK,ERRSTK,MULTISTK,COMSTK;

ENT DATA TKDFN;

%
%

%
%
%·
%

% TASKS -5 TO 0 ARE SYSTEM TASKS %
% -5. FALL-BACK TASK - LOWEST PRIO EXCEPT FOR TASK -3 <SEE BELOW> %
% -4. CTLA TASK %
% -3. STARTUP AND 'SET' TASK. MAY BE GIVEN A PRIORITY LOWER %
% THAN TASK -5. IT PERFORMS MOST OF THE STARTUP OPERATIONS %
% BEFORE BECOMING THE TASK WHICH SERVICES THE EVENT QUEUE %
% -2. CLOCK TASK - STIMULATED BY CLOCK INTERRUPT %
% -1. ERROR PRINT TASK X
% O. SPARE SYSTEM TASK %
% 1. MEDIA MULTIPLEXER SCANNING TASK X
% 2. MEDIA COMMUNICATIONS TASK %

ARRAYCNTASKS>STACK TKSTACK:=CFBSTK,INSTK,SYSTACK,CLKSTK,ERRSTK,FBSTK,
MULTISTK,COMSTK,FBSTKCNFREETASKS>>;

ARRAYCNTASKS>PROC () TKPROC:=CFBPROC,INSTRUCT,SETFMG,CLOCK,ERPRIN,
RRNUL, MULTI, COMS', RRNUL C NFREETASKS)) ;

ARRAYCNTASKS> BYTE TKPRIO:=C2,240,1,250,200,0,
10,20,ocNFREETASKS)),

TKSTAT:=CGO,GO,GO,GO,GO,NOGO,
GO,GO,NOGOCNFREETASKS));

ENDDATA;

DATA TKLINK;

TASKLINK TKDFNPTR
ENDDATA;

~
:= CTKSTACK,TKPROC,TKPRIO,TKSTAT,USERINITS,UPWFAIL>;

ENT PROC USERINITS<>;

L:

% USER EDITED INITIALISATION PROCEDURE
% CALLED BY STARTUP TASK BEFORE INTERRUPTS ARE ENABLED

CTLAIN:=INTTY;
CTLAOUT:=ERROUT:=OUTTTY;

CODE o,o;
.ASE CT

.=40

.WORD *TKLINK
.PSECT SMTU1X

·=*L

*RTL;

CODE 12,0;
MOV #100,@#177546

HOV #100,@#177560
*RTL;

THIS CODE PLANTS A POINTER TO THE
USER TASK DEFINITION DATA INTO

LOCATION '40
THE STARTUP CODE USES THIS AS A
REFERENCE VARIABLE OF MODE 'TASKLINK'.

; THE COMPONENTS OF THIS MODE WILL THEN
PROVIDE ACCESS TO THE DATA HELD IN
DATA BRICK TKDFN.

NOTE:
THIS METHOD OF ACCESSING TKDFN
ENABLES THE BASIC SMT SYSTEM TO

; BE LINKED SEPARATELY. THE USER
TASKSCINCLUDING THIS MODULE> CAN
THEN BE ADDED IN A SUBSEQUENT
LINKING OPERATION.

+++++++++ 6 FOR LSI
CLOCK INTERRUPT ENABLE +++ REMOVE
THIS LINE FOR LSI-11 UNLESS
KPV11 OR BDV11 CARDS ARE INSTALLED
TO ENABLE SOFTWARE CLOCK CONTROL~
OTHERWISE ERROR 30 WILL ALWAYS
BE REPORTED.
TTY KBD INTERRUPT ENABLE

%
%

ENDPROC;
'

ENT PROC UPWFAIL<>;
% USER EDITED PROCEDURE WHICH IS CALLED ON POWER FAIL RESTART. %
% THERE ARE SEVERAL POWER FAIL RESTART MECHANISMS WHICH CAN BE %
% IMPLEMENTED DEPENDING ON THE CODE OF THIS PROCEDURE:- %

% (1) IF THIS PROCEDURE IS NULL, A POWER FAIL RESTART WILL %
% SIMPLY START ALL USER TASKS AS FOR A NORMAL SYSTEM %
% STARTUP C COLD START FROM ZERO) . %

% (2) IF THIS PROCEDURE ENDS BY CALLING 'RETEV' , THIS WILL %
% ALLOW ALL TASKS TO CONTINUE FROM THE POINT THEY HAD %
% REACHED WHEN POWER FAIL OCCURRED. %

% C3) THIS PROCEDURE RUNS IN A LIMITED HTASK ENVIROMENT, AND %
% PROCEDURE GEV MAY BE USED TO SET EVENTS. IT IS NOT PERMITTED %
% TO USE START, AND STOP, BUT EXT DATA TASKDATA MAY BE %
% MANIPULATED DIRECTLY, AS IN CLOCKINT - SHTB1. IT IS THE %
% RESPONSIBILITY OF THE USER TO CHECK WHETHER THIS IS %

%
%
%

% (4)
%
%
%
%

l %
ENDPROC·

. '

PERMISSIBLE IN HIS SYSTEM. IT WILL USUALLY BE PREFERABLE
TO USE AN STASK WAITING ON PWFEV, THE POWER FAIL EVENT TO
TIDY UP.

%
%
%

THERE ARE TWO SYSTEM FEATURES WHICH HAY BE USEFUL ON %
POWER FAIL/RESTART:- %
CA> PWFLAG IN PWFDATA IS SET NON ZERO AFTER A POWER FAILURE. %

<NOTE: THE SYSTEM NEVER ZEROS THIS FLAG.) %
CB) EVENT NUMBER-10CNEGATIVE BECAUSE IT IS A RESERVED SYSTEM %

EVENT>, WILL BE SET AFTER A POWER FAIL/RESTART. %

TITLE
SMT OPERATING SYSTEM
(WITH NEGATIVE SYSTEM TASK NUMBERS)
MACHINE DEPENDENT SYSTEM ROUTINES <READ ONLY>
**** MODULE SHTB1 ****
SHI 1<18) 13-04-1981;

OPT I ON < 1) ;

LET OVHD
LET RN
LET MASK
LET UNHSK
LET HALT

· LET NTASKS
LET NSTSK
LET NTDV16
LET NEVENTS
LET NSEV
LET NFAC
LET NSFAC
LET NEVGS
LET INVEVS
LET EVGLEN

LET WTG
LET WTSEC
LET STOPP

= 30•
' = STKUSG+2;

= OCT 340;
=
=

=
=
=
=
=

=

o·
' o·
'

22;
6;
2;

32;
16;
32•

' 16;
1 5;

= -16;
16;

=

=

= 2;
3;

= OCT 100;

% STACK OVERHEAD FOR SVCS ETC
%
%
%
%

%
%
%
%
%
%
%
%
%
%

%
%
%

%
%
%
%
%

%
%
%
%
%
%
%
%
%
%

%
%
%

LET GFULLERROR=
LET CLKTASKNO =
LET SETASKNO =
LET ERPTNO =

39;
-2;
-3;
-1 ;

% ERROR NO. FOR EVENT QUEUE
%
%
%
%
%
%

ERROR PRINT TASK NO
POWER FAIL EVENT

FULL%
%
%
%

LET PWFEV =
LET NSTCON =

-10;
16; NO. OF STACK VALUES PRINTED

ON ERROR

MODE DELREC (INT TIHUP, TASK, ,REF DELREC NXT >;

MODE TASKLINK REF ARRAY STACK TKSTACK,

) .
'

REF ARRAY PROC<> TKPROC,
REF ARRAY BYTE TKPRIO,

TKSTAT,
PROC <> USERINITS,

USER PF

% ++++++++++ HARKS PROCESSOR STATUS WORD ACCESS

%
%
%

%NOTE THAT THE CODE FOR SETTING THE PSW ON T.HE LSI IS SHORTER THAN %
%ON 11/34 ETC AND ADJUST LENGTHS OF CODE SECTIONS ACCORDINGLY. %
%THE CONSTRUCTIONS RECOMMENDED ALLOW THE CODE TO .BE HELD IN ROH. %
%CHTPS #340 WILL ONLY WORK IN RAM - 1976-77 DEC MICROCOMPUTER HANDBOOK X

EXT STACK SYSTACK,FBSTK,HSTK;

EXT DATA TIHEDATA;
INT NOW,SECSNOW,MINSNOW,TCOUNT,SECS,MINS,HOURS,DAYS,MONTHS,YEARS;

ENDDATA;

8 EXT DATA CLKDATA;
INT TICK;

ENDDATA;
% COUNT ALLOWS CLOCK TO CATCH %
% UP IF TASKLOCK ON %

EXT DATA TASKDATA;
INT CURTASK,CURTEX,TASKLOCK,NXTCUR,EVIN,EVOUT;
DELREC ADEL;
REF DELREC FRPTR;
BYTE HIPRI,LOPRI;
ARRAY CNTASKS> INT TIMEOUT;
ARRAY CNTASKS) DELREC DEL;
ARRAY CNTASKS) STACK CELL;
ARRAY CNTASKS) BYTE EVFAC,STAT,PRIO,WTCHN;

. ARRAY CNTDV16,NEVENTS) INT EVBITS;
ARRAY CNTASKS> REF BYTE STATADS;
ARRAY CEVGLEN> INT EVG;
ARRAY CNFAC) BYTE FACILITY,FACTO~SK;
ARRAY CNEVENTS> BYTE EVTOTSK;

ENDDATA;

EXT DATA REGDATA;
ARRAYC9>INT REGS;
ARRAYCNSTCON>INT STKVALS;
INT ECT,ERNO,TASKNO,LINENO;

ENDDATA;

EXT DATA TRAPDATA;
LABEL TASKEXIT;
REF TASKLINK T;
INT UR1,ERNUM,UPS;

ENDDATA;

EXT DATA PWFDATA;
INT PWFLAG;

ENDDATA;

EXT PROC () UNLOCK;
EXT PROC () CLEANUP;
EXT PROC <INT> DFERP,STOP;
EXT PROC () BYTE DEFIN;
EXT PROC CBYTE) DEFOUT;
EXT PROC () RRNUL;

SVC DATA RRERR; LABEL ERL; INT ERN; PROCCINT) ERP ENDDATA;
SVC DATA RRSIO; PROC () BYTE IN; PROC 'CBYTE> OUT ENDDATA;
SVC DATA RRSED; BYTE TERHCH,IOFLAG; ENDDATA;
SVC DATA STKUSG; INT USAGE,LINE ENDDATA;

%%%%%%%%% RZZ %%%%%%%%%

% THIS DATA BRICK IS INCLUDED TO PRESERVE THE. STANDARD 'MTS' %
% INTERFACE TO THE CONTROL ROUTINES. IT COULD BE REMOVED IF %
% 'SHT' WRE MOUNTED ON ANOTHER M/C %

ENT DATA RZZ;
PROC <INT> SYSERRORPROC:=RRGEL;
INT ZZ1:=ZZ2:=0;
REF INT ZZ3:=ZZ1; % LOCATION R00+6 IS USED AS THE ENTRY ADDRESS %

% FOR SVC PROCEDURE CALLS <MTS PROC 'CHANGE> %

8
% SUCH CALLS IN SHT WILL.THEREFORE HALT AT %
% ADDRESS R00+2 %

ENDDATA;

OPTION C2l CH,SL;

% ALL THE PSEUDO PROCEDURES WHICH FOLLOW, OVERWRITE THE NORMAL %
% RTL/2 PROCEDURE ENTRY CODE. THIS IS ASSUMED TO BE 6 BYTES %
% LONG CHENCE OPTION "SL" ABOVE> AND THE CODE SECTION LENGTH %
% IS REDUCED ACCORDINGLY %

PROC INTPTSC>;

%%%%%%%%% DEFINE SVC DATA BRICKS %%%%%%%%%

CODE o,o;
RRSI0==6
RRERR==10.
RRSED==18.
STKUSG==20.
&CR N U,RRSI0=6,PGBPBQOZ
&CR N U,RRERR=10.,LIPIGOZ
&CR N U,RRSED=18.,BT2Z
&CR N U,STKUSG=20.,IT2Z

; THE FOLLOWING 'CONTROL ROUTINE" NAMES ARE
; ASSUMED BY THE STANDARD MTS CONTROL ROUTINE MODULES
ROO==RZZ
&CR ROO=RZZ
&CR R23=RZZ+2
&CR R24=RZZ+2
*RTL;

%%%%%%%%% H - TASK NOTES %%%%%%%%%

% REFER TO MANUAL FOR FULL SYNTAX.

%
%

SHT CALL VERSIONS) RTL/2 IN H - TASKS
--- -----------------------------

%

%
%

% CERTAIN RTL/2 CONSTRUCTIONS CAN CAUSE THE COMPILER TO USE WORKSPACE %
% ABOVE THE H - STACK. %
% FOR EXAMPLE, EVALUTING A COMPLEX EXPRESSION FOR LOOP COUNTING %
% LOCAL VARIABLES, OR BLOCK DECLA~ATION ENDBLOCK. %
% ON INTERRUPT THE VALUE OF R5 IS ONLY THE DUMMY HALF LINK CELL ON THE %
% TOP OF THE STACK, AND ANY DISPLACEMENT FROM THIS CORRUPTS WHATEVER %
% IS LINKED ABOVE IT. %
% %
% THE SECURE SOLUTION IS TO CREATE A PROCEDURE AND CALL IT THUS:- %

% PTORTL<>; %
% HYH PRO C C > ; %

% THIS CALLS R01 AND CREATES A NEW LINK CELL AND SPACE.ON THE %
% H - STACK FOR LOCAL VARIABLES AND WORKSPACES. %
% RETFIN<>; %

% ALTERNATIVELY, IF THE DESIRED SPACE IS DETERMINED AS BELOW THEN %

% SPACE MAY BE CREATED ABOVE THE H - STACK.
% FOR EXAMPLE:-

a %

% ENT STACK HSTK 100;
% DATA HWORKSPACE;
% INT R7,FDUMP4,FDUMP6,FDUMP10;
% ENDDATA;
% ENT STACK •....•.

% THIS AMOUNT < 4 WORDS) SHOULD COVER MOST CASES.

%
%
%
%
%
%

%

% IF THE PAL OUTPUT BY THE COMPILER IS INSPECTED AND THE PROCEDURE %
% ENTRY CODE (WHICH IS OVERWRITTEN) IS %
% JSR 2,R01 %
% 2,177774 %
% THEN NO WORKSPACE IS USED AND EXECUTING THE CODE IS SAFE WITHOUT %
% CREATING ANY WORKSPACE. %

% IF THE CODE BETWEEN PTORTL AND ENDPROC IS INSPECTED, %
% THE HIGHEST DISPLACEMENT ON REGISTER 5 E.G. 6(5) INDICATES %
% THE WORKSPACE ACTUALLY NEEDED AND THIS NUMBER DIVIDED BY TWO %
% GIVES THE NUMBER OF WORDS OF WORKSPACE NEEDED, THAT IS 3 FOR THIS %
% EXAMPLE. %
% %

%%%%%%%%% VEC 4 INTERRUPT %%%%%%%%%

CODE 26,0;

.=*INTPTS

; +++++++++ 26 FOR LSI

VEC4:
HOV #30.,*ERNUM/TRAPDATA

VEC4.4: COMMON UNRECOV ERROR CALL
HOV %1 ,*UR1/TRAPDATA SAVE USERS %1
HOV <6>+,%1 USERS LINK IN %1 (JSR 1,RRGEL)
HOV (6),*UPS/TRAPDATA USERS PS
HOV *ERNUH/TRAPDATA,(6) ERROR NUMBER CPARAM OF RRGEL
HOV *UR1/TRAPDATA,-C6).
HTPS *UPS/TRAPDATA RESTORE USERS PS

JMP w#*RRGEL
*RTL;

; HTPS *UPS/TRAPDATA ON LSI
; SIMULATES JSR 1, RRGEL FROM USER

%%%%%%%%% VEC 10 INTERRUPT · %%%%%%%%%

CODE 8,0;
VEC10:

/

HOV #33.,*ERNUM/TRAPDATA
BR VEC4.4

*RTL;

%%%%%%%%% VEC 20 INTERRUPT %%%%%%%%%

CODE 8,0;
VEC20:

HOV #34.,*ERNUM/TRAPDATA
BR VEC4.4

*RTL;

%%%%%%%%% VEC 30 INTERR~PT %%%%%%%%%

CODE a,o;
VEC30:

HOV #35.,*ERNUH/TRAPDATA
BR VEC4.4

*RTL;

%%%%%%%%% POWER FAIL/RESTART INTERRUPT %%%%%%%%%

CODE 18, O;
VEC24: · POWER FAIL ENTRY

' PW:
JSR %1,*PTORTL
HOV #PW2,24
HALT

; SAVE CURRENT MACHINE STATE
• POINT VECTOR AT POWER UP CODE '

PW2: POWER RESTORE ENTRY
HOV #*BEGIN+4,%1
JMP C 1)

*RTL;

SKIP OVER COLD START ENTRY POINT **RSX**
; %1 NON ZERO IS ALSO USE AS A POWER FAIL
; FLAG BY THE STARTUP CODE

%%%%%%%%% LINE TRACE INTERRUPT CBPT> %%%%%%%%%

CODE 12,0;
VEC14:

HOV @OC6>,*LINE/STKUSGCO> ; LINE NUMBER
ADD - #2, C 6) MOVE USER LINK PAST IT
RTI

*RTL;
ENDPROC;

ENT PROC CLOCKINTC>;
% CLOCK INTERRUPT SERVICING CODE
CODE 14,D;

.=CLOCKINT
INC *NOW/TIMEDATA
INC *TICK/CLKDATA ;

OVERWRITES ENTRY CODE
TICK UP NOW

CLRB *STAT/TASKDATA+*NSTSK+*CLKTASKNO ;
TST *TASKLOCK/TASKDATA

CKHT:
*RTL;

