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ABSTRACT

The problem of effective and efficient use of engineering software can
be thought of as a Pareto optimal problem. However, the complexity of
modern engineering software precludes the possibility of acquiring
complete knowledge of the software's Pareto optimal set. Instead
heuristic knowledge must be acquired. The thesis proposes that
heuristic knowledge be acquired via a knowledge acquisition procedure.
The use of a knowledge acquisition system, which may be computerised,
forms an integral part of this procedure. Two examples of knowledge

acquisition illustrate the use of the knowledge acquisition procedure.
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PREFACE

The original title of this thesis was to have been 'Numerical
" Modelling of HReinforced Concrete Frames under Transient Dynamic
Conditions'. The aim of the research would be to develop suitable
constitute models for concrete. When the research was begun, Prof
Martin suggested that I write a finite element program which could be
used as the primary tool for such research (At that stage, the Dept.
of C€ivil Engineering did not have a suitable program). So I wrote
NLFRAM. NLFRAM could analyse plane frames made of reinforced concrete
(or any other material) under transient dynamic loading. Geometric and

material nonlinearities could be taken into account.

One of the first applications of NLFRAM was to the modelling of a
reinforced concrete beam, loaded statically. Even in this relatively
simple case, I had considerable difficulty selecting step sizes and
finding suitable equilibrium iteration algorithms, but eventually, by
an iterative process of trial, error and observation, I succeeded.
Many computer runs were required. During the process, it became quite
clear that, depending on the selection of the numerical modelling
parameters {(control variables) wide variations in predictedAresponse
could be produced, with evén wider variations in computational effort.
At some point in the research, Prof Martin suggested that, rather than
concentrating on concrete constitutive modelling, I concentrate on
improving the efficiency of the algorithms used in the modelling of
reinforced concrete structures. He also suggested that Dr Neishlos
might be a useful guide for such research. Well, Dr Neishlos became so
enthusiastic that, within six months, I was not looking to improve the
efficiency of solving reinforced concrete problems, but was looking to
improve the general use of engineering packages. The question was how
could one systematize the acquisition of c¢ost-reliability-control
information for an engineering package. Dr Neishlos pointed out that,
for any given package, the variety of problems and ways to solve them
numerically, i.e. the number of controls, was enormous, so I should
concentrate on a class of problems and controls. He also pointed out
that the conventional way to acquire information on this class would

be to use statistically designed experiments, but that this approach



ix
might be very expensive. A pattern recognition approach, he said,
might be more efficient. To test these ideas .I wrote a prototype
version of ELIXIR, chose the reinforced concrete beam mentioned above
és a problem class and proceeded to wuse ELIXIR to acquire
cost-reliability-control information about NLFRAM. Even with only
three variables in the control class and only one problem in the
problem class, the cost-reliability~control behaviour was quite
difficult to understand from the initial statistically designed
experimental programme. But, by using interactive graphics for pattern
recognition, and sorting, "filtering (according to the Pareto
| principle) and clustering, I learnt enough about the package to design
an additional experimental programme which, on average, would produce
more efficient solutions than the 1initial programme. Pattern
recognition, filtering, etc¢. were then repeated. In fact, the whole
cycle of experimental programme design, pattern recognition, etc. was
repeated four times pefore I was satisfied with the
cost-reliability-control knowledge I had acquired. We (Dr Neishlos and
I) clearly recognised the heuristic nature of the knowledge
acquisition process that I had followed and the heuristic nature of
the knowledge acquired. From Lakatos (Philosophy of Science) and Pearl
(Artificial Intelligence) we also realised that it was correct to use

heuristic procedures to acquire heuristic knowledge.

The next two questions to be answered were: how could the knowledge
acquisition process be made generally applicable, and how should the
heuristic knowledge be disseminated? The first led to my adoption of
Klir's general systems concepts, and the second, to the adoption of a
rule form (Expert Systems, Artificial Intelligence) for knowledge
representation. In order to computerise the general systems version of
the knowledge acquisition procedure, I realised that the new version
of ELIXIR would require flexible data and program structures, so I
turned to the database and artificial intelligence literature for
help. I alsoc realised that the new ELIXIR would be quite complex and,
in order to manage its development, I drew on ideas in software
engineering. Once completed, the new ELIXIR was tested on the
reinforced concrete beam problem again, and then also on a oroblem
involving linear elastic curved beams. Finally, I put all these ideas

together and wrote this thesis.

Dave Hawla
August 1987



NOTATION

‘All the below symbols and abbreviations are defined in the text but

are listed here for reference purposes.

DEP Design evaluation problem

KAP Knowledge acquisition problem
HK Heuristic Knowledge

KAS Knowledge Acquisition System
KAS. Components of the KAS

CBKAS Computer-Based KAS. The components of the CBKAS have names
such as FELIX, PRELIX, ELIXIR, etc. and do not correspond

one-to~one with the components of the KAS

Kic Knowledge JAcquirer, i.e. the person performing the knowledge
acqﬁisition ‘

FEA Finite Element Analysis

AT Artificial Intelligence

EK Evaluative knowledge

MM Mathematical model

NM Numerical model

DEProc¢ Design evaluation procedure
DEProg Design evaluation programme
KAProc Knowledge acquisition procedure

KAProg Knowledge acquisition programme

The following symbols are based on the general systems concepts of
[55]. Unsubscripted capital letters denote sets. A lower case letter

with a subscript is used for names of attributes or variables.

KAP(P,G) A KAP for processor P with goal G
P Processor, i.e. an engineering software package
G The goal of knowledge acquisition. It will always be:

"find HK characterising an approximate Pareto optimal
set for P"



KAP(P,GL)

KAP(P,cid)

pcl
HKt
ccld

HK

X1

A knowledge acquisition subproblem for P with Gi being
the goal: "Find HKi characterising an approximate

Pareto optimal set for problem class PCi"

A knowledge acquisition subproblem for P with Gij
being. the goal: "Find HKij characterising an

approximate Pareto optimal set for problem class PCi

‘and control class CCij"

Problem class i of processor P
Heuristic knowledge about PCi
Control class j for pct

Heuristic knowledge about PCi and CCij

Notational Patterns in Systems Symbols &

Before providing details of the contents of the various systems, we

will first give an overview the main symbols used for primitive, data

and transformed data systems. The pattern in the representation should

then become evident.

The primitive systems are:

where

and

Now

define

(s9,59,8), a source system

= (x%,F%9,¥9,19) is an object system
x%,7%,¥%,19) is an image system

= xN,x®)y, O = (FN,FR), etc. so we can also

(x*, %, yN,1%) and

(xR, FR, ¥R, 1Ry,
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Thus we can also write §° és sO - (SN,SR)
similarly X0 = (xN,x®),  FO=(FV,FR), ete.

When data is added to SO, Wwe get

s - (XD,FD,YD,ID), a data system,
where xP = (XN,XR,X), FD - (FN,FD,F), ete.

We can also define SN = (xN,eN,yN Ny SR o (xR #R yR 1Ry
and S = (X,F,Y,I) and then write

sP = (sV,sR,s).

Note: Although it is difficult to distinguish visually between S and

S or Y and Y, the context of their use should make it clear

enough. :
Transformed data systems simply have '~' or '"' above each symbol
i.e. & = (&Y, 3R, 5 = (&2, #°, 1P, 1P) ana

-~

D - sV, SR, 5 - (xP, FP, YD)

Note, however, that SD does not have ID as a component.

Primitive Systems

ZO A source system ZO = (SO,SO.B), i.e. it consists of an object

system, an image system and a homomorphism between them
s An object system: s - (x9,7%,¢9,19), i.e. attribute names and
appearance sets for problem inputs, processor controls,

outputs and indices

x0 Input attributes and appearance sets, i.e. X0 = (xV,xR)



xiii

Set of input attribute names, i.e. xN - {x?, xg,...}

Set of possible appearances or'ranges of appearances of input

attributes, i.e. X = (], x8,...}

Name of j'th input attribute

Range of appearances of j'th input attribute
Processor control attributes, i.e. P - (FN, FR)

Set of names of processor  control attributes,' i.e.
PN = (e, ),

Set of ranges of appearances of conrol attributes.
PR = (e, £8,...)

" Name of j'th control attribute

Appearance range of j'th control attribute
Qutput attributes, i.e. y0 - (YN, YRy
Set of names of output attributes, i.e. YN = {y§, yg,...}

Set of ranges of appearances of output attributes, 1i.e.

R (R, ¥E, .0

Name of j'th output attribute

Appearance range of j'th output attribute
Index attributes, i.e. 10 - (IN,IR)

v -

Set of names of index attributes, i.e.

Set of ranges: of appearance of index attributes, i.e.

e, g



o=z

g

[

[

Xiv

Name of j'th index attribute

Apperance range of j'th index attribute

An image system: SO = (XO,FO,YO,IO), i.e. variable names and
value sets for problem inputs, processor controls, outputs and
indices

Input variable names and ranges of values, i.e. XO = (XN,XR)

Set of names of problem input variables. xN - {x§, xg,...}

Set of possible values or ranges of values of input variables,
R, ..

; R _ R
i.e. X7 = (xy, X5y ees
Name of j'th input variable

Value range of j'th inbut variable

Processor control variable names and value ranges, 1i.e.

Set of names of processor control variables.
PV = (e, o,

Set of value ranges of oprocessor control variables.
FRo= (£R,fB . 3

Name of j'th processor control variable

Value range of j'th processor control variable

Qutput variable names and value ranges, i.e. yO0 - (YN, yRy
yN

Set of output variable names, i.e. = {y?, yg,...}

Set of value ranges of output variables. yR - [y?, yg,...}



.z

e

Xv

Name of j'th output variable
Value range of j'th output variable

Index variable names and value ranges, i.e. 10 - (1V, 1Ry

o=l N

Set of index variable names, i.e. 1> 15,-.

Set of value ranges of index variables, i.e. IR . {i?, ig,...}

Name of j'th index variable
Value range of j'th index variable

Homomorphic mappings Dbetween attribute names and variable
names and between attribute appearances and variable values,

i.e. g = (8Y,gR)

Homomorphism between (XN,FN,YN,IN) and (XN,FN,YN,IN)
BN = {B$|B§)°'-]

Homomorphism between (XR,FR,YR,IR) and (XR,FR,YR,IR).
g = (8%,88,.. )

j'th homomorphism between attribute and variable names. Often

between xN and xN

J J*

j'th homomorphism between appearance and value sets of the

attributes and variables related by S?

Data Systems

Data systems are primitive systems to which arrays of data have been

added [55]. Adding data collected from running experimental programmes

to SO we get SD. Individual cases of data, i.e. data for a single

experiment are denoted with Greek subscripts.



of

joB

YaB

yjaB

af

jaB

xP,rD,yD, D)

xN, xR, x)

(7N, FR, F)

SLRGIS

(N, 1R, 1)

Set of problem input data, i.e. {X1,X2,...}

a'th set of input wvalues of experimental data.

- R
Xy = (X1a’x2a""}' Xy € X

¥ooxy, e of

t . .
a'th value of xj, ja j

Set of processor control data, i.e. {F11,F12,F13,....

B'th value of processor control values associated with Xa‘

- R
Faa= (f1aa T2 -}s Fog € F

' N. ¢, R
aB'th value of fj, fJaB € fJ

Set of output data, i.e. {Y11,Y12,Y13,...,Y21,...

Qutput produced by P from xa’FaB

- . R
YaB a {y1a8’ y2a8""}’ YaB €Y

N . R
aB'th value of yj 3 yjae € yj
Set of index values, i.e. {111,112,113,...,I21,.

Index values associated with Xa’FaS'YaB'

Iae = {i1a8’ izas,...}

1 N . .
ag'th value of iy ; 1508 € 1?,

,F21..-

xvi
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Transformed data systems

The transformed data system §D is simply denoted by putting a *'~!'
above each element/item occurring in SD. In a very similar manner éD
is denoted but it does not contain any index variables, i.e.
P - (QD, ED, QD) with QD, ED, yD having the same constituents as
XD,FD,YD but with a '"' above the relevant symbols.

Subsets
Whereas Greek subscripts were used to denote individual cases of data,

Roman subscripts are used to denote groups of cases or subsets of the

data sets or range sets. Mostly this will only be used with SD.

s = (X,FY)

Seg = KioFrgrTig) s X, X, F F, Y, 1
Qk = [ika ] a=1,2,...,n,}

Fig - (Fugqg | @152, 00 iny, B=1,2,0.0,n)

Yoo = gae | o=1,2,0000ny, 821,2,.00,my)

A K-partition of § will be denoted by éK

where Sy = Sy | k=1,2,...K, 2=1,2,...,L(K)}

-

Using similar conventions, we denote subsets of sk - (XR,FR,YR) by
sR _ (R IR vR
Spy, = (Xg» Frgs Yig).
R 3R =R ~R R vR
Where xk Ay Fkl F ] Ykl Y -

Whereas the Skz are finite point sets, the sets SEQ generally consists

of contiguous intervals or cells in SR.
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1 INTRODUCTION

A structural engineer faced with. the problem of certifying the
strength of a mechanical component will plan a set of stress analyses,
execute the plan, i.e. calculate the stresses, and then integrate this
information/data into an evaluative statement of the strength of the
component. The plan will contain some simple analyses done by hand or
via handbook tables and some detailed analyses such as finite element
analysis (FEA). An evaluation of the strength of a mechanical
component is however just a special case of what we will call a design

evaluation problem (DEP).

Complementary to design evaluation problems are the problems of
providing/inventing/developing engineering analysis theories formulae,
handbooks, codes of practice, computer packages, guides for using such
packages and training in the use of these tools. In this thesis, we
wish to address only the problem of providing guidance for the use of
engineering computer packages for aiding the solution of design

evaluation problems.

Numerical modelling packages exist for simulating many physical
phenomena exhibited by so0lids, fluids and complex machines. Until
recently however, complex numerical models such as those used in FEA
were only built for the evaluation of expensive or otherwise important
components of large engineering.projects. However, the decreasing cost
of computer hardware and increasing availability of sophisticated
engineering software has meant a much greater use of such software
tools ([78] is entitled 'FEA for the Masses'). On the other hand, the
scope and complexity of such software has in general increased and
continues to increase [69,70]. The combination of these factors has
led to concern among such software users, vendors and academics
regarding the problem of effective and efficient use of such software
and the credibility of the results of such use. In the field of FEA
there has recently been a considerable increase in the number of
publications and conferences addressing this problem [39,%40,69, 70,
76,77,26]. In fluid dynamics, [80] says that: "Computational fluid
dynamics has many successes for the solution of simple standard
problems. For relatively complex problems especially if nonlinear and

of mixed type, the computed approximate solutions are mostly of
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dubious accuracy and credibility.” The contention of this thesis is
that part of the problem may be alleviated by the provision of
adequate appropriate knowledge of the Pareto optimal set of
engineering packages. By the Pareto optimal [54] set of an engineering
package, we mean the set of values of the numerical modelling
variables (e.g. step sizes) which, for any values of the design
variables (e.g. dimensions), simultaneously maximises the accuracy and
minimises the cost of solution. Currently such knowledge is derived
from some basic theory of numerical analysis, user's manuals with
their demonstration examples, experience and common (engineering)
sensé. It is inevitably vague and incomplete and thus of a heuristic
nature. Such heuristic knowledge is often held by a relatively small
number of experts who have built up their expertise through years of
experience with the software. Acquiring such heuristic knowledge 1is
therefore a significant problem and in this thesis will be called the

knowledge acqpisition problem (KAP) .That knowledge acquisition is a

problem is recognised by expert systems people [5,6,39,40] as the
'bottleneck' in expert system development. For convenience, heuristic

knowledge will hereafter be abbreviated to H{L.

The principal aim of the thesis is to show how heuristic‘knowledge for
numerical modelling via engineering software can be acquired. The aim
of this introductory chapter, is to provide the reader with most of
the concepts needed for the thesis. It thus forms a condensed version
of the thesis as a whole. Later chapters will deal more thoroughly

with the methods and ideas presented in this chapter.

The next section presents a simplified systems view of the use of
engineering software. It introduces the notation and some of the basic
concepts to be used in the thesis and explains why heuristic knowledge
must be sought. Section 1.2 deals with knowledge acquisition. It shows
how heuristic knowledge 1is wusually acquired and for this it is
necessary to explore the design evaluation process. It then shows
briefly th heuristic knowledge can (and should) be acquired. Section

1.3 then presents a knowledge acquisition procedure incorporating a

knowledge acquisition system (XKAS). This procedure and the KAS consist

of an integration .of traditional and artificial intelligence (AI)
techniques unified via the concepts of general systems [55]. Section

1.4 briefly explains the necessity of computerising the KAS. Section
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1.5 presents an exercise of acquiring heuristic knowledge for
numerical modelling of a reinforced concrete beam via an FEA package

called NLFRAM.

The approach to knowledge acquisition presented in the thesis suppbrts
the increased effort towards adequate training and education of users
of engineering software. In fact it should ease the proéess of
education and training because the knowledge acquisition procedure is
a systematic procedure by' which software users may organise their

experience and so acquire HK themselves.

1.1 A SIMPLIFIED SYSTEMS VIEW OF THE USE OF ENGINEERING SOFTWARE

As an introduction to the general systems concepts and notation to be
used in the thesis, a simplified systems view of the use of
engineering software will be given. Most of the general systems

concepts used in this section are based on Klir [55].

Any engineering software package may be considered as a grocessgg P

that takes problem inputs plus some engineer (user) supplied processor

controls and generates ogutputs. The process of using P may be

represented as in Figure 1.1.1.

PROBLEM INPUT_ o OUTPUT
PROCESSOR
CONTROL
| Eng
USER
FIGURE 1.1.1 : Systems view of the process of using an engineering

software package P
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The presence of HK in the above serves to emphasize the fact that the
engineer makes use of heuristic knowledge (experience, advice in

manuals, etc.) to select appropriate processor controls.

For FEA - of structures, typical problem inputs are geometric data,
material properties, loads, boundary conditions and initial
conditions. Typical processor controls are mesh density, element type,
time step sizes, eduilibrium iteration algorithms, iteration
convergence tolerances and numerical integration order and typical

outputs are displacements, velocities, reactions and stresses.

Usually the HK consists of vague relations between inputs, controls
and outputs derived from user's manuals, especially the example
problems sections, previous experience, some basic theory and common
(engineering) sense. It consists of knowledge of ¢trends such as
accuracy increases with increasing mesh denaity, decreasing time step
sizes and tighter convergence tolerances; 'mesh density should be
higher in areas of large gradients; high accuracy usually involves

high cost; etc.

Figure 1.1.1 perhaps gives the impression that for any problem, the
selection of processor controls and generation of outputs is a
straightforward process. In practice, .howe;er, complex mathematical
modelling problems are solved by an iterative refinement process
involving a succession of increasingly complex or more detailed
numerical models. The value of the HK lies in its use for effective

and efficient control of this process.

The problem space of P may be defined as the set of all possible

problems which P can solve. Similarly, the control space of P consists

of all possible ways of using P to solve problems in its problem

space. P maps its problem and control spaces onto its output space.

Ideally the user would like to know how to control the solution
process for any problem in the problem space. However, even for quite
small engineering packages, the enormous variety of problems and
controls make the praoblem and control spaces so complex that it is
usually impossible (or at least unrealistic) to acquire such complete

knowledge. Instead, engineering users usually settle for knowledge
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which is derived from the study of P on simplified pfoblem and control
spaces. These simplified problems and control spaces will be called

problem classes (PC's) and control classes (CC's). Simplification: can

be achieved by Pearl's approach of constraint modification [2]. The
knowlzadge derived from the study of such simplified spaces will be
heuristic [2]. An extreme applicétioﬁ of simplification would produce

‘a set of examples, i.e points in the problem and control spaces.

A problem class (PC) can be defined in terms of variables and ranges

of values of these variables, 1i.e. as XO = (XN,XR), where

xN - {x?,xg,...} is the set of variable names for the PC and
xR - {x?,xg,...} is the set of ranges of values which the variables
may take. Similarly, a control class (CC) can be defined by
O - (FN,FR), where FN = {f?, fg,...} is the set of variable names for
the CC and FR = {fR,fR,...} are the corresponding value ranges.
Corresponding to %% and FO is the output class y0 - (YN,YR). Taken
together, the problem, control and output classes form a primitive

system sO - (XO,FO,YO). .

Any given problem in~the PC can be represented by its data Xa € XR.
Because the selection of processor controls is dependent on Xa and in
addition on cost and reliability aspects, processor control data will
be represented by FaB € FR. When Xa and FaB are fed into P, the output

is YaB € YR. This view is shown in Figure 1.7.2.
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Xa - P YGB -
! R
I\F Ka € X
af R
g € F
o] ERQ| ) R
USER | Yap € Y

FIGURE 1.1.2 : Systems view of the process of using of an engineering

package P on a particular problem class and a

particular control class.

The HK in Figure 1.1.2 is now specific to the problem and control
¢lass specified by SO. Taken together, all data for a particular use
of P, i.e. (xa’FaB’YaB) will be referred to as a data case (SaB). A
set of data cases will be represented by S = (X,F,X). When SO is
supplemented by data S, the result is a data system sP = (XD,FD,YD).
X = oxNxBxy, PP o= (FV,FR,F) and YD = (¥N,¥R,v). alternatively,
sP = (sN,sR,s) where sV = (XN, FN yN), SR o (xR PR ¥R) and s = (x,F,¥).

It was stated in the introduction to this chapter that the goal of
knowledge acquisition is to acquire knowledge concerning the behaviour
of P such that, armed with this knowledge, P may be used effectively
and. efficiently. Effective use requires that the engineer has
sufficient knowledge to select processor controls FaB which will
solve. his problem Xd to an appropriate level of reliability
{(accuracy, confidence, etc.). Efficient use requires in addition that
the controls selected prpduce the desired reliability in the cheapest

manner possible.

‘The use of the term reliability of solution rather than the term

accuracy of solution needs explanation. The term accuracy of solution
is wusually understood to be some measure of closeness to an exact

solution. However, most engineering software packages were developed
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for applications for which exact solutions are not available. The
reliability of a solution will therefore be defined as some measure of

closeness to what we will call a reference solution. A reference

solution is one which is believed to be sufficiently accurate for all
engineering purposes. The term 'believed' rather than 'proved' is used
because, while proof will wusually be .impossible, quite strong
arguments from physical and mathematical principles can be made to
justify belief in the validity of the reference solution. The use of
such terminology follows that of [56-60]. Invariably reference
solutions will be expensive to obtain. In some ways reference
solutions are like measurement standards or control experiments - they
represent standards against which other things are measured. However,
standards are usually chosen for their accuracy with repetiticn (this
is no problem for most engineering software) whereas reference
solutions are chosen as a sort of ideal solution or for their

credibility as an approximation to an ideal solution.

The efficiency of obtaining a solution depends on the selection of FaB
because a similar level of reliability can be achieved with widely
varying c¢osts using different FaB [B80]. The appropriate level of
reliability will depend on the reliability requirements and cost
constraints of the particular design evaluation for which the problem
Xa is to be solved. While effective use requires only knowledge of the
range of possible levels of reliability and their generating FaB’
efficient wuse requires in addition that these FdB produce solutions
with minimum cost. In the ;anguage of polyoptimisation this may be
expressed as the following optimisation problem: find the FaB £ FR
which are Pareto optimal [54] for each Xy € XR, where the objectives
are to maximise reliability and minimise cost. However, acquiring this
knowledge of the Pareto optimal set of SO may be too expensive. The
expense may be reduced by converting the optimisation problem to an
approximate optimisation problem. By extending the definition of
approximate optimisation given in [2] to approximate Pareto
optimisation, the above stated optimisation problem becomes: find the
EaB £ FR which are approximately Pareto optimal for each Xa € XR. An
approximatzly optimal solution is defined in [2] as one which has a
sufficiently high probability of being within a specified factor of

the optimal solution.
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1.2 KNOWLEDGE ACQUISITION

In section 1.1, and Figure 1.1.2 in particular, we gave a systems view
of the process of using an engineering package P to solve a problem
defined by Xa. The purpose of wusing P to solve Xa was. stated in the
introdgction to be that of aiding the solution of design evaluation
problems. In using P the engineer (user) made use of HK. The purpose
of this section is to show how HK is usually acquired - for this we
need to study design evaluation more closely - and to provide an

introduction to a systematic way of acquiring HK.

Given a DEP (D,G), i.e. a DEP for design D and a goal G capturing the
design requirements, an engineer will use P, any HK and é prior
evaluative knowledge EKO to find evaluative knowledge EK for the
design. For example, D might be a turbine blade with G being to

evaluate. D with respect to strength. EKO

would typically be derived
from a simple hand stress calculation indicating that the stresseé'are
close to the material rupture stress and so more detailed stress
analysis is required. P would typically be a structural FEA package
and the HK would then relate to the use of this package. The EK sought
is a statement of whether the blade will fail or not. In general, G
defines appropriate evaluation <criteria (failure, performance,
serviceability, etc.) which are in turn defined in terms of the
behaviour (stresses, flows, efficiencies, etc.) of the design. EK is
all knowledge/information/data needed to evaluate the design with

respect to G.

The above view may be formulated in the following block diagram form.
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, Eng. ~
B | P -
\

(K0 HK

FIGURE 1.2.1 : An abstract block diagram view of the design evaluation

process

In Figures 1.1.1 and 1.1.2, the engineer (user of P) was given the
problem Xa and selected only the controls FaB' Now, however, he is
given a DEP(D,G) and not only selects controls FaB but also : decides
how to model D via P by selecting Xa and Fas' interprets the output
YaB' and finally makes an evaluative statement. A4ll of these are
guided by EKO and HK. This more detailed view:is depicted as follows.

p

Mo Mg YVap

A

ek0 Hk

FIGURE 1.2.2 : The use of P to simulate the behaviour of D in the

. design evaluation process

The Xa essentially specifies a mathematical model of D while FaB
specifies how to solve Xa numerically. Usually a number of
mathematical models eacvn solved via a number of numerical models will

be required for each design evaluated. This set of mathematical and
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their associated sets of numerical models together form what will be

called a design evaluation programme (DEProg). Ideally a DEProg will

be planned in the first phase of evaluation. A DEProg allows the
engineer to lz2arn systematically about the physical behaviour of a
design D and so enables him to make evaluative statements about D.
Puring the planning of a DEProg the engineer will use many heuristics
like making - conservative simplifying assumptions, relaxing some
constraints, etc. (cf simplification of problem and control spaces).
Although the process is based on sound mathematical, physical and
logical principles, the heuristic human decision element automatically
makes the (planning) process and its output (the DEProg) heuristic

too.

