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ABSTRACT 

The problem of effective and efficient use of engineering software can 

be thought of as a Pareto optimal problem. However, the complexity of 

modern engineering software precludes the possibility of acquiring 

complete knowledge of the software's Pareto optimal set. Instead 

heuristic knowledge must be acquired. The thesis proposes that 

heuristic knowledge be acquired via a knowledge acquisition pr'ocedure. 

The use of a knowledge acquisition system, which may be computerised, 

forms an integral part of this procedure. Two examples of knowledge 

acquisition illustrate the use of the knowledge acquisition procedure. 
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PREFACE 

The original title of this thesis was to have been 'Numerical 

Modelling of Reinforced Concrete Frames ~1der Transient Dynamic 

Conditions'. The aim of the research would be to develop suitable 

constitute models for concrete. When the research was begun, Prof 

Martin suggested that I write a finite element program which could be 

used as the primary tool for such research (At that stage, the Dept. 

of Civil Engineering did not have a suitable program). So I wrote 

NLFRAM. NLFRAM could analyse plane frames made of reinforced concrete 

(or any other material) under transient dynamic loading. Geometric and 

material nonlinearities could be taken into account. 

One of the first applications of NLFRAM was to the modelling of a 

reinforced concrete beam, loaded statically. Even in this relatively 

simple case, I had considerable difficulty selecting step sizes and 

finding suitable equilibrium iteration algorithms, but eventually, by 

an iterative process of trial, error .and observation, I succeeded. 

Many computer runs were required. During the proce$s, it became quite 

clear that, depending on the selection of the numerical modelling 

parameters (control variables) wide variations in ;'.)redicted response 

could be produced, with even wider variations in computational effort. 

At some point in the research, Prof Martin suggested that, rather than 

concentrating on concrete constitutive modelling, I concentrate on 

improving the efficiency of the algorithms used in the modelling of 

reinforced concrete structures. He also suggested that Dr Neishlos 

might be a useful guide for such research. Well, Dr Neishlos became so 

enthusiastic that, within six months, I was not looking to improve the 

efficiency of solving reinforced concrete problems, but was looking to 

improve the general use of engineering packages. The question was how 

could one systematize the acquisition of cost-reliability-control 

information for an engineering package. Dr Neishlos pointed out that, 

for any given package, the variety of problems and ways to solve them 

numerically, i.e. the number of controls, was enormous, so I should 

concentrate on a class of problems and controls. He also pointed out 

that the conventional way to acquire information on this class would 

be to use statistically designed experiments, but that this approach 
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might be very expensive. A pattern recognition approach, he said, 

might be more efficient. To test these ideas I wrote a prototype 

version of ELIXIR, chose the reinforced concrete beam mentioned above 

as a problem class and proceeded to use ELIXIR to acquire 

cost-reliability-control information about NLFRAM. Even with only 

three variables in the control class and only one problem in the 

problem class, the cost-reliability-control behaviour was quite 

difficult to understand from the initial statistically designed 

experimental programme. But, by using interactive graphics for pattern 

recognition, and sorting, "filtering (according to the Pareto 

principle) and clustering, I learnt enough about the package to design 

an additional experimental programme which, on average, would produce 

more efficient solutions than the initial programme. Pattern 

recognition, filtering, etc. were then repeated. In fact, the whole 

cycle of experimental programme design, pattern recognition, etc. was 

repeated four times before I was satisfied with the 

cost-reliability-control knowledge I had acquired. We (Dr Neishlos and 

I) clearly recognised the heuristic nature of the knowledge 

acquisition process that I had fellowed and the heuristic nature of 

the knowledge acquired. From Lakatos (Philosophy of Science) and Pearl 

(Artificial Intelligence) we also realised that it was correct to use 

heuristic procedures to acquire heuristic knowledge. 

The next two questions to be answered were: how could the knowledge 

acquisition process be made generally applicable, and how should the 

heuristic knowledge be disseminated? The first led to my adoption of 

Klir's general systems concepts, and the second, to the adoption of a 

rule form (Expert Systems, Artificial Intelligence) for knowledge 

representation. In order to computerise the general systems version of 

the knowledge acquisition procedure, I realised that the new version 

of ELIXIR would require flexible data and program structures, so I 

turned to the database and artificial intelligence literature for 

help. I also realised that the new ELIXIR would be quite complex and, 

in order to manage its development, I drew on ideas in software 

engineering. Once completed, the new ELIXIR was tested on the 

reinforced concr·ete beam problem again, and then also on a oroblem 

involving linear elastic curved beams. Finally, I put all these ideas 

together and wrote this thesis. 

Dave Hawla 

August 1987 
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NOTATION 

All the below symbols and abbreviations are defined in the text but 

are listed here for referenc.e purposes. 

DEP Design evaluation problem 

KAP Knowledge acquisition problem 

HK 

KAS 

KASi 

CBKAS 

Heuristic Knowledge 

Knowledge Acquisition System 

Components of the KAS 

Computer-Based KAS. The components of the CBKAS have names 

such as FELIX, PRELIX, ELIXIR, etc. and do not correspond 

one-to-one with the components of the KAS 

KAc Knowledge .-lcquirer, i.e. the person performing the knowledge 

FEA 

AI 

EK 

MM 

NM 

DEProc 

DEProg 

KAProc 

KAProg 

acquisition 

Finite Element Analysis 

Artificial Intelligence 

Evaluative knowledge 

Mathematical model 

Numerical model 

Design evaluation procedure 

Design evaluation programme 

Knowledge acquisition procedure 

Knowledge acquisition programme 

. ' 

The following symbols are based on the general systems concepts of 

[55]. Unsubscripted capital letters denote sets. A lower case letter 

with a subscript is used for names of attributes or variables. 

KAP(P,G) 

p 

G 

A KAP for processor P with goal G 

Processor, i.e. an engineering software package 

The goal of knowledge acquisition. It will always be: 

"Find HK characterising an approximate Pareto optimal 

set for P" 



KAP(P,Gij) 

ccij 

xi 

A knowledge acquisition subproblem for P with Gi being 

the goal: "Find HKi characterising an approximate 

Pareto 0:1timal set for problem class Pein 

A knowledge acquisition subproblem for P with Gij 

being the goal: "Find HKij characterising an 

approximate Pareto optimal set for problem class Pei 

and control class ccijn 

Problem class i of processor P 

Heuristic knowledge about pci 

Control class j for Pei 

Heuristic knowledge about Pei and ccij 

Notational Patterns in Systems Symbols 51 

Before providing details of the contents of the various systems, we 

will first give an overview the main symbols used for primitive, data 

and transformed data systems. The pattern in the representation should 

then become evident. 

The primitive systems are: 

lo = <s0 ,s0 ,s), a source system 

where 

and 

Now (FN,FR), etc. so we can also 

define 



Thus we can also write s0 as sO = (SN,sR) 

S1milarly XO 

When data is added to s0 , we get 

where 

We can also define sN = (XN,FN,yN,IN), 

and S = (X,F,Y,I) and then write 

= (SN sR S) I t • 

xii 

Note: Although it is difficult to distinguish visually between S and 

S or Y and Y, the context of their use should make it clear 

enough. 

Transformed data systems simply have '-' or ,~, above each symbol 

Note, however, that sD does not have ID as a component. 

Primitive Systems 

Lo A source system Lo = cs0 ,s0 ,•S), i.e. it consists of an object 

system, an ima.ge system and a homomorphism between them 

s 0 An object system: s0 = (Xo,Fo,Yo,Io), i.e. attribute names 2.nd 

appearance sets for problem inputs, processor controls, 

out puts an.j indices 

Input attributes and appearance sets, i.e. x0 
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xN Set of input attribute names, i.e. xN = {X~, x~, ... } 

xR Set of possible appearances or ranges of appearances of input 

attributes, i.e. xR = {x~, x~, ... } 

x~ Name of j'th input attribute 

x1 Range of appearances of j'th input attribute 

FO Processor control attributes, i.e. FO = CFN, FR) 

Set of names of processor control attributes, i.e. 

FN = {f~, f~' ... } 

Set Of ranges of appearances of conrcl attributes . 

FR = {f~, f~, ... } 

f~ ·Name of j 'th control attribute 

f~ Appea~ance range of j'th control attribute 

yO Output attributes, i.e. yO = (YN, yR) 

yN Set of names of output attributes, i.e. yN = {y~, ~ •... } 

yR Set of ranges of appearances of output attributes, i.e. 

yR = { y~ ' y~ ' ••• } 

y~ Name of j'th output attribute 

~ Appearance range of j'th output attribute 

IO Index attributes, i.e. IO = (IN,IR) 

IN Set Of names of index attributes, i.e. IN= {i~, i~, ... } 

IR Set of ranges of appearance of index attributes, i.e. 
zR = {'R 1

1, i~, ... } 
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i~ Name of j'th index attribute 

i~ Apperance range of j 'th index attribute 

s0 An image system: s0 = (Xo,Fo,yo,Io), i.e. variable names and 

value sets for problem inputs, processor controls, outputs and 

indices 

x0 Input variable names and ranges of values, i.e. x0 = (XN,xR) 

xN Set of names of problem input variables. xN = {x~, x~, ... } 

xR Set of possible values or ranges of values of input variables, 
. xR ( R R } l, e, = X1 1 X2, • • • 

x~ Name of j'th input variable 

x~ Value range of j'th input variable 

FO Processor control variable names and value ranges, i.e. 

FO = (FN,FR) 

FN Set of names of processor control variables. 

FN = { f~, f~,. .. } 

FR Set of value ranges of processor control variables. 

FR = { f~, f~, ... } 

f~ Name of j'th processor control variable 

f~ Value range of j'th processor control variable 
J 

yO Output variable names and value ranges, i.e. yO = (YN,yR) 

yN Set of output variable names, i.e. yN = (y~, y~, ... } 

yR Set of value ranges of output variables. yR {y~' y~' ... } 
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y~ Name of j'th output variable 

y~ Value range of j 'th output variable 

r 0 Index variable names and value ranges, i.e. Io = (IN, IR) 

rN Set of index variable names, i.e. IN= {i~, i~, ... } 

rR Set of value ranges of index variables, i.e. rR = {i~, i~, ... } 

i~ Name of j'th index variable 

i ~ Value range of j 'th index variable 

B~ 
J 

B~ 
J 

Homomorphic mappings between attribute names and var·iable 

names and between attribute appearances and variable va.lues, 

i.e. B = (BN,BR) 

Homomorphism between (XN,FN,yN,IN) and (XN,FN,yN,IN) 

BN = { B~, B~, ... ] 

Homomorphism between (XR,FR,yR,IR) and (XR,FR,yR,IR). 

sR = £s~,s~, ... } 

j'th homomorphism between attribute and variable names. Often 
N N between xj and xj. 

j 'th homomorphism between appearance and value sets of the 

attributes and variables related by B~ 

Data Systems 

Data systems are primitive systems to which arrays of data have been 

added [55]. Adding data collected from running experimental programmes 

to s0 we get s0. Individual cases of data, i.e. data for a si.ngle 

experiment are denoted with Greek subscripts. 



X Set of problem input data, i.e. (X 1 ,x2, ..• } 

Xa. a.'th set of input values of experimental data. 

xa. = (x 1a.,x 2a.• ..• }, xa. e xR 

x a'th value of x~·. x e x~ ja. J ja J 

Fae S'th value of processor control values associated with Xa. 

Fae= {f1a.S'f2a.S'' .• }, Fa.a e FR 

YaS Output produced by P from Xa.,Fae 

yaS = (ylaS' Y2a.S' ... }; Ya.a e yR 

Yjae ae'th value of y~ ; Yja.S e y~ 

Iae Index value3 ~ssociated with Xa,Fas•Yaa· 

Iae = {i 1 a.a• i 2aa • · · • } 

aS'th value of i~ 

xvi 
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Transformed data systems 

The transformed data system sD is simply denoted by putting a 1 - 1 

above each element/ i tern occurring in sD. In a very similar· manner ,SD 

is denoted but it does not 

s0 = <x0 , FD, yD) with x0, FD, 
contain any index variables, i.e. 

yD having the same constituents as 

xD,FD,yD but with a 1 " 1 above the relevant symbols. 

Subsets 

Whereas Greek subscripts were used to denote individual cases of data, 

Roman subscripts are used to denote groups of cases or subsets of the 

data sets or range sets. Mostly this will only be used with $D. 

" s = (X,F,Y) 

A A A A A 

Sk9. = (Xk,Fki 11kQ)' xk x, yki y 

" " 
xk = { xk Cl Cl= 1 , 2 , •.. , n k} 

Fki Cl=1,2, ••• ,nk, 8=1,2, .•. ,nki} 

" 
yk9, a=1 ,2, ... ,nk, 8=1 ,2, ... ,nki} 

A 

A K-partition of S will be denoted by SK 

A 

where {Ski I k=l,2, ... K, i=1,2, ... ,L(k)} 

Using similar conventions, we denote subsets of $R = (XR,FR,yR) by 

"R ::R Where Xk A J 

"R Whereas the Ski are :finite point sets, the sets Ski generally consists 

of contiguous intervals or cells in $R. 
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INTRODUCTION 

A structural engineer faced with the problem of certifying the 

strength of a mechanical component will plan a set of stress analyses, 

execute the plan, i.e. calculate the stresses, and then integrate this 

information/data into an evaluative statement of the strength of the 

component. The plan will contain some simple analyses done by hand or 

via handbook tables and some detailed analyses such as finite element 

analysis (FEA). An evaluation of the strength of a mechanical 

component is however just a special case of what we will call a design 

evaluation problem (DEP). 

Complementary to design evaluation problems are the problems of 

providing/inventing/developing engineering analysis theories formulae, 

handbooks, codes of practice, computer packages, guides for using such 

packages and training in the use of these tools. In this thesis, we 

wish to address only the problem of providing guidance for the use of 

engineering computer packages for aiding the solution of design 

evaluation problems. 

Numerical modelling packages exist for simulating many physical 

phenomena exhibited by solids, fluids and complex machines. Until 

recently however, complex numerical models such as those used in FEA 

were only built for the evaluation of expensive or otherwise important 

components of large engineering projects. However, the decreasing cost 

of computer hardware and increasing availability of sophisticated 

engineering software has meant a much greater use of such software 

tools ( [78] is entitled 'FEA for the Masses'). On the other hand 1 the 

scope and complexity of such software has in general increased and 

continues to increase [69, 70]. The combination of these factors has 

led to concern among such software users, vendors and academics 

regarding the problem of effective and efficient use of such software 

and the credibility of the results of such use. In the field of FEA 

there has recently been a considerable increase in the number of 

publications and conferences addressing this problem [ 39, 40, 69, 70, 

76,77,26]. In fluid dynamics, [80] says that: "Computational fluid 

dynamics has many successes for the solution of simple standard 

problems. For relatively complex problems especially if nonlinear and 

of mixed type, the computed approximate solutions are mostly of 
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dubious accuracy and credibility." The contention of this thesis is 

that part of the problem may be alleviated by the provision of 

adequate appropriate knowledge of the Pareto optimal set of 

engineering packages. By the Pareto optimal [ 54 l set of an engineering 

package, we mean the set of values of the numerical modelling 

variables (e.g. step sizes) which, for any values of the design 

variables (e.g. dimensions), simultaneously maximises the accuracy and 

minimises the cost of solution. Currently such knowledge is derived 

from some basic theory of numerical analysis, user's manuals with 

their demonstration examples, experience and common (engineering) 

sense. It is inevitably vague and incomplete and thus of a heuristic 

nature. Such heuristic knowledge is often held by a relatively small 

number of experts who have built up their expertise through years of 

experience with the software. Acquiring such heuristic knowledge is 

therefore a significant problem and in this thesis will be called the 

knowledge acquisition problem (KAP). That knowledge acquisition is a 

problem is recognised by expert systems people [5, 6, 39, 40] as the 

'bottleneck' in expert system development. For convenience, heuristic 

knowledge wi~l hereafter be abbreviated to HK. 

The principal aim of the thesis is to show how heuristic knowledge for 

numerical modelling via engineering software can be acquired. The aim 

of this introductory chapter, is to provide the reader with most of 

the concepts needed for the thesis. It thus forms a condensed version 

of the thesis as a whole. Later chapters will deal more thoroughly 

with the methods and ideas presented in this chapter. 

The next section presents a simplified systems view of the use of 

engineering software. It introduces the notation and some of the basic 

concepts to be used in the thesis and explains why heuristic knowledge 

must be sought. Section 1.2 deals with knowledge acquisition. It shows 

how heuristic knowledge is usually acquired and for this it is 

necessary to explore the design evaluation process. It then shows 

briefly how heuristic knowledge· can (and should) be acquired. Section 

1 ,3 then presents a knowledge acquisition procedure incorporating a 

knowledge acquisition system (KAS). This procedure and the KAS consist 

of an integration . of t1·adi tional and artificial in~elligence (AI) 

techniques unified via the concepts of general systems [55]. Section 

1.4 briefly explains the necessity of computerising the KAS. Section 
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1. 5 presents an exercise of acquiring heuristic knowledge for 

numerical modelling of a reinforced concrete beam via an FEA package 

called NLFRAM. 

The approach to knowledge acquisition presented in the thesis supports 

the increased effort towards adequate training and education of users 

of engineering software. In fact it should ease the process of 

education and training because the knowledge acquisition procedure is 

a systematic procedure by which software users may organise their 

experience and so acquire HK themselves. 

1 • 1 A SIMPLIFIED SYSTEMS VIEW OF THE USE OF ENG!NEERING SOFTWARE 

As an introduction to the general systems concepts and notation to be 

used in the thesis, a simplified systems view of the use of 

engineering software will be given. Most of the general systems 

concepts used in this section are based on Klir [55]. 

Any engineering software package may be considered as a process1'.)r P 

that takes problem inputs plus some engineer (user) supplied processor 

controls and generates outputs. 

represented as in Figure 1.1.1. 

The process of using P may be 

FIGURE 1 • 1 • 1 

PROBLEM INPU p 
·auTPUT 

PROCESSOR 
CONTROL 

Eng 
USER 

Systems view of the process of using an engineering 

software package P 
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The presence of HK in the above serves to emphasize the fact that the 

engineer makes use of heuristic knowledge (experience, advice in 

manuals, etc.) to select appropriate processor controls. 

For FEA of structures, typical problem inputs are gebmetric data, 

material properties, loads, boundary conditions and initial 

conditions. Typical processor controls are mesh density, element type, 

time step sizes, equilibrium iteration algorithms, iteration 

convergence tolerances and numerical integration order and typical 

outputs are displacements, velocities, reactions and stresses. 

Usually the HK consists of vague relations between inputs, controls 

and outputs derived from user's manuals, especially the example 

problems sections, previous experience, some basic theory and common 

(engineering) sense. It consists of knowledge of trends such as 

accuracy increases with increasing mesh density, decreasing time step 

sizes and tighter convergence tolerances: mesh density should be 

higher in areas of large gradients; high accuracy usually involves 

high cost; etc. 

Figure 1. 1. 1 perhaps gives the impression that for any problem, the 

selection of processor controls and generation of outputs is a 

straightforward process. In practice, however, complex mathematical 

modelling problems are solved by an iter:iti ve refinement process 

involving a succession of increasingly complex or more detailed 

numerical models. The value of the HK lies in its use for effective 

and efficient control of this process. 

The problem space of P may be defined as the set of all possible 

problems which P can solve. Similarly, the control space of P consists 

of all possible ways of using P to solve problems in its problem 

space. P maps its problem and control spaces onto its output space. 

Ideally the user would like to know l1ow to control the solution 

process for any problem in the problem space. However, even for quite 

small engineering packages, the enormous variety of problems and 

controls make the pr-:-lJlem and control spaces so complex that it is 

usually impossible (or at least unrealistic) to acquire such complete 

knowledge. Instead, engineering users usually settle for knowledge 
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which is derived from the study of P on simplified problem and control 

spaces. These simplified problems and control spaces will be called 

problem classes (PC's) and control classes (CC's). Simplification can 

be achieved by Pearl's approach of constraint modification [2]. The 

knowladge derived from the study of' such simplified spaces will be 
• heuristic [2]. An extreme application of ~implification would produce 

a set of examples, i.e points in the problem and control spaces. 

A problem class (PC) can be defined in terms of variables and ranges 

of values of ti1ese variables, i.e. as XO (XN ,XR), where 

xN {x~,x~, •.• } is the set of variable names for the PC and 

xR = {x~,x~, ... } is the set of ranges of values which the variables 

may take. Similarly, a control class (CC) can be defined by 

FO = (FN,FR), where FN = {f~, f~, ... } is the set of variable names for 

the CC and FR = {f~,f§, •.. } are the corresponding value ranges. 

Corresponding to x0 and FO is the output class yO = (YN,yR). Taken 

together, the problem, control and output classes form a primitive 

system s0 = cx0 ,F0 ,Y0 ). 

Any given problem irr"the PC can be represented by its data Xa E: xR. 

Because the selection of processor controls is dependent on Xa and in 

addition on cost and reliability aspects, processor control data will 

be represented by F af3 E: FR. When Xa and F aB are fed into P, the output 

is Yae s yR, This view is shown in Figure 1.1 .2. 
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Xa p Ya 

Fap 
Xa E xR 

Fap FR £ 
Eng 

yR USER Yap.E 

Systems view of the process of using of an engineering 

package P on a particular problem class and a 

particular control class. 

The HK in Figure 1. 1. 2 is now specific to the problem and control 

class specified by s 0 • Taken together, all data for a particular use 

of P, i.e. (Xa,Fae'Yaa) will be referred to as a data case (Saa)· A 

set of data cases will be represented by S = (X,F,Y). When s 0 is 

supplemented by data S, the result is a data system sri = (Xb,Fo,~o). 
x0 = (XN,xR,x), FD = (FN,FR,F) and yD = (YN,yR,Y). Alternatively, 

s 0 = (SN,sR,s) where sN = (XN,FN,yN), sR = (XR,FR,yR) anc.l s = (X,F,Y). 

It was stated in the introduction to this chapter that the goal of 

knowledge acquisition is to acquire knowledge concerning the behaviour 

of P such that, armed with this knowledge, P may be used effectively 

and. efficiently. Effective use requires that the engineer has 

sufficient knowledge to select processor controls Fae which will 

solve his problem Xa to an appropriate level of reliability 

(accuracy, confidence, etc.). Efficient use requires in addition that 

the controls selected produce the desired reliability in the cheapest 

manner possible. 

The use of the term reliability of solution rather than the term 

accuracy of solution needs explanation. The term accuracy of solution 

is usually understood to be some measure of closeness to an exact 

solution. However, most engineering software packages were developed 
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for applications for which exact solutions are not available. The 

reliability of a solution will therefore be defined as some measure of 

closeness to what we will call a reference solution •. A reference 

solution is one which is believed to be sufficiently accurate for all 

engineering purposes. The term 'believed' rather than 'proved' is used 

because, while proof will usually be impossible, quite strong 

arguments from physical and mathematical principles can be made to 

justify belief in the validity of the reference solution. The use of 

such terminology follows that of (56-60]. Invariably reference 

solutions will be expensive to obtain. In some ways reference 

solutions are like measurement standards or control experiments - they 

represent standards against which other things are measured. However, 

standards are usually chosen for their accuracy with repeti ticn (this 

is no problem for most engineering software) whereas reference 

solutions are chosen as a sort of ideal solution or for their 

credibility as an approximation to an ideal solution. 

The efficiency of obtaining a solution depends on the s~lection of Fas 

because a similar level of reliability can be achieved with widely 

varying costs using different Fas (80]. The appropriate level of 

reliability will depend on the reliability requirements and cost 

constraints of the particular design evaluation for which the problem 

Xa is to be solved. While effective use requires only knowledge of the 

range of possible levels of reliability and their generating Fas• 

efficient use requires 

with minimum cost. In the 

in addition that these Fas produce solutions 

~anguage of polyoptimisation this may be 

optimisation problem: find the Fas t: FR expressed as the following 

which are Pareto optimal (54] for each Xa t: xR, where the objectives 

are to maximise reliability and minimise cost. However, acquiring this 

knowledge of the Pareto optimal set of s0 may be too expensive. The 

expense may be reduced by converting the optimisation problem to an 

approximate optimisation problem. By extending the def ini ti on of 

approximate optimisation given in (2] to approximate Pareto 

optimisation, the above stated optimisation problem becomes: find the 

Eas t: FR which are approximately Pareto optimal for each Xa t: xR. An 

approximat~ly optimal solution is defined in [ 2] as one which has a 

sufficiently high probability of being within a specified factor of 

the optimal solution. 
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1.2 KNOWLEDGE ACQUISITION 

In section 1.1, and Figure 1 .1.2 in particular, we gave a systems view 

of the process of using an engineering packsge P to solve a problem 

defined by Xcx. The purpose of using P to solve Xa was stated in the 

introduction to be that of aiding the solution of design evaluation 

problems. In using P the engineer (user) made use of HK. The purpo~:e 

of this section is to show how HK is usually acquired - for this we 

need to study design evaluation more closely - and to provide an 

introduction to a systematic way of acquiring HK. 

Given a DEP (D,G), i.e. a DEP for design D and a goal G capturing the 

design requirements, an engineer will use P, any HK and a prior 

evaluative knowledge EKO to find evaluative knowledge EK for ti'le 

design. For example, D might be a turbine blade with G being to 

evaluate D with respect to strength. EKO would typically be derived 

from a simple hand stress calculation indicating that the stresses are 

close tc the material rupture stress and so more detailed stress 

analysis is required. P would typically be a structural FEA package 

and the HK would then relate to the use of this package. The EK sought 

is a statement of whether the blade will fail or not. In general, G 

def in es appropriate evaluation criteria (failure, performance, 

serviceability, etc.) which are in turn defined in terms of the 

behaviour (stresses, flows, efficiencies, etc.) of the design. EK is 

all knowledge/information/data needed to evaluate the design with 

respect to G. 

The above view may be formulated in the following block diagram form. 



FIGURE 1 .2.1 
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Eng 

p 

An abstract block diagram view of the design evaluation 

process 

In Figures l. 1. 1 and l. l. 2, the engineer (user of P) was given the 

problem Xet and selected only the controls F ete. Now, however, he is 

given a DEP(D,G) and not only selects controls Fae but also : decides 

how to model D via P by selecting Xa and Fae• interprets the output 

YetS · and finally makes an evaluative statement. All of these are 

guided by EKO and HK. This more detailed view.ris depicted as follows. 

FIGURE 1 .2.2 

p 

Eng 

The use of P to simulate the behaviour of D in the 

design evaluation process 

The Xa essentially specifies a mathematical model of D while Faa 

specifies how to solve Xa numerically. Usually a number of 

mathematical models eac.:n solved via a number of numerical models will 

be required for each design evaluated. This set of mathematical and 
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their associated sets of numerical models together form what will be 

called a design evaluation programme ( DEProg). Ideally a D.EProg will 

be planned in the first phase of evaluation. A DEProg allows the 

engineer to learn systematically about the physical behaviour of a 

design D and so enables him to make evaluative statements about D. 

During the planning of a DEProg the engineer will use many heuristics 

like making conservative simplifying assumptions, relaxing some 

constraints, etc. (cf simplification of problem and control spaces). 

Although the process is based on sound mathematical, physical and 

logical principles, the heuristic human decision element automatically 

makes the (planning) process and its output (the DEProg) heuristic 

too. 

A by-product of using P to learn about designs is that the engineer 

simultaneously learns about the behaviour of P. With sufficient 

intelligent and varied use of P, the engineer will build for himself 

an experiential heuristic knowledge base. Such knowledge will usually 

be very difficult to state explicitly and will therefore be difficult 

to convey to others. Also, due to time const~aints, etc. the knowledge 

may not be acquired systematically and so will usually be fragmented 

and far from Pareto optimal. The learning process is essentially 

passive. What is needed instead is systematic active experimentation 

to acquire explicit HK. 