BEG CKHT
RTI

.
' RETURN IF LOCKED

%

PTORTLC>;
CURTEX:=CLKTASKNO+NSTSK;

RETFINC>;

% SWITCH TO H-TASK ENVIRONMENT %

ENDPROC;

%%%%%%%%% RRGEL %%%%%%%%%

ENT PROC RRGELCINT N>;

% HAND CODED UNRECOVERABLE ERROR PROC %

CODE 152,4; ; ++++++++ 152 FOR LSI

.=*RRGEL
MFPS -<6> USERS PS ++++++++ MFPS -(6)
MOV %1 ,-<6> ; USERS LINK ADDR
MOV 6(6),*ERN/RRERRCQ) ; SET UNREC ERROR NO
MTPS *HIPRl/TASKDATA ; LOCKOUT +++++++ MTPS *HIPRl/TASKDATA
CLRB *STAT/TASKDATA+*ERPTNO+*NSTSK ; ERROR PRINT TASK TO GO
INC *ECT/REGDATA
CMP *ECT/REGDATA,#1
BGT RRGL.1 ; AN ERROR ALREADY RECORDED
MOV *LINE/STKUSG(Q) ,*LINENO/REGDATA
HOV *CURTASK/TASKDATA,*TASKNO/REGDATA
CMP %0,#*HSTK
BNE RRGL.O
CLR *TASKNO/REGDATA

RRGL.O:
HOV 6(6),*ERNO/REGDATA
MOV #*REGS/REGDATA+20.,%1
HOV 2 (6 > , - C 1)
HOV C 6 l , - C 1)
HOV %6,-(1)
ADD #8.,(1)
HOV %5,-<1>
HOV %4,-(1)
HOV %3,-(1)
HOV %2,-<1>
HOV 4 (.6 .) , - (1)
HOV %0,-(1)

MOV 14C1) , %2
HOV #*STKVALS/REGDATA+2,%1

RRGL.3:

; ERROR NUMBER FROM STACK
TRANSFER REGISTERS

USERS LINK C%7)

USERS %6 BEFORE ENTRY TO RRGEL

SAVED USERS %1

USER'S STACK BEFORE ENTRY

MOV <2>+, (1)+ ; TRANSFER STACK VALUES TO STKVALS
CMP %1,#*STKVALS/REGDATA+*NSTCON+*NSTCON
BLE RRGL.3

RRGL.1:
ADD #8.,%6
CMP %0,#*HSTK

STACK NOW EMPTY

BEG HTASKERR UNRECOV ERROR IN H-TASK
HOV *ERL/RRERR+2(0) ,-(6) ; FINAL %5
HOV #RRGL.2,-(6) ; GO TO RRGL.1 IF UNWIND OK
TRAP 25. ; UNWIND STACK
HOV #3,*ERNO/REGDATA ; STACK UNWIND FAILURE
HOV *TASKEXIT/TRAPDATA,*ERL/RRERRCO> ; DEFAULT %7
HOV %0,%5 ; RESET STACK POINTER
ADD C0>,%5 SO THAT CLEANUP WILL WORK

- HOV %5, %6
RRGL.2:

CLR *TASKLOCK/TASKDATA
MTPS *LOPRI/TASKDATA
JMP w*ERL/RRERRCO>

HTASKERR:
JSR %1,*RETFIN
*RTL;

ENDPROC;

REMOVE TASKLOCK
; ++++++++ MTPS *LOPRI/TASKDATA
; GOTO ACTUAL ERROR LABEL

; H-TASK UNRECOV ERROR EXIT

%%%%%%%%% INTERRUPT LOCKOUT - HLOCK AND HUNLOCK %%%Xi%%%%

ENT PROC HLOCKC>;
CODE o,o;

.=*HLOCK
; ++++++++ 0 FOR LSI

;++++++++ HTPS *HIPRI/TASKDATA MTPS ~HIPRl/TASKDATA
RTS %1

*RTL;
ENDPROC; a
ENT PROC HUNLOCK<>;

CODE o,o;
.=*HUNLOCK

; ++++++++ 0 FOR LSI

MTPS *LOPRl/TASKDATA
RTS %1

;++++++++ MTPS *LOPRl/TASKDATA

*RTL;
ENDPROC;

%%%%%%%%% INITIAL STARTUP ROUTINES %%%%%%%%%

PROC BEGIN();
% MIC SPECIFIC STARTUP CODE FOR PDP-11
% SET UP INITIAL ENTRY CFROM ZERO> AND ALL
% INTERRUPT VECTORS STATICALLY
% INITIALISE STARTUP TASK STACK AND THEN CONVERT
% TO A PROPER TASK BY CALLING RRHAG

CODE 60,0;
SMT ••. ==*BEGIN

;++++++++ 60 FOR LSI **RSX**

.ASE CT

.=O
JMP Ol#*BEGIN
.WORD VEC4,*MASK
.WORD VEC10,*HASK
.WORD VEC14,*MASK
.WORD VEC20,*MASK
.WORD VEC24,*MASK
.WORD VEC30,*MASK

.=40

.WORD 0

.
' .
'

.
'

.
'

ENTRY FROM ZERO
VEC4 TRAP
VEC10 TRAP
VEC14 TRAP CLINE TRACE>
VEC20 TRAP
VEC24 TRAP <POWER FAIL>
VEC30 TRAP
VEC34 TRAP IS INITIALISED BY CONTROL

THIS LOCATION USED FOR TKLINK
INITIALISED BY SMTU1

RTNS

INTERRUPT VECTORS FOR DEVICES - THESE WILL BE OVERWRITTEN AT LOAD

%
%
%
%
%

TIME FOR THOSE DEVICES FOR WHICH THERE ARE INTERRUPT HANDLING ROUTINES

.=60
.+2,*HALT
.+2,*HALT
.+2,*HALT
.+2,*HALT
*CLOCKINT,*MASK
.+2,*HALT
.+2,*HALT
.+2,*HALT
.+2,*HALT
.+2,*HALT
.+2,*HALT
.+2,*HALT
.+2,*HALT
.+2,*HALT
.+2,*HALT
.+2,*HALT
.+2,*HALT
.+2,*HALT
.+2,*HALT

TTY KBD
TTY PRINTER
HS PT RDR
HS PT PUNCH,.
CLOCK - ASSUMES OPTION 'SL'

.+2,*HALT

.+2,*HALT

.+2,*HALT

.+2,*HALT

.+2,*HALT

.+2,*HALT

.+2,*HALT

.+2,*HALT

.+2,*HALT

.+2,*HALT

.+2,*HALT

.+2,*HALT

.+2,*HALT
~+2,*HALT
.+2,*HALT
.+2,*HALT
.+2,*HALT
.+2,*HALT
• +2, *HALT .
. +2,*HALT
.+2,*HALT
.+2,*HALT
.+2,*HALT
.+2,*HALT
.+2,*HALT
.+2,*HALT
.+2,*HALT
.+2,*HALT
.+2,*HALT
.+2,*HALT
.+2,*HALT
.+2,*HALT
.+2,*HALT

.PSECT SMTB1X

.=*BEGIN
RESET
CLR %1

HOV 40,*T/TRAPDATA
BNE *LO
HALT

RSX
DISTINGUISH COLD START FROM 1

; POWER FAIL RESTART
; ,PICK UP ADDRESS OF USER TKLINK DATA

; USER MODULE NOT LOADED

HOVB #*HASK,*HIPRI/TASKDATA

L1:

CLRB *LOPRI/TASKDATA
HTPS *HIPRI/TASKDATA
HOV #*HSTK,%0

HOV
ADD
HOV
HOV
HOV
ADD
CMP
BNE
HOV
TST
BEQ

X0,%5
co) '%5
%5,%6
%6' (6)
%0,2(0)
#•OVHD+*RN,2(0)
#*HSTK,XO
*L2
#PW,24
%1
*NPF ..

*RTL;

X POWER FAIL RESTART,

; ++++++++ HTPS *HIPRI/TASKDATA
; STACK AqDR

END OF STACK ADDR

; INITIALISE LAST <HALF) LINK CELL
;> STACK LENGTH CHECK
;> WORD SKLO

SET POWER FAIL INTERRUPT VECTOR
POWER FAIL RESTART ? .

; BRANCH IF NORMAL COLD START

x

PWFLAG := PWFLAG + 1;
QEVCPWFEV>; B
T. USER PF() ; % CALL USER DEFINED POWER FAIL %

%RESTART PROC %

NPF:
CODE 6,0;

HOV #*SYSTACK,%0 INITIALISE SYSTEM STACK
BR *L 1

*RTL;
L2:

RRMAGCSETFHG>; %.SETFMG WILL INITIALISE All %
XS-TASK STACKS %

ENDPROC;

ENT PROC TYPCHANGE<>;
%-NULL PROCEDURE USED TO PROVIDE A COMMON FRAMEWORK FOR THE
% RTL TYPE CHANGE PROCEDURES SUCH AS
% ENT PROC ITORICINT I>REF INT;

CODE o,o;
.=*TYPCHANGE
RTS %1

ITORI==*TYPCHANGE
ITORF==*TYPCHANGE
ITORR==*TYPCHANGE .
ITORB==*TYPCHANGE
RBTOI==*TYPCHANGE
&CR N P,ITORI,IQEIZ
&CR E ITORI
&CR N P,ITORF,IGEFZ
&CR E ITORF
&CR N P,ITORR,IQERZ
&CR E ITORR
&CR N P,ITORB,IGEBZ
&CR E ITORB
&CR N P,RBTOI,EBGIZ
&CR E RBTOI

*RTL;
ENDPROC;

.
'

INT TO REF INT

INT TO REF FRAC

INT TO REF REAL

INT TO REF- BYTE

REF BYTE TO INT

ENT PROC STKINITCSTACK STK,PROC <> TKP>;
CODE 46,0;

HOV *STKC5>,%1
HOV %1,%2
ADD <1>,%2
HOV %2,C2)
HOV %2,%4

ADDRESS OF STACK
ADDRESS OF LAST WORD - USERS %5
LAST CHALF> LINK CELL

HOV *TKP(5) ,-<2>; USER BASE PROC CFOR RRMAG)
TST -<2>
HOV #*UNHSK,-<2>;
HOV #*RRMAG,-C2>;

PS INITIAL VALUE
%7 INITIAL VALUE
SKIP STORAGE OF %1-%4 SUB #8., %2

HOV %4,-(2) · %5 INITIAL VALUE
'

HOV %2,4<1>
HOV %1,2(1)

N.B. WHEN USING HARDWARE FLOATING POINT UNIT

SX6

EXTRA SPACE WILL BE REQUIRED TO STORE
THE FLOATING POINT ACCUMULATORS

STKLO-USED FOR STACK LENGTH CHECKS

%
%
%

ADD #*OVHD+*RN,2(1)
*RTL;

ENDPROC;

ENT PROC SVDINIT<>;
% SVC DATA INITIALISATION PROCEDURE

% SET UP TASK DEFAULT ERROR LABEL
% X7=TASKXT IN RRHAG
% X5=STACK END
CODE 20,0;

HOV *TASKEXIT/TRAPDATA,*ERL/RRERR(O)
HOV %0,*ERL/RRERR+2<0>
ADD <O>,*ERL/RRERR+2(0)
HOV #177777,*LINE/STKUSGCO>

*RTL;
ERP:=DFERP;
IN:=DEFIN; OUT:=DEFOUT;

ENDPROC;

ENT PROC PTORTL<>;

CODE 18, 0;
R24==*PTORTL

.=*PTORTL
; SAVE USERS REGISTERS AND SWITCH TO HSTK
; 'JSR %1,PTORTL' HAS ALREADY PUT USERS %1 ON THE STACK
HOV %2,-C6>
HOV %3,-(6)
HOV %4,-(6)
HOV %5,-(6)
HOV %6,4C0) %6 INTO SX6 ON STACK
HOV #*HSTK,%0 HARDWARE TASK STACK
MOV %0,%5
ADD CO> ,%5 POINT TO LAST CHALF> LINK CELL
MOV %5,%6
JHP C 1 >
*RTL;

ENDPROC;

ENT PROC RETFIN<>;

CODE 30,0;
R23==*RETFIN

.=*RETFIN
; TERMINATE H-TASK AND RETURN TO S-TASK DENOTED BY CURTEX
HOV *CURTEX/TASKDATA,%3 ·
HOV %3,*CURTASK/TASKDATA
SUB #*NSTSK,*CURTASK/TASKDATA
ASL %3
HOV *CELL/TASKDATAC3) ,%0 NEW STACK ADDR:=CELLCCURTEX>
HOV 4C0>,%6 SX6
HOV (6)+,%5
HOV <6>+,%4
HOV (6) +, %3
HOV <6>+,%2
HOV (6)+,%1
RTI EXIT TO USER TASK
*RTL;

ENDPROC;

%

%
%
%

%%%%%%%%% CHANGE %%%%%%%%%

ENT PROC CHANGE<>;
CODE 44,0;

.=*CHANGE
MFPS (6)
HTPS *HIPRl/TASKDATA
HOV %1,-(6)
SUB #10,%6
HOV %5,-(6)
HOV %6,4CO>

.; PSW

CLR *TASKLOCK/TASKDATA

;++++++++ 44 FOR LSI

TO STACK ++++++++ HFPS C6)
; ++++++++ MTPS *HIPRI/TASKDATA

LINK - SIMULATE HINTERRUPT
; SET UP CELL WITH ONLY
; MEANINGFUL REGISTERS TO SAVE
; TIME OVER JSR 1 PTORTL

CMP *EVIN/TASKDATA,*EVOUT/TASKDATA
BNE *RETEV+10 ;UNPACK
HOV #*STATADS/TASKDATA+2,%4; FIRST

EVENT Q IF REQUIRED
STATUS ADDRESS - HIGH PRIO

TSKTST:
TSTB
BNE
HOV
SUB
HOV
BR
*RTL;

ENDPROC;

0)(4)+
TSKTST
-(4),%3
#*STAT/TASKDATA,%3
%3,*CURTEX/TASKDATA
*RETFIN+4

OPTION C 1 >

TEST CONTENTS OF STATCSTADS<I>>
; FOR ACTIVE TASK
; ADDRESS OF CURTEXCSTAT>

CUR TEX

QUICK JUMP TO RETFIN

% THE FOLLOWING ROUTINES - QEV,QEVRRET,RETEV,CLOCK,SETFMG AND RRMAG - %
% COULD RESIDE IN MODULE SMTB2. THEY ARE INCLUDED HERE BECAUSE %
% THEY COULD BE HAND CODED IN SOME SYSTEMS %

ENT PROC RETEVC>;
% USED TO RETURN FROM INTERRUPT
% IF AN EVENT HAS BEEN SET
IF TASKLOCK=O THEN

%
%

CURTEX:= SETASKNO+NSTSK;
TASKLOCK:=TASKLOCK-1;

END;

% ENSURE EVENT QUEUE IS SERVICED%

RETFINO; % RETURN
ENDPROC;

ENT PROC QEVCINT EVENT>;
% USED BY INTERRUPT SERVICING CODE TO
% PLACE AN EVENT IN THE QUEUE
INT EVTST:=CEVIN+1) LAND NEVGS;
IF EVTST=EVOUT THEN

RRGELCGFULLERROR>;
END;
EVGCEVTST+1>:= EVENT;
EVIN:=EVTST;

ENDPROC;

ENT PROC QEVRRETCINT EVENT>;
% PLACE AN EVENT IN THE QUEUE
% AND ALSO RETURN FROM INTERRUPT
GEV C EVENT> ;
RETEVC>;

ENDPROC;

%

%
%

%
%

ENT PROC CLOCK<>;
% BASE PROCEDURE FOR CLOCK INTERRUPT TASK

CLK:
WHILE TICK > 0 DO

TICK:= TICK - 1;
IF TCOUNT>=49 THEN

TCOUNT:=O; SECSNOW:=SECSNOW+1;
IF SECS>=59 THEN

SECS:=O; MINSNOW:=MINSNOW+1;
IF MINS>=59 THEN

MINS:=O;
IF HOURS>=23 THEN

HOURS:=O; % MIDNIGHT OWLS AND BROOMSTICKS %

% EVEN MONTHS ARE THIRTY DAY %
% UP TO AUGUST ANYWAY %
% POST JULY WE JUST ADD 1 . %

· % AND FINISH AS WE HAVE BEGUN %
% THIRTY NEEDS BITS FIVE TO TWO %
% SO LOR THEM IN - BIT ONE DROPS THROUGH %
% A SPECIAL TEST FOR FEBRUARY %
% I'M SAD TO SAY IS NECESSARY %
% BUT· ALL THE REST, NEW YEAR TO YULE %
% ARE GIVEN BY THIS SIMPLE RULE. %

-XA.J.C. 1978 %

IF DAYS>=IF MONTHS=Z THEN % FILLDYKE %
IF YEARS. LAND 3 = 0 THEN % LEAPYEAR %

29
ELSE 28
END

ELSE 30 LOR IF MONTHS > 7 THEN MONTH5+1
ELSE MONTHS END

END
THEN

DAYS:=O;
IF MONTHS>=1Z THEN % HOGMANAY

MONTHS:=O; YEARS:=YEARS+1;
END;
MONTHS:=MONTHS~1;

END;
DAYS: =DAYS+1;

ELSE
HOURS:=HOURS+1;

END;
ELSE

MINS:=MINS+1;
END;

ELSE
SECS: =SECS+1 ;

END;,
ELSE

TCOUNT:=TCOUNT+1;
END;

REP;
% COUNT DOWN DELAYS AND TIMEOUTS

TASKLOCK:=1;
TRI AG:

BLOCK
REF DELREC PTR:=ADEL.NXT;
INT I, S, TIHTST;

%

%

IF PTR :=: ADEL THEN GOTO STP; END;
TIMTST := PTR.TIHUP - NOW;