A by-product of using P to learn about designs is that the engineer
simultaneously learns about the behaviour of P. With sufficient
intelligent and varied use of P, the engineer will build for h;mself
an experiential heuristic knowledge base. Such knowledge will usually
be very difficult to state explicitly and will therefore be difficult
to convey to others. Also, due to time constraints, etc. the knowledge
may not be acquired systematically and so will usually be fragmented
and far from Pareto optimal. The learning process isv essentially
passive. What is needed instead is systematic active experimentation

to acquire explicit HK.

While the primary goal of design evaluation is the production of EK
for a design D, in the KAP the primary goal G is the production of HK
which ideally characterises the approximate Pareto optimal set of a
processor P. Such a KAP will be denoted by KAP(P,G). If a knowledge
acquirer (KAc) makes use of a KAS (a computer-based system for aiding
knowledge acquisition) and any a priori heuristic¢ knowledge (HKO)
available to him to solve a KAP(P,G), the knowledge acquisition

procedure can be represented in the following block diagram form.
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()] s (@)
®

FIGURE 1.2.3 : An abstract block diagram view of the. knowledge

acquisition process (Cf. Figure 1.2.1).

In contrast with the passive acquisition of HK about P, the knowledge
acquisition procedure uses active experimentation on P to learn about
its behaviour and thus formulate explicit HK. The following figure

illustrates this view.

Mo AFgg YYep

KAc |

®

FIGURE 1.2.4 : Learning the behaviour of P by active experimentation

in the knowledge acquisition procedure (Cf.

Figure 1.2.2)

An important difference between the design evaluation and knowledge
acquisition processes shown in Figures 1.2.2 and 1.2.4 respectively
should be highlighted. In the former P is used to simulate the
behaviour of D while in the latter P itself is the object of study and

Sc appears twice in Figure 1.2.4.
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The knowledge acquisition procedure to be presented in the next
section will be based on the following. Given a KAP(P,G) for P with
goal G, a KAe, aided by a KAS, uses any available HKO to design
experimental programmes on the problem and control classes, collect
the data, apply appropriate transformations, recognise patterns in the
data, formulate HK by inference from these patterns and finally tries
to explain the HK obtained. The whole process may be repeated and, as

more is learnt about P, the HK becomes increasingly refined.

Although inferred from experimental data, the knowledge will generally

be heuristic rather than empirical because

(a) the programmes of éxperiments will be designed using heuristic

principles, not only statistical methods,

(b) the knowledge is inferred by pattern recognition, human and

machine, and
{c) the process is one of learning (by the KAc primarily).

Heuristic knowledge is always goal-specific because all of (a) to (c¢)
are done with the goal borne in mind. It will usually be incomplete
because problem and control classes are simplifications of the whole
spaces and cater only for the most important ‘mathematical and
numerical modelling problem types. The knowledge 1is c¢learly not

deductive because experimentation is basic to the procedure.

1.3 A KNOWLEDGE ACQUISITION PROCEDURE

The knowledge acquisition procedure we propose consists of three main

phases. First is a planning phase, where the KAP is defined, goals

set and strategies or plans for solving the problem and attaining the
goals are developed. It involves decomposition of the problem. Second

is the execution phase, i.e. carrying out the tasks or subprcblems set

in the planning phase. It involves data or information gathering.
Planning and execution are usually guided by current knowledge and

experience. Finally comes an integration phase where the results of
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executing the individual tasks or subproblems are integrated into a
statement of the result of the knowledge acquisition exercise as a
whole. It also involves relating knowledge and experience acquired to

previous knowledge and experience.

The Planning Phase

In the planning phase, the original KAP(P,G) is replaced by =
set of knowledge acquisition subproblems, KAP(P,Gl) and xap(p,clid).
Each goal Gi is: "Find HKi characterising an approximate Pareto
optimal set for problem class PCi", while each goal Gij is: "Find HKij
characterising an approximate Pareto optimal set for problem class PCi
and control class cClJ", e set of knowledge acquisition
subproblems, i.e. Ui,j KAP(P,Gi), KAP(P,Gij) will be referred to as a
knowledge acquisition programme (KAProg). Note that G! is defined in

terms of PCi and Gij in terms of PCi and CCij. The planning phase is
done (almost) exclusively by the KAc. He will draw on any available a
priori heuristic knowledge to help him formulate the KAProg. P is
.supposed to be able to analyse complex mathematical models via the
analysis of numerical models and the objective of knowledge
acquisition is to provide the user of P with HK to aid the design of
such numerical models. Complex mathematical models are wusually
analysed by some approximate decomposition into a set of simpler
submodels and then these simpler submodels analysed via numerical
models. The set of problem classes in the KAProg should (ideally) be
such that numerical modelling advice for each mathematical submodel
exists in one or more of the problem classes. Of course, this is only
an ideal and ultimately a decision must bé made on the appropriate
level of complexity of individual problem classes. Typically the
KAProg should have a number of simple problem and control classes plus
some more complex ones but few trivial classes (classes with only one
variable). Even though the knowledge acquisition effort is focussed on
a set of problem classes rather than the whole problem space, for each
problem class the set of all possible ways of controlling P (i.e. the
control subspace for the problem class) maey still be large and
complex. So just as a_problem space is replaced by a set of problem

classes, control subspaces of P are replaced by sets of control
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classes. Each problem class PCi will have its own set of control
classes namely CCij. The planning phase is summarised symbolically by

the following figure.

KAc : ,
(i KAP (P,G) ———>=UKAP (P,G')
‘ i

HKO
{ii) for each i:

. KA .
KAP (P,Gi ] ————=U KAP (P.Gi)
J

HK 9

FIGURE 1.3.1 : The planning phase of knowledge acquisition

The Execution Phase

The execution phase consists of acquiring heuristic knowledge HKij for
each of the subproblems KAP(P,Gij). The KAc will utilise any a priori
heuristic knowledge HKO, and knowledge acquisition system (KAS)

available to him. This process is shown in Figurs 1.3.2.

For each i and for each j:

_ KAq, KAS,P
KAP (P,Gl) — > HK)

HKO

FIGURE 1.3.2 : Execution of each of the knowledge acquisition

subproblems

The execution phase for each knowledge acquisition subproblem divides

naturally into five basic steps, namely
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(Q) system definition, i.e. défining variables to be measured

(1) experimentation and data collection

(2) data transformation, e.g. calculation of reliabilities

(3) 'partitioning' of the transformed data using pattern recognition
£9]

(4)  formulation of HKLJ,

The above five steps are easily identified in Figure 1.3.3 which shows
a symbolic view of the whole execution phase. Each step involves the
use of an element KAS; of the KAS. Each of these steps will be
explained in terms of the KASi and their products SO, SD, §D and éa.
It will also be assumed that the KAc operates the KAS; and makes use

of HKO throughout the procedure.

. KASg KASq KAS? KAS3 KAS,
KAP (P,GY) 0 t‘SD - §D —

FIGURE 1.3.3 : A more detailed symbolic view of the execution phase

showing the five basic steps involved

KAS, and s

When the KAProg is designed, its constituent PCi and CCij will
normally be defined in fairly descriptive terms. For example they
might be defined via a set of diagrams and lists of problem and
control attributes. These diagrams and attributes must be converted to
a set of variables and value ranges, i.e. 0 - (XO,FO,YO) where
x0 = (xN,xR), etc. must be defined. The objective of defining 3O is to

provide a proper framework for experimentation.

KAS, and sP

KAS,; represents the design of experimental programmes [13-17] on the
sets XR and FR, the execution of the experiments and the collection

of the data. Each experiment or run of P results in a data case
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(Xa’FaB’YaB)‘ Together these data cases form S = (X,F,Y). When SO is
supplemented by data S the result is the data system SD.

KAS, and sP

The KAc is usually not interested in the outputs Y themselves but
rather in partlcular features Y of the output such as rellablllty and
cost. In general Y will be some transformation of Y. The transformed
variables and their ranges are represented by YN and YR. Similarly the
KAc may require transformed problem and control variables. The result
is a transformed data system §D = (iD, gD, QD) or P - (§N, §R, §).

It will, however, be quite common to have iD = XD and FD = FD.

aD
KAS
KAU3 and SK

By §E we mean (§N, §R, §K). §R is a set of subsets of §R and §K is a
set of subsets of S. §§ = g Ik =1,2,.00, K, 2= 1,2,..., LK},
where §E2 = <Xkl’ El’ YRR )c:S SK is similarly defined. K is the
number of subsets XE of XR while L(k) is the number of subsets FRQ of
FR associated with Xﬁ The KAc's goal here is to form SE. This he
will do by first studying the data S selecting SK and then by
induction forming SE. At this point the reader may be justifiably
confused because we have not explained why the KAc's goal is to form
§§ nor constrained him in his selection of the sets of subsets (§§ and
éK). In the next subsection we will see how the above set represention
matches the rule form we have chosen for representing the HK. Each set
§E2 will correspond to a single rule. Some of the constraints on
selecting §§ are: the union of the XR should equal QR so that the
whole problem class 1s covered, the union of the Ykl should
approximately cover iﬁl for each % so that an adequate selection of
(for example) costs and reliabilities is provided, the Fkl should
yield approximately Pareto optimal solutions (ER will not normally bte
covered), the S kg (the individual rules) and SE (the set of rules)
should have simple forms and should be explainable. Sets of subsets
whizh satisfy such constraints will be called 'partitions', i.e. §§ is

a 'partition' of SR. More detail can be found in [Chapter 3].
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But how does the KAc 'partition' SR into subsets satisfying these
constraints? Usually the first step would be to apply a filter to the
data S, where the criteria for filtering are based on the Pareto

-~

gptimality of the YaB' In other words, individual elements gaB whose
YaB are relatively inefficient are discarded. This should vyield a
typical trade-off pattern (for example of cost increasing with
reliability) in the remaining data. Then the KAc would look for groupé
of cases in § and i which produce similar ?. Clustering techniques
[12,20] can be quite useful as an aid in this regard. At some point
the KAc decides on a 'partition' §K of the data §. By induction he
then 'partitions! §R into §R, i.e. he infers a set of §ﬁ2 whose
properties can Dbe represented by the data Skl' The process is. shown
symbolically in Figure 1.3.4. Much more detail of the techniques and

processes involved is given in [Chapter 3].

KAS
§ 2 - S ~
SR KAS32 ,“~,§§

FIGURE 1.3.4 : Symbolic view of the operation of KAS3. KAS31 involves

pattern recognition and 'partitioning' of data while
KAS3, involves ‘'partitioning' of s® into S} by
induction (indicated by the broken line) from Sk -

KAS, and HK 1J

KAS, involves formulating HKiJ from the 'partitioned' data set SK'
Knowledge representation forms are important here. This thesis
proposes that the HK be represented as rules. A rule will be taken to

mean a statement of the following form:
IF antecedent THEN consequent

Examples of rules can be seen in Section 1.5. Such rules are to be

interpreted as providing sufficient conditions (antecedents) to
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provide desired consequents. In HKij the desired consequents would be .
a particular fae,’for exampleba desired 1level of reliability and an
acceptable cost. The ant?cedents would then specifx to which Xa
(mathematical model) such Yas is applicable and which Fas is required
to achieve it. Quite clearly the subsets (iﬁ, gsl’ QEQ) convey such
information. In fact one may write the k&'th rule as

and ; g € F THEN Qa € Qg

8 g"

Feedback

Although not shown in any of the previous figures, feedback is an
essential part of the knowledge acquisition procedure just as it an
integral part of any adaptive, iterative or learning process. Feedback
of knowledge already learned becomes a priori knowledge for the next
step in the oprocess. Typically it 1is wused for: redesign of
experimental programmes; selection of features, reliability criteria,
data subsets, data views for pattern recognition and pattern

recognition aids and even to reformulate the primitive system. In this

way'knowledge may be refined. Many feedback paths need to be added to

Figure 1.3.3. More detail may be found in [Chapter 3].

The Integration Phase

The final phase of knowledge acquisition is to combine the separately
acquired Hi 1 into a structured integrated whole, i.e. into HK.

Symbolically this may be represented as in Figure 1.3.5.

+
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(i) For each i:
. KAc -
U HKT 2
J
W U HK —RAS o g

FIGURE 1.3.5 : Integrating the separately acquired HKij and HKi into

HK for the original problem

Strongly connected to such integration is the explanation of the HKij

and the HK. Explanation is important because

(i) It helps the user of the HK to understand it and hence accept

and use it.

(ii) It serves as a check on the validity/acceptability of the HK.
If the KAc cannot find an explanation this should be regarded
as an indication of lack of understanding and hence a
motivation for further study. Learning to understand the
behaviour of P is important for knowledge refinement. Usually

explanations will be of an intuitive nature.

(iii) It can form the basis of generalisations of the HKij to

broader problem and control classes [50].

Also important in integration is description of how to use the HK and

what its limitations are.
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Dissemination of the HK

The simplest form of dissemination is to provide the users of P with
the HK in a document acc¢ompanying the standard documentation of P. If
the HK or parts thereof are sufficiently robust and their antecedents
easily recognised in the data input for P, it may be built directly
into P. Some automatic time stepping schemes in FEA packages are
examples of this form of dissemination.  Increasingly popular is
dissemination in the form of an expert system. In fact recent
developments in expert systems technology were partly inspirational
for the present work. The rule form we have chosen is suitable for

dissemination by any of these methods.

1.4 THE NEED FOR A COMPUTER-BASED KNOWLEDGE ACQUISITION SYSTEM

The HK acquired will normally be shared by a number of users who may
each have a different set of c¢riteria for measuring reliability. For
example, suppose P computes outputs Y4 and Yoo If P is an FEA package,
Y1 might be displacements and Yo might be stresses . One user may
define reliability in terms of ¥4 while another in terms of Yo.
Although their reliabilities y, and y, may be positively correlated,
the magnitudes may be very different and inappropriate criteria will
lead to either inefficient use of P or to inadequate reliability. The
reliabilities may however be negatively correlated in which case
further trade-offs are necessary. Even if it is intended that the HK
deal with whichever c¢riteria yields the worst reliability, the KAc may
not know beforehand which one it will be. Faced with such a situation
the KAc would ideally like to acquire knowledge based on more than one
criteria and hence need to record bbth ¥y and yo values. For
numerical solution of PDE's, this could result in vast quantities of
data being recorded and processed. Computer implementation of the

KAS thus becomes essential.

Although it was realised that a computer-based knowledge acquisition
systen (CBKAS) applicable to quite general engineering packages would
be needed, it was also realised that its development would require

considerable effort. Therefore, we decided to test the feasibility of
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computerisation by deveioping a prototype version of ELIXIR which was
specific to a particular KAP (In fact it was specific to the KAP dealt
with in the next section). This also helped to identify the data
management and processing requirements for the more general version of
ELIXIR. The feasibility study. highlighted the need for very flexible
data and. program structures. This led to the adoption of ideas from
database theory, artificial intelligence program and data structures,
interactive programming, gfaphics and open systems. To manage the
implementation of the second version of ELIXIR, some software
engineering principles were adopted. Although very useful, as
demonstrated in the examples, ELIXIR will need additional features not.
foreseen and perhaps even restructuring. Due to the variety of
possible applications, it is believed that ELIXIR will continue to

evolve.
Briefly thé ELIXIR system consists of the following set of programs:

FELIX - Corresponds to KASy. It is used to define variable names,
.types, etc. It initialises a database called EDB (ELIXIR
Database). All data specific to the KAP is stored in EDB or
any database created by the ELIXIR system. Also included is
a specification of how PRELIX is to interpret the data

produced by the processor.

PRELIX - Corresponds to KAS,. It is used to capture data (X, F, Y),

i.e. the values of variables.

ELIXIR - This = is the main module. KAS, and KAS3 are done Qith
ELIXIR. Transformations of sP to §D are done via
ELIXIR. §D is stored on another database called EDBn in a
form more suited to the pattern recognition processes of

KAS3.

Other modules exist for reporting and graphical viewing of the

database contents.
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1.5 A SIMPLIFIED EXAMPLE TO ILLUSTRATE THE MAIN CONCEPTS
The example presented below is a simplified version of an example in

[Chapter 5]. It demonstrates the basic ideas and steps in the

knowledge acquisition procedure.

The Planning Phase - KAP(P,G) and KAProg

NLFRAM [79] is a finite element structural analysis program. Plane
frames with material and/or geometric nonlinearities may be analysed

under static or transient dynamic loading.

It was known how to use NLFRAM to get reliable solutions. However,
efficient use of NLFRAM requires knowledge of the possible levels of
reliabilities and their accompanying costs and how to achieve these.

Such knowledge was not available.

Even though NLFRAM is a relatively small program, it is still not
realistic to acquire complete knowledge of 1its behaviour. The
heuristic approach replaces this complete knowledge with HK for a set
of problem and control classes (i.e. a KAProg). Here the use of the
KAS can only be deménstrated on a single problem and control class.
By suitable generalisation, the classes could easily be extended to
cover most of the applications of NLFRAM. The KAProg therefore

consists of only one problem and one control class, namely KAP(P,G11).

The Execution Phase - KAP(P,Gij) and HK1J

KAS, and s0

The goal GH for the chosen classes is as follows:
GH = Find the heuristic knowledge characterising the approximate

Pareto optimal set for the problem shown in Figure 1.5.1. (The

problem class contains only oné problem.)
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The problem, control and output considered relevant. are characterised

"by the following attributes.

Inputs : (beam dimensions; materials; supports; loading
programme )

Processor (mesh density; number of depth integration points;

controls : concrete tensile stress release rate)

Qutputs : (displacement under point load; computational cost)

The measurements of these attributes are made via the variables in the

primitive system:

O = (ixN, xBy, (&N, #Ry, (¢N, ¢R))
Here
XN = {BMLEN, BMDEP, BMWID; MATNO; BCONDS; PLOAD}
xR = {all variables fixed to values as shown in Figure 1.5.1}
FN = (NELTS; NDEPTH; ALPHA}
FR = {(u, 6, 8, 10, 12, 14, 16); (4, 5, 7, 9, 11, 13);
(real numbers [4.0, 12.0])}
YN - (p1sp; cosT}

yR - {(real numbers [0.0, 0.012]); (real numbers [0.0, 1000.0])}
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FIGURE 1.5.1(a) : Reinforced Concrete Beam
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KAS1 and SD

The next step was to generate S = (X,F,Y) and form SD,_ X is just
the data needed by NLFRAM to describe the problem. F is a set of
values which was established in a series of programmes of experiments
on FR (a total of 65 experimental cases were generated). From. X and
F, NLFRAM generated Y. Amongst these caseé was one which produted a

highly reliable solution (a reference solution).

KAS2 and SD

We were not interested in Y itself but only in its reliability
and cost aspects. To calculate the reliabilities we selected DISP as
the relevant output feature and compared it to that of the
reference solution. Thus § consisted of the reliability and cost of
each solution. 1In this examplie problem and control variables were not

transformed, i.e. iD = XD and‘:g‘D = FD.

4 P
KAS, and Sy

Figure 1.5.2(a) shows a plot of the § data, i.e. reliabilities and
costs, for the initial experimental programme. Since we were
interested in the computational efficiency of obtaining solutions, we
removed by a filtering process, based cn the Pareto principle, those
cases that were inefficient. The result of this is shown in Figure

1.5.2(b).
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FIGURE 1.5. Reliability versus Cost for the Initial Programme of

Experiments
(a) Unfiltered

(b) Relatively inefficient solutions removed

No clear pattern emerges from the above : the data is just too sparse.
However, from the tabulated filtered data it was possible to identify
regions in gR which would yield points in the RELY-COST plane closer
to the Pareto optima. A series of further experimental programmes was
run - a total of four programmes. éK could then be identified. Then by

induction from SK’ Sﬁ was selected and a final programme of
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'empirical basis' for these

subsets (Sﬁg). Some more inefficient cases were filtered and some

cases which would complicate the rules were removed too.

of this are shown in Table 1.5.1 and Figure 1.5.3.

NOEPTH
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TABLE 1.5.1 : Filtered and clustered S data after the final programme

of experiments

Table 1.5.1 contains SK' The induction to S§ was simple here and will

be clear from the rules given

in the next subsection.

Rather than

write out the Sﬁl, we simply wrote down the rules based on then.
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FIGURE 1.5.3 : Plot of Y (COST-RELY) for data of Table 1.5.1

KAS

iJ
u and HK

The final knowledge acquisition step was to formulate the information
in Table 1.5.1 into heuristic knowledge. Each cluster will contribute

a rule. Thus the heuristic knowledge is as follows:

Heuristic Knowledge:

Rule 1 : If NELTS = 16 and NDEPTH = 13 and ALPHA = Y4
' then RELY = 0.999 and COST = 117 SRU.

R

8 and NDEPTH ¢ (9,11) and ALPHA ¢ [4.0, 5.0]
0.97 and COST = 47 SRU.

[}

Rule 2 : If NELTS
then RELY

u

L}

Rule 3 : If NELTS
then RELY

[}

6 and NDEPTH &£ (9,11) and ALPHA ¢ [5.0, 5.5]
0.94 and COST 36 GRU.

i
i

6 and NDEPTH e (9,11) and ALPHA ¢ {7.0, 8.0]
23 SRU.

Rule 4 : If NELTS
then RELY =~ 0.84 and COST

]

U
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Rule 5 : If NELTS = 4 and NDEPTH ¢ (7,9) and ALPHA ¢ [6.0, 8.0]
then RELY = 0.80 and COST = 15 SRU.
In addition all otner variables.must be set at the reference values or

some suitably specified values found from a previous knowledge

acquisition exercise.

The Integration Phase

In a more extensive knowledge acquisition exercise, the first step in
the integration phase would be to combine HKij for the various CCij
for Pcl into HKL. Next it would be necessary to combine the k! into
HK. In this example these tasks cannot be demonstrated. However one of
the keys to.successfully performing these tasks is the explanation of
the HK in terms of basic principles and its generaliszation to broader

problem and control classes. This we will illustrate driefly.

The pattern of rules can be related to the physics of the problem as
follows. At high loads the steel has yielded and hence, for higher
reliability, more elements are needed to describe the region of steel
plasticity. The concrete behaviour is highly nonlinear, hence‘the high
number of depth integration points. Also, at higher loads, the steel
dominates the beam behaviour so that values of ALPHA higher than the
reference value, could be used without much loss of reliability. This
physical support of the HK 1is 1important because it increases
confidence in the validity of the knowledge. Also, it makes
generalisation easier. For example, the HK should be applicable to

beams with any span to depth ratio where self-weight is insignificant.

Also important are the 1limitations of the HK, e.g. although
reliability estimates may be excellent for general'frames, for frames
with more than two elements/members gconnected -at a node, cost
estimates will usually be too low. It should also be noted that the
rules are usually used by s2lecting a desired reliability and

acceptable cost and then finding which values of the processor
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variables may be used to obtain such cost and reliability. The word
'may' is used because HK provides only guidance on use. It should be

sufficient but not necessary.

Feedback

The presentation only hints at the use of feedback but this is merely
a simplification fdr illustration purposes only. In fact the 65
experiments were performed as four experimental programmes, successive
programmes using knowledge of the f and § patterns {which répresents
the approximate Pareto set) to focus the search onto the areas

expected to contain the Pareto set.

1.6 SUMMARY AND CONCLUSION OF CHAPTER 1

In this chapter, we saw that, for effective and efficient use of
engineering software, the user requires knowledge of its Pareto
optimal set. This knowledge essentially concerns numerical modelling.
But why do we consider numerical modelling knowledge so important?
Next we explained that complete knowledge of the Pareto optimal set
could not be obtained and instead we stated briefly that heuristic
knowledge should be sought. This statement needs elaboration. In order
to acquire heuristic knowledge, we proposed a systematic heuristic
procedure for knowledge acquisition, but did not explain adequately
why we should use a heuristic procedure. What are the alternatives?
Dissemination of heuristic knowiedge was mentioned quite briefly but
requires further discussion. All these questions and elaborations are

dealt with in the next Chapter.

The main result of this thesis is the development of a knowledge
acquisition procedure and chapter 3 has therefore been devoted to its

elaboration.
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Quite clearly the knowledge acquisition system used in the procedure
requires computerisation. Chapter U4 expands upon the computer-based
knowledge acquisition system, called ELIXIR, presented in Section 1.4.

In addition, it discusses software development issues.

Whereas in section 1.3 the aim was mainly to demonstrate the knowledge
acquisition procedure, the presentation in Chapter 5 also aims to
demonstrate the use of ELIXIR. This ’it.‘does via two examples, the
first being an expanded account of the example in section 1.5 and the
second being an example of acquiring-.knowledge for modelling curved
structural members efficiently. Unfortunately, the two examples cannot
demonstrate a full scale knowledge acquisition study, but we believe
that they do provide adequate indication of how such a study might be

started.
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2 KNCWLEDGE ACQUISITION

This chapter of the thesis deals with some of its more fundamental
aspects. Specifically, it ¢tries to answer the questions of why
numericail modelling knowledge is important, of why heuristic knowledge
should be sought and of why heuristic procedures are appropriate.
Finally it deals with some aspects of dissemination of heuristic
knowledge and explains why the rule form of knowledge representation

is appropriate for dissemination purposes.

2.1 WHY IS NUMERICAL MODELLING KNOWLEDGE IMPGORTANT?

The engineering design process can roughly be divided into four steps,
namely design specification, generation of designs, evaluation of
designs and the selection of a design. Evaluation of a design requires
prediction of 1its behaviour or response and comparison with its
specified requirements. This view of the design process is applicable
to both conceptual and detail design. However, the emphasis will be
different. In conceptual design most effort will be spent on design
specification and design generation with fairly rough evaluation and
comparisons being made of the fairly rough designs generated. On the
other hand, in detail design, most effort will be spent on evaluating
designs reliably and on modifying the components of the detail designs
generated. The different emphasis of the effort 1is dictated
essentially by the reliability of the required evaluation. Reliable
evaluation may require complex mathematical and numerical modelling
and physical experimentation in order to predict reliably the

behaviour of the design.