While the primary goal of design evaluation is the production of EK 

for a design 0, in the KAP the primary goal G is the production of HK 

which ideally characterises the aoproximate Pareto optimal set of a 

processor P. Such a KAP will be denoted by KAP( P, G) . If a knowledge 

acquirer (KAc) makes use of a KAS (a computer-based sys tern for aiding 

knowledge acquisition) and any a priori heuristic knowledge (HKO) 

available to him to solve a KAP(P,G), the knowledge acquisition 

procedure can be represented in the following block diagram form. 



FIGURE 1.2.3 
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KAc 
KAS ..,.__-~----i 
p 

An abstract block diagram view of the knowledge 

acquisition process (Cf. Figure 1.2.1). 

In contrast with the passive acquisition of HK about P, the knowledge 

acquisition procedure uses active experimentation on P to learn about 

its behaviour and thus formulate explicit HK. The following figure 

illustrates this view. 

FIGURE 1 .2.4 

Xa 

KAc 
KAS 

Learning the behaviour of P by active experimentation 

in the knowledge acquisition procedure (Cf. 

Figure 1.2.2) 

An important difference between the design evaluation and knowledge 

acquisition processes shown in Figures 1.2.2 and 1.2.4 respectively 

should be highlighted. In the former P is used to simulate the 

behaviour of D while in the latter P itself is the object of study and 

so appears twice in Figure 1.2.4. 
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The knowledge acquisition procedure to be presented in the next 

section will be based on the following. Given a KAP(P,G) for P with 

goal G, a KAc, aided by a KAS, uses any available HKO to design 

experimental programmes on the problem and control classes, collect 

the data, apply appropriate transformations, recognise patterns in the 

data, formulate HK by inference from these patterns and finally tries 

to explain the HK obtained. The whole process may be repeated and, as 

more is learnt about P, the HK becomes increasingly refined. 

Although inferred from experimental data, the knowledge will generally 

be heuristic rather than empirical because 

(a) the programmes of experiments will be designed using heuristic 

principles, not only statistical methods, 

(b) the knowledge is inferred by pattern recognition, human and 

machine, and 

( c) the process is one of learning (by the KAc primarily) • 

Heuristic knowledge is always goal-specific because all of (a) to (c) 

are done with the goal borne in mind. It will usually be incomplete 

because problem and control classes are simplifications of the whole 

spaces and cater only for the most important mathematical and 

numerical modelling problem types. The knowledge is clearly not 

deductive because experimentation is basic to the procedure. 

1 .3 A KNOWLEDGE ACQUISITION PROCEDURE 

The knowledge acquisition procedure we propose consists of three main 

phases. First is a planning phase, where the KAP is defined, goals 

set and strategies or plans for solving the problem and attaining the 

goals are developed. It involves decomposition of the problem. Second 

is the execution phase, i.e. carrying out the tasks or subprcblems set 

in the pl~nning phase. It involves data or information gathering. 

Planning and execution are usually guided by current knowledge and 

experience. Finally comes an integration phase where the results of 
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executing the individual tasks or subproblems are integrated into a 

statement of the result of the knowledge acquisition exercise as a 

whole. It also involves relating knowledge and experience acquired to 

previous knowledge and experience. 

The Planning Phase 

In the planning phase, the original KAP ( P, G) is replaced by a 

set of knowledge acquisition subproblems, KAP(P,Gi) and KAP(P,Gij). 

Each goal ai is: "Find HKi characterising an approximate Pareto 

optimal set for problem class Pein, while each goal a 1 J is: "Find HK 1 J 

characterising an approximate Pareto optimal set for problem class Pei 

and control class ccijn. The set of knowledge acquisition 

subproblems, i.e. Ui,j KAP(P,Gi), KAP(P,Gij) will be referred to as a 

knowledge acquisition programme (KAProg). Note that ai is defined i:1 

terms of Pei and Gij in terms of Pei and eeij. The planning phase i3 

done (almost) exclusively by the KAc. He will draw on any available a 

priori heuristic knowledge to help him formulate the KAProg. P Ls 

supposed to be able to analyse complex mathematical models via tht~ 

analysis of numerical models and the objective of knowledge 

acquisition is to provide the user of P with HK to aid the design of' 

such numerical models. Complex mathematical models are usually 

analysed by some approximate decomposition into a set of simpler 

submodels and then these simpler submodels analysed via numerica: 

models. The set of problem classes in the KAProg should (ideally) be 

such that numerical modelling advice for each mathematical submodel 

exists in one or more of the problem classes. Of course, this is only 

an ideal and ultimately a decision must be made on the appropriate 

level of complexity of individual problem classes. Typically the 

KAProg should have a number of simple problem and control classes plus 

some more complex ones but few trivial classes (classes with only one 

variable). Even though the knowledge acquisition effort is focussed on 

a set of problem classes rather than the whole problem space, for each 

problem class the set of all possible ways of controlling p (i.e. the 

control subspace for the problem class) mc.y still be large and 

complex. So just as a problem space is replaced by a set of problerr: 

classes, control subspaces of p are replaced by sets of control 
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classes. Each problem class Pei will have its own set of control 

classes namely ccij. The planning phase is summarised symbolically by 

the following figure. 

KAc 
(i) KAP (P,Gl --r-~ y KAP (P,G

1 
) 

HKO 

(ii) For each 1 : 

KAc 
KAP (P,GI) ----~ KAP (P,GIJJ 

r J 

HKO 

FIGURE 1.3.1 The planning phase of knowledge acquisition 

The Execution Phase 

The execution phase consists of acquiring heuristic knowledge HKij for 

each of the subproblems KAP(P,Gij). The KAc will utilise any a priori 

heuristic knowledge HKO and knowledge acquisition system (KAS) 

available to him. This process is shown in Figur•a 1 .3.2. 

FIGURE 1 . 3 . 2 

For each i and for each j : 

KAc, KAS, P .. 
KAP (P,GIJ ) -------HK1J 

r 
HKO 

Execution of each of the knowledge acquisition 

s 11bproblems 

The execution phase for each knowledge acquisitS . .:Jn subproblem divides 

naturally into five basic steps, namely 



(0) system definition, i.e. defining variables to be measured 

( 1) experimentation and data collection 

(2) data transformation, e.g. calculation of reliabilities 
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(3) 'partitioning' of the transformed data using pattern recognition 

[9] 

(4) formulation of HKij. 

The above five steps are easily identified in Figure 1 .3.3 which shows 

a symbolic view of the whole execution phase. Each step involves the 

use of an .element KASi of the KAS. Each of these steps wi 11 be 

explained in terms of the KASi and their products SO, sD, SD and S~. 
It will also be assumed that the KAc operates the KASi and makes use 

of HKO throughout the procedure . . 

KA So KAS1 KAS2 KAS3 KAS4 
KAP (P,GU) ---•sO ---sD--• sD ---s~ --•HKij 

FIGURE 1 . 3 . 3 

KASo and SO 

A more detailed symbolic view of the execution phase 

showing the five basic steps involved 

When the KAProg is designed, its constituent Pei and ccij will 

normally be defined in fairly descriptive terms. For example they 

might be defined via a set of diagrams and lists of problem and 

control attributes. These diagrams and attributes must be converted to 

a set of variables and value ranges, i.e. s0 = cx0 ,Fo,yo) where 

XO= (XN,XR), etc. must be defined. The objective of defining SO is to 

provide a proper framework for experimentation. 

KAS1 represents the design of experimental programmes [ 13-17] on the 

sets xR and FR, the execut.ion of the experiments and the collection 

of the data. Each experiment or run of P results in a data case 
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(Xa,Faa•Yaa)· Together these data cases forms = (X,F,Y). When sO is 

supplemented by data S the result is the data system s0 . 

KAS') and SD 
G. 

The KAc is usually not interested in the outputs Y themselves but 
" 

rather in particular features Y of the output such as reliability and 

cost. In gener'al Y will be some transformation of Y. The transformed 

var'iables and their ranges are r'epr'esented by yN and yR. Similarly the 

KAc may require transformed problem and control variables. The result 

is a transformed data system s0 = (x0 , p.o, yD) or $D"' (SN, sR, S). 
It will, however', be quite common to have xD = xD and FD = FD. 

"D "N "R " "R "R " By SK we mean (S , SK, SK). SK is a set of subsets of S and SK is a 

set of subsets of s. s~ {S~ll. jk = 1,2, ... , K, JI.= 1,2, .. ., L(k)}, 
"R "R "R "R "R " . . . . 

where Skll. = (Xkll.' Fkll.' YkQ. )cS. SK is similarly defined. K is the 

number of subsets x~ of xR while L(k) is the number of subsets F~ll. of 

FR associated With x~. The KAc's goal ... here is to f~rm s~. This he 

will do by first studying the data S, selecting SK ana then by 

induction forming S~. At this point the reader may be justifiably 

confused because we have not explained why the KAc 's goal is to form 

~~ nor constrained him in his selection of the sets of subsets (S~ and 

SK). In the next subsection we will see how the above set represention 

matches the rule form we have chosen for repr'esenting the HK. Each set 

S~ll. will correspond to a single rule. Some of the constrain ts on 

selecting S~ are: the union of the X~ should equal xR so that the 
"R whole pr'oblem class is covered, the union of the Ykll. should 

"R approximately cover Ykll. for each JI. so that an adequate se,:ection of 

(for example) costs and reliabilities is provided, the Fkll. should 

yield approximately Pareto optimal solutions (FR w.ill not normally be 

covered), the s~ll. (the individual rules) and s~ (the set of rules) 

should have simple forms and should be explainable. Sets of subsets 
"R which satisfy such constraints will be called 'partitions', i.e. SK is 

a 'partition' of sR. More detail can be found in [Chapter 3]. 
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But how does the KAc 'partition' ,SR into subsets satisfying these 

constraints? Usually the first step would be to apply a filter to the 

data S, where the criteria for filtering are based on the Pareto 
.... 

optimality of the Yas. In other words, individual elements Sas whose 

Yae are relatively inefficient are discarded. This should yield a 

typical trade-off pattern (for example of cost increasing with 

reliability) in the remaining data. Then the KAc would look for groups 

of cases in F and X which produce similar Y. Clustering techniques 

[12 ,20] can be quite useful as an aid in this regard. At some point 

the KAc decides on a 'partition' SK of the data s. By induction he 

then 'partitions' ,SR into s~. i.e. he i~fers a set of S~i whose 

properties can be represented by the data Ski· The process is shown 

symbolically in Figure 1 .3 .4. Much more detail of the techniques and 

processes involved is given in [Chapter 3]. 

FIGURE 1 . 3. 4 

KAS
4 

and HKij 

,. KAS31 " 
s----~sK -- --
S
"R KAS32 ... __ ,.. "R ---------------SK 

Symbolic view of the operation of KAS3 . KAS31 involves 

pattern recognition and 'partitioning' of data while 
"R "R KAs32 involves 'partitioning' of S int~ SK by 

induction (indicated by the broken line) from SK. 

KAS4 involves formulating HKij from the 'partitioned' data set S~. 
Knowledge representation forms are important here. This thesis 

proposes that the HK be represented as rules. A rule will be taken to 

mean a statement of the following form: 

IF antecedent THEN con;:equen t 

Examples of rules can be seen in Section 1 .5. Such rules are to be 

interpreted as providing sufficient conditions (antecedents) to 
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provide desired consequents. In HKij the desired consequents would be 

a particular YaB' for example a desired 

acceptable cost. The antecedents would 

level of reliability and an 

then specify to which Xa 
.... .... 

(mathematical model) such Yas is applicable and which Fae is required 
"R "R "R to achieve it. Quite clearly the subsets (Xk, Fl<i' YkQ.) convey such 

information. In fact one may write the kQ. 'th rule as 

IF and THEN 

Feedback 

Although not shown in any of the previous figures, feedback is an 

essential part of the knowledge acquisition procedur·e just as it an 

integral part of any adaptive, iterative or learning process. Feedback 

of knowledge already learned becomes a priori knowledge for the next 

step, in the process. Typically it is used for: redesign of 

experimental programmes; selection of features, reliability criteria, 

data subsets, data views for pattern recognition and pattern 

recognition aids and even to reformulate the primitive system. In this --.: 

way knowledge may be refined. Many feedback paths need to be added to 

Figure 1.3.3. More detail may be found in [Chapter 3]. 

The Integration Phase 

The final phase of knowledge acquisition is to combine the separately 

acquired HKij into a structured integrated whole, i.e. into HK. 

Symbolically this may be represented as in Figure 1.3.5. 
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(i) For each 1 : 

KAc 
U HKli--.--.·HK1 

J 

(ii) KAc U HK---.... HK 

FIGURE 1 .3.5 Integrating the separately acquired HKij and HKi into 

HK for the original problem 

Strongly connected to such integration is the explanation of the HKij 

and the HK. Explanation is important because 

(i) It helps the user of the HK to understand it and hence accept 

and use it. 

(ii) It serves as a check on the validity/acceptability of the HK. 

(iii) 

If the KAc cannot find an explanation this should be regarded 

as an indication of lack of understanding and hence a 

motivation for further study. Learning to understand the 

behaviour of P is important for knowledge refinement. Usually 

explanations will be of an intuitive nature. 

It can form the basis of generalisations of the HKij to 

broader problem and control classes [50]. 

Also important in integration is description of how to use the HK and 

what its limitations are. 
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Dissemination of the HK 

The simplest form of dissemination is to provide the users of P with 

the HK in a document accompanying the standard documentation of P. If 

the HK or parts thereof are sufficiently robust and their antecedents 

easily recognised in the data input for P, it may be bu.ilt directly 

into P. Some automatic time stepping schemes in FEA packages are 

examples of this form of dissemination. Increasingly popular is 

dissemination in the form of an expert system. In fact recent 

developments in expert sys terns technology were partly inspirational 

for the present work. The rule form we have chosen is suitable for 

dissemination by any of these methods. 

1 .4 THE NEED FOR A COMPUTER-BASED KNOWLEDGE ACQUISITION SYSTEM 

The HK acquired will normally be shared by. a number of users who may 

each have a different set of criteria for measuring reliability. For 

example, suppose P computes outputs y1 and y2 • If P is an FEA package, 

y1 might be displacements and y2 might be stresses . One user may 

define reliability in terms .... of y1 .... while another in terms of y2 • 

Although their reliabilities y1 and y2 may be positively correlated, 

the magnitudes may be very different and inappropriate criteria will 

lead to either inefficient use of P or to inadequate reliability. The 

reliabilities may however be negatively correlated in which case 

further trade-offs are necessary. Even if it is intended that the HK 

deal with whichever criteria yields the worst reliability, the KAc may 

not know beforehand which one it will be. Faced with such a situation 

the KAc would ideally like to acquire knowledge based on more than one 

criteria and hence need to record both y1 and y2 values. For 

numerical solution of PDE's, this could result in vast quantities of 

data being recorded and processed. Computer implementation of the 

KAS thus becomes essential. 

Although it was realised that a computer-based knowledge acquisition 

sysl<:.:i (CBKAS) applicable to quite general engineering packages would 

be needed, it was also realised that its development would require 

considerable effort. Therefore, we decided to test the feasibility of 
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computerisation by developing a prototype version of ELIXIR which was 

specific to a particular KAP (In fact it was specific to the KAP dealt 

with in the next section). This also helped to identify the data 

management and processing requirements for the more general version of 

ELIXIR. The feasibility study highlighted the need for very flexible 

data and program structures. This led to the adoption of ideas from 

database theory, artificial intelligence program and data structures, 

interactive programming, graphics and open sys terns. To manage the 

implementation of the second version of ELIXIR, some software 

engineering principles were adopted. Although very useful, as 

demonstrated in the examples, ELIXIR will need additional features not 

foreseen and perhaps even restructuring. Due to the variety of 

possible applications, it is believed that ELIXIR will continue to 

evolve. 

Briefly the ELIXIR system consists of the following set of programs: 

FELIX - Corresponds to KAS0 • It is used to define variable names, 

types, etc. It initialises a database called EDB (ELIXIR 

Database). All data specific to the KAP is stored in EDB or 

any database created by the ELIXIR system. Also included is 

a specification of how PRELIX is to interpret the data 

produced by the processor. 

PRELIX - Corresponds to KAS1 • It is used to capture data (X, F, Y), 

i.e. the values of variables. 

ELIXIR This is the main module. 

ELIXIR. Transformations of 

KAS2 and KAS3 are done with 

s0 to s0 are done via 

ELIXIR. sD is stored on another database called EDBn in a 

form more suited to the pattern recognition processes of 

KAS3 . 

Other modules exist for reporting and graphical viewing of the 

database contents. 
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1.5 A SIMPLIFIED EXAMPLE TO ILLUSTRATE THE MAIN CONCEPTS 

The example presented below is a simplified version of an example in 

[Chapter 5]. It demonstrates the basic ideas and steps in the 

knowledge acquisition procedure. 

The Planning Phase - KAP(P,G) and KAProg 

NLFRAM [79] is a finite element structural analysis program. Plane 

frames with material and/or geometric nonlinearities may be analysed 

under static or transient dynamic loading. 

It was known how to use NLFRAM to get reliable solutions. However, 

efficient use of NLFRAM requires knowledge of the possible levels of 

reliabilities and their accompanying costs and how to achieve these. 

Such knowledge was not available. 

Even though NLFRAM is a relatively small program, it is still not 

realistic to acquire complete knowledge of its behaviour. The 

heuristic approach replaces this complete knowledge with HK for a set 

of problem and control classes (i.e. a KAProg). Here the use of the 

KAS can only be demonstrated on a single problem and control class. 

By suitable generalisation, the classes could easily be extended to 

cover most of the applications of NLFRAM. The KAProg therefore 

consists of only one problem and one control class, namely KAP(P,G 11 ). 

The Execution Phase - KAP(P,Gij) and HKij 

The goal G11 for the chosen classes is as follows: 

G 11 Find the heuristic knowledge characterising the approximate 

Pareto optimal set for the problem shown in Figure 1.5.1. (The 

problem class contains only one problem.) 
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The problem, control and output considered relevant are characterised 

by the following attributes. 

Inputs (beam dimensions; materials; supoorts; loading 

programme) 

Processor 

controls 

(mesh density; number of depth integration points; 

concrete tensile stress release rate) 

Outputs (displacement under point load; computational cost) 

The measurements of these attributes are made via the variables in the 

primitive system: 

SO = 

Here 

xN 

xR 

FN = 
FR 

yN 

yR = 

{BMLEN, BMDEP, BMWID; MA'INO; BCONDS; PLOAD} 

{all variables fixed to values as shown in Figure 1 . 5. 1} 

(NELT S; NDEPTH; ALPHA} 

{(4, 6, 8, 10, 12, 14, 16); (4, 5, 7, 9, 11, 13); 

(real numbers [4.0, 12.0])} 

{DISP; COST} 

{(real numbers [0.0, 0.012]); (real numbers [0.0, 1000.0])} 
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The next step was to generate S = (X,F, Y) and form s0 , X is just 

the data needed by NLFRAM to describe the problem. F is a set <.Jf 

values which was established in a series of programmes of experiments 

on FR (a total of 65 experimental cases were generated). From X and 

F, NLFRAM generated Y. Amongst these cases was one which produced a 

highly reliable solution (a reference solution). 

"D 
KAS

2 
and S 

We were not interested in Y itself but only in its reliability 

and cost aspects. To calculate the reliabilities we selected DISP as 

the relevant output feature and compared it to that of the 
A 

reference solution. Thus Y consisted of the reliability and cost of 

each solution. In this exampJ.e problem and control variables were not 
· "D D -"D D transformed, i.e. X = X and-F = F . 

A 

Figure 1.5.2(a) shows a plot of the Y data, i.e. reliabilities and 

costs, for the initial experimental programme. Since we were 

interested in the computational efficiency of obtaining solutions, we 

removed by a filtering process, based c:'l the Pareto principle, those 

cases that were inefficient. The result of this is shown in Figure 

1.5.2(b). 
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FIGURE 1.5.2 Reliability versus Cost for the Initial Programme of 

Experiments 

(a) Unfiltered 

(b) Relatively inefficient solutions removed 

No clear pattern emerges from the above : the data is just too sparse. 

However, from the tabulated filtered data it was possible to identify 

regions in FR which would yield points in the RELY-COST plane closer 

to the Pareto optima. A series of further experimental programmes was 

run - a total of four programmes. SK could then be identified. Then by 

inducti·:·n from ~· s~ was selected and a final programme of 
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experiments chosen to provide a better 'empirical basis' for these 

subsets (S~~)· Some more inefficient cases were filtered and some 

cases which would complicate the rules were removed too. The results 

of this are shown in Table 1 .5.1 and Figure 1 .5.3. 

CASE NELTS NOEPTH ALPHA RELY COST 
NO. ( 1 ) SRU 

--------------------------------------------------------------
2 

27 

60 
61 
52 
50 
51 
53 

57 
c:. 
~o 

63 
62 

45 
46 
59 
58 
38 
36 

31 
43 
32 

7 

TABLE 1.5.1 

. 160E+02 . 130E+02 .400E+01 .999 117. 

.160E+02 . 130E+0.2 .400E+01 .999 116 . 

.800E+01 . 900E+01 .450E+01 .983 41.4 

.800E+01 .110E+02 .450E+01 .980 45.9 

.800E+01 .110E+02 .400E+01 .980 47.6 

.300E+01 . 900E'l-01 .400E+01 .979 45.3 

.8COE+01 .900E+01 .500E+01 .975 43.9 

.800E+01 .110E+02 .500E+01 .974 49.5 

.600E+01 .110E+02 .500E+01 .954 37. 1 

.600E+01 .900E+01 .500E+01 .947 36.2 

.600E+01 .110E+02 .550E+01 .944 32.9 

.600E+01 .900E+01 .550E+01 .944 29.0 

.600E+01 .900E+01 .70QE+01 .857 21 . 2 

.600E+01 .110E+02 .700E+01 .855 21 . 5 

.600E+01 .110E+02 .750E+01 .850 23. 1 

.600E+01 .900E+01 .750E+01 .850 23.3 

.600E+01 .110E+02 .800E+01 .845 24.2 

.600E+01 .900E+01 .800E+01 .844 21. 9 

.400E+01 .900E+01 .600E+01 .815 13.9 

.400E+01 .700E+01 .600E+01 .804 1 5. 9 

.400E+01 .900E+01 .800E+01 .799 14.7 

.40QE ... 01 . 700E+01 .800E+01 .790 13. 2 . 

Filtered and clustered S data after the final programme 

of experiments 

Table 1.5.1 contains~· The induction to S~ was simple here and will 

be clear from the rules given in the next subsection. Rather than 
"R write out the Sk~· we simply wrote down the rules based on them. 
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FIGURE 1 .5.3 : Plot of Y (COST-RELY) for data of Table 1 .5.1 

KAS
4 

and HKij 

The final knowledge acquisition step was to formulate the information 

in Table 1.5.1 into heuristic knowledge. Each cluster will contribute 

a rule. Thus the heuristic knowledge is as follows: 

Heuristic Knowledge: 

Rule 1 

Rule 2 

Rule 3 

Rule 4 

If NELTS = 1°6 and NDEPTH = 1 3 and ALPHA = 4 

then RELY= 0.999 and COST= 117 SRU. 

If NELTS = 8 and NDEPTH e: (9,11) and ALPHA i:: [4.0, 5.0] 

then RELY = 0.97 and COST = 47 SRU. 

If NELTS = 6 and NDEPTH e: (9,11) and ALPHA e: [5.0, 5.5] 

t~en RELY = 0.94 and COST == 36 SRU. 

If NELTS = 6 and NDEPTH i:: (9,11) and ALPHA e: [7.0, 8.0] 

then RELY == 0 .84 and COST == 23 SRU. 
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If NELTS = 4 and NDEPTH e (7,9) and ALPHA€ [6.0, 8.0] 

then RELY = 0.80 and COST = 15 SRU. 

In addition all other variables !!lust be set at the reference values or 

some suitably specified values found from a previous knowledge 

acquisition exercise. 

The Integration Phase 

In a more extensive knowledge acquisition exercise, the first step in 

the integration phase would be to combine HKij for the various ccij 

for Pei into HKi. Next it would be necessary to combine the HKi in to 

HK. In this example these tasks cannot be demonstrated. However one of 

the keys to successfully performing these tasks is the explanation of 

the HK in terms of basic principles and its generali.3ation to broader 

problem and control classes. This we will illustrate briefly. 

The pattern of rules can be related to the physics of the problem as 

follows. At high loads the steel has yielded and hence, for higher 

reliability, more elements are needed to describe the region of steel 

plasticity. The concrete behaviour is highly nonlinear, hence the high 

number of depth in tegra t ion po in ts. Al so, at higher loads, the stee 1 

dominates the beam behaviour so that values of ALPHA higher than the 

reference value, could be used without much loss of reliability. This 

physical support of the HK is important because it increases 

confidence in the validity of the knowledge. Also, it makes 

generalisation easier. For example, the HK should be applicable to 

beams with any span to depth ratio where self-weight is insignificant. 

Also important are the limitations of the HK, e.g. although 

reliability estimates may be excellent for general frames, for frames 

with more than two elements/members ~onnected at a node, cost 

estimates will usuallf be too low. It should al so be noted that the 

rules are usually used by ~vlecting a desired .reliability and 

acceptable cost and then finding which values of the processor 
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variables may be used to obtain such cost and reliability. The word 

'may' is used because HK provides only guidance on use. It should be 

sufficient but not necessary. 

Feedback 

The presentation only hints at the use of feedback but this is merely 

a simplification for illustration purposes only. In fact the 65 

experiments were performed as four experimental programmes, successive 
A 

programmes using knowledge of the Y and F patterns (which represents 

the approximate Pareto set) to focus the search onto the areas 

expected to contain the Pareto set. 

1.6 SUMMARY AND CONCLUSION OF CHAPTER 

In this chapter, we saw that, for effective and efficient use of 

engineering software, the user requires knowledge of its Pareto 

optirral set. This knowledge essentially concerns numerical modelling. 

But why do we consider numerical modelling knowledge so important? 

Next we explained that complete knowledge of the Pareto optimal set 

could not be obtained and instead we stated briefly that heuristic 

knowledge should be sought. This statement needs elaboration. In order 

to acquire heuristic knowledge, we proposed a systematic heuristic 

procedure for .knowledge acquisition, but did not explain adequately 

why we should use a heuristic procedure. What are tbe alternatives? 

Dissemination of heuristic knowledge was mentioned quite briefly but 

requires further discussion. All these questions and elaborations are 

dealt with in the next Chapter. 

The ma in resu 1t of th is th es is is the development of a knowledge 

acquisition procedure and chapter 3 has therefore been devoted to its 

elaboration. 
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Quite clearly the knowledge acquisition system used in the procedure 

requires computerisation. Chapter 4 expands upan the computer-based 

knowledge acquisition system, called ELIXIR, presented in Section 1 .4. 

In addition, it discusses software development issues. 

Whereas in section 1 .3 the aim was mainly to demonstrate the knowledge 

acquisition procedure, the presentation in Chapter 5 al so aims to 

demonstrate the use of ELIXIR. This it does via two examples, the 

first being an expanded account of the example in section 1.5 and the 

second being an example of acquiring· knowledge for modelling curved 

structural members efficiently. Unfortunately, the two examples cannot 

demonstrate a full scale knowledge acquisition study, but we believe 

that they do provide adequate indication of how such a study might be 

started. 
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2 KNOWLEDGE ACQUISITION 

This chapter of the thesis deals with some of its more fundamental 

aspects. Specifically, it tries to answer the questions of why 

numerical modelling knowledge is important, of why heuristic knowledge 

should be sought and of why heuristic procedures are appropriate. 