IF TIHTST > 0 THEN GOTO STP; END; % TIMEUP
I : = PTR. TASK;
ADEL.NXT := PTR.NXT;
PTR.NXT := FRPTR;
FRPTR := PTR;

S := STATCI>LAND WTSEC;
IF S # 0 % TIMEOUT ONLY COUNTED IN WAIT

% PERIOD

%

%
%

THEN IF TIMEOUTCI) > 0
THEN TIMEOUT CI> : = 0; % TIMEOUT HAS RUNOUT, SO CLEAR %

% TASK FROM WTCHN %
BLOCK

REF BYTE TKPTR := IF S = WTG

WHILE TKPTR # I
DO TKPTR := WTCHNCTKPTR>
REP;
VAL TKPTR := WTCHNCI>;
WT CHN C I) : = 0;
EVFACCI> := O;

ENDBLOCK;
END·

' END;
STATCI>:=STAT(I) LAND STOPP;
GOTO TRIAG;

ENDBLOCK;
STP:

STOPCCLKTASKNO>;
GOTO CLK;

ENDPROC;

ENT PROC SETFMGC>;
LABEL RERL;
ADEL.NXT := ADEL;
FRPTR := DELC1);

FOR I:=1 TO NTASKS DO
TIMEOUT CI) :=-1;
DELCil.NXT := IF I = NTASKS

THEN ADEL
ELSE DEL <I +1)
END;

CELLCI>:=FBSTK;
PRIO CI>: =WTCHN CI): =EVFAC CI>: =O;
STAT CI> : =STOPP;
STATADS CI) : =STAT C 1 >;

REP;
FOR I := 1 TO NTDV16 DO

FOR J := 1 TO NEVENTS DO

THEN EVTOTSKCEVFACCI))
ELSE FACTOTSKCEVFACCI))

END·
' %:TASK MUST BE IN WTCHN %

% IF TO > 0 AND STATUS WAITING %
% FOR FACILITY OR EVENT %

% REMOVES TASK FROM WTCHN %

% NB STOP CALLS CHANGE %

EVTOTSKCJ) := o; EVBITS <I,J> := o;
. REP;
REP;
FOR 1:=1 TO NFAC DO FACILITYCI>:=O; FACTOTSKCI> := 0 REP;
CURTASK:=SETASKNO;
CURTEX:=SETASKNO+NSTSK;
TASKLOCK:=EVIN:=EVOUT:=ECT:=O;

FOR I:=1 TO NTASKS DO
PROCC>TKP := T.TKPROCCI>;

IF TKP#RRNUL THEN
PRIO<I> :=T. TKPRIO<I>;
STAT<I>:=T.TKSTAT<I>;
CELL <I) : =T. TKSTACK (I>;
IF I#SETASKNO+NSTSK THEN X AVOID REINITIALISING %

X OWN STACK %

L:

STKINIT<CELL<I>,TKP>;
END;

END;
REP;

% INITIALISE 'STATADS' ARRAY USED BY CHANGE

BLOCK
INT J:=O,MAXP:=256,P;

.P:=-1;
FOR I:=1 TO NTASKS DO

INT P1:=PRIO<I>;
IF P1>P AND P1<MAXP THEN P:=P1 END;

REP;
IF P>=O THEN

FOR 1:=1 TO NTASKS·DO
IF PRIO<I>=P THEN

J:=J+1;
STATADS<J>:=STAT<I>;

END;
REP;
HAXP:=P;
GOTO L;

END;
ENQBLOCK;

RERL:=ERL;
ERL:=UERL;

%

T. USER IN I TS() ;
UERL:

% PERFORM USER INITIALISATIONS %

ERL:=RERL;

% END OF STARTUP CODE

HUNLOCK<>;
CHANGE<>; % SELECT A NEW S-TASK

% STARTUP 'TASK' NOW REVERTS TO STANDBY LOOP
% WHICH SERVICES THE EVENT GUEUE

ERL:=EHTG;
EMTG:

UNLOCK<>;
GOTO EMTG;

ENDPROC;

ENT PROC RRHAG<PROC () Pl;
% BASE PROCEDURE FOR ALL TASKS

TASKEXIT:=TASKXT;
SVDINITO;
ERN:=O; IOFLAG:=O;

%

%

%
%

x

p () ;

% NO TASK SHOULD EVER EXIT.

SVDINIT<>;
RRGEL<10>;

TASKXT:

.. ~-..CLEANUP () ;
. STOP< CURTASIO ;

GOTO TASKXT;
ENDPROC;

% RUN USER PROVIDED BASE
% PROCEDURE

9·.
. % •

%

% RESET ERL TO JOBXT

% TASK DEFAULT UNRECOVERABLE
% ERROR LABEL

..

%

%

%
%

TITLE
SHT OPERATING SYSTEM
MACHINE INDEPENDENT SYSTEM ROUTINES CREAD ONLY>
DELAY, TIMEOUT AND WAIT, FOR EVENTS AND
FACILITIES IN ORDERED LISTS FGR SPEED
**** MODULE SHTB2 ****
SHT 2C18> 13-04-1981;

OPTION (1) .
'

LET NL = 10; %
LET SP = 32; %
LET TAB = 9·

' %
LET EOM = 3·

'
%

LET ENG = 5·
'

%
LET BELL = 7•

'
%

LET CTLAEV = -15; % CTLA TASK EVENT
LET NEVQS = 15; %
LET NFAC = 32; %
LET NSFAC = 16; %
LET NTASKS :::: 22; %
LET NSTSK = 6•

'
%

LET NTDV16 = 2.
'

%
LET NEVENTS = 32; %
LET'-NSEV = 16; %
LET FACEV = -11 • ' . % EVENT WAKES UP SECURED TASKS
LET STOPP = OCT 100;
LET SUSP = OCT 200;
LET WTG = 2;
LET WSEC = 1 •

' LET NOTSTOP = OCT 277;
LET EVQLEN = 16;
LET NSTCON = 16;

LET ERPTNO = -1 ;

MODE DELREC INT TIMUP, TASK, REF

EXT PROC ()HLOCK,HUNLOtK;
EXT PROC <INT> RRGEL;
EXT PROC C) CHANGE;
EXT PROC CINT> REF INT !TORI;
EXT PROC CINT> REF FRAC ITORF;
EXT PROC CINT) REF REAL !TORR;
EXT PROC <INT> REF BYTE ITORB;

%
%
%
%
%
%
% NO. OF STACK VALUES
% ON ERROR
% ERROR PRINT TASK NO

DELREC NXT >;

SVC DATA RRERR; LABEL ERL; INT ERN; PROC <INT> ERP ENDDATA;
SVC DATA RRSIO; PROC () BYTE IN; PROC <BYTE> OUT ENDDATA;
SVC DATA RRSED; BYTE TERHCH,IOFLAG ENDDATA;

EXT DATA TASKDATA;
INT CURTASK,CURTEX,TASKLOCK,NXTCUR,EVIN,EVOUT;.
DELREC ADEL;
REF DELREC FRPTR;
BYTE HIPRI,LOPRI;
ARRAY CNTASKS> INT TIMEOUT;
ARRAY CNTASKS>· DELREC DEL;
ARRAY CNTASKS) STACK CELL;
ARRAY CNTASKS> BYTE EVFAC,STAT,PRIO,WTCHN;
ARRAY CNTDV16,NEVENTS> INT EVBITS;

PRINTED

%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

ARRAY <NTASKS> REF BYTE STATADS;
ARRAY <EVGLEN> INT EVG;
ARRAY <NFAC> BYTE FACILITY,FACTOTSK;
ARRAY <NEVENTS> BYTE EVTOTSK;

ENDDATA;

EXT DATA TIMEDATA;
INT NOW,SECSNOW,HINSNOW,TCOUNT,SECS,HINS,HOURS,DAYS,HONTHS,YEARS;

ENDDATA; .

EXT DATA REGDATA;
ARRAY<9>INT REGS;
ARRAYCNSTCON>INT STKVALS;
INT ECT,ERNO,TASKNO,LINENO;

ENDDATA;

EXT DATA SYSIODATA;
PROC<>BYTE CTLAIN;
PROC<BYTE>. CTLAOUT,ERROUT;

ENDDATA;

ENT DATA PATTERNS; % BIT MASK PATTERN DATA %
% <DO NOT ALTER***) %

.ARRAY (16) INT BITS:=C1,2,4,8;·1-6,32,6·4,1:2iJ, =- · ·· --

256,512,1024,2048~4096,8192,16384,HEX 8000);
ENDDATA;

LET NOLKTYPES=6;

MODE LKTYPECBYTE CHAR,LEN>;

DATA LOOKTYPES;
AR~AYCNOLKTYPES>LKTYPE TYPES:=<

c·s· n c·c· n C'D' 2>
' ' ' ' ' ' ('W' 2) ('F' 2) ('R' 4))·
' ' ' ' ' ' ENDDATA;

%%%%%%%%% TASK CONTROL %%%%%%%%%

ENT PROC STOPCINT TASK>;
TASK: =TASK+NSTSK; · - c.:·_ : c ,_

IF TASK<=O OR TASK> NTASKS THEN RRGEL(11>; END;
TASKLOCK := 1; STAT<TASK>:=STAT<TASK> LOR STOPP;
CHANGE<>; % USER MAY BE STOPPING HIMSELF %

ENDPROC;

ENT PROC STARTCINT TASK>;
TASK := TASK+NSTSK;

% CHANGE EFFECTIVELY CALLS %
1 % UNLOCK %

IF TASK<= 0 OR TASK>NTASKS THEN RRGEL(11>; END;
TASKLOCK := 1; STAT<TASK> := STAT<TASK) LAND _NOTSTOP;
CHANGE<>;

% CHANGE EFFECTIVELY CALLS %
% UNLOCK %

ENDPROC;

ENT PROC DELAYCINT TIME>;

IF TIHE<=O THEN RETURN END;
INDEL <TIME>;
STATCCURTEX> := STATCCURTEX) LOR SUSP;
CHANGE<>;

% CHANGE EFFECTIVELY CALLS %
% UNLOCK<>; %

ENDPROC;

PROC INDELCINT TIME>;
TASKLOCK := 1;

BLOCK
REF DELREC BPTR := ADEL,

PTR,
NPTR := FRPTR;

INT TIMEUP := TIME + NOW,
TIMTST;

TRI AG:
FRPTR := FRPTR.NXT;

PTR := BPTR.NXT;
IF PTR :=: ADEL
THEN GOTO STKIN; END;

% TAKE NEW RECORD

TIMTST := TIMEUP - PTR.TIHUP;

STKIN:

IF TIHTST > 0
THEN BPTR := PTR;

GOTO TRIAG;
END;

NPTR.NXT := PTR;
BPTR.NXT := NPTR;
NPTR.TIHU~ := TIHEUP;
NPTR.TASK := CURTEX;

ENDBLOCK;
ENDPROC;

ENT PROC WAITCINT EV>;
IF UNWAIT(CURTEX,EV) # 0

% INSERT NEW RECORD

% FILL IT UP

%

%

%

THEN % EVENT HAS OCCURRED %
IF TIMEOUTCCURTEX) = 0 % RESET TO ON A FIRST TIME %
THEN TIMEOUTCCURTEX> := -1; % SUCCESS SO IT DIDN'T TIMEOUT %
END;
UNLOCK<>;

ELSE EVFAC C CURTEX) : = BYTE CEV+NSEV >.;
CHAINWTCEVTOTSKCEV+NSEV>,WTG> ;x WAIT FOR EVENT OR TIMEOUT %

END·
' ENDPROC;

ENT PROC RESETCINT EV>;
UNWAIT<CURTEX,EV>;
UNLOCK();

ENDPROC;

ENT PROC WAITFOR<INT EV>;
UNWAITCCURTEX,EV>;
WAITCEV>;

ENDPROC;

% RESET
% WILL CALL CHANGE

%
%

ENT PROC LOCK<>;
TASKLOCK := 1;

ENDPROC;

ENT PROC UNLOCK<>;
% CALLED FROH S TASK AT S TASK STACK LEVEL, IT USES HARDWARE LOCKOUT%
% FOR SHORT PERIODS, TO ALLOW THE EVENT QUEUE TO BE BUILT UP VIA %
% INTERRUPTS.IT CALLS SET, BUT SET WILL NOT GO TO CHANGE SINCE TASK %
% LOCK IS SET. WHEN THE EVENT QUEUE IS EMPTY, IT CAN CALL CHANGE. %

INT EVENT;
EM: HLOCK () ;

IF EVIN # EVOUT THEN
EVOUT := <EVOUT+1) LAND NEVQS;
EVENT := EVG<EVOUT+1>;
HUNLOCK<>;
SET<EVENT>;
HLOCK () ;
IF EVIN=EVOUT THEN

CHANGE();
END;
GOTO EM;

END;
TASKLOCK:=O;
HUNLOCK<>;

ENDPROC;

ENT PROC SET<INT EV>;

INT~WASLK :=TASKLOCK;
INT EVDX := EV + NSEV;
IF EVDX <= 0 OR EVDX > NEVENTS THEN RRGELC12>; END;
TASKLOCK := 1; % SET_ UP THE EVENT FOR ALL TASKS%
FOR I := 1 TO NTDV16 DO

EVBITS <I,EVDX> := HEX FFFF;
REP;
BLOCK

REF BYTE TS:= EVTOTSKCEVDX>,TF;
WHILE TS # 0
DO TF := WTCHNCTS>;

OUTDEL CTS>;
UNWAIT <TS,EV>;
VAL TS := O;

REP;
ENDBLOCK;

TS := TF;

IF WASLK = 0 THEN CHANGE<>; END;
ENDPROC;

ENT PROC SYSSTOCINT TIME>;
TIMEOUTCCURTEX>:=TIME;

ENDPROC;

ENT PROC SYSRTOC)INT;
INT T:=TIMEOUTCCURTEX>;

TIMEOUTCCURTEX>:=-1;

% TEST TIMEOUT AND PERHAPS EMPTY%
% AND REMOVE TASK EVENT BITS, %

,% AND STAT CLEAR WTCHN ELEMENT %
% AND STEP ON %

RETURNCT>;
ENDPROC;

PROC UNWAITCINT TK,EV>INT;
% PRIVATE PROCEDURE TO REMOVE TASK EVENTS BIT AND TEST IT

INT EVDX := EV + ,NSEV;
IF EVDX <= 0 OR EVDX > NEVENTS

THEN RRGELC12>;
END;

TASKLOCK := 1;
BLOCK
REF INT EVPTR := EVBITSCCCTK-1>SRL 4) + 1,EVDX>;

INT MBIT:=CBITSCCCTK-1>LAND 15)+1>>LAND EVPTR;
VAL EVPTR := EVPTR LAND NOT MBIT;

RETURN< MB I Tl ;
ENDBLOCK;
ENDPROC;

ENT PROC MEC>INT;
RETURNCCURTASK>;

ENDPROC;

%%%%%%%%% FACILITY CONTROL %%%%%%%%%

ENT PROC SECURE<INT FAC>;
FAC := FAC + NSFAC;
IF FAC <= 0 OR FAC > NFAC THEN RRGELC14>; END;
BLOCK

LP:

REF BYTE F := FACILITYCFAC>;
REF INT T := TIHEOUTCCURTEX>;
IF F = CURTEX THEN RRGELC16); END;

TASKLOCK := 1;
IF F = 0
THEN VAL F := BYTE CURTEX;

% FACILITY FREE

IF T = 0 THEN VAL T := -1 END;
UNLOCK<>;

ELSE EVFACCCURTEX> := BYTE FAC;
CHAINWTCFACTOTSKCFAC) ,WSEC>;
IF F # CURTEX AND T # 0 THEN
GOTO LP

END;
END;

. ENDBLOCK;
ENDPROC;

%

%

ENT PROC RELEASECINT FAC>;
% RELEASE AWARDS THE FACILITY TO THE HIGHEST PRIORITY WAITING TASK %

FAC := FAC + NSFAC; % AND UNWAITS ANY STOPPED TASKS %
IF FAC <= 0 OR FAC > NFAC THEN RRGELC14); END;
BLOCK
REF BYTE TKPTR := FACILITYCFAC>;
INT P := HI := O;
IF TKPTR # CURTEX THEN RRGELC15>; % CAN ONLY RELEASE OWN FACILITY%
END;
TASKLOCK := 1;
BLOCK
REF BYTE HPTR,TS := FACTOTSKCFAC>,TF;

WHILE TS # 0
DO TF := WTCHN<TS>;

IF STATCTS>LAND STOPP # 0
THEN OUTDEL <TS>;
VAL TS := TF;
VAL TF := o;
IF TS # 0 THEN
TF := WTCHNCTS> END;
ELSE IF PRIOCTS> > P

THEN P := PRIOCTS>;
HPTR := TS;
HI := TS;

END;
END· ,
TS := TF

REP;
IF P > 0
THEN VAL HPTR := WTCHNCHI>;

. END·
' '

OUTDELCHI>;

VAL TKPTR := BYTE HI;
CHANGE<>;

ENDBLOCK;

ENDBLOCK;

ENDPROC;

PROC OUTDELCINT TK>;

% STOPPED TASKS UNWAITED FOR %
% LATER TRY %

% HIGHEST PRIORITY WAITING SO %
% FAR %

% TRY NEXT TASK %

% CLEAR THE HIGHEST PRIORITY
% WAITING TASK FROM THE WAIT
% CHAIN FOR THIS FACILITY AND
% JOIN UP THE CHAIN AND SET IT
% GOING, AND REMOVE IT FROM THE
% DELAY LIST

%
%
%
%
%
%

% SET FACILITY
% A NEW TASK

EITHER FREE OR TO%
%

% OUTDEL REMOVES ANY ENTRY TO THE DELAY CHAIN, AND SETS THE TASK NOT %
% WAITING. EVFAC IS CLEARED. THE TASK WILL RESUME IN CHAINWT AND NEED %
% NOT CLEAR ANY DATA. IT USES TASK INDEX. %

REF INT T := TIHEOUTCTK>;
STAT<TK) := STATCTK>LAND STOPP;
EVFAC<TK> := O;

% SET TASK NOT WAITING

IF T > 0
THEN
BLOCK

% IN THIS CASE A RECORD STILL
% EXISTS IN THE DELAY LIST
% EXTRACT IT

REF DELREC BPTR := ADEL,

ENDBLOCK;
END;

RET:

ENDPROC;

PTR := ADEL.NXT;
WHILE PTR :#: ADEL
DO

IF PTR.TASK = TK
THEN VAL T := PTR.TIMUP - NOW;

BPTR.NXT := PTR.NXT;
PTR.NXT := FRPTR;
FRPTR := PTR;
GOTO RET;

END;
BPTR := PTR;
PTR := PTR.NXT;

REP;

%

%
%
%

PROC CHAINWT<REF BYTE TKPTR, INT STWT>;
% LOCAL PROCEDURE TO HANDLE WTCHN AND DELAY CHAIN FOR WAIT AND SECURE %

INT T := TIMEOUT(CURTEX>;
IF T > 0
THEN INDEL<T>;
END;
IF T # 0
THEN
STAT<CURTEX>:=STAT<CURTEX>

LOR BYTE STWT;
WTCHN (CUR TEX> : = TKPTR;
VAL TKPTR := BYTE<CURTEX>;

%
%
%

%

%

PUT TASK IN DELAY CHAIN IF %
TIMEOUT SET %
DROP THROUGH ON ZERO TIMEOUT %

WAIT, OR WTSEC STATUS %

PUT CURTEX INTO WAIT CHAIN %

CHANGE<>; % WAIT TILL ACTIVATED BY RELEASE%
ELSE EVFAC<CURTEX> := O;
UNLOCK<>;
END;

ENDPROC;

ENT PROC CLEANUP<>;
FOR 1:=1 TO NFAC DO

% SET STIM, OR T.O.