In both conceptual and detail design, a significant proportion of the
effort is spent on numerical modelling. The increasing pressure to
make designs lighter, stronger, more efficient and higher-tech [38] in
order to compete in world markets will require increasingly reliable
evaluation and so an increasing proportion of the design effcrt will
be spent on numerical modelling. The different emphases of conceptual

and detail design will require knowledge of a fairly wide range of
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, egpected reliability and cost levels of a large'variety of numerical
models in order to improve the effectiveness and efficiency of
numerical modelling and, thereby, allow the design engineer'to spent

‘more effort on the generation and mathematical modelling of- designs.

2.2  WHY SEEK HEURISTIC KNOWLEDGE?

In Chapter 1, it was said that due to the complexity of the problem
and control spaces, the acquisition of complete knowledge would be too
expensive or even impossible. However, even if it were possible for a
user to have any desired degree of completeness of the knowledge,
there would still be a problem. As the degree of comrleteness
increased, so would the complexity of the knowledge. As the complexity
of the knowledge increased, so would the difficulty and expense of
applying or using it. At some point the effort to use the knowledge
would equal the benefit derived from its use. Beyond this point the
effort to use the knoWledge would exceed its benefit. The following

figure illustrates this situation.

/
N TOTAL COST 7/

~ <?// s
~ rd
-~

~ -

T wame

| COST OF CONTROL

cosT | ‘
COST OF RULE APPLICATION
——

0 INFORMEDNESS 1
(0= BLIND - TRIAL AND ERROR, 1= COMPLETELY INFORMED)

FIGURE 2.2.1 : The cost of control knowledge. From [1].

While this figure refers to tne cost of rule application in AI
production systems and the cost of using tne control knowledge, it is
strongly related to knowledge acquisition for numerical modelling

since the knowledge sought 1is for controlling P: for 'informedness®
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read 'degree of completeness of knowledge', for 'cost of control' read
teffort to use knowledge' and for 'cost of rule application' read
'computational effort involved in solving numerical model'. Thus it
will not usually be worthwhile to have cémplete (and hence complex)
knowledge. HK, Dbecause it 1is derived from simplifications of the
problem and control spaces, will necessarily be incomplete but will be

much simpler and often worthwhile having.

The fact that HK is incomplete means also that it will be subjective
because someone (the KAc) has to decide what the HK will deal with and
what it will not deal with. It is this subjective element of HK which

allows only relevant and sufficiently simple knowledge to be acquired.

2.3 WHY USE A HEURISTIC PROCEDURE TO ACQUIRE KNOWLEDGE?

Formalists or purists may fihd the use of heuristics unacceptable but
Lakatos in [35] shows clearly the importance of heuristic to pure
mathematical discovery. In fact he argues strongly against the
possibility of perfect formalisation of any nontrivial field of
endeavour. Similarly AI research shows that without heuristics many
complex problems cannot be solved within a realistic time limit.
Engineering problems are easily so complex and engineers have always
used heuristics to solve their problems. Knowledge acquisition
problems for engineering software systems are also of such complexity
that the only realistic approach is to use heuristic methods to find

heuristic knowledge.

The main heuristic elements of the XAProc (knowledge acquisition
procedure) presented in Chapter 1 are in the design of the KAProg in
the planning phase, in the design of experimental programmes and the
pattern recognition in the execution phase and in the organisation of

the HK in the integration phase.

In the planning phase, the design of a KAProg requires the selection
of a set of PC's cnd CC's. Because this set does not represent the
problem and control spaces completely, its selection will necessarily

be subjective. It will, however, be based on quite sound heuristic
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principles such as 'decomposition' and successive approximation. By
'decomposition' we mean, for example, that the problem space is
'decomposed' into a set of PC's. In the sense that some PC's will
represent more of the problem space than others, the set of PC's will
reflect the notion of successive approximation. If the KAc widens his
perspective to include the users of the software and of the HK, then
some objectivity can be introduced into the selection of the set of
PC's and CC's by basing their selection on a survey of user’s_

requirements.

An alternative heuristic approach to acquiring heuristic¢ knowledge is
that followed by developers of expert systems [5,6,8,39,40,44,45,
46,48,49]. An expert system to advise users on how to use an
engineering package effectively and efficiently would at least need to
be able to: establish the nature of the mathematical model required,
find a set of suitable numerical models, display the reliability and
cost levels that may be achieved, prompt the user to select a
reliability level and, finally, output the relevant control variable
values that would produce .the selected reliability. Explanation
facilities may also be necessary. Most knowledge bases for expert
systems have been built by eliciting a set of rules (objects,
entities, relations, etc., =~ whichever representation scheme is used
(1,2,3,4]) from one or more experts. In the context of this thesis an
expert would be some experienced user of the relevant package. The
process is almost completely heuristic relying heavily on the
judgement of the KAc. At present no agreement exists on techniques for
knowledge elicitation. This is partly due to the psychological factors
of (i) the way experts (and humans in general) hold their knowledge
and (ii) the difficulty of communicating this knowledge. However, for
eliciting the rules or relations comprising the knowledge, better or
improved techniques based on psychological and psychometric theories
are becoming available [U41-43]. Another way of deriving a set of rules
is to use a set of examples elicited from the expert. If the set of
examples is fairly large, induction, hopefully automatic (machine
learning [34]), may be used to derive the rules. If the set of
examples is fairly small, generalisations tbtased on (deductive)
explanations of - the examples <can be made [50] and these
generalisations then formed into a set of rules. These example-based
elicitation techniques show considerable promise because of the
central role that examples play in the knowledge of experts [U47] and

in the discovery of knowledge in general [9,35]. The process of
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considerable promise because of the central role that examples play in
the knowledge of experts [47] and in the discovery of knowledge in
general [9,35]. The process of def‘iriing PC's and CC's has much in
common with these example-based techniques. PC's and CC's are very
much like generalisations of example prcblems, but, rather than trying
to make the expert's knowledge explicit, his knowledge can be used as

a priori knowledge for designing a set of PC's and CC's.

The execution phase of the KAProc deals with individual PC! and ccliJ.
Approaches to acquiring HKij may be divided into deductive, empirical,

optimisation and heuristic approaches.

The deductive (rationalist's) approach requires: knowledge of each
component (subroutine) which would be active when running P on a
problem in the PC, knowledge of their input-output relations and
knowledge of their interrelationships. From such- knowledge the
complete behaviour of P on the PC and CC can be deduced by rigorous
mathematical analysis. However, some components may have
nondeterministic input-output relations with unknown statistical
properties, for example iterative algorithms, in whic¢ch c¢ase, the
deduction is not even possible in principle. Even if it were possible
in principle, the effort require would make it unprofitable for all

tut very simple P.

The empirical approach, on the other hand, requires no knowledge of
the internal structure of P. It is simply treated as a black box.
Statistically designed experiments are conducted on the whole of XR
and FR and the HKij inferred from an analysis of the experimental
data. While this approach is quite feasible for simple PCi and CCij it
is wasteful because many of the data cases (experiments) would be
inefficient and would not appear in the final HKij. Tne use of a set
of experimental designs beginning with a pilot experiment can of
course reduce the wastage significantly. In (S4] a similar, quite
efficient, procedure is used to find approximations to a Pareto
optimal set. The approach in our KAProc clearly resambles such a

procedure.
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An optimisation approach 'combines elements of empiricism and
rationalism into a search procedure, i.e. experiments are made,
gradients, etc., are calculated to indicate search directions, a step
in the search direction is taken and the whole process repeated until
an optimum is found. Such procedures are quite efficient for finding a
single optimal point, say where reliability is fixed and the control
for minimum cost is to be found. When a Pareéto optimal set is to be
found it would be inefficient because no knowledge or data used to
find a single optimum would (normally) be used to find any.other
optimal point. Of course, by using a previously found optimum as a
starting point for the search for a subsequent optimum, the procedure
could be made more efficient. The use of response surface methodology

[13] can also improve the efficiency of optimisation approaches.

There are two main problems with the above approaches. Firstly, they
may produce complex characterisations of the Pareto set which would
then still have to be simplified to produce a relatively simple set of
rules. Secondly, they are wasteful because they are objectivist
approaches and make very little or no use of any a priori knowledge
available to the KAc, except as a check on the validity of the HKij‘
The KAProc (execution phase) presented in this thesis, however, tries
to search directly for simple rules and tries to make full use of'any
a priori knowledge of the expected behaviour of P to design
experimental programmes on XR and FR and to recognise patterns in the
data. Of course, this makes it subjectivist and so requires
intelligence. For the near future, the intelligence needed to design
heuristic experimental programmes and recognise patterns by using a
priori knowledge will Have to be supplied by the KAc. The KAProc¢ must
therefore remain semi~automatic in the near future. As research into
artificial intelligence, pattern recognition and machine learning
uncovers useful appropriate ideas, the KAPro¢ may be inc¢reasingly

automated.

The heuristic element in the integration phase mainly concerns the way

HK is formed from U, Hkl, HK1J. Many of the HK! and HK!J may have

1 J
similar forms and explanations. It may, therefore, be possible to

simplify the set of rules by clustering PC's or CC's and hence their
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HKi or HKij. However, recognising these similarities and performing
the clustering will very likely require intelligence and judgement,

i.e. a heuristic approach.

2.4 DISSEMINATION OF THE HEURISTIC KNOWLEDGE
At least three forms of disseminating the HK may be identified, namely

(1) as accompanying documentation with the standard user

documentation for P,
(ii) built into P, or
(iii) in an expert system.

Option (i) is clearly the most obvious form. However, the example
problems contained in the standard wuser documentation already
constitute a large part of the documentation. If these examples are
upgraded into problem and control classes, the documentation may
become unwieldy. Computational costs will wusually vary between
installations and this aspect of the HK would therefore require
recalibraticn for each installation. While the calibration is expected
to be relatively simple, the dissemination of installation dependent
HK in paper form would probably be impractical. Of course, even
without calibration, costs quoted in terms of some industry 'standard’
like a VAX 11/780 wculd still be of enormous benefit. The modern
approach, however, is towards computer-based' dissemination, 1i.e.

options (ii) and (iii), even for standard documentation.

Building the HK directly into the software (option {(ii)) may well be
the best form of dissemination because it automatically reduces the
user's effort. It is, however, restricted to rules whose antecedents
can easily be identified from the data input or from special
performance indicators built into the numerical algorithms and to
control regimes which produce very highly reliable solutions. Only

relative c¢ost improvements are of importance for this form of



Page 39

dissemination. Many such rules exist in engineering packages, for
example, preselected numerical integration rules, local iteration

convergence tolerances and hourglass stabilisation schemes.

Finally, the HK can be disseminated in an expert system; Expert
systems are becoming an increasingly popular form of disseminating
(and storing) knowledge. To date most expert systems have been
rule-based [5,6,8]. Rules have the advantage that they are easy to
understand, easy to build into conventional software
(IF...THEN...ELSE...) and many rule-based expert system development
aids (shells) are available [5,9]. Thus by choosing to represént the
HK as rules we have allowed for dissemination by any of the three
forms 1listed above. The KAProc has additional relevance to the
development of expert systems because by providing a methodology for
knowledge acquisition it should alleviate the effect of the knowledge
acquisition 'bottleneck' on system development. It does not address
the problems of ascertaining the nature of the mathematical model nor
the problem of matching the mathematical model to an appropriate
problem class but it does provide a sound framework for acquiring the
basic rules as well as‘for structuring the rule-base {(Inadequately
structured rule-bases can result in excessive computational effort for

rule processing).

An interesting way to view the effect that the different dissemination
forms will have is via Figure 2.4.1. (This figure is based on ideas

and Figures in [761]).

A = application difficulty

3 (0 = trivial; 1 - easy:
2 ~ rather difficult;
I 3 - limit of software's
A scope)
INCREASING .
BUILT-IN 1 U = user proficiency
‘ KNOWLE?GE = (0 - untrained; 1 - novice,
0 u 3 2 - journeyman; 3 -expert)

FIGURE 2.4.1 : Reliability profile for an engineering package
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The solid line in Figure 2.4.1 represents the fact that as application
difficulty increases, required usér» proficiency increases
proportionally. This would be the c¢ase for a package with normal
reliability [76]. User proficiency here includes both mathematical and
' numerical mcdelling skill. Increasing the quality and quantity of
numerical modelling knowledge specific -to the software will have
different effects depending on how the knowledge is disseminated. If
built into the software it will have the effect of raising the curves
as indicated by the broken curves. If supplied directly to the user it
will, like education and training, shift the user along the U-axis.
Figure 2.4.1 also illustrates the fact that there will always be
problems an untrained person cannot solve and there will always be
problems that require experts to solve. Therefore, it will be
pointless pitching the HK at too low a level but also it will be
pointless to pitech it at too high a level (the effort involved will

exceed the cost of consulting an expert).
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CHAPTER 3 : THE KNOWLEDGE ACQUISITION PROCEDURE AND THE KAS

This chapter provides a more detailed account of the knowledge
acquisition procedure presented in Chapter 1. It is assumed that the
reader is familiar with the concepts and terminology .dlready
introduced. The following section summarises the. knowledge acquisition
procedure and points out the main modifications that will be made to

it in this chapter.

3.1 THE KNOWLEDGE ACQUISITION PROCEDURE

Recall that the knowledge acquisition process may be represented as in

Figure 3.1.1.

KAc L
PG o1 KAS - @

FIGURE 3.1.1 : An abstract view of the knowledge acquisition process

The procedure involved three stages, namely planning, execution: and

integration phases as shown in Figure 3.1.2.



, . KAc : ,
(i KAP (P,G) ————=UKAP (P,G')
. |

HKO

(ii) For each i:

. KAc i
KAP (P,G!) — >=U KAP (P,GY)
‘ J

HKO

FIGURE 3.1.2.(a) : The planning phase of knowledge acquisition

For each i and for each j:

_ KAc, KAS, P
KAP (P,GY) — ->HK

|

HKO
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FIGURE 3.1.2(b) : Execution of each of the knowledge acquisition

subproblems

(i) For each i:
- KAc i
U HKY ————HK

J

i U HK —RAC K
i

FIGURE 3.1.2(c) : Integrating the separately acquired HKij and HKi

into HK for the original problem
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Herver, we need to modify the detailed view of the execution phase
given in Figure 1.3.3. This figure gives the impression that knowledge
acquisition is a straight forward process whereas we have already
indicated that much feedback for knowledge refinement occurs. So we
need to add féedback paths.‘The other modification is to replace the
system S0 = (XO, 0, v9) by the more complex system 0. Detailed
discussion of the contents of [O will be deferred until section 3.3.
For the moment, it will suffice to say that gonceptually the contents
of 30 is similar to that of S°. With these modifications the symbolic

view of the execution phase is now as shown below.

_ KASy _ KASy KAS;  KAS3  KAS, )
KAP (P,Gl) — 3 —— 50 —s- 8D > 80— i
| B | )
FB20 | FByy o .
TFBso_ | T"Baw , IFBaz_A

FIGURE 3.1.3 : Detailed symbolic view of the execution phase

In the above figure FBij means feedback from KASi (or its products) to
KASJ.

The planning phase results in a set of knowledge acquisition
subproblems with goals Gi and Gij specified with respect to a problem
class PCl and control classes ccld. in section 3.3, it will be seen
that the Gij actually consist of eight goal conditions which must be
satisfied simultaneously. Following on from this, the next five
sections (3.4 to 3.8) deal with the five main steps in the execution
phase and the corresponding components of .the KAS. Although the
feedback loops in the execution phase are discussed together with the
five main steps, a separate éection (section 3.9) brings together
these feedback aspects and simultaneously summarises the eXxecution
phase. The last sectioﬁ deals with the integration of the individually

acquired HK}J into HK.
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3.2 THE PLANNING PHASE AND THE GOAL G
The Goal G
Knowledge acquisition hegins with the problem KAP(P,G) where G is:
"Find HK characterising an approximate Pareto optimal set for P".
To understand this statement of G we need to explain the terms

"Pareto optimal set", Tapproximate Pareto - optimal - set" and

"characterising"” in some detail.

"Pareto optimal set"

A multi-objective optimisation problem, Such as: maximise both u and v
simultaneously, will not usually have a unique solution. Instead a set
of (u,v) involving the best trade-offs may be found and, depending on
factors not involved in the optimisation problem, a preference is
selected. This set of best trade-offs is the Pareto optimal set [54].
Figure 3.2.1 illustrates some Pareto optimal {(non-inferior,
non-dominated, effic¢ient) and inefficient (inferior, dominated)

points.

olUj Vq)

*(Up, V2)
%U3.V3)

FIGURE 3.2.1 : (u1,v1) and u2,v2) are Pareto optimal if ‘the objective

is to maximise (u,v). (u3,v3) is dominated by (u2,v2)

but not by (u1,v1).

Mathematically, a Pareto optimal point ({(u¥*,v¥) is one for which no
other (u,v) exists for which either u > u* and v 2 v*¥ or u 2 u¥*¥ and
v > v¥, Obviously_this is easily extended to higher dimensions and to
situations where u is to be maximised while v minimised. In knowledge
acquisition the optimality criteria will usually be given in terms of

some well-defined measures of c¢osts and reliabilities. More than one
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cost and/or reliability measure may be involved. The main thing to
note is that the criteria for optimality,  i.e. which features of the
output are to be maximised and which are to be minimised, form part of
the definition of the goals, G, ¢l and Gij. A major soﬁrce of
difficulty is that no single set of criteria can cover all efficient

uses of P.

"Approximate Pareto optimal set”

In Chabter 1 we mentioned that we would not seek Pareto optimal sets
but, instead, will seek approximate Pareto optimal sets. An element of
an approximate Pareto optimal set has a high probability of 1lying
sufficiently close to‘an element of the Pareto optimal set, for most
practical purposes. It is possible to define objectively the terms
"high probability", ‘"sufficiently close"™ and "most practical
purposes™, but such objective definitions will only result in another
(slightly relaxed?) formal approach with all its associated
difficulties. Instead we will rely on subjective definitions. The
question is whose subjectivity? Clearly the developer of P, the users’
club of P, expert users of P and the users of the desired HK are most
appropriate since they will know what "most practical purposes”,
"sufficiently close" and "high probability" are. It is the subjective
elements in the definition of approximate Pareto optimal set which are
primarily responsible for the fact that the knowledge sought will be
heuristic. There are, however, further reasons why the knowledge will

be heuristic. These reasons are implicit in the term "characterising".

"Characterising"

The HK that is sought must, in addition to describing an approximate
Pareto optimal set, also be adequate, simple, robust and credible.
Again these are subjective properties required of the HXK. The word

"characterising" is used to capture these additional properties.

Goals Gl and GiJ are defined very similarly to G but instead of
applying to the whole problem space, Gl applies only to PC! while G1J
applies only to PCi and CCij. No further clarity is obtained by
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expanding on ct. Expanding on Gij, however, is essential and will be
dealt with in section 3.3. Before this, we need to explain in more

detail how a KAProg is defined.

Designing a KAProg

Recall that the KAProg was defined as

KAProg = U KAP(P,G1), kaP(p,GlJ)
i, _
where Gi relates to PCi and Gij to PCi and CCij. Thus it requires the
selection of a set of PC's and CC's. In order to make this selection,
the KAc can draw heavily on analogous procedures and heuristics used

in design evaluation.

Recall that the DEProc could be represented (in section 1.3) as shown

below.

o E:g @
@19

FIGURE 3.2.2 : An abstract block diagram view of the design evaluation

process

In almost identical fashion to the KAProc, the DEProc is composed of a
planning phase, an execution phase and an integration phase. These
three phases are summarised in Figure 3.2.3. Of particular importance

is the planning phase of the DEProc and we will later return to it.
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) Eng :
(i) DEP (D,G) ———— U DEP (D,G')
I i
9, HK

i) For each i:

. Eng ..
DEP (D,G! ) ————— U DEP {D,GY)
]

EKO, HK

FIGURE 3.2.3(a) : The planning phase of the DEProc (Cf. Figure 1.3.1)

For each i and for each j:
L Eng .
DEP (D,GY) ————— K/

K9, HK

FIGURE 3.2.3(b) : The execution phase of the DEProc (Cf. Figure 1.3.2)

(i) For each i:
U EK —23 o g
j

, ;  Eng

(i) U EKl ——=—EK

FIGURE 3.2.3(e) : The integration phase of the DEProc
(Cf. Figure 1.3.5)
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Just as the planning phase of the knowledge acquisition procedure
(KAProc) replaced KAP(P,G) by a set of KAP(P,G1) and xaP(P,clJ), the
planning phase of the DEProc, shown symbolically in Figure 3.2.3(a),
replaces DEP(D,G) by a set of DEP(D,Gi),and DEP(D,Gij).

Each goal Gi is to find EKi. ekl is an evaluation of some behavioural
aspect of some component of D. The relevant behavioural aspects of the
component are predicted via a mathematical model MMi. Each of the MMi
may need to be solved by a set of numerical models NMij for each of
which the goal G is to rfind ExiJ. G1J is really just the
transference of Gi from MMi to NMiJ. Thus, while in knowledge
acquisition, the ¢l rerate to pcl (classes of mathematical models) and
the GYJ rerlate to ¢ccli (classes of numerical models), in design
evaluation, the Gi relate to particular MMi and the Gij to particular
nMid,

The objective in the execution phase, shown symbolically in
Figure 3.2.3(b) is the acquisition or generation of EKiJ,; i.e.
evaluative knowledge relating to Gij. Generally, it will involve
running an engineering package to solve the NMij, collecting the
output and interpretting this output so that it may be condensed to
some simpler statement EKij about the design. Note however the use of
a priori evaluative knowledge EKO. By EKO in the above Figure we do
not mean only EK derived from manual calculation. All EK acquired
during the execution phase up to the execution for a particular i and

Jj 1s included in the EKO for these i and j.

The objective in the integration phase, shown symbolically in
Figure 3.2.3(¢), is to combine the individually acquired exid into
EKi, i.e. an evaluation of the D based on MMi, and to combine the EKi

into an evaluation of D as a whole.

Returning to the planning phase of the design'evaluation procedure,
the combination of all design evaluation suboroblems forms the design

evaluation programme (DEProg), i.e.

DEProg = U DEP(D,Gt), DEP(D,clJ)
i,]
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Of course, in actual design evaluation, the programme would also.
contain hand  calculations, physical experiments, prototypes and .
anything else considered helpful. In this thesis however we will only

consider the above narrow definition of a DEProg.

The design of a DEProg relies on a ‘number of heuristics the most

important of which are:
H1 - Start with a set of simple mathematical models.

H2 For each mathematical model which requires numerical solution,

start with a simple numerical model.

H3 Add detail or complexity to the model in such a way that
successive approximations become closer to the true behaviour

of the design.
HY Break complex models up into interacting simpler submodels.

In short, the DEProg should reflec¢t the gecod old-fashioned notions of
successive approximation and decomposition. By decomposition we
include partial modelling as well as HY4 above. Partial modelling {17]
is understood as modelling only a part of the expected behaviour, e.g.
approximating 3-D objects by a set of 2-D models. It amounts to
modification (relaxation, removal, addition) of constraints on the
design requirements. Such constraint modification [2] is a very useful
heuristic for simplifying complexity, be it in design evaluation or
knowledge acquisition. In fact not only should the DEProg reflect
these notions but the process of designing the DEProg should also
reflect them, i.e. the engineer will design only a simple DEProg,
execute it, integrate the acquired EK, modify the DEProg by adding
more models, and so on. Clearly like any such successive approximation
the process will be one of learning - in this case learning the

behaviour of D and how it measures up to its specification.

We expect that normuily the engineer designing the DEProg would start
by selecting a set of mathematical models MMi. Some might be partial
models of D and others might be models of components of D. If a
diagram representing the relation of the WMi to each other could be

drawn, we would typically expect to see the following.
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Mm1
MM>
MM2 ,
M ] MM 7
M
| MMS
MM

Simple o Compléx
models model

FIGURE 3.2.4 : A typical hierarchy/network of MMl in the DEProg.

The 'hierarchy' will usually be quite deep because components models
would usually be assembled into increasing complex models and perhaps
ultimately into a model for D as a whole. To solve MMi numerically a
number of NMij would typically be used. It is in this selection of the
NMij that the HK plays its part. If the MMi falls within one of the
PCi for which HKi has been acquired then the engineer can select,
effectively and efficiently, a set of NMij to solve the MMi. Usually
this will require at least two NM's - an initial crude NM with low
cost and presumably low reliability and a refined NM which can produce
the requibed level of reliability at some acceptable cost. A typical
set of NMij might be depicted as follows.

NM'T NMiZ NM'3

FIGURE 3.2.5 : A tybical set of NMiJ reflecting the principle of

successive approximation

A very important aspect of designing a DEProg is the use of a priori
evaluative knowledge EKO, normally derived from manual calculations.
It will act as a guide on the level of reliability required and a

check on the solutions.

In designing the KAProg, the KAc must be aware of the ¢typical
composition of DEProgs. Ideally every MMi in a DEProg should fall into
at least one PC. How2ver, this would require very complex PC's to

cater for the complex MM's, Instead the PC's must be limited to
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catering only for most of the simpler MMi. If the relation between the

PC! could be depicted graphically, we would typically expect the
following.

PC1>Pca

PC2—
pc3
pC?
PC4 0
Pl
PCo

Pct. 1
pc7>Pc

FIGURE 3.2.6 : A typical set of PC! in a KAProg

This shows a fairiy flat broad 'hierarchy' - flat due to the necessity
of keeping the PCi relatively simple but broad to cater for most of

the expected simpler MMi.

The control subspace for each PCi may still be quite complex and to
simplify knowledge acquisition it is replaced by a set of CCij. A
typical set of CCij for PCi might be related as depicted in
Figure 3.2.7. '

cci
cciz (i

cci3
FIGURE 3.2.7 : A typical set of CCij in a KAProg

The relation depicted in figure 3.2.7 might have been derived as
follows. The KAc decided that CCiu is the closest approximation to the
control subspace for PCi for which knowledge acquisition is
manageable. However, CCiu is itself too complex to study directly so
the KAc decided to study three simpler CC's first. These would then
provide him with improved HKO for the study of CCi“.
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Some additional heuristics to H1-4 that may be useful in designing

KAProgs are the following.