Finally it deals with some aspects of dissemination of heuristic 

knowledge and explains why the rule form of knowledge representation 

is appropriate for dissemination purposes. 

2.1 WHY IS NUMERICAL MODELLING KNOWLEDGE IMPORTANT? 

The engineering design process can roughly be divided into four steps, 

namely design specification, generation of designs, evaluation of 

designs and the selection of a design. Evaluation of a design requires 

prediction of its behaviour or response and comparison with its 

specified requirements. This view of the design process is .applicable 

to both conceptual and detail design. However, the emphasis will be 

different. In conceptual design most effort will be spent on design 

specification and design generation with fairly rough evaluation and 

comparisons being made of the fairly rough designs generated. On the 

other hand, in detail design, most effort will be spent on evaluating 

designs reliably and on modifying the components of the detail designs 

generated. The different emphasis of the effort is dictated 

essentially by the reliability of the required evaluation. Reliable 

evaluation may require complex mathematical and numerical modelling 

and physical experimentation in order to predict reliably the 

behaviour of the design. 

In both conceptual and detail design, a significant proportion of the 

effort is spent on numerical modelling. The increasing pressure to 

make designs lighter, stronger, more efficient and higher-tech [38] in 

order to compete in world rrarkets will require increasingly reliable 

evaluation and so an increasing proportion of the design effc:-J:. will 

be spent on numerical modelling. The different emphases of conceptual 

and detail design will require knowledge of a fairly wide range of 
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e~pected reliability and cost levels of a large variety of numerical 

models in order to improve the effectiveness and efficiency of 

numerical modelling and, thereby, allow the design engineer to spent 

more effort on the generation and mathematical modelling of· designs. 

2.2 WHY SEEK HEURISTIC KNOWLEDGE? 

In Chapter 1 , it was said that due to the complexity of the problem 

and control spaces, the acquisition of complete knowledge woulc! be too 

expensive or even impossible. However, even if it were possible for a 

user to have any desired degree of completeness of the knowledge, 

there would still be a problem. As the degree of completeness 

increased, so would the complexity of the knowledge. As the complexity 

of the knowledge increased, so would the difficulty and expense of. 

applying or using it. At some point the effort to use the knowledge 

would equal the benefit derived from its use. Beyond this point the 

effort to use the knowledge would exceed its benefit. The following 

figure ill us tr ates this situation. 

\ I 
' I ', ,,,/TOTAL COST // 

'<" / - _.,,,,. ...... .__ - --- COST OF CONTROL 

COST 
COST OF RULE APPLICATION 

0 INFORMEDNESS 1 
(0= BLIND - TRIAL AND ERROR, 1= COMPLETELY INFORMED) 

FIGURE 2.2.1 : The cost of control knowledge. From [1 J. 

While this figure refers to tne cost of rule application in AI 

production systems and the cost of using t.i1e control knowledge, it is 

strongly related to knowledge acquisition for numerical modHlling 

since the knowledge sought is for controlling P: for 'informedness' 
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read 'degree of completeness of knowledge', for 'cost of control' read 

'effort to use knowledge' and for 'cost of rule application' read 

'computational effort involved in solving numerical model'. Thus it 

will not usually be worthwhile to have complete (and hence complex) 

knowledge. HK, bec:ause it is derived from simplifications of the 

problem and control spaces, will necessarily be incomplete but will be 

much simpler and often worthwhile having. 

The fact that HK is incomplete means also that it will be subjective 

because someone (the KAc) has to decide what the HK will deal with and 

what it will not deal with. It is this subjective element of HK which 

allows only relevant and sufficiently simple knowledge to be acquired. 

2. 3 WHY USE A HEURISTIC PROCEDURE TO ACQUIRE KNOWLEDGE? 

Formalists or purists may find the use of heuristics unacceptable but 

Lakatos in [35] shows clearly the importance of heuristic to pure 

mathematical discovery. In fact he argues strongly against the 

possibility of perfect formalisation of any nontrivial field of 

endeavour. Similarly AI research shows that without heuristics many 

complex problems cannot be solved within a realistic time limit. 

Engineering problems are easily so complex and engineers have always 

used heuristics to solve their' problems. Knowledge acquisition 

problems for engineering software systems are also of such complexity 

that the only realistic approach is to use heuristic methods to find 

heuristic knowledge. 

The main heuristic elements of the KAProc (knowledge acquisition 

procedure) presented in Chapter 1 are in the design of the KAProg in 

the planning phase, in the design of experimental programmes and the 

pattern recognition in the execution phase and in the organisation of 

the HK in the integration phase. 

In the planning phase, the design of a KAProg requires the selection 

of a set of PC's· t::1d CC' s. Because this set does not represent the 

problem and control spaces completely, its selection will necessarily 

be subjective. It will, however, be basE!d on quite sound heuristic 
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principles such as 'decomposition' and :successive approximation. By 

'decomposition' we mean, for example, that the problem space is 

'decomposed' into a set of PC's. In the sense that some PC 1 s will 

represent more of the problem space than others, the set of PC's will 

reflect the notion of successive approximation. If the KAc widens his 

perspective to include the users of the software and of the HK, then 

some objectivity can be introduced into the selection of the set of 

PC's and CC's by basing their selection on a survey of user's 

requirements. 

An alternative heuristic approach to acquiring heuristic knowledge is 

that followed by developers of expert systems [5,6,8,39,40,44,45, 

46,48,49]. An expert system to advise users on how to use an 

engineering package effectively and efficiently would at least need to 

be able to: establish the nature of the mathematical model required, 

find a set of sui~able numerical models, display the reliability and 

cost levels that may be achieved, prompt the user to select a 

reliability level and, finally, output the relevant control variable 

values that would produce the selected reliability. Explanation 

facilities may also be necessary. Most knowledge bases for expert 

systems have been built by eliciting a set of rules (objects, 

entities, relations, etc., - whichever representation scheme is used 

[1,2,3,4]) from om~ or more experts. In the context of this thesis an 

expert would be some experienced user of the relevant package. The 

process is almost completely heuristic relying heavily on the 

judgement of the KAc. At present no agreement exists on techniques for 

knowledge elicitation. This is partly due to the psychological factors 

of (i) the way experts (and humans in general) hold their knowledge 

and (ii) the difficulty of communicating this knowledge. However, for 

eliciting the rules or relations comprising the knowledge, better or 

improved techniques based on psychological and psychometric theories 

are becoming available [41-43]. Another way of deriving a set of rules 

is to use a set of examples elicited from the expert. If the set of 

examples is fdirly large, induction, hopefully automatic (machine 

learning [34]), may be used to derive the rules. If the set of 

examples is fairly small, generalisations based on (deductive) 

explanations of the examples can be made [50] and these 

generalisations them formed into a set of rules. These example-based 

elicitation techntques show considerable promise because of the 

central role that e:xamples play in the knowledge of experts [ 47] and 

in the discovery of knowledge in general [9, 35]. The process of 
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considerable promise because of the central role that examples play in 

the knowledge of experts [ 47] and in the discovery of knowledge in 

general [9,35]. The process of defining PC's and CC's has much in 

common with these example-based techniques. PC's and CC' s are very 

much like generalisations of example prcblems, but, rather than trying 

to make the expert's knowledge explicit, his knowledge can be used as 

a priori knowledge for designing a set of PC's and CC's. 

The execution phase of the KAProc deals with individual PCi and CC ij. 

Approaches to acquiring HKij may be divided into deductive, empirical, 

optimisation and heuristic approaches. 

The deductive (rationalist'$) approach requires: knowledge of each 

component (subroutine) which would be active when running P on a 

problem in the PC, knowledge of their input-output relations and 

knowledge of their interrelationships. From such knowledge the 

complete behaviour of P on the PC and CC can be deducf;d by rigorous 

mathematical analysis. However, some components may have 

nondeterministic input-output relations with unknown statistical 

properties, for example iterative algorithms, in which case, the 

deduction is not even possible in principle. Even if it were possible 

in principle, the effort require would make it unprofitable for all 

but very simple P. 

The empirical approach, on the other hand, requires no knowledge of 

the internal structure of P. It is simply treated as a black box. 

Statistically designed experiments are conducted on the whole of xR 

and FR and the HKij inferred from an analysis of the experimental 

data. While this approach is quite feasible for simple PCi and ccij it 

is wasteful because many of the data cases (experiments) would be 

inefficient and would not appear in the final HKij. Tne use of a set 

of experimental designs beginning with a pilot experiment can of 

course reduce the wastage significantly. In [54] a similar, quite 

efficient, procedure is used to find approximations to a Pareto 

optimal set. The approach in our KAProc clearly resembles such a 

procedure. 
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An optimisation approach combines elements of empiricism and 

rationalism into a search procedure, i.e. experiments are made, 

gradients, etc., are calculated to indicate search directions, a step 

in the search direction is taken and the whole process repeated until 

an optimum is fot.nd. Such procedures are quite efficient for finding a 

single optimal point, say where reliability is fixed and the control 

for minimum cost is to be found. When a Pareto optimal set is to be 

found it would be irtefficient because no knowledge or data used to 

find a single optimum would (normally) be used to find any other 

optimal point. Of course, by using a previously found optimum as a 

starting point for the search for a subs.equent optimum, the procedure 

could be made more efficient. The use of response surface methodology 

[13] can also improve the efficiency of optimisation approaches. 

There are two main problems with the above approaches. Firstly, they 

may produce complex characterisations of the Pareto set which would 

then still have to be simplified to produce a relatively simple set of 

rules. Secondly, they are wasteful because they are object i vi st 

approaches and make very little or no use of any a priori knowledge 

available to the KAc, except as a check on the validity of the HKij. 

The KAProc (execution phase) presented in this thesis, however, tries 

to search directly for simple rules and tries to make full use of any 

a priori knowledge of the expected behaviour of P to design 

experimental programmes on xR and FR and to recognise patterns in the 

data. Of course, this makes it subjectivist and so requires 

intelligence. For the near future, the intelligence needed to design 

heuristic experimental programmes and recognise patterns by using a 

priori knowledge will have to be supplied by the KAc. The KAProc must 

therefore remain semi-automatic in the near future. As research into 

artificial intelligence, pat tern recognition a'1d machine learning 

uncovers useful appropriate ideas, the KAProc may be increasingly 

automated. 

The heuristic element in the integration phase mainly concerns the way 

HK is formed from u .. HK 1 , HKij. Many of the HKi and HKij may have l,J 
similar fol"rns and explanations. It may, therefore, be possib~e to 

simplify the set of rules by clustering PC's or CC's and hence their 
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HKi or HKij. However, recognising these similarities and performing 

the clustering will very likely require intelligence and judgement, 

i.e. a heuristic approach. 

2.4 DISSEMINATION OF THE HEUttISTIC KNOWLEDGE 

At least three forms of disseminating the HK may be identified, namely 

( i) as accompanying documentation with the standard user 

documentation for P, 

(ii) built into P, or 

(iii) in an expert system. 

Option (i) is clearly the most obvious form. However, the example 

problems contained in the standard user doctimentation already 

constitute a large part of the documentation. If these examples are 

upgraded into problem and control classes, the documentation may 

become unw:ieldy. Computational costs will usually vary between 

installations and this aspect of the HK would therefore require 

recalibraticn for each installation. While the calibration is expected 

to be relat:i vely simple, the dissemination of installation dependent 

HK in paper form would probably be impractical. Of course, even 

without calibration, costs quoted in terms of some industry 'standard1 

like a VAX 111780 wculd still be of enormous benefit. The modern 

approach, however, is towards computer-based dissemination, i.e. 

options (ii) and (iii), even for standard documentation. 

Building the HK directly into the software (option (ii)) may well be 

the best form of dissemination because it automatically reduces the 

user's E:::ffort. It is, however, restricted to rules whose antecedents 

can easily be identifi.ed from the data input or from special 

performance indicators built into the numerical algorithms and to 

control regimes which produce very highly· reliable solutions. Only 

relative cost improvements are of importance for this form of 
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dissemination. Many such rules exist in engineering packages, for 

example, preselected numerical integration rules, local iteration 

convergence tolerances and hourglass stabilisation schemes. 

Finally, the HK can be disseminated in an expert system. Expert 

systems are becoming an increasingly popular' form of disseminating 

(and storing) knowledge. To date most expel"t systems have been 

rule-based [5,6,8]. Rules have the advantage that they are easy to 

understand, easy to build into conventional software 

(IF ... THEN ••• ELSE ..• ) and many rule-based expert system development 

aids (shells) are available [5,9]. Thus by choosing to represent the 

HK as rules we have allowed for dissemination by any of the three 

forms listed above. The KAProc has additional relevance to the 

development of expert systems because by providing a methodology for 

knowledge acquisition it should alleviate the effect of the knowledge 

acquisition 'bottleneck' on system development. It does not address 

the problems of ascertaining the nature of the mathematical model nor 

the problem of matching the mathematical model to an appropriate 

problem class but it does provide a sound framework for acquiring the 

basic rules as well as for structuring the rule-base (Inadequately 

structured rule-bases can result in excessive computational effort for 

rule processing). 

An interesting way to view the effect that the different dissemination 

forms will have is via Figure 2. 4.1. (This figure is based on ideas 

and Figures in [76]). 

A application difficulty 

3 (0 - trivial; 1 - easy: 

2 - rather difficult; 

3 - limit of software's 

A scope) 

u user proficiency 

(O - untrained; 1 - novice, 

u 2 - journeyman; 3 -expert) 

FIGURE 2.4.1 Reliability profile for an engineering package 
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The solid line in Figure 2.4.1 represents the fact that as application 

difficulty increases, required user proficiency increases 

proportionally. This would be the case for a package with normal 

reliability [76]. User proficiency here includes both mathematical and 

numerical modelling skill. Increasing the quality and quantity of 

numerical modelling knowledge specific to the software will have 

different effects depending on how the knowledge is disseminated. If 

built into the software it will have the effect of raising the curves 

as indicated by the broken curves. If supplied directly to the user 'it 

will, like education and training, shift the user along the u-axis. 

Figure 2. 4.1 also illustrates the fact that there will always be 

problems an untrained person cannot solve and there will always be 

problems that require experts to solve. Therefore, it will be 

pointless pitching the HK at too low a level but also it will be 

pointless to pitch it at too high a level (the effort involved will 

exceed the cost of consul ting an expert). 
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CHAPTER 3 THE KNOWLEDGE ACQUISITION PROCEDURE AND THE KAS 

This chapter provides a more detailed account of the knowledge 

acquisition procedure presented in Chapter 1. It is assumed that the 

reader is familiar with the concepts and terminology dlready 

introduced,. The following section summarises the knowledge acquisition 

procedure and points out the main modifications that will be made to 

it in this chapter. 

3.1 THE KNOWLEDGE ACQUISITION PROCEDURE 

Recall that the knowledge acquisition process may be represented as in 

Figure 3.1.1. 

KAc 
KAS 1---~--1 

p 

FIGURE 3.1 .1 An abstract view of the knowledge acquisition process 

The procedure involved three stages, namely planning, execution and 

integration phases as shown in Figure 3.1.2. 
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KAc 
(j) KAP (P,G} 

r 
~KAP (P,G1

) 

I 

HKO 

(ii) For each j: 

KAc 
KAP (P,G 1 l ---~u KAP (P,GU) I j 

HKO 

FIGURE 3.1 .2.(a) : The planning phase of knowledge acquisition 

For each i and for each j : ·,· 

KAc, KAS, P .. 
KAP (P,G1J l ------HK1J 

1 
HKO 

FIGURE 3.1.2(b) Execution of each of the knowledge acquisition 

subproblems 

(i) For each i = 

KAc u HK 1J---HK1 

J 

(ii) U HK KAc ~HK 

FIGURE 3.1 .2(c) Integrating the separately acquired HKij and HKi 

into HK for the original problem 
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However, we need to modify the detailed view of the execution phase 

given in Figure 1.3.3. This figure gives the impression that knowledge 

acquisition is a straight forward process whereas we have already 

indicated that much f~ed back for knowledge refinement occW"s. So we 

need to add feedback paths. The other modification is to replace the 

system s0 = (XO, Fo, yO) by the more complex system 2:0 • Detailed 

discussion of the contents of 2:0 will be deferred until section 3. 3. 

For the moment, it will suffice to say that conceptually the contents 

of 2:0 is similar to that of s0 . With these modifications the symbolic 

view of the execution phase is now as shown below. 

KAP (P,GU J 
KA So 

'£0 
KAS1 

50 
KAS2 KAS3 KAS4 

50 50 .. HKij 

tFB20 . 1 FB21 f 
K 

.t t FB30 t FB31 1FB32 . 

FIGURE 3.1 ,3 Detailed symbolic view of the execution phase 

In the above figure FB ij means feedback from KASi (or its products) to 

KASj. 

The planning phase results in a set of knowledge acqui si ti on 

subproblems with goals Gi and aij speclf ied with respect to a problem 

class Pei and control classes ccij. In section 3, 3, it will be seen 

that the aij actually consist of eight goal cone:!. tions which must be 

satisfied simultaneously. Following on from this, the next five 

sections (3.4 to 3.8) deal with the five main steps in the execution 

phase and the corresponding components of the KAS. Although the 

feedback loops in the execution phase are discussed together with the 

five main steps, a separate section (section 3. 9) brings together 

these feedback aspects and simultaneously summarises the execution 

phase. The last section deals with the integration of the individually 

acquirec. HKij into HK. 
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3.2 THE PLANNING PHASE AND THE GOAL G 

The Goal G 

Knowledge acquisition ~egins with the problem KAP(P,G) where G is: 

"Find HK characterising an approximate Pareto optimal set for P". 

To understand this statement of G we need to e-xplain the terms 

"Pareto optimal set", "approximate Pareto optimal set" and 

"characterising" in some detail. 

"Pareto optimal set" 

A multi-objective optimisation problem, such as: maximise both u and v 

simultaneously, will not usually have a unique solution. Instead a set 

of (u,v) involving the best trade-offs may be found and, depending on 

factors not involved in the optimisation problem, a preference is 

selected. This set of best trade-offs is the Pareto optimal set [54]. 

Figure 3. 2. 1 ill us tr ates some Par'eto optimal (non- inferior, 

non-dominated, eff iCi ent) and inefficient (inferior, dominated) 

points. 

FIGURE 3.2.1 

v 

•{Uz, Vz) 

•1u3, V3) 

u 

(u 1 ,v 1) and u2 ,v2) are Pareto optimal if the objective 

is to maximise (u,v). (u 3,v3) is dominated by (u2 ,v2) 

but not by (u 1 ,v 1). 

Mathematically, a Pareto optimal point (u*,v*) is one for which no 

other (u,v) exists :'or which either u > u* and v ~ v* or u ;:: u* and 

v > v*. Obviously this is easily extended to higher dimensions and to 

situations where u is to be maximised while v minimised. In knowledge 

acquisition the optimality criteria will usually be given in terms of 

some well-defined measures of costs and reliabilities. More than one 
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cost and/ or reliability measure may be involved. The main thing to 

note is that the criteria for optimality,· i.e. which features of the 

output are to be maximised and which are to be minimised, form part of 

the definition of the goals, G, Gi and Gij. A major source of 

iiifficulty is that no single set of criteria can cover all efficient 

uses of P. 

"Approximate Pareto optimal set" 

In Chapter 1 we mentioned that we would not seek Pareto optimal sets 

but, instead, will seek approximate Pareto optimal sets. An element of 

an approximate Pareto optimal set has a high probability of lying 

sufficiently clost~ to an element of the Pareto optimal set, for most 

practical purposes. It is possible to define objectively the terms 

"high probabilitt', "sufficiently close" and "most practical 

purposes", but such objective definitions will only result in another 

(slightly relaxed'?) formal approach with all its associated 

difficulties. Instead we will rely on subjective definitions. The 

question is whose s:ubjectivity? Clearly the developer of P, the users' 

club of P, expert users of P and the users of the desired HK are most 

appropriate since they will know what "most practical purposes", 

"sufficiently close" and "high probability" are .• It is the subjective 

elements in the def~~ni tion of approximate Pareto optimal set which are 

primarily responsible for the fact that the knowledge sought will be 

heuristic. There are, however, further reasons why the knowledge will 

be heuristic. These reasons are implicit in the term "characterising". 

"Characterising" 

The HK that is sought must, in addition to describing an approximate 

Pareto optimal set, also be adequate, simple, robust and credible. 

Again these are subjective properties required of the Hi<. The word 

"characterising" is used to capture these additional properties. 

Goals Gi and Gij are defined very similarly to G but instead of 

applying to the whol.e problem space, Gi applies only to Pei while Gij 

applies only to Pei and cciJ. No further clarity is obtained by 
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expanding on ai. Expanding on aiJ, however, is essential and will be 

dealt with in section 3. 3. Before this, we need to explain in more 

detail how a KAProg is defined. 

Designing a KAProg 

Recall that the KAProg was defined as 

KAProg = U KAP(P,Gi), KAP(P,Gij) 
i ,j 

where ai relates to Pei and aij to Pei and cc 1j. Thus it requires the 

selection of a set of PC's and CC's. In order to make this selection, 

the KAc can draw heavily on analogous procedures and heuristics used 

in design evaluation. 

Recall that the DEProc could be represented (in section 1.3) as shown 

below. 

FIGURE 3.2.2 

Eng 

p 

An abstract block diagram view of the design evaluation 

process 

In almost identical fashion to the KAProc, the DEProc is composed of a 

planning phase, an execution phase and an integration phase. These 

three phases are summarised in Figure 3. 2. 3. Of particular importance 

is the planning phase of the DEProc and we will later return to it. 
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(i) 
Eng 

DEP (0,G) __ 

1 
__ ~ OEP (O,G 1 ) 

EJ<O,HK 

(ii} For each 1 : 

Eng 
DEP (0,G 1 ) ------- 9 DEP {O,GIJ) 

r J 

EKO, HK 

FIGURE 3.2.3(a) The planning phase of the DEProc (Cf. Figure 1.3.1) 

For each and for each j : 

DEP {0,G 1J) 
Eng 

EKij 

t 
EKO,HK 

FIGURE 3.2.3(b) : The execution phase of the DEProc (Cf. Figure 1.3.2) 

(i) For each i : 

(ii) 

FIGURE 3.2.3(c) The 

U EKU __ En_g_ EK1 

J 

U EKi __ En_g_, - EK 

integration phase 

(Cf. Figure 1.3.5) 

of the DEProc 
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Just as the planning phase of the knowledge acquisition procedure 

(KAProc) replaced KAP(P,G) by a set of KAP( P ,Gi) and KAP(P,Gij), the 

planning phase of the DEProc, shown symbolically in Figure 3.2.3(a), 

replaces DEP(D,G) by a set of DEP(D,Gi) and !:IE? (D ,Gij) . 

Each goal Gi is to find EKi. EKi is an evaluation of some behavioural 

aspect of some component of D. The relevant behavioural aspects of the 

component are predicted via a mathematical model MMi. Each of the MMi 

may need to be solved by a set of numerical models NMij for each of 

which the goal Gij is to find EKij. Gij is really just the 

transference of Gi from MMi to NMij. Thus, while in knowledge 

acquisition, the G1 relate to Pei (classes of mathematical models) and 

the aij relate to ccij (classes of numerical models), in design 

evaluation, the Gi relate to particular MMi and the aij to partJ.cular 

NMij. 

The objective in the execution phase, shown symbolically in 

Figure 3.2.3(b) is the acquisition or generation of EK1j,t i.e. 

evaluative knowledge relating to aij. Generally, it will involve 

running an engineering package to solve the NMij, collecting the 

output and interpret ting this output so that it may be condensed to 

some simpler statement EKij about the design. Note however the use of 

a priori evaluative knowledge EKO. By EKO in the above F'igure we do 

not mean only EK derived from manual calculation. All EK acquired 

during the execution phase up to the execution for a particular i and 

j is included in the EKO for these i and j. 

The objective in the integration phase, shown symbolically in 

Figure 3. 2. 3(c), is to combine the individually acquired EKij into 

EKi, i.e. an evaluation of the D based on MMi, and to combine the EKi 

into an evaluation of D as a whole. 

Returning to the planning phase of the design evaluation pro0edure, 

the combination of all design evaluation subproblems forms the design 

evaluation programme (DEProg), i.e. 

DEProg = U DEP(D,Gi), DEP(D,Gij) 
i ,j 
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Of course, in actual design evaluation, the programme would also 

contain hand calculations, physical experiments, prototypes and 

anything else considered helpful. In this thesis however we will only 

consider the above narrow definition of a DEProg. 

The design of a DEProg relies on a number of heuristics the most 

important of which are: 

H1 Start with a set of simple mathematical models. 

H2 For each mathematical model which requires numerical solution, 

·start with a simple numerical model. 

H3 Add detail or complexity to the model in such a way .that 

successive approximations become eloser to the true behaviour 

of the design. 

H4 Break complex models up into inter-acting simpler sut:models. 

In short, the DEProg should reflect the good old-fashioned notions of 

successive approximation and decomposition. By decomposition we 

include partial modelling as well as H4 above. Partial modelling [17] 

is understood as modelling only a part of the expected behaviour, e.g. 

approximating 3-D objects by a set of 2-D models. It amounts to 

modification (relaxation, removal, addi ti.on) of constraints on the 

design requirements. Such constraint modification [2] is a very useful 

heuristic for simplifying complexity, be it in design evaluation or 

knowledge acquisition. In fact not only should the DEProg reflect 

these notions but the process of designing the DEProg should also 

reflect them, i.e. the engineer will design only a simple DEProg, 

execute it, integrate the acquired EK, modify the DEProg by adding 

more models, and so on. Clear-ly like any such successive approximation 

the process will be one of learning - in this case learning the 

behaviour of D and how it measures up to its specification. 

We expect that norm~:1y the engineer desi~1ing the pEProg would start 

by selecting a set of mathematical models MMi. Some might be partial 

models of D and others might be models of components of D. If a 

diagram representing the relation of the ViMi to each other could be 

drawn, we would typically expect to see the following. 



FIGURE 3.2.4 

Simple 
models 

Complex 
model 

A typical hierarchy/network of MMi in the DEProg. 

Page 50 

The 'hierarchy' will usually be quite deep because components models 

would usually be assembled into increasing complex models and perhaps 

ultimately into a model for D as a whole. To solve MMi numerically a 

number of NMij would typically be used. It is in this selection of the 

NMij that the HK plays its part. If the MMi falls within one of the 

Pei for which HKi has been acquired then the engineer can select, 

effectively and efficiently, a set of NMij to solve the MMi. Usually 

this will require at least two NM' s - an initial crude NM with low 

cost and presumably low reliability and a refined NM which can produce 

the required level of reliability at some acceptable cost. A typical 

set of NMij might be depicted as follows. 

FIGURE 3.2.5 

NMi1 ____ NMi2 ____ NMi3 

A typical set of NMij reflecting the principle of 

successive approximation 

A very important aspect of designing a DEProg is the use of a priori 

evaluative knowledge EKO, normally derived from manual calculations. 

It will act as a guide on the level of reliability required and a 

check on the solutions. 

In designing the KAProg, the KAc must be aware of ttle typical 

composition of DEProg~3. Ideally every MMi in a DEProg should fall into 

at least one PC. However, this would require very complex PC's to 

cater for the complE!X MM's. Instead the PC's must be limited to 
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catering only for most of the simpler MMi. If the relation between the 

Pei could be depicted graphically, we would typically expect the 

following. 

FIGURE 3.2.6 

pc1>. pea 
pc2 

:~::s:PC~0 PC · 
pcS 

pc6>· 11 
7 PC 

PC 

A typical set of Pei in a KAProg 

This shows a fairly flat broad 'hierarchy' - flat due to the necessity 

of keeping the Pei relatively simple but br-oad to cater for most of 

the expected simpler MMi. 