IF FACILITY<I>=CURTEX THEN RELEASE<I - NSFAC) END;
REP;

ENDPROC;

%%%%%%%%% SECURE RELEASE ADDITIONS %%%%%%%%%

ENT PROC TSTSCR<INT FAC>INT;
% RESULT IS 0 IF CURTEX HAS NOT SECURED FAC 1 IF IT HAS
FAC := FAC + NSFAC;
IF FAC <= 0 OR FAC > NFAC THEN RRGEL(14>; END;
RETURN<IF FACILITY<FAC>=CURTEX THEN 1 ELSE 0 END>;

ENDPROC;

ENT PROC TWAIT<INT EV,TIME,LABEL FAILEXIT>;
% WAITS FOR EVENT EV FOR TIME/50 SECS
% IF EVENT IS NOT SET THEN GOES TO FAILEXIT
SYSSTOCTIME>;
WAITCEV>;
IF SYSRTOC)=O THEN GOTO FAILEXIT END;

ENDPROC;

ENT PROC TSECURECINT FAC,TIME,LABEL FAILEXIT>;
% TRIES TO SECURE FACILITY FAC FOR TIME/50 SECS
% GOES TO FAILEXIT IF UNSUCCESSFUL
SYSSTO CT I ME) ;
SECURECFAC>;
IF SYSRTOC>=O THEN GOTO FAILEXIT END;

ENDPROC;

%%%%%%%%% ERROR PRINTING %%%%%%%%%

-· -x

%

%
%

%
%

8
ENT PROC ERPRIN<>; % TASK BASE PROCEDURE %

INT Y;
L:

STOP<ERPTNO>; % WAIT TILL RESTARTED BY RRGEL %

% THE ERROR PRINTING HAS BEEN COHHENTED OUT. WHEN AN UNRECOVERABLE
% OCCURS, SHTCOHS OUTPUTS A MEDIA ERROR MESSAGE OF THREE BYTES.

ERROR

IF ECT#O THEN
% OUT:=ERROUT;
% TWRT("#NL,BELL#ERROR ">; IWRTCERNO>;
% OUTCSP>; TIMDATC-1>;
% IF TASKNO#O THEN
% TWRT <" TASK ">; IWRT CTASKNO);
% IF LINENO >= 0 THEN TWRT<" ON LINE">; IWRTCLINENO); END;
% ELSE
% TWRTC" IN H-TASK">;
X END;
% OUTCNL>;
% FOR 1:=1 TO 9 DO OWRTCREGSCI>>; OUTCSP> REP;
% TWRTC"#NL#STACK#NL#">;
% FOR I := 1 TO NSTCON DO OWRTCSTKVALSCI>>;
% OUTCIF I LAND 7 = 0
% THEN NL ELSE SP
% END>;
% REP;
% OUTCNL>;

LOCK<>; Y:=ECT; ECT:=O; UNLOCK<>;
% IF Y#1 THEN TWRTC"#NL#ER DATA LOST#NL#") END;

END·
' GOTO L;

ENDPROC;

%%%%%%%%% CONTROL A EVENT RESPONSE TASK %%%%%%%%%

LET GO = HEX 4F47
LET STP = HEX 5053
LET LK = HEX 4B4C
LET SE = HEX 4553
LET TD = HEX 4454
LET ND = HEX 444E

EXT DATA INSTDATA;
LABEL NIXL;
BYTE NXCH;

ENDDATA;

ENT PROC INSTRUCT<>;
INT X,Y,ACTION;
INT NI,TYPTR,TYPLEN;
BYTE TYPE;
REAL YR;

.
'

% TASK BASE PROCEDURE

. .

%

IN:=CHIN; % INITIALISE I/P FOR LOOK AHEAD %
ENTER:

OUT:=CTLAOUT;
CLEANUP<>;
ERL:=ENTER; NIXL:=NIX;

% RESTART POINT %

% IN CASE OF ERROR ENTRY %
ERP: =GOTOLBL;

%
%

%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

%

WAIT<CTLAEV>; % WAIT FOR CTLAEV

X RESPOND TO PRESSING OF CTL A KEY %
NXCH:=O;
TWRTC"#NL#CTLA#ENG#">;
ACTION:=MNPACKC>; X RETURNS 2-CHAR MNEMONIC PACKED%

% INTO ·INT %
IF ACTION=TD THEN

SPS (3) ;

TIMDAT<-1>;
GOTO OK

END;
IF ACTION=ND THEN SETDATC>; GOTO ENTER END;

IF INC)#',· THEN GOTO NIX END; % PARAMETER SHOULD FOLLOW %

IF ACTION=LK THEN X CORE LOCATION LOOK %
Nl:=1; TYPE:='W'; % DEFAULT NO OF ITEMS AND TYPE %

ABSADR:
X:=O;

NEWADR:
X:=X+ZREADC>; X NEW LK ADDRESS %

READNOITYPE:
NIXL:=NIX;
WHILE TERMCH#EOM DO

IF TERHCH#'," THEN GOTO NIX END;
BLOCK BYTE T:=NEXT<>;

NIXL:=READTYPE; % TO READTYPE IF ZREAD FAILS %
NI:=ZREAD<>;
GOTO NT;

READTYPE:
TYPE:=T; TERMCH:=IN<>;

NT:
NIXL:=NIX;

ENDBLOCK;
REP;
FOR I:=1 TO NOLKTYPES DO

IF TYPESCI>.CHAR=TYPE THEN
TYPTR:=I; TYPLEN:=TYPESCI>.LEN; GOTO TYPOK;

END;
REP;
GOTO NIX; X ILLEGAL TYPE %

TYPOK:
IF TYPLEN#1 THEN X:=X LAND OCT 177776 END;
TO NI DO

BB:
cc:

REF INT A:=ITORICX LAND OCT 177776>;
IF NI#1 THEN OUTCNL> END; .
OUT C '@' > ; OWR TC X) ; OUT (' =' > ; .

SWITCH TYPTR OF BB,CC,II,WW,FF,RR;
% SWITCH CANNOT FAIL %

BLOCK
BYTE B := ITORBCX>;
OWRTCB>;
IF TYPTR=2 THEN OUTC','); OUTCB> END;
GOTO UPDX;

ENDBLOCK;
I I : .

IWRTCA>;
GOTO UPDX;

WW:
OWRT<A>;
GOTO UPDX;

FF:
BLOCK

REF FRAC RF:=ITORF<X>;
RWRTFCREAL RF,0,7);
GOTO UPDX;

ENDBLOCK;
RR:

BLOCK
REF REAL RR:=ITORR<X>;
RWRTFCRR,0,7>;

ENDBLOCK;
UPDX:

X:=X+TYPLEN;
REP;

% ADVANCE ADDRESS FOR NEXT LK %

IF NI#1 THEN GOTO NXTLK END; % NO REPLACEMENT VALUE
NXCH:=O;
X := X - TYPLEN;
TWRT<" :=#ENG#">;
IF NEXT<>=EOM THEN GOTO REPOK END;
SWITCH TYPTR OF RBB,RCC,RII,RWW,RFF,RRR;

RBB:
RII:
RWW: .

Y:=ZREAD<>; GOTO CHKRD;
RCC:

% SWITCH CANNOT FAIL

Y:=IN<>; TERHCH:=IN<>; GOTO CHKRD;
RFF:

%

%

Y:=INTCFREAD<> SLA 15>; % PRETEND FRAC IS AN INT PATTERN%
GOTO CHKRD; % HAS NOT BEEN CHANGED BY THIS %

RRR:
YR:=RREADC>;

CHKRD:
IF TERMCH#EOM THEN GOTO NIX END;

SWITCH TYPLEN OF ONEB,TWOB,REPOK,FOURB;% 3 NOT POSSIBLE

ONEB:
BLOCK

REF BYTE.RB:= ITORB<X>;
VAL RB := BYTE<Y>;

GOTO REPOK;
ENDBLOCK;

TWOB:
BLOCK

REF I NT RI : =I TOR I < X > ;
VAL RI:=Y;
GOTO REPOK;

ENDBLOCK;
FOURB:

BLOCK
REF REAL RR:=ITORR<X>;
VAL RR:=YR;

ENDBLOCK;
REPOK:

X:=X+TYPLEN;
TWRT<" OK">;

% SWITCH CANNOT FAIL
%
%

NXTLK: 8
NXCH:=O; . Q-{;,-//
TWRTC"#NLC2l#CTLA LK#ENG#">;
IF NEXTC>=EOM THEN TWRTC" EXIT">;

GOTO OK END; % FINISHED %
IF NXCH#'+' AND NXCH#'-' THEN GOTO ABSADR END;
NIXL:=READNOITYPE; % WREAD ERROR MEANS SPECIAL %

GOTO NEWADR;
END;

X: =I READ() ;
IF TERMCH#EOH THEN GOTO NIX END;

IF ACTION=GO THEN STARTCX>;

'ELSEIF ACTION=STP THEN STOPCX>;

ELSEIF ACTION=SE THEN SETCX>;

ELSE GOTO NIX;
END;

OK:
TWRTC" OK#NL#")·

' NIX:
TWRTC" N0#33 NL#")· , '

ENDPROC;

ENT PROC HNPACK<>INT;
BYTE CHAR:= IN();

GOTO ENTER;

GOTO ENTER;

RETURN C CHAR LOR CI N () SLL 8 > > ;
ENDPROC;

PROC NEXTC>BYTE;
IF NXCH=O THEN NXCH:=CTLAINC> END;
RETURNCNXCH>;

ENDPROC;

PROC CHINOBYTE;

% + OR - CASE %

% SHOULD BE AN INTEGER PARAMETER%

% START TASK

% STOP TASK

% SET EVENT

% UNKNOWN MNEMONIC

%

%

%

%

BYTE 'B:=IF NXCH=O THEN CTLAINC> ELSE NXCH END;
NXCH:=O;
RETURN CB) ;

ENDPROC;

PROC ZREADC>INT;
INT N:=O;

NEXT:
N: =N+WREAD () ;
IF TERMCH='+' OR TERHCH='-' THEN

NXCH:=TERHCH;
GOTO NEXT;

END;
RETURNCN>;

ENDPROC;

PROC GOTOLBLCINT N>;
GOTO NIXL;

ENDPROC;

% CTLA TASK ERROR PROCESSING %

%%%%%%%%% DEFAULT PROCEDURES %%%%%%%%%

ENT PROC DFERP<INT N>;
ENDPROC;

ENT PROC DEFIN<>BYTE;
RETURN <OCT 200) ;

ENDPROC;

ENT PROC DEFOUT<BYTE B>;
ENDPROC;

ENT PROC RRNUL<>;
ENDPROC;

ENT PROC FBPROC<>;
L: GOTO L;
ENDPROC;

%%%%% FBTASK BASE PROCEDURE %%%%%

%%%%%%%%% I/O FORMAT PROCEDURES %%%%%%%%%

%%%%% TIHDAT %%%%%

ENT PROC TIHDAT<INT T>;
INT H,HI,S,D,HO,Y;

LOCK() ;

H:=HOURS; HI:=HINS; S:=SECS;
D:=DAYS; HO:=HONTHS; Y:=YEARS;

UNLOCK<>;

IF T<=O THEN
PUT 2 < H , ' : .) ;
PUT2CHI,':'>;

% SAMPLE TIHE AND DATE
%INDIVISIBLY

PUT2<S,IF T<O THEN' 'ELSE 0 END>;
END;

IF T#O THEN
PUT 2 <D , ' I') ;
PUT2 CHO,'/'>;
PUT2<Y,D>;

END;
ENDPROC;

ENT PROC PUT2<INT VLU,BYTE SEP>;
OUT<BYTE<VLU:/10+'0'));
OUT<BYTECVLU HOD 10+'0'>>;
IF SEP#O THEN OUTCSEP>; END;

ENDPROC;

%%%%%%%%%%% IREAD %%%%%%%%%%%

ENT PROC IREAD () INT;
INT SIGN;

%
x

RETURN <BUILDCFIRSTCH<SIGN) ,10,SIGN,101));

ENDPROC;

%%%%% IWRT %%%%%

ENT PROC IWRTCINT X>;
IF X>=O THEN X:=-X ELSE OUTC'-') END;
IF X<=-10 THEN IWRTCX:/-10) END;
OUT<BYTE<-<X MOD -10>>LOR 'O'>;

ENDPROC;

%%%%% TWRT %%%%%
ENT PROC TWRTCREF ARRAY BYTE X>;

FOR I:=1 TO LENGTH X DO OUTCXCI)) REP;
ENDPROC;

%%%%% OWRT %%%%%

ENT PROC OWRTlINT X>;
OUT < ' ' ' > ;
FOR 1:=15 BY -3 TO 0 DO

OUTCBYTE<<X SRL I>LAND 7>LOR '0');
REP;

ENDPROC;

%%%%%%%%%%% OREAD %%%%%%%%%%%

ENT PROC OREAD () INT;

INT SIGN, CH:= FIRSTCHCSIGN>;

RETURN CBUILDCIF CH= ''' THEN INC>
ELSE CH+ 256 END,8,SIGN,104>>; % WILL FAIL,BUT TERMCH WILL %

ENDPROC;

%%%%%%%%%%% WREAD %%%%%%%%%%%

ENT PROC WREAD C) INT;

% BE BYTE CH %

INT SIGN, CH:= FIRSTCHCSIGN>,RADIX := 10;
IF CH = "' "
THEN RADIX:= 8; CH :=IN<>;
END;
RETURN CBUILDCCH,RADIX,SIGN,105));

ENDPROC;

%%%%% NLS %%%%%

ENT PROC NLSCINT N>;
TO N DO OUTCNL> REP;

ENDPROC;

%%%%% SPS %%%%%
'•

ENT PROC SPSCINT N>;
TON DO OUTCSP) REP;

ENDPROC; .