H5 The total number of variables in XN and FN together should be -
less than about ten. Beyond this the problem/control classes
may become too complex. For cluster analysis [20] says that
realistic’ numbers of variables are between 2 and 10 and

realistic numbers of data cases are 50 to 1000.

H6 Strong variable interactions should be c¢ontained within a
problem and/or control. c¢lass and not straddle class

boundaries.

HY Discontinuities in the response of P may form natural

boundaries for problem or ¢ontrol classes.

3.3 THE GOALS giJ

Similar to the goal G, the subgoals G!J can be defined as:
"Find HKij characterising an approximate Pareto optimal set for PCi

in terms of CCiJ".

However, a more precise formulation of Gij is possible. We already
ninted in Chapter. 1 that it would involve finding a set of subsets of
SR - (iR, %R, QR). 6lJ must be defined on the transformed system sP
and not 'SD since only in gD do reliabilities and other- solution
features appear. Although XD and FD are also transformed to iD and ED
this will usually be a very simple, for example, iD = XD and gD = FD.

The ki'th subset of SF is SR, = (xB,FR,,¥B). 1f k=1,2,...,K and
2=1,2,...,L(k) then the total number of subsets N(K) will be given by

N(K) = ) L(k)

X ~1R
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The set of these subsets is denoted by
R

] R
S¢ = {Skl |k-1,2,...,x, 2=1,2,...,L(k)}

For each Sﬁz there will be one rule in the HKij.

Gij then becomes:

Choose Sg such that the following conditions are satisfied:
C1 :  The HKYJ must apply to the whole of XF.

c2 : The HKij must give an adequate range and resolution level of

solution features (cost and reliability) for decision making.

C3 : Only relatively efficient solu@ions should be considered.
cY : The worst error made in using the HK should be a minimum.
C5 All §E2 should be as large as possible.

C6 : The total number of rules in the Hk1J should be a minimum.
CT : The subsets and hence eac¢h rule should be simple.

C8 The HK1J should be explainable to a user of P.

These eight conditions may be made more precise as follows:

K . -
C1 : UXi=XR.
k
L(k) ~R ~R
ce : u Y = Y , for each k = 1,2,....,K.
s KL
C3 : The elements of the éﬁz should be approximately Pareto

optimal
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CY4 minR[max AYklj'
k,%
. R4
C5 : max [min AFklj'
Kk, L
cé : min [N(K)]J.
: "R oR °R N . )
CT : The subsets Xk, sz , Ykl should éach be simply connected and

preferably convex.

-~

C8 : The structure of Sg should be explainable.
AYil represents a measure of the worst error made by using rule k&.
AFﬁl represents a measure of the size of Ekz'

C1 and C2 may be considered as adequacy conditions while C3 1is 'an
efficiency condition. C# is a type of accuracy or reliability
condition. If robustness is defined as the ability to tolerate error,
then C5 may be thought of as a type of robustness condition. Also, by
making the gil as large as possible, one may increase the number of
data cases in Ekl and thereby improve the experimental representation
of gﬁl’ Thus C5 can also be thought of as a condition which improves
the empirical basis of the HKij. C6 and C7 are clearly simplicity
conditions. C8 may be considered to be a credibility condition because
lack of explanation may mean that an error has been made or some
aspect overlooked. This is less likely if an explanation of the HKij
in terms of physical and computational theory. C8 may also be thought

of as a validity check condition.

The set S§ will be called a 'partitior' of SF. However, a 'partition'
here does not mean the usual definition of a hard partition, i.e. that
subsets do not overlap and that, taken together; they cover the whole
of the original set. Instead we allow overlap {as with fuzzy

subsets) if it will simplify the resulting rule set and while
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UE Xﬁ = iR is necessary, we require only that U%(k) §E2 = ?R for

each k and that the sz be as large as possible, i.e. we allow
incomplete coverage of YR and FR, Enforcing complete coverage of gR
and YR by the FR, and YR, is incompatible with Pareto optimality

because inefficient solutions would have to be included.

In graphical terms, the S&v sought can be illustrated as follows.
Suppose that each of XD, FD and YD consists of a single variable with
ranges iR, FR and YR. Then in the QR X §R space one would typically

want the following.

27277 NN\ .
/652313/4:;::\\gzgigggsgfifg?;;:j:
) S
YR ///,5’2/7/&53\2\\\\4%53{’:
L X1 X [ X3 [

7 L A

%R

FIGURE 3.3.1 : SK projected onto QR X QR plane

Note that, in the above figure, Uk §2 = iR. For each QR, the Qﬁg,
'span' (approximatelv) the whole of QR, i.e. Uy §ﬁ2 = QR. Also
indicated in fhis figure is the fact that one is unlikely to
achieve or desire the highest value in QR - values close to the
highest are sufficient. One will often achieve the lowest value
because one may specify some cut-off below which solutions are not
good enough. Also the achievable QRQ are not continuous - the empty

spaces imply inefficient use.

Corresponding to the above one might have the following picture in the
iR X gR plane.
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FIGURE 3.3.2 : SR projected onto the X} X FR plane

In the F® X YR plane, one would see the following for XR.

Ve
55

po12°

R e
RV/ 7/
f '//511’
2.2l

§R

FIGURE 3.3.3 : A §R X gR section of §§ for i?

Note that in the above the 'partitionings' have been hard. With fuzzy
'partitioning', the boundaries of the Sﬁz may overlap. In some
situations this may simplify the acquisition of knowledge and may even

simplify the knowledge itself.

With so many conflicting conditions on the Hkid  (or SR), the
. K

acquisition of HKij is, itself, clearly a Pareto optimal problem.

As mentioned in the introduction, 'partitioning' of SR into SR is to
be done by induction from patterns in experimental data, S. These
patterns are regarded as the manifestation of some underlying

'natural' '‘partitioning' of the data into subsets
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0
3.4 KAS,, Y° AND FBjo

The objective of KASO is to define ZO. It is really a way of defining
the problem and control class in a more precise fashion. Most of the
rest of this section will centre on the contents of Zo-and at the end
will deal with FBiO.

Three changes need to be made to the old SO = (XO,FO,YO) to arrive at

1°.

Firstly, many of the engineering packages, which this thesis considers
as potential targets for knowledge acquisition, solve field and time
dependent problems. The distributions of variables in such problems
are usually related to space and time. Space and time variables do
not really belong to any of XO,FO or YO. So we add another variable
set called I° to make SO = (x0,F9,Y0,10), where 10 = (IN,1®). IV is
the set of index variable names and IR their ranges. Each index
variable may be referred to as space-like or time-~like. The moré
neutral terms index, space-like and time~like rather than space
coordinates and time coordinate are used because, in other non-field
problem packages, similar variables, over which outputs are
distributed, may be found. Generally all outputs will be distributed
over (linked to) a time-like index while only a few will be linked to

space=like indices.

The second change is to distinguish between problem class attributes

and variables and between appearances of attributes and values of

variables. Attributes should be viewed as interpretations of variables
and, simultaneously, variables should be viewed as the means of
measuring attributes. Cobresponding to the value range of a variable
is an appearance range of an attribute, i.e a set of all possible
appearances of the attribute. The correspondences between variables
and attributes and between their value and appearance ranges is called

a homomorphism. It forms the third change. Attributes will be denoted

by XO,FO,YO and IO and the homomorphism by 8. As an example suppose an
attribute is 'structural aspect ratio!' and its appearance set is
{*low', 'medium', 'high',} while the variable which will be used to
measure it is called 'SAR'. SAR has a value set of [1.0, 100.0] say. 8
might then be defined by the following table.
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Structural Aspect Ratio SAR

Low 1.0 to 5.0
Medium : _ 5.0 to 30.0
High - 30.0 to 100.0

Attributes and appearances are much more like adjectives or adverbs of
a natural language than are variables and values. They relate more
closely to concepts while variables relate more to technicalities:
Explanation, an important aspect of the integration phase and of the
HK itself, is usually more easily understood in conceptual terms like
attributes and appearances. Their inherent lack of hardness is in fact
their strength because, while measuring techniques may be altered, the
concepts involved may be retained. For example, the concept of
reliability is largely fixed but for almost every problem class its
measurement will differ. This lack of hardness also means that
explanations are intuitive (heuristic) rather than deductive. Usually
the homomorphism will be obvious, as in the example above. In some
circumstance it may however be useful to define fuzzy correspondences
[55,101. ’

Putting the above together, we can now define

10 = (g0, 59, @)
where 0 = (x0,r0,v0,10)
% = (x0,r9,¢0,19)
x0 = xN,xR), FO = (FN,FRY, ete
x0 = oxNx®y ,  F0 = (¢FN,FR), ete
and 8 = (gN,8R) v

is the homomorphism defining correspondences BN between the SN-

and SN and correspondences BR between SR and SR.

In the above, SO is called the object system, s is called the image

system and ZO is called the source system. All three are primitive

systems - hence the supnﬁscript O. The above “erminology and concepts

are inspired by KLIR [55] which deals with 'General Systems Concepts'.
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Now on to feedback. Figure 3.1.3 shows two feedback paths FBzo_and
FB3O entering KASO. F820 stems from knowledge derived during KASz.
Mostly its presence serves to convey the idea that variables for
measuring‘éelected features of the output need to be defined in SO,
e.g. if a feature of the output to be measured is reliability, then a

variable called RELY (say) must be defined in S°.

FB30 serves to convey the fact Ehat redefinition of 20 may be required
before suitable patterns in S may be found or the HK. explained
satisfactorily. The latter may require redefinition of either SO, SO
or 8. In this sense khowledge fed back along FB30 has exactly the same
function as a priori knowledge except that the latter involves
foresight while the former involves hindsight. FB30 also deals with
the definition of the 8 mappings which connect appearance sets and
value sets. Many of these may only be defined during the integration

phase.

D R
3.5 KAS,, S” AND FBi.|
The objective here is to collect data to form the data system

Y

[}

0@ ,0,vP, 10
where xP = (XN,XR.X) and sb on for FD, YP and 1P.

SD consists of SO plus the set of data cases - one case for each run
of P. The aB'th case of data consists of SmB = (Xa’FaB’YaB’IaB)'
Each of these data values must 1lie within the relevant value range
XR, FR, etec. The set S of data cases is then $ = (X,F,Y,I) or
S = {Sygla=1,...,ny, 8 =1,...0np(a)}, where n, is the number of
cases with distinct Xy and nf(a) is the number of cases run for Xy

with controls Fas'

A major problem is that the amount of data in a single case saB may be
lérce especially for P dealing with field problems. Of <course, by
intelligent selection of variableé the amount . of data may be
significantly reduced. However, this is seldom really possible nor
desirable and is in fact the reason for computerisation of the KAS.

With the CBKAS, such selection may be deferred until a better picture
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of the behaviour of P on the problem and control class is obtained.
Clearly, even for small problem and control classes, the volume of
data in SD may be very large. It is therefore very important that

experimental programmes on the problem class be carefully designed.

Recall that the  HklJ involves  subsets of S® which
characterise an approximate Pareto set for the problem class. Design
of an experimental programme therefore consists of selecting suitable
samples of iR X gR. However, to run P, samples of XR X FR are needed,
not the transform iR X ﬁR, and so the programme must in fact be
selected with the relevant transformations borne in mind. Fortunately,
it is often the case that QD = XD and FD = FD and only §D contains
transformations of YP (such as reliabilities). KAS, then consists of
designing an initial programme of experiments on XR X FR plus
subsequent programmes via feedback (F821, FB31)-of knowledge already

acquired.

The initial programme should ideally span the whole of X} X FR. Here
the statistical designs used in Response Surface Methodology (RSM)[13]
and simulation [15,16] are applicable. However, one major difference
is that no experimental measurement error is involved in collecting
the data from P. This simplifies the design. In particular, it removes
the necessity of randomizing the order in which the runs are exeCU:ed.
Hcwever, the fact that many packages use iterative processes means
that quasi-random elements may appear in responses. Although RSM
techniques may not be used, it is very useful, when designing
experimental programmes, to conceptualise a priori (expected)
responses in terms of response surfaces. Smooth, continuous and
honlinear trends in response are very important considerations. For
example, if there n independent variables in iD and m in ﬁD and the
response of ;§ € QN is expected to be of first order, i.e.

~ P ~

N N °N N °N
yi = a + b1x1 * L.l + bnxn + c1f1+ ...+cmf‘m + error,

then a factorial design [13] with just two levels will have 2™ runs,
i.e. all permutations of the extreme values of XR and FR. This would
only constitute the initial design. Any nonlinearity or discontinuity

increases the number dramatically and more complex designs are needed
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[13]. If during the selection of features via KAS,, knowledge of such
nonlinearities, etc. becomes available, it is fed back via FBzf to
KAS;.

To reduce the number of experiments one may consider splitting the
variables into groups. For example, if F-O is split into F? and Fg
containing m1 and m2 variables respectively, the number of experiments
reduces to 2“(2m1+2m2). Of course, this is only truly valid if the
variables in F? and Fg do not interact, but it may be adequate. By
studying only those parts of iR which produce the worst response (high
cost and low reliability), experimentation may be further reduced. The
HKij would then be generalised (conservatively) to the rest of iR. of
course, knowledge of such areas of iR may not be available. The
replacement of the problem and control spaces of P by simpler PC's and
CC's is based fundamentally on the same argument. Conceptually, the
splitting of FO into FO and FQ is identical to the redesign of the
KAProg replacing the CC defined'by O with two new CC's derived from

F? and FO.

Subsequent experimental programmes are required for two possible
reasons. Firstly, to focus further experiments into regions of gR
which appear to contain the Pareto set. Secondly, if FO had previously
been split and HKij acquired independently for the two subclasses, the
KAc may subsequently consider interaction of the two in some limited
further experimentation on the whole of FO. The knowledge requiréd for
such focussing is derived from the § patterns and fed bacf via-FB31.
In particular it is derived from comparing Pareto filtered S data with
unfiltered data (i.e. use of positive and negative examples to learn

about the region of Pareto optimality).

Another important heuristic splitting technique 1is to design an
experimental programme on XR, then select some typical Xa in the
programme and acquire HK for this Xa alone (this requires another
programme on FR and all the rest of the steps in the knowledge
acquisition procedure). Then using this HK as a guide, wnowledge
acquisitior on the other Xa in the programme will hopefully be less
costly. If the interaction of XN and FN is not too strong such an

approach may be very efficient. For many packages based on sound
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numerical analysis principles this situation is expected to be quite
common. Again response trends and interaction will. be important

considerations.

Incidently, some of the considerations mentioned above in connection
with splitting techniques are identical to some of those considered
when decomposing the problem and control spaces of P into sets of

problem and control classes.

A very important point to note in experimental programme design is
that reference solutions should be included in the programme.
For each Xa’ there will be a number cases with varying FaB‘ This
set of cases will be denoted by S, = S,4[8 = T,...,np(a)}. ALl data
cases with the same Xa form an equivalence class with respect to the
mathematical model Xa is supposed to represent and so will occasional-
ly be referred to as an X-class. Within each Sa there should be at
least oﬁe case which may he designated as a reference case (See later

for further detail).
sD &b
3.6 KAS,, S7, S AND FBi»
The objective of this step is to transform the system So, which may

deal with a large number of variables, to-a more manageable system SD,

dealing with a smaller number of relevant features (transformed

variables). The problem of selecting relevant features is similar to
the problem of selecting relevant variables in modelling [17]. In
modelling, and perhaps in knowledge acquisition, the relevant
variables or features are often dimensionless and the techniques of
dimensional analysis [17] are often useful for their selection. In
knowledge acquisition, the most relevant features § of the outputs are
the reliability of solutions/outputs and the cost of computing
solutions. Often the most relevant features of the inputs are the
inputs themselves, 1i.e. i = X, Similarly it will often be the case
that § = F. If features are based on variables which are distributions
(i.e. linked to an index), then some form of -summarising of their
distributions (e.g. sampling or averaging) will be necessary. For
‘example, if reliability is based on a displacement distribution, then -

the KAc might select the displacement at a particular point in space
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as. the relevant displacement on which the reliability is to be
calculated. Thus while 8P = (XO,FO,YO,IO) for §D we . have
sP = (iD,gD,QD), i.e. no ED.

In the CBKAS to be discussed ih the next chapter, the process of
selecting features is split into two stages, namely KA821 and KA522.
KAS,, deals with the transformation of s to 3P = (%P,FP,¥0,10). often
0 = xP, 7D - PP, 0 - P and the new output features are simply added
to ¥P to form ¥0. Then, via KAS55, the relevant features are extracted
from §D to form gD._The reason for the two stage process is simply for
data structuring and processing reasons. Symbolically the process can

be depicted as below.

KA521 KASZZ
——<D - $D

gD

FIGURE 3.6.1 : Detailed symbolic view of KAsg. Note thaf F832 (See

Figure 3.1.3) has been omitted from, this view.

Feature selection is significantly aided by a priori knowledge of
which aspects of the outputs are likely to be relevant and which are
not. However, no matter how knowledgeable the KAc is, he can never
know beforehand exactly which features will be relevant. After some
sthdy of the data (by using interactive graphics, etc.) and after some
attempt at trying to find ‘'natural' ‘'partitions' (by pattern
recognition, etec.), he will usually have a better idea of the
relevancy of various possible features. The path F832 in Figure 3.1.3

represents this process of knowledge feedback.

In addition to the selection of features, KA521 also deals with the

calculation of the features from the basic data S. For this, the KAc
must also designate which data case will pe used as a reference
solution and select a formula for the calculation of the relevant
feature. These two aspects will be dealt with in the following two
sections, viz. sections 3.f.1 and 3.6.2. Secticn 3.6.2, it will be
noticed, is called calculation of reliabilities. This is because
solution reliability'will be the most commonly calculated feature.
Costs will wusually be simple while the variety of other possible

relevant output features cannot be foreseen.



Page 65

3.6.1 Designation of Reference Cases

Solution features such as preliability require comparisons between
solutions and a reference solution. If possible, this reference
solution should be exact. For most problems which P was designed to
solve, such an exact solution will not be available. In these
situations one must use anothér numerical solution as the reference.
It should be one which is believed to be accurate. Often the KAc may
not know how to obtain such a solution at the beginning of the
exercise. He may know how to set most processor variables F but some
will need more consideration. In order to cater for such situations
(which are expected to be quite common), an important design principle
for the software tools to be discussed later, is one which allows the
designation of refereﬁce cases to be changed and thus reliabilities to
be recalculated. When used in a design evaluation, the search for such
a solution may be the sole objective of the knowledge acquisition

exXercise.

Grounds for belief will usually follow from some sequence of trials
where processor variables are changed according to trends in their
effects, known to lead to greater reliability. For example, in FEA,
higher mesh density usually yields greater accuracy so the KAc would
try a sequence of experiments with increasing mesh density, compare
the solutions and then decide which to accept as reliable. Such trends
may however only apply to the 'normal! range of variable values and
may change beyond such ranges. For example,-as mesh density increases
roundoff error will also increase and will eventually swamp the
solution. There may be complex interac¢tions with other parameters such
as in the analysis of strain vsoftening materials where softening
parameters and mesh density are 1linked by fracture mechanics

principles.

It may in some cases be undesirable to designate reference solutions
by Jixed values of FN. Ins*tead referenpe solutions may be parametrised
by certain FN variables. This typically will be the situation where
problem variables, which theoretically should be in XN, are put into
FN. Some material propert.ies such as artificial viscosities or ALPHA

in the sxample of section 1.5 are of this type.
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3.6.2 Calculation of Reliabilities

This section presents a number of formulae used to calculate

reliabilities or deviations of Y. It will be assumed that
a’ is the value (or vector of values) of the selected output
variable (or variables) of the case for which the

reliability is to be calculated,

b is the <corresponding value or vector for the reference

case {(which is assumed to have been designated),

and o} is a 'normalising' constant, calculated or supplied by the
KAc.

A reliability or deviation measure will be represented by r(a,b) and

d(a,b) will be a distance measure between a and b,
The distance measures are typically one of the following five:

n ’ '

d(a,p) = [ w; |aj=bs] (=d; ) (D1)
i
n .
d(a,p) = § w; |aj=bs| (=d, ) (D14)
i .
:
T 2
d(a,p) = [ w;(a;-b;)2] (=d, ) | (02)
h ,
d(a,b) = max Iai-bil (=d, ) ' (DM)
i
al‘bi
da,b) = } wy || (=dg ) (DR)

where it is assumed that the weight Wy satisfy
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n
Iwy=1,w 20fori=1,2, ....., n
i

a and b are assumed to be n-vectors.

A useful relation between the above distance formulae is, that for any

a and b,

' ' < < <
d, < Ja,| sd, $4d, 24,

The most common choice of weights is w. =

[
S|

For the 'normalising' constants typically

KAc supplied - ' (Co)
d(b,0) ' (CD)

[¢]
I}

Q
I

Typical formulae for r(a,b) are

r(a,b) = Qﬁ;;El ' | (R1)
r(a,0) = [H2:2)) | (R2)
r(a,b) = max (1 - !EL%LEl', 0) (R3)
r(a,b) = sign (d;) QS%LEl (R%)

The (R1, R2, RH) are deviation-type measures while (R3) is a
reliability-type measure. However, for all forms, r(a,b) will be
referred to as reliability. r(a,b) yields relative measures whenever

C#1 or (DR) is used as the distance measure.

Reliabilities calculated according to any combination of the above are
point (PT) reliabilities. By this we mean that if a and b depend on a
time-like index, the reliability will be calculated for every 'time'
point of a. Values for b will be interpolated, if necessary. If

quasi-random responses (see 3.7.1) are -expected, such pointwise
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reliabilities may require smoothing. Typically one might calculate an
average (AVE) or root mean square (RMS) of the reliabilities with

respect to 'time'.

When relative measures are used, normalising constants are usually

chosen so that r e (-1, 1Jor r ¢ [0, 1] whichever is appropriate.

The reliability forms may be referred to by concatenation of the
individual form identifiers, e.g. R1/D1/CO/PT. Some combinations are
equivalent, e.g. R2/D2/CD/AVE = RT/D2/CD/AVE. If ¢ is calculated via
(CD), the d form used must be the same form as used to calculate
d(a,b) in r(a,b).

Often it will be useful to calculate a number of reliabilities,
usually at least one with the sign preserved and one without. Use of
(D2) will usually give the smoothest response of r{a,b) with respect
to X and F. Such considerations are ofteh useful for finding the

pattern in S.

aD
3.7 KAS3 AND Sy

This part of the knowledge acquisition procedure forms the core of the

procedure. It concerns the 'partitioning' of §R
SRSk, | k=1,2,...,K, 2=1,2,...,L(K)}  where
K ke [AE BLALEL I A | 1Sy 0oy
a _ (YR &R R
Sig = (Ko Figy Yig)-

This 'partition! §§ must be chosen to satisfy the goal conditions C1-8
(See section 3.3). As already mentioned the 'partitioning' is based
partly on induction from a 'natural' ‘'partition' of the experimental
data é and partly on a decision by the KAc, that is to say that the
KAc looks for a 'natural' 'partition' gK of § and, using éK as a
guide, decides on a ‘'partition! éﬁ of §R. Before his decision,
experimentation is directed primarily towards enlicncing the T'natural’
'partition' (bearing C1-8 in mind - hence 'natural' not natural) but
after his decision, experimentation is directed primarily towards
improving the 'empirical basis' of each rule. Goal conditions C2 and

C4 involve measurements of the subsets Yﬁl such as maximum, minimum,
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mean and/or range of §ﬁ2. These measurements are based solely on the
experimental data QKQ' While the wuse of statistically designed
experiments  can certainly improve the expected accuracy of such
measurements, heuristic methods will usually suffice. For example, if
?N contains some quasi-random or nonlinear element, then the maximum
of iﬁl may not be caused by any of the extreme values in §§ and Eﬁl‘
However, heuristically it should provide an adequate measurement.
~ Obviously the more data cases in gkl and the better they are spread

around Ssz, the better the statistical evidence for.SEg.

The whole process of this knowledgé acquisition step is as shown in

Figure 3.7.1.

FIGURE 3.7.1 : 'Partitioning' SP into S} (copied from Figure 1.3.4)

The most difficult part of the above process is finding a 'natural’
'partition' of the data and designing additional experiments to
enhance such a 'partition'. A 'natural' 'partition' manifests itself
by patterns in é, 8o the process is really one of pattern recognition
and pattern enhancement. The rest of this section will deal with aids

to such pattern recognition and enhancements.

Firstly, pattern recognition is highly dependent on what types of
patterns are expected, i.e. it is contextual [9,32,33]. The expected
patterns are recognised with the help of a priori knowledge such as
expected relations between % and § for fixed ia and expected patterns
in ?. Computer graphics is clearly impbrtant for any human directed
pattern recognition. To increase the amount of data without further
experimentation, interpolucion may be‘important. Again this depends on
the relations between the variables. Data sorting and clustering can

be very useful aids. Filtering based on the Pareto principle is a key
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element of the process but filtering (removal) may also be useful for
simplifying the patterns. These topics are the subjects of the next

seven subsections 3.7.1 to 3.7.7.

3.7.1 Pairwise Relations y? - ?? and ;? - ;g

While it |is unpealistic to expect the KAc to have quantitative
knowledge of the pairwise relations yN - ?N and §§ - ;N

J J J’
their qualitative aspects is a very important part of the a priori

knowledge of

knowledge used to design experiments, recognise patterns and
interpolate data. An expert user of P would be expected to know at
least these qualitative aspects. If however they are not known, then
their discovery becomes an important part of the knowledge acquisition
problem =~ perhaps the most. important part.

£

By a pairwise relation yN - we mean the relation between y? and

i ’
t with the values of all other variables in @ and B¥ held constant.
Pairwise relations ;? - ;§ are to be similarly understood. The purpose
of this section is to describe and explain some terms which are useful
for describing the pairwise relations }? - E?, These terms will be
equally applicable to ;? - ;N relations.