The control subspace for each Pei may still be quite complex and to 

simplify knowledge acquisition it is replaced by a set of ccij. A 

typical set of ccij for Pei might be related as depicted in 

Figure 3.2.7. 
cci1 

FIGURE 3.2.7 A typical set of ccij in a KAProg 

The relation depicted in figure 3.2.7 might have been derived as 

follows. The KAc decided that cci 4 is the closest approximation to the 

control subspace for Pei for which knowledge acquisition is 

manageable. However, cci 4 is itself too complex to study directly so 

the KAc decided to study thre~ simpler CC' s first. These would then 

provide him with improved HKO for the study of cci 4• 
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Some additional heuristics to H1-4 that may be useful in designing 

KAProgs are the following. 

H5 The total number of variables in xN and FN together should be 

less than about ten. Beyond this the problem/ control classes 

may become too complex. For cluster analysis [20] says that 

realistic' numbers of variables are between 2 and 1 O and 

realistic numbers of data cases are 50 to 1000. 

H6 Strong variable interactions should be contained within a 

problem and/or control class and not straddle class 

boundaries. 

H7 Discontinuities in the response of P may form natural 

boundaries for problem or control classes. 

3.3 THE GOALS Gij 

Similar to the goal G, the subgoals Gij can be defined as: 

"Find HKij characterising an approximate Pareto optimal set for Pei 

in terms of ccijn. 

However, a more precise formulation of cij is possible. We already 

hinted in Chapter 1 that it would involve finding a set of subsets of 

$R = (XR, f-R, yR). cij must be defined on the transformed system ,SD 

and not s0 since only in ,SD do reliabilities and other solution 

features appear. Although x0 and FD are also transformed to x0 and FD 

this will usually be a very simple' for example' x0 = x0 and FD = FD. 

The k!I.' th subset of sR is S~!I. 
!l.=1 ,2, ••. ,L(k) then the total number of subsets N(K) will be given by 

K 
N(K) = l L(k) 

k 
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The set of these subsets is denoted by 

"R "R 
SK = { s k.R. I k= 1 • 2 •••• , K ' .R.= 1 ' 2, •••• L ( k ) } 

"R ;• 
For each Sk.R. there will be one rule in the HK-J. 

Gij then becomes: 

"R Choose SK such that the following conditions are satisfied: 

C1 The HKij must apply to the whole of xR. 

C2 The HKij must give an adequate range and resolution level of 

solution features (cost and reliability) for decision making. 

C3 Only relatively efficient solutions should be considered. 

C4 The worst error made in using the HK should be a minimum. 

C5 "R All F k.R. should be as large as possible. 

C6 The total number of rules in the HKij should be a minimum. 

C7 The subsets and hence each r-ule should be simple. 

C8 The HKij should be explainable to a user of P. 

These eight conditions may be made more precise as follows: 

C1 

C2 

C3 

K "R "R 
u xk = x . 
k 

L(k) 
u 
i 

"R 
"' y 

The elements 

optimal 

for each k = 1,2, .... ,K. 

of the should be approximately Pareto 



C4 

C5 

"R 
min [max D.Ykt]. 

k,t 

"R 
max [min D.Fkt]. 

k,i 
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C6 min [N(K)]. 

C7 

ca : 

"R "R 
The subsets Xk, Fki 

preferably convex. 

"R 
Ykt should each be simply connected and 

"R 
The structure of SK should be explainable. 

represents a measure of the worst error made by using rule kt • 

.... 
represents a measure of the size of Fkt· 

C 1 and C2 may be considered as adequacy conditions while C3 is an 

efficiency condition. C4 is a type of accuracy or reliability 

condition. If robustness is defined as the ability to tolerate error, 

then C5 may be thought of as a type of robustness condition. Also, by 
"R making the F kt ... as large as possible, one may increase the number of 

data cases in Fkt and thereby improve the experimental representation 
"R of F kt. Thus C5 can also be thought of as a condition which improves 

the empirical basis of the HKij. C6 and C7 are clearly simplicity 

conditions. C8 may be considered to be a credibility condition because 

lack of explanation may mean that an error has been made or some 

aspect overlooked. This is less likely i.f an explanation of the HKij 

in terms of physical and computational theory. C8 may also be thought 

of as a validity check condition. 

The set S~ will be called a 'partition' of sR. However, a 'partition' 

here does ~ot mean the usual definition of a hard partition, i.e. that 

subsets do not overlap and that, taken together, they cover the whole 

of the original set. Instead we allow overlap (as with fuzzy 

subsets) if it will simplify the res·~tlting rule set and while 
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U~ X~ = xR is necessary, we require only that Ut( k) Y~i = yR for 

each k and that the F~i be as large as possible, i.e. we allow 

incomplete coverage of yR and FR. Enforcing complete coverage of FR 
and yR by the F~i and Y~i is incompatible with Pareto optimality 

because inefficient solutions would have to be included. 

In graphical terms, the S~ sought can be illustrated as follows. 

Suppose that each of x0 , FD and yD consists of a single variable with 

ranges xR, FR and yR. Then in the xR x yR space one would typically 

want the following. 

"R y 

FIGURE 3. 3. 1 

~R 

SK projected onto xR x yR plane 

AR AR AR "R 
Note that, in the above figure, Uk Xk = X . For each Xk, the Yki' 

"R · . "R "R 'span' (approximatel~r) the whole of Y, i.e. Ui Yki = Y. Also 

indicated in this figure is the fact that one is unlikely to 

achieve or desire the highest value in yR - values close to the 

highest are sufficient. One will often achieve the lowest value 

because one may specify some cut-off below which solutions are not 
"R good enough. Also the achievable Y k~ are not continuous - the empty 

spaces imply ineffi~ient use. 

Corresponding to the above one might have the following picture in the 

xR x FR plane. 



I 

d 

·-

~R 

FIGURE 3.3.2 : s~ projected onto the xR x FR plane 

In the FR x yR plane, one would see the following for xR. 

FIGURE 3.3.3 

"R y 

A yR x FR section of s~ for x~ 
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Note that in the above the 1 partitionings' have been hard. With fuzzy 
"R 'partitioning', the boundaries of the sk~ may overlap. In some 

situations this may simplify the acquisition of knowledge and may even 

simplify the knowledge its elf. 

With so many conflicting conditions on the HKij (or the 

acquisition of HKij is, itself, clearly a Pareto optimal problem. 

As mentioned in the introduction, 'partitioning' of sR into ,.s~ is to 

be done by induction from patterns in experimental data, S. These 

patterns are regarded as the manifestaUon of some underlying 

'natural' 'partitioning' of the data into subsets 
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The objective of KAS0 is to define I0 . It is really a way of defining 

the problem and control class in a more precise .fashion. Most of the 

rest of this section will centre on the contents of IO and at the end 

will deal with FBio· 

Three changes need to be made to the old s0 = (Xo,Fo,Yo) to arrive at 

Io. 

Firstly, many of the engineering packages, which this thesis considers 

as potential targets for knowledge acquisition, solve field and time 

dependent problems. The distributions of variables in such problems 

are usually related to space and time. Space and time variables do 

not really belong to any of x0 , FO or yO. So we add another variable 

set called Io to make s0 = <x0 ,F0 ,Y 0 ,I0 ), where Io= (IN,IR). IN is 

the set of index variable names and IR their ranges. Each index 

variable may be referred to as space-like or time-like. The more 

neutral terms index, space-like and time-like rather than space 

coordinates and time coordinate are used because, in other non-fteld 

problem packages, similar variables, over which outputs are 

distributed, may be found. Generally all outputs will be distributed 

over (linked to) a time-like index while only a few will be linked to 

space-like indices. 

The second change is to distinguish between problem class attributes 

and variables and between appearances of attributes and values of 

variables. Attributes should be viewed as interpretations of variables 

and, simultaneously, variables should be viewed as the means of 

measuring attributes. Corresponding to the value range of a variable 

is an appearance range of an attribute, i .e a set of all possible 

appearances of the attribute. The correspondences between variables 

and attributes and between their value and appearance ranges is called 

a homomorphism. It forms the third change. Attributes will be denoted 

by x0 ,Fo,yo and r0 and the homomorphism by s. As an example suppose an 

attribute is 'structural aspect ratio' and its appeai·ance set is 

{'low', 'medium', 'high'.•} while the variable which will be used to 

measure it is called 'SAR'. SAR has a value set of [1.0, 100.0] say. 8 

might then be defined by the following table. 



Structural Aspect Ratio 

Low 

Medi um 

High 

SAR 

1.0 to 5.0 

5.0 to 30.0 

30.0 to 100.0 
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Attributes and appearances are much more like adjectives or adverbs of 

a natural language than are variables and values. They relate more 

closely to concepts while variables relate more to technicalities. 

Explanation, an important aspect of the integration phase and of the 

HK itself, is usually more easily understood in conceptual terms like 

attributes and appearances. Their inherent lack of hardness is in fact 

their strength because, while measuring techniques may be altered, the 

concepts involved may be retained. For example, the concept of 

reliability is largely fixed but for almost every problem class its 

measurement will differ. This lack of hardness also means that 

explanations are intuitive (heuristic) rather than deductive. Usually 

the homomorphism will be obvious, as in the example above. In some 

circumstance it may however be useful to define fuzzy correspondences 

[55,10]. 

Putting the above together, we can now define 

where 

and 

SO = ( xO , Fo , yO , rO) 

SO = <xo,Fo,Yo,Io) 

XO = (XN ,XR), FO = (FN, FR), etc 

XO = (XN ,XR) FO = (FN,FR), etc 

s = c sN, sR) 

is the homomorphism defining correspondences SN between the sN 

and sN and correspondences gR between sR and sR. 

In the above, s0 is called the object system, sD is called the image 

system and lo is called the source system. All three are primitive 

systems - hence the sur"'"'Script O. The above t:.erminology and concepts 

are inspired by KLIR [55] which deals with 'General Systems Concepts'. 
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Now on to feedback. Figure 3. 1. 3 shows two feedback paths FB20 and 

FB 30 entering KAS0 . FB20 stems from knowledge derived during KAS 2• 

Mostly its presence serves to convey the idea that variables for 

measuring selected features of the output need to be defined in s0 , 

e.g. if a feature of the output to be measured is reliability, then a 

variable called RELY (say) must be defined in s0 • 

FB 30 serves to convey the fact :hat redef ini ti on of IO may be required 

before suitable patterns in S may be found or the HK explained 

satisfactorily. The latter may require redefinition of either s0 , s0 

or s. In this sense knowledge fed back along FB30 has exactly the same 

function as a priori knowledge except that the latter involves 

foresight while the former involves hindsight. FB30 also deals with 

the def ini ti on of the S mappings which connect appearance sets and 

value sets. Many of these may only be defined during the integration 

phase. 

The objective here is to collect data to form the data system 

where 

s0 consists of s0 plus the set of ::!ata cases - one case for each run 

of P. The aS'th case of data consists of Sae= (Xa,Fae•Yae•Iae)· 

Each of these data values must lie within the relevant value range 

xR, FR. etc. The set S of data cases is then S = (X,F,Y,I) or 

S = (Sae I a = 1 •••• ,nx, a = 1, ... ,nf (a)}, where nx is the number of 

cases with distinct xa and nf(a) is the number of cases run for xa 

with controls Fae· 

A major problem is that the amount of data in a single case Sae may be 

1.::-~e especially for P dealing with field problems. Of course, by 

intelligent selection of variables the amount . of data may be 

significantly reduced. However, this is seldom really possible nor 

desirable and is in fact the reason for computerisation of the KAS. 

With the CBKAS, such selection may be deferred until a better picture 
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of the behaviour of P on the problem and control class is obtained. 

Clearly, even for small pr'oblem and control classes, the volume of 

data in sD may be very la!"ge. It is ther'efore very important that 

experimental programmes on the problem class be carefully designed. 

Recall that the involves subsets of SR which 

characterise an approximate Pareto set for the pro bl em class. Design 

of an experimental programme therefore consists of selecting suitable 

samples of xR x FR. However' to run pt samples of xR x FR are needed' 

not the transform xR x FR' and so the programme must in fact be 

selected with the relevant transformations borne in mind. Fortunately, 

it is often the case that xD = xD and FD = FD and only yD contains 

transformations of yD (such as reliabilities). KAS1 then consists of 

designing an initial programme of experiments on xR X FR plus 

subsequent programmes via .feedback (FB21 , FB 31 ) of knowledge already 

acquired. 

The initial programme should ideally span the whole of xR X FR. Here 

the statistical designs used in Response Surface Methodology (RSM)[13] 

an<1 simulation [15,16] are applicable. However, one major difference 

is that no experimental measurement error is involved in collecting 

the data from P. This simplifies the design. In particular, it removes 

the necessity of randomizing the order in which the runs are executed. 

Hcwever, the fact that many packages use iterative processes means 

that quasi-random elements may appear in responses. Although RSM 

techniques may not be used, it is very useful, when designing 

experimental programmes, to conceptualise a priori (expected) 

responses in terms of response surfaces. Smooth, continuous and 

nonlinear trends in response are very important considerations. For 

example, if there n independent variables in xD and m in FD and the 

response of Y1J. e yN is expected to be of first order, i.e. 

a + 
AN 

b 1 x, + • • • + 

then a factorial design [13] with just two levels will have 2n+m runs, 

i .~1. all permutations of the extreme values of xR and FR. This would 

on:.y constitute the initial design. Any nonlinearity or discontinuity 

inc::--eases the number dramatically and more complex designs are needed 
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[13]. If during the selection of features via KAS 2 , knowledge of such 

nonlinearities, etc. becomes available, it is fed back via FB 21 to 

KAS 1 . 

To reduce the number of experiments one may consider splitting the 

·lariables into groups. For example, if FO is split into F? and F~ 
containing m1 and m2 variables respectively, the number of experiments 

reduces to 2nc;~m 1 +2m2 }. Of course, this is only truly valid if the 

variables in F9 and Fg do not interact, but it may be adequate. By 

studying only those parts of xR which produce the worst response (high 

cost and low reliability), experimentation may be further reduced. The 

HKij would then be generalised (conserv.ati vely) to the rest of xR. Of 

course, knowledge of such areas of xR may not be available. The 

replacement of the problem and control spaces of P by simpler PC's and 

CC' s is based fundamentally on the same argument. Conceptually, the 

splitting of Fo into F9 and F~ is identical to the redesign of the 

KAProg replacing the CC defined, by Fo with two new CC's derived from 

F? and Fg. 

Subsequent experimental programmes are required for two possible 

reasons. Firstly, to focus further experiments into regions of FR 
which appear to contain the Pareto set. Secondly, if FO had previously 

been split and HKij acquired independently for the two subclasses, the 

KAc may subsequently consider interaction of the two in some limited 

further experimentation on the whole of FO. The knowledge requir~d for 
" such focussing is derived from the S patterns and fed bac~ via FB 31 . 

In particular it is derived from comparing Pareto filtered S data with 

unfiltered data (i.e. use of positive and negative examples to learn 

about the region of Pareto optimality). 

Another important heuristic splitting technique is to design an 

experimental programme on xR, then select some typical Xe.£ in the 

programme and acquire HK for this Xe.£ alone (this requires another 

programme on FR and all the rest of the steps in the knowledge 

acquisition procedure). Then using this HK as a guide, ~nowledge 

acquisi tior.. vn the other Xe.£ in the programme will hopefully be less 

costly. If the interaction of .xN and FN is not too strong such an 

approach may be very efficient. For many packages based on sound 
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numerical analysis principles this situation is expected to be quite 

common. Again response trends and interaction will be important 

considerations. 

Incidently, some of the considerations mentioned above in connection 

with splitting techniques are identical to some of those considel"ed 

when decomposing the problem and control spaces of P into sets of 

problem and control classes. 

A very important point to note in experimental programme design is 

that reference solutions should be included in the programme. 

For 

set 

each Xa, there 

of cases will 

will be a number cases with varying F aS. This 

be denoted by Sa= Sae ls= 1 , .•• ,nf(a)}. All data 

cases with the same Xa form an equivalence class with respect to the 

mathematical model Xa is supposed to represent and so will occasional­

ly be referred to as an X-class. Within each Sa there should be at 

least one case which may l)e designated as a reference case (See later 

for further detail). 

3.6 

The objective of this step is to transform the system s0 , which may 

deal with a large number of variables, to· a more manageable system sD, 
dealing with a smaller number of relevant features (transformed 

variables). The problem of selecting relevant features is similar to 

the problem of selecting relevant. variables in modelling [17]. In 

modelling, and perhaps in knowledge acquisition, the relevant 

variables or features are often dimensionless and the techniques of 

dimensional analysis [17] are often useful for their selection. In 
A 

knowledge acquisition, the most relevant features Y of the outputs are 

the reliability of solutions/outputs and the cost of computing 

solutions. Often the most relevant features of the inputs are the 
A 

inputs themselves, i.e. X = X. Similarly it will often be the case 
A 

that F = F. If features are based on variables which are distributions 

(i.e. linked to an index), then some form of ::iummarising of their 

distributions (e.g. sampling or averaging) will be necessary. For 

-example, if reliability is based on a displacement distribution, then 

the KAc might select the displacement at a particular point in space 



as the relevant displacement 

calculated. Thus while sD 
AD - AD AD AD . AD S - (X ,F ,Y ), i.e. no I • 

on which the reliability is 

(XO,FO,yO,IO) for sD = we 
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to be 

have 

In the CBKAS to be discus.~P-ci in the next chapter, the process of 

selecting features is split into two stages, namely KAS 21 and KAs 22 . 

KAS21 deals with the transformation of sD to sD = (5('.D ,FD ,YD ,!D). Often 

xD = xD, FD = FD, yD = ID and the new out put features are simply added 

to yD to form ?0 . Then, Via KAs22 , the relevant features are extracted 

from sD to form FD. The reason for the two stage process is simply for 

data structuring and processing reasons. Symbolically the process can 

be depicted as below. 

FIGURE 3. 6. 1 

KAS21 KAS22 
sD----$0 ____ .. 50 

Detailed symbolic view of KAS2 . Note that FB32 (See 

Figure 3.1.3) has been omitted fr.om, this view. 

Feature selection is significantly aided by a priori knowledge of 

which aspects Of the outputs are likely to be relevant and which are 

not. However, no matter how knowledgeable the KAc is, he can never 

know beforehand exactly which features will be relevant. After some 

study of the data (by using interactive graphics, etc.) and after some 

attempt at trying to find 'natural' 'partitions' (by pattern 

recognition, etc.), he will usually have a better id&a of the 

relevancy of various possible features. The path FB 32 in Figure 3. 1. 3 

represents this process of knowledge feedback. 

In addition to the selection of features, KAS21 also deals with the 

calculation of the features from the basic data S. For this, the KAc 

must also designate which data case will oe used as a reference 

solution and select a formula for the calculation of the relevant 

feature. These two aspects will be dealt with in the following two 

sections, viz. sections 3.:.1 and 3.6.2. Secticn 3.6.2, it will be 

noticed, is called calculation of reliabili ti HS. This is because 

solution reliability will be the most commonly calculated feature. 

Costs will usually be simple while the variety of other possible 

relevant output features cannot be foreseen. 
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3. 6. 1 Designation of Reference Cases 

Solution. features such as reliability require comparisons between 

solutions and a reference solution. If possible, this reference 

solution should be exact. For most problems which P was designed to 

solve, such an exact solution will not be available. In these 

situations one must use another numerical solution as the reference. 

It should be one which is believed to be accurate. Often the KAc may 

not know how to obtain such a solution at the beginning of the 

exercise. He may know how to set most processor variables F but some 

will need more consideration. In order to cater for such situations 

(which are expected to be quite common), an important design principle 

for the software tools to be discussed later, is one which allows the 

designation of reference cases to be changed and thus reliabilities to 

be recalculated. When used in a design evaluation, the search for such 

a solution may be the sole objective of the knowledge acquisition 

exercise. 

Grounds for belief will usually follow from some sequence of trials 

where processor variables are changed according to tr>ends in their 

effects, known to lead to greater reliability. For example, in FEA, 

higher mesh density usually yields greater accuracy so the KAc would 

try a sequence of experiments with incr>easing mesh density, compare 

the solutions and then decide which to accept as reliable. Such trends 

may however only apply to the 'normal' range of variable values and 

may change beyond such ranges. For example, as mesh density increases 

roundoff err>or will also increase and will eventually swamp the 

solution. There may be complex interactions with other parameters such 

as in the analysis of strain softening materials where softening 

parameters and mesh density are linked by fracture mechanics 

principles. 

It may in some cases be undesirable to designate reference solutions 

by ~~.:.xed values of FN. Ins':.ead reference solutions may be parametrised 

by certain FN variables. This typically will be the situation where 

problem variables, which theoretically should be in xN, are put into 

FN. Some material propert:'..es such as artificial viscosities or ALPHA 

in the example of section 1. 5 are of this type. 
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3. 6. 2 Calculation of Reliabilities 

This section presents a number of formulae used to calculate 

reliabilities or deviations of Y. It will ba assumed that 

a is the value (or vector of values) of the selected output 

variable (or variables) of the case for which the 

reliability is to be calculated, 

b is the corresponding value or vector for the reference 

case (which is assumed to have been designated), 

and c is a 'normalising' constant, calculated or supplied by the 

KAc. 

A reliability or deviation measure will be represented by r(a,b) and 

d (a, b) will be a distance measure between a and b. 

The distance measures are typically one of the following five: 

n I 

d (a, b) = l wi lai-b1.I ( = d1 (D 1 ) 

i 

n 
d(a, b) = l wi lai-b1 I = ct, ) (D1 A) 

i 

1 
n -

d(a,b) = [I wi(ai-bi)2]2 = d2 (D2) 

i 

d(a,b) = max Jai-bi I = doo (DM) 

i 

a.-b. 
d(a ,b) l wi I i i I dR (DR) 

bi 

where it is assumed that the weight wi satisfy 



n 
L w i == 1 , w i ~ 0 for i "' 1 , 2, ••••• , n 
i 

a and bare assumed to be n-vectors. 
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A useful relation between the above distance formulae is, that for any 

a and b, 

The most common choice of weights is w -i - n 

For the 'normalising' constants typically 

c == KAc supplied 

c = d(b,O) 

Typical formulae for r(a,b) are 

r(a,b) 
d(a,b) = _.,.;.,_..;..--

r (a, b) = ld(a,b) J 
c 

r(a,b) = max ( 1 - ld(~,b)'· 

I d(a,b) r(a,b) = sign (d 1 ) c 

0) 

(CO) 

(CD) 

(R 1 ) 

(R2) 

(R3) 

(R4) 

The (R1, R2, R4) are deviation-type measures while (R3) is a 

reliability-type measure. However, for all forms, r (a, b) will be 

referred to as reliability. r(a,b) yields relative measures whenever 

C#1 or (DR) is useci as the distance measure. 

Re~.iabili ties calculated according to any combination of the d.boYe are 

point (PT) reliabilities. By this we mean that if a and b depend on a 

time-like index, the reliability will be calculated for every 'time' 

point of a. Values for b will be interpolated, if necessary. If 

quasi-random responses (see 3.7.1) are expected, such pointwise 
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reliabilities may require smoothing. Typically one might calculate an 

average (AVE) or root mean square (RMS) of the reliabilities with 

respect to 'time'. 

When relative measur'es are used, normalising constants are usually 

chosen so that r E [-1, 1] or r E [O, 1] whichever is appropriate. 

The reliability forms may be referred to by concatenation of the 

individual form identifiers, e.g. R1 /D1 /CO/PT. Some combinations are 

equivalent, e.g. R2/D2/CD/AVE = R1/02/CD/AVE. If c is calculated via 

(CD), the d form used must be the same form as used to calculate 

d(a,b) in r(a,b). 

Often it will be useful to calculate a number of reliabilities, 

usually at least one with the sign preserved and one without. Use of 

(D2) will usually give the smoothest response of r(a ,b) with respect 

to X and F. Such considerations are often useful for finding the 
" pat tern in S. 

3.7 KAS3 AND S~ 

This part of the knowledge acquisition procedur'e forms the core of the 

procedur'e. It concerns the 'partitioning' of sR 

"R "R SK = { s k~ I k = 1 '2' ... 'K, ~= 1 , 2, .•• , L ( k)} where 

-:-R 
This 'partition' SK must be chosen to satisfy the goal conditions C1-8 

(See section 3. 3). As already mentioned the 1 partitioning' is based 

partly on induction from a 'natural' 'partition' of the experimental 
" data S and partly on a decision by the KAc, that is to say that t!1e 

" " " KAc looks for a 'natural' 'partition' SK of S and, using SK as a. 

guide, decides on a 'partition' S~ ~f sR. Before his decision, 

experimentation is directed primarily towards en:1.:.ncing the 'natural' 

'partition' (bearing C1-8 in mind - hence 'natural' not natural) but 

after his decision, experimentation is directed prtmarily towards 

improving the 'empirical basis' of each rule. Goal conditions C2 and 
"R C4 involve measurements of the subsets Y k~ such as maximum, minimum, 
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mean and/or range of" Y~i· These measurements are based solely on the 

experimental data YKQ.· While the use of statistically designed 

experiments can certainly improve the expected accuracy of such 

measurements, heuristic methods will usually suffice. For example, if 
"N 
Y contains some quasi-ran<:!o:n or nonlinear element, then the maximum 

"R "R AR of YkR. may not be caused by any of the extreme values in Sk and F kQ.. 

However, heuristically it should provide an adequate measurement. 
A 

Obviously the more data cases in SkQ. and the better they are spread 

around S~Q.• the better the statistical evidence for S~i· 

The whole process of this knowledge acquisition step is as shown in 

Figure 3.7.1. 

" KAS31 ,.. s-------sK -.... --
s"R KAS32 - --... AR ------------...,.SK 

FIGURE 3. 7. 1 'Partitioning' sD into S~ (copied from Figure 1 .3.4) 

The most difficult part of the abOve process is finding a 'natural' 

'partition' of the data and designing additional experiments to 

enhance such a 'partition'. A 'natural' 'partition' manifests itself 
A 

by patterns in S, so the process is really one of pattern recognition 

and pattern enhancement. The rest of this section will deal with aids 

to such pattern recognition and enhancements. 

Firstly, pattern recognition is highly dependent on what types of 

pat terns are expected, i.e. it is contextual [9, 32, 33]. The expected 

patterns are recognised with the help of a priori knowledge such as 
A A A 

expi:_cted relations between F and Y for fixed X<l and expected patterns 

in Y. Computer graphics is clearly important f'or any human directed 

pat tern recogni tlon. To increase the amount of data without further 

experimentation, interpol~clon may be important. Again this depends on 

the relations between the variables. Data sorting and clustering can 

be very useful aids. Filtering based on the Pare1~0 principle is a key 
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element of the process but filtering (removal) may also be useful for 

simplifying the patterns. These topics are the subjects of the next 

seven subsections 3.7.1 to 3.7.7. 

3.7.1 '.'JJ "N '.'JJ "\\J Pairwise Relations Y-{ - f j and Y-i. - x-3 

While it is unrealistic to expect the KAc to have quantitative 

knowledge of the pairwise relations Yj - f~ and YIJ - ~, knowledge of 

their qualitative aspects is a very important part of the a priori 

knowledge used to design experiments, recognise patterns and 

interpolate data. An expert user of P would be expected to know at 

least these qualitative aspects. If however they are not known, then 

their discovery becomes an important part Of the knowledge acquisition 

problem - perhaps the most important part. 

By a pairwise relation II - f~, we mean the relation between II and 

f~ with the values "of al"l other variables in xN and FN held constant. 

Pairwise relations fj_ - x1j ar_e to be similarly understood. The purpose 

of this section is to describe and explain some terms which are useful 

for describing the pairwise relations II - f~. These terms will be 

equally applicable to II - ~ relations. 