%%%%%%%%%%%%%%%%% RWRTF %%%%%%%%%%%%%%%%%

ENT PROC RWRTFCREAL Y, INT M,N>;

ST:
BLOCK
REAL ROUND := 0.5, LIM, X := Y;
INT EXP := O, ABSEXP,PLACE := 1,INTPT;
BYTE SIGN := SP;

IF X < 0.0 THEN X := -X; SIGN • - * - * . -
TO N DO ROUND·:= ROUND/10.0 REP;

IF M # 0 THEN
X := X + ROUND;

END;

END;

WHIL~ X >= 10.0 DO X := X/10.0; EXP := EXP + 1 REP;
IF M > EXP THEN

PLACE :=EXP+ 1;
TO M - PLACE DO OUTCSP> REP;

ELSE
IF M # 0 THEN N := M + N; H := o; GOTO ST; END;
LIM := 1.0 - ROUND;
WHILE X < LIM AND X # 0.0 DO X := X*10.0; EXP := EXP - 1 REP;
X := X + ROUND;

END;
OUTCSIGN>;
FOR I := 1 TO PLACE + N DO

INTPT := INTCX - 0.5>;
OUTCBYTE INTPT LOR 'O'>;
x := ex - INTPT>*10.0;
IF I = PLACE AND N # 0 THEN OUTC' .') END;

REP;
IF H = 0 THEN

ABSEXP := ABS EXP;

OUTC'E'>;
OUTCIF EXP>= 0 THEN'+' ELSE ·-· END>;
IF ABSEXP < 10 THEN OUT C'O') END;

END;
ENDBLOCK;
ENDPROC;

IWRTCABSEXP>;

%%%%%%%%%%% FREAD %%%%%%%%%%%

LET MAXFRAC = 32767.08-15;

ENT PROC FREADC>FRAC;

REAL N := RREADC>;

% LARGEST 16 BIT FRACTION

% READ AS A REAL

%

%

IF N > 1 .0 ORN< -1.0 % TOO BIG, OR TOO SMALL? %
THEN IOFLAG := 1;

ERPC100>;
N :: 0.0;

ELSEIF N = 1.0 THEN RETURN CMAXFRAC> % JUST RIGHT %
END;

RETURN CFRAC CN>>;

ENDPROC;

%%%%%%%%%%% RREAD %%%%%%%%%%%

ENT PROC RREADC) REAL;

REAL B : = 1 . 0, R : = 0 . 0;
INT EXP; SIGN, SGNEXP,

A := 10, STARTED := O,

CH := FIRSTCHCSIGN>; % SIGN AND LAYOUT

WHILE CH>= 'O' AND CH<= '9' ,% BUILD THE NUMBER
DO STARTED := 1;

NXCH:

IF A = 1 THEN B := B/10.0 END;
R := R*A + B*CCH - '0');

CH : = INC > ;
REP;

IF CH='.' AND STARTED=1 AND A= 10 % CHANGE TO FRPT
THEN STARTED := O;

END;

A : = 1 ;
GOTO NXCH;

TERHCH := BYTE CH;

TO IF STARTED = 1 AND CH # 'E'

%

%

%

THEN 0
ELSE BUILD <IF STARTED = 1 THEN FIRSTCH<SGNEXP>

END
DO

ELSE CH + 256 % WILL FAIL
END,
10, 1, %-ABSOLUTE VALUE
102)

R := R* IF SGNEXP > 0 THEN 10.0 ELSE 0.1 END;
REP;

RETURN <R * SIGN);

ENDPROC;

% SET DATE AND TIHE, USED BY CTLA TASK AND STARTUP JOB

LET ENQ=5;
LET EOM=3;

ENT PROC SETDAT<>;
INT DYS,HNTHS,YRS,HRS,MNS;·

IOFLAG:=O;
TWRT<" DATE#ENG#">;
DYS:=CREAD<1,31>;
HNTHS:=CREADC1,12>;
YRS:=CREADC0,99);
TWRTC" TIME#ENQ#">;
HRS:=CREADC0,23>;
MNS:=CREAD<0,59>;
IF IOFLAG=O THEN

LOCK() ;
DAYS:=DYS; HONTHS:=HNTHS; YEARS:=YRS;
HOURS:=HRS; MINS:=HNS; SECS:=O;
UNLOCK<>;
TWRT<" OK#NL#");

ELSE TWRTC" N0#33,NL#") END;
ENDPROC;

ENT PROC CREADCINT LO,Hl>INT;
I NT X: =I READ() ;
IF X<LO OR X>HI THEN

IOFLAG:=3;
END;
RETURN<X>;

ENDPROC;

%%%%%%%%%%% FIRSTCH %%%%%%%%%%%

PROC FIRSTCH <REF INT SIGN> INT;

%

%

%

% A PRIVATE PROCEDURE TO DETECT FIRST NON LAYOUT CHARACTER AND SIGN %
BYTE CHAR; ··
VAL SIGN : = 1 ;

RDC:
CH AR : = IN <) ;

IF CHAR = SP OR CHAR = NL OR CHAR = TAB THEN

GOTO RDC
END;

IF CHAR = ·-·
THEN VAL SIGN :=

GOTO GETC
END;
IF CHAR = ·+·
TH.EN

GETC:
CHAR : = IN() ;
END;

RETURN <CHAR>;

ENDPROC;

-1 ;

%%%%%%%%%%% BUILD %%%%%%%%%%%

PROC BUILD <INT CH,RADIX,SIGN,ERNUM> INT;
% BUILDS ANY RADIX TO 10, USES SUPPLIED SIGN

INT STARTED := N := O;

BLD:

TERHCH := BYTE CH;

CH : = CH - '0' ;

'IF CH >= 0 AND CH < RADIX
THEN STARTED:= 1;

END;

N := N * RADIX -CH;
CH:= INC>;
GOTO BLD

IF STARTED= 0 THEN IOFLAG := 1;
ERPCERNUM>;

END;
RETURNCIF SIGN> 0 THEN -NELSEN END>;

ENDPROC;

TITLE
SMT OPERATING SYSTEM
< WITH NEGATIVE TASK NUMBERS >
SYSTEM DATA BRICKS AND STACKS <READ/WRITE>
**** MODULE SHTB3 ****
SHT 3C18) 13-04-1981;

OPTION <1>;

LET NTASKS = 22;
LET NTDV16 = 2·

' LET NSEV = 16;
LET NEVENTS = 32;
LET NFAC = 32;
LET NSFAC = 16;
LET EVQLEN = 16;
LET NEVQS = 15;
LET INVEVS = -16;
LET STOPP = OCT 100;
LET NSTCON_ = 16;

EXT PROC {) BYTE DEFIN;
EXT PROC CBYTE> DEFOUT;

%
%
%
%
%
%
%
%
%
%
%

MODE DELREC { INT TIHUP, TASK, REF DELREC NXT >;
MODE TASKLINK C REF ARRAY STACK TKS,

REF ARRAY PROCC> TKP,
REF ARRAY BYTE TKPR,TKST,
PROC () UINIT ,UPF>;

%%%%%%%%% STACKS FOR SYSTEM TASKS %%%%%%%%%

% HARDWARE TASK
% FALL-BACK TASK
% CTLA TASK

%
%
%
%
%
%
%
%
%
%
%

%
%
%

ENT STACK HSTK 160;
ENT STACK FBSTK 70;
ENT STACK INSTK 220;
ENT STACK SYSTACK 160;
ENT STACK CLKSTK 160;
ENT STACK ERRSTK 160;

% SYSTEM STARTUP AND 'SET'
% CLOCK SERVICING TASK
% ERROR PRINT TASK

TASK %
%
%

ENT DATA TASKDATA;
INT CURTASK;
INT CURTEX;

INT TASKLOCK := O;

% NO. OF CURRENTLY ALIVE 5-TASK %
% ARRAY INDEX OF CURRENTLY ALIVE%
% S-TASK %
% NON-ZERO IF TASK CHANGING IS %
%LOCKED OUT %

INT NXTCUR; t TEMPORARY STORE %
INT EVIN := O;
INT EVOUT := O;
DELREC ADEL;

% INPUT POINTER TO EVENT QUEUE %
% O/P POINTER FROM EVENT GUEUE %

REF DELREC FRPTR;
BYTE HIPRI := OCT 340,LOPRI := O; % HI AND LO PRIORITY FOR LSI
ARRAY<NTASKS>INT TIMEOUT:= {-1CNTASKS>>;% TIMEOUT TO BE USED
ARRAYCNTASKS)DELREC DEL;
ARRAY<NTASKS>STACK CELL; % STACK ADDRESSES
ARRAYCNTASKS>BYTE EVFAC:=CO<NTASKS>>,% AWAITED EVNT/FAC NO.

STAT := CSTOPP<NTASKS>>,% TASK STATE .
PRIO := C1 CNTASKS>) ,% TASK PRIORITY
WTCHN := COCNTASKS)) ;% CHAINED LIST FOR WAITING FOR

% EVENT OR FAC
ARRAYCNTDV16,NEVENTS>INT EVBITS := CCOCNEVENTS>> CNTDV16>>;

%
%

%
%
%
%
%
%

<fB % EVENT SET BITS %
ARRAYCNTASKS>REF BYTE STATADS := CSTAT(1) CNTASKS>>;
% ADDRESSES OF STATUS BYTES OF TASKS IN PRIORITY ORDER %
% NOTE THAT THE FALL BACK TASK IS ALWAYS IN A GO STATE %
ARRAYCEVGLEN>INT EVG; % THE EVENT QUEUE %
ARRAYCNFAC>BYTE FACILITY:=COCNFAC)) ,fACTOTSK:=COCNFAC>>;% FACILITIES%

% HEAD OF THE TASKCHAIN WAITING %
% FOR EACH FACILITY %

ARRAYCNEVENTS>BYTE EVTOTSK:=COCNEVENTS>>;

ENDDATA;

ENT DATA TIMEDATA;
INT NOW,

SECSNOW,
MINSNOW,
TCOUNT, ,
SECS . - 30,
MINS . - 49, . -
HOURS . - 14' .-
DAYS ·- 13, .-
MONTHS . - 04, . -
YEARS

ENDDATA;
. - 81 •

' ,

ENT DATA CLKDATA;
INT TICK := O;

ENDDATA;

ENT DATA REGDATA;
ARRAYC9>INT REGS;
ARRAYCNSTCON>INT STKVALS;
INT ECT,ERNO,TASKNO,LINENO := -1;

ENDDATA;

ENT DATA TRAPDATA;
LABEL TASKEXIT;
REF TASKLINK T;
INT UR1 ,ERNUM,UPS;

ENDDATA;

ENT DATA PWFDATA;
INT PWFLAG;

ENDDATA;

ENT DATA SYSIODATA;
PROC () BYTE CTLAIN := DEFIN;
PROC <BYTE> CTLAOUT := DEFOUT;
PROC <BYTE> ERROUT := DEFOUT;

ENDDATA;

ENT DATA INSTDATA;
LABEL NIXL;
BYTE NXCH;

ENDDATA;

% HEAD OF THE TASKCHAIN WAITING %
% FOR EACH EVENT %

% CYCLIC 1/50 SEC COUNTER
% CYCLIC 1 SECOND COUNTER
% CYCLIC MINUTES COUNTER
% REALTIME CLOCK 50TH SECC0-49)
% SECONDS CO TO 59)
% MINUTES CO TO 59)
% HOURS CO TO 23)
% DAYS CO TO 31)
% MONTHS CO TO 12)
% YEARS CO TO 99)

% STORES CLOCKTICKS TILL
% CLOCKTASK CATCHES UP

%
%
%
%
%
%
%
%
%
%

%
%

% CTLA TASK 'IN' PROCEDURE %
% CTLA TASK ·our· PROCEDURE %
% ERROR PRINT ·our· PROCEDURE %

% DATA USED BY GTLA TASK %
% .ERROR RE-ENTRY LABEL %

.PSECT RTLCTL
;CONTROL ROUTINES FOR RTL/2 . ,
; OPTION NO. *·EIS H/C *REAL VARIABLES* "El" OPTION* "FP" OPTION
• * * SUPPORTED * ALWAYS USED * ALWAYS USED ,
;**
.
'

(5)
* * * *
*
*

YES *
*

YES *
* .TITLE CONTROL ROUTINES RTL/2 SET 05

NO *
*

NO

ZHWHD:
ZFLPT:

. , . , . , . , .
' .
' .
'

.
' .
'

. , .
' .
' .
'

.
'
.
' . , .
' .
'

.
'

.PAGE

.SBTTL CONFIGURATION DETAILS
CONTROL ROUTINES FOR RTL/2 - OPTIONAL EIS AND FLOATING POINT

DOS RELEASE 2 VERSION CAFTER RSX-11 VERSION> FOR
NEW COMPILER IN-LINE CAPABILITY AND
11/45 FLOATING POINT INSTRUCTIONS
DOS RELEASE 3 VERSION 21-JULY-77 CID
NEW BASIC FLOATING POINT ROUTINES CEX RELEASE 215)
EIS VERSION OF R21 & R22 INCORPORATED
11/4 5 FPOFLO ROUT I NE HOD IF I ED TO USE X1 C PRESERVING X4)

RSX11-H VERSION 5 FROM DOS 13/9/77 GW

IF SYMBOL ZFLPT IS DEFINED FLOATING AND FIXED POINT
ROUTINES ARE ASSEMBLED ELSE
FIXED POINT ONLY

IF.SYMBOL ZHWMD IS DEFINED USE IS MADE OF HARDWARE MULTIPLY
AND DIVIDE INSTRUCTIONS
FOR INTEGER AND FRAC

IF SYMBOL ZEISIL IS DEFINED FIXED POINT MULTIPLY,DIVIDE,SHIFT
ROUTINES ARE NOT ASSEMBLED

IF SYMBOL ZFPIL IS DEFINED FLOATING POINT ROUTINES CONSIST OF TYPE
CONVERSIONS ONLY - ADD,SUB;MUL,DIV ARE
OMITTED

IF SYMBOL Z45FP IS DEFINED FLOATING POINT ROUTINES USE 11/45
FLOATING POINT PROCESSOR INSTRUCTIONS

ROUTINES OMITTED HAVE NO GLOBAL DECLARATION - PROGRAMS WITH
JSR R2,RXX WILL FAIL TO LINK CORRECTLY, PROGRAMS WITH
TRAPS TO EXCLUDED ROUTINES WILL CAUSE RRGEL CALL

; THE STACK USAGES GIVEN BELOW ARE IN THE FORM
; CPARAMETERS+LINK ADDRESS) + WORKSPACE E.G. 4+3

.
' . PAGE

.SBTTL GLOBALS & ASSIGNMENTS
.IF DF Z45FP

AC0=%0

.ENDC

.
'

AC1=%1

X1=%1
X2=%2
X3=%3
X4=%4
X5=%5
X6=%6
X7=%7

.GLOBL STKUSG

; CZ45FP>

.GLOBL ROO,R23,R24,SMT .••

.GLOBL RRGEL

.GLOBL CNTRTN

; ***SMT
;· ***SMT

.GLOBL R01,R02,R03,R04,R25,R17,R18,R~9,R20,R21 ,R09

.IF NDF ZEISIL

.GLOBL R05,R06,R07,R08,R10,R11,R12,R13

.IFTF ;<ZEISIL>

.GLOBL R14,R15,R16,R22

.ENDC ;<ZEISIL)
• IF DF ZFLPT
.GLOBL R30,R31,R32,R33,R34,R35,R36,R37,R38,R39
.IF NDF ZFPIL
.GLOBL R26,R27,R28,R29
.ENDC ;<ZFPIL)
.IFTF ;<ZFLPT> .
' . ,
SKLO=~

. ,

.IFF .
'

. ,
STKFL0=1
LABERR=2
ARRERR=4

ADDRESS OF BOTTOM OF USABLE STACK FOR R01 CHECKING

; <ZFLPT>

HAXTRAP=50. ; MAXIMUM CONTROL ROUTINE NO SUPPORTED
; (*2 FOR RSX ***)
; BY TRAP HANDLER

.IFT
MAXTRAP=78.

;<ZFLPT>
; MAXIMUM CONTROL ROUTINE SUPPORTED

; (*2 FOR RSX ***)
BY TRAP HANDLER

.PAGE

.SBTTL TRAP HANDLER
.IFTF ; CZFLPT> . ,
. ,
• ,

TRAP HANDLER - TRAP 1 TO TRAP MAXTRAP ARE PROCESSED AS CALLS
TO CORRESPONDING CONTROL ROUTINES, APPEARING TO ROUTINES AS

JSR X2,RNN

.ASE CT

.=34

.WORD CNTRTN,340

.PSECT RTLCTL
CNTRTN: . ,
; FROM HERE TO TRP.2 MODIFIED FOR RSX

G-~~ .
' ; THIS IS BASICALLY THE RSX-11H VERSION, WITH THE ACTION nF AN SST

HANDLER SIMULATED IN THE NEXT FEW INSTRUCTIONS ...

HOV
SUB
HOV
BIC
ASL

<SP>,-<SP>
#2,CSPl
@CSP>+,-CSP)
#177400, CSP>
CSP)

;·COPY PC VALUE
BACK OFF TO TRAP INSTR ADDRESS CPC-2>

·; PICKUP BOTTOM BYTE = TRAP OPERAND

*2 FOR WORD OFFSET INTO TRAP TABLE .
' CHP (6),#HAXTRAP ;CONTROL RTN CALL

BGT TRP.1
HOV 4CSP> ,177776 ; RESTORE USER'S PSW (**SHT**)
HOV X2,4(6) X2 AS FOR JSR 2,RNN
HOV 2C6>,X2 LINK INTO X2
HOV (6)+,(6) TRAP OPERAND TO STACK
ADD #TRP.2-2,C6) ; ADDR OF ROUTINE

HOV @(6)+,X7 ; SIMULATE JSR 2,RNN FROM USER

.
'

N.B. THE ABOVE INSTRUCTION IS A SUBSTITUTE FOR JMP (6)+ WHICH
VARIES IN BEHAVIOUR BETWEEN DIFFERENT MODELS OF PDP11 .

' TRP.2:

R01.0,R02.0,R03.0,R04.0
.IF DF ZEISIL
TRP.1, TRP.1, TRP.1, TRP.1
.IFF ;CZEISIL)
R05.0,R06.0,R07.0,R08.0
• IFTF ; CZEISIL)
R09.0
.IFT ;<ZEISIL>
TRP. 1 , TRP. 1 , TRP. 1 , TRP. 1 , R 14. 0, R 15. 0, R 16. 0

. IFF · ; CZEISIU
R10.0,R11 .O,R12.D,R13.0,R14.D,R15.D,R16.0
. IFTF ; CZEISIU
R17.0,R18.0,R19.0,R20.0,R21.0
. I FT ; C ZEIS I U
TRP.1
.IFF
R22.0
.ENDC
R23,R24,R25.0
.IFT
.IF DF ZFPIL
TRP.1, TRP.1, TRP.1, TRP.1
.IFF
R26.0,R27.0,R28.0,R29.0

; CZEISlll

; C ZEIS IL>
; <**SMT**)
;<ZFLPT>

; CZFPIL>

.ENDC ; CZFPIU
R30.0,R31.0,R32.0,R33.0,R34.0,R35.0,R36.0,R37.0,R38.0,R39.0
.ENDC ; CZFLPT)
TRP.1:· JHP @R00+6 ; SVC PROC CALL C**SHT**)

.PAGE

.SBTTL STACK ADMINISTRATION .
' . ,

PROCEDURE ENTRY, CHECKS FOR STACK OVERFLOW .
' R01:
R01.0: HOV X6,X3 ; COPY X6

SUB (2)+,X3 ; COHPUT HAX STACK USAGE
;%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

CMP
BHIS
HOV

X3,STKUSG+OC0)
R01 . 2
X3,STKUSG+OC0)

R01. 2:
;%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

CMP X3,SKLOC0)
BHI R01.1
HOV #STKFLO,-C6)
JSR X1,RRGEL

R01.1: SUB C2l+,X6
HOV X1,-C6)
HOV X5,-(6)
HOV X6,X5
JMP C2)

PROCEDURE EXIT - NO .
' R02:
R02.0: TST (6)+

HOV C6l+,X5
MOV C6>+,X2
HOV X5,X6
JMP (2) .