J
Firstly, the variables themselves may be continuous or discrete. For
example, ALPHA, which is real, is continuous while NELTS, which is
integral, is discrete. Relations between continuous variables are

commonly described as continuous, smooth, monotonic or stochastic

(réndom). However, many variables are expected to be discrete so the
terms continuous and smooth are then inapplicable even though discrete
relations (pairwise relations where at least one variable is discrete)
are expected to exhibit behaviour similarly describable. Such discrete

relations we will be described as having continuous trends or smooth

trends. Monotonicity and randomness are applicable to both continuous
and discrete relations. Continuity, smoothness, continuous trend,
smooth trend and monotonicity are expected to be very common
properties of relations. Randomness is highly unlikely because most
engineering packages are based on deterministic principles {(Chaotic
relations [21] will not be considered in this thesis). However, many

engineering packages contain iterative algorithms with tolerance-type
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measured values of the variables may look partially

type of behaviour will be called quasi=<random.

Figure 3.7.1.1

illustrates some

of

the terms.
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With such software the relations between the

'random'. This -

It will usually be

helpful to imagine discrete points connected by lines.

(a)

~(b)

(e¢) (d)

(a) Continuous, smooth, non-monotonic trend

FIGURE 3.7.1.1
(b) Continuous, non-smooth, monotonic trend

(¢) Discontinuous, non-monotonic trend

(d) Quasi~random with monotonic trend

It 1is important to note that different forms of reliability

calculation may yield different
absolute value (unsigned) reliability measure, the relation may appear
it will be seen to be

relations. For example with an

if the sign is kept

smooth relations will yield simpler

non-monotonic while
monotonic¢. Usually monotonic,

patterns in the global (system level) relations.
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Ideally the KAc should check that the behaviour exhibited by the data
conforms to all the expected pairwise relaﬁions. If expected
behaviours could be captured onto EDBn (the database containing §D)
and they could be 'understood' by the CBKAS, then such checking should
-ideally be done by the CBKAS automatically (like a sophisticated form
of database integrity constraint checking). Such an ideal is beyond

the scope of the present work.

3.7.2 Patterns in Y

Whereas the previous section dealt with pairwise relations, this
section deals with relations between the variables in YN and relations
between the whole (or subsets) of FN and subsets of YN. To include all

possible such relations the word pattern will be used instead of

relation.

Mostly patterns in Y concern costs and reliabilities. For a typical

problem and control class, patterns like the one in Figure 3.7.2.1

result.

cosT

0 RELY 1

FIGURE 3.7.2.1 : A typical cost-reliability pattern

An interpretation of this figure is that

(a) on average, to increase reliability, one should expect. to

increase cost, and

(b) many solutions are inefficiently computed. One ¢can hypothesize
the existence of a curve of efficient solutions (Indicated by

the broken line).
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Points on this curve are Pareto optimal (non-inferior or
non-dominated). The subset of gR which causes § to lie on this curve
is the Pareto optimal set for the problem class and the goal is to
find an approximation td this set. A filter which removes all inferior
points would leave only those points connected by the solid 1line.

Discussion of such filtering will be deferred until the nekt section.

Some typical Y patterns will now be illustrated and explained.

”COST
b
x x 9 x

X X
X X
- %X X

DEVIATION
FIGURE 3.7.2.2 : A Reliability-cost pattern showing three clusters

In Figure 3.7.2.2, one sees three clusters. This pattern would
probably be caused by a combination of discrete and continuous
variables - the discrete variable causing the clusﬁering while the
continuous causing the variation within each cluster. The discrete
variable dominates the cost dependence but perhaps not the reliability
aspect. Note that the dependence is not mqnotone, a fact which is

easily obscured if an unsigned reliability measure is used.

In Figure 3.7.2.3 (a) the broken line represents the most efficient
solution for many given reliability level. However one can see that
(r2,c2) dominates (r1,c1). Filtering out dominated points would result

in the pattern shown in (b).
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(a) {b)

FIGURE 3.7.2.3 : Reliability-cost patterns without and with Pareto

filtering

While both (a) and (b) indicate clustering, it is (perhaps) clearer in
(b). Again, the above pattern would be caused by a dominant discrete
variable with a superimposed scattering effect due .to other variables.
After filtering, the pattern shows the monotonic trend typical of a

Pareto optimal set.

In some problem classes, 'tuning' variables typically produce the

following pattern.
COST

——=DIRECTION OF INCREASE OF ‘TUNING' PARAMETER

®SOLUTION WITHOUT
® x1fxx xx TUNING PARAMETER

DEVIATION

FIGURE 3.7.2.4 : Pattern caused by discrete variable plus continuous

tuning variable

The discrete variable dominates ¢the cost while 1its effect on
reliability is monotonic convergent. However, a tuning parameter can
improve reliability significantly without affecting the cost. Due to
the monotonic convergence property of the dominant variable, the

influence is reduced (scatter becomes smaller) as cost increases. Also
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very important in this situation is the use of a signed reliability
measure. An unsigned one would simply confound the pattern. Instead of
Pareto filtering in the above- situation, one would probably simply
interpolate the appropriate value for the tuning variable for each
cost level, Hcowever while tuning variables improve one measure of
reliability, they often worsen another measure and a  trade-off is

needed so Pareto filtering may again be needed.

3.7.3 The Importance of Graphics

Very many of the judgements required in knowledge acquisition depend
on pattern recognition on numerical data. Often the point of view from
which the data 1is observed critically affects the possibility of
recognizing patterns. At present, machine pattern recognition is
reliable only for special purposes, not for such general purposes as
in this thesis. Often they require special hardware. Humans, however,
are excellent at most forms of pattern recognition and so, to
capitalise on this ability, it . is essential that any CBKAS have good
interactive graphics facilitiés and facilities for easily changing

points of view.

3.7.4 Interpolation of Data

Almost invariably the initial programme of experiments will yield too
‘little data for patterns to be recognised. The most obvious way to
overcome this 1is by further experimentation. However, if each .
experiment is expensive, the cost of knowledge acquisition may become
excessive. An alternative is to interpolafe the current data. It will
usually be very much cheaper to interpolate than to experiment. This
may at first sight appear invalid since, at best, interpolated data is
of the same quality as the criginal while, at worst, it is meaningless
when quasi-random relations are involved. However, if the relations
are relatively smooth and/or any quasi-randomness 1is relatively
insignifi~ant, it can be very useful to interpolate. This is bscause
pattern recognition is often better on more dense data. Of course, too
much data may obscure patterns - but then one can use filtering
techniques. It is often the cag2 that pattern recognition on a large

data sample, filtered and summarised down to the same amount és some
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small sample will be easier than in the former case. It is. like
looking at a detailed picture from a distance rather than a crude
picture from close up. A more technical analogy is the use of the
following heuristic in FEA of structures : static condensation from
m>n degrees of freedom down to n yields better dynamic
. characterisation than a model with only n degrees of freedom. Once
moré real data has been generated, the process may be repeated with
interpolation always from real data. Even if a formula for the
relation exists, visualisation of its behaviour via graphical display
of points generated by the formula usually improves understanding. If
the formula is complicated such visualisation may be extremely useful
for finding simpler approximations. This is exactly the situation in
knowledge acquisition : P is like a complex formula which the KAc and
users ¢f P wish to understand via simple approximations (HK) to its

behaviour.

Response surface methodology [13] is a set of techniques for
approximate modelling of complex input-output processes. Typically, a
response Yy might be assumed to be linearly dependent on a set of
inputs x:, j = 1, m. From statistical analysis appropriate experiments
are desféned which would allow such response surface fitting to be
done. Once response surfaces vy = yi(xj), j=1,m have‘been fitted by
a least square error method they may be used for approximate
optimisation purposes. As mentioned already, experimental programmes
are designed with possible response surfaces borne in mind. In
general, the actual fitting of response surfaces is not recommended.
Firstly, there will usually be no intention of using the surfaces'
equations to formulate into rules. Secondly, to reduce biasing error,
surfaces of sufficiently high order need to be fitted. This added
complexity may not be warranted for the generation of heuristic
knowledge and local interpolations and subsequent experimentation will

usually be more appropriate.

3.7.5 Sorting

After studying the patterns in Y alone and finding some approximation
to the curve of efficient solutions, the next step is to find the
cause of the patterns, i.e. to find a pattern in F X Y. It is here

that sorting, clustering and filtering have their impact. Clustering
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and sorting arrange the data into groups so that first intragroup and
then intergroup study can be done. Filtering reduces the search to

subsets of F and §.

Sorting is obvious if only one input or control variable is involved.
However, if more than one are involved, there is the problem of
selecting the order of the variables on which sorting is to be done.
For example, if FN contains (fN, fg), does one sort on f¥ then fg or -
on fg then f§? As the number of variables increases, the number of
possible sorting orders increases combinatorially. In fact finding an
appropriate sorting order may be part of the goal of knowledge
acquisition. The order should go from greatest to least dominance
(like the ranking of goals in goal programming {18,191 for
polyoptimisation). In this way, the dependence of the § patterns on
corresponding § patterns should be clearer, Again, however, dominance
may be dependent on the particular features involved in the § patterns
- changing a reliability measure may change the dominance order. For
situations like Figure 3.7.2.4, sorting may well be the most important

tool required when the data has not been captured in a fixed order.

3.7.6 Clustering

Sorting produces a hierarchy of groups in a data set. Clustering
(Appendix A) is also a grouping technique but does not necessarily
produce a hierarchy of groups. The idea is to group together data
cases which, according to some criteria (clustering criteria), are
similar. Typically clustering criteria may be based on cost,
reliability, both cost and reliability or, more generally,
combinations of § variables. Similarity measures need to be defined.
Very common measures are ones.based on Euclidean-type norms and are
therefore most suited to clusters having the shape of balls in R" (See
Figure 3.7.2.2). Whereas in sorting a complete order of variables
needs to be specified, in clustering only a subset of variables
(typically only a subset of Q) is involved in the clustering criteria.
After clustering, the members of each cluster are commonly sorted into
some order for presentation. Selection of clustering criteria and of
the number of clusters are frequently encountered problems with
clustering. Clustering can be used to find patterns {a set of

clusters), in the Y data, it can be used to 'partition' § even if no
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obvious pattern exists or, when the pattern is clearly visible to the
KAe, it can be used to manage the Y data for presentation and

subsequent F - Y pattern recognition.

3.7.7 Filtering

By filtering here, is meant an algorithm which removes most of the
inefficiently generated solutions from c¢onsideration. Note that most
not all will usually be removed. By removing all inefficient points,
one might end up with a very sparse data set in which no pattern can
be found. Ysually it will be better to relax the filtering so that
only most are removed. A type of approximate filter results which
includes a parameter specifying the level of approximation. Such a

filter will be called an approximate Pareto filter.

Recalling the description of the Pareto principle given in section
3.2, we may define the Pareto optimal set U of Y as follows. If u e Y

is an n-vector, then if there is no v ¢ Y such that

\ 2 Uy for all i=1,2,...,n with the inequality holding for at

least one i,

then u ¢ U. Then an approximate Pareto optimal set can be defined as

the set Ue with the following properties:

(1) U U
= e

and (2) for all u' e u_, lu' - ul < e for some u e U.

|.ll is some appropriate norm and ¢ is the filter approximation

parameter. A typical norm would be

' = uff = ' - Wi - w

where W is a diagonal scaling matrix. The subscript < on Ue is meant
to denote the fact that the contents of U,E depends on a filter
parameter e. In addition to the above <conditions one may have
threshold levels for ? so that gsolutions of very low reliability or

very high cost are excluded from Ue' As stated above, the Pareto
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principle is only relevant to situations where the goal is to maximise
u. In general one wants to maximise some components, minimise others
and maximise or minimise the absolute values of still others.

Modifications for such purposes are relatively straightforward.

The set Ue forms the set of positive examples while the rest
VE = § - U€ form the set of negative examples. The advantage of the
filter parameter ¢ 1s that the boundary between the positive and
negative examples can be moved. A very effective way to find patterns

in ¥ and F X Y is to form an ec-sequence of sets IJE, v perform

clustering, sorting, ete. on those sets and then com;;re their
contents. In this way the KA¢ can learn how to recognise subsets of gﬁ
which contain the Pareto set and so can design further experimental
programmes (FB31) to focus the search in these subsets. Recall that
goal condition CT concerns the simplicity of the desired sets (so that
the resulting HKij will be quite simple). However, after approximate
Pareto filtering the set UE and associated § and i subsets will
usually still be quite complex (i.e. not convex, not simply
connected). The proéess of removing members for simplification will be .

called simplication filtering {(or independent filtering in ELIXIR).

3.8 KAS, AND HKJ

In the statement of the goal in section 3.3 an implicit form for the
HKij was assumed. By seeking 'partitions' in SR, we are implicitly
saying that the HK should be represented in the following rule form:
s R & =R 7 <R

IF Xa e Xy AND FaB € Fkl THEN YaB € Yiq
All this does is present SE in more readable form. It does not however
place the HKij in its original context. To do this we have to add the
derivation of SN from SN and the interpretation of the SN via SN.
Along with this 1latter interpretation is the definition of
correspondences BR between SR and SR‘ Thus the final form of the HKij
as produced by the execution phase will be a comhination of
- rules using SO, SO and Sg
- statements and formulae describing transformations, e.g. how .

reliabilities were calculated,
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- statements, diagrams, graphs, etc. characterising the reference
solutions precisely,

- statements, diagrams, graphs, etc. which are useful for defining
the problem and control class and the set of rules,

- an explanation of the structure :of §%. Explanation will be

discussed in the integration phase {Section 3.10).

3.9 FEEDBACK

Knowledge acquisition has been shown to be a iterative process. As
such, feedback paths are an integral feature. Most of these feedback
paths the FBkl shown in Figure 3.1.3, have already been dealt with.
This section will merely summarise and collect together the main
feedback ideas. Since there are feedback paths to all parts of the
procedure, it will serve simultaneously to summarise the chapter. The
order of presentation will be roughly the expected order that the KAc
will follow.

FB.. - Feedback from KAS, to KAS, and XAS B
21 72 1 ,,O

éD is supposed to be an abstracted form of the data in SD. The
abstraction consists of data transformations and subset selection. In
order to find the appropriate transformations and selection, the KAc
will study SD with the aid of KASZ. During this study it may become
evident that:

(i) the experimental programme is too small,
(ii) more variables need to be defined and their values recorded or
(iii) some variables may be disregarded and their values no longer

collected in future experiments.

The objective of including FB21 is to allow for correction (i), i.e.
to ensure sufficiency of data. The objective of including FBZO is to

allow for corrections (ii) and (iii).
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F$3i - Feedbaqk from KAS3 to KA32,>KA81, KASO

FB32 deals with
(1) Redefinition of SP from 3P,sD:
(a) Recalculation of transformed quantities, e.g. changing
reference cases or changing the components of the

variable used in the transformation.

(b) Redefining the ¢transformation, e.g. new formulae,

different variables or any of those in (a) above.

(e) Adding new transformed variables.
(d) = Changing the subset selection of s from §6.
(e) Chgnging the arrangement of data.
(ii) Modifying §D, e.g.iby summarising § as in operations b and ¢

of section 3.7.8.
FB31, like F821, is concerned with sufficiency of data.

FB3O, like FBzO, is concerned with expanding, contracting or modifying
the spaces of variables defined in SO. However, it is also concerned
with redefinition or modification of s? and B, i.e. with the whole of
ZO. Attributes may be dropped and new ones included. £ would need
adjustment accordingly. .It is/via FB30 that BR is completed. For
example the grouping of SAR in section 3.3 is derived during knowledge
acquisition and only after this can the groups be connected with low,
medium and high structural aspect ratio. If the KAc had found four

'natural' groupings of SAR, BR would be a little different,

3.10 THE INTEGRATION PHASE

Recall that the integration phase was depicted symbolically as shown

below.



Page 82

(i) For each i:
y K —LAS o
j

(i) U HK —RAC_ hk

FIGURE 3.10.1 : Symbolic view of the integration phase

The purpose of knowledge ‘integration is to form Uj HKij and
UiHKl into a compressed body of heuristic knowledge for P as a whole.
While the acquisition of HK is done under the assumption that the HK
will be used, this fact should not be taken for granted. However, if
the HK is comprehensibie, i.e. consistent with physical and
computational theory, self-consistent, organized and simple, it should
inspire confidence in the user of P that the use of the HK will
simplify his numerical modelling tasks. In order to make the HK
comprehensible to users, he should first make {t comprehensible to

himself.

Before describing when and how integration is done, we first need to
elaborate on the features of comprehensibility mentioned above, namely
consistency with basic theory, self-consistency, organization and

simplicity.

Firstly, consistency with basic theory means that for each HKij the
KAc can find an explanation of fhe structure of the HKiJ in terms of
the physics of the problem class and the computational principles upon
which P was designed relevant to the control class. We believe that
the most common reason for a lack oftadequate explanation will be due
to érrors in knowledge acquisition such as too little data (real
data), improper data processihg, invalid SO, data collection error and

so on. Thus consistency with basic theory is a check on the validity
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of the individual HKij. If;.however, no explanation can be found after
carefully checking the acquisition process, the KAc may simply treat
the HKij as empirical, in which case only further experimentation and
knowledge acquisition by ihdependent KAc's can guarantee the validity
of the HK ( as far as any empirical knowledge may be guaranteed) or he
may treat it as a genuine discovery requiring detailed research and/or
modification/development of P. By a genuine discovery we mean an
observed phenomena that has so far not been publicized. Such
'inexplicable' phenomena may be exhibited by nonlinear mathematical
and/or numerical models which have not been studied in great detail.
Where no explanation is found for any HKij, the user should be warned
accordingly. It should be remembered that the purpose of knowledge
acquisition is not usually detailed research and explanation but to
provide HK that is (intuitively) comprehensible to the user - not

necessarily proved to the user.

Secondly, self-consistency concerns consistency between say HKi and
akk2, 1r pci,ccld and pcK,ccXt involve similar mathematical and
computational theory (but are, presumably, different specialisations),
the structure and explanétion of HKi and HKk should be similar
(perhaps identical). If they are not similar it again indicates error
in knowledge acquisition or perhaps PCi,CCij and PCk,CCkl are not as
similar mathematically and computationally as expected. An explanation

for such a difference is then required.

Thirdly, organization of the HK relates to the structure of the whole
HK (not just the individual HKij) and its presentation. The structure
of the HK should follow approximately the structure of the KAProg but
whereas in designing the KAProg foresight was required, organizing the
HK is done with the advantage of hindsight. Only very general
statements about such organizing can be made here since each situation
will probably require special organization. Obviously, the various
pci/uki/cciI/ukld will be similar in some respects but differ in
others. The ¢trick 1is to find a structure which reflects both
similarities and differences in a comprehensible way. Hieraﬁchical
structures are most easily inderstood but unfortunately almost all -
engineering packages will result in network structures. This 1is
because the various .options (physical, geometrical, mathematical,
etc.) may be combined in some problem classes. For example, a set of
problem classes for a structural analysis package might deal with
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beams alone, plates alone and beam/plate combinations. Further
complexity arises if each of these may also have any combination of
static or dynamic, linear or nonlinear analysis options. Does the'KAc
group the classes according to their geometrical features or analysis
types? (cf sorting and clustering criteria). One reasonable way would
be to have tﬁfee groups of classes, the first bdealing with. beams
alone, the second with plates alone and the third with beam/plate
combinations. Then eaéh group begins with a class dealing with the
simplest analysis options, e.g. linear static¢ analysis. Successive
classes should increase in  difficulty of analysis or behavioural
complexity. Such an organization is based on first grouping according
to geometrical features and then according analysis types. To aid
users interested in phoblems concerning say nonlinear materials, én
index pointing to all such probable classes can be provided. 1In
general, a number of indices may be required. The phoblem becomes very
similar to one of 1listing books according to certain keywords and
perhaps the data structures used in their computerisation may be
appropriate to a computerised presentation of the HK {(for example, in

an expert system)..

Finally, the simplicity of the HK greatly affects its comprehension.
It was partly for reasons of simplicity that a rule form of
representation was chosen. Here we wish only to -emphasize 1its
importance with regard to the HK as a whole. We expect that many of
the structures of the individual HKij and their explanations will be
similar. Where such similarities exist it may be possible to simplify
the HK by amalgamating problem classes into fewer but slightly more
complex problem classes. For example, the KAc might have thought that
for a certain beam problem, material and geometric nonlinear effects
would cause different reliability and cost behaviour and so separate
problem classes for each effect were chosen. However, if it turns out
that the HKij is very similar, he may subsequently amalgamate the two.
He may of course need to repeat the knowledge acquisition. Simplicity
also affects the nature of explanations : if simple intuitive
explanations are possible, they are to be preferred to complex proofs
(which can simply be referenced). Most explanations of the HK we

expect will therefore be intuitive.
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We now return to when and how integration is to be done. Figure 3.10.1
gives the impression that integration is done only after all HKij has
been acquired. This approach does have certain advantages in that the
execution phase can éasily be divided amongst a number of KAc!'s and
then the integration done all at once. By looking at Uj HKiJ and
Uy HK! all at once, the KAc (and his team) may find many simplifying
patterns in the behaviour of P and so produce a relatively simple body
of organised heuristic knowledge about P. Alternatively, the KAc might
attempt to integrate the HKi and HKij incrementally, i.e. as each HKij
is acquired it is integrated into the current body of HK. This
incremental apbroach also has advantages. Firstly validity checking is
done just after execution (perhaps even during execution) so that
errors found are more easily corrected Dbecause. the bverheads
(psychological as well as computational) involved in restarting an
-execution are avoided. Secondly, and most importantly, the KAc is
continually increasing his knowledge and understanding of P's
behaviour and so can bring it to bear on knowledge acquisition of
subsequently studied problem classes. In other words, the a priori
knowledge that he brings into the execution’ phase is continually
increasing. This should improve both the efficiency with which the
execution phase is done and the quality of the HKij produced.
Incremental integration may itself be easier once a few HKij have been
integrated. We expect that the most suitable approach would combine
the above, i.e. would involve studying a group of similar problem and
control classes, integrating the HKij for the whole group at once and
repeating this process until all groups of problem classes have been
executed and their HKij integrated. Thirdly the incremental approach
allows redesign and/or modification of the KAProg during the knowledge
acquisition process. Because it is ihpossible to predict accurately
the behaviour of P during the initial planning phase, it may be
essential to repeat the planning phase as more a priori knowledge
becomes available. This is once more a form of knowledge refinement

via feedback.
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N DESIGN AND IMPLEMENTATION OF A COMPUTER BASED~KNOWLEDGE
ACQUISITION SYSTEM

The preceding chapters may be viewed as an analysis of requirements
for conceptual design of a knowledge acquisition system. Except for
fairly simple studies, the acquisition process will evidently require
considerable data handling and processing. In order to make the system
viable it must be computerised. By this it is not intended to automate
the whole process, but, realising that human involvement will in mbst
cases be essential, the aim is to develop a computer based system

which will aid the knowledge acquirer.

The chapter consists of three parts. The first part deals with the
user's view of a CBKAS. The user in this case is the KAc. Instead of
presenting and explaining the concepts involved in a CBKAS in a
general form, we will illustrate these concepts by presenting them as
implemented in ELIXIR. The second part looks behind the user's view to
the developer's view of a CBKAS. Again ELIXIR is used. Some issues
concerning data, program and control structures will be discussed. The
final section deals with software engineering issues. In developing
ELIXIR it became very clear that a CBKAS is itself a complex and
sophisticated piece of software. Some software engineering principles
that proved useful plus some that we believe would have been {(and will

be) useful are discussed.

T USER'S VIEW OF A CBKAS

A computerised database (DB) is a file or set of files which holds all
data related to a particular application. Setting up and manipulating
an application database is done by the user from a user device (UD)
via a database management system (DBMS) [22-25]. Application software
(AS) for special data processing also makes use of the DBMS.

Schematically this sitdation can be represented as follows.
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FIGURE 4.1.1 : An Abstract User's View of an Application System making

@

use of a Database Management System

A CBKAS can be thought of as an application system and a DBMS rolled
into one. But, whereas avgeneral DBMS would allow the user to tailor
his database structure (schema) appropriately, the appropriate
structures have alreédy been built into the CBKAS. The usef of the
CBKAS is of course the KAc. In the CBKAS to be discussed in this
thesis, namely ELIXIR, more than one database is usually involved in a
particulér knowledge acquisition exercise. These are EDB and EDBn. The

ELIXIR system can be represented as follows:

[G57 [T

4

ELIXIR SYSTEM

FIGURE 4.1.2 : Abstract User's View of the ELIXIR CBKAS

r

EDB, the ELIXIR database will <contain all information and data
concerning ZO, SD and §D. The database subset EDBn will contain §D and

perhaps SK‘
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"The part of a DBMS which is used for setting up an application
database is wusually called the database definition language (DDL)
while the part used for manipulating the database is usually called
the database manipulation language (DML). In the ELIXIR system, the
program FELIX is used for setting up the database EDB while all the
other programs (PRELIX, EDBREP, EDBVU, ELIXIR, DBNREP) mainly involve
data manipulation. However, additional variables like reliabilities
are defined during knowledge acquisition so FELIX is used only for the
initial data description and the databases EDBn are set up from within
the program module ELIXIR and not via FELIX. The whole ELIXIR system

can be viewed as shown in Figure U.1.3.

NPUT DATA

PROCESSOR |

INITIAL DATA .,
DESCRIPTION / TEMPFILE /
\ ,
FELIX. EHEPUT PRELIX ,
o : ‘ *

/ ELIXIR DATA BASE (EDB) /

(a) Initial data'description and automatic data capturing

[ w7

i
3

EDBREP | [ EDBVU ELIXIR

‘ -
OUTPUT { /OUTPUT
FILE FILE

(b) Data base reporting, graphical viewing, data transformation and

formation of transformed databases
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DBNREP | ELIXIR
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- /OUTPUT { /OUTPUT
FILE |/ FLE

{¢) Reporting of transformed databases and pattern recognition

FIGURE 4.1.3 : Detailed User's View of the ELIXIR KAS

The explanation of this figure is as follows. The KAc sets up a file
containing an initial data description. An example of such a file is
shown on page?6§11n Chapter 5. FELIX reads this file and sets up EDB.
EDB thus confifﬁé ZO. The process corresponds to KASO. EDB will also
contéin some details concerning automatic data capturing needed by
PRELIX. Perhaps the single most important design criterion of ELIXIR
was that it should be applicable to the study of fairly general
processors P. This hinges on the initial data description and the file
structure of TEMPFILE. The target field of application of ELIXIR is
engineering software. A study of the data types and relations and
possible output file structures was done on finite element packages,
finite difference packages and other semi-analytical engineering
software. The form of the initial data description and TEMPFILE
structures was then designed to cater for all these packages. It is
the adoption of the DBMS approach to the ELIXIR design which is
largely responsible for the applicability of ELIXIR to general P.