Firstly, the variables themselves may be continuous or discrete. For 

example, ALPHA, which is real, is continuous while NELTS, which is 

integral, is discrete. Relations between continuous variables are 

commonly described as continuous, smooth, monotonic or stochastic 

(random). However, many variables are expected to be discrete so the 

terms continuous and smooth are then inapplicable even though discrete 

relations (pairwise relations where at least one variable is discrete) 

are expected to exhibit beha.viour similarly describable. Such discrete 

relations we will be described as having continuous trends or smooth 

trends. Monotonicity and randomness are applicable to both continuous 

and discrete relations. Continuity, smoothness, continuous trend, 

smooth trend and monotonicity are expected to be very common 

properties of relations. Randomness is highly unlikely because most 

engineering packages are bast3d on deterministic principles {Chaotic 

relations C21 J will not be considered in this thesis). However, many 

engineering packages contain iterative algorithms with tolerance-type 
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termination criteria. With such software the relations between the 

measured values of the variables may look partially 'random'. This 

type of behaviour will be called quasi-random. 

Figure 3. 7 .1 .1 illustrates some of the terms. It will usually be 

helpful to imagine discrete points connected by lines. 

FIGURE 3. 7. 1 • 1 

. . . 

(a) 

. . . 

( c) 

. . . . . • 

(b) 

.. 

(d) 

(a) Continuous, smooth, non-monotonic trend 

(b) Continuous, non-smooth, monotonic trend 

(c) Discontinuous, non-monotonic trend 

(d) Quasi-random with monotonic trend 

. . . . 

It is important to note that different forms of reliability 

calculation may yield different relations. For example with an 

absolute value (unsigned) reliability measure, the relation may appear 

non-monotonic while if the sign is kept it will be seen to be 

monotonie. Usually monotonic, smooth relations will yield simpler 

pattern!: in the global (system level) relations. 
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Ideally the KAc should check that the behaviour eXhibi ted by the data 

conforms to all the expected pairwise relations. If expected 

behaviours could be captured onto EDBn (the data·base containing $D) 

and they could be 'understood' by the CBKAS, then such checking should 

·ideally be done by the CBKAS automatically (like a sophisticated form 

of database integrity constraint checking). Such an ideal Ls beyond 

the scope of the present work. 

3.7.2 Patterns in Y 

Whereas the previous section dealt with pairwise relations, this 

section deals with relations between the variables in yN and relations 

between the whole (or subsets) of FN and subsets of yN. To include all 

possible such relations the word pattern will be used instead of 

relation. 

... 
Mostly patterns in Y concern costs and reliabilities. For a typical 

problem and control class, patterns like the one in Figure 3. 7. 2. 1 

result. 

COST 

0 

I 
XI 

X I/ 
/1 

X X/ 

x x ~/ 
~y 

.... ' --
RELY 1 

FIGURE 3. 7. 2. 1 A typical cost-reliability pattern 

An interpretation of this figure is that 

(a) on average, to increase reliability, one should expect. to 

increase (.:ost, and 

(b) many solutions are inefficiently computed. One can hypothesize 

the existence of a curve of efficient solutions (Indicated by 

the broken 1 ine) . 
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Points on this curve are Pareto optimal (non-inferior or 

non-dominated). The subset of FR which causes Y to lie on this curve 

is the Pareto optimal set for the problem class and the goal is to 

find an approximation to this set. A filter which removes all inferior 

points would leave only those points connected by the solid line. 

Discussion of such filtering will be deferred until the next section. 

Some typical Y patterns will now be illustrated and explained. 

FIGURE 3.7.2.2 

x 
xx 

x 

COST 
x x 

x x 
x 

x x x 
X xX X 
. xx x 

x 
x 
x 

x 
x x 
x 

x 

DEVIATION 
A Reliability-cost pattern showing three clusters 

In Figure 3.7.2.2, one sees three clusters. This pattern would 

probably be caused by a combination of discrete and continuous 

variables - the discrete variable causing the clustering while the 

continuous causing the variation within each cluster. The discrete 

variable dominates the cost dependence but perhaps not the reliability 

aspect. Note that the dependence is not monotone, a fact which is 

easily obscured if an unsigned reliability measure is used. 

In Figure 3.1.2.3 (a) the broken line represents the most efficient 

solution for many given reliability level. However one can see that 

Cr 2,c 2) dominates (r 1 ,c 1). Filtering out dominated points would result 

in the pattern shown in (b). 
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(a) 

t RELY 
1 

COST xx x 
x 

x 
xx 

(b) 

RELY 
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x 
xx 

Reliability-cost patterns without and with Pareto 

filtering 

While both (a) and (b) indicate clustering, it is (perhaps) clearer in 

(b). Again, the above pattern would be caused by a dominant discrete 

variable with a superimposed scattering effect due .to other variables. 

After filtering, the pattern shows the monotonic trend typical of a 

Pareto optimal set. 

In some problem classes, 'tuning' variables typically produce the 

following pattern. 

FIGURE 3.7.2.4 

COST 

--DIRECTION OF INCREASE OF 'TUNING' PARAMETER 
@<x xxxxx 

©SOLUTION WITHOUT 
© x x xx x x TUNING PARAMETER. 

@xx x x x xx 

DEVIATION 
Pattern caused by discrete variable plus continuous 

tuning variable 

The discrete variable domin?res the cost while its effect on 

reliability is monotonic convergent. However; a tuning parameter can 

improve reliability significantly without affecting the cost. Due to 

the monotonic convergence property of the dominant variable, the 

influence is reduced (scatter becomes smaller) as cost increases. Also 
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very important in this situation is the use of a signed reliability 

measure. An unsigned one would simply confound the pattern. Instead of 

Pareto filtering in the above situation, one would probably simply 

interpolate the appropriate value for the tuning variable for each 

cost level. However while tuning variables improve one measure of 

reliability, they often worsen another measure and a trade-off is 

needed so Pareto filtering may again be needed. 

The Importance of Graphics 

Very many of the judgements required in knowledge acquisition depend 

on pattern recognition on numerical data. Often the point of view from 

which the data is observed critically affects the possibility of 

recognizing patterns. At present, machine pattern recognition is 

reliable only for special purposes, not for such general purposes as 

in this thesis. Often they require special hardware. Humans, however, 

are excellent at most forms of pattern recognition and so, to 

capitalise on this ability, it is essential that any CBKAS have good 

interactive graphics facilities and facilities for easHy changing 

points of view. 

3.7.4 Interpolation of Data 

Almost invariably the initial programme of experiments will yield too 

. little data for patterns to be recognised. The most obvious way to 

overcome this is by further experimentation. However, if each 

experiment is expensive, the cost of knowledge acquisition may become 

excessive. An alternative is to interpolate the current data. It will 

usually be very much cheaper to interpolate than to experiment. This 

may at first sight appear invalid since, at best, interpolated data is 

of the same quality as the criginal while, at worst, it is meaningless 

when quasi-random relations are involved. However, if the relations 

~re relatively smooth and/or any quasi-randomness is relatively 

insigniftf"!ant, it can be very useful to interpolate. This is b9cause 

pattern recognition is often be~ter on more dense data. Of course, too 

much data may obscure patterns - but then one can use filtering 

techniques. It is often the caH·3 that pattern recognition on a large 

data sample, filtered and summarised down to the same amount as some 
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small sample will be easier than in the former case. It is like 

looking at a detailed picture from a distance rather than a crude 

picture from close up. A more technical analogy is the use of the 

following heuristic in FEA of structures static condensation from 

m>n degrees of freedom down to n yields better dynamic 

characterisation than a model with only n degrAes of freedom. Once 

more real data has been generated, the process may be repeated with 

interpolation always from real data. Even if a formula for the 

relation exists, visualisation of its behaviour via graphical display 

of points generated by the formula usually improves understanding. If 

the formula is complicated such visualisation may be extremely useful 

for finding simpler approximations. This is exactly the situation in 

knowledge acquisition : P is like a complex formula which the KAc and 

users of P wish to understand via simple approximations {HK) to its 

behaviour. 

Response surface methodology [13] is a set of techniques for 

approximate modelling of complex input-output processes. Typically, a 

response yi might be assumed to be linearly dependent on a set of 

inputs X;, j = 1, m. From statistical analysis appropriate experiments 
~ 

are designed which would allow such response surface fit ting to be 

done. Once response surfaces yi = yi (xj), j "' 1, m have been fitted by 

a least square error method they may be used for approximate 

optimisation purposes. As mentioned already, experimental programmes 

are designed with possible response surfaces borne in mind. In 

general, the actual fitting of response surfaces is not recommended. 

Firstly, there will usually be no intention of using the surfaces' 

equations to formulate into rules. Secondly, to reduce biasing error, 

surfaces of sufficiently high order need to be fitted. This added 

complexity may not be warranted for the generation of heuristic 

knowledge and local interpolations and subsequent experimentation will 

usually be more appropriate. 

Sorting 

After studying the patterns in Y alone and finding some approximation 

to the curve of efficient solutions, the next step is to find the 
" " cause of the patterns., i.e. to find a pattern in F X Y. It is here 

that sorting, clustering and filtering have their impact. Clustering 
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and sorting arrange the data into groups so that first intragroup and 

then intergroup study can be done. Filtering reduces the search to 
... 

subsets of F and Y. 

Sorting is obvious if only one input or control variable is involved. 

However, if more than one are involved, there is the problem of 

selecting the order of the variables on which sorting is to be done. 

For example, if FN contains (f~, f~), does one sort on f~ then f~ or 

on f~ then f~? As the number of variables increases, the number of 

possible sorting orders increases combinatorially. In fact finding an 

appropriate sorting order may be part of the goal of knowledge 

acquisition. The order should go from greatest to least dominance 

(like the ranking of goals in goal programming [18, 19] for 
... 

polyoptimisation). In this way, the dependence of the Y patterns on 

corresponding F patterns should be clearer. Again, however, dominance 
A 

may be dependent on the particular features involved in the Y patterns 

- changing a reliability measure may change the dominance order. For 

situations like Figure 3.7.2.4, sorting may well be the most important 

tool required when the data has not been captured in a fixed order. 

3.7.6 Clustering 

Sorting produces a hierarchy of groups in a data set. Clustering 

(Appendix A) is also a grouping technique but does not necessarily 

produce a hierarchy of groups. The idea is to group together data 

cases which, according to some criteria (clustering criteria), are 

similar. Typically clustering criteria may be based on cost, 

reliability, both cost and reliability or, more generally, 
A 

combinations of Y variables. Similarity measures need to be defined. 

Very common measures are ones based on Euclidean-type norms and are 

therefore most suited to clusters having the shape of balls in Rn (See 

Figure 3.7.2.2). Whereas in sorting a complete order of variables 

needs to be specified, in clustering only a subset of variables 
... 

(typically only a subset of Y) is involved in the clustering criteria. 

After clustering, the members of each cluster are commonly sorted into 

some order for presentation. Selection of clustering criteria and of 

the number of clusters are frequently encountered problems with 

clustering. Clustering can be used to find patterns (a set of 
... ... 

clusters), in the Y data, it can be used to 'partition' Y even if no 
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obvious pattern exists or, when the pattern is clearly visible to the 

KAc, it can be used to manage the Y data for presentation and 
A A 

subsequent F - Y pattern recognition. 

Filtering 

By filtering here, is meant an algorithm which removes most of the 

inefficiently generated solutions from consideration. Note that most 

not all will usually be removed. By removing all inefficient points, 

one might end up with a very sparse data set in which no pattern can 

be found. Usually it will be better to relax the filtering so that 

only most are removed. A type of approximate filter results which 

includes a parameter specifying the level of approximation. Such a 

filter will be called an approximate Pareto filter. 

Recalling the description of the Pareto principle given in section 
A A 

3.2, we may define the Pareto optimal set U of Y as follows. If u e: Y 
A 

is an n-vector, then if there is no v e: X such that 

vi ;;: ui for all i=1, 2, ... ,n with the inequality holding for at 

least one i, 

then u e: u. Then an approximate Pareto optimal set can be defined as 

the set Ue: with the following properties: 

( 1) 

and (2) 

u c:: u 
- e: 

for all u' e: U , llu' - ull < e: for some u e: U. e: 

II ·II is some appropriate norm and e: is the filter approximation 

parameter. A typical norm would be 

II u' - ull = /cu' - u) T W ( u' - u) 

where W is a diagonal scaling matrix. The subscript ·-: on Ue: is meant 

to denote the fact that the contents of Ue: depends on a filter 

parameter e:. In addition to the above conditions one may have 

threshold levels for Y so that solutions of very low reliability or 

very high cost are excluded from Ue:. As stated above, the Pareto 
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principle is only relevant to situations where the goal is to maximise 

u. In general one wants to maximise some components, minimise others 

and maximise or minimise the absolute values of still others. 

Modifications for such purposes are relatively straightforward. 

The s ... et Ue: forms the $et of positive examples while the rest 

Ve: = Y - Ue: form the set of negative examples. The advantage of the 

filter parameter e: is that the boundary between the positive and 

negative examples can be moved. A very effective way to find patterns 
... " 

in Y and F X Y is to form an €:-sequence of sets U e:, V €:, perform 

clustering, sorting, etc. on those sets and then compare their 

contents. In this way the KAc can learn how to recognise subsets of FR 
which contain the Pareto set and so can design further experimental 

programmes (Fs 31 ) to focus the search in these subsets. Recall that 

goal condition C7 concerns the simplicity of the desired sets (so that 

the resulting HKij will be quite simple). However, after approximate 
" " Pareto filtering the set U €: and associated F and X subsets will 

usually still be quite complex (i.e. not convex, not simply 

connected). The process of removing members for simplification will be 

called simplication filtering (or independent filtering in ELIXIR). 

In the statement of the goal in section 3.3 an implicit form for the 

HKij was assumed. By seeking 'partitions' in sR, we are implicitly 

saying that the HK should be represented in the following rule form: 

IF AND THEN 

All this does is present S~ in more readable form. It does not however 

place the HKij in its original context. To do this we have to add the 
"N N N N derivation of S from S and the interpretation of the S via ~ • 

Along with this latter interpretation is the definition of 

correspondences SR between sR and sR. Thus the final form of the HKij 

as produced by the execution phase will be a comh~nation of 

rules using So, SO and S~ 
statements and formulae describing transformations, e.g. how . 

reliabilities were calculated, 
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statements, diagrams, graphs, etc. characterising the reference 

solutions precisely, 

statements, diagrams, graphs, etc. which are useful for defining 

the problem and control class and tr.e set of rules, 

an explanation of the structure . of S~. Explanation will be 

discussed in the integration phase (Section 3.10). 

3.9 FEEDBACK 

Knowledge acquisition has been shown to be a iterative process. As 

such, feedback paths are an integral feature. Most of these feedback 

paths the FBk.9. shown in Figure 3.1.3, have al:-eady been dealt with. 

This section will merely summarise and collect together the main 

feedback ideas. Since there are feedback paths to all parts of the 

procedure, it will serve simultaneously to summarise the chapter. The 

order of presentation will be roughly the expected order that the KAc 

will follow. 

FB
21 

- Feedback from KAS 2 to KAS1 and KAS0 

"D s is supposed to be an abstracted form of the data in s0 • The 

abstraction consists of data transformations and subset selection. In 

order to find the appropriate transformations and selection, the KAc 

will study sD with the aid of KAS2 • During this study it may become 

evident that: 

( i) 

(ii) 

(iii) 

the experimental programme is too small, 

more variables need to be defined and their values recorded or 

some variables may be disregarded and their values no longer 

collected in future experiments. 

The objective of including FB 21 is to allow for correction (i), i.e. 

to ensure sufficiency of data. The objective of including FB20 is to 

allow for corrections (ii) and (iii). 
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FB
3

i - Feedback from KAS3 to KAS2 , . KAS1 , KAS0 

FB 32 deals with 

(i) Redefinition of sD from gD,sD: 

(a) Recalculation of transformed quantities, e.g. changing 

reference cases or changing the components of the 

variable used in the transformation. 

(b) Redefining the transformation, e.g. new formulae, 

different variables or any of those in (a) above. 

(c) Adding new transformed variables. 

(d) Changing the subset selection of sD from gD. 

(e) Changing the arrangement of data. 

(ii) Modifying sD, e.g. by summarising Y as in operations b and c 

of section 3.7.8. 

FB 31 , like FB 21 , is concerned with sufficiency of data. 

FB30 , like FB20 , is concerned with expanding, contracting or modifying 

the spaces of variables defined in s0 . However, it is also concerned 

with redefinition or modification of s0 and S, i.e. with the whole of 

I0 . Attributes may be dropped and new ones included. S would need 

adjustment accordingly .. It is i via FB 30 that eR is completed. For 

example the grouping of SAR in section 3. 3 is derived during knowledge 

acquisition and only after this can the groups be connected with low, 

medium and high structural aspect ratio. If the KAc had found four 

'natural' groupings of SAR, SR would be a little different. 

3.10 THE INTEGRATION PHASE 

Recall that the integration phase was .depicted symbolically as shown 

below. 
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(i) For each 1 : 

KAc 
U HKU---...HK1 

J 

{ii) U HK __ K_Ac_;a. HK 

FIGURE 3. 10. 1 Symbolic view of the integration phase 

The purpose of knowledge integration is to form U j HKij and 

U i HKi into a compressed body of heuristic knowledge for P as a whole. 

While the acquisition of. HK is done under the assumption that the HK 

will be used, this fact should not be taken for granted. However, if 

the HK is comprehensible, i.e. consistent with physical and 

computational theory, self-consistent, organized and simple, it should 

inspire confidence in the user of P that the use of the HK will 

simplify his numerical modelling tasks. In order to make the HK 

comp:rehensi ble to users, he should first make it comprehensible to 

himself. 

Before describing when and how integration is done, we first need to 

elaborate on the features of comprehensibility mentioned above, namely 

c9nsistency with basic theory, self-consistency, organization and 

simplicity. 

Fi!"stly, consistency with basic theory means that for each HKij the 

KAc can find an explanation of the structure of the HKij in terms of 

the physics of the problem class and the computational principles upon 

which P was designed relevant to the control class. We believe that 

the most common reason for a lack of. adequate explanation will be due 

to errors in knowledge acquisition such as too little data (real 

data:, improper data processing, invalid s0 , data collection error and 

so on. Thus consistency with basic theory is a check on the validity 
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of the individual HKij. If, however, no explanation can be found after 

carefully checking the acquisition process, the KAc may simply treat 

the HKij as empirical, in which case only further experimentation and 

knowledge acquisition by independent KAc' s can guarantee the validity 

of the HK ( as far as any empirical knowledge may be guaranteed) or he 

may treat it as a genuine discovery requiring detailed research and/or 

modification/development of P. By a genuine discovery we mean an 

observed phenomena that has so far not been publicized. Such 

'inexp1icable' phenomena may be exhibited. by nonlinear mathematical 

and/or numerical models which have not been studied in great detail. 

Where no explanation is found for any HKij, the user should be warned 

accordingly. It should be remembered that the purpose of knowledge 

acquisition is not usually detailed research and explanation but to 

provide HK that is (intuitively) comprehensible to the user - not 

necessarily proved to the user. 

Secondly, self-consistency concerns consistency between say HKi and 

HKkt. If pci,ccij and pck,cckt involve similar mathematical and 

computational theory (but are, presumably, different specialisations), 

the structure and explanation of HKi and HKk should be similar 

(perhaps identical). If they are not similar it again indicates error 

in knowledge acquisition or perhaps Pei ,ccij and Pck ,cc kt are not as 

similar mathematically and computationally as expected. An explanation 

for such a difference is then required. 

Thirdly, organi·zation of the HK relates to the structure of the whole 

HK (not just the individual HKij) and its presentation. The structure 

of the HK should follow appro'ximately the structure of the KAProg but 

whereas in designing the KAProg foresight was required, organizing the 

HK is done with the advantage of hindsight. Only very general 

statements about such organizing can be made here since each situation 

will probably require special organi :zation. Obviously, the various 

PCi/HKi/ccij/HKij will be similar in some respects but differ in 

others. The trick is to find a structure which reflects both 

similarities and differences in a comprehensible way. Hierm~ chi cal 

structures are most easily inderstood but unfortunately almost all 

engineering packages will result in network structures. This is 

because the various options (physical, geometrical, mathematical, 

etc.) may be combined in some problem classes. For example, a set of 

problem classes for a structural analysis package might deal with 
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beams alone, plates alone and beam/plate combinations. Further 

complexity arises if each of these may also have any combination of 

static or dynamic, linear or nonlinear analysis options. Does the I<Ac 

group the classes according to their geometrical features or analysis 

types? (cf sorting and clustering criteria). One reasonable way would 

be to have three groups of classes, the first dealing with beams 

alone, the second with plates alone and the third with beam/ plate 

combinations. Then each group begins with a class dealing with the 

simplest analysis options, e.g. 1 inear static analysis. Successive 

classes should increase in difficulty of analysis or behavioural 

complexity. Such an organization is based on first grouping according 

to geometrical features and then. according analysis types. To aid 

users interested in problems concerning say nonlinear materials, an 

index pointing to all such probable classes can be provided.. In 

general, a number of indices may be required. The problem becomes very 

similar to one of listing books according to certain keywords and 

perhaps the data structures used in their computerisation may be 

appropriate to a computerised presentation of the HK (for example, in 

an expert system). 

Finally, the simplicity of the HK greatly affects its comprehension. 

It was partly for reasons of simplicity that a rule form of 

representation was chosen. Here we wish only to emphasize its 

importance with regard to the HK as a whole. We expect that many of 

the structures of the indi victual HKij and their explanations will be 

similar. Where such similarities exist it may be possible to simplify 

the HK by amalgamating problem classes into fewer but slightly more 

complex problem classes. For example, the KAc might have thought that 

for a certain beam problem, material and geometric nonlinear effects 

would cause different reliability and cost behaviour and so separate 

problem classes for each effect were chosen. However, if it turns out 

that the HKij is very similar, he may subsequently amalgamate the two. 

He may of course need to repeat the knowledge acquisition. Simplicity 

also affects the nature of explanations if simple intuitive 

explanations are possible, they are to b6 preferred to complex proofs 

(which can simply be referenced). Most explanat..:.:Jns of the HK we 

expect will therefore be intuitive. 



Page 85 

We now return to when and how integration is to be done. Figure 3.10.1 

gives the impression that integration is done only after all HKij has 

been acquired. This approach does have certain advantages in that the 

execution phase can easily be divided amongst a number of KAc' s and 

then 

u. HKi 
1 

the integration done all at once. By looking at u. HKij and 
J 

all at once, the KAc (and his team) may find many simplifying 

patterns in the behaviour of P and so produce a relatively simple body 

of organised heuristic knowledge about P. Alternatively, the KAc might 

attempt to integrate the HKi and HKij incrementally, i.e. as each HKij 

is acquired it is integrated into the current body of HK. This 

incremental approach also has advantages. Firstly validity checking is 

done just after execution (perhaps even during execution) so that 

errors found are more easily corrected because the overheads 

(psychological as well as computational) involved in restarting an 

execution are avoided. Secondly, and most importantly, the KAc is 

continually increasing his knowledge and understanding of P's 

behaviour and so can bring it to bear on knowledge acquisition of 

subsequently studied problem classes. In other words, the a priori 

knowledge that he brings into the execution phase is continually 

increasing. This should improve both the efficiency with which the 

execution phase is done and the quality of the HKij produced. 

Incremental integration may itself be easier once a few HKij have been 

integrated. We expect that the most suitable approach would combine 

the above, i.e. would involve studying a group of similar problem and 

control classes, integrating the HKij for the whole group at once and 

repeating this process until all groups of problem classes have been 

executed and their HKij integrated. Thirdly the incremental approach 

allows redesign and/or modification of the KAProg during the knowledge 

acquisition process. Because it is impossible to predict accurately 

the behaviour of P during the initial planning phase, it may be 

essential to repeat the planning phase as more a priori knowledge 

becomes available. This is once more a form of knowledge refinement 

via feedback. 
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4 DESIGN AND IMPLEMENTATION OF A COMPUTER BASED-KNOWLEDGE 

ACQUISITION SYSTEM 

The preceding chapters may be viewed as an analysis of requirements 

for conceptual design of a knowledge acquisition system. Except for 

fairly simple studies, the acquisition process will evidently require 

considerable data handling and processing. In order to make the system 

viable it must be computerised. By this it is not intended to automate 

the whole process, but, realising that human involvement will in most 

cases be essential, the aim is to develop a computer based system 

which will aid the knowledge acquirer. 

The chapter consists of three parts. The first part deals with the 

user's view of a CBKAS. The user in this case is the KAc. Instead of 

presenting and explaining the concepts involved in a CBKAS in a 

general form, we will illustrate these concepts by presenting them as 

implemented in ELIXIR. The St~cond part looks behind the user's view to 

the developer's view of a CBKAS. Again ELIXIR is used. Some issues 

concerning data, program and control structures will be discussed. The 

final section deals with software engineering issues. In developing 

ELIXIR it became very clear that a CBKAS is itself a complex and 

sophisticated piece of software. Some software engineering principles 

that proved useful plus some that we believe would have been (and will 

be) useful are discussed. 

4.1 USER'S VIEW OF A CBKAS 

A computerised database (DB) is a file or set of files which holds all 

data related to a particular application. Setting up and manipulating 

an application database is done by the user from a user device (UD) 

via a database management system (DBMS) [22-25]. Application software 

(AS) for special data processing also makes use of the DBMS. 

Schematically this situation can be represented as follows. 
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DB 

AS 

An Abstract User's View of an Application System making 

use of a Database Management System 

A CBKAS can be thought of as an application system and a DBMS rolled 

into one. But, whereas a general DBMS would allow the user to tailor 

his database structure (schema) appropriately, the appropriate 

structures have already been built into the CBKAS. The user of the 

CBKAS is of course the KAc. In the CBKAS to be discussed in this 

thesis, namely ELIXIR, more than one database is usually involved in a 

particul,~r knowledge acquisition exercise. These are EDB and EDBn. The 

ELIXIR system can be represented as follows: 

EDBn 

ELIXIR SYSTEM 

FIGURE 4.1 .2 Abstract User's View of the ELIXIR CBKAS 

EDB, the ELIXIR database will contain all information and data 

conce"'ning lo, s0 and sD. The database subset EDBn will contain s0 and 
"D perhaps SK. 
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The part of a DBMS which is used for setting up an application 

database is usually called the database definition language (DDL) 

while the part used for manipulating the database is usually. called 

the database manipulation language (DML). In the ELIXIR system, the 

program FELIX is used for setting up the database EDB while all the 

other pro gr ams ( PRELIX, EDBREP, EDBVU, ELIXIR, DBNREP) mainly involve 

data manipulation. However, additional variables like reliabilities 

are defined during knowledge acquisition so FELIX is used only for the 

initial data description and the databases EDBn are set up from within 

the program module ELIXIR and not via FELIX. The whole ELIXIR system 

can be viewed as shown in Figure 4.1.J. 

OUTPUT. 
FILE 

PROCESSOR 

TEMP FILE 

ELIXIR DA TA BASE (EOBJ 

(a) Initial data description and automatic data capturing 

EDB 

EDBVU EDBn 

(b) Data base reporting, graphical viewing, data transformation and 

formation of transformed databases 
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EDBn 

ELIXIR 

(c) Reporting of transformed databases and pattern recognition 

FIGURE 4.1 .3 Detailed User's View of the ELIXIR KAS 

The explanation of this figure is as follows. The KAc sets up a file 

containing an initial data description. An example of such a file is 

shown on page105lin Chapter 5. FELIX reads this file and sets up EDB. 