' PROCEDURE EXIT - ONE .
' R03:
R03.0: TST (6)+

HOV C6>+,X1
HOV C6>+,X5
HOV C6>+,X4
ADD C 2 > , X6

R03. 1 : HOV X1,-C6>
JHP (4)

RESULT

WORD RESULT

PROCEDURE EXIT - DOUBLE WORD RESULT .
' R04:
R04.0:

.

TST C6)+
MOV C6>+,X1
MDV (6)+,X3
HOV C6>+,X5
HOV C6>+,X4
ADD C2>,X6
HOV X3,-(6)
BR R03 .1

~
; RECORD LOWEST ADDRESSED STK ***RS

***SHT

COMPARE TO LOWEST ADDR

; SET ERROR NUMBER

***SHT

..
'

; GO TO ERROR ROUTINE
ADJUST X6
DUMP LINK
DUMP OLD X5
SET NEW X5=X6
RETURN TO CODING

DISCARD OLD X2
RESET XS
PICK UP LINK
RESET X6
RETURN

DISCARD OLD X2
·PICK UP RESULT FROM
RESET X5
PICK UP LINK
RESET X6
DUMP RESULT
RETURN

DISCARD OLD X2

STACK

FIRST WORD OF RESULT FROM STACK
2ND. WORD OF RESULT FROM STACK
RESET XS
PICK UP LINK
RESET X6
DUMP RESULT, FIRST WORD

' GOTO GENERAL LABEL - USES STACK UNWIND ROUTINE R25 .
' R09:
R09.0: TST C6)+

JSR X2,R25.0
HOV #LABERR,-(6)
JSR X1,RRGEL

; STACK UNWIND ROUTINE
; GOES DIRECTLY TO LABEL IF FOUND

IGNORE LINK
UNWIND, GOES TO LABEL IF OK

; SET ERROR NUMBER
; GO TO ERROR ROUTINE.

RETURNS WITH STACK UNCHANGED IF NOT FOUND .
' R25:
R25.0: TST

HOV
(6)+
C6l+,X1

IGNORE OLD X2
LABEL X7

R25. 1 :
HOV C6>+,X4 LABEL XS §
CMP X4,X5 FOUND IT?
BEG R25.2
CMP XS, CS> END OF STACK ?

BEG R25.3
HOV CS>,XS UNWIND ONE LEVEL
BR R2S .1

R2S.2: HOV XS,X6 RESET X6
JMP (1) GOTO LABEL

R25.3: HOV X6,XS RESET STACK POINTER
JMP (2) RETURN TO CALLER

.PAGE

.SBTTL FIXED POINT MUL, BASIC & EIS . ,
ALL FIXED POINT OVERFLOW DETECTION LOGIC IS COMMENTED OUT.
SUCH ERRORS WOULD INVOLVE A BR COR JMP) TO A LABEL OFLO, WHICH IS

; CURRENTLY NOT DEFINED.
USERS MAY DEFINE OFLO IF THEY WISH . .

' .IF NDF ZEISIL

; ROS MULTIPLY, SINGLE LENGTH RESULT
SETS FLAG AND USES R06
EXEC TIME, FASTEST=S8.5, SLOWEST=455.2

; R06 MULTIPLY, DOUBLE LENGTH RESULT
DESTROYS REGISTERS X1 AND X2
TESTS FLAG AT END OF ROUTINE TO DETERMINE
IF IS SINGLE LENGTH RESULT CR05 CALL)

; EXEC TIME, FASTEST=54.6, SLOWEST=451.3
STACK USAGE - 3+4 WORDS

.
' ROS:
R05.0:

.
' .
' R06:
R06.0:
R06.1:

.IF NDF

R06.2:

R06.3:

R06.4:

CLR X1
BR R06.1

HOV #1,X1
HOV X2,C6)

MOV X3,-C6)
ZHWMD

HOV X4,-C6)
SWAB X1
HOV 6C6>,X2
BGE R06.2
NEG X2
INCB X1
HOV 8. (6) ,X3
BGE R06.3
NEG X3
DECB X1
CMP X2,X3
BLE R06.4
HOV X2,X4
HOV X3,X2
HOV X4,X3
CLR X4
HOV X 1 , - C 6 >
HOV X2,-(6)

SET EXIT TYPE FLAG

SET EXIT TYPE FLAG

DUMP X3

DUMP X4
PUT EXIT TYPE INTO TOP BYTE

; PICK UP FIRST OPERAND

NEGATE IF NEGATIVE
REMEMBER SIGN
PICK UP 2ND OPERAND

NEGATE IF NEGATIVE
; REMEMBER SIGN

X2:=SMALLER OF X2,X3

; SWAP X2 AND X.3

X4.X3 IS MULTIPLICAND
DUMP X1, SIGN FLAG
DUMP X2, MULTIPLIER

CLR X2 PRODUCT L.S. HALF s
CLR X1 PRODUCT M.S. HALF

R06.5: TST (6) MULTIPLIER EXHAUSTED YET?
BEQ R06.7
ROR (6) TEST L.S. BIT
BCC R06.6
ADD X3,X2 2 WORD ADD
ADC X1
ADD X4,X1

R06.6: ASL X3 DOUBLE MULTIPLICAND
ROL X4
BR R06.5

R06.7: TST (6) + . SKIP OLD MULTIPLIER
' TSTB (6) TEST SIGN BIT

BEQ R06.8
NEG X1 . 2 WORD NEGATE

' NEG X2
SBC X1

R06.8: HOV X2,10. <6> DUMP RESULT L.S. HALF
HOV X1,8.C6> DITTO M.S. HALF
HOV C6>+,X1 ACCESS TYPE FLAG
HOV C6>+,X4 RESTORE X3 AND X4
HOV <6>+,X3
MOV C6>+,X2 PICK UP LINK
SWAB X1 . ACCESS EXIT TYPE FLAG

' .IFF ; CZHWMD>
HOV 6C6l,X2 FIRST OPERAND

CLR X3
MUL 4.C6>,X2 MULTIPLY BY SECOND
HOV X3,6(6) RESULT L.S. HALF
HOV X2,4C6> RESULT H.S. HALF
HOV C6)+,X3 RESTORE X3

MOV C6)+,X2
TST X1 . RESULT TYPE FLAG

' .IFTF ; CZHWMD>
BNE RD6.9
TST (6)+ ;. REJECT H.5. HALF

R06.9: JMP (2) ; RETURN
.PAGE
.SBTTL FIXED POINT DIV,, BASIC & EIS .

'
R07 DIVIDE, SINGLE LENGTH DIVIDEND
EXTENDS DIVIDEND AND USES ROB
EXEC TIME, ADDS 23.3 TO ROB IF DIVIDEND +VE, 27.3 IF -VE ·

; ROB DIVIDE, DOUBLE LENGTH DIVIDEND
DIVISOR AND DIVIDEND ON STACK

; RESULT ON STACK, REMAINDER IN X1
DESTROYS REGISTERS X1 AND X2

; EXEC TIME, WORST CASE=390
; STACK USAGE - 4+4 WORDS . , .
' R07:
R07.0: HOV X6,X1

HOV (1)+,-(6)
HOV (1),-2(1)

CLR (1) +
TST (1)

BGE R08.0

COPY X6
COPY OLD X2 . COPY DIVISOR

' •' CLEAR H.S. HALF OF DIVIDEND
' TEST L.S. HALF OF DIVIDEND

DEC -2 (1) EXTEND SIGN BIT IF NEGATIVE .
€iJ ' .

' ROB:
R08.0: HOV X2,<6> ; REHEHBER LINK

HOV X3,-C6)
HOV X4,-<6>

.IFT ;<ZHWHD>
CLR X3
HOV 6(6),X2 ;

;%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
; BEG OFLO _ ;
;%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

BGT R08.1
NEG X2
INC X3

R08.1: HOV 8. (6) ,X4
HOV 10.<6>,X1
HOV X4,-(6)
BGE R08.2
NEG X4
NEG X1
SBC X4
DEC X3

R08.2:
;%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

CHP X1 , X2 ;
; BHI OFLO ;
;%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

R08.3:

R08.4:

HOV X3,-C6>
HOV #16. ,X3
ASL X1
ROL X4
CMP X4,X2
BLO ROB.4
SUB X2,X4

INC X1
DEC X3
BGT R08.3
HOV C6>+,X3
TST (6) +
BGE R08.5
NEG X4

;%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
; NEG X2 ;
;%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
R08.5: TST X3

BEQ R08.6
NEG X1

;%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

;DUMP X3 AND X4

SIGN FLAG
PICK UP DIVISOR

OVERFLOW IF NEGATIVE

NEGATE IF NEGATIVE
REMEMBER SIGN
DIVIDEND H.S. HALF
DIVIDEND L.S. HALF
REMEMBER SIGN

NEGATE IF NEGATIVE

SET SIGN FLAG

OVERFLOW IF H.S. HALF GREATER
THAN DIVISOR <UNSIGNED TEST>

DUMP SIGN FLAG
SET LOOP COUNT
2 WORD SHIFT

SUB. DIVISOR IF M.S. HALF
EXCEEDS IT
PUT BIT INTO RESULT
LOOP IF HORE TO DO

RESTORE SIGN FLAG
CORRECT SIGN OF REMAINDER

CHANGE SIGN OF DIVISOR

CORRECT SIGN OF QUOTIENT

; CHP X0,#100000 ; QUOTIENT TOO LARGE?
BEG OFLO

; BR R08.7
;%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
R08.6:
;%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
; CMP (6),X2
; BEQ OFLO
;%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
R08. 7: HOV X4,8. (6)

HOV (6)+,X4

DIVISOR=ORIG. H.S. HALF?

DUMP REMAINDER
RESTORE X3 AND X4

.IFF

HOV
HOV
TST
HOV
HOV

C6>+,X3
C6>+,X2
(6)+
X1,2(6)
C6>+,X1

;<ZHWMD>

; PICK UP LINK
SKIP OLD DIVISOR
DUMP RESULT
PICK UP REMAINDER

CLR X1 ; SIGN FLAG
HOV 6C6>,X4 ;DIVISOR

;%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
; BEG OFLO
;%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

BGT R08.1 ; BRANCH IF POSITIVE
NEG X4 ;NEGATE IF NEGATIVE
I NC X1 ; REMEMBER SIGN

R08.1: MOV 8.C6>,X2 DIVIDEND M.S. HALF
MOV 10.C6),X3 DIVIDEND L.S. HALF
HOV X2,-C6> ; REMEMBER SIGN
BGE ROB.2 ; BRANCH IF POSITIVE
NEG X2
NEG X3 ;DOUBLE WORD NEGATE
SBC X2 .

' DEC X1 ;REMEMBER SIGN
R08.2:
;%%

TST X4
BEQ OFLO
CMP X3,X4

; BHI OFLO
;%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

DIV X4,X2
BCC R08.5

R08.3: MOV #77777,X2
CLR X3
BR R08.6

R08.5: BVS R08.3
R08.6: TST C6) +

BGE R08.7
NEG X3

ROB.7: TST X1
BEG R08.8
NEG X2

R08.8: MOV X3,X1
MOV X 2, 1 0. C 6)
HOV (6)+,X4
HOV C6>+,X3
HOV (6) +,X2
CHP <6>+, (6)+

.IFTF ; (ZHWMD)
JHP (2) .

' .PAGE
.SBTTL ARITHMETIC SHIFTS, BASIC .

' .IFT ;<ZHWMD)
R10 SRA ARITHMETIC RIGHT SHIFT

; DOUBLE LENGTH OPERAND AND RESULT

TEST FOR DIV.BY ZERO

; OVERFLOW IF H.S.>DIVISOR

DO DIVISION
TEST FOR DIV.BY ZERO
MAXIMUM RESULT
AND ZERO REMAINDER

OVERFLOW
TEST SIGN OF DIVIDEND

SIGN FLAG

;NEGATE QUOTIENT IF NEC.
;REMAINDER IN X1 ON EXIT
;QUOTIENT ON STACK
;RESTORE X4
;RESTORE X3
;RESTORE X2
;DISCARD INPUT PARAMS.

;RETURN

; DESTROYS REGISTERS X1 AND X2
; THIS VERSION EXCHANGES BYTES WHERE POSSIBLE

EXEC TIME=35.1+9.5*N IF N<8, + ANOTHER 26.9 PER 8 BITS THEREAFTER

.
' ; R11 SLA ARITHMETIC LEFT SHIFT

; DOUBLE LENGTH OPERAND AND RESULT
; DESTROYS REGISTERS X1 AND X2

THIS VERSION EXCHANGES BYTES WHERE POSSIBLE
; EXEC TIME=35.1+9.5*N IF N<8, + ANOTHER 24.6 PER 8 BITS THEREAFTER .
' .
' ; R12 SIGNED ARITHMETIC SHIFT
; SINGLE LENGTH OPERAND AND RESULT
; EXTENDS OPERAND, SETS SPECIAL RETURN ADDRESS, THEN USES R13
; EXEC TIME, ADDS 34.0 TO R13 IF OPERAND +VE, 38.0 IF -VE
.
' ; R13 SIGNED ARITHMETIC SHIFT
; DOUBLE LENGTH OPERAND AND RESULT
; TESTS SIGN OF SHIFT COUNT AND USES R10 OR R11
EXE~ TIME, ADDS 14.2 TO R10 AND 10.2 TO R11 .

' ; STACK USAGE FOR ALL THE ABOVE - 4+2 WORDS .
' R1 O: .
R10.0: MOV

HOV
HOV

R10.13: MOV
HOV

R10.1: CHPB
BLO

; BYTE SHIFT
SWAB
HOVB
MOVB
MOY
SWAB
MOVB
SUB
BR

; BIT SHIFT
R10.2: ASR

ROR
R10.3: DECB

BGE
BR .

' .
' R 11:
R11.0: MOV

HOV
MOV

R11.13: MOV
MOV

R11.1: CHPB
BLO

; BYTE SHIFT
SWAB
HOVB
MOVB
HOV
CLRB
SUB
BR . BIT SHIFT ' R11.2: ASL

X2, C 6)
X3,- C6>
4(6),X3
6C6>,X1
8.C6>,X2
X3,#8.
R10.3

X2
X2,-C6)
X1,1C6>
C6>+,X2
X1
X 1 , X1
#8., X3
R 10.1

X1
X2
X3
R10.2
R 11 • 4

X2,C6)
X3,-(6)
4 C 6) , X3
6C6>,X1
8.C6>,X2
X3,#8.
R 11 . 3

X2
X2,-C6)
X1,1C6)
C6>+,X1
X2
#8., X3
R 11 . 1

X2

DUMP LINK ADDRESS
; DUMP X3

SHIFT COUNT
OPERAND M.S. HALF
OPERAND L.S. HALF
BYTE SHIFT?

; GOTO BIT SHIFT

SHIFT LOWEST BYTE
EXTRACT LOWEST BYTE OF RESULT
AND NEXT BYTE UP
PUT.BACK INTO X2
MOVE TOP BYTE DOWN
EXTEND SIGN BIT
DECREMENT COUNT
TRY AGAIN

2 WORD SHIFT

DECREMENT COUNT
· ; HORE TO DO?
' ; COMMON "EXIT ROUT I NE

DUMP LINK ADDRESS
.; DUMP X3

SHIFT COUNT
OPERAND M.S. HALF.
OPERAND L.S. HALF
BYTE SHIFT?

; GOTO BIT SHIFT

SHIFT UP BOTTOM BYTE
BOTTOM BYTE FOR NEW X1
TOP DITTO
COPY TO X1
ZEROS IN L.S. BYTE
DECREMENT COUNT
TRY AGAIN

; 2 WORD SHIFT

R11.3:

R11.4:

.
' R 1 2:
R12.0:

R12.1:

.
' . ,
R13:
R13.0:

.
' •
' R12.2:

ROL X1
DECB X3
BGE R 11 • 2
MOV (6)+,X3
HOV X2,6(6)
HOV (6)+,X2
TST (6)+
HOV X1,<6>
JHP (2)

HOV X6,X1
MOV 2 (1) ' - (6)
CLR (1) +
HOV 2(1),(1)
BGE R 12.1
DEC -2 (1)
CMP -(6),(1)+
HOV X2, (1>
HOV #R12.2,X2

HOV X2, (6)
HOV X3,-(6)
HOV 4<6>,X3
BGE R 11 . 13
NEG X3
BR R10.13

TST
HOV
HOV
HOV
JHP

.PAGE

(6)+
C6>+,X1
C6>+,X2
X1,-C6)
(2)

.SBTTL ARITHMETIC SHIFTS, EIS
• IFF . ; CZHWMD>

R10 SRA ARITHMETIC RIGHT SHIFT.
DOUBLE LENGTH OPERAND AND RESULT
DESTROYS X2

R11 SLA ARITHMETIC LEFT SHIFT
DOUBLE LENGTH OPERAND AND RESULT

; DESTROYS X2

; R12 SIGNED ARITHMETIC SHIFT
SINGLE LENGTH OPERAND AND RESULT
DESTROYS X2

; R13 SIGNED ARITHMETIC SHIFT
; DOUBLE LENGTH OPERAND AND RESULT
; DESTROYS X2 .
' R1 O:
R10.0: NEG 2(6)
R11 :
R11.0:
R13:
R13.0: HOV X2,C6>

; DECREMENT COUNT 8 ; MORE TO DO?
;. RESTORE X3

DUMP RESULT L.S. HALF
PICK UP LINK
IGNORE OLD SHIFT COUNT
DUMP RESULT M.S. HALF
RETURN

. COPY X6
. ' COPY SHIFT COUNT

CLEAR OPERAND M.S. HALF
COPY OPERAND L.S. HALF

. EXTEND SIGN BIT
' . ADJUST POINTERS
' DUMP OLD LINK

SET SPECIAL RETURN ADDRESS

REMEMBER LINK ADDRESS
··DUMP X3
' PICK UP SIGNED SHIFT COUNT

SHIFT LEFT IF POSITIVE
NEGATE IF NEGATIVE
SHIFT RIGHT

IGNORE M.S. HALF OF RESULT
PICK UP L.S. HALF
PICK UP LINK
DUMP RESULT
RETURN

;RIGHT SHIFT IS -VE IN ASH,ASHC

;SAVE LINK

HOV X3,-(6)
HOV 6(6) ,X2 .
MOV 8. C6) , X3
ASHC 4C6>,X2
MOV X2,6 (6)
HOV X3, 8. C6)
HOV <6>+,X3
HOV C6)+,X2
TST (6)+
JHP (2) .