The next step is to apply KAS1. This is done by preparing data for the
each case 1in the experimental programme, running this through the
processor P and collecting the output plus relevant input data on file
TEMPFILE. TEMPFILE is a sequential file, the contents and structure df
which depend on the data description of ZO. PRELIX uses this data
description on EDB to interpret TEMPFILE and then stores the data in

structured form on EDB. Thus SD is formed. At this stage EDB contains
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Zo and SD. The output files produced by FELIX and PRELIX contain
information which helps the KAc to verify that the data description

and data captured are correct.

Further detail concerning FELIX, PRELIX and their associated files
Wwill not be given here, but some detail should emerge from the

descriptions of the use of ELIXIR given in Chapter 5.

EDBREP produces a print file of the contents of EDB while EDBVU is
used for selective interactive graphical viewing of its contents.
Future versions of EDBREP will allow selections of the contents to be
printéd while future versions of EDBVU will allow printing of the

graphically presented data.

The primary menu in the ELIXIR program is the following:

1. PROCESS/DISPLAY PRIMARY DATABASE EDB
2. PROCESS/DISPLAY DATABASE SUBSET EDBN
3. HELP
b, END ?

The first option puts ELIXIR into KA82 mode while the second puts it
into KAS3 mode. In KA82 mode, the KA¢ may select output variables to
be used in reliability calculations, designate reference solutions,’
select an appropriate formula for reliability calculation, select a
subset of cases for which reliabilities are ¢to be calculated
{(typically a single X-class, i.e. all cases with the same Xa) and then
calculate the reliabilities for this subset (X-class). ALl these
operations are part of KA821. Use of EDBREP and EDBVU also constitute
operating the CBKAS in KA821 mode. The product of this effort is §D
which is also stored in EDB. The next step is to select a subset 6f §D
and rearrange it into éD. This implies operating.ELIXIR in KA822 mode.
SD is stored in a new database EDBn created by ELIXIR. By taking
different subsets, the KAc may create EDB1, EDB2,..., EDBn. Each of
these is a data system éD. There is no unique éD for any Gij. It is

the KAc's task to find a SD appropriate to satisfying Gij.
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In KAS3 mode the KAc wuses the graphical, filtering, sorting,
clustering, reporting and set operation features of ELIXIR to help him
find 'natural' patterns in S {(on EDBn) so that it may be 'partitioned!’

into SK' From SK the KAc may then induce SK' Using DBNREP to print the

contents of EDBn will usually be helpful.

The examples in Chapter 5 demonstrate the usefulness of ELIXIR for

knowledge acquisition.

At present the contents of the databases are accessible to the KAc
only via the ELIXIR system and he has very little control over the
format of presentation. In future‘versions the system will be made
more open by providing more database utilities for directly accessing

their contents.

4.2 THE DEVELOPER'S CONCEPTUAL VIEW OF A CBKAS

In order to design a software system, the software engineer needs to
know what types, volumes, structures and variability of data will be
required and which operations, sequences of operations and variations
of these will be performed ¢n the data. In addition he needs to know
whether additional data types, data structures and operations are
likely to be required in the future so that he may plan for the
evolution of the system. For designing a CBKAS, the above required
information is essentially provided by the first three chapters of the

thesis.

From the first three chapters we find that character, integer and real
data are all required. Each variable might be scalar, vector or
matrix. Output variables may be 1linked to 1index variables. The
dimensions of these vectors or matrices may be large and vary from
(data) case to case. Even the presence of data for a variable may vary
from case to case if the KAc decides not to continue collecting data
for a specific variable or realises that he should be collecting data
for wzndther. Data structures for dealing with sets (of cases),
clusters and 'partitions' are required. These data structures may be

dependent on the types of patterns found in the data but we cannot say
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beforehand what all the pattern types are likely to be. Thus new data
structures will be needed. In short, what is required is a system

which can deal with flexible data structures and types.

Chapter three lists some important operations which may be performed
on the data as well as likely sequences of such operations. It is
clear that the sequences of operation may vary from study to study and
that many more operations (e.g. multi-variate statistical techniques)
may be required. This implies that the 'library' of operations in the
CBKAS will always be incomplete. One way to increase the library
without adding extra computer code would be to allow the Kic to
extract data from the databases, format it as desired, process it on
some other package (e.g. SAS) and insert the results into the database
without destroying its integrity. The program or system structure and

its control should therefore be flexible.

In response to very similar problems AI researchers [1,3-8] invented
production rules, semantic nets, frames, etc. to provide flexible data
structures. They also separated the data, the operations and the
control aspects so that flexible program structures could be achieved.
Special languages like PROLOG, LISP, SMALLTALK, etc. were invented to
ease the c¢oding of such flexible structures. Data management and
control aspects are supposed to be handled by the language compilers,
interpreters and meta-interpreters. Database researchers [22-2U,3]
responde¢ to similar problems by building up complex flexible data
structures from sets of simple relations {such as in relational
databases) and providing for flexible operation and control ' by
separating the data, data processing, data management and control.
These were achieved by developing database management systems (DBMSs).
Data is held separate from programs in a database, data processing is
done by application and utility programs, data management is handled
by the DBMS and control over the processing is done by the user or his
application programs. Unfortunately vneither AI languages nor DBMSs
currently support vector and matrix data types (FEA software
developers who used database techniques had to write their own DBMSs).
The concepts invented by the AI and DBMS researchers are, however,

excellent for CBKAS design.
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Two more ideas should also be mentioned before describing an 'ideal!
developer's view of a CBKAS. Firstly data management can be separated
into database management and memory management. Modern DBMSs already
incorporate this idea, at least to some degree. Secondly, pattern
recognition requires sophisticated user interfaces and the current
trend is' to introduce a user interface management system (UIMS) [52].
Traditional languages like FORTRAN were designed with printers and
punch cards in mind whereas interactive computing requires windowing,

graphics and multitasking facilities.

Figure 4,2.1 shows how we envisage a CBKAS based on the above ideas.

oTm———z |
DB;j / WORKSPACE / @
L 7

(BKASK

FIGURE #4.,2.1 : A Developer's Conceptual View of an Ideal CBKAS

The CRMS shown in this figure is what we will call a computer resource
management system. It consists of a DBMS for managing the databases
(DBi), a memory management system (MMS) for managing the workspace: set
aside in memory for the application and a UIMS for managing the user
_ devices (UDJ). Ideally the CRMS is like a very high level language
tailored to CBKAS requirements. Each module of the CBKAS (CBKASk)
could then be written 1in this high 1level language. The main
differences between the CRMS language and commerc¢ial DBMS languages
. are the relative separation of the DBMS, MMS and UIMS functions in the
CRMS and the fact that the CRMS would be tailored to knowledge
acquisition applications. Ideally the CRMS language should be able td
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call subprograms written in other languages and/or -CRMS procedures
should be callable from these other languages. By the workspace we
mean that part of memory set aside for holding data. However, the
program code may itself use a large amount of memory sSo perhaps memory
management should also deal with program use of memory. Even with the
larger and larger memories of modenn systems, memory management will
be required because the problems tackled get larger and more complex.

These ideas are discussed in more detail in [61-68].

The ELIXIR system achieves these ideals to a limited extent. The main
modules FELIX, PRELIX, EDBREP, ELIXIR, EDBVU and DBNREP are not
written in a very high level language (FORTRAN was used) but they do
consist primarily of calling subroutines from a CRMS 1library of
subroutines - written for knowledge acquisition purposes. To some
extent separate DBMS, MMS and UIMS routines could be written but many
CRMS roﬁtines have elements of more than one of these functions. We
believe however that with the experience gained from developing ELIXIR
and perhaps using a more sophisticated language than FORTRAN, the

degree of separation of function can be increased.

Most of the ideas presented in this section can be éummarised under
the label of modularisation. By this we mean the development of many
functionally separate modules which can be assembled into complex
systems. like a CBKAS. It allows such a CBKAS to deal with quite
general P by separating data definition from the CBKAS programs and
eases maintenance and development by 1oéalising errors (bugs) and

allowing modules to be replaced.

4.3 SOFTWARE ENGINEERING FOR A CBKAS

Reference [53] defines software engineering as: "The establishment and
use of sound engineering principles (methods) to obtain economically
software that is reliable and works on real machines". Like any other
engineering discipline software engineering involves design, quality
assurance, cost estimation and project management. The software design
process, like engineering design, consists of design specification,

generation of designs, evaluation of designs, comparison of designs,
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selection of a design and implementation. Design specification is the
formalisation of the design requirements according to an analysis of
the wuser's requirements. Detailed data and process analysis are
necessary for proper specification {51,53]. The rest of the thesis
provides most of the basic material needed for such analyses for a

CBKAS.

By starting ‘dith design specification of the software as a whole,
decomposing into components each with their own specification and
repeating the process until a completely specified system is obtained,
the software engineer follows what is called top-down design. Of
course, when evaluations of components are made, design and even
specification modifications may be required so the process is one of
iteration, i.e. not strictly top-dowh..Just as engineering structures
are built from the ground up, so software implementation is usually
done from the bottom up, i.e. the small low level routines are first
coded and tested, these are then assembled into larger routines and
the process continued until the whole system has been coded. However,
a relatively new implementation approach is top~down, i.e. c¢oding
first the highest level routines and then successively connecting the
lower modules into the system and testing them.® This approach
effectively eliminates integration or assembly of the coded modules.
Possibly its main advantage is that, at all stages of development, a

partially usable system exists.

The ELIXIR systems design and implementation were primarily top~down.
The structure of EDB was designed first and two simple test processors
(P) were chosen. Then the structures of FELIX and EDBREP were coded.
To complete these three the necessary CRMS routines were coded and
inserted into FELIX and EDBREP. These two could then be tested.
However, because EDB was stohed in binary form it was difficult to
tell from the errors in EDBREP output whether the program errors were
in FELIX or EDBREP. So to aid this error detection a very simple
program (DBDUMP), which simply dumped the contents of‘ EDB, was
written. Once EDB initialisation and its reporting were correct PRELIX
was coded and the whole system tested. To test the memory management
aspects another simple routine DMPMEM, which dumps the contents of the

workspace, was written.
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In similar fashion the modules ELIXIR, DBNREP and EDBVU were coded.
The six modules and many of their submodules communicate only via the
databases EDB and EDBn, thus localising error. Error traps, messages
and tracebacks were built into the specification of each module. These
were primarily intended to aid the user (KAc) but the information it
provided was soon realised to be extremely valuable for debugging.
Accordingly the specifications were modified to distinguish between
possible user errors and errors arising from program bugs. The final
test of the ELIXIR system was essentially its use in the examples of

chapter five.

In the development of ELIXIR, désign and quality assurance
(correctness) were the dominant software engineering aspects. Cost
estimation was quite crude. From a rough specification, it was decided
that development of ELIXIR was feasible within say one man year and it
was therefore done. The only project management issue of relevance was

the scheduling of module or sutroutine development and testing.

Not being a‘software engineer, most of the above ideas were learned
during software development. Perhaps this was fortunate, because had
we realised the complexity of the software required, we may never have

considered developing it at all.
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CHAPTER 5 : EXAMPLES

Two examples of knowledge acquisition are presented in this Chapter.
The first to be presented is a more detailed account of the example,
concerning NLFRAM given in the introduction to the thesis. This is an
important example because it contains aspects of hoth boundary value
problems (the finite element discretisation of the beam) and initial
value problems (the response history to an incrementally applied
load). NLFRAM typifies more general finite element structural analysis
packages. It served as a focus for development of ELIXIR. This does
not imply that ELIXIR is tailored towards knowledge acquisition for
NLFRAM but it was considered the main test case. The example
demonstrates how knowledge concerning an FEA package as a whole is

acquired.

The second example deals with a boundary value problem. Plane frames
often have curved members and the objective here concerns a proposed
method of modelling the curved members using straight frame elements
with rigid offsets. The question was how much offset to use to capture
the effect: of curvature at element 1level? The importance of this
problem to -he thesis is that an analytical proof of the validity of
the knowledge could be develcped. The knowledge may be used to improve
a modelling procedure or algorithm (if built into an FEA modelling

pre-processor).

It is very important to note that these examples are intended to

demonstrate two things, namely

(i) the knowledge acquisition procedure - its concepts,

operations, etc.

(ii) the use of a CBKAS (i.e. ELIXIR) - its component programs,

databases, etc.

It should also be remembered that the description of these studies are
'yational reconstructions' [27-31, 35-37] of the actual studies. While

clearily any actual study is far more complex than any 'rational
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reconstruction’, we still believe that a 'rational reconstruction' of
the events in the study is the clearest way tO'presént it. We have
tried to indicate the actual complexity by including feedback and
learning explicitly in certain parts of the description but obviously

feedback and learhing is active throughout knowledge acquisition.

5.1 ACQUIRING KNOWLEDGE ABOUT NLFRAM

The planning phase naturally introduces the problem of acquiring

knowledge about NLFRAM so no additional introduction is needed.

The Planning Phase - KAP(P,G) and KAProg

The first step in knowledge acquisition was to define the knowledge
acquisition problem, KAP(P,G). This required description of P and a

statement of the goal G.

Description of P

Name - NLFRAM

Author - D L Hawla

Language - .Fortran 77

Development Environment - CDC Cyber 174 under N0S2.3

Version - December 1984

Application - Structural analysis of plane frames

Problem types - Plane frames of composite construction especially R.C.
Euler-Bernoulli beam theory. Material nonlinearity.
Geometrical nonlinearity. Static loading.
Time-dependent loads. Area of imbedded materials not
deducted from matrix material. No internal hinges or
slides. Static analysis. Transient dynamic response

analysis.
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Solution techniques - displacement based finite elements.
Virtual work formulation. Incremental analysis
with equilibrium iteration for - static

analysis.

Implicit trapezoidal rule for dynamic analysis.
Element integration is numerical. Material point
integration always from last converged

configuration.

Qutputs - displacements, ‘stress resultants, history parameters,
computational effort, reactions, residual forces, iteration

convergence information, etc.

Goal G

"Find HK characterising an approximate Pareto optimal set for NLFRAM.
The HK should ideally span the problem space of P yet be sufficiently

simple™".

Note how extensive the description of P is. It is important for the
KAc to describe P in such detail because it provides him with the
necessary perspective for designing a suitable KAProg. If only a
simple KAProg is chosen, the HK obtained will need to be generalised
to span the whole problem space in a qualitative way. It will then be

useful to have an explicit description of this problem space.

From the description of NLFRAM, it should be evident that it is
typical of structural FEA packages, so many of the knowledge
acquisition concepts illustrated here should generalise easily ¢to
other such packages. In fact, they should generalise to almost any

computational mechanics software.

The next step was to define a KAProg which would refine suitably the

above stated goal. In this example, the KAProg contained only one



Page 100

problem class. This problem class PC1 consisted of the reinforced

concrete beam problem of section 1.5. The goal G1 was then

"Find the HK necessary to solve the reinforced concrete beam problem
efficiently. The HK should include a o2redible approximation to the
Pareto optimal set of solution techniques. The criteria for optimality
(efficiency) should be based on the reliability of displacements and

stress resultants and the cost of the computational effort".

This problem class was chosen for four main reasons. Firstly, one of
the primary objectives . of developing NLFRAM was to predict the
response of reinforced concrete frames. Beams such as the one in
Figure 1.5.1 form a typical component of RC frames. The HK obtained
would therefore be very useful for modelling the more complex frame
problems. Secondly, the beam had been tested in the University of Cape
Town Structures Laboratory and there was already great interest in the
problem itself. Thirdly, the problem is rich enough to demonstrate the
KAS. The richness of the problem will become evident in due course.
Finally, the HK.would form a good base onto which HK for a more

complex KAProg could be built.

After considering all the possible control options provided by NLFRAM
for solving PC1, we decided to restrict ourselves to studying the
effect of only five attributes. The. rest were to be fixed at some
reference state. Selection of the five was based on our judgement of
whether an attribute would affect both cost and reliability. If an
attribute was expected to have little effect on cost, we simply fixed
it so that it would produce a highly reliable solution. An example of
this was the selection of the element type. If we already 'knew' (from
past experience) which option was the. 'best', we again simply fixed
it. Selection of the equilibrium iteration algorithm and Gaussian
integration order were done in this way. The five attributes finally
selected for study were time step size, convergence tolerance, mesh
density, cross-sectional depth integration order and the concrete
tensile stress release rate (more will be said about the last
attribute). However, for each attribute/variable we expected to use at

least three values so at least 3b = 243 experiments would be needed.
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The number of experiments could hopefully be reduced by applying the
following methodological heuristic. Split the five attributes into two
control classes say ccl! and CC12. First study CC11 and use the HKH
acquired as a priori HK for the study of ccl2, If necessary another
control class CC13 consisting of all five could be studied using HK !
and HK12 as a priori knowledge. The relationship between the CCij can
be depicted as follows.
CC11
::>cc13
CC12

Such an approach is always valid but is only effective if HK11 is
relevant a priori HK for CC12 and HK11 and HK12 are relevant a priori
HK for CC13. At worst one would expect the total effort to be the same
as if no split was made. The relevancy of HK11 to CC12 depends on the
nature of the effect of the variables in CC'! and cc'2. we put time
step size and convergence tolerance into CC11 and the other three into
cc'2, we did not expect cc!! variables to interact with those in CC'2
so that having found some values of CC11 variables which gave
efficient but highly reliable solutions, we could use these values
instead of the reference values in the study of CC12. The variables in
CC11 were both expected to produce quasi-random responses while those
in CC12 were expected to produc2 monotonic responses. Because the
quasi-random effects cduld have swamped the monotonic effects and we
expected the variables in CC11 to have a greater impact on solution
costs, we decided to study CC11 first. The combined effects were
intended to be studied on CC13. The process resembles a hierarchical
optimisation process of performing a series of local optimizations on

subsystems followed by a global optimization.

The Execution Phase for KAP(P,G11)

<8, and 50

First we needed to define the coastituents of the object system So,

i.e. (x9,F9,v0,10),
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Input or problem attributes:

XN = {beam length, beam width, beam depth,
V position of tension steel, area of tension steel,
position of compression steel, area of compression steel,
concrete parameters (measured)
steel parameters (measured)

boundary conditions,
loading positions,

static load programme}

Processor controls:

FN = { time step size, convergence tolerances}
Qutputs:
YN = {displacements, stress resultants reactions, residual forces,

computational costs,}
Indices:
1IN = {time nodal coordinates, Gauss point coordinates}

The sets XR, FR, YR and IR, specifying the range of attribute
appearances, Will often be deferred, as was done in this example until

the integration phase of knowledge acquisition.

In order to collect data for studying the system a set of variables
had to be defined in order to measure the above attributes of the
object system. These variables formed an image system
SO = (XO,FO,YO,IO). Many of these variables corresponded directly to
attributes of NLFRAM but some were implicitly input. For example one
does not input the beam length directly - one gives nodal coordinates

and defines elements between these nodes. These implied quantities are
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far more meaningful to the KAc¢ and should be recorded too. The nodes
and their coordinates arise out of a discretisation (solution
technique) of the beam length (problem variable) and are commonly used
to index many quantities, e.g. displacements are generally only given
at nodes and point loads and boundary conditions may only be specified
at the nodes. Nodal coordinates can therefore be classified neither as
inputs nor processor parameters. In ELIXIR they are classified as
indices. Indices may be space~like such as nodal or Gauss point
coordinates or time~like such as the sequence of times used to index

time history responses of output variables.

For the purposes of knowledge acquisition, the following variables

were chosen.

xN = {BMLEN, BMWID, BMDEP,
TSPOS, TSAREA,
CSPOS, CSAREA,
NLMAT,
BCONDS,
LODPOS,
LODVAL, TRL, T}

XR = {all variables fixed to values shown ih Figure 1.5.1}

FN -~ (DELTAT,
TOL1
SMODL, SMPARS}

FR = {(real numbers 1.0, 16.0]); (real numbers [0.1%, 16.0%})
yN - {GDISP, BMOM, SHF, REAK,
HIST, RESID, CONRAT, STIF, NITERS,

SRU}

R = ((act real: (fo.o, o0.012), [-42.2], [-96.0, 96.01, (0.0, 96.0],
0.0, 1000.01} '

1N = (T, COORDS, GPCOD}
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The value ranges in YR wehe derived from experimental data and simple
hand calculation. The BN part of the homomorphism linking SO and'S0
should be obvious from the above. The definition of BR was deferred

until the integration phase.

By this point ZO had been adequately defined and the CBKAS, that is
ELIXIR, enters the scene. Recall from chapter 4 that the program FELIX
is used to initialise the database EDB. This initialisation consists
essentially of setting up ZO on EDB. However, whereas the source
system ZO is concerned only with a single problem class and a single
control class, the initialised EDB will usually contain information
for a number of source systems. The listing of file SPNLF shown on the
next page shows the data used by FELIX to initialise EDB. This in fact
will be more than adequate for studying PCT, CC11 and CCTZ.



PROCESSOR NAME -
NLFRAM
PROBLEM DESCRIPTION

NLFRAM SIMULATION OF TWO-SPAN,

1

10 *
0 »*

x

PROCESSOR PARAMETERS

Page

MIDO~SPAN POINT LOAODED

REINFORCED CONCRETE BEAM

*

[NPUTS :-

1, T * TIME~LIKE INDCX

2 , BMLEN * BEAM LENGTH

3 , BMMWID * BEAM WIDTH

4 , BMDEP * BEAM DEPTH

S , BSPOS * BOTTOM STEEL POSITION

6 , BSAREA * BOTTOM STEEL AREA

7 ., TSPOS * TOP STEEL POSITION

8 , TSAREA * TOP STEEL AREA

9 , NLMAT , I * MATERIAL REF. CODE

18 , BCONDS , I * BOUNDARY CONDITION CODE
.11 , LODPOS * LOAD POSITION

12 , LODVAL ,, v * LOAD VALUES

13 , TRL ., V % LODVAL(I)> IS LOAD AT TRL(D)
STATIC SPECIFICATION

I1.E. ONLY BCONDS

JXDES

< -

1, LTYP o I * -ELEMENT TYPE

2 , NELTS , I * NUMBER OF ELEMENTS

4 , DELTAT * TIME STEP SIZE

6 , TALGOR , I * ITERATION ALGORITHM

7 , Tou1 * RESIDUAL FORCE TOLERANCE

8 , NGPTS , I * NO. OF GAUSS POINTS (LENGTH)

9 , NDEPTH , I *» NO. OF NEWTON-COTES POINTS (DEPTH)
10 , REFGKT * FREQUENCY OF STIFFNESS REFQRMATIGN
11, cmModL  , I * CONCRETE MATERIAL MODEL REF. CODE
12 , CMPARS ,, V » CONCRETE PARAMETERS
13 , smooL , I » STEEL MATERIAL MODEL REF. CODE
14 , SMPARS ,, V * STEEL PARAMETERS
15 , ALPHA * = CMPARS(1)

STATIC SPECIFICATION

15 *
0 *

TATIC SPECIFICATION

02,3 *
NOTE THAT THE NO.
ONLY SPECIFIED AT

DELTAT,TOLT,NELTS,NOEPTH,ALFPHA
JFDES

T * TIME-LIKE INDEX
COORDS * NODAL X-COORD
, GPCOD * GAUSS POINT X-COORD

[.E. ALL INDICES
OF YALUES OF ALL INDICES ARE
RUN TIME [.E. IN NLFRAM QUTPUT

UTPUTS :-
1, GDISP ,, V , 2 = NODAL DISPLACEMENTS
2, BMOM ,, , 3 =~ BENDING MOMENTS
3, SHF , 3 * SHEAR FORCES
4L , AXF  ,, . 3 '~ AXIAL FORCES
5 , REAK ,, V * REACTIONS
6 , RESID » RESIDUAL FORCE NORM
7 ., CONRAT,, V * CONVERGENCE RATIOS
8 , STIF ,, V » STIFFNESS PARAMETERS .
9 , NITERS * NO. OF ITERATIONS
10 , SRU , C * COMPUTATIONAL COSTS

DYNAMIC SPECIFICATION
* QUTPUTS ARE USUALLY DYNAMICALLY SPECIFIED BECAUSE

» OME OFTEN DISCONTINUES DATA CAPTURE FOR SOME VARIABLES
* AFTER INITIAL EXPERIMEMTATION

105
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SPNLF is composed of six sections of data, each of which is delimited
by ':-', namely PROCESSOR NAME, PROBLEM DESCRIPTION, INPUTS, PROCESSOR
PARAMETERS, INDEXING VARIABLES and OUTPUTS. The first two are obvious.
Each of the last four sections contains a variable definition
subsecticn and a variable SPECIFICATION subsection. The latter may be
either STATIC or DYNAMIC. In the input section, 13 variables are
defined but only. one, viz. BCONDS, is specified. Although so many
variables are defined, data will only be collected for those that are
specified. If specification is static, the variable reference numbers
are given in SPNLF; if dynamic¢ they are given on the file which
contains the output from NLFRAM that is to be captured on EDB. By
using dynamic spécification, as done for outputs, the KAc may modify,
for each run, the specification of which variables data is to be
captured. Note however, that all five control variables in CC11 and
cc'? are specified - not just those of CC11._This was done so that
SPNLF could be used for both control classes without alteration and so
that reference solutions could easily be included in EDB (for the

reference solution all five need fixing).

The commentary after the '¥' serves to relate the variables to those
of the object system, i.e. it may be considered part of the

homomorphism 8.

Once EDB had been set up with ZO on it, the next step was to add data
to it to form SP.

KAS, and sP

Two points are important in data generation. Firstly, the data should
be generated according to a carefully designed experimental programme.
Secondly, included in this programme should be at least one run whose

solution may serve as a reference (reliable, accurate) solution.

The following control values were chosen to represenrt the reference

solution:

DELTAT = 1, TOL1 = 0.1%, NELTS = 16, NDEPTH = 13, ALPHA = 4.
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The same solution will be used for cc'? hence the explicit inclusion

of its control variables in the designatioh of the reference solution.