EDB thus contaTn~ lo. The process corresponds to KAS0 . EDB will also 

contain some details concerning automatic data capturing needed by 

PRELIX. Perhaps the single most important design criterion of ELIXIR ... 

was that it should be applicable to the study of fairly general 

processors P. This hinges on the initial data description and the file 

structure of TEMPFILE. The target field of application of ELIXIR is 

engineering software. A study of the data types and relations and 

possible output file structures was done on finite element packages, 

finite difference packages and other semi-analytical engineering 

software. The form of the initial data description and TEMPFILE 

structures was then designed to cater for all these packages. It is 

the adoption of the DBMS approach to the ELIXIR design which is 

largely responsible for the applicability of ELIXIR to general P. 

The next step is to apply KAS 1• This is done by preparing data for the 

each case in the experimental programme, running this through the 

processor P and collecting the output plus relevant input data on file 

TEMPFILE. TEMPF!LE is a sequential file, the contents and structure of 

which depend on t.he data description of lo. PRELIX uses this data 

description on EDB to interpret TEMPFILE and then .:::.tores the data in 

structured form on EDB. Thus sD is formed. At this stage EDS contains 
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I0 and sD. The output files produced by FELIX and PRELIX contain 

information which helps the KAc to verify that the data description 

and data captured are correct. 

Further detail concerning FEUX, PRELIX and their associated files 

will not be given here, but some detail should emerge from the 

descriptions of the use of ELIXIR given in Chapter 5. 

EDBREP produces a print file of the contents of EDB while EDBVU is 

used for selective interactive graphical viewing of its contents. 

Future versions of EDBREP will allow selections of the contents to be 

printed while future versions of EDBVU will allow printing of the 

graphically presented data. 

The primary menu in the ELIXIR program is the following: 

1. PROCESS/DISPLAY PRIMARY DATABASE EDB 
2. PROCESS/DISPLAY DATABASE SUBSET EDBN 
3. HELP 
4. END ? 

The first option puts ELIXIR into KAS 2 mode while the second puts it 

into KAS 3 mode. In KAS 2 mode, the KAc may select output variables to 

be used in reliability calculations, designate reiference solutions, 

select an appropriate formula for reliability calculation, select a 

subset of cases for which reliabilities are to be calculated 

(typically a single X-class, i.e. all cases with the same Xa) and then 

calculate the reliabilities for this subset (X-class). All these 

operations are part of KAS 21 • Use of EDBREP and EDBVU also constitute 

operating the CBKAS in KAS 21 mode. The product of this effort is sD 

which is also stored in EDS. The next step is to select a subset of s 0 

and rearrange it into sD. This implies operating ELIXIR in KAS 22 mode. 

gD is stored in a new database EDBn created by ELIXIR. By taking 

different subsets, the KAc may create EDB 1 , EDB2, .•• , EDBn. Each of 

these is a data system sD. There is no unique sD for any oij. It is 

the KAc's task to find a sD appropriate to satisfying Gij. 
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In KAS 3 mode the KAc uses the graphical, filtering, sorting, 

clustering, reporting and set operation features of ELIXIR to help him 
.... 

find 'natural' patterns in S (on EDBn) so that it may be 'partitioned' 

into SK. From SK the KAc may then induce s~. Using DBNREP to print the 

contents of EDBn will usually be helpful. 

The examples in Chapter 5 demonstrate the usefulness of ELIXIR for 

knowledge acquisition. 

At present the contents of the databases are accessible to the KAc 

only via the ELIXIR system and he has very little control over the 

format of presentation. In future versions the system will be made 

more open by providing more database utilities for directly accessing 

their contents. 

4.2 THE DEVELOPER'S CONCEPTUAL VIEW OF A CBKAS 

In order to design a software system, the software engineer needs to 

know what types, volumes, structures and variability of data will be 

required and which operations, sequences of operations and variations 

of these will be performed on the data. In addition he needs to know 

whether additional data types, data structures and operations are 

likely to be required in the future so that he may plan for the 

evolution of the system. For designing a CBKAS, the above required 

information is essentially provided by the first three chapters of the 

thesis. 

From the first three chapters we find that character, integer and real 

data are all required. Each variable migllt be scalar, vector or 

matrix. Output variables may be linked to index variables. The 

dimensions of these vectors or matrices may be large and vary from 

(data) case to case. Even the presence of data for a variable may vary 

from case to case if the KAc decides not to continue collecting data 

for a specific variable or realises that he should be collecting data 

for c...1.::ither. Data structures for dealing with sets (of cases), 

clusters and 'partitions' ar·,~ required. These data structures may be 

dependent on the types of patterns found in the data but we cannot say 
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beforehand what all the pattern types are likely to be. Thus new data 

structures will be needed. In short, what is required is a system 

which can deal with flexible data structures and types. 

Chapter three lists s,ome important operations which may be performed 

on the data as well as likely sequences of such operations. It is 

clear that the sequences of operation may vary from study to study and 

that many more operations (e.g. multi-variate statistical techniques) 

may be required. This implies that the 'library' of operations in the 

CBKAS will always be incomplete. One way to increase the library 

without adding extra computer code would be to allow the KAc to 

extract data from the databases, format it as desired, process it on 

some other package (e.g. SAS) and insert the results into the database 

without destroying its integrity. The program or system structure and 

its control should therefore be flexible. 

In response to very similar problems AI researchers [1,3-8] invented 

productl.on rules, semantic nets, frames, etc. to provide flexible data 

structures. They also separated the data, the operations and the 

control aspects so that flexible program structures could be achieved. 

Special languages like PROLOG, LISP, SMALLTALK, etc. were invented to 

ease the coding of such flexible structures. Data management and 

control aspects are supposed to be handled by the language compilers, 

interpreters and meta-interpreters. Database researchers [22-24,3] 

respondea to similar problems by building up complex flexible data 

structur~is from sets of simple relations (such as in relational 

databases) and providing for flexible operation and control · by 

separating the data, data processing, data management and control. 

These were achieved by developing database management systems (DBMSs). 

Data is held separate from programs in a database, data processing is 

done by application and utility programs, data management is handled 

by the DBMS and control over the processing is done by the user or his 

applicati.on programs. Unfortunately neither AI languages nor DBMSs 

currently support vector and matrix data types (FEA software 

developers who used database techniques had to write their own DBMSs). 

The concepts invented by the AI and DBMS researchers are, however, 

excellent for CBKAS design. 
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Two more ideas should also be mentioned before describing an 'ideal' 

developer's view of a CBKAS. Firstly data management can be separated 

into database management and memory management. Modern DBMSs already 

incorporate this idea, at least to some degree. Secondly, pat tern 

recognition requires sophisticated user' interfaces and the current 

trend is to introduce a user interface management system (UIMS) [ 52]. 

Traditional languages like FORTRAN were designed with printers and 

punch cards in mind whereas interactive computing re quit' es windowing, 

graphics and multitasking facilities. 

Figure 4.2.1 shows how we envisage a CBKAS based on the above ideas. 

DBi 

DBMS 1 MMS ' UIMS 
--~---~--------~------. CRMS 

FIGURE 4.2.1 A Developer's Conceptual View of an Ideal CBKAS 

The CRMS shown in this figure is what we will call a computer resource 

management system. It consists of a DBMS for managing the databases 

(DBi), a memory management system (MMS) for managing the workspace· set 

aside in memory for the application and a UIMS for managing the user 

devices (UDj). Ideally the CRMS is like a very high level language 

tailored to CBKAS requirements. Each module of the CBKAS (CBKASk) 

could then be written in this high level language. The main 

differences between the CRMS language and commercial DBMS languages 

are the relative separation of the DBMS, MMS and UIMS functions in the 

CRMS and the fac: that the CRMS would be tailored to knowledge 

acquisition applications. Ideally the CRMS language should be able to 
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call subprograms written in other languages and/or CRMS procedures 

should be callable from these other languages. By the workspace we 

mean that part of memory set aside for holding data. However, the 

program code may itself use a large amount of memory so perhaps memory 

management should also deal with program use of memory. Even with the 

larger and larger memories of modern systems, memory management will 

be required because the problems tackled get larger and more complex. 

These ideas are discussed in more detail in [61-68]. 

The ELIXIR system achieves these ideals to a limited extent. The main 

modules FELIX, PRELIX, EDBREP, ELIXIR, EDBVU and DBNREP are not 

written in a very high level language (FORTRAN was used) but they do 

consist primarily of calling subroutines from a CRMS library of 

subroutines written for knowledge acquisition purposes. To some 

extent separate DBMS, MMS and UIMS routines could be wri.tten but many 

CRMS routines have elements of more than one of these functions. We 

believe however that with the experience gained from developing ELIXIR 

and perhaps using a more sophisticated language than FORTRAN, the 

degree of separation of function can be increased. 

Most of the ideas presented in this section can be summarised under 

the label of modularisation. By this we mean the development of many 

functionally separate modules which can be assembled into complex 

systems like a CBKAS. It allows such a CBKAS to deal with quite 

general P by separating data definition from the CBKAS programs and 

eases maintenance and development by localising errors (bugs) and 

allowing modules to be replaced. 

4.3 SOFTWARE ENGINEERING FOR A CBKAS 

Reference [53] defines software engineering as: "The establishment and 

use of sound engineering principles (methods) to obtain economically 

software that is reliable and works on real machines". Like any other 

engineering discipline software engineering involves design, quality 

assurance, cost estimation and project management. The software design 

process, like engineering design, consists of desig,., specification, 

generation of designs, evaluation of designs, comparison of designs, 
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selection of a design and implementation. Design specification is the 

formalisation of the design requirements according to an analysis of 

the user's requirements. Detailed data and process analysis are 

necessary for proper specification [51, 53]. The rest of the thesis 

provides most of the basic material needed for such analyses for a 

CBKAS. 

By starting with design specification of the software as a whole, 

decomposing into components each with their own specification and 

repeating the process until a completely specified system is obtained, 

the software engineer follows what is called top-down design. Of 

course, when evaluations of components are made, design and even 

specification modifications may be required so the process is one of 

iteration, i.e. not strictly top-down. Just as engineering structures 

are built from the ground up, so software implementation is usually 

done from the bottom up, i.e. the small low level routines are first 

coded and tested, these are then assembled into larger routines and 

the process continued until the whole system has been coded. However, 

a relatively new implementation approach is top-down, i.e. coding 

first the highest level routines and then successively connecting the 

lower modules into the system and testing them.' This approach 

effectively eliminates integration or assembly of the coded modules. 

Possibly its main advantage is that, at all stages of development, a 

partially usable system exists. 

The ELIXIR systems design and implementation were primarily top-down. 

The structure of EDS was designed first and two simple test processors 

(P) were chosen. Then the structures of FELIX and EDBREP were coded. 

To complete these three the necessary CRMS routines were coded and 

inserted into FELIX and EDBREP. These two could then be tested. 

However, because EDS was stored in binary form it was difficult to 

tell from the errors in EDBREP output whether the prvgram errors were 

in FELIX or EDBREP. So to aid this error detection a very simple 

program (DBDUMP), which simply dumped the contents of EDB, was 

written. Once EDB initialisation and its reporting were correct PRELIX 

was coded and the whole system tested. To test the memory management 

aspects another simple routine DMPMEM, which dumps the contents of the 

workspace, ~as written. 
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In similar fashion the modules ELIXIR, DBNREP and EDBVU were coded. 

The six modules and many of their submodules communicate only via the 

databases EDS and EDBn, thus localising error. Error traps, messages 

and tracebacks were built into the specification of each module. These 

were primarily intended to aid the user (KAc) but the information it 

provided was soon realised to be extremely valuable for debugging. 

Accordingly the specifications were modified to distinguish between 

possible user errors and errors arising from program bugs. The final 

test of the ELIXIR system was essentially its use in the examples of 

cha pt er five • 

In the development of ELIXIR, design and quality assurance 

(correctness) were the dominant software engineering aspects. Cost 

estimation was quite crude. From a rough specification, it was decided 

that development of ELIXIR was .feasible within say one man year and it 

was therefore done. The only project management issue of relevance was 

the scheduling of module or subroutine development and testing. 

Not being a software engineer, most of the above ideas were learned 

during software development. Perhaps this was fortunate, because had 

we realised the complexity of the software required, we may never have 

considered developing it at all. 



Page 97 

CHAPTER 5 EXAMPLES 

Two examples of knowledge acquisition are presented in this Chapter. 

The first to be presented is a more detailed account of the example, 

concerning NLFRAM given in the introduction to the thesis. This is an 

important example because it contains aspects of both boundary value 

problems (the finite element discretisation of the beam) and initial 

value problems (the response history to an incrementally applied 

load). NLFRAM typifies more general finite element structural analysis 

packages. It served as a focus for development of ELIXIR. This does 

not imply that ELIXIR is tailored towards knowledge acquisition for 

NLFRAM but it was considered the main test case. The example 

demonstrates how knowledge concerning an FEA package as a whole is 

acquired. 

The second example deals with a boundary value problem. Plane frames 

often have c:urved members and the objective here concerns a proposed 

method of modelling the curved members using straight frame elements 

with rigid offsets. The question was how much offset to use to capture 

the effect~ of curvature at element level? The importance of this 

problem to ·~he thesis is that an analytical proof of the validity of 

the knowledge could be developed. The knowledge may be used to improve 

a modelling procedure or algorithm (if built into an FEA modelling 

pre-processor). 

It is very important to note that these examples are intended to 

demonstrate two things, namely 

( i) the knowledge acquisition procedure its concepts, 

operations, etc. 

(ii) the use of a CBKAS (i.e. ELIXIR) - its component programs, 

databases, etc. 

It should also be remembered that the description of these studies are 

'~ational reconstructions' [27-31, 35-37] of the actual studies. While 

clearly any actual study is far more complex than any 'rational 
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reconstruction', we still believe that a 'rational reconstruction' of 

the events in the study is the clearest way to present it. We have 

tried to indicate the actual complexity by including feedback and 

learning explicitly in certain parts of the description but obviously 

feedback and learning is active throughout knowledge acquisition. 

5.1 ACQUIRING KNOWLEDGE ABOUT NLFRAM 

The planning phase naturally introduces the problem of acquiring 

knowledge about NLFRAM so no additional introduction is needed. 

The Planning Phase - KAP{ P, G) .and KAProg 

The first step in knowledge acquisition was to define the knowledge 

acquisition problem, KAP(P,G). This required description of P and a 

statement of the goal G. 

Description of P 

Name - NLFRAM 

Author - D L Hawla 

Language -,Fortran 77 

Development Environment - CDC Cyber 174 under NOS2.3 

Version - December 1984 

Application - Structural analysis of plane frames 

Problem types - Plane frames of composite construction especially R .C. 

Euler-Bernoulli beam theory. Material nonlinearity. 

Geometrical nonlinearity. Static loading. 

Time-dependent loads. Area of imbedded materials not 

deducted from matrix material. No internal hinges or 

slides. Static analysis. Transient dynamic response 

analysis. 
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Solution techniques - displacement based finite elements. 

Virtual work formulation. Incremental analysis 

with equilibrium iteration for static 

analysis. 

Implicit trapezoidal rule for dynamic analysis. 

Element integration is numerical. Material point 

integration always from last converged 

configuration. 

Outputs - displacements, stress resultants, history parameters, 

Goal G 

computational effort, reactions, residual forces, iteration 

convergence information, etc. 

11 F ind HK characterising an approximate Pareto optimal set for NLFRAM. 

The HK should ideally span the problem space of P yet be sufficiently 

simple". 

Note how extensive the description of ? is. It is important for the 

KAc to describe P in such detail because it provides him with the 

necessary perspective for designing a suitable KAProg. If only a 

simple KAProg is chosen, the HK obtained will need to be generalised 

to span the whole problem space in a qualitative way. It will then be 

useful to have an explicit description of this problem space. 

From the description of NLFRAM, it should be evident that it is 

typical of structural FEA packages, so many of the knowledge 

acquisition concepts illustrated here should generalise easily to 

other such packages. In fact, they should generalise to almost any 

computational mechanics software. 

The next step was to define a KAProg which would refine s~itably the 

above stated goal. In this example, the KAProg contained only one 



Page 100 

problem class. This problem class PC 1 consisted of the reinforced 

concrete beam problem of section 1.5. The goal G1 was then 

"Find the HK necessary to solve the reinforced concrete beam problem 

efficiently. The HK should include a ,~redible approximation to the 

Pareto optimal set of solution techniques. The criteria for optimality 

(efficiency) should be based on the reliability of displacements and 

stress resultants and the cost of the computational effol"'t". 

This problem class was chosen for four main reasons. Firstly, one of 

the primary objectives of developing NLFRAM was to predict the 

response of reinforced concrete frames. Beams such as the one in 

Figure 1. 5. 1 form a typical component of RC frames. The HK obtained 

would therefore be very useful for modelling the more complex frame 

problems. Secondly, the beam had been tested in the University of Cape 

Town Structures Laboratory and there was already great interest in the 

problem itself. Thirdly, the problem is rich enough to dEimonstrate the 

KAS. The ric.hness of the problem will become evident in due course. 

Finally, the HK would form a good base onto which HK for a more 

complex KAProg could be built. 

After considering all the possible control options provided by NLFRAM 

for solving PC 1 , we decided to restrict ourselve:3 to studying the 

effect of only five attributes. The rest were to be fixed at some 

reference state. Selection of the five was based on our judgement of 

whether an attribute would affect both cost and reliability. If an 

attribute was expected to have little effect on cost, we simply fixed 

it so that it would produce a highly reliable solution. An example of 

this was the selection of the element type. If we already 'knew' (from 

past experience) which option was the. 'best', we again simply fixed 

it. Selection of the equilibrium iteration algorith'll and Gaussian· 

integration order were done in this way. The five attributes finally 

selected for study were time step size, convergence tolerance, mesh 

density, cross-sectional depth integration order and the concrete 

tensile stress release rate (more will be said about the last 

attribute). However, for each attribute/variable we expected to use at 

least three values so at least 3? = 243 experiments would be needed. 
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The number of experiments could hopefully be reduced by applying the 

following methodological heuristic. Split the five attributes into two 

control classes say cc 11 and cc 12 • First study cc 11 and use the HK11 

acquired as a priori HK for the study of CC 12 . If necessary another 

control clas~ cc 13 consisting of all five could be studied using HK 11 
12 . . .. 

and HK as a priori knowledge. The relationship between the cc 1 J can 

be depicted as follows. 

cc 11 

>cc13 
cc12 

Such an approach is always valid but is only effective if HK 11 is 

relevant a priori HK for cc 12 and HK11 and HK12 are relevant a priori 

HK for cc 13. At worst one would expect the total effort to be the same 

as if no split was made. The relevancy of HK 11 to CC 12 depends on the 

nature of the effect of the variables in cc 11 and cc 12 . We put time 

step size and convergence tolerance into cc 11 and the other three into 

cc 12 • We did not expect cc 11 variables to interact with those in cc 12 

so that having found some values of cc 11 variables which gave 

efficient but highly reliable solutions, we could use these values 

instead of the reference values in the study of cc 12 • The variables in 

CC 11 were both expected to producFJ quasi-random responses while those 

in cc 12 were expected to produc1a monotonic responses. Because the 

quasi-random effects could have swamped the monotonic effects and we 

expected the variables in cc 11 to have a greater impact on solution 

costs, we decided to study CC 11 first. The combined effects were 

intended to be studied on cc 13. The process resembles a hierarchical 

optimisation process of performing a series of local optimizations on 

subsystems followed by a global optimization. 

The Execution Phase for KAP(P,G11 ) 

First we needed to define the co:1.stituents of the object system s0 , 
. ( 0 0 0 0) i.e. X ,F ,Y ,I • 



Input or pro bl em attributes: 

XN = {beam length, beam width, beam depth, 

position of tension steel, area of tension steel, 

position of compression steel, area of compression steel, 

concrete parameters (measured) 

steel parameters (measured) 

boundary conditions. 

load1ng positions, 

static load programme} 

Processor controls: 

FN = { time step size, convergence tolerances} 

Outputs: 
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yN = {disp:Lacements, stress resultants reactions, residual forces, 

computational costs,} 

Indices: 

IN= {time nodal coordinates, Gauss point coordinates} 

The sets xR, FR, yP. and rR, specifying the range of attribute 

appearances, will often be deferred, as was done in this example until 

the integration phase of knowledge acquisition. 

In order to collect data for studying the system a set of variables 

had to be defined in order to measure the above attributes of the 

object system. These variables formed an image system 

s0 = (Xo,Fo,Yo,Io). Many of these variables corresponded directly to 

attributes of NLFRAM but some were implicitly input. For e::rample one 

does not in;)ut the beam length directly - one gives nodal coordinates 

and defines elements between these nodes. These implied quantities are 



Page 103 

far more meaningful to the KAc and should be recorded too. The nodes 

and their coordinates arise out of a discretisation (solution 

technique) of the beam length (problem variable) and are commonly used 

to index many quantities, e.g. displacements are generally only given 

at nodes and point loads and boundary conditions may only be specified 

at the nodes. Nodal coordinates can therefore be classified neither as 

inputs nor processor parameters. In ELIXIR they are classified as 

indices. Indices may be space-like such as nodal or Gauss point 

coordinates or time-like such as the sequence of times used to index 

time history responses of output variables. 

For the purposes of knowledge acquisition, the following variables 

were chosen. 

xN = {BMLEN, BMWID, BMDEP, 

TSPOS, TSAREA, 

CSPOS, CSAREA, 

NLMAT, 

BCONDS, 

LODPOS, 

LODVAL, TRL, T} 

xR {all variables fixed to values shown in Figure 1.5.1} 

FN {DELTAT, 

TOL1 

SMODL, SMPARS} 

FR {(real numbers [1.0, 16.0]); (real numbers [0.1%, 16.0%}) 

yN {GDISP, BMOM, SHF, REAK, 

HIST, RESID, CONRAT, STIF, NITERS, 

SRU} 

yR {(act real: ([0.0, 0.012), [-43.2], [-96.0, 96.0J, [O.O, 96.0], 

[0.0, 1000.0]} 

IN = {T, COORDS, GPCOD} 
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The value ranges in yR were derived from experimental data and simple 

hand calculation. The SN part of the homomorphism linking SO and sO 

should be obvious from the above. The definition of sR was deferred 

until the integration phase. 

By this point lo had been adequately defined and the CBKAS, that is 

ELIXIR, enters the scene. Recall from chapter 4 that the program FELIX 

is used to initialise the database EDB. This initialisation consists 

essentially of setting up lo on EDB. However, whereas the source 

system lo is concerned only with a single problem class and a single 

control class, the initialised EDB will usually contain information 

for a number of source systems. The listing of file SPNLF shown on the 

next page shows the data used by FELIX to initialise EDB. This in fact 

will be more than adequate for studying PC 1 , CC 11 and CC l 2. 



PROCESSOR NAME 
NLFRAM 
PROBLEM DESCRIPTrON 
NLFRAM SIMULATION OF TWO-SPAN, MID-SPAN POINT LOADED 
REINFORCED CONCRETE BEAM 

* 
INPUTS :-

1 T * TIME-LIKE INO~X 
2 I SMLEN * BEAM LENGTH 
3 I SMWID * BEAM WIDTH 
4 I BMDEP * BEAM DEPTH 
5 , SSPOS * BOTTOM STEEL POSITION 
6 , BSAREA * BOTTOM STEEL AREA 
7 , TSPOS * TOP STEEL POSITrON 
8 I TSAREA * TOP STEEL AREA 
9 , NLMAT , I *MATERIAL REF. CODE 

10 , BCONDS , I * BOUNDARY CONDITION CODE 
. 11 , LODPOS * LOAD POSITION 

12 , LODVAL ,, V *LOAD VALUES 
13 , TRL ,, V * LODVAL<I) IS LOAD AT TR[(!) 
STATIC SPECIFICATION 
1 
10 * I.E. ONLY BCONDS 

0 * JXDES 

PROCESSOR PARAMETERS :-
1 , LTYP I * ELEMENT TYPE 
2 NELTS I * NUMBER OF ELEMENTS 
4 I DELTAT * TIME STEP SIZE 
6 , IALGOR , I * ITERATION ALGORITHM 
7 , TOL1 * RESIDUAL FORCE TOLERANCE 
8 , NGPTS , I • NO. OF GAUSS POINTS <LENGTH) 
9 I NDEPTH I I • NO. OF NEWTON-COTES POINTS <DEPTH) 

10 , REFGKT * FREQUENCY OF STIFFNESS REFORMATIGN 
11 , CMODL , I • CONCRETE MATERIAL MODEL REF. CODE 
12 , CMPARS ,, V *CONCRETE PARAMETERS 
13 , SMODL , I * STEEL MATERIAL MODEL REF. CODE 
14 , SMPARS ,, V • STEEL PARAMETERS 
15 , ALPHA • = CMPARS<1> 
STATIC SPECIFICATION 
5 
4,7,2,9,15 
o,o,o.o,o 

* DELTAT,TOL1,NELTS,NDEPTH,ALPHA 
* JFDES 

* INDEXING VARJABLES :-
1 , T * TIME-LIKE INDEX 
2 , COORDS * NODAL X-COORD 
3 , GPCOD • GAUSS POINT X-COORD 
STATIC SPECIFICATION 
3 
1 , 2 , 3 * I . E . A LL INDICES 
• NOTE THAT THE NO. OF VALUES OF ALL INDICES ARE 
•ONLY SPECIFIED AT RUN TIME I.E. IN NLFRAM OUTPUT 

OUTPUTS :-
1 GD ISP 
2 , BMOM 
3 SHF 
4 , AXF 
5 REAK 
6 RES ID 

v • 2 

' 3 
• 3 
• 3 

v 

7 CONRAT,, V 
8 STIF V 
9 , NITERS 

10 , SRU , C 
DYNAMIC SPECIFICATION 

* NODAL DISPLACEMENTS 
• BENDING MOMENTS 
• SHEAR FORCES 
• AXIAL FORCES 
* REACTIONS 
* RESIDUAL FORCE NORM 
• CONVERGENCE RATIOS 
* STIFFNESS PARAMETERS 
• NO. OF !TERA TIO NS 
* COMPUTATIONAL COSTS 

* OUTPUTS ARE USUALLY DYNAMICALLY SPECIFIED BECAUSE 
• ONE OFTEN DISCONTINUES DATA CAPTURE FOR SOME VARIABLES 
* AFTER INITIAL EXPERIMENTATION 
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SPNLF is composed of six sections of data, each of which is delimited 

by ':-', namely PROCESSOR NAME, PROBLEM DESCRIPTION, INPUTS, PROCESSOR 

PARAMETERS, INDEXING VARIABLES and OUTPUTS. The first two are obvious. 

Each of the last four sections contains a variable definition 

subsection a~c a variable SPECIFICATION subsection. The latter may be 

either STATIC or DYNAMIC. In the input section, 13 variables are 

defined but only. one, viz. BCONDS, is specified. Although so many 

variables are defined, data will only be collected for those that are 

specified. If specification is static, the variable reference numbers 

are given in SPNLF; if dynamic they are given on the file which 

contains the output from NLFRAM that is to be captured on EDS. By 

using dynamic specification, as done for outputs, the KAc may modify, 

for each run, the specification of which variables data is to be 

captured. Note however, that all five control variables in CC 11 and 

cc 12 are specified - not just those of cc 11 • This was done so that 

SPNLF could be used for both control classes without alteration and so 

that reference solutions could easily be included in EDB (for the 

reference solution all five need fixing). 

The commentary after the '*' serves to relate the variables to those 

of the object system, i.e. it may be considered part of the 

homomorphism 8. 

Once EDB had been set up with J.:O on it, the next step was to add data 

to it to form sD. 

Two points are important in data generation. Firstly, the data should 

be generated according to a carefully designed experimental programme. 

Secondly, included in this programme should be at least one run whose 

solution may serve as a reference (reliable, accurate) solution. 