' R1 2:
R12.0:

HOV X3,-(6)
HOV 6 C 6) , X3
ASH 4(6) ,X3
HOV X3,6(6)
HOV C6>+,X3
ADD #4,X6
JHP (2) .

' . ,
• ENDC' ; CZHWHD>
.ENDC ; CZEISIL)

.PAGE

.SBTTL LOGICAL SHIFTS, BASIC
.IF NDF ZHWHD
; R14 SRL SHIFT RIGHT LOGICAL

SINGLE LENGTH OPERAND AND RESULT
DESTROYS REGISTERS X1 AND X2

;SAVE X3 ~
; HS HALF OPERAND ~
;LS HALF OPERAND
;DO SHIFT
;MS HALF RESULT
;LS HALF RESULT

- ; RESTORE X3
;RESTORE LINK
;OLD SHIFT COUNT
;RETURN

;SAVE X3
;OPERAND
;DO SHIFT
;RESULT ON STACK
;RESTORE X3

;SET STACK POINTER FOR EXIT
;RETURN

THIS VERSION EXCHANGES BYTES WHERE POSSIBLE
; CALLING SEQUENCE IS JSR X2,R14

SHIFT COUNT AND OPERAND ARE TOP TWO WORDS ON STACK
RESULT LEFT ON TOP OF STACK
EXEC TIHE=20.1+10.1*N IF N<8, OTHERWISE 38.9+10.1*CN-8) .

' . . ,
R15 SLL SHIFT LEFT LOGICAL

; SIMILAR SPEC. TO R14
·'

; EXEC TIME=20.1+8.6*N IF N<8, OTHERWISE 38.9+8.6*CN-8) .
'
; R16 SHL SIGNED LOGICAL SHIFT

.
' .
'

TESTS SIGN OF SHIFT COUNT AND THEN USES R14 OR R15
EXEC TIME, ADDS 14.2 TO R14 AND 10.2 TO R15

STACK USAGE FOR ALL THE ABOVE - 3+0 WORDS

R14:
R14.0: TST (6)+ IGNORE OLD X2

MOV <6>+,X1 PICK UP SHIFT COUNT
R14.1: CHPB X1 , #8. BYTE SHIFT?

BLO R14.3 GOTO BIT SHIFT
; BYTE SHIFT

CLRB { 6) ZEROS <FOR TOP BYTE>
SWAB (6)
SUB #8. , X1 DECREMENT COUNT
BR R 14. 1

; BIT SHIFT
R14.2: CLC LOGICAL RIGHT SHIFT

ROR (6)
R14.3: DECB X1 DECREMENT COUNT

BGE R14.2 MORE TO DO? 8 JMP (2) RETURN

.
' R15:
R15.0: TST (6)+ . IGNORE OLD X2

' HOV <6>+,xt PICK UP SHIFT COUNT
R15.1: CHPB X1 , #8. BYTE SHIFT?

BLO R15.3 GOTO BIT SHIFT
; BYTE SHIFT

SWAB (6) . SHIFT BOTTOM BYTE
' CLRB (6) ZEROS IN L.S. BYTE

SUB #8. ,X1 DECREMENT COUNT
BR R 15. 1 TRY AGAIN

; BIT SHIFT
R15.2: ASL (6) SHIFT LEFT
R15.3: DECB X1 DECREMENT COUNT

BGE R15.2 HORE TO DO?
JHP (2) RETURN

.
' R16:
R16.0: TST (6)+ IGNORE OLD X2

HOV C6>+,X1 PICK UP -SHIFT COUNT
BGE R 15.1 . >=O, GOTO LEFT SHIFT

' NEG X1 NEGATE IF NEGATIVE
BR R 14.1 RIGHT SHIFT

.PAGE

.SBTTL LOGICAL SHIFTS, EIS
.IFF ; (ZHWMD) . R14 SRL SHIFT RIGHT LOGICAL
' . SINGLE LENGTH OPERAND AND RESULT ' . DESTROYS X1,X2 '

R15 SLL . SIMILAR TO
' . R16 SHL
' TESTS SIGN .
' .
' .
' R14:
R14.0: NEG .
' R15.0: .
' R15: .
' R16: .
' R16.0:

HOV
CLR
HOV

HOV
HOV

ASHC
HOV

HOV

SHIFT LEFT LOGICAL
R14

SIGNED LOGICAL SHIFT
OF SHIFT COUNT AND USES R14 OR R15

2(6)

X2,X1
X2
2(6),(6)
X3,2C6>
4C6>,X3
C6)+,X2
X3,2C6)
C6)+,X3

;NEGATE FOR ASHC

;LINK VACATING'X2
;PROVIDES LEADING ZEROS IF RIGHT SHIFT

;SHIFT COUNT
;SAVE X3
;GET OPERAND

;DO SHIFT AND DISCARD COUNT
;RESULT REPLACES OPERAND ON STACK

;RESTORE X3

JMP C 1 > .
' .ENDC ;CZHWMD>

.PAGE

.SBTTL ARRAY BOUND & ACCESS, COMMON

; R17 - R22 ARRAY ALIGNMENT
BOUNDS CHECKING
ADDRESS CALCULATION

.
' .
' . ,
; FOR ARRAYS OF . , BYTES CR17) EXEC TIME=15.2

INT,FRAC,PROC,STACK CR18) EXEC TIME=20.1 . , LABELS CR19) EXEC TIME=25.0 . , REALS CR20> EXEC TIME=25.0 .
'

RECORDS CRZ1> TYPICAL EXEC TIME=130.0 .
' ; MODIFIER IN X3, ARRAY BASE IN X4 ,
; X3 NOT DESTROYED, FINAL ADDRESS RETURNED IN X4 .
' ; RZZ ALIGNS THE MODIFIER FOR ARRAYS OF RECORDS, RESULT RETURNED IN X3

TYPICAL EXEC TIME = 120.0 .
' ALL THESE ROUTINES DESTROY X1
; R21 AND R22 ALSO DESTROY X2 AND USE 3 WORDS OF STACK .
' ; CALLING SEQUENCE JSR XZ,RNN
; AND FOR R21 AND R22 JSR X2,RNN

.WORD 'MULTIPLICATION FACTOR' .
' .
' R17: ·
R17.0:

R17.1:

R17.2:

. , .
' R18:
R18.0:

R18.1:

. ,
R19:
R19.0:
R20:
R20.0:

MOV #-1' (6)
HOV X3,X1
TST X1
BLE R17.2
ADD < 6> , X4
CMP X1,<4>
BGT R17.2
ADD X1,X4
SUB C6l+,X4
JMP (2)
HOV #ARRERR,-(6)
JSR X1,RRGEL

MOV X3,X1
CLR (6)
ASL X1
BR R 17 .1

HOV #2,C6)
HOV X3,X1
ASL X1

BYTE ALIGNMENT FACTOR
BYTE ENTRY
ERROR IF <=O

. ALIGN TO LENGTH WORD
' . CHECK WITH ARRAY LENGTH
' . CALCULATE FINAL ADDRESS - ,.

SUBTRACT ALIGNMENT . RETURN
. ' . SET ERROR NUMBER ,

; GO TO ERROR ROUTINE

; SINGLE WORD ENTRY
; WORD ALIGNMENT FACTOR
; ALIGN

; DOUBLE WORD ENTRY

REALS ENTRY
; DOUBLE WORD ALIGNMENT FACTOR

ALIGN

BR R 18 .1 . ,
.IF NDF ZHWHD

.SBTTL ARRAY ACCESS, BASIC . ,
; BASIC VERSION OF R21 & R22 ..
' ' R21:
R21 . 0:

.
' .
' R22:
R22.0:
R2 2. 1 :

MOV < 2l , < 6 >
SUB #2,C6l
CLR -(6)
BR R22.1

HOV #1,-(6)
HOV C2>+,X1
HOV X2,-C6)
HOV X3,X2

.
' .
'

RECORD LENGTH
ALIGNMENT FACTOR
RECORD ENTRY, SET FLAG

RECORD MODIFIER ENTRY,
PICK UP RECORD SIZE
INCREMENT LINK ADDRESS
COPY X3

SET FLAG

AND DUMP

CLR - (6) CLEAR RESULT FOR SIMPLE HULT
R22.2: TST X1 MORE TO DO?

BEG R22.4
./

ROR X1 EXAMINE L.S. BIT
BCC R22.3
ADD X2, < 6) ADD INTO RESULT

R22.3: ASL X2· SCALE UP BY 2
BR R22.2

R22.4: HOV C6>+,X1 PICK UP RESULT
HOV C6)+,X2 PICK UP LINK ADDRESS
TST (6)+ TEST FLAG
BEG R 17 .1
HOV X1, X3 SET RESULT OF R22
TST (6)+ RESET X6
JHP (2) RETURN .

' .IFF ; < ZHWMDl ·
.SBTTL ARRAY ACCESS, EIS

"

; EIS VERSION OF R21 & R22

ON ENTRY: %3 CONTAINS SUBSCRIPT, JSR %2,R21 ,.WORD RECORD LENGTH
i" ON· EXIT : %3 UNCHANGED, %4 POINTS TO REQUIRED ftECORD · · .
' R21:
R21.0: HOV

SUB
HOV
HUL
BR

(2),(6)
#2,(6)
<2>+,X1
X3,X1
R 17. 1

;RECORD LENGTH
; ALIGNMENT FACTOR
; GET RECORD SIZE, INCREMENT LINK
;DISPLACEMENT IN X1
; FOR BOUND CHECK

ON ENTRY: %3 CONTAINS SUBSCRIPT, JSR %2,R22, .WORD RECORD LENGTH
; ON EXIT : %3 CONTAINS SUBSCRIPT * RECORD LENGTH .
' R22:
R22.0: HUL

RTS .
' . ,
.ENDC

.PAGE
• IF OF ZFLPT

<2>+,X3
X2

; CZHWHD)

· DO HUL & UPDATE LINK ADDRESS
' RETURN

.
' RTL/2 PDP-11 FLOATING POINT CONTROL ROUTINES .
' .
' . IF NDF Z45FP

; USES TWO WORD REAL FORMAT
; ROUTINES DO NOT USE XO, AND PRESERVE X3,X4 AND XS
; TIMES GIVEN ARE IN MICRO-SECONDS

TOTAL SIZE = 409 WORDS . , .
' . ' . • IF NDF ZFPIL

.SBTTL FLOATING COMMON ENTRY, BASIC

; COMMON ENTRY ROUTINE FOR FLOATING POINT ADD,
SUBTRACT, MULTIPLY AND DIVIDE

; EXPECTS TO FIND TWO REALS DUMPED ON THE STACK
RETURNS WITH THE EXPONENTS IN X1 AND X4,

; THE SECOND SIGN IN THE CARRY,
NEV OF THE SIGN BITS ON TOP OF THE X6 STACK,
AND LEAVES THE FRACTIONS OF THE REALS WITH THE TOP BYTE CLEAR AND
THE 'NORMALISE' BIT INSERTED

; X2 POINTS TO THE M.S. HALF OF THE SECOND <HIGHEST ADDRESSED> REAL
•
' FPENT:

.IFTF

MOV
HOV
HOV
ADD
HOV
CLR
ROL
ROR
CLRB
SWAB
CLRB
BISB
CMP
HOV
ADD
ASL
ROR
CLRB
SWAB
CLRB
BISB

ROL
JMP

.PAGE

X2,2C6)
X4,-C6>
X6,X2
#6. , X2
C2l+,X1
- (6)

X1
(6)

X1
X1
-(2)
#200,-(2)
(2)+,(2)+
C2l+,X4
X4, C 6)
X4
(6)
X4
X4
-(2)
#200,-(2)
(6)

(3)

;CZFPIL>

. ; REMEMBER LINK

;POINT X2 AT FIRST REAL

; PICK TOP OF REAL
;CLEAR FOR SIGN

; SHIFT OUT SIGN OF FIRST
; REMEMBER FIRST SIGN

; CLEAR BOTTOM BYTE
; PUT EXPONENT IN BOTTOM BYTE
; CLEAR TOP BYTE OF REAL

;PUT IN 'NORMALISE' BIT
; POINT TO SECOND REAL
; REPEAT FOR SECOND REAL

NEV SIGN BITS
; SHIFT OUT SIGN
; STORE SECOND SIGN

.
' ; SECOND SIGN TO CARRY

; RETURN

.SBTTL FLOATING COMMON EXIT, BASIC .
' ; GENERAL PURPOSE ROUND NORMALISE AND EXIT,USED BY ALL THE
; FP CONTROL ROUTINES YIELDING A REAL RESULT - ENTERED WITH
; EXPONENT IN X1 ,SIGN ON STACK,M.S. PART OF MANTISSA IN X4,

L.S. PART OF MANTISSA IN X3 . . , .
' .
'

RNDTST:
BIT
BNE

ADC
ADC

ALIGN:
ASR
ROR
INC
BIT
BNE

RUNUP:
ROL
ROL
DEC
TSTB

BMI
BNE
TST
BNE

UFLO:
CLR
CLR
TST
BR

FLOTST:
TST
BLE
SWAB
BEG

OVFLO:
HOV
MOVB
HOV

NORM:
ROL
ROR
BIC
BIS

FPEXIT:
HOV

HOV
HOV
HOV
HOV
CHP
JHP

.PAGE
.IFT

#177400,X4
ALIGN

X3
X4

X4
X3
X1
#177600,X4
RNDTST

X3
X4
X1
X4

FLOTST
RUNUP
X3
RUN UP

X3
X4
(6)+
FPEXIT

X1
UFLO
X1
NORM

#377,X4
X4,X3
#177400,X1

(6)+
X1
#200,X4
X1,X4

"".:' : ·~ :

X3,12.C6)
X4, 10. C6)
C6>+,X4
C6>+,X3
C6)+,X2
(6)+,(6)+
(2)

; C ZF PI U

~
; TEST IF READY TO ROUND
;I.E NEARLY.ALIGNED.NOT
;SHIFTED DOWN TO ROUND POINT
; ROUND

;ENTRY POINT

;TEST ALIGNMENT CORRECT
;WHEN SHIFTED UP.LS BIT IN CARRY

;IS MANTISSA ALIGNED AT
;BYTE BOUNDRY
;JUMP IF ALIGNED,NOT ALIGNED
;SHIFT UP MORE
;CONVENTIONAL ZERO
;GIVEN TIME IT WILL ALIGN
;FLOATING POINT UNDERFLOW ENTRY
;UNDERFLOW.RETURN
;CONVENTIONAL ZERO
;DITCH SIGN .

;UFLO IF EXPONENT ZERO OR NEG

;BRANCH IF NOT OFLO
;FLOATING POINT OVERFLOW ENTRY
;BIG REAL FRAC PART

;FEICH SIGN TO CARRY
;SHIFT EXP ADD SIGN BIT
;CLEAR NORMALISE BIT
;COMBINE EXP AND MANTISSA

;DUMP L.S. HALF OF. RESULT
DUMP M.S. HALF OF RESULT

t.; LINK ADDRESS
; SKIP OLD OPERAND

RETURN

.SBTTL FLOATING ADD & SUB, BASIC .
' ; FLOATING POINT SUBTRACT

CHANGES SIGN OF SECOND OPERAND AND USES ADD .
' R27:
R27.0: ADD #100000,2(6) .
'

.
' . J
• FLOATING POINT ADD ,

. .
' R26:
R26.0:

R26. 1 :

R26.2:

R26.B:

R26.3:

R26.4:

R26.5:

R26.6:

R26.7:

.
' . ,.

JSR X3,FPENT
BCC R26.2

NEG
ADC
NEG
COM

CMP
TST'
BMI
HOV
HOV
ADD
MOV
HOV
SUB
BL.E
HOV
HOV
SUB
ADD
BR

NEG

CMP
BGE
CMP
BEG
TST
BEG
ASL
ROL
DEC
BR

ASR
ROR

2 (2)
(2)
(2}
(6)

-(2),-(2)
(6)

R26.1
X4, C 6)
X6,X2
#B. , X 2
C2l+,X4
C2>+,X3
X1 , C 6)
R26.8
C2>+,X4
C 2) , X3
#6. , X2

. (6) ,X1
R26.3

(6)

(6) ,#24.
R26.7
C6l,X1
R26.7
(6)
R26.6
X3
X4
X1
R26.5

(2)
2 (2)

DEC (6)
BNE R26.4

ADD
ADC
ADD

TST
JMP

.PAGE

2 C 2 > , X3
X4
C 2 > , X4

(6) +
MOD

.SBTTL FLOATING MULTIPLY, BASIC

i FLOATING POINT MULTIPLY

; USE COMMON ENTRY ROUTINE
;SECOND REAL IS +VE

;DOUBLE LENGTH NEGATE

;RECOVER SIGN FROM NEV

~POINT TO FIRST REAL

;FIRST REAL IS NEGATIVE
;DUMP SECOND EXP. OVER SIGN
;POINT TO FIRST REAL M.S.