First a run of NLFRAM with the beference values was made. Then a

programme of 25 experiments was run with each combination of

DELTAT = 1, 2, 4, 8, 16
and TOL1 =1, 2, 4, 8, 16%.

The data collected from these runs forms S = (X,F,Y,I). This was
written to a temporary binary file (TEMPFILE) by NLFRAM and then
captured onto EDB by PRELIX. At this stage EDB contained SD.

KAS,, 8D ang sP

The next step was to convert sP to SD by introducing a reliability
variable (called RELY) and to compute the RELY data from the data Y.

But first we needed to choose a means of calculating RELY.

Choosing a reliability/deviation measure

What are the options? One could use measures based on displécements,
stress resultants, stresses or reactions at one or more points in the
structure. Any of the measures described in Chapter 3 may be used at a
particular point in time or averaged over a time period. Measures
based on stress resultants or reactions are not particularly useful
except to control residual force imbalances (Residual force imbalance
is. important because the materials are history dependent). Measures
based on stresses were not considered because they depend on the
stress distribution through the beam depth which depends on the
material model chosen. The material models, especially for concrete,
~are not very well calibrated due to insufficient and/or inappropriate
test data (or inappropriate model) - hence the inclusion of the

material parameters in F and not X. Measures based on stress would
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therefore seem inappropriate. This leaves displacements'and reactions.
Although it may have been worthwhile to include a reaction based
reliability for this problem, only the displacement under the point
load was chosen. A reliability measure based on an RMS (over time)
relative displacement deviation was used, i.e. used R3/CO/DR/RMS. The
reason for taking RMS values is to smooth out the random component in

the reliability response caused by the discretisation and iteration.

RELY data was then calculated for all cases in S. Adding this data to:
S gave § and adding RELY to YN gave YN and so 3P was formed. This too
was held in EDB.

The next step was to form ®  from 3D. Recall that
3D - (XD, #0, 10, 1D) whereas D - (QD, §D, T°). The idea of this step
is to condense the data in SD {(which is generally linked to time- and
space~like indices and so may be voluminous) down to something more
manageable. Often this may be as simple as selecting X,F,Y data for
some specified values of I or averaging ¥ data over the I values,

Reliability calculation already involves similar ideas. In this

‘example RELY is based on midpoint deflection only (i.e. a single value

of a space-like variable) but is evaluated for each value of T (i.e.
time-=1like index). To condense further, we selected RELY for T = 96.0

only (i.e. the end of the time period or at maximum load). So whereas

‘Y contains bending moments at all Gauss points and displacements at

all nodes for each value of T plus costs and reliabilities for all T
values, § contains only cost and reliabilities for T = 96.0. i and §
were identical to ¥ and F. This new condensed data system sD is stored
not in EDB but in a new database called EDBn (i.e. EDB1, EDB2, etc.).
The idea is that the KAc méy form more than one EDBn from EDB. Also
the storage format in EDBn is more suited to the data processing and

manipulation involved in KAS3.

KAS., and §%

3

Recall that the objective of this step is to 'partition' §D into §D.

xP requires no 'partitioning' since it contains only one problem. A
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'partition’ of ﬁD involves findings subsets of DELTAT and TOL!1 which
are Pareto optimal. Finding Pareto optima involves studying ?, i.e.
the cost and reliability of the solutiéns. It was found that all
solutions had RELY > 99 percent even for DELTAT = 16 and
TOL1 = 16 percent and, as expected, cost decreased as DELTAT and TOL1
were increased. So essentially the idea was to use the largest of
these values. However there were auxiliary conditions to be met.
Firstly as TOL1 increases the residual forces increase. We could have
calculated reliability measures based on these residual forces but
‘instead we simply did graphical comparisons of shear force (SHF) and
bending moments (BMOM) between the reference and the experimental
solutions. In this way we decided that a TOL1 = 4 percent adequétely
controlled the residual forces. \It is important to control the
residual forces because the materials in the beam are history
dépendent. Similarly, it was decided that DELTAT = 16 did not provide
adequate detail of the response so DELTAT = 8 was selected. With
DELTAT = 8 and TOL1 = 4 percent the cost reduction factor over the
reference solution was approximately 5.5 (from 642 to 117 SRU). It was
alsé found that, in the range of values studied, the cost was more

sensitive to DELTAT changes than to TOL1 changes.

KAS, and HK''

i

HK_11 turned out to be extremely simple, that is:

If DELTAT = 8 and TOL1 = 4 percent
then RELY > 0.99 and COST = 117 SRU

Such a statement of the HK11 is in terms of variables and values, i.e.
image system (%) terms. Usually it is also required to convert this
to object system (SO) terms. This was done by first setting up BR. One

suitable selection for BR was the following:
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DELTAT Time step size TOL1 Convergence Tolerance

1 Very small 1% Very tight

2 Small : 2% Tight

4 Medium - 4g Medium

8 Large 8% . Loose

16 Very large 16% Very loose
RELY Displacement reliability COST  Computational Cost
0.999 Very high 117 Very expensive
0.97 High y7 Fairly high
0.94 High-medium 36 High-medium
0.84 Low-medium 23 Low-medium
0.80 Low
<0.75 Unacceptable

Note that appearances are adjectives which qualify the attributes.
Some of the elements of BR namely those relating to RELY and COST are

cl2

in fact based on the study of C vwhich is yet to be presented. With

this interpretation, the HK11 could be restated as:

If time step size is large and convergence tolerance is medium then

displacement reliability is very high and cost is expensive.

This may seem trivial in this example and hopefully it will often be
sO0 simple but it 1is worthwhile because it will wusually make
explanation (integration phase) easier or more natural. It has the
advantage of distinguishing explicitly between the concepts of time
step sizes or convergence tolerances and the technical details of

their measurement.
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The Execution Phase for KAP(P,G!z)

KA, and §°
The only difference between 20 for ccl'? compared to that of CC11 was
that FO and O changed to: '

PN o {mesh density; order of cross~sectional depth integration,

concrete tensile stress release rate}
FR = will be defined later.
FN = (NELTS; NDEPTH; ALPHA}
FR - {(u,6,8,1o,12,1u,16);v(u,§,7,9,11,13); (Real [4.0,12.01)}

The homomorphism 8 is obvious. SPNLF was identical to the one used for
CC11 so EDB was initialised in exactly the same way. In fact, all data
generated during the study of CC1E could have been added to the EDB
already formed in the study of CC11. However, we chose to use separate

databases for each study.

A very important point to note is that although, in the object system,
the materials are part of the prdblem definition, in practice, when
using nonlinear material models, it is often more appropriate to
consider than as processor control variables. This has been done in
" the 1image system. Clearly CMODL and CMPARS would depend on the
measured concrete parameters but usually insufficient measurement data
of material behaviow is available. The advantage of doing this is
that they then become additional control variables and so may allow
additional efficiency to be achieved. Conceptually one may consider
their deviations frbm the measured values as artificial properties.

The use of artificial viscosities or damping in some solution process

is of this type.
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KAS, and sP

The initial programme of experiments consisted of all 27 combinations
of '

NELTS = 4, 8, 16
NDEPTH = 4, 7, 13
ALPHA = 4, 8, 12

plus the reference solution, a run with reference values except
TOL1 = 1.0 instead of 0.1 and by mistake a repetition of one of the
above 27. (#e did not exclude this mistake from the presentation
because, as will be seen in Table 5.1.1, cases 2 and 27, it
illustrates a mild but interesting inconsistency with what was said in
Chapter 3. We said that repeating a computer run would give identical
results, however one can see that the costs are slightly different for
~cases 2 and 27 even though case 27 was simply a rerun of_case 2.
Presumably tiuis difference was caused by some 1n¢onsiétency in the
accounting package on the host computer.) All these experiments were
done with DELTAT = 8 and TOL1 = 4 percent, i.e. using HK1T 30 that the

cost of experimentation was reduced considerably. -

The design of additional experimental programmes will not be discussed
here. They will rather be discussed in the section dealing with

- 'partitioning' of SD.

KAS,, 3D ang sP

The reliability measures used were the samevas for CC11. SD was thus
formed. Using the same selection process as before SD was formed on

EDBn. The following table shows S, sorted into decreasing reliability.
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IAXSET = 1 IAXIVR = 4 IARLI = 2
CASE DELTAT ToL1 NELTS NDEPTH ALPHA RELY COST
NQ ' « 2) SRU
30 .100E+01 .1OOE—02 .160€E+02 .130€e+02 .400E+0Q01 1.00 642.
1 .100E+01 .100€-01 .160E+02 .130€+02 .400E+01 .999 440.
2 .300&e+01 .400E~01 .1608+02 .130E+02 .600e+01 .999 117.
27 .800e+01 .400E-01 .160€+02 .130€+02 .400€E+01 .999 116.
18 .800E+01 .400E-01 .800€+01 .130€E+02 .600E+01 .977 53.2
15 .800€g+01 .400€~01 .&00E+01 .700E+0Q0"1 .400E+01 .952 35.9
24 .800e+01 .400E-01 .160€+02 .700€+01 .600E+01 L9462 81.1
28 .800E+01 .400€e-01 .160E+02 .130E+02 .800E+01 .866 68.6
25 .200€E+01 .6400E-0 .160€+02 .700€E+01 .800E+01 .860 63.8
19 .800e+01 .400E~-01 .800E+01 .130€E+02 .800e+01 .850 29.8
Q ..800E+01 .400E-01 .400E+01 .130E+02 .400E+01 L8438 22.8
16 .800e+01 .400E-01 .800E+01 .700E+01 .800€+01 . .844 28.6
6 .800E+01 .400E-01 .400E+01 .700e+01 .400E+01 .831 19.5
21 .800€E+01 .400E-01 .160E+Q2 .400E+01 .400E+01 .826 72.6
12 .800€E+01 .400E-01 .800E+01 .400E+01 .400E+01 .812 32.1
2 .800E+01 .600€-01 .80NE+01 .130€+02 .120€E+02 .00 25.6
29 .S00E+01 .400E-01 .160€E+02 .130€+02 .120E+02 .800 61.5
10 .800E+01 .400€E-01 .400E+01 .130€E+02 .200E+01 . 799 15.7
17 .800€+01 .400E-01 .800E+01 .700€+01 .120E+02 L7897 22.7
26 .800€E+01 .400E-01 .160£+02 .700e+01 .120E+02 .795 51.7
7 .800E+01 .400€E-01 L4L00E+01 .700E+01 .800€E+01 .790 13.2
3 .800e+01 .400€E-01 .400E+01 .400e+01 .400€E+01 .T64 22.0
22 .800e+01 .400E-01 .160E+02 .400€E+01 .800E+01 .752 49.3
11 .800€E+01 .400E-01 .L00E+01 .130e+02 .120E+02 .750 17.0
8 .800€+01 .400E-01 .400€E+01 .700E+01 " ,120€E+02 AR 11.3
13 .800E+01 .400E~-01 .800€+01 .400E+01 .800€E+01 .738 23.3
4 .800€E+01 .400E-01 .400E+01 .400E+01 .800E+01 .702 13.7
23 .800E+01 .400E-01 .160E+02 .400£E+01 .120€+02 L7001 44,7
14 .800E+01 .400E=-01 .800E+01 .400E+01 .120€E+02 . 697 21.9
5 .800E+01 .400E-01 .400E+01 .400€E+01 .120E+02 .655 12.3

TABLE 5.1.1 : S (EDBn) after the initial experimental programme

D
KAS3 and SK

Using ELIXIR to process/displayv EDBn, the following plot was produced.
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FIGURE 5.1.1 : COST versus RELY for the 1initial programme of

experiments.

Note that in the above figure, the top two case listed in Table 5.1.1
have been omitted. The solid square markers are those which remain

after filtering and correspond to those in Figure 5.1.2.

In Figure 5.1.2 only the Pareto dptimal points and those with
RELY > 0.75 are shown. This latter limit implies that the range of
acceptable RELY was limited to [0.75, 1.0].
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FIGURE 5.1.2 : Filtered RELY-COST data for the initial experiments

Table 5.1.2 below shows the cbrresponding F data.

IAXSET = 1 IAXIVR = 4 IARLI = 2

CASE DELTAT TOLY NELTS NDEPTH ALPHA RELY COST
NO. R SRU
2 .200E+01 .400e-01 .160E+02 .130€+02 .L00E+0 999 117.
27 .300E+01 .400E-01 .160E+02 .130€E+02 .400E+01 .9%9 116.
1 .8300E+01 .400E-01 .G00E+01 .130E+02 .400E+01 L9777 53.2
1% .800€+01 .400€-01 .800€+01 . 700E+01 .400E+01 .952 35.9
19 .800E+01 . 400€E-01 .800E+01 .130E+02 .800€E+01 .850 29.8
9 .800E+01 .400E-01 .400E+01 .130€e+02 .400€E+01 .848 22.8
6 .800E+01 - .400€e-0C"1 .400€E+01 .700E+D1 .400E+01 . 831 19.5
10 .200E+01 .400€E-01 .400E+01 .130€E+02 .800E+01 . 799 15.7
7 .800Q€+C1 .400€E-01 .400E+CT .700E+Q1 .800E+01 .790 13.2

TABLE 5.1.2 : S (EDBn) after filtering.
The filter parameter e used in the above was very small (0.02).

From Figure 5.1.2 it is clear that the data is very sparse. From Table

5.1.2, it would appear that for solutions to satisfy the filter,
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NDEPTH should be restricted to (7, 9, 11, 13) and ALPHA to (4.0, 8.0].
Also since the largest gap in RELY lies in the middle of the range,
i.e. 0.85 to 0.95, with NELTS = 4 satisfying the lower part and
NELTS = 8 satisfying the ﬁigher part, NELTS wohld be restricted to
(4, 6, 8).

Now FB31 came into play in the design of additional experiments. The
second programme contained runs with NELTS = 4, 6, 8, NDEPTH = 9, 11
and ALPHA = 6, 8. The same procedures of filtering and plotting were
followed. Studying these results, it was found that the Q(RELY and
COST) response had a significant quasi-random' ¢component. Such
randomness aggrevated the sparsity problem which was still evident. It
4lso became clear that to increase the representation {(of points) in
the higher part of the middle RELY range, i.e. near to 0.95, ALPHA
values closer to the reference would be needed. A third programme was

designed and the result is shown in Figure 5.1.3 and Table 5.1.3.

ELIXIR - PLOTRC
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FIGURE 5.1.3 : Filtered Y data after the third experimental

programme (e = 0.20).
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IAXSET = 1 IAXIVR = 4 IARLT = 1

CASE DELTAT ToL? NELTS NDEPTH ALPHA RELY COST
NO. ¢ 1 SRU
2 .800€e+01 .400€E-01 .160E+Q2 .130E+02 .400€E+0" .999 117.
27 .800E+01 .400€e-01 .160€+02 .130€+02 .400€+01 .999 116.
40 .800E+0Q1 .400€-01 .S00€E+01 .900E+01 .450€E+01 .983 41.4
61 .800€E+01 .400€-01 .300E+C1 .110€E+02 .450E+01 .980 45.9
2 .800€E+01 .400e~-01 .800€+01 .110€+G2 .400€+01 .980 47.6
50 .800€+01 .400E-01 .300E+01 .900E+01 .400€E+01 .979 45.3
51 .800€E+01 .400E-01 .800e+01 .900€+01 .500€+01 .975 43.9
53 .800€+01 .4Q0€-01 .800E£+C1 .110€+02 . 500€E+01 974 49.5
57 .800€+01 .400€-01 .600E+01 .110€+02 .500€+01 .954 37.1
15 .300€+01 .400E~-01 .800€+01 .700E+01 .400€E+01 .952 35.9
64 .800E+01 .400€-01 .800€+01 .900€+Q? .550E+01 .951 36.8
56 .300€+01 .400E-01 .60GE~+0D1 .90Q€E+01 .500€+01 .947 36.2
65 .800€+01 .400€E-01 .800E+01 .T10E+02 .550€+01 .946 37.5
63 .300&+01 .400E-01 .600€E+01 .110e+02 .550€+01 .944 32.9
62 .800€e+01 .400E-01 .600E+01 .900E+01 .550E+01 944 29.0
35 .300€+01 .400€-01 .600€+01 .900€E+01 .600€+01 .888 26.0
37 .800E+01 .400€E-01 .600E+01 .110E+02 .600€+01 .888 28.7
45 .800€+01 °~ .400€e-01 .600€+01 .900€e+01 .700€+01 .857 21.2
46 .800E+01 .400€-01 .600€+01 .110€+02 .700E+01 .855 21.5
59 .800€E+01 .400€E-01 .600€e+01 .110€e+02 .750E+01 .850 23.1
58 .800€E+01 .400E-01 .600E+01 .900€e+01 .750€+01 .850 23.3
9 .800E+01 .400€-01 .400€+01 .130€+02 .400€E+01 .848 22.8
38 .800E+01 .40CE-01 .600e+01 .110E+02 .800€+01 .845 24.2
36 .800€E+01 .400E-01 .600E+01 .900E+01 .800E+0" .844 21.9
6 .300€+01 .40CE-01 .400€E+01 . 700E+01 .400€E+01 .831 19.5
33 .800€E+01 .40CE-01 .400€E+01 .110€+02 .600E+0Q1 .818 16.6
44 .800E+01 .400&~-01 .400€+01 .130E+02 .600E+01 .817 19.2
31 .800€+01 .400e-01 .400€+01 .900€E+01 .600€+01 .815 13.9
43 .800€+01 .400€E-01 .400€E+01 .700E+01 .600E+01 .804 15.9
32 .300€e+01 .400E-01 .400E+01 .900E+01 .800€+01 .T99 14.7
10 .800E+01 .40CE-01 .400€+01 .130€+02 .800€+01 .799 15.7
7 .800€E+01 . 400€-01 .400€+01 .700E+01 .30Q0€+01 . 790 13.2

A

TABLE 5.1.3 : Filtered S data after the third experimental

programme (e = 0.20).

In Table 5.1.3, the § data has been split into six clusters. This was
done manually. The top four really reflect the clusters in
Figure 5.1.3 for medium and high reliabilities and are based 6n RELY
and COST criteria. The bottom two are split according to NELTS. To
improve the pattern without loss of information, cases 18, 9 and 6
were removed. The pattern represents the 'partition'’ éK - it is really

a 'partition' of F and Y.

From §K Wwe induced §§ (i.e. a 'partition' of gR and ?R) and a final
program of experiments was designed simply %o concentrate the
representation of § data into these §§1 and §§1° The idea was simply
to increase the empirical basis for each rule so as to decrease the
uncertain effect 2f the quasi-random component and thereby improve the

robustness of the rules.
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FIGURE 5.1.4 : Filtered Y data after the final programme (¢ = 0.20)
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IAXSET = 1 IAXIVR = 4 IAaRLI = 1
CASE DELTAT ToL NELTS NDEPTH ALPHA RELY cosT
NO. « 1 SRU
2. .800€E+01 .400E-01 .160E+02 .130E+02 .400€+01 .999 117.
27 .800€E+01 .400€-01 .160€+02 .130€+02 .400€+01 .999 116.
52 .80QE+Q01 .4Q0€e-01 .800€+01 .110€+Q2 .400Q0E+0Q1 .980 47.4
50 .800E+01 .400€-01 .800E+01 .900€E+01 .400E+01 .979 45.3
18 .800€E+01 .400€E-01 .800E+01 .130E+02 .400€E+01 977 53.2
51 .800€+01 .400€E-01 .800E+01 .900€E+01 .500€&+01. .975 43.9
53 .E00E+01 .400€E-01 .300E+01 .110€E+02 .500€+01 974 v 49.5
15 .800€E+01 .400€e-01 .800E~+01 .700E+01 .400€e+01 .952 35.9
39 .800€E+01 .400g~-01 .800&+01 .900€E+01 .600E+01 .934 36.1
41 .800E+01 .400€e-01 .800€+01 .110€+02 . 600€+01 L9351 40.2
35 .800E+01 .400E-01 .600E+01 .?00g+01 .600E+01 .888 26.0
37 .600E£+01 .400&g-01 .600E+01 .110€+02 .600€e+01 .8838 28.7
45 .800E+0C1 .400e-01 .600E+01 .900£+01 .70C€e+01 .857 21.2
46 .8300€e+01 .400€-01 .600E+01 .110€E+02 .70GE+Q1 .855 21.5
9 .80CE+01 .400€~01 .400E+01 .130€+02 .400E+01 . 848 ' 22.8
38 .300E+01 .400€E-01 .600E+01 .110€+02 .800€e+01 . 845 24.2
36 .800€+01 .400€e-01 .600€+01 .900E+01 .800€+01 .844 21.9
6 .800€e+01 .400€-01 - .400€+01 .700E+01 .400E+01 . 831 . 19.5
33 .800€+01 .400€e-01 .400€E+01 .110€E+02 .600E+01 .813 16.6
44 .800E+01 .400€e-01 .400E+01 .130€+02 .600€e+01 .817 19.2
31 .800&+01 .400E-01 .400€+01 .9C00€+01 .600E+01 .815 13.9
43 .800€+01 .400€e-01 .400E+01 .7TQ0E+01 .600E+01 . 804 15.9
32 .800E+01 .400€E-01 .400€E+0! .900E+01 .800E+01 . 799 14.7
10 .8300E+01 .400€e-01 .400E+01 .130€+02 .800E+0D1 .799 15.7
7 .800€+G1 .400e-01 .400E+01 .700€e+01 .800€+01 .790 13.2

TABLE 5.1.4 : Filtered S data after the final programme (g = 0.20) -

Now the simplicity conditions are invoked to eliminate those cases
from the above table which would complicate the rules or the set of
rules. In this study, cases 15, 64 and 65 were removed from the third
cluster, the whole of the fourth cluster was removed, i.e. cases 35
and 37 were removed, case 9 was removed from the fifth cluster and
cases 6, 33, 44 and 10 were removed from the last cluster. This

resulted in the following clusters.



IAXSET = i IAXIVR = 4 TARLI = 1
CASE DELTAT ToLt NELTS NOEPTH ALPHA RELY CosT
NO. M SRU
2 .800E+01 .400€e-01 .160E+0 .130€+02 .400€E+01 .99% 117.
27 .800€+01 .400e-01 .160€+02 .1350€+02 .400E+01 .999 116.
60 .800€E+01 .4G0€E~-01 .800€+01 .G00€+01 .LS50E+GH .983 &1.4
61 .800€E+01 .400€~01 .500€+01. .116g+02 .450e+01 .980 £5.9
52 .80CE+Q1 .400E-O1 .800€+01 .110€+02 .400&+01 .289 L7.6
50 .200&+0" .400€~01 .8CGE+01 .900€+01 .400E+01 L9979 45.3
51 .8CQE+01 .400€-01 .8G0€+01_  .200E+01 .500€+01 .975 3.9
53 .800€-01 .400€-01 .800€+01 .110€+G2 .500€+01 L9274 65.5
57 .320e+01 .400€E-01 .500E+01 .110€+02 .50QEe+01 L9564 37.1
56 .300&E+01 .400e-01 .600&E+01 .900e+01 .500€+01 L9447 36.2
63 .300€+01 .400€-01 .600E+01 .110€E+02 .SSQE+01 .944 32.9
62 .800&+01 .40Ce-01 .500€+01 .900E+01 .550e+0" L9bL 29.0
45 .8C0E+01 .4Q0€E-01 .400E+01 .900€+01 .700€E+0" .857 21.2
L5 .800€+01 .400€-01 .600E+0Q1 .110€e+02 .700E+01 .855 21.5
33 .300€+0Q1 .400€e-01 .600g+01 .110€+02 .750€E+01 .850 23.1
58 .800€+01 .400E-01 .600€+01 .900€e+01 .750E+01 .850 23.3
38 .800€+01 .400€e-01 .600€E+01 .110€+02 .300e+01 .845 24.2
36 .800E+01 .400e-01 .600E+0" .900€E+01 .800€+01 .3844 21.9
31 .3C0€E+01 .4GOE-01 .400€e+01 .900€e+01 .600€+01 .815 15.9
L3 .300€+01 .400€E-01 .400€e+01 .700€E+01 .600€+G1 . .304 15.9.
32 .3COE+01 .400e-01 .400E+DM .900E~+01 .800e+0 .799 14.7
7 .830E+01 .400E-01 .400€+01 .700E+01 .800€E+01 . 790 13.2

TABLE 5.1.5 : § clusters after simplification - these represent Sﬁ

KAS, and HK'2

§§ could now be formulated as the following five rules.

8 and TOL1 = 4% and NELTS = 16 and NDEPTH = 13
y
0.999 and COST = 117 SRU.

Rule 1: If DELTAT
and ALPHA
Then RELY

[}

]

Rule 2: If DELTAT = 8 and TOL1 and NELTS= 8 and DEPTH ¢ (9,11)
and ALPHA e [4.0, 5.0]
Then RELY = 0.97 and COST = 47 SRU.

]

It

8 and TOL1 = 4% and NELTS = 6 and NDEPTH € (9,11)
(5.0, 5.5]
0.94 and COST = 36 SRU.

Rule 3: If DELTAT
and ALPHA
Then RELY

™

i
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Rule 4: If DELTAT = 8 and TOL1 = 4% and NELTS
and ALPHA ¢ [7.0, 8.0]
Then RELY =~ 0.84 and COST = 23 S$RU.

6 and NDEPTH e (9,11)

Rule 5: If DELTAT 8 and TOL1 = 4% and NELTS
and ALPHA ¢ [6.0, 8.0]
Then RELY 0.80 and COCST = 15 SRU.

]
[}

4 and NDEPTH ¢ (7, 9)

]

It should be clear that the removal of some cases from the‘clustebs in
Table 5.1.4 simplifies the rules. The fourth cluster, i.e. cases 35
and 37 were removed completely because of an inadequate empirical
support and slight variations of ALPHA would seem to place the RELY
and COST into the one of %the neighbouring clusters. The heuristic

nature of the process should also be evident.
For explanation and interpretation, the above rules needed to be
restated in terms of SO. For this purpose, tables relating SR to SR

needed to be defined. One possible interpretation is the following.