The following control values were chosen to represer.t the reference 

solution: 

DELTAT = 1, TOL1 = 0.1%, NELTS ·, 6, NDEPTH 13, ALPHA 4. 
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The same solution will be used for cc 12 hence the explicit inclusion 

of its control variables in the designation of the reference solution. 

First a run of NLFRAM with the reference values was made. Then a 

programme of 25 experiments was run with each combination of 

DELTAT .. 1, 2, 4, 8, 16 

and TOL 1 = 1 , 2, 4, 8, 16%. 

The data collected from these runs forms S = (X.,F,Y,I). This was 

written to a temporary binary file ( TEMPFILE) by NLFRAM and then 

captured onto EDB by PREL!X. At this stage EDB contained s0 • 

D "D KAS
2

, S and S 

The next step was to convert s0 to gD by introducing a reliability 

variable (called RELY) and to compute the RELY data from the data Y. 

But first w1~ needed to choose a means of calculating RELY. 

Choosing a reliability/deviation measure 

What are the options? One could use measures based on displacements, 

stress resultants, stresses or reactions at one or more points in the 

structure. Any of the measures described in Chapter 3 may be used at a 

particular point in time or averaged over a time period. Measures 

based on stress resultants or reactions are not particularly useful 

except to control residual force imbalances (Residual force imbalance 

is important because the materials are history dependent). Measures 

based on stresses were not considered because they depend on the 

stress distribution through the beam depth which depends on the 

material model chosen. The material models, especially for concrete, 

are not very well calibrated due to insufficient and/or inappropriate 

tE>st data (or inappropriate model) - hence the inclusion of the 

material parameters in F and not X. Measures based on stress would 
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therefore seem inappropriate. This leaves displacements and reactions. 

Although it may have been worthwhile to include a reaction based 

reliability for this problem, only the displacement under the point 

load was chosen. A reliability measure based on an RMS (over time) 

relative displacement deviation wa.s used, i.e. used R3/CO/DR/RMS. The 

reason for taking RMS values is to smooth out the random component in 

the reliability response caused by the discretisation and iteration. 

RELY data was then calculated for all cases in S. Adding this data to 

S gave S and adding RELY to yN gave yN and so sD was formed. This too 

was held in EDB. 

The 
gD 

"D D next step was to form S · from S . Recall that 

= (·Xo, FD, yo, io) whereas 5o = (XO, FD, yD). The idea of this step 

is to condense the data in sD (which is generally linked to time- and 

space-like indices and so may be voluminous) down to something more 

manageable. Often this may be as simple as selecting X,F','l' data for 

some specified values of ! or averaging ?. data over the i values. 

Reliability calculation already involves similar ideas. In this 

example RELY is based on midpoint deflection only (i.e. a single value 

of a space-1i ke variable) but is evaluated for each value of T (i.e. 

time-like index). To condense further, we selected RELY for T = 96.0 

only (i.e. the end of the time period or at maximum load). So whereas 

Y contains bending moments at all Gauss points and displacements at 

all nodes for each value of T plus costs and reliabilities for all T 
.... .... .... 

values, Y contains only cost and reliabilities for T = 96.0. X and F 

were identical to X and F'. This new condensed data system 5° is stored 

not iri EDB but in a new database called EDBn (i.e. EDB1, EDB2, etc.). 

The idea is that the KAc may form more than one EDBn from EDS. Also 

the storage format in EDBn is more suited to the data processing and 

manipulation involved in KAS 3 . 

Recall that the objective of this step is to 'partition' sD into S~ . . 
XD requires no 'partitioning' since it contains only one problem. A 
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'partition' of FD involves findings subsets of DELTAT and TOL1 which 
A 

are Pareto optimal. Finding Pareto optima involves studying Y, i.e. 

the cost and reliability of the solutions. It was found that all 

solutions had RELY > 99 percent even for DELTAT = 16 and 

TOL 1 = 16 percent and, as expected, cost decreased as DEL 'T'AT and TOL 1 

were increased. So essential~y the idea was to use the largest of 

these values. However there were auxiliary conditions to be met. 

Firstly as TOL1 increases the residual forces increase. We could have 

calculated reliability measures based on these residual forces but 

instead we simply did graphical comparisons of shear force (SHF) and 

bending moments (BMOM) between the reference and the experimental 

solutions. In this way we decided that a TOL 1 = 4 percent adequately 

controlled the residual forces. It is important to control the 

residual forces because the materials in the beam are history 

dependent. Similarly, it was decided that DELTAT = 16 did not provide 

adequate detail of the response so DELTAT = 8 was selected. With 

DELTAT = 8 and TOL 1 = 4 percent the cost reduction factor over the 

reference solution was approximately 5.5 (from 642 to 117 SRU). It was 

also found that, in the range of values studied, the cost was more 

sensitive to DELTAT changes than to TOL1 changes. 

KAS4 and HK 11 

HK 11 turned out to be extremely simple, that is: 

If DELTAT = 8 and TOL 1 = 4 percent 

then RELY> 0.99 and COST = 117 SRU 

Such a statement of the HK 11 is in terms of variables and values, i.e. 

image system (SO) terms. Usually it is also required to convert this 

to object system (SO) terms. This was done by first setting up sR. One 

suitable selection for sR was the following: 



DEL TAT 

2 

4 

8 

16 

RELY 

0.999 

0.97 

0.94 

0.84 

0.80 

<0.75 

Time step size 

Very small 

Small 

Medium 

Large 

Very large 

Displacement reliability 

Very high 

High 

High-me di um 

Low-medium 

Low 

Unacceptable 

TOL1 

1% 

2% 

4% 

8% 

16% 

COST 

117 

47 

36 

23 
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Convergence Tolerance 

Very tight 

Ttght 

Medium 

Loose 

Very loose 

Computational Cost 

Very expensive 

Fairly high 

High-me di um 

Low-medium 

Note that appearances are adjectives which qualify the attributes. 

Some of the elements ·of eR namely those relating to RELY and COST are 

in fact based on the study of cc 12 which is yet to be presented. With 

this interpretation, the HK11 could be restated as: 

If time step size is large and convergence tolerance is me.dium then 

displacement reliability is very high and cost is expensive. 

This may seem trivial in this example and hopefully it will often be 

so simple but it is worthwhile because it will usually make 

explanation (integration phase) easier or more natural. It has the 

advantage of distinguishing explicitly between the concepts of time 

step sizes or convergence tolerances and the technical details of 

their measurement. 
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The Execution Phase for KAP(P,G12) 

KASO and ~o 

The only differ'ence between 2:0 for cc 12 compared to that of cc 11 was 

that FO and Fo changed to: 

{mesh density; order of cross-sectional depth integration, 

concrete tensile stress release rate} 

= will be defined later. 

= {NELTS; NDEPTH; ALPHA} 

{(4,6,8,10,12,14j16); (4,5,7,9,11 ,13); (Real [4.0,12.0])} 

The homomorphism S is obvious. SPNLF was identical to the one used for 

cc 11 so EDB was initialised in exactly the same way. In fact, all data 

generated during the study of CC 1 f could have been added to the EDB 

already formed .in the study of CC 11 • However, we chose to use separate 

databases for each study. 

A very important point to note is that although, in the object system, 

the materials are part of the pr'oblem definition, in practice, when 

using nonlinear material models, it is often more appropriate to 

consider than as processor control variables. This has been done in 

the image system. Clearly CMODL and CMPARS would depend on the 

measured concrete parameters but usually insufficient measurement data 

of material behaviour is available. The advantage of doing this is 

that they then become additional control variables and so may allow 

additional efficiency to be achieved. Conceptually one may consider 

their deviations from the measured values as artificial properties. 

The use of artificial viscosities or damping in some solution process 

is of this type. 

----- ---- ----- - - ---------
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The initial programme of experiments consisted of all 27 combinations 

of 

NELTS = 4, 8, 16 

NDEPTH = 4, 7, 13 

ALPHA 4, 8, 12 

plus the r,eference solution, a run with reference values except 

TOL 1 = 1 • O instead of b. 1 and by mistake a repetition of one of the 

abov~ 27. (We did not exclude this mistake from the presentation 

because, as will be seen in Table 5.1 .1, cases 2 and 27, it 

illustrates a mild but interesting inconsistency with what was said in 

Chapter 3. W·~ said that repeating a computer run woUld give identical 

results, hoWE!Ver one can see that the costs are slightly different for 

cases 2 and 27 even though case 27 was simply a rerun of case 2. 

Presumably tMs difference was caused by some .inconsistency in the 

accounting package on the host computer.) All these experiments were 

done with DEL.TAT= 8 and TOL1 = 4 percent, i.e. using HK11 so that the 

cost of experimentation was reduced considerably. 

The design of additional experimental programmes will not be discussed 

here. They will rather be discussed in the section dealing with 

'partitioning' of sD. 

The reliability measures used were the same as for cc 11 . sD was thus 

formed. Using the same selection process as before s0 was formed on 
A 

EDBn. The following table shows S, sorted into decreasing reliability. 
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IAXSET = IAXIVR = 4 I AR LI = 2 
CASE DELTAT TOL1 NELTS NDEPTH ALPHA RELY COST 

NO. ( 2) SRU 

-----------------------------------------------------------------------------------
30 .100E+01 . 1 OOE-02 . 160E+02 . 130E+02 .400E+01 1. 00 642 . 

1 . 1 OOE+01 . 1°00E-01 .160E+02 .130E+02 .400E+01 .999 440 . 
2 . 300E+01 .400E-01 .160E+02 .130E+02 .400E+01 .999 117 . 

27 . 800E+01 .400E-01 . 160E+02 .130E+02 .400E+01 .999 11 6 . 
18 . 800E+01 .400E-01 .800E+01 . 130E+02 .400E+01 .977 53.2 
1 5 .800E+01 .400E-01 .800E+01 .700E+01 .400E+01 .952 35.9 
24 .800E+01 .400E-01 . 160E+02 .700E+01 .400E+01 .. 942 81.1 
28 .800E+01 .400E-01 . 160E+02 . i 30E+02 .800E+01 .866 68.6 
25 .800E+01 .400E-01 .160E+OZ .700E+01 .800E+01 .860 63.8 
19 .800E+01 .400E-01 . 800E+.Q1 .130E+02 .800E+01 .850 29.8 

9 .800E+01 .400E-01 .400E+01 . 130E+02 .400E+01 .843 22.8 
16 .800E+01 .400E-01 .800E+01 .700E+01 .800E+01 .844 28.6 

6 .800E+01 .400E-01 .400E+01 .700E+01 .400E+01 .831 19. 5 
21 .800E+01 .400E-01 . 160E+02 .400E+01 .400E+01 .826 72.6 
·12 .800E+01 .400E-01 .800E+01 .400E+01 .400E+01 .812 32.1 
20 .800E+01 .400E-01 .801JE+01 .130E+02 .120E+02 .?00 25.6 
29 .800E+01 .400E-01 . 160E+02 .130E+02 .120E+02 .800 61 . 5 
10 .300E+01 .400E-01 .400E+01 .130E+02 .800E+01 .799 1 5. 7 
1 7 .800E+01 .400E-01 .800E+01 .700E+01 .120E+02 .797 22.7 

:~ 26 .800E+01 .400E-01 .160E+02 .700E+01 .120E+02 .795 51 . 7 
7 .800E+01 .400E-01 ,400E+01 .700E+01 .800E+01 .790 13.2 
3 .800E+01 .400E-01 .400E+01 .400E+01 .400E+01 .764 22.0 

22 .800E+01 .4.00E-01 . 160E+02 .400E+01 .800E+01 .752 49.3 
11 .800E+01 .400E-01 .400E+01 . 130E+02 .120E+02 .750 17.0 

8 .800E+01 .400E-01 .400E+01 .700E+01 .120E+02 .743 11.3 
1 3 .800E+01 .400E-01 .SOOE+01 . 4·00E+01 .800E+01 .738 23.3 

4 .800E+01 .400E-01 .400E+01 .400E+01 .800E+01 .702 13.7 
23 .800E+01 .400E-01 .160E+02 .400E+01 .120E+02 .701 44.7 
14 .800E+01 .400E-01 .800E+01 .400E+01 .120E+02 .697 21 . 9 

5 .800E+01 .400E-01 .400E+01 .400E+01 .120E+02 .655 12.3 

.... 
TABLE 5.1.1 S (EDBn) after the initial experimental programme 

Using ELIXIR to process/display EDBn, the following plot was produced. 
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FIGURE5.1.1 COST versus RELY for the initial programme of 

experiments. 

Note that in the above figure, the top two case listed in Table 5.1.1 

have been omitted. The solid square markers are those which remain 

after filtering and correspond to those in F'igure 5.1 .2. 

In Figure 5.1.2 only the Pareto optimal points and those with 

RELY > 0.75 are shown. This latter limit implies that the range of 

acceptable RELY was limited to [0.75, 1.0]. 
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FIGURE 5.1.2 Filtered RELY-COST data for the initial experiments 

Table 5.1 .2 below shows the corresponding F data. 

CASE 
NO. 

DEL TAT 
IAXIVR = 

TOL1 
4 

NELTS 
IARLI = 2 

NDEPTH ALPHA RELY 
( 2) 

COST 
SRU 

2 
27 
18 
1 5 
19 

9 
6 

·10 
7 

.800E+01 . 400E-01 . 160E+02 .130E+02 .400E+01 .'199 117 . 

. 300E+Q·J .400E-01 . 160E+02 .130E+02 .400E+01 .999 116 . 

.800E+01 .400E-01 .300E+01 . 130E+02 .400E+01 .977 53.2 

.800E+01 .400E-01 .800E+01 .700E+01 .400E+O'i .952 35.9 

.300E+01 .400E-01 .300E+01 .130E+02 .300E+01 .350 29.8 

.300E+01 .400E-01 .400E+01 . 130E+02 .400E+01 .848 22.8 

.300E+01 .400E-01 .400E-r01 .700E+01 .400E+01 .331 19.5 

.800E-r01 .400E-01 .400E+01 .130E+02 .800E+01 .799 15.7 

.300E+01 .400E-01 .400E+C1 . 700E+0'1 .800E+01 .790 13.2 

" TABLE 5.1 .2 S (EDBn) after filtering. 

The filter parameters used in the above was very small (0.02). 

From Figure 5.1 .2 it is clear that the data is very sparse. From Table 

5.1 .2, it would appear that for ~olutions to satisfy the filter, 
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NDEPTH should be restricted to (7, 9, 11, 13) and ALPHA to [4.0, 8.0]. 

Also since the largest gap in RELY lies in the middle of the range, 

i.e. 0.85 to 0.95, with NELTS = 4 satisfying the lower part and 

NELTS = 8 satisfying the higher part, NELTS would be restricted to 

(4, 6, 8). 

Now FB 31 came into play in the design of additional experiments. The 

second programme contained runs with NELTS = 4, 6, 8, NDEPTH = 9, 11 

and ALPHA = 6, 8. The same procedures of filtering and plotting were 
" followed. Studying these results, it was found that the Y(RELY and 

COST) response had a significant quasi-random component. Such 

randomness aggrevated the sparsity problem which was still evident. It 

also became clear that to increase the representation (of points) in 

the higher part of the middle RELY range , i . e. near to O. 9 5, ALPHA 

values closer to the reference would be needed. A third programme was 

designed and the result is shown in Figure 5.1.3 and Table s.1.3. 
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FIGURE 5.1 .3 Filtered Y data after the third experimental 

programme (e: = 0.20). 



IAXSET = 
CASE DELTAT 

NO. 

2 
")7 

'"' 
60 
61 
52 
50 
51 
53 

57 
1 5 
64 
56 
65 
63 
62 

35 
37 

45 
46 
59 
58 

9 
38 
36 

6 
33 
44 
31 
43 
32 
1 0 

7 

.800E+01 

.800E+01 

.800E+01 

.800E+01 

.800E+01 

.800E+01 

.800E+01 

.800E+01 

.800E+01 

.800E+01 

.800E+01 

.300E+01 

.800E+01 

.800E+01 

.800E+01 

.300E+01 

.800E+01 

.800E+01 

.800E+01 

.800E+01 
.800E+01 
.800E+01 
.800E+01 
.800E+01 

.800E+01 

.800E+01 

.800E+01 

.300E+01 

.800E+01 

.800E+01 

.800E+01 

.800E+01 

TABLE 5.1.3 

IAXIVR = 4 
TOL1 NELTS 

.400E-01 

.400E-01 

.400E-01 

.l+OOE-01 

.400E-01 

.400E-01 

.400E-01 

.400E-01 

.400E-01 

. 400E-0"1 

.400E-01 

.l+OOE-01 

.400E-01 

.l+OOE-01 

.400E-01 

.400E-01 

.400E-01 

.400E-01 

.400E-01 

.400E-01 

.400E-01 

.400E-01 

.l+OCE-01 

.400E-01 

.40CE-01 

.400E-01 

.400E-01 

.400E-01 

. 40CIE-01 

.400E-01 

.40CE-01 

.l+OOE-01 

Filtered 

.160E+OZ 

.160E+02 

.300E+01 

.300E+01 

.800E+01 

.300E+01 

.800E+01 

.800E+01 

.600E+01 

.SOOE+01 

.800E+01 

.600E+01 

.800E+01 

.600E+01 

.600E+01 

.600E+01 

.600E+01 

.600E+01 

.600E+01 

.600E+01 

.600E+01 

.400E+01 

.600E+01 

.600E+01 

.400E+01 

. 400E+0'1 

.400E+01 

.400E+01 

.400E+01 

.400E+01 

.400E+01 

.400E+01 

" s data 

programme (E: = 0.20). 

" 

I ARLI = 
NDEPTH 

. 130E+02 

. 130E+02 

.900E+01 

.110E+02 

.110E+02 

. 900E+o·1 

.900E+01 

.110E+02 

.110E+02 

.700E+01 

.900E+01 

.900E+01 

.110E+02 

. 1 ·1 OE+OZ 

.900E+01 

.900E+01 

.110E+02 

.900E+01 

.110E+02 

.110E+02 

.900E+01 

. 130E+02 

.110E+02 

.900E+01 

.700E+01 

.110E+02 

. 130E+02 

.900E+01 

.700E+01 

.900E+01 

. 130E+02 

.700E+01 

after 

ALPHA 

.400E+01 

.400E+01 

.450E+01 

.450E+01 

.400E+01 

.400E+01 

.500E+01 

.500E+01 

.500E+01 

.400E+01 

.550E+01 

.500E+01 

.550E+01 

.550E+01 

.550E+01 

.600E+01 

.600E+01 

.700E+01 

.700E+01 

.750E+01 
.750E+01 
.400E+01 
.800E+01 
.800E+Ol 

.400E+01 

. 600E+O ·1 

.600E+01 

.600E+01 

.600E+01 

.300E+01 

.800E+01 

.300E+01 

the third 

. 999 

.999 

.983 

.980 

.980 

.979 

.975 

.974 

.954 

.952 

. 9 51 

.947 
.946 
.944 
.944 

.838 

.888 

.857 

.855 

.850 

.850 

.848 

.845 

.844 

.331 

.813 

.817 

. 81 5 

.804 

.799 

.799 

.790 

RELY 
( 1) 
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COST 
SRU 

11 7 . 
116. 

41.4 
45. 9 
47.6 
45.3 
43.9 
49.5 

37. 1 
35.9 
36.8 
36.2 
37.5 
32.9 
29.0 

26.0 
28.7 

21 . 2 
21 . 5 
23. 1 
23.3 
22.8 
24.2 
21 . 9 

19.5 
16.6 
19.2 
13.9 
1 5. 9 
14.7 
15.7 
13.2 

experimental 

In Table 5.1.3, the S data has been split into six clusters. This was 

done manually. The top four really reflect the clusters in 

Figure 5. 1. 3 for medium and high reliabilities and are based on RELY 

and COST criteria. The bottom two are split according to NELTS. To 

improve the pattern without loss of information, cases 18, 9 and 6 

were removed. The pattern represents the 'partition' SK - it is really 
" a 'partition' of F and Y. 

From SK we induced s~ (i.e. a 'partition' of FR and yR) and a final 

program of experiments was designed simply to concentrate the 
"R "R representation of Y data into these F1i and Y1i· The idea was simply 

to increase the Ennpirical basis for each rule so as to decrease the 

uncertain effect ·Jf the quasi -random component and thereby improve the 

robustness of the rules. 
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" FIGURE 5.1 .4 Filtered Y data after the final programme (e = 0.20) 
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I AX SET = IAXIVR = 4 IARLI = 
CASE DELTAT TOL1 NELTS NDEPTH ALPHA RtLY COST 

NO. ( 1) SRU 

-----------------------------------------------------------------------------------
2 

27 

52 
50 
1 8 
51 
53 

1 5 
39 
41 

35 
37 

45 
46 

9 
38 
36 

6 
33 
44 
31 
43 
32 
1 0 

7 

.800E+01 .400E-01 .160E+02 . 130E+02 .400E+01 .999 11 7 . 

. 800E+01 .400E-01 .160E+02 . 130E+02 .400E+01 .999 116 . 

. 800E+01 .400E-01 .800E+01 .110E+02 .400E+01 .980 47.6 

.800E+01 .400E-01 .800E+01 .900E+01 .400E+01 .979 45.3 

.800E+01 .400E-01 .800E+01 .130E+02 .400E+01 .977 53.2 

.800E+01 .400E-01 .800E+01 .900E+01 .500E+01 .975 43.9 

.800E+01 .400E-01 .800E+01 .110E+02 .500E+01 .974 49.5 

.800E+01 .400E-01 .800E+01 .700E+01 .400E+01 .952 35.9 

.800E+01 .400E-01 .800E+01 .900E+01 .600E+01 .934 36. 1 

.800E+01 .400E-01 .800E+01 .110E+02 .600E+01 . 931 40.2 

.800E+01 .~OOE-01 .600E+01 .900E+01 .600E+01 .888 26.0 

.800E+01 .400E-01 .600E+01 .110E+02 .600E+01 .883 28.7 

.800E+01 .400E-01 .600E+01 .900E+01 .700E+01 .857 21 . 2 

.800E+01 .400E-01 .600E+01 .110E+02 .700E+01 .855 21 . 5 

.800E+01 .400E-01 .400E+01 .130E+02 .400E+01 .848 22.8 

.800E=+01 .400E-01 .600E+01 .110E+02 .800E+01 .845 24.2 

.800E+01 .400E-01 .600E+01 .900E+01 .800E+01 .844 21. 9 

.800E+01 .400E-01 .400E+01 .700E+01 .400E+01 .831 19. 5 

.800E+01 .400E-01 . 400E+0'1 .110E+02 .600E+01 . 813 16.6 

.800E+01 .400E-01 .400E+01 . 130E+02 .600E+01 .817 19.2 

.800E+01 .400E-01 .400E+01 .900E+01 .600E+01 .815 13.9 

.800E+01 .400E-01 .400E+01 .700E+01 .600E+01 .804 1 5 . 9 

.800E+01 .400E-01 .400E+01 .900E+01 .800E+01 .799 14.7 

.800E+01 .400E-01 .400E+01 .130E+02 .800E+01 .799 15.7 

.800E+01 .400E-01 .400E+01 .700E+01 .800E+01 .790 13.2 

,.. 
TABLE 5.1.4 Filtered s data after the final programme ( !'; 0. 20). 

Now the simplicity conditions are invoked to eliminate those cases 

from the above table which would complicate the rules or the set of 

rules. In this study, cases 15, 64 and 65 were removed from the third 

cluster, the whole of the fourth cluster was removed, i.e. cases 35 

and 37 were removed, case 9 was removed from the fifth cluster and 

cases 6, 33, 44 and 10 were removed from the last cluster. This 

resulted in the following clusters. 
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IAXSET = I!\X IVR = 4 I ARLI = 
CASE DEL TAT TOL1 NELTS NOEPTH ALPHA RELY COST 

NO. ( ·1 ) SRU 

-----------------------------------------------------------------------------------., 
'-

27 

60 
61 
52 
50 
51 
53 

57 
56 
63 
62 

45 
46 
59 
58 
38 
36 

31 
43 
32 

7 

.800E+01 .400E-01 . 160E+02 . 130E+02 .400E+-01 . 999 117 . 

. 80.0E+01 .400E-01 . 160E+02 . 130E+02 .400€+01 .999 116 . 

. 800E+01 ,L.QOE-01 .800E+01 .900E+01 .450E+Q1 .983 41 . 4 

.300E+01 .400E-01 .SOOE+01 .110E+02 .450E+01 .980 45.9 

.300E+01 .4GOE-01 .800E+01 .110E+02 .400E+01 .980 47.6 

.800E+01 .400€-01 .8GOE+01 .900E+01 .400E+01 .979 45.3 

.800E+01 .400E-01 .800E+01, .900E+01 .500E+01 .975 43.9 

.800E~01 .4DOE-01 .800E+01 .110E+02 .500E+01 . 974 49.5 

.300E+01 .400E-01 .600E+01 .1i0E+02 .500E+01 .954 37. 1 

.300E+01 .400E-01 .600E+01 .900E+01 .500E+01 .947 36.2 
. :300E+0'1 .400E-01 .600E+01 .i10E+02 .S50E+Oi .944 32.9 
.800E+01 .400E-01 .600E+01 .900E+01 .550E+01 . 94.4 29.0 

.800E+01 .400E-01 .600E+01 .900E+01 .700E+01 .857 21 . 2 

.800E+01 .400E-01 .600E+01 .110E+02 .700E+01 .855 21 . 5 

. SOOE+-01 .400E-01 .600E+01 .110E+02 .750E+01 .850 23. 1 

.800E+01 .400E-01 .600E+01 .900E+01 .750E+01 .850 23.3 

.800E+01 .400E-01 .600E+01 .110E+0.2 .800E+01 .845 24.2 

.800E+01 .400E-01 .600E+01 .900E+01 .800E+01 .844 21 . 9 

.800E+01 .400E-01 .400E+01 .900E+01 .600E+01 .815 13.9 

.800E+01 .400E-01 .400E+01 .700E+01 .600E+01 .804 15.9 

.800E+01 .400E-01 .400E+01 .900E+01 .800E+01 .799 14.7 

.800E+01 .400E-01 .400E+01 .700E+01 .800E+01 .790 13.2 

,.. "'R TABLE 5. 1 • 5 s clusters after simplification - these represent SK 

KAS4 and HK 1 2 

"'R SK could now be formulated as the following five rules. 

Rule 1: If DELTAT = 8 and TOL1 4% and NELTS = 16 and NDEPTH = 13 

and ALPHA = 4 

Then RELY= 0.999 and COST = 117 SRU. 

Rule 2: If DELTAT 8 and TOL1 and NELTS= 8 and DEPTH E (9,11) 

and ALPHA E [4.0, 5.0] 

Then RELY = 0.97 and COST = 47 SRU. 

Rule 3: If DELTAT ~ 8 and TOL1 = 4% and NELTS = 6 and NDEPTH E (9,11) 

and ALPHA E [5.0, 5.5] 

Then RELY = 0.94 and COST = 36 SRU. 
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Rule 4: If DELtAT = 8 and TOL1 = 4% and NELTS = 6 and NDEPtH s (9,11) 

and ALPHA s [7.0, 8.0] 

Then RELY = 0.84 and COST = 23 SRU. 

Rule 5: If DELTAT = 8 and TOL1 = 4% and NELTS = 4 and NDEPTH s (7, 9) 

and ALPHA s [6.0, 8.0] 

Then RELY = 0. 80 and COST = 15 SHU. 

It should be clear that the removal of some cases from the clusters in 

Table 5.1.4 simplifies the rules. The fourth cluster, i.e. cases 35 

and 37 were removed completely because of an inadequate empirical 

support and slight variations of ALPHA would seem to place the RELY 

and COST into the one of the neighbouring clusters. The heuristic 

nature of the process should also be evident. 

For explanation and interpretation, the above rules needed to be 

restated in terms of s 0 . For this purpose, tables relating sR to sR 

needed to be defined. One possible interpretation is the following. 