;FIRST MANTISSA TO X3,X4
;X2 POINTS TO SECOND
;SKIP SWAB IF FIRST EXPONENT
;IS LARGER
;SECONDlLARGER> MANTISSA
;TO X3,X4
;X2 POINTS TO FIRSTCSMALLER>
;X1 BECOMES LARGER EXP.

;SHIFT COUNT = ABS SCALE DIFF

;COMPARATIVELY INSIGNIFICANT
;OR CONVENTIONAL ZERO

;BOTH SCALINGS SAME
;SHIFT LARGER UP 1 TO ROUND
;SCOPE FOR ROUNDING IN
;COMMON NORMALISE ROUTINE

;SHIFT SMALLER DOWN TO
;EQUATE SCALES

;DOUBLE LENGTH ADD

; IGNORE EXPONENT .
.;TO MODULUS,NORMALISE AND EXIT

.
' R28:

R28.0:
JSR

TST
BEQ
TST
BEG
MDV
ADD
SUB
HOV
CHP
HOV
HOV
ASL
ROL

CLR
CLR

R28.1: ASR

.
'

ROR
ASR
ROR

BCC
ADD
ADC
ADD
TST
BNE
TST
BNE
BR

.PAGE

X3,FPENT
X1
UFLO
X4
UFLO
XS,-C6)
X4,X1
#202,X1
X1 ,-C6)
-(2) ,-(2)

C2)+,X1
C2>+,XS
2 (2)
(2)

X4
X3
X4
X3
X1
XS

R28. 1
2 C 2 > , X3
X4
C 2 > , X4
XS
R28.1
X1
R 28. 1
PREXIT

.SBTTL FLOATING DIVIDE, BASIC

j FLOATING POINT DIVIDE .
' R29:
R29.D:

JSR
TST
BEQ
TST
BEQ
SUB
ADD
MOV

MOV
CLR
CLR

MOV
MDV
CHP
CMP
BLT
BGT
CMP

X3,FPENT
X1
OVFLO
X4
UFLO
X1, X4

#200,X4
X5,-{6)

X4,-C6>
X3
X4

<2>+,X1
(2) , X5
-(2),-(2)

-:C2>,X1
R29 .1
R29.8
2 C 2) , X5

USE COMMON ENTRY ROUTINE

CLEAR X4 AND X3 TO HOLD RESULT

SHIFT RESULT ONE PLACE RIGHT

PICK UP BOTTOM BIT OF
MULTIPLIER AND LEAVE SHIFTED

; ONE PLACE RIGHT
NOTHING TO DO THIS TIME
ADD MULTIPLICAND INTO RESULT

MORE TO DO IN MULTIPLIER?

USE COMMON EXIT ROUTINE

· ; USE COMMON ENTRY ROUTINE
DIVIDE BY ZERO?

,. ; OVERFLOW
; CLEAR X4 AND X3 TO HOLD RESULT

CALC RESULT EXPONENT
;ADJUST SCALING

; DUMP

;PICK UP DIVIDEND
.

;POINT X2 AT DIVISOR
; IF DIVISOR > DIVIDEND THEN

; SHIFT DIVIDEND

BLOS
R29.8: ASL

ROL
DEC

R29.1: CLR
HOV

R29.2: CHP
BGT
BLT
CHP
BLO

R29.9: BIS
BIS.
SUB
SBC
SUB

R29.3: ASL
ROL
ASR
ROR
BNE
TST
BNE

R29.4: CHP
PREXIT:

R29 .1
XS
X1

(6)
- (6)

#400,-(6)
X1, <2>
R29.9
R29.3
XS,2C2)
R29.3
C 6 l , X4
2 C6l ,X3
2 < 2) , XS
X1
C2l,X1
XS
X1
(6)
2(6)
R29.2
(6)
R29.2
(6)+, (6)+

HOV C6>+,X1
HOV (6)+,XS
JHP ALIGN

.
' .
' ~ENDC ;CZFPIL)

.PAGE

;TEST BOTTOM HALVES~
; SHIFT DIVIDEND

; SET 2 WORDS ON STACK TO BE
;THE BIT TO ADD TO THE RESULT

IF DIVIDEND > DIVISOR THEN

; SUBTRACT DIVISOR AND PUT BIT
; INTO RESULT
;TEST BOTTOM HALVES IF TOPS =

SET BIT INTO RESULT

DOUBLE LENGTH SUBTRACT

IF DIVIDEND IS ZERO AFTER THE
SHIFT DIVIDEND UP ONE

SHIFT 'BIT' DOWN ONE

IF 'BIT' IS SHIFTED RIGHT OUT
OF THE DOUBLE WORD THEN IS

· ; NO MORE T 0 DO
PICK UP EXPONENT

.IFTF
.SBTTL FLOATING ABS & NEG, COMMON

;CZ45FP> .
' ; FLOATING POINT ABS .
' .
' R30:
R30.0:

. ' . . ,

BIC #100000,2C6)
RT~ X2

; FLOATING POINT NEGATE .
' R31:
R31.0:

R31 • 1 :

.
' .IFT
•
'

TST
BEG

ADD

2(6)
R31 • 1
#100000,2(6)

RTS X2

.PAGE

; CZ45FP>

.SBTTL FLOATING COMPARE, BASIC

;CLEAR SIGN BIT

;DO NOT NEGATE IF
;CONVENTIONAL ZERO
;FLIP SIGN BIT

.
' FLOATING POINT COMPARE .
' R32:

R32.0: TST C6l+
MOV C6>,X1

BIS #200,X1

ASL 4(6)
BEG R32.5
BCS R32.2
; SECOND REAL IS >=O

R32.5: ASL <6>
BEG R32.1
BCS R32.3

R32 .1: ; BOTH REALS HAVE SAHE SIGN
CMP 4C6>,C6)

BHI R32.4
BLO R32.3
CMP 6C6>,2C6)
BHI R32.4
BLO R32.3
CLR X1
BR R32.4

R32.2: ; SECOND REAL IS <O
ASL (6)
BCC R32.3
BR R32 .1

R32.3: COM X1
R32.4:. AOD #8.,X6

TST X1
JMP C2l

.PAGE

; IGNORE OLD X2
; PICK UP H.S. KALF OF FIRST
; REAL TO USE AS RESULT FLAG

;PUT IN 'NORMALISE' BIT TO
DEAL WITH R1=0.0 CASE
LOOK AT SIGN BIT OF SECOND REAL
LOOK FOR -0.0
BRANCH IF NESATIVE

LOOK FOR SIGN BIT OF FIRST REAL
LOOK FOR -0.0
BRANCH IF NEGATIVE AS NOW

; KNOW RESULT OF COMPARE

; COMPARE M.S. HALVES
; TREAT AS UNSIGNED INTEGERS
; R2 FRACTION > R1 FRACTION
; R2 FRACTION < R1 FRACTION
;; DITTO FOR L.S. HALVES

; REALS ARE EQUAL SO CLEAR
RESULT FLAG

LOOK AT SIGN BIT OF FIRST REAL
; R2<0, R1>=0 SO KNOW RESULT

BOTH NEGATIVE
CHANGE SIGN OF RESULT

;SKIP OVER OPERANDS
SET CONDITION CODES
RETURN

; SIZE - 30 WORDS
AVERAGE TIME ON 11/20 -
IF SIGNS DIFFER - 30
IF SIGNS SAME - 45
STA~K USAGE - 5+0 WORDS

.SBTTL CONVERSIONS TO REAL, BASIC .
' • TYPE CONVERSION ROUTINES· ,
.
' INT TO REAL

ASSUMES ONE WORD IS ON THE STACK . ,
R33:
R33.0:
R33. 1 :

.
' . ,

HOV #210,X1
MOV 2 C6>, C6)
CLR 2(6)
TST -(6)
BR R35.1

FRAC TO REAL

;SET INITIAL EXPONENT
;> CONVERT TO
;) BIG INT
; ADJUST STACK POINTER
; FLOAT AS A BIGINT

; SETS INITIAL EXPONENT AND USES INT TO REAL ROUTINE .
'

R34:
R34.0: MOV #171,X1

BR R33.1 .
' .
' .
' .
' BIGINT TO REAL

ASSUMES DOUBLE WORD IS ON STACK .
' R35:
R35.0:
R35.1:

MOD:

R35.3:

R35.2:

.
' . ,
.
'

MOV

TST
HOV

HOV
HOV
HOV
HOV

TST
BGE
NEG
ADC
NEG
BVC

ADC
ROR

SEC
ROR
JMP

#230,X1

-(6)
X2,-C6>

X3,-C6)
X4,-C6)
10. C 6 > , X4
12. C6>.,X3

X4
R35.2
X3
X4
X4

R35.3
X1
X4-

-(6)
ALIGN

; MIXED TO REAL

;SET INITIAL EXPONENT

; DUMP X3 AND X4

; PICK UP DOUBLE WORD

NEGATE IF NEGATIVE

; DOUBLE LENGTH NEGATE

; ADJUST FOR MOST NEG NUMBER

; SETS INITIAL EXPONENT AND USES BIGINT TO REAL ROUTINE . -
' R36:
R36.0: HOV #211,X1

BR R35 .1 .
' .
' . ,
; FINEFRAC TO REAL ,
; SETS INITIAL EXPONENT AND USES BIGINT TO REAL ROUTINE .
' R37:
R37.0: HOV #172,X1

BR R35.1

.
' .PAGE .
' .IFTF ;CZ45FP>

.SBTTL CONVERSIONS FROM REAL, COMMON

; R38 AND R39 COMMON TO 11/45 SET AND BASIC SET

; REAL TO FRAC .
' R38:
R38.0:
R38. 1 :

R38.4:

R38.Z:
R38.3:

R38.5:

R38.6:

R38.7:

R38.8:

.
' . .
'

HOV
MOV

HOV
ROL
CLRB
SWAB
SUB
MOV

BCC
CMP

BGT
SWAB
MOVB
BIS
TST
BGE
NEG
ROR
BR
ASR
INC
BLT
ADC
BVC
COM
HOV
TST
MOV
JMP
CLR
BR
CMP
BR

; REAL TO INT

#201 , X1
X3, C 6)
2C6l,X3

X3
X3
X3
X1,X3

#100000,X1
R38.8
#-16., X3

R38.7
4 (6)
2(6),5(6)
4C6>,X1
2(6)
R38.4
X1
X1
R38.3
X1
X3
R38.2

. X1
R38.6
X1
C6>+,X3
(6)+
X1,C6)
(2)
X1
R38.6
X1,2C6)
R38.5

;SET INITIAL EXPONENT
;DUMP X3 AND X4

; SHIFT UP EXPONENT AND STORE
; BRING EXPONENT TO BOTTOM
; OF WORD
; X1 IS NOW SHIFT COUNT

;X1 BECOMES LARGEST -VE NO.

;PICK UP REAL AS FRACTION
;BOTTOM BYTE.REPLACE NORMALISE
;BIT. CSWAB CLEARED CARRY)
; TEST SIGN ·
jSKIP IF +VE
;NEGATE IF NEGATIVE
;FIRST SHIFT DOWN.X1 NOW +VE
;IN SUBSEQUENT SHIFTS.THE CARRY
;IS NOT USED
;COUNT SHIFT
;HORE SHIFTS TO DO
;ROUND CAN CAUSE OFLO ON HOST
;POSITIVE NUMBER
;MOST -VE BECOMES MOST +VE
;RESTORE X3
;SKIP OLD MS PART
;STORE RESULT
;RETURN
jSET ZERO FOR UNDERFLOW

;SET OFLO IF REAL IS +VE
;SINCE X1 IS MOST NEGATIVE

; SETS INITIAL EXPONENT AND USES REAL TO FRAC ROUTINE .
' R39:
R39.0: MOV

BR .
' .PAGE

#220,X1
R38 .1

.IFF ;CZ45FP>
.SBTTL FLOATING COMMON ENTRY,11/45

; 11/45 FP ROUTINES .
' ; COMMON 11/45 FLOATING POINT ENTRY ROUTINE . ,
FPENT:

; FP ADD

LDFPS
MOV
TST
RTS

#0 ;LOAD FPP PROGRAM STATUS
(6),2(6)
(6) +
X3

.
' R26:
R26.0:

.
'

JSR
LDF
ADDF

X3,FPENT
CX6>+,ACO
< X6 > , ACO

;INITIALISATION
;2ND OPERAND
;ADD FIRST OPERAND

.SBTTL FLOATING OFLO & EXIT, 11/45
COMMON OVERFLOW CHECK .

' FPOFLO:

. ., .. .
'

STF
JMP

ACO,CX6>
(2)

;STACK RESULT.

FPMAX: .WORD 077777,177777,177777 ;MAXIMUM +VE AT FPHAX,FPMAX+2
;MAXIMUM -VE AT FPHAX+2 & 4

.PAGE

.SBTTL FLOATING ADD SUB MUL DIV COMP,11/45

' ; FP SUBTRACT .
' R27:
R27.0:

JSR
· LDF

LDF
SUBF
JMP

FP MULTIPLY .
' R28:
R28.0:

JSR
LDF
HULF
JMP

FP DIVIDE .
' R29:
R29.0:

R29.3:

JSR
LDF
CFCC
BNE I

LDF
CFCC
JMP

LDF
DIVF
JMP

X3,FPENT
CX6>+,AC1
CX6) ,ACO
AC1,ACO
FPOFLO

X3,FPENT
CX6>+,ACO
CX6>,ACO
FPOFLO

X3,FPENT
CX6>+,AC1

;INITIALISATION
;2ND OPERAND
;1ST OPERAND
;PERFORM SUBTRACTION
;EXIT AS ADD

;SECOND OPERAND
;TIMES FIRST
;EXIT AS ADD

;INITIALISATION
;DIVISOR

R29.3 ;BRANCH IF NOT DIVIDE BY ·ZERO
CX6> ,ACO ;DIVIDEND

FPOFL3

CX6>·,ACO
AC1,ACD
FPOFLO

;LOAD DIVIDEND
;DO DIVISION

FP COMPARE .
' R32:
R32.0:

X3,FPENT
C6>+,ACO
C6>+,ACO

(2)

;INITIALISATION
;SECOND OPERAND

;COMPARE WITH FIRST

JSR
LDF
CMPF
CFCC
JMP
.PAGE
.SBTTL CONVERSIONS TO REAL, 11/45 . ,

; INT TO REAL .
' R33:
R33.0:

" ..
'

JSR
LDC IF
TST
STF
JMP

; FRAC TO REAL
•
' R34:
R34.0:

X3,FPENT
(6) ,ACO
-(6)
ACO, (6)
(2)

;INITIALISATION

;SPACE FOR RESULT
;RESULT TO STACK

' JSR X3,FPENT ;INITIALISATION
LDCIF . CX6> ,ACO
STEXP AC0,-(6)
SUB #15.,0(6)
LDEXP C6) ,ACO
STF ACO, (6)
JMP (2 >

;STORE EXPONENT
;REDUCE FOR FRAC ALIGNMENT
;ADJUSTED EXPONENT BACK INTO NO.
;STORE FINAL ANSWER

R37.0:
JSR X3,FPENT ;INITIALISATION
SETL
LDCLF CX6) ,ACO
SETI
ST EXP ACO,-CX6>
SUB #30. ,0(6)
LDEXP CX6>+,ACO
STF ACO, (6)
JHP (2)

~ENDC ;<Z45FP>
.• ENDC ·; CZFLPT>
LENGTH: ;so WE CAN SEE LENGTH ON SYMBOL TABLE
SMT: JMP SMT .••

. END SMT

SMTUlX. £])/:

=MAIN .
F 'LET GO'
I
LET NFREETASKS = 14; % ,NUSERTASKS-USEDTASKS
"Z
S/DEFIN/DEFIN,INTTY/'DEFIN;·
S/DEFOUT/DEFOUT,OUTTTY/'DEFOUT;'
S/ERPRIN;/ERPRIN,MULTI ,COM;/' EXT .PROC () FBPROC'
S/;/,MULTISTK,COMSTK;/'EXT STACK FBSTK'
S/FBSTK<NUSERT/MULTISTK,COHSTK,FBSTK<NFREET/'FBSTKCNUSER'
S/O(NUSERT/20,10,0CNFREET/'OCNUSERTASKSl'
S/NOGOCNUSERT/GO,GO,NOGOCNFREET/'NOGO<NUSERTASKSl'
D • USAGE: =O; .
D 'TITLE SHT INTERACTIVE DEVICE DRIVER':XE

SMTBJX. E])T:.

=HAIN .
5/28/26/'+++ 26 FOR LSI'
S:HOV *UPS/TRAPDATA,177776:MTPS *UPS/TRAPDATA:'RESTORE USERS PS'
S/158/152/'+++ 152 FOR LSI'
S/HOV @#177776,/HFPS /'@#177776'
S:MOV #*MASK,@#177776:MTPS *HIPRI/TASKDATA:'+++ MTPS'
S:HOV #*UNMSK,@#177776:MTPS *LOPRI/TASKDATA:'+++ MTPS'
S/2/0/'+++ 0 FOR LSI'
S:MOV #*MASK,@#177776:MTPS *HIPRI/TASKDATA:'+++ HTPS'
S/2/0/'+++ 0 FOR LSI'
S:HOV #*UNHSK,@#177776:MTPS *LOPRI/TASKDATA:'+++ MTPS'
S/62/60/'+++ 60 FOR LSI'
S:MOV #*MASK,@#177776:MTPS *HIPRI/TASKDATA:'+++ MTPS'.
5/48/44/'+++ 44 FOR LSI' .
S:MOV @#177776,:HFPS :·++ MFPS'
S:MOV #*MASK,@#17776:'MTPS *HIPRl/TASKDATA:'+++ MTPs·

1 5 DEC 1983

%