Number of Newton-Cotes

NELTSY Mesh density _ NDEPTH depth integration points
2 Very low [4,5] Low
4 Low {7,9] ‘ Medium
6 Medium. [9,11] High
8 High 13+ Very high
16 Reference

Concrete tensile

ALPHA stress release rate

b.o - Reference
(4.0, 5.0] Very Fast
(5.0, 5.5] Fast
[6.0, 8.0] Medium
(7.0, 8.0] Slow - medium
12.0 Slow
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Many of these variables are real but only single values instead of
intervals are given. This is quite acceptable because the user only
needs a range of values from which to choose - the particular values
are never really important. Of course this is only true for F and
Y or §. For X the user needs the whole of XR to be represented. If the
HK is given only for points in XR, it must be possible to interpolate
to get HK for any other point in XR. Interpolation of F and Y or § is
usually not valid.

With the above interpretation, HK12

can now be given as:
If the time step size 1is large and the convergence tolerance 1is

medium, then:

Rule 1: If the reference mesh density, depth integration and concrete
tensile stress release rates are used, then displacement
reliability will be very high and the c¢ost will be very

expensive.

Rule 2: If the mesh density is high, depth integration high and
concrete tensile stress release rate very fast then

displacement reliability will hbe high and cost fairly high.

Rule 3: If the mesh density is medium, depth integration high and
concrete tensile stress release rate fast, then displacement

reliability will be high-medium and cost nigh-medium.

Rule 4: If the mesh density is medium, depth integration high and
concrete tensile stress release rate slow-medium, then
displacement reliability will be low-medium and cost will be

low-medium.

Rule 5: If the mesh density is 1low, depth integration medium and
concrete tensile stress release rate medium, then displacement

reliabii:ty will be low and cost low.
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In addition to this should be given the wvalues of all other F
variables that were fixed, the values used in the reference solution,
the diagrams of the problem class and reference solution, all X
variable values (summarised forms), a listing of the input data for at

least one of the runs and an explanation of the HK.

The Integration Phase

The five rules given above already represent the integration of HKH
and HK12 into HK1. The integration in this study was easy. Perhaps
integrating HKij into HKi will always be easy. Because the HK11 was
eventually based primarily on auxiliary considerations rather than
optimality considerations, the study of CC12 using HKH is effectively

the same as studying CC13. Hence no work was done onvCC13 itself.

A very important component of the integration phase is the explanation
of the HK'. '

Explanation of HK1

For linear analysis two elements would give exact solutions in terms
of Euler-Benoulli beam theory. Although the bending moment
distribution is piecewise linear, due to material nonlinearity, the
curvature and axial strain distribution will be nonlinear. As the load
increases this nonlinearity will be come more severe. The beam
elements used have cubic transverse and quadratic axial displacement
fields giving linear curvature and linear axial strain fields. Thus to
capture reliavly these nonlinear strain distributions requires high

mesh density at high loads.

The concrete constitutive law used is highly nonlinear so a high
number of Newton-Cotes points are'néeded for integration through the
depth of the concrete cross-section, except when a low cost low

reliability solution is sought.
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ALPHA is part of the material specification and so should be in XO and
not FO. However, from the HK it is clear that using ALPHA slower than
the reference value, reliabie solutions can still be obtained. With
ALPHA closer to the reference value, solutions become expensive. This
is because the higher the stress release rate, the more strain energy
needs to be redistributed through the structure for fixed time (load)
step size. This will usually require more equilibrium iteration and
hencé higher costs. The reason one can still obtain high reliability
with ‘'incorrect' ALPHA is that for most of the response the steel

dominates the behaviour.

The recommendation (HK is always regarded as recommendation) of large
time step size but not very large is based purely on the grounds of
adequacy of response representation since even very large steps

produced very highly reliable solutions.

Tightening convergence tolerances results in high cost while loose
tolerances result in solutions oscillating about the reference
solution. Use of a medium tolerance thus represents a compromise. At

this level the displacement oscillations are very small indeed.

Another very important aspect of the integration phase 1is the
generalisation of the HK to a wider problem class. Such generalisation
is based on an understanding of the physics and numerical methods
underlying the processor. An explanation of the HK is therefore a

prerequisite to such generalisation.

Generalising the HK

HK1 is formally only applicable to the single problem from which it
was derived. Heuristically, however, it is much more widely
applicable, i.e. it will be applicable to a large proportion of the
ranges of the input attributes or variables. In a. more detailed
knowledge acquisition exercise all relevant and dangerous
generalisations would need to be spelled out. Here, we will only show

some typical ones.
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Clearly the HK is applicable to any problem which has the same
relative dimensions, steel ratios, material properties, boundary
conditions and relative loading, i.e. the HK is easily
nondimensionalised. However, even for wide ranges of these
nondimensional. variables, the HK will still apply. For example
changing the relative steel content, moving the loading position,
changing span to depth ratios, beam to width ratios, applying an axial
load and changing the steel positions will not affect the HK
significantly. From previous experience with the concrete model used,
the response is almost insensitive to variations of up to 30 percent
in the compression parameters. Changing the tension parameters affects
only the main cracking stage's response but can significantly affect
costs (This has already been explained). As long as the steel model is
the same, varying the parameters will not affect the HK - if the ratio
E1/E and EH/E (see Figure 1.5.1) are reduced, the HK may need
modification due to increased nonlinearity while if they are

increased, the HK will be conservative.

Changing the form or structure of the material models may well have a
significant affect on the HK. Without knowing what such changes are
likely to be, one cannot say much about the nature of these changes.
However, the above used models capture quite well the behavidur of the
reinforced concrete beam so changing to any models which are capable
of similar prediction will probably not affect the HK too greatly.
Certainly the above HK would be an excellent starting point for

further knowledge acquisition.

Altering the boundary condition may have the most significant effect.
This is because, once the concrete has cracked, the neutral axis
position moves, so if the beam ends are restrained axially,
significant arching action may occur. Addition of end moment restraint
will also usually change the HK - probably higher mesh densities will
be required. So further knowledge should be acquired for these
different boundary conditions. Again the above HK will be an excellent

starting point.
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Once the HK is expanded to inc¢lude various boundary conditions, it
becomes possible to consider its application in general plane frames.
For example a two-bay portal frame would be composed of at least five
members. For reliability~esﬁimates, the HK may be used for each member
taken separately. Cost estimates based on summing the individual
member estimates will always be too low for any structure which has
complex connections, i.e. where more than two members meet at a joint.
In fact such estimates may be much too optimistie. Perhaps, another
class of problems containing problems of varying joint complexity

should be studied. This will be left to subsequent research.

Further generalisation to dynamic analysis, stability analysis and

general geometric nonlinearity is unwise,
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5.2 - CURVED BE£AM SIMULATION

The most important effect of element curvature, namely
membrane=bending coupling, 1is neglected when straight elements are
used. On the other hand, intrinsically curved elements are difficult
to formulate and are usually expensive, while use of shallc¢w arch type
theories with low-order elements presents a problem called 'membrane
locking'. To overcome this 1latter difficulty, reduced integration,
modified membrane strain definitions and penalty methods have been
used [71-75]. Here we take a different approach. We propose to
simulate a curved element by a straight element with a constant
offset. The main advantages of this approach are simplicity and no

locking.

Attention has been restricted to planar beam elements.

OFFSET BEAM ELEMENT

The curved beam elemént shown in Figure 5.2.1 may be considered as a
beam with varying offset. An approximation to this curved element is
to use a straight two-noded Hermitian beam element with a constant
offset as shown in Figure 5.2.2. Such an elemént is probably the
simplest element which includes membrane-bending coupling at the

element level.

FIGURE 5.2.1 : Curved Element
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~
//

RIGID LINK

FIGURE 5.2.2 : Offset Straight Element

One suggestion for the offset is to use the average of w(x) over

length 2. If wix) were quadratic this would yield v=2/3.

The Planning Phase - KAP(P,G) and KAProg

The FEA package to test the offset beam proposal was again NLFRAM.

Thus P is as before.

The goal G is now to find the 'best' values for Y and the conditions
under which these values are applicable. 'Best' here was inﬁerpreted
as 'Pareto optimal'. Two approaches were taken, namely, the knowledge
acquisition approach based on experimentation on a class of problems

and a theoretical approach (This will be given later).

Figure 5.2.3 below shows the deep c¢ircular arch on which the problem

class PC1 was based.
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(vertical displacement fixed)

FIGURE 5.2.3 : Deep Arch Used To Define Problem Class

Furthermore, it was assumed that the boundary conditions at the right
hand support were such that M0=FH6H=O 80 that the only external
loading was the unit vertical force at top of the arch. Typical finite

element models of the arch are shown in Figure 5.2.4.

- +

{a) Standard Straight Elements (b) Offset Straight Elements

FIGURE 5.2.4 : Typical Finite Element Models Of The Deep Arch

The control class CC11 for this study consisted simply of the offset
parameter (Y) and the mesh density (to be represented by NELTS).
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So g1 is: Find HK11 characterising the approximate Pareto optimal set

for PC! based on cc'l.

KAS

o and 50

The components of .the object system S0 Wwere defined as follows:

<N s {beam width (=depth); boundary condition}

FN¥ = {mesh density, Y}

YN = {displacements, stress resultants, reactions}
N = {angular position}

To measure the attributes of the object system the following image

system SO was formed:

xN = (BMWID, BCONDS)}

xR = {(Real [0.001,0.1]) (00, 01, 10, 11)}

FN - (NELTS, GAMMA}

FR = {(Integer [1,301); (Real 0.0, 1.01)}

vN = {GDISP, BMOM, SHF, AXF, REAKS, KOST}

yR = {a11 real: [0.0, 15.0]1, (-1.0, 1.01, [-1.0, 1.01, [-1.0, 0.01,
(-1.0, 1,01, (1.0, 30.0]} '

1N = {PHINOD, PHIGP}

{(Real (0.0, m

™
/2]:A(Rea1 fo.o0, /2])}

The values of BCONDS constituted a code for the boundary conditions: O
means free and 1 means fixed - the first digit representing 8 and the
second §y (See Figure 5.2.3) (i.e. 00 - &y and 8 free; 01 - &y fixed;
10 - 8 fixed; 11 - both fixed).

GDISP has three components per node and is indexed by PHINOD.
BMOM, SHF and AXF are indexed by PHIGP.

REAKS is a vector with component numbers being required.

The vzlue ranges in Y®  were derived from very simple hand
calculations. They provided valuable validity checks on the data

captured.
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The homomorphism BN is clear from the above. Because we will not need
to use attribute appearances, their ranges and the homomorphism BN
will be left undefined.

The angles (¢) for the two Gauss points of an element correspond to
those of points on the arch found by projecting, perpendicularly to
the c¢hord, the Gauss points on the (straight) element. The cost
variable KOST here is equal to NELTS because storage and processing
costs will be directly proportional to NELTS in this problem class

(geometric/topological simpliciﬁy and linear analysis).

Data for three reactions were captured, namely REAKS(1) = M(0),

REAKS(2) = M(3) and REAKS(3) = Fy

KAS, and sP

The initial experimental programme consisted of all .combinations of:

X ¢ BMWID = 0.01

BCONDS = 00, 01, 10, 11
and
F : NELTS =1, 2, 3

GAMMA 0.0, 0.5, 0.6667, 1.0

Added to this was the reference solutions (one for each Xa) which

gives a total of 52 runs. This data forming S was stored on EDB.

KAS., &P and 3P

2’

The reference solution was chosen as a finite element solution using

30 elements without offset.

SD was merely the addition of deviation measure data to SD. For this

example a number of deviation measures were calculated.
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RELY(1) : deviation based on §
(2) : deviation based on 8
(3) : deviation based on &y
(4) : deviation tased on Fy.
(5) : deviation based on M
(6) : RMS deviation of BMOM normalised with respect to RMS of
reference BMOM. In addition, the sign of the mean deviation

was attached.
RMS values are calculated over the PHIGP values.
The seléection of SP from 3° was as follows:

X = XD, 0 = #0 and Y0 = (RELY (1 to 6), KOST). sP was then stored on
EDBn. In fact, since the four BCONDS values induced a set of four.
subclasses of i, each of these was stored on separate EDBn, namely
TAPE41 (BCONDS=00) TAPE42 (BCONDS=01), TAPE43 (BCONDS=10) and TAPE4Y
- (BCONDS=11).

D
KAS3 and SK

Figure 5.2.5 shows the RELY-KOST plots for the sets of cases (the
reference cases have been removed). The lines joining the points have
been added only to ease interpretation of the plots =« they do NOT
imply interpolation of the cost (which 1s equal to NELTS and. is
therefore integral). Note also that RELY(%), 1i.e. BMOM based
reliability is not presented here. The reason is that, while RELY(1-5)
are easy to calculate, it was not obvious how to calculate a BMOM
based reliability. The RELY(6) as defined above was in fact only
decided at a later stage, i.e after plots of BMOM versus PHIGP had

been studied extensively.
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Each graph shows the reliability against cost for a particular
reliability measure and BCONDS setting. Clearly the points may  be
clustered according to KOST(=NELTS). Within each of these clusters the
reliability varies with Y. Mostly the sensitivity of the wvariation
decreases with increasing NELTS (All graphs are to the same 'scale).
This 1is as expected. However, the quantity of data, while still very
sparse (only four values of 7Y) is still tbo much to apprehend in its
present form. If filtering to reduce -the data is done on such a sparse
sample one would remove nearly all the data. Thus more points based on
different Y are needed plus a means of summarising the presented data.
In order to discover an appropriate means to achieve both these aims,

the presentation of the data was éhanged to the one in Figure 5.2.6.
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(iv) 8 and 8y fixed (BCONDS=11)

Y VERSUS RELY(i) for NELTS

(ii) o free, &y fixed (BCONDS=01)
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These show clearly the almost linear dependence of each RELY measure
on Y and the decrease in sensitivity with increasing NELTS. The fact
that the lines tend to cross indicates that for each NELTS and BCONDS
there is an optimum Y. Care must be taken in seeking -this optimum Y
because the scaling of each RELY measure implies a relative importance
factor. Changing the importance factors would give different optima in

this situation because the crossings do not occur at zero.

It was also already clear that for BCONDS=11 at 1least two elements

were necessary.

To expand the database with respect to Y it was decided that instead
of running many more cases on NLFRAM it was legitimate to interpolate
RELY with respect. to Y. For each of the NELTS and BCONDS settings,
RELY(i) was interpolated for 151 points on Ye{0.5, 1.0]. Figure 5.2.6
shows that all Y optima would lie in this interval. Then for each Y

point the RELY data was summarised as follows:

u(Y,NELTS) =  max |RELY, (Y,NELTS,BCONDS) |
1,BCONDS

except that for NELTS=1, BCONDS=11 is excluded.
This formula implies that all RELY measures are important and that we

wish to have a rule applicable to all BCONDS, i.e. the whole of XR.
The following Figure 5.2.7 shows u parameterised by NELTS versus Y.
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FIGURE 5.2.7 : Y versus u with NELTS as a parameter (For NELTS = 1,

BCONDS = 11 is excluded from u calculation).

Applying a filter based strictly on the Pareto principle to all data
points in u-cost plane would correspond to taking the minimum points
of each curve in the above figure. However, in most cases it |is
advantageous to have an idea of the sensitivity of the performance to
the influencing variables. This may be achieved via an approximate
Pareto filter, i.e. a filter which passes not only the optimum but
also those points sufficiently close to 1it. (If the function were
sufficiently smooth one could take derivatives). We could have used
the filter in ELIXIR but, here, we simply read off the following rules
to form the heuristic knowledge (i.e. induced ég and formulated the

rules).



Page 141

KAS, and k1

HK11 expressed in terms of the image system is as follows.

Rule 1: If NELTS=1 and BCONDS# 11
then if ¥y = 0.86 then opt = 0.26
if vYe[0.85, 0.90] then pel0.26, 0.27]

- Rule 2: If NELTS=2
then if Y = 0.84 then Mopt = 0.098
if ve(0.55, 0.84] then us[0.098,.0.010]

Rule 3: If NELTS=3
then if Y = 0.75 then Hopt = 0.023
it ve(0.59, 0.80] then ue[0.023, 0.030]

Note that each rule above contains two subrules: one dealing with
optimal c¢ontrol and the other with approximate optimal control. While
a user would preéumably' select an optimal control, the information
contained in the approximate optimal control gives a good idea of the

sensitivity of the control near the optima.

In this example very little advantage is to be. gained by expressing

gx ! in'terms of the object system, so it was not done.

The value bf these rules may be judged from the figure below.
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FIGURE 5.2.8 : The effect of 'optimal' Y on solution reliability

Ry looking back to Figure 5.2.6 one can determine which RELY measures
.and BCONDS are active at the Hopt * One finds that BCONDS = 11 is
nearly always the worst case and usually when RELY(1) and RELY(5) are
active. This knowledge would be useful as a guide to someone who would

refine the knowledge dependence on the boundary conditions.

The Integration Phase

In this example the justification of the heuristic knowledge follows
directly from the experimental data analysis and the initial
inituitive idea of using an offset with Y = 2/3. However, we felt that
in this instance it would be possible and worthwhile to find a
theoretical explanation for this belief. Therefore, in parallel to the
above knowledge acquisition process, a theoretical investigation was
carried out. A stiffness matrix for a 1linear elastic, constant
cross-section, circular arch element with arbitrary subtended angle g
was derived via the principle of complementary virtual work. The
degrees of freedom for this stiffness matrix were the displacemehts at

the ends, in directions parallel and perpendicular to the tangent of
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the arch mid-surface, and the end rotations. The stiffness matrix was
then transformed to relate to degrees of freedom parallel and
perpendicular to the chord of the arch. Then by letting R¢S+1, i.e. a
limiting process from deep to shallow arches, and neglecting higher

order terms, the following stiffness matrix results.

F | | :
EA ¢ - 2h EA - Ea 0 2h EA
7 3T 7 3 1
12E1 6EL 0 _ 12EI 6EL
23 22 23 22
YEI , 4n® EA  _ 2n EA  _ 6EI 2EI _ 4n® EA
L 9 2 3 2 02 L 9 1
EA 0 - 2h EA
) 3 %
symmetric 12EI . BEI
23 22
YET , 4n® Ea
T 7

This is identical to the stiffness matrix of a straight element with an
offset of 2h/3. Figure 5.2.8 shows that except for NELTS=1, using Y=2/3

results in u very close to Hopt * It is expected that “opt*2/3 as NELTS»+w,

Generalisation of the HK

The heuristic' knowledge HK11 can quite easily be generalised to PC's
with Dbroader definition than PC1. If, instead of wusing NELTS as a
measwe of mesh density, one wused the reciprocal of the angle
subtended by a single element as a mesh density measurement, then
conservative generalisation of HK11 to problems with subtended angles
(for the whole arch) other 90° would be straightforward. Incidentally,
note how this generalisation illustrates the importance of separating
~the concept of mesh density from its measurement and hence the
importance of defining object and image systems. By assuming that the

HK is applicable to members defined between boundaries and/or point
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loads, generalisations to more complex sets ofv point loads is also
easy. Distributed loading conditions would require further knowledge
acquisition but we would not expect the HK to change'significantly. If
the boriginal straight element can deal with nonlinear méterials then
s0 will the offset element. However, more knowledge would need to be
acquired ‘because mesh densities (with or without offsets) would need
t0 be 1increased. For geometrically nonlinear problems we believe that
by including the mid-element transverse deflection in h (i.e. making h
deflection dependent) the benefits would exceed those for linear
analysis. Again, however, more knowledge would need to be acquired.
Some generalisations to dynamic analysis and 3-D' beams is also
.possible but these would also require further knowledge acquisition.
In all generalisations or extensions of PC1, the HK11 will serve as

very valuable a priori knowledge.
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CHAPTER 6 : CONCLUSION

Effective and efficient use of engineering software requires knowledge of
the Pareto optimal set. of the software. At present‘ very 1little such
knowledge is available to users. Complete knowledge of the Pareto optimal
set is impossible to acquire due to the complexi;y of the problem and
control spaces of the software and HK (Heuristic Knowledge) characterising
an approximate Pareto optimal set must be acquired instead. Such HK may be
acquired by making use of the knowledge acquisition procedure presented in
Chapter 3. The procedure consists of three main phases, namely a planning
phase in which a set of .problem and control classes is defined, an
execution phase in which HK for each problem and control class is acquired
and an integration phase in'which the separately acquired HK is explained
and integrated into a single body of HK. The problem and control classes
are simplifications of the problem and control spaces. The execution phase
was further shown to consist of five main steps, namely, system
definition, experimentation, data transformation, ‘'partitioning' and
formulation of HK. These five steps correspond to the components of a KAS
(knowledge acquisition system). While the planning and integration phases
are labour intensive, i.e. they are done by the KAc (knowledge acquirer),
by computerising most of the data management aspects of the KAS, the
execution phase c¢an be partially automated. Computerisation aspects were
then discussed. Finally two examples of knowledge acquisition were given.
These illustrated the use of the knowledge acquisition procedure and a
computer-based KAS called ELIXIR. They alsc showed that, even for a fairly
small software package, significant savings in computational effort may be

achieved.
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APPENDIX A SOME CLUSTERING TECHNIQUES

Let X = {xi | i=1,2,...,n} be a set of data points which are to be

clustered or partitioned. For K hard clusters C;, j = 1,2,...,K
K , -
we have U Cp = X and C;n Cj =0 if i # j. v (A1)
' k :

Let u be a K x n membership matrix which assigns the Xy to clusters

Ck' i.e.

(A2)

[}
—

if X; € Ck then Upq

else Upi = 0

For hard clustering, each X; can only be assigned to one c¢luster but
must be assigned to at least one. This is implied by (A1). Clearly
this results in the restriction on u that one and only one element

of each column in u must be 1, the others all being zero.

The number of possible K-partitionings on n points is given by [20]

as

-1 I ,m (43)

1
Ngn = KT : j

I ~10R

J

NKn grows very quickly with inc¢reasing K and n. For example, for S

clusters on 100 points, Ng 1o = 10%¢; N3 15 = 2.3 x 106,

In general the points X; may be vectors but consider for the moment
the case where each Xy is a scalar. Also assume that the data are

ordered, i.e.

(A4)
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and that the elements of a cluster form contiguous sets, i.e., if a

cluster begins with X; and has & points, then it consists of
{xi’ Xit1oeees xi+2‘1} (AS)

Under these conditions (A3) becomes
-1
N.o= (7)) (A6)

Nkn <L NKn’ for example Né,15 = 91, Compare this to N3’15,above. A

typical value expected in knowledge acquisition would be
1]
K =4, n =50 in which case Ny 50 = 230 300.

Thus even here complete enumeration of the possibilities is probably
uneconomical. Although dynamic programming can speed up the
enumeration, Sp&th [20] suggests that, for solutions in reasonable
time, one must use heuristic algorithms. He also points out that
cluster algorithms are superior to visual classification only when the
vectors X; are one or two-dimensional. However, many
clustering/partitioning problems in knowledge acquisition are likely
to involve vectors of one or two dimensions in the clustering criteria
so visual classification will often be adequate. This again stresses
the importance of good graphical display of data. However the
clustering algorithms may still be useful for organising the data
because further processing will usually be done on this data. If it is
organised properly, it will usually make suéh processing simpler and

more efficient.

Now let dij = d(xi, xj) be a distance function. Typically
2 2
where ||+|| is the Euclidean norm (assuming x is vector).
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The mean or centroid X of a set of points X is that value X ¢ XR
(X is a sample of points in xR)
n

which minimises } d2(xi,§).
i .

If d is based on the Euclidean norm

)-{ = zxi

l .
n

Similarly one can define centroids for clusters as

- - n 2 -
x, = {x [min ] u, d%°(x,,x)} (AT)

K xeX" i=1 ki

or for the Euclidean case

n
where n = [ u .
i

Many cluster algorithms are designed to minimise an objective
function. The most popular of thése is the sum of the sum of the
squared distances of cluster members from their cluster centroids,
i.e. '

n

K 2
YooY u.. d (A8)
k=1

J(K) ki %ik
i=1

where  dj, = d(x;, X))

[Aside: The advantage of the form of (A8) and the use of the
membership matrix Upi is that it can easily be generalised to a fuzzy

objective function

K n a2
In(K) = T 1 ()" dj, (49)
k=1 i=1
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A

where now 0 s-uki s 1. Ui 1s called the membership grade of X; in
cluster k. The integer m defines the fuzziness of the clustering. The

higher m the harder the partition. See [11]]

One of the simplest and most popular clustering algorithms, the KMEANS
algorithm {12,20], which minimises J(K) (locally not globally - only
complete enumeration can produce a global minimum) is as follows.
Given an initial partition, one takes each X; and re-assigns it to
another cluster if, in so doing, J(K) is reduced. In fact one assigns
it to the cluster which will reduce J(K) the most. Quite simple
efficient formulae exist to test such conditions. This is repeated
until no further reduction can be achieved. To check global optimality
one will need to start the algorithm with a number of different
initial partitions. One simple way to find an initial partition is to
select K elements of X as an initial set of cluster centroids ik. In
one or two dimensions this should be easy if based on visual
information. Then simply assign the rest of the x; to the cluster with

i
nearest centroid.

A very serious problem with clustéring is the selection of K. Clearly
as K»n, min J(K)»0 but for abstraction purposes one requires a small
K. Where clustering is used in knowledge acquisition, the selection of
K should however be quite easy if visual inspection of the data is
made. For simple HK one wants the minimum K which gives 'natural!
clusters., Usually one can simply repeat the clustering for a few

choices of K and then select the cne which gives the 'best' result.

Another important problem in clustering is to choose an appropriate
distance function. The Euclidean norm will usually give the most

efficient algorithms with others often requiring considerable effort.

Use of the L, norm, i.e. gaxlaa - bal is apparently almost unusable

according to [20]. Unfortunately minimisation of an objective function

of the form

H(K) = max(max(ukidik)) (A10)
k i
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may, in fact, be the most appropriate to knowledge acquisition. If the
distance function measures distances between solution features §, then
(A10) says that one wants a partitioh which minimises the worst error
a user of P would make if he based his decisions on the HK derived .

from the partitioning.

In all of the above, we have considered only partitions of single
level, that is to say that no further partitioning of partitions was
. desired. However, it will often be convenient to have such a double
level with the first level being a partition of iR and the second
level an approximate partition of §R. The process is more one of
multi-objective function clustering rather than hierarchical

clustering.
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