Number of Newton-Cotes 

NELTS Mesh density NDEPTH depth integration points 

2 Very low [4,5] Low 

4 Low [7,9] Medium 

6 Medium. [9,11] High 

8 High 13+ Very high 

16 Reference 

Concrete tensile 

ALPHA stress release rate 

4.0 Reference 

[4.0, 5.0] Very Fast 

[5.0, 5.5] Fast 

[6.0, 8.0] Medium 

[7.0, 8.0] Slow - medium 

12.0 Slow 
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Many of these variables are real but only single values instead of 

intervals are given. This is quite acceptable because the user only 

needs a range of values from which to choose - the particular values 

are never really important. Of course this is only true for F and 
... 

Y or Y. For X the user needs the whole of xR to be represented. If the 

HK is given only for points in xR, it must be possible to interpolate 

to get HK for any other point in xR. Interpolation of F and Y or y is 

usually not valid. 

With the above interpretation, HK 12 can now be given as: 

If the time step size is large and the convergence tolerance is 

medium, then: 

Rule 1: If the reference mesh density, depth integration and concrete 

tensile stress release rates are used, then displacement 

reliability will be very high and the cost will be very 

expensive. 

Rule 2: If the mesh density is high, depth integration high and 

concrete tensile stress release rate very fast then 

displacement reliability will be high and cost fairly high. 

Rule 3: If the mesh density is medium, depth integration high and 

concrete tensile stress release rate fast, then displacement 

reliability will be high-medium and cost high-medium. 

Rule 4: If the mesh density is medium, depth integration high and 

concrete tensile stress release rate slow-me di urn, then 

displacement reliability will be low-medi urn and cost will be 

low-me di um. 

Rule 5: If the mesh density is low, depth integration medium and 

concrete tensile stress release rate medium, then displacement 

reliabL..1.ty will be low and cot1t low. 
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In addition to this should be given the values of all other F 

variables that were fixed, the values used in the reference solution, 

the diagrams of the problem class and reference solution, all X 

variable values (summarised forms), a listing of the input data for at 

least one of the runs and an explanation of the HK. 

The Integration Phase 

The five rules given above already represent the integration of HK 11 

and HK 12 into HK 1 • The integration in this study was easy. Perhaps 

integrating H!Cij into HKi will always be easy. Because the HK 11 was 

eventually based primarily on auxiliary considerations rather than 

optimality considerations, the study of cc 12 using HK 11 is effectively 

the same as studying CC 13. Hence no work was done on CC 13 itself. 

A very important component of the integration phase is the explanation 

of the HK 1 • 

Explanation of HK1 

For linear analysis two elements would give exact solutions in terms 

of Euler-Benoulli beam theory. Although the bending moment 

distribution is piecewise linear, due to material nonlinearity, the 

curvature and axial strain distribution will be nonlinear. As the load 

increases this nonlinearity will be come more severe. The beam 

elements used have cubic transverse and quadratic axial displacement 

fields giving linear curvature and linear axial strain fields. Thus to 

capture reliai:>ly these nonlinear strain distributions requires high 

mesh density at high loads. 

The concrete cons ti tuti ve law used is highly nonlinear so a high 

number of Newton-Cotes points are needed for integration through the 

depth of the concrete cross-section, except when a low cost low 

reliability solution is sought. 
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ALPHA is part of the material specification and so should be in x0 and 

not F0 . However, from the HK it is clear that using ALPHA slower than 

the reference value, reliabi.e solutions can still be obtained. With 

ALPHA closer to the reference value, solutions become expensive. This 

is because the higher the stress release rate, the more strain energy 

needs to be redistributed through the structure for fixed time (load) 

step size. This will usually require more equilibrium iteration and 

hence higher costs. The reason one can still obtain high reliabifi ty 

with 'incorrect' ALPHA is that for most of the response the steel 

dominates the behaviour. 

The recommendation (HK is always regarded as recommendation) of large 

time step size but not very large is based purely on the grounds of 

adequacy of response representation since even very large steps 

produced very highly reliable solutions. 

Tightening convergence tolerances results in high cost while loose 

tolerances result in solutions oscillating about the reference 

solution. Use of a medium tolerance thus represents a compromise. At 

this level the displacement oscillations are very small indeed. 

Another very important aspect of the integration phase is the 

generalisation of the HK to a wider problem class. Such generalisation 

is based on an understanding of the physics and numerical methods 

underlying the processor. An explanation of the HK is therefore a 

prerequisite to such generalisation. 

Generalising the HK 

HK1 is formally only applicable to the single problem from which it 

was derived. Heuristically, however, it is much more widely 

applicable, i.e. it will be applicable to a large proportion of the 

ranges of the input attributes or variables. In a more detailed 

knowledge acquisition exercise all relevant and dangerous 

generalisations would need to be spelled out. Here, we will only show 

some typical ones. 
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Clearly the HK is applicable to any problem which has the same 

relative dimensions, steel 

conditions and relative 

nondimensionalised, However, 

ratios, 

loading, 

even 

material 

i.e. 

properties, 

the HK is 

boundary 

easily 

these 

non dimensional variables, the HK 

for wide 

will still 

ranges of 

apply. For example 

changing the relative steel content, moving the loading position, 

changing span to depth ratios, beam to -width ratios, applying an axial 

load and changing the steel positions will not affect the HK 

significantly. From pr'evious experience with the concrete model used, 

the response is almost insensitive to variations of up to 30 percent 

in the compression parameters. Changing the tension parameters affects 

only the main cracking stage's response but can significantly affect 

costs (This has already been explained). As long as the steel model is 

the same, varying the parameters will not affect the HK - if the ratio 

E1/E and EH/E (see Figure 1.5.1) are reduced, the HK may need 

modification due to increased nonlinearity while if they are 

increased, the HK will be conservative. 

Changing the form or structure of the material models may well have a 

significant affect on the HK. Without knowing what such changes are 

likely to be, one cannot say much about the nature of these changes. 

However, the above used models capture quite well the behaviour of the 

reinforced concrete beam so changing to any models which are capable 

of similar prediction will probably not affect the HK too greatly. 

Certainly the above HK would be an excellent starting point for 

further knowledge acquisition. 

Altering the boundary condition may have the most significant effect. 

This is because, once the concrete has cracked, the neutral axis 

position moves, so if the beam ·ends are restrained axially, 

significant arching action may occur. Addition of end moment restraint 

will also usually change the HK - probably higher mesh densities wi 11 

be required. So further knowledge should be acquired for these 

different boundary conditions. Again the above HK will be an excellent 

starting point. 
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Once the HK is expanded to include various boundary conditions, it 

becomes possible to consider its application in general plane frames. 

For example a two-bay portal frame would be composed of at least five 

members. For reliability estimates, the HK may be used for each member 

taken separately. Cost estimates based on summing the indi victual 

member estimates will always be too low for any structure which has 

complex connections, i.e. where more than two members meet at a joint. 

In fact such estimates may be much too optimistic. Perhaps, another 

class of problems containing problems of varying joint complexity 

should be studied. This will be left to subsequent research. 

Further generalisation to dynamic analysis, stability analysis and 

general geometric nonlinearity is unwise. 
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5.2 CURVED BEAM SIMULATION 

The most important effect of element curvature, namely 

membrane-bending coupling, is neglected when stl"'aight elements are 

used. On the other hc:nd, intrinsically curved elements are difficult 

to formulate and are usually expensive, while use of shallcw arch type 

theories with low-ol"'der elements pl"'esenns a problem called 'membrane 

locking'. To overcome this latter difficulty, reduced integration, 

rnodif ied membrane strain definitions and penalty methods have been 

used (71-75]. Here we take a different approach. We propose to 

simulate a curved element by a straight element with a constant 

offset. The main advantages of this approach are simplicity and no 

locking. 

Attention has been restricted to planar beam elements. 

OFFSET BEAM ELEMENT 

The curved beam element shown in Figure 5.2.1 may be considered as a 

beam with varying offset. An approximation to this curved element is 

to use a straight two-noded Hermitian beam element with a constant 

offset as shown in Figure 5.2.2. Such an element is probably the 

simplest element which includes membrane-bending coupling at the 

element level. 

y 

w max= h 

FIGURE 5.2.1 Curved Element 
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y 

y 

\ 

\ RIGID LINK 

FIGURE 5.2.2 Offset Straight Element 

One suggestion for the offset is to use the average of w(x) over 

length i. If w(x) were quadratic this would yield Y=2/3. 

The Planning Phase - KAP(P,G) and KAProg 

The FEA paokag·e to test the offset beam proposal was again NLFRAM. 

Thus P is as bEifore. 

The goal G is now to find the 'best' values for Y and the conditions 

under which these values are applicable. 'Best' here was interpreted 

as 'Pareto optimal'. Two approaches were taken, namely, the knowledge 

acquisition approach based on experimentation on a class of problems 

and a theoretical approach (This will be given later). 

Figure 5.2.3 below shows the deep circular arch on which the problem 

class PC 1 was based. 



iF= I 
D} 
" t, 

1 a " 

+ 
F=I I 

(vertical displacement fixed) 

FIGURE 5.2.3 Deep Arch Used To Define Problem Class 
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Furthermore, it was assumed that the boundary conditions at the right 

hand support were such that M9=F8o8=0 so that the only external 

loading was the unit vertical force at top of the arch. Typical finite 

element models of the arch are shown in Figure 5.2.4. 

(a) Standard Straight Elements "(b) Offset Straight Elements 

FIGURE 5.2.4 Typical Finite Element Models Of The Deep Arch 

The control class cc 11 for this study consisted simply of the offset 

parameter (Y) and the mesh density (to be represented by NELTS). 
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So G11 is: Find HK 11 characterising the approximate Pareto optimal set 

for PC 1 based on cc 11 • 

The components of· the object system s0 were defined as follows: 

xN = {beam width (=depth); boundary condition} 

FN = {mesh density, Y} 

yN = {displacements, stress resultants, reactions} 

IN = {angular position} 

To measure the attributes of the object system the following image 

system s0 was formed: 

xN = {BMWID, BCONDS} 

xR = { (Real [ o. oo 1 , o. 1 J ) ( oo, o 1 , 1 o, 11 ) } 

FN = {NELTS, GAMMA} 

FR= {(Integer [1,30]); (Real (0.0, 1.0])} 

yN = {GDISP, BMOM, SHF, AXF, REAKS, KOST} 

yR = {All real: [O.O, 15.0J, [-1.0, 1.0], (-1.0, 1.0], [-1.0, 0.0], 

[-1.0, 1 .OJ, [1.0, 30.0]} 

IN= {PHINOD, PHIGP} 

R 'IT 'IT I = {(Real [0.0, 1 2]; (Real [O.O, 1 2])} 

The values of BCONDS constituted a code for the boundary conditions: O 

means free and 1 means fixed - the first digit representing 9 and the 

second oH (See Figure 5.2.3) (i.e. 00 - 08 and 9 free; 01 - oH fixed; 

10 - 9 fixed; 11 - both fixed). 

GDISP has three components per node and is indexed by PHINOD. 

BMOM, SHF and AXF are indexed by PHI GP. 

REAKS is a vector with component numbers being required. 

The vc.lue range::s in yR were derived from very simple hand 

calculations. They provided valuable validity checks on the data 

captured. 
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The homomorphism sN is clear from the above. Because we will not need 

to use attr-i bute appearances, their ranges and the homomorphism eN 

will be left undefined. 

The angles ( <P) for the two Gauss points of an element correspond to 

those of points on the arch found by projecting, perpendicularly to 

the Chord, the Gauss points on the (straight) element. The cost 

variable KOST here is equal to NELTS because storage and processing 

costs will be directly proportional to NELTS in this problem class 

(geometric/topological simplicity and linear- analysis). 

Data for three reactions were captured, namely REAKS(1) = M(O), 

REAKS( 2) = M(¥) and REAKS( 3) = F8 

The initial experimental programme consisted of all combinations of: 

x BMWID = 0.01 

BCONDS = 00, 01, 10, 11 

and 

F NELTS = 1, 2, 3 

GAMMA = 0.0, 0.5, 0.6667, 1 .0 

Added to this was the reference solutions (one for each X
0

) which 

gives a total of 52 runs. This data forming S was stored on EDB. 

The reference solution was chosen as a finite element solution using 

30 elements without offset. 

$D was merely the addition of deviation measure data to sD. For this 

example a number of deviation measures were calculated. 



RELY(1) 

( 2) 

(3) 

(4) 

(5) 

(6) 
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deviation based on ov 

deviation based on a 
• deviation based on oH 

deviation tiased on FH 

deviation based on M 

RMS deviation of BMOM normalised with respect to RMS of 

reference BMOM. In addition, the sign of the mean deviation 

was attached. 

RMS values are calculated over the PHIGP values. 

"D D The selection of S from S was as follows: 

xD = XD, pD =FD and yD =(RELY (1 to 6), KOST). sD was then stored on 

EDBn. In fact, since the four BCONDS values induced a set of four . 
" subclasses of X, each of these was stored on separate EDBn, namely 

TAPE41 (BCONDS=OO) TAPE42 (BCONDS=01 ), TAPE43 (BCONDS=10) and TAPE44 

(BCONDS=11). 

Figure 5.2.5 shows the RELY-KOST plots for the sets of cases (the 

reference cases have been removed). The lines joining the points have 

been added only to ease interpretation of the plots - they do NOT 

imply interpolation of the cost (which is equal to NELTS and. is 

therefore integral). Note also that RELY(5), i.e. BMOM based 

reliability is not presented here. The reason is that, while RELY(1-5) 

are easy to calculate, it was not obvious how to calculate a BMOM 

based reliability. The RELY(6) as defined above was in fact only 

decided at a later stage, i .e after plots' of BMOM versus PHIGP had 

been studied extensively. 
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ooundary conditions 
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?IGURE 5.2.5 Continued 
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Each graph shows the reliability against cost for a particular 

reliability measure and BCONDS setting. Clearly the points may be 

clustered according to KOST( ::NELTS). Within each of these clusters the 

reliability varies with Y. Mostly the sensitivity of the variation 

decreases with increasing NELTS (All graphs are to the same scale). 

This is as expected. However, the quantity of data, while still very 

sparse (only four values of Y) is still too much to apprehend in its 

present form. If filtering to reduce the data is done on such a sparse 

sample one would remove nearly all the data .• Thus more points based on 

different Y are needed plus a means of summarising the presented data. 

In order to discover an appropriate means to achieve both these aims, 

the presentation of the data was changed to the one in Figure 5.2.6. 
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These show clearly the almost linear dependence of each RELY measure 

on Y and the decrease in sensitivity with increasing NELTS. The fact 

that the lines tend to cross indicates that for each NELTS and BCONDS 

there is an optimum Y. Care must be taken in seeking ·this optimum Y 

because the scaling of each RELY measure implies a relative importance 

factor. Changing the importance factors would give different optima in 

this situation because the crossings do not occur at zero. 

It was also already clear that for BCONDS=11 at least two elements 

were necessary. 

To expand the database with respect to Y it was decided that instead 

of running many more cases on NLFRAM it was legitimate to interpolate 

RELY with respect to Y. For each of the NELTS and BCONDS settings, 

RELY(i) was interpolated for 151 points on Ye:[0.5, 1.0]. Figure 5.2.6 

shows that all Y optima would lie in this interval. Then for each Y 

point the RELY data was summarised a3 follows: 

µ(Y,NELTS) max jRELYi(Y,NELTS,BCONDS) 

i,BCONDS 

except that for NELTS=1, BCONDS=11 is excluded. 

This formula implies that all RELY measures are important and that we 

wish to have a rule applicable to all BCONDS, i.e. the whole of xR. 
The following Figure 5.2.7 shows µ parameterised by NELTS versus Y. 
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FIGURE 5. 2. 7 Y versus µ with NELTS as a parameter (For NELTS = 1, 

BCONDS = 11 is excluded fromµ calculation). 

Applying a filter based strictly on the Pareto principle to all data 

points in µ-cost plane would correspond to taking the minimum points 

of each curve in the above figure. However, in most cases it is 

advantageous to have an idea of the sensi ti vi ty of the performance to 

the influencing variables. This may be achieved via an approximate 

Pareto filter, i.e. a filter which passes not only the optimum but 

also those points sufficiently close to it. (If the function were 

sufficiently smooth one could take derivatives). We could have used 

the filter in ELIXIR but, here, we simply read off the following rules 
"R to form the heuristic knowledge (i.e. induced SK and formulated the 

rules). 



KAS 4 and HK 11 

HK 11 expressed in terms of the image system is as follows. 

Rule 1: 

Rule 2: 

Rule 3: 

Note that 

If NELTS=1 and BCONDS# 11 

then if Y = 0.86 then 

if Ye[0.85, 0.90] then 

If NELTS=2 

then if y = 0.84 then 

if Ye[0.55, 0.84] then 

If NELTS=3 

then if y = 0.75 then 

if Ye[0.59, 0.80] then 

µopt = O. 26 
µE:[0.26, 0.27] 

µopt = 0.098 

µ.e:[ 0. 098' 0.010] 

µopt = 0.023 

µe[0.023, 0.030] 

each rule above contains two subrules: one 
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dealing with 

optimal control and the other with approximate optimal control. While 

a user would presumably select an optimal control, the info~mation 

contained in the approximate optimal control gives a good idea of the 

sensitivity of the control near the optima. 

In this example very little advantage is to be gained by expressing 

HK11 in terms of the object system, so it was not done. 

The value of these rules may be judged from the figure below. 
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0 µ.opt 

A µ. (y :2;3) 

µ. t.(0.52) 

0(0.26) 
x (0.29) 

IZll {0.10) 

FIGURE 5.2.8 The effect of 'optimal' Yon solution reliability 

By looking back to Figure 5.2.6 one can determine which RELY measures 

. and BCONDS are active at the µopt. One finds that BCONDS = 11 is 

nearly always the worst case and usually ~hen RELY(1) and RELY(5) are 

active. This knowledge would be useful as a. guide to someone who would 

refine the knowledge dependence on the boundary conditions. 

The Integration Phase 

In this example the justification of the heuristic knowledge follows 

directly from the experimental data analysis and the initial 

inituitive idea of using an offset with Y = 21 3• However, we felt that 

in this instance it would be possible and worthwhile to find a 

theoretical explanation for this belief. Therefore, in parallel to the 

above knowledge acquisition process, a theoretical investigation was 

carried out. A stiffness matrix for a linear elastic, constant 

cross-section, circular arch element with arbitrary subtended angle <Ps 

was derived via the principle of complementary virtual work. The 

degrees of freedom for this stiffness matrix were the displacements at 

the ends, in directions parallel and perpEmdicular to the tangent of 
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the arch mid-surface, and the end rotations. The stiffness matrix was 

then transformed to relate to degrees of freedom parallel and 

perpendicular to the chord of the arch. Then by letting R<f>s_.i, i.e. a 

limiting process from deep to shallow arches, and neglecting higher 

order terms, the following stiffness matrix results. 

EA 0 2h EA 
~-

)'. 3 )'. 
EA 0 2h EA 
r 3r 

12EI 6EI 0 12EI 6EI 

i3 i2 i3 i2 

4EI + 4h2 EA 
i 9 i 

2h EA 6EI 2EI _ 4h2 EA 
3r i2 i 9r 

EA 0 2h EA 
i 3 "'"1' 

symmetric 12EI 6EI 

i3 i 2 

4EI + 4h2 EA 
i 9 i 

This is identical to the stiffness matrix of a straight element with an 

offset of 2h/3. Figure 5.2.8 shows that except for NELTS=1, using Y= 2! 3 
results inµ very close· to µopt· It is expected that µopt_. 2; 3 as NELTS_..,,, 

Generalisation of the HK 

The heuristic knowledge HK 11 can quite easily be generalised to PC's 

with broader definition than PC 1• If, instead of using NELTS as a 

measure of mesh density, one used the reciprocal of the angle 

subtended by a single element as a mesh density measurement, then 

conservative generalisation of HK 11 to problems with subtended angles 

(for the whole ar..::h) other 90° would be straightforward. Incidentally, 

note how this generalisation illustrates the importance of separating 

the concept of mesh de'nsi ty from its measurement and hence the 

:"lportance of defining object and image systems. By assuming that the 

HK is applicable to members defined between boundaries and/ or point 
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loads, generalisations to more complex sets of point loads is also 

easy. Distributed loading conditions would require further knowledge 

acquisition but we would not expect the HK to change significantly. If 

the original straight element can deal with nonlinear materials then 

so will the offset element. However, more knowledge would need to be 

acquired because mesh densities (with or without offsets) would need 

to be increased. For geometrically nonlinear problems we believe that 

by including the mid-element transverse deflection in h (i.e. making h 

deflection dependent) the benefits would exceed those for linear 

analysis. Again, however, more knowledge would need to be acquired. 

Some generalisations to dynamic analysis and 3-D beams is also 

, possible but these would also require further knowledge acqui si ti on. 

In all generalisations or extensions of PC 1 , the HK 11 will serve as 

very valuable a priori knowledge. 
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CHAPTER 6 CONCLUSION 

Effective and efficient use of engineering software requires knowledge of 

the Pareto optimal set of the software. At present very little such 

knowledge is available to users. Complete knowledge of the Pareto optimal 

set is impossible to acquire due to the complexity of the problem and 

control spaces of the software and HK (Heuristic Knowledge) characterising 

an approximate Pareto optimal set must be acquired instead. Such HK may be 

acquired by making use of the knowledge acquisition procedure presented in 

Chapter 3. The procedure consists of three main phases, namely a planning 

phase in which a set of problem and control classes is defined, an 

execution phase in which HK for each problem and control class is acquired 

and an integration phase in which the separately acquired HK is explained 

and integrated into a single body of HK. The problem and control classes 

are simplifications of the problem and control spaces. The execution phase 

was further shown to consist of five main steps, namely, system 

definition, expe,rimentation, data transformation, 'partitioning' and 

formulation of HK. These five steps correspond to the components of a KAS 

(knowledge acquisition system). While the planning and integration phases 

are labour inten~ive, i.e. they are done by the KAc (knowledge acquirer), 

by computerising most of the data management aspects of the KAS, the 

execution phase <~an be partially automated. Computerisation aspects were 

then discussed. Finally two examples of knowledge acquisition were given. 

These illustrated the use of the knowledge acquisition procedure and a 

computer-based KAS called ELIXIR. They also showed that, even for a fairly 

small software package, significant savings in computational effort may be 

achieved. 
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APPENDIX A SOME CLUSTERING TECHNIQUES 

Let X = {xi I i = 1 ,2, ••• ,n} be a set of data points which are to be 

clustered or partitioned. For K hard clusters Cj, j = 1 ,2, ••• ,K 

we have 
K 
U ck = x and c in c j = eJ if i I: j . 
k 

(A 1) 

Let u be a K x n membership matrix which assigns the xi to clusters 

ck, i.e. 

if xi E ck then uki = 

else uki = 0 

(A2) 

For hard clustering, each xi can only be assigned to one cluster but 

must be assigned to at least one. This is implied by (A 1). Clearly 

this results in the restriction on u that one and only one element 

of each column in u must be 1, the others all being zero. 

The number of possible K-partitionings on n points is given by [20] 

as 

= (A3) 

NKn grows very quickly with increasing K and n. For example, for 5 

clusters on 100 points, N5 , 100 = 1068 ; N3 , 15 = 2.3 x 106 . 

In general the points xi may be vectors but consider for the moment 

the case where each xi is a scalar. Also assume that the data are 

ordered, i.e. 

(A4) 
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and that the elements of a cluster form contiguous sets, i.e. if a 

cluster begins with xi and has i points, then it consists of 

(A5) 

Under these conditions (A3) becomes 

I = ( n-1) 
NKn K-1 (A6) 

I I 

NKn « NKn• for example N3, 15 = 91. Compare this to N3 , 15 above. A 

typical value expected in knowledge acquisition would be 

I 

K = 4, n = 50 in which case N4, 5o 230 300. 

Thus even here complete enumeration of the possibilities is probably 

uneconomical. Although dynamic programming can speed up the 

enumeration, Sp~th [20] suggests that, for solutions in reasonable 

time, one must use heuristic a.1.gorithms. He also points out that 

cluster algorithms are superior to visual classification only when the 

vectors xi are one or two-dimensional. However, many 

clustering/partitioning problems in knowledge acquisition are likely 

to involve vectors of one or two dimensions in the clustering criteria 

so visual classification will often be adequate. This again stresses 

the importance of good graphical display of data. However the 

clustering algorithms may still be useful for organising the data 

because further processing will usually be done on this data. If it is 

organised properly, it will usually make such processing simpler and 

more efficient. 

Now let dij = d(xi, xj) be a distance function. Typically 

where 11 ·II is the Euclidean norm (assuming x is vector). 



The mean or centroid x of a set of points X is that value x s xR 

(X is a sample of points in xR) 

n 
which minimises l d2(xi 1 x). 

i 

If d is based on the Euclidean norm 

x 

Similarly one can define centroids for clusters as 

or for the Euclidean case 

= 

where 
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(A7) 

Many cluster algorithms are designed to minimise an objective 

function. The most popular of these is the sum of t;1e sum of the 

squared distances of cluster members from their cluster centroids, 

i.e. 

K n 
2 J(K) = l l uki dik (A8) 

k=1 i=1 

where dik d(xi, xk) 

[Aside: The advantage of the form of (A8) and the use of the 

membership matrix uki is that it can easily be gene~alised to a fuzzy 

objective function 

(A9) 
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where now O ~ · uki ~ 1. uki is called the membership grade of xi in 

cluster k. The integer m defines the fuzziness of the clustering. The 

higher m the harder the partition. See [11]] 

One of the simple~1t and most popular clustering algorithms, the KMEANS 

algorithm [i2,20], which minimises J(K) (locally not globally - only 

complete enumeration can produce a global minimum) is as follows. 

Given an initial partition, one takes each xi and re-assigns it to 

another cluster if, in so doing, J(K) is reduced. In fact one assigns 

it to the cluster which will reduce J(K) the most. Quite simple 

efficient formulae exist to test such conditions. This is repeated 

until no further reduction can be achieved. To check global optimality 

one will need to start the algorithm with a number of different 

initial partitions. One simple way to find an initial partition is to 

select K elements of X as an initial set of cluster centroids xk. In 

one or two dimensions this should be easy if based on visual 

information. Then simply assign the rest of the xi to the cluster with 

nearest centroid. 

A very serious problem with clust,ering is the selection of K. Clearly 

as K-+-n, min .J(K)-+-0 but for abstra.ction purposes one requires a small 

K. Where clustering is used in knowledge acquisition, the selection of 

K should however be quite easy if visual inspection of the data is 

made. For simple HK one wants thE.~ minimum K which gives 'natural' 

clusters. Usually one can simply repeat the clustering for a few 

choices of K and then select the cne which gives the 'best' result. 

Another important problem in clustering is to choose an appropriate 

distance function. The Euclidean norm will usually give the most 

efficient algorithms with others often requiring considerable effort. 

Use of the L~ no~m, i.e. ~axlaa - bal is apparently almost unusable 

according to [20]. Unfortunately minimisation of an objective function 

of the form 

H(K) = max(max(ukidik)) 
k i 

(A 10) 
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may, in fact, be the most appropriate to knowledge acquisition. If the 
... 

distance function measures distances between solution features Y, then 

(A 10) says that one wants a partition which minimises the worst error 

a user of P would make if he based his decisions on the HK derived 

from the partitioning. 

In all of the above, we have considered only partitions of single 

level, that is to say that no further partitioning of partitions was 

desired. However, it will often be convenient to have such a double 

level with the first level being a partition of )(R and the second 

level an approximate partition of yR. The process is more one of 

multi-objective 

clustering. 

function clustering rather than hierarchical 
